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Abstract 
The research contained within this thesis probes different aspects of molecular 

electrochemistry including electrochemically induced ion release, protonation, 

catalytic processes, mass transport in lyotropic liquid crystals and computer 

simulation studies of redox batteries.  

 

Chapter 3 reports finding on some electrochemically induced catalytic reactions. 

Chlorpromazine was used as a mediator in EC′ reactions to monitor the concentration 

of L-cysteine and glutathione in both buffered and un-buffered solutions. Interference 

experiments were also carried out for analytical purposes. The detection limits for 

L-cysteine and glutathione were found to be 6.30 ± 0.03 μM and 4.06 ± 0.07 μM 

respectively. In addition, lactic acid concentrations were determined via the 

photo-current responses of chlorpromazine. The limit of detection was found to be 

5.85 ± 0.05 mM, but could be varied by altering the concentration of chlorpromazine 

used. The photo-activity of chlorpromazine was studied using a channel-flow 

electrode combined with an external light source, and in this way the photo reaction 

mechanisms determined. Finally, 2,4,6-trihydroxybenzoic acid (THBA) was 

employed as a redox catalyst for the detection of melamine. The detection limit could 

be altered by changing the concentration of THBA used (the melamine concentration 

must be slightly higher than THBA), which is indicative of a 1:1 THBA:melamine 

complex, as anticipated from earlier X-ray crystallographic studies. Other modified 

electrodes examined include the functionalisation of glassy carbon electrodes with 

variamine blue B (a diazonic salt) and 6-(ferrocenyl)hexanethiol.  

 

Three separate studies on electrochemically induced protonation/deprotonation were 

completed. Firstly, the electrochemically catalysed Birch reduction was studied in 

detail. It was found that an electrochemically induced protonation offers several 

advantages over conventional Birch reduction conditions, these include: synthesis at 

room temperature, insensitive to trace water contamination in solvents and 



accessibility to reaction intermediates. Secondly, the redox chemistry of 

lipid-supported vitamin K1 (VK1) was studied. It was found that the presence of lipids 

afforded apparently higher electrochemical sensitivity than without it. The reduction 

of VK1 involves both electron and proton transfer and thus is pH dependent. Below 

pH 6, it was found that a two-electron, two-proton transfer occurred, which changed 

to a two-electron, one-proton transfer at pH 8 and above. Finally, Sudan III, a diazo 

dye, was investigated. It was found that the oxidation of Sudan III involves a 

deprotonation step that is pH dependent. The reaction mechanisms were characterised 

in this work.  

 

Electrochemically induced ion release was investigated using nitroprusside. In 

non-aqueous solution, electrochemically triggered release of cyanide was observed. It 

was found that an increase in electrolyte concentration resulted in an increase in the 

rate of [Fe(CN)5NO3]
-
 formation. The apparent decrease in the number of electrons 

transferred when the concentration of electrolyte increased (characteristic of the 

kinetic salt effect) was subsequently found to be because of a viscosity change in the 

solution, which also shifted the peak potential, therefore, no evidence for the kinetic 

salt effect was found. Additionally, iodo-nitrobenzene was also studied and the iodide 

ion release observed. Experiments studying bromide ion triggering processes 

experiments were also undertaken by modifying the electrode surface with 

bromobenzene diazonium salt. The electrode surface was successfully functionalised 

and the triggering process was performed successfully. 

 

Electrochemistry of organometallic lyotropic chromonic liquid crystals and molecular 

wires was performed, and the resulting the mass transport profiles were studied. Two 

types of lyotropic liquid crystals composed of copper(II) and nickel(II) 

phthalocyanine tetrasulfonic acid tetrasodium salt have been studied. 

Two-dimensional diffusion was found in this system with Dz found to be quicker than 

Dr (i.e. the mass transport perpendicular to the electrode surface is faster than that of 

parallel to the electrode).  



In the final chapter, computer simulations of cerium-zinc redox batteries were 

undertaken for several forms of renewable energy such as solar, wind, tidal and the 

burning of biomass. Under reasonable assumptions, the mathematical model 

developed enables the observation that the performance characteristics of cells 

charged with a constant power input differentiate between the various current charge 

waveshapes, with cell geometry and electrode kinetics playing subtle, but significant, 

roles; in particular, high efficiency is observed for sunlight-charged batteries which 

are the thin and suffer no corrosion of the sacrificial electrode, and which have 

already experienced a charge-discharge cycle. The performance characteristics of the 

systems are interpreted in the light of consequences for smart grid realisation.
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1. Introduction 
 

Fundamental and experimental theories of dynamic electrochemistry relevant to the 

experiments presented in this thesis are discussed with in this chapter.  

 

1.1. Background 

 

Electrochemistry is a branch of chemistry, which is concerned with chemical reactions 

that occurs at the surface of a conductor (electrode), immersed in an electrolyte 

solution or the electron transfer between liquid/liquid interface. In this thesis, dynamic 

electrochemistry is concerned with electron transfer process that occurs at the 

solution/electrode interface.  

 

In the last few decades electrochemistry has become an important research area within 

chemistry, examples include the development of voltammetric reaction mechanism 

determination
[1, 2]

, understanding the corrosion of metals
[3, 4]

, the construction of 

electrochemical sensors
[5, 6]

, etc. In addition, electrochemistry also offers a lot of 

benefits for chemical synthesis such as a green process, since electricity maybe 

employed as a reactant, under mild conditions, since experiments can be carried out at 

room temperature. However, there are also some disadvantages: separation of 

synthetically useful product from the necessary supporting electrolyte can be difficult.  

1.2. Faraday’s Law 

 

There are three types of electrochemical cells: a galvanic cell or primary cell (Fig. 

1.1a), electrolytic cell (Fig. 1.1b) and “supergalvanic” cell. The galvanic cell can 

autonomously generate potential, which allows current to flow. Whereas the 
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electrolytic cell can only be forced by an external potential to flow a current. The third 

type known as “supergalvanic” cell, which may be employed for Joule heating 

through electric discharge in the SG region, i
2
Ri loss is used to heat the system. 

 

 
Fig. 1.1. Schematic examples of a galvanic cell (a) and an electrolytic cell (b). 

 

An electrolytic cell operates by allowing current to flow from on electrode to the other. 

The electrode that passes electrons into the solution is the cathode and the electrode 

that accepts electrons from solution is the anode. Whereas, in a galvanic cell, the 

reduction happens at an anode or vice versa, this is because reduction of the species 

takes electron from the electrode causing it to become more positive. 

 

The extent of electrolysis is related to the charge that is passed through the electrodes. 

Since the charge carried by each electron is known as -1.602 x 10
-19

 C, the passage of 

one mole of electrons (6.022 x 10
23

 electrons), flowing into a cathode can be 

determined to be 96484.6 C. This number is known as the Faraday constant. Faraday’s 

Law is illustrated in Eqn. 1.1. 

 

𝑄 = 𝑛𝑀F                      (Eqn. 1.1) 

 

Where Q is the charge passed in C, n is the number of moles of electron transferred, 

M is the number of moles of molecule reacted and F is the Faraday constant. 
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1.3. Dynamic electrochemistry 

 

Electron transfer processes can be explained by two major concepts: thermodynamics 

and kinetics. Thermodynamics describes the change in enthalpy and entropy during a 

reaction, and kinetics describes the rate of a reaction. Electrode reactions are 

interfacial processes; accordingly, material transport effects must be considered as 

well. 

 

1.3.1. Electrical double layer 

 

In dynamic electrochemistry, it is essential to understand the electron transfer between 

electrode surface and the analyte in solution. The structure of the electrode/solution 

interfacial region has been extensively studied.
[7, 8]

 Helmoltz
[9]

 first proposed a 

“double layer” model. The modern double layer model was described by Gouy and 

Chapman
[9]

 who, worked independently, and, was followed by Stern
[10]

, who 

combined Helmoltz and Goup-Chapman models. Further work was carried out by 

Grahame
[11]

, with one layer of specifically adsorbed ions, one layer of 

non-specifically adsorbed ions, and a diffusion layer region expanding to the bulk 

electrolyte solution phase. Modern treatments of the double layer were studied in 

various of areas by numerous of researchers such as Bockris, Devanathan and 

Müller.
[12]

 

 

As shown in Fig. 1.2, the solution component near the electrode surface can be 

separated into several layers. The inner layer consists of adsorbed solvent molecules 

and sometimes other specifically adsorbed species, the edge of this layer is defined by 

locus of the center of the largest specifically adsorbed species, and is called the inner 

Helmholtz plane (IHP). The closest distance a solvated ion can get to the electrode 

surface, x2, denotes the edge of the second layer of the double layer, and is called the 
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outer Helmholtz plane (OHP). 

 

 

Fig. 1.2. A schematic diagram of an electric double layer between solution and metal with 

negative charge. x is the distance and Φ is potential, respectively. The subscripts of Φ, S, O, I, M are 

solution, outer Helmoholtz plane (OHP), inner Helmoholtz plane (IHP) and electrode, respectively. 

Note that Φ is negative potential. 

 

The structure of electric double layer can affect the rate of electrode process. If the 

electroactive species that are of interested is not specifically adsorbed, then the 

nearest position where it can travel to the electrode surface is OHP, as shown in Fig. 

1.2, there is a potential drop from electrode surface to the solvated molecules, 

therefore the overall potential of electroactive species experienced is less than the 

potential which is applied on the electrode. According to Fig. 1.2, the potential 

difference between electrode and solution can be described by: 

 

∆𝛷 = (𝛷𝑀 − 𝛷𝑂) + (𝛷𝑂 − 𝛷𝑆) = ∆𝛷𝐻 + ∆𝛷𝑑𝑖𝑓𝑓     (Eqn. 1.2) 

 

where ΔΦH is the potential drop of Helmoholtz Double Layer and ΔΦdiff is the 
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potential drop of diffusion layer, the latter was also known as Zeta-potential. The 

position at that the potential in diffusion layer equals to 1/e of ΔΦH is defined as the 

double layer thickness. The double layer thickness depends on ionic strength of the 

solution. In dilute solutions, the diffusion double layer can be as thick as 10 nm, 

whereas in the presence of large concentration of electrolyte (i.e. concentration greater 

than 0.1 mol dm
-3

), the thickness of diffusion double layer can be negligible and the 

all the potential drop can be treat as same as ΔΦH. In addition, Debye length needs to 

be mentioned here as it is essential for the double layer structure. It describes the 

distance over which large separation of charge can occur. The Debye length, rD, can 

be written as: 

 

𝑟𝐷 = −
ℓ

ln(
𝛷𝑖ℓ

𝑍𝑖
)
                    (Eqn. 1.3) 

where ℓ is the distance of Coulomb potential (Φi) from an isolated ion of charge (Zi).  

 

1.3.2. Thermodynamics 

 

Consider a general electrochemical reaction, 

 

A + 𝑛e− ⇄ 𝐵                   (Scheme 1.1) 

 

where A is the oxidized species and B is the reduced species, n represents the number 

of electrons transferred in the reaction, respectively. When controlling the potential of 

a metallic electrode, the Fermi level will rise, provided negative potential is applied, 

which energetically favours the electron transfer from metal to the solution, i.e. A. As 

the electrons are transferred from electrode to the solution, the energy level of 

electrode will decrease whereas the energy level of solution will increase, until 

equilibrium is reached. A schematic diagram is shown in Fig. 1.3 to depict this 

phenomenon. 
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Fig. 1.3. Fermi energy change of electrode before and after applying electric potential. 

 

At equilibrium, there is no net current flow, as the rate of the forward reaction is equal 

to that of the backward reaction (i.e. A and B). Nernst described this relationship in 

terms of potential and gave an equation: 

 

𝐸 = 𝐸𝜃 +
𝑅𝑇

𝑛𝐹
𝑙𝑛
𝑎𝐴

𝑎𝐵
                   (Eqn. 1.3) 

 

where E
θ
 is the standard potential of the A/B redox couple and ai is the activity of 

species i. Determining activities is challenging, especially at high concentrations, 

therefore formal potential, E
θ’ is often used. In order to substitute a standard potential 

with a formal potential, activity coefficients must be converted. In thermodynamics, 

activity of a solution can be written as dimensionless activity coefficient, γ, multiply 

by the ratio of concentration, c, over standard concentration, c
0
, viz., 1 mol L

-1
. 
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Therefore the Nernst equation can be written as: 

 

E = 𝐸𝜃 +
𝑅𝑇

𝑛𝐹
𝑙𝑛
𝑐𝐴

𝑐𝐵
+
𝑅𝑇

𝑛𝐹
𝑙𝑛
𝛾𝐴

𝛾𝐵
            (Eqn. 1.4) 

 

As formal potential equals to the sum of standard potential and the term involving the 

activity coefficients in Equation 1.3, the Nernst equation, with respect to 

concentration can be written: 

 

E = 𝐸𝜃′ +
𝑅𝑇

𝑛𝐹
𝑙𝑛
𝑐𝐴

𝑐𝐵
                 (Eqn. 1.5) 

 

Therefore the formal potential can be worked out in practice, when the concentrations 

of each species are known. 

1.3.3. Kinetics 

Thermodynamics explains electrochemical reactions at equilibrium, it does not 

provide information on the rate of the reaction. Electrochemists are often interested in 

the rate of an electron, or ion, transfer. Therefore, kinetics studies are essential for 

understanding an electrochemical reaction process. 

 

In kinetics, if consider a uni-molecular elementary reaction: 

                (Scheme 1.2) 

then the rate of forward reaction is:  

v𝑓 = 𝑘𝑓𝑐𝐴                      (Eqn. 1.6) 

 

and the rate of backward reaction can be written as: 

 

v𝑏 = 𝑘𝑏𝑐𝐵                     (Eqn. 1.7) 

 

therefore the net rate is: 
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v𝑛𝑒𝑡 = 𝑘𝑓𝑐𝐴 − 𝑘𝑏𝑐𝐵                  (Eqn. 1.8) 

At equilibrium, the net rate becomes zero, and therefore the relationship of rate 

constant and concentration can be given as: 

 

𝐾 =
𝑘𝑓

𝑘𝑏
=
𝑐𝐵

𝑐𝐴
                     (Eqn. 1.9) 

 

It was found that the rate constant changes with changing temperature, natural 

logarithm of rate constant is linear with 1/T. This relationship was firstly discovered 

by van’t Hoff
[13]

, and described this isochore as: 

 

𝜕 ln𝐾

𝜕𝑇
=
∆𝐻𝑜

𝑅𝑇2
                    (Eqn. 1.10) 

 

where K is the equilibrium constant, T is temperature, R is the molar gas constant 

and ∆𝐻𝑜 represents the standard enthalpy change.  

 

Arrhenius
[14]

 employed van’t Hoff’s relationship to introduce an equation to explain 

the phenomenon of the dependence of the reaction rate constant on temperature: 

 

𝑘 = 𝐴e−𝐸𝐴/R𝑇                   (Eqn. 1.10) 

 

where EA is an energy unit which known as activation energy, and A is the frequency 

and probability factor. As shown in Eqn. 1.10, the exponential factor indicates that the 

activation energy can be surmounted by thermal energy, which relates the 

thermodynamics and kinetic together. The derivation of the Arrhenius equation from 

the van’t Hoff’s relationship is detailed in Appendix 10.1.  

 

Fig. 1.4 shows the energy change along a reaction coordinate. In order to form a 

product from a reactant, the potential energy must raise to the maximum level, EA; and 

the energy required from reactant to EA is described as Ef, whereas the energy required 
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from product back to react is Eb. 

 

Fig. 1.4. The change of potential energy during a reaction. 

 

The energy of reactant and product occupy two minimum levels which indicate that 

both the reactant and product are energetically stable.  

 

In transition state theory, the reactants combine to form an activated complex or 

transition state requires energy ΔE
ǂ
. In a condensed-phase reaction, the change of 

pressure and volume can be negligible, and therefore the standard enthalpy of 

activation, ΔH
ǂ
, is approximately equal to ΔE

ǂ
. Therefore Eqn. 1.10 can be written as: 

 

𝑘 = A𝑒−∆𝐻
ǂ/𝑅𝑇                    (Eqn. 1.11) 

 

And the equation can also be presented in terms of standard free energy of activation 

or standard Gibbs energy: 

 

𝑘 = A′𝑒−∆𝐺
ǂ/𝑅𝑇                  (Eqn. 1.12) 

 

Where A’ equals to exp(ΔS
ǂ
/R) with ΔS

ǂ 
is standard entropy and R is the molar gas 
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constant, respectively.  

 

Consequently, Fig. 1.4 can also be presented by standard free energy instead of 

potential energy. By introducing the Boltzmann constant, kB, and the Planck constant, 

ℏ, Eqn. 1.12 can be rearranged, to afford the enquired form, 

 

𝑘 = к
k𝐵𝑇

ℏ
𝑒−∆𝐺

ǂ/𝑅𝑇                 (Eqn. 1.13) 

 

If the electrochemical reaction is considered: 

 

                (Scheme1.3) 

 

the rate of forward reaction at the cathode surface can be described as: 

 

v𝑓 = 𝑘𝑓𝑐𝐴 =
𝑖𝑐

𝑛𝐹𝑆
                 (Eqn. 1.14) 

 

and the rate of backward reaction at anode can be presented as: 

 

v𝑓 = 𝑘𝑏𝑐𝐵 =
𝑖𝑎

𝑛𝐹𝑆
                 (Eqn. 1.15) 

 

where n is the molar number of electrons transferred in the reaction, F is the Farady’s 

constant and S is the area of electrode. The net current at electrode surface can be then 

described as: 

 

𝑖 = 𝑖𝑐 − 𝑖𝑎 = 𝑛𝐹𝑆(𝑘𝑓𝑐𝐴 − 𝑘𝑏𝑐𝐵)         (Eqn. 1.16) 

 

Conventionally, IUPAC describes the oxidation current to be positive and reduction 

current to be negative. 
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1.3.3.1. Bulter-Volmer Kinetics 

In electrochemistry, Bulter-Volmer kinetics is one of several theories, which describe 

the relationship between applied potential and the rate of electron transfer. If the 

reaction in Scheme 1.1 is considered and a single electron transfer process is assumed, 

the standard free energy change via a reaction coordinate is shown in Fig. 1.5. 

 

 

Figure 1.5. A schematic diagram of Bulter-Volmer Kinetics. 

 

As indicated in Fig. 1.5, the potential of the electrode starts at a reference point, E
0’, 

and the oxidation potential is E, the energy of electron change can be then described 

as -F(E-E
0’). Note that the energy change in transition state is smaller than -F(E-E

0’), 

therefore the energy change in transition state is a fraction of -F(E-E
0’), and can be 

described as βF(E-E
0’), where β=(1-α), and α is known as transfer coefficient. The 

transfer coefficient indicates essentially the measure of the symmetry of the energy 

barrier. Therefore the change of Gibbs free energy can be described as: 
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∆𝐺a
ǂ = ∆𝐺0a

ǂ − 𝛽F(𝐸 − 𝐸0′)              (Eqn. 1.17) 

 

and, 

 

∆𝐺𝑐
ǂ = ∆𝐺0𝑐

ǂ + 𝛼F(𝐸 − 𝐸0′)              (Eqn. 1.18) 

where ΔG‡
0a and ΔG‡

0b are the changes in Gibbs free energy at anode and cathode, 

respectively. By applying the Arrhenius equation, the rate constants for the forward 

reaction can be presented as: 

 

𝑘𝑓 = 𝐴𝑓𝑒
−∆𝐺0𝑐

ǂ /R𝑇𝑒−𝛼𝑓(𝐸−𝐸
0′)          (Eqn. 1.19) 

 

and backward reaction can be written as: 

 

𝑘𝑏 = 𝐴𝑏𝑒
−∆𝐺0a

ǂ /R𝑇𝑒𝛽𝑓(𝐸−𝐸
0′)          (Eqn. 1.20) 

 

where f = F/RT. At equilibrium, ΔG
ǂ
0a=ΔG

ǂ
0c, and the term A𝑓𝑒

−∆𝐺0𝑐
ǂ /R𝑇 equals to 

A𝑏𝑒
−∆𝐺0a

ǂ /R𝑇, which can be substituted by k
0
. By combining with Eqn. 1.16, the 

relationship between current and potential can be shown as: 

 

𝑖 = FA𝑘0{𝑐𝐴 exp[−𝛼𝑓(𝐸 − 𝐸
0′)] − 𝑐𝐵 exp[𝛽𝑓(𝐸 − 𝐸

0′)]} (Eqn. 1.21) 

 

1.3.3.2. Marcus Theory 

The Marcus theory was developed by Rudolph A. Marcus following earlier work by 

Libby.
[15]

 The reaction occurs by thermal activation, the bond lengths and angles of 

reactant species become compressed, stretched or distorted, as well as the solvation 

shells of species changes. At its heart is the notion that electron tunnelling can only 

occur when the reactant reaches the energy of the transition state via vibrations of the 

thermally excited reactants and the energy of the product matches that of the transition 
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state. It also states that the activation barrier is low when reactant and product are 

close in molecular geometry and vice versa. As shown in Fig. 1.6, the greater change 

in reaction coordinate, Δx, the higher the activation energy required to reach transition 

state. In other words, the change of reaction coordinate represents the similarity of 

product and reactant in geometry.  

 

 

Fig. 1.6. The change in reaction coordinate changes the transition state. 

 

The electron transfer process also refers to be either adiabatic or nonadiabatic. The 

extent of interaction or electronic coupling between reactants is often described in 

terms of adiabaticity. As shown in Fig. 1.7, when the interaction is strong, there is the 

usual splitting of the two surfaces at their intersection, then the extent of the reaction 

will continue on the surface toward right on the abscissa, to form the product (green 

arrow), which is known as adiabatic process. On the other hand, when the interaction 

between two reactants is very weak, then the split at the intersection of the two 

surfaces is negligible, then the extent of the reaction will follow the continuous 

reactant surface (red arrow) and remains on the reactant surface, then is known as 

nonadiabatic process. In the latter, there is a reduced probability of electron transfer.  
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Fig. 1.7. Potential energy surface for the reactants and the products. 

 

In addition, the different spin in reactant and product affect the activation energy. For 

instance, the redox couple, Co(NH3)6
3+

/Co(NH3)6
2+

, the electrons in Co(II) is an 

octahedral d
7
 high spin whereas the Co(III) has d

6
 low spin. Therefore, it is less 

possible for the electron to “jump” from a high spin orbital to a low spin orbital, 

unless the spin flips, making the kinetics very slow
[16]

. 

 

The electron transfer in Marcus theory can be separated into inner and outer sphere 

electron transfer. The outer sphere electron transfer denotes a reaction between two 

species in which the original coordination spheres are maintained in the activated 

complex, whereas, the inner sphere electron transfer process denotes the two species 

shared with one common solvation molecule.  

 

Fig. 1.8. A plot of Gibbs energy change along reaction coordinate. 
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As shown in Fig. 1.8, the Gibbs energy at transition state can be given by: 

 

∆𝐺(†) =
(𝜆+∆𝐺)2

4𝜆
                  (Eqn. 1.22) 

 

where 

λ =
1

2
𝑘(𝑥𝑅 − 𝑥𝑃)

2                (Eqn. 1.23) 

 

and 

∆G = 𝐺𝑃 − 𝐺𝑅                  (Eqn. 1.24) 

 

There are two contributions to the reorganization energy, λ: 

 

λ = 𝜆𝑖 + 𝜆0                   (Eqn. 1.25) 

 

where λ0 is the solvent reorganization energy and λi is the reorganization energy for a 

redox active material. Because the reaction coordinate is “the pathway of least 

resistance” in a multidimensional potential hyper surface, it translates the reactants to 

products, λi is a function of the sum of distribution of geometric properties such as 

bond angle and length, therefore according to Fig. 1.8,  

 

λ𝑖 = ∑
1

2
𝑘(𝑥𝑅 − 𝑥𝑃)

2               (Eqn. 1.26) 

 

where 𝑥𝑅 and 𝑥𝑃 are the reaction coordinates of reactant and product in their stable 

atomic structure. In terms of geometry, λi can be also defined based on bond stretch 

and bond bending: 

𝜆𝑖 = ∑
𝜅𝑗
𝑅𝜅𝑗
𝑃

𝜅𝑗
𝑅+𝜅𝑗

𝑃 (𝑥𝑅
𝑗
− 𝑥𝑃

𝑗
)2𝑗            (Eqn. 1.27) 
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where κj
R
 and κj

P
 are the normal mode force constants for the jth vibrational 

coordinate in the reactants and products, respectively. The term (𝑥𝑅
𝑗
− 𝑥𝑃

𝑗
) can be 

substituted by geometry change such as bond angle and length, for instance, the 

oxidation of nitrogen dioxide (example obtained from Understanding Voltammetry, 

R.G. Compon and C. E. Banks): 

 

𝑁𝑂2 ⇄ 𝑁𝑂2
+ + 𝑒−(𝑚)             (Eqn. 1.28) 

 

This reaction involves changes of both bond lengths and bond angles, which the N-O 

bond stretches and O-N-O bends to 180
o
, therefore Equation 1.27 can be re-written as: 

 

𝜆𝑖 =
2𝜅𝑠𝑡𝑟
𝑅 𝜅𝑆𝑡𝑟

𝑃

𝜅𝑠𝑡𝑟
𝑅 +𝜅𝑠𝑡𝑟

𝑃 (ℓ𝑅 − ℓ𝑃)
2 +

𝜅𝑏𝑒𝑛𝑑
𝑅 𝜅𝑏𝑒𝑛𝑑

𝑃

𝜅𝑏𝑒𝑛𝑑
𝑅 +𝜅𝑏𝑒𝑛𝑑

𝑃 (𝜃𝑅 − 𝜃𝑃)
2   (Eqn. 1.29) 

 

where 𝜅𝑠𝑡𝑟
𝑅  represents the force constant of bond stretch of reactant and 𝜅𝑏𝑒𝑛𝑑

𝑃  

represents the force constant of bond bending of the products.  

 

In addition, for an electrode reaction, the solvent reorganization energy is given by: 

 

𝜆0 =
𝑒2

8𝜋𝜀0
(
1

ɤ
−

1

2𝑑
) (

1

𝜀𝑜𝑝
−
1

𝜀𝑠
)           (Eqn. 1.30) 

 

where e is the electronic charge, ɤ is the radius of reactant, d is the distance from the 

reactant to the electrode surface, 𝜀0 is the vacuum permittivity (or electric constant), 

𝜀𝑜𝑝  is the optical dielectric constant and 𝜀𝑠  is the static dielectric constant, 

respectively.  

 

The Marcus theory can be related by Butler-Volmer kinetics and according to 

Butler-Vomler kinetics: 
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𝑘𝑓 = 𝑘
0exp⁡(

−𝛼𝜂

2𝑘𝐵𝑇
)                (Eqn. 1.31) 

 

𝑘𝑏 = 𝑘
0exp⁡(

(1−𝛼)𝜂

2𝑘𝐵𝑇
)               (Eqn. 1.32) 

 

where kf and kb are the forward and reverse reaction rate constant in Scheme 1.3. η is 

the overpotential which equals to 𝐸 − 𝐸0
′
, kB is the Boltzmann constant, T is the 

temperature, k0 is the standard heterogeneous rate constant and α is the transfer 

coefficient. The analogous Marcus relations
[17]

 can be written as: 

 

𝑘𝑓 = 𝑘
0exp⁡(

−𝛼𝜂

2𝑘𝐵𝑇
−

𝜂2

4𝜆𝑘𝐵𝑇
)         (Eqn. 1.33) 

 

𝑘𝑏 = 𝑘
0exp⁡(

(1−𝛼)𝜂

2𝑘𝐵𝑇
−

𝜂2

4𝜆𝑘𝐵𝑇
)          (Eqn. 1.34) 

 

As it can be seen from Eqn. 1.33 and Eqn. 1.34 that when η/λ ≪ 1, the equations can 

be reduced to Butler-Volmer equations. Whereas the Marcus theory predicts that, as η 

increases and approaches λ, the rate constants no longer increase exponentially with 

overpotential and reaches maximum when η = ±λ and start to decrease at larger η, 

which is known as Marucs “inverted” region.  

 

1.3.3.3. Tafel law 

For an electrochemical process in Scheme 1.3, according to Bulter-Volmer kinetics, 

the net rate or flux of reaction, j, is given by: 

 

𝑗 = 𝑘𝑓
0𝑒𝑥𝑝 [

−𝛼𝐹(𝐸−𝐸𝑓
0)

𝑅𝑇
] 𝑐𝐴 − 𝑘𝑏

0𝑒𝑥𝑝 [
𝛽𝐹(𝐸−𝐸𝑓

0)

𝑅𝑇
] 𝑐𝐵  (Eqn. 1.35) 

 

where 𝑘𝑓
0 and 𝑘𝑏

0 are the standard rate constants for forward and backward reaction, 

α and β are the transfer coefficient with α+β=1, E is the electrode potential, 𝐸𝑓
0 is the 

standard potential for A/B couple and cA and cB are concentrations of A and B in bulk 
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solution. At equilibrium, j equals to zero. However at extreme potentials (oxidation or 

reduction), such as E ≫ E
0

f or E ≪ E
0

f, then it is possible to neglect one term or 

another in Eqn. 1.35. Therefore for an oxidation process: 

 

𝑗 = 𝑘𝑏
0𝑒𝑥𝑝 [

𝛽𝐹(𝐸−𝐸𝑓
0)

𝑅𝑇
] 𝑐𝐵            (Eqn. 1.36) 

 

and for a reduction process: 

 

𝑗 = 𝑘𝑓
0𝑒𝑥𝑝 [

−𝛼𝐹(𝐸−𝐸𝑓
0)

𝑅𝑇
] 𝑐𝐴           (Eqn. 1.37) 

 

In electrochemistry (single electron transfer), 

 

𝐼 = F𝑆𝑗                     (Eqn. 1.38) 

 

as E
0

f  is a fixed number, the overpotential, η (where η = 𝐸 − 𝐸𝑓
0) is the function of 

potential change, then Eqn. 1.36 and 1.37 can be rearranged: 

 

ln|𝑖𝑟𝑒𝑑| =
−𝛼𝐹𝜂

𝑅𝑇
+ ln(F𝑆𝑘𝑓

0𝑐𝐴)        (Eqn. 1.39) 

 

and  

 

ln|𝑖𝑜𝑥| =
𝛽𝐹𝜂

𝑅𝑇
+ ln(F𝑆𝑘𝑏

0𝑐𝐵)        (Eqn. 1.40) 

 

where the latter term on the right-hand-side of the equations can be shorten by 

constant. Therefore according to Eqn. 1.35 and Eqn. 1.36, a plot of ln|i| vs. E can 

provide information about electron transfer coefficient, α. This plot is known as a 

Tafel plot (Fig. 1.9). The transfer coefficient can then be worked out from the slope of 

the linear region of the graph. 

 

As shown in Fig. 1.9, i0 is the exchange current (see Butler-Volmer kinetics). The 

value of slope is unaffected by the formal potential as the slope donates a ratio rather 

than an exact number. At equilibrium, the current tends to small and the logarithm of 
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current tends to infinity.  

 

 

Fig. 1.9 An example of Tafel plots 

 

1.3.4. Electrodes 

A three electrode system needs to be used in order to study the electrode kinetics 

quantitatively as two electrodes system normally cannot offer a stable reference 

potential. The three electrodes are: working electrode (WE), reference electrode (RE) 

and counter electrode (CE). 

1.3.4.1. Working Electrode 

 

Working electrode is the electrode often made of unreactive metal or carbon, which 

reactants can undergo electron transfer process at its surface. Electrons can be 

transferred either from the electrode to the reactant or vice versa. The WE is normally 

designed for a disc shape, with a well-defined area. Other geometries are also used for 

different purpose, e.g. a square shape WE is designed for a hydrodynamic flow 

system, as mass transport under laminar flow can be simulated relatively easier than 

that of disc shape. 
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1.3.4.2. Reference Electrode 

 

The reference electrode provides a stable reference potential to the working electrode 

under normal pressure and temperature (i.e. 1 atmosphere and 298 K). It is made from 

a highly reversible redox system that small passage of current is ineffective to its 

potential. A saturated calomel reference electrode and silver/silver chloride reference 

electrode are the common reference electrodes used in research. 

 

1.3.4.3. Counter Electrode 

 

In order for a current to flow a circuit must be made, between the working electrode 

and the counter electrode. The counter electrode is made from an unreactive 

conducting material that has high surface area in order to ensure that the current 

passed through the CE is sufficient. Commonly used materials are platinum or nickel 

wires. Electro-active species can undergo reaction at the CE surface, therefore it is 

necessary to keep WE and CE apart from each other since the chemicals produced at 

CE surface could interfere with the reactions that occurring at WE surface. 

 

 

Fig. 1.10. A schematic diagram of potentiostat. RE is reference, CE is counter electrode and WE is 

working electrode. 

 

Fig. 1.10 illustrates the basic design of a potentialstat, the operational amplifier is the 

key component as the feedback circuit drives the current between the working and 

counter electrode, while ensuring that there is no current passes through the reference 
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electrode circuit, with the working electrode at virtual earth.  

 

The potential, E, is applied to the working electrode, which is relative to the constant 

potential provided by the reference electrode: 

  

𝐸 = (𝛷𝑀 − 𝛷𝑆)𝑤𝑜𝑟𝑘𝑖𝑛𝑔 − (𝛷𝑀 −𝛷𝑆)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒   (Eqn. 1.41) 

 

Because the potential of reference electrode is constant, changing E gives the same 

change of (ɸM – ɸS)working. The counter electrode completes the circuit, allowing 

current to flow. This can be measured, allowing the current through the 

electrode-solution interface as a function of potential to be evaluated. The counter 

electrode will give whatever voltage is required (normally ±10 V or ±1000 V) to drive 

the electrode reaction, as the bulk solution gives resistance, Ri. As E=iRi, therefore for 

Eqn. 1.41, the term of iRi should be introduced to the equation:  

 

𝐸 = (𝛷𝑀 − 𝛷𝑆)𝑤𝑜𝑟𝑘𝑖𝑛𝑔 − (𝛷𝑀 −𝛷𝑆)𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 𝑖𝑅𝑖  (Eqn. 1.42) 

 

In order to minimise iRi drop, a large concentration of electrolyte (e.g. 0.1 mol dm
-3

 

potassium chloride in water) is added into the solution to reduce the resistance of the 

solution (see Section 1.41). In addition, chemists also use electrode with small area 

(microelectrodes) to encounter the iRi loss as the current is small. 

 

1.4. Mass transport 

 

At equilibrium, exchange current, i0, can be given as: 

 

𝑖0 = FS𝑘
0𝑐𝐴⁡𝑏𝑢𝑙𝑘

(1−𝛼)𝑐𝐵⁡𝑏𝑢𝑙𝑘
𝛼          (Eqn. 1.43) 
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By dividing Eqn. 1.40 by Eqn. 1.43, net current can be presented in terms of exchange 

current: 

 

𝑖 = 𝑖0[
𝑐𝐴⁡𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑐𝐴⁡𝑏𝑢𝑙𝑘
exp(−𝛼𝑓𝜂) −

𝑐𝐵⁡𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑐𝐵⁡𝑏𝑢𝑙𝑘
exp(𝛽𝑓𝜂)]   (Eqn. 1.45) 

 

where η is the overpotential, which equals to E-Eequilibrium. The current increases 

exponentially with the increase of η. The current increase dramatically in the 

beginning and tends to stable when overpotential becomes extreme. The stable current 

is then caused not by the kinetics but the rate of mass transport. 

 

 

Fig. 1.11. A schematic diagram of material transport at electrode surface. 

 

Fig. 1.11 illustrates the transfer of an electro-active species travel from bulk solution 

to an electrode surface. The chemical reaction, adsorption and desorption processes 

occur close to the electrode surface, whereas a solution dissolved species must travel 

from bulk solution to this region to react, therefore mass transport is essential. There 

are three major types of mass transport: diffusion, migration and convection. The flux 

of mass transport, ji, can be described by equation: 
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𝑗𝑖 = −𝐷𝑖∇𝑐𝑖 −
𝑧𝑖𝐹

𝑅𝑇
𝐷𝑖𝑐𝑖∇ɸ+ 𝑐𝑗𝑣           (Eqn. 1.46) 

 

Eqn. 1.46 indicates that the flux of material i can be described by three terms, the first 

term describes the contribution of diffusion, middle term represents the migration 

distribution and the latter term is contributed by convection. The contribution of each 

of these terms is discussed. 

 

1.4.1. Migration 

Electromigration in solution is caused by an electric field that results the movement of 

charged species. For example, a negatively charged species can be attracted by a 

positively charged electrode and causes the species to move towards to the electrode 

in the solution. The transport number, ti, of ion i in solution which contains both ion i 

and j, can be described by Eqn. 1.47. 

 

𝑡𝑖 =
|𝑧𝑖|𝑢𝑖𝑐𝑖

∑ |𝑧𝑗|𝑢𝑗𝑐𝑗
𝑛
𝑗=1

                  (Eqn. 1.47) 

 

where z, u, c represent charge, mobility and concentration, respectively. In addition, 

mobility of ion i can be written as: 

 

𝑢𝑖 =
|𝑧𝑖|𝐹𝐷𝑖

𝑅𝑇
                   (Eqn. 1.48) 

 

Therefore from Eqn. 1.48, it is shown that the transport number is proportional to the 

mobility ratio of ion i and j, e.g. in HCl solution, if uH+≈4uCl-, then tH+=0.8 and 

tCl-=0.2. Additionally, in the near-electrode-range, the current is contributed by both 

migration and diffusion, which leads to Eqn. 1.44: 

 

𝑖𝑡𝑜𝑡𝑎𝑙 = 𝑖𝑚 + 𝑖𝑑                 (Eqn. 1.49) 

 



35 

 

where im and id represent the current contribution by migration and diffusion, 

respectively. 

 

The migration flux of the electroactive ions can be decreased or even eliminated by 

adding excessive indifferent inert electrolyte, since 𝑡𝑖 → 0 leading 𝑖𝑚 → 0.  

1.4.2. Diffusion 

Diffusion is an entropically driven process which describes the random movement of 

species to the homogenization due to thermodynamics. The species move via a 

concentration gradient (a chemical potential gradient). Therefore the rate of diffusion 

at a certain point in the solution is dependent on the concentration gradient. The rate 

of diffusion can be described as flux in mol
-1 

s
-1 

cm
-2

. The relationship between flux 

and concentration gradient for species A at position x and time t (x,t) can be explained 

by Fick’s first law: 

 

𝑗𝐴(𝑥, 𝑡) = −𝐷𝐴
𝜕𝑐𝐴(𝑥,𝑡)

𝜕𝑥
              (Eqn. 1.50) 

 

The relationship between concentration gradient and time in one dimension can be 

described by Fick’s second law: 

 

𝜕𝑐𝐴(𝑥,𝑡)

𝜕𝑡
= 𝐷𝐴 [

𝜕2𝑐𝐴(𝑥,𝑡)

𝜕𝑥2
]           (Eqn. 1.51) 

 

For any spatial geometry, Fick’s second law can be generalized: 

 

𝜕𝑐𝐴

𝜕𝑡
= 𝐷𝐴∇

2[𝐴]                 (Eqn. 1.52) 

 

Where ∇2
 is the Laplacian operator. 
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1.4.3. Convection 

There are two forms of convections: natural and forced. Natural convection is caused 

by the presence of density gradients, thermal gradients, etc. in a solution. It causes the 

material to flow from dense to less dense region. Because electrolysis can cause 

changes in solution density, which leads to a convection effect, therefore the time 

duration of voltammetric measurements are often controlled within 10 seconds in 

order to minimise the convection effect. Forced convection is caused by an external 

force that agitates the solution, normally by mechanical means. In this case, 

convection normally dominates the mass transport in the system. Because convection 

is deliberately induced to the system, therefore its hydrodynamic behaviour is well 

defined. Consequently, there are several convection controlled experiments, such as 

rotation disc voltammetry, sono-voltammetry and channel flow voltammetry. 

Convection can be simply treated based on a diffusion layer approach. Based on 

Fick’s first law in one dimension, the flux of convection for species A can be shown in 

Eqn.1.53. 

 

𝑗𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = [A]𝑉(𝑥)             (Eqn. 1.53) 

 

where V(x) is the local fluid velocity at point x in cm s
-1

. The relationship between 

concentration, time and position is then given by: 

 

𝜕[𝐴]

𝜕𝑡
= −V(𝑥)

𝜕[𝐴]

𝜕𝑥
              (Eqn. 1.54) 

 

1.5. Electrochemical measurements 

 

There are several major methods for electrochemical measurement and two of them 

were used in this thesis: potential controlled measurement and current controlled 

measurement. Cyclic voltammetry (CV), square wave voltammetry (SWV), 
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polography, chronoamperometry etc. are examples of voltage controlled method. 

Chronopontentiometry is an example of current controlled method.  

 

1.5.1. Cyclic voltammetry 

 

Cyclic voltammetry (CV) is one of the most widely used electroanalytical method for 

studying electroactive species.
[18]

 CV can be used for analysing solids
[19]

, polymers
[20]

, 

liquid/liquid systems
[21]

, biological systems
[22, 23]

 and most commonly liquid solutions. 

A potentiostat (Fig. 1.10) controls the whole system. A modern potentiostat 

(controlled by a modern computer through an operation software or manually 

controlled through an oscilloscope) usually has the capability of carrying out a range 

of different voltammetric measurements such as cyclic voltammetry, 

chronoamperometry, and linear sweep voltammetry. Cyclic voltammetry is the 

predominate method employed within this thesis. 

 

         

Fig. 1.12. A typical plot of potential against time for a cyclic voltammetry experiment. 

 

Cyclic voltammetry is a potential controlled method, also known as the sweep 

potential method. A potential is scanned from E0 to E1 and normally back to E0 (Fig. 

1.12) or other potentials other than E0 in a certain timescale. E1 normally needs to be 

higher or lower than the standard potential, E
0
 in order for a redox reaction to occur. 
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With the change of potential, the current passed through the electrode changes due to 

oxidation or reduction processes, therefore normally a cyclic voltammogram is a plot 

of current against potential. An example of a cyclic voltammetry at macroelectrode is 

shown in Fig. 1.13. 

 

Fig. 1.13. An example of cyclic voltammetry created using DigiSim®  with an A + e = B mechanism. 

Parameters: Estart: -0.3 V; Eswitch: -0.3 V; Eend: -0.3 V; E0 = +0.1 V; T = 298.2 K; planar electrode 

geometry = 10 cm2; initial concentration of A = 0.001 mol dm-3; E0 = 0.1 V; using the semi-finite 

diffusion model. 

1.5.1.1. Reversibility  

Based on the different electrode kinetics, the electrochemical reactions can be 

described as reversible, quasi-reversible and irreversible. An electrochemically 

reversible process occurs when the rate of electrode reaction is faster than that of the 

mass transport. Conversely, if the rate of electrochemical reaction is slower than the 

rate of mass transport, then the reactant is electrochemically irreversible. Normally 

with D = 10
-5

 cm
2
 s

-1
 and at 298 K, the reversibility can be described by a standard 

heterogeneous rate constant, k
0
. Matsuda and Ayabe

[24]
 suggested that, for a reversible 

case, k
0
 > 0.3v

1/2
 cm s

-1
, for a quasi-reversible case, k

0
 in range of less than 0.3v

1/2
 cm 

s
-1

 and greater than 2 ⅹ 10
-5

v
1/2

 cm s
-1

, and for a totally irreversible case, k
0
 < 2 ⅹ 

10
-5

v
1/2

 cm s
-1

, where v is the scan rate, respectively. 
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If consider a simple one electron transfer process (Scheme 1.1, with n = 1), the 

process can be described as Er, where the E stands for electron transfer and the 

subscript, r, stands for reversible process.  

 

For a reversible limit case, the sweep peak current can be given by the 

Randles-Sevčik equation
[25, 26]

: 

 

𝑖𝑝 = 0.4463𝑛F𝐴 [
𝑛𝐹

R𝑇
]
1/2
𝑐𝐷1/2𝑣1/2       (Eqn. 1.55) 

 

For a reversible CV, the rate of electron transfer is controlled by diffusion. The 

separation of cathodic and anodic peak potentials is around 56/n mV. In real cases, the 

separation in range 60-70 mV can be considered as reversible. The peak potential in 

reversible process is independent of scan rate. The ratio of cathodic to anodic currents 

is unity at all different scan rates. As shown in Eqn. 1.55, the peak current is 

proportional to the square root of the scan rate, therefore graph of log ip vs. log v is 

normally plotted in order to distinguish between a diffusion controlled process and an 

adsorbed process. In practical cases, the slope equals to 0.5 indicates the process is 

under diffusion controlled; a slope of unity indicates the electroacitve material is 

adsorbed on the electrode. 

 

For an irreversible case, Eirr, the Randles-Sevčik equation is modified to be: 

 

𝑖𝑝 = 0.496𝑛F𝐴 [
α𝑛F

R𝑇
]
1/2
𝑐𝐷1/2𝑣1/2        (Eqn. 1.56) 

 

As it can be seen from Eqn. 1.56, the peak current is still proportional to the square 

root of scan rate due to the diffusion controlled process. An extra term, the symmetry 

coefficient of the electron transfer process, is introduced in the Randles-Sevčik 

equation for irreversible case. For a single electron irreversible electrochemical 

process, the separation of peak potential varies with the change of scan rate at 298 K 

is given by: 
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∆𝐸𝑝 =
59.4

𝛼
+ constant           (Eqn. 1.57) 

 

where ΔEp is the potential difference between oxidative and reductive peaks. It is also 

known as approximately 30 mV shift per decade change in scan rate. 

 

A quasi-reversible process sits in between reversible limit and irreversible limit. In 

practice, quasi-reversible processes appear reversible at slow scan rate and afforts 

irreversible behaviour at high scan rate as the limits which are described by Matsuda 

and Ayabe
[24]

. Normally a plot of peak potential versus log10 v is used to find the 

reversible limit. The peak potential initially independent on increasing scan rate and 

the peak potential starts to shift in high scan rates, therefore reversible limit equations 

can be applied in the reversible regime and irreversible limit equations can be applied 

in the irreversible regime.  

 

In addition, the transit between reversible to quasi-reversible and on to irreversible 

process can be described by plotting peak current against square root of scan rates 

(Fig. 1.14). 

 
Fig. 1.14. Plot of peak current against square root of scan rates corresponding to reversibility 

changes. 
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1.5.1.2. Coupled homogeneous reactions 

1.5.1.2.1. EC process 

A reversible heterogeneous electron transfer process sometimes can be coupled with 

an irreversible homogeneous chemical process, the latter followed by the former, and 

this process is normally termed as an ErevCirrev process. A general illustration can be 

given by: 

 

A + 𝑒− ⇄ 𝐵  (E)               (Scheme 1.4) 

B → C  (C)                (Scheme 1.5) 

 

The most obvious indicator of an ErevCirrev process is losing a reverse peak in the 

cyclic voltammetry as the homogeneous chemical reaction consumes the product, 

which is generated by the electrochemical process and a shift on the peak potential. 

Alternatively, the reverse peak may change shape (i.e. decrease in peak current) as the 

homogeneous chemical reaction consumes certain amount of product but not 

significant enough to loss the reverse peak.  

 

In a typical ErevCirrev process, the ratio of forward peak current and reverse peak 

current is less than 1. The peak potential shifts ~30/n mV at 298 K per decade change 

in scan rate. The shape of voltammogram appears more reversible at fast scan rate (e.g. 

1000 V s
-1

). 

 

In some cases, the homogeneous chemical reaction is reversible. The general equation 

is given by: 

 

A + 𝑒− ⇄ 𝐵  (E)              (Scheme 1.6) 

B ⇄ C  (C)                 (Scheme 1.7) 
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The diagnostics of an ErevCrev process are similar to the characteristics of an ErevCirrev 

process except a decrease in the reverse peak can be observed at high scan rate and 

tends to more reversible at slow scan rate (e.g. 0.01 V s
-1

). 

 

There is another important case of EC process, which is known as catalytic or EC′. 

The redox couple acts as a mediator. The general equations are given by: 

 

A + 𝑒− ⇄ 𝐵  (E)              (Scheme 1.8) 

B + C ⇄ A + D  (C)             (Scheme 1.9) 

 

As shown in Scheme 1.9, the chemical reaction forms A and D, and A “feeds back” 

into the electrode reaction, and as a result, the current response of electron transfer 

process is increased. When the concentration of chemical B is high enough, the shape 

of voltammgram starts to trends to a sigmoidal shape which similar to a steady state 

voltammogram. The increase concentration of B causes the increase of concentration 

of A at electrode surface. This leads to the change of the ratio of diffusion and reaction 

layer thickness, λ. With λ less than 0.1, the diffusion is faster than the chemical 

reaction, on the other hand, with λ greater than 1, the process becomes independent on 

diffusion and the shape of voltammogram tends to sigmoidal. An example of a typical 

cyclic voltammetry response of EC′ process is shown in Fig. 1.15.  

 

Fig. 1.15. Simulated example of EC′ reaction 
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As shown in Fig. 1.15, there is an enhancement in the reduction peak by the addition 

of C. The corresponding reduction peak decrease by the addition of C due to the 

consumption of B. When a large amount of C added to the solution, the shape of wave 

transformed from a conventional “duck shape” to a sigmoidal shape and the current 

becomes limiting current.  

 

The mass transport near electrode is described in Fig. 1.16. As it can be seen that in 

Fig. 1.16, the current response on the electrode can be depended on: 

- concentration of A, 

- concentration of C, 

- rate of mass transport of A, and 

- rate of mass transport of C. 

 

 

Fig. 1.16. Mass transport of EC′ reaction. 

The cyclic voltammetry response corresponding to the first order rate-determine step 

of A and C can be different governed by only two dimensionless parameters: 

 

- log(
𝑅𝑇𝑘𝑐𝐴

𝐹𝑣
)                

- log (
𝑐𝐶

𝑐𝐴
)    
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Fig. 1.17. Cyclic voltammetry graphs in kinetic zone of EC′ reaction mechanism. Reprinted with 

permission from Savéant, J.-M., Chem. Rev. 2008, 108, 2348-2378.[27] Copyright (2008) American 

Chemical Society. 

 

As shown in Fig. 1.17, in the “no substrate consumption” zone, the response 

transferred from a reversible “no catalytic” response (i.e. the “the duck shape”) to a 

sigmoidal shape and becomes no dependent on scan rates. The catalytic reaction is 

faster compared to diffusion. The plateau current, Ip, can be used to measure the rate 

constant: 

𝐼𝑃 = F𝑐𝐴𝐷𝐴
1/2𝑘1/2𝑐𝐶

1/2𝑆             (Eqn. 1.58) 

 

where F is Faraday constant, cA is the concentration of species A, DA is the diffusion 

coefficient of species A, k is the first order rate constant, cC is the concentration of 

species C and S is the area of electrode, respectively.  

 

On the other hand, when the system controlled by the diffusion of substrate, C, then 

the voltammogram looks like the two-wave “total catalysis” response, which consists 

on the top left of zone diagram (Fig. 1.17). And the peak current of the first wave, Ip’, 
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can be described as: 

 

𝐼𝑃′ = 0.609𝑆F√
𝑐𝐶𝑣

R𝑇
               (Eqn. 1.59) 

 

where R is gas constant and T is temperature in K, respectively.  

 

In this case, the rate constant can be worked out by peak potential instead of current: 

 

𝐸𝑝 = 𝐸𝐴/𝐵
0 − 0.409

R𝑇

F
+
R𝑇

F
ln(

R𝑇𝑘𝑐𝐴
2

F𝑣𝑐𝐶
)        (Eqn. 1.60) 

 

In practice, the experimental data normally is used to compare with digital simulated 

results and analyse the reaction mechanisms.  

 

An example of EC process can be the oxidation of octacyanomolybdate (V)
[28]

, and an 

example of EC′ reaction can be the oxidation of cysteine which mediated by the 

oxidation of octacyanomolybdate (V)
[28]

. In this thesis, the EC′ reaction was studied 

through the oxidation of thiols using chlorpromazine as mediator. 

 

1.5.1.2.2. ECE and disproportionation process 

If there is another heterogeneous electron transfer process followed by an EC process, 

it can be described as an ECE process. An example of ECE process can be the 

reduction of p-halonitrobenzene
[29]

. Assuming both electron transfer process are 

electrochemical reversible, a general equation of ECE process can be given by: 

 

A + 𝑒− ⇄ 𝐵  (E)              (Scheme 1.10) 

B
𝑘1
→ C  (C)                (Scheme 1.11) 
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C + 𝑒− ⇄ 𝐷  (E)              (Scheme 1.12) 

 

There are a few situations can be considered for an ECE process. First, if the formal 

potential of A/B couple is more negative than that of C/D couple, there will be only 

one peak shown in the voltammogram, and the reverse peak can only be seen if k1 is 

small compare to the rate of electron transfer, and it will disappear when the chemical 

reaction is considerably fast (i.e. large k1). Secondly, if the formal potential of A/B 

couple is less negative than that of C/D couple, then one reversible wave can be seen 

when chemical reaction is slow. As the chemical reaction becomes faster (i.e. k1 is 

bigger), the second reversible wave can be seen and the wave corresponding to the 

first redox couple becomes less reversible, when the chemical reaction is fast enough, 

the second wave becomes reversible and reaches its maximum peak current at a fixed 

scan rate, whereas the first redox couple (A/B couple) peak becomes fully irreversible 

with the disappearance of its reverse peak.  

 

In some coupled phases reaction cases, disproportionation could happen, and the 

process (DISP process) can be given by equations: 

 

A + 𝑒− ⇄ 𝐵 (E)              (Scheme 1.13) 

B ⇄ C  (C)               (Scheme 1.14) 

B + C ⇄ A + D  (DISP)          (Scheme 1.15) 

 

There are different types of DISP reaction depending on the rate determining step. If 

the step of Scheme 1.14 is the rate limiting step, then the reaction can be called as 

DISP 1 reaction, whereas if the rate determine step is on the step of Scheme 1.15, a 

second order reaction, then the process can be presented as DISP 2. It is relatively 

easy to distinguish between DISP 2 and DISP 1 or DISP 2 and ECE as there is a shift 

of peak potential with changing the concentration of A and the peak potential shifts 

approximately 20 mV per decade change of scan rate. However, it is hard to 
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discriminating between DISP 1 and ECE as their voltammetric behaviours are similar. 

There are several approaches were made to distinguish between DISP 1 and ECE such 

as by using a double potential step chronoamperometry
[30]

, using a microband channel 

flow electrode
[31]

, or using a competing homogeneous
[31]

 or heterogeneous
[32]

 

processes or even via the use of microelectrode waveshape analysis.  

 

1.5.1.2.3. CE process 

There is a special case of coupled homogeneous and heterogeneous process known as 

CE process, which the heterogeneous electron transfer follows a homogeneous 

chemical reaction. The process is given by: 

 

A ⇄ B  (C)                 (Scheme 1.16) 

B + 𝑒− ⇄ 𝐶  (E)               (Scheme 1.17) 

 

Because the electron transfer process is followed by the chemical reaction, therefore 

the faster the chemical reaction, the sharper peak will appear in the voltammogram. 

There are a few examples of CE process such as reduction of formaldehyde
[33]

 and 

oxidation of 1,2,3-trimethylhexahydropyridazine in butyronitrile with electrolyte
[34]

. 

The peak shape changes with both changing rate of chemical reaction and scan rates.  

 

1.5.2. Square wave voltammetry 

Square wave voltammetry (SWV) becomes one of the most important 

electroanalytical tools in electrochemistry recently due to its well understood theory
[35]

 

and extremely high sensitivity, especially to surface-confined electrode reactions. 

Therefore SWV is used mainly on analytical purposes, specifically on determination 

of electroactive organic molecules which are adsorbed on the surface of electrode
[36]

.  
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A schematic diagram is shown in Fig. 1.18 for a potential-time change for a SWV. As 

shown in Fig. 1.18, the potential changes in a square wave form as increase 

experimental time. The initial potential starts at E0, then the potential goes up to 

E0+Esw, which Esw is amplitude, and it is held for Δt/2 (pulse duration) seconds and 

the potential then goes down to E0+(-Esw). Δt is known as period, and the frequency 

can be illustrated to be f = Δt
-1

. ΔE represents the potential increment of the staircase 

waveform. The currents are measured at the end of each pulse (both if and ib).  

 

 
Fig. 1.18 A schematic diagram of the principle square wave voltammetry. 

 

In practice, the net current, which subtracts ib from if is normally shown in the 

software. Fig. 1.19 shows a typical SWV response. 
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Fig. 1.19. An example of SW voltammogram of oxidation of 1 mM 2,4,6-Trihydroxybenzoic acid in 

water with 0.1 M KCl. Initial potential = 0 V, end potential = +1.23 V, step potential (ΔE) = 0.005 V, 

amplitude = 0.02 V and frequency = 25 Hz. Blue line represents the net current, red line represents 

forward current and green line represents the backward current. Ag/AgCl was used as reference 

electrode and a nickel wire was used as a counter electrode. 

 

As shown in Fig. 1.19, the net current is usually shown as final view of a SW 

voltammogram. The charging current in this case can be negligible as the currents are 

measured after each pulse. Note that the backward current is positive and without a 

peak is due to small value of ESW. The net peak current ip has linear dependence on the 

square root of frequency (f): 

 

𝑖𝑝 = 𝑛F𝑆𝐷
1/2𝜑𝑝𝑓

1/2𝑐               (Eqn. 1.61) 

 

where φp is dimensionless peak current and it depends on nESW and nΔE. In an 

irreversible case, ip has a linear function of log f, and the slope of the plot is given by: 

 

𝜕𝐸𝑝

𝜕𝑙𝑜𝑔𝑓
= 2.3R𝑇/2𝛼𝑛                (Eqn. 1.62) 

 

where α is the kinetic parameter known as symmetry coefficient of the electron 

transfer process.  

1.5.3. Potential step chronoamperometry 

Unlike a SWV method, potential step chronoamperometry has a fixed potential and 

the current response is monitored as a function of time. Fig. 1.20 illustrates the basic 
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wave-shape and current-time curve of a potential step chronoamperometry.  

 

Fig. 1.20. Principle of chronoamperometry. Potential change with time changing (a); current 

change with changing time (b). 

 

The potential is firstly held at a level, E1, typically at an energy where no electrolysis 

can happen. Then at time t0, the potential is stepped to E2, a potential that can cause 

electrolysis or electrochemical reaction of the electroactive species at the electrode 

surface. Therefore a large current can be seen in Fig. 1.20(b) at t0. The materials start 

to deplete and the current drops very fast after t0. On a macroelectrode, as diffusion 

profile is linear one-dimensional, the current decays square root of time, whereas on a 

microelectrode, the current can reach steady state.  

 

A common post-experimental analysis for a potential step chronoamperometry is to fit 

experimental data to the Shoup-Szabo
[37]

 equation. This method is based on a 

microelectrode. Briefly, it involves a dimensionless time variable: 

 

τ =
4𝐷𝑡

𝛼2
                     (Eqn. 1.63) 

 

and the dimensionless current, ψexp can be given by: 

 

𝜓exp =
𝑖

4𝑛𝐹𝐷𝑎𝑐𝑏𝑙𝑢𝑘
                (Eqn. 1.64) 

 

In addition, the theoretical dimensionless current, ψthy, is given by: 
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𝜓𝑡ℎ𝑦 = 0.7854 + 0.8862𝜏
−0.5 + 0.2146exp⁡(−0.7823𝜏−0.5)  (Eqn. 1.65) 

 

with this expression is accurate to 0.6% for all times.  

 

By using these three equations, a fitting can be made by plotting ψexp and ψthy against 

dimensionless time, 𝜏, by varying D and n. Therefore a best fit predicts n and D. A 

difference minimisation parameter
[1]

, ℘, which given by: 

 

℘ =
1

∑ 𝑠
∑

|𝜓𝑒𝑥𝑝−𝜓𝑡ℎ𝑦|

𝜓𝑒𝑥𝑝
𝑠               (Eqn. 1.66) 

 

Where s is number of data sets, respectively. Therefore the minimal number of ℘ 

indicates the best fitting. 

 

The other common method for analysing chronoamperometry is using Cottrel 

equation. By applying Fick’s second law, the current response under diffusion 

controlled condition is given by: 

 

𝑖 =
𝑛F𝐴𝑐𝑏𝑢𝑙𝑘𝐷

1/2

𝜋1/2𝑡1/2
                     (Eqn. 1.67) 

 

As shown by the Cottrell equation, under diffusion controlled the current decreases 

exponentially with time (Fig. 1.20b). In practice, the Cottrell equation is normally 

used to compare theoretical and experimental data, similar to Shoup-Szabo equations. 

However, in order to use the Cottrell equation, the timescale must be less than 10 s 

and greater than the charging time of the electrode.  

1.5.4. Voltammetry at microelectrodes 

The most of the methods mention in previous sections are based on macroelectrode 
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(apart from the chronoamperometry) that the diffusion profile is linear one-dimension 

diffusion. However, the diffusion profile at a microelectrode is different from that of 

on macroelectrodes. This can be explained by flux: 

 

𝑗 = D𝑐𝑏𝑙𝑢𝑘 (
1

√𝐷𝜋𝑡
+
1

𝑟𝑒
)              (Eqn. 1.68) 

 

Where j is flux in mol cm
-2

 s
-1

 and re is the radius of electrode, respectively. As it can 

be seen from Eqn. 1.68, flux is dominated by two terms: √(Dπt) and re. Therefore if 

the electrode is large and diffusion is linear (one-dimenonional), then re is 

significantly greater than √(Dπt), which leads the flux to be dominated by √(Dπt): 

 

𝑗 =
𝑐𝑏𝑙𝑢𝑘√𝐷

√π𝑡
                   (Eqn. 1.69) 

 

Then the flux is proportional to square root of time. Nevertheless, In the case of 

microelectrode, √(Dπt) becomes much greater than the electrode radius, and the flux 

is then dominated by the radius: 

 

𝑗 =
𝐷𝑐𝑏𝑙𝑢𝑘

𝑟𝑒
                    (Eqn. 1.70) 

 

It has been illustrated in Eqn. 1.38 that flux is a function of current, and then the term 

j can be substituted by current: 

 

𝑖 =
𝑛F𝑐𝑏𝑙𝑢𝑘𝐴𝐷

𝑟𝑒
                  (Eqn. 1.71) 

 

where A is the area of electrode. If microelectrode is disc shaped, then: 

 

𝑖𝑙𝑖𝑚 = 4𝑛F𝐷𝑟𝑒𝑐𝑏𝑙𝑢𝑘                 (Eqn. 1.72) 

 

Comparing with Eqn. 1.71 and Eqn. 1.69, when the radius of electrode is small, 
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current (flux) becomes independent on time, thus a steady-state current is established.  

 

 

Fig. 1.21. Current density change when electrode size changes at cyclic voltammetry. 

 

At a macroelectrode, diffusion is dominated by planner diffusion profile. As the radius 

of the disc decreases, the surface to edge ratio decreases, making edge diffusion 

equally (if not more) important. This brings about an enhanced flux of material and 

results in a steady-state response, which is shown in Fig. 1.21. 

 

1.5.5. Channel electrodes 

 

In this project, channel flow experiments were carried out and measured by using 

cyclic voltammetry. Because the solution is flowing through the cell with the working 

electrode placed in, the electrode process is no longer diffusion controlled; this is 

similar to the cyclic voltammetry at microelectrodes as mentioned in previous section. 

Although a steady-state current is established in this circumstance, unlike to the 

microelectrode, there are two forms of mass transport in this system: convection and 

diffusion.  

 

In order to understand the mass transport, laminar flow must be established as it 
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provides a well-defined mass transport over a wide range of flow rates. Therefore 

under laminar flow steady-state, the components velocities are given by: 

 

𝑣𝑥 = V0(1 −
(𝑦−ℎ)2

ℎ2
)                 (Eqn. 1.73) 

𝑣𝑦 = 0                      (Eqn. 1.74) 

𝑣𝑧 = 0                      (Eqn. 1.75) 

 

where x, y, z are the coordinates and h is the half-height of the channel that defined in 

Fig. 122. V0 respresents the velocity of the solution at the centre of the channel and 

can be defined as: 

 

𝑣𝑓 = 𝑣0 ∫ ∫ (1 −
(𝑦−ℎ)2

ℎ2
)

2ℎ

0

𝑑

0
𝑑𝑦𝑑𝑧 =

4

3
𝑉0ℎ𝑑      (Eqn. 1.76) 

where Vf is the volume flow rate in cm
3
 s

-1
 and d is the width of channel. 

 

In addition, the convective diffusion equation for species A is given by: 

 

𝜕[𝐴]

𝜕𝑡
= 𝐷𝐴∇

2[𝐴] − (𝑉𝑥
𝜕[𝐴]

𝜕𝑥
+ 𝑉𝑦

𝜕[𝐴]

𝜕𝑦
+ 𝑉𝑧

𝜕[𝐴]

𝜕𝑧
)     (Eqn. 1.77) 

 

This equation can be simplified by using laminar flow channel electrode: 

 

- as the height of the channel is relatively small and the laminar flow, the 

convections on both y and z axis are equal to zero, 

- as steady-state measurements are made, the time dependent is removed (i.e. 

∂[A]/∂t = 0), and 

- because the electrode itself is macro-sized, and the flow cell is properly designed, 

the axial and transverse diffusion can be neglected at relatively high flow rates, 

given by: 
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𝑣𝑥
𝜕[𝐴]

𝜕𝑥
≫ 𝐷𝐵(

𝜕2[𝐵]

𝜕𝑥2
+
𝜕2[𝐵]

𝜕𝑧2
)          (Eqn. 1.78) 

 

Therefore Eqn. 1.77 becomes: 

 

𝐷𝐵
𝜕2[𝐴]

𝜕𝑦2
= 𝑣𝑥

𝜕[𝐴]

𝜕𝑥
                (Eqn. 1.79) 

 

By applying Lévêque approximation, the limiting current is given by: 

 

𝐼𝑙𝑖𝑚 = 0.925𝑛𝐹𝑐𝐴𝑤(𝑥𝑒𝐷𝐴)
2/3(

𝑣𝑓

ℎ2𝑑
)1/3        (Eqn. 1.80) 

 

Where Ilim is the limiting current measured in the experiment, n is number of moles 

electrons transferred in the process, F is the Faraday’s constant, cA is the concentration 

of chemical A in mM, w is width of electrode in meter, xe is the length of electrode in 

meter, DA is the diffusion coefficient in m
2 

s
-1

, Vf is the velocity in m
2
 s

-1
 which is 

known as flow rate, h is half of the height of the channel and, d is the width of 

channel (symbols refer to Fig. 1.22).  

 

 

Fig. 1.22. A schematic diagram of typical channel flow cell. 

 

More details of the channel flow setup can be found in experiment section (section 

2.2). 
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1.6. Aims of this thesis 

The aims of this thesis are to understand molecular electrochemistry by using several 

of chemicals, which involves different reaction mechanisms such as single 

heterogeneous electron transfer, EC, ECE and EC’ reactions and the impact of mass 

transport behaviour in a variety of media such as aqueous, non-aqueous solvents and 

lyotropic liquid crystals. The study is based on varies of electrochemical analytical 

techniques such as CV, SWV, chronoamperometry, and also combine with other 

analytical tools such as UV-vis spectroscopy and X-ray scattering. The results are then 

analysed and understood by using the theories which are mentioned previously in this 

chapter and also combined with numerical simulation of transport phenomenon.  
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2. Experimental 

2.1. Instrumentation 

2.1.1. Potentiostat 

Electrochemical measurements were carried out using conventional three electrode 

system. Most of the experiments in this thesis were undertaken using a μ-Autolab type 

III PGSTAT30 potentiostat, Netherland and controlled by an Intel
®

 Core
™

 2 processor 

computer using Window
®

 Vista as operating system. A ModuLab potentiostat 

(Solarton analytical) which was controlled by an Intel
®

 Core
™

 2 processor computer 

using Window
®

 Vista was used occasionally in this project. The software used to 

control the Autolab system was GPRS, written by Metrohm Autolab B.V. and the 

software used to control the ModuLab system was Solarton ModuLab electrochemical 

Software written by Solarton Analytical.  

 

2.1.2. Electrodes 

In all cases, unless otherwise mentioned, the electrochemical measurements were 

carried out using a three-electrode system. A platinum or nickel wire was serving as 

the counter electrode. The platinum or nickel wire was coiled in order to increase its 

surface area.  

 

2.1.2.1. Working electrode 

A disc macro-electrode (either made from glassy carbon or gold, BAS), shown in Fig. 

2.1, was used as working electrode with 3 mm diameter electro-active area. Working 

electrodes were polished using increasing finer grades of carburundum paper (P400, 
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P1200, P2400, P4000 grade, Presi, France) and followed by polishing on a wetted, 

rayon polishing cloth using 0.3 μm alumina slurry (Presi, France).   

 

 

Fig. 2.1. A schematic diagram of the design of a disc macro-electrode. (image taken from the Bio 

Analytical System Inc. producte catalogue, ©  BASi) 

 

The micro-working-electrode was made from either gold or carbon fibre and also disc 

shaped. The gold microelectrode was made in house and calibrated by the redox 

reaction of ferrocene in acetonitrile, the diameter for gold microelectrodes were found 

to be 33 μm and 50 μm. The carbon fibre electrode was purchased from BAS with 11 

μm diameter electroactive surface area (Fig. 2.2). 

 

Fig. 2.2. A schematic diagram of the carbon fibre microelectrode used. (image taken from the Bio 

Analytical System Inc. producte catalogue, ©  BASi) 

 

2.1.2.2. Reference electrode 

 

A reference electrode were used either a saturated calomel electrode (obtained from 

BAS) or a siver/silver chloride electrode (obtained from BAS). Fig. 2.3 illustrates the 

silver/silver chloride reference electrode. The saturated calomel electrode potential is 

+0.242 V vs. standard hydrogen electrode (SHE) and the silver/silver chloride 
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electrode potential is +0.222 V vs. SHE.
[38]

 

 

 

Fig. 2.3. A schematic diagram of the silver/silver chloride reference electrode used (image taken 

from the Bio Analytical System Inc. producte catalogue, ©  BASi) 

 

2.1.2.3. Channel electrode 

 

The channel flow electrode is mainly made by two separate parts (Fig. 2.4), the base 

plate was made of PTFE, and a channel was made in the plate. The plate is covered by 

an optically pure silica cover plate (Optiglass) in order to seal the channel. The two 

parts are sealed by super glue (Stick 2, Ever Build). The reason for using silica as 

cover plate is because photochemistry can be then carried out in-situ with this system.  

 

Fig. 2.4. A schematic design for a channel electrode in 3D. 

 

A platinum slide was sat in the channel positioned at 1/3 of the length of channel (Fig. 
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2.5), to afford sufficient distance to establish laminar flow, the platinum was made in 

squared shape with 5.5 mm length and 4.5 mm width. The slide was connected via a 

conductive wire through a hole at the bottom of the channel.  The squared shape 

allows a well-defined surface area and flow direction. The long lead-in positioned 

upstream of the electrode to allow the full development of Poiseuille flow. The 

electrode was polished by using a cotton swab with 0.3 μm alumina powder. 

 

Fig. 2.5. Top view of the base plate with platinum electrode in the channel. 

 

A syringe pump (Fusion 200, CHEMYX, USA) was used to drive the solution to flow 

in well-defined flow rates. The reference electrode was placed upstream relative to the 

working channel electrode and counter electrode was placed downstream to the 

working electrode so that the products formed on the counter electrode would not 

interfere with the process occurring on the working electrode.  

2.1.2.4. Other equipments 

The white light source for photo-catalytic electrochemical reactions in this project 

used was a two spot fiber optic illuminator manufactured by Brunel Microscopes Ltd.  

 

The light source used for channel electrode experiment was an OptoScan 

monochromator, CAIRN RESEARCH.  
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Balance used in this project is Denver SI-234 by Denver Instrument. 

2.2. Reagents 

2.1.1 Chemicals 

All the chemicals used in this project were purchased from Sigma-Aldrich unless 

otherwise mentioned.  

 

Purified water was obtained from Centra-R200 HFV water-purifying system (of 

resistivity greater than 18.2 MΩ cm), made by GLGA. 

 

2.2.1. Electrolyte 

The electrolyte used in organic solvents was mainly either tetrabutylammonium 

perchlorate (TBAP) or tetrabutylammonium tetrafluoroborate (TBAT). TBAP was 

purchased from Sigma-Aldrich. TBAT was house synthesised by mixing 130 g 

tetrabutylammonium bisulfate and 44 g sodium tetrafluoroborate in purified water 

(800 mL). The precipitate was obtained by filtration and then dissolved in 

dichloromethane (HPLC grade, purchased from Fisher Scientific). Magnesium 

sulphate (laboratory reagent grade, purchased from Fisher Scientific) was used to dry 

the solution. The magnesium sulfate was removed by filtration and the 

dichloromethane evaporated off. The product was then recrysatllised by 60/40 petrol 

ether (purchased from Fisher Scientific, reagent grade).  

2.3. Experimental preparations 

Different coupled homogenous reactions have been studied including 

electrochemically induced ion release, protonation, catalysis and the study of mass 

transport in lyotropic liquid crystals.  
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2.3.1. Electrochemically induced ion release 

Electrochemical reduction of nitroprusside ion was investigated in non-aqueous 

solvent as a typical ECE process with a cyanide ion release
[39]

. In order to solubilise 

nitroprusside ion in non-aqueous solvent (i.e. acetonitrile), Tetra-n-butylammonium 

nitroprusside (short for TBANP), [N(C4H9)4]2Fe(CN)5NO, was used in this project. It 

was prepared by metathesis of sodium nitrprusside and tetra-butylammonium 

hydrogen sulphate in water with 1:1 molar ratio. The precipitate was then obtained by 

filtration and washed with water. The powder was then further dried under vacuum 

and recrystallized from water. The TBANP was slightly wet. The product was verified 

by HPCL-MS (electron spray ionisation) with m/z = 242 (requires 242.28) for the 

positive ion and m/z = 108 (requires 107.98) for the negative ion. 

 

The electrochemical analysis was then carried out by dissolving TBANP in 

acetonitrile (HPLC grade, Fisher Scientific) with supporting electrolyte. A standard 

three electrode electrochemical cell was used and the electrochemical analysis was 

controlled by a μ-AutoLab system. A glassy carbon (3 mm diameter, BAS) electrode 

or a carbon fibre (11 μm diameter, BAS) was used as working electrode, a spiral 

nickel wire was used as the counter electrode and saturated calomel electrode 

(Radiometer) was used as the reference electrode.  

 

In addition, electrochemical reduction of iodo-nitrobenzene was studied. 

1-iodo-4-nitrobeznene solution was prepared by dissolving 1-5 mM 

1-iodo-4-nitrobenzene in acetonitrile (purchased from Fisher Scientific, HPLC grade) 

with variable concentrations of tetrabutylammonium tetrafluoroborate and 

tetrabutylammonium iodide in ratios of 10:0, 8:2, 5:5, 2:8 and 0:10, with the fixed 

ionic strength = 0.1 M. 

 

The cyclic voltammetry was carried out using a glassy carbon macro-electrode (3 mm 

diameter), or a carbon fibre micro-electrode (11 μm diameter), or a gold 
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macro-electrode (3 mm diameter), or gold microelectrodes (33 μm and 50 μm 

diameter). A spiral nickel wire was served as the counter electrode and the reference 

electrode was a saturated calomel electrode. 

 

2.3.2. Electrochemically induced protonation 

An electrochemically induced protontation process was investigated by reducing 

2,3-diphenyl-1,4-diazaspiro[4.5]deca-1,3-diene (a spiro-bis-anil, short for SBA). It 

was prepared by stirring glacial acetic acid (100 mL), benzil (15.80 g), ammonium 

acetate (40 g) and cyclohexanone (8 mL) for 5 minutes, and followed by refluxing 

(118 
o
C) for 1.5 hours. The heated mixture was then transferred into vigorously stirred 

cold water (300 mL) and stirred overnight. The yellow spiro-bis-anil precipitate was 

filtered off and washed with water (4 x 30 mL) and dried under vacuum. with mp = 

87–90 °C; vmax (CHCl3) 1650 cm
−1

 (C═N); δH (400 MHz, CDCl3) 7.55–7.45 (4H, m, 

4 x CH; Ph), 7.52–7.42 (2H, m, 2 x CH; Ph),7.30–7.35 (4H, m, 4xCH; Ph), 1.92–1.95 

(4H, m, 2xCH2; cyclohexane), 1.80–1.83 (4H, m, 2xCH2; cyclohexane), 1.71–1.74 

(2H, m, CH2; cyclohexane); δC (100 MHz, CDCl3) 164.0 (C═N), 139.2 (2C,2 x i-C; 

Ph), 129.9 (4C, 4 x CH; Ph), 128.8 (2C, 2 x CH; Ph), 128.2 (4C, 4 x CH; Ph), 104.0 

(q-C; cyclohexane), 34.6 (2C, 2xCH2; cyclohexane), 25.6 (CH2; cyclohexane), 24.1 

(2C, 2xCH2; cyclohexane); MS(CI) m/z 289.1669 (MH
+
), C20H21N2

+
 requires 

289.1694. 

 

In order to compared the conventional reduction process under Birch condition with 

electrochemical reduction, conventional Birch condition reduction was performed. 

The spiro-bis-anil was added into mixture of 112 mL dry-Tetrahydrofuran (THF) and 

liquid ammonia (112 mL) at -78 
o
C with addition of sodium (6.38 g) over 30 minutes. 

The mixture was followed by 1 hour stirring under nitrogen and quenched by ethanol 

(100 mL) with stirring for 20 minutes, followed by addition of ammonium chloride 

(4.86 g) and warmed to 0 
o
C. The organic phase was extracted from water (100 mL) 



64 

 

with dichloromethane (3 x 50 mL) and dried over magnesium sulphate. 

Dichloromethane was then evaporated to afford the product, 

(2S,3S)-2,3-diphenyl-1,4- diazaspiro[4.5]decane. with mp = 40–43 °C; δH (400 

MHz,CDCl3) 7.28–7.24 (10H, m, 10xCH; Ph), 5.65 (2H, br, s, 2 x NH), 4.10 (2H, s, 2 

x CH; Ph), 1.80–1.83 (4H, m, 2 x CH; cyclohexane), 1.64–1.66 (4H, m, 2xCH2; 

cyclohexane), 1.42–1.46 (2H, m, CH2; cyclohexane); δC (100 MHz, CDCl3) 140.5 

(2C,2xi-C;Ph), 128.4 (4C, 4xCH; Ph), 127.4 (2C, 2xCH; Ph), 127.1 (4C, 4 x CH; Ph), 

69.6 (2C, 2xCHN), 65.1 (q-C; cyclohexane), 39.5 (2C, 2xCH2; cyclohexane), 25.4 

(CH2;cyclohexane), 23.9 (2C, 2xCH2; cyclohexane); MS (CI) m/z 293.2010 (MH
+
), 

C20H25N2
+
 requires 293.2012. 

 

Electrochemical reduction process was conducted by dissolving the synthesised 

spiro-bis-anil in DMF, THF, acetonitrile and DMF/water mixture with fraction of 9:1 

and 8:2 with supporting electrolytes (tetrabutylammonium perchlorate, TBAP and 

tetrabutylammonium tetrafluoroborate, TBABF). A standard three electrode cell was 

used and controlled by μ-AutoLab, with a glassy carbon (3 mm diameter, BAS) 

macroelectrode or a carbon fibre microelectrode (11 μm diameter, BAS) as working 

electrode, a spiral nickel wire counter electrode and a saturated calomel reference 

electrode.  

 

Additionally, vitamin K1 with lipid support and electrochemical oxidation of sudan III 

were also studied for electrochemically induced protonation, with a protonation 

process on vitamin K1 and deprotonation process on sudan III.  

 

Vitamin K1 (VK1) was purchased from Sigma-Aldrich Co. (UK) and 

phosphatidylcholine (LC) was purchased from Avanti Polar Lipids Inc, respectively. 

Chloroform, HCl, boric acid, phosphoric acid, acetic acid and NaOH were ordered 

from Fisher Sientific, repectively.  

 

The vitamin K1 solution was prepared by adding 1 mM of vitamin K1 in chloroform. 
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The vitamin K1 with lipid solution was prepared by adding 1 mM of vitamin K1 and 

1.0 mM LC in chloroform. Then a certain amount of aliquot of the solution was 

pipetted and accumulated on the glassy carbon electrode, GCE, 3.0 mm diameter or a 

basil plane graphite electrode (BPGE) and waited for the chloroform solvent to be 

evaporated. The modified electrodes were then dipped into either 1.0 M HCl solution 

or a Britton-Robinson buffer solution. 

 

The Britton-Robinson buffer (BRS) solution was prepared by dissolving 0.04 M boric 

acid, 0.04 M phosphoric acid and 0.04 M acetic acid in purified water. The initial pH 

value for BRS was 2 ± 0.1, measured by a pH meter (pH 210 microprocessor pH 

meter, HANNA instruments). Then the pH was increased by adding 0.2 M NaOH.  

 

Sudan III was purchased from Sigma-Aldrich and dichloromethane (DCM) was 

purchased from Fisher Scientific, respectively. All the chemicals were used in the 

experiment without further purification. K2HPO4, KH2PO4, KCl, KOH and HCl were 

purchased from Fisher Scientific. 

 

Phosphate buffer electrolyte solution (PBES) was prepared by adding 0.05 M K2HPO4 

and 0.05 M KH2PO4 in 0.1 M KCl solution. The pH was then adjusted by adding 

either concentrated KOH or HCl solution. 

 

The oxidation of sudan III experiment was carried out by accumulating 5 μL of 10 

mM Sudan III in DCM solution onto a glassy carbon electrode, then waited the DCM 

solvent to evaporate off and formed a solid layer of Sudan III on the electrode surface. 

The modified GCE was then dipped into a well-buffered solution (phosphate buffer). 

 

2.3.3. Electrochemically induced catalytic process 

The EC′ mechanism was studied in this thesis as an analytical detection method. Thiol 

compounds and lactic acid can be detected by EC′ process with a mediator of 
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chlorpromazine hydrochloride. The electrochemical detection of thiol compounds 

(L-cysteine and glutathione) was carried out by dissolving chlorpromazine 

(Sigma-Aldrich) in both pH 3.80 acetate buffered and unbuffered aqueous solutions. 

Variable concentrations of L-cysteine (Sigma) or glutathione (Sigma) was added in 

the solution. The acetate pH 3.80 buffered solutions was made by mixing 153 mL of 

0.1 M sodium acetate and 847 mL of 0.1 M acetic acid with 0.1 M potassium chloride, 

KCl. The unbuffered solution used was 0.1 M KCl aqueous solution. 

 

The detection of lactic acid was performed using chlorpromazine as mediator and 

dissolved in 0.1 M KCl aqueous solution. Variable concentrations of sodium acetate 

(Sigma-Aldrich) were added to the solutions, which contains chlorpromazine. 

Photochemically induced redox transfer was used in this experiment; therefore a two 

spot fibre optic illuminator (Brunel Microscopes Ltd.) was used as photo source. A 

specifically designed cell was used in order to conduct the photocatalysised 

electrochemistry, as shown in Fig. 2.6. A transparent silica glass was made in the 

bottom of cell in order to minimise the loss of photo source. 

 

Fig. 2.6. A three electrode photo-electrochemical cell. 

 

A glassy carbon macroelectrode (3 mm diameter, BAS) was used in both experiments, 

together with a spiral platinum counter electrode and a sliver/sliver chloride reference 
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electrode.  

 

2.3.4. Mass transport in liquid crystals 

Copper(II) phthalocyanine tetrasulfonic acid tetrasodium salt and nickel(II) 

phthalocyanine tetrasulfonic acid tetrasodium salt were studied electrochemically in 

order to understand electron transfer process in lyotropic chromonic liquid crystals. 

Both two organometallic materials were purchased from Sigma-Aldrich in the purest 

commercially available grade and used as received. Water was obtained from Elgastat 

system as mentioned before. Nitrogen and argon gas were obtained from BOS Gases, 

UK.  

 

The chromonic liquid crystal for copper(II) system was prepared by mixing 46 wt.% 

(0.88 M) with water in a screw capped vial and nickel(II) system was prepared by 

mixing 20 wt.% (0.27 M) in water. Both samples were heated with stirring at 345 K 

for between 30 and 60 minutes to obtain sample homogenisation. The samples were 

then cool down to room temperature (296 ± 2 K) prior to experimentations.  

 

Physical properties were studied preliminary. Conductivities were measured by using 

CDM210 conductivity meter equipped with a four pole CDC511T conductivity cell 

(Radiometer) inserted vertically into the sample. Optical properties were studied by 

using an Olympus BX-51 optical polarising microscope, equipped with a digital 

camera. UV-Vis spectrometry was carried out using a Perkin-Elmer Lambda 25 Scan 

UV-Vis instrument, controlled by a Pentium III PC, using a 10 mm path length quartz 

cell. X-ray scattering measurements were undertaken by filling the capillary tubes 

with the liquid crystal sample and placed into a MAR345 diffractometer with 2D 

image plate detector (with copper Kα radiation, graphite monochromator), with λ = 

1.54 Å and distance between detector and sample set to 130-300 mm and 30 min 

exposure time. Both samples were heated between 297 K and 355 K in the presence 
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of a magnetic field using a home-built cappliary furnace.  

 

Electrochemical measurements were carried out by using a standard three electrode 

system controlled by a μ-Autolab Type III potentiostat. A sliver/silver chloride 

reference electrode was employed and a nickel spiral counter electrode was used. 

Working electrodes used were glassy carbon macroeleectrode (3 mm diameter), 

platinum microelectrode (10 μm) and carbon fibre microelectrode (11 μm). Samples 

were degased using nitrogen or argon for reductive electrochemistry experiments. 

Electrodes were polished prior to all experiment using the procedure described 

previously.  

 

In general, the temperature of the experiments carried out in this thesis is between 20 

and 25°C and under normal atmospheric pressure. 
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3. Biosensors – 

electrochemically 

induced catalytic 

reactions 

The work presented in this chapter was undertaken with assistance from M. 

Hadjieleftheriou, D. Nunes and V. Beilstein. Additionally, this work was also 

collaborated with J. E. Halls and F. Marken from University of Bath. 

3.1. Introduction 

Electrochemical biosensors are widely used in varies of areas such as in clinics
[40-43]

, 

agriculture
[44, 45]

, food industry
[46]

 and for environmental monitoring
[47]

. Although 

different measurements have been based on different methodologies, the major way to 

fabricate the sensor is by modifying the working electrode surface; the latter has been 

functionalised by a protein, such as antigen or enzyme with a redox active species 

attached on those
[48]

. However, the electrode can be hard to be fabricated due to 

multi-steps fabrication procedures. In most of the cases, especially electrode modified 

by a biological molecule, the electrode can either easily goes off or has to be stored in 

low temperature environment in order to maintain the biological molecules active. 

Therefore the usage can be limited.  

 

Catalytic electrochemistry has been well studied for decades. As mentioned in the 

Introduction, the EC′ reaction mechanism has been studied systemically. A mediator is 

used to oxidised/reduce a substrate that of interested, and leads the redox current 

signal to increase. The catalytic method offers several advantages compared with 
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surface modification methodologies such as no electrode preparation, can be stored 

anywhere, rapid analysis and fast sample preparation. In this thesis, catalytic 

electrochemistry was used as a biosensing method for detection of L-cysteine and 

glutathione, L-lactic acid, and melamine.  

 

3.2. Electrochemical detection of L-cysteine 

and glutathione via catalytic reactions 

L-Cysteine and glutathione (Fig. 3.1) are essential thiols which play important roles in 

biochemical process
[28, 49]

. They act as antioxidants in human body to prevent 

leukaemia and several types of cancer
[28]

, the depletion of cysteine and glutathione 

can also be a sign of premature arteriosclerosis
[50]

, cervical cancer
[51]

, diabetes, sepsis, 

cataracts, liver disorder and a few other disorders
[52]

. On the other hand, the excess 

concentration of cysteine and glutathione in human bodies can be an indicator for 

brain disorders
[50]

, Alzheimer’s disease, Parkinson’s disease and AIDS related 

dementia
[53]

. In addition, glutathione has been attracted by numerous of scientists due 

to its biological functions such as maintain the thiol group in cysteine in reduced state 

and protect DNA and RNA in cells from free radicals
[54]

. Therefore analytical 

detection of thiols in human bodies such as L-cysteine and glutathione becomes an 

attractive area in analytical chemistry.  

 

 

Fig. 3.1. Chemical structures of (a) cysteine and (b) glutathione. 

 

There are numerous of detection methods for thiols using electrochemistry including 

direct amperometry such as cyclic voltammetry
[55-57]

, differential pulse 
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voltammetry
[58]

, cathodic stripping voltammetry
[59-63]

 and square wave 

voltammetry
[64]

, and coupled electrochemical detection method with separation 

techniques such as liquid chromatography
[65-67]

 and capillary electrophoresis
[68-70]

. 

Despite the coupled separation techniques, the direct amperometric/voltammetric 

detection has already been widely studied. Accordingly, most of the electrochemical 

detection methodologies of thiols are based on modified electrode, such as using a 

gold nanorods
[71]

, using a glassy carbon electrode modified by enzymes
[72]

, metal 

complex films
[73]

, using a platinum electrode modified by organic conducting salt
[74]

. 

Because the nature of cysteine and glutathione, the voltammetric responses can be 

very poor (vide infra), and complicated by adsorption phenomena
[75]

, modified 

electrode is necessary to mediate the oxidation. However, on the other hand, the 

mediation can also occur in the solution rather than on the electrode surface, and the 

analysis can be facile. In this thesis, chlorpromazine was used as a catalyst in 

unbuffered and buffered solutions, and it catalyse the oxidation of oxidation of 

cysteine and glutathione, in result, the current response increase with increasing 

concentration of thiols.  

 

3.2.1. Electrochemical behavior of chlorpromazine in 

the absence of cysteine or its derivatives.  

The initial investigation was to examine the oxidation of chlorpromazine 

hydrochloride in both buffered and unbuffered environments and carried out using 

cyclic voltammetry. The electrochemical response of 1.13 mM chlorpromazine in 0.1 

M KCl aqueous solution is shown in Fig. 3.4. The voltammograms show a 

well-defined oxidative peak at +0.63 V vs. Ag/AgCl due to the 

single-electron-oxidation of chlorpromazine which forms the chemically stable radical 

as shown in Scheme 3.1. The pKa of chlorpromazine is known as 9.3, therefore it is 

likely to be an ammonium group. 
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Scheme 3.1. One-electron oxidation of chlorpromazine. 

The corresponding reduction peak in Fig. 3.4 was observed at +0.58 V vs. Ag/AgCl 

which leading to the reduction of the cation radical back to chlorpromazine. Three 

scans were performed and both of the peak potential and peak current remain 

unchanged for different scans, suggests that no substrates were absorbed on the 

electrode.  

 

 

Fig. 3.4. Cyclic voltammograms for the oxidation of 1.26 mM chlorpromazine in 0.1 M KCl at a 

glassy carbon electrode (BAS, 3 mm diameter). Scan rate = 0.02 V s-1. Ag/AgCl electrode was 

served as the reference electrode and spiral platinum wire was served as a counter electrode. 

 

Scan rate dependent experiments of chlorpromazine oxidation was undertaken in 

order to understand the process in more detail. As shown in Fig. 3.5a, 1.13 mM of 

chlorpromazine was examined; the increase of scan rate leads the both oxidative and 

reductive peak current to increase. By plotting the peak currents against square root of 

scan rates (Fig. 3.5b) for both oxidative and reductive wave, the straight line cross the 

origin suggests that the electrode process is a diffusion-controlled process. The 

gradient of reduction wave is smaller than that of the oxidation wave, suggests that 
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there is a loss of material in the diffusion layer. Fig. 3.5c shows the plot of peak 

potential against logarithm of scan rates. It can be seen that there is a direct 

porportionation of the oxidative peak whereas there is no dependence on the reductive 

peak. These suggest that the oxidation process is electrochemically quasi-reversible 

whereas the reductive process is electrochemically reversible.  

 

 

 

 

Fig. 3.5. (a) Cyclic voltammograms of the oxidation of 1.13 mM chlorpromazine on glassy carbon 

electrode (BAS, 3 mm diameter) in 0.1 M KCl at variable scan rates (0.02 ≤υ / V s-1 ≤ 1.0). First 

scan only. Sliver/Sliver chloride electrode was served as a reference electrode and spiral platinum 

wire was served as a counter electrode. (b) a corresponding plot of peak current against square 

root of scan rate of (a) for both oxidation (hollow dots) and reduction (solid dots) peaks.. (c) a 

corresponding plot of peak potential against logarithm of scan rate of (a) for both oxidation 

(hollow dots) and reduction (solid dots) peaks. 

 

Higher concentration of chlorpromazine (2.00 mM) has also been carried out and the 
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results are shown in Fig. 3.6. Similar trends were found as the oxidation of 1.13 mM 

chlorpromazine. It is worth note that in Fig. 3.6c, the plot of peak potential against 

logarithm of scan rate for the oxidation peak suggests that the reversible 

electrochemical oxidation occurs at slow scan rates (v ≤ 0.1 V s
-1

) and irreversible 

electrochemical oxidation process occurs at high scan rates (v ≥ 0.2 V s
-1

), concludes 

that the process is electrochemically quasi-reversible. 

 

 

 

Fig. 3.6. (a) Cyclic voltammograms of the oxidation of 2.00 mM chlorpromazine on glassy carbon 

electrode (BAS, 3 mm diameter) in 0.1 M KCl at variable scan rates (0.02 ≤υ / V s-1 ≤ 1.0). First 

scan only. Sliver/Sliver chloride electrode was served as a reference electrode and spiral platinum 

wire was served as a counter electrode. (b) a corresponding plot of peak current against square 

root of scan rate of (a) for both oxidation (hollow dots) and reduction (solid dots) peaks. (c) a 

corresponding plot of peak potential against logarithm of scan rate of (a) for both oxidation 

(hollow dots) and reduction (solid dots) peaks. 
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Higher concentration of chlorpromazine (4.90 mM), again, was examined through the 

same setups (Fig. 3.7). Fig. 3.7a and Fig. 3.7b afford similar trend to that of oxidation 

of 1.13 mM and 2.00 mM chlorpromazine. However, the plot of peak potential against 

logarithm of scan rates (Fig. 3.7c) gives different trends from that of 1.13 mM and 

2.00 mM chlorpromazine results, as the reduction peak potential has dependence on 

scan rates, suggests that both of the oxidation and reduction process becomes slower 

while the concentration of chlorpromazine increases.  

 

 

Fig. 3.7. (a) Cyclic voltammograms of the oxidation of 4.90 mM chlorpromazine on glassy carbon 

electrode (BAS, 3 mm diameter) in 0.1 M KCl at variable scan rates (0.02 ≤υ / V s-1 ≤ 1.0). First 

scan only. Sliver/Sliver chloride electrode was served as a reference electrode and spiral platinum 

wire was served as a counter electrode. (b) a corresponding plot of peak current against square 

root of scan rate of (a) for both oxidation (hollow dots) and reduction (solid dots) peaks. (c) a 

corresponding plot of peak potential against logarithm of scan rate of (a) for both oxidation 

(hollow dots) and reduction (solid dots) peaks. 

-150

-100

-50

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

C
u

rr
en

t 
/ 
μ

A
 

Potential / V vs. Ag/AgCl 

Increasing 

(a) 

y = 197.3x 

R² = 0.9995 

y = -185.45x 

R² = 0.9994 
-250

-200

-150

-100

-50

0

50

100

150

200

250

0 0.5 1 1.5

P
ea

k
 c

u
rr

en
t 

/ 
μ

A
 

v1/2 / V1/2 s-1/2 

(b) 

30 mV 

R² = 0.9433 

-15.5 mV 

R² = 1 

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

-2 -1 0

P
ea

k
 p

o
te

n
ti

a
l 

/ 
V

 v
s.

 

A
g
/A

g
C

l 

log v / V s-1 

(c) 



76 

 

The increase of concentration of chlorpromazine leads the slowed electrode process. 

In order to understand this phenomenon, the mass transport profile of chlorpromazine 

was studied. Five different concentrations of chlorpromazine (1 ≤ c0 / mM ≤ 100) in 

0.1 M KCl were examined by using cyclic voltammetry on a 3 mm diameter glassy 

carbon electrode. Interestingly, by applying Randles-Sevcik equation, the diffusion 

coefficient of chlorpromazine was found to be a function of concentration. As shown 

in Fig. 3.8a, a plot of diffusion coefficient against logarithm of concentration suggests 

that the diffusion coefficient changes 2.55 x 10
-10

 cm
2
 s

-1
 per decade change of 

concentration. By applying Stokes-Einstein equation, the radius of aggregate can be 

worked out and a plot aggregate radius against chlorpromazine concentration is 

shown in Fig. 3.8b. 

 

Fig.3.8. (a) A plot of diffusion coefficient of chlorpromazine in 0.1 M KCl against concentration. (b) 

a plot of molecule radius against chlorpromazine concentration. 
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By searching the literature, it was found that the aggregation of chlorpromazine can 

take place. The critical micelle concentration was found to be 28 mM and the micelle 

structure was suggested to be ellipsoidal (Fig. 3.9)
[76]

. Therefore, a different diffusion 

coefficient needs to be applied for different concentrations. 

 

 

Fig. 3.9. Structure of chlorpromazine micelle. 

 

The experiments of electro-oxidation of chlorpromazine were subsequently carried 

out in buffered solution (acetate buffer) at pH 3.80. As shown in Fig. 3.10, the cyclic 

voltammograms of chlorpromazine shows that there is difference between the 

buffered and unbuffered chlorpromazine at peak potential. The oxidation peak of 

unbuffered chlorpromazine gives an oxidation peak at +0.63 V vs. Ag/AgCl as shown 

previously and the corresponding reduction peak shows at +0.60 V vs. Ag/AgCl, 

whereas the buffered (pH 3.80) chlorpromazine gives an oxidation peak at +0.61 V 

and +0.58 V vs. Ag/AgCl for the reduction peak. As the pH of buffered solution is 

lower than the unbuffered solution, the acidic environment favours the oxidation of 

chlorpromazine. 
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Fig. 3.10. Cyclic voltammograms of the oxidation of chlorpromazine at a glassy carbon electrode 

(iBAS, 3 mm diameter) in acetate buffer (pH 3.80) with 0.1 M KCl. Scan rate = 0.02 V s-1. 

Sliver/Sliver chloride electrode was served as a reference electrode and a spiral platinum wire 

was served as the counter electrode. 

 

The experiments of variable scan rate for the oxidation of buffered chlorpromazine 

(pH 3.80) was also been carried out. Fig. 3.11a shows the voltammograms of 

chlorpromazine oxidation in different scan rates. The plot of peak current against 

square root of scan rate (Fig. 3.11b) gives a straight line, which indicates the process 

is diffusion controlled. The gradient is similar to the plot of unbuffered 

chlorpromazine if normalize the concentration, which indicates the diffusion 

coefficient is similar in buffered and unbuffered solutions. In addition, although a 

slight shift on peak potential by changing scan rate, 7.6 mV per decade change of scan 

rate is reasonably small (Fig. 3.11c), moreover, similar trend can be seen from the 

1.13 mM chlorpromazine in unbefffered solution (slight oxidative peak potential shift 

by changing scan rate and no shift on reductive peak potential), suggests that the 

oxidation processes are identical in both buffered and unbuffered media.  
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Fig. 3.11. (a) Cyclic voltammograms of the oxidation of 1.35 mM chlorpromazine on glassy carbon 

electrode (BAS, 3 mm diameter) in acetate buffer (pH 3.80) containing 0.1 M KCl at variable scan 

rates (0.01 ≤ υ / V s-1 ≤ 1.0). First scan only. Sliver/Sliver chloride electrode was served as a 

reference electrode and spiral platinum wire was served as a counter electrode. (b) a 

corresponding plot of peak current against square root of scan rate of (a) for both oxidation 

(hollow dots) and reduction (solid dots) peaks. (c) a corresponding plot of peak potential against 

logarithm of scan rate of (a) for both oxidation (hollow dots) and reduction (solid dots) peaks. 

 

According to the analysed results, the diffusion coefficient of 1 mM chlorpromazine 

was found to be 6.9 x 10
-6

 cm
2
 s

-1
 in aqueous solution. This value is reasonable as it is 

similar to other literature
[77]

. Therefore, the oxidation of chlorpromazine was 

characterised successfully.  
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3.2.2. Redox catalysis of the oxidation of L-cysteine and 

glutathione in unbuffered solution 

 

As the oxidation of L-cysteine in acidic environment requires higher potential 

(approximately +1.4 V vs. Ag/AgCl, vide infra), therefore it is necessary to catalyse 

the oxidation of L-cysteine by using chlorpromazine as a mediator. As shown in 

Scheme 3.2, the oxidation of chlorpromazine forms a cation radical, which is the same 

as shown in Scheme 3.1, the chlorpromazine cation radical can be subsequently 

reduced back to its neutral form homogeneously by L-cysteine, therefore the local 

concentration of chlorpromazine can be increased by the positive feedback reaction. 

 

Scheme 3.2. Redox catalytic process of chlorpromazine with L-cysteine as catalyst. 

 

This redox catalysis experiment was firstly carried out in 0.1 M aqueous KCl solution 

(unbuffered) with 1 mM, chlorpromazine and standard addition of L-cysteine, as 

shown in Fig.3.12.  
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Fig. 3.12. (a) The electro-oxidation of 1 mM chlorpromazine at a glassy carbon electrode (BAS, 3 

mm diameter) in 0.1 M KCl aqueous solution with standard addition of L-cysteine. Scan rate = 0.1 

V s-1. Silver/Sliver chloride electrode served as a reference electrode and a spiral platinum wire 

was used for the counter electrode. (b) a plot of logarithm of oxidative peak current against the 

logarithm of L-cysteine concentration in order to measure the limit of detection. Red dashed line 

indicates the approximate position of detection limit.  

 

It can be seen that from Fig. 3.12a, the increase cysteine concentration causes the 

increase of peak current of the oxidation of chlorpromazine. This is due to the positive 

feedback of chlorpromazine as described above. The shape of the voltammogram of 

oxidation of chlorpromazine also changes from a conventional waveform to sigmoidal 

shaped. Fig. 3.12b shows a linear dependence of logarithm of peak current against 

logarithm of L-cysteine concentration. The peak current has barely changed until the 

L-cysteine concentration reaches approximately 37.7 μM (where the red dashed line 
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indicated).  

 

Fig. 3.13. (a) The electro-oxidation of 5.5 mM chlorpromazine at a glassy carbon electrode (BAS, 3 

mm diameter) in 0.1 M KCl aqueous solution with standard addition of L-cysteine. Scan rate = 0.1 

V s-1. Silver/Sliver chloride electrode served as a reference electrode and a spiral platinum wire 

was used for the counter electrode. (b) a plot of logarithm of oxidative peak current against the 

logarithm of L-cysteine concentration in order to measure the limit of detection. Red dashed line 

indicates the approximate position of detection limit.  

 

5.5 mM chlorpromazine was then used in order to examine the effect of the detection 

on the change of chlorpromazine concentration. As shown in Fig. 3.13a, the trend of 

voltammogram of chlorpromazine oxidation with the addition of L-cysteine is similar 

to that of with 1 mM chlorpromazine with increased peak height as expected. By 

plotting the logarithm of peak current against logarithm of L-cysteine concentration 

(Fig. 3.13b), it can be seen that the cross point between the calibration line and the 
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baseline shifts toward higher L-cysteine concentration, shown as red dashed line.  

 

Fig. 3.14. (a) The electro-oxidation of 9.8 mM chlorpromazine at a glassy carbon electrode (BAS, 3 

mm diameter) in 0.1 M KCl aqueous solution with standard addition of L-cysteine. Scan rate = 0.1 

V s-1. Silver/Sliver chloride electrode served as a reference electrode and a spiral platinum wire 

was used for the counter electrode. (b) a plot of logarithm of oxidative peak current against the 

logarithm of L-cysteine concentration in order to measure the limit of detection. Red dashed line 

indicates the approximate position of detection limit.  

 

As there is effect on the limit of detection with changing concentration of 

chlorpromazine, a further 9.8 mM chlorpromazine was examined in order to provide a 

reasonable trend. As shown in Fig. 3.14a, again, the trend of voltammogram while 

increasing cysteine concentration is similar to 1 and 5.5 mM. Whereas, the calibration 

graph (Fig. 3.14b) shows shift of detection limit again, as expected. In general, the 

limit of detection is depended on the chlorpromazine concentration. A summarised 
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limit of detection change with changing chlorpromazine concentration is shown in 

Table 3.1. 

 

Table 3.1. The changes of limit of detection of L-cysteine with changing chlorpromazine 

concentration. The LoD is averaged based on three repeats. 

[Chlorpromazine] / mM LoD / μM
a
 

1 37.7 

5.5 115.7 

9.8 306.3 

a LoD is short for Limit of detection. 

 

Glutathione was also measured by using the same method. Fig. 3.15a shows the 

voltammogram and corresponding calibration graph for the detection of glutathione 

with the oxidation of 1 mM chlorpromazine. Although less obvious, the addition of 

glutathione leads the shape of voltammogram change from convention waveform to 

sigmoidal shape with the disappearance of reverse peak. As shown in Fig. 3.15b, the 

red dashed line indicates the cross point of calibration line and baseline, which 

suggests that the detection limit is approximately 165.96 μM.  

 

Fig. 3.15. (a) The electro-oxidation of 1 mM chlorpromazine at a glassy carbon electrode (BAS, 3 

mm diameter) in 0.1 M KCl aqueous solution with standard addition of glutathione. Scan rate = 

0.1 V s-1. Silver/Sliver chloride electrode served as a reference electrode and a spiral platinum 

wire was used for the counter electrode. (b) a plot of logarithm of oxidative peak current against 

the logarithm of L-cysteine concentration in order to measure the limit of detection. Red dashed 

line indicates the approximate position of detection limit.  
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Two different concentrations of chlorpromazine were also undertaken as the same 

reason of L-cysteine detection. Fig. 3.16 shows the voltammograms of oxidation of 

both 5 and 10 mM chlorpromazine with the addition of glutathione. Similar 

observations can be seen as the 1 mM chlorpromazine. Notably that in the 

corresponding calibration graphs (Fig. 3.16b and Fig. 3.16d), the cross section of 

calibration line and baseline shifts toward higher glutathione concentration as the 

increase of chlorpromazine concentration, which is the same trend as L-cysteine 

detection discussed above.  

 

 

Fig. 3.16. The voltammograms of electro-oxidation of 5 mM (a) and 10 mM (c) chlorpromazine at 

a glassy carbon electrode (BAS, 3 mm diameter) in 0.1 M KCl aqueous solution with standard 

addition of glutathione. Scan rate = 0.1 V s-1. Silver/Sliver chloride electrode served as a reference 

electrode and a spiral platinum wire was used for the counter electrode. (b) and (d) are the plots 

of logarithm of oxidative peak current against the logarithm of L-cysteine concentration in order 

to measure the limit of detection. Red dashed line indicates the approximate position of detection 

limit. With (b) corresponds to the voltammogram (a) and (d) corresponds to the voltammogram 

(c). 
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Accordingly, the redox catalysis process can be summarized and shown in Scheme 3.3. 

The “positive feedback” of CPM in scheme 3.3 causes the increase in the oxidation 

peak of CPM. The increased L-cysteine or glutathione concentration leads to the 

increased “feedback”, therefore the addition of L-cysteine or glutathione causes the 

peak current to increase. In addition, as the homogenous chemical step for 

chlorpromazine cation radical to react with thiols are in the molar ratio of 1:1, 

therefore the higher concentration of chlorpromazine used, the more thiols are needed 

in order to perform the catalysis process. This is in agreement that at low 

concentration of chlorpromazine (i.e. 1 mM) and relatively higher concentration of 

thiols (i.e. 50 mM), the shape of voltammogram is sigmoidal whereas at a higher 

concentration of chlorpromazine (i.e. 10 mM) and the same concentration of thiols 

(50 mM), the shape of voltammogram remains as conventional. Therefore in the 

following experiments, which carried out in unbuffer solution, 25 μL of 

chlorpromazine was used in order to achieve low detection limit as well as decent 

signal. 

 

Scheme 3.3. Where CPM is chlorpromazine and thiol is either L-cysteine or glutathione. 

 

Moreover, the addition of thiols leads the disappearance of back peak. This is due to 

the chlorpromazine cation radical reacts with thiols, decreased concentration of cation 

radical while adding thiols, leads the equilibrium towards right. Therefore there is not 

sufficient chlorpromazine cation radical in the diffusion layer that can be reduced 

back to its neutral state. 

3.2.3. Detection of L-cysteine and glutathione in 

buffered solution. 

As the pKa of L-cysteine gives 8.30 and the pKa of glutathione gives 8.75 at 25 ℃,  



87 

 

the acidic environment can stabilize these two materials. Although there is some 

method introduced in the literatures, their experiment needs to be carried out in basic 

condition in order to deprotonate the L-cysteine or glutathione to make them more 

reactive. Based on these methods, acidic environment can be limited. 

 

In order to detect L-cysteine and glutathione in low pH environment, the experiments 

were carried out in acetate buffer (pH 3.8). Additionally, as it was found previously 

that the lower concentration of chlorpromazine gives lower detection limit, therefore 

25 μM of chlorpromazine was used as mediator. As shown in Fig. 3.17, the peak 

current is increasing with the increase concentration of L-cysteine while there is a 

small shift on peak potential. The shift of peak potential may due to the slower redox 

catalysis process compared to one-electron-transferred oxidation on its own. It should 

be noted that a slower scan rate (0.01 V s
-1

) was used compared to the experiments did 

in unbuffered solution (0.1 V s
-1

). Slower scan rates ensure that there is enough time 

for L-cysteine to be oxidized while the radical cation of chlorpromazine is formed. 

The analysed data shows the linear dependence between L-cysteine concentration and 

peak current. The limit of detection was calculated to be 6.3 ± 0.03 μM.  

 

Fig. 3.17. The electro-oxidation of 25 μM chlorpromazine in acetate buffer (pH 3.80) with 0.1 M 

KCl at a 3 mm diameter glassy carbon disc electrode with standard addition of L-cysteine. Scan 

rate = 0.01 V s-1. Silver/Sliver chloride electrode served as a reference electrode and a spiral 

platinum wire was used for the counter electrode. (b) a plot of logarithm of peak current against 

logarithm of L-cysteine concentration, data obtained from (a). 
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Similarly, the oxidation addition of glutathione gives linear trend with the logarithm 

of peak current, the plot of logarithm of peak current against logarithm of glutathione 

concentration gives similar gradient which indicates the redox catalysis mechanism is 

same. Notably, the glutathione can be measure in lower concentration than L-cysteine 

and the detection limit can be down to approximately 4.4 ± 0.07 μM.  

 

Fig. 3.18. (a)The electro-oxidation of 25 μM chlorpromazine in acetate buffer (pH 3.80) with 0.1 

M KCl at a 3 mm diameter glassy carbon disc electrode with standard addition of Glutathione. 

Scan rate = 0.01 V s-1. Silver/Sliver chloride electrode served as a reference electrode and a spiral 

platinum wire was used for the counter electrode. (b) a plot of logarithm of peak current against 

logarithm of glutathione concentration, data obtained from (a).  

 

In summary, it was found that the limit of detection can be lowered by decrease the 

concentration of chlorpromazine. It was found that 25 μM chlorpromazine is the 

optimum concentration as the unobvious peak current was found when the 

concentration of chlorpromazine lower than 25 μM.  
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3.2.4. Electrochemical oxidation of L-cysteine and 

glutathione in buffered solution (pH 3.80) 

 

In order to show the redox catalytic method is valuable for the detection of L-cysteine 

and glutathione, the electrochemical oxidation of L-cysteine and glutathione in 

buffered solution was carried out. Variable scan rate (0.01 ≤ υ / V s
-1

 ≤ 1) of 

electrochemical oxidation of L-cysteine is shown in Fig. 3.19. As shown in Fig. 3.19, 

the oxidation peak potential of L-cysteine is found to be approximately +1.5 V and 

there is no reverse peak observed. The peak potential shifts while changing the scan 

rates indicates the oxidation of L-cysteine is electrochemically and chemically 

irreversible. The plot of peak current against square root of scan rates gives a linear 

dependence, which leads this process to be under diffusion controlled.  

 

Fig. 3.19.  (a) Electrochemical oxidation of 1 mM L-cysteine on glassy carbon disc electrode (3 

mm diameter) in acetate buffer (pH 3.80) with 0.1 M KCl. (b) a corresponding plot of peak current 

against square root of scan rate of (a).  
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If assuming the oxidation of the L-cysteine is one electron transfer process and the 

transfer coefficient is 0.5, the diffusion coefficient can be worked out as 3.5(± 0.2) x 

10
-4 

cm
2
 s

-1
. If the assumptions are turn, this diffusion coefficient indicates that the 

mass transport of L-cysteine is incredibly fast. This is as expected as the fast mass 

transfer leads to the faster catalytic process, which lower the limit of detection.  

 

The electrochemical oxidation of glutathione was also attempted. However, the 

experiment results showing there is no consistent peak with in the aqueous potential 

window (lower than the potential of hydrogen evolution). These results suggest the 

oxidation potential of glutathione probably higher than L-cysteine, which makes itself 

difficult to be measured by using voltammetric method in aqueous environment with 

low pH. Therefore the redox calatytic detection method can be ideal for detection of 

L-cysteine and glutathione in acidic aqueous environment. 

 

3.2.5. Interference test for detection of L-cysteine and 

glutathione 

In order to examine the performance of this detection method, interference test was 

carried out later in the project. Both L-cysteine and glutathione was tested in the 

presence of either ascorbic acid or Dubacco’s Eagle reagent.  

 

The first test was carried in the presence of ascorbic acid or Dubacco’s Eagle media 

for detection of L-cysteine. Small amount of 25 μM of ascorbic acid was added into 

the buffered solution that gave same concentration of chlorpromazine in order to carry 

out the ascorbic acid interference test. On the other hand, as Dubacco’s eagle’s 

reagent is a simulated biological cell environment, therefore 1 mM L-cysteine was 

dissolved in DEG solution, and subsequently diluted to 25 μM using the pH 3.8 buffer 

solution. Fig. 3.20 illustrates the calibration graph for different interference reagents. 
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Fig. 3.20. Interference test for L-cysteine detection. Solid circle: 25 μM chlorpromazine in pH 3.8 

buffer with standard addition of L-cysteine; solid rhombus: 25 μM chlorpromazine and 25 μM 

ascorbic acid in pH 3.8 buffer with standard addition of L-cysteine; hollow rhombus: 1 mM 

L-cysteine dissolved in DEG and standard added to pH 3.8 buffer containing 25 μM 

chlorpromazine. 

 

As shown in Fig. 3.20, even with the interference present, the trend of the calibration 

graph remains unchanged. Consequently, the interference test gave reasonable 

recovery. The average recovery percentage of L-cysteine interfered by ascorbic acid 

was found to be 97.85% and 98.55% for DEG interfered L-cysteine detection.  

 

Similar trends can be found for glutathione detection, as shown in Fig. 3.21, a 

calibration graph of detection of glutathione with interference is presented. Compared 

with L-cysteine test, the data points of standard addition of glutathione scattered 

larger than that of L-cysteine when at low substrate concentration.  
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Fig. 3.21. Interference test for glutathione detection. Solid circle: 25 μM chlorpromazine in pH 3.8 

buffer with standard addition of glutathione; hollow rhombus: 25 μM chlorpromazine and 25 μM 

ascorbic acid in pH 3.8 buffer with standard addition of glutathione; solid rhombus: 1 mM 

glutathione dissolved in DEG and standard added to pH 3.8 buffer containing 25 μM 

chlorpromazine.  

 

According to the equation shown in Fig. 3.21, the average recovery percentage for 

ascorbic acid interference test is 99.55% and 98.20% for that of DEG test. Because 

the recovery percentage is averaged over a wide range of glutathione concentrations, 

therefore some results gives percentage that more than 100%, therefore even the 

average recovery percentage of glutathione is higher than that of L-cysteine test, the 

real detection performance for L-cysteine detection is better than glutathione.  

 

3.3. Photo-catalytic reactions of lactic acid 

Lactic acid (Fig. 3.2) is an essential acid in human body which is produced via 

glycolysis and hypoxida metabolism in myocytes. Lactic acid is produce into blood as 

well as sweat especially during physical actions
[78]

. Lactic acid is found to be more 

concentrated in sweat than in the blood or urine and with concentration range from 4 

to 40 mM
[79]

. In addition, in clinic conditions, lactic acid usually measured for 
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monitoring health status of kidney
[80]

, as well as acts as one of the an indicators for 

shock (hypovolemia, heart disorder, septic shock etc.), infections, insufficient 

respiratory and several metabolic disoders
[81]

. Although most researchers measure the 

lactic acid in blood, the patients necessitates the deployment of an atraumatic 

treatments, therefore the measurements using sweat instead of blood is interested. 

 

 

Fig. 3.2. Chemical structure of lactic acid 

 

Due to the importance of lactic acid, several researchers measured the concentration 

levels of lactic acid in sweat a few decades ago. Michelsen et al. measured the sweat 

lactic acid from range 16 to 42 mM
[82]

 for different skin areas of a man, Dill
[83]

 and 

van Heyningen
[84]

 suggested that arm sweat offers more concentrated lactic acid to 

total body sweat. In addition, these workers also found that lactic acid is more 

concentrated on the skin with acne than a normal skin. Besides, Ottenstein et al. found 

that lactic acid consists less in sweat of women than that of man.
[85, 86]

 

 

The detection of lactic acid has been studied due to its biological properties. As 

electrochemical detection methods offers several advantages such as low cost and 

quick analysis time, therefore detection of lactic acid using electrochemistry become a 

hot research area. Several detection methods are reported in literatures including 

electochemiluminescence
[80, 87]

, enzyme-based ZnO nanorods
[88]

 and voltammetry
[81, 

89]
. Due to the nature of lactic acid, direct oxidation of lactic acid is very difficult, and 

most of authors modified the electrode surface for a voltammetric detection method. 

Again, because the electrode normally modified by enzyme or other biochemical 

material, the storage can be difficult. Therefore in this project, again, a catalytic 

electrochemical method is used for lactic acid detection. Because of the stability of 
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lactic acid, the catalytic condition needs not only a mediator compared to cysteine or 

glutathione detection, but also needs photo-excitation.  

 

Due to the inertia of lactic acid, it is difficult to be directly electrolyed or catalysed. 

Photo EC′ reaction can be utilised which can favour the oxidation. Chlorpromazine 

was used in this project again as mediator. The investigation of chlorpromazine has 

been introduced in previous section.  

 

3.3.1. Photo current response of catalysed oxidation of 

sodium lactate 

 

The initial investigation was to look at the chronoamperometry current response of 

chlorpromazine in 0.1 M KCl with and without photo excitation. It was known that 

the oxidation of chlorpromazine occurs at approximately +0.65 V vs. Ag/AgCl, 

therefore the chronoamperometry was set to hold the potential at +0.8 V vs. Ag/AgCl. 

Fig. 3.22 shows the current-time response of chlorpromazine using 

chronoamperometry on a glassy carbon electrode. A white light source was used for 

the photo electro-catalysis.  

 

Fig. 3.22. Chronoamperometry of 1 mM Chlorpromazine in 0.1 M KCl with photo catalysis using a 

3 mm diameter glassy carbon disc electrode. Potential was held at +0.8 V vs. Ag/AgCl. White light 

source lamp was used. 

As it can be seen from Fig. 3.22, current increases when light was on and drop back 
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after the light was turned off. In this case, chlorpromazine was excited by light and 

gained more energy, and therefore it leads to an increase signal when doing an 

oxidation. The average amount of photo-current can be worked out for 5.58 nA.  

 

3.3.2. Photo-catalysis of chlorpromazine oxidation with 

addition of lactate 

With addition of sodium lactate, the electrons in lactate can transfer to the oxidised 

chlorpromazine and reduce the chlorpromazine cation radical back to chlorpromazine. 

As the catalytic theory was illustrated in the Introduction, the addition of lactate 

favours the formation of chlorpromazine and cause the current increase (scheme 3.4). 

 

 
Scheme 3.4 Catalysis lactate oxidation. 

 

The current-time response of chronoamperometry with addition of lactate is increased 

compare to that of chlorpromazine itself. A plot of photo current against lactate 

concentration gives a straight line (Fig. 3.23). In addition, in order to show that the 

increased current is due to the addition of lactate but not due to thermal effect, 

chronoamperometry experiment was also carried out with holding the potential at 0 V. 

Clearly from Fig. 3.23, the photo current of chlorpromazine increase with increased 

concentration of lactate when potential was held at +0.8 V whereas photo current of 

remains unchanged when potential was held at 0 V, this consequently proved that the 

increased photo current is due to the photo-catalysis of lactate using the mediator of 
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chlorpromazine. From the graph, detection limit for lactate was found to be 11.32 mM 

using 1 mM chlorpromazine. 

 

Fig. 3.23. A plot of photo-current of the oxidation of 1 mM chlorpromazine in 0.1 M KCl with 

addition of lactate against lactate concentration. Solid dots: potential held at +0.8 V vs. Ag/AgCl; 

hollow dots: potential held at 0 V vs. Ag/AgCl. 

 

Variable chlorpromazine concentrations were also been carried out. 0.1 mM 

chlorpromazine (Fig. 3.24a) offered similar trend to that of 1 mM whereas 10 mM 

chlorpromazine calibration graph appears different from that of 1 mM and 0.1 mM 

(Fig. 3.24b) and the photo-current response reaches maximum after 30 mM lactate 

acid addition. The limit of detection with different concentrations of chlorpromazine 

is shown in Table 3.2. 

 

Table 3.2. Limit of detection of lactate with different chlorpromazine concentration. LoD is limit 

of detection. 

[Chlorpromazine] / mM LoD
*
 of lacate / mM Standard error / nA 

0.1 5.85 0.33 

1.0 11.32 3.25 

10.0 23.26 22.00 

*LoD refers to the limit of detection.  

 

It is shown that higher concentration of chlorpromazine gives higher LoD of lacate. 

This can be due to the catalytic reaction mechanism that the catalysis of lactate to 

chlorpromazine is in a ratio of 1:1. Therefore larger concentration difference can offer 
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more sensitive results.  

 

Fig. 3.24. Calibration graphs for photo-catalysis of chlorpromazine by lactate. a: concentration of 

chlorpromazine used is 0.1 mM; b: concentration of chlorpromazine used is 10 mM. 

 

In addition, in order to understand the photo-catalytical process, a plot of logarithm of 

photo-current against logarithm of lactate concentration was plotted for 0.1 M 

chlorpromazine experiment. As shown in Fig. 3.25, the photo-current reaches 

steady-state after 30 mM addition of lactate. Other concentrations were analysed but 

only 0.1 mM chlorpromazine reaches steady-state, indicates that the steady-state limit 

only occurs when the concentration ratio of chlorpromazine and lactate is very large. 

 

y = 1.67E-01x + 3.10E+00 

R² = 9.91E-01 

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

P
h

o
to

-c
u

rr
en

t 
/ 

n
A

 

[Lactate] / mM 

(a) 

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

P
h

o
to

-c
u

rr
en

t 
/n

A
 

[Lactate] /mM 

(b) 



98 

 

 

Fig. 3.25. A plot of logarithm of photo-current against logarithm of lactate concentration of 0.1 

mM chlorpromazine in 0.1 M KCl. 3 mm diameter glassy carbon electrode was served as working 

electrode and silver/silver chloride reference electrode and a spiral platinum wire were used as 

reference and counter electrode, respectively.  

 

In conclusion to the analytical purposes, the photo-catalytic detection of lactate acid 

was successfully carried out, the detection limit can be as low as 5.85 ± 0.05mM, 

which is a reasonable range in sweat as the lactate contends in sweat is 4-40 mM as 

mentioned in the introduction. 

 

3.4. Electrode modification with variamine 

blue B and 6-(ferrocenyl)hexanethiol 

 

In order to fabricate a decent sensor, modification of electrode surface is required as it 

affords that no contaminations from the mediator to the analyte. Diazonium salt is a 

well-known molecular wire to be used to modify the electrode surface.
[90]

 Variamine 

blue B (VBB) was used to functionalise the electrode (glassy carbon disc), so that a 

ferrocene derivative, 6-(ferrocenyl) hexanethiol, can be graft onto the electrode 

surface, so that the ferrocene acts as a mediator in a redox catalytic reaction. 

 

The grafting process was undertaken by dipping a 3 mm diameter glassy carbon disc 
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electrode in 1 mM VBB in acetonitrile with 0.1 M TBAP and scan from +0.5 V to 

-0.5 V and back to +0.5 V vs. SCE at 0.1 V s
-1

 scan rate. Fig. 3.26 shows the 

voltammogram of grafting process. 

 

 

Fig. 3.26. Electrochemical reduction of 1 mM VBB in acetonitrile with 0.1 M TBAP on a 3 mm 

diameter glassy carbon disc electrode (v = 0.1 V s-1, four consecutive cycles). Saturated calomel 

reference electrode and a spiral nickel wire counter electrode were applied. 

 

As shown in Fig. 3.26, the reduction peaks shift toward negatively while the number 

of scans increased. A well-defined reduction peak appears at -0.2 V vs. SCE indicates 

the reduction process of the diazonium salt; and with no reverse oxidation wave 

agrees with the irreversible process of the release of N2. Shift of reductive peaks 

suggests that the electrode surface is covered by the diazonium salt, which leading the 

reduction process become sluggish and block the entire electrode surface (i.e. scan 4). 

Therefore in the following experiments, one-scan-only functionalization process was 

performed. 

 

Scheme 3.5 illustrates the reaction mechanism for the functionalisation process. The 

reduction peak shown in Fig. 3.26 corresponds the one-electron-reduction process of 

varimine blue B, and the formation of an active radical, which can bond to the 

electrode surface. 
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Scheme 3.5. The one-electron-reduction process of varimine blue B and the following 

functionalization process. 

 

The modified electrode was then dipped into 0.1 M perchloric acid solution and the 

potential swept from -0.2 to +0.8 to-0.2 V vs. SCE for several times. Fig. 3.27 

illustrates the voltammogram of the oxidation of the modified electrode. Five 

consecutive cycles were undertaken, with an oxidation peak appears at +0.7 V vs. 

SCE for the first scan, and a reductive peak shows at +0.45 V vs. SCE. The following 

scans (i.e. scans 2~5) show an oxidation peak at +0.5 V vs. SCE and again, the 

corresponding reduction peaks appear at +0.45 V vs. SCE. Scans 2~5 overlap each 

other, suggests that there is no material loss on the electrode surface. 
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Fig. 3.27. Electrochemical oxidation of varimine blue B modified glassy carbon disc electrode (3 

mm diameter) in 1.0 M HClO4 (v = 0.1 V s-1, five consecutive cycles). Saturated calomel reference 

electrode and a spiral nickel wire counter electrode were applied.  

 

The difference between first scan and its following scans suggests that there is 

different electron-transfer processes occur. Indeed, the oxidation peak (+0.7 V vs. 

SCE) of the first scan indicates a relatively slow electron transfer process and 

followed by a relatively quick (fast than the former) oxidation process as shown in 

Scheme 3.6. The consecutive scans (scans 2~5) indicates the latter 

one-electron-oxidation process.  

 

Scheme 3.6. The mechanisms oxidation of variamine blue B modified electrode. 
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Variable scan rates of the oxidation process were also undertaken. As shown in Fig. 

3.28, the peak current for both oxidation peaks and reduction peaks are directly 

proportional to scan rate, suggesting that the electron-transfer process is not diffusion 

controlled, but absorbed. 

 
Fig. 3.28. A plot of peak current against scan rate of the oxidation of varimine blue B modified 

electrode.  

 

The oxidation process was then untaken in different proton concentrations. Mixtures 

of HClO4 and NaClO4 solutions (with the ionic strength equal to 1.0 M) were used. 

The plot of peak potential against HClO4 concentration (Fig. 3.29) suggests that there 

is a large pH dependence on the first scan, whereas there is a small dependence on 

protons in the consecutive oxidation and reduction process, which in agreement with 

the mechanisms suggested, as higher acid concentrations leads the first oxidation 

process difficult as it involves a proton release process.  

 

Fig. 3.29. Averaged peak potential in variable scan rates of oxidation of variamine blue B modified 

electrode against HClO4 concentration. 
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In order to perform a redox catalytic reaction, a well-known redox reagent, ferrocene 

derivative, 6-(ferrocenyl)hexanethiol was used to modify the variamine blue B 

functionalised electrode. The functionalised electrode was dipped in chloroform 

solution containing 1 mM 6-(ferrocenyl)hxanethiol for overnight. Scheme 3.7 

illustrates the nuclearphilic addition of 6-(ferrocenyl)hexanethiol to variamine blue B 

functionalised electrode.  

 

Scheme 3.7. 

 

The final modified electrode was then moved into 0.1 M HClO4 solution and the scan 

from -0.3 to +0.7 V vs. SCE as shown in Fig. 3.30. Clearly, two oxidation and two 

reduction waves can be observed in Fig. 3.30. The redox process occurs at lower 

potential is corresponding to the oxidation of ferrocene and the redox process occurs 
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at higher potential is corresponding to the oxidation of the variamine blue B. The 

consecutive scans were also been carried out with no loss of signal, suggesting that 

the modified electrode (sensor) is stable. 

 

Fig. 3.30. Electrochemical oxidation of ferrocene-variamine blue B modified electrode in 0.1 M 

HClO4 (v = 0.1 V s-1). 

 

Therefore, in summary, the glassy carbon disc electrode was successfully modified 

with varimine blue B and 6-(ferrocenyl)hexanethiol. As the redox potential of 

ferrocene is low, as well as it is a well-known redox catalytic mediator, it can be 

applied for redox catalytic reactions to act as a potential sensor such as L-cysteine 

detection. 

 

3.5. Photo electrochemistry of 

chlorpromazine using channel electrode  

 

In order to understand the photoactivity of chlorpromazine, channel electrode was 

applied due to its well-defined mass transport and ease of integrate to photo chemistry. 

The properties and dimensions of channel electrode have been decried in Experiment 

chapter. However, some modifications were carried out for this experiment.  
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3.5.1. Design of experiment 

The design of the experiment was similar to the setup that mentioned in Experimental 

chapter. Addition to that is an extra light source. The lamp used has been described in 

Experimental chapter. 350 nm wavelength was used as chlorpromazine absorb in 350 

nm. The light source was placed on top of the platinum electrode over the quartz 

cover plate with a distance of 5 mm. The light can be observed to cover the entire 

square-shaped electrode. Grey coloured tape was used to cover rest of the channel and 

only allow the electrode to be exposed to the light source. Fig. 3.31 illustrates the 

setups in real case.  

 

Fig. 3.31. Experimental setup of photo-channel flow electrochemistry system. The reference 

electrode shown in this picture is Ag/AgCl electrode. PTFE tubing was used upstream of the 

working electrode and silicone tubing was used downstream of the working electrode, as PTFE is 

not oxygen permeable.  

 

The intensity of the 350 nm light was measured to be 1440 μW cm
-2

. The flow rates 

were used from 0.2 mL min
-1

 to 2 mL min
-1

 in order to get a wide range rate of mass 

transport.  
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3.5.2. Calibration of channel electrode 

As the diffusion coefficients of different concentrations of chlorpromazine have been 

measured and calculated using macroelectrode cyclic voltammetry, therefore 1 mM 

chlorpromazine in 0.1 M KCl was used to calibrate the height of the channel, 2h. By 

plotting the limiting current against cube root of flow rates, the gradient for 1 mM 

chlorpromazine was found to be 73.03 μA cm
-1/3 

s 
1/3 

(Fig. 3.32). 

 

 

Fig. 3.32. The Levich plot of 1 mM Chlorpromazine in 0.1 M KCl using channel electrode with 

variable flow rates. A platinum wire was used as the counter electrode and Ag/AgCl electrode 

was used as reference. A square shaped platinum sheet was used as working electrode with the 

dimensions: w = 4.5 mm, xe = 5.5 mm, d = 6 mm.  

 

By using the Levich equation, as known the dimensions of the channel electrode, the 

2h was calculated to be 0.0811 cm.  

 

The experiments were then carried out by using different concentrations of 

chlorpromazine. By using the 2h, which is calculated from 1 mM Chlorpromazine, the 
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diffusion coefficients for different concentrations of chlorpromazine can be worked 

out. The data is compared with macroelectrode cyclic voltammetry data and seems 

reasonable (Fig. 3.33). 

 

 

Fig. 3.33. Diffusion coefficients that worked out by using 3 mm diameter glassy carbon disc 

electrode (blue) and channel electrode (red).  

 

Similar trend can be observed for both channel and macroelectrode data except 50 

mM CPZ. This can be due to the measurement of limiting current as syringe pump 

produces large amount of noises. The overall data indicates the channel electrode was 

successfully calibrated. The similar trend as macroelectrode data, which the diffusion 

coefficient decreases with increasing CPZ concentrations, suggests that the CPZ 

molecules move less fast in high concentrations. Therefore the aggregation of the 

CPZ is further proved. 

 

3.5.3. Photo-electrochemistry of chlorpromazine using 

channel electrode 

In order to understand the photo-activity of chlorpromazine, as well as the photon 

effect of the system, photo-electrochemistry experiments using channel electrode was 
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carried out. As shown in previous section, CPZ itself is photo-active, therefore it 

suggests that CPZ can be photo excited to CPZ
*
. It was found that the triplet state is 

relatively stable than that of the singlet. Therefore 
3
CPZ

*
 is the potential candidate for 

excited state reactions
[91]

. 

 

The initial investigation was carried out by studying 10 mM CPZ in different ratios of 

HCl and KCl solution with the ionic strength remains 0.1 M using 

chronoamperometry combined with channel electrode. The potential was held at +0.3 

V, where the potential is not sufficient enough to oxidise the CPZ but enough to 

reduce the CPZ
+•

 if there is any. The solution was argon saturated in order to prevent 

any reactions that may be caused by oxygen. 350 nm light was using to excite the 

CPZ on top of the electrode. An example of chronoamperometry result is shown in 

Fig. 3.34.  

 

Fig. 3.34. Chronoamperometry of 10 mM CPZ in 0.01 M HCl and 0.09 KCl using channel electrode 

with 700 μL min-1 flow rate. The potential was held at +0.35 V vs. Ag/AgCl. A platinum wire was 

used as the counter electrode and Ag/AgCl electrode was used as reference. A square shaped 

platinum sheet was used as working electrode with the dimensions: w = 4.5 mm, xe = 5.5 mm, d = 

6 mm, 2h = 0.811 mm.  
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As shown in Fig. 3.34, the light causes the current to decrease, suggesting that there is 

a reductive current observed. In addition, the increase of flow rates causes the 

photocurrent decrease (Fig. 3.35), suggesting that the faster the flow allows less time 

for the CPZ to react.  

 

 

Fig. 3.35. A plot of normalised photo current against flow rates of 10 mM CPZ in variable 

concentration ratios of HCl and KCl with ionic strength equals to 0.1 M with the potential held at 

+0.35 V vs. Ag/AgCl. 0.01 M to 0.1 M represents the concentrations of HCl. A platinum wire was 

used as the counter electrode and Ag/AgCl electrode was used as reference. A square shaped 

platinum sheet was used as working electrode with the dimensions: w = 4.5 mm, xe = 5.5 mm, d = 

6 mm, 2h = 0.811 mm.  

 

Detailed view in Fig. 3.34 shows that there is a spike straight after the light was on. 

The direction of the spikes is towards positive suggesting there is an oxidation process 

happening, which are overwhelmed by the reductive signals.  

 

In order to understand the spikes, different concentrations of CPZ was used. 5 mM 

CPZ was subsequently used with the presence of different ratios of HCl and KCl, with 

ionic strength equal to 0.1 M, respectively. Surprisingly, oxidative photo-currents 

were observed with low HCl (cHCl < 0.05 M) concentrations and reductive 

photo-currents were observed with high HCl ( cHCl ≥ 0.05 M) concentrations. An 

example which contains both oxidative and reductive photo-current is shown in Fig. 

3.36. 

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500

n
o

rm
a
li

se
d

 i
p

h
o
to

 c
u

rr
en

t 
  
  

/ 
A

 m
M

-1
 

Flow rate/ μL min-1  

0.01M

0.02M

0.03M

0.04M

0.05M

0.06M

0.07M

0.1M



110 

 

 

Fig. 3.36. A graph of photo-chronoamperometry of 5 mM CPZ with 0.01 M HCl, 0.09 M KCl (dash) 

and 0.1 M HCl (solid) using channel electrode with 700 μL min-1 flow rate. Potential was held at 

+0.35 V vs. Ag/AgCl. A platinum wire was used as the counter electrode and Ag/AgCl electrode 

was used as reference. A square shaped platinum sheet was used as working electrode with the 

dimensions: w = 4.5 mm, xe = 5.5 mm, d = 6 mm, 2h = 0.811 mm. 

 

As shown in Fig. 3.36, spike can be observed before the reductive photo-current 

occurs, which in agreement with previous experiments. 2 mM CPZ experiments were 

also carried out with the same conditions as the 5mM and 10 mM CPZ experiments. 

Similar observations were found as 5 mM CPZ, but the inversion from oxidative 

current to reductive current requires higher concentrations of HCl (i.e. cHCl ≥ 0.07 M). 

 

Therefore from all three experiments, it can be concluded that the photo excitation 

causes both oxidative and reductive process to occur. The oxidation is faster than the 

reductive process and can be overwhelmed by the reductive photo signal with higher 

CPZ concentration or higher HCl concentrations. The oxidation process can be due to 

the photo initiated ionisation, and the reductive process can be due to the reduction of 

CPZ
+•. Therefore the reaction scheme can be concluded in Scheme 3.8 – 3.11. 
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CPZ
ℎ𝑣
→ CPZ∗                    (Scheme 3.8) 

CPZ∗ → CPZ+• + e−                (Scheme 3.9) 

CPZ∗ +H+ → CPZ+• +
1

2
H2             (Scheme 3.10) 

CPZ+• + e− → CPZ                (Scheme 3.11) 

 

As shown in Scheme 3.9, ionisation process causes the oxidative current and CPZ 

cation radical is formed. The CPZ cation radical can be then reduced at +0.3 V to 

CPZ ground state. In addition, in the presence of HCl, the proton concentration is 

sufficient to let Scheme 3.3 to occur. Both scheme 3.9 and 3.10 generate CPZ cation 

radical with the faster homogenous electron transfer (i.e. Scheme 3.9), therefore 

higher proton concentration, the more CPZ cation radical can be generated as well as 

can be subsequently reduced.  

 

Further experiments were also carried out by hold the potential at both 0 V and -0.25 

V using 5 mM CPZ with 0.01 M HCl and 0.09 M KCl. The oxidative spikes are 

higher at 0 V than -0.25 V, and both conditions provides a reductive decay, 

suggesting that: 

- The reductive current is not caused by the reduction of hydrogen as Ag/AgCl 

reference electrode was used and potential was held at -0.25 V. 

- Higher potentials (i.e. 0 V compared to -0.25 V) offers higher oxidative spike, 

which on the other hand, less Scheme 3.10 is occurring. 

 

An example of 5 mM CPZ with 0.01 M HCl and 0.09 M KCl with holding the 

potential at both 0 V and -0.25 V is shown in Fig. 3.37. It can be seen that in Fig. 

3.37, the reductive current are similar to each other. The oxidative spike at 0 V is 

higher than that of the -0.25 V but the following spikes becomes similar.  
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Fig. 3.37. A graph of chronoamperometry of 5 mM CPZ with 0.01 M HCl and 0.09 M KCl using 

channel electrode with 200 μL min-1 flow rate. The potential was held at 0 V (purple) and -0.25 V 

(black) vs. Ag/AgCl. A platinum wire was used as the counter electrode and Ag/AgCl electrode 

was used as reference. A square shaped platinum sheet was used as working electrode with the 

dimensions: w = 4.5 mm, xe = 5.5 mm, d = 6 mm, 2h = 0.811 mm. 

 

3.5.4. Summary 

The photo-electrochemistry of chlorpromazine has been studied systemically using 

channel electrode combine with photo-excitation. The reaction mechanisms are 

worked out based on the chronoamperometry data. 

 

Lactic acid, on the other hand, could be a potential fuel source to power the sensor 

itself, therefore, a renewable energy source can be utilised. In chapter 7, simulations 

of renewable energy storage was discussed in order to provide the efficiency of 

storage of renewable energies.  
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3.6. Melamine detection 

Besides the detection of the biomarkers, electrochemical sensors in food industry are 

also crucial. Melamine (Fig. 3.38) is known as industrial synthetic compound used in 

laminates, coats, adhesive and flame-retardants
[92]

. However, it became a cattle feed 

material in 1958 due to its high nitrogen containment (66%), and it was discontinued 

in 1978 due to incomplete hydrolysation in ruminants
[93]

. However, because the 

Kjeldahl method
[94]

 only measures the nitrogen content as a indication for protein 

levels, therefore melamine was added to food products to increase the protein content. 

In 2004, it was found that melamine was added to pet food and cased renal failure for 

dogs and cats in Asia
[95]

. More seriously, in 2008, more than 54,000 infants and young 

children were hospitalised due the addition of melamine to dairy products in China 

and caused at least six deaths
[96, 97]

. Consequently, the detection of melamine became 

a crucial task for the government to protect the public health.  

 

Fig. 3.38. Chemical structure of melamine. 

 

There are many literatures published after the Chinese dairy incident concerning 

about the detection of melamine. As melamine contains three azine groups, it is highly 

stable with poor electroactivity
[98]

, and it is rare to see literatures on the direct 

electrolysis of melamine. There are some detection methods in literatures based on 

electrochemistry including electrochemiluminescence
[99, 100]

 and voltammetic method 

using a modified glassy carbon electrode
[101]

, using a modified screen print 

electrode
[98, 102]

 and using a molecularly imprinted polymer electrode
[103]

. Overall, the 

electrode needs to be modified in order to measure the presence of melamine. 

 

As melamine can act as a proton donor because of the three amine groups, the 
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electrochemical oxidation of 2,4,6-trihydroxybenzoic acid (THBA) was used, and the 

oxidation process can be favoured by the addition of melamine. The benzoic acid can 

be hydrolysed in water to form a proton and R-COO
-
 group, with addition of 

melamine, the hydrolysation can be favoured. 

 

3.6.1. Varying scan rates of 2,4,6-trihydroxybenzoic 

acid (THBA) 

Another interesting experiment of catalytic electrochemistry was carried out by using 

2,4,6-trihydroxybenzoic acid (THBA) as mediator to determine melamine 

concentration. However, this approach is not a typical EC′ reaction, as the melamine 

does not catalyse the THBA. As melamine is known as an organic base
[104]

, therefore 

it deprotonate an acid molecule, in this case, THBA, which can favour the oxidation 

of the acid.  

 

A preliminary experiment was carried out by examining the redox process of THBA 

in 1:1 ratio of water/ethanol in the presence of 0.1 M KCl as supporting electrolyte. 

As shown in Fig. 3.39a, the increasing number of scans leads decrease in peak current, 

indicates the electrode surface area changes with number of scans. Therefore 

electrode polishing is essential between scan rates. Fig. 3.39b shows the oxidation of 

1.08 mM of THBA in variable scan rates (0.02 ≤ v / V s
-1

 ≤ 1), the peak current 

increase with increasing scan rate, as expected. Notably, at slower scan rates (0.02 ≤ v 

/ V s
-1

 ≤ 0.1), two peaks can be observed between +0.8 V and +1.1 V, whereas at 

higher scan rates (0.2 ≤ v / Vs
-1

 ≤ 1), the two oxidation peaks merged into one broad 

peak. The split of two oxidation peaks suggests that the oxidation of THBA is a 

two-electron transfer process. In addition, the plot of peak current against square root 

of scan rate (Fig. 3.39c) offers linear dependence for all of the first oxidation peak, 

second oxidation peak and the merged peak at higher scan rates, and the slope of first 

oxidation is close to twice of the second oxidation wave, with the merged wave in 
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between them, suggesting that the effective number of electron transferred at second 

oxidation potential is twice of the first, and decreased at higher scan rate. The plot of 

peak potential against logarithm of scan rate (Fig. 3.39d) shows that all of the peak 

potentials have a dependence on scan rate, suggesting that both electron transfer 

processes are electrochemically irreversible. Again, half of the slope of second 

oxidation peak compared to the first one suggests the effective number of electron 

transferred is doubled, and the merged peak at higher scan rate appeared in between 

suggests that the effective number of electrons transferred is decreased at higher scan 

rate. 

 

 

Fig. 3.39. (a) Cyclic voltammetry of 1.08 mM THBA oxidation at 0.1 V s-1 scan rate with five scans. 

(b) Cyclic voltammetry of 1.08 mM THBA oxidation at variable scan rates. (c) A corresponding 

plot of peak current against square root of scan rates, with solid dots: first oxidation peak; hollow 

dots: second oxidation peak; cross: merged oxidation peak at higher scan rates. (d) A 

corresponding plot of peak potential against logarithm of scan rates, with solid dots: first 

oxidation peak; hollow dots: second oxidation peak; cross: merged oxidation peak at higher scan 

rates. A 3 mm diameter glassy carbon disc electrode was served as a working electrode, 

silver/sliver chloride electrode was served as a reference electrode and a spiral platinum wire 

was used as a counter electrode.  
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3.6.2. Effects of melamine addition 

After the study of THBA on itself, different ratios of TBHA concentrations and 

melamine concentrations were examined by cyclic voltammetry. Interestingly, after 

the ratio [Mel]/[THBA] greater than 1, the two oxidation peak merged into one. As 

shown in Fig. 3.40, the shoulder on the oxidation peak disappeared when the 

concentration of melamine above 1 mM. Note that the peak currents are slightly 

different due to the variation of exact concentration of 1 mM THBA. 

 

Fig. 3.40. Electrochemical oxidation of 1 mM THBA with variable concentrations of melamine in 

the mixture of water and ethanol with 1-to-1 ratio. 3 mm diameter glassy carbon disc electrode 

was served as the working electrode, silver/silver chloride electrode was served as the reference 

electrode as a spiral platinum wire was used as a counter electrode. Scan rate = 0.1 V s-1.  

 

Therefore the oxidation process can be assumed to be a two-electron oxidation 

process with a deprotonation process in between (Scheme 3.12). The addition of 

melamine favours the deprotonation process and leads the oxidation of THBA easier. 
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Scheme 3.12. Electrochemical oxidation route of THBA. 

 

As the potential shift on cyclic voltammetry is small, therefore in order to apply this 

technique in analytical applications, square wave voltammetry (SWV) was used. As 

the homogenous deprotonation process is a chemical reaction step, the reaction time 

can be critical. Several measurements were taken for the oxidation of THBA with the 

presence of melamine (1 mM), as shown in Fig. 3.41, the potential has no change 

after 5 minutes incubation time of melamine, therefore for the following experiments, 

20 minutes incubation time for melamine was used in order to ensure the 

deprotonation process has been carried out fully. 

 

Fig. 3.41. SWV oxidation of 1 mM THBA in ethanol/water solution (in ratio of 1:1) on a 3 mm 

diameter glassy carbon disc electrode in the presence of 1 mM of melamine. Measurements were 

taken in different incubation times. Ag/AgCl electrode was served as a reference electrode and a 

spiral platinum wire was used as a counter electrode.  
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3.6.3. Analytical approach 

In order to apply this technique in an analytical area, variable measurements using 

SWV were carried out. Three different concentrations of THBA were examined in the 

presence of variable concentrations of melamine using SWV. As shown in Fig. 3.42, 1 

mM of THBA was oxidised using SWV on a 3 mm diameter glassy carbon electrode. 

Clearly, the peak potential starts shifting with the addition of melamine when the 

concentration ratio of THBA and melamine reaches to 1-to-1.  

 

Fig. 3.42. (a) SWV of oxidation of 1 mM THBA in ethanol/water solution (1:1 ratio) on a 3 mm 

diameter glassy carbon disc electrode with the addition of variable concentrations of melamine. 

(b) Corresponding plot of potential shift with logarithm of melamine concentration. Ag/AgCl 

electrode was served as reference electrode and a spiral platinum wire was used as a counter 

electrode.  
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Same effects can also be found in different other concentrations of THBA. 0.5 mM 

and 10 mM of THBA were also examined using SWV as shown in Fig. 3.43. 

Therefore the detection limit is depending on the concentration of THBA. The lower 

the THBA concentration, the lower detection limit. 

 

Fig. 3.43. Plots of potential shift with logarithm of melamine concentration with the presence of 

0.5 mM THBA (black dots) and 10 mM THBA (white dots). Ag/AgCl electrode was served as 

reference electrode and a spiral platinum wire was used as a counter electrode.  

 

In conclusion, melamine can be successfully detected by THBA using SWV. It was 

found that the redox potential of THBA starts to shift towards positive when the 

concentration ratio of melamine and THBA above 1, indicates of a 1:1 complex being 

formed. 

3.7. Conclusions 

In conclusion, several substrates (L-cysteine, glutathione, lactic acid and melamine) 

were successfully detected using electrochemistry techniques. By using homogeneous 

catalytical approach, the detection limits for L-cysteine, glutathione were found to be 

6.3 ± 0.03 and 4.4 ± 0.07 μM. The detection limits for lactic acid was found to be as 

low as 5.85 mM, and the LoD was dependent on the chlorpromazine concentration. 

VBB modified GC electrode was further functionalised by 6-(ferrocenyl)hexanethiol 

afford a sensor. Finally, melamine was detected by using THBA and the LoD of 

melamine was dependent on the THBA concentration and the dependence occurred 
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when concentration ratio of melamine and THBA above 1. 

 

In addition, as mentioned previously, as lactic acid is present in sweat with high 

concentration, and the redox catalytic reactions suggested that it can be a potential 

fuel for a battery. This was also verified by our group.  

 

The redox catalysis was studied in this chapter and in the next chapter; 

electrochemically induced ion proton transfer reactions are examined.  
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4. Protonation and 

Deprotonation 

processes induced by 

electrochemistry 

4.1. Introduction 

 

Electron transfer induced reactions have been widely used in organic synthesis
[105]

. 

Despite variable types of bonds formation and dissociation, protonation and 

deprotonation processes can be extremely attractive due to the variable uses of 

protons
[75]

.  

 

Recent studies on proton-coupled electron transfer reactions suggest that this process 

can be either stepwised or concerted. The stepwised process has been studied over a 

few decays whereas the concerted process has only been brought up recently.
[106]

  

 

A well-known stepwised protonation reaction induced by addition of electrons is 

Birch reduction
[107]

, the radical anions are generated by the addition solvated electrons 

and can be subsequently protonated. The reactions of electrochemically induced 

protonation processes can be initiated by heterogeneous electron transfer (through an 

ECE or DISP mechanism 
[108-112]

, shown in scheme 4.1) or by a homogeneous 

deprotonation. 
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Scheme 4.1. 

 

As shown in Scheme 4.1, both ECE and DISP mechanisms start with an electron 

transfer process and followed by a homogenous protonation (first order or 

pseudo-first-order). Then the radical can be either reduced by a heterogeneous 

electron transfer to form the anion (ECE) or homogenously reduced by the anion 

radical (DISP).  

 

In addition, the proton-coupled electron transfer can be either initiated by 

heterogeneous electron transfer or homogeneous proton transfer, the latter may 

depends on the solvent environment, such as pH.  

 

Another interesting electron transfer induced protonation is the reduction of quinones. 

Instead of C-H bond formation, O-H bond formation is more attractive in the area of 

biochemistry
[113]

 as vitamins are quinone derivatives. Therefore vitamin K1 was 

studied in order to understand the O-H bond formation, as well as suggested a novel 

method to support vitamin K1 on the electrode to obtain better voltammetric signals. 

General quinone reduction is summarised in Scheme 2.  

 

Scheme 4.2. Reaction pathways for quinone reduction. 
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Due to different reaction conditions such as acidity, different reaction pathways can be 

observed. As shown in Scheme 4.2, a square-scheme was suggested. The three 

horizontal pathways are corresponding to the electron transfer process, whereas the 

vertical pathways are corresponding to the homogenous proton transfer processes.  

 

However, it has been found recently that a quinone derivative, 

3,5-di-tert-butyl-1,2-benzo-quinone did not fit the square scheme (Scheme 4.2). It was 

proposed that its second voltammetric cathodic wave was too large
[114]

. In addition, 

the large potential shift in hydroquinone oxidation in presence of nearby carboxylate 

group also does not match the stepwised square scheme
[115]

 (Scheme 4.2). These 

phenomena were suggested to be a concerted proton-electron transfer process.  

 

Electrochemical oxidation induced proton release can be another proton transfer 

process to look at. Oxidative proton release of O-H bond in alcohols has been studied 

by Baciocchi et al.
[116-119]

 and it has been shown that the reactions were strongly pH 

dependent.  

 

Therefore in this chapter, electrochemically induced protonation and deprotonation 

process were studied, including the potential usage of organic synthesis, electrode 

modification and analytical purposes.  

 

4.2. Electrochemical catalysed Birch 

reduction 

This work has been done by myself and in collaboration with A. Andreou and E. 

Biktagirov. This work has been published in ELECTROCHEM. COMMUN., vol. 12, 

no. 11, pp. 1493-1497, 2010.  

http://journalogy.net/Journal/2019/electrochem-commun-electrochemistry-communications
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4.2.1. Introduction 

2,3-Diphenyl-1,4-diazaspiro[4.5]deca-1,3-diene, 1

 (shortened to Spiro-bis-anil in the 

following text, SBA) is an effective reagent for efficient synthesis of 

(1R,2S)-1,2-diphenylethane-1,2-diamine, 4. 4 can be synthesised from 2 in methylene 

chloride. 2 is a useful ligand and auxiliary
[120, 121]

 for enantioseletive synthesis
[122]

. 

The products can then be used for applications such as Diels-Alder and Aldol 

reactions
[122]

, which are useful for the construction of complex molecules. The 

synthetic route from 1 to 3 is well-known and published by several authors
[122-124]

. All 

synthetic routes suggest that 1 must be converted to 2 under Birch conditions (i.e. 

liquid ammonia, sodium metal in Tetrahydrofuran), resulting in the stable 

trans-imidazoline, 2, in high yield. This aminal can be hydrolysed to give, 4, in the 

required racemate
[122-125]

. In addition, because of the delocalisation is present
[126]

, first 

order thermal rearrangements of the 2H-imidazole to the corresponding 

1H-inmidazole are slow
[127]

, the activation barrier is greater than 200 kJ mol
-1

 at 

300 °C.  

 

 

Scheme 4.3. The reaction pathway for 2,3-Diphenyl-1,4-diazaspiro[4.5]deca-1,3-diene (1) to its 

applicable products. 

 

The reduction of imine functional group was studied previously by several authors. 

Savéant
[128]

 et al. studied several different types of imines such as 

                                                        
 The numbers refers to the molecules in scheme 4.3 and scheme 4.4. 
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benzophenone-N-methylimine, benzophenone anil, acetophenone anil and 

benzaldehyde anil. The reduction of these imines was found to be a single two 

electron wave in both acetonitrile and dimethylformamide. They proposed that the 

reaction mechanisms discussed were specific to each molecule studied. 

Benzopheone-N-methylimine and benzophenone anil followed an ECE or DISP1 

mechanism in both acetonitrile and DMF, acetophenone followed a DISP2 pathway in 

DMF whereas benzaldehyde anil gave two waves in DMF and two waves in 

acetonitrile at higher scan rates which suggested it followed a DISP2 mechanism. It 

was also found that the protonated intermediate was easier to reduce than the starting 

material
[129]

. Moreover, Dessy et al.
[130]

 studied benzophenone anil in 

glyme-dimethoxyethane and observed two waves with one electron in each. The 

reduction of diimines can leads to up to 4 electron transfer process, and so, to 

conclude, the reduction of imines is reasonably complicated and dependent on 

different solvent systems and functional groups.  

 

Scheme 4.4. Birch reduction pathway (red) and electrochemical reduction pathway (blue) of 1. 

 

The reduction mechanisms of imines are complicated, but the reaction of bis-anils can 
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be even more intricate. It can lead up to four electrons transferred
[120-122, 124, 125, 131, 132]

. 

How these electrons are transferred is still open to debate. As no stable intermediate is 

observed, a stepwise mechanism seems unlikely. Past studies of dimine reductions 

have all focused on either open chain or six membered ring bis-anils in protic 

environments
[133, 134]

 and tautomerisation of the diimines can occur within the 

voltammetric timescale
[133]

, adding even further complication. 

 

 

In the present work, the reduction of a five-membered ring bis-anil, 1, was studied. It 

was found to follow a four electron reduction, similar to other bis-anils previously 

stated, as predicted. Moreover, a two-electron immediate was observed in the 

voltammogram, compared to the four-electron Birch reduction pathway (Scheme 4.2). 

 

4.2.2. Electrochemical reduction of 

2,3-Diphenyl-1,4-diazaspiro [4.5]- deca-1,3-diene 

in dry-dimethylformamide 

The initial investigation of the reduction of spiro-bis-anil (SBA) was carried out in 

DMF using a glassy carbon electrode (3 mm diameter). 0.99 mM of SBA was 

dissolved in dry DMF with 0.1 M Tetrabutylammonium perchlorate (TBAP) as 

supporting electrolyte. Two reduction waves were observed during the voltammetry 

experiment (Fig. 4.1a). The first reduction peak appeared between -1.9 V to -2.0 V 

(also depending on scan rate), whereas the second reduction peak appeared between 

-2.3 V to -2.4 V (depends on the scan rates). Both the peaks have a shoulder at the 

half height at slow scan rates, circa 20 mV s
-1

, indicating that the two electron 

reduction process for each peak contained two discrete steps, with a slow protonation 

process after the first and third electron transfer process, which is caused by the 

limited proton source. The reduction waves appeared at relatively negative potentials 

suggesting that the reduction of the spiro-bis-anil is relatively difficult. The 
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intermediate could be observed and stable between -2.0 V to -2.5 V. This was 

expected as the intermediate involves a double bond with electron delocalised in the 

diimine ring.  

 

Correspondingly, microelectrode voltammetry was carried out using an 11 μm 

diameter carbon fibre electrode. Two limiting currents can be observed in the 

voltammogram (Fig. 4.1b), with half wave potential similar to that of the 

macro-electrode voltammogram, agreeing with the two stepped process.  

 

Fig. 4.1. Cyclic voltammogram of electrochemical reduction of 0.99 mM spiro-bis-anil at (a) a 

glassy carbon macro-electrode (3 mm diameter) or (b) carbon fibre microelectrode (11 μm 

diameter) in dry DMF with 0.1 M TBAP. A nickel wire was used as a counter electrode, and 

saturated calomel reference electrode was used. Variable scan rates were carried out in the 

experiment (0.02 V s-1 ≤ v ≤ 0.5 V s-1). 

 

As it can be seen from the voltammogram (Fig. 4.1a), the oxidation wave of the 
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reduction of spiro-bis-anil is complex. Split oxidative peaks can be seen between -2.1 

V to -1.2 V vs. SCE. This may due to carbon based protonated surface functionalities. 

The final product can be not fully protonated due to lack of protons available in dry 

DMF solvent, therefore, some of the anions can be oxidised back relatively easier. 

Finally, an oxidative wave can be observed at -0.3 V vs. SCE. This can be the reverse 

peak of first reductive wave and leads to a very slow kinetics as the peak to peak 

separation is significantly large. The size of the oxidation peak at -0.3 V vs. SCE is 

smaller than the oxidation peak between -1.2 V to -2.1 V vs. SCE, and this indicates 

that the two electron reduction product is relatively more stable than that of the four 

electron product, without the presence of protons. 

 

Fig. 4.2. A plot of peak current against square root of scan rate (a) and a plot of peak potential per 

decade change of scan rate (b) for first reductive peak (black dot) and second reductive peak (red 

dot) of 0.99 mM spiro-bis-anil, at a glassy carbon macro-electrode (3 mm diameter) in dry DMF 

with 0.1 M TBAP. A nickel wire was used as counter electrode and a saturated calomel electrode 

was used as reference electrode. Data obtained from that presented in Fig. 1a. 
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A plot of peak current against square root of scan rate is shown in Fig. 4.2a. The 

straight line crossing the origin indicates the electrochemical reduction process is 

under diffusion control. Due to a complicated and unclear peak in the oxidation wave, 

observed between -1.2 V to -2.1 V, this analysis was completed. A direct correlation of 

peak current and square root of san rate can be observed for the oxidation wave at -0.3 

V, which indicates the oxidation process is also under diffusion controlled. In order to 

examine the reversibility of the two reductive peaks, a graph of peak potential against 

logarithm of scan rate was plotted (Fig. 4.2b). The analysis indicates that both of the 

first and second reductive peak are electrochemical irreversible. A 34.4 mV slope was 

observed for the first reductive wave indicates a first order ECE or DISP1 process.  

 

Fig. 4.3. (a) Cyclic voltammogram of electrochemical reduction of 0.99 mM spiro-bis-anil at (a) a 

glassy carbon macro-electrode (3 mm diameter) or (d) a carbon fibre microelectrode (11 μm diameter) 

in dry DMF with 0.1 M TBAP. First reductive peak only. Variable scan rates were carried out in the 

experiment (0.02 V s
-1

 ≤ v ≤ 0.5 V s
-1

). (b) a corresponding plot of peak current against square root of 

scan rates for the first reductive peak. (c) a corresponding plot of peak potential against decade change 

of scan rates. A nickel wire was used as a counter electrode and a saturated calomel electrode was used 

as a reference electrode. 
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As mentioned previously, the reduction of bis-anil can lead to a 4 electron transfer 

reaction. The reduction peaks shown in Fig. 4.1 are of a similar size, suggesting that 

the reductions could be two two-electron processes (2 in each wave). In order to 

understand the first two electron transfer processes, and confirm the two electron 

process, an experiment was carried out only investigating the first reductive peak only 

(Fig. 4.3). 

 

It can be seen from Fig. 4.3a, a shoulder was observed in the reductive wave at slower 

sweep rate, which has the same observation in Fig. 4.1. This can be due to the two 

electron transfer process. As the electron transfer process is followed by a proton 

transfer, the proton transfer is difficult in dry-DMF, the second electron transfer can 

be slowed. In addition, larger time scale allows the molecule to rearrange itself in 

order to minimise the potential energy, therefore the intermediate, which is formed 

after the first electron transfer can be relatively more stable after the rearrangement. 

Similar phenomena can be observed for the second reductive peak. Two oxidative 

peaks can also be observed in Fig. 4.3a, these peaks could be due to the reverse peak 

of the two electron transfer reduction. It can be observed that the first oxidative peak 

(at -1.8 V ) is smaller than the second (at -1.5 V), we propose this is due to the two 

electron reduction product (intermediate in the case of four electron transfer) is 

relatively more stable than that of the one electron cation radical. Peak current against 

square root of scan rate and peak potential against logarithm of scan rate is plotted 

and indicates that the two electron transfer process is controlled by diffusion and 

electrochemically irreversible. Again, 30.7 mV per decade change of peak potential 

indicates the first reduction wave follows an ECE or DISP1 reaction pathway. 

4.2.3. Electrochemical reduction of 

2,3-Diphenyl-1,4-diazaspiro [4.5]- deca-1,3-diene 

in wet-dimethylformamide 

In order to reduce the concern, regarding the role played by carbon-based protonated 



131 

 

surface-functionalities, and enhance voltammetric reproducibility, a mixture of water 

and DMF was sued as a solvent in the ratio 1:9, respectively. The presence of water 

provides a large amount of proton source to the system so that the protonation of 

reduced imine should become more facile. Only the first reductive peak was 

investigated in DMF/Water mixture initially (Fig. 4.4).  

 

Fig. 4.4. (a) cyclic voltammogram of electrochemical reduction of 0.89 mM spiro-bis-anil at glassy 

carbon macro-electrode (3 mm diameter) in DMF/Water mixture (ratio of 9:1) with 0.1 M TBAP. 

First reductive peak only. Variable scan rates were carried out in the experiment (0.02 V s-1 ≤ v ≤ 

0.5 V s-1). (b) a corresponding plot of peak current against square root of scan rates for the first 

reductive peak. (c) a corresponding plot of peak potential against decade change of scan rates. A 

nickel wire was used as a counter electrode and a saturated calomel electrode was used as a 

reference electrode. 

 

Fig. 4.4a shows the voltammetry of spiro-bis-anil (0.88 mM). Comparing the cyclic 

voltammetry with those measured in dry DMF, the shoulder of the reductive peaks at 
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slow scan rate has disappeared in the DMF/Water mixture. This indicates the 

protonation is favoured by adding water into the system and the second electron 

transfer can take place rapidly after protonation. It also suggests that the anion radical 

is relatively more stable than its protonated form. Therefore, this observation suggests 

that the electron transfer process for the first reductive peak is stepwise and the 

second electron transfer can only occur after protonation. Additionally, the reverse 

peaks that are observed at -1.8 V and -1.5 V in dry DMF have also disappeared in Fig. 

4.4a and an increased oxidative peak can be detected at approximately -0.5 V. This 

suggests that the oxidation of cation radical is no longer stable in DMF/Water mixture 

solvent and can be protonated straight away after been reduced. The oxidation peak at 

approximately -0.5 V could, therefore, be the oxidation peak of di-imine (chemical 3 

in Scheme 4.2). The plot of peak current against square root of scan rate (Fig. 4.4b) 

indicates the reduction process is controlled by diffusion again, but the slope gives 

slightly different values due to the change of symmetry factor which caused by the 

change of the electron transfer kinetics, as the kinetics are complicated in dry DMF 

solvent. The same reason also causes the slope change of peak potential per decade 

change of scan rate. 

 

The second reductive peak was subsequently studied. Again, the shoulder on the 

second reductive peak disappears when performed in the presence of protons, the 

same as the first peak. This observation can be found in Fig. 4.5a. In addition, the 

second reductive peak shifts to more negative potential compare to that of in dry-DMF. 

The elimination of reverse peak (first wave) and shift in potential were also been 

observed by Andrieux and Savéant
[128]

 for imine electrochemical reduction. 

Furthermore, both voltammetric waves suffer sluggish heterogeneous kinetics as 

Ep-Ep/2 ≠ 55.6/n, although the data have not been corrected for Ohmic losses, which 

can be important in high scan rates. This suggests that, if both waves involve a two 

electron process, where the transfer of the first of these in each case is kinetically 

slow.  
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Fig. 4.5. (a) cyclic voltammogram of electrochemical reduction of 0.89 mM spiro-bis-anil at glassy 

carbon macro-electrode (3 mm diameter) in DMF/Water mixture (ratio of 9:1) with 0.1 M TBAP. 

Variable scan rates were carried out in the experiment (0.02 V s-1 ≤ v ≤ 0.5 V s-1). (b) a 

corresponding plot of peak current against square root of scan rates for the first reductive peak. 

(c) a corresponding plot of peak potential against decade change of scan rates. A nickel wire was 

used as a counter electrode and a saturated calomel electrode was used as a reference electrode. 

 

Furthermore, variable concentrations of SBA were studied in DMF/Water (ratio of 9:1) 

mixture using both macro- and microelectrodes. With fixed scan rate, i.e. 0.1 V s
-1

, the 

peak current increase with increasing concentration. The peak current doubled 

magnitude with doubled concentrations shows that the reaction is first order. Slight 

shift towards negative potential with higher concentrations on both peaks illustrates 

the slow kinetics. The macro- and microelectrode behaviour with variable 

concentrations is illustrated in Fig. 4.6.  
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Fig. 4.6. Cyclic voltammetry of 0.58 mM (purple), 0.89 mM (blue), 2.02 mM (red) and 3.75 mM 

(green) spiro-bis-anil reduction in DMF/Water mixture (9:1) at 3 mm diameter glassy carbon 

electrode (a) or 11 μm carbon fibre electrode (b) with 0.1 M TBAP. Scan rate = 0.1 V s-1. A nickel 

wire was used as a counter electrode and a saturated calomel electrode was used as a reference 

electrode. 

 

In addition, short investigations of spiro-bis-anil reduction were also carried out in 

acetonitrile, THF as well as DMF/Water mixture with a ratio of 8:2. The second 

reductive peak was split into two in acetonitrile, which indicates the electron transfer 

of the fourth electron is relatively difficult than in DMF/Water or pure DMF, this is 

due to the shortage of proton in pure acetonitrile as DMF adsorbs water slightly more 
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than acetonitrile. The attempt in THF was also carried out but the result is not ideal 

(no well-defined waves were observed). 

 

4.2.4. Chronoampermetry analysis of 

2,3-Diphenyl-1,4-diazaspiro [4.5]- deca-1,3-diene 

reduction 

 

Microelectrode chronoampermetry
[135]

 was employed in order to determine the 

diffusion coefficient of SBA (D) and the number of moles of electrons transferred 

heterogeneously per mole of SBA (n) for both redox waves, as the Randles-Sevčik 

equation contains two variables (D and n) in a reversible system and the transfer 

coefficient can be included in an irreversible system. This method was described in 

the Introduction, briefly, the dimensionless experimental current, f(τ) = ψ𝑒𝑥𝑝 =

𝑖

4𝑛𝐹𝐷𝑟𝑐0
 and the theoretical dimensionless current, f(τ) = ψ𝑡ℎ𝑦 = 0.7854 +

0.8862𝜏1/2 + 0.214⁡exp⁡(−
0.7823

√𝜏
), with a dimensionless variable, τ =

4𝐷𝑡

𝑟2
, are fitted 

by varying D and n, and the fitting is shown in Fig. 4.7.  

 

Fig. 4.7. Dimensionless current fitting of 0.89 mM of Spiro-bis-anil in DMF/Water mixture (9:1) 

with 0.1 M TBAP. Carbon fibre microelectrode was applied (11μm diameter). Blue line: ψexp; red 

line: ψthy. 
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Accordingly to the fitting process, the first wave was determined as a two electron 

transfer process with n=2.0 ± 0.02 to form the enamine, and four electron transfer 

process with the second wave, n = 4.0 ± 0.01. Both diffusion coefficients were 

determine as D = 4.2 ± 1.4 х 10
-6

 cm
2
 s

-1
.  

 

4.2.5. Overall analysis 

 

According to the cyclic voltammetry and chronoamperometry data, it can be 

concluded that the reaction is under the control of the electron transfer process with 2 

two electron waves observed in all solvent systems at slow sweep rate. The rates 

determine steps were found to be the first and third electron transfer due to the 

merged two electron transfer process in each reductive wave. Similar observation has 

been discovered for carbonyl reduction
[136]

. Since there is no significant dependence 

of the voltammetry on the concentration of spiro-bis-anil, the second order processes 

are unlikely, therefore the both waves could follow ECE-C or DISP1-C reaction 

pathways. They could not be distinguished as there was neither iR compensation 

undertaken nor enamine synthesis
[137]

. Given that the half peak width for both waves 

is 23.4/α mV, the Bulter-Volmer symmetry factor can be worked out and can be 

employed in the expression of the peak current equation: 

 

𝑖𝑝 = 4.2553𝑐0√𝛼√𝐷𝑣                (Eqn. 4.1) 

 

Thus the diffusion coefficient can be determined for each solvent system
[138]

. Table 1 

summarised the analysed data.  

 

Consequently, since the physical properties and concentrations of electrolyte can 

change the viscosity of the system, comment on the data is practically difficult unless 

they appear to be reasonable.  
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Table 4.1. Peak potential and current characteristics of the cyclic voltammograms for the electrochemical reduction of the spiro-bis-anil, 1, at a 3 mm diameter 

glassy carbon electrode. Notes: I represents the first peak and II refers to the second peak; N/D means values not determined. In the comments, slow refers to 

electrode kinetic control, first order refers to control by homogeneous kinetics and Ohmic refers to significant presence of iR loss. Dav is the arithmetic average 

diffusion coefficient determined using microdisc chronoamperometry; Dest represents the diffusion coefficients determined using estimations of the symemetry 

factor under the assumption of slow electrode kinetics; DWC indicates the Wilke-Chang estimation of diffusion coefficient[140]. 

Solvents and 

concentrations
Comments

Dry DMF                                 

    0.1 M TBAP                         

     c0=0.99 mM

32.5±2.6 78.9±7.2 8.96±0.25 50.2±3.2 44.7±6.6 7.27±0.60

Slow or first order; probably slow; 

D
WC

=5.5x10
-6

 cm
2
 s

-1                             

D
av

=5.1±1.3x10
-6

 cm
2
 s

-1 
              

D
est

=1.0±0.5x10
-5

 cm
2
 s

-1

DMF                                         

   0.1 M TBABF                        

    c0=1.98 mM

52.4±1.4 73.2±12.4 6.64±0.09 70.2±4.0 64.2±10.2 5.63±0.09

αI=0.30±0.03; αII=0.52±0.09;           

Slow or first order; probably slow;          

  D
est

=6.2±1.4x10
-6

 cm
2
 s

-1

DMF/Water (9:1)                    

    0.1 M TBAP                  

0.58 mM≤c0≤3.75 mM

65.0±1.8 80.0±10.7 6.71±0.62 77±2.5 63.9±9.4 7.04±0.69

αI=0.32±0.05; αII=0.36±0.05;               

   Slow;                                     D
av

=4.2

±1.4x10
-6

 cm
2
 s

-1
               D

est
=8.0±

0.6x10
-6

 cm
2
 s

-1

DMF/Water (8:2)                    

    0.1 M TBAP                       

c0=2.00 mM

99.3±5.2 N/D 5.07±0.17 130.1±4.8 N/D 4.29±0.54

αI=0.29±0.04; αII=0.37±0.06;               

  Slow

MeCN                                      

     0.1 M TBABF                   

0.98 mM≤c0≤3.90 mM

53.5±9.3 67.9±10.9 10.22±2.73 68.3±7.5 60.3±6.4 N/D

Slow or first order; probably slow;          

 D
WC

=1.5x10-5 cm
2
 s

-1
                  

D
est

=1.7±1.0x10
-5

 cm
2
 s

-1

THF                                      

0.5 M TBAP                          

c0=2.01 mM

106.0±23.5 102.2±21.3 5.21±0.48 82.6±4.4 N/D N/D

αI=0.34±0.04; αII=0.39±0.04;               

  Slow and ohmic;                           

D
WC

=1.1x10
-5

 cm
2
 s

-1
                   

D
est

=6.5±1.3x10
-6

 cm
2
 s

-1

THF                                    

0.1 M Li+ClO4-             

c0=1.01 mM

197 N/D N/D 226 N/D N/D

αI=0.23±0.05;                                     

Ohmic

THF                                          

  0.1 M Li+ClO4-                     

 and                                      

0.1 M NH4+Cl-                

c0=1.00 mM

240 N/D N/D 98.7 N/D N/D

Ohmic

−
   

 

    
/ mV decade-1   

 −  / 
 / mV −

   

  
⁡
   
 

  
A V-1/2 s1/2 (mM)-1 −

   
  

    
/ mV decade-1   

  −  / 
  / mV −

   

  
⁡
   
 

  
A V-1/2 s1/2 (mM)-1
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In addition, the half peak width of the second reductive wave is slightly smaller than 

that of the first, this can be due to the formation of the enamine is slower than its 

consumption, with the first electron transfer limits the overall rate of reduction, there 

is the possibility of  involving structural reorganisation or intrinsically slow 

proton-electron transfer
[139]

 as a shoulder is observed in dry-DMF solvent. 

 

4.2.6. Birch reduction pathway 

 

The Birch reduction pathway of SBA was further studied on a bench pathway. Briefly, 

the addition of four equivalents of sodium to the spiro-bis-anil in THF/liquid 

ammonia afforded four electron transferred product, 2, in yield of 84%, after work up. 

The reason of using THF was to prevent reaction within a two phase system, even 

with lithium
[122, 124]

. Given that the pKa of the first one electron reduced species as ca. 

25, subsequent reduction leads to species more basic than ammonia, and the 

protonation can occur in loco as proton coupled electron processes. Because these are 

probably more facile to reduce than 1
[129]

, the enmine ion 3
-
 is unstable: 3

-
 + 3

-
 + 2H

+
 

⇄ 1 + 2. The assumption was proved by 
1
H-NMR spectroscopy with only 1 and 2 

were determined after the Birch reduction of 1 using two sodium equivalents, and 

reaffirmed that it is more facile to transfer the third and fourth electrons compared 

with the first two
[141]

. 

4.2.7. Conclusion 

In conclusion, the electrochemical reduction of 2,3-Diphenyl-1,4-diazaspiro- 

[4.5]deca-1,3-diene has been successfully carried out in different solvent systems. It 

involves a four electron transfer in two reduction processes with a two electron 

reduction intermediate, with the first and third electron transfer limits the rate of 

reaction. A diffusion coefficient was found to be 4.2 ±  1.4 x 10
-6

 cm
2
 s

-1
 in wet-DMF 

using micro-disc chronoamperometry, but can vary from 8.0 x 10
-6

 to 1.5 x 10
-5

 cm
2
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s
-1

 in different solvent systems. Compared with the typical Birch reduction pathway, 

the electrochemical reduction offers some major benefits such as room temperature 

condition, wet solvents and accessible two electron intermediates. Whereas, the 

conventional Birch reduction needs to be carried out in THF/liquid ammonia, and 

involves the handling of sodium metal, together with inaccessible two electron 

intermediates. 

 

Electrochemical reduction of vitamin K1 is a typical proton transfer reactions as the 

electrochemical reduction of quinones have been extensively studied as mentioned in 

Section 4.1. Therefore electrochemical reduction of vitamin K1 with lipid support was 

subsequently studied. 

4.3. Electrochemical reduction of lipid 

supported vitamin K1 

4.3.1. Introduction 

In order to understand the electro-reduction induced protonation reactions, vitamin K1 

(VK1) was selected to study, due to its well-known electro-reduction properties and 

reaction mechanisms. In this section, we used lipid supported vitamin K1 to offer 

better electrochemical signal.  

 

Vitamins are essential organic materials for life as they play important and unique 

roles in biochemistry.
[142]

 Vitamins are so special because they cannot be synthesised 

by animals and can cause variable disease if lack of them
[143]

. Vitamins can be either 

hydrophobic (e.g. vitamin A, D, and E) or hydrophilic (e.g. vitamin B and C). 

 

Although vitamin K has been discovery for over 50 years, it draws less attention than 

other hydrophobic vitamins. This is because it was recognised that the only 

therapeutic use is to help the synthesis of plasma clotting proteins. However, in the 



140 

 

past 20 years, vitamin K has been understood more intensively and varies of roles of 

vitamin K has been discovered.  

 

Vitamin K has chemical structure based on 2-methyl-1,4-naphthoquinone derivatives 

with an aliphatic side chain in the 3-position (Fig. 4.8). VK1 is found to be the only 

important molecular form in plants, whereas VK2 has variable derivatives based on 

the number of prenyl units, and can be synthesised by bacteria. It is involved in 

cellular respiration and in oxidative phosphorylation as an electron carrier
[144]

. It is 

also a known blood clotting cofactor
[145]

. In addition, it can help the bone mass to 

increase
[146]

.  

 (a) 

  (b) 

Fig. 4.8. Chemical structures of vitamin K. (a) = vitamin K1, (b) = vitamin K2. 

 

Therefore, it is important to understand the electron transfer process of vitamin K in 

order to understand vitamin K behaviour in biological environments. Studies have 

been carried out by using polarography
[147]

 and cyclic voltammetry
[148, 149]

 in aqueous 

and non-aqueous media. 

 

In addition, vitamin K modified electrode can be potentially used as pH sensor
[150]

. As 

shown in this research, the change of pH in the local environment can change the 

redox potential of vitamin K. Unlike the conventional pH meters, VK1 modified 

electrode can be no harm for biological systems, especially human organs.  

 

In this project, an electrochemical study of vitamin K1 was carried out in well 

buffered condition. Although vitamin K1 microdroplets has been studied by Wain, et 



141 

 

al.
[142]

 supported vitamin K is rarely mentioned in literatures. Previous works done by 

Halls et al.
[151]

 introduced vitamin K dissolved in lyotropic liquid crystals and 

suggested that vitamin K sits in the organic phase due to its high hydrophobicity. Most 

recent work by R. Bilewicz et al.
[10]

 suggested that VK1 can be supported by a lipidic 

cubic mesophase. Therefore in this thesis, the vitamin K1 was supported by lipids in 

order to obtain a better understanding of the electron transport process, in an 

environment that resembled that of a biological system. 

4.3.2. Results and discussion 

The number of electrons transferred in the redox process per molecule involved can 

be calculated quantitively by putting a certain amount of reactant onto the BPGE. As 

BPGE has much larger electroactive surface area than GCE, therefore the 

accumulation can be ensured that all the reactants accumulated on the electroactive 

surface on BPGE, not the electro-inactive protection part of the electrode.  

 

Fig. 4.9 shows the voltammogram of VK1 reduction with 30 μL accumulation of VK1 

solution on BPGE. The modified electrode was then dipped into 1.0 M HCl. 

 

Fig. 4.9. The voltammogram of reduction of VK1 without lipid in 1.0 M HCl. 30 μL VK1 was 

accumulated on BPGE. Scan rate = 0.1 V s-1. 

 

In the voltammogram, the reduction of VK1 is occurred at approximately -0.5 V and 

the corresponding oxidative peak appear at approximately +0.5 V. The area 
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underneath the peak (either oxidation or reduction) in the voltammogram shows the 

total amount of charge required to perform the overall electrode reaction. The 

relationship between charge and n is shown in Eqn. 4.2. 

 

Q = nNF                      (Eqn. 4.2) 

 

Where Q is charge in C, n is the number of electrons transferred, N is the number of 

moles of reactant and F is the Faraday’s Constant (96484.6 C mol
-1

). The integration 

of the reductive peak shows the charge is 5.610 X 10
-3

 C. Therefore n can be worked 

out as 1.88, which is close to 2 electrons. 

 

After the number of electrons was worked out, the experiment was then moved on to 

GCE rather than BPGE. The solution, which performing the electrochemistry was 

changed to Britton-Robinson Buffer (BRB) solution in order to obtain data in variable 

pH. And the vitamin K1 was supported by LC lipid. 

 

10 μL of vitamin K1 with lipid solution was accumulated on the surface of GCE 

electrode. The modified electrode was then dipped into BRB solution with variable 

pH values. Fig. 4.10 shows the voltammogram of reduction of VK1 with lipid in pH 2 

BRB solution. 

 

Fig. 4.10 Voltammogram of reduction of VK1 with lipid in BRB solution in pH 2. VK1/lipid was 

accumulated on GCE. Scan rate = 0.1 V s-1. 
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Repetitive cycling as shown in Fig. 4.10, showed no change in response. The peak 

potential and peak current stays same as scan 1, suggesting there is no material lost on 

the electrode during the experiment.  

 

A plot of logarithm of peak current against the logarithm of scan rate is shown in Fig. 

4.11 for reduction of VK1/lipid on GCE in BRB solution at pH 2. 

 

Fig. 4.11. A plot of logarithm of peak current against logarithm of scan rates. Blue: Reduction, Red: 

Oxidation. 

 

The linearity of the plot in Fig. 4.11 represents the redox process on the electrode is 

not under diffusion controlled, which indicates the reduction of VK1/lipid is adsorbed 

on the electrode surface. And both reduction and oxidation gives almost identical 

gradient suggesting that there is no material lost in the reverse scan. 

 

A plot of Ep against logarithm of scan rate for the above condition is shown in Fig. 

4.12. As shown in the graph, there is a slope for both reduction and oxidation peaks 

suggests that the process is electrochemically irreversible. The dependence becomes 

more obvious at scan rates above 0.1 V s
-1

. As the scan rates getting slower, the 

process becomes more likely electrochemically reversible. 
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Fig. 4.12. A plot of peak potential against logarithm of scan rates. pH 2. 

 

The reduction of VK1/lipid was then carried out in different pH values; the 

voltammogram for this is shown in Fig. 4.13. 

 

 

Fig. 4.13. The voltammogram of reduction of VK1/lipid on GCE in BRB solution in different pH 

values. 

 

Clearly, as the pH increase, the reductive peak moves towards more negatively, 

similar phenomena shows in the corresponding oxidative peak. This indicating the 
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increases from 2 to 4.8, the reductive peak shifts towards negative dramatically 

whereas the corresponding oxidative peak almost stays in the same potential; and 

from pH 8.17 to pH 10.5, the reductive peak stays unchanged but the corresponding 

oxidative wave shifts towards negative dramatically. This phenomenon is illustrated 

by plotting Ep against pH, shown in Fig. 4.14. 

 

 

Fig. 4.14. A plot of Ep against pH. Ep was obtained from 0.02 V s-1. 

 

The peak potentials used in Fig. 4.14 are all the reductive peak potentials at scan rate 

0.02 V s
-1

 which is the most close scan rate for a reversible process as shown in Fig. 

5.5. According to the Nernst equation for reversible cases
[152, 153]

, as shown in Fig. 

4.12, below pH 6.12, ∂Ep/∂pH = -57 mV, suggests the formation of H2VK1 by 

reduction of VK1 via two proton (2 H
+
) two electron (2 e

-
)process. And when pH 

values above 8, the ∂Ep/∂pH gives 18 mV suggests the process becomes one proton, 

two electron transfer process. The mechanism can be described with these data 

(Scheme 4.5). 

 

Therefore in acidic environment (pH below 6.12), as there is an excessive protons in 

the solution, the reduced VK1 is easily protonated, whereas in basic environment, 
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there is lack of protons in the solution leads the reduced VK1 harder to be protonated. 

Similar effects were also observed by Wain et al.
[142]

  

 

 

Scheme 4.5. Reaction pathway of vitamin K1. 

 

4.3.3. Conclusion 

In conclusion, the LC supported VK1 was accumulated on both BPGE and GCE 

successfully. The continuous scan shows there is no material loses on the surface of 

the electrodes. The reduction of VK1 with supported by lipid is understood in buffered 

solution. The reduction undergoes a two proton, two electron transfer process in 

acidic conditions (pH below 6.12) and a one proton, two electron transfer process in 

basic conditions (pH above 8). 

 

Electrochemically induced deprotonation is other point of interest. The oxidation of 

sudan dyes causes the depronation to take place, therefore electrochemical oxidation 

of Sudan III was characterised. 
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4.4. Electrochemical study of Sudan III 

4.4.1. Introduction 

Sudan dyes are widely used in chemical industries, household commodities, textile, 

leather, waxes, plastics, and wood industries for colouring materials
[154, 155]

. Sudan 

dyes mainly involve sudan I, sudan II, sudan III and sudan IV. Fig. 4.15 shows the 

structures for these sudan dyes. Most of the literatures focused on the determination of 

sudan dyes
[154-158]

 because they are currently added into food like chilli powder for 

colouring. However, very little has been published to describe the mechanism for the 

oxidation of Sudan dyes. 

 

 

Fig. 4.15. Chemical structures of Sudan dyes. 

 

Sudan dyes have a common 2-naphthol group. According to the literature
[159]

, the 

oxidation of 2-naphthol leads to a proton release. Therefore the other aim of this 

project is to prove there is a proton release during the oxidation process. Sudan III 

was used in this project. 

 

In addition, there is hydrogen bonding between the –OH group and the nitrogen (as 

shown in dashed line in Fig. 4.15). Therefore tautomerisation process can occur.  
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4.4.2. Results and discussion 

5 μL of 10 mM sudan III solution was accumulated on the GCE, the cyclic 

voltammetry was first applied for the oxidation of Sudan III in pH 7. Fig. 4.16 shows 

a voltammogram of sudan III oxidation. 

 

Fig. 4.16. Cyclic voltammogram of oxidation of Sudan III in PBES at pH 7. Scan rate = 0.1 V s
-1

. 

Glassy carbon electrode used as working electrode. 

 

As the number of scans increase, the oxidative current decreases. This indicates that 

there is a loss of material during the experiment. Based on to Panizza et al. work on 

oxidation of 2-naphthol
[159]

, this can be due to the release of proton. On the other hand, 

the electrochemical oxidation of Sudan III introduces charge on the molecule, which 

consequently causes dissolution.  

 

Then the cyclic voltammogram of oxidation of sudan III in phosphate buffer solution 

in variable pH was carried out, as shown in Fig. 4.17. 
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Fig. 4.17. Cyclic voltammetry of oxidation of Sudan III with pH 2.08 (a), pH 4.44 (b), pH 6.67 (c), 

pH 8.03 (d), pH 9.23 (e), pH 10.07 (f). Scan rate taken at 100 mV s-1. A spiral nickel wire served as 

a counter electrode and saturated calomel electrode was served as the reference electrode. 

 

According to the voltammogram, at lower pH (pH 2.08 to pH 6.67), there is only one 
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oxidative peak at approximately +0.9 V and shift more negatively as increase the pH. 

At higher pH (pH 6.67 or above), the oxidative peak split into two oxidative peaks 

with continuing shifting toward negative. This suggests that there is a two electron 

oxidation, which can be separated at high pH values. This will be discussed in further 

detail later on. 

 

 

Fig. 4.17. A plot of Ep vs. pH of oxidation peak I at 10 mV s-1 scan rate. 

 

The plot of Ep vs. pH at pH below 8 gives linear dependence with a slope of 31.5 mV 

(Fig. 4.17). A manipulation of the Nernst Equation gives that the observed redox 

potential change of m/n(59 mV) per pH, for an m H
+
 and n e

-
 redox process. 

Therefore in this case, the redox process can be one proton two electron transfer 

process. 

 

At pH above 9.23, the peak potential is nearly has no dependence on pH, suggesting 

that there is no proton transfer process during the electrochemical reduction. This can 

be due to the deprotonation process that happens before the electron transfer process 

as in basic condition.  

 

Therefore the reaction can be suggested as: 
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Scheme 4.6. Reaction pathway of Sudan III. 

 

As shown in the voltammogram (Fig. 4.17), when pH below 8.3, the strong acidic 

environment makes a/b redox stabilises a with the excess of proton source. The 

deprotonation process happens after the first electron transfer process, a/b. When pH 

above 9.23, the strong basic environment readily deprotonates a before the first 

electron transfer process, therefore there is no dependence observed between peak 

potential and pH.  As the plot of peak potential versus pH at slow scan rate (in the 

reversible regime) gives a slope of 31.8 mV, suggests that the process is 

two-electron-one-proton transfer reaction, therefore c/d redox couple is suggested. 

 

On the other hand, an intramolecular tautomerisation can also occur (righ-hand-side 

route in Scheme 4.6). Without loss of hydrogen, the hydrogen atom on the –OH group 

can be transferred to nitrogen (viz. N-H bond is stronger than O-H bond). The 

intramolecular proton transfer may show some dependence between peak potential 

and pH change. Therefore both routes are possible, with the left-hand-side route more 

a 

d 

c 

b 
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likely. 

 

There is no reverse peak seen from the voltammogram suggesting that the product d 

either further hydrolysed, or forms couple with –OH group in higher pH; or, 

tautomerisation occurs (right-hand-side route) with a relatively more stable N-H bond.  

 

4.4.3. Conclusion 

 

In conclusion, the oxidation of sudan III leads to either a deprotonation process or an 

intramolecular tautomerisation process. The former process involves 2 electrons and 1 

proton transfer. The experiment suggested the reaction mechanism and suggesting the 

deprotonation step (b to c in Scheme 4.6) is relatively slower than the 

electron-transfer process. Hydrogen ions are released by the oxidation of sudan III. 

And the latter process involves two-electron transfer and an intramolecular proton 

transfer. Therefore further works can be carried out in order to discriminate these two 

processes.  

 

Proton, as a positive ion transfer, has been studied in this chapter, in the next chapter, 

negative ion release through bond cleavage was studied.



153 

 

5. Electrochemically 

induced ion release 

Electrochemically induced ion release has been studied over a few decades
[160]

. It has 

been shown varies of advantages such as efficient and well defined qualities. Variable 

ions release has been studied in this project. Cyanide ion release was studied 

predominantly whereas halogen ions, such as iodide release have also been 

investigated.  

 

Besides, the ions which formed after electrochemical reductions may form an ion-pair 

with the electrolyte molecules. It was found that large alkali salts, such as 

tetraalkylammonium perchlorates, tetrafluoroborates, hexafluoro phosphates, etc. in 

conventional dipolar aprotic solvents, such as acetonitrile, N,N-dimethylformamide, 

dimethylsulfoxide, etc., are usually moderate in ion pairing.
[161]

 Savéant found that the 

increasing extent of ion pairing (i.e. increasing the binding constant and/or the 

concentration of associating ion), causing a positive shift on the reversible half-wave 

(or peak) potential by 59.6 mV (at 298 K) per decade change of the associating ion 

concentration. The ion release process can be stepwised or concerted, depending on 

the bond dissociation free energies.  

 

Accordingly, electrochemical methods offers great advantages on the mechanistic 

studies on ion release processes, with association of ion pairing. Based on 

Marus-Hush theory, the relationships between reorganisation energy (i.e. rate of 

electron transfer) and association constant was established by Savéant,
[161]

 with the 

limiting current proportional to the association constant in the reduction case.  
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5.1. Electrochemical reduction of 

nitroprusside in acetonitrile 

5.1.1. Introduction 

Nitroprusside ion (Fig. 5.1), [Fe(CN)5NO]
2-

, has been the subject of extensive 

investigation by chemists after its medical applications were noted.
[162]

 It was firstly 

discovery by Playfair in 1849
[163]

. Since then, Boedeker
[164]

 first introduced its 

pharmaceutical usage and follow by the first clinical trial in 1928 by Johnson
[165]

. It 

was found that nitroprusside ion is an effective peripheral vasodilator, which acan be 

applied to the patients who are suffering a hypertensive emergencies
[166]

 (i.e. high 

blood pressure). Therefore the studies on its reduction mechanisms as well as its 

chemical and physical properties have been intensively carried out. 

 

Fig. 5.1. Chemical structure of nitrprusside ion. 

 

The nitroprusside ion involves five CN
-
 ligands and one NO

+
 ligand bonded on the 

iron metal centre. According to the valence theory, each CN
-
 group donates one 

negative charge and the NO
+
 group donates one positive charge, the iron is 2+ 

charged and therefore the overall charge on the ion is 2-. The crystal structure of the 

nitroprusside ion was determined by X-ray crystallography
[167]

. The bond distance of 

F-C was found 1.90 Å and C-N is 1.16 Å. Compared to the F-C bond, F-N bond gives 

shorter distance of 1.63 Å with N-O bond length of 1.13 Å. Interestingly, the 

N-F-Cequatorial bond angle 96
o
, which is slightly larger than the expected 90

o
. The 

electronic structure of nitroprusside ion was systematically studied by Manoharan and 

Gray
[168]

 (see Fig. 5.2). They suggested that the molecular orbital energy levels of the 

nitroprusside ion with the two highest filled molecular orbitals in the ground state of 
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the ion, which are represented by the term symbols of 6e and 2b2 (Fig. 5.2), with 6e 

level involves mainly dxz and dyz and 24.8% π*NO and small fractions of πCN, π*CN 

and σCN, whereas the 2b2 level contains 84.5% dxy, 13.9% πCN and 1.6% π*CN. 

The lowest unoccupied molecular orbital is the 7e level, which contains 75.5% π*NO 

and small percentages of dxy, dyz, dxz, σCN, πCN and π*CN orbitals. Furthermore, the 

final charge distribution is given to be Fe
+0.3166

(CN)4
-2.2000

(CN)
-0.5809

(NO)
+0.4643

. 

 

Fig. 5.2. Molecular orbital energy levels of the nitroprusside ion. Redrawn from Manoharan, P.T; 

Gray, H. B., J. Am. Chem. Soc., 1965, 87, 3340. 

 

Infrared studies were also carried out for the nitroprusside ion, Tosi and Danon 

determined that the stretching frequency of CN is higher than those of other 

Fe
II
(CN)5X (X = NH3, H2O, NO

2-
 and SO3

2-
), which suggested the less π-bonding in 

the Fe-C bond for the nitroprusside ion. The C-N stretch band is also split, which is 

consistent with the C4v symmetry
[169]

 of the ion. 

 

In order to understand the reduction mechanism of the nitroprusside ion, as well as the 

NO release process, electrochemical studies of the nitroprusside ion were also 
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performed in the past several decades. The electrochemical reduction of 

Fe
II
(CN)5NO

2-
 were intensively studied and different pathways were suggested (Fig. 

5.3). In the presence of water, the reduced nitroprusside can be protonated in either its 

one electron or two electron reduced form. In addition, Carapuça et al.
[170]

suggested 

that there is comproportionation after the first one electron reduction in acidic 

solutions with relatively high concentration of nitroprusside.  

 

Fig. 5.3. Electrochemical reduction route of the nitroprusside ion in aqueous solution. 

 

Additionally, the electrochemical reduction of nitroprusside ion was also studied in 

non-aqueous solvents and first published by Bowden et al.
[39]

 They performed the 

electrochemical reduction of tetra-n-butylammonium nitroprusside in acetonitrile and 

dichloromethane and the reaction pathway was found as shown in Fig. 5.4. However, 

studies of electrochemical reduction of nitroprusside in organic solvent have been 

carried out by very few people, whereas understanding the reduction mechanism of 

nitroprusside in non-aqueous solvent is essential, especially for pharmaceutical 

purposes.  

 

 
Fig. 5.4. Electrochemical reduction rout of the nitroprusside ion in non-aqueous solution. 
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The question may rise: whether the reaction pathway of Fe
II
(CN)5NO

2-
 to 

Fe
I
(CN)4NO

2-
 is concerted or stepwise (i.e. whether the electron transfer and ion 

release process are separate or within the same step)? The assumption, kinetic salt 

effect, can be suggested if the reaction follows: 

 

1. stepwised process 

2. ion pair formed between CN
-
 and Fe(CN)4NO

2-
 

 

5.1.1.1. Kinetic salt effect 

 

If the ion release process is stepwised and CN|Fe(CN)4NO
2-

 ion pairs are formed, then 

there are two ways to illustrate the first reductive process: 

 

(Scheme 5.1) 

 

Therefore there are two ways to illustrate the rate of formation of the intermediate: 

 

𝑑[𝐹𝑒𝐼(𝐶𝑁)5𝑁𝑂
3−]

𝑑𝑡
= 𝑘𝑏[𝐹𝑒

𝐼(𝐶𝑁)4𝑁𝑂
2−][𝐶𝑁−]     (Eqn. 5.1) 

𝑑[𝐹𝑒𝐼(𝐶𝑁)5𝑁𝑂
3−]

𝑑𝑡
= 𝑘𝑏

′ [{𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂
2− ⁡ · 𝐶𝑁−}]    (Eqn. 5.2) 

 

Where kb and kb’ are the rate of backward reaction. 

 

The K, equilibrium constant, is given by: 
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𝐾 =
𝑎
{𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂

2−⁡·𝐶𝑁−}

𝑎
𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂

2−𝑎𝐶𝑁−
=
𝛾
{𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂

2−⁡·𝐶𝑁−}

𝛾
𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂

2−𝛾𝐶𝑁−
×
[{𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂

2−⁡·𝐶𝑁−}]

[𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂2−][𝐶𝑁−]
   (Eqn. 5.3) 

 

Where, 

𝐾𝛾 =
𝛾
{𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂

2−⁡·𝐶𝑁−}

𝛾
𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂

2−𝛾𝐶𝑁−
              (Eqn. 5.4) 

Therefore by substitution, 

 

𝑑[𝐹𝑒𝐼(𝐶𝑁)5𝑁𝑂
3−]

𝑑𝑡
= 𝑘𝑏

′ [{𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂
2− ⁡ · 𝐶𝑁−}] =

𝑘𝑏
′𝐾

𝐾𝛾
[𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂

2−][𝐶𝑁−] 

(Eqn. 5.5) 

Because, 

𝑑[𝐹𝑒𝐼(𝐶𝑁)5𝑁𝑂
3−]

𝑑𝑡
= 𝑘𝑏[𝐹𝑒

𝐼(𝐶𝑁)4𝑁𝑂
2−][𝐶𝑁−]    (Eqn. 5.6) 

Therefore, 

𝑘𝑏
′𝐾

𝐾𝛾
= 𝑘𝑏                   (Eqn. 5.7) 

At infinite dilution, 

𝐾𝛾
0 = 1                    (Eqn. 5.8) 

Therefore, 

𝑘𝑏 =
𝑘𝑏
0

𝐾𝛾
                    (Eqn. 5.9) 

Take logarithms, 

log 𝑘𝑏 = log 𝑘𝑏
0 − log𝐾𝛾

= log 𝑘𝑏
0 − log 𝛾{𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂2−⁡·𝐶𝑁−} + log 𝛾𝐹𝑒𝐼(𝐶𝑁)4𝑁𝑂2− + log 𝛾𝐶𝑁− 

(Eqn. 5.10) 

By using Robinson-Stokes equation: 

log 𝛾 = −
𝐴𝑍𝑖

2√𝐼

1+𝐵𝑎√𝐼
+ 𝑐𝐼            (Eqn. 5.11) 

 

Where I is the ionic strength, γ is activity coefficient A, B and 𝑎 are constants, c is 

the concentration of charged species, Zi is the charge of species i. 
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Therefore, 

log 𝑘𝑏 = 𝑓(𝐼)                  (Eqn. 5.12) 

where, 

I =
1

2
∑𝑐𝑖𝑍𝑖

2                  (Eqn. 5.13) 

where ci is the concentration of charged species i. 

 

Therefore the release on cyanide ion can be reflected on the kinetic salt effect as the 

favours the formation of a single, highly charged ionic complex
[171]

. Therefore, in this 

case, a kinetic salt effect is expected by the addition of electrolyte.  

 

In summary, it is expected that there is a decrease in peak (or plateau) current with 

increasing concentration of electrolyte, with, the current decrease caused by viscosity 

effect is not as dramatic as the kinetic salt effect. In this thesis, an attempt of varying 

electrolyte concentration to examine the mechanism of cyanide ion release was 

undertaken. It was found that there is no kinetic salt effect, or the effect is not as large 

as expected. 

 

5.1.2. Electrochemical reduction of NP in acetonitrile 

 

The initial investigation was undertaken through the electrochemical reduction of 

nitroprusside ion. 1.23 mM of tetrabutylammonium nitroprusside in acetonitrile with 

0.1 M TBAP was studied using both a glassy carbon macro-electrode (3 mm diameter) 

and an 11 μm diameter carbon fibre microelectrode as shown in Fig. 5.5a and Fig. 

5.5d. The experiment was carried out by using cyclic voltammetry, scan from 0 V to 

-1.8 V in variable scan rates. The corresponding analysis of data (i.e. plot of peak 

current against square root of scan rates and plot of peak potential against logarithm 

of scan rates) are also shown in Fig. 5.5.  
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Fig. 5.5. (a) Cyclic voltammogram of 1.23 mM nitroprusside reduction in acetonitrile with 0.1 M 

TBAP with variable scan rates (0.05 ≤ v / V s-1 ≤ 0.5) on a glassy carbon electrode (3 mm diameter) 

and (d) on a carbon fibre microelectrode (11 μm diameter). Sliver/Silver chloride electrode was 

used as reference electrode; a nickel spiral wire was served as counter electrode. (b) a 

corresponding plot of peak current against square root of scan rates for the reductive peak I 

(black dot), reductive peak II (black circle) and oxidative peak II’ (red dot). (c) a corresponding 

plot of peak potential against decade change of scan rates for the reductive peak I (black dot), 

reductive peak II (black circle) and oxidative peak II’ (red dot).  

 

It can be seen that from Fig. 5.5a, two reduction peaks and one oxidation peak are 

observed. The first irreversible wave appears at -0.8 V and second reversible wave 

appears -1.26 V, with its corresponding oxidative wave at -1.23 V, suggesting that a 

multi-electron transfer process with the formal potential for peak I is much smaller 

than peak II. The loss of reverse peak of the first electron transfer process suggests 

that the product formed after the first electron transfer is stable and cannot be oxidised 
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back to the starting material. The plot of peak current over square root of scan rates 

(Fig. 5.5b) affords a straight line across the origin, suggests that the electron transfer 

process is a diffusion controlled process; the reasonable overlap between the first and 

second reduction peak suggests same number of electrons have been transferred in 

each process. The plot of peak potential against logarithm of scan rates (Fig. 5.5c) 

affords 61.1 mV shifts for the first reduction peak and relatively negligible shift at 

slow scan rates (i.e. v ≤ 0.1 V s
-1

) and a slight shift at higher scan rates (i.e. v ≥ 0.1 V 

s
-1

) for peak II, suggesting that the first reduction process is electrochemically 

irreversible and the second electron transfer is electrochemically quasi-reversible.  

 

Fig. 5.5d shows the reduction of nitroprusside ion at an 11 μm diameter carbon fibre 

microelectrode and steady state current were obtained. The trace cross over at the 

sweeping point suggests that the process is ECE, with a consistence to the scheme 4. 

The shoulder on the reverse scan suggests that there are two electron transfer 

processes, with the first electron transfer process harder to be oxidised compare to the 

second electron transfer.  

 

In order to examine the mechanism systematically, variable concentrations of 

nitroprusside was undertaken. Therefore, 2.11 mM nitroprusside was examined 

subsequently. Again, as shown in Fig. 5.6a, three peaks were observed as the same as 

previously. The corresponding data analysis is shown in Fig. 5.6b and 5.6c and the 

microelectrode cyclic voltammetry diagram is shown in Fig. 5.7d.  

 

Again, the diffusion-controlled electron transfer process is suggested by the linear 

dependence of peak current over square root of scan rates for both reduction and 

oxidation processes. 61.3 mV change of peak potential per decade change of scan 

rates of the first electron transfer suggests, again, electrochemically irreversible; the 

shift at higher scan rates (v ≥ 0.1 V s
-1

) for the second electron transfer becomes 

more obverse than that of 1.23 mM nitroprusside. Most interestingly, the 
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microelectrode CV, affords an increased half-wave difference between the reduction 

and oxidation process, suggesting that the increased nitroprusside concentrations slow 

down both electron transfer processes, with the first electron transfer more obviously.  

 

Fig. 5.6. (a) Cyclic voltammogram of 2.11 mM nitroprusside reduction in acetonitrile with 0.1 M 

TBAP with variable scan rates (0.05 ≤ v / V s-1 ≤ 0.5) on a glassy carbon electrode (3 mm diameter) 

and (d) on a carbon fibre microelectrode (11 μm diameter). Sliver/Silver chloride electrode was 

used as reference electrode; a nickel spiral wire was served as counter electrode. (b) a 

corresponding plot of peak current against square root of scan rates for the reductive peak I 

(black dot), reductive peak II (black circle) and oxidative peak II’ (red dot). (c) a corresponding 

plot of peak potential against decade change of scan rates for the reductive peak I (black dot), 

reductive peak II (black circle) and oxidative peak II’ (red dot).  

 

Due to the change in the cyclic responses in changing nitroprusside concentrations, 

especially the change in microelectrode signal, it is necessary to repeat the experiment 

in another nitroprusside concentration. Consequently, 5.01 mM nitroprusside was then 
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undertaken. As shown in Fig. 5.7a, the CV diagram on glassy carbon macroelectrode 

affords similar trends to that of 1.23 mM and 2.11 mM nitroprusside data. Both first 

and second electron transfer processes were under diffusion-controlled through, again, 

the linear dependence between peak current and square root of scan rates (Fig. 5.7b). 

However, the shift in peak potential becomes more dramatic, with 103.5 mV shift per 

decade change of scan rate for the first electron transfer process and the 

quasi-reversible behaviour becomes more obvious for the second electron transfer 

process (as shown in Fig. 5.7c).  

 

Fig. 5.7. (a) Cyclic voltammogram of 5.01 mM nitroprusside reduction in acetonitrile with 0.1 M 

TBAP with variable scan rates (0.05 ≤ v / V s-1 ≤ 0.5) on a glassy carbon electrode (3 mm diameter) 

and (d) on a carbon fibre microelectrode (11 μm diameter). Sliver/Silver chloride electrode was 

used as reference electrode; a nickel spiral wire was served as counter electrode. (b) a 

corresponding plot of peak current against square root of scan rates for the reductive peak I 

(black dot), reductive peak II (black circle) and oxidative peak II’ (red dot). (c) a corresponding 

plot of peak potential against decade change of scan rates for the reductive peak I (black dot), 

reductive peak II (black circle) and oxidative peak II’ (red dot).  

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

-2 -1.5 -1 -0.5 0

C
u

rr
en

t 
/ 
μ

A
 

Potential / V vs. SCE 

Increasing 

I 

II 

II' (a) 

-200

-150

-100

-50

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8

P
ea

k
 c

u
rr

en
t 

/ 
μ

A
 

v1/2 / V1/2 s-1/2 

(b) 

103.5 mV 

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-1.5 -1 -0.5 0

P
ea

k
 p

o
te

n
ti

a
l 

/ 
V

 v
s.

 S
C

E
 

log v / V s-1 

(c) 

-25

-20

-15

-10

-5

0

5

-2 -1.5 -1 -0.5 0

C
u

rr
en

t 
/ 

n
A

 

Potential / V vs. SCE 

I 

II 

(d) 



164 

 

It is worth note that the microelectrode signal, again, the separation between forward 

and backward scan increased with increasing concentration of nitroprusside 

concentration, suggests that the increase of nitroprusside concentration affords 

sluggish electron transfer process. 

 

Moreover, the CV diagrams for all the concentrations show similar trend, which are 

strongly consistent with other authors’ work
[39]

. As the process has been studied 

previously and was suggested that it involves two-electrons, the diffusion coefficient 

can be worked out from limiting current, with D = 1.81 ±  0.05 x 10
-9

 m
2
 s

-1
. 

 

Table 5.1 shows the slope of all three peak currents against square root of scan rates 

for three nitroprusside concentrations. By applying reversible Randle-Sevick equation 

the diffusion coefficient can be worked out, with D = 1.14 ±  0.05 x 10
-9

 m
2
 s

-1
, 

similar the value calculated from steady-state voltammetry.  

 

Table 5.1. Slope of peak currents against square root of scan rates for three different 

concentrations of nitroprusside. 

 
Peak I Peak II Peak II' 

[NP] (mM) 
 │ p│

 √v⁡(μA⁡V−1/2⁡s1/2)
 

 │ p│

 √v⁡(μA⁡V−1/2⁡s1/2)
 

 │ p│

 √v⁡(μA⁡V−1/2⁡s1/2)
 

1.23 65.41 61.11 81.04 

2.11 100 94.6 134.6 

5.01 212.6 218.6 300.9 

 

In order to demonstrate the cyanide release during the reduction of nitroprusside ion, 

variable concentrations of cyanide ions were added into the solvent. 

Tetrabutylammonium cyanide was used to provide cyanide ions, with 

tetrabutylammonium perchlorate addition to maintain the ionic strength to be 0.1 M. 

As it is suggested in Scheme 5.2, the increase of cyanide ion concentration should 

shift the equilibrium of reaction (Scheme 5.2b) towards left, which unfavours the 

cyanide release process. Therefore a back oxidation wave of Scheme 1a can be 
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observed. 

         (a) 

        (b) 

      (c) 

Scheme 5.2. Electrochemical reduction route of nitroprusside ion. 

Indeed, as shown in Fig. 5.8, the addition of cyanide ion in the solution leads the 

appearance and increase of oxidative peak I’, suggesting that the addition of cyanide 

ion favours the backward reaction of b in Scheme 5.2, which favours the formation of 

[Fe(CN)5NO
3-

], and peak I’ indicates the oxidation wave of [Fe(CN)5NO
3-

] to 

[Fe(CN)5NO
2-

]. The plot of ipI’/ipI against TBACN concentration is shown in Fig. 8b, 

the oxidation peak increase dramatically from when TBACN concentration increased 

from 0 M to 0.02 M and tends to 1, indicates that the increase of TBACN 

concentration makes the size of oxidation wave similar to the reduction wave, and this 

suggests that the similar amount of Fe(CN)5NO
3-

 formed from reduction of 

Fe(CN)5NO
2-

 were oxidised back to Fe(CN)5NO
3-

 while the increase of TBACN 

concentration.  

 

Fig. 5.8. (a) Electrochemical reduction of 1.00 mM nitroprusside ion in acetonitrile on a 3 mm 

diameter glassy carbon macroelectrode from 0 V to -1.035 V with different concentration ratios 

of TBAP and TBACN, with fixed ionic strength = 0.1 M. Scan rate = 0.05 V s-1. Blue: 0.00 M TBACN, 

0.1 M TBAP; Red: 0.02 M TBACN, 0.08 M TBAP; Green: 0.05 M TBACN, 0.05 M TBAP; Purple: 0.08 

M TBACN, 0.02 M TBAP; Cyan: 0.10 M TBACN, 0.00 M TBAP. Ag/AgCl was applied as a reference 

electrode and a platium spiral wire was served as a counter electrode. (b) a plot of oxidation peak 

current over reduction peak current against TBACN concentration.  
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Fig. 5.9 shows an example reduction of nitroprusside using a 3 mm diameter glassy 

carbon disc electrode in variable san rates with the presence of cyanide ion (0.05 M 

TBAP and 0.05 M TBACN). As shown in Fig. 9a, the increase of scan rate increases 

the reductive peak current and the reductive peak potential shifts towards more 

negative as expect, on the other hand, the increase of scan rate leads the oxidation 

wave to be flattened and broaden, suggests that although the presence of cyanide in 

the solution favours the backward reaction of b in Scheme 5.2, the chemical reaction 

is reasonably fast than the experiment time scale, therefore the increase scan rate leads 

less formation of Fe(CN)5NO
3-

 from Fe(CN)4NO
2-

 and CN
-
. Moreover, the second 

reduction wave is unaffected and shows the similar trend as that of reduction in 0.1 M 

TBAP.  

 

Fig. 5.9. Electrochemical reduction of 1.00 mM nitroprusside ion in acetonitrile on a 3 mm 

diameter glassy carbon macroelectrode scan from 0 to -1.035 V (a) and scan from 0 to -1.35 V (b) 

in variable scan rate (0.02 ≤ v / V s-1 ≤ 1), with 0.05 M TBAP and 0.05 M TBACN (ionic strength = 

0.1 M). A Ag/AgCl electrode was applied as a reference electrode and a platium spiral wire was 

served as a counter electrode. 

 

Fig. 5.10 illustrates both reduction waves of nitroprusside with changing cyanid ion 

centrations using both 3 mm diamter glassy carbon macroelectrode (Fig. 5.10a) and 

11 μm diamter carbon fiber microelectrode electrode (Fig. 5.10b). Although the 

change of cyanide ion centrations in the system causes the increase of oxidation peak 

I’, other redox processes were unaffected. As shown in Fugure 5.10b, the increase of 
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cyanide ion concentrations unaffect the limiting current.  

 

 

Fig.5.10. Electrochemical reduction of 1.00 mM nitroprusside ion in acetonitrile on a 3 mm 

diameter glassy carbon macroelectrode (a) scan from 0  to -1.35 V and a 11 μm diameter carbon 

fiber microelectrode (b) scan from 0 to -1.5 V with different concentration ratios of TBAP and 

TBACN, with fixed ionic strength = 0.1 M. Scan rate = 0.05 V s-1. Blue: 0.00 M TBACN, 0.1 M TBAP; 

Red: 0.02 M TBACN, 0.08 M TBAP; Green: 0.05 M TBACN, 0.05 M TBAP; Purple: 0.08 M TBACN, 

0.02 M TBAP; Cyan: 0.10 M TBACN, 0.00 M TBAP. Ag/AgCl was applied as a reference electrode 

and a platium spiral wire was served as a counter electrode. 

5.1.3. The effects on changing electrolyte concentration  

In order to verify whether the cyanide release process is concerted or stepwise, kinetic 

salt effect can be applied. The theory is given in previously section (Section 5.1.1.1). 

Briefly, according to the kinetic salt effect theory, the increased concentrations of 
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electrolyte favours the rate of backward reaction in Scheme 5.2b, therefore higher 

ionic strength stabilises [Fe(CN)5NO]
3-

 ion.  

 

The experiment was then carried out by adding electrolyte (TBAP) into the solution in 

order to increase the ionic strength in the solution. Fig. 5.11 shows the cyclic 

voltammograms of variable concentrations of nitroprusside reduction with variable 

concentrations of TBAP. As shown in Fig. 5.11, the increase of TBAP concentration 

causes the shift of Ep
I
 towards more positive, suggests that the formation of 

[Fe(CN)5NO]
3-

 is favoured. As the second electron transfer process is dependent on 

the former one, there is also a positive shift on Ep
II
. Additionally, the addition of 

TBAP also causes the decrease in peak current. These phenomena were then further 

investigated.  

 

Fig. 5.11. Cyclic voltammograms of 1.23 mM (a) and 2.11 mM (b) of nitroprusside ion reduction 

on a glassy carbon macroelectrode (3 mm diameter) in acetonitrile at 0.05 V s-1 scan rate with 

variable concentrations of TBAP: 0.1 M (blue), 0.2 M (red), 0.29 M (green), 0.5 M (purple) and 

0.95 M (light blue). A silver/silver chloride electrode was used as the reference electrode and a 

nickel spiral wire was used as counter electrode. 

 

In order to verify the observation of peak current decrease, which caused by the 

addition of electrolyte, a steady-state limiting experiment was carried out using an 11 

μm diameter carbon fibre electrode. It can be seen from Fig. 5.12 that the increasing 

concentration of TBAP decreases the limiting current from both electron transfer 
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process. Noting that at low TBAP concentrations, only one sigmoidal shaped wave 

can be observed. In addition, a shift of half-wave potential, E1/2, can be observed for 

both electron transfer process, which has similar trend with the macroelectrode data. 

However, it is important to realise, that the shift on the half-wave potential of the 

microelectrode data, is not as big as the macroelectrode. This will be discussed in 

more details in the following text. 

 

Fig. 5.12. Steady-state cyclic voltammogram of 1.23 mM of nitroprusside ion reduction on a 

carbon fibre microelectrode (11 μm diameter) in acetonitrile with variable concentrations of 

TBAP: 0.1 M (blue), 0.2 M (red), 0.29 M (green), 0.5 M (purple) and 0.95 M (light blue). A 

silver/silver chloride electrode was used as the reference electrode and a nickel spiral wire was 

used as counter electrode. 

 

So far, all the observations are suggesting that the addition of electrolyte causes the 

decrease in current and this observation is agreed with the kinetic salt effect as it 

favours the formation of Fe(CN)5NO
3-

. However, the addition of electrolytes can also 

cause the change of viscosity and the change of viscosity can change the diffusion 

coefficient that leads the current to decrease. Therefore a measurement of viscosity of 

acetonitrile with different concentrations of TBAP was carried out.  
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5 different concentrations of TBAP were dissolved in acetonitrile in order to perform 

the viscosity measurements as shown in Table 5.2. By plotting the TBAP 

concentration against viscosity, a linear dependence was obtained (Fig. 5.13), 

suggesting that the viscosity measurements were reasonable.  

 

Table 5.2. Viscosity of acetonitrile solution with the presence of variable concentrations of TBAP 

[TBAP] / M Viscosity
*
 / cP 

0.102 0.4559 

0.2 0.4756 

0.29 0.5294 

0.4999 0.5960 

0.9506 0.7480 

* Viscosities were measurement at 20 ℃.  

 

 

Fig. 5.13. Viscosity of acetonitrile solution change with changing concentrations of TBAP. 

 

Consequently, cyclic voltammetries were carried out by using both 3 mm diameter 

glassy carbon disc electrode and 11 μm diameter carbon fibre disc electrode. By 

applying Randles-Sevick equation and steady-state equation, the diffusion coefficient 

for nitroprusside in acetonitrile with variable TBAP concentrations can be worked out. 

The diffusion coefficient can be then normalised by viscosity as shown in Fig. 5.14. 

By plotting diffusion coefficient over viscosity against viscosity, suggesting that the 

increased concentration of TBAP affect the viscosity so much that causing the 
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diffusion coefficient changes dramatically. Therefore by examining the viscosity, the 

current drop for both Macro and Micro-electrodes are caused by viscosity change 

rather than the kinetic salt effects.  

 

Fig. 5.14. A plot of normalised diffusion coefficient by viscosity against viscosity. Diffusion 

coefficients were obtained from both macro (black dots) and micro (white dots) electrodes. 

 

Therefore, although the preliminary results suggest the signs of kinetic salt effect, by 

taking viscosity account, the phenomena that been seen previously are actually caused 

by viscosity effect. Therefore, back to the different shift magnitude on macroelectrode 

and microelectrode question addressed previously, the shift in potential on 

microelectrodes and macroelectrode can be due to the slower mass transport and 

probably, poor reference.  

 

5.1.4. Kinetic analysis 

Although it has been proved that there is no kinetic salt effect based on the peak 

current or limiting current change, the kinetic data of nitroprusside reduction can be 

worked out. Barnes et al.
[172]

 suggested the analysis route of finding kinetic data for 

an EC process at microdisk electrode with both reversible and irreversible 

homogenous process. If assuming Fe
II
(CN)5NO

2-
 is A, Fe

I
(CN)5NO

3-
 is B and 

Fe
I
(CN)4NO

2-
 is C, then the reactions cane be written as: 
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Scheme 5.3 

 

And the dimensionless parameters are illustrated in Table 5.3.  

 

Table 5.3. Dimensionless parameters. 

Parameter Expression 

Concentration c = c/cbulk 

Time T = DAt/r
2
 

Potential θ = (F/RT)(E-Ef) 

Heterogeneous rate constant K0 = k0r/DA 

Homogeneous rate constant Kf = kfr
2
/DA 

Equilibrium constant Keq = kf/kb 

 

As Barnes at co-workers
[172]

 found that the half-wave potential shifts by 2.303/2θ 

units per decade increase of Kf, the relationship between θ1/2 and Kf can be given by 

Eqn. 5.14 if assuming the microdisk is a hemispherical electrode with radius (2/π)r. 

 

𝜃1/2 = ln(1 +
2

𝜋
√𝐾𝑓)                   (Eqn. 5.14) 

 

Therefore, according to Eqn. 5.14, assuming the formal potential is -0.8 V, the rate of 

forward homogenous reaction can be worked out and given in Table 5.4. In addition, 

given that: 

 

𝜃1/2 = −2.3 log 𝐾𝑒𝑞                   (Eqn. 5.15) 

 

The equilibrium constant can be worked out, and consequently, as described in Table 

5.3, the rate of backward homogenous reaction can be worked out.  

 



173 

 

Table 5.4. 1 mM nitroprusside 

[TBAP]/M kf kb 

0.10 8.87E+01 1.23E-03 

0.20 6.53E+01 1.34E-02 

0.29 6.55E+01 2.59E-03 

0.50 2.94E+01 4.98E+00 

0.95 3.25E+01 1.10E-02 

 

According to Table 5.4, the forward rate constant is more than 3 orders to magnitude 

larger than that of the backward reaction. This explains the irreversible behaviour of 

cyanide ion release. Note that the 0.4999 M concentration of TBAP affords kb outside 

the range, this may be due to some experimental errors. Overall, the increasing 

concentration of TBAP favours the rate of backward reaction and unfavours the 

forward homogenous reaction, and this is in agreement of the microelectrode data that 

the shifts of half-wave potential. In addition, the cyanide addition experiments 

suggests that the cyanide ion release process can be reversible if the cyanide ion 

concentration is sufficient, therefore lack of back peak of the first reduction wave in 

the TBAP change experiment suggests that the addition of TBAP causes the viscosity 

change in the solution and subsequently causes a sluggish electron transfer.  

 

Although the limiting current change is due to the viscosity effect, the rate of forward 

and backward reaction change can be due to either viscosity effect or a slight kinetic 

salt effect.  

 

5.1.5. Conclusion 

In conclusion, the reduction of nitropursside ion in acetonitrile was studied. The 

release of cyanide ion has been observed. The addition of TBAP was carried out to 

examine whether there is a kinetic salt effect. However the increase of TBAP 

concentration causes the increase of viscosity of the solution. By taking account of 

viscosity, the decrease in peak current and limiting current is mainly due to the 

viscosity change. In addition, by calculating the rate constants for the homogeneous 
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reaction, kb increased with the addition of TBAP suggesting that the increased 

viscosity slows down the reaction kinetics. No evidence was found that there is a 

kinetic salt effect.  

 

Next, 1-iodo-4-nitrobenzen was examined as halogen ion release is a field of interest. 

In addition, the reduction of halogen nitrobenzene has been widely studied and it was 

suggested to be a stepwised ion release process. Therefore by undertaking 

electrochemical reduction of halogen nitrobenzene, it can be helpful to understand the 

cyanide release process. 

5.2. Electrochemical reduction of 

1-iodo-4-nitrobenzene 

In addition to the studies of ion release process, halogen ions, such as iodide has also 

been studied. Bond cleavage of C-X (carbon-halogen) reaction has been studied for 

decades
[173-178]

. The cleavage of halogen ion can be populated in the local 

environment, and can be further used for other applications such as halogen lighting. 

The electrochemical reduction of iodo-nitrobenzene in organic solvents has been 

studied and known to give I
-
 release, via an ECE process

[179, 180]
. Such mechanism 

involves one electron transfer process followed by a chemical reaction, and followed 

by another electron transfer process. The mechanism is given by: 

 

𝑚 − 𝐼 − 𝜙 − 𝑁𝑂2 ⁡+ ⁡⁡𝑒
− ⁡→ [𝑚 − 𝐼 − 𝜙 − 𝑁𝑂2]

•−         (a) 

[𝑚 − 𝐼 − 𝜙 − 𝑁𝑂2]
•− → 𝐼− + ⁡• 𝐶6𝐻4𝑁𝑂2            (b) 

• 𝐶6𝐻4𝑁𝑂2 ⁡+ ⁡𝐻𝑆⁡ → ⁡𝜙 − 𝑁𝑂2               (c) 

𝜙 − 𝑁𝑂2 +⁡𝑒
− → [𝜙 − 𝑁𝑂2]

•−               (d) 

Scheme 5.4. 

 

Where ϕ is a benzene group and HS dontes the solvent-supporting electrolyte system. 
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As the study is focused on the ion release process, which is the EC process, the 

reactions c and d in Scheme 5.4 were not been examined.  

 

Similar experiments were carried out for electrochemical reduction of 

iodo-nitrobenzene as the reduction of nitroprusside ions. Preliminary investigation 

was carried out by looking at the shape of voltammogram and variable scan rate 

effects.  

5.2.1. Varying scan rates  

The preliminary experiments for iodo-nitrobezene reduction are to look into the shape 

of voltammogram as well as scan rate effects. As shown in Fig. 5.15, the consecutive 

cyclic voltammetric sweeps for the reduction of 5.0 mM 1-iodo-4-nitrobenzene in 

acetonitrile with 0.1 M TBABF at a 3 mm diameter glassy carbon electrode at 0.1 V 

s
-1

 scan rate shows A single reductive wave is observed at -1.1 V and the 

corresponding oxidative wave appears at -1.0 V vs. SCE. Repetitive scanning shows 

there is no change to either peak current or peak potential, suggesting that there is no 

adsorption of 1-iodo-4-nitrobenzene on the electrode surface. The appearance of the 

reverse wave (oxidative wave) suggests that this reduction process is chemically 

reversible.  

 

Fig. 5.15. Cyclic voltammogram of reduction of 5.0 mM 1-iodo-4-nitrobenzene on a GCE in MeCN 

with 0.1 M TBABF4. Repetitive scans is shown at 0.1 V s-1 scan rate. 
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Variable scan rate voltammetry (Fig. 5.16) and subsequent data analysis (Fig. 5.17) 

for the reduction of iodo-nitrobenzene were then carried out. It is clear that both 

reductive and oxidative peak current increases with increasing scan rates and peak 

potentials shifts with increasing scan rates. 

 

 

Fig. 5.16. Cyclic voltammogram of reduction of 5.0 mM 1-iodo-4-nitrobenzene on a GCE in MeCN 

with 0.1 M TBABF4 at different scan rates. 

 

From the data analysis of peak current against square root of scan rates (Fig. 5.17a), 

clearly that there is a linear dependence between peak current and square root of time 

scale, suggesting that this process is under diffusion controlled. The slopes of 

reductive and oxidative peak are similar to each other with reductive peak slightly 

larger than that of oxidative peak, suggests that the effective number of electrons 

transferred in reductive process are similar to the oxidative process, with a slight loss 

of material in the oxidation.  
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Fig.5.17. (a) a plot of peak current against square root of scan rate. (b) a plot of peak potential 

against logarithm of scan rate of the reduction of 5.0 mM 1-iodo-4-nitrobenzene at GCE. 

 

The curvature on the graph of peak potential over logarithm of scan rates (Fig. 5.17b) 

suggests that both reductive and oxidative processes are quasi-reversible.  

 

5.2.2. Effect of iodide ion addition 

Iodide ion release was observed by the addition of iodide ion concentration in the 

solution. By fixing the ionic strength, the change of voltammograms of 

iodo-nitrobenzene reduction on a 3 mm GCE is shown in Fig. 5.18. 
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Fig.5.18. Cyclic voltammogram of reduction of 5.0 mM 1-iodo-4-nitrobenzene on a GCE in MeCN 

with different concentrations of I- whereas the ionic strength is fixed to be 0.1 M. 

 

In addition, although less obvious, the reductive peak current decreased with the 

increasing concentration of I
-
. Considering the step of I

-
 release (Scheme 5.5), 

increasing concentration of I
-
 fasten the back reaction, kb. Therefore it inhibits the 

following reduction.  

 

 

Scheme 5.5. 

 

Same phenomenon has been observed on gold macroelectrode (Fig. 5.19). 
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Fig. 5.19. Cyclic voltammogram of reduction of 5.0 mM 1-iodo-4-nitrobenzene on a gold 

macroelectrode in MeCN with different concentrations of I- whereas the ionic strength is fixed to 

be 0.1 M. 

 

Furthermore, the cyclic voltammetry was also carried out using microelectrodes of 

different sizes (i.e. diameters). Fig. 5.20 illustrates the cyclic voltammogram of the 

reduction of    1.0 mM 1-iodo-4-nitrobenzene at microelectrodes in MeCN/0.1 M 

TBABF solution. 

 

Fig. 5.20. Cyclic voltammogram of the reduction of 1.0 mM 1-iodo-4-nitrobenzene at 

microelectrodes in MeCN with 0.1 M TBABF4. Blue line: voltammogram at 11 μm carbon fibre 

electrode; Red line: voltammogram at 33 μm gold electrode; Green line: voltammogram at 50 μm 

electrode. 
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As shown in Fig. 5.20, the half wave potential is found to be approximately -1.0 V, 

which gives a similar value compared to Ep at macroelectrode. The reason for the 

small shift can be due to the larger resistance on the macroelectrode leads the peak 

potential shifts more negative. 

 

The effective number of electrons transferred in the process is found to be 2 by 

applying Eqn. 5.16. This has the agreement with the macroelectrodes data. 

 

 = 4nFDr                    (Eqn. 5.16) 

 

where all the terms were explained in Chapter 1. 

 

5.2.3. Conclusion 

 

In conclusion, the reduction of 1-iodo-4-nitrobenzene has been studied 

electrochemically. Reduction process is an ECE process where is I
-
 released during 

first the reduction. The release of I
-
 ion was proved by changing the concentration of 

I
- 
present in the solution. With a constant ionic strength, a decrease of reductive peak 

and an increase of oxidative peak were observed, suggests that the equilibrium was 

changed by changing the concentration of I
-
 ion. 

 

5.3. Electrode modification – controlled 

bromide ion release 

 

The ion release processes studied in previous sections were occurred homogenously 

in solution phase. However, in really cases, the local environment does not allow the 

presence of starting materials, a controlled release process from the electrode surface 
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is then essential. The modification of electrode surface can be then applied in order to 

release ions without contaminate the local environment by the starting materials.  

 

In electrochemistry, aryl diazonium salts can be grafted onto the electrode surface
[181]

 

to afford ion release process. In this thesis, 4-bromobenzenediazonium salt was used 

to modify the glassy carbon electrode surface. The grafting process is shown in Fig. 

5.31.  

 

The aim of this section is to provide a brief understanding of bromide ion release 

through a chemically modified electrode. If it is successful, then various of ions can 

be released using the same way to provide an in-vivo ion drug release system.  

E
lectro

d
e

E
lectro

d
e

 

Fig. 5.31. A schematic diagram of the grafting process of 4-bromobenzenediazonium salt onto 

electrode surface. 
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5.3.1. Electrode modification via reduction of 

4-bromobenzenediazonium salt 

The initial experiments were carried out in order to reduce the 

4-bromobenzenediazonium salt and graft the chemical onto the electrode surface. 2 

mM 4-bromobenzenediazonium tetrafluoroborate (BDTB) was dissolved in 

acetonitrile containing 0.1 M TBAP. Then the BDTB was reduced on a glassy carbon 

electrode (3 mm diameter, BAS). Fig. 5.32 shows the voltammogram of BDTB 

scanning potential from +0.8 V to -0.7 V vs. SCE.  

 

 

Fig. 5.32. Cyclic voltammetry of the reduction of 2 mM 4-bromobenzenediazonium 

tetrafluoroborate in acetonitrile with 0.1 M TBAP on a glassy carbon disc electrode (3 mm 

diameter, iBAS). Scan rate = 0.1 V s-1. A spiral platinum wire served as the counter electrode and a 

saturated calomel electrode was used as reference electrode.  

 

As shown in Fig. 5.32, a broad reduction wave can be observed at 0 V vs. SCE with a 

pre-absorption wave at +0.3 V vs. SCE. The potential is consistent to the reduction of 

4-nitrobenzene diazonium tetrafluoroborate
[181]

, suggests that the reduction is due to 

the reduction of nitrogen as shown in Fig. 5.31.  
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5.3.2. Electrochemical trigger bromide ion 

The modified electrode was then placed in to degased acetonitrile solution which 

contains 0.1 M TBAP electrolyte. It was then scanned form 0 V to -1.5 V vs. SCE 

three times. The reduction voltammogram is shown in Fig. 5.33.  

 

As shown in Fig. 5.33, there is a reductive peak shows at -1.0 V vs. SCE, interestingly, 

the reverse scan shows that there is a cross over between reduction and oxidation 

wave at approximately -0.8 V vs. SCE. The corresponding oxidation peak appears at 

+0.4 V vs. SCE. Subsequently, after the first scan, the reduction peak for scan 2 and 

scan 3 shift towards more positively, appears at -0.7 V vs. SCE, suggests that the 

electron transfer process became easier after first reduction scan. In addition, the cross 

over became tends to less obvious and disappeared while the scan rates increased.  

 

Fig. 5.33. Electrochemical reduction of the 4-bromobenzene modified glassy carbon disc 

electrode in acetonitrile with 0.1 M TBAP. Scan rate = 0.1 V s-1. Scan 1, 2, 3 indicate the number of 

scans, respectively. A spiral platinum wire served as the counter electrode and a saturated 

calomel electrode was used as reference electrode. 

 

Accordingly, the reduction peak of scan 1 can be due to the triggering process of 

bromide ion into the solution as this process is chemically irreversible. The cross over 

suggests that less chemicals was re-oxidised than that of reduced, this indicates that 

the triggering process was occurred successfully, leading: 
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Scheme 5.6 

And then follow, 

 

Scheme 5.7 

The benzene can be oxidised to form cation radical, which correlates on the graph 

(Fig. 5.33), is the oxidation wave of first scan, the meachansim is shown in Scheme 

5.8. 

 

Scheme 5.8 

 

Therefore the 4-bromobenzene was successfully grafted onto the GC electrode surface 

and bromide ions were triggered from the modified electrode successfully.  

5.3.3. Variable scan rates on the modified electrode 

In addition, variable scan rates were carried out on the modified electrode surface. Fig. 

5.34 shows the plot of peak potential of the reduction peak and the corresponding 
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oxidation peak of first scan against logarithm of scan rates. 

 

 

Fig. 5.34. A plot of peak potential of both reductive and oxidative peak of scan 1 corresponding to 

Fig. 5.33.  

 

Clearly, it can be seen from Fig. 3.32, the both reductive and oxidative peak potential 

is dependent on scan rates, suggesting that both of the triggering process and the 

oxidation of surface-attached-benzene are slow.  

5.4. Conclusions and future works 

In summary, the ion release process was studied for cyanide ion, iodide ion and 

bromide release. It was found in the cyanide ion release experiments that the addition 

of electrolyte causes the increase of solution viscosity. The slowed mass transport 

leads a sluggish kinetics. For the iodo-nitrobenzene experiment, the addition of idodie 

ion in the solution favours the backward reaction, which has similar effect which is 

observed in nitroprusside experiment. By comparison, the cyanide ion release is a 

stepwised process. Moreover, the electrode surface modification by 

halogen-diazonium salt was carried out successfully, with the success release of 

bromide ion, leading the ion experiment towards more application side and the 

halo-benzene modified electrode can undergo Suzuki reaction to form a rather more 

complex molecular wire
[182]

. 
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So far, all the electrochemistry experiments were undertaken in liquid, however, 

liquid crystals have been wide studied recently, therefore, mass transport was then 

studied in the next chapter. 
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6. Electrochemistry of 

organometallic 

lyotropic chromonic 

liquid crystals  

6.1. Chapter overview 

The development of lightweight, self-assembling, self-“healing” and flexible 

molecular wires, over which long-range electron transport my occur, is currently of 

interest
[183]

 since these empower, inter alia, fast and efficient communications
[184]

, 

“hi-tech” redox-based security systems
[185]

, and, ambitiously, towards 

redox-controlled logic for molecular computers
[186]

 – systems that can be moulded 

into the geometries/volumes needed for the pragmatic and ergonomic technologies 

currently revolutionising modern lifestyles.  

 

Chromonic lyotropic liquid crystals are mesophases which can be formed through the 

aggregation of dye molecules in water. Two phases maybe formed under different 

concentrations: of dye at lower concentrations nematic array of columns, known as N 

phase, can be formed (Fig. 6.1a), with a two-dimensional packed columns, known as 

M phase, formed at higher concentrations (Fig. 6.1b). Transition metal 

phthalocyanines
[187-191]

 (Fig. 6.1c) are of interest for since chronomic systems 

represent an interesting class of metal-organic liquid nanomaterials, which may 

provide a framework for long-range electron transport for technological exploitation. 

These systems have no Krafft point or critical micelle concentration and the 

aggregation monomers are thought to engage in isodesmic π-π stacking to yield the 
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H-aggregates depicted in Fig. 6.1. These optically and diffusively anisotropic systems 

have, hitherto, not been characterised electrochemically. The aim of this chapter is to 

formulate and characterise these systems. 

 

Fig. 6.1. Schematic diagram of N (a) and M (b) phases of chromonic lyotropic liquid crystals based 

on tetrasulfonated phthalocyanines (c). 

 

This work has been published in Electrochem. Commun.; the candidate acknowledges 

the help of J. E. Halls, R. W. Bourne, K. J. Wright, L. I. Partington, M. G. Tamba, T. 

Ramakrishnappa, G. H. Mehl, S. and M. Kelly in assisting this work. 

 

6.2. Results and discussion 

The M and N chronomic phases formed using either copper(II) or nickel(II) 

phthalocyanine tetrasulfonic acid tetrasodium salt are studied in this chapter. 

 

6.2.1. Structural studies 

Two different phases were characterised in this project. N-phase of nickel(II) complex 

was observed only at 20 wt.% (0.26 M) in aqueous containing sodium hydroxide at 

pH 8 as shown in Fig. 6.2a. As shown in the graph, Schlieren textures can be observed 
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under crossed polariser. The N-phase of copper(II) complex can be observed with 

concentration greater than 27 wt.% (0.38 M) and the M-phase occurring at 46 wt.% 

(0.88 M), as shown in Fig. 6.2b.  

 

 

c  d 

Fig. 6.2. Textures of (a) Nickel(II) complex of N-phase and (b) copper(II) complex of M-phase 

optical polarising microscope and X-ray scattering patterns for Nickel (II) complex (c) and 

copper(II) complex (d). 

 

UV-Vis and X-ray scattering measurements were also carried out. The extinction 

coefficient for Ni(II) complex was found to be 46970 M
-1 

cm
-1

 (λmax = 623 nm) and 

25236 M
-1

 cm
-1

 (λmax = 613 nm) for Cu(II) complex, as shown in Fig. 6.2. All the 

physical characteristics of N and M chromonic liquid crystals are shown in Table 6.1. 

It was also found that the intramolecular marcrocyle separation is 3.4 Å using X-ray 

scattering. The aggregation length was found to be 43.5 Å for Ni(II) complex and 30.7 

Å for Cu(II) complex, suggesting that there are 13 molecules per aggregate for Ni(II) 

complex and 9 molecules per aggregate for Cu(II) complex.  
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Table 6.1. Physical characteristics of the N and M lyotropic chromonic liquid crystals prepared. 

 N phase Nickel (II) 

phthalocyanine 

tetrasulfonic acid 

tetrasodium salt 

(0.26 M) in water 

with pH 8 

M phase copper (II) phthalocyanine tetrasulfonic acid 

tetrasodium salt (0.88 M) in water 

Isotropic 

solution 

0.1 M 

aqueous 

KCl 

ρ
a
/Ω cm 12.70 9.17 11.29 

R
b
/Ω 5773 4585  

Cd
c
 / mF cm

-2
 12.3 2.1  

X-ray 

scatter

ing 

data 

2θ/° 2.03 3.99 26.5 2.88 4.07 6.81 10.5 13.0 15.6 21.2 24.4 26.3  

d
d
/Å 43.5 22.1 3.36 30.7 21.7 13.0 8.45 6.78 5.68 4.18 3.64 3.39  

q
e
/Å

-1    0.485 0.744 0.926 1.11 1.50 1.73   
f
q/q0    1.00 1.53 1.91 2.28 3.10 3.56   

Assignment length width spacing Length Width q0 q0√3 2q0 q0√7 3q0 2q0√3 spacing  

a Resistivity measured at 293 ± 1 K. 

b Resistance determined using R = ρ/(4r0) with r0 = 5.5 μm (N-phase) or 5.0 μm (M-phase). 

c Specific double-layer capacitance inferred from cyclic voltammetry. 

d Fundamental crystal spacing determined using d/A = 1.54/(2sinθ). 

e Scattering vector estimated through q = 2π/d. 

f q0 is the fundamental repeat distance in the hexagonal system (viz. the centre-to-centre 

separation between [cylindrical] aggregates). 

 

 

6.2.2. Electrochemical characterisation 

The oxidation of 0.26 M of Nick(II) phethalocyanine tetrasulfonic acid tetrasodium in 

water salt at pH 8 and 0.88 M Copper(II) phethalocyanine tetrasulfonic acid 

tetrasodium salt in water on a 3 mm diameter glassy carbon disc electrode is shown in 

Fig. 6.3 and Fig. 6.4. For the Ni(II) system (Fig. 6.3a), two one-electron waves are 

observed, at +0.7 and +0.9 V vs. Ag/AgCl, as in dilute solutions
[192, 193]

, and which are 

attributed to phthalocyanine ligand-based oxidations. Variable scan rates were carried 

out with direct proportionation between the peak current and the square-root of scan 

rate (Fig. 6.3b), indicates a diffusion-controlled nature and consistent with 

quasi-reversible electrode kinetics (Fig. 6.3c). 
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Fig. 6.3. Electrochemical oxidation of Nickel(II) phthalocyanine tetrasulfonic acid tetrasodium salt 

chronomic lyotropic liquid crystal (20 wt.%) using cyclic voltammetry in variable scan rates, 

(0.02 V s-1 ≤ v ≤ 1 V s-1) (a), at a 3 mm diameter glassy carbon electrode, a spiral nickel wire 

served as counter electrode and silver/silver chloride reference electrode was applied. (b) a 

corresponding plot of peak current against square root of scan rates for both oxidation peak 

(black) and reduction peak (red). (c) a corresponding plot of peak potential against decade 

change of scan rates for the oxidation peak (black) and reduction peak (red). 

 

In contrast, the Cu(II) system exhibits a single oxidation wave as shown in Fig. 6.4a 

with oxidation peak appears at between +1.4 V and +1.9 V vs. Ag/AgCl depending on 

the scan rates. This phenomenon was also observed in dilute aqueous solution
[192, 194]

, 

also thought to orginate from ligand oxidation in a complex, multi-electron transfer 

process. Variable scan rates experiments afford, again, direct proportionation between 

the peak current and the square-root of scan rate (Fig. 6.4b), which suggests a 

diffusion-controlled nature and consistent with quasi-reversible electrode kinetics (Fig. 
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6.4c). 

 

 

Fig. 6.4. Electrochemical oxidation of copper(II) phthalocyanine tetrasulfonic acid tetrasodium 

salt chronomic lyotropic liquid crystal (27 wt.%) using cyclic voltammetry in variable scan rates, 

(0.02 V s-1 ≤ v ≤ 2 V s-1) (a), at a 3 mm diameter glassy carbon electrode, a spiral nickel wire 

served as counter electrode and silver/silver chloride reference electrode was applied. (b) a 

corresponding plot of peak current against square root of scan rates for the oxidative peak. (c) a 

corresponding plot of peak potential against decade change of scan rates. 

 

Both of the Ni(II) system and Cu(II) system data are entirely consistent with 

aggregate diffusion or charge transport between aggregate stacks, given that Cu(II) 

phthalocyanine itself is considered to be a prototypical organic semiconductor,
[194]

 

therefore intra-aggregate charge transport should be very fast. 

 

The reduction of the M phase 0.88 M copper(II) phthalocyanine tetrasulfonic acid 

tetrasodium salt in water at a Pt microelectrode was also carried out as 

microelectrodes offer better insight of the 2-D anisotropic structure.
[195]

 It can be seen 

in Fig. 6.5 that the reduction on microelectrode affords waves instead of sigmoidal 

shape, which are not at steady-state, but are consistent with a two-electron process 
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with following slow, irreversible chemical reaction
[192]

, with √𝐷𝑟𝐷𝑧  ~ 10
-13

 m
2
 

s
-1

.
[196]

 

 

Fig. 6.5. Cyclic voltammetry of the Cu(II) system reduction on a 10 μm diameter platinum 

microdisc electrode. a spiral nickel wire served as counter electrode and silver/silver chloride 

reference electrode was applied. 

 

In order to assess the occurrence of anisotropic diffusion within these ordered, ionic 

aggregates, micro-disc potential-step chronoamperometry experiment was carried out 

for both systems, potentiostating the electrode after the two-electron oxidation waves. 

This methodology has been used in previous work
[196]

. Likewise the method 

mentioned in the introduction chapter, the dimensionless current-time for both 

experimental data and theoretical data need to fit each other. Unlike the normal 

solution environment, the diffusion coefficient in the normal direction, i.e. 

perpendicular (Dz) is different from that of the tangential (Dr) to the electrode surface. 

Therefore the equation is modified to fit these two parameters: 

 

𝜓 =
𝑖

4𝑛𝐹√𝐷𝑧𝐷𝑟𝑎𝑐𝑏𝑙𝑢𝑘
= 0.7854 + 0.8862𝜏−0.5 + 0.2146exp⁡(−0.7823𝜏−0.5) 

(Eqn. 6.1) 

 

where n = 2, F is the Faraday constant viz. 96484.6 C mol
-1

, a is the microelectrode 

radius, cbulk is the effective homogeneous concentration of the redox system. τ is the 

dimensionless time variable as described in introduction chapter. The fitting is 

employed by varying Dz and Dr within in a reasonable range (-17 ≤ log Di / m
2
 s

-1
 ≤ -8, 
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with ca. 10% uncertainty). The difference minimisation parameter, ℘, which is also 

illustrated in introduction chapter, is applied to find the best fit over the whole 

normalised temporal domain. As shown in Fig. 6.6, both of copper(II) and nickel(II) 

systems fit reasonably well over the most temporal domain. It is found that Dr for the 

nickel(II) N phase system is 3.8 ±  0.4 x 10
-8

 cm
2
 s

-1
 and Dz is 2.2 ±  1.5 x 10

-9
 cm

2
 s

-1
, 

whereas, for the copper(II) M phase system, Dr is found to be 1.2 ±  0.9 x 10
-8

 cm
2
 s

-1
 

and Dz is found to be 4.4 ±  1.7 x 10-11 cm
2
 s

-1
. Note that the chronoamperometric 

experiment for Ni(II) system was oxidation, whereas for Cu(II) system was reduction, 

as those two processes are well-known and widely available from literatures, unlike 

the complex ligand oxidation process for Cu(II) complex or oxygen affected Ni(II) 

complex reduction. 

 

Fig. 6.6. Reduced space chronoamperometric transients corresponding to the two-electron 

oxidation of the Ni(II) system (blue) with a 11 μm diameter carbon fibre microelectrode, 

potential was held at 1.06 V vs. Ag/AgCl; and two-electron reduction of the Cu(II) system (red) 

with a 10 μm diameter platinum microelectrode, potential was held at -0.7 V vs. Ag/AgCl. Both 

the open circles represent the experimental data and solid lines represent the theoretical fit. A 

spiral nickel wire was used as counter electrode. 

 

According to the Dr and Dz for both Cu(II) and Ni(II) systems, the diffusion is faster 

in the direction radial to the electrode surface compared with that in the perpendicular 

direction. The anisotropic ratios of Dr/Dz is found to be ~20 for Ni(II) system and 

~300 for Cu(II) system, respectively. It can be due to the presence of the electric field 

at the electrode surface, which can orientate the stacks, so that the peripherial 

functionalities are located close to the electrode surface as shown in Fig. 6.7. The 

stacks adopt a homogenous alignment in the electrochemical around the electrode 

surface, so that in both Ni(II) and Cu(II) systems, Dr represents the transport of 
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electrons along the stacks and limited by the thermal basculation (i.e. the size of 

aggregate), and Dz represents the electron transport between columnar aggregates, and 

therefore Dz is smaller in M-phase compared to that of in N-phase as M-phase affords 

worse lateral aggregate electronic couplings, as expected. Note that aggregate 

distances are at least on the order of q0, a Dahms-Ruff view suggests bimolecular 

electron hopping kinetics between aggregates in the direction perpendicular to the 

stack ordering of 1 x 10
6
 M

-1
 s

-1
 for Ni(II) system or 6 x 10

3
 M

-1
 s

-1
 for Cu(II) system, 

allowing for the inference of Einstein mobilities in this direction of 2 x10
-7

 cm
2
 s

-1
 V

-1
 

for Ni(II) system or 3 x 10
-9

 cm
2
 s

-1
 V

-1
 for Cu(II) system. 

 

 

Fig. 6.7. A schematic diagram of electron transfer directions in both of the Ni(II) and Cu(II) 

systems. 

 

The diffusion coefficient values are lower than that of in dilute aqueous solution 

consistent with the greater viscosities of the highly concentrated redox liquid crystals. 

As shown in Fig. 6.7, the theoretical data only fits the experimental data after τ ~ 0.2 

for Ni(II) and 0.5 for Cu(II), suggesting that the diffusion model overestimates the 

current at a short time period, which can be due to adsorption or electro-induced 

orientation effect. The orientation effect may stem from the degree of counterion 

condensation onto the stacks, with the Cu(II) system being less ionised than that of 

the Ni(II) system due to the lower double layer capacitance on Cu(II) system. This 

effect was recently modelled theoretically by Chami et al.
[197]

 on sunset yellow 



196 

 

chromonic liquid crystal.  

6.3. Conclusion 

Self-assembling chromonic liquid crystals within the nematic phase allow routes for 

diffusion (physical transport or through carrier hopping) to occur in at least two 

dimensions. Mobilities are likely affected by the size of the gaps between aggegates, 

mesogens stacks and stack defects. It is not clear whether the nature of the metal 

centre is significant compared with the order of the structured liquid nanosystem; the 

archetypal molecular semiconductor, copper(II) phthalocyanine is known to have a 

complex electronic structure caused by overlap of the metal 3 d levels with the ligand 

2p orbitals, leading to both localised and delocalised states at the Fermi level, which 

can be distorted by the presence of dioxygen. The exact role played by peripheral 

group dissociation has not been unravelled; the extent of this may be controlled by the 

applied electric field, encouraging phase alignment and migrative structuring of the 

phase, in a manner similar to that proposed for room temperature ionic liquids, or 

through local changes in proton concentration. 

 

Hetherto, this thesis has been concerned with the development of molecular 

electrochemical systems for applications in sensing systems and protocols. The next 

chapter moves to examine the effect of the specific electrochemical waveform 

perturbation on the response of and electrochemical device. 
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7. Computing simulation of 

energy storage via 

Battery systems 

The work presented in this chapter was undertaken with assistance from J. E. Halls, A. 

Hawthornthwaite, R. J. Hepworth, N. A. Roberts, K. J. Wright, S. J. Haswell, S. K. 

Haywood and S. M. Kelly. 

7.1. Introduction  

The increased electrification of energy consumed by the end users necessitates the 

deployment of efficient and strategic routes for the energy which it can be both 

generated and stored
[198, 199]

. In order to employing automated information and 

communications intelligence on both supplier and consumer to improve the 

distribution efficiency, sustainability and economics (through the promotion of 

competition), the “smart grid”
[200]

, which are storage systems allow for a fluidity in 

energy provision through load levelling peak shaving or energy arbitrage through 

differential pricing approaches, viz. in storing surplus energy generated during 

off-peak times, with grid support during times of high demand. Large scale redox 

flow batteries
[201-203]

 (which are typically used for applications requiring kW power 

scales, but can be deployed for MW-GW scale), unlike other forms of energy storage 

(compressed air or pumped hydropower) are highly attractive and cost-effective for 

these applications, and especially for uninterrupted/backup supplies, as they are not 

limited to particular geographical locations, whilst being able to maintain the 

advantages of the rapidity of energy provision afforded by alternatives (~1-10 min), 

through deep discharge under conditions of ambient temperature and pressure 

(whatever those may be); Stirling engines (for compressed air energy storage) rely on 
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temperature differences so require some form or heating/cooling, superconducting 

magnetic energy storage requires very low temperatures, whilst efficient storage in 

flywheels is limited by the maintenance of vacuum conditions. Furthermore, redox 

batteries are closed loop systems are not limited by the availability of any fuel source, 

and require no external input (except electricity), making them suitable for 

underground installation, or even for use in electrical vehicles.
[204, 205]

 

 

Fig. 7.1. Cartoon illustrating the approach taken in this work: solar, wind or tidal power is 

generated and used to charge-up a cerium-zinc redox battery, with the latter used to power 

cities. The rectifier/selector system also contains invertors to reconvert the battery DC 

output into AC. Note that for the tidal power case, we have chosen to depict the oscillating 

hydrofoils pioneered by Pulse Tidal (http://www.pulsetidal.com; accessed on 1 August, 

2012) which sweep up and down, as demonstrated within the River Humber, Hull. Also 

illustrated is the electrical circuit equivalent to the battery system. 

 

Although these flow battery systems have been quoted
[203]

 to have energy efficiencies 

(ratio of energy generated during discharge to energy utilised for charging) of 70-90%, 

http://www.pulsetidal.com/
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the pumping of the electrolyte consumes ~10-15%, so that practical energy 

efficiencies are closer to ca. 60%. Nevertheless, several installations utilising redox 

flow batteries already exist, such as the ZBB Energy Corp zinc bromine system 

utilised at military bases, or for elevator back-up at NIDON Clean Energy, Hawaii, 

USA
[206]

, and Cellenium’s vanadium redox battery system operational since 

December, 2008 in Thailand
[207]

. The integration of battery-stored renewable energies 

into electricity grids then requires infrastructure capable of managing the direct 

currents (DC) generated by batteries. These days, this is not such a major issue as it 

first appears, given the requirements of modern technology devices (such as 

computers, mobile accessories, etc.) which utilise DC and the development of DC 

microgrids,
[208]

 coupled with advances in invertors, high power semiconductor 

thyristors and insulated gate bipolar transistors; although transmission through high 

voltage, low alternating current (AC) won the so-called “Current Wars”, high voltage 

DC (HVDC) is considered to be more economical for transmission over long 

distances (especially underwater), whilst suffering lower electrical losses, even 

though it requires a single point of origin and termination.
[199]

 Such long distances 

typically occur between areas of renewable energy availability (for electricity 

generation) and regions of human civilisation (for electricity consumption).
[199]

 This is 

exemplified through the Xianjiaba Dam to Shanghai, China line commissioned in 

2010 (which operates at 800 kV – approximately the upper DC limit due to corona 

discharge, delivering 6.4 GW over 1980 km),
[209]

 the Rio Madeira link soon to be 

commissioned between Porto Velho (Amazonas) and Araraquara (São Paulo State), 

Brazil (to operate at 600 kV so as to deliver 3.15 GW power over in excess of 2500 

km) – the World’s longest HVDC line,
[209]

 and the East West Interconnector from 

Country Dublin to close to Liverpool, connecting the Irish grid with the UK grid (200 

kV at 500 MW, with 75 km underground and 186 km submarine cabling), allowing 

excess wind power generated in Ireland to be exported to the UK.
[209]

  

 

It then follows that the efficient storage of renewable energies requires sufficient 

capability to adapt to the uncertainties in the weather characteristics (which may last 
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from seconds to days), and which may affect up to 70% of daytime solar (on cloudy 

days), and 100% wind (on calm days),
[199]

 thereby causing the maximum power load 

factor (ratio of average available power to rated power) of the renewable energy 

transducer to be significantly smaller than unity, since the output is related to the 

power input. Existing installations of redox batteries coupled to solar and/or wind 

include the all-vanadium system installed by Prudent Energy
[210]

 or Sumitomo 

Electric Industries, Ltd.
[211]

 (who commissioned the world’s largest redox flow battery 

in July, 2012), or the zinc-bromine system developed by RedFlow, Ltd.
[212]

  

 

But this is not all – energy abundance during windy, clear sky (with air mass, AM 1.5) 

days at, say, tidal barrages, is naturally affected by the temporal variation in the 

renewable energy form (the sun rises and sets, and winds blow and cessate, with tides 

that rise and ebb periodically based on Moon-Earth-Sun gravitational interactions), 

and which translates into time-dependent electricity generation; storage efficiency of 

this electrical energy through charging galvanic cells would thus appear to be 

commanded by the type of renewable energy, and its amount. This governance 

relationship is often overlooked in comparing renewable energies, and we seek to 

unravel its significance within this work. 

 

An understanding of the DC current generation characteristics of biofuel 

burning/wind, tidal and solar power (see the cartoon in Fig. 7.1) were first developed, 

and of the use of these to control the single cycle charging of cerium-zinc redox 

battery system pioneered by the now defunct Plurion, Ltd.,
[213-217]

 since this cell 

chemistry has recently been shown to exhibit promising operational characteristics 

within a membrane-free (undivided) cell,
[214]

 and, hitherto, no mathematical model 

has been offered to simulate its chemistry.
[201-203, 218-223]

 Such cells, though not 

employed in any large scale system as yet, are highly attractive, given the extent of 

power loss (i
2
R) through the costly separating membrane (of typical electrical 

resistances between 1 – 10 Ω cm
-2

) that is generally employed, and preclude the 

otherwise necessary consideration of junction potentials; in any cases, we are 
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interested in the efficiency of charging the battery, rather than battery optimisation.  

 

7.2. Diffusion Model for Battery Charge and 

Discharge 

7.2.1. Classification of renewable energy current 

generation characteristics 

Whilst battery systems require DC for charging, owing to the occurrence of Faradaic 

electrolysis, of the renewable energies considered here, only solar photovoltaic or the 

less popular photogalvanic systems immediately and exclusively provide a DC output; 

the other rely on the induction of current through conductor motion within a magnetic 

field – turbine generation, which affords AC in the armature, or DC (if subsequently 

rectified, or through the use of split-ring commutators). Bearing this in mind, we may 

classify individual renewable energies through their characteristics profiles for power 

generation, as has very recently been undertaken by Aziz.
[224]

 However, these are 

directly related to the temporal variations of their impact on a turbine: in an 

approximately twelve hour day period, biofuel burning can be made to achieve a 

constant current output, or, if so desired, an output that could change with time; wind, 

if present due to a land-sea breeze, is variable about a constant level; tidal current 

output varies in a sinusoidal manner on a diurnal (24 h) or semidiurnal timescale. 

Even solar power generation is time dependent owing to its dependence on light 

intensity; clear sky (AM 1.5) days at the Equator afford a semi-elliptical power 

generation rate, peaking at 12H00, followed by a resting state. It follows that, if the 

idealised renewable energy power generator operates on a windy, clear day at a tidal 

barrage near the Equator, the battery charging current is of a form characteristic of the 

energy exploited.  

 

The formulation of equations for these current outputs for our purposes, however, 
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causes a quandary in consideration of whether it is the total power of the generated 

current, or the state-of-charge (SOC) of the battery system that should be constant, for 

the comparison of these waveforms. The root mean square charging current, viz. 

𝑖𝑟𝑚𝑠 = √∫
𝑖2

2𝑡𝑠

2𝑡𝑠

0
𝑑𝑡, is chosen; and it is identical for each type of current waveshape; 

by definition, this ensures that the heat dissipated through Ohmic loss within the 

system (Joule heating
[225]

) is then constant for all considered waveforms, and allows 

for simplicity in that it is only the total energy that needs to be considered; the thermal 

energy loss in discharge as well as charge in this work was ignored.  

 

Fig. 7.2. Battery charging waveshapes: pure, constant DC (black), DC ramp (green), DC 

accelerator-decelerator (yellow), fully rectified AC at 0.5 Hz with constant DC offset (cyan), 

rectified tidal (red), solar (blue). Note that the rectified AC signal is illustrated here at an 

exaggerated frequency (0.5 Hz) than that used in simulations (50 Hz), so that the nature of 

its waveshape is seen. 

 

Thus, for daytime generation, we may consider the six types of battery charging 

waveform, noting that more complex waveforms (to account for rectified AC 

variation) may be constructed from these, through linear superimposition. Note that 

the operation timescale was reduced – on real time day (24 h) maps to 20 s in this 

work (vide infra). 
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Pure, constant DC: 

𝑖 = 𝑖0 + 𝐴   ⇒   ∫ 𝑖𝑑𝑡
2𝑡𝑠

0
= 2𝐴𝑡𝑠             (Eqn. 7.1) 

 

DC ramp: 

𝑖 = 𝑖0 +
𝐴√3

2𝑡𝑠
𝑡   ⇒   ∫ 𝑖𝑑𝑡

2𝑡𝑠

0
= √3𝐴𝑡𝑠         (Eqn. 7.2) 

 

DC accelerator-decelerator: 

𝑡 ≤ 𝑡𝑠  𝑖 = 𝑖0 +
𝐴

√
5

3
−
𝜋

2

(1 −
1

𝑡𝑠
√|𝑡𝑠

2 − 𝑡2|)   ⇒   ∫ 𝑖𝑑𝑡
2𝑡𝑠

0
=
(2−

𝜋

2
)

√
5

3
−
𝜋

2

𝐴𝑡𝑠  (Eqn. 7.3) 

𝑡 > 𝑡𝑠  𝑖 = 𝑖0 +
𝐴

√
5

3
−
𝜋

2

{1 −
1

𝑡𝑠
√|𝑡𝑠

2 − (𝑡 − 2𝑡𝑠)2|}          (Eqn. 7.4) 

 

Fully rectified AC at 50 Hz with constant DC offset: 

𝑖 = 𝑖0 + |𝐴√2s n⁡(100𝜋𝑡)|   ⇒   ∫ 𝑖𝑑𝑡
2𝑡𝑠

0
=
4√2

𝜋
𝐴𝑡𝑠       (Eqn. 7.5) 

 

Rectified tidal, no AC: 

𝑡 ≤ 𝑡𝑠  𝑖 = 𝑖0 + 𝐴√2𝑠𝑖𝑛 (
𝜋

𝑡𝑠
𝑡)   ⇒   ∫ 𝑖𝑑𝑡

2𝑡𝑠

0
=
4√2

𝜋
𝐴𝑡𝑠    (Eqn. 7.6) 

𝑡 > 𝑡𝑠  𝑖 = 𝑖0 − 𝐴√2𝑠𝑖𝑛 (
𝜋

𝑡𝑠
𝑡)                 (Eqn. 7.7) 

 

Solar: 

𝑖 = 𝑖0 +
𝐴

𝑡𝑠
√
3

2
√𝑡(2𝑡𝑠 − 𝑡)   ⇒   ∫ 𝑖𝑑𝑡

2𝑡𝑠

0
=
1

2
√
3

2
𝜋𝐴𝑡𝑠    (Eqn. 7.8) 

 

In the above, i is the current, i0 is a background level (taken to be zero in this work), A 

is then the maximum current carried through a pure, constant DC supply (taken to be 

-30 mA in this work, where charging currents are negative), t is the time variation, and 

ts is the half-time period (kept at 5.0 s in this work, so that diffusive mass transport in 

the battery may only be considered; the occurrence of natural convection is precluded 

through the imposition of this limitation
[226, 227]

). Also given above is the charge 
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passed during the charging cycle when 𝑖0 = 0: 𝑄0 = ∫ 𝑖𝑑𝑡
2𝑡𝑠

0
, where it is clear that 

the SOC of the battery decreases with the waveforms in the order constant DC > 

solar > tidal = rectified AC > DC ramp > DC accelerator-decelerator. The function 

waveshapes used to charge-up the battery system are illustrated in Fig. 7.2.; the 

discharge was modelled as occurring immediately after charging, primarily so that 

there is no additional contribution from electrode corrosion (vide infra), and occurring 

under a constant DC load (current, with no reactive power), as we are interested in the 

performance of the system under light and heavy drain.  

7.2.2. Evaluation of the Battery Performance with the 

Renewable Energy Waveforms 

The determination of which of the renewable energy waveforms when used for 

charging the galvanic cell described in Fig. 7.1 yields efficient energy storage, high 

power characteristics of the battery under discharge, and a reasonable characteristic 

time (order of magnitude of the energy: power ratio) are interested. For the first of 

these figures of merit, for conditions of constant current in discharge, we consider the 

energy loss ratio (ELR) defined as the ratio between the energy generated under cell 

discharge versus the energy used for cell charging: 

 

ELR = {1 −
𝑖𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∫ 𝑉𝑑𝑡

𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
2𝑡𝑠

∫ 𝑖𝑐ℎ𝑎𝑟𝑔𝑒𝑉𝑑𝑡
2𝑡𝑠
0

} × 100        (Eqn. 7.9) 

 

The other two depend on the position of the system under discharge within the 

energy-power plane (Ragone plot). However, it is important to encompass effects due 

to the variable SOC with change in charging waveform; The SOC is defined as the 

ratio of the charge passed during cell charging to the total possible charge that could 

be passed during charging, viz. SOC =
𝑄0

𝐹𝑐0𝐶𝑒3+𝑆𝑙
 for the system considered in this 

work (vide infra). Thus, in order to understand how to normalise the Ragone plot, the 
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electrical principles of an ideal battery, viz. one which exhibits no 

frequency-dependent response and no non-linear responses due to Faradaic or 

pseudocapacitative contributions are recapitulated. Thus, for an ideal cell, charged to 

an arbitrary SOC, to afford a terminal potential difference at open circuit of Voc, the 

maximum energy deliverable is VocQo. The constant current discharge of this battery, 

of internal resistance Rs, over an external resistance, Ri, affords, by Kirchhoff’s laws, a 

terminal potential difference, V, of: 

 

𝑉 = 𝑖𝑅𝑖 = 𝑉𝑜𝑐 − 𝑖𝑅𝑠            (Eqn. 7.10) 

 

Clearly, under open circuit conditions, when 𝑖 → 0, 𝑉 → 𝑉𝑜𝑐. At short circuit, 𝑉 = 0, 

allowing a maximum current, isc, to flow: 

 

𝑖𝑠𝑐 =
𝑉𝑜𝑐

𝑅𝑠
                (Eqn. 7.11) 

 

Now, the electrical power delivered across the load is: 

 

𝑝 = 𝑖𝑉 = 𝑖(𝑉𝑜𝑐 − 𝑖𝑅𝑠) = 𝑖𝑉𝑜𝑐 − 𝑖
2 𝑉𝑜𝑐

𝑖𝑠𝑐
     (Eqn. 7.12) 

 

so that the current flowing in terms of the power delivered is: 

 

𝑖 =
𝑖𝑠𝑐

2
±√

𝑖𝑠𝑐
2

4
− 𝑝

𝑖𝑠𝑐

𝑉𝑜𝑐
            (Eqn. 7.13) 

 

Thus, as 𝑝 → 0 , 𝑖 → 0  (open circuit condition, corresponding to 𝑅𝑖 → ∞ ) or 

𝑖 → 𝑖𝑠𝑐 (short circuit conditions, corresponding to 𝑅𝑖 → 0) – in these two limits, no 

electrical power is produced. The maximum power that can be delivered by the ideal 
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battery can be determined from, 

 

𝜕𝑝

𝜕𝑉
= 𝑖𝑠𝑐 − 2𝑖𝑠𝑐

𝑉

𝑉𝑜𝑐
= 0           (Eqn. 7.14) 

 

Furnishing a current at the power point of 𝑖𝑚𝑝 =
1

2
𝑖𝑠𝑐  at an associated voltage 

𝑉𝑚𝑝 =
1

2
𝑉𝑜𝑐, indicating that the maximum power that can be drawn from the ideal 

battery is 𝑝𝑚𝑎𝑥 =
1

4
𝑖𝑠𝑐𝑉𝑜𝑐, as indicated in Fig. 7.3. Also indicated in this figure are 

the electrolytic (i < 0) and supergalvanic (isc > 0) regimes, where electrical power has 

to be supplied to the galvanic cell for charging (p < 0, i < 0, V > Voc), or for Joule 

heating (p < 0, i > isc, V < 0). 

 

Fig. 7.3. Characteristics of an ideal battery, identifying the electrolytic, galvanic and supergalvanic 

regions from left-to-right. 

 

As the renewable energy waveforms depend on the time passed, as indicated above, 

experimental data need to be analysed within the temporal domain; for constant 

current discharge, 
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energy⁡generated = 𝑖𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 ∫ 𝑉𝑑𝑡
𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
2𝑡𝑠

    (Eqn. 7.15) 

power⁡del vered =
𝑖𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
∫ 𝑉𝑑𝑡
𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
2𝑡𝑠

      (Eqn. 7.16) 

 

Hence, for performance evaluation purposes, an adimensional Ragone plot may be 

constructed with 
𝑖𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄0𝑉𝑜𝑐
∫ 𝑉𝑑𝑡
𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
2𝑡𝑠

 on the ordinate and 

4𝑖𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑖𝑠𝑐𝑉𝑜𝑐
∫ 𝑉𝑑𝑡
𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
2𝑡𝑠

 on the abscissa, or vice versa. 

 

These parameters may be determined through knowledge of the battery chemistry is 

described next.  

7.2.3. Model for an Undivided Galvanic cell 

For a storage system, a zinc-cerium hybrid redox battery have been chosen based 

operated under diffusion-only conditions, for simplicity – there is then no need to 

consider intrinsic energy loses due to pumping the electrolyte through the cell, nor to 

worry about the changing thickness of the diffusion layer thickness between the 

upstream and downstream edges of the electrode surface, which itself is a function of 

the volume flow rate. Flow batteries of this system have been demonstrated to operate 

under mild, ambient temperature conditions (295 K) in a fully electrochemically 

supported undivided cell (see Fig. 7.1). The cell electrolyte is assumed to be 

oxygen-free (to prevent any electrode passivation through zinc oxide precipitation) 

and supposed that it contains additives so that the hydrogen evolution (due to proton 

reduction) and oxygen evolution (through water oxidation) reactions do not proceed 

within the cell even under the most extreme potentials generated at the electrodes. 

Further assumptions are made that the electrodes are perfectly flat (fractal dimension 

of exactly 2.0), allowing heterogeneous electron transfer reactions to proceed 

uniformly on the electrode surface, and so that there is no dendrite formation on the 

electrode surfaces. These assumptions allow the surface area of the electrodes in 
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contact with the electrolyte to be constant throughout the electrolysis. Note that other 

models for hydrogen or oxygen evolution within redox batteries command a similar 

assumption, viz. the Laplace pressure is sufficiently small to prevent bubble formation. 

The galvanic cell can thus be written through the following cell diagram. 

 

𝑍𝑛￨𝑍𝑛2+⁡(𝑎𝑞, 𝑐0𝑍𝑛2+ = 1.5⁡𝑀), 𝐶𝑒
4+(𝑎𝑞, 𝑐0𝐶𝑒4+ = 10

−3⁡𝑀), 𝐶𝑒3+(𝑎𝑞, 𝑐0𝐶𝑒3+

= 0.5⁡𝑀)￨𝐶 

 

Note that the above concentrations are experimentally realistic for flow batteries, with 

an initial concentration of Ce
4+

 ions set at three orders of magnitude higher than that 

typically used for “ion-free” conditions, to ensure full stability of the numerical 

simulations employed herein (vide infra). Furthermore, for the charging reactions, the 

vast excess of Zn
2+

 compared with Ce
3+

 ensures that is the limiting reagent.  

The planar electrode, parallel–plate battery system illustrated in Fig. 7.1 using single 

spatial co-ordinate (x) se was defined so that the carbon surface facing the solution is 

at x=0, with the electrolyte-exposed zinc surface at x=l. the electrolyte used in realised 

experimental systems consists mainly of aqueous methansulfonic acid of high 

concentration (typically between 4-6 M) to suppress electrical migration of the redox 

species, and reduce the electrical resistance (Rs) between the electrode plates. This 

additionally sets up electrical double layers, of capacitance (Cdl1 and Cdl2) at each 

electrode which need to be charged and discharged with change in the voltage in time 

(vide infra) in parallel with the redox reaction at each electrode (see Fig. 7.1). No 

parasitic reactions (other than those considered below) causing leakage or shunt 

currents to occur in parallel to the load resistances was assumed.  

7.2.3.1. Cell Chemistry 

Thus, at open-circuit (no current flowing, no power delivered), the following 

potential-determining equilibria may be written. 
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Right-hand-side electrode: 

𝐶𝑒4+(𝑎𝑞) + 𝑒− ⇌ 𝐶𝑒3+(𝑎𝑞) 

𝐸0′
𝐶𝑒3+￨𝐶𝑒4+

= +1.44⁡𝑉⁡𝑣𝑠. 𝑆𝐻𝐸; 𝑘𝑠 = 6.8 × 10
−4⁡𝑐𝑚⁡𝑠−1; α =

2

5
 

Left-hand-side electrode: 

1

2
𝑍𝑛2+(𝑎𝑞) + 𝑒− ⇌

1

2
𝑍𝑛(𝑠) 

𝐸0′
𝑍𝑛￨𝑍𝑛2+

= −0.76⁡𝑉⁡𝑣𝑠. 𝑆𝐻𝐸; 𝑘𝑠2 = 4.0 × 10
−4⁡𝑐𝑚⁡𝑠−1; α =

2

5
 

Note that these half-cell reactions are idealistic; all activity coefficients are assumed 

to be unity, so that the formal potentials quoted correspond to standard electrode 

potentials against the standard hydrogen scale (SHE). It is well-known, in acidic 

aqueous solutions, the thermodynamic and kinetic oxidising ability of cerium (IV) 

depends on the nature of the acid counter ion: in H2SO4, the following complexation 

reactions are thought to occur.
[228]

 

 

𝐶𝑒4+ + HSO4
− ⇌ 𝐶𝑒(𝑆𝑂4)

2+ + 𝐻+ 

𝐶𝑒(𝑆𝑂4)
2+ + HSO4

− ⇌ 𝐶𝑒(𝑆𝑂4)2 + 𝐻
+ 

𝐶𝑒(𝑆𝑂4)2 + HSO4
− ⇌ 𝐻𝐶𝑒(𝑆𝑂4)3

−
 

Scheme 7.1 

 

with the last anionic cerium(IV) form predominating at high H2SO4 concentrations, 

thereby suppressing hydrolysis of Ce
4+

. Accordingly, the formal electrode potential 

was supposed for the cerium(III)/cerium(IV) half-cell within methanesulfonic acid is 

the same as sulphuric acid. Although the value of the standard heterogeneous rate 

constant (ks) for the reduction of Ce
4+

 varies in the literature from 5.3 × 10−5~ 

1.3 × 10−3 cm s
-1

, the electrode reaction is sluggish on most electrodes, and occurs 

with a transfer coefficient (α) in the range 0.1~0.5; Randle and Kuhn
[229]

 have used 

such data to provide evidence to suggest the electrode reaction involves the 

sulfato-complexes forms in sulphuric acid. Nevertheless, only the basic electron 

transfer reaction is considered, using literature-averaged values for ks and α. 
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Likewise, the reduction of zinc is considered to occur as a single two-electron process, 

even though it is known
[230]

 that zinc reduction (at least on mercury) occurs in a CE 

type process, involving the adsorption of zinc ions. Nevertheless, the single step 

process is also kinetically slow (the standard rate constant and symmetry factor given 

above are also averages taken from the literature
[216, 230, 231]

), with nucleation (at least 

on carbon) thought to processed through an instantaneous (rather than progressive) 

mechanism,
[217]

 viz. the number density of nucleation centres equals the number of 

active sites – a time-independent constant. Voltage ripple (AC variation superimposed 

on DC) is assumed that it has no effect on zinc plating uniformity
[232]

, and likewise, as 

mentioned earlier, suppose that the electrolyte contains additives to suppress dendrite 

formation during zinc plating. Moreover, it is assumed that the plating of zinc onto the 

electrode during charge does not alter the cell thickness, as this would otherwise 

require a dynamic, not static, spatial grid to be deployed. This is a reasonable 

assumption since approximately 
|𝐴|𝑡𝑠

𝐹
 mol zinc are deposited, corresponding to ~4000 

monolayers, resulting in uniform deposits that are ~520 nm thick (assuming an atomic 

radius of zinc of 133.2 pm), which is ca. 1% of the thinnest cell depth considered in 

this work, vide infra). 

 

The less-than-unity value of the transfer coefficient for zinc ion reduction (taken to be 

0.4 in this work) is consistent with a near-symmetric barrier of a single step 

two-electron process (2α = 0.8 ≈ 1), rather than the adsorbed single charge species 

mechanism that is thought to occur in neutral and non-complexing solutions: 

 

𝑍𝑛2+(𝑎𝑞) ⇌ 𝑍𝑛2+(𝑎𝑑𝑠) 

Zn2+(𝑎𝑑𝑠) + 𝑒−
𝑠𝑙𝑜𝑤
→  𝑍𝑛+(𝑎𝑑𝑠) 

Zn+(𝑎𝑑𝑠) + 𝑒− ⇌ 𝑍𝑛(𝑠) 

Scheme 7.2 

The assumption that the electrolyte contains corrosion inhibitors to suppress the 

hydrogen evolution reaction (vide supra) is reasonable: the standard exchange current 
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density for hydrogen oxidation on zinc at 298 K is reported as being 10
-11

 A cm
-2

. 

 

Although the energy storage efficiency of the particular charging waveform is 

interesting, it is noted that most experimental systems involve the plating of zinc onto 

carbon during charge, and are thus limited by zinc dissolution under discharge. Thus, 

rather than assuming that the zinc electrode is physically thick, viz. with a surface 

coverage, ΓZn, inflated by some large factor over its monolayer value, the surface 

coverage is sited to take the typical monolayer value of 10
-10

 mol cm
-2

, and employ a 

bulk stripping boundary condition (vide infra). 

 

Thus, the cell reaction occurring under short circuit is 𝐶𝑒4+(aq) +
1

2
Zn(s) →

𝐶𝑒3+(𝑎𝑞) +
1

2
𝑍𝑛2+(𝑎𝑞), viz. the right-hand electrode becomes positive relative to 

that at the left-hand side, in a thermodynamically spontaneous process; the observed 

open circuit voltage under non-standard conditions is: 

 

𝑉𝑜𝑐 = 𝐸𝑐𝑒𝑙𝑙 = 𝐸𝐿𝐻𝑆 − 𝐸𝑅𝐻𝑆 = 𝐸𝑐𝑒𝑙𝑙
0′ +

𝑅𝑇

𝐹
𝑙𝑛 {

𝑐
𝐶𝑒4+
0 𝑐𝑠

1
2⁄

𝑐
𝐶𝑒3+
0 𝑐

𝑍𝑛2+

1
2⁄
}   (Eqn. 7.17) 

 

where the potential of the right-hand side electrode of the cell diagram, 

 

𝐸𝑅𝐻𝑆 = 𝐸𝐶𝑒3+￨𝐶𝑒4+
= 𝐸

𝐶𝑒3+￨𝐶𝑒4+
0′ +

𝑅𝑇

𝐹
𝑙𝑛 {

𝑐
𝐶𝑒4+
0

𝑐
𝐶𝑒3+
0 }     (Eqn. 7.18) 

 

and the potential of the left-hand side electrode, 

 

𝐸𝐿𝐻𝑆 = 𝐸𝑍𝑛￨𝑍𝑛2+
= 𝐸

𝑍𝑛￨𝑍𝑛2+
0′ +

𝑅𝑇

𝐹
𝑙𝑛 {

𝑐
𝑍𝑛2+

1
2⁄

𝑐𝑠

1
2⁄
}       (Eqn. 7.19) 

 

are Nernstian expressions, cs is the standard concentration (1.0 M), R is the molar gas 

constant, T is the absolute temperature (taken to be 298 K in this work), F is Faraday’s 
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constant and 

 

𝐸𝑐𝑒𝑙𝑙
0′ = 𝐸

𝐶𝑒3+￨𝐶𝑒4+
0′ − 𝐸

𝑍𝑛￨𝑍𝑛2+
0′ .           (Eqn. 7.20) 

7.2.3.2. Open Circuit Corrosion of the Znic Electrode 

Since the corrosion rate for zinc in acidic solutions of pH < 3 is low, typically ~40 

mm yr
-1

, as a result of kinetic limitations (vide supra), it is supposed that zinc 

dissolution with hydrogen evolution to be negligible. However, it is well known that, 

at least in brine, Ce
3+

 suppresses corrosion of zinc, whilst Ce
4+

 present initially (else 

cell potentials would tend to -∞, a value that is impossible to use in numerical 

simulations), the open circuit voltage will not be given by the Nernst expression 

owing to the occurrence of generation and depletion conditions at the zinc electrode, 

due to the spontaneous heterogeneous reaction: 

 

𝐶𝑒4+(𝑎𝑞) + 1 2⁄ 𝑍𝑛(𝑠) → 𝐶𝑒3+(𝑎𝑞) + 1 2⁄ 𝑍𝑛2+(𝑎𝑞)    (Scheme 7.3) 

 

The effect of this is to alter the concentration profiles of Ce
3+

, Ce
4+

 and Zn
2+

 within 

the cell, and thus impact on the charge-discharge characteristics of the cell. 

 

To account for this mixed-potential corrosion at open-circuit when no current flows 

between the two electrodes, the net corrosion current has to be zero; provide corrosion 

occurs uniformly over the zinc electrode, the total reduction rate must match the total 

rate of oxidation, at every point on the surface, viz., 

 

𝑖𝑐𝑜𝑟𝑟𝐶𝑒4+→𝐶𝑒3+ = 2𝑖
𝑐𝑜𝑟𝑟

𝑍𝑛→𝑍𝑛2+         (Eqn. 7.21) 

 

in which the factor of two for the zinc dissolution current merely reflects the reaction 

stoichiometry. Hence, under a Bulter-Volmer formalism, 
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𝑘𝑠3(𝑐𝐶𝑒4+)𝑥=𝑙 exp (
𝛼3𝐹𝐸𝑐𝑒𝑙𝑙

0′

𝑅𝑇
) exp(−𝛼3𝜉2) + 2𝑘𝑠2(𝑐𝑍𝑛2+)𝑥=𝑙exp(−2𝛼2𝜉2) =

𝑘𝑠3(𝑐𝐶𝑒3+)𝑥=𝑙 exp [
(𝛼3−1)𝐹𝐸𝑐𝑒𝑙𝑙

0′

𝑅𝑇
] exp[(1 − 𝛼3)𝜉2] + 2𝑘𝑠2𝑐𝑠exp[2(1 − 𝛼2)𝜉2]      

(Eqn. 7.22) 

 

where 𝑘𝑠3 is the standard heterogeneous rate constant for Ce
4+

 reduction on zinc, 

with α3 the associated symmetry factor and denote the reduced potential ξ2 =

𝐹

𝑅𝑇
(𝐸𝐿𝐻𝑆 − 𝐸

0′

𝑍𝑛￨𝑍𝑛2+
). For the case when α3 = 2α2 =1, the above can be solved to 

afford the following value of the corrosion potential. 

 

𝐸𝐿𝐻𝑆

= 𝐸0
′

𝑍𝑛￨𝑍𝑛2+

+
𝑅𝑇

𝐹
𝑙𝑛

{
 

 −𝑘𝑠3(𝑐𝐶𝑒3+)𝑥=𝑙 + √𝑘𝑠3
2(𝑐𝐶𝑒3+)𝑥=𝑙

2 + 8𝑘𝑠2𝑐𝑠 [2𝑘𝑠2(𝑐𝑍𝑛2+)𝑥=𝑙 + 𝑘𝑠3(𝑐𝐶𝑒4+)𝑥=𝑙𝑒
𝐹
𝑅𝑇
𝐸𝑐𝑒𝑙𝑙
0′

]

4𝑘𝑠2𝑐𝑠
}
 

 

 

(Eqn. 7.23) 

 

Satisfyingly, the above reduces to the Nernst expression in the absence of 

cerium-induced zinc corrosion, viz. when 𝑘𝑠3 = 0. Thus, for the general case of 

α3 ≠ 2𝛼2 ≠ 1, the above was used as a first approximation in a Newton-Raphson 

iterative solution (dummy variable ς), with subsequent estimates of the corrosion 

potential determined through the relation, 

χ𝜍

= 𝜒𝜍−1

−
𝑘𝑠3(𝑐𝐶𝑒4+)𝑥=𝑙𝑒

𝛼3𝐹𝐸𝑐𝑒𝑙𝑙
0′

𝑅𝑇 − 𝑘𝑠3(𝑐𝐶𝑒3+)𝑥=𝑙𝑒
(𝛼3−1)𝐹𝐸𝑐𝑒𝑙𝑙

0′

𝑅𝑇 𝜒𝜍−1 − 2𝑘𝑠2𝑐𝑠𝜒𝜍−1
[𝛼3+2(1−𝛼2)] + 2𝑘𝑠2(𝑐𝑍𝑛2+)𝑥=𝑙𝜒𝜍−1

(𝛼3−2𝛼2)

−𝑘𝑠3(𝑐𝐶𝑒3+)𝑥=𝑙𝑒
(𝛼3−1)𝐹𝐸𝑐𝑒𝑙𝑙

0′

𝑅𝑇 − 2𝑘𝑠2𝑐𝑠[𝑎3 + 2(1 − 𝛼2)]𝜒𝜍−1
(𝛼3+1−2𝛼2) + 2𝑘𝑠2(𝑐𝑍𝑛2+)𝑥=𝑙(𝛼3 − 2𝛼2)𝜒𝜍−1

(𝛼3−1−2𝛼2)

 

(Eqn. 7.24) 



214 

 

 

where 𝜒 = 𝑒𝜉2. Typically, 29 iterations were required for non-zero values of 𝑘𝑠3 to 

achieve convergence to within the required threshold (10-10 in χ). 

 

There are two limiting cases that interested in: (i) 𝑘𝑠3 = 0⁡𝑐𝑚⁡𝑠
−1, corresponding to 

no corrosion of the zinc electrode, so that its potential is as given in section 7.2.3.1, 

and (ii) 𝑘𝑠3 = 𝑘𝑠 and α3 = α – the kinetics of cerium(IV) reduction on zinc are 

commensurate with those at the carbon electrode. For the experimental conditions 

given, these cases correspond to instantaneous initial open circuit voltages of (i) 

+2.04 V and (ii) +1.60 V, respectively; the occurrence of corrosion reduces the open 

circuit voltage (Voc), as anticipated. 

7.2.3.3. Cell Geometry 

In the laboratory-scale experimental system developed by Walsh
[214]

, the galvanic cell 

has symmetric, parallel plate, porous electrodes of dimensions 4.5 × 2.0 × 0.5⁡cm, 

separated by 1.85 cm, with electrolyte that is flowed from, and collected by, a single 

reaction reservoir, at a linear flow velocity of 3.9 cm s
-1

. Similar values for cell 

dimensions and flow rate have been employed by Roberts
[233, 234]

 in an undivided 

redox flow battery for solar energy storage, or for an all-chromium system. However, 

for the diffusion-only galvanic cell considered in this work, such values do not allow 

for the occurrence of effects of transport-limited electrolysis during the charge step, 

nor allow for corrosive generation conditions at the zinc electrode to impact on the 

carbon electrode under the timescale limitation imposed. Accordingly, it is chosen to 

realise a system in which the parallel-plate electrodes are assumed to be of identical 

area, S, separated by the fixed distance l (cell thickness), and to compute the cell 

depth in terms of multiples of the diffusion layer thickness of Ce
3+

 ions at the 

right-hand electrode, viz., 
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𝑙 = ι√2𝜋𝐷𝐶𝑒3+𝑡𝑠                  (Eqn. 7.25) 

 

where Di is the diffusion coefficient of species i, 1≤ι≤10, and to keep the electrode 

surface area as a factor, φ, larger than that required for complete charging of the 

thinnest cell considered within the allocated time, using a pure, constant DC input: 

 

S =
√2

√𝜋

𝜑|𝐴|√𝑡𝑠

𝐹𝑐
𝐶𝑒3+
0

√𝐷𝐶𝑒3+
                (Eqn. 7.26) 

 

The above formulation was determined to be optimised, since complete electrolysis 

during charge would otherwise cause faster depletion of redox species at the electrode 

compared with mass transport, leading to cell voltages that could not be determined 

through numerical methods. For typical experimental values considered in this work, 

40≤l/μm≤400, with square electrodes of side 2.0 cm, corresponding to φ ≃ 2.5.  

7.2.3.4. Transport and Faradaic Currents 

The performance of this galvanic system under load is interested, and thus it needs to 

seek a solution to the following transport equations, which describe the mass transfer 

resistance R
ox

 and R
Red

 in the equivalent circuit illustrated in Fig. 7.1, 

 

𝜕𝐶
𝐶𝑒3+

𝜕𝑡
= 𝐷𝐶𝑒3+

𝜕2𝑐
𝐶𝑒3+

𝜕𝑥2
                (Eqn. 7.27) 

𝜕𝐶
𝐶𝑒4+

𝜕𝑡
= 𝐷𝐶𝑒4+

𝜕2𝑐
𝐶𝑒4+

𝜕𝑥2
                (Eqn. 7.28) 

𝜕𝐶
𝑍𝑛2+

𝜕𝑡
= 𝐷𝑍𝑛2+

𝜕2𝑐
𝑍𝑛2+

𝜕𝑥2
                (Eqn. 7.29) 

 

under the following boundary conditions, where they can be assumed that 

Butler-Volmer kinetics are sufficient to describe the current dependence on the 

potential at each electrode (these are represented being electrically equivalent to a 

junction diode within the circuit diagram in Fig. 7.1; it can be recognised that were 
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the electrode kinetics to account for the density of electronic states within the 

electrode through modelling via non-adiabatic Marcus-Hush theory, the electrical 

circuit equivalent is merely a thermionic diode). Note that, although as alluded to 

earlier (q.v. Section 2.1), it has been no explicitly allowed for the inclusion of natural 

convection as a transport means; this is possible simply by allowing the individual 

diffusion coefficients, D, to be apparent diffusion coefficients, Dapp, which are 

fourth-order functions of the distance normal to the electrode surface, 

 

𝐷𝑎𝑝𝑝 = 𝐷 {1 + 1.522 (
𝑥

𝛿𝑐𝑜𝑛𝑣
)
4

}          (Eqn. 7.30) 

 

in which δconv is the thickness of the convection-free layer. 

t ≤ 0    𝑐𝐶𝑒3+ = 𝑐𝐶𝑒3+
0 ; ⁡𝑐𝐶𝑒4+ = 𝑐𝐶𝑒4+

0 ; ⁡𝑐𝑍𝑛2+ = 𝑐𝑍𝑛2+
0 ; Γ𝑍𝑛 = Γ𝑇 

        ∀𝑥                                                (Eqn. 7.31) 

 

t > 0   
𝑖𝑓

𝐹𝑆
= −𝐷𝐶𝑒3+ (

𝜕𝑐
𝐶𝑒3+

𝜕𝑥
)
𝑥=0

= 2𝐷𝑍𝑛2+ (
𝜕𝑐
𝑍𝑛2+

𝜕𝑥
)
𝑥=𝑙
+ 𝐷𝐶𝑒4+ (

𝜕𝑐
𝐶𝑒4+

𝜕𝑥
)
𝑥=𝑙

 

 

𝑥 = 0          (
𝜕𝑐
𝐶𝑒3+

𝜕𝑥
)
𝑥=0

+
𝐷
𝐶𝑒4+

𝐷𝐶𝑒3+
(
𝜕𝑐
𝐶𝑒4+

𝜕𝑥
)
𝑥=0

= 0 

(
𝜕𝑐𝑍𝑛2+

𝜕𝑥
)
𝑥=0

= 0 

(
𝜕𝑐𝐶𝑒3+

𝜕𝑥
)
𝑥=0

=
𝑘𝑠
𝐷𝐶𝑒3+

{(𝑐𝐶𝑒3+)𝑥=0𝑒
(1−𝛼)𝜉 − (𝑐𝐶𝑒4+)𝑥=0𝑒

−𝛼𝜉} 

     (Eqn. 7.32) 

𝑥 = 𝑙    (
𝜕𝑐
𝐶𝑒3+

𝜕𝑥
)
𝑥=𝑙
+
𝐷
𝐶𝑒4+

𝐷𝐶𝑒3+
(
𝜕𝑐
𝐶𝑒4+

𝜕𝑥
)
𝑥=𝑙
= 0 

𝜕Γ𝑍𝑛
𝜕𝑡

= −𝐷𝑍𝑛2+ (
𝜕𝑐𝑍𝑛2+

𝜕𝑥
)
𝑥=𝑙

 

𝜕Γ𝑍𝑛
𝜕𝑡

= 𝑘𝑠2{𝑐𝑠𝑒
2(1−𝛼2)𝜉2 − (𝑐𝑍𝑛2+)𝑥=𝑙𝑒

−2𝛼2𝜉2} 

(
𝜕𝑐𝐶𝑒4+

𝜕𝑥
)
𝑥=𝑙
=

𝑘𝑠3
𝐷𝐶𝑒4+

{(𝑐𝐶𝑒4+)𝑥=𝑙𝑒
−𝛼3𝜉3 − (𝑐𝐶𝑒3+)𝑥=𝑙𝑒

(1−𝛼3)𝜉3} 

(Eqn. 7.33) 
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In the above, they are identified explicitly that the Faradaic current as if, employ the 

reduced potentials ξ =
𝐹

𝑅𝑇
(𝐸𝑅𝐻𝑆 − 𝐸

𝐶𝑒3+￨𝐶𝑒4+
0′ )  and ξ3 =

𝐹

𝑅𝑇
(𝐸𝐿𝐻𝑆 − 𝐸

𝐶𝑒3+￨𝐶𝑒4+
0′ ) , 

and keep to the convection that discharge currents are positive. The unusual 

formulation of the stripping condition is to account for the fact that this is the 

condition for the upper boundary of the simulation (q.v. Fig. 7.1). Note that the surface 

condition for the sacrificial zinc anode corresponds to bulk stripping; as such, 

l m𝑡→∞ Γ𝑍𝑛 ≥ 0, so that 𝑘𝑠2𝑐𝑠𝑒
2(1−𝛼2)𝜉2 is set to zero when Γ𝑍𝑛 = 0. 

 

The occurrence of corrosion of zinc (at open circuit), coupled with the deactivation of 

cerium(IV) at the zinc electrode (under closed circuit conditions) within the undivided 

cell thus casuses the three species Ce
3+

, Ce
4+

 and Zn
2+

 to be intimately coupled 

through the Neumann conditions at the zinc electrode. Accordingly, the partial 

differential equations are soluble using the Backward Implicit finite difference 

approach, solving first for the concentrations of species Ce
3+

 and Ce
4+

 simultaneously, 

using a pentadiagonal matrix algorithm (see Appendix 10.2), followed by solution for 

the concentration of Zn
2+

 through the use of the Thomas algorithm, using 

experimentally realistic values of the diffusion coefficients, viz., 𝐷𝐶𝑒3+ = 𝐷𝐶𝑒4+ =

5 × 10−7⁡𝑐𝑚2𝑠−1 and 𝐷𝑍𝑛2+ = 6.9 × 10
−6⁡𝑐𝑚2𝑠−1, where the smaller value for the 

cerium(III)/cerium(IV) species implicitly accounts for complex formation that is 

thought to occur within the aqueous methansulfonic electrolyte.  

 

Thus, under current-controlled (galvanostatic) discharege, the surface concentrations 

of all species may be ascertained through the following finite difference relationships 

of the Neumann boundary conditions at the electrode surfaces, where square brackets 

are used to denote concentrations normalised by the speciation-independent total 

concentration of cerium ions, with surface concentrations reduced through 

normalisation with the maximum possible surface coverage (ΓT). 
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[𝐶𝑒3+]0
𝑡 = [𝐶𝑒3+]1

𝑡 +
𝑖𝑓∆𝑥

𝐹𝑆𝐷𝐶𝑒3+(𝑐𝐶𝑒3+
0 +𝑐

𝐶𝑒4+
0 )

        (Eqn. 7.34) 

[𝐶𝑒4+]0
𝑡 = [𝐶𝑒4+]1

𝑡 −
𝑖𝑓∆𝑥

𝐹𝑆𝐷𝐶𝑒4+(𝑐𝐶𝑒3+
0 +𝑐

𝐶𝑒4+
0 )

        (Eqn. 7.35) 

[𝑍𝑛2+]0
𝑡 = [𝑍𝑛2+]1

𝑡                  (Eqn. 7.36) 

[𝑍𝑛2+]𝑙
𝑡 = [𝑍𝑛2+]𝑙−1

𝑡 +
𝑖𝑓∆𝑥

2𝐹𝑆𝐷𝑍𝑛2+(𝑐𝐶𝑒3+
0 +𝑐

𝐶𝑒4+
0 )

−
𝐷𝐶𝑒4+

2𝐷𝑍𝑛2+
{[𝐶𝑒4+]𝑙

𝑡 − [𝐶𝑒4+]𝑙−1
𝑡 }  (Eqn. 7.37) 

[Γ𝑍𝑛]
𝑡 = [Γ𝑍𝑛]

𝑡−1 −
𝐷
𝑍𝑛2+

Δ𝑡(𝑐
𝐶𝑒3+
0 +𝑐

𝐶𝑒4+
0 )

∆𝑥Γ𝑇
{[𝑍𝑛2+]𝑙

𝑡 − [𝑍𝑛2+]𝑙−1
𝑡 }   (Eqn. 7.38) 

[𝐶𝑒4+]𝑙
𝑡 =

{

𝐷
𝐶𝑒4+

∆𝑥
−𝑘𝑠3𝑒

(1−𝛼3)𝜉3
𝐷
𝐶𝑒4+

𝐷
𝐶𝑒3+

𝐷
𝐶𝑒4+

∆𝑥
−𝑘𝑠3𝑒

−𝛼3𝜉3−𝑘𝑠3𝑒
(1−𝛼3)𝜉3

𝐷
𝐶𝑒4+

𝐷
𝐶𝑒3+

} [𝐶𝑒4+]𝑙−1
𝑡 − {

𝑘𝑠3𝑒
(1−𝛼3)𝜉3

𝐷
𝐶𝑒4+

∆𝑥
−𝑘𝑠3𝑒

−𝛼3𝜉3−𝑘𝑠3𝑒
(1−𝛼3)𝜉3

𝐷
𝐶𝑒4+

𝐷
𝐶𝑒3+

} [𝐶𝑒3+]𝑙−1
𝑡   

(Eqn. 7.39) 

[𝐶𝑒3+]𝑙
𝑡 =

{1 +
𝑘𝑠3𝑒

(1−𝛼3)𝜉3
𝐷
𝐶𝑒4+

𝐷
𝐶𝑒3+

𝐷
𝐶𝑒4+

∆𝑥
−𝑘𝑠3𝑒

−𝛼3𝜉3−𝑘𝑠3𝑒
(1−𝛼3)𝜉3

𝐷
𝐶𝑒4+

𝐷
𝐶𝑒3+

} [𝐶𝑒3+]𝑙−1
𝑡 −

𝐷𝐶𝑒4+

𝐷𝐶𝑒3+
{1 −

𝐷
𝐶𝑒4+

∆𝑥
−𝑘𝑠3𝑒

(1−𝛼3)𝜉3
𝐷
𝐶𝑒4+

𝐷
𝐶𝑒3+

𝐷
𝐶𝑒4+

∆𝑥
−𝑘𝑠3𝑒

−𝛼3𝜉3−𝑘𝑠3𝑒
(1−𝛼3)𝜉3

𝐷
𝐶𝑒4+

𝐷
𝐶𝑒3+

} [𝐶𝑒4+]𝑙−1
𝑡    

(Eqn. 7.40) 

 

These calculated values can then be employed to determine the potentials at each 

electrode. For the case of the right-hand side electrode, this was undertaken through 

Newton-Raphson iteration (dummy index q). 

 

𝜗𝑞 = 𝜗𝑞−1 −
[

𝑖𝑓

𝑘𝑠𝐹𝑆(𝑐𝐴
0+𝑐𝐵

0 )
]𝜗𝑞−1
𝛼 +[𝐶𝑒3+]

0

𝑡
𝜗𝑞−1−[𝐶𝑒

4+]
0

𝑡

𝛼[
𝑖𝑓

𝑘𝑠𝐹𝑆(𝑐𝐴
0+𝑐𝐵

0 )
]𝜗𝑞−1
𝛼−1+[𝐶𝑒3+]0

𝑡
     (Eqn. 7.41) 

 

where 𝜗 = 𝑒𝑥𝑝⁡(𝜉) , and to a threshold of 10
-10

 in ϑ, employing, as a first 

approximation, the potential obtained when α =
1

2
, viz.,  

𝐸
𝐶𝑒3+￨𝐶𝑒4+

=

𝐸
𝐶𝑒3+￨𝐶𝑒4+
0′ +

2𝑅𝑇

𝐹
ln⁡[

1

2[𝐶𝑒3+]0
𝑡 (

−𝑖𝑓

𝑘𝑠𝐹𝑆(𝑐𝐶𝑒3+
0 +𝑐

𝐶𝑒4+
0 )

+√[
𝑖𝑓

𝑘𝑠𝐹𝑆(𝑐𝐶𝑒3+
0 +𝑐

𝐶𝑒4+
0 )

]

2

+ 4[𝐶𝑒3+]0
𝑡 [𝐶𝑒4+]0

𝑡)]  

(Eqn. 7.42) 
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Typically three iterations were required for convergence of the electrode potential. 

The mixed-flux boundary condition for the left-hand side electrode causes a slightly 

more intricate calculation to take place, again through Newton-Raphson iteration 

(dummy variable ς),  

 

𝜒𝜍 = 𝜒𝜍−1

−

[
𝑖𝑓

𝐹𝑆(𝑐𝐶𝑒3+
0 + 𝑐𝐶𝑒4+

0 )
]𝜒𝜍−1

𝛼3 − 2𝑘𝑠2[𝑍𝑛
2+]𝑙

𝑡𝜒𝜍−1
(𝛼3−2𝛼2) + 2𝑘𝑠2 [

𝑐𝑠
(𝑐𝐶𝑒3+
0 + 𝑐𝐶𝑒4+

0 )
] 𝜒𝜍−1

[𝛼3+2(1−𝛼2)] + 𝑘𝑠3[𝐶𝑒
3+]𝑙

𝑡𝑒
(𝛼3−1)

𝐹
𝑅𝑇
𝐸𝑐𝑒𝑙𝑙
0′

𝜒𝜍−1 − 𝑘𝑠3[𝐶𝑒
4+]𝑙

𝑡𝑒𝛼3
𝐹
𝑅𝑇
𝐸𝑐𝑒𝑙𝑙
0′

[
𝑖𝑓

𝐹𝑆(𝑐𝐶𝑒3+
0 + 𝑐𝐶𝑒4+

0 )
] 𝛼3𝜒𝜍−1

(𝛼3−1) − 2𝑘𝑠2[𝑍𝑛
2+]𝑙

𝑡(𝛼3 − 2𝛼2)𝜒𝜍−1
(𝛼3−2𝛼2−1) + 2𝑘𝑠2 [

𝑐𝑠
(𝑐𝐶𝑒3+
0 + 𝑐𝐶𝑒4+

0 )
] (2 − 2𝛼2 + 𝛼3)𝜒𝜍−1

(1−2𝛼2+𝛼3) + 𝑘𝑠3[𝐶𝑒
3+]𝑙

𝑡𝑒(𝛼3−1)
𝐹
𝑅𝑇𝐸𝑐𝑒𝑙𝑙

0′
 

(Eqn. 7.43) 

 

employing, for the first approximation, the solution obtained for the case of 𝛼3 = 2𝛼2 =

1, viz. 

 

𝜒 =
(𝑐𝐶𝑒3+
0 + 𝑐𝐶𝑒4+

0 )

4𝑘𝑠2𝑐𝑠
− {𝑘𝑠3[𝐶𝑒

3+]𝑙
𝑡 +

𝑖𝑓

𝐹𝑆(𝑐𝐶𝑒3+
0 + 𝑐𝐶𝑒4+

0 )
}

+ √{𝑘𝑠3[𝐶𝑒
3+]𝑙

𝑡 +
𝑖𝑓

𝐹𝑆(𝑐𝐶𝑒3+
0 + 𝑐𝐶𝑒4+

0 )
}

2

+ 8𝑘𝑠2𝑐𝑠 {𝑘𝑠3[𝐶𝑒
4+]𝑙

𝑡𝑒
𝐹
𝑅𝑇
𝐸𝑐𝑒𝑙𝑙
0′

+ 2𝑘𝑠2[𝑍𝑛
2+]𝑙

𝑡} 

(Eqn. 7.44) 

 

A maximum of 28 iterations were required for the potentials to be converged to within 

the required threshold (10
-10

 in χ). Note that in the case when zinc corrosion/depletion 

is such that Γ𝑍𝑛 = 0 , all terms involving cs are set to zero, so that a first 

approximation to the electrode potential is: 

 

𝜉2 = 𝑙𝑛 {
2𝑘𝑠2+𝑘𝑠3[𝐶𝑒

4+]
𝑙

𝑡
𝑒
𝐹
𝑅𝑇𝐸𝑐𝑒𝑙𝑙

0′

𝑘𝑠3[𝐶𝑒
3+]𝑙

𝑡+
𝑖𝑓

𝐹𝑆(𝑐
𝐶𝑒3+
0 +𝑐

𝐶𝑒4+
0 )

}           (Eqn. 7.45) 

 

Thus, in the absence of effects due to double layer charging or Ohmic drop, the cell 

voltage is: 
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E𝑐𝑒𝑙𝑙 = 𝐸𝐶𝑒3+￨𝐶𝑒4+
− 𝐸

𝑍𝑛￨𝑍𝑛2+
          (Eqn. 7.46) 

7.2.3.5. Capacitative Currents and Ohmic Loss 

The large majority of battery models for operation under galvanostatic conditions do 

not account for contributions due to charging or discharging of the electrical double 

layer present at each electrode. In order to incorporate capacitative contributions, the 

double layers at each of the two electrodes were treated as symmetrical series 

capacitors, each of capacitance
[235]

 40 μF cm
-2

, so that the effective equivalent 

capacitance for the cell is 𝐶𝑑𝑙 =
𝐶𝑑𝑙1𝐶𝑑𝑙2

𝐶𝑑𝑙1+𝐶𝑑𝑙2
= 20⁡𝜇𝐹⁡𝑐𝑚−2, giving rise to, 

 

𝐶𝑑𝑙 =
√2

5√𝜋

𝜑|𝐴|√𝑡𝑠

𝐹𝑐
𝐶𝑒3+
0

√𝐷𝐶𝑒3+
                (Eqn. 7.47) 

 

which, for the electrode area employed in this work corresponds to 80 μF. 

 

The total current passing through the cell (q.v. Fig. 7.1) is the comprised of Faradaic 

(if) and capacitative (icap) contributions, by kirchhoff’s laws: 

 

𝑖 = 𝑖𝑓 + 𝑖𝑐𝑎𝑝                  (Eqn. 7.48) 

 

However, both contributions are coupled through the Ohmic loss within the cell, 

where it is the solution resistance (Rs) that acts as the major cause of this voltage drop. 

This parameter is related to both the cell geometry and the nature of the supporting 

electrolyte, 

𝑅𝑠 =
𝜌𝑠𝑙

𝑆
=
2𝜋𝜄𝜌𝑠𝐷𝐶𝑒3+𝐹𝑐𝐶𝑒3+

0

𝜑|𝐴|
           (Eqn. 7.49) 

 

where ρs is the solution resistivity. Given the average value of the supporting 

electrolyte concentration (~5 M), the solution resistance is dominated by the 
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resistivity of the mehanesulfonic acid solution; at 298 K, literature data on molar 

conductance of this aqueous electrolyte
[236]

 affords the following relation for 

methanesulfonic acid concentrations, c0, in the range of 0.01 ≤ c0/M ≤ 2.0, 

 

log⁡(𝜌𝑠 Ω⁡𝑚)⁄ = −0.91351 log(𝑐0 𝑀⁄ ) − 1.4575     (Eqn. 7.50) 

 

with a Pearson’s product-moment correlation coefficient of 0.9986. Extrapolation to 

5.0 M concentrations affords ρs = 0.080 mΩ, leading to 0.8 ≤ Rs/mΩ ≤ 8.0 as 

estimates for the undivided cell geometries considered here, where we are not 

concerned with the development of membrane junction potentials. This leads to 

experimental cell time constants of 64 ≤ RsCdl/ns ≤ 640. It was noted that since the 

electrolyte is aqueous (and of assumed specific heat capacity at constant pressure, Cp 

= 4.18 J g
-1

 K
-1

), Joule heating of the cell (
2𝑖𝑟𝑚𝑠

2𝑅𝑠𝑡𝑠

4.18𝑆𝑙
) affords merely a ca. 0.1 mK 

temperature rise, a change which has negligible impact on the cell potential 

(Δ𝑉~
𝑅Δ𝑇

𝐹
≈ 10⁡𝑛𝑉), as anticipated (vide supra). 

 

The following iterative strategy was adopted to compute the non-Faradaic competent. 

Initially, the capacitative current was assumed to be zero, so that the cell voltage could 

be determined as above, albeit with Ohmic losses accounted through: 𝑉 = 𝐸𝑐𝑒𝑙𝑙 −

𝑖𝑅𝑠. Note that this causes the cell voltage to be increased compared with the case of 

no Ohmic drop (charging currents are negative), and decreased under discharge. This 

allows for the first approximation to the capacitative contribution, using, 

 

|𝑖𝑐𝑎𝑝| = |
𝑑

𝑑𝑡
(𝑆𝑄𝑐𝑎𝑝)| = 𝑆 |

𝑑𝑄𝑐𝑎𝑝

𝑑𝑡
| + 𝑄𝑐𝑎𝑝 |

𝑑𝑆

𝑑𝑡
| = 𝐶𝑑𝑙𝑆 |

𝑑𝐸𝑐𝑒𝑙𝑙

𝑑𝑡
| =

1

5
|
𝑑𝐸𝑐𝑒𝑙𝑙

𝑑𝑡
|   (Eqn. 7.51) 

 

assuming that the electrode contact area with the electrolyte is constant (viz. no gas 

produced / phase change / dendrite formation), and in which Qcap is the charge density 

of the electrode ￨  electrolyte interface. Note that the capacitative current is 
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dependent on the rate at which the voltage across the Warburg impedance varies, and 

so does not include the Ohmic correction, as is evident from the equivalent circuit 

illustrated in Fig. 7.1. The charging of the capacitor diminishes the Faradaic current, 

reducing the extent of electrolysis, 

 

𝑖𝑓
𝑐ℎ𝑎𝑟𝑔𝑒

= 𝑖𝑐ℎ𝑎𝑟𝑔𝑒 + |𝑖𝑐𝑎𝑝|            (Eqn. 7.52) 

 

where i
charge

 is negative. Under discharge, since the temporal change in the cell 

voltage generates a capacitative current to flow, capacitative discharege also 

decreases the Faradaic current that is allowed to flow: 

 

𝑖𝑓
𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

= 𝑖𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 − |𝑖𝑐𝑎𝑝|         (Eqn. 7.53) 

 

These first estimates were then employed to recalculate both if and V iteratively, to an 

absolute error of < 1.0 μA in |𝑖𝑐𝑎𝑝|. A maximum of three iterations were found to be 

necessary.  

 

Although not examined, it was noted that this approach, unlike others, holds the 

advantage of allowing for potential-dependence of the capacitance to be incorporated 

within the simulation. 

7.2.3.6. Short Circuit Current 

At short circuit, the potentials of the two electrodes are equal: V = 0; ERHS = ELHS = 

Esc – there is negligible resistance in the external circuit connecting the two electrodes, 

allowing the maxmum current, 𝑖𝑠𝑐 = 𝑖𝑓
𝑠𝑐 + 𝑖𝑐𝑎𝑝

𝑠𝑐 , to flow under any SOC, whilst 

delivering no workable power (q.v. Section 7.2.2). The instantaneous Faradaic 

contribution can be determined from the concentration profiles corresponding to a 

particular SOC of the system, and is instantaneously supplemented by the full 
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capacitative current: 𝑖𝑐𝑎𝑝
𝑠𝑐 = 𝐶𝑑𝑙𝑆

𝑉𝑜𝑐

∆𝑡
, where Voc is the open circuit voltage across the 

terminals of the cell immediately prior to discharge. 

 

However, the time dependence of the short circuit current is not a point of interest, nor 

the potential of the individual electrodes. Accordingly, the short circuit current from 

the solution resistance and the open circuit voltage can be calculated: 

 

𝑖𝑠𝑐 =
𝑉𝑜𝑐

𝑅𝑠
                     (Eqn. 7.54) 

 

where Voc is given by the concentration profiles immediately after cell charging 

through either the Nernst expression or the corrosion-corrected value, as detailed in 

Sections 7.2.3.1 and 7.2.3.2, respectively. 

7.2.4. Computing 

Dense spatio-temporal grids were found to be required (typically 50000 nodes in time 

and 20000 nodes in space) to ensure sufficient numerical convergence of the resulting 

concentration profiles; the use of Δt ≫ RsCdl assisted in damping oscillatory 

instabilities under short times due to the small cell time constants. Furthermore, to 

avoid the cell cutting out to open circuit due to complete electrolysis, except for the 

case of the week-long solar charging simulation, all data reported herein were 

obtained under the condition that the concentrations of all species (including the 

surface concentration of zinc) were greater than zero (a necessary constraint for finite 

difference simulations of galvanic cells) with 
𝜕𝑉

𝜕𝑡
≤ 0 under discharge; this constraint 

is tantamount to the “cut-off” voltage used in experimental battery testing. 

Simulations were undertaken through program encoding in GNU FORTRAN with 

double precision variables using the freely available g77 compiler, and were excuted 

on an Intel Pentium processor (2.4 GHz; 1.98 GB RAM). single charge-discharge 

experiments typically were found to cost a maximum of ca. 250 s in CPU time. A 
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summary of experimental parameters used for the simulations is given in Table 7.1. 

 

Table 7.1. Typical values employed for the simulations reported herein. 

Parameter Value 

Ambient conditions  

T 298 K 

P 1.0 bar 

Initial concentrations  

Ce
3+

 500 mM 

Ce
4+

 1 mM 

Zn
2+

 1500 mM 

Zn coverage 10
-6

 mol m
-2

 

Cell geometry & temporal resolution  

l (thin) 39.6 μm 

l (thick) 396 μm 

S 4 × 10−4 m
2
 

ts 5.0 s 

Δx (thin) 1.98 nm 

Δx (thick) 19.8 nm 

Δt 400 μs 

Diffusion coefficients  

Ce
3+

 5.0 × 10−11 m
2
 s

-1
 

Ce
4+

 5.0 × 10−11 m
2
 s

-1
 

Zn
2+

 6.9 × 10−10 m
2
 s

-1
 

Electrical properties  

Cdl 80 μF 

Rs(thin) 0.8 mΩ 

Rs(thick) 8.0 mΩ 

Cell kinetics  

ks 6.8 × 10−6 m s
-1

 

ks2 4.0 × 10−6 m s
-1

 

ks3 (no corrosion) 0.0 m s
-1

 

ks3 (with corrosion) 6.8 × 10−6 m s
-1

 

α 0.4 

α2 0.4 

α3 0.4 

Current control  

i0 0.00 A 

A -30.0 mA 

Discharge current minimum 15.0 mA 

Discharge current maximum 50.0 mA 
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7.3. Results and Discussion 

The results obtained in charging and discharging the cell of thin and thick depth, with 

and without corrosion occurring at the zinc electrode is first considered, followed by 

evaluate the data through the performance characteristics of the discharged cell. 

 

7.3.1. Cell charging 

The six waveforms illustrated in Fig. 7.2 and described in Section 7.2.1 afford cell 

charging waveforms as given in Fig. 7.4 for thin and thick cell geometries (panels a, b 

and c, d, respectively), where deactivation of Ce
4+

/zinc corrosion is both present 

(panels b, d) and absent (panels a, c), and affords cells of the characteristics reported 

(a) (b)

(c) (d) 

Fig. 7.4. Variation of the cell voltage during charge: pure, constant DC (black), DC ramp 

(green), DC accelerator-decelerator (yellow), fully rectified AC at 50 Hz with constant DC 

offset (cyan), rectified tidal (red), solar (blue); the cell geometry was thin (panels (a),(b)) or 

thick (panels (c),(d)), with no corrosion/deactivation at the zinc electrode (panels (a),(c)) or 

with corrosion (panels (b), (d)). 

 

in Table 7.2. Note that the quality 𝑘𝑠3 = 𝑘𝑠  for the presence of corrosion was 
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assumed given the paucity of literature data. the value of A chosen for the simulations 

(-30 mA) was taken since this value does not cause the cell potentials to tend to 

infinity due to transport-limited electrolysis for any cell/waveform combination (due 

to electrolytic consumption being faster than mass-transport refreshment of Ce
3+

 and 

Zn
2+

). However, in the cases of the DC ramp and the DC accelerator-decelerator 

systems, the slow/concave variation of the current with time at short times causes any 

corrosive/deactivation behaviour to dominate at the zinc electrode, resulting in 

Γ𝑍𝑛 → 0. For the case of the DC accelerator-decelerator waveform, the calculation 

could only complete if the first approximation to the electrode potential discussed in 

Section 7.2.3.4 was employed, causing the cell voltage to spike until the charging 

current became sufficiently large for deposition conditions to be established at the 

zinc electrode (q.v. Fig. 7.4b and d). In general, the charing current causes a net 

increase in the cell voltage compared with the initial state of the system, as expected, 

and is particularly influenced by the charging current gradient: the maximum in the 

cell voltage lags any current maximum, with the time delay being influenced by the 

steepness by which the current rises and falls; the cell voltage always follows the cell 

current, and decreases for the case of solar, tidal and DC accelerator-decelerator 

systems in accordance with the associated electrode boundary conditions. This effect 

is more highly pronounced for this latter waveform. In the case of the fully rectified 

AC signal, the constant charge and discharge of the electrical double layers is 

manifested by a greater noise in the cell voltage under charge and a loss in voltage 

compared with the pure, constant DC signal, even though the same trend in the 

voltage rise during charge is observed. The cell voltage observed for the DC ramp 

exhibits the most extreme behaviour, where activation, Ohmic and concentration 

polarisations are readily discernible. Such effects are pronounced in the time variation 

of the capacitative currents flowing (Fig. 7.5), which exhibit discontinuities at 

maxima and minima in the cell voltage. 
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Table. 7.2. Characteristics of the cells charged with the renewable energy waveforms. See Table 1 

for definitions of “thick” and “thin” cells, and likewise for “with corrosion” and “without 

corrosion”. Note that 2ts = 9.9996 s in the computations. 

(a) 

Charging Regime Thin Cells, No corrosion Thin Cells, With corrosion 

 Q0 / 

C 

%SOC Voc / 

V 

isc / A ∫  𝑽𝒅𝒕
 𝒕𝒔

 

/ J 

Voc / V isc / A ∫  𝑽𝒅𝒕
 𝒕𝒔

 

/ J 

Pure, constant DC 

 

0.300 39.3 2.23 2790 0.663 2.23 2790 0.662 

DC ramp 

 

0.260 34.0 2.25 2820 0.574 2.25 2820 0.574 

DC accelerator- 

decelerator 

 

0.208 27.2 2.19 2730 0.460 2.18 2730 0.460 

Fully rectified AC at 

50 Hz with constant offset 

 

0.270 35.3 2.19 2770 0.594 2.22 2770 0.594 

Rectified tidal 

 

0.270 35.3 2.21 2760 0.596 2.21 2760 0.596 

Solar 0.289 37.8 2.21 2760 0.638 2.21 2760 0.638 

 

(b) 

Charging Regime Thick Cells, No corrosion Thick Cells, With corrosion 

 Q0 / 

C 

%SOC Voc / V isc / A ∫  𝑽𝒅𝒕
 𝒕𝒔

 

/ J 

Voc / V isc / A ∫  𝑽𝒅𝒕
 𝒕𝒔

 

/ J 

Pure, constant DC 

 

0.300 3.93 2.23 280 0.663 2.23 280 0.663 

DC ramp 

 

0.260 3.40 2.25 280 0.574 2.25 280 0.574 

DC accelerator- 

decelerator 

 

0.208 2.7 2.18 270 0.460 2.18 270 0.460 

Fully rectified AC at 

50 Hz with constant offset 

 

0.270 3.53 2.22 280 0.594 2.22 280 0.594 

Rectified tidal 

 

0.270 3.53 2.21 280 0.596 2.20 280 0.596 

Solar 0.289 3.78 2.21 280 0.638 2.21 280 0.638 

 

The open circuit voltage, current under short circuit and state-of –charge of all 

simulated systems are presented in Table 7.2. It is clear that in all cases, the SOC is 

less than 50% (as designed), and decreases in the order constant 
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DC>solar>AC=tidal>DC ramp>DC accelerator-decelerator as noted in Section 7.2.1. 

However, the open circuit voltage of the charged system decreases in the order DC 

ramp>constant DC>solar=tidal=AC>DC accelerator-decelerator. Accordingly, the 

amount of electrical work done in charging the cell (note the power dissipated by heat 

over the full charging period, and thus the energy wasted as heat, is independent of the 

charging current waveform) decreases in the order constant DC>solar>tidal=AC>DC 

ramp>DC accelerator-decelerator, viz. commensurate with the electrical charge passed. 

These trends are important since they detail the amount of energy available for 

discharge, and are essentially independent of the cell type/conditions: the occurrence 

of corrosion at the zinc electrode does not manifest significantly on the cell 

characteristics after charge. In considering the difference between thick and thin cells, 

the SOC is observed that it is smaller in the former case, as expected. This also 

impacts on the short circuit current that flows, as this is proportional to the cell 

conductance, which is inversely proportional to the cell thickness. 

(a) (b) 

Fig. 7.5. Variation of the modulus of the capactative current during cell charge: pure, constant 

DC (black), DC ramp (green), DC accelerator-decelerator (yellow), fully rectified AC at 50 Hz 

with constant DC offset (cyan), rectified tidal (red), solar (blue); the cell geometry was thin 

with (b) or without (a) corrosion/deactivation at the zinc electrode. 

 

For all cell geometries and electrode boundary conditions considered, the ramp, AC, 

constant DC, solar and tidal charging scenarios hold cell voltages which cross-over 

close to the maximum in the solar and tidal scenarios (typically ca. 8 s). This is quite 

significant, since it may suggest that, although the SOC will be lower if the charge 

cut-off time is reduced from 10 s to 8 s, the higher open circuit voltage that results 

may allow for a more efficient discharge of the cell. This is not considered within this 
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work, since the energy lost to heat would then be different for each waveform.  

 

7.3.2. Cell Discharge 

Cells were discharged under constant DC currents in the range 15 ≤ i/mA ≤ 50, with 

the constraint in cell voltage gradient as a “cut-off” imposed (q.v. Section 7.2.4); Fig. 

7.6 provides a selection for both thick and thin cells. In each case, the three 

(a) (b)

(c) (d) 

Fig. 7.6. Variation of the cell voltage during constant current (30 mA) discharge, immediately 

after charge: pure, constant DC (black), DC ramp (green), DC accelerator-decelerator 

(yellow), fully rectified AC at 50 Hz with constant DC offset (cyan), rectified tidal (red), solar 

(blue); the cell geometry was thin (panels (a),(b)) or thick (panels (c),(d)), with no 

corrosion/deactivation at the zinc electrode (panels (a),(c)) or with corrosion (panels (b), 

(d)). Note that the cell was charged for the first 10 s and allowed to discharge over the next 

10 s. 

 

characteristic regions of activation, Ohmic and concentration polarisations are 

observable. These classical waveshapes cause a “U”-shape in the modulus of the 

capacitative current that is generated (Fig. 7.7). In all cases the cells charged with the 

DC accelerator-decelerator waveform are discharged most rapidly, since this reflects 

the SOC. However, the discharge characteristics for the other waveforms are a 
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convolution between SOC and the open circuit voltage, for both thick and thin cells. 

Furthermore, it is apparent that the presence or absence of corrosion is more 

significant for the discharge of the thin cells rather than the thick cells: in the former, 

discharge is faster in the presence of corrosive deactivation; in the latter, there is no 

apparent difference in the discharge rates. This is as expected, since reactant 

cross-over can occur in the timescales considered for the thin cells only.  

(a) (b) 

Fig. 7.7. Variation of the modulus of the capactiative current during cell discharge (from 10 s) 

after charging for the first 10 s: pure, constant DC (black), DC ramp (green), DC 

accelerator-decelerator (yellow), fully rectified AC at 50 Hz with constant DC offset (cyan), 

rectified tidal (red), solar (blue); the cell geometry was thin with (b) or without (a) 

corrosion/deactivation at the zinc electrode. 

 

The performance characteristics of the cell in the light of the figure-of-merit 

introduced in Section 7.2.2 is considered next. 

 

7.3.3. Performance Characteristics 

7.3.3.1. Energy Loss Ratio (ELR) 

Fig. 7.8 illustrates the variation of the ELR with discharge current for both thin (panel 

a) and thick (panel b) cells. In general, energy conversion efficiencies decrease with 

increasing drain, as expected, with the most inefficient cell (affording at most 30% 

efficiency in energy conversion) is the cells charged by the DC accelerator-decelerator 

function; the most efficient cell is a thin cell with no corrosion/deactivation at the zinc 

electrode, charged either through a constant DC current, or through a clear sky solar 
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waveform, and discharged under a low drain (~48% efficient). However, in general, 

the most efficient charging waveform is the DC ramp, since this protocol charges to a 

high open circuit voltage, whilst expending the second lowest amount of energy. This 

scenario is well known. 

(a) (b) 

Fig. 7.8. Variation of the energy loss ratio with drain current for thin (a) or thick (b) cells; 

closed and open symbols refer to cells with or without corrosion/deactivation at the zinc 

electrode, respectively. Key: pure, constant DC (black squares), DC ramp (green inverted 

triangles), DC accelerator-decelerator (yellow stars), fully rectified AC at 50 Hz with constant 

DC offset (cyan pentagons), rectified tidal (red triangles), solar (blue circles). 

 

As anticipated from Section 7.3.2, there is little, if any difference between the 

performance of cells in the presence and absence of corrosion/deactivation at the zinc 

electrode for thick cells (Fig. 7.8b). For this case, the solar, tidal and AC waveforms 

are approximately as efficient as each other, and deviate from the constant DC system 

with increasing drain. In contrast, thin cells are more efficient in energy conversion 

than thick cells when corrosion/deactivation is not rapid at the sacrificial electrode. 

Here, solar charged cells are amongst the most efficient for energy conversion at low 

drain, but become almost as inefficient as thin, corroding cells at high drain. Indeed, 

in this limit, the most efficient cell is that charged by a DC ramp, with comparative 

efficiency for thin and thick cells. 

 

7.3.3.2. Energy-Power Plane (Ragone Plot) Characteristics 

Integration of the discharge curves as outlined in Section 7.2.2 empowers the energy 

(ε) and power (p) delivered under discharge; the characteristic time for all cells 
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simulated was determined to be between 1-10 s, essentially varying with the SOC. 

Ragone plots normalised as indicated in Section 7.2.2 and with respect to the cell 

volume are illustrated in Fig. 7.9 for both thin (panel a) and thick (panel b) cells. The 

superimposition of symbols for the case of with and without corrosion in the case of 

Fig. 7.9b is expected, as are the trends in Fig. 7.9a, where it is clear corrosion-free 

solar-charged cells outperform most other cells under lower power drain, with, in all 

cases the DC ramp charged cell performing best under high drain. 

(a) (b) 

Fig. 7.9. Ragone plots for thin (a) or thick (b) cells; closed and open symbols refer to cells 

with or without corrosion/deactivation at the zinc electrode, respectively. Key: pure, 

constant DC (black squares), DC ramp (green inverted triangles), DC accelerator-decelerator 

(yellow stars), fully rectified AC at 50 Hz with constant DC offset (cyan pentagons), rectified 

tidal (red triangles), solar (blue circels). 

 

The normalisation of the dimensionless energy and power with cell volume highlights 

the nature of these “supercabatteries”:
[237]

 at a constant dimensional power, the 

amount of dimensional energy delivered is larger for thin cells with large electrodes, 

emphasising that scale-out of these systems is more important than scale-up. 

 

In order to examine the performance of the systems over repeated charge-discharge 

cycles, the solar-charged cell over a period of one week is next examined 

(corresponding to 140 s in the mapped time). 

 

7.3.3.3. Solar Charging over One Week 

Cells were charged and discharged over a period of seven days as indicated in Fig. 
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7.10a, assuming daytime for the first six days consisted of clear skies, with a full day 

solar eclipse on the seventh day, and with a variable discharge for the first five nights, 

with open circuit occurring for the last two nights. This particular regime was chosen 

to illustrate the effects of diffusion layer thickness at the electrode surface, and 

differences in corrosion between the two extreme limits in cell geometry and 

electrode kinetics. 

(a) (b)

(c)(i) (c)(ii) 

Fig. 7.10. Performance characteristics of the galvanic cell under one-week of solar 

illumination, with no work undertaken during the evening of Day 6 and Day 7, with the 

morning of Day 7 having no Sun. 

(a) current-charge and discharge characteristics 

(b) Cell performance characteristics for thin (black and red) and thick (green and blue) cells 

in the presence (red and blue) or absence (black and green) of corrosion/deactivation at 

the zinc electrode. 

(c) Variation of (i) the energy used to charge-up the cell and (ii) the energy efficiency of the 

cell over the studied time period; key: open symbols refer to the absence of corrosion 

with closed symbols indicating corrosion of the zinc electrode, at thin (black and red) or 

thick (green and blue) cells. 

Note that the absence of appearance of green trace in (b) and (c) is due to them lying 

immediately beneath the blue traces. 

 

Fig. 7.10b illustrates the charge-discharge curves. Note that all cut-off limits were 

removed for the collection of these data; the discontinuities between night discharge 
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and day charge reflect the cases when the electrode surface concentrations tend to 

zero, giving rise to smaller diffusion layer thicknesses with as the discharge current 

increases. The decrease in the open circuit voltage for thick, non-corrosive cells is 

understood through the diffusive mixing of material from bulk to surface. 

 

Whilst the thick cells (which again do not discriminate between corrosive and 

non-corrosive conditions) maintain approximately a uniform characteristic over the 

week, with a maximum change of ca. 10% in energy required for charge (Fig. 7.10b) 

and a reasonably constant energy efficiency (Fig. 7.10c), thin cells only afford high 

energy efficiency, and stability of the open circuit voltage under non-corrosive 

conditions. It is important to realise that both discharge conditions and cell history 

contribute to the energy efficiency.  

 

7.4. Conclusions 

In this work, the performance of various charging waveforms have been examined, 

some of which directly mimic a renewable energy output profile, on a redox battery 

operated under diffusion-only conditions. It has been seen that both cell geometry and 

electrode kinetics play important roles which are not always immediately predictable 

– thick cells do not discriminate between corrosive and non-corrosive boundary 

conditions; the energy efficiency of a cell (thin or thick) in the absence of corrosion is 

optimised if the cell is more concentrated in the diffusion layer than in the bulk. 

Moreover, for single charge-discharge experiments, it has been seen that renewable 

energy waveforms charge cells that exhibit good performance under low drain. This is 

entirely in the line with expectation, in the light of our earlier work on 

solar-rechargeable galvanic cells.
[238]

 

 

In returning to the question posed in the title, it has been suggested that storage 

efficiency of a particular renewable energy in redox batteries is as much a function of 
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the cell type (geometry and electrode kinetics) as the cell discharge drain and battery 

charge-discharge cycle history, at least for the system we have considered. Thus, 

provided corrosion-free, low drainage conditions can be enforced, the use of solar 

energy charging of redox batteries can be made to be attractive; the smart grid would 

need to process information on weather characteristics, individual cell geometry and 

kinetics, cell cycle history, and power demand, since the cell discharge must match 

the cell type for optimised performance. This is potentially pragmatically achievable 

with modern computing facilities. 

 

Last, it is noted that, irrespective of charging waveform, banks of redox cells are 

required for any large scale system, with thinner cells providing greater volumetric 

energies than thick ones. In translating our simulations concerning diffusion-only 

conditions to the convective-diffusion transport of redox flow batteries, it can be 

suggested that microfluidic redox flow batteries wired in parallel would then allow for 

high energy and power characteristics – allowing for the desired top right hand corner 

of the energy – power playing field to be populated.
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8. Conclusions 

In summary, the main focus of this thesis is to investigate in the depth for molecular 

electrochemistry in several ways including sensing, mechanistic study of bond 

formation/cleavage, mass transport profile in liquid crystals and digital simulations. 

  

It was found that electrochemistry is a great analytical tool for analysis substrates 

such as sensing. Redox catalytic reactions were applied in order to monitoring certain 

substrates such as L-cysteine and glutathione, and the analytical performance have 

been shown successful. Lactic acid was found that it can be detected by combining 

photo- and redox catalytic methods. Furthermore, lactic acid was also found to be a 

potential fuel for a renewable battery. Accordingly digital simulations were 

successfully carried out in both different cells (thick and thin) and different 

waveforms.  

 

Bond formation/cleavage was also studied in variety ways. Protonation and 

deprotonation process was studied by using a spiro-bis-anil, vitamin K1 and Sudan III. 

Especially for the spiro-bis-anil, a comparison between conventional Birch reduction 

and electrochemical reduction was made and suggested that electrochemistry offers 

advantages over conventional Birch reduction including mild conditions and 

observable intermediate. Both vitamin K1 and sudan III were examined in different 

pH, and reaction mechanisms were suggested including two different reduction routes 

for vitamin K1 depending on the pH and tautomerisation process may occur in the 

oxidation of Sudan III. Ion release was then studied using nitroprusside, 

1-iodo-nitrobenzene and bromobenzene diazonium salt. With a step-by-step attempt, 

the ions can be controlled to release without a contamination to the solvent, and it was 

found that there is no kinetic salt effect when ions were released to the solution with 

different electrolyte concentrations. 
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Mass transports in liquid has been studied extensively since electrochemistry has been 

suggested, rear to see the mechanistic studies of mass transport in lyotropic liquid 

crystals. By using both N and M phase chromic liquid crystals; it was found that 

two-dimensional diffusion was occurring on a macroelectrode, with a possibility of 

electron hopping.  

 

Digital simulations that in the topic of which type of renewable energy form is 

suitable for a cerium-zinc redox flow battery were carried out. The diffusion only 

condition was considered. It was found that the storage efficiency of a particular 

renewable energy in redox batteries counts on both cell type (geometry and electrode 

materials – kinetics) and cell charge-discharge cycle history. In the future, a 

cerium-zinc redox flow battery will be examined and microfluidic technologies will 

be applied. 
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10. Appendix 

10.1. The derivation of Arrhenius equation 

from Van’t Hoff isochore. 

 

If consider a uni-molecular elementary reaction: 

A(aq)

𝑘𝑓
⁡⇌⁡
𝑘𝑏

B(aq) 

the equilibrium constant is then given by: 

 

K =
𝑘𝑓

𝑘𝑏
 

From Van’t Hoff Isochore, the temperature dependence of the equilibrium constant (at 

constant volume) is given by: 

 

𝜕𝑙𝑛𝐾

𝜕𝑇
=
∆𝑈

𝑅𝑇2
 

 

where ∆U = 𝐸𝑓 − 𝐸𝑏 (see the explanation of Ef and Eb in Fig. 1.4). 

 

By substituting the equilibrium constant (K) with ratio of rate constants (kf and kb), 

then: 

 

𝜕𝑙𝑛𝑘𝑓

𝜕𝑇
−
𝜕𝑙𝑛𝑘𝑏
𝜕𝑇

=
∆𝑈

𝑅𝑇2
 

then by applying the forward and backward change of internal energy, Ef and Eb, then: 

 

𝜕𝑙𝑛𝑘𝑓

𝜕𝑇
=
𝐸𝑓

𝑅𝑇2
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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𝜕𝑙𝑛𝑘𝑏
𝜕𝑇

=
𝐸𝑏
𝑅𝑇2

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

by integrating the equations, 

 

𝑘𝑓 = 𝐴𝑓𝑒𝑥𝑝 (
−𝐸𝑓

𝑅𝑇
⁄ ) 

𝑘𝑏 = 𝐴𝑏𝑒𝑥𝑝(
−𝐸𝑏

𝑅𝑇⁄ ) 

with Ef and Eb are the so-called activation energies for forward and backward 

reactions, respectively, and Af and Ab are the pre-exponential factors, therefore, in 

general: 

 

𝑘 = 𝐴𝑒−𝐸𝐴/𝑅𝑇 

where EA is the general activation energy. 

 

10.2. Details of the Pentadiagonal Matrix 

Algorithm Employed  

This method was outlined by I. B. Svir, A. V. Klimenko, R. G. Compton, 

Radiotekhnika, 2001, 118, 92, and provide corrected expressions are provided here. 

 

Consider the solution of N x N simultaneous equations, described by the matrix 

equation, 

 

[𝑇]{𝑢} = {𝑚} 
 

where [T] is an N x N pentadiagonal matrix where all coefficients are known, {𝑢} is 

a vector of N unknowns, and {𝑚} is a vector of N known values. Proceeding via LU 

decomposition of [T] yields 
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[𝑇] = [𝑇𝐿][𝑇𝑈] 
 

then next seek a vector {𝑓}, such that 

 

[𝑇𝐿]{𝑓} = {𝑚} 

 

so that, 

[𝑇𝑈]{𝑢} = {𝑓} 

 

and, therefore, 

[𝑇𝑈]{𝑢} = [𝑇𝐿]
−1{𝑚} 

 

since 

 

{𝑓} = [𝑇𝐿]
−1{𝑚} 

 

Thus, 

[𝑇𝐿][𝑇𝑈]{𝑢} = {𝑚} 

 

as required. 

 

Noting that 1 ≤ j ≤ N and defining, 

 

[𝑇] =

[
 
 
 
 
 
 
 
 
𝑎1
𝑑2
𝑒3

0

0
0
0

𝑏1
𝑎2
𝑑3
↘
0

𝑐1
𝑏2
𝑎3

𝑒𝑗

0
𝑐2
𝑏3

𝑑𝑗
↘
0

0
𝑐3

𝑎𝑗

𝑒𝑁−2
0

0
↘
𝑏𝑗

𝑑𝑁−2
𝑒𝑁−1
0

𝑐𝑗

𝑎𝑁−2
𝑑𝑁−1
𝑒𝑁

0
↘
𝑏𝑁−2
𝑎𝑁−1
𝑑𝑁

0
0
0

0

𝑐𝑁−2
𝑏𝑁−1
𝑎𝑁 ]
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[𝑇𝐿] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0
𝑧2 1 0 0
𝑒3
𝑥1

𝑧3 1 0 0

↘ ↘

0
𝑒𝑗

𝑥𝑗−2
𝑧𝑗 1 0 0

↘ ↘

0 0
𝑒𝑁−2
𝑥𝑁−4

𝑧𝑁−2 1 0 0

0 0
𝑒𝑁−1
𝑥𝑁−3

𝑧𝑁−1 1 0

0 0
𝑒𝑁
𝑥𝑁−2

𝑧𝑁 1
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

and  

[𝑇𝑢] =

[
 
 
 
 
 
 
 
 
 
𝑥1 𝑦1 𝑐1 0 0

0 𝑥2 𝑦2 𝑐2 0 0

0 0 𝑥3 𝑦3 𝑐3 0 0

↘ ↘
0 0 𝑥𝑗 𝑦𝑗 𝑐𝑗 0 0

↘ ↘
0 0 𝑥𝑁−2 𝑦𝑁−2 𝑐𝑁−2
0 0 𝑥𝑁−1 𝑦𝑁−1
0 0 𝑥𝑁 ]

 
 
 
 
 
 
 
 
 

 

 

{𝑢} =

{
 
 
 
 

 
 
 
 
𝑢1
𝑢2
𝑢3
↓
𝑢𝑗
↓

𝑢𝑁−2
𝑢𝑁−1
𝑢𝑁 }

 
 
 
 

 
 
 
 

      and       {𝑚} =

{
 
 
 
 

 
 
 
 
𝑚1
𝑚2
𝑚3
↓
𝑚𝑗
↓

𝑚𝑁−2
𝑚𝑁−1
𝑚𝑁 }

 
 
 
 

 
 
 
 

 

 

allows the following variables to be defined. 

 

𝑥1 = 𝑎1 

𝑥2 = 𝑎2 − 𝑧2𝑦1 

𝑥𝑗 = 𝑎𝑗 − 𝑧𝑗𝑦𝑗−1 −
𝑒𝑗

𝑥𝑗−2
𝑐𝑗−2 

 

𝑦1 = 𝑏1 
𝑦𝑗 = 𝑏𝑗 − 𝑧𝑗𝑐𝑗−1 

𝑧2 =
𝑑2
𝑥1
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𝑧𝑖 =
𝑑𝑖 −

𝑒𝑖
𝑥𝑖−2

𝑦𝑖−2

𝑥𝑖−1
 

 

It thus follows, from forward recursion that, 

 

𝑓1 = 𝑚1 

𝑓2 = 𝑚2 − 𝑧2𝑓1 

𝑓𝑗 = 𝑚𝑗 − 𝑧𝑗𝑓𝑗−1 −
𝑒𝑗

𝑥𝑗−2
𝑓𝑗−2 

 

and therefore, the required solution may be found through backward recursion, 

 

𝑢𝑁 =
𝑓𝑁
𝑥𝑁

 

𝑢𝑁−1 =
𝑓𝑁−1 − 𝑦𝑁−1𝑢𝑁

𝑥𝑁−1
 

𝑢𝑗 =
𝑓𝑗−𝑦𝑖𝑢𝑗+1−𝑐𝑗𝑢𝑗+2

𝑥𝑗
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