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Abstract 

A control system is fault-tolerant if it possesses the capability of optimizing the system 

stability and admissible performance subject to bounded faults, complexity and 

modeling uncertainty.  Based on this definition this thesis is concerned with the 

theoretical developments of the combination of robust fault estimation (FE) and robust 

active fault tolerant control (AFTC) for systems with both faults and uncertainties.  

This thesis develops robust strategies for AFTC involving a joint problem of on-line 

robust FE and robust adaptive control. The disturbances and modeling uncertainty affect 

the FE and FTC performance. Hence, the proposed robust observer-based fault 

estimator schemes are combined with several control methods to achieve the desired 

system performance and robust active fault tolerance. The controller approaches involve 

concepts of output feedback control, adaptive control, robust observer-based state 

feedback control. A new robust FE method has been developed initially to take into 

account the joint effect of both fault and disturbance signals, thereby rejecting the 

disturbances and enhancing the accuracy of the fault estimation.  This is then extended 

to encompass the robustness with respect to modeling uncertainty.  

As an extension to the robust FE and FTC scheme a further development is made for 

direct application to smooth non-linear systems via the use of linear parameter-varying 

systems (LPV) modeling. 

The main contributions of the research are thus: 

 The development of a robust observer-based FE method and integration design 

for the FE and AFTC systems with the bounded time derivative fault magnitudes, 

providing the solution based on linear matrix inequality (LMI) methodology. A 

stability proof for the integrated design of the robust FE within the FTC system. 

 An improvement is given to the proposed robust observer-based FE method and 

integrated design for FE and AFTC systems under the existence of different 

disturbance structures.  

 New guidance for the choice of learning rate of the robust FE algorithm. 

 Some improvement compared with the recent literature by considering the FTC 

problem in a more general way, for example by using LPV modeling. 
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Chapter 1.  

Introduction 

 

1.1 Introduction 

Since the milestone Watt used the stream pressure of a steam engine to regulate the 

engine speed via fly-ball governor (1760), and with the effort of many other pioneers, 

the theory and practice of control system design advanced rapidly. In 1868 James Clerk 

Maxwell analysed the non-linear dynamics of the fly-ball governor and the control 

began to encompass complex dynamical system (Smithers, 1994). Important new 

concepts and tools were developed in connection with telephone and radio 

communications in the 1920s and 1930s, and further accelerated the development in 

World War II. Later, automation became a household word as industry began to depend 

more and more upon automatically controlled machinery (Bennett, 1996). 

Today, control systems are everywhere in our lives, constantly making our lives more 

comfortable and more pleasant until the system ‘loses its life’ and failure occurs.  

Control systems are in our kitchens, in our DVD-players and computers. They are 

driving the elevators, motors and we have them in our cars, ships, aircraft and spacecraft. 

Control systems are present in every modern industry, used to control robots, nuclear 

power plants, solar energy generators, chemical reactors and so on. (Kanev, 2010).   

As modern technological systems increase in complexity, the corresponding control 

systems become more and more sophisticated. A conventional feedback control design 

for a complex system may result in an unsatisfactory performance, or even instability 

(Patton, 1997).  The requirement for high standard control performance and highly 

unstable systems which optimize the cost and the control effort challenge the 

development of control system methodologies. Hence, the subject of control has 

evolved from simple mechanical feedback structures into sophisticated and advanced 

electronic devices. During the last 60 years, it has seen the emergence of multivariable 
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and robust control ideas (Skogestad and Postlethwaite, 1996; Morari and Zafiriou, 1989; 

Stefani, et.al, 2002, Tan, Chen and Marquez, 2002) to increase the practical 

performance capabilities and at the same time ensure stability in the face of modelling 

uncertainty and robustness to noise and disturbances. Many control methods have 

attracted many researchers in the last 20 years such as predictive control (Pachter, 

Chandler and Mears, 1995, Monaco et al. 1997; Huzmezan and Maciejowski, 1998; 

Kale and Chipperfield, 2005), robust control (Morari and Zafiriou, 1989; Zhou, Doyle 

and Glover, 1995) and adaptive control (Isermann, Lachmann and Matko, 1992; Åström 

and Wittenmark, 1989). 

Although there are fruitful results in theory, very few of them have been well applied to 

industry problems except in the field of model-based predictive control. 

Some unexpected scenarios or unusual system events mean that the performance and 

even the stability of the designed closed-loop system can be degraded. These 

unexpected scenarios may be faults, failures or system damage, which are usually not 

considered in the controller design process. The need to account for faults in a closed-

loop system has been the main motivation for this research, providing some new 

concepts in fault-tolerant control (FTC) of uncertain systems. 

 

1.2 What is the need for Fault tolerant control? 

Faults in control systems are events that occur abnormally, often as unexpected 

scenarios at unexpected times. Isermann and Ballé (1997) make the definition for a fault 

is:  

 

 

 

Faults are almost impossible to predict and prevent.  As control system faults develop 

and become more severe they may lead to total system “failure” depending on the 

precise conditions, and the criticality of faults, and if appropriate and prompt action is 

not taken [Definitions established by the Technical Committee for IFAC (International 

A Fault is an unpermitted deviation of at least one 

characteristic property or parameter of the system 

from the acceptable/usual/standard condition 
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Federation of Automatic Control) Symposium SAFEPROCESS (Fault Detection 

Supervision and Safety for Technical Processes), Isermann and Ballé, 1997].    

On the other hand, a ‘Failure’ describes the condition when the system is no longer 

performing the required function. It is then necessary to explain the difference between 

the terms “Faults” and “Failure”. The term failure suggests complete breakdown of a 

system component or function, whilst the term fault can be used to indicate that a 

malfunction may be tolerable at its present stage. A fault should be diagnosed as early 

as possible even if it is tolerable at its early stage, to prevent any serious consequences 

(Chen and Patton, 1999). A failure (i.e. a system function involving the faulty 

components may lead to a failure), ranges from failure of simple components (actuators 

or sensors) that can be replaced by redundancy to very significant dramatic incidents as 

a result of failures. Some samples are: 

1. The high-speed train crash in WenZhou, China, on 23rd July 2011 (see Figure 1-

1).  

 

Figure 1-1: Train crash in Wen Zhou China on 23rd July 2011. 

40 people were killed, at least 192 people were injured, 12 of whom with severe 

injuries. Because of a design flaw, the railway signaling systems indicated the 

wrong signals guiding the train D301 to run at high speed onto a track occupied 

by another train D3115 which resulted in the collision with the second-deadliest 

high-speed rail accident in history following the 1998 Eschede train disaster in 

Germany. (Wikipedia, 2012). 

 

2. ELAL Flight 1862 Bijlmermeer Incident, on 4 October 1992, a Boeing 747, 

ELAL Flight 1862, cargo plane of the Israeli airline ELAL, crashed into an 

apartment building in Bijlmermeer, Amsterdam, Netherlands. The damage to the 

right wing, resulting in reduced lift with leading to the following crash, which 
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caused 43 people were killed, plus 39 persons on the ground. Many more were 

injured, see Figure 1-2. (Wikipedia, 2012). 

 

Figure 1-2: ELAL flight 1862 crash accident caused by mechanical failure 

3. 271 persons on board and 2 on the ground were killed in the crash of the 

American Airlines flight 191, a McDonnell-Douglas DC-10 aircraft, at Chicago 

O’Hare international Airport on 25 May 1979, which because of the engine on 

the left wing was separated and flipped over the top of the wing, see Figure 1-3. 

(Patton, 1997; Kanev,2010) 

 

 

Figure 1-3: Crash accident of American Airlines flight 191 in 1979 

4. A catastrophic nuclear accident occurred on 26 April 1986 at the Chernobyl 

Nuclear Power Plant in Ukraine. The deficiency of the reactor design and the 

operator’s abnormal operation result in the reactor explosion and fire released 

large quantities of radioactive contamination into the atmosphere, this disaster 

ultimately involved over 500,000 people exposed to radiation and cost an 

estimated 18 billion rubles. (Wikipedia, 2012).   

An interesting question arises naturally, “Could these disasters be prevented if 

something had been done in time?” The answer is hard to give, as it depends on many 

other resistible and irresistible factors but not only control signals (e.g. motor burned, 

engine failed). However, in most situations the occurrences of faults in the systems 
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cannot be prevented, subsequent analysis often reveals that the consequences of faults 

could be avoided or, at least, their seriousness could be minimized.  If faults can be 

detected and diagnosed in a timely way then it may be possible to reconfigure the 

control system to ensure safe operation until the time when the system can be shut down 

for maintenance. In order to minimize the chances of disaster, safety-critical systems 

must possess the properties of increased reliability, safety and with all this also fault-

tolerance.  

A way to achieve these attributes is FTC system design. From the investigations and the 

research results for the respective accidents listed above, all could have been avoided. 

The Chinese State Administration of Work Safety investigation group showed that the 

accident could have been totally prevented (Luo, 2011). An FTC system could have 

been designed to lead to a safe end to the Chernobyl reactor before it exploded 

(Mahmoud et al., 2003). Maciejowski and Jones (2003) demonstrated in simulation, 

using a model-based predictive control approach that the ELAL 1862 disaster could 

have been avoided and it may have been possible to control the crippled aircraft using a 

form of FTC in the flight control system to maintain the required controllability for the 

purpose of a quick landing back at Schiphol airport, Amsterdam.  

In another accident case involving DELTA flight 1080 a fire destroyed some of the 

control rod/pulley mechanisms of the actuators on one wing. The pilot was able to 

reconfigure the remaining lateral control sections and successfully land the aircraft 

safely. The elevator jammed at 19 degrees up and the pilot had been given an alarm that 

this fault had occurred (Patton, 1997).  However, it is now apparent that the pilot’s 

action “reconfiguring” action could have been automated by a suitable FTC scheme.  

All these cases have shown clearly the demand and importance of increasing the fault 

tolerance of a system in order to improve the extend to which the safety and reliability 

are available of modern and complex controlled systems.  

1.3 Fault classification 

As defined in Section 1.2, a fault is an event that may occur in different parts of the 

controlled system. In general, according to different locations of fault occurrence within 

a control system, faults are classified as: (1) actuator faults, (2) sensors faults, (3) 

components faults (see Figure 1-4). These are defined in more detail as follows: 
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Figure 1-4: Types of faults in a control system 

Actuator faults occur in equipment such as motors, valves, solenoids, relays, 

pneumatic device. An actuator fault is normally represented in the literature as a partial 

or total loss of the actuator’s control action effectiveness.  It may be the result of a jam, 

become ‘stuck’, due to damage to bearings or gears, caused by changes from the design 

characteristics or complete failure.  An example of a complete loss of an actuator is an 

actuator that produces no action in spite of the control input applied to it.  

Component faults exist in the components of the plant itself, i.e. all faults that cannot 

be categorized as sensor or actuator faults will normally be considered as component 

faults. These faults represent changes in the physical parameters of the system, e.g. 

mass change, aerodynamic coefficients, damping constant, mismatching model, etc., 

that are often due to structural damages. They change the dynamical I/O characteristics 

of the system. 

Sensor faults represent incorrect readings from the system measurement sensors. 

Sensor faults are always due to poor calibration or bias, scaling errors or a change in the 

sensors dynamic characteristics which cause errors on the sensors outputs, but not on 

the plant dynamics. Sensor faults can also be further divided into partial or total sensor 

faults, where a total sensor fault is a sensor failure.   

From a modelling point of view, the faults are classified as additive or multiplicative 

faults (see Figure 1-5). An additive fault is considered as an additional external signal, 

i.e. unknown input, whilst a multiplicative fault is considered as a parameter deviation. 

 

Controller Plant Actuator Sensor 

Reference 

inputs 

Actuator 

faults 

Component faults Sensor faults 

Output 

System 



7 
 

+

fault

Faulty 

signal

signal

additive fault
                       

×

fault

Faulty 

signal
multiplicative fault

 

Figure 1-5: Additive fault and Multiplicative fault 

On the other hand, faults are also classified on the basis of their time characteristics (see 

Figure 1-6) as abrupt, incipient and intermittent. Hardware damage is the normal reason 

for occurrence of the abrupt faults. Abrupt faults refer to changes that occur at time 

scales much faster than the nominal dynamics of the system. They have very important 

roles through their effect on the performance and stability of the controlled system. As a 

result, they have to be detected before the system becomes safety-critical, i.e. before 

their effect on the system leads to a crash. Incipient faults are small and slowly 

developing faults, sometimes called soft faults. Compared with abrupt faults, incipient 

faults are much more difficult to detect, because they have slow time characteristics, but 

their further development may cause very serous consequences. Finally, intermittent 

faults are faults that appear and disappear repeatedly. 

Here, all the types of faults with their characteristics and the motivation for FTC are 

illustrated in Figure 1-6. In Section 1.4 some basic fault principles leading to the FTC 

concept are described.  

time
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Figure 1-6: Abrupt faults, incipient faults and intermittent faults 
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1.4  Fault tolerant control architecture 

Sections 1.4.1 and 1.4.2 provide a simple description to illustrate the FTC concept, 

including the architecture and some terminology for fault diagnosis, which is just a pre-

cursor for fault estimation (FE). More details will be given in Chapter 2. 

1.4.1 Fault tolerant control architecture  

Normally, the architecture of FTC comprises two parts which are “diagnosis” and 

“controller redesign” (see Figure 1-7). These two parts (or blocks) act together to carry 

out the FTC function. 

 

 

 

 

 

 

Figure 1-7:  The architecture of FTC (Blanke et al., 2003) 

1. The diagnosis block uses the measured inputs and outputs and tests their 

consistency with the plant model. Its result is a characterisation of the fault 

with sufficient accuracy for the controller re-designs. 

2. The re-design block uses the fault information and adjusts the controller to 

the faulty situation.  

Figure 1-7 illustrates that FTC extends the usual feedback controller by a supervisor, 

which includes the diagnostic function and the controller re-design blocks. In the fault- 

free case (no fault happens), the system works as before, on the execution level. (Note: it 

is more suitable for active fault tolerant control, see Section 2.2). The nominal controller 

(sometimes referred to as the “baseline” controller or nominal controller, see Patton, 

1997), which is designed for the healthy system, attenuates the disturbance )(td  and 

guarantees the closed-loop system’s good reference following quality and other 

requirements. In this situation, the diagnostic block recognizes that the closed-loop 

refy  

Diagnosis 
Control   

Re-design 

Controller Plant 

)(tf

 

)(td

 

)(ˆ tf  
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)(ty
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system is faultless or healthy (fault-free) and there is no necessity to redesign the 

control law. 

When a fault )(tf  occurs, the supervision level makes the control loop fault-tolerant. 

The diagnostic block identifies the fault and “orders” the controller re-design block to 

change the control law to satisfy the stability and performance requirement for the 

faulty system.  However, it can also achieve fault tolerance without using the structure 

given in Figure 1-7 via other established control methods, which will be introduced in 

Section 2.2 in the following. (Blanke et al., 2003) 

1.4.2 Fault diagnosis 

A supervision level which is used to detect faults and diagnose their location and 

significance in a system is called “fault diagnosis system”. Such a system normally 

consists of the following tasks: 

Fault detection: To make a binary decision – either that something has gone wrong or 

that everything is fine.  

Fault isolation: To determine the location of the fault, e.g. sensor or actuator has 

become faulty. 

Fault identification: To estimate the magnitude and type or nature of the fault. 

The relative importance of these three tasks is clearly subjective. However the fault 

detection is absolutely necessary for any practical system and fault isolation is of the 

same importance. Fault identification, on the other hand, whilst undoubtedly helpful, 

may not be essential if no controller designing action is involved. As a result, in most 

literature, fault diagnosis is very often considered as fault detection and isolation or FDI 

(Chen and Patton, 1999). However, in AFTC, the fault feature is one of the most critical 

items of information of the process of controller redesign, therefore fault identification 

or FE plays a very important role in AFTC process, the FD block needs to provide not 

only the fault alarm and location of the faults, but also the feature of the faults. To 

summarise, the significant difference between FDI and FD is whether the function of 

fault identification or FE is included or not. In this thesis, FDI is considered to only 

consist of the tasks of fault detection and fault isolation. 
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1.5 The Robust Fault Estimation Approach to FTC 

This research focuses on developing methods for estimating the fault rather than to 

detect the presence of a fault via the use of residual signal under the influence of 

uncertain in systems. As summarized above, FE plays as important a role as fault 

detection and isolation (FDI) in FTC, which provides important information related to 

the faults for the controller re-design process, compared with FDI, FE is a direct way to 

provide fault information such as the magnitude and the severity of the fault, from this 

point of view, the FE is the same as Fault identification. Furthermore, FE can also be 

used to isolate the fault in the same system by comparison with other FE signals, i.e. a 

multiple observer-based FE approach like multiple observer based FDI approach (Berec, 

1998; Menke and Maybeck, 1998). 

This thesis is concerned with the active approach to FTC and in particular the use of FE 

embedded within an adaptive control problem. In this approach the fault isolation 

decision process is obviated, as the accommodation to the fault(s) is automatic within 

the adaptive scheme. Hence, in this work the residual generation problem of fault 

detection is replaced by one of FE which is called “fault estimator” and it is observer-

based (see Figure 1-8).  A residual is a fault indicator or an accentuating signal which 

reflects the faulty situation of the monitored system, in this research the residual means 

the different situation between the faulty system and the observer. Chen and Patton 

(1999) pointed out that an ideal residual signal for FDI, even in an uncertain system 

application, can be defined as a robust estimator of the fault to be detected. If this ideal 

residual generator remains insensitive to uncertainty and modelling errors it can be 

further defined to be robust.  

However, for FTC, the role of FE is as important as that of FDI, the requirement has 

been increased to not only know if the faults occur or not but also for the specific 

property of the faults, meanwhile the robustness is a challenge applied to the FE 

problem as well. 
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Figure 1-8: Observer-based fault estimator in controlled system (modified from Chen 

and Patton, 1999) 

As a matter of fact, only a mathematical nominal model of the system is usually 

available, not necessarily considering the presence of exogenous disturbance inputs and 

noise, and also time-varying parameters and non-modeled plant dynamics (Nobrega, 

Abdalla and Grigoriadis, 2008). The robustness problem for FDI was first defined by 

Patton, Frank and Clark (1989) and studied in more detail by Chen and Patton (1999). 

The robustness of FE can be stated as the degree to which the sensitivity of the fault 

estimates (to the real faults) can remain invariant (relatively constant) in the presence of 

model-reality differences (e.g. parameter variations, disturbances, and noise). 

The robustness challenge is one of understanding how to reconstruct the fault 

information precisely in the presence of uncertainty and how to build a robust FTC 

scheme that is based on the robust fault estimates to satisfy the overall system 

performance and stability requirements. This is a multi and joint robustness problem 

which is actually a multi-objective challenge for FTC and as such is probably the most 

difficult challenge in modern and advanced control science.   

As summarized above the main challenges to be faced for robust FE for FTC systems 

are: 

(1) The difficulty in achieving accurate or robust FE in the presence of other 

exogenous disturbance inputs and noise, as well as time-varying parameters and 

non-modeled plant dynamics. 

Input 
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(2) The stability of the FTC system is difficult to maintain after the controller 

redesign based on the use of the FE. The occurrence of a fault can make the 

system deviate far from its nominal operation and can lead to a severe change in 

system behaviour. Even bounded faults can cause the closed-loop system to 

deviate rapidly from its required operation and hence the fault accommodation 

time is a critical parameter. The requirement for rapid reaction to faults can 

mean that the FDI or fault diagnosis (FD) procedure, if used, may slow down the 

accommodation process. The accommodation ability of a control system 

depends on several factors, for instance, the magnitude of the fault, the 

robustness of the system, etc. Therefore, to overcome such problems, new 

controllers must be developed with accommodation capabilities and tolerance to 

faults. 

(3)  The need to consider robustness in the FTC design. The FTC design challenge 

is not only to maintain the stability of the closed loop system, but also to achieve 

robustness in terms of a suitable performance requirement. 

(4) The integration of the whole FTC system involving the observer, fault estimator, 

and fault compensation mechanism is a huge and complex problem.  

 

1.6 Thesis Structure and Contributions 

The thesis is arranged in the following manner: 

Chapter 2 is concerned with a review of the main literature of the combined fields of 

FDI and FTC field. The Chapter introduces concepts of FTC and FDI from the 

beginning and following that, some general classifications on the different FTC and FDI 

strategies are presented.  The main concepts and strategies behind some of the FTC and 

FDI schemes in the literature, as well as their advantages and disadvantages are also 

discussed. Then, a description of the residual generator structure in model-based FDI is 

presented and an example mathematical model of a general faulty system is also given.  

Attention then turns to an emphasis on the use of robust FDI methods that can be 

achieved using disturbance-decoupling techniques via the unknown input observer 

(UIO). Finally, some review of mature methods using model-based FE is given which 

can be seen as an extension of model-based FDI. 



13 
 

Chapter 3 introduces a new approach to fault compensation for FTC using Model 

Reference Control (MRC) combined with Fast Adaptive FE (FAFE) (Zhang, Jiang and 

Cocquempot).  The proposed FTC scheme is composed of two parts; (1) FAFE 

produces the FE and (2) model reference control design. The observer gain is calculated 

by using Linear Matrix Inequality (LMI) approach, based on knowledge of the fault 

bounds. The contribution of this Chapter is to use MRC to design a fault estimator 

based only on the reference model and not on the plant dynamics, which is helpful when 

dealing with some nonlinear systems or systems that are difficult to linearise, e.g. for 

robot manipulators or for aerospace systems. This leads to the use of a simpler 

parameterization of the fault estimator LMI computation compared with the estimator 

approach developed by Zhang, Jiang and Cocquempot (2008). The Chapter also 

illustrates the benefits of this new method when applied in FTC. The basic design 

process and the technical analysis are undertaken based on a Two-Link Manipulator 

example to introduce the main features of the design.  

Chapter 4 presents a new robust FE scheme and its application for FTC. A switching 

function which is a nonlinear part in the sliding mode observer design (Edwards, 

Spurgeon and Patton, 2000) of sliding mode theory is imported into the observer-based 

fault estimator design to improve the accuracy of the estimation for additive actuator 

and sensor faults. The robustness improvement is shown via the switching function term 

which rejects the effect from the unmatched uncertainties (Edwards and Spurgeon, 1998) 

or exogenous disturbances or noise. The main contribution of this Chapter is that by 

using the proposed estimation scheme one can obtain the state estimation and FE at the 

same time.  Beside these, this novel observer can also be used in an FDI problem. The 

FTC controller design uses a control law based upon state estimate feedback control 

designed using    optimization. After pursuing the existence conditions for the 

observer-based fault estimator, the convergence of the observer and the stability of the 

system are proved by using individual Lyapunov functions. The proof for satisfying the 

stability and the performance index of the whole system is also discussed.  Finally, a 

simple nonlinear inverted pendulum with additive actuator and sensor fault examples is 

used to illustrate the whole design process, respectively.  

Chapter 5 presents a novel adaptive robust FE method for actuator failure, two 

different situations are considered --- “the stuck” situation and the “loss of effectiveness” 

situation and adaptive controller design for their accommodation. Both matched and 

unmatched uncertainties are considered either in a fault supervising scenario or in the 
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case of controller redesign. Matched uncertainty is difficult to deal with when doing the 

robust FE, but the concept is more easily handled in FTC, whilst unmatched uncertainty 

is difficult to deal with when doing the FTC, but is more straightforward in FE.  The 

main contributions are listed as: (1) the development of the method -- robust adaptive 

FE; (2) improvement of the work (Jin and Yang, 2009) by using outputs and state 

estimate feedback to design the control law instead of state feedback control. The gains 

are calculated by an LMI method using the MatLab LMI tool box. Finally, the proposed 

method is tested via two simple mechanical examples (1) linear rocket fairing structural-

acoustic model and (2) nonlinear single link manipulator system. 

Chapter 6 addresses the robust FE problem of linear parameter-varying (LPV) systems 

where the state space equation depends on the time-varying system parameters as an 

alternative to robust residual generation for FD as discussed in Chapter 2.  On the other 

hand, it can be deemed as an extension of the method developed in Chapter 4 for 

nonlinear systems. Faulty system performance is affected by an additive actuator fault, 

however, because of the use of a LPV system framework, the additive actuator fault is 

transformed into a multiplicative fault, and this is a big challenge for the proposed 

method. The problem is solved by using some subtle mathematical transformation as 

used in Chapter 3.  The fault gains of the estimator, observer and controller are 

characterized via a set of LMIs with the robustness property to exogenous disturbance. 

The integration design process is similar to the designs described in Chapters 4 and 5. 

Finally, to demonstrate the proposed method, an illustrative example of a two-link 

manipulator is provided and the polytopic LPV model of this system is also presented. 

The main contributions of this Chapter are (1) There is an extension of the method 

developed in Chapter 4 for nonlinear systems, (2) The work gives a guidance for the 

choice of the learning rate of the fault estimator, and (3) compared with the previous 

work (Patton, Chen and Klinkhieo, 2012), an improved way for considering the system 

robustness when designing the FTC scheme is considered. 

Chapter 7 summarises and provides a general overall conclusion for the research 

described in the thesis. Suggestions and recommendations as to how the research can be 

further developed through future projects are also presented. 
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Chapter 2.  

Overview on Fault tolerant control, 

FDI and FD 

 

2.1 Introduction 

This Chapter provides a literature review of the main research topics and published 

work on FTC, FDI and FD. Section 2.2 provides a general overview of the subject of 

FTC, including the concept of FTC and some general classifications on different FTC 

strategies. Section 2.3 discusses the topics of FDI and FD in some detail, and reviews 

some previous research in this field, which mainly focus on the Model-Based Approach. 

In Section 2.4, a specific literature review is given concerned with the main concepts 

related to the use of FE for different strategies of AFTC. Section 2.4 also discusses a 

potential correspondence between residual generation and the FE concept and their 

combined structure, stating the importance of these issues for FTC theory.  

2.2 Fault tolerant control 

2.2.1 Fault tolerant control general overview 

When considering the increased safety and performance requirements of modern control 

systems, it is now widely understood that conventional (classical) feedback control is 

generally inadequate. New controllers are always being developed which are capable of 

tolerating component malfunctions whilst still maintaining desirable and robust 

performance and stability properties. A control system that possesses such a capability 

is often called as an FTC system (Patton, 1997; Blanke et al., 2003). 

In the literature, most application areas where FTC has been used are some safety 

critical systems such as aircraft, spacecraft, chemical processing plants, and nuclear 

power plants. This is traditionally an important field of research and application for 

aircraft flight control system design (Steinberg, 2005; Alwi, 2008; Edwards, Tombaerts 

and Hafid, 2010). 
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Patton (1997) stated in his survey that, ‘. . . Research into fault tolerant control is 

largely motivated by the control problems encountered in aircraft system design. The 

goal is to provide a self-repairing capability to enable the pilots to land the aircraft 

safely in the event of serious fault …. ’. 

Even today it is still true that FTC comprises four major research areas (Patton, 1997), 

which are FDI, Robust Control, Reconfigurable Control, and Supervision (see Figure 2-

1).  The function of FDI is to detect if any fault occurs and determine the location of the 

fault. Information is then passed to the reconfiguration block for controller redesign to 

adapt to the fault, therefore recovering a suitable level of stability and acceptable 

performance.  

 

 

 

 

 

 

Figure 2-1: The scattered areas of fault- tolerant control research (Patton, 1997) 

In the context of FTC, robust control relates to a fixed controller designed to tolerate 

changes of the plant dynamics. The ideal FTC system satisfies its goals under all faulty 

conditions. Fault tolerance is achieved without changing the controller parameters 

(Blanke, 2003). It is important to note that even without the FDI function the parameter-

fixed controller is still able to provide a limited capability for overcoming the effect of a 

fault. This is the subject of Passive fault tolerant control (PFTC) described further in 

Section 2.2.2.  

2.2.2 Classification of Fault tolerant control 

In the literature (Patton, 1997; Zhang and Jiang, 2008), FTC systems are classified into 

two major groups: Passive fault tolerant control (PFTC) and Active Fault Tolerant 

Control (AFTC) (see Figure 2-2), as follows: 

Supervision 
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control 
   Reconfigurable 

control 
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PFTC: A closed-loop system can have limited fault-tolerance by means of a carefully 

chosen feedback design, taking care of the effects of both faults and system 

uncertainties. Such a system is sometimes called a PFTC system (Patton, 1997). In other 

words, it means that when a fault occurs, the control law does not need to be adjusted to 

adapt to the fault, but still maintains stability and some acceptable level of degradation 

of performance.  During the last two decades, the PFTC is more connected with reliable 

control, for which various approaches have been proposed (Keating et al., 1995; Tyler 

and Morari, 1994; Veillette, 1995; Niemann et al., 1997; Stourstrup et al., 1997; Zhou 

and Ren, 2001; Chen and Patton, 2001; Niemann and Stoustrup, 2002, 2005; Niemann, 

2005; Wang, Tan and Zhang, 2010). However, the main disadvantage of this approach 

is the very limited fault-tolerance, because of the use of a “non-intelligent” controller. It 

is hard to reject all the faulty situations, since neither diagnostic information is used nor 

the knowledge of fault occurrence (where and how serious the fault is) (Patton, 1997). 

 

 

Figure 2-2: Fault-tolerant control methods (Patton, 1997) 

AFTC: Active fault tolerance has this title because on-line fault accommodation is used. 

AFTC systems actively deal with faults or failures of system components by 

reconfiguring control actions in order to maintain the stability and acceptable 

performance of the entire system, subject to faults or failures. However, in such 

circumstances, degraded performance must be accepted (Patton, 1997; Blanke et al., 
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2001; Zhang and Jiang, 2008).  Active approaches are further divided into two main 

types of methods based on the way the post-fault controller is formed: (a) projection-

based methods and (b) on-line automatic controller redesign methods. The projection 

based approach includes the use of a new control law that is selected from a set of off-

line predesigned controllers. Normally, each controller from the set is designed for a 

particular type of malfunction and is switched on whenever the corresponding fault has 

been detected and isolated by FDI scheme. The on-line redesign methods involve on-

line re-computation of the controller gain, which is often referred to as reconfigurable 

control (Patton, 1997), or by a recalculation of both the structure and the parameters of 

the controller, called restructurable control (Patton, 1997). As the projection based 

method can only deal with a restricted finite class of fault problems the on-line redesign 

method is more advanced and widely used in the FTC field. However, it is 

computationally the most expensive method as it often boils down to on-line 

optimization (Kanev, 2006).  

In contrast to studies on PFTC, more and more researchers have been attracted to focus 

on the development of AFTC due to their improved performance and their ability to 

deal with a wider class of faults. During the last two decades, there have been fruitful 

results in this field. Most of these are considered with the following categories: Pseudo-

inverse modelling (Gao and Antsaklis, 1991; Staroswiecki, 2005); Adaptive control 

(Tao, Chen and Joshi, 2002; Jiang, Staroswiechi and Cocquempot, 2006;  Zhang and 

Chen, 2008; Jin and Yang, 2009; Zhang and Qin, 2009); Model predictive control 

(Maciejowski and Jones, 2003); Model following control (Gao and Antsaklis, 1992; Tao, 

Ma and Joshi, 2001; Zhang and Jiang, 2002; Mirkin and Gutman, 2005); Multiple-

model methods ( Zhang and Jiang, 2002; Yen and Ho, 2003; Theilliol, Sauter, and 

Ponsart, 2003); Eigenstructure assignment (Jiang, 1994;  Zhang and Jiang, 2001; Zhang, 

2000, Wang, Liang and Duan, 2005); Sliding mode and variable structure control (Alwi 

and Edwards, 2008, Hess and Wells, 2003; Shin, Moon and Kim, 2005; Demirci and 

Kerestecioğlu ,2005); Linear parameter varying (LPV) methods (Weng, Patton and Cui, 

2007, 2008; Patton, Chen and Klinkhieo, 2012;). Some discussion on different AFTC 

strategies is presented in the following. 

FTC via pseudo-inverse modelling: 

The pseudo-inverse method (PIM) (Gao and Antsaklis, 1991; Staroswiecki, 2005) is one 

of the most famous active methods to AFTC, due to its simple computation requirement 



19 
 

and ability to deal with a large range of system faults. Consider a nominal linear state-

space system: 

         
    

                                                           (2-1) 

where     ,    ,     , and  ,   and   are appropriately dimensioned matrices. 

The state-feedback control law      is designed under the assumption that the entire 

state vector is measurable. A very general faulty system model can then be constructed 

as: 

             

       
                                                     (2-2) 

where    is the faulty system matrix,    and    are faulty input weighting matrix and 

faulty output matrix, respectively. The problem is to determine the new feedback 

control law        by computing the new state-feedback gain matrix    so that the 

closed-loop matrix in (2-2) is “closest” to the one in (2-1), according to (Gao and 

Antsaklis, 1991),                      
 is minimised, when    

  
           , where      stands for the Frobenius norm and   

   represents 

the pseudo-inverse of the matrix   .  The advantages of this method is that it is very 

simple both in design and in computation which make it is easy for on-line application. 

Furthermore, it is able to handle those faults that affect the changes in all state-space 

matrices of the system. The disadvantage is that, the stability of the closed-loop system 

cannot be guaranteed by the optimal gain computation.  Meanwhile, this method is 

based on state-feedback control, which means it asks for all the knowledge of the state 

variables. However, in general, it is difficult to measure all the state variables as well as 

the existence of the sensor faults. More recently, Staroswiecki has considered this 

approach to FTC as a “model-matching” problem, providing some interesting insight 

into new developments.   

FTC via adaptive control: 

The motivation for using adaptive control was invented during the 1950s for high 

performance aircraft.  Adaptive control is used in order to automatically adjust the 

controller gains in real time to force the plant to follow the trajectories of a desired 

performance (Patton, 1997).  Due to their ability to adapt to changes in system 
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parameters, these methods can be referred to as “self-reconfigurable”. For example, the 

“FD” block is not essential in the FTC design. More specifically, adaptive control is 

categorized into two sub problems, which are direct adaptation and indirect adaptation 

(Åström and Wittenmark, 1989). For direct adaptive control approach, the controller is 

designed directly without estimating the system parameters. Whilst for the indirect 

adaptive control method, there are two steps in designing the controller. Firstly, by 

estimating the system parameters, i.e. the system matrix pair       needs to be 

estimated according to the changes caused by faults. Secondly, using the estimated 

information to design the controller (Alwi, 2008). The adaptive control approach can be 

typically combined with other control methods to achieve fault tolerance e.g. by using 

Model Reference Adaptive Control (Morse, 1990; Nie and Patton, 2011), Multiple-

Model Adaptive Control (Rauch, 1995).  

FTC via multiple model switching: 

The multiple-model switching (MMS) approach is another active approach to achieve 

fault tolerance, which belongs to the projection based-methods category (see Figure 2-3).  
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Figure 2-3: Architecture of Multiple-model switching method FTC method (adopted 

from Narendra and Balakrishnan, 1997) 
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Multiple-model schemes are based on a finite set of linear models that describe the 

system in different faulty conditions.  For each model a controller is designed off-line.  

From an FTC point of view, during the process, the predesigned controllers are 

considered as a backup and only “wake up” when faults occur. Clearly, the core part for 

the MMS approach is the FDI block, which FDI must provide the fault information in a 

suitably correct format (i.e. type and location) to make sure that the appropriate 

controller is activated. Meanwhile, the predesigned controllers have to be able to handle 

all the possible faulty models. Consequently, the MM approach calls for FDI with the 

property of high robustness. Many robust FDI methods can be found in (Saif and Guan, 

1993; Patton and Chen, 1998; Chen and Patton, 1999; Xiong and Saif, 2000). The 

disadvantage of this method is that it can only handle a limited set of anticipated faults. 

The advantage is that the model uncertainty can be easily considered by designing a 

local robust controller. 

FTC via eigenstructure assignment: 

 Another approach to achieve fault tolerance is to use the eigenstructure assignment (EA) 

approach (Zhang and Jiang, 1999). The main idea is to assign the most dominant 

eigenvalues while at the same time minimizing the 2-norm of the difference between the 

corresponding eigenvectors. The difference from PIM is that, EA focuses on matching 

the eigenvalues and eigenvectors of the matrices of the nominal and faulty closed-loop 

systems (Kanev, 2006).  Recalling the nominal system Eq. (2-1) with a state-feedback 

gain     , the EA method calculates the state-feedback gain   for the faulty model 

Eq. (2-2) and this is equivalent to finding a solution for the question summarised below 

(Zhang and Jiang, 1999): 

 
 
 

 
 

 

      

                    
 
     

 
         

     
 
       

  
       

 
 
 
        

 
 
 
 
 

 
 

                      (2-3) 

where                    are the eigenvalues and corresponding eigenvectors of   

matrix of the nominal closed-loop system,     is the weighting matrix. In a more general 

way, the process of finding the post-fault system control scheme     is actually to place 

the eigenvalues of the faulty system at the same locations as the ones of the nominal 

closed-loop system. Meanwhile, the eigenvector directions are kept as close as possible. 

Also, because both eigenvalues and eigenvectors determine the time response of the 
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closed-loop system, for preserving the time response of the nominal closed-loop in the 

event of fault occurrence, EA is one of the best choices. The disadvantage is illustrated 

by Kanev (2006) that the model uncertainties cannot be easily incorporated into the 

optimization problem, and that only static controllers are considered. However work by 

Liu and Patton (1998) showed earlier that dynamic feedback controllers can be designed 

using EA, and hence there actually is a way to improve this approach. This literature has 

not been followed further by other investigators. 

Integrated FD and FTC: 

There are also many research studies considering the problems of FTC and FD in an 

integrated way. Zhang and Jiang (1999) proposed an integrated design method for FD 

and FTC based on multiple-model (MM) methods, in which the FD part uses a two-

level adaptive Kalman filter (Wu, Zhang and Zhou, 1998), and FD with adaptive 

methods (Bošković and Mehra 2003), and FD with PID controller (Zhou and Frank, 

1998).  However, these methods do not consider uncertainty which is a drawback. More 

recently, another integrated FD and FTC design based on    polytopic MM design 

dealing with linear parameter  varying (LPV) systems was proposed by Weng, Patton 

and Cui (2007) (see Figure 2-4). Chen, Patton and Klinkhieo (2012) further developed 

this method by combining it with state-feedback pole-placement. Many other methods 

can be found in review papers (Zhang and Jiang, 2008; Hwang et al., 2010).   

 

2.3 Overview of relationships between FDI and FE in FTC 

2.3.1 Classification of FDI 

There are many classifications of FDI in the literature and one of the most well known 

classifications for FDI is in terms of whether or not a model-based approach is used. 

Since the emphasis of this thesis is on the observer-based FE, the introduction will 

mainly focus on the main concepts of model-based FDI, providing a review of the 

important literature. When considering the requirements for FTC systems, model-based 

FDI schemes are grouped based on their properties into two major categories which are 

FDI using residual schemes and FDI with ability of estimating the faults (see Figure2-4).  
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Figure 2-4: FDI classification (obtained from Chen and Patton, 1999) 

2.3.2 Model-based FDI 

Traditional non model-based FDI methods monitor the level of a particular signal, and 

take action when the signal reaches a given threshold. Meanwhile, a traditional 

approach to FDI, in the wider application context, is based on “hardware redundancy” 

methods which use multiple lanes of sensors, actuators, computers and software to 

measure and/or control a particular variable. A voting scheme is usually applied to the 

hardware redundant system to decide if and when a fault has occurred and its likely 

location amongst redundant system components.  However, there are several drawbacks 

associated with non model-based approaches to FDI, for example: 

(1) The possibility of false alarms in the event of noise, the input variations and the 

change of operating point. Sometimes this means that it is difficult to identify 

the faults from operation related disturbance. 

(2)  A single fault could cause many system signals to exceed their limits and 

appear as multiple faults, which makes fault isolation hard to achieve. 

(3) Demand for extra equipment and high maintenance cost.  

According to these disadvantages and the common restriction that no additional 

hardware is required, model-based FDI offers a powerful way of achieving the roles of 

both detection and isolation of faults. The idea is that analytical relationships 

(“analytical redundancy”) among several model variables (or their estimates) can be 
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used to develop “indicators” or “residual” signals that when tested (usually with a 

logical threshold) can indicate if a fault is present or not (Patton, Frank and Clarke, 

1989; Gertler, 1998; Chen and Patton, 1999; Patton, Frank and Clarke, 2000; Isermann, 

2005). This is the fault detection part of the FDI process. By further using the analytical 

redundancy, it is also possible to develop a logical process for determining the location 

of the fault from information about the effect that the fault has on the dynamical system 

structure - this is the fault isolation part of the FDI process. Fault isolation is often 

referred to as FDI “decision-making”, as it is the stage during which fault decisions are 

really made. 

Hence, the conceptual structure of a model based FDI system is shown in Figure 2-5. 

This two-stage structure was first suggested by Chow and Willsky (1980) and is now 

widely accepted by the FDI/FD community. 

 

 

 

 

 

 

Figure 2-5: Conceptual structure of model-based fault diagnosis  

(Adapted from Chen and Patton, 1999) 

There are many advantages of using the model-based approach. For example, there are 

no additional hardware components needed in order to realize an FDI algorithm. A 

model-based FDI approach can be applied in software on the process computer. Further 

more, the measurements necessary to control the process are sufficient for the FDI 

algorithm so that no additional sensors have to be adapted (Chen and Patton, 1999). 

Figure 2-5 shows clearly that the generation of the residual signal is the main issue in 

this two-stage structure model-based FDI. In the nominal or fault-free condition, the 

residuals should be zero, and nonzero when faults occur. This residual signal is 
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sometimes applied with a threshold to avoid false alarms disturbances or uncertainty 

(Chen and Patton, 1999). The monitor indicates the occurrence of the faults, when the 

residual signal exceeds the threshold.  

2.3.3 Residual generation approaches  

There are a variety of methods available for residual generation both for continuous and 

discrete system models which are described in the books (Patton, Frank and Clarke, 

1989; Chen and Patton, 1999; Patton, Frank and Clarke, 2000; Isermann, 2005). This 

Section introduces the most commonly used model-based residual generation 

techniques. 

Parity relation method 

The Parity Relation Method is a popular method for residual generation. The basic idea 

is illustrated in (Chen and Patton, 1999) “The basic idea of the parity relation approach 

is to provide a proper check of the parity (consistency) of the measurements of the 

monitored system”. To describe this method, consider a system where the output 

equations is:  

                                                                (2-4)  

where         is measurement vector,         is the state vector, and      is the 

vector of sensor faults,      is a noise vector and   is an     measurement matrix. If 

the consistency is based on hardware redundancy, which means there is more than the 

minimum number of sensors, hence the following dimension condition      and 

          should be satisfied. Then the parity vector (residual) signal can be 

generated by  

                                                            (2-5) 

         

When this condition is true, the parity vector (residual) can be written as: 

                                                        (2-6)       

where    is the     column of   ,        is the     element of      which denotes the 

fault in the     sensor (Chen and Patton, 1999).  The benefit of this method for residual 
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generation is simple in the design and implementation and is useful in applications 

based on hardware redundancy such as strap-down inertial guidance systems (Chen and 

Patton, 1999). Other theoretical developments of this approach can be found in (Patton 

and Chen, 1994; Isermann, 2005; Zhang and Jiang, 2008). 

The observer-based Approach 

The observer-based approach can be used to generate residuals via the difference 

between the estimated and actual system outputs. The main advantage of this approach 

over the use of parity equations is that it is more suitable for tolerating some degree of 

nonlinearity and modelling uncertainty. For this reason the observer approach is given 

more attention in the literature (Patton and Chen, 1997). 

The main concept of the observer approach is to estimate the outputs of the system from 

the measurements (or a subset of measurements) by using either a Luenberger observer 

in a deterministic setting or by using a Kalman filter in the stochastic setting (Patton and 

Chen, 1997). The (weighted) output estimation error is used as a residual (Patton and 

Chen, 1999). Before summarising the observer design process, consider a general case 

of a dynamical system with faults that can be represented by the following state space 

model: 

                                                              (2-7) 

                                                                      (2-8) 

 

Figure 2-6:  State observer for FDI (from Chen and Patton, 1999) 

The observer shown in Figure 2-6 can be described by the following equations: 
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                                                                               (2-9) 

Where                   and        is a designed observer gain,       is the 

estimated state,       is the estimated output and       is the output estimation error.  

The state estimation error can be expressed as                , thus: 

                           

              

                                                            (2-10) 

Applying this state observer to the system of Eq. (2-7) and (2-8) with actuator, 

component and sensor faults, the output estimation error        can then be expressed as: 

                                                             

                                                              (2-11) 

The state estimation error can be written as: 

                                            

                                                                   (2-12) 

The weighted residual can then be generated as: 

                                                             (2-13) 

The matrices     
    can be designed to generate residuals with desired 

characteristics, for example, a time response performance requirement can be achieved 

using eigenstructure assignment (Patton and Chen, 1991b; Patton and Chen, 2000). 

Since       depends on     ,       and hence also on       ,       ,      can be 

shown to be a residual signal that can be designed to be specially sensitive to the fault  

signals.  

However, since it is impossible to avoid the modelling errors and disturbances when 

considering non-linear, uncertain and complex engineering systems, there is a need to 
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include robust design methods that can minimise the effects of the disturbance and 

uncertainty whilst maximising the sensitivity to faults, in the presence of model – reality 

differences. Normally, parameter variations and disturbances act on a real process in an 

uncertain way, so that it may be difficult to design a fault diagnosis system which is 

highly sensitive to faults, whilst insensitive to uncertainty and un-modelled disturbances. 

This is a very big challenge. One way to solve this problem is to use the unknown input 

observer (UIO) (Patton and Chen, 1997), which ingeniously decouples the disturbances 

and faults into two different input channels. Many other robust observer-based methods 

for residual generation can be found in the book (Chen and Patton, 1999) and in (Gertler, 

1997; Isermann, 2005, 2011; Zhang and Jiang, 2008). 

Parameter estimation approach 

In this approach, the parameters of the model of the system are estimated using the 

input-output measurements of the system (Isermann, 1984, 2006, 2011), which is very 

useful when dealing with the components faults. The main idea is that residuals are 

generated by detecting a change in the system parameters. These residuals can then be 

used to detect and isolate faults. The main drawback of this approach is that the model 

parameters should have a physical meaning and they should correspond to the actual 

physical parameters of the system. If this condition is not true it is difficult to 

distinguish fault effects on the residual from causal effects of  parametric variation, 

uncertainty or other time-varying system properties (e.g. changing disturbance or even 

system structure changes). Moreover, if the model structure is nonlinear in its 

parameters, non-linear modelling methods or non-linear feedback structures should be 

applied and these may cause serious difficulties in the case of complex (difficult to 

model) systems. Robust parameter estimation techniques may be applied to account for 

system-model mismatch. 

There are still several other methods for residual generation, e.g. the Factorization 

method (Viswanadham, Taylor and Luce, 1987) which is not introduced here. For more 

details please refer to (Ding and Frank, 1990, Chen and Patton, 1999; Isermann, 2011). 
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2.4 Fault estimation/identification 

For the FDI process, faults are detected and located, but no other useful information 

about the faults is provided. However, for some FTC schemes, only detecting and 

isolating the faults are not enough, further information about the nature and behaviour 

of the faults are usually required. 

Fault estimation/identification is one step further than FDI, the basic idea is to estimate 

or reconstruct the real faults in systems, which play the same important role as FDI does 

in some FTC systems. For example, with regard to sensor fault FTC, if the sensor fault 

can be estimated, this information can be used directly to correct the corrupted sensor 

measurements before they are used by the controller.  

As for FDI, the FE process also comprises two stages, for which the first one is still the 

residual generation step, whilst the second step is fault estimation/identification 

(sometimes called fault reconstruction) by using the generated residual signals in the 

first step. The structure for FE is shown in Figure 1-8  

Similarly, the core of the FE problem also consists of the residual generation so that it is 

natural to consider if the methods of residual generation for FDI can be transferred to 

FE.  Anyway, according to the literature, in the past three decades, some methods of 

residual generation for FDI have been successfully used for FE, such as parity-relations 

(Nguang, Zhang and Ding, 2007) but more attention has been put in the field of the 

observer-based residual generation for fault estimation (Zhang, Jiang and Shi, 2010).   

An important contribution on this topic is the thread of research initiated by (Zhang, 

Jiang and Cocquempot 2008) in which they combine an observer-based residual (as a 

first stage) with a proportional - plus integral fault estimator – the so called Fast 

Adaptive Fault Estimation (FAFE). The FAFE approach is actually used in Chapter 3 of 

this thesis in connection with Model-reference control of a Two-link manipulator 

system. 

Several other FE approaches have been adopted from observer-based schemes. For 

example, sliding mode observers can be designed for the FE role satisfying excellent 

robustness conditions (Edwards, Spurgeon, and Patton 2000; Floquet, Edwards and 

Spurgeon, 2007; Tan, Edwards and Kuang, 2005). Further observer-based FE methods 

are Iterative learning observers (Chen and Saif, 2006), FE based-on filters (Zhang and 
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Jiang, 1999; Wu, Zhang and Zhou, 2000; Nobrega, Abdalla and Grigoriadis, 2008; 

Weng, Patton and Cui, 2007), Descriptor observers (Gao and Ding, 2007), Direct 

reconstruction approach (Liu and Duan, 2012; Corless and Tu, 1998; Zhu and Cen, 

2010),  and Adaptive observers (Wang and Daley, 1996; Xu and Zhang, 2004; Jiang, 

Staroswiecki, and Cocquempot, 2002, 2006; Wang, Jiang and Shi, 2008;  Patton and 

Klinkhieo, 2010) and Unknown input observer (Saif and Guan, 1993; Wang and Lum, 

2007;  Wang, 2010).  These combined FDI and FE methods comprise the whole Fault 

Diagnosis block (Figure 1-7), which acts a critical role in fault tolerant control or 

reconfigurable control process. This thesis is based on the use of observer-based FE 

strategies for FTC. Hence the remainder of this Chapter focuses on a selection of 

observer-based FE methods to form a background for Chapters 3, 4 and 5 of the thesis.  

Adaptive observer fault estimation in FTC design 

The basic idea for this method is to estimate the actuator efficiency by setting up an 

augmented observer-based fault estimator. Different FE methods depend on different 

kinds of faults considered, e.g. additive faults are always reconstructed/estimated 

directly using residual-based information (errors between measurement and output 

estimates) directly (Jing, Staroswiecki and Coccquempot, 2006).  To illustrate the 

adaptive observer FE methods design process, consider the following linear system with 

additive fault as follows: 

                        

                                                                          (2-14) 

where          is the state vector,         is the input vector,         is the 

output vector and         represents the additive fault.        and   are known 

constant real matrices of appropriate dimensions, the matrix   is of full column rank 

and the pair       is observable.  Then the adaptive fault estimator is constructed as:  

                                         

                                                              (2-15) 

where          is the observer state vector,          is the observer output vector 

and          is the estimate of the fault      . By denoting                , 



31 
 

                ,                  and subtracting Eq. (2-15) from Eq. (2-14) 

the error dynamics is acquired as: 

                        

                                                                (2-16) 

As there is no way to know the dynamic information of the real faults, in the earlier 

literature the faults are commonly considered as constant, i.e.          hence the fault 

estimator for this case has the simplified form: 

                                                                  (2-17) 

where   is the learning rate. As a result the derivative of the error of the fault with 

respect to time can be written as: 

                                                          (2-18) 

As the pair       is observable, the design objective is changed to one of solving the 

problem of finding S.P.D. matrices          to satisfy the following conditions: 

 
                   

      
                              (2-19) 

If the above equation has suitable solutions for  ,  ,  then the observer-based estimator 

can realise asymptotic convergence to zero for both      and      . 

Some researchers used the modified adaptive observer for other faults, like actuator 

faults and sensor faults (Wang and Daley, 1996, 1997; Patton and Klinkhieo, 2010). The 

main disadvantage of this method is that the fault may have unpredictable behaviour 

and in most of the time is not constant, which means the derivative of it is not zero and 

may further cause high gains (Patton and Klinkhieo, 2010). Meanwhile since there is 

disturbance and other uncertainty in the system, the precise value of the estimate may be 

degraded and as a result, some researchers adopted the unknown input observer (UIO) 

instead of the conventional observer to improve the robustness (Saif and Guan, 1993; 

Wang and Lum, 2007). However the UIO requires two structural conditions associated 

with the channels of the unknown inputs to meet the complete rejection of the 

uncertainty.  However, there are many results in observer-based FE algorithm, but only 
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a few (Gao and Ding, 2007; Zhang, Jiang and Shi, 2009) are used in FTC (Zhang and 

Jiang, 2008).  

Sliding mode observer for fault reconstruction  

In the work of Yang and Saif (1995) the sliding mode observer was applied to an FDI 

residual problem. The idea was to ensure that the sliding motion was broken when faults 

occurred in the system and a residual was generated containing information about the 

fault. In more recent work using sliding mode observers the faults are reconstructed or 

estimated (Edwards, Spurgeon and Patton, 2000; Tan and Edwards, 2003; Jiang, 

Staroswiecki and Cocquempot, 2004).  In these special sliding mode-observer based 

approaches, not only the faults can be detected and isolated, the estimated faults can be 

further used in the reconfigurable control design process. The difference between these 

methods form the idea behind the paper (Jiang, Staroswiecki and Cocquempot, 2004), 

which shows that under certain geometric conditions, the original nonlinear system is 

transformed into two different subsystems with uncertainty. The first subsystem is in 

generalised observer canonical form, which is not affected by faults, whilst the second 

is affected by faults. A sliding mode observer is then constructed for the first subsystem 

to enable the estimation of the faults to be achieved from the second subsystem. 

However, Edwards et al (2000) provided an alternative way for faults reconstruction by 

proposing so-called equivalent output injection concept which represents the average 

behaviour of the switching function and represents the effort necessary to maintain the 

motion on the sliding surface (Edwards, Spurgeon and Patton, 2000). The drawback of 

this method is that, when dealing with the sensor fault, it has to be assumed that the 

fault is slowly changing, which is a very strict condition. 

There are a number of important issues when designing AFTC. The most significant 

one is probably the integration between the FD and the FTC functions. Most research 

studies on FD and reconfigurable control/FTC have been carried out as two separate 

entities.  These two subjects are investigated mostly by separate fields or groups of 

researchers with seemingly little interaction between them. To be more specific, many 

FD algorithms do not consider the closed-loop operation of the system on the one hand, 

and many FTC methods assume the availability of perfect fault estimation from the FD 

scheme on the other hand.  Furthermore, most of the FDI/FD techniques are developed 

as a diagnostic or a supervising tool, but not as an aspect of FTC. The result is that some 

existing FD methods my not satisfy the requirement for controller reconfiguration or 
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may not guarantee that a satisfactory post-fault performance or even stability can be 

maintained by such a scheme under FTC conditions. Hence, it is very important that 

designs of the FD and FTC, when carried out separately, are each performed taking the 

presence and imperfection of the other into account. For example, from the viewpoint of 

reconfigurable controls design (Zhang and Jiang, 2006, 2008); “… (a) What are the 

needs and requirements for FD? (b) What information can be provided by the existing 

FD techniques for overall FTC designs? (c) How to analyze systematically the 

interaction between FD and the reconfigurable control system? (d) How to design the 

FD and reconfigurable controls in an integrated manner for on-line and real-time 

applications? ...”  

A common situation in practice is that there are disturbances/uncertainty existing in any 

systems, which can both affect the performance of the FE from an FD aspect. From this 

an imprecise FE signal may further threaten the stability of the closed-loop system. For 

this reason, the FTC should necessarily be capable of dealing with 

disturbance/uncertainty in the FD estimates and should perform satisfactorily, at least 

for the stability, during the transition period that the FD scheme is required to diagnose 

the fault. 

Another issue in practice is that the dynamics of a real system cannot be represented 

accurately enough by linear dynamical models so that nonlinear models or linear model 

with nonlinearity terms (i.e. time-varying parts) have to be used, such as the dynamics 

of the manipulator/robot, and aerospace systems (flight control, satellite attitude control, 

etc). This necessitates the development of techniques for FTC design that can explicitly 

deal with nonlinearities in the mathematical representation of the system.  

Because of these, requirements for further research and developments for integration of 

FD and FTC methods makes this an open field for research. Some of these challenges 

are taken up in this thesis with several novel robust solutions.  

 

2.5 Conclusion 

This Chapter has presented a brief introduction and literature review on the field of FD 

and FTC. These include some definitions and terminology regularly used in FDI, FE 

and FTC. For some historical reasons, some terminologies have not been unified in FTC, 
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as a result, the introduction and literature review for FD is divided into two parts of FDI 

and FE. Different methods of FTC were discussed based on the given classification. 

Then, this Chapter has also briefly discussed the residual generation issue, and its 

importance to FDI and FE, further to FTC, as well as different methods for residual 

generation, in which the observer-based method is specially mentioned.  

Some discussion and literature review on FE methods is carried out, and the adaptive 

observer-based and sliding mode observer-based methods for FE, are outlined. 

The Chapter also lists the challenges involved in the integration of the designs of FD 

and FTC. In the Chapter 3, a new FTC scheme with a combined Model-reference 

control and FAFE are given, with application to a model example of a Two-link 

manipulator non-linear system. 
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Chapter 3.  

Fault estimation and Model Reference 

Control-based active FTC* 

 

3.1 Introduction  

The use of model reference tracking is a well known way in the literature of achieving 

control reconfiguration or adaptation (Landau, 1979).  Actually, MRC is quite 

synonymous with FTC and this is explained below. Several research studies have used 

model reference schemes for active FTC (Tao, Joshi and Ma, 2001; Taware and Tao, 

2003; Jiang and Zhang, 2006; Yang, Qi and Shan, 2009; Mirkin and Gutman, 2007). 

Several advantageous features of MRC make it a popular approach for FTC. 

Performance specifications are given in the time domain, such as rise time, damping 

ratio, decoupling effects etc, and these characteristics can be easily represented in terms 

of an ideal system response, which become the reference signals that the closed-loop 

system must follow for tracking purposes. Another advantage of using model reference 

control for FTC is that it allows the reference model to be changed online to cope with 

changes in the operational conditions especially during faults or failures (Duan, Wang 

and Huang, 2004; Qu and Dawson, 1994). In fact the so-called blending model 

reference adaptive concept is deemed a meaningful approach for fault accommodation 

within FTC.  

On the other hand, linear models are traditionally used for both estimation and control 

within the framework of robustness analysis and design. In a classical way the joint 

performance of the FTC estimation and control compensation of such systems may only 

be acceptable in a region of operation close to the defined equilibria and numerous 

studies have emerged focused on robust fault detection and isolation (FDI), robust fault 

estimation and robust FTC, based on this limitation. 
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However, many real system applications have no unique linearization equilibria e.g. 

advanced aircraft and various forms of robotic systems, which present a significant 

challenge to the use of linear modelling methods. Within the wider field of control the 

problem of feedback design  for such systems has been of considerable interest in the 

literature, see for example (Marino and Tomei, 1997); (Astolfi et al., 2007).  

This Chapter highlights the benefit of combining an adaptive fault estimation law and a 

model reference framework for achieving on-line fault estimation and FTC for time-

varying affine systems. The main contribution of this Chapter is the design of an on-line 

active fault estimator and fault compensator to achieve FTC objective based only on the 

reference model and not on the plant dynamics. This leads to the use of a simpler 

parameterization in the fault estimator in terms of LMI computation compared with the 

estimator approach developed by Zhang, Jiang and Cocquempot (2008). 

This Chapter is constructed as follows. Section 3.2 presents the faulty time-varying 

affine system, and Section 3.3 summarises briefly the MRC approach to feedback 

design. Section 3.4 outlines the structure of the combined fault estimation and control 

compensation scheme, based on the MRC approach. Section 3.5 describes a non-linear 

system example of a two-link manipulator (TLM), illustrating the MRC strategy for a 

scenario when two actuator faults act independently on each joint. Concluding 

comments are given in Section 3.6. 

3.2 Preliminaries 

 Consider a faulty time-varying affine system of the form: 

                                                     (3-1) 

       is a full column rank fault weighting matrix and         denotes the 

bounded   system faults. Note that       could represent either an additive or a 

multiplicative fault.                             are smooth, continuous and 

controllable functions of the state vector         (supposed all can be measured) 

whilst          is a stabilising state feedback control vector. It is further assumed 

that         is full column rank for all states      defined by Eq. (3-1). 
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3.3 Model Reference Control System 

Consider the problem of developing an associated linear time-invariant (LTI) “open-

loop” MRC reference model for a linear time-varying multivariable plant in Eq. (3-1), 

with        as follows: 

                                                                             (3-2) 

        is the reference model state vector and           is a time-varying input 

signal designed to achieve a required reference trajectory for the states     .           

is a compatibly dimensioned controllable pair with stable   .  

The error state vector,         is defined as: 

                                                                            (3-3) 

The error system dynamics are determined from Eq. (3-1), Eq. (3-2) as: 

                                                       (3-4) 

The restriction arising from use of a MRC design strategy is given in terms of the well-

known perfect model matching conditions of Erzberger (1968) and Chen (1968) as: 

                                                                 (3-5) 

For real applications, these conditions are easy to satisfy as the reference model can be 

chosen by the designer. The plant control signal can be designed as: 

                                                                             (3-6) 

               is a suitable pseudo-inverse matrix of  the full column rank matrix 

        and           
    ,     

      are feedback matrices given by: 

                                                                    (3-7) 

                                                                           (3-8) 

Hence, Eq. (3-4) can be reduced to: 
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                                                                          (3-9) 

Assuming the matching condition above, the error      tends asymptotically to zero at a 

rate determined by the placement of the eigenvalues of    in the open left plane.  

 

3.4 Model Reference FTC Strategy 

An FTC design strategy is required to compensate for the effects of the faults acting in 

Eq. (3-1). The current study is based on the estimator proposed by (Zhang, Jiang and 

Cocquempot, 2008). However, the estimation is applied within an FTC fault  

compensation mechanism that makes use of a MRC structure.  

Now consider the system Eq. (3-1) for the case       . In order to proceed to the 

fault estimator design the following two Assumptions A1 and A2 must be satisfied: 

A1.            . 

A2.   The invariant zeros of (        lie in the open left half-plane (LHP) (Kudva, 

Viswanadham and Ramakrishna, 1980). 

Assume that the fault estimator has the following dynamics: 

                                                             (3-10) 

where        is the learning rate, and       can be achieved via Eq. (3-9),        

   is the fault estimate and         is a suitable estimator gain determined using a 

suitable LMI calculation as described below. 

A similar estimation structure is the augmented state observer (ASO) by (Patton and 

Klinkhieo, 2009). However, Eq. (3-10) has a more general proportional-plus-integral 

(P-I) structure (compared with the proportional only ASO approach). The estimation 

error is                 , and the error dynamics are given by: 

                                                                   (3-11) 
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The proportional        plus integral       action on the error system in Eq. (3-11) 

provides degrees of design freedom to shape the estimator tracking performance. 

Here it is proposed that the fault estimate signal        can be added to the control signal 

in Eq. (3-6) to compensate the fault signal     , according to the MRC structure of 

Figure 3-1.  

 

Figure 3-1: Model Reference FTC scheme 

The fault-tolerant performance of this system depends on the robustness of the fault 

estimation applied to the control input: 

                                                                  (3-12) 

It is further assumed that           . From Eq. (3-1)-(3-12), it can be shown that: 

                                              (3-13) 

The existence of suitable symmetric positive definite S.P.D. Lyapunov matrices to 

guarantee the stability of the error system Eq. (3-13) is determined as follows (Zhang, 

Jiang and Cocquempot, 2008): 

Theorem 3.1: Under the Assumptions A1 and A2, if there exist S.P.D. matrices 

             , and matrix        to make the following two conditions hold: 

            ;                                             (3-14) 

       
      

     
   

            
   ,                 (3-15) 
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then the fault estimation error can be guaranteed to remain in a bounded region on the 

 -dimension fault space. The proof is taken from (Zhang, Jiang and Cocquempot, 2008) 

but is given here for completeness as this approach is modified for the MRC design. 

Proof:   

The Lyapunov function can be considered as: 

                        
                                               (3-16) 

According to Eq. (3-10) after differentiation of       with respect to time (3-16) 

becomes: 

                                       
                                                 

                                 
 
                                        

                         
                                                                      

                         
         

                         

                                      
                

                                                

                          
               

                              

          
                              

                           (3-17) 

From Eq. (3-17), Eq. (3-16) can be re-written in the form: 

                       
                    

                      

          
                

                                    (3-18) 

Lemma 3.1: (Jiang, Wang and Soh, 2002) given a scalar     and a S.P.D. matrix 

      , for which the following inequality holds: 

           
 

 
                           .                (3-19) 

Then Eq. (3-18) satisfies: 
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                                                       (3-20) 

By defining a vector      as        
    
     

 , Eq. (3-20) can now be re-written more 

succinctly as: 

                                               (3-21) 

where: 

   
      

     
   

            
 , and                      

           

Then Eq. (3-21) can be rewritten as: 

                      
                         (3-22) 

where         and         are the largest and smallest eigenvalues of the matrix    , 

respectively.  Eq. (3-22) shows that when            
             ,         , 

which is satisfied for           
    

         
, which implies that  

    
     

  is bounded 

within a small finite range determined by the derivative of the fault       . Furthermore, 

the lower the value of the scalar            the faster will be the fault estimation speed, i.e. 

when              (the fault is constant with the error vector        ) and the fault 

estimator achieves perfect tracking.                                                                          Q.E.D. 

In order to solve the LMI Eq. (3-15) subject to Eq. (3-14) a well known procedure of 

(Corless and Tu, 1998) can be used to transfer Eq. (3-14) into a (convex optimization) 
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LMI problem. For this case and based on the selected reference model of Eq. (3-13), a 

new LMI must be solved, as follows (Zhang, Jiang and Cocquempot, 2008):  

       
        

        
              (3-23) 

The LMIs Eq. (3-15) and Eq. (3-23) are solved simultaneously to determine the 

matrices      and hence    so that the model-reference estimator can be determined. 

However, the fault estimator Eq. (3-10) can be equivalently re-expressed as       

             
 

  
  where    denotes the instant when the faults occurs. 

 

3.5 Two-Link Manipulator Case Study  

To illustrate the mathematical discussion above, a tutorial example of the actuator fault 

compensation problem is considered using a nonlinear simulation of the two-link 

manipulator/robot. The field of robotics is concerned with the principles, design, 

manufacture, and application of robots, and is a broad application area involving many 

areas such as Physics, mechanical design, motion analysis and planning, actuators and 

drivers, control design, sensors, signal and image processing, computer algorithms, and 

study of behaviour of machines, animals, and even human beings (McKerrow, 1991; 

Slotine and Li, 1991; Hassen, et al., 2000).  

Robot manipulators are familiar examples of position-controllable mechanical systems 

(Hassen, et al, 2000). However, their nonlinear dynamics present challenging control 

problems, since traditional linear control approaches do not easily apply. The objective 

of this Section is to model the complete nonlinear dynamics of an example of a two-

joint manipulator, so that the movement control, e.g.  from one point to another in two-

dimensional space, is facilitated. 

3.5.1 Two-Link Manipulator Dynamics 

Basically, there are three types of dynamic torques that arise from the motion of the 

manipulator: Inertial, Centripetal, and Coriolis torques (McKerrow, 1991; Slotine and 
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Li, 1991; Hassen, et al., 2000).  Inertial torques are proportional to acceleration of each 

joint in accordance with Newton’s second law. Centripetal torques arise from the 

centripetal forces which constrain a body to rotate about a point. They are directed 

towards the centre of the uniform circular motion, and are proportional to the square of 

the velocity. Coriolis torques result from vertical forces derived from the interaction of 

two rotating links and are proportional to the product of the joint velocities of those 

links.  

For simplicity, the two-link robotic manipulator is considered to rotate in the vertical 

plane, whose position can be described by a 2-vector                   
  of joint 

angles, and whose actuator inputs consist of a 2-vector                   
  of 

torques applied at the manipulator joints as shown in Figure 3-2.   

 

 

Figure 3-2: Two link planar manipulator structure 

Using the vectors       and       to denote the joint velocities and accelerations, 

respectively the dynamics of this simple manipulator can be written in the more general 

form (McKerrow, 1991; Slotine and Li, 1991; Hassen, et al, 2000) as: 

                                                                     (3-24) 
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where:              is the manipulator inertia tensor matrix (which is S.P.D.), 

                     is the vector function containing the Centripetal and Coriolis 

torques, i.e.                  and            are the gravitational torques.  

Consider the following numerical example taken from (Hassen, et al, 2000, Klinkhieo, 

2009) and modified here as a demonstration for the proposed design strategy in this 

Section.  

The Euler-Lagrange dynamic model of the TLM is given in state space notation as: 

       
      

            

                                                            
     

                                                                 (3-25) 

                                 

           
                                      

     

                                                                                (3-26) 

where: 

  : Inertia of arm-1 and load 

  : Inertia of arm-2 

  : Distance between joint-1 and joint-2 

   : Distance of joint-1 from centre of mass arm-1 

   : Distance of joint-2 from centre of mass arm-2 

  : Mass of arm-1 and load 

  : Mass of arm-2 
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             and              are state variables representing the angle and angular 

velocity of Link-1 and Link-2, respectively.       and       are the control signals. The 

associated parameters are given in Table.1. 

Table 3-1: Parameters of TLM 

Parame

ters 

                         

Values 0.833 0.417 1.0 0.5 0.5 10.0 5.0 9.80 

Units                              

 

3.5.2 Simplification of the TLM system 

To facilitate the development of the MRC design the controlled non-linear TLM 

dynamics can be simplified using the following notation: 

        
      

     ,            , 

                ,          
     , 

           

The notation can be simplified as follows: 

                              ,            , 

                         ,                                  

           ,             . 

Now define: 
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,       

     

     
      

      

 , 

Where              are the elements of the new matrix  . Then the TLM dynamical 

description Eq. (3-25) and (3-26) can be written as: 

              
   
  

       
 
  
       

 
 

          

          

 ,                        (3-27) 

where    is the identity matrix on   . For all multi-link manipulator systems, including 

the TLM system, the matrix   is full rank, so that     exists. Hence, Eq. (3-27) can be 

transformed into: 

                
   
  

           
 
  
       

 
 

          

          

            (3-28) 

As             are measured angles, the MRC design strategy can be simplified by de-

coupling the gravity terms            and            in Eq. (3-28), using as basic 

form of feedback linearization, with:  

                                                     (3-29) 

where: 

       
      
      

  and        
          
          

  

 It follows that Eq. (3-27) is simplified to the structure: 

                                                                    (3-30) 

where:  

            
   
  

  ,             
 
  
 , 
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This completes the TLM model system simplification procedure. 

3.5.3 MRC-based FTC of TLM system 

For this example, the matrices         and         of the plant model have the 

following structure: 

         

    
    

                                    

                                    

 , 

         

  
  

                  

                  

  

                      and                       represent the elements in matrices 

  and   as functions of the plant states. The controllable reference model is obtained 

from the structure of the matrices         and         in Eq. (3-30). Once, a candidate 

set of model parameters is selected (e.g. as a single point in the linearization). A suitable 

reference model for this system is assumed to retain the structure of         and 

       . A suitable pair       has been chosen with spectrum of       

               as follows: 

    

    
    

                             
                             

 , 

    

  
  
  
  

  

For this example, the control problem is that of moving the two links to constant 

reference angles (corresponding to             ) of 10 deg and 5 deg, respectively. As 

a special case (regulator tracking) problem for this example the solution for        is 

set to         in (2). The initial values      of the states   in Eq. (3-2) are also set to: 
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 , which are also the equilibrium values    of     . The required 

reference signal        is thus given by 

           
       

with   
    

     
     

   

The solution for        is expressed in terms of the reference angles    and    as: 

                 
     
     

   
       
               

  
     
     

               (3-31) 

This reference model system is applied to the MRC-FTC design Eq. (3-10)-(3-13), and 

the control signal is given in terms of the pseudo-inverse          of         as: 

                                                          (3-32) 

Now consider a vector of actuator faults      acting on the TLM system joints 

according to:  

                                                      (3-33) 

where       
     
     

 , and: 

       
        

         
 ,        

         
      

  

Note that             has the structure:  

                 

  
  

                  

                  

                                  (3-34) 

Hence, the term       of Eq. (3-1) can be re-written, for this case, as           
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where    

 
 

 
 

  
  

 ,          
        
        

             , 

This shows that although         is time-varying according to        , the fault 

distribution can still be represented via a constant distribution matrix   operating on a 

transformed (but bounded) fault         .         is bounded since both         and 

    are bounded and       =             Giving the learning rate of the fault estimator 

   
   
   

  and by using the Matlab LMI toolbox a solution to Eq. (3-15) and Eq. 

(3-23) can be obtained as: 

   

                         
                         
                        
                        

  

   
                        
                        

 ,    
            
            

  

Figure 3-3 shows the two faults estimates         and        soon converge to the real 

faults      and       after an oscillatory transient period. 

 

Figure 3-3: Faults       ,       and their estimates       ,         
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According to the inequality (3-22), the error between the actual fault and its estimate is 

bounded in a small region. Also the fault time derivative is bounded from the above 

mathematical analysis. From the Figure 3-3, the adopted fault derivative goes to infinity 

at      and      , and even if the bound requirement is a potential limitation of 

this method, the result still shows that good fault estimation is achieved as the fault is 

accurately estimated on-line. Some oscillations appear at the commencement of the 

simulation run, which are due to the initial errors between the reference model and the 

TLM state variables. However, these oscillations can be minimised by choosing the 

same initial conditions for the reference model and the TLM plant.  

 

Figure 3-4: Fault TLM responses (initial conditions: 0; 0; 0; 0) with (solid) and without 

FTC action (dotted). 

Figure 3-4 gives the TLM comparisons for the system state response of two cases (a) 

with FTC action applied and (b) without FTC action. Without the FTC the system state 

variables are strongly affected by the occurrence of faults. The angle and angular 

velocity for Joint-1 oscillate around the reference points, whilst for Joint-2, the angle 

and angular velocity follow their reference levels with steady-state following errors. It is 

clear that after compensation the angle state responses become almost independent of 
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the fault effects. From this study it is understood that the proportional term       (the 

estimation equivalent of proportional control) in                       as introduced 

by (Zhang, Jiang and Cocquempot, 2008) provides good estimator design freedom for 

minimising this effect. 

 

3.6 Conclusion 

This Chapter proposes a strategy of active (direct) FTC for systems that have no unique 

equilibria, such as nonlinear systems and LPV systems, making use of fault estimation 

and compensation via MRC design. When all the required assumptions are satisfied the 

aim of the combined on-line fault estimation and compensation is described in terms of 

a pre-designed reference model. The reference model is used to derive the fault 

estimator parameters as well as the controller structure. The controller stability 

guarantee is provided by the stability of the reference model, whilst the estimator 

stability arises from the solution of an appropriate LMI-based Lyapunov condition. The 

fact that the estimator parameters are based on a reference model, rather than on the 

plant itself is an important improvement over existing methods. Furthermore, the 

approach is important for systems that have no unique equilibria i.e. that cannot be 

uniquely linearised. 

This Chapter also describes an example of FTC for a non-linear TLM dynamical system 

with independently acting joint faults. The fault estimation errors are very small and 

good control compensation performance is demonstrated. Further research on this 

approach will inevitably involve a deeper understanding of robustness issues that may 

be applied to further enhance the performance of the method, which is equivalent to 

finding a suitable reference model with enough robustness against the disturbances and 

other system uncertainty.  

In fact, the disturbance/uncertainty heavily affects the FE and FTC performances. 

Imprecise estimation results may risk the stability of the entire control system. As a 

result, the improvement of the robustness of the fault estimator is an important 

challenge. Based on this, in Chapter 4, a novel robust FE method is proposed, as well as 

the integration design to solve the joint robust FE and robust AFTC problem. 
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Chapter 4.  

Robust Fault Estimation and Fault 

Tolerant Control based on Observer-

based Fault Estimator Method 

 

4.1 Introduction 

With the reference of the classification of FTC system given in Chapter 1, this Chapter 

is concerned with the active robust approach to FTC, involving robust fault estimation 

and robust fault compensation.  This approach to achieve FTC obviates the need for 

reconfiguring or reconstructing the controller to tolerate the faults. 

As stated in Chapter 2, there have been a significant mount of studies on FTC based on 

FE methods (Patton, 1997) (Wang and Daley, 1996) (Wang, Huang and Daley, 1997) 

(Edwards, Spurgeon and Patton, 2000) (Zhang, Jiang and Cocquempot, 2008) (Zhang 

and Jiang, 1999) (Rodrigues et al, 2005) (Patton and Klinkhieo, 2010) (Zhang, Jiang 

and Shi, 2009) (Gao and Ding, 2007) (Nie and Patton, 2011). Some of these deal with 

the tolerance to sensor faults and others deal with the FTC problem for actuator faults 

(Jiang and Staroswiecki, 2002) (Zhang, Jiang and Cocquempot, 2008) (Zhang, Jiang 

and Shi, 2009) (Nie and Patton, 2011).  

In this Chapter, a novel FE method is proposed - the Robust Fault Estimation Method 

and FTC action based on it, using fault accommodation. This method is motivated by 

(Patton, Putra and Klinkhieo, 2010; Edwards, Spurgeon and Patton, 2000; Zhang, Jiang 

and Cocquempot, 2002; Zhu and Cen, 2010). Patton, Putra and Klinkhieo (2010) 

describe a novel ASO (augmented state observer) which considers the fault as an 

augmented state of the new system, but with the disadvantage of high gain and normally 

the actuator fault is not often a constant. Zhang, Jiang and Cocquempot (2008) proposed 
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the so-called fast adaptive fault estimator (FAFE) method which is outlined in Chapter 3. 

The FAFE approach does take into account the possibility of time-varying faults. 

However, the original work by Zhang, Jiang and Cocquempot (2008) does not prove the 

asymptotic convergence of the fault estimation error system. Edwards Supergon and 

Patton (2000) proposed the well known sliding mode observer-based fault estimator but 

this is only suited to cases in which the faults change slowly and this sliding mode 

estimation was not applied to the FTC problem. Zhu and Cen (2010) produced an 

interesting adaptive observer but without any fault estimation and FTC work. With this 

background in mind, the main contribution of this Chapter is to investigate the 

properties of this Robust Fault Estimation approach for FE and FTC. 

The work of this Chapter considers two kinds of faults (1) actuator faults and (2) sensor 

faults. Based on this novel method, both faults can be estimated to improve the 

performance and stability of the system in control under the influence of the exogenous 

disturbance.  Meanwhile, this novel approach to FE can also be used in the FDI problem, 

if required.  

It is also very important to note that the FTC schemes proposed in this Chapter are 

adaptive systems as the on-line fault estimates are updated continuously and the 

estimates are used to compensate the faults acting within the control channels. The 

compensation is achieved within the observer estimation error system with the 

consequence that the control signal has a time-varying component, the adaptive part of 

the control. However, using on-line compensation means that the fault isolation task of 

FDI is not strictly required, although this function can be useful, and also can achieve 

the robustness to the disturbance for the simultaneous state and fault estimation. 

This Chapter consists of 6 sections, Section 2 summarises the robust state and actuator 

fault estimate observer design. Section 3 considers the sensor fault based on the theorem 

set up in Section 2. Section 4 outlines the actuator and sensor FTC design based on the 

observer set up in Section 2. Section 5 describes a linear inverted pendulum tutorial 

example to illustrate the actuator and sensor fault estimation and FTC. Conclusions are 

given in the last Section. Moreover this Chapter also produces the foundation for the 

work described in Chapters 6 and 7. 
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4.2 Robust state and Fault Estimation observer 

Consider a state space representation of a fault-free and disturbance-free (nominal) 

linear time invariant system:  

                                                                          (4-1) 

                                                        

Where         is the state vector,         is the output vector,         is the 

input control signal vector,       ,       ,        , are all known 

appropriate dimension matrices, the matrix pair       is assumed controllable and the 

pair       is assumed to be observerable.  

When the nominal system Eq. (4-1) is affected by actuator faults and external 

disturbance simultaneously, the original system is now described as: 

                                                        (4-2) 

                                                                                                                                 

where         
  and         are the actuator faults and exogenous disturbance 

vectors, respectively.     
    ,        are known real constant matrices. It is very 

important to know that for solving robust FDI problems, a mathematical representation 

for expression of modelling uncertainty is required. Patton and Chen (Patton and Chen, 

1992, 1993; Patton, Chen and Zhang, 1992; Chen, 1995) provide several methodologies 

to represent modelling uncertainties in structured format from various sources, as 

additive disturbances with an estimated distribution matrix (Chen and Patton, 1999). It 

can be concluded that from a mathematical point of view, the expression of the 

modelling uncertainty has the same effect in the system as the disturbance. As a result, a 

general description for system uncertainty and disturbance is expressed in a form of one 

distribution matrix   multiplying the disturbance or uncertainty vector, i.e.       , such 

as in Eq. (4-2) is no loss of generality. This Section is concerned with the robust fault 

estimator design. Hence, the following Assumptions can be made: 

Assumption 4.1:            ,           and                . 
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Assumption 4.2: The norms of      ,       and its first derivative of         are bounded 

such that: 

                                  , for all    .   ,   ,    are known positive 

constants, namely,      ,     ,        ,   ,     . 

A full-order state observer for system Eq. (4-2) using output information can be 

designed as follows: 

                                                                          (4-3) 

                                                                                                                          (4-4) 

where               is a nonlinear design function whose design is given under 

Theorem 4.1. The error dynamic system between the plant and the observer is then 

represented as: 

                                                     

                                                                (4-5) 

                                                                  (4-6) 

where                 and                    . The fault estimator system can 

be stated mathematically as: 

    
                                                             (4-7) 

Where       is calculated by           ,   is the learning rate,    is the fault 

estimator gain matrix to be designed. Meanwhile, it should be noted that an estimate of 

the actuator fault         can easily be derived by taking the integral of both sides of Eq. 

(4-7), so that                   
 

 
.  

The idea behind Eq. (4-5) is easy to grasp, if               has an effect on reducing the 

influence from the exogenous disturbance for states and fault estimates, then the error 

dynamics of Eq. (4-5) becomes robust. Theorem 4.1 is established following a 

motivation by the observer designed by Zhu and Cen (2010). It is noted that in the work 
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of (Zhu and Cen, 2010) an adaptive and robust full-order observer was constructed, the 

robustness is shown by the special design for the term              , similar to the 

discontinuous control component used in sliding mode control law (Edwards and 

Spurgeon, 1998). However, Zhu and Cen design the observer for the fault-free case 

which is not the concept described here since the current work is based on the use of the 

term              . 

Theorem 4.1: Under Assumptions 4.1-4.2, if there exist symmetric positive definite 

matrices               and matrices            
    and     

    , such 

that the following conditions hold:  

                   ,                              (4-8) 

  
                                                                (4-9) 

                                                                 (4-10) 

where     . The robust full-order observer determined by Eq. (4-3), (4-4), (4-7) has 

a non-linear function the term               of the state estimates and output 

measurements, is as follows: 

              
          

         
 

        

          
 
    

       
          

 
 

 
                          

 

 
                       (4-11) 

where        is a design matrix,     is the inverse of the matrix   ,   is a small 

positive constant to ensure when the time   goes to infinity the state estimation       and 

fault estimation        converge asymptotically to the actual state      and the actuator 

fault      , respectively.  The term            
 

 
  is the   norm of the integral 

           
 

 
, namely the norm of the fault estimate       . 

Proof:  

Consider a Lyapunov function candidate: 

                  
                                                        (4-12) 
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The derivative of   along with the error dynamic system (4-5), (4-6) is: 

                                                         
                                                                                             

                                                                                 

                                                                      

                                       
                 

          
                                   (4-13) 

By Lemma 3.1 it is easy to show that: 

                                
              

 

 
  
               

 
                       

                                    
 

 
  
                    

 
      

                    (4-14) 

where   is a symmetric positive matrix and   is a positive constant chosen 

appropriately by the designer. According to Eq. (4-14) and substituting Eq. (4-7) into 

Eq. (4-13), then Eq. (4-13) becomes: 

                                                                                            

                                                                         

                                       
 

 
  
                    

 
      

          

    
                                                                            (4-15)   

where         denotes the largest eigenvalue of the matrix defined in the space    . In 

order to obtain the appropriate quadratic form to prove the Lyapunov stability of the 

system of Eqs. (4-5) and (4-6), a subtle mathematical transformation can be made by 

adding a positive term  
 

 
  
            to the inequality (4-15) to change its structure, 

then the inequality (4-15) becomes:  
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                                (4-16) 

To maintain the same evaluation, on subtracting the term  
 

 
  
            from 

inequality (4-16), then inequality (4-16) becomes: 

                                                                                            

                                                                         

                                       
 

 
  
                

 

 
  
            

                                                
 
      

             
                     (4-17) 

Since   
       from Eq. (4-9), then the terms                and 

    
            sum to zero, hence: 

                                                                          

                                                              
 

 
  
                

                                         
 

 
  
                     

 
      

                 (4-18) 

As              (Assumption 4.2), and by defining a vector   as       
    
     

 , 

Eq.(4-18) can now be rewritten as: 

                                                                

    
       

          
 

 
  
                                  (4-19) 

where    
                 

  
 

 
  
 .   

Also noting that                                            

         which further indicates that: 
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                          (4-20) 

Then Eq. (4-20) is transformed to: 

                                
                              

    
       

          
 

 
                        

          (4-21) 

Replace               by the right hand side of Eq. (4-11) into Eq. (4-21), and the 

following result is obtained: 

                                                           (4-22) 

That is because, on the basis of Eq. (4-8),                        

          where     , and  
 

 
    . So that      which means that 

      
    
     

  converges asymptotically to zero. On the other hand, the state and the 

fault estimates track the trajectories of the plant states and actuator faults, respectively.   

Q.E.D.  

Remark 4.1: For a single input system      , the matrix    replaces    during the 

observer design. For multi-input systems, faults may occur in several actuators, at this 

time the matrix    is a linear subspace of the matrix  .  

Remark 4.2: When no fault occurs, i.e.     , the proposed robust observer by Eq. (4-

3), (4-4), (4-7) and (4-11) with removed fault estimation term        , is robust in the 

sense of rejecting exogenous disturbances. This is consistent with the work of Zhu and 

Cen (2010). When a fault occurs, as the matrix    is different from the matrix  , and 

their columns are linearly independent respectively, the term                only has the 

effect of rejecting the disturbances rather than rejecting the actuator fault signal. The 

consequence of this is that the system output   is only perturbed by the actuator fault   , 

Hence, the output error    does not approach zero asymptotically. The proposed 

observer Eqs. (4-3), (4-4), (4-7) and (4-11) can thus serve as a fault detection observer. 
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The logical fault/no-fault classification is given as follows by checking the system 

output residual      : 

 
         

         
                        
                     

  

where   is a threshold designed for fault detection, i.e. to avoid false alarms. Meanwhile, 

when the actuator fault weighting matrix    is unknown, the weighting matrix    in the 

observer structure can be taken by directly using the input matrix  . As the fault 

estimate shows the fault magnitude and identifies the location of the fault, it can also be 

considered as a robust fault isolation observer.  

Remark 4.3: From a theoretical point of view, when        ,               has no 

significance where it’s denominator is equal to zero. For this case the observer 

dynamics are the same as the plant dynamics. Under this situation, no further action is 

required. To take care of this condition the nonlinear law               is always chosen 

as: 

               

 
 
 

 
 
              

         
 

        

           
    

       
          

 
 

 
                          

 

 
    

          

            
 
 

 
 

    (4-23) 

where   is a small positive constant. Hence Eq. (4-23) can be used instead of Eq. (4-11) 

when        .  It is also important to point out that the inequality         

           is nonlinear, and it is very difficult to find solutions satisfying the 

nonlinear inequality (due to lack of convexity). However, by setting     , this 

inequality can be transformed into the form of  Eq. (4-8), which then leads to an LMI 

problem.   

Although inequality (4-8) can be solved efficiently using the MatLab LMI toolbox, 

difficulties arise when solving the inequality (4-8), Eqs. (4-9) and (4-10) simultaneously. 

It turns out that a simultaneous solution of inequality (4-8), Eq. (4-9) and (4-10) cannot 

be guaranteed. However, this problem can be converted into the following optimization 
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problem (Zhang, Jiang and Cocquempot, 2008; Corless and Tu, 1998), for which the 

solution is more straightforward. 

This procedure is summarised as follows. Solve the following two LMIs, and thereby 

minimize   subject to inequality (4-8): 

 
          

             
                                        (4-24) 

 
          

             
                                    (4-25) 

The matrices    ,   ,  ,    can be determined by solving inequalities (4-8), (4-24) and 

(4-25) simultaneously. The final observer gain matrix is then given by       , where 

    is the inverse of the S.P.D. matrix   . 

 

4.3 Robust state and sensor fault estimation 

All the results obtained in Section 4.2 apply to the actuator fault case. In this Section the 

proposed observer Eqs. (4-3), (4-4), (4-7) and robust design strategy involving Eq. (4-

11) are extended to deal with the sensor fault case. In this part, consider the system with 

additive sensor faults described as: 

                                                               (4-26) 

                                                      (4-27) 

Where        
  represents the sensor fault vector. The matrices  ,    and   defined 

as for Eq. (4-1) and Eq. (4-2).        is a full column rank known constant real 

weighting matrix. 

By constructing an augmented system (Edwards, 2004) (Edwards and Tan, 2006), the 

previous results can be extended to the sensor fault estimation problem.  Consider a new 

state        
    that is a filtered version of       as: 

                                                     



 

 

62 
 

 

                                                                           (4-28) 

                                                                                         (4-29) 

where      
    is a stable matrix and       . Then the augmented system can be 

written as: 

 
     

      
   

  
       

  
    

     
   

 
 
       

 
   

       
 
   

          (4-30) 

 
    

     
        

    

     
                                                                                 (4-31) 

Also denote: 

                 
    

    
  

       
  ,     

 
 
  ,     

 
   

  , 

     
 
   

  ,         ; 

                 
    

Then Eq. (4-26) and (4-27) can be rewritten in compact notation as: 

                                                               (4-32) 

                                                                                   (4-33) 

Then the sensor fault of the original system appears as an ‘actuator fault’ and so the 

proposed actuator fault estimation approach described earlier can be adopted.   

Remark 4.4: In the augmented system, the control pair         is controllable as       

is controllable, and the observable pair         is observable as       is observable, 

these properties are important in the FTC problem. The proof is omitted here.  

Before giving Theorem 4.2, it is necessary to make the following Assumptions: 

Assumption 4.3:            ,            and                 . 
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Assumption 4.4: The norms of     , the sensor fault       and its first derivative of  

       are bounded such that: 

         ,            ,             for all    , which     ,     , and 

     , where   ,   ,     . 

Theorem 4.2: Under Assumptions 4.3 and 4.4, if there exist S.P.D. matrices    

                             and matrices            ,      
    and      

   , 

such that the following conditions hold:  

                                                      (4-34) 

                                                                      (4-35) 

                                                                      (4-36) 

where         , then the augmented robust state and fault estimator (the notations are 

given in Section 4.2) is:  

                                                                            (4-37) 

                                                                           (4-38) 

   
                                                                     (4-39) 

                 
             

           
 

           

            
     

        
            

 
 

 
                               

 

 
                 (4-40) 

where                    , then this estimator will guarantee that the estimates of the 

states and actuator faults converge asymptotically to the real states and the actuator 

faults of the augmented system Eq. (4-32) and (4-33), providing a robust realization of 

the states and sensor faults estimates of the original system Eq. (4-26) and (4-27).  The 

proof is similar to that given in Theorem 4.1 and is omitted here. 
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Remark 4.5: In a similar manner to what is described in Remark 4.2-4.3. This novel 

robust state and fault observer design can also be using in sensor fault detection and also 

in sensor fault compensation. In practice, the sliding control law is chosen as ‘larger 

than the bound’ to achieve the robustness. As a matter of fact the magnitude of   chosen 

may affect the accuracy of the estimated results. It should be chosen as small as possible 

depending on the design requirements. 

 

4.4 Robust fault tolerant control 

4.4.1 Robust actuator fault tolerant control 

According to the state and fault estimates achieved in Section 4.2, it is natural to 

consider the FTC design by using this information. In this Section an integrated robust 

actuator FTC law design is given based on the proposed robust actuator fault estimator 

principle. Figure 4-1 shows the proposed FTC strategy.  

 

                                   

 

 

 

 

Figure 4-1: Fault estimation and fault-tolerant control 

Now consider the system Eq. (4-2). Once again, the full state-feedback control law is 

given as: 

                                                             (4-41) 

where        is the feedback gain matrix and         is the reference input. 
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Consider the fault-free situation (       ), (assuming that       ). Substituting Eq. 

(4-41) into the Eq. (4-2) the closed-loop system description is obtained as: 

                                                      (4-42)  

Then Theorem 4.3 can be stated as: 

Theorem 4.3: The closed-loop system Eq. (4-42) is asymptotically stable, and 

      
  , if there exist a symmetric positive definite matrix       , and a matrix 

       such that the following condition hold: 

 

                    
        
       

                            (4-43) 

As the above inequality is nonlinear, by pre-multiplying and post-multiplying 

                          in inequality Eq. (4-43) and letting        , 

Theorem 4.4 can then be stated as: 

Theorem 4.4: The closed-loop system Eq. (4-42) is asymptotically stable, and 

      
  , if there exist a S.P.D. matrix       , and a matrix        such that 

the following condition holds: 

 

                 

        
     

                             (4-44) 

where       
  is the    gain of the transfer function from the exogenous disturbance   

to the system output   , and     is the prescribed    performance. Furthermore, if a 

feasible solution       exists in the above LMIs, the state-feedback gain can be 

computed as       . This is the well known robust    State Feedback Control 

Theorem (Yu, 2002).  

However, the state vector      is not always available, and the estimated value       is 

substituted for     . So the observer-based state estimated feedback controller is:  

                                                              (4-45) 
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Motivated by the observer system of Eqs. (4-3), (4-4), (4-7) and (4-11), the observer-

based robust FTC system is constructed as: 

 

                                         

           

   
             

              
          

         
 

        

          
     

       
          

 
 

 
                          

 

 
    

                           
 
 
 
 

 
 
 
 

              (4-46) 

where               is the right pseudo inverse of the matrix of  . Substituting 

the FTC law         of Eq. (4-46) into Eq. (4-2), one obtains: 

                                                            

                                                     (4-47) 

It is natural to question whether the controller and observer can still be designed 

independently, because of the existence of the fault and uncertainty. It is clear that the 

well known Separation Principle is no longer satisfied. However, the controller and 

observer designs can still be made separately (Gao and Ding, 2007) (Zhang, Jiang and 

Shi, 2009) to preserve:  

(1) The asymptotically stability of the closed-loop system Eq. (4-47). 

(2)       
  ,  

Theorem 4.5 can then be stated as: 

Theorem 4.5: Under the Assumptions 4.1 and 4.2, the closed-loop system Eq. (4-47) is 

asymptotically stable or fault tolerant and       
   , if Theorems 4.1 and 4.4 hold. 

Stability proof:  

Consider the following Lyapunov function 

                                                                (4-48) 
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where           . 

Then the derivative of       with respect to time is obtained as: 

                                                 

                            

                                        

                                                                            (4-49) 

where                   . 

By choosing            Eq. (4-49) becomes: 

                                             

                                                                           (4-50) 

Consider a new Lyapunov function as: 

                                                                  (4-51) 

where     is a positive scalar and                     
             ,  according 

to the proof of Theorem 4.1 and Inequality. (4-50), the derivative of       can be 

described by: 

                                                         

                                                                        (4-52) 

Setting  

          , 

           , 

Thus, for the zero disturbance case,        can be rewritten as: 
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                                                                 (4-53) 

and choosing   
  

  
, one obtains          such that the system Eq. (4-47) is 

asymptotically stable.  

Remark 4.6: With the situation of the disturbance absent from the system, the state and 

fault estimation error      and       affect the Separation Principle. Furthermore, 

imprecise estimation may cause the error to become large, which may induce a potential 

stability problem (especially during a transient). Under the situation of the absent 

disturbance, the switching function term in the observer can be removed, and the 

proposed observer-based estimator is changed to a conventional one (See Section 2.4). 

Furthermore, when the disturbances exists, the    performance index proof is given 

below.   

The proof of the guaranteed performance index follows by considering: 

                                                          (4-54) 

The following inequality is obtained here by using Eq. (4-49):  

                                          

                                                              (4-55) 

According to Theorem 4.3, the following inequality can be obtained: 

                  

     
         
      

  

    

    
    

                (4-56) 
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This leads to: 

                                                            (4-57) 

By defining   
                  ,     

      

        
 , then inequality (4-57) 

leads to   
            . Denote            , then the following result can be 

achieved: 

            
                                          (4-58) 

In a similar manner to Eq. (4-53), by choosing    
  

    
 with              , Eq. 

(4-58) finally becomes, 

   
 

  
                 

                                    (4-59) 

Consider zero initial conditions and integrating both sides of Eq. (4-54) leads to the 

inequality: 

                     
 

 
               

 

 
                     (4-60) 

when the time   goes to infinity the following result is obtained: 

       
           

                                          (4-61) 

Q.E.D. 

Remark 4.7: Theorem 4.4 shows that robust fault estimator and the related observer-

based FTC system can be designed independently and the system Eq. (4-45) is global 

asymptotically stable. Meanwhile, by using the proposed robust FTC design, one can 

achieve the state and fault estimates and the fault compensation simultaneously. 

4.4.2 Robust sensor fault tolerant control 

Section 4.4.1 describes the robust actuator FTC design strategy, it is important to note 

that it is an integrated design for achieving FTC which involves the estimator, observer 

and controller design. On the other hand, for the sensor FTC problem, there are two 

different methods that can be applied. (1) Sensor fault accommodation: when the system 
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output is involved in the controller design, sensor fault accommodation is needed, 

because the sensor fault further affects the system performance. This case can be 

transformed into an actuator FTC problem in a similar manner to the sensor fault 

estimation concept described in Section 4.3 (Figure 4-2). The stability is then easy to 

obtain based on the approach developed in this Section. Hence there is no requirement 

to give a proof here. 

Robust observer-based 

fault estimator Eq. (4-37)

Plant
+

+

Controller

Measurement

Output

Disturbances

Sensor faults

)(tu ftc

)(tf s

)(ty f

)(td

)(tyf

)(tf s



Sensor fault estimate

 

Figure 4-2: Sensor fault accommodation 

(2) Sensor fault compensation: when the controller design does not involve the system 

output, under this situation, the state estimates of Eq. (4-37) provides the fault-free 

system output response, then the healthy system output response can be obtained by 

subtracting the fault estimate        directly from the faulty measurement       as 

illustrated in Figure 4-3. To obtain an accurate estimate of the “ideal” output signal      

the fault estimate        must be robust to the disturbance, uncertainty. 
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Robust observer-based 

fault estimator Eq. (4-37)
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Figure 4-3: Sensor fault compensation 

However, in this thesis, the FTC scheme is based on the observer feedback control. As a 

result, in the following simulation, the sensor fault compensation is adopted. 

 

4.5 Simulation and Results  

To illustrate the above discussion a tutorial example of the inverted pendulum (Patton 

and Klinkhieo, 2010) with a cart is used here to illustrate a redesigned example of a 

simplified nonlinear actuator fault compensation problem in the presence of disturbance 

(Figure 4-4). The cart is linked by a transmission belt to a drive wheel which is driven 

by a DC motor to rotate the pendulum into vertical position in the vertical plane by 

force control      on the cart. The nonlinear equations of motion including actuator 

fault and external disturbance      on the cart are: 
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                                                                 (4-62) 

Where       ,       are the cart position and the pendulum angle, respectively. The 

system parameters are given in Table 4-1.  

 

 

 

 

 

 

Figure 4-4:  Inverted pendulum system 

Table 4-1: The inverted pendulum parameters 

Constants                 

Values 3.2 0.535 0.062 0.365 6.2 0.009 9.807 

Units Kg Kg Kg*m
2
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A linearization of the left hand side of Eq. (4-62) has been made at the equilibrium 

point:                       . These results in the system triple corresponding to 

single input      and measurements        . The three measurements (cart position, 

pendulum angular position and cart velocity) replicate the measurements of the 

laboratory system. 
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4.5.1 Robust actuator fault estimation and fault tolerant control 

The actuator fault is created by: 

      

 
 
 

 
 

 
 
 
 

           

             

      
       
       
        

            

  

Setting         , then according to Theorem 4.5, and solving Eq. (4-41),  leads to: 
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When doing the simultaneous observer design, by including a learning rate     , 

and constant    ,        ,     ,             . Then according to Theorem 

4.1, inequalities (4-8), (4-24) and (4-25) are solved to give: 
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These matrices are implemented in Eqs. (4-46), together with the non-linear pendulum 

simulation to achieve the robust FE and FTC. 

The simulation results for the system output response estimation are shown below: 

Figure 4-5 shows the external disturbance      considered here is a Gaussian zero-mean 

white noise signal with variance 0.01. 

 

Figure 4-5: The external disturbance 

Figure 4-6 indicates the comparison of the inverted pendulum system output responses 

without and with the FTC action. 
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Figure 4-6: Comparison of the inverted pendulum system output responses with FTC 

(solid line) and without (dashed line) 

Figures 4-6 (a), (b) and (c) show the system outputs of cart position, pendulum position 

and cart velocity responses with and without the FTC action, respectively. They clearly 

show that without the FTC applied, the inverted pendulum system exhibits a faulty 

scenario, with limit cycle oscillation around the vertical equilibrium point (the origin), 

which is affected by the actuator fault. In contrast, when the FTC scheme is applied, the 

limit cycle oscillation is significantly reduced, this is because the on-line updated 

actuator fault estimate compensates the influence caused by the real actuator fault. 

Figure 4-7 and 4-8 show the result of the errors of the inverted pendulum system state 

responses and their estimates with and without the FTC action. 

0 5 10 15 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Time (s)

C
a
rt

 p
o
si

ti
o
n
 (

m
) 

 

 

0 5 10 15 20
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(b) Time (s)

P
e
n
d
u
lu

m
 p

o
si

ti
o
n
 (

ra
d
)

 

 

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

5

(c) Time (s)

C
a
rt

 s
p
e
e
d
 (

m
/s

)

 

 

Cart position

Cart position (FTC)

Pendulum position

Pendulum position (FTC)

Cart speed

Cart speed (FTC)



 

 

76 
 

 

 

Figure 4-7: Errors of the system state responses and their estimates with FTC 

 

Figure 4-8: Errors of the system state responses and their estimates without FTC 
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Figures 4-5 and 4-6 show the influence on the errors of the system state and their 

estimates by excluding or including the FTC compensation.  Without the FTC action 

applied, the errors of the inverted pendulum system state responses are severely affected 

by the actuator fault, which means the estimates and the system states are ‘far away’ 

from each other due to the fault. However, when the FTC is applied, the fault is 

compensated by its estimate. As a result, the errors between the inverted pendulum 

system state responses and their estimates converge to zero, which means that the 

system state estimates track the plant state with good performance. 

 

Figure 4-9: Actuator fault and its estimate 

Figure 4-9 shows a satisfactory result of the estimation of the actuator fault. Though the 

exogenous disturbance exists, the estimator generates a robust actuator fault estimate 

      . 

It is should be emphasised that in the Section 4.5.2 the robust control, robust state and 

fault estimation, and robust fault compensation are implemented simultaneously, via the 

proposed robust observer design (Section 4.2). One can achieve the system states and 

fault estimates on-line to update the FTC law                           . 

Expressed another way, even for the FTC scheme the existence of the exogenous 
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disturbance not only affects the system output stability or performance but also affects 

the accuracy of the estimates of the system states and faults, enhancing the difficulties 

in both controller and observer, even in the FTC design. Therefore, according to the 

above results and analysis, it can be concluded that the proposed robust FTC algorithm 

in Section 4.4.1 can provide satisfactory plant state and fault estimates, with good FTC 

action. Meanwhile, a good robustness to bounded exogenous disturbance is also 

exhibited. 

4.5.2 Robust sensor fault estimation and fault compensation 

In this Section, the simulation results for the robust sensor fault estimation are given. It 

is necessary to state that, the sensor fault and disturbance affect the output 

measurement, but without the actuator fault and system disturbance. In the simulation, 

the time variation of the sensor fault and its weighting matrix are given as: 

      

 
  
 

  
 

 
   
 

    
       

 
               

             

      
       
       
        
         
         

            

  ,    
 
 
 
 ,    

 
 
 
  

which means the fault occurs in the angle measurement of the pendulum, and the 

disturbance affects the first output measurement of the cart position. Following the 

procedure outlined in Section 4.3 the sensor fault is transformed to an equivalent 

actuator fault and the resulting augmented system is then constructed as:  

    
     
     
     

 ,     
   
   
   

 ,     

 

By taking a learning rate     , and constant    ,        ,     ,        

      and solving the Eqs. (4-35) - (4-36) and the inequality (4-34) in Theorem 4.2, 

one can obtain that: 
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Figure 4-10 shows the external disturbance      considered here is a Gaussian zero-

mean white noise with variance 0.01. 
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Figure 4-10: The external disturbance 

Figure 4-11 shows the sensor fault and its estimate. The plot shows that the system 

sensor fault estimate tracks the real system sensor fault almost exactly. The result can be 

further used in a sensor fault compensation problem, based on compensating the sensor 

fault according to the scheme depicted in Figure 4-3, following results are obtained. 
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Figure 4-11: Pendulum system sensor fault (solid line) and its estimate (dashed line) 

A fault occurs at     , and following this, the fault estimate immediately tracks the 

real fault signal, and the good tracking performance continues to the end of the 

simulation. The fault signal is constructed by a combination of ramp, pulse and 

continuous sine wave signals. This complex fault profile is chosen to evaluate the 

applicability of the estimator to various fault types (fast faults, slow drift faults, 

sinusoidal faults). 
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Figure 4-12: Errors of the pendulum system output responses and their estimates 

Figure 4-12 indicates that the errors of the system output responses and their estimates 

go to zero quickly from the beginning of the simulation. The observer resumes 

approximately the same state estimate error performance as the nominal and fault-free 

system. Whilst when switching off the nonlinear term               at     , the 

robustness to the disturbance and uncertainty is lost and the estimation errors oscillate 

around the time axis due to the disturbance     . This shows evidence of good 

estimation robustness provided through the term              . 
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Figure 4-13: Comparisons of pendulum angle responses with and without fault 

compensation. 

Figure 4-13 shows the comparisons of the system output response, comprising the 

pendulum angle     , (initial condition sets at           ) without and with fault 

compensation applied, respectively. It is clear that without the fault compensation, the 

output response of      is dominated by the fault completely, whilst with the action of 

the fault compensation, the output response is very close to the nominal case (fault-free 

and disturbance-free) as shown in Figure 4-14. Some spikes cane be seen corresponding 

to the discontinuities at the fault signal transitions. It is necessary to state that the 

proposed robust observer-based estimator in Section 4.2 is under the assumption that the 

derivative of the fault signal is bounded. The derivative of the transition for the tested 

fault signal is infinity, and hence some transition spikes occur in the fault 

accommodation process. Meanwhile, the estimation performance also depends on the 

estimator’s learning rate   and the assigned observer eigenvalues. 
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Figure 4-14: Pendulum angle response with fault-free and disturbance-free case 

Sections 4.5.1 and 4.5.2 give the actuator FTC and sensor fault compensation on the 

nonlinear inverted pendulum examples, respectively, to show the power of the proposed 

observer-based estimator. By using this observer the actuator fault and sensor fault can 

both be estimated and their estimates can be further used in the FTC design. It also 

gives a special design approach with the sensor fault FE and FTC problems transferred 

to the actuator fault FE and FTC prblem by importing an output filter for the faulty 

output involved in the control law design. On the other hand, when the FTC design is 

based on the observer, the sensor fault compensation can be directly achieved by 

substracting the fault from the faulty output measurement. From the above results and 

analysis, the proposed observer-based estimator can deal with a general fault estimation 

problem, meanwhile, a good robustness to the external disturbance of the proposed 

observer is also illustrated.  
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4.6 Conclusion 

In this Chapter a new approach to on-line robust state and fault estimation is presented 

which is based on a conventional observer involving a nonlinear switching function.  

The nonlinear switching function compromises two parts, one part is based on 

information from the disturbance and the second contains the fault information. The 

nonlinear switching function is not only successful in reducing the influence from 

disturbance to the estimation performance but also keeps the errors between the real 

states and their estimates and the fault and fault estimate from diverging. Two types of 

faults (actuator faults and sensor faults) are tested on the proposed observer and are in 

agreement with the theory.  The computation of the observer and fault estimator gains 

are solved via the LMI MatLab Tool box, which provides the optimal solution.   

Later in this Chapter, a robust FTC approach is proposed by combining the robust 

observer with robust    optimization. For the FTC system the controller and robust 

observer are designed separately. The FTC control law is up-dated on-line by using the 

plant output error and the fault estimation is acquired from the integration of the plant 

and observer. By using this FTC-observer based method, the robust plant state and fault 

estimation, and robust FTC can be achieved simultaneously. 

A tutorial example of a nonlinear inverted pendulum is used as a demonstration study. 

This is an important example as the work has shown clearly the strong robustness of the 

proposed methods in the system states and fault estimation and FTC control design.  

Meanwhile, because of the non-restrictive assumptions, the proposed observer and FTC 

scheme can be widely used in other application systems.  

In Chapter 5, a more general fault model is considered rather than the additive actuator 

fault, and accordingly a robust adaptive FE and AFTC are described.  
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Chapter 5.  

Robust Adaptive Actuator Fault 

Estimation and Fault Tolerant Control 

 

5.1 Introduction 

This Chapter is concerned with the active approach to FTC, involving fault estimation 

and fault compensation. The work of this Chapter only considers actuator faults since if 

the sensor fault can be estimated, this faulty information can be used directly to correct 

the fault from the sensor measurements prior to the implementation of the further FTC 

design, meanwhile the FTC scheme on sensor fault stated in Chapter 4 can also be 

adopted. The motivation is to develop a top-down integrated design scheme for robust 

adaptive FTC based on fault estimation and compensation. There are many previous 

works that can form in some case a background to its research (Jin and Yang, 2009; Fan 

and Song, 2010; Gao and Ding, 2005, 2007; Zhang, Jiang and Shi, 2007, 2010; Ye and 

Yang, 2006; Boskovic and Mehra, 2001; Gayaka and Yao, 2011; Zhang, Parisini and 

Polycarpou, 2004).  Compared with their work, a new robust adaptive observer-based 

actuator fault estimator design strategy is described, which is a development of the work 

of Chapter 4.  

The actuator fault considered in this Chapter is illustrated in Section 5.2, where a more 

general description for actuator faults comprising actuator loss of effectiveness and fault 

stuck situations.   

Section 5.3 describes the concept of robust adaptive FTC based on the estimation 

acquired from the observer system proposed in Section 5.2. Different structural 

disturbances are introduced and appropriately robust FTC design strategies are 

developed.  For matched disturbances, the work is based on (Jin and Yang 2009; Fan 

and Song, 2010). However, in their work, the assumption is made that the system states 

are all measurable, and this assumption may not be valid in real applications.  
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Furthermore, for the unmatched disturbance case, Zhang, Jiang and Shi (2007) give the 

estimation design but have not considered the disturbances when developing their  FTC 

scheme.  

Section 5.4 provides two case studies to illustrate the applicability of the proposed FE 

and FTC design approach. 

 

5.2 Robust adaptive actuator fault estimation 

5.2.1 Preliminaries and problem statement 

Consider a state space representation of a linear continuous time invariant system:  

                                                                    (5-1) 

                                                                   

Where         is the state vector,         is the output vector,         is the 

input control signal vector, and with       ,       ,       . The matrix pair 

      is controllable and       is observerable. Thus, the system Eq. (5-1) can be 

referred to as a “nominal system”. 

The nominal system Eq. (5-1) with external input disturbances is described as: 

                                                                  (5-2) 

                                                                    

where       . As described in Chapter 1, there are several types of faults which may 

occur during system operation. In this chapter the actuator fault is considered to fall into 

one of the following three categories, which including outage, loss of effectiveness and 

stuck faults (Wang and Lum, 2007; Boskovic and Mehra, 2002; Chen and Patton, 1999). 

The definitions of these three category actuator faults are given below:  

(1) Outage fault scenario  

The actuator produces zero force and moment, i.e. it becomes ineffective. 
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(2) Loss of effectiveness fault scenario 

A loss of effectiveness corresponds to a decrease in actuator gain resulting in a 

deflection that is smaller than the commanded position. 

(3) Stuck fault scenario 

For this scenario, the actuator is stuck in a certain position at an unknown time and does 

not respond to subsequent commands. 

As a result, a general actuator fault model is considered in this Chapter. This is adopted 

from the work of Jin and Yang (2009). Let    
     represent the signal from the     

actuator that has failed in the     faulty mode. Then the general actuator fault model as 

described before is denoted as: 

   
       

            
 
                                              (5-3) 

               

where   
     is the unknown time-varying actuator efficiency factor, the index   denotes 

the     faulty mode.   is the number of total faulty modes which contains a maximum 

of    elements, and   
 
and   

 
represents the known lower and upper bounds of   

     , 

respectively.        is the unparameterizable bounded time-varying stuck-actuator fault 

in the     actuator (Tao, Joshi and Ma, 2001). Note the practical case for which   

  
 
   

       
 
 , and   

 
 is an unknown constant defined as:  

  
 
  

    
      

         
      

                                                (5-4) 

The model parameters described above are summarised in Table 5-1 
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Table 5-1: Fault model 

Fault model   
 
   

 
   

 
 

Normal 1 1 0 

Outage 0 0 0 

Loss of effectiveness > 0 < 1 0 

Stuck 0 0 1 

Denote:  

  
         

        
          

                   
 
                     (5-5) 

where               
        

        
 
   

 
 ,            

 
  ,             

       . 

Consider the above parameterization description of the actuator faults for all possible 

faulty modes. A general actuator faults uniform can be characterized as: 

                      

where                            
              and 

                   
        . 

Hence, the dynamics of the system Eq. (5-2) with actuator faults Eq. (5-5) are described 

by: 

                                                              (5-6) 

                                                                    

To ensure that the robust adaptive fault estimation objective can be achieved, the 

following Assumptions in estimator design are assumed to be valid. 
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Assumption 5.1: All pairs           are uniformly completely controllable for any 

actuator failure mode                      under consideration.  

Assumption 5.2:           ,           and                

Assumption 5.3: The norm of the vector      is bounded such that          , for all 

   , and for which   , is a known positive constants namely,     ,     . 

Assumption 5.4:   The stuck-actuator fault is a piece-wise continuous bounded function. 

That is, there exists an unknown positive constant   , such that,           .    

Remark 5.1: As far Assumption 5.1, Assumption 5.2 makes sure that the input 

weighting matrix   and disturbance weighting matrix   are linear independent, and the 

output can be used to provide enough information for the fault estimation and 

disturbance rejection. Assumption 5.3 leads to a determination of the disturbance bound, 

respectively.  

5.2.2 Robust adaptive fault estimator strategy 

According to the plant described in Eq. (5-6), the term        can be considered as an 

actuator fault occurring during the nominal working process, which can be denoted as 

           . As a result Eq.(5-6) can be rewritten as: 

                                                            (5-7) 

                                                                    

Then an observer-based robust adaptive fault estimator model is constructed as follows: 

                                                                     (5-8)                                                        
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                                                                      (5-9) 

where   is the learning rate,     is the     row of the fault estimator gain    to be 

designed.               is a nonlinear switching function used to reduce the influence 

from exogenous disturbance (see Section 4.2 for description of this term).        is the 

estimate of the stuck fault index, i.e. 

                              
    .    is the adaptation rate which can be 

adjusted and may affect the convergence rate of the adaptive estimation.  

The error dynamic system is obtained by subtracting Eq. (5-8) from Eq. (5-7): 

                                                                  

                                                             (5-10) 

            

where                 is the state error,                  and            

      represent the stuck actuator fault error and the error of the index of the actuator 

loss of effectiveness, respectively.  Then the following Theorem is established. 

Theorem 5.1: Under Assumptions 5.1-5.4, if there exist symmetric positive definite 

matrices            and matrices             
    and     

   , such that 

the following conditions hold:  

                   ,                                    (5-11) 

                                                                  (5-12) 

                                                                  (5-13) 

where     
    and     

   are design matrices, then the state estimate      , fault 

estimate       and the estimate of the index of the actuator loss of effectiveness, from 

the robust full-order observer determined by Eq. (5-11) converge to the actual state     , 

the actuator fault      and the real index of the actuator effectiveness, respectively.   

Before proving Theorem 5.1, the Lemma 5.1 must be introduced. 
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Lemma 5.1 (Barbalat Lemma (solutine and Li, 1991)). If         is a uniformly 

continuous function for     and if the limit of the integral:  

               
 

 
                                                  (5-14) 

Exists and is finite, then:  

                                                                 (5-15) 

Proof: 

One Lyapunov function candidate is chosen as: 

                   
                                            (5-16) 

where                    . 

Then the derivative of      with respect to time is: 

                                                      
              

                        

                                                 

                                                 

    
                

              

                      
                                                   (5-17) 

Note that when the actuator is stuck the derivative of the fault        , therefore the 

term    
             in Eq. (5-17) is removed. Furthermore, as      is a constant 

diagonal matrix,               . Using Eq. (5-12) and the expression of       , Eq. (5-

17) can be rewritten as: 
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                                                    (5-18)     

Also note that:  

                      
                                 

                            

                                                                   (5-19)     

According to Eqs. (5-18) and (5-19), Eq. (5-17) follows that: 

                                                

                                                                                   (5-20)     

It can be shown that: 

                        
                                        (5-21)     

Now on substitution               
          

         
 into Eq. (5-21): 

                                                                (5-22) 

where                   ,         is the minimum eigenvalue of    . Integrating 

the above equation from zero to   yields: 

         
 

 
        

 

 
                                          (5-23) 

Because of               , when    , the above integral is always less than or 

equal to      , so there exists a positive constant   for the limit of the integral 

             
 

 
  . Hence, by Lemma 5.1 the limit of     ,             , 

which implies that              . 

Remark 5.2:  For all theses cases of actuator fault scenarios considered in this Chapter 

the proposed observer-based fault estimator is always suitable as long as the 

relationship Eq. (5-12) holds.  
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Remark 5.3: However, because the existence of the time-variant item       in the 

dynamic error system in Eq. (5-10), Eq. (5-22) only guarantees the stability of the 

dynamic error system but no description of the convergence of the error       to zero is 

provided. Based on the Barbalat’s Lemma, the asymptotic estimation of the states can 

be guaranteed. 

Remark 5.4: Since the directions corresponding to the columns of the weighting matrix 

of actuator fault ( ) are assumed to be different from those of the unknown disturbance 

( ), i.e. their columns are linearly independent, the nonlinear switching function 

              cannot affect the actuator fault. As a result, when the dynamic system is 

fault free (       ), the output error       approaches zero asymptotically, for all 

three actuator fault scenarios, the output error       is affected only by the 

corresponding actuator fault      , and is unaffected by whether or not the existence of 

the disturbance. For this reason, the proposed observer-based estimator can also be 

treated as a robust fault detection observer. Hence similar as the discussion in Chapter 4, 

thus, by checking the residual       as following logical fault classification can be 

made: 

          
         

         
                        

                                       
  

where   is a threshold designed for fault detection. 

Remark 5.5: It is important that the actuator effectiveness estimator and stuck fault 

estimator are designed separately. Hence, when faults are detected, the actuator 

effectiveness estimator and stuck fault estimator can distinguish where the 

corresponding fault occurred and which type of fault is present.  Hence, the proposed 

observer-based estimator can also serve as an FDI observer. 

However, sometimes it is not an easy task to obtain the exact value of the disturbance 

upper bound in practice. In other words, the smallest value of the parameter    in 

Assumption 5.3 is difficult to determine a priori. Therefore an adaptive gain         is 

employed to adapt this unknown constant   . Then the form of the proposed observer-

based estimator Eq. (5-8) and Eq. (5-9) can be modified to: 
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                                                                      (5-24) 

                                                                   

              
           

         
 

                                                            
   
 
   
 
 
              

      

                                                                                                  (5-25) 

then Theorem 5.2 can be derived: 

Theorem 5.2: Under Assumption 5.1 - 5.4 but    is an unknown positive constant, if 

Theorem 5.1 holds, then the adaptive law:  

                                                                  (5-26) 

where     is the learning rate,  and the robust full-order observer determined by Eq. 

(5-8) and (5-9), can realise the state estimation      , fault estimation       and the 

estimation of the index of the actuator lost effectiveness converge to the actual state 

    , actuator fault      and the real index of the actuator effectiveness, respectively.   

Proof:  

A new Lyapunov function is chosen as: 

                  
                                                   (5-27) 

where                  , after differentiate       with respect to time, Eq. (5-20) 

can be modified to:  

                                                

                                                                   (5-28)   
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because of                 , and substituting               
           

         
 into Eq. (5-28), 

it follows that: 

                                                

        
           

         
      

  
                                                 (5-29)   

According to Eq. (5-13) and the adaptive law Eq. (5-26), Eq. (5-29) is rewritten as: 

                                                

                                                        
        

                                                          

                                                         
                                        (5-30)   

Thus Eq. (5-30) can be simplified as: 

                                   

Using inequality (5-11), it then follows that: 

                                                                    (5-31)   

From Theorem 5.1, and by importing Lemma 5.1, it is easily to guarantee that      

converges asymptotically to zero.                                                                             Q.E.D. 

Remark 5.6: For sensor FE, an augmented stable system can also be used. This concept 

has been described in Section 4.3.  

 

5.3 Robust Adaptive Actuator Fault Tolerant Control 

In this Section, two different types of uncertainty are considered, which are matched 

disturbance/uncertainty and unmatched disturbance/uncertainty. Any 

disturbance/uncertainty which does not lie within the range space of the input 
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distribution matrix is described as unmatched modelling disturbance/uncertainty, and 

vice versa. The relationship between the weighting matrix   of the matched uncertainty 

and the input weighting matrix   can be expressed as           , where      

represents the range of the   (Edwards and Spurgeon, 1998). 

For the case of matched uncertainty, there is more difficulty in actuator FE process. 

Since it affects the input channel directly, this results in the poor performance not only 

in dealing with FE but also for the FTC process. Consequently, to achieve fault 

tolerance with robustness to matched disturbances/uncertainty, some researchers 

consider the matched uncertainty with actuator faults together when doing robust FTC 

designs (Edwards and Spurgeon, 1998; Cunha et al., 2003; Jin and Yang, 2009). Whilst 

for the unmatched uncertainty case, the main challenge lies in the robust FTC process. It 

is also easy to decouple the disturbances/uncertainty from the input signal and many 

mature FE methods can be applied (Chen and Patton, 1998).  In this Section, both these 

two types of uncertainty are considered and regarding the analysis are given. 

5.3.1  Robust adaptive actuator fault tolerant control against matched 

uncertainty 

To consider the matched uncertainty, a new Assumption must to be made as follows: 

Assumption 5.5: For the system Eq. (5-6), there exists a matrix function        

such that     . 

And then the system description Eq. (5-6) is rewritten as: 

                                                               (5-32) 

                                                                    

And the corresponding observer is designed as: 

                                                                 (5-33) 

                                                                    

Then the error dynamics are obtained as: 
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                                                             (5-34) 

It is noted that the observer input signal is the same as the plant dynamics as the object 

of the observer Eq. (5-33) here is only to acquire the state estimate but not the fault 

estimate, which is further using in the direct reconfigurable adaptive control law. To 

achieve asymptotic convergence of the error dynamics of Eq. (5-34), the design of the 

nonlinear term         
          

         
  is kept the same as the one in Eq. (5-24). 

Meanwhile Theorem 5.2 is applied with the corresponding Assumptions 5.1-5.4 (it 

depends on different designs for              , if the adaptive algorithm is adopted, then 

the Assumption 5.3 reduces the strictness on the known upper bound of the disturbance). 

The proof is similar to that of Theorem 5.2, and is omitted here. Now the observer-

based FTC adaptive control scheme is given below as: 

                                                               (5-35) 

where     
    is the feedback gain matrix, 

                                      
      is the adaptive FTC law will 

define later, and         is the inverse of the estimate of the actuator effectiveness which 

is modified from Eq. (5-8), and  given as: 

            
   
 
   
 
 
              

                                (5-36) 

where      is the     row of   ,    
  is the     column of the FTC control law,        

and    are as same as defined in Theorem 5.1, and         is given as: 

         
              

        
                                                    (5-37) 

Furthermore,     is updated by the following law:  

                                                                   (5-38) 

where   is design positive constant and        is finite. From Eq. (5-38) it can be clearly 

seen that         , as long as the initial value          .        here is adaptive law 

to cover the positive unknown constant                 , based on 
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Assumptions 5.3 and 5.4, but with    unknown. By denoting                  , it is 

clear that                 .  

Thus, returning to the FTC law Eq. (5-35) and referring to Eqs. (5-36) – (5-38) for 

according to the design of the parameter in Eq. (5-32), the closed-loop FTC system 

model is rewritten as: 

                                                                 (5-39) 

                                                                                                                       (5-40) 

Eq. (5-39) can be further re-arranged as follows: 

                                                          

                                                                            

                        

                                                              

             

                                                                   

                                                               (5-41) 

Then the asymptotic stability of the closed-loop system Eq. (5-41) and the error 

dynamics (5-34) are guaranteed by the following Theorem: 

Theorem 5.3: under the Assumptions 5.1-5.5, for the whole systems Eq. (5-41) and (5-

34), if there exists a symmetric positive definite matrices          , and matrix 

    
    , such that the following conditions: 

       
                                          (5-42) 

                                                                (5-43) 



 

 

100 
 

 

and Theorem 5.2 hold, then the observer-based FTC of  Eq. (5-35) with its parameters 

designed according to Eqs. (5-36) - (5-38) can realise the whole system of Eq.(5-41) and 

(5-34). This system is asymptotically stable, where the observer design can refer to 

Theorem 5.1 and Theorem 5.2. 

Proof: 

First, consider a Lyapunov function for the nominal system of Eq. (5-1) described as 

follows: 

                                                                   (5-44) 

The derivative of       with respect to time is obtained as: 

                                   

                                                              (5-45) 

where          
            and          .   is an unknown positive 

scalar. If    , then         . Therefore the nominal system Eq. (5-1) is 

asymptotically stable. 

Secondly, for the whole system Eqs. (5-41) and (5-34), a new candidate Lyapnuov 

function is set up as: 

                                              
               (5-46) 

where       is different from the Lyapunov function chosen for Theorem 5.1 and 5.2. 

Here       is chosen as                 . 

According to the Theorem 5.1, the derivative of       can be described by Eq. (5-20), 

and based on Eq. (5-22) the following result can be obtained: 

                     
                                             (5-47) 

Denote          , where   is a positive scalar. By bringing Eqs. (5-47) and (5-45) 

into the finite derivative of Eq. (5-46) with respect to time, the following result is 

obtained: 
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                                                                               (5-48) 

In a similar manner to Theorem 5.1, the terms                        and 

                    are cancelled, and based on Eqs. (5-38) and (5-43), Eq. (5-48) 

becomes: 

                                                           

                                          

                                            
 
     

                                                               

                                                                                                        (5-49) 

Finally, Eq. (5-49) can be rewritten in compact form as: 

                                                                (5-50) 

Denote         , then        can be rewritten as: 
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                                                              (5-51)                                                 

By choosing   
  

  
, it is easy to show that         , for any       . Thus the 

global observer-based adaptive fault-tolerant compensation control problem with 

disturbance rejection for the whole systems Eqs. (5-41) and (5-34) is solvable, and the 

state      and error      converges asymptotically to zero.                                     Q.E.D. 

The proposed robust observer-based adaptive FTC method can deal with systems with 

matched uncertainty/disturbance. Compared with the work in (Jin and Yang, 2009; Ye 

and Yang, 2006; Zhang, Jiang and Shi, 2007), the contribution lies in the following 

aspects. Jin and Yang (2009) consider that all the states of the system are available at 

every instant. However this is not always possible in practice. In this Section, an 

observer-based FTC design has solved this problem. Zhang, Jiang and Shi (2007) 

designed the reconfigurable control scheme based on the so-called Fast Fault Estimation 

method, but without considering any disturbance or uncertainty when applying the FTC. 

Ye and Yang (2006) proposed the Indirect Adaptive Method for FTC. However, they 

did not consider the uncertainty/disturbances. Meanwhile, the method proposed in this 

Section can solve the more general actuator fault problem corresponding to a time-

varying fault effect factor     , which cannot be solved by the Indirect Adaptive 

Method.  

5.3.2  Robust adaptive FTC for unmatched uncertainty 

In practice, not all the uncertainty is matched, which means that the Assumption 5.5 is 

not always satisfied. In this Section, the unmatched uncertainty/disturbance is 

considered when designing the FTC scheme. As described in Section 5.3.1, for 

unmatched uncertainty the challenge lies in choice of method to solve the robustness of 

uncertainty/disturbance problem of the fault accommodation. The corresponding fault 

estimation problem is dealt with well.  
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Consider the faulty system Eq. (5-6) again, but this time Assumption 5.5 is not satisfied. 

Then in keeping with the robust fault estimation method described in Section 5.2, the 

actuator effectiveness factor       can be estimated with property of robustness to the 

disturbance     . On the basis of that, the adaptive FTC scheme is given as for Eq. (5-

35). However, for the design of the feedback gain    in Eq. (5-35) the reader should 

refer to Chapter 4 Eq. (4-41), which is based on    optimization to satisfy the system 

performance       
    . On the other hand, the second term in the adaptive control 

law Eq. (5-37) is designed as: 

         
              

        
                                            (5-52) 

where        is the estimate of the positive parameter    with Assumption 5.4        

          . Meanwhile        is updated by the same law as        in Eq. (5-37). 

On the basis of the above description, the whole observer-based FTC dynamics are 

modified from Eq. (5-41): 

                                                 

                                                                     (5-53) 

Then the asymptotic stability of the closed-loop system Eq. (5-53) and the error 

dynamics (5-24) are guaranteed. 

Theorem 5.4: Under the Assumptions 5.1-5.4, the whole closed - loop system of Eqs. 

(5-53) and (5-10) is asymptotic stable and fault tolerant and, furthermore       
   , 

if Theorems 4.4, 5.1 and 5.3 hold. 

As the proof of Theorem 5.4 constitutes the combination of the Theorems 4.3, 4.5 and 

Theorem 5.3, it is thus omitted here.  

5.3.3 Robust adaptive fault tolerant control for mixed-uncertainty 

Section 5.3.1 and Section 5.3.2 discuss the robust adaptive FTC schemes for matched 

uncertainty and unmatched uncertainty respectively. However, in practice these two 



 

 

104 
 

 

different forms of uncertainties can exist simultaneously. In this Section, the main 

object is to discuss the robust FTC for the two cases, (1) the single disturbance works 

not only in the input channel but outside the input channel, (2) the multiple disturbance 

works on the structure of the overall system dynamics. 

For the first situation, the state-space model of the faulty system with mixed-uncertainty 

is described as: 

                                                                    (5-54) 

                                                                    

This implies that the weighting matrix   in Eq. (5-7) can be further divided into 

       , in which    represents the distribution matrix of the matched uncertainty 

which satisfies the Assumption 5.5 with       and    represents the weighting or 

distribution matrix of one of the unmatched uncertainties. Under this situation, the 

estimation of the actuator effectiveness factor       can be achieved according to the 

design by Theorem 5.1 and Theorem 5.2. For the case of the estimate of the stuck fault 

    , Eq. (5-54) becomes: 

                                              
       

                                  (5-55) 

where                   , thus the new defined actuator fault         and 

disturbance      distributed by matrix    can be estimated separately (similar as the 

fault estimation process), and the original actuator fault estimate       can be achieved 

by using                     , where       is the estimate of the disturbance. The 

method for disturbance estimation is as the same as the fault estimation Eq. (4-41). 
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Figure 5-2: Structure of the FE and FTC with separable single disturbance  

Whilst for FTC scheme, the method proposed in Section 5.3.2 can be applied to achieve 

the FTC, and the structure of the FE and FTC is shown in Figure 5-2. 

For the second situation, the system dynamics are written as: 

                                                                    (5-56) 

                                                                    

where       is the matched disturbance/uncertainty and       is the unmatched 

disturbance/uncertainty. Under this situation, the proposed robust adaptive fault 

estimation method is no longer suitable for the stuck fault      estimation. This can be 

considered an interesting topic for future research. However, it must be stated that the 

fault tolerance is still achieved via combine the method proposed in Sections 5.3.1 and 

5.3.2.  
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5.4 Simulation and results 

In this Section, two tutorial examples of a linear rocket fairing structural-acoustic model 

and a non-linear flexible joint robot link problem are used to illustrate the FTC design 

strategy of this Chapter.  

5.4.1 Case study for Rocket fairing structural-acoustic model 

This linear model is obtained from (Tang, et al., 2006) with external disturbance input 

added, which is used to illustrated the method in Section 5.3.1. The whole model 

comprises two sub-systems, which are structural modelling and rigid-wall acoustic 

cavity modelling. The structural model for the fairing is formulated as: 

                                                             (5-57) 

             

where                            is the structural state vector with          and 

          being structural displacement (cm) and velocity vectors (cm/s) for    modes, 

respectively.         is a vector of   control inputs at the structural nodes, i.e. the 

structural actuator outputs whose components may fail during system operation, 

       
   is a vector of structural displacements,         is a disturbance vector, 

    
       ,     

     ,     
      , and     

     are structure-related 

matrices associated with each corresponding mode. 

The model for the air cavity enclosed by the fairing structure can be expressed as: 

                                                            (5-58) 

             

where          ,        
  is the vector of pressures within the cavity,    

        ,     
       , and     

      are acoustic-related matrices for    

acoustic modes. And the overall structural-acoustic fairing model combines the 

structural and acoustic models as: 
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                                                             (5-59) 

           

where    
     
    

 ,    
  
 
 ,    

  
 
 ,         and                     

  ,          , is the state vector of the fully coupled fairing system, and     

         is the matrix associated with vibroacoustical-related pressure acting at the 

fairing structure.  For a single mode fairing model the parameter are given as: 

 

   

              
                        
                       

         

  

   

         
        
   
   

 ,    
   
  
  

  ,       

       
       

 
 

  

   
    
    

  

In the simulation the following faulty case is considered, the first actuator has totally 

failed. This is a special stuck actuator situation, and the second actuator loss of 

effectiveness has become          . The external disturbance is a Gaussian zero-

mean white noise with variance 0.01 as shown in Figure 5-3. 
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Figure 5-3: The external disturbance 

According to Theorem 5.4, the following results can be obtained: 

   

             
            
              
              

  

   

                           
                         
                          
                          

  

    
                           
                           
                           

  

   

                          
                          
                          
                         

  

    
            
            
            

 ,     
             
             
             

  

Figure 5-4 illustrates the comparison of the real actuator effectiveness factor and its 

estimate. 
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Figure 5-4: Comparisons of the real actuator effectiveness factor and its estimate 

Figure 5-4 shows the actuator effectiveness factor estimation computed using Eq. (5-36) 

with setting     ,  and the initial value          . The actuator effectiveness factor 

estimate signal is dropped from its initial value and goes out of the limited projected 

range      , then it returns and oscillates around the real actuator effectiveness factor 

         . Finally, the estimate remains almost exactly at the level of           

with a small offset. The phenomenon can be explained as the factor estimate signal is 

based on the error of the system output and the observer output. At the beginning of the 

response, the error is very large, which causes the effectiveness factor estimate signal to 

exceed the limit. As the error is reduced and converges to zero with respect to as time, 

the changing rate of the factor estimate decreases as well, until it reaches the true 

effectiveness factor value. 

Figure 5-5 shows the comparison of the output error with and without the nonlinear 

term        . 
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Figure 5-5: Comparison of the output error without and with nonlinear term 

              

Figure 5-5 shows that the errors of the system output responses and their estimates go to 

zero quickly when switching on the nonlinear term               at 8s. Before that, the 

errors are heavily affected by the disturbance      which means the proposed observer 

has strong robustness against the disturbance.   

0 2 4 6 8 10 12 14 16 18 20

-0.3

-0.2

-0.1

0

0.1

0.2

Time (s)

E
rr

o
r 

o
f 

st
ru

c
tu

ra
l 

d
is

p
la

c
e
m

e
n
t 

(c
m

)
E

rr
o
r 

o
f 

st
ru

c
tu

ra
l 

v
e
lo

c
it

y
 (

c
m

/s
)

 

 

Error of structural displacement

Error of structural velocity



 

 

111 
 

 

 

Figure 5-6: Comparisons of the system output responses with FTC and without 

Figure 5-6 (a) and (c) show the comparisons of the system output response curves with 

and without application of the proposed FTC strategy applied and without for the above 

mentioned faulty case. It is clear to see that in the presence of faulty actuators and 

external matched disturbances with the initial values        cm and            

cm/s for the structural displacement and structural velocity, respectively. The system 

with FTC applied is stabilized more quickly than the situation without the FTC action 

applied.  

Figures 5-6 (b) and (d) show after system is stabilized, the matched disturbance affects 

the system output responses heavily when the FTC action is not applied. Whilst with the 

application of the FTC the system is lightly affected by the matched disturbance.   

Figure 5-7 shows the response of the estimated positive constant       .  As the design 

for         Eq. (5-38) with the    , it is easy to see from the initial value of          , 

the response curve increases quickly in the beginning, because of the large state errors 

in the start. However, it increases slowly along the variation of the state errors as shown 

in Figure 5-5, and it increases all the time, and is always positive.  
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Figure 5-7: Estimate of the unknown bound value    

5.4.2 Case study for nonlinear single flexible joint robot link 

 In this Section, a nonlinear single flexible joint robot link problem is used to illustrate 

the observer-based FTC design described in Section 5.3.2. This case study corresponds 

to a single input model. Hence, no consideration is given to the stuck actuator fault case 

and only actuator loss of effectiveness is considered. The model is obtained from 

(Spong, 1987; Raghavan, 1992). A one-link manipulator with revolute joints actuated 

by a DC motor is shown in Figure 5-8. 
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Figure 5-8: Robotic systems with flexible joint. 

The corresponding state-space model is: 

             

       
 

  
              

 

  
      

  

  
     

             

        
 

  
              

   

  
            

where      ,        are the angular rotation and angular velocity of the motor 

respectively, and      ,       are the angular position and angular velocity of the link, 

respectively.    is the inertia of the motor;    is the inertia of the link;   is viscous 

friction coefficient;   is the pointer mass;   is the torsional spring constant;    is the 

amplifier gain;   is the link length; and   is the gravity constant.  

The corresponding parameters are shown in Table 5-2 
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Table 5-2: Parameters and values of the single link robotic systems 

Constants                    

Values 0.037 0.093 0.046 0.21 1.8 0.8 0.15 9.831 

Units Kg*m
2
 Kg*m

2
 Nm/V Kg Nm/rad Nm/V M m/ s

2
 

 

The system dynamics are clearly nonlinear with the non-linear terms in the model being 

due to joint flexibility. The systems dynamic model can be written as: 

                                                            (5-60) 

           

where                                

   

    
               
    

           

 ,   

 
    
 
 

 ,         

 
 
 

                

  

   
    
    
    

 , 

The nonlinearity        in Eq. (5-60) can be further divided in to a multiplication of a 

weighting matrix and a disturbance signal vector, as: 

                                                              (5-61)  

In practice, many forms of uncertainty/disturbance/nonlinearities can be described in the 

format of Eq. (5-61) (Patton and Chen, 1992, 1993; Patton, Chen and Zhang, 1992; 

Chen, 1995). On the other hand, for this robotic problem, the system nonlinearity takes 

the form of a kind of unmatched uncertainty/disturbance, so that the approaches 

proposed in Section 5.3.2 can be applied for the purpose of achieving robust fault 

estimation and FTC. 
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In the simulation, the faulty actuator has loss of effectiveness at          the FTC 

gain is taken from the work of Jiang, Staroswiecki and Cocquempot (2006). The 

following results are thus obtained: 

                               

   

                    
                     
                  
                        

  

   

                     
                    
                           

               

  

                            

                            

 

Figure 5-9: Comparison of the real actuator effectiveness factor and its estimate 

Figure 5-9 shows the comparison of the real actuator effectiveness factor and its 

estimate. The actuator effectiveness factor estimate signal tracks the real actuator 
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effectiveness factor after 3 seconds, though the nonlinearity causes some oscillations at 

the beginning. 

 

Figure 5-10: System output errors 

Figure 5-10 illustrates the errors of the system output      , based on the proposed 

integrated robust observer and fault estimator. It can be clearly seen that the errors 

converge to zero after a few of seconds, which means that the proposed observer is able 

to track the real system dynamics. There is, however, some oscillation at the beginning 

of the simulation. 
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Figure 5-11: Response curves of the system output with FTC applied and without 

The system output performance is clearly improved after the FTC applied.  Under the 

described faulty case, the fault accommodation successfully improves the system 

performance in terms of the settling response time compared with the faulty situation. It 

suggests that the integration of the proposed observer and the controller designs can 

achieve the FTC objective. Meanwhile, it also suggests that some types of 

nonlinearity/uncertainty problems can be transferred to a system representation in which 

the external disturbances and unknown inputs can be handled. 

Based on the results and analysis of these two cases studies, one can conclude that 

under certain assumptions, the proposed design strategy in this Chapter for robust fault 

estimation and further extension to robust FTC is applicable for real FTC system 

problems. Meanwhile, the approach can be further extended to systems with bounded 

non-linearties or combined with other control methods. 
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5.5 Conclusion 

The main content of this Chapter is the provision of a strategy of robust adaptive 

actuator FE and compensation on the basis of the robust observer-based estimator 

proposed in Chapter 4. However compared with Chapter 4, this Chapter gives a more 

general fault description, which including three types of actuator faults.  

In Section 5.2, a robust adaptive FE strategy is described and the validation of its 

applicability for cases of different actuator faults is given. By adding an adaptive 

updating law the requirement for the upper bound on the disturbances/uncertainties is 

recovered, and hence the applicability of the FE approach is enhanced. This is a 

significant contribution to this subject. 

Section 5.3 discusses the robust adaptive FTC design based on the estimation 

information acquired in Section 5.2. More specifically, different forms of robust 

adaptive FTC strategies dealing with both matched and unmatched disturbances are 

proposed. A brief discussion of the mixed-structure (matched/unmatched) disturbance 

situation is given. Concerning the matched disturbance case, the on-line FE and 

combined FTC is capable of providing a high degree of fault-tolerance for actuator 

faults for which both the fault signal       and its derivative signal        are bounded. 

With this, an excellent recovery of the system closed-loop performance is demonstrated. 

It should also be emphasised that in all of the work of this Chapter (and for the whole 

thesis) the state estimates rather than the system states are used for the FTC. The recent 

FTC work (Jin and Yang, 2009) on fault compensation is limited to the use of full state 

rather than state estimate information.  

Section 5.4 gives two examples to show the applicability of the proposed methods. The 

linear rocket fairing structural-acoustic example and the nonlinear single flexible joint 

manipulator example are used to support the proposal for combining FE and FTC under 

the matched disturbance and unmatched disturbance, respectively. The results show the 

power and potential of this integrated design, which successfully connects the observer, 

estimator and controller together to achieve the robust FTC goals. 
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When considering sensor faults, the approach can make use of the augmented system 

model as described in Section 4.3. In this Chapter, both additive and multiplicative 

faults are considered. All the above methods are based on linear time invariant systems, 

although there is a nonlinear application. However, real-life engineering systems are 

always nonlinear or are linear system with some nonlinear terms. Hence the application 

of the purposed FE approach to FTC for nonlinear systems is discussed in Chapter 6.  
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Chapter 6.  

Fault Estimation and Compensation for 

LPV system 

 

6.1 Introduction 

There has been significant interest in the control of time-varying systems over many 

years (Leith and Leithead, 2000; Balas, 2002). In recent years, the development of fault 

estimation and compensation for Linear Parameter Varying (LPV) systems via 

polytopic modelling methodology  have gained a great deal of interest, especially for 

applications related to robots, vehicle systems, and aerospace control (Wu, 2001; 

Ganguli, Marcos and Balas, 2002; Balas, 2002; Weng, Patton and Cui, 2008; Balas, 

2012). The LPV description preserves the linear time invariant (LTI) structure, the only 

difference occurs when computing the coefficients.  The parameter vector is a 

continuously time-dependent known function facilitating the evaluation of the 

transformed nonlinear system at every sample instant. 

For control applications the LPV modelling approach facilitates the direct application of 

classical control structures directly on the time-varying and non-linear system with 

robust results. FDI schemes based on the LPV system formulation have also been 

developed (Bokor and Balas, 2004; Bokor and Kulcsar, 2004; Henry and Zolghadri, 

2005; Rodrigues, Theilliol and Sauter, 2005; Casavola, et al., 2007, 2008; Weng, Patton 

and Cui, 2008; Zhang, Jiang and Chen, 2009;  Armeni, Casavola and Mosca, 2009; 

Kulscar, Bokor and Shinar, 2010; Chen and Patton, 2011; Hamdi, et al., 2011; Astorga-

Zaragoza, et al., 2011 ; Alwi, Edwards and Marcos, 2012).  

For FTC, Chen et al (1999) tackled an FTC flight control design study using a Linear 

Fractional Transformation (LFT) approach via the LMI framework. AFTC controllers 

are either based on on-line FE (fault compensation) or FDI/FDD and control system 

reconfiguration. The FE approaches require the generation of estimates of possible 
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faults to allow the FTC controller to tolerate the faults. Generally speaking the FDI 

problem is not relevant within this framework unless the more general FDD problem is 

considered as this includes FE. As discussed in Chapters 4 and 5, the AFTC Strategy 

that includes FE is a powerful approach to on-line controller reconfiguration. Many 

researchers have extended the integrated design of the FE and FTC successfully within 

an LPV field (Ganguli, Marcos, and Balas, 2002; Rodrigues, Theilliol and Sauter, 2005, 

2007; Patton, Chen and Klinkhieo, 2012). However, in these studies, no one proved the 

control stability for the integrated design of the FE and FTC and in every case the 

actuator loss of effectiveness is considered without additive faults. In this chapter, the 

contribution concerns the additive actuator faults, with the provision of control stability 

for the integrated design. Also, there are still many other passive LPV approaches to 

achieve fault tolerance (Weng, Patton and Cui, 2007; Song and Yang, 2011; Alwi, 

Edwards and Marcos, 2012), by combining the AFTC literature, which comprises the 

background to the work of this Chapter.     

This Chapter proposes a new design approach for AFTC including a polytopic LPV 

fault estimator for systems which can be characterized via a set of Linear Matrix 

Inequalities (LMIs) based on efficient interior-point algorithms (Apkarian, Gahinet and 

Becker, 1995). From another point, the work in this Chapter is an extension to the work 

of Chapter 4. A robust polytopic LPV estimator is synthesized for providing actuator 

fault estimation which is used in an AFTC scheme to schedule the state feedback gain. 

This gain is also calculated using LMIs in the fault-free case in order to maintain the 

system performance over a wide operating range within a proposed polytopic model. 

The applicability of the proposed method is demonstrated through a nonlinear two-link 

manipulator system with a fault in the torque input at one manipulator joint. This is a 

nonlinear system that can be represented well by a polytopic model and this is also 

proposed in Section 6.5. 

 

6.2 General overview of the LPV approach 

An LPV system is a mathematical realization/description of the linear parameter-

varying nature of a dynamical system. LPV systems depend on a set of time-varying 

scheduling parameters over time. These systems are represented in state space 
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(continuous or discrete) form. The LPV model has the structure of a time-varying linear 

system with the parameter-dependent matrix quadruple                      .  

where:          ,          ,             and           as follows: 

                        

                                                            (6-1) 

where:   is a vector of smoothly changing system parameters. In this Chapter the 

distribution matrix of the input signal working on each output channel is set to be zero, 

which means that       . 

An LPV system can also reduced to a Linear Time-Varying (LTV) system with a given 

parameter trajectory and it can be reformulated as a Linear Time-Invariant (LTI) system 

with a given a constant trajectory [i.e.   is a constant]. From a control point of view, 

the LPV control design is closely related to the gain-scheduling problem (Apkarian at 

el., 1995; Leith and Leithead, 2000). The LPV approach is motivated by the problem of 

obtaining and designing multiple models and controllers and the lack of performance 

and stability proofs for classical gain-scheduling (Balas, 2002; Ganguli at el., 2002). 

The advantage of the LPV approach to nonlinear systems, compared with the multiple 

model switching and tuning (MMST) and interactive multiple-model (IMM) methods is 

that the LPV controllers do not need to be designed for all linearization points  (Leith 

and Leithead, 2000; Wu, 2001; Klinkhieo, 2009).  

 

6.3 Robust Actuator Fault Estimation for LPV System 

6.3.1 Robust actuator fault estimation for LPV system  

Consider the LPV system with actuator and uncertainty described by the state-space 

equation as follows: 

                                                           (6-2) 

                                                                                    (6-3) 
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where        ,         ,          are the states, control inputs and outputs, 

respectively. The             encapsulate the modelling uncertainty in the system. 

       
  represents the actuator fault vector.      is a time-varying parameter 

vector, and     ,     ,     ,           are the appropriate matrices with appropriate 

dimensions. The pairs (    ,      ) are controllable and pairs (     ,      ) are 

observable, with                  . 

Some Assumptions apply to the system of Eqs. (6-2) - (6-3) (Apkarian, Gahinet and 

Becker, 1995) for the actuator FE problem as follows: 

Assumption 6.1: The vector      varies in a polytope   with vertices: 

                    i.e.:  

                             

 

   

          

 

   

  

Assumption 6.2: The state-space matrices depend affinely on the vector     , and the 

system of  Eqs. (6-2) - (6-3) is assumed to be polytopic with   vertices, i.e.: 

                              
                               

       
  

Assumption 6.3:            are parameter independent, i.e.        ,        , 

      . 

Assumption 6.4:  It is assumed that the parameter varying matrix        can be 

factorized into: 

             

where         is a fixed constant matrix, and           is a parameter-dependent 

matrix which is assumed to be inevitable and bounded by          . Furthermore, 

its derivative with respect to time is bounded by  
       

  
    .  

Assumption 6.5:           ,           and                 . 
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Assumption 6.6: The system of Eqs. (6-2) - (6-3) is stable under the affect of the 

actuator fault       and unknown uncertainty         . Meanwhile          ,        

and its time derivative        are bounded by               ,            , 

           , where   ,    ,   and are known positive constants. 

By Assumptions 6.3 and 6.4, the system dynamics of Eq. (6-2) are written as: 

                                            
         

                   (6-4) 

Now it is useful to simplify the notation by defining                  , (note, here 

for simple notation, the           is replaced by        ) and on the basis of 

Assumptions 6.2 and 6.6 the newly defined fault vector         is also bounded and it is 

assumed that the bound is   ,                  . Furthermore, the time derivate 

         is also assumed to be bounded by                   , and then the 

objective is changed to a new FE problem. In order to achieve that, the following 

observer-based fault estimator is constructed: 

                                       

                                                         (6-5) 

                                                                          (6-6) 

where         
  is the observer state vector,         

  is the observer output vector, 

          
  is the estimate of the newly defined fault        .            is the 

designed gain matrix, and         
     

       
  . 

Denoting: 

                 ,                    , 

                         . 

Then the error dynamics are obtained by subtracting the observer dynamics of Eq. (6-5)-

(6-6) from the system dynamic description Eq. (6-1)-(6-2), given by: 
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                                                            (6-7) 

                                                                                                          (6-8) 

The nonlinear uncertainty rejection term            and the FE algorithm are given by: 

               
  
          

         
 

        

          
 
    

       
          

    
 

 
                           

 

 
                            (6-9) 

                                                       (6-10) 

where      
   ,     

    are fixed constant gain matrices defined later and 

       is a S.P.D. matrix that represents the learning rate. Then the following 

Theorem 6.1 is obtained: 

Theorem 6.1: Under the Assumptions 6.1-6.6, if there exist a S.P.D. matrix       , 

and matrices          ,     
         

    such that: 

                                                (6-11) 

  
                                                         (6-12) 

                                                         (6-13) 

hold, where           . Then the state observer-based on Eqs. (6-7) - (6-9) and the 

FE algorithm Eq. (6-10) can realize the asymptotic convergence to zero of      and 

        . This means that the estimate of the system state vector        and the estimate 

of the newly defined fault vector          from the proposed robust full-order observer 

converge to the actual state       and the actuator fault        .   

Proof: 

Consider the following candidate Lyapunov function: 

                      
                                       (6-14) 



 

 

126 
 

 

The derivative of   along a trajectory of the error dynamic system of Eqs. (4-6) and (4-

7) is given by: 

                                                             
                                                                                                

                                                                          

                                                                        

                                                                 
                

       
                                                                   (6-15) 

By Lemma 3.1, it is straightforward to show that: 

               
                

                    
 

 
     

                    
 
                         

                   
 

 
     

                         
 
      

                      (6-16) 

where   is a positive constant and      is a symmetric positive vector, both to be 

chosen by the designer. By Eq. (6-16) and substituting Eq. (6-10) into Eq. (6-15) then 

Eq. (6-15) becomes: 

                                                                        

                                                                         

                                                           
 

 
     

                    

                                      
 

 
  
                        

 
      

          

       
                                                                       (6-17)  

where         denotes the largest eigenvalue of the matrix defined in    .  
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Now denoting                                 ,  and by using Eq. (6-12) 

in Theorem 6.1, Eq. (6-17) is changed to: 

                                                                                   

                                       
 

 
     

                   
 

 
     

               

                                                
 
      

                                             (6-18) 

According to Assumptions 6.4 and 6.6, and by defining a vector   as      

 
    

        
 , Eq. (6-17) can be rewritten as: 

                                                                   

     
       

          
 

 
     

                           (6-19) 

where    
    

  
 

 
   

 .  Meanwhile, by noting that: 

                                                                  

which further indicates that: 

               
 

 
     

                                        
 
 

                                                                                
         (6-20) 

By using              , then the Eq. (6-19) is transformed to: 

                                 
                             

    
       

                                     
   (6-21) 

Substituting               given by Eq. (6-8) into Eq. (6-21), the following result is 

obtained: 

                                                            (6-22) 
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That is because      and  
 

 
     , hence      which means that      

 
    

        
  converges asymptotically to zero. In other words, the state and the fault 

estimates track the trajectory of the plant states and the actuator faults, respectively.                

Q.E.D.  

Remark 6.1: However, difficulties result from attempts to solve the three conditions 

described in Theorem 6.1. The latter two conditions are not LMI conditions but they can 

be transferred to an optimization problem as shown by Eqs. (4-22) and (4-23) of 

Chapter 4. On the other hand the first condition must be solved even though the varying 

parameter is measureable during the whole system dynamic process. For this a heavy 

on-line computation is needed which asks for powerful support from hardware, i.e. 

memory capacity and central processing unit. For solving this problem, an alternative 

approach for solving a convex set has been given by Apkarian, Gahinet and Becker 

(1995) and from their work the following corollary can be obtained. 

Corollary 6.1: If there exist a S.P.D. matrix       , matrices     
   ,     

     

    
    such that: 

                                                         (6-23) 

and condition Eq. (6-12) and (6-13) hold, where       , then the observer-based Eq. 

(6-7)-(6-9) and FE algorithm Eq. (6-10) can ensure that      and       converge to zero 

asymptotically. This means that the estimate of the system state vector        and the 

estimate of the newly defined fault vector            as [defined in Eq. (6-3)] from the 

proposed robust full-order observer converges to the actual state       and actuator fault 

         , respectively. 

Proof: The reader can refer to the proof of Theorem 6.1 and the proof is thus omitted 

here. 

6.3.2 The Relevance of Exponential Stability 

The observer or observer-based FDI/ FE block plays a very important role in the 

integrated FTC design process, and its performance such as a slow decay rate may result 
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in imprecise estimates, which further affect the whole design performance, i.e. the 

stability of the closed-loop system. Hence, a high-performance observer is preferable. 

One way to ensure a rapid convergence of the estimation error is to change the 

asymptotic stability of the error dynamic system to exponential convergence ( -stability 

of the observer). 

To illustrate the concept of exponential convergence, consider the Lyapunov function 

described as below (Hamdi, et al., 2011) 

                                                              (6-24) 

The exponential convergence of the estimation error is guaranteed if: 

                                                        (6-25) 

where   is the decay rate. Indeed the solution of Eq. (6-25) is given as follows: 

                                                   (6-26) 

Due to              
                                

 , the norm of the 

estimation error is bounded as follows: 

        
       

       
                                    (6-27) 

Therefore, for the system of Eqs. (6-7) and (6-8), the following Theorem is obtained: 

Theorem 6.2: The exponential convergence ( -stability) of the error dynamic system of 

Eqs. (6-7) and (6-8) is achieved if there exists a S.P.D. matrix     , matrices 

             and a positive scalar   such that:  

                                                  (6-28) 

  
        

  
                                            (6-29) 

Proof: 

Consider the Lyapunov function described in Eq. (6-14) and by Eq. (6-25), if the  -

stability is achieved, then:  
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                                                      (6-30) 

Substituting Eq. (6-22) into Eq. (6-30) it thus follows that: 

 
    

  
 

 
   

     
  
                                   (6-31) 

So that: 

                                                   (6-32) 

With: 

  
 

 
                                                (6-33) 

Meanwhile, Eq. (6-33) shows that: 

    
    

  
                                               (6-34) 

From which: 

  
        

  
                                            (6-35) 

Q.E.D. 

Remark 6.2: From Eq. (6-35) it can be concluded that, the decay rates of the fault 

estimation error dynamics are mainly decided by small positive numbers  ,   and the 

fault estimator learning rate  , and it is not hard to investigate that there is a trade-off 

relationship between the   and the nonlinear switching function                
  in Eq. 

(6-9). This causes the values of   and   to increase with a small value of   to guarantee 

the performance of the estimator. This increases the decay rates for the fault estimator 

and the term       
          in                

  becomes small. However, the term 

 

 
            becomes large, and vice versa. As a result, when the value   is fixed, 

under achievable practical actuator fault estimation limits the actuator fault estimator 

learning rate   is as larger as possible, and   can be very small.  
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Exponential convergence is a strong form of convergence, and it also implies 

asymptotic convergence as a special case (Orjuela, et al., 2008). Indeed, for a decay rate 

equal to zero,    , the asymptotic convergence of the error dynamics is obtained.  

6.3.3 LMI Region Pole Placement   

From a LMI region pole placement point of view, when estimation errors achieve the 

exponential convergence, all the eigenvalues of the matrix of the matrix   

 
        

  
 

 
           lies in the left complex plane, with          , 

demonstrated by the shaded region of Figure 6-1. 

-β

Re

Img

 

Figure 6-1: Eigenvalues locations for  -stability 

As shown in Figure 6-1, Theorem 6.2 only ensures the position of the real parts of the 

eigenvalues of  . 

 However, the imaginary part of the eigenvalues of   must also be considered as they 

cause the error trajectory to oscillate and hence must be limited. Hence, it is clear that 

the problem of obtaining satisfactory observer performance is one of suitable eigenvalue 

placement. To solve this problem, the LMI region pole placement constraint is applied. 

According to (Arzelier, Bernussou and Garcia, 1993; Chilali, Gahinet and Apkarian, 

1999), the Definition of the LMI region is given as follows: 
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Definition 6.1: (LMI region) A subset   of the complex plane is called an LMI region 

if there exist a symmetric matrix          
    and a matrix          

    

such that: 

                                                          (6-36) 

with: 

                                                              (6-37) 

      is called the characteristic function of  .  Then according to Chilali, Gahinet and 

Apkarian (1999), the  - stability of a matrix   is guaranteed as follows. 

Theorem 6.3: The matrix   is  - stable if and only if there exists a symmetric matrix   

such that: 

                                     

                                                     (6-38) 

By using an LMI eigenvalue placement constraint, the expected system performance 

can be achieved.  

Recall the conditions for estimation of the error dynamics Eq. (6-7) and (6-8) to achieve 

the  -stability, Eqs. (6-32) and (6-33), in Eq. (6-33), as the value are all on the negative 

real axis. Hence, there is no need to change the eigenvalue assignment for the lower 

right hand block of the matrix    
        

  
 

 
          , whilst, its top left 

hand block defines the observer’s decay rate. This means that under modelling 

uncertainty conditions or with other disturbances present, the unwanted observer 

eigenvalues may further affect the stability of the overall system which may even 

become unstable. Hence, whilst guaranteeing the  -stability of the observer and fault 

estimator the observer eigenvalues locations should be more constrained compared with 

the fault estimator eigenvalues. 

On the basis of the above discussion, combining Theorem 6.2 and Theorem 6.3, leads to 

the following corollary. 
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Corollary 6.2: The closed-loop LPV system Eq. (6-7) and (6-8) is  -stable, and the 

eigenvalues of the matrix     lie in the LMI region  ,  if Theorem 6.2 and:  

                             

                              
                      

              (6-39) 

 hold, where the notations are given in Theorems 6.2 and 6.3. 

Remark 6.3: Normally, the real parts of the eigenvalues of the matrix     lie on the left 

of the fault estimator eigenvalues. This is not only guarantees the decay rates of 

responses of  the whole system comprising the observer and fault estimator, but also 

provides quick decay speeds for the observer error only. This is very important to 

ensure that the system state estimate tracks the real system dynamics quickly enough to 

stabilize the feedback system. 

After the above discussion, the solutions for the observer gain, the polytopic coordinates 

and the actuator fault estimates can be obtained by the following steps: 

(1) A set of solutions for                 arise from the application of 

Corollary 6.1. It is then straightforward to obtain accordingly          

       by pre-multiplying the inverse of  . The function matrix      is then 

computed by: 

             
 
                                        (6-40) 

(2) The weighting parameters    are any solutions of the convex decomposition 

problem: 

     
 
                                              (6-41) 

(3) According to Corollary 6.1, the actuator fault estimation signal            is 

obtained. Also, as the matrix      is invertible, the real actuator fault signal 

      can be achieved by the following reverse transformation: 

                                                        (6-42) 
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            where        is the inverse of the matrix     .  

Remark 6.4: It is reasonable assume that the newly defined actuator fault         

          is bounded. However, there may be some problem with this assumption 

when applied to its derivative           . If this assumption is not true, another 

approach will be required to solve this problem by changing the condition Eq. (6-12) to: 

       
                                                      (6-43) 

Meanwhile, considering the estimation of the original actuator fault      , the FE 

algorithm is changed to: 

                                                            (6-44) 

In a similar manner to Eq. (6-23) the gain       can be achieved by: 

               
 
                                           (6-45) 

 

6.4 Robust actuator fault tolerant control 

As for previous chapters, in this Section the estimated system state variable        and 

actuator fault        are applied in an FTC scheme against uncertainty/disturbance. The 

robust    feedback control law is first developed for the fault-free system with robust 

performance against uncertainty/disturbance, and then the fault tolerance is achieved by 

improving the robust    feedback control law with fault accommodation property. 

6.4.1 Robust    control law design for LPV system in fault-free case 

First, under the Assumption 6.1-6.6, consider the following fault-free system dynamics 

with uncertainty: 

                                                            (6-46) 

                                                               (6-47) 
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where all the notations are provided in Eqs. (6-2) and (6-3). Consider a feedback control 

law with fixed feedback gain as: 

                                                              (6-48) 

where     
    and then the closed-loop system dynamics are obtained by 

substituting Eq. (6-48) into Eq. (6-46), as follows: 

                                                            (6-49) 

By Apkarian et al., (1995) the following Lemma 6.1 is introduced: 

Lemma 6.1: For the LPV system Eq. (6-49), the following statements are equivalent: 

(1) The   - induced norm of the operator mapping          into      is bounded 

by a scalar number   for all parameter trajectories  in the polytope   

(2) For the parameter trajectories   in the polytope  , there exists        

satisfying the system of LMIs: 

 

                            
      

        
       

     (6-50) 

where   is defined as: 

      
    

    

           
                                    (6-51) 

As the top left-hand term in Eq. (6-50) is a nonlinear parameter-varying matrix 

inequality, by pre-multiplying and post-multiplying                           

with the inequality Eq. (6-50), the following alternative matrix inequality for Eq. (6-50) 

is obtained: 

 

                             

        
     

             (6-52) 

where        and       and then on the basis of the convex optimization the 

following Theorem is obtained.  
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Theorem 6.4: The closed-loop LPV system Eq. (6-49) is asymptotically stable, and 

      
  , if there exist a S.P.D. matrix       , and a matrix        such that 

the following set of LMIs are satisfied: 

 

                                 

        
     

      (6-53) 

                                                                                                                   

where        and      . Furthermore, if a feasible solution       exists in the 

above set of LMIs, the state-feedback gain can be computed as         . For more 

details the reader is referred to Chapter 4 and (Apkarian, Gahinet and Becker, 1995).   

Remark 6.5: Theorem 6.4 also implies that the closed-loop nominal LPV dynamic 

system Eq. (6-1) with       , under the state feedback control law              

is asymptotically stable. Since for a Lyapunov candidate function: 

                                                               (6-54) 

The derivative of        with respect to time is:  

                                                                 

                                              
                           (6-55) 

Also, since              
                     ,  it follows that: 

                                                               (6-56) 

By duality with the LPV observer design, to achieve good controller performance the 

eigenvalues of the matrix             must also be constrained to lie in a prescribed 

complex region. However, the closed-loop observer eigenvalue constraints should be 

stricter than the closed-loop control system, which means the convergence speed of the 

error must be faster than that of the control system to preserve the overall system 

stability. 
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Remark 6.6: In a similar manner to the observer gain design, the state feedback control 

law    can also be designed based on a     parameter-dependent form, i.e.      . In this 

Chapter the       is chosen as a fixed constant matrix. 

6.4.2 Robust    active FTC law design for LPV system  

After designing the state feedback control law by assigning the eigenvalues of the 

            in the desired LMI region  , the active robust FTC control law 

becomes the next main objective to achieve the property of fault tolerance as well as 

robustness against uncertainty. However, as described in Section 6.2, the full order 

observer-based fault estimator is not only able to provide the estimate of the actuator 

fault signal but also the estimate of the state vector. Based on that, to be directed against 

the faulty system Eq. (6-2), the following active FTC law is considered: 

                                                            (6-57) 

where              , is defined in Eq. (6-48), and the pseudo-inverse control law 

      is described as:  

                                                              (6-58) 

in which        is the right pseudo-inverse matrix of     , and        

                  . Substituting the FTC law         into Eq. (6-2) and (6-3), the 

closed-loop faulty system is obtained in Eqs. (6-59) and (6-60): 

                                                        (6-59) 

                                                                       (6-60) 

According to the analysis of Section 4.4.1, the observer-based fault estimator combined 

with the    robust control design is able to achieve asymptotic stability, fault tolerance 

to the actuator fault       and robustness with system performance       
   for the 

closed-loop system Eq. (6-59) and (6-60). The proof is similar to that give in Section 

4.4.1 and is omitted here. 
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6.5 Simulations on Two Link Manipulator System 

To illustrate the mathematical discussion above, a tutorial example of the actuator fault 

compensation problem is considered using a nonlinear simulation of the two-link 

manipulator. More information on the introduction of this mechanical model can be 

found in Section 3.5. However, in this Section a polytope representation of this model is 

given. 

6.5.1 Polytopic model of two-link manipulator 

It should be noted that this work differs from the work by Adams et al (1996). In their 

work, the terms         are taken into account in the design of the robust control 

approaches for a two-link flexible manipulator. However, in this study the terms 

        are not considered because they are not bounded. However, it is a quite normal 

way to solve this problem, (Patton, Chen and Klinkhieo, 2012; Kajiwara, Apkarian and 

Gahinet, 1999). Taking this limitation into account Eq. (3-24) becomes: 

                                                       (6-61) 

where the vector    
  
  
 , and the ranges of both the angles   ,     are  –     , and 

accordingly the following matrices are obtained:  

      
               

               
 ,          

       
       

    (6-62) 

The nonlinear term                    in      is clearly a bounded function, 

where            [see Figure 6-2 (b)]. Hence,      can be represented by a 

polytope whose vertices are defined by: 

                                                          (6-63) 

where 

    
    
    

 ,     
     
     

                                  (6-64) 

To facilitate a state-space formulation, the vector field      with      is rearranged 

in the form of        and function       in the following function can now be 
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defined which is bounded. The bound of       is              as shown in 

Figure 6-2 (a). 

         
        

  
                                            (6-65) 

 

Figure 6-2: Variation of parameters used for the simulation (Balakrishnan, 1997) 

From the boundedness of functions       in terms of the angle  ,       is considered 

as a polytope as follows: 

           
       

       
       

                                     (6-66) 

where  

  
      

       
       

  ,     
      

   
       

  

  
      

       
   

 ,       
      

   
   

  

To define the state space representation of the two-link manipulator system, let      

 

     

     
     

     

   

     

     
      

      

  and     

  
  
  
  

 , and then the nonlinear dynamics of the two link 

manipulator system is described by the following descriptor system: 
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                      (6-67) 

which can be further transferred to:  

                                                         (6-68) 

Let the matrix   be a non-singular matrix given by: 

   
   
     

                                             (6-69) 

It is important to note that   is a non-singular block diagonal matrix, because in the 

manipulator system example, as shown in Eq. (6-69) the eigenvalues of   totally 

depend on the lower right-hand block     . With further investigation on      as 

described in Eq. (6-64), its determinant (which is also the determinant of the matrix  ) 

is equal to      and is a fixed value only determined by the mechanical parameters such 

as the link length and link mass and so on. Hence it thus follows that: 

         
   

       
   

           

6.5.2 Actuator fault estimation 

Consider that an additive actuator fault       occurs on the first torque in the nominal 

time-varying model of the nonlinear two link manipulator dynamical system, then the 

faulty system description is given below: 

                                                                   (6-70) 

                                                                 (6-71) 

And according to the previous mathematical analysis in this chapter, Eq. (6-70) is 

further changed to: 
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                    (6-72) 

The corresponding matrices for the polytopic model are given as an 8-vertex linear 

system as follows [where elements in      change sign due to sign changes in the 

diagonal elements of     ]: 

Vertex system 1: 

     

    
    

                
                 

 ,     

  
  

             
             

  

Vertex system 2: 

     

    
    

               
                 

 ,     

  
  

             
             

  

Vertex system 3: 

     

    
    

                
               

 ,     

  
  

             
             

  

Vertex system 4: 

     

    
    

               
               

 ,     

  
  

             
             

  

Vertex system 5: 

     

    
    

                
                 

 ,     

  
  

            
            

  

Vertex system 6: 



 

 

142 
 

 

     

    
    

                
                 

 ,     

  
  

            
            

  

Vertex system 7: 

     

    
    

                
                 

 ,     

  
  

            
            

  

Vertex system 8: 

     

    
    

                
                 

 ,     

  
  

            
            

  

And the other matrices related to the system such as the fixed actuator fault distribution 

matrix are given as     

 
 
 
 

 , disturbance/uncertainty matrix    

 
 
 
 

 , and the output 

matrix    
    
    
    

 . Thus the actuator fault estimate          and further        

can be implemented by on the basis of Theorem 6.2 with placement of the eigenvalues 

in the region          .  The solutions are listed below by using the MatLab LMI 

toolbox.  
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The fault estimator gains are     
         

              
  and    

                . The actuator fault is simulated using:  

      

 
 
 

 
 

 
    
  
  

            

             

      
       
       
        

            

  

Figure 6-3 shows the comparison of the actuator fault and its estimate. The learning rate 

of the fault estimator is chosen as     , and a Gaussian random disturbance      of 

zero-mean and variance is 0.05 included. 
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Figure 6-3: Comparison of the actuator fault and its estimate. 

Figure 6-4 shows the actuator fault estimate by using a conventional fault estimator 

(Wang and Daley, 1996). By comparison of the results of Figure 6-3 and 6-4, it is clear 

that though both estimators provide good online FE the robust one proposed in this 

Chapter is more robust against the disturbance than the conventional one.  
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Figure 6-4: Comparison of actuator fault and its estimate (conventional estimator) 

In this Section the design and performance of the fault estimator for the manipulator 

system have been given. After verifying the FE performance it can then be used further 

to design the AFTC scheme. As discussed in Chapter 5, the disturbance considered here 

is an un-matched disturbance. However, in the real single or multi-link manipulator 

system, the disturbance/uncertainty usually comes from the system itself. This means 

the disturbance acts in the same channel as the actuator fault signal. Under this situation, 

the disturbance and fault can be treated together as a new fault to apply the combined 

FE and FTC functions. 

6.5.3 Active Fault tolerant control for two link manipulator system 

As described the design steps in Section 6.4 the first object is to design a constant gain 

matrix nominal state feedback control gain matrix    to stabilise the fault-free open-

loop system on each vertex, which can be obtained by implementing Theorem 6.4 and 

solving by MatLab Tool LMI box. However, here the robust feedback control gain is 

fallen from (Patton, Chen and Klinkhieo, 2012) as: 
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After applying the FTC law of Eq. (6-57), the following result is obtained. 

Figure 6-5 shows the comparison of the two link manipulator system output response 

with and without the FTC action. 

 

Figure 6-5: Comparison of the two link manipulator system output responses with FTC 

(solid line) and without (dashed line) 

The result shows that the system actuator fault has been successfully compensated 

resulting in a good performance on the system output. Without the FTC strategy applied, 

the system output trajectory is moved away from the true (fault-free) trajectory, which 

means the system is heavily affected by the actuator fault. On the other hand, this 

highlights the power of the proposed strategy of the integrated design of LPV fault 

estimator and LPV compensation.  
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6.6 Conclusion 

This Chapter proposes a new robust strategy of an active FTC and polytopic LPV 

estimator for nonlinear systems which can be implemented via a set of parameterized 

LMIs using efficient interior point algorithms. 

In the work of this Chapter, an on-line observer-based robust polytopic LPV fault 

estimator is synthesized for providing the estimate of actuator fault which can be further 

combined with a scheduled predefined state feedback controller for the nominal system 

in an active FTC strategy. The multiplicative actuator fault considered is transformed 

into a new fault with a fixed distribution matrix. Then the real faults are calculated by 

the estimate of the newly defined fault, which means this estimation method can be 

further applied within an FTC scheme with both system and multiplicative faults. 

The time-varying gain of the LPV estimator is based on a set of predefined gains in 

each vertex, and combined by a set of weighting scalars.   By using the eigenvalue 

assignment approach, the eigenvalues of the observer are assigned in the desired LMI 

region to improve the performance of the LPV fault estimator. The same procedure is 

also applied in the controller design. The solutions of these gains are calculated using 

LMIs and implemented via the MaTlab LMI toolbox. 

This Chapter also proves the principle of the observer-based estimator gain (learning 

rate) chosen to suitably increase the estimator gain and achieve a fault estimate signal 

with fast tracking of the real fault.  From another point of view, the polytopic robust 

fault estimator and FTC strategy for LPV systems is an extension to the one for LTI 

systems.   

The proposed active robust FTC scheme is investigated using the two-link manipulator 

with an actuator fault acting on the torque input of the first manipulator joint under the 

case of un-matched disturbance. Simulation results show that the design of the polytopic 

LPV estimator can follow the fault rapidly and effectively with robustness to the 

disturbance signal. This ensures that the system will continue to operate safely and with 

satisfactory performance via the on-line AFTC controller. 
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Chapter 7.  

Conclusions and Future work  

In this thesis some novel approaches are presented in the domain to active fault tolerant 

control with the main focus on achieving robust fault estimate under the effect of the 

disturbances/uncertainty. This Chapter discusses on the results presented in this thesis 

and summaries the contributions and provides suggestions for future research.  

 

7.1 Conclusions 

There are two main research streams in the field of FTC systems design. The first is FD 

which deals with the detection and diagnosis of faults that occur in the controlled 

system. The second is FTC investigating the problem of achieving fault-tolerance via 

designs of passive and/or active FTC schemes. Although there are major publications in 

this field, the interaction between these two research lines is still rather weak. The FTC 

methods that rely on FD assume that perfectly robust fault estimates are always 

available. The FD approaches, on the other hand, do not consider the presence and the 

needs of the FTC function. As a result of these issues it is difficult in practice to proceed 

with the integration of the two functions within an overall FTC scheme.  This challenge 

becomes even greater when the process system is non-linear and when disturbances and 

modeling uncertainties are present.  

Hence, this thesis considers the FD and FTC problems in the presence of disturbances 

and modeling uncertainties as a new integration design problem, focused on robustness 

in the post-fault situation. The goal has been to attempt to reduce the gap between real-

world engineering systems and the models used in the analysis and design stages.  

For the FD scheme, there are two main rank assumptions that must be imposed for 

robust fault estimation.  The first rank condition requires that the rank of the output 

matrix be larger than the sum of the ranks for the fault distribution matrix and the 

disturbance/modeling uncertainty weighting matrix, guaranteeing sufficient information 
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to ensure that a robust fault estimate can be computed form the system outputs. The 

second assumption requires the disturbance/uncertainty weighting matrix lies in the null 

space of the input (control) weighting matrix, i.e.              . 

This thesis deals with the active approach to FTC based on robust on-line estimation, 

nominal robust control and fault compensation integrated together to achieve robust 

system stability and fault-tolerance. The design solutions are achieved using the MatLab 

LMI Tool Box.  

The definitions and significance of faults, failures and different types of faults have 

been presented briefly, along with the industry drivers and practical requirements. 

Chapters 1 and 2 provide an introduction and overview of the model-based FD and FTC 

reconfiguration approaches. The research is motivated by issues of increased demand of 

reliable, safe and available and sustainable control systems. Some conventional methods 

for FDI, FTC and FE have been given with discussion on their advantages and 

disadvantages and these have been compared with the methods proposed. 

In Chapter 3, an FTC strategy using an adaptive fault estimator based on model 

reference control is proposed to deal with systems that have no unique linearization 

equilibria and for which the classical “direct” approach to FTC via fault 

estimation/compensation cannot easily be achieved via a linear time invariant systems 

approach. The fault estimator design is based only on the reference model and not the 

plant dynamics; this makes it possible to deal with nonlinear systems. By using the 

proposed design, the faulty system tracks the output responses of the predefined 

reference model. A tutorial application study of adaptive estimation and compensation 

in a nonlinear two link manipulator system is used to illustrate the applicability of the 

proposed method.   

Since the closed-loop system has the property of tracking the reference model, there is 

no need to consider the system stability after the fault is accommodated by one control 

signal component which is a function of the fault estimate. Although the estimator is 

adopted from earlier research, the computation is reduced and merged into the whole 

FTC design.  
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However, the main purpose of Chapter 3 is to focus on the integration of the FE strategy 

of FAFE within a model-reference control framework.  Chapter 3 does not focus on a 

robustness problem since it is assumed that all the states of the manipulator system are 

measurable, offering an avenue of further work in this area.  

The challenge of robustness is then taken up in Chapter 4 via the proposal of a novel 

observer-based fault estimator design. The main motivation is to improve the robustness 

for the conventional observer-based adaptive fault estimator. This achieved by 

importing a nonlinear switching function typically used in the discontinuous gain of a 

sliding mode observer system.   Based on this, the switching function is able to decrease 

the effect of the fault estimates on the disturbance/uncertainty.  

In keeping with the main theme of the thesis, the integration of the robustness for the 

fault estimate and the FTC robustness is achieved in Chapter 4. This Chapter also gives 

the stability proof for the integrated system. It is important to note that when the 

disturbance/uncertainty and faults exist in the system, the well-known Separation 

Principle breaks down and the stability proof shows the observer and controller can still 

be separately designed whilst still yielding a robust result when combined.  This is in 

essence a way of recovery for the Separation Principle. To illustrate this novel method, 

a nonlinear inverted pendulum system example which considers the effects of additive 

actuator and sensor faults. The results show the power of the proposed method. 

Chapter 5 considers a more general actuator fault model, which includes three different 

forms of faults: actuator loses effectiveness, stuck faults and actuator outage. 

Accordingly, a more general adaptive robust observer-based fault estimator is 

established. By importing the adaptive scheme, the restriction condition for the fault 

estimator design is relaxed compared with the approach taken in Chapter 4. Chapter 5 

also gives two different AFTC design strategies focused on both matched and 

unmatched disturbance/uncertainty highlighting the challenges that arise from the cases 

of matched and unmatched disturbance/uncertainty acting in either the FE and/or the 

controller function of the FTC scheme. 

For the case of matched uncertainty the difficulty lies in the robust FE process but in the 

FTC process this is easily handled.  For the unmatched case the opposite is true, so that 

for this case the robust FE scheme easily handles the disturbance/uncertainty, whilst the 
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opposite is true for the FTC scheme.  For the situation in which both matched and 

unmatched disturbances/uncertainty are considered together the combination of the 

robust FE and robust FTC schemes work well to enhance their joint robustness.   

Two case studies, both with actuator faults that are: (i) a linear rocket fairing structural-

acoustic and (ii) a nonlinear single link manipulator model are applied to illustrate the 

strength of this integrated active FTC method for the two design examples.  A 

description and discussion of the mathematical issues concerned with this mixed-

disturbance/uncertainty problem is also given. Hence, the main contributions in Chapter 

5 are: (1) the removal of the requirement for the disturbance bound imposed in the 

approach used in Chapter 4. (2) Three different integration approaches to robust AFTC 

are described according to individual disturbance/uncertainty cases.  (3) Compared with 

the conventional adaptive FE design (Zhang, Jiang and Cui, 2007) the simulation results 

show that the proposed method exhibits enhanced robustness. (4) Comparing with the 

work of (Jin and Yang, 2009), this work uses state estimate feedback instead of full 

state feedback control. Hence, the approach taken in Chapter 5 is considered of more 

general application to systems where subsets of states are not measurable. 

The work in Chapter 4 is based on linear invariant systems and this approach is not 

realistic when considering application to non-linear systems.  A large class of nonlinear 

systems can be reduced to LPV representations based on linearization along trajectories 

of the parameters. It is thus appropriate in Chapter 6 to develop a polytopic LPV 

strategy as an extension to the methodology of Chapter 4 that can be used for a certain 

class of affine non-linear systems.  In this Chapter a polytopic LPV observer-based fault 

estimator is synthesized for robust FE and an AFTC scheme is designed to schedule 

some predefined state feedback controllers to each parameter vertex. Chapter 6 also 

gives evidence for the dependence of the FE convergence on the algorithm learning rate. 

By restricting the eigenvalues of the observer dynamics and closed-loop system to lie in 

pre-designed regions in the complex plane (formulated for each case as an LMI problem) 

a suitable compromise between estimation performance and robustness to 

disturbance/uncertainty can be achieved.  
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The nonlinear two link manipulator system simulation includes a joint actuator fault and 

the disturbance model is chosen to reflect the availability for the proposed design. The 

resulting simulation results demonstrate the power of this method. In summary, the 

contributions for Chapter 6 are: (1) The proposal of an LPV polytopic observer-based 

robust fault estimator for application to time-varying or affine non-linear systems; (2) 

Guidance is provided for the choice of the robust FE system learning rate; (3) 

Compared with the work of (Patton, Chen and Klinkhieo, 2012) which only considered 

the disturbance in the FE, this work takes the robustness of both the FE and AFTC 

problems into account.   

 

7.2 Future Work 

This thesis describes the past four years of research work. However, there are 

interesting aspects of this work that are worth pursuing further. 

(1) Although the combination of model reference control and adaptive fault estimation 

produces good results in Chapter 3, it is developed subject to the perfect matching 

condition, which is a heavy restriction for real applications. Imperfect model matching 

could cause system uncertainty and affect the system performance.   

(2) All the work in this thesis only considers actuator faults and sensor faults but 

component faults should be investigated within an FTC framework. Meanwhile, how to 

deal with the simultaneous occurrence of the three types of faults would be another 

valuable and challenging topic. 

(3) As described in Chapter 5, mixed disturbance/uncertainty is another problem that 

need to be considered carefully for the combined FE and FTC strategy. 

(4) There are no considerations of the system time delay problem in this thesis. From an 

FE point of view, some delay always exists between the real fault and the fault estimate. 

As a consequence, when dealing the AFTC process, the inclusion of various forms of 

system delays becomes an interesting challenge in terms of stability and performance.  
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