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ABSTRACT

Research on and debate about ‘wise use’ of explicitly Bayesian
forecasting procedures has been widespread and often heated. This
situation has come about partly in response to the dissatisfaction
with the poor forecasting performance of conventional methods and
partly in view of the development of computational capacity and
macro-data availability. Experience with Bayesian econometric
forecasting schemes is still rather limited, but it seems to be an
atlraclive alternalive to subjectively adjusted statistical models
[see, for example, Phillips (1995a), Todd (1984) and West & Harrison
(1989)]. It provides effective standards of forecasting performance
and has demonstrated success in forecasting macroeconomic variables.
Therefore, there would seem a case for seeking some additional
insights into the important role of such methods in achieving

objectives within the macroeconomics profession.

The primary concerns of this study, motivated by the apparent
deterioration of mainstream macroeconometric forecasts of the world
economy in recent years [Wallis (1989), pp.34-43], are threefold.
The first is to formalize a thorough, yet simple, methodological
framework for empirical macroeconometric modelling in a Bayesian
spirit. The second is to investigate whether improved forecasting
accuracy is feasible within a European-based multicountry context.
This is conducted with particular emphasis on the construction and
implementation of Bayesian vector autoregressive (BVAR) models that
incorporate both a priori and cointegration restrictions. The third
is to extend the approach and apply it to the joint-modelling of
system-wide interactions amongst national economies. The intention
is to attempt to generate more accurate answers to a variety of

practical questions about the future path towards a united Europe.

The use of BVARs has advanced considerably. In particular, the value
of Jjoint-modelling with time-varying parameters and much more
sophisticated prior distributions has been stressed in the

econometric methodology literature. See e.g. Doan et al. (1984),

IX



Kadiyala and Karlsson (1993, 1997), Litterman (1986a), and Phillips
(1995a, 1995b). Although trade-linked multicountry macroeconomic
models may not be able to clarify all the structural and finer
economic characteristics of each economy, they do provide a flexible

and adaptable framework for analysis of global economic issues.

In this thesis, the forecasting record for the main European
countries is examined using the ‘post mortem’ of IMF, OECD and EEC
sources. The formulation, estimation and selection of BVAR
forecasting models, carried out using Microfit, MicroTSP, PcGive and
RATS packages, are reported. Practical applications of BVAR models
especially address the issues as Lo whether combinalions of
forecasts explicitly oulperform the forecasts of a single model, and
whether the recent failures of multicountry forecasts can be
attributed to an increase in the ‘internal volatility’ of the world

economir environment. See Artis and Holly (1992), and Barrell and

Pain (1992, p.Jd).

The research undertaken consolidates exisling empirical and
theoretical knowledge of BVAR modelling. It provides a unified
coverage of economic forecasting applications and develops a common,
effective and progressive methodology for the European economies.
The empirical results reflect that in simulated ‘out-of-sample’
forecasting performances, the gains in forecast accuracy {rom
imposing prior and long-run constraints are statistically

significant, especially for small estimation sample sizes and long

forecast horizons.

KEY WORDS AND PHRASES

Bayesian vector autoregression {BVAR) models; Exogeneity; Causality;
Nonstatiounarity; Unit roots; Regime shifts; Common stochastic trends
(CSTs); Cointegration; Error-correction (EC); Model selection; Lucas

critique; Hypothesis testing; Minnesota prior; Theil U statistic.
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CHAPTER 1

INTRODUCTION TO MACROECONOMIC MODELLING
USING BAYESIAN VECTOR AUTOREGRESSIONS

81.1 Introduction

The inherent complexity of the structure of the world economy and
the increasing awareness of the need for closer policy coordination
among European countries have together resulted in a growing demand
for powerful methods to interpret this complicated universe and
hence to strengthen the European edifice. There can be no doubt that
the more accurate and consistent are ex ante forecasts and macro
policy studies, the more rellable and useful will be the
macroeconometric models constructed. In consequence, the resulting
forecasts and simulations are 1likely to be more important and
influential to the private, public and overseas sectors. Moreover,
macroeconometric forecasting models present not only a forum within
which macroeconomic fheories encounter extensive challenge, but also

a target upon which major controversies are likely to focus.

" The importance of empirical econometric modelling naturally raises
certain questions. What are the inevitable basic assumptions, or
postulates, underpinning an econometric model or forecasting
venture? What are the central problems associated with inferential
procedures? And what should be the reaction if such problems occur?
For a long time it has been widely held that macroeconometric models
can’' be viewed primarily as providing us "with useful tools for
ééanning. interpreting, or predicting macroeconomic activities
and/or macropollicy effects in the real world. The general and
fundamental assumption is that the economic developments of
fAidividual countries and their policy stances can, at least
approXimately, be measured by small sets of lagging, current and
teading indicators. These may be used elther as signals to monitor
 ﬁﬁé"pfogress of economies or as a means to strengthen the degree of



European-wide policy cooperation. Such indicators normally can be
satisfactorily represented by the realizations of a group of

commonly used economic aggregates.

Presumably, there exist a number of generating mechanisms that
explain, or fit, the joint observations resulting from scrutiny of
these macroeconomic variables and their interrelationships. These
should not only be intimately linked with the state of national
economies, past, present and future, domestic and abroad, but should
also, hopefully, be stable enough over time to warrant further work

on trying to master the structure of the world economy.

It is clearly an important task to investigate and come to an
understanding of the workings of the underlying mechanisms and to
predict and simulate, with the help of economic theories and
statistical tools, the likely evolution of the relevant indicators
based on such interrelationships. In this regard, the rational
expectations hypothesis (REH) advanced by Muth (1961) in the
macroeconomic context 1is often considered optimal [cf. Pain &
Britton (1992), pp.82-7, and Wallis (1989), p.44]. This takes into
account all avallable information in the universe in a manner
conducive to forming.expectations with no systematic errors. Hence,
practical Bayesian inference should also be beneficial [e.g., Doan
et al. (1984), Kadiyala & Karlsson (1993, 1997), Litterman (1980,
1986a), Phillips (1995a), Shoesmith (1990, 1992), West & Harrison
(1989), Chapter 4, and Zellner (1985)]. The Bayesian approach can be
seen as a step in the same direction, in that it takes into
consideration all of our current knowledge, both prior and sample,
in a coherent fashion, to facilitate predictions under uncertainty.

However, some words of caution about the use of estimated economic
relationships for any emplirical prediction and simulation purpose
would seem appropriate here. This is especially the case for sudden
changes of empirical auto- and/or cross-correlations. Such changes
cégl@ come aboutjfbr i.wide,variety'of reasons, for example, those
caused by the oll crises in the early 1970s, which led to widespread
ahd'éiéhificéhf:failﬁres of forecasting models throughout the world. .
Indeed, on closer examination, the foundations of macroeconomic



systems may be undergoing deep changes caused by artificial
stimulation of government pre- or post-election regulation, by
deliberate intervention in personal behaviour, and by ordinary
socio-economic evolution processes. Such endemic changes of
structure will wunavoidably constitute major sources of forecast
deterioration and hence make the task of forecasting (especially in

the long term) much more problematic [Barrell & Pain (1992), p.3].

Fortunately, however, in fundamental and traditional human
socio-economic behaviour, there 1is often more stability than
variability. Hence, the deep parameters of the economy with some
possible invariants may not change quickly, being highly correlated
with current and past episodes and also appearing to exhibit some
constant features into the future [see Clements & Hendry (1992a),

p.3]. In essence, although the rationality of expectations is still

a contentious issue, the 1logical variant of the famous Lucas

critique (Lucas, 1976a), being either testable on specific occasions

or manageable in general, does not of itself condemn the forecasting
enterprise to fallure [see Clements & Hendry (1992a), p.20]. In this
and succeeding chapters, therefore, the work attempts to make
meaningful 1inferences and decisions on both theoretical and
statistical grounds in the face of newly emerging data and serious

intellectual challenges that have emanated from the New Classical

macroeconomics.

The main objectives of the research project are clarified in the'
next section (1.2). The third section (1.3) provides a background,
giving a brief overview of some of the aspects and the relative
importance of theoretical and econometric developments ° in
macromodel~building strategies.1 Some relevant key issues
surrounding the topic are furnished in the fourth section (1.4). The
final section (1.5) contains an outline of the thesis and a flow

chart -of the research procedure.

1A further survey of all the twists and turns in the argument falls
outside ‘the scope of this discussion. For a more detailed, highly
readable account of the formal unity of a theoretical and a
statistical model see Granger (ed) (1991), Chapters 1, 6, 9, 14, 15
& 17, ‘



§1.2 Objectives

The central goal of this thesis is to set up Bayesian vector
autoregressive (BVAR) forecasting models for the economies of the
United Kingdom, Germany, France and Italy, using IMF, OECD and EC
data sources. We Iinvestigate whether useful gains, in terms of
forecast accuracy, can be made through exploiting the co-movements
of some of the principal macroeconomic variables within a
European-based multicountry context. The dynamic interactions
between the economies specified in the model will be explored, with
the aim of shedding some 1light on complicated questions about
whether economic growth paths of different countries converge in
some sense over time. For this, a number of separate but related

research problems require further analysis.

(a) Is it possible to bridge the gap between the existing
theoretical and statistical analyses in the initial specification of
an empirical dynamic econometric model, and to proceed in the case

where a number of the initial underlying assumptions are rejected?

{b) How can we get round problems of insufficient data and create an

adequate data set upon which to base our analyses?

(c¢) Is it possible to determine long-run constraints, a joint prior
structure and its associated prior hyperparameters on the basis of

some -econofiic thecorles,  statistical - regularities and historical

dynamics of the data?

(d) How can we construct, compare and combine models for a given
period‘ to gehéréte a general BVAR model subject to certain
stochastiékand long¥run>restrictions, and then assess whether the
resultlnéz form of the empirical ‘model is an appropriate
approximation of the-actual data generation process (DGP)?

(e) How can the rationality of economic forecasts be tested in terms

of thelif unblasedness and efficiency properties?



(f) How can the decision be made about whether the sources of
forecast and turning-point errors are cross-country ones or
country-specific ones, and how can they be decomposed into avoidable

and unavoidable components?

All these substantive issues are of crucial importance for improving
our understanding and knowledge of the true nature of the underlying
stochastic processes and the evolutionary structure of the
contemporary world economy. Through this work, the formulation of

more reliable and effective empirical models will be addressed.

§1.3 Background

It has become widely accepted that the role of macroeconomic theory
is far more limited than was at first recognized and, whatever the
debates, the observed value of data has rarely been challenged.
Nonetheless, the impact of rational expectations on the theoretical
front has provided an important Iimpetus to the advancement of
applied macroeconometrics in general and the development of
macroeconometric modelling in particular. In this section, attention
will be focused on some basic ideas suggested by theoretical
considerations about the long-run equilibrium of the system because,
ignoring the basics, any further developments would be rootless.

1.3.1 Macrotheoretical Analysis in Modelling Multivariate
Long-Run Equilibrium Interrelationships

In = macroeconomics, varlous pileces of a priori theoretical
information currently avallable about 1long-run, or equilibrium,
interlocking relationships among the important aggregates can be
attributed variously to Keyneslans, monetarists, Bayesians, rational
expecters, and so forth. The macroeconomics landscape is littered
with economists carrying different banners and offering different
opinions. Although, from a methodological viewpoint, the explicit
use of a priori information is, in principle, highly desirable, the



tasks are how to integrate that information into the inferential
process and how to test directly or indirectly the assumptions

underlying the economic theories [Freedman (1986), p.127].

On macrotheoretical grounds, the basic conceptual existence of
long-run equilibrium relationships, proposed by macroeconomic
theory, means that there exists the bellef that certain
macroeconomic variables should not wander freely or independently of
each other; instead, they are expected to move in a specific fashlon
so that they do not drift too far apart. This is quite consistent
with the fact that in the short-run some factors may shock the
macroeconomy away from equilibrium, but that thls equilibrium will
be restored again in the long-run. Although there are many
definitions of economic equilibrium, one 1is described by Machlup

(1958, p.9) as follows:>

[an equilibrium is] a constellation of selected
interrelated variables so adjusted to one another
that no Iinherent tendency to change prevails in
the model which they constlitute.

The literature on the topic of objective 1long-run economic
hypotheses involving equilibrium concepts 1s, of course, voluminous
and still growing. However, given space ‘limitations. only some
general propositions, which 1 believe have great relevance for

econometric practice, will be presented here.

(a) There is a (parabolic) inverse relationship between the going
rate of interest and the aggregate demand for money,3 i.e. lower
interest rates will boost money demand in line with the higher money
supply. Méanwhile, when interest rates fall, the level of investment

in the economy will increase, reflecting government willingness to

take‘action to get the economy growing.

(b) There is a positive linkage between monetary expansion and

inflation, meaning that excessive monetary expansion would

2See alsio Chiang (1984), Chapter 3, especially pp.35-6.

3For,an entertaininé account of the approach see Branson (1989),
pp.319-46, and Laidler (1985), pp.39-77.



ultimately be channelled entirely into inflation, and eventually the
unemployment rate would become immune to whatever is the long-run
inflation rate. This is the so-called vertical long-run Phillips
curve, in which there are no long-run, but only short-run, changes
in (higher) inflation and (lower) unemployment as a result of
discretionary monetary intervention [see, inter alia, Owen (1986),

Chapter 1].

(c) There is a monotonically nondecreasing relationship between
total imports and total exports. Thus, the total aggregate income
and import 1levels Iin the various trading countries would be
sufficient to absorb total aggregate exports through merchandise
trade flows and prices, and the gains to competitiveness arising
from exchange rate depreciatlon of an economy would also support a
rise in its share of world trade. [See, for example, Anderson et al.

(1992), Artis & Holly (1992), pp.334-5, and Barker et al. (1993)].

The Keynesians’ prior emphasizes the efficiency of policy and
embodies the idea that fiscal policy 1s of particular significance
in the business cycle. This may influence output/(un-)employment
through changes in the level of aggregate demand in the standard
Hicksian IS/LM model. In contrast, the monetarists’ prior stresses
the ineffectliveness of policy but takes the view that monetary
policy 1s of central Iimportance in the business cycle and could
affect inflation/production through the control of the growth of the
(nominal) money supply. This, in turn, can be regarded as a good
single index of monetary policy [see Granger (ed) (1991), Chapter
11, and Owen (1986), Chapters 1-3]. As European monetary union gets
underway, monetary policy and, 1in particular, the monetary aggregate
indicators will play an important role in the process of transition
to full monetary union [see Artis & Lee (ed) (1997), Chapters 1, 2,
12 and 13]. The long-run assertlons made by standard macroeconomic
theories provide food for thought in the entire modelling exercise.

The traditional role, and much of the recent work of economic
theory, - is -thus. formally invoked In four aspects of the initial
specification:process: the selection of variables; the determination
of the signs of  unknown parameters; the implications of Joihtly



simplified dynamic structure; and the imposition of various long-run
constraints. Clearly, every economic variable could, potentially, be
interrelated or interact with every other variable to some extent.
Therefore, apart from special and unlikely circumstances, it is very
uncommon to find explanatory variables that appear in equations with
exactly zero coefficients if one wants to minimize the predictive
expected loss (risk). But when considering a tradeoff between the
inclusion of additional variables and the gains of precise
description, it is not advisable, in the modelling strategy, that
all possible economy-wide variables be included blindly, or tested

for inclusion, into the system.

Hence, the first step facing the modeller is to use a priori
information, without excluding all other information, as a rough
guldeline for the choice of the observed data series that correspond
to the (latent) theoretical variables under scrutiny. The second
step is to identify the signs of coefficients, or the direction of
change, in a relationship between the variables included [Griffiths
et al. (1993), pp.796-7]. The third is, at least intuitively, to
specify a general weight-declining lag scheme by means of proper
priors, so that the influence of past values on current values can
be increasingly attenuated. However, see Cooley and LeRoy (1985) for
a contrary oplnion. Finally, theory 1is used to influence the
estimating form of empirical models, in so far as it evens out the
observable short-run fluctuations via its testable long-run
restrictions. At an elementary level, whether one accepts -the
prevalent Keyneslan-type and/or monetarist-type prescriptions
colours the way in which suitable methods to handle empirical models

with these characteristics may be thought of.

The use of complex a priori reasoning to gulde the specification of
a set of desired relationships is in effect only a stepping-stone to
a formal dynamlc specification. One reason 1is that economic
theories, whether Keyneslan or monetarist, are still far from
perfectly developed, and should not be expected to give a complete’
and hﬁlqﬁély:épecified model. For example, a given economic theory
on its own merely tells us that some economic varliables are related

strongly and others are only weakly related, if at all. It does .not



provide the exact form of a prior for the adjustment process and lag
structures. Nor is it possible to place sufficient identifying
restrictions, long-run or otherwise, on the empirical magnitudes of
population parameters of 1interest so as to derive clear-cut

conclusions [see Granger (ed) (1991), Chapter 9].

It 1s the recognition of the imprecision and incompleteness of
macroeconomic theories in practical terms that leads to an emphasis
on the important role of quantitative analysis. This recognition
also glives rise to the need for blending personal beliefs and
historical records into the process of specification search, before

a stochastic dynamic model is finally specified.

1.3.2 Macroeconometric Analysis in Modelling Multivariate
Short-Run Dynamic Interrelationships

In macroeconometrics, there are essentially two basic views on the

complementary roles and relative importance of theoretical structure

and data analysis within a dynamic specification framework [see

Clements & Mizon (1991). pp.887-8, and Coen et al. (1969),

pp.152-3]. These contrasting views can have an important effect on

the final choice of econometric modelling strategy. At one extreme,

a theory-oriented approach, for example, a structural econometric

model (SEM), can be regarded as a substantial subject, playing a

dominant role in describing the nature of causal links at work or in
predicting the effecfs of a change on the structure of the system.

At the other ext;eme,’a priori structural hypotheses can be reckoned
a humble subject, playing a subsidiary role in any pragmatic and
empirical investigation. In this latter view, a data-determined
approach, for example, a finite vector autoregressive (VAR)

representation that 1s 'éapable‘ of characterising the frankly ad hoc
nature of the Jolht temporal causal structure among a wide range of
macroeconomic variables, should have a dominant role ([see Sims
(1980a)]. On the whole, many researchers hold somewhat intermediate
positions by constjructing.v: and maintaining -theoretically congruent -
dynamic models. ' '

Serious formulation of macroeconometric models on the world scene



began to take place just after the Second World War, but developed
rapidly thereafter. More recently, Sims (1980a, and in later papers)
proposed using the heavily parameterized, unrestricted (or loosely
restricted) vector autoregressive (UVAR) approach, termed by Cooley
and LeRoy (1985) ‘atheoretical macroeconometrics’, as an important
alternative to classical techniques for macroeconometric analysis.
In this approach, a vector of jointly endogenous variables is
specified to be a linear function of their own and each other’s
lagged values, not subject to a direct, explicit and restrictive
economic theoretic meaning. Since then, this methodology has been

widely used for small to medium-sized macroeconometric models in the

area of forecasting.

A notable feature of the UVAR model is that the system is a closed
one with no contemporaneous variables assigned the extra-model
status of exogeneity, no ‘incredible’ over-identifying restrictions
imposed and no trivial endogenous/exogenous distinction allowed. As
Anderson (1979) points out, the simple UVAR models should forecast
better than structural models since the former, unlike structural
models based on more complex and subtle economic theory, do not
require complete data and can thus generate forecasts of 'all
variables internally in a fairly straightforward manner. This is
especially true in cases where little information is available about
the determinants of the vector of variables of primary concern, and
a sufficlently large amount of data is obtalnable to enable one to
produce a linear dynamic ‘reduced-form’ with a distributed lag of

reasonable length.

Although the UVAR models have been extensively utilized, a serious
limitation of the approach 1is the problem of overfitting or
overparameterization.4 Due to multicollinearity and loss of degrees

4It has long been recognized that when estimating UVAR models with a
relatively large number of variables, without restriction, the
number of coefficlents, which grows with the square of the number of
variables, 1s large relative to the number of observations typically
available, and overfitting occurs. This is likely to result in
imprecise estimates of individual coefficlents and, hence, many free
insignificant coefficlients hampering the Iinterpretation of the
interrelationships among the variables [see Owen (1986), p.34].
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of freedom, overparameterization will generally lead to poor
‘out-of-sample’ forecasts and less precise estimates of forecast
error variance components. One promlsing forecasting method of
tackling overparameterization is the Bayeslan vector autoregressive
(BVAR) method pioneered, explicitly along Bayesian 1lines, by
Litterman (1980). Instead of adopting hard shape or exclusion
restrictions, he 1imposes the so-called ‘Minnesota or Litterman
Prior’ on the coefficient estimates, which is centred about the
vector, or multivariate, random walk process. The idea met with
considerable scepticism, wuntil Litterman’s model was found to
outperform other forecasts of many economic variables [Doan (1996),
p.8-17, Granger (ed) (1991), p.3, and Shoesmith (1992), p.93].

As Todd (1984) clarifies, a basic BVAR model might seem to resemble
a UVAR model 1n the formation of its equations and also resemble a
structural model 1in its use of priors to prevent overfitting.
However, from a Bayesian perspective, both the UVAR and SEM
approaches are either too vague (in the former case) or too extreme
(in the latter case), and thus probably either overstate or
understate the modeller’s true beliefs. The BVAR modeller holds that
more recent lags of a vector of variables are more relevant. in
forecasting than now distant ones, whereas the UVAR constructor
pretends to be completely ignorant and treats all possible lag
structures to be data determined. At the same time, the BVAR
modeller uses prior beliefs to specify the ‘guesstimated’
coefficients, while allowing the data to override each of the
guesses in the light of sample evidence afterwards. This method is
in contrast to the approach of the SEM builder, who pretends either
to be absolutely confident about the zero excluded coefficlents, no
matter what the historical data suggest, and to be absolutely
ignorant about the posited included coefficients, no matter what the

modeller actually belleves.

A distinctive feature of the prototypical BVAR method is that it
permits forecasters to incorporate, in a logically consistent
manner, '-both prior and sample information through Theil’s mixed-
estimation technique, with the best settings of the hyperparameters
to gene}ate international forecasts or to suggest macro policies.

11



This is important because it gives investigators a flexible,
credible way of expressing personal beliefs more accurately and a
standard, objective procedure for combining those bellefs with

historical record more formally.

The BVAR prototype is inherently a naive backward-looking model,
since the default of the Minnesota prior, which effectively shrinks
all the parameters either exactly or approximately to the vector
random walk (with or without drift) hypothesis, is based on the
implicit ‘business as usual’ assumption.5 In other words, it is
assumed that the behaviour of many macroeconomic variables will be
the same in the future as it was in the sample period, so that, for
such a variable, the best forecast of its future values will simply
equal 1its current value. This 1is, perhaps, a chief source of
challenge for the model-based forecasters, since these ‘no-change’

forecasts can be extremely difficult to improve upon.

In the search for a more generic, economically meaningful model, the
BVAR prototype has been readily extended to an open system for the
dynamic, disequilibrium adjustment process based on the error-
correction mechanism. (ECM). The emphasis is on the use of a further
exogenous factor, the equilibrium error, which arises primarily from
the concept of multi-colntegration. According to the relationship
between colntegration and error correction expounded by Granger and
his co-authors (see e.g. Granger, 1986b, for references), the
resulting BVAR model, very much like a negative feedback network, is
essentially a self-correcting model. The impact of a long-run or
equilibrium sclution, as implied by a priori theory, can' be
introduced . into the model 1in order to restrict the short-run
dynamics, and the forecast can be set back on track, so that under-
or over-prediction of an equation in the past will automatically'
lead to' a commensurate adjustment in the future. This relatively
inexpensive BVAR model, with both prior and cointegration
constraints, will be presented as an effective means of generating
accurate forecasts and providing a tough benchmark of comparison for
forecasts derived in more traditional ways. )

>For detalls of this literature, see Artis (1988), pp.25-6.
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§1.4 Structure

In order to apply state-of-the-art time series econometrics
modelling techniques that incorporate prior information to the ma jor
macroeconomic indicators to generate forecasts, some relevant key

issues surrounding the topic should first be considered in a

critical light.
1.4.1 Bayesian Analysis and Retrospection

An overview of the evolution of the macroeconometric approach has
indicated that there is a long and unfortunate tradition of placing
too much emphasis on macroeconomic theory, as opposed to historical
evidence, in the specification and evaluation of macroeconometric
models. The spirit of this tradition was to a large extent rooted in
the desire to search for a true underlying model by emulating the
approach of the harder sciences [see Bodkin et al. (1991), Chapters
6-8, and Granger (ed) (1991), Chapters 6 and 15].

However, in many situations it is perhaps naive to argue that an

economic theory or model is ‘true’ or ‘false’ per se; it may be more

reasonable to argue that a theory or a model is ‘useful’ or ‘not

useful’ in facilitating the specification of empirical
relationships, or in 1illuminating the particular phenomena of
interest. The contention here is that the crucial assumptions on
which the conclusions of a theory depend sensitively are never
precisely true, the links between theories and empirical
specifications in macroeconometrics are not very close, and the
avallable observations are not sufficlent to enable one to estimate
all the ‘true’- parameters with great accuracy. It is, therefore,
counterproductive to think: that one could finally achieve some sort

of complete, once-and-for-all, ‘true’ mechanism in the longer term.

Recent :developments 1in macroeconometrics have changed interésts
towards - the use of both data and theory, sophisticatedly simple
hypdthéééébdriﬁefhods, ﬁrédictlph'ana model selection criteria and
the Bayésian léarning procedure in model specification and

13



evaluation. It seems to be generally agreed that in building
econometric models, theory should not be binding on the model, but
should be true within the model [Granger (ed) (1991), pp.18-9]. The
‘bottom line’ is how well models perform in interpreting what is
going on, or in predicting what is going to happen. In this respect,
the explicitly Bayesian shrinkage techniques have had a significant
impact on econometric studies, providing a formal framework for
handling background or prior information under uncertainty, and will

undoubtedly open up a new vista for the progress of econometric

modelling [Todd (1984)].
1.4.2 Bayesian Modelling and Estimation

Linearity, as a useful approximation to many non-linear problems,
has long been used in macroeconometrics to model the dynamic
interrelationships between principal macroeconomic variables.6 We
will first survey the previous forecasting record of the UK,
Germany, France and Italy. Attention then turns to the construction
of macroeconometric models that incorporate both prior and
colntegrating restrictions for these countries, within a similar:
multivariate linear, or log-linear, stochastic framework. Through
the foreign trade connections between the economies, these various

country models can then ultimately be combined into a general BVAR

model for the European economies.

Along the way, a number of relevant problems and issues will be-
investigated, such as the inspection of cointegrating vectors; the
refinement of lag structures; the exploration of causal linkages;
the treatment of deterministic terms; the estimation of ’the
sensitivity of forecast  performance to prior information; the
employment of error-correction mechanisms; and the determination of
the best settings of the prior hyperparameters. The extensive data.
set- used 1s obtained from various IMF, OECD and ONS databanks.
Rolling mixed-estimations with the ald of the Kalman Filter updating
procedure will be. -used -for the BVAR models, thereby allowing

6ForAref§rences to the forecasting literature for non-linear models
see, among others, Mariano (1985) ‘and Mariano & Brown (1983, 1991).

14



parameters to vary over time. The resulting t, F and R2 values will
be presented and the comparative forecast results in terms of
Theil’s U statistics (or RMSEs) will be reported. All estimation is
conducted using the Microfit, MicroTSP, PcGive and RATS sof tware

packages on an IBM (or compatible) personal computer (PC).
1.4.3 Bayesian Forecasting and Evaluation

The prediction of the future time paths of macroeconomic variables
is one of the most noticeable manifestations of the use of
macroeconometric models [Stewart (1986), p.264]. In this study, both
single- and multi-country forecasts will be made and evaluated from
1991Q1 onward for a similar range of variables. This provides a

rigorous testing ground for the BVAR models and their uses.

1.4.3a Multicountry Forecasts

Frequently, the term forecast is used to denote a statement about
future events, whereas prediction is used to define an implication
of a model. Ex ante forecasting with an econometric model involves
the use of past and current information available prior to the
forecast period 1in order to generate a Joint predictive
distribution, together with a final forecast for future values of
the series that have, as yet, not occurred. In this exercise, Soth
simulated and genuine ‘out-of-sample’ quarterly forecasts will be
produced mainly for the short-term (one to eight quarters ahead of
the date of occurrence) and the appropriate BVAR forecasting models
will be selected to form optimal (linear) forecasts, subject to as
little error as possible. In addition, the multicountry forecasts
generated by the BVAR models are unconditional, since they do not
depend on explicit assumptions about the future course of the

projected external determinants of economic activity [McNees (1986),

p.15].
““1,4.3b 'Forecast Evaluation

A statistical evaluition of the quality of forecast performance of
the BVAR models through "a comparison with the UVAR and other
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conventional models over the forecast period will be presented by
using Wald parametric encompassing tests in truly ex ante
circumstances. This permits assessment of whether the BVAR approach
derived with proper prior and cointegration constraints is superior,
on average, to other traditional techniques. The encompassing of
econometric hypotheses enables us to go beyond simple Root Mean
Squared Error (RMSE) comparisons of forecast evaluation so as to
achieve a more generally applicable and effective model. Meanwhile,
the forecast and turning-point errors from actual outcomes will be
analysed to evaluate the efficiency and bias of individual BVAR

forecasts in a changing economic environment.
1.4.3c Policy Simulations

Probably the most formidable critique to the quantitative policy
evaluation proposition would appear to originate with the Muthian
rational expectations hypothesis and the related Lucas (1976a)
critique of mainstream macroeconometric model-building. The internal
logic of REH is that sensible economic agents will use all the
available information efflclently in order to avoid systematic
errors in thelr expectatlions, or forecasts. The implication is that,v
given an instantaneous market clearing paradigm, rational agents act
to eliminate any effects of systematic policy on real factors.
Hence, only unexpected monetary or fiscal policy changes can have
any real effects. This is the neutrallty or policy ineffectiveness
proposition. In practice, a shock can provoke enough variation in
aspects of the world economy to allow modelling via data on multiple
time-series. If particular economic varlables do not vary, then it

is impossible to measure their impact on economic activity using

only time-series information.

The ratlonal-expectations logic of the Lucas critique Iis that
structurél. behavioural eéuafions will not be invariant to
alternative policy rules and regimes. This implies that rational
individuals ought to understand the nature of the policy in force
and use thls ipformation in forming expectations. Hence, were a new
set of polic; proposals to be implemented, the parameters of the
system would shift systematically. Thus, the structure would break

16



down and, in particular, would no longer permit a sound prediction
of the likely consequences of a new policy action. This is known as
Goodhart’s (1986) 1law in the monetary area. It would have
represented a forceful criticism of macroeconometric modelling had

the argument been sustained.

However, the quantitative significance of the Lucas critique for
policy analysis is an open question. One can strongly refute the
argument in so far that the likely size of the error from such a
criticism, for many experiments, may not be very great.7 If this
were the case, then there would be a return of confidence in the use
of simulation techniques for minor policy changes. In reality, there
is nothing very special about rational expectations theory that
proves that REH is the only way to interpret the behaviour of
agents. The developments of the New Classical macroeconomics require
a strategy of explaining economic activity in terms of rational
individual choice. If there were problems in which there were no
rational cholices, then this strategy would not equip the New
Classical approach fo analyse them at all, thereby limiting its
domain. Even 1n the absence of any such limitations, the New
Classical analysis would still be unable to offer a complete
explanation of economic behaviour. Accordingly, while the challenge
raised by the New Classical school has posed some important
questions about the dynamics of the macroeconomy, it is reasonable

to doubt whether this critique is applicable in its present form.
In this work, we will stick to the paradigm that behavioural

parameters will not suffer greatly from the Lucas criticism, and use:

the formulated model to learn about the dynamic interactions between

(among) two (or more) of Europe’s major economies.

§1.5 Intended Scope and Flow Diagram

The format of this thesis is, therefore, made up as follows. After

Tsee, for example, Artis & Holly (1992), pp.336-7, Bodkin et al.
(eds) {1991), pp.551-5," Granger (ed) (1991), Chapters 8-11, and
Wallis (1989), pp.35-8. .

17



the brief discussion of recent theoretical and practical
developments in depicting the interrelationships between a number of
macroeconomic variables, particular attention is paid, in Chapters 2
and 3, to the prototypical BVAR modelling. This model is constructed
in the framework of standard stationary normal 1linear dynamic
systems, without much loss of generality and with a noticeable

benefit in simplicity and clarity.

The set-up of a more general BVAR model subject to both prior and
cointegration restrictions is then discussed in Chapters 4 and 5 for
non-stationary time serles. A pragmatic, systematic BVAR and/or
BVAR-EC forecasting model selectlon procedure, which can readily be

implemented on available econometric packages, is put forward.

In Chapters 6 and 7, the transformation of the macro data for the
formulation, modification and selection of empirical BVAR
forecasting models 1is laid out. Various ex post and ex ante
quarterly forecasts based on the mix-estimated BVAR and BVAR-EC
models are apﬁendéd'and displayed in the accompanying graphs over
the forecast period, 1991Q1-1998Q4, for Europe’s leading industrial
economies. The rélayiye efflciency and accuracy of BVAR and BVAR-EC
models are evaluaxgd in detall using an appropriate forecasting:
criterion (e.g. Theil’s U statistic). Typically, the different sorts
of forecast or turning point errors are analysed, in order to assess

the real causes of failure in a multinational forecasting context.

To providéméhu6§e;61ew. the outline ofxthe proposed methodology 1is
schematically represented in Fig.1.1. The whole system depicted in-
the fligure can be pertCelved as the exploitation and treatment of
plausible lnfofﬁafibn’ fiows, as well as the unification and
refinement of theoretical and empirical analyses.

Summaries, practical concluslons and some further thoughts and
priorities for future woné"’;r;“"‘;ét forth in Chapter 8. In addition, .
the tabulation of experimental results, specifications.of computer
programs stored 1n ASCII filééLehding with suffix *.ASC and other
details are provlded'in«Apggp&icgs\ArF, followed by references.
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CHAPTER 2

STATIONARY UNRESTRICTED VECTOR AUTOREGRESSIONS (UVARs)
WITHOUT A PRIOR

§2.1 Introduction

In the literature on empirical macroeconometric time series
modelling, explaining the relatlonship between a set of observed
macroeconomic aggregates and predicting the future paths of the
variables based on the data chosen has been one of the most
important challenges. A principal reason for the widespread use of
multivariate dynamic linear regression techniques is simply that of
algebraic and computational convenlence. Recent progress has
involved considering a framework for estimating and interpreting

vector autoregressions (VARs) and thelr various extensions.

The unrestricted vector autoregressions (UVARs) advocated by Sims
(1980a, 1982) as an unstructured first-stage model provide a
convenient way of testing the economic hypotheses of dynamic
specification, and present a yardstick against which the performance
of more elaborate models may be assessed. The Bayesian vector
autoregressive (BVAR) models developed by Litterman (1980, 1986a)
with an informative prior distributlion not only share with UVARs the
property of reflecting the salient characteristics of the series and
its components adequately, but also give modellers flexibility to
express the nature of their prior beliefs. Prior and sample here
might be thought of as two equally important types of information
playing a jJoint role in determining each of the parameter estimates
in the system considered. We are particularly interested in the
Bayesian approach because, in conventional time-series analyses,
althbugh substantial prior information is frequently available, it
is usually ekpféQSéd in an informal or incoherent way which does not

lend itself to replication. The Bayeslan approach, in contrast,
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provides a general formal method for handling proper prior and
finite sample information in a coherent methodological frahework of

macroeconometric modelling [Zellner (1985), p.255].

This chapter starts by reviewing some of the important concepts
involved. It then goes on to introduce the approach employed in the
construction of linear time domain models. The chapter concludes by
illustrating how to construct a basic, finite-order, stationary BVAR

forecasting model with stochastic prior restrictions.

§2.2 A Linear Stochastic Multivariate System for Nonintegrated
Time Series

From a theoretical viewpoint, the multiple time-series model could
always be embodied within the appropriate structure of a
multivariate econometric model. A properly specified multivariate
econometric model should provide a richer pattern of correlations
and yleld more accurate forecasts than a purely time-series model.
The main objective of empirical econometric modelling is to find a
relatively simple specification which, in broad terms,
satisfactorily captures the characteristics of the observed data. To
that end, the work in this study will concentrate initially on a
Jjointly stationary VAR representation (possibly after differencing)

of a set of economic data. For exposlitory purposes, we will take the

simple stationary case first.

2.2.1 Stationary Vector Autoregressive (VAR) Processes and
Their Properties

In conventional (multlpfé) time-series macroeconometric analyses, a
natural starting-polnt 1is to treat a discrete vector stochastic
process as the actual underlying mechanism which generates
observations ' dn a given set of random variables, say
!ts(Yit,;:;;YKt)*frtél,..;,T. Each observation is one realization of
the_vec;or,stocpasticgprocess. also denoted by {Xt} when there is no

possibillty of cénfusion.
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In principle, the vector stochastic process may be characterised by
the joint distribution function of all finite, time-ordered
subsequences of random vectors {Xt. teTncN} —_— RK, K-dimensional
Euclidean space. Thus, if we could somehow specify the joint
probability distribution function p(Xl,...,XT) for our process, we
would then fully capture the true random behaviour associated with
future outcomes. In practice, however, empirical analyses are rarely
based on the complete distributions, but on parameters of the
distributions, such as the mean vectors E[Xt] and covariances
E[(xt-E[xt])(xt_s—E Xt_s])’]. However, to be able to infer all the
values of these first and second moments from just a single

realization, some further assumptions have to be made.

One important assumption generally made is that of ergodicity. It
asserts that the random sample moments approach their fixed
population counterparts as the available sample size T goes to
1nfin1ty.1 A second assumption is that of stationarity, which has,
in general, two conceptually distinct but closely related

definitions: strict-sense stationarity; and wide-sense stationarity.

Strict stationarity implies that both the joint multivariate density
function {p(!t,...,!£+h), h#0} and the marginal function (h=0) are
independent of a displacement in time origin and that any set of h+1
observations has identical distributions. Wide-sense or covariance
stationarity 1implies that the first two moments of the Jjoint.
distributions are finite and time invariant; that is,

ED".'t] = p_Y < o, Vt,

E[(gt - éY)(!t—s- my)'] - { zy‘= ry(0) <w,  Vt, s=0;

PY(S) < o, vVt & s, s # 0.

and

Thus all such moments exist and that they do not depend on the
particular time point t but only on the absolute value of the time

1See, inter alia, Hannan (1970), pp.200-20, for a more thorough
discussion of ergodicity.
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difference, s. The practical consequence of this property is that it
allows us to study the sampling properties of the variables of
interest through summary measures 1like sample moments based on a

single realization.?

For a jointly normally distributed vector stochastic process, often
known as a Gaussian vector process (determined entirely by its first
two moments), weak and strict stationarities are equivalent [Harvey
(1992), pp.49-50]. For example, a vector white-noise process
{gt=(u1t,...,uKt)’, teT}), 1i.e. one with Efu, 1=0, E[gtgi]
=Zu(nonsingu1ar)<u» and E[gtgé]=0 for s#t, is clearly stationary.
This process may be normally independently distributed (NID) or,
less restrictively, independently identically distributed (IID) with
zero mean vector and finite covariance matrix. In the former case
strict and wide sense stationarities hold, whilst in the latter wide

sense stationarity certainly holds.

A standard time series modelling strategy is to assume the current
value of each varlable YJt (assumed stationary for the moment),
Jel1,K], to be affected by past values of itself and the past (and
possibly also the current) values of other variables that are

present, together with a random disturbance at each point in time.
That is,

Y

Pi1,1Y1, t-1% *P1g 1 Yk b1

Y,, =D,-b Y

1t = D17P12,0Y2t™ - "ok, oY,

1K,0°kt"

tooe*byy oY1, tp® P, pYK, top St

Yt = PxPk1,0Y1t7  Pkx-1,0%-1, t %1, 11, t-1% ki, 1Yk, t-1

.+b Y. (2.1)

+...4b Y KK, p'K, t-p* ekt

X1,p'1,t-p "

where the 1térmé éJt’ 'j=i....K, are assumed serially uncorrelated

white-nolse disturbances with constant standard deviations 01

through'cx, respeétively.

ZFor detalls see Judge et al. (1985), Chapters 7 and 16, and Pindyck
& Rubinfeld (1991), Chapters 15 and 16. '
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These K equations constitute a (primitive) K-dimensional vector
autoregressive process of order p or VAR(p). The structure of the
system incorporates feedback since current values Y1t to YKt are
allowed to affect each other. For example, -blK,O is the effect of a
unit change in YKt on Ylt' If blK.0$0’ then YKt has a
contemporaneous effect on Ylt’ and EKt’ being pure shocks in YKt’

has an indirect contemporaneous effect on Ylt [see e.g. Enders

(1995), pp.294-7].

Due to the feedback effects in the system, (2.1) cannot be estimated
directly using OLS, since the regressors are correlated with the
error term. However, it is possible to transform the system into a

reduced form. We can write the system in the compact form as:

Bo¥y =D+ §1Xt-1 e YBY &
=D+EIBY , +e€; V¥t (2.2)
1=1
where
Yit Dy 1050 Pik.0
Xy = » B = » By = | E
gt D¢ k1,0 Pk-1,0 !
(Kx1) (Kx1) (KxK)
Pig,1 7t Pig oy €t
B=| P et pame
bKl,i bl(l(,i EKt
(KxK) (Kx1)

Premultiplication by _B_(-J1 allows us to obtain the equivalent vector
autoregressive (VAR) model in standard form. The current observation
of ¥, 1s:a linear aggregation (or linear filter) of its own p past

values plus constant and random error terms:

'Y't = g“ + A1Xt‘1 +, '[ * ' + Ap.!t_p + l_‘l.t
o p . - . |
=C+ LAY , *u; Vo (2.3)

=

Here A1=381§i, i=1,.;.,p. .are- KxK' matrices of lag coefficients,
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-1 . .
_=§O D is a Kx1 vector of deterministic terms relating to the mean
of the stochastic process, and gt=§61§t is assumed a Kx1 Gaussian
vector white-noise process, denoted gt~NID(0, z ).3
u

To distinguish between the systems represented by (2.2) and (2.3),
the first is called a structural VAR (or a VAR in primitive form)
and the second a VAR in standard form.4 Only the standard form VAR
model can be estimated using OLS.5 To ensure that the same linear
generation law prevails even outside the sample period, we assume
that the model extends backwards and forwards in time, and use the

expression ‘Yt’ in the generating equations of the A weights.

It is useful to introduce the lag, or backshift, operator L such

that Lnxt!lt—n (and L“gsg). Using this operator, Eq.(2.3) can be
rewritten as

ALY, =C+u, u~ND0O, Z), vt (2.4)

where the lag polynomial of order p

3The variance-covariance matrix (Zu) can be written as:
'Y _ -1 -1 o1 , -1y,
z =var (u,)=E(u,u;)=E[(By e, ) (By "<, ) 1= (By E(e,¢;) (B ')
-1 2 2 -1y,
=(§o )dlag(vl,...,cx)(go )’

which is, in general, a nonsingular KxK matrix (with time-invartant
variance and covariance terms). Hence, we get

2
var(ult) . cov(ult,uxt) o1 e Tk
= . . . = . . . .
u : . : X S,
cov(ult,uxt) - var(uxt) T1 v Ok

where cjisvar(th) and oJi=¢1J=cov(th,u1t); 1,Jel1,K].

4For simplicity, when we say a ‘VAR’ process we mean a ‘standard
VAR’ in the following analysis.

SHowever. it 1is -essential to realize that, normally, it Iis
impossible to recover all of the Iinformation present 1in the
primitive system from the OLS estimates of (2.3), unless we are
willing to restrict appropriately the primitive system using block
exogenelity restrictions. We return to these issues in the next
section. [For further details, see Enders (1995), pp.294-305.]
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P

A(L)=1 -AL- ... - .
“p 4 At

K
The focus of interest is often the parameter matrices Ai’ i=1,...,p,
not C which is constant for each individual. Assuming C=0 with no

. 6
loss in generality, we have

Ap(L)Xt = 4,
or

Y, = A L)y

=t =p =t
It follows that the stationary linear autoregressive process may be
thought of as the output Xt from some linear backward-looking filter
with transfer function given by the inverse of the autoregressive
operator Ap(L), when the input is vector white noise u, . Also, the
transfer function of the linear filter relating Xt to u, can be
viewed as a ‘black box’, whereby the nature of the input-output

relationships 1s estimated with no explicit support from theory.
2.2.1a Stationarity in VAR (p) Processes

Stationarity in VAR(p) processes 1is summarized in the following
proposition without prbof.7

PROPOSITION: A necessary and sufficient condition for Y, ~VAR(p)

process to be stationary 1s that

det[Ap(S)] = |4,8)]
= |1 A€ - ... - Apgp| 0, |€ s1. (2.5)

This condition provides a convenient means for checking stationarity
on a given set of observations in principle or testing a null

6Tak1ng C=0 is equivalent to scaling Xt in terms of deviations about

its (constant) mean, given that the process is stationary. For
further detalls, see Appendix B.
7For a proof of the proposition.see, among others, Enders (1995),
pp.412-8. S
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hypothesis on the boundary between stationarity and nonstationarity
in practice. There are three possible cases to note about the

proposition.

Case (a): Suppose IAp(E)lao, for |€|s1, a stationary case with
condition (2.5) fulfilled. In this case the weights given to past
shocks will diminish with time; that 1is, the present is more

important than the past.

Case (b): Suppose |Ap(€)|=0, for |€|=1, a unit root case with one or
more unit roots and all other roots outside the complex unit circle.
This 1is a specific class of nonstationary case with important
economic and statistical properties [see Fuller (1976), Chapter 8,
especially pp.366-82]. In this case the weights given to distant
shocks will be as 1important as those given to more recent ones,

implying that the past and present are equally important.

Case (c): Suppose |Ap(€)|=0. for |£€|<1, an explosive case with at
least one of the roots (strictly) inside the unit circle. In this
case the time-changing mean and varlance of the process would drift
further and further away, at an exponentlal rate, from any fixed
reference point [Pindyck & Rubinfeld (1991), p.478], and weights
given to previous shocks will be greater than those given to current
ones. In other words, the past is more important than the present.

This is not often characteristic of typical economic phenomena.

Thus, only the first two cases would seem to be of much practical
interest in economic analysis. Case (b) can often be transformed
into a stétionary one, either by taking differences or by 1mpos1ng'
special restrictions called cointegration restrictions. These

processes will be discussed in detail in Chapters 4-6.
2.2.1b .Wold"s Decomposition Theorem
Wold’'s decomposition theorem (Wold, 1938) states that any stationary

multivériaté_ét@éhgstlé;prbcesé.(xﬁ) can be uniquely and additively
decomposed into two mutually orthogonal component subprocesses: a
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linearly deterministic (or nonstochastic) part (Y ), and a purely
nondeterministic (or stochastic) part (Yt) 8 By deterministic, we
mean that the subprocess can be predicted perfectly from its own
past alone, at any observation point. By nondeterministic, we mean
that the subprocess, containing no deterministic components, can be
represented as a linear combination of a sequence of uncorrelated or

orthogonalized innovations in the equations of the system. That is,

[+ ]
* + _
Y, =Y, + xt =D + ¥ gigt—i = Qt + Q(L)gt, (2.6)

where Qt is a Kx1 vector of deterministic components, the Qi s are
KxK matrices of time-invariant parameters, 90 is an identity matrix
and the matrix polynomial, Q(L), is absolutely summable. The Kx1
error vector u, is, as usual, a multivariate white-noise process.

Since it 1s assumed throughout that in a covariance stationary
process all parameters are time invariant, the deterministic term
Dt=“Y’ bearing in mind that Qttuy will imply time-dependent levels
or polynomial trends, and will violate one of the conditions for
second-order statlonarity. We then neglect Qt=uy in the following
analysis for ease of notation (though when dealing with real data,
its presence can be important). At the same time, the matrix (L) in
the purely nondeterministic term can often be adequately
approximated by the product of two matrices, A (L) and M (L), each

involving only parsimonious lag polynomials in the sense that p and

q are relatively small.

One is then led to consider probably the most important family of

linear schemes in time-series modelling

A, (L)Y, =M (L)y,
or

q
1§1Aixt- B * 25&!1%71'

8A formal discussion of this theorem may be found in, for example,
Brockwell- & Davis (1991), 'Chapter 5, Granger & Newbold (1986),
Chapters'1, 2 amd 7, Harvey (1992), Chapters 2 and 8, and Liitkepohl
(1991a), Chapter 2.
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where the respective vector AR and MA operators are

— - - -
A (L) Ik AlL . A LF,
and

q
K M, el + MqL .

]

—
+
4
-
+

Mq(L)

This process is called a K-dimensional vector mixed autoregressive-
moving average process of order (p, q) or VARMA(p, q). To guarantee

both stationarity and invertibility of this process we require that

|A €] = |1g - A€ - ... —Apgp| * 0, l€] =1,

and

L}
™

+
<4
N
+

M (€) . +M €3] =0, s 1.

€| €% €]

With these two separate conditlions fulfilled there is a unique VARMA
representation of a vector stochastic process corresponding to the
autocorrelation structure.9 The estimation of a VARMA process
inevitably requires a nonlinear procedure owing chiefly to the

presence of the MA components, which complicate analysis somewhat.

Wold’s decomposition theorem implies that every purely
nondeterministic, wide-sense stationary process can be written as an
infinite MA representation which, in general, can be inverted to
form a VAR representation of infinite order [see Liitkepohl (1991a), -
p.20). The stationarity of an infinite VAR, however, requires that
the VAR welghts die out gradually [see Brockwell & Davis (1991),
especially 5.7, for a further discussion]. Hence, it is usually the
case that the true generating mechanism of the process under
consideration can be adequately approximated by a finite order VAR
processvwith lag length truncated at some suitable p
p «
Y, =1§1411t_1 t U, , (2.7)

or . T
_1!\_19(1_)xt =y with E[gt_u_;]:iu. (2.8)

9For a fuller discuséléh ‘of the formalized conditions of the
uniqueness of ARMA representations along with various equivalent
formulations, see Judge et al.(1985), pp.658-9.
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This process constitutes a valid basis for representing a broad
range of stationary processes within a single class of parsimonious
multivariate autoregressive processes [also see Liitkepohl (1991a),
p-20]. As such, '1t is a powerful result and represents an

efficacious simplification in applied work.10

In practice, the true DGP will not be known or be constant through
time and the hypothesized constant-parameter model will not coincide
with that DGP. However, for developing technical analyses, these
quite restrictive assumptions are often required to ensure
tractability.11 This leads naturally on to the question of
identification of a suitable parsimonious representation of the
actual generating mechanism, gulded by both a priori theory and

empirical observation.
2.2.2 Concepts of Exogeneity and Causality

Usually, 1n the study of relationships between time series, it is
useful to invoke the concepts of exogeneity and Granger-causality to
make the analysis meaningful. These concepts, as characterized by
Engle et al. (1983), and Engle and Hendry (1993), serve different
purposes. Exogeneity is defined in terms of a group of variables for
the purpose of conducting inference about parameters of interest,
while causality is introduced by reference to a series’ importance

in prediction for the purpose of producing an operational testing

procedure.

1OIn theory, any statlionary K-dimensional VAR(p) process can be"
further 'stacked into a ' corresponding stationary Kp-dimensional

VAR(1) form after a sultable change of notation. Also, as a direct

consequence of weak stationarity, the first two moments (means,

autocovariances and “autocorrelations) will, amongst other things,

exist and remain constant. For their derivations in a stationary
VAR(p) process see Lﬁtkephol (1991a) Chapter 2.

11See. for example, Clements & Hendry (1992a), and Judge et al.
(1985), p 660 ‘



2.2.2a Weak and Strong Exogeneity

The classical dichotomy between endogenous variables (observable
outputs explained inside the system) and exogenous variables
(observable inputs determined outside the system), in such a way
that they are orthogonal to random disturbances (unobservable inputs
to the system under investigation), highlights the properties of
variables in a control context. It also provokes many interesting
and important problems 1in practical macroeconometrics. But the
decision as to which variables are to be treated as exogenous
depends on economic reasoning, not on the mathematical statement of
any conditional model. Essentially, the validity of simplifying
conditional forecasts from the joint distributions of observable
variables 1s explicitly based on the legitimacy of classifying the
variables into weakly and strongly exogenous groups [see Engle et

al. (1983), and Engle & Hendry (1993)].

To formalize, note that the Joint distribution of the observed
variables Xt=(§'. Zi)’. conditional on the past, can always be
factorized as the conditional distribution of Kt given Zt times the
marginal distrlbutiqn of Zt' If: (a) the parameters of these
conditional and marginal distributions are not subject to .any
cross-restrictions; and (b) the parameters of interest can be
uniquely obtained from the corresponding parameters of the
conditional submodel alone (so that all the parameters of the’
marginal submodel are nulsance parameters), then Zt is weakly
exogenous and Kt is endogenous. In this case, Zt may be thought of
as a priori or fixed from outside the conditional model for purposes
of inference on é set of parameters of interest with no loss of
information. Hence, the stipulation of weak exogeneity on the choice

of the parameters is not, by itself, directly testable.

Weak exogeneity permltsvefficient estimation of the parameters of
interest at the estimation stage and justifies ignoring the marginal
stodhastiérstqgctdfe generating excluded known exogenous variables
Z’s.( }o valiaﬁte, proJoétlons"ofl included - unknown endogenous

variables X's c¢onditional ‘on a unidirectional flow of information
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from the future paths of 2’'s simultaneously at the prediction stage,
the concept of strong exogeneity is required. This entails the
absence of lagged feedback from the X's on to the Z2’s, in addition
to weak exogeneity. The cut-off of the linear lagged feedbacks is
equivalent to the statement that Zt is not Granger-caused by xt in
the system, and 1is directly testable from relevant sample
information. Such a condition for the strong exogeneity of Z’'s

guarantees that not only current but lagged values of X, do not
12 t

affect Zt'

For statistical testing purposes, it 1is customary to use the

structural VAR of the form (2.2) with a diagonal white-noise

_ 2 2 _ I « i
covariance matrix Ze—diag(tl,...,vx), D=0, and Bp(L)-EozglgiL , but

§O¢IK, to represent the relationship between contemporaneous
endogenous and exogenous variables. Suppose now that a subset of
variables in the model 1s exogenously determined by a convincing
theory or prior information and that the K-dimensional vector Xt is
partitioned accordingly into the M-dimensional endogenous and the
(K-M)~dimensional exogenous subvectors Xt and Zt’ respectively. Then

the model can be partitioned conformably as follows
By (L) B, L) [ % 1t

B)) (L) By, (L) ]| 2, St

EP(L)Xt =

Written without the lag operator, we have

Bi,0 §1z,j[:t] [Baa Bz [Be]
1,0 Baz,0d Bed 1By ,q Byp 1) L2l
' . .Bll,p 'B‘IZ,p- Xt-p. Eu],
Sat

'521 P Bzzv P 'Zt_p‘

where Slt and SZt are assumed to be white noise innovations.

leowever, it is essential to realize that Z2’s may not be exogenous
to X's even though the X's do not Granger-cause the 2's, since
Granger noncausality (to be discussed below) does not rule out the
possibility .of xt having a contemporaneous effect on'zt. [See Enders

(1995), pp.315-6, and Granger (1969).]



The assumption that the variables in Zt can be treated as valid

conditioning, or exogenous, variables implies that

B 0; for weak exogeneity, (2.9)

£21,0°
or

521 1= 0; i=0, ..., p, for strong exogeneity. (2.10)
For the time being, suppose the condition of strong exogeneity

(BZI(L)EO) is met. The parsimonious system then becomes

B, (L)X, + B),(L)Z, =€,

Byp(LIZ, = &5,
The block zero restrictions imposed fulfil the condition:

(K-M)M(i+1)=-%—K(K—1).13

where K>Mzl. Given 1i=p(21) for the null hypothesis of strong
exogenelty, the minimum number of exogenous variables (M) for the

structural K-dimensional VAR(p) process is chosen from:

/2 "'“] /'2““““‘“]
1 [, /K'(p-1)+2K 1 K™ (p-1)+2K
5 [K —p | 5 Ms > [K+ — | (2.11)

2.2.2b Granger and Instantaneous Causality

In order to examine'the relationships between the causes (observed
inputs to a: gystem) and the effects (observed outputs from a
system), an operational concept of causality has been developed in
the econometrics 1llterature. This 1is that of Granger-causation
proposed by Granger (1969), which uses only observed variables for
statistical testing. The basic idea is that the cause cannot occur
after the effecf‘(temporai pfiofity assumption) and that the cause
contains speclal lklnforr"‘g\;a‘tkion about the effect (information

131n'eséénce; the constraints impdsed must be equal or greater than
[K(K-l)f&]--%—K(K+1)#-%fK(K-ll, i.e. the difference between the

number : of - parameters -in: the primitive system and 'the number of
parameters recovered from the standard VAR estimation.
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uniqueness assumption). Hence, the arrow of time can be used to help
provide a convenient asymmetry between cause and effect, whilst the
information in the former can be used to help improve the forecasts
of the latter. A useful introduction and discussion can be found in

Holland (1986). See also Sims (1982) and references therein.

Suppose that the K-dimensional, weakly stationary process Xt is
partitioned into M- and (K-M)-dimensional subprocesses Xt and Zt as
before, and that the corresponding VAR of formula (2.7) is
partitioned accordingly, reflecting an interest in possible causal
links between X and Z. The operational statistical testing procedure
is then conducted as follows: (a) test whether or not unidirectional
causality, in its limited sense,14 exists from one group of variables
Zt to the remaining variables xt’ without feedback, on the basis of
forecasting ability; and (b), if it does exist, then test whether
such causallity, running from Zt to gt, is ‘big’ or ‘small’ 1in the
light of the logarithmic ratios of conditional variances suggested

by Geweke (1982a).
(1) Tests of the existence of Granger-causality

Consider a K-dimensional, conformably partitioned VAR(p) process

Xt=(§i,g£)’ with nonsingular innovation covariance matrix 0

Bl [211,1 22,1 (B

...t ‘
B Ay By ql1E
A A X, _ u
oo tedfio] 1] e
Ar1,p 222, pd L2 Yot .
It has been shown that, if Xt embraces all relevant information at
time t, a necessary and sufficlent condition for xt being not .

Granger-causal for Zt is that 521 1!0, i=1,...,p, while a necessary
and sufficient éondition'for there being no instantaneous causality

14For the feasibility of testing, Granger-causality test is carried
out merely on the realized history of the series, not on any
potentially relevant subjective factors.



between X, and Z, is that E[!1t9'2£]=0 (orthogonal innovations).l> As
a result, the existence of Granger-causality can be determined by
formal testing for the hypothesized linear restrictions on the VAR

coefficients with standard techniques.
(2) Measures of the strength of Granger-causality

After identifying the existence of Granger-causality, it is worth
trying to determine the strength of Granger-causality in the
framework of stationary VAR(p) processes. With this objective in
mind, Geweke (1982a) has monotonically transformed the strength of
one-way/two-way causality into the degree of the relevant
one-way/two-way feedback, and developed a technique for conf irming
the extent of various kinds of feedback. In so doing, he achieved a
measure of linear interdependence that can be described as the sum

of the measures of the three forms of linear feedback, or causality.

Suppose that the focus of attention is on the individual components
of the K-dimensional, purely nondeterministic, stationary process
Xt=(_)g',Z£)', which can be reexpressed as §t=[1M O]Xt=£y_t and
Zt=[0 IK—M]thﬂt' where F and P are MxK and (K-M)xK matrices,
respectively.' Then we have E[Xt]=ﬂly, E[_Z_t]=£uy, I'x(s)=EI‘YE’ and
l‘z(s)=_El"Y(s)E_’. Hence, K-t and Zt are both stationary, purely
nondeterministic processes. Application of Wold’s theorem implies
that, under quite general conditions, Xt’ Kt and Zt each possess
finite order VAR representations [see Geweke (1982a), p.305, and
Liitkepohl (1991a), p.20, for detalls]. We have

om
X, "15191151;-1.’ Yypr var(y,,)=z,. (2.13)

or

n
A 21§1§:i1gt_1 * Yy var(zZt)=22. (2.14)

This s-ys>t‘rem' can be t_rééﬁéd as the linear projections of X, on
{Zst_s|550}. and of Z'; on {Zt_s|s>0}. within which the two

1SA diﬁcﬁSéioﬁ of ‘these conditlons can be found in Liitkepohl (1991a),
pp.35-41.
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subprocesses Xt and Zt are each made up of two main orthogonal
parts: one is its own past, the other being the error vector xlt or
¥2t' Although these errors are each serially uncorrelated, they may

be correlated with each other contemporaneously and at various leads

or lags.

Suppose now that the focus of attention is shifted to the
corresponding joint autoregressive representation (2.12), which can

be rewritten as

P
X,y * LA, 2 *Y,, (2.15)
and

P P
e = L Bp1, 1By L Bop iEry * Upy (2.16)

where (glégzé)’ is a white noise process with zero-mean vector and

variance-covariance matrix

u u P> z
var| 't | =k 1t [u,; u,: ]| = nH2) .5
u 1t =2t T 5 u
=2t 12 722

Yt

This system can be viewed as the linear projections of Xt and Zt on
the same information set (zt_s|s>o}U{Zt_S|s>0}, within which the two
component subsystems are mutually statistically dependent with the
error vectors Blt and !2t, due to the appearance of the lagged terms
2 in (2.15) and Kt-s in (2.16), s>0, each serially uncorrelated

“t-s
but correlated contemporaneously with one another.

If the system (2.15)-(2.16) is premultiplied'by the matrix

o1

I = >
" -1 1272z |, (2.17)
A > I :

12°11 K-M

which dlagonalizes the above white-noise variance-covariance matrix

into ‘a. KxK block-diagonal matrix
Lok o
711712722712

T2 T

227515511

0 12
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then we have another system, isomorphic to (2.15)-(2.16):

+ W (2.18)

ZC21t1+2D21t1 1t

and

* Wy, (2.19)

p P

E —t i E 21—t i
This system can be regarded as the 1linear projections of xt on
X, _g|s>0HZ, _ |20}, and of 2, on {X, _|sz0}U{z,__|s>0}, within
which the two component subsystems are mutually statistically

independent with
p the error vectors t( U, 212222u2t) and
—Zt( U, leznult) each serially uncorrelated and also uncorrelated

with each other.

Building upon this canonical framework, Geweke defines the 1linear
feedback from Z to X as FZ—)X the linear feedback from X to Z as

FX—)Z' the instantaneous linear feedback between X and Z as FX-Z’ and
the linear dependence between X and Z as FX z He concentrates on

the nature of the residual variances. That is to say, on

R In[|z, 17124417,
X2 ln[lzzl/lzzzl]'
Fy.z = ln[lzul 'zzzi/lzu”'

F

and
Fx,z = 1n[|£1| Izzl/lzu”'

The implicit motlivations involved in the various definitions are:
(1) The alternative feedback measures are zero only when the
relevant causal ordering is absent; (2) they are all scale invariant
and thus remaln unchanged under non-singular, scale-preserving
linear transformations; and (3) an improvement with the measures is
that Fz x hay be considered a monotonic transformation of the
strength_‘ of causality, rather than the employment of a less
informative all-or-nothing testing procedure [see Bladen-Hovell &

Zhang (1991), p.10].
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The linkage between these measures is given below:

Fx,z = Fzsx * Fxoz * Fx.z-
Thus the measure of a complete two-sided 1linear dependence (among
stationary series) is the sum of the measures of one-sided 1inear
feedback from the first subseries to the second, and vice versa, on
top of an additive category of the nonzero measure of instantaneous

linear feedback [see Geweke (1982a), pp.306-7].
§2.3 Critique of Exogeneity and Causality

Exogeneity and causality are regularly employed in the construction
of empirical macroeconometric models, but they are still beset with

various controversies. Some remarks concerning the two notions may

be of importance.

Firstly, as regards exogeneity, the basic issue in the debate over
identification restrictions in macroeconometric models eventually
boils down to the validity of the dichotomy between endogenous and
exogenous variables on a priori grounds. Whether it is possible to
test the exogenelty assertions about any contemporaneous variables
1s to a great extent bound up with what 1s actually meant by
exogeneity. Ideally.'the only exogenous, or policy, variables would
be those for whlch values can be accepted as extraneous to the
system or for which values can be controlled with complete
certainty. Nevertheless, the concept of statistical exogeneity"
defined by Engle et al. (1983) is not a property of variables per
se, but rather a property that variables might have for a set of
parameters that .are .of particular interest to an investigator.
Indeed, the limitation of the role of theory in providing acceptable
restrictions necessary for ldentification, and the realization of
the form of policy through inspecting signals generated from the-
operation of the .real economy .will undoubtedly lead to the
conclusion that very few variables are truly exogenous without some

compromise.



Secondly, as regards causality, the fundamental objection against
the concept of Granger—causality concentrates on the credibility of
the definition in characterizing the actual ongoings in the system
on a forecasting basis [Judge et al. (1985), p.667]. Strictly
speaking, the Granger-Geweke tests of the causal chains between the
variables involved are tests of predictability or informativeness
rather than of causality in an acceptable philosophical sense. More
recent contributions in the philosophy of science covering both

formal and empirical views of causality can be found in Humphreys

(ed) (1994).

However, for further interpreting the absence of causal linkages in
the sense that variables in one subvector should have no marked
quantitative impact on another, Granger-noncausality 1is probably
inadequate. Note that if (2.12) with maintained zero restrictions
(521’1!0, i=1,...,p) is premultiplied by the matrix (2.17), then we
can derive another quite different physical representation of the
same process, in which variations in zt may significantly affect Zt
through the term with coefficient -IZ,JS 1 in the second K-M
equations. Therefore, the lack of a Granger-causal relationship, in
jtself, cannot necessarlly be represented as lack of a cause-and-

effect relationship without certain simplifications.

Moreover, the «critical dependence of the stability of a
macroeconomic system on the lag between cause and effect means that
‘true’ instantaneous causation will never occur between some pairs
of stocks (measured through systematic sampling at discrete time
points) and flows: (measured through aggregation over equal time
intervals), however short the frequency of observation of the data.
Then any .observed or -apparent Iinstantaneous causality can be
explained by either missing common causes, i.e. Jointly unobservable
causal variables that cause both or all the variables of interest,
or highly temporal aggregation,-1.e. improper use of aggregated data
in some larger: time  intervals than actual causal lags [Granger

(1988), pp.205-8].
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Such temporal aggregation may weaken or even disrupt the plausible
causal connections. This is due to the loss of information, or the
recording of information at a time other than that of occurrence. To
be operational and for use in a forecasting context, a less than
usual demanding definition of prima facie causality has to be
implicitly used. The reasons for this are: the reduction of the
information set from all relevant information to past and present
values of the process under consideration; the replacement of
optimal forecasts by optimal linear forecasts; and the usual choice
of minimum forecast mean squared error (MSE) as a measure for
forecast precision [ Judge et al. (1985), pp.668-9]. However, it is
reasonable to suggest that, although Granger causal testing may be a
matter of dispute, it 1s still valuable in practice. At the very
least, causality analyses can be used for promoting understanding of

past data and for forecasting as yet unobserved data.

The critique of the validity of often untested exogeneity
assumptions from a priori theory 1in current macroeconometric
modelling brings us back to the sphere of a fairly Iloose,
unrestricted VAR (UVAR) approach, where all the variables involved

are Jointly endogenous with merely minimal prior beliefs

incorporated.

The UVAR approach was champloned by Sims (1980a, 1982) as an
alternative to conventional large-scale macroeconometric models, for
studying the dynamic interrelationships among important aggregates,
and also for. tackling the problem of doubtful a priori zero
restrictions. Sims doubted the wisdom of developing sophisticated
structural macroeconometric models preoccupied with simultaneity as
well as possibly ‘incredible’ overidentifying restrictions. His
methodology entails nothing more than selecting K (the number of
variables in the UVAR) and p (the maximum lag in each equation)
without making reference to any distinction of endogeneity and
exogenelty. He did so because, 1in practice, many complicated
relationships are simply" poorly understood and none of the'
non-modelled variables are truly exogenous as many applications
(unrealistically) assumed, although statements like this are still



hotly debated [see Hafer & Sheehan (1989)]. As argued in Sims
(1980a, pp.5-6):

[Sometimes variables are] treated as exogenous
only because seriously explaining them would
require an extensive modelling effort in areas
away from the  main Interests of the
model-builders.

Whilst statistically well-specified UVAR models have acquired a good
track record for producing unconditional forecasts [Bladen-Hovell &
Zhang (1991), p.4], the main practical disadvantage stems from the
common problem of overfitting or overparameterization. The
appearance of overparameterization with too many free insignificant
coefficlents tends to make elther large UVAR out-of-sample forecasts
based on these point estimétes very inaccurate and volatile or small

ones overly sensitive to variations in variable choice.

To alleviate overparameterization and similar problems, Litterman
(1980, 1986a) and others developed a technique called the restricted
or Bayesian VAR (BVAR) method. Their aim was to incorporate prior
and sample information through mixed estimation, and to reduce the
influence of the data on the coefficients, rather than reduce ‘the
number of coefficlents directly. The method can also provide useful
information on the dynamic properties of the series and improve

forecast performance over other types of analyses. This is taken up'

in what follows.

§2.4 Conclusion

In this chapter, both structural and standard VAR processes and
their statistical properties have been reviewed. The concepts of
weak and strong exogeneity as well as the testing and measurement of
Granger cauéality have also been introduced and analysed. Throughout
the chapter, it is assumed that all the serles are weakly
stationary, so that standard estimation methods and standard
asymptotic theory c¢ould be employed. All of these pave the way for

the research that follows.
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CHAPTER 3

STATIONARY BAYESIAN VECTOR AUTOREGRESSIONS (BVARs)
WITH STOCHASTIC PRIOR RESTRICTIONS

§3.1 Introduction

Statistical forecasting procedures make considerable use of prior
beliefs in formulating models through either a restricted parameter
space or augmented sample information [see, inter alia, Fomby et al.
(1984), Chapter 6]. However, forecasting methods differ with regard
to the main sources of prlors, how informative priors about the
future economy are to be represented, and how much weight is placed
on them. The classical approach tends to utilize inflexible or
‘hard’ shape priors derived mainly from economic theory to increase
degrees of freedom by systematically reducing the parameter space,
or the number of free parameters, regardless of historical evidence.
The Bayesian procedure, in contrast, incorporates flexible priors
obtained mainly from statistical regularities rather than economic
theory to increase degrees of freedom by effectively supplementing
the sample information. See, for details, Doan (1996, Chapter 8) and
Shoesmith (1990, p.261). At the same time, the Bayesian procedure
permits the data to modify these prior beliefs if the evidence about

coefficients is significant.

In this chapter, a systematic procedure for determining and
implementing BVAR forecasting models will be expounded. In general,‘
the construction of an appropriate BVAR forecasting model can be a
rather formidable practical problem. It is hoped that the iterative
specification search prééeés presented here will reduce this

complication and make the model more accessible for economic and

business forecésting.
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§3.2 Specification of a Finite ‘Closed’ BVAR Model

Throughout the process of macroeconometric modelling, an essential
step is the dynamic specification of an adequate model or models to
be estimated. See Harvey (1992, p.11) for relevant discussion. In
building a Bayesian VAR forecasting model, one must first construct
a UVAR model that is then subject to prior restrictions. Such
restrictions can be expressed in the form of subjective
probabilities about which one of the possible models will forecast
best and should be determined at the second stage in a stepwise
“"VAR-BVAR" specification search procedure. The preliminary set of
specification issues associated with the VAR part of the model are
' conceptually distinct from those associated with its Bayesian part

[cf. Spencer (1993), pp.409-15].

To clarify this standard BVAR specification procedure analytically,
it may be Iinstructive to begin with the most basic form of a

K~-dimensional stationary Gaussian Xt~VAR(p) process given in (2.3);1
that is,

p
E AY, y + .
The available preforecast multiple time series of the Y variables

are now divided into p given presample (Y_ p+1""'X0) and T fitted

sample (Xl""’xT) values. Asymptotically, as T goes to lnfinlty,

the effect. of the initial, or presample, values vanishes.

Then a typical scalar equation of the linear dynamic system (2.3) is

Yoo = Cy* (g1 1Y, t-1% Agr, 2%, 02" - * Ay, p¥1,t-p) *

* (AJK 1%k, t-1+ AJK 2%, 12" Ak,p'k, t-p) * Yt
= CJ + Z MVt o +1§1AJK.1YK,t-1 t Uy

Once again, ‘we stlck. to the ‘Gaussian case, which will make the
arguments much simpler.
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K p

=C, +7% EA Y s tu,,
J p=1i=p Jmimt-i Jt ;

2
u, ~NID(O,0.%); J=1, ..., K; t=1, ..., T. 3.1
j¢eNID(0,05)5 (3.1)
In Eq.(3.1), J indexes the equation number, n indexes the variable
number, and i indexes the lag length. Within this framework, there
are a total of 1+Kp free coefficients in each equation and a total
of K+K2p free coefficients in the whole system, excluding the

parameters of the covariance matrix of the disturbance term.

For T observations, Eq.(3.1) can be written in the compact form:
Y, = + u,; =1, ..., K, (3.2)
Yy = By vup J

where xj=(YJ1,...
the given varlable specific to the j-th equation;
1 T

Y1t

’YJT), is a (Tx1) random vector of observations on

¥=(XO""’KT—1) with Zt= , a (Tx(1+4Kp)) known common

-YK,t—p+1J
matrix for each equation;

= ve oo A yeos s A yer oA ?
By=(CyhAyi 1,p K,1 x.p)
unknown parameter vector to be estimated; and

a ((1+Kp)x1)

u=(u,,...,u )’ a (Tx1) unobservable disturbance vector with
opertiss u NID(,o 2L)
the properties gJ~N Q 'vJJ T)-
Or more compactly across equations j=1,...,K
2 (3.3)

Y = (Ie%)8 + U,
where Y=(Yy 4y 0¥y queeei¥g queen ¥ g)'s
{(KTx1)

2The ® sign denotes the Kronecker matrix product. For example, a
typical block element of AeB is Alj'g'
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1Y .. Y oo Y oo Y

- 1,0 : l,l_p K,o Kvl-p .
1Y Y
1,T-1 Y1,T—p YK,T-l YK,T-
(Tx(1+Kp))
E:(Ei,..-,_&)'
=(C1,A11’1,...,All’p,...,AIK’l,...,AIK,p,
Corfke, 1Bk, pr oA 1Ak p)
(K(1+Kp)x1)
U= ul,l"’"ul,T""’uK,l"'"uK,T) ; and
(KTx1)
g~NID(0,Zu®IT), with the white noise covariance matrix
(KTxKT)
() 2 c
11" 71K
EuE Ce assumed known for the moment.
t g
k1 Tkk

The objectlve is to construct a suitable BVAR forecasting model with
stochastic prior restrictions concerning the VAR coefficients. For
this, the two distinct VAR and Bayesian parts of the model must be
carefully specified. Construction of an unrestricted VAR usually
involves a set of specification lssues assocliated with cholces of
the set of varlables in the VAR and the length of the lag in each
equation. The standard Bayesian Informative priors, however,
explicitly throw light on each variable’s own recent lags together
with only the most recent lags of other variables in the present
confines of vector autoregressions. The Bayesian VAR therefore
addresses an additional set of speclification issues assoclated with
choices of intercept term and prlor structure of the system in a

Bayesian mean-variance framework. These specification issues are now

discussed.

3.2.1 Determination of VAR Variables and Lag Length

In the selection of the number of varliables as well as the number of

lags wused with these: varliables, a major goal to achleve |is
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parsimony. Whether a subset of lagged explanatory regressors should
be introduced into, or eliminated from, a glven model depends in
practice largely upon whether or not it has marked effects on the
prediction of a variable being forecast. If the subset contributes
little to prediction, it may be a good candidate for omission. See,
amongst others, Hafer and Sheehan (1989) or Sims (1980a) for an

interesting discussion.
3.2.1a Determination of VAR Variables

Usually, the variable selection decision is partly determined by
which variables the modeller wishes to forecast, and partly guided
by some loose notions concerning which currently known aggregates
are potentially related to the forecasted variables and might
therefore be useful in forecasting them. However, in view of the
limitation In the number of observations and a tradeoff between the
inclusion of additional predictors and the concomitant imprecision
of statistical estimation, it may be necessary to decide which
variables to include and which to exclude on grounds of parsimony.
This 1ldea does not imply that the economy concerned is a simple
process, merely that relatively simple models can provide good
approximations to the actual DGP, and that there are groups of

highly correlated variables of which these are representatives [Coen

et al. (1969), p.136].

Generally, BVAR modellers can be thought of as having priors in
choosing a group of candidate variables for inclusion in an initial
model specification. Data may then be used subsequently to pick the
final set of variables, but only from among a 1list of prime
candidates previously picked by the modellers. The practical
problems of the variable Se1é¢tion associated with the BVAR model

configuration for the major 'European economies will be further

discussed in>Chapter 6.
3.2.1b Selection of the VAR Order

In a VAR, long lég‘ieﬁgtﬁé Quickly consume degrees of freedom. If



lag length p is too small the model can be seriously misspecified,
whilst if p is too large degrees of freedom are wasted [see Enders
(1995), p.313]. In addition to allowing the variables in the system
to trace out a dynamic sequence over time, appropriate lag-length
selection can help to conserve degrees of freedom by reducing the
dimensionality of the parameter space. However, the optimum lag
trunQation parameter p 1is never known a priori and must be

empirically determined at the specification stage.

Hafer and Sheehan (1989) found that there often exists a superiority
of shorter-lagged models over longer-lagged alternatives in
forecasting accuracy. A suitable sequential testing procedure to
determine the smallest possible lag length is the log-likelihood
ratio test suggested and used by Sims (1980a).

The LR statistic recommended for testing a truncated VAR(1) against
a full VAR(m), 1l<m, is

LR(1|m) = (T-c)ln(lﬁu(l)l/lzu(m)l).

Here iu(-) is the ML estimator of the variance/covariance matrix of
residuals obtained by LS estimation either from the restricted
VAR(1) or from the unrestricted VAR(m). The multiplier\correction c
is used to improve the small sample properties of the statistic, .and
is equal to the number of parameters estimated in each of the

unrestricted equations. See, for example, Enders (199S5), pp.313-5.

The LR statistic 1s asymptotically distributed as a chi-squaré (xz)

with Kz(mfl) ‘degrees of freedon. In( the sequence of testing

1=m-1,...,1 aéainst the maximum m, the appropriate estimate S(LR) of

p 1ls chosen to be ,1‘ when VAR(l—l) is first rejected, i.e. the

outcome of LR(i—llm) s statiStically, significant, at some

predetermined significance level. Any shortening of the lag length:
will also‘proquce avsignificant;LR‘statiStic.

It islihportané to keep in mind that the order chosen in this scheme
may not be consistent with the specific purpose of the model
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constructed. In some cases, the object is not to obtain precise
estimates of these orders, but rather to choose a model
specification that is expected to generate accurate forecasts. Other

selection criteria include:

error (FPE) criterion;

(AIC);

Hannan & Quinn’s (1979) (HQ) criterion. They are given in Table 3.1.

Akaike’s (1973,

Akaike’s (1969,

1974) information criterion

Schwarz’s (1978) Bayesian information criterion (BIC);

1971) final prediction

Table 3.1: A comparison of four chosen criteria for
estimating p
General
Choose the optimal estimate p such that
estimation F() = min{F(1)|1 = 0,1, }
rule P = ool
Criteria Objective function Comparison
T+K1+1 K, 2 A A
FPE FPE(1)=[W] |£,(1)| |P(FPE)=P(AIC) for all T;
AIC  |AIC(1)= 1n|z (1)|+3x21 P(AIC)=P(BIC) if T=s8;
lnT 2 A A
BIC BIC(1)= 1n|z (1) ]+ P(AIC)=p(HQ) if Tz16;
HQ HQ(l)=1n|2 (1)|+—2-3-n1—“T— 21|B(HQ)=p(BIC) for all T.
Note: further reforenceu on the above criteria can be found in

Judge et al. (1985) and Lutkepohl (1991a).

The asymptotlically equivalent FPE and AIC criteria may have ‘the
advantage that, asymptotically, the chosen model is never too small,
but they have to be judged by a trade-off between decreased bias and
increased variance in the coefficlent estimates and tend to make the
resulting estimates inefficlent. The consistent BIC and HQ criteria
place relatively more weight on efficiency and choose the correct
if it exists;,asymptotlcally more often than the former -two
but -they tend to underfit the chosen model in small or
moderate samples. In this study, the likelihood ratio (LR} test
statistic modified by Sims (1980a) is employed to select lag length.

The LR testing procedures can easily be carried out using the RATS

order,

criteria,

sof tware package

Litterman (1986a) argues that statistical formulae like those above
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are inappropriate for tailoring lag lengths in a VAR model. The more
important and appropriate question is, perhaps, how to define an
ideal weighted lag scheme so as to express more realistically our
true state of knowledge and so to ensure the correct parameter space
of our model. Litterman asserts (1986a, p.27):

What such formulas ignore is that the reason one
wants to choose a lag length in the first place
is because one has prior information that more
recent values of the variable in question have
more information than now distant values.

Relying primarily on this idea, he consequently proposes one typical
BVAR model with a sultable downwelghting 1lag prior on the
coefficients. The proposition reflects the fact that coefficients on
longer lags are more likely to be close to zero, i.e. that proper
lag length truncation, with declining welights, 1is desirable.
Although this alternative approach does not alter the lag lengths
per se, it does influence the welghts placed on lags by way of the
lag decay imposed by the modelbullder’s prior information.

Once a vector content and its lag length have‘been specified for a
pth-order, K-variable VAR, the next step is to formulate a

multivariate stochastic prior structure for the systen.
3.2.2 Determination of Constant Term and Prior Structure

The virtue of Bayesian analysis 1s that uncertainty about the values
of unknown parameters in the model can be formalized in terms of
prior distributions which' can be defined by certain prilor
parameters. Moreover, uncertainty about the values of prior
parameters can be addressed by assigning to these parameters a

furtherllayer of priof'distributions. These can be expressed .via

some scale factors called prior hyperparameters.

A practical advantage of an explicitly Bayesian approach is that it

’”BFor some work in this area see Goel & DeGroot (1981), Judge et al.
(1985), Chapter 4, Lindley & Smith (1972), Smith (1980), Trader

(1983), and Trivedi (19806) '
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provides forecasters with a formal framework for reducing the amount
of undocumented or unreproducible ‘art’ that creeps into a model’s
constructlon. It enables them to represent realistically their

knowledge, and to effectively combine those beliefs with the

historical record.
3.2.2a Treatment of the Constant Terms

In practice, with one exception, the standard Bayesian statistical
procedure of specifying the same informative, but reasonably
diffuse, prior for the parameters of interest, contained in a subset
of the parameter vector Ej in (3.2) proceeds in two main stages. The
first is to determine the key features of the prior coefficient
probabilities via the best guesses and restrictions that group the
own-lag and cross-lag prior standard deviations and govern the
relative sizes of the standard deviations within each group. The
second 1s to select, for each of the groups, a suitable value of a
hyperparameter that converts the relative sizes of the prior
standard deviations to their absolute magnitudes. The only exception
to this two-stage procedure concerns an improper flat-prior, by
convention, on the intercept in each equation, reflecting our lack-"

of information about its prior distribution.

Our lack of knowledge about prior mean and variance of an intercept
implies that all possible values of the constant term have to be
treated as (almost) equally likely and to be determined by the data
alone. In this sense, a nonzero constant may be elither 1included-
unrestrictedly in all of the equations, as in (3.1), or use made of
a mean-corrected model. Allowing for the removal of the constant
term indicates that no prior information is avallable for the sample
mean and that a'Bayeslan prior can be placed symmetrically on the

mean-ad justed process.
3.2.2b Refinement of the Joint Priors

Intuitlvély, prlor.informatlon is some stock of knowledge, suggested

by past experience, which is relevant to some objective of the
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modeller. Since the forecasting equations constructed here are
dynamic reduced forms, not structural relations, the prior
information needed for the VAR coefficients is not derived from
theoretical arguments, but from statistical considerations.
Additionally, since we do have to assume a specific form for the
Joint probability distribution, a multivariate normal distribution

is almost invariably the form that is chosen for the parameters.

(1) The general multivariate normal priors

In general, a vector of the unknown VAR coefficients B is Jjointly

normally distributed with prior mean vector B and covariance matrix
‘B
1 yK(1+Kp)/2 -1/2 1 * -1 *
p(8) = (o) P21y o[- - (68T) v (e8T)]. 3.0)

However, when a noninformative prior is used on the constant terms
it may well be preferable to rewrite the joint stochastic prior
distribution for each equation of the system in the similar linear
form:
r = + V.; =1, ve ey K. (3.5)
Ly = BBy »xys |
Here, r, and BJ are respectively a (1+Kp)xl vector and a
(1+Kp)x(1+Kp) diagohal matrix of known elements, implying a
multivariate normal prior distribution on a subvector of EJ centred
around the chosen values. The vector !J is, with respect to LJ’ a

(1+Kp)x1 vector of random errors, assumed to be distributed:

independently of the QJ—components with gJ~NID(O,Il+Kp).

A practical advantage of this form 1s that, in terms of (3.5), an
approximafe mulfivariatejﬁbrmal'pfior can be easily imposed on the
parameters of interest (with fhe constant term left unrestricted).
In order to make thls kind of prior information useful for the
parameter estimates EJ of the J th equation, —J and -1j must be
further specified withln a formal Bayesian mean-variance framework.

51



(2) The Minnesota or Litterman priors

When working with a large BVAR forecasting model with numerous
coefficients, it 1is impractical to deliberate about the prior
distribution for each of the coefficients individually. In this
respect, a simple but useful approach is to use the Minnesota or
Litterman prior outlined by Todd (1984). This will specify a full
set of prior distributions routinely once the modeller has chosen
some of their key features. One feature of this prior is that the
meaning of, and 1linkage between, the values of different
coefficients are rather vague or diffuse. Hence, the prior
distributions for all stochastic coefficients are assumed to be
independent normal so that they can be fully described by their
first two moments. The prior covariances are always set to be zero.
Moreover, the Minnesota prior allows us to indicate the prior means
and varliances for the parameters, except the constant term, with
reference to a set of prior statistical considerations. Scope
remains avalilable to adjust settings for the hyperparameters of -the

priors in light of the evidence.

(a) The prior mean

With the Minnesota prior, it 1is taken that the intertemporal

dependencies of the modelled variables are likely to be weak -and
that most of the variation in a given variable is accounted for by
its own past. Accordingly, by default, the ‘guesstimated’ means of
the prior distributions for all coefficients of a stationary VAR are
usually set to be zero with nonzero prior variances. In other words,

£J=O and - EJ¢O; JB},.;w,K. If these guesses were right, each
normalized variable would behave very much 1like a white noise
process, around a constant term, in the stationary case.

Given the means of zero, all the modeller would need to do for the
rest of the prior is to characterise his degree of confidence in
terms of -‘the ‘prior standard .deviations, with smaller values

reflecting greater confidence in the chosen means.
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(b) The prior standard deviation

In the Minnesota prior, it is also believed that the prior standard
deviation decreases with increasing lag length. The less recent the
value of a variable, the less important it is for forecasting and
the greater is the modeller’s confidence in the prior value of its
coefficient. Moreover, regardless of the different scales of the
data series, the prior standard deviations on lag coefficients of
the own variable are relatively larger than the corresponding ones

of other variables in any given equation.

A two-stage procedure will be adopted in specifying prior standard
deviations. The first is to define K non-overlapping groups, for
own-lag and all other K-1 sets of cross-lag coefficients, in each
equation to determine, within each group, how the coefficients’
standard deviatlions are related to each other. The second is to
assign a possible setting of a limited number of hyperparameters,
one for each group, to the various groups of coefficients to

complete the determination of the prior standard deviations and thus

of the prlor variances.
Relative standard deviations

The initial relative levels of the standard deviations of the
coefficients in the J-th equation of the system can be specified
according to two factors. The first factor comes from a lag
tightness function g(l)=1/1,4 which 1mplies that as lag length
increases, - the modeller becomes increasingly confident that
coefficlents -on - longer - lags will be close to zero, while
coefficiéntszon shorter:.lags are more likely to be nonzero. All the
relative weighting patterns imposed upon the prior standard

4Two types of lag functions suggest - themselves: harmonic (g(l)=l—7,

720) and geometric. (g(l}=w -1 , O3ys1). Litterman (1986a) advises the’
use of the harmonlc (with the decay parameter 7=1.0) rather than the
geometric function, since the latter seems to get too tight too
fast. For a more detailed discussion see Spencer (1993), p.413.



deviations of the coefficients of either own or cross lag variables
in each of K groups are of the same harmonic decreasing form. The
second factor results from an own-versus-cross standard deviation
ratio oj/bk, which recognizes that the variables in the model are
likely to be of different magnitudes, and thus should be adjusted by
the ratio to make units comparable. The original relative sizes of
overall standard deviations are now replaced by the relative sizes
of error standard deviations.s This 1s due to the central assumption
that the scale of the response of one varlable to another is mainly
captured by the unexpected movements contained in the error standard

deviations [see Liitkepohl (1991a), pp.209-11].

Once this has been done, it simply remains to pick, for each group
of coefficients, Jjust one free hyperparameter that converts all the
weights attached to coefficients in the group from relative into

absolute prior standard deviations.

Absolute standard deviations

The final absolute levels of the prior standard deviations of the
coefficlents in the J-th equation of the system can also be
specified by two factors. One comes from the overall tightness, or
weight, parameter vJ, which determines the fundamental prior
standard deviation on the first own lag. The other results from the
relative tightness function f(j,k), which controls the weight on all
other variables relative to that on the own variable in each

equation.

Weight assignment and adjustment in the scalar vy as well as the-
matrix F={f(J,k)} 1is critical in the specification of prior
structure, allowing some elasticity, so that the setting of the
hyperparameters could be revised up during the estimation stage. The

SHere,"b‘J and vkkare the standard devlations of the errors in an
unrestricted univariate autoregression on equations J and Kk,

respectively, and the ratlios of ”J over o, k#j, are each
1ndependentaof~}hg length but specific to the given cross varlable

k . N

54



Minnesota prior, however, takes advantage of this feature and thus
simplifies the standard Bayesian approach by specifying a particular
range of values for the relatively few free hyperparameters. All
values within the range are treated as equally likely but all values
outside it highly unlikely. There are two basic types of priors

available: those that correspond to symmetric F and general F.

For a small system with, say, five or fewer equations, a tighter
symmetric prior 1s often preferred [see Doan (1996), p.8-191, which
gives the same one relative weight (wel[0,1]) applied to all the

off-diagonal variables in the system:

1.0 if j=k

f(J, k) = { (3.6)
w if j=k.

Hence

(KxK) (KxK)

where each element in the rows corresponds to the individual
hyperparameter for each group in each equation. Choosing w between 0
and 1 means that, Iirrespective of differences In scales, other
variables would have a smaller prlor standard deviation than that of
the own variable in relative terms, whereas specifying w=0 implies
that the vector system degenerates to a set of univarilate
autoregressions. In this case, there are only (the same) two free
hyperparameters in every equation. The RATS program default for this
prior 1s a simple combination of v=0.15 and w=0.5. '

For a large system with six or more equations, a looser general
prior is ‘likely to be desired, which puts moderate weight- on
important variables and low weight on less important ones in the

gystem:

C 3,0 1f J=k
£03, k) = { v R (3.7)
. wjﬁ “T1f Jek.
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Hence

o]f1. 17T
vy 1.0 vy, Y1k Y1 V1Yi2 V1¥1x
VE= v W 1.0 =
Lo J 1 B 4 il LA LS TR Vi)
|0 Ved g - wK,K-ll'OJ (VWi -+ Ve¥g k-1 YK
(KxK) (KxK) (KxK)

where each element 1in the rows refers to the particular
hyperparameter for each group in each equation. Setting vJ and ka
too large, such as vJ=3 and wjk=1’ will effectively eliminate the
influence of the prior, while setting vJ or ij too small will
either force the own lags too close to the prior mean or eliminate
the vector part by cutting out too much interaction.6 In this case,
there is a total of K free hyperparameters in every equation and a
total of KxK free hyperparameters in the entire system. A UVAR(K,p)
model with K(Kp+1) free parameters is therefore reduced to a more
informative BVAR(v,w) model with at most K(K+1) free parameters
through the imposition of prior restrictions on the form of the lag

coefficients.

In searching for the most appropriate hyperparameter values within a
glven range, O<vJs3 and OSwJKsl say, 1t may be preferable first to
choose a few values for these standard prior hyperparameters and
then compare the accuracy of the simulated ‘out-of-sample’ forecasts
from thetcorrespondingbBVAR models. This can be done either formally
by examining a single yalue formed by a weighted average of Theil’s
U values, or informally by studying changing patterns in the values
thereof. In practice; the method used is informal. Various possible
weights for those variables which are believed to be important in-
predicting the desired ﬁvariable will be tried, whilst others
believed to be less important have weights that are kept small and
constant. We select‘és the best setting of the hyperparameters, the
one that leads to the lowest values of the Theil U statistics.

Here. the value of 0 is a 1ogica1 lower bound for both vJ and ka;
the value of 3 and 1 are a generous upper bound for vJ and ka,
respectively [see Spencer (1993), pp-414-8].
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(c) The combined effect

The general standard deviation function, s(j,k,1), for the

coefficient A the jk-th element of Al in the system, is,

Jk, 1’
therefore, specified as

vj/l if j=k
{ o

s(j,k,1) = vf(\j,k)g(l)o*‘j/a'k
vjwjko‘j/loik if j=k.

In matrix form, we have

['vl/l vlwlzcrl/lo*z vlwu(o*l/lcrK
S={s(Jj,k,1)}= V:jwjlo'_j/wl vj/l . '_’jwjl(oj/.wl(
| V¥ O%/10y vK"K,K—loK/l‘rK-l ve/1 |

(KxK)

We now reintroduce the constant terms as the symmetric prior for the
other coefficlients have been discussed. The typical j-th equation
(3.1) with the final prior standard deviations imposed upon its

K-group coefficlents can be written as

YJt = cJ + AJl.lvl,'t—l + ...t AJl,pYI,t-p + ..
() (vaJIo-J/o'l) (vajlvj/pvl)
+ AJJ;IYJ,t-l + ...+ AJJ,pYJ,t-p +
(vJ) : (vJ/p)
Aok e Tt Ak pk eep T e
| (vaJKoJ/cK) (vajxcrj/pa-K)
O<v ,53; Osw

s1; J,k=1, ..., K; t=1, ..., T, (3.9

J e

where the prior standard deviations are given in parentheses and an
infinite standard deviation is used for the constant term,
reflecting the lack of prior information on that coefficient. The

corresponding prior covariance matrix ¥V 3 for the parameter vector of
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interest EJ can be represented as a (1+Kp)x(1+Kp) diagonal matrix

= P 2
yJ diag[ m, (vaJIoJ/b )2 ce s (vjwjle/bol) s
(vj) , (vj/b) el
(vaJch/b )2 vy (v, wJva/boK) ]

Also, in terms of (3.5), an approximate multivariate normal prior
distribution for the equation can be readily expressed as a set of

stochastic linear combinations of the parameters in Bj

7 -
Ly =RB; + vy yNIDO, I )i0 J=1 ., K
where
[0 ] [ 0 . 0] [ C ] [ v T
J Jo
° /"J 1%y - 31,1 31,1
- 0 - . '1/b : - A _ v
LJ ; ’BJ '_? . ’EJ EJJnl 'XJ_ EJJ’I .
° - P/ - 33,0 Ygp
| 0 ] 0. ... va/bjijoJ ] ] AJK,pJ VK, pj
((1+Kp)x1) ((1+Kp)x(1+Kp)) ((1+Kp)x1) ((1+Kp)x1)

This formulation specifies a group of Kp hypothetical distributions
around the chosen mean values of each of the coefficients (excepting
the constant term). The data can then be examined and combined with"
the prior to determine a preferred forecasting model. It is the use
of this kind of prior information that is intended to produce a

useful improvement over conventional techniques.

Once the eqﬁations of a tentative BVAR model have been specified in
the above four major Uaspects; the data can be used to estimate-

" rhat is, v. is standardized so that the standard deviation of each

of its elements is one. The ldentity matrix I1+Kp comes from the

assumptién ihat the true standard deviatlions of the coefficients of
the system are just the prior standard deviations as we have defined
them and are also constant through time across coefficients, 1i.e.

var{v o)-var(vJ1 1)- .=var (v K, ) var(AJJ 1/'vj)-l



coefficients associated with the chosen hyperparameters prior to
subsequent model-based forecasting. In addition, an iterative
process between misspecification tests and respecification could be

repeated until the model is acceptable.
§3.3 Estimation of a Specified BVAR Model

In this section, the discussion will focus upon some special
estimating problems assoclated with the use of a K-variable BVAR
with informative priors, for chosen lag length p. We shall explain
how the prior information 1is Iincorporated to produce operational
results in conjunction with a finite sample of data via Bayes’
theorem in general and Theil’s mixed estimation technique in
particular. In effect, inclusion of appropriate prior information

augments the available sample size and should improve the precision

of the parameter estimates.

3.3.1 The Derivation of a Posterior Distribution via Bayes’
Theorem

When both prior and sample information about a vector of unknown
parameters are avallable, they can be combined by Bayes’ theorem to
form the posterlor distribution.8 Bayes’ theorem formalizes the
general result that a posterior probability density function (pdf)
for the parameters of interest 1s proportional to a prior pdf times

the likelihood fugction; i.e.,

Posterior pdf « Prior pdf x Likelihood Function.

In this céhtext. by making B a parameter vector and Y a vector.

random variable; the theorem can be expressed as

PElY) P(_)l(_ll)

8For this part see, 1n particular, Griffiths et al. (1993), Judge et
al. (1985), Chapter 4, Liitkepohl (1991a) pp.206-12 and pp.372-5,
and Zellner (1985, 1987).
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Here p(B|Y) is the posterior probability density for B. p(B) is the
prior density, summarizing the additional nonsample information
about B, and 1(B|Y) is the likelihood function, summarizing the

sample evidence.

A posterior pdf for the VAR coefficients B can be derived in the
manner of Liitkepohl (1991a, pp.206-10). That is, on combining the
sample information in the Gaussian Likelihood function

1@1Y) = (o)K7 [z 01,/
x exp[" —;— (X‘(IKQ.X)E) ' (2:1181'[) (-Y-—(IKQX)E)] ’

with the prior Iinformation summarized in (3.4), and dropping
irrelevant constants from consideration, we obtain the joint

posterlior density

p(BlY) = r(8)1(8lY)
« oxpf- 3 [(% /% (e-8)" (/2 (6-8")

¢ (6 20111 2en)8)" (= 2ot p)x- (7 o)1 }
(3.10)

9Before proceeding further, a comment concerning the appropriateness
of the Bayeslan approach 1s in order. When B 1is employed as

shorthand for the unknown population parameters, it is often claimed
that Bayesians view parameter estimates as random variables, but the
view of Rothenberg (1?73, p.138) is important here. He states:

The Bayesian_ analysis does not require B to

represent a random outcome of some actual
‘experiment., ... Bayesian decision theory merely
. argues that people who wish to decide
' ‘consistently in uncertain situations would act
-as though B were & random variable with a

certain distribution function.
Hence, we need to distinguish between the density function for the
sampling process where B 1s treated as fixed, and the density
functions that express;our uncertainty about B and, hence, treat

this vector of parameters as random.



Defining

~1/2,* -1/2

and M =

(! /2®IT) ¥ 51 /g5 |’

the exponent in (3.10) can be rewritten by completing the square on
B as
1 ,
-7 (2-¥8) (n-18)
1 , -
-5 (@) -4(e-B)" ((a-18) -u(8-B))
-7 [(2-43)" (2-1B) +(8-B) "W (8-B)]. (3.11)

where choosing
B = () we = [l lex )] T [le e (5] ex)y], 12)
the cross-product terms satisfy the following algebraic identity
(8-B)'M' (n-MB) = (8-B)’ (Wm-M'M(®'¥) 'MW'm) = 0.

Since the first term on the right hand side of (3.11) is independent
of B and may thus be absorbed into the constant of proportionality,

we have

p(8lY) « exp[- 5 (B)'T5' (B-B)]. (3.13)
where

o oy —1 -1 -1 ., -1

I = 'y = [Vg+(z, ex°¥)] " (3.14)

With a normal pfibr'éﬂdyﬁ 11kellhood function based on Gausslanity,
the posterior pdf is a K(1+Kp)-dimensional multivariate normal pdf
with posterior mean § and covarlance matrix Yk; that is, §~N(§,Yb).

Of these parameters, 5 1s usually the principal object of inference.

According to Eq.(3.12), if lg(ii""’-’—k)"" and g=d1ag(31,...,5K),
. A h .

substitution of E and-!B by R 1; and (3'5 1, respectively, ylelds
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BB + (= loxx)]  R'r + (5 ex")y]

’ -1 ’ - - ’
[R'R + (=] ox'X)] 7' (5] ex") Y. (3.15)

Il
"

In the classical context, a point parameter estimator such as this
(i.e. the posterior mean) can be interpreted as a shrinkage
estimator and viewed as an optimal point estimator for the parameter
vector E, if such exists. The traditional trade-off between
decreased blas and increased variance in a Bayesian specification
framework disappears in that a convex mean-squared-error loss
function 1s minimized at the posterior mean by including all
relevant variables along with prior information that accurately
reflects the most likely values of their coefficients [see Litterman
(1986a), p.27]. Also, an advantage of this approach is that, by
careful cholce of a prior distribution, we allow variables, and lags
thereof, to enter an equation at the margin, rather than being

forced to exercise the extreme choice of inclusion or exclusion.

The same point estimator (the posterior means) for B can also be
attained numerically by using Theil’s (1971, pp.547—52) mixed
estimation technique. Such a technique involves supplementing the
observed data with stochastic prior information concerning the
subjective distributions of the coefficients B and is believed to be
capable of greatly increasing the precision of point estimates. The
following discusses the technique that was employed here and the

problems encountered in parameter estimation.

3.3.2 An Optimal Point Estimator Using Theil's Mixed
Estimation Method

We have seen that when the prior information cannot be represented
in the form of a proper multivariate normal distribution, it can be
preferable to write the information in the form of linear stochastic
restrictions and combine it with the sample information through
mixed estimation. Given an appropriate interpretation, mixed
estimation methods can be. regarded as Bayesian estimators. See, for



more details, Fomby et al. (1984), Chapter 6, Judge et al. (1973),
Nagar and Kakwani (1964), Paulus (1975), Swamy and Mehta (1969),
Theil (1963, 1971, 1974a, 1974b), and Theil and Goldberger (1961).

The data is assumed to be generated by the model

Y = X Ej + Uy
(Tx1) (Tx(1+Kp)) ((1+Kp)x1)  (Tx1)
2 =
gJ~NID(0,¢JJIT); J=1, ..., K,
and the prior to follow
r, = BJ B + Yy
((1+Kp)x1) ((1+Kp)x(1+Kp)) ((1+Kp)x1) ((1+Kp)x1)
gJ~NID(0,Il+Kp); J=1, ..., K.

The mixed estimator can be obtained by combining these two sources

of information in the following partitioned form

Y X u
[J]=[ JEJ+[J]; J=1, ..., K, (3.16)

((1+T+Kp) ((1+T+Kp) ((1+4Kp) ((1+T+Kp)
x1) x(1+Kp)) x1) x1)

where the zero mean white-noise processes gj and !j are assumed each
to be independent and to be independent of one another. Thus the

disturbances (93,13)' have a variance-covariance matrix

u c 2I 0
s[5, ]
E':[[ y ][ 0 0 I1+Kp

An application of Altken's generalized least-squares (GLS) procedure
to (3.16) results in the mixed estimator of EJ:

A 2 -1 -1
R : L | 0 X
By = [[ £ B ] T | ] [ R ]]
L0 Lywp g5 1)

& X 33][:J§IT ° ]_1[ x H

or

<ol o
By = [B)Ry + oy X'X] "[Rjr; + o 'Y ]
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2 -1
= le.,"R°R, + X’X 'Y.: =
[ jRBy + X°X] X Y;; whenr, =o. (3.17)
Moreover, (3.16) can be rewritten in stacked form as
ERNE: 0 ;]
. El .
¥ |=]9° X . + * |,
r R 0 - y
T 1 By 1
| Iy | | O Ry | L Yy
(K(1+T+Kp) (K(1+T+Kp) (K(1+Kp) (K(1+T+Kp)
x1) xK(1+Kp)) x1) x1)
or, more compactly, as
Y I eX U
= K B+ .
r R |~ v
Here x-_-(!»,,..,x;()" L=(£i,...,£]’()v=o, B:diag(ﬂl,...,BK) (a block
diagonal matrix), _@=(§1, . 'EK) , Q=(gi, - ’!I’() ’ and \_I=(gi, . 'XI’() .

The variance-covariance matrix of the disturbances (Q’ ,y')’ is

2
[ o117 o g7l
| 0
oy, 1 '021| Z el 0
K1'T ' kK 1#_ _ [ WBlT ]
————— I_'_—"— b .
1+Kp 0 O Ix(14kp)
0 | .
L | o Il+Kp4

The augmented GLS parameter estimates are

;. {[ 10K ]'[ z ol 0 ]'1[ 10X '}‘1
B VB v 0_ ;K(I#Kp) B J

{[ I.eX ]'[ el 0]
. B ; 0 IK(1+Kp) -

= [R'R + (z;%zs"xu'.l[n'g + (=5 ex’)y]
= B+ (] ex')] T (5] oK)y

I

-
 ——
in] <

(3.18)
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By comparing (3.15) and (3.18), it is seen that the results obtained
above are exactly in the same form as the posterior means defined
previously. Hence, in this simple mixed estimation procedure, the
resultant estimated values of B will just be the posterior means
(i.e. éﬁé) and serve as optimal point estimator under the convenient

simplifying assumption that priors and disturbances are all normally

distributed.

In practice, Zu is rarelx known and the inversion of the matrix
B’B+(z;1eg'§) of dimension (K(1+Kp)xK(1+Kp)) in the above estimator
for B can be intractable. Since BVAR priors enable one to choose a
relatively large p, the dimension of the matrix to be inverted in
computing é may be qulte substantial. To get rid of these problems,
(3.17) may be used for each equation of the system individually,
with Zu replaced by the ML estimator §u.10 It should be stressed,
however, that point estimators of B, say the posterior mean (),
important though they are, are only special applications of the
posterior pdf and are generally an inadequate means of reporting
results. It 1s, therefore, more useful to report complete posterior.

distributions for the parameters.

There are three key points that need to be emphasized. Firstly, the
whole point of introducing GLS for the BVAR model is to 1mprove.the
efficlency of estimation (or to reduce the estimator variances). In
a standard multivariate vector autoregression, any regressor which
appears on the right hand side of each of the K equations would
belong in -principle to the right hand side of all of them. In this
case, 1f the informative priors are not imposed on the system, the
GLS estimator, elther for the system or for the equation, will
reduce to the ordinary least squares (OLS) estimator for the UVAR

10The ML éstlmatdr_of the whife»noise covariance matrix E can be

written as . o
"; ’ V » -1 ’
L, =y(Ipx (') 2y /10
where z-[!l;.Q;;XT]; and géx'f¢

' C(KxT) T ((14Kp)xT)
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model. In contrast, if the prior distributions are constrained to
specific values, the GLS estimator will reduce to restricted least
squares (RLS) for the structural VAR. Thus OLS and RLS are only

special cases of mixed estimation.

Secondly, the seemingly unrelated regression (SUR) estimator is not
needed for a system that has exactly the same set of variables on
the right hand sides and exhlbits solely contemporaneous
correlations of the disturbances, as there is no efficiency gain
from estimating the system as a whole. It is known that in any
multiple equation model, the use of restrictions on parameter values
tends to reduce estimator varlances and the estimator of a complete
system would, in general, be no less efficient than the estimator of
any other cases. If there were different degrees of restrictions on
the regressors 1in different equations, the existence of some
connection between equations would enable a restriction on one
equation to Iimprove the efficiency of the estimates of other
equations in the system. Only if all equations have exactly the same
set of regressors and small fesidual correlations will no one
equation be more restricted than any other, compared to a global
list of all regressors in the model. Hence, GLS estimation applied
equation by equation would be as efficient as the whole system, and
would appear to be much cheaper than the full information method of

estimation.

Finally, the difference between GLS estimates (for the system with a
prior) and OLS estimates (for the system without a prior) is that,

with proper priors, the degrees of freedom reported are no longer
T-1-Kp for each equ#tion but’ T-1 Iinstead. T-1 has no relation with
the lag length p, since BVAR priors are typically defined for each
right-hand~side variable except for the intercept, and may be much
larger than T-1-Kp. This represents a somewhat artificial way of
getting around the problem that, with a prior, Kp can exceed T [see
Doan (1996), p.8-21]. The degrees of freedom are increased by
stochastlic réstfictlons, while the varlabllity of the estimates is
reduced and the reduction in overparameterlzation should yield
improvedvéut‘éf-sanple»foreCAsti [see Shoesmith (1990), p.261].
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After the coefficients of a BVAR model have been estimated, the
adequacy of the fitted model should be assessed by the use of
various evaluation and model selection criteria. If the ultimate
goal is prediction, then it seems logical to Jjudge the model, and
thus the corresponding modelling procedure, by determining whether
the quality of within-sample forecasts is better when some kind of
prior informatlon is lncorporated, as was done in Litterman (1986a,
1986c). Indeed, the validation of a model simply means whether the
selected model, with all 1its inherent imperfections, does an
adequate Job in postsample prediction. Although validation of a
model from historical data can never, in itself, ensure the quality
of forecasts into the future, it is reasonable to believe that a
model which has shown itself to be valid on the basis of the past
and, hence, has presumably captured some constant features of the
underlying structure, will yield more reliable forecasts in the
short run than one which has not been so validated. Once a
satisfactory BVAR forecasting model 1is found, optimal 1linear
forecasting is a routine affair [Judge et al. (1985), p.660].

£3.4 Prediction Using the Estimated BVAR Model

The objective here 1s to derive a Bayesian predictive distribution,
which contains all of the uncertainty about future events and is a
function of known quantities only. Suppose that we wish to derive a
complete predictive density for future values on the vector
Xt=(Y1t....,Yxt)"oVér h periods, say Y, together with a set of
Bayesian point predictions of these values, which are assumed to
link with a known hx(1+Kp) matrix ¥ through the same multivariate

normal'regressioh model generating the past sample observations Y.

That is,

§=(yef)g+0 = . (3.19)

Here zi(yl,T+1;’"'Yi,T+h;";;Yk;T+1;""YK.T+h) is a Khxl vector
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of future values to be forecast over the forecast horizon
t=T+1,...,T+h;

Mt Y%t o YkoTerop
X= . is a hx(1+Kp)
Yy Ten-17 Y1, Ton-p YK, Toh-1" - YK, Toh-

matrix of given or hypothesised values for the predictor variables,

assumed known prior to making a forecast on Xt;

~

B is a K(1+Kp)x1 vector of regression parameters for ¥, assumed

the same as that for the previous observations Y; and

g=(u1,T+1""’ul,T+h""'uK,T+1""'uK,T+h) i1s a Khx1 vector
of future disturbance terms, assumed Gaussian as well with

0-N1D(0,%, e1,) and E(ul’)=0."!
(KhxKh)

Since the value of B is unknown, one way of deriving the Bayesian
predictive pdf based on (3.21) 1s to write down the Jjoint pdf
p(¥.8]Y), and then integrate with respect to B to obtain the
marginal, or predictive, pdf f(¥]Y) for ¥. In such a procedure, the
form of p(¥,8]¥) can be represented by factorising it into
1(¥|8.Y)-p(BlY), with p(B]Y) being the posterior pdf for the
regression coefficlents B, shown in (3.15) and 1(¥|B,Y) the

~

likelihood function for the future observations Y, given by
1(¥18.Y) = 1(2l8)
1 yKh/2 -1/2
= (57) /4|2u°1h| /
1 , Sy o)+ (1 S P
x oxpl- 7 (1 (1o8)8) " (=" e1,) (¥ (1)8)].
noting E(UJ’)=0.

Therefore, the predictive pdf for ¥, £(¥|Y), is readily obtained by
the following integratlon:

F21y j‘fp',(i'fl??)"ﬂ

11This arises because the knowledge of the realized values of U is of
no help in predicting {J. They are mutually orthogonal or temporally
independent and hence the conditional expectations of future error
terms {J are zero. ’
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i RERCINE
« fexe- 3 [@ /% (6-®)" (5, (6-8))
v (57 %01, 8- (5] %68)8) (211 %1, ) 8- (521 %e))] Joe.

(3.20)

Performing the integration in (3.20), the predictive pdf can be

rewritten as

£(11Y) « | [2-(1geR)E] W [T- (1,0R)B] | /2,12 (3.21)
where

W= (25 %01y) " [1g,- (55 2eR) 47! (571 /2e8) ] (25121,

¥ = Gl (5;/%e8)" (2]"/%8): and

¥y = T+h-(1+Kp).

From (3.21) it follows that f(¥|Y) is in the form of a multivariate
Student t distribution with mean vector

E(D) = (1geR)E.
and covariance matrix |
E(Z-£() (TE@T) "
E((1¢eR)8+0- (10K)B) ((1¢eX) B+~ (13 2X)B) "
E((1e8) (8-8)+Q) ((1e%) (8-8)+0)’
(1xX)E[(8-B) (8-B) '] (1¢e%) " +E(CT’)
(IKOX)Zﬁ(Ian) ‘4L oI .

Here again, £ = 1s assumed known throughout, and (B-B) and U are
uncorrelated (as E(U0’)=0), enabling us to lnvestigate the structure

of forecasting error covariances.

1250e, for detalls, Appendix B.
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Moreover, since
-1 -1/2 -1 - oS (e o ~ -
W o= (}:u / ®Ih) [IKh+(zu1/2@§)xB(zu1/2@x)'] [(Zu1/2®lh)’] !

[(=;1/%1,)" (=;1/261,)] L4 (1,0%) Ty (10%)”

Zu®1h+(IK®Z)Yé(IK®X)',
we obtain

E(-E(9) (T-E@®) =¥ .7

These results enable us not only to make predictions about the
elements of z conveniently but to incorporate both data and expert

Judgement adequately into a final Bayesian predictive distribution.

Given a set of predictions, an optimal point prediction (i) obtained
via the minimization of squared prediction error loss is the mean of

the predictive distributlion, with a predictive expected loss equal

to the varlance. Hence

= (1geX) [R'R+ (SSIGX’X)]-I [R'r+ (2;1®X’)!] : (3.22)

¥ = E(Y) = (IKOX)E = (IKOX)é since B = f

or more simply

i, =@y - ng - X?J
& ’ = ’ = ’ -2 »
= x[gjgjwux X] [EJ};JW“Z xj]; J=1, ..., X (3.23)

It can be seen from (3.23) that for the j-th equation of the system,
the optimal point predictions based on the predictive density’
function are Just the known fixed matrix X of future predictor
values times the-opgiaal‘posterlor mean estimator EJ (or the mixed
estimator éJ). These forecasts constitute an important basis .for
optimal linear-ex ante forecasting, and will be compared with actual
values. The accuracy‘ofvthe'BVAR model’s forecasts will be further
compared with ‘those generated by alternative methods, using Theil’s’
inequality ‘index. It. is also seen from (3.23) that the stochastic

13Again. seevAgpendiggB.l;>.v,.,
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prior restrictions for the model’s coefficients would yield a
significant influence on the final point predictions of the

variables being considered, especially for small sample sizes.

§3.5 Conclusion

This chapter describes how and why we prefer BVARs to UVARs. In
particular, we have described caréfully four major aspects involved
in the construction of a stationary Gaussian BVAR process: the
choice of vector content; the selection of lag length; the treatment
of constant terms; and finally, the determination of prior structure
for all individual coefficlents. We have also considered related

issues assoclated with mixed-estimation and ex ante forecasting.

Following from the work of Sims (1980a, 1982) and others, it has
been argued that economic theory is often not very explicit about
econometric relationships, and the specification of a multiple time
series model usually has to rely, at least to some extent, on sample
information. In this regard, UVAR models have been proposed as a
class of fairly general models, which do not impose rigid a priori
restrictions on the data generation process and let data speak for
themselves. However, since we often work with limited data, the data
cannot speak very loudly in standard UVAR models. UVARs involving a
large number of parameters and very few restrictions can often lead
to serilous problems of overparameterization, with many insignificant

coefficients hampering the interpretation of the results.

It is the appearance of the large number of parameters in UVARs that

points. in the direction of using Bayeslan methods. The BVAR model

provides us with a formal and flexible way of characterizing
stochastic. subjective information and combining it with sample data.

So far, we have only discussed the formulation of a stationary BVAR.
model. This 1s obviously not enough, since many series of practical

1ntqres£@ar§'1htr1nsica11y nonstationary. In the following chapters,

we will consider generalizations to deal with this.

4o
LB TN R

St
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CHAPTER 4

VECTOR AUTOREGRESSIVE ERROR CORRECTION MODELS
(VAR-ECMs) WITHOUT A PRIOR

§4.1 Introduction

This chapter discusses the problems arising from the existence of
trends in nonstatlonary macroeconomic time series. After this, the
following chapter incorporates this body of information into a more
general BVAR model. Of the BVAR forecasting method noted in Chapter
3, all the modelled variables are assumed to be weakly stationary
stochastic processes, at least around some deterministic linear time
trends which could be removed. This would imply that there are no
trends or shifts in the covarlances or seasonal patterns, where
standard asymptotic distribution theory can be applied. However,
there 1is ample empirical evidence that many macro series are
nonstationary. Most nonstatlionary series are integrated of order
unity (denoted I(1)). This is due to the presence of one unit root
[see, e.g. the seminal note of Nelson and Plosser (1982)], which
gives rise to a stochastic trend in variance, as opposed to a purely
deterministic trend 'in mean, with shocks or innovations to .the

economic system being permanent rather than transient.

In traditional time series analyses, a valuable device in handling’
trends and seasonal patterns 1s that of differencing. A model can
then be fitted to the differenced data. However, a simple VAR or
BVAR on differences 6n1y vwould not be able to capture appropriately
any long-run ‘Information among subsets of nonstationary variables.
Current'pfdétice in dealing with sets of interacting variables is to
attempt' to analyse non:tationéry gseries directly and to consider the
possibility “of dominant ‘long-swing’ components, such as the trend,
belrig c¢ommon to ‘more than one series. The concept of cointegration,
developed ‘dut of the;existenée of unit roots and a common stochastic
treénd (OST), was first suggested in Granger (1981). Cointegration,
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as well as its intimate connection with associated error correction
mechanisms (ECMs), has engaged increasing attention over recent
years. In particular, it has provided a joint parametric treatment
of the short-run dynamics and the long-run relations of the

underlying process within an OLS framework.

In this chapter, the complementary roles of theoretical and
empirical analyses in macroeconometric modelling will be reexamined.
A number of testing, estimation and inference procedures will be
reconsidered in the context of VARs with unit roots. In addition, a
linear transformation to I(0) space in terms of differences and

cointegrating combinations of observed macro data will be given.

§4.2 A Linear Stochastic Multicointegrated System for Integrated
Time Series

Granger and Newbold (1974), before the introduction of the concept
of cointegration, investigated by Monte Carlo experiment the likely
consequences of specifying a static OLS regression of one random
walk on another random walk, independent of the first. They pointed.
out that the usual significance tests performed on the regression
coefficients may be very misleading, resulting in the acceptance of
a spurious relatiohship. Warning signs may be an apparently
acceptable Rz coupled with a low Durbin-Watson (DW) statistic, and
high significance of the coefficients (a simple rule of thumb being
R2>DW). Granger and Newbold therefore suggested that, in such.
circumstances, one should look for. a model to apply to the
differenced series, rather than to the raw serles concerned.

Phillips (1986) provided analytical results explaining the Monte
Carlo - findings reported by Granger and Newbold. His study
demonstrates the following. Firstly, in contrast to the stationary
case, - the.regression coefficients in a model with data generated by
integrated processes do not converge in probabllity to constant
coefficient matrices. Secondly, because the regression error is I(1)
under 'the null hypothesis of no relationship with undesirable
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infinite variance, the conventional t- and F-statistics, formed as
ratios of sample, or joint sample, moments do not have limiting
distributions. Upon suitable standardisation, they converge weakly
to appropriately defined functionals of vector Brownian Motions or
Wiener processes, and actually diverge as the sample size T—w.
Hence, there are no asymptotically correct critical values for these
test procedures: the larger the sample, the greater will be the
rejection rate when the tests are based on a given critical value
delivered from conventional asymptotics. Finally, under the same
conditions, DW converges in probability to zero, whereas R2 has a
nondegenerate limiting distribution. The spurious regression problem

therefore becomes even more pronounced with low values for DW and

moderate values for R2 as T—oo.

All these theoretical results are consistent with the empirical
findings in the Granger-Newbold (1974) experiments. Indeed, it is
the appearance of the Ilntegrated error term in a regression between
the variables that eventually leads the wusual asymptotic
distribution theory -to break down at the unit circle. Achieving a
weakly statlonary, or I(0), error with finite variance is then a
necessary or minlmum condition for a specified model to be
satisfactory. However, the theory of cointegration addresses the
impact of equilibrium relationships implied by economic theories,
within a dynamic adjustment process. It may thus improve long-term
forecastability of the system under scrutiny. See, inter alia,
Davidson and Mackinnon (1993), Chapters 19 and 20, and Hamilton

(1989).

4.2.1 Integrated/Cointegrated Processes and Their Properties

In empiriéal studies, 1t 1ls frequently of interest to test whether a

set of macroeconomic variables move together. There is a tacit

assumption that certaln economic series cannot be expected to drift
too far ‘apart, due to economic forces identified in theory, even
though the Beries themselves may wander extensively over time. The
idea of cointegration can be used to test the correctness of such
beliefsih"inﬂ ‘fncorporate the resulting information 1in the

specification “of  dynamic models. First, the definitions ‘and
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time-series properties of integrated and cointegrated variables will

be clarified.

According to Wold's decomposition theorem, a zero-mean purely
nondeterministic stationary stochastic process has an infinite MA
representation. This can generally be approximated by a finite ARMA
process. However, many economic series need to be differenced in

order to make them stationary. A K-dimensional vector
Xt=(vlt"' "YKt) with no deterministic component is said to be
integrated of order d, denoted —t ~I(d), if it has a stationary,

invertible, multivariate ARMA representation after differencing d

times. See Engle and Granger (1987, p.252).

Consequently, a vector integrated of order zero is stationary in
levels while a vector integrated of order unity is stationary in
first differences. The word ‘integrated’ is thus a description of
the original series relative to the resulting stationary series.
There are many substantial differences in appearance between series
that are I(0) (with some long-run mean) and I(1) (with some starting
value), and the sum of an I(0) and an I(1) is always I(1). See, for

a more detailed discussion, Engle and Granger (1987, pp.252-3).

Suppose now that the series of interest in a bivariate vector Y are
all I(d), having no drifts or trends in mean. Then it is generally
true that any linear combination of these two series lis also I(d).
However, in contrast to the spurious regression case, it is possible

that there exists some nonzero 2-vector g=(a1,a2)’, such that the

combination

Y., 2
a'Y, = [« o ] ‘ =1)=:1a1Y1t =&, (4.1)
v E . R Zt

is lntpgfatad of a lower order, say I(d-b), dzb>0. When this occurs,
a very apeéial ilnear constraint operates on the long-run components
of the serles ‘Suppose further that d=b=1, so that each variable is
I(1). yet €, 15 I(O) 1 e. 1s stationary Hence the Y variables must
have long—run couponents which effectively cancel out to produce €, -
In such circumstancas, the integrated variables under examination

75



are termed cointegrated. To formalize these ideas, Engle and Granger

(1987, p.253) provide the following definition of cointegration.

The components in a K-dimensional vector Xt are said to be
cointegrated of order (d,b), denoted Xt~CI(d,b), if: (i) all
components of Xt are I(d); and (ii) there exists at least one vector
of weights a(#0) such that et=g’1t~1(d-b), b>0. Such a linear
combination is a colntegrating combination and the scaling vector a

which represents it is a cointegrating vector (CV).

Three, among a number of, important points to note about the
definition are: (a) cointegration refers to a linear combination of
nonstationary variables; (b) all variables must be integrated of the
same order; and (c) most of the cointegration literature
concentrates on the case in which variables are CI(1,1) [Enders
(1996), p.152). The notion of cointegration can be equated with a
linear equilibrium constraint between the integrated variables to be

considered, leading to a class of models, known as error-correcting

in the econometrics literature.

4.2.1a Close Relationship between Cointegration and
Linear Equilibrium Constraints

Macroeconomic time series often appear to be I(1). Their behaviour-
may be simlilar to that of a (multivariate) random walk. A single
equilibrium; or attractor, for an economic system to converge

through time might be characterised as

(4.2)

sorthat‘tke univariate quantity €, given by (4.1) can be interpreted
as the extent to which the system is out of equilibrium at any point
in time, ‘and. may thﬁs be called the equilibrium error. Here, -the
term equilibrium can be thought of as a stable target towards which
the ecoﬁony;iaCtlng on ‘countervailing forces, is aiming whilst in
diéequiiiﬁrihu,'IGrangen (1987), pp.5-61. Provided that each’
component of Xt is I1(1), then if, and only if, the equilibrium error
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£, is I(0) will the idea of a target equilibrium have any impact.1

Here the CV ¢ is not unique, since it could be multiplied by any
nonzero scalar without affecting the equality in (4.2). However, it
is the exception rather than the rule that there exists an a which
makes et~I(0), because economic equilibria do not always é;evail,

even if the presupposition of the same order of integration is

satisfied.

In the more general case, with any values of K, d, b, for K>2, «
need not be unique, as there may exist more than one specific linea;
relationship .amongst the variables. It then follows that if there
are r linearly independent cointegrating vectors (CVs), then r can
be, at most, equal to K-1, so that r=K-1. The cointegration

combination stated above will then become

K
Yo .Y
@y v Oyp Ylt 1=1 1171t
ey, = : S Rl g, (4.3)
o el @ Y.
ri rK Kt T @ Y4

(rxK) (Kx1) i=1
: (rx1)

is a (Kxr) cointegrating or equilibrium matrix with its
columns forming r distinct CVs 1In the r-dimensional
cointegrating space and its rank r being referred to as the

where «

cointegrating rank of Xt; and
€, is a (Kx1) (zero-mean) vector of stochastic variables
" Integrated of order less than d.

For a given set of variables, we may be interested not only in a
single CV, but in a set of CVs, specified by the (Kxr) matrix a. -

11t may be recalled that if €, is I(0) the expected time between

zero crossings is finite, suggesting that in this case €, will
rarely'dFiftffar”from target et=0 and equilibrium will occasionally

occur. Conversely, if there 1s an equilibrium, the Y variables must
move ' closely together as a group over the long run. The selected
interrelated variables will adjust to one another, by means of the.
CV a, such that the resulting stochastic error €, will be I1(0).
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This matrix is also not uniquely defined by the set of equations
shown. The reason is that any elementary linear transformation of
the column vectors involved (e.g. multiplying one column by a
nonzero scalar, or adding to one column a nonzero scalar multiple of
another column) will change its form or pattern, but not its rank,
and the resulting £ will still be I(0). Such a matrix is said to be
‘closed’ with respect to addition and with respect to multiplication
by a scalar. Moreover, although the loss of uniqueness adds extra
flexibility, it brings some interpretational problems in terms of
equilibria. To illustrate the problem, we will consider first a
simple K=3 and r=2 case with the help of three-dimensional space

analytic geometry and then, by intuition or analogy, extend this to

the more general case.

When a pair of independent CVs, ®, and %,, occur between three

series, Yl’ Y2 and Y3, each of which is I(1), we shall write et(gi)
_a1Yt~I(o) i=1, 2, corresponding to the equilibrium relationships

GY =Yy * “12Y2t @ 3¥3 = 0, (4.4a)

and _
%Yy = 21Y1t 22 2t_f “zavat = 0. (4.4b)

; v;ﬁﬁll' 1n turn, correspond to .two
different planes ?l'and. :4“ 3-D. space ‘analytic geometry with a set
of coordinate’ axes YI ‘ 3, which will both cut through the origin

in the situation now: being considered If each term of the equation
in (4.4a) and (4. 4b) 18 hultlplied by arbitrary nonzero scalars A

These two lineérh‘

and Az, respectively, we obtain Al“lvt 0 or AzazYt 0. These are
equations of the same two planes ?1 and ?2 in the space, whatever
the scalars are, implying that the cointegrating vectors are not
unique. On the other hand, the equilibrium relationships existing
among a set of colntegrated variables are unchanging. Further, any-

linear combination of pairwise independent «, and «, also ylelds a

zFor this part, see Granger (1986b), pp.220-6, inter alia.

3A“3~Vectbr of nonzero constants could be included in the equations
(4.3), 1f peeded, to make the mean of e zero. This is equivalent to
a parallel shift of the coordinate gsystem from an old one

o(v1 Yz'Yb) to a new one 0'(Y;,Y,Y) in 3-D space.

78



further cointegrating vector. It follows that

ct(A) = Aet(gl) + (1—A)ct(gz)
[ A + (1-2)a) ]y,

will also be 1(0), for any A. Thus, the equilibrium relations are
not uniquely identified, and the constructed planes will generate,
or span, the whole three-space, indicating that the equilibrium
error cannot be strictly interpreted as the deviations from a
particular pair of equilibrium relationships. The only invariant, or
, in the (Y., Y,
Y3) space defined by {et(gl)=0}n(ct(gz)=0} or (st(A1)=0)n{ct(A2)=O};

VAl,AZ; Altkz;

stable attractor. is the intersection line £: P AP

refer to Fig.4.1.

Y'3 {l Y3“

i
e

Fig.4.1 The determination of equilibrium
sub-space in 3-D space.

This line, passing through the origin 0, is actually a particular
region of the possible outcome space and will be called the
equilibrium sub-space [see Granger (1986b), p.i222 ]« In amost time
periods, the trivariate Jjoint process Xt whose components drift

widely will not be on or close to the line ¢, but might have a
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generalised preference towards £ — a certain part of the whole
process space. The absolute value of equilibrium error might thus be
expressed as the distance of the system from the equilibrium
sub-space, and the process Xt is said to be back to the sub-space or
in a particular state of statistical equilibrium if, and only if,
the multiseries €, are all zero [see Granger (1986b), p.226].
Accordingly, in order to represent adequately the long-run
properties of a K-dimensional cointegrated process Xt with
cointegration rank r, O<r<K, 1t is important to find the right
cointegration space spanned by the columns of a or all possible
distinct cointegration vectors. Any underestimate or overestimate of

the true value of r (imposing too little or too much cointegration)

may be misleading.

In linear algebra, as long as the two parameter vectors gl and o,
are linearly independent, we can always choose three particular As
such that the combination given above omits Yl' or Y2, or Y3 term.
This would seem to be a natural way of testing for cointegration.
Since our Iinterest centres on the equilibrium subspace, not
particular colntegration relations, the pairwise cointegration
relations among Ylf Yz and Y3 can be replaced by pairs between any
two of them.4 In: 3-coofd1hate analytic geometry, whatever the
position of the line £, we can always find three particular planes
within the family to contain both the line £ and the Yl' or YZ, or
Y3 axis simultaneously. These three particular planes are also

perpendicular to.the front (Y,=0), side (¥,=0) and horizontal (Y,=0)-

planes, respectively.” The choice of any two equations or planes

will determine the. same equilibrium subspace, as depicted in

4In fact,‘given a set of K variables, if, and only if, r=K-1, can
all r {distinct) cointegration relations be transformed into the
simplest..r -bivarlate. linear combinations between anyone of the K
variables and each of the rest K-1 variables. Normally, the r(sK-1)
cointegration relations will each be characterised by a subset of,
at most, K-r+1(z2) variables. In such linear transforms, no matter
what the particular CVs are, the number of CVs (i.e. the dimension
of the cointegration space) r would not change.

Sstmiiarly, in ‘the new coordinate system 0’ (¥;,¥},Y}), the line £

may not ‘go ‘through the origin 0', but the three particular planes
would be parallel to the Yi, or Yé, or Yé axis.



Fig.4.2.

Y4

v

\§§§§k

Fig.4.2 Three particular planes corresponding
to simplified equations in 3-D space.

These ideas considered in three-space may be generalized so that for
any K, r, the preferred equilibrium subspace will be a hyper-plane
of dimension K-r(z1) [see Granger (1986b), p.222]. In applications, |
the cointegrating matrix (or the matrix of cointegrating vectors) «
and its rank r are unknown. Whether or not cointegration occurs, ho;
many distinct CVs there are and what the scaling matrix or vector
will be are empirical questions and are not necessarily determined
by economic theory. In particular, the higher the K, the more

extensive is the number of possible combinations and the more

difficult the testing will be.

The 1importance of the empirical existence of cointegration,
therefore, stems from the fact that tests for cointegration are
tests for suspected long-run equilibrium relationships among the
economic variables of interest. Hence, cointegration should be

considered a necessary condition for the long-run components of
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integrated variables to obey equilibrium constraints while the

short-run components capture flexible dynamics.

The concept of cointegration also makes allowance for the fact that
in the short-run some factors may shock the economy away from
equilibrium, but that this equilibrium will be restored again in the
long-run. In order properly to adjust these short-run disequilibrium
fluctuations in 1line with the long-run equilibrium solution, a
closely related topic has been propounded within dynamic econometric
methodology. This 1is the Vector Autoregressive Error Correction
Model (VAR-ECM). Early versions can be traced back at least as far
as Sargan (1964) (in the context of wage and price modelling) and
Davidson et al. (1978) (in the context of consumption function
modelling) among other writers. The basic idea is that, given a
stochastic movement away from equilibrium in one period, a
proportion of the disequilibrium is corrected in the next. With this
VAR-ECM, it is plausible not only to determine the short-run dynamic
behaviour of the sysfem»of adjustment equations but also to avoid

spurious regression situations, without the 1loss of desirable

long-run information.

4.2.1b Close Relationship between Cointegration and Vector
Autoregressive Error Correction Models

We now demonstrate how cointegration can arise from a finite order
VAR representation, commonly used in econometrics as a convenient
approximation ‘to a system of (infinite order. Consider a-

K-dimensional :Gaussian VAR(p), as in (2.3), with fixed 1initial
values (Xi-p";"xﬁ}v

p .
!t = g+1§1A1!t_1 + gt’ t = 1! v ey T) (4-5)

6Strictly speaking, a necessary and sufficient condition for
equilibria to hold is §t~l(0). not cointegration; the latter is only

a riecessary one for the process to be in such a particular state, as
has been pointed out by Granger (1986b), Engle & Granger (1987) and
others, This 1s because the reduced-rank restrictions implied by

cointegration cannot guarantee that the resultant cointegrating
linear conbinations‘a’xt=3 are I(0) unless the original series are

« t
known: to be I{1).
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where all the symbols have their usual meanings. Although most of
the time the simplifying assumptions, such as normality,
independence, and homoscedasticity, are not crucial, the assumption
that {Q,At,...,ép,zu} are time-invariant parameters is fundamental.
This assumption will be investigated in the empirical applications

in subsequent chapters.

Recall that a necessary and sufficient condition for the process to
be stationary is that all characteristic roots of the polynomial
equation det(Ap(E))=0 are outside the unit circle. Thus, if the
process is nonstationary there must be at least one root lying on or
inside the unit circle. Due to the presence of a single unit root in
most Iintegrated macro series, we exclude explosive variables by
assuming that none of the roots lie inside the unit circle and also
rule out xt being integrated of order 2, though the latter could be

handled, should the need arise.

Now suppose the process encountered here is nonstationary with

P i
8,1 = 11y - T A’

Kp
-n@-h)
S i=1 :

=0, for |€| = 1.

Since {Xi}, i=1,...,Kp, stand for the reciprocals of the roots of
the characteristic equation, one or more of them must be equal to 1
in absolute value. A multivariate time series model therefore needs
to be constructed in such a way that both wvalid reduced-rank'
restrictions and unit roots are imposed explicitly on its various
components in order for the Joint modelling to reflect common
features such as seasonals and cycles which are felt to be present

in the aggregate data.
- 4 p
Since |Ap(1)|=|IK-Z Ai|=0, the KxK long-run multiplier matrix

(1) =1, - A (4.6)
A" Koyt ‘

is singular aﬁ& ‘has a reduced rank. Suppose rk[A (1)]=r, 0<r<K, so
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that the impact matrix Ap(l) can be factorised into the product of
two suitable matrices w, a’ with both w and a being of dimension Kxr

and of full column rank. Three cases arise from the study of

cointegration constraints.

Case (a): r=0 -— a borderline case, in which Ap(l) is a null matrix
with K unit roots imposed. All K variables in Xt are I(1), and a
stationary unrestricted VAR(p-1) model represented purely in first

differences 1is acceptable.

Case (b): r=K — a stationary case, in which Ap(l) is a full-rank
matrix with no unit roots imposed. All K variables in Xt are I(0),
and a stationary unrestricted VAR(p) process expressed entirely in

levels is admissible.

Case (c): O0<r<Kk — an intermediate case, in which Ap(l) is a
singular matrix with K-r unit roots imposed. There are, at most, r
cointegrated linear combinations of the elements of Xt' and a
stationary restricted VAR-ECM is appropriate.

In general, 1if Xt consists of cointegrated I(1) variables, the

stationary VAR-ECM formulation with Gaussian innovations can be

achlieved by subtracting Xt-l from both sides of (4.5) so that the

impact matrix enters_explicitly

e =Y, - Yy

=.C.._(IK_A1- e —Ap)!t-l

- (ﬂz + ... 4+ Ap)(!t—l— Xt_z)
Byt ™ Yop) * 8
P P ‘
=C - (I -15151)Xt-1 - (1§zA1)VXt-1 T T AT p Yy
t=1, ..., T,

where V is the first-difference operator (1-L). Using (4.6) and
defining

o .f__es - : » = 1, ve ey '1.
4 1-§+?1 | ? °
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the VAR-ECM can be written as

VY, = C - »
¢ = Ap(l)Xt_1 + AIVXt 1 + ... 0+ Aprlvxt"p+1 + u,
p-1
=C-A (I)Y + =
& - ALY, JZIA WYty t=1, ..., T (47

Also, the characteristic equation of the model (4.7) can be

rewritten as

p-1
A, = |1-©)1 + A (1) - (1-5))=:1A3gJ|

o, for |&| =

This implies that a transformation to I(0) space can be achieved in

terms of differences and cointegrating linear combinations of the

components of Xt'

Within this framework the long-run impact matrix Ap(l) vhas been
decomposed as Ap(1)=gg’. The matrix « 1is, as before, the
cointegrating matrix comprising r distinct column cointegrating
vectors. w is the loading matrix containing, for all K equationé in
the system, the adjustment (or error-correction) parameters attached
to each CV. Thls shows how fast the variables change in response to
a disequilibrium.7 See, for example, Clements and Mizon (1991,
pp.895-6), and Urbain (1995, pp.181-3). Thus, (4.7) becomes

p-1
Vi = C-eelty +ZAJ—tJ
J=1
p—
= g - _t..l Z _vat J t = 1! » T; (4.8)
or
p-1
= b =
we,_, =C - WY, +J§15 Y, ¢+ t=1, ..., T.

All terms in the right-hand side involving the difference operator V

7Here aéain, the two matrices @ and w are not unique since, for any

nonsingular rxr matrix E, we can define a*=af’ and w*=wF-1 so that

wha®’ =wa' However. ‘it will be shown that closed form expressions

for the ML estimators of a and w are available.
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are stationary, and the error term u, is stationary by assumption.
This implies that the error-correction term wEL _4» being a linear
combination of the stationary terms only, must also be stationary
and it remains stationary upon pre-multiplication by (g’g)_lg’.
Hence, if w#0, the ‘equilibrium error’ §t=g’xt is stationary and
thus each row of E’Xt represents a cointegrating relation. It has
been proved in Granger’s Representation Theorem (Granger, 1983) that
not only must integrated data generated by an error-correction model
be cointegrated but the converse is also true. That is, if the
components of Xt are cointegrated of order (1,1), then there must

exist a generating mechanism having the error-correction form.

Similarly, an alternative yet isomorphic error correction version
for the process (4.5) can be derived in the fashion of Johansen
(1988, 1991), and Johansen and Juselius (1990, 1992), i.e.

-1
=Q+E_J_tJ ALY, o+ oy

-1
=L+ Elﬂjv!t_J - ,w_C.t_p + !t' t=1, ..., T, (4.9).
where
M %A 1 1
A, = - + s J = ’ y P~
= K 1=1 i

In general, by rearranging terms, any set of lags of the € can be

reproduced in a like manner by

1-1
X =g +J§1AJv!t_J - Ap(l)xt—l + Z AJ -t~ J
' 1-1 p-1
= C +J§15vat j - we, + z A J
1=1, ..., p, t=1, ..., T, (4.10)

where

o A = -I *. z A, J=1, ..., 1-1,

sln'thebry.'the proposition presented here can be generalized to any
values of d and b. For a proof of the theorem see, inter alia, Engle
& Granger (1987) Hylleberg & Mizon (1989) and Johansen (1988,

1991).



and

Particularly, when 1=1, A3|J=0 is undefined and taken as zero,
Eq.(4.10) then reduces to (4.8). Likewise, when 1=p, AJlj-p is
undefined and treated as zero, Eq.(4.10) then simplifies to (4.9).

Therefore, any type of gradual partial adjustment of the short-run
dynamics toward a long-run equilibrium can be allowed via the
introduction of this further possible exogenous factor, the

equilibrium error, that arises from the concept of cointegration.

When a set of variables are cointegrated, their changes may depend
not only upon the past values of the variables in difference ternms,

if present, but also upon the past values of the equilibrium errors

in level terms, if w#0. The change in the jth component of xt may be

better expressed as a weighted average of lagged changes in all

components less r lagged error correction terms (the jth row vector
of w times the lagged gt) plus the jth component of gt without

moving average components. The term EC, therefore, comes from the
fact that if the economy tends to seek equilibrium, then it is
expected that the variables involved should be influenced by the -
extent to which the economy is out of equilibrium. In an ECM, some
fixed proportion, w, of the disequilibrium, €41 (1=1,...,p), in
period t-1 would be corrected in the current period t in aiming at
the long-run relationship or the equilibrium subspace defined
previously. The relevant coefficients of the EC term would appear to

be negatively correlated. See Liitkepohl (1991a), Chapter 11.

In such ' a specification, a long-run stationary relationship holding

between variables will necessarily make Ap(l) nonzero (r>0). In this
case, a pure VAR in the differences of the data will be inefficient,
as 1t omits important long~run information [Doan (1996), p.8-3].

However, the ;ongrrun cointegrating restrictions will also make.
A (1) singular (r<X). In this case, a simple VAR in the levels of
;Ee serieg will be inadequate from an innovation accounting point of

view, as: it lgnores'crucial cross-equation parametric constraipts.
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To quote Engle and Granger (1987, p.259):

...vector autoregressions estimated with cointegrated
data will be misspecified if the data are
differenced, and will have omitted important
constraints if the data are used in levels. Of
course, these constraints will be satisfied
asymptotically but efficiency gains and improved
multistep forecasts may be achieved by imposing them.

In essence, it is this feature of cointegrating restrictions that
links it with the analysis of spurious regressions. This is because
in the system of equations (4.9}, every term (either the lagged
levels implied by the presence of Et-p or the lagged differences
reflected by the appearance of th) is I(0) when cointegration
exists. Hence, conventional statistical inference can be carried out
and spurious regressions of the Gfanger—Newbold type can be avoided.
Whether or not the residual 1n a regression between integrated
aggregates is empirical white noise, or at least stationary, is thus
a matter of importance [see Mills (1993), Chapter 6, especially
pp.170-2]. Moreover, a test for cointegration leading to this
stationarity 1is, to all intents and purposes, a pre-test to get

around the alternative hypothesis of spurlous level combinations.

In contrast with previous studies, although thg model looks at first
sight similar 1n form to a traditional *hnrestricted VAR in.
differences, it 1s distinct in kind. One major difference is that
the VAR-ECM is an open multivariate system rather than a closed one
because the equilibrium error is included as an exogenous variable,
along with the constant term, to let in potential information
contained in the long-run solutlion of the process. Another is that
the VAR-ECM is effectively nonlinear rather than linear in « because .
w is unknown in the composite long-run parameter matrix and must
Zherefore be estimated simultaneously with ‘unscrambled’ o as well

as with the other autoregressive coefficlients.

4.2.2 A Further Useful Modification of the Model with the
Possibility of Both Deterministic and Stochastic

Nonstationarities

We now consider augmentation of the basic model to incorporate

deterministic features via
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p-1
— * -—
VY, =C + ¥D +J§14jvxt_J A (1)xt_P +u,, (4.11)

t=1, ..., T.

Here D contains, except for a constant, any deterministic
components [e.g., a linear trend (when Egt=§t) or a quadratic trend,
a regime shift, a seasonal, or other dummies] that are exogenous to
the VAR system under consideration, to ensure that the disturbances
u, are as close to being white noise as possible. We note that even
if the nonstationary 1influence of deterministic trends is
straightforwardly allowed for, allowance should still be made for
the possibility of stochastic trends in the internal dynamics; i.e.
some roots ln the characteristic polynomial lie in the neighbourhood
of unity. Indeed, the more comprehensive is the model, the greater
i1s the internal consistency with which an introduction of exogenous
changes in level or trend may strengthen model-based predictions

across shifts In policy regimes [Wallis (1989), p.32].

The combined version in (4.11) with ¥D, =8t incorporates two
competing sources of trend: a deterministic trend in mean; and a
stochastic trend in covariances. Six main specializations of (4.11)

can be categorizéd in terms of the trend specification imposed on

the data, as given in Table 4.1.

Table 4.1: Classification of various cases involved
in the common model (4.16)

;\§:_ r=k ‘ r=0 0<r<K

A stati A difference- A statlionary VAR-ECM
5=0 VA; atlionary stationary (DS) [process with no
= process VAR process |trend in mean

i tatd A difference~ and|A stationary VAR-ECM
| 320 A trenﬂ;s atlonary trend-stationary |process about a
= | (TS) VAR process (DTS) VAR process|trend in mean

'f=rk[hb(1)] is the number of cointegrated linear combinations.

The case for including components, such as trends or shifts in the
mean. or: in the -covarlances or specific seasonals, by polynomial’
regression, will largely depend on an initial analysis of both the
normaliZed &nd non-normalized variables in each equation. The
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analysis of the former may indicate which of the movements in the
normalized variable are accounted for by the non-normalized
variables, while the analysis of the latter may indicate what
properties a potential non-normalized variable has in common with
the variable being forecast. A minimum condition needed for an
acceptable model is that a simulation of the right-hand side should
be able to reflect the salient characteristics appearing in the left
hand side variable. The inclusion of a dummy or seasonal explanatory
variable therefore opens up the possibility that trend or seasonal
variations in the normalized variable are capable of being
explained, along with other kinds of variations, by the variations

in the regressors so obtained [cf. Harvey (1992), p.390].

In reality, the danger of over-sophlisticating a nonstationary
stochastic process may be avoided by the addition of a trend
component to all equations and letting the data determine whether or
not it is needed. However, 1in so doing, care has to be exercised in

evaluating the sensitivity of inference based on VARs with
potentlally different trend assumptions, as the discriminatory power
of the tests used in ldentifying trends in economic time series is
limited. The modification of the critical values in joint hypothésis
testing where conventional asymptotics apply may be necessary or

inevitable in many empirical investigations. See, for example,

Ohanian (1988, 1990).
§4.3 Error-Learning, Parameter Constancy and the Lucas Critique

Usuaily.' the forecasts made by a statistically well-specified
VAR-ECM formulation on the basis of the available information are
adaptive, or error-learning. By adaptive we mean that the prediction
of the future value of variables is revised only mechanically by
some flxed proportion of the extent to which expectations are not
realiﬁédzzih the current period. Such an adJustmeht created 1n'
respbﬁéé>to'SYStemat1c past errors can improve forecast accuracy,
but also reflects the problem that the model has not extracted all

the useful information in the historical data, leaving scope for

90



further development.

The hypothesis by which predictions are made without systematic
mistakes is that of rational expectations formed on the basis of all
information available to agents about future events. The rational
expectations hypothesis implies a number of testable restrictions on
the parameters, but tests of such (overidentifying) restrictions are
actually difficult to operate. As Artis (1988, pp.5-6) has stated:

testing the rationality of the forecasts involves
assessing the contributions of ‘innovations’ in the
exogenous variables. ... it is less easy to do this
for fiscal policy and appears not to be feasible for

monetary policy.
While accepting the expectations variant of the Lucas (1976a)
critique, Sims challenges rational expectations econometrics even
further by casting doubt on the validity of supposed a priori
knowledge in achieving acceptable identifying restrictions in
structural models. He writes (1980a, p.7):

It is my view, however, that rational expectations is
more deeply subversive of identification than has yet
been recognised.

He continues:

In the presence of expectations, it turns out that
the crutch of a priori knowledge of leg lengths is
indispensable, even when we have distinct strictly
exogenous variables shifting supply and demand

schedules.
Indeed, the in-built assumption of expectations implies that agents
know the model, but this may be untrue for many agents. It would
therefore be more pragmatic to find a compromise operational method
between the merely error-learning and the fully rational. The

explicitly Bayesian vector autoregressive (BVAR) forecasting.

procedute is one way of meeting thls requirement.

Moredvqr; the key assumption underlying the VAR-ECM technique is, as
ﬁeﬁtiagégiearlier, parameter constancy at the cost of mechanically
introducing. - error-correction feedbacks and, possibly, dummy
varlabi.sr to. equations. Nevertheless, this 1is still a strong.
assumption that may not be ‘acceptable in the light of the Lucas
critiqdé‘}ffhe Lucas critique from the perspective of rational
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expectations with competitive equilibrium models, in which all
markets are assumed to clear immediately, provides a reminder of the
inherent 1limitations of macroeconomic models, whose behavioural
parameters would not remain invariant, but would be allowed to vary
over time. In addition, not only are the values of all the
coefficients in the system subject to the influence of alternative
government policies but so are the interdependencies and degree of
instability of these coefficients. Hence, parameter non-constancy is
a problem, not easily overcome, though the likely force of the Lucas

critique is essentially an empirical question.

One viable method of handling parameter non-constancies in models
where there are stochastic trends is the Bayesian approach to
inference. Bayesian analysis has two advantages. One is that it can
formally integrate order selection and hypothesis testing in a
cointegrated Gaussian VAR to produce a joint coherent model
selection {(or model discrimination) and prediction procedure. The
other is that, 1f properly formulated, it can represent uncertainty
about estimation results in ways not available with the classical
approach. As such, it may yleld good performance in VARs with some

unit roots and some cointegration.

Furthermore, the exlstence of r lndependent cointegrating relations
reduces the number of parameters in the impact matrix, Ap(l) from
1( to Kr+(K-r)r, or (the number) of parameters in the multivariate
cointegration system, (3.11), from K+k%p to K+Kr+(K-r)r+K>(p-1).°
However, VAR-ECMs, fhough behaving quite differently from UVARs,
have not fundamentally overcome the central forecasting issue of
overparameterization  that the larger the model, the more the

The expression means that among the K rows/columns of the Ap (1)

matrlx, only r rows/columns are linearly independent and the rest
(K-r) Tows/columns are each certain linear combination of these r

independent .rows/columns. Consequently, the space spanned by .the
columns of « (termed the cointegration space sp(«)) is the row space

of Ap(i), and the space spanned by the columns of w (called the
adJustment _space spU} is the column space of A (1). It also means.

that K+Kr+(K-r)r+k2(p-1)-[K+K?pl=-(K-r)%<0, for D<r<k. Accordingly,
the mposition of the cointegrating restrictions on the parameters
of the meodel ‘could save on the number of parameters to be estimated.
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insignificant parameters have to be estimated, and thus the poorer
estimates and forecasts will result. This problem can be addressed
by the use of Bayesian methods with a proper informative prior
specified for the VAR parameters. Apart from economizing on the
dimension of the parameter space, BVARs are also likely to deliver
better multi-period forecasts associated with the best setting of

the hyperparameters.

§4.4 Conclusion

This chapter explores the estimation of a VAR containing
nonstationary varlables. At one time, it was believed that
stochastic trends of nonstationary variables used in a regression
analysis could be removed by differencing. The resulting stationary
series could be estimated using traditional techniques. However, the
conventional wisdom of differencing all nonstationary variables in a
multivariate context was 1inappropriate. Recent development of
time-series analysls reveals that there is much potential, in a
statistical sense, ‘for taking 1into account the hidden common
stochastic trends, i.e. cointegration. In this context, studieé of
cointegrated multivariate time series have proved very useful in
system modelling and forecasting [for Iinstance, Boswijk (1995), .
Engle et al. (1993), Ericsson (1995), Gall (1992), Wickens (1996),
Séderlind & Vredin (1996), and Urbain (1993, 1995)].

When the considered data series are small and nonstationary, another
important  undertaking is the development of a formal and flexible
BVAR model ‘embodying stochastic prior coefficient restrictions.
Nonetheleéss, there seems to be no one generally acceptable path to a
good model. The avallable BVAR and EC alternatives each have their
supporters and critics, and are subject to controversies [Granger
(ed) (1991), Chapter 1]. It may be that the two models have
complementary, ' rather 'than competing roles. Hence, -they might be
combined ‘to. form a ‘more general BVAR-EC model, thereby improving
forecast accuracy. This 1s potentlally of practical importance, and
will ‘be ‘constdered ‘in: the following chapters.
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CHAPTER 5

NONSTATIONARY BAYESIAN VECTOR AUTOREGRESSIONS (BVARs)

e e T———— —— ——— it S Y,

§5.1 Introduction

An attractive feature of the Bayesian probabilistic approach is
that, apart from taking parameter uncertainty into account,' it

provides us with a coherent procedure in which prior information can
be formally expressed and blended with sample data. The passage, via
Bayes’ theorem, from the combination of prior and sample information
to the posterior probability density function (pdf) is itself part
of a learning and discovering process. The prior distribution, being
a component of posterior pdf, will be assumed a multivariate normal

for the coefficients of the vector autoregression. The Gaussian
likelihood, being another component, will be similar in form to the
posterior odds when the sample is highly informative about the
coefficients. In a linear VAR with normal disturbances, the Gaussianl
likelihood, holding fixed the covariance matrix of the disturbances
and' the - inltial observatlons, 1s proportional to a normal pdf.

Hence, the posterior distribution, which is Just the 1likelihood
function weighted by the prior pdf, will be asymptotically normally
distributed even when the true process has a unit root. This is

especially useful in our practical empirical research, as it allows
us to make exact -inference, conditional on initial observations,

relatively easlly. Moreover, thls procedure can be construed as

formaiizing a coherent methodological framework for forecasters to
document, discuss and exchange thelr bellefs and, thereby, can help

make macroeconomic forecasting more of a science and less of an art.

In this chapter, specification of finite BVAR models with both prior
and ' cointegration restrictions 1s provided. Estimation of such
models, . especially for forecasting with the help of the Kalman
Filter: estiiation method, 1s also described. The final section is
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devoted to multi-step model-based forecasts. These considerations

are applied in the forthcoming chapters.
§5.2 Specification of a Finite ‘Open’ BVAR Model

For simplicity, we confine ourselves here to the determination of
prior and cointegration restrictions in a Bayesian specification
framework. It is presumed that a pre-test of the number of lags and
the number of variables has been done in an initial specification
search as before. To this end, a sequential testing procedure,

consisting of four steps, ls carried out as follows.

(a) As a prerequisite, the tests for the order of integration or the
number of unit roots of all the series appearing in the model must
first be Implemented singly with the ald of the augmented
Dickey-Fuller (ADF) regression.

(b) For the given orders, the tests for the presence and number of
cointegration relationships can then be executed on the basis of two
popular test strategies. One 1is the residual-based ADF method-
proposed by Engle and Granger (1987) and the other 1is the
system-based Full Information Maximum Likelihood (FIML) approach
advanced by Johansen (1988, 1991). See also Johansen and Juselius
(1990, 1992, 1994). These have asymptotically equivalent properties

under certain conditions.

(e) For a given value of r (the dimension of the cointegration
space), the estimates of the parameters of the CVs, used 1in
estimating a multivariate dynamic model, can be performed via the

use of the same two procedures.

(d) Two alternative types of joint prior structures in the style of .
Litterman can be constructed, compared and contrasted for a closed
BgﬁR model in levels (with all the variables assumed to be jointly
eﬁﬁogenous), and an open BVAR-EC model (with exogenous error-

correction feedbacks).
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Once cointegrating and prior restrictions have been determined
sequentially for model specification, it is possible to estimate the
model with the former placed on the long-run matrix, and the latter

on the other parameters of the system discussed in section 5.3.
5.2.1 Determination of Cointegration Restrictions

In the econometrics literature, it is not assumed that cointegrating
relationships are known a priori. Rather, the testing of the
hypothesis of cointegration consists of two parts: tests for I(1) of
the individual series; and if this is satisfied, testing for I(0) of

a linear combination. These will be considered shortly.

5.2.1a Testing for the Order of Integration

The first step in testing for cointegration amongst the variables of
interest is to determine the order of integration of the individual

time series. Various statistical tests of unit roots are now

available, but considering that many (perhaps most) macroeconomic
data appear to be Iintegrated of order one, we will concentrate

explicitly on a simple, scalar version of the OLS regression test

for a single unit root.

The simplest test for the hypothesis of a unit root in each
component series, say th, J=1,...,K, is the test that a regression
of th on YJ,t-l ylelds a coefficient of unity. Such tests, based
mainly on variants of an AR(1) model (with serially uncorrelated
error terms), have been pioneered and modified by Fuller (1976) and
Dickey and Fuller (1979, 1981) to an AR(m) scheme that is
asymptotically valid in the presence of serial correlation. The
generalised specifications with either an intercept or an intercept

and a time trend can be given by

o ' m
. (5.1a)
Wit =Pso * Py1Y¥y ¢-1 +1§17J1WJ,t-i MRSTS a
and u
g . (5.1b)
T T Pt Py ey Ot P R TY ey G OO

96



respectively. These two modified regressions are often called
augmented Dickey-Fuller (ADF) tests, which would have exactly the
same asymptotic distributions as the ordinary Dickey-Fuller (DF)
statistics, if the autocorrelations in VYJt were fully accounted for
by the specified m-lag univariate AR processes. Three points should
be made concerning the models (5.1a) and (5.1b) that are used to

construct the ADF test statistics.1
(1) The sensitivity of the asymptotic distributions

As regards statistical inference, one might expect that a unit root
test could be accomplished simply by using the classical t-ratio
attached to 331 on Yy i, to investigate the significance of Y, ,
after OLS estimation of either (5.1a) or (5.1b), since p.1=0 under
the null hypothesis of a unit root.2 However, thisJ test is
complicated when the data are actually generated by a nonstationary
process. This is because the conventional asymptotic tests cannot be
applled to some or all of the parameter estimates, even in large
samples. The OLS estimate SJI must be normalized by a factor T
instead of Tl/2 and the corresponding cumulative distributions’for
T-norming of sjl must be simulated numerically. Moreover, it turns
out that the 1limiting distributions of the test statistics under the.
null hypothesis are especlally sensitive to the values of nuisance
parameters in both generalisations and, therefore, must be
considered separately if a valid test of the unit root hypothesis is

to be carried out.

To clarify the effects of differing nuisance parameters on the.
asymptotic behaviour of these two 1important generalisations,
consider ADF regression (5.1a) without a time trend first. Two cases

are commonly encountered under the unit root hypothesis.

1For a more comprehensive study of univariate unit root testing see,
among others, Davidson & Mackinnon (1993), Chapter 20, and Godfrey
(ed) (1992), Chapter 1.

2It is important to bear in mind that, iIn most cases, the published

critical values for these statistics are lower-tail ones, since the
alternative of Iinterest is almost always that the process is

stationary, not that.it is explosive.
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Case (a): if pJO=0’ i.e. there is no drift in the process, the
appropriate tables of the adjusted critical values that permit the
application of t tests to the coefficient on Yj,t—l are
characterised by Monte Carlo simulations either in Fuller (1976,

Table 8.5.2) or in Mackinnon (1990, Table 1).

Case (b): if pjo$0, i.e. there is a nonzero drift in the process,
t-ratio regression test for pJ1=0 appears to converge to the

standard normal N(0,1) distribution asymptotically [see Pagan &
Wickens (1989), pp.968-91.

Now consider such effects in the second, ADF regression (5.1b) with
a time trend. In this situation, there are also two cases of special

interest under the null hypothesis being tested:

Case (a): |if pJ2=O, whatever the values of pjo, the asymptotic

distributions of t(pjl) and F(pjl’pjz) are Ilnvariant over all values
of pJO’ Reference to the DF distributions for t and F statistics,

reported only for pJ0=O, should be made to achieve a correct test
for the unit root null [see Fuller (1976) and Dickey & Fuller
(1981)]1. Whether pJo is zero or nonzero will only affect the
limiting distribution of pJZ: when pJ0=O, we use Table III in Dickey
and Fuller (1981), whereas, when pJ0¢O, we use the top panel of
Table 4 in Nankervis and Savin (1987).

Case (b): if pJ2$0, whatever the values of Pi0’ the conventional t
and F statistics are found to be asymptotically valid, i.e. they
will have the usual asymptotic normal and chi-squared distributions,
respectively. See Nankervis and Savin (1987), the bottom panel of

Table 1.

The fact that the distribution of t(pjl) under the null is nonnormal
in (5.1a) when pJ0=O or in (5.1b) when pJ2=0 is primarily due to the
mean, which is significantly negative. As pJO and/or pJ2 increases
in absolute value or, equivalently, as oc goes to zero, the mean of
the distribution shifts towards =zero and the shape of the
distribution becomes approximately symmetric. See Davidson and
Mackinnon (1993), and Nankervis and Savin (1987), for details.
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(2) The determination of the lag length

The main reason of expending the regressor set by including m
additional lagged first differences is to handle serial correlation
of unknown form in the errors. However, including too many lags
reduces the power of the test to reject the null of a unit root,
since the increased number of lags necessitates the estimation of
additional parameters and a loss of degrees of freedom. On the other
hand, too few lags will not appropriately capture the actual error

process, so that pJl and its standard error will not be well

estimated [see Enders (1996), p.90].

In general, the value of desired truncation lag m should grow with T
at a rate proportional to Tl/3 that allows for an adequate AR
approximation of general autocorrelation. In practice, one approach
1s to start with a relatively long lag length and pare down the
model by the usual significance tests, provided the true lag length
is covered in the initial choice. A practical rate for selecting
values of m 1is to ensure that the regression residuals éjt’

J=1,...,K, are empirical white noise.

(3) The inclusion of a time trend

The inclusion of a linear time trend in regression models 1ike
(5.1b) 1is 1important because trend stationarity of nonstationary
variables 1s sometimes regarded as a plausible alternative to a
random walk. Usually, a Joint significance test for the composite
null HO: pjlspJ2=0 is closely related to the problem of testing for
a unit root against a deterministic trend and, therefore, can be
used to discriminate between the difference-stationary (DS) and’
trend-stationary (TS) processes. If pJ1=pJ2=O, we have what iIs known
as the DS process. In this case, 1t 1s preferable to work on first
differences, as firsf-differenclng will yield stationary series. On
the other hand, 1if pJ1<0 and pJ2¢O, we have the TS process. In this

case, it 1s desirable to work on levels, as detrending will be

enough to make the series stationary.

In fact, if the order of magnitude of the dependent variable Y g 18
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to be the same both under the null hypothesis of a unit root and
under the alternative of trend-stationarity, it is necessary that
the test regression should include an unconstrained linear time
trend with a coefficient that is zero (pJ2=0) under the null (pJ1=O)
and nonzero (pjzto) under the alternative (pj1<0). For further
details see Davidson and Mackinnon (1993, pp.709-10).

In any such situation, the standard regularity conditions do not
hold, but one can still perform a t-test or an F-test provided the
right critical values are used. Although the ADF tests are widely
used, their discriminatory power can be quite limited, as a failure
to reject the hypothesis of a unit root merely provides weak
evidence that the variables are I(1). As West (1987) argues, the use
of test regression (5.1a) (without a time trend) will be
inconsistent if the true data process is stationary about a trend.
By contrast, it has been shown by Perron (1989) that the use of test
regression (5.1b) (with a time trend) may still tend to lack power
if the true process is stationary about breaking levels or trends.
Also, the danger with the formulation of model (5.1b) should be
clear, as the forecasts made on the basis of an inappropriate
deterministic trend ‘may be very misleading. See, for a detailed

discussion, Harvey (1992), Chapter 6.

5.2.1b Testing for the Presence and Rank of Cointegration

When we are satisfied that the time series are individually I(1),
the next key step for those integrated variables is to detect the
eventual presence of cointegration and to set the value of
cointegrating rank, r, from available past observations. There are
two main techniques involved in testing for cointegration: Engle and
Granger's special ADF test (for r=1), and Johansen’s ML procedure
(for 0<r<K). For comparative purposes, both approaches will be
briefly examined for potentially cointegrated variables in a

multivariate context.
(1) Engle and Granger’s augmented Dickey-Fuller (ADF) test
The test is for whether there exists a cointegration relation, g’Xt
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=“1Y1t+"'+aKYKt’ among the chosen set of I(1) variables. Consider a
static OLS regression of one variable, say Yl’ arbitrarily
normalized to have a unit coefficient upon the other variables

Ylt = nzyzt + ... + nKYKt + elt, t = 1, e ry T, (5-2)

where ni=-a1/h1, a1¢0. The variables are then cointegrated in the
terminology of Engle and Granger (1987, pp.260-4) if, and only if,
€t is stationary or I(0). This single-equation regression will be
called the cointegrating regression as the CV can be estimated

efficiently without concern over the dynamics.

Specifically, Engle and Granger’s suggested ADF statistic, sometimes
called the augmented Engle-Granger test or the AEG test, can be
performed in the following manner. First construct the cointegration
residual elt from (5.2) by least squares, and then test its

stationarity by using unit root tests applied to élt

A A
Ve =PE; gt

e~ m

A
7V 4o Y Ve

i=1

where again s 1s selected to be sufficiently large to ensure that
the residuals Olt are serlally uncorrelated. Here, the assumption of
no cointegration, or spurious regression, is taken as the null
hypothesis in the residual-based cointegration tests, mainly because
it 1s consistent with the null of a unit root in the OLS residuals
(elt) of the cointegration regression. The pseudo t-ratio for p=0
versus p<0 thus corresponds to the AEG test for the null of
noncointegration versus the alternative of cointegration. In this
sense, a one-sided statistic that is significantly negative in lérge

samples would glve rise to a rejection of the null of no

cointegration.

If cointegration does exist, the residual élt saved from the
cointegration regression can then be fed as an additional regressor
into a full dynamic error-correction system at each period.

Otherﬁlse.’ﬂthe model should be built on differences only. In
cointegration tests, the required critical values for the AEG test

are provided by MacKinnon (1990), using response surface estimation,
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and differ from the critical values developed and used in tests for

unit roots.
(2) Johansen’s log-likelihood ratio (LR) test

In order to see how the empirical rank test proceeds for a model
with cointegration rank r, O0<r<K, consider a K-dimensional,
cointegrated Gaussian VAR(p) process as in (4.5), perhaps with
trend.3 This model will be further reparameterised as in (4.9) to
make it feasible that a number of potentially interesting economic
hypotheses can be tested, i.e.:
p-1,

VY, = - =

Y, o) +J§15JVXt_J Ap(l)xt_p + 4. t 1, ..., T.
The cointegration constraint concerning ghe deficient rank of the
long-run equilibrium matrix Ap(l)(=IK-z Ai)' namely r, can be

written as 1=1

H(r): rk[Ap(l)] =r or Ap(l) = wa'. (5.3)

Here a and w are, as defined previously, Kxr cointegrating and

loading matrices of full column rank r.

Under the hypothesis of cointegration, the Johansen-type log-
likelihood ratio (LR) test statistic begins by running two auxiliary
OLS regressions, with an intercept term included '
p-1
VY =G * L To1™e-y * Bop

and
1

p-
Xt-p' gp *1§1§p1‘7¥t-1 + ﬁpt'

Formulating the KxK product moment matrices of the estimation

residuals

aFor ease of discussion, we exclude a linear time trend from both
the data generating process and the test formulation considered
here. Inference on the presence of a deterministic trend can be
conducted as pointed out in Johansen (1992) and Johansen & Juselius

(1990, 1992).
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the LR test of the null of there being at most r CVs, or

equivalently K-r roots at, or close to, zero, is given by

K
Aglr, K) = -TY In(1 - Ai), (5.4)
i=r+1

where K is small relative to T, and ir+1="'=XK are the K-r smallest

ordered elgenvalues of the determinantal equation

A A A l\—lA -
38 - 8 080080p! = O (5.5)

Now suppose we want to test a specific, more restricted
cointegration rank r=r, agalnst a larger, less restricted rank of

cointegration, say r=r, or r=r0+1, in a sequential manner. In other

words, we wish to test

Ho: r=r, against Ha: T, <r T = K,
and
Ho: r=r, against Ha: r=r, + 1.

From the colntegration LR test of (5.4), Johansen’s (1988, 1991)
trace statistic for testing H(ro) against H(rl) is then given by

K K
A, (r,, r,) = T[— In(1 - A,) + ¥ In(1 - A ]
tr 0 1 iEr +f 1) i=r +$ 1)
- 0 1
= -1 ghin(1 - A (5.6)
1=r0+1

and Johansen’'s (1989) maximum eigenvalue statistic for testing H(ro)

against H(ro+1) is now given by

= - - A . 7
AraxTor To*l) = -Tin(1 Ar0+1) (5.7)

Both tests have nonstandard limit distributions which turn out to

depend on Just one parameter, K-r, and must be evaluated

numerically. Certain asymptotic critical values for these two
statistics have been tabulated by simulation in Johansen and
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Juselius (1990) (K-r=1,...,5); these tables have been extended
(K-r=1,...,10) by Osterwald-Lenum (1992). In addition, the Amax test
is directly comparable to Engle and Granger’s residual-based ADF

test in the case of r=1. This test is used in the empirical studies.

By employment of Johansen’s Amax test, the number of CVs can be
determined using a series of log-likelihood ratio test statistics.
In such a sequence, one way to proceed is to start with the null of
no cointegration and work up. That is, should the null hypothesis
that r=0 be rejected, we may then test the hypothesis that there is
at most one CV (rs1), and so forth until the null hypothesis fails

to be rejected for the first time. The test results provide evidence

in favour of cointegration only in the case where 0<r<X.

In practical applications, there are three points to emphasize.
Firstly, critical values of the asymptotic distributions of the LR
statistics will vary when the system contains no constant, Just a
constant, and both a constant and a time trend. Secondly, the small
sample critical values of the test statistics may differ slightly
from the asymptotlic critical values. In such cases, we should
replace T by T-(Kp+l) in the above formula to adjust the test value
in a small sample case [Reinsel & Ahn (1988)]. Finally, there seems
to be a tendency to overestimate r when the true value is low and

the costs of incorrectly specifying r are higher for overestimates

[see Brandner & Kunst (1990)].
5.2.1c Estimation of Cointegrating Vector(s)

As a continuation, this sectlon aims to derive the appropriate
values of important CV(s) for a multivariate cointegrated system
with independent Gaussian errors. For this purpose, the same two
methods mentioned in the foregoing will be used and their relevant
asymptotic properties will then be compared, given that the rank of"

the cointegration space, r, is known.
(1) When r=1
The estimates of the K free elements of the unique CV can be readily
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obtained from equation (5.2) by OLS. This in turn motivates the
‘two-stage estimator’ proposed for the hypothesis of cointegration

and its closely related ECM representation. That is, the estimator

A - s ’ -1
1=Y0Y2) ¥ (5.8)
is used for B=("2"' .,nK) in the first stage, and the remaining
parameters are estimated conditionally on the estimator §'=(1,-ﬁ) of
g’=(a1,....aK) in the second. Here
Y11 Y21 e YKl
Y1y = and = Y5y = :
YlT Y2T - YKT

Stock (1987) has shown that when series are cointegrated, the OLS

estimator ﬁ is superconsistent.4 More precisely, we have

plim '3 - m) =0 for all &0.

The proposition implies that ﬁ approaches the true value n at a

faster rate proportional to T"1 than would be so with standard
asymptotics, but ﬁ is consistent with finite-sample bias. ‘

I1f the disturbances €,, Were actually observable, the unit root test
statistics would have the same asymptotic distributions as the ones
discussed previously. However, in almost all cases, elt will not be
observed and will therefore have to be estimated using OLS. The main
reason that the asymptotlic distributions of conventional unit root
tests cannot be used in the present residual-based cointegration
tests 1is that, if the null of noncointegration is true, the CV a
will not be identified and the disturbances €44 will have
theoretically infinite variance. Heuristically, OLS will seek the
vector to minimize the residual variance and is very likely to make
the estimated residuals stétionary. This implies that the ordinary
unit root test statistics will reject the null too often if o must
be estimated. To avoid this possibility, the related critical values
have to Be ralsed accordingly. :

4Even 90, standard inference procedures still do not apply.
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Although conventional regression estimates may be of considerable
importance in applied research, many objections have been raised as
to the adequacy of this method in the light of substantial small
sample biases. The validity of its underlying assumptions has also
been questioned. Not only is the number of CVs assumed to be unique
before estimation, but the element of CV on arbitrary normalization
is also known to be nonzero ahead of time. These are strong
assumptions which may be somewhat unrealistic, especially when there
are more than two I(1) varlables under consideration. The regression
estimator, however, provides no framework for addressing these
issues. Nor does the estimator have well defined limiting
distributions and, as a result, testing for cointegration is not a

straightforward procedure [cf. Hall (1989), p.213].

It, therefore, appears that the maximum likelihood (ML) estimation
procedure put forward by Johansen (1988, 1991) and Johansen and
Juselius (1990, 1992, 1994) may be more satisfactory. It relaxes the
assumption that the CV is unique, provides a unified framework . for
the estimation and testing of one or more cointegrating relations,
and also takes into account the error structure of the underlying

process. Therefore it may be expected to behave better than the’

traditional regression estimates.

(2) When 0<r<kK

To implement the Johansen ML procedure, we denote the K

A~ A—ln -~ .
orthonormalized elgenvectors of §p0§00§0p with respect to §pp as a
KxK matrix Q-(Ql,...,ﬁx) corresponding to the K nonincreasingly

ordered eigenvalues Xlz...zix, and normalize ¥ by ¥ §pp2=IK. All K
eigenvalues and eigenvectors are permitted to be calculated at once.

Then the ML estimators of the space spanned by a, the cointegration
space sp(a), and the space spanned by w, the adjustment space sp(w),

are given, respectively, by

= (9. ... L), (5.9a)

a. (5.9b)
pE

R>

and~‘

&>

106



The r mutually independent columns of g, i.e. the first r columns of
Q that correspond to the r largest eigenvalues, constitute a basis
of the r-dimensional cointegration space, as all possible choices of
the optimal a can be derived from such a basis. Moreover, every
single row of the impact matrix Ap(l) can be thought of as a
weighted average of the r linearly independent columns of é, while
every single column of A (1) can be regarded as a weighted average
of the r columns of @. Once a specific choice is made for a, such as
g=@£, for P a nonsingular rxr matrix, w will subsequently be
uniquely determined as 9=§E’_1. This 1is important because the
apparent problem that the regression model of (4.9) depends
nonlinearly on the parameters can be circumvented {cf. Johansen

(1988) and Davidson & Mackinnon (1993), Chapter 20].

It should perhaps be emphasised that what can be determined by the
model is only a basis of the space spanned by @, sp(g), and of the
space spanned by o, sp(g), which can be estimated superconsistently.

Yet the Kxr matrices a and w themselves are not identified by virtue
of being not unique and cannot be estimated consistently at this
stage. However, conditional on these bases, the long-run matrix
A (1) as well as the other parameters in the system (4.9) can be
estimated consistently without further identifying constraints. The
identification of the different cointegrating relations and the
associated adjustment coefficlients, on the other hand, has to be
done a posteriori by imposing linear restrictions on either the
cointegration space or the adjustment space [see Urbain (1995)]. In
this procedure, the normality of the 1innovations in (4.9) is
required to ensure asymptotically efficlent ML estimators of the Cvs

and the adjustment coefficients. The robustness of the procedure to
departures from normality is as yet unknown [see Johansen & Juselius

(1990), p.176].

When the cointegrating relations have been determined in the sense
that'several subsets of the I(1) variables tend to bunch together in
the long run, the next logical step is to seek an appropriate prior
struéture' fér the éoefficients of the multivariate cointegrated

system under sfudy.
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5.2.2 Determination of Prior Restrictions

So far, we have described the determination of the plausible
long-run restrictions on the matrix Ap(l), but the other parameters
A},
equally 1likely. This position may lead to a distortion of the

J=1,...,p-1, have no constraints imposed and would be treated as

modeller’s beliefs concerning the best forecasting model, even
though the VAR-ECM 1is estimated as 1f not subject to any
restrictions other than (5.3). Given a finite number of
observations, the bigger the model 1is, the weaker will be the data
evidence on the individual coefficients and, hence, the more
important the stochastic prlor regarding the distributions of the
coefficients. The importance of the prior in potentially improving
the precision of estimates may lead to a consideration of whether an
explicitly Bayesian procedure might produce better forecasts than
those generated by other competing approaches. The BVAR forecasting
technique has thus been developed to test thls possibility.

Here, the prior restrictions for the parameter estimates will be
specified in the Bayeslan prior mean-variance framework. Under the
Minnesota or Litterman prior, the prior distributions for all but
coefficients of the deterministic components are assumed to be
independent normal, so that they can be uniquely determined by just
two prior parameters — namely the prior means and the prior
variances. The prior covariances are always set at zero.5 Generally,
the standard Minnesota prior is implemented by specifying across all
equations the same linear form of prior distribution and placing on
the high order lags a tight =zero prior with small standard
deviations. However, the appearance of the non-zero prior standard
deviations implies that we are not sure about such a simple model,
compatible with the uncertainty that the modeller is prepared to

5In principle, it is possible and also important that such
covariances between parameters, across different equations as well.
as in the same equation, are allowed for, as they may be of value in
improving forecasts. However, this goes beyond the scope of our

present work. For a useful survey of this literature, see the recent

articles by Holden (1995), Chapter 1, Kadiyala & Karlsson (1993,

1997), Karisson & Liitkepohl (1993) and Westlund (1993). )
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allow for. Also, uncertainty of the prior standard deviation can be
formally expressed by assigning to that parameter a further prior
distribution, which is often shaped as a rectangular distribution
confined to a certain range of values and governed by a scale factor
called a prior hyperparameter. The priors placed on the
deterministic terms are supposed to be ‘flat’, or noninformative,

reflecting our complete ignorance about these coefficients.

The data sample will then be examined, using a standard Bayesian
statistical procedure, to revise each of the modeller’s best guesses
(the prior mean) in terms of the modeller’'s initial confidence (the
prior standard deviation). The larger the prior standard deviation,
the more weight will be given to the accidental patterns in the data
and vice-versa. Moreover, along with the design of prior structure,

the potential influence of estimated cointegration relations on

forecast accuracy will also be Investigated.
5.2.2a A Simple BVAR with no EC Model

Consider first a K-dimensional Gaussian VAR(p)} model of the form of

(4.5)

p
Xt =C +1§1A’1!t—1 U t=1, ..., T, (5.10a)
or
K p
Y, =C,+T LA Y . tu.; (5.10b)
Jt J pe1is1 Jn,i'n,t-1 Jt
2
~ H =1. “ ey K; t=1, c e ey To
ugy NID(O, 0JJ) J

The prior restrictions concerning the possible values of the‘

parameters Ai’ i=1,...,p, can be set up in the fashion of Litterman

(1986a, 1986c), as follows.

(1) The prior mean: a multivariate random walk process

In the standdrd Minnesota prior, the means of the prior_
distributions for all coefficients are usually set to zero, except
the first own lag in each equation, which has a prior mean of unity
by default, This prior mainly reflects the assumption that most of
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the variation in each of the variables is accounted for by own
recent lags and loosely centres about a vector random walk process

(p=1, A1=I and C=0)

K
Y, =Y +u (5.11a)

“t T St-1 7 =St
Alternatively, we may consider a vector random walk plus drift

process (p=1, AI=IK and C#Q)

Y, =C+Y +Uu,. (5.11b)

These seem to be reasonable approximations for typically behaved
macroeconomic variables that may appear to exhibit relatively smooth
random walk components. If this is so, the best forecast would be
produced essentially by a naive ‘no-change’ prediction. That is, in
the case In which the drift parameter vector C=0, future values of
the variables would differ from their current values only because of
completely unpredictable random events. The inclusion of drift (g:o)
unrestrictedly in all of the equations is simply to represent an
explicit steady-state rate or growth per period in the variables
being modelled. In practice, even for some variables whose changes
are thought to be partlally predictable, this naive forecasting
approach can be surprisingly difficult to improve upon.

Given the prior means, all that Is required is to specify their

standard deviations so as to complete the determination of the prior

distributions.

(2) The prior standard deviation

In order to construct standard deviations of the priors for the

model’s successive lag coefficlients, the estimation of a set of

auxilliary unrestricted univarlate autoregressions (ARs) is first
conducted on the basis of T observations 3
: (5.12)
Yor =yt EayYyen * o '
L ) .
ey~ NID(0, o), t=1, .., T, J=1, ..., K
The estimated standard errors QJ, J=1,...,K, of the residuals are
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saved for all variables. This is because normally the prior standard
deviations around coefficients on lags of the cross variables in
each equation of the BVAR model are not scale invariant. To adjust
for the scale variability of the actual data, the BVAR prior must be
specified with reference to the relative sizes of unexpected
movements in different series. Such movements are often reflected in
the standard errors of the residuals computed from linear

regressions of the series on several of their own past values.

The standard deviation of the distribution for each coefficient
AJk 1’ the jk-th element of Al’ in the system through use of a
general prior — which is largely the same as the symmetric — for

all j, k, 1: denoted s(J,k,1), can then be written as

s(J, k, 1) = vf(J, k)g(l)éj/é ,
Jbk=1, ..., K, 1=1, ..., p.

Here the ratio éj/#k is 1lnvolved as a rescaling factor, which
converts the cross lag standard deviations to units comparable to
those of the own lag standard deviations in equation j. The diagonal
matrix v 1s the overall tightness of the prior, which directly
controls the standérd deviation on the first own lag of .the
normalized variable of each equation. The function g(l) is the lag
pattern of (harmonic) decay, which Increasingly restricts the
influence of past values on recent ones. The function f(Jj,k) is the"
general prior type, which simultaneously governs the weights of all

off-diagonal elements relative to the weight of the diagonal element

in each row of Al'

To be more specific, we have

- VJ/l if j=k
S(J, k, 1) = { A A (5.13)
vaJkoj/lvk if j = k,
or in matrix form,
: A A A s A -
[ v,/1 vy ,0, /10, ... v, 0 /1o,
et i = ) A A ) A A
,S(J' k, 1) vaJIcJ/ﬁcl vj/l . vjijwj/}cK
: A A A A" :
i ”k"x1’k/“”1 - vaK,K-lak/lak-l vK/l ]

(KxK)
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Here, the scale factor or element v‘j or vjwjk’ J,kel1,K], in the
rows is the particular hyperparameter assigned to each of the K
variables in each of the K equations of the system individually.
According to the modeller’s prior bellefs, the parameters that
determine the prior standard deviations are frequently confined to a
certain narrow range, say 0<vj<3 and O<ka<1, and are regarded as
equally likely within the range, but highly unlikely outside it.
Again, during the modelling process, it is important to remember
that the Bayesian procedure of Litterman does not take account of
dependencies between VAR coefficients and is thus of a univariate
nature. Hence, in this analysis, whether the overall tightness (v)
and the fraction of tightness (ka) are set to too ‘large’ or
‘small’ values over the finite range will exert a direct impact on

the type of the model that one should construct. In particular,

three special cases need to be considered.

Case (a): vJ=3 and ka=1 — that is, both vJ and wJk are set to be
large values. In this case, the ‘Bayesian’ part of the BVAR will
virtually be cut out. The model will approach an UVAR model and the
data will dominate determination of the coefficients almost
completely. Hence, if the variables are believed to be closely

related, a large value for wjk is acceptable.

Case (b): v =3 and kaSO — that is, v\j is set to be a large value:

J
while w is zero. As such, the ‘Vector’ part of the BVAR will

essentié?&y be chopped off. The system will reduce to a set of K
unrestricted univariate autoregressions and the modeller’s chance of
discovering any important but unexpected historical relationships
between variables will be sharply limited. Thus, if the variables

are expected to be loosely related, a small value for ka is -

reasonable.

Case (¢): v,=0 —— ‘that is, VJ is set to be zero whatever ka’is
In this case, the system will eventually shrink to the standard

ﬁinnésota'prior means —— K independent random walks and the prior

will dictate the coefficients completely. Hence, if the variables.

are thought to be roughly unrelated random walks, a small value for

vJ is appropriate.
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These three cases represent extremes and the explicitly BVAR
forecasting model will most likely take intermediate values within
the specified ranges. Actually, in any intermediate position,
holding v\j and increasing wjk will mean that the standard deviation
of the prior will tend to be about the same for the coefficients of
each row of Al except for a scaling factor (éj/gk) that takes care
of different magnitudes of different variables. Holding vj and
lowering ka will force all the off-diagonal elements, at all lags,
towards zero. On the other hand, holding ka and increasing Vj will
tend to eliminate the effect of the prior on all coefficients,
whereas holding ka and tightening VJ will push the diagonal
elements of Al towards 1 and all the off-diagonal elements towards
zero. In all cases, the intercept terms are left unrestricted and

assigned an effectively infinite prior standard deviation.

The estimated univariate residual variance éi described above can be
replaced approximately by the j-th diagonal element 9J§(59§) of the
KxK estimated residual covarlance matrix iu of the multivariate

system (5.10a) If, and only if, the values of vJ and wJk are chosen

to be 3 and 0, respeétively.6

In searching for the most appropriate setting of the hyperparameter
values, the objective facing the forecaster is to select that set of -
the hyperparameters which allows a forecast to be made optimally.
For this, one usual but informal method for picking among plausible
values is to see how a model based on alternative hyperparameters
would have within-sample forecasts, provided that the same
regression process will continue to hold over the future period.
Various moderate welghts are tried on those aggregates which are.

6In system (5.10a), the resulting ML estimator of Zu can be

expressed as:
£ = y(lp - x (') TRy /T

1
where y=[Y,,.... ¥ ], x=[x;,....%;_;], and x;= Y,
(KxT) ((1+Kp)xT) .
xt-p+1
((1+Kp)x1)

113



believed to be important for the prediction of the own variable in
question, while the weights on others which are expected to be less
important are held low and fixed. The best setting — and thus the
best final forecasting model — would be the one that seems to lead

to the smallest average forecasting errors of the historical data.

The j-th equation of the system with the priors presented above can

thus be written as

th = 0 + 0 Il)k_l + ... 4+ 0 Zl’txp +
(w) (vajlo‘J ) (vjwjlvj/bvl)
+ 1Y + ...+ oY + ...
yt-1 J.t-
(vJ) J (vj/b) P
+ oxxyk_1+...+ OXK,t/-\p+th’
(vaJKoJ 0K) (vaJKoJ/wa)
2
th~NID(O, vJJ); 0<vJs3; 0<wjks1;
J k=1, ..., K; t=1, ..., T,

where all coefficlients are set at their prior means and their prior
standard deviations are given in parentheses. In addition, as in the
stationary case, the prior parameter covariance matrix of this

typical equation may be reformulated as a (1+Kp)x(1+Kp) diagonal
matrix; that is,

2 2
yJ = diag[ =, (vajlgj/gl) y s (vjwjléj/bgl) . e
2 2
(VJ) »orery (Vj/p) » re e
2 2
(vajxéj/gK) y e (vjwjxéj/béx) 1.

Using this reformulation, a more general form of the prior for the

system will be provided, and various problems associated with it

will be further discussed.
(3) A general expression of the prior

A general expression of the prior about the model’s mean parameter
values and their standard deviations can be given by graphical and

algebraic methodS’respectively, as illustrated below.
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(a) A graphical display

The combined effect of fixed prior means and varying prilor standard

deviations for the lag coefficients of the typical equation j is

demonstrated in the accompanying figure S.1.

Hypothetical distributions on
own lag coefficients A
JJnl T~

1st own lag A
& 25,1

' (VJ) ‘N
(2
21 (AN

2nd own lag A
g Ry5.2

(VJ/Z) i !

th own lag A N
P & %y5.p . I
(Vj/b)

Coefficient values

Hypothetical dlistributions on
cross lag coefflicients AJk 1 4.

1st cross lag Ajk |
J Y3k J/Ak g

2nd cross lag AJk
A
(vJ K J/ch)

pth cross lag A
Jk, 0 !

(vJ wJ kalj/pck) Coefficient values

Fig. 5.1 The loose random walk prior on the lag
coefficients of the typical equation J.

Fig. 5.1 shows two main kinds of normal curves attached to -the

coefficlents of the own and cross lags in a typlical equation.

no matter how the standard

With regard to the prior means,
lag

deviations change within the 1limits, the curves for all

coefficlents other than the first own lag have their highest values
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(the highest prior densities over the regions for which they are

defined) at zero. The curve for the first lag of the own variable

has its highest value at one.

With respect to the prior standard deviations, though they are each
allowed to vary in value, the curves for recent values of variables
are more likely to be broad and low than less recent ones. Also,
regardless of the scale variability of different variables, the
curves for the own lags are more likely to be broad and low than the
corresponding cross ones. Hence, the curve for the first own lag is
relatively the broadest and lowest, which means that a wide range of
possible values for the coefficient has density not much lower than

the best guess, and that even values fairly far from the best guess

are not considered to be extremely improbable.

As lag length 1 increases, the curves for further lags of variables
become progressively more peaked and concentrated around the best
guess, restricting values to some narrow ranges. This implies that
with increasing lag length the modeller becomes more confident that
a zero coefficlent will be consistent with a model that is likely to

forecast well.
(b) An algebraic description

The chosen stochastic prior information on the parameter vector QJv

can be represented by

Ly =By +yy with vy~NID(0, I, ..); (5.14)
J=1, ..., K,
where
[0 ] 0 0] c, ] CO
A A J Jo
0 0y /v 4% .Ajl,l 31,1
I Y A A g a|hu| , aftasn
N IR M B G-V PR M | P
0 : P/ : Ajip V35,0
. R A ; :
Lo o . ... .. pcx/vijKa'Ji -AJK,pJ Y 5k, pl
((1+Kp)x1) ((1+Kp)x(1+Kp)) ((1+Kp)x1) ((1+Kp)x1)
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In this representation, there is a single ‘1’ in the known column
vector £j corresponding to the first lag of the dependent variable
and a ‘0’ on the diagonal of the known diagonal matrix Bj
corresponding to the deterministic component. Therefore, the
singularity of RJ J(—ygl) (the inverse of the pr10ﬁ7 covariance
matrix) simply reflects the improper flat prior imposed.

The use of the BVAR model in levels takes account of nonstationarity
in time series by imposing a unit prior on the first own lag.
Symmetric distributions around this prior mean will inevitably allow
for systems with undesirable explosive roots however. Although we
may recognize that the standard Minnesota prior is not the best, we
can also doubt that the gain that could be achieved by abandoning
the Gaussian form for our prior would be worth the price [see, for
details, Doan et al. (1984), p.7]). Also, when data are finite and
nonstationary, it may well be preferable to impose the cointegration
restrictions together with the prior restrictions. However, in this
basic BVAR model, the information regarding cointegrating linear
combinations may be incorporated only implicitly. Therefore, when
approaching time serlies, a more sophisticated BVAR model that
explicitly brings in both prior and cointegration restrictions is

needed. A BVAR-EC model enables us to do just this.
'5.2.2b A Combined BVAR with EC Model

Consider now a cointegrated Gaussian, K-dimensional VAR(p) model

written in the error-correction version like (4.9), i.e.,

p-1 :
VY, =C+ E Al Yy~ Y p * Y with (5.15a)
Et-pg a xt-p; t=1, ..., T,
or '
57 ; 5b)
Wit C +n§11§1AJn 17, t-17 L @3, top * Uyt WItR (5.1

"Here, the use of R,R, may help avold inconvenlent algebraic

operations with the element, infinity, in v,
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~

es,t-—p= gsxt-p=n§1asnyn,t-p;

ujt~NID(0, c l1=rs=skK-1; j=1, ..., K; t=1, ..., T.

2
);
JJ
Both the prior and cointegration restrictions are explicitly imposed
onto the parameters A;, J=1,...,p-1, and Ap(l) for this systenm,
which can be used to describe, explain and forecast the statistical

varliations of the data vector.

(1) The prior mean: a multivariate white noise process

From the derivation of A;(=_IK+ZiiIAi)’ J=1,...,p-1, it can be seen
that in accordance with the random walk hypothesis for the original

VAR(p) coefficients (Ai), a prior mean of one for the first own lag
will become a prior mean of zero after these linear transforms and
all other coefficients have priors centred on zero. Moreover, the
prior pdf for all lag coefficients (A;) 1s still in the multivariate
normal form (with mean zero and standard deviations nonzero). This
is because A} are some linear combination of Ai’ all of which are
assumed independently normally distributed. This prior is consistent
not only with the random walk hypothesis for the nonstationary case
but also with the white nolse proposition for the stationary one.

However, the error-correction term 1is negatively fed back into the
syétem as an exogenous vector at full weight along with the consiant
term and the residual covariance matrix Zu 1s common to both
competing models. In this situation, if the prior means were the
true parameter values, the process would turn out to be a weighted

sum of error-correction feedbacks and a multivariate white noise

(with or without drift) process; that is,

. th‘-»- Et-p + gt, (5.16a)

or

'VX£" c - wey o * Yy (5.16b)

This -position seems to be reasonable for many macroeconomic
variables, as most of them are believed to be I(1), and thus
statiohary upon first differencing and colntegrating linear

118



combinations. If this be the case, the real driving force that sets
the system in motion must be the long-run equilibrium among the
variables being modelled. The future movements of the data should
therefore depend mainly on the useful long-run relationships, while

the short-run fluctuations are regarded as fairly uninteresting.

Given the above argument, all that remains is to specify the prior

parameter standard deviations that complete the determination of the

prior distributions.

{(2) The prior standard deviation

In order to facilitate the determination of the standard deviations
for the model’s lag coefficients, we start, as before, with the

estimation of a set of auxiliary AR-EC equations

f Rt ¥
VYJ + Qjet- = z a j t-1 * ATE (5.17)
+ +2 _ . -
et NID(O, oJ), t=1, ..., T; Jj=1, ..., K,
and store the estimated standard errors 9;, J=1,...,K, of the
residuals for all differenced series. Here, an estimated
error-correction term éjgt-p is included in the LHS with ﬁj, the

J-th row vector of Q, and gt-p(=g’xt-p)’ the whole cointegration
errors, since a pure AR representation on first differences is
inappropriate in the presence of cointegration. However, there seems
to be no reason why the residual standard errors measured above‘
éhould be different from those obtained in (5.12).8 Therefore, once
we get the estimated residual standard errors (QJ) in levels, they
can be used in either case. The relative scales of these residual

standard errors will then be considered for each lag of each cross

8As the univariate AR on (5.12) (or AR-EC on (5.17)) is equivalent"
to the multivariate VAR on (5.10a) (or VAR-EC on (5.15a)) with

shrunken diagonal parameter matrices A, (or -J) and I is common to

both models, the estimated residual standard errors obtained either
from (5.12) in levels or from (5.17) in first differences should be

treated as exactly the same; 1i.e., 93!9J or e Jt%e 5t NID(O,v?)-
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variable in every equation, to make the standard deviations of

different variables comparable.

The prior standard deviations for the elements Ajl: 1 of A_I,
1=1,...,p~1, can then be formulated in a general prior type.

Specifically, we have
vj/l if j=k

s(j, k, 1) = A A
v\jwjkolj/lok if j = k,

or, in matrix form,

A A A A -

[ vl/l vlwlza'l/lvz .. vlleo-l/lo-K

: A A : A :A

S(j, k, 1) = w, 0. ./lo v,/1 v c./1
(G ko 1) = | wguyo /10y ST sy

: A A A A :
i vaKlo‘K/lo‘1 vaK,K-lc'K/lo‘K—l vK/l ]

(KxK)

Here again the overall tlghtness of the prior vJ and its various
fractions wjk are allowed to take on any value in some particular
intervals, say 0<vJ<3 and O<ka<1, with uniform densities. In a-
search for values for the best setting of the hyperparameters, a
similar method could be applied using an appropriate selection
criterion (e.g. Theil-U statistic). The setting with the lowest
average Theil-U values, and thus the best simulated out-of-sample
forecasts within the sample period, would then be selected as the
‘best’'. To 1illustrate a composite effect of the choice of these -
prior standard deviation parameters and the hypothesis of Ap(l)
having a reduced rank r, 0<r<K, the contents of Table 5.1 may be

considered.
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¥ indicates various possible BVAR and BVAR-EC

121

Table 5.1: The joint effect of the selection of the
parameters vj, ka and r on the cointegrated
Gaussian VAR(p) process

r=K r=0 0<r<K
UVAR on
Y=l UYAsels first VAR-ECM
on le differences
K unrestricted
W =0 K :2;3:ﬁ;;::ed univariate Unrestricted
Jk AR processes AR processes AR-EC
=3 og levels on first processes
V= differences
BVAR on levels| °/an on Tirstf  py.p poy
erences
with data with data with data
O<w,, <1® dependent dependent
Jk dependent
diagonal diagonal diagonal +
elements of Al elements of AI elements of Al
K independent| K independent EClizedE?:ks
vJ= random walk white noise P noYse e
processes processes processes
BVAR on first :
165:?: oten | differences | BVAR-ECM with
(regardless with (ignoring
£ tge scale (irrespective the scale
0 fability) | of the scale | variability)
Va’ba : thy variability) about the
W1 abou e about the same prior
J same prlor
t g d same prior standard
d slagiar standard deviation on
ev ah on on deviation on each row +
1 eact ro: A each row + elements of Al
°<VJ<3 elements of 4jlelements of A
K restricted
0 K r:stric:ed univariate Restricted
¥ik© A;n varia es AR processes AR-EC
pioceise on first processes
on levels differences
BVAR
o<w , <1s| BYAR le on first BVAR-ECM
Jk on leve differences
models.




In the BVAR-EC system studied here, the estimated error-correction
term is often rather insensitive to the precise form of the prior
structure adopted. The residual variance 9;2 (or @jz) can be
substituted by the j-th diagonal element of Zu of the system (5.15a)

if, and only if, the values of v, and wjk are taken to be 3 and O,

J

respectively.

A typical equation of the system with both the prior and

cointegration restrictions specified can thus be expressed as

A T R T T N Mt t oo
() (vaJlo'J i (vjwjloj/(p 1)@1)
+0 Vyj,t-l + ... 4 0 VYj,t—p+1 + ..
(vj) (vj/(p—l))
oA W poqg * et 2 VYK’tXp+1
(VJWJKUJ ¢K) (vaJKcJ/(p—l)vK)
SOy pp T T Oy pp * Uy
Uy ~N1D(0, cJJ) 0<v s3;  O<w, s1;
jo k=1, ..., K t=1, ..., T

Here all coefficients, except the adjustment (error-correction)
parameters, are set at their prior means, and the numbers 1in
parentheses are their prior standard deviations. The r
error-correction terms in each equation are now supposed known'and
unconstrained in a Bayeslan specification framework, and thus

included at full welght along with the constant term.

9In system (5.15a), the resulting ML estimator of zu can be written
as:

E o= (v + A (1)x_p)(1 - Vg’(VgV;’)-IVK)(Vx + Ay )’ /T,

where Vg:[vxl,.. VYT] ! ‘l-p “’XT-p]’ V§=[Vx ' o -T 1] and
(KxT) (KxT) ((1+K(p-1))xT)
Vx, = 1
ft | th
th—p+z

((1+K(p-1))x1)
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Also, as 1s traditional, the available prior information on the

+ + + t
ar t t f int =
p *ame ef vector o . nterest Ej (CJ’AJI,l""'Ajj,l""’Ajj,p—l""’
AjK,p—l) can be written in the form
ot 4 +
= R j ~ .
Ly =By +yy withy, NID(0, 11+K(p_1)), (5.18)
J=1, ..., K,
where
1- »
;= (0,0 ...,0, ...,0, ..., 0) ;
((1+K(p-1))x1)
L A A _ A A
BJ = diag(o,ol/bjwjlcj,...,l/bj,....(p 1)/bj,...,(p—l)oK/wajKoJ);
((1+K(p-1))x(1+K(p-1)))
* _ * + + ¥ 3
By = (Cyv Ay g oo Aygpe oo Ayype1r oo A, p-1) 5 and
((1+K(p~1))x1)
v = (v vt y eees V r s eees V ¥ vy )’
=J Jo’ "ji,1 SERRNIY! JJ,p-v’ * O JK,p-1/

((1+K(p-1))x1)

In this formulation,‘;} is a vector of zeros, 5; a diagonal matrix
with one zero on its diagonal corresponding to the constant term.
Hence, 3333' is singular here as well, reflecting the improper flat

prior on the constant term in each equation.

One important feature of this BVAR-EC model is that it allows the
two sets of restrictions — the linear prior restrictions on A;,
J=1,...,p-1, and the nonlinear cointegration restrictions on Aé(l)
— to be disentangled. Therefore, the conceptually distinct prior
and reduced rank hypothesis implied by cointegration can each be
investigated against facts. This model-building strategy may be

useful for forecasting applications.

Having dealt with the determination of the prior and cointegrafion

restrictions, we now turn to their incorporation 1in vector

autoregressions. The proposed model, computed as part of the
trial-and-error process, uses all currently available sample
evidence to revise the prior probabilities, and the optimal
shrinkage polnt estimators can thus be obtained via the use of

Thell's mixed estimation technique. The validity of the final
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forecasting model may also be judged internally by the important
post-sample predictive testing, as was done in Litterman (1986a).

§5.3 Estimation of the Prespecified BVAR Model with Both Prior
and Cointegration Restrictions

In general, the estimated values for a typical equation’s parameter
vector, say EJ (or E;), can be presented solely in terms of a
complete posterior density via Bayes’ theorem, or alternatively,
optimal point estimates through mixed estimation. For simplicity,

however, we will focus on the point estimates of the regression

coefficients using Theil’s mixed estimation procedure.

Suppose a sample series of T observations is generated by the j-th

equation of the system (5.10a). Stacking the T observations, we have
= ; =1, ..., K, .
XJ ZEJ + Y, J (5.19)
where XJ = (le, ce, YJT)’;
(Tx1) : ]
, |1 )
X= (%, ---» Xp_,)’ with X, = Y, ;
(Tx(1+Kp)) : ’
Yy, t-p+l
YK,t
L YK, t-p+1
((1+Kp)x1)
8, = (CJ’ Appar oo Agp e e A g e AJK,p) ; and
. ((1+Kp)x1)
. 2
uy = (uyy, oes uyp) -NID(O, 044I).
(Tx1)

Then, If we employ this type of sample information in conjunction:
with the prior information contained in the process (5.14)

“LJ = BJEJ + XJ§ J=1, ..., K,
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where XJ~NID(0, 11+Kp)’ and E(QJ!3)=0, the shrinkage estimator of Ej
is:
- -2 -1 -2
= [R'R, + ¢, X’X R'r. +oc,.X'Y.]. 5.20)
By = [BJB; + oy X' X] "[Ryr, ] (

Now suppose the observed data chosen is produced by the set of the

equations of the system (5.15a)

f
VZ. =V + u,; =1, ..., K, 5.21
=J xéJ 45 J ( )
_ A A A A
where VZJ = WYJl + ©51€1 1-p + wjrer,l—p
A A A A
-VYJT + wjlel,T-p + wjrer,T—
(Tx1)
i A A ’
VY, . . €1, 1-p €1, T-p
= +{ Wiy - er]
A A
.VYJTJ -cr,l-p T er,T-
(Tx1) (1xr) (rxT)
. A A ,
r'vle . A Fall (XlK Yl,l"p ...Yl’T_p
ol I M LA TR ;
’ A A
-VYJTJ &y e & YK,l—p "'YK,T—
(Tx1) (1xr) (rxK) (KxT)
’ _[1 1.
VX = (VX,, ..., 9% )’ with VX, = W, , ;
(Tx(1+K(p-1))) ’
VY1,t-p+2
VYK,t
- VYK,t—p+2 ]
((1+K(p-1))x1)
t + * t At ’; and
g = (cJ, Mg 1r o Appere o Aggge oo jK,p-l) ;
: ((1+K(p-1))x1)
2
= *~NID 0, .1 .
u, (ujl' ey uJT) ( 13 T)

(Tx1)

Then, provided that all the error-correction terms are known before
estlmaﬁion,'by combining the data above with the prior held in the
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process (5.18)

+ +_t t
r. =R, + v.; =1, ..., K,
=J 'JéJ Y5 J=1 K

* ',
where gj~NID(o, 11+K(p_1)), and E(gjzj )=0.

we obtain the mixed estimator for E; of the j-th equation

At _ -2 20
By = [R + oK 24 [R + o VX vzj]
20t 5t oyl = Loy T4
= [aJJ Ry'Ry + VX vx] lox vgj, as £y = 0. (5.22)

This estimator looks akin to the LS estimator in first differences
except for 0J§R§’R; What 1s more, like the estimator given by

(5.20), it is constructed for each of the K equations of the system
separately and thus can be easily applied.

When the coefficients of a Bayes set-up have been estimated in this
way from the avallable prior and data, the estimated process may be

used for prediction and simulation.

§5.4 Prediction of the Mixed-Estimated BVAR Model

Similar principles to the Bayeslan prediction procedure outlined in
Chapter 3 can be applied here to establish predictive densities, in
the form of a multivariate-t distribution, for both cases.. In
particular, if point predictions are desired, the optimal out-of-
sample, multi-step predictor, based on the minimization of squared
prediction error, can be derived quite simply from the shrinkage-
estimator or the mixed estimator EJ (or é}) period by period.

Suppose we wish to derive a set of point predictions for h future
values on the jJ-th varlable YJ’ say 23' which is assumed to satisfy
the same regression model generating its sample observations XJ as

in (5.19); t.e.

zj SEJ«Q.EJ; j=1, ...y K, (5.23)
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where zj = (YJ,T+1’ ce, Yj,T+h)’

(hx1)
s _ , _[1 ]
X=Xy -0 X)) with =1y ;
(hx (1+Kp)) .1’t
Y1,t-p+1
Yk, t
- YK,t—p+1 J
({(1+Kp)x1)
Bj = (cJ, Ast,r o Ajrp o Aggqe oo Agg )’ and
((1+Kp)x1)
~ - ' 2 My
Uy = (Uy aqs oo uy 1) ~NID(O, o531p) with E(u;u})=0.
(hx1)

Then, given GJJ and forecast values in X as if they were actual

observed data as the date is advanced into the future, the optimal

point predictlions of Y, over the h future periods would be

J
zJ = E(YJ) = 2
< re ~20,07-1pn, -2, :
= X[R}R, + o, JX'X] "[Rir, + o, XY ]; (5.24)
J=1, ..., K.

The assoclated covariance matrix is given by
£(F, - E(@E,) (1 - E(Z)’
=E(R8) + 3y - B ))(8, + 4, - B’
E((8, - 8;) + u;) (R(&y - By + &)’
%E[(e, - B,) (6, - B)']% + E@E)
= XYJX + cJZ

JI
= K(BJBJ + vJJ— ) X’ + ojilh (5.2?)

Suppose, on the other hand, we wish to derive predictions for YJ in
the next h periods through the alternative regression model (5.21);

1oHere,"the "hat" over the predicted value is omitted to simplify the
presentation,
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viz.

~ A~

V. =V - ... - u
1 XB Jl 1 WirEy +BJ
= vggj - (gjalh)g *up o J=1 0K (5.26)
where vxj = (vxJ T+1" ...,vzj’T+h)’
(hx1)

vk = (VX VX * with vX,= | L

K= (B -ooh Wy q) W X = v, ;

(hx(1+K(p-1))) S
VY9 t-pe2
LA
- VYK,t—p+2 J
((1+K(p-1))x1)

+t _ t + t + ,
By = (cJ, Aygar oo Bypperr o Aggge e AjK,p-l)
A (6 A )' ((1+K(p-1))x1)
w Jl’ LR | Jr »

(1xr)

g ~y 0 - A .

€= (g, ...,€!)" with g = €, T+1-p |+ 2nd
(hrx1) .
8
=i, T+h-p
(hx1)

~ ' 2 -

g = (uJ.T+1’ covv Uy pup) ~NID(O, onIh) with E(u uJ) =0.
(hx1)

Then, glven VX, OJJ' QJ and g, prior to making a forecast, the
optimal point predictions of the differenced series VYj would be

Ve, = E(VE,)

v;:(é; (_ J@Ih)e

vZ[g Jva vxX]~ [R + cjjvx Z,] - ® eI €
vZ[o Ji 3 R} + VK'VK] VK’ vgJ - Bpe1y)E: (5.27)
J=1, ..., K as ;3 = 0,

J

with the covariance matrix
E(VY, - E(WJ))(VY! E(VE,))
- E(wtosJ - 8)) + §)) (5R(e] - B) + 4
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et ~ o~
VXV.VX' + Efu.u’
@)
T f -2 2
VX R. + 0 VX X VX' + i 5.28
(BB, X)~ “55'h (5.28)

Moreover, since th=VYJt+Yj,t—1’ the optimal point predictions of h

future values for the original level series YJ can be derived

recursively from (5.27) by using the chain rule of forecasting or

backward substitution. This takes the calculated one-step-ahead

forecast as the basis for a two-step-ahead forecast and so on, until
the h-step-ahead forecast has been reached. 1 We thus have

Yy,1e1 = Wy * Yy

Yyme2 = Yy 2 T Yy e = W2 * Yy e Y Yy

h-1
YJ.T+h = VYJ,T+h + ... + VYJ,T+1 + YJ,T = Yj,T iEOVYJ Teh-1
In matrix form, we find that
-y + vt
SR} R A , 1
. "'9 » - ’
= XJT + thg[vjiaj RJ + VX'VX] VX sz (5.29)
Lh(QJOIh)E; J=1, ..., K,
4 I < )
where XJ = (YJ,T+1’ e YJ,T+h)
(hx1)
XJT = (YJ’T, ey YJ,T) H
(hx1)
'Lh = 1 0.];
1 |
(hxh)
and
viJ = (VYJ,T+1’ VYJ’T+h).,
(hx1)

with the covariance matrix given by

E(i’ E(¥}) () - E@E))

11SeePindyck & Rubinfeld (1991), Chapter 18, for further details.
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= E(_Y_JT + i,hvzJ - (gﬂ + thgj))
(¥5p + 498 - (¥,p + 4,1)))’
E(Lh(sz - Vij))(éh(vzj - sz))’
i,hE[(vzJ - vgj) (g, - vij)']z]’1
2 ]

. ooy rat, ot 2ovreovi=lr: oov, L .
(thz)[gJ gjﬂr“vx vX] (thg) +LhonIth. (5.30)

A comparison of Eq.(5.25) with Eq.(5.30) should make it clear that
only in the second case can the valid reduced-rank restrictions be
explicitly Iincorporated, along with the prior restrictions, to
improve forecast accuracy over long forecast horizons. The two kinds
of optimal point predictions (or mixed estimator forecasts) will be
calculated in turn in a multicountry context, and then analysed and

compared systematically in subsequent forecasting applications.

In addition, the hx1l mean vector 23 or i;, as well as the squared
roots of the diagonal elements of the corresponding hxh covariance
matrix (5.25) or (5.30) can be used to construct confidence
intervals at a required critical value for the h elements of zj or
z;, respectively. It is now generally recognised that I(1) variables
can only be forecast with increasingly wide confidence intervals,
whereas stationary, cointegrated linear combinations of éuch

variables have finite confidence intervals as the forecast horizon

lengthens [Clements & Hendry (1995), p.127].

§5.5 Conclusion

In this chapter, we have discussed the construction, estimation and.
prediction of both BVAR and BVAR-EC models for integrated and
cointegrated variables. Insofar as macroeconometric models forecast

the future, a traditional BVAR formulation utilizes the prior
restrictions to increase the model’'s forecasting capability for
small sample sizes. A statistical EC representation, in contrast,

capitalizes on the long-run constraints implied by cointegration to

enhance the model's predictive power over long forecast horizons.
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The focus of this study is thus on whether prior and cointegration
restrictions can be both imposed explicitly, rather than implicitly,
during the estimation stage. This point has hitherto received
little, if any, attention in the literature but will most probably
have significant implications for the practice of BVAR forecasting.

Systematic exploration of the sensitivity of forecasts to decisions
taken concerning the priors on parameter values gives no guarantee
that we can obtain the most suitable prior for the period to be
forecast. Litterman’s vector random walk prior, as well as its
possible 1linear transformations, is suitable for most economic
variables, but not all. As is noted in Artis et al. (1990a, p.350):

Our experience has been that the gains from adopting
the Bayesian approach may be offset by setting up an
inappropriate prior.

To rephrase thls, the order of precedence in terms of forecast
accuracy is that a good Bayesian will beat a non-Bayesian, which

will in turn beat a poor Bayesian [Granger (ed) (1991), p.18].
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CHAPTER 6

SYSTEMS OF EQUATIONS

§6.1 Introduction

Given the modelling methodology formalized in the preceding
chapters, this and next chapters move directly through estimation,
testing and construction of appropriate BVAR forecasting models.
They present empirical evidence, testing results and forecast
accuracy assessment for both multivariate single- and cross-country
cases. The main goal in this part of the study is to explore the
properties of and relatlonshlps between the time series involved; to
investigate the implications of imposing prior and long-run
constraints for forecast accuracy at small sample sizes; and to
establish a general quarterly BVAR model within a multicountry
context. A practical six-step model-building procedure is employed

to this purpose.

(1) Pick the four major national economies in Europe, i.e.:

the United Kingdom, Germany, France and Italy.

(2) Select a set of distinct aggregate varliables of interest for use
in the analysis:

(a) choose a similar set of macroeconomic aggregates: namely,
the real (inflation-adjusted) GDP/GNP, Money Supply (as
measured by MO/M1), Consumer Price Index (1990/1991=100, CPI
for short), and (possibly) 3-Month Treasury Bill Rate (TBR)
for one country after another, assuming that each member

economy is described by these macroeconomic indicators;

1The nature of the intertemporal correlations among these variables
within the context of VAR processes has received considerable
attention 1In the empirical business cycle literature, e.g.,
Blanchard (1989), Gali (1992), Litterman & Weiss (1985), Sims
(1980a), and Stock & Watson (1988a, 1988b).
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(b)
(c)

take natural logs of all series (except Treasury bills); and
plot these series both individually and jointly, and then

analyse them.

(3) Examine the presence of long-run cointegrating relationships:

(a)

(b)

(c)

(d)

(e)

test for unit roots or the degree of integration in each
individual series;

test for the maximum lag length of the VAR model, p, for
those variables that are to be modelled;

test for the rank order of the cointegration space, r, for
those integrated variables appearing in the model, provided
that the value of p is specified;

estimate cointegrating vectors (CVs) a, adjustment matrix w
and long-run matrix Ap(l)(=gg'), and save the residual
vectors gt(=§'1t) associated with the r CVs, given that the
value of r is fixed; and

graph the saved residuals of the CV(s) to check for possible

nonstationary patterns, and/or test them to see if they are

1(0).

(4) Reveal the best scalar settings of the hyperparameters in both

symmetric and general priors over the whole simulated ‘out-of-

sample’

(a)

(b)

(c)

forecast period:
run a system of unrestricted univariate OLS models to get

benchmark Theil U’s;

run a system of restricted univariate models with a standard
value for the overall tightness parameter vJ. If the Theil
U’'s are getting worse, loosen up on the diagonal elements;
and

run a standard symmetric prior for the tightness parameters
on the ‘other’ varlables in the relative tightness function

f(1,3), ka. If the Theil U’s are getting worse, tighten up

on the off-dlagonal elements.

(5) Formulate the empirical BVAR and BVAR-EC forecasting models:
(a) set up a BVAR model for the chosen set of variables in

levels with the prespecified stochastic prior restrictions

imposed on its lagged coefficients;
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(b)

(1)

(ii

(ii

set up a BVAR-EC model in (first) differences if there is
cointegration between the integrated (I(1)) variables:

fit the r lagged estimated cointegrating residuals
A

Et—p
bivariate and/or multivariate error-correction models

As
(=g Xt—p) into each of the recursive equations of the

(ECMs) as additional regressor(s);

) impose the prior distributions associated with the ‘best’
setting of the hyperparameters on all coefficients except
for the constant and error-correction terms. Then
estimate the resulting equations (subject to both prior
and cointegration restrictions) jointly using the mixed
rolling estimation method;

i) use identities YJtEYj,t-1+Vth’ Jj=1,...,K, to transform

the successive forecasted difference series into level

series; and

(iv) update the r lagged error-correction terms (gt—p) at each

forecast step, assuming that the ‘equilibrium
relationships’ defined by the r CVs g will continue to

hold over the forecasting horizons.

(6) Compute a series of ex-ante quarterly forecasts based on the

estimate

forecast

(a)

(b)

d BVAR and BVAR-EC models and evaluate the relative
ing performance over time:

use BVAR and BVAR-EC models to generate a series of 1-step
and multi-step quarterly (point) forecasts for the leading
European industrial economies. Optimally, a Kalman filter
(KF) estimation method should be used to facilitate the
remalning successive forecasts by re-estimating coefficients
in the models prior to each forecast period. Afterwards, the
anti-log transformation of the forecasted series could be
taken; then

test efficlency and unblasedness properties of the quarterly
forecasts and undertake a systematic comparison of the

forecasts across alternative models.

The systematic six-step procedure offered here is designed to be

flexible and readily implemented in building a BVAR or a BVAR-EC
model, and will be followed, step by step, in the sections that

follow.
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§6.2 Mainstream Data-Mining (MDM) — a Suitable Way of Database
Assembly from Various Currently Existing Databanks

The term ‘data mining’, or sometimes ‘specification searches’, means
the re-use of the same limited data both to estimate and to revise a
model, since a model must be revised in the light of data evidence
unless it emerges perfect at the first attempt. The industrious
implication of the word ‘mining’ suggests that the activity may be
productive. However, a better approach in the process of model
construction 1is the explicit use of prior and cointegration
restrictions, as remarked 1in the previous chapters. For further
elaboration and references see Leamer (1991, pp.235-58). It has been
noticed that in practical time series analyses, a quarterly model is
often used for the study of important phenomena 1ike business cycles
[on this see Bodkin, Klein & Marwah (1991), pp.89-90]. But
sometimes, quarterly models are constrained by the availability of
data. To create an adequate quarterly data set upon which to base

analyses is therefore an important aspect of macroeconometric work.

6.2.1 Accumulation, Selection and Transformation of Raw
Data Series

In this section, we start with the selection of the raw data on a

quarterly basis, and then move on to the common instantaneous

transformations of the data series. Usually, collecting a large
consistent data set (for a reasonable span of time) requires access
to the various existing large and high~quality databanks and
networked informatlon servers. Such a database is held on Manchester
Information Datasets and Associated Services (MIDAS), which provides
a National Datasets Service to the UK academic community. '

6.2.1a The Selection of the Data
All aggregate quarterly time-series data are obtained from a
database first aésembled from the ONS Macroeconomic Time Serles
(MTS), the International Monetary Fund (IMF) International Financial

Statistics  (IFS), and the OECD Main Economic Indicators (MEI)
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databanks. These can be accessed freely via MIDAS, and fall into two
groups. The data for the variables labelled CPI and TBR are
seasonally unadjusted and chosen from the IMF IFS sources, while the
data for the real GDP/GNP and MO/M1 are seasonally adjusted and
taken to be the OECD MEI and ONS MIS data.Z The series are
subsequently reset so that all are based upon the current benchmark
year or wupdated using recent monthly issues of the relevant
publications. Further details, including sources, names and
explanations, of the data chosen for the major four (and other)

European economies are given in Appendix C of this thesis.
6.2.1b The Transformation of the Data

When working with pofentially nonstationary processes, certain
transformations of the original series to render it I(0) by way of
taking differences, log-differences and establishing cointegrating
combinations are often required. There are two main advantages of
taking logs instead of levels. One is that taking natural logs of
exponentially growing serles helps reduce heteroskedasticity of the
empirical serles, as the serles with a fixed percentage rise will be
linearized. Although taking logs cannot remove changes in the
variance per se, the assumption of constant variance may prove to be
a more reasonable approximation for a logarithmic series. Examples

would be real GDP/GNP, monetary aggregates or consumer prices.

Non-trending series, such as interest rates, should be left in

levels. The second is that the usual linear relationships among the
absolute changes of the candidates being modelled become more
meaningful log-linear channels that convey relative changes between
one of the variables and the past of the other explanatory variables
involved. The slgn and size of the additive error corrected for each
of the dependent varliables in the error correction mechanism will
depend on the direction and magnitude of the proportionate or
percentage change of the variable considered each period. These

2Many released records accessed by and downloaded from terminals in
a network are ‘long consistent’, but one should be aware of possible
limitations of almost any database to be used at this stage. Such
limitations may stem either from changes in economic structure and
policy regimes or from changes in definition of a given series and

delays of new releases.
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points have important implications in empirical applications.

Here, all series but short-term interest rates are first transformed
to logs prior to analysis. The macro data used with each country
will be a group of four as follows:

LGDP/LGNP = log of GDP/GNP, at constant prices (adj.)

LMO/LM1 = log of Money Supply MO/M1 (adj.)

LCPI = log of the Consumer Price Index (1990/1991=100) (orig.)

TBR = 3-Month Treasury Bill Rate (orig.).

Whilst practice might vary on this, this four-candidate (K=4)
quarterly system is considered for three reasons: (a) the forecasts
of these macroeconomic variables are commonly found in public
discussion [cf. Artis et al. (1990a), Litterman & Weiss (1985), Sims
(1980a), and Wallis (1989)]; (b) the choice of this subset has been
found to be adequate for the purpose of conducting a real-time
forecast comparison between the BVARs and other conventional
competing techniques commercially available [cf. Artis et al.(1990a,
1990b), and Spencer (1993)]; and (c) the official macroeconomic data
samples on the subset can be easily assembled, updated and

transformed in ASCII files from ONS, IMF and OECD sources.

In this work, the sample period for the UK 1is 1969Q2-1996Q3
inclusive; for Germany 1975Q3-1992Q4; for France 1979Q1-1996Q3; and
for Italy 1977Q2-1996Q3, the latest available at the time of the
the precise estlmation periods used do vary with
It can be seen from the data appendix that,

analysis. Hence,

specific country cases.
in almost all of these countries, yleld on T-bills appears to be the

shortest one among existing series. Thus, if it is included, it

restricts the length of the sample. Moreover, in practical model
building, all the associated tests will be based on a given subset
of data through 1990Q4, reserving at least 2-years data, or 8 data
points, from 1991Q1 onwards for simulated ‘out-of-sample’ multi-

period forecasts.

However, before testing and finally specifying a ‘good’ forecasting
model based on the available prior and sample information, a

preliminary graphical inspection of the level series, after 'the

137



necessary transformations, can be a useful adjunct to formal models.
See Clements and Hendry (1992a, p.9). After all, forecasters should
know where the economy is before providing a reasonable picture of

where it is going. See Pain and Britton (1992, p.87) among others.

6.2.2 Plotting, Survey and Analysis of the Available
Data Samples

The observed series are plotted against time, both individually and
Jointly, to establish what are the dominant features of the series
that a model will need to capture. These graphics may well indicate
whether the series 1is subject to structural changes, either
throughout the series, or at particular points in time. They may
also suggest whether a group of time-series trajectories move
roughly together or bring to light some unexpected effects. In fact,
it is the examination of the historlical data, combined with prior

knowledge of the nature of the series, which provides the basis for

model specification.

Presented below are the time plots of the four transformed
macroeconomic indicators for the four major industrial countries in

Europe over both the ‘inside-sample’ and ‘outside-sample’ periods.
All these graphs are depicted through use of GiveWin under Windows
and examined especially within the sample. Over that period, five
important episodes are of interest: the rapid growth in overall
activity in 1973 and 1987-88 (with the subsequent inflationary

pressures), and the recessions of 1974-5, 1979-81 and 1991-2.

Real GDP/GNP growth

Figs. 6.1 and 6.2 show a block of four time plots for British LGDP
(1990 Prices), German LGNP (1985 Prices), French LGDP (1980 Prices)
and Italian LGDP (1990 Prices) at seasonally adjusted annual rates,
and also a joint one of these four, over the period 1971Q1-1992Q4.
There is a clear long-run upward trend in all four series. But, in
addition, ‘the plots of these series show marked close cyclical
behéviour across different countries during the period of fit as the
economies move from boom to recession and back again. Indeed, we
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would probably have ascertained this from the economic history of

the period, without even looking at the graphs.

The boom in European economic activity in the late 1980s was
associated with very rapid growth of European trade, and the
downturn in the growth of activity was inevitably associated with a
slowdown 1In European trade growth. The strong growth of the
newly-industrialising countries in the Far East along with China, in
conjunction with post-war reconstruction in the Gulf, was a major
factor behind the trade growth. Within Europe, growth in the ‘Big
Four’ economies began to slow down at the end of 1989, but the early
signs of recession were muted by exceptionally strong growth in
Germany in 1990, as re-unification resulted in a sharp increase in
demand for West German goods from East Germany. German reunification
has turned out to be an expensive process, however. The costs of
unification have created a substantial and continuing public sector
deficit and caused the German central bank (the Bundesbank) to
tighten its monetary policy. This acted as a break on output growth
throughout Europe. The incorporation of a cyclical component in
models for the real GDP/GNP of the European economies will therefore
play an essential role in providing a better description of these
series. Developments in Germany have also extended the period of
slow growth and helped to make growth more synchronised between the
member states of the European Community. The observation that the
stochastic properties of the aggregates examined appear to change in
different phases implies that their characteristic features do not

necessarily remain the same over time.3 This 1s typical of many

economic and soclal time series.

3There are probably some other reasons for the lingering output
growth in these countries, particularly in the UK at her early
stages. One reason for this is that what we want is the real GDP (or
GDP at constant prices). But what we can actually get is the nominal
GDP (or GDP at current prices) and the GDP Implicit Price Deflator
over the period 1971Q4 to 1992Q4. Although both of them are
seasonally adjusted and rise smoothly, there is no guarantee that
the real GDP worked out by the ratio of the first (nominal GDP) to
the second (implicit price deflator) will go up in every step,
unless 1t 1s adjusted on itself as we will see from post-1993. Even
though the real GDP derived in this way (from the OECD MEI sources)
does not rise as smoothly as the usual adjusted data, it is still
said to be ‘adjusted’, because it is not original.
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Money supply

Recently, most European countries have been targeting the wider
definition of the money supply, correlating in line with their
corresponding EMS partners.4 In general, the wider the definition,
the more direct the relationship between monetary growth and other
economic variables, as it 1Is of considerable importance in
influencing the spending of individuals. For reasons of paucity of
the available data, however, we choose the basic money stock MO/M1
instead of a broad money target. The data for announced monetary
target M3 in Germany and France are only available from 1988Q1 (see
IMF IFS, September 1991) and 1987Q1 (IMF IFS, July 1990)

respectively, although the use of broad money is to be preferred,

when available.

Figs. 6.3 and 6.4 respectively show the separate and joint time
plots of LMO/LM1 for the Big Four over the period 1969Q2-1996Q4.
Whilst IMO/LM1 rises approximately 1in line in all four of these
serles, there is a dramatic increase in Germany’s LM1 in the first
quarter of 1991. Rapid domestic private sector credit growth,
primarily due to privatisations and government subsidies for
construction and investment in eastern Germany, explains much of
this growth. The German authoritlies did not revise their monetary
target when they raised the discount rate, and they are currently
suffering a significant target overshoot for all German money. There
may, however, be good temporary reasons for this. The circulation of

the D-Mark has risen iIn the east as the privatisation process

proceeds.

Consumer price indices

All series used are seasonélly adJusted, except for aggregate
consuﬁer prices and treasury-bill interest rates. Figs. 6.5 and 6.6
present individual graphs of LCPI for the major four industrialised
countries in Europe over the period 1960Q1-1996Q3, and a joint one,

4The EMS, designed primarily to keep the member countries’ exchange
rates within the limits set, can be best construed as German-led, so
that other countrles peg to the D-Mark while Germany pursues.
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having a comparable vertical scale.

As far as individual price series are concerned, it can be seen that
they all show an upward trend over time, but unad justed price
movements display only mild seasonality during the study. On the
other hand, it can be seen that the cyclical fluctuations of a group
of price series are synchronised across countries. Intuitively the
reason is that if these countries were to form the core of a
monetary union in Europe then eventually they would have to share
essentially the same rate of consumer price inflation. This required
that the aggregate price levels, as well as the aggregate inflation
rates, had to adjust in different countries. Furthermore, the
cyclical developments of the prices seem to be well matched by those
of output growth within each country. In the early-1980s, the
exceptionally strong GDP growth caused consumer prices to rise as a
result of increased demand. In contrast, all prices fell in nominal
terms during the trough of economic activity in 1990, contributing

to the general deceleration in inflation rates.

3-month interest rates

Unlike the first three indlicator series, the short interest rates of
the Big Four appear to be almost trend-free in the long run. But, as

can be seen from Figs. 6.7 and 6.8 over recent years, there has been

a roughly downward trend 1n all four series in addition to

coincidental movements between them. The underlying cause of this
was policy commitments such as the decision to form a monetéry union
in 1999 and the need for interest rates in Europe to converge before
that date. Interest differentlials some 5 percent higher in Italy
than in Germany indicate that a realignment of the Lira was
anticipated. This policy, however, would not lead to such a big loss
in credibility for any one country as would result from a unilateral

adjustmeht. Hence, it would allow both the Italians to realign

downwards and the Germans to realign upwards.

Moreover, as 1is shown in Fig. 6.9, over the past decade Iinterest-
rate fluctuations seem to be followed by the cyclical movements of
their corresponding LGDP/LGNP after one or one-and-a-half years,
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reflecting in part the policy stance of different governments by
changes in interest rates in response to economic growth at
different periods. Usually, the introduction of a high real interest
rate may either be to dampen the overheated economy or be regarded
as the signs of a recession, although the precise effects of this
instrument are by no means perfectly understood. It may take a
couple of years or more to have its full effects [George (1997),
P.7]. A sharp cut in interest rates can be conceived of as an

important stimulus to economic recovery and we would thus expect

GDP/GNP to grow after such a cut.

Fig. 6.9 also shows that the British authorities had been cutting
interest rates in response to a slowdown in activity, whilst the
Germans probably had not. The sustained high level of German real
interest rates, largely due to the pressure of the burgeoning fiscal
deficit and its implications for the stock of debt, had serious
consequences. The commitment of Sterling, the Franc and the Lira to
the European exchange rate mechanism (ERM) of the EMS meant that the
other competitors had also to keep their interest rates high
vis-a-vis Germany. This did not suit the cyclical position of those
countries, and the constraint on output growth of high real interest
rates was exacerbated by the consequent loss of competitiveness.

Clearly, sterling’s leaving the ERM in September 1992 was germane to
all of this. '

Fig. 6.10 shows (to a roughly comparable scale) the graph of LGDP
and that of TBR shifted 6 quarters to the right (i.e., the latter
led the former by 6 quarters) for the UK over the last 30 years or

so. Comparing the UK's LGDP and TBR, the historical negative

correlation between the two stands out. That is, if the UK short

interest rates are moved 6 quarters to the right relative to her

LGDP along the time-axis, the two series will move inversely.

the nature of what we observe may well be as

as it may be largely generated by the

Sometimes, however,

much political as economic,
artificlally stimulated recovery before elections. The sharp cuts in

interest rates in the hope they would aid the recovery indicate
again that the government in office was willing to take any action

to kick-start recovery. It also smacked of political desperation.
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§6.3 Multi-Country Modelling(MCM) — A Flexible Method of Hypothesis
Testing on Popular Econometric Software Packages

The aim of this section is to proceed further along the six-step
process with a focus on formulation of empirical BVAR and BVAR-EC
forecasting models for the four major European economies. Several
frequently requested tests associated with them will be considered
successively. These are: (a) the treatment of the order of
integration of each serles involved; (b) the choice of the
appropriate lag length of a finite-order VAR in levels; (c) the
determination of stationary cointegrated linear combinations; and
(d) the exploration of the best setting of the prior
hyperparameters. In this study, all the necessary computations will
be carried out using the avallable Microfit, MicroTSP and RATS
sof tware packages on a PC, with graphic and tabular displays for the

final results.

6.3.1 Determination of Long-Run Equilibrium Relationships

In order to characterise the long-run properties of potentially
nonstationary macroeconomic time series from the given set of data
samples, we begin with an analysis of the order of integration of

each series within the sample via the use of a one-sided ADF test

statistic.

6.3.1a Testing for Unit Roots or the Degree
of Integration of Individual Series

It is customary to test for the number of unit roots (or the orders
of integration) of all the variables being analysed prior to testing
for cointegration. Obviously, without stochastic trends there will
be no common stochastic trends (CSTs), and without common trends
there will be no cointegration. In this work, a series of ADF
regressions (constructed along the lines of Dickey & Fuller 1979,
1981) 1s applied to each series separately to investigate whether or
not the data are consistent with the hypothesis of one unit root at
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the S percent level of significance.5 To save space, only the
results of the scalar ADF tests with different specified lags for
the variables examined are reported in Table 6.1, rather than all

the estimated equations.

Table 6.1: ADF unit root tests of individual series'

UK LGDP LMO LCPI TBR
Nupy 1(1) -0.79  -0.55 -1.45 -2.05
(with trend)(with trend)
hypothesis; ) 5 13 .57 -2.63 -5.18
(with trend)(with trend)
GERMANY LGNP LM1 LCPI TBR
I(1) -1.13 -0.82 -1.21 -1.96
Null (with trend)
hypothesis, ., _; 37 _s5.03 -2.25 -4.06
(with trend)
FRANCE LGDP LM1 LCPI TBR
I(1) -1.43 -1.12 -1.17 -1.32
Null (with trend)
hypothesiBI (2) -3.35 =3.96 -2.73 -3.79
(with trend)
ITALY LGDP LM1 LCPI TER
1(1) -0.78 -0.93 -0.53 -1.52
Null (with trend)(with trend)
hypothesis; ,) 5.19 -3.52 -3.51 -3.15

(with trend)(with trend)

#Note: the 5 percent critical value of the ADF test (with

drift) is -2.89 for T=100 (or -2.86 for T=00)
(Mackinnon 1991). When a (deterministic) time trend
is included with a coefficient that appears to be
significantly nonzero (under the null), the relevant

ADF  critical value will be -1.64 asymptotically, i.e.
the usual lower-bound critical value of the standard
normal N(0,1) distribution (Nankervis & Savin 1987,
the bottom panel of Table 1). Otherwise, the
assoclated critical value will be -3.45 instead for
the sample sizes considered here (Mackinnon 1991).

sAs Sims (1987, p.443) points out, there 1is no scientific
Justification for testing hypotheses at the 5% significance level iP
every appllication. Publishing such statistics and focusing on 5%
levels 1is common because testing at fixed levels facilitates
communication.
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Here, in most cases, the above ‘t-ratio’ unit root tests on the
lagged levels are based upon the ADF regressions with a drift and
with 4 lagged first differences over the sample through 1990Q4. The
only exceptions are those tests of TBRs for Germany, France and
Italy, and of the British LMO, Italian LM1 and LCPIs in all four
countries. The former have a relatively short lag structure of 2
quarters due to the sample size restrictions, while the latter have
time, denoted T, Included in addition to an intercept, denoted INPT,
as a regressor. For each level series, using the relevant 5 percent
critical values, the estimates (given by the t-statistics) in Table
6.1 fail to reject the hypothesis that there is a unit root in the
autoregressive representation. LCPIs, the UK’'s LMO and Italy’s LM1
will be tentatively treated as I(1) around a trend.6 Thus, one
plausible characterization of the long-run properties of the data

consistent with the empirical evidence can be summarized in Table

6.2.

Table 6.2: One possible characterization of
the trend properties of the data

LGDP/LGNP LMO/LM1 LCPI TBR

UK I1(1) (1) I(1) I1(1)
(with trend) (with trend)

GERMANY I(1) I1(1) I1(1) I(1)
(with trend)

FRANCE 1(1) I1(1) 1(1) I(1)
(with trend)

ITALY I(1) I(1) I(1) I(1)

(with trend)(with trend)

It is 1important to -relterate that, although the ADF t-tests are
widely used, care should be exercised in their use as the power of

6However. it is argued that the data need not be detrended. In a
VAR, a trending variable will be well approximated by a unit root.
plus drift, and the drift will dominate the long-run behaviour of
the nonstationary process [see Enders (1995), pp.300-1]. Moreover, a
study by Hansen (1989) has shown that if the genuine data contain
both deterministic and stochastic trends, removal of time trends
from the data may worsen the performance of the normal asymptotics

considerably.
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these tests may be small, especially against trend-stationary
alternatives. Three applied issues concerning the computation of the

classical ADF tests need to be mentioned here.

Firstly, since the nonstandard (large and small sample)
distributions of the test statistics are tabulated by simulation on
unad justed series, it is likely that test statistics computed using
seasonally adjusted data will be severely biased in favour of the
null of a unit root. Hence, if quarterly data are to be used, they
should if possible not be seasonally adjusted. On this point see,
inter alia, Davidson and Mackinnon (1993), p.714, but see all of
Chapter 20. Unfortunately, seasonally unad justed data for many
important time series, like real GDP/GNP, are not available in the
economies investigated here. In addition, the quarterly nature of
seasonally unadjusted data may make it necessary to include a set of
seasonal dummies and to account for as far back as fourth-quarter or
elghth-quarter serial correlation. Even twelve quarters are not
uncommon. Hence, the 1inclusion of data that exhibit strong
seasonality into the information set will come at the potential cost

of requiring many degrees of freedom and may lead to the problem of

overfitting.

Secondly, it may well be that the ADF outcome is quite sensitive to
the choice of lag length even for the same data (see Davidson &
Mackinnon, op. cit., pp.710-5). One way of dealing with this would
be to try a group of tests assoclated with various possible

autocorrelations to ensure that the OLS residuals approximate an

empirical white-nolise process.

Finally, Christiano and Eichenbaum (1989} have demonstrated that,
when deterministic nonstationarities are present, it is difficult or
impbssible to distinguish between deterministic and stochastic
nonstationarities. In particular, structural breaks and regime
shifts are likely to blas such tests toward the acceptance of a unit
root [see Godfrey (ed) (1992), Chapter 1, especially pp.44-57]. For
example, the fallure to reject the unit root null in French LM1 may
be the result of a Type II error. The series may be better expressed

as trend-stationary, possibly about a one-time structural break at
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the fourth-quarter of 1977.

Taking these factors into account, it may be said that testing for
unit roots, while extremely important, is not without difficulties.
The test results given in Table 6.2 are Just one possibility. This
characterization of the long-run properties of the data will also
need to pass the test of time; that is, it needs to continue to hold

outside the period of estimation.

6.3.1b Testing for Cointegration Relationships
for Those Variables That Are Integrated
in Both Single- and Multi-Country Cases

Once the univariate unit root tests have been completed, we move on
to the estimation and testing of long-run cointegration
relationships among subsets of the integrated (I(1)) variables,
using Johansen’s full-system maximum likelihood (ML) estimation
methodology. However, prior’ to the determination of the
cointegration rank, r, i.e. the number of independent CVs, the
‘pre-test’ specification of maximum lag truncation parameter, p, in

the underlying VAR must also be made.

Since it is not feasible to model all the series concerned with a
reasonably distributed lag jointly and the series are chosen for
their economic importance, not for their statistical properties
[Johansen (1996), p.34], in the following subsections we will mainly

consider two types of quadrivariate systems: closed single-country
and open cross-country ones. The former are various country models
of the four different series in domestic economies (which are set to
examine activities in individual countries), whilst the latter are
systems of the four pimilar series across countries (which are used

to characterize the dynamlic interactions among the economies).7

7At the Johansen’s estimation stage, the maximum number of
endogenous I(1) variables associated with the student version of
Microfit 3.0 (that is avallable at the time of research) is only 10
[see Pesaran, M.H. & B. Pesaran (1991), pp.175-7). With advances in
econometric literature and software, the limitation on that number
has been released to 12 after the first draft of this thesis

[Pesaran, M.H. & B. Pesaran (1997), pp.449-50].
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(1) Test for the value of the truncation lag D

Commonly, a listing of the likelihood ratio (LR) tests associated
with successively reducing the lag length of the VAR representation
by one is an integral and crucial step in empirical multivariate
cointegration studies.8 To test systematically the null of a
restricted VAR(1) against the alternative of a common unrestricted
VAR(m), 1<m, we need to run two VARs over the same sample period and
save the residuals for their covariance matrices. This sample
statistic has the asymptotic chi-square distribution with degrees of

freedom equal to the number of restrictions in the systen.

Given degrees of freedom considerations, the reported work in this
study was to take the same feasible upper bound of m=6 for each
integer valued VAR lag order and thus set aside the first six
entries as presample values. A sequential testing scheme in the VAR
context was based on LR tests, which were adjusted along the lines
of that advanced by Sims (1980a), with small-sample corrections, and
carried out on RATS software package. The corresponding outcome of
the 1log-likelihood of each modified test statistic in such a

sequence for both single- and multi-country models are displayed in

Tables 6.3 and 6.4, respectively.

8Pract1ce has shown that it is necessary to work with an
approximated ‘truncated’ version of what would otherwise generally
be an infinite-order VAR [cf. Gali (1992}, p.719]. Also, a low-order
VAR system can, from a practical viewpoint, provide a reasonable
approximation [cf. Stéderlind & Vredin (1996), p.371-2].

9As Sims et al. (1990) assert, tests of the joint significance of"
additional lags in a VAR do not suffer from the existence of unit
roots, even if the VAR is estimated in levels. Hence, the LR test
statistic, along the lines of Sims’ (1980a), can be applied to both
stationary and nonstationary processes. See also Liitkepohl (1991a),

pp.382-4.

153



Table 6.3:The likelihood ratio (LR) tests for the

lag lengths of single-country models

model |Lag 1 vs lag m| LR test statistic |Signif
Lag 5 vs lag 6|Chi-Squared(16)=23.91| 0.091
Lag 4 vs lag 6[Chi-Squared(32)=63.00| 0.001
UK
Lag 3 vs lag 6|Chi-Squared(48)=76.34| 0.006
Lag 2 vs lag 6|Chi-Squared(64)=92.12| 0.012
Lag 5 vs lag 6|Chi-Squared(16)=12.06| 0.740
Lag 4 vs lag 6|Chi-Squared(32)=36.47| 0.269
GERMANY
Lag 3 vs lag 6|Chi-Squared(48)=54.27| 0.248
Lag 2 vs lag 6|Chi-Squared(64)=71.01| 0.256
Lag 5 vs lag 6|Chi-Squared(16)=20.00{ 0.220
Lag 4 vs lag 6|Chi-Squared(32)=33.83| 0.379
FRANCE -
Lag 3 vs lag 6|Chi-Squared(48)=45.09| 0.593
Lag 2 vs lag 6|Chi-Squared(64)=56.17| 0.746
Lag 5 vs lag 6|Chi-Squared(16)=18.80| 0.279
Lag 4 vs lag 6|Chi-Squared(32)=38.51| 0.199
ITALY
: Lag 3 vs lag 6[Chi-Squared(48)=56.45| 0.189
Lag 2 vs lag 6 Chi-Squared(64)=66.89| 0.378
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Table 6.4: The likelihood ratio (LR) tests for the
1a§ lquths of multi-country models

model]Lag 1 vs lag m LR test statistic [Signif

Lag 5 vs lag 6| Chi-Squared(16)=10.77| 0.823

Lag 4 vs lag 6| Chi-Squared(32)=32.93]| 0.421

LGDP
Lag 3 vs lag 6| Chi-Squared(48)=47.00| 0.514

Lag 2 vs lag 6| Chi-Squared(64)=65.18!| 0.435

Lag 5 vs lag 6| Chi-Squared(16)=13.77| 0.616

Lag 4 vs lag 6| Chi-Squared(32)=31.74| 0.480

LMON
Lag 3 vs lag 6| Chi~-Squared(48)=49.33| 0.420

Lag 2 vs lag 6| Chi-Squared(64)=59.08| 0.651

Lag 5 vs lag 6| Chi-Squared(16)=18.63| 0.288

Lag 4 vs lag 6| Chi-Squared(32)=54.00| 0.009

LCPI
Lag 3 vs lag 6] Chi-Squared(48)=78.52| 0.004

Lag 2 vs lag 6|Chi-Squared(64)=127.67| 0.000

Lag 5 vs lag 6| Chi-Squared(16)=17.91| 0.329

Lag 4 vs lag 6| Chi-Squared(32)=27.86| 0.676

Lag 3 vs lag 6| Chi-Squared(48)=36.54| 0.887

Lag 2 vs lag 6| Chi-Squared(64)=46.92| 0.946

The LR statistic can be viewed as a kind of residual analysis where

residuals computed under the null are tested against those of a

general alternative to see whether they include extra useful

information which should not be omitted. Now,
determine whether 4 lags are appropriate for all equations.
restriction of a reduced number of lags 1s not binding, we would
~ expect lnltu(4)| to be equal to lnlzu(6)|. Large calculated values

of the statistic would mean the restriction of only 4 lags, or the
is

suppose we want to
If the

imposition of a block of 2zero restrictions on lags 5 to 6,
binding. Hence, we can reject the null hypothesis that lag length
=4, If the resulting LR test is less than xz at a prespecified
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significance level, we would not be able to reject the null of 4
lags being tested, i.e. the restriction is not binding. For a

readable account of this property, see Enders (1995), pp.312-5.

According to the tables, in almost all applications encountered
here, the minimum significance level of LR test statistic is around
p=3. Most succeeding tests appear to be insignificant, however. Part
of the problem results from the fact that the LR test is based on
asymptotic theory which may not be very useful in small estimation
samples. In general, we may adopt the parsimony principle on the
selection of lag length, as longer lags may give rise to overfitting
and thus result in poor out-of-sample forecasts. But unless we face
severe data constraints, a lag order of at least 2 is necessary.
Apart from this, specification of the Bayesian prior in certain ways
will allow a more generous lag length than in an unrestricted VAR
model. The selected maximum lags for both single- and multi-country
systems will in most cases be a l-year-worth (i.e. the periodicity

of the data), as summarized in Table 6.5.

Table 6.5: The ‘truncated’ lag lengths of
different VARs in levels
Name of the model |Truncation lag Q(LR)
UK 6
Single-country|GERMANY 4
models FRANCE 4
ITALY 4
LGDP 2
Multi-country| LMON 4
models LCPI 4
TBR 2
After a tentative moderate value of p has been specified, the
can be

determination of the number of colntegrating relations, r,
obtained. Also, a VAR of order 2, 4 or 6 in levels implies a VECM

representation of order 1, 3 or 5 1f the series are cointegrated.
All subsequent empirical inferences will depend on these selected
lag lengths, and all relevant computer programs (saved in ordinary

ASCII text files) can be referred to the Appendix D of this thesis.
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In any chosen model, the choice of the length of consecutive lags
will be an iterative process as well as other specification issues,
and the primary selection criterion is forecasting accuracy. Hence,
in a modelling exercise, less reliance should be placed on those
indices of model adequacy that are used as ‘guidelines’ to model
construction, and more emphasis should be given to the performance
of models outside sample periods and against rival models. For
extensive discussion of these issues see, 1in particular, Pesaran

(1987, p.18) and Spencer (1993, pp.407-21).
(2) Test for the rank of the cointegration space r

Conditional on a given value of p, the number of CVs, r, can be
determined sequentially by means of the Johansen (1989) maximal
eigenvalue (Amax) statistics. It has been found that Johansen (1988,
1991) trace (htr) tests of the cointegration rank give very similar,
but slightly higher, values of r. A variety of test results of the
cointegration rank, together with their associated 5 percent
critical values, for both specific- and cross-country models are
presented in Tables 6.6 to 6.13.

Table 6.6: Cointegration LR test based on Johansen
maximpl eigenvalue (A ) for the UK
model

Null Alternative Test Statistic 95% Critical Value
r=20 r=1 27.86 27.14
r =1 r =2 19.47 21.07

#®Note: (1) the estimation perlod is 1970Q4-1990Q4;
(11) the maximum lag in VAR is 6. Estimation for
trended variables, no trend in DGP.

Table 6.7: Cointegration LR test based on Johansen
n-xi-'l eigenvalue (A ) for the GERMANY
‘ nodel
Null Alternative Test Statistic 95X Critical Value
r=0 r=1 34.76 27.14
rs1 .r=2 .29.95 21.07
rs2 r=3 43 14.90

#Note: (1) the estimation period is 1976Q3-19900Q4;
(11) the maximum lag in VAR is 4. Estimation for
trended variables, no trend in DGP.
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Table 6.8: Cointegration LR test based on Johansen
maximgl eigenvalue (Amax) for the FRANCE

model
Null Alternative Test Statistic 95% Critical Value
r=20 r=1 40.58 27.14
r si r =2 18.22 21.07

¥Note: (1) the estimation period is 1980Q1-1990Q4;
(i1) the maximum lag in VAR is 4. Estimation for
trended variables, no trend in DGP.

Table 6.9: Cointegration LR test based on Johansen
maximil eigenvalue (Amax) for the ITALY

model
Null Alternative Test Statistic 95% Critical Value
r=20 r=1 26.99 27.14

¥Note: (i) the estimation period is 1978Q2-1990Q4;
(if) the maximum lag in VAR is 4. Estimation for
trended variables, no trend in DGP.

Table 6.10: Cointegration LR test based on Johansen
naxinil eigenvalue (A ) for the LGDP

model
Null Alternative Test Statistic 95% Critical Value
r=20 r=1 28.94 27.14
r 1 r=2 11.83 21.07

®Note: (1) the estimation period is 1971Q3-1990Q4;
(11) the maximum lag in VAR is 2. Estimation for
trended variables, no trend in DGP.

Table 6.11: Cointegration LR test based on Johansen
-axinil eigenvalue (Anax) for the LMON
, model
Null Alternative Test Statistic 95% Critical Value
r=0 r=1 44.59 27.14
rsi r=2 18.18 21.07

¥Note: (1) the estimation period 1s 1970Q2-1990Q4;
.. (11) the maximum lag in VAR is 4. Estimation for
trended varliables, no trend in DGP.
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Table 6.12: Cointegration LR test based on Johansen
maxlmil eigenvalue (A ) for the LCPI

model
Null Alternative Test Statistic 95% Critical Value
r=20 r =1 14.68 27.07

¥MNote: (1) the estimation period is 1961Q1-19900Q4;
(11) the maximum lag in VAR is 4. Estimation for
trended variables, with trend in DGP.

Table 6.13: Cointegration LR test based on Johansen
maximgl eigenvalue (A ) for the TBR
model

Null Alternative Test Statistic 95% Critical Value
r=20 r=1 32.05 27.14
rsi r =2 15.50 21.07

®Note: (1) the estimation period is 1979Q3-1990Q4;
(i1) the maximum lag 1n VAR is 2. Estimation for
trended variables, no trend in DGP.

It can be seen from Tables 6.6 to 6.13 that at the usual 5 percent
significance 1level, data support the existence of just one
cointegration relation in most situations. The only exceptions are
those tests for Germany, Italy and the LCPI. A 5% level test for

Germany shows 4the ~presence of two stationary cointegration

combinations, while the latter two cases show no sample evidence of
cointegration in either of the systems of four series.10 There are,
therefore, argﬁments for working within an integrated framework
where LGDP/LGNP, LMO/LM1, LCPI and TBR are allowed to link
explicitly together elther in the main specific European economies
Oor across the countries gver the long run. The summary statistics of
the estimated rank of the r-dimensional cointegration space for both
the single- and multi-counitry models are reported in Table 6.14.

10ore specifically, the. 7)&  statistics for Italy and the LCPI,

26.99 and 14. 68, are belaw the respective 5 percent critical values,
27.14 and 27.07 and, thus, the hypothesis of noncointegration cannot

be rejected

£, DR
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Table 6.14: The estimated number of CVs for
different models concerned

Name of the model |[Cointegration rank ?(Amax)
UK 1
Single-country | GERMANY 2
models FRANCE 1
ITALY 0
LGDP 1
Multi-country| LMON 1
models LCPI 0
TBR 1

Johansen’s post estimation of cointegrating vectors (a), adjustment
matrix (w) and long-run matrix (A (1)=we’), after bit
(@) 8 (-p wo’ ) an arbitrary

normalization, can be found based on the relevant maintained

cointegration rank.

(3) Estimate cointegrating vectors and adjustment matrix, and
save the residual vectors associated with the r CVs

Given the dimension of the cointegration space, r, Johansen’s
normalised ML estimates of CVs and adjustment matrices of different

four-equation models, except for Italy and the LCPI, are displayed
in Tables 6.15 and 6.16.

Table 6.15: The ML estimates of normalised
a and w for the UK,GERMANY and

FRANCE models
UK LGDP LMO LCPI TBR
& 1.000  0.295 -1.199  0.278
5 0.016  0.004 -0.014  1.160
GERMANY  LGNP LM1 LCPI TBR
A 1.000 =-0.286 0.086  -0.017
x 1.000 -1.590 2.871  -0.024
A 0.024 -0.173 0.121  -9.451
2 0.019 0.033 0.026 1.979
'FRANCE  LGDP LM1 LCPI TBR
a 1.000  -1.033  0.567  0.051
& o012 0037 -0.03 1.936
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Table 6.16: The ML estimates of normalised
oa and w for the LGDP, LMON and

TBR models
LGDP  UKLGDP GERLGNP FRALGDP  ITALGDP
a 1.000 1.093  3.960  -5.360
o -0.014  -0.053  -0.009  -0.053
LMON  UKLMO  GERLM1  FRALM1  ITALM1
a 1.000  -2.872  -4.414 4.323
o ~0.009 0.004  -0.057 0.053

UKTBR GERTBR FRATBR ITATBR
1.000 107.804 -465.050 309.644
-0.000 -0.001 ~-0.002 0.000

IE>1 8> E

It can be seen from Table 6.15 that there is a negative relationship
holding between a cointegrated pair of series, LGDP and TBR, in both
UK and France, but a positive one between the two model series, LGNP
and TBR, in Germany. In addition, monetary aggregates go positively
with consumer price indices through time in all three countries.
Also, as demonstrated by Table 6.16, there is an explicit historical
linkage amongst output growth, or money supply, series across the
four countries. But for TBRs, the close long-run, or equilibrium,
relationship appears only among Germany, France and Italy; UK's TBR
is virtually excluded from the error-correction process. In
particular, the ML estimate of the single CV o for the former three
is calculated to be (1.000, -4.243, 2.830)", with w’'=(-0.091,
-0.213, 0.025). Hence, a TBR system of the four series should be
equivalent to a partial VAR of the three with UK’s TBR bullt on a

single linear dynamic equation with no EC term.

After the 'Johansen’s '¢ointegration test results, the estimated
residual - vectors associated with the r CVs should be saved and
tested for: stationarity. Sometimes, the plotting of the residuals is
an important dlagnostic tool :for checking stationarity. Only if all
saved ‘cointegrating iresiduals’ are stationary, or 1(0), will the
lagged - re’smuals.ﬂ.agt_:p-,(@?x;t_ p)» be fitted into each of the
equations of ‘a cointegrated: VAR (VECM) as an additional regressor to
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correct for short-run dynamics. Otherwise, the system should be

built on a simple unrestricted VAR of order of p-1 in (first)

differences.

6.3.2 Determination of the Best Scalar Prior Hyperparameter
Settings

The present focus will be on revealing numerically the best scalar
settings of the prior hyperparameters for all four-variable systems
under scrutiny. According to the standard Minnesota prior, the
choice of the best setting of the hyperparameters is consistent with
the selection of the final version of a forecasting model, and both
can be determined simultaneously. The final criterion for specifying
hyperparameters over a certain range of values will be forecasting
ability, rather than the usual specification tests or any other

in-sample measures [see Spencer (1993), pp.409-11].

The sample period 1is divided into two non-overlapping sub-sample

periods: a subperiod over which the model is estimated — the
initial estimation period; and a subperiod over which forecasts are
obtained and checked against actual data -— the ex-post forecast

period. If the anticipated future values of the series are
reasonably well correlated with past episodes, we could expect that
knowledge of the errors in the ex-post forecast period will allow us
to modify our prediction of the error in the ex-ante forecast
period. The ex-post, or simulated ‘out-of-sample’, forecasting
perfofmance will then be treated as an indicator for tuning the best

choice of_hyperparameters.

Howevef; ﬁhere exlsts a difficulty in using absolute measureé of
forecast accuracy such as the mean absolute percentage error (MAPE)
or root mean square error (RMSE) to deliver rankings across models
or forecasts, since such measures are not 1nvar1ant under
nonslngulaf,: écale—preservlng linear transformations for which
linear models are invariant [see Clements & Hendry (1995), p.130].
Also; rthe;"optimaiity’ of forecasts 1is usually defined, using
absb;utéjiinéér least squares, with respect to a given information
set;’:Echomic' forecasters may not agree about the relevant
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information set, which in the widest sense is in any case unknown,
ex ante and ex post, and unmanageably large [see Wallis (1989),
pp.43-4]. In the absence of an absolute standard, various
comparative summary statistics have been developed and used for
evaluating the relative accuracy of alternative forecasts. Among
these, the informal use of Theil U statistics in the RATS sof tware

package is often preferred.11

The design of the experiment is as follows. We start with a common
combination of v=0.15 and w=0.5 for the overall tightness parameter,
v, and the tightness parameter on the ‘other’ variables for the
relative tightness function f(i,J), w, in the highly restricted
2-parameter symmetric prior by default. For switching the prior from
SYMMETRIC to GENERAL, a simple specification search procedure used
in this application is to find weights (VJ’WJI’WJZ’WJ3) on each row
of the matrix of prior variances, by altering one while holding the

others fixed, that minimize the Thell U values for each equation of

the system. That is:

(a) run a system of unrestricted univariate OLS models by choosing

vJ=3.O and the others zero to get benchmark Theil U’'s;

(b) run a system of restricted univariate models with a standard
value for TIGHTNESS, vJ=0.15. If the Theil U’s in an equation become
worse, then loosen up on the own lags by setting the dlagonal

element to 1.5 or 2.0; and

(c) run a standard SYMMETRIC prior for fractions le' wj2’ wJ3
0.5, respectively. If the Thell U's for one weight in an equation

become worse, then tighten up on the ‘other’ variables by reducing

11Theil U statistic can be viewed as the ratio of the root mean
square error (RMSE) of the forecast in question to the RMSE of the
naive ‘no-change’ prediction from a random walk. When the value of
Thell U’s is less than unity, the forecasts of the model are judged
to be more accurate than the naive forecasts. As a relative accuracy
measure, Theil U statistic is likely to be superior to the use of
absolute forecast error measures, such as the minimum MAPEs or
RMSEs.  For an entertaining account of the relevant issues, see
Armstrong & Collopy (1992), and Fildes (1992) and the associated

commentary.
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the off-diagonal element to 0.1 or 0.01.

This would complete the selection of the hyperparameters as well as
of the final forecasting model. The modeller might also examine
changing patterns in Theil U values computed with successive
overlapping two-, four-, six- or eight-step-ahead forecasts in a
similar way before selecting the best setting of the
hyperparameters. Such a procedure has the advantage of making the
hyperparameter searches more objective and, in principle,
statistically replicable. Moreover, an 1improvement over the
traditional two-dimensional grid search strategy [Spencer (1993),
pp.413-20]) is that, in our modelling process, the search over values

for the hyperparameters is straightforward and unbounded.

In terms of Leamer's (1982, 1991) sensitivity analysis, a study on
the effect of a change 1n the prior covariance matrix yj for the
parameter vector BJ' J=1,...,4, 1is also carried out to see how
sensitively our forecasts depend on departures of yj from its ‘best’
choice !JO' This is normally done by entertaining a range of Bayes

estimates given by the range of different values of prior covariance

matrices around _\!JO: A_ZMJOs!JSAZ_Y_JO; A>1, which could be considered

plausible in the light of the scientific context.

The final selections of the hyperparameters assoclated with the
lowest values of the Theil U statistics for the two competling
forecasting procedures developed: BVAR (specified in levels) and
BVAR-EC (1n differences), over the entire ex-post forecast period,

are reported in Tables 6.17 and 6.18.12

1ZSpace prevents us from exhibiting all findings here. Thus only the
results obtained for the United Kingdom are presented. Other Tables
6.19 through 6.30 for both specific- and cross-country cases can be

found in appendix E.
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Table 6.17: Determination of the best hyperparameter

setting (v,,w, ) for UK BVAR forecasting
J T Jk
model
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
(vJ,O,O,O) (vj,wjl,o,o) (vj,wjl,wgz,o) (VJ’WJI’WJZ’vggl
0.96900 0.92544 0.95482 0.73713
L |c.06,0,0,0)|(.05,.5,0,0)} (.05,1,.5,0) (.05,1,1,.5)
g 0.96783 0.91220 0.92884 0.67329
P (.05,0,0,0)|(.05,.8,0,0)| (.05,1,.8,0) (.05,1,1,.8)
0.96812 0.90443 0.92006 0.65727.
(.04,0,0,0) (.05,1,0,0) (.05,1,1,0) (.05,1,1,1)
0.50158 0.48872 0.37624 0.35828
(.5,0,0,0)|(.4,.06,0,0) (.4,.05,.1,0){ (.4,.05,.01,.5)
; 0.50095 0.48870 0.37204 0.35821"
0 (.4,0,0,0)|(.4,.05,0,0) {.4,.05,.05,0)| (.4,.05,.01,.6)
0.50097 0.48873 0.36958 0.35824
(.3,0,0,0)|(.4,.04,0,0)](.4,.05,.01,0)] (.4,.05,.01,.7)
0.60353 ~0.61475 0.59945 0.53707
L (3,0,0,0) (3,.5,0,0) (3,1,.09,0) (3,1,.08,.06)
g 0.61340 0.60883 0.59923 0.53387"
I (2.5,0,0,0)| (3,.8,0,0) (3,1,.08,0) (3,1,.08,.05)
0.63078 0.60709 0.59929 0.53412
(2,0,0,0) (3,1,0,0) (3,1,.07,0) (3,1,.08,.04)
1.38981 1.16896 1.00747 0.98875
T (.1,0,0,0) [(.01,.5,0,0) (.01,1,1,0) (.01,1,.9,.5)
B 1.22655 1.16760 1.00720 0.98217
R {(.05,0,0,0)]C.01,.8,0,0)} (.01,1,.9,0) (.01,1,.9,.8)
1.10833 1.16644 1.00727 0.97920"
(.01,0,0,0)| (.01,1,0,0) (.01,1,.8,0) (.01,1,.9,1)
Note: % indicates the minimum value in Theil U statistics of
' each equation assoclated with the chosen

. hyperparameters during the ex post forecast period.
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Table 6.18: Determination of the best hyperparameter
setting (vj,w.k) for UK BVAR-EC forecasting
model J
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
(vg,0,0,0) (vJ,ugl,O.O) (vJ,wJI,wJZ,O) (vj’wjl'wJZ'wggl
1.07926 1.07234 1.121010 0.752811

L (.1,0,0,0})|(.01,.5,0,0)| (.01,1,.5,0) (.01,1,1,.1)

g 1.05810 1.07223 1.121002 0.752808

P (.05,0,0,0){(.01,.8,0,0)| (.01,1,.8,0) (.01,1,1,.05)
1.05200 1.07213 1.120996 0.752807'

(.01,0,0,0)| (.01,1,0,0) (.01,1,1,0) (.01,1,1,.01)
0.75969 0.77780 0.93285 0.78767
(.5,0,0,0)| (.4,.5,0,0) (.4,1,.5,0) (.4,1,1,.03)

; 0.75350 0.77248 0.88597 0.78729“l

0 (.4,0,0,0)| (.4,.8,0,0) (.4,1,.8,0) (.4,1,1,.02)
0.75724 0.76919 0.86293 0.79397
(.3,0,0,0)| (.4,1,0,0) (.4,1,1,0) (.4,1,1,.01)
0.44583 0.44783 0.39865 0.30693

L (3,0,0,0) (3,.5,0,0) (3,1,.04,0) (3,1,.03,.12)

g 0.45096 0.44670 0.39680 0.30651*

1 (2,0,0,0) (3,.8,0,0) (3,1,.03,0) (3,1,.03,.11)
0.48625 0.44640 0.39807 0. 30665
(1,0,0,0) (3,1,0,0) (3,1,.02,0) (3,1,.03,.10)
0.48142 0.41241 0.39236 0.39910
(3,0,0,0) (3,.1,0,0)| (3,.01,.15,0)] (3,.01,.14,.5)

T 0.48214 0.40027 0.39233 0.39458

B |2.0,0.0) | (3,.05,0,0)] (3,.01,.14,0)| (3,.01,.14,.8)
0.48787 0.39958 0.39239 0.39370'
(1,0,0,0) (3,.01,0,0)| (3,.01,.13,0) (3,.01,.14,1)

Note: ¥ indicates the minimum value 1n Theil U statistics of
each equation associated with the chosen
hyperparameters during the ex post forecast period.

Because of the shortage of data on German real GNP (available only
through 1992Q4). £he missing values must themselves be predicted
first in both GERMANY and LGDP models. The ex-post, or inside-
sample, forecast’perlod for the variable concerned will therefore be
1991Q1-1992Q4. The period,cohmenclng with 1993Q1 will be treated as
ex-ante, or outside#saﬁple{ per1od. In this regard, the practical
forecasts made :»0!1  ‘future' ‘rvalue‘s of German GNP from these two
models are conditional rather than unconditional and are not endowed
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with the same Iinformation set as other formal, model-based

forecasts.13

Once the hyperparameters that seem to lead to the best forecasting
model have been chosen, they are usually re-evaluated only every few
years. More frequent updating of the hyperparameters is expensive,
and experience in searching over the best settings of the
hyperparameters has shown that it would probably yield little gains
in the average accuracy of the forecasts. Although the
hyperparameters are infrequently revised, the coefficients
associated with the chosen hyperparameters are routinely updated
using the Kalman filter (KF) estimation method each time, as a new

data point becomes available.14

The Minnesota system of prior information or beliefs is not simple
to use, but it does give forecasters a flexible way to express
personal bellefs and an obJective procedure for combining those
beliefs with historical data to produce forecasts. In that sense, it
represents a move away from traditional forecasting procedures
towards comparatively cheap Bayeslan procedures that seemed, by the

late 1970s, more promising to at least some economists [see Todd

(1984), pp.28-9].

§6.4 Conclusion

So far, we have developed a systematic six-step BVAR and/or BVAR-EC
modelling procedure that can be readily carried out using the

popular econometric software packages. To implement such a

13For a thorough discussion on the distinction between ex-post and
ex-ante forecasts, as well as that between conditional and
unconditional forecasts, see Pindyck & Rubinfeld (1991), Chapter 8.

14yere, the KF algorithm is applied in this way: ESTIMATE initlalizes
the KF over the pre-forecast period, then the loop executes each
KALMAN command to update continually the estimates till the time of
the forecast period as new observations become available. This opens
the way for estimating and evaluating models where coefficients are
allowed to vary over time and makes it highly useful for model
specification and prediction [see Hall (1993), pp.95-7].
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procedure, the available quarterly time-series data used 1in
estimations and analyses are obtained from various currently
existing IMF, OECD and ONS databanks through MIDAS. Recent advances
relating to unit roots, lag structures and colintegrated relations
are tested in sequence in both specific- and cross-country cases.
The best settings of the prior hyperparameters associated with the
final forecasting models are revealed, making informal use of Theil
U statistics. In the next chapter, the resulting BVAR models that
incorporate both prior and cointegration restrictions will be
estimated and used for forecasting the main European economies,

utilizing the Kalman filter recursions.
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CHAPTER 7

BVAR FORECASTING MODELS FOR THE EUROPEAN ECONOMIES

§7.1 Introduction

The main objective of this chapter is to use the models constructed
as forecasting devices to obtain quarterly forecasts of selected
variables for the leading European economies and to assess the gains
for forecast accuracy from imposing prior and long-run constraints.
The empirical setting-up process of K=4-dimensional BVAR, and also
BVAR-EC, forecasting models based on the chosen prlor hyperparameter
settings and the reported ML estimates of Ap(l):gg’ consists of
three stages. First, the r lagged stationary residual series,
gt—p(=g'xt-p)’ from the previous estimation are included
unrestrictedly in each equation of the system as additional
regressors if there 1s cointegration. Next, the multivariate normal
prior distributions are Iimposed on the other parameters of the
system (except for the constant and error-correction terms).
Filnally, the coefficients of the resulting four-equation dynamic
system satisfying both prior and cointegration constraints are
estimated jointly using the mixed estimation technique proposed by
Theil (1971, pp.347-52). It is hoped that, through this work, we
will be able to generate useful ex ante forecasts; to promote an

understanding of different national economies investigated; and to

capture interdependencies among European economies.

§7.2 Estimated Version of BVAR and BVAR-EC Forecasting Models in
Matrix Notations — An Appropriate Procedure for Sequentially

Updating the :Models’' Parameter Estimates

In retrospect, we know that a typical dynamic forth-order
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four-dimensional BVAR forecasting model can be given by:

4 4
th=CJ+§ ZAJninti+ujt; (7.1)
n=li=
u,,~NID(O, ¢ ; 0.01sp =3.0; 0.01= =<1.0;
3¢™NID( JJ) J Y ik

j, k=1, ..., 4 t=1, ..., T.

Here, (7.1) 1is a set of four recursive equations specified 1in
levels, in which the unknown parameter values are to be

replaced by estimates; and
v and w are the hyperparameters of the prior

J Y 3k

distributions imposed on the lagged coefficients of the

jth-equation of the system.

Litterman (1986a) specifically advises against taking first
differences even if the variables contain a wunit root, since
information concerning the comovements in the data is thrown away.
He argues that the goal of a VAR analysis is to determine the
important interrelationships among the variables, not the parameter
estimates. This 1is especially good advice when constructing a
Bayesian VAR forecasting model with unlit roots, since the belief
that the series has a unit root in lts autoregressive representation
is easily incorporated in the stochastic prior restrictions centred

about a random walk (plus drift) process. [See, for example, Enders

(1995), p.301, and Spencer (1993), p.411.]

In contrast, if cointegration exists, its third-order

four-dimensional reduced form BVAR-EC model can be written as:

A A
vy, =C +;; ):A —z o (7.2)
Jt Jn=111Jn1 nti 1Jsst4 J
th~NID(O, oJJ); 0.01sv,s3.0;  0.01sw, =1.0;
k=1, ..., 4 t=1, ..., T
A A, 4
®s,t-a = %seg "iél st¥i,t-a S=h o T (7.3)
; = s 4 7.4
Ve = ¥y 4oy * Wyps J=1 .oon 8 (7.4)

Here, (7.2) is a group of four estimated recursive equations in
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first differences;

(7.3) is the lagged estimated cointegrating residuals, denoted
EC(-p), included in each of the four equations as an
exogenous variable at full weight along with the intercept
term. It is then computed and updated at each forecast step
to influence continually the forecasts of Vth, j=1,...,4,
assuming that the underlying equilibrium relationships
defined by the r estimated CVs é can be carried over into
the forecast interval;

v, and v w are the prior hyperparameters specified and

J J Jk

imposed on all the coefficlents except the constant and
error-correction terms; and

(7.4) is a collection of four identities required to transform
the four forecasted difference series into the needed level

series, which will then be used to calculate the EC term in

subsequent forecasts.

Based upon these fundamental equations, a selection of the empirical
results of estimated coefflicients, t and R2 statistics for the
proposed two competing quarterly forecasting systems of equations 1

to 4 for the UK can be summarized as in Tables 7.1 and 7.2 below.1

1Here. only the results and analyses for the UK are provided,
otherwise it would be excessively burdensome to report them all.
Similar analyses apply as well to the other cases. .

171



Table 7.1: Mixed estimates of the final BVAR

forecasting model for the UK

significance levels, respectively.

172

Dependent Eq.1 Eq.2 ~ Eq.3 Eq.4
variable LGDP LMO LCPI TBR
Constant 212737 %37 19253912 | '3
LGDP_1 (30974§b 25993 25953 9,384
LGDP_, 122911 10293 12224992 | %0788
LGDP_5 102985 202993 1223317 | %°18
LGDP_, 120281 12893 22387 1208
LGDP_s 259914 25°89 10518362 25994
LGDP_¢ (038 ¢ 16288 211388 %9835
LMO_, 129288 1881 932923 | %°93
LMO_, 122383 162135 2628%} 207981
LMO_, 122847 2158 26°3% %2958
LMO_, 126284 269283 26232 983
LMO_, 2% 62887 12218 2988
LMO_g 9%989% | 21985 (°o°‘z’3 288
FES?-I 22883 1269883 Ji1389P | (%522
LCPI_, 102837 1262859 2125372 | 1%%1%
LCPI5 2628%¢ 1269889 791?38§ %038
LCPI_, 22831 1262888 2:5331° | 7%°8%
LCPI_g 202835 1262839 ©a5387% | 2.°8%
LCPI_g 62887 1259839 1213872 | %28%3
TBR, | 7940885 | 1210887 2:°815® | (82331°
TBR, | %088 | %988} 2°88F | %338
TBR ;| 7%088) | 90°98% 2°983 | 1%°985
B, [7%9999 | %°98% | %83 o
TBR ;| 7%°399 | 1%2%%) 29888 | %898
TBR ¢ 1262198 1269981 162881 ?90?88}
vJ'“Ji’“JZ'ﬁgg .05,1,1,1/.4,.05,.01,.6/3,1,.08,.05,.01,1,.9,1
R 0.9880 0.9994 0.9998 0.7654
SEE 0.0135 0.0108 0.0084 1.3683
SSR 0.0146 0.0093 0.0057 149. 7889
T 104
E'g:::"“ 1970:4-1996: 3
Note: figures given in parentheses denote t-ratios; a and b
‘indlcate statistically significant at 5% and 1%




Table 7.2: Mixed estimates of the final BVAR-EC
forecasting model for the UK

Dependent Eq.1 Eq.2 Eq.3 Eq.4
variable VLGDP VLMO VLCP1 VTBR
Constant 219%2 %953 12273 7278252
EC.q %837 | 98f | %0835 | k0%
VIGDP., | w%°94f | %0888 | %685 | %13
VIGDP_, | %0887 | %°337 | <%l 20844
VLGDP_, 1262899 12185 5 12698%
VLGDP_, 126282 126281 133 29557
VLGDP_g 26988 16°%8 21133 126958
VLMO_, 2°849 2318 113892 9248
VLMO_, 126982} 9:2283° | 1988 171188
VLMO_, 262889 10288 1233 10758
VLMO_, 126283 1262389 2288 0. 8%
VLHO_g 1262883 183} 22825 90426
VLCPI_, ‘° 9%} | %% UILL® | 176%1%
VLCPI_, 79 0834 | 1%%%8 122897 3788
\7l.cPI_3 ?9698% 91140 10;1484 16538
VLCPI_, 126283} 22885 955333P | 17412313
VLCPI_4 126983} | 1%°%1%¢ 2:2285° | 29:°38
Efff-x 12889 | 122899 920983 | %:°8%
VIER_, 69889 | 1%°88% %913 7° £33
VIER_, %°888 | %°889 9i°2°7 231585
VIBR_, 76°889 | %839 | %:°88% | <°i%3
VIBR_g 12°888 | 22839 oy | s
VJ’"JI’"JZ'"JS .01,1,1,.01|.4,1,1,.02(3,1,.03,.11/3,.01,.14,1
Rz 0.0118 0.3677 0.6803 0.2203
SEE 0.0142 0.0107 0.0093 1.2304
SSR 0.0160 0.0090 0.0068 119.5946
T 104
~ Estimation 1970:4-1996: 3
period ;
and b

Note: flgures given in parentheses denote t-ratios; a
indicate statistically significant at 5%
significance levels, respectively.

and 1%

For comparison, the point estimates for both BVAR and BVAR-EC
forecasting models were made (at the end of the maximum possible
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sample) by mixed-estimation for the same set of variables over the
same estimation sample period. It may be seen from Table 7.1 that,
among the four linear estimated equations of the ‘final’ quarterly
BVAR forecasting model, the estimates recovered from the whole
sample for all but UK’s LCPI appear to be a random walk process. The

LCPIl may be better expressed as a random walk about a trend process.

It can be seen from Table 7.2 that among the four estimated
equations of the reduced form BVAR-EC forecasting model, both VLGDP
and VTBR behave more or less like a ‘white noise’ process. The
constant as well as the error-correction term appears to be
statistically significant for UK's VTBR within the system. This
confirms not only the standard prilor for nonstationary series which
has one unit root but also the standard white noise-like prior for
stationary series. Since these variables are likely to be close to
white noise, they may be easily buried in and hardly picked out from
the disturbance terms. VLCPI and VLMO, however, show statistically
significant dependence on the past. VLCPI also shows a significant
relationship with the first lag of VLMO and of VTBR.

Many of the parameter estimates of the models turn out to be
statistically insignificant at conventional significance levels. The

decision as to whether the ‘true’ parameter values are really zero

is sometimes of crucial importance. The finding of a t-statistic

within some given distance of zero might mean that the coefficient
is really zero, or it could simply be that the data do not contain
enough information to show convincingly that the coefficlent 1is

significantly different from zero. This problem is exacerbated in
because of the

the t-tests on

the case of existence of serious multicellinearity,

increased probability of type II error. Hence,
individual regression coefficients may not be reliable guldes for

‘paring down’ the model. [For an excellent and lucid account of the

analysis, see Steward (1986), pp.129-34.]

A slightly different approach to the significance test may be
adopted. Instead of using the critical value for a particular
significance level as a definite boundary between acceptance and
rejection of the null hypothesis, the reported statistics are viewed
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as an indicator of the performance of a particular regressor in
explaining the dependent variable, especially when the presence of
multicollinearity is suspected. In taking such decisions, some
weight should be given to any prior beliefs concerning the role of
the variable in question and also to the 1likely costs of
misspecification that would result from taking the wrong decision.
If there is reason to believe that a variable was relevant to the
explanation of the behaviour of the dependent variable, a small
value of t-ratio might indicate the need to experiment further,
rather than be as definite evidence that the corresponding
coefficient 1s zero. This would be especially true of a variable
that could be subject to very large changes. In such a situation,
improperly treating even small nonzero values of coefficients as if

they were zero could lead to rather serious errors when the model is

used for forecasting or policy simulation.

As shown in Table 7.2, the estimated coefficlients of
error-correction terms, EC(-6), in all but VLCPI equations appear to
be ‘desired’ negative. At the same time, the coefficient attached to
the EC term in VLCPI equation appears to be ‘unwanted’ positive. The
appearance of the positive sign in VLCPI could suggest that a given
cointegrating relationship in the past may not be appropriate for
use in this equation much beyond its range of estimation. It could
also suggest that the specification of the model is appropriate, but
that many coefficients have evolved through time due to structural
breaks and regime shifts. If this 1s the case, it may be a caution
extending the so-called ‘long-run’ cointegrating

agalinst
relationships for real-time forecasts farther into the future.

In what follows, the experiment-based BVAR as well as BVAR-EC
versions will be used in both individual- and multi-country contexts
to produce a series of one-step-ahead quarterly forecasts for the
principal western European economies. Certain properties of the
forecasts obtained will be tested and the forecasting performance of
alternative empirical models can then be analysed and compared. In
addition, the resulting forecast errors, defined as actual minus
forecast, can be decomposed into avoidable (systematic) and

unavoidable (stochastic) components.
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§7.3 Prediction and Evaluation of Estimated BVAR Forecasting
Models for the European Economies

Once a BVAR or BVAR-EC forecasting model has been properly specified
and estimated on some given set of data, the genuine ‘out-of-sample’
forecasts about future observations can be made by extrapolating the
models beyond the period over which they were estimated. As well as
being useful for policy formulations, ex ante forecasts also have
the potential for evaluating model reliability. A forecast which is
found to be way off target when actual data are avallable provides
evidence which may lead to the revision of the model that provided

the forecast (see Pindyck & Rubinfeld, op. cit., pp.180-4).
7.3.1 Construction of Short-Term Successive Forecasts

In this work, the computation of successive l-quarter ex-post
forecasts from 1991Q1 onwards was done recursively using KF
techniques to update the estimation with the passage of time first.
Sequences of l-quarter ex ante forecasts for the period one or two
years ahead of the date of publication were then calculated based on
the estimated BVAR and BVAR-EC models 1in both single- and
multi-country context. The ex post and ex ante forecasted series of
the variables being modelled with either a general (G) prior (narrow
golid line) or a symmetric (S) prior (long dashed line) and the
actual series (broad solid line) over the period 1991Q1-1998Q4 for

the four principal European economies are appended and shown in

Figs. 7.1 through 7.56.2

It would seem from these graphics that, for many variables, the
fitted BVAR and BVAR-EC forecasting models have succeeded in
capturing the overall trends of the actual series considered. What
the forecasts fall to take into account 1is the ‘lag-effects’
tracking these variables at turning points of the business cycles.

iAgain. only those figures for the UK are given here. The time plots
of forecasts versus actuals for the other countries can be found in

appendix F.
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Some observed practical difficulties involved in the forecasting

process need to be accentuated.

As can be seen from Figs. 7.1-7.4 for the logarithm of UK real GDP,
while moving in the same directions as the original series, the
forecasted series (made either in a single- or a multi-country
context) cannot fully reflect the onset, depth and duration of the
latest economic trough, namely 1991Q1-1992Q4. Similar problems have
also arlsen for Germany’s real GNP over 1991Q1-1992Q4, and for the
level of output in France and Italy over 1992(Q2-1994Q2, as the
period unfolded. Although this in itself may not be surprising, what
is unusual is a significant consistent, or systematic,
underprediction of UK output growth in cross-country forecasts over
a two-year period from 1993Q1 to 1994Q4, and a sustained run of
overpredictions in single-country BVAR-EC forecasts over the period
from 1994Q4 onwards. The most likely explanation for the former is
the lack of data on German real GNP, whlile the latter largely stems
from the inclusion of the EC term much beyond the end of its

estimation period.

Poor forecasts may happen when there are strong cyclical movements
in the dependent variable that are Inherently difficult to
anticipate. In this case, even if a model has a good fit ‘;,m,
statistically significant parameters, 1t may still forecast very
weakly. A deterioration in forecasts may also occur when shifts in
underlying behavioural relationships have not yet been fully
incorporated into the model representation. If this poor performance
appears to be due ‘to an extraordinary event (such as dramatic
oil-price developments or government policy changes) that are not
accounted for by the model, another round of forecast has to take
place before the model is proved unreliable. By contrast, good
forecasts may happen when there is very llittle fluctuation in the
dependent variable. In this case, even if a model has a relatively
low RZ and some insignificant regression coefficients, it may still

predict quite easlly. The forecasts for UK's MO and CPI are notable

examples.
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Additionally, as shown in a group of Figs. 7.12-7.15, with the
exception of single-country BVAR-EC forecasts, the forecasted series
under a general prior underpredict UK’s interest rates through most
of the period of 1991Q1-1994Q1, but then overpredict them during
most of the 1994-1995 quarters. It can, therefore, be anticipated
that the resulting ex ante forecasts with a general prior will be
substantially below the actual interest rate series for the UK in
most cases. Also, the corresponding forecasting results appear to be
relatively sensitive to variations in the prior hyperparameters.
These are similar to the forecasts of the short-term interest rates
in the other three countries. The 1inclusion of cointegration
restrictions, however, seem to reduce the sensitivity of forecasts

to a great extent across the values of hyperparameters.

As regards prior restrictions, it is found that although in most
cases forecasts with a proper general prior are better than those
with a simple symmetric one, the gains for models of modest size in

terms of improved forecast accuracy are in many cases only marginal.
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On the other hand, with respect to cointegration restrictions, it is
found that as the forecast horizon lengthens, there is 1little
benefit for forecast accuracy from imposing reduced rank
cointegration restrictions unless the sample size is small. That is,
relative to BVAR forecasts, cointegration restrictions add little to
forecasting, though the empirical BVAR-EC models are time-consuming
and costly to build. From a practical viewpoint, in short-term
forecasting, this point is quite important as it implies that the
simple, 1inexpensive BVAR models themselves may provide a robust
standard of comparison for forecasts produced by more classical
methods. To pursue this matter further, we consider the following

forecast appraisals and model comparisons on a quarterly basis.

7.3.2 Statistical Assessment of Forecasts and Model Evaluation

The main aim in this section of the study is to use forecasting
itself as a means of model evaluation. The intention is twofold. The
first is to analyse the ‘rationality’ of past economic forecasts in
terms of their unbiasedness and efficiency. The second is to compare

the forecasting performance of alternative models over the ex post

forecast horizons.

7.3.2a Tests of the Efficiency and Unbiasedness
Properties of the Forecasts

An appropriate simple regression exercise allows us to examine
whether the individual forecasts described above can be saild to

satisfy the minimum requirements expected of an efficient, or

optimal, forecast.

(1) A test of efficiency

If YJt is taken to denote the actual outcome, and t-i?Jt the
forecast for time t made at time t-i, one standard test of
efficiency by Mincer and Zarnowitz (1969, p.9) involves a joint test

=0 and BJ=1 in the ‘realisation-forecast’ regression:

J .

of a

th'a-,aJ + 8, t_i?Jt tep, J=1 ... K (7.5)
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Rejection of the null implies that the forecasts could be improved

by knowledge of the aj and B, parameters and therefore provides

J

evidence of inefficiency in the forecast. In particular, since

Y =

jt Te-iVgp v e

Jt’
the estimate of the slop coefficient (B ) in the above regression
only deviates from 1 if the forecast (t-i?jt) and the forecast error
(ejt) are correlated. Such a correlation indicates that the forecast
is not making efflcient use of the given information and therefore
it would be possible to improve the forecast by exploiting the
correlation. For details, see Pain and Britton (1992, pp.81-93), and
Wallis (1989, pp.44-6). A significant deviation of the estimates of
aj and BJ from O and 1, respectively, does not necessarily imply
significant bias, for the efficiency hypothesis that aj=0 and Bj=1

is only a sufficient condition of unbiasedness, i.e.:

E(vJt - t_1?Jt/1t_1_s) = 0. (7.6)
Here, It-i-s is the information set avallable at the time of the
forecast; s is the ‘information lag’ — the time between the latest

available observed data and the time at which the forecast is
prepared; and E denotes an expectations operator. A necessary and
ition for the absence of blas is a . =[1- S
sufficient cond 3 (1 BJ)E(t—iyjt)’
revealing that the forecast error has an expected value of zero.

Granger and Newbold (1986, p.284) raise a practical objection to the
so-called ‘efficiency’ underlying the realisation-forecast
regression. They argue that the hypothesis aJ=0, BJ=1 constitutes
only a necessary condition for forecast efficiency, since it
neglects possible autocorrelation of the forecast error. Generally,
the serial autocorrelation of errors Iindicates an 1inefficient
forecast, as knowledge of past forecast errors for the varlable in
question can then improve current forecasts. Even in an optimal
n~step-ahead forecast, such an autocorrelation may still appear but
is of order n-1, not n; so it cannot be expected to improve the
forecast [for further details about the test of efficiency, see

Wallis (1989), pp.44-6].

187



An alternative approach proposed by Figlewski and Wachtel (1981) for
efficiency is to test the joint hypothesis of aj= J=0 in a

regression of the forecast error on the most recent error perceived

at the time of the forecast:

Yieme-1¥e = %5 * By(Yy ey gmeoson¥y eogog) * 6y (72D
J=1, ..., K.

This means that efficient forecasts should make best use of the
information contained in pass errors. In other words, forecasters
always try to learn from their mistakes made in previous forecasts.

See also Holden and Peel (1990), and Zellner (1986).

(2) A test of unbiasedness

A standard test for bias is thus to test the null that “j=0 in
(7.8):

a, + €

J g0 4= Lo K (7.8)

Yoo " t-17gt =
It is also useful to amend (7.7) and (7.8) so as to investigate
whether the above forecasting results are sensitive to particular
unanticipated exogenous shocks (such as an oll-price rise, financial
shocks and major legislative changes). Such unforeseen events can

generate large outliers 1in the observed forecast errors. The

resulting equations augmented by dummy variables take the form:

Yoo = e-a¥ye =25 * B30V to1n 7 211y, eone1) (7.9)

+ SJIDUM(i) + eJt’
and

=&

Y + inDUM(il + € (7.10)

gt T t-1Tgt T %y Jt

For simplicity, the empirical tests for the quarterly forecasts will
be based on (7.7) and (7.8), and the corresponding testing results
made since 1991Q1 are reported in tables 7.3 and 7.4.
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Table 7.3: Test of efficiency hypothesis aJ=BJ=O

A

(Y 5ememn T 5em%5*B (V5 boimamtpi-1Yy, boi-1) 2 50)

Dep SCM MCM
P BVAR BVAR-EC BVAR BVAR-EC
I T T T T L I L

ukLeor| 9995 | (1288% (72923 | (1883™| 10935 |(25378%) °89) |5%i5Y
UKLMO 17:999% [-9%431 [7-°9%% [¢=°78% [1=°98% | (1437 | °897 | (°48S
ukrcpr | :992% | (1839 |7-°98% |(-%234,|7-288% |1-2188)

ukTBr |7:185% | 13880 |1:-3%%h |« 3LRT™ 1780y | (13851 |7-2%35) | (13888
GERLGNP | :2998, | «1335%17-2988,| (°3&5"|7-°9%% | (°83% |7-3'%3,)7-°3e%"
GERLM1 | 1:9985 |-2628%7:-298%, ¢-11%38Y)7-980% |<:11%9, (=097 |t-1174,
GERLCPI | (1734 (1339 | (19948 |1:-3943,| (2093 |v-°385"

cerTBR|:1487, | (°85% |[7-1588) =082 | «238) |1-°357 [-3'83)| (1245
FRALGDP| 29995 | (1284 17:99%%)| (293 |7=°%3% | (2347 |v-9°2%,| (°%3}
FraLM1 | :0998 | (1839 | (°98F | (1349 [7-983% | (183 |7-918%, | (liSS”
FRALCPI| ©389 |7-198F | «°9%% | (0887 |1:2°85)| °38%

FRATBR| 122885 [-9399 |7:284% |(=°%F) |1-1%8%) 1-08%) [114°83F7-3418Y
ITALGDP]1:%997 |7-13} 18948, |1-3597%¢-914%, | 1-3%12%

1TALM1 | 9925 [7-9%37 129978, [1-9387 |7-9%%%)|7-°%81*
1TALcPI | =998 |1:98%] °98} | 1283

1TATBR] :°7% | (13839 1-9387 | (1288} |7-'88% |.123%%

Note: (1) SCM stands for single-country model and MCM for multi-

country model;
(11) The values within (°*) are t-ratios;
(111) % indicates inefficient forecast at 5% significance

level.
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Table 7.4: Test of unbiagedness property
égfo (th-t-iygt=aj+ejt)
Dop SCM MCM
vop BVAR | BVAR-EC| BVAR | BVAR-EC
ai, ag o oc‘-j

UKLGDP| (Z1%833 | (Z3°28F%| (5°93%% 1-9994
UKLMO | 7-293% | 1=°98% | 7-°9%% | (°2%%
UKLCPI| (=897 | 1-989% | (-99%3

UKTBR | (212887 | (Za%889"™| (Z1283F | (=53345"
GERLGNP| (Z2°985" | (Z2°289™| ©-°997 |(-3°49%*
GerLM1| 28%% | 7-998 3%} 024
GERLCPI| (i%83Y | (1°93% | (2°015*

GERTBR| (-2789) |(z2'831™| (23%} | (53845
FRALGDP| ©=%83} | (Z2°931™%| 7:9949 | (Z2°9%5*
FRALM1| ©-998% | 7:9939 | (219287 | zs0%Z%*
FRALCPI| 19899 | (999% | (-20045*

FRATBR| 71955 | 121399 |(=2%09%*| (-a%%335"
1TALGDP| :92%7 (227935%| (240957
1TaMa | (19838 | —— | (229819 | (Za373*
rracer| %8%% | —— | %1%

1TATBR| 71-°%%% 1497 | 7-18%¢%

Note: (i) SCM stands for single-country model
and MCM for multi-country model;

(i11) The values within (*) are t-ratios;

(111) ™ indicates significant bias at 5%

level.

Of the 56 cases conslidered in Table 7.3, the efficiency hypothesis
is rejected at the 5% significance level in 16 cases. But 19 of the
56 cases are found to be biased according to Table 7.4, with many of
the inefficlient forecasts also belng biased. Comparing the two
tables, it can be seen that 1ln most cases the inefficlencies in the
forecasts associated with a significant intercept term (aJ) will
simply confirm the biases, and that many such bilases appear to be
upward, implying a systematic overprediction over the forecast

period as a whole.

The results are consistent with earlier studies in showing that the

observed forecasting difficulties arise largely from GDP/GNP growth
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and short-term interest rates across four selected variables, which
account for nearly 70% and 80% of rejections in the respective
hypotheses tests of the forecasts. Especially for forecasts of
Germany’s real GNP, only one of the four cases, namely the cross-
country BVAR forecasts (one-step-ahead) over the period 1991Q1-
1992Q4, fail to reject the null of efficiency and of unbiasedness.
However, as with the previous studies, the evidence of efficiency
appears greatest in the forecasts of single-country BVAR forecasting
models over the period from 1991Q1 onwards, with the null only being
rejected for Germany’s GNP and M1 at conventional levels. These
results can be further confirmed through the following forecast

comparisons across alternative models.

7.3.2b Comparison of Alternative Forecasting Models

The forecasting literature has a long history of assessing the
relative accuracles in predictions of alternative models using
appropriate statistical tests, and of taking these assessments as an
important input 1Into the forecasting process, since without
comparison we could never say which one is ‘good’ and which one is
‘poor’. A useful, but controversial, principle is that if one group
consistently outperforms another, then the poorer of the two cannot

sensibly be wused for policy purposes, which makes forecast

comparisons important.

For simplicity, only the one-quarter-ahead forecasting performance
of the BVAR verslons is systematically compared with that of their
BVAR-EC counterparts for Europe’s major four economies, based upon
the Theil U statistlics reported in Tables 7.5 through 7.8. Since the
two groups of forecasters ‘breath the same air’ with exactly the
same vector contents and forecast horizons, the tedious problem of
the ‘alignment’ of base-line Iinformation assumptions embodied in

different systems can be avoided.

The comparison of Theil U statistics in Table 7.5 demonstrates a
relative superiority of the single~-country BVAR models over the
other specifications for the UK economy. For the one-quarter

forecasts of the four macroeconomic aggregates of Iinterest, the
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single-country BVAR forecasts have the smallest Theil U values in 3
out of 4 cases and all of these values are less than unity.
Additionally, the root mean squared errors (RMSEs) are well above

the mean absolute errors (MAEs) in all cases.

Table 7.5: One-step-ahead forecast comparison
for UK economy: BVAR and BVAR-EC

ezs Model Criteria
ME | MAE | RMSE |Theil u
¥ sou-| _BVAR [-0.0013] 0.0028| 0.0042 0.6573"
L BVAR-EC|-0.0052| 0.0055| 0.0069|0.7528
¢ [Mcu-| BvAR | 0.0000] 0.0036| 0.0046|1.0429
P |X6DP!gyar-£c|-0.0078| 0.0078( 0.0080|0.8897
U [scu-| BvAR |-0.0002| 0.0040| 0.0049]0.3582"
L | ™ |BvAR-EC-0.0031] 0.0036] 0.0047|0.7873
M [McH-| BVAR [-0.0006| 0.0046| 0.0057]0.4082
O [LMON| gy ar-C|-0.0022| 0.0030| 0.0037]0.6866
g SCM-| BVAR |-0.0007| 0.0046| 0.0054]0.5339
L | Y [Bvar-Ec| 0.0001| 0.0031| 0.0036]0.3065"
C |
P |lcer| BVAR |-0.0013] 0.0068| 0.0079)0.7723
U |soM-| BVAR |-0.2587| 0.4575| 0.7645]0.9792"
¥ UK | BvAR-EC|-0.3083| 0.5101| 0.7825|0.9937
B |McM-| BVAR |-0.2922| 0.4659| 0.7677]0.9833
R | TBR ovan-EC|-0.4865| 0.4865| 0.8344]1.4800

Note: (1) SCM stands for single-country model; MCM
for multi-country model; ME for mean
error; MAE for mean absolute error; and
RMSE for root mean squared error;

(i11) ® indicates the ex-post forecast with
the lowest Theil U statistic.

The evidence that the BVAR model is substantially more accurate than
its BVAR-EC counterpart may also be shown from Table 7.6 in the
forecasts for the German economy. Although the forecast results in
this case cannot be matched with those in the previous one, the
relafive pattern of forecast performance is not reversed. The
resulting Thell U statistics indicate the comparative advantage of

the single-country, and of the cross-country, BVAR models over the
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other versions in a quarter, and a half, respectively, of the number

of cases examined.

Table 7.6: One-step-ahead forecast comparison for
GERMAN economy: BVAR and BVAR-EC
E:E Model Criteria
_ ME MAE RMSE |[Theil U
g SCM- BVAR }1-0.0075| 0.0104| 0.0117]1.3272
GERMANY
L BVAR-EC}|-0.0104| 0.0120| 0.0134{1.0600
g MCM-~- BVAR |-0.0009{ 0.0071| 0.0085 0.9638‘
P LGDP BVAR-EC|-0.0086| 0.0128| 0.0145(1.2226
G ]|SCM- BVAR | 0.0147| 0.0408| 0.06450.9518
5 G BVAR-EC|~-0.0024| 0.0149| 0.0155{1.3343
M | MCM- BVAR | 0.0061| 0.0172| 0.0363]0.8421
1 LMON BVAR-EC| 0.0310/| 0.0493| 0.0811 0.6934‘
€ som- BVAR | 0.0041] 0.0044| 0.0051|0.5183"
E GERMANY
L BVAR-EC| 0.0031] 0.0045| 0.0059;1.2878
C1 mcn-
P BVAR ] 0.0019| 0.0035| 0.0045]0.5235
I LCPI
G |SCM- BVAR |-0.0605| 0.2389| 0.3758]0.9081
% GERMANY BVAR-EC]-0.3989| 0.3989| 0.6786(0.9831
B | McM- BVAR | 0.0171| 0.2591| 0.3284|0.8339"
R TBR BVAR-EC]|-0.1366| 0.1366| 0.1874|0.8509

Note: (i) SCM stands for single-country model; MCM
for multi-country model; ME for mean error;
MAE for mean absolute error; and RMSE for

Root mean squared error;
(i1) ® indicates the ex~-post forecast with the
lowest Theil U statistlc.

A perusal of the Theil U statistics summarized in Table 7.7 finds
that the BVAR models outperform their BVAR-EC counterparts in most
cases for the French economy. The single-country BVAR models have a
superior forecasting performance to the others in 3 out of 4

instances, although there is one case in which the Theil U statlstic

exceeds unity.
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Table 7.7:0ne-step-ahead forecast comparison for
FRENCH economy: BVAR and BVAR-EC
3:2 Model Criteria
ME MAE RMSE |Theil U
-E SCM- BVAR |-0.0011] 0.0047| 0.0062]0.8929"
FRANCE
L BVAR-EC|-0.0041| 0.0041| 0.0052|1.3308
g MCM- | BVAR |-0.0027| 0.0038| 0.0045|1.0719
P | PP |Bvar-Ec|-0.0068 0.0068| 0.0074[1.5164
F |scu- BVAR [-0.0025] 0.0123| 0.0168]1.0725%
f FRANCE | pyaR-EC|-0.0199( 0.0199] 0.0231]1.0831
M | McM- | BVAR [-0.0057| 0.0133] 0.0176(1.1409
1| LMON |y an-Ec)-0.0349] 0.0329| 0.0371|1.2890
T son- BVAR | 0.0000] 0.0019| 0.0026|0.4587"*
R |rRaNcE
L BVAR-EC|-0.0012| 0.0023| 0.0030{0.5223
C1 Mou-
P BVAR |-0.0016| 0.0025| 0.0033/0.5850
; | Lepr
F |scu- BVAR |-0.1066| 0.6083| 0.9742(0.9810
¥ FRANCE | gy sn-£c|-0.0919| 0.5401] 0.8626]0.8987"
B | McM- | BVAR |-0.4092| 0.6703| 0.9861|0.9930
R | TBR 'pvar-EC|-0.3736] 0.7512] 1.0681/1.0934

Note:

as shown in Table 7.8,
capable of producing forecasts comparable in quality for the Italian
economy. According to the table, the results of single-country BVAR
forecasts would still appear to be fairly encouraging and the

(1)

(i)

SCH stands for single-country model; MCM
for multi-country model; ME for mean
error; MAE for mean absolute error; and
RMSE for root mean squared error;

# indicates the ex-post forecast with the
lowest Theil U statistic.

corresponding U values reported here are all satisfactorily below
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Table 7.8:0ne-step-ahead forecast comparison for
ITALIAN economy: BVAR and BVAR-EC

3:£ Model Criteria
ME MAE RMSE |Theil U
SCM- »
ITALY BVAR |-0.0007| 0.0040| 0.0055|0.8206

MCM-| BVAR [-0.0025| 0.0031{ 0.0050/1.0168
LGDP BVAR-EC{-0.0051| 0.0051] 0.0064]|1.3402

SCM- »
ITALY BVAR }]-0.0036| 0.0139] 0.0172|0.8417

MCM-| BVAR |-0.0070| 0.0150{ 0.0181{0.8980
LMON BYAR-EC}-0.0005| 0.0131]| 0.0159|0.8676

SCM-
ITALY BVAR | 0.0000| 0.0025| 0.0033|0.2744

MCM- »
LCPI BVAR | 0.0003; 0.0021| 0.0031|0.2580

SCH- -
ITALY BVAR |-0.0255{ 0.7981| 1.0886|0.9999

McM-| BVAR [-0.1403| 0.7207] 0.9884|0.9078
TBR| gyar-Ec| 0.4064] 0.6367] 0.7553|0.8000"

DW= [ mvO FJ Ll el ol L) CIC!P'h!hJ

Note: (1) SCM stands for single-country model; MCNM
for multi-country model; ME for mean
error; MAE for mean absolute error; and
RMSE for root mean squared error;

(11) ® indicates the ex-post forecast with the

lowest Thell U statistlic.

Overall the results are mixed. It may be concluded from this
particular application that the single-country BVAR forecasts one-
quarter-ahead are, on average, marginally superior for the four
leading European countrles across the alternative forecasting models
under study. Of the 16 comparisons, the single—coﬁntry BVAR
forecasts are more accurate in 9 cases. Perhaps, the least accurate
forecasts generated by both BVAR and BVAR-EC models are those
assoclated with the interest rate on Treasury bills, where the
reported Theil U values generally appear to be the largest

throughout the experiment.
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§7.4 Conclusion

In this chapter, the empirical BVAR forecasting models are estimated
and employed to generate one-quarter-ahead ex post and ex ante
forecasts of some key macroeconomic variables for the four major
European economies with the aid of KF estimation technique. The full
results obtained from the mixed-estimated BVAR and BVAR-EC models
are illustrated with charts over the forecast horizon, 1991Q1-
1998Q4, in both specific- and cross-country context and as reported
in Appendix F. The assessments of the efficiency and bias of the
forecasts as well as the comparisons of the Theil U statistics
indicate that in overall terms the single-country BVAR models emerge
as providing a high standard of forecasting, especially for small

sample sizes and long forecast horizons.

However, thls conclusion has to be treated as tentative. An
improvement for forecast accuracy could be gained occasionally from
imposing cointegrated combinations of variables within or across the
countries. In fact, such cross-model comparisons cannot be used to
rank models because, as we observed, under an appropriate
forecasting criterion (e.g. Theil’s U statistic), no one forecast
set ‘dominates’ another for all variables over all time horizons. It
would, therefore, be more frultful to regard several different

approaches less as rivals than as complementary tools that can shed
different kinds of 1light from different viewpoints on our
projections of what the potential rule for each of the series would

be like in the future. See Granger (ed) (1991), pp.1-23.
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CHAPTER 8

LR e e et — e i i £ o)

§8.1 Summary

Recent forecast fallures in the world economy clearly highlight the
importance of exploiting the sources of forecast accuracy, both for
their substantive implications and for their implications as to how
we should improve our methodologies in order to provide the best
strategy for macroeconometric modelling. It 1is now generally
recognized that macroeconometric models are important tools in the
hands of analysts. They are used, inter alia, for explaining
economic phenomena, making forecasts and assessing policy changes,
and their usefulness is unlikely to be superceded by other methods

in the foreseeable future.

However, much work still needs to be done on alternative research
strategies. The economic theory-oriented approach related to the
Lucas critique and the rational expectations hypothesis (see, for
example, Lucas and Sargent, 1981) has criticized the modelling of
expectations and casts considerable doubt upon the invariance of
so-called structural parameters. The time series-oriented criticism
has questioned the existence of legitimate prior theoretical:
knowledge and emphasized the significance of the Joint temporal
structure of the observed data on relevant variables (Sims, 1980a,
1982). The Bayesian-oriented school of thought, for its part, has
criticized the ad hoc nature of traditional econometrics and

prescribed a more formal treatment using appropriate techniques

{(Litterman, 1980, 1986a).

The explicitly Bayesian forecasting procedure with stochastic priors
provides key insights intoc the process of macroeconometric

modelling. It allows the problem of overfitting to be amelliorated,
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and creates useful and natural vehicles for working with the
available data (Shoesmith, 1990, 1992). In this study, a systematic,
practical six-step procedure has been developed for the formulation,
estimation and selection of appropriate BVAR and BVAR-EC forecasting
models. Their worth has been suggested as an operating system for
forecasting the European economies, not only in the realm of
scientific discourse, but also in the domain of practical
applicability, thereby laying the groundwork for further
improvements. In addition, some of the conclusions obtained have
contributed to an improved understanding of the workings of some of

the major European economies.

§8.2 Main Contributions

The main contributions made in this work can be summarized as
follows:

(a) A large macro data set 1s assembled from the currently
existing IMF, OECD and ONS databanks through MIDAS, and then
transformed and analysed for the European economies. :

(b) Some forecasting records for the major European countries in
the process of transition are examined, and the interactions among
national economies are evaluated.

(c) Appropriate BVAR and BVAR-EC forecasting models for the UK,
Germany, France and Italy are selected in both a single- and a
multi-country context.

(d) Probablility elicitation 1In Bayesian methodologles is
conducted and programs using Bayesian networks are designed.

(e) Estimation and testing of unit roots and multicointegration
in systems of equatlions are carried out.

(f) The best settings of the scalar prior hyperparameters are
determined.

(g) Cointegration and BVAR techniques are combined.

(h) The rationality of forecasts in terms of their efficiency

and unbliasedness properties 1is assessed, and the systematic

comparison of alternative forecasting models is implemented.
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(i) Forecast errors are decomposed into avoidable (systematic)

and unavoidable (stochastic) components.

In terms of empirical practice, there are three main arguments in
favour of Bayesian methods:

(a) BVAR models with a proper prior have a superiority in coping
with nonstationarity in the data as the presence of unit roots
cannot affect Bayesian asymptotics [cf. Phillips (1995c), p.93].

(b) BVAR models have inherent protection against
overparameterization and can consistently outperform traditional
methods by providing more precise forecasts in finite samples [cf.
Koop & Potter (1727), p.10]. This highlights the importance of using
BVAR in prediction.

(c) Long-run cointegration restrictions can reduce the
sensitivity of BVAR forecasts across the values of prior
hyperparameters, although imposing such restrictions may make little

benefit for forecast accuracy, sometimes substantially so.

In conclusion, it may be sald that the relatively simple BVAR
models, which combine both prior and sample information in a
flexible coherent manner, can lead to value-added in terms of
forecast accuracy over classlical methods, although as Artis et al.’

(1990b, p.16) point out:

the BVAR models must be ‘tuned’ correctly to
achieve such results; inappropriate priors could
yleld less clear cut conclusions.

In general, we concur with the argument that the BVAR forecasting
models, on a priori grounds, can act as a highly effective standard
of comparison for forecasts produced by more conventional methods.

§8.3 Problens

BVAR models have inherited the main advantages of UVARs in that they
can generate unconditional forecasts without either designating
which ~ economic variables should be treated as underlying
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determinants, or requiring the explicit theoretical restrictions.
They can also avoid the overparameterization faced by any but very
small UVAR models by incorporating the priors derived from
statistical regularities. Unfortunately, it 1is these elaborated
priors that put the BVAR approach under challenge.

The most commonly cited criticism of the BVAR models is that they
are subjective, unscientific, or even capricious, relative to
standard models, so that although they may capture the general
tendency in the future, they cannot detect the significant cyclical
turning polints. Even if models of this class possess superior
forecasting qualities, their usefulness would be in doubt if they

could not enforce consistency or accommodate variation for policy or

structural changes.

According to our records, no one model has ever given a perfect
account of economic behaviour through time. There are a number of
explanations for this. Given the complexity of ‘real’ economic
systems, 1t 1s not surprising that forecasts are subject to errors.
Some of the errors may be due to the stochastic nature of data and
lack of knowledge of the parameters of the models. The parameters
themselves may change over time in an inherently unpredictable way,
so that the prior weight matrix may be both data- and
time-dependent. All of these may lead to the deviation of forecasts
from realized observations. However, one thing is certain. As long
as the prior and cointegration restrictions are carefully chosen,
and as long as the basic assumption that the same stochastic process
will hold both durlng and after the estimation period is acceptable:
[Sargent (1984), pp.411-2], the gains from adopting BVAR and BVAR-EC

models can be significant.
§8.4 Prospects for Future Developments

While the procedure developed here is likely to be useful, there are
several directions ih which it might be extended. The first of these
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is to include an option to relax the restrictions of the standard
Minnesota prior by specifying more general prior distributions that
allow for dependencies between the VAR equations. In some cases, for
example, economic variables are not well characterised as trending
stochastically. Consequently, the standard Minnesota prior 1is not

appropriate and an alternative prior is called for.

BVAR and BVAR-EC models are adaptive in nature. They represent only
our best state of knowledge at a given time and use exclusively the
previous information to adjust our ex ante forecasts mechanically.
An intriguing avenue for further research would seem to be the
development of the optimal forecast combination methodology using
anclllary indicators in a Bayesian framework. In practice, much of
the research to date demonstrates that forecast accuracy can be
substantially improved through aggregating over multiple competing
forecasts [Clemen (1989), p.S559], a phenomenon supported by sound
empirical results but which appears to be inconsistent with the
encompassing approach. In theory, it should be possible to attain a
single, catholic analytical model through the pooling of alternative
information sets usea by the component forecasts in the combination.
This 1s certalnly consistent with the encompassing approach but

would appear to be elther impossible or prohibitively costly.

In this respect, an eclectic but more comprehensive technique would
be the combination of multiple forecasts with extraneous information
developed by Fair & Shiller (1990), which entails treating forecasts
themselves as pleces of information in a formal, general Bayesian
framework. The motivation for bullding such a general Bayesian model
by the effective use of additional information is, at its most basic
level, the simple idea of the quest for ‘rationality’ in terms of
both new information employed and increased forecast accuracy. This
is, perhaps, a second best way forward but it is consistent with the

literature of encompassing tests and of composite forecasts.
Another extension which may significantly improve forecast accuracy:

is the allowance of time-varying parameters. Doan et al. (1984) and
Sims (1989) have done excellent work in constructing BVAR models
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with time-varying parameters. Such an extension is likely to be most
useful when the model appears to wander from the actual path.
Furthermore, the extension of the methods to models with seasonal
components, non-Gaussian and non-linear models for economic time
series may also be sources of Iimproving forecasts. Finally,
‘impulse-response’ policy simulations can be carried out in a
multi-country context to determine how actual economies would react
to specific shocks and, thereby, to investigate how a government
would apply monetary and fliscal policles to pursue certain

objectives in general environments.

Ultimately, it is anticipated that, with advances in econometric
techniques, a fully formalised computable model could be established
to deliver frequently optimal ex ante forecasts in the near future.
In any case, it is essential that a macro model can interpret some
macroeconomic episodes, fulfil consistency and parsimony criteria,

and cope with both current and forward-looking information.
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APPENDIX A

DOCUMENT EXAMINATION

The up-to-date document examination is carried out either through
the Joint Academic NETwork (JANET)} to the computer facilities of
academic and other educational institutions world-wide, or through
the NISS Gateway to all British library catalogues (OPACs). These
facilities allow us access to data bases and other resources not
available 1locally. Besides, we can also search via the Web
(http://www.hull.ac.uk/1ib/homepage.html) on Windows, or via the
Soclal Science Citation Index (SSCI) in BIDS (Bath Information and
Data Services) for articles and books (titles, citations, abstracts
references) (published from 1960 forwards). This is normally done in

two ways:
(1) search for journals in which the article has been published;

and ,
(2) search for Jjournals (or working papers) in which the article

has been quoted (or cited).

The search results can then be sent directly to an email address and

downloaded onto a floppy disk in plain text (*.txt) format.
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APPENDIX B

MATHEMATICAL ELICITATION

This appendix provides the mathematical proof and elicitation of

some important econometric propositions used in various chapters.

PROPOSITION: The first two moments of a stationary VAR(p) process,

i.e. means, autocovarlances and autocorrelations, can be written as:

o
My = E[Y. ] = L MG
ool - Ty

Ty(s) = 4°Ty(0), Vs =z0; and
RY(S) = Q-lry(s)g-l, Vs = 0.
Here
min(i,p)
M, = ngﬁi-JAJ’ and My = I.;

-1
vecry(OJ = (1 - gaﬁ) vecZ ; and

(Kp)z

Q™! = atag[1//7;000, ..., 1/ /7 (O ]

PROOF: Provided that the stationarity condition (2.5) is satisfied,
then the ucans, autocovarlances and autocorrelations of a stationary

VAR(p) process may be derived by the following procedure.

Let
o0
uw) &y wit
1=0

be an operator such that

M(L)AP(L) = IK’
or

M(L) = A—;(L).’ (B.1)

Note also that Eq.(2:4) can be written alternatively as
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-1 -1
Xt = A p(L)g + A p(L)gt. (B.2)

Substituting (B.1) into (B.2) and rearranging yields

Xt = M(L)C + M(L)gt

This form of the process is called the infinite, or nonparsimonious,
moving average (MA) representation, which expresses Xt as an
infinite distributed lag of the orthogonal innovations 4. and can

be used to obtain the mean and autocovariances of Xt' That is,

[+ ]
pY=Ext] =§u_lg (B.3)
i=0
and
ry(s) = E[(Y, - my) (g~ 1))
o0 -] ’
(T .y
10 1=t-1 1=0 i“t-s-1i
S"l - 0 ’
—E[[Zug +L M g__](EMQ__]]
1=0 1-t-4 1=0 i+s~t-s-i 1=0 i“t-s-i
[ ]
=ZM 2!1’. SZO,
1=0 i+s"u~1
or (B.4)
rY(s) = FY(-S)'. s < 0.

Here zu=E[Bt!£] is again the white-noise variance-covariance matrix,
and the M-weights can be drawn from the relationship (B.1), given

A-weights, using the following recursions:

Mo = Kk
M, = MpA

M, = MiA) + Hphy

.mln(i,p)
M. = T M _A.
N

(B.5)

For a stationary VAR(p) process, the Mi matrices will, in general,
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approach zero as i tends to infinity. A more natural and attractive
way of computing the autocovariances may be from the VAR coefficient
matrices directly rather than from the MA coefficients, since (B.4)

involves an infinite sum.

For expository purposes, any K-dimensional VAR(p) process can be
stacked into 2 rorresponding Kp-dimensional VAR(1) form after a
suitable change of notation. The simple multivariate first-order VAR
is fully general, i.e.,

gt=g+£t—l+gt’ (B.6)
where
) 3 A \
[ % ¢ (8 4 - A A [ 9
yéxt_l 6‘—‘0 L L0 ...0 o0 uéo
_t- [ r = 0 0 o) ’_t
. K .
| Yy pog S [ 0 (o0 ... 1. ©0 | y
(Kpx1) (Kpx1) (KpxKp) (Kpx1)
Since
- - - - Y
( I.-8,8 -A€ -AE ... Ap_1§ APE 6——-e:9and1?g
-1 I, O ... O 0 accora’ng to
K K the cofactors
0 -1.E 1 0 0 of the first
det[lxp' 4£] = det . K K. X . row
Ix
| o 0 “LE I
(KpxKp)
=det[I, - A6 - ... -AE] =0, |g =1,

we know that yt is also stationary and that the eigenvalues of o
have modulus less than 1. As such, the VAR(1) process may be written

in mean-adjusted form as

Yy - by = 4Ty my) Y (B.7)

with “yé(“Q""'FQ)’SE[gt] and white noise covariance matrix
EL‘itﬁi]‘zu-’ Postmultiplying (B.7) by (gt_s-uy)’ and taking
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expectations gives

E[(yt - “y)C!t-s‘ “y)’] = fE[(gt-1_ “y)(gt_s' “y),]
+ Efuy (Y5 1y)']-

Thus, for s=0

Fy(O) = gry(—1) + Zu = fry(l)’ + Zu, (B.8)
and for s>0
Fy(s) = gry(s—1). (B.9)

These vector difference equations are often referred to as

Yule-Walker equations with solution

s

Fy(s) =d Fy(O). s =0, (B.10)
where
ry(e) <E[ [(eesty)++ Cegoprr )]
Yy pe17My
Fy(s) Fy(s+1) ce Fy(s+p—1)
- Fy(s-l) FY(S) FY(s+p—2) ’ sz 0.
FY(s-p+1) Fy(s-p+2) cen FY(s)
(KpxKp)

If 4 and Zu are known, the initial covariance matrix Fy(O) can be

determined as follows. For s=1 we have ry(1)=4ry(0). Substituting
Fy(l) into (B.8) results in

ry(0) = 4ry(0)4’ + 5,

or

vecT,,(0) vec(gry(o)g’) + vecE,

(gog)vecry(O) + veczu.

where @ denotes the matrix Kronecker direct product, while vec(:)

signifies the column vectoring operator, which transforms the matrix
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into a vector by stacking the columns one upon the other; hence,

-1
vecl, (0) = (I - ded) “vecE . (B.11)
(Kp)

The invertibility of I(Kp)z -de4 follows from the stationarity of Et
because the elgenvalues of ﬁ@ﬁ, being the products of the
eigenvalues of 4, must have modulus less than 1. Accordingly,

det[I (Kp)? -ded]#0.
Furthermore, the unit-dependent autocovariance matrices may be

standardised to yield the corresponding unit-free autocorrelation

matrices
Ry(s) = Q Ir (s)Q™} (B.12)
Y Y ’ )

which are generally more convenient to work with. Here Q is a
diagonal matrix with the square roots of the diagonal elements of
FY(O) on its diagonal. Denoting the 1j-th elements of FY(s) (or the
covariance between Y and Y ) as yij(s) and the diagonal

i,t J,t-s

elements of FY(O) (or the variances of Ylt,.. YKt) as 7ij(0), we

A

have
Q! = atag[1//7,{ 00, . 1/ /O ]

The ij-th element of RY(s) signifies the auto- or cross-correlation

between a pair of elements, Y1 and YJ’ in the vector Y at lag s,

i.e.,

piJ(S) = 71J(s)/y/711(0)1JJ(OT,

and therefore the temporal (dual) symmetric crosscorrelation

function (CCF) between Y1 and YJ’ say, is pij(S)(=pij(-S))’ Vs=0.
Q.E.D.

In practice, the easiest way to remove C is to convert Xt‘ observed

for t=1, ..., preriods, into deviations from its sample mean:

AW, -9 = (U, -7,

208



given that the process is stationary. This can be done simply by

stacking the observations into a KT-vector X=(Y1 1,...,Y1 T
Y ’ ’

K,l""'YK,T)’:

(Ap(L)@IT)X = CoJo + U,

where JT is a T-rack identity matrix, and JT a T-vector of ones.

Def ine

1 ,
Qp = Iy = wJpdp

which is symmetric and idempotent. Premultiplying by IK®QT is

equivalent to scaling the equatlions in terms of deviations about the

means:

(a,(L)eQ)Y = (IyeQp)U.

Here (I,eQ.) (A_p(L)eIT) = A (L)eQ; and

(1Q;) (C®J;) = Co(QJy) = 0; as Q J; = oO.

PROPOSITION: The marginal or predictive pdf for ¥, f(¥]Y), in (3.22)

can be written as:

FEY) « |- (D)8 ¥ [T (1e0B)E] |72, (B.13)
where

w8 (2 21,) [1- (5] %0R) 11 (551 %68) ] (5 %01,

x & Tle(e]M/%g) " (571/%e8) ana

y = T+h-(1+Kp).

PROOF: To integrate the unknown parameter vector B out of the
predictive pdf for ¥, £(¥|Y), in (3.22):

F(21Y) « [ou{- 3 (G2 D) @/* (D)
+ (5 %01, ) - (5 2aR)e) " ((; /201, ) 2- (5, *e8) ) oo

(B.14)
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we define

_-1/2_
\'/

Yg B

-1/2 o
(=, / eI, )¥

1/
g

2_1/2®i ’
w | oK

e

and M é

and complete the square on B for the integrand. This gives
1 s
exp{- 5 (m-A8) " (m-48) }

A
o
X

I

va—n

B
3
+
©
x
=
©w

i
w

x

3

I

3
lk

W
—

N——rt

expl- o (m'm+ (B~ (#° #) "M m) "

(8- (' 2) " 4 m) - A (4 4) " aem) ).

On substituting this expression in (B.14), properties of the Wishart
pdf can be utilized to Iintegrate with respect to the K(1+Kp)
elements of B, given Zu, which yields the predictive pdf for ¥, i.e.

1

£(¥y) «

x {exv{- g [ m-m (0 H) T m s
(8- (4 0) " ) wo A (e- (1 ) e m)] )/

|m'm-m’ M4’ M) '1£'ﬂl"/2}dé»

or

f(zIX) o Iﬂ’ﬂ_ﬂ'ﬁ(ﬁlﬁ)-lﬁpﬂl-V/Z; for ¥y = T+h_(1+Kp)’

since the accumulated new data points are allowed to assist in
selecting the most approprliate forecasting model and the above
integral 1s just equal to the normalizing constant of the Wishart

pdf which does not depend on the parameter vector Q.l

To put (B.14) in a more convenient form, we define

4 ,, o1 -1/2 s (o—1/2 5
x & aa=gt v (M%) (551 %),

1For detalls, see Zellner (1971), Chapter VIII.
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and complete the square on z as follows:

_!__1— T = 1
=B'V, B+¥ (zu/ ®Ih) (>: th)Y -

= —B =
[B' T 1 (23 %01,)" (5, /%8) 107 [3 15 (= /%08) " (2 201,)1)
-8 (2;1_7‘;1”—17—1)3 .
¥ (=] /2®Ih) [l 1/2®x)/( (271/%e8) "] (=, /%1, -
1

BT (=] %05) r (5[ %1,) Y - ¥ (s /261,) (521 %6 4™ B

(B.15)
Let
A ~1/2 -y, “1/2 oy v=10o=1/2 on 0 -1/2

w8 (25 %) [t (55 %e0) 47 (51/268) ] (5 %1,
the quantity in the third line of (B.15) can be expressed as

= -1 1/2 /2 ,

E[_B B— B VBN (z /ex) (z: eI)w (z @Ih)

(z l/zex)// v ]B+ [vw (z oIh) (z ®X)N v j W

1/2 1/2 15-1
(-~ (zu /“Ih) (=, /Gl)l v, Bl (B.16)

Further, we have

e @) D (5, o) Ty 5 2e8) 1 (5 V%01, ) 1 2

2This result can be verified by direct multiplication:
wwt = (=Y Z”Ih)'[lxh'(z-l/ 2e8) 47 (=71/%5%) "]
[ (551 208) T, (7 1/%0%) ' [ (5 %1,) '] 7
= (= %1,)" [1- (=] 1/Za;.x)(_ T n” (>: l/zex)
(5, /%68)T,) (< ’/%ﬁ) 10(]" %e1,) ]!
- (z;Y/%1,)’ [lxh-(zgl/zezm (T 10+ (55 1/208) " (7 1/208))
',s(z‘l/?-eft)'][(z“/zorh)']‘1
= (%1, [(=] l/zalh) 17!

= I, since !B -N+ (zul/ ZGQS) ' (2;1/ 2@2) =0.
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Also

WY/ h) (=5 %%) 47!

(=] 1/?—@1 W) [t (552608, (5, %6%) ] (£ 2e8) 7!
(z;/%1,) ! (5] %e8) [1,, +vB(zu1/ %e8)’ (2u1/2®x)]1 '
(! @Ih) Lo PR T, [T+ (2 ‘1/%2)'(:‘1/2@?)]»«‘1

(z /241 N (zul/ze_x)gﬁ, since ¥ 2 +(z 1/2e5)" (=] 1/263) .
(B.17)

]

Finally
AR A A A O 1/28) (571 %61, )
(z Y2e1,) (571 ex) 47! !

-1 -1 -1 .-1,.-1/2 1/2 -1
- G e 5 e8) (5, %) )T,

“B
-1 o1, ~1r=1, (e=1/2_ v, (e~ 1/2_
- T g e e e B (z /%58)]
-1 g1 1/2 -1/2 o
=¥ -¥g =0, since N +(z /2 %)’ (2, /®g(_). (B.18)

Substitution from (B.17) and (B.18) in (B.16) leads to

[2- (=] %e1,) ! (=7 /26R) 1,0 8] '
[%- (z;‘/zerh) ', /PR LT ]

= [¥-(1408)B]" W [¥-(140X)B] -
As it stands, the predictive pdf (3.23) can be readily obtained

£(21Y) o [[-(14eX)B] W [¥-(1.e%)B] |7/2, (B.19)

Q.E.D.

212



APPENDIX C

DATABASE ASSEMBLY

This appendix only presents the macro data used in this work. The

data sets are assembled from the currently existing OECD Main
IMF International Financial Statistics (IFS)

Economic Indicators,

and ONS Macro-Economic Time Series databanks in Manchester Computing

Centre (MCC) through MIDAS. The complete macro data for the four

leading (and other) European economies are stored in ASCII files

ending with suffix *.ASC In an accompanying data diskette.

(I) IMF IFS DATABASE

* ® ® »

10.
10.
12.
13.
13.
14.
19,
.673

21

30.
40.
49.
57.
79.
110.
159.
198.
232.
254.

894
784
126
175
932
436
048

207
908
176
694
465
003
933
868
390
920

10.
11.
12.
13.
14.
15.
19.
22.
31.
41.
50.
63.
82.
116.
166.
20S.
235.
0.

808
110
257
114
180
021
903
357
037
665
082
233
996
808
270
509
590
000

11.
.254

11

12.
13.
13.
15.
20.
22.
32.
43.
50.
64.
85.
125.
170.
207.
237.
0.

551

517
246
738
327
245
931
625
866
174
827
433
235
086
334
950
000

UNITED KINGDOM

11.
10.
12.
13.
14.
16.
.478

21

25.
33.
46.
52.
68.
81.
117.
170.
214.
238.
0.

246
852
824
311
906
350

011
034
435
680
993
S37
539
673
940
950
000

11

11.
12.
13.
14.
16.
20.
25.
33.
46.
53.
70.
. 662

91

138.
175.
217.
242,

MONEY (Billions of Pounds: End of Period)
periodicity: QUARTERLY seasonally: UNADJUSTED starts:
stops: 1994Q4 no. of obs: 137 last updated: 1994Q1

one line of data represents two years

.202

322
486
190
181
445
928
004
202
325
354
790

501
037
140
350

11.
11.
12.
13.
13.
16.
22.
26.
34.
46.
55.
72.
95.

145
185
225
243

166
633
661
404
895
683
357
983
635
924
217
643
696
111
.919
.180
. 240

* QUASI-MONEY (Billions of Pounds: End of Period)

* periodicity: QUARTERLY seasonally: UNADJUSTED starts:

213

11.
11.
12.
13.
14.
17.
21.
28.
37.
48,
56.
73.

100
149
191
227
245

045
789
809
957
105
326
860
463
416
748
152
401
. 196
.012
.741
. 180
.210

1960Q1

11.
12.
13.
14.
14.
18.
22.
29.
39.
50.
58.
72.
9.

154
195
229
252

196001

473
425
318
327
953
816
574
666
917
664
704
056
173
.118
.309
.220
.340



* stops:

»

»
»

NN e Nel

.000
. 000
. 846
.428
.332
10.
14.
30.
32.
38.
49,
87.
108.
136.
194.
299.
310.
356.

865
515
219
618
369
985
186
910
295
875
990
S00
970

1994Q4 no.
* one line of data represents two years

VWO O

91

109.
145.
204,
309.
312.

0.

. 000
. 000
.146
.689
.885
11.
16.
30.
34.
41.
S55.
.827

454
182
358
582
182
545

958
319
037
400
310
000

~NOoOO O

of obs:

.000
.000
. 249
.812
10.
11.
17.
32.
36.
40.
59.
93.
112.
183.
219.
320.
319.
0.

494
776
616
239
270
715
152
505
854
951
808
500
130
000

MONEY PLUS QUASI-MONEY
* periodicity: QUARTERLY
1996Q4 no.

stops:

W oNO O

125

.000
.000
.548
.139
10.
12.
19.
33.
37.
42.
64.
96.
121.
159.
231,
318.
326.
0.

436
181
535
251
038
142
104
341
289
873
932
530
660
000

last updated:

NoOno

41

6S.

99.
119.
167.
245.
319.
328.

.000
.421
.476
.981
10.
12.
21,
32.
35.
.420

591
080
150
768
896

235
792
473
971
310
930
250

00

10.
12.
22.
32.
37.
4s.
72.
103.
122.
174.
258.
325.
334.

0
5.
6

1994Q1

. 000
670
. 945
.423
754
596
114
184
807
454
445
255
129
427
140
740
350

0 ~Nno

. 000
.726
.058
.639
10.
12.
25.
32.
36.
45.
78.
104.
126.
182.
268.
326.
339.

859
748
946
982
771
765
081
747
472
675
9260
490
940

(Billions of Pounds: End of Period)
seasonally: UNADJUSTED
last updated:

of obs:

135

one line of data represents two years

0.
0.
17.
20.
23.
25.
33.
51.
62.
79.
99.
144,
188.
246,
354.
498,
542.
626,
759.

MO

000
000
972
603
264
301
564
893
826
277
161
881
375
298
808
858
890
310
890

(Billions of Pounds:

0.
0.
18.
20.
24.
26.
36.
52.
65.
82.
105.
15S5.
192.
262.
370.
514.
547.
633.
783.

000
000
403
803
064
475
085
716
619
847
627
060
954
127
307
909
900
840
330

0.
0.
18.
. 059

21

24.
27.
37.
55.
68.
84.
109.
158.
198.
279.
389.
527.
573.
637.
796.

000
000
76S

233
103
861
169
896
581
325
332
286
186
894
834
790
660
210

* perlodicity: QUARTERLY
stops: 1996Q4 no. of obs: 110 1last updated:

one line of data represents two years

»
»

0.000
0.000
0.000
~0.000
0.000

0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000

.
0.
19.
21.
25.
28.
41.
$8.
70.
88.
116.
165.
202.
.412

277

402.
533.
582.
646.

0.

000
000
371
450
342
531
013
263
072
577
784
333
825

605
470
810
470
000

0.
16.
18.
21.
24.
28.
42,
57.
69.
87.

118.
170.
211.
306.
420.
537.
58S.
668.

End of Period)
seasonally: UNADJUSTED

0.000
0.000
0.000
0.000
0.000

214

0.
0.
0.
0.

000
743
962
171
742
525
078
772
099
745
589
582
135
472
347
070
730
930

000
000
000
000

0.000

17

19.

21

24.
29.
44.
59.

72

92.
127.
175.
217.
319.
444.
550.
590.
683.

0
0
0
0
3

starts:

1996Q3

.000
.302
606
.828
648
278
471
168
.442
378
662
898
824
538
059
920
910
990

starts:

0.
17.
19.
22.
24,
30.
47.
. 445

74.

94.
134.
178.
226.
. 687

61

331

460.
553.
596.
700.

1996Q3

.000
.000
.000
.000
.819

WOOoOOoOOo

O ~Nno

189

1960Q1

000
514
866
596
964
074
806

187
513
233
148
668

701
670
190
800

51

62.
77.
99,
145.
.750

181

226.
343.
.369

481

531.
610.
729.

1960Q1

. 000
.000
.000
.000
.818

WOOOoOOo

.000
.981
.453
.375
11.
13.
29.
33.
37.
48.
86.
109.
130.
.073
286.
302.
349.

120
526
075
144
314
760
493
694
206

060
740
600

.000
18.
20.
23.
26.
32.
.649

406
771
702
073
342

810
231
424
197

379
191

960
990
630

.000
.000
.000
.000
.993



»*

»
»

* % ¥ »

3.834 3.943 4.045 4.206 4.289 4.322 4.307 4.425
4.316 4.583 4.638 S.053 4.888 5.096 5.187 5.593
5.420 5.575 5.886 6.444 6.341 6.535 6.689 7.228
6.956 7.279 7.534 7.988 7.700 8.139 8.256 9.122
8.898 9.225 9.528 10.362 9.989 10.352 10.725 11.620
10.994 11.295 11.523 12.243 11.755 11.931 11.889 12.555
11.729 11.960 12.155 12.948 12.431 12.678 12.830 13.849
13.030 13.339 13.575 14.615 13.738 14.023 14.090 15.161
14.440 14.509 14.755 16.098 14.809 15.083 15.533 16.633
15.751 16.247 16.793 18.040 16.815 17.089 17.504 19.006
17.600 18.194 18.330 19.490 18.180 18.590 18.750 20.090
18.410 18.850 19.230 20.580 19.310 19.840 20.270 21.730
20.560 21.160 21.610 23.320 21.880 22.270 22.800 24.540
23.120 23.930 24.440 0.000
CONSUMER PRICE INDEX (CPI): PERIOD AVERAGES (1990=100)
* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
stops: 199604 no. of obs: 147 last updated: 1996Q3
one line of data represents two years
9.8 9.8 9.8 9.9 10.0 10.1 10.2 10.2
10.4 10.7 10.7 10.7 10.9 10.9 10.8 10.9
11.0 11.2 11.3 11.4 11.5 11.7 11.8 11.9
11.9 12.3 12.3 12.4 12.4 12.5 12.5 12.6
12.8 13.1 13.2 13.3 13.6 13.8 13.8 13.9
14.3 14.6 14.8 15.1 15.5 16.0 16.3 16.5
16.7 17.0 17.3 17.7 18.1 18.6 18.9 19.6
20.4 21.6 22.1 23.1 24.5 26.8 28.0 29.0
30.0 31.1 31.8 33.3 35.0 36.5 37.1 37.6
38.3 39.3 40.0 40.7 42.0 43.5 46.4 47.7
50.0 52.9 54.0 55.0 56.3 59.1 60.1 61.6
62.6 64.6 64.9 65.4 65.7 67.1 67.9 68.7
69.1 70.5 71.1 72.0 72.9 75.4 75.6 76.0
76.5 77.6 77.6 78.6 79.6 80.8 81.0 81.8
82.2 84.2 85.4 87.2 88.6 91.1 92.0 93.8
95.5 99.9 101.6 103.1 103.7 105.9 106.4 107.4
108.0 110.3 110.2 110.7 109.9 111.7 112.0 112.4
112.6 114.6 114.6 115.4 116.4 118.5 118.8 119.0
119.6 121.2 121.4 0.0
TREASURY BILL RATE (Percent Per Annum)
periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
stops: 1996Q4 no. of obs: 147 1last updated: 1996Q3
one line of data represents two years
4.40 4.71 5.56 4.85 4.35 4.45 6.14 5.57
5.21 4.00 3.79 3.7 3.51 3.69 3.72 3.72
3.98 4.36 4.62 5.47 6.51 6.12 5.56 5.45
5.56 5.65 6.58 6.62 5.99 5.30 5.44 6.57
7.39 7.15 6.95 6.65 7.19 7.83 7.81 7.71
7.54 6.89 6.83 6.82 6.74 5.67 5.39 4.52
4.36 4.59 5.96 7.15 8.13 7.36 10.24 11.62
11.99° 11.36 11.18 10.96 10.01 9.39 10.17 11.13
9.04 10.19 11.26 13.99 11.20 7.72 6.55 5.26
5.90 8.11 6.34 11.00 11.94 11.7S5 13.34 14.87
16.04 16.02 14.60 13.99 12.16 11.59 13.55 14.82
13.37 12.57 10.61 9.33 10.58 9.64 9.29 8.85
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8.72 8.69 10.40 9.39 12.06 11.92 11.14 11.10
11.67 9.67 9.48 10.64 10.05 8.81 9.44 8.69
8.49 7.92 10.75S 11.96 12.42 12.87 12.45 14.47
14.47 14. 47 14.30 13.08 12.83 10.89 10.13 9.98
9.94 9.60 9.41 6.78 5.60 5.27 5.12 4.99
4.82 4.86 5.27 5.65 6.06 6.29 6.58 6.41
5.95 5.73 5.52 0.00
* GROSS DOM. PROD. 1990 PRICES (Billions of Pounds)
* periodicity: QUARTERLY seasonally: ADJUSTED (at Annual Rates and
* May Not Average to Yearly Data) starts: 1960Q1 stops: 1996Q4
* no. of obs: 42 last updated: 1996Q2
* one line of data represents two years
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
476.23 480.91 484.88 490.52 495.73 501.22 511.98 516.98
522.71 539.19 533.18 537.85 540.43 542.73 545.62 547.52
554.64 557.65 551.74 546.73 543.12 539.87 538.66 539.58
535.83 536.10 538.68 539.18 543.88 545.31 550.79 554.36
560.39 567.34 573.07 577.73 580.28 582.42 584.93 587.83
591.36 594.01 598.44 0.00
* GROSS DOM. PROD. 1985 PRICES (Billions of Pounds) .
* periodicity: QUARTERLY seasonally: UNADJUSTED (at Annual Rates
* and May Not Average to Yearly Data) starts: 1960Q1 stops: 1988Q4
* no. of obs: 65 last updated: 1988Q1
* one line of data represents two years
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
64.97 69.65 69.03 73.29 70.62 72.16 72.98 76.27
68.56 72.10 74.49 77.50 69.42 70.45 71.34 75.52
72.93 72.38 75.47 79.56 73.66 74.21 76.55 81.62
76.72 77.36 79.70 83.16 77.45 79.54 81.79 84.05
78.64 T76.72 79.62 81.65 79.04 77.06 79.52 82.74
79.67 77.78 80.50 84.15 82.40 79.41 84.08 86.98
83.94 81.73 85.38 90.09 86.40 85.81 89.11 92.39
88.81 87.45 90.74 96.94 91.38 89.53 95.60 100.39
93.69 0.00 0.00 0.00
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(I1) OECD MEI DATABASE

]
*

GROSS DOMESTIC PRODUCT: CONSTANT PRICES OF 1990
Annual Rates)
starts:

(Billions of Pounds,

Market Prices,

* periodicity: QUARTERLY seasonally: ADJUSTED

stops:
one line of data represents two years

*
»

263.
270.
295.
311.
334.
341.
360.
386.
401.
417.
429.
424.
450.
477.
521.
550.
533.
561.
591.

160
424
995
153
828
123
665
686
991
552
961
094
492
210
884
388
574
200
290

96Q4 no.

258.
276.
300.
313.
329.
348.
367.
.086

391

398.
420.
422.
426.
448.
481.
524.
553.
536.
567.
593.

807
055
735
416
784
964
113

162
810
560
027
099
699
621
003
367
340
930

* IMPLICIT PRICE
periodicity: QUARTERLY seasonally: ADJUSTED

*
»*
»*

stops: 96Q4 no. of obs: 148

262.
275.
299,
313.
337.
350.
365.
397.
402.
422.
427.
424.
447,
487.
529.
545.
538.
573.
596.

of obs:

987
500
206
777
797
609
213
298
834
685
326
938
669
906
845
555
442
070
560

LEVEL:

266,
275.
306.
317.
341.
354.
37S.
392.
410.
428.
420.
429.
453.
493,
536.
540.
539.
577.
603.

148

208
562
984
328
946
652
619
715
680
536
349
966
352
499
143
180
660
730
380

1990=100

271

276.
305.
322.
335.
348.
397.
390.
403.
419.
421.
439.
461.
497.
537.
540.
543.
579.

one line of data represents two years

9.
10.
10.
12.
12.
14.
17.
19,
30.
38.
5t.
64.
70.
78.
85.
98.

109.
116.
122.

WO ANNNWN=BhONOWDWORW0NOOW O

71.

9

78.4
87.6
99.0

111.

3

116.7
123.0

9.
10.
11.
12.
13.
18.
17.
22.
31.
40.
55.
66.
72.
79.
89.

101.
111.
117.
124.

WNN O WLWONOUVUBVWORNRONWNWM®

9.
10.
11.
12.
13.
1S.
18.
23.
33.
41.
57.
67.
73.
80.
91.

102.
111.
117.
124.

VOOVOVOROWORFEBSWBDBWOHO

1
1
1

* MONEY SUPPLY M1 (Billions of Pounds)
* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1

* stops: 1993Q4 no. of obs: 75 last updated: 1990Q3

217

.430
547
444
629
037
262
890
667
725
883
376
640
743
203
582
702
600
600

10.
10.
11.
12.
13.
15.
18,
25.
34.
42.
59.
68.
74.
81.
92.
03.
13.
18.

WVNOVONONRL,WONRRIONBUBIOO

271
287
305
321
338

356.
395.
389.
403.
442,
419.
439.
466.
502.
538.
538.
546.
582.

1
1
1

last updated: 96Q4

. 938
211
.198
.911
.902
863
837
709
416
940
899
886
997
477
338
066
610
770

272.
286.

307

324.
342.
364.
396.
384.
406.
431.
419.
443.
467.
513.
542.
537.
552.
584.

starts:

last updated: 96Q4

o]

meOh\DNwOO\OwO\]O\O\ﬂ;O

10.
11.
12.
13.
16.
18.
27.
35.
44.
60.
68.
75.
82.
94.
06.
14.
19,

1
1
1

6001

441
787
.654
656
637
311
701
088
925
500
967
395
7
314
528
508
300
600

60Q1

10.
10.
11.
12.
13.
16.
18.
28,
36.
47.
61.
69.
76.
83.
95.
07.
15.
20.

= A NOVNVWWWWLWUWMWOo OO WW

270.
293.

311
321

345.
364.

391

392.
416.
434.
421.
447.
469.
518.
547.
538.
555.
588.

1
1
1

199
250
.567
.241
628
567
.479
485
934
685
145
496
909
337
848
448
840
300

10.
10.
11.
12,
14.
16.
19.
29.
37.
49.
62.
70.
78.
84.
96.
08.
16.
20.

VOOMRPONOUNOVWOWWANNONWOON



* one line of data represents two years

* * ® %

& % ® »

Y NeoNeolNeNoNoNe]

16.
19.
24.
31.
53.
86.
122.
196.
331.
0.

. 000
. 000
. 000
.000
.000
. 000
. 968
721
612
612
714
936
100
277
186
887
000

~NOOOOoOOO

17.
20.
26.
33.
58.

90

129.
206,
342.

0.

. 000
.000
.000
.000
.000
.000
.213
000
371
051
036
192
.684
989
873
099
000

IMPORTS C.I.F.
periodicity: QUARTERLY seasonally: ADJUSTED

1996Q4 no.
one line of data represents two years

st

1
2

ops:

374
378
470
504
644
720
872
735
180

311§

4
4
S
6
8

451
653
940
914
042

10718

10
12

164
076

15418

1
2

388
384
470
492
644
770
889
268
576

3333
4351
4892
6437

6

829

8635
10802
10404
12282
15437

WOOOO0OOO

17.
21.
26.
35.
61.
95.
137.
221.
345.
0.

.000
.000
. 000
.000
. 000
.000
. 395
804
182
047
177
844
006
682

974
000

WOOOoOOoOOo

18.
22.

26

35.
65.
102.
149.
554 233.
0.
0.

.000
.000
.000
.000
.000
.000
.183
180
423
.931
901
805
955
883
364
000
000

(ool eNoNoNe]

10.
18.
22.
27.
37.
71.
112.
1587.
250.
0.
0.

.000
. 000
.000
.000
.000
.000
673
710
385
741
255
672
767
659
335
000
000

o NeNoNeNoNe

10.
18.
23.
28.
39.
73.
114,
171.
267.
0.
0.

. 000
.000
.000
.000
.000
.000
891
465
108
619
314
419
522
342
044
000
000

[oleNeNoeNoNe

12.
19.
23.
29.
43.
77.
114.
180.
309.
0.
0.

(millions of pounds, monthly averages)
starts:
1996Q4

1
2
3
3
4
6
7
9

of obs:

390
393
473
510
669
751
882
991
696
357
981
695
712
271
331

10210

10
12
15

351
447
281

1
2

148

400
388
485
478
676
796
049
019

2909

3
3
4
7
7
9
10
11
13
15

373
807
753
200
756
412
407
047
158
176

1
1

392
390
456
525
674
791
1132
1980
2959
3473
3617
5299
7521
7273
9655
9724
1089
3297

last updated:

1
1

379
409
482
524
699
830
1225
1875
3145
4000
3959
5244
7182
7606
9966
9822
1195
3964

1

1
1

EXPORTS F.0.B. (millions of pounds, monthly averages)
periodicity: QUARTERLY seasonally: ADJUSTED
1996Q4 no. of obs: 148 last updated:
one line of data represents two years

st

ops:

322
328
376
428
519
668
767

314
342
384
417
510
660
795

310
339
375
442
582
639
709

317
345
388
465
563
732
930

218

330
350
394
463
562
683
922

starts:
1996Q4

327
360
401
448
600
678
969

. 000
. 000
.000
.000
.000
.000
843
133
820
270
133
060
927
908
081
000
000

-
WOOOoOoOO0OO

19.
24.
30.
47.
82.
118.
190.
324.

1960Q1

369
423
488
526
695
809
1367
2062
3017
3945
4722
5505
6774
8329
0438
9998
1477
4434

1
1
1
1

1960Q1

333
369
415
436
640
664
1039

.000
.000
.000
.Q00
.000
.000
.B74
543
247
758
211
238
697
749
293
.000
.000

375
439
491
570
703
836
1517
2099
2951
4223
4758
5786
6785
8289
0226
0062
1628
4844

328
377
424
396
645
797
1099



1205
1873
2791
3986
4502
5569
6086
6316
8511
8817
10679
13826

1345
2054
2953
3979
4622
5632
5938
6798
8787
9045
11092
13799

1437
2139
2976
3912
4590
5864
5887
7098
8644
8917
11500
14069

1450
2359
3074
3911
4806
6431
6449
6858
8722
9320
11792
13831

1569
2496
2782
3929
4881
6716
6546
7302
8431
9865
12579

1551
2656
3570
4057
4893
6753
6439
7550
8743
9735
12601

(III) CSO MTS DATABANK (SOURCE: BANK OF ENGLAND)

1630
2819
3500
4358
5088
6276
6784
7986
8904
9963
13077

1786
2693
3693
4556
5366
6366
6922
8372
8871
10114
13400

* MO - THE WIDE MONETARY BASE: AMOUNT OUTSTANDING (AVER: £ million)

#»*

* stops:

»*

periodiclity: QUARTERLY seasonally: ADJUSTED
last updated:

[oReNoNoNe]

3882
4376
5525
7081
8949
11151
11911
13230
14461
15978
18009
18846
20819
23540

1996Q4 no. of obs: 111
one line of data represents two years

(oo NelNeNe]

3915
4564
5586
7272
9276
11376
11993
13401
14570
16279
18253
18943
21185
24012

ol eNoNeNo]

4042
4655
5882
7511
9571
11566
12144
13591
14751
16761
18288
19144
21609
24356

[eNeReoNoNe

4097
4845
6157
7648
9836
11649
12302
13746
15022
16866
18300
19394
21968
24824

219

OCO0O0O0O

4348
4976
6369
7826
10136
11946
12550
13959
15103
16969
18455
19695
22304

starts:
1996Q4

(e NeNe N

3785
4299
5088
6541
8127
10420
12018
12702
14093
15203
17168
18649
19850
22355

1960Q1

(oMo NeNe)

3803
4314
5200
6686
8280
10782
11893
12850
14083
15463
17468
18722
20182
227752

(o eNeNe]

3917
4289
5339
6872
8651
11013
11925
13038
14266
15666
17824
18857
20561
23206



(I) IMF IFS DATABASE

* MONEY SUPPLY M1 (billions of Deutsche Mark)
periodicity: QUARTERLY

»*

seasonally: UNADJUSTED
last updated:

GERMANY

* stops: 1996Q4 no. of obs: 147
one line of data represents two years

»

43.
51.
59.
69.
78.
90.
114.
128.
162.
197.
221.
228.
263.
299.
356.
400.
535.
650.
751.

NP WNONRPOOBR R, IBYIWOBOARN

44.
53.
62.
72.
81.
95.
123.
136.
173.
208.
228,
240.
271.
313.
379.
463.
5§5.
676.
772.

POV PRNNOPIOOWLN®OWON O

45.
55.
63.
71.
83.
96.
124.
137.
171.
211.
229.
238.
270.
315.
376.
480.
565.
67S.
784.

ﬂonpwﬂmmmompmmmowww

47,
58.
67.
74.
90.
103.
133.
150.
177.
227.
243.
256.
294.
340.
408.
551.
641.
732.
0.

OOOPQN%\I#MQ&Q\)O\NO\OP

46.
55.
65.
70.
84.
99.
128.
144.
173.
218.
224.
253.
272.
324.
390.
508.
590.
675S.

* QUASI-MONEY (billions of Deutsche Mark)
periodicity: QUARTERLY seasonally: UNADJUSTED starts:

* stops: 1996Q4 no. of obs: 147
data represents

»

»

one

55.
70.
92.
123.
164.
209,
262.
331.
386.
451.
525.
594.
657.
756.
839.
914.
1145.
1388.
1446.

line of

PN WOURENNANRNNIT~NON W

56.
71.
94.
126.
167.
212.
268,
329.
386.
454.
518.
594.
657.
755.
83S.
1032.
1156.
1375.
143S.

PNROBRNIRONUANWNANO WU =

two years

60.4 63.

76.6 80.
102.5 106.
139.7 144.
185.9 190.
228.7 233.
296.4 298,
351.1 348.
423.7 420.
503.7 499.
560.5 S$53.
634.1 629,
699.7 700.
804.1 809.
874.7 869.
1047.0 1057.
1194.7 1229.
1366.7 1367.

0.0

5

last updated:

ONVOPNOVOWOORNODONO W

NONPOWODNOOVWOF O W

9
5
9

48,

57.
69.
73.

89.

106.
128.
1585.

183.

224,

233.

266.

281.

344.
398.
518.
610.
697.

PR OUNNNNNO- N0 OO U 0O

50.

59.

69.

75.

91.
109.
125.
160.
186.
222.
226.
263.
284,
344.
394.
527.
622.
704.

NONUNONONNOWNFL =, ONNO DO B

starts: 1960Q1
1996Q3

54,

62.

72.

80.

95.
116.
135.
171.
198.
234.
239.
278.
314.
365.
431.
575S.
697.
783.

1960Q1

NEOOUPPOANNAOVLNOONNON®

1996Q3

64.0 64.

81.4 83.
109.8 111.
147.8 150.
195.4  202.
236.5  241.
305.3 310.
346.9 354,
417.8 429,
504.4 506.
552.4 560.
621.0 632,
700.8  703.
802.7 807.
863.6 876,
1054.3 1061.
1242.6 1263.
1359.0 1371.

67.
88.
119.
161.
209.
260.
332.
387.
464,
534.
594.
663.
759.
847.
916.
1125.
1350.
1411.

NOOO~NUINOANOGOO N OB UION D

CRAOPR P OVNOORN—,O 000N W



* CONSUMER PRICE INDEX (CPI): PERIOD AVERAGES (1991=100)

* periodicity: QUARTERLY

* gtops: 1996Q4 no. of obs:

seasonally: UNADJUSTED
147 1last updated:

* one line of data represents two years

35.
37.
39.
42,
43,
45.
50.
57.
63.
68.
74.
83.
88.
91.
92.
96.
104.
111.
115.

* TREASURY BILL RATE
* periodicity: QUARTERLY seasonally: UNADJUSTED

* stops: 1996Q4

WVWOWOOUNDONWWOYWROWR LS

35.
37.
39.
42.
43.
45,
50.
58.
64.
68.
75.
84,
89.
91.
92.
97.
105.
112.
116.

7
4
5
S
4
9
7
2
6
9
4
1
4
5
6
S
1
6
S

35.
37.
39.
42,
43.
46.
51.
58.
64.
68.
76.
8S.
89.
91.
92.
97.
10S.
113.
116.

VWOAOUN PNOOVOOE=BUNND D

no. of obs: 85

35.
37.
39.
42.
43.
46.
52.
59.
65.
69.
76.
85.
90.
90.
93.
98.
106.
113.
0.

ONNOF O OO NWUUNOWYM D ~J

36.
38.
40.
42.
44,
47.
53.
60.
66.
70.
78.
86.
91.
91.
94.
99.
108.
114.

PP WURPONOWUNNWAONON DO

last updated:

* one line of data represents two years

WUOARONWPNOVOWNOOOOOOOO

.00
.00
.00
.00
.00
.00
.00
.00
.22
.64
.05
.56
.79
.07
.15
.63
.50
.10
.40

WSDQUUImeUIOOOOOOOO

»

w
'S
Y

.00
.00
.00
.00
.00

00

.00
.00
.02
.57
.30
.53
.73
.66

15
17

.50

0
n

.00
.00
.00
.00
.00
.00
.00
.00
.37
.7
41
.40
.76
84
.96
.25
.70
.98
.29

uhwwwywmﬂwuoooooooo

.00
.00
.00
.00
.00
.00
00
.00
.08
.00
.41
77
.38
.87
.20
.25
.57
A7
.0

CUNOPLUOANIRNOODOOOOOO

.00
.00
.00
00
.00
.00
.00
.00
.82
.22
.40
.44
.65
.57
30
.25
.98
.08

U’IO\waIUUIUI\OhnbOOOOOOOO

(on 3-month loans, percent per annum)

* GROSS DOM. PROD. 1990 PRICES (billions of Deutsche Mark)

* periodicity: QUARTERLY seasonally: ADJUSTED (at Annual Rates)

* gtarts: 1996Q4 no. of obs: 22 last updated:

1960Q1

stops:

* one line of data represents two years

0.0

0.0

0.0

0.0

221

0.0

starts: 1960Q1
1996Q3
36.4 36.7 36.7
38.4 38.4 38.8
40.6 41.3 41.3
43.0 42.9 42.8
44.8 44.8 45.2
48.3 48.6 49.1
54.4 54.9 56.0
61.8 62.3 62.9
66.9 67.1 67.4
71.2 72.2 72.8
79.8 81.0 82.1
86.9 87.9 88.1
91.6 91.4 91.7
91.6 91.6 91.7
95.3 95.3 95.9
100.6 102.0 102.7
109.6 110.3 110.4
114.7 115.2 115.2
starts: 1960Q1
1996Q3
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 5.40 5.40
4.44 4.06 4.00
5.01 5.82 7.42
10.70 11.92 10.24
5.23 5.88 5.95
5.62 4.53 4.35
2.99 3.18 3.40
6.23 6.49 7.12
8.25 8.25 8.27
6.55 5.95 5.40
4.43 4.27 3.83
1996Q2
0.0 0.0 0.0



.O-C).O_OO'OOOOOOOOOO
OOOOOOOOOOOOOOO
_Q.CD.0.0'0.0000000000

mO\’-‘OOOOOOOOOOOOOOO

8 2587.
3 284s.
6 2951.

2604,
2822,
2908,

* GROSS NATIONAL

_C)pOPpOOOOOOOOOO

OCNNOOOCOODOOOOOOOOO O

2590.
2863.
0.

PRODUCT :
* periodicity: QUARTERLY seasonally: ADJUSTED (at Annual Rates)

.Q_O'OOOOOOOOOOOOO

O'—‘U\OOOOOOOOOOOOOOO

2580.
2892,
0.

2512.
2753.
2899,

PPPOOOOOOOOOOO

OOOOOOOOOOOOOO

0 25Se61.
7 2761.
0 2919,

PPP_OPOOOOOOOOO

OOOOOOOOOOOOOO

7 2555.
8 2788.
4 2922.

PPPPOOOOOOOOOO
OOOOOOOOOOOOOO

5 2560.
7 2790.
5 2922.

1990 PRICES (billions of Deutsche Mark)

©Cooocoo0o0o00O0OCOOLO
NWVooOOOOOOOODObOOG

* starts: 196001 stops: 1994Q4 no. of obs: 89 last updated: 1994Q1
* one line of data represents two years
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1606.5 1610.0 1621.7 1656.1 1703.1 1701.9 1707.8 1714.6
1722.1 1718.6 1714.2 1675.0 1653.4 1652.6 1668.6 1701.6
1737.6 1757.2 1767.9 1780.3 1798.1 1801.6 1811.5 1831.9
1838.9 1868.3 1886.2 1908.4 1902.6 1945.8 1940.8 1971.5
1999.4 1963.1 1968.8 1963.1 1972.1 1956.6 1979.0 1972.1
1951.8 1962.4 1952.8 1949.2 1963.5 1997.0 1984.7 2014.0
2062.2 2020.2 2063.7 2080.3 2074.6 2085.8 2123.1 2117.7
2104.1 2156.7 2167.4 2168.4 2145.1 2168.0 2201.0 2216.9
2228.5 2235.4 2266.0 2287.5 2319.4 2321.2 2337.2 2358.6
2402.9 2427.9 2475.8 2499.0 2540.0 2543.2 2545.0 2533.6
2565.1 2567.8 2545.7 2527.0 2488.8 2500.3 2509.0 2513.6
2543.0 0.0 0.0 0.0
(II) OECD MEI DATABASE
* GNP 1985 PRICES (billion DM)
* periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
* stops: 92Q4 no. of obs: 132 last updated: 92Q4
* one line of data represents two years ,
829.5 842.6 869.7 879.5 890.3 886.1 894.0 901.0
920.7 930.0 944.5 945.0 911.8 951.5 988.5 990.8
998.3 1024.5 1028.7 1043.2 1061.0 1079.2 1080.6 10%94.2
1115.7 1118.0 1110.1 1098.8 1094.6 1104.4 1104.9 1134.8
1124.1 1156.8 1197.0 1217.6 1206.4 1248.5 1289.1 1304.1

222



1269.5 1333.6 1341.5 1358.3 1350.4 1361.1 1374.2 13
1402.8 1411.2 1427.5 1449.5 1487.4 1481.8 1495.8 14
1505.6 1491.6 1501.0 1470.1 1447.2 1461.7 1479.4 14
1529.9 1555.7 1544.9 1580.0 1587.5 1583.7 1579.5 16
1623.9 1640.8 1644.0 1674.4 1679.1 1710.9 1718.4 17
1759.1 1728.7 1734.3 1723.1 1739.0 1726.8 1743.2 17
1724.9 1726.3 1714.2 1712.8 1737.1 1753.0 1744.1 17
1817.5 1777.3 1812.8 1830.6 1819.4 1832.0 1865.7 18
1846.5 1892.3 1905.9 1905.4 1890.7 1904.5 1933.7 19
1967.9 1971.1 1977.2 1999.6 2041.2 2030.4 2050.0 20
2114.4 2132.5 2174.9 2195.3 2231.3 2234.0 2235.2 22
2256.8 2256.8 2234.0 2220.1
* GNP IMPLICIT PRICE LEVEL: 1985=100
* periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
* stops: 9204 no. of obs: 132 last updated: 92Q4
* one line of data represents two years
35.1 34.8 36.0 35.8 36.4 36.7 37.4
37.9 38.5 38.8 39.1 39.5 39.8 39.8
40.5 40.7 41.2 41.6 42.0 42.2 42.7
43.5 43.6 44.3 44.1 44 .4 44.4 44.5
45.2 45.2 45.3 46.1 46.7 46.9 47.3
49.8 50.9 51.1 52.1 53.8 54.9 55.3
§7.0 57.7 5§8.1 59.2 60.5 61.1 61.6
63.7 65.4 66.6 68.6 68.8 69.8 70.1
71.4 72.3 73.3 73.1 74.1 75.4 75.3
77.4 78.3 79.0 79.3 80.4 80.9 82.2
84.0 85.5 86.0 86.8 87.3 88.5 89.3
91.7 92.3 93.4 94.1 95.0 95.3 96.4
97.2 97.5 98.0 98.6 99.1 99.5 100.4 1
102.0 102.7 103.6 104.2 105.0 105.1 105.0 1
105.9 106.7 107:1 107.7 108.7 109.2 109.7 1
112.2 112.9 114.1 114.5 115.7 118.1 118.9 1
121.5 123.2 124.3 125.2
* MONEY SUPPLY M1 (billion DM, end of period)
* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
* stops: 1993Q4 no. of obs: 135 last updated: 1993Q3
* one line of data represents two years
46.409 47.770 48.387 51.072 49.465 51.960 53.902 58.
55.273 57.858 §9.251 63.351 59.116 62.160 63.553 67.
64.439 67.860 68.536 73.037 70.276 74.196 74.353 78.
74.316 77.908 76.933 79.614 75.821 78.950 80.406 87.
81.128 85.487 86.963 93.466 87.551 92.759 94.281 99.
93.452 98.550 99.142 108.219 101.879 110.146 112.389 121.
117.175 125.996 128.264 139.298 133.354 133.359 129.098 142,
132.873 140.795 141.477 158.432 149.341 160.641 164.425 179.
166.800 180.171 176.915 186.852 179.738 190.483 193.081 208.
204.242 215.359 217.498 237.909 225.460 233.116 230.226 247.
228.689 237.063 237.761 257.335 232.375 242.478 234.283 255.
237.602 250.712 248.466 273.047 263.403 277.861 273.975 295.
272.542 282.798 281.455 314.235 285.223 294.411 297.800 334.
313.436 329.320 326.936 358.747 336.807 358.731 357.178 385.
369,503 393.475 389.095 426.997 403.190 412.016 408.688 450.
412.827 483.000 502.800 584.300 530.300 541.000 546.800 604.
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75.
92.
93.
24.
35.
36.
75.
61.
46.
70.
25.

NOWUANRONNAE OO

37.
40.
43.
44.
48.
56.
63.
71.
76.
83.
90.
97.
01.
0sS.
11.
19.

VONLPOVONWANONOD » O

707
760
520
921
429
522
862
898
076
869
277
795
097
170
623
000



556.600 576.400 588.200 669.600

610.100 631.500 643.700

* M1 + QUASI-MONEY (billion DM, end of period)

0.000

* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
* stops: 199304 no. of obs: 135 last updated: 1993Q3
* one line of data represents two years
67.078 68.570 69.617 72.692 72.186 75.437 77.194 82.172
79.900 82.976 83.851 88.544 84.543 87.730 89.275 94.508
91.025 94.694 95.113 100.813 97.819 101.413 100.991 106.916
103.279 107.615 108.483 113:384 110.561 114.191 116.322 127.574
123.030 129.414 133.033 142.327 137.282 145.455 150.538 156.875
148.834 158.950 160.293 173.383 169.345 179.487 181.813 198.595
192.068 204.661 210.432 232.330 231.316 241.730 246.920 265.861
255.762 262.227 258.004 279.603 260.153 254.890 254.176 279.318
260.571 274.580 276.006 298.180 283.089 292.816 298.432 331.812
310.983 324.448 335.710 375.408 350.342 367.051 369.228 406.492
389.602 399.451 401.309 440.616 421.508 443.780 451.705 478.132
460.014 473.352 477.318 502.200 478.033 485.028 487.359 515.364
485.729 501.743 509.787 542.322 511.413 528.211 527.053 577.103
547.989 562.937 570.222 610.925 584.824 603.517 602.161 645.646
616.813 639.419 645.226 696.075 674.102 691.758 705.639 776.381
752.944 839.900 881.000 987.600 956.100 976.700 999.40 1084.500
1060.10 1091.30 1139.30 1196.500 1162.20 1193.10 1206.40 0.000
* MONEY SUPPLY M1 (billion DM, end of period)
* periodicity: QUARTERLY seasonally: ADJUSTED starts: 1960Q1
* stops: 1996Q4 no. of obs: 148 last updated: 19960Q4
* one line of data represents two years
47.2 47.8 48.3 49.0 50.4 52.0 53.8 56.3
56.4 57.8 59.2 60.8 60.4 62.0 63.5 65.1
65.9 67.6 68.6 70.2 72.1 73.8 74.5 75.4
76.2 77.4 76.9 76.4 77.9 78.5 80.6 84.0
83.5 84.9 87.0 89.2 89.5 91.5 94.6 94.4
95.9 97.5 99.8 102.8 104.8 109.3 113.5 115.4
120.8 125.3 129.2 131.8 136.8 132.2 130.1 134.4
136.1 139.6 141.9 149.8 153.0 158.5 165.8 170.6
171.1 179.1 179.6 177.7 184.8 189.9 196.2 197.2
210.1 214.8 220.3 225.5 231.1 231.8 233.3 233.6
232.9 234.5 240.7 244.1 237.7 240.9 238.0 242.2
243.8 249.7 252.9 258.7 270.9 277.1 278.8 278.9
279.3 280.9 285.3 294.3 292.1 292.3 300.2 314.1
320.2 324.4 331.2 338.8 344.3 355.6 363.7 364.1
378.9 392.1 396.9 402.9 414.0 411.1 415.8 423.9
423.1 423.5 436.7 453.1 541.9 539.4 552.1 559.7
567.7 576.6 597.8 626.5 624.6 634.2 653.9 676.6
691.9 707.2 713.6 711.8 712.9 724.9 738.7 757.6
788.1 800.5 814.9 843.1
* IMPORTS C.I.F. (billion DM, monthly averages)
* periodicity: QUARTERLY seasonally: ADJUSTED starts: 1960Q1
* stops: 1996Q4 no. of obs: 148 last updated: 1996Q4
* one line of data represents two years
3.47 3.56 3.50 3.69 3.55 3.68 3.70 3.88
4.11 4.05 4.10 4.28 4.17 4.45 4.52 4.35
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4.58 4.66 5.00 5.32 5.58 5.72 5.99
6.13 6.02 5.99 6.07 5.62 5.64 5.81
6.41 6.46 7.00 7.23 7.78 8.16 8.37
8.87 8.95 9.25 9.48 9.87 9.94 10.15
10.17 10.54 10.79 11.41 11.89 11.97 11.81
13.84 15.01 15.88 15.50 14.51 15.09 15.51
17.22 18.03 19.12 19.07 19.07 19.29 19.88
19.59 19.89 20.53 21.26 21.84 23.67 25.48
28.29 28.75 28.07 28.69 30.27 30.39 31.53
31.86 31.55 30.92 30.82 30.53 31.83 32.92
35.12 35.35 37.10 37.40 39.50 38.76 39.15
36.48 34.87 33.37 33.53 33.10 34.23 34.50
33.63 35.60 37.43 39.17 40.27 42.50 42.43
43.57 43.57 47.87 51.70 53.47 54.03 54.97
54.47 52.77 52.37 51.47 46.70 46.57 47.73
48.60 51.33 52.77 53.60 54,13 55.53 56.20
56.17 56.50 56.87 59.30
* EXPORTS F.0.B. (billion DM, monthly averages)
* periodicity: QUARTERLY seasonally: ADJUSTED starts: 1960Q1
* stops: 1996Q4 no. of obs: 148 last updated: 1996Q4
* one line of data represents two years
3.95 3.84 3.94 4.24 4.21 4,24 4.34
4.26 4,38 4.53 4.52 4.38 4.86 5.06
5.36 5.34 5.33 5.55 5.57 5.76 5.94
6.37 6.55 6.85 6.72 7.06 7.19 7.21
7.83 7.73 8.49 9.17 8.69 9.62 9.77
9.94 10.28 10.65 10.84 11.13 11.25 11.71
11.71 12.05 12.37 13.52 13.86 14.52 15.31
18.40 19.24 19.96 19.70 18.34 18.30 18.36
20.16 20.68 22.04 21.81 22.10 22.58 22.72
22.81 23.27 24.03 24.88 24.54 26.09 26.96
29.40 29.38 28.81 29.17 30.57 32.63 34.19
35.98 35.94 35.20 34.89 34.86 35.24 36.04
39.25 38.18 41.79 43.70 44.67 45,12 45.53
44.98 44.23 43.76 43.23 42.57 43.80 44.07
42.17 47.03 48.17 50.97 52.23 53.83 54.20
55.53 53.23 56.63 56.40 55.93 54.07 56.60
56.73 55.50 56.57 53.67 51.70 51.33 51.83
54,73 58.20 58.37 59.20 61.10 62.60 62.97
63.33 63.73 65.97 68.43
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(1) IMF IFS DATABASE

FRANCE

* MONEY (Billions of Francs: End of Period)

»*
*
*

periodicity:

stops:
one line of

97.
132.
175.
207.
226.
241.
307.
402.
488.
579.
713.
881.
.90

1073

1310.
1366.
1523.
1487.
1540.
1649.

91
41
72
84
12
73
65
41
79
90
80
60

50
50
00
00
00
00

96Q4

102.
140.
179.
215.
245,
249,
326.
404.
514.
599.
742,
925.
1119,
1320.
1416.

1581

1540.
1570.

1701

* QUASI-MONEY

* periodicity:

*
»

stops: 96Q4
one line of

16.
30.
40.
60.
123.
184.
301.
459.
673.
924,
1208.
1486.
1790.
2103.
2414.
2527.
2594.
2814.
3420,

40
19
47
48
91
13
57
42
24
60
20

20

70
90
40
00
(¢]]
00
00

17.
30.
41.
62.
124.
189.
318.
469.

694

942.
1212.
1506.

1804

2088.
2413.
2476.
2581.
2816.

3420

no. of obs:

data represents

24
25
91
44
71
67
67
05
51
10
60
10
50
30
00
.00
00
00
.00

106.
146.
185.
218.
248.
254.
337.
392.
513.
620.
757.
942.
1136.
1337.
1400.
1566.
1520.
1542,
0.

83
14
85
86
20
15
10
59
09
30
90
90
40
30
40
00
00
00
00

113.
154.
191.
226.
255.
277.
357.

451

545.
665.
801.
985.
1219.
1406.

1531

1703.
1608.
1673.

0

146

two years
34 118S.
71 156.
83 189,
13 223.
86 252.
71 274.
23 339.
.27 417,
95 524.
90 660.
20 784,
00 965.
20 1193.
80 1359.
.60 1418,
00 1522.
00 1498.
00 1530.
.00

34
88
31
00
71
46
48
95
65
30
70
30
10
90
00
00
00
00

QUARTERLY seasonally: UNADJUSTED
last updated: 96Q2

119.
163.
196.
230.
259.
289.
361.
441.
542.
691.
822.
1014.
12185.
1401.
1476.

1576
1544
1588

(Billions of Francs: End of Period)

starts:

61
29
62
66
02
09
79
37
98
90
00
90
60
20
00
.00
.00
.00

no. of obs: 146 last updated: 96Q2
data represents two years

54

57
71
31
78
71
77
.25
20
60
50
.70
S50
88
00
00
00
.00

69

19.
32.
43.
66.
130.
200.
335.
$03.
720.
967.

1240
1532
1827
2110
2453

2484.

2573
2872
0

20
27
47
61
84
09
76
37
05
10
.20
.50
.60
.40
.80
00
.00
.00
.00

20.
33.
45.
69.
13S.
212.
352.
§25.
747.

1015
1300
1592
1888
2164
2484
2509
2618
3013

0

81
66
20
96
21
19
48
30
65
.20
.40
.70
.00
.50 -
.10
.00
.00
.00
.00

226

23.
36.
48.
7S.
145.
231.
367.
563.
793.
1058.
1346.
1644.
1931.

2219
2417
2556
2665
3144

57
22
5§
80
94
63
93
96
o8
00
00
00
00
.10
.00
.00
.00
.00

25.
35.
49.
79.
149,
241.
382.
573.
804.
1073.
1368.
1646.
1924.
2238.
2435,
2524.
2652.
3196.

30
77
96
37
52
54
41
72
04
70
40
80
10
40
00
00
00
00

123.
169.
.55

201

230.
259.
292.
363.
455,
555.
697.
858.
1015.
1226.
1377.
.00

1511

1532.
1505.
.00

1591

QUARTERLY seasonally: UNADJUSTED starts:

26.
36.
S2.
98.
159.
258.
410.
603.
844,
1110.
1365.
.80

1659

1951.
2271,
2464.
2542.
2659.
3245.

60Q1

03
43

85
73
86
04
98
58
80
20
50
60
80

00
00

130.
177.
209.
236.
250.
310.
391.
507.
606.
751.
899.
1108.
1312.
1471.
1633.
1609.
1620.
1819.

60Q1

46
49
91
07
96
23
72
17
97
70
50

80

50

00
00
00
00

27.
37.
54,
109.
166.
280.
431.
630.
886.
1171,
1422,
1752.
2005,
2333.
2479.
2564.
2766.
3374.

94
16
86
3
53
48
74
97
67
40
80
40
40
10
00
(0]0]
00
8]0]

47
27
75
01
85
72
83
84
82
10
20
70
90
40
00
00
00
00



»*

* * x %

* ¥ % x ¥

M2 (Billions of Francs: Average of Figures for Last Month in

©OCoo0oOoOO0OOO

COOROWRRPOODO00O000O

starts:

OOOUI‘OG)NUIOOOOOO0.00

1290.
1581.
1963.
2332.
2551.
2784.
2756,

0.

1691,
2092.
2593.
3185.
3703.
4444,
5067.

0.

Ccoooooooo

OOOW\OHHOOOOOOOOOO

Coooooooo

OOO\OOQHHOOODOOO0.0

60Q1

1070.
1371.
1685.
2138.
2473.
2699.
2930.
2858.

1405.
1800.
2192.
2787.
3320.
3881.
4624.
5160.

Period)
periodicity: QUARTERLY seasonally: UNADJUSTED
stops: 9304 no. of obs: 63 last updated: 93Q2
one line of data represents two years
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
1067.2 1093.0 1132.4 1213.3 1232.0 1271.
1343.0 1370.5 1399.4 1482.4 1482.1 1523.
1691.8 1743.8 1787.0 1887.2 1891.3 1951.
2114.1 2163.2 2196.2 2335.9 2301.4 2321.
2479.6 2469.1 2480.0 2587.7 2523.1 25858.
2593.8 2636.3 2641.7 2798.9 2699.1 2742.
2768.3 2819.0 2811.0 2956.0 2770.0 2800.
2710.0 2737.0 2711.0 2821.0 2686.0 2735.
M3 (Billions of Francs: Average of Figures for Last Month in
Period)
periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
stops: 93Q4 no. of obs: 63 last updated: 93Q2
one line of data represents two years
0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0
0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.
0.0 0.0 0.0 0.0 0.0 0.
1418.1 1450.9 1491.8 1579.4 1607.9 1651.
1796.4 1830.6 1872.3 1973.5 2002.0 2060.
2241.1 2311.2 2359.6 2463.8 2497.6 2560.
2805.9 2888.0 2949.7 3092.6 3112.2 3150.
3378.1 3398.8 3446.5 3543.6 3567.4 3637.
3874.6 3948.7 4035.7 4208.6 4237.0 4334.
4623.0 4737.0 4806.0 5034.0 4993.0 5043.
5190.0 5295.0 S5308.0 5430.0 5465.0 5445,

* CONSUMER PRICE INDEX (CPI): PERIOD AVERAGES (1990=100)
* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
last updated: 96Q3

one line of data represents two years

»
L 2

stops:

14.5
15.5
16.9

96Q4 no. of obs:

14.5
- 15.6
16.9

14.6

15.
17.0

7

14.
16.
17.

147

8
0
2
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14,
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17.

9
7
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15.
16.
17.
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18.
19.
21,
24.
30.
36.
43.
55.
69.
82.
88,
94.
100.
10S.
109.
113.

WONPDPOPOUNFLONOBRNIWO

18.
19.
22.
24,
31.
37.
44.
56.
70.
83.
88.
94,
101.
106.
110.
0.

TREASURY BILL RATE (Percent

periodicity: QUARTERLY
96Q4 no. of obs: 71

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.68
.71
.05
.20
.66
.14
.65
.63
.76

Lot sead = b b
WUNOONNNPL,OOO0O0O0OO0OO0OOO

seasonally: UNADJUSTED

.00
.00
.00
.00
.00
.00
00
.00
.00
.00
.47
.35
.44
.70
.16
.05
.73
.49
.00

> b a
VWNOoOWrODOO0OO0OOOCDODOOO

-
oCwnoo

18.
20.
22.
25.
31.
38.
45.
58.
72.
84.
90.
95.
102.
107.
110.

CLWLWARNVR,VITIDPOYVWO N~
O P AR NNDNOOR WO W

Per Annum)

18.
20.
22,
25.
32.
39.
47.
60.
74.
85.
90.
96.
102.
107.
111.

PROOVUNNONWONGORO W W

last updated: 96Q3
one line of data represents two years

.00
.00
.00
.00
.00
.00
.00
.00
.00
.85
.98
.02
.08
.33
.97
.83
.62
.51

e
WO, WROAOAODODOOOOOOO

—
O -

.00
.00
.00
.00
.00
.00
.00
.00
.00
.76
.94
.10
.52
.13
.83
.58
.09
.59

e 2
\lm\DNwOUM\]OOOOOOOOO

1990 PRICES (Billions of Francs)

18.5 18.7
20.5 20.8
22.9 23.3
26.2 26.9
33.3 34.0
40.1 40.9
48.6 49.9
62.7 64.7
76.4 77.8
86.6 87.1
91.4 91.8
97.2 98.0
103.5 104.4
108.0 108.5
111.8 112.4

starts: 60Q1

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
10.82 12.50
17.44 15.69
12.93 12.53
10.05 9.05
7.92 8.51
9.15 10.40
9.69 9.65
7.34 6.58
6.17 6.06

periodicity: QUARTERLY seasonally: ADJUSTED (at Annual Rates)
last updated: 96Q2

17.8 17.8
19.0 19.1
21.3 21.5
23.6 23.9
27.9 29.1
34.9 35.7
41.5 42.7
51.8 53.5
66.6 68.6
79.1 80.6
87.2 87.8
92.2 93.2
98.7 99.6
104.9 105.7
109.0 109.6
113.2 114.1
stops:
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
13.00 12.65
17.39 17.33
12.68 12.98
8.78 7.02
7.94 7.75
10.63 9.91
10.24 10.32
6.26 5.76
4.39 3.87
GROSS DOM. PROD.
starts: 60Q1
0.0 0.0
0.0 0.0
6.0 0.0
0.0 0.0
g.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
3945.6 3985.7
4800.2 4880.6

stops: 96Q4 n
one line of data represents two years
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3

o. of obs: 86

0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 0.0
0 3720.7
6 4121.2
9 4968. 1
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3769.8 3758.
4108.6 4142.5 4147.
5013.7 5095.9 5114.
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5129.
5193.
5478.
5622.
6002.
6480.
6658,
6606.
6945,
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6921

5087.
5227.
5528.
5695.
6039.
6502.
6655.
6717.

5093.
5218.
5492.
5709.
6094.
6546.
6657.
6770.
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(II) OECD MEI DATABASE

* GDP CONSTANT PRICES OF 1980 (Billions of FFrancs)
QUARTERLY seasonally: ADJUSTED starts: 60Q1
last updated: 96Q4

* periodicity:
* stops: 96Q4
* one line of
0.0
0.0
0.0
0.0
0.0
1980.2 2014.
2193.6 2202.
2398.8 2414,
2475.3 2503.
2637.4 2678.
2812.7 2801.
2891.2 2915.
2976.7 2956.
3062.6 3107.
3272.5 3282.
3531.7 3528.
3628.8 3621.
3598.5 3658.
3786.4 3781.
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»
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no. of obs: 108

data represents two years

.0 0.0 0.0 0.
o 0.0 0.0 0.
0 0.0 0.0 0.
0 0.0 0.0 0.
0 0.0 0.0 0.
8 2047.1 2073.6 2079.
8 2225.1 2259.1 2300.
7 2440.0 2401.4 238S.
4 2517.8 2540.1 2572.
9 2680.9 2709.4 2727.
9 2809.0 2809.6 2793.
4 2913.2 2934.9 2925,
3 2970.0 2986.8 2988.
1 3120.3 3130.4 3123.
3 3324.2 3358.5 3406.
9 3570.6 3556.4 3550.
8 3620.9 3615.7 3563.
2 3687.9 3725.7 3745.
5 3810.7 3816.8

1990=100

IMPLICIT PRICE LEVEL:
* periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1

stops: 96Q4 no. of obs:

5080.
5242.
5507.
5729.
6150.
6510.
6624.
6839.
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5050.
5242.
5506.
5734.
6278.
6510.
6535.
6877.

one line of data represents two years

RGa¥88ccoo00

NNNOCLWODUBMOBOOOOO
N
-

-

X
QNN

o
JLu-
NOANNNMOVO=O0O0O00DO

O‘hMNUlQUIU!O0.000

VNN d W NN
.ogouuyu.q.gp--ooooo

cerrRrro0o0o00
CMINNOO®OOOOO

o o0w
'__omguuwu

229

25.
32.
38.
47.
S8,
71.
82.
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5101.
5264.
5535.
5803.
6331.
6542.
6536.
6887.

2112.
2327.
2395.
2579.
2751.
2831.
2938.
3017.
3154.
3430.
3567.
3564.
3750.

107 last updated: 96Q3
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2784.
2856.
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3044.
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3466.
3590.
3571.
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5180.
5280.
5608.
5913.
6393.
6611.
6567.
6868.

2165.
2382.
2440,
2609.
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2884.
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3239.
3488.
3601.
3576.
3739.
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88.0 88.7 89.4 89.7 90.5 91.1 91.5 92.5
93.1 93.6 94.7 95.6 96.2 96.8 97.4 98.9
99.0 100.2 100.4 101.0 101.9 102.6 103.2 104.0
104.8 105.2 105.7 106.2 107.4 108.0 108.4 108.6
109.2 109.5 109.9 110.3 110.9 111.4 111.8 112.2
112.8 113.2 113.4 0.0
MONEY SUPPLY M1 (billion francs, end of period)
* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
stops: 9304 no. of obs: 95 last updated: 93Q2
one line of data represents two years
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 208.04
201.61 208.38 212.33 232.20 229.22 241.27 244.47 259.56
257.28 273.14 281.79 298.86 284.03 302.14 303.47 327.70
316.85 328.51 328.43 365.76 349.50 369.55 382.47 426.47
409.37 430.41 429.42 457.42 438.89 454.51 465.57 603.20
582.04 601.25 622.08 668.81 662.89 694.59 700.75 754.82
717.51 746.41 761.48 806.04 789.00 826.24 864.18 905.80
886.63 930.96 949.25 992.66 972.92 1024.77 1025.40 1121.08
1087.52 1136.28 1156.43 1245.73 1211.7S5 1241.17 1238.40 1328.69
1331.04 1337.22 1339.20 1408.36 1362.81 1404.35 1376.45 1471.09
1366.49 1392.50 1383.90 1508.60 1415.70 1473.90 1507.60 1634.60
1514.80 1579.70 1565.30 1688.50 1514.80 1566.10 1522.60 1609.20
1487.60 1539.10 1518.80 1607.10 1504.60 1547.50 0.00 0.00
M1 + QUASI-MONEY (billion francs, end of period)
periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
stops: 9304 no. of obs: 95 last updated: 93Q2
one line of data represents two years
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 300.00
300.60 310.27 319.47 345.91 352.81 369.71 381.34 408.08
416.69 442.44 459.20 484.65 478.50 503.69 519.47 555.66
558.88 576.13 593.90 642.59 646.57 671.77 700.23 758.81
764.60 795.57 809.01 852.23 858.48 878.85 913.25 1406.94
1419.94 1452.81 1493.54 1582.00 1610.41 1654.20 1693.96 1804.56
1800.32 1834.03 1875.37 1978.27 2006.75 2064.88 2097.68 2194.22
'2236.50 2300.83 2345.37 2448.09 2473.28 2530.08 2544.16 2729.21
2725.82 2791.41 2839.47 2990.16 3000.22 3023.61 3059.57 3167.51
3190.22 3187.95 3201.68 3317.90 3353.90 3436.05 3456.52 3616.32
3602.91 3948.70 4035.70 4208.60 4241.60 4339.20 4447.90 4627.60
4626.30 4736.60 4806.00 5034.30 4992.50 5042.90 5066.80 5160.30
5189.60 5295.00 5307.60 5429.50 5474.20 5465.70 0.00 0.00

® & ® »

MONEY SUPPLY M1 (billion francs, end of period)
periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1

stops: 96Q4 no. of obs: 148 last updated: 96Q4
one line of data represents two years
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82.0 85.
111.1 117.
147.7 150.
174.3 175.
189.3 200.
203.5 205.
259.2 269.
318.8 323.
412.3 424 .
584.5 594.
721.8 738.
894.0 921.

1094.1 1123.
1333.9 1318.
1383.8 1386.
1544.7 1567.
1514.8 1516.
1563.4 1551.
1665.0 1676.
IMPORTS F.O0.B.
periodicity:
stops: 96Q4

one line of

2.51 2
3.04 2
4.06 4
4.67 4,
5.42 4
7.92 8
10.01 10.
18.20 20.
21.39 23.
29.01 29.
44.46  45.
56.51 59.
70.84 72.
72.68 72.
80.42 83.
101.43 100.
103.37 102.
97.92 100.
113.92 113.
EXPORTS F.O.
perlodicity:
stops: 96Q4

cne line of

2.91
3.05
3.63

V== WNN

no. of obs:
data represents

.48
.96
.22

87

.90
.13

39
34
38
11
S8
76
50
78
45
93
91
82
36

B.

no. of obs:

.74
.94
.65
.54
.26
.16

89.
121.
153.
178.
202.
212.
281,
328.
429.
619.
758.
946.

1156.
1342.
1388.
1566.
1524.
1553.
1682.

G‘POU’IO\D#\DOOU@U’IN\D\INWU

92.
126.
156.
182.
20S.
223.
284,
345.
431.
642,
775.
951.

1187.
1338.
1423.
1588.
1516.
1568.
1696.

NO\O\PO\#HHUO\G\NWOhHQMN

0
o)

131.
160.
186.
209.
231.
286.
351.
442.
666.
795.
980.
1216.
1365.
1443.
1544.
1521.
1545.

#OhOh\DprO\OONQ\OH\].\I

0
0

\DNO‘\OQNO‘W#O\NO\\DHQHN?w

136.
164.
188.
209.
237.
297.
364.
448.
687.
817.
1013.
1226.
1389.
1468.
1550.
1523.
1564.

(billion francs, monthly averages)
QUARTERLY seasonally: ADJUSTED starts: 60Q1
148 1last updated: 96Q4

.68
.21
.12
98
.16
.47
10.51
21.27
25.66
29.40
46.01
62.98
72.45
72.47
88.84
102.92
100.92
102.92
115.16

Wb bdWUN

two years

2.65 2.59

3.33 3.24

4.11 4.05

5.06 5.21

6.47 6.74

8.76 8.61
11.55 11.8S
19.77 18.64
27.46 27.39
30.83 32.21
47.62 47.98
62.88 62.64
75.81 78.82
70.17 73.05
90.74 95.99
103. 66 103.09
98.77 91.47
106.82 111.08
116.97

.77
.59
19
.98
.32
.78
12.40
17.33
27.27
34.87
50.79
63.26
78.41
75.60
99.18
103.41
91.66
112.93

VNN

(billion francs, monthly averages)
QUARTERLY seasonally: ADJUSTED starts: 60Q1
148 last updated: 96Q4

data represents two years

2.77
3.00
3.63
4.59
5.83
8.45

2.86
2.98
3.84
4.51
S5.61
8.71

231

2.87
3.09
3.89
4.51
5.86
9.16

2.95
3.40
4.05
4.68
6.20
9.16

102.
141.
168.
188.
210.
244,
303.
382.
464.
697.
861.
1024.
1240.
1383.
1509.
1525.
1515.
1602.

.::mmo»—-wowmoom.bpum.bo\l

.76
.65
.30
.04
.56
.46
13.37
17.97
27.69
38.73
54.17
64.53
77.96
77.53
98.69
106.97
91.92
113.55

O~NADdWN

3.38
4.26
4.72

9.94

107.
144.
169.
190.
200.
248.
310.
402.
579.
725.
869.
1071.
1264.
1395.
1540.
1516.
1532.
1686.

ONbdbdLW

pP-O\uONothUIUIwa(.JU'IN\lH

.90.
.88
.47
.20
.95
.65
.21
.87
.99
.20
.14
.75
.06
.67
.91
.55
.57
.10

.04
.46

38

.89
.12
.16



10.
17.
20.
28.
39.
51.
67.
73.
78.
100.
105.
103.
120.

16
21
69
94
68
29
61
61
63
20
16
62
47

11.
18.
22.
29.
40.
51.
69.
70.
82.
97.
106.
107.
120.

08
a7
41
45
69
34
83
94
25
02
51
24
o7

11.
19.
23.
29.
40.
52.
T1.
72.
84.
96.

102
109
124

16
33
34
79
59
87
98
39
89
99
.93
.49
.05

12.
19.
24.
30.
42.
55.
73.
70.
86.
98.
101.

115

125.

33
36
64
926
57
43
91
98
77
19
69
.37
84

232

12.
19.
25.
32.
44,
55.
7S.
70.
94,
98.
95.
116.

52
25
71
60
22
18
26
70
32
33
92
83

13.
18.
.01

26

34.
47.
58.
76.
.54

71

94.
100.
98.
119,

10
43

64
84
97
65

57
45
42
65

13.
18.
26.
36.
50.
61.
74.
75.
94,

104
100
116

88
73
93
98
11
52
88
47
50
.00
.24
.60

14.
19.
27.
38.
50.
65.
75.
78.
97.
104.
102.
118.

65
29
94
36
02
15
30
62
65
38
42
98



(I) IMF IFS DATABASE

ITALY

* MONEY (M1) (Trillions of Lire: End of Period)

* periodicity: QUARTERLY seasonally: UNADJUSTED starts:
last updated: 96Q2

* stops:
* one line of data represents two years

6.
10.
9.
12,
15.
22.
3S.
. 765

51

65.
95.
140.
.378
. 247

171
226

284,
335.
409.
486.
.690

561

548.

* ¥ » %

3.
S.
8.
11.
14.
16.
19.
28.
48,
71.
96.
118,
158.
196.
234.
292.
350.
431.

287
529
095
269
992
833
157

681
o067
635

623
494
340
690

420

794
092
871
322
318
543
518
947
653
608
614
845
435
243
532

110

860
030

96Q4 no. of obs:

6.531
10.863
9.438
12.653
16.794
24.929
36.696
53.889
67.192
99.764
143.250
175.575
228.723
287.444
343.327
420.230
499.310
563.090
560.370

3.887
5.211
8.898
11.504
14.512
16.183
20.189
29.839
49,508
73.134
96.425
119,255
158.911
194.672
237.785
295.140
357.090
425.180

6.
11.
9.
13.
17.
26.
37.
S3.
68.
103.
143.
180.
234.
294,
352.
423.
493.
549.
0.

4.
5.
9.
11.
14,
15.
20.
30.
S1.
7S.
97.
122.
163.
198.
244.
303.
366.
419.

915
405
772
060
386
302
699
946
682
932
598
620
391
277
666
720
670
110
000

QUASI-MONEY (Trillions
periodicity: QUARTERLY
stops: 94Q4 no. of obs: 139
one line of data represents two years

011
416
058
852
821
955
972
675
371
363
999
646
679
616
409
570
560
360

7.
12.
10.
14.
18.
29.
42.
57.
76.

116.
164.
212,
269.
.039

331

386.
482.
545.
.330

597

0.

146

414
180
945
154
970
885
229
194
311
763
616
029
575

037
230
790

000

T.
12.
10.
13.
18.
29.
41.
54.
77.

116.
159.
198.
258,
312.
361.
443.
50sS.
551.

244
210
595
921
953
417
680
971
161
832
843
824
007
915
559
700
090
840

7.
12.
11.
14.
19,

31

45.
54,

79

122.
159.
202.
259.
321.
374.
455,
517.
557.

of Lire: End of Period)

seasonally: UNADJUSTED starts:
last updated: 94Q3

4.
5.
9.
12.
15.
16.
22.
33.
56.
83.
108.
142.
178.
214.
257.
323.
388.
.000

252
795
650
646
656
481
552
589
951
085
617
748
021
519
162
730
240
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4,
5.
9.
12.
18S.
16.
23.
37.
58.
84.
107.
140.
181.
219,
267.
323.
399.

376
959
853
844
764
444
307
418
993
573
663
738
953
581
603
740
780

4.
6.
9.
13.
1§.
16.
23.
40.
60.
85.
106.
142.
183.
220.

270
324
402

492
449
079
476
709
.003
151
897
.953
098
653
631
709
552
275
810
630
150

485
060
992
041
815
865
903
378
251
983
493
054
628
573
. 067
.930
. 420

12.

11
15

20.
32.
46.
57.
82.
127.

158

211.
267.
325.
377.
459.
522.
553.

4.
6.
10.
13.
16.
17.
24,
42.
61.
88.
107.

145

186.

221

274.
329.
409.

.795
775
.489
.004
449
131
825
600
625
440
.374
133
923
879
967
910
110
020

648
218
279
337
091
552
761
529
996
294
210
.640
452
.267
497
180
400

60Q1

8.
9.
12.
16.
22.
35.
52.
64.
92.
145.
181.
239.
297.
357.
433.
537.
579.
604.

60Q1

601
423
672
428
477
567
460
011
702
069
044
210
951
151
334
530
080
490

.928
777
11.
14.
16,
18.
27.
46.
69.
97.
119,
159.
199.
234.
285,
345.
423.

075
113
750
883
393
661
485
082
195
286
032
644
361
800
980



* CONSUMER PRICE INDEX (CPI): PERIOD AVERAGES (1990=100)
seasonally: UNADJUSTED
last updated: 96Q3

*
*
*

* TREASURY BILL RATE

»
»
*

® E %K % ¥

periodicity: QUARTERLY

stops: 96Q4 no. of obs:
one line of data represents two years
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1
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0.
2.
6.
1.
8.
9.
4.
9.
0.
8.
0.
2.
1.
3.

1
1
1
1
2
2
4
5
7
8
9
10
11
12
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0.
1.
2.
7.
2.
9.
2.
7.
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1.
0.
2.
3.
3.
0.

1
1
1
1
2
3
4
5

~
w

8
9
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12
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NONOOTNWORANOCONF =N WD

0.
1.
2.
7.
4,
0.
3.
9.

2.
2.
4.
4,
5.

1
1
1
1

N
-

31.
45.
61.
75.
83.
93.
10S.
116.
127.

periodicity: QUARTERLY seasonally: UNADJUSTED
stops: 96Q4 no. of obs: 78
one line of data represents two years
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.24
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.35
.81
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.44
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.25
.40
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.12
.53
.52
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8.

.00
.00
.00
.00
.00
.00
.00
.00
.00
.87
.80
.69
.16
.58
.36
.77
.13
.50
41

e NeoNoReNoNoNoNoNo

= e e e e e e fea
VAN O PN

0.

.00
.00
.00
.00
.00
.00
.00
.00
.00
.85
.88
.88
.94
.29
.55
.69
.17
.86
00

last updated: 96Q3

jeleNoloNeoNeNeNeNe)

12.
17.
18.
13.
10.
12.
13.
12.
10.

.00
.00
.00
.00
.00
.00
.00
.00
.00
05
S5
95
S3
00
12
01
31
68
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16.
11.
19.
17.
14.

9.

11

12.
11.
11.

starts:
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0.
1.
3.
8.

.00
.00
.00
.00
.00
.00
.00
.00
23
%6
45
78
17
88
.97
06
46
14

GROSS DOM. PROD. 1990 PRICES (Trillions of Lire)

periodicity: QUARTERLY seasonally: ADJUSTED (at Annual

starts: 1993Q4 no. of obs: 83

last updated:

1960Q1

stops:
1993Q3

one line of data represents two years

0.00

0.00

0.00

0.00 0.

234

00

0.

00

(WGHTD AV BEFORE TAX, Percent Per Annum)
starts:

60Q1
7.5 7.5
8.4 8.6
9.3 9.4
9.9 10.0
10.3 10.4
11.3 11.5
13.4 13.8
18.6 19.1
25.5 26.4
32.8 34.6
46.9 49.1
62.4 64.6
76.3 78.0
84.4 85.8
94.3 95.9
106.9 108.4
117.3 118.5
128.6 130.0
60Q1
0.00 0.00
0.00 0.00
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APPENDIX D

COMPUTER PROGRAMS IN RATS PACKAGE

/* (Ia) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE UK MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with <<<<<«,

UKLGDP = LOG OF UK REAL GDP (1990 PRICES)

UKLMO = LOG OF UK MONEY SUPPLY MO

UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)
UKTBR = UK 3-MONTH TREASURY BILL RATES

*/
CAL 1969 2 4 ;* Set CALENDAR for quarterly data beginning with 69:2

ALL 8 1996:3 ;* and ending 96:3. ALLOCATE "space" of at least 4*2=8
;* serles for the residuals.

OPEN DATA A:\UK.DAT ;* Data set 1s assumed to be on drive a:\.

CLEAR UKLGDP UKLMO UKLCPI UKTBR

DATA(ORG=VAR) / UKLGDP UKLMO UKLCPI UKTBR

* The next three lines transform GDP, MO and CPI to their logs.

DOFOR 1 = UKLGDP UKLMO UKLCPI

LOG 1

END DOFOR
»*

SMPL 1970:4 1990:4 ;* Both restricted and unrestricted VARs are
;"* estimated over the same sample period.

/* The next five lines set up an ‘unrestricted’ VAR using 6 lags of

each variable plus an intercept.
*/

SYSTEM 1 TO 4

VAR UKLGDP UKLMO UKLCPI UKTBR
LAGS 1 TO 6

DET CONSTANT

END(SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the

given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to

be suppressed.

*/

ESTIMATE(NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/* Next, define a ‘restricted’ system using 5 lags of each variable
and estimate the model over the same sample.

*/

SYSTEM 1 TO 4

VAR UKLGDP UKLMO UKLCPI UKTBR

LAGS 1 TO § <<<<<<

DET CONSTANT

END(SYSTEM)
ESTIMATE(NOPRINT, NOFTESTS) / 5 ;* Residuals into series 5 through 8
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/* When testing a restricted VAR(1l) against an unrestricted VAR(m),
1<m, the degrees of freedom are K*K*(m-1)=4*4*(6-5)=16, i.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction is
K*m+1=4*6+1=25, i.e. the number of regressors per equation in the
unrestricted system.

*/

RATIO(DEGREES=16, MCORR=25) <<<<L<

#17T0 4

#5 TO 8

END

Normal Completion
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/* (Ib) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE UK ECONOMY

UKLGDP = LOG OF UK REAL GDP (1990 PRICES)

UKLMO = LOG OF UK MONEY SUPPLY MO

UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)
UKTBR = UK 3-MONTH TREASURY BILL RATES

*x/

CAL 1969 2 4
ALL O 1998:4
OPEN DATA A:\UK.DAT
CLEAR UKLGDP UKLMO UKLCPI UKTBR
DATA(ORG=VAR) 1969:2 1996:3 UKLGDP UKLMO UKLCPI UKTBR
»
SYSTEM(KALMAN) 1 TO 4
VAR UKLGDP UKLMO UKLCPI UKTBR
LAGS 1 TO 6
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT
5.00 5.00 5.00 5.00
2.00 40.00 0.40 24.00
300.00 24.00 300.00 15.00
1.00 0.90 1.00 1.00
SPECIFY (TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END(SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guldelines for model

building.

*/

THEIL(SETUP) 4 1 1996:3

#1TO 4

ESTIMATE (NOPRINTS, NOFTESTS) 1970:4 1990:4

/* This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1970:4

to 1990:4.

*/

THEIL

DO TIME = 1991:1, 1996:3
FORECAST(PRINT) 4 1
#1

* # x
= wWN

KALMAN
THEIL
END DO TIME

THEIL (DUMP)
/* Next, the FORECAST instruction creates ex ante forecasts of the

dependent variables beyond the estimation period, using explanatory
variables that may or may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
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Erovides a name so that the forecasts can be stored for later use.
/
THEIL(SETUP) 4 1 1998:4
#1TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1970:4 1996:3
THEIL
DO TIME=1996:4, 1998:4
FORECAST 4 1
# 1 F_UKLGDP
# 2 F_UKLMO
# 3 F_UKLCPI
# 4 F_UKTBR
KALMAN
THEIL
END DO TIME

THEIL (DUMP)
*

PRINT(DATES) 1996:4 1998:4 F_UKLGDP F_UKLMO F_UKLCPI F_UKTBR
»
OPEN COPY A:\UKBV.FOR

COPY (DATES, ORG=VAR) 1996:4 1998:4 F_UKLGDP F_UKLMO F_UKLCPI F_UKTBR
END
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/* (Ic) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE UK ECONOMY

UKLGDP = LOG OF UK REAL GDP (1990 PRICES)
UKLMO = LOG OF UK MONEY SUPPLY MO
UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)
UKTBR = UK 3-MONTH TREASURY BILL RATES
EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/

CAL 1969 2 4

ALL 0 1999:4 ;* The time span given here must be long enough.
CLEAR UKLGDP UKLMO UKLCPI UKTBR EC

OPEN DATA A:\UK.DAT

DATA(ORG=VAR) 1969:2 1996:3 UKLGDP UKLMO UKLCPI UKTBR

OPEN DATA A:UKRSS.DAT

DATA(ORG=VAR) 1969:2 1990:4 EC

SET TREND = T

/* Taking the first difference of each variable to be used in the
VAR; taking one difference loses one observation.

*/

SMPL 1969:3 1996:3

SET DI1UKLGDP = UKLGDP(T) - UKLGDP(T-1)
SET DIUKLMO = UKLMO(T) - UKLMO(T-1)
SET D1UKLCPI = UKLCPI(T) - UKLCPI(T-1)
SET DI1UKTBR = UKTBR(T) - UKTBR(T-1)

* Set up a four-variable BVAR including the error- correction term.
*

SYSTEM(KALMAN) 1 TO 4
VAR D1UKLGDP D1UKLMO D1UKLCPI D1UKTBR
LAGS 1 TO S ;* Use five lags of each varlable

DET CONSTANT EC{6} ,‘ Include a constant and the
;*® error-correction term

DECLARE RECT PRIORMAT(4 4)
INPUT PRIORMAT

1.00 1.00 1.00 0.01
40.00 40.00 40.00 0.80
300.00 9.00 300.00 33.00

3.00 42.00 300.00 300.00
SPECIFY(MVECTOR=!:0.0, 0.0, 0.0, 0.0:!!, $

TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)

END(SYSTEM)
/* Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instructlon prepares RATS to create ex post
forecasts of the four variables over the period 1991:1 through
1996:3 first, so that the forecasting results can be checked against
existing data and used as guldelines for model bullding. At this
stage, the output from the ESTIMATE instruction is unnecessary. Use
the NOPRINT and NOFTESTS options to suppress the display.
»/
COMPUTE TIME = 1990:4

DOI=1, 4

THEIL(SETUP) 4 1 TIME+6

#1TO 4

ESTIMATE (NOPRINTS, NOFTESTS) 1970:4 TIME
THEIL

DO N = TIME+1, TIME+6
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FORECAST(PRINT) 4 1
#1
#2
#3
# 4
KALMAN
THEIL
END DO N
THEIL (DUMP)
*
SMPL TIME+1 TIME+6
SET TREND =T
SET EC = UKLGDP(T) + 0.295*UKLMO(T) $
- 1.199*UKLCPI(T) + 0.278*UKTBR(T)
COMPUTE TIME = TIME + 6

END DO 1
/* Next, the FORECAST instruction creates ex ante forecasts of the

variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provides the
dependent variable name so that the data can be extended with the

forecasts.

*/

COMPUTE TIME = 1996:3

DOI = ' 2

THEIL(SETUP) 4 1 TIME+6

#1TO 4

ESTIMATE (NOPRINTS, NOFTESTS) 1970:4 TIME
THEIL

DO N = TIME+1, TIME+6
FORECAST 4 1
# 1 DI1UKLGDP

# 2 DIUKLMO
# 3 DI1UKLCPI
# 4 DIUKTBR
KALMAN
THEIL
END DG N
THEIL (DUMP)
*
SMPL TIME+1 TIME+6
SET TREND =T
'SET UKLGDP = UKLGDP(T-1) + D1UKLGDP(T)
" SET UKLMO = UKLMO(T-1) + DI1UKLMO(T)
SET UKLCPI = UKLCPI(T-1) + DIUKLCPI(T)
SET UKTBR = UKTBR(T-1) + DIUKTBR(T)

SET EC = UKLGDP(T) + 0.295*UKLMO(T) $
~ 1.199*UKLCPI(T) + 0.278*UKTBR(T)

COMPUTE TIME = TIME + 6
END DO I
*

PRINT(DATES) 1969:2 1998:4 UKLGDP UKLMO UKLCPI UKTBR
. o

OPEN COPY A:\UKBVEC.FOR
COPY(DATES, ORG=VAR) 1996:4 1998:4 UKLGDP UKLMO UKLCPI UKTBR

END

244



/* (Ila) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE GERMANY MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with <<<<<<,
GERLGNP = LOG OF GERMANY REAL GDP (1985 PRICES)

GERLM1 = LOG OF GERMANY MONEY SUPPLY M1

GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES

*/

CAL 1975 3 4 ;* Set CALENDAR for quarterly data beginning with 75:3
ALL 8 1992:4 ;* and ending 92:4. ALLOCATE "space" of at least 4*2=8
;* series for the residuals.
OPEN DATA A:\GER.DAT ;* Data set is assumed to be on drive a:\.
CLEAR GERLGNP GERLM1 GERLCPI GERTBR
DATA(ORG=VAR) / GERLGNP GERLM1 GERLCPI GERTBR
* The next three lines transform GNP, M1 and CPI to their logs.
DOFOR I = GERLGNP GERLM1 GERLCPI

LOG I

END DOFOR
SMPL 1977:1 1990:4 ;* Both restricted and unrestricted VARs are
;* estimated over the same sample period.
/* The next five lines set up an ‘unrestricted’ VAR using 6 lags of
each varlable plus an intercept.
*/
SYSTEM 1 TO 4
VAR GERLGNP GERLM1 GERLCPI GERTBR
LAGS 1 TO 6
DET CONSTANT

END (SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the

given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to

be suppressed.

./

ESTIMATE(NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/* Next, define a ‘restricted’ system using 5 lags of each variable
and estimate the model over the same sample.

*/

SYSTEM 1 TO 4

VAR GERLGNP GERLM1 GERLCPI GERTBR

LAGS 1 TO § <K<«

DET CONSTANT

END (SYSTEM)
ESTIMATE(NOPRINT, NOFTESTS) / S ;* Residuals into series 5 through 8

/* When testing a restricted VAR(1l) against an unrestricted VAR(m),
1<m, the degrees of freedom are K*K*(m-1)=4%*4*(6-5)=16, i.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction |is
K*m+1=4%6+1=25, i.e.- the number of regressors per equation in the
unrestricted system.

*/

RATIO(DEGREES=16, MCORR=25) <<«

#1710 4

#5 T0 8

END
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/* (IIb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE GERMAN ECONOMY

GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)

GERLM1 = LOG OF GERMANY MONEY SUPPLY M1

GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES

*/

CAL 1975 3 4

ALL O 1998:4

OPEN DATA A:\GER.DAT

CLEAR GERLGNP GERLM1 GERLCPI GERTBR

DATA(ORG=VAR) 1975:3 1996:3 GERLGNP GERLM1 GERLCPI GERTBR
»

SYSTEM(KALMAN) 1 TO 4

VAR GERLGNP GERLM1 GERLCPI GERTBR

LAGS 1 TO 6

DET CONSTANT

DECLARE RECT PRIORMAT(4,4)

INPUT PRIORMAT

300. 00 3.00 3.00 12.00

20.00 20.00 1.40 20.00

1.00 1.00 1.00 1.00

90.00 0.90 0.90 90.00

SPECIFY (TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END(SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables first, so that the output can be checked against existing
data and used as guldelines for model building.

*/
THEIL(SETUP) 4 1 1992:4

#1TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1977:1 1990:4
/* This instruction is used to suppress the printing of the OLS

output and F-tests, and to estimate the model over the period 1977:1

to 1990:4.

*/

THEIL

DO TIME=1991:1, 1992:4
FORECAST (PRINT) 4 1
#1

#* ¥ 3
o wWN

KALMAN
THEIL
END DO TIME
THEIL (DUMP)

»

THEIL(SETUP) 4 1 1996:3
#1704
ESTIMATE (NOPRINTS, NOFTESTS) 1977:1 1992:4

THEIL
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DO TIME=1993:1, 1996:3
FORECAST(PRINT) 4 1
# 1 F_GERLGNP
# 2
#3
# 4
KALMAN
THEIL
END DO TIME

THEIL (DUMP)
/% New* the FORECAST instruction creates ex ante forecasts of the

depend.nt variables beyond the estimation perlod, using explanatory
variables that may or may not be known with certainty. Each
supplementary card lists the equatlion to be used for forecasting and
provides a name so that the forecasts can be stored for later use.
»*/
THEIL(SETUP) 4 1 1998:4
#17T0 4
ESTIMATE (NOPRINTS, NOFTESTS) 1977:1 1996:3
THEIL
DO TIME=1996:4, 1998:4
FORECAST 4 1
# 1 F_GERLGNP
# £ _GERLM1
# 3 F_GERLCPI
# 4 F_GERTBR
KALMAN
THEIL
END DO TIME
THEIL (DUMP)
»

PRINT(DATES) 1993:1 1998:4 F_GERLGNP
PRINT(DATES) 1996:4 1998:4 F_GERLM1 F_GERLCPI F_GERTBR
] .

OPEN COPY A:\GERBV1.FOR
COPY( '/ iS5, ORG=VAR) 1993:1 1998:4 F_GERLGNP

OPEN COPY A:\GERBV2.FOR
COPY (DATES, ORG=VAR) 1996:4 1998:4 F_GERLM1 F_GERLCPI F_GERTBR

END
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/* (1Ic) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
"C FORECASTING MODEL FOR THE GERMAN ECONOMY

GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)
GERLM1 = LOG OF GERMANY MONEY SUPPLY M1
GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES
EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/
CAL 1975 3 4

ALL 0 1999:4 ;* The time span given here must be long enough.
CLEAR GERLGNP GERLM1 GERLCPI GERTBR EC1 EC2

OPEN DATA A:\GER.DAT

DATA(ORG=VAR) 1975:3 1996:3 GERLGNP GERLM1 GERLCPI GERTBR

OPEN LA!A A:GERRSS1.DAT

DATA(ORG=VAR) 1975:3 1990:4 EC1 EC2

SET TREND = T

/* Taking the first difference of each variable to be used in the
VAR; taking one difference loses one observation.

*/

SMPL 1975:4 1992:4

SET D1GERLGNP = GERLGNP(T)
SMPL 1975:4 1996:3

GERLGNP (T-1)

SET DI1GERLM1 = GERLM1(T) - GERLM1(T-1)
SET D1GERLCPI = GERLCPI(T) - GERLCPI(T-1)
SET DI1GERTBR = GERTBR(T) - GERTBR(T-1)
* Set .c a four-variable BVAR including the error-correction term.

»

SYSTEM(KALMAN) 1 TO 4
VAR D1GERLGNP D1GERLM1 DI1GERLCPI D1GERTBR
LAGS 1 TO 3 ;® Use three lags of each variable

DET CONSTANT EC1{4} EC2{4} ;* Include a constant and the
;® error-correction terms

DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

1.00 0.01 1.00 1.00

0.01 1.00 1.00 0.01
300.00 3.00 300.00 15.00

1.0 1.00 1.00 1.00
SPECIFY (MVECTOR=!:0.0, 0.0, 0.0, 0.0::, ¢

TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)

END(SYSTEM)
/* Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instruction prepares RATS to create ex post
forecasts of the four varlables first, so that the forecasting
results can be checked against existing data and used as guidelines
for model building. At this stage, the output from the ESTIMATE
instruction is unnecessary. Use the NOPRINT and NOFTESTS options to

suppress the display.

= / .

COMFI:TE. TIME = 1990:4

DOI =1, 2

THEIL(SETUP) 4 1 TIME+4

#1704

ESTIMATE (NOPRINTS, NOFTESTS) 1977:1 TIME
THEIL e :
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DO N = TIME+1, TIME+4
FORECAST(PRINT) 4 1
#1
# 2
#3
# 4
KALMAN
THEIL
END DO N
THEIL (DUMP)
»
SMPL TIME+1 TIME+4
SET TREND = T
SET EC1 = GERLGNP(T) - 0.286*GERLM1(T) $
+ 0.086*GERLCPI(T) - 0.017*GERTBR(T)
SET EC2 = GERLGNP(T) - 1.S590*GERLM1(T) $
+ 2.8T1*GERLCPI(T) - 0.024*GERTBR(T)
COMPUTE TIME = TIME + 4
END DO I
»*
COMPUTE TIME = 1992:4
D0OI =1, 4
THEIL(SETUP) 4 1 TIME+4
#1170 4

ESTIMATE (NOPRINTS, NOFTESTS) 1977:1 TIME
THEIL
DO N = TIME+1, TIME+4
FORECAST (PRINT) 4 1
# 1 D1GERLGNP
# 2
# 3
# -
KALMAN
THEIL
END DO N
THEIL (DUMP)
]

SMPL TIME+1 TIME+4

SET TREND =T
SET GERLGNP = GERLGNP(T-1) + D1GERLGNP(T)

SET EC1 = GERLGNP(T) - 0.286*GERLM1(T) $
+ 0.086*GERLCPI(T) - 0.017*GERTBR(T)
SET EC2 = GERLGNP(T) - 1.S90*GERLM1(T) $
+ 2.871*GERLCPI(T) - 0.024*GERTBR(T)
COMPUIE TIME = TIME + 4
END DO I

/* Next, the FORECAST instructlion creates ex ante forecasts of the
variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provides the
dependent variable name so that the data can be extended with the

forecasts.

4

COMPUTE TIME = 1996:3

DOI =1, 3

THEIL(SETUP) 4 1 TIME+4

#1TD 4

ESTi: :/{NOPRINTS, NOFTESTS) 1977:1 TIME

249



THEIL

DO N = TIME+1, TIME+4
FORECAST 4 1
# 1 DIGERLGNP
# 2  DIGERLM1
# 3 DIGERLCPI
# 4 DI1GERTBR
KALMAN
THEIL

END Nn N

T

»

SMPL TIME+1 TIME+4
SET TREND = T

SET GERLGNP = GERLGNP(T-1) + D1GERLGNP(T)
SET GERLM1 = GERLM1(T-1) + DI1GERLM1(T)
SET GERLCPI = GERLCPI(T-1) + D1GERLCPI(T)
SET GERTBR = GERTBR(T-1) + DIGERTBR(T)

SET EC1 = GERLGNP(T) - 0.286"GERLM1(T) $
+ 0.086*GERLCPI(T) - 0.017*GERTBR(T)

SET EC2 = GERLGNP(T) - 1.590*GERLM1(T) $
+ 2.871*GERLCPI(T) - 0.024*GERTBR(T)

COMF " TIME = TIME + 4
END ..
»

PRINT(DATES) 1975:3 1998:4 GERLGNP GERLM1 GERLCPI GERTBR
»

OPEN COPY A:\GERBVEC.FOR
COPY (DATES, ORG=VAR) 1993:1 1998:4 GERLGNP GERLM1 GERLCPI GERTBR

END
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/* (IIIa) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR
TESTING THE MAXIMUM VAR ORDER OF THE FRANCE MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with <<<<<<,

FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)

FRALM1 = LOG OF FRANCE MONEY SUPPLY M1
FRALCPI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES

*y
CAL 1979 1 4 ;* Set CALENDAR for quarterly data beginning with 79:1

ALL 8 1996:3 ;* and ending 96:3. ALLOCATE "space" of at least 4*2=8
;* series for the residuals.

OPEN DATA A:\FRA.DAT ;* Data set is assumed to be on drive a:\.
CLE: = "PALGDP FRALM1 FRALCPI FRATBR
DATA (ORG=VAR) / FRALGDP FRALM1 FRALCPI FRATBR
* The next three lines transform GDP, M1 and CPI to their logs.
DOFOR I = FRALGDP FRALM1 FRALCPI

LOG I

END DOFOR

SMPL 1980:3 1990:4 ;* Both restricted and unrestricted VARs are
;* estimated over the same sample period.

/* The next five lines set up an ‘unrestricted’ VAR using 6 lags of

each variable plus an intercept.
»*/

SYSTEM 1 TO 4

VAP. © »* NP FRALM1 FRALCPI FRATBR
LAG: . . 6

DET CONSTANT

END(SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the

given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regresslon output is not important;
the options noftests and noprint cause the printing of all output to

be suppressed.

*/

ESTIMATE(NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/* Next, define a ‘restricted’ system using 5 lags of each variable
and estimate the model over the same sample.

»*/

SYSTEM 1 TO 4

VAR FRALGDP FRAIM1 FRALCPI FRATBR

LAGS 1 TO S <<<<L<

DET CONSTANT

END(SYSTEM)
ESTIMATE (NOPRINT, NOFTESTS) / 5 ;* Residuals into series 5 through 8

/* When testing a restricted VAR(1l) against an unrestricted VAR(m),
1<m, the degrees of freedom are K*K*(m-1)=4*4*(6-5)=16, i.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction 1s
K*m+1=-4%*4+1=25, 1.e. the number of regressors per equation in the
un:r. 0% ted system.

*/

RATIO(DEGREES=16, MCORR=25) €<<<<<

#1TO 4 ' ,

#5708

END
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/* (I11Ib) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE FRENCH ECONOMY

FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)

FRALM1 = LOG OF FRANCE MONEY SUPPLY M1

FRALCPI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES

*/

CAL 1979 1 4

ALL O 1998:4

OPEN DATA A:\FRA.DAT

CLEAR FRALGDP FRALM1 FRALCPI FRATBR

DATA(ORG=VAR) 1979:1 1996:3 FRALGDP FRALM1 FRALCPI FRATBR
»*

SYSTEM(KALMAN) 1 TO 4
VAR FRALGDP FRALM1 FRALCPI FRATBR
LAGS 1 TO 4

DET CONSTANT

DECLARE RECT PRIORMAT(4,4)

INPUT PRIORMAT

12.00 12.00 0.12 12.00

6.00 6.00 6.00 0.06

5.00 5.00 5.00 2.50

0.01 0.01 0.60 1.00

SPECIFY(TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END(SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guidelines for model

building.
*/
THEIL(SETUP) 4 1 1996:3

#17T0 4 .
ESTIMATE (NOPRINTS, NOFTESTS) 1980:1 1990:4

/* This instruction 1s used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1980:1

to 1990:4.
*/
THEIL
DO TIME=1991:1, 1996:3
FORECAST(PRINT) 4 1
#1
# 2
#3
# 4
KALMAN
THEIL
END DO TIME

THEIL (DUMP) '
/* Next, the FORECAST instruction creates ex ante forecasts of the

dependent variables beyond the estimation period, using explanatory
variatles that may or may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
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groviaes a name so that the forecasts can be stored for later use.
/
THEIL(SETUP) 4 1 1998:4
# 1 TO 4
ESTIMATE{NOPRINTS, NOFTESTS) 1980:1 1996:3
THEIL
DO TIME=1996:4, 1998:4

FORECAST 4 1

# 1 F_FRALGDP

# 2 F_FRALM1

# ? F_FRALCPI
: F_FRATBR
KALMAN
THEIL
END DO TIME
THEIL (DUMP)
»

PRINT(DATES) 1996:4 1998:4 F_FRALGDP F_FRALM1 F_FRALCPI F_FRATBR
»
OPEN COPY A:\FRABV.FOR

COPY (DATES, ORG=VAR) 96:4 98:4 F_FRALGDP F_FRALM1 F_FRALCPI F_FRATBR
END
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/* (11Ic) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE FRENCH ECONOMY

FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)
FRALM1 = LOG OF FRANCE MONEY SUPPLY M1
FRALCPI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES
EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/
CAL 1979 1 4

ALL 0 1999:4 ;* The time span given here must be long enough.
CLEAR FRALGDP FRALM1 FRALCPI FRATBR EC

OPEN DATA A:\FRA.DAT
DAT: = T=VAR) 1979:1 1996:3 FRALGDP FRALM1 FRALCPI FRATBR

OPEN DATA A:FRARSS.DAT
DATA(ORG=VAR) 1979:1 1990:4 EC

SET TREND = T
/* Taking the first difference of each variable to be used in the

VAR; taking one difference loses one observation.
*/

SMPL 1979:2 1996:3
SET D1FRALGDP = FRALGDP(T) - FRALGDP(T-1)
SET DI1FRALM1 = FRALM1(T) - FRALM1(T-1)
SET D1FRALCPI = FRALCPI(T) - FRALCPI(T-1)
SET DI1FRATBR = FRATBR(T) - FRATBR(T-1)

* Set up a four-variable BVAR including the error-correction term.
»
SYSTEM(KALMAN) 1 TO 4

VAR D1FRALGDP D1FRALM1 D1FRALCPI D1FRATBR
LAGS 1 TO 3 ;*® Use three lags of each variable

DET CONSTANT EC{4} ;* Include a constant and the
;* error-correction term

DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

1.00 1.00 1.00 1.00
300.00 300.00 33.00 300.00

0.40 32.00 40.00 40.00

0.1 0.01 0.01 1.00
SPEC1F¥Y{(MVECTOR=!!0.0, 0.0, 0.0, 0.0::!, %

TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)

END(SYSTEM)
/* Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instruction prepares RATS to create ex post
forecasts of the four variables over the period 1991:1 through
1996:3 first, so that the forecasting results can be checked against
existing data and used as guldelines for model building. At this
stage, the output from the ESTIMATE instruction is unnecessary. Use
the NOPRINT and NOFTESTS options to suppress the display.
*/
COMPUTE TIME = 1990:4

DOI =1, 6

THEIL(SETUP) 4 1 TIME+4

#1T0 4

ESTIMATE(NOPRINTS, NOFTESTS) 1980:1 TIME
THEIL

DO N = TIME+1, TIME+4
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FORECAST(PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THETL
END DG N
THEIL (DUMP)
*

SMPL TIME+1 TIME+4

SET TREND =T

SET EC = FRALGDP(T) - 1.033*FRALM1(T) $

- 0.567*FRALCPI(T) + 0.051*FRATBR(T)

COMPUTE TIME = TIME + 4
END DO I
/* Next, the FORECAST instruction creates ex ante forecasts of the
variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provides the
dependent variable name so that the data can be extended with the

forecasts.
*/
COMPUTE TIME = 1996:3
DOI =1, 3
THEIL(SETUP) 4 1 TIME+4
#1TO 4
ESTIMATE(NOPRINTS, NOFTESTS) 1980:1 TIME
THEIL
DO N = TIME+1, TIME+4
FORECAST 4 1
# 1 DI1FRALGDP
# D1FRALM1
# 5 DI1FRALCPI
# 4 D1FRATBR
KALMAN
THEIL
END DO N
THEIL (DUMP)
»

SMPL TIME+1 TIME+4
SET TREND =T

SET FRALGDP = FRALGDP(T-1) + D1FRALGDP(T)
SET FRALM1 = FRALM1(T-1) + DI1FRALM1(T)
SET FRALCPI = FRALCPI(T-1) + D1FRALCPI(T)
SET FRATBR = FRATBR(T-1) + DI1FRATBR(T)

SET EC = FRALGDP(T) - 1.033*FRALM1(T) $
- 0.567*FRALCPI(T) + 0.0S1*FRATBR(T)

COMPUTE TIME = TIME + 4
END DO I -
»

PRINT(DATES) 1979:1 1998:4 FRALGDP FRALM1 FRALCPI FRATBR
»

OPEN COPY A:\FRABVEC.FOR
COPY (DATES, ORG=VAR) 1996:4 1998:4 FRALGDP FRALM1 FRALCPI FRATBR

END
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/* (IVa) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE ITALY MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with <<<<««,

ITALGDP = LOG OF ITALY REAL GDP (1990 PRICES)
ITALM1 = LOG OF ITALY MONEY SUPPLY M1

ITALCPI = LOG OF ITALY CONSUMER PRICE INDEX (1990=100)
ITATBR = ITALY 3-MONTH TREASURY BILL RATES

*/

CAL 1777 2 4 ;* Set CALENDAR for quarterly data beginning with 77:2

ALL 8 1996:3 ;* and ending 96:3. ALLOCATE "space" of at least 4*2=8
;¥ series for the residuals.

OPEN DATA A:\ITA.DAT ;* Data set is assumed to be on drive a:\.
CLEAR ITALGDP ITALM! ITALCPI ITATBR
DATA(ORG=VAR) / ITALGDP ITALM1 ITALCPI ITATBR
* The next three lines transform GDP, M1 and CPI to their logs.
DOFOR I = ITALGDP ITALM1 ITALCPI

LOG I

END DOFOR

SMPL. 1978:4 1990:4 ;* Both restricted and unrestricted VARs are
;* estimated over the same sample period.

/* The next five lines set up an ‘unrestricted’ VAR using 6 lags of

each variable plus an intercept.
»*/

SYSTEM 1 TO 4

VAR ITALGDP ITALM1 ITALCPI ITATBR
LAGS 1 TO 6

DET CONSTANT

END (SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the

given sample and to save the reslduals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to

be suppressed.

*/

ESTIMATE(NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/* Next, define a ‘restricted’ system using 5 lags of each variable
and estimate the model over the same sample.

./

SYSTEM 1 TO 4

VAR ITALGDP ITALM1 ITALCPI ITATBR

LAGS 1 TO § <<<<<K

DET CONSTANT

END(SYSTEM)
ESTIMATE(NOPRINT, NOFTESTS) / S ;* Residuals into series 5 through 8

/* When testing a restricted VAR(1) against an unrestricted VAR(m),
l<m, :"~ degrees of freedom are K*K*(m-1)=4*4*(6-5)=16, 1i.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction |is
K*m+1=4%6+1=25, i.e. the number of regressors per equation in the

unrestricted system.

*/

RATIO(DEGREES=16, MCORR=25) <<<<<K
#1704

#5T08

END - .
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/* (IVb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE ITALIAN ECONOMY

ITALGDP = LOG OF ITALY REAL GDP (1990 PRICES)
ITALM1 = LOG OF ITALY MONEY SUPPLY M1

ITALCPI = LOG OF ITALY CONSUMER PRICE INDEX (1990=100)
ITATBR = ITALY 3-MONTH TREASURY BILL RATES

*/

CAL 1977 2 4

ALL O 1998:4

OPEN DATA A:\ITA.DAT

CLEAR ITALGDP ITALM1 ITALCPI ITATBR

DATA(ORG=VAR) 1977:2 1996:3 ITALGDP ITALM1 ITALCPI ITATBR
»

SYSTEM(KALMAN) 1 TO 4
VAR ITALGDP ITALM1 ITALCPI ITATBR
LAGS 1 TO 4
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

4.00 0.04 3.20 4.00

6.00 6.00 0.06 6.00

3.00 3.00 300.00 3.00

0.01 1.00 1.00 1.00
SPECIFY(TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END(SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instructlion prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 flirst, so that the output can be
checked agalinst exlisting data and used as guldelines for model

building.
%/
THEIL(SETUP) 4 1 1996:3

#1704

ESTIMATE (NOPRINTS, NOFTESTS) 1978:2 1990:4

/* This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1978:2

to 1990:4.

*/

THEIL

DO TIME=1991:1, 1996:3
FORECAST(PRINT) 4 1
#1

#*+ %
[ A\

KALMAN
THEIL
END D TIME

THEIL (DUMP)
/* Next, the FORECAST instruction creates ex ante forecasts of the

dependent variables beyond the estimation period, using explanatory
variables that may or may not be known with certainty. Each
supplementary card 1ists the equation to be used for forecasting and
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Erovides a name so that the forecasts can be stored for later use.
/
THEIL(SETUP) 4 1 1998:4
#1T0 4
ESTIMATE (NOPRINTS, NOFTESTS) 1978:2 1996:3
THEIL
DO TIME=1996:4, 1998:4
FORECAST 4 1
# 1 F_ITALGDP
# 2 F_ITALMI
# 3 F_ITALCPI
# 4 F_ITATBR
KALMAN
THEIL
END DO TIME

THEIL (DUMP)
»

PRINT (DATES) 1996:4 1998:4 F_ITALGDP F_ITALM1 F_ITALCPI F_ITATBR
»

OPEN COPY A:\ITABV.FOR
COPY (DATES, ORG=VAR) 96:4 98:4 F_ITALGDP F_ITALM1 F_ITALCPI F_ITATBR

END
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/* (Va) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE LGDP MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with <<<<<<.

UKLGDP = LOG OF UK REAL GDP (1990 PRICES)
GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)
FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)
ITALGDP = LOG OF ITALY REAL GDP (1990 PRICES)
*/

CAL 171 1 4 ;* Set CALENDAR for quarterly data beginning with 71:1

ALL 8 1992:4 ;* and ending 92:4. ALLOCATE "space" of at least 4%2=8
;* series for the residuals.

OPEN DATA A:\GDP.DAT ;* Data set 1is assumed to be on drive a:\.

CLEAR UKLGDP GERLGNP FRALGDP ITALGDP

DATA(ORG=VAR) / UKLGDP GERLGNP FRALGDP ITALGDP

* The next three lines transform the selected series to their logs.

DOFOR I = UKLGDP GERLGNP FRALGDP ITALGDP

LOG I

END DOFOR
SMPL 1972:3 1990:4 ;* Both restricted and unrestricted VARs are

4

;* estimated over the same sample period.
/* The next five lines set up an ‘unrestricted’ VAR using 6 lags of
each varliable plus an intercept.
*/
SYSTEM 1 TO 4
VAR UKLGDP GERLGNP FRALGDP ITALGDP
LAGS 1 TO 6
DET CONSTANT

END(SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the

given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to
be sur, ressed.

*/

ESTIMATE (NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/* Next, define a ‘restricted’ system using 5 lags of each variable
and estimate the model over the same sample.

*/

SYSTEM 1 TO 4 :

VAR UKLGDP GERLGNP FRALGDP ITALGDP

LAGS 1 TO S <<

DET CONSTANT

END(SYSTEM)
ESTIMATE (NOPRINT, NOFTESTS) / 5 ;™* Residuals into series 5 through 8

/* When testing a restricted VAR(1l) against an unrestricted VAR(m),
1<m, the degrees of freedom are K*K*(m-1)=4%*4*(6-5)=16, 1i.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction |is
K*m+1=4*6+1=25, i.e. the number of regressors per equation in the

unrestricted system.

* / :

RATIO(DEGREES=16, MCORR=2S) 22 L22 24
#17T0 4

#5708

END e
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/% (Vb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE BIG FOUR OUTPUT GROWTH

UKLGDP = LOG OF UK REAL GDP (1990 PRICES)
GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)
FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)
ITALGDP = LOG OF ITALY REAL GDP (1990 PRICES)
*/

CAL 1971 1 4
ALL O 1998:4

OPEN DATA A:\LGDP.DAT

CLEAR UKLGDP GERLGNP FRALGDP ITALGDP

DATA(ORG=VAR) 1971:1 1996:3 UKLGDP GERLGNP FRALGDP ITALGDP
*

SYSTEM(KALMAN) 1 TO 4
VAR UKLGDP GERLGNP FRALGDP ITALGDP
LAGS 1 TO 2
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)

INPUT PRIORMAT
300.00 12.00 300.00 3.00

13.00 13.00 13.00 1.43

1.00 0.01 1.00 1.00

24.00 3.00 3.00 300.00
SPECIFY (TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END(SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guidelines for model

building.

*/

THEIL(SETUP) 4 1 1992:4

#1704

ESTIMATE (NOPRINTS, NOFTESTS) 1971:3 1990:4

/* This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1971:3

to 1990:4.
*/
THEIL
DO TIME=1991:1, 1992:4
FORECAST (PRINT) 4 1
#1
# 2
# 3
# 4
KAI.MAN
THZIL
END DO TIME
THEIL (DUMP)
»

THEIL(SETUP) 4 1 1996:3

#1704
ESTIMATE (NOPRINTS, NOFTESTS) 1971:3 1992:4
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THEIL
DO TIME=1993:1, 1996:3
FORECAST(PRINT) 4 1
# 1
# 2 F_GERLGNP
#3
# 4
KALMAN
THEIL
END DO TIME
THEIL (DUMP)
/* Next, the FORECAST instruction creates ex ante forecasts of the
dependent variables beyond the estimation period, using explanatory
variables that may or may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
provides a name so that the forecasts can be stored for later use.
*/
THEIL(SETUP) 4 1 1998:4
#1T0 4
ESTIMATE (NOPRINTS, NOFTESTS) 1971:3 1996:3
THEIL
DO TIME=1996:4, 1998:4
FORECAST 4 1
# 1 F_UKLGDP
# 2 F_GERLGNP
# 3 F_FRALGDP
# 4 F_ITALGDP
KALMAN
THEIL
END DO TIME
THEIL (DUMP) -
[ ]

PRINT(DATES) 1993:1 1998:4 F_GERLGNP
PRINT (DATES) 1996:4 1998:4 F_UKLGDP F_FRALGDP F_ITALGDP
»

OPEN COPY A:\GDPBV1.FOR
COPY(DATES, ORG=VAR) 1993:1 1998:4 F_GERLGNP

OPEN COPY A:\GDPBV2.FOR
COPY(DATES, ORG=VAR) 1996:4 1998:4 F_UKLGDP F_FRALGDP F_ITALGDP

END
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/* (Vc) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE BIG FOUR OUTPUT GROWTH

UKLGDP = LOG OF UK REAL GDP (1990 PRICES)
GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)
FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)
ITALGDP = LOG OF ITALY REAL GDP (1990 PRICES)
EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/
CAL 1971 1 4

ALL 0 1999:4 ;* The time span given here must be long enough.
CLEAR UKLGDP GERLGNP FRALGDP ITALGDP EC

OPEN DATA A:\LGDP.DAT

DATA(ORG=VAR) 1971:1 1996:3 UKLGDP GERLGNP FRALGDP ITALGDP
OPEN DATA A:LGDPRSS.DAT

DATA(ORG=VAR) 1971:1 1990:4 EC

SET TREND = T
/* Taking the first difference of each variable to be used in the

VAR; taking one difference loses one observation.

./

SMPT ~ 71:2 1996:
SET D1UKLGDP
SET D1FRALGDP
SET D1ITALGDP

SMPL 1971:2 1992:

SET D1GERLGNP = GERLGNP(T) - GERLGNP(T-1)

* Set up a four-varilable BVAR including the error-correction term.

»

SYSTEM(KALMAN) 1 TO 4

VAR D1UKLGDP D1GERLGNP DI1FRALGDP D1ITALGDP

LAG 1 ;* Use just one lag of each variable

DET CONSTANT EC{(2} ;* Include a constant and the

;® error-correction term

DECLARE RECT PRIORMAT(4,4)
INPUT PRICRMAT
300.00 3.00 3.00 21.00

1.00 1.00 1.00 1.00

0.01 0.01 1.00 1.00
300.00 3.00 3.00 300.00
SPECIFY(MVECTOR=: 0.0, 0.0, 0.0, 0.0:!:, $

: TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END(SYSTEM) -
/* Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instruction prepares RATS to create ex post
forecasts of the four variables first, so that the forecasting
resuli{s can be checked against existing data and used as guldellnes
for model building. At this stage, the output from the ESTIMATE
instruction is unnecessary. Use the NOPRINT and NOFTESTS options to

suppress the display.

8/

COMPUTE TIME = 1990: 4

DO I"=1,'4

THEIL(SETUP) 4 1 TIME+2

#1.TO 4

ESTIMATE(NOPRINTS, NOFTESTS) 1971:3 TIME
THEIL L

UKLGDP(T) - UKLGDP(T-1)
FRALGDP(T) - FRALGDP(T-1)
ITALGDP(T) - ITALGDP(T-1)

> H W
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DO N = TIME+1, TIME+2
FORECAST (PRINT) 4 1
#1
# 2
# 3
# 4
KALMAN
THEIL
END DO N
THEIL (DUMP)
*
SMPL. TIME+1 TIME+2
SET TREND = T
SET EC = UKLGDP(T) + 1.093*GERLGNP(T) $
+ 3.960*FRALGDP(T) - 5.360*ITALGDP(T)
COMPUTE TIME = TIME + 2
END DO I
»
COMPUTE TIME = 1992:4
DI =1, 8
THEIL(SETUP) 4 1 TIME+2
#1TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1971:3 TIME
THEIL

DO N = TIME+1, TIME+2
FORECAST (PRINT) 4 1
#1
# 2 DI1GERLGNP
#3
# 4
KALMAN
THEIL

END DO N
THEIL (DUMP)
»

SMPL TIME+1 TIME+2
SET TREND = T
SET GERLGNP = GERLGNP(T-1) + D1GERLGNP(T)
SET EC = UKLGDP(T) + 1.093*GERLGNP(T) $
+ 3.960*FRALGDP(T) - 5.360*ITALGDP(T)

COMPUTE TIME = TIME + 2
END DO 1

/* Next, the FORECAST instruction creates ex ante forecasts of the
variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provides the
dependent variable name so that the data can be extended with the

forecasts.
4
COMPUTE TIME = 1996:3
DODI=1,5
TREIL(SETUP) 4 1 TIME+2
#1T04
ESTIMATE(NOPRINTS, NOFTESTS) 1971:3 TIME
THEIL
DO N = TIME+1, TIME+2
FORECAST 4 1
# 1 DIUKLGDP
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# 2 DIGERLGNP
# 3 DI1FRALGDP
# 4 DI1ITALGDP

KALMAN
THEIL

END DO N

THEIL (DUMP)

»

SMPL TIME+1 TIME+2
SET TREND =T
SET UKLGDP = UKLGDP(T-1) + D1UKLGDP(T)
SET GERLGNP = GERLGNP(T-1) + D1GERLGNP(T)
SET FRALGDP = FRALGDP(T-1) + D1FRALGDP(T)
SET ITALGDP = ITALGDP(T-1) + D1ITALGDP(T)

SET EC = UKLGDP(T) + 1.093*GERLGNP(T) $
+ 3.960*FRALGDP(T) - 5.360*ITALGDP(T)
COMPUTE TIME = TIME + 2

END DO I
»

PRINT(DATES) 1971:1 1998:4 UKLGDP GERLGNP FRALGDP ITALGDP
»

OPEN COPY A:\LGDPBVEC.FOR
COPY(DATES, ORG=VAR) 1993:1 1998:4 UKLGDP GERLGNP FRALGDP ITALGDP

END



/* (Vla) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE LMON MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with <<<<<<,

UKLMO = LOG OF UK MONEY SUPPLY MO
GERLM1 = LOG OF GERMANY MONEY SUPPLY M1
FRALM1 = LOG OF FRANCE MONEY SUPPLY M1
ITALM1 = LOG OF ITALY MONEY SUPPLY M1

L4
CAL 1969 2 4 ;* Set CALENDAR for quarterly data beginning with 69:2
ALL 8 1996:4 ;* and ending 96:4. ALLOCATE "space" of at least 4*2=8
;® series for the residuals.

OPEN DATA A: \MON DAT ;* Data set is assumed to be on drive a:\.
CLEAR UKLMO GERLM1 FRALM1 ITALM1
DATA (ORG=VAR) / UKLMO GERLM1 FRALM1 ITALM1
* The next three lines transform the selected series to their logs.
DOFOR I = UKLMO GERLM1 FRALM1 ITALM1

LOG 1

END DOFOR
SMPL 1970:4 1990:4 ;* Both restricted and unrestricted VARs are

;* estimated over the same sample period.
/* The next flve lines set up an ‘unrestricted’ VAR using 6 lags of
each variable plus an intercept.
*/
SYSTEM 1 TO 4
VAR UKLMO GERLM1 FRALM1 ITALM1
LAGS 1 TO 6
DET CONSTANT

END(SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the

given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to

be suppressed.

*/
ESTIMATE (NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4

/* Next, define a ‘restricted’ system using 5 lags of each variable
and estimate the model over the same sample.

n/

SYSTEM 1 TO 4

VAR UKLMO GERLM1 FRALM1 ITALMI1

LAGS 1 TO 5 <<<<<<

DET : CONSTANT '

END{(SYSTEM) -

ESTIMATE (NOPRINT, NOFTESTS) / 5 ;* Reslduals into series 5 through 8
/* When testing a restricted VAR(1l) against an unrestricted VAR(m),
1<m; the degrees of freedom are K*K*(m-1)=4%*4*(6-5)=16, i.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction s
K*m+1=4*6+1=25, 1.e. the number of regressors per equation in the
unrestricted system.

O

RATLG(DEGREES*IG MCORR:ZS) <<

#1470 4

#:5.70.8
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/* (VIb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE BIG FOUR MONETARY GROWTH

UKLMO = LOG OF UK MONEY SUPPLY MO
GERLM1 = LOG OF GERMANY MONEY SUPPLY M1
FRALM1 = LOG OF FRANCE MONEY SUPPLY M1
ITALM1 = LOG OF ITALY MONEY SUPPLY M1
*/

CAL 1969 2 4
ALL O 1998:4

OPEN DATA A:\LMON.DAT

CLEAR UKLMO GERLM1 FRALM1 ITALM1

DATA(ORG=VAR) 1969:2 1996:4 UKLMO GERLM1 FRALM1 ITALM1
»

SYSTEM(KALMAN) 1 TO 4
VAR UKLMO GERLM1 FRALM1 ITALM1
LAGS 1 TO 4
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT
300.00 3.00 3.00 3.00

1.00 1.00 0.01 0.90

1.00 0.60 1.00 1.00

1.00 0.01 1.00 1.00
SPECIFY(TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END(SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:4 first, so that the output can be
checked against existing data and used as guidelines for model

bullding.
*/
THEIL(SETUP) 4 1 1996:4

#1TO 4

ESTIMATE(NOPRINTS, NOFTESTS) 1970:2 1990:4

/* This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1970:2

to 1990:4.
*/
THEIL
DO TIME=1991:1, 1996:4
FORECAST(PRINT) 4 1
#1
$2
#3
# 4
KALMAN
THEIL
END DO TIME

THEIL (DUMP) :
/* Next, the FORECAST instruction creates ex ante forecasts of the

dependent variables beyond the estimation period, using explanatory
variables that may or may not be known with certainty. Each
supplementary card 1ists the equation to be used for forecasting and
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provides a name so that the forecasts can be stored for later use.
*/
THEIL(SETUP) 4 1 1998:4
#1TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1970:2 1996:4
THEIL
DO TIME=1997:1, 1998:4
FORECAST 4 1
#1 F_UKLMO

H*
o> wnN

THEIL
END DO TIME
THEIL (DUMP)
»

PRINT(DATES) 1997:1 1998:4 F_UKLMO F_GERLM1 F_FRALM1 F_ITALM1
*
OPEN COPY A:\MONBV.FOR

COPY(DATES, ORG=VAR) 97:1 98:4 F_UKLMO F_GERLM1 F_FRALM1 F_ITALM1
END
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/% (VIc) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE BIG FOUR MONETARY GROWTH

UKLMO = LOG OF UK MONEY SUPPLY MO
GERLM1 = LOG OF GERMANY MONEY SUPPLY M1
FRALM1 = LOG OF FRANCE MONEY SUPPLY M1
ITALM1 = LOG OF ITALY MONEY SUPPLY M1
EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/

CAL 1969 2 4

ALL 0 1998:4 ;* The time span given here must be long enough.
CLEAR UKLMO GERLM1 FRALM1 ITALM1 EC

OPEN DATA A:\LMON.DAT

DATA(ORG=VAR) 1969:2 1996:4 UKLMO GERLM1 FRALM1 ITALM1

OPEN DATA A:LMONRSS.DAT

DATA(ORG=VAR) 1969:2 1990:4 EC

SET TREND = T
/* Taking the first difference of each variable to be used in the

VAR; taking one difference loses one observation.

*/

SMPL 1969:3 1996:4
SET D1UKLM1 = UKLMO(T) - UKLMO(T-1)
SET DI1GERLM1 = GERLM1(T) - GERLM1(T-1)
SET D1FRALM1 = FRALM1(T) - FRALMI1(T-1)
SET D1ITALM1 = ITALM1(T) - ITALM1(T-1)

* Set up a four-variable BVAR including the error-correction term.
»
SYSTEM(KALMAN) 1 TO 4

VAR D1UKLMO D1GERLM1 D1FRALM1 D1ITALM1
LAGS 1 TO 3 ;* Use three lags of each varliable

DET CONSTANT EC{4} ;* Include a constant and the
;* error-correction term

DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT
300.00 3.00 3.00 12.00

0.01 1.00 0.01 1.00

1.00 0.01 1.00 1.00

1.00 1.00 0.01 1.00
SPECIFY (MVECTOR=::0.0, 0.0, 0.0, 0.0!!, §

TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)

END(SYSTEM)
/* Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instructlon prepares RATS to create ex post
forecasts of the four variables over the period 1991:1 through
1996:4 first, so that the forecasting results can be checked agalnst
existing data and used as guldelines for model building. At this
stage, the output from the ESTIMATE instruction is unnecessary. Use
the NOPRINT and NOFTESTS options to suppress the display.
*/
COMPUTE TIME = 1990:4

DOI =1, 6

THEIL(SETUP) 4 1 TIME+4

#1TO 4 :

ESTIMATE(NOPRINTS, NOFTESTS) 1970:2 TIME
THEIL

DO N = TIME+1, TIME+4
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FORECAST(PRINT) 4 1
#1
# 2
# 3
# 4
KALMAN
THEIL
END DO N
THEIL (DUMP)
»

SMPL TIME+1 TIME+4
SET TREND =T
SET EC = UKLMO(T) - 2.872*GERLM1(T) $
- 4.414*FRALM1(T) + 4.323*ITALM1(T)
COMPUTE TIME = TIME + 4

END DO 1
/* Next, the FORECAST instruction creates ex ante forecasts of the

variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provides the
dependent variable name so that the data can be extended with the

forecasts.
./
COMPUTE TIME = 1996:4
DOI =1, 2
THEIL(SETUP) 4 1 TIME+4
#1T0 4
ESTIMATE (NOPRINTS, NOFTESTS) 1970:2 TIME
THEIL
DO N = TIME+1, TIME+4
FORECAST 4 1
#1 D1UKLMO
# 2 DI1GERLMI1
# 3 DI1FRALMI]
# 4 DIITALM1
KALMAN
THEIL
END DO N
THEIL (DUMP)
»*

SMPL TIME+1 TIME+4
SET TREND =T

SET UKLMO = UKLMO(T-1) + DI1UKLMO(T)
SET GERLM1 = GERLM1(T-1) + D1GERLM1(T)
SET FRALM1 = FRALM1(T-1) + D1FRALM1(T)
SET ITALM1 = ITALM1(T-1) + D1ITALM1(T)

SET EC = UKLMO(T) - 2.872*GERLM1(T) $
- 4.414%FRALM1(T) + 4.323*ITALMI1(T)

COMPUTE TIME = TIME + 4
END DO 1
-

PRINT(DATES) 1969:2 1998:4 UKLMO GERLM1 FRALM1 ITALM1
»
OPEN COPY A:\LMONBVEC.FOR

COPY (DATES, ORG=VAR) 1991:1 1998:4 UKLMO GERLM1 FRALM1 ITALM1
END
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/* (VIIa) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR
TESTING THE MAXIMUM VAR ORDER OF THE LCPI MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with <<<<<«<,

UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)
GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
FRALCPI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
ITALCPI = LOG OF ITALY CONSUMER PRICE INDEX (1990=100)
*/

CAL 1960 1 4 ;* Set CALENDAR for quarterly data beginning with 60:1

ALL 8 1996:3 ;* and ending 96:3. ALLOCATE "space" of at least 4*2=8
;* series for the residuals.

OPEN DATA A:\CPI.DAT ;* Data set is assumed to be on drive a:\.

CLEAR UKLCPI GERLCPI FRALCPI ITALCPI

DATA(ORG=VAR) / UKLCPI GERLCPI FRALCPI ITALCPI

* The next three lines transform the selected series to their logs.

DOFOR I = UKLCPI GERLCPI FRALCPI ITALCPI

LOG 1

END DOFOR
SMPL 1961:3 1990:4 ;* Both restricted and unrestricted VARs are

;* estimated over the same sample period.
/* The next five lines set up an ‘unrestricted’ VAR using 6 lags of

each variable plus an intercept.
*/

SYSTEM 1 TO 4

VAR UKLCPI GERLCPI FRALCPI ITALCPI
LAGS 1 TO 6

DET CONSTANT

END(SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the

given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to

be suppressed.

*/

ESTIMATE (NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/* Next, define a ‘restricted’ system using 5 lags of each variable
and estimate the model over the same sample.

*/

SYSTEM 1 TO 4

VAR UKLCPI GERLCPI FRALCPI ITALCPI

LAGS 1 TO § <<<<<K

DET CONSTANT

END(SYSTEM)
ESTIMATE(NOPRINT, NOFTESTS) / S5 ;* Residuals into series 5 through 8

/* When testing a restricted VAR(1l) against an unrestricted VAR(m),
1<m, the degrees of freedom are K*K*(m-1)=4*4*(6-5)=16, i.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction |is
K*m+1=4*6+1=25, 1i.e. the number of regressors per equation in the
unrestricted systen.

4

RATIO(DEGREES=16, MCORR=25) <<<<<<

#1704

#5710 8

END ‘
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/* (VIIb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE BIG FOUR CONSUMER PRICES

UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)
GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
FRALCPI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
ITALCPI = LOG OF ITALY CONSUMER PRICE INDEX (1990=100)
*/

CAL 1960 1 4

ALL O 1998:4

OPEN DATA A:\LCPI.DAT

CLEAR UKLCPI GERLCPI FRALCPI ITALCPI

DATA (ORG=VAR) 1960:1 1996:3 UKLCPI GERLCPI FRALCPI ITALCPI
»

SYSTEM(KALMAN) 1 TO 4
VAR UKLCPI GERLCPI FRALCPI ITALCPI
LAGS 1 TO 4
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

9.00 1.44 4.50 9.00
300.00 300.00 3.00 300.00
300.00 3.00 300.00 90.00

50.00 30.00 50.00 50.00
SPECIFY (TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END(SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against exlisting data and used as guidelines for model

building.

*/

THEIL(SETUP) 4 1 1996:3

#1704

ESTIMATE(NOPRINTS, NOFTESTS) 1960:1 1990:4

/* This instruction 1s used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1960:1

to 1990:4.

*/

THEIL

DO TIME=1991:1, 1996:3
FORECAST(PRINT) 4 1
#1

#* # ®
oon

KALMAN

THEIL
END DO TIME
THEIL (DUMP)
/* Next, the FORECAST instruction creates ex ante forecasts of the
dependent variables beyond the estimation period, using explanatory
variables that may or may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
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provides a name so that the forecasts can be stored for later use.
*/
THEIL(SETUP) 4 1 1998:4
#1TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1960:1 1996:3
THEIL
DO TIME=1996:4, 1998:4
FORECAST 4 1
#1 F_UKLCPI
# 2 F_GERLCPI
# 3 F_FRALCPI
# 4 F_ITALCPI
KALMAN
THEIL
END DO TIME
THEIL (DUMP)
»

PRINT(DATES) 1996:4 1998:4 F_UKLCPI F_GERLCPI F_FRALCPI F_ITALCPI
»

OPEN COPY A:\CPIBV.FOR
COPY (DATES, ORG=VAR) 96:4 98:4 F_UKLCPI F_GERLCPI F_FRALCPI F_ITALCPI

END
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/* (VIIla) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR
TESTING THE MAXIMUM VAR ORDER OF THE TBR MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with <<<<<<.

UKTBR = UK 3-MONTH TREASURY BILL RATES
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES
ITATBR = ITALY 3-MONTH TREASURY BILL RATES
*/

CAL 1979 1 4 ;* Set CALENDAR for quarterly data beginning with 79:1

b4

ALL 8 1996:3 ;* and ending 96:3. ALLOCATE “"space" of at least 4%*2=8

’

;® series for the residuals.

OPEN DATA A:\TBR.DAT ;* Data set is assumed to be on drive a:\.

CLEAR UKTBR GERTBR FRATBR ITATBR

DATA(ORG=VAR) / UKTBR GERTBR FRATBR ITATBR

E ]

SMPL 1980:3 1990:4 ;* Both restricted and unrestricted VARs are

’

;* estimated over the same sample period.

/* The next five lines set up an ‘unrestricted’ VAR using 6 lags of

each varlable plus an intercept.
*/

SYSTEM 1 TO 4

VAR UKTBR GERTBR FRATBR ITATBR
LAGS 1 TO 6

DET CONSTANT

END(SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the

given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to

be suppressed.

*/

ESTIMATE(NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/* Next, define a ‘restricted’ system using 5 lags of each variable
and estimate the model over the same sample.

*/

SYSTEM 1 TO 4

VAR UKTBR GERTBR FRATBR ITATBR

LAGS 1 TO § <<<<<

DET CONSTANT

END(SYSTEM)
ESTIMATE(NOPRINT, NOFTESTS) / 5 ;* Residuals into series 5 through 8

/* When testing a restricted VAR(1l) against an unrestricted VAR(m),
1<m, the degrees of freedom are K*K*(m-1)=4*4*(6-5)=16, i.e. the
total number of parametric restrictlons imposed on the entire
(K-dimensional) system. Also, the multiplier correction 1is
K*m+1=4*6+1=25, i.e. the number of regressors per equation in the
unrestricted systenm.

*/

RATIO(DEGREES=16, MCORR=25) <<€k

#1704

#5708

END
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/* (VIIIb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE BIG FOUR TREASURY BILLS

UKTBR = UK 3-MONTH TREASURY BILL RATES
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES
ITATBR = ITALY 3-MONTH TREASURY BILL RATES
*/

CAL 1979 1 4

ALL 0 1998:4
OPEN DATA A:\TBR.DAT

CLEAR UKTBR GERTBR FRATBR ITATBR
DATA(ORG=VAR) 1979:1 1996:3 UKTBR GERTBR FRATBR ITATBR

»*
SYSTEM(KALMAN) 1 TO 4

VAR UKTBR GERTBR FRATBR ITATBR
LAGS 1 TO 2
DET CONSTANT

DECLARE RECT PRIORMAT(4,4)

INPUT PRIORMAT

1.00 1.00 1.00 1.00

15.00 300.00 3.00 3.00

2.20 0.11 11.00 11.00

6.00 60.00 30.00 60.00
SPECIFY(TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END(SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guidelines for model

building.

»*/

THEIL(SETUP) 4 1 1996:3

#1T0 4

ESTIMATE(NOPRINTS, NOFTESTS) 1979:3 1990:4

/* This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1979:3

to 1990:4.

*/

THEIL

DO TIME = 1991:1, 1996:3
FORECAST(PRINT) 4 1
#1

*+ R
B wn

KALMAN
THEIL
END DO TIME

THEIL (DUMP)
/* Next, the FORECAST instruction creates ex ante forecasts of the

dependent varliables beyond the estimation period, using explanatory
variables that may or may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
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Brovides a name so that the forecasts can be stored for later use.
/
THEIL(SETUP) 4 1 1998:4
#1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1979:3 1996:3
THEIL
DO TIME = 1996:4, 1998:4
FORECAST 4 1
# 1 F_UKTBR
# 2 F_GERTBR
# 3 F_FRATBR
# 4 F_ITATBR
KALMAN
THEIL
END DO TIME

THEIL (DUMP)
*

PRINT(DATES) 1996:4 1998:4 F_UKTBR F_GERTBR F_FRATBR F_ITATBR
»*
OPEN COPY A:\TBRBV.FOR

COPY (DATES, ORG=VAR) 96:4 98:4 F_UKTBR F_GERTBR F_FRATBR F_ITATBR
END
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/* (VIIIc) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE BIG FOUR TREASURY BILLS

UKTBR = UK 3-MONTH TREASURY BILL RATES
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES
ITATBR = ITALY 3-MONTH TREASURY BILL RATES
EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/
CAL 1979 1 4

ALL O 1999:4 ;* The time span given here must be long enough.
CLEAR UKTBR GERTBR FRATBR ITATBR EC

OPEN DATA A:\TBR.DAT

DATA(ORG=VAR) 1979:1 1996:3 UKTBR GERTBR FRATBR ITATBR

OPEN DATA A:TBRRSSZ2.DAT

DATA(ORG=VAR) 1979:1 1990:4 EC

SET TREND = T
/% Taking the first difference of each variable to be used in the

VAR; taking one difference loses one observation.
*/
SMPL 1979:2 1996:3
SET D1UKTBR
SET D1GERTBR

UKTBR(T) - UKTBR(T-1)
GERTBR(T) - GERTBR(T-1)

SET DI1FRATBR = FRATBR(T) - FRATBR(T-1)

SET DI1ITATBR = ITATBR(T) - ITATBR(T-1)
* Set up a four-variable BVAR including the error-correction term.
»
SYSTEM(KALMAN) 1 TO 4
VAR D1UKTBR D1GERTBR D1FRATBR D1ITATBR
LAG 1 :* Use just one lag of each variable
DET CONSTANT EC{2} ;* Include a constant and the

+* error-correction term

DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

1.00 1.00 0.01 1.00

3.00 300.00 300.00 300.00

3.00 3.00 300.00 300.00

1.00 o0.01 1.00 1.00
SPECIFY(MVECTOR=!!0.0, 0.0, 0.0, 0.0!:, $

TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)

END(SYSTEM)
/" Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instruction prepares RATS to create ex post
forecasts of the four variables over the period 1991:1 through
1996:3 first, so that the forecasting results can be checked against
existing data and used as gulidelines for model building. At this
stage, the output from the ESTIMATE instruction is unnecessary. Use
the NOPRINT and NOFTESTS optlions to suppress the display.
b4
COMPUTE TIME = 1990:4

DOI =1, 12

THEIL(SETUP) 4 1 TIME+2

#1TO 4

ESTIMATE (NOPRINTS, NOFTESTS) 1979:3 TIME
THEIL

DO N = TIME+1, TIME+2
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FORECAST (PRINT) 4 1
#1
# 2
# 3
# 4
KALMAN
THEIL
END DO N
THEIL (DUMP)
*

SMPL TIME+1 TIME+2
SET TREND = T
SET EC = UKTBR(T) + 107.804*GERTBR(T) %
- 465.0S0*FRATBR(T) + 309.644*ITATBR(T)
COMPUTE TIME = TIME + 2

END DO I
/* Next, the FORECAST instruction creates ex ante forecasts of the

variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provides the
dependent variable name so that the data can be extended with the

forecasts.
*/
COMPUTE TIME = 1996:3
DOI =1, 5
THEIL(SETUP) 4 1 TIME+2
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1979:3 TIME
THEIL
DO N = TIME+1, TIME+2
FORECAST 4 1
#1 D1UKTBR
# 2 DIGERTBR
# 3 DIFRATBR
# 4 DI1ITATBR
KALMAN
THEIL
END DO N
THEIL (DUMP)
»

SMPL TIME+1 TIME+2

SET TREND =T
SET UKTBR = UKTBR(T-1) + DI1UKTBR(T)

SET GERTBR = GERTBR(T-1) + D1GERTBR(T)

SET FRATBR = FRATBR(T-1) + D1FRATBR(T)

SET ITATBR = ITATBR(T-1) + D1ITATBR(T)

SET EC = UKTBR(T) + 107.804*GERTBR(T) $

- 465.050*FRATBR(T) + 309.644*ITATBR(T)

COMPUTE TIME = TIME + 2
END DO 1
»

PRINT(DATES) 1979:1 1998:4 UKTBR GERTBR FRATBR ITATER
»

OPEN COPY A:\TBRBVEC.FOR
COPY(DATES, ORG=VAR) 1996:4 1998:4 UKTBR GERTBR FRATBR ITATBR

END
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APPENDIX E

DETERMINATION OF THE BEST SCALAR

PRIOR HYPERPARAMETER SETTINGS

Table 6.19: Determination of the best hyperparameter
setting (v,,w, ) for Germany BVAR forecasting
J' ik
model
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var _
(vJ,O,O,O) (”J’"g1’°’°) (vJ.wgl.w\KO) (vj’wjl’WJZ’"ﬁ
2.86379 1.92519 1.54057 1.33074

L (3,0,0,0) (3,.1,0,0) (3,.01,.1,0)| (3,.01,.01,.05)

S 2.90135 1.74261 1.53225 1.32716*

P (2,0,0,0) (3,.05,0,0); (3,.01,.05,0)| (3,.01,.01,.04)
2.97880 1.56003 1.49889 1.32781
(1,0,0,0) (3,.01,0,0); (3,.01,.01,0)| (3,.01,.01,.03)
0.99277 0.95494 0.91804 0.97423

(.25,0,0,0)| (.2,.5,0,0)} (.2,1,.08,0) (.2,1,.07,.5)

; 0.98875 0.94417 0.91792 0.95949

1 {(.2,0,0,0)| (.2,.8,0,0}| (.2,1,.07,0) (.2,1,.07,.8)
0.98932 0.94026 0.91802 0.95184"

(.15,0,0,0) (.2,1,0,0)| (.2,1,.06,0) (.2,1,.07,1)
0.64803 0.59359 0.34728 0.53937

L (.1,0,0,0){(.01,.5,0,0){ (.01,1,.5,0) (.01,1,1,.5)

C1l o.61086 0.59348 0.34532 0.52796

’I’ (.05,0,0,0)|(.01,.8,0,0)| (.01,1,.8,0) | (.01,1,1,.8)
0.51049 0.59339 0.34412 0.51831.

(.01,0,0,0)| (.01,1,0,0) (.01,1,1,0) (.01,1,1,1)
1.56406 2.17485 1.02033 1.00845
(1,0,0,0) (.9,.5,0,0) (.9,1,.1,0) (.9,1,.01,.1)

; 1.56346 2.03027 0.99354 0.99853

R (.9,0,0,0) (.9,.8,0,0)| (.9,1,.05,0) (.9,1,.01,.05)
1.56614 1.94532 0.97763 0.90815"

(.8,0,0,0) (.9,1,0,0) (.9,1,.01,0) (.9,1,.01,.01)
Note: % indicates the minimum value in Theil U statistics oi
assoclated with the chosen

each

equation

hyperparameters during the ex post forecast perlod.
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Table 6.20:Determination of the best hyperparameter setting
(Vj’wjk) for Germany BVAR-EC forecasting model
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
(EJ'O’O’O) (v!,wll,o,o) (VJ’WJI’HJZ'O) (vj’wjl’wJZ’wggl
0.92722 0.8927158 1.06305 1.060057
L (.1,0,0,0) (.01,.1,0,0)|(.01,.01,.5,0)| (.01,.01,1,.5)
: 0.90701 0.8927157 1.06227 1.060042
P (.05,0,0,0)|(.01,.05,0,0){(.01,.01,.8,0)| (.01,.01,1,.8)
0.89766 0.8927156 1.06155 1.060028"
(.01,0,0,0)/(.01,.01,0,0) (.01,.01,1,0) (.01,.01,1,1)
1.43780 1.474912 1.365229 1.3343138
(.1,0,0,0)} (.01,.1,0,0) (.01,.01,.5,0)! (.01,.01,1,.1)
: 1.40937 1.474908 1.365226 1.3343114
1 (.05,0,0,0)|(.01,.05,0,0) (.01,.01,.8,0)| (.01,.01,1,.05)
1.39669 1.474907 1.365223 1.3343106*
(.01,0,0,0)i(.01,.01,0,0) (.01,.01,1,0)| (.01,.01,1,.01)
1.46026 1.46883 1.38436 1.28832
L (3,0,0,0) (3,.5,0,0) (3,1,.1,0) (3,1,.01,.06)
g 1.46307 1.46384 1.34707 1.28777"
I (2,0,0,0) (3,.8,0,0) (3,1,.05,0) (3,1,.01,.05)
1.47692 1.46259 1.32589 1.28835
(1,0,0,0) (3,1,0,0) (3,1,.01,0) (3,1,.01,.04)
0.69578 0.86809 0.87647 0.98321
(.1,0,0,0) (.01,.5,0,0)! (.01,1,.5,0) (.01,1,1,.5)
T 0.68046 0.86782 0.87644 0.98316
: (.05.0,0,0)| (.01,.8,0,00] (.01,1,.8,0) | (.01,1,1,.8)
0.67406 0.86757 0.87641 0.98312.
(.01,0,0,0)| (.01,1,0,0) (.01,1,1,0) (.o1,1,1,1)
Note: ¥ indicates the minimum value In Theil U statistics of
associated with the chosen

each

equation

hyperparameters during the ex post forecast perlod.
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Table 6.21: Determination of the best hyperparameter setting
(v, w k) for France BVAR forecasting model
J )
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
1% ,0,0,0 V » Io)o 1 ’ ’ !
( 3 ) ( 3 "Jl ) (vJ WipWio 0) (vJ,wJI,wJZ,w 3)
0.95903 0.91713 0.93565 0.90524
L }(.13,0,0,0)| (.12,.5,0,0) (.12,1,.1,0) (.12,1,.01,.5)
g 0.95897 0.91651 0.92974 0.89678
P (.12,0,0,0)| (.12,.8,0,0)] (.12,1,.05,0) (.12,1,.01,.8)
0.95899 0.91649 0.92713 0.89489.
(.11,0,0,0)| (.12,31,0,0) (.12,1,.01,0) (.12,1,.01,1)
1.18458 1.18261 1.14189 1.07261
(.07,0,0,0)| (.06,.5,0,0) (.06,1,.5,0) (.06,1,1,.1)
; 1.18402 1.17521 1.13915 1.07250
1 (.06,0,0,0)| (.06,.8,0,0) (.06,1,.8,0) (.06,1,1,.05)
1.18553 1.17339 1.13857 1.07246'
(.05,0,0,0)] (.06,1,0,0) (.06,1,1,0) (.06,1,1,.01)
0.59169 0.54899 0.59418 0.45867
L {(.06,0,0,0)| (.05,.5,0,0) (.05,1,.5,0) (.05,1,1,.6)
g 0.59159 0.53095 0.58422 0.45865'

I (.05,0,0,0)| (.05,.8,0,0) (.05,1,.8,0) (.05,1,1,.5)
0.59202 0.52932 0.57977 0.45889
(.04,0,0,0)| (.05,1,0,0) (.05,1,1,0) (.05,1,1,.4)
1.13103 0.99233 0.991903 0.981035

(.1,0,0,0)| (.01,.1,0,0)| (.01,.01,.1,0)|(.01,.01,.01,.7)
g 1.09115 0.99231 0.991900 0.981031"
R (.05,0,0,0)}|(.01,.05,0,0)|(.01,.01,.05,0)((.01,.01,.01,.6)
1.08999 0.99230 0.991899 0.98105
(.01,0,0,0){(.01,.01,0,0)|(.01,.01,.01,0)|(.01,.01,.01,.5)
Note: ¥ fndicates the minimum value in Theil U statistics of

each

equation

assocliated

with

the chosen

hyperparameters during the ex post forecast period.
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Table 6.22: Determination of the best hyperparameter setting
(vj’wjk) for France BVAR-EC forecasting model
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
(VJ,O,O,O) (injJI.O.O) ("J’"jl’"gz;p) (vJ’wjl’WJZ’wgzl
1.55284 1.31128 1.29921 1.33078
L (.1,0,0,0)} (.01,.5,0,0) (.01,1,.5,0) (.01,1,1,.5)
g 1.53048 1.31051 1.29918 1.33077
P (.05,0,0,0)| (.01,.8,0,0) (.01,1,.8,0) (.01,1,1,.8)
1.52152 1.30981 1.29916 1.33076"
(.01,0,0,0)| (.01,1,0,0) (.01,1,1,0) (.01,1,1,1)
1.33390 1.23842 1.18137 1.08817
(3,0,0,0) (3,.5,0,0) (3,1,.12,0) (3,1,.11,.5)
; 1.33757 1.23576 1.18128 1.08408
1 {(2,0,0,0) (3,.8,0,0) (3,1,.11,0) (3,1,.11,.8)
1.34442 1.23511 1.18145 1.08309‘
(1,0,0,0) (3,1,0,0) (3,1,.10,0) (3,1,.11,1)
1.02107 0.87544 0.76483 0.66990
L] (.5,0,0,0) (.4,.1,0,0) | (.4,.01,.9,0) (.4,.01,.8,.5)
$1 1.02022 0.86171 0.76025 0.56367
I (.4,0,0,0) (.4,.05,0,0)| (.4,.01,.8,0) (.4,.01,.8,.8)
1.02817 0.85747 0.76315 0.52228"
(.3,0,0,0)] (.4,.01,0,0)] (.4,.01,.7,0) (.4,.01,.8,1)
3.65296 2.18386 1.08928 0.89874
(.1,0,0,0)| (.01,.1,0,0)[ (.01,.01,.1,0)] (.01,.01,.01,.1)
; 3.54497 .2.18385 1.08924 0.898734
R (.05,0,0,0)|(.01,.05,0,0)|(.01,.01,.05,0)|(.01,.01,.01,.05)
3.49944 2.18384 1.08923 0.898733"
(.01,0,0,0)!/(.01,.01,0,0)}(.01,.01,.01,0)|(.01,.01,.01,.01)
Note: ¥ indicates the minimum value in Theil U statistics of

each equation associated with the chosen hyperparameters
during the ex post forecast pertiod.
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Table 6.23: Determination of the best hyperparameter
setting (v, ,w, ) for Italy BVAR forecasting
J'Jk
model
Dep Theil U Statistics for One-Step-~-Ahead Forecasts
Var
’ 90’ ’ ’ ’ 1] ’ ’
(v‘! 0,0,0) (vJ HJI 0,0) (vJ Wi Yi2 0) (vJ,wjl,wJZ,wP)
0.78721 0.79987 0.75460 0.87277
L |(.05,0,0,0)] (.04,.1,0,0)](.04,.01,.9,0)! (.04,.01,.8,.5)
g 0.78658 0.79978 0.75456 0.83659
P (.04,0,0,0)((.04,.05,0,0)|(.04,.01,.8,0)] (.04,.01,.8,.8)
0.78867 0.79974 0.75457 0.82063"
(.03,0,0,0)|(.04,.01,0,0)](.04,.01,.7,0)| (.04,.01,.8,1)
0.82442 0.83522 0.81418 0.84992
(.07,0,0,0)| (.06,.5,0,0)| (.06,1,.1,0) (.06,1,.01,.5)
; 0.82438 0.83270 0.81233 0.84580
1 (.06,0,0,0)| (.06,.8,0,0)| (.06,1,.05,0)| (.06,1,.01,.8)
0.82528 0.83219 0.81167 0.84166.
(.05,0,0,0)| (.06,1,0,0) (.06,1,.01,0) (.06,1,.01,1)
0.57534 0.53788 0.44304 0.31540
L | (3,0,0,0) (3,.1,0,0) | (3,.01,.1,0) | (3,.01,.01,.1)
g 0.57750 0.51374 0.43039 0.30233 .
I (2.5,0,0,0)| (3,.05,0,0) (3,.01,.05,0)| (3,.01,.01,.05)
0.58116 0.44622 0.34926 0.27441"
(2,0,0,0) (3,.01,0,0) (3,.01,.01,0)| (3,.01,.01,.01)
1.19419 1.14274 0.99983 1.00248
(.1,0,0,0)| (.01,.1,0,0)|(.01,.01,.5,0)] (.01,.01,1,.5)
2| 118891 1.142732 0.99768 1.00062
R (.05,0,0,0)((.01,.05,0,0)}(.01,.01,.8,0)| (.01,.01,1,.8)
. .
1.18668 1.142730 0.99655 0.99993
(.01,0,0,0){(.01,.01,0,0)| (.01,.01,1,0) (.01,.01,1,1)
Note: ¥ indicates the minimum value in Theil U statistics of
with the chosen

each

equation

associated

hyperparameters during the ex post forecast perlod.
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Table 6.24: Determination of the best hyperparameter

setting (vj,ka) for LGDP BVAR forecasting
model
Dep Theil U Statistics for One-Step~Ahead Forecasts
Var
’ O ’ 0 ’ 0 ? ’ o ’ O ’ ’ ’
(v‘-j ) (vJ UJI ) (vJ W NJZ,O) (VJ’WJI’WQZ’"!3)
U 1.36837 1.09243 1.08328 1.06502
K (3,0,0,0) (3,.05,0,0)| (3,.04,.5,0) (3,.04,1,.1)
L 1.36885 1.08268 1.08290 1.05438
G (2,0,0,0) (3,.04,0,0)| (3,.04,.8,0) (3,.04,1,.05)
g 1.37132 1.08786 1.08282 1.04295.
(1,0,0,0) (3,.03,0,0) (3,.04,1,0) (3,.04,1,.01)
G 0.95361 0.96337 0.9799%6 0.9638146
E §(.14,0,0,0)|(.13,.5,0,0)} (.13,1,.5,0) (.13,1,1,.12)
E 0.95276 0.94724 0.97153 0.9638095*
c (.13,0,0,0)(.13,.8,0,0)} (.13,1,.8,0) (.13,1,1,.11)
N 0.95278 0.94331 0.96778 0.9638098
P (.12,0,0,0)| (.13,1,0,0) (.13,1,1,0) (.13,1,1,.1)
F 0.78251 1.00607 0.84407 1.07870
R (.1,0,0,0)|(.01,.5,0,0); (.01,1,.1,0) (.01,1,.01,.5)
: 0.77445 1.00271 0.84405 1.07478
c (.05,0,0,0)|(.01,.8,0,0)! (.01,1,.05,0)] (.01,1,.01,.8)
D| 0.76574 0.99971 0.84404 1.07193"
P |(.01,0,0,0)] (.01,1,0,0) (.01,1,.01,0) (.01,1,.01,1)
1 1.85606 1.83631 1.73507 1.11521
T (3,0,0,0) (3,.09,0,0)! (3,.08,.1,0) (3,.08,.01,.1)
: 1.85768 1.83595 1.58368 1.08803
P (2,0,0,0) (3,.08,0,0)| (3,.08,.05,0)( (3,.08,.01,.05)
D | 1.86589 1.83655 1.15678 1.01685"
P (1,0,0,0) {3,.07,0,0)] (3,.08,.01,0)| (3,.08,.01,.01)

Note:
each

#% indicates the minimum
equation

assocliated

with

value in Theil U statistics of

the chosen

hyperparameters during the ex post forecast period.
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Note:

Table 6.25: Determination of the best hyperparameter setting
(vj’wjk) for LGDP BVAR-EC forecasting model
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
(1;1,0,0,0) (v!,w!i,0,0) (vj’wjl'"JZ’o) (VJ’WJI’WJZ"'&)
U 1.37244 1.28916 1.02712 0.89082
g |_(3.0,0,0) (3,.1,0,0) (3,.01,.1,0) | (3,.01,.01,.08)
L 1.37246 1.16136 0.98465 0.88974"
¢ | (2,0,0,0) | (3,.05,0,0) | (3,.01,.05,0) | (3,.01,.01,.07)
g 1.37252 1.05391 0.91960 0.89562
(1,0,0,0) (3,.01,0,0) (3,.01,.01,0) (3,.01,.01,.06)
G 1.77483 1.56676 1.367357 1.22378
E (.1,0,0,0)| (.01,.5,0,0) (.01,1,.5,0) (.01,1,1,.5)
? 1.73601 1.56661 1.367351 1.22315
o [(.05.0.0,0)| (.01,.8,0,0)] (.01,1,.8.0) (.01,1,1,.8)
N| 1.71735 1.56647 1.367346 1.22257"
P |(.01,0,0,0)] (.01,1,0,0) (.01,1,1,0) (.01,1,1,1)
F 1.61247 1.5956028 1.5829638 1.51656
R | (.1,0,0,00] (.01,.1,0,0){ (.01,.01,.1,0)|(.01,.01,.01,.5)
Al 161017 1.5956020 1.5829630 1.51645
é (.05,0,0,0)](.01,.05,0,0)|(.01,.01,.05,0)[(.01,.01,.01,.8)
D 1.60914 1.5956018 1.5829627 1.51638"
P |(.01,0,0,0){(.01,.01,0,0)|(.01,.01,.01,0)| (.01,.01,.01,1)
I 1.75977 1.56106 1.45772 1.34483
T | (3,0,0,0) (3,.5,0,0) (3,1,.1,0) (3,1,.01,.1)
Al 1.76044 1.56028 1.45365 1.34315
('; (2.0,0,0) | (3,.8,0,0)0 | (3,1,.05,0) (3,1,.01,.05)
L
D 1.76401 1.56010 1.44585 1.34019
P| (1,0,0,0) (3,1,0,0) (3,1,.01,0) (3,1,.01,.01)
® indicates the minimum value in Thell U statistics of

each equation associated with the chosen hyperparameters
during the ex post forecast period.
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Table 6.26: Determination of the best hyperparameter
setting (vj’wjk) for LMON BVAR forecasting
model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
(VJ,O,O,O) (v!,le.0,0) (vj’wgl’"JZ’O) (vj.wjl,yignggl
0.69115 0.61608 0.53810 0.44847
U (3,0,0,0) (3,.1,0,0) (3,.01,.1,0) (3,.01,.01,.1)
f 0.69202 0.58297 0.52722 0.42627
M (2,0,0,0) (3,.05,0,0)| (3,.01,.05,0)| (3,.01,.01,.05)
0 0.69643 0.54957 0.48836 0.40815.
(1,0,0,0) (3,.01,0,0)] (3,.01,.01,0)| (3,.01,.01,.01)
G 0.89145 0.86187 0.848194 0.8421336
E (.1,0,0,0)(.01,.5,0,0)} (.01,1,.1,0) (.01,1,.01,1)
R 0.88085 0.86095 0.848189 0.8421312.
L |(.05,0,0,0)|(.01,.8,0,0)] (.01,1,.05,0)| (.01,1,.01,.9)
? 0.86693 0.86027 0.848188 0.8421314
(.01,0,0,0)] (.01,1,0,0)] (.01,1,.01,0)| (.01,1,.01,.8)
F 1.70419 1.42965 1.14119 1.15654
R (.1,0,0,0)((.01,.5,0,0)| (.01,1,.7,0) (.01,1,.6,.5)
A 1.51727 1.41829 1.14118 1.14592
L |(.05,0,0,0)((.01,.8,0,0)| (.01,1,.6,0) (.01,1,.6,.8)
? 1.38944 1.41023 1.14125 1.14089"
(.01,0,0,0)| (.01,1,0,0)] (.01,1,.5,0) (.01,1,.6,1)
I 1.00104 0.85919 0.90250 0.90355
T (.1,0,0,0)|(.01,.5,0,0)( (.01,1,.1,0) (.01,1,.01,.5)
A 0.95457 0.85895 0.90243 0.90044
L |c.05,0,0,0)|(.01,.8,0,0)| (.01,1,.05,0)] (.01,1,.01,.8)
M1 o.88540 0.85876 0.90241 0.89803"
1 1¢.o01,0,0,0)| (.01,1,0,0)| (.01,1,.01,0)] (.01,1,.01,1)
Note: % indicates the minimum value in Theil U statistics of
agssociated with the chosen

each

equation

hyperparameters during the ex post forecast period.
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Table 6.27: Determination of the best hyperparameter setting
(vj’wjk) for LMON BVAR-EC forecasting model
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
(VJJO'O’O) (vj,!gl,o,o) (vj,wgl,wgg,o) (vj’wjl’WJZ'wggl
2.57628 2.06291 0.75129 0.68725
U (3,0,0,0) (3,.1,0,0) (3,.01,.1,0) (3,.01,.01,.05)
5 2.58030 1.4214S5 0.72152 0.68656‘
M (2,0,0,0) (3,.05,0,0) (3,.01,.05,0) (3,.01,.01,.04)
0 2.60155 0.82206 0.70881 0.68841
(1,0,0,0) (3,.01,0,0) (3,.01,.01,0) (3,.01,.01,.03)
G 0.72328 0.7010979 0.6932006 0.6934116
E (.1,0,0,0)| (.01,.1,0,0)f (.01,.01,.1,0)((.01,.01,.01,.5)
R 0.71169 0.7010974 0.69320054 0.6934113
L |(.05,0,0,0){(.01,.05,0,0)|(.01,.01,.05,0)((.01,.01,.01,.8)
? 0.70770 0.7010972 0.69320051 0.6934110‘
(.01,0,0,0)((.01,.01,0,0)/(.01,.01,.01,0){ (.01,.01,.01,1)
F 1.76415 1.81823 1.14765 1.28943
R (.1,0,0,0)] (.01,.5,0,0) (.01,1,.1,0) (.01,1,.01,.5)
A 1.73302 1.81812 1.147631 1.28923
L |(.05,0,0,0)| (.01,.8,0,0)} (.01,1,.05,0) (.01,1,.01,.8)
M1 1.72086 1.81803 1.147626 1.28905"
1 |(.01,0,0,0)| (.01,1,0,0) | (.01,1,.01,0) | (.01,1,.01,1)
1.11951 1.11379 1.29290 0.867562
I'| 1000 Co1,.50.0] (01,1,.5,00 | (.01,1,1,.1)
A 1.10765 1.11373 1.29281 0.867557
L |(.05,0,0,0)| (.01,.8,0,0) (.01,1,.8,0) (.01,1,1,.05)
»
Y| 1.10372 1.11369 1.29272 0.867555
(.01,0,0,0)| (.01,1,0,0) (.01,1,1,0) (.01,1,1,.01)
Note: % indicates the minimum value in Theill U statistics of

each equation associated with the chosen hyperparameters
during the ex post forecast period.
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Table 6.28: Determination of the best hyperparameter
setting (vJ,ka) for LCPI BVAR forecasting

model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var

v 0.69100 0.70990 0.72808 0.80795

K (.1,0,0,0)/(.09,.17,0,0)|(.09, .16,.6,0)| (.09,.16,.5,.5)
L 0.69084 0.70984 0.72807 0.78264

c |(.09,0,0,0)](.09,.16,0,0)((.09,.16,.5,0)| (.09,.16,.5,.8)
f 0.69090 0.70996 0.72841 0.77230"

(.08,0,0,0){(.09,.15,0,0){(.09,.16,.4,0)| (.09,.16,.5,1)

G 0.57594 0.58510 0.57728 0.52348

E| (3,0,0,0) (3,.5,0,0) (3,1,.1,0) (3,1,.01,.5)
f 0.57598 0.57978 0.57452 0.523459

c |_(2.0,0,0) (3,.8,0,0) (3,1,.05,0) (3,1,.01,.8)
P 0.57671 0.57844 0.52346 0.523457"

1] (1,0,0,0) (3,1,0,0) (3,1,.01,0) (3,1,.01,1)
F 0.76242 0.76331 0.69796 0.58562

R (3,0,0,0) (3,.5,0,0) (3,1,.1,0) (3,1,.01,.4)
f 0.76245 0.76274 0.65591 0.58498"
p (2,0,0,0) (3,.8,0,0) (3,1,.05,0) (3,1,.01,.3)
P 0.76260 0.76262 0.58755 0.58509

1| (1,0,0,0) (3,1,0,0) (3,1,.01,0) (3,1,.01,.2)
I 0.26857 0.28823 0.25743 0.26221

T (.6,0,0,0)| (.5,.5,0,0) (.5,1,.7,0) (.5,1,.6,.5)
: 0.26844 0.28131 0.25713 0.25876

c (.s,0,0,0)| (.5,.8,0,0) (.5,1,.6,0) (.5,1,.6,.8)
Pl o0.26852 0.27798 0.25732 0.2s5803"
1] (.4,0,0,0)] (.5,1,0,0) (.5,1,.5,0) (.5,1,.6,1)

Note: ¥ indicates the minimum value in Thell

each

equation

asgocliated

with

U

statistics
the chos

hyperparameters during the ex post forecast period.
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Table 6.29: Determination of the best hyperparameter
setting (v,,w, ) for TBR BVAR forecasting
J’ Ik
model
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
(VJTO,O,O) (vJ,wJ;,O,O) (”j’”31’"92’°) (vj'wjl’wjz’"j3)
1.07794 1.12446 1.096350 0.98371
4] (.1,0,0,0)| (.01,.5,0,0)| (.01,1,.5,0) (.01,1,1,.5)
§ 0.98548 1.12322 1.09645 0.98345
B (.05,0,0,0)| (.01,.8,0,0)| (.01,1,.8,0) (.01,1,1,.8)
R 0.95928 1.12211 1.09640 0.98331.
(.01,0,0,0)| (.01,1,0,0) (.01,1,1,0) (.01,1,1,1)
G 1.34050 1.29856 1.11137 0.89820
E (3,0,0,0) (3,.06,0,0) (3,.05,.1,0) (3,.05,.01,.1)
R 1.34117 1.29659 1.03664 0.86150
T (2,0,0,0) (3,.05,0,0) (3,.05,.05,0); (3,.05,.01,.05)
: 1.34488 1.29736 0.97746 0.83390*
(1,0,0,0) (3,.04,0,0) (3,.05,.01,0)| (3,.05,.01,.01)
0.90057 0.90077 0.93730 1.01695
F|(12.0,0,00](.11,.25,0,00] (.11,.2,.1,0)] (.11,.2,.01,.5)
A 0.90034 0.90071 0.93648 1.00159
T |(.11,0,0,0)| (.11,.2,0,0)(.11,.2,.05,0)| (.11,.2,.01,.8)
B 1 0.90085 0.90072 0.93621 0.99298"
R (.10,0,0,0){(.11,.15,0,0)/(.11,.2,.01,0) (.11,.2,.01,1)
0.94160 0.90461 0.92625 0.90811
_}. (.7.0,0,0)| (.6,.1,0,00 | (.6,.01,.5,0)| (.6,.01,1,.6)
»
A 0.94158 0.89634 0.91715 0.90781
T (.6,0,0,0)| (.6,.05,0,0) (.6,.01,.8,0) (.6,.01,1,.5)
Bl 0.94168 0.89236 0.91351 0.90801
R (.5,0,0,0){ (.6,.01,0,0) (.6,.01,1,0) (.6,.01,1,.4)
Note: ¥ indicates the minimum value in Theil U statistics ?f
associated with the chosen

each

equation

hyperparameters during the ex post forecast period.
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Table 6.30: Determination of the best hyperparameter setting
(v!,w!k) for TBR BVAR-EC forecasting model
Dep Theil U Statistics for One-Step-Ahead Forecasts
Var
’ ’0’ 1’ 1 ? ? ’ ’ ’ » ’ ’ !
(%470 0) (v W 0 0) (vJ wil QJZ O) (vJ le Wi w 3)
1.59373 1.60929 1.447984 1.48018
U (.1,0,0,0)|(.01,.5,0,0}| (.01,1,.1,0) (.01,1,.01,.5)
5 1.59369 1.60926 1.447981 1.48009
B (.05,0,0,0)((.01,.8,0,0) (.01,1,.05,0)| (.01,1,.01,.8)
R 1.59368 1.60923 1.447980 1.48001'
(.01,0,0,0)| (.01,1,0,0) (.01,1,.01,0) (.01,1,.01,1)
G 0.85311 0.85255 0.85070 0.85196
E (3,0,0,0) (3,.1,0,0) (3,.01,.5,0) (3,.01,1,.5)
R 0.85315 0.85171 0.85054 0.85107
T (2,0,0,0) (3,.05,0,0)| (3,.01,.8,0) (3,.01,1,.8)
: 0.85334 0.85043 0.85050 0.85087'
(1,0,0,0) (3,.01,0,0) (3,.01,1,0) (3,.01,1,1)
F 1.29980 1.29938 1.19664 1.09528
R (3,0,0,0) (3,.1,0,0) (3,.01,.1,0) (3,.01,.01,.5)
A 1.30038 1.29875 1.19498 1.09374
T (2,0,0,0) (3,.05,0,0) (3,.01,.05,0)] (3,.01,.01,.8)
: 1.30346 1.29780 1.19274 1.09338"
(1,0,0,0) (3,.01,0,0) (3,.01,.01,0) (3,.01,.01,1)
1 0.73991 0.74207 0.7267013 0.80032
T (.1,0,0,0) (.01,.5,0,0)| (.01,1,.1,0) (.01,1,.01,.5)
A 0.73730 0.74200 0.7267007 0.80015
T {(.05,0,0,0) (.01,.8,0,0) (.01,1,.05,0)} (.01,1,.01,.8)
: 0.73615 0.74199 0.7267005 0.79999.
(.01,0,0,0) (.01,1,0,0) (.01,1,.01,0) (.01,1,.01,1)
Note: M indicates the minimum value in Theil U statlsilcs of
each equation assoclated with the chosen

hyperparameters during the ex post forecast peilod.
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APPENDIX F

FORECASTING RESULTS

This appendix provides graphic displays of the BVAR and BVAR-EC

quarterly forecasts made over 1991Q1-1998Q4 for Germany, France and

Italy.

290












294















RECA

FO

C(G)

AR-E

299









302















307



308









REFERENCES

Akaike, H. (1969), "Fitting Autoregressive Models for Prediction" R
Annals of the Institute of Statistical Mathematics, Vol.21,
pp.243-7.

—— (1971), "Autoregressive Model Fitting for Control", Annals of
the Institute of Statistical Mathematics, Vol.23, pp.163-80.

—— (1973), "Information Theory and an Extension of the Maximum
Likelihood Principle”, in Petrov, B.N. and F. Csaki (eds), 2nd
Internationa! Symposium on Information Theory, Académiai Kiadé,
Budapest, pp.267-8l.

——— (1974), "A New Look at the Statistical Model Identification”,
IEEE Transactions on Automatic Control, AC-19, pp.716-23.

Ameen, T RM. (1992), "Nonlinear Predictor Models", Journal of
Forecasting, Vol.1l, pp.309-24.

Anandalingam, G. and L. Chen (1989), "Linear Combination of
Forecasts: A General Bayesian Model", Journal of Forecasting,

Vol.8, pp.199-214.

Anderson, P.A. (1979), "Help for the Regional Economic Forecaster:
Vector Autoregression”, Federal Reserve Bank of Minneapolis

Quarterly Review, Vol.3, No.3, pp.2-7.

Anderson, R., R. Barrell and J.W. Veld (1992), "The World Economy",
Natiop+! Inztitute Economic Review, August, pp.28-47.

Armstrong, J.S. (1989), "Combining Forecasts: The End of the
Beginning or the Beginning of the End?", International Journal

of Forecasting, Vol.5, pp.585-8.

Armstrong, J.S. and F. Collopy (1992), "Error Measures for
Generalizing about Forecasting Methods: Empirical Compansons

International Journal of Forecasting, Vol.8, pp.69-80.

Artis, M.J. (1988), "How Accurate Is the World Economic Outlook? A
Post Mortem on Short-Term Forecasting at the International
Monetary Fund", Staff Studies for the World Economic Outlook

(IMF, Washmgton, DC), pp.1-49.

_— (1992) "The Maastricht Road to Monetary Union", Journal of
Common Market Studies, Vol.XXX, No.3, pp.299-310.

Artis,; - M.J; and S. Holly (1992), "Modelling the World Economy: The
European'Perspective”, Journal of Forecasting, Vol.ll, pp.333-40.

Artis, M.J. and N. Lee (ed) (1997), The Economics of The European
Union, Policy and Analysis (2nd edn), Oxford UP, Oxford.

31



Artis, M.J. and W.D. Zhang (1990a), "BVAR Forecasts for the G-7",
International Journal of Forecasting, Vol.6, pp.349-62.

—— (1990b), "BVAR Forecasts of the World Economy", CEPR
Discussion Paper Series, No.380, pp.1-19.

Banerjee, A. (1993), Co-integration, Error Correction, and the
Econometric Analysis of Non-Stationary Data, Oxford UP, Oxford.

Bannock, G., R.E. Baxter and E. Davis (1987), The Penguin Dictionary
of Economics (4th edn), Penguin Books Ltd, London.

Barbosa, E. and J. Harrison (1992), "Variance Estimation for
Multivariate Dynamic Linear Models", Journal of Forecasting,

Vol.1l1, pp.621-8.

Barker, R., M. Franklin and J. Walker (1993), "Conflicting Signs
Cloud the Picture — House Price and Jobless Figures Point
Towards a Slump But Other Indicators Hint at Economic Recovery",

the Independent on Sunday, 31 January.

Barrell, R.J. and N.C. Pain (1992), "The Comparison and Evaluation
of Forecasts of the World Economy”, mimeo, National Institute of

Economic and Social Research, pp.1-12.

Begg, D.K.H. (1982), The Rational Expectations Revolution in
Macroeconomics, Camelot Press Ltd, Southampton.

Begg, D., S. Fischer and R. Dornbusch (1991), Economics (3rd edn),
McGraw-Hill Book Company, London.

Bewley, R. (1986), Allocation Models: Specification, Estimation, and
Applications, Ballinger Publishing Company, Cambridge.

Bhargava, A. (1986), "On The Theory of Testing for Unit Roots in
Observed Time Series", Review of Economic Studies, Vol.LIIl,

pp.369-84.

Bladen-Hovell, R.C. and W.D. Zhang (1991), "A BVAR Mode! for the UK
Economy: A Forecast Comparison with the LBS and NI Models",
Discussion Paper, No.8, ICMM, Glasgow Development Agency,

pp.1-31.

Blanchard, 0.J. (1987), "Comment", Journal of Business & Economic
Statistics, Vol.5, No.4, pp.449-51.

——— (1989), "A Traditional Interpretation of Macroeconomic
Fluctuations”, American Economic  Review, Vol.79, No.5,

pp.1146-64,

Blanchard, O.J. and D. Quah (1989), "The Dynamic Effects of
Aggregate Demand and Supply Disturbances”, American Economic

Review, Vol.79, No.4, pp.655-73.

Blinder, A.S. and S. Fischer (1981), ‘“Inventories, Rational
Expectations, and the Business Cycle", Journal of Monetary
Economics, Vol.8, pp.277-304.

312



Bodkin, R.G., L.R. Klein and K. Marwah (eds) (1991), A History of
Macroeconometric Model-Building, Billing & Sons Ltd., Worcester.

Boswijk, 1 P. (1995), ‘"Efficient Inference on Cointegration
Parz: =+ -« {1 Structural Error Correction Models", Journal! of
Econometrics, Vol.69, pp.133-58.

Box, G.E.P. and G.M. Jenkins (1970), Time Series Analysis:
Forecasting and Control, Holden-Day, San Francisco.

(1976), Time Series Analysis: Forecasting and Control (Revised
edn.), Holden-Day, San Francisco.

Brandner, P. and R.M. Kunst (1990), ‘"Forecasting Vector
Autoregressions — the Influence of Cointegration: A Monte
Carlo Study”, Research Memorandum No.265, Institute for Advanced

Studie«, Vienna.

Branson, W.H. (1989), Macroeconomic Theory and Policy (3rd edn),
Harper & Row, New York.

Braun, P.A. and S. Mittnik (1993), "Misspecifications in Vector
Autoregressions and Their Effects on Impulse Responses and
Variance Decompositions”, Journal of Econometrics, Vol.59,

pp.319-41.

Brockwell, P.J. and R.A. Davis (1991), Time Series: Theory and
Methods (2nd edn), Springer Verlag, New York.

Campos, J4., N.R. Ericsson and D.F. Hendry (1996), "Cointegration
Tests in the Presence of Structural Breaks", Journal of

Econometrics, Vol.70, pp.187-220.

Capie, F.H. and T.C. Mills (1991), "Money and Business Cycles in the
U.S. and U.K., 1870 to 1913", the Manchester School, pp.38-56.

Charemza, W. and D.F. Deadman (1992), New Directions in Econometric
Practice: General 1o Specific Modelling, Cointegration, and

Vector Autoregression, E. Elgar, Aldershot.

Chiang, A.C. (1984), Fundamental Methods of Mathematical Economics
(3rd edn), McGraw-Hill, London.

Chib, S. (1993), "Bayes Regression with Autoregressive Errors - A
Gibbs Sampling Approach"”, Journal of Econometrics, Vol.58,

pp.275-94.

Chong, f.Y. and D.F. Hendry (1986), "Econometric Evaluation of
Linear Macro-Economic Models”", Review of Economic Studies,

Vol.LIII, pp.671-90.

Chow, C.C. and A.L. Lin (1971), "Best Linear Unbiased Interpolation,
Distribution, and Extrapolation of Time Series by Related
Series”, Review of Economics and Statistics, Vol.53, pp.372-5.

Christiano, ‘L. and M. Eichenbaum (1989), "Unit Roots in Real GNP: Do

313



We Know and Do We Care?", Discussion Paper, Northwestern
University.

Clemen, R.T. (1989), "Combining Forecasts: A Review and Annotated
Bibliography”, International Journal of Forecasting, Vol.5,
pp.559-83.

Clements, M.P. (1996), "Evaluating the Rationality of Fixed-Event
Forecasts", Warwick Economic Research Papers, No.457, pp.1-16.

Clements, M.P. and D.F. Hendry (1992a), "Towards a Theory of
Economic forecasting”, Discussion Paper, Institute of Economics
and Statistics and Nuffield College, Oxford, pp.1-38.

—— (1992b), "On the Limitations of Comparing Mean Square Forecast
Errors”, Applied Economics Discussion Paper Series, No.138,

pp.1-19.

—— (1995), ‘"Forecasting in Cointegrated Systems", Journal of
Applied Econometrics, Vol.10, pp.127-46.

—  (1996), Multi-Step Estimation for Forecasting”", Warwick
Economic Research Papers, No.447, pp.1-32.

Clements, M.P. and H.M. Krolzig (1997), "A Comparison of the
Forecast Performance of Markov-Switching and Threshold
Autoregressive Models of US GNP", Warwick Economic Research

Papers, No.489, pp.1-29.

Clements, M.P. and R. Madlener (1997), "Seasonality, Cointegration,
and the Forecasting of Energy Demands", Warwick Economic

Research Papers, No.484. pp.1-34.

Clements, M.P. and G.E. Mizon (1991), "Empirical Analysis' of
Macroeconomic Time Series — VAR and Structural Models",
European Economic Review, Vol.35, pp.887-932.

Clements, M.P. and J. Smith (1996a), "A Mote Carlo Study of the
Forecasting Performance of Empirical SETAR Models", Warwick
Economic Research Papers, No.464, pp.1-75.

—— (1996b), "Performance of Alternative Forecasting Methods for
SETAR Models", Warwick Economic Research Papers, No.467, pp.1-32.

—— (1997), ‘"Forecasting Seasonal UK Consumption Components",
Warwick Economic Research Papers, No.479, pp.1-20.

Coen, P.J.,, E.D. Gomme and M.G. Kendall (1969), "Lagged
Relationships in Economic Forecasting”, Scientific Control
Systems Ltd, London, pp.133-63.

Cooley, T.F. and S.F. LeRoy (1985), "Atheoretical Macroeconometrics:
a Critique", Journal of Monetary Economics, Vol.16, pp.283-308.

Crafts, N.F.R., S.J. Leybourne and T.C. Mills (1989a), "Trend and

Cycles in British Industrial Production, 1700-1913", Journal of
Royal Statistical Society, Vol.1S2, Part 1, pp.43-60.

314



——— (1989b), "The Climactic in Late Victorian Britain and France:
A Reappraisal of the Evidence", Journal of Applied Econometrics,
Vol.4, pp.103-17.

Cramer, J.S. (1986), Econometric Applications of Maximum Likelihood
Methods, Cambridge UP, Cambridge.

Cubitt, R.P. (1993), "On the Possibility of Rational Dilemmas",
Economics and Philosophy, Vol.9, pp.1-23.

Davidson, J.E.H., D.F. Hendry, F. Srba and S. Yeo (1978),
"Econometric Modelling of the Aggregate Time Series Relationship
between Consumers’ Expenditure and Income in the United
Kingdom", Economic Journal, Vol.88, pp.661-92.

Davidson, R. and J.G. Mackinnon (1993), Estimation and Inference in
Econometrics, Oxford UP, Oxford.

Delessy, H. and H. Harasty (1992), "Oil Shocks: How Can OECD
Countries Manage Them Best?", Journal of Forecasting, Vol.ll,

pp-491-506.

Dickey, D.A. and W.A. Fuller (1979), "Distribution of the Estimators
for Autoregressive Time Series with a Unit Root", Journal of the
American Statistical Association, Vol.74, No.366, pp.427-32.

—— (1981), "Likelihood Ratio Statistics for Autoregressive Time
Series with a Unit Root", Econometrica, Vol.49, No.4, pp.1057-72.

Dolado, J.J., T. Jenkinson and S. Sosvilla-Rivero (1990),
"Cointegration and Unit Roots", Journal of Economic Surveys,

Vol.4, No.3, pp.249-73.

Doan, T.A. (1996), RATS (Regression Analysis of Time Series) User’s
Manual Version 4, Estima: Evanston, IL 6020l.

Doan, T.A., R.B. Litterman, and C.A. Sims (1984), "Forecasting and
Conditional Projection Using Realistic Prior Distributions”,
Econometric Reviews, Vol.3, No.l, pp.1-144,

Doornik, J.A. and D.F. Hendry (1996), GiveWin - An Interface to
Empirical Modelling, International Thomson Business Press,
London.

Dua, P and S.C. Ray (1995), "A BVAR Model for the Connecticut
Economy”, Journal of Forecasting, Vol.14, No.3, pp.167-80.

Efron, B (1985), The Jackknife, the Bootstrap and Qther Resampling
Plans, J.W. Arrowsmith Ltd, Bristol. _

Enders, W. (1995), Applied Econometric Time Series, John Wiley &
Sons, New York.

—— (1996), RATS Handbook for Econometric Time Series, John Wiley
& Sons, New York.

315



Engle, R.F. and C.W.J. Granger (1987), "Co-integration and Error
Correction: Representation, Estimation, and Testing",
Econometrica, Vol.55, No.2, pp.251-76.

Engle, R.F.. C.W.J. Granger, S. Hylleberg and H.S. Lee (1993),
"Seasonal Cointegration —— the Japanese Consumption Function",
Journal of Econometrics, Vol.55, pp.275-98.

Engle, R.F. and D.F. Hendry (1993), "Testing Superexogeneity and
Invariance in Regression Models", Journal of Econometrics,

Vol.56, pp.119-39.

Engle, R.F., D.F. Hendry, and J.F. Richard (1983}, "Exogeneity",
Econometrica, Vol.51, No.2, pp.277-304.

Ericsson, N.R. (1988), "A Review of Data-Fit: An Interactive
Econometricc Modelling Package for IBM-Compatible PCs", Journal

of Applied Econometrics, Vol.3, pp.319-32.

(1995), "Conditional and Structural Error Correction Models",
Journal of Econometrics, Vol.69, pp.159-71.

Fair, R.C. and R.J. Shiller (1990), "Comparing Information in
Forecasts from Econometric Models", the American Economic

Review, Vol.80, No.3, pp.375-89.

Farmer, R.E.A. (1991), "The Lucas Critique, Policy Invariance and
Multiple Equilibria”, Review of Economic Studies, Vo0l.58,
pp.321-32.

Favero, C. and D.F. Hendry (1992), "Testing the Lucas Critique: A
Review", Econometric Reviews, 11(3), pp.265-306.

Figlewski, S. and P. Wachtel (1981), "The Formation of Inflationary
Expectations”, Review of Economics and Statistics, Vol.LXII],
pp.1-10.

Fildes, R. (1992), "The Evaluation of Extrapolative Forecasting
Methods", International Journal of Forecasting, Vol.8, pp.81-98.

Fomby, T.B.,, F. George and Jr. Rhodes (1990), Co-integration,
Spurious, and Unit Roots, JAI Press, Greenwich, Conn.

Fomby, T.B., R.C. Hill and S.R. Johnson (1984), Advanced Econometric
Methods, Springer-Verlag, New York.

Freedman, D.A. (1986), "Reply", Journal of Business and Economic
Statistics, Vol.4, pp.126-7.

Fu, Q. (1989), "The Choice of Optimal Locations of Overseas Agencies
and Their Associated Cost-Benefit Analysis”", Journal of
Broadcasting Engineering, China’s Radio & TV Publishers, No.36,

pp.12-26.

Fuller, W.A. (1976), Introduction to Statistical Time series, Wiley,
New York. ’

316



Gali, J. (1992), "How Well Does the IS-LM Model Fit Postwar U.S.
Data", Quarterly Journal of Economics, May, pp.709-38.

Garcia-ferrer, A., R.A. Highfield, F. Palm, and A. Zellner (1987)
"Macroeconomic Forecasting Using Pooled International Data",
Journal of Business and Economic Statistics, Vol.5, No.l,
pp.53-67.

George, E. (1907} "The ‘Nervous’ Governor", Business News, City
University Business School, Summer, pPpP-5-8.

Geweke, J. (1982a), "Measurement of Linear Dependence and Feedback
Between Multiple Time Series", Journal of the American
Statistical Association, Vol.77, No.378, pp.304-13.

—— (1982b), "Rejoinder", Journal of the American Statistical
Association, Vol.77, No.378, pp.323-4.

—— (1987), '"Endogeneity and Exogeneity", in Eatwell, J., M.
Milgate and P. Newman (edi) (1987), The New Palgrave — A
Dictionary of Economics, Macmillan Press Ltd, London, pp.134-6.

—— (1989), "Bayesian Inference in Econometric Models Using Monte
Carlo Integration", Econometrica, Vol.57, No.6, pp.1317-39.

Godfrey, L.G. (ed) (1992), The Implementation and Constructive Use
of Misspecification Tests in Econometrics, Manchester UP,
Manchester.

Goel, P.K. and M.H. DeGroot (1981), "Information about
Hyperparameters in Hierarchical Models", Journal of the American
Statistical Association, Vol.76, pp.140-7.

Goel, P.K.. A. 7e!lner and D.F. Bruno (1986), Bayesian Inference and

Decision Techniques: Essays in Honor of Bruno de Finetti,
Amsterdam: Elsevier Science Publishers B.V.

Goldfeld, S.M. (1987), "Demand for Money: Empirical Studies", in

Eatwell, J., M. Milgate and P. Newman (ed) (1987), The New
Palgrave —— A Dictionary of Economics, Macmillan Press Ltd,

London, pp.770-S5.

Goodhart, C.A.E. (1984), Monetary Theory and Practice; the UK
Experience, Macmillan, London.

(1986), "Autobiographical Sketch", pp.322-3, in Blaug, M.
(ed), Who's Who in Economics (2nd edn), MIT Press, Cambridge.

Gordon, R.J. (1976), "Can Econometric Policy Evaluations be
Salvaged? — A Comment", in Brummer, K. and Meltzer, A.H.
(eds), The Phillips Curve and Labour Markets, Amsterdam:
North-Holland, Carnegie - Rochester Conference Series on Public
Policy, No.l, supplement to Journal of Monetary Economics,
January, pp.47-6l.

Gordon, S. (1997), "Stochastic Trends, Deterministic Trends, and
Business Cycle Turning Points", Journal of Applied Econometrics,

317



Vol.12, pp.411-34.

Granger, C.W.Jl. (1969), "Investigating Causal Relations by
Econometric Models and Cross-Spectral Methods"”, Econometrica,
Vol.37, No.3, pp.424-38.

——— (1981), "Some Properties of Time Series Data and Their Use in
Econometric Model Specification", Journal of Econometrics,
Vol.16, pp.121-30.

—— (1986a), "Comment", Journal of Business and Economic
Statistics, Vol.4, No.l, pp.16-7.

—— (1986b), "Developments in the Study of Cointegrated Economic
Variables", Oxford Bulletin of Economics and Statistics, Vol.48,

No.3, pp.213-28.

—— (1987), "Equilibrium, Causality and Error-Correction Models",
Economic Notes, No.l, pp.5-2l.

(1988), "Some Recent Developments in a Concept of Causality",
Journal of Econometrics, Vol.39, pp.199-211.

—— (ed) (1991), Modelling [Economic Series: Readings in
Econometric Methodology, Oxford UP, Oxford.

Granger, C.W.J. and P. Newbold (1974), "Spurious Regressions in
Econometrics”, Journal of Econometrics, Vol.2, pp.111-20.

—— (1986), Forecasting Economic Time Series (2nd edn), Academic
Press, London.

Graybill, F.A. (1969), Introduction to Matrices with Applications in
Statistics, Wadsworth Publishing Company, Belmont, California.

Greene, W.H. (1997), Econometric Analysis (3rd edn), Upper Saddle
River, N.J.

Gregory, A.W. and B.E. Hansen (1996), "Residual-Based Tests for
Cointegration in Models with Regime Shifts", Journal of

Econometrics, Vol.70, pp.99-126.

Griffiths, W.E., R.C. Hill and G.G. Judge (1993), Learning and
Practicing Econometrics, Wiley, New York.

Hafer, R.W. and R.G. Sheehan (1989), "The Sensitivity of VAR
Forecasts to Alternative Lag Structures”, International Journal

of Forecasting, Vol.5, pp.399-408.

Hall, 'S.G. (1989), ‘"Practitioners Corner - Maximum Likelihood
Estimation of Cointegration Vectors: An Example of the Johansen
Procedure”, Oxford Bulletin of Economics and Statistics, Vol.51,

No.2, pp.213-18.

——— (1993), "Modelling Structural Change Using the Kalman Filter",
Economics of Planning, Vol.26, No.1.

318



Hamilton, J:D. (1989), "A New Approach to the Economic Analysis of
Nonstationary Time Series and the Business Cycle", Econometrica,
Vol.57, pp.357-84.

Hannan, E.J. (1970), Multiple Time Series, John Wiley and Sons,
London.

Hannan, E.J. and B.G. Quinn (1979), "The Determination of the Order
of an Autoregression”, Journal of the Royal Statistical Society,

B41, pp.190-5.

Hansen, B. (1989), "Efficient Estimation of Cointegrating Vectors in
the Presence of Deterministic Trends", Discussion Paper,
University of Rochester.

Harvey, A.C. (1992), Forecasting, Structural Time Series Models and

Hasan, M.A. (1993), "Policy Shocks and the Canadian Macroeconomy
—— A Bayesian Vector Autoregression Approach", Economic

Modelling, January, pp.81-8.

Haug, A.A. (1996), "Tests for Cointegration —— A Monte Carlo
Comparison"”, Journal of Econometrics, Vol.71, pp.89-115.

Hendry, D.F. (1989), PC-Give: An Interactive Econometric Modelling
System, Oxford UP, Oxford. '

Hendry, D.F. and M.P. Clements (1992a), "On a Theory of Intercept
Corrections in Macro-Econometric Forecasting”, Discussion Paper,
Institute of Economics and Statistics and Nuffield College,

Oxford, pp.1-18.

(1992b), "Economic Forecasting", Discussion Paper, Institute
of Economics and Statistics and Nuffield College, Oxford,
pp.1-24.

Hendry, D.F. and J.A. Doornik (1996), Empirical Econometric

Modelling Using PcGive 9.0 for Windows, International Thomson
Business Press, London. ‘

Hendry, D.F. and J.F. Richard (1982), "On the Formulation of
Empirical Models in Dynamic Econometrics", Journal of

Econometrics, Vol.20, pp.3-33.

(1983), "The Econometric Analysis of Economic Time Series",
International Statistical Review, Vol.51, pp.111-63.

Hocking, R.R. (1976), "The Analysis and Selection of Variables in
Linear Regression”, A Biometrics Invited Paper, Biometrics,

Vol.32, pp.1-49.

Holden, K. (1995), "Vector Autoregression Modeling and Forecasting",
Journal of Forecasting, Vol.14, No.3, pp.159-66.

Holden, K. and D.A. Peel (1990), "On Testing for Unbiasedness and
Efficiency of Forecasts", The Manchester School, Vol.LVIII,

319



pp.120-7.

Holland, P.W. (1986), "Statistics and Causal Inference", Journal of
the American Statistical Association, Vol.81, No.396, pp.945-60.

Humphreys, P. (ed) (1994), Patrick Suppes: Scientific Philosopher,
Vol.1, Probability and Probabilistic Causality, Kluwer,

Dordrecht.

Hylleberg, S. and G.E. Mizon (1989), "Cointegration and Error
Correction Mechanisms", Economic Journal, Vo0l.99 {Supplement),

pp.113-25.

Jelenkowska, H. (1988), "Bayesian Estimation of the Variance
Components in a General Random Linear Model", Bayesian

Statistics, Vol.3, pp.653-6.

Johansen, S. (1988), "Statistical Analysis of Cointegration
Vectors", Journal of Economic Dynamics and Control, Vol.12,
pp.231-54.

—— (1989), "Estimation and Hypothesis Testing of Cointegration
Vectors in Gaussian Vector Autoregressive Models", Institute of
Mathematical Statistics, University of Copenhagen, working

paper.
——  (1991), “"Estimation and Hypothesis Testing of Cointegration
Vectors in Gaussian Vector Autoregressive Models", Econometrica,
Vol.59, No.6, pp.1551-80.
(1992), "Cointegration in Partial Systems and the Efficiency
of Single-Equation Analysis”, Journal of Econometrics, Vol.52,
pp.389-402.

—— (1995), ‘"Identifying Restrictions of Linear Equations with
Applications to Simultaneous Equations and Cointegration”,

Journal of Econometrics, Vol.69, pp.111-32.

—— (1996), Likelihood-Based Inference in Cointegrated Vector
Autoregressive Models, Oxford UP, Oxford.

Johansen, S. and K. Juselius (1990), "Maximum Likelihood Estimation
and Inference on Cointegration —— With Applications to the
Demand for Money", Oxford Bulletin of Economics and Statistics,

Vol.52, No.2, pp.169-210.

—— (1992), "Testing Structural Hypotheses in a Multivariate
Cointegration Analysis of the PPP and the UIP for UK", Journal

of Econometrics, Vol.53, pp.211-44.

—— (1994), ‘"Identification of the Long-Run and the Short-Run
Structure —— An Application to the ISLM Model", Journal of

Econometrics, Vol.63, pp.7-36.

Judge, ‘G.Gi,, R.C. Hill, W. Griffins, H. Lutkepohl and T.C. Lee

(1982), Introduction to the Theory and Practice of Econometrics,
J. Wiley & Sons, New York.

320



—— (1985), The Theory and Practice of Econometrics (2nd edn), J.
Wiley & Sons, New York.

Judge, G.G., T.A. Yancey and M.E. Bock (1973), "Properties of
Estimators after Preliminary Tests of Significance When
Stochastic Restrictions Are Used in Regression", Journal of
Econometrics, Vol.l, pp.29-48.

Kadane, J.B. (1984), Robustness of Bayesian Analyses, Elsevier
Science Publishers B.V.

Kadane, J.B., N.H. Chan and L.J. Wolfson (1996), "Priors for Unit
Root Models", Journal of Econometrics, Vol.75, pp.99-111.

Kadiyala, K.R. and S. Karlsson (1993), "Forecasting with Generalized
Bayesian Vector  Autoregressions”, Journal of Forecasting,

Vol.12, pp.365-78.

——(1997), "Numerical Methods for Estimation and Inference in
Bayesian VAR-Models", Journal of Applied Econometrics, Vol.l12,

pp-99-132.

Kakwani, N.C. (1968), "Note on the Unbiasedness of a Mixed
Regression Estimator”, Econometrica, Vol.36, No.3-4, pp.610-1.

Karisson, S. and H. Litkepohl (1993), "Introduction to Multiple
Time-Series", International Journal of Forecasting, Vol.9, No.4,

pp.577-8. ’

Kazmier, L.J. (1988), Schaum’s Qutline of Theory and Problems of
Business Statistics (2nd edn), McGraw-Hill, London.

Kennedy, P. (1992), A Guide to Econometrics (3rd edn), Basil
Blackwell, Oxford.

King, R.G. and C.I. Plosser (1984), "Money, Credit, and Prices in a
Real Business Cycle", American Economic Review, Vol.74, No.3,

pp.363-80.

Kirchgéssner, G. (1991}, "Comments", European Economic Review,

Vol.35, pp.918-22.

Koop, G. (1992), "‘Objective’ Bayesian Unit Root tests", Journal of
Applied Econometrics, Vol.7, pp.65-82.

—— (1994), "Bayesian Semi-Nonparametric ARCH Models", Review of
Economics and Statistics, Vol.LXXVI, pp.176-81.

Koop, G., J. Osiewalski. and M.F.J. Steel (1995), "Bayesian Long-Run
Prediction in Time Series Models", Journal of Econometrics,

Vol.69, pp.61-80.

Koop, G. and S.M. Potter (1997), "Bayes Factors and Nonlinearity:
Evidence: From Economic Time Series", mimeo, University of
Edinburgh and University of California, pp.1-35.

321



Kumar, V., R.P. Leone and J.N. Gaskins (1995), "Aggregate and
Disaggregate Sector F orecasting Using Consumer Confidence
Measures", International Journal of Forecasting, Vol.11, No.3,
pp.361-77.

Laidler, D.E.W. (1985), The Demand for Money: Theories, Evidence,
and Problems (3rd edn), Harper & Row, New York.

Leamer, E.E. (1982), "Sets of Posterior Means with Bounded Variance
Priors", Econometrica, Vol.50, May, pp.725-36.

—— (1983), "Let’'s Take the Con out of Econometrics", American
Economic Review, Vol.73, No.1 (March), pp.31-43.

(1991), "A Bayesian Analysis of the Determinants of
Inflation", in Granger, C.W.J. (ed) (1991), Modelling Economic
Series: Readings in Econometric Methodology, Oxford UP, Oxford.

Lee, E.O. (1987), "The Spurious Effects of Unit Roots on Vector
Autoregressions", Journal of Econometrics, Vol.39, pp.251-66.

Lee, J.C., K.W. Lu and S.C. Horng (1992), "Technological Forecasting
with  Nonlinear  Models", Journal of Forecasting, Vol.ll,

pp.195-206.

Lesage, J.P. (1992), "Scoring the Composite Leading Indicators: A
Bayesian Turning Points Approach”, Journal of Forecasting,

Vol.11, pp.35-46.

Liang, K.Y. (1992) "On the Sign of the Optimal Combining Weights
under the Error-Variance Minimizing Criterion”, Journal of
Forecasting, Vol.ll, pp.719-23.

Lindley, D.V. (1987), "Bayes, Thomas (1702-1761)", in Eatwell, J.,
M. Milgate and P. Newman (edi) (1987), The New Palgrave —— A
Dictionary of Economics, Macmillan Press Ltd, London, pp.207-8.

Lindley, D.V. and A.F.M. Smith (1972), "Bayes Estimates for the
Linear Model", Journal of the Royal Statistical Society, Series

B, Vol.34, pp.1-41.

Litterman, R.B. (1980),. "A Bayesian Procedure for Forecasting with
Vector Autoregression”, mimeo, Massachusetts Institute of

Technology.

—— (1986a), "Forecasting with Bayesian Vector Autoregressions
—— Five Years of Experience”, Journal of Business and Economic

Statistics, Vol.4, No.l, pp.25-38.

—— (1986b), "Comment", Journal of Business and Economic
Statistics, Vol.4, No,l1, pp.17-24.

(1986c), "Specifying Vector Autoregressions for Macroeconomic
;or'ecasting", in Goel, P. and A. Zellner (eds), Bayesian

Inference and Decision Techniques, Elsever Science Publishers.
Litterman, R.B. and L. Weiss (1985), "Money, Real Interest Rates and

322



Output: a Reinterpretation of Postwar U.S. Data", Econometrica,
Vol.53, pp.129-56.

Lucas, R.E. (1976a), "Econometric Policy Evaluation: A Critique”, in
Brummer, K. and Meltzer, A.H. (eds), The Phillips Curve and
Labour Markets, Amsterdam: North-Holland, Carnegie - Rochester
Conference Series on Public Policy, No.l, supplement to Journal
of Monetary Economics, January, pp.19-46.

——— (1976b}, "Understanding Business Cycles", pp.7-29.

Lucas, R.E. and T.J. Sargent (1981), Introduction, Rational
Expectations and Econometric Practice, University of Minnesota
Press, Minneapolis, Vol.l, pp.xi-xl.

Lutkepohl, H. (1991a), Introduction to Multiple Time Series
Analysis, Springer-Verlag, Berlin.

———  (1991b), Forecasting Aggregated Vector ARMA Processes,
 Springer-Verlag, Berlin.

Machlup, F. (1958), "Equilibrium and Disequilibrium: Misplaced
Concreteness and Disguised Politics”, Economic Journal, March,
reprinted in Machlup, F. (1963), Essays on Economic Semantics,
Prentice-Hall Inc., Englewood Cliffs, N.J.

—— (1977), A  History of Thought on Economic Integration,
Macmillan, London.

MacKinnon, J.G. (1990), "Critical Values for Cointegration Tests",
Discussion Paper, pp.l-14.

Maddala, G.S. (1988),. Introduction to Econometrics (2nd edn),
Macmillan, New York.

Mankiw, N.G. (1989), "Real Business Cycles: A New Keynessian
Perspective", Journal of Economic Perspectives, Vol.3, No.3,

pp.79-90.

Mariano, R.S. (1985), "Finite-Sample Properties of Stochastic
Predictors in Nonlinear Systems: Some Initial Results", Warwick
Economic Research Papers, 266, University of Warwick, pp.1-35.

Mariano, R.S. and Brown, B.W. (1983), "Asymptotic Behaviour of
Predictors in a Non-Linear Simultaneous System", International

Economic Review, Vol.21, pp.523-36.

—— (1991), "Stochastic-Simulation Tests of Nonlinear Econometric
Models", Comparative Performance of U.S. Econometric Models,

Oxford UP, New York, pp.250-9.

Marriott, J.M. (1988), "Reparameterisation for Bayesian Inference in
ARMA Time Series", Bayesian Statistics, Vol.3, pp.701-4.

McCallum, B.T. (1980), "Rational Expectations and Macroeconomic
Stabilization Policy: An Overview", Journal of Money, Credit,

and Banking, Vol.12, No.4, pp.716-45.

323



Mckenzie, C.R. (1993), "Microfit 3.0: A Review - Software Reviews",
Journal of Applied Econometrics, Vol.8, pp.413-9,

—— (1998), "Microfit 4.0 - Software Reviews", Journal of Applied
Econometrics, Vol.13, pp.77-89.

McNees, S.K. (1986), "Forecasting  Accuracy of  Alternative
Techniques: A Comparison of U.S. Macroeconomic Forecasts",
Journal of Business and Economic Statistics, Vol.4, No.l,
pp.5-15.

Mendenhall, W., Wackerly, D.D. and Scheaffer, R.L. (1990),
Mathematical Statistics with Applications, Duxbury Press,
Belmont, California.

Milgate, M. (1987), "Equilibrium: An Expectational Concept", in
Eatwell, J., M. Milgate and P. Newman (edi) (1987), The New
Palgrave —— A Dictionary of Economics, Macmillan Press Ltd,
London, pp.177-83.

Mills, T.C. (1987), "Uncertainty in the U.K. Monetary Aggregates:
Modelling Data Revisions in Economic Time Series", the

Manchester School, pp.337-52.

—— (1989), "Four Paradoxes in U.K. GDP", Economics Letters,
Vo0l.30, pp.287-90.

—— (1990a), Time Series Techniques For Economists, Cambridge UP
Cambridge.

—— (1990b), "A Note on the Gibson Paradox during the Gold
Standard", Prorations in Economic History, Vol.27, pp.277-86.

—— (1991a), "Equity Prices, Dividends and Gilt Yields in the UK:
Cointegration, Error Correction and ‘Confidence’”, the Scottish

Economic Society, pp.242-55.

——  (1991b), "Are Fluctuations in U.K. Output Transitory or
Permanent?”, the Manchester School, Vol.LIX, No.l, pp.1-11.

—— (1993), The Econometric Modelling of Financial Time Series,
Cambridge UP, Cambridge.

Mills, T.C. and AG Mills (1991), "The International Transmission
of Bond Market Movements", Bulletin of Economic Research,

Vol.43, No.3, pp.273-8l.

—— (1992), "Modelling the Seasonal Patterns in UK Macroeconomic
Time Series”, Journal of Royal Statistical Society, Vol.155,

part 1, pp.61-75.

Mills, " T.C., G.L. Pelloni and A. Zervoyianni (1993), "Sectoral
Shifts. and Unemployment Fluctuations: A test of the Lilien
Hypothesis for the U.K.", Hull Economic Research Papers, No.204,

pp.1-25.

(I}

324



Mills, T.C. and M.J. Stephenson (1985), "Forecasting Contemporaneous
Aggregates and the Combination of Forecasts: the Case of the
U.K. Monetary Aggregates", Journal of Forecasting, Vol.4
pp.273-8l.

Mills, T.C. and M.P. Talor (1989), "Random Walk Components in Output
and Exchange Rates: Some Robust Tests on UK Data", Bulletin of
Economic Research, Vol.41, No.2, pp.123-33.

Mincer, J. and V. Zarnowitz (1969), "The Evaluation of Economic
Forecasts", in Mincer J. (ed), Economic Forecasts and
Expectations, National Bureau of Economic Research Studies in
Business Cycles, No.19, pp.3-46, Columbia UP, New York.

Mizon, G.E. and J.F. Richard (1986), "The Encompassing Principle and
Its Application to Testing Non-Nested Hypotheses", Econometrica,

Vol.54, No.3, pp.657-78.

Muth, J.F. (1961), "Rational Expectations and the Theory of Price
Movements”, Econometrica, Vol.29, No.3, pp.315-35.

Nagar, A.L. and N.C. Kakwani (1964), "The Bias and Moment Matrix of
a Mixed Regression Estimator”, Econometrica, Vol.32, No.1-2,

pp.174-82.

Nankervis, J.C. and N.E. Savin (1987), "Finite Sample Distributions
of t and F Statistics in an AR(l1) Model with an Exogenous
Variable", Econometric Theory, Vol.3, pp.387-408.

Nelson, C.R. and C.I. Plosser (1982), "Trends and Random Walks in
Macroeconomic Time Series —— Some Evidence and Implications",

Journal of Monetary Economics, 10(2), pp.139-62.

Chanian, L.E. (1988), "The Spurious Effects of Unit Roots on Vector
Autoregressions : A Monte Carlo Study", Journal of Econometrics,

Vol.39, pp.251-66.

—— (1990), "A Note on Spurious Inference in a Linearly Detrended
Vector - Autoregression”, Review of Economics and Statistics,

Vol.73, pp.568-71.

Oliver, R.M. (1987), "Bayesian Forecasting With Stable Seasonal
Patterns”, Journal of Business and Economic Statistics, Vol.5,

No.1, pp.77-85.

Osborn, D.R. and 1.P. Smith (1989), "The Performance of Periodic
Autoregressive Models in Forecasting Seasonal U.K. Comparison",
Journal of Business and Economic Statistics, Vol.7, No.l,

pp.117-27.

Osterwald-Lenum, M. (1993), "A Note with Quantiles of the Asymptotic
Distribution of the Maximum Likelihood Cointegration Rank Tests
Statistics”", Oxford Bulletin of Economics and Statistics,

Vol.54, pp.461-72.

Owen,' D. (1986), Money, Wealith and Expenditure: Integrated Modelling
of Consumption and Portfolio Behaviour, Cambridge UP, Cambridge.

325



Pagan, A.R. and M.R. Wickens (1989), "A Survey of Some Recent
Econometric Methods", Economic Journal, Vol.99, pp.962-1025.

Pain, N. and A. Britton (1992), "National Institute Economic
Forecasts 1986 to 1991: Some Tests of Forecast Properties",
National Institute Economic Review, August, pp.81-93.

Palm, F.C. (1995), "Bayesian Model Selection and Prediction with
Empirical Applications: Comments", Journal of Econometrics,
Vol.69, pp.333-5.

Palm, F.C. and A. Zellner (1992), "To Combine or not to Combine?
Issues of Combining Forecasts”, Journal of Forecasting, Vol.ll,

pp.687-701.

Parzen, E. (1982), "Comment", Journal of the American Statistical
Association, Vol.77, No.378, pp.320-2.

Paulus, J.D. (1975), "Mixed Estimation of a Complete System of
Consumer Demand Equations”, Annals of Economic and Social

Measurement, Vol.4, No.l, pp.117-3l.

Perron, P. (1988), "Trends and Random Walks in Macroeconomic Time
Series: Further Evidence from a New Approach”, Journal of
Economic Dynamics and Control, Vol.12, pp.297-332.

-— (1989), "Testing for a Unit Root in a Time Series with a
Changing Mean", Journal of Business and Economic Statistics,

Vol.8, pp.153-62.

Pesaran, M.H. (1987), "Econometrics”, in Eatwell, J., M. Milgate and
P. Newman (edi) (1987), The New Palgrave —— A Dictionary of

Economics, Macmillan Press Ltd, London, pp.8-20.

Pesaran, M.H. and B. Pesaran (1991), Microfit 3.0 — An
Interactive Econometric Software Package, Oxford UP, Oxford.

— (1997), Working with Microfit 4.0 —— Interactive Econometric
Analysjs, Oxford UP, Oxford.

Phillips, P.C.B. (1986), "Understanding Spurious Regressions in
Econometrics”, Journal of Econometrics, Vol.33, pp.311-40.

(1995a), "Bayesian Model Selection and Prediction with

Empirical Applications", Journal of Econometrics, Vol.69,
pPp.289-331.
e '(41995b), "Bayesian Prediction —— A Response", Journal of

~ Econometrics, Vol.69, pp.351-65.

—_— (1'995c), V"Nonstationary Time Series and Cointegration", Journal
of Applied Econometrics, Vol.10, pp.87-94.

Phillips, P.C.B. and S.N. Durlauf (1986), "Multiple Time Series
Regression with Integrated Processes", Review of Economic

- . Studies, Vol.LIH, pp.473-95.

326



Pierce, D.A. (1982), "Comment", Journal of the American Statistical
Association, Vol.77, No.378, pp.315-6.

Pindyck, R.S. and D.L. Rubinfeld (1991), Econometric Models and
Economic Forecasts (3rd edn), McGraw-Hill, New York.

Plosser, C.I. (1989), "Understanding Real Business Cycles", Journal
of Economic Perspective, Vol.3, No.3, pp.51-77.

Poirier, D.J. (1988), "Bayesian Diagnostic Testing in the General
Linear Normal Regression Model", Bayesian Statistics, Vol.3,

pp.725-32.

Poole, W. (1967), "Optimal Choice of Monetary Policy Instruments in
a Simple Stochastic Macro Model", Quarterly Journal of
Economics, Vol.LXXXIV, pp.197-216.

Radaelli, G. (1992) "Exchange Rate Models: Monetary or Portfolio
Balance Effects?", Discussion Paper, Lehman Brothers and

Birkbeck College, pp.1-22.

Rao, C.R. (1973), Linear Statistical Inference and Its Applications

(2nd edn), Wiley, New York.

Reinsel, G.C. and S.K. Ahn (1988), "Asymptotic Distribution of the
Likelihood Ratio Test for Cointegration in the Nonstationary
Vector AR Model", Technical Report, Department of Statistics,
University of Wisconsin, Madison.

Richard, J.F. (1995), "Bayesian Model Selection and Prediction with
Empirical Applications Discussion”, Journal of Econometrics,

Vol.69, pp.337-49.

Richardson, P. (1992}, "Simulating the European Economies under
Alternative Monetary Policy Assumptions”, Journal of

Forecasting, Vol.ll, pp.389-421.

Robert, F.E. and D.F. Hendry (1993), "Testing Superexogeneity and
Invariance in Regression Models", Journal of Econometrics,

Vol.56, pp.119-39.

Robert, E. and J. Lucas (1976), "Econometric Policy Evaluation: A
Critique",” in Brunner-Meltzer, The Phillips Curve & Labour
Markets, Canngie-Rochester Conferences, Vol.I, JME Supplement.

—— (1976), "Understanding Business Cycles", University of
Chicago.

Robinson, P.M. (1989), "Hypothesis Testing in Semiparametric and
Nonparametric Models for Econometric Time Series", Review of

Economic¢' Studies, Vol.56, pp.S511-34.

Rothenberg, T.J. (1973), Efficient Estimation with a Priori
Information, Yale UP, New Haven (Conn).

Runkle, D.E. (1987a), "Vector Autoregressions and Reality”, Journal

327



of Business & Economic Statistics, Vol.5, No.4, pp.437-42.

—— (1987b), "Reply", Journal of Business & Economic Statistics,
Vol.5, No.4, p.454.

Rust, J. (1988), "Comment on Poirier: The Subjective Perspective of

a ‘Spiritual Bayesian'", Journal of Economic Perspectives,
Vol.2, No.l, pp.145-51.

Sargan, J.D. (1964), "Wages and Prices in the United Kingdom: A
Study in Econometric Methodology", Econometric Analysis for
National Economic Planning, ed. by P.E. Hart et al.
Butterworths, London.

Sargent, T.J. (1984), "Autoregressions, Expectations, and Advice",
American Economic Reviews, Vol.74, No.2, pp.408-16.

(1987), "Rational Expectations”, in Eatwell, J., M. Milgate
and P. Newman (edi) (1987), The New Palgrave —— A Dictionary
of Economics, Macmillan Press Ltd, London, pp.76-9.

Schwarz, G. (1978), "Estimating the Dimension of a Model", Annals of
Statistics, Vol.6, pp.461-4.

Shoesmith, G.L. (1990), "The Forecasting Accuracy of Regional
Bayesian VAR Models with Alternative National Variable Choices",
International Regional Science Review, Vol.13, No.3, pp.257-69.

—— (1992), "Co-Integration, Error Correction and Improved
Medium-Term Regional VAR Forecasting”, Journal of Forecasting,

Vol.1l, pp.91-109.

Simon, H.A. (1987), "Causal Inference", in Eatwell, J., M. Milgate
and P. Newman (edi) (1987), The New Palgrave -—— A Dictionary
of Economics, Macmillan Press Ltd, London, pp.380-3.

Sims, C.A. (1980a), "Macroeconomics and Reality”, Econometrica,
Vol.48, No.l, pp.1-48.

—— {(1980b), "Comparison of Interwar and Postwar Business Cycles:
Monetarism Reconsidered", American Economic Association, Vol.70,

No.2, pp.250-7.

—— (1982), "Policy Analysis with Econometric Models", Brookings
‘Papers on Economic Activity, pp.107-64.

——— (1987), "Comment”, Journal of Business & Economic Statistics,
Vol.5, No.4, pp.443-49.

_— (1989); "A Nine Variable Probabilistic Macroeconomic
Forecasting Model", Discussion Paper, No.14, Institute for
Empirical Macroeconomics, University of Minnesota. '

—  (1991), "Coinments", European Economic Review, Vol.35,
pp.922-32.

—_— (1992)‘, "Interpreting the Macroeconomic Time Series Facts —

328



the Effects of Monetary Policy", European Economic Review,
Vol.36, pp.975-1011.

Sims, C.A., J'.H. Stock and M.W. Watson (1990), "Inference in Linear
Time Series Models with Some Unit Roots", Econometrica, Vol.58,

pp.113-44,

Smith, G. (1980), "Further Evidence on the Value of a Priori
Information”, Journal of Finance, Vol.XXXV, No.l, pp.181-9.

Smith, G. and W. Brainard (1976), "The Value of a Priori Information
in Estimating a Financial Model", Journal of Finance, Vol.XXXI,

No.5, pp.1299-322.

Smith, T.M.F. (1988), "To Weight or not to Weight, That is the
Question", Bayesian Statistics, Vol.3, pp.437-51.

Séderlind, P. and A. Vredin (1996), "Applied Cointegration Analysis
in the Mirror of Macroeconomic Theory", Journal of Applied

Econometrics, Vol.ll, pp.363-81.

Spencer, D.E. (1993), "Developing a Bayesian Vector Autoregression
Forecasting Model", International Journal of Forecasting, Vol.9,

pp.407-21.

Stewart, J. (1986), Understanding Econometrics (2nd edn),
Hutchinson, London.

—— (1991), Econometrics, Philip Allan, New York.

Stewart, M.B. and K.F. Wallis (1990), Introductory Econometrics (2nd
edn), Basil Blackwell, Oxford.

Stock, J.H. and M.W. Watson (1988a), "Variable Trends in Economic
Time  Series", Journal of Economic Perspectives, Vol.2,

pp.147-74.

—— (1988b), "Testing for Common Trends", Journal of the American
Statistical Association, Vol.83, pp.1097-107.

Stockman, A.C. (1990), "International Transmission and Real Business
Cycle Models", New Classical Macroeconomics in the Open Economy,

Vol.80, No.2, pp.134-8.

Swamy, P.A.V.B. and J.S. Mehta (1969), "On Theil’s Mixed Regression
Estimator", Journal of the American Statistical Association,

Vol.64, pp.273-6.

Theil, H. (1963), "On  the Use of Incomplete Prior Information in
Regression Analysis", Journal of the American Statistical

Association, Vol.58, pp.401-14,

_ (1971), Principles of Econometrics, Wiley, New York.

e (19744), "Mixed Estimation Based on Quasi-Prior Judgments",
European Economic Review, Vol.S5, pp.33-40.

329



_— (1974b), Introduction to  Econometrics, Prentice-Hall,
Englewood Cliffs, N.J.

Theil, H. and A.S. Goldberger (1961), "On Pure and Mixed Statistical
Estimation in Economics"”, International Economic Review, Vol.2,

No.1, pp.65-78.

Timmermann, A. (1995), "Cointegration Tests of Present Value Models
with a Time-Varying Discount Factor”, Journal of Applied
Econometrics, Vol.10, pp.17-31.

Tj¢stheim, D. (1981), "Granger-Causality in Multiple Time Series",
Journal of Econometrics, Vol.17, pp.156-76.

Todd, R.M. (1984), "Improving Economic Forecasting with Bayesian
Vector Autoregression", Quarterly Review of the Federal Reserve

Bank of Minneapolis, Fall, pp.18-29.

Trader, R. (1983), "A Bayesian Technique for Selecting a Linear
Forecasting Model", Management Science, Vol.29, No.5, pp.622-32.

Tremayne, A.R. (1992), "Integrated Variables and Tests for Unit
Roots", in Godfrey, L.G. (ed) (1992), The Implementation and
Constructive Use of Misspecification Tests jn Econometrics,
Manchester UP, Manchester.

Tremayne, A.R. and N. Davids (1994), "Review of Statgraphics"”,
Journal of Applied Econometrics, Vol.9, pp.335-41.

Tremayne, A.R. and B.P.M. McCabe (1993), Elements of Modern
Asymptotic Theory with Statistical Applications, Manchester UP,
Manchester.

—— (1995), "Testing a Time Series for Difference Stationarity",
Annals of Statistics, Vol.23, No.3, pp.1015-28.

Tremayne, A.R. and P.C. Smith (1992), "On the Information Content of
Time Series of Accounting Earnings", Journal of Business Finance

and Accounting, 19(3), pp.363-85.

Trivedi, P.K. (1980), "Small Samples and Collateral Information: An
Application of the Hyperparameter Model", Journal of

Econometrics, Vol.12, pp.301-18.

Urbain, J.P. (1993), Exogeneity in Error Correcting Models,
Springer-Verlag, Berlin.

(1995), “Partial Versus Full System Modelling of Cointegrated
Systems - An Empirical Illustration”, Journal of Econometrics,

Vol.69, pp.177-210.

Vahid, F. and R.F. Engle (1993), "Common Trends and Common Cycles",
Journal of Applied Econometrics, Vol.8, pp.341-60.

Wallis, K.F. (1986), Models of the UK Economy, Oxford UP, Oxford.

—— (1989), "Macroeconomic Forecasting: A Survey", Economic

330



Journal, Vol.99, pp.28-61.

—— (1994), Macroeconometric Modelling, E. Elgar, Aldershot.

Wallis, K.F., P.G. Fisher, J.A. Longbottom, D.S. Turner and J.D.
Whitley (1987), Models of the UK Economy, Oxford UP, Oxford.

Wei, W.W.S. (1982), "Comment: The Effects of Systematic Sampling and
Temporal Aggregation on Causality —— A Cautionary Note",
J.A.S.A. Vol.77, No.378, pp.316-9.

West, K.D. (1987), "A Specification Test for Speculative Bubbles",
Quarterly Journal of Economics, Vol.102, pp.553-80.

—— (1988), "Asymptotic Normality, When Regressors have a Unit
Root", Econometrica, Vol.56, pp.1397-418.

West, M. and J. Harrison (1989), Bayesian Forecasting and Dynamic
Models, Springer-Verlag, New York.

Westlund, A.H. (1993), "Business-Cycle Forecasting", Journal of
Forecasting, Vol.12, No.3-4, pp.187-96.

Whitley. J.D. (1991), ‘“"Comparative Simulation Analysis of the
European Multi-Country Models", Journal of Forecasting, Vol.ll,

Pp.423-58.

Wickens, M.R. (1996), "Interpreting Cointegrating Vectors and Common
Stochastic Trends", Journal of Econometrics, Vol.74, pp.255-71.

Wold, H. (1938), A Study in the Analysis of Stationary Time-Series,
Almgvist and Wiksells, Uppsala.

Zellner, A. (1971), An Introduction to Bayesian Inference in
Econometrics, John Wiley & Sons, New York.

—— (1982), "Comment", Journal of the American Statistical
Association, Vol.77, No.378, pp.313-4.

—— (1985), "Bayesian Econometrics", Econometrica, Vol.53, No.2,
pp.253-67. ‘

——— (1986), "Biased Predictors, Rationality and the Evaluation of
Forecasts", Economics Letters, Vol.2l, pp.45-8.

—— (1987), "Bayesian Inference", in Eatwell, J., M. Milgate and P.

Newman (edi) (1987), The New Palgrave —— A Dictionary of
Economics, Macmillan Press Ltd, London, pp.208-18.

Zellner, A. and C. Hong (1989), "Forecasting International Growth
Rates Using Bayesian Shrinkage and Other Procedures"”, Journal of
Econometrics, Vol.40, pp.183-202,

331



