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Abstract 

This thesis focuses on the development of the model-based fault detection and isolation 

/fault detection and diagnosis (FDI/FDD) techniques using the unknown input observer 

(UIO) methodology. Using the UI de-coupling philosophy to tackle the robustness issue, 

a set of novel fault estimation (FE)-oriented UIO approaches are developed based on the 

classical residual generation-oriented UIO approach considering the time derivative 

characteristics of various faults. The main developments proposed are: 

 Implement the residual-based UIO design on a high fidelity commercial aircraft 

benchmark model to detect and isolate the elevator sensor runaway fault. The FDI 

design performance is validated using a functional engineering simulation (FES) 

system environment provided through the activity of an EU FP7 project Advanced 

Fault Diagnosis for Safer Flight Guidance and Control (ADDSAFE). 

 Propose a linear time-invariant (LTI) model-based robust fast adaptive fault 

estimator (RFAFE) with UI de-coupling to estimate the aircraft elevator oscillatory 

faults considered as actuator faults. 

 Propose a UI-proportional integral observer (UI-PIO) to estimate actuator 

multiplicative faults based on an LTI model with UI de-coupling and with added 

𝐻∞ optimisation to reduce the effects of the sensor noise. This is applied to an 

example on a hydraulic leakage fault (multiplicative fault) in a wind turbine pitch 

actuator system, assuming that the first derivative of the fault is zero.  

 Develop an UI–proportional multiple integral observer (UI-PMIO) to estimate the 

system states and faults simultaneously with the UI acting on the system states. 

The UI-PMIO leads to a relaxed condition of requiring that the first time 

derivative of the fault is zero instead of requiring that the finite time fault 

derivative is zero or bounded.  

 Propose a novel actuator fault and state estimation methodology, the 

UI–proportional multiple integral and derivative observer (UI-PMIDO), inspired 

by both of the RFAFE and UI-PMIO designs. This leads to an observer with the 

comprehensive feature of estimating faults with bounded finite time derivatives 

and ensuring fast FE tracking response.  

 Extend the UI-PMIDO theory based on LTI modelling to a linear parameter 

varying (LPV) model approach for FE design. A nonlinear two-link manipulator 

example is used to illustrate the power of this method. 
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Chapter 1  

Introduction 

 

1.1 Introduction 

It has become inevitable that human daily activities have been technologically assisted 

by increasing advanced computer-based automation. The services provided by 

automatic, mechatronic systems fundamentally aim at ensuring safety and improving 

life quality and enhance availability. Computer-assisted living can, however, be easily 

threatened without enough time to generate a warning if the computer-controlled 

systems provide unintended services, especially in safety-critical scenarios such as 

transportation (Wikipedia, 1992), chemical and nuclear power plants (Rogovin, 1979; 

Patton, Frank and Clark, 1989).  

Considering the following two examples of fatal accidents in transportations: El Al 

Flight 1862 on October the 4
th

 1992, involved a Boeing 747 cargo plane that crashed 

into a residential apartment in Bijlmermeer near southeast Amsterdam, causing 47 dead 

and many more injured on the ground (Wikipedia, 1992). Figure 1-1 shows the aircraft 

that crashed and the buildings that were destroyed.  

  

Figure 1-1 Boeing 747–200 of El Al Flight 1862 and the Bijlmermeer apartment 

building (Wikipedia, 1992) 

The accident investigation results unveiled that one engine broke away from the 

starboard wing shortly after take-off, causing structural damage. This was followed by 

the break-away of the second engine on the same wing. The pilots had to circle around 

http://en.wikipedia.org/wiki/Boeing_747
http://en.wikipedia.org/wiki/Bijlmermeer
http://en.wikipedia.org/wiki/Bijlmermeer
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Amsterdam (about 80kms) to try to come back to Schipol airport. Unfortunately, on line 

up with the instrument landing system the aircraft rolled excessively became 

uncontrollable and crashed. 

In Wenzhou province, China, two high-speed trains collided on a viaduct in the suburbs 

(Wikipedia, 2011) among which 40 people were killed and the 192 were injured. An 

official accident investigation report released that one of the causes was that the trains 

failed to correctly respond to equipment malfunction attributed to lightning. The 

elevated impact on human life in both of these incidents is a sign of the lack of hazard 

prevention in these systems compared with the huge amount of technical development. 

The underlying reason causing the above catastrophes is that electronic and 

computer-based systems are assumed to deliver the expected capacity correctly, whilst 

lacking systematic procedures for identifying the causes of system malfunctions in 

real-time. 

With the early days of the development of automatic supervisory control, very 

significant attention to these safety and security issues were paid by academic 

researchers (Clark, Fosth and Walton, 1975; Patton, Frank and Clark, 1989). This is 

especially the case in aeronautics and astronautics which have stringent requirements on 

stability, performance and reliability. Heavy demands can be placed on an automatic 

system to help to avoid repetition of tragedies and devastating economic loss. In the 

context of research on fault diagnosis the term system usually refers to an operational 

plant or process in conjunction with basic feedback control elements such as the 

actuator sensors. The causes leading to unintended system executions or unusual 

sensing are called faults, which are conceptually defined as unpermitted deviations of at 

least one characteristic property or parameter of the system from the 

acceptable/usual/standard operating conditions according to (Isermann and Ballé, 

1997). As a consequence of each fault occurring during operations, failure is understood 

as the complete breakdown of a system component or function. It describes the situation 

that the system no longer performs the required function (Isermann and Ballé, 1997). 

Faults occurring in actuators, sensors or other system components may lead to 

unsatisfactory performance or even worse instability. The monitoring system takes the 

responsibility of detecting and diagnosing the unanticipated functions. The supervisory 

system is the so-called fault detection isolation/diagnosis (FDI/FDD) system. FDI/FDD 

http://en.wikipedia.org/wiki/High-speed_rail
http://en.wikipedia.org/wiki/Viaduct
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systems should not only provide alarms when the supervised plant suffers a malfunction, 

but should also classify and identify the erroneous behaviour occurring during the entire 

plant operation. The FDI/FDD systems should also provide information and reports to 

prevent further loss of system function. The operators should be informed of the fault 

situations and of important actions to be taken to avoid total system breakdown and 

catastrophe (Patton, Frank and Clark, 1989). Hence, a reliable and affordable fault 

diagnosis system is very critical from safety and sustainability perspective and plays a 

significantly important role in technical processes of the industry sectors (Chen and 

Patton, 1999). 

The traditional fault diagnosis approach localises the faults by making use of hardware 

redundancy (replicates all system components including actuators, sensors, computers to 

measure and/or control a particular variable). The location of a fault can be inferred using 

a majority voting scheme, three or more redundant lanes of system hardware are used to 

provide the same function. However, the complexity and system volume of modern 

industrial appliances render the hardware redundancy approach much less applicable in 

terms of maintenance and operational costs, even in terms of weight restriction and 

strictly regulated ecological requirements.  

An alternative to the use of redundant hardware is to develop systems that have analytical 

redundancy or functional redundancy based on the use of model-based information. 

Analytical redundancy effectively transforms the hardware redundancy into realisable 

software estimation problems. Redundant or additional/repeated estimates of the 

measured signals are used to derive estimates of other variables of the system without the 

use of additional measurement sensors (Chen and Patton, 1999). The only required 

information for the model-based FDI/FDD approach is the use of a valid system model 

and the measured inputs and outputs of the system being monitored. However, to achieve 

reliability and robustness special methods must be used to ensure that the estimated 

variables are faithful replicas of the measured quantities. The expected outcomes from the 

model-based FDI/FDD approach are multiple symptoms (residuals or FE signals) 

indicating the differences between nominal and faulty system status in a timely manner. 

Figure 1-2 shows a concise, open-loop FDI/FDD structure using analytical redundancy 

compared to the conventional FDI/FDD hardware redundancy method. 
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The growing demands on safety, reliability, maintainability and survivability in 

industrial processes motive and accelerate the development of many model-based fault 

diagnosis strategies (Chen and Patton, 1999; Blanke, Kinnaert, Lunze and Staroswiecki, 

2003; Simani, Fantuzzi and Patton, 2003; Ding, 2008; Edwards, Lombaerts and Smaili, 

2010; Isermann, 2011). 

 tyR  ty

Actuators Sensors
 tuR tu

Plant

 Dynamics

outputactuation
measured
outputinput

Controller 

reference 

command
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open-loop analytical 
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actuator
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actuator

Actuator 
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sensor

sensor 

diagnostic 

logic

fault signal sensor

Resisual generation/ 

Fault estimation

Decision making

fault signal (actuaor)/

fault signal (sensor)

Hardware redundancy

 

Figure 1-2 FDI/FDD hardware redundancy vs open-loop analytical redundancy 

1.2 The need for FDI/FDD in Fault tolerant control (FTC) 

Increasing demands from the supervised plant for safety, reliability, availability, 

maintainability, survivability and sustainability also motives to develop FTC designs 

with the capability of tolerating system malfunctions preventing loss of life, mitigating 

against hazards, and avoiding economic loss, etc. FTC is also expected to maintain 

desirable and robust performance and stability properties in the case of malfunctions in 

actuators, sensors or other system components (Patton, 1997a; Blanke, Kinnaert, Lunze 

and Staroswiecki, 2003).  

FTC schemes have been widely investigated for potential applications. As an example, 

the Group for Aeronautical Research and Technology in Europe (GARTEUR) Flight 

Mechanics Action Group 16 (FM-AG (16)) project “Fault tolerant Flight Control” based 

on the ‘Bijlmermeer disaster’ (outlined in Section 1.1) case is introduced briefly here to 

demonstrate how fault diagnosis together with FTC can assist in accident prevention. 

http://en.wikipedia.org/wiki/Bijlmermeer
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The main task of the FM-AG (16) project is to explore the FTC approach to recovery of 

flight following in flight failure. The FM-AG (16) project was initiated to investigate 

the use of FTC in attempting to sustain the flight of the damaged El Al Flight 1862 

Boeing 747 aircraft of the ‘Bijlmermeer disaster’, to enable the aircraft to land 

successfully after the structural failure. Different fault monitoring systems (fault 

diagnosis systems) and fault-tolerant control (FTC) strategies were applied on the 

‘GARTEUR RECOVER benchmark’(GARTEUR, 2004) model which includes the 

fault scenarios of the El Al Flight 1862 flight and is validated with accident flight data. 

The FTC strategies were continuously experimented according to the reconstructed fault 

signals supplied from various kinds of fault diagnosis systems to restore stability and 

manoeuvrability of the aircraft for continuous and safe operation and provide survivable 

recovery to improve the resilience and safety of the aircraft. The simulated results 

demonstrated that the Bijlmermeer crash could have been avoided using appropriate 

fault diagnosis-assisted FTC action (Smaili and Mulder, 2000; Maciejowski and Jones, 

2003; Smaili, Breeman, Lombaerts and Stroosma, 2008; Alwi and Edwards, 2010; 

Edwards, Lombaerts and Smaili, 2010).  

FDD information can certainly be important in FTC, for example the control system can 

be reconfigured subsequent to detect that a fault has occurred. If the location, fault onset 

time and severity of the fault are determined either from an FDI residual signal or using 

estimates of a fault, then appropriate action can be taken to switch or reconfigure the 

control system either using on-line or off-line computed control laws corresponding to 

various potential fault scenarios. When the FTC system makes use of fault information 

for reconfiguration this is known as active FTC (AFTC), whilst the alternative passive 

FTC methods do not require fault diagnosis information and are thus based mainly on 

robust control ideas (Patton, 1997a). The book by (Blanke, Kinnaert, Lunze and 

Staroswiecki, 2003) provides an in-depth analysis of the subject of FTC. 

AFTC schemes are used to trigger specific control actions in real-time (based on fault 

information) to prevent plant damage as a consequence of malfunctions and ensure 

system availability and sustainability based on the use of redundancy (in either 

analytical or hardware forms). AFTC can also be used to ensure that the control system 

performance is not degraded when there is a loss of efficiency in closed-loop system 

components, i.e. corresponding to minor or incipient fault conditions (Patton, 1997a).  

http://en.wikipedia.org/wiki/Bijlmermeer


6 

 

Figure 1-3 gives the general relationship among FDI/FDD, robust control as well as 

AFTC.  

FDI/FDD

Robust 

control

AFTC

 

Figure 1-3 The three disciplines of FTC (adapted from: Patton, 1997a) 

In an AFTC mechanism, sufficient real-time fault information is required to 

accommodate to the effects of faults by a reconfiguration mechanism. The AFTC 

performance is strongly affected by the degree to which accurate fault information is 

available. Whilst residual-based FDI methods can provide a high degree of fault 

information accuracy a preferable approach is to use on-line fault estimation (FE) 

signals that are designed to robustly reconstruct the time-variation of each fault. The 

reconfiguration in this case may use the FE signal to compensate for the fault in the 

closed-loop system. The more precisely the fault estimated information provides by 

on-line FE, the more favourably the AFTC scheme designs. (Patton, 1997a; Zhang and 

Jiang, 2008).  

Of course many AFTC research studies assume that the fault information is richly and 

precisely known. However, although appropriately rich and accurate fault information is 

not easy to determine there are now several very powerful methods available for robust 

FE, subject to expected bounds in terms of the fault level or finite time derivatives 

(Koenig, 2005; Gao and Ding, 2007). Although this thesis is not about AFTC, in the 

light of the availability of these methods the work is very much concerned with 

developments of the FE approach (for FDD) that can be very effectively applied to 

AFTC. Figure 1-4 gives an overview of the structure of AFTC, showing the role of 

FDD (that also includes FDI).  
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Figure 1-4 An overview structure of AFTC (Zhang and Jiang, 2008) 

Detailed AFTC research concepts are described (Patton, 1997b; Blanke, Staroswiecki 

and Wu, 2001; Blanke, Kinnaert, Lunze and Staroswiecki, 2003; Blanke, Kinnaert, 

Lunze and Staroswiecki, 2006 ; Zhang and Jiang, 2008). 

1.3 Fundamentals of FDI/FDD 

This sub-section revisits and clarifies briefly some preliminary concepts and 

terminologies in fault diagnosis research field. All the terminologies defined in this thesis 

are based on information from the International Federation Automatic Control (IFAC) 

SAFEPROCESS Technical Committee and associate the updated literatures listed 

herein (Isermann and Ballé, 1997; Chen and Patton, 1999; Isermann, 2006), for 

example. 

Fault: An unpermitted deviation of at least one characteristic property or parameter of the 

system from the acceptable/usual/standard condition.  

Failure: A permanent interruption of a system's ability to perform a required function 

under specified operating conditions. 

Malfunction: An intermittent irregularity in the fulfilment of a system's desired function. 

Error: A deviation between a measured or computed value of an output variable and its 

true or theoretically correct one. 

Modelling uncertainty: The overall system cannot be precisely described by a linear 

mathematical model. Uncertainties come from incomplete identification of the system 

and some unknown disturbances/control signals. Moreover, model aggregation or 
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simplification which is deliberately designed to make the system manageable may also 

lead to uncertainties. 

Disturbance: An unknown and uncontrolled input acting on a system. 

Residual: A fault indicator, based on a deviation between measurements and 

model-equation based computations. Residuals should remain small as long as there is 

no fault, and become sufficiently large to be noticeable whenever faults occur. 

It is very important to note that the terminology ‘failure’ denotes that a subsystem or an 

entire system loses its functionality completely. However, the word ‘fault’ has a wide 

definition which refers to any unwanted malfunctions of the system. For example, pump 

wear for which it turns out that the parameter variations can also be considered as fault 

(Blanke, Staroswiecki and Wu, 2001).  

A fault diagnosis system is usually built to perform one or more functionalities as shown 

in Figure 1-5: 

Fault diagnosis system

Fault Detection and 

Diagnosis (FDD)

Fault Detection and 

Isolation (FDI)

Fault Detection 

(FD)

Fault 

Isolation 

Fault

 Identification 

Fault Estimation

(FE)

 

Figure 1-5 Topological illustration of fault diagnosis functional relationships 

The difference between the roles of FDI and the FDD are clarified here to avoid the 

confusion since the terms ‘isolation’ and ‘identification’ share the same initials but 

correspond to different functional cases. FDI aims to locate and isolate the faulty 

components in the system. FDD, however, is intended to know the detailed attributes of 

detected faults e.g. faults severity and the fault identification is required in FDD. FE is the 

abbreviation of fault estimation which is functionally similar as fault identification but 

focuses on reconstruction of the fault signal using estimation-based methods (Ding, 

2008). 
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A common purpose of the FDI/FDD functions is to serve either individually or in 

combination with others for the actuation of a particular fault accommodation scheme, 

to detect, isolate and estimate faults so that this information can be used in a fault 

accommodation scheme (AFTC) (Zhang and Jiang, 2008). The FDD system provides 

descriptive information to reconstruct a fault in the form of a signal and notify the 

AFTC which accommodates the faults by adaptively controlling system dynamics or 

reconfiguring system structure. A real-time FE function is nowadays regarded as a 

must-have feature as AFTC schemes require accurate fault information. The term FDD 

tends to be used totally in the aerospace flight control community, whereas the wider 

control-based fault diagnosis community tend to use the term ‘FDI’. However, one 

should be clear that the most applicable term should be used. For example, FDI does not 

include fault reconstruction/estimation/identification and this should be reserved for the 

topic of FDD. 

1.4 Fault classification  

The faults are categorised according to different characteristics. As defined in Section 1.1, 

a fault is an unpermitted deviation of at least one characteristic property or parameter of 

the system from the acceptable/usual/standard condition. Three different classifications 

are defined in terms of the fault types, faults location and time dependency, respectively. 

They are described as following.  

Fault types 

Two usually seen interactions, defined as additive or multiplicative faults, are modelled and 

structured in conjunction with system as shown in Figure 1-6. 

Additive fault: This behaves as an additional signal acting on the plant, for instant, 

unexpected exogenous motion on an actuator.  

Multiplicative fault: This is represented by the product of a system variable with the fault 

itself. They can appear as parametric deviation within a process, i.e. it may cause changes in 

the system dynamics.  
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Figure 1-6 Additive fault and multiplicative fault 

Fault location (see Figure 1-7) 

Actuator fault: A fault occurring in the electro-mechanic drive subsystem such as 

electrical motors, pneumatic actuators, and hydraulic pistons. An actuator fault normally 

suggests partial or total loss of the actuator’s control action effectiveness. Possible 

reason to cause actuator faults are jamming or oscillation, the sticking of mechanical 

dampers or levers or damage in the drive system e.g. due to bearings, gear wear or  

friction, caused by changes from the design characteristics or complete failure. 

Sensors fault: With reference to feedback control systems, a fault in a sensor in the 

feedback path can mislead the controller to drive the plants improperly and thereby lose 

performance. Likely reasons for sensor faults are inaccurate calibration, value bias, 

scaling errors, dynamical changes (disturbance) in sensors and physical breakdown in a 

control loop. 

Components fault: Dynamical, parametric variations in the system rendering the 

dynamics invalid. These plant variations in the plants are common phenomena since 

most realistic processes are time-varying and nonlinear and normally referred to as 

multiplicative faults. For instance, abnormal variations in the damping ratio or natural 

frequency of a mechanical or mechatronic system can be considered as component fault.  

 Sensor faults
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Figure 1-7 Actuator fault, sensor fault and component fault 
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Time dependency of faults 

Some typical fault signal types and their time dependency can be characterized as 

shown in Figure 1-8.  

Fault-free

Time

incipient fault intermittent faultabrupt fault

Time Time0 0 0

Fault case Fault-free Fault case Fault-

free

Fault

case Fault-

free

 

Figure 1-8 Abrupt fault, incipient fault and intermittent fault (Isermann and Ballé, 1997) 

Abrupt fault: This fault typically can be modelled as stepwise signals and can be 

represented by a sudden change in some actuator or sensor characteristic.  

Incipient fault: A fault that can be modelled by using ramp signals typically and 

represents an unexpected drift of the monitored signal. 

Intermittent fault: The fault is not permanent, sometimes it is present and other instants 

the fault is absent, e.g. corresponding to a loose connection in an electronic system.  

Considering, each of these in turn. Abrupt faults behave as variations that are faster than 

the nominal system dynamics, having a significant impact on the controlled system 

performance and stability. The effects of abrupt faults can be severe and hence the faults 

need to be detected and isolated quickly before they have an effect on system function 

and stability.  

In contrast to an abrupt fault, an incipient fault (also known as a soft fault) has a very 

small but possibly developing effect on the system and is very hard to detect and hence 

also to isolate. The incipient fault may not lead rapidly to serious consequence, but may 

develop further into a more significant fault situation and hence must be detected and 

isolated (even identified) as quickly as possible to avoid system break-down or 

catastrophe. Finally, intermittent faults are faults that appear and disappear repeatedly. 

Besides the aforementioned faults, there is another type of fault which is represented by 
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a sinusoidal signal, known as an oscillatory fault. It can be considered as a type of 

incipient fault in terms of its time characteristics which behaves smoothly, not abruptly. 

1.5 Typical performance indices for FDI/FDD performance evaluation 

It is very important to set a series of indices to evaluate the performance of an FDI/FDD 

method to determine if it is well suited for practical applications. A good FDI/FDD 

performance should detect and isolate faults as early as possible. Meanwhile, 

considering the further FTC action, FE design, in some cases should provide accurate 

fault information for the reconfiguration mechanism. A set of performance indices that 

can be used for an effective model-based FDI/FDD are listed in Table 1-1 (Baca, 1993; 

Lieber, Nemirovskii and Rubinstein, 1999; Hokayem and Abdallah, 2003; Bartys, 

Patton, Syfert, De las Heras and Quevedo, 2006; Patton, Uppal, Simani and Polle, 

2010): 

Table 1-1 FDI/FDD Performance Indices 

Fault detection time (FDT)     
The time interval between the time instance at 

which a fault occurs and time instance at which a 

fault is declared as detected. 

Fault isolation time (FIT)     
The time interval between the time instance at 

which a fault occurs and time instance at which a 

fault is declared as isolated. 

False alarm rate (FAR)   𝑎 

The number of wrongly detected faults divided by 

the total fault scenarios. 

Missed alarm rate (MAR)     
For each fault, the total number of undetected faults 

divided by the total number of times that the fault 

occurs. 

Fault detection rate (FDR)     

For a particular fault, the number of times that it is 

correctly detected is divided by the total number of 

times that the fault occurs. 

Fault isolation rate (FIR)     
For a particular fault, the number of times that it is 

correctly isolated is divided by the total number of 

times that the fault occurs. 

Mean detection time 

(MDT) 
    

For each fault, this is an average of the detection 

times, i.e. sum of FDT divided by the total number 

of times that fault occurs 

Maximum detection time   𝑎     
Maximum fault detection time amongst total 

number of fault occurs. 

Minimum detection time        
Minimum FDT amongst total number of fault 

occurs. 
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In accordance with Table 1-1, the desirable FDI/FDD performances expected are rapid 

FDT, high FDR, low FAR & MAR, high accuracy of FE signal and accurate FE 

information (location, type, shape). The achievable performance is considered to be 

acceptable as long as it satisfies a relaxed requirement in Table 1-1, even though the 

system monitored system is affected by various forms of uncertainty in practice. It is 

quite challengeable and launches difficulties in model-based FDI/FDD methods.  

1.6 Robustness issue in model-based FDI/FDD methods 

To meet the indices listed in Section 1.5, one of the biggest challenges in FDI/FDD 

design is the robustness issue caused by unexpected signals, uncertainty and modelling 

errors as well as faults acting in the control system that all contribute to a deterioration 

of required system performance. The robustness issue can be raised in different ways 

(Patton, Frank and Clark, 1989; Chen and Patton, 1999). 

On one aspect, the overall system cannot be precisely described by the mathematical 

model. Particularly, the parameters in the system may change with time, unexpected 

exogenous disturbance and noise. Therefore, unexpected discrepancies can be defined 

as a form of ‘modelling uncertainty’ between the actual system and its mathematical 

model description. Modelling uncertainties can also be caused by discrepancies between 

the model and the actual system that are generated as a consequence of the use of linear 

models for representing dynamic behaviour. The real system may have strongly 

nonlinear system dynamics so that linear modelling is limited only to small variations 

around operating points, causing modelling uncertainty as the systems moves away 

from these points. Moreover, model aggregation or simplification for managing the 

system to be designable may also lead to uncertainties. All of these uncertainties can be 

thought of as having a combined effect on the system acting through the so-called 

unknown input (UI) signals considered to act at the system inputs. Since the UI signals 

affect the system modelling, they also have an impact on the residuals/FE signals so that 

the FDI/FDD performance is degraded. In terms of performance indices in Section 1.5, 

the existence of the UI may extend the FDT, generate false alarm (FA) or lead to a 

higher MAR.  

These uncertainty issues lead to the main challenge of FDI/FDD that is that the 

residuals/FE must all be robust against these uncertainties, i.e. they should be designed 
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to compensate for the effects of the UI to an appropriate degree of robustness to achieve 

satisfactory FDI/FDD performance.  

Following this, for residual generation-based FDI design the robustness problem is 

defined as the minimised sensitivity of the effect of the UI to residual signals and the 

maximised sensitivity of the detectability and isolability to faults. For FE-based FDD 

design, the robustness problem is regulated as the minimised sensitivity of the effect of 

UI to the FE signals, yielding the most accurate FE signals (Chen and Patton, 1999; 

Ding, 2008; Zhang and Jiang, 2008). The performance indices given in Section 1.5 are 

hence very important for evaluating the robust performance of individual FDI/FDD 

designs. 

In the last three decades, robustness issue has become a very significant research subject 

to guarantee an acceptable fault diagnosis system performance. Fruitful studies can be 

found in the excellent works (Chen and Patton, 1999; Patton, Frank and Clark, 2000; 

Shafai, Pi and Nork, 2002; Gao and Ding, 2005; Henry and Zolghadri, 2005; Ding, 

2008; Alwi, Edwards and Tan, 2009; Falcoz, Henry and Zolghadri, 2010; Patton, Uppal, 

Simani and Polle, 2010; Chen, Patton and Klinkhieo, 2010).  

1.7 The structure of the thesis 

This thesis mainly focuses on the development of model-based FDI/FDD approaches 

using the UI de-coupling principle that are implemented in different examples according 

to the suitability of related UI de-coupling based FE theory. Various methods have 

properties which make them more or less suitable for particular FDI/FDD problems, 

according to fault types, degrees of robustness, applicability to nonlinear systems, 

accuracy of fault reconstruction, practical implementability, and so on. The thesis is 

outlined as follows: 

In Chapter 2, a historical development of model-based FDI/FDD is reviewed. The role 

of model-based FDI/FDD within the framework of FTC is also discussed. The Chapter 

commences by outlining the core idea of model-based approaches to FDI/FDD based on 

a review of three most dominant methods. Then, two different techniques in terms of 

the functions of FDI or FDD, namely residual generation-based and FE-based 

techniques are described respectively. The central issues to be addressed in the thesis 

are concerned with the development of model-based FDI/FDD methods and algorithms 
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that take into account systems with uncertainties and exogenous disturbance considered 

acting in a UI format. 

Throughout the thesis FDI/FDD designs are considered to be implemented using 

observer-based methods and hence the research focuses on both review and new 

developments of robust unknown input observer (UIO) methods involving either UI 

estimation/de-coupling or robust fault estimation, or both. 

The state space structure of the UI-corrupted linear time invariant (LTI) models that are 

used for FDI/FDD designs are described. Then, according to this formulation, the 

detectability and isolability (two key conditions for FDI/FDD design) in terms of both 

additive and multiplicative faults are given, respectively. 

The fundamental UIO theory is introduced according to the formulation of (Chen, 

Patton and Zhang, 1996) and (Chen and Patton, 1999) as a foundation for the following 

Chapters. The idea of de-coupling the structured UI for the purpose of overcoming the 

robustness issue in the FDI/FDD design is explained explicitly and an entire residual 

generation-based UIO design procedure together with the distribution matrix of UI 

estimation is described with reference to a simple nonlinear tutorial system example. 

This foundation is necessary at this stage since all the developed theory in the thesis 

focusses on the re-development of the UIO formulation into an FE-based approach, i.e. 

moving away from a residual-based strategy. 

In Chapter 3, studies on aircraft FDI/FDD design and the residual-generated UIO 

application on the aircraft are reviewed briefly. A high fidelity commercial aircraft 

benchmark model provided by the FP7 “ADDSAFE (Advanced Fault Diagnosis for 

Safer Flight Guidance and Control)” project is used to test the UIO-based FDI strategy. 

The FDI performance validation and verification procedures are carried out in a 

functional engineering system (FES) environment to evaluate the proposed FDI design. 

In Chapter 4, the studies move towards the UIO-based FE design, from the 

conventional UIO FDI design (residual generation-based FDI) introduced in Chapter 3.  

An LTI model-based robust fast adaptive fault estimator (RFAFE) with UI de-coupling 

is proposed to estimate the aircraft elevator fault scenario in terms of oscillatory fault 

cases (OFC) in an elevator actuator. Since the proposed FE is a function of system 
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output errors, it is necessary to design the fault estimator with the capability of rejecting 

the influence of the UI acting on the system states. Hence, in Chapter 4, the FE signal 

generated by the RFAFE is de-coupled from the UI (modelling uncertainties herein) 

using the principle outlined in Chapter 2. In order to enhance the FE performance, an 

adaptive fault estimator is constructed by involving additional proportional action 

besides conventional integral action in the FE signal to enhance the fault estimation 

tracking performance. A Lyapunov stability analysis of the proposed fault estimator is 

given and the fault estimator dynamic response is achieved by pole assignment in 

sub-regions formed by Linear Matrix Inequality (LMI). 

Finally, the proposed RFAFE is implemented on a high-fidelity nonlinear generic 

Airbus aircraft model (as described in Chapter 3) to estimate the elevator actuator 

oscillatory faults. 

In Chapter 5, a robust FE design approach for detecting multiplicative faults acting is 

described by combining the UI de-coupling principle and 𝐻∞ optimisation. The fault is 

constructed as an augmented system state and estimated by the augmented fault 

estimator which is a proportional integral observer (PIO). The UI de-coupling principle 

is chosen to improve the robustness of the FE signals against the UI, i.e. the UI 

de-coupling principle is used to de-couple the UI effect from the FE signal. The UIO 

gains are chosen (a) to achieve the de-coupling and (b) to satisfy FE performance 

requirements. In a novel step combined with UI de-coupling principle, the 𝐻∞ 

optimisation is used to minimise the effect of exogenous disturbance in the fault 

estimation as a specific stage of the robust FE-oriented UIO design. 

This new design approach is applied to a tutorial example comprising multiplicative 

(parametric) faults acting within one of the pitch actuation systems of an offshore wind 

turbine, based on a nonlinear benchmark system. Whilst the benchmark system is itself 

nonlinear, due to aerodynamic nonlinear dependence on wind speed. The design makes 

use of an LTI wind turbine model (derived from the benchmark system at a particular 

wind speed). During the linearisation, both the linearisation error and exogenous 

disturbance (the wind force) are combined together into an UI which is then de-coupled 

via the UI de-coupling principle. From a practical point of view, the actuator 

measurement sensors are considered corrupted by sensor measurement noise signals 

which are considered as exogenous (hence unknown) disturbances. As these noise 
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signals contaminate the FE performance, they are attenuated in the observer estimation 

error using 𝐻∞ minimisation. 

A hydraulic leakage fault occurring in a wind turbine pitch actuator is considered as a 

multiplicative fault that relates to the damping and natural frequency parameters of the 

actuator. A fault model modification is used to reformulate the multiplicative fault into 

an additive fault representation by which the fault can be estimated via the proposed 

observer-based FE scheme. Once the additive fault is reconstructed, a wind turbine 

operation look-up table is then used to determine the individual fault parameters.  

In Chapter 6, the goal is to develop the FE method, called UI–proportional multiple 

integral observer (UI-PMIO) which is capable of estimating the system state and the 

faults simultaneously regardless of the existence of the UI influencing the system states. 

The UI-PMIO widens the practical application field of the UI-proportional integral 

observer (UI-PIO) described in Chapter 5 by removing the constraint that the FE signal 

has zero-valued first derivative (as in the UI-PIO case). The use of the multiple integrals 

in the FE structure facilitates a relaxation of the constraint applied to the FE signal so 

that the finite fault derivatives should only be bounded or have zero values. 

In this UI-PMIO structure, the UI de-coupling strategy (as described in Section 2.3) is 

kept for handling the UI influence on the state estimation error. Besides, the 𝐻∞ theory 

is investigated to guarantee the convergence condition of the augmented state estimation 

error dynamics in the case of the bounded finite time fault derivatives. This leads to 

accurate and robust fault and system state estimation. Noticeably, the UI-PMIO 

provides an enhancement to the UI-PIO observer in Chapter 5, from the perspective of 

FE type. 

At the end of Chapter 6 a numerical tutorial example comprising an actuator fault is 

used to demonstrate the effectiveness of the proposed UI-PMIO approach. 

In Chapter 7, a novel actuator fault and state estimation approach the UI–proportional 

multiple integral and derivative observer (UI-PMIDO) is proposed to enhance the FE 

performance which is inspired by both the RFAFE and UI-PMIO methods in Chapters 4 

& 6, respectively. In the abbreviation of the ‘UI-PMIDO’ term, the ‘D’ represents the 

‘derivative’ action in the observer structure which is inspired by the RFAFE method in 

Chapter 4. The UI-PMIDO proposed in this Chapter possesses comprehensive features of 
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both fast FE and multiple integral actions. Under this FE strategy, the FE signal involves 

the derivative action as well as multiple integral actions. Finally, a numerical example of 

a system with exogenous disturbance is used to demonstrate the effectiveness and 

efficiency of the novel FE methodology ‘UI-PMIDO’. Comparisons between the 

UI-PMIO in Chapter 6 and UI-PMIDO in Chapter 7 are made using this tutorial by 

means of simulation results. 

In Chapter 8, the main contribution is to extend the UI-PMIDO theory based on the 

LTI model developed in Chapter 7 to a polytopic linear parameter varying (LPV) system 

structure for the FE design. The LPV approach can be used to take into account an 

approximation to the nonlinear system via time-varying affine parameter dependence. 

At first, the fundamental theory of the model is introduced. Then, a polytopic robust 

UI-PMIDO FE method using an LPV modelling strategy is proposed for the purpose of 

estimating the bounded finite fault derivatives of the actuator faults as well as the states 

of a nonlinear system with the presence of the UI. The UI are considered here as 

exogenous disturbances. The polytopic UI-PMIDO stability conditions are formulated 

and solved via a set of linear matrix inequalities (LMIs). A tutorial example of a 

nonlinear two-link manipulator is used to illustrate the effectiveness of the proposed 

approach. 

As stated above, a graphical description of the developed Chapters 3-8 is given as 

Figure. 1-9. 
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Figure 1-9 Graphical description of the developed Chapters 3-8 

Note: The blue arrows point to the application Chapter 3 and the developed Chapters 

4-8 based on residual-generation UIO design. The blacks and greens arrows point to the 

developed Chapters 4-8 and its corresponding applications, respectively. The red arrows 

represent the relationship between the Chapters, namely, the arrow directs to a further 

developed Chapter based on the arrow starting Chapter. 

In Chapter 9, the original contributions from this research work are summarised and 

the context of the research of this thesis is outlined. Meanwhile, suggestions and 

recommendations for potential new work based on this thesis are discussed.   

5/7 

3. Conventional UIO 

(Residual generation)

Developed UIO 

(Fault estimation)

4. Robust fast 

adaptive fault 

estimator 

(RFAFE) 

5. UI-proportional 

integral observer 

with H-infinity  

optimisation

6.UI–proportional 

multiple integral 

observer 

(UI-PMIO) 

LTI

LPV

Wind turbine Numerical example Two-link manipulator  

Unknown input observer (UIO) approaches to robust fault diagnosis

8. Polytopic  

UI-PMIDO 

Aircraft

7. UI–proportional 

multiple integral 

and derivative 

observer (UI-

PMIDO)



20 

 

Chapter 2  

Review of Model-based FDI/FDD 

 

2.1 Introduction 

This Chapter provides an overview of the development of model-based FDI/FDD, with 

a focus on observer-based approaches. The basic concepts, contexts and major issues 

that are associated with this subject are addressed in detail. 

2.2 Model-based fault diagnosis methods 

The model-based fault diagnosis techniques used in control can be traced back to the 

early 70’s. Since then, the techniques have been developed with remarkable expansion 

and implemented in many industrial applications, thanks to the efficiency and good 

performance of many FDI/FDD designs. Successful applications can be seen in 

industrial sectors, for instance, space system (Patton, Uppal, Simani and Polle, 2010), 

automotive systems (Yacine, Ichalal, Oufroukh, Mammar and Djennoune, 2012), power 

systems (Ma and Jiang, 2011), process control systems (Venkatasubramanian, 

Rengaswamy, Yin and Kavuri, 2003), and so on. Some classical research outcomes 

have been assembled and published as textbooks such as: (Patton, Frank and Clark, 

1989; Gertler, 1998; Mangoubi, 1998; Chen and Patton, 1999; Patton, Frank and Clark, 

2000; Blanke, Kinnaert, Lunze and Staroswiecki, 2003; Venkatasubramanian, 

Rengaswamy, Yin and Kavuri, 2003; Blanke, Kinnaert, Lunze and Staroswiecki, 2006; 

Isermann, 2006; Ding, 2008; Isermann, 2011). Recent surveys on FDI/FDD are: (Frank, 

Ding and Köppen-Seliger, 2000; Simani, Fantuzzi and Patton, 2003; 

Venkatasubramanian, Rengaswamy, Yin and Kavuri, 2003; Isermann, 2005; Hwang, 

Kim, Kim and Seah, 2010; Ding, Zhang, Jeinsch, Ding, Engel and Gui, 2011; Marzat, 

Piet-Lahanier, Damongeot and Walter, 2012) and other references given throught the 

thesis.  

The core idea of the model-based FDI/FDD approaches is to generate the fault indicator 

signals (residuals) or reconstruct fault signals on-line using FDI/FDD algorithms. To 

achieve on-line FDI/FDD, it is necessary to process the system input and output signals, 
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using mathematical models of the monitored system. Normally, a successful on-line 

implementation of the FDI/FDD algorithms requires powerful computer systems.  

However, rapid development in computer technology have made the requirement is very 

achievable. The conventional way to achieve FD/FDI is to make use of residual signals 

based on models of the system being monitored. With the increasing demand from the 

developed AFTC described in Section 2.2.2, the fault diagnosis has been moving to the 

FDD subject which motivates the research on FE-based FDD to be more applicable and 

popular compared with residual generation-based FDI, especially in this decade. In the 

following Sections, both the residual generation-based FDI and the FE-based FDD are 

introduced, respectively. 

2.2.1 Residual generation-based FDI design 

Considerable research studies on model-based FDI have been developed in both 

academic studies and industrial applications during the last three decades. As outlined in 

Section 1.1 all these approaches are based on the principle of analytical redundancy in 

which the selected plant model operates in parallel with the real plant and is driven by 

the same inputs and outputs as the real plant. The discrepancies between the sensor 

measurements and the analytically computed values of the system variables are defined 

as residual signals (see Section 2.2.7 for details). As a result of generated residual, the 

faults can be detected and therefore isolated. Traditionally, the residual generation-based 

approaches have played the dominant role in FDI. Residual-based methods have the 

purpose of detecting faults promptly (with low FDT), with low FAR (see Section 1.5 for 

definitions), and with good potential for isolation of individual faults. 

Many theoretical studies of FDI have been described in the academic literature (Patton, 

Frank and Clark, 1989; Gertler, 1998; Chen and Patton, 1999; Patton, Frank and Clark, 

2000; Simani, Fantuzzi and Patton, 2003; Ding, 2008; Isermann, 2011). Several books 

describe interesting application studies (Patton, Frank and Clark, 1989; Simani, 

Fantuzzi and Patton, 2003; Isermann, 2011). Generally, residual generation-based FDI 

comprises two main stages ‘Residual Generation’ and ‘Decision making’, as illustrated 

in Figure 2-1. 
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Figure 2-1 Model-based approaches to FDI method 

Residual generation: This stage is used to generate a fault indicating signal via 

available input and output information from the monitored system (Chen and Patton, 

1999). The required fault information is generated to decide promptly, reliably and 

robustly whether or not a fault has occurred and where it has occurred. In most robust 

FDI approaches, the residual signals are designed to be sensitive to specific fault (faults) 

whilst being insensitive to UI, i.e. the residuals are expected to be close to zero in 

fault-free conditions and deviate from zero after a fault has occurred but not deviate 

from zero when there is a modelling uncertainty or exogenous disturbance, represented 

by a UI.  

Decision making: Using the generated residual, a decision is made to decide whether or 

not a fault has occurred through the use of a threshold function whose value can be 

fixed or variable. In this step, the choice of threshold is usually based on a hypothesis 

test to determine the statistical likelihood that a fault has occurred, whilst minimising 

the FAR and MAR rates. Using the threshold functions decisions are made as to the 

time of onset of a fault and it’s likely time characteristic. The process of detecting the 

fault is referred to as FD, however once the fault is detected a suitable form of isolation 

logic based on analytical redundancy can be used to uniquely determine its location in 

the system. 
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2.2.2 FE-based FDD design 

Most model-based FDI techniques have been developed mainly as fault monitoring 

systems to indicate the system working condition, as introduced in Section 2.2.1, with 

properties that depend on the method of generating the residuals.  

In the literature, it is appreciated that FDI with fault occurrence and location 

information cannot satisfy the industrial requirements in terms of higher levels of safety, 

reliability and sustainability (Patton, 1997a). The more strict safety criteria require that 

suitable prompt action be taken when a monitored closed-loop system operates under 

abnormal conditions. In this context FTC and specifically AFTC is becoming 

demand-driven and aims to control the faulty systems to avoid failures and catastrophes. 

The need for FDI/FDD in FTC has been reviewed in Section 1.3. 

Figure 2-2 illustrates the structure of FE-based FDD design, in which the FDD function 

often makes use of FE-based FDD design rather than residual-based FDI design.  
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Figure 2-2 Model-based FDD method 

2.2.3 Typical methodologies of model-based FDI/FDD design 

Many fruitful research studies have been devoted to the subject of FDI/FDD in which a 

mathematical model is used to realise the FDI/FDD function in real-time. Of 

significance four model-based FDI/FDD design methodologies have been studied 

substantially based on (1) observer based methods; (2) parameter estimation; (3) parity 

space, introduced as follows:  

 Observer based FDI/FDD: This technique has been developed under the framework 

of the well-studied advanced control theory. This is regarded as an effective method 
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for designing observers using efficient and reliable algorithms for data processing to 

reconstruct system variables. In this approach, the observer is used to estimate the 

actual system outputs. The residuals/FE signals are then constructed via suitable 

functions of the output estimation error between the measured and estimated outputs 

(Chen and Patton, 1999).  

 Parity equation based FDI: A straightforward model-based method of FDI is to use 

an input-output model with fixed structure and run it in parallel with the process, 

thereby forming an output error. In this approach, the residual signals are generated 

based upon consistency checking (or parity checking) on system input and output 

data over a given time window. Actually, once the design objectives are determined, 

the parity equation and observer based designs have some correspondence or 

equivalence under certain conditions, as residual generation methods (Gertler, 1991; 

Patton and Chen, 1991). 

 Parameter estimation based FDI/FDD: This approach is investigated in terms of 

system identification techniques. The faults are reflected in the physical system 

parameters and then the idea of the fault detection is based on the comparison 

between online estimation of system parameters and the parameters of the fault-free 

reference model. In most practical cases, the process parameters are only partially 

known or are not known at all. If the basic model structure of the process is known, 

the process parameters can be determined with parameter estimation methods by 

measuring input and output signals. Parameters can be identified by non-recursive or 

recursive methods or numerical optimisation methods. (Isermann, 1993).  

2.2.4 Central issues in model-based FDI/FDD design 

Three FDI/FDD model-based approaches have been introduced in Section 2.2.3 and the 

central issue of ‘robustness issue’ of FDI/FDD is introduced in Section 1.6. Some 

additional central issues in model-based FDI/FDD design are described in the literature 

for the purpose of assessing the developed approaches (Chen and Patton, 1999; Ding, 

2008; Zhang and Jiang, 2008; Marzat, Piet-Lahanier, Damongeot and Walter, 2012):  

 Ability to detect or estimate different types of faults (actuator, sensor, and 

component faults), i.e. ability of handling multiple faults. 
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 For ease of design tuning, normally require the least number of tuning parameters 

and with less complex tuning procedures. This is important for real application 

problems. 

 Satisfaction of fault evaluation indices listed in Section 1.5. The indices should be 

different in terms of the requirements of the different monitored systems. 

2.2.5 Mathematical description of model-based system 

This Section outlines the basic LTI state space mathematical description of the 

monitored system used in FDI/FDD, followed by a brief description of most of the main 

issues to be solved (Chen and Patton, 1999).  

 Nominal LTI systems:  

A nominal LTI mathematical model of the monitored system is described by a state 

space model as:  

�̇�( ) =  𝑥( )    ( )

 ( ) =  𝑥( )    ( )
}                    (2-1) 

where, 𝑥     denotes the system state vector,      and      denote the input 

and measurement vectors, respectively.  ,  ,  ,   are known system matrices with 

appropriate dimensions. 

 LTI systems with actuator faults:  

An LTI mathematical model of the monitored system with additive actuator faults is 

described by state space model as:  

�̇�( ) =  𝑥( )    ( )  𝑎𝑓𝑎( )

 ( ) =  𝑥( )    ( )                 
}              (2-2) 

where, 𝑥    ,      and      as well as  ,  ,  ,   are defined as same as 

in (2-1). 𝑓𝑎     represents a vector of time-varying actuator faults. The columns of the 

matrix  𝑎       denote the independent actuator fault distribution.  

 Systems with sensor faults:  

An LTI mathematical model of the monitored system with additive sensor faults is 

described by state space model as:  



26 

 

�̇�( ) =  𝑥( )    ( )                 
 ( ) =  𝑥( )   ( )    𝑓 ( )

}              (2-3) 

where, 𝑥    ,      and      as well as  ,  ,  ,   are defined as same as 

in (2-1). 𝑓     represents a vector of time-varying sensor faults. The rows of the 

matrix         denote the independent sensor fault distribution.  

The faulty system (2-2) and (2-3) can be integrated into one expression for a system with 

both additive actuator and sensor faults. However, this does not mean that the actuator 

and sensor faults occur simultaneously. The integrated expression is given as:  

�̇�( ) =  𝑥( )    ( )  𝑎𝑓( )

 ( ) =  𝑥( )    ( )   𝑓( )
}                  (2-4) 

An input–output transfer matrix representation for system (2-4) is described as: 

 ( ) =  𝑢( ) ( )    ( )𝑓( )                  (2-5) 

where,  

 𝑢( ) =  (    ) 1     

  ( ) =  (    ) 1 𝑎    
}                   (2-6) 

 LTI systems with multiplicative faults:  

As introduced in Chapter 1, the multiplicative fault (component faults) can be used to 

represent a parameter change. In this case, an LTI mathematical model of the monitored 

system with multiplicative faults is described by state space model as:  

�̇�( ) = (     )𝑥( )  (     ) ( )

 ( ) = (     )𝑥( )  (     ) ( )
}         (2-7) 

where, 𝑥    ,      and      as well as as  ,  ,  ,   are defined as same 

as in (2-1), (     ),  (     ), (     ), (     ) are the multiplicative 

faults repressed as: 

   = ∑      
 
  1 ,    = ∑      

 
  1 ,    = ∑      

 
  1 ,    = ∑      

 
  1 .  

  ,   ,   ,    are known matrices with the same dimensions as  ,  ,  ,  , 

respectively.    ,    ,    ,     are scalar factors. The fault is defined as a scalar 
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variable, either        ,    ,    ,      

2.2.6 Fault detectability and isolability 

This Section provides the necessary and sufficient conditions for the detectability and 

isolability of faults for cases of additive and multiplicative fault respectively, making use 

of the input-output transfer matrix representation for the system. The proofs of the 

following Theorems are omitted as these are provided in the references (Chen and Patton, 

1999) and (Ding, 2008). 

 Fault detectability condition  

Theorem 2.1 Given system (2-4), then  

 Additive fault 𝑓  is detectable if and only if  

   ( ) =  (    ) 1 𝑎     ≠ 0              (2-8) 

where,  𝑎 ,     denotes the     column of matrix  𝑎,   , respectively.  

 A multiplicative fault     is detectable if and only if:  

 𝛼𝐴𝑖
( ) =  (    ) 1  (    ) 1 ≠ 0              (2-9) 

 A multiplicative fault     defined in (2-7) is detectable if and only if:  

 𝛼𝐵𝑖
( ) =  (    ) 1  ≠ 0                    (2-10) 

 A multiplicative fault     defined in (2-7) is detectable if and only if:  

 𝛼𝐶𝑖
( ) =   (    ) 1 ≠ 0                    (2-11) 

 A multiplicative fault     defined in (2-7) is detectable if and only if:  

 𝛼𝐷𝑖
( ) =   ≠ 0                          (2-12) 

Remark 2.1: (2-8) shows that an additive fault is detectable, if and only if the transfer 

function from the additive fault to the system outputs is not zero.  

Remark 2.2: (2-9) shows that the multiplicative fault     can lead to a change in the 

system structure. 
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Remark 2.3: (2-10) & (2-11) shows that the detectability of the multiplicative faults     

and     can be considered by equivalent input observability and output controllability 

problems, respectively in terms of the individual faults.  

Remark 2.4: (2-9) shows that the multiplicative fault     is always detectable.  

Remark 2.5: The individual fault transfer matrices (2-8) to (2-12) can generally be 

expressed by   𝑖
( ) , for which the fault vector is  = [𝑓1 𝑓2  𝑓 ]

   ( =

     )  and the transfer between individual faults and selected residuals are 

considered individually (leading to a fault isolability property).  

 Fault isolability condition  

In Chapter 1, fault isolation is defined as ‘to determine the location of the fault, e.g. 

sensor or actuator has become faulty’ which lead to the fault isolability defined as 

‘whether the different faults occurring in a system can be distinguished in terms of their 

influences on the system. Theorem 2.2 is given as a test for fault isolability. 

Theorem 2.2 Given system (2-4), with remark 2.5. Then any faults with fault transfer 

matrices    ( ),    ( ),  ,  𝑖
( ) are structurally isolable if and only if:  

    (  ( )) =       [   
( )    

( )    𝑖
( )] 

=     (   
( ))      (   

( ))      𝑖
( )              

= ∑     (  𝑖
( ))

  

1                         (2-13) 

As the thesis focusses mainly on additive faults, Corollary 2.1 corresponding to the 

isolability of additive faults is given here as a special case.  

Corollary 2.1 Given system (2-4) and Remark 2.5. Let  = [𝑓1 𝑓2  𝑓 ]
   ( =

     ). Then, these    faults are isolable if only if:  

    (  ( )) =                             (2-14) 

where,     .   is defined in (2-1) as the number of the system outputs.  
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Remark 2.6: Corollary means that the isolability index number of the additive faults is 

not larger than the number of system outputs, so that (2-14) can be further interpreted 

as:  

    (  ( ))  m  {    }                    (2-15) 

A minimal state space realisation of   ( ) can be expressed as: 

  ( ) =  (    ) 1 𝑎                     (2-16) 

In terms of (2-14) to (2-16), the state space description of (2-4) is given as Corollary 

2.2.  

Corollary 2.2 Given system (2-4) and Remark 2.5. Let  = [𝑓1 𝑓2  𝑓 ]
   ( =

     ). Then, the    faults are isolable if and only if:  

    [
     𝑎

   
] =                         (2-17) 

2.2.7 Representation of the FDI/FDD robustness issue 

The importance of the robustness issue has been addressed in Section 1.6. In this 

Section, the specific mathematical representation of the robust issue is given, based on 

the LTI system described in Section 2.2.5. Hence, a simple representation of a fault-free 

state space system model of the monitored system with exogenous disturbance model 

parameter perturbations (corresponding to model uncertainty) can be described as:  

�̇�( ) = (    )𝑥( )  (    ) ( )  𝐸1𝑑𝑒( )

 ( ) = (    )𝑥( )  (    ) ( )  𝐸2𝑑𝑒( )
 }         (2-18) 

where, 𝑥    ,      and      as well as  ,  ,  ,   are defined as same as 

in (2-1).   ,   ,   ,    are the parameter errors or variations which represent the 

modelling uncertainties, 𝑑𝑒     is the exogenous disturbance. 𝐸1 and 𝐸2 are the 

distribution matrix of exogenous disturbance.  

Remark 2.7: UI in (2-18) can refer to the modelling uncertainties, exogenous disturbance 

or the combination of modelling uncertainties and the exogenous disturbance. 

Particularly, in some FDI/FDD designs, the reformulation or the transformation should 

be taken to reconstruct the UI into two components: a UI distribution matrix and a UI 
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vector. Then, the effect of each UI should be de-coupled or minimised to satisfy a 

robustness requirement. The useful reformulation or transformation is provided in (Chen 

and Patton, 1999) and (Ding, 2008) to approximate the modelling uncertainties to 

construct the appropriate distribution matrix.  

With accordance of (2-18), (2-19) is derived:  

   ∑   
 
  1   ,    ∑   

 
  1   ,    ∑   

 
  1   ,    ∑ 𝑑 

 
  1     (2-19) 

where,   ,   ,   ,    have the same dimensions as known matrices  ,  ,  ,  .   , 

  ,   , 𝑑  are scalar factors. Then, for the general case the modelling uncertainties can 

be reformulated in terms of two UI distribution matrices 𝐸𝑢1 and 𝐸𝑢2 as:  

𝐸𝑢1𝑑𝑢1( ) =   𝑥( )     ( ) = [ 1     1      ]

[
 
 
 
 
 
 1𝑥( )

 
  𝑥( )

 1𝑥( )
 

  𝑥( )]
 
 
 
 
 

 (2-20) 

𝐸𝑢2𝑑𝑢2( ) =   𝑥( )     ( ) = [ 1     1      ]

[
 
 
 
 
 
 1𝑥( )

 
  𝑥( )

𝑑1𝑥( )
 

𝑑 𝑥( )]
 
 
 
 
 

 (2-21) 

Then further to (Chen and Patton, 1999), let 𝑑𝑢( ) =  [𝑑𝑢1( ) 𝑑𝑢2( )]
 , 𝐸𝑢1

∗ =

[ 𝐸𝑢1 0], 𝐸𝑢2
∗ = [ 0 𝐸𝑢2]. Then, (2-18) can be reformulated as: 

�̇�( ) =  𝑥( )    ( )  𝐸𝑢1
∗ 𝑑𝑢( )  𝐸1𝑑𝑒( )

 ( ) =  𝑥( )    ( )  𝐸𝑢2
∗ 𝑑𝑢( )  𝐸2𝑑𝑒( )

 }        (2-22) 

Let UI represents the combination of the modelling uncertainties 𝑑𝑢( )  and the 

exogenous disturbance 𝑑𝑒( )  into the vector 𝑑( ) =  [𝑑𝑢( ) 𝑑𝑒( )]
 , with 

corresponding distribution matrix organised as 𝐸1
∗ = [ 𝐸𝑢1

∗ 𝐸1] and 𝐸2
∗ = [ 𝐸𝑢2

∗ 𝐸2]. 

Then, (2-22) can be reformed as: 

�̇�( ) =  𝑥( )    ( )  𝐸1
∗𝑑( )

 ( ) =  𝑥( )    ( )  𝐸2
∗𝑑( )

 }            (2-23) 

Assume that the additive faults occur in the system (2-23). Then, (2-23) can be 
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re-written in terms of (2-4) as: 

�̇�( ) =  𝑥( )    ( )  𝐸1
∗𝑑( )  𝑎𝑓( )

 ( ) =  𝑥( )    ( )  𝐸2
∗𝑑( )   𝑓( )

 }        (2-24) 

The transfer matrix representation for the system (2-24) is given as:  

 ( ) =   𝑢( )     ( )     ( )             (2-25) 

where, 

  𝑢( ) =  (    ) 1                  (2-26) 

   ( ) = 𝐸2
∗  (    ) 1𝐸1

∗              (2-27) 

   ( ) =     (    ) 1 𝑎              (2-28) 

As stated by (Chen and Patton, 1999), the FDI/FDD task is to design a filter   ( ) 

such that the residual  , in terms of the system of (2-24) & (2-25), is defined by: 

 ( ) =   ( )   ( )𝑓( )    ( )  𝑢( ) ( )    ( )   ( )𝑑( )     (2-29) 

Then further to (Chen and Patton, 1999), alternatively, a filter   ( ) can be designed 

in terms of a FE signal 𝑓, with the system of (2-24) & (2-25) defined by: 

𝑓( ) =   ( )   ( )𝑓( )    ( )  𝑢( ) ( )    ( )   ( )𝑑( )    (2-30) 

(2-29) & (2-30) indicate that robustness issue arises from the presence of the terms 

  ( )   ( )𝑑( )  and   ( )   ( )𝑑( ) , respectively which can contaminate the 

performances of   or 𝑓 generating FA conditions in the residual case (2-29) and 

inaccurate estimates in the FE case (2-30). From this, it can be stated that robust 

FDI/FDD designs should satisfy either: 

  ( )   ( )𝑑( ) = 0                     (2-31) 

or  

  ( )   ( )𝑑( ) = 0                     (2-32) 

respectively. 
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In summary this Section provides a mathematical expression of the ‘the robustness issue’ 

in the context of the realisation of UI in FDI/FDD design. Following this an approach to 

perfectly de-couple or at least attenuate the UI effects from residual/FE signals is 

outlined as a critical problem or challenge in model-based FDI/FDD designs (Chen and 

Patton, 1999; Ding, 2008).  

Note: For simplicity, the time subscript ( ) is omitted in the remainder of the thesis. 

2.2.8 Review of observer-based FDI/FDD design 

The theoretical foundation of the UI de-coupling principle in this thesis comes from the 

UIO FDI scheme which is one kind of well-known observer-based FDI/FDD design. 

Hence, the aim of this Section is to review the classical observer-based approach to 

FDI/FDD. Its corresponding mathematical representation in the fault-free and fault 

cases as well as for the case of the system disturbed by UI are described respectively in 

the following. 

Observer designs introduced in Section 2.2.3 have received increasing attention in the 

literature due to the availability of powerful control theory tools. The principle 

underling observer design is used to estimates of the actual system output (Frank, 1987). 

The output estimation error is obtained by comparing the estimated system outputs and 

their measured or expected values. Consequently, the residuals or FE signals are 

designed as a function of the output estimation error. 

As a historical milestone in observer-based FDI/FDD, the first observer-based approach 

applied to the FDI problem (Clark, Fosth and Walton, 1975). Actually these authors refer 

to the “instrument fault detection (IFD) problem” as a special case of a sensor fault FDI 

problem. In their design Luenberger observer was constructed for FD since the 

Luenberger observers proposed by (Luenberger, 1966) allow the reconstruction of the 

state variables under deterministic hypotheses. Following this, (Frank, 1987) established 

a strong foundation for observer-based FDI. Since then, the observer approaches-based 

FDI/FDD are classical and have developed into a wide spread approach to the FDI/FDD 

design methodology. 
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Figure 2-3 Observer-based FDD scheme 

Particularly, at early stages in the development of the FDI field, some approaches in the 

literature are used to generate residuals that handle the central ‘robustness problem’ 

outlined in Section 2.2.7. One approach makes use of the UIO for de-coupling the UI 

from the residuals (Chen, Patton and Zhang, 1996; Xiong and Saif, 1998). The sliding 

mode observer (SMO) is inspired by the sliding model control theory due to the duality 

to generate residuals that are insensitive to the matched UI (Sreedhar, Fernandez and 

Masada, 1993; Yang and Saif, 1995). The 𝐻  𝐻∞ approach of (Hou and Patton, 1996) 

which was further developed by (Ding, Jeinsch, Frank and Ding, 2000), was introduced 

not only for deriving robust residuals following appropriate 𝐻∞ minimisation of their 

UI influence but also possessing the capability of increasing the sensitivity of a fault to 

the residual using the 𝐻  index. Noticeably, all these observer-based FDI methods 

endeavour to remove or attenuate the UI effect from the residuals in order to guarantee a 

satisfactory FDI performance. 

Following that, substantial observer-based FE approaches were published with 

increasing demands from investigators working on AFTC methods. Accordingly, all the 

residual-based methods have been re-developed for the purpose of robust FE. The 

corresponding literature can be found in (Koenig and Mammar, 2001; Theilliol, Noura 

and Ponsart, 2002) for UIO, for SMO (Tan and Edwards, 2002; Alwi, Edwards and Tan, 

2009), and considering norm-based approaches (Stoustrup and Niemann, 2002; Chen, 

Patton and Goupil, 2012).  
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Besides these, many other approaches for FE are reported using different 

observer-based frameworks. For example, (Shafai, Pi and Nork, 2002) used a PIO to 

estimate each fault by regulating the fault as an augmented state. (Jiang, Wang and Song, 

2000), (Gao and Ho, 2004) and (Koenig, 2005) improved the PIO to a proportional 

multiple integral observer (PMIO) which augmented the multiple integrators into an 

observer structure as additional states for accounting for the finite time fault derivatives. 

The PMIO structure enables the observer to estimate more complex time-varying fault 

signals and is therefore not limited to constant or slow-time varying faults as in the PIO 

case. Adaptive observers were also used for FE in which the observer dynamics are 

updated by the fault information (Wang and Daley, 1996; Wang and Lum, 2007; Zhang, 

Jiang and Cocquempot, 2008; Zhao, Xie, Hong and Zhang, 2011).  

As for the residual generation-based FDI, ‘robustness’ issues are also a challenging 

aspect in the FE design problems. The availability of accurate or robust FE signals are 

important both for FDD and also as an import function for modular AFTC design, e.g. 

using a two-step design approach involving (a) robust FE design and (b) AFTC design. 

As pointed out in Section 2.2.5, FE performance is easily corrupted by the presence of 

UI. To seek to overcome this problem, (Tan and Edwards, 2002) consider uncertainty 

dynamics. (Gao and Ho, 2004) also consider the robustness problem of FE by including 

sensor noise. However, many papers on FE hardly touch the FE robustness issue in 

2.2.7, for instance in (Zhang, Jiang and Cocquempot, 2008) and (Zhang, Jiang and Shi, 

2009).  

As introduced in Chapter 1, the fault signal is a function of the error between the 

measured and estimated outputs and corrupted by existing measurement noise cannot be 

avoided. Some literature studies show that the FE signals require information about the 

derivatives of the measurements (Shafai, Pi and Nork, 2002). These derivatives can 

amplify the noise influence on the FE signal. It is, therefore, preferable that the robust FE 

designs should consider sensor noise related issues seriously.  

This Section provides a fundamental review of observer-based FDI/FDD schemes 

focussed on robustness issues for both residual-based and FE-based methods. In Section 

2.3, the UIO based FDI/FDD will be reviewed in detail since the study of the thesis is 

established using an UIO approach.  
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2.3 UIO for FDI/FDD design 

In this sub-section, a brief review and outline of the preliminaries of the UIO theory is 

given to establish the core idea in the thesis by means of the UI de-coupling principle 

for solving the robustness issue in FDI/FDD design. This thesis is based on the principle 

of the UIO design approach described in (Chen, Patton and Zhang, 1996; Chen and 

Patton, 1999). 

2.3.1 Overview of UIO approaches 

As mentioned in Section 1.6, robust residual generation is the most important task in 

model-based FDI. Modelling uncertainties/exogenous disturbance acting on the 

dynamical system as UIO considered as extra input signals which can degrade the 

FDI/FDD performance. An approach to achieve the appropriate insensitivity to UI is to 

attempt to structure the UI and subsequently de-couple the structured UI using algebraic 

or geometric methods. The state estimation problem of de-coupling the UI is referred to 

as the UIO which was introduced by (Kudva, Viswanadham and Ramakrishna, 1980). 

Apparently, the objective of UIO-based FDI/FDD is to develop a robust FDI/FDD 

which is insensitive to modelling uncertainties without the use of a very accurate model, 

whilst sensitive to faults which implies that the UI signals must be de-coupled (Chen, 

Patton and Zhang, 1996). In the original form the UIO based FDD formulation is that 

the system output is compared with the output of an observer designed from a model of 

the monitored system and the error is applied to construct a residual or a set of residuals. 

This classical UIO structure does not make use of system state variable reconstruction. 

An linear transformation is normally applied to build new state variables by which the 

derived residuals are independent of the UI and of the state variables by a special 

selection of the design matrices. In this way, in the ideal case, the residuals only depend 

on the fault information (apart from the effect of initial conditions on the state 

estimation error). 

Many types of full order and reduced order UIO designs are now available. Full order 

observers have been designed in (Yang and Wilde, 1988) and (Darouach, Zasadzinski 

and Xu, 1994). Reduced order UIO designs can be found in (Kudva, Viswanadham and 

Ramakrishna, 1980; Guan and Saif, 1991; Hou and Müller, 1992; Duan and Patton, 

2001), to name only a few. Necessary and sufficient conditions for the existence of a 

UIO have been established in (Kudva, Viswanadham and Ramakrishna, 1980; Guan and 
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Saif, 1991; Hou and Müller, 1992; Darouach, Zasadzinski and Xu, 1994; Chen, Patton 

and Zhang, 1996; Chen and Patton, 1999; Koenig and Mammar, 2001).  

Several systematic procedures for designing reduced-order UIO were proposed by 

partitioning the state vector into two parts through an linear transformation. One part is 

directly driven by the UI and has to be measured completely, and the other part is 

estimated by the reduced-order UIO, which is de-coupled from the input (Corless and 

Tu, 1998). It is noticed that conditions of the UI de-coupling for a full-order UIO are 

not very different from those of the reduced counterpart (Chen and Patton, 1999). The 

reduced-order observer may suffer a bad convergence rate which can degrade the 

FDI/FDD performance. The reduced-order UIO sacrifices some design freedom and may 

have decreased computational complexity but weakens the performance of the UIO 

dynamic response (Yang and Wilde, 1988; Chen and Patton, 1999). For the full-order 

UIO, it is interesting to see that it may provide extra freedom to generate a directional 

residual for the purpose of fault isolation (Chen, Patton and Zhang, 1995). On the other 

hand, for the purpose of only FDI/FDD, the reduced-order observer may be sufficient 

for providing the output estimation error. However, if the purpose is to apply the UIO 

problem to an AFTC scheme, the full-order observer is required to estimate the system 

states. In summary, whether or not a full or reduced order observer is selected depends 

on the purpose of the FDI/FDD problem to be solved.  

The extension work based on the classical UIO methods (full order or reduced order 

cases) can be found in many literature. One interesting approach is to extend the system 

to a descriptor system form such as studied in (Pasand and Taghirad, 2010) and (Ting, 

Chang and Chen, 2011). The other extension of UIO design is the nonlinear UIO 

formulation. Nonlinear dynamic system behaviours governed by complex physical laws 

that are becoming more complex with the development of modern physical systems. In 

this context, single linear system models cannot be easily used for modelling the 

dynamic behaviour of such systems since the linear model is only valid within a 

neighbourhood of the operating point. However, the nonlinear system can be expressed 

as an Lipschitz system model, or a T-S fuzzy model or alternatively in LPV model 

format. Some of the studies are given as follows: for Lipschitz system model-based UIO: 

(Rajamani and Ganguli, 2004; Chen and Saif, 2006a; Chen and Saif, 2006b; Xian, Chun, 

Yu and Na, 2011); for fuzzy model based UIO: (Orjuela, Marx, Ragot and Maquin, 



37 

 

2009; Chen and Saif, 2010; Chadli and Karimi, 2012; Yacine, Ichalal, Oufroukh, 

Mammar and Djennoune, 2012); for LPV model-based UIO: (Bara, Daafouz, Kratz and 

Ragot, 2001; Rodrigues, Theilliol and Sauter, 2005a; Hamdi, Rodrigues, Mechmeche, 

Theilliol and BenHadjBraiek, 2009; Hamdi, Rodrigues, Mechmeche and 

BenHadjBraiek, 2012).  

As discussed in Chapter 2, the original UIO design in FDI is the residual generation 

approach with the purpose of FD or FDI, not the FDD. Therefore, most of the 

aforementioned UIO designs for FD aim to play the role as fault indicator in the 

monitoring system via generating the residual to set the fault alarm. However, the 

residual cannot provide enough fault information for the demands from the state of art 

FDD/AFTC technology which is capable of tolerating potential faults in the monitored 

system in order to improve the reliability and availability while providing a desirable 

performance. In this context, many works has been published focusing on FDD (Marx, 

Koenig and Georges, 2003; Marx, Koenig and Ragot, 2007; Zhu and Cen, 2010, Xian, 

Chun, Yu and Na, 2011). Only a few papers are cited here, some further literature is 

included in Chapter 4, 5, 6, 7 & 8 in which the FE methods are developed based on the 

linear or nonlinear UIO design, aiming to deliver accurate and robust fault information.  

The UIO development is reviewed in this Section to offer the motivation and vision of 

using the UI de-coupling principle. In the following Sections, the preliminaries of 

LTI-UIO theory are introduced. For simplicity and to demonstrate the core UI 

de-coupling principle for FD, an LTI design with only UI influence is considered first. 

2.3.2 Preliminaries of UIO theory in fault-free case  

An LTI system considering the UI (all actuators and sensors are assumed to be fault-free), 

represented by the term 𝐸𝑢𝑑𝑢 is described as: 

�̇� =  𝑥     𝐸𝑢𝑑𝑢 
 =  𝑥                           

}                   (2-33) 

where, 𝑥     denotes the system state vector,      and      denote the input 

and measurement vectors, respectively and 𝑑𝑢     is a vector of UI.  ,  ,   are 

known system matrices with appropriate dimensions. The matrix 𝐸𝑢       is the UI 

distribution matrix.  
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Following (Chen and Patton, 1999), a functional observer is constructed as: 

 ̇ =          
�̂� =   𝐻                  

}                     (2-34) 

where, �̂�     is the estimated state vector and      is the observer state vector.  , 

 ,   and 𝐻 are design matrices.  

Definition 2.1: Observer (2-34) is defined as a robust UIO for the system (2-33), if its 

state and FE errors   = 𝑥  �̂� approach zero asymptotically, in the presence of the 

system UI. 

Assuming that 𝐸𝑢  is known, the estimation error dynamics are governed by: 

         ̇ = (  𝐻     1 )   

                        [  (  𝐻     1 )]  

                              [ 2  (  𝐻     1 )𝐻]  

            [  (  𝐻 )]   

   (𝐻   )𝐸𝑢𝑑𝑢                        (2-35) 

where,  

  =   1   2                       (2-36) 

If the following relations are satisfied: 

(𝐻   )𝐸𝑢  = 0                            (2-37) 

 =   𝐻                        (2-38) 

 =   𝐻     1 =  1   1       (2-39) 

  2 =  𝐻                          (2-40) 

The state estimation error is then refined as: 

 ̇ =                             (2-41) 

  =                                 (2-42) 
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 =    �̂� =    =                    (2-43) 

Furthermore, if all eigenvalues of   are stable,    will approach zero asymptotically, 

i.e. �̂�  𝑥. The observer (2-34) is an UIO for the system (2-33) when conditions (2-36) 

to (2-40) are satisfied. Therefore, this UIO design involves the solution of (2-36) to (2-40) 

whilst placing all the eigenvalues of the system matrix   to be stable. Meanwhile,  , 

 ,   and 𝐻 are designed to achieve the required state estimation performance.  

A particular solution to (2-37) can be calculated as follows: 

         𝐻 = 𝐸𝑢( 𝐸𝑢)
                      (2-44) 

where, ( 𝐸𝑢)
 = [( 𝐸𝑢)

 ( 𝐸𝑢)]
 1( 𝐸𝑢)

 denotes the Moore-Penrose pseudo-inverse.  

Theorem 2.3. The necessary and sufficient conditions for the existence of UIO (2-34) of 

system (2-33) are (Chen and Patton, 1999): 

(1)     ( 𝐸𝑢) =     (𝐸𝑢)  

(2)     (   1) is a detectable pair 

Remark 2.8: with full measurement ( =  ), Condition (1) in Theorem 2.3 is clearly 

satisfied. Condition (1) denotes that the maximum number of independent UI cannot be 

larger than the maximum number of independent measurements, i.e. the necessary 

condition for UI de-coupling in the state estimation error dynamics is     (𝐸𝑢)   . If 

this condition is not satisfied, a rank approximation via a matrix 𝐸𝑢
∗ can be derived 

using Singular Value Decomposition (SVD) (Golub and Van Loan, 1996). The details in 

(Chen and Patton, 1999) are addressed in Section 2.3.5.  

Remark 2.9: Condition (2) is equivalent to constrain the invariant zeros of the system 

described by ( 1  𝐸𝑢  )  to be on the open left hand complex plane, i.e. 

    [
     1 𝐸𝑢

 0
] =    . The proof is omitted in this study. (Chen and Patton, 

1999) states the Condition (2). 

Remark 2.10: Theorem 2.3 gives the necessary and sufficient conditions of UIO design. 

As introduced in Chapter 1, the incentive of the studies in this thesis is to investigate the 

FE-based FDD via improving the conventional residual generation-based UIO FDI 
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method. Under the circumstances, the proposed FE methods fully take advantage of the 

UIO design, namely, equipped with the robustness against the UI. Therefore, in the 

following Chapters, the conditions in Theorem 2.3 of the UI de-coupling principle will 

be restated within the context of FE design.  

2.3.3 UIO-based robust FD scheme 

Rewriting the system (2-33) by considering actuator faults and sensors as well as UI, 

then (2-45) is obtained as:   

�̇� =  𝑥     𝐸𝑢𝑑𝑢  𝑎𝑓𝑎   
 =  𝑥     𝑓                             

}               (2-45) 

where, 𝑥     denotes the system state vector,      and      denote the input 

and measurement vectors, respectively and 𝑑𝑢     is a vector of UI. 𝑓𝑎     

represents a vector of time-varying actuator faults, 𝑓     represents a vector of 

time-varying sensor faults.  ,  ,    are known system matrices with appropriate 

dimensions. The matrix 𝐸𝑢       represents the UI distribution matrix. The columns 

of the matrix  𝑎       denote the independent actuator fault directions. The rows of 

the matrix         denote the independent sensor fault directions.  

If the given LTI system (2-45) satisfies Theorem 2.3, construct the UIO using the 

functional observer structure as (2-34). Then, the state estimation error dynamics and the 

residual of system (2-45) are obtained as (2-46) and (2-47) respectively via solving (2-36) 

to (2-40).  

 ̇ =       𝑎𝑓𝑎   1  𝑓  𝐻  𝑓 ̇           (2-46) 

 =    �̂� =       𝑓                      (2-47) 

(2-46) and (2-47) contribute the integrated formulation for both actuator and sensor 

faults. The separated estimation error and residual systems are given as follows:  

 Only actuator faults (sensor fault-free):  

 ̇ =       𝑎𝑓𝑎                      (2-48) 

 =    �̂� =                          (2-49) 

Remark 2.11: Condition (2) in Theorem 2.3, discussed in Remark 2.9, should be refined 
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as that invariant zeros of the system described by ( 1  1  ) are on the open left hand 

complex plane, i.e.     [
     1  1

 0
] =      , where,  1 = [𝐸𝑢  𝑎] (Saif 

and Guan, 1993; Edwards, 2004).  

 Only sensor faults (actuator fault-free): 

 ̇ =      1  𝑓  𝐻  𝑓 ̇               (2-50) 

 =    �̂� =        𝑓                  (2-51) 

Remark 2.12: The same perspective is given as in remark 2.11. Condition (2) in 

Theorem 2.3 discussed in Remark 2.9 should be refined as requiring that invariant zeros 

of the system described by ( 1  2  ) are on the open left hand complex plane, i.e. 

    [
     1  2

 0
] =      , where,  2 = [𝐸𝑢   ]  (Saif and Guan, 1993; 

Edwards, 2004).  

2.3.4 Residual evaluation based on UIO  

In the light of the residual generation, fault alarm is reported by testing the residuals   

by the residual evaluation step named as residual evaluation. The residual evaluation 

scheme that automatically interprets the time-behaviour of a residual into a Boolean 

decision function, indicates whether each signal is to be considered as small or not. 

Generally, this decision logic procedure involves the selection of threshold(s). Then, 

residual evaluation is necessary to transform the collection of decision-making 

functions into the actual FDI scheme that is used.  

A residual evaluator is constructed by a fixed/variable threshold function as additional 

information, and then the fault is detected (decision-making step) by a logic depending 

on the threshold. In this Section, the norm-based statistical thresholds are built as 

follows: 

‖ ‖          𝑑      fault-free case            (2-52) 

 ‖ ‖          𝑑      fault case                (2-53) 

where,         𝑑  is a statistical detection threshold which is used to service for the 

decision making logic so that raise an alarm when fault occurred. The threshold can also 
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be considered as a tuning parameter in the UIO FDI design to achieve desired FDI 

performance criteria introduced in Section 1.5, for instance, FDT, FDR, MAR. Normally, 

an adequate tuning procedure should result in a satisfactory compromise amongst the 

contradictory objectives of minimising the FDT, and MAR. Therefore, the ease and 

computational load of the tuning procedure should also be considered in the different 

FDI designs. 

2.3.5 UI distribution matrix estimation 

An augmented state observer may be utilized to estimate the UI distribution matrix. Let 

𝐸𝑢  represent the UI distribution matrix and assume that 𝑑1 = 𝐸𝑢𝑑  is a slowly 

time-varying vector. The system model (2-33) can be formulated in augmented form as 

(Patton and Chen, 1993) and (Chen and Patton, 1999): 

                        [
�̇�
�̇�1

] = [
  
0 0

] [
𝑥
𝑑1

]  [
 
0
]    

 = [ 𝑎 0] [
𝑥
𝑑1

]                              (2-54) 

If the system inputs and outputs       are available, an observer based on the model of 

(2-54) can be used to estimate 𝑑1 directly. The distribution matrix 𝐸𝑢 is calculated as 

the ratio of the elements of estimation of 𝑑1  (�̂�1 ). The necessary condition for 

observability is given in Theorem 2.4:  

Theorem 2.4 The system (2-54) is observable if and only if the following conditions are 

satisfied (Chen and Patton, 1999): 

(1)     ( ) =   

(2)     (   ) is an observable pair 

Remark 2.13: Theoretically, the condition (1) in Theorem 2.4 could limit the application 

of this estimation approach. For a practical application, the states are normally available 

from measurements, e.g. as for the model aircraft studied in Chapters 3 & 4, so that the 

above observability and rank conditions are not difficult to satisfy. 
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Remark 2.14: For the UIO design, the necessary rank condition     (𝐸𝑢)    has 

been given in Theorem 2.3. If this condition is not satisfied, a sub-optimal matrix 𝐸𝑢
∗ 

can be approximated as follows via an SVD expansion of 𝐸𝑢 (Chen and Patton, 1999). 

𝐸𝑢 =     
                       (2-55) 

where, 

 = [
𝑑     1      0

0 0
]
                 

(2-56) 

  and   are orthogonal matrices,   is the rank, and  1      are the singular values of 

𝐸𝑢, respectively. A low rank approximation for 𝐸𝑢 by minimising ‖𝐸𝑢  𝐸𝑢
∗  ‖ 

2  is 

given by:  

𝐸𝑢
∗ =   ̂                         (2-57) 

where,  

 ̂ = [
𝑑    0   0           0

0 0
]
             

(2-58) 

 =     (𝐸𝑢
∗  )    to satisfy Theorem 2.3 (for 𝐸𝑢

∗  instead of 𝐸𝑢).  

Assume the 𝑑1( )  is estimated as �̂�1 = {�̂�1( ) �̂�1( )   �̂�1( )} . In some fairly 

simple systems, �̂�1 �̂�2   �̂�  varies slightly, then the distribution matrix 𝐸𝑢 can be 

considered as a constant vector and calculated approximately by using average 

algorithms, i.e.  

𝐸𝑢 = 
1

 
∑ �̂�1( )

 
  1                      (2-59) 

This simple process for obtaining 𝐸𝑢  is illustrated by a simple nonlinear tutorial 

example in Section 2.3.6. 

2.3.6 Tutorial example 

It is necessary to clarify how the UIO works to generate robust residuals with the 

capability of rejecting the UI influence. A simple nonlinear tutorial system example is 

used here to demonstrate the robust UIO design procedure as well as the computation of 

the UI distribution matrix. Although this example does not consider the fault isolation 
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issue, it strongly focuses on the robustness issue accompanying the FD in the presence 

of modelling uncertainty. 

In this nonlinear tutorial example, a sensor fault is included to illustrate the following 

two main UIO design procedures.  

(i) Estimate the optimum value of the ‘distribution matrix/vector 𝐸𝑢’ according to 

Section 2.3.5. 

(ii) Construct the UIO structure depending on the 𝐸𝑢 computed in (i). This step 

introduces the realisation of UIO-based residual generator. Accordingly, UI 

de-coupling principle is demonstrated clearly.  

Consider a simple nonlinear system (Leigh, 1983) in terms of the state variables 𝑥1, 𝑥2 

and outputs  1,  2, a single sensor fault 𝑓  as follows: 

�̇�1 =   𝑥1  𝑥2   𝑥1
2

�̇�2 = 𝑥1   𝑥2  𝑥1
2      

 1 = 𝑥1  𝑓                    
 2 = 𝑥2                            }

 

 
                 (2-60) 

The system is conditionally stable and requires no control input. A time-varying sensor 

fault 𝑓  is considered as an abrupt fault corresponding to different severity levels 

(different magnitudes). A stable UIO is used to generate the robust residual that can be 

used to detect the presence of each fault in the residual signals. The UI in this example 

arises from the effect of the non-linearity via the linearisation process, namely, the 

difference between the time responses of the nonlinear and linearised systems. 

This system has two equilbria (0, 0) and (1, 0) of which (0, 0) is the stable mode and (1, 

0) is the unstable mode. It can be assumed for simplicity that the state motions are 

bounded close to the stable node solution, i.e. the system (2-60) is stable within a region 

of the stable node. Hence, the linearisation around the stable node equilibrium (0, 0) 

gives rise to the following state space model: 

[
�̇�1

�̇�2
] =  [

      
      

] [
𝑥1

𝑥2
]                     (2-61) 

Let  = [
      
      

] which has eigenvalues  1 =    and  1 =   .  
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Two steps of robust UIO designs are given as follows.  

Step1: Estimate the distribution matrix 𝐸𝑢.  

The stable linear model is used to construct the augmented state observer corresponding 

to the nonlinear model of (2-60) for the fault-free case, i.e. with 𝑓 = 0. It is assumed 

that the system is driven by two Schroeder phase noise excitation signals   =

[ 1  2]  in Figure 2-4 (Godfrey, 1993). The signal 𝑑1 = 𝐸𝑢𝑑𝑢 is determined via the 

augmented observer approach (described in Section 2.3.5) and the estimates of the 

elements of 𝑑1 are generated from the additional states of the augmented system as:   

[
�̇�
�̇�1

] = [
  
0 0

] [
𝑥
𝑑1

]  [
 
0
]   

 = [ 0] [
𝑥
𝑑1

]                             (2-62) 

 

Figure 2-4 Generated Schroeder-phased signals 

The observability conditions given in Theorem 2.4 are satisfied for this system and thus 

the elements of 𝑑1 can be estimated progressively. Figure 2-5 illustrates the time 

behaviour of the elements of 𝑑1 subject to the input stimuli. It can be seen that 𝑑1 

varies periodically in every 10s approximately. Therefore, 80 samples of 𝑑1 in Table 

2-1 which cover a 10s time interval are selected to represent the characteristic of 𝑑1, i.e. 

are used to calculate the optimum 𝐸𝑢
∗. The relative magnitudes of the two elements of 

this vector reveal an interesting phenomenon in the direction (distribution) of the term 

𝑑1. It can be observed that an approximately constant ratio of the components of 𝑑1 is 

maintained and this is further illustrated by Table 2-1 which shows a sample of these 

values including the calculated ratios and the average values of the ratio. The response 

0 10 20 30 40 50 60
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time(second)

S
y
s
te

m
 i
u
tp

u
ts

 

 

u
1

u
2



46 

 

shows a clear sign difference between 𝑑1
∗ and 𝑑2

∗ . It should be noted that that this 

system contains simple nonlinear functions of 𝑥1 (but not of 𝑥2), i.e.  1(𝑥1
2) =  𝑥1

2 

and  2(𝑥1
2) =  𝑥1

2. 

 

Figure 2-5 UI vector 𝑑1 computed from augmented observer 

Table 2-1 Sample values of 𝑑1
∗ and 𝑑2

∗  

Sample No. 𝑑1
∗ 𝑑2

∗  𝑑1
∗ 𝑑2

∗  Sample No. 𝑑1
∗ 𝑑2

∗  𝑑1
∗ 𝑑2

∗  

1 0.00648 -0.0021 -3.084 41 0.00202 -0.00074 -2.7174 

2 0.00615 -0.00201 -3.0649 42 0.00204 -0.0007 -2.9282 

3 0.00577 -0.0019 -3.0299 43 0.00218 -0.00067 -3.2589 

4 0.00572 -0.00183 -3.1317 44 0.0023 -0.00065 -3.5182 

5 0.00536 -0.00171 -3.135 45 0.00336 -0.00074 -4.5452 

6 0.0053 -0.00164 -3.2312 46 0.00678 -0.00109 -6.206 

7 0.00493 -0.00155 -3.1766 47 0.0112 -0.00163 -6.8897 

8 0.00476 -0.00148 -3.2274 48 0.0146 -0.00215 -6.7799 

9 0.00362 -0.00129 -2.8028 49 0.01594 -0.00251 -6.3389 

10 0.00295 -0.00113 -2.617 50 0.01547 -0.0027 -5.7245 

11 0.00254 -0.00102 -2.4885 51 0.01359 -0.00272 -5.0011 

12 0.00223 -0.00093 -2.4071 52 0.0117 -0.00263 -4.4471 

13 0.00223 -0.00084 -2.658 53 0.00998 -0.00251 -3.9806 

14 0.0023 -0.00077 -2.9758 54 0.00855 -0.00237 -3.6052 

15 0.00223 -0.00072 -3.113 55 0.00761 -0.00225 -3.377 

16 0.00228 -0.00069 -3.3139 56 0.00677 -0.00213 -3.1824 

17 0.00268 -0.0007 -3.8375 57 0.00642 -0.00204 -3.1527 

18 0.00664 -0.00109 -6.0828 58 0.00601 -0.00194 -3.1057 

19 0.01118 -0.00163 -6.8447 59 0.00592 -0.00186 -3.1881 

20 0.01464 -0.00217 -6.7504 60 0.0055 -0.00174 -3.1669 

21 0.01594 -0.00253 -6.3092 61 0.0054 -0.00166 -3.2439 

22 0.01538 -0.00271 -5.671 62 0.00494 -0.00156 -3.1598 
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23 0.01384 -0.00273 -5.0783 63 0.00479 -0.00149 -3.215 

24 0.01194 -0.00265 -4.5094 64 0.00347 -0.00129 -2.6942 

25 0.0102 -0.00253 -4.0337 65 0.00253 -0.00108 -2.3356 

26 0.0087 -0.00239 -3.6405 66 0.00201 -0.00094 -2.1378 

27 0.00771 -0.00227 -3.3985 67 0.00188 -0.00084 -2.254 

28 0.00684 -0.00214 -3.1923 68 0.0019 -0.00076 -2.4823 

29 0.00645 -0.00205 -3.1522 69 0.00205 -0.00072 -2.8435 

30 0.00602 -0.00194 -3.0992 70 0.00205 -0.00067 -3.0536 

31 0.00591 -0.00186 -3.1777 71 0.00237 -0.00067 -3.5407 

32 0.00549 -0.00174 -3.1563 72 0.00278 -0.00069 -4.0357 

33 0.00539 -0.00166 -3.2356 73 0.0061 -0.00102 -5.9836 

34 0.00492 -0.00156 -3.1496 74 0.01069 -0.00156 -6.8614 

35 0.00478 -0.00149 -3.2077 75 0.01481 -0.00218 -6.7821 

36 0.00348 -0.00129 -2.6981 76 0.01611 -0.0026 -6.1867 

37 0.00239 -0.00105 -2.2665 77 0.01535 -0.00274 -5.5996 

38 0.0021 -0.00097 -2.1735 78 0.01367 -0.00274 -4.9868 

39 0.00189 -0.00089 -2.1212 79 0.01178 -0.00265 -4.437 

40 0.00196 -0.0008 -2.438 80 0.01012 -0.00254 -3.9897 

Average 0.006676 -0.00163 -4.08865 

 

Assume now that the ratio is constant, it then follows that: 

𝑑1 = 𝐸𝑢𝑑𝑢                        (2-63) 

It is clear for this example that the “optimum” approximation 𝐸𝑢
∗ to the matrix 𝐸𝑢 

that also satisfies the rank condition (for UI de-coupling) of Section 2.3.5 is simply 

given by the average values �̅�1
∗  and �̅�2

∗   of the elements of 𝑑1
∗  and 𝑑2

∗  , respectively, 

i.e. 𝐸𝑢
∗ = [

 
�̅�1

∗  �̅�2
∗  
]. For this example, 𝐸𝑢

∗ = [
   
  

] . On inspection of (2-60), it is 

immediately obvious that 𝐸𝑢
∗  represents the ratio of the nonlinear terms  1(𝑥1

2) and 

 2(𝑥1
2). This example is a simple case for which it is clear that since the non-linearity 

only depends on 𝑥1
2 the average values 𝑑1

∗  and 𝑑2
∗   can be used to get the accurate 

result. This simple structure (constant nonlinear coefficients) does not occur in more 

realistic examples (containing more complex nonlinear forms) and it is necessary to 

consider a more general procedure as in Section 2.3.5. 
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Figure 2-6 Nonlinear system outputs excited by Schroeder-phased signals  

 

Figure 2-7 Nonlinear system outputs for step fault ( fs = 0.01) 

 

Figure 2-8 Residuals with different step fault magnitudes 
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Figure 2-9 Residuals with optimal 𝐸𝑢 (UIO) and 𝐸𝑢 = 0 (Ordinary observer) 

Figure 2-6 shows the system output excited by Schroeder-phased signals in fault-free 

case. It can be assumed that the UIO is driven by the modelling uncertainty represented 

by the UI and a sensor fault. 

Figure 2-7 shows the nonlinear system outputs    with small fault (𝑓 = 0 0 ). It is 

difficult to see the effect of the fault on the outputs, i.e. the fault cannot easily be 

detected from the two output signals. The effects of the step fault are hidden in the 

larger output variations. Results illustrate clearly the effect of having different suitable 

“worst case” level of incipient (hard to detect) faults acting as well as low magnitude 

disturbances (in a sensor fault case). A robust residual will show a strong response to 

this fault. This is an important criterion when quantifying the robustness properties of 

an FDI scheme. This robustness is illustrated very clearly in the residual results shown 

in Figure 2-8. The faults can be detected even with very small value. 

In Figure 2-9, the red line is the response of the residual norm corresponding to the use 

of the optimal 𝐸𝑢  in the UIO design, for step faults:  𝑓 = 0 0 . The blue line 

corresponds to the residual norm derived once again using the UIO design procedure 

but with 𝐸𝑢 = 0 (i.e. for no UI de-coupling). It can be see easily that the residual 

generated by UIO leads to good fault sensitivity with a low FA probability. However, 

for the case, it is hard to detect the fault by setting a fixed threshold. Lower fault 

detection robustness in the presence of the uncertainty has been demonstrated. 

By using this simple tutorial nonlinear system example the robust fault detection 

approach of estimation of UI distribution matrix direction and UIO design has been 
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illustrated. The UIO approach to FDI/FDD shows good promise for further study in this 

thesis.  

2.4 Conclusion  

This Chapter provides a review of model-based strategies for FDI/FDD. The residual 

generation-based FDI and the FE-based FDD are outlined respectively. The most 

important features of FDI/FDD design strategies are introduced and the central issues of 

the model-based approach are discussed, focussing particularly on the robustness 

problem. After that, the observer-based FDI/FDD is described as one of the widely used 

model-based FDI/FDD strategies and providing a background for new developments 

later in the thesis. The basic concepts and fundamental representations of model-based 

FDI/FDD are defined using mathematical descriptions chosen to provide a framework 

for work described in later chapters of the thesis. The fault detectability and isolability 

of the monitored system are given as two important conditions in FDI/FDD design 

which guarantee that the fault is detectable and isolable. Finally, the fundamental theory 

of this thesis, the UIO’ is introduced. The theoretical concepts behind the notion of UI 

de-coupling are described as a mechanism for tackling the robustness issue in FDI 

design along with methods of computing the UI distribution matrix. A simple nonlinear 

tutorial system example is used to demonstrate the UI estimation and de-coupling based 

on UIO FDI strategy.  

In Chapter 3, an industrial application of a residual-based UIO design is implemented 

on a high fidelity commercial aircraft based on the ADDSAFE FP7 project. In this 

application study, A bank of unknown input observers (UIOs) is designed in a multiple 

observer scheme used to realise reliable isolation of the aircraft elevator runaway faults.  
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Chapter 3  

UIO Theory and Application for FDI on a Commercial 

Aircraft  

 

3.1 Introduction 

The UIO is one of the well accepted approaches for robust residual generation-based 

FDI. When the structured UI (modelling uncertainties/exogenous disturbance) are 

concerned, to achieve robust FDI performance, the UIO can be used successfully to 

design the robust residual (residuals) that are de-coupled from the UI. In UIO design, 

the solution to the appropriate robustness problem (de-coupling the effects of the UI) 

strongly relies on an assumption that can be made about the UI distribution matrix, i.e. 

whether the columns are known or not or can be approximated. However, in certain real 

application cases, for example for the aircraft system described in this Chapter, the UI 

distribution is unknown due to the lack of knowledge of the nonlinear system dynamics. 

This results in a significant challenge to obtain the appropriate UI directions using 

mathematical tools. Hence, it is necessary to focus on methods for generating the 

structure of the UI in terms of identification and estimation of the UI directions. Once 

these distributions are estimated, the unexpected UI effects on the residuals can be 

de-coupled using the UIO description given in Section 2.3. 

As introduced in Chapter 1, the main proposal of this thesis is to evolve the traditional 

UIO approach, focusing on residual generation-based FDI to some novel UIO FE-based 

FDD, as a consequence of modern demands for FDD/AFTC systems (see Section 1.2 

for discussion). From this background this Chapter is mainly devoted to applying the 

conventional UIO design approach for the detection and isolation of sensor faults on a 

nonlinear commercial aircraft benchmark system simulation provided by the FP7 

project ‘Advanced Fault Diagnosis for Sustainable Flight Guidance and Control 

(ADDSAFE, 2009)’.  

Section 3.2 reviews the literature on studies of UIO approaches to FDI for aircraft flight 

control problems. 
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3.2 Review of aircraft FDI application 

Some published statistics show that between 1993 and 2007 about 16% of commercial 

aircraft accidents are caused by Loss of Control In-flight (LoC-I), involving technical 

malfunctions or unusual flight conditions due to external disturbances. LoC-I is 

regarded as the second largest accident category after Controlled Flight Into Terrain 

(CFIT) accounting for 23% of air accidents worldwide (Goupil, 2011). Loss-of-Control 

(LoC) is intrinsically related to the guidance and control (G&C) system of the aircraft, 

and includes sensors and actuators failures. Improvement using FDI on LoC aircraft 

failures will have a direct impact on reducing the number of aircraft accidents. Hence, 

the development of the application of model-based FDI methods for civil aircraft to 

increase aircraft safety and sustainability clearly plays an important role in aircraft 

research. 

The traditional approach to detect and isolate faults in a flight control system makes use 

of hardware redundancy by a replication of hardware (sensors, actuators or even flight 

control computers). This replication increases the aircraft net weight leading to higher 

fuel demand and increased cost as well as causing more harmful noise and atmospheric 

pollution. Furthermore, hardware replication is problematic to apply in conjunction with 

many innovative solutions being developed by the aeronautical sector. The use of 

conventional hardware redundancy can even limit the aircraft sustainability. This 

technological barrier limits the full realisation of the next generation of aircraft by an 

inability to guarantee the current highest levels of required aircraft safety when 

implementing novel green and efficient technologies (Goupil, 2011).  

As an alternative to hardware redundancy, the model-based approach has attracted 

significant attention. Although the fault information generated via the model-based 

approach to FDI for actuators (or sensors) generally increases the flight control system 

computational load, it can on the other hand increase the aircraft sustainability by 

improving fault diagnosis performance. Linked with this is a potential for optimising 

aircraft structural design with net weight saving. All of which can help to achieve the 

European Vision 2020 (ACARE, 2002) challenges related to the “safety” and “greening” 

of the aircraft. Model-based FDD has often been considered for fault detection, fault 

location and even diagnosis of fault severity in aircraft flight control systems (Varga, 

2010; Chen and Patton, 2011). 
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Many approaches to robust model-based FDD have been proposed on aircraft fault 

diagnosis system in the past decades. The major challenge is that the fault information 

signal should be robust to the UI, which are assumed to be structured according to 

known (or estimated) UI directions linked to modelling uncertainty. To achieve the 

robust design, different methods have been studied, e.g. the use of optimisation methods 

(Varga, 2010), the UIO approach of (Wang and Lum, 2007), the sliding mode observer 

(Alwi and Edwards, 2011) and geometric design approaches (Vanek, Seiler, Bokor and 

Balas, 2011). Although the awareness of the potential and demand of advanced FDI/FDD 

approach is increasing, limited understanding of the theory involved by technician’s 

means that it is impractical to carry out the performance assessment and design 

verifications within the aircraft industry. It is not realistic to expect aircraft flight control 

engineers and technicians to spend time in gaining familiarization with advanced 

model-based FDI/FDD methods. The practitioners prefer to use methods which use 

simple algorithms, clear design procedures with few tuning parameters, avoiding the use 

of complicated methods that appear to be beyond their limit of understanding. However, 

a huge gap exists between the in the academic research and industrial sectors. Within this 

scenario, a European FP7 project ‘ADDSAFE’ (ADDSAFE, 2009) was launched to seek 

to narrow the gap between the academia and the industry.   

In this Chapter, a conventional UIO is applied to a nonlinear simulation of a generic 

aircraft model provided by ADDSAFE project as a benchmark study. As discussed 

above, in the light of the industrial demands, UIO is a good candidate to implement on 

the aircraft for FDI/FDD purpose, since it possesses simple algorithms and explicit 

procedures. The benchmark considered is highly representative of the flight physics and 

aircraft handling qualities. For realisation the purpose of elevator sensor fault isolation, 

particularly, UIOs (the generalised observer design scheme proposed in (Patton, Frank 

and Clark, 1989) are used. At the end of the design, in order to evaluate the FDI 

performance, the UIO is implemented using the FES environment (Fernández and 

Ramón, 2011) by considering the right elevator sensor runaway fault. The detected fault 

scenario and benchmark system description are addressed briefly within the context of 

the ADDAFE project. 
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3.3 Robust FDI scheme based on UIO for sensor faults  

The preliminary UIO-based FD design scheme outlined in Section 2.3 in general does 

not enable fault isolation to be achieved since all the output estimates may react to any 

faults affecting the system. To provide robust FD as well as fault isolation, in this 

Section, an FDI scheme comprising a bank of UIOs is introduced based on the theory 

described in Section 2.3 to generate residuals that are sensitive to specific faults (or sets 

of faults). The ADDSAFE aircraft study as described in Section 3.4. Considering the 

elevator sensor fault leads to a requirement for the design of only two UIOs. 

The system described by (3-1) is affected by UI signals and involves two sensor faults 

(all actuators are assumed to fault-free) as follows:  

�̇� =  𝑥     𝐸𝑢𝑑𝑢 
   =   𝑥                             

     =   𝑥    𝑓 
 
                

}             =         (3-1) 

where, 𝑥     denotes the system state vector.      denotes the input and 

measurement vectors and 𝑑𝑢     is a vector of UI.  ,  ,   are known system 

matrices with appropriate dimensions. The matrix 𝐸𝑢       represents the 

distribution matrix for the UI.     1 is the fault-free sensor output.      1   is 

one row of the matrix   corresponding to fault-free sensor   .       1 is obtained 

from the vector   by deleting   .     (  1)   is the matrix   created by deleting 

the row   . It can be seen that    contains the measurement that is corrupted by the 

sensor fault 𝑓 
 
. 

Remark 3.1: Consider the aircraft application (elevator sensor fault) in the following 

Section 3.4, only two UIOs are designed, because the monitored aircraft system has 

only two elevators (the left and the right). Therefore, the system is structured as (3-1) 

and the UIOs design as well as the decision making logic is simpler compared with that 

in case of more than two sensor fault cases, i.e. (   ). If    , the solution refers to 

the work in (Chen and Patton, 1999).  

In terms of the above description, two UIO-based residual generators can be constructed 

as:  
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    ̇ =                   

  = (    𝐻 )       }                    (3-2) 

The corresponding UIO matrix parameters must satisfy the following in the light of the 

UIO-based FD design in Section 2.3.2:  

(𝐻     )𝐸𝑢 = 0                                               

                 =   𝐻                             

                        =      1
 
   =  1

 
  1

 
   

         2
 
=   𝐻                           

                =  1
 
  2

 
                           }

 
 

 
 

          =        (3-3) 

According to (3-3), the particular solution of 𝐻  is given as:  

         𝐻 = [(  𝐸𝑢)
 (  𝐸𝑢)]

 1(  𝐸𝑢)
 = 𝐸𝑢( 

 𝐸𝑢)
         (3-4) 

Considering the fault isolation task, all the eigenvalues of    should be assigned to be 

stable with satisfaction of the relations in (3-3) so that the required FDI performance can 

be achieved. The necessary and sufficient conditions of the UIOs can be reformed as 

Theorem 3.1 in terms of Theorem 2.3.  

Theorem 3.1. The necessary and sufficient conditions for the existence of UIOs (3-1) of 

system (3-2) are: 

(1)     (  𝐸𝑢) =     (𝐸𝑢)  

(2)     (    1
 
) is a detectable pair 

In the case of system of (3-1) with sensor faults (all actuators are assumed to be 

fault-free) and UI, the generated residual signals    have been given in (3-2) in terms 

of UIOs. Obviously, the residual generators    are driven by all the control inputs and 

all the outputs except the fault-free sensor in each case, which means that the     

residual only includes the     sensor information where the fault occurs. The UI signals 

are specified as corresponding only to modelling uncertainties, so that the generated 

residual    based on the UI de-coupling principle is insensitive to modelling 

uncertainty whilst sensitive to a dedicated fault signal, as long as the UI signal is 

de-coupled according to (3-3) & (3-4) and Theorem 3.1.  
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Finally, decision-making logic for detecting and isolating faults is set by the threshold 

logics in (3-5) for each of the two observers corresponding to each sensor fault: 

{
‖  ‖      

 

‖  ‖      
 

            =         =                   (3-5)  

It is defined that, if the residual values are less than the threshold value, a ‘0’ signal is 

generated, or if the residual values are larger than the threshold value, a ‘1’ signal is 

flagged in the UIO. Both ‘0’ and ‘1’ are used for to detect and isolate faults.  

3.4 Robust UIO-based FDI approach on a commercial aircraft 

In this Section, the two UIOs design outlined above are applied to a nonlinear simulation 

of a generic aircraft provided by ADDSAFE project for the benchmark study. The main 

work is to detect and isolate the elevator sensor runaway fault described in Section 3.4.1.  

3.4.1 Elevator sensor runaway fault 

Right elevator sensor runaway fault: This is a typical fault scenario dealing with 

actuator/sensor faults located in the servo-loop control of an elevator surface. The fault 

is considered to occur between the flight control computer (FCC) and an individual 

control surface. This runaway fault gives rise to an unwanted hardover deflection of one 

control surface if the runaway fault remains undetected. Runaway faults may occur in 

any flight condition corresponding to generally unknown dynamics. Under specific 

circumstances, depending on the control surface impacted, catastrophic consequences 

may result from an undetected runaway. This is why a runaway fault must be detected 

very quickly, in particular for structural load aspects. In this scenario, the root cause can 

be (ADDSAFE, 2009):  

 A mechanical dysfunction: actuator servo-valve runaway, etc...  

 A sensor malfunction: bias, etc…  

 A FCC malfunction: servo-loop gain coding error, etc...  

It is required to detect the elevator sensor runaway before the control surface exceeds a 

certain degree, whatever the runaway speed (from the slowest to the fastest), in order to 

reconfigure on a healthy adjacent actuator (system reconfiguration).  
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In Section 3.4.2, the LTI longitudinal aircraft model dynamics are derived as required by 

the UIO FDI method for detecting the elevator sensor runaway fault. 

3.4.2 LTI longitudinal aircraft model dynamics 

The proposed UIO is implemented on a longitudinal LTI model derived from the 

ADDSAFE benchmark model. Two parts constitute the LTI longitudinal aircraft model: 

one is the aircraft body axis LTI model. The other part comprises the locally linear 

aircraft actuator models representing the right and left elevators on the aircraft tail 

surface. The linearised system is obtained by choosing the trimming parameters given in 

Table 3-1.  

Table 3-1 Trimming points for longitudinal aircraft LTI model 

Trimming parameter Value 

MASS (Net mass in Kg) 200000 

XG (Centre gravity of the aircraft) 0.30 

ZP (Altitude in feet) 20000 

VC (Calibrate aircraft speed in kts) 290 

 

The LTI state space representation of the aircraft body axis dynamics can be expressed 

as: 

�̇� =   𝑥       
  =   𝑥       

}                      (3-6) 

where, 𝑥 = [  𝑎       ]  and   = [  𝑎       ]  are the aircraft body axis states 

and outputs, respectively.    is equal to  𝑎  in (3-7).   𝑎  is the true air speed in m s
-1

, 

  is the angle of attack in deg,   is the pitch rate in deg s
-1

,   is pitch angle in deg.   , 

  ,   ,    are the corresponding system matrices. 

The LTI elevator model is represented by a first order system dynamic. For the 

longitudinal motion, the left and right elevator dynamics combined together have the 

structure: 

�̇�𝑎 =  𝑎 𝑥𝑎   𝑎   

 𝑎 =  𝑎 𝑥𝑎   𝑎   
}                       (3-7) 
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where, 𝑥𝑎   2 1 is the augmented state vector for both the left and right elevators. 

    2 1 is the vector of elevator control inputs (the actuator input signals fed by the 

FCC),   𝑎  is the actuator output.  𝑎 ,  𝑎 ,  𝑎 ,  𝑎  are corresponding system 

matrices with proper dimensions.  

The complete LTI longitudinal motion model is formulated as:  

[
�̇� 

�̇�𝑎  
] = [

     𝑎 

0  𝑎 
] [

𝑥 

𝑥𝑎 
]  [

   𝑎 

 𝑎 
]    

[
   
 𝑎  

] = [
     𝑎 

0  𝑎 
] [

𝑥  
𝑥𝑎 

]  [
   𝑎 

 𝑎 
]                   (3-8) 

(3-8) can be re-written as: 

�̇� =  𝑥     
 =  𝑥     

}                         (3-9) 

where, 𝑥 = [
𝑥 

𝑥𝑎 
] ,  = [

   
 𝑎  

] ,  = [
     𝑎 

0  𝑎 
] ,  = [

   𝑎 

 𝑎 
] ,  = [

     𝑎 

0  𝑎 
] , 

 = [
   𝑎 

 𝑎 
]. In ADDSAFE benchmark model, it is defined that  = 0.  

The nonlinear aircraft model is not available for publication due to confidential issues. 

However, the results in this Chapter have been generated by applying the UIO FDI 

strategy to the fully nonlinear aircraft system dynamics via the ADDSAFE project. 

Following a procedure in Section 2.3.5, the discrepancies (modelling uncertainties) 

between the nonlinear and LTI aircraft model give rise to the UI signal should be 

de-coupled in the UIO designs to cover the robustness issue. Hence, the FDI consists of 

the following two steps:  

In step (i) of the UIO design, the influences of the UI are estimated by estimating the 

“directions” (i.e. distributions) of these terms into the state space model as described in 

Section 2.3.5. The off-line design of the augmented observer scheme for estimating the 

UI distribution matrix 𝐸𝑢  is carried by running the nonlinear aircraft ADDSAFE 

benchmark. The lower rank technique via SVD approach is applied to post-process the 

modelling uncertainty data, so that condition (1) of Theorem 2.3 is satisfied.  

app:ds:discrepancy
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The second step is based on the philosophy of UI de-coupling design, namely to 

de-couple the UI following the 𝐸𝑢 estimation of step 1. The robust UIO FDI schemes 

for sensor faults introduced in Section 3.3 are used to develop the sensor faults FDI 

scheme involving both fault detection and isolation. Each of the two observer residuals 

(in the observer bank) is made specifically sensitive to one fault, so that the faults can 

be isolated. According to the structure of the UIO, two constant observer gains should 

be designed for each of the sensor faults using standard procedures aimed at 

de-coupling the UI signals from each of the generated residuals.  

A logical decision mechanism is developed to achieve this goal. The two dedicated UIO 

design steps for the ADDSAFE benchmark FDI problem are illustrated as Figure 3-1. 

The complete FDI strategy including UIO design and the tuning scheme are shown in 

Figure 3-2. 
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Figure 3-1 UIO application on ADDSAFE benchmark 
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Figure 3-2 FDD complete design and final tuning scheme 

(Patton, Uppal, Simani and Polle, 2010) 

3.4.3 Simulation results 

The nominal aircraft flight behaviour is defined under the trimming point defined in 

Table 3-1. Results corresponding to a right elevator sensor runaway fault occurring at 5s 

are shown below. The design meets the UIO FDI performance indices which along with 

the abbreviations used are defined in Section 1.5 (Maximum detection time, Minimum 

detection time, MDT, FDR, MAR, FAR). The performance evaluated in the ADDSAFE 

FES system environment within a predefined flight envelope (see below for full 

description of the FES environment). The parameters for defining the flight envelope 

are given in Table 3.2. In the following plots, the red line is referred to as the nominal 

flight condition which means the aircraft operates at the trimming point. The blue lines 

represent other evaluation results.  

A brief description of the FES system environment is introduced here to provide a better 

understanding of the simulation results and to acknowledge the ownership. FES is a 

term used to describe a software simulator operating at the functional level of system 

components (including the operating environment) used to support the specification, 

design, verification and operations of space systems. The FES concept can be used 

across the spacecraft development life-cycle, including activities such as system design 

validation, software verification & validation, spacecraft unit and sub-system test 

activities (Fernández, De Zaiacomo and Mafficini, 2010). The FES developed by 

Deimos Space S.L.U. for the ADDSAFE project (Fernández and Ramón, 2011) is a 

non-real-time simulator based on Simulink, Matlab and XML that includes the Airbus 

Simulation 

Performance 
indices 

Tuning 
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benchmark as well as the robustness and performances metrics for all the fault scenarios 

defined in the project (Goupil and Marcos, 2012) 

Table 3-2 Parameter values chosen in flight envelope 

Parameter notation Value 

ZP (Altitude in feet) 8 18 28 38 

 MASS (Net mass in Kg) 120 180 233  

 VC (Calibrate aircraft speed in kts) 160 220 300  

XG (Centre gravity of the aircraft) 0.17 0.3 0.41  
 

 

 

Figure 3-3 Pitch angle in runaway fault scenario 

  

(a) Left elevator sensor value in runaway fault scenario 
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(b) Right elevator sensor value in runaway fault scenario 

Figure 3-4 Left and Right elevator sensor value in runaway fault scenario 

Since the runaway fault occurs during cruise flight but before a pitch-up manoeuver, it 

makes sense to compare the pitch angle in both the cruise flight and the runaway fault 

scenarios. From Figures 3-3 & 3-4, the large pitch angle change occurring at 5s can be 

clearly seen, reflecting the impact of the right elevator sensor runaway fault on the pitch 

angle.  

 

(a) Left elevator UIO residuals in runaway fault scenario 
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(b) Right elevator UIO residuals in runaway fault scenario 

Figure 3-5 Left and Right elevator UIO residuals in runaway fault scenario 

Figure 3-5 shows the left and right elevator UIO residuals. In terms of the UIO theory, 

the right elevator residual (  ) is driven by two inputs (left and right elevator control 

command) and all the outputs except left elevator sensor measurement, which means that 

   includes the fault information. The left elevator residual (  ) is driven by two inputs 

(left and right elevator control command) and all the outputs except right elevator sensor 

value) which means that (  ) does not include the information of the fault onset until the 

control command change. No sudden deflection occurs in     at 5s as shown in Figure 

3-5(a). Following the same theory, in Figure 3-5(b), it can be seen that a sudden 

deflection appears on the right elevator residual (  ) at 5s. According to the threshold 

setting principle described in Section 2.3.4, thresholds for the left and right elevator 

residuals are   = 0   and   =    , respectively. In terms of the (3-5), the 

decision-making logic is formed as Table 3-3 using both ‘0’ and ‘1’ to detect and isolate 

fault.  

Table 3-3 Decision-making logic 

Left elevator 

decision signal  

Right elevator 

decision signal 

Fault occurring 

in left elevator 

Fault occurring 

in right elevator 

0 1 0 1 

1 0 1 0 
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(a) Fault isolation signals of left elevator 

 

(b) Fault isolation signals of right elevator  

Figure 3-6 Fault isolation signal of left and right elevators in runaway fault scenario 

 

Figure 3-7 FDI signals of right elevator in runaway fault scenario 

Figure 3-6 shows the isolation results for left and right elevator, respectively. Figure 3-7 

illustrates right elevator isolation results using Figure 3-6 and decision-making logic in 

Table 3-3. The FDI performance by FES system environment test is given in Table 3-4. 
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Table 3-4 FES test results 

Maximum 

detection time(s) 

Minimum 

detection time(s) 
MDT (s) FDR% MAR% FAR% 

0.09 0.08 0.0801 100 0 0 

 

Remark 3.2: A logical decision mechanism should be designed for the two elevator UIO 

residuals in order to detect the fault occurrences in the individual elevators as well as to 

isolate the fault locations, i.e. to know which elevator is affected by the fault. By 

correctly isolating each actuator sensor, FA alarms can be avoided, i.e. if a fault occurs 

in the right elevator this will not influence the sensor fault residual of the left elevator, 

etc. This is very important for the FDI global design to identify the fault location. To 

achieve this purpose, appropriate residual thresholds should be set.  

Remark 3.3: The threshold can be considered as a tuning parameter in the UIO FDI 

designs. In each of these UIO designs, static thresholds are set for each fault detection 

residual signal corresponding to each UIO. Meanwhile, a good FDI performance (Low 

MD and low FA and Fast FDT) can be achieved by tuning the appropriate thresholds.  

The FES system evaluation of the UIO designs simulates the given flight envelope and 

the right elevator sensor runaway fault scenario. It requires that the appropriate 

threshold value should be larger than the maximum peak value for each of the left and 

right elevator separately in any of the fault-free time periods in order to avoid false 

alarms. Actually, this is not the only factor to define the threshold in each UIO. As 

described above, the FDI performance indices in Section 1.5 are used to evaluate the 

FDI design performance which do not only concern the 100% FDR, but also 0% MAR, 

0% FAR and fast FDT. Hence, the philosophy of UIO parameter tuning is detailed as 

follows:  

For isolation purposes, the residual for each elevator sensor fault is set individually by 

comparing the residuals in both the fault-free and fault scenario cases. The thresholds 

should be larger than each of the peak residual values for the corresponding fault-free 

cases. Meanwhile in theory a smaller threshold can guarantee a high FDR as well as 

lower FDT. However, the threshold values should be set no less than the peak values 

during the fault-free period to avoid FA. Therefore, in the UIO designs, the thresholds 

are tuned in both the right and left elevator residual generators by considering the FDI 
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performance indices and all the simulation results for both the fault-free and the right 

runaway scenario. Finally, the threshold values are set as 0.9 in the left elevator and 1.2 

in the right elevator. Consequently, 100% FDR, 0% MAR and 0% FAR are obtained.  

3.5 Conclusion  

In this Chapter, the UIO approach introduced in Chapter 2 is applied to a benchmark 

simulation of a high fidelity commercial Airbus generic aircraft based on the ADDSAFE 

FP7 project concerning a real industry focussed application study of FDI in 

collaboration with the company Airbus. The right elevator sensor runaway fault 

scenario is detected and isolated using a bank of observers design principle. The 

preliminary design of the UIO method for FDI has been introduced and the philosophy 

of de-coupling the structured UI signals from the generated residuals, i.e. to tackle the 

FDI robustness issue associated with the UI matrix estimation problem. The integrated 

UIO design procedures together with the UI distribution matrix estimation are addressed 

explicitly in terms of typical flight control requirements arising from the aircraft. Finally, 

a performance evaluation procedure for the proposed FDI design is carried out by in 

FES system environment.  

In Chapter 4, the interest turns to the use of FE-based FDD approaches based on the 

residual-based UIO introduced in Chapters 2 & 3. However, the UI de-coupling 

principle is kept to handle the robustness problem in all design approaches.  
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Chapter 4  

RFAFE for a Commercial Aircraft Oscillatory Fault
1
  

 

4.1 Introduction 

Following the literature review on model-based FDI/FDD in Chapter 2 and the UIO 

developments described in Chapters 2 & 3, the focus of interest in this Chapter is on the 

use of FE-based FDD approaches rather than residual-based FDI.  

It turns out that the residual approach to FDI has significant complexity whilst still not 

easily providing an ideal residual. The ideal residual is one which follows the fault 

signal in shape and time variation as precisely as possible. Hence, it can be argued that 

the residual approach can, in the most part, now be replaced by FE approach based on 

the availability of powerful FE methods. Furthermore, FDI residual signals are not so 

useful in FTC systems using reconfigurable control etc, so that even in FTC design 

attention is turning very rapidly to the use of FE. 

Amongst the observer-based FDD methods, the adaptive observer is one of the 

acceptable methodologies and has been studied more during two decades. For the 

adaptive FE, two alternative strategies have been considered in the literature, for 

example, works in (Wang, Huang and Daley, 1997) and (Gao and Ho, 2004), 

respectively. (Wang, Huang and Daley, 1997) estimate the fault using input-output data. 

Following that, the system states are estimated by appropriate updating of fault 

information. (Gao and Ho, 2004) consider the fault signals as additional state variables 

of the system. A state observer is constructed to estimate the augmented states including 

the faults. (Zhang, 2005) give comparison amongst different adaptive observers in a 

unified approach.  

Theoretically, the estimated fault signal should follow the real fault signal precisely, i.e. 

there should be no time delay compared with the real fault signal. From this point of 

view, the so-called fast adaptive fault estimation (FAFE) based on the aforementioned 

                                                 
1

The work presented in this Chapter has been published in: Sun, X. Y., Patton, R. J. and Goupil, P. (2012). Robust adaptive fault 

estimation for a commercial aircraft oscillatory fault scenario. Proc. of the 2012 UKACC International Conference on Control, 

Cardiff, 595-600, 3-5 Sept. 
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adaptive observer structure in (Wang, Huang and Daley, 1997) is presented by (Zhang, 

Jiang and Cocquempot, 2008) to achieve the rapidity of FE. In the FAFE design, the 

adaptive estimated fault signals comprise proportional and integral terms to guarantee 

both dynamical and steady-state FE performance. There is also a robustness problem in 

FDD design which has not been taken into consideration by (Zhang, Jiang and 

Cocquempot, 2008). As discussed in Section 2.2.2, if an FE approach is to be used, the 

estimated fault signals must be accurate and robust to changes in system operation 

involving modelling uncertainty and disturbance. Hence, the robustness in FE is an 

important topic in this Chapter.  

This provides the motivation for the development of a design approach for a robust fast 

adaptive fault estimator (RFAFE) that incorporates with a UI de-coupling function. As a 

background to this work (Wang and Lum, 2007) and (Zhao, Xie, Hong and Zhang, 2011) 

worked separately on UI de-coupling approaches to adaptive FE enhancing the 

robustness of the adaptive observer approaches outlined above. In (Wang and Lum, 

2007), the full measurements are needed, and this is either considered as an ideal 

situation in practice or is not general enough for many problems. (Zhao, Xie, Hong and 

Zhang, 2011) attempt to resolve some of the limitations imposed by the requirement to 

have a full set of measurements. However, in their work it is assumed that the fault time 

derivative is zero, thus limiting the type of FE structure that can be used. Aside from 

using UIO approaches, these two papers share one feature in common, which is that the 

fault estimators are constructed with one integral term depending on system output error 

dynamics.  

Hence, the work in this Chapter is inspired by the so-called FAFE approach of (Zhang, 

Jiang and Cocquempot, 2008). The proposed approach is termed a RFAFE, based on a 

combination of the UIO proposed in (Chen, Patton and Zhang, 1996) and the FAFE of 

(Zhang, Jiang and Cocquempot, 2008). It should be noted that (Zhang, Jiang and 

Cocquempot, 2008) do not consider the robustness of the FE to modelling uncertainty. 

So from the FDD robustness perspective, the contribution in the current work provides 

an extension to the (Zhang, Jiang and Cocquempot, 2008) study using a UIO to take into 

account the effects of the so-called UI signals. 

In this RFAFE structure, the FE signal is a function of the combination of the 

proportional and integral action realised by a full order identity observer. When 
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compared with (Wang and Lum, 2007) and (Zhao, Xie, Hong and Zhang, 2011), FE 

signal not only involves integral action but also includes proportional action to enhance 

the FE speed. Furthermore, the proposed approach is not restricted to the use of a full set 

of measurements. Therefore, this robust adaptive fast FE method can enhance the 

robustness of the fault estimator to UI as well as the rapidity of the FE. 

The RFAFE design problem is divided into two stages of (i) UI distribution matrix 

estimation followed by (ii) the actual FE, with inclusion of proportional (not only 

integral) action to enhance to FE speed. Finally, the RFAFE is applied to estimate the 

OFC acting on an elevator of the ADDSAFE benchmark system introduced in Chapter 3. 

The benefit of the proposed RFAFE is that the robustness of the FE is improved by 

making the output error of the observer insensitive to modelling uncertainty.  

However, the results in this Chapter have been generated by applying the new RFAFE 

FE strategy to the fully nonlinear aircraft system dynamics via the ADDSAFE project. 

By using the same procedure as described in Chapter 3, modelling uncertainty between 

the nonlinear and LTI aircraft models is accounted for using UI terms that appear in the 

linear model state space format used for the development of the fault estimator. In stage 

(i) of the RFAFE design, the influences of the UI are estimated by estimating the 

“directions” (i.e. distributions) of these terms into the state space model as described in 

Chapter 3. In stage (ii) the fault estimator is then applied directly to estimate the OFC 

fault activity in one elevator actuator (referred to as the “left” actuator in the light of the 

requirement of the FP7 ADDSAFE project).  

4.2 RFAFE theory description  

4.2.1 FAFE with UI de-coupling 

An LTI system considering actuator faults (all sensors are assumed to be fault-free) and 

with modelling uncertainty, represented by the UI term 𝐸𝑢𝑑𝑢 is represented as: 

�̇�  =  𝑥     𝐸𝑢𝑑𝑢  𝑎𝑓𝑎  
 =  𝑥                                      

}                (4-1)  

where, 𝑥     denotes the system state vector,      and      denote the input 

and measurement vectors, respectively and 𝑑𝑢     is a vector of UI. 𝑓𝑎     

represents a vector of time-varying actuator faults.  ,  ,   are known system matrices 
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with appropriate dimensions. The matrix 𝐸𝑢       represents the distribution matrix 

for the UI. The columns of the matrix  𝑎       denote the independent fault directions. 

It is thus considered that both 𝐸𝑢 and  𝑎 act as system inputs.  

A functional observer in full order is constructed as: 

 ̇ =             𝑎𝑓𝑎
�̂� =   𝐻                                

}                  (4-2) 

where, �̂�     is the estimated state vector and      is the observer state vector, 

𝑓𝑎     is the FE signal of 𝑓𝑎, and   ,   ,   and 𝐻 are design matrices as described 

below. 

Definition 4.1: The observer (4-2) is defined as a RFAFE for the system (4-1), if its state 

and FE errors   = 𝑥  �̂�  and   = 𝑓𝑎  𝑓𝑎  approach zero asymptotically, in the 

presence of the system UI and faults. 

Assuming that 𝐸𝑢 is known, the estimation error dynamics are governed by: 

 ̇ = (  𝐻     1 )    

                  [  (  𝐻     1 )]   

                         [ 2  (  𝐻     1 )𝐻]     

     [  (  𝐻 )]    

 (𝐻   )𝐸𝑢𝑑𝑢   𝑎                       (4-3) 

where,  

   =   1   2                         (4-4) 

If the following relations are satisfied:  

(𝐻   )𝐸𝑢 = 0                              (4-5) 

 =   𝐻                          (4-6) 

 =   𝐻     1 =  1   1         (4-7) 
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  2 =  𝐻                            (4-8) 

The state estimation error is then refined as: 

 ̇ =       𝑎                        (4-9) 

  =                                  (4-10) 

 =    �̂� =    =                 (4-11) 

Furthermore, if all the eigenvalues of   are stable,   will approach a small set of value 

asymptotically, i.e. �̂�  𝑥 and 𝑓𝑎  𝑓𝑎. The observer (4-2) is an UI de-coupling fast 

adaptive fault estimator for the system (4-1) when conditions (4-5) – (4-8) are satisfied. 

Therefore, this RFAFE design involves the solution of (4) to (8) whilst placing all the 

eigenvalues of the system matrix   to be stable. Meanwhile,  ,  ,   and 𝐻 in (4-2) 

are designed to achieve the required FE performance.  

A particular solution to (4-5) can be calculated as follows: 

         𝐻 = 𝐸𝑢( 𝐸𝑢)
                       (4-12) 

where, ( 𝐸𝑢)
 = [( 𝐸𝑢)

 ( 𝐸𝑢)]
 1( 𝐸𝑢)

 denotes the Moore-Penrose pseudo-inverse.  

Theorem 4.1. The necessary and sufficient conditions for the existence of RFAFE of 

system (4-1) comply with Theorem 2.3 in (Chen and Patton, 1999): 

(1)     ( 𝐸𝑢) =     (𝐸𝑢)  

(2)     (   1) is a detectable pair 

Lemma 4.1 is used to verify the RFAFE existence conditions: 

Lemma 4.1 (Jiang, Wang and Soh, 2002): Given a scalar   0 and a symmetric 

positive definite (S.P.D) matrix  , the following inequality holds: 

 𝑥     
1

 
(𝑥  𝑥)        1     𝑥                 (4-13) 

Assume that 𝑓�̇� ≠ 0, e.g. a sinusoidal perturbation (as required for the OFC fault case). 

The derivative of    is represented as: 
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 ̇ = 𝑓�̇�  𝑓̇𝑎                          (4-14) 

The system error dynamics can be guaranteed by Theorem 4.2.  

Theorem 4.2: With the assumption of Theorem 4.1, given the scalar parameters 

    0, if there exist S.P.D matrices        ,        ,        , and matrices 

       ,         such that the following conditions hold. 

[
       

1

𝛼
   (  𝑎)

∗   
1

𝛼
(  𝑎)

  (  𝑎)  
1

𝛼 
 
]  0        (4-15) 

(  𝑎)
  =                         (4-16) 

 ∗ denotes the elements of a symmetric matrix. The UI de-coupling fast adaptive fault 

estimator can be defined as: 

�̇�𝑎 =   ( ̇    )                      (4-17) 

(4-17) can be realised when   and    are uniformly bounded functions.         is 

an S.P.D learning rate matrix. 

Proof:  

Consider the following Lyapunov function:  

 =   
      

1

𝛼
  

   1                      (4-18) 

Substituting (4-9) and (4-17) into (4-18), the derivative of   with respect to time is 

derived as: 

 ̇ =  ̇ 
       

   ̇ 
   

 

 
  

   1 ̇  

       =   
 (      )      

  (  𝑎)   

  
1

𝛼
   

  ( ̇    )   
1

𝛼
  

   1𝑓�̇�                (4-19) 

Using (4-16), the term   
1

𝛼
   

  ( ̇    ) on the left hand side of (4-19) can be 

re-written as:  
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1

𝛼
   

  ( ̇    ) =   
1

𝛼
  

 (  𝑎)
  ( ̇     )       (4-20) 

Substituting (4-9) and (4-20) into (4-19),  ̇ can be formulated as: 

 ̇ =  ̇ 
 (      )    

 

 
  

 (  𝑎)
      

  
1

𝛼
  

 (  𝑎)
  (  𝑎)    

1

𝛼
  

   1𝑓�̇�                 (4-21) 

By using Lemma 4.1, the (4-22) is obtained as: 

  
1

𝛼
   

   1�̇�𝑎  
1

𝛼 
  

     
 

𝛼
𝑓𝑎

2  𝑎 ( 
 1  1  1)       (4-22) 

Substituting (4-22) into (4-21),  ̇ can be reformulated as: 

 ̇ =                                 (4-23) 

where, 

 = [
  

  
],     =

 

𝛼
𝑓𝑎

2  𝑎 ( 
 1  1  1), 

 = [
       

 

 
   (  𝑎)

∗   
 

 
(  𝑎)

  (  𝑎)  
 

  
 

] 

(  𝑎) is full column rank, under the condition of   0, and  =     (  ), then: 

 ̇    ‖ ‖2                        (4-24) 

for  

   ‖ ‖2                         (4-25) 

Then, it follows that:  

 ̇  0                            (4-26) 

In terms of (4-24) & (4-25), (4-26) indicates that    and    converge to a small set of 

 .  

This ends the proof. 



74 

 

If the fault signal is defined as: 

𝑓𝑎( ) = {
0

𝑓𝑎( )
             

  [0      )

  [    )
              (4-27) 

The FE signal 𝑓𝑎 can be derived by (4-17) and given as:  

𝑓𝑎 =    (   ∫  
 

  
𝑑 )                   (4-28) 

From (4-28), it can be seen that the 𝑓𝑎 includes both proportional and integral actions. 

The proportional part enhances the fault estimator dynamic performance giving 

improved FE speed as well as relaxing the constraint with zero value of first derivative of 

the estimated fault.  

Remark 4.1：Although (4-15) can be solved easily via the Matlab LMI tool box, the 

simultaneous solution of (4-15) and (4-16) is difficult to achieve using functions in the 

LMI tool box. However, the problem can be solved by reformulating (4-16) into (4-29), 

as an inequality optimisation problem (Corless and Tu, 1998):  

[
   (  𝑎)

      
∗    

]  0                 (4-29) 

The RFAFE derivation is complete with proof of stability. 

4.2.2 Regulation of  -stable theory on RFAFE 

Apart from guaranteeing the observer stability, the observer dynamic response plays an 

important role in obtaining a qualified observer performance achieved by forcing the 

poles to lie within suitable complex plane sub-regions comprising either vertical strips, 

discs, conic sectors etc. (or their combinations) using LMIs optimisation (Chilali and 

Gahinet, 1996). Here, the disc and  -stability regions are employed as a further 

refinement to improve the fault estimator dynamics with LMIs defined as: 

Definition 4.2:   is defined as in (4-7). Let   be an LMI sub-region with 

characteristic function in the left hand side of the complex plane as a disc of radius   

and centre (   0). Then there exist an S.P.D matrix   such that: 

                (         
∗    

)  0             0            (4-30) 
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Then,   is called disc–stable. 

Definition 4.3:   is defined as in (4-7). Let   be a subregion which presents a 

 -stability region in the left-half plane.   is an LMI region with characteristic function, 

so that there exists an S.P.D matrix   such that:  

           0             0            (4-31) 

Then,   is called  –stable. Figure 4-1 shows the RFAFE poles assignment within a 

sub-region   of an intersection between a specified disc and  -stability regions by 

solving (4-30) & (4-31). 

 

Figure 4-1  -subregion (hatched) 

Consequently, a complete RFAFE with UI de-coupling can be designed by solving 

(4-15), (4-29), (4-30), (4-31) and conditions (4-4)–(4-8), together with Theorem 4.2.  

4.3 RFAFE application on a commercial aircraft  

In this Chapter, the RFAFE design is implemented on a generic AIRBUS aircraft model 

to estimate the left elevator OFC fault. This typical fault is an actuator fault modelled as 

a discrepancy between the computed control input signal and the delivered actuator input 

value.  

4.3.1 OFC fault scenario 

One of the often considered fault scenarios is the OFC {sometimes referred to as the 

“oscillatory failure case”} which can be caused, for example by electronic system 

component faults (Goupil, 2010). The moving flight surface of the aircraft can 

sometimes experience oscillation generated within the servo-loop control, i.e. between 

the FCC and the actual control surface itself. The spurious sinusoidal signals can 

propagate through the FCC and hence the control surface, as shown in Figure 4-2. As the 
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fault is a local phenomenon within a single actuator, it only has an impact on one control 

surface.  

Two types of OFC are classified, the “liquid” and “solid” faults. The liquid fault is 

considered as an additive fault which adds to the control command inside the control 

loop. The solid fault is considered as a ‘disconnected’ fault which substitutes the control 

command completely inside the control loop. Both of these two OFC faults lead to the 

control surface performing with a spurious control command. In this project, the OFC 

faults are simulated as sinusoidal signals within a range of magnitudes and frequencies. 

The estimated OFC fault signals are normalized into the entire interval [0, 1] according 

to the elevator control surface deflection range of operation. In this Section, the OFC 

signals 0.016 and 0.33 (in normalized units) are estimated to (a) demonstrate the effect 

that the OFC has on the elevator operation and (b) the effectiveness of the RFAFE 

design.  

: OFC sources

Rod Sensor

Actuator

or

EHAHydraulic Servocontrol

Control surface sensor

Flight Control Computer

Flight 

Control Law

(Command)

Analogic Input

Analogic Input

Analogic Output

 

Figure 4-2 OFC source location in the control loop (Goupil, 2010) 

Note: In Figure 4-2, a command channel (COM) and a monitoring channel (MON) are 

the two parts of flight-by-wire FCC. 
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4.3.2 Simulation results 

The first step of the RFAFE design is to estimate the UI distribution matrix as an off-line 

analysis. The modelling uncertainties between the nominal nonlinear aircraft model and 

the LTI aircraft longitudinal model are considered as a UI. The off-line design for 𝐸𝑢 

estimation is made by running the ADDSAFE benchmark model as introduced in Section 

3.4. The lower rank technique via the SVD approach is applied to post-process the 

modelling uncertainty data, so that condition (1) in Theorem 4.1 is satisfied. The design 

described in this Section uses the same aircraft longitudinal LTI model as that in Section 

3.4. The corresponding operating point has been given in Table 3-1. The design approach 

described here uses the same notation for 𝐸𝑢 as derived in Section 3.4.  

The second step of the RFAFE design is to construct the UI de-coupling fast adaptive 

estimator in terms of the matrix 𝐸𝑢 estimated in step 1. A set of conditions should be 

satisfied first and a group of LMIs should be solved, as discussed in Section 4.2. The left 

elevator fault direction  𝑎 is the first column of  = [     ], i.e.  𝑎 =   .  

Figure 4-3 & 4-4 show the left elevator control surface position for two fault cases 

compared with the fault-free case, respectively. The control surface deflection is 

apparent, i.e. the OFC fault leads to unwanted control surface oscillation. 

 

Figure 4-3 Left elevator control surface position (liquid OFC & fault-free cases) 
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Figure 4-4 Left elevator control surface position (solid OFC and fault-free cases) 

Figure 4-3 corresponds to the liquid OFC. A sinusoidal signal is added to the normal 

control surface position. Figure 4-4 shows the control surface movement trajectory is 

totally substituted by a sinusoidal signal for the solid OFC “disconnection” behaviour. 

 

Figure 4-5 Left elevator FE signal for the fault-free case 

 

Figure 4-6 Left elevator FE signal for the liquid OFC fault 
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Figure 4-7 Left elevator FE signal for the Solid OFC fault 

Figure 4-5 shows that in the fault-free case (left elevator) the estimates are comparable 

with the noise level. In Figures 4-6 & 4-7, the estimation of the so-called liquid OFC 

(0.016 OFC) and solid OFC (0.033 OFC) are shown, respectively. For each fault 

scenario, the faults occur at 20s and the FE signals track the actual fault signals in 

magnitude and frequency.  

The RFAFE design learning rate is tuned to a suitable value to achieve accurate and fast 

FE. It can also be seen that the FE signal is not significantly affected by the modelling 

uncertainties, but is influenced by high frequency sensor noise. Hence, the FE signal 

obtained is considered robust to modelling uncertainties.  

4.4 Conclusion  

In this Section, the RFAFE approach to fast FE response has been applied to the 

problem of an aircraft actuator OFC, taking modelling uncertainties into account 

through UI estimation. The UI reflects the modelling mismatch between the linear and 

nonlinear aircraft systems and the UI estimation provides a structured approach to 

robust FE design. The UI estimation is completed off-line considering a range of flight 

conditions with the UI de-coupling utilized in the RFAFE design. The results show that 

the signals track the actual fault signals accurately under both liquid and solid OFC 

faults in different magnitudes and frequencies, demonstrating the effectiveness and 

efficiency of the RFAFE method.  

As pointed out in Section 4.3.2, the measurement noise signals are not taken into 

account in this RFAFE design. Hence, in Chapter 5, the work is to develop a robust 

UI-PIO design which enables to de-coupling the UI from FE signals as well as to 
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minimise the effect of measurement noise on the FE signals using the 𝐻∞ optimisation 

approach. 
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Chapter 5  

Robust Actuator Multiplicative FE with UI 

De-coupling for a Wind Turbine System2  

 

5.1 Introduction· 

The residual generation-based FDI and FE-based FDD designs described in Chapters 3 

& 4 are constructed using a proportional Luenberger UIO framework relying on current 

state estimation information. In these approaches, the steady state estimation error 

cannot be avoided due to an only proportional gain in observer design. In this Chapter, 

an integral gain will be inserted into the observer to achieve a better state estimation 

performance.  

The earliest work on PIO was described by (Wojciechowski, 1978) for single input 

single output (SISO) LTI systems. Following this several studies proposed approaches 

focussed on multivariable systems (Kaczorek, 1979; Shafai and Carroll, 1985; Saif, 

1993; Busawon and Kabore, 2000). (Shafai and Carroll, 1985) explored the properties 

of the PIO further with the purpose of improving the robustness against slow 

time-varying parameter variations and step disturbances. In (Söffker, Yu and Müller, 

1995), the proposed PIO is capable of estimating the state of a system with arbitrary UI. 

Studies of the application of PIO to the FE problem have been described in (Shafai, Pi 

and Nork, 2002; Marx, Koenig and Georges, 2003; Xiong and Saif, 2003). In (Koenig 

and Mammar, 2002), PIO with UI de-coupling strategy was used to handle the 

robustness against the effect of UI acting on the system states. In (Marx, Koenig and 

Georges, 2003), 𝐻∞ theory was adopted to attenuate the effect of the disturbance 

acting in the estimation error. Also, studies on PIO for descriptor system designs can be 

seen in (Marx, Koenig and Georges, 2003; Wu and Duan, 2006; Gao, Breikin and Wang, 

2008; Hamdi, Mickael, Chokri, Theilliol and Naceur Benhadj, 2012).  

It is noticed that among these studies, the sensor noise acting on the measurement is 

rarely taken into account in the PIO design. However, in some practical applications, 

                                                 
2

The work proposed in this chapter has been published in: Sun, X., Patton, R. J., Robust actuator multiplicative fault estimation with 

unknown input decoupling for a wind turbine system. IEEE Conference on Control and Fault-Tolerant Systems SysTol’13, October 

9-11, 2013, Nice, France (accepted) 
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sensor noise can be problematic for FDI/FDD design since the FE signal reconstruction 

requires the measurement information. For instance, the measurements of a wind 

turbine system can be severely influenced by sensor noise which can degrade the 

FDI/FDD as well as the state estimation performance. It is interesting that only a few 

studies on PIO designs involving sensor noise have been reported in the literature using 

designs that are strictly constrained by a number of idealised assumptions. Specifically, 

in (Saif, 1993), a PIO design for a monitored system with constant measurement 

disturbances was proposed. In (Busawon and Kabore, 2001), their PIO is only applied 

to minimise a certain bounded noise in a single output system. These papers indicated 

that further research in PIO design would be required that should be based on more 

practical considerations to take into account a variety of measurement noises for more 

general applications. 

This Chapter develops a robust PIO design with the capability of attenuating the 

measurement noises and de-coupling the effects of the UI signals on the FE signals. 

Hence, a Unknown input-proportional integral observer (UI-PIO) system for fault and 

state estimation is proposed in which the faults are appended as additional states in an 

augmented system structure.  

As an example, an LTI wind turbine model is chosen to build the proposed UI-PIO. The 

LTI wind turbine model is derived from a nonlinear wind turbine benchmark model 

described in (Odgaard, Stoustrup and Kinnaert, 2009). The nonlinear benchmark model 

(assumed to emulate the dynamic behaviours of a real wind turbine) operates in the high 

wind speed range and linearisation is made corresponding to a wind speed of 16m s
-1

 in 

its range. The linearised model is then used in the UI-PIO design. Modelling 

uncertainties relating to the wind force are derived via the linearisation, since the 

appropriate partial derivatives are available. As a consequence, both the linearisation 

error and exogenous disturbance (the wind force) are derived as UI signals. Therefore, 

the UI de-coupling principle is utilized to remove the UI effect from the FE signals 

corresponding to abnormal parameter changes in the wind turbine dynamics. The effects 

of output measurement noise signals acting on the rotor speed, generator speed and 

actuator pitch angle sensors are minimised in the FE signals by combined use of 𝐻∞ 

optimisation to enhance the FE robustness. 
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In order to achieve a required FE performance, the observer poles are regulated using 

the   sub-region pole assignment. Parametric changes are multiplicative faults, which 

are estimated by this scheme. To facilitate the FE design by the proposed observer a 

modification is required to transform the multiplicative faults into additive fault format 

acting on the system states. An application example of a hydraulic leakage fault 

occurring on a three blade horizontal wind turbine pitch system is provided to 

demonstrate the efficiency of the proposed estimation methodology. The leakage affects 

the values of the pitch actuator damping and natural frequency parameters. 

5.2 Review of wind turbine FDI/FDD application 

It is noticeable that the focus on renewable energy sources has significantly increased 

due to the limitation of fossil-based fuels and environmental contamination of the 

usages of these fuels. Wind power is currently showing a lot of promise in certain 

regions of the world and there has been an explosion in the development of the 

appropriate wind turbine technologies for both off-shore and on-shore applications. In 

certain regions offshore wind power has become very important, e.g. in the North sea 

(Wikipedia, 2013) and Irish sea (Wikipedia, 2012). The various technologies for 

offshore wind power face significant challenges which have led to new research and 

development into attractive systems and structural design and manufacturing methods.  

However, with the increasing demands from the wind turbine, new problems have to be 

overcome. For instance, some new technologies are not fully tested before going to 

application and the designed performance is sometimes hard to demonstrate. In this 

context, a survey given by (Ribrant and Bertling, 2007) discusses the issue of failures 

occurring on wind turbine systems in Sweden, Finland and Germany based on the 

maintenance records. (Hameed, Hong, Cho, Ahn and Song, 2009) and (Lu, Li, Wu and 

Yang, 2009) review the general fault scenarios as well as the state of art techniques for 

the monitoring system for faults on wind turbine system. There is no doubt that the 

performance and operational safety of wind turbine systems can be significantly 

degraded when faults occur, decreasing the efficiency and availability or sustainability 

of the wind power for transmission into the electrical grid system. Hence, the issues of 

improving the safety, reliability and sustainability of offshore wind turbine are 

considered necessary and valuable.  
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Motivated by all the aforementioned issues, real-time FDD or FDD related-AFTC 

schemes on wind turbine components have attracted much attention with the purpose of 

enhancing the reliability and reducing the operations and maintenance costs. This is 

especially true for offshore wind turbine installations due to challenging access 

restrictions. 

(Pourmohammad and Fekih, 2011) provide a general review of the primarily concepts 

and issues corresponding to the development of FTC schemes for wind turbines 

including fault diagnosis. (Odgaard, Stoustrup and Kinnaert, 2009) describe a wind 

turbine benchmark model which is a useful tool for FDD/FTC analysis and design 

studies. Attractive competitions have been launched based on this benchmark model 

system for (a) FDD robustness in 2011, (b) FTC design in 2012, (c) FDD/FTC for wind 

farms (Kk-Electronic, 2013). An international workshop “Sustainable Control of 

Offshore Wind Turbines” was held at Hull University in September 2012 

(Turbine-control-workshop, 2012). A significant number of useful papers on this 

subject have been presented and published. For example, (Sloth, Esbensen and 

Stoustrup, 2011) have described an interesting study of the use of LPV model-based 

FDD/FTC design and (Sami and Patton, 2012) describe an approach to FTC for a wind 

turbine systems using T-S fuzzy modelling (in control and FE).  

Focusing on FDD (Odgaard and Stoustrup, 2010) use a conventional residual 

based-UIO to detect three different sensor faults (rotor, generator and the converter). 

(Wei and Liu, 2010) describe an 𝐻∞ filter (in the finite frequency domain) design for 

sensor fault detection. (Zhang, Zhang, Zhao, Ferrari, Polycarpou and Parisini, 2011) 

described a unified adaptive method to detect sensor and actuator faults. In (Wei, 

Verhaegen and van Engelen, 2010), the blade root moment sensor faults are detected by 

using residual-based dual Kalman filters. (Chen, Ding, Sari, Naik, Khan and Yin, 2011) 

use the Kalman filter approaches to detect pitch actuator and sensor faults. (Esbensen 

and Sloth, 2009) explore the use of an extended Kalman filter to estimate the paramter 

faults of a three blade horizontal wind turbine pitch system. In this Chapter, the same 

paramter faults caused by hydraulic leakage are estimated by an observer-based FE 

approach, i.e. using a UI-PIO. It is shown that this leads to acceptable FE performance. 

Additionally, the design provides a way to estimate the parameter variations using 
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observer-based methods instead of stochastic estimator methods such as the extended 

Kalman filter. 

5.2.1 Actuator additive FE with UI-PIO 

Before introducing the proposed UI-PIO, an LTI system with additive actuator fault 

 𝑎𝑓𝑎 (all sensors are assumed to be fault-free) and exogenous disturbance expressed by 

the UI term 𝐸𝑢𝑑𝑢 is represented firstly as:  

�̇� =  𝑥     𝐸𝑢𝑑𝑢  𝑎𝑓𝑎  
 =  𝑥                                     

}                    (5-1) 

where, 𝑥     denotes the system state vector,      denotes the input vector, 

     is the measurement vector, 𝑑𝑢     is UI vector, 𝑓𝑎     is actuator fault. 

 ,  ,   are known system matrices with appropriate dimensions. 𝐸𝑢       denotes 

the UI distribution matrix,   𝑎       denotes the fault distribution matrix with full 

rank.  

An augmented state observer is considered to estimate the actuator fault 𝑓𝑎. Assume 

that 𝑓�̇� = 0, i.e. 𝑓𝑎   is a slowly time-varying vector. Then the system model can be 

expressed in an augmented form as: 

�̇�𝑎 =  𝑎𝑥𝑎   𝑎  𝐸𝑎𝑑𝑎

 =  𝑎𝑥𝑎                        
}                    (5-2) 

where, 𝑥𝑎  = [
𝑥
𝑓𝑎

]  ,  𝑎 = [
  𝑎
0 0

],  𝑎 = [
 
0
], 𝐸𝑎 = [

𝐸𝑢

0
],  𝑎 = [ 0].  

If the system inputs and outputs       are available, a functional observer (5-3) of the 

system (5-2) is constructed as (5-3) to estimate the 𝑓𝑎:  

 ̇ =      𝑎    
�̂�𝑎 =   𝐻                      

}                    (5-3) 

where, �̂�𝑎    ̅ is the estimated state vector and     ̅ is the augmented observer 

state vector with  ̅ =    . Note that  ,  ,   and 𝐻 are design matrices.  

Definition 5.1: Observer (5-3) is defined as a robust UI-PIO for the system (5-2), if its 

state estimation error   = 𝑥𝑎  �̂�𝑎 converges to zero asymptotically, regardless of the 

presence of the UI and faults in the system. 
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Assuming that 𝐸𝑎  is known, the estimation error dynamics are governed by the 

equation: 

  ̇ = ( 𝑎  𝐻 𝑎 𝑎   1 𝑎)    

                     [  ( 𝑎  𝐻 𝑎 𝑎   1 𝑎)]  

                            [ 2  ( 𝑎  𝐻 𝑎 𝑎   1 𝑎)𝐻]   

      [  (  𝐻 𝑎)] 𝑎   

  (𝐻 𝑎   )𝐸𝑎𝑑𝑢                          (5-4) 

where, 

  =   1   2                          (5-5) 

If the following relations are satisfied:  

(𝐻 𝑎   )𝐸𝑎 = 0                                 (5-6) 

 = 𝐻 𝑎                             (5-7) 

 =  𝑎  𝐻 𝑎 𝑎   1 𝑎 =  1   1 𝑎     (5-8) 

  2 =  𝐻                               (5-9) 

Then the state estimation error is rearranged to be: 

 ̇ =                                (5-10) 

  =  𝑎                                  (5-11) 

If all the eigenvalues of   are stable,   ( ) will approach zero asymptotically, i.e. 

�̂�𝑎  𝑥𝑎. The observer (5-3) is a UI-PIO for an additive actuator FE of the system (5-2) 

when conditions (5-5) to (5-9) are satisfied. Therefore, this observer design involves the 

solution of (5-5) to (5-9) whilst placing all the eigenvalues of the system matrix   on 

the left half of complex plane. Meanwhile,  ,  ,   and 𝐻 in (5-3) are designed to 

achieve the required FE performance.  
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A particular solution to (5-6) can be sought as defined by (Chen and Patton, 1999): 

         𝐻 = 𝐸𝑎( 𝑎𝐸𝑎)
                       (5-12) 

where, ( 𝑎𝐸𝑎)
 = [( 𝑎𝐸𝑎)

 ( 𝑎𝐸𝑎)]
 1( 𝑎𝐸𝑎)

 denotes the Moore-Penrose 

pseudo-inverse.  

Theorem 5.1: (Chen and Patton, 1999). The necessary and sufficient conditions for the 

existence of UI-PIO for the system (5-2) based on functional observer (5-3) are: 

(1)     ( 𝑎𝐸𝑎) =     (𝐸𝑎) 

(2) ( 𝑎  1) is a detectable pair 

5.2.2 Measurement noise attenuation by  ∞ theory 

A UI-PIO for additive actuator FE has been introduced in Section 5.2.1 without 

consideration the of the output measurement sensor noise. In this sub-section, the sensor 

noise is taken into account and the 𝐻∞  optimisation is applied to minimise the 

influence of the sensor noise on the FE signal based on the proposed observer in Section 

5.2.1. Hence, a new robust UI-PIO is constructed. In order to enhance the observer 

dynamic performance, the   sub-region pole assignment method is explored to 

regulate the pole locations.  

When the output measurement is corrupted by sensor noise, (5-1) is re-written as: 

�̇� =  𝑥     𝐸𝑢𝑑𝑢  𝑎𝑓𝑎 
 =  𝑥  𝐸 𝑑                        

}                (5-13) 

𝑑     represents the sensor noise. 𝐸  is the distribution matrix of the sensor noise. 

The augmented state observer (5-3) are reorganised as follows: 

�̇�𝑎 =  𝑎𝑥𝑎   𝑎  𝐸𝑎𝑑𝑎

 =  𝑎𝑥𝑎 𝐸 𝑑             
}                  (5-14) 

where, 𝑥𝑎 = [
𝑥
𝑓𝑎

]  ,  𝑎 = [
  𝑎
0 0

],  𝑎 = [
 
0
], 𝐸𝑎 = [

𝐸𝑢

0
],  𝑎 = [ 0].  

By using the same functional observer as (5-3), the state estimation error dynamics of 

(5-14) based on the theory in Section 5.2.1 are obtained as: 
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 ̇ =      1𝐸 𝑑  𝐻𝐸 �̇�               (5-15) 

  =      𝐸 𝑑                              (5-16) 

The observer design considering both the influence of exogenous disturbance and 

sensor noise involves the solution of (5-5) to (5-9) with assignment of all the 

eigenvalues of the system matrix   to be stable. The design parameters are  ,  ,   

and 𝐻 in (5-3).  

The sensor noise present in (5-15) & (5-16) affects the system estimation error which 

can degrade the FE performance. Here, 𝐻∞ optimisation theory is used to minimise the 

sensor noise effect to improve the robustness of the proposed UI-PIO. 

Theorem 5.2: For a given positive constant   , if there exists an S.P.D matrix   and a 

matrix  , such that the LMI (5-17) holds, then a robust UI-PIO defined by (5-3) for 

(5-14) is solvable with the gain   1 =   1 . The state estimation error dynamics (5-15) 

are robustly stable and the 𝐻∞ norm of the output estimation error satisfies ‖  ‖2
 

  ‖  ‖2 for any nonzero     2[0   ), where:  

[
    1𝐸   𝑎

 𝐸   𝐻𝐸 

∗ 𝐸 
 𝐸     0

∗ ∗     

]  0           (5-17) 

with  =    1   1
     𝑎     𝑎

   𝑎
  𝑎     = [𝑑 �̇� ] , ∗ denotes a 

symmetric term. 

Proof: Consider the following Lyapunov function:  

 =   
                                 (5-18) 

According with  ̇  derived in (5-15), the time derivative of the candidate Lyapunov 

function  ̇(  ) for the system (5-15) is derived as:  

  ̇ =    
   ̇                 

                                          
 [ ( 1   1 𝑎)  ( 1   1 𝑎)

  ]          

                           
   1𝐸 𝑑      

  𝐻𝐸 �̇�                   
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= [

  

𝑑 

�̇� 

]

 

[
    1𝐸   𝐻𝐸 

∗ 0 0
∗ ∗ 0

] [

  

𝑑 

�̇� 

]     (5-19) 

where,  =   ( 1   1 𝑎)  ( 1   1 𝑎)
  , ∗ denotes a mean symmetric term. 

Define  

 =  ∫    
      

2  
   ] 𝑑 

∞

 
              (5-20) 

  ∫ [  
      

2  
   ]   ̇𝑑 

∞

 
           (5-21) 

  ∫     𝑑 
∞

 
                        (5-22) 

where,  = [  𝑑 �̇� ]
  

 = [
    1𝐸   𝑎

 𝐸   𝐻𝐸 

∗ 𝐸 
 𝐸     0

∗ ∗     

]             (5-23) 

with,  =   ( 1   1 𝑎)  ( 1   1 𝑎)
    𝑎

  𝑎.  

Let   1 =   1 , then   can be re-written as:  

 =    1   1
     𝑎     𝑎

   𝑎
  𝑎. 

where, ∗ denotes a symmetric term.   0 is equal to ‖  ‖2
    ‖  ‖2  for any 

nonzero     2[0   ). Hence, for   0, the robust UI-PIO is quadratically stable 

with the dynamical output error satisfying ‖  ‖2
    ‖   ‖2. 

This completes the proof. 

In the following, a disc LMI region (Chilali and Gahinet, 1996) is defined to regulate the 

robust augmented fault estimator poles.  

Definition 5.2:   is defined as that in Theorem 5.2. Let   be a sub-region which 

represents a disc of radius   and centre (   0) in the left-half plane.   is an LMI 

region with characteristics of disc function. There exists an S.P.D matrix   such that 
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       (        

∗    
)  0          0            (5-24) 

Then,   is referred to as disc–stable. 

Based on the Definition 5.1, the poles of the proposed UI-PIO can be assigned in the disc 

LMI region by solving (5-24) to regulate the FE performance. Consequently, a robust 

UI-PIO with the effect of the sensor noise in the estimation error    can be designed by 

solving (5-17), (5-24) and conditions (5-5)–(5-9) subject to Theorem 5.1.  

5.2.3 Transformation from multiplicative fault to additive fault  

The component fault which is expressed as a multiplicative fault can be reformulated 

into an additive fault format. Then, the actuator component FE can be realised by using 

the additive FE theory introduced in Sections 5.2.1 & 5.2.2. In the following, a wind 

turbine state representation with a multiplicative fault in the pitch system actuator 

described by (5-25) is re-written by (5-26) in a form containing a pitch system actuator 

additive fault. 

Consider a system with multiplicative fault in the system matrix   described as: 

�̇� = (     )𝑥     𝐸𝑢𝑑𝑢

 =  𝑥 𝐸 𝑑                             
}              (5-25) 

By rewriting (5-25) in an actuator additive fault format: 

�̇� =  𝑥     𝐸𝑢𝑑𝑢  𝑎𝑓𝑎 (𝑥  )

 =  𝑥 𝐸 𝑑                                    
}            (5-26) 

where, 

 𝑎𝑓𝑎 (𝑥  ) =    𝑥                       (5-27) 

In general formulation,  𝑎 is a matrix whose columns represent the fixed fault directions. 

𝑓𝑎  (𝑥  ) is the re-constructed fault which has an affine dependence on the faulty 

parameters. The transformation will be used to estimate the wind turbine hydraulic 

leakage fault scenario described in Section 5.4.  
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5.3 Robust UI-PIO based FE on a wind turbine  

In this Section，the faults occurring on the pitch system dynamics are detected and 

estimated by using the UI-PIO strategy proposed in Section 5.2. The design facilitates 

an extension of the observer-based FDD scheme not only to estimate additive faults but 

also to enable multiplicative faults to be estimated, for example in the parameter 

estimation problem of the wind turbine pitch actuator system. In this example, the UI 

de-coupling principle is used to de-couple the UI (in this case the so-called wind speed) 

signal from the FE signals. 

A 4.8 MW Offshore wind turbine benchmark system developed by (Odgaard, Stoustrup 

and Kinnaert, 2009) operating in the high wind speed region is used for the proposed FE 

design. The corresponding wind turbine MATLAB/SIMULINK model with required 

parameters is available from (Odgaard, Stoustrup and Kinnaert, 2009; and Sloth, 

Esbensen and Stoustrup, 2011; Kk-Electronic, 2013). In this simulation model, the wind 

turbine actuator hydraulic leakage fault scenario is estimated by using the proposed 

robust augmented actuator additive fault estimator. 

5.3.1 Wind turbine model description  

The wind turbine benchmark system is represented by its nonlinear behaviour and a 

stochastic uncontrollable wind force as a driving signal. A three blade horizontal wind 

turbine model comprising the aerodynamic, drive train and power and pitch system 

models is described as follows (Odgaard, Stoustrup and Kinnaert, 2009). 

The aerodynamic model 

The aerodynamic torque  𝑎 represents the source of the nonlinear nature of the wind 

turbine aerodynamics.  𝑎 depends on the rotor speed   , the blade pitch angle   and 

the effective wind speed   . 

The power available from the wind passing through the entire rotor swept area can be 

expressed as: 

  =
1

2
     

 = 
1

2
   2   

                   (5-28) 

  =   2 is the rotor swept area [ m2] 
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      is the power available from the wind [   ] 

      is the rotor effective wind speed [m s
-1

]  

      is the air density [    m  ] 

R     is the radius of the rotor [m] 

      is the power coefficient which depends on the blade pitch angle   and the 

tip-speed-ratio  . 

The aerodynamic power captured by the rotor is given by:  

  𝑎 =
1

2
   2  (   )  

 =     (   )            (5-29) 

  𝑎      is the power captured by the rotor [   ] 

        is the pitch angle [ ] 

        is the tip-speed-ratio. 

The tip-speed-ratio ( ) is defined as the ratio between the tip speed of the blades and the 

rotor effective wind speed: 

 =
   

  
                           (5-30) 

where,    is the rotor speed [rad s
-1

].  

The aerodynamic torque  𝑎 acting on the blades is:  

 𝑎 = 
    

  
                                   (5-31) 

 𝑎 =
1

2
      (   )  

2                     (5-32) 

where,    is the torque coefficient given as: 

   =
  

 
                                  (5-33) 
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The aerodynamic torque of (5-32) can be linearised as follows in order to provide and 

estimate of the hydraulic leakage fault described in Section 5.4 based on the theory in 

Section 5.2.  

 𝑎 =  𝑎   ̅𝑎                             (5-34) 

 ̅𝑎 =
   

   
|
     ̅

 ̅  
   

  
|
     ̅

 ̅  
   

   
|
     ̅

 ̅           (5-35) 

where,  ̅𝑎 is the deviation of rotor torque and 
   

   
|
     ̅

, 
   

  
|
     ̅

 and 
   

   
|
     ̅

 are 

instantaneous partial derivatives of the aerodynamic torque,  ̅ is the deviation of     

from an appropriate operating point. Finally, the linearised  ̅𝑎 is obtained as (5-35).  

The drive train model 

The drive train is responsible for scaling up the rotor rotational speed to a higher 

generator rotational speed. The drive train model includes low and high speed shafts 

linked together by a gearbox modelled as a gear ratio. The dynamics of the low-speed 

shaft is: 

   ̇ =  𝑎                              (5-36) 

where,    is the rotor inertia,     is the low speed shaft torque, and    is the rotor 

external damping. 

The dynamics of the high speed shaft is: 

   ̇ =                               (5-37) 

where,    is the generator inertia,     is the high speed shaft torque,    is the 

generator external damping, and    is the generator speed. If an ideal gearbox with a 

ratio    is assumed and    is defined as:  

  =
   

   
=

  

   
                       (5-38) 

The drive train twisting is modelled using a torsion spring and a friction coefficient 

model, described as shown in: 

   =    (      )     ( ̇   ̇  )             (5-39) 
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  =       =    
  

  
                   (5-40) 

where,    is the torsion angle,       and     are the rotor side, generator side and 

gearbox side angular deviation respectively. The entire state space drive train model is 

described as: 

[

 ̇ 

 ̇ 

 ̇ 

] =

[
 
 
 
 
  

      

  

   

    

    

  

   

    

 
𝐵  

  
    

  

   

    

  
1

  
0

]
 
 
 
 
 

[

  

  

  

]  

[
 
 
 
1

  
0

0  
1

  

0 0 ]
 
 
 

[
 𝑎

  
]   (5-41) 

The power system 

The electrical power system basically consists of a generator and a converter, allowing 

variable speed operation. Currents flow in the generator is controlled using power 

electronics. The power electronic converters connect the wind turbine generator output 

to the local wind farm power network.  

The converter dynamics can be modelled by a first order transfer function. 

  ( )

    ( )
=

1

1    
                      (5-42) 

where,      is the reference for the generator torque and    is the time constant of the 

first order generator dynamics:. 

 ̇ =  
1

  
   

1

  
                      (5-43) 

The power is produced by the generator which depends on the rotational speed of the 

rotor and the applied load. Then, the following equation is obtained as:  

  =                               (5-44) 

where,      is the power produced by generator, and    is the efficiency of the 

generator. 
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Pitch system model 

The hydraulic pitch actuator adjusts the pitch of a blade by rotating it. It is modelled as a 

second order closed-loop transfer function with natural frequency      and damping 

ratio  . 

 ( )

  ( )
=

    
 

   2           
                    (5-45) 

Using the transformation  ̇ =
1

  
  ̇, a wind turbine model working in the high speed 

region (above rated speed) is described as in (5-46) by linearising  𝑎 as shown in (5-35) 

at a certain effective wind speed    =  ̅: 

�̇� =   𝑥    [
    

  
]  𝐸                   (5-46) 

where, 𝑥 = [        ̇   ]
 
 

  =

[
 
 
 
 
 
 
 
 
 

 

 11
   

    
 

   

  
 1 0 0

   

    
 22

   

    
0 0  

1

  

  
1

  
0 0 0 0

0 0 0 0     
2 0

0 0 0           0

0 0 0 0 0  
1

  ]
 
 
 
 
 
 
 
 
 

, 

where,  11 =  
(      )

  
 

1

  

   

   
|
     ̅

,  1 =
 

  

   

  
|
     ̅

， 22 =  
(      

   )

  
   

, 

  = [
0 0 0 0 0

1

  

0 0 0 0  0
]

 

, 𝐸 = [
 

  

   

   
|
     ̅

0 0 0 0 0]
 

,   =      ̅. 

   is the wind speed error [m s
-1

]. The corresponding values of the model parameters 

for system (5-46) are listed in Table 5-1.  

Table 5-1 Model parameters for system (5-46) 

  =  0     m2  =           m   

  (   ) is a coefficient which is not expressed as a 

mathematical function, but has to be looked up in a 
  =        Nm (      1) 1 
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table given in (Sloth, Esbensen and Stoustrup, 2011) 

   =        Nm (      1) 1   =   0    Nm (      1) 1 

  =   0    m2   =     0     m2 

  =       =       Nm     1 

   [0 Nm         Nm]   =  0 m  

 ̇  [  0  Nm   1  0  Nm   1]         = 0   

     =       rad s
-1

  

 

Via linearising of  𝑎 as shown in (5-35) at a certain effective wind speed    =  ̅, it can 

be seen that the linearisation error and exogenous disturbance (wind) are constructed in 

the structure of the unknown signals ‘wind speed error   ’ and its distribution matrix 

𝐸 . Therefore, the 𝐸    in (5-46) can be considered as UI signals and de-coupled via 

the UI de-coupling principle.  

5.3.2 Wind turbine hydraulic leakage fault scenario 

In the wind turbine system, variation in the hydraulic pressure affects the dynamics of 

the pitch system represented by changing the damping ratio and the natural frequency 

from their nominal values   and      to their values corresponding to the changed 

hydraulic pressure, i.e.     and      . The hydraulic pressure change affects the 

control action of the wind turbine (Sloth, Esbensen and Stoustrup, 2011). The changes 

in parameters   and      are considered as component faults. According to Section 

5.2.3 a component fault can always be expressed as a multiplicative fault and 

reconstructed into a state representation having an equivalent additive fault. Then, the 

actuator component FE can be realised by using the additive FE design approach 

introduced in Sections 5.2.1 & 5.2.2. The parameters   and      vary within the 

intervals    [0   0  ] and      [          ] rad s
-1

 respectively. 

In the following, a wind turbine state representation with pitch system actuator 

multiplicative fault in (5-47) is transformed into a state representation with the pitch 

system actuator additive fault structure as (5-48). 

First, consider a system with multiplicative faults    𝑥  in the system matrix   

described as: 
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�̇� = (     )𝑥     𝐸𝑢𝑑𝑢

 =  𝑥 𝐸 𝑑                              
}                (5-47) 

(5-47) is now re-written in the actuator additive fault format: 

�̇� =  𝑥     𝐸𝑢𝑑𝑢  𝑎𝑓𝑎 (𝑥  )

 =  𝑥  𝐸 𝑑                                   
}              (5-48) 

where, 

 𝑎𝑓𝑎 (𝑥  ) =    𝑥                       (5-49) 

 𝑎  is the fault distribution direction, 𝑓𝑎 (𝑥  )  is the constructed fault which is a 

time-varying signal related to the system states. 

In the wind turbine benchmark supplied by Kk-Electronic, a hydraulic leakage is 

considered as one kind of pitch system actuator fault which affects the hydraulic 

pressure. The pitch actuator fault is derived as follows in multiplicative fault format.  

In the fault-free case,    = 0 

                             =                              (5-50) 

where,    is defined in (5-46).  

In the fault case    ≠ 0 

  =      =

[
 
 
 
 
 
 
 
 
  11

   

    
 

   

  
 1 0 0

   

    
 22

   

    
0 0  

1

  

  
1

  
0 0 0 0

0 0 0 0   
2(  ) 0

0 0 0      (  )    (  ) 0

0 0 0 0 0  
1

  ]
 
 
 
 
 
 
 
 
 

    (5-51) 

where,  11 =  
(      )

  
 

1

  

   

   
|
   ( )  ̅

,  1 =
 

  

   

  
|
   ( )  ̅

,  22 =  
(      

   )

  
   

,  

  
2(  ) = (    )    

2                                
2     

=     
2    (     

2      
2 )                     (5-52) 
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   (  )    (  ) =    (    )                                                 

=           (                )           (5-53) 

where,    [0  ] is an indicator function for the fault with   = 0 corresponding to 

normal pressure i.e. for the fault-free case and   =   corresponding to the low pressure 

fault case. Therefore, the pitch system actuator component faults can be identified by 

estimating the variation in the parameter    (Sloth, Esbensen and Stoustrup, 2011).  

From (5-51) - (5-53),     is given as:  

   =

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0   (     

2      
2 ) 0

0 0 0 0   (                ) 0

0 0 0 0 0 0]
 
 
 
 
 

           (5-54) 

In terms of (5-46), (5-49) can be expressed as:  

 𝑎𝑓𝑎  (𝑥  ) =    𝑥                                 

                                         = [0 0 0   𝑓 1   𝑓 1 0]
 
 ̇  

= [0 0 0 𝑓 1 𝑓 1 0]    ̇           (5-55) 

where, 𝑓 1 = (     
2      

2 ), 𝑓 1 = (                )  

Then, the additive fault format is structured as in (5-51) and (5-54) by decomposing 

(5-55) as follows: 

 𝑎 = [0 0 0 𝑓 1 𝑓 1 0]                 (5-56) 

𝑓𝑎  (𝑥  ) =     ̇                        (5-57) 

where, the fault distribution matrix  𝑎  is in this case a constant vector. 𝑓𝑎   is a 

time-varying fault coupled with the system states.  

So far, the hydraulic leakage fault (multiplicative fault) of the pitch system is 

reorganized as an additive fault. Also, 𝑓𝑎 and  ̇  can be estimated by using the UI-PIO 
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proposed in Section 5.2. Let 𝑓𝑎  (𝑥  )  and  ̂̇  represent the estimation signals of 

𝑓𝑎  (𝑥  ) and  ̇ , respectively. Then, the fault indicator signal    can be estimated as 

follows: 

𝑓𝑎  (𝑥  ) =  ̂  ̂̇                         (5-58) 

 ̂ =
  ̂  (   )

 ̂̇ 

=
  ̂  ̂̇ 

 ̂̇ 

        𝑓  ̂̇ ≠ 0                (5-59) 

However, the particular case  ̂̇ = 0  is hardly avoided since  ̂̇  represents the 

estimation of   ̇ . Therefore, the following modification to (5-59) is used to handle this 

problem as:  

 ̂ =    ( ̂̇ )
  ̂  ̂̇ 

| ̂̇ |  
                        (5-60) 

where, | ̂̇ |   . A suitable   should be chosen to guarantee a sufficiently close 

approximation to  ̂  (Tan and Edwards, 2004). 

5.4 Simulation results  

A 4.8 MW offshore wind turbine model operating in the high wind speed region is used 

for testing the proposed FE design. The corresponding wind turbine 

MATLAB/SIMULINK model with required parameters is available in (Kk-Electronic, 

2013). In this simulation, the hydraulic leakage fault in the wind turbine pitch system is 

estimated by using the robust UI-PIO, described in Section 5.2.  

The wind turbine model has been given in Section 5.3. The operating point in (5-35) is 

defined as the effective wind speed at 16m s
-1

. The system measurable outputs are: rotor 

speed   , and generator speed   , pitch angle  , with the measurement noise modelled 

as a zero-mean white Gaussian noise (the standard deviation of   = 0 0   rad s
-1

, 

  = 0   ,   = 0 0    rad s
-1

). Two different levels of hydraulic leakage faults are 

estimated in the simulation. The corresponding parameter variation values in different 

fault levels as well as the fault-free case can be found in a look up table as given in 

Table 5-2. 
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Table 5-2 Parameter variations in hydraulic leakage fault scenario 

Fault scenario Parameters    

Fault-free case         = 0           =       rad s
-1

 0 

Moderate fault case       = 0           =       rad s
-1

 0   

Extreme fault case       = 0           =       rad s
-1

   

 

In the wind turbine model, the wind speed is regarded as the UI with distribution vector 

𝐸𝑢 = [0 00   0  0  0  0  0 ] ,  𝑎  is given according to (5-56) and Table 5-1. The 

simulation results are demonstrated as follows. 

The proposed observer gain is calculated by using the Matlab LMI Toolbox as: 

 =

[
 
 
 
 
 
 

0             0 00  
   0  0 0      0            
     0000              0 00 0

0       0   00        
0     0 00        0
0     0 00 0    0 0  0
0     0 00         ]

 
 
 
 
 
 

 

 

Figure 5-1 Extreme fault case 

Figure 5-1 illustrates the pitch angle   estimation where the extreme fault (  =  ) 

occurs at 2900 s. A peak are shown in the pitch angle at 2900s caused by the two pitch 

dynamic parameters (  and     ) sudden variations as. It can also be seen that, by 

comparing the estimated signal  ̂ with the actual measured   is highly influenced by 

the sensor noise. This makes a strong case for dealing with the noise effect.  
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Figures 5-2 & 5-3 show the FE signals 𝑓𝑎, state estimation signal  ̂̇   as well as fault 

indicator parameter  ̂ . 

 

(a) FE signal 𝑓𝑎 and state estimation signal  ̂̇  (rad s
-1

) 

 

(b) Fault indicator    and corresponding estimation  ̂  

Figure 5-2 FE signal of hydraulic leakage fault in the moderate fault case 

 

(a) FE signal 𝑓𝑎 and state estimation signal  ̂̇  (rad s
-1

) 
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(b) Fault indicator    and corresponding estimation  ̂  

Figure 5-3 FE of hydraulic leakage fault in the extreme fault case 

The wind turbine system is simulated with two different fault severities (moderate and 

extreme). Figures 5-2(a) and 5-3(a) show the fault estimate 𝑓𝑎  and the wind turbine 

system state estimate  ̂̇ . Figures 5-2(b) & 5-3(b) display the real values of the fault 

indicator parameter    and its estimation   ̂ . 

To make a comparison with the results of Figure 5-1, the faults for both scenarios are 

simulated to occur at 2900s. The transient after 2900s simulates the impacts on both the 

estimated fault and the system states due to the hydraulic leakage fault. This faulty 

behaviour is immediately sensed by the fault indicator. In Figure 5-2(a) & 5-3(a), the FE 

signal 𝑓𝑎 is much smaller in magnitude than the estimation signal  ̂̇  in the fault-free 

case (before t   2900s). Figures 5-2(b) & 5-3(b) show that the value of the fault 

indicator  ̂  varies around zero in the fault-free case. The variations of the FE signal 

𝑓𝑎 follow the shape of the signal  ̂̇  when the fault occurs (t   2900s). The fault 

indicators of  ̂  0   and  ̂   , in Figures 5-2(b) & 5-3(b), respectively, 

correspond to the cases of moderate and extreme faults. The simulated estimates of  ̂  

vary between 0 and 1 which comply with the theoretical range of    [0  ] proposed 

in Table 5-1. 

5.5 Conclusion 

In this Chapter, a multiplicative FE approach is designed by combining a UI 

de-coupling observer with 𝐻∞  optimisation theory. The proposed observer can 

2880 2890 2900 2910 2920 2930 2940 2950 2960
0

0.5

1

1.5

time(second)


f

 

 

Estimated fault indicator value

Real fault indicator value



103 

 

de-couple the effect of the UI (wind force) and minimise the effect of the output 

measurement sensor noise on the FE signal simultaneously to obtain an accurate FE 

signal. In order to estimate the multiplicative fault, a fault model modification is 

adopted to reformulate the system description with the multiplicative fault into an 

additive fault format which facilitates the fault estimator design. Consequently, the 

hydraulic leakage fault occurring on the wind turbine pitch system is used to test the FE 

design. The simulation results show that the UI-PIO is capable of estimating the 

hydraulic leakage fault precisely and robustly in the extreme and moderate fault cases. 

Starting with Chapter 6, the studies in this thesis consider much wider time derivative 

characteristics of various faults using multiple integral actions for FE design.  
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Chapter 6  

Proportional Multiple Integral Observer-based FE 

with UI De-coupling Approach  

 

6.1 Introduction 

Chapter 5 has discussed that in the PIO FDD structure, the fault is augmented as an 

additive state vector assumed to be a constant or slowly time-varying signal, i.e. the first 

time derivative of the fault is considered to be zero or approximately zero. With this 

assumption, the PIO with a single integral action can provide sufficiently good FE FDD 

performance.  

An extension to the PIO has been made by (Jiang, Wang and Song, 2000) who designed 

a proportional multiple integral observer (PMIO) to account for the purpose of 

estimating fault signals with the characteristic of zero values for the finite time 

derivatives. In (Gao and Ho, 2004) and (Koenig, 2005), the PMIO research was 

extended to not only estimate if the signal whose finite time derivatives is zero, but also 

to explore if the finite time derivatives is bounded. The PMIO structure includes 

multiple integrators to augment the observer structure with each additional states 

corresponding to the individual integrators, hence providing a more powerful way to 

estimate more complex fault signals, i.e. with complex time-variations. For example, 

one kind of oscillatory fault is a sinusoidal signal which has a bounded finite time 

derivatives.  

(Gao and Ho, 2006) apply the PMIO design in (Gao and Ho, 2004) to estimate sensor 

faults. (Gao and Ho, 2006) also show that the state estimation error convergence 

condition is guaranteed by solving an appropriate Lyapunov equation with a tuning 

parameter to attenuate the effects of the UI signals, i.e., as a method of improving the 

PMIO robustness to modelling uncertainty and exogenous disturbance. In this design, 

the selection of the tuning parameter is adjusted experimentally via simulation.  

The PMIO principle has been used by several other researchers. More recently, an 

actuator fault estimation using PMIO can be seen in (Gao and Ding, 2007). About the 
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same time two investigators (Koenig, 2005) and (Ichalal, Marx, Ragot and Maquin, 

2009) addressed another robustness approach to the PMIO design problem based on the 

UIO structure, focussing on the problem of de-coupling the effects that the UI have on 

the state estimates and FE signals, with observer stability using the Hurwitz theorem.  

Interesting developments were described by (Ichalal, Marx, Ragot and Maquin, 

2009;Hamdi, Mechmeche, Rodrigues and BenHadjBraiek, 2011) by extending the LTI 

PMIO design approaches to take into account the properties of multiple-model system 

structures. In their approaches these authors design the PMIO state estimation error 

global convergence condition using an LMI formulation. This approach has suitably 

wide application to the general problem of UI estimation including the faults needed to 

be estimated.  

Hence, from this background the goal of this Chapter is to investigate a method of 

PMIO based on UIO structure which can be applicable to the robust FE problem. With 

some motivation from the work of (Koenig, 2005) and (Hamdi, Mechmeche, Rodrigues 

and BenHadjBraiek, 2011) summarised above, this is referred to here as the UI-PMIO. 

In this approach it is anticipated to estimate the system states and faults simultaneously 

regardless of the existence of any UI that may act on the system dynamics.  

When suitably developed this approach could lead to a wider class of estimation 

problems as a consequence of the possibility of numerically solving the finite time fault 

derivatives subject to suitable bounds. The work described here thus provides an 

enhancement to the UI-PIO observer described in Chapter 5 considering the time 

derivative characteristics of various faults. 

In this UI-PMIO structure, the UI associated with the system states are de-coupled using 

the UIO design approach of (Chen, Patton and Zhang, 1996; Chen and Patton, 1999). As 

an additional feature, the 𝐻∞ optimisation theory within an LMI formulation is used to 

minimising the effect of the non-zero finite time fault derivative on FE as well as 

guaranteeing the asymptotic stability. This approach is considered here to be more 

systematic than other methods in the literature, e.g. by (Koenig, 2005) who did not 

provide a specific stability optimisation strategy. In Section 6.3 a numerical example 

with an actuator fault is given to demonstrate the effectiveness of the proposed 
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UI-PMIO approach and the results of this study are carefully analysed. Before 

describing this example Section 6.2 describes the UI-PMIO design strategy.  

6.2 UI-PMIO based FE 

In this Section, the proposed UI-PMIO method is described in detail. First, the existence 

conditions are given according to the requirements for UI de-coupling in the FDD 

design problem requiring robust FE (in the presence of UI signals). It is shown that the 

detailed convergence conditions of the augmented state estimation error are guaranteed 

using LMIs derived in conjunction with 𝐻∞ optimisation theory.  

6.2.1 UI-PMIO structure  

Consider a linear system described by (6-1) with actuator faults (all sensors are assumed 

to be fault-free) and with UI, represented as: 

�̇� =  𝑥     𝐸𝑢𝑑𝑢   𝑎𝑓𝑎
 =  𝑥                                        

}                 (6-1) 

where, 𝑥     denotes the system state vector,      and      denote the input 

and measured system vectors, respectively and 𝑑𝑢     is a vector of UI. 𝑓𝑎     is 

a vector of time-varying actuator faults.  ,  ,   are known system matrices with 

appropriate dimensions. The matrix 𝐸𝑢       represents the distribution matrix for 

the UI. The columns of the matrix  𝑎       denote the independent fault directions. 

Both 𝐸𝑢 and  𝑎 are regarded as system input matrices. 

Assume that the      derivative of the fault signal 𝑓, i.e. 𝑓( ), is bounded. Then let  

  = 𝑓(   )             ( =        )        (6-2) 

One thus has that: 

      1̇ = 𝑓( ) 

      2̇ =  1     

  

  ̇ =    1                          (6-3) 

Let  
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�̅� = [𝑥  1
  2

    
 ]    ̅              (6-4) 

By using (6-3) to (6-4), an augmented state-space representation with the structure of 

(6-5) and (6-6) is to be constructed. 

�̇̅� =  ̅�̅�   ̅  �̅�𝑑   ̅𝑓( )

 =  ̅�̅�                                      
}                   (6-5) 

where, 

 ̅ =  

(

 
 

 0  0  𝑎
0 0  0 0
0   0 0
  ⋱   
0 0   0)

 
 

   ̅  ̅  

 ̅ = [  0 0  0]    ̅    

�̅� = [𝐸𝑢
 0 0  0]    ̅    

 ̅ = [0   0  0]    ̅       

  ̅ = [ 0 0  0]      ̅    

 ̅ =                                  (6-6) 

A functional observer is formed as: 

 ̇ =      ̅    

�̂̅� =   𝐻                  
}                    (6-7) 

where， �̂̅�    ̅ is the estimated augmented state vector,     ̅ is the functional 

observer state vector, and  ,  ,   and 𝐻 are design matrices.  

Noticeably, an augmented state vector �̅� is formulated from the original state vector 𝑥, 

the fault vector 𝑓, and the     derivative             of the fault vector 𝑓( ), as 

(6-5). Hence, by using the functional observer (6-7), the original system state vector 𝑥, 

the fault vector 𝑓 and its derivatives   = 𝑓(   ) ( =        ) can be deduced at the 

same time. This UI-PMIO is constructed according to the UIO theory in Section 2.3.3.  
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Definition 6.1: Observer (6-7) is defined as a UI-PMIO for the system (6-5), if its 

augmented state estimation errors  ̅ = �̅�  �̂̅� approaches zero asymptotically, in the 

presence of the system UI and faults. 

Assuming that �̅� is known, the estimation error dynamics are governed by:  

 ̇̅ = ( ̅  𝐻 ̅ ̅   1 ̅) ̅ 

                      [  ( ̅  𝐻 ̅ ̅   1 ̅)]  

                           [ 2  ( ̅  𝐻 ̅ ̅   1 ̅)𝐻]  

        [  (  𝐻 ̅)] ̅  

       (𝐻 ̅   )�̅�𝑑𝑢   ̅𝑓( )                    (6-8) 

where,  

 =   1   2                          (6-9) 

The state estimation error dynamics are rearranged into the form of (6-14), if the 

following relations (6-10) to (6-13) are satisfied (Chen and Patton, 1999):  

(𝐻 ̅   )�̅� = 0                             (6-10) 

 =   𝐻 ̅                        (6-11) 

 = ( ̅  𝐻 ̅ ̅   1 ̅) =  ̅1   1 ̅     (6-12) 

 2 =  𝐻                           (6-13) 

The state estimation error dynamics are defined as: 

 ̇̅ =   ̅   ̅𝑓( )                      (6-14) 

Furthermore, if all the eigenvalues of   are stable,  ̅  will approach zero 

asymptotically, which means that �̂̅�  �̅�. The observer (6-7) is thus a UI-PMIO for the 

system (6-5) when conditions (6-9) – (6-13) are satisfied. 
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Hence, this UI-PMIO design involves the solution of (6-9) – (6-13) whilst placing all 

the eigenvalues of the system matrix   to be stable. Meanwhile,  ,  ,   and 𝐻 in 

(6-7) are designed to achieve the required FE performance.  

Theorem 6.1 The necessary and sufficient conditions for the existence of UI-PMIO of 

system (6-5) are (Chen and Patton, 1999): 

(1)     ( ̅�̅�) =     (�̅�)  

(2) ( ̅  ̅1) is a detectable pair 

A particular solution to (6-10) can be calculated as follows: 

         𝐻 = �̅�( ̅�̅�)                         (6-15) 

where, ( ̅�̅�) = [( ̅�̅�) ( ̅�̅�)] 1( ̅�̅�) denotes the Moore-Penrose pseudo-inverse.  

6.2.2 UI-PMIO design in  ∞ optimisation frame work 

Theorem 6.2 with the Definition 6.1 and the assumption of Theorem 6.1, for   0 the 

system (6-7) is asymptotically stable. Furthermore, the 𝐻∞ optimisation theory is used 

to guarantee that 𝑓( ) is minimised with a minimum level   , if there exists an S.P.D 

matrix  ̅  0 and matrices  ̅1  1 such that the following conditions hold: 

[
 ̅ ̅1   ̅1

  ̅   ̅  ̅   ̅  ̅ 
  ̅ ̅  ̅ 

∗     0
∗ ∗     

]  0     ̅  0   (6-16) 

Proof:  

Using the state estimation error  ̅ defined in Definition 6.1, a suitable candidate 

Lyapunov function  ( ̅) for the augmented system (6-14) is given as:, 

 ( ̅) =  ̅  ̅ ̅                         (6-17) 

Then, in terms of  ̇̅ defined in (6-14), the time derivative of the candidate Lyapunov 

function  ̇( ̅) is derived as:  

 ̇( ̅) =  ̅ [ ̅( ̅1   1 ̅)  ( ̅1   1 ̅)  ̅] ̅    ̅  ̅ ̅𝑓( )       (6-18) 

with  =  ̅1   1 ̅,  
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 ̇( ̅) =  ̅ [ ̅     ̅] ̅    ̅  ̅ ̅𝑓( )           (6-19) 

Then the 𝐻∞ optimisation theory is used to attenuate the effect of 𝑓( ) on the state 

estimation error  ̅. Hence, the stability of the system (6-17) is ensured simultaneously 

in terms of minimum level   , if the following inequality holds:  

 ̇( ̅)  
1

  
  ̅  ̅  ̅ ̅    𝑓( ) 𝑓( )  0           (6-20) 

It follows that to the minimum value of    must be found so that:  

[
 ̅

𝑓( )]
 

[
 ̅     ̅  

1

  
  ̅  ̅  ̅ ̅

∗    
] [

 ̅
𝑓( )]  0        (6-21) 

Then, by using the Schur Complement Lemma, the following LMI can be stated:  

[
 ̅     ̅  ̅ ̅  ̅ 

∗     0
∗ 0     

]  0         ̅  0     (6-22) 

Let  

 ̅ =  ̅ 1                        (6-23) 

Then, (6-22) can be replaced by: 

[
 ̅ ̅1   ̅1

  ̅   ̅  ̅   ̅  ̅ 
  ̅ ̅  ̅ 

∗     0
∗ 0     

]  0         ̅  0   (6-24) 

This completes the proof.   

Remark 6.1: The proposed UI-PMIO has the ability to de-couple the UI completely 

instead of minimising or attenuating the UI e.g. by using 𝐻∞ or 𝐻2 optimisation if the 

UI distribution matrix satisfies the condition (1) in Theorem 6.1. Hence, it is considered 

as a straightforward approach to remove the effect of the UI since the de-coupling 

procedure does not require the use of signal attenuation. 

Remark 6.2: In fact,  ̅𝑓( ) can also be considered to have the same effect as the UI. 

However it does not satisfy the UIO design rank condition specified in Theorem 6.1 

Hence, in the UI-PMIO design, the 𝐻∞ optimisation theory is applied to minimise the 
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effect of the  ̅𝑓( ) signal on the augmented state estimation error by optimisation of 

  . In the above description the optimisation parameter    only relates to the 

minimisation of  ̅𝑓( ) and does not apply to the joint minimisation of both the UI and 

the  ̅𝑓( ) as discussed in (Gao and Ho, 2004).  

Remark 6.3: In this Section, the robustness problem involving measurement sensor 

noise is not taken into account. However, two candidate methods are recommended for 

this study. One is to use 𝐻∞ optimisation theory to minimise the measurement noise 

effect on the estimated fault signal as described in Chapter 5. An alternative way to take 

the additive sensor noise into account is to construct a new augmented state system in 

the PMIO design that takes the sensor noise into account as an additional state (Koenig, 

2005). In this approach, the sensor noise is considered as a UI with bounded finite time 

derivatives and reconstructed using a multiple-integral observer.  

Remark 6.4: To help to develop a better understanding of the purpose and structure of 

the UI-PMIO an alternative description can be given using a new state partitioning with 

a clear distinction between the proportional and integral action roles as follows: 

Let  

�̂̅� = [�̂�  1̂
  2̂

    ̂
 ]                   (6-25) 

 ̅ = [  
   1

   2
     

 ]                 (6-26) 

The observer (6-7) can be re-written as  

�̇̂� =  �̂�       (   �̂�)      ̂

 ̂1̇ =   1
 (   �̂�)                                    

 ̂2̇ =   2
 ( (   �̂�)   1̂)                      

                                                        
 ̂ ̇ =    

 ( (   �̂�)    ̂ 1)                 

 

}
 
 

 
 

          (6-27) 

      

 1̂ =   1
 ∫   

∞

 
                    

 2̂ =   2
 ∫ (  

∞

 
  1̂ )      

                                      

  ̂ =    
 ∫ (  

∞

 
   ̂ 1 )  }

 
 

 
 

                    (6-28) 
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Clearly, �̇̂� =  �̂�       (   �̂�)      ̂ in (6-27) represents the proportional (or 

P) part of this new state space PMIO. The Multiple Integral (or MI part) is represented 

by the integral calculations in (6-28). 

Remark 6.5: In some previous studies, the fault signal is often assumed to be bounded. 

However, practical systems may encounter a complete actuator break-down and the 

outputs of actuators and/or sensors are likely to become irregular and unbounded. In the 

proposed UI-PMIO structure, it is important to consider a set of unbounded faults as one 

possible fault scenario. It actually makes sense to consider carefully what the true value 

of using the estimator integral action is. In the UI-PMIO design, the integer   can be 

determined as the order of the highest non-zero fault time derivative from which if know 

a priori can be useful information for FE in a practical setting. In theoretical terms a 

large number   can be used to guarantee that the fault     derivative is zero value or 

bounded. It would be interesting to attempt to estimate a suitable value of    as a 

precursor to design for a real application study. The   can be chosen in terms of the 

knowledge of the estimated fault or adjusted compromisingly according to the observer 

design complexity and performance.  

6.3 Example study 

A numerical example system, described in (Gao, Ding and Ma, 2007), chosen to test the 

FE performance using the UI-PMIO strategy. It is assumed that the only faults present 

are the actuator faults 𝑓𝑎, although the effect of a disturbance 𝑑𝑢 is also considered. 

The state space system description of this example is given as: 

�̇� =  𝑥     𝐸𝑢𝑑𝑢  𝑎𝑓𝑎  
 =  𝑥                                     

}                 (6-29) 

where,  = [
   0     
    

],  = [
 

      
],   𝑎 = [

 
       

], 𝐸𝑢 = [ 
 0  
  

],  = [
 0
  

], 

𝑑𝑢  is represented by a band-limited white noise signal (covariance = 0.001). An 

oscillatory fault 𝑓𝑎( ) expressed by a sinusoidal signal is used to represent the actuator 

fault which is considered as the     derivative is bounded. 

𝑓𝑎( ) = {
     0     ( )                    
 0                                               
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Substituting  ,  ,  𝑎, 𝐸𝑢,   defined above into (6-6), an augmented observer system 

is described for which  =   and where:  

 ̅ = [

   0      0  
    0       
   0    0 0 0
   0    0  0

],  ̅ = [

 
      
0
0

],   ̅𝑎 = [

 
     
0
0

], �̅�𝑢 = [

      0  
  
   0
   0

],  

 ̅ = [
 0 0 0
  0 0

],  = [

0
0
 
0

]. 

By setting  = 0, the simulation results for states and faults are shown in the following. 

Based on the theory in Section 6.2, the designed observer gain matrix   is: 

 = [

   0         
            0
   0          
   0      0     

].  

 

Figure 6-1 State 𝑥1 and its estimated value �̂�1 

 

Figure 6-2 State 𝑥2 and its estimated value �̂�2 
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Figure 6-3 Actuator fault 𝑓𝑎 and its estimate 𝑓𝑎 (a) 

Figures 6-1 to 6-3 show the states and FE signals, respectively. From Figures 6-1 & 6-2 

it can be seen that the estimated signals �̂�1 and �̂�2 can almost follow the system states 

𝑥1 and 𝑥2 regardless of the exogenous disturbance. Figure 6.3 shows that after a short 

transient, the FE signal can almost track the actual fault with good accuracy.  

Now consider a    increase in the frequency of the fault as: 

𝑓𝑎 = {
     0     (  )                    
 0                                                  

  

 

Figure 6-4 Actuator fault 𝑓𝑎 and its estimate 𝑓𝑎 (b) 

Figure 6-4 shows that after the short transient, the FE signal trajectory has a small delay 

and there is also a small magnitude error compared with the actual fault signal. However, 

it can still track the actual fault with relatively good accuracy.  
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6.4 Conclusion  

In this Chapter, the mathematical properties of the UI-PMIO comprising state and FE 

are developed and tested through a numerical simulation comprising a single actuator 

fault.  

A particular feature of the UI-PMIO is the ability to de-couple the effect of the UI on 

system state as well as the FE signals so that system state and FE can be estimated 

simultaneously regardless of the existence of UI. Compared with the UI-PIO approach 

the UI-PMIO has a more extensive range of FE properties making use of the concept of 

the finite time fault derivatives. In the UI-PIO the first time derivative of the fault is 

assumed to be zero-valued and this is unrealistic for many real application problems. In 

contrast in the UI-PMIO the finite time fault derivatives is zero-valued or bounded. 

Hence, this framework for observer design has a wider application area than the UI-PIO, 

making use of the bounded nature of a finite time fault derivative signal.  

It is shown how 𝐻∞ optimisation theory can be used to minimise the state estimation 

error caused by a small but bounded     fault derivative. Finally, a numerical example 

with an actuator fault is used to demonstrate the effectiveness of the proposed UI-PMIO 

approach. 

Whilst the UI-PMIO concentrates on providing good fault estimates in the presence of 

bounded fault derivatives. Chapter 7 shows that including a derivative action in the 

UI-PMIO, a UI-PMIDO approach to joint state and FE can provide more design 

freedom to achieve improved FE performance.  
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Chapter 7  

Proportional Multiple Integral Derivative 

Observer-based FE with UI De-coupling Approach  

 

7.1 Introduction 

Chapter 6 has proposed UI-PMIO FE strategy that has the ability to estimate the system 

state and the finite time derivatives of fault as well as the fault signal simultaneously. It 

is clear that multiple integral functions are applied in an observer design to guarantee 

good estimates of the     derivatives bounded faults. The robustness issue is handled 

by using the UI de-coupling principle.  

As an extension to the work of Chapter 6, it is also interesting to include derivative 

action in the FE observer design. The derivative action can be used to provide additional 

degrees of design freedom, which can be used, for example, to handle the robustness 

problem and provide robust estimation performance. 

The role of the derivative action in the observer design in general, the so-called PDO 

problem (D’ presents the ‘derivative’ action), has been the subject of several studies 

during the last decade principally applied using a descriptor system (Gao, 2005; Gao 

and Wang, 2006; Gao, Ding and Ma, 2007; Gao and Ding, 2007; Wu and Duan, 2007; 

Ren and Zhang, 2010; Ting, Chang and Chen, 2011; Gu, Ming and Dan, 2012; Hamdi, 

Rodrigues, Mechmeche and BenHadjBraiek, 2012).  

In the above observer designs, the PMIDO is presented to involve both multiple integral 

and derivative actions. These studies focus on descriptor systems and use derivative 

action to provide more design freedom for improving observer performance and 

robustness. Also, it is promising to see that the developed PMIDO approach to FE as 

contributions (Gao, Ding and Ma, 2007; Gao and Ding, 2007; Gu, Ming and Dan, 2012; 

Hamdi, Rodrigues, Mechmeche and BenHadjBraiek, 2012). 

In this Chapter, a novel UI-PMIDO design is inspired by the properties of the RFAFE for 

normal FE in LTI systems outlined in Chapter 4 and the UI-PMIO including multiple 

integral actions in Chapter 6 It is interesting to see that the derivative action in 
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UI-PMIDO design provides extra freedom to achieve an improved FE speed (albeit 

without the use of the descriptor system structure). A detailed derivation as to how the 

UI-PMIDO is structured from RFAFE theory is given in Section 7.2.1. The UI-PMIDO 

is developed from the UI-PMIO methodology of Chapter 6, based on the UI de-coupling 

strategy for rejecting the effect of UI (as an approach to handling the robust issue). 

Consequently, the UI-PMIDO structure for FE involves multiple integral action as well 

as derivative action. This Chapter shows how this facilitates the derivation of fault with 

finite time derivatives and also give rise to faster estimation performance. This Chapter 

can therefore be considered as an extension to the work of Chapters 4 & 6. The stability 

analysis and estimator gains are derived using an appropriate set of LMIs via the Matlab 

LMI Toolbox. A numerical example is adopted to demonstrate the effectiveness of the 

novel UI-PMIDO FE methodology. This Chapter also provides a comparison of the 

UI-PMIDO with the UI-PMIO approach described in Chapter 6 based on simulation 

results. 

7.2 UI-PMIDO-based FE 

7.2.1 Derivation of UI-PMIDO structure  

For clarity (7-1) is a re-statement of the system defined in (6-1) as an LTI system 

encompassing actuator faults  𝑎𝑓 (all sensors are assumed fault-free), including a UI 

term 𝐸𝑢𝑑𝑢. 

�̇� =  𝑥     𝐸𝑢𝑑𝑢   𝑎𝑓
 =  𝑥                                      

}                  (7-1) 

where, 𝑥     denotes the state vector,      and      denote the input and 

measurement vectors, respectively and 𝑑𝑢     is a vector of UI. 𝑓     represents a 

vector of time-varying actuator faults.  ,  ,   are known system matrices with 

appropriate dimensions. The matrix 𝐸𝑢       represents the UI distribution matrix. 

The columns of  𝑎       denote the independent fault directions. It is thus considered 

that both 𝐸𝑢𝑑𝑢 and  𝑎𝑓 act as system inputs.  

The actuator FE is derived by (4-17) in Section 4.2.1 as:  

𝑓̇ =   ( ̇    )                        (7-2) 
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and  

𝑓 =    (   ∫  
 

  
𝑑 )                 (7-3) 

where,  =   . It can be seen that 𝑓̇ has a term which is a function of the derivative of 

 . It then follows that the fault estimate 𝑓 contains both integral and proportional 

actions on   (and hence  )  with the proportional action providing freedom for 

designing the speed of the FE response. The advantage of this FE observer design has 

been detailed in Chapter 4, this is the so-called RFAFE.  

Recall that in Chapter 6, a UI-PMIO is designed as proposed in (6-27) from which the 

FE signal (6-28) is derived and re-stated in (7-4):  

�̇̂� =  �̂�       ( 𝑥   �̂�)      ̂

 ̂1̇ =   1
 (   �̂�)                                      

 ̂2̇ =   2
 (   �̂�)   1̂                            

                                                          
 ̂ ̇ =    

 (   �̂�)    ̂ 1                       }
 
 

 
 

         (7-4) 

where, �̂� is the state estimation of system (7-1) and   ̂ = 𝑓(   ) ( =        ) are 

the finite time derivatives of the FE signals.   ̂ are estimated as: 

  

 1̂ =    1
 ∫   

∞

 
                   

 2̂ =   2
 ∫ (  

∞

 
   1̂ )      

                                    

  ̂  =     
 ∫ (  

∞

 
    ̂ 1 )  

 

}
 
 

 
 

                  (7-5) 

It is interesting here to reformulate the FE problem by combining (7-2) and (7-4) with 

the fault structure of (7-3) as follows:  

 ̂1̇ =   1
 ( (   �̂�)    1

 ( ̇   �̇̂�)               

 ̂2̇ =  2
 ( (   �̂�)    1

 ( ̇   �̇̂�)               

                                                                    
 ̂ ̇ =    

 ( (   �̂�)     
 ( ̇   �̇̂�)    ̂ 1 }

 
 

 
 

           (7-6) 

Hence, the   ̂ = 𝑓(   ) ( =        ) are represented as follows:  
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 1̂ =   1
       1

 ∫   
∞

 
                 

 2̂ =   2
         2

 (∫   
∞

 
)    1̂ )

                                                   

  ̂  =    
       

 (∫   )
∞

 
    ̂ 1

 

}
 
 

 
 

                (7-7) 

where, 

𝑓 =    ̂                               (7-8) 

Derivative actions appear in the estimated fault dynamics described in (7-7). A further 

derivation from (7-4) to (7-7) shows that proportional terms are involved in FE signals 

due to the derivative action. Compared with UI-PMIO, the derivative action means that 

that the new FE signals in (7-7) & (7-8) provide extra freedom to take into account the 

FE speed as discussed in RFAFE in Chapter 4. This new observer is referred to here as 

a UI-PMIDO. 

7.2.2 UI-PMIDO design  

Following the derivation of the UI-PMIDO in Section 7.2.1, the bounded     

derivative of the fault f, i.e. 𝑓( ), is defined as:  

  = 𝑓(   )             ( =        )                      (7-9) 

Then, it is reorganized as:  

      1̇ = 𝑓( ) 

      2̇ =  1      

    

  ̇ =    1                         (7-10) 

In order to construct the UI-PMIDO for FE, (7-4) can be reformulated by taking into 

account (7-6), yielding the augmented system format: 

�̇̅� =  ̅�̅�   ̅  �̅�𝑑   ̅𝑓( )

 =  ̅�̅�                                       
}                    (7-11) 

where, �̅� = [𝑥  1
  2

    
 ]    ̅,  
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 ̅ =  

(

 
 

 0  0  𝑎
0 0  0 0
0   0 0
  ⋱   
0 0   0)

 
 

   ̅  ̅  

 ̅ = [  0 0  0]    ̅     

�̅� = [𝐸 0 0  0]    ̅     

     ̅ = [0    0  0]    ̅                  

     ̅ = [ 0 0  0]      ̅        

 ̅ =                                 (7-12) 

Then, a functional observer is constructed as for the augmented system (7-11) as 

follows: 

 ̅̇ =   ̅    ̅   ̅    (   ̂)

�̂̅� =  ̅  𝐻                                           
}            (7-13) 

The state estimation error dynamics of the augmented system (7-11) are thus formulated 

according to the functional observer of (7-13) as:  

 ̇̅ = ( ̅  𝐻 ̅ ̅   ̅1 ̅) ̅   

                     [  ( ̅  𝐻 ̅ ̅   ̅1 ̅)]  

                          [ ̅2  ( ̅  𝐻 ̅ ̅   ̅1 ̅)𝐻]  

        [  (  ̅  𝐻 ̅)] ̅  

        (𝐻 ̅    ̅)�̅�𝑑   ̅𝑓( )    ( ̇   ̇̂)       (7-14) 

where,  

 ̅ =   ̅1   ̅2                          (7-15) 

If the following relations of are satisfied (Chen and Patton, 1999):  

(𝐻 ̅    ̅)�̅� = 0                       (7-16) 
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 =   ̅  𝐻 ̅                         (7-17) 

 = ( ̅  𝐻 ̅ ̅   ̅1 ̅) =  ̅1   ̅1 ̅      (7-18) 

 ̅2 =  𝐻                             (7-19) 

The augmented state estimation error dynamics are organised as: 

 ̇̅ =   ̅    ( ̇̅   ̇̂̅)   ̅𝑓( )                (7-20) 

(7-20) can be re-written as:  

                         ̇̅ =   ̅( )     ̅ (�̇̅�  �̇̂̅�)   ̅𝑓( ) 

=   ̅( )     ̅ ̇̅   ̅𝑓( )                   (7-21) 

where,  ̅𝑓( ) can be zero or a bounded small value.  

 (  ̅     ̅) ̇̅ =   ̅    ̅𝑓( )                (7-22) 

Let  

  =   ̅     ̅                   (7-23) 

Then, (7-22) is reorganised as:  

   ̇̅  =   ̅   ̅𝑓( )                 (7-24) 

(7-24) can be further transformed into: 

 ̇̅  =   
 1  ̅     

 1 ̅𝑓( ) =    ̅     
 1 ̅𝑓( )      (7-25) 

where,   =   
 1 . 

Definition 7.1 The observer (7-13) is defined as a UI-PMIDO for the system (7-11), if 

all the eigenvalues of   
 1  are stable, so that  ̅ = �̅�  �̂̅�  will approach zero 

asymptotically even in the presence of UI and faults, i.e. �̂̅�  �̅�. 

Remark 7.1: Based on Definition 7.1, the UI-PMIDO design objective is to solve the 

(7-15) to (7-19) whilst placing all the eigenvalues of the system matrix    to be stable. 
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Meanwhile,    ,  ,   and 𝐻 in (7-13) are designed to achieve the required state 

estimation and FE performance.  

In the light of this proposed UI-PMIDO structure and the augmented error dynamics, the 

following theorems can be stated.  

Theorem 7.1 (Chen and Patton, 1999) The necessary and sufficient conditions for the 

existence of UI-PMIDO of system (7.1) are: 

(1)     ( ̅�̅�) =     (�̅�)  

(2)  ( ̅  ̅1) is a detectable pair 

A particular solution to (7-16) can be calculated as follows: 

         𝐻 = �̅�( ̅�̅�)                          (7-26) 

where: ( ̅�̅�) = [( ̅�̅�) ( ̅�̅�)] 1( ̅�̅�)  denotes the Moore-Penrose pseudo-inverse.  

Remark 7.2: In terms of (7-25), the robustness issue in the UI-PMIDO design involves 

both the UI and  ̅𝑓( ) terms. From (7-15) to (7-19)，the UI are de-coupled from the 

augmented state estimation error by using the UI de-coupling structure, with only the 

term in  ̅𝑓( ) remaining.  ̅𝑓( ) cannot be de-coupled as it does not satisfy Condition 

(1) of Theorem 7.1. 

Remark 7.3: Clearly, the existence of  ̅𝑓( )  can reduce the observer estimation 

performance, i.e. degrade the FE accuracy. The impact of this can be interpreted as a 

robustness problem. Referring to the UI-PMIO theory in Chapter 6, the value of 𝑓( ) 

in (6-5) can be zero or a small bounded constant. In this case, 𝐻∞ optimisation theory 

is applied to attenuate the effect of  ̅𝑓( ) on the FE signal when  ̅𝑓( ) ≠ 0 to solve 

the robustness issue rising from  ̅𝑓( ). Finally, the observer stability problem can be 

viewed as an LMI design problem.  

For the sake of simplicity, the proposed, UI-PMIDO design is now introduced step by 

step in terms of different values of  ̅𝑓( ). Section 7.2.3 below only considers the case 

when the     fault derivative is zero ( ̅𝑓( ) = 0). A more complicated case dealing 

with the robustness issue related to the     derivative of the bounded fault ( ̅𝑓( ) ≠ 0) 

is given in Section 7.2.4,.  
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7.2.3 UI-PMIDO design in the case of zero value of     fault 

derivatives 

In this Section, a UI-PMIDO design is developed by assuming that 𝑓( ) = 0. The 

augmented system estimation error dynamics (7-25) can then be re-written as: 

 ̇̅  =   
 1  ̅  =    ̅                     (7-27) 

where,   =   ̅     ̅ defined in (7-23).  

The main purpose of the UI-PMIDO design is to develop an asymptotic observer which 

has the property that the estimation error has asymptotic stability. Hence, the UI-PMIDO 

design problem is to find an    and stabilize the augmented system estimation error 

dynamics in (7-27), i.e. place all the eigenvalues of    in the open left hand of the 

complex plane.  

The stabilization procedure of the UI-PMIDO is established using an approach described 

by (Ren and Zhang, 2010) for the PD estimator problem which is modified here by 

considering multiple integral actions. As a result, the LMI formulation is constructed 

and solved conveniently via the Matlab LMI Toolbox. The formal derivation of the 

design procedure is developed via Theorem 7.2, Theorem 7.3 and Theorem 7.4 stated as 

follows.  

Lemma 7.1 (Horn and Johnson, 1990) Define the matrices  ̅    ̅  ̅,  ̅    ̅  ̅, 

then (7-28) holds: 

𝑑  (    ̅ ̅) = 𝑑  (    ̅ ̅)             (7-28) 

Theorem 7.2. With Definition 7.1, based on Lyapunov stability theory, the UI-PMIDO 

is stable and the augmented system state estimation error dynamics are asymptotically 

stable, if there exists an S.P.D matrix  ̅1, such that (7-29) holds. 

  
  ̅1      ̅1   0                   (7-29) 

Proof: 

The eigenvalues of   
 1  and    

 1 are identical in terms of Lemma 7.1. Hence, the 

stability of the UI-PMIDO error dynamics are guaranteed by placing all the eigenvalues 
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of    
 1 on the left hand of the complex plane. Based on Lyapunov theory, the 

UI-PMIDO error dynamics presented in (7-27) are stable only if there is an S.P.D 

matrix  ̅1 such that the following LMI holds. 

 ̅1   
 1     

 1  ̅1  0                   (7-30) 

Pre and post multiply (7-30) by   
  and    respectively, and then (7-29) holds.  

Remark 7.4: The observer design in Theorem 7.2 is difficult to solve because (7-30) 

involves the product of  ̅1,    and  . Hence, Theorem 7.3 is proposed to tackle this 

problem, i.e. to separate the matrices  ̅1 from the product of    and   in (7-30).  

Theorem 7.3 With Definition 7.1 and Theorem 7.2, based on Lyapunov stability theory, 

the UI-PMIDO is stable and the augmented system state estimation error dynamics are 

asymptotically stable, if there exist an S.P.D matrix  ̅1, and the matrices  ̅2,  ̅  such 

that the following LMI is satisfied. 

[
 ̅2   ̅2

  ̅1   ̅2
     ̅ 

∗   ̅ 
      

  ̅ 

]  0             (7-31) 

where,   and    are defined as in (7-18) and (7-23), respectively.  

Proof:  

Necessity: If there exists a matrix  ̅1  0 such that (7-29) holds, then (7-31) also holds 

since a matrix  ̅2 can always be chosen.  

 [
 ̅2   ̅2

 0

0   
  ̅1      ̅1  

]  0              (7-32) 

Let  

 ̅ =    ̅1   ̅2                         (7-33) 

Substituting (7-33) into (7-32), then (7-32) is re-formulated as: 

[
 ̅2   ̅2

    ̅1   ̅2    ̅ 

  
  ̅1    

  ̅2   ̅   
  ̅1      ̅1  

]  0        (7-34) 

By pre- and post-multiplying (7-34) by: 
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[
   0

   
  

]                         (7-35) 

and its transpose respectively, it can then easily be shown that (7-31) holds.  

Sufficiency: By (7-31) and the necessity proof above, (7-34) is obtained which indicates 

that (7-31) holds. 

This completes the proof.  

Theorem 7.4 If Theorem 7.3, based on Lyapunov stability theory, holds then the 

UI-PMIDO is stable and the augmented system state estimation error dynamics are 

asymptotically stable, if there exist an S.P.D. matrices  ̅1, and matrices  ̅2,  ̅ ,   1  2, 

such that the following LMI is satisfied. 

[
 ̅2   ̅2

  12

∗  22
]  0                    (7-36) 

where,   and    are defined as (7-18) and (7-23) respectively, and  12 =  ̅1 ̅1  

 ̅2
   ̅   1

  ̅ and  22 =   ̅ 
   ̅   ̅  2   2

  ̅. The UI-PMIDO gains are thus 

generated by: 

 1
 =  [ 1  2] [

 ̅1
 1

  ̅ 
 1 ̅2 ̅1

 1]               (7-37) 

  
 =  [ 1  2] [

0
  ̅ 

 1]                    (7-38) 

where, if  ̅  is singular, a suitable    should be chosen so that  ̅    ≠ 0 holds.  

Proof: 

Sufficiency: Let  

 1 = [
 ̅2   ̅2

  ̅1   ̅2
     ̅ 

∗   ̅ 
      

  ̅ 

]               (7-39) 

 2 = [
0
 ̅ ] [ 1  2]  [ 1  2]

 [
0
 ̅ ]

 

             (7-40) 

Hence, (7-36) can be expressed as:  
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 1   2  0                      (7-41) 

By re-formulating (7-37) & (7-38) as: 

[  1
    

 ] = [ 1  2] [
 ̅1 0

 ̅2  ̅ 

]
 1

           (7-42) 

Which can be re-written as:  

[ 1  2] = [  1
    

 ] [
 ̅1 0

 ̅2  ̅ 

]            (7-43) 

Substituting (7-43) into (7-40) and by means of (7-41), leads to (7-36). 

Necessity: By Theorem 7.2, if (7-13) is an UI-PMIDO, there exist an S.P.D. matrix  ̅1, 

and matrices  ̅2,  ̅ ,   1,   , such that the following (7-44) holds. Then re-write (7-36) 

as: 

 1  [
0
 ̅ ] [  1

    
 ] [

 ̅1 0

 ̅2  ̅ 

]   [
 ̅1 0

 ̅2  ̅ 

]
 

[  1
    

 ] [
0
 ̅ ]

 

 0 (7-44) 

with  1 is defined as (7-36).  

Define a new matrix [ 1  2] in terms of (7-44) as:  

 [ 1  2] = [  1
    

 ] [
 ̅1 0

 ̅2  ̅ 

]                (7-45) 

Then substituting (7-45) into (7-44) gives (7-36). 

This completes the proof.  

7.2.4 UI-PMIDO design in the case of bounded     fault derivatives 

In this Section, a more general UI-PMIDO design is developed by extending the FE 

signal to a small bounded and non-zero     fault derivative, i.e.  ̅𝑓( ) ≠ 0.  

If  ̅𝑓( ) ≠ 0, the augmented system error dynamics are given as (7-25), i.e.,  

 ̇̅  =    ̅     
 1 ̅𝑓( )                 (7-46) 

Let  ̅ =   
 1 ̅ (7-46) can be further transformed to: 
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 ̇̅ =    ̅     
 1 ̅𝑓( ) =    ̅   ̅ 𝑓

( )                  (7-47) 

where,   =   
 1 . 

Thus the UI-PMIDO design involves finding a suitable    to stabilize the augmented 

system estimation error depicted in (7-47), i.e. place all the eigenvalues of    into 

the left hand of the complex plane.  

It should be noted that the robustness problem involves the influence of  ̅ 𝑓
( ) on  ̇̅ 

in (7-47). This requirement has already been discussed in Remark 6.2, although for 

this case the  ̅ 𝑓
( ) action is now included. The rank condition (1) in Theorem 7.3 

is not satisfied and hence an 𝐻∞ optimisation design procedure is used to attenuate 

the effect of the term  ̅ 𝑓
( ), leading to a robust UI-PMIDO. Theorem 7.5 & 

Theorem 7.6 describe the construction of the corresponding optimisation design in an 

LMI framework which can be solved via the Matlab LMI Toolbox.  

Theorem 7.5 For   0  the system (7-47) is asymptotically stable and the 𝐻∞ 

performance is guaranteed with an attenuation level  𝑎 required to degrade the effect 

of 𝑓( ) in the estimation error if there exist an S.P.D. matrix  ̅1 and matrices  ̅2, 

 ̅ , such that the following LMI is satisfied:  

[
 
 
 
 ̅2   ̅2

  ̅1   ̅2
     ̅  ̅1 ̅ 0

∗   ̅ 
      

  ̅ 0  ̅ 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎]

 
 
 

 0       (7-48) 

where,    and    are defined as in (7-18) and (7-23), respectively. 

Proof:  

In the light of the state estimation error  ̅ = �̅�  �̂̅� defined in Definition 7.1, the 

candidate Lyapunov function  ( ̅) for the augmented system (7-1) is given as: 

 ( ̅) =  ̅  ̅ ̅                         (7-49) 

 ̇( ̅) is the time derivative of the candidate Lyapunov function for the augmented 

system (7-47) expressed as (7-50) using  ̇̅ defined in (7-47):  

 ̇( ̅) =  ̅ ( ̅1     
  ̅1) ̅    ̅  ̅1 ̅ 𝑓

( )         (7-50) 
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To achieve the desired performance and required closed-loop stability of (7-47) and 

reduce the effect of  ̅ 𝑓
( ) on the augmented system estimation error dynamics, the 

following inequality must hold:  

 ̇( ̅)  
1

  
  ̅  ̅  ̅ ̅   𝑎𝑓

( ) 𝑓( )  0               (7-51) 

To achieve the minimum value  𝑎 the following LMI must be satisfied:  

[
 ̅

𝑓( )]
 

[
 ̅1     

  ̅1  
1

  
 ̅  ̅  ̅1 ̅ 

∗   𝑎
] [

 ̅
𝑓( )]  0         (7-52) 

Using the Schur Complement Lemma, (7-53) is obtained as: 

[
 ̅1     

  ̅1  ̅1 ̅  ̅ 

∗   𝑎 0
∗ ∗   𝑎

]  0             ̅1  0   (7-53) 

Substituting   =   
 1  and  ̅ =   

 1 ̅ into (7-53), then:  

[
 ̅1  

 1   (  
 1 )  ̅1  ̅  

 1 ̅  ̅ 

∗   𝑎 0
∗ ∗   𝑎

]  0         ̅1  0   (7-54) 

It can be seen that the (7-54) involves the inverse   
 1 and thus (7-54) is difficult to 

solve. Hence, the following reformulation should be used with (7-54) re-written as: 

[
 ̅1 0 0
0  0
0 0  

]

(

 
 
[
  

 1 0 0
0  0
0 0  

]

[
 
 
 
 
  ̅ 0

0  
 𝑎
 

0

 ̅ 0  
 𝑎
 ]
 
 
 
 

)

 
 

 

 ([
  

 1 0 0
0  0
0 0  

] [

  ̅ 0

0  
  

2
0

 ̅ 0  
  

2

])

 

[
 ̅1 0 0
0  0
0 0  

]

 

 0        (7-55) 

In terms of the Lemma 7.1, i.e. 𝑑  (    ̅ ̅) = 𝑑  (    ̅ ̅) , then (7-55) is 

identical to:  
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[
 ̅1 0 0
0  0
0 0  

]

(

 
 

[
 
 
 
 
  ̅ 0

0  
 𝑎
 

0

 ̅ 0  
 𝑎
 ]
 
 
 
 

[
  

 1 0 0
0  0
0 0  

]

)

 
 

 

 ([

  ̅ 0

0  
  

2
0

 ̅ 0  
  

2

] [
  

 1 0 0
0  0
0 0  

])

 

[
 ̅1 0 0
0  0
0 0  

]

 

 0      (7-56) 

After some manipulation the LMI (7-56) becomes:  

[
  

  ̅1      ̅1    
  ̅1 ̅  ̅ 

∗   𝑎 0
∗ ∗   𝑎

]  0              (7-57) 

There always exists a  ̅2 which satisfies:  

 ̅2   ̅2
  0                        (7-58) 

Hence, combining (7-57) and (7-58) leads to: 

[
  

  ̅1      ̅1    
  ̅1 ̅  ̅ 

∗   𝑎   ̅  ̅1( ̅2   ̅2
 ) 1 ̅1 ̅ 0

∗ ∗   𝑎

]  0     (7-59) 

Using the Schur Complement Lemma, it follows that: 

[
 
 
 
 ̅2   ̅2

 0  ̅1 ̅ 0

0   
  ̅1      ̅1    

  ̅1 ̅  ̅ 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎]

 
 
 

 0       (7-60) 

Let  

 ̅ =    ̅1   ̅2                      (7-61) 

To separate the products   ,  ̅1 and   , pre and post multiplying (7-60) by 

[

 0 0 0
   

  0 0
0 0  0
0 0 0  

] and [

 0 0 0
   

  0 0
0 0  0
0 0 0  

]

 

respectively, leading to (7-62):  
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[
 
 
 
 ̅2   ̅2

  ̅1   ̅2
     ̅  ̅1 ̅ 0

∗   ̅ 
      

  ̅ 0  ̅ 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎]

 
 
 

 0        (7-62) 

It can be seen that (7-62) is identical to (7-48).  

This completes the proof. 

Theorem 7.6 From Theorem 7.5, the UI-PMIDO is stable and the augmented system 

state estimation error dynamics are asymptotically stable, if there exist an S.P.D matrix 

 ̅1, and matrices  ̅2,  ̅ ,  1,  2, such that the following LMI holds. 

[
 
 
 
 ̅2   ̅2

  12  ̅1 ̅ 0

∗  22 0  ̅ 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎]

 
 
 

 0                     (7-63) 

where,  12 =  ̅1 ̅1   ̅2
   ̅   1

  ̅  and  22 =   ̅ 
   ̅   ̅  2   2

  ̅ . The 

UI-PMIDO gains are determined by: 

 1
 =  [ 1  2] [

 ̅1
 1

  ̅ 
 1 ̅2 ̅1

 1]                 (7-64) 

  
 =  [ 1  2] [

0
  ̅ 

 1]                     (7-65) 

where, if  ̅  is singular, a suitable   ̅ should be chosen so that  ̅    ̅ ≠ 0 holds.  

Proof: 

Sufficiency: Let  

 1 =

[
 
 
 
 ̅2   ̅2

  ̅1   ̅2
     ̅  ̅1 ̅ 0

∗   ̅ 
      

  ̅ 0  ̅ 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎]

 
 
 

          (7-66) 

 2 = [

0
 ̅ 

0
0

] [ 1  2 0 0]  [ 1  2 0 0] [

0
 ̅ 

0
0

]

 

      (7-67) 

Hence, (7-68) is given as:  
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 1   2  0                       (7-68) 

Now, (7-64) & (7-65) can be re-formulated as: 

[  1
    

 ] = [ 1  2] [
 ̅1 0

 ̅2  ̅ 

]
 1

               (7-69) 

Then substituting (7-69) into (7-68) gives (7-63), which can be re-written as: 

[ 1  2] = [  1
    

 ] [
 ̅1 0

 ̅2  ̅ 

]                (7-70) 

Substituting (7-70) into (7-67) and by means of (7-68), (7-63) is obtained.  

Necessity: By Theorem 7.5, if (7-13) is an UI-PMIDO, there exist an S.P.D matrix  ̅1, 

and matrices  ̅2,  ̅ ,  1,    such that (7-63) is satisfied. Then by rewriting (7-63) as: 

 1  [

0
 ̅ 

0
0

] [  1
    

 ] [
 ̅1 0

 ̅2  ̅ 

] [
 0 0 0
0  0 0

] 

                 [
 0 0 0
0  0 0

]
 

[
 ̅1 0

 ̅2  ̅ 

]
 

[  1
    

 ] [
0
 ̅ ]

 

 0   (7-71) 

 1 is defined as (7-66).  

Now define a new matrix [ 1  2] according to (7-71) as:  

[ 1  2] = [  1
    

 ] [
 ̅1 0

 ̅2  ̅ 

]              (7-72) 

Substituting (7-72) into (7-71) gives (7-63). 

This completes the proof.  

Remark 7.5: The new structure of the UI-PMIDO observer is inspired by the work of 

the RFAFE estimator given in Chapter 4 and the UI-PMIO of Chapter 6 by synthesizing 

the feature of fast FE with the combined use of multiple integrators. Although the 

observer structure in (Gao and Ding, 2005) is also a PMIDO FDD design for facilitating 

the descriptor system by involving the derivative action, the motivations to explore the 

derivative action in the observer designs are different. However, the fundamental 
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principle is the same in both cases of increasing the design freedom to achieve a better 

FE performance.  

Remark 7.6: The robustness against the measurement sensor noise is not taken into 

account. Again the typical literature for solving this robustness issue is referred to as 

Remark 6.3 in Section 6.2.2.  

7.3 Example study 

A numerical example in (Gao, Ding and Ma, 2007) which is the same as in Chapter 6 is 

used to illustrate the proposed UI-PMIDO for the FE strategy. Here, only the additive 

actuator fault is taken into account. The example also provides a comparison of the 

UI-PMIDO with the UI-PMIO approach described in Chapter 6 to demonstrate the 

effectiveness of the developed UI-PMIDO.  

Consider a state space system as follows: 

�̇� =   𝑥      𝐸𝑢𝑑𝑢   𝑎𝑓𝑎 
 =  𝑥                                        

}                (7-73) 

where,  = [
   0     
    

],  = [
 

      
],   𝑎 = [

 
       

], 𝐸𝑢 = [ 
 0  
  

],  = [
 0
  

],  

𝑑𝑢 is represented by the output of a filter used to provide a band-limited signal from a 

zero-mean white noise signal (covariance = 0.001). A sinusoidal signal is used to denote 

the additive actuator fault for which the     derivative of the fault signal is bounded. 

𝑓𝑎 = {
     0     ( )                    
 0                                               

 

Then, an augmented system is constructed according to the (7-12) with  =  , where,  

 ̅ = [

   0      0  
    0       
   0    0 0 0
   0    0  0

],  ̅ = [

 
      
0
0

],  ̅𝑎 = [

 
     
0
0

], �̅�𝑢 = [

      0  
  
   0
   0

],  

 ̅ = [
 0 0 0
  0 0

],  = [

0
0
 
0

]. 

The UI-PMIDO gains are calculated in terms of the Theorem 7.6 as: 
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 = [

0         0  
          0000          

0         
0         

],   = [

                   
              0 0 
      0   0  0  
            0     

]. 

To evaluate the system capability of estimating both fault and system states, the system 

input, u, is set to  = 0. The simulation results for the state and fault estimates are 

shown in the following Figures 7-1to 7-4.  

 

Figure 7-1 State 𝑥1 and its estimation �̂�1 

 

Figure 7-2 State 𝑥2 and its estimation �̂�2 

Figures 7-1 & 7-2 exhibit the simulated system states (x1, x2) and their respective state 

estimates (�̂�1, �̂�2) provided by the UI-PMIDO. It can be seen that the reconstruction of 

the system states through the UI-PMIDO are adequately close to the original system state 

variables, which suggests that the observer system dynamics are removed from the 

injected UI, 𝑑𝑢 due to the UI de-coupling effect.  
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Figure 7-3 UI-PMIO & UI-PMIDO FE comparison (a) 

 

Figure 7-4 UI-PMIO & UI-PMIDO FE comparison (a) (zoom in) 

Figure 7-3 shows the FE signals generated via the UI-PMIO and UI-PMIDO, 

respectively. Figure 7-4 shows a zoomed-in plot of Figure 7-3. The observer FE 

capability for each of the UI-PMIO and UI-PMIDO are illustrated and compared via 

Figures 7-3 & 7-4. Although the fault estimates from both the UI-PMIO and UI-PMIDO 

present accurate fault tracking during the steady-state period, the UI-PMIDO has better 

transient performance with a faster settling time and a lower overshoot than the transient 

response of the UI-PMIO. Meanwhile, the impact on FE signals using both observers 

caused by UI, 𝑑𝑢 , is rarely noticeable, which proves that the UI is de-coupled 

completely from each of the observer FE subsystems.  

In the second experiment, consider a    increase in the fault frequency as follows: 

𝑓𝑎 = {     0     (  )                  
 0                                               
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Figure 7-5 UI-PMIO & UI-PMIDO FE comparison (b)  

 

Figure 7-6 UI-PMIO & UI-PMIDO FE comparison (b) (zoom in) 

The second simulation experiment is used to examine the responses of both the 

UI-PMIO and UI-PMIDO subjected to the higher frequency fault signal representing a 

more severe fault scenario. Figures 7-5 & 7-6 (showing an amplified region around the 

transient response) show a clear error of steady state after a short transient period. 

Compared with the results in Figure 7-3, the fault estimator demonstrates a reduced 

tracking accuracy which can be seen from both the UI-PMIDO and UI-PMIO when the 

higher frequency fault signal is considered. This phenomenon implies that the FE 

performance can be reduced when the fault characteristics change. However, the 

transient response of the UI-PMIDO estimation to the fault signal is still faster than the 

UI-PMIO’s though an increase in the overshoot magnitude of the UI-PMIDO estimate 

can be seen. Hence, the above simulation results indicate that the UI-PMIO when 

structured to include a derivative term, is capable of adjusting the FE speed and reducing 

the settling time.  
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Figure 7-7 UI-PMIO & UI-PMIDO FE comparison in ramp fault case  

(initial = 0, slope = 3, offset = 8) 

The third simulation experiment tests the FE performance of the two kinds of observers 

when a different shape of the fault signal is chosen. In this case, a ramp fault with initial 

position = 0, slope = 3 and offset = 8 is applied to replace the sinusoidal fault. 

Figure 7-7 contains the fault estimates following the ramp fault using each of the 

UI-PMIDO and UI-PMIO estimators. The simulation results demonstrate a similar and 

acceptable tracking performance in both cases for the ramp fault with a marked 

improvement in the transient speed when using the UI-PMIDO compared with the 

transient response of the UI-PMIO. The estimated fault signals can track the actual fault 

closely.  

7.4 Conclusion 

This Chapter presents an extension to the RFAFE estimator described in Chapter 4 and 

the UI-PMIO (Chapter 6). The UI-PMIDO inherits features of fast FE speed by including 

derivative action and the ability to estimate bounded finite time fault derivatives due to 

the multiple integral actions. The adopted UI de-coupling strategy successfully 

de-couples the exogenous disturbance, resulting in an unaffected fault estimate. The 

tutorial example is used to demonstrate the effectiveness of the novel UI-PMIDO FE 

methodology. The improved fault tracking performance of UI-PMIDO is given by a 

comparison with the simulation results resulting from the use of the UI-PMIO method 

proposed in Chapter 6.  

In Chapter 8, a nonlinear FE design approach referred to as a polytopic UI-PMIDO is 

proposed based on LPV modelling. Compared with the LTI model-based FDI/FDD 
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design, it is promising to see that the polytopic UI-PMIDO design covers more 

modelling uncertainties. The practicality of this new approach is demonstrated using a 

nonlinear two-link manipulator system.  
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Chapter 8  

Polytopic Proportional Multiple Integral and 

Derivative Observer-based FE with UI De-coupling  

 

8.1 Introduction  

Chapter 7 considers the observer design of the UI-PMIDO for LTI systems. However, 

the LTI approach to linear approximation of real systems is not always valid, because 

the un-modelled system dynamics can lead to stability issues and performance reduction 

not only for control system designs but also for observer designs.  

Furthermore, the LTI system structure has the inability to take larger and more rapid 

smooth parameter variations into account. This is not only important for control but also 

for fault diagnosis using a mathematical model of the system being monitored.  

Moreover, the dynamic behaviour of most practical systems is characterised by more 

than one operating point, so that linear model-based controller/observer designs are 

difficult to apply directly to nonlinear systems for lacking information of modelling 

uncertainties. From the standpoint of robust FDD for LTI system, it is ideally expected 

that the modelling uncertainties rising from operating point changes can be entirely 

represented by the UI distribution matrix, facilitating UI de-coupling or at least 

attenuation. 

In (Chen and Patton, 1999), an industrial application on a gas turbine is given as an 

example to show how the UI distribution is derived and covers different operating 

points. Theoretically, the dimension and rank (number of independent columns) of the 

UI distribution depends on the nonlinear system complexity, i.e. in terms of the number 

of significant independent columns (i.e. rank) of the distribution matrix that are 

generated by the UI estimation. However, in reality, the UI distribution matrix is limited 

by the FDD design method, for example the UIO design requires that the maximum 

number of independent UI cannot be larger than the maximum number of independent 

measurements.  
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Even though the so-called low rank approximation (see Section 2.3.5) can be applied to 

approximate the UI matrix by one of a lower rank (to satisfy the dimension for 

satisfying the de-coupling condition), the loss of information through this 

approximation is itself a form of uncertainty that will compromise the performance of 

the FDD design. Furthermore, when more modelling uncertainties are taken into 

account, less freedom is left for handling the exogenous UI. In summary, the robustness 

that can be gained from using the UI de-coupling principle may be quite restrictive. 

Above all, it is hoped to find a modelling approach that may be used to represent a wide 

class of smooth nonlinear systems efficiently so that modelling uncertainties can be 

taken into account in a non-conservative manner compared with the case that is 

apparent when LTI modelling is used. Following on from this discussion a potentially 

suitable approach to modelling some nonlinear or time-varying systems is to use an 

LPV model representation.  

In recent years, an interesting ‘LPV modelling approach’ has been proposed in the 

context of gain-scheduling design (Becker, Packard, Philbrick and Balas, 1993; 

Apkarian and Adams, 1998). The gain-scheduling approaches are linked by overcoming 

the challenges imposed by attempting to deal with the overall system dynamics. This 

can be achieved by decomposing the smooth nonlinear system into a number of linear 

controller/observer design problems. Continuity is maintained with well-established 

linear methods and is generally lost when using gain-scheduling due to switching action 

between controller/observer sets. On the other hand LPV modelling is distinct from the 

conventional gain-scheduling approach due to the use of direct synthesis of a 

controller/observer rather than its construction from a family of local linear controllers 

designed by LTI methods. Especially, the induced  2  norm is broadly used as a 

performance measure which means that the continuity can be maintained with 

well-known linear 𝐻∞ theory.  

Extensive research illustrates the high applicability of the LPV modelling approach in 

the domain of robust designs for control and estimation. Interesting application studies 

include vehicular systems, aerospace and aircraft as reported by (Wu, 2001; 

Bhattacharya, Balas, Kaya and Packard, 2002; Ganguli, Marcos and Balas, 2002; Henry 

and Zolghadri, 2004; Zolghadri, Castang and Henry, 2006). 
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The purpose of this Chapter is to extend the UI-PMIDO design methods studied in 

Chapter 7 by incorporating the UI-PMIDO within an LPV modelling framework to 

achieve robust FE design. The practicality of this FE strategy is considered based on a 

study involving a nonlinear two-link manipulator system example, in which the 

modelling uncertainties are not taken into account in the UI de-coupling design. Instead, 

they are handled by the LPV modelling structure that takes into account the errors 

arising from local approximation to the non-linearities. This provides freedom to handle 

the exogenous disturbance through the UI de-coupling principle. It is argued here that 

this approach to the use of UI-PMIDO has wide application for real engineering systems 

with smooth nonlinear structure. 

The LPV system concept was first addressed by (Shamma and Athans, 1990) by 

defining as a set of state space linear system, where the time dependence in the 

state-space data enters through a known dependence on a vector-valued parameter 

signal (Shamma and Athans, 1992). The ideas about using LPV representations were 

motivated by the well-known use of gain scheduling control designs used for example 

in flight control (Shamma and Athans, 1990) and (Rugh, 1991). There was a need to 

develop a more systematic framework for accounting accurately for time-varying 

system behaviour using scheduling parameters. In the LPV approach the time 

dependence uses an on-line measurable vector-valued parameter signal, the so-called 

scheduling vector of parameters that relate to the state space description (not the 

exogenous independent variables) of the original nonlinear system. 

Key studies on LPV can be found in (Rugh, 1991; Shamma and Athans, 1992; Becker, 

Packard, Philbrick and Balas, 1993; Becker, 1995; Apkarian and Adams, 1998; Leith 

and Leithead, 2000; Rugh and Shamma, 2000). In particular, (Shamma and Athans, 

1992) discuss the issues of ‘stability and performance’ of LPV control theory design 

exploiting the concept of a parameter-dependent Lyapunov function. This is also 

discussed in the context of robustness analysis and synthesis in (Apkarian, Gahinet and 

Becker, 1995; Becker, 1995; Wu, Yang, Packard and Becker, 1995; Gahinet, Apkarian 

and Chilali, 1996). A well cited survey paper on gain-scheduling methods by (Leith and 

Leithead, 2000), refers to the LPV problem as a related issue.  

Although the LPV modelling approach has been popularised in robust controller design 

it has also attracted significant attention from the FDI/FDD community in recent years. 
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There has been a substantial amount of work on the application of LPV methods for the 

design of observer/estimators for the fault monitoring role based on FDI/FDD. (Bokor, 

Szabo and Stikkel, 2002) introduced the LPV modelling approach for FDI/FDD design. 

Following that, many other researches on FDI/FDD schemes based on the LPV 

modelling approach have been developed (Bokor and Balas, 2004; Henry and Zolghadri, 

2004; Rodrigues, Theilliol and Sauter, 2005c; Rodrigues, Theilliol and Sauter, 2005b; 

Zolghadri, Castang and Henry, 2006; Casavola, Famularo, Franze and Sorbara, 2007; 

Grenaille, Henry and Zolghadri, 2008; Bokor and Szabó, 2009; Hamdi, Rodrigues, 

Mechmeche, Theilliol and BenHadjBraiek, 2009; Zhang, Jiang and Chen, 2009; Patton 

and Klinkhieo, 2010; Chen and Patton, 2011; Patton, Chen and Klinkhieo, 2012; Rosa 

and Silvestre, 2012; Alwi, Edwards and Marcos, 2012).  

The LPV modelling-based FDI/FDD design also faces the central ‘robust issues’ as 

introduced in Chapter 2. Therefore, the key problem is how to generate residuals or FE 

signals that are sensitive to faults but insensitive to the UI. Some efforts on norm-based 

work to minimise the UI effects on system states and fault indicator/estimator have been 

presented in (Henry and Zolghadri, 2004; Grenaille, Henry and Zolghadri, 2008; Patton 

and Klinkhieo, 2010; Chen, Patton and Goupil, 2012). However, few studies extend the 

UIO design problem to an LPV model framework for FDI/FDD (Rodrigues, Theilliol 

and Sauter, 2005a; Hamdi, Rodrigues, Mechmeche, Theilliol and BenHadjBraiek, 2009; 

Hamdi, Rodrigues, Mechmeche and BenHadjBraiek, 2012). Of particular interest is the 

work of (Rodrigues, Theilliol and Sauter, 2005a) which focuses on a residual 

generation-based FDI. The FE design can be found in (Hamdi, Mickael, Chokri, 

Theilliol and Naceur Benhadj, 2012). 

This Chapter is motivated by an interest in developing an LPV model-based approach to 

polytopic UI-PMIDO design for actuator fault and state estimation. The main 

contribution of this work is to re-cast the UI-PMIDO LTI theory of Chapter 7 into an 

LPV framework for FE design. After first describing the mathematical background, the 

stability conditions that must be satisfied for the LPV form of the UI-PMIDO are 

investigated using an LMI formulation.  

One of the objectives of this study is to examine if the proposed polytopic UI-PMIDO is 

a good candidate for estimating the faults and states of the nonlinear system being 

monitored.  
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The structure of the remainder of this Chapter is as follows: Section 8.2 describes the 

background of the LPV modelling representation based on polytopic-formalism, 

interpreted as a description of the system as a convex combination of subsystems 

defined by the vertices of a convex polytope. These sub-models are combined by a 

convex weighting function to construct the global model.  

Section 8.3 describes the design of a polytopic UI-PMIDO for the purpose of estimating 

the bounded finite time derivatives of actuator faults and system states for a nonlinear 

system with non-unique equilibria. The system description allows for the presence of 

both UI (as exogenous disturbances) as well as faults. Note that to estimate the states 

and faults, all matrices of the LPV systems are considered with time-varying parameters 

and the proposed polytopic UI-PMIDO theory applies to a LPV polytopic-formalism 

with assumption that the state space description has an affine parameter dependence.  

Finally, Section 8.4 provides an illustrative example, i.e. a nonlinear two-link 

manipulator is used to illustrate the effectiveness of the proposed LPV approach. 

8.2 LPV modelling Preliminaries 

Section 8.1 introduces the main concepts of LPV modelling. The design task is to 

establish the LPV modelling scheduled by the appropriate online measurable 

time-varying vector-valued parameters depending on the state space system (Rugh, 

1991; Shamma and Athans, 1992; Leith and Leithead, 2000; Rugh and Shamma, 2000). 

The LPV model realisation obtains smooth semi-linear models that are smoothly 

dependent on an online measurable time-varying vector of scheduling parameters. The 

idea is that from a practical standpoint the nonlinear system can be mimicked in the 

LPV mathematical representation by using the linearisation along trajectories of the 

parameters. For example for an aircraft problem the scheduling parameters are typically 

mass, altitude and centre of gravity (Shamma and Athans, 1992; Chen, Patton and 

Goupil, 2012). Whereas for the two-link manipulator problem the main scheduling 

variables are the joint angles denoted by a vector.  

The LPV mathematical description in continuous state space form is given in (8-1) with 

the parameter-dependent matrix quadruple [  ( )   ( )   ( )   ( )]: 
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�̇� =   ( )𝑥    ( ) 

  =   ( )𝑥    ( )  
}                   (8-1) 

where,   ( )      ,   ( )      ,    ( )       and   ( )       are 

continuous functions of the measured scheduling parameter vector  . In this Chapter, it 

is consider the case that   ( ) is constant, i.e. can be represented as   . Also, the 

input signal has no effect direct on the output channel which means the input to output 

distribution matrix is   ( ) = 0. 

In the light of the work in (Apkarian, Gahinet and Becker, 1995), two assumptions are 

given for the faulty LPV system (8-1) as follows: 

Assumptions 8.1  

(1) The parameter dependence is affine, that is, the state space matrices   ( ) and 

  ( ) depend affinely on time-varying vector  .  

(2) Time-varying vector   varies in a convex polytope   of vertices 

{ 1  2     ( =    )}, i.e.  

    = { 1  2     } = {∑     
 
  1      0 ∑   =  

 
  1 }       (8-2) 

With the Assumptions 8.1(1) & (2), the state space matrices in (8-1) range in a polytope 

of matrices which are the image of the polytopic vertices { 1  2     ( =    )}.   is 

the number of elements in vector . This is expressed as: 

[
  ( )   ( )

  0
]    {

[
  (  )   ( )

  0
]

 =      

}              (8-3) 

If   is a given parameter vector then an LPV system can be reduced to a linear time 

varying (LTV) system with a constant trajectory. Furthermore, if   is a constant 

parameter, i.e. the parameter trajectory is constant, an LPV system can be reduced to an 

LTI system.  

The LPV system with actuator faults and UI is described as:  

�̇� =   ( )𝑥    ( )  𝐸 ( )𝑑   𝑎 ( )𝑓𝑎
  =   𝑥 ( )                                                               

}         (8-4) 
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where, 𝑥    ,     ,      , and 𝑑    , are the system states, control inputs, 

outputs, disturbance and actuator faults 𝑓𝑎    , respectively.      is a 

time-varying vector.    ( ),   ( ),    are state space matrices with appropriate 

dimensions, 𝐸 ( )  is the disturbance distribution matrix,  𝑎 ( )  is the fault 

distributed matrix.  

With the Assumptions 8.1 (1) & (2), the state space matrices in (8-4) are spanned by a 

polytope of matrices which are the image of the polytopic vertices { 1  2     ( =

   )}. The representation is expressed as: 

[
  ( )   ( ) 𝐸 ( )  𝑎 ( )

  0 0 0
]    {

[
  ( )   ( ) 𝐸 ( )  𝑎 ( )

  0 0 0
]

 =      

}   (8-5) 

8.3 Polytopic PMIDO design 

In the light of (7-9) & (7-10) in Chapter 7, the bounded     derivative of the fault 𝑓, 

i.e. 𝑓( ), is defined as:  

  = 𝑓(   )             ( =        )       (8-6) 

      1̇ = 𝑓( ) 

  ̇2 =  1 

    

  ̇ =    1                          (8-7) 

Then, (8-4) is formulated into an augmented state representation as: 

�̇̅� =  ̅ ( )�̅�   ̅ ( )  �̅� ( )𝑑

  =   ̅�̅�                                                
}            (8-8) 

where, �̅� = [𝑥 
  1̅

  2̅
    ̅

 ]
 
   ̅.  ̅ ( ),  ̅ ( ),   ̅,  �̅� ( ),  ̅𝑎 ( ) are 

state space matrices with appropriate dimensions.  
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 ̅ ( ) =  

(

 
 

  ( ) 0  0  𝑎 ( )

0 0  0 0
0   0 0
  ⋱   
0 0   0 )

 
 

   ̅  ̅ 

 ̅ ( ) = [  ( ) 0 0  0]
 

   ̅             

�̅� ( ) = [𝐸 ( ) 0 0  0]
 
   ̅              

         ̅ = [0   0  0]    ̅                         

  ̅ = [  0 0  0]      ̅            

 ̅ =                                   (8-9) 

For the polytope design a polytopic UI-PMIDO is constructed as a polytopic extension 

of the functional observer given by (8-10) (with affine dependence on the parameter   

for the augmented system of (8-8):  

 ̅̇ =  ̅ ( )   ̅   ̅ ( )  ̅ ( )   ̅ ( )   ̅  ( )(   ̂)

�̂̅� =   ̅  �̅� ( )                                                                              
}  (8-10) 

The state estimation error dynamics (8-11) of the augmented system (8-8) are then 

formulated as a polytopic extension of the functional observer described in (Chen and 

Patton, 1999): 

 ̇̅ = [(  ̅ ( )  �̅� ( )  ̅ ̅ ( )   ̅1 ( )  ̅) ̅  

 [ ̅ ( )  ( ̅ ( )  �̅� ( ) ̅  ̅ ( )   ̅1 ( ) ̅ )]  ̅                

              [ ̅2 ( )  ( ̅ ( )  �̅� ( )  ̅ ̅ ( )   ̅1 ( )  ̅)�̅� ( )]     

  [ ̅ ( )  (  ̅  �̅� ( )  ̅)] ̅ ( )       

   (�̅� ( )  ̅    ̅)�̅� ( )𝑑   ̅ 𝑓
( )   ̅  ( )( ̇   ̇̂)   (8-11) 

where,  

 ̅ ( ) =  ̅1 ( )   ̅2 ( )                   (8-12) 
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If the following relations are satisfied:  

(�̅� ( ) ̅    ̅)�̅� ( ) = 0                                   (8-13) 

 ̅ ( )  =   ̅  �̅� ( )  ̅                        (8-14) 

 ̅ ( ) = ( ̅ ( )  �̅� ( ) ̅  ̅ ( )   ̅1 ( ) ̅ )                    

   = ( ̅1 ( )   ̅1 ( )  ̅                   (8-15) 

        ̅2 ( ) =  ̅ ( )�̅� ( )                          (8-16) 

Then,  

 ̇̅ =  ̅ ( ) ̅   ̅  ( )( ̇̅   ̇̂̅)   ̅ 𝑓
( )            (8-17) 

(8-17) can be re-written as: 

 ̇̅ =  ̅ ( ) ̅   ̅  ( )  ̅ (�̇̅�  �̂̅� 
̇ )   ̅ 𝑓

( )       

=  ̅ ( ) ̅   ̅  ( )  ̅ ̇̅   ̅ 𝑓
( )                        (8-18) 

i.e. 

(  ̅   ̅  ( ) ̅ ) ̇̅ =  ̅ ( ) ̅   ̅ 𝑓
( )            (8-19) 

Then let  

 ̅  ( ) =   ̅   ̅  ( )  ̅                (8-20) 

Then, (8-15) is re-written as: 

 ̅  ( ) ̇̅ =  ̅ ( ) ̅   ̅ 𝑓
( )              (8-21) 

Hence, (8-18) can be reorganized to: 

 ̇̅ =  ̅  
 1( ) ̅ ( ) ̅   ̅  

 1( ) ̅ 𝑓
( ) 

=  ̅  ( ) ̅   ̅  ( )𝑓( )                       (8-22) 

where,  ̅  ( ) =  ̅  
 1( ) ̅ ( ) and  ̅  ( ) =  ̅  

 1( ) ̅  
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Definition 8.1 Observer (8-10) is defined as a polytopic UI-PMIDO for (8-8), if all the 

eigenvalues of  ̅  ( ) are stable,  ̅ = �̇̅�  �̂̅� 
̇  will approach zero asymptotically 

with the presence of both UI and faults, i.e. �̂̅�  �̅� . The observer (8-10) is a polytopic 

UI-PMIDO. 

Remark 8.1: Based on Definition 8.1, the polytopic UI-PMIDO design objective for the 

LPV model is to solve the (8-12) to (8-16) whilst assigning the eigenvalues of the system 

matrix  ̅  ( ) to the left hand of the complex plane uniformly. Meanwhile,  ̅  ( ), 

 ̅ ( ),  ̅ ( ) and �̅� ( ) in (8-10) are designed to achieve the required state and FE 

performance. 

Following the polytopic UI-PMIDO structure proposed above, the augmented error 

dynamics of (8-22) are derived in Theorem 8.1, Theorem 8.2 and Theorem 8.3.  

Theorem 8.1: The necessary and sufficient conditions for the existence of a polytopic 

UI-PMIDO of system (8-5) are: 

(1)     (  ̅�̅� ( )) =     (�̅� ( )) 

(2) (  ̅  ̅1 ( )) is a detectable pair 

A particular solution to (8-13) can be determined as follows: 

�̅� ( ) = �̅� ( )(  ̅�̅� ( ))                    (8-23) 

where, (  ̅�̅� ( )) = [(  ̅�̅� ( )) (  ̅�̅� ( ))] 1( ̅ �̅� ( )) denotes the 

Moore-Penrose pseudo-inverse.  

Remark 8.2: The proof of Theorem 8.1 can be found by following the principle of 

LTI-based UIO design in (Chen and Patton, 1999).  

Remark 8.3: Item  ̅  𝑓
( ) in (8-22) cannot be de-coupled as the signal  ̅  𝑓

( ) does 

not satisfy Condition (1) in Theorem 8.1. It is therefore appropriate to apply the 𝐻∞ 

optimisation theory outlined in Theorem 8.2 to attenuate the effect of the signal 

 ̅  𝑓
( )  on the augmented state estimation error dynamics  ̇̅  of the functional 

observer (8-10).  

Theorem 8.2 For   0 the system polytopic UI-PMIDO is asymptotically stable and 

the 𝐻∞ performance is guaranteed with optimisation level  𝑎  to attenuate the effect 
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of 𝑓( ) , if there exist an S.P.D matrix  ̅1 , and matrices  ̅2 ,  ̅  , such that the 

following LMI holds:  

[
 
 
 
 
 ̅2   ̅2 

  ̅1  ̅ ( )   ̅2 
  ̅  ( )   ̅   ̅1  ̅ 0

∗   ̅  
  ̅  ( )   ̅  

 1( ) ̅  0   ̅
 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎 ]

 
 
 
 

 0     (8-24) 

where,   ̅ ( ) and  ̅  ( ) are defined in (8-15) and (8-20), respectively. 

Proof:  

Using the state estimation error  ̅  defined in Definition 8.1, the candidate Lyapunov 

function  ( ̅ ) is given by: 

 ( ̅ ) =  ̅ 
  ̅1  ̅                        (8-25) 

In terms of  ̇̅  defined in (8-22), the time derivative of the candidate Lyapunov 

function  ̇( ̅ ) can be derived as (8-26) for the augmented system (8-22) as:  

 ̇( ̅ ) =  ̅ 
 [ ̅1 ( ̅1 ( )   ̅1 ( )  ̅)  ( ̅1 ( )   ̅1 ( )  ̅)

 
 ̅1 ]  ̅  

     ̅ 
  ̅1  ̅  𝑓

( )                                        (8-26) 

with  ̅ ( ) =  ̅1 ( )   ̅1 ( )  ̅. 

 ̇( ̅ ) =  ̅ 
 [ ̅1  ̅  ( )   ̅  

 ( ) ̅1 ] ̅    ̅ 
  ̅1  ̅𝑓( )        (8-27) 

The 𝐻∞  optimisation theory is used to attenuate the effect of 𝑓( )  on the state 

estimation error  ̅  to ensure that the system (8-22) is stabilized simultaneously by 

determining the minimum value of  𝑎 .  

 ̇( ̅ )  
1

   
   ̅

  ̅ 
  ̅   ̅   𝑎 𝑓

( ) 𝑓( )  0           (8-28) 

(8-28) is identical to (8-29).  

[
 ̅

𝑓( )]
 

[
 ̅1  ̅  ( )   ̅  

 ( ) ̅1  
1

  
  ̅

   ̅  ̅1  ̅ 

∗   𝑎 

] [
 ̅

𝑓( )]  0  (8-29) 
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Using the Schur Complement Lemma, it can be shown that (8-30) holds.  

[

 ̅1  ̅  ( )   ̅  
 ( ) ̅1  ̅1 ̅   ̅

 

∗   𝑎 0
∗ ∗   𝑎 

]      ̅1  0       (8-30) 

Substituting  ̅  ( ) =  ̅  
 1( ) ̅ ( ) and  ̅  =  ̅  

 1( ) ̅  into (8-30), then, 

[
 ̅1  ̅  

 1( ) ̅ ( )   ( ̅  
 1( ) ̅ ( ))

 

 ̅1  ̅1  ̅  
 1( ) ̅   ̅

 

∗   𝑎 0
∗ ∗   𝑎 

]  0  

  ̅1  0                          (8-31) 

It can be seen that (8-31) involves  ̅  
 1( ) presenting a challenge to determining the 

solution of (8-31). To simplify the approach to this solution the following 

reformulations are taken with (8-31) re-written as: 

[
 ̅1 0 0

0  0
0 0  

]

(

 
 
[
 ̅  

 1( ) 0 0

0  0
0 0  

]

[
 
 
 
 
 ̅ ( )  ̅ 0

0  
 𝑎 

 
0

 ̅ 0  
 𝑎 

 ]
 
 
 
 

)

 
 

 

 

(

 [
 ̅  

 1( ) 0 0

0  0
0 0  

]

[
 
 
 
 ̅ ( )  ̅ 0

0  
   

2
0

  ̅ 0  
   

2 ]
 
 
 

)

 

 

[
 ̅1 0 0

0  0
0 0  

]

 

 0  (8-32) 

Following the concept of Lemma 7.1 ( 𝑑  (    ̅ ̅) = 𝑑  (    ̅ ̅) ), as an 

extension to the polytopic case, (8-32) is identical to:  

[
 ̅1 0 0

0  0
0 0  

]

(

 
 

[
 
 
 
 
 ̅ ( )  ̅ 0

0  
 𝑎 

 
0

  ̅ 0  
 𝑎 

 ]
 
 
 
 

[
 ̅  

 1( ) 0 0

0  0
0 0  

]

)

 
 

 

 

(

 

[
 
 
 
 ̅ ( )  ̅ 0

0  
   

2
0

  ̅ 0  
   

2 ]
 
 
 

[
 ̅  

 1( ) 0 0

0  0
0 0  

]

)

 

 

[
 ̅1 0 0

0  0
0 0  

]

 

 0  (8-33) 
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then, (8-33) is re-organised as: 

[

 ̅  
 ( ) ̅1  ̅ ( )    ̅ 

 ( ) ̅1  ̅  ( )  ̅  
 ( ) ̅1  ̅   ̅

 

∗    𝑎 0
∗  ∗   𝑎 

]  0    ̅1  0 (8-34) 

There always exists  ̅2 which satisfies: 

 ̅2   ̅2 
  0                        (8-35) 

Substituting (8-35) into (8-34): 

[

 ̅  ̅  
 ( ) ̅1  ̅   ̅

 

∗   𝑎    ̅
  ̅1 ( ̅2   ̅2 

 ) 1 ̅1  ̅ 0
∗ ∗   𝑎 

]  0        (8-36) 

where,  ̅ ( ) =  ̅  
 ( ) ̅1  ̅ ( )    

 ( ) ̅1  ̅  ( ). 

In terms of the Schur Complement Lemma, it follows that: 

[
 
 
 
 
 ̅2   ̅2 

 0  ̅1  ̅ 0

0  ̅ ( )  ̅  
 ( ) ̅1  ̅   ̅

 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎 ]

 
 
 
 

 0      (8-37) 

Let  

 ̅  =    ̅1  ̅ ( )   ̅2                    (8-38) 

To separate the product  ̅ 
 ( ),  ̅1, and  ̅  ( ), pre- and post- multiplying (8-37) by 

[

 0 0 0
    

 ( )  0 0

0 0  0
0 0 0  

]  and [

 0 0 0
    

 ( )  0 0

0 0  0
0 0 0  

]

 

respectively. Then, (8-39) is 

obtained. 

[
 
 
 
 
 ̅2   ̅2 

  ̅1  ̅ ( )   ̅2 
  ̅  ( )   ̅   ̅1  ̅ 0

∗   ̅  
  ̅  ( )     

 ( ) ̅  0   ̅
 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎 ]

 
 
 
 

 0    (8-39) 

It is easy to see that (8-39) is identical to (8-24).  
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This completes the proof. 

Theorem 8.3 If Theorem 8.2 holds, then the polytopic UI-PMIDO is stable and the 

augmented system state estimation error dynamics are asymptotically stable, if there 

exist an S.P.D matrix  ̅1 , and matrices  ̅2 ,  ̅  ,  ̅1 ,  ̅2 , such that the following 

LMI is satisfied. 

[
 
 
 
 
 ̅2   ̅2 

  ̅12( )  ̅1  ̅ 0

∗  ̅22( ) 0   ̅
 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎 ]

 
 
 
 

 0           (8-40) 

where,   ̅ ( )  and  ̅  ( )  are defined as in (8-15) and (8-20) respectively, and 

 ̅12( ) =  ̅1  ̅1 ( )   ̅2 
   ̅    ̅1 

   ̅  and  ̅22( ) =   ̅  
   ̅     ̅

  ̅2  

 ̅2 
   ̅. Following this the polytopic UI-PMIDO gains are calculated as: 

 ̅1 
 ( ) =   [ ̅1  ̅2 ] [

 ̅1 
 1

  ̅  
 1 ̅2  ̅1 

 1]              (8-41) 

 ̅  
 ( ) =   [ ̅1  ̅2 ] [

0
  ̅  

 1]                    (8-42) 

where, if  ̅  is singular, a proper    should be chosen so that  ̅    ≠ 0 holds.  

Proof:  

Sufficiency: Let  

 ̅1 ( ) =

[
 
 
 
 
 ̅2   ̅2 

  ̅1  ̅ ( )   ̅2 
  ̅  ( )   ̅   ̅1  ̅ 0

∗   ̅  
  ̅  ( )     

 ( ) ̅  0   ̅
 

∗ ∗   𝑎 0
∗ ∗ ∗   𝑎 ]

 
 
 
 

   (8-43) 

 ̅2 ( ) = [

0
  ̅

 

0
0

] [ ̅1  ̅2 0 0]  [ ̅1  ̅2 0 0]
 
[

0
  ̅

 

0
0

]

 

     (8-44) 

Hence, (8-45) is derived as:  

 ̅1   ̅2  0                        (8-45) 
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Formulate the LMIs (8-41) & (8-42) as: 

[  ̅1 
 ( )   ̅  

 ( )] = [ ̅1  ̅2 ] [
 ̅1 0

 ̅2  ̅  

]

 1

        (8-46) 

Since the inverse in (8-46) exists it follows that: 

[ ̅1  ̅2 ] = [  ̅1 
 ( )   ̅  

 ( )] [
 ̅1 0

 ̅2  ̅  

]         (8-47) 

Substituting (8-46) into (8-45), then (8-40) is obtained. 

Necessity: If Theorem 8.2 holds, (8-10) is a polytopic UI-PMIDO, and there exist an 

S.P.D matrix  ̅1 , and matrices  ̅2 ,  ̅  ,  ̅1 ( ),  ̅  ( ), such that (8-40) holds. 

Then rewriting (8-40) as: 

 ̅1 ( )  [

0
  ̅

 

0
0

] [  ̅1 
 ( )   ̅  

 ( )] [
 ̅1 0

 ̅2  ̅  

] [
 0 0 0
0  0 0

] 

                 [
 0 0 0
0  0 0

]
 

[
 ̅1 0

 ̅2  ̅  

]

 

[  ̅1 
 ( )   ̅  

 ( )]
 
[
0
  ̅

 ]
 

 0  (8-48) 

 ̅1 ( ) is defined in (8-43).  

Define a new matrix [ ̅1  ̅2 ] in terms of (8-48) as:  

[ ̅1  ̅2 ] = [  ̅1 
 ( )   ̅  

 ( )] [
 ̅1 0

 ̅2  ̅  

]         (8-49) 

Substituting (8-49) into (8-48) gives (8-40). 

This completes the proof.  

Remark 8.4: The observer gains of  ̅ ( ) and  ̅  ( ) derived through Theorem 

8.1, 8.2 and 8.3 depend on the parameter vector   in polytopic form.  

Remark 8.5: In this Chapter, the measurement noise is not included and hence the 

robustness to the measurement noise is not considered. However, an approach to this 

robustness problem could be developed with reference to Remark 6.3. 
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8.4 Polytopic UI-PMIDO FE design on a two-link manipulator  

8.4.1 Introduction of two-link manipulator model 

To illustrate the UI-PMIDO theory based on LPV model discussed in Section 8.3, an 

example of an actuator FE strategy is implemented via a nonlinear simulation of a 

two-link manipulator/robot demonstrator system which is very familiar to the control 

system community. The purpose of this Section is to describe a polytopic LPV 

modelling strategy applicable to the nonlinear two-link manipulator system.  

The nonlinear dynamics of robot manipulator systems have been used in many research 

fields, e.g. in physics, mechanical design, motion analysis and planning, actuator drivers, 

control design, sensor systems, computer algorithms as well as in relation to the 

behaviour of machines, animals, and even human beings (Mckerrow, 1991 and Slotine 

and Li, 1991 ). 

The motion of the manipulator comprises three dynamic torques: inertial, centripetal 

and Coriolis. The inertial torques are considered to be proportional to the acceleration of 

each joint in accordance with Newton’s second law. Centripetal torques arise from the 

centripetal forces which constrain a body to rotate about a point. They are directed 

towards the centre of the uniform circular motion, and are proportional to the square of 

the velocity. Coriolis torques result from vertical forces derived from the interaction of 

two rotating links and are proportional to the product of the joint velocities of those 

links. Figure 8-1 describes the structure of a nonlinear two-link manipulator.  

 

 

Figure 8-1 Two-link manipulator structure 
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For simplicity, the two-link manipulator is considered to rotate in the vertical plane 

whose position (joint angles) are constructed by a vector  = [ 1  2]
 , and whose 

actuator inputs (torques acted on the manipulator joints) are described by  = [ 1  2]
 . 

 ̇  and  ̈  are used to are used to express the joint velocities and accelerations, 

respectively. A more general description of the two-link manipulator dynamics is given 

in (Mckerrow, 1991; Slotine and Li, 1991; (Kajiwara, Apkarian and Gahinet, 1999; Nie 

and Patton, 2011; Patton, Chen and Klinkhieo, 2012) and is shown as follows: 

 [ ] ̈   [   ̇] ̇   [ ] =                 (8-50) 

where,  [ ]   2 2 is the manipulator inertia tensor matrix,  [   ̇] ̇   2 is the 

vector function with the centripetal and Coriolis torques;  [ ]   2  is the 

gravitational torque. 

The physical parameters of the system are defined as:  

 1: Inertia of arm-1  

 2: Inertia of arm-2 and load 

 1: Distance between joint-1 and joint-2 

  1: Distance of joint-1 from centre of mass arm-1 

  2: Distance of joint-2 from centre of mass arm-2 

 1: Mass of arm-1  

 2: Mass of arm-2 and load 

Table 8-1 Parameter values for the Two-link manipulator system 

Parameters  1  2  1   1   2  1  2   

Values 0.833 0.417 1.0 0.5 0.5 10.0 5.0 9.80 

Units    m2    m2 m m m       m   2 

The state space equations of motion are expressed as:  

[ 1  1
2   2  1

2   1] ̈1  [ 2 1  2   ( 1   2)] ̈2  [ 2 1  2    ( 1   2)] ̇2
2 
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 [ 1  1   2 1]    ( 1) =  1                    (8-51) 

[ 2 1  2   ( 1   2)] ̈1  [ 2  2
2   2] ̈2  [ 2 1  2    ( 1   2)] ̇1

2 

  2  2   ( 2) =  2                   (8-52) 

(8-51) & (8-52) can be re-written into a single matrix equation as: 

 ( ) ̈   (   ̇)   ̃( ) =                  (8-53) 

where, the following parameters relate to (8-51) and (8-52): 

 ( ) ̈: Contains generalized mass terms; 

 (   ̇): Contains all the quadratic terms; 

 ̃( ): Generalized force terms,  

For the system of (8-53), a widely accepted approach is to take out the quadratic terms 

 (   ̇) in the robust control design since they are unbounded. Hence, rewriting (8-53) 

as : 

 ( ) ̈   ̃( ) =                      (8-54) 

where,  

 ( ) = [
 1  1

2   2  1
2   1  2 1  2    ( 1   2)

 2 1  2    ( 1   2)  2  2
2   2

]       (8-55) 

 ̃( ) = [
 [ 1  1   2 1]    ( 1)

  2   2   ( 2)
]               (8-56) 

In the vector  , both the angles   1 and  2 are in the ranges of [    ]. Then, 

(8-57) is given as: 

 ( ) =    ( 1   2)  [   ]                (8-57) 

It is clear that the nonlinear term in  ( ) is bounded and expressed in polytopic form 

as:  

 ( )      1  2                      (8-58) 
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where, 

 1( ) = [
 1  1

2   2  1
2   1  2 1  2

 2 1  2  2  2
2   2

]                (8-59) 

 2( ) = [
 1  1

2   2  1
2   1   2 1  2

  2 1  2  2  2
2   2

]                (8-60) 

In order to form the state space representation, the two functions  1( 1)   2 , 

 2( 2)   2 are defined as follows:  

   ( 1) =  (
   (  )

  
) 1 =  1( 1) 1                (8-61) 

   ( 2) =  (
   (  )

  
) 2 =  2( 2) 2                (8-62) 

where,  1( 1),  2( 2) are bounded and  0    1( 1)   ,  0    2( 2)   .  

Re-arrange  ̃( ) into   ( )  and based on the functions  1( 1),  2( 2).   ( ) 

these are constructed into a polytope representation as follows: 

  ( )    { 1
 
  2

 
   

 
   

 
}                  (8-63) 

where,  

 1
 

= [
0  ( 1  1   2 1) 0

0 0   2  2 
] 

 2
 

= [
 ( 1  1   2 1) 0

0 0   2  2 
] 

  
 

= [
0  ( 1  1   2 1) 0

0  2  2 
] 

  
 

= [
 ( 1  1   2 1) 0

0   2  2 
] 

Let the state vector 𝑥 to be defined as: 

𝑥 = [ 1  2  ̇1  ̇2]
                    (8-64) 

and  
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  = [
0 0 0  
0 0  0

]
 

                    (8-65) 

Then, the two-link manipulator nonlinear dynamics are described by the following 

descriptor system: 

[
 0
0  ( )] �̇� = [

0  
   ( ) 0

] 𝑥                 (8-66) 

Let   be a non-singular matrix defined as:   

 = [
 0
0  ( )]                       (8-67) 

Then the state space representation for the system can be expressed as:  

�̇� =  ( )𝑥   ( )                    (8-68) 

where,  

 ( ) =   1 [
0  

   ( ) 0
]                 (8-69) 

 ( ) =   1                         (8-70) 

Noticeably,   is a non-singular block diagonal matrix, since in the manipulator system, 

as shown in (8-67), the eigenvalues of   fully depend on the lower right-hand block 

 ( ). The determinant of the matrix  ( ) in (8-59) & (8-60) is a fixed value related 

to the mechanical parameters, for instance, the link length and link mass.  

Consider an additive actuator fault occurring on the first torque in the nominal 

time-varying manipulator system. Then the faulty manipulator system description can 

be expressed as (8-4). 

Hence, according to the description above, a polytopic LPV model of the two-link 

manipulator is constructed as an 8-vertex linear system with the combinations of    

and   . In this structure,  ( ) changes sign due to changes in the diagonal elements 

of  ( ). The eight-vertex models are listed as follows: 

Vertex system 1:  
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  1 = [

0 0  0
0 0 0  

          0   0 0
              0 0

],  1 = [

0 0
0 0

0      0     
 0       0 0 

] 

Vertex system 2:  

  2 = [

0 0  0
0 0 0  

          0  0 0
              0 0

],  1 = [

0 0
0 0

0      0     
 0       0 0 

] 

Vertex system 3:  

   = [

0 0  0
0 0 0  

          0   0 0
             0 0

],  1 = [

0 0
0 0

0      0     
 0       0 0 

] 

Vertex system 4:  

   = [

0 0  0
0 0 0  

          0  0 0
             0 0

],  1 = [

0 0
0 0

0      0     
 0       0 0 

] 

Vertex system 5:  

   = [

0 0  0
0 0 0  

         0   0 0
             0 0

],   2 = [

0 0
0 0

0     0     
0       0 0 

] 

Vertex system 6:  

   = [

0 0  0
0 0 0  

           0  0 0
             0 0

],   2 = [

0 0
0 0

0     0     
0       0 0 

] 

Vertex system 7:  

   = [

0 0  0
0 0 0  

         0   0 0
              0 0

],  2 = [

0 0
0 0

0     0     
0       0 0 

] 
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Vertex system 8:  

   = [

0 0  0
0 0 0  

           0  0 0
              0 0

]， 2 = [

0 0
0 0

0     0     
0       0 0 

] 

The common output matrix is  = [
 0 0 0
0  0 0
0 0  0

].  

It should pointed out that the matrix    changes sign according to the sign variations of 

the diagonal elements in matrix  ( ).  

The additive fault distribution matrix is a time-varying matrix, which is the first column 

of the actuator distribution matrix  𝑎 . In the polytopic UI-PMIDO design, it is 

represented as either the first column of  1 or  2 corresponding to the system state 

matrix  , i.e.  𝑎 = [

0
0

  0     
 0     

] or  𝑎 = [

0
0

0     
0     

]. 

8.4.2 Simulation results 

Consider the nonlinear two manipulator system subject to the exogenous disturbance 

(UI) represented as the output of a band-limited filter with zero-mean white noise input 

of covariance =0.001. The model includes the exogenous disturbance distribution matrix 

𝐸 =  [

 
 
0
0

] . 

In this example, two kinds of actuator fault scenarios OFC fault and runaway fault 

acting on the system states are applied respectively. As introduced in Chapter 4, OFC 

faults can be expressed as a sinusoid signal which is a bounded     order derivative 

signal. The runaway fault scenario describes that the actuator suffers from a runaway 

fault, in this case, simulated using a ramp signal of which the     order derivative is 

zero value.   

Following the UI-PMIDO design approach in Chapter 8, the observer gains in this 

design are determined using MATLAB LMI Toolbox and given as follows:  
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 ̅ 1 =  0 ∗

[
 
 
 
 
 
     0 0  0  0 0  0      0     
   0 0      0 0      0 0   
   0 0  0    0 00       0     
   0        0          0   
       0        0          0
        0        0          0]

 
 
 
 
 

,  

 ̅ 2 =  0 ∗

[
 
 
 
 
 
     0 0    0 0        0  0  
   0 0      0 0      0 0   
   0 00 0    0 0        0    0
   0        0          000 
     0 0      0 0          0
                            0]

 
 
 
 
 

, 

 ̅  =  0 ∗

[
 
 
 
 
 
     0 0    0 0        0  0 0
   0 0      0 0      0 0   
   0 00     0 00       0     
   0    0    0        0     
                         0
                          0 0]

 
 
 
 
 

, 

 ̅  =  0 ∗

[
 
 
 
 
 
     0 0 0  0 0 0      0  0  
   0 0      0 0      0 0   
   0 00     0 000      0     
   0        0        0     
    0 00     0 00          0
                            0]

 
 
 
 
 

 

 ̅  =  0 ∗

[
 
 
 
 
 
     0 0    0 0        0  0  
   0 0      0 0      0 0   
     0      0 0        0    0
   0        0        0     
                           0
       0      0           00]

 
 
 
 
 

, 

 ̅  =  0 ∗

[
 
 
 
 
 
     0 0    0 0        0  0  
   0 0      0 0      0 0   
     0  0   0 0        0     
   0        0        0     
     0        0            0
        0      0           0]

 
 
 
 
 

, 

 ̅  =  0 ∗

[
 
 
 
 
 
     0 00   0 00     0 0   
   0 00     0 00   0 0   
     0 0    0    0    0  0  
   0          0 0  0     
                      0  0
                         0]

 
 
 
 
 

, 

 ̅  =  0 ∗

[
 
 
 
 
 
     0 00   0 00     0 0   
   0 00     0 00   0 0   
     0 0    0        0  0 0
   0    0    0        0   
                      0  0
                         0]

 
 
 
 
 

, 
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 ̅  1 =

[
 
 
 
 
 
   0        0        0    0
   0        0      0 0   
   0      0 0  0    0   0 
 0        0 0  0    0 0  0
   0 00   0 000  0 00  
 0 0      0 00     0 0   ]

 
 
 
 
 

 ,  ̅  2 =

[
 
 
 
 
 
   0    0    0 0      0     
   0 0      0   00    0 00 0
   0        0 00     0     
 0        0 0      0 0   
   0 00          0 00  
 0 0  0    0 00     0 0  0]

 
 
 
 
 

 , 

 ̅   =

[
 
 
 
 
 
   0        0  0    0 0   
   0        0      0 0   
   0 0    0 0       0  00 
 0        0 0       0 0   
   0 00 0  0 000  0 00  
 0 0  0    0 00     0 0   ]

 
 
 
 
 

,  ̅   =

[
 
 
 
 
 
  0        0 00     0 0   
   0 00 0    0      0 00  
   0 0 0  0 00     0  0  
 0      0 0      0 0  0
   0 00   0 000  0 00  
 0 0      0 00     0 0   ]

 
 
 
 
 

, 

 ̅   =

[
 
 
 
 
 
   0      0 00     0  0  
 0 0      0        0 0   
   0        0 0      0    0
 0 0      0 0      0 0   
   0 00   0 000  0 00  
 0 0    0 00      0 0   ]

 
 
 
 
 

,  ̅   =

[
 
 
 
 
 
   0    0   0 00     0  0  
 0 00     0      0 00 0
   0      0 0 00    0     
 0 0       0 0      0 0   
   0 00   0 000  0 00  
 0 0    0 00     0 0   ]

 
 
 
 
 

, 

 ̅   =

[
 
 
 
 
 
   0      0 000    0 0   
 0 000    0        0 0   
   0 0 0    0 0      0  0  
 0        0 0      0 0   
   0 00 0  0 000  0 00  
 0 0 0  0 00     0 0   ]

 
 
 
 
 

,  ̅   =

[
 
 
 
 
 
   0       0 0      0 0   
   0 0      0   0  0 0   
   0 0    0 0      0  0  
 0         0 0      0 0   
   0 00 0  0 000  0 00  
 0 0 0  0 00      0 0   ]

 
 
 
 
 

. 

 Simulation Results for the System with OFC Fault 

The first fault scenario is an OFC fault acting on the first torque occurring at 10s. 

Different fault severities are tested by varying amplitudes and frequencies of the fault 

signal. The state estimation of angles 1 & 2 are illustrated in Figures 8-2 & 8-3. Figures 

8-4 to 8-7 show the results of the simulated FE signals under various magnitude and 

frequency test conditions. It should be pointed that, in the following, the signals x1e, x2e 

and 𝑓𝑒 represent the corresponding estimations of x1, x2, and 𝑓𝑎, respectively.  
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Figure 8-2 Response of angle 1 (x1) and its estimation (x1e) in OFC fault (Amplitude = 

20 Nm; Frequency = 1.5 rad s
-1

) 

 

Figure 8-3 Response of angle 2 (x2) and its estimation (x2e) in OFC fault (Amplitude = 

20 Nm; Frequency = 1.5 rad s
-1

) 

 

Figure 8-4 OFC fault 𝑓𝑎 and FE signal 𝑓𝑒 with fault occurring at 10s on actuator 1  

(Amplitude = 20 Nm; Frequency = 1.5 rad s
-1

) 
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Figure 8-5 OFC fault 𝑓𝑎 and FE signal 𝑓𝑒 with fault occurring at 10s on actuator 1  

(Amplitude = 20 Nm; Frequency = 1.5 rad s
-1

) (zoom in) 

Figures 8-2 & 8-3 are grouped to show the angle estimate and Figure 8-4 shows the 

OFC fault estimate for the two-link manipulator in the presence of the exogenous 

disturbance, both using the polytopic UI-PMIDO. The transient dynamic of the FE in 

Figure 8-4 is amplified in Figure 8-5. It can be observed that the state estimates shown 

in Figures 8-2 & 8-3 converge to the system states with a very short transient time, 

providing good estimates of the angle states 1 & 2. 

Figure 8-4 shows that the observer generates a good estimate of the simulated fault that 

is fairly close in magnitude and frequency. However, it can be seen that the fault 

estimate lags behind the actual fault by a very small phase angle, with a small constant 

steady state error. This error is a likely consequence due to the minimisation procedure 

of 𝑓( ) which is not equivalent perfect UI de-coupling. Also, the impact of the UI 

(exogenous disturbance) on both the state estimates and the fault has been significantly 

attenuated by the UI de-coupling principle, which illustrates the effectiveness of UI 

de-coupling strategy.  
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Figure 8-6 OFC fault 𝑓𝑎 and FE signal 𝑓𝑒 with fault occurring at 10s on actuator 1  

(Amplitude = 5 Nm; Frequency = 7.5 rad s
-1

) 

 

Figure 8-7 OFC fault 𝑓𝑎 and FE signal 𝑓𝑒 with fault occurring at 10s on actuator 1  

(Amplitude = 5 Nm; Frequency = 7.5 rad s
-1

) (zoomed in) 

Figures 8-6 & 8-7 are the FE results stimulated by the OFC fault with different fault 

severities, where the amplitudes and frequencies are increased from 5 Nm to 20 Nm and 

1.5 rad∙s
-1

 to 7.5 rad∙s
-1

, respectively. Cases of either excessively high fault amplitude or 

fault frequency are considered to test to the FE performance. Fault signals with high 

amplitude and low frequency do not present a significant challenge for FE. However, 

the fault signal with low amplitude and higher frequency is too gentle and too fast to be 

followed. The simulation results show that the tracking error during steady-state can 

almost track the fault signal. Also, a very small phase angle lags behind the actual fault 

in the FE signal can be seen to be a bit larger than the fault with Frequency =1.5. The 
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implication is that the parametric changes in the fault signal attribute to a likely decrease 

in FE performance, compared with the results given in Figures 8-4 & 8-5.  

 Simulation Results for the System with Runaway Fault 

 

Figure 8-8 Ramp fault 𝑓𝑎 and FE signal 𝑓𝑒 with fault occurring at 10s on actuator 1  

(slope=7, initial value =0) 

 

Figure 8-9 Ramp fault 𝑓𝑎 and FE signal 𝑓𝑒 with fault occurring at 10s on actuator 1  

(slope=0.5, initial value=0)  

The responses shown in Figures 8-8 & 8-9 correspond to ramp signal faults shown with 

their FE signals. The fault type is altered from a sinusoid to ramp signal which impacts 

on the actuator 1 at 10s. Two different ramp fault situations (fast and slow drift) are 

mimicked by changing the ramp slope to different levels (slope=7 and slope=0.5). Both 

estimates in Figures 8-8 & 8-9 reproduce the ramp fault with different slopes. The FE 

0 5 10 15 20 25 30

0

20

40

60

80

100

120

140

160

time(second)

A
c
tu

a
to

r 
fa

u
lt
 (

f a
) 

e
s
ti
m

a
ti
o
n
 (

N
*m

)

 

 

f
a

f
e

0 5 10 15 20 25 30
-5

0

5

10

15

20

time(second)

A
c
tu

a
to

r 
fa

u
lt
 (

f a
) 

e
s
ti
m

a
ti
o
n
 (

N
*m

)

 

 

f
a

f
e



166 

 

responses show a very small steady-state estimation error. It is clear that satisfactory FE 

performances are achieved in both cases.  

8.5 Conclusion 

In this Chapter, the novel UI-PMIDO approach to FE in nonlinear systems is developed 

based on LPV modelling. Compared with LTI system, the several advantages of LPV 

modelling have been shown via the investigation. Firstly, the LPV approach can 

overcome the instability issues and performance reduction arising from the un-modelled 

when using on LTI systems. Also, compared with the use of the LTI modelling, the 

LPV modelling also has good capability of taking into account larger and more rapid 

parameter variations that may arise from the true nonlinear system. Finally, the LPV 

approach is considered to cover a wider class of modelling uncertainties and this 

facilitates an approach to less conservative robustness with improved controller and 

observer performances. 

Bearing these advantages in mind, a new polytopic LPV UI-PMIDO is designed to 

provide robust FE in FDD considering systems taking modelling uncertainties into 

account as a development of the work proposed in Chapter 7. The proposed observer, 

using LPV modelling, is less affected by the nonlinear characteristics of the monitored 

system. Whilst it leaves the freedom for observer design to take into account the 

exogenous UI that act on the system and affect the FE performance. The UI-PMIDO 

design has demonstrated feasible simultaneous state and fault signal estimation for 

nonlinear systems in which the    
 
derivative of the fault is bounded. The UI-PMIDO 

stability conditions are formulated using a computationally efficient LMI formulation 

that is suitable for implementation via the Matlab LMI Toolbox. A numerical example 

of a nonlinear two-link manipulator system with both OFC and ramp actuator fault 

scenarios is used to illustrate the power of this FE approach. 
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Chapter 9  

Conclusion and Future Work 

 

9.1 Conclusion and summary 

It is argued that FE signals provide a powerful substitute for the more classical use of 

residual signals in terms of the fault information gained and this promotes the popularity 

of FE-based FDD. Given this, the goal of the thesis is to develop novel model-based FE 

methods as an alternative to use of the classical residual generation-oriented UIO 

approaches, considering the time derivative characteristics of various fault signals. The 

focus of the study is on the development of robust FE methods. As a consequence, the 

FE signals have accurate tracking performance, i.e. with small steady state estimation 

error as well as good estimation time response. 

The literature in this subject shows that the biggest challenge of model-based methods 

for FDI/FDD is the influence of uncertainty (combining effects of modelling uncertainty 

and exogenous disturbances) on the monitored system. Hence, this thesis concentrates 

on using the UI de-coupling principle underlying the UIO FDI design for dealing with 

the robustness problem. In UIO design, uncertainty described by UI signals is designed 

to be de-coupled from fault indicators (residuals/FE signals), i.e. the residuals/FE 

signals are robust to the UI influence.  

In this context, the thesis starts with reviewing the literature and basic principles of 

FDI/FDD and the model-based FDI/FDD in Chapters 1 & 2, respectively. Particularly, 

Section 2.3 introduces the foundation of the thesis ‘residual-based UIO design’ 

associating with a tutorial example that aims to illustrate the effectiveness of the UI 

de-coupling principle for handing the robustness problem. Chapter 3 focuses entirely on 

an industry application study arising from an FP7 project ADDSAFE involving testing 

of FDI designs on an Airbus generic nonlinear aircraft system using a FES system 

environment developed by Deimos Space in Madrid and with performance evaluation 

performed at Airbus in Toulouse. 
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Following Chapter 3 the main emphasis and contribution of the remainder of the thesis 

is on the development of FE strategies to obtain robust FE signals based on 

residual-based UIO.  

In Chapter 4, the FE signals generated by the developed RFAFE are functions of the 

system output estimation error that is de-coupled from the UI. Furthermore, the FE 

signals include not only the conventional integral action but also a proportional action to 

improve the FE fault tracking performance. An LMI procedure, based on Lyapunov 

stability is used to guarantee stability of the RFAFE. An application example of an OFC 

fault acting on an elevator actuator in a generic model of an Airbus nonlinear aircraft 

(the same as in Chapter 3) is used to illustrate the method. 

Chapter 5 considers the development of a new scheme the UI-PIO FE which uses the 

PIO structure in which the faults are considered as augmented state variables in the 

augmented observer. Besides considering the UI de-coupling function, 𝐻∞ 

optimisation is to incorporate within an UIO structure to attenuate the effects of 

exogenous disturbance (sensor noise here) on the FE signals to avoid the 

noise-corrupted FE signals. As a result, a performance-improved FE is obtained. 

Additionally, a procedure for re-formulating the multiplicative faults in an additive fault 

representation is used to estimate the hydraulic leakage fault (multiplicative fault) 

scenario occurring on a wind turbine pitch system. The effectiveness and efficiency are 

demonstrated through the simulation results.  

Chapters 4 & 5 provide further review of this subject concentrating on methods of 

taking account of fault derivative information. Following on from this the robust 

adaptive approach RFAFE design approach proposed in Chapter 4 removes the 

common assumption that the first fault derivative is not limited to be zero-valued, 

whereas in contrast the proportional integral observer UI-PIO discussed in Chapter 5 

assumes that the first time fault derivative is zero. From the standpoint of fault 

derivative information this is more restrictive than RFAFE. 

These restrictions limit the availability of the estimated faults and consequently narrow 

the potential applications that these FE approaches can be applied to. Hence, the 

approaches proposed in Chapters 6, 7 & 8 consider much wider time derivative 

characteristics of various faults by considering multiple integral actions as well as 
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derivative action. Hence, Chapter 6 proposes a proportional multiple integral UI-PMIO 

approach, whereas Chapter 7 introduces a proportional multiple integral plus derivative 

UI-PMIDO approach. It is known from the literature that with multiple integral actions 

(PMIO), the faults can be estimated in the case that the finite time fault derivatives have 

zero value or are bounded. The UI-PMIO contribution takes this up further by 

combining the original PMIO within the UIO structure with UI de-coupling. The 

methods proposed in Chapters 6 & 7 relax the restrictions that apply in Chapters 4 & 5. 

The UI-PMIO gives good potential for applying the FE approach to real applications by 

dealing with more types of faults through the use of the multiple integral actions. 

Chapter 6 develops the so-called UI-PMIO with the capability of estimating the system 

states and fault simultaneously, based on the UI de-coupling structure. As it is, the UI 

de-coupling is responsible for dealing with UI acting on the system states to cover the 

robustness issue. Additionally, the 𝐻∞ estimation theory is explored to stabilize the 

designed observer and minimising the bounded finite time fault derivative errors. At the 

end of Chapter 6, a numerical example with an actuator fault is used to test the 

effectiveness of the proposed UI-PMIO approach. 

An interesting derivation is described in Chapter 7 inspired by the RFAFE and UI-PMIO 

FE methods of Chapters 4 & 6, respectively. A novel UI-PMIDO design is described 

which includes derivative action as well as the multiple-integral action. This is the 

UI-PMIDO derived by combining the ‘derivative’ action obtained from a modified 

RFAFE design with the UI-PMIO design proposed in Chapter 6. As a consequence, the 

UI-PMIDO structure that involves the multiple integral actions as well as the derivative 

action enables the resulting UI-PMIDO FE scheme to provide faster response to a fault, 

with bounded finite time derivatives. A numerical example is used to demonstrate the 

effectiveness of this new FE methodology. The advantage of UI-PMIDO is given by 

comparison with the simulation results using UI-PMIO method proposed in Chapter 6.  

Finally, as an extension to the work described in Chapter 7, Chapter 8 extends the 

earlier ideas further by developing a linear time-varying approach to FE design based on 

using time-varying affine dependence on a scheduling parameter vector. The so-called 

polytopic LPV modelling and design framework is used to develop the new “polytopic 

UI-PMIDO” for system state estimation and FE design. Compared with the LTI system 

approaches, the advantages of LPV modelling can be seen as: a) A powerful approach 
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to deal with performance and stability for systems with global time-varying behaviour; 

b) A good strategy for taking into account rapid (but smooth) parameter changes as an 

extension to any LTI system approach; c) More modelling uncertainties may be taken 

into account than when using LTI systems, and this can facilitate a direct approach to 

gaining a better desired performance for FE. Advantage c) means that the use of LPV 

modelling has an impact on relaxing the degrees of design freedom in LTI UI 

de-coupling design.  

It is therefore proposed that the polytopic LPV approach to UI-PMIDO can enhance the 

value of model-based FE applied to many real systems. Systems that have smooth 

nonlinearity can be considered suitable candidates since the linear time-varying 

characteristics can be easily defined. As introduced in Chapter 7, this UI-PMIDO 

possesses the ability to estimate the bounded     derivative actuator fault robustly by 

de-coupling the UI influence (exogenous disturbance) from the FE signals. A nonlinear 

two-link manipulator example is explored to demonstrate the effectiveness of this new 

approach in which the manipulator joint angles are considered as the scheduling 

parameters.  

9.2 Future work 

Although in this thesis new FE-oriented UIO schemes have been developed to satisfy 

the state-of-the-art fault diagnosis system and AFTC design, there is still considerable 

scope for further of development of this work and some suggestions of developments 

are as follows:  

 The UIO-based FE design methods in this thesis are developed considering one of 

the two fundamental UIO conditions: that the maximum number of independent UI 

cannot be larger than the maximum number of independent measurements, as 

outlined in Section 2.3.3. There is no doubt that this condition severely limits the 

application of the UIO-based approach. Therefore, it could be valuable to investigate 

new approaches to, at least in part, remove this condition to ease the constraints and 

make UIO-based FDI/FDD design more applicable. 

 Besides the residual-generation FDI applications, all the proposed FE methods in 

this thesis are based on the assumption that the faults acting on the system are 

additive. A multiplicative fault scenario is considered in which the multiplicative 
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actuator fault parameters are transformed into equivalent additive actuator faults. 

However, whilst this can be achieved for some component fault problems this 

approach is not generally applicable to all component fault cases. Future work 

could focus on more general approaches for dealing with component faults, 

retaining good robustness and fault isolation properties.  

 Dealing with the general context of additive actuator faults, further work could 

focus well on approaches to provide simultaneous FE for combined actuator and 

sensor faults.  

 Finally, it would be of value to explore the applicability of the UI de-coupling FE 

methods developed in this thesis to AFTC schemes. The robust FE methods have 

greater potential value in AFTC schemes compared with the use of robust residual 

approaches. 
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