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Abstract 

This thesis concerns the development of an approach of decentralised robust control and 

estimation for large scale systems (LSSs) using robust sliding mode control (SMC) and 

sliding mode observers (SMO) theory based on a linear matrix inequality (LMI) 

approach. A complete theory of decentralized first order sliding mode theory is 

developed. The main developments proposed in this thesis are: 

 The novel development of an LMI approach to decentralized state feedback 

SMC. The proposed strategy has good ability in combination with other robust 

methods to fulfill specific performance and robustness requirements. 

 The development of output based SMC for large scale systems (LSSs). Three 

types of novel decentralized output feedback SMC methods have been 

developed using LMI design tools. In contrast to more conventional approaches 

to SMC design the use of some complicated transformations have been obviated. 

 A decentralized approach to SMO theory has been developed focused on the 

Walcott-Żak SMO combined with LMI tools. A derivation for bounds applicable 

to the estimation error for decentralized systems has been given that involves 

unknown subsystem interactions and modeling uncertainty. Strategies for both 

actuator and sensor fault estimation using decentralized SMO are discussed. 

The thesis also provides a case study of the SMC and SMO concepts applied to a non-

linear annealing furnace system modelderived from a distributed parameter (partial 

differential equation) thermal system. The study commences with a lumped system 

decentralised representation of the furnace derived from the partial differential 

equations. The SMO and SMC methods derived in the thesis are applied to this lumped 

parameter furnace model. Results are given demonstrating the validity of the methods 

proposed and showing a good potential for a valuable practical implementation of fault 

tolerant control based on furnace temperature sensor faults. 
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Chapter 1  

Introduction 

 

1.1 Introduction 

With the fast developments of modern technologies, the complexity of industrial 

systems keeps increasing and as a consequence system applications become more 

interconnected and distributed. These systems are often referred to as “Large Scale 

Systems” since potentially a significant number of variables can be involved with non-

linear inter-relationships. As a consequence of complexity, mathematical models of 

their dynamics may be hard to define precisely and hence modelling uncertainty is a 

significant challenge if model-based methods of control or estimation are to be used. 

In fact the term Large scale systems(LSSs) does not represent a single type of system 

having special structure (e.g. distributed) but systems which cannot be solved by one-

shot approaches (Bakule, 2008). As a consequence of increased complexity, resulting in 

an ever increasing range of applications, the research interest in LSS does not decrease, 

even after three decades. However, it can be noted that the terminology has changed 

over the years. In the early years the term LSS was frequently used (Singh and Titli, 

1978; Sandell et al, 1978; Ikeda, 1989; Šiljak, 1996). In subsequent years the 

terminology and emphasis have changed with the recent literature focussing more on 

decentralized control and control of inter-connected systems, driven very much by the 

needs of ever changing applications. (Stanković Stanojevic and Šiljak, 2000; Akar and 

Özgüner, 2002; Yan, Spurgeon and Edwards, 2003; Pagilla and Zhu, 2004; Shyu, Liu 

and Hsu, 2005; Kalsi Lian and Żak, 2009; Lu, Lin and Beteman, 2009; Stanković and 

Šiljak, 2009; Tlili and Braiek, 2009; Yau and Yan, 2009; Kalsi Lian and Żak, 2010; 

Parutka, 2010; Zhu and Li, 2010; Liu, 2011; Mahmoud, 2011; Mukaidani, 2011, Wei 

and Jin, 2012; Wu, 2012, etc.). 

The IFAC Large Scale Systems symposium in France 2010 states the applications using 

LSS theory, including: aerospace engineering, environment systems, power systems, 

transportation systems, medical systems, business systems engineering, etc 
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(lss2010.ulbsibiu.ro, 2010). These are typical application areas of LSS that present 

significant challenges to control systems theory and to control system designers. 

The practical physical LSSs are often characterized by geographical separation or large 

dimensionality so that issues such as the inter-connection expense and reliability (e.g. 

possibility and frequency of interconnection failure, delays, information constraints for 

each subsystem, etc.) have to be taken into account. (Šiljak, 1991) concluded that the 

complexity of real systems may not be well organized, whilst for control to be effective 

good structural organization of a system is required. Hence, “well-organized complexity” 

is the main challenge of large scale interconnected system design, including the notions 

of subsystems, interactions, neural networks, parallel processing, etc. It should be noted 

that these complexities bring in some confusing (and sometimes over-lapping) 

terminology , e.g. the words “Large scale systems”, “Distributed systems”, 

“Decentralized systems” and “Interconnected systems”, which can have similar meaning.  

To develop this subject properly, these terms need to be carefully defined. A 

“Distributed system” is a system containing a collection of autonomous subsystems 

whose components and resources may not be shared by all local decision makers. It is 

often used in computer science. The word distributed originally referred to computer 

networks where individual computers were physically distributed within some 

geographical area. However, the term is nowadays used in a much wider sense. The 

common defining properties of distributed system are: 1). There are several individual 

subsystems, each of which has its own local decision maker and 2). They communicate 

with each other. On the other hand a “Decentralized system” is more concerned with  

the subject of taking the control action(s) from a central function to control actions at 

decentralized locations of the system.  A system that is decentralized lacks a controller 

nucleus as it is usually composed of many subsystems which are working in unison to 

form a stable structure. That means that the emphasis of this notion is that the system 

lacks centralized decision makers or coordinators. The notion “Interconnected system” 

is concerned more with interactions. In this case, if there are interconnections between 

subsystems, the overall system can be referred to as an “Interconnected System”. Some 

literature use the notion “Large scale interconnected system” (e.g. Kalsi Lian and Żak, 

2010) only to state that the subsystems of the LSS are interconnected. These three 

notions have their own emphasis and should not be mixed up. They all belong to the 

file:///C:/Cadmean/PHD%20work/Thesis/lss2010.ulbsibiu.ro
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concept of a LSS but each in turn has a different classification. And no matter what kind 

of classification the system is in, the challenges described in the next Section are what 

LSS control system designers need to deal with. 

1.2 Main Difficulties and faults in LSSs 

Some researchers state that the complexity and difficulties of LSSs arise mainly from 

the dimensionality, uncertainty, delay and information constraints (Šiljak, 1991; Bakule, 

2008). These are defined as follows: 

 Dimensionality. The dimension (dynamical order) of a system can be very large. 

For a single LSS system, there are a large number of states and inputs that cannot 

be handled easily by using a one-shot control method. Some LSSs that are already 

decomposed consist of many subsystems that require structure and robustness 

analysis before effective control systems (at hierarchical and/or local levels) can be 

designed. 

 Uncertainty. The overall system cannot be precisely described by a linear 

mathematical model. Uncertainties come from incomplete identification of the 

system and some unknown disturbances/control signals. Moreover, model 

aggregation or simplification which is deliberately designed to make the system 

manageable may also lead to uncertainties.  

 Information Constraints. Because of the dimensionality problem, it is necessary 

to design many decision makers (DMs) to manage the subsystems. None of these 

DMs knows the system completely. A controller is an example of a DM for a 

subsystem that can only use the local information, i.e. states/outputs of this 

subsystem, to stabilize the subsystem.  

As a consequence of these difficulties, the analysis and synthesis tasks cannot be solved 

efficiently in a single step controller. Many control experts take the pragmatic view of 

LSS as a system that cannot be managed by “conventional” methods (Bakule, 2008). 

The development of LSS decomposition theory is devoted to the problems arising from 

the dimensionality problem. The theory answers the question of how to decompose the 

given control problem into manageable sub-problems. In this case, the system is no 

longer controlled by a single controller but several independent local controllers which 

together perform the control function of the overall system.  
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A significant number of publications focus on approaches to the remaining challenges 

of handling modelling uncertainty and information constraints. Various control methods 

have been used to address these challenges, for example, variable structure control (Yan, 

Tsai and Kung, 1997; Hu and Zhang , 2002; Yan, Edwards and Spurgeon, 2003, 2004a, 

2004b, 2009; Shyu, Liu and Hsu, 2003), eigenstructure assignment (Labibi et al, 2003), 

vector Lyapunov function (Lunze, 1989; Martynyuk, 1998; Nersesov and Haddad, 

2006), adaptive control (Jain, Khorrami and Fardanesh, 1994; Hansheng, 2002; ), 

Riccati-type control (Bakule and Rodellar, 1996), model predictive control (Lavaei, 

Momeni and Aghdam, 2008; Ocampo-Martinez et al, 2012); etc. 

In LSSs, the performance of subsystems after decomposition may be affected by: 

interactions from other subsystems, external disturbances and modelling uncertainty 

arising from structure uncertainty or parameter variations.  

The difference between external disturbance (or exogenous disturbance) and modelling 

uncertainty is that the former perturbation does not vary with the system parameter 

(states, input or output, etc.). However, it should be noted that in regulation problems 

(the goal of the system is to drive the system error to zero), with proper control design, 

the effect of the modelling uncertainty maybe significantly reduced when the control 

objective has been reached. 

Unlike external disturbance and uncertainty, traditionally interactions have been treated 

as a part of the system and are taken care of in system design at a centralized level 

(Aoki, 1972; Tilti Lefevre and Richetin, 1973; Smith and Sage, 1973; Singh and 

Tamura, 1974; Singh, Hassan and Titli, 1976, Ikeda, 1981; Ikeda, 1983). With the 

development of the complexity of a dynamic system attempts were made to deal with 

LSS designs using decentralized control (Bakule and Lunze, 1988; Gavel and Siljak, 

1989, Feng and Jiang, 1995; Hsu, 1997; Chou and Cheng, 2000; Hu and Zhang, 2002; 

Šiljak, and Zečević, 2005; Tilili and Braiek, 2009; etc.). However, it should be clear that 

the book of (Singh and Titli, 1978) makes a clear definition of the differences between 

hierarchical and de-centralized control, the concepts were around a long time before 

being fully taken up in the literature.  

It became apparent that the control of an LSS with decentralized control requires that 

the interactions be treated as special signals. As the interactions involve coupling 
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between other subsystems, it is seldom possible to have complete information about 

them when designing local controllers. In other words the interactions may have 

uncertain structure/parameters. It is clearly desirable to attempt to reduce the effect of 

the interactions between the subsystems. From this it follows that the designs of 

individual control systems can be made without assuming knowledge of the interactions 

but taking account of their uncertain effects, as a robustness problem. 

If all the subsystems are combined into an aggregate system, the interactions are 

affected by variations of the combined set of all system parameters. However, using the 

robustness statement above, it can be assumed that for a single subsystem point of view, 

the interactions from other subsystems can be treated as external disturbances. This is 

still an open problem (Rosinová and Veselý, 2012) 

The notion of “uncertainty” described above does not fully represent the unwanted 

changes in the LSS. Faults also affect the dynamic behaviour of the system in uncertain 

ways. Various publications provide alternative definitions for the term “fault”. For 

example, Isermann (1984) defines a fault as ‘… a non-permitted deviation of a 

characteristic property, which leads to the inability to fulfil the intended purpose…’ 

(Blanke et al, 2006) defined a fault as ‘…a deviation in the system structure or the 

system parameters from the nominal situation…’. Moreover, if faults are not taken care 

of carefully, they might become failures (Patton, Frank and Clark, 1989). A failure 

describes the condition when the system is no longer performing the required function 

and cannot be corrected by a controller. (Iserman, 2006) defines failure as ‘… a 

permanent interruption of a system’s ability to perform a required function under 

specified operating conditions …’.  That is exactly what is to be avoided. 

(Chen and Patton, 1999) classifies clearly different faults by the location of a fault 

(where it acts in the system). According to this classification, the fault can be 

recognized as i). Actuator faults, ii). Sensor faults, and iii). Component faults. An 

actuator fault and a sensor fault appear in an actuator and a sensor of the system, 

respectively and are normally considered as additive effects whilst the component fault 

shows up through structural and/or parameter variations of the system, i.e. as 

multiplicative or parameter-varying effects. However, in LSS decentralized control, 

from a subsystem point of view, one additional fault should be considered as an 

abnormal behaviour in the interaction between two subsystems. One can thus think of 
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an interaction fault (Figure 1-1). The local controller design that seeks to take account 

of interaction faults must do so by attempting to minimize the sensitivity of the local 

control to these faults. This is an extension of the idea of the concept of robustness to 

parameter variations and modelling uncertainty. In this respect a fault can be considered 

as a form of uncertainty (Chen and Patton, 1999). However, the reverse is not true, the 

uncertainty is not a form of fault! 

 

Figure 1-1. Fault classification with respect to their location in LSS 

1.3 Fault tolerant control and sliding mode theory in LSS 

Several investigators have considered minimization of the local control function to 

system faults as a so-called fault tolerant control (FTC) problem (Patton et al, 2007). 

Compared with the number of publications on robust control of LSS, the number of 

publications that include FTC aspects of LSS is much lower (especially before 21 

century). Fifteen years’ ago robust control was not widely considered as a part of the 

FTC problem. (Patton, 1997; Chen and Patton, 1999; Blanke et al, 2006) have pointed 

out that  FTC includes three major research fields, i.e. Fault Detection and Isolation 

(FDI)/Fault Detection and Identification (Estimation), Robust control and 

Reconfigurable control. (Figure 1-2) 

   

Figure 1-2. The three disciplines of FTC (Patton, 1997) 
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Generally, two main approaches to FTC are known: i). Passive fault tolerant control 

(PFTC) and ii). Active fault tolerant control (AFTC). (Beard, 1971; Patton, 1997; Chen 

and Patton, 1999) 

   

Figure 1-3. Fault tolerant control methods (adapted from Patton, 1997) 

Figure 1-3 shows the generally accepted taxonomy of active and passive FTC methods. 

The main difference between these two methods is whether or not a 

reconfiguration/adaption procedure is required. In the passive approach, robust control 

methods are used to ensure that small and bounded faults are tolerated in a fixed gain 

controller design, however this approach is limited to minor fault effects. On the other 

hand, active FTC requires online fault information to reconfigure/re construct the 

controller. Active FTC methods are further classified according to whether or not they 

make direct use of FDI residual signals to provide fault information. A special type of 

active FTC system use fault estimation and compensation to “hide” the effect of a fault 

in a controller, however this approach is mainly applicable to FTC for sensor fault 

effects. 

A special case of FTC classification is the use of sliding mode theory. Sliding mode 

control (SMC) is a type of control that provides inherent robustness properties of sliding 

modes to a certain class of faults. It has the ability to directly handle actuator faults 

without requiring the fault to be detected and without requiring controller 
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reconfiguration. Classical SMC is actually a form of PFTC with fixed structure that can 

de-couple the effects of the faults in the feedback control (during sliding motion) as 

long as the faults are bounded and satisfy a so-called matching condition. Several 

studies have considered applying SMC to LSS problems. However, most of these 

studies assume that the interactions satisfy the matching condition constraints. 

Unfortunately, this assumption does not hold for most practical system applications.. 

However, SMC has good compatibility with other methods. For example, adaptive 

SMC can be categorized as an AFTC method (Patton, Putra and Klinkhieo, 2010) which 

combines a sliding mode observer to estimate the fault with an SMC; the fault estimate 

causes the SMC non-linear gain to switch according to the magnitude of the fault 

estimate. 

This thesis is concerned with the challenges of applying SMC and sliding mode 

observer (SMO) theory to handle the joint problem of local controller design and 

uncertainty compensation in LSS. Whilst the thesis does not focus on approaches to 

FTC as such the work contains an application example of a thermal annealing furnace 

system which is shown to be fault tolerant to temperature sensor faults using SMC and a 

simple concept of fault estimation.  

1.4 Thesis Structure and Contributions 

The remainder of the thesis is arranged in the following manner: 

Chapter 2 provides an introductory motivation for the thesis by reviewing the various 

known approaches to control and estimation methods for LSSs. After describing the 

generalized multilevel structure of the LSS problem a further specialization to the single 

level case is given in which various approaches to system decomposition for LSS 

control are described, focussing on attempts to minimize the effects of the subsystem 

interactions. The LSS properties presented lead to a discussion of methods for robust 

stabilization of LSS. Furthermore, decentralized estimation approaches are also 

reviewed and different types of observer based estimation methods are briefly 

introduced based on the LSS concept.  

Chapter 3 introduces a steel annealing furnace model taken from a New Zealand Steel 

project. The furnace model is set up as an example of a LSS to which the methods 

developed in Chapters 4, 5 and 6 can be applied and described more fully as a robust 
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control example in Chapter 7.  This is an original study using a little known but very 

powerful way of transforming the thermal model into a suitable framework for 

decentralized control and estimation. 

A mathematical model of the furnace system is derived starting from the non-linear 

partial differential equation thermal system taken from the project report by 

(McGuinness and Taylor, 2004). The idea is to transform the “infinite dimensional” 

thermal system into a lumped representation of a system with interconnected thermal 

subsystems. A strategy called “differential quadrature” is used to derive the 

corresponding non-linear ordinary differential equation system using two different 

interpolation methods, which takes the required boundary conditions into account as 

well. Several simplifications to the non-linear system are proposed to prepare a model 

system that is suitable for the decentralized control design. Then the thermal properties 

of the model are discussed based on a zero-input response of the nonlinear model to 

qualitatively validate the simplified model. To discuss the modelling accuracy the 

steady state solutions to the partial differential equations (PDEs) (i.e. considering heat 

balance) are compared with the results of the nonlinear ordinary differential equation 

(ODE) system using PID control. 

Chapter 4 starts with an introduction to sliding mode theory. For the sliding surface 

design, two approaches are described for partitioning the system into different regular 

form structures (Zinober, 1990; Choi, 1997). These regular form decompositions lead to 

two clearly different approaches to the SMC problem. Following this, the SMC 

reachability problem is then presented. Several approaches used to reduce or remove the 

reaching phase are also discussed. At the end of the introduction, typical methods for 

bound constraint relaxation and chattering reduction are also discussed and proved. 

A novel decentralized SMC approach based on linear matrix inequality (LMI) theory is 

then proposed in Chapter 4. With this approach, the unmatched interactions 

(uncertainties) are considered in the sliding surface design procedure and the stability of 

the overall system is guaranteed. The pole assignment,    theory and quadratic 

minimization are then combined with this method to provide improved robustness to 

uncertainty and interactions. A tutorial example of a non-linear interconnected system is 

used to illustrate the method at the end of this Chapter. 



10 

 

Chapter 5 focuses on the output feedback approach to the decentralized SMC as an 

extension to the state feedback approaches described in Chapter 4. As contributions, to 

formulate a systematic LMI-based decentralized SMC theory, novel decentralized static 

output feedback as well as dynamic output feedback are presented and compared based 

on a common SMC representation. An output feedback integral SMC design method is 

also introduced in this Chapter as a new contribution to this research. With this method, 

the SMC reaching phase can be eliminated. 

At the end of this Chapter, a multi-machine problem is introduced to illustrate the 

proposed methods. The system interactions are adapted to satisfy the so called 

“quadratic constraint”. It is shown that both static output feedback and observer-based 

integral sliding mode give good robust regulation performance. 

Chapter 6 focuses on the design decentralized observer systems using sliding mode 

observer (SMO) theory. Both the Walcott-Żak observer and the Edwards & Spurgeon 

observer are reviewed. To achieve decentralized system state estimation an LMI-based 

decentralized Walcott-Żak observer is developed from the theory used for single or 

centralized systems. The chosen SMO approach is an extension of the Walcott-Żak 

observer using a novel improvement to the control law in which the output errors are 

guaranteed to be zero when the sliding surfaces are reached in the presence of bounded 

unmatched uncertainties and bounded uncertain interactions (arising from non-linearity). 

The SMO methods developed in this Chapter are applied to both actuator and sensor 

fault estimation. The influence from interactions/uncertainties to the actuator fault 

estimation is discussed with this decentralized SMO design. 

A tutorial example of an interconnected non-linear system is used at the end of this 

Chapter to illustrate the proposed SMO approach, providing robust state and fault 

estimation.  

Chapter 7 further discusses the furnace problem proposed in Chapter 3 to illustrate the 

SMC and SMO methods described in Chapters 4, 5 and 6. The Chapter starts with a 

simulation of the furnace model developed in Chapter 3. Then a linearization strategy is 

applied to linearized the nonlinear furnace model. Three types of faults are chosen to 

test the robustness of the SMC strategy proposed in Chapters 4 and 5. In comparison 

with the PID controller, state feedback SMC is first proposed. However, since not all 
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the states are measurable, static output SMC is then used to control the system. 

Moreover, to simplify the implementation of the SMC, a PID-OSMC algorithm is 

proposed, which gives more design freedom and makes the system insensitive to the 

matched faults. 

In this Chapter, sensor faults due to the thermocouple deterioration are also considered. 

If the thermocouples give lower measurements, PID-OSMC cannot control the furnace 

temperature appropriately. After using a state augmentation filter in the SMO it is 

shown that the deterioration of the thermocouple fault can be estimated precisely, even 

if the fault is of the multiplicative type. The fault estimation signal is then used to 

compensate the effect of the thermocouple in the PID-OSMC controllers for each 

heating zone subsystem. The result demonstrates the robustness of the fault estimation 

and compensation and enhances the value of the proposed PID-OSMC method. 

Chapter 8 summarizes and concludes the overall work described by the thesis and 

makes suggestions and recommendations as to how the research can be further 

developed in the future. 
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Chapter 2  

Review of Large Scale System Control 

 

2.1 Introduction 

The development of control for LSSs can be recognized from publications (Sandell, 

1978; Ikeda, 1989; Šiljak, 1991; Šiljak, 1996; Šiljak and Zečević, 2005; Bakule, 2008). 

Noting that the concept of driving an LSS by a centralized controller is no longer 

attractive, it is better to design a decentralized system (Šiljak, 1996).  

The advantages of using decentralized control can be found from either economy or 

reliability standpoints. When the system is too large to be dealt with by centralized 

control, it is computationally efficient to use only local information, i.e. local states or 

outputs, to make the control decision. This method is also economical since it is easier 

to implement and it can effectively reduce the communication cost (Šiljak, 1996). 

Decentralized control also facilitates the development of good robustness. It makes the 

stability of the closed-loop system tolerant to a broad range of uncertainties regardless 

of the uncertainties in the subsystems or in the interconnections (Šiljak and Zečević, 

2005). Following (Šiljak, 1996). “decentralized control strategies are inherently robust 

with respect to a wide variety of structured and unstructured uncertainties in the 

interconnections. The strategies can be made reliable to both interactions and control 

failure involving individual subsystems.” As described in Chapter 1, there are several 

difficulties in designing control strategies for LSSs. Different control structures and 

different decomposition methods are reviewed in this Chapter to overcome these 

difficulties. 

2.2 Multilevel control structure 

The research about multilevel control started in the 1960s and attracted significantly 

more attention from the 1970s (Mahmoud, 1977, Singh and Tilli, 1978). After a further 

4 decades of research investigators still work with this control structure. Now it has 

become quite a mature control strategy with application studies on several practical 

systems (Meisel, 1980; Van Cutsem, Howard and Ribbens-Pavella, 1981; Rubaai, 1991; 

Okou, 2005; Gómez-Expósito and Villa Jaén, 2009; Chen 2012). Some interesting 
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research about FTC using SMC concepts and two-level structures have been published 

(Lin, Patton and Zong, 2009; Larbah and Patton, 2010). 

The central idea of the multilevel strategy is to form a control structure in a pyramid-

like form (Figure 2-1) (Mahmoud, 1977). The problems at the base of the pyramid are 

simpler though numerous. Each of the problems can be solved according to some 

decision rules (local decision maker) which should be manipulated by problems located 

higher in the pyramid. In a three or more level structure, this model of parameterized 

sub-problems repeats itself over many levels within the organization. It can be referred 

to as a “level” comprising a group of decision problems performing similar kinds of 

problems in the structure. There is one decision problem, upon which the overall 

objective of the system depends, standing at the top of the pyramid. In this sense, a 

multilevel system is a hierarchy of goal-seeking subsystems or decision problems. 

As we can see, the more levels the control structure has, the more complicated the 

strategies become. The complexity of the structure which limits the implementation of 

hierarchical control is one of the main disadvantages. On the other hand, the pyramid 

structure implies centralization. It has the disadvantages of centralized control, i.e. 

communication delay etc.  

Coordinator

Decision 

Maker

Decision 

Maker

Hierachical level

Controller

Base control level

Coordination

Controller Controller Controller

Performance

Results

Large Scale System

Control

action

Feedback

Information

 

Figure 2-1. Multilevel control structure for LSSs (adapted from Mahmoud, 1977) 
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In the structure of the two-level LSS control strategy, the base level is a group of local 

controllers dealing with local information, whilst the second level is a coordinator 

dealing with interactions. The algorithm of quadratic optimization two-level control is 

proposed in (Singh, Hassan and Titli, 1976), this is the so called “interaction prediction” 

method. 

Assuming that after proper decomposition, the i-th subsystems of the LSS are in the 

form of: 

                                          

             

 

   

                

where       ,        are the states and inputs of the i-th subsystem respectively, 

       represents the interactions from other subsystems. It can be noted that    is a 

linear combination of the states of the overall system. 

Local control design 

The local controller is designed following the LQR theory. The subsystem control 

performances are measured via the             subject to the isolated subsystem, i.e. 

neglecting the interactions: 

             
 

 
    

        
        

 

 
             (2-1) 

where          ,           are positive semi-definite and positive definite 

weighting matrices, respectively. 

The local controllers can be obtained by solving the Riccati equation: 

           
            

        

Using the MATLAB Robust control toolbox, the control low for the base level is given 

by setting      : 

             
    

       (2-2) 
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Global control  

The objective of using global control is to compensate the influence from the interaction 

terms             . The global control performance is measured by the quadratic 

performance index: 

         
 

 
              
 

 

 

The analysis gives the following Lagrangian                   which must be 

minimized in order to determine the system control inputs: 

   
         

                 

  
 

 
    

        
        

           

 

   
   

 
 

 

 

   

   
                       

where        are the Lagrange multipliers,        are the co-states. The 

Hamiltonian for each subsystem can be written as: 

   
 

 
   

        
       

 

 
  
           

 

   
   

    
                      

The the corresponding necessary conditions for optimality are: 

   

   
          

   

   
      

   

   
      

   

   
   

Define            and the global control              
    

   . Following the 

algorithm in (Singh, Hassan and Titli, 1976), the control gain can be obtained by 

solving: 

            
    

                  
 
   
   

     
     

  
     (2-3) 

with        . The control law for each subsystem is thus given in terms of the local 

control          and           as: 
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     (2-4) 

The structure of this two level control strategy is shown in Figure 2-2. 

Since the centralized coordinator requires information from every controller, it might 

have the same problem as we have in centralized control. However, it might provide 

better results than the total decentralized single level control strategy since it has a 

coordinator to deal with the interactions. In the single level strategies, it is more like 

designing local controllers which are robust to the interactions (as perturbations) 

coming from other subsystems. 
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 Figure 2-2. Two-level interaction prediction control structure 

2.3 Single Level decentralized control 

The single-level decentralized control system has a much simpler structure than the 

multi-level strategy. The control structure only contains the base control level (see 

Figure 2-1). The interactions are taken care of by the local controllers. The more robust 

the local controllers the better the performance the LSSs will have. As described in 

Chapter 1, dimensionality, uncertainty, information constraints are the three main 

difficulties in designing LSSs control. Several general methodologies have been and are 

being researched during 3 decades of development of for the single level structure. Most 

of them belong to one or more of the following three groups (Šiljak, 1978; Šiljak, 1991; 

Bakule, 2008): 
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 Decentralization; 

 Decomposition; 

 Robustness and model simplification. 

Decentralization concerns the information structure inherent to the given problem. The 

desired goal is to achieve as closely as possible completely independent implementation 

of the LSS control in each subsystem. There are various motivations of decentralization 

of the design process, such as weak coupling between subsystems, contradictory goals 

of different subsystems or high dimensionality of the overall system. (Bakule, 2008) 

Decomposition is another part of the control design. It concerns the simplifications of 

the analysis and synthesis tasks for LSS by decomposing the problem into several sub-

problems. The goals of decomposition are the reduction of computational complexity 

and weakening the interaction influence. Different decomposition methods give 

different base control level structures. 

Robustness concerns the robust property of a control design when dealing with 

uncertainties on the bases of the stability analysis of coupled systems. Robustness 

analysis becomes more serious in LSS since the interactions might act as uncertainties 

and they are unavoidable. Model simplification mainly includes model reduction 

methods and approximations (Šiljak and Zečević, 2005). 

For robust feedback control strategies, (Šiljak, 1996) introduce a bordered block-

diagonal form for the gain matrix and extended this idea in (Šiljak and Zečević, 2005). 

In their work, “such a structure can significantly improve the decentralized 

stabilization of LSSs, at the expense of only minimal communication overhead.” (Šiljak 

and Zečević, 2005). (Chen, Ikeda and Gui, 2005; Chen Gui and Zhai. 2006) used a 

homotopy method to design an    decentralized dynamic control and interconnected 

descriptor system. (Rosinová and Veselý, 2007) proposed an LMI based decentralized 

PID control. The adaptive stabilized decentralized control strategy was first proposed by 

(Gavel and Šiljak, 1989). (Shi and Singh, 1992) then provided an adaptive algorithm for 

strong nonlinear interactions with single input     . (Wu 2002, 2003) further 

proposed adaptive strategies for uncertain interconnections. Then Perutka (Perutka, 

2010) gave a good survey of decentralized adaptive control, stating that that it can be 

useful to combine the robust and adaptive control together.  
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Another big impact to single-level LSS is the quick development of variable structure 

theory (sliding mode theory). (Richter and Lefebvre, 1982) first combined the 

decentralized control with variable structure theory and apply it in a two-pendulum 

system example. Following this, many researchers paid attention to a particular type of 

variable structure — the sliding mode (Furuta, 1990; Drakunov, 1992; Young, 1996; 

Utkin, 1993; Levant, 1998 etc.). In the sliding mode theory, there are two parts in the 

control law. The first part is used to stabilize the system and the second discontinuous 

part is used to drive the system to the so called “sliding surface”. Once the system 

operates on the sliding manifold, the system is insensitive to the matched perturbations 

(the perturbations coming from input channel), with the concept of matching first 

defined by (Draženović, 1969) It becomes obvious that if the interactions satisfying the 

“matching condition”, they can be compensated completely by the SMC. Later 

(Edwards and Spurgeon, 1998) systematically extended the sliding mode concepts to 

include control and estimation. Meanwhile, the decentralized sliding mode control 

started being popular (Xu, 1990; Wang, 1993; Feng, 1995; Hsu, 1997; Yan, 1997; 

Koan-Yuh, 1997). However, some certain restrictive conditions, such as the matching 

condition for interactions and known upper bounds, were always assumed in a 

simplistic way in these research studies. From about 2000, the sliding mode, as a 

powerful disturbance rejection method, has been considered more and more often in 

studies on decentralized systems (Hu, 2002; Yan, Spurgeon and Edwards, 2003; Yan, 

Edwards and Spurgeon, 2004; Shyu, 2005; Cheng and Chang, 2008; Kalsi, 2009; Yan, 

Spurgeon and Edwards, 2009; Kalsi, 2010; Zhu and Li, 2010). 

However, no systematic way of using sliding mode theory in LSS has as yet been 

proposed. Some studies in the literature even further complicate the problem! Hence, a 

need to build up a systematic concept of interaction minimization SMC theory and to 

further extend this method in LSSs have been the main motivations for this current PhD 

research. This thesis also provides some new, less restrictive and easier to implement 

concepts in robust control and estimation for LSSs. 

In the single-level control structure, decomposition plays a significant part of the control 

design process. Proper decomposition not only simplifies the computation process but 

also weakens the influence from interconnections and at the same time provides an 

opportunity for improving the system performance. It is well known that some LSSs 
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have natural spatial decompositions. Spatial decomposition here means that the 

subsystems are defined according to their different locations/distributions. For example, 

power distribution networks and traffic regulation. However, at least on a theoretical 

basis or as a system plan some of the LSSs can be decomposed by control system 

designers. The decomposition methods can be classified by whether or not the 

subsystems shared state variable information according to: 1). Disjoint decomposition 

or 2). Overlapping decomposition. 

2.3.1 Disjoint decomposition 

The disjoint tearing of the system may be performed for either physical or numerical 

reasons. The physical reason is mainly because of the spatial separation of the 

subsystems. Numerical conditioning reasons require the development of a universal 

control technique for application to LSSs (Bakule, 2008). This section is only concerned 

about the numerical reasons since the decomposition method cannot be made if the 

system is already spatially separated.  

A typical disjoint decomposition is described by (Šiljak, 1991; Šiljak, 1996), the so 

called “Nested epsilon decomposition”. The idea of this type of decomposition can be 

illustrated by a simple linear example:             , where the matrix    is in the 

form of a block diagonal, and the matrix    has all elements < 1 and   is a prescribed 

small number representing the strength of the interactions. Then: “The algorithm gives 

freedom to conveniently choose the strength of coupling between the subsystems and 

control the size and dominance of the subsystems.” (Šiljak, 1996). 

As the most used decomposition method, the algorithm of disjoint control design is 

illustrated by a linear LSS in Figure 2-3. 

The control strategies for disjoint decentralized systems mainly focus on the reduction 

of the influence from interactions and uncertainties. Many of the researchers keep 

seeking the possibility of treating the interactions among the subsystems as 

perturbations (Jiang, 2000; Šiljak and Stipanović and Zečević, 2002; Castaños and 

Fridman, 2005, Hung, 2007; Zhu and Pagilla, 2007; Shyu, Liu and Hsu, 2005; Yan, 

Spurgeon and Edwards, 2009). Some investigators do not clarify this idea in their work, 

but they treat the interactions and perturbations in the same way. This idea means that 

the system designers can reject or at least minimize the disturbance coming from 
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interactions as well as the faults acting in each subsystem by disconnecting or 

reconnecting subsystems. This is the so-called “plug and play” problem of LSS (Patton 

et al, 2007). 
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Figure 2-3. Disjoint linear system control design: (a) overall system; (b) decompose into 

interconnected subsystem; (c) decentralized control design. 

In most publications about decentralized control, the subsystem state equation is 

described in the form: 

                                             (2-5) 

where          ,           are the states and inputs of the i-th subsystem 

respectively.   is the number of the subsystems. The term         represents the 

interactions from other subsystems. In linear LSS,               
 
   
   

. 

The advantage of using         is that it can represent not only the linear interactions 

but also nonlinear interactions and the uncertainty of the subsystem itself. (Šiljak and 

Stipanović, 2000) gives a quadratic constraint for these interactions as follows: 
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where   is the bounding parameter and    is a constant                

matrix. This assumption also offers a possibility to apply a variety of strategies 

available in the LMI framework. Some of the research based on this assumption has 

been done (Šiljak and Stipanović and Zečević, 2002; Zhu and Pagilla, 2007; Tlili and 

Braiek, 2009; Kalsi, 2010), as well as some work of this thesis. More details are given 

in Chapter 4. 

2.3.2 Overlapping decomposition 

Different from Disjoint decomposition, overlapping decomposition of an LSS allows 

the decomposed subsystems to share some common parts and gives more flexibility in 

the choices of the subsystems. The motivation of this type of decomposition is the 

necessity of building decentralized control and estimation schemes using overlapping 

information sets on realistic applications such as power systems, large space structures 

etc. Moreover, many large scale systems (e.g. see Özgüner Khorrami and İftar, 1988) 

may consist of subsystems which are strongly connected through certain dynamics (the 

overlapping part), but weakly connected otherwise (İftar, 1993). For those systems, 

disjoint decentralized control may easily fail whilst overlapping decomposition may 

produce feasible solutions.  

The control design strategy is illustrated in Figure 2-4. There are four steps in designing 

overlapping controller:  

a) Decide which parts of the system are the overlapping parts; 

b) Expand the system by using the Inclusion Principle (Ikeda, 1980); 

c) Design the decentralized controller based on the expanded system; 

d) Contract the controller to form the decentralized controller for the original 

system. 

The research about overlapping structures started inthe 1980s. (Ikeda, 1980) proposed 

the Inclusion Principle as the basic theory underlying the strategy of overlapping 

decomposition, which justifies the transformation of a lower dimensional original 

system to a higher dimensional expanded system. (Šiljak, 1991) gives a very clear 

statement of overlapping decomposition. Two different design methods have been 

brought out in the 1980s and 1990s. (İftar, 1991; İftar 1993) designs the controller based 

on the expanded system and contracted to the smaller spaces for implementation on the 
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original system. (Ikeda and Šiljak, 1986), on the other hand, they define the control law 

in the original space and obtain the input structure in the expanded space. Later, the 

structure of the expansion-contraction relations including the contractibility of 

controllers is analyzed in (Šiljak ana and Stipanović, 2000; Stankovi Stanković and 

Šiljak, 2001; Chu and Šiljak, 2005) for LTI systems and (Bakule, Rodellar and Rossell, 

2001; Stanković and Šiljak, 2003) for LTV system. 
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Figure 2-4. Overlapping control design: (a) overall system; (b) expanded system; (c) 

control design; (d) contracted closed loop system. (Bakule, 2008) 

However, the complexity of expansion and contraction is quite high. The expansion and 

contraction operation must be performed with non-square transformation matrices and 

the controller design must be performed carefully. Later in 2005, (Zečević and Šiljak, 

2005) proposed a convenient LMI approach to design the overlapping control on the 

original system directly. In this approach, a symmetric positive definite (s.p.d.) 

Lyapunov matrix P should be pre-structured in block-diagonal form, according to the 

structure of the system. The control gain matrix is also pre-determined according to a 

procedure defined in (Zečević and Šiljak, 2005; Šiljak and Zečević, 2005): 



23 

 

 


















33

2322

1211

00

00

00

K

KK

KK

K

  (2-6) 

The idea proposed by (Zečević and Šiljak, 2005) is different from the idea in (İftar, 

1993). The system model in (Zečević and Šiljak, 2005) considers that the overlapping 

parts do not have their own controllers. In this way the approach can constrain the 

overlapping parts to be stable. In (İftar, 1993), the overlapping parts have their own 

controllers.  

Thus, the gain matrix for the İftar’s method is in the form: 
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Quite a number of studies have been done to apply the overlapping decomposition 

methods to realistic systems, for example, power systems by (Šiljak, 1991; Chen and 

Stanković, 2005, 2007), a platoon of vehicles by (Stanković, Stanojevic and Šiljak, 

2000), formation of aerial vehicles by (Stipanović et al, 2004) etc. Also, the more 

complex multi-overlapping decomposition structure is discussed by (Chen and 

Stanković, 2005). 

To combine with other robust methods, (Bakule et al, 2005) consider the    approach 

to minimize the interactions in the overlapping structure. A quadratic optimization 

approach has been represented by (Bakule and Rossell, 2008). (Akar and Özgüner 2002) 

proposed a sliding mode method based on the overlapping structure. (Huang and Patton, 

2012b) used integral sliding mode combined with İftar’s structure to reduce the 

influence from interactions.  

There are still a lot of problems left in this overlapping structure area such as robust 

fault tolerant control, uncertainty in the interactions or output based overlapping 

decomposition using LMI approach etc. 



24 

 

2.4 Decentralized estimation for LSSs 

Very few publications focused only on the state estimation problem using decentralized 

estimation methods until the presence of modern robust estimation methods (Šiljak and 

Vukcevic, 1976; Edwards and Menon, 2008). The difficulty of state reconstruction for 

LSSs is obvious when it can be seen that the unavoidable interactions prevent the 

estimation error from reaching zero value. The decentralized estimation strategies for 

LSSs mainly focus on: two aspects: 

 Decentralized observer based control 

 Fault detection/estimation 

In the first aspect, the disturbance from interactions can be handled by both control and 

observer. The objective is to achieve some control goal. For the fault 

detection/estimation, interactions act as uncertainties which can be tolerated or 

compensated in the fault estimation. 

2.4.1 Decentralized observer based control 

A strong research effort has been made in the literature towards the development of 

decentralized control schemes based on output feedback via construction of 

decentralized observers. Assume that the i-th           subsystem is in the form: 

                               

                (2-8) 

where       ,       ,        are the states and inputs of the i-th subsystem, 

respectively.   is the number of the subsystems. The term         represents the 

interactions from other subsystems. Three broad methods are then used to design 

observer-based decentralized output feedback controllers for LSSs as follows: 

(1) Design a local observer and controller for each subsystem independently and 

check the stability of the overall closed-loop system. In this method, the 

interconnection terms acting in each subsystem are regarded as an unknown 

input (faults). A typical example of this is given by (Kalsi, 2009) an SMO to 

make the observer insensitive to the interactions. With this method, the 

interactions have to satisfy certain conditions. For subsystem (2-8), assuming 

that the interactions                   , the conditions are            
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         and any invariant zeros of the triple            are in the open left-

hand complex plane. In this case, the observer can estimate the states precisely 

without any other uncertainties. The control structure of the system is illustrated 

by in Figure 2-5 with two interconnected subsystems. 
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Figure 2-5. Observer based decentralized control without interactions between observers 

(2) Design local observer and controller for each subsystem independently and 

check the stability of the overall closed-loop system. Compared with (1), in this 

method, the interaction information is assumed known. For example, if the 

interaction term in subsystem (2-8) is linear and in the form of         

      
 
       , then the gain matrices     are known. Thus, the observer for the 

i-th subsystem is in the form of: 

                                
 

       

                  

                

Or if the interaction is nonlinear, it should satisfy the Lipschitz condition 

                            and the observer is in the form of: 

                                                

                

A number of publications use this method since it considers the interactions in 

the design of the observer (Šiljak and Vukcevic, 1976; Looze et al, 1978; 

Sandareshan and Huang, 1984; Date and Chow, 1989; Hu, 1994; Uang and Chen, 



26 

 

2000; Zhang and Polycarpou and Parasini, 2010). The structure of this method is 

shown in Figure 2-6. 

 

Subsystem 1 Subsystem 2

Controller 1 Controller 2

Observer 1 Observer 2

2x̂

2y

2u

1̂x

1y
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1̂x

2x̂

Interactions

  

 Figure 2-6. Observer based decentralized control with interactions between observers 

(3) Design the observer and controller by posing the output feedback stabilization 

problem as an optimization problem based on the overall system. The 

framework of the optimization approach using LMIs can be found in (Šiljak and 

Stipanović, 2001). The idea of the decentralized controller and observer design 

problems were formulated in the LMI framework for LSSs with non-linear 

interconnections satisfying quadratic constraints described in Section 2.3.1. The 

existence of a stabilizing controller and observer depends on the feasibility of 

solving a series of LMIs. The optimization problem will result in the selection of 

controller and observer gains that will not only stabilize the overall LSSs but 

also maximize the interconnection bounds (Zhu and Pagilla, 2007). The control 

structure is in the same form of Figure 2-5. The interactions are treated as 

uncertainties and can be tolerated by proper choice of control and observer gain 

matrices. The recent research can be found in (Šiljak and and Stipanović, 2001; 

Pagilla and Zhu, 2005; Zhu and Pagilla, 2007; Swarnakar and Marquez, 2008; 

Kalsi Lian and Żak, 2009, 2010; Shafai Ghadami and Saif, 2011). This method 

is also the basic idea behind the output feedback methods proposed in Chapter 5. 

2.4.2 Fault estimation in LSS 

The history of fault detection and isolation (FDI) can be traced back to the 1970s. From 

both theoretical and application-based perspectives, FDI has attracted considerable 

attention (Clark, 1978; Himmelblau, 1978; Chow and Willsky, 1984; Isermann, 1984; 
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Gertler, 1988; Patton, Frank and Clark, 1989; Chen and Patton, 1999; Patton, Frank and 

Clark, 2000; Isermann, 2006; Ding, 2008).  

The main idea of the model-based approach to FDI is to generate signals that reflect 

inconsistencies between nominal and faulty system operation. Such signals, termed 

“residuals”, are usually generated using analytical approaches, such as observers (Chen 

and Patton, 1999; Patton, Frank and Clark, 2000), parameter estimation (Isermann, 1994) 

or parity equations (Gertler, 1998) based on analytical (or functional) redundancy. 

Among all of the FDI approaches, observer-based methods are the most popular method 

to be researched and applied (Edwards Spurgeon and Patton, 2000b), for example, see 

(Chen and Patton, 1999; Shields and Du, 2003; Xu and Zhang, 2004). 

All the literature outlined above focus on centralized systems. When considering the 

FDI of LSSs, rather less research has been done (Yan and Edwards, 2008). The reason 

is the interactions act as an extra disturbance/uncertainty for the fault estimation. The 

influence from interactions leads to inaccurate estimation of faults while most research 

on FDI method can only deal with single types of faults (without uncertainties or with 

very small uncertainties). Early work on FDI for LSSs can be traced back to (Hassan, 

Sultan and Attia, 1992) who used a Kalman filter based on overlapping decomposition 

to detect and isolate the fault in discrete time. In (Chung and Speyer, 1998), a game 

theoretic fault detection filter combining with decentralized filter approach is proposed. 

(Shankar, Darbha and Datta, 2002) discusses the decentralized observer based fault 

detection for interconnected LTI subsystems. More recently, (Farrari, 2009) detects 

faults with a decentralized adaptive estimator based on overlapping structure. (Zhang 

and Polycarpou and Parasini, 2010) represent the decentralized fault detection under 

canonical form and using an adaptive threshold for robust fault detection. 

With the development of sliding mode theory, the idea of utilizing sliding mode theory 

in an observer has proved to be very effective in the field of FDI. However, compared 

with the residual generation approach, the sliding mode observer (SMO) forces the 

estimation of the outputs to be identical to the outputs of the plant with the so called 

“switching function”. Thus, the conventional residual generated by the output 

estimation error would be zero. The actuator and sensor fault estimation problems have 

been proposed in (Edwards and Spurgeon, 1998) and extended in (Tan and Edwards, 

2002, 2003). Later in (Yan and Edwards, 2008), the fault estimation sliding mode 
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approach for LSS is proposed. In this important research, the Edwards & Spurgeon 

SMO is used to estimate the actuator fault. Information about the situations under which 

the influence from interactions and uncertainties are minimized in the fault estimation is 

also included. However, Yan and Edwards assumed that the structure of the interactions 

is known (the second situation in section 2.4.1) and the uncertainties satisfy certain 

conditions. There seems to be no other literature on the application of decentralized 

SMO theory for nonlinear-interconnected systems to obtain a decentralized and precise 

fault reconstruction. This motivated the method proposed in Chapter 6. 

2.5 Conclusion 

This Chapter gives a review of decentralized control and estimation methods for LSSs. 

According to the control structure, the control strategies can be classified as multi-level 

and single-level structures. Multi-level control constructs a pyramid structure, using 

local control level to deal with the independent information of subsystems whilst using 

higher level to give the decision rules to the lower lever. The Two-level control strategy, 

as a typical multi-level, is reviewed in this Chapter. This structure gives a clear vision of 

the multi-level structure. However, the higher level of multi-level control still requires 

centralization (i.e. a requirement for a coordinator). This condition increases the 

complexity of this method. 

The rapid increase in computer technology in the last decade means that the single-level 

control structure is much simpler and more widely used than multi-level LSS structures. 

As this Chapter describes, the interactions are taken care of by robust local controllers. 

There are numerous decentralized methods for LSSs. Most of them can be classified by 

their decomposition methods. This Chapter reviews two main decomposition methods 

when using single-level control structure: disjoint decomposition and overlapping 

decomposition.  

To concentrate on the main topic of this thesis, the “quadratic constraint” assumption 

for interactions is introduced for disjoint state space structures. Also a brief idea about 

decentralized sliding mode theory is given. The treatment of these topics is useful in 

Chapters 4 and 5. 

Although this thesis mainly focuses on the disjoint decomposition, some work on 

overlapping decomposition (Huang and Patton, 2012b) has also been done. For the 
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future work, there are still a lot of open problems to be addressed based on the 

overlapping structure.  

For the estimation applied to LSSs, the decentralized observers are often in the role of 

observer based control or fault estimation. In this Chapter, three observer based control 

methods are reviewed which give a good basis for Chapters 5 and 6. Decentralized fault 

estimation methods based on the use of decentralized observers are also discussed. 
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Chapter 3  

Annealing Furnace Modelling: A Differential 

Quadrature Approach 

 

3.1 Introduction 

Furnaces have been widely used in industrial applications as heating devices to raise the 

temperature of particular system processes, such as for power systems or in the 

annealing process used for preparation of a metal for rolling in the metal industry. This 

Chapter proposes the development of a model of a steel annealing furnace system as an 

example of a LSS application.  

The work is based on a well-known model formulation included in the McGuinness and 

Taylor’s report of the MISG project. “New Zealand Steel use a unique process to 

convert New Zealand iron-sand into steel sheet products at its Glenbrook mill near 

Auckland. Traditional galvanised steel and the new product Zincalume are produced in 

a range of dimensions, grades and coating weights.” (McGuinness and Taylor, 2004). 

The steel strip is annealed before being coated. The furnace heats the steel strip to a pre-

determined temperature in well defined time, producing desirable changes in the 

crystalline structure of the steel strip to tailor its strength and ductility.  

The Cross-section of the furnace is shown in Figure 3-1.  The steel strips pass through 

the furnace to get heated up. The furnace length is denoted by   m. The velocity of the 

strip   m/s is constant. Thus, if the steel achieves the desired temperature at the end of 

the heating zone, the time of heating up can be calculated by       .The temperature 

of the furnace is controlled by several heating elements fixed in the wall. In this Chapter, 

the cooling part of the furnace is not considered although it exists in the real system 

(McGuinness and Taylor, 2004). It’s important that the steel exits the furnace with the 

correct temperature because the coating process is applied at the exit point. 
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Figure 3-1. Cross-section of the furnace (McGuinness and Taylor, 2004) 

Assume that the line speed and the thickness of the steel are constants (might be varied 

as a form of parametric uncertainty), and the width of the steel strip is a constant so that 

the heating process is continuous. It is also assumed that the whole strip achieves the 

required temperature (as either a single temperature or as a defined variation of 

temperatures). 

The temperature measurements of the furnace are made using thermocouples and non-

contacting pyrometers. The thermocouples used to measure the furnace temperature are 

fixed to the furnace wall and the non-contact pyrometers are used to measure the 

temperature at three distinct strip locations 

If there is no variation in strip dimensions and annealing settings then the system will 

run in a steady state (McGuinness and Taylor, 2004). The furnace temperature will 

remain steady at the desired thermocouple settings. However, parameter variations can 

be considered as uncertainties. The appropriate control method is then chosen to 

attenuate or compensate the influence of the uncertainty. 

The Chapter has the following structure: Section 3.2 describes the main equations of the 

furnace model in two parts, the strip temperature and furnace wall temperature models, 

unit: mm 
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respectively. In order to fully develop the model several further assumptions must be 

made. Section 3.3 introduces two alternative methods for discretising the PDEs into 

ODE format. These methods are known as differential quadrature methods following 

the work introduced by Bellman (Bellman Kashef and Casti, 1972): One quadrature 

approach uses cubic spline interpolation in which the partial derivatives are represented 

over one data interval using a separate cubic spline. In contrast the differential 

quadrature using orthogonal interpolation polynomials are chosen as Lagrangian 

Interpolation polynomials spanning the whole range of the quadrature. These two 

approaches are applied separately to the strip and furnace wall models, respectively. 

Section 3.4 then describes an organization and simplification of the structure of the 

equations leading to a non-linear state space system, where the non-linearity comes 

mainly from considering Stefan’s radiation law applied to the furnace system. The two 

boundary conditions of the original partial differential system are handled via a simple 

trick in the use of the Lagrange interpolation. The modelling procedure produces a 

nonlinear furnace model for simulation which is shown in Chapter 7. 

3.2 Furnace System Mathematical Modelling 

As outline in Section 3.1, the furnace model contains two heat transfer components: the 

strip model and the furnace wall model, respectively, together making up the strip-

furnace model. This Chapter describes the development of an appropriate non-linear 

state space model to illustrate the main dynamic properties of the strip-furnace system. 

Several assumptions are made for the identification of this system (McGuinness and 

Taylor, 2004): 

Assumption 1: The temperature of the strip over each cross-section is considered 

constant. 

With this assumption, the temperature variation in the cross-section area can be ignored. 

Assumption 2: It is assumed that the metal is conveyed only in the longitudinal 

direction. 

Consider that the furnace is perfectly straight with rectangular cross section as shown in 

the 3-dimensional model of Figure 3-2 Consider the longitudinal direction via the axis  , 

the latitudinal direction with axis  , and the vertical direction via axis  . Then assuming 
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all strip motion is only in the longitudinal direction, the temperature variations 

orthogonal to the conveyor direction will be negligible i.e.   
  

  
   and 

  

  
   . 

  

Figure 3-2. Furnace dimensions 

Assumption 3: The inner surface temperature of the furnace walls depends on time   

and distance   along the furnace measured from the entry point of the strip. 

Assumption 4: The temperature of a heating element is the same as the temperature of 

the inner surface of the wall adjacent to the element. 

Assumptions 3 and 4 contributing to the simplification of the thermal equations of the 

furnace model are described in the Section 3.4. 

Assumption 5: Temperature changes within the furnace are so gradual that the radiative 

or convective heat transfer components along the length of the furnace can be ignored. 

This assumption leads to a reduction in complexity since there is no not net radiation 

heat transfer as the strip travels from one zone into another, i.e. there is no interactions 

between the furnace wall models. 

Assumption 6: This model only concerns the heating zone of the furnace. 

Normally, the furnace contains cooling tubes after the heating zone. However, this work 

is only concerned with the heating function of the furnace. Between the heating and 

cooling zones, Assumption 5 is not valid. 
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3.2.1 Strip Thermal Model 

Firstly, set up a region of space: 

  }0,0,0:),,( hzwylxzyxS   

where,   is the length of the furnace,     are typical values of the thickness and width 

of the strip, all dimensions in m. 

For the strip, the heat conduction equation of the conveyed material is given by the 

classical heat conduction equation modified by a convective term and a term which 

accounts for the heat source 
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  is the strip temperature,            are the strip density, thermal conductivity and 

specific heat capacity , respectively.   is the radiative heat transfer between the furnace 

wall and the strip.    is the conveyor speed in      .  

Assumption 1 implies that the temperature variation in the cross section of the strip can 

be ignored. This means that the heat conduction in the lateral and vertical directions 

(
   

    
   

   ) can be removed from the strip model. And following Assumption 2, there is 

no conveyor movement in the lateral and vertical directions. According to this 

Assumption the term  
  

  
 describes the temperature variation in the longitudinal 

direction influenced by the conveyor speed  .  

In this case, the heat equation can be further simplified to reduce the computation 

burden, as follows: 
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The thermal properties of steel         change with temperature are shown in Table 3-1. 

Taken from (McGuinness and Taylor, 2004): 
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 Table 3-1. Properties of steel in different temperature 

     300 400 600 800 1000 

           60.5 56.7 48.0 39.2 30.0 

            434 487 559 685 1169 

 

According to this table, two suitable polynomial interpolations can be achieved for 

        as: 

 245.720374.065 2  TTes   (3-3) 

 
432 95.560667.9004895.05043333.0345 TeTeTTcs    (3-4) 

Because the annealing process has a large range of temperature variation, the properties 

of steel cannot be ignored in the system. Hence, Eqs. (3-3) and (3-4) should be 

considered during the linearization in Chapter 7.  

By considering the thermal combination of the strip and furnace wall, McGuinness and 

Taylor gives the equation for the radiation per unit length of the heat source   of the 

furnace walls to the strip as: 
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  is the strip width,   is the approximately the sum of the vertical length and width  of 

the inside of the furnace.       are the thermal emissivity of the strip and furnace wall, 

respectively.   is the Stefan-Boltzmann constant which is                   

   . 

By assuming     , the Eq. (3-5) is finally simplified to: 

 )(2 44 TTwq ws     (3-6) 

3.2.2 Furnace wall thermal model 

Now consider the energy balance for a single unit of the heating elements and inner wall 

surface to construct the thermal model for the furnace walls. Assume that the unit length 

is   , the specific heat capacity of the unit is    and the mass of the unit is  . By 
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considering the combined inner wall surface and heating elements as a single lumped 

isothermal object, the appropriate energy balance can be expressed as (McGuinness and 

Taylor, 2004): 

 xqxpxPx
dt

dT
mc w

u  2   (3-7) 

Where,   is the heat flux into the walls,   is the energy supplied to the unit,   is the 

width and height of the inner surface of the furnace so that      denotes the total area 

of the inner surface. The terms in Eq. (3-7) are illustrated in Figure 3-3: 

 

Figure 3-3. Energy balance in a single unit of furnace 

Assuming that the heating elements have little thermal inertia (no energy storage), Eq. 

(3-7) can be further simplified to: 

 02  xqxpxPx
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u   
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A further simplification can be made by treating each heating element and furnace wall 

as a separate one dimensional brick thermal model, considering only heat conduction 

(i.e. no convection or radiation). (McGuinness and Taylor, 2004): 

 dr
r

T

t

T
c B

w
B

ww 








0

2

2

   (3-9) 

This is combined with the following boundary conditions: 

 ),(),0,( txTtxT wB    (3-10) 

Power supplied   

 

Heat flux to the wall   

 

Energy to the strip by radiation   
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Where,          are the density         , specific heat capacity              

and thermal conductivity of the walls            , respectively.               is 

the temperature of the internal wall (brick) of the furnace (at a distance       and a 

depth       into the wall.             is the temperature of the inner surface of the 

furnace.   (m) is the thickness of the wall.    is the external ambient temperature.   is 

a convection coefficient. The structure of furnace wall is shown in Figure 3-4. 

 

 Figure 3-4. Cross section of furnace and wall temperature model 

Moreover, the thermal properties of the wall as given in (McGuinness and Taylor, 2004), 

are shown in Table 3-2 

Table 3-2. Properties of brick of the furnace wall 

     478 1145 

           0.25 0.30 

                      

                      

 

It can be seen that the variation of the thermal properties with temperature are small, 

which means that it can be assumed that these brick properties are constant. 
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To conclude, the nonlinear model of the whole system can be written as: 
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3.3 Two methods of differential quadrature 

The method of differential quadrature developed by Richard Bellman in the 1970s 

(Bellman Kashef and Casti, 1972) is a numerical solution technique for differential 

systems by means of a polynomial-collocation approach at a finite number of points. 

Two differential quadrature approaches have been adopted in this work. Firstly, the 

continuous derivative function (partial derivative) is approximated using an orthogonal 

polynomial (over a finite number of collocation points – the roots of the polynomial). 

This method has a disadvantage that the node spacing in the lumped parameter system 

(spacing in the   direction) is non-uniform. The approach is compared with the use of 

Bellman’s second quadrature which uses a set of cubic spline polynomials with each 

spline function effective over a collocation interval. 

It can be seen that both strip and furnace wall dynamical models contain PDEs, which 

make these models hard to be controlled. This Section introduces two differential 

quadrature methods: Lagrangian Interpolation Polynomial (LIP) method (Hsu, 2009) 
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and Cubic Spline (CS) Interpolation (Bellman, 1972 Shampine and Allen, 1973). With 

these two methods, the approximate models which are in the form of ODE can be 

obtained. However, once the model is cast in the state space form, it becomes possible 

to develop suitable robust control and estimation designs to achieve the required furnace 

performance objectives. 

The concept of differential quadrature starts with the notion of applying m-dimensional 

differential operator to a continuous and differentiable function where     . The m-

dimensional vector differentiation can be written in the following form: 
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where         is the functional value at grid point   , and         is a matrix 

defining the operations required to achieve differential quadrature.  

In the following subsections, LIP and CS are introduced, respectively. The further 

application of both these methods in furnace system is proposed in Section 3.4. 

3.3.1 Lagrangian Interpolation Polynomial 

This subsection describes a Lagrangian Interpolation Polynomial approach for the 

discretization of PDE systems into ODE system form. This interpolation is valid over a 

range of the space variable x, for which the range is divided into “collocation points” 

that match the roots of the orthogonal polynomial used. For example, the Chebyshev-

Gauss-Lobatto polynomial roots are distributed according to (Hsu, 2009) . 
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where    is the order of the polynomial, for example for      , the roots are 

distributed as shown in Figure 3-5: 
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Figure 3-5. Chebyshev-Gauss-Lobatto distribution 

The concept of the Lagrangian Interpolation is given as follows: 
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In this case, the matrix D in (3-13) can be expressed as: 

 jiNifor
xMxx

xM
D w

jlji

il
ij 


 ,,...,2,1

)()(

)()1(
  (3-16) 

also: 
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Once the grid points are selected, the coefficients of the weighted matrix can be 

acquired using equations (3-16) and (3-17). 

According to (3-13) quadrature matrices representing second-order derivative 

operations on a function      can also be acquired using matrix multiplication: 
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3.3.2 Cubic spline differential quadrature 

It is sometimes the case that equally spaced collocation points are desirable or actually 

required, or freedom to choose the spacing is necessary. CS provides a convenient 

interpolation approach for which the spacing of the collocation pints can be chosen 

arbitrarily within the domain of the space variable.  

The Lagrangian approach to interpolate the continuous and differentiable function      

requires a single polynomial for which the polynomial order is increased according to 

the required number of collocation points. In the CS interpolation individual CS 

functions are applied to each interval of the interpolation with special properties as 

follows. 

Suppose the functional values                     are known at each grid point of 

interest over the interval       with               . The CS function      

must satisfy the following conditions: 

(i).      is continuous along with its first and second derivatives on       

(ii).                       

(iii).      is a cubic polynomial on each interval                      . 

(iv).                     . 

For convenience, use the same interval in the strip model, hence let: 

 constant11   iiii xxhh   
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Note the difference between       and      :       is the overall interpolatory spline 

function at the collocation point    whilst       is the sub-function in the interval 

           . 
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From condition (iii), since      is a cubic polynomial,        is a linear polynomial that 

can be expressed in the form: 
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To obtain the expression of      , integrating (3-19) twice: 
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The integration constants    and    are determined according to the property (ii): 

         ,              . It follows that: 
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The constants    and    can thus be represented by two functions: 
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Then Eq. (3-20) can be rewritten as: 
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Differentiating (3-22) with respect to time, it follows that: 
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Using condition (i),      and its first derivative are continuous functions, i.e.: 

 )()(1 iiii xSxS     (3-23) 

Eqs. (3-22) and (3-23) can be combined and thus a new condition is given by: 
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The set of Eq. (3-24) is a system of       linear equations with       unknown 

variables           . Two additional conditions should be added to solve this equation 

set. Normally, these two conditions are the boundary conditions of the PDEs. For some 

PDE problems, (e.g. furnace temperature problem), the second derivatives of the first 

and last points might be considered constant. i.e. 

                  (3-25) 

The method used to solve (3-24) and (3-25) is taken from (Shampine and Allen, 1973). 

This mathematical procedure is applied here to the discretization of the PDE system into 

a set of non-linear ODEs. It is important to note that the linearization operation is 

applied to the non-linear ODE system and this is described in Chapter 7. 

By further defining: 
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From (3-24), it follows that: 
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Recalling that the spline is always of order 3, it then follows without loss of generality 

that the second derivative    has the form: 

 111   iiii ss    (3-28) 

On substituting (3-28) into (3-27) and after some manipulation it follows that: 
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Eq. (3-29) has the same form as Eq. (3-28), thus the following definitions can be 

derived: 
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Since     ,      and     . Note that the scalar multiplier      only depends on 

  , and hence as     ,    can be calculated by recursive iteration. Furthermore, to 

compute the 
i
 , the following procedure is considered: 

Rewriting (3-26) as: 
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By further iteration, 
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  is calculated as: 
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Since          , by combining all the    and using a similar iteration to the one 

given in (3-29) can be rewritten as: 
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where           has a similar form to the    and can be calculated simply by iteration. 

In this case, the second derivative can be written as: 
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Substituting (3-32) into (3-22), the first derivatives of the spline functions have the form: 
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3.4 System model identification 

Recalling the furnace wall model (3-9)-(3-12) and the strip model (3-2), with the 

differential quadrature methods described in Section 3.3, these PDEs could be 

transferred into ODEs. However, the methods should be chosen carefully for different 

models.  

Furnace wall model  

For the furnace wall model, only two spacial grids are of interest, (a) the inner wall 

surface temperature    and (b) the outer surface temperature           both of which 

are assumed measured. The grid points inside the furnace wall do not need to be equally 

spaced in the grid and hence, LIP is suitable for generating the required differential 

quadrature. Another advantage of applying this method in the furnace wall model is that 

the boundary conditions could be easily handled. 

Using differential quadrature, the heating equations (3-9)-(3-12) are transferred to: 



46 

 

 )()( ,

)2(

, tTDtT
dt

d
c iBwwiBww     (3-34) 

 ),()(
,1,,

txTtT
iwiB

   (3-35) 

 
i

r

iB

w
r

T






0

,   (3-36) 

  )(,,

,
tTTH

r

T
wNiB

dr

iB

w 







   (3-37) 

where,             is the temperature vector for grids in the furnace wall of the i-th 

furnace model. Since there is no need to specify a different number of grids for the 

furnace model in different zones,    is a constant and it represents the number of grids 

for the furnace model of all subsystems. Moreover, the interval between the nodes in the 

furnace wall satisfies Chebyshev-Gauss-Lobatto distribution: 
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where d is the thickness of the furnace wall. It should be noted that (3-35), (3-36) and 

(3-37) are the boundary conditions for the furnace model. They are handled later in this 

Section. 

Strip model 

The reason for choosing CS as the interpolation method for this strip model is that in the 

strip the same interval distance between two nodes is adopted. In the CS method, 

splines between two nearby points are designed separately. The distribution of the 

collocation points does not much affect the accuracy of the methods. This is different 

from LIP method introduced in Section 3.3.1. Moreover, with the CS method, the larger 

the interval between two grids, the smaller the interactions they have. This is much 

closer to the real situation than LIP method which might have very large interactions 

between two long-distance points. 

According to Section 3.3.2, the PDE (3-2) of the strip model can be transferred to: 
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where          is the temperature of the strip,          is the vector of heating 

source. It should be noted that (3-39) is the model for the overall system. The interval 

between the nodes is constant. 

Interactions between furnace wall model and strip Model 

The interconnection between the furnace wall model and strip model is radiative heat 

transfer from the furnace wall to the strip. It is represented by    of Eq. (3-36) and       

of Eq. (3-39). They can be expressed by: 
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where,   is the input heating power for the system.         is the inner furnace wall 

temperature which                  . 

It can be seen that the strip model and the furnace wall model have different coordinates. 

The distribution of nodes in the strip is in the direction  , and the distribution of nodes 

in the wall model is in the direction  . Thus, in the x direction,  the strip model is 

seperated into   zones with    nodes (         ) and each zone has its own heater 

(furnace heating model). The interactions between the subsystems (heating zones) are 

heat conductive and the movement of the strip is given by the decomposition of the 

matrix  
 

  
       .  

To briefly illustrate the procedure of modelling, using a single zone, the state vector for 

each subsystem is chosen as: 
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Since LIP is used in the furnace wall model, Eqs. (3-36) and (3-37) could be rewritten 

as:  
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And the state equation (3-34) for the furnace model can be written as: 
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The idea of dealing with the boundary conditions is to substitute the right side of (3-41) 

and (3-42) into (3-43). Thus, first defining two matrices: 
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and rewriting (3-43) as: 
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By further defining: 
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it gives the furnace wall model in the state space: 

 wwBwB EBTAtT )(   (3-44) 
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On the other hand, the strip model can be simplified as: 
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where    
 

  
       and    
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Since the input is the power   in (3-8), Combining Eqs. (3-44) and (3-45), gives the 

system equation is in the form of: 
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Now that the partial differential equations are transferred to ordinary differential 

equations and combined with the boundary conditions in the model equations, the 

problem remaining is the nonlinear part  . 

The nonlinear part   in Eq. (3-46) is not easy to be handled. As it can be seen, in the 

strip model, every strip grid point (with its temperature represented by     ) receives the 

heating energy from the furnace wall. In this case, the term   of Eq. (3-46) should be a 

vector. However, in the furnace wall model,   is a scalar which can only be used in the 

boundary condition (3-11). Ideally,   is a vector,                       

       , where            are the heat sources received in the strip model and 

   is the scalar hidden in the boundary condition (3-11) of the furnace wall model. As a 

matter of fact, temperatures at different points of the strip are different. Thus, it is 

necessary to make   a vector with different elements           . There are 3 

different ways to deal with the scale    in the wall model. 

1) Using 
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Where,      is the temperature of the middle point of the strip grids.  

2) Using 
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Where,         is the average temperature of the strip grids.         
 

 
     

 
   . 

3) Using 
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to get the average energy to the wall. 

Intuitively, the 1
st
 method seems the easiest approach to use. However, it can be seen 

that with the 3
rd

 method, the only information needed is the states (temperatures of grid 

points) of the strip model instead of grid selection or more computation. Thus, the 

heating model can be written as: 
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Substitute (3-47) into the system equations (3-46), the new system equation is given by: 
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Assume that the temperature of the input point of the furnace is fixed. Thus, if the initial 

conditions for the strip are known. The strip model can be further simplified and the 

order of it can be reduced to      . Since the first state of the strip model is fixed, i.e. 

the derivative of this temperature is zero, the system matrix   of the strip model can be 

modified by: 
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Thus, the new system matrix becomes: 
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Meanwhile, the influence from the input point should not be ignored. the constant E of 

the system should be modified as: 
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Note that if the nonlinearities of the properties of steel are neglected, the system 

contains three linear parts        , and one nonlinear part 
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The above description illustrates the modelling procedure of the furnace system with 

only one heater. To model a large scale furnace system which has several heaters, 

assuming that the large scale furnace system has N zones, the states of the overall 

system should be in the form of: 
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where                is the number of points in the i-th strip model.      

       
         

  
 

 is the strip temperatures of the i-th strip model.      

       
         

  
 
 is the furnace wall temperatures of the i-th furnace heating model. 

It should be noted that the first zone contains the input point, thus the dimension of it is 
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    . Normally, choose             . The system matrix of the overall 

system is in the form of (3-48) but with different structure:  
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  (3-50) 

where,                             .              is the submatrices of the overall 

strip model matrix    in (3-45). Thus, the interactions between different zones are the 

heat conduction and the temperature movement in the strip model (3-45). Other 

matrices should be modified in order to satisfy the state structure (3-49).  

3.5 Model Validation 

According to the description in Section 3.4, the state space model of the large scale 

furnace model has been established. To verify the modelling procedure, this section first 

describes the simulation of the furnace model with MATLAB using the parameters 

given in (McGuinness and Taylor, 2004). Following this, the model properties can be 

validated by using the zero input response, i.e. by inspecting the furnace system’s 

natural “open-loop” thermal behaviour without temperature regulation. Then the steady 

state solution of the PDE system can be calculated by giving some of the reference 

temperatures of the strip model. A PID control for the nonlinear system model is then 

designed to provide good tracking performance of the same references. By comparing 

the results of the steady state solution of the PDEs and the nonlinear model with control, 

the modelling accuracy can be discussed.  

3.5.1 System simulation 

To simulate the furnace system, with the number of zones chosen to be    , the 

number of grid points for each strip model is              (     according to 

Section 3.4) and the number of grid points for the furnace wall model is     . These 

parameters are appropriate for the furnace model system derived in Chapter 3.  
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According to Chapter 3, the aggregate model system structure has the following form: 

 EfBuAxx    (3-51) 

where: 
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In the first strip model, by considering the input point temperature as constant, the 

dimension of the first strip model is reduced to 5. Thus, the dimension of the overall 

system is 29. The system parameters are taking from (McGuinness and Taylor, 2004) 

and they are shown in Table 3-3. 

Table 3-3. Furnace System parameters 

Strip 

Density    7854 [Kg·m-3] Thickness   0.5 [mm] 

Width   0.94 [m] Velocity   2 [m·s
-1

] 

Emissivity    0.2 
Interval of the strip 

model    
1.5 [m] 

Furnace 

Width+height   3.4 [m] Density    2000 [Kg·m-3] 

Heat capacity    900 [J·(Kg·K)-1] 
Thermal conductivity 

   
0.28 [W·(m·K)-1] 

Thickness of the wall   0.4 [m] 
Heat convection 

coefficient   
14.7 [W·(m2·K) -1] 
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3.5.2 Zero input response 

The furnace system is assumed to stable. Without any input, when the temperature of 

the inner wall is higher than the strip, the temperatures of the strip grids are (1). 

increased because the inner wall temperature is higher, then (2). decreased slowly 

because there is no power supply and the temperature of the wall is decreasing. 

Meanwhile the temperature of the furnace wall should keep decreasing. Bearing these in 

mind, by setting the initial conditions of the system:        , 

                          , the strip temperature response with zero input can be 

given: 

   

 Figure 3-6. Strip temperature response without power input 

Figure 3-6 shows the system response of the strip temperature with zero input. As 

discussed above, the strip temperature first increases as the inner wall heats up. As the 

strip moves further, the further the grid is away from the input, the more heat it gets 

from the wall. 

From Figure 3-7, the temperature of the furnace wall is decreasing during the operating 

since there is no power supply. Thus, the inner wall is cooled by the radiation from the 

strip and the outer wall is heated by the heat conduction from the inner wall. But one 

can expect that after a long time, the inner and outer wall temperatures (as well as the 

strip temperature) will converge to the ambient temperature which is      in this 

model.  
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Figure 3-7. Furnace wall temperature response without power input 

Since only the inner and outer wall temperatures are concerned, the order of the furnace 

wall temperature model can be reduced by a model reduction function using MATLAB. 

The final furnace model for each zone can be represented by a simple second order 

system. 

3.5.3 Steady state solution 

Consider all the temperatures are invariant with time, i.e. 
  

  
  , it follows that the 

steady state solution from the system Eqs. (3-2), (3-6), (3-9)-(3-12) are (McGuinness 

and Taylor, 2004): 
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The reason that the term 
  

    

   

    is neglected in (3-52) is that the influence from this 

second order partial differential term is so small in steady states. Hence, the steady state 

furnace wall temperature can be calculated as follows: 
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Then the wall temperature is given by: 
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Considering (3-6) and (3-8): 
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the steady-state power input of the i-th zone is given as: 
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Compared with what is assumed in Section 3.4, by substituting the temperature of the 

input point of the i-th zone into (3-6), an approximation solution of (3-52) is obtained: 
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The wall temperature can be written as: 
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3.5.4 PID furnace control 

PID control is the most common control structure used for process systems and it is 

easy to implement in the furnace system. It is known that the integral controller can 

remove the static output error. Thus, it can be applied as a good inner-loop controller or 

a controller for linearization. The model outputs are the end points of the zones. Thus, 

considering the furnace model (3-51), the controller (power input) can be designed in 

the form of: 
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   (3-60) 

Setting the desired temperatures of each zones as                     . 

Table 3-4 shows the choices of the gains of the controller.  

Table 3-4. PID controller gains 

     10      5      5 

     0.0001      0.0003      0.0003 

     1      1      1 
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 Figure 3-8. Strip temperature with PID control 

Figure 3-8 shows the strip temperatures of the furnace model.  

Assume that the input temperature is 300  and the zone exit strip exit temperatures for 

heating zones are                     . The grid interval of the strip 

model is chosen as       . Using (3-58) and (3-59), the temperatures of the inner 

wall surface and the strips in the steady state can be calculated. Then by driving the 

nonlinear model to the required reference temperatures, the temperature of each state 

can be obtained. Comparing the temperatures calculated from the PDEs ((3-58) and 

(3-59)) and from simulation, the errors are shown in Table 3-5. 

 

Table 3-5. Modeling error at steady states with interval        

 
Heating Zone 1 

Temperature [ ] 

Heating Zone 2 

Temperature [ ] 

Heating Zone 3 

Temperature [ ] 

Position PDE Model Error PDE Model Error PDE Model Error 

Strip-1 300 300 0 497.8 504.8 -7 599.3 598 1.3 

Strip-2 337.9 335.8 2.1 515.6 519.7 -4.1 618.6 616.9 1.7 

Strip-3 375.8 372.7 3.1 533.4 537.3 -3.9 637.8 634.7 3.1 

Strip-4 413.7 411.7 2 551.2 551.4 -0.2 657.1 651 6.1 

Strip-5 451.5 449.5 2 568.9 568.6 0.3 676.4 670.3 6.1 
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Strip-6 480 480 0 580 580 0 680 680 0 

Inner wall 977.2 972.9 4.3 851.5 842.7 8.8 900.1 894.1 6 

 

It can be seen that the modelling error is acceptable. Because of the strong numerical 

accuracy of the Bellman differential quadrature interpolation methods used to derive the 

approximate ODE (state space) model system it can be deduced that if one reduces the 

gird interval, the error is also reduced. The results are given by setting       , 

     and     . 

 

Table 3-6. Error between PDE and Simulation under different interval distance 

 
Heating Zone 1 

Temperature [ ] 

Heating Zone 2 

Temperature [ ] 

Heating Zone 3 

Temperature [ ] 

Position 

Error 

 

      

Error 

 

    

Error 

 

    

Error 

 

      

Error 

 

    

Error 

 

    

Error 

 

      

Error 

 

    

Error 

 

    

Strip-1 0.0 0.0 0.0 -7 -6.2 -5.5 1.3 1.1 0.1 

Strip-2 2.1 0.3 -0.8 -4.1 -4 -3.5 1.7 1.6 -0.3 

Strip-3 3.1 3 2.2 -3.9 -3.5 -3.0 3.1 2.6 -0.4 

Strip-4 2.0 1.0 0.6 -0.2 -1.4 -2.0 6.1 4.4 0.0 

Strip-5 2.0 1.5 1 0.3 -0.8 -1.4 6.1 5.9 0.7 

Strip-6 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 

Inner 

wall 
4.3 3.4 2.5 8.8 6.4 2.2 6 1.6 1 
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Figure 3-9. Absolute value of the errors between the PDE solution and the system 

simulation results under different grid spacing 

From Table 3-6 and Figure 3-9, it can be seen that reducing the strip model grid spacing 

improves the approximation accuracy of the PDE solution, as expected.  

However, there are still residual errors even with a small enough choice of the interval. 

These errors are introduced as a consequence of some restrictions used in the 

computation of the cubic spline coefficients and hence in the coefficients of the 

differential quadrature matrices. Further errors may be due to the approximation of heat 

source   used in Section 3.4). This may be the subject of further work on this example. 

3.6 Conclusion 

In this Chapter, the concept of a steel annealing furnace, the model equations and the 

identification of this furnace model are presented.  

Generally speaking, the aim of this furnace is to heat the steel up to a certain 

temperature at the end this heating zone. Several heating elements are set in the wall to 

control the temperature of the furnace wall. And heat up the steel by heat radiation. 

Several PDEs are introduced to represent the heating procedure.  

However, in order to apply modern control in this furnace, PDEs model should be 

approximated by ODEs first. In this Chapter, two interpolation methods for differential 
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quadrature are proposed to convert the PDE problem to ODE problem. The infinite 

nodes of PDEs (distributed parameter system) which can be approximated by finite 

nodes ODEs make this furnace system large scaled. Some simplification and 

assumptions are further made to identify the nonlinear model. In this case, the state 

space model for this large scale furnace model is proposed.  

In the final part of this Chapter, the nonlinear model is simulated and validated 

qualitatively compared using zero-input response. Then the steady state solutions to the 

partial differential equations (i.e. considering heat balance) are compared with the 

results of the nonlinear ODE system using PID control to discuss the modelling 

accuracy. This model is controlled and further discussed in Chapter 7. 
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Chapter 4  

Sliding Mode Control for Large Scale Systems 

4.1 Introduction 

The so called “sliding mode control” (SMC) emphasizes the important role of “sliding” 

when designing “variable structure control” (VSC). VSC can be considered as a set of 

control laws driven by a decision rule. The control law for the system switches from one 

control law to another if the system satisfies a certain decision rule. Normally using the 

switching function, the decision rule considers some properties or behaviour of the 

current system and helped change the control law instantly. The system with this 

specific structure is so called “variable structure system” (VSS) (Hung, 1993). It is easy 

to find that the benefit of using VSC is to combine useful properties of each of the 

composite structures of the system and the system may contain new properties 

(Edwards and Spurgeon, 1998). 

Variable structure control with a sliding mode was first described in Russian in the early 

1930s. It did not appear outside of Russia until the mid-1970s. In the late 70s, (Itkis, 

1976) and (Utkin, 1977) introduced this methodology in English. During 1970-1980, 

VSC did not attract much attention since (1) people prefer other simpler linear control 

design techniques and (2) the robustness properties of VSC were not yet fully 

recognized. In 1980s, engineers started to pay attention to this very robust method with 

the development of general VSC design methods (Hung, 1993). By 1993, general 

application areas included: robotic control, motor control, flexible structure control and 

power systems (Hung, 1993). Today, research and development continue to apply VSC 

to a wide variety of engineering systems. During the 1990s and the beginning of 21 

century, VSC theory for linear systems became a rather complete subject. Some other 

types of VSC, such as integral sliding mode, high-order sliding mode etc., also received 

considerable attention. Current applications also include: Three-Axis Optical Pickup 

(Chao and Shen, 2009), Permanent-Magnet Synchronous Motor Control System (Feng 

and Jiang, 2009), Satellite system (Lee and Kim, 2010), Spacecraft system (Pukdeboon, 

Zinober and Thein, 2010) etc. 

Section 4.3 contains material that has been presented as “An adaptive sliding mode approach to decentralized 
control of uncertain systems.” UKACC International Conference on Control, Cardiff, UK, 70-75, 3-5 Sep. 
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The concept of “sliding mode” can be traced back to 1934, Nikolski first used the term 

“sliding mode motion” in Russian (Hung, 1993). During the development of VSC 

theory in 90s and 00s, the term “sliding mode control” was quickly accepted by most of 

researchers because of its visual description to VSC. One of the most attractive aspects 

of sliding mode theory is the discontinuous property of the control action whose 

primary function of each of the feedback channels is to switch between two distinctively 

different system structures such that a new type of system motion, called “sliding 

motion”, exists in a manifold. This special system characteristic is claimed to result in 

superb system performance which includes insensitivity to parameter variations, and 

complete rejection of the matched disturbances (Young, Utkin and Özgüner, 1999). 

This robust property makes the sliding mode attractive from a design perspective. 

Within two decades, SMC has become more like a branch of VSC. It has a well-defined 

design procedure containing two components. The first is the sliding surface design in 

which some desired design specifications should be considered. Some other robust 

control idea can be integrated into this design framework. The second component is 

concerned with the selection of a control law which drives the system to the sliding 

surface. Survey and tutorial papers have been written on sliding mode in (Utkin, 1977; 

Hung, 1993; DeCarlo, Żak and Matthews, 1988; Edwards and Spurgeon, 1998; Young, 

Utkin and Özgüner, 1999; Castaños and Fridman, 2006; etc.) 

Although there are many publications discussing sliding mode principles, the literatures 

contain much less information to describe sliding mode methods applicable to LSSs. As 

a consequence of the insensitivity property after reaching the sliding surface, sliding 

mode theory is mostly combined with disjoint and decentralized control. One can note 

this through the publications in 20 years (Feng and Jiang, 1995; Hsu, 1997; Chou and 

Cheng, 2003; Shyu, Liu and Hsu, 2005; Yau and Yan, 2009; Zhu and Li, 2010). 

However, most of these literatures are based on the assumption that the interactions 

satisfy an appropriate so-called matching condition. (Yan, Spurgeon and Edwards, 2003, 

2004, 2009) propose several papers discussing decentralized sliding mode using the 

Edwards & Spurgeon canonical form. However, in this approach the rather complicated 

use of state transformations and calculation procedure are the main problem.  

In this Chapter, the developments of sliding mode theory are proposed, including 

regular form, reachability and control law design. Systematic sliding mode control 
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methods for LSS are introduced as well. Combined with the properties of LSS, typical 

decentralized state feedback and output based SMC methods are represented. A 

numerical example is also used to illustrate the methodology.  

4.2 Review of typical sliding mode control theory 

The sliding mode has proved to be a very powerful tool for disturbance rejection. In this 

Section, the sliding mode control is introduced and the properties of it are outlined 

based on the two steps of (1) sliding surface design and (2) control law design. The 

regular form of decomposition is first discussed. 

4.2.1 Regular form and matched perturbations rejection 

Consider the following linear time invariant (LTI) system: 

 )()()( tButAxtx    (4-1) 

     is the system state vector,      are the system inputs, and the system 

matrices are       ,       . The input matrix   is assumed to have full rank and 

the pair       is stabilizable.  

Normally, the classical sliding surface function is design as: 

 )()( tSxt    (4-2) 

Each sliding surface function describes a linear surface       , the so called “sliding 

surface”. Other terms like “sliding (switching) manifold”, “switching hyperplane” are 

also used. The classical sliding mode surface designing algorithms are mostly based on 

the so called “regular form”. The main idea of this form is to decompose the system 

states equations into two part: (1) the states controlled by inputs directly and (2) the 

states controlled by inputs indirectly. i.e. 

 )()()( 2121111 tzAtzAtz    (4-3) 

 )()()()( 22221212 tuBtzAtzAtz    (4-4) 

where,  
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The main advantage of this regular form is that disturbances or faults are decomposed 

into matched (appear in Eq. (4-4)) and unmatched parts (appear in Eq. (4-3)). The 

matched part can be compensated by the control input    . Hence the problem 

remaining is how to attenuate the unmatched part of disturbances appearing in Eq. (4-3).  

To make the transformation matrix   invertible, the matrix   should be designed 

properly such that   is full rank. The simplest way to design   is by setting     . 

The following describes two other approaches that appear in the literature. 

The method used in (Zinober, 1990; Edwards and Spurgeon, 1998) is QR 

decomposition, the advantage of using this decomposition is that there is no longer a 

need to consider the design of a matrix  . After using QR Orthogonal-triangular 

decomposition, the matrix   is decomposed into an upper-triangular matrix and the 

transformation matrix T is an orthogonal matrix, i.e. full rank and invertible. By 

modifying this transformation matrix, the structure (4-5) can be shown to be satisfied. 

In the new coordinates, the sliding surface function becomes: 

 )()()( 2211 tzStzSt    (4-6) 

where            . 

Once the sliding surface is reached, i.e.              , it follows that: 

 )()()( 111

1

22 tNztzSStz  
  (4-7) 

Moreover,  

 )()()( 112111 tzNAAtz    (4-8) 

So the problem becomes designing the matrix   so that            is stable. Note 

that this problem is similar to the state feedback control problem: that of designing the 

matrix   to make        stable. For this problem, several methods are available 

based on this regular form, e.g. pole-placement, H , Linear-quadratic regulator (LQR), 
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etc. Three sliding surface function design approaches are described in (Edwards and 

Spurgeon, 1998): 

(i). Robust pole-placement (Ryan and Corless, 1984) 

(ii). Quadratic minimization (Utkin and Young, 1978), and  

(iii). Eigenstructure assignment (Zinober, 1990) 

Another approach to design the regular form is to pay more attention to specific design 

of the matrix M. (Choi, 1997) describes an approach that defines        , together 

with the sliding surface function               . The new coordinate vector after 

transformation then follows as: 

 )()()( 121111 tAtzAtz    (4-9) 

 )()()()( 222121 tuBtAtzAt     (4-10) 

In this case, the associated vector      and a LMI based sliding surface function 

designing approach can be applied.  

As mentioned above, if there are some disturbances or uncertainties in the system, the 

sliding mode can compensate all the perturbations appear in (4-4). The reason is that if 

the system has the following form: 

 ),()()()( txDftButAxtx    (4-11) 

where     , then the so called matching condition is satisfied. By using the sliding 

function           , if the sliding surface is reached and can be maintained, then 

       and        . The control law is then equivalent to:  

 ),()()()()( 11 txSDfSBtSAxSBtueq

    (4-12) 

One should note that    must be non-singular is required. Then the ideal sliding mode 

is given by substituting (4-12) into the system (4-11): 

 ),())(()())(()( 11 txDfSSBBItAxSSBBItx     (4-13) 

As for this case,     , it follows that: 
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 0))(())(( 11   BRSSBBIDSSBBI   (4-14) 

Thus, by substituting (4-14) into (4-13), there is no perturbation, i.e. the controller 

rejected all the matched perturbations after the sliding surface is reached and maintained. 

This is the main property of sliding mode that the ideal sliding motion is totally 

insensitive to the uncertain function if         (Ryan and Corless, 1984; Dorling and 

Zinober, 1986; DeCarlo, 1998; Zinober, 1990; Edwards and Spurgeon, 1998). 

Now the essential design challenges as discussed in the following sections are to 

determine: (1). the system response before reaching the sliding surface (reachability); 

(2). The control law design; and (3) the nature of the unmatched perturbations.  

4.2.2 Reachability Problem and Reaching Phase 

Once the sliding surface function        is designed, a control law should be carefully 

designed in order to drive the states trajectory to the sliding surface. This problem is the 

so called “Reachability problem”. From the description in Section 4.2.1, the system is 

stable and insensitive to the matched perturbations only if the sliding surface is reached, 

i.e.         . 

In both (Hung, 1993) and (Edwards and Spurgeon, 1998), the solution to the single 

input single output reachability problem is explained clearly. If a system can reach the 

sliding surface, the sliding surface should be “at least locally attractive”. This can be 

expressed mathematically as: 

 0lim
0






     and    0lim

0






   (4-15) 

for some domain     . 

For the MIMO system, Lyapunov theory is used. Consider the Lyapunov function for 

the sliding surface: 

 
2

  TV   (4-16) 

The derivative of the Lyapunov function should satisfy the condition: 

 02    TV   (4-17) 
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Also, similar to the SISO case described by (Edwards and Spurgeon, 1998), define “ -

reachability condition” in the MIMO case as: 

 V   (4-18) 

where,   is a positive design scalar. 

To prove this, rewrite (4-18) as: 

 V
dt

dV
   

Using chain rule, the inequality can be simplified to 

 
dt

Vd
V

V

21
  

i.e. 

 
dt

Vd2
  

And by integrating both sides from 0 to   , it follows that: 

 ss tVtV  )0(2)(2   

Thus, the time taken to reach        , represented by   , satisfies 

            

Since        is proportional to the sliding function     , we can conclude that the 

sliding surface can be reached in finite time.  

Other reaching conditions can be found in (Hung, 1993), to specify the characteristics of 

the system during the reaching phase and guarantee the finite time reachability. In 

multi-state systems, one can design the sliding surface function using the so called 

“Reaching law approach”. This is done by designing the derivative of the sliding 

surface function as: 
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a)              

b)                 

c)           
                       

The system can then reach the sliding surface with specified characteristic time 

behaviour.  

The reachability problem is one of the main disadvantages of the sliding mode. During 

the reaching phase the system does not have the benefit and properties of a sliding 

mode controller, e.g. during the reaching phase the system is sensitive to the matched 

perturbations. Hence, it is of interest to drive the system to the sliding surface as soon as 

possible.  

(Utkin and Shi, 1996) proposed a new sliding surface function design approach named 

“integral sliding mode  control”, in which the sliding surface is reached from initial 

time and maintained there during the entire system operation by adding an integral part 

in the sliding surface function. This method brings up a new concept that the sliding 

mode can be a control component to reject the matched perturbations and some other 

controllers can be designed to handle the unmatched perturbations. With this concept, 

numerous methods can be combined with sliding mode to achieve better performance. 

This Integral sliding mode control is discussed and extended to the output based 

approach in Chapter 5. 

4.2.3 Control law design 

As another important part of sliding mode theory, control law is mainly designed with 

two parts: 

 nl uuu    (4-19) 

where    is the linear component and    is the discontinuous switching control 

component and usually has the form (Ryan and Corless, 1984): 

 













00

0),,(







 tux

un   (4-20) 



70 

 

These two components    and    form the sliding mode control law. In different sliding 

mode control strategies, these two parts have different functions. For example, if the 

sliding surface function is designed as                as is described in Section 

4.2.1, both of these two components are used to drive the system states to the sliding 

surface and the choice of sliding surface function helps stabilize the system after the 

sliding surface is reached. However, in the integral sliding mode, the switching 

component    is used to reject the matched perturbations whilst the linear part    is 

used to stabilize the system while the system is running in the sliding surface. This 

Section considers the former case in which both linear and nonlinear control laws are 

used to drive the system to the sliding surface with the sliding surface gain matrix used 

to stabilize the system after reaching the sliding surface. 

Consider the system in the form of: 

 ))(),(()()( tftxuBtAxtx    (4-21) 

where      represents a generalized perturbation function. The sliding surface function 

is designed as: 

 )()( tSxt    (4-22) 

If both linear and discontinuous parts of the SMC are designed to ensure that the sliding 

surface is reached, with the Lyapunov function   
 

 
   , The time derivative of this 

Lyapunov function is given by: 

 
))(( fuSBSAx

V

T

T







 
  (4-23) 

If the linear controller is chosen as               and the discontinuous controller 

is designed according to (4-20), (4-23) can be further rewritten as: 

 
 ),,(

))((

tuxf

fuSBSAxV T








  (4-24) 

It is clear to see from (4-24) that if the sliding surface can be reached, the gain          

has a lower bound given by: 



71 

 

   ftux ),,(   (4-25) 

    is the upper bound of the disturbance and   is a user selected positive scalar. 

Following this, the derivative of the Lyapunov function (4-25) satisfies         , 

which means the sliding surface is reached in finite time. Furthermore, the reaching 

time is given by integrating          as proposed in Section 4.2.2. Moreover, by 

dividing the system into the matched part and unmatched part, Eq. (4-3) and (4-4) 

follow. 

It can be assumed that in this coordinate system, the sliding gain matrix         . 

Thus, with proper choice of S, the unmatched part of the system is stable, i.e.     

          
       is stable and furthermore: 

   0)( 1

21211max   SSAA   (4-26) 

Adaptive mechanism 

Using the inequality (4-25), the derivative of the Lyapunov function (4-24) is negative. 

However, the bound of the unknown disturbance should be known. This is a very 

restrictive condition because the bounds of the disturbances or faults are not usually 

known in practice. Some research has been done to discuss this restriction. For example, 

(Yu and Kaynak, 2009) summarizes several soft-computing methods including neural 

networks and fuzzy systems which when combined with the sliding mode obtain partial 

information about the disturbance bounds. A typical use of this adaptive mechanism can 

be to estimate the bound of the disturbance automatically. With the adaptive mechanism, 

the controller gain is given by: 

   )(ˆ)( tt   (4-27) 

where,     is chosen by the designer to specify the reaching speed. Assume that there 

exist an unknown bound for the matched disturbance or uncertainties such that     

   , where   is a virtual constant which exists but is unknown Then    in Eq. (4-27) 

is assumed to be an estimate of  . The adaptive law can be proposed as: 

 )()(ˆ tt  


  (4-28) 
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where 1 . With this adaptive gain, the sliding motion is insensitive to the matched 

disturbances/uncertainties. 

The stability of this kind of adaptive mechanism can be proved using another Lyapunov 

function   
 

 
           

 
 , with time-derivative: 

 
 

 







ˆ)(

)ˆ(fV
  (4-29) 

There is some design freedom to choose   and  . The easiest way is to define     

  , for which          , satisfying (4-29). Thus, the sliding surface is reached in 

finite time as described above, and the known upper bound constraint is relaxed. 

Alternatively,   and   can be chosen as      and     to decrease the reaching time. 

The newest research on adaptive mechanism for first order sliding mode is given by 

(Plestan et al, 2010) in which the adaptive law is designed as: 

 














if

iftsignt
t

))(()(
)(

̂
  (4-30) 

where     are small positive constants facilitating the decrease of      when the sliding 

surface function remains within a small region         . In fact, if    , 

                , (4-30) is equivalent to (4-28). The advantage of this algorithm 

(compared with the first algorithm (4-27) and (4-28)) is that it prevents      from 

increasing. An increase in the values of      may lead to serious “chattering” or rapid 

discontinuous motion around the switching boundary itself. In (Plestan et al, 2010),   

can also be designed using adaptive mechanism. The parameter   is used to keep the 

gain positive. 

Boundary Layer 

When the system is running exactly in the sliding surface, it is called the “ideal sliding 

mode”, i.e. for which      is satisfied exactly. However, in most situations, it is 

difficult to keep the system running in the sliding surface. Also the discontinuous 

control law might cause chattering motion due to high gain operation, since the gain 

     has a lower bound but no upper bound. To increase the reaching speed and to 
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compensate the unknown upper bound perturbation, the gain should be designed to be 

as large as possible. However, the larger the gain is, the larger the chattering comes. For 

many industrial applications, high frequency switching control is unacceptable due to 

hardware physical constraints (bandwidth of actuators and conversion ranges, etc) and 

indeed high frequency motion cannot actually result from band-limited systems. Hence, 

for real applications, the concept of the boundary layer is used to overcome this 

problem. This idea has been discussed for many years and systematically described in 

(Edwards and Spurgeon, 1998), although these authors do not provide a proof for the 

stability of a SMC system that incorporates a boundary layer. In the following a proof is 

proposed to give conditions under which the SMC system with boundary layer remains 

stable. 

1. Non smooth boundary layer.  

Instead of using the control law (4-20), the sliding mode control with boundary layer 

can be written as: 

 
1

1

)(
)(,),,(

































if

if

sign
satsattuxun   (4-31) 

The boundary layer is      . 

   

 Figure 4-1. A nonlinear discontinuous boundary layer function   

Figure 4-1 shows the boundary layer function (4-31) with a single-input case. To prove 

the reachability of the sliding region and the stability of the system, we have to consider 

two situations: 1) when the system running outside of the boundary layer, we have to 

  

  

1 

-1 

0 
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prove the system is running toward the sliding region and 2) when the system running 

inside of the boundary layer, the system is stable.  

When the system operates outside the boundary layer,      , then by using the 

Lyapunov function:  

  TV
2

1
   

         with the gain (4-25). It follows that        ,     is strictly decreasing 

until the system reaches the boundary layer and stability is satisfied subject to this 

bound. 

When the system trajectories are inside the boundary layer,      . Moreover, the 

control law becomes               
 

 
.  With the constraint (4-25), it follows 

without loss of generality, that   can be chosen as        . 

Then considering the separation of the system into matched and unmatched parts, it 

follows that: 

 )()()( 2121111 tzAtzAtz    

 ))()(()()()( 22221212 tftuBtzAtzAtz 
  

The sliding surface matrix S in this new coordination is          with             

(Edwards and Spurgeon, 1998). When the system is in the boundary layer, the motion is 

given by            , and hence: 

 1211

1

212111 )( AzSSAAz     (4-32) 

Consider the Lyapunov function for system (4-32) 115.0 zzV T

z  , with time derivative: 

 

 
  
  1211

1

21211max1
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1

21211max1

1211

1

212111
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)(

)(

AzSSAAz

AzSSAAz

AzSSAAzV T

z



















  (4-33) 

It can now be proved by contradiction that the system state      is bounded. If      is 

unbounded, i.e.        as    , from (4-26), we have that 0zV  which implies 
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that      is bounded and leads to a contradiction. Thus,      is bounded and the 

original system is bounded. Moreover, by defining  )( 1

1

21211max0 SSAA   , 

)( 12max1 A  , the inequality (4-33) can be rewritten as: 
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1101
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1

212111
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





 

zz

zz

AzSSAAzV T

z


  

which implies that the sliding motion is ultimately bounded with respect to: 

    0111 : zz   (4-34) 

where     is an arbitrarily small positive scalar.  

From (4-34) we know that the size of the set is dependent on the choices of sliding 

surface gain matrix S and the boundary layer  . i.e. smaller (more negative) largest 

eigenvalue of           
      and   lead to better regulation performance. Hence, if 

the boundary layer must be used, the eigenvalues of the matrix           
      

should be chosen to be as small (more negative) as possible.   

2. Smooth boundary layer.  

Another choice of boundary layer is make the control law a continuous function (Burton 

and Zinober, 1986): 

 






 ),,( tuxun   (4-35) 

where   is a small group and the size of boundary layer is approximately 20 . The 

advantage of this method is that the function (4-35) is smooth, i.e. there is no 

discontinuity in the derivative function of (4-35).  

Chapter 6 describes the use of the boundary layer formulation of (4-35) as the most 

suitable choice for the fault estimation problem. 

Figure 4-2 shows the smooth boundary layer function with a single input case. It is easy 

to verify this method using a proof similar to Non-smooth boundary layer. A formal 
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examination of the properties of this boundary layer function is given in (Burton and 

Zinober, 1986). 

 

   

 Figure 4-2. A smooth boundary layer function  

When considering combining adaptive mechanism and boundary layer theory together, 

the control law can be designed as: 
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
 ),,( tuxun ,   )(ˆ)( tt ,  
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̂
  (4-36) 

where,  ,  ,  , and   are chosen by the designer.   is the parameter chosen to 

determine the accuracy of the SMC;  ,   determine the duration of the reaching phase 

and   restrict the magnitude of the gain. In fact, all of these parameters affect the 

chattering of the SMC. It should be noted that the original SMC control law   

             can be replaced by (4-36) with the stability of the system remaining 

unaffected.  

4.3 Decentralized SMC design using LMI approach 

This Section describes a novel design method for decentralized typical sliding mode 

control for LSSs. In this thesis, the method used for sliding surface function design is 

LMI approach based on the Lyapunov function. The regular form of this method for a 

single system was first proposed by (Choi, 1997) using the original system matrix. 

20  

20  

1 

-1 

0 
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Compared with the algorithm proposed by (Edwards & Spurgeon, 1998), there is no 

need to transfer the system into regular form in the sliding function design process. 

Moreover, even in the proof of this theorem, the regular form only requires one 

transformation. As discussed in Section 4.2.3, the control law in this method uses both 

linear and switching control parts to drive the system to the sliding surface. The stability 

of the unmatched part of the system is left to the choice of sliding surface function. 

4.3.1 Control law design with LMI approach 

Consider a large scale system contains N small subsystems after decomposition, the i-th 

          subsystem has the form: 

 
),()),,()(()()( txhtuxftuBtxAtx iiiiiiiii 

  (4-37) 

where,       ,        are the states and inputs of this subsystem respectively. 

         ,           are the system matrices.  

It must be assumed that the following are valid: 

A1: the pairs         are controllable. 

A2: the local states    are available. 

A3: there are some known bounded positive constants for the matched disturbance: 

 321),,( iiii fufxftuxf     

All the matched uncertainties (multiplicative faults) and external disturbance (additive 

faults) should satisfy this constraint. They should be bounded but the constraint of 

known constants can be relaxed by the adaptive mechanism. 

A4: the interactions of the subsystem satisfy the quadratic constraint (Šiljak and 

Stipanović, 2000): 

 xHHxtxhtxh i

T

i

T

ii

T

i

2),(),(    

Where    is a bounding constant. 

The overall system can be written in a compact form as: 
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 ),()),,()(()()( txhtuxftuBtAxtx    (4-38) 

where,                ,                ,         
         

       and 

          
           

        . With the assumption A4, the interconnections        

are bounded as follows: 

 HxHxxHHxtxhtxh TT
N

i

i

T

ii

TT 







 

1

2),(),(    (4-39) 

This quadratic constraint is first proposed by (Šiljak and Stipanović, 2000) in the 

framework of single system and extended to decentralized system using the S-procedure 

Lemma. This constraint could not only represent the nonlinear interactions but also the 

uncertainty of the i-th subsystem. The stabilization problem for LSS is also solved in 

Šiljak and Stipanović’s work. They proposed that the decentralized control could be 

obtained by solving the following LMI: 

 Minimize    
 
   , subject to    ,   
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  (4-40) 

The decentralized control gain matrix K is obtained by       . 

The objective of the method proposed in this Section is to design a totally decentralized 

SMC that robustly regulates the state of the overall system without any information 

exchange between the controllers. Different to (Šiljak and Stipanović, 2000), within 

control design procedure in this section, the overall (decentralised) system must be 

robust to all the uncertainties and insensitive to matched perturbations. 

Theorem 4.1. For the overall system (4-38), the system is asymptotically stable after 

the sliding surface is reached if there exists an s.p.d. matrix                 

satisfying the following LMIs: 
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 Minimize    
 
   , subject to    ,   
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  (4-41) 

where    is the orthogonal complement of the input matrix B.  

with sliding surface function in the form: 

   )(),...,()(),(),...,,(),( 1
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Proof: 

Define a transformation matrix for the overall system  
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And the associated vector z: 
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where,        ,      . It can be seen that the sliding surface function is        

     . 

As     is the orthogonal matrix of  , i.e.       ,        , the transformation matrix 

T is non-singular and has full rank, i.e. it is invertible. The inverse matrix can easily be 

determined from: 

  111 )()
~~

(
~   SBBBXBBXT T

  (4-44) 

Then the associated vector is given as: 

 ),()),,(),(()()( 1 txThtuxftxuTBtzTATtz     (4-45) 
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By substituting the transformation (4-42) and (4-44) into (4-45), the associated vector 

equation can be rewritten as: 
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  (4-46) 

When the system is running in the sliding surface        and          , it 

becomes 

 ),(
~
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(
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)( 1

1

1 txhBtzBXBBAXBtz TTT     (4-47) 

This is the so called “sliding motion”. It contains the unmatched part of the systems. 

Since the sliding surface is reached, i.e. matched part of the system has been 

compensated, the remaining problem is to find the sliding surface matrix   which can 

stabilize the sliding motion (4-47). 

Because   is an s.p.d matrix,        is also an s.p.d. matrix. In this case, a suitable 

Lyapunov function can be defined as:  

 111)( YzzzV T   (4-48) 

The time derivative of       is: 
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With a useful lemma that is introduced in (Boyd et al, 1993): 

 YYXXXYYX TTTT    (4-50) 

From (4-50) it follows that:  

 hhYzBBYzYzBhhBYz TTTTTT  1111
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  (4-51) 

And from assumption A4: 
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Substitute (4-51) and (4-52) into (4-49), then gives: 
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The stabilization of the system requires          for all     , which leads to 
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Since it can be easily found that          and its inverse matrix are both s.p.d. matrices 

as long as X is a s.p.d. matrix, define              and pre- and post-multiply (4-53) 

by             , it gives: 
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 BHXXHIXAAXB TTT   (4-54) 

Recalling Assumption A4, rewrite the inequality (4-54) as: 
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By defining       
   and using the well known Schur complement lemma, the above 

inequality can be rewritten in the form of inequality (4-41). Thus, if there exists a 

solution matrix X to (4-41), the derivative of the above Lyapunov function is negative: 

        , i.e. the associated system is asymptotically stable after the system reaching 

sliding surface and hence the proof is complete.   

The proof for Theorem 4.1 shows that after reaching the sliding surface, the remaining 

system (sliding motion) is stable. As      and      , it can easily be seen that 

Theorem 4.1 concerns the unmatched part of the system. 

Hence, the next step is to ensure the reachability of the sliding function (unmatched part 

of the system) which is given by Theorem 4.2. 
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Theorem 4.2. For the i-th LSS subsystem (4-37), if the sliding surface function 

     
   

     could be obtained from Theorem 4.1, the control law (4-55) can drive 

each subsystem to the sliding surface and compensate the matched perturbations.  
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where,  

   iiiiiiii ttSBS  


)(ˆ),(ˆ
1 

  (4-56) 

                         with   a positive constant chosen by the designer.  

Proof: 

From (4-47), the sliding motion is given by: 
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The derivative of the sliding function for the i-th subsystem is: 

 ),()),,()(()()(),( txhStuxftuBStxAStxStx iiiiiiiiiiiiiii     (4-58) 

Assume that there exists some constants large enough (i.e.     ) to satisfy 

                      . The value of these unknown constants are estimated 

by the adaptive terms        . Define the estimation errors                 , it is easy 

to verify that the derivative of these errors are                     . 

Now, define the Lyapunov function for the sliding function as  
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  (4-59) 

It can be seen that       
   is an s.p.d. matrix as       

      
     

    . The time 

derivative of the Lyapunov function (4-59) is given by: 
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  (4-60) 

It can be verified that   
              , hence by substituting the control law (4-55) 

and (4-56) into (4-60): 
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   (4-61) 

which implies that the sliding surface can be reached in finite time as proved in Section 

4.2.3. Thus, the system trajectories can reach the sliding surface in finite time and 

remain on it with stable sliding motion. This completes the Proof.    

From the first part of the proof it can be found that, LMI (4-41) focuses on the 

unmatched part of the system. Thus, the transformation introduced in (Edwards and 

Spurgeon, 1998) is not necessary.  

The adaptive part introduced in this method can relax the common bound constraint. 

Moreover, there is no need to assume the known bound of the matched perturbation 

           , i.e. Assumption A3. The adaptive mechanism can estimate it as long as it is 

bounded. Thus, one of the main constraints of sliding mode is relaxed. 

4.3.2 Feasibility discussion 

Theorem 4.1 in Section 4.3.1 shows the sufficient condition for the SMC design. 

Although the assumptions A1-A4 are introduced, it is not enough to prove the 

feasibility of the LMIs (4-41). It is valuable to determine under what conditions 

solutions to the LMIs exist, as discussed in this Section. 
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The sliding surface invariance property guarantees insensitivity to matched faults. 

Hence, it is now feasible to consider an overall system without matched faults: 

 ),()()()( txhtButAxtx    (4-62) 

All the parameters of (4-62) are in the same form as (4-38). The well-known constraint 

for the system stability is: There exists a state feedback control law      for the 

system                   if and only if there is an s.p.d. matrix   such that: 

 0 BKXBXKAXXA TT
  (4-63) 

Furthermore, (4-63) can be restricted to: 
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  (4-64) 

The sufficient condition for the solvability of this inequality (4-64) in the decentralized 

system is that the overall system (4-62) is controllable. This can be ensured by the 

controllability of each subsystem. As a consequence of the system controllability, one 

can always find a gain matrix   and a p.s.d matrix X satisfying (4-64) with large enough 

  . Using the projection lemma by (Gahinet and Apkarian, 1994), the following 

inequality is feasible with large enough   : 
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  (4-65) 

which implies that the LMIs (4-41) is feasible, i.e. if all the subsystems are controllable, 

one can always find a feasible solution to (4-41) and construct an SMC as discussed in 

Section 4.3.1.  

If the interaction term of the overall system can be written in the form of        

       , where      , some existing results could be used to discuss the feasibility. 

If the system can be written in the form: 

   )()()( tButxDFEAtx    

The results from (Khargonekar Petersen and Zhou, 1990) show that the above system is 

quadratically stable via a constant linear state feedback control            if and 
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only if there exists an s.p.d. matrix   such that for some     gain matrices   (Choi, 

1998): 

 0 TTTTT BPKBKPEPPEDDPAAP   

Using the projection lemma and    , it gives: 

 0
~

)(
~

 BEPPEDDXAAXB TTTT   

Choosing        , the above inequality is in the same form of (4-65).  

4.3.3 Pole assignment,    and quadratic minimization Improvement 

The LMI approach presented in section 4.3.1 can be easily extended. In this case, the 

SMCs are treated as matched perturbation components and can be combined with other 

robust methods. It is shows that the proposed LMI based decentralized SMC strategy 

has such good compatibility that it can be combined with other robust method and 

achieve specific robust performance. Although the methods proposed in this section are 

not illustrated in Section 4.4, it is still valuable to list some of the strategies, since this 

idea of combination with other robust control method is important in the rest of this 

thesis. This Section introduces several methods to extend the design features of the 

basic linear control outlined above. These extensions methods include eigenvalue 

assignment,    and quadratic minimization. 

Eigenvalues assignment 

The LMIs (4-41) provides some degrees of freedom. The eigenvalues assignment can be 

used with D-stability theory. Here two D stability regions are proposed: 

1.                   

It is well known that to assign all the eigenvalues of the unmatched overall 

system in the left hand side of the line      (Figure 4-3), it is necessary to 

find a solution to the following LMIs 

 Minimize    
 
   , subject to 0),...( 1  NXXdiagX ,   



86 

 

 0

0
~

0
~

~~~
)2(

~

11

1





























IBXH

IBXH

XHBXHBBXIXAAXB

NN

T

N

TTTTT















  (4-66) 

   

 Figure 4-3. Eigenvalue clustering on the left hand side of      

2.                   

To assign all the eigenvalues to lie in a disk of radius   and center –  . Consider the 

sliding motion (4-47): 
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Define           , the above inequality can be rewritten as: 
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Furthermore, using Shur Complement, the LMIs are given by: 

 Minimize    
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If the above LMIs (4-67) have feasible solution, then the poles of the sliding motion 

are assigned in the disk D2 as shown in Figure 4-4. 

   

 Figure 4-4. Eigenvalue clustering inside the disk    

   optimization 

Consider the sliding motion: 
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The well known bounded real lemma (Gahinet and Apkarian, 1994) can be written in 

the form of: 

 Minimize  , subject to    ,   
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By treating        as disturbance in the first equation and      as regulator in the 

second equation, it gives: 
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Thus, re-build the bounded real lemma by using           , it follows: 
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Using Shur complement, the following LMIs are given: 
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  (4-68) 
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It should be noted that there is no need to know the exact value of         since this 

matrix is only used in the design procedure and can be replaced. Thus, one only need to 

assume that the structure of interaction of the overall system is in the form of         

           . 

 

 

Quadratic Minimization 

For the system (4-62), consider the problem of minimizing the quadratic performance 

index 

 

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ss t

TT
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T dttxtxdttQxtxJ )()()()(   (4-69) 

where       is both symmetric and positive.    is the time at which the sliding 

motion commences. The aim is to minimize the cost function (4-69).  

To minimise the cost function, consider the Lyapunov function for the system: 

 PxxxV T)(   

The problem becomes that to find a feasible solution to the LMIs: 
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The matrix Q from (4-69) is transformed and partitioned compatibly with   using (4-42) 

and (4-44): 
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Because                    is the sliding surface. (4-69) can be written in 

term of the   coordinate system as 
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Re-consider the Lyapunov function in the new coordinates z, as follows: 
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where         
    . 

The time derivative of       is given by: 
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Thus, if the system is quadratic stable, it gives the following inequality 
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which leads to: 
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By pre-multiplying and post-multiplying by the matrix             , it follows: 

   0
~~
 BXXHXXHIAXXAB TTTT

  

Thus, the LMIs can be written as: 
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  (4-70) 

4.4 Simulation results 

This Chapter has two purposes, (1) the review of SMC theory and (2) the proposal of a 

novel approach to decentralized SMC for LSSs. This Section introduces a numerical 

example to illustrate the SMC design strategy proposed in Section 4.3. The example is 

of an interconnected system model consisting of three subsystems with non-linear inter-

connection (Huang and Patton, 2012a). Similar examples can be found in other 

publications (Zhu and Pagilla, 2007; Kalsi Lian and Żak, 2009, 2010). The 1st 

subsystem is a second-order system and the 2nd and 3rd are third-order systems. Each 

subsystem is a linear system with a matched disturbance input comprising both an 

exogenous signal and a non-linear self-feedback. 

      
  
  

     
 
 
                        

      
   
   
   

     
 
 
 
                        

      
    
   
    

     
 
 
 
                        

where,             ,                ,                 are the state 

vectors of the subsystems.  

                                    

                                   

                                   

are the matched disturbance signals for subsystems. 
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The non-linear interactions between the subsystems are defined as follows: 

                        

                        

                        

with              and with 
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To have a general idea of the influence from interactions and disturbance, although 

using different method, it is still reasonable to design a linear controller. A suitable LMI 

based state feedback control approach to this type of system is described in (Šiljak and 

Stipanović, 2000). It is therefore useful to use their design method as a basis for 

comparison with the SMC approach derived in Section 4.3. 

By solving the LMIs (4-40), the decentralized state feedback control gain matrix K is 

given: 
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The result is shown in Figure 4-5. 
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Figure 4-5. State responses with only linear control 

It can be seen that the deviation in all of the subsystems because of the disturbance and 

interactions (unwanted signals). To solve this problem, solving the LMIs (4-41) and 

using the control law in Theorem 4.2, the    matrix for each subsystem is given by: 
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Thus, the gain matrix    of the sliding function         can be given by: 

  050.0022.01 S ,  060.0055.0032.02 S ,  234.0081.00007.03 S  

The adaptive mechanism is chosen as                
       , with           . 

And combine with the boundary layer method, the control law is designed as: 
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The states response of using decentralized SMC is shown in Figure 4-6. It shows that 

disturbances and interactions are compensated by the SMC. Although the deviation is 

too small to be noticed (Figure 4-7), it is still worth discussing since it shows some of 

the properties of SMC. 
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 Figure 4-6. States responses with decentralized SMC  

 

 Figure 4-7. Influence from unwanted signals between t=30s and t=50s  

Figure 4-7 shows the small perturbation in the states response after 30s. It can be seen 

that the perturbations are not fully compensated by the SMC because of the boundary 

layer. As discussed in Section 4.2.3, the boundary layer theory allows the perturbations 

exist in the sliding region. This explains why there are still disturbances in some of the 

states of subsystem-1 and subsystem-2. On the other hand, because of the adaptive 

mechanism, any state away from the sliding region is driven to the surface. Thus, it can 

be seen that states, e.g.    ,     and    , are still in the process of convergence. The 
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speed of convergence can be increased by changing the adaptive mechanism    (Figure 

4-8). Use the same adaptive structure                
        with different   to 

see the value of the first state of subsystem-2 in the time period t=30s to t=40s. 

In Figure 4-8, it is clear that with    , better speed of convergence is given. It is well 

known that in sliding mode control, the larger the gain is, the more insensitive to faults 

and faster response the system has. However, high gain value might not available in 

practice (wind-up) and might cause chattering problem (even with boundary layer 

theory). Thus, finding an acceptable high gain is one of the main problems in SMC 

design. 

 

 

 Figure 4-8. Convergence speed difference represented by state x21 from t=30s.  

4.5 Conclusion 

In this Chapter, sliding mode control is carefully described. In the description of regular 

form, two types of regular form are introduced and it can be easily found that the 

perturbations are rejected by SMC if they are matched. The adaptive mechanism for 

relaxation of known upper bound of perturbation is discussed and proved, as well as the 

boundary layer method for chattering elimination. This section also proves the sliding 

surface reachability and system stability with boundary layer and the bound set of the 

sliding motion with boundary layer is calculated. With the set, one can design the 

sliding mode control systematically.  
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The second part of this Chapter introduces a novel SMC design procedure for LSSs 

using an LMI approach. The idea of this method is based on Choi’s regular form for 

single system. Within a simple LMI approach, one can design the sliding mode state 

feedback controller without any apriori transformation. Both matched and unmatched 

perturbations (interactions) are discussed. The known bound constraints of matched 

perturbations can be relaxed by adaptive mechanism. When there are unmatched 

perturbations, the unmatched part of the system will be affected. In this case, some 

special sliding function design methods should be used to ensure the stability of the 

system. Furthermore, some improvements like eigenvalues assignment and    robust 

method can be easily added into this method, providing good compatibility. The 

knowledge introduced in this chapter is the basis to output feedback which is introduced 

in Chapter 5.   
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Chapter 5  

Decentralized Output based Sliding Mode Control 

5.1 Introduction 

In most practical situations, complete state measurements are not available at each 

individual subsystem for decentralized control. In some circumstances, it is impossible 

or expensive to measure all of the system states. Alternatively, some systems may be 

nonlinear or too complex that an identification approach should be applied to obtain a 

simpler model. In this case, the states in the simpler model might have no physical 

meaning and are thus not measurable (Edwards and Spurgeon, 1998). 

As discussed in Chapter 2, decentralized control uses local information available at the 

level of each subsystem in the controller implementation for large scale interconnected 

systems. Thus, decentralized controllers have the possibility of simpler architecture than 

their centralized control counterparts and can thus be more practical to realize on a real 

physical system.  

It is well known that there are three ways to deal with the design of an output feedback 

control system: 1). Static output feedback (SOF) design; 2). Dynamic compensator 

based controller design and 3). Observer based controller design.  

The assumption of the interactions (quadratic constraint) is the same as described in 

Chapter 4 so that the optimization problem is posed in a fashion that will result in 

selection of controller and observer gains that will not only stabilize the overall large-

scale system but also simultaneously maximize the interconnection bounds (Šiljak and 

Stipanović, 2000; Zhu and Pagilla, 2007). 

The objective of this Chapter is to describe a design framework for decentralized SMC 

of LSS where only local output information is available. Suitable control system 

architectures for this problem are: Static output feedback control, dynamic compensator 

based control and decentralized observer based control. The properties of these 

architectures are summarised as follows: 
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5.2 Static output feedback 

Consider a LSS with N subsystems. Each of the i-th subsystems has the state space form: 

 
)()(

),()),,()(()()(

txCty

txhuxtftuBtxAtx

iii

iiiiiiiii




  (5-1) 

where the state vector       , the control signal        the output signal        

and the condition       is fulfilled. The system triple            is assumed to be 

known and the matrix pair            is assumed to be stabilizable and detectable. 

Further, it is assumed that any invariant zeros of the triple            lie in the left-half 

of the complex plane, the matrix product      has full rank and that all the plant inputs 

and output are independent.  

The perturbation             for the i-th subsystem assumed unknown but bounded and 

furthermore it acts in the input channel of the system as a matched perturbation 

according to the definition of (Draženović, 1969). It can thus be assumed that     
  

         is bounded by a known constant     and a known function        , so 

that 

 ),(),,( tyuftuxf iiiuiii    (5-2) 

Furthermore, the interactions are assumed to satisfy the following quadratic constraint 

introduced by (Šiljak and Stipanović, 2000) (see description in Section 4.3): 
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where    are bounding constants. 

The overall system can be written in a compact form as: 
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where: 
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    ,     ,                ,           and        

   are the numbers of the states, inputs and outputs, respectively. The interconnection 

       for the aggregate system is bounded as follows: 

 HxHxxHHxtxhtxh TT
N

i

i

T

ii

TT 







 

1

2),(),(    (5-4) 

In the output feedback case, the states are not fully available. Thus, the sliding surface 

function cannot be designed as a function of   but a function of   (e.g.     ). Define 

an output based sliding surface function of the form: 
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FFdiag 
1

11 ),...,(   (5-5) 

                      a block diagonal matrix such that the                

are nonsingular and the reduced      th-order equivalent system dynamics  

restricted to          are asymptotically stable. By defining the overall control 

law         , the Lyapunov function for the overall system (5-3) can be 

constructed as: 

 PxxxV T)(   (5-6) 

where                      is an s.p.d. matrix. First consider the system 

control without perturbations, i.e.           . Taking the time derivative along the 

system trajectory, it yields: 

 
xHHPPBKCPBKCPAPAx

PxhPhxxPBKCPBKCPAPAxxV

TTTTTT

TTTTTTT

)(

)()(




  (5-7) 

The aggregated system is globally stable in the Lyapunov sense if matrices K and P can 

be found to satisfy the bi-linear matrix inequality: 

 0 PBKCPBKCHHPPPAPA TTTTT   (5-8) 

Or equivalently finding matrices K and X satisfying (Boyd et al, 1993): 
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 0 HXXHIBKXCBKCXXAAX TTTTT   (5-9) 

It is well known that the inequalities (5-8) and (5-9) are not convex for P and K or X and 

K. Moreover, (5-8) and (5-9) are coupled since      . It is hence impossible to solve 

these inequalities with conventional LMI tools. This is the main obstacle in designing 

static output feedback control. 

This topic has been widely researched in single system level. For example, (Geromel, 

1994) presented a min/max iteration algorithm for SOF. (Syrmos et al, 1997) proposed 

a comprehensive paper survey concerning the development of the SOF problem and 

pointed out that the dynamic output-feedback problem can be transformed into a static 

output-feedback problem. (Cao, James and Sun, 1998) proposed an approach to avoid 

the coupled inequalities using iteration based on LMI theory. (Benton and Smith, 1998) 

proposed a necessary and sufficient condition for SOF which contains two coupled 

LMIs. They also proposed an algorithm to solve the LMIs without iteration. The 

infeasibility of the LMIs considered do not give insight into the infeasibility of the SOF 

control designs, although the computational simplicity makes the approach attractive. 

(Edwards and Spurgeon, 2003) designed a sliding mode based SOF control for a single 

system based on Benton and Smith’s method (Benton and Smith, 1998) which requires 

several state space transformations. In the following, a simpler method of SOF SMC is 

proposed that has two advantages: 

 Simplicity. This method is designed without using any transformation, this 

simplifies the design procedure.  

 Compatibility: As this method is based on the LMI approach, some other 

additional LMIs that introduce some performance requirements, for example 

using multi-objective optimization can easily be added.  

Several Lemmas should be introduced since they play a central role in the proposed 

approach. 

Lemma 5.1 (Gahinet and Apkarian, 1994): Consider a symmetric matrix       , 

and two matrices     of column dimension  , then consider the problem of finding 

some matrix   of compatible dimensions such that: 

 0 TTT WW   (5-10) 
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Denoted by    and    any matrices whose columns form bases of the null spaces of   

and   respectively. Then (5-10) is solvable for   if and only if: 

 0
~~
T  and 0

~~
WW T   (5-11) 

Lemma 5.1 is the so called “Elimination Lemma” or “Projection Lemma”.  

It is easy to find that the inequalities (5-8) and (5-9) are in the form of (5-10), which 

means matrix K can be eliminated by using Lemma 5.1, if and only if matrices P and X 

can be found that satisfy:    ,     , together with: 

 0
~

)(
~

 CHHPPPAPAC TTT ,  (5-12) 

 0
~

)(
~

 BHXXHIXAAXB TTT   (5-13) 

Hence, the inequalities (5-8) and (5-9) are solvable and thus the system is quadratically 

stable. 

Lemma 5.2 (Finsler’s Lemma, Boyd et al, 1993) Let     ,     ,        such 

that          , the following statements are equivalent: 

i).       , for all          

ii).         . 

iii).                

iv).                     

Hence, if combined with conditions ii) and iii), the inequalities (5-12) and (5-13) can 

further be written in the form (Benton and Smith, 1998): 

 0 PPBBHHPPPAPA TTT   (5-14) 

 0 CCHHPPPAPA TTT    (5-15) 

It should be noted that (5-14) and (5-15) are not convex and thus cannot be solved by 

conventional LMI methods, i.e. the Schur complement lemma cannot be applied to 

(5-14) since        . In this case, (Benton and Smith, 1998) advocate synthesising 

an s.p.d. matrix   such that the matrix inequalities: 
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 0)()(  PBKABKAP T

sfsf
  

 0 CCPAPA TT    

hold for some    , where            is a pre-calculated matrix.      is the solution 

to the algebraic Riccati equation: 

 QPBBPPAAP are

T

areare

T

are    

where       and     is a small design scalar.  

The following algorithm is based on the algorithm of (Benton and Smith, 1998) 

extended to include the SMC computation for the decentralized output feedback control 

system problem defined by (5-1) to (5-5). 

Algorithm 5.1 

1) Define        , where   is the desired prescribed degree of stability (as 

described in Chapter 4). 

2) Solve the algebraic Riccati equation: 

 0 IPBBPPAAP sf

T

sfsf

T

sf    (5-16) 

 where     is arbitrarily small. 

3) Set                 where     is arbitrarily small. 

4) Define                    and                   , where 

                    ,           . Solve the following LMI minimization 

problem: 
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
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  (5-17) 



103 

 

 0

00

00

00

11

1

































IH

IH

IP

HHPCCPAPA

NN

T

N

TTT

















  (5-18) 

5) Fix         
                   and solve the LMI minimization 

problem 

 Minimization  , subject to  
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  (5-20) 

The inequality (5-19) is used to minimize the quadratic norm of the gain    and thereby 

produce a design with good numerical conditioning and practical control variations. 

It can be clearly seen that the crucial idea of this algorithm is to find a matrix    , to 

ensure that the condition (5-14) is satisfied. The feasibility of the LMIs (5-17) and (5-18) 

can then be ensured using the same idea as discussed in Section 4.3.2. If it is the case 

that the bounding parameters    are not small enough, the parameters   and   can be 

increased in steps 2) & 3).  

The design method for         
        is to ensure that one can find a solution 

to the equation       . In this case,         .. 

As a consequence of the interactions terms, it is not enough to ensure the feasibility of 

this algorithm by assuming the triple            is stabilizable and detectable. 

Controllability and observability are joint sufficient conditions for the feasibility of 

LMIs (5-17) to (5-20) (Benton and Smith, 1998). Moreover, as Edwards and Spurgeon 

(1998) describe for single systems, the subsystems should also satisfy the conditions 
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that                     and any invariant zeros of            lie in the open left 

half plane (automatically satisfied when the system is controllable and observable). To 

conclude, the conditions for the output feedback control are that the triple            for 

i-th subsystem (       ) satisfy: 1). relative degree one, 2). controllability and 3). 

observability.  

The proof of the quadratic stability of the system is now given. 

Theorem 5.1. For the aggregate system of (5-3), the above algorithm can be used with 

the sliding surface function defined by  
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and with the following decentralized control law: 
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The aggregate system control vector is given by:      
    

   ) 

This system is quadratically stable and insensitive to the matched uncertainties. 

Proof: 

Define the Lyapunov function for the aggregate system in terms of the addition of 

Lyapunov functions of each subsystem: 

 
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)(   (5-22) 

The time derivative of (5-22) is given by: 
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Since     is already ensured by the LMI (5-20) in step 5), so that is           

     , it can be claimed that the system is quadratically stable as        . In this 

case,    can be chosen as                              where            

are positive constants chosen by the designer. The adaptive mechanism described in 

Chapter 4 can also be used to relax the known upper bound assumption of the 

perturbations. It is also necessary to prove that the sliding surface can be reached. 

Consider the time derivative of the sliding surface function given by: 

 ),()),,()(()()()( txFChuxtftuFCBtFCAxtxFCt     (5-24) 

Then the Lyapunov function for the sliding surface function of the aggregate system is 

given by: 
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The matrices (        satisfy the s.p.d constraint as          
     . 

Hence, the time derivative of (5-25) is: 
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Using                             , (5-26) can now be rewritten as: 
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Let         . As a consequence of quadratic stability of the closed-loop subsystems 

the subsystem trajectories will enter into their respective stability regions    in finite 

time. These regions are defined by: 

   NihxCKBACFBCFx iiiiiiiiiiiiiii ,...,1,~)()(: 1      (5-28) 

in which               
 
    implies that all of the sliding surfaces      can be 

reached in finite time and remained there subsequently. With this the proof is complete.  

It is important to note that the nonlinear control law is only used to compensate any 

unwanted matched perturbations. Thus, the most important part of designing an SOF 

SMC is to obtain the aggregated system sliding surface gain matrix  . In other words, 

there are some other methods available to derive the linear gain matrix   (for example, 

Shaked, 2003; Bara and Boutayeb, 2005; Peaucelle and Arzelier, 2005, Cao James and 

Sun, 1998). But whatever method is chosen, one can still use the LMI (5-17) with pre-

structured matrix         
        to get the sliding surface matrix  . The SOF 

SMC can then be applied as long as the following LMI is feasible for        : 
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  (5-29) 

5.3 Dynamic compensator design approach 

If the system does not satisfy the well-known Kimura Davison condition, there might be 

no available SOF control law. To overcome this problem and to provide additional 

degrees of freedom, some researchers introduce a dynamic compensator so that the 

augmented system satisfies the Kimura-Davison condition. The main idea of this 

method is to build an augmented system which satisfies the Kimura-Davison condition 

and then design the static output feedback based on it. Since the SOF SMC design 

approach has been introduced in Section 5.2, based on an extension of the method by 

Benton and Smith (1998), an alternative method is presented in this section.  
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Consider the i-th subsystem  
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 (5-1)  

together with a compensator given by 

 
0ic )0(   x),()()( iciicicicic xtyBtxAtx    (5-30) 

The control using the compensator has the form: 

 )()()( tvtyDxCtu iiicicici    (5-31) 

where the matrices           ,           ,           , and            are gain 

matrices to be determined. The nonlinear switching term       is used to reject any 

matched perturbations and is in the following form: 
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where       is a positive scalar function and    is the sliding surface function for the i-th 

subsystem (as described in Section 5.2). When combined with the state equation of the 

i-th subsystem (5-1) and the control law (5-31) and (5-32), the augmented system is 

then given by: 

 















































































0

),(

),,()(
00

0

0

0

00

0

txh

uxtftv
B

x

x

I

C

AB

CD

I

B

x

xA

x

x

i

iiii

i

ic

i

q

i

icic

icic

q

i

ic

ii

ic

i

ii




 

 

















ic

i

q

i

i
x

x

I

C
y

i
0

0
  (5-33) 
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Then the augmented system (5-33) can be simplified as: 
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Because of the augmentation, the structure of the quadratic constraint for interactions, as 

described in Section 5.2, should be changed to: 
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In the augmented state space, (Choi, 2008) gives the linear sliding surface function as: 
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  (5-35) 

where           ,            

The augment subsystems satisfy the Kimura-Davison constraint. Combining all of the 

augmented subsystems into the aggregate system, it yields: 
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where, 

          
      

                                         

                               
               

             

                            
            

       
 
 

     ,       where                   and              

     are the numbers of the states and outputs respectively. The interconnection 

       for overall system is bounded as follows: 
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In this case, solve the following LMI for the augmented overall system: 

 CFPBPBKCCKBPPAAP TTTTT  0,0   (5-38) 

The structure of the inequality (5-38) is similar with the inequality (5-8): 

 0 PBKCPBKCHHPPPAPA TTTTT  (5-8) 

Thus, the same algorithm described in Section 5.2 can be used. Here,  an alternative 

method first proposed by (Choi, 2008) is extended to provide the elements of    matrix 

for the compensator without recourse to iteration. Furthermore, the coupled matrix      

can be calculated manually. 

Extending Choi’s    matrix design structure into decentralized form, it follows that: 
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For which    and     are defined below. 

Theorem 5.2 Define                   ,                      

    are s.p.d. matrices with                     ,           . Considering the 

overall system (5-3), the problem (5-38) is solvable if the following LMIs are feasible: 
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Proof:  

( ) Assume that (5-38) is feasible, then                     . Then partition 

every     and its inverse matrix     as: 
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Using the matrix inversion lemma: 
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It follows that  
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It is easily determined that           
      , and this leads to (Choi, 2008): 
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Since              
    

              and       , considering the overall 

system and using the Schur complement, (5-46) can be rewritten as: 
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Using the partition (5-43) and Elimination Lemma (Projection Lemma), the   LMIs 

(5-40) and (5-41) are easily determined. 
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( ) If one can find solutions to the LMIs (5-40) to (5-42), it implies that          
  

  
         

  . Moreover, further define        
 . From (5-45), it gives: 
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Using the diagonal decomposition, the matrix    can be expressed as: 
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where    and              are the eigenvector matrix and  the eigenvalues diagonal 

matrix for matrix   . Since    is an s.p.d matrix,   
     

 . By defining    

          , the matrix     can be given by: 

 iii VP 2   (5-50) 

Thus, the matrix     can be written as 
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(Choi, 2008) also gives the inverse matrix of this matrix as: 
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Moreover, the sliding surface matrix                    can be given with  

  ii

T

ii

T

i

T
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such that the equation   
        holds. Using the Elimination Lemma, the feasibility 

of LMIs (5-40) to (5-42) implies the existence of the control gain matrix   satisfying 

(5-38) with a given P. The proof completed.     
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The stability of the system and the reachability of the sliding surface can be ensured by 

using the same proof as in Theorem 5.1. The compensator design algorithm is given as 

follows: 

Algorithm 5.2 

1) Design the augmented system (5-34); 

2) Solve the LMIs (5-40) to (5-42) to get         and                   . 

3) Use (5-48)-(5-50) to get the matrix    , then calculate the s.p.d matrix       

      for each augmented subsystem. 

4) Solve (5-38) with the solution matrix         from step (2) and P  from step 

3 to get the controller matrix                   ; 

5) Decompose the controller matrix    with     
      

      
  to get the gain 

matrices of each compensator. 

6) Design the sliding surface with (5-51) and design the controller with (5-30)-

(5-32). 

The advantage of this method is that it is not necessary to solve the SOF problem 

described in Section 5.2. This means that the space complexity of the LMI problem is 

reduced. One can note that the orders of the LMIs (5-40) and (5-41) are less than the 

LMIs in SOF problem.  

5.4 Output Integral sliding mode control 

As we known, besides static output feedback and dynamic compensation, another 

method can be used to deal with output feedback problem, i.e. observer-based output 

feedback control. The main idea of observer based output feedback control is to use the 

well known “separation principle” through which the observer and state feedback 

designs can be made separately if and only if the state space model used for design is a 

precise model of the system. However, the Separation Principle cannot be used for 

designing the decentralized system because of the uncertainty arising from interactions 

between the subsystems. The interaction terms appear in both the state and observer 

error dynamics of the system. Some recent research has been done by (Kalsi, Lian and 

Żak, 2010), but they assumed that the interactions satisfy the “matching condition” for 
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the sliding mode observer. Although it is possible to recover the Separation Principle 

with a linear sliding surface, but this detail is omitted here since in this work local 

controllers use integral sliding mode surfaces, rather than the conventional linear sliding 

surface approach. 

The concept of integral sliding mode (ISM) was proposed by (Utkin and Shi, 1996). In 

comparison with the conventional sliding surface design, ISM uses the same order as 

the original system. This implies that ISM does not separate the system into matched 

and unmatched subsystems. Although the state space is not partitioned as in the 

conventional sliding case, the feedback still compensate for the matched perturbations, 

whilst the unmatched perturbations still affect the closed-loop system behaviour. 

The main advantage of ISM is that the robustness of the system can be guaranteed 

throughout an entire response of the system starting from time     (Utkin and Shi, 

1996). The ISM was developed further by (Cataños and Fridman, 2005, 2006). They 

clarify the choice of integral sliding surface gain matrix and make it simple enough to 

be designed.  

It is worth outlining here the main disadvantages of classical linear sliding compared 

with ISM control. In the classical case, the sliding mode drives the system to the sliding 

surface and once the system reaches this surface, the structure of the feedback loop is 

adaptively altered to slide the system states along the sliding surface. As discussed in 

Section 4.2 there is a reaching phase during which the matched uncertainties actually 

affect the system response, i.e. during the reaching phase there is no robustness. As 

stated above for the ISM case there is no reaching phase and hence by definition the 

sliding commences immediately and the matched uncertainty is decoupled from the 

system response. 

A second advantage of the ISM control is that for the state feedback case as the sliding 

surface dimension is the same as the order of the system, the interaction between the 

designs of the liner feedback and the non-linear (switched) feedback is removed. This 

has an important consequence that the linear part of the feedback design can, in 

principle, be designed using a wide range of linear design methods and this facilitates a 

way of comparing the robustness behaviour of an uncertain linear state feedback system 
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with its ISM control counterpart. However, this only applies in the state feedback case. 

For output feedback the situation is more complex. 

A disadvantage of the original ISM control formulation is that full knowledge of the 

system states is required. In other words, the ISM control (in its original form) is limited 

to state feedback control. (Bajarano, Fridman and Poznyak, 2007) was the first to 

propose an output feedback approach to ISM control. However, they considered only 

the matched perturbations for a single (i.e. centralized) system. This section proposes a 

novel output feedback ISM control (OISMC) strategy which can deal with unmatched 

perturbations, i.e. subsystem interactions and modelling uncertainty.  

To state the strategy, re-consider the overall system in the form of (5-3): 
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 (5-3) 

Assume that the triple         are the system matrices with appropriate dimensions 

with which assume the system is controllable and observable. The appropriate bounds 

on the matched perturbations and the interactions are given by (5-2) and (5-4), 

respectively.  

 ),(),,( tyuftuxf iiiuiii   (5-2) 
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An extra bound condition for the interactions term should be satisfied as follows: 

 21),(   Cxtxh   

where    and    are known constants.  

(Castaños and Fridman, 2006) proposed that every perturbation can be divided into 

matched and unmatched parts. Thus, partition the interactions        as: 
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),(),( txhBBtxhBBtxh     (5-52) 

Following the standard sliding mode control principle the control law is designed with a 

linear component       and a non-linear component      , so that             

       The linear control component  is designed to make the sliding motion stable and 

having desired transient and steady-state behaviour.       is the nonlinear 

(discontinuous) part which is designed to force the closed-loop system trajectories to 

remain within the sliding surface. 

The observer used here is the typical linear full-order Luenberger observer: 
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where   is the observer gain matrix to be designed. The sliding surface appropriate to 

the output feedback case is: 
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There are two main terms in the sliding surface eq. of (5-54). The first part {1} is a 

linear combination of the system outputs whilst the second part {2} contains an integral 

term which is used to reject some unwanted terms of {1} in the analysing later.   

     is a projection matrix in diagonal form which satisfies the invertibility of     . 

Note that at     , the sliding surface function is identically zero, i.e.    , and hence 

the system trajectories start within the sliding manifold. The time derivative of the 

sliding surface (5-54) is given by: 
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It should be noted that              
              

            
  which is a 

consequence of using the diagonal form for the G matrix.  

As described above, the nonlinear discontinuous control law of the local subsystem is 

designed to keep maintain the motion within the sliding surface. This is designed as 

follows: 
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where     a suitable gain to be designed. As the system motion starts from the sliding 

surface, it must be proved that the time derivative of the Lyapunov function for the 

sliding surface is less than or equal to zero. Consider the Lyapunov function for the 

sliding surface as         
   

 
    

When combined with (5-55), the time derivative of the Lyapunov function is given by: 
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Then by choosing  
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where   is a positive scalar, it follows: 

 0  GCBV   

From Chapter 4, it can be understood that the system trajectories will stay within the 

sliding surface. Since there is an unmeasured varying parameter       in (5-58), the gain 

   cannot be easily chosen. However, if one can assume that the Euclidean norm of the 

initial estimation error         is bounded by a realistic value       then (5-58) can be 

changed to: 

      iiiiuiiinitiiiiiii tyufyCGeACGBCG  
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To ensure that the sliding motion is maintained, it is also necessary to assume a large 

enough value for the scalar   . Moreover, it is necessary to prove that the system 
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estimation error is decreasing in order to make sure that the inequality (5-58) is always 

guaranteed. This proof involves the design of a linear control law and linear observer 

gain matrix. 

When the overall system is running in the sliding surface, i.e.             and 

            , using the equivalent control method, it gives: 

 ),,()),()(()()( 1 tuxftxhtAeGCGCBtueq     (5-60) 

Using the equivalent control (5-60), the sliding motion is then given by: 

 )()(),())(()()()( 11

0 tGCAeGCBBtxhGCGCBBItButAxtx     

According to (Castaños and Fridman, 2006), using the projection lemma, the best way 

to design the sliding gain matrix is       or      , in this case, the magnitude of 

unmatched uncertainties would not be amplified. Hence, choose: 

 
 CBG T
 and 

  BBIGCGCBBI ))(( 1
  

where                 and      
   

         . 

By defining           and       , the sliding motion can then be rewritten 

as: 

 )(),()()()( 0 tetxMhtButAxtx    (5-61) 

From (5-61), it can be seen that the matched perturbations             have been 

rejected completely. Also it is possible to attempt to minimize the effect of the 

unmatched component with the linear control law      . This provides some additional 

design freedoms that can be used for example to improve the robustness to the 

unmatched perturbations. However, the order of the sliding dynamics is equal to the 

order of system states and this itself may be a slight disadvantage.  

The design of the linear control law              is discussed in the rest of this 

Section.  

Since the system is running in the sliding surface, and from the sliding motion defined 

by (5-61), the error system in the sliding surface is given by: 
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By combining (5-61) and (5-62) the augmented system is derived as: 
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then considering the Lyapunov function for the augment system: 

 )()(),( txPtxtxV T   

where              ,             ,                     are s.p.d. 

matrices, along with their matrix components. The time derivative of the Lyapunov 

function is: 

 )()()()(),( txPtxtxPtxtxV TT     (5-64) 
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where: 222222 PPPLCLCPPAAP TTTT   

i.e. 
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where: 
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 2222222 PPPLCLCPPAAP TTTT    

The objective is to make the time derivative of the Lyapunov function (5-65) negative. 

However, the inequality     is difficult to achieve because of the structure of  .  

To solve this, the quadratic constraint: 
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 is used to achieve a quadratic form: 
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Then by using the S-procedure of (Boyd et al, 1993), combine (5-65) and (5-66) into 

one inequality with a positive scalar  : 

 0

21

2211

1111

























IPMPM

MPPPBK

MPPBKPHH

TT

TTT

T





  (5-67) 

where 
11111 PBKBKPPAAP TTT   

2222222 PPPLCLCPPAAP TTTT   

Now the problem becomes: 

 Find     ,     ,  ,   such that (5-67) is satisfied  (5-68) 

In this case, the time derivative of Lyapunov function            , which implies 

asymptotic stability of both the error and the original systems. Two strategies can be 

applied to solve the problem (5-68). 
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Strategy 1: 

The scalar parameter   can be eliminated by defining          and         . 

Moreover, define     
  ,      ,        and pre- and post- multiply the block 

diagonal matrix 

















I

I

Y

00

00

00

. The inequality (5-67) can be rewritten as: 
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where: 
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*
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It should be noted that the both    and    are in block diagonal form, i.e.    

         ,                     . 

Since there are coupled matrices      and   in the inequality (5-69), it cannot be 

solved with conventional LMI approach. However, this problem is similar to the linear 

observer based decentralized linear control problem of (Zhu and Pagilla, 2007) which 

can be solved by the following algorithm  

Algorithm 5.3: 

Step 1. Solve the LMIs problem: 

 Minimize    
 
          , subject to                       
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Step 2. Get the control gain matrix      
   from the solution to (5-70). 

Step 3. Fix  ,  , and    and solve the following LMIs 

 Minimize    
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where             
        

      
        

  

Step 4. Get the observer gain matrix     
     

Remark: The LMIs involving               are considered as optimization 

constraints. These constraints were first proposed by (Šiljak and Stipanović, 2000), for 

the purpose of choosing the appropriate size of the gain matrices   and  . 

The feasibility of (5-70) has been proved in Chapter 4. Moreover, with large enough   , 

the feasibility of (5-71) can be ensured. The sufficient condition for the feasibilities of 

LMIs (5-70) and (5-71) is that the controllability and observability of each subsystem 

triple            is ensured. This algorithm is similar to the one given in (Zhu and 

Pagilla, 2007)., although in this work the output feedback problem involves the ISM 

control system (rather than purely linear system). 

Strategy 2 

Eliminate   by defining          and         . And defining     
  ,    

  ,       .  Then the inequality (5-67) can be re-written as: 
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where:  
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Pre- and post- multiplying the inequality (5-72) by the matrix             where 

           , it gives: 

 
          

    
       

    

From (Ichalal et al, 2010) that: 

                     

Thus, using the Schur complement lemma, rewrite the inequality (5-72) as: 

 

           

    
        
      

    

Then the LMI can be further written as: 
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    (5-73) 

where 
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2222222 FFWCCWFAAF TTTT   

Moreover, when combined with the restriction matrices for  ,   ,   and   in Strategy 1, 

the solution to the problem (5-68) is given by solving an appropriate set of LMIs as 

follows: 

 Minimize    
 
                 , subject to   (5-73) and 

                       , 
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By using either Strategy 1 or Strategy 2 the main results can be derived as stated by the 

following Theorem: 

Theorem 5.3. For the overall system (5-3), design the observer: 
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and the sliding surface: 
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The system is asymptotically stable with the control law: 
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where    satisfies the constraint: 
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if the problem (5-68) can be solved by Strategy 1 or Strategy 2. 

The matrices   and    solved by both algorithms are s.p.d. matrices. Moreover, the 

matrices           are in the block diagonal form such that           ,     
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         ,             ,                      and               

          ,           . 

The control gain matrix    and the observer gain matrix    can be given by:   

     
   and      

     . 

The proof can be easily obtained from the discussion in this Section. 

Note that if the problem (5-68) is solvable,            , which also implies that the 

errors states      keep decreasing during the system operation. Thus, the inequality 

(5-58) is ensured with the gain    designed from (5-59). 

The adaptive mechanism cannot normally be applied in this OISMC method. The 

reason is that this method requires that the sliding surface should be reached from the 

beginning. To achieve this, a large enough gain to keep the system running in the 

sliding surface from initial time should be given initially. However, the adaptive 

mechanism introduced in Chapter 4 has the property that the gain increases if the sliding 

surface is not reached. Hence, by defining a sufficiently large values of   , the adaptive 

mechanism is not necessary. 

5.5 Multi-machine power system case study 

The multi-machine power system has been widely used to illustrate the decentralized 

methods. The interactions of this system are nonlinear which makes the development of 

a suitable decentralized output feedback control system more challenging. Various 

papers have described this problem (Guo Hill and Wang, 2000; Šiljak, Stipanović and 

Zečević, 2002; Zecivic and Šiljak, 2004; Zhu and Pagilla, 2007; Tlili and Braiek, 2009; 

Kalsi Lian and Żak, 2009, etc). One of the important reasons why this system is used as 

a case study is to illustrate how to construct the quadratic constraint for the interactions. 

5.5.1 System description 

An N-machine power system with steam valve control can be described by the 

interconnection of N subsystems, under the form of (5-1). Let 

                   
       

      denote the state vector of each machine. 

The dynamics of i-th machine,        , can be represented as follows (Tlili and 

Braiek, 2009): 
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where                          
 
        is a nonlinear vector function characterizing 

the interactions between the subsystems.  The subsystem state space parameters are 

given as: 
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The interactions between the subsystems are defined as                      

       ⁡(  0   0) 

The physical meanings of the parameters of system (5-75) are defined by the following: 

                 ; 

     
       

        
 

     
       

        
 

       is the control vector of i-th subsystem; 

       is the output vector of the i-th subsystem; 

       is the rotor angle for the i-th machine, in radians; 

       is the relative speed for the i-th machine, in radians; 

    
    is the per unit mechanical power for i-th machine; 

    
    is the per unit steam valve aperture for i-th machine; 

     is a constant of either 1 or 0 (      means there is no connection between the 

i-th and j-th machines); 

    is the inertia time constant for the i-th machine, in seconds; 

    is per unit damping coefficient for i-th machine; 
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    
 is time constant for i-th machine’s turbine, in seconds; 

    
 is the gain of i-th machine’s turbine; 

    
 is time constant for the i-th machine’s speed governor, in seconds; 

    
 is the gain of the i-th machine’s speed governor; 

    is per unit regulation constant for the i-th machine;; 

     is per unit nodal susceptance between the i-th and j-th machines; 

    is the synchronous machine speed,        , in radians·s
-1

; 

    
  is the per unit internal transient voltage for the i-th machine (assumed constant); 

         
     

 are the nominal values of          
       

   . 

In this study a  3-machine system is used and the structure of this system is shown in 

Figure 5-1. 

   

 Figure 5-1. Three-machine power system 

Before designing an output feedback decentralized control in this model, the quadratic 

constraint for interactions should be determined first. (Kalsi, Lian and Żak, 2009). 

Define      
     

    
    

   
 and      ,               for each of the interconnected 

machines. The interaction terms can be written as 

                         
 
                      

 
       . Applying standard 

trigonometric identities, interaction terms can be represented as:  
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where                                     and  

                                  

Define:  

                             

                                     

                                         

It then follows that   
                

     , where          
   

 . Assuming that 

                  are constants, the elements of   ,     can be easily obtained 

which satisfy              
      

. On the other hand, applying the inequality: 

                 
   

     
 

 
 

leads to the quadratic form   
                 

      , where: 

                              

                                     

with            
       

 
          

For an N-machine system, see (Kalsi Lian and Żak, 2009) the interactions can be 

derived in a systematic way. As a special case for the three-machine power system, the 

quadratic constraints can be written manually as:  
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The parameters are the same as given in (Tlili and Braiek, 2009) 

 Table 5-1. The parameters of the power system with three interconnected machines 

Parameter Machine 1 Machine 2 Machine 3 

 (s) 4 5.1 5.1 

 (pu) 5 3 3 

  (s) 0.35 0.35 0.35 

  (s) 0.1 0.1 0.1 

R 0.05 0.05 0.05 

   1 1 1 

   1 1 1 

             314.159 314.159 314.159 

 

Moreover, the parameters       
 are given by (Wang, Hill and Guo, 1998; Kalsi Lian 

and Żak, 2009; Tlili and Braiek, 2009) as follows: 

      
       

      ,       
       

       
       

       

Some work on static output feedback control on multi-machine power systems has been 

reported (Yan et al, 2004). However, the model they used is a simplified system (the 

order of their subsystem is 3 instead of 4). To illustrate the static output feedback 

method proposed in this Chapter it is assumed that the steam valve opening variations 

can be measured. In this case, the condition                  is satisfied. 

Moreover, to use static output feedback, assume that the relative speed is measured in 

order to make the static output feedback method available. The output matrix can be 

written as: 

    
    
    
    

  



129 

 

5.5.2 Static output feedback sliding mode control 

Using Algorithm 5.1, solve the    matrix for each subsystem such that: 

                           

                           

                           

The sliding surface gain matrices    are also given by: 

                                                   

                        

Using the control law aims structure given in section 5.2, the time responses of the 

states of this multi-machine system are shown in Figure 5-2 to Figure 5-5. These show 

that with this static output feedback control, the system is stabilized. If consider an 

actuator fault in Subsystem 1, for which a step signal is applied to the steam valve 

aperture variation, the system is shown to be insensitive to this fault with SOF SMC. 

 

Figure 5-2. Stabilized power system states             for 3 interconnected systems 
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 Figure 5-3. Stabilized power system states            for 3 interconnected systems 

 

Figure 5-4. Stabilized power system states     
         for 3 interconnected systems 
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Figure 5-5. Stabilized power system states     
         for 3 interconnected systems 

Setting the magnitude of the step signal               and add this signal to steam 

valve aperture variation. The results are given in Figure 5-6. The result of system with 

only linear SOF control is compared with the system with SOF SMC control.  

From Figure 5-6, it is clear that the subsystems still respond to the faults even with the 

SMC because that boundary layer is used to avoid the chattering problem. The 

insensitivity can be improved by increasing the gain. But it is still necessary to find a 

trade-off balance between avoiding chattering and improving insensitivity. 
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Figure 5-6. States responses with (lower) and without (upper) the sliding mode non-

linear gain, for a step fault of   t  0 5 at       
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5.5.3 Observer based integral sliding mode control 

Following the theoretical discussion in Section 5.4, it is interesting to apply the observer 

based ISM control to the interconnected system model. In contrast to the static output 

feedback case, 2 measurable states can be used successfully instead of requiring that 3 

measurable states are available. Hence, to reduce the cost of requiring additional 

measurements, the output matrices    can be modified as: 

    
    
    

  

Figure 5-7 shows that the system is stabilized by this method. Moreover, it can be 

observed that the error system is asymptotically stable as shown in  Figure 5-8.  

 

 

Figure 5-7. State responses of all three subsystems using the observer based ISMC 
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 Figure 5-8. Errors between original subsystems and local observers 

On the other hand, using this method, the matched fault (the same step signal as given 

in Section 5.5.2) can also be compensated.  

For Figure 5-9, the upper diagram shows the state response when there is a step fault in 

subsystem 1. It can be seen that the linear output feedback control no longer stabilizes 

the system since the effect of the fault is transferred from the first subsystem to the 

others. However, by adding an integral sliding mode controller to the linear observer 

based control in each subsystem all the subsystems are stabilized and can be made 

insensitive to this fault, as shown in the lower diagram of Figure 5-9.  
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Figure 5-9. State responses with (lower) and without (upper) the OISMC non-linear 

gain term for a step fault of          at       
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5.6 Conclusion 

This Chapter focuses on novel approaches to SMC based on output feedback designs for 

LSSs with (a) static output feedback, (b) dynamic compensation feedback, and (c) 

observer-based output feedback. New contributions of both decentralized static output 

feedback and decentralized dynamic compensator SMC are introduced. As a 

consequence of this study, combining with decentralized state feedback SMC, a more 

complete contribution to the theory of LMI-based decentralized output feedback SMC 

has been established. 

As distinct from most publications, all the output feedback SMC methods in this 

Chapter are concerned with both the matched and unmatched cases of faults and 

perturbations. This is the most challenging scenario in decentralized control. 

Moreover, this Chapter also proposes a novel observer-based ISM. In fact, a linear 

observer-based SMC with linear sliding surface can also be constructed using a similar 

algorithm. It is well known that the original state feedback ISM control by (Utkin and 

Shi, 1996) asks for full knowledge of the system and states. However, as a main 

contribution, the observer-based ISM control proposed in this Chapter can overcome 

this disadvantage. Furthermore, the observer based output feedback ISM control 

approach eliminates the reaching phase which is also one of the main disadvantages of 

classical linear sliding surface SMC theory.  

A multi-machine model is used then to illustrate both static output feedback and 

observer based ISMC methods proposed in this Chapter. In this case study, the approach 

to construct quadratic constraint for interactions is also illustrated. Both SOF SMC and 

observer based ISM shows satisfactory results.  
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Chapter 6  

Decentralized Sliding Mode Observer and Fault 

Estimation 

6.1 Introduction 

For LSSs, as discussed in Section 5.4, if the system cannot be controlled by static output 

feedback due to a problem of infeasibility of the appropriate coupled LMIs problem, 

one of the best ways is to use observer based control. In this case, a state feedback 

method can be used to construct the local controllers based on state estimate feedback 

(Bakule, 1996; Pagilla and Zhu, 2004; Tlili and Braiek, 2009; Benigni et al, 2010; Kalsi, 

2009, 2010; Shafai Ghadami and Saif, 2011).  

Another observer function can be based on fault estimation and there are several 

powerful approaches in the literature for robust fault estimation using specialised 

observers (Hassan Sultan and Attia, 1992; Chung and Speyer, 1998; Shankar Darbha 

and Datta, 2002; Yan and Edwards, 2008, etc.), for example proportional multi integral 

observers, unknown input observers, adaptive observers, sliding mode observers (SMO), 

etc. Please refer to Chapter 2 for a brief review of some of these methods. In this study 

the SMO has been chosen as this is in keeping with the mathematical developments 

given elsewhere in the thesis, i.e. based on sliding mode. 

There is a significant possibility that faults can occur in a LSS due to the wide 

distribution of interconnected subsystems. Because of the interconnections, a fault 

occurring in a subsystem might lead to a failure in the overall system. The main 

challenge of fault monitoring and fault estimation in LSS is to understand and take into 

account the separate effects and influences from interactions and uncertainties. This is 

actually an extension of the now classical problem of robustness of FDI which is 

defined in terms of sensitivity to faults and minimization of the effects of uncertainty. 

Hence, the motivation of this Chapter is to extend the classical concepts into the domain 

of application of decentralized systems as a realistic approach to robust estimation, 

based on the use of the SMO. 
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The Chapter first reviews some typical SMO methods applicable to a single (centralized) 

system. The Walcott-Żak form of SMO is applied to a decentralized system problem to 

simultaneously estimate the states and actuator/sensor faults.  

6.2 Sliding mode observer 

By analogy with the SMC, by introducing a nonlinear control component, the error 

system trajectories reach the sliding surface in finite time such that the error system is 

insensitive to faults and perturbations satisfying certain conditions. To provide useful 

background this Section provides an outline of two SMO methods: the Walcott-Żak 

observer and the Edwards and Spurgeon observer. The main differences between these 

two observers are: the former type has simpler structure and it is easier to understand 

while the latter requires a triple state transformation but on the other hand gives more 

system information. However, both of these SMO strategies follow the same basic 

sliding concepts that of design of a sliding surface with respect to the output error. Once 

the sliding surface is reached, the state estimation error will be asymptotically stable. 

6.2.1 Walcott-Żak observer 

The Walcott-Żak observer is first developed by Walcott and Żak (1987), it is also 

referred to as a “Lyapunov-based” observer because the observer design is based 

directly on a Lyapunov function. However, the Walcott-Żak observer includes, in 

addition to the Lyapunov function formulation, an additional matrix equation constraint. 

It could be argued that this adds some complexity to the derivation and solution 

approach. It is certainly complicated to solve using algebraic methods, details could be 

found in (Hui and Żak, 2005). Both (Xiang, Su and Chu, 2005) and (Choi, 2005) 

propose a structured LMI approach which by pre-structuring the s.p.d. matrix in a 

Lyapunov function, leads to a effective solution to the Walcott-Żak observer problem. 

In this section, the idea of Walcott-Żak observer is reviewed and a new contribution by 

way of an improved structure for this type of SMO is given. 

Consider a system has the following form: 

 
)()(

),,()()()(

tCxty

tuyGftButAxtx




  (6-1) 
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where      is the system states,      is the output of the system,      represent 

all the disturbance and uncertainties in the system.         are the system matrices of 

appropriate dimensions. Also assume that       and the matrices     and   are of 

full rank. The perturbation is assumed unknown but bounded by 

 ),,(),,( tuytuyf    (6-2) 

where          is a known continuous function. 

Moreover, assume that zeros of the system model given by the triple         are in the 

left-hand complex plane and           . 

Consider the following observer structure: 

 
xCy

KtLCetButxAtx n

ˆˆ

)()()(ˆ)(ˆ



 
  (6-3) 

where   and    are the matrices to be determined.   is the switching part of the SMO. 

In a similar way to the SMC problem the SMO switching function has the following 

form: 

 



 ),,( tuy

  (6-4) 

where          is chosen such that                       ,     is positive 

scalar designed by the designer, where   is the sliding gain matrix to be designed later. 

The sliding surface is defined as: 

 )ˆ( xCyCe    (6-5) 

One might note that the sliding surface is different from the original Walcott-Żak 

observer given by          . This will be discussed at the end of this Section. 

Thus, combined with (6-1) and (6-3), the error system can be constructed as: 

 )(̂)()( txtxte    (6-6) 

 νKtGfteLCAte n-)()()-()(    (6-7) 
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The basic idea of the Walcott-Żak observer is to calculate     and   so that        is 

stable and satisfies the following condition: 

 FCPGT    (6-8) 

 QPLCALCAP T  )()(   (6-9) 

where   and   are s.p.d. matrices. The main problem of the Walcott-Żak observer is 

how to develop the most effective solution approach for Eqs.  (6-8) and (6-9). In the 

original paper by (Walcott and Żak, 1987), the solution to (6-8) is assumed to be known. 

(Corless and Tu, 1998) point out that the solvability of (6-8) and (6-9) equivalent to the 

conditions outlined in the following Lemma: 

Lemma 6.1 (Corless and Tu, 1988): If there exist s.p.d. matrices   and  , the solution 

to (6-8) and (6-9) could be found if and only if                  and the zeros of 

the system model given by the triple         are in the left-hand complex plane. 

In this case, the switching gain matrix    of the observer (6-3) can be given by: 

 
T

n CPK 1   (6-10) 

Theorem 6.1 For the system (6-1), design an observer of the form (6-3) with (6-4), (6-5) 

and (6-10). If the conditions (6-8) are (6-9) are satisfied, the observer (6-3) will track 

the state trajectories of the system robustly and become insensitive to the system 

perturbations.  

Proof: 

Following the derivation of the classical sliding mode system theory two steps are 

required to prove this Theorem: 1). Ensure that the sliding surface can be reached and 2). 

Prove that the error system is stable after the sliding surface is reached. In this case, the 

state error system can be proved to be asymptotically stable. Following this the 

reachability of the sliding surface is obtained  

Consider the derivative of the error system (6-7): 

 nKtGfteLCAte  )()()()(  (6-7) 
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Construct the Lyapunov function          and its time derivative: 
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  (6-11) 

(6-11) implies that the estimation error system is quadratically stable. This also explains 

the reason why the solution to equation (6-8), i.e.       , is required. 

From condition (6-9),      . Thus, the error system is quadratically stable. Next, 

consider the Lyapunov function for the sliding surface: 

 y
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yy eCCPeV 11 )(
2

1    (6-12) 

The time derivative of (6-12) along the error system (6-7) is: 
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Note that           , it follows that: 
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  (6-13) 

Define          , because of the asymptotic stability of the closed-loop estimation 

error system (6-7),  the trajectory of this system will enter the following domain in finite 

time: 

  }~)()(|{ 11    eLCACCCPe T   (6-14) 

Thus,               , which implies that the sliding surface      can be reached 

in finite time and remain there subsequently. With this the proof is complete.    
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(Edwards and Spurgeon, 1998) state that the null space of the sliding surface gain 

matrix   spanned by    in the original formulation of the Walcott-Żak observer is non-

empty, i.e.        for some       (the trivial solution). Hence, if the sliding surface 

is designed by      , the observer does not necessarily track the system outputs 

perfectly. Actually, this statement is not complete, as the system will still track the 

output perfectly in finite time. But, when the sliding surface is reached, the output error 

   might not be identically zero. However, in the method proposed in this Section, 

instead of using             , the gain matrix          is chosen. In this 

case, the sliding surface can be designed so that     . This modification does not 

change the essential properties of the Walcott-Żak observer whilst guaranteeing that the 

output error becomes zero after reaching the sliding surface.  

In the Section 6.2.2, the well-known Edwards & Spurgeon observer is reviewed. It is 

shown in particular how the calculation of        is obviated by way of developing 

an alternative approach. 

6.2.2 Edwards & Spurgeon observer 

In this Section, the Edwards & Spurgeon observer is described. This type of observer is 

an extension to the Uktin observer, which requires a triple state transformation during 

the design procedure (Edwards and Spurgeon, 1998). A consequence of the use of 

transformation is that after designing the observer gain matrices the state system must 

be transferred back into the original coordinates. It is shown in this study that the 

complexity of the triple transformation gives enhanced accuracy and a better 

understanding of the observer structure (Edwards and Spurgeon, 1998). 

Consider the system of the same form of (6-1) and use similar assumptions to those 

given in Section 4.2.1, as follows: 

1) The pair       is observable 

2)       and the matrices B, C and G are of full rank. 

3) The perturbation is assumed be unknown but bounded by:  

 ),,(),,( tuytuyf   (6-2) 

where          is a known function. 

4)                    and the zeros of the system model given by the 
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triple         are in the left-hand complex plan, that is: 

 qn
C

GAsI








 

0
  

for all   such that       . 

Suppose that there exist a linear change of coordinates which transfer the system into 

observer canonical form:       , and the output distribution matrix becomes: 

  pICT 01

0 
  

Therefore, the new coordinate system can be written as: 
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  (6-15) 

where        ,      and the matrix 
11

A  has stable eigenvalues. (Edwards and 

Spurgeon, 1998). 

Consider an observer of the form: 
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  (6-16) 

where    
  is a stable design matrix and              . The switching part of 

observer   is designed as: 
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where:    is an s.p.d matrix and satisfies the following Lyapunov equation: 

 IAPPA sTs  222222   (6-18) 

where    is an s.p.d matrix. The scalar function         , like the one given in the 

original formulation of the Walcott-Żak observer, should be chosen so that it is larger 

than the upper boundary of the fault:  
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   ),,(),,( tuytuy   (6-19) 

where   is a positive scalar. 

Although (6-18) is similar to (6-9), however it reduces the order of the problem. 

Thus, the error system can be written as: 

 )()( 1111 teAte    (6-20) 

 fGteAteAte y

s

y 222121 )()()(     (6-21) 

In (Edwards and Spurgeon, 1998), it has been proved that if the observer system has the 

form (6-16), then the error system (6-20) and (6-21) is quadratically stable. Thus,   the 

Edwards and Spurgeon observer structure is summarized as: 

 nl GtCeGtButxAtx  )()()(ˆ)(̂   (6-22) 

where the linear gain is: 
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The switching non-linear gain is: 

 







 

p

n I
TGG

0
1

02
  (6-24) 

and  
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Since it is a review of Edwards and Spurgeon observer, the details of this observer are 

omitted. For more details, see (Edwards and Spurgeon, 1998). The main difference 

between the Edwards & Spurgeon and Walcott-Żak observers is the choice of the gain 

matrix in the sliding surface. In the Edwards and Spurgeon observer, when the sliding 

surface is reached, it follows that      since    is an s.p.d. matrix (invertible and full 
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rank). However, as        in the conventional Walcott-Żak observer, F is not 

required to be full rank. Hence, once the sliding surface is reached,      cannot be 

guaranteed when the system reaches sliding surface. For this reason, Edwards & 

Spurgeon point out that in their view the Walcott-Żak observer does not necessarily 

track the system outputs perfectly. Compared with the Walcott-Żak observer, the 

Edwards & Spurgeon observer does not require the solution of Eq. (6-8). It does 

however require the rather complicated transformation matrix   . The system in the new 

coordinates should satisfy the following conditions: 

(i). The matrix     has stable eigenvalues. Moreover, (Edwards and Spurgeon, 1998) 

states that the system matrix can be written as: 
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where    
       and    

                 for some     and the pair 

    
     

   is observable, Furthermore, the eigenvalues of    
  are the invariant 

zeros of        . 

(ii). The disturbance distribution matrix has the following form: 

 









2

0

G
G   (6-27) 

where 
2

G      is non-singular matrix 

(iii). The output distribution matrix has the form 

  TC 0   (6-28) 

where        is an orthogonal matrix. 

This system in the new coordination is the so called “canonical form” for the SMO. For 

more details see (Edwards and Spurgeon, 1998). 

(Tan and Edwards, 2001) then realized that the gain matrix (6-24) does not exploit all 

the degrees of freedom available. The new method suggests that the gain matrix for the 

nonlinear part should be given by: 
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 
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02
  (6-29) 

where             and         with                . The gain   is also to be 

determined but the orthogonal matrix   is part of the    matrix of (6-28) in the new 

coordinate system (Tan and Edwards, 2001). 

Compared with the gain matrix (6-24), all of the design freedom is exploited in (6-29). 

(Tan and Edwards, 2001) also gave the LMI based algorithm for the observer: 

Suppose that after transformation, the system is in the canonical form and satisfies the 

condition (i)-(iii) and can be written as: 
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Step 1. Check that            and the eigenvalues of    
  have negative real parts. 

If not, the approach is not applicable.  

Step 2. Define two symmetric matrices          and         . And an extra matrix 

        for the linear gain matrix design. 

Step 3. Form the LMIs: 

Minimize           , subject to 
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where W and V are assumed to be s.p.d..  

Step 4. Partition the resulting matrix    to obtain    ,     and     as defined in (35). 

Compute       
     ,            

    
      and         

  where   is the 

orthogonal matrix from (6-28). 



147 

 

Step 5. The observer gain matrices (in the co-ordinates of the canonical form from Step 

1) can be calculated as 

 YPTGl
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The nonlinear switching part is the same as (6-25). 

6.2.3 LMI approach for decentralized Walcott-Żak observer 

Compared with the Edwards & Spurgeon observer, the advantages of the Walcott-Żak 

observer are that it requires less transformations and has simpler structure if the Eqs. 

(6-8), i.e.       , can be solved. However, the only remaining problem in the 

design of the Walcott-Żak observer lies in the determination of P and F satisfying (6-8), 

although (Xiang, 2005; Choi, 2005) point out that the problem has a direct solution 

approach via the use of LMIs. It can be shown that the observer parameters are 

determined by solving only one LMI problem. However, the disadvantage of this 

method is that there is less freedom when compared with the SMO of Edwards and 

Spurgeon. As it can be seen the essential idea of the Walcott-Żak observer is try to 

calculate two matrices with which the perturbation distribution matrix of the original 

system can be reconstructed, i.e.          . This further limits the design freedom 

of the sliding surface in the Walcott-.Żak case. 

No matter whether the observer is designed for control design or fault estimation, the 

decentralized structure with only local output information is the way to build observers 

for large scale system.  

Theorem 6.2 The problem (6-8) and (6-9) can be solved by finding s.p.d. matrices 

               ,         and a general matrix        such that: 

 0
~~

21  CWCGWG TT   (6-34) 

     0
~~~~

2121  TTTTTTT YCYCCWCGWGAACWCGWG   (6-35) 

One can get the solution that  
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where    is the orthogonal matrix for  , i.e.       . One can solve the LMIs (6-34) 

and (6-35) directly by using MATLAB LMI tools. Compared with (Tan and Edwards, 

2001), Theorem 6.2 simplifies the design algorithm significantly.  

A similar algorithm has been used in the static output feedback sliding mode control 

part in Chapter 4. The only difference is that the controller can only deal with matched 

perturbations, i.e.          . However, in the SMO design, the perturbation gain 

matrix   does not need to satisfy this matching condition, and the SMO matching 

condition is                 . Another advantage of this method is that the design 

of matrices L and P can be separated. From Theorem 6.2, it can be noted that the LMI 

(6-35) contains two variables. If there exists a matrix L which makes        stable, P 

can be obtained by solving: 

     0
~~

)()(
~~

2121  CWCGWGLCALCACWCGWG TTTTT   

This means that the linear part of the SMO and the discontinuous nonlinear part of the 

SMO can be designed separately. However, although the design of   does not affect the 

solvability of the LMIs (6-34) and (6-35), it does affect the feasible solution region of 

(6-35). 

When considering the LSS problem, in contrast to the single (centralized) system 

structure assumed in (6-1), there always exist interaction terms. However, as discussed 

in Chapter 1, for the overall system, the interaction terms can always be considered as 

bounded uncertainties if the overall system has proper local controllers. The influence 

of the interactions in the estimation error of each local observer is unavoidable unless 

each interaction satisfies the corresponding (local) rather restrictive observer matching 

condition                 . This Section considers an extension of the Walcott-

Żak method where the overall system contains uncertainties/interactions which do not 

satisfy the “matching condition”                 . Also, the constraint of the 

known upper bound of the perturbations can be relaxed by an adaptive mechanism 

which is described in Chapter 4. 

Now, assuming that for a LSS, the local controllers are well designed such that the 

overall system is stable and the interactions are bounded. Consider the i-th subsystem in 

the form of: 
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where the state vector       , the output signal       .          . The system 

zeros given by the triples            are in the left-hand complex plane for all the 

subsystems and         ,                    .             represents the 

system faults. Here           represents the uncertainties and interactions between 

subsystems, which do not satisfy the observer matching condition, i.e.            

        . However, due to the formulation of stable local controllers, assume that the 

term           is bounded by unknown constants                 

The overall system can be written as: 
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where,         
       

      , y       
       

       

                                                

                

            
               

             

          
           

         and              

    ,     ,                ,           and        

   are the numbers of the states, inputs and outputs, respectively. 

The local observer for the subsystem (6-37) can be written as: 
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Thus, the observer system based on the overall system is given by: 
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where                                . 
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The error system is of the form: 
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The LMI approach for the robust sliding mode observer (6-40) is designed using the 

following theorem: 

Theorem 6.3. The aggregated state estimation error                 is ultimately 

bounded if the observer is in the form of (6-40), where the gain matrices are given by 

solving the following LMIs: 

Define matrices             ,             ,           ,     

                ,            and           such that: 
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     0
~~~~

2121  TTTTTTT YCYCCWCGWGAACWCGWG   (6-42) 

One can derive observer gain matrices that are calculated from:
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The sliding mode switching term for the local observer is designed in the form of: 
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Proof (by contradiction): 

The state estimation error has the form of: 

 ),,()(),,()()()( tyuMhtKtuxGfteLCAte n    

We assume that the fault are bounded by large enough unknown constants, i.e. 

 iiii tuxf ),,( , ),,( tuxf  . Then the designs of the Lyapunov function 

       
     

 
    for the aggregate system and it’s time derivatives along the estimation 

error state trajectory is: 
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where –                        
    and according to (6-42),     . 

It is to be proved that the sliding gain       is not unbounded, using contradiction. 

Since               and        , the adaptive gain       is positive and 

increasing. Assume that       is unbounded and         asymptotically. Thus, there 

exists a time      such that for all     , the adaptive gain: 

   iiii FtF )( ,   (6-46) 

which implies that: 
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Note that since the interactions terms    are bounded and           , if      is 

unbounded, i.e.       , it follows that       (i.e.      is bounded) which leads to a 

contradiction. Thus,      is bounded. 

Moreover, defining, )(max0 ii Q  , )(max1 ii

T

ii MPM  , it follows: 
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Following from (Tan and Edwards, 2003), the state estimation error      is ultimately 

bounded with respect to the set: 
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  iiiiii ee   012:   

where      is an arbitrarily small positive scalar.  

The reachability of the sliding surface is described as follows: 

 ),,()(),,()()()()( txuhMCtKCtuxfGCteCLACteCt iiiiniiiiiiiiiiiiiii     

By defining an unknown positive scalar        
      

                , the 

computation of the adaptive gain       is equivalent to the computation of  the estimate 

of   . Consider the Lyapunov function for the sliding surface: 

     


 
N

i

iiii

T

iii

T

i tFCPCV
1

211 )(
2

1
   (6-49) 

Differentiating (6-49) with respect to time yields: 
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If define the gain  
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with     a positive scalar, in finite time         , which implies that         

             , and it thus follows that: 
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Integrating (6-50) from 0 to t yields:  
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As    , 


t N

i

ii dss
0 1

0 )(  is always less or equal to      . However, since       is 

positive and bounded, using Barbalat lemma, it follows: 

 0)(lim 0 


tii
t

   

i.e. the sliding surface function is reachable. The error system trajectory converges to 

the sliding manifold            . Furthermore, it should be noted that because of 

(6-51),            , i.e.       is bounded. This also implies that         and       

are bounded for all    . This leads to a contradiction to the assumption that       is 

unbounded. Thus,                 are bounded. We assume that there is a semi-

positive scalar such that                               ,       when the 

right-hand side of this inequality less than zero, the inequality (6-47) can be rewritten as: 
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Note that         is still bounded and the set becomes: 

   iiisiiii ee   012:   (6-52) 

Following the same proof as given for the algorithm (6-49) to (6-50), if define: 
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the (6-50) still holds, leading to       in finite time. Thus, the proof is complete.  ■ 

Remark 6.1 From the above proof, it can be seen that the bounds for the uncertainty 

and the fault are not required. This highlights the benefit of using the adaptive 

mechanism.  

Remark 6.2 The set (6-52) shows that the tracking accuracy is affected by 1). The 

eigenvalues of   , i.e. the choice of linear gain matrix   and s.p.d matrix  ; 2). The 

norm bound of the interactions    and 3). The values of the sliding gain functions       
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and the parameters   . Thus, one can adjust the design strategy based on these 

relationships. 

In this case, if the constraint     can be extended to    , SMO cannot only deal 

with the faults but some parts of the interactions/uncertainties. Thus, consider the 

following two conditions: 

1). Find                   such that for i-th subsystem, the system zeros given by 

the triple            are in the left-hand complex plane. 

2).                        

The objective of finding the    is to use the maximum capability of the nonlinear term 

of SMO such. In this case, give          and                          . And 

according to (Xiang, 2005), it can always be found matrices    and    such that 

  
        . Thus, building an SMO based on    and   , it is easy to verify that the 

nonlinear terms of SMO can compensate both faults and interactions, i.e.               

and            . Therefore, the error domain is contracted because only parts of the 

interactions             need to be handled. 

The discontinuous part of SMO plays a special role in rejecting the fault or disturbance 

in the error system. In this case, if both the discontinuous part and the “matched” fault 

(disturbances) are taken off. The problem becomes to design an observer that can deal 

with the remaining uncertainties. Thus, the    method can be applied. Considering the 

overall system (6-38) and the observer (6-40), by solving the following LMIs (6-53), the 

observer gain matrix L is given and it is robust to the uncertainties.  

 Minimize  , subject to    ,  
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where                     . 

The observer gain matrix is determined as       .  
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Since the main problem of building Walcott-Żak observer is to find the matrices   and 

  satisfying       , if defining         
        and solving the above LMIs 

with respect to             ,             ,           , where     

                ,            are s.p.d matrices, and          , the SMO can then 

be designed using (6-40) and (6-44), with the norm bound of the error system given by 

       . This approach can attenuate the worst case influence from interactions and 

uncertainties acting in the state estimation error system. This can be proved using a 

similar procedure as given for Theorem 6.2.  

Optimization of the gain matrices  

By solving the LMIs (6-53), a   with small magnitude could be obtained together with a 

L of large magnitude. For practical application of an SMO the size of the norm of the 

gain matrix L should be minimized, e.g. using LMIs. The idea to do this is to restrict the 

norms of        . In this case, set: 
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and 
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Both of these inequalities can be written in the LMI form: 

 0








IW

WI
T

w
, 0~~

21










 CWCGWGI

II
TT

p
  

From these constraints, the desired bound could be given by: 

 IPWWPLL pW

TT 211  
  

And with these modifications, the    optimization problem with respect to minimizing 

the effects (in the estimation error) of the unmatched uncertainties and unmatched 

interactions in the SMO becomes: 
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6.3 Decentralized SMO fault estimation 

Since the SMO can track the state trajectories and be insensitive to the perturbations, 

from this result it is also possible to provide robust estimation or reconstruction of faults.  

Fault reconstruction (fault estimation) is an aspect of fault detection and isolation (FDI) 

which has the purpose of raising an alarm when faults occur. One well known approach 

to FDI is to make use of an observer to generate residual signals which are a form of 

estimation error (Patton, Frank and Clarke, 1989). This approach can then be used to 

detect the onset of faults and even determine the location of faults (fault isolation).When 

the residual magnitude or norm exceeds a given threshold it can be declared that a fault 

has occurred. However, if the residual threshold is exceeded because of disturbances or 

modelling uncertainty there is a potential for a false alarm to be raised. There is thus a 

robustness problem of FDI which relates to the degree to which the residual can be 

made correctly sensitive to one or more faults but insensitive or robust to uncertainties, 

disturbance or perturbations.  

However, in most case, the fault cannot be reconstructed in FDI residual schemes and 

this is a significant advantage of this approach. If a fault signal can be reconstructed 

then there is also a possibility of making direct use the fault estimate in a control 

scheme that compensates for the fault. Hence, it turns out that the estimation of faults is 

a more powerful way to perform FDI since the alternative use of FDI residuals gives 

complexity which is not really required.  

The development of FDI in terms of the estimation/reconstruction of faults using SMO 

is provided by (Edwards and Spurgeon, 1998), using the idea of “equivalent injection 

signals”. Their work was further developed by (Tan and Edwards, 2002) who 
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considered the sensor faults. Also the minimization the influences from uncertainties in 

fault reconstruction is also researched by (Tan and Edwards, 2003).  

The ideas for fault reconstruction in single (centralized) systems carry over well to LSS 

based on decentralized structure. Recent research about decentralized sliding mode fault 

estimation can be found in (Yan and Edwards, 2008). They successfully estimate the 

faults acting in local subsystems of a decentralized system using the Edwards & 

Spurgeon SMO. In their work they also discuss the relationship between the effects of 

interactions and faults in the estimation. However, as mentioned in the Section 6.2.3, 

the method requires several state transformations which make the algorithm 

complicated and not easy to understand. This Section describes an important 

development of sliding mode fault estimation which does not suffer from the 

transformations problem of the Edwards and Spurgeon approach but also makes use of 

the extension to the Walcott and Żak SMO described in Section 6.2.3. In fact the 

approach for decentralized SMO is applied to fault reconstruction for both actuator and 

sensor faults. The mathematical representation of this LSS for the nominal linear case is 

given as follows: 
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
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  (6-55) 

where the state vector       , the output signal       . The              represent 

the actuator faults with distribution matrix    and the         represent the sensor faults 

acting in the i-th subsystem.           is the interactions term for the i-th subsystem 

which might also includes the subsystem modelling uncertainties.  

If the system contains both actuator and sensor faults, e.g. acting simultaneously, the 

approach for reconstruction of both faults is inevitable complex. This is still an open 

problem since the actuator faults and sensor faults might have interacting effects on the 

system and the state estimation. In the description given in the following Sections, it is 

assumed that one fault is to be reconstructed whilst the other is absent. 
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6.3.1 Actuator fault reconstruction 

When systems contain only actuator faults, i.e.       and      , the SMO method 

proposed in Section 6.2.3 can be used to reconstruct the fault signals very effectively. 

According to the description in Section 6.2.3, the local SMOs are designed in the form 

of (6-39): 
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 (6-39) 

The local state estimation error system is given in the form of (6-6): 
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Using the expansion matrix    introduced in Section 6.2.3, it is possible to attenuate the 

influence from interactions. Thus, assuming that the reachability is ensured and the state 

estimation error is bounded: 

i). In finite time, the sliding surface is reached and maintained, i.e. 

 0,0  iii eCeC    

ii). After reaching the sliding surface, the state estimation errors are bounded. For 

simplicity, assume that after finite time, the sate estimation error will enter the domain: 

  Biii eee  :   

where               are the estimation boundary constants assumed which might 

be calculated following the proof procedure in Section 6.2.3. 

Since the expansion matrix    for the i-th subsystem is used, the rank condition is 

satisfied, i.e.                       . Moreover,          and           

                can be constructed. This means that all the information about the 

    and some of the information about interactions, i.e.            , are preserved in 

the output. In this case, using the equivalent output error injection signal, after sliding 

motion take place, yields: 
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 iiiieqniiiiiiiii hMCKCfGCteCLAC  ,)()(0    (6-56) 

where       is the equivalent output error injection signal which plays the same role as 

the “equivalent control” in sliding mode control (Edwards and Spurgeon, 1998). The 

equivalent output injection signal is represented by the values of the nonlinear switching 

terms    defined by (6-44), which is necessary to maintain the sliding motion.  

Note that since          
    

   
    ,           

    
  and 

         
    

   
           , by multiplying each side by      

    
    , it follows: 

         
                      

    
                           

Thus, the fault estimation is given by: 

       
    

            
                              (6-57) 

where      
    

        
    

      . 

By using the equivalent output injection, our estimation of faults is       
    

        . 

Then consider the following two cases: 

Case 1. If    
        and       

In this case, the interactions satisfy                    . The interactions act 

within a different channel of the system compared with the faults, and their distribution 

matrices are therefore orthogonal. It is easy to verify that the sliding mode switching 

term can completely compensate the interactions. Thus, the error      is quadratically 

stable. (6-57) can then be rewritten as: 

       
    

                       

As    ,               , thus, 

        
    

             

which means that the faults can be estimated precisely. 
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Case 2. If    
        and       

According to (6-57),  

              
                             

Following a similar procedure to Theorem 6.2, according to ii), the local state 

estimation error system reaches the following domain in finite time: 

  Biii eee  :   

Meanwhile, as assumed in Section 6.2.3,               , it follows that: 

                 
                                      (6-58) 

As long as the matrices    pre-multiplying the interactions are not satisfying as in Case 

1, the fault estimation cannot track the actual faults precisely. But from (6-58), it can be 

seen that the fault estimation errors are bounded. 

Moreover, recalling the discontinuous part in (6-44),                  is either 0 or 

1, which means that the fault estimation could not be constructed by this discontinuous 

sign function. (Edwards and Spurgeon, 1998) propose that by adding a small positive 

scalar in the denominator, as described in Section 4.2.3, a continuous fault estimation 

signal will result. Thus, the nonlinear part for the SMO (6-44) is modified to: 
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where   is a small positive scalar. 

For Case 1, the fault reconstruction can be written as: 

         
    

                
     

       
  (6-60) 

Reconsider now the SMC described in Chapters 4 and 5. Note that SMC is such a robust 

control method that it can compensate any matched perturbations (completely 

compensation in ideal case). Since most of the actuator faults are matched, if the system 

can tolerate the actuator faults with SMC, is it still valuable to do the actuator fault 
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estimation using SMO? It seems that the functions of the actuator fault tolerance using 

SMC and the actuator fault estimation using SMO somehow overlap. However, looking 

at the problem form an industrial system point of view, the answer to this question is 

positive due to the following reasons: 

a) If the actuator fault is an actuator outage or the actuator is stuck, the actuator is 

no longer able to function. Thus, even with powerful SMC, the fault cannot be 

tolerated. The only solution to this problem is to replace the actuator. This is the 

reason why practical plants must use redundant actuators. This is the case, for 

example in aircraft where wing actuators are duplicated. Hence, the actuator 

fault estimation using SMO is necessary to determine when the fault is 

significant for the second actuator to be brought into action to replace the 

assumed faulty one.  

b) If the actuator loses effectiveness, with SMC, the control input required by the 

system stabilization or tracking makes the actuator overload. Thus, although the 

actuator faults can be tolerated with SMC, it is still valuable to detect these 

faults so one can decide whether the actuator should be replaced. 

c) If the actuator faults are considered as external disturbances (uncertainties), and 

the compensation signal produced by SMC does not exceed the saturation of the 

actuator, then there is no need to estimate the disturbance. 

From the above discussion, it can be seen that for the case of actuator faults that might 

lead to  actuator failures, the best way is to detect (estimate) them instead of attempting 

to compensate them with SMC. This deduction leads to another discussion about the 

capability of the SMC. In practical problems, the actuator operates within practical 

bounds of   . When applying SMC, since the choice of the gain   should be larger 

than the norm bound of disturbances/uncertainties      , the bound values of the 

actuator    limit the capability of the SMC      . Thus, if a actuator fault occurs 

and the bound of this fault exceed   , the SMC cannot tolerate it. Thus, a fault 

detection component should be considered to raise the alarm. Thus, when consider the 

combination of SMC and SMO, the SMC is designed to tolerate the disturbances and 

uncertainties and SMO is used to estimate the actuator faults in order to provide fault 

information to the engineer.  
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6.3.2 Sensor fault reconstruction 

In contrast to actuator fault reconstruction, the equivalent control method is not suitable 

to be used alone to reconstruct the sensor fault. The work by (Edwards and Spurgeon, 

1998) proposed a case when the sensor fault varies slowly, i.e.       , the equivalent 

control method can still be applied to get the approximate fault reconstruction. However, 

this constraint is rather restrictive for sensor faults. 

Thus, an output filter is proposed by (Tan and Edwards, 2002) as a compensator to 

reconstruct the output signals based on use of the Edwards and Spurgeon observer. The 

idea of this strategy is to use a filter to filter the outputs so that the augmented system 

(combination of original system and filters) has reliable measurements. Thus, the sensor 

faults can be treated as actuator faults. This Section proposes a sensor fault 

reconstruction algorithm using the Walcott-Żak observer applicable to a decentralized 

system (as described in Section 6.2.3). 

Consider the local subsystem state variables        for the filter: 

 )()()( tyAtzAtz ififififi    (6-61) 

where        is a stable and invertible matrix, usually selected as       . 

Substituting the system output equation (6-55) into the filter (6-61), yields: 

 oiifiiififififi fEAtxCAtzAtz  )()()(   (6-62) 

Then combine the filter and the state equation into a new augmented system: 
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  (6-63) 

The new system can be written in the form of a system containing the actuator fault as: 
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where                     ,                ,                               , 

               .The sensor faults become actuator faults in the augmented system 

(6-64). The same algorithm described in Section 6.2.3 can be used estimate the sensor 

fault. However, within this method, two crucial conditions still need to be satisfied: 

1).                        

2). any invariant zero of               must lie in    

For the first condition, it is easy to verify that: 
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For the second condition, construct the Rosenbrock system matrix      based on the 

matrices              . (Tan and Edwards, 2003): 

 




























 


00

00

0
)(

I

EAAsICA

AsI

C

GAsI
zP

ififiifi

i

oi

oioi
  

Since the invariant zeros of               are the values of s which make the matrix 

     lose rank. In this case, the matrix      loses rank if and only if       loses rank: 
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Since     is invertible, the values of s which make       lose rank are the eigenvalues of 

  . As the observer is designed to estimate the faults, the original system is expected to 

be asymptotically stable. . This means that if one can build an SMO based on the 

original system, an SMO based on the augmented system can also be constructed. 

(Tan and Edwards, 2002) state that the choice of    does not affect the reconstruction 

signal but affects the observer gains. However, the choice of    affects the accuracy of 

the sensor fault estimation. As can be seen from the SMO structure, the SMO for the 

augmented system estimates the filter outputs. The filtered outputs may not retain a 

good sensitivity to the faults, e.g. if a low-pass filter is used in the presence of a high 
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frequency sensor fault, then the SMO cannot estimate the fault properly since the fault 

effects appearing in the outputs of the filter are not the original sensor faults. For this 

first order filter, larger diagonal elements of    give better estimation accuracy. 

However, large elements of    might lead to high observer gain and further lead to 

significant chattering effect on the SMO state estimates. Thus, the value of the diagonal 

elements should be chosen carefully so that the numerical conditioning of the 

augmented system (6-63) can be maintained/established. 

The purpose of sensor fault estimation is to monitor the effects of faults such as sensor 

deterioration. However, if the sensor fault signal can be precisely estimated, it can also 

be used to compensate the actual sensor fault appearing in the output feedback control 

input. The idea is quite straightforward: if the sensor faults are additive faults (added 

directly to the measurements), and the control law is designed as         , sensor 

faults are estimated by    , so that the control law after compensation is             . 

The idea of sensor fault compensation (sensor fault hidden in the control) is illustrated 

in Chapter 7. 

6.4 Simulation result 

To illustrate the observer and fault estimation algorithms, an example system 

comprising two interconnected linear subsystems with non-linear interconnections is 

given as follows. 

      
  
  

     
 
 
     

  
  

                

                

      
    
   
    

     
 
 
 
     

   
   
   

                

    
   
   

          

                        

                        

with           represent the nonlinear interactions, where: 
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Assume that the system is already stabilized by the state feedback controller        . 

Consider the actuator and sensor faults in turn using the fault estimation method 

proposed in section 6.3. 

Actuator faults reconstruction 

Assume that there are no sensor faults, i.e.            . 

Applying sinusoidal and step signals (to model actuator faults) to subsystems 1 and 2 

respectively, the faults can be written as: 

       
 
 
         

       
 
 
 
       

The fault for the first subsystem     is given at time      and the fault     for the 

second subsystem is given at time     . Defining an expansion matrix for the 

aggregated system: 

  

 
 
 
 
 
   
   
   
   
    

 
 
 
 

 

A feasible solution of the LMIs in (6-54), is      , with: 

     
     
    

 ,     
         
         
         

   

If only linear observers are used, the estimation error cannot be robust to both the faults 

and the interactions, as shown in  Figure 6-1.  
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Figure 6-1. Linear observer case of state responses for both the system (dash) and 

observer (solid) when faults occur 

To construct a Walcott-Żak observer, a switching term (6-44) is added to the feedback 

of the  linear observer, the results is shown in Figure 6-2.  

Figure 6-2 implies that the accuracy of sliding mode observer is much better than the 

accuracy with only linear observer. The error between the decentralized sliding mode 

observer and the original system is derived from “unmatched” interactions which cannot 

be avoided by using only sliding mode observer. The actuator faults can be estimated by 

the equivalent output injection 
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Figure 6-2. SMO case of state responses for both the system (dash) and observer (solid) 

when faults occur 

From Figure 6-3, it should be noted that the fault estimation can estimate the faults 

properly. However, because of the influence from interactions, the estimation is not 

accuracy. To get accurate estimations, there should be some restriction for the 

interactions, as described in section 6.3: 

    
  
  

      
   
   
   

  

The estimation is shown in Figure 6-4. It shows that the faults can be precisely 

estimated. 
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Figure 6-3. Faults (dash) and their estimations (solid) using equivalent output injection 

 

Figure 6-4. Faults (solid) and their estimations (dashed) with restricted interactions 
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Sensor fault reconstruction 

As described in Section 6.3.2, by choosing the filter matrix    
      

, the new 

augmented subsystem is in the form: 
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where,     ,     
 
 
 . Here use a Gaussian noise signal as the sensor fault for 

subsystem 2. The new matrix     for the augment system is given by: 
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It should also be noted that, the new output matrices     have the same ranks as their 

counterparts   . However, the influence from the interactions cannot be compensated in 

the sensor fault SMO since whatever the structure of     the               . This 

follows since the sensor fault problem is transformed into an actuator fault problem in 

which the actuator faults cannot be compensated. However, since this system is a 

regulator problem and a state feedback control is applied, the influence from 

interactions is not clear in this sensor fault estimation case as          when    . 
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Figure 6-5. Sensor fault estimation (upper) and the fault estimation error (lower) 

Figure 6-5 shows the SMO estimation of the sensor fault which has satisfactory 

accuracy. Thus, the method proposed in Section 6.3.2 can faithfully reconstruct the 

sensor fault. 

6.5 Conclusion 

The purpose of this Chapter is to develop a suitable framework for observer design for 

decentralized systems based on the sliding mode observer. Both the Walcott-Żak and 

Edwards & Spurgeon SMOs are reviewed. To avoid the complicated transformations of 

the latter observer, the Walcott-Żak SMO has been selected as the most appropriate 

state and fault estimation approach for decentralized systems. To not have to require 

state transformations is a big advantage for a complex LSS. Furthermore, to simplify the 

design procedure, the LMI method proposed recently has been used in order to de-

couple the s.p.d. structure of the matrix   of constraint equation        for the 

inequalities arise from Lyapunv function. On the other hand, as a further contribution in 

this work, the sliding surface of the Walcott-Żak SMO is modified to avoid the 

inaccurate output estimation when the sliding surface has been reached. 

According to the output injection property of the SMO, the feedback switching term can 

approximate the “matched” unwanted signal in the system. The so-called “equivalent 

output injection” can then be used to estimate the actuator fault. Although the Edwards 

& Spurgeon observer has been researched extensively in the literature for the fault 
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estimation problem, a main contribution of this Chapter is a discussion of the capability 

of the Walcott-Żak observer for LSS systems. The difference between the single system 

and the LSS is the presence of interactions which lead to inevitable error in the actuator 

fault estimation. It is proposed in this Chapter that for a certain type of interactions, the 

influence of the interactions can be neglected in the actuator fault estimation. 

For the sensor fault estimation problem to keep to the standard form of SMO (based on 

actuator faults), a filter is used to construct a suitable augmented system. The sensor 

fault problem is thus transferred to an equivalent actuator fault problem. The 

synthesised actuator fault estimation in this augmented system can then be treated as an 

actuator fault in the normal way in the SMO system. It should be noted that, with state 

feedback regulation, the output error will not be affected by any 

uncertainties/interactions. However, in the case of output feedback the presence of 

sensor faults leads to a difficult fault estimation problem which is currently still an open 

problem.  

Finally, a simple example is used to illustrate the proposed extension to the Walcott-Żak 

SMO method. Both actuator fault and sensor fault estimation algorithms are applied in 

turn in this model to illustrate the validity of using this approach.  
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Chapter 7  

Sliding Mode Control and Estimation for Furnace 

System Model 

 

7.1 Introduction 

From Chapter3, the nonlinear state space furnace system model is established, simulated 

and validated. Since the main objective of this thesis is the application of decentralized 

sliding mode, this Chapter focuses on robust decentralized control for this furnace 

model system. As a consequence of the strong non-linearities (heat source   and 

thermal properties of strip    and   ), the system must be linearized and simplified. 

When this has been done the model based control strategies can then be designed based 

on this linear model. However, in order to justify these methods, the local controllers 

should be implemented on the nonlinear system. The sliding mode fault estimation 

methods are also applied to this furnace model.  

7.2 Linearization and controller design issues 

As described in Chapter 3, the furnace model contains strong nonlinearities which make 

controller design very complicated. This nonlinear model has to be linearized before 

suitable advanced control methods can be used to design the decentralized controller. 

The nonlinearities arise from: 1). Radiation heat transfer and 2). The change of both 

thermal conductivity and heat capacity of the steel strip during the heating process. 

These nonlinearities in the linearization cannot be ignored otherwise the system model 

will not represent the true system dynamics closely enough. 

Section 7.2.1 considers the linearization of the furnace model. 

7.2.1 Linearization 

The standard linear identification techniques using MATLAB Toolbox Linearization 

Tools are applied to derive the linear model of the furnace system. However, the 

linearized system only considered valid for one operating temperature. This temperature 

should lie within the linear range of the furnace operation. If the operating point lies 

outside or on the boundary of the operating region, then it would not be possible to 
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identify a linear model with high enough fidelity to the furnace system. Linearized 

models outside or on the operating boundary will result in unacceptable large modelling 

uncertainties and bad controller design.  

The operating points for the three zones are determined as 

                        , as used in Chapter 3. Since the system cannot 

reach this operating point without suitable power input, three simple PID controllers 

(corresponding to these three heating zones) are used to drive the system to the 

reference temperatures.  

Consider the modelling uncertainties in this furnace problem. Since the furnace model is 

a tracking problem, the uncertainties cannot be zero even though the system is stable 

(         since    ). To improve the performance, an integral state is added to 

each subsystem.  

To conclude, after linearization and the modification described above, the i-th linear 

subsystem can be considered to be of the form: 

     

     
     
     

   

                

     
  

      
    

     
  

      
    

     
 
   

    

where        is the additive integral states to improve the system performance, 

                          .                           and: 

  
   

  
      

    

  
      

    

  

is the system matrix after linearization,     is the input matrix after linearization. 

Because of the Stefan-Boltzmann constant, the elements of     are relatively small which 

can be slightly enlarged by choose kW as the unit of power input. Then, since the 

system is a 4.6 MW radiant furnace, the input bound (represented as a saturation) 

should be defined lower than 4600 kW. With the data from (McGuinness and Taylor, 

2004), the input power boundary for each heating zone is 150kW.  
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7.2.2 Furnace controller design issues 

The problems encountered during the furnace controller design are outlined briefly in 

this Section. 

1. Saturation control 

As stated previously the power inputs are considered to have saturated 

behaviours. However, the detail as to whether the power inputs make use of gas 

or electrical power supply is not included in the modeling and hence the 

implications need not be discussed further other than to point out that the 

saturation is a strong non-linearity that has most effect in the beginning of the 

heating phase. 

2. Uncertainties in the furnace 

The uncertainties of the furnace are the main problems in this Chapter. As 

described in Chapter 3, the thickness of the steel, the velocity variation, and 

power supply uncertainty are the main uncertainties in this furnace. According to 

the fault classification, the power supply uncertainty is matched actuator fault, 

whilst the thickness and velocity variations are component faults which can be 

separated into matched and unmatched components. To attenuate or remove the 

influence from uncertainties, sliding mode control is a proper choice for this 

furnace problem. As this is a tracking problem, in which the component faults 

are no-zero. Thus, the error is unavoidable but should be bounded in an 

acceptable range. According to data from the report by (McGuinness and Taylor, 

2004), the acceptable temperature error range may be considered as     . The 

static error should not exceed this range. 

3. Overshoot and Time Response 

The temperature overshoot is highly undesirable in the furnace, especially for 

the temperature at the output position. The high temperature overshoots might 

lead to different annealing results. Also it means wastage of energy and time, as 

one has to stop or lower the power supply to cool the strip down after the 

overshoot. This problem can be handled by using the input saturation. A related 

problem is the time response of the furnace which does not cause difficulties 

because the speed of the response is not the main issue in industrial furnace  

4. Minimizing Chattering 
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The chattering of the input voltage can be removed by increasing the SMC 

boundary layer. This problem might becomes more serious in the SMO case if 

observer is used for control feedback, as the speed of observer should be faster 

than that of the closed-loop system characteristics.  

The controller is firstly designed based on the linearized model. Then it is implemented 

and tested on the nonlinear simulation code. 

7.3 Nonlinear closed-loop simulation 

This Section shows results corresponding to the application of the different controllers. 

The most commonly applied PID controller is implemented first of all. It has been 

shown that there are some difficulties when designing a PID controller due to the 

difficulty in choosing a suitable gain. Moreover, it is clearly the case that when a PID 

controller alone is used the system is not robust to the uncertainties. It is then necessary 

to apply an advanced control strategy. The state feedback SMC is then applied to show 

the efficiency of this type of controller.  

Since it would be very hard or expensive to measure all the temperatures at different 

grids, the static output feedback SMC structure is chosen as described in Chapter 5. 

With both of these SMC strategies, the matched faults can be rejected, which provides 

better performance than conventional PID controller.  

7.3.1 PID controller performance and faults description 

It is reasonable to compare the SMC methods with a conventional PID controller. As 

shown in Figure 3-8, without any faults the system runs smoothly and the strip exit 

temperatures meet the requirement, see Figure 7-1. 

However, one of the main disadvantages of the PID controller is that it is very hard to 

choose the gains manually. An inappropriate choice of proportional or integral gain 

parameters leads to overshoot or slow time response.  
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Figure 7-1. Furnace exit temperature tracking performance with PID controller 

The control input is shown in Figure 7-2, showing that the gain choice of PID control 

leads to a slight overshoot problem in the second heating zone.  

   

 Figure 7-2. Power input for each heating zone with PID controller 

When the faults occur, the PID controller cannot tolerate the faults. The system is 

sensitive to thickness and velocity changes, as well as sensitive to the power disturbance. 

The faults used in this system are shown in Figure 7-3. 
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 Figure 7-3. Faults (uncertainties) in furnace model system 

 

 Figure 7-4. Furnace exit temperature with different types of faults using PID controller 

Figure 7-4 shows the time responses of thee strip exit temperatures for three types of 

faults shown in Figure 7-3. It is easy to note that the increasing the strip velocity, strip 

thickness or decreasing the power input lead to the decline of the strip exit temperatures 

and vice versa. 
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According to the model description in Section 7.2.2, these three types of faults are 1). 

Unmatched (velocity variation), 2). Containing unmatched and matched components 

(thickness variation) and 3). Matched (power input disturbance). From the description 

of the sliding mode theory in Chapter 4, it is clear that the SMC can compensate the 

power input disturbance and a part (the matched component) of the thickness variation. 

But for the velocity variation, it is necessary to combine other methods to deal with this 

fault. Section 7.3.2 describes the furnace system model performance with state feedback 

SMC 

7.3.2 State feedback sliding mode performance 

It is feasible to use state feedback control in this furnace model system since all the 

temperature can be measured by either thermocouples or non-contact pyrometers. The 

latter are very expensive, whilst the thermocouples are cheap but unreliable. However, 

in this Section, the state feedback method, as described in Chapter 4, can give a very 

good overview of what the SMC can achieve. In Section 7.4.3 describes the 

performance of the output based SMC for the furnace model system. 

The model-based state feedback SMC used in this Section is based on the model 

described in Section 7.2.1. The SMC robustness implies that with this controller, any 

matched unwanted signals can be compensated. Without considering the unmatched 

fault, Figure 7-5 shows the absolute value of the tracking error of the strip exit 

temperatures with each case of PID controller and SMC.  

 

Figure 7-5. Absolute values of the strip exit temperature tracking error with thickness 

variation faults 
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From Figure 7-5, it shows that the SMC suppresses the disturbance from the thickness 

variation and rejects the matched power input disturbance completely. Since the 

thickness variation uncertainty contains both matched and unmatched parts in the linear 

model, the remaining unmatched parts still affect the system performance. However, by 

comparing the maximal value of tracking error between these two method, SMC 

(      at         ) shows better robustness than the PID controller (        

at         ). Also the SMC gives improved time response.  

The power input of both the SMC and PID controllers can be found in Figure 7-6. The 

SMC provides faster response in the input when faults occur. It gives better robustness 

but as a down side requires faster power input variations. The maximum levels of input 

power are seen to vary along the zones for both controller types. 

 

Figure 7-6. Power input for each heating zone when thickness uncertainty occurs 

Since SMC can only reject the matched faults, the best way of using sliding mode is to 

combine SMC with another control method to deal with unmatched faults. Here state 

feedback is used with the    robustness optimization, as described in Section 4.3.3. 

The system outputs are defined as the strip exit temperatures. With only velocity 

variations, the minimal robustness criterion   can be calculated. From Figure 7-7, it can 
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be noted that the tracking error when the velocity variation fault occurs is reduced 

compared with the equivalent tracking error for PID controller.  

 

Figure 7-7. Absolute values of tracking error of strip exit temperatures with velocity 

uncertainty for PID and SMC, respectively 

It is also worth to noting that the static error of PID when the fault occurs is smaller 

than it is in the SMC case. This is due to the integral term that is more effective in the 

PID control strategy. However, the idea of first order SMC is more like a proportional 

term which cannot remove the static output error. However, with all three types of faults, 

Figure 7-8 shows that SMC has better performance than PID controller.  

  

 Figure 7-8. Absolute value of strip exit temperature tracking error with faults 
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7.3.3 Output feedback sliding mode control 

If some of the furnace temperatures cannot be measured, output feedback control must 

be used. Actually, PID control is a static output feedback method which only requires 

the strip exit temperatures of the three heating zones. Moreover, since the system is 

already stable, it is still possible to design a suitable static output feedback controller 

with only PI control. Thus, although the Kimura-Davison condition is not satisfied (see 

Section 5.2), it is possible to design a static output feedback SMC which contains 

combined properties of both PI control and SMC. The reason that the derivate term of 

this model-based control is not used is because it is hard to achieve in state space when 

there are system uncertainties.Assume that for each heating zone, only strip exit 

temperatures (using pyrometers), the inner and outer wall temperatures (using 

thermocouples) and the integral term can be measured. Moreover, it is easy to verify 

that           ,                      .  

Following the algorithm proposed in Section 5.2, the sliding surface gain matrix for 

each heating zone is given by: 

                                         

                                           

                                           

The gain matrices show that the sliding surfaces do not concern the outer wall 

temperature. These matrices can be tuned by choosing the Q matrix in step 2 of 

Algorithm 5.1. From a suitable choice of Q the output feedback gain matrices    are 

given by: 

                                      

                                        

                                      

Thus, with the above local control gains: 
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where           ,        and         are the SMCs parameters to be chosen 

by the designer. The furnace system is stable and shows robustness to the all three types 

of faults. It is predictable that with this SOF SMC strategy, the robustness of this system 

is not as good as for state feedback SMC method but it is better than PID controller. 

This prediction can be proved from the strip exit temperature response with only 

thickness uncertainty that contains both matched and unmatched faults. See Figure 7-9. 

 

Figure 7-9. Absolute values of strip exit temperature tracking error with 3 methods 

The reason for the static error of the SMC output feedback is that the integral gain is 

reduced for the purpose of decreasing the transient overshoot. From Figure 7-9, it can 

be found that the output feedback SMC can compensate the matched fault completely. 

Also when the thickness uncertainty occurs, although it reduces the value of the 

maximum tracking error, it is hard to tell which method is better. When there is velocity 

uncertainty, since the gain of the integral term is relatively small, there might be a larger 

static error. In this case, reducing the peak value of the tracking error seems to not be 

useful. To improve the robustness of this strategy, the initial   matrix should be 

designed carefully. 
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Another valid local control design method is combining the pre-determined PI 

controller with output feedback sliding mode. The linear controllers are designed with 

the following gain structure: 

                

where      and      are the integral and proportional gain for the local PI controller of 

the i-th subsystem. If the pre-determined PI controller can stabilize the system, the 

sliding surface can be obtained by solving the LMIs (5-29). Hence, using the pre-

determined PI controller gains: 

                

               

               

The subsystem sliding surface gain matrices    are then given by: 

                                      

                                      

                                       

For this subsystem controller structure the PI and output based SMC (PI-OSMC) are 

combined. There are no static tracking errors and the local subsystems are insensitive to 

the matched faults. The result is shown in Figure 7-10.  
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Figure 7-10. Absolute values of export temperature tracking error with PI controller and 

PI-OSMC controller 

With this idea, the SMC can be applied to this furnace system as a matched fault 

compensator that does not affect the design of the PI control, i.e. these controllers are 

designed separately for each subsystem. This idea can be found in (Utkin and Shi, 1996; 

Castaños and Fridman, 2005, 2006), although these authors apply this idea to the ISMC 

the same idea is valid here because the OSMC structure (see Section 5.2) can be 

combined with a linear controller design (e.g. PI control) as is the case in the ISMC. 

The advantages of this method are 1). Reduction of the computation complexity, 2). 

Good compatibility with other robust methods, and 3). Matched fault compensation. 

If the velocity uncertainty is known (measured by a velocity meter), the influence from 

this known uncertainty can be attenuated by changing the operating temperatures during 

the process, i.e. the new sliding surface becomes                as a consequence 

of the velocity changes. The absolute value of the strip exit temperature error 

(corresponding to subsystem 3) for this system is shown in Figure 7-11. 
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Figure 7-11. Absolute values of strip exit temperature tracking error with output 

feedback SMC and PI-OSMC controller 

Compared with the output feedback control described at the beginning of this Section, 

this PI-OSMC provides better results.  

Besides static output feedback, observer based control is another choice. However, the 

observer based ISMC method proposed in Chapter 5 is not applied to the furnace 

system described in this Chapter. From Section 5.4, it can be seen that to achieve sliding, 

the integral part of the sliding surface requires a sufficiently large enough gain function 

from initial time. To achieve this, the parameters            must be chosen to 

satisfy the inequality  REF _Ref335134963 \h (5-59) 

      iiiiuiiinitiiiiiii tyufyCGeACGBCG  


),(21

1
 REF _Ref335134963 \h (5-59)However, the saturation components involved in the actuators make this approach unattractive since it cannot be ensured that the gain of each subsystem switching term is large enough to remove the reaching phase. If 

the switching gains are not sufficiently large enough to satisfy  REF _Ref335134963 \h 

(5-59) the reaching phase in each subsystem is unavoidable. Thus, there is no point in 

using a more complicated and expensive observer-based controller. Another reason is 

that the large switching gains result in large control inputs which might lead to the so 

called “wind-up” problem (input saturation) and reduce the robustness given by using 

SMC.  
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7.4 Fault estimation and sensor fault hidden for furnace model 

As discussed in the Section 7.4, there are three types of faults that need to be handled in 

the controller design. However, with the application of SMC, the power input 

disturbance can be compensated. Normally, the conveyor system has its own subsystem 

and the velocity of this system is measured and controlled. For the thickness uncertainty, 

there is nothing that can be done whether or not this fault can be detected or not! This 

fault effect can only be tolerated, i.e. minimized. The remaining problem of fault 

estimation in the thermal furnace is to detect and isolate the sensor faults by means of 

fault estimation. 

Chapter 3 has described the measurement methods applicable to this annealing furnace 

system. The exit strip temperatures are measured by non-contact pyrometers since the 

strip keeps moving during the heating process. The thermocouples, as simple and 

generally inexpensive sensors, are used to measure the inner and outer wall temperature. 

Compared with the much more expensive non-contact pyrometers, thermocouples have 

higher risk of failing. They are mostly due to metal fatigue wear and tear. Thermocouple 

deterioration until the sensors fail cannot easily be detected and often cause expensive 

process interruption. Removing a thermocouple from a furnace when at operating 

temperature can be difficult and dangerous. In fact the thermocouple can cause 

inaccurate readings for some time before any errors are detected. The errors usually 

cause low readings due to the thermocouple wires becoming thinner. The common 

method to avoid the thermocouple failure is to regularly measure the thermocouple loop 

and replace thermocouples during a planned maintenance period. In this section, a 

couple of SMOs is used to estimate the thermocouple failure and hide the fault in the 

controllers.  

The SMO sensor fault estimation method has been proposed in Chapter 6. Choose the 

filter matrix          
        . The augmented subsystem is established as (6-63): 
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The sensor faults of the system occur in the inner wall and outer wall thermocouples. If 

it is assumed that PID control is used within which inner wall surface temperatures are 

not required. The subsystem temperature measurements are the strip exit temperatures, 

as well as the inner wall surface and outer wall surface temperatures (for each zone). 

Since the thermocouples for the inner wall temperature measurements are of higher risk, 

it can be assumed that the sensor fault distribution matrices are          . 

According to the thermo-electrical property of thermocouples, the decrease in 

temperature (due to the error) leads to the lower reading, i.e.                . Hence, 

the sensor fault can be written as multiplicative faults as follows: 

            

Using the observer proposed in Chapter 6, the sensor faults can be estimated with the 

augmented observer after the sliding surface is reached. Figure 7-12 shows the fault 

estimation for all the three heating zones when there are sensor faults in the first and 

second subsystems. As the sensor faults are multiplicative, by dividing the fault 

estimates by the operating inner wall temperatures (measured by redundant 

thermocouples), the approximate sensor output        is obtained i.e. the severity of 

the fault (or damage) to the thermocouple can be estimated.  

From Figure 7-12, it can be seen that, when there are sensor faults in the first and 

second heating zones, they do not affect the estimated temperature signal for the third 

heating zone. Thus, with several observers, the sensor faults for every heating zone can 

be estimated effectively. 
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 Figure 7-12. Sensor fault estimation for all the heating zones 

The sensor fault estimation can be used to compensate the sensor faults when using the 

PI-OSMC controller. Compared with the use of PID control, the PI-OSMC requires the 

measurements of inner wall temperature to reject the matched power input disturbance. 

If there is any sensor fault, the PI-OSMC will drive the system away from the operating 

point. See Figure 7-13. 

  

Figure 7-13. State responses with PI-OSMC when there is a sensor fault        in the 

1
st
 heating zone, fault occurs at          
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The structure of the sensor fault compensation is shown in the Figure 7-14. The 

estimation of the sensor fault is used to compensate the actual sensor fault in the 

temperature measurement. The compensated output signal is then used in the PI-OSMC. 

This is an example of active FTC. 

  

Figure 7-14. Sensor fault compensation structure for a single heating zone 

Before using the sensor fault estimation, there must be a check as to whether the sliding 

surface of the SMO has been reached. In the reaching phase, the fault estimation is not 

zero-valued (since the robustness is reduced outside of the sliding surface) even when 

there are no sensor faults. The fault compensation can now be applied with the same 

fault as in Figure 7-13. 
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Figure 7-15. State response with sensor fault compensation, fault occurs at     

     

  

Figure 7-16. Strip exit temperature of the 3
rd

 heating zone with sensor fault 

compensation, fault occurs at          

Figure 7-15 and Figure 7-16 show the effectiveness of this sensor fault estimation 

method. It can be found in Figure 7-12 that the sensor faults can be estimated precisely. 

Thus, using the faults estimation derived in SMO, and compensated the sensor faults in 

SMC, the sensor faults are hidden so that there is no need to disrupt the heating process. 

Thus, this approach allows enough time to finish the heating process and replace the 

thermocouples in the furnace wall.  

 



191 

 

This method also brings value to the idea of combination of SMC and SMO. In 

Chapter6, it has been argued that when there are actuator faults, the combination of 

SMC and SMO is valuable. However, for the sensor fault case, as shown in this 

example, the combination of SMC and SMO has better value since SMC do not have 

the ability to deal with sensor faults. Faults have to be estimated and hidden in the SMC 

using SMO so that the fault tolerance is achieved. 

7.5 Conclusion 

This Chapter shows the application of the proposed strategies described in Chapter 4, 5 

and 6 to control the furnace problem represented in Chapter 3. Compared with 

traditional PID control, the proposed state feedback SMC and PI-OSMC controllers 

provide better robustness to the matched power input disturbance. These methods give 

new ideas about how to deal with furnace heating problems based on modern control 

theory. 

The OSMC can be designed as a part of the robust PI control not using complicated 

observer based ISM theory. This idea combines the advantages of both PI control and 

SMC.  

A sensor fault SMO strategy is also proposed in this Chapter to deal with thermocouple 

deterioration. The SMO provides accurate estimation of the sensor fault which can be 

used to form an active sensor FTC to combine with the PI-OSMC. In this case, when 

there are sensor faults, the controller can still control the temperature effectively.  
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Chapter 8  

Conclusion and Future Work 

 

8.1 Conclusion and Summary 

This thesis focuses on the control and estimation methods for LSSs. The main work is 

to propose a systematic and novel LMI approach to sliding mode theory applied to LSS 

control and estimation problems. According to the literature review of the subject, 

decentralized control is still an attractive topic even after three decades of development. 

With the introduction of LMI tools into sliding mode design, the calculation approach is 

simplified and the interactions can be weakened. Based on the idea of designing the 

decentralized sliding mode with LMI tools, the work presented has made some 

contribution within not only state output feedback but also output feedback based 

control strategies for LSSs. However, the unmatched uncertainties/interactions of the 

LSSs affect the performance of systems both in the reaching phase and after reaching 

sliding surface. To attenuate the influences from the unmatched unwanted signals, the 

idea of combining other robust methods with sliding mode theory is also discussed in 

this thesis. 

The work represented in this thesis deals with the well-known difficulties of LSSs: 

dimensionality, uncertainty and information constraint. These difficulties are outlined in 

Chapter 1 where the definition of faults in LSSs is defined as well. As pointed out in 

Chapter 1, since the large dimensionality can be dealt with by decomposing the system 

into several small subsystems with proper decomposition method, uncertainty and 

information constraints are the main topics in this thesis. Chapter 1 also includes the 

classification of faults according to their positions in an LSS (actuator, sensor, 

component faults e.g. subsystem parametric faults or faults in the interactions). In this 

case, FTC and FDI are necessary for LSSs. Thus, decentralized SMC and SMO theory, 

as powerful approaches to FTC and FDI, are chosen as the main approaches to solving 

LSS control and estimation problem in this thesis. 

As discussed in Chapter 1, the information constraint and dimensionality are two main 

difficulties in LSSs. Chapter 2 reviews several approaches to handle these problems. 
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First of all, multi-level control structure is reviewed as a strategy to deal with 

information constraint in LSSs. Although it requires centralization (using coordinator), 

it provides better performance than decentralized single-level control strategy. On the 

other hand, single-level control strategy, as another strategy for information constraint 

problem, is introduced and chosen as the main strategy for this thesis. Then two main 

LSS decomposition structures based on single-level structure: disjoint decomposition 

and overlapping decomposition are reviewed to deal with dimensionality problem as 

well as to provide better system structure for control design. Although the strategies 

represented in this thesis are based on the disjoint structure, it is interesting to consider 

the overlapping structure due to the possibility of using the overlapping control to 

weaken the influence from interconnections as illustrated in (Huang and Patton, 2012b).  

Since observer-based control design and fault estimation are the two main objectives of 

decentralized observer based estimation, Chapter 2 also reviews some of the 

decentralized observer design strategies for decentralized observer based control. 

However, finding that there is very little publication on fault estimation for LSSs using 

SMO theory motivates the proposed decentralized fault estimation SMO strategy in 

Chapter 6. 

In Chapter 3, a furnace model is introduced, following a project report from the New 

Zealand Steel Company. The assumptions and simplifications form the New Zealand 

study are outlined. Since the model equations are partial differential equations which 

can hardly be controlled using model based control strategy. Two interpolation methods 

are introduced to approximate the partial differential equations to ordinary differential 

equations. With these methods, the thermal PDEs can be approximated by a set of 

ODEs which is available for state space modelling. Several simplifications and 

identifications procedure are described then in order to establish a nonlinear furnace 

state space model. Moreover, the established model are simulated and validated in this 

Chapter. This model is built as an example of LSS which is used to illustrate some of 

the ideas proposed in this thesis. 

Chapter 4 starts from introduction of sliding mode theory. Several important elements in 

sliding mode theory are discussed: Regular forms, Reachability, Control law design. In 

this Chapter, adaptive mechanism and boundary layer as performance improvement 

accessories for SMC are also proposed. With the adaptive mechanism, the sliding mode 
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can deal with the faults with unknown bound whilst the chattering problem for SMC 

can be relieved by boundary layer. As the main topic of this Chapter, decentralized state 

feedback sliding mode control is then proposed. The idea of this method is to reject any 

matched faults with SMC and stabilize the sliding mode by carefully design of sliding 

surface using LMI approach. This method provides good compatibility to combine with 

other robust control strategy in the sliding surface design procedure. Eigenvalue 

assignment,    and quadratic optimization SMC are all discussed in this Chapter. A 

tutorial example with nonlinear interactions and uncertainties is used to illustrate the 

idea. And it shows that decentralized SMC strategy gives good regulation performance 

compare with linear control. The robust of SMC using boundary layer is also discussed 

at the end of this Chapter. 

Some LSSs might not have all the states measured. To solve this problem, output 

feedback control strategies should be considered. In Chapter 5, three types of 

decentralized output based SMC approaches are proposed: Static output feedback, 

Dynamic compensation method and Observer based control. All of these methods have 

the same assumption for interactions, the so called “quadratic constraint”. Thus, these 

methods combine with state feedback SMC give a systematic theory of decentralized 

SMC. The observer based control proposed in Chapter 5 use the idea of ISM theory and 

overcome the traditional constraint of ISM control which requires the full knowledge of 

system states. In the end of this Chapter, a multi machine power system is used as an 

example to illustrate the static output feedback control and observer based control 

method. Both of these methods show good fault tolerant control capability in this 

application study. 

Different to SMC, sliding mode observer (SMO) introduced in Chapter 6 has the 

property that the observer state estimation errors are insensitive to some faults satisfying 

certain conditions. Both Walcott-Żak and Edwards & Spurgeon SMO are reviewed. A 

novel modification to the Walcott-Żak observer control law overcomes the inaccurate 

output estimation problem of this type of SMO. Both actuator faults and sensor faults 

estimation using SMO are proposed with the combination of equivalent output injection 

theory. This method gives less computation complexity than Edwards & Spurgeon 

SMO and provides accurate fault estimation. However, when there are both 

uncertainties/interactions and faults, it would be extremely hard to separate the fault 
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estimation from output injection. Chapter 6 also discusses the influence from 

uncertainties/interactions to the actuator fault estimation and points out that only if the 

uncertainties/interactions satisfying certain conditions, SMO can provide precisely fault 

estimation. This Chapter ends with a tutorial example which is similar with the one in 

Chapter 4. The statements made in Chapter 6 are illustrated using this example.  

The strategies proposed in Chapter 4, 5 and 6 are demonstrated in Chapter 7 on the 

furnace model system based on Chapter 3. Since the SMC and SMO strategies proposed 

in this thesis are designed based on the linear model, linearization procedure is proposed 

to linearize the furnace model on a pre-decided operating point. Then the SMC and 

SMO approaches designing based on linearization model are applied to nonlinear 

system. Three types of faults are used to test the robust performance of the control 

strategy. Compare with the conventional PID control, state feedback decentralized SMC 

shows better robust performance. However, the static output feedback SMC has static 

error when uncertainties occur. To relief this problem, a PI-OSMC method is proposed 

based on the discussion in Chapter 5. For the fault estimation using SMO, the 

deterioration of thermocouples is considered. Using the SMO method proposed in 

Chapter 6, the deterioration could be estimated accurately and the estimation signal is 

sent back to the controllers (PI-OSMC) to hide the sensor fault. This combination gives 

a powerful way for the furnace model as an active FTC case. 

8.2 Future work 

The future work is listed below: 

 SMC and SMO design for the Overlapping structure. To build up a novel 

decentralized sliding mode theory using overlapping structure is quite interesting 

since the unmatched interactions can be further attenuated by this structure. 

Although the structure is more complicated than disjoint decomposition, it might 

give better performance. 

 Model reference decentralized SMC using the proposed LMI framework. The 

model reference control is more suitable than regulating control in modern 

industrial though the design algorithm should be similar. 

 The maximum capability of linear sliding mode control is to reject the matched 

faults based on linear system. Further research can be how to deal with faults in 
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the nonlinear system. Higher order sliding mode is a possible choice. 

Decentralized multi model control is another interesting choice for nonlinear 

system.  

 In the real industrial application, most of the systems are controller by a discrete 

time controller. Thus, how to achieve our methods in discrete time can be an 

interesting topic. 

 Improve the accuracy of the furnace model using less restrictive interpolation 

method (instead of CS). 

 Instead of using constant references, time varying references tracking problem 

for furnace should be considered using nonlinear control strategy or multi-model 

strategy.  

 

 



197 

 

Reference 

Akar, M. & Özgüner, Ü. 2002. Decentralized sliding mode control design using 

overlapping decompositions. Automatica, 38, 1713-1718. 

Aoki, M. 1972. On feedback stabilizability of decentralized dynamic systems. 

Automatica, 8, 163-173. 

Bakule, L. 2008. Decentralized control: An overview. Annual Reviews in Control, 32, 

87-98. 

Bakule, L., Crainiceanu, F. P., Rodellar, J. & Rossell, J. M. 2005. Overlapping Reliable 

Control for a Cable-Stayed Bridge Benchmark. IEEE Trans. on Control Systems 

Technology, 13. 

Bakule, L. & Lunze, J. 1988. Decentralized design of feedback control for large-scale 

system. Kybernetika, 24, 1-100. 

Bakule, L. & Rodellar, J. 1996. Decentralised control design of uncertain nominally 

linear symmetric composite systems. IEEE Proceeding - Control Theory and 

Applications, 143, 530-536. 

Bakule, L., Rodellar, J. & Rossell, J. M. 2001. Overlapping Quadratic Optimal Control 

of Linear Time-Varying Commutative Systems. SIAM J. Control Optim., 40, 

1611-1627. 

Bakule, L. & Rossell, J. M. 2008. Overlapping controllers for uncertain delay 

continuous-time systems. Kybernetika, 44, 17-34. 

Bejarano, F. J., Fridman, L. & Poznyak, A. 2007. Output integral sliding mode control 

based on algebraic hierarchical observer. International Journal of Control, 80, 

443-453. 

Bellman, R., Kashef, B. G. & Casti, J. 1972. Differential quadrature: A technique for 

the rapid solution of nonlinear partial differential equations. Journal of 

Computational Physics, 10, 40-52. 

Benigni, A., D'antona, G., Ghisla, U., Monti, A. & Ponci, F. 2010. A Decentralized 

Observer for Ship Power System Applications: Implementation and 

Experimental Validation. IEEE Trans. on Instrumentation and Measurement, 59, 

440-449. 



198 

 

Benton, R. E., Jr. & Smith, D. 1998. Static output feedback stabilization with prescribed 

degree of stability. Automatic Control, IEEE Transactions on, 43, 1493-1496. 

Blanke, M., Kinnaert, M., Lunze, J. & Staroswiecki, M. 2006. Diagnosis and Fault-

Tolerant Control, Springer. 

Burton, J. A. & Zinober, A. S. I. 1986. Continuous approximation of variable structure 

control. International Journal of Systems Science, 17, 875-885. 

Cao, Y., James, L. & Sun, Y. 1998. Static Output Feedback Stabilization: An ILMI 

Approach. Automatica, 34, 1641-1645. 

Castaños, F. & Fridman, L. 2005. Integral Sliding Surface Design Using An H-infinite 

Criterion For Decentralized Control. Proceedings of the 16th IFAC World 

Congress. Czech Republic. 

Castaños, F. & Fridman, L. 2006. Analysis and Design of Integral Sliding Manifolds for 

Systems With Unmatched Perturbations. IEEE Trans. on Automatic Control, 51. 

Chao, P. C. P. & Chien-Yu, S. 2009. Sensorless Tilt Compensation for a Three-Axis 

Optical Pickup Using a Sliding-Mode Controller Equipped With a Sliding-Mode 

Observer. IEEE Trans. on Control Systems Technology, 17, 267-282. 

Chen, J. & Patton, R. J. 1999. Robust Model Based Fault Diagnosis for Dynamic 

Systems, Kluwer Academic Publishers. 

Chen, N., Gui, W. & Zhai, G. 2006. Design of robust decentralized H∞ control for 

interconnected descriptor systems with norm-bounded parametric uncertainties. 

Proceedings of the 2006 IEEE International Symposium on Intelligent Control, 

Munich, Germany, 3070-3075, 4-6 Oct. 

Chen, N., Ikeda, M. & Gui, W. 2005. Design of Robust H∞ Control for Interconnected 

Systems:  A Homotopy Method. International Journal of Control, Automation, 

and Systems, 3, 143-151. 

Chen, P. 2012. Two-Level Hierarchical Approach to Unit Commitment Using Expert 

System and Elite PSO. IEEE Trans. on Power Systems, 27, 780-789. 

Chen, X. B. & Stankovi, S. S. 2005. Decomposition and decentralized control of 

systems with multi-overlapping structure. Automatica, 41, 1765-1772. 



199 

 

Chen, X. B. & Stankovic, S. S. 2007. Overlapping decentralized approach to automation 

generation control of multi-area power systems. International Journal of 

Control, 80, 386-402. 

Cheng, C.-C. & Chang, Y. 2008. Design of decentralised adaptive sliding mode 

controllers for large-scale systems with mismatched perturbations. International 

Journal of Conrtol, 81, 1507-1518. 

Choi, H. H. 1997. A new method for variable structure control system design: A linear 

matrix inequality approach. Automatica, 33, 2089-2092. 

Choi, H. H. 1998. An Explicit Formula of Linear Sliding Surfaces for a Class of 

Uncertain Dynamic Systems with Mismatched Uncertainties. Automatica, 34, 

1015-1020. 

Choi, H. H. 2008. Output feedback variable structure control design with an 

performance bound constraint. Automatica, 44, 2403-2408. 

Choi, H. H. & Ro, K. S. 2005. LMI-based sliding-mode observer design method. 

Control Theory and Applications, IEE Proceedings -, 152, 113-115. 

Chow, E. & Willsky, A. 1984. Analytical redundancy and the design of robust failure 

detection systems. IEEE Trans. on Automatic Control, 29, 603-614. 

Chu, D. & Šiljak, D. D. 2005. A Canonical Form for the Inclusion Principle of Dynamic 

Systems. SIAM J. Control Optim., 44, 969-990. 

Chung, W. H. & Speyer, J. L. 1998. A decentralized fault detection filter. Proceedings 

of the American Control Conference, Philadelphia, Pennsylvania, 2017-2021, 

21-26 Jun. 

Clark, R. N. 1978. Instrument Fault Detection. Aerospace and Electronic Systems, IEEE 

Transactions on, AES-14, 456-465. 

Corless, M. & Tu, J. a. Y. 1998. State and Input Estimation for a Class of Uncertain 

Systems. Automatica, 34, 757-764. 

Date, R. A. & Chow, J. H. 1989. A reliable coordinated decentralized control system 

design. Proceedings of the 28th IEEE Conference on Decision and Control, 

Tampa, Florida, 1295-1300, 13-15 Dec. 



200 

 

Decarlo, R. A., Żak, S. H. & Matthews, G. P. 1988. Variable structure control of 

nonlinear multivariable systems: a tutorial. Proceedings of the IEEE, 76, 212-

232. 

Dorling, C. M. & Zinober, A. S. I. 1986. Two approaches to hyperplane design in 

multivariable variable structure control systems. International Journal of 

Control, 44, 65-82. 

Drakunov, S. V. & Utkin, V. I. 1992. Sliding mode control in dynamic systems. 

International Journal of Control, 55, 1029-1037. 

Draženović, B. 1969. The invariance conditions in variable structure systems. 

Automatica, 5, 287-295. 

Edwards, C. & Menon, P. P. 2008. State reconstruction in complex networks using 

sliding mode observers. Proceeding of the 47th IEEE Conference on Decision 

and Control, Cancun, Mexico, 2832-2837, 9-11 Dec. 

Edwards, C. & Spurgeon, S. K. 1998. Sliding Mode Control: Theory and Applications, 

Taylor and Francis, London, UK. 

Edwards, C. & Spurgeon, S. K. 2000. On the limitations of some variable structure 

output feedback controller designs. Automatica, 36, 743-748. 

Edwards, C., Spurgeon, S. K. & Patton, R. J. 2000. Sliding mode observers for fault 

detection and isolation. Automatica, 36, 541-553. 

Feng, G. & Jiang, Y. A. 1995. Variable structure based decentralised adaptive control. 

IEEE Proceeding - Control Theory and Applications, 142, 439-443. 

Feng, Y., Zheng, J., Yu, X. & Truong, N. V. 2009. Hybrid Terminal Sliding-Mode 

Observer Design Method for a Permanent-Magnet Synchronous Motor Control 

System. Industrial Electronics, IEEE Transactions on, 56, 3424-3431. 

Ferrari, R., Parisini, T. & Polycarpou, M. M. 2009. Distributed Fault Diagnosis With 

Overlapping Decompositions: An Adaptive Approximation Approach. IEEE 

Trans. on Automatic Control, 54, 794-799. 

Furuta, K. 1990. Sliding mode control of a discrete system. Systems & Control Letters, 

14, 145-152. 



201 

 

Gahinet, P. & Apkarian, P. 1994. A Linear Matrix Inequality Approach to H∞ Control. 

International Journal of Robust and Nonlinear Control, 4, 421-448. 

Gavel, D. T. & Šiljak, D. D. 1989. Decentralized Adaptive Control: Structural 

Conditions for Stability. IEEE Trans. on Automatic Control, 34. 

Geromel, J. C., Bernussou, J. & Peres, P. L. D. 1994. Decentralized control through 

parameter space optimization. Automatica, 30, 1565-1578. 

Gertler, J. J. 1988. Survey of model-based failure detection and isolation in complex 

plants. IEEE Control Systems Magazine, 8, 3-11. 

Gomez-Exposito, A. & De La Villa Jaen, A. 2009. Two-Level State Estimation With 

Local Measurement Pre-Processing. IEEE Trans. on Power Systems, 24, 676-

684. 

Guo, Y., Hill, D. J. & Wang, Y. 2000. Nonlinear decentralized control of large-scale 

power systems. Automatica, 36, 1275-1289. 

Hansheng, W. 2002. Decentralized adaptive robust control for a class of large-scale 

systems including delayed state perturbations in the interconnections. IEEE 

Trans. on Automatic Control, 47, 1745-1751. 

Hassan, M. F., Sultan, M. A. & Attia, M. S. 1992. Fault detection in large-scale 

stochastic dynamic systems. IEEE Proceeding - Control Theory and 

Applications, 139, 119-124. 

Himmelblau, D. M. 1978. Fault Detection and Diagnosis in Chemical and 

Petrochemical Process, Elsevier, Amsterdam. 

Hsu, K. C. 1997. Decentralized variable-structure control design for uncertain large-

scale systems with series nonlinearities. International Journal of Conrtol, 68, 

1231-1240. 

Hsu, M. H. 2009. Differential Quadrature Method for Solving Hyperbolic Heat 

Conduction Problems. Tamkang Journal of Science and Engineering, 12, 331-

338. 

Hu, Y. & Zhang, Y. 2002. Robust decentralized control for a class of large-scale 

systems with mismatched uncertainties. Proceedings of the 4th World Congress 

on Intelligent Control and Automation, Shanghai, China, 927-930, 10-14 Jun. 



202 

 

Hu, Z. 1994. Decentralized  Stabilization of Large Scale Interconnected  Systems with 

Delays. IEEE Trans. on Automatic Control, 39, 180-182. 

Huang, Z. & Patton, R. J. 2012a. An adaptive sliding mode approach to decentralized 

control of uncertain systems. UKACC International Conference on Control, 

Cardiff, UK, 70-75, 3-5 Sep. 

Huang, Z. & Patton, R. J. 2012b. Decentralized Control of Uncertain Systems Via 

Adaptive Sliding and Overlapping Decomposition. 7th IFAC Symposium on 

Robust Control Design, Aalborg, Denmark, 784-789, 20-23 Jun. 

Hung, J. Y., Gao, W. & Hung, J. C. 1993. Variable Structure Control: A Survey. IEEE 

Trans. on Industrial Electronics, 40, 2-22. 

Hung, M. L. & Yang, J. J. 2007. Decentralized model-reference adaptive control for a 

class of uncertain large-scale time-varying delayed systems with series 

nonlinearities. Chaos, Solitons and Fractals, 33, 1558-1568. 

Ichalal, D., Marx, B., Ragot, J. & Maquin, D. 2010. Observer based actuator fault 

tolerant control for nonlinear Takagi-Sugeno systems : an LMI approach. 

Control & Automation (MED), 2010 18th Mediterranean Conference on, 1278-

1283, 23-25 June 2010. 

İftar, A. 1991. Decentralized optimal control with overlapping decompositions. IEEE 

International Conference on Systems Engineering, Dayton, OH, USA, 299-302, 

1-3 Aug. 

İftar, A. 1993. Decentralized Estimation and Control with Overlapping Input, State, and 

Output Decomposition. Automatica, 29, 511-516. 

Ikeda, M. 1989. Decentralized control of large scale systems. Nijmeijer, H. & 

Schumacher, J. (eds.) Three Decades of Mathematical System Theory. Springer 

Berlin Heidelberg. 

Ikeda, M. & Siljak, D. D. 1980. Overlapping decompositions, expansions and 

contractions of dynamic systems. Large Scale Systems, 1, 29-38. 

Ikeda, M. & Siljak, D. D. 1986. Overlapping decentralized control with input, state and 

output inclusion. Control Theory and Advanced Technology, 2, 155-172. 

Ikeda, M., Šiljak, D. D. & White, D. E. 1981. Decentralized Control with Overlapping 

Information Sets. Journal of optimization theory and applications, 34, 279-310. 



203 

 

Ikeda, M., Šiljak, D. D. & Yasuda, K. 1983. Optimality of decentralized control for 

large-scale systems. Automatica, 19, 309-316. 

Isermann, R. 1984. Process fault detection based on modeling and estimation 

methods—A survey. Automatica, 20, 387-404. 

Isermann, R. 2006. Fault-Diagnosis Systems An Introduction from Fault Detection to 

Fault Tolerance, Springer-Verlag. 

Itkis, U. 1976. Control Systems of Variable Structure, Wiley, New York. 

Jain, S., Khorrami, F. & Fardanesh, B. 1994. Adaptive nonlinear excitation control of 

power systems with unknown interconnections. IEEE Trans. on Control Systems 

Technology, 2, 436-446. 

Jiang, G., Wang, S. & Song, W. 2000. Design of observer with integrators for linear 

systems with unknown input disturbances. Electronics Letters, 36, 1168-1169. 

Kalsi, K., Lian, J. & Żak, S. H. 2009. Decentralized control of multimachine power 

systems. American Control Conference, St. Louis, MO, USA, 2122-2127, 10-12 

Jun. 

Kalsi, K., Lian, J. & Żak, S. H. 2010. Decentralized Dynamic Output Feedback Control 

of Nonlinear Interconnected Systems. IEEE Trans. on Automatic Control, 55, 

1964-1970. 

Koan-Yuh, C. & Wen-June, W. 1999. H∞ norm constraint and variance control for 

stochastic uncertain large-scale systems via the sliding mode concept. IEEE 

Trans. on Circuits and Systems I: Fundamental Theory and Applications, 46, 

1275-1280. 

Labibi, B., Lohmann, B., Sedigh, A. K. & Maralani, P. J. 2003. Decentralized 

stabilization of large-scale systems via State-feedback and using descriptor 

systems. IEEE Trans. on Systems, Man and Cybernetics, Part A: Systems and 

Humans, 33, 771-776. 

Larbah, E. & Patton, R. J. 2010. Fault tolerant plug and play vibration control in 

building structures. 49th IEEE Conference on Decision and Control, Atlanta, 

GA, USA, 2462-2467, 15-17 Dec. 



204 

 

Lavaei, J., Momeni, A. & Aghdam, A. G. 2008. A Model Predictive Decentralized 

Control Scheme With Reduced Communication Requirement for Spacecraft 

Formation. IEEE Trans. on Control Systems Technology, 16, 268-278. 

Lee, H. & Kim, Y. 2010. Fault-tolerant control scheme for satellite attitude control 

system. Control Theory & Applications, IET, 4, 1436-1450. 

Levent, A. 1998. Robust exact differentiation via sliding mode technique. Automatica, 

34, 379-384. 

Lin, C., Patton, R. J. & Zong, Q. 2010. Integral hierarchical SMC of uncertain 

interconnected systems. 49th IEEE Conference on Decision and Control, 

Atlanta, GA, USA, 4517-4522, 15-17 Dec. 

Looze, D., Houpt, P., Sandell, N., Jr. & Athans, M. 1978. On decentralized estimation 

and control with application to freeway ramp metering. IEEE Trans. on 

Automatic Control, 23, 268-275. 

Lu, L., Lin, Z. & Beteman, A. 2009. Decentralized control design for large-scale linear 

systems in the presence of multi-layer nested saturation. IEEE International 

Symposium on Intelligent Control, Saint Petersburg, Russia, 695-700, 8-10 Jul. 

Lunze, J. 1989. Stability analysis of large-scale systems composed of strongly coupled 

similar subsystems. Automatica, 25, 561-570. 

Mahmoud, M. S. 1977. Multilevel Systems Control and Applications: A Survey. IEEE 

Trans. on Systems, Man and Cybernetics, 7, 125-143. 

Mahmoud, M. S. 2011. Design of control strategies for robust dynamic routing in traffic 

networks. Control Theory & Applications, IET, 5, 1716-1728. 

Martynyuk, A. A. 1998. Stability by Liapunov's Matrix Function Method with 

Applications, New York: Marcel Dekker. 

Mcguinness, M. & Taylor, S. W. 2004. Strip temperature in a metal coating line 

annealing furnace. Proceeding of the 2004 Mathematics-in-Industry Study 

Group, Massey University, Albany, NZ. 

Meisel, J. 1980. Transient Stability Augmentation using A Hierarchical Control 

Structure. IEEE Trans. on Power Apparatus and Systems, PAS-99, 256-267. 



205 

 

Mukaidani, H. 2011. Local feedback pareto strategy for weakly coupled large-scale 

discrete-time stochastic systems. Control Theory & Applications, IET, 5, 2005-

2014. 

Nersesov, S. G. & Haddad, W. M. 2006. On the stability and control of nonlinear 

dynamical systems via vector Lyapunov functions. IEEE Trans. on Automatic 

Control, 51, 203-215. 

Ocampo Martinez, C., Barcelli, D., Puig, V. & Bemporad, A. 2012. Hierarchical and 

decentralised model predictive control of drinking water networks: Application 

to Barcelona case study. Control Theory & Applications, IET, 6, 62-71. 

Okou, F., Dessaint, L. A. & Akhrif, O. 2005. Power Systems Stability Enhancement 

Using a Wide-Area Signals Based Hierarchical Controller. IEEE Trans. on 

Power Systems, 20, 1465-1477. 

Özgüner, Ü., Khorrami, F. & İftar, A. 1988. Two controller design approaches for 

decentralized systems. AIAA Guidance, Navigation and Control Conference, 

Minneapolis, MN, 237-244. 

Pagilla, P. R. & Zhu, Y. 2004. A decentralized output feedback controller for a class of 

large-scale interconnected nonlinear systems. Proceedings of the 2004 American 

Control Conference, Boston, Massachusetts, 3711-3716, 30 Jun-2 Jul. 

Pagilla, P. R. & Zhu, Y. 2005. A Decentralized Output Feedback Controller for a Class 

of Large-Scale Interconnected Nonlinear Systems. Journal of Dynamic Systems, 

Measurement, and Control, 127, 167-172. 

Parutka, K. 2010. A Survey of Decentralized Adaptive Control. Meng Joo Er (Ed.) New 

Trends in Technologies: Control, Management, Computational Intelligence and 

Network Systems. 

Patton, R., Kambhampati, C., Casavola, A., Zhang, P., Ding, S. & Sauter, D. 2007. A 

Generic Strategy for Fault-Tolerance in Control Systems Distributed Over a 

Network. European Journal of Control, 13, 280-296. 

Patton, R. J. 1997. Fault tolerant control: The 1997 situation. IFAC Safeprocess '97. 

Hull, United Kingdom. 

Patton, R. J., Frank, P. M. & Clark, R. N. 1989. Fault diagnosis in dynamic System, 

Theory and Application, Control Engineering Series, New York: Prentice Hall. 



206 

 

Patton, R. J., Putra, D. & Klinkhieo, S. 2010. Friction compensation as a fault-tolerant 

control problem. International Journal of Systems Science, 41, 987-1001. 

Plestan, F., Shtessel, Y., Brégeault, V. & Poznyak, A. 2010. New methodologies for 

adaptive sliding mode control. International Journal of Control, 83, 1907-1919. 

Pukdeboon, C., Zinober, A. S. I. & Thein, M. W. L. 2010. Quasi-Continuous Higher 

Order Sliding-Mode Controllers for Spacecraft-Attitude-Tracking Maneuvers. 

IEEE Trans. on Industrial Electronics, 57, 1436-1444. 

Richter, S., Lefebvre, S. & Decarlo, R. 1982. Control of a class of nonlinear systems by 

decentralized control. IEEE Trans. on Automatic Control, 27, 492-494. 

Rosinová, D. & Veselý, V. 2007. Robust PID Decentralized Controller Design Using 

LMI. International Journal of Computers, Communications & Control, II, 195-

204. 

Rosinová, D. & Veselý, V. 2012. Decentralized Robust Control of Linear Uncertain 

Systems. 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark, 

412-417, 20-23 Jun. 

Rubaai, A. 1991. Transient stability control: a multi-level hierarchical approach. IEEE 

Trans. on Power Systems, 6, 262-268. 

Ryan, E. P. & Corless, M. 1984. Ultimate Boundedness and Asymptotic Stability of a 

Class of Uncertain Dynamical Systems via Continuous and Discontinuous 

Feedback Control. IMA Journal of Mathematical Control and Information, 1, 

223-242. 

Sandell, N., Varaiya, P., Athans, M. & Safonov, M. 1978. Survey of decentralized 

control methods for large scale systems. IEEE Trans. on Automatic Control, 23, 

108-128. 

Shafai, B., Ghadami, R. & Saif, M. 2011. Robust decentralized PI observer for linear 

interconnected systems. IEEE International Symposium on Computer-Aided 

Control System Design, Denver, CO, USA, 650-655, 28-30 Sep. 

Shampine, L. F. & Allen, R. C. 1973. Numerical computing: An introduction, Saunders 

(Philadelphia). 



207 

 

Shankar, S., Darbha, S. & Datta, A. 2002. Design of a decentralized detection filter for a 

large collection of interacting LTI systems. Mathematical Problems in 

Engineering, 8, 233-248. 

Shi, L. & Singh, S. K. 1992. Decentralized Adaptive Controller Design for Large-Scale 

Systems with Higher Order Interconnections. IEEE Trans. on Automatic Control, 

37, 1106-1118  

Shields, D. N. & Du, S. 2003. Fault detection observers for continuous non-linear 

polynomial systems of general degree. International Journal of Control, 76, 

437-452. 

Shyu, K.-K., Liu, W.-J. & Hsu, K.-C. 2005. Design of large-scale time-delayed systems 

with dead-zone input via variable structure control. Automatica, 41, 1239-1246. 

Shyu, K. K., Liu, W. J. & Hsu, K. C. 2003. Decentralised variable structure control of 

uncertain large-scale systems containing a dead-zone. IEEE Proceeding - 

Control Theory and Applications, 150, 467-75. 

Šiljak, D. D. 1978. Large scale dynamic systems: Stability and structure, New York: 

North Holland. 

Šiljak, D. D. 1991. Decentralized Control of Complex Systems, Academic Press. 

Šiljak, D. D. 1996. Decentralized control and computations: status and prospects. 

Annual Reviews in Control, 20, 131-141. 

Šiljak, D. D. & Stipanović, D. M. 2000. Robust Stabilization of Nonlinear Systems: The 

LMI Approach. Mathematical Problems in Engineering, 6, 33. 

Šiljak, D. D., Stipanović, D. M. & Zečević, A. I. 2002. Robust decentralized 

turbine/governor control using linear matrix inequalities. IEEE Trans. on Power 

Systems, 17, 715-722. 

Šiljak, D. D. & Vukcevic, M. 1976. Decentralization, stabilization, and estimation of 

large-scale linear systems. IEEE Trans. on Automatic Control, 21, 363-366. 

Šiljak, D. D. & Zečević, A. I. 2005. Control of large-scale systems: Beyond 

decentralized feedback. Annual Reviews in Control, 29, 169-179. 

Singh, M. G., Hassan, M. F. & Titli, A. 1976. Multilevel Feedback Control for 

Interconnected Dynamical Systems Using the Prediction Principle. Systems, 

Man and Cybernetics, IEEE Transactions on, SMC-6, 233-239. 



208 

 

Singh, M. G. & Tamura, H. 1974. Modelling and hierarchical optimization for 

oversaturated urban road traffic networks. International Journal of Control, 20, 

913-934. 

Singh, M. G. & Titli, A. 1978. Systems Decomposition, Optimization and Control, 

Pergamon Press. 

Smith, N. J. & Sage, A. P. 1973. An introduction to hierarchical systems theory. 

Computers & Electrical Engineering, 1, 55-71. 

Stanković, S. S. & Šiljak, D. D. 2001. Contractibility of overlapping decentralized 

control. Systems & Control Letters, 44, 189-200. 

Stanković, S. S. & Šiljak, D. D. 2003. Inclusion Principle for Linear Time-Varying 

Systems. SIAM J. Control Optim., 42, 321-341. 

Stanković, S. S., Stanković, M. S. & Stipanović, D. M. 2009. Consensus based 

overlapping decentralized estimation with missing observations and 

communication faults. Automatica, 45, 1397-1406. 

Stanković, S. S., Stanojevic, M. J. & Šiljak, D. D. 2000. Decentralized overlapping 

control of a platoon of vehicles. IEEE Trans. on Control Systems Technology, 8, 

816-832. 

Stipanović, D. M., İnalhan, G., Teo, R. & Tomlin, C. J. 2004. Decentralized 

overlapping control of a formation of unmanned aerial vehicles. Automatica, 40, 

1285-1296. 

Sundareshan, M. & Huang, P. 1984. On the design of a decentralized observation 

scheme for large-scale systems. IEEE Trans. on Automatic Control, 29, 274-276. 

Swarnakar, A., Marquez, H. J. & Tongwen, C. 2007. A New Scheme on Robust 

Observer Based Control Design for Nonlinear Interconnected Systems with 

Application to an Industrial Utility Boiler. Proceedings of the 2007 American 

Control Conference, New York City, USA, 5601-5606, 9-13 Jul. 

Syrmos, V. L., Abdallah, C. T., Dorato, P. & Grigoriadis, K. 1997. Static output 

feedback—A survey. Automatica, 33, 125-137. 

Tan, C. P. & Edwards, C. 2001. An LMI approach for designing sliding mode observers. 

International Journal of Control, 74, 1559-1568. 



209 

 

Tan, C. P. & Edwards, C. 2002. Sliding mode observers for detection and reconstruction 

of sensor faults. Automatica, 38, 1815-1821. 

Tan, C. P. & Edwards, C. 2003. Sliding mode observers for robust detection and 

reconstruction of actuator and sensor faults. International Journal of Robust and 

Nonlinear control, 13, 443-463. 

Titli, A., Lefevre, T. & Richetin, M. 1973. Multilevel optimization methods for non-

separable problems and application. International Journal of Systems Science, 4, 

865-880. 

Tlili, A. S. & Braiek, N. B. 2009. Decentralized observer based guaranteed cost control 

for nonlinear interconnected systems. International Journal of Conrtol and 

Automation, 2, 29-45. 

Uang, H. & Chen, B. 2000. Fuzzy decentralized controller and observer design for 

nonlinear interconnected systems. The Ninth IEEE International Conference on 

Fuzzy Systems, San Antonio, TX, 945-948, 7-10 May. 

Utkin, V. 1977. Variable structure systems with sliding modes. Automatic Control, 

IEEE Transactions on, 22, 212-222. 

Utkin, V. & Shi, J. 1996. Integral Sliding Mode in Systems Operating under 

Uncertainty Conditions. Proceedings of the 35th Conference on Decision and 

Control, Kobe, Japan, 4591-4596, 11-13 Dec. 

Utkin, V. I. 1993. Sliding mode control design principles and applications to electric 

drives. Industrial Electronics, IEEE Transactions on, 40, 23-36. 

Utkin, V. I. & Young, K. D. 1978. Methods for constructing discontinuity planes in 

multidimensional variable structure systems. Automation and Remote Control, 

39, 1466-1470  

Van Cutsem, T., Horward, J. L. & Ribbens-Pavella, M. 1981. A Two-Level Static State 

Estimator for Electric Power Systems. IEEE Trans. on Power Apparatus and 

Systems, PAS-100, 3722-3732. 

Walcott, B. & Żak, S. H. 1987. State observation of nonlinear uncertain dynamical 

systems. Automatic Control, IEEE Transactions on, 32, 166-170. 



210 

 

Wang, W.-J. & Lee, J.-L. 1993. Decentralized Variable Structure Control Design in 

Perturbed Nonlinear Systems. Journal of Dynamic Systems, Measurement, and 

Control, 115, 551-554. 

Wang, Y., Hill, D. J. & Guo, G. 1998. Robust decentralized control for multimachine 

power systems. IEEE Trans. on Circuits and Systems I: Fundamental Theory 

and Applications, 45, 271-279. 

Wei, G. & Jin, X. 2012. Robust adaptive distributed large-scale system designs against 

loss effectiveness actuators. 24th Chinese Control and Decision Conference, 

Taiyuan, China, 369-374, 23-25 May. 

Wu, H. 2002. Decentralized adaptive robust control for a class of large-scale systems 

including delayed state perturbations in the interconnections. IEEE Trans. on 

Automatic Control, 47, 1745-1751. 

Wu, H. 2003. Decentralized adaptive robust control for a class of large scale systems 

with uncertainties in the interconnections. International Journal of Control, 76, 

253-265. 

Wu, H. 2012. Decentralised adaptive robust control of uncertain large-scale non-linear 

dynamical systems with time-varying delays. Control Theory & Applications 

IET, 6, 629-640. 

Xiang, J., Su, H. & Chu, J. 2005. On the design of Walcott-Zak sliding mode observer. 

Proceedings of the 2005 American Control Conference, Portland, OR, USA, 

2451-2456, 8-10 Jun. 

Xu, A. & Zhang, Q. 2004. Residual generation for fault diagnosis in linear time-varying 

systems. IEEE Trans. on Automatic Control, 49, 767-772. 

Yan, J.-J., Tsai, J. S.-H. & Kung, F.-C. 1997. Robust Decentralized Stabilization of 

Large-Scale Delay Systems Via Sliding Mode Control. Journal of Dynamic 

Systems, Measurement, and Control, 119, 307-312. 

Yan, X.-G. & Edwards, C. 2008. Robust decentralized actuator fault detection and 

estimation for large-scale systems using a sliding mode observer. International 

Journal of Control, 81, 591-606. 

Yan, X.-G., Spurgeon, S. K. & Edwards, C. 2009. Global time-delay dependent 

decentralised sliding mode control using only output information. Joint 48th 



211 

 

IEEE Conference on Decision and Control and 28th Chinese Control 

Conference, Shanghai, China, 6709-6714, 15-18 Dec. 

Yan, X. G., Edwards, C. & Spurgeon, S. K. 2004a. Decentralised robust sliding mode 

control for a class of nonlinear interconnected systems by static output feedback. 

Automatica, 40, 613-620. 

Yan, X. G., Edwards, C., Spurgeon, S. K. & Bleijs, J. a. M. 2004b. Decentralised 

sliding-mode control for multimachine power systems using only output 

information. IEEE Proceeding - Control Theory and Applications, 151, 627-635. 

Yan, X. G., Spurgeon, S. K. & Edwards, C. 2003. Decentralized Output Feedback 

Sliding Mode Control of Nonlinear Large-Scale Systems with Uncertainties. 

Journal of optimization theory and applications, 119, 597-614. 

Yau, H.-T. & Yan, J.-J. 2009. Robust decentralized adaptive control for uncertain large-

scale delayed systems with input nonlinearities. Chaos, Solitons &amp; Fractals, 

39, 1515-1521. 

Young, K. D., Utkin, V. I. & Özgüner, Ü. 1999. A control engineer's guide to sliding 

mode control. IEEE Trans. on Control Systems Technology, 7, 328-342. 

Yu, X. & Kaynak, O. 2009. Sliding-Mode Control With Soft Computing: A Survey. 

IEEE Trans. on Industrial Electronics, 56, 3275-3285. 

Zečević, A. I. & Šiljak, D. D. 2004. Design of robust static output feedback for large-

scale systems. IEEE Trans. on Automatic Control, 49, 2040-2044. 

Zečević, A. I. & Šiljak, D. D. 2005. A new approach to control design with overlapping 

information structure constraints. Automatica, 41, 265-272. 

Zhang, X., Polycarpou, M. M. & Parisini, T. 2010. Fault diagnosis of a class of 

nonlinear uncertain systems with Lipschitz nonlinearities using adaptive 

estimation. Automatica, 46, 290-299. 

Zhu, M. & Li, Y. 2010. Decentralized adaptive fuzzy sliding mode control for 

reconfigurable modular manipulators. International Journal of Robust and 

Nonlinear control, 20, 472-488. 

Zhu, Y. & Pagilla, P. R. 2007. Decentralized output feedback control of a class of large-

scale interconnected systems. IMA Journal of Mathematical Control and 

Information, 24, 57-69. 



212 

 

Zinober, A. S. I. 1990. An introduction to variable structure control. Zinober, A. S. I. 

(Ed.) Deterministic Control of Uncertain Systems. Peter Peregrinus, Stevenage, 

UK. 

 

 


