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SUMMARY OF THESIS 

 

This thesis is based on a series of experiments aimed at designing a model of 

gene transfer to the transplanted heart. The use of viral vector-based gene therapy 

to target pathological processes following cardiac transplantation faces many 

challenges including the potential effects of the virus on the host as well as the 

need to establish the presence of the gene in the target organ. In the first set of 

experiments (Chapter 2), concerns over the effects of adenoviral gene transfer on 

the later development of cardiac allograft vasculopathy (CAV) were addressed. 

Heterotopically transplanted cardiac allografts from Brown Norway to Lewis rats 

revealed the presence of CAV at 120 days.  Ex vivo adenoviral serotype 5 

perfusion of the donor heart did not affect the later development of allograft 

vasculopathy.  

 

In the second series of experiments, the feasibility of visualizing the presence of 

the sodium iodide symporter (hNIS) non-invasively following its gene 

transduction was established with the use of SPECT imaging. Following gene 

transfer, the recipients were injected with 99mTc in the first set of experiments 

(Chapter 3) or with radioactive 123I (Chapter 4) and imaged under a SPECT 

scanner. Radioactive isotope uptake in the Ad-NIS group was significantly higher 

than in the group of animals whose hearts were perfused with just University of 

Wisconsin solution or with blank adenovirus without a marker gene. Sequential 

imaging of Ad-NIS-perfused hearts between post-operative days 2 and 14 

revealed peak image intensity at day 5. Overall, image intensities correlated with 

ex vivo counts of radioactivity.  



 11 

These data demonstrate that hNIS is an excellent reporter gene whose expression 

can be accurately and non-invasively monitored by serial radioisotope single 

photon emission computed tomography (SPECT) imaging.  

 



 12 

1. INTRODUCTION 

 

Section 1 

1.1.1 Cardiac Transplantation and Complications 

 

Heart failure remains one of the leading causes of death in the developed world. 

Heart failure affects about 900,000 people in the UK and this number is 

increasing due to improved prognosis of coronary artery disease and an ageing 

population. Even with optimal medical management, survival following discharge 

from hospital with a diagnosis of heart failure remains at 18 to 24 months1. 

Cardiac transplantation remains the only effective treatment for patients with 

heart failure refractory to conventional therapy.2 About 10% of patients with heart 

failure are at an advanced stage and could potentially benefit from organ 

replacement.3 Less commonly, heart transplantation is also recommended for 

recurrent life-threatening arrhythmias and angina refractory to other forms of 

therapy2. Over 3000 transplants were performed last year in over 300 countries. 

With an improvement in the understanding of the complications following this 

operation and better management, survival after transplantation has increased 

steadily with one year and ten-year survival rates close to 85% and 42.0% 

respectively4. Median survival among patients who survived the first year after 

transplantation was estimated at 13 years.5 These outcomes following 

transplantation are more favorable when compared to other forms of therapy6. 

Despite the promising effects of transplantation, availability of organs remains a 

problem. At the end of June 2012, more than 3200 patients were on the waiting 

list in the USA with almost half of these patients waiting for more than 2 years. 
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More than 200 patients with heart failure died on the waiting list in the first half 

of this year alone. (www.unos.org) In the UK, there has been a significant 

decrease in the number of adult heart transplants performed in recent years7. 

Measures to increase the supply of donor organs for transplantation have not had 

the desired effect on the numbers of transplants performed each year in the UK7. 

 

Under these circumstances, it is imperative to ensure appropriate distribution of 

the available organs as well as optimum monitoring of the transplanted organs 

and quick and effective intervention in the case of any complications. The lack of 

sufficient donors to match the ever-growing need as well as the risk profile of the 

patients with failing transplants dictates the need to investigate and continuously 

refine alternative strategies to ensure long-term disease free survival.  

 

While organ availability limits therapeutic options in those with end-stage heart 

failure, several potential complications could compromise the function of the 

graft after implantation. Primary graft failure accounts for upto 20% of the deaths 

in the first 90 days after transplantation8, 9. Infection and allograft rejection are 

other factors that could compromise graft function in the short term while 

malignancy and cardiac allograft vasculopathy (CAV) challenge long-term 

survival of the graft. Some of these complications are however amenable to 

therapeutic intervention that could prolong the life of the organ. With better donor 

management and therapy directed at expected complications, a 10-year survival 

of 42% has been achieved4, 10. There is however room for further improvement 

through implementation of strategies to prolong effective graft function. 
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The main obstacle to long–term survival of the allograft is cardiac allograft 

vasculopathy (CAV). This is characterized by concentric neointimal proliferation 

and ateriosclerosis leading to progressive narrowing of the lumen, myocardial 

infarction and graft dysfunction11, 12. More than 40% have some evidence of CAV 

by angiography at 5 years with CAV related adverse events (death and re-

transplantation) accounting for 7% of patients post-transplant13. Therapeutic 

options are limited in this setting and no effective preventive strategy exists14. 

Attention has been focused on palliative measures to prevent clinical 

manifestations of CAV. Calcium channel blockers and Angiotensin converting 

enzyme (ACE) inhibitors have been shown to slow the initial development of 

CAV15-18 due to their effect on hypertension, one of the risk factors for CAV19. 

Dyslipidemia, immunosuppressant drugs, oxidant stress and hypertension have an 

adverse effect on graft function3. An up-regulation of inflammatory mediators 

immediately following transplantation is also thought to contribute to the later 

development of allograft vasculopathy20. Coronary revascularization procedures 

including percutaneous transluminal coronary angioplasty (PTCA) 21, 22, coronary 

atherotomy and coronary artery bypass grafting (CABG)12 Transmyocardial laser 

revascularization (TMR) have all been attempted to reduce morbidity due to 

ischaemia 23. Retransplantation is an option although survival is shorter and the 

shortage of donor organs precludes this option in most instances.  

 

Under such circumstances, gene therapy of the transplanted organ is a potential 

answer to the problems posed by pathological processes following transplantation. 

This concept of manipulation of gene profile of the patient in order to achieve a 

desired therapeutic effect is not new. Since the studies demonstrating the 
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feasibility of retroviral gene transfer into tumour infiltrating lymphocytes for the 

treatment of melanoma 24, gene therapy has come to be regarded as promising a 

cure not just for single gene mutations as originally conceived but a variety of 

acquired disorders 25, 26. Effective gene transfer requires a vehicle of delivery of 

the therapeutic gene as well as a route of administration that ensures high 

transfection while not compromising normal organ function. The system used 

depends on the goal of genetic modification.  

 

Gene Transduction is the abortive infection that introduces functional genetic 

information from the vectors into the target cell 27. Gene transduction could 

therefore be construed as a system to supply cells with a gene product in a 

therapeutic quantity in order to alter the progression of disease. Under ideal 

circumstances, gene delivery would be specific to the region of interest with little 

promiscuous gene transduction therefore reducing the incidence of side effects. 

  

1.1.2 Applications of Gene Therapy 

 

Much of an enthusiasm to apply a gene-based approach to the treatment of 

cardiovascular disorders have been paralleled by dedicated efforts to understand 

the molecular basis for cardiovascular disease 25. The vascular endothelium is 

effectively the largest organ in the body and is central to pathological processes 

affecting the cardiovascular system. Endothelium-targeted gene transfer strategies 

therefore have the potential of affecting diverse organ systems. Further discerning 

the physiology of the endothelium specific to a particular organ offers the 

possibility of modulating organ-specific pathology without the side effects of 
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systemic drug therapy. The problems associated with viral vector based gene 

therapy (outlined later) however remain. Consequences of an inflammatory 

response to the vector, incorporation of the DNA into the host cells, loss of gene 

expression and non-specific gene transfer are yet unsolved. However, gene 

transfer strategies are being investigated due to their potential to preserve 

endothelial function, prevent smooth muscle proliferation, maintain vascular tone, 

prevent a pathological vasospastic response, lower blood pressure in selected 

vascular beds, and stimulate therapeutic angiogenesis in peri-infarct regions after 

a myocardial infarction 28, 29. An understanding of the molecular processes 

underlying development of collateral circulation in ischaemic myocardium and 

the availability of several growth factors like VEGF, PDGF, FGF, Ang-1 30-34 that 

could create a local chemical milieu conducive to formation of collateral vessels 

and remodeling of the myocardium has led to an interest in therapeutic 

angiogenesis 29. Angiogenic growth factors, cell cycle regulators and enzymes & 

receptors involved in lipoprotein metabolism have been transduced into the heart 

in an attempt to affect angiogenesis, thrombogenesis, in-stent restenosis, vascular 

graft occlusion and systemic and primary pulmonary hypertension 25, 28, 35. 

Genetic modulation of intracellular calcium transport mechanisms 36, β-

adrenergic receptor signaling and cardiomyocyte apoptosis are being targeted to 

restore and maintain ventricular contractile activity37. The enthusiasm of gene 

transfer for angiogenic growth factors 29 has however not translated to myocardial 

ischaemia in the context of CAV due to the diffuse nature of the disease. 

Evidence suggests that both humoral and cellular immune responses of the 

recipient to MHC antigens on the surface of the graft vascular endothelium lead 

to endothelial damage, a cytokine response and vascular smooth muscle cell 
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(VSMC) proliferation leading to neointimal hyperplasia.38, 39 The pathological 

migration of VSMC from the tunica media to the intima with subsequent 

proliferation and concentric narrowing of the lumen leads to changes 

characteristic of allograft vasculopathy and has been the target of gene therapy 

attempts to modulate disease in animal models. 

 

1.1.3 Gene Therapy of Transplanted Hearts 

 

An understanding of the molecular mechanisms underlying cardiac allograft 

disease has therefore been followed by attempts to attenuate these processes and 

improve survival through gene transfer methods. 40, 41 Not surprisingly, the focus 

of gene therapy studies has been the abrogation of acute vascular rejection and 

improved graft survival. Murine cardiac allografts in IL-10 transgenic recipients 

demonstrated a reduction in graft-infiltrating CD-4 and CD-8 lymphocytes along 

with a reduction in intra-graft IL-2 and IFN-γ (attenuated Th1 response) leading 

to an absence of intimal lesions when compared to wild-type recipients. Lentiviral 

IL-10 gene transfer to cardiac allografts as well as Feline Immunodeficiency virus 

mediated viral IL-10 gene transfer combined with anti CD-3 monoclonal antibody 

have been shown to improve survival over a non-treated control group. 42 

Adenoviral mediated transduction of a soluble Interleukin (IL-17) fusion protein 

(soluble IL-17R-Ig fusion protein) in donor hearts as well as the modulation of 

cellular immune responses through Ad-Haemoxygenase-1 gene transfer has been 

shown to delay acute allograft rejection and prolong the survival of cardiac 

grafts.43 The protective effect afforded by such cytokine modulation seems to be 

associated with decreased numbers of macrophages, CD4+ T cells, and CD8+ T 
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cells infiltrating the graft along with reduced graft expression of IFN-g, TGF-b, 

IL-1b, and TNF-a. In addition, CTLA4Ig competitive inhibition of the T-cell co-

stimulatory interaction of the T-cell CD28 with the APC molecules CD80 and 

CD86 has been attempted in an effort to attenuate acute vascular rejection in 

vascularised cardiac grafts. Experience gained with cytokine gene transfer in 

cancer studies 44 could thus be applied to transplantation models to create a graft-

protective environment by the modulation of cellular and humoral allo-reactive 

pathways in graft rejection by delivery of immunosuppressive cytokines IL-10 

and TGF-β. 45 Towards abrogation of CAV, adenoviral gene transfer of the 

dominant negative Rho-kinase has been shown to suppress neo-intimal formation, 

induce regression of constrictive remodeling and abolish the vasospastic response 

in coronary arteries. 46 In vivo gene transfer of oligonucleotides against Nuclear 

factor-KappaB (NF-κB), proliferating cell nuclear antigen (PCNA) and iNOS 

have also been encouraging in attenuating intimal hyperplastic lesions in animal 

models. 38, 47-49 

 

A shortage of donor organs has also spurred interest in the potential use of organs 

from other species. Xeno-transplantation could potentially provide an unlimited 

supply of donor organs although immune barriers limit its applicability at present. 

Expression of vascular adhesion molecules, chemokines and pro-inflammatory 

mediators in acute vascular rejection of xenografts 50 presents potential targets for 

vector-based genetic modulation in this setting. 
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1.1.4 Gene delivery to the Heart 

 

One of the major determinants of the success of gene therapy trials is the proper 

selection of the appropriate vector to carry the gene with due attention to the 

time-course of the pathology being targeted. In addition, appropriate methods of 

gene transduction have to be studied in order to preserve function of the donor 

organ and prevent damage arising as a direct consequence of the gene transfer. 

An inability to translate the efficiency of gene transfer in cell cultures in vitro to 

organ systems in vivo has also prompted closer scrutiny of delivery techniques. 51-

54 

Cardiac transplantation offers the opportunity to perfuse the heart with the gene 

after its removal from the donor and prior to its implantation into the recipient. 

The deleterious systemic effects of the viral vector on the donor are therefore 

avoided. Despite the potential advantages offered by ex vivo manipulation of the 

organ, conditions that are mandatory for organ preservation and for the reduction 

of ischaemic injury such as continuous cold perfusion and cold ischaemic storage 

do not always support efficient gene transduction. An obligation to maintain low 

perfusion temperatures to avoid ischaemic injury leads to inefficient gene 

transfection. Evidence suggests inefficient endothelial and vascular smooth 

muscle transduction under hypothermic conditions compared to 37 ْ C, where 

nearly 100% cardiomyocyte transduction is feasible under appropriate perfusion 

conditions. 55, 56 
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Perfusion of the donor organ with the gene-carrying vector is followed by its 

transfer across the vascular endothelium. Efforts at more efficient cardiomyocyte 

transduction have included pre-treatment with serotonin and bradykinin prior to 

ex vivo perfusion with Ad-βGal 57 towards modulation of endothelial permeability. 

Use of a calcium-poor perfusate has also been reported to result in a greater 

efficiency of gene transfer, as the integrity of the endothelial tight junctions is 

calcium-dependent. Previous studies have reported an improvement in gene 

transfer efficacy from 5% to 67% with the pre-treatment of the heart with 

calcium-free solutions. Use of such pharmacological manipulation to increase 

endothelial permeability facilitates the passage of macromolecules and virions 

into the myocardium. 58 Although such attempts have been made to develop a 

model for gene transfer during cardiac catheterization, this concept could be used 

to ensure efficient transduction with an ex vivo perfusion technique. 57, 59 

 

Although direct injection of the viral vector into the myocardium offers an easily 

replicable mode of delivery that is not dependent on trans-endothelial transfer and 

results in efficient gene transduction, 60-63 gene expression is confined to the 

needle track. 63 Uniform gene expression is ensured with the use of intra coronary 

infusion of the virus either as a bolus dose 64 or with the use of a perfusion 

apparatus 56, 65. Cardiac transplantation presents a unique situation in that the 

organ of interest is available for ex vivo genetic manipulation prior to re-

implantation in to the recipient. Pelligrini et al. have demonstrated efficient gene 

transfer using an ex vivo perfusion technique in rat hearts. The feasibility of this 

technique has been duplicated in a large animal model with efficient gene 

transduction occurring with a concentration of 109 pfu/ml of Adenovirus in the 
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perfusate. The side effects resulting from promiscuous infection of other organs 

like the liver and spleen with adenoviral vectors are avoided with this technique. 

More efficient gene transfer has been demonstrated with a hypothermic ex-vivo 

perfusion technique compared to a single bolus dose of the vector 45, 65. Studies 

have reported better recovery from ischaemia-reperfusion injury in rat hearts 

following transduction with Adenoviral mediated Manganese superoxide 

dismutase (Mn-SOD) using a continuous hypothermic reperfusion system as 

compared to a high pressure infusion of the same virus down the coronaries 

through the aortic root. 66 

 

Limitations of available delivery techniques include inefficient transfection of 

endothelial cells and expression of the gene predominantly in sub-epicardial 

regions of the heart reflecting the propensity of this region to rewarming 55. The 

use of ex vivo coronary perfusion of the heart at 4 ْ C 45 reported an uneven 

distribution of the transgene, with a preference towards sub-epicardial 

perivascular regions. Intermittent external compression of the left ventricle during 

perfusion resulted in a more homogenous distribution of gene transduction 

throughout the myocardium reflecting the dependence of this technique on an 

optimum perfusion pressure. In larger animal gene transfer experiments where 

perfusion pressures are more reliably monitored, reports suggest an interesting 

phenomenon where the flow rate had to be increased in increments in order to 

maintain a constant perfusion pressure due to progressive coronary vasodilatation. 

It has not been determined whether perfusion rate or pressure dictates the 

efficiency of gene transfer. A higher efficiency of reporter gene transfection with 

higher flow rates has been hypothesized to being due to opening of pre-capillary 
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sphincters at a critical perfusion pressure 56. In both the native and transplanted 

hearts, catheter-based delivery of the gene is an attractive concept although the 

presence of blood, single-pass through the coronary arteries, spillover into the 

systemic circulation and the inability to alter perfusion pressures would be 

distinct disadvantages. The transient nature of gene expression and the absence of 

a therapeutic effect despite efficient gene transduction 67 remain valid concerns. 

In addition, evidence of differential gene expression in diseased arteries versus 

those with an intact endothelium 68 and therapeutic effects of gene transfer with 

just adventitial rather than endothelial transduction 69, 70 have highlighted a 

greater need for in vivo models of disease to investigate the effects of therapeutic 

genes.  

 

Another problem associated with the interpretation of in vitro data includes 

distinct properties of cells in culture compared to conditions in vivo. ‘Normal’ 

cells in culture may also not be accurate representations of an in vivo disease 

model. The effects of anatomical barriers like the internal elastic lamina, receptor 

expression in disease and mechanism underlying poor gene expression despite 

efficient infection of cells are better understood through experiments carried out 

in vivo. 

 

In addition to the above, the biological effects of gene transfer are dependent 

upon the delivery technique. Differential changes in cytokine profiles, APC-T cell 

interaction and cellular immune responses and local graft inflammation have been 

noted with different routes of administration. For instance, intravenous 

Haemoxygenase-1 gene transfer into rats bearing heterotopic cardiac allografts 
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resulted in decreased TNFα, IFNγ, IL-10 and iNOS transcripts while intra-graft 

intramuscular injection did not alter the graft cytokine mRNA profile in the same 

manner. All available techniques for cardiac gene delivery have drawbacks 

associated with uniform gene expression, high transfection efficacy or ease of 

clinical translation. In addition, cell-type specific gene expression must be 

achieved in order to affect cellular processes. Engineering the system to target the 

molecular process in question is therefore important in order to be able to track 

the benefits as well as to monitor and avoid side effects of the therapy. While 

most pathological processes in the graft are orchestered around the vascular 

endothelium, vasomotor dysfunction following adenoviral transduction of the 

endothelium is an issue that has been closely followed in pre-clinical trials. 71, 72  

 

1.1.5 Immune Responses to Vectors and their Implications 

 

Alongside the search for the perfect delivery technique, investigators have 

concentrated their efforts on finding a carrier molecule that delivers the gene 

reliably, consistently and efficiently to the target organ while remaining 

biologically inert. Although such a molecule does not exist, progress in achieving 

desirable levels of gene expression has been made with the use of viral vectors. 

However, the biggest obstacle to virus-based gene transfer is the potent immune 

response elicited by the vector as well as the transgene. 73-77 This is exemplified in 

studies involving serotypes of adenoviruses. 

 

Adenoviridiae are non-enveloped viruses with a 30-40kb double stranded DNA 

fragment and have been natural choices for DNA bearing vectors due to their 
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ability to transduce differentiated non-dividing cells, ability to be generated in 

large titres and resistance to complement mediated inactivation in vivo 78. First 

generation adenoviruses were engineered for gene therapy application by deletion 

of their E1 region to render them replication-defective as well as by deletion of 

E3 to create room for addition of therapeutic genes. Second generation vectors 

are further devoid of E2 and E4 regions to enable addition of more gene 

fragments and blunt the innate immune response to viral antigens. Despite this, 

the body’s immune response to the vector and the gene product leads to an 

unstable and short-lived transgene gene expression in living cells. 77, 79-82 

 

Entry of adenoviral vectors into the recipient is followed by the induction of a 

non-specific innate immune response largely independent of transgene expression. 

The first line of defence against foreign antigens is the rapid scavenging of viral 

particles by NK cells, macrophages and dendritic cells 83.  The activation of these 

cells leads to release of inflammatory cytokines like IL-6, IL-12 and TNF-α 

independent of viral or transgene expression. 84, 85 In most adenoviral serotypes, 

this response is triggered by signaling pathways set in motion upon viral entry 

into cells following integrin-RGD binding. The dominant receptor promoting 

cellular invasion is the coxackievirus adenovirus receptor (CAR), a peptide 

expressed on the cell membrane.  

 

Antigen specific responses to both viral proteins and the transgene limit the extent 

and duration of gene expression in target cells. Low levels of viral gene 

expression leads to MHC-1 restricted activation of cytotoxic T lymphocytes and a 

rapid elimination of transgene expression. The antigen presenting cells (APC) 
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also stimulate the secretion of cytokines like IL-6 and IL-12 that, in addition to 

evoking a rapid local inflammatory response also activate cytotoxic T-

lymphocytes against the infected cells. Depletion of APCs attenuates both the 

innate immune response as well as the cytotoxic lymphocyte responses indicating 

the intersection of these pathways 86. The development of an immune response 

could depend on the antigen presenting ability of the organ and the low dendritic 

cell content of the heart may blunt the immune response against the transplanted 

organ. The obligate use of anti-T cell immunosuppressant drugs in transplantation 

could also ensure a more prolonged transgene expression in the myocardium 87. 

However, immune responses to viral structural proteins as well as to the 

transgene product limit gene expression in the transplanted heart. 

 

Concerns over the effects of the adenovirus serotype 5 vector on the transplanted 

heart, in particular the later development of CAV following an initial immune 

response were addressed in the study described in chapter 2. 
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Section 2. REPORTER GENES AND MOLECULAR IMAGING 

1.2.1 Reporter Genes 

The challenges to gene therapy can be monitored and overcome by a careful 

selection of vector systems that are targeted to the tissue as well as tailored to the 

myocardial pathology. Temporal association of gene expression with the course 

of the pathology and appropriate analyses of functional effects of the gene can 

only be attempted in the presence of reliable reporter systems that reflect the 

presence of the gene. The commonly used ‘Lac Z’ reporter gene allows 

visualization of the β-Gal gene product by histochemical analysis but this concept 

has had some drawbacks. Histochemical analysis of the function of the enzyme as 

opposed to the presence of the gene by anti-body labeling has been shown to 

underestimate gene transduction both in vivo and in stably transfected cells in 

culture88.  In addition, it has been shown in the rabbit myocardium that areas of 

micro-infarction stained positive for X-Gal following cationic liposome mediated 

gene transfer despite the absence of the gene in those areas89. To date the 

commonly used reporter genes in preclinical studies have required sacrificing the 

animal to obtain tissue sections for in vitro analyses of the organ including 

mapping of the reporter gene. Investigators have therefore attempted the use of 

reporter genes that generate an optical signal that could be captured without 

sacrificing the animal90, 91. Such fluorescent and bioluminescent reporters (e.g. 

firefly luciferase, green fluorescent protein) are specific to the tissue expressing 

them and have limited background noise. However, emission wavelengths 

between 450-500nm afford limited tissue penetrability of the order of a few 

millimetres. Reasonable visualization in rodent models can therefore not be 



 27 

translated to large animal gene transfer experiments92. In addition, low spatial 

resolution implies absence of any reliable anatomical correlation of the optical 

signal. These drawbacks could be overcome with the use of magnetic resonance 

imaging, which offers excellent spatial resolution and anatomic detail with the 

absence of exposure to ionizing radiation. However, a low specificity for the 

contrast material and long image acquisition times are distinct shortcomings that 

need to be addressed.  

Questions have also been raised over the closeness with which animal models of 

disease correlate with human conditions. Anatomical heterogeneity of the 

atherosclerotic lesion as well as the complexity of vascular responses to 

endothelial injury in the form of VSMC proliferation, neo-intimal hyperplasia, 

apoptosis, matrix remodeling make it difficult to produce animal models that 

simulate human disease conditions93. An apprehension in translating principles 

demonstrated in rodent studies to large animal models has also resulted in a 

paucity of such data resulting in an uncertainty in the direction of gene therapy in 

cardiac transplantation.  

 

Given the limitations of currently available gene transfer strategies as described, 

it is important to be able to measure the efficiency of gene transfer and track gene 

expression over time in order to correlate it with functional studies that monitor 

the presence of a desired therapeutic response. These studies are better carried out 

in large-animal models of disease. The development of imaging strategies like 

Positron Emission Tomography (PET) and SPECT makes it possible to track 

molecular processes and pathology in a non-invasive fashion in these models. 

These models could be used to assess gene transduction efficacies and 
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effectiveness of gene delivery techniques in real-time94, 95. This technology would 

be especially useful in diseases where long-term gene expression is warranted and 

fading of gene expression could be followed up by a second dose of a therapeutic 

gene.  

 

1.2.2 Molecular Imaging 

 

The increasing use of imaging modalities like Duplex Ultrasonography, CT 

angiography, MR angiography and arteriography to diagnose cardiovascular 

pathology as well as adjuncts for invasive therapy96 has presented the possibility 

of using this expertise in gene therapy trials. Molecular imaging of cardiovascular 

processes assumes the presence of a molecular target to which can bind a suitable 

antibody or peptide ligand. This binding then generates a signal that can be 

captured non-invasively by an appropriate imaging modality, the choice of which 

depends on the ligand and on the depth and spatial resolution that is necessary.  

 

Use of Magnetic resonance imaging with gadolinium97 and ultrasonographic 

monitoring of microspheres 98 has permitted real-time imaging of the catheter-

based gene delivery process, to ensure successful delivery of genes and the 

absence of complications associated with the procedure. Echogenic microspheres 

could be visualized with relative ease using ultrasonography and have the added 

potential of doubling as a non-viral vector. Ease of translation of an already 

widely used imaging modalities like ultrasound and computed tomography to 

gene therapy applications makes it an attractive prospect. These imaging 

techniques also have the ability to provide higher spatial resolution and therefore 
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greater anatomical correlation with molecular processes. Investigators have used 

MRI to track in vivo processes like apoptosis and to characterize vulnerable 

atherosclerotic plaques by capturing superparamagnetic iron oxide (SPIO) 

nanoparticles 99, 100.  

 

An interest in non-invasive imaging of myocardial perfusion and viability has 

played a major role in the development of nuclear imaging modalities in 

cardiovascular medicine 101-103. In PET scanning, an array of circular detectors 

captures positron emission from a radionuclide in a defined 3-dimensional space. 

Tomographic reconstruction of this emission enables imaging of the organ or 

region of interest. In cardiac imaging, there is a wide choice of 

radiopharmaceuticals (oxygen-15, nitrogen-13, carbon-11, fluorine-18) that can 

be tagged to fuel substrates, hormones or receptors to enable imaging of 

functional processes of interest. Non-invasive imaging of gene expression could 

be superimposed on perfusion imaging of the myocardium obtained at the same 

time 60, 104 to determine therapeutic efficacy of gene transfer in the myocardium. 

 

However, the drawbacks of PET imaging include the availability of PET imaging 

equipment and a short half-life of radiotracers. This necessitates the on-site 

presence of expensive cyclotrons to generate the radioisotopes. Satellite PET 

centers are being developed to circumvent this problem. In addition, the substrate 

to which the radioisotope is labeled should be carefully chosen based on the 

functional process under study. For example, glucose tagged to fluorine-18 has 

been used in the past to study myocardial perfusion. However, its low uptake and 

rapid clearance due to participation in multiple metabolic pathways has led to the 
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search for a particle that is trapped within the myocardium long enough to permit 

satisfactory imaging. Although it promises to enhance the sensitivity of imaging 

of processes the drawback of PET imaging is the current inability to produce 

images of high resolution that are possible with more conventional forms of 

imaging. This has origins in the development of PET as a modality to image 

molecular function rather than to visualize clear anatomical landmarks. In 

oncology, where PET applications have the most potential, the inability to 

visualize clear landmarks poses a definite problem. The use of dual-modality 

imaging with PET/CT has attempted to address this issue 105. Clinical studies 

exploring applications of PET and PET/CT have been encouraging106, 107.  

 

In clinical cardiac transplantation, the invasive nature of endomyocardial biopsies 

(EMB) to monitor rejection has encouraged the investigation of non-invasive 

imaging modalities in diagnoses. In acute rejection, the possibility of a lag-time 

between the presence of alloreactive lymphocytes and myocardial damage 

detected by EMB has been suggested as a potential advantage. Somatostatin 

receptors expressed by activated lymphocytes were visualized by the somatostatin 

analogue 111Indium pentetreotide at least 1 week prior to histological evidence of 

rejection by EMB 108. Detection of myocyte apoptosis by 99mTc-labelled Annexin 

V and radiolabelled anti-myosin antibodies have been proposed as an alternative 

to EMB109-111. Although these techniques are feasible and sensitive to the 

interrogated pathology, overall value in diagnosing rejection and dictating 

treatment remain undetermined. The advantages of non-invasive imaging of 

molecular processes have also been extended to the visualization of chronic 

rejection. Monocyte chemo attractant protein-1 (MCP-1) is a potent chemokine 
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secreted by graft infiltrating monocytes and activated vascular endothelium. 

MCP-1 is associated with vein graft intimal hyperplasia112 and binds to its 

receptor CCR-2 in the context of graft atherosclerosis and pro-inflamatory 

conditions. In a rodent model of CAV, 99mTc visualization of these receptors 

found them to be up-regulated in grafts with evidence of vasculopathy 113. There 

is evidence to suggest a role for myocardial perfusion imaging with Tc-sestamibi 

SPECT in conjunction with resting echocardiography to identify early graft 

coronary artery disease in the transplanted heart 114. Another application of 

nuclear imaging has been the assessment of sympathetic renervation following 

transplantation. Denervation of the heart during procurement results in a loss of 

exercise performance, ventricular function and sensation of chest pain to reflect 

coronary artery disease following transplantation. Sympathetic renervation of the 

ventricles is heterogenous and occurs at a variable rate following transplantation. 

Nuclear imaging of myocardial perfusion using radiolabelled NE analogues like 

MIBG and 11C-Hydroxyephedrine has been used to follow this process in a non-

invasive manner 115, 116.  

 

Conventional models to study gene transfer have had several limitations some of 

which have been described in detail earlier. The absence of a non-invasive 

imaging modality to trace and track gene transfer has led to interest in nuclear 

imaging of gene expression. By this approach, it is possible to perform 

longitudinal analyses to answer questions related to the site and duration of gene 

expression as well as safety concerns arising from promiscuous gene transduction 

without sacrificing the animal. In addition, this approach allows for the more 

authentic in vivo tracking of organ perfusion, drug kinetics as well as molecular 
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processes like cell death and angiogenesis 117, 118. Non-invasive tracking of 

reporter genes could be accomplished by one of two broad approaches available 

currently. The “direct” approach uses radioligands that are concentrated by the 

therapeutic gene product. In the “indirect approach”, a reporter gene is tagged to 

the therapeutic gene to perform the same function. This second approach allows 

greater flexibility in choosing the reporter gene and obviates the need to design a 

probe/gene imaging system for every therapeutic gene of interest. The gene 

product could be an intracellular enzyme, a membrane transporter a cell surface 

antigen or receptor or a fluorescent protein. HSV1-tk and HSV-sr39tk gene 

products phosphorylate compounds including acycloguanosines (e.g., acyclovir; 

ganciclovir, GCV; 9-[4-fluoro-3- (hydoxymethyl) butyl]guanine, FHBG) 104, 119 

and thymidine analogues (e.g., 5-iodo-2′-fluoro-2′deoxy-1-β-D-arabino-furanosyl-

uracil, FIAU) 60. Radiolabelled compounds can be visualized with PET scanning 

to track gene-transfected cells 60, 120. The use of 3-(2′-[18F] fluoroethyl)spiperone 

reporter probe with the human Dopamine 2 receptor gene (hD2R) 121, 122 and 

111In-DTPA-octreotide with the human somatostatin receptor subtype-2 

(hSSTR2) gene 123 are other examples of non-invasive reporter systems.  

 

1.2.3 Radioprobes 

 

The sensitivity of in vivo signal intensity in predicting the level of gene 

expression depends on the probe used in the study. The presence of a response 

relating radioligand uptake to the density of receptors or mechanism of 

concentration of the probe by the tissue is important. Specificity of uptake should 

also be addressed in preclinical studies by either pharmacological blockade or the 
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use of appropriately designed negative controls. The imaging modality of choice 

should reflect the pathology under study as well as the technology available at a 

particular site. The imaging process as well as the radiotracer should interfere as 

little as possible with the progression of the pathology as well as the metabolism 

of the organ under study. In addition, it is necessary to determine the kinetics of 

the radiotracer within target organs as tissue-specific expression of enzymes 

could affect intracellular tracer accumulation.  

 

The feasibility of non-invasive imaging of therapeutic IL-10 gene transfer was 

demonstrated using HSV1-sr39tk reporter gene with 9-(4-[18F] fluoro-3-

hydroxymethylbutyl) guanine ([18F] FHBG) visualized with PET myocardial 

imaging. 124 The disadvantages of HSV-tk to image gene transfer however 

include an immune response developed by the host due to the recognition of the 

gene product as non-self. Also, with the enzyme being intracellular, transport of 

the radioisotope through the cell membrane could be the rate-limiting step.125, 

126The human norepinephrine transporter (hNET) has recently been investigated 

as a reporter gene with the 11C-m-hydroxyephedrine (11C-mHED) probe imaged 

with PET in a rat tumour model. hNET is a membrane transporter that facilitates 

reuptake of norepinephrine at the synapse. 11C-mHED uptake in the hNET 

transfected tumors correlated closely with tumour expression of hNET and was 

specific for hNET 127. This system is however inapplicable to cardiac gene 

transfer due to the inherent presence of the transporter in the normal heart. In 

transplanted hearts, the variable rate of sympathetic renervation and NET 

expression implies the absence of reliable negative controls and limits the clinical 

applicability of such a technique.  
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1.2.4 Role of NIS in Non-invasive Molecular Imaging 

 

The thyroid gland is an endocrine organ producing two active iodine-containing 

hormones, Tri-iodothyronine (T3) and tetra-iodotyronine (T4, Thyroxine). These 

hormones have a wide spectrum of actions including proper development of the 

central nervous system in neonates. An efficient system of concentrating iodide is 

an essential initial step in the synthesis prior to organification and incorporation 

of iodine into thyroglobulin molecules to form thyroxine. This has long known to 

be due to the expression of the Sodium Iodide Symporter (NIS) on the baso-

lateral membrane of the thyroid follicular cells. The Symporter works to 

concentrate iodide from circulating blood by using the energy generated by 

transporting sodium ions down their concentration gradient into the cell. One 

iodide ion is transported for every two sodium ions. A sodium gradient exists 

naturally due to the activity of the Na+/K+ ATPase that pumps 3 Na+ ions out of 

the cell for every 2 K+ ions moved into the cell. This is an energy dependent 

pump, the integrity of which is vital to normal activity of the NIS 128.  It has been 

estimated that an iodide gradient of 20-40 exists between the plasma and thyroid 

follicular cytoplasm due to the expression of NIS. Other anions like technetium 

are also transported by the NIS into the cell. This inherent anion-concentrating 

ability has been utilized in nuclear imaging of the thyroid gland following 

injection of radioactive tracers like 123I and 99Tc. Radioiodine concentrating-

ability of NIS has been harnessed to ablate malignant thyroid tissue following 

thyroidectomy, to destroy follicular cells in patients with toxic multinodular 

goiter and to perform whole-body scans to locate thyroid tissue 129. The isolation 
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and cloning of the rat NIS gene from the Fisher rat thyroid cell line (FRTL-5) in 

1996 130 opened up the possibility of using the NIS gene in non-invasive imaging 

of gene transduction. In addition, NIS gene transfer was used to concentrate 

radioiodine and selectively destroy murine liver and colon cancer and human 

melanoma cell lines. Scholz et al. 131 demonstrated stable transfection of HCT 

116, a human colon cancer line with Ad-NIS driven by the tumour-specific CEA 

promoter. Subsequent exposure to I131 killed approximately 95.6% of NIS-

expressing cells demonstrating the potential of NIS as a therapeutic gene in 

radioiodine treatment of colon carcinoma. Enhanced radioiodine uptake was also 

demonstrated in hNIS expressing prostate adenocarcinomas implanted 

subcutaneously in rats 132. Other studies have demonstrated a similar enhanced 

radioisotope uptake in breast carcinoma 133, 134, head and neck squamous 

carcinoma, prostate carcinoma 135, 136, colorectal adenocarcinoma, 136, ovarian 

cancer 137 multiple myeloma 138 and medullary and dedifferentiated thyroid 

cancers 139 following NIS gene transfer. Imaging of pulmonary gene transfer with 

the use of PET with 124I and γ-camera has been demonstrated. 140 Other 

advantages of the use of NIS as a gene transfer reporter include the absence of an 

immune response to the gene product due to the presence of NIS in the human 

thyroid and the expression of the symporter on the cell surface facilitating direct 

contact with the probe in circulating blood.  

NIS could therefore be used as a non-invasive reporter gene in cardiac 

transplantation. 



 36 

1.2.5 Thesis Aims 

 

The hypothesis under investigation was that non-invasive modalities could be 

used in the monitoring of gene transduction in cardiac transplantation.  

 

The specific aims were 

 

1. To address concerns over the effects of the adenovirus serotype 5 

vector on the transplanted heart, in particular the later development of 

CAV following an initial immune response  

 

2. To demonstrate the feasibility of using SPECT to image gene 

transduction following Ad-NIS gene transfer in a model of cardiac 

transplantation 
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Chapter 2 

THE EFFECTS OF ADENOVIRAL GENE TRANSFER ON CARDIAC 

ALLOGRAFT VASCULOPATHY 
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ABSTRACT 

 

Introduction 

Adenovirus serotype 5 has remained the preeminent vector in pre-clinical gene 

therapy applications in cardiac transplantation. Concerns over the potential effects 

of adenoviral vectors on the later development of cardiac allograft vasculopathy 

(CAV) were addressed in this study. 

 

Methods 

Hearts (n=22) harvested from Brown Norway rats were perfused ex vivo with 

either UW solution with no virus, Ad-CMV-LacZ or Ad-CMV-Null. Donor 

hearts were transplanted heterotopically into the abdomen of Lewis rats. All 

recipients received Cyclosporine for the duration of the experiment. Transplanted 

hearts were recovered for analyses at 120 days. Sections of the heart were stained 

with elastic Van Gieson stain for morphometric analysis of the vessels to 

ascertain the degree of vascular luminal occlusion. Haematoxylin-eosin staining 

facilitated diagnosis of chronic rejection. 

 

Results 

77% of transplanted hearts showed signs of chronic rejection with no difference 

in the proportion of animals between the groups (p=0.797). No difference was 

noted in the degrees of vascular luminal occlusion between Ad-Null (0.57±0.22), 

Ad-LacZ (0.62±0.19) and UW groups (0.47±0.29) (p=0.653).  
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Conclusions 

Vascularized cardiac allografts transplanted from Brown Norway to Lewis rats 

demonstrate the presence of CAV at 120 days. Adenoviral perfusion of the donor 

heart ex vivo does not affect the development of CAV.  

 

Key words: Gene therapy, Adenovirus, Cardiac allograft vasculopathy, Heart 

transplantation 
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2.1 INTRODUCTION 

 

With an estimated incidence of 50% at 5 years, cardiac allograft vasculopathy 

(CAV) is the biggest impediment to long-term disease free survival after cardiac 

transplantation.141 Limited success with conventional therapy has led 

investigators to consider viral vector-directed gene therapy approaches to reduce 

the incidence and progression of this disease. 

 

However, viruses have been implicated in the development of CAV, chiefly 

through their effects on graft endothelial function.142 The expression of 

adenoviral proteins in pediatric allografts demonstrating the presence of 

transplant vasculopathy 143 and the adverse effects noted with adenoviral 

infections in immunosuppressed patients144 have led to concerns over the use of 

adenoviral vectors in pre-clinical gene therapy applications in cardiac 

transplantation.145 Although Adenovirus serotype 5-based transduction of genes 

have shown promise in affecting transplant vasculopathy 146-149 and prolonging 

cardiac allograft survival,150, 151 adenoviral gene transfer is known to elicit a 

potent innate and acquired humoral and cellular inflammatory response84, 152-154 

that could trigger changes leading to CAV.  Therefore, the effect of the virus on 

cardiac vasculature needs to be ascertained prior to assessment of the effects of 

therapeutic genes on graft vasculopathy.  

 

In this study, we attempted to address concerns over the effects of the viral vector 

on the later development of CAV following ex vivo perfusion of the donor heart. 
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2.2 MATERIALS AND METHODS 

 

Animals 

 

Inbred Lewis rats (250-300g, RT11) and Brown-Norway rats (250-300g, RT1n) 

were used as recipients and donors, respectively, for allogenic abdominal 

heterotopic heart transplantation.  Procedure and handling of animals were 

reviewed and approved by the Institutional Animal Care and Use Committee of 

Mayo Clinic and Foundation in compliance with “Principles of Laboratory 

Animal Care” formulated by the National Society for Medical Research and the 

“Guide for the Care and Use of Laboratory Animals” prepared by the Institute of 

Laboratory Animal Resources and Published by the National Institute of Health 

(National Institute of Health publication No.86-23, revised 1985). 

 

Adenoviral vectors 

 

A replication defective E1a-deleted serotype 5 adenoviruses encoding for non-

nuclear targeted Escherichia Coli β-galactosidase under the control of the CMV 

promoter were used in this study.  Ad-Null, an identical vector not containing the 

β-Galactosidase expression cassette was used to ascertain the effects of the vector 

independent of the transgene. (Ad-CMV-LacZ and Ad-Null, provided by James 

Wilson, Institute for gene therapy, University of Pennsylvania). 
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Experimental Groups 

 

Rats were randomly assigned to one of three experimental groups.  Hearts were 

harvested and perfused ex vivo using techniques described previously.65 Briefly, 

cardioplegia was obtained by infusion of 5 ml of UW solution through the 

cannula inserted in the innominate artery, the heart was harvested and the 

pulmonary artery was cannulated with a 14G cannula.  With the inflow cannula in 

the innominate artery and the outflow cannula in the pulmonary artery, 5 ml of 

UW were recirculated at 4°C for 30 minutes.  In group C (control group) (8 

animals) hearts were perfused with UW solution as previously described 65 at a 

flow of 0.75 ml/min.  In group A (Ad-Null group n=6) and B (β-Gal group n=8 

animals) hearts were treated as in group C with the difference that in UW were 

diluted 3.5x108 pfu (total) of Ad-Null and Ad-LacZ, respectively.  After 30 

minutes of perfusion, hearts were stored in UW solution at 4°C during recipient 

preparation.  

 

Recipient operation 

 

Preparation of the recipient and heterotopic abdominal heart transplantation were 

performed as previously described.155 All rats received post-operative analgesia. 

All animals received 5 mg/Kg of cyclosporine A 3 times a week intramuscularly 

for the duration of the experiment. 
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  45 

 

Illustration of the gene delivery system used in the current study 

The solution containing the adenoviral vector was perfused from a vial through 

the vasculature of the donor heart and back to the vial by means of a peristaltic 

pump (left). The container with the heart immersed in UW solution and the vial 

with the viral solution were kept on ice during the circulation time. The inset 

depicts the inflow and outflow catheters placed in the aorta and pulmonary artery 

respectively.  

 

Presence of graft coronary disease 

 

After 120 days all rats were sacrificed by deep pentobarbital anesthesia (70 

mg/kg) the transplanted hearts were harvested.  Mid ventricular sections were 

fixed in formalin and routinely processed for histopathological analysis.  Sections 

were cut and placed in OCT compound, snap frozen in liquid nitrogen and stored 

for immunohistochemical analyses. 

 

Two routinely processed sections for each animal were stained with haematoxylin 

and eosin (H&E) in order to determine the presence of chronic rejection.  In order 

to assess the degree of vessel occlusion slides were stained with elastic Van 

Gieson to highlight the elastic lamina (EL).  Five slides were prepared for each 

rat, and the occlusion ratio of each vessel able to be visualized was recorded.  The 

 

Illustration of the gene delivery system used in the current study (above) 

The solution containing the adenoviral vector was perfused from a vial through 

the vasculature of the donor heart and back to the vial by means of a peristaltic 

pump (left). The container with the heart immersed in UW solution and the vial 

with the viral solution were kept on ice during the circulation time. The inset 

depicts the inflow and outflow catheters placed in the aorta and pulmonary artery 

respectively.  

 

Presence of graft coronary disease 

 

After 120 days all rats were sacrificed by deep pentobarbital anesthesia (70 

mg/kg) the transplanted hearts were harvested.  Mid ventricular sections were 

fixed in formalin and routinely processed for histopathological analysis.  Sections 

were cut and placed in OCT compound, snap frozen in liquid nitrogen and stored 

for immunohistochemical analyses. 
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Two routinely processed sections for each animal were stained with haematoxylin 

and eosin (H&E) in order to determine the presence of chronic rejection.  In order 

to assess the degree of vessel occlusion slides were stained with elastic Van 

Gieson to highlight the elastic lamina (EL).  Five slides were prepared for each 

rat, and the occlusion ratio of each vessel able to be visualized was recorded.  The 

degree of intimal hyperplasia was morphometrically assessed by using the 

formula: luminal occlusion= (Internal elastic laminal area-luminal area)/Internal 

elastic laminal area.156 Over 1000 vessels were analyzed for neointimal 

proliferation with an average of 50 vessels from each animal.  Vessels of hearts 

with no histological evidences of chronic rejection were considered negative 

controls.   

 

Statistical Analysis 

The mean occlusion ratios for each rat were compared using analysis of variance 

(GLM procedure) to look for an overall difference between the groups.  A mixed 

effects model was used to make comparisons between pairs of groups using every 

measurement for every rat, treating individual rats as random effects.  The 

proportion of animals with evidence of rejection in each treatment group was 

compared using Fisher’s exact test.  All data are expressed as mean ± SD. A p 

value of <0.05 was consider significant.
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2.3 RESULTS 

All animals completed the protocol.  

17 of 22 (77%) transplanted hearts showed evidence of chronic rejection on H&E 

stained slides.  No difference was noted between the groups in the proportion of 

animals showing evidence of chronic rejection (UW 3/8, Ad-Null 1/6 and Ad-

LacZ 1/8, p=0.797).  The average number of vessels visualized per rat were 49.4 

± 13.2 in the UW group, 39.2 ± 10.3 in the Ad-Null group and 60.1 ± 8.1 in the 

Ad-LacZ group.  Specimens from rats in UW-treated group had fewer measurable 

vessels than from rats in other groups (p=0.017) Mean occlusion ratios in the 

groups were as follows: Ad-Null (0.57±0.22), Ad-LacZ (0.62±0.19) and UW 

groups (0.47±0.29) Comparison of the means occlusion ratios between the groups 

did not reveal any significant difference (p=0.511).  (Table 1 and Figure 1) 
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2.4 DISCUSSION 

 

These results confirm that vascularized cardiac grafts from Brown Norway to 

immunosuppressed Lewis rats demonstrate the presence of CAV at 4 months. Ex 

vivo Perfusion of donor hearts with either the adenovirus serotype 5 expressing 

LacZ or Ad-Null at the time of transplant did not affect the development of graft 

vasculopathy.  Studies have reported the development of neo-intimal proliferation 

in both abdominal aortic allografts and vascularized cardiac grafts157 from Brown 

Norway to Lewis rats. The development of CAV in the face of anti-T cell therapy 

in this study simulates the clinical situation more closely.158  

 

The pathophysiology of cardiac allograft vasculopathy has yet to be fully 

understood.  Leading hypotheses suggest that incompletely suppressed immune 

and non-immune factors initiate cytokine and growth factors cascades that evoke 

endothelial injury leading to neo-intimal hyperplasia and VSMC proliferation.12, 

40, 159 Viral vectors, by up-regulating endothelial adhesion molecules and 

promoting T-cell infiltration at the sites of gene transfer could provoke 

endothelial injury and stimulate graft vasculopathy. This effect was not confirmed 

in our comparisons of hearts perfused with Ad-Null with those perfused with UW 

solution. However, Newman et al153 have reported a positive correlation of 

adenoviral transduction with the development of intimal hyperplasia in rabbit 

femoral arteries.  This could be due to our using a lower dose of the vector and 

perfusing the heart under hypothermic conditions ex vivo. Studies using ex vivo 

perfusion of the heart under hypothermic conditions have revealed an absent87 or 

mild64 inflammatory response. Chan et al160 have also suggested that an 
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inflammatory response following adenoviral transfection is organ specific and 

that the low antigen-presenting cell (APC) content of the heart might favour long-

term gene expression.  It is possible that suppression of inflammation due to 

adenoviral infection with Cyclosporine prevents the acceleration of CAV.  It is 

also likely that the degree of neo-intimal proliferation is dependent on the model. 

Although the profile or distribution of transfected cells in the heart or the 

efficiency of gene transduction have not been defined in this study, our previous 

experience with this perfusion technique has demonstrated a gene transduction 

efficacy of 1.8% in the sub-endocardial region to 45 % in the sub-epicardial 

region, with the transgene showing a definite preference to the cardiomyocyte 

over the vascular endothelium.64,87  

The sections of myocardium were not separately analyzed to confirm transduction 

as this model of hypothermic ex vivo perfusion has been validated by previous 

experiments conducted in our lab.64,65 Sections of the myocardium examined for 

transduced gene revealed gene expression accentuated in myoctes in the sub-

epicardial region and the right ventricular wall. Perfusion of the heart for 30 

minutes through a pump enables more efficient gene transduction than that 

following a bolus injection of the virus. In addition, examination of the samples 

for ischaemic damage revealed greatest injury to the myocardium following high-

pressure bolus injection. Continuous low-pressure perfusion ensured better 

myocardial protection against ischemic injury. This technique was therefore 

adapted for this study.  

Statistical analysis was performed pair-wise between groups, under a ‘random-

effects’ model, using all the sections taking the mean occlusion ratios from each 

perfusion group. Limitations of this study include the presence of fewer vessels in 
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the sections from UW-perfused hearts compared to hearts from the other groups. 

The potential criticism of this study not being adequately powered to note a 

difference between the groups, i.e the possibility of a type II error has been noted. 

However the trend towards lower occlusion ratios from the vessels from the UW-

perfused hearts was not significant.  

More recent studies161 have reported functional effects of adenoviral gene transfer 

using a similar hypothermic ex vivo perfusion technique emphasizing the 

importance of assessing qualitative rather than quantitative end points of gene 

transfer.  Although short-term expression of adenoviral vector based genes limit 

their use to attenuation of processes like ischaemia-reperfusion injury or acute 

rejection, this study did not identify a justification for concerns over the effects of 

the immune response elicited by the vector on the later development of graft 

vasculopathy.  

 

Conclusions 

Heterotopically transplanted cardiac allografts from Brown Norway to Lewis rats 

reveal the presence of CAV at 120 days. This study did not identify a correlation 

between perfusion of the donor heart with ex vivo adenoviral serotype 5 and the 

later development of allograft vasculopathy. 
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2.5 TABLES AND FIGURES 

  

Treatment 
Group 

Number of 
animals 

Average of the 
mean ratios 

±  SD 
A. Ad-Null 6 0.57 ± .22 

B. Ad-LacZ 8 0.62 ± .19 

C. UW 8 0.47 ± .29 

 

 
Table 1  

Distribution of occlusion ratio for individual rats across the groups  

Comparison of the means occlusion ratios between the Ad-Null (0.57±0.22), Ad-

LacZ (0.62±0.19) and UW groups (0.47±0.29) groups did not reveal a significant 

difference (p=0.511) (mean±SD, Analysis of variance) 
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Figure 1. Images of coronary arteries demonstrating the presence of CAV in both 

Ad-LacZ (top) and UW-perfused (bottom) hearts Morphometric analysis did not 

show significant differences in occlusion ratios between Ad-Null (0.57±0.22), 

AdLacZ (0.62±0.19) and UW groups (0.47±0.29) (Data expressed as Mean ±SD) 
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Chapter 3 

NUCLEAR IMAGING OF GENE TRANSDUCTION IN THE 

TRANSPLANTED HEART WITH SODIUM IODIDE SYMPORTER 

(hNIS) and 99mTc 
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 Nuclear Imaging of Gene Transduction in the Transplanted Heart with 

Sodium Iodide Symporter (hNIS) and 99mTc 

 

ABSTRACT 

Introduction 

NIS permits concentration of iodide within the cell on which it is expressed. It is 

also sensitive to technetium and permits it’s the concentration within the cell 

across the cell membrane. This pilot study was carried out to test the feasibility of 

imaging of the transplanted heart with radioactive 99mTc following gene transfer 

with the Ad-NIS virus. 

 

Methods 

Inbred Lewis rats were used for syngeneic heterotopic cardiac transplantation. 

Donor rat hearts were perfused ex vivo for 30 minutes prior to transplantation 

with either plain University of Wisconsin (UW) solution (n=6) or UW solution 

with 109 pfu/ml of adenovirus expressing hNIS (Ad-NIS; n=6). On post-operative 

day (POD) 5 all animals underwent micro-SPECT/CT imaging of the donor 

hearts after tail vein injection of 99mTc.  

 

Results 

In the animals imaged with the use of 99mTc radioprobe, all hearts perfused with 

Ad-NIS demonstrated higher signal intensity compared to the hearts perfused 

with UW solution in which little or no signal was to be found in the abdomen in 

the region of the transplanted heart. Sequential imaging of the same animal over 

60 minutes following injection of 99mTc did not reveal any appreciable differences 
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in signal intensities between 5, 25 and 45 minutes following injection of the 

isotope. 

 

Conclusions 

NIS can be used as a reporter gene in gene therapy to the transplanted heart. The 

expression of this reporter gene may be monitored non-invasively by serial 

radioisotope SPECT imaging. Sequential real-time detection and quantification of 

reporter gene expression is therefore feasible in cardiac transplantation. 
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3.1 INTRODUCTION 

 

99mTc was first discovered in 1938 as a product of the degradation of radioactive 

molybdenum. 99mTc is the nuclear isomer of technetium-99 and is one of the most 

commonly used radioisotopes in nuclear medicine. Safety profile in its clinical 

applications has therefore been studied and documented. Technetium-99m when 

used as a radioactive tracer can be detected in the body by gamma cameras. It is 

well suited to the role because it emits readily detectable gamma rays that can be 

imaged by SPECT scanners, and its half-life for gamma emission is 6.0058 hours. 

The short physical half-life of the isotope and its biological half-life of 24 hours 

allows for scanning procedures that collect data rapidly but keep total patient 

radiation exposure low. 

 

Sodium iodide symporter (NIS) is an integral plasma membrane glycoprotein that 

mediates active iodide transport into the thyroid follicular cells. In addition to 

iodide, it also facilitates the transport of technetium into the cells in which it is 

expressed on the membrane. It should therefore be possible to use NIS as an 

imaging reporter gene to monitor the expression profile of the transgene with the 

use of 99mTc and nuclear imaging. The absence of NIS on cardiomyocytes makes 

it an interesting myocardial reporter gene. The transduction of NIS encoded into 

an adenovirus did not cause myocardial injury or dysfunction in previous in vivo 

studies 162. Lee et al. injected rat hearts with either Ad-EGFP (control) or Ad-

EGFP-NIS and performed serial echocardiographic assessments of LV 

dimensions, heart rate, ejection fraction and fractional shortening (FS) to look for 

any evidence of myocardial injury on days before and days 4 and 9 following 
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Adenoviral NIS gene transfer. Separate rats underwent serial measurements of 

serum CK, myocardial myeloperoxidase assays and microscopic assessment of 

inflammation. Serial echocardiography revealed no difference in heart rate, LV 

dimensions, or functional parameters between Ad-EGFP-NIS and Ad-EGFP 

groups at any given time. Mild reductions in LVEF and LVFS by day 9 compared 

with baseline were similar for both Ad-EGFP and Ad-EGFP-NIS groups. Serial 

serum CK and myocardial myeloperoxidase activities were not elevated in either 

group. Histology revealed similar mild inflammatory cell infiltration restricted to 

the injection site for both groups. These data suggest that NIS gene transfer by 

itself does not have deleterious effects on myocardial function. 

 

 

This pilot study was carried out to test the feasibility of imaging of the 

transplanted heart with 99mTc following gene transfer with the Ad-NIS virus. The 

feasibility of SPECT imaging after intravenous injections of 99mTc was tested in a 

rat model of syngenic heterotopic cardiac transplantation. Comparisons were 

made between donor hearts perfused with Ad-NIS and hearts perfused with UW 

solution prior to transplantation.  
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3.2 MATERIALS AND METHODS 

 

Animals 

Inbred male Lewis rats (270-350 g) were used as donors and recipients for 

syngeneic transplants. Procedures and handling of animals were reviewed and 

approved by the Institutional Animal Care and Use Committee of the Mayo 

Clinic and Foundation in compliance with “Principles of Laboratory Animal 

Care” formulated by the National Society for Medical Research and the “Guide 

for the Care and Use of Laboratory Animals” prepared by the Institute of 

Laboratory Animal Resources and published by the National Institutes of Health 

(National Institutes of Health publication No. 86-23, revised 1985). 

 

Adenoviral vector 

A first generation E1A deleted (replication defective) serotype 5 adenovirus 

encoding for human Sodium Iodide Symporter (hNIS) under the control of the 

cytomegalovirus promoter was used in this study (Ad-CMV-hNIS). The 

recombinant virus was propagated in transformed human embryonic kidney 

carcinoma cells (“293 cells”), which constitutively express E1 proteins; isolated 

and purified and stored at –70°C in a buffered solution of 10% glycerol until use.  

Viral titers were determined by means of plaque assay. The plaque assay method 

has been the most established/traditional method of titering virus, giving the user 

an accurate and consistent determination of the concentration of infectious viral 

particles. The assay is carried out using Human Embryonic Kidney (293) cells. 

Serial ten-fold dilutions in 2% DMEM were performed for each virus to be titered.  

After a 90-minute infection time, the viral solution was removed and the cells 
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layered with a 1% agarose mix to allow for the generation of mature plaques.  

Plaques were counted after a period of 10 days and the titer expressed in plaque 

forming units per mL (pfu/ml). 

 

Donor operation 

After induction of anaesthesia, (pentobarbital sodium 70 mg/kg administered 

intraperitoneally), the donor rat was intubated and mechanically ventilated (model 

683; Harvard Apparatus Inc, South Natick, Mass; tidal volume: 10 mL/kg, 

respiratory rate: 60 breaths/min). A median sternotomy was performed to expose 

the heart. After injection of 200 U of aqueous heparin into the inferior vena cava, 

the innominate artery was cannulated with a 24-gauge cannula, and the venacavae 

and pulmonary veins were ligated en bloc with 6-0 silk. The aorta was clamped 

distal to the cannula, and the heart was arrested with an infusion of cold 

University of Wisconsin solution (UWS) into the aortic root through the 

indwelling cannula (flow, 0.44 mL/min; duration, 5 minutes). After harvesting, 

the heart was stored in the same cardioplegic solution at 4°C. 

 

Ex vivo Perfusion of the explanted heart 

In this first series of transplants, donor hearts were perfused for 30 minutes with 

either Ad-NIS or UW solution at 4°C prior to being transplanted into the recipient 

as described. The efficiency of adenovirus-mediated gene transfer was evaluated 

in 2 groups (n = 6 in UW group and n=6 in Ad-NIS group). Rats were randomly 

assigned to each group. In the two groups perfused with the viral vector, the virus 

was not flushed out before performing the surgical procedure. In group Ad-NIS, 5 

mL of UW solution containing 1 × 109 PFU/mL of Ad-NIS was circulated 
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through the coronary vasculature of the donor organ for 30 minutes by means of a 

peristaltic pump (Rainin, Emeryville, CA). UW solution without the virus was 

used for donor heart perfusion in the UW group. The solution was infused into 

the donor organ through a cannula inserted into the aortic root and was collected 

by a 14-gauge catheter placed into the pulmonary artery. Both catheters were 

connected by means of polyvinyl chloride tubing to the vial containing the viral 

solution. The flow rate was 0.75 mL/min. Earlier experiments in this lab have 

determined the aortic root pressure to be in the region of 40-50 mm Hg with this 

flow rate. During the perfusion period, the container with the heart and the vial 

with the vector were kept on ice, and the temperatures of both solutions did not 

exceed 10°C. Entrapment of air in the perfusion apparatus was avoided by 

keeping the heart vertical during perfusion.  



 60 

 

 

Illustration of the gene delivery system used in the current study 

The solution containing the adenoviral vector was perfused from a vial through 

the vasculature of the donor heart and back to the vial by means of a peristaltic 

pump (left). The container with the heart immersed in UW solution and the vial 

with the viral solution were kept on ice during the circulation time. The inset 

depicts the inflow and outflow catheters placed in the aorta and pulmonary artery, 

respectively.  

 

Recipient operation 

Heterotopic abdominal heart transplantation was performed by using standard 

microsurgical techniques as described previously155. Animals were anesthetized 

by administration of intra-peritoneal pentobarbital (70 mg/kg). The donor hearts 

were transplanted into the recipients by end-to-side anastomoses of the aorta and 

the pulmonary artery to the abdominal aorta and inferior vena cava, respectively, 

by using 10-0 monofilament sutures. During surgery, the heart was wrapped in 

gauze and kept cold by use of topical ice-cold UW solution. At reperfusion, 

appearance and contractility of each graft was conformed to be satisfactory. All 

rats received analgesia postoperatively (Buprenorphine dose subcutaneously) and 

recovered with oxygen in a warm environment. Function of the graft was checked 

daily by palpation of the beating transplanted heart. 
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SPECT Imaging with 99mTc radio probe  

All these recipients were imaged at day 5 using 99mTc with the SPECT/CT 

imaging system. 

The animals were anesthetized with an intraperitoneal injection of pentobarbital 

sodium (70 mg/kg) for the imaging procedure. 1000µCi of 99mTc was injected 

intravenously through the tail vein and images obtained over the next hour 

starting with 5 minutes after the injection. CT scans of the abdomen were 

obtained in the intervening period to enable visualization of the heart in the 

abdomen. Gamma camera imaging was performed to visualize the transplanted 

hearts in vivo. Protocols for imaging have been described in the chapter 4 and in 

Appendix A and B. Whole-body image was not feasible due to the size of the rats. 

The region of interest was therefore limited to an area from the level of the 

diaphragm down to the urinary bladder.  Images were obtained and stored using 

custom-designed software. 
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3.3 RESULTS 

 

There were no deaths at any time point during the protocol. All transplanted 

hearts were beating and grossly normal with no areas of obvious ischaemia at the 

time of harvest.  

Under the gamma camera, all transplanted hearts perfused with Ad-NIS 

demonstrated a higher signal intensity compared to the hearts perfused with UW 

solution in which little or no signal was to be found in the abdomen in the region 

of the transplanted heart. (Image 1) Sequential imaging of the same animal over 

60 minutes following injection of 99mTc did not reveal any appreciable differences 

in signal intensities between 5, 25 and 45 minutes following injection of the 

isotope. (Image 2) Quantification of the percentage of injected dose taken up was 

not possible in this series due to difficulties drawing up normograms equating 

definite signal intensities with radioactivity counts. This drawback was corrected 

in the second series of transplants using radioiodine to probe the presence of NIS. 

(Chapter 4) 
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Image 1  

SPECT imaging of the transplanted heart 20 minutes after tail vein injection with 

99mTc five days after transplantation. Top panel shows an Ad-NIS perfused heart 

and the bottom panel shows a heart perfused with plain UW solution.  

The “hot spot” in the top panel is due to the concentration of technetium by the 

heart perused with Ad-NIS. The “hot spot” above the transplanted heart 

corresponds to the radioisotope concentration in the stomach due to the inherent 

presence of NIS in the gastric mucosa. 

 

Transverse Slice Sagittal Slice Frontal Slice 
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Image 2 

SPECT imaging of the transplanted heart 5 minutes (top panel), 25 minutes 

(middle panel) and 45 minutes (bottom panel) after tail vein injection with 99mTc 

five days after transplantation. No appreciable difference was found in the 

intensity of the images obtained at these three time points. 
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3.4 DISCUSSION 

 

Although several studies have mapped cardiac transgene expression in time and 

uniformity, a technique for in vivo imaging and quantification of gene 

transduction has hitherto been absent. The use of adenovirus coding for hNIS 

opens up the possibility of sequential real-time imaging of gene transduction with 

currently available SPECT imaging facilities.  

 

This preliminary set of experiments with the use of 99mTc demonstrated the 

feasibility of sequential non-invasive monitoring of gene expression in cardiac 

transplantation. To our knowledge, this is the first study of this nature to be 

carried out in cardiac transplantation.  

 

In this study the heterotopic hearts perfused with a solution containing Ad-NIS 

presented a significantly higher uptake of technitium with respect to the control 

group (UW only) 5 days after the ex vivo perfusion. All transplanted hearts 

showed an image intensity peak on POD 5 with a radioiodine uptake that was still 

significantly higher than in the control group. Animals were imaged on day 5 

based on previous experiments with gene transfer and knowledge of the kinetics 

of adenovirus serotype 5. 

 

Finding methods to monitor the profile of gene expression over time is a 

challenge. Expression of cell-associated transgenes can be monitored by immune-

histochemical analysis of tissue biopsies obtained from the site of gene transfer 

163. Tissue sampling is therefore an unsatisfactory method to assess the efficiency 
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of gene delivery because the biopsy that is subjected to analysis is essentially a 

random sample from an area of non-uniform gene delivery. Also, there is a limit 

to the number of times that a given tissue can be biopsied, and for certain tissues, 

such as the heart, tissue biopsy is associated with a high risk of mortality.  

 

Our data demonstrate that hNIS is an excellent reporter gene for the transplanted 

heart. It has also been demonstrated by other groups that myocardial NIS gene 

imaging does not cause significant myocardial injury or affect cardiac function 

other than effects due to adenoviral vector-associated host response 162. In 

addition the use of a species-specific isoform such as hNIS for humans may help 

to circumvent any problem caused by the immunogenicity of transgene products. 

Despite its limitations we chose to use a recombinant adenoviral vector, with a 

deleted E1 region to prevent replication in vivo, because of the easy production, 

our experience with it and the high transduction efficiency obtained with this 

vector 55, 64, 87.  

 

In this series, there were difficulties with continued use of 99mTc to image the 

transplanted heart due to a global shortage of molybdenum. Available 99mTc was 

therefore channeled to clinical applications in this institution. Although the 

feasibility of nuclear imaging was proven with these experiments it was thought 

preferable to explore a model in which gene expression could be quantified. In 

addition, we wanted to explore the possibility of defining the heart borders 

anatomically with CT scanning carried out at the same time as SPECT imaging. 

Further experiments with the NIS gene construct were therefore performed with 

123I and SPECT/CT imaging as has been outlined in the next chapters.  



 67 

 

Conclusions 

This series of experiments proves the feasibility of gamma camera imaging of 

gene transduction with the hNIS symporter in the transplanted heart.  
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Chapter 4. 

NUCLEAR IMAGING OF GENE TRANSDUCTION IN THE 

TRANSPLANTED HEART WITH SODIUM IODIDE SYMPORTER 

(hNIS) AND 123I 

 

Brief abstract 

The feasibility of SPECT imaging after intravenous injections of 123I radiolabelled 

ligand was tested in a rat model of syngenic heterotopic cardiac transplantation. 

Comparisons were made between donor hearts perfused with Ad-NIS and hearts 

perfused with Ad-Null and UW solution prior to transplantation.  
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ABSTRACT  

Background 

We evaluated the feasibility of non-invasive micro-single photon emission 

computed tomography/computed tomography (micro-SPECT/CT) imaging and 

quantification of cardiac gene expression following sodium iodide symporter 

(hNIS) gene transfer in cardiac transplantation.  

 

Methods 

Donor rat hearts were perfused ex vivo with adenovirus expressing hNIS (Ad-

hNIS), Ad-Null or University of Wisconsin (UW) solution prior to heterotopic 

transplantation into syngeneic recipients. In the first group of recipients, imaging 

of the transplanted hearts with micro-SPECT/CT on day 5 was followed by 

immediate explant of the organs for ex vivo analyses. Radioactivity counts in the 

explanted hearts were obtained ex vivo and expressed as a percentage of the 

injected dose per gram of tissue (%ID/g). Intensities of the SPECT images of the 

transplanted hearts were quantified and converted to radioactive counts using a 

standard equation. The second group of recipients was imaged sequentially 

following injections of 123I
 
on days 2 to 14 following transplantation.  

 

Results 

Higher ex vivo radioiodine counts were noted in the hearts perfused with Ad-

hNIS (1.04±0.2) compared to either the UW group (0.31±0.11, p<0.001) or the 

Ad-Null group (0.32±0.08, p<0.001) (%ID/g). Image intensity in the Ad-NIS 

group was also significantly higher than in the UW group (0.4±0.03, p=0.003) or 
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the Ad-Null group (0.5±0.1, p<0.05) (%ID/g). Sequential imaging of Ad-NIS-

perfused hearts between post-operative days 2 and 14 revealed peak image 

intensity at day 5. Overall, image intensities correlated with ex vivo counts of 

radioactivity (ρ=0.74, p<0.05).  

 

Conclusions 

These data demonstrate that hNIS gene transfer permits sequential real-time 

detection and quantification of reporter gene expression in the transplanted heart 

with micro-SPECT/CT imaging.  

 

Key words 

Gene therapy, heart transplantation, sodium iodide symporter, single photon 

emission computed tomography (SPECT), molecular imaging  
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4.1 INTRODUCTION 

 

The concept of transduction of therapeutic genes that could alter the course of 

pathological processes at a cellular level is promising. In the context of 

myocardial gene therapy, confirming uniform, persistent and reproducible 

transgene expression is essential prior to assessment of the effectiveness of 

therapeutic genes by functional studies. Laboratory studies in gene therapy aimed 

at affecting pathological processes in cardiac transplantation have suffered from 

the absence of a reliable non-invasive reporter system to confirm and monitor the 

location and magnitude of gene expression over time. Non-invasive imaging of 

reporter genes offers the advantage of sequential imaging of the same animal with 

the possibility of using fewer animals in pre-clinical studies as well as a direct 

applicability to humans. 

 

The sodium/iodide symporter (hNIS) present on the thyroid follicular cell 

facilitates the concentration of iodine into the cell for thyroid hormone synthesis. 

The presence of the symporter on the thyroid follicular cell but not on the 

cardiomyocytes or the vascular endothelium makes it an attractive myocardial 

reporter gene product. Radioiodine concentrated by the expressed symporter 

could be detected by nuclear imaging techniques to localize and quantify gene 

expression. Several studies in tumour models of gene transfer have validated the 

effectiveness of hNIS as a non-invasive reporter gene 135, 136, 164, 165. In addition, in 

vitro analyses have demonstrated the absence of any myocardial injury or 

dysfunction after Ad-NIS gene transduction 162. 
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Although image analysis to quantify radioligand uptake is representative of NIS 

gene transduction in the heart 61, 62, 166 accurate mapping of the margins of the 

organ is essential to ensure the semi-quantitative nature of this technique. Recent 

reports using NIS reporter system have indicated more accurate quantification of 

gene expression with the use of computed tomography (CT) co-registered with 

micro-single photon emission computed tomography (SPECT) than with the use 

of planar or micro-SPECT imaging alone due to better tomographic 

representation facilitating image mapping of the transduced organ 167. In this 

study, we evaluated the feasibility of non-invasive micro-SPECT/computed 

tomography (CT) imaging with precisely co-registered axial CT scans to quantify 

of gene expression after hNIS gene transfer. 
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4.2 MATERIALS AND METHODS  

 

Inbred male Lewis rats (225-350 g, Harlan®, IN) were used as donors and 

recipients for syngeneic heterotopic heart transplants. Procedures and handling of 

animals were reviewed and approved by the Institutional Animal Care and Use 

Committee of the Mayo Clinic and Foundation in compliance with guidelines 

published by the National Institutes of Health (National Institutes of Health 

publication No. 86-23, revised 1985).  

 

Production of Recombinant Adenovirus  

 

A replication-deficient human recombinant adenovirus serotype 5 (Ad) construct 

containing human NIS under the control of the CMV promoter (Ad5/CMV/hNIS) 

was produced in collaboration with the Mayo Clinic Vector Production Facility 

using previously described methods.168 Following plaque purification, the 

recombinant adenovirus Ad5/CMV/NIS was expanded in 293 cells and purified 

by banding on Cesium chloride density gradients, followed by dialysis. Purified 

virus was diluted in cold University of Wisconsin (UW) solution to a 

concentration of 109 
pfu/ml just prior to ex vivo perfusion of donor hearts.  

 

Donor operation  

 

After anesthesia (intraperitoneal pentobarbital sodium 70 mg/kg), the donor rat 

was intubated through an open tracheostomy and mechanically ventilated (model 

683; Harvard Apparatus Inc, South Natick, MA; tidal volume 10ml/kg; 
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respiratory rate 60/minute). A median sternotomy was performed and 200 U of 

aqueous heparin injected into the inferior vena cava. The innominate artery was 

cannulated with a 24-gauge cannula, and the venae cavae and pulmonary veins 

were ligated en bloc with 6-0 silk. The aorta was clamped distal to the cannula, 

and the heart was arrested with an infusion of cold UW solution into the aortic 

root through the indwelling cannula (flow, 0.73 mL/min for 5 minutes). After 

harvesting, the heart was stored in UW solution at 4°C.  

 

Experimental groups and Gene Transfer  

 

In the first set of experiments, the donor hearts were perfused with 109 pfu/ml of 

Ad-hNIS in UW solution (n=6), 109 pfu/ml of Ad-Null in UW solution (n=6) or 

UW solution alone (n=3) for 30 minutes at 4°C using a hypothermic ex vivo 

perfusion system as previously described 65. All recipients in this set were 

sacrificed following imaging on day 5.  

In the second set of experiments, donor hearts were perfused with 109 pfu/ml of 

either Ad-hNIS (n=3) or Ad-Null (n=3) diluted in 5 ml of UW solution under 

similar conditions. These recipients were imaged sequentially on days 2, 5, 9 and 

14 following gene transfer.  

 

Recipient operation  

 

Following anesthesia (intraperitoneally pentobarbital sodium 70 mg/kg) a midline 

laparotomy was performed and the abdominal aorta and the inferior vena cava 

exposed below the origin of the renal vessels. The donor hearts were transplanted 
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into the recipients by end-to-side anastomoses of the aorta and the pulmonary 

artery to the abdominal aorta and inferior vena cava, respectively, using 10-0 

monofilament sutures.155 During surgery, the heart was wrapped in wet gauze and 

cooled with topical ice-cold UW solution. All rats received analgesia 

postoperatively and recovered with oxygen in a warm environment. Function of 

the graft was checked daily by palpation of the beating transplanted heart.  

 

Micro-SPECT/CT Acquisition Protocol  

 

All animals were imaged under sedation (intraperitoneal pentobarbital 50mg/kg). 

37 MBq of 123I was injected into the tail vein and micro-SPECT/CT imaging 

commenced after 20 minutes. Syringe activity was measured prior to and post-

injection to quantify the injected dose accurately. Micro-SPECT images were 

obtained under a high-resolution gamma camera (X-SPECT, Gamma Medica-

Ideas Inc., CA) with a low energy high-resolution parallel hole collimator with 64 

projections at a rate of 10s per projection and an acquisition time of 13m 46s. CT 

images were obtained under a circular orbit at a thickness of 50µM per slice 

under the same scanner without moving the animal in between. This ensured 

accurate co-registration of the axial CT images with the micro-SPECT maps.  

CT images were reconstructed using a modified Feldkamp (cone-beam filtered 

backprojection) reconstruction algorithm into a 5123 matrix with a voxel sizeof 

0.1557 mm. This results in a field of view of 7.97 cm x 7.97 cm. The CT system 

is capable of producing images with a resolution of 50µM; however with this 

reconstruction setting the voxel size limits the CT resolution to 0.3114 mm. The 

SPECT images were reconstructed using a Filtered Backprojection algorithm into 
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a 80mm3 matrix size with a voxel size of 1.5 mm. This resulted in a field of view 

of 120mm x 120mm. The resolution of the SPECT system is limited by the 

collimater resolution with parallel-hole collimators and is approximately 3-4mm.  

 

Image Analysis and In Vitro Quantification  

 

SPECT and CT images were stored and pixel-intensity of the images was 

quantified as described in earlier studies.167 Briefly, the regions of interest (ROI) 

were defined manually around the heart shadows on the reconstructed axial 

tomographic images in all sections in which the heart was visualized to create a 

volume of interest (VOI).  Quantification was performed on the co-registered 

micro-SPECT images (Fig 1). Cumulative pixel counts within the defined region 

of interest (ROI) were converted to activity using a conversion factor of 1.63 x 

10-7 
MBq/measured count derived from our previous studies167. This conversion 

of pixels into counts of radioactivity by using equations derived from scanning a 

standard containing a known quantity of radioactive 123I.  Values expressed as a 

percentage of the injected dose per gram of heart tissue (%ID/g). All activity 

measurements were corrected for decay of the isotope (123I half-life = 13.27 

hours) and all counts of radioactivity mentioned later in this manuscript refer to 

‘zero time’, i.e corrected to the time at which the rats were injected with radio-

iodine. An independent observer blind to the origin of the images obtained 

measurements.  

 

In the first set of experiments, all rats (n=15) were sacrificed following imaging 

of the transplanted organ on day 5. In the second series of experiments, rats (n=6) 
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were imaged on post-operative days 2, 5, 9 and 14 and sacrificed on day 14. 

Transplanted hearts were recovered following sacrifice, flushed clear of blood 

and weighed. Radioactivity in the hearts was measured using a National Institute 

of Standards and Technology (NIST)-calibrated dose calibrator. Values were 

expressed as a percentage of the injected dose per gram of tissue (%ID/g) after 

correcting for radioiodine decay to the time of image acquisition (t1/2 
of 123I=13.2 

h). All values thus relate to counts of radioactivity at the commencement of 

SPECT imaging 20 minutes following injection of radioiodine.  

 

Histology –Rejection severity 

 

Following explant of the transplanted hearts, mid-ventricular sections were cut, 

embedded in OCT compound (Miles Laboratories, Elkhart, IN) and snap-frozen 

in liquid nitrogen–cooled 2-methylbutane for histologic evaluations. Adjacent 

sections of the ventricle was fixed in formalin and embedded in paraffin. Sections 

were cut and mounted on slides for staining with haematoxylin and eosin. The 

remainder of the ventricle was snap-frozen in liquid nitrogen before being stored 

at -70 ْC.  

 

Adjacent slides were cut and stained with hematoxylin and eosin for routine 

histopathologic examination. An experienced cardiac pathologist blind to the 

origin of the slides graded inflammation and ischemic damage. Slides were 

scored on a scale comparable with the working formulation for cardiac 

rejection169. Sections were examined and graded for ischemic injury based on the 

degree of myocardial damage noted as a percentage of the total slide by area. 



 79 

Degree of myocardial coagulative necrosis, extent of cellular infiltrates and 

myocyte vacuolization were estimated on haematoxylin and eosin-stained 

preparations of the myocardium form explanted hearts.  

 

The following scale was used: 0, no ischemic damage; 1- less than 5% of the area 

of the section; 2- between 5% and 20% of the area; 3- between 20% and 40% of 

the area; and 4- more than 40% of the area. 

 

Statistics  

 

All results were expressed as mean ±SD. In the first set of transplants, 

comparisons of transduction rates between the UW, Ad-Null and Ad-NIS groups 

were drawn by the non-parametric Kruskal-Wallis test. The Wilcoxon test was 

used for comparison of transduction rates between pairs of groups. Paired t tests 

were used to compare corresponding measurements between the two groups of 

animals imaged sequentially in the second set of experiments. Friedman’s test 

was used to identify significant differences in image intensity within Ad-NIS and 

Ad-Null groups over 14 days. Correlation between counts of explanted hearts and 

intensity of images obtained on the same day was assessed by Spearman 

correlation. In all analyses, p <0.05 was considered statistically significant.  
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4.3 RESULTS  

 

Counts of radioactivity in the explanted hearts and correlation of in vivo 

counts with ex vivo radioiodine uptake  

 

In the initial set of experiments, all recipients were sacrificed following the 

imaging protocol on day 5. Transplanted hearts were recovered and radioactivity 

counts were measured using a dose calibrator. Intensity of images obtained of 

each transplanted heart was quantified as described earlier. This enabled a 

comparison between radioactivity trapped by the organ with the intensity of 

captured images. We hypothesized that the organs perfused with Ad-NIS would 

trap a higher fraction of injected radioiodine due to the expression of NIS on the 

cell membrane.  

 

In this set of recipients, significantly higher in vitro radioactive counts were noted 

in the hearts perfused with Ad-hNIS (1.04±0.2) compared to either the UW group 

(0.31±0.11, p<0.001) or the Ad-Null group (0.32±0.08, p<0.001) (mean ±SD; 

%ID/g). Image intensity in the Ad-NIS group (0.9±0.2) was also significantly 

higher than in the UW group (0.4±0.03, p=0.003) or the Ad-Null group 

(0.5±0.14, p<0.05) (mean ±SD; %ID/g; Fig 2). No differences were noted in 

radioactivity levels or image intensities between the UW and Ad-Null perfused 

hearts (p=0.714; Table 1). This comparison between the Ad-Null and UW-

perfused hearts suggests that differences in radioiodine uptake between the 

groups were not due to an inflammatory response following adenoviral 

transduction. The higher image intensity of micro-SPECT images in the Ad-NIS 
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group was reflected in counts of radioactivity in the explanted hearts in vitro. 

Overall, image intensities correlated positively with ex vivo counts of 

radioactivity (ρ=0.74, p<0.05; Fig 3). 

 

Sequential 123I scintigraphy and quantification of image intensity in the 

groups  

 

In the second set of recipients, comparisons were drawn between Ad-NIS and 

Ad-Null perfused transplanted hearts between the second and 14th days post-

transplantation. Sequential imaging of recipients was carried out to visualize 

variations in image intensity in Ad-NIS-perfused hearts consistent with gene 

expression following serotype 5 adenoviral transduction. Cumulative pixel counts 

of images were converted to measures of radioactivity as described. Comparative 

image intensities on days 2, 5, 9 and 14 were 0.59±0.14, 1.08±0.15, 0.87±0.19 

and 0.53±0.27 in the Ad-hNIS perfused hearts and 0.4±0.08, 0.45±0.12, 

0.47±0.09 and 0.44±0.09 in the Ad-Null perfused hearts respectively (%ID/g; 

mean ±SD; Fig 4). As expected, peak image intensity was noted on day 5 in Ad-

NIS perfused hearts. Image intensities measured on days 5 and 9 in the Ad-NIS 

group were significantly higher than those in the Ad-Null group were on the same 

days. Image intensities on days 5 and 9 were higher than at days 2 and 14 in the 

hearts transduced with Ad-NIS. A peak in image intensity on day 5 followed by a 

fall to background levels by 14 days reflects the kinetics of the serotype-5 

recombinant adenovirus in the transplanted heart. This also suggests that 

radioiodine trapping was due to the expression of the symporter rather than non-

specific uptake. No differences were noted in values obtained from Ad-Null 
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perfused hearts on sequential imaging over time.  

 

Grading of ischaemic injury of the transplanted hearts 

 

Ischaemic injury was graded 0 to 4 (4 = maximal damage) by an experienced 

pathologist blind to the origin of the tissue. The mean grades were as follows: 

 

Group N Mean ± SD Median Range 

Ad-NIS 6 1.17 ± 0.41 1 (1,2) 

Ad-Null 6 1.50 ± 0.84 1 (1,3) 

UW 3 1.67 ± 1.15 1 (1,3) 

 

Fisher’s Exact Test to detect a difference in proportions between any two groups 

returned a p-value of 0.07. Further evaluation testing for a trend among each set 

of pairwise groups, as well as dichotomizing grade into low damage and high 

damage groups did not reveal a difference between the groups.  
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4.4 DISCUSSION 

 

To our knowledge, this is the first report of the use of a reporter gene permitting 

non-invasive nuclear imaging of gene transduction in cardiac transplantation.  In 

this study, radioiodine uptake by the heterotopic hearts in the hNIS group was 

significantly higher than in the Ad-Null group.  In addition, serial imaging of the 

same animals over 14 days revealed a peak in radioiodine uptake by the 

transplanted heart at 5 days followed by a decline to baseline levels at 14 days 

(Fig 4).  This is consistent with the kinetics of the adenovirus serotype 5 in the 

transplanted heart170-172.  In addition, the absence of any difference in radioiodine 

trapping between Ad-Null and UW-perfused hearts suggests that radioisotope 

uptake was not due to the inflammatory response caused by the adenovirus but 

specific to the presence of the symporter expressed in transplanted hearts.  These 

data together suggest that NIS gene transfer permits the imaging of gene transfer 

in real-time with the use of SPECT/CT.  In addition, sequential imaging of the 

same animal to track decaying gene expression is feasible with this technique. 

 

The use of gene therapy for cardiovascular disorders requires careful selection of 

genes with careful consideration of the pathology being targeted.  In addition, 

studies assessing therapeutic effect of functional genes assume reliable and 

reproducible transfection of the target organ.  These factors are addressed by the 

use of reporter genes. Nuclear imaging of reporter genes presents the opportunity 

to assess levels of transgene expression in real-time without sacrificing the animal, 

thereby allowing completion of pre-clinical studies with fewer animals.  

Thymidine kinase, hNIS and norepinephrine transporter (NET) gene transfer all 
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permit concentration of radioisotopes that could be imaged non-invasively 60, 119, 

127. Potentially, the site and density of gene expression can be quantified with the 

use of PET or SPECT imaging.  However, the potential immunogenicity of the 

thymidine kinase gene product and the inherent presence of NET in the human 

heart are limitations to the use of these reporter genes in cardiac transplantation.  

The presence of hNIS on mammalian thyroid follicular cells makes it attractive 

due to the potentially attenuated immune response to the gene product.  Although 

PET imaging of gene transduction is feasible,104, 119, 166 semi-quantitative and 

allows tomographic reconstruction of transduction sites in the myocardium, PET 

scanners are not as widely available and require the production of expensive 

tracers with on-site cyclotrons. These problems are avoided by the use of SPECT 

to image NIS expression.  

 

Limitations of molecular imaging studies relate to the selection of established 

clinical imaging modalities to visualize gene expression.  Head to head 

comparisons of image quantification have shown the use of co-registered axial 

CT images to map the regions of interest to be more accurate and less variable 

than micro-SPECT or planar imaging alone in predicting ex vivo radioactivity 

counts.167 Anatomical detail offered by CT images ensures a more precise 

definition of organ boundaries compared to SPECT images.  However, small 

animal scanners are limited in their resolution and the use of clinical grade CT 

scans to map the regions of interest as well as a translation of this system to the 

orthotopic heart transplant model is likely to produce images that ensure a more 

accurate quantification of image intensity and reduce the variability within groups 

noted in this study.  Use of clinical-grade SPECT/CT equipment would also 
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permit precise quantification of the cardiac dimensions including cavity size and 

dimensions of the myocardium, the actual site of gene transduction.  This was not 

possible with micro-SPECT/CT. In addition, quantification of images obtained at 

a definite time point was based on the assumption that radioiodine uptake by all 

NIS expressing cells is uniform in time. In this study, the stomach demonstrated a 

‘hot-spot’ in all images due to the inherent presence of the iodide symporter in the 

gastric mucosa.  The presence of background levels of radioiodine in the hearts 

not perfused with the hNIS gene could be explained by the presence of the 

radioisotope in the circulating blood as well as some non-specific uptake in the 

extracellular regions of the transplanted heart.  

 

Although promoter-driven NIS expression is functional, radioiodide trapping is 

transient due to the absence of organification in non-thyroidal tissue.  In non-

thyroidal cancer, NIS suicide-gene transfer has been used to facilitate 

concentration of 131I that is cytolytic to tumor cells.  In the transplanted heart 

however, NIS is used merely as a reporter gene and no cytolytic effects are 

desired following radiotracer uptake.  In this study, quantification of gene 

expression was validated with 123I without the use of longer acting radiotracers.  

123I is commercially available and routinely used in clinical imaging studies.  

Rapid efflux of the tracer from the cardiomyocyte and a short half-life of this 

isotope enable repeated imaging of the transplanted organ.  In addition, non-

thyroidal NIS expression is unaffected by levels of thyroid stimulating hormone 

(TSH).  These factors make this an attractive cardiac reporter gene system. 
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Conclusions 

 

The use of hNIS reporter gene facilitates the non-invasive imaging of gene 

transduction in cardiac transplantation.  Molecular imaging using SPECT permits 

sequential imaging of the subject over time. In addition, the decay of the gene 

probe can be monitored over time to determine feasibility of the use of specific 

vectors or therapeutic genes to target a specific pathology following 

transplantation. Expertise gained with cardiac SPECT imaging and the 

radioiodine kinetics in humans ensures direct applicability of this concept to 

clinical trials of gene transfer. 
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4.5 FIGURES AND TABLE 
 
Figure 1 
 

 
 
Antero-posterior view of the Abdomen showing CT scan (left), micro-SPECT 

(middle) and co-localization of the transplanted heart on superimposed micro-

SPECT/CT images (right). The ‘hot-spot’ on the SPECT corresponds with the 

position of the Ad-NIS perfused transplanted heart noted on the CT. The ‘hot 

spot’ above the transplanted heart corresponds to the concentration of radioiodine 

in the stomach due to the inherent presence of NIS on the gastric mucosa. 
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Figure 2 

 
 

 
 

 

Fused micro-SPECT/CT 3D reconstructed images of the recipient abdomen 5 

days after gene transfer with either Ad-Null (left) or Ad-NIS (right). Higher 

radioiodine uptake by the Ad-NIS perfused heart (single arrow) is demonstrated 

as a hot spot. This is not seen in the Ad-Null perfused heart. Natural gastric 

mucosal uptake of radioiodine is seen as a ‘hot spot’ in both animals (double 

arrow). 
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Figure 3 
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Comparison of radioiodine uptake determined by ex vivo counting of transplanted 

hearts (explanted on day 5 following transplant) with image analysis. Ex vivo 

counts of radioactivity correlated positively with those obtained by image 

analysis (Spearman correlation ρ=0.74, p<0.05). 
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Figure 4 

image intensities on days 2, 5, 9, and 14 were 0.59!0.14,
1.08!0.15, 0.87!0.19 and 0.53!0.27, in the Ad-hNIS per-
fused hearts and 0.4!0.08, 0.45!0.12, 0.47!0.09, and
0.44!0.09 in the Ad-Null perfused hearts respectively
(%ID/g; mean!SD; Fig. 4). As expected, a peak image inten-
sity was noted on day 5 in Ad-NIS perfused hearts. Image
intensities measured on days 5 and 9 in the Ad-NIS group
were significantly higher than those in the Ad-Null group
were on the same days. Image intensities on days 5 and 9 were
higher than at days 2 and 14 in the hearts transduced with
Ad-NIS. A peak in image intensity on day 5 followed by a fall
to background levels by 14 days reflects the kinetics of the
serotype 5 recombinant adenovirus in the transplanted heart.
This also suggests that radioiodine trapping was due to the
expression of the Symporter rather than nonspecific uptake.
No differences were noted in values obtained from Ad-Null
perfused hearts on sequential imaging over time.

DISCUSSION
To our knowledge, this is the first report of the use of a

reporter gene permitting noninvasive nuclear imaging of
gene transduction in cardiac transplantation. In this study,
radioiodine uptake by the heterotopic hearts in the hNIS
group was significantly higher than in the Ad-Null group. In
addition, serial imaging of the same animals over 14 days

revealed a peak in radioiodine uptake by the transplanted
heart at 5 days followed by a decline to baseline levels at 14
days (Fig. 4). This is consistent with the kinetics of the ade-
novirus serotype 5 in the transplanted heart (13–15). In addi-
tion, the absence of any difference in radioiodine trapping
between Ad-Null and UW-perfused hearts suggests that ra-
dioisotope uptake was not due to the inflammatory response
caused by the adenovirus but specific to the presence of the
symporter expressed in transplanted hearts. These data to-
gether suggest that NIS gene transfer permits the imaging of
gene transfer in real-time with the use of SPECT/CT. In ad-
dition, sequential imaging of the same animal to track decay-
ing gene expression is feasible with this technique.

The use of gene therapy for cardiovascular disorders
requires careful selection of genes with careful consideration
of the pathology being targeted. In addition, studies assessing
therapeutic effect of functional genes assume reliable and re-
producible transfection of the target organ. These factors are
addressed by the use of reporter genes. Nuclear imaging of
reporter genes presents the opportunity to assess levels of
transgene expression in real-time without sacrificing the an-
imal, thereby allowing completion of preclinical studies with
fewer animals. Thymidine kinase, hNIS and norepinephrine
transporter (NET) gene transfer all permit concentration of
radioisotopes that could be imaged noninvasively (16 –18).
Potentially, the site and density of gene expression can be
quantified with the use of positron emission tomography
(PET) or SPECT imaging. However, the potential immuno-
genicity of the thymidine kinase gene product and the inher-
ent presence of NET in the human heart are limitations to the
use of these reporter genes in cardiac transplantation. The
presence of hNIS on mammalian thyroid follicular cells
makes it attractive due to the potentially attenuated immune
response to the gene product. Although PET imaging of gene
transduction is feasible, (6, 18, 19), semiquantitative, and al-
lows tomographic reconstruction of transduction sites in the
myocardium, PET scanners are not as widely available and
require the production of expensive tracers with on-site cy-
clotrons. These problems are avoided by the use of SPECT to
image NIS expression.

Limitations of molecular imaging studies relate to the
selection of established clinical imaging modalities to visual-
ize gene expression. Head-to-head comparisons of image
quantification have shown the use of co-registered axial CT
images to map the regions of interest to be more accurate and
less variable than micro-SPECT or planar imaging alone in
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FIGURE 3. Comparison of radioiodine
uptake determined by ex vivo counting of
transplanted hearts with image analysis. Ex
vivo counts of radioactivity correlated posi-
tively with those obtained by image analysis
(Spearman correlation !"0.74, P#0.05).
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FIGURE 4. Quantification of image intensity on sequen-
tial imaging after gene transfer. Ad-NIS perfused hearts
demonstrated significantly higher image intensities than
Ad-Null perfused hearts on days 5 and 9 after gene transfer
(%ID/g; P#0.01 and P"0.03 on days 5 and 9, respectively)
Hearts perfused with Ad-Null did not show differences in
radioiodine uptake when imaged over 14 days.
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Quantification of image intensity on sequential imaging following gene transfer 

Ad-NIS perfused hearts (solid bars) demonstrated significantly higher image 

intensities than Ad-Null perfused hearts (thatched bars) on days 5 and 9 following 

gene transfer (%ID/g; p<0.01 and P=0.03 on days 5 and 9 respectively) Hearts 

perfused with Ad-Null did not show differences in radioiodine uptake when 

imaged over 14 days 

 

 

Days 2 5 9 14 

Ad-NIS 0.59±0.14 1.08±0.15* 0.87±0.19* 0.53±0.27 

Ad-Null 0.4±0.08 0.45±0.12 0.47±0.09 0.44±0.09 
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Table 1 
 

 
 
 

Counts of radioactivity in vivo and ex vivo by software analysis of image intensity 

and dose calibrator respectively. Data are expressed as % of injected dose of 123I 

per gram of heart tissue. Ex vivo and in vivo counts of radioactivity were 

significantly higher in the hearts infected with Ad-NIS (*p<0.05) when compared 

to either of the other groups. 

 

 

 

 
 
 
 
 
 

 

 UW group Ad-Null Ad-NIS 

Ex vivo 0.31±0.11 0.32±0.08 1.04±0.2* 

In Vivo 0.4±0.03 0.5±0.14 0.9±0.2* 
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Chapter 5 

DISCUSSION OF THE THESIS 

 

Transplantation presents a unique opportunity in that gene transfer can be 

achieved through ex vivo perfusion of the organ thereby limiting the 

complications of in vivo gene delivery. In addition, the obligate use of 

immunosuppression permits a more efficient and sustained gene expression due 

to the attenuation of the immunogenicity of viral vectors. Although several 

studies have mapped cardiac transgene expression in time and uniformity, a 

technique for in vivo imaging and quantification of gene transduction has hitherto 

not been described. 

 

The technique of obtaining fused SPECT-CT images to provide anatomical 

correlation with the physiological process of radioligand uptake was 

authenticated. In this set of experiments using 123I for SPECT imaging, the 

correlation of in vivo quantification techniques using the designed software with 

the radioactivity in the transplanted hearts was demonstrated. SPECT-CT imaging 

has been used in nuclear medicine for attenuation correction of SPECT emission 

and provides anatomical correlation. In the heterotopic cardiac transplant model, 

accurate localization of donor heart margins was necessary to reduce noise 

generated by non-specific radioisotope uptake by surrounding bowel during 

image quantification.  

 

In summary therefore, it is important to understand processes underlying the post-

translational fate of the symporter as well as the intracellular kinetics of the 
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radioligand prior to attempting prediction of gene transfer efficiency with signal 

intensity as determined by nuclear imaging techniques. It is also important to 

study the behavior of the symporter expressed in vivo following ex vivo gene 

transfer. NIS expression could potentially be influenced both by drugs and by 

cytokines 173, 174. The presence of an altered cytokine milieu following clinical 

cardiac transplantation due to the pre-existent recipient pathology requiring 

transplantation, the presence of the allograft, the exposure to cardiopulmonary 

bypass and immunosuppressant drug-priming of the recipient is likely to 

influence NIS expression as well as radioisotope uptake and needs further 

investigation. 

 

5.1 Limitations of NIS Gene expression and Imaging 

 

The variability of NIS expression within groups could represent a disadvantage of 

the Ad5 vector system that is well recognized. Ad5 dependence on CAR to 

transfect cells could contribute to these variations. 

 

Closer observation of the individual data points seems to suggest that at lower 

radioactivity levels, the software tends to overestimate the signal intensity. This 

reflects the limitations of the heterotopic model. The transplanted heart is situated 

in the abdomen and some signal attenuation is inevitable. Also, the kinetics of the 

radiotracer after explanting the heart is not clear and it is possible that some 

cellular ‘leakage’ of radioiodine occurred post-mortem. In addition, the % ID of 

123I as calculated by the software was not as accurately predictive of the in vitro 

counts as reported by Carlson et al. in their study using NIS in a mouse model of 
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subcutaneously implanted tumours. In our opinion, this reflects the low image 

resolution of the small-animal SPECT-CT system. The cardiac borders are more 

difficult to map in the abdomen due to the close proximity to the bowel loops.  

Use of high-resolution clinical grade CT scans to map the regions of interest as 

well as a translation of this system to the orthotopic heart transplant model is 

likely to produce images with a sharper definition of heart borders to overcome 

this problem. The drawbacks associated with the use of CT to define cardiac 

shadows could likely be overcome with the use of Magnetic resonance imaging 

(MRI). MRI is being increasingly used in the non-invasive quantification of 

cardiac function175, and can be used to generate high-resolution images with a 

better soft tissue definition. MR is also increasingly used to quantify function and 

assess wall motion abnormalities in a study that is free of ionizing radiation. In 

addition, myocardial perfusion in response to pharmacological pressors could be 

assessed in the same study. However, spatial resolution and sensitivity of 

currently available imaging techniques lag behind rapid advances made in vector 

technology.  

 

In addition, quantification of images obtained at a definite time point was based 

on the assumption that radioiodine uptake by all NIS expressing cells is uniform 

in time. This assumption was essential due to the lack of data related to the 

intracellular kinetics of the radiotracer. Preliminary evidence indicates a rapid 

efflux of the radio probe from the cell. The requirements of cardiac gene therapy 

are slightly different from those in gene therapy for the treatment of cancer. In 

cancer gene therapy where expression of hNIS offers the potential to follow up 

gene transfer with a therapeutic dose of radioisotope, the 131I must be trapped 
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effectively within the cells for a definite period to allow for a cytolytic effect. 

Although there is an initial efficient uptake this is followed by a rapid efflux 

within 20m, with less than 0.5% of the injected 131I retained by the tumour by 24 

hours. 132, 176 Attempts to ensure retention of the radioisotope to produce a 

cytolytic effect have included the use of Lithium177, concurrent thyroid 

peroxidase (TPO) gene transfer 178, 179, administration of low iodine diets and 

thyroid ablation . These strategies ensure a high circulating level of TSH and 

therefore a higher NIS expression. However, in models of cardiovascular disease 

where hNIS is used purely as a marker of the presence of a second therapeutic 

gene, it is desirable to avoid organification of the iodine and allow for a rapid 

efflux of the isotope out of the cell to avoid a cytotoxic effect.  

 

5.2 Surgical Limitations of the model 

 

Conditions of cardiac perfusion mandatory to cardiac preservation do not always 

support efficient gene transduction. In addition, the heterotopic heart transplant 

model used in this work does not reflect the loading conditions faced by the heart 

in the life-supporting orthotopic position. Although the myocardium is optimally 

perfused, the left atrium and ventricle are only partially loaded and both 

ventricles face an uncertain afterload due to end-to side anastomoses to 

abdominal vessels. For this reason, it would be inappropriate to carry out studies 

involving genes affecting haemodynamics in this model. These questions could 

be better addressed in primate models of orthotopic cardiac transplantation. The 

use of ex vivo perfusion technique is feasible in the large animal model180. This 

method was not used in this study due to constraints with the production of large 
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quantities of the vector. However, the translation of this technique to humans 

would be straightforward due to the expertise already gained with SPECT 

imaging of the heart in clinical studies. The use of SPECT/CT in the transplanted 

human heart would also facilitate precise quantification of cardiac dimensions 

and exact sites of gene transfer. Imaging of the heterotopic heart also differs from 

clinical conditions due to the soft tissue attenuation due to surrounding bowel 

loops. In the thorax, natural contrast due to the presence of air in the lungs would 

make easier to visualize the cardiac margins.    

 

5.3 Directions for Future Research 

 

The principle of non-invasive monitoring of transgene expression could be 

extended to the use of soluble marker peptides to monitor transgene expression. 

Bicistronic adenoviral vectors coding for hNIS and soluble extracellular domain 

like human carcinoembryonic antigen (hCEA) and human chorionic gonadotropin 

(hCG) could be used to monitor gene expression. Non-invasive imaging of 

radioiodine uptake and serum quantification of soluble markers could be 

performed with the use of computed tomography (CT) co-registered with micro-

SPECT 167 following adenoviral gene transfer. These experiments have been 

commenced in the lab and initial results look promising. 

 

Some of the drawbacks associated with a potent immune response to the 

adenoviral vector could be overcome with the use of newer ‘gutted’ adenoviruses 

which are devoid of all viral coding sequences 181, 182. Other potential solutions 

include the use of different serotypes of adenoviruses, non-Ad viral vectors 
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(Retroviral, Lentiviral, adeno-associated viral vectors) or non-viral vehicles such 

as endothelial progenitor cells (EPC).  

 

The promise of newer vectors like Adeno-associated virus (AAV) that track to the 

myocardium with little promiscuous infection of other organs makes intravenous 

administration of genes a possibility183.  Evidence suggests that Adeno-associated 

virus (AAV) vectors induce the pro-inflammatory cytokine response to a lesser 

degree compared to adenoviral vectors resulting in more efficient gene 

transduction184. Further understanding of the antigenic determinants and 

mechanisms of the immune response against vectors and gene products can 

achieve persistent transgene expression. Recently we have made AAV vectors 

coding for NIS, that unlike adenovirus vectors they do not encode viral proteins; 

in this way the transduced cells are not immunogenic. Preliminary in vivo data are 

looking promising.  

 

Cell-based therapy is dependent upon the delivery of cells derived from the bone 

marrow, peripheral blood, adult heart, adipose tissue or the human embryo to the 

region of interest 185, 186. Attention has been focused on the potential ability of 

these cells to repair or regenerate areas of ischemia in the myocardium 187-189. 

Bone marrow derived haematopoietic and mesenchymal stem cells, cardiac stem 

cells, adipose tissue derived stem cells and embryonic stem cells have all been 

considered for the repair of infarcted myocardium as well as to limit the damage 

caused by ongoing ischaemia 185. The advances made in the field of cell-based 

therapy for cardiovascular disease open up the possibility of using stem cells as 

delivery vehicles for therapeutic genes. The autologous nature of stem cells offers 
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the potential advantage of a muted immune response to the courier. In addition to 

this application, stem cells could be used as delivery vehicles for exogenous 

therapeutic genes in models of heart disease. Real-time imaging of these cells by 

nuclear imaging techniques could lead to a better understanding of the kinetics of 

these cells within the heart. This could be accomplished in several ways, viz the 

use of radiolabelled cells tracked by PET imaging or the use of reporter genes 

followed by the injection of a radioligand imaged with PET or SPECT. Non-

invasive imaging addresses problems associated with tracking of delivered cells 

190, washout of cells to other organs 191 and an understanding of the molecular 

mechanisms underlying the benefits of cell-based therapy. In vivo tracking of 

cells is essential to validate functional results192 and this process could be better 

monitored and followed by the use of reporter genes that permit non-invasive 

imaging185.  

 

With the use of with the use of a NIS reporter system the anatomical distribution 

of an associated therapeutic gene as well as its transduction kinetics in the 

transplanted heart can be determined with relative ease. The success of this model 

in visualizing gene transfer justifies development of models to image gene 

transduction in transplanted hearts with disease. Eventually, genes could be used 

in a therapeutic role to affect disease states in cardiac transplantation perhaps in 

concert with other allograft-protective pharmacological therapy.
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7.1 APPENDIX A  

 

Micro-SPECT/CT Image Acquisition Protocol  

(Protocol formulated by Dr S Carlson MD167) 

 

All animals were imaged under sedation. 1000 µCi of 
123

I was injected into the tail 

vein and micro-SPECT/CT imaging commenced after 20 minutes. Syringe 

activity was measured prior to and post-injection to quantify the injected dose 

accurately. Micro-SPECT images were obtained under a high-resolution gamma 

camera (X-SPECT, Gamma Medica®-Ideas Inc., CA) with a low energy high-

resolution parallel hole collimator with 64 projections at a rate of 10s per 

projection and an acquisition time of 13m 46s. CT images were obtained under a 

circular orbit at a thickness of 50µM per slice under the same scanner without 

moving the animal in between. This ensured accurate co-registration of the axial 

CT images with the micro-SPECT maps.  

 

Gamma-Medica® XSPECT system information: 

 

SPECT scans: 

Collimator: low energy, high-resolution parallel-hole 

Field of view: 12.5 cm 

Acquisition time: 13:46 min 

Projections: 64 

Time/projection: 10s 

Reported resolution: 1-2mm 

 

CT scans: 

Orbit: circular 

Slice thickness: 50µm 

Images: 256 

Acquisition time: 1minute 

Voltage: 80kVp; Current: 0.25mA 

Reported resolution: 43µm 
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7.2 APPENDIX B 

 

Protocol for calculation of explanted heart 123I uptake by analysis of 

SPECT/CT images  

(Protocol formulated by Dr S Carlson MD167) 

 

Calculation of Heart 123I Uptake Using Micro-SPECT/CT (XSPECT) and 

Image Analysis Software: 

 

1. Dose Calibrator Measurements: 

 

o For 123I: Dial setting 277 

o Set explanted heart (tissue) in chamber 

• Final correction factor: 

• True Measured Tissue Activity  = (x) (1.11) (0.76);  

(where (x) = radio-isotope uptake measured by DC) 

 

2. Conversion Equations Based on Imaging of 123I Standard: 

 

• Planar: 

 

Tissue activity X (µCi) = (47.93 µCi) (measured tumor ROI counts)  

       (25,797 counts) 

 

• SPECT (or SPECT/CT): 

 

Tissue activity X (µCi) = (47.93 µCi) (measured tumor ROI counts) 

     (1.10 x 107 counts) 

 

3. Activity Conversion Factors: 

 

a. Planar: 

i. ROI Analysis = 25,797 counts 
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ii. Conversion factor: 1.86 x 10-3 µCi per measured count 

 

b. SPECT (or SPECT/CT): 

i. Region of interest (ROI) Analysis = 1.10 x 107 counts 

ii. Conversion factor: 0.044 x 10-3 µCi per measured count 

 

 

4. Isotope Decay equation: 

a. Activity (A) = Aoe-λt    

i. λ = decay constant = 0.693/ t1/2 

ii. t = time elapsed (hrs) 

A= Aoe-(0.693t/t1/2)  

 

 
Summary of Region of Interest (ROI) analysis:  

 

 

 
 



 125 

*Use the calculated tissue activity/known injected dose to obtain 

%ID in the tissue and %ID/g! 
 

*ROI analysis is the same for planar imaging, but use a different conversion 

equation:  

• Activity X = (47.93 microCi)(PMOD tumor counts planar 

image)/25,797 counts 

 

 

*Tissue Volume Conversion Factor (it does not give you true volume on 

PMOD stats analysis): 

 

• Conversion factor: VolPMOD (cc) x (0.31mm3) 

 

 Example: → VolPMOD = (14.3cc) x (0.029791mm3) = 0.43ccm = 4.3mm3 
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Summary of 50% Threshold Analysis for SPECT Only Images: 

 

 
 

 

50% Threshold Method: Quantitation of SPECT Images: Step-by-Step 

 

1. Increase image intensity display until you think the yellow or red area 

is as large as the size of the tissue (need to pick either yellow or red 

color to use as your reference for the entire analysis—either is okay, 

but be consistent!) 

 

2. Go through each SPECT image that the tissue is on and place an ROI 

around the yellow or red area (whichever one you picked) 

 

3. Look at Stats analysis on PMOD and determine maximum pixel count  

 

4. Multiply the number obtained in (3) by 50% 
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5. Use this new calculated number and put it in the right box of your 

image intensity bar (leave the left box zero) 

 

6. Go through the entire tumor again on all SPECT images in which it is 

visualized outlining the yellow or red area (whichever you used 

before) and determine new total tissue counts 

 

7. Convert to activity with the usual activity conversion equation 

described earlier 
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