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ABSTRACT

Research on and debate about 'wise use' of explicitly Bayesian

forecasting procedures has been widespread and often heated. This

situation has come about partly in response to the dissatisfaction

with the poor forecasting performance of conventional methods and

partly in view of the development of computational capaci t.y and

macro-data availability. Experience with Bayesian econometric

forecasting schemes is still rather limited, but it seems La be an

a Lt.rac t t vo alternative to subjectively adjusted slatistical models

[see, for example, Phillips (1995a), Todd (1984) and West & Harrison

(1989)]. It provides effective standards of forecasting performance

and has demonstrated success in forecasting macroeconomic variables.

Therefore, there would seem a case for seeking some addi tional

insights into the important role of such methods in achieving

objectives within the macroeconomics profession.

The orlmary concerns of this study, motivated by the apparent

deterioration of mainstream macroeconometric forecasts of the world

economy in recent years [Wallis (1989), pp.34-431, are threefold.

The first is to formalize a thorough, yet simple, methodological

framework for empi r ical macroeconometr lc modell ing in a Bayesian

spirit. The second is to investigate whether improved forecasling

accuracy is feasible within a European-based multicountry context.

This is conducted with particular emphasis on the construction and

implementation of Bayesian vector autoregressive {BVAR)models that

incorporate both a priori and cointegration restrictions. The third

is to extend the approach and apply it to the joint-modell ing of

system-wide interactions amongst national economies. The intention

is to attempt to generate more accurate answers to a variety of

practical questions about the future path towards a united Europe.

The use of BVARshas advanced considerably. In particular, the value

of joint-modelling with time-varying parameters and much more

sophisticated pr ior distributions has been stressed in the

econometric methodology literature. See e.g. Doan et al. (1984),
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Kadiyala and Karlsson (1993, 1997), Litterman (1986a), and Phillips
(1995a, 1995b). Although trade-linked multicountry macroeconomic
models may not be able to clarify all the structural and finer
economic characteristics of each economy, they do provide a flexible
and adaptable framework for analysis of global economic issues.

In this thesis, the forecasting record for the main European
countries is examined using the 'post mortem' of IMF, DECO and EEC
sources. The formulation, estimation and seleclion of BVAR
forecasting models, carried out using Microfit, MicroTSP, PcGive and
RATS packages, are reported. Practical applications of BVAR models
especially address the issues as lo whelher combinalions of
forecasls explicilly oulperform the forecasls of a single model, and
whether the recent failures of multicountry forecasts can be
attributed to an increase in the 'internal volatility' of the world
econom ic environment. See Artis and Holly (1992), and Barrell and
Pain (1992, p.J).

The research undertaken consolidates existing empirical and
theoretical knowledge of BVAR modelling. It provides a unified
coverage of economic forecasting applications and develops a common,
effecti ve and progressive methodology for the European economies.
The empirical results reflect that in simulated 'out-of-sample'
forecasting performances, the gains in forecast accuracy from
imposIng prior and long-run constraints are statislically
significant, especially for small estimation sample sizes and long
forecast horizons.

KEY WORDS AND PHRASES

Bayesian vector autoregression (BVAR) models; Exogeneity; Causality;
Nonstatiunarity; Unit roots; Regime shifts; Common stochastic trends
(CSTs); Cointegration; Error-correction (EC); Model ~election; Lucas
critique; Hypothesis testing; Minnesota prior; Theil U statistic.
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CHAPTER 1

INTRODUCTION TO MACROECONOMIC MODELLING
USING BAYESIAN VECTOR AUTOREGRESSIONS

§1.1 Introduction

The inherent complexity of the structure of the world economy and
the increasing awareness of the need for closer policy coordination
among European countries have together resulted in a growing demand
for powerful methods to interpret this complicated universe and
hence to strengthen the European edifice. There can be no doubt that
the more accurate and consistent are ex ante forecasts and macro
policy studies, the more reliable and useful will be the
macroeconometric models constructed. In consequence, the resul ting
forecasts and simulations are likely to be more important and
influential to the private, public and overseas sectors. Moreover,
macroeconometric forecasting models present not only a forum within
which macroeconomic theories encounter extensive challenge, but also
a target upon which major controversies are likely to focus.

The importance of empirical econometric modelling naturally raises
certain questions. What are the inevitable basic assumptions, or
postulates. underpinning an econometric model or forecasting
venture? What are the central problems associated with inferential
procedures? And what should be the reaction if such problems occur?
For a long time it has been widely held that macroeconometric models
can' be v1ewed primarlly as providing us :with useful tools for
EJcannins. interpreting. or predicting macroeconomic activities
aridlor macropol1cy effects 1n the real world. The general and
fundimental assumption is that the economic developments of
Individual couritries and' their pollcy stances can. at least
appl"d~iJllatelY.be measured by· small sets of lagging. current and
feidfl'lj indicators. These may be used either as signals to monitor
tffit'progressof economies or as a means to strengthen the degree of

1



European-wide policy cooperation. Such indicators normally can be
satisfactorily represented by the realizations of a group of
commonly used economic aggregates.

Presumably, there exist a number of generating mechanisms that
explain, or fit, the joint observations resulting from scrutiny of
these macroeconomic variables and their interrelationships. These
should not only be intimately linked with the state of national
economies, past, present and future, domestic and abroad, but should
also, hopefully, be stable enough over time to warrant further work
on trying to master the structure of the world economy.

It is clearly an important task to investigate and come to an
understanding of the workings of the underlying mechanisms and to
predict and simulate, with the help of economic theories and
statistical tools, the likely evolution of the relevant indicators
based on such interrelationships. In this regard, the rational
expectations hypothesis (REH) advanced by Muth (1961) in the
macroeconomic context is often considered optimal [cf. Pain &
Brit ton (1992), pp.82-7, and Wallis (1989), p.44]. This takes into
account all avallable information in the universe in a manner
conducive to forming expectations with no systematic errors. Hence,
practical Bayesian inference should also be beneficial [e.g., Doan
et al. (1984), Kadiyala & Karlsson (1993, 1997), Lltterman (1980,
1986a), Phillips (1995a), Shoesmith (1990, 1992), West & Harr ison
(1989), Chapter 4, and Zellner (1985)]. The Bayesian approach can be
seen as a step in the same direction, in that it takes into
consideration all of our current knowledge, both prior and sample,
in a coherent fashion. to facilitate predictions under uncertainty.

However, some words of caution about the use of estimated economic
relationships for any empirical prediction and simulation purpose
would see., appropriate here. This is especially the case for sudden
changes of empirical auto- and/or cross-correlations. Such changes
cQuld come about for cl wlde.variety of reasons, for example, those
caused by theoll crIses in the early 1970s, which led to widespread
i:J.ndsl8n1f'lcant fallures of"forec'asting models throughout the world.
Indeed, on closer examination, the foundations of macroeconomic
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systems may be undergoing deep changes caused by artificial
stimulation of government pre- or post-election regulation, by
deliberate intervention in personal behaviour, and by ordinary
socio-economic evolution processes. Such endemic changes of
structure will unavoidably constitute major sources of forecast
deterioration and hence make the task of forecasting (especially in
the long term) much more problematic (Barrell & Pain (1992), p.3].

Fortunately, however, in fundamental and traditional human
socio-economic behaviour, there is often more stability than
variability. Hence, the deep parameters of the economy with some
possible invariants may not change quickly, being highly correlated
with current and past episodes and also appearing to exhibit some
constant features into the future [see Clements & Hendry (1992a),
p.3]. In essence, although the rationality of expectations is still
a contentious issue, the logical variant of the famous Lucas
critique (Lucas, 1976a), being either testable on specific occasions
or manageable in general, does not of itself condemn the forecasting
enterprise to faIlure (see Clements & Hendry (1992a), p.20]. In this
and succeeding chapters, therefore, the work attempts to make
meaningful inferences and decisions on both theoretical and
statistical grounds .In the face of newly emerging data and serious
intellectual challenges that have emanated from the New Classical
macroeconomics.

The main object!ves of the research project are cIarifled in the
next section (1.2). The third section (1.3) provides a background,
giving a brief overvtev of some of the aspects and the relative
importance of theoretical and econometric developments in

1macromodel-building strategies. Some relevant key issues
surrounding the topic are fUrnished in the fourth section (1.4). The
final section (l.S) contains an outline of the thesis and a flow
chart-of the research procedure.

lA furth~r survey of'all the twists and tUrns in the argument falls
outside''the scope of this discussion. For a more detailed, highly
readable account of the formal unity of a theoretical and a
st.t.lstical model see Granger (ed) (1991), Chapters 1, 6, 9, 14, 15
&' 17.
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§1.2 Object! ves

The central goal of this thesis is to set up Bayesian vector
autoregressive (BVAR) forecasting models for the economies of the
United Kingdom, Germany, France and Italy, using IMF, DECO and EC
data sources. We investigate whether useful gains, in terms of
forecast accuracy, can be made through exploiting the co-movements
of some of the principal macroeconomic variables within a
European-based multicountry context. The dynamic interactions
between the economies specified in the model will be explored, with
the aim of shedding some light on complicated questions about
whether economic growth paths of different countries converge in
some sense over time. For this, a number of separate but related
research problems require further analysis.

(a) Is it possible to bridge the gap between the existing
theoretical and statistical analyses in the initial specification of
an empirical dynamic econometric model, and to proceed in the case
where a number of the initial underlying assumptions are rejected?

(b) How can we get round problems of insufficient data and create an
adequate data set upon which to base our analyses?

(c) Is ltpossible to determine long-run constraints, a joint prior
structure and its associated prior hyperparameters on the basis of
someecotloJitic theories. statistical regularities and historical
dynamics of the data?

(d) How can 'we construct, compare and combine models for a given
period to generate a general BVAR model subject to certain
stochastic 'and Iong+run restrictions, and then assess whether the
resulting form of the empU'ical model is an appropriate
approximatiohof the'actual data generation process (DGP)?

ee) HoW- can'the ratIonallty or economic forecasts be tested in terms
ofthcbir uhbiasedfiess and efficiency properties?
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(f) How can the decision be made about whether the sources of
forecast and turning-point errors are cross-country ones or
country-specific ones, and how can they be decomposed into avoidable
and unavoidable components?

All these SUbstantive issues are of crucial importance for improving
our understanding and knowledge of the true nature of the underlying
stochastic processes and the evolutionary structure of the
contemporary wor Id economy. Through this work, the formulation of
more reliable and effective empirical models will be addressed.

§1.3 Background

It has become widely accepted that the role of macroeconomic theory
is far more limited than was at first recognized and, whatever the
debates, the observed value of data has rarely been challenged.
Nonetheless, the impact of rational expectations on the theoretical
front has provided an important impetus to the advancement of
applied macroeconometrics in general and the development of
macroeconometric mod~lling in particular. In this section, attention
will be focused on some basic ideas suggested by theoretical
considerations about the long-run equilibrium of the system because,
ignoring the basics, any further developments would be rootless.

1.3.1 Macrotheoretical Analysis in Modelling Multivariate
Long-Run Equilibriu. Interrelationships

In macroeconomics, various pieces of a prior i theoretical
information currently available about long-run, or equilibrium,
interlocking relationships among the important aggregates can be
attributed variously to lCeynesians, monetarists, Bayesians, rational
expecters, and so forth. The macroeconomics landscape is littered
with economistS carrying different banners and offering different
opinions. AlthoUgh,froll a methodological viewpoint, the explicit
use of a pr10ri information is, in principle, highly desirable, the
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tasks are how to integrate that information into the inferential
process and how to test directly or indirectly the assumptions
underlying the economic theories [Freedman (1986), p.127].

On macrotheoretical grounds, the basic conceptual existence of
long-run equilibrium relationships, proposed by macroeconomic
theory, means that there exists the belief that certain
macroeconomic variables should not wander freely or independently of
each other; instead, they are expected to move in a specific fashion
so that they do not drift too far apart. This is quite consistent
with the fact that in the short-run some factors may shock the
macroeconomy away from equilibrium, but that this equilibrium will
be restored again in the long-run. Although there are many
defini tions of economic equilibrium, one is described by Machlup

2(1958, p.9) as follows:
[an equilibrium is] a constellation of selected
interrelated variables so adjusted to one another
that no inherent tendency to change prevails in
the model which they constitute.

The literature on the topic of objective long-run economic
hypotheses involving equilibrium concepts is, of course, voluminous
and still growing. However, given space limitations, only some
general propositions, which I believe have great relevance for
econometric practice, will be presented here.

(a) There is a (parabolic) inverse relationship between the going
3rate of interest and the aggregate demand for money, 1.e. lower

interest rates will boost money demand in line with the higher money
supply. Meanwhile, when interest rates fall, the level of investment
in the economy will increase, reflecting government willingness to
take action to get the economy growing.

(b) There is a positive linkage bet.ween monetary expansion and
inflation, meaning that excessive monetary expansion would

2See al~o Chiang (1984), Chapter 3, especially pp.35-6.

3Foran entertaining account, of the approach see Branson (1989).
pp.319-46~ 'and Laidler (198S),pp.39-77.
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ultimately be channelled entirely into inflation, and eventually the
unemployment rate would become immune to whatever is the long-run
inflation rate. This is the so-called vertical long-run Phillips
curve, in which there are no long-run, but only short-run, changes
in (higher) inflation and (lower) unemployment as a result of
discretionary monetary intervention [see, inter alia, Owen (1986),
Chapter 1].

(c) There is a monotonically nondecreasing relationship between
total imports and total exports. Thus, the total aggregate income
and import levels in the various trading countries would be
sufficient to absorb total aggregate exports through merchandise
trade flows and prices, and the gains to competitiveness arising
from exchange rate depreciation of an economy would also support a
rise in its share of world trade. [See, for example, Anderson et al.

(1992), Artis & Holly (1992), pp.334-5, and Barker et al. (1993)].

The Keynesians' prior emphasizes the efficiency of policy and
embodies the idea that fiscal policy is of particular sIgnificance
in the business cycle. This may influence outputl(un-)employment
through changes in the level of aggregate demand in the standard
Hicksian IS/LM model. In contrast, the monetarists' prior stresses
the ineffectiveness of policy but takes the view that monetary
pollcy Is of central importance in the business cycle and could
affect inflation/production through the control of the growth of ,the
(nominal) money supply. This, in turn, can be regarded as a good
single index of monetary policy [see Granger (ed) (991), Chapter
11, and Owen (1986), Chapters 1-3]. As European monetary union gets
underway, monetary pollcy and, In particular, the monetary aggregate
indicators will play an important role in the process of transition
to full monetary union [see Artis & Lee (ed) (1997), Chapters 1, 2,
12 and 13]'The long-run assertions made by standard macroeconomic
theories provlde food for thought in the entire modelling exercise.

The tradi tiona! role,and much, of the recent work of economic
theory, ls.thus forlBally invoked In four aspects of the iniUal
spec 1.f1cation ,process: the selection of variables; the determination
of the. slans of unknown parameters; the implications of Jointly
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simplified dynamic structure; and the imposition of various long-run
constraints. Clearly, every economic variable could, potentially, be
interrelated or interact with every other variable to some extent.
Therefore, apart from special and unlikely circumstances, it is very
uncommon to find explanatory variables that appear in equations with
exactly zero coefficients if one wants to minimize the predictive
expected loss (risk). But when considering a tradeoff between the
inclusion of additional variables and the gains of precise
description, it is not advisable, in the modelling strategy, that
all possible economy-wide variables be included blindly, or tested
for inclusion, into the system.

Hence, the first step facing the modeller is to use a priori

information, without excluding all other information, as a rough
guideline for the choice of the observed data series that correspond
to the (latent) theoretical variables under scrutiny. The second
step is to identify the signs of coefficients, or the direction of
change, in a relationship between the variables included [Griffiths
et al. (1993), pp.796-7]. The third is, at least intuitively, to
specify a general weight-declining lag scheme by means of proper
priors, so that the influence of past values on current values can
be increasingly attenuated. However, see Cooley and LeRoy (1985) for
a contrary opinion. Finally, theory is used to influence the
estimating form of empirical models, in so far as it evens out the
observable short-run fluctuations via its testable long-run
restrictions. At an elementary level, whether one accepts the
prevalent Keynesian-type and/or monetarist-type prescriptions
colours the way in which suitable methods to handle empirical models
with these characteristics may be thought of.

The use of complex a prIori reasoning to guide the specification of
a set of desired relationships is in effect only a stepping-stone to
a formal dynamlc specification. One reason is that economic
theories, whether Keynesian or monetarist, are still far from
perfectly developed, 'and should not be expected to give a complete
ancl uniquely specified model. For example, a given economic theory
on its own merely tells us that some economic variables are related

. .
strong'ly anclothers are only weakly related, if at all. It does not
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provide the exact form of a prior for the adjustment process and lag
structures. Nor is it possible to place sufficient identifying
restrictions, long-run or otherwise, on the empirical magnitudes of
population parameters of interest so as to derive clear-cut
conclusions [see Granger (ed) (1991), Chapter 9].

It is the recognition of the imprecision and incompleteness of
macroeconomic theories in practical terms that leads to an emphasis
on the important role of quantitative analysis. This recognition
also gives rise to the need for blending personal beliefs and
historical records into the process of specification search, before
a stochastic dynamic model is finally specified.

1.3.2 Macroeconometric Analysis in Modelling Multivariate
Short-Run Dynamic Interrelationships

In macroeconometrics, there are essentially two basic views on the
complementary roles and relative importance of theoretical structure
and data analysis within a dynamic specification framework [see
Clements & Mizon (1991), pp.887-8, and Coen et al. (1969),

pp.152-3]. These contrasting views can have an important effect on
the final choice of econometric modelling strategy. At one extreme,
a theory-oriented approach, for example, a structural econometric
model (SEMl. can be regarded as a substantial subject, playing a
dominant role in describing the nature of causal links at work or in
predicting the effects of a change on the structure of the system.
At the otherext~eme, a priori structural hypotheses can be reckoned
a humble subject, playing a subsidiary role in any pragmatic and
empirical investigation. In this latter view, a data-determined
approach, for example, a finite vector autoregressive (VAR)

represent~tion that is capable of characterising the frankly ad hoc
nature of the Joint temporal causal structure among a wide rang~ of
macroeconomic variables. should have a dominant role [see Sims
(19608.)]. On the whole, many researchers hold somewhat intermediate
positions by, constructing. and maintaining -tbeoret Ica.lIy congruent
dynamiC:'modelIf.

Serious forliltilatior('ofmaeroeconometric models on the world scene



began to take place just after the Second World War, but developed
rapidly thereafter. More recently, Sims (1980a, and in later papers)
proposed using the heavily parameterized, unrestricted (or loosely
restricted) vector autoregressive (UVAR) approach, termed by Cooley
and LeRoy (1985) 'atheoretlcal macroeconometrics', as an important
alternative to classical techniques for macroeconometric analysis.
In this approach, a vector of Jointly endogenous variables is
specified to be a linear function of their own and each other's
lagged values, not subject to a direct, explicit and restrictive
economic theoretic meaning. Since then, this methodology has been
widely used for small to medium-sized macroeconometric models in the
area of forecasting.

A notable feature of the UVAR model is that the system is a closed
one with no contemporaneous variables assigned the extra-model
status of exogeneity, no 'incredible' over-identifying restrictions
imposed and no trivial endogenous/exogenous distinction allowed. As
Anderson (1979) points out, the simple UVAR models should forecast
better than structural models since ·the former, unlike structural
models based on more complex and subtle economic theory, do not
require complete data and can thus generate forecasts of all
variables internally in a fairly straightforward manner. This is
especially true in cases where little information is available about
the determinants of the vector of variables of primary concern, and
a sufficiently large amount of data is obtainable to enable one to
produce a linear dynamic 'reduced-form' with a distributed lag of
reasonable length.

Although the UVAR models have been extensively utilized, a serious
limitation of the approach is the problem of overfitting or

4overparameterizatlon. Due to multicollinearity and loss of degrees

4It has long been recognized that when estimating UVAR models with a
relatively large number of variables, without restriction, the
numberofcoefflcients, which grows with the square of the number of
yariables, Is largeJelative to the number of observations typically
available, andoverflttlng' occurs. This is likely to result in
Impreclseestilll8.tesof.lndlvldualcoefflcients and, hence, many free
In,1.nlf19ant .coefflcients hampering the interpretation of the
interrelationships among the variables [see Owen (1986), p.34J.
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of freedom, overparameterization will generally lead to poor
'out-of-sample' forecasts and less precise estimates of forecast
error variance components. One promising forecasting method of
tackling overparameterization is the Bayesian vector autoregressive
(BVAR) method pioneered, explicitly along Bayesian lines, by
Litterman (1980). Instead of adopting hard shape or exclusion
restrictions, he imposes the so-called 'Minnesota or Litterman
Prior' on the coefficient estimates, which is centred about the
vector, or multivariate, random walk process. The idea met with
considerable scepticism, until Litterman's model was found to
outperform other forecasts of many economic variables [Doan (1996),
p.8-17, Granger (ed) (1991), p.3, and Shoesmith (1992), p.93J.

As Todd (1984) clarifies, a basic BVAR model might seem to resemble
a UVAR model in the formation of its equations and also resemble a
structural model in its use of priors to prevent overfitting.
However, from a Bayesian perspective, both the UVAR and SEM
approaches are either too vague (in the former case) or too extreme
(in the latter case), and thus probably either overstate or
understate the modeller's true beliefs. The BVAR modeller holds that
more recent lags of a vector of variables are more relevant in
forecasting than now distant ones, whereas the UVAR constructor
pretends to be completely ignorant and treats all possible lag
structures to be data determined. At the same time, the BVAR
modeller uses prior beliefs to specify the 'guesstimated'
coefficients, while allowing the data to override each of the
guesses in the light of sample evidence afterwards. This method is
in contrast to the approach of the SEM builder, who pretends either
to be absolutely confident about the zero excluded coefficients, no
matter what the historical data suggest, and to be absolutely
ignorant about the posited included coefficients, no matter what the
modeller actuaUy believes.

A distinetlvefeature of the prototypical BVAR method is that it

permits forecasters to incorporate, in a logically consistent
lIanner. 'both prior and sample information through Theil's mixed'
estimation technique, with the best settings of the hyperparameters
to generate international forecasts or to suggest macro policies.
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This is important because it gives investigators a flexible,
credible way of expressing personal beliefs more accurately and a
standard, objective procedure for combining those beliefs with
historical record more formally.

The BVAR prototype is inherently a naive backward-looking model,
since the default of the Minnesota prior, which effectively shrinks
all the parameters either exactly or approximately to the vector
random walk (with or without drift) hypothesis, is based on the
implici t 'business as usual' assumption.5 In other words, it is
assumed that the behaviour of many macroeconomic variables will be
the same in the future as it was in the sample period, so that, for
such a variable, the best forecast of its future values will Simply
equal its current value. This is, perhaps, a chief source of
challenge for the model-based forecasters, since these 'no-change'
forecasts can be extremely difficult to improve upon.

In the search for a more generic, economically meaningful model, the
BVAR prototype has been readily extended to an open system for the
dynamic, disequilibrium adjustment process based on the error-
correction mechanism (ECM). The emphasis is on the use of a further
exogenous factor, the equilibrium error, which arises primarily from
the concept of multi-cointegration. According to the relationship
between cointegration and error correction expounded by Granger and
his co-authors (see e.g. Granger, 1986b, for references), the
resulting BVAR model, very much like a negative feedback network, is
essentially a self-C?orrecting lIodel. The impact of a long-run or
equilibrium solution, as implied by a priori theory, can' be

Introduced Into the lIlOdel in order to restrict the short-run
dynamiCS, and the forecast can be set back on track, so that under-
or over-prediction of an equation in the past will automatically
lead to a co_ensurate adjustment in the future. This relatively
inexpensive BVAR model j with both prior and cointegration
constraints, will be presented as an effective means of generating
accurate;forecasts andprovidlng a tough benchmark of comparison for
forecasts·derivedln IBOte traditional ways.

5for 4etalls of th.is llterature, see Artis (1988), pp.25-6.
, f·· - :1 .' _:-; • ;_, '
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§1.4 Structure

In order to apply state-of-the-art time series econometrics
modelling techniques that incorporate prior information to the major

macroeconomic indicators to generate forecasts, some relevant key
issues surrounding the topic should first be considered in a
critical light.

1.4.1 Bayesian Analysis and Retrospection

An overview of the evolution of the macroeconometrlc approach has

indicated that there is a long and unfortunate tradition of placing
too muchemphasis on macroeconomic theory, as opposed to historical
evidence, in the specification and evaluation of macroeconometric
models. The spirit of this tradition was to a large extent rooted in
the desire to search for a true underlying model by emulating the
approach of the harder sciences [see Bodkin et al. (1991), Chapters
6-8, and Granger (ed) (1991), Chapters 6 and 15].

However, in many situations it is perhaps naive to argue that an
economic theory or model is 'true' or 'false' per se; it maybe more

reasonable to argue that a theory or a model is 'useful' or 'not

useful' In facili tating the specification of empirical

relationships, or in illuminating the particular phenomena of

interest. The contention here is that the crucial assumptions on
which the conclusions of a theor-y depend sensi ti vely are never-

precisely true, the links between theories and empirical
specifi cations in macroeconometric5 are not very close, and the
available observations are not sufficient to enable one to estimate
all tbe 'true'parameters with great accuracy. It is, therefore,

counterproductive to think that one could finally achieve some sort

Ofcompl't!!te, onee-and-for"'all, 'true' mechanismin the longer term.

Recent developments in macroeconometrics have changed interests
towards the use of both data and theory, sophisticatedly simple
hypoth~8efJ or i!lOthoQs.predlctipn and model selection criteria and

,"',;,1<:;

the Bayesian learning procedure in model specification and
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evaluation. It seems to be generally agreed that in building
econometric models, theory should not be binding on the model, but
should be true within the model [Granger (ed) (1991), pp.18-9]. The
'bottom line' is how well models perform in interpreting what is
going on, or in predicting what is going to happen. In this respect,
the explicitly Bayesian shrinkage techniques have had a significant
impact on econometric studies, providing a formal framework for
handling background or prior information under uncertainty, and will
undoubtedly open up a new vista for the progress of econometric
modelling [Todd (1984)].

1.4.2 Bayesian Modelling and Estimation

Linearity, as a useful approximation to many non-linear problems,
has long been used in macroeconometrics to model the dynamic
interrelationships between principal macroeconomic variables.6 We
will first survey the previous forecasting record of the UK,
Germany, France and Italy. Attention then turns to the construction
of macroeconometric models that incorporate both prior and
cointegrating restrictions for these countries, within a similar
multivariate linear, or log-linear, stochastic framework. Through
the foreign trade connections between the economies, these various
country models can then ultimately be combined into a general BVAR
model for the European economies.

Along the way, a number of relevant problems and issues will be
investigated. such as the inspection of cointegrating vectors; the
refinement of lag structures; the exploration of causal linkages:
the treatment of ~eterminlstic terms: the estimation of the
sensitiylty of forecast performance to prior information: the
employment of error-correction mechanisms: and the determination of
the best settings of t~e,prior hyperparameters. The extensive data
set used is obtained from various IMF, DECO and DNS databanks.
Rolling mixed-estimations with the aid of the Kalman Filter updating
procedure will be ·used for the BVAR models, thereby allowing

6For references to the forecasting literature for non-linear models
see, among othere , Mariano (1985) and Mariano & Brown (1983, 1991).
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parameters to vary over time. The resulting t, F and R2 values will
be presented and the comparative forecast results in terms of
Theil's U statistics (or RMSEs) will be reported. All estimation is
conducted using the Microfit, MicroTSP, PcGive and RATS software
packages on an IBM (or compatible) personal computer (PC).

1.4.3 Bayesian Forecasting and Evaluation

The prediction of the future time paths of macroeconomic variables
is one of the most noticeable manifestations of the use of
macroeconometric models [Stewart (1986), p.264]. In this study, both
single- and multi-country forecasts will be made and evaluated from
1991Ql onward for a similar range of variables. This provides a
rigorous testing ground for the BVAR models and their uses.

1.4.3a HUltlcountry Forecasts

Frequently, the term forecast is used to denote a statement about
future events, whereas prediction is used to define an implication
of a model. Ex ante forecasting with an econometric model involves
the use of past and current information available prior to the
forecast period 1n order to generate a Joint predictive
distribution, together with a final forecast for future values of
the series that have, as yet, not occurred. In this exercise, both
simulated and genuine 'out-of-sample' quarterly forecasts will be
produced mainly for the short-term (one to eight quarters ahead of
the date of occurrence) and the appropriate BVAR forecasting models
will be selected to form optimal (linear) forecasts, subject to as
little error as possible. In addition, the multicountry forecasts
generated bY the BVAR models are unconditional, since they do not
depend on explicit assumptions about the future course of the
projected external determinants of economic act!vity [McNees (1986),
p. 15].

1.4.3b'Pore~ast EvaluatIon

A staUst'ical evaluation of the qualIty of forecast performance of
the BVAR IIOdfHsthroUgh a comparison with the UVAR and other
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conventional models over the forecast period will be presented by

using Wald parametric encompassing tests in truly ex ante

circumstances. This permits assessment of whether the BVARapproach

derived with proper prior and cointegration constraints is superior,

on average, to other traditional techniques. The encompassing of

econometric hypotheses enables us to go beyond simple Root Mean

Squared Error (RMSE) comparisons of forecast evaluation so as to

achieve a more generally applicable and effective model. Meanwhile,

the forecast and turning-point errors from actual outcomes will be

analysed to evaluate the efficiency and bias of individual BVAR

forecasts in a changing economic environment.

1.4.3c Policy Simulations

Probably the most formidable critique to the quantitative policy

evaluation proposition would appear to originate with the Muthian

rational expectations hypothesis and the related Lucas (1976a)

critique of mainstream macroeconometric model-building. The internal

logic of REH is that sensible economic agents will use all the

available information efficiently in order to avoid systematic

errors in their expectations, or forecasts. The implication is that,

given an instantaneous market clearing paradigm, rational agents act

to eliminate any effects of systematic policy on real factors.

Hence, only unexpected monetary or fiscal policy changes can have

any real effects. This is the neutrality or policy ineffectiveness

proposi tion. In practice, a shock can provoke enough variation in

aspects of the world economy to allow modelling via data on multiple

time-series. If partlcular economic variables do not vary, then It

is impossible to aeasure their impact on economic activity using

only time-series information.

The rational-expectations logic of the Lucas critique is that

structural behavioural equations will not be invariant to

al ternative policy rules and regimes. This implies that rational

individuals ought to understand the nature of the pollcy in force

and use thlsl,nformation in forming expectations. Hence, were anew

set of polley propoeals to be implemented, the parameters of the

system would shift systematically. Thus, the structure would break
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down and, in particular, would no longer permit a sound prediction
of the likely consequences of a new policy action. This is known as
Goodhart's (1986) law in the monetary area. It would have
represented a forceful criticism of macroeconometric modelling had
the argument been sustained.

However, the quantitative significance of the Lucas critique for
policy analysis is an open question. One can strongly refute the
argument in so far that the likely size of the error from such a

7criticism, for many experiments, may not be very great. If this
were the case, then there would be a return of confidence in the use
of simulation techniques for minor policy changes. In reality, there
is nothing very special about rational expectations theory that
proves that REH is the only way to interpret the behaviour of
agents. The developments of the New Classical macroeconomics require
a strategy of explaining economic activity in terms of rational
individual choice. If there were problems in which there were no
rational choices, then this strategy would not equip the New
Classical approach to analyse them at all, thereby limiting its
domain. Even in the absence of any such limitations, the New
Classical analysis would still be unable to offer a complete
explanation of economic behaviour. Accordingly, while the challenge
raised by the New Classical school has posed some important
questions about the dynamics of the macroeconomy, it is reasonable
to doubt whether this criUque is applicable in its present form.

In this work, we will stick to the paradigm that behavioural
parameters will not suffer greatly from the Lucas criticism, and use
the formulated model to learn about the dynamic interactions between
(among) two (or more) of Europe's major economies.

§1. 5 Intended Scope and Flow Dlqram

The for~t of this thesis is, therefore, made up as follows. After

7See,iorexample, ArUs & Holly (1992), pp.336-7, Bodkin et al.
(eds)U:990, pp'.~5S1....5,' Granger (ed) (1991), Chapters 8-11, and
Wallis (1989), pp.35-8.
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the brief discussion of recent theoretical and practical
developments in depicting the interrelationships between a number of
macroeconomic variables, particular attention is paid, in Chapters 2
and 3, to the prototypical BVAR modelling. This model is constructed
in the framework of standard stationary normal linear dynamic
systems, without much loss of generali ty and with a noticeable
benefit in simplicity and clarity.

The set-up of a more general BVAR model subject to both prior and
cointegration restrictions is then discussed in Chapters 4 and 5 for
non-stationary time series. A pragmatic, systematic BVAR and/or
BVAR-EC forecasting model selection procedure, which can readily be
implemented on available econometric packages, is put forward.

In Chapters 6 and 7, the transformation of the macro data for the
formulation, modification and selection of empirical BVAR
forecasting models is laid out. Various ex post and ex ante
quarterly forecasts based on the mix-estimated BVAR and BVAR-EC
models are appended and displayed in the accompanying graphs qver
the forecast period, 1991Ql-1998Q4, for Europe's leading industrial
economies. The relapve efficiency and accuracy of BVAR and BVAR-EC
models are evaluat~d in detail using an appropriate forecasting
criterion (e.g. Theil's U statistic). Typically, the different sorts
of forecast or turning point errors are analysed, in order to assess
the real causes of failure in a multinational forecasting context.

To provide an overview, the outline of the proposed methodology is
schematically represented in Fig.l.l. The whole system depicted in
the figure can be perecd'le<i.

plausible inforntat1on flows.,
refinement of theQl"eUcal an<l·,emplriealanalyses.

as.the exploitation and treatment of
as well as the unification and

Summaries, practical COl\c~u.ions and some further thoughts and
-c: i:" ;:"}:.,./,-':~:"

priorities for future work are set forth in Chapter 8. In addition,
the tabulation of experimental results, specificat10ns -of computer,~...
programs stored in ASCII fll~s rending with suffix ".ASC and other
detaUs are provided' in ~~9dic~~ A,-F, followed by references.

18



Theoretical analysis

+ noise

------ -------------- ----MCMi
Empirical analysis

l------Liiieaf- system----------
I :

I :
system

BVAA
prototype

Open system

BVARs
(BVAR-EC)

,-- ..-------------------------- ----------------------------.
: Hypothesis testing :

Prior
restrictions

Determination of
Jhe \fAR or~er.

Testing for yrtit'roots
I and eointegration

tJVARs

'equilibrium
errors'

Cointegration
restrictions

Determination of joint prior
. probabilities and if1tercept~

,

I :

I i
: J , '.._----------------------------- ---------------------------_.

I 'I:~,oUing'estimation .
Misspecification/respecification' '

reparameterizatiou
,Model selection/combination

I---,--_._------------------- -------------------------_._---------

+ errors

Empirical resuJts
(Forecasts and noliev Imnliearion)

Evaluation

Fig.l.l: The methodological framework of the improvement
and selection of a general BVAR model



CHAPTER 2

STATIONARY UNRESTRICTED VECTOR AUTOREGRESSIONS (UVARs)
WITHOUT A PR lOR

§2.1 Introduction

In the literature on empirical macroeconometric time series
modelling, explaining the relationship between a set of observed
macroeconomic aggregates and predicting the future paths of the
variables based on the data chosen has been one of the most
important challenges. A principal reason for the widespread use of
multivariate dynamic linear regression techniques is simply that of
algebraic and computational convenience. Recent progress has
involved considering a framework for estimating and interpreting
vector autoregressions (VARs) and their various extensions.

The unrestricted vector autoregressions (UVARs) advocated by Sims
(1980a, 1982) as an unstructured first-stage model provide a
convenient way of testing the economic hypotheses of dynamic
specification, and present a yardstick against which the performance
of more elaborate models may be assessed. The Bayesian vector
autoregressive CBVAR) models developed by Litterman (1980, 1986a)
with an informative prior distribution not only share with UVARs the
property of reflecting the salient characteristics of the series and
its components adequately, but also give modellers flexibility- to
express the nature of their prior beliefs. Prior and sample here
might be thought of as two equally important types of information
playing a joint role in determining each of the parameter estimates
in the system considerect. We are particularly interested in the
Bayesian approach because, in conventional time-series analyses,
although substantial prior information is frequently available,- it
is usually expressed in an informal or incoherent way which does not
lend itself to replication. The Bayesian approach, in contrast,
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provides a general formal method for handling proper prior and
finite sample information in a coherent methodological framework of
macroeconometric modelling [Zellner (1985), p.255].

This chapter starts by reviewing some of the important concepts
involved. It then goes on to introduce the approach employed in the
construction of linear time domain models. The chapter concludes by
illustrating how to construct a basic, finite-order, stationary BVAH
forecasting model with stochastic prior restrictions.

§2.2 A Linear Stochastic Multivariate System for Nonintegrated
Time Series

From a theoretical viewpoint, the multiple time-series model could
always be embodied within the appropriate structure of a
multivariate econometric model. A properly specified multivariate
econometric model should provide a richer pat tern of correlations
and yield more accurate forecasts than a purely time-series model.
The main objective of empirical econometric modelling is to find a
relatively simple specification which, in broad terms,
satisfactorily captures the characteristics of the observed data. To
that end, the work In this study will concentrate initially on a
jointly stationary VAR representation (possibly after differencing)
of a set of economic data. For expository purposes, we will take the
simple stationary case first.

2.2.1 Stationary Vector Autoregressive (VAH) Processes and
Their Propertles

In conventional (lnultip!e) time-series macroeconometrlc analyses, a
natural starting-point is to treat a discrete vector stochastic
process as the actual underlying mechanism which generates
observations on a given set of random variables, say
Xt=(y 1t t ••• ,YKt)', t=1, ... ,T. Each observation is one realization of
the.vector s~oc~ast1cprocess, also denoted by tit} when there is no
possibility of confusion.
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In principle, the vector stochastic process may be characterised by
the joint distribution function of all finite, time-ordered
subsequences of random vectors tXt' teTncN} ~ IRK, K-dimensional
Euclidean space. Thus, if we could somehow specify the joint
probability distribution function p(Xl, ...,XT) for our process, we
would then fully capture the true random behaviour associated with
future outcomes. In practice, however, empirical analyses are rarely
based on the complete distributions, but on parameters of the
distributions, such as the mean vectors E[Yt] and covariances
E [(Yt-E [Yt])(Yt-s-E [Xt-s])']. However, to be able to infer all the
values of these first and second moments from just a single
realization, some further assumptions have to be made.

One important assumption generally made is that of ergodicity. It

asserts that the random sample moments approach their fixed
population counterparts as the available sample size T goes to

1infinity. A second assurnptiortis that of stationarity, which has,
in general, two conceptually distinct but closely related
defin1tions:strict-sense stationarity; and wide-sense stationarity.

Strict stationarity implies that both the Joint multivariate density
function {p(Yt"" ,Xt+h), h~O} and the marginal function (h=O) are
independent of a displacement in time origin and that any set of h+l
observations has identical distributions. Wide-sense or covariance
stationarity 1mplies that the f1rst two moments of the joint
distributions are finite and time invariant; that is,

and
~)(Xt-s- ~),] = {Ey = ry(O)

ryes) < co,

< co, Vt, s = 0;
Vt & s, s ~ O.

Thus all such moments exist and that they do not depend on the
particular time point t but only on the absolute value of the time

ISee, intet ana, Hatmllh ('1910), pp.200-20, for a more thorough
discussion of'ergodiclty:
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difference, s. The practical consequence of this property is that it
allows us to study the sampling properties of the variables of
interest through summary measures like sample moments based on a
single realization.2

For a jointly normally distributed vector stochastic process, often
known as a Gaussian vector process (determined entirely by its first
two moments), weak and strict stationarities are equivalent [Harvey
(1992) , pp.49-50] .
{Yt=(Ult,··· ,uKt)',
=~ (nonsingular)<m

u
This process may be normally independently distributed (NID) or,
less restrictively, independently identically distributed (lID) with

For example, a vector white-noise process
teT}, 1.e.

and E [YtY~]=0
one with

for s*t, is clearly stationary.

zero mean vector and finite covariance matrix. In the former case
strict and wide sense stationarities hold, whilst in the latter wide
sense stationarity certainly holds.

A standard time series modelling strategy is to assume the current
value of each variable Yjt (assumed stationary for the moment),
jE[l,KJ, to be affected by past values of itself and the past (and
possibly also the current) values of other variables that are
present, together with a random disturbance at each point in time.
That is,

YKt = DK-bKl,()Ylt-'..-bKK-l,OYK-1,t+bKl,IYl,t-l+···+bKK,lYK,t-l
+...+b~l ,pY1.t-p+...+bKK,pYK,t-p+EKt, (2.1)

where the terms Ejt, J=1, ...K, are assumed serially uncorrelated
white-noise disturbances with constant standard deviations u1
throughvK, respectively.

2For details see JUdie et al. (1985), Chapters 7 and 16, and Pindyck
&Rubltlfeld (1991), Chapters 15 and 16.
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These K equations constitute a (primitive) K-dimensional vector
autoregressive process of order p or VAR(p). The structure of the
system incorporates feedback since current values Y1t to YKt are
allowed to affect each other. For example, -b1K,0 is the effect of a
unit change in YKt on Y t t ' If b1K,O;l:O, then YKt has a
contemporaneous effect on Y1t' and EKt, being pure shocks in YKt,
has an indirect contemporaneous effect on Y 1t [see e.g. Enders
(1995), pp.294-7].

Due to the feedback effects in the system, (2.1) cannot be estimated
directly using OLS, since the regressors are correlated with the
error term. However, it is possible to transform the system into a
reduced form. We can write the system in the compact form as:

(2.2)

where

Yt = [ :~:]. ~ = [ r:]. Do = [
(Kxl) (Kxl)

b1K,0 ],

bK1,0 ... bKK-1,O 1
(KxK)

[
bll,! ... bUC,!

J. [~llli! = i = 1, ..., p, and !t ..
bKl,! ... bJ(J(,i EKt

(KxK) (Kxl)
-1Premultlplication by 1io allows us to obtain the equivalent vector

autoregressive (VAR)llodel in standard form. The current observation
of Y is a linear aggregation (or linear filter) of its own p ~ast-t .. .
values plus constant and random error terms:

It ~.~ + A1It-1 +
p

== &, + 1: Al~\-ii=1

+ A Y + !At-p-t-p

Vt. (2.3)

Here 61=D61Ii• 1-1, ...• P•. are KxK ·matrices of lag coefficients,
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~=~~IQ is a Kxl vector of deterministic terms relating to the mean
-1of the stochastic process, and Yt=~ ~t is assumed a Kxl Gaussian

vector white-noise process, denoted Yt-NID(O, ~u).3

To distinguish between the systems represented by (2.2) and (2.3),
the fIrst Is called a structural VAR (or a VAR in primitive form)

4and the second a VAR in standard form. Only the standard form VAR
5model can be estimated using OLS. To ensure that the same linear

generation law prevails even outside the sample period, we assume
that the model extends backwards and forwards in time, and use the
expression 'Vt' in the generating equations of the A weights.

It is useful to introduce the lag, or backshift, opera tor L such
n nthat L Yt-Yt-n (and L ~.~). Using this operator, Eq. (2.3) can be

rewritten as

vt , (2.4)

where the lag polynomial of order p

3The variance-covariance matrix (~u) can be written as:

tu=var(Yt)=E(YtYt)=E[(~l~t) (~l~t) ']=(~I)E(~t~t) (~1),
=(~l)diag(cr~, ...,cri)(~l), ,

whIch Is, in general, a nonsingular KxK matrix (with time-invariant
variance and covariance terms). Hence, we get

I =[ var~Ult).:" .COV(Ult;~t) Ja[ ~1! :"" ~lK J'
u. .. . .. 2

cov(ult'~t) ... var(~t) crKl ... crKK

where erj~.var (uJt) and erji=erIJ=cOV (uJt'utt); i,JE [1,K] .

4For slmpllci ty, when we say a 'VAR' process we mean a 'standard
VAR' in the following analysis.
SHowever. it ls essential to realize that, normally, it is
impossible to recover all of the information present in the
primi tlve system (rom the OLS estimates of (2.3). unless we are
willing to restrict appropriately the primitive system using block
exogeneUy restrictions. We return to these issues in the next
section.' [For further details, see Enders 099S), pp.294-305. ]
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A (L) = I - A L --p K-1

The focus of interest is often the parameter matrices A., i=l, ...,p,
-1

not C which is constant for each individual. Assuming ~=O with no
6loss in generality, we have

or

It follows that the stationary linear autoregressive process may be
thought of as the output Yt from some linear backward-looking filter
with transfer function given by the inverse of the autoregressive
operator Ap(L), when the input is vector white noise Yt. Also, the
transfer function of the linear fll ter relating Yt to Yt can be
viewed as a 'black box', whereby the nature of the input-output
relationships is estimated with no explicit support from theory.

2.2.1a Stationarity in VAR (p) Processes

Stationarity in VAR(p) processes is summarized in the following
7proposItion without proof.

PROPOSITION: A nece~sary and sufficient condition for Yt-VAR(p)
process to be stationary is that

det[~«()] = I~«() 1
= 11K -A1( ~ ... - ~(PI ¢ 0, 1(1 s 1. (2.5)

This condition provides a convenient means for checking stationarity
on a given set of observations in principle or testing a null

6Taklng ~·OIs equivalent to scaling Xt in terms of deviations about
1ts (constant) mean, given that the process is stationary. For
further details, see Appendix B.
7For a proof of the proposl tion see, among others, Enders (1995),
pp.412-8.
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hypothesis on the boundary between stationarity and nonstationarity
in practice. There are three possible cases to note about the
proposition.

Case (a): Suppose 1~(~)1;t:0, for 1~1~1, a stationary case with
condition (2.5) fulfilled. In this case the weights given to past
shocks will diminish with time; that is, the present is more
important than the past.

Case (b): Suppose lA (~)I=O, for 1~1=1, a unit root case with one or=p
more unit roots and all other roots outside the complex unit circle.
This is a specific class of nonstationary case with important
economic and statistical properties [see Fuller (1976), Chapter 8,
especially pp.366-82]. In this case the weights given to distant
shocks wi11 be as important as those given to more recent ones,
implying that the past and present are equally important.

Case (c): Suppose I~(~) 1=0, for 1~1<1, an explosive case with at
least one of the roots (strictly) inside the unit circle. In this
case the time-changing mean and variance of the process would drift
further and further away, at an exponential rate, from any fixed
reference point [Pindyck & Rubinfeld (1991), p.478], and weights
given to previous shocks will be greater than those given to current
ones. In other words, the past is more important than the present.
This is not often ch~racteristic of typical economic phenomena.

Thus, only the first two cases would seem to be of much practical
interest in economic ana.lysIs. Case (b) can often be transformed
into a stationary one, either by taking differences or by imposing
special restrictions called cointegration restrictions. These
processes will be discussed in detail in Chapters 4-6.

2.2.1b.i{old's'Decoilposlt1on Theorem

Wold's decoMposition theorem (Wold, 1938) states that any stationary
multlvathtestQ'~hast1C:Ptoce~s '(Xt) can be uniquely and additively
decollposed lnw two mutually orthogonal component subprocesses: a
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linearly deterministic (or nonstochastic) part (y;), and a purely
nondeterministic (or stochastic) part (y;). 8 By deterministic, we
mean that the subprocess can be predicted perfectly from its own
past alone, at any observation point. By nondeterministic, we mean
that the subprocess, containing no deterministic components, can be
represented as a linear combination of a sequence of uncorrelated or
orthogonalized innovations in the equations of the system. That is,

y = y. + yt = D +-t -t -t -t
c:c

L ~iYt-i = ~t + ~(L)Yt'i=O
(2.6)

where ~t is a Kxl vector of deterministic components, the ~i's are
KxK matrices of time-invariant parameters, ~O is an identity matrix
and the matrix polynomial, ~(L), is absolutely summable. The Kx l
error vector Yt is, as usual, a multivariate white-noise process.

Since it is assumed throughout that in a covariance stationary
process all parameters are time invariant, the deterministic term
~t=~y' bearing in mind that ~t*~ will imply time-dependent levels
or polynomial trends, and will violate one of the conditions for
second-order stationarity. We then neglect ~t=~y in the following
analysis for ease of notation (though when dealing with real data,
its presence can be important). At the same time, the matrix ~(L) in
the purely nondeterministic term can often be adequately

-1approximated by the product of two matrices, A pel) and Mq(L), each
involving only parsimonious lag polynotnials in the sense that p and
q are relatively small.

One is then led to cenatder probably the most important family of
linear schemes in time-series modelling

Ap ([)It .•••.••.tlq ([)Yt
p q

Xt -,E AtYt-i + llt + Etliyt-i,i-I i=I' . .'

8A fotmalcUscussionof this theorem may be found in, for example,
Btookwell &Davb~ Cl.l). Chapter 5.Granger & Newbold (1986),
Chapters'l. 2and 7,Harvey (1992), Chapters 2 and 8, and Liitkepohl
(1991a), Chapter 2.

or
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where the respective vector AR and MA operators are

and
M (L) = Ik + MIL + ... + M Lq.-q - -q

This process is called a K-dimensional vector mixed autoregressive-
moving average process of order (p, q) or VARMA(p, q). To guarantee
both stationarity and invertibility of this process we require that

- A If.PI - 0,-p
and

With these two separate conditions fulfilled there is a unique VARMA
representation of a vector stochastic process corresponding to the
autocorrelation structure.9 The estimation of a VARMA process
inevitably requires a nonlinear procedure owing chiefly to the
presence of the MA components, which complicate analysis somewhat.

Wold's decomposition theorem implies that every purely
nondeterministic, wide-sense stationary process can be written as an
infinite MA representation which, in general, can be inverted to
form a VAR representation of infinite order [see LUtkepohl (199Ia),
p.20]. The stationarity of an infinite VAR, however, requires that
the VAR weights die out gradually [see Brockwell & Davis (1991),
especially 5.7, for a further discussion]. Hence, it is usually the
case that the true generating mechanism of the process under
consideration can be adequately approximated by a finite order VAR
process with lag length truncated at some suitable p

p
Xt = 1: AiXt-1 + Yt'

1=1
(2.7)

or
(2.8)

9For a fuller dfscussfcn of the formalized cond1 tions of the
uniqueness of ARMA repres.nt.atlons along wi th various equivalent·
formula t1onsi~ see Judge et &1. (1985), pp.658-9.
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This process constitutes a valid basis for representing a broad
range of stationary processes within a single class of parsimonious

multivariate autoregressive processes [also see LUtkepohl (1991a),

p.20]. As such, it is a powerful result and represents an
10efficacious simplification in applied work.

In practice, the true DGPwill not be knownor be constant through
time and the hypothesized constant-parameter model will not coincide
with that DGP. However, for developing technical analyses, these
qui te restrictive assumptions are often required to ensure

11tractability. This leads naturally on to the question of
identification of a suitable parsimonious representation of the
actual generating mechanism, guided by both a pr lor 1 theory and
empirical observation.

2.2.2 Concept. of Exogenelty and causal1ty

Usually, in the stu4y of relationships between time series, it is
useful to invoke the concepts of exogeneity and Granger-causality to

make the analysis meaningful. These concepts, as characterized by

Engle et al. (1983), and Epgle and Hendry (1993), serve different

purposes. Exogeneity is defined in terms of a group of variables for

the purpose of conducting inference about parameters of interest,

while causal1 ty is introduced by reference to a series' importance
in prediction for the purpose of producing an operational testing
procedure.

lOIn theory, any stationary K-dimensional VAR(p) process can be
further stacked into a corresponding stationary Kp-dimensional
VAR(1)form after a suitable change of notation. Also, as a direct
consequence of weak stationari ty, the first two moments (means,
autccovaetaneee and .&utocotrelatlons) will, amongst other things,
exist and remain constant. For their derivations in a stationary
VAR(p)process see LUtkephol (1991a), Chapter 2.

l1Se~, for ,e"upJ~.Clements & Hendry (1992a), p.l, and Judge et al.
(1985), p.660 ..
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2.2.2a Weak and Strong Exogenelty

The classical dichotomy between endogenous variables (observable
outputs explained inside the system) and exogenous variables
(observable inputs determined outside the system), in such a way
that they are orthogonal to random disturbances (unobservable inputs
to the system under investigation), highlights the properties of
variables in a control context. It also provokes many interesting
and important problems in practical macroeconometrics. But the
decision as to which variables are to be treated as exogenous
depends on economic reasoning, not on the mathematical statement of
any conditional model. Essentially, the validity of simplifying
conditional forecasts from the joint distributions of observable
variables is explicitly based on the legitimacy of classifying the
variables into weakly and strongly exogenous groups [see Engle et
al. (1983), and Engle & Hendry (1993)].

To formalize, note that the joint distribution of the observed
variables Yt=(Ki, ~t)" conditional on the past, can always be
factorized as the conditional distribution of Kt given ~t times the
marginal distribution of ~t' If: (a) the parameters of these
conditional and marginal distributions are not subject to any
cross-restrictions; and (b) the parameters of interest can be
uniquely obtained from the corresponding parameters of the
conditional submodel alone (so that all the parameters of the'
marginal submodel are nuisance parameters), then ~t is weakly
exogenous and Xt is .endogenous. In this case, ~t may be thought of
as a prIori or fixed from outside the conditional model for purposes
of inference on a set of parameters of interest with no loss of
information. Hence, the stlpulation of weak exogeneity on the choice
of the parameters Is not, by Itself, directly testable.

Weak exogeneity permits efficient estimation of the parameters of
interest at the estimation stage and justifies ignoring the marginal
stochastic structure generating excluded known exogenous variables

i ;-. I ~., ; .':."

~'s. To validate projections of included, unknown endogenous
variables X's condit!6nal'on a unIdirectional flow of information
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from the future paths of ~'s simultaneously at the prediction stage,
the concept of strong exogenelty is required. This entails the
absence of lagged feedback from the ~'s on to the ~'s, in addition
to weak exogenei ty. The cut-off of the linear lagged feedbacks is
equivalent to the statement that ~t is not Granger-caused by ~t in
the system, and is directly testable from relevant sample
information. Such a condition for the strong exogenei ty of ~'s
guarantees that not only current but lagged values of ~t do not

12affect ~t.

For statistical testing purposes, it is customary to use the
structural VAR of the form (2.2) with a diagonal white-noise

2 2 P icovariance matrix te=diag(~1'··· '~K)' ~=O, and B (L)=Ho-r ~iL , but
-p i=1

~-IK' to represent the relationship between contemporaneous
endogenous and exogenous variables. Suppose now that a subset of
variables in the model is exogenously determined by a convincing
theory or prior information and that the K-dimensional vector Yt is
parti tioned accordingly into the M-dimensional endogenous and the
(K-M)-dimensional exogenous subvectors ~t and ~t' respectively. Then
the model can be partitioned conformably as follows

B (UYt-p -

Written without the lag operator, we have

_ r!ill,l !i12'l].[:t-I]_
~1.1 ~2,1 -t-l

- f1!1I. P 1112•P1[:t-p1 • r:.1t].
la21•P ~2,pl -t-pl ~2t

where !It and !2t are assumed to be white noise innovations.

12However. it is essential to realize that ~'s may not be exogenous
to X' s even though the X' s do not Granger-cause the ~.s, since
Granger noncausality (to be discussed below) does not rule out the
possibil1 ty ,at ~t having acontempotaneous effect on ~t. [See Enders
(1995). pp.315-6. a:ndGranaer (1969).]
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The assumption that the variables in Zt can be treated as valid
conditioning, or exogenous, variables implies that

!!21 0= 0;, for weak exogeneity, (2.9)
or

i = 0, ... , p , for strong exogeneity. (2.10)

For the time being, suppose the condition of strong exogenei ty
(!!21(L)=O) is met. The parsimonious system then becomes

Hll (L)~t + HI2(L)~t = ~lt

!!22(UZt = ~2t'

The block zero restrictions imposed fulfil the condition:

(X-M)M(1+1)~ ~ X(X-1), 13

where X>M~l. Given i=p(~I) for the null hypothesis of strong
exogene lty , the minimum number of exogenous variables (M) for the
structural X-dimensional VAR(p) process is chosen from:

X2(p-1 )+2K ::sM::s 21 [x+p+1
2X (p-1)+2K

p+l (2.11)

2.2.2b Granger and Instantaneous Causality

In order to examine the relationships between the causes (observed
inputs to a system) and the effects (observed outputs from a
system), an operational concept of causality has been developed in
the econometrics literature. This is that of Granger-causation
proposed by Granger (1969), which uses only observed variables for
statistical testing. The basic idea is that the cause cannot occur
after the effect (temporal priority assumption) and that the cause

"_ C,- .. : .. ',_ .. :., .. : _,'c" ,.,-,' ...

contains special inforJllaqon about the effect (information·

13Iness~nce. the constraints Imposed must be equal or greater than
[X(K"l'+~]-i 1(,(K+1)* i.I(I(-O. l.e. the difference between the
number of parameters,ll'ltheprlmi tive system and the number of
parameters recovered fro,the standard VAR estimation.

33



uniqueness assumption). Hence, the arrow of time can be used to help
provide a convenient asymmetry between cause and effect, whilst the
information in the former can be used to help improve the forecasts
of the latter. A useful introduction and discussion can be found in
Holland (1986). See also Sims (1982) and references therein.

Suppose that the K-dimensional, weakly stationary process Xt is
partitioned into M- and (K-M)-dimensional subprocesses Xt and Z as

- -t
before, and that the corresponding VAR of formula (2.7) is
partitioned accordingly, reflecting an interest in possible causal
links between ~ and Z. The operational statistical testing procedure
is then conducted as follows: (a) test whether or not unidirectional

14causality, in its limited sense, exists from one group of variables
Zt to the remaining variables ~t' without feedback, on the basis of
forecasting ability; and (b), if it does exist, then test whether
such causality, running from Zt to ~t' is 'big' or 'small' in the
light of the logarithmic ratios of conditional variances suggested
by Geweke (1982a).

(1) Tests of the existence of Granger-causality

Consider a [-dimensional, conformably part! tioned VAR(p) process
Xt=(Xi'~t)' with nonsingular innovation covariance matrix Iu'

(2.12)

It has bee~ shown that, if Xt embraces all relevant information at
time t , a necessary and sufficient condition for ~t being not.
Granger-causal for ~t is that Azl,lBO, i=l, ...,p, while a necessary
and suffiCient condition for there being no instantaneous causality

14For the feasibility of testing, Granger-causality test is cartied
out merely on the reaUzed history of the series, not on any
potentially relevant subjective factors.
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between Xt and Zt is that E[Y1tY2i]=0 (orthogonal innovations).15 As
a result, the existence of Granger-causality can be determined by
formal testing for the hypothesized linear restrictions on the VAR
coefficients with standard techniques.

(2) Measures of the strength of Granger-causality

After identifying the existence of Granger-causal! ty, it is worth
trying to determine the strength of Granger-causality in the
framework of stationary VAR(p) processes. With this objective in
mind, Geweke (1982a) has monotonically transformed the strength of
one-way/two-way causal! ty into the degree of the relevant
one-way/two-way feedback, and developed a technique for confirming
the extent of various kinds of feedback. In so doing, he achieved a
measure of linear interdependence that can be described as the sum
of the measures of the three forms of linear feedback, or causality.

Suppose that the focus of attention is on the individual components
of the K-dimensional, purely nondeterministic, stationary process
Xt=(Xi,Zi)', which can be reexpressed as Xt=[IM O]Xt=FYt and
Zt=[O IK-JXt=fXt, where E and fare MxK and (K-M)xK matrices,
respecti vely. Then we have E[Xt]=fPy, E [Zt]=fJ..LY' r x (s)=Er yE' and
rz(s)=ery(s)f'. Henee, Xt and ~t are both stationary, purely
nondeterministic processes. Application of Wold's theorem implies
that, under quite general conditions, Xt, Xt and Zt each possess
finite order VAR representations [see Geweke (1982a), p.305, and
LUtkepohl (1991a), p.20, for details]. We have

m
It ·i~l~liXt-i.+ ~lt' (2.13)

or
(2.14)

This s~stem can be treated
{Xt_sls>o}, and of ~t on

as the linear projections of Xt on
{~t_sls>O}, within which the two

15A di.c~ssion'ot these conditions can be found in LUtkepohl (1991a),
pp.35-41.
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subprocesses ~t and Zt are each made up of two main orthogonal
parts: one is its own past, the other being the error vector v or

-It
Y2t' Although these errors are each serially uncorrelated, they may
be correlated with each other contemporaneously and at various leads
or lags.

Suppose now that the focus of attention is shifted to the
corresponding Joint autoregressive representation (2.12), which can
be rewritten as

p p
X = r A X + r A12 i~t-i + Y1t'-t -11 i-t-ii=l ' i=l '

and pp~ - r A X + r A22 i~t-i + Y2t,t - -21 i-t-ii=l ' i=l '

(2.15 )

(2.16)

where (Y1tY2t)' is a white noise process with zero-mean vector and
variance-covariance matrix

This system can be viewed as the linear projections of ~t and Zt on
the same information set {~t_sls>O}U{Zt_sls>O}, within which the two
component subsystems are mutually statistically dependent with the
error vectors Ylt an4 Yzt' due to the appearance of the lagged terms
Z in (2.15) and Xt in (2.16), s>O, each serially uncorrelated-t-s - -s
but correlated contemporaneously with one another.

If the system (2.15)-(2.16) Is premultiplied by the matrix

(2.17)

which 'dlagonallzes the above white-noise variance-covariance matrix
into aKxKblock~laaonal matrix
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then we have another system, isomorphic to (2.15)-(2.16) :
p p

~t =.L k2i~t-i + L Q2i~t-i + !f1t, (2.18)
1=1 i=O

and p p
~t = L g2i~t-i + L E2i~t-i + !f2t· (2.19)

i=O i=l

This system can be regarded as the linear projections of ~t on
{~t_sls>O}U{~t_sls~O}, and of ~t on {~t_sls~O}U{~t_sls>O}, within
which the two component subsystems are mutually statistically
independent with the error vectors ~1 t (=Ylt-I:12I:;~Y2t) and
~2t(=Y2t-I:12I:~~Y1t) each serially uncorrelated and also uncorrelated
with each other.

Building upon this canonical framework, Geweke defines the linear
feedback from ~ to ~ as FZ~X, the linear feedback from ~ to ~ as
FX Z' the instantaneous linear feedback between X and Z as F and~ - - X·Z'
the linear dependence between ~ and ~ as Fx,z. He concentrates on
the nature of the residual variances. That is to say, on

FZ~X = In[II:11/1I:111],

FX~ = In[II21/II221],

FX.Z = In[II:I111I:221/IIul].
and

The implicit motivations involved in the various definitions are:
(1) The alternative feedback measures are zero only when the
relevant causal ordering Is absent; (2) they are all scale invariant
and thus remain unchanged under non-singular. scale-preserving
linear transformations; and (3) an improvement with the measures is
that FZ~X ma~ be considered a monotonic transformation of the
strength of causality. rather than the employment of a less
informative all-or-nothing testing procedure [see Bladen-Hovel! &

Zhang (1991 Lp.l0].
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The linkage between these measures is given below:

Thus the measure of a complete two-sided linear dependence (among
stationary series) is the sum of the measures of one-sided linear
feedback from the first subseries to the second, and vice versa, on
top of an additive category of the nonzero measure of instantaneous
linear feedback [see Geweke (1982a), pp.306-7].

§2.3 Critique of Exoaeneity and Causality

Exogeneity and causality are regularly employed in the construction
of empirical macroeconometric models, but they are still beset with
various controversies. Some remarks concerning the two notions may
be of importance.

Firstly, as regards exogeneity, the basic issue in the debate over
identification restrictions in macroeconometric models eventually
boils down to the validity of the dichotomy between endogenous and
exogenous variables on a priori grounds. Whether it is possible to
test the exogeneity assertions about any contemporaneous variables
is to a great extent bound up with what is actually meant by
exogeneity. Ideally, the only exogenous, or policy, variables would
be those for which values can be accepted as extraneous to the
system or for which values can be controlled with complete
certainty. Nevertheless, the concept of' statistical exogenetty'
defined by Engle et a.l. (1983) is not a property of variables per

se, but rather a, property that variables might have for a set of
parameterstbat .are of parUcular interest to an investigator.
Indeed •.the lillltation of the role of theory in providing acceptable
restrictions necessary for identification, and the realization of
the form of pol1cytbrough inspecting signals generated from the'
operation of· the', real economy will undoubtedly lead to the
conclusion that very few variables are truly exogenous without some
compromise.
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Secondly, as regards causality, the fundamental objection against
the concept of Granger-causality concentrates on the credibility of
the definition in characterizing the actual ongoings in the system
on a forecasting basis [Judge et al. (1985), p.661]. Strictly
speaking, the Granger-Geweke tests of the causal chains between the
variables involved are tests of predictability or informativeness
rather than of causality in an acceptable philosophical sense. More
recent contributions in the philosophy of science covering both
formal and empirical views of causality can be found in Humphreys
(ed ) (1994).

However, for further interpreting the absence of causal linkages in
the sense that variables in one subvector should have no marked
quanti tat!ve impact on another, Granger-noncausal ity is probably
inadequate. Note that if (2.12) with maintained zero restrictions
(A21,iEO, i=1, ...,p) is premultiplied by the matrix (2.17), then we
can derive another quite different physical representation of the
same process, in which variations in ~t may significantly affect ~t

-1through the term with coefficient -t12t11 in the secondK-M
equations. Therefore, the lack of a Granger-causal relationship, in
itself, cannot necessarily be represented as lack of a cause-and-
effect relationship without certain simplifications.

Moreover, the crU:.ical dependence of the stability of a
macroeconomic system on the lag between cause and effect means that
'true' instantaneoUs causation will never occur between some pairs
of stocks (measured through Systematic sampling at discrete time
points) and flows (Measured through aggregation over equal time
intervals>, however short the frequency of observation of the data.
Then any observed or apparent instantaneous causality can be
explained by either missing common causes, i.e. Jointly unobservable
causal variables that cause both or all the variables of interest,
or highly temporal aggregation, 1.e. improper use of aggregated data
in soma larger time intervals than actual causal lags [Granger
(1988).Pp. Z05~8)..
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Such temporal aggregation may weaken or even disrupt the plausible
causal connectIons. This is due to the loss of information, or the
recording of information at a time other than that of occurrence. To
be operational and for use In a forecasting context, a less than
usual demanding definition of prima facie causality has to be
implicitly used. The reasons for this are: the reduction of the
information set from all relevant information to past and present
values of the process under consideration; the replacement of
optimal forecasts by optimal linear forecasts; and the usual choice
of minimum forecast mean squared error (MSE) as a measure for
forecast precision [ Judge et al. (1985), pp.668-9]. However, it is
reasonable to suggest that, although Granger causal testing may be a
matter of dIspute, it is still valuable in practice. At the very
least, causality analyses can be used for promoting understanding of
past data and for forecasting as yet unobserved data.

The critique of
assumptions from
modelling brings

the validity of often untested exogenei ty
a priori theory in current macroeconometric
us back to the sphere of a fairly loose,

unrestricted VAR (UVAR) approach, where all the variables involved
are Jointly endogenous with merely minimal prior beliefs
incorporated.

The UVAR approach was championed by Sims (1980a, 1982) as an
alternative to conventional large-scale macroeconometric models, for
studying the dynamic interrelationships among important aggregates,
and also for tackling the problem of doubtful a priori zero
restrictions. Sims doubted the wisdom of developing sophisticated
structural macroeconometric models preoccupied with simultaneity as
well as possibly 'incredible' overidentifying restrictions. His
methodology entails .nothing more than selecting K (the number of
variables in the UVAR) and p (the maximum lag in each equation)
withbut making reference to any distinction of endogeneity and
exogenelty. He did so because, in practice, many complicated
relationships are simply Poorly understood and none of the
non-modelled· variables are truly exogenous as many applications
(unreaiIst1cally) as~umed, although statements like this are still
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hotly debated [see Hafer & Sheehan (1989)1. As argued in Sims
(1980a, pp.5-6):

[Sometimes variables are] treated as exogenous
only because seriously explaining them would
require an extensive modelling effort in areas
away from the main interests of the
model-builders.

Whilst statistically well-specified UVAR models have acquired a good
track record for producing unconditional forecasts [Bladen-Hovell &
Zhang (1991), p.4], the main practical disadvantage stems from the
common problem of overfitting or overparameterization. The
appearance of overparameterization with too many free insignificant
coefficients tends to make either large UVAR out-of-sample forecasts
based on these point estimates very inaccurate and volatile or small
ones overly sensitive to variations in variable choice.

To alleviate overparameterization and similar problems, Lit terman
(1980, 1986a) and others developed a technique called the restricted
or Bayesian VAR (BVAR) method. Their aim was to incorporate prior
and sample information through mixed estimation, and to reduce the
influence of the data on the coefficients, rather than reduce ·the
number of coefficients directly. The method can also provide useful
information on the dynamlc properties of the series and improve
forecast performance over other types of analyses. This is taken up
in what follows.

§2.4 Conclusion

In thls chapter, both structural and standard VAR processes and
their statistical properties have been reviewed. The concepts of
weak and strong exogeneity as well as the testing and measurement of
Granger causality have also been introduced and analysed. Throughout
the chapter, it is assumed that all the series are weakly
stationary, so that standard estimation methods and standard
asymptotletheoryeOuld be employed. All of these pave the way for
the research that follows.
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CHAPTER 3

STATIONARY BAYESIAN VECTOR AUTOREGRESSIONS (BVARs)
WITH STOCHASTIC PRIOR RESTRICTIONS

§3.1 Introduction

Statistical forecasting procedures make considerable use of prior
beliefs in formulating models through either a restricted parameter
space or augmented sample information [see, inter alia, Fomby et al.

(1984), Chapter 6]. However, forecasting methods differ with regard
to the main sources of priors, how informative priors about the
future economy are to be represented, and how much weight is placed
on them. The classical approach tends to utilize inflexible or
'hard' shape priors derived mainly from economic theory to increase
degrees of freedom by systematically reducing the parameter space,
or the number of free parameters, regardless of historical evidence.
The Bayesian procedure, in contrast, incorporates flexible priors
obtained mainly from statistical regularities rather than economic
theory to increase degrees of freedom by effectively supplementing
the sample information. See, for details, Doan (1996, Chapter 8) and
Shoesmlth (1990, p.261). At the same time, the Bayesian procedure
permits the data to modify these prior beliefs if the evidence about
coefficients is significant .

In this chapter, a systematic procedure for determining and
implementingBVAR forecasting models will be expounded. In general,
the construction of an appropriate BVAR forecasting model can be a
rather foraidable practical problem. It is hoped that the iteratlve
specification search process presented here will reduce this
complication and make the model more accessible for economic and
business forecasting.
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§3.2 Specification of a Finite 'Closed' BVAR Model

Throughout the process of macroeconometric modelling, an essential
step is the dynamic specification of an adequate model or models to
be estimated. See Harvey (1992, p.11) for relevant discussion. In
building a Bayesian VAR forecasting model, one must first construct
a UVAR model that is then subject to prior restrictions. Such
restrictions can be expressed in the form of subjective
probabilities about which one of the possible models will forecast
best and should be determined at the second stage in a stepwise
"VAR-BVAR" specification search procedure. The preliminary set of
specification issues associated with the VAR part of the model are
conceptually distinct from those associated with its Bayesian part
[cf. Spencer (1993), pp.409-15].

To clarify this standard BVAR specification procedure analytically,
it may be instructive to begin with the most basic form of a
K-dimensional stationary Gaussian Yt-VAR(p) process given in (2.3);1
that is,

The available preforecast multiple time series of the Y variables
are now divided into p given presample (Y-P+1"" ,yo) and T fitted
sample (rl•...•rT) values. Asymptotically, as T goes to infinity,
the effect of the Initial, or presample, values vanishes.

Then a typical scalarequat1onof the linear dynamic system (2.3) is

Yjt = Cj + (AJ1,lYl.t-1+ Aj1,2Y1,t-2+ ... + Aj1'PY1,t-~ + ...

+ (AJK•1YK,t-1+ AjK,2VK,t-2+ ... + AjK,pYK,t-p) + Ujt
p p

= Cj + L Aj 1 iVt·"t"1 + ... + L AjK iYK t-i + ujt .i=1" i=1" ,
1 ..., ,/.'.'Once aga1n, we sUck to the Gaussian case, which will make the
arguments much simpler.
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K P
=C'+L LA .V

J n=1i=1 In,l n,t-i
2uJt~NID(O'~JJ); j = 1, ... , K; t = 1, ... , T. (3.1)

In Eq. (3.1), J indexes the equation number, n indexes the variable
number, and i indexes the lag length. Within this framework, there
are a total of 1+Kp free coefficients in each equation and a total

2of K+K p free coefficients in the whole system, excluding the
parameters of the covariance matrix of the disturbance term.

For T observations, Eq. (3.1) can be written in the compact form:

j = 1, ... , K, (3.2)

where Yj=(VJ1, ...,VjT)' is a (Tx1) random vector of observations on
the given variable specific to the j-th equation;

, a (Tx(1+Kp)) known common

V1,t-p+1

YK,t-p+l
matrix for each equation;

f!J'"(cJ'Aj1•1'...,AJ1•p' ..•,AJK, 1'...,AJK.p) , a ((1+Kp )x1)
unknown parameter vector to be estimated; and

YJ=(uJ1 •... ,UjT)' a~TxIJ unobservable disturbance vector with
the properties y{'NID(O'~JjIT).

Or more compactly across equations J=l, ...,K

(3.3)

where y=(V 1; V ... '\~.l•.T' ...~YK,-l' ... , V". r) , ;
(K.Txl)

2The e slgn ~enotes the~r9necker matrix product. For example, a
typical block ~lement ?f AeB 1~ Aij·B.
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[

1 Yl 0
X=. '

i Y1,T-l Y1•T-P ... YK•T-1
(TxO+Kp»

~=(~i'· .. '~K)'

=(CI ,AIl•l,·· .,AIl,p'·· .,AIK,I'·· .,A1K,p'
... ,

CK'~l.I'··· '~l,p··· ·'~,l···· '~.p)';
(K(1+Kp)xl )

y=(ul.l' ...•ul.T •...•~,I •...•~.T)·; and
(KTxl)

Y~NID(o'~ueIT)' with the white noise covariance matrix
(KTxKT)

(

0' 1~... 0'lK]
~ E : '.: assumed
u . .. 2

O'Kl' • 'O'KK

known for the moment.

The objective is to construct a suitable BVAR forecasting model with
stochastic prior restrictions concerning the VAR coefficients. For
this. the two distinct VAR and Bayesian parts of the model must be
carefully specified. Construction of an unrestricted VAR usually
involves a set of specification Issues associated with choices of
the set of variables in the VAR and the length of the lag in each
equation. The standard Bayesian informative priors. however.
explicitly throw light on each variable's own recent lags together
with only the most recent lags of other variables in the present
confines of vector autoregressions. The Bayesian VAR therefore
addresses an additional set of specification issues associated with
choices of intercept term and prior structure of the system in a
Bayesian mean-variance framework. These specification issues are now
discussed.

3.2.1 Deter.ination of VAR Variable. and Las Length
,;

In the selection of the number of variables as well as the number of
lags used wl-th theBe variables,· a major goal to achieve Is
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parsimony. Whether a subset of lagged explanatory regressors should
be introduced into, or eliminated from, a given model depends in
practice largely upon whether or not it has marked effects on the
prediction of a variable being forecast. If the subset contributes
little to prediction, it may be a good candidate for omission. See,
amongst others, Hafer and Sheehan (1989) or Sims (1980a) for an
interesting discussion.

3.2.1a Determination of VAR Variables

Usually, the variable selection decision is partly determined by
which variables the modeller wishes to forecast, and partly guided
by some loose notions concerning which currently known aggregates
are potentially related to the forecasted variables and might
therefore be useful in forecasting them. However, in view of the
limitation in the number of observations and a tradeoff between the
inclusion of additional predictors and the concomitant imprecision
of statistical estimation, it may be necessary to decide which
variables to include and which to exclude on grounds of parsimony.
This idea does not imply that the economy concerned is a simple
process, merely that relatively simple models can provide good
approximations to the actual DGP, and that there are groups of
highly correlated variables of which these are representatives [eoen
et al. (1969), p.136].

Generally, BVAR modellers can be thought of as having priors in
choosing a group of candidate variables for inclusion in an initial
model specIfication. Data may then be used subsequently to pick the
final set of variables, but only from among a list of prime
candidates previously picked by the modellers. The practical
problems of the variable selection associated with the BVAR model
configuration for the major European economies will be further
discussed in Cha.pter6.

3.2.1b Selection of the VAR Order

. ,
In a VAR, long lag lengths quickly consume degrees of freedom. If



lag length p is too small the model can be seriously misspecified,
whilst if p is too large degrees of freedom are wasted [see Enders
(1995), p.313]. In addition to allowing the variables in the system
to trace out a dynamic sequence over time, appropriate lag-length
selection can help to conserve degrees of freedom by reducing the
dimensionality of the parameter space. However, the optimum lag
truncation parameter p is never known a priori and must be
empirically determined at the specification stage.

Hafer and Sheehan (1989) found that there often exists a superiority
of shorter-lagged models over longer-lagged alternatives in
forecasting accuracy. A suitable sequential testing procedure to
determine the smallest possible lag length is the log-likelihood
ratio test suggested and used by Sims (1980a).

The LR statistic recommended for testing a truncated VAR(l) against
a full VAR(m), l<m, is

A A

LROI m) ;II rr-e lln(l1:u0) III I:u(m) I) .

A

Here 1: (.) is the ML estimator of the variance/covariance matrix ofu
residuals obtained by LS estimation either from the restricted
VAR(I) or from the unrestricted VAR(m). The multiplier correction c
is used to improve the small sample properties of the statistic, .and
is equal to the number of parameters estimated in each of the
unrestricted equations. See, for example, Enders (1995), pp.313-S.

2The LR statistic is asymptotically distributed as a chi-square (~ )
with K2(m-l) degrees of freedom. In the sequence of testing

. A1=m-1, ...,1 against the maximum m, the appropriate estimate p(LR) of
p is chosen to be 1 when VAR(l-ll is first rejected, i.e. the
outcome of LR(l-tim) is statistically significant, at some
predetermined significance level. Any shortening of the lag length
will also produce a significant LR statistic.

It is important to keep in mind that the order chosen in this scheme
may not be consistent with the specific purpose of the model
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constructed. In some cases, the object is not to obtain precise

estimates of these orders, but rather to choose a model

specification that is expected to generate accurate forecasts. Other

selection criteria include: Akaike's (1969, 1971) final prediction

error (FPE) criterion; Akaike's (1973, 1974) information criterion

(AIC); Schwarz's (1978) Bayesian information criterion (BIC); and

Hannan & Quinn's (1979) (HQ) criterion. They are given in Table 3.1.

Table 3.1: A comparison of four chosen criteria for
estimating p

General "estimation Choose"the optimal estimate p such that
rule F(p) = min{F(I)ll = 0,1, ... ,m}

Criteria Objective function Comparison

FPE FPE(I)=( T+Kl+1 )I(I~ (1)1 " "p(FPE)=p(AIC) for all T'T-I(I-l u ,

AIC AIC(l)=lnl~uO)I+ ~ 1(21 ~(AIC)~~(BIC) if T~8;

BIC BICO )=lnl~u 0) 1+ l~T 1(21 ~(AIC)~~(HQ) if T~16;
,.,

2lninT 1(21 ~(HQ)~~(BIC)HO HO(l)~lnl tu Cl) 1+ for all T.T

Note: further references on the above criteria can be found in
Judqe et a1. (1985) and Lutkepohl (1991a).

The asymptotically equivalent FPE and AIC criteria may have' the

advantage. that, asymptotically. the chosen model is never too small,

but they have to be J~dged by a trade-off between decreased bias and

increased variance.ln the coefficient estimates and tend to make the

resul ting estimates inefficient .. The consistent BIC and HQ criteria

place relatively JDo~e.welght on efficiency and choose the correct

order, 1£ it exIsts, asymptotically more often than the former· two

criteria, but theY tenc:i tounderfit the chosen model in small or

moderate samples. In this study, the likelihood ratio (LR) test

statistic.modlfled by SIms. (19!J0a) is employed to select lag length.

The LR test1ng.procedures can easily be carried out using the RATS

softwar~ package.

Litterman (1986a) argues that statistical formulae like those above
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are inappropriate for tailoring lag lengths in a VAR model. The more
important and appropriate question is, perhaps, how to define an
ideal weighted lag scheme so as to express more realistically our
true state of knowledge and so to ensure the correct parameter space
of our model. Litterman asserts (1986a, p.27):

What such formulas ignore is that the reason one
wants to choose a lag length in the first place
is because one has prior information that more
recent values of the variable in question have
more information than now distant values.

Relying primarily on this idea, he consequently proposes one typical
BVAR model with a suitable downweighting lag prior on the
coefficients. The proposition reflects the fact that coefficients on
longer lags are more likely to be close to zero, i.e. that proper
lag length truncation, with declining weights, is desirable.
Although this alternative approach does not alter the lag lengths
per se, it does influence the weights placed on lags by way of the
lag decay imposed by the modelbul1der's prior information.

Once a vector content and its lag length have been specified for a
pth-order, K-variable VAR, the next step is to formulate a
multivariate stochastic prior structure for the system.

3.2.2 Determination of Constant Term and Prior Structure

The virtue of Bayesian analysis is that uncertainty about the values
of unknown parameters in the model can be formalized in terms of
prior distributions which can be defined by certain prior
parameters. Moreover, uncertainty about the values of prior
parameters can be addressed by assigning to these parameters a
further layer of pr-Ier- distributions. These can be expressed. via

, 3some scale factors called prior hyperparameters.

A practical advantage of an explicitly Bayesian approach is that it

~For some work in this area see Goel & DeGroot (1981), Judge et al.
(1985) , Gbapter 4, Lindley & Smith (1972), Smi th (1980 ), Trader
(1983), and Trivedi (1980)
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provides forecasters with a formal framework for reducing the amount
of undocumented or unreproducible 'art' that creeps into a model's
construction. It enables them to represent realistically their
knowledge, and to effectively combine those beliefs with the
historical record.

3.2.2a Treatment of the Constant Terms

In practice, with one exception, the standard Bayesian statistical
procedure of specifying the same informative, but reasonably
diffuse, prior for the parameters of interest, contained in a subset
of the parameter vector ~j in (3.2) proceeds in two main stages. The
first is to determine the key features of the prior coefficient
probabilities via the best guesses and restrictions that group the
own-lag and cross-lag prior standard deviations and govern the
relative sizes of the standard deviations within each group. The
second is to select, for each of the groups, a suitable value of a
hyperparameter that converts the relative sizes of the prior
standard deviations to their absolute magnitudes. The only exception
to this two-stage procedure concerns an improper flat-prior, by
convention, on the intercept in each equation, reflecting our Lack

of information about its prior distribution.

Our lack of knowledge about prior mean and variance of an interqept
implies that a.ll possible values of the constant term have to be
treated as (almost) equally likely and to be determined by the data
alone. In this sense, a nonzero constant may be either included·
unrestrictedly 1n.811 of the equations, as in (3.1), or use made of
a mean-corrected model. Allowing for the removal of the constant
term indicates that no prior information is available for the sa~ple
mean and that a Bayesian prior can be placed symmetrically on the
mean-adjusted process.

3.2.2b Refinement of the Joint Priors

Intuitively, prior information is some stock of knowledge, suggested
by past experience, which is relevant to some objective of the
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modeller. Since the forecasting equations constructed here are
dynamic reduced forms, not structural relations, the prior
information needed for the VAR coefficients is not derived from
theoretical arguments, but from statistical considerations.
Additionally, since we do have to assume a specific form for the
Joint probability distribution, a multivariate normal distribution
is almost invariably the form that is chosen for the parameters.

(1) The general multivariate normal priors

In general, a vector of the unknown VAH coefficients ~ is jointly. -
normally distributed with prior mean vector ~ and covariance matrix
y.~ if

However, when a noninformative prior is used on the constant terms
it may well be preferable to rewrite the joint stochastic prior
distribution for each equation of the system in the similar linear
form:

j = 1, ... , K. (3.5)

Here, LJ and BJ are
(l+Kp)x(l+Kp) diagonal

respectively a (l+Kp)xl vector and
matrix of known elements, implying

a

a
multivariate normal prior distribution on a subvector of ~j centred
around the chosen values. The vector Yj is, with respect to ~j' a
(l+Kp)xl vector of random errors, assumed to be distributed
independently of the YJ~components with YJ~NID(O,I1+KP)'

A practical advantage of this form is that, in terms of (3.5),. an
approximate multivariate normal prior can be easily imposed on the
parameters of interest (with the constant term left unrestricted).
In order to make this kind of prior information useful for the

A .

parameter estimates f!J of the j-th equation, ~J and BJ must be
further specified within a 'formal Bayesian mean-variance framework.
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(2) The Minnesota or Litterman priors

When working with a large BVAR forecasting model with numerous
coefficients, it is impractical to deliberate about the prior
distribution for each of the coefficients individually. In this
respect, a simple but useful approach is to use the Minnesota or
Litterman prior outlined by Todd (1984). This will specify a full
set of prior distributions routinely once the modeller has chosen
some of their key features. One feature of this prior is that the
meaning of, and linkage between, the values of different
coefficients are rather vague or diffuse. Hence, the prior
distributions for all stochastic coefficients are assumed to be
independent normal so that they can be fully described by their
first two moments. The prior covariances are always set to be zero.
Moreover, the Minnesota prior allows us to indicate the prior means
and variances for the parameters, except the constant term, with
reference to a set of prior statistical considerations. Scope
remains available to adjust settings for the hyperparameters of ·the
priors in light of the evidence.

(a) The prior mean

With the Minnesota prior, it Is taken that the intertemporal
dependencies of the modelled variables are likely to be weak ·and
that most of the variation in a given variable is accounted for by
its own past. Accordingly, by default, the 'guesstimated' means of
the prior distributions for all coefficients of a stationary VAR are
usually set to be zero with nonzero prior variances. In other words,
.Lj-O and, Bj-a, j-l,.;.,K, If .these guesses were right, each
normalized variable would behave very much like a white noise
process, around a constant term, in the stationary case.

Given the me~ns of zero, all the modeller would need to do for the
rest of the pri!,r fs to ' characterise his degree of confidence in
terms of '.the prIor standard .deviations, with saalIer values
reflecting greatet'confidence in the chosen means.
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(b) The prior standard deviation

In the Minnesota prior, it is also believed that the prior standard
deviation decreases with increasing lag length. The less recent the
value of a variable, the less important it is for forecasting and
the greater is the modeller's confidence in the prior value of its
coefficient. Moreover, regardless of the different scales of the

data series, the prior standard deviations on lag coefficients of
the own variable are relatively larger than the corresponding ones
of other variables in any given equation.

A two-stage procedure will be adopted in specifying prior standard
deviations. The first is to define K non-overlapping groups, for
own-lag and all other K-l sets of cross-lag coefficients, in each
equation to determine, within each group, how the coefficients'
standard deviations are related to each other. The second is to
assign a possible setting of a limited number of hyperparameters,
one for each group, to the various groups of coefficients to
complete the determination of the prior standard deviations and thus
of the prior variances.

Relatlve standard deviatlons

The initial relativ.e levels of the standard deviations of the

coefficients in the J-th equation of the system can be specified
according to two factors. The first factor comes from a lag
tightness function g(1)=1/l,4 which implies that as lag length

increases, the modeller becomes increaslngly confldent that
coefficients on longer lags will be close to zero, while

coefficients on shorter' ..lagsaremore likely to be nonzero. All the
relative weighting patterns imposed upon the prior standard

4 -rTwotypes .of lag {uncUonssuggest themselves: harmonic (gO)=1 •
r~)and leometric dl(U·r~-l, 0$7:$1). Lltterman (1986a) advises the'
use ot: the harmonic '",lthtlle decay pa·rameter r=1. 0) rather than the
geometric function,sinc,e .U~e. latter seems to. get too tight too
fast. For a. more detallecfdlscussion See Spencer (1993), p.413.



deviations of the coefficients of either own or cross lag variables
in each of K groups are of the same harmonic decreasing form. The
second factor results from an own-versus-cross standard deviation
ratio ~j/~k' which recognizes that the variables in the model are
likely to be of different magnitudes, and thus should be adjusted by
the ratio to make units comparable. The original relative sizes of
overall standard deviations are now replaced by the relative sizes

5of error standard deviations. This is due to the central assumption
that the scale of the response of one variable to another is mainly
captured by the unexpected movements contained in the error standard
deviations [see LUtkepohl (1991a), pp.209-11].

Once this has been done, it simply remains to pick, for each group
of coefficients, just one free hyperparameter that converts all the
weights attached to coefficients in the group from relative into
absolute prior standard deviations.

Absolute standard deviations

The final absolute levels of the prior standard deviations of .the
coefficients in the J-th equation of the system can also be
specified by two factors. One comes from the overall tightness, or
weight, parameter vJ• which determines the fundamental prior
standard deviation on the first own lag. The other results from the
relative tightness function f(J.k), which controls the weight on all
other variables relative to that on the own variable in each
equation.

Weight assignment an,d adjustment in the scalar vj as well as the'
matrix E={f{J.k)} is critical in the specification of prior
structure. .allowiNJsome elasticity. so that the setting of the
hyperparameters could be r,yised up during the estimation stage. The
5 ...Here. etj and C1'kare the standard deviations of the errors in an
unrestricted univariate autoregression on equations j and k,
respectively. and the ratios of C1'j over ~k' k;ej. are each
independent of l:~g length but specif1c to the given cross variable
k.
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Minnesota prior, however, takes advantage of this feature and thus
simplifies the standard Bayesian approach by specifying a particular
range of values for the relatively few free hyperparameters. All
values within the range are treated as equally likely but all values
outside it highly unlikely. There are two basic types of priors
available: those that correspond to symmetric E and general E.

For a small system with, say, five or fewer equations, a tighter
symmetric prior is often preferred [see Doan (1996), p.8-19], which
gives the same one relative weight (we[O,11) applied to all the
off-diagonal variables in the system:

__ { w1.0f(j, k )
if J=k

(3.6)
if J-k.

Hence

(

1.0

vE = v w

(KxK) (KxK)

where each element in the rows corresponds to the individual
hyperparameter for each group in each equation. Choosing w between 0
and 1 means that, irrespective of differences in scales, other
variables would have a smaller prior standard deviation than that of
the own variable in relative terms, whereas specifying W=O implies
that the vector system degenerates to a set of univariate
autoregressions. In this case, there are only (the same) two free
hyperparameters in every equation. The RATS program default for this
prior is a simple combination 'of v=O.15 and w=O.5.

Fora large system with sfx or more equations, a looser general
prior Is 'likely to be desIred. which puts moderate weight, on
important variables and10w weight on less important ones in the
system:

lfJ=k

cif: J~k.
(3.7)
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Hence

vl 0 1.0 wl2 wlK v
1 v1w12 v1wlK

~E= v. wj1 ·1.0 wJK = VJwjl v. VjWjKJ J

0 vK wK1 wK,K-11. 0 vKwK1 vKwK,K-l vK
(KxK) (KxK) (KxK)

where each element in the rows refers to the particular
hyperparameter for each group in each equation. Setting vJ and wjk
too large, such as vj=3 and Wjk=1, will effectively eliminate the
influence of the prior, while setting Vj or wjK too small will
either force the own lags too close to the prior mean or eliminate
the vector part by cutting out too much interaction.6 In this case,
there is a total of K free hyperparameters in every equation and a
total of KxK free hyperparameters in the entire system. A UVAR(K,p)
model with K(Kp+l) free parameters is therefore reduced to a more
informative BVAR(v, w) model with at most K(K+l) free parameters
through the imposition of prior restrictions on the form of the lag
coefficients.

In searching for the most appropriate hyperparameter values within a
given range, 0<vjS3 and OSWJKS1, say, it may be preferable first to
choose a few values for these standard prior hyperparameters and
then compare the accuracy of the simulated 'out-of-sample' forecasts
from the corresponding BVAR models. This can be.done either formally
by examining a single value formed by a weighted average of Theil's
U values, or informally by studying changing patterns in the values
thereof. In practice, the method used is informal. Various possible
weights for thos~ variables which are believed to be important In

predicting the desired variable will be tried, whilst others
believed to be less ...1mportant have weights that are kept small and
constant. We select as the best setting of the hyperparameters, .the
one that.leacis to ~helow~~~alues of the Theil U statistics.

6Here•• t~evalue of Ols,a loglcaJ lower bound for both vJ and wjk:
the value of 3 arid 1··ate a generous upper bound for vJ and wJk'
respectively [seeSpenc~f (1993), pp.414-8].
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(c) The combined effect

The general standard deviation function, s(j,k,ll, for the
coefficient AJk,l' the Jk-th element of Al in the system, is,
therefore, specified as

In matrix form, we have

if J=k
(3.8)

if j~k.

VKwK,K-1~K/I~K-1 VK/I
(KxK)

We now reintroduce the constant terms as the symmetric prior for the
other coefficients have been discussed. The typical j-th equation
(3.1) with the final prior standard deviations imposed upon its
K-group coefficients can be written as

Yjt = Cj + Aj1,tY1,t-1 +
(~) (VjWj1~yI~1)

+ AJJ;tYJ,t-l +
CVj)

+ AjK,1YK,t-1 +

Cv jW JKO'/(fK)
OSWjkS1; J,k = I,

+ A Y +Jl,p 1,t-p
(VjWjl~j/~l)

+ AjJ,pYj,t-p +
(vip)

+ AjK,pYK,t-p + UJt;
(VjWjK~j/~K)

... , K; t = 1, ... , T, (3.9)

where the prIor standard deviations are given in parentheses and an
infinite standard deviation is used for the constant term.
reflectli\& the, lacko~ ,prior InformatIon on that coefficIent. The
corresponding prior covarlance,llatrix YJ for the parameter vector of
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interest ~j can be represented as a (l+Kp)x(l+Kp) diagonal matrix

Yj = diag[ 00,

....

Also, in terms of (3.5), an approximate multivariate normal prior
distribution for the equation can be readily expressed as a set of
stochastic linear combinations of the parameters in~.

-J

where

o
o

r =-j
o

o

o
«(1+Kp)xl)

vjK,
((1+Kp)xl)

o Cj vjOA v.jl, 1 .jl, 1

'~j=
A v.jj, 1 ,v = .jj,l-j
A v.jj,p .jj,p

o .
0'1/vjwJ10'J

'l/VJ

p/VJ
o . . . .. pO'J(/VjWjKO'j

((1+Kp )x (1+Kp) )
AJK,

«(1+Kp)xl)

This formulation specifies a group of Kp hypothetical distributions
around the chosen mean values of each of the coefficients (excepting
the constant term). The data can then be examined and combined with
the prior to determine a preferred forecasting model. It is the use
of this kind of prior information that is intended to produce a
useful improvement over conventional techniques.

Once the equations of a tentative BVAR model have been specified in
the above four major aspects. the data can be used to estimate'

7 'That is. Yj is standardized so that the standard deviation of each
of 1tsel~.ents is ()ne.,The identity matrix I1+Kp comes from the
assumption that the true standard deviations of the coefficients of
the sYlilteinarejust the prior standard deviations as we have defined
them ,at:i4. ..:arealso.'~onstant throqgh time across coefficients, 1.e.

var.(vjO)-var (Vji .1).'...~ar (vjK,p)=var (AJJ, 1/v J) -1.
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coefficients associated with the chosen hyperparameters prior to
subsequent model-based forecasting. In addition, an iterative
process between misspecification tests and respecification could be
repeated until the model is acceptable.

§3.3 Estimation of a Specified BVAR Model

In this section, the discussion will focus upon some special
estimating problems associated with the use of a K-variable BVAR
with informative priors, for chosen lag length p. We shall explain
how the prior information is incorporated to produce operational
results in conjunction with a finite sample of data via Bayes'
theorem in general and Theil's mixed estimation technique in
particular. In effect, inclusion of appropriate prior information
augments the available sample size and should improve the precision
of the parameter estimates.

3.3.1 The Derivation of a Posterior Distribution via Bayes'
Theor ...

When both prior and sample information about a vector of unknown
parameters are available, they can be combined by Bayes' theorem to

8form the posterIor distribution. Bayes' theorem formalizes the
general result that a posterior probability density function (pdf)
for the parameters of interest Is proportional to a prior pdf times
the likelihood function; i.e.,

Posterior pdf ~ Prior pdf x Likelihood Function.

In this context, by makIng f! a parameter vector and y a vector.
random variable, the theorem can be expressed as

PC!IIl ~ p(f!) I~IIJ.
SFor this part see~il) particular, Griffiths et al. (1993), Judge et
al.(1985), Chapter 4. Uitkepohl (1991a). pp.206-12 and pp.372-5.
and Zellner (t985.1987) i

59



Here p(~IY) is the posterior probability density for ~. p(~ is the
prior density. summarizing the additional nonsample information
about ~. and 1(~IY) is the likelihood function, summarizing the

9sample evidence.

A posterior pdf for the VAR coefficients f3 can be derived in the
manner of LUtkepohl (1991a, pp.206-10)' That is, on combining the
sample information in the Gaussian Likelihood function

l(~IY) = ( 2; )KT/21~u·ITI-1/2

x exp[- ~ (Y-(IK.~)~' (~~1.IT) (Y-(IK.~)~]'

with the prior information summarized in (3.4), and dropping
irrelevant constants from consideration, we obtain the Joint
posterior density

p(~IY) 0< p(~ 1(~IY)
0< ex~- ~ [(~1/2~_~.», (y;1/2(~_~.))

+ ((~~1/2.It)y-(~~1/2.X)~'((~~1/2.IT)y_(~~1/2.X)~]}.

(3.10)

9Before proceeding further, a comment concerning the appropriateness
of the Bayesian approach is in order. When ~ is employed as
shorthand for the unknown population parameters, it is often claimed
that Bayesians view parameter estimates as random variables, but the
view of Rothenberg (1973. p.13S) is important here. He states:

The Bayesian anillysls does not require ~ to
represent a random outcome of some actual
experiment. '.~•• BayesIan decIsIon theory merely

. argues tha~. people who wish to decide
consIstently' in uncertain si tuet tons would act
as thDugh ~ were.. random variable with a
certain distrIbution function.

Hence, we' need t~dlst1ngulslf between' the density function for the
sampang process where t! i$ treated as fixed, and the density
functions that express;'qur Uhcertainty about ~ and, hence, treat
this vector of parameters as random.
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Defining

the exponent in (3.10) can be rewritten by completing the square on
{3 as

- ~ (m-~' (m-~

= - ~ ((m-t@ -11~-ID ) , ((m-t@ -11(~-~ )

= - ~ [(m-t@' (m-MID+ (~-ID '11' M(~-ID] , (3.11)

where choosing

the cross-product terms satisfy the following algebraic identity

Since the first term on the right hand side of (3.11) is independent
of ~ and may thus be absorbed into the constant of proportionality,
we have

p~IX) ex exp[- ~ ~_~ 'y;1~-~], (3.13)

where
(3.14)

With a normal pdorand ailkelihood function based on Gaussianity,
the posterior pdf is a K(l+Kp)-dimensional multivariate normal pdf
wlthposterlor 'mean ~andcovarlance matrix Yf3i that is, ~""N@'Yf3)' .

Of these parameters, ~1a usually the principal object of inference.
According to Eq. C3.12),'if r=(Ii" .. ,Ii) '-0 and R=diag(R1,··· ,~),

• -1 ()-1substitution·of' f! and'~ byJ! r. and· J!'R ,respectively, yields

61



fj = [8'8 + (r~l®x,X)]-1 [8'L + (l:~I®X')y]

= [B'B + (r~I®~'~)]-I(l:~I®~,)y. (3.15)

In the classical context, a point parameter estimator such as this
(i.e. the posterior mean) can be interpreted as a shrinkage
estimator and viewed as an optimal pOint estimator for the parameter
vector ~, if such exists. The traditional trade-off between
decreased bias and increased variance in a Bayesian specification
framework disappears in that a convex mean-squared-error loss
function is minimized at the posterior mean by including all
relevant variables along with prior information that accurately
reflects the most likely values of their coefficients [see Litterman
0986a), p.27]. Also, an advantage of this approach is that, by
careful choice of a prior distribution, we allow variables, and lags
thereof, to enter an equation at the margin, rather than being
forced to exercise the extreme choice of inclusion or exclusion.

The same point estimator (the posterior means) for f!. can also be
attained numerically by using Theil's (1971, pp.347-S2) mixed
estimation technique. Such a technique involves supplementing the
observed data with stochastic prior information concerning the
subjective distributions of the coefficients ~ and is believed to be
capable of greatly increasing the precision of point estimates. The
following discusses the technique that was employed here and the
problems encountered in parameter estimation.

3.3.2 An Opti_l Point I.ti_tor UsingTheU's Mixed
E.ti_tlon Method

We have seen that when the prior information cannot be represented
in the form of a proper multivariate normal distribution, it can be
preferable to write tijeinformation in the form of linear stochastic
restrictions and combine it with the sample information through
mixed estimation. Given an appropriate interpretation, mixed
estill&t1on ..,thods can, be. regerded as Bayesian estimators. See, for



more details, Fomby et al. (1984), Chapter 6, Judge et al. (1973),

Nagar and Kakwani (1964), Paulus (1975), Swamy and Mehta (1969),
Theil (1963. 1971, 1974a, 1974b), and Theil and Goldberger (1961).

The data is assumed to be generated by the model
y = X Q +-J - ~j

(Txt) (Tx(1+Kp» «1+Kp)xt)
YJ-NID(O'~J~IT); J =

and the prior to follow
I, ... , K,

!:J = BJ
«I+Kp)xl) «I+Kp)x(l+Kp»

Yj-NID(O, Il+K~;

~j + Yj;
«I+Kp)xl) «I+Kp)xl)
j = 1•...• K.

The mixed estimator can be obtained by combining these two sources
of information in the following partitioned form

[ ~~ ] = [:J ~J ~ [:~ ];
«I+T+Kp) «I+T+Kp) «l+Kp) «I+T+Kp)

xl) x(I+Kp» xl) xl)

j = 1, ...• K. (3.16)

where the zero mean white-noise processes Y
j

and YJ are assumed each
to be independent and to be independent of one another. Thus the
disturbances (Yj,~j)' have a variance-covariance matrix

E [[ YJ ] [ 11j Yj 1] . [ ~J~IT. 0] .
Yj 0 I1+Kp

An application of Aitken's generalized least-squares (GLS) procedure
to (3.16) results in the mixed estimator of ~J:

f!J •-J

or
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(3.17)

Moreover, (3.16) can be rewritten in stacked form as

Xl X 0 Y1

XK 0 ~ [t] + ~=
L1 fi1 0 Y1

LK 0 ~ YK
(K(l+T+Kp) (K(1+T+Kp) (K(1+Kp) (K(t+T+Kp)

xl) xK(t+Kp)) xl) xl)
or, more compactly, as

[ : J = [ IK:X J~ + [~J.
Here X=(Xi, ..:,:iK)', L=(Li, ..·,Li:)'=O, B=diag(B1'''''~) (a block
diagonal matrix), ~=~i"" '~i:)',Y=(yi,··· 'YK)' and Y=(yi,··· ,yi:)'.
The variance-covariance matrix of the disturbances (y' ,Y')' is

The augmented GLS parameter estimates are

(3.18)
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By comparing (3.1S) and (3.18), it is seen that the results obtained
above are exactly in the same form as the posterior means defined
previously. Hence, in this simple mixed estimation procedure, the
resul t~nt estimated values of f!. will just be the posterior means
(i.e. f!.=~) and serve as optimal point estimator under the convenient
simplifying assumption that priors and disturbances are all normally
distributed.

In practice, I: is rarely known and the inversion of the matrix
1 u .

B'B+(I~ ®~'~) of dimension (K(I+Kp)xK(l+Kp}) in the above estimator
for ~ can be intractable. S~nce BVAR priors enable one to choose a
relatively large p, the dimension of the matrix to be inverted in
computing ~ may be quite substantial. To get rid of these problems,
(3.17) may be used for each equation of the system individually,

~ 10with I replaced by the ML estimator I. It should be stressed,u u
however, that point estimators of f!., say the poster ior mean (i!),
important though they are, are only special applications of the
posterior pdf and are generally an inadequate means of reporting
results. It is, therefore, more useful to report complete posterior
distributions for the parameters.

There are three key points that need to be emphasized. Firstly, the
whole point of introducing GLS for the BVAR model is to improve the
efficiency of estimation (or to reduce the estimator variances). In
a standard multivariate vector autoregression, any regressor which.
appears on the right hand aide of each of the K equations would
belong in principle to the right hand side of all of them. In this
case, if the informative priors are not imposed on the system, the
GLS esti_tor, either for the system or for the equation, will
reduce to the ordinary least squares (OLS) estimator for the UVAR

laThe MLest1mat~r of the white noise covariance matrix I can beu
written as

IU • :r:(Ir"'21!(a') -lX):r:' /C,
where ~[Il;"" ,1T]. ~d x-'x'·

'nexT) (1+ltp)~T)
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model. In contrast, if the prior distributions are constrained to
specific values, the GLS estimator will reduce to restricted least
squares (RLS) for the structural VAR. Thus OLS and RLS are only
special cases of mixed estimation.

Secondly, the seemingly unrelated regression (SUR) estimator is not
needed for a system that has exactly the same set of variables on
the right hand sides and exhibits solely contemporaneous
correlations of the disturbances, as there is no efficiency gain
from estimating the system as a whole. It is known that in any
multiple equation model, the use of restrictions on parameter values
tends to reduce estimator variances and the estimator of a complete
system would, in general, be no less efficient than the estimator of
any other cases. If there were different degrees of restrictions on
the regressors in different equations, the existence of some
connection between equations would enable a restriction on one
equation to improve the efficiency of the estimates of other
equations in the system. Only if all equations have exactly the same
set of regressors and small residual correlations will no one
equation be more restricted than any other, compared to a global
list of all regressors in the model. Hence, GLS estimation applied
equation by equation would be as efficient as the whole system, and
would appear to be much cheaper than the full information method of
estimation.

Finally, the difference between GLS estimates (for the system with a
prior) and OLS estimates (for the system without a prior) is that,
with proper priors, the degrees of freedom reported are no longer
T-I-Kp for each equation but T-l instead. T-l has no relation with
the lag length p, since BVAR priors are typically defined for each
right-hand-sidevariable except for the intercept, and may be much
larger than. T-I-Kp. Ttiis represents a somewhat artificial way of
getting around the problea that, with a prior, Kp can exceed T [see
Doan (1996) , p.8-21] . The degrees of freedom are increased by
stochastic restrictions, whUe the variabUi ty of the estimates Is
reduced and the reduction In overparameterization should yield
improved out-of-sample forecast. (see Shoesmith (1990), p.261].
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After the coefficients of a BVAR model have been estimated, the
adequacy of the fitted model should be assessed by the use of
various evaluation and model selection criteria. If the ultimate
goal is prediction, then it seems logical to judge the model, and
thus the corresponding modelling procedure, by determining whether
the quality of within-sample forecasts is better when some kind of
prior information is incorporated, as was done in Litterman (1986a,
1986c). Indeed, the validation of a model simply means whether the
selected model, with all its inherent imperfections, does an
adequate Job in postsample prediction. Although validation of a
model from historical data can never, in itself, ensure the quality
of forecasts into the future, it is reasonable to believe that a
model which has shown itself to be valid on the basis of the past
and, hence, has presumably captured some constant features of the
underlying structure, will yield more reliable forecasts in the
short run than one which has not been so validated. Once a
satisfactory BVAR forecasting model is found, optimal linear
forecasting is a routine affair [Judge et al. (1985), p.660].

§3.4 Prediction U.lna the E.tlmated BVAR Model

The objective here is to derive a Bayesian predictive distribution,
which contains all of the uncertainty about future events and is a
function of known quantities only. Suppose that we wish to derive a
complete predictive density for future values on the vector
yt=(ylt' ...•yKt)· over h periods. say y, together with a set of
Bayesian point predictions of these values. which are assumed· to
link with a knoWnhx(1+Kp) matrix g through the same multivariate
normal regression model generating the past sample observations y.
That is.

Here ~~(Yt,T+l""'Yl.T~h"""YK.T+l;""YK.T+h)· 1s a Khxl vector
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of future values to be forecast over the forecast horizon
t=T+l, ...,T+h;

[

IY1 T Y1 T 1 ..'YK T Y j_' , + -p, K,T+l-pX= .
- lY1,T+h-l" 'Y1,T+h-P': .YK,T+h-l· ..YK,T+h-

matrix of given or hypothesised values for the predictor variables,

is a hx (1+Kp )

assumed known prior to making a forecast on Xt;

~ is a K(I+Kp)xl vector of regression parameters for y, assumed
the same as that for the previous observations Xi and

Q=(Ul.T+l.···'UI.T+h.···.~.T+l.···'~.T+h)· is a Khxl vector
of future disturbance terms. assumed Gaussian as well with
Q-NID(O.Iu®Ih) and E(uO·)=O. 11

(KhxKh)

Since the value of ~ is unknown. one way of deriving the Bayesian
predictive pdf based on (3.21) is to write down the Joint pdf
p(Y.~lx). and then integrate with respect to ~ to obtain the
marginal. or predictive. pdf f(xIX) for y. In such a procedure. the
form of p(X.~lxl can be represented by factorising it into
I(YI~.y)·p(~IX). with p~IX) being the posterior
regression coefficients ~. shown in (3.15) and

pdf for
I(YI~.X)

the
the

likelihood function for the future observations Y. given by

1(XI~,X) a I (jl~
a ( 2! )Kh/2IIu.lh,-I/2

X exp[- ~ (t";(IK.&)~·(I~I.Ih) (Y-(IK.&)~]'
noUng E(yQ')aO.

Therefore, the predictive pdf for I, f(Ilx). is readily obtained by
the following integratl0Il: .

r(fIY)' ·Jp(!,!IY)d~

IIThis arises because the knowledge of the realized values of Y is of
no help in predicting Q. They are mutually orthogonal or temporally
inde})enCl~llt.~nd hen~, t~4!ll' C?o~itiona I expectations of future error
terms Q are zero. "'" ;.
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= JI (YI~p(~IY)d~

oc Jex~- ~ [(y;1/2(~_~), (y;1/2(~_~)

+ ((t~1/2.Ih)Y_(t~1/2.&)~, ((t~1/2.Ih)Y-(t~1/2®&)~J~~.

(3.20)

Performing the integration in (3.20), the predictive pdf can be
rewritten as

(3.21)

where

w = (t-1/2.I )' [I - (t-1/2.x) N-1 (t-1/2.x) 'J (t-l/2®I ).
- u h Kh u - - u - u h '
N = y-1+(t-1/28V)' (t-l/2.x). and
- -(:! u Q u -'

'1 = T+h-(1+Kp).

From (3.21) it follows that f(iIY) is in the form of a mUltivariate
Student t distribution with mean vector

and covariance matrix

E(X-E(j»(X-E(X»'

.. E( (IK.&)~+Q-(IK8&) ID (( IK·&)~+Q-(IK·&)ID '
= E((IK·&) ~-ID+Q) ((IK·&) ~-~+Q)'
= (IK.&)E[~-ID ~-ID'J (11(8&) , +E(00' )

• (IK·&)~(IK·&)~+Eu·lh·

Here again, Eu ls assumed known throughout, and ~-ID and Q are
uncorrelated.(asE{yQ'}=O), enabUng 'us to investigate the structure
of forecast1ngerrorco'llarlances.

12 .'See, for details, Appendix 8.
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Moreover, since

w-1 = (l:~1/2®Ih)-1 [IKb+ (l:~1/2®&)YtJ(l:~1/2®&).][(l:~1/2®Ih),]-1

= [(l:~1/2®Ih)'(r~1/2®Ih)] -1+ (IK®&)Y(3(IK®&) •

= l:U®Ih+(IK®&)Y(3(IK®&)"

we obtain

E(Y-E(Y)) (Y-E(Y))' • W-1.13

These results enable us not only to make predictions about the
elements of Y conveniently but to incorporate both data and expert
judgement adequately into a final Bayesian predictive distribution.

Given a set of predictions, an optimal point prediction (Y) obtained
via the minimization of squared prediction error loss is the mean of
the predictive distribution, with a predictive expected loss equal
to the variance. Hence

Y z E(r) - (IK.&)~ • (IK®&)~ since ~ a ~

= (IK-g) [B'B+(I~1®X'X)]-1 [B'!:+(I~1®X')X], (3.22)

or more simply

YJ = E(XJ) = ~J • ~J

• &[fijB J+O'j~x' xl -1 [fijI: J+O'j~x' YJl ; J = 1, .", K (3.23)

It can be seen fro. (,3.23) that for the j-th equation of the system,
the optimal pointpredictlons based on the predictive density
function are Just the known fixed matrix & of future predictor
values times theop~1malposterlor mean estimator ~j (or the mixed
estimator ~Jl.TheSefor.ca.ts constitute an important basis .f'or
optimal linear, ex ante forecasting, and will be compared with actual
values. The accuracy' of. theBVAR JDOdel's Iorecasts will be further
comparedwith.tthosegeneratedby alternative methods, using Theil's·
inequaUtylndex. It~18 a"lao seen from (3.23) that the stochastic
13 . .

Again, see Appen(U~S. ,
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prior restrictions for the model's coefficients would yield a
significant influence on the final point predictions of the
variables being considered, especially for small sample sizes.

§3.5 Conclusion

This chapter describes how and why we prefer BVARs to UVARs. In
particular, we have described carefully four major aspects involved
in the construction of a stationary Gaussian BVAR process: the
choice of vector content; the selection of lag length; the treatment
of constant terms; and finally, the determination of prior structure
for all individual coefficients. We have also considered related
issues associated with mixed-estimation and ex ante forecasting.

Following from the work of Sims (1980a, 1982) and others, it has
been argued that economic theory is often not very explicit about
econometric relationships, and the specification of a multiple time
series model usually bas to rely, at least to some extent, on sample
information. In tbis r~gard, UVAR models have been proposed as a
class of fairly general models, which do not impose rigid a priori

restrictions on lbe data generation process and let data speak for
themselves. However, since we often work with limited data, the data
cannot speak very loudly in standard UVAR models. UVARs involvi~ a
large number of parameters and very few restrictions can often lead
to serious problems of overparameterization, with many insignificant
coefficients hall~rina the interpretation of the results.

It Is the appearance of the large number of parameters in UVARs that
points iQ the c:l:1rectlonof using Bayesian methods. The BVAR model
provide, us with a formal and flexible way of characterizing
BtochastlpsubJ~ctlve information and combining it with sample data.
So fan 1feb~ve only.discussed the formulation of a stationary BVAR.
1I04el,,:l'h4J Is qbviously not enough, since many series of practical
Intere~l~.J'" ~ntrinsicaUy nonstationary. In the following chapters,
lite'Wll~0qot1lJld.rpneralizations to deal with this.
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CHAPTER 4

VECTORAUTOREGRESSIVEERRORCORRECTIONMODELS
(VAR-ECMs)WITHOUTA PRIOR

§4.1 Introduction

This chapter discusses the problems arising from the existence of
trends in nonstationary macroeconomic time series. After this, the
following chapter incorporates this body of information into a more
general BVARmodel. Of the BVARforecasting method noted in Chapter
3, all the modelled variables are assumed to be weakly stationary
stochastic processes, at least around some deterministic linear time
trends which could be removed. This would imply that there are no
trends or shifts in the covar iances or seasonal patterns, where
standard asymptotic distribution theory can be applied. However,
there is ample empirical evidence that many macro series are
nonstationary. Most nonstationary series are integrated of order
uni ty (denoted It1». This is due to the presence of one unit root
[see, e.g. thc!t seminal note of Nelson and Plosser (982»), which

gives rise to a stochastic trend in variance, as opposed to a purely

deterministic trend in mean. with shocks or innovations to .the

economIc system beIng permanent rather than transient.

In tradi Uonal time serIes analyses, a valuable device in handling'
trends and seasonal patterns is that of differencing. A model can

then'be fItted to the differenced data. However, a simple VARor

BVARon differences only would not be able to capture appropriately
any lorig-rtin ;'1nformation among subsets of nonstationary variables.

Current pt'acHee in deaHng with sets of interacting variables is to
attempt I to·'ana.lyse nonstationary series directly and to consider the
posslblfi'ty"ofdomlnant flong-swing' components. such as the trend.
belrijteoUonto'llOte tf1anOne series. The concept of cOintegration,
developea6ut'~or the' exlatence of un1t roots and a commonstocha!?tic
trend COST),"Wsfirst suggested in Granger (981). Cointegration,
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as well as its intimate connection with associated error correction
mechanisms (EOMs), has engaged increasing attention over recent
years. In particular, it has provided a Joint parametric treatment
of the short-run dynamics and the long-run relations of the
underlying process within an OLS framework.

In this chapter, the complementary roles of theoretical and
empirical analyses in macroeconometric modelling will be reexamined.
A number of testing, estimation and inference procedures will be
reconsidered in the context of VARs with unit roots. In addition, a
linear transformation to I(0) space in terms of differences and
cointegrating combinations of observed macro data will be given.

§4.2 A Linear Stochastic Multicointegrated System for Integrated
Time Series

Granger and Newbold (1974), before the introduction of the concept
of cOintegration, investigated by Monte Carlo experiment the likely
consequences of specifying a static OLS regresstcn of one random
walk on another random walk, independent of the first. They pointed
out that the, usual significance tests performed on the regression
coefficients may be very misleading, resulting in the acceptance of
a spurious relatlohshlp. Warning signs may be an apparently
acceptable R2 coupled with a low Durbin-Watson (DW) statistic, and
high significance of the coefficients (a simple rule of thumb being
R2>DW). Granger and Newbold therefore suggested that, in such,
circumstances, one shOUld look for a model to apply to the
dlfferenced series, rather than to the raw series concerned.

PhU Ups (1986) provided analytical results explaining the Monte
Carlo f'll)cUl18sreported by Granger and Newbold. His study
deaonstrat.scthe" following. Firstly. In contrast to the stationary.
ease, tAe·.relressloncoeff1clents ina model with data generated by
integr.teclpli'oceIJ8esdo not converge in probability to constant
coefflctent .• trices. Secondly. because the regression error is 1(1)
under t"obeJlUll hypothesis of no relationship with undesirable
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infinite variance, the conventional t- and F-statistics, formed as

ratios of sample, or joint sample, moments do not have limiting

distributions. Upon suitable standardisation, they converge weakly

to appropriately defined functionals of vector Brownian Motions or

Wiener processes, and actually diverge as the sample size T---+co.

Hence, there are no asymptotically correct critical values for these

test procedures: the larger the sample, the greater will be the

rejection rate when the tests are based on a given cri tical value

delivered from conventional asymptotics. Finally, under the same

conditions, OWconverges in probability to zero, whereas R2 has a

nondegenerate limiting distribution. The spurious regression problem

therefore becomes even more pronounced wi th low values for DWand
2moderate values for R as T---+co.

All these theoretical results are consistent with the empirical

findings in the Granger-Newbold (974) experiments. Indeed, it is

the appearance of the integrated error term in a regression between

the variables that eventually leads the usual asymptotic

distribution theorvrto break down at the unit circle. Achieving a

weakly stationary, or 1(0), error with finite variance is then a

necessary or minimum condition for a specified model to be

satisfactory. However, the theory of cointegration addresses the

impact of equilibrium relationships implied by economic theories,

within a dynamiC adjustment process. It may thus improve long-term

forecastability of .the system under scrutiny. See, inter alia,

Davidson and Mackinnon (1993), Chapters 19 and 20, and Hamiiton

(989) .

4.2.1 Intesrated/Colntegrated Processes and Their Properties

In empirical studies, it is frequently of interest to test whether a

set of macroeconomic variables move together. There is a taci t

asswaption that certain economic series cannot be expected to drift

too farapapt, due to econollic forces identified in theory, even

though the serle. themselves may wander extensively over time. The

idea of"cointelr",tioftcan be used to test the correctness of such

beliefs';' 'ana . Incorporate the resul ting information in the

speClflcatioft Of' dynamic models. First, the definitions 'and
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time-series properties of integrated and cointegrated variables will
be clarified.

According to Wold's decomposition theorem, a zero-mean purely
nondeterministic stationary stochastic process has an infinIte MA
representation. This can generally be approximated by a finite ARMA

process. However, many economic series need to be differenced in
order to make them stationary. A K-dimensional vector
Xt=(Ylt,···,YKt)' with no deterministic component is said to be
integrated of order d, denoted Xt-I(d), if it has a stationary,
invertible, multivariate ARMA representation after differencing d
times. See Engle and Granger (1981, p.252).

Consequently, a vector integrated of order zero is stationary in
levels while a vector integrated of order uni ty is stationary in
first differences. The word 'integrated' is thus a description of
the original series relative to the resulting stationary series.
There are many substantial differences in appearance between series
that are 1(0) (with some long-run mean) and 1(1) (with some starting
value), and the sum of an 1(0) and an 1(1) is always 1(1). See, for
a more detailed discussion, Engle and Granger (1981, pp.252-3).

Suppose now that the series of interest in a bivariate vector Xt are
all I(d), having no drifts or trends in mean. Then it is generally
true that any linear combination of these two series is also red).
However, in contrast to the spurious regression case, it is possible
that there exists some nonzero 2-vector ~=(CX1'CX2)" such that the
combination

(4.1)

is Int~lJ.ra~~ C?! a lower order, say lCd-b), d~b>O. When this occUrs,
a very ..pec~alllnear constraint operates on the long-run components
of the $er~es. Suppose further that d-b=l, so that each variable is

; _-., '.-_ .• ~o' ~ - . _"

I(ql~r~,ftJ$· UOL ..l,.e. is stationary. Hence the X variables must
hav~. ,lPPf"'r\U1,coaponentswhicll effectively cancel out to produce £t'
In such circuJastances, the integrated variables under examination
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are termed cointegrated. To formalize these ideas, Engle and Granger
(1987, p.253) provide the following definition of cointegration.

The components in a K-dimensional vector Yt are said to be
cointegrated of order (d,b), denoted Yt-CHd,b), if: (l) all
components of Yt are I(d); and (ii) there exists at least one vector
of weights a(~O) such that £t=~'Yt-I(d-b), b>O. Such a linear
combination is a cointegrating combination and the scaling vector a
which represents it is a cointegrating vector (CY).

Three, among a number of, important points to note about the
definition are: (a) cointegration refers to a linear combination of
nonstationary variables; (b) all variables must be integrated of the
same order; and (c) most of the cointegration 11terature
concentrates on the case in which variables are Cl (1,1) [Enders
(1996), p.152]. The notion of cointegration can be equated with a
linear equilibrium constraint between the integrated variables to be
considered, leading to a class of models, known as error-correcting
in the econometrics literature.

4.2.1a Close Relationship between Cointegration and
Linear Equilibrium Constraints

Macroeconomic time series often appear to be 1(1). Their behaviour
may be similar to that of a (multivariate) random walk. A single
equilibrium, or attractor, for an economic system to converge
through time might be characterised as

(4.2)

so that the univariate quantity et given by (4.1) can be interpreted
as the extent to which the system is out of equilibrium at any point
in tlme,aDciJllay thus be called the equilibrium error. Here, -the

term'equilibrIum can be thought of as a stable target towards which
the eco-noilyl;actlng on countervailing forces, is aiming whilst in
d.isequUibr!wa ,{Granger (1987), pp.5-6]. Provided that each'
componeWt ollt i8 I(1), then if, and only if, the equilibrium error
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Et is 1(0) will the idea of a target equilibrium have any impact.1

Here the CV ex is not unique, since it could be multiplied by any
nonzero scalar without affecting the equality in (4.2). However, it
is the exception rather than the rule that there exists an ex which
makes Et....1(0), because economic equilibria do not always prevail,
even if the presupposition of the same order of integration is
satisfied.

In the more general case, with any values of K, d, b, for K>2, ex
need not be unique, as there may exist more than one specific linear
relationship amongst the variables. It then follows that if there
are r linearly independent cointegrating vectors (CVs), then r can
be, at most, equal to K-l, so that rsK-l. The cointegration
combination stated above will then become

= ~t' (4.3)
K

i~lexriYit
(rxl)

where ex is a (Kxr)' cointegratlng or equilibrium matrix with its
columns forming r distinct CVs in the r-dimensional
cointegrating space and its rank r being referred to as the
cointegrating rank of Yt; and

~t is a (Kxl) (zero-mean) vector of stochastic variables
integrated of order less than d.

For a given set of variables, we may be interested not only in a
single CV, but hi a set of CYs, specified by the (Kxr) matrix ex.'

1It may be recalled that if t:t is I(0) the expected time between
zero crosstngs is ftni te, suggesting that in this case Et will
rarelydrlttfar 'frolDt:atget t:t=0 and equilibrium will occasionally
OCCUF. ,COnyer.ely", if there 1. an equil1brium. the Y variables must
move clO$.l)t,....ogetherasa group over the long run. The selected
interrelatedvarlf,bles will adjust to one another. by means of the,
CV ~,: su~b t~t the resulting stochastic error Et will be HO).
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This matrix is also not uniquely defined by the set of equations
shown. The reason is that any elementary linear transformation of
the column vectors involved (e.g. multiplying one column by a

nonzero scalar, or adding to one column a nonzero scalar multiple of
another column) will change its form or pattern, but not its rank,
and the resulting ~t will still be 1(0). Such a matrix is said to be
'closed' with respect to addition and with respect to multiplication
by a scalar. Moreover, although the loss of uniqueness adds extra
flexibility, it brings some interpretational problems in terms of
equilibria. To illustrate the problem, we will consider first a
simple K=3 and r=2 case with the help of three-dimensional space
analytic geometry and then, by intuition or analogy, extend this to

2the more general case.

When a pair of independent CYs, ~l and ~2' occur between three
series, Yl, Y2 and Y3, each of which is 1(1), we shall write Ct(~i)
=~iYt-I(O), i=1, 2, corresponding to the equilibrium relationships

(4.4a)
and

(4.4b)

=>,: ,,.' :,'" ;':;;,:",
These two uneat:,~~t~.o.,u.,.l.tUl~ ,In turn. correspond to .two

different planes 1!1'~~':·ibl~ri~"'l:e ,analytic geometry with a set

of coordinate a,x~~Yt··:!23t~~~';..W.~~c;l1l'~l~ ~th cut through the origin
in the situation now~\)elna.e_idered. If each term of the equation'
in (4.4a) and (4. 4bl,·t~'ia~i Upl1ed by arbitrary nonzero scalars ~1

and~2' respectively, we obtain ~1~iYt=0 or ~2~2Yt=0' These are
equatioas of the same two planes ~1 and ~2 in the space, whatever
the sca'lars are, implying that the cointegrating vectors are not
unique. On the other hand, the equilibrium relationships existing

among a set of cointegrated variables are unchanging. Further, any'

linear combination 0' pap"wise independent ~1 and ~2 also yields a

2For th1ti1part, se,e Granger C1986b), pp.220-6, inter alla.

JA3'!'fYector of nonzero eonstantscould be included in
(4, 31 , Ll~ )~~~ .:to ~e Jhe ..ean of !t zero. Thisis
a .pe.r"Uel." Bhl!t, o.!, the coordinate system from
O(Yi,V2,;.Jtoa new one 0' (Yi' Yi' Y3J in 3-D space.

the equations
equivalent to
an old one
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fur Lher cointegratlng vector. It follows tha t

Ct(A) = ACt(~l) + (l-A)Ct(~Z)
[ A~i + (l-A)~~ JXt

will. also be T (0), [or any A. Thus, the equilibrium reLa t l ons are
not uniquely identified, and the constructed planes will generate,
or span, the whole three-space, indicating that the equilibrium
error cannot be strictly interpreted as the deviations from a
particular pair of equilibrium relationships. The only invariant, or
stable attractor, is the intersection line ~: ~IA~Z in the (VI' VZ'
V3) space defined by {£t(~l)=o}n{Ct(~Z)=O} or {£t(A1)=O}n{ct(AZ)=0};
VA1,A2; A1~A2; refer to Fig.4. 1.

Y'3

Y' 2

Y' I

Fig.4.1 The determination of equilibrium
sub-space in 3-D space.

This line, passing through the origin 0, is actually a particular
region of the possible outcome space and will be called the
equilibrium sub-space [see Granger C1986b), p.222l. In most time
periods, the trivar Late joint process Xt whose components drift
widely will not be on or close to the line :t., but might have a

79



generalised preference towards !f. - a certain part of the whole
process space. The absolute value of equilibrium error might thus be
expressed as the distance of the system from the equilibrium
sub-space, and the process Yt is said to be back to the sub-space or
in a particular state of statistical equilibrium if, and only if,

the multiseries ~t are all zero [see Granger (1986b), p.226].
Accordingly, in order to represent adequately the long-run
properties of a K-dimensional cointegrated process 1\ with
cointegration rank r, O<r<K. it is important to find the right
cointegration space spanned by the columns of ~ or all possible
distinct cointegration vectors. Any underestimate or overestimate of
the true value of r (imposing too little or too much cointegration)
may be misleading.

In linear algebra. as long as the two parameter vectors ~1 and ~2
are linearly independent, we can always choose three particular ~s
such that the combination given above omits YI' or Y2, or Y3 term.
This would seem to be a natural way of testing for cointegratlon.
Since our interest centres on the equilibrium subspace, not
particular cointegration relations, the pairwise cointegration
relations among Y1', YZ and Y;3 can be replaced by pairs between any
two of them.4 In 3-coordinate analytic geometry, whatever the
pOSition of the line !L. we can always find three particular pl~nes
within the family to contain both the line !L and the Y l' or Y2• or
Y3 axis simultaneously. These three particular planes are also
perpendicu~artq,the front (YI-o), side (Y2=O) and horizontal (Y3=O)'5planes, respect1vel)l~ lJle choice of any two equations or planes
will determine the same equilibrium subspace, as depicted in
4" .s > ',;c"
In fact, given a set of K variables. If, and only If, r=K-I, 'can

anI' ldlstindtF cointegratlonrelatlons be transformed Into the
slmplest,r bivarlat,e,linear c()Jlblnationsbetween anyone of the K
variables and each of the rest K-I variables. Normally, the r(sK-I)
colntegration relations will each be characterised by a subset of,
at most, K-r+I(~2) variables. In such linear transforms, no matter
what the particular CVs are. the number of evs (i.e. the dImension
of the do111teltation space) r.would not change.
SSiml1afly,lri'thehew coordinate system 0' (Yi' Y2' Yj), the line !f.

ma.y tlot"go'tltroughtheotigln 0'. but the three particular planes
woul(L~ paraU.l to the Yi, or Y2' or Yi axfs,
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Fig.4.2.

yo
3

yo
I

Fig.4.2 Three particular planes corresponding
to simplified equations in 3-D space.

These ideas considered in three-space may be generalized so that for
any K, r, the preferred equili.brium subspace will be a hyper-plane
of dimension K-r(~l) [see Granger (1986b), p.222]. In applications,
the cointegrating matrix (or the matrix of cointegrating vectors) a

and its rank r are unknown. Whether or not cointegration occurs, how
many distinct CVs there are and what the scaling matrix or vector
will be are empirical questions and are not necessarily determined
by economic theory. In particular, the higher the K, the more
extensive is the number of possible combinations and the more
difficult the testing will be.

The importance of the empirical existence of cointegration,
therefore, stems from the fact that tests for cointegration are
tests for suspected long-run equilibrium relationships among the
economic variables of interest. Hence, cointegration should be
considered a necessary condition for the long-run components of
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integrated variables to obey equilibrium constraints while the
short-run components capture flexible dynamics.6

The concept of cOintegration also makes allowance for the fact that
in the short-run some factors may shock the economy away from
equilibrium, but that this equilibrium will be restored again in the
long-run. In order properly to adjust these short-run disequilibrium
fluctuations in line with the long-run equilibrium solution, a
closely related topic has been propounded within dynamic econometric
methodology. This is the Vector Autoregressive Error Correction
Model (VAR-ECM). Early versions can be traced back at least as far
as Sargan (1964) (in the context of wage and price modelling) and
Davidson et al. (1978) (in the context of consumption function
modelling) among other writers. The basic idea is that, given a
stochastic movement away from equilibrium in one period, a
proportion of the disequilibrium is corrected in the next. With this
VAR-ECM, it is plausible not only to determine the short-run dynamic
behaviour of the syst'em of adjustment equations but also to avoid
spurious regression situations, without the loss of desirable
long-run information.

4.2.tb Close Relationship between COintegration and Vector
Autoregressive Error Correction Models

We now demonstrate how cointegration can arise from a finite order
VAR representation, cOlllmonlyused in econometrics as a convenient
approximation to a system of infinite order. Consider a '
J(-dimensionalGaussian VAR(p), as in (2.3), with fixed initial
values {It-p•...,~}

p
:it • ~',+r 6i1t-i + Mt' t .. 1, ... , T, (4.5)

~.t,
~ I ' J

6Strictly speaking, a necessary and sufficient condition for
equil1bria to hold is !t-1CO), not cOintegration; the latter is only
a r1ece.j.ry'CJnefor the process to be in such a particular state, as
has bee~ pointed out by Granger (t986b). Engle & Granger (1987) and
others. This is because the reduced-rank restrictions implied by
colnteiraUorieaimoC"guarantee that the resultant ccfrrtegr-at Ing
linear combinations !'It=!t are ICO) unless the original series are
known'to'~bel:{t,)"

82



where all the symbols have their usual meanings. Although most of
the time the simplifying assumptions, such as normality.
independence. and homoscedasticity. are not crucial. the assumption
that {~'~t'" .•~.Iu} are time-invariant parameters is fundamental.
This assumption will be investigated in the empirical applications
in subsequent chapters.

Recall that a necessary and sufficient condition for the process to
be stationary is that all characteristic roots of the polynomial
equation det(~(~»)=o are outside the unit circle. Thus, if the
process is nonstatlonary there must be at least one root lying on or
inside the unit circle. Due to the presence of a single unit root in
most integrated macro series, we exclude explosive variables by
assuming that none of the roots lie inside the unit circle and also
rule out Yt being integrated of order 2. though the latter could be
handled, should the need arise.

Now suppose the process encountered here is nonstationary with
p i

= 11K - E Ai~ Ii=1Kp
.. n (1 - ~iE)
i-I

..0, for I~I.. 1.

Since {Xi}' i=l, ...•Kp. stand for the reciprocals of the roots' of
the characteristic equation. one or more of them must be equal to 1
in absolute value. A mUltivariate time series model therefore needs
to be constructed in such a way that both valid reduced-rank
restrictions and unit roots are imposed explicitly on its various
components in orde~ for the Joint modelling to reflect common
features such as s~asonals and cycles which are felt to be present
in thea"regate data.

(4.6)
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that the impact matrix A (l) can be factorised into the product of-p
two suitable matrices w, «' with both ~ and ~ being of dimension Kxr
and of full column rank. Three cases arise from the study of
cointegration constraints.

Case (a): r=O - a borderline case, in which A (1) is a null matrix-p
with K unit roots imposed. All K variables in Yt are I( 1), and a
stationary unrestricted VAR(p-l} model represented purely in first
differences is acceptable.

Case (b): r=K - a stationary case, in which A (1) is a full-rank-p
matrix with no unit roots imposed. All K variables in Yt are 1(0),
and a stationary unrestricted VAR(p) process expressed entirely in
levels is admissible.

Case (c): O<r<K an intermediate case, in which A (1) is a
=p

singular matrix with K-r unit roots imposed. There are, at most, r
cointegrated linear combinations of the elements of Yt, and a
stationary restricted VAR-ECH is appropriate.

In general, if Xt consists of cointegrated I( 1) variables, the
stationary VAR-ECM formulation with Gaussian innovations can be
achieved by subtracting Xt-1 from both sides of (4.5) so that the
impact matrix enters. explicitly

- AJXt-1
+ AJ (Xt-1- Xt-2)

- ~(Xt-P+l- Xt-p) + Yt
p

(r di)VXt-l - ... - ~VYt-p+l + Yi'i=2
t • I, ... , T,

where V ls the flrst""dlfference operator (t-L). Using (4.6) and
deflnlq

p
"'.,.-I AuJ' ' ·1'

1·j+1
J III 1, ... , p-l,
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the VAR-ECM can be written as

VYt = C - A (I)Y- -p -t-l

= C - A (l)y- -p -t-l

+ A·1VYt-1 + + A • VY + u-p-l -t-p+l -t
p-l

+ r A~VYt_J + Yt, t = I, ..., T. (4.7)
j=1 J

Also, the characteristic equation of the model (4.7) can be
rewritten as

This implies that a transformation to 1(0) space can be achieved in
terms of differences and cointegrating linear combinations of the
components of Yt'

Wi thin this framework the long-run impact matrix A (1) has been
=p

decomposed as A (1 )=1.11«' • The matrix ex is, as before, the-p -
cointegrating matrix comprising r distinct column cointegrating
vectors. w is the loading matrix containing, for all K equations in
the system, the adjustment (or error-correction) parameters attached
to each CV. This shows how fast the variables change in response to

7a disequilibrium. See. for example, Clements and Mizon (1991,

pp.895-6), and Urbain (1995, pp.181-3). Thus, (4.7) becomes

p-1
VYt = ~ - ~'Yt-1 + r Aj·VYt_j + Ytj=1

p-l= ~ - ~t-1 + r AjVYt_j + Yt, t = I, ... , T,
j=1

(4.8)

or

~t-l = ~ t = 1, ... , T.

All terms in the right-hand side involving the difference operator V

7Here again, the two matrices exand ware not unique since, for any
- - -1

nonsi1'\8Ul~rr~.r matrix r. we can define ~.~' and ~·~r so that
u·ct.·-c.J«'. BoWver, 'it will be shown that closed form express tons
for the' kI.. estimators of exand ware available.
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are stationary, and the error term Yt is stationary by assumption.
This implies that the error-correction term wEt_l, being a linear
combination of the stationary terms only, must also be stationary
and it remains stationary upon pre-multiplication by (w'w)-lw'.

Hence, if w;tO, the 'equilibrium error' ~t=~'Yt is stationary and
thus each row of ~.Yt represents a cointegrating relation. It has
been proved in Granger's Representation Theorem (Granger, 1983) that
not only must integrated data generated by an error-correction model
be cointegrated but the converse is also true. That is, if the
components of Yt are cointegrated of order (1,1), then there must

8exist a generating mechanism having the error-correction form.

Similarly, an alternative yet isomorphic error correction version
for the process (4.5) can be derived in the fashion of Johansen
(1988, 1991), and Johansen and Juselius (1990, 1992), i.e.

Vy = r-t ~

p-l t
+ r AjVXt_jJ=l
p-l t

+ r AJVXt-jj=l

- A (t )Yt + Yt-p --p

= ~ - ~t-p + Yt, t = 1, ... , T, (4.9)

where

j = 1, ... , p-l.

In general, by rear~anging terms, any set of lags of the E can be
reproduced in a like manner by

1-1 p-1
t

+ r AjVYt_jVYt :=~ + r AjV'J.t_j - ~(1 )Yt-1 + Ytj=1 j=l
1-1 p-1

t - ~t-l + r AjVYt_j=~ + E AjVYt_j + !It'j=1 j=1
1 = 1, ...• P. t = 1, ...• T. (4.10)

where
J,.t I t'".OJ • .. x" L. ili', i-l

J = 1, .... 1-1,

8Jn theory. the proposition presented here can be generalized to any
values o{,d and b. For a proof of the theorem see, Inter alIa. Engle
& Granger (1987) , Hylleberg & Mizon (1989) and Johansen (1~88.
1991) .
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and
P

AJ~ = - L A.,
i=J+11

J = 1, ..., p-1.

Particularly, when 1=1, A;'J=O is undefined and taken as zero,
Eq. (4.10) then reduces to (4.8). Likewise, when l=p , A'!lj is

-J =p
undefined and treated as zero, Eq.(4.10) then simplifies to (4.9).
Therefore, any type of gradual partial adjustment of the short-run
dynamics toward a long-run equilibrium can be allowed via the
introduction of this further possible exogenous factor, the
equilibrium error, that arises from the concept of cointegration.

When a set of variables are cointegrated, their changes may depend
not only upon the past values of the variables in difference terms,
if present, but also upon the past values of the equilibrium errors
in level terms, if ~-o. The change in the jth component of Yt may be
better expressed as a weighted average of lagged changes in all
components less r lagged error correction terms (the jth row vector
of ~ times the lagged ~t) plus the jth component of Yt without
moving average components. The term EC, therefore, comes from the
fact that if the economy tends to seek equilibrium, then it is
expected that the variables involved should be influenced by the·
extent to which the economy is out of equilibrium. In an ECM, some
fixed proportion, ~, of the disequilibrium, ~t-l 0=1, ...,p I; in
period t-l would be 'corrected in the current period t in aimin$ at
the long-run relationship or the equilibrium subspace defined
previously. The relevant coefficients of the EC term would appear to
be negatively correlated. See LUtkepohl (1991a), Chapter 11.

In SUch a specification, a long-run stationary relationship holding
between variables will necessarily make ~(1) nonzero (r>O). In ~his
case, a pure YAR in the differences of the data will be inefficient,
asH' dmfta lnipOrtant Iona-run information [Doan (1996>' p ,8-3] .
However "t~e,~olll-,run colntegrating restrictions will also make,
A (1) singular (r<K). In this case, a simple YAR in the levels of-p
the series.wiLl be inadequate from an innovation accounting point of
view, as, 1,t ignores' crucial cross-equation parametric constraints.
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To quote Engle and Granger (1987, p.259):
...vector autoregressions estimated with cointegrated
data will be misspecified if the data are
differenced, and will have omitted important
constraints if the data are used in levels. Of
course, these constraints will be satisfied
asymptotically but efficiency gains and improved
multistep forecasts may be achieved by imposing them.

In essence, it is this feature of cointegrating restrictions that
links it with the analysis of spurious regressions. This is because
in the system of equations (4.9), every term (either the lagged
levels implied by the presence of Et or the lagged differences- -p
reflected by the appearance of VYt) is I(0) when cointegration
exists. Hence, conventional statistical inference can be carried out
and spurious regressions of the Granger-Newbold type can be avoided.
Whether or not the residual in a regression between integra ted
aggregates is empirical white noise, or at least stationary, is thus
a matter of importance [see Mills (1993), Chapter 6, especially
pp.170-2]. Moreover, a test for cointegration leading to this
stationarity is, to all intents and purposes, a pre-test to get
around the alternative hypothesis of spurious level combinations.

In contrast with previous studies, although the model looks at first
, ,

sight similar in form to a traditionaltmrestricted VAR in
differences, it is distinct in kind. One major difference is that
the VAR-ECM is an open multivariate system rather than a closed one
because the equilibrIum error is included as an exogenous variable,
along with the constant term, to let in potential information
contained in the long-run solution of the process. Another is that
the VAR-ECM is effectively nonlinear rather than linear in ~ because.
w Is unknown in the composite long-run parameter matrix and must
therefore be estimated simultaneously with 'unscrambled' Cl as well
as with the other autoregressive coefficients.

4.2.2' Further U.eful Moclification of the Model with the
Po•• ibilityof Both Deterministic and Stochastic
Nonstationaritle.

Wenow;.cOftslder aupentation of the basic model to incorporate
<leter.lnl.tic .:f'eaturesvia
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p-1 ...
= ~ + !Yt + E AjvYt_j - ~(1)Yt_p + Yt,J=1 r'

t = 1, ... , T.

(4.11)

Here Yt contains, except for a constant, any deterministic
components [e.g., a linear trend (when !Qt=~t) or a quadratic trend,
a regime shift, a seasonal, or other dummies] that are exogenous to
the VAR system under consideration, to ensure that the disturbances
Yt are as close to being white noise as possible. We note that even
if the nonstationary influence of deterministic trends is
straightforwardly allowed for, allowance should sti11 be made for
the possibility of stochastic trends in the internal dynamics; i.e.
some roots in the characteristic polynomial lie in the neighbourhood
of unity. Indeed, the more comprehensive is the model, the greater
is the internal consistency with which an introduction of exogenous
changes in level or trend may strengthen model-based predictions
across shifts in policy regimes [Wallis (1989), p.32J.

The combined version in (4.11) with !Yt=~t incorporates two
competing sources of trend: a deterministic trend in mean; and a
stochastic trend in covariances. Six main specializations of (4.11)
can be categorized in terms of the trend specification imposed on
the data, as given in Table 4.1.

Table 4.1: Classification of various cases involved
in the common model (4.16)

~ r=K. r=O O<r<K

A stationary A difference- A stationary VAR-ECHa-o stationary (OS) process with no- VAR process VAR process trend in mean

A trend-stationary A difference- and A stationary VAR-ECHa-a trend-stationary process about a(15) VAR process (DTS) VAR process trend in meanr>

·r.rk[~(l)] I. the number of colnteqrated linear combinations.

The can for including components, such as trends or shifts in the
lIeanor' 1n thecovariances or specific seasonals, by polynomial·
regre •• toft. will largely depend on an initial analysis of both the
tlormaUzed and non-nonaal1zed variables in each equation. The
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analysis of the former may indicate which of the movements in the
normalized variable are accounted for by the non-normalized
variables, while the analysis of the latter may indicate what
properties a potential non-normalized variable has in common with
the variable being forecast. A minimum condition needed for an
acceptable model is that a simulation of the right-hand side should
be able to reflect the salient characteristics appearing in the left
hand side variable. The inclusion of a dummy or seasonal explanatory
variable therefore opens up the possibility that trend or seasonal
variations in the normalized variable are capable of being
explained, along with other kinds of variations, by the variations
in the regressors so obtained [cf. Harvey (1992), p.390].

In reality, the danger of over-sophisticating a nonstationary
stochastic process may be avoided by the addition of a trend
component to all equations and letting the data determine whether or
not it is needed. However, in so doing, care has to be exercised in
evaluating the sensitivity of inference based on VARs with
potentially different trend assumptions, as the discriminatory power
of the tests used in identifying trends in economic time series is
limited. The modification of the critical values in Joint hypothesis
testing where conventional asymptotics apply may be necessary or
inevitable in many empirical investigations. See, f'or example,
Ohanian (1988, 1990).

§4.3 Error-Learn1na. Paraaeter Constancy and the Lucas Critique

Usually, the forecasts made by a statistically well-specified
VAR-EcM formulation on the basis of the available information are
adaptive, or error-learning. By adaptive we mean that the prediction
of th& future value of variables is revised only mechanically by
soae fixed proportion of the extent to which expectations are not
real1ttedj'iit the current per1od. Such an adjustment created 1n
respotlse to systematic past errors can improve forecast accuracy,
but aiso'tefi~tsthe problem that the model has not extracted all
the t1Setul lfttorll8.t~onln the historical data, leaving scope for
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further development.

The hypothesis by which predictions are made without systematic
mistakes is that of rational expectations formed on the basis of all
information available to agents about future events. The rational
expectations hypothesis implies a number of testable restrictions on
the parameters, but tests of such (overidentifying) restrictions are
actually difficult to operate. As Artis (1988, pp.5-6) has stated:

... testing the rationality of the forecasts involves
assessing the contributions of 'innovations' in the
exogenous variables .... it is less easy to do this
for fiscal policy and appears not to be feasible for
monetary policy.

While accepting the expectations variant of the Lucas (1976a)
critique, Sims challenges rational expectations econometrics even
further by casting doubt on the validity of supposed a priori

knowledge in achieving acceptable identifying restrictions in
structural models. He writes (1980a, p.7):

It is my view. however, that rational expectations is
more deeply subversive of identification than has yet
been recognised.

He continues:
In the presence of expectations, it turns out that
the crutch of a priori knowledge of leg lengths is
indispensable, even when we have distinct strictly
exogenous variables shifting supply and demand
schedules.

Indeed, the in-built assumption of expectations implies that agents
know the mQdel, but' this may be untrue for many agents. It wC?uld
therefore be more pragmatic to find a compromise operational method
between the merely error-learning and the fully rational. The
expUci tly Bayesian vector autoregressive (BVAR) forecasting.
procedure is one way of meeting this requirement.

Moreover, the key assumption underlying the VAR-ECM technique is, as
';""q.:,?,,~ ..,

mentioned earUer, parameter constancy at the cost of mechanically
Intro@olngo error-correction feedbacks and. possibly, dummy
varlaplesr to equations. Nevertheless. this is still a strong
assumptton cthatllBY not be acceptable in the 11ght of the Lucas
er1tiq~." I 'the Lucas crltiqtiefrom the perspective of rational
. " ., .-, ;f~"-",;'t
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expectations with competitive equilibrium models, in which all
markets are assumed to clear immediately, provides a reminder of the
inherent limitations of macroeconomic models, whose behavioural
parameters would not remain invariant, but would be allowed to vary
over time. In addition, not only are the values of all the
coefficients in the system subject to the influence of alternative
government policies but so are the interdependencies and degree of
instability of these coefficients. Hence, parameter non-constancy is
a problem, not easily overcome, though the likely force of the Lucas
critique is essentially an empirical question.

One viable method of handling parameter non-constancies in models
where there are stochastic trends is the Bayesian approach to
inference. Bayesian analysis has two advantages. One is that it can
formally integrate order selection and hypothesis testing in a
cointegrated Gaussian VAR to produce a Joint coherent model
selection (or model discrimination) and prediction procedure. The
other is that, if properly formulated, it can represent uncertainty
about estimation results in ways not available with the classical
approach. As such, it may yield good performance in VARs with some
unit rQots and some cointegration.

Furthermore, theexistellce of r independent coInt.egr-at Ing relations
reduces the number of parameters in the impact matrix, Ap(l), from
K2 to Kr+(K-r)r,or (the number) of parameters in the multivariate
cointegrati.on system, (3.11), from K+K2p to K+Kr+(K-r)r+K2(p-1).9
However, VAR-ECMs, though behaving quite differently from UVARs,
have not fundQentally overcome the central forecasting issue of
overparameterlzatlpn that the larger the model, the more the

9The e~pression means that among the K rows/columns of the ~ It )
matriX!..only. r rows/columns are .11nearly independent and the rest
(K-r)' ro"s/columns are each certain linear combination of these r
in<iepen<ient..l"ows/columns. Consequently, the space spanned by. the
col.umns ~( ~ (te.rmed the cointegration space sp~) is the row space
of'.~(if)L.",nd the space spanned by the columns of ~ (called the
adJ"$tJl~nt,sP~ge ..sp~Jlsthf! column space of ~ (1). It also means.
th~tIC~~r£(K ...r)r+IC2(p-l)-rIC+K.2I>J=-<K-r)2<0, for O<r<K. Accordingl>:,
the· lJilPoslfi(;nof the cointegrating restrictions on the parameters
of· the:•• l/cauld save on the nWilber of parameters to be estimated.
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insignificant parameters have to be estimated, and thus the poorer
estimates and forecasts will result. This problem can be addressed
by the use of, Bayesian methods with a proper informative prior

specified for the VARparameters. Apart from economizing on the
dimension of the parameter space, BVARsare also likely to deliver
better multi-period forecasts associated with the best setting of
the hyperparameters.

§4.4 Conclusion

This chapter explores the estimation of a VAR containing

nonstationary variables. At one time, it was believed that
stochastic trends of nonstationary variables used in a regression
analysis could be removed by differencing. The resulting stationary
series could be estimated using traditional techniques. However, the
conventional wisdomof differencing all nonstationary variables in a
multivariate context was inappropriate. Recent development of
time-series analysis reveals that there is much potential, in a
statistical sense, 'for taking into account the hidden common
stochastic trends, i.e. cointegration. In this context, studies of

cointegra ted mu!t1var ia te time ser ies have proved very useful in

system modelling and forecasting [for instance, Boswljk (1995)"
Engle et al. (1993), Ericsson (1995), Gall (1992). Wickens (1996).

SOderlind & Vredin (1996). and Urbain (1993, 1995)].

Whenthe consld&red data series are small and nonstationary, another
important undertaking lsthe development of a formal and flexible
BVARliOdelembOdying stochastic prior coefficient restrictions.

Nonethele•• , there &eeIftS'to,be no one generally acceptable path to a
good lIodel: The available' BVARand EC alternatives each have their

supporters and cri tics ,and are subject to controversies [Granger

(ed) (1991), Chapter 1]. It may be that the two models have
compl.llenta~y, 'rattler than competing roles. Hence. ,they might be

cOllibine4~~to'fotll a'llot& general BVAR-ECmodel, thereby improving

for.cast aocuracy. This is potentially of practical importance. and

wIll'be'txJrHllder'ed 'lntthe following chapters.



CHAPTER 5

NONSTATIONARY BAYESIAN VECTOR AUTOREGRESSIONS (BYARs)
WITH BOTH PRIOR AND COINTEGRATION RESTRICTIONS

§5.1 Introduction

An attractive feature of the Bayesian probabilistic approach is
that. apart from taking parameter uncertainty into account. it
provides us with a coherent procedure in which prior information can
be formally expressed and blended with sample data. The passage. via
Bayes' theorem, from the combination of prior and sample information
to the posterior probability density function (pdf) is itself part
of a learning and discovering process. The prior distribution. being
a component of posterior pdf, will be assumed a multivariate normal
for the coefficients of the vector autoregression. The Gaussian
likelihood, being another component, will be similar in form to the
posterior odds when the sample is highly informative about the
coefficients. In a linear YAR with normal disturbances. the Gaussian
likelihood, holding fixed the covariance matrix of the disturbances
and the initial observat tcns, is proportional to a normal pdf.

Hence, the posterior distribution, which is just the likelihood
function weighted by the prior pdf, will be asymptotically normally
distributed even .when the true process has a unit root. This is
especially useful in our practical empirical research, as it allows
us to make ·exact inference, conditional on initial observations,
relatively easlly; Moreover, this procedure can be construed as
formalizing a coherent methodological framework for forecasters to
docuaent,dlscussand exchange their beliefs and, thereby, can help
make macroeconomic forecasting more of a science and less of an art.

In thl.'chapter, spec Ificatlon of finite BYAR models with both prior
and, dOtntiegraUon restrictions is provided. Estimation of such
llOdels.·.ftpecially· for forecasting with the help of the Kalman
Filter' est1iation1ftethod, Is also described. The final section is
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devoted to multi-step model-based forecasts. These considerations
are applied in the forthcoming chapters.

§5.2 Specification of a Finite 'Open' BVAR Model

For simpllci ty, we confine ourselves here to the determination of
prior and cointegration restrictions in a Bayesian specification
framework. It is presumed that a pre-test of the number of lags and
the number of variables has been done in an initial specification
search as before. To this end, a sequential testing procedure,
consisting of four steps, is carried out as follows.

(a) As a prerequisite, the tests for the order of integration or the
number of unit roots of all the series appearing in the model must
first be implemented singly with the aid of the augmented
Dickey-Fuller (ADF)regression.

(b) For the given orders, the tests for the presence and number of
colntegrat1on relat1onsh1ps can then be executed on the basis of two
popular test strategies. One is the residual-based ADF method

proposed by Engle and Granger (1987) and the other is the

system-based Full Information MaximumLikelihood (FIML) approach

advanced by Johansen (1988, 1991), See also Johansen and Juse l Ius
(1990, 1992, 1994). These have asymptotically equivalent properties

under certain conditions.

(c) For a given value of r (the dimension of the cointegration
space). the estimates of the. parameters of the CVs, used in

estimating a multivariate dynamic model, can be performed via the

use of the same two procedures.

(d) Twoalternat1ve types of joint prior structures in the style of.

Litterun can .beconstructed, compared and contrasted for a closed
BVAR model in levels (with all the variables assumed to be Jointly

,:.'~i:!:

endogeno\ls), and an open BVAR-ECmodel (with exogenous error-
correct 10n feedbacks).
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Once colntegrating and prior restrictions have been determined
sequentially for model specification, it is possible to estimate the
model with the former placed on the long-run matrix, and the latter
on the other parameters of the system discussed in section 5.3.

5.2.1 Determination of Cointegration Restrictions

In the econometrics literature, it is not assumed that cointegrating
relationships are known a priori. Rather, the testing of the
hypothesis of cointegration consists of two parts: tests for 1(1) of
the individual series; and if this is satisfied, testing for ICO) of
a linear combination. These will be considered shortly.

S.2.1a Testing for the Order of Integration

The first step in testing for cointegration amongst the variables of
interest is to determine the order of integration of the individual
time series. Various statistical tests of unit roots are now
available, but considering that many (perhaps most) macroeconomic
data appear to be integrated of order one, we will concentrate
explicitly on a simple, scalar version of the OLS regression test
for a single unit root.

The simplest test for the hypothesis of a unit root in each
component series, say Vjt' j=l, ... ,K, is the test that a regresSion
of Yjt on Yj,t-1 yields a coefficient of unity. Such tests, based
mainly on variants of an AR(1) model (with serially uncorrelated
error terms), have been pioneered and modified by Fuller (1976) and
Dickey and Fuller (1979, 1981) to an AR(m) scheme that is
asymptotically valid in the presence of serial correlation. The
generalised specifications with either an intercept or an intercept
and a time trend can be given by

m
VYjt = PjO + Pj1Vj,t-l +i~17jiVYj,t-i + <jt (5. t a )

and
m

VXjt a PjO + Pj1Yj,t-l + Pj2t +i~17jiVYj,t-i + <Jt' rs.rs:
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respectively. These two modified regressions are often called
augmented Dickey-Fuller (ADF) tests, which would have exactly the
same asymptotic distributions as the ordinary Dickey-Fuller (DF)
statistics, if the autocorrelations in VYJt were fully accounted for
by the specified m-Iag univariate AR processes. Three points should
be made concerning the models (5.Ia ) and (S.lb) that are used to
construct the ADF test statistics.1

(1) The sensitivity of the asymptotic distributions

As regards statistical inference, one might expect that a unit root
test could be accomplished simply by using the classical t-ratio
attached to ~J1 on YJ,t-1 to investigate the significance of Yj,t-l
after OLS estimation of either (S.la) or (S.lb), since P.1=O under

2 Jthe null hypothesis of a unit root. However, this test is
complicated when the data are actually generated by a nonstationary
process. This is because the conventional asymptotic tests cannot be
applied to some or all of the parameter estimates, even in large

Asamples. The OLS estimate PJ1 must be normalized by a factor T
1/2 .instead of T and the corresponding cumulative distributions for
AT-norming of P
J1

must be simulated numerically. Moreover, it turns
out that the limiting distributions of the test statistics under the.
null hypothesis are especially sensitive to the values of nuisance
parameters in both generalisations and, therefore, must be
considered separately if a valid test of the unit root hypothesis is
to be carried out.

To clarify the effects of differing nuisance parameters on the.
asymptotic behaviour of these two important generalisations,
consider ADF regression (S.la) without a time trend first. Two cases
are commonly encountered under the unit root hypothesis.

lFor a more comprehensive study of univariate unit root testing see,
among others, Davidson & Mackinnon (1993), Chapter 20, and Godfrey
(eel) (1992), Chapter 1.

2It is important to bear in mind that, in most cases, the published
critical values for these statistics are lower-tail ones, since the
alternative of interest is almost always that the process is
stationary, not that. it 1s explosive.
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Case Ca): if Pjo=O, i.e. there is no drift in the process, the
appropriate tables of the adjusted critical values that permit the
application of t tests to the coefficient on Yj,t-1 are
characterised by Monte Carlo simulations either in Fuller (1976,
Table 8.5.2) or in Mackinnon (1990, Table 1).

Case Cb): if PjO*O' i.e. there is a nonzero drift in the process,
t-ratio regression test for pj1=0 appears to converge to the
standard normal N(O,1) distribution asymptotically [see Pagan &
Wickens (1989), pp.968-9].

Now consider such effects in the second, ADF regression (S.1b) with
a time trend. In this situation, there are also two cases of special
interest under the null hypothesis being tested:

Case Ca): if Pj2=O, whatever the values of PjO' the asymptotic
distributions of t(Pj1) and F(Pj1,Pj2) are invariant over all values
of PjO' Reference to the DF distributions for t and F statistics,
reported only for PJO=O, should be made to achieve a correct test
for the unit root 'null (see Fuller (1976) and Dickey & Fuller
(1981»). Whether PjO is zero or nonzero will only affect the
limiting distribution of PJ2: when PjO=O, we use Table III in Dickey
and Fuller (1981), whereas, when PjO*0, we use the top pane 1 of
Table 4 in Nankervis and Savin (1987).

ease Cb): if Pj2-O, whatever the values of PJO' the conventional t
and F stat.istics are found to be asymptotically valid, 1.e. they
will have the usual asymptotic normal and chi-squared distributions,
respectively. See Nankervis and Savin (1987), the bottom panel of
Table 1.

The fact that the distribution of t(Pj1) under the null is nonno~mal
~n (S.la) when PjO=O or in (S.1b) when Pj2=0 is primarily due to the
mean, which is significantly negative. As PjO and/or Pj2 increases
in absolute value or, equivalently, as ~~ goes to zero, the mean of
the '. distribution shifts towards zero and the shape of the
distribution becomes approximately symmetric. See Davidson and
_cklI11lon (1993), and Nankervis and Savin (1987). for details.
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(2) The determination of the lag length

The main reason of expending the regressor set by including m
additional lagged first differences is to handle serial correlation
of unknown form in the errors. However. including too many lags
reduces the power of the test to reject the null of a uni t root,
since the increased number of lags necessitates the estimation of
additional parameters and a loss of degrees of freedom. On the other
hand. too few lags will not appropriately capture the actual error
process, so that P

J1
and its standard error will not be well

estimated [see Enders (1996). p.90].

In general. the value of desired truncation lag m should grow with T
at a rate proportional to T1/3 that allows for an adequate AR
approximation of general autocorrelation. In practice. one approach
is to start with a relatively long lag length and pare down the
model by the usual significance tests. provided the true lag length
is covered in the initial choice. A practical rate for selecting
values of m is to ensure that the regression residuals <jt'
jz1, ...,K. are empirical white noise.

(3) The inclusion of a time trend

The inclusion of a linear time trend in regression models like
(5.1b) is important because trend stationarity of nonstationary
variables Is sometimes regarded as a plausible alternative to a
random walk. Usually, a JOint significance test for the composite
null Ho: PJ1-PJ2-O is closely related to the problem of testing for
a unit root against a deterministic trend and. therefore. can be
used to discriMinate between the difference-stationary (DS) and
trend~stationary (rs) processes. If Pj1=Pj2=O, we have what is known
as the OS process. In this case, it is preferable to work on first
differences, as first-differencing will yield stationary series.> On
the other hand, if Pj1<O and Pj2-O, we have the 15 process. In this
case, it is desirable to work on levels, as detrending will be
enough to make the series stationary.

In fact, it the Cirder of magnitude of the dependent variable YJt is
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to be the same both under the null hypothesis of a unit root and
under the alternative of trend-stationarity, it is necessary that
the test regression should include an unconstrained linear time
trend with a coefficient that is zero (Pj2=O) under the null (Pj1=O)
and nonzero (PJ2*O) under the alternative (Pj1<O). For further
details see Davidson and Mackinnon (1993, pp.709-10).

In any such situation, the standard regularity conditions do not
hold, but one can still perform a t-test or an F-test provided the
right critical values are used. Although the ADF tests are widely
used, their discriminatory power can be quite limited, as a failure
to reject the hypothesis of a unit root merely provides weak
evidence that the variables are 1(1). As West (1987) argues, the use
of test regression (5.la) (without a time trend) will be
inconsistent if the true data process is stationary about a trend.
By contrast, it has been shown by Perron (1989) that the use of test
regression (5.1b) (with a time trend) may still tend to lack power
if the true process is stationary about breaking levels or trends.
Also, the danger with the formulation of model (5.1b) should be
clear, as the forecasts made on the basis of an inappropriate
deterministic trend' may be very misleading. See, for a detailed
discussion, Harvey (1992), Chapter 6.

S.2.1b Testing for the Presence and Rank of Cointegratlon

When we are satisfied that the time series are individually 1(1),
the next key step for those integrated variables is to detect the
eventual presence of cointegration and to set the value of
cointegrating rank, r, from available past observations. There are
two maIn techniques involved in testing for cOintegration: Engle and
Granger's special ADF test (for r=I ), and Johansen's HI.. procedure
(for O<r<K). For comparative purposes, both approaches will be
briefly examined for potentially cointegrated variables in a
multivariate context.

(t) Engle and Granger's augmented Dickey-Fuller (ADF) test

The test Is for whether there exists a cointegration relation, ~'Yt
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=«lYlt+" '+~YKt' among the chosen set of 1(1) variables. Consider a
static OLS regression of one variable. say Y1• arbitrarily
normalized to have a unit coefficient upon the other variables

t=l .... ,T, (5.2)

where 7)i=-«i/«l' «1*0. The variables are then cointegrated in the
terminology of Engle and Granger (1987, pp.260-4) if, and only if,
£It is stationary or 1(0). This single-equation regression will be
called the cointegrating regression as the CV can be estimated
efficiently without concern over the dynamics.

Specifically, Engle and Granger's suggested ADF statistic, sometimes
called the augmented Engle-Granger test or the AEG test, can be
performed in the following manner. First construct the cointegration

"residual £It from (5.2) by least squares, and then test its
"stationarity by using unit root tests applied to £It

where again s is selected to be sufficiently large to ensure that
the residuals 0lt are serially uncorrelated. Here, the assumption of
no cointegration, or spurious regression, is taken as the null
hypothesis in the residual-based cointegration tests, mainly because
it is consistent with the null of a unit root in the OLS residuals
(~1t) of the cointegration regression. The pseudo t-ratio for p=O

versus p<O thus corresponds to the AEG test for the null of
noncointegration versus the alternative of cointegration. In this
sense, a one-sided statistic that is significantly negative in large
samples would give rise to a rejection of the null of no
cointegration.

"Ifcointegration does exist, the residual £It saved from the
cointegration regression can then be fed as an additional regressor
into a full dynamic error-correction system at each period.
Otherwls~. the model should be built on differences only. In
cOintegration tests, the required critical values for the AEG test
areprovlded by MacKinnon (1990), using response surface estimation,
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and differ from the critical values developed and used in tests for
unit roots.

(2) Johansen's log-likelihood ratio (LR) test

In order to see how the empirical rank test proceeds for a model
with cointegration rank r, O<r<K, consider a K-dimensional,
colntegrated Gaussian VAR(p) process as in (4.5), perhaps with
trend.3 This model will be further reparameterised as in (4.9) to
make it feasible that a number of potentially interesting economic
hypotheses can be tested, i.e.:

The cointegration constraint concerning the deficient rank of the
p

long-run equilibrium matrix A (1)(=IK-r Ai)' namely r, can be
-p i=1written as

H(r ): rk [A (1)] = r
'"""P

or A (1) = wa'.
+p (5.3)

Here ex and ware, as defined previously, Kxr cOintegrating and
loading matrices of full column rank r.

Under the hypothesis of cointegration, the Johansen-type log-
likelihood ratio (LR) test statistic begins by running two auxiliary
OLS regressions, with an intercept term included

p-1
= ~ + 1: !:aiVYt-i + Bat'1=1

and

Formulating the KxK product moment matrices of the estimation
residuals

3For ease of discussion, we exclude a linear time trend from both
the data generating process and the test formulation considered
here. Inference on the presence of a deterministic trend can be
conducted as pointed out in Johansen (1992) and Johansen & Juselius
(1990. 1992).
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~ij i, j = 0, p,

the LR test of the null of there being at most reVs, or
equivalently K-r roots at, or close to, zero, is given by

K
~LR(r, K) = -T L In(1 - ~i)'

i=r+1
(5.4)

where K is small relative to T, and ~r+1~' "~~K are the K-r smallest
ordered eigenvalues of the determinantal equation

(5.5)

Now suppose we want to test a specific, more restricted
cointegration rank r=r against a larger, less restricted rank of0
cointegratlon, say r=r1 or r=r0+1, in a sequential manner. In other
words, we wish to test

Ho: r=rO against H : rO < r = r1 s K,a
and

HO: r=rO against H: r = r + 1.a 0

From the cointegration LR test of (5.4), Johansen's 0988, 1991)
trace statistic for testing H(rO) against H(r1) is then given by

K
+ L In(1
i=r1+1

(5.6)

and Johansen's (1989) maximum eigenvalue statistic for testing HCro)
against H(rO+1) is now given by

C5.7)

BOth tests have nonstandard limit distributions which turn out to
depend on Just one parameter, K-r, and must be evalu~ted
numerically. Certain asymptotic critical values for these two
statistics have been tabulated by simulation in Johansen and
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Juselius (1990) (K-r=l,...,5); these tables have been extended
(K-r=l, ...,10) by Osterwald-Lenum (1992). In addition, the ~ testmax
is directly comparable to Engle and Granger's residual-based ADF
test in the case of r=l. This test is used in the empirical studies.

By employment of Johansen' s ~ test, the number of evs can bemax
determined using a series of log-likelihood ratio test statistics.
In such a sequence, one way to proceed is to start with the null of
no cointegration and work up. That is, should the null hypothesis
that r=O be rejected, we may then test the hypothesis that there is
at most one ev (r~1), and so forth until the null hypothesis fails
to be rejected for the first time. The test results provide evidence
in favour of cointegration only in the case where O<r<K.

In practical applications, there are three points to emphasize.
Firstly, critical values of the asymptotic distributions of the LR
statistics will vary when the system contains no constant, just a
constant, and both a constant and a time trend. Secondly, the small
sample critical values of the test statistics may differ slightly
from the asymptotic critical values. In such cases, we should
replace T by T-(Kp+1) in the above formula to adjust the test value
in a small sample case [Reinsel & Ahn (1988)]. Finally, there seems
to be a tendency to overestimate r when the true value is low and
the costs of incorrectly specifying r are higher for overestimates
[see Brandner & Kunst (1990)].

S.2.1c Estimation of Cointegratlng Vector(s)

As a continuation, this section aims to derive the appropriate
values of important eVes) for a multivariate cointegrated system
with .independent Gaussian errors. For this purpose, the same two
methods mentioned in the foregoing will be used and their relevant
asympt,otic properties will then be compared, given that the rank of'
the cointegratlon space, r, is known.

(1) Jlhenr-l

The<estimates of theK free elements of the unique ev can be readily
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obtained from equation (5.2) by OLS. This in turn motivates the
'two-stage estimator' proposed for the hypothesis of cointegration
and its closely related ECM representation. That is, the estimator

(5.8)

is used for !!=(1I2,...,lIK) in the first stage, and the remaining
parameters are estimated conditionally on the estimator g'=(l,-!U of
~'=(a1"" ,~) in the second. Here

Stock (987) has shown that when series are cointegrated, the OLS
A 4estimator 11 is superconsistent. More precisely, we have

1-«5(A ft'plim T !! - !!J = 0 for all «5>0.

AThe proposition implies that 11 approaches the true value 11 at a
--1faster rate proportional to T than would be so with standard

asymptotics, but ~ is consistent with finite-sample bias.

If the disturbances ~lt were actually observable, the unit root test
statistics would have the same asymptotic distributions as the ones
discussed previously. However, in almost all cases, c1t will not be
observed and will therefore have to be estimated using OLS. The main
reason that the asymptotic distributions of conventional unit root
tests cannot be used in the present residual-based cointegration
tests is that,if the null of noncointegration is true, the CV a
will not be identified and the disturbances c1t will have
theoretically infinite variance. Heuristically, OLS will seek the
vector to minimize the residual variance and is very likely to make
the estimated residuals stationary. This implies that the ordinary
unit root test statistics wll1 reject the null too often if ~ must
be estimated. To avoid this possibility, the related critical values
have to be raised accordingly.
4 .. •.
Even so, standard inference procedures still do not apply.
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Although conventional regression estimates may be of considerable
importance in applied research, many objections have been raised as
to the adequacy of this method in the light of substantial small
sample biases. The validity of its underlying assumptions has also
been questioned. Not only is the number of CVs assumed to be unique
before estimation, but the element of CV on arbitrary normalization
is also known to be nonzero ahead of time. These are strong
assumptions which may be somewhat unrealistic, especially when there
are more than two 1(1) variables under consideration. The regression
estimator, however, provides no framework for addressing these
issues. Nor does the estimator have well defined limiting
distributions and, as a result, testing for cointegration is not a
straightforward procedure [cf. Hall (1989), p.213].

It, therefore, appears that the maximum likelihood (ML) estimation
procedure put forward by Johansen (1988, 1991) and Johansen and
Juselius (1990, 1992, 1994) may be more satisfactory. It relaxes the
assumption that the CV is unique, provides a unified framework .for
the estimation and testing of one or more cointegrating relations,
and also takes into account the error structure of the underlying
process. Therefore it may be expected to behave bet ter than the
traditional regression estimates.

(2) When O<r<K

To implement the Johansen ML procedure, we denote the I(
orthonormalized eigenvectors of ~~~p with respect to ~p as a
I(xK matrix Y·(Y1' ...•YK) corresponding to the K nonincreasingly
ordered eigenvalues ~1~"'~~' and normalize Y by Y'~pY=IK' All K
eigenvalues and eigenvectors are permitted to be calculated at once.
Then the Ht estimators of the space spanned by~, the cointegration
space sp~, and the space spanned by~, the adjustment space sp(~,
are gIven. respectively. by

(5.9a)
and

(5.91)
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The r mutually independent columns of ~, i.e. the first r columns of
y that correspond to the r largest eigenvalues, constitute a basis
of the r-dimensional cointegration space, as all possible choices of
the optimal ex can be derived from such a basis. Moreover, every
single row of the impact matrix A (1) can be thought of as a

-p "weighted average of the r linearly independent columns of ex, while
every single column of A (1) can be regarded as a weighted average

" -pof the r columns of ~. Once a specific choice is made for ex, such as
"~=~f, for f a nonsingular rxr matrix, w will subsequently be

" -1uniquely determined as ~~f' . This is important because the
apparent problem that the regression model of (4.9) depends
nonlinearly on the parameters can be circumvented [cf. Johansen
(1988) and Davidson & Mackinnon (1993), Chapter 20].

It should perhaps be emphasised that what can be determined by the
model is only a basis of the space spanned by ~, sp(~, and of the
space spanned by~, sp~, which can be estimated superconsistently.
Yet the Kxr matrices ~ and ~ themselves are not identified by virtue
of being not unique and cannot be estimated consistently at this
stage. However, conditional on these bases, the long-run matrix
A (1) as well as the other parameters in the system (4.9) can be-p
estimated consistently without further identifying constraints. The
identification of t~e different cointegrating relations and the
associated adjustment coefficients, on the other hand, has to' be
done a posteriori by imposing linear restrictions on either the
cointegration space or the adjustment space [see Urbain (1995)]. In
this procedure, the normality of the innovations in (4.9) is
required to ensure asymptotically efficient ML estimators of the CVs
and the adjustment coefficients. The robustness of the procedure to
departures from normality is as yet unknown (see Johansen & Juselius
(1990). p. 176) .

When the cointegrating relations have been determined in the sense
that several subsets of the 1(1) variables tend to bunch together in
the long run, the next logical step is to seek an appropriate prior
structure for the coefficients of the multivariate cointegrated
system under study.
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5.2.2 Determination of Prior Restrictions

So far, we have described the determination of the plausible
long-run restrictions on the matrix A (1). but the other parameters
t ~Aj• j=l •...•p-1. have no constraints imposed and would be treated as

equally likely. This position may lead to a distortion of the
modeller's beliefs concerning the best forecasting model. even
though the VAR-ECM is estimated as if not subject to any
restrictions other than (5.3). Given a finite number of
observations. the bigger the model is. the weaker will be the data
evidence on the individual coefficients and, hence. the more
important the stochastic prior regarding the distributions of the
coefficients. The importance of the prior in potentially improving
the precision of estimates may lead to a consideration of whether an
explicitly Bayesian procedure might produce better forecasts than
those generated by other competing approaches. The BVAR forecasting
technique has thus been developed to test this possibility.

Here. the prior restrictions for the parameter estimates will be
specified in the Bayesian prior mean-variance framework. Under the
Minnesota or Lit terman prior, the prior distributions for all but
coefficients of the deterministic components are assumed to be
independent normal, so that they can be uniquely determined by just
two prior parameters namely the prior means and the prior

5variances. The prior covariances are always set at zero. Generaily,
the standard Minnesota prior is implemented by specifying across all
equations the same linear form of prior distribution and placing on
the high order lags a tight zero prior with small standard
deviations. However, the appearance of the non-zero prior standard
deviations implies that we are not sure about such a simple model,
compatible with the uncertainty that the modeller is prepared' to

5In principle, it is possible and also important that such
covariances between parameters, across different equations as well,
as in the same equation, are allowed for, as they may be of value in
improving forecasts. However, this goes beyond the scope of our
present work. For a useful survey of this literature, see the recent
articles by Holden (1995), Chapter I, Kadiyala & Karlsson (1993,
1997,), 'Kar.isson& LUtkepohl (1993) and Westlund (1993).
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allow for. Also, uncertainty of the prior standard deviation can be
formally expressed by assigning to that parameter a further prior
distribution, which is often shaped as a rectangu lar- distribution
confined to a certain range of values and governed by a scale factor
called a prior hyperparameter. The priors placed on the
deterministic terms are supposed to be 'flat', or noninformative,
reflecting our complete ignorance about these coefficients.

The data sample will then be examined, using a standard Bayesian
statistical procedure, to revise each of the modeller's best guesses
(the prior mean) in terms of the modeller's initial confidence (the
prior standard deviation). The larger the prior standard deviation,
the more weight will be given to the accidental patterns in the data
and vice-versa. Moreover, along with the design of prior structure,
the potential influence of estimated cOintegration relations on
forecast accuracy will also be investigated.

S.2.2a A Simple BVAR with no EC Hodel

Consider first a K-dimensional Gaussian VAR(p) model of the form of
(4.5)

t = 1, ... , T, (5. lOa)

or
K p

Y -C +E EA YJt - J n=1i=1 In,i n,t-i
2UJt-NIO(O, ~JJ);

(5. lOb)

J = 1, ... , K; t = 1, ... , T.

The prior restrictions concerning the possible values of the
parameters Ai' i.l •...,p, can be set up in the fashion of Litterman
U986a, 1986c), as follows.

(ll The prior mean: a multivariate random walk process

In the standard Minnesota prior. the means of the prior
distributions for all coefficients are usually set to zero, except
the first own lag in each equation, which has a prior mean of unity
by -,d~fault, This pr:ior mainly reflects the assumption that most of
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the variation in each of the variables is accounted for by own
recent lags and loosely centres about a vector random walk process
(p=l, ~l=IK and ~=O)

(5.11a)

Alternatively, we may consider a vector random walk plus drift
process (p=l, ~l=IK and ~~O)

(5.11b)

These seem to be reasonable approximations for typically behaved
macroeconomic variables that may appear to exhibit relatively smooth
random walk components. If this is so, the best forecast would be
produced essentially by a naive 'no-change' prediction. That is, in
the case in which the drift parameter vector ~=O, future values of
the variables would differ from their current values only because of
completely unpredictable random events. The inclusion of drift (~~o)
unrestrictedly in all of the equations is simply to represent an
explicit steady-state rate or growth per period in the variables
being modelled. In practice, even for some variables whose changes
are thought to be partially predictable, this naive forecasting
approach can be surprisingly difficult to improve upon.

Given the prior means, all that is required is to specify their
standard deviations so as to complete the determination of the prior
distributions.

(2) The prior standard deviation

In order to construct standard deviations of the priors for the
model's successive lag coefficients, the estimation of a set of
auxiliary unrestricted univariate autoregressions (ARs) is first
conducted on the basis of T observations

p
Yjt = Cj +i~laJiYj,t-i + eJt,

ejt- HID(O. v~). t = 1•... , T,

(5. 12)

J = 1, ... , K.

The estimated standard errors ~J' J=l,...,K, of the residuals are
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saved for all variables. This is because normally the prior standard
deviations around coefficients on lags of the cross variables in
each equation of the BVAR model are not scale invariant. To adjust
for the scale variability of the actual data, the BVAR prior must be
specified with reference to the relative sizes of unexpected
movements in different series. Such movements are often reflected in
the standard errors of the residuals computed from linear
regressions of the series on several of their own past values.

The standard deviation of the distribution for each coefficient
AJk, l' the jk-th element of AI' in the system through use of a
general prior - which is largely the same as the symmetric - for
all J, k, 1: denoted s(J,k,I}, can then be written as

s(j, k, 1) = vf(j. k)g(I)~J~k'
J.k=1 •... ,K. 1=1, ...• p.

Here the ratio :.j~k is involved as a rescaling factor, which
converts the cross lag standard deviations to units comparable to
those of the own lag standard deviations in equation j. The diagonal
matrix v is the overall tightness of the prior, which directly
controls the standard deviation on the first own lag of .the
normalized variable of each equation. The function gel) is the lag
pattern of (harmonic) decay, which increasingly restricts the
influence of past values on recent ones. The function f(J,k) is the
general prior type, which simultaneously governs the weights of all
off-diagonal elements relative to the weight of the diagonal element
in each row of AI.

To be more specific, we have

5('J. k, 1) z { v/1 A A

vJwJkC7'/IC7'k
or in matrix form,

if J = k
(5.13)

if J ;6 k.

S(J,k, 1) =
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Here, the scale factor or element vJ or VjW
jk
' j,ke[l,KJ, in the

rows is the particular hyperparameter assigned to each of the K

variables in each of the K equations of the system individually.

According to the modeller's prior beliefs, the parameters that

determine the prior standard deviations are frequently confined to a

certain narrow range, say O<v J<3 and O<wJk<1, and are regarded as

equally likely within the range, but highly unlikely outside it.

Again, during the modelling process, it is important to remember

that the Bayesian procedure of Lltterman does not take account of

dependencies between VARcoefficients and is thus of a univariate

nature. Hence, in this analysis, whether the overall tightness (v.)
J

and the fraction of tightness (wjk) are set to too 'large' or

'small' values over the finite range will exert a direct impact on

the type of the model that one should construct. In particular.

three special cases need to be considered.

ease Ca): vJ=3 and WJk=l -- that is, both Vj and wjk are set to be

large values. In this case, the 'Bayesian' part of the BVARwill

virtually be cut out. The model will approach an UVARmodel and the

data will dominate determination of the coefficients almost

completely. Hence, If the variables are believed to be cl ose l y

related, a large value for wjk is acceptable.

ease (b): I'J-3 and wJk-O -- that is, I'J is set to be a large value'

while wjk is zero. As such, the 'Vector' part of the BVARwill

essentially be chopped off. The system will reduce to a set of K

unrestricted univariate autoregressions and the modeller's chanc~ of

discovering any important but unexpected historical relationships

between variables will be sharply limited. Thus, if the variables

are expected to be loosely related,

reasonable.

a small value for w
Jk rs

ease (c): I'J-O - "that is, I'J is set to be zero whatever wJk . is.

In this case, the system will eventually shrink to the standard

Minnes6taprior means - K independent random walks and the prior

will dictate the coefficients completely. Hence, if the variables.

are thought to be roughly unrelated random walks, a small value for

I'J is appropriate.
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These three cases represent extremes and the explicitly BVAR
forecasting model will most likely take intermediate values within
the specified ranges. Actually, in any intermediate position,
holding Vj and increasing wjk will mean that the standard deviation
of the prior will tend to be about the same for the coefficients of
each row of ~l except for a scaling factor (~j~k) that takes care
of different magnitudes of different variables. Holding v . and

Jlowering wJk will force all the off-diagonal elements, at all lags,
towards zero. On the other hand, holding wjk and increasing Vj will
tend to eliminate the effect of the prior on all coefficients,
whereas holding wjk and tightening Vj will push the diagonal
elements of ~1 towards 1 and all the off-diagonal elements towards
zero. In all cases, the intercept terms are left unrestricted and
assigned an effectively infinite prior standard deviation.

1\2The estimated univariate residual variance ~J described above can be
replaced approximately by the j-th diagonal ~element ~j~(~~) of the
KxK estimated residual covariance matrix l: of the multivariateu

the values of Vj and wjk are chosensystem (5.10a) if, and only if,
. 6to be 3 and 0, respectively.

In searching for the most appropriate setting of the hyperparameter
values, the objective facing the forecaster is to select that set of,
the hyperparameters which allows a forecast to be made optimally.
For this, one usual but informal method for picking among plausible
values is to see how a model based on alternative hyper-par-amet.ar-s

would have within-sample forecasts, provided that the same
regression process will continue to hold over the future period.
Various moderate weights are tried on those aggregates which are .

6In system (5.10a), the resulting
expressed as:

. 1fu= Y(IT - ~,(~.)- ~)Y'JT,
where -x.= [Xl" ..• Xt] .

(KxT)

ML estimator of l:
u

can be

x=[~ ..... xT-1]' and
( (1+Kp)xT)
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believed to be important for the prediction of the own variable in
question, while the weights on others which are expected to be less
important are held low and fixed. The best setting - and thus the
best final forecasting model - would be the one that seems to lead
to the smallest average forecasting errors of the historical data.

The j-th equation of the system with the priors presented above can
thus be written as

Vjt = 0 + o V1~-1 + ... + o V1 t- +
" ' " ' "P(OD ) (vjWj1crjcr1) (VjWj1CTj/pcr1)

+ 1 V + ... + o VJ t + ...
(V
j
) J,t-1 (v j/p) , -p

+ o VK~-1 + ... + o VK t- + Ujt;" ' " ' "P(VjWjKCTjCTK) (VJWjKCTj/pcrK)

uJt-NID(O, crJ~) ; O<V
j
:53; O<wjk:51;

J, k = 1, .... K; t = I, ... , T,

where all coefficients are set at their prior means and their prior
standard deviations are given in parentheses. In addition, as in the
stationary case, the prior parameter covariance matrix of this
typical equation may be reformulated as a (1+Kp)x (1+Kp) diagonal
matrix; that is,

YJ = diag[ OD, (VJWJl~J~1)2, ..., (vJWJ1~j/~1)2,
(vJ)2, ..., (vJ/p)2, ...,

(VJwJK~J~K)2, ..., (VJwJK~J/~K)2].

... ,

Using this reformulation, a more general form of the prior for the
system will be provided, and various problems associated with it

will be further discussed.

(3) A general expression of the prior

A general expression of the prior about the model's mean parameter
va lues and their standard deviations can be given by graphical and
algebraic methods· respectively, as illustrated below.
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(a) A graphical display

The combined effect of fixed prior means and varying prior standard
deviations for the lag coefficients of the typical equation J is
demonstrated in the accompanying figure 5.1.

Hypothetical distributions on
own lag coefficients AJJ•l

1st own lag AJJ•1
(vJ)

2nd own lag AJJ•2
(v J/2)

pth own lag AJJ.P
(v J/p)

Hypothetical distributions on
cross lag coefficients AJk•l

1st cross lag Ajk'A

(vJWjkCTl~k)

2nd cross lag AJk.~ A
(v jWJkCTj/2CTk)

o
Coemcient values

o
Coefficient values

Fig. 5.1 The loose random walk prior on the lag
coefficients of the typical equation J.

Fig. 5.1 shows two main kinds of normal curves attached to .the
coefficients of the own and cross lags in a typical equation.

With regard to the prior means. no matter how the standard
deviations change within the limits. the curves for all lag
coefficients other than the first own lag have their highest values
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(the highest prior densities over the regions for which they are
defined) at zero. The curve for the first lag of the own variable
has its highest value at one.

With respect to the prior standard deviations, though they are each
allowed to vary in value, the curves for recent values of variables
are more likely to be broad and low than less recent ones. Also,
regardless of the scale variability of different variables, the
curves for the own lags are more likely to be broad and low than the
corresponding cross ones. Hence, the curve for the first own lag is
relatively the broadest and lowest, which means that a wide range of
possible values for the coefficient has density not much lower than
the best guess, and that even values fairly far from the best guess
are not considered to be extremely improbable.

As lag length I increases, the curves for further lags of variables
become progressively more peaked and concentrated around the best
guess, restricting values to some narrow ranges. This implies that
with increasing lag length the modeller becomes more confident that
a zero coefficient will be consistent with a model that is likely to
forecast well.

(b) An algebraic description

The chosen stochastic prior information on the parameter vector ~J
can be represented by

where
o
o

IIr =-j
1

o

o
( (1+Kp)xl)

j = 1, ... , K,

o
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Ajj.P

AjK,
( (1+Kp)xl)

(5.14)

A vjJ,lYJ- :
vjj,p

VJK,
( (1+Kp)xl)



In this representation, there is a single 'I' in the known column
vector LJ corresponding to the first lag of the dependent variable
and a '0' on the diagonal of the known diagonal matrix B

j
corresponding to the deterministic component. Therefore, the
singularity of BJfij(=yJ1) (the inverse of the prior covariance
matrix) simply reflects the improper flat prior imposed.7

The use of the BVAR model in levels takes account of nonstationarity
in time series by imposing a unit prior on the first own lag.
Symmetric distributions around this prior mean will inevitably allow
for systems with undesirable explosive roots however. Although we
may recognize that the standard Minnesota prior is not the best, we
can also doubt that the gain that could be achieved by abandoning
the Gaussian form for our prior would be worth the price [see, for
details, Doan et al. (1984), p.7]. Also, when data are finite and
nonstationary, it may well be preferable to impose the cOintegration
restrictions together with the prior restrictions. However, in this
basic BVAR model, the information regarding cointegrating linear
combinations may be incorporated only impllcitly. Therefore, when
approaching time series, a more sophisticated BVAR model that
expl1ci tly brings in both prior and cointegration restrictions is
needed. A BVAR-EC model enables us to do Just this.

S.2.2b A Combined BVAR with EC Hodel

Consider now a cointegrated Gaussian, K-dimensional VAR(p) model
written in the error-correction version like (4.9), i.e.,

(5.15a)

e = Cl'Y ; t = 1, ... , T,-t-p - t-p
or

K p-1 t r
VYjt• CJ + r r AJn iVYn,t-i- r Wjs':s t-p + Ujt; with (5.15b)n=1i=1' s=1'

7Here, the use of BJBj may help avoid
operations with the element, infinity, in YJ.

inconvenient algebraic
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K
e = a'V = r a V .s,t-p -s-t-p L sn n t-p'n=l '

2ujt~NID(O, ~jj); 1 ~ r ~ K-l; j = 1, ..., K; t = 1, ..., T.

Both the prior and cointegration restrictions are explicitly imposed
tonto the parameters A j' J=l, ...,p-l, and ~ (1) for this system,

which can be used to describe, explain and forecast the statistical
variations of the data vector.

(1) The prior mean: a multivariate white noise process

From the derivation of A;(=-IK+Li~lAi)' j=l, ...,p-l, it can be seen
that in accordance with the random walk hypothesis for the original
VAR(p) coefficients (Ai)' a prior mean of one for the first own lag
will become a prior mean of zero after these linear transforms and
all other coefficients have priors centred on zero. Moreover, the
prior pdf for all lag coefficients (A~) is still in the multivariate
normal form (with mean zero and standard deviations nonzero). This

tis because AJ are some linear combination of Ai' all of which are
assumed independently normally distributed. This prior is consistent
not only with the random walk hypothesis for the nonstationary case
but also with the white noise proposition for the stationary one.
However, the error-correction term is negatively fed back into the
system as an exogenous vector at full weight along with the constant
term and the residual covariance matrix tu is common to both
competing models. In this situation, if the prior means were the
true parameter values, the process would tUrn out to be a weighted
sum of error-correction feedbacks and a multivariate white noise
(with or without drift) process; that is,

..- WCt_p + lit' (5.16a)
or

(S.16b)

Tbis~po81t1on seems to be reasonable for many macroeconomic
1/atl'abl'es,as most of them are believed to be 1(1), and thus
stat.tc5nary upon first differencing and cointegrating linear

118



combinations. If this be the case, the real driving force that sets
the system in motion must be the long-run equilibrium among the
variables being modelled. The future movements of the data should
therefore depend mainly on the useful long-run relationships, while
the short-run fluctuations are regarded as fairly uninteresting.

Given the above argument, all that remains is to specify the prior
parameter standard deviations that complete the determination of the
prior distributions.

(2) The prior standard deviation

In order to facilitate the determination of the standard deviations
for the model's lag coefficients, we start, as before, with the
estimation of a set of auxiliary AR-EC equations

(5.11)

t t2eJt~N ID(0, (1'J ); t = I, ... , T; J = I, ... , K,

I\tand store the estimated standard errors (1'J'J=I, ...,K, of the
residuals for all differenced series. Here, an estimated

1\ 1\ 1\error-correction term WJ€t is included in the LHS wi th w, the- - -p -J
J-th row vector of 0, and ~t (=Q' Yt ), the whole cOintegration- - -p - -p
errors, since a pure AR representation on first differences is
inappropriate in the presence of cOintegration. However, there seems
to be no reason why the residual standard errors measured above
should be different from those obtained in (5.12).8 Therefore, once
we get the estimated residual standard errors (~J) in levels, they
can be used in either case. The relative scales of these residual
standard errors will then be considered for each lag of each cross

BAs the univariate AR on (5.12) (or AR-EC on (5.17» is equivalent
to the mul tlvariate VAR on (5.lOa) (or VAR-EC on (5.lSa» with
shrunken diagonal parameter matrices Ai (or A;) and ~u is common to
both models, the esUmated residual standard errors obtained either
from (5.12) in levels or from (5.17) in first differences should be

At 1\ t (2)treated as exactly the same; i.e., t1'J~J or eJt.ejt~NID O,t1'j .
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variable in every equation, to make the standard deviations of

different variables comparable.

The prior standard deviations for the t
elements Ajk,l

in a general prior

of
1=1, ... ,p-1, can then be formulated type.
Specifically, we have

SU, k , 1) = {
if j = k

if j ~k ,

or, in matrix form,

S(j, k, 1) =

Here again the overall tightness of the prior vj and its various

fractions wJk are allowed to take on any value in some particular

intervals, say O<v
J
<3 and O<wjk<l, with uniform densities. In a

search for values for the best setting of the hyperparameters, a

similar method could be applied using an appropriate selection

criterion (e.g. Thell-U statistic). The setting with the Ioves t

average Theil-U values, and thus the best simulated out-of-sample

forecasts within the sample period, would then be selected as the

'best'. To illustrate a composite effect of the choice of these·

prior standard deviation parameters and the hypothesis of A (1)
p

having a reduced rank r , O<r<K, the contents of Table 5.1 may be

considered.
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I

K unrestrictedK unrestricted univariate UnrestrictedwJk=O univariate AR processes AR-ECAR processes on first processesv =3 on levels differencesj

BVAR on levels BVAR on first BVAR-ECMdifferences with datawith data with data dependentO<wjk<t. dependent dependent diagonal tdiagonal diagonal telements of ~l elements of Al elements of Al

K independent EC feedbacksK independent plus whitev =0 random walk white noise noiseJ processes processes processes
BVAR on firstBVAR on differences BVAR-ECM withlevels with with (ignoring(regardless (irrespective the scaleof the scale of the scale variability)variablli ty) variability) about thew -1. about the about the same priorjk same prior same prior standardstandard standard deviation ondeviation on deviation on each row Ateach row each row t elements ofelements of Al -1O<vJ<3 elements of Al

Table 5.1: The Joint effect of the selection of the
parameters vj• wjk and r on the co integrated
Gaussian VAR(p) process

r=K r=O O<r<K

UVAR on
first

differences
WJk=l UVAR

on levels VAR-ECM

K restricted
univariate

AR processes
on first

differences
BVAR

on first
differences

K restricted
univariate

AR processes
on levels

Restricted
AR-EC

processes
WJk""O

BVAR
on levels BVAR-ECM

possible BVAR and BVAR-EC models .• Indicate. varlous
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In the BVAR-EC system studied here, the estimated error-correction
term is often rather insensitive to the precise

At2structure adopted. The residual variance ~j
substituted by the j-th diagonal element of f of

u
if, and only if, the values of vJ and wjk are taken to be 3 and 0,

9respectively.

form of the prior
(or ~j2) can be
the system (5.15a)

A typical equation of the system with both the prior and
cointegration restrictions specified can thus be expressed as

VYjt = 0
(co)

+ ... + o VYJ,t-p+1
(vJ/(p-ll)

+ ...

+ + '"

+ +

- wj1£1.t-p -

Ujt-NID(O, ~j~);
j. k = 1•...• K:

O<Vj~3: O<Wjk~1;
t = 1..... T.

Here all coefficients. except the adjustment (error-correction)
parameters. are set at their prior means. and the numbers in
parentheses are their prior standard deviations. The r

error-correction terms in each equation are now supposed known and
unconstrained in a Bayesian specification framework. and thus
included at full weight along with the constant term.

as:
9In system (5.15a), the resulting ML estimator of ~u can be written

fu = (V:l+ ~ (1):l_pJ(Ir - V~' (V~V~' )-IV~) (V:l + ~ (1):l_p)•IT.
where vra[VX1,.··, VXr], :l_p=[X1-P" .. ,XT-pJ, V~=[V~ •...•V~T-tl and

(KxT) (KxT) «1+K(p-1»xT)

V~t.[ tt j'
-t-p+2

( ( 1+1((p-1 »x 1)
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Also. as is traditional. the available prior information on the
vector of interest at=(c A tAt A t~J J' J1•1....• jj•1•...• jj•p-l .....
can be written in the form

parameter
At).jK.p-l

t
r =-J

t t t t
BJ~J + YJ with YJ ~ NID(a. I1+K(p-1»);
J = 1•...• K.

(5.18)

where
t!:J = (0. a. .... a ..... a . ... ,

((1+K(p-l) lxt )

diag(o·~1/VJWJ1~J·····1/VJ"" .(P-1)/VJ •...•(P-1)~K/VJwJK~J);
((1+K(p-1»x(1+K(p-1»)

t t t t t'~J = (CJ• AJ1•1• ...• AJJ•1• ...• AJJ•P-1• ...• AJK•P-1) ; and
((1+K(p-1»x1)
t t

...• vJJ•1, ...• vJJ•p-1•
((1+K(p-l) )xl)

t •
...• vJK.P-l)

t tIn this formulation. !:J is a vector of zeros. Bj a diagonal matrix
with one zero on its diagonal corresponding to the constant term.
Hence. B;B;' is singular here as well. reflecting the improper flat
prior on the constant term in each equation.

One important feature of this BVAR-EC model is that it allows the
two sets of restrictions - the linear prior restrictions on At,-J'
J=l •...•p-l. and the nonlinear cointegration restrictions on A (1)

p
to be disentangled. Therefore. the conceptually distinct prior

and reduced rank hypothesis implied by cointegration can each be,
investigated against facts. This model-building strategy may be
useful for forecasting applications.

Having dealt with the determination of the prior and cointegration
restrictions. we now turn to their incorporation in vector
autoregressions. The proposed model. computed as part of the
trial-and-error process. uses all currently available sample
evidence to revise the prior probablli ties. and the optimal
shrinkage point estimators can thus be obtained via the use of
Theil's mixed estimation technique. The validity of the final
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forecasting model may also be judged internally by the important
post-sample predictive testing, as was done in Litterman (1986a).

§5.3 Estimation of the Prespecified BVAR Model with Both Prior
and Cointegration Restrictions

In general, the estimated values for a typical equation's parameter
vector, say ~j (or ~~), can be presented solely in terms of a
complete posterior density via Bayes' theorem, or alternatively.
optimal point estimates through mixed estimation. For simplicity,
however, we will focus on the point estimates of the regression
coefficients using Theil's mixed estimation procedure.

Suppose a sample series of T observations is generated by the J-th
equation of the system (5.10a). Stacking the T observations. we have

J = 1•...• K. (5.19)

where XJ = (YJ1' ...• YjT)';
(Txl)

X = (Xo •...• XT-1)' with ~t=
(Tx(1+Kp))

YK.t-p+l
((1+Kp)x1)

t!J I: (C J' AJ1•l' •.•• Aj1 • P • ...• AJK.l' ...• AjK.p) '; and
((1+Kp)x1)

Yj = (uj1•...• UJT)·~NID(O. Uj~IT)'
(Tx1)

Y1.t-p+l

Then. if we employ this type of sample information in conjunction·
with the prior information contained in the process (5.14)

j • 1. . ..• K.
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where Yj~NID(O, 11+KP)' and E(YjYj)=O, the shrinkage estimator of ~j
is:

(5.20)

Now suppose the observed data chosen is produced by the set of the
equations of the system (S.1Sa)

tVZ_
J
,= 'ilVQ + u.·~j -J' J = 1, ... , K, (5.21)

where 'ilZj= ['ilYJl+ ~jl~l,l-P + ... + ~jr~r'l-j

AA' AA'ilY + W ~ + ••• + W ~JT Jl~1,T-p Jr~r,T-
(Txl)

= [V:j I] + [[ ~j 1 ... ~j r] [~I : I-p ... ~1:T-j] ,
'ilY ~ . ~ .

JT r,l-p r,T-
(Txl) (1xr) (rxT)

= ['iI~j1][ A A [~11':' ~1K][~l'l-P ...~1, T-j]:. + [Wjl ... Wj ] . . . ,. r...
. A A

'ilYjT ex 1 ... exK YK 1 ...VKr r , -p ,T-
(Txl) (1xr) (rxK) (KxT)

'iI~= ('ilXo'..., V~T-1)' with 'iI~t=
(Tx(1+K(p-1»)

'ilY1,t-p+2

'ilYK,t-p+2
«1+K(p-l»x1)

~; = (CJ' AJ~, l' ..., AJ~,p-1' ..., AJi, l' ..., AJi,P-1) '; and
«(1+KCp-U )xl)

YJ = (UJ1, ..., UJT)'~NID(O, ~J~IT)'(Tx1)
Then, provided that all the error-correction terms are known before
estimation, by combining the data above with the prior held in the
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process (5.18)

t+ v .
-j' j = 1, ... , K,

where Y;~NID(O, I1+K(p-l»)' and E(YjY;')=O,
twe obtain the mixed estimator for ~j of the j-th equation

at = [Rt'Rt + -2'ilX''ilX]-1[Rt,t -2'ilX' ]~j -j -j ~jJ - - -j £j + ~jj - 'ilZj
t 1:1as £j = O. (5.22)

This estimator looks akin to the LS estimator in first differences
t f 2Rt'Rt Wh t i likexcep or ~jj_j _j' a s more, e the estimator given by

(5.20), it is constructed for each of the K equations of the system
separately and thus can be easily applied.

When the coefficients of a Bayes set-up have been estimated in this
way from the available prior and data, the estimated process may be
used for prediction and simulation.

§S.4 Prediction of the Mixed-Estimated BVAR Model

Similar principles to the Bayesian prediction procedure outlined in
Chapter 3 can be applied here to establish predictive densities, in
the form of a multivariate-t distribution, for both cases., In
particular, if point predictions are desired, the optimal out-of-
sample, multi-step predictor, based on the minimization of squared
prediction error, can be derived quite simply from the shrinkage'
estimator or the mixed estimator ~j (or ~~) period by period.

Suppose we wish to derive a set of point predictions for h future
values on the j-th variable YJ, say Yj, which is assumed to satisfy
the same regression model generating its sample observations Yj as
in (5.19); 1.e.

j = 1•...• K. (5.23)
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where Yj = (Yj•T+1 •...• yj•T+h)·;10
(hxl)

& = (~T' .... ~T+h-l)' with ~t=
(hx (1+Kp))

YK.t-p+l
«(1 +Kp)xl)

!!.j = (Cj' Aj 1 , l' ...• Aj 1 •p' ..., AjK. l' ...• AjK. p) '; and
((1+Kp)xl)

Uj.T+h)·~NID(O. Uj~Ih) with E(YjYj)=O.

Y 1.t-p+l

(Uj,T+l' ...•
(hxl)

Then, given O"jJ and forecast values in & as if they were actual
observed data as the date is advanced into the future. the optimal
point predictions of Yj over the h future periods would be

Yj = E(YJ) = ~J

= &[BjBJ + O"j~~.~]-l[Bj!:J+ O"j~~'Yj];
J = I, ... , K.

(5.24)

The associated covariance matrix is given by

E(YJ - E(YJ)) (~J - E(Yj))'
= E(~J + Yj - ~j)(~J + YJ - ~J)'

= E(&(~J - ~J) + Yj)(&(!!.j - ~J) + YJ)'

= &E[@j - ~j) @j - ~j) ,]&. + E(YjYj)

= &Yj&' + crj~Ih
-( -2 )-1- 2= ~ BjRj + Vjj~'X X' + O"jJIh· (5.25)

Suppose, on the other hand, we wish to derive predictions for Yj in
the next h periods through the alternative regression model (5.21);·

10Here, the "hat" over the predicted value is omitted to simplify the
presentation.
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viz.
- - t A - A _Uy. = U~j - W'l£l - - W. £ + YjJ - J - Jr-r

- t (A )- -= U~j - w.®Ih £ + y.;- -J - J j = l, ... , K, (5.26)

where UYj = (UYJ,T+l' ...,VYj,T+h)';
(hxl)

U& = (U~T' ..., V~T+h-l)' with V~t=
(hx(l+K(p-l»)

~~ = (Cj, Aj~,l' ...,

Qj = (Djl' ..., Djr);
(f xr-)

~ = (~i· ... ,~~), with ~l = [ ~l, T+l-p J; and
(hrxl) :

Ae-i,T+h-p
(hxl)

Yj = (UJ,T+l' ..., UJ,T+h)'-NID(O, ~j~Ih) with E(YjYj)=O.
(hxl)

UYK,t-p+2
«l+K(p-l»xl)

Aji,p-l' ..., Aj;,l' ..., Aj;,P-l) ,;
«l+K(p-l»xl)

VYl,t-p+2

Then, given ug, CTJJ, Qj and E, prior to making a forecast, the
optimal point predictions of the differenced series UYj would be.

VYJ = E(VXJ)

• V~~ - (QJ®Ih)~
= Vg[R~'R~ + CT:;~V~'V~]-l[R~'l:;+ ~J~~'V~J] - (QJ®Ih)~
= V&[CTJ~R~'R;+ V~'V~]-lV~'V~J - @J®Ih)~; (5.27)

tJ = 1•...• K; as l:J= O.

with the covariance matrix
E(ViJ - E(VXJ)) (vYj - E(vYj))'

=E(v&(~~ - ~~) + YJ)(V&(~; - ~~) + YJ)'
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(5.28)

Moreover, since Yjt=VYjt+Yj,t-1' the optimal point predictions of h
future values for the original level series Yj can be derived
recursively from (5.27) by using the chain rule of forecasting or
backward substitution. This takes the calculated one-step-ahead
forecast as the basis for a two-step-ahead forecast and so on, until

11the h-step-ahead forecast has been reached. We thus have

Yj,T+l = VYj,T+l + YJ,T'
YJ,T+2 = VYj,T+2 + Yj,T+1 = VYj,T+2 + VYj,T+1 + YJ,T'

Yj,T+h = VYj,T+h + ... + VYj,T+1 + Yj,T
h-l

=Y +[VY.J,T i=O J,T+h-i.

In matrix form, we find that
...t ...
YJ = YJT + ~VYJ

= YjT + ~V&[O'j1~'B~ + V~'V~]-lV~'V~j
- ih (Qj®Ih)~; J = 1I ..., K,

where X; = (Yj,T+1' ... I YJIT+h)I;
(hxl)

YjT = (Yj,T' ..., Yj,T)';
(hxl)

(5.29)

[

1 0 ];

1 ... 1

(hxh)
and

VXJ = (VYJIT+1, ."1 VYJ,T+h)' I
(hx1)

with the covariance matrix given by

11SeePindyck & Rubinfeld (1991), Chapter 18, for further details.

129



= E(YjT + ihVYj - (YjT + ihVYj))
(YjT + ihVYj - (YjT + ihVYJ))'

= E(ih(VYj - VYj)) (ih(VYj - VYj))'
= ihE[(VYj - VYj) (VYj - VYj)']ih
= (ihV&) [3;'3; + ~~~V~'V~]-l(ihV&)' + ih~J~Ihih' (5.30)

A comparison of Eq. (5.25) with Eq. (5.30) should make it clear that
only in the second case can the valid reduced-rank restrictions be
explicitly incorporated, along with the prior restrictions, to
improve forecast accuracy over long forecast horizons. The two kinds
of optimal point predictions (or mixed estimator forecasts) will be
calculated in turn in a multicountry context, and then analysed and
compared systematically in subsequent forecasting applications.

A AtIn addition, the hxl mean vector YJ or Yj, as well as the squared
roots of the diagonal elements of the corresponding hxh covariance
matrix (5.25) or (5.30) can be used to construct confidence
intervals at a required critical value for the h elements of Y

J
or

-tYj, respectively. It is now generally recognised that 1(1) variables
can only be forecast with increasingly wide confidence intervals,
whereas stationary, cointegrated linear combinations of such
variables have finite confidence intervals as the forecast horizon
lengthens [Clements & Hendry (1995), p.127].

§s.s Conclusion

In this chapter, we have discussed the construction, estimation and.
prediction of both BVAR and BVAR-EC models for integrated and
cointegrated variables. Insofar as macroeconometric models forecast
the future, a traditional BVAR formulation utilizes the prior
restrictions to increase the model's forecasting capability for
small sample sizes. A statistical EC representation, in contrast,
capitalizes on the long-run constraints implied by cOintegration to
enhance the model's predictive power over long forecast horizons.
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The focus of this study is thus on whether prior and cointegration
restrictions can be both imposed explicitly, rather than implicitly,
during the estimation stage. This point has hitherto received
little, if any, attention in the literature but will most probably
have significant implications for the practice of BVAR forecasting.

Systematic exploration of the sensitivity of forecasts to decisions
taken concerning the priors on parameter values gives no guarantee
that we can obtain the most suitable prior for the period to be
forecast. Litterman's vector random walk prior, as well as its
possible linear transformations, is suitable for most economic
variables, but not all. As is noted in Artis et al. (1990a, p.350):

Our experience has been that the gains from adopting
the Bayesian approach may be offset by setting up an
inappropriate prior.

To rephrase this, the order of precedence in terms of forecast
accuracy is that a good Bayesian will beat a non-Bayesian, which
will in turn beat a poor Bayesian [Granger (ed) (1991), p.18].
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CHAPTER 6

ESTIMATION AND HYPOTHESIS TESTING IN MULTIVARIATE
SYSTEMS OF EQUATIONS

§6.1 Introduction

Given the modelling methodology formalized in the preceding
chapters, this and next chapters move directly through estimation,
testing and construction of appropriate BVAR forecasting models.
They present empirical evidence, testing results and forecast
accuracy assessment for both multivariate single- and cross-country
cases. The main goal in this part of the study is to explore the
properties of and relationships between the time series involved; to
investigate the implications of imposing prior and long-run
constraints for forecast accuracy at small sample sizes; and to
establish a general quarterly BVAR model within a multicountry
context. A practical six-step model-building procedure is employed
to this purpose.

(1) Pick the four major national economies in Europe, i.e.:
the United Kingdom, Germany, France and Italy.

(2) Select a set of distinct aggregate variables of interest for use
in the analysis:

(a) choose a similar set of macroeconomic aggregates: namely,
the real (inflation-adjusted) GDP/GNP, Money Supply (as
measured by MOIMI), Consumer Price Index (1990/1991=100, CPI
for short), and (possibly) 3-Month Treasury Bill Rate (TBR)
for one country after another, assuming that each member

1economy is described by these macroeconomic indicators;

1The nature of the intertemporal correlations among these variables
within the context of VAR processes has received considerable
attention in the empirical business cycle literature, e.g.,
Blanchard (1989), Gali (1992), Litterman & Weiss (1985), Sims
(1980a), and Stock & Watson (1988a, 1988b).

132



(b) take natural logs of all series (except Treasury bills); and
(c) plot these series both individually and Jointly, and then

analyse them.

(3) Examine the presence of long-run cOintegrating relationships:
(a) test for unit roots or the degree of integration in each

individual series;
(b) test for the maximum lag length of the VAR model. P. for

those variables that are to be modelled;
(c) test for the rank order of the cointegration space, r, for

those integrated variables appearing in the model, provided
that the value of p is specified;

(d) estimate cointegrating vectors (eVs) «, adjustment matrix w
and long-run matrix A (11(=w«'), and save the residual

"" -pvectors ~t(=~'Yt) associated with the reVs. given that the
value of r is fixed; and

(e) graph the saved residuals of the eves) to check for possible
nonstationary patterns, and/or test them to see if they are
1(0) .

(4) Reveal the best scalar settings of the hyperparameters in both
symmetric and general priors over the whole simulated 'out-of-
sample' forecast period:

(a) run a system of unrestricted univariate OLS models to get
benchmark Theil U's;

(b) run a system of restricted univariate models with a standard
value for the overall tightness parameter vJ. If the Theil
U's are getting worse, loosen up on the diagonal elements;
and

(c) run a standard symmetric prior for the tightness parameters
on the 'other' variables in the relative tightness function
f(i,J), ~Jk' If the Theil U's are getting worse, tighten up
on the off-diagonal elements.

(5) Formulate the empirical BVAR and BVAR-Ee forecasting models:
(a) set up a BVAR model for the chosen set of variables in

levels with the prespecified stochastic prior restrictions
imposed on its lagged coefficients;
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(b) set up a BVAR-EC model in (first) differences if there is
cointegration between the integrated (1(1» variables:

(1) fit the r lagged estimated cointegrating residuals
~t-p(=g'Yt-p) into each of the recursive equations of the
bivariate and/or multivariate error-correction models
(ECMs) as additional regressor(s);

(Ii) impose the prior distributions associated with the 'best'
setting of the hyperparameters on all coefficients except
for the constant and error-correction terms. Then
estimate the resulting equations (subject to both prior
and cointegration restrictions) Jointly using the mixed
rolling estimation method;

(iU) use identities Yjt=Yj,t-1+VYjt' j=1, ...,K, to transform
the successive forecasted difference series into level
series; and

(Iv) update the r lagged error-correction terms (~t-p) at each
forecast step, assuming that the 'equilibrium
relationships' defined by the r CVs Q will continue to
hold over the forecasting horizons.

(6) Compute a series of ex-ante quarterly forecasts based on the
estimated BVAR and BVAR-EC models and evaluate the relative
forecasting performance over time:

(a) use BVAR and BVAR-EC models to generate a series of 1-step
and multi-step quarterly (point) forecasts for the leading
European industrial economies. Optimally, a Kalman fllter
OCF) estimation method should be used to facilitate the
remaining successive forecasts by re-estimating coefficients
in the models prior to each forecast period. Afterwards, the
anti-log transformation of the forecasted series could be
taken. then

(b) test efficiency and unbiasedness properties of the quarterly
forecasts and undertake a systematic comparison of the
forecasts across alternative models.

The systematic sIx-step procedure offered here is designed to be
flexible and readlly implemented in building a BVAR or a BVAR-EC
model. and will be followed, step by step, in the sections that
follow.
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§6.2 Mainstream Data-Mining (MOM) -- a Suitable Way of Database
Assembly from Various Currently Existing Databanks

The term 'data mining', or sometimes 'specification searches', means
the re-use of the same limited data both to estimate and to revise a
model, since a model must be revised in the light of data evidence
unless it emerges perfect at the first attempt. The industrious
implication of the word 'mining' suggests that the activity may be
productive. However, a better approach in the process of model
construction is the explicit use of prior and cointegration
restrictions, as remarked in the previous chapters. For further
elaboration and references see Leamer (1991, pp.235-58). It has been
noticed that in practical time series analyses, a quarterly model is
often used for the study of important phenomena like business cycles
[on this see Bodkin, Klein & Marwah (1991), pp.89-90]. But
sometimes, quarterly models are constrained by the availability of
data. To create an adequate quarterly data set upon which to base
analyses is therefore an important aspect of macroeconometric work.

6.2.1 Accumulation, Selection and Transformation of Raw
Data Series

In this section, we start with the selection of the raw data on a
quarterly basis, and then move on to the common instantaneous
transforma.tions of the data series. Usually, collecting a large
consistent data set (for a reasonable span of time) requires access
to the various existing large and high-quality databanks and
networked information servers. Such a database is held on Manchester
Information Datasets and Associated Services (MIDAS), which provides
a National Datasets Service to the UK academic community.

6.2.1a The Select10n of the Data

All aggregate quarterly time-series data are obtained from a
database first assembled from the DNS Macroeconomic Time Series
(MTS), the InternatIonal Monetary Fund (IMF) International Financial
Statistics (IFS), and the DEeD MaIn Economic Indicators (MEl)
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databanks. These can be accessed freely via MIDAS, and fall into two
groups. The data for the variables labelled CPI and TBR are
seasonally unadjusted and chosen from the IMF IFS sources, while the
data for the real GOP/GNP and MO/Ml are seasonally adjusted and
taken to be the DECO MEl and ONS MTS data.2 The series are
subsequently reset so that all are based upon the current benchmark
year or updated using recent monthly issues of the relevant
publications. Further details, including sources, names and
explanations, of the data chosen for the major four (and other)
European economies are given in Appendix C of this thesis.

6.2.1b The Transformation of the Data

When working with potentially nonstationary processes, certain
transformations of the original series to render it 1(0) by way of
taking differences, log-differences and establishing cOintegrating
combinations are often required. There are two maIn advantages of
taking logs instead of levels. One Is that taking natural logs of
exponentially growing series helps reduce heteroskedasticity of the
empirical series, as the series with a fixed percentage rise will be
linearized. Although taking logs cannot remove changes in the
variance per se, the assumption of constant variance may prove to be
a more reasonable approximation for a logarithmic series. Examples
would be real GOP/GNP, monetary aggregates or consumer prices.
Non-trending series, such as interest rates, should be left in
levels. The second is that the usual linear relationships among the
absolute changes of the candidates being modelled become more
meaningful log-linear channels that convey relative changes between
one of the variables and the past of the other explanatory variables
involved. The sign and size of the additive error corrected for each
of the dependent variables in the error correction mechanism will
depend on the direction and magnitude of the proportionate or
percentage change of the variable considered each period. These

2Many released records accessed by and downloaded from terminals in
a network are 'long consistent', but one should be aware of possible
limitations of almost any database to be used at this stage. Such
limitations may stem either from changes in economic structure and
policy regimes or from changes in definition of a given series and
delays of new releases.
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points have important implications in empirical applications.

Here, all series but short-term interest rates are first transformed
to logs prior to analysis. The macro data used with each country
will be a group of four as follows:

LGDP/LGNP = log of GDP/GNP, at constant prices (adJ.)
LMO/LM1 = log of Money Supply MO/M1 (adJ.)
LCPI = log of the Consumer Price Index (1990/1991=100) (orig.)
TBR = 3-Month Treasury Bill Rate (orig.).

Whilst practice might vary on this, this four-candidate (K=4)
quarterly system is considered for three reasons: (a) the forecasts
of these macroeconomic variables are commonly found in public
discussion [cf. Artis et al. (1990a), Litterman & Weiss (1985), Sims
(1980a), and Wallis (1989) J: (b) the choice of this subset has been
found to be adequate for the purpose of conducting a real-time
forecast comparison between the BYARs and other conventional
competing techniques commercially available [cf. Artis et al. (1990a,
1990b), and Spencer (1993)J; and (c) the official macroeconomic data
samples on the subset can be easily assembled, updated and
transformed in ASCII files from ONS, IMF and DECD sources.

In this work, the sample period for the UK is 1969Q2-1996Q3
inclusive; for Germany 1975Q3-1992Q4: for France 1979Q1-1996Q3: and
for Italy 1977Q2-1996Q3, the latest available at the time of the
analysis. Hence, the precise estimation periods used do vary with
specific country cases. It can be seen from the data appendix that,
in almost all of these countries, yield on T-bills appears to be the
shortest one among existing series. Thus, if it is included, it

restricts the length of the sample. Moreover, in practical model
building, all the associated tests will be based on a given subset
of data through 1990Q4, reserving at least 2-years data, or 8 data
points, from 1991Q1 onwards for simulated 'out-of-sample' mul ti-
period forecasts.

However, before testing and finally specifying a 'good' forecasting
model based on the available prior and sample information, a
preliminary graphical inspection of the level series, after· the
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necessary transformations, can be a useful adjunct to formal models.
See Clements and Hendry (1992a, p.9). After all, forecasters should
know where the economy is before providing a reasonable picture of
where it is going. See Pain and Britton (1992, p.87) among others.

6.2.2 Plotting, Survey and Analysis of the Available
Data Samples

The observed series are plotted against time, both individually and
jointly, to establish what are the dominant features of the series
that a model will need to capture. These graphics may well indicate
whether the series is subject to structural changes, either
throughout the series, or at particular points in time. They may
also suggest whether a group of time-series trajectories move
roughly together or bring to light some unexpected effects. In fact,
it is the examination of the historical data, combined with prior
knowledge of the nature of the series, which provides the basis for
model specification.

Presented below are the time plots of the four transformed
macroeconomic indicators for the four major industrial countries in
Europe over both the 'inside-sample' and 'outside-sample' periods.
All these graphs are depicted through use of GiveWin under Windows
and examined especially within the sample. Over that period, five
important episodes are of interest: the rapid growth in overall
activity in 1973 and 1987-88 (with the subsequent inflationary
pressures), and the recessions of 1974-5, 1979-81 and 1991-2.

Real GDP/GNP growth

Figs. 6.1 and 6.2 show a block of four time plots for British LGDP
(1990 Prices), German LGNP (1985 Prices), French LGDP (1980 Prices)
and Italian LGDP (1990 Prices) at seasonally adjusted annual rates,
and also a Joint one of these four, over the period 1971Q1-1992Q4.
There is a clear long-run upward trend in all four series. But, in
addition, the plots of these series show marked close cyclical
behaviour across different countries during the period of fit as the
economies move from boom to recession and back again. Indeed, we
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would probably have ascertained this from the economic history of
the period, without even looking at the graphs.

The boom in European economic activity in the late 1980s was
associated with very rapid growth of European trade, and the
downturn in the growth of activity was inevitably associated with a
slowdown in European trade growth. The strong growth of the
newly-industrialising countries in the Far East along with China, in
conjunct ion with post-war reconstruction in the Gulf, was a major
factor behind the trade growth. Within Europe, growth in the 'Big
Four' economies began to slow down at the end of 1989, but the early
signs of recession were muted by exceptionally strong growth in
Germany in 1990, as re-unification resulted in a sharp increase in
demand for West German goods from East Germany. German reunification
has turned out to be an expensive process, however. The costs of
unification have created a substantial and continuing public sector
deficit and caused the German central bank (the Bundesbank) to
tighten its monetary policy. This acted as a break on output growth
throughout Europe. The incorporation of a cyclical component in
models for the real GOP/GNP of the E~ropean economies will therefore
play an essential role in providing a better description of these
series. Developments in Germany have also extended the period of
slow growth and helped to make growth more synchronised between the
member states of the European Community. The observation that the
stochastic properties of the aggregates examined appear to change in
different phases implies that their characteristic features do not

3necessarily remain the same over time. This is typical of many
economic and social time series.

3There are probably some other reasons for the lingering output
growth in these countries, particularly in the UK at her early
stages. One reason for this is that what we want is the real GOP (or
GOP at constant prices). But what we can actually get is the nominal
GOP (or GOP at current prices) and the GOP Implicit Price Deflator
over the period 1971Q4 to 199204. Although both of them are
seasonally adjusted and rise smoothly, there is no guarantee that
the real GDP worked out by the ratio of the first (nominal GOP) to
the second (implicit price deflator) wlll go up in every step,
unless it is adjusted on itself as we will see from post-1993. Even
though the real GOP derived in this way (from the DECO MEl sources)
does not rise as smoothly as the usual adjusted data, it is still
said to be 'adjusted't because it is not original.
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Honey supply

Recently, most European countries have been targeting the wider
definition of the money supply, correlating in line with their
corresponding EMS partners.4 In general, the wider the definition,
the more direct the relationship between monetary growth and other
economic variables, as it is of considerable importance in
influencing the spending of individuals. For reasons of paucity of
the available data, however, we choose the basic money stock MO/M1
instead of a broad money target. The data for announced monetary
target M3 in Germany and France are only available from 1988Q1 (see
IMF IFS, September 1991) and 1987Q1 (IMF IFS, July 1990)
respectively, although the use of broad money is to be preferred,
when available.

Figs. 6.3 and 6.4 respectively show the separate and Joint time
plots of LMO/LM1 for the Big Four over the period 1969Q2-1996Q4.
Whilst LMO/LM1 rises approximately in line in all four of these
series, there is a dramatic increase in Germany's LM1 in the first
quarter of 1991. Rapid domestic private sector credit growth,
primarily due to privatisations and government subsidies for
construction and investment in eastern Germany, explains much of
this growth. The German authorities did not revise their monetary
target when they raised the discount rate, and they are currently
suffering a significant target overshoot for all German money. There
may, however, be good temporary reasons for this. The circulation of
the D-Mark has risen in the east as the privatisation process
proceeds.

Consumer pr1ce 1nd1ces

All series used are seasonally adjusted, except for aggregate
consumer prices and treasury-bill interest rates. Figs. 6.5 and 6.6
present individual graphs of LCPI for the major four industrialised
countries in Europe over the period 1960Q1-1996Q3, and a joint one,

4The EMS, designed primarily to keep the member countries' exchange
rates within the ltmits set, can be best construed as German-led, so
that other countries'peg to the D-Mark while Germany pursues.
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having a comparable vertical scale.

As far as individual price series are concerned, it can be seen that
they all show an upward trend over time, but unadjusted price
movements display only mild seasonality during the study. On the
other hand, it can be seen that the cyclical fluctuations of a group
of price series are synchronised across countries. Intuitively the
reason is that if these countries were to form the core of a
monetary union in Europe then eventually they would have to share
essentially the same rate of consumer price inflation. This required
that the aggregate price levels, as well as the aggregate inflation
rates, had to adjust in different countries. Furthermore, the
cyclical developments of the prices seem to be well matched by those
of output growth within each country. In the early-1980s, the
exceptionally strong GDP growth caused consumer prices to rise as a
result of increased demand. In contrast, all prices fell in nominal
terms during the trough of economic activity in 1990, contributing
to the general deceleration in inflation rates.

3-month interest rates

Unlike the first three indicator series, the short interest rates of
the Big Four appear to be almost trend-free in the long run. But, as
can be seen from Figs. 6.7 and 6.8 over recent years, there has been
a roughly downward trend in all four series in addition to
coincidental movements between them. The underlying cause of this
was policy commitments such as the decision to form a monetary union
in 1999 and the need for interest rates in Europe to converge before
that date. Interest d1fferentials some 5 percent higher in Italy
than in Germany 1ndicate that a realIgnment of the Lira was
anticipated. This policy, however, would not lead to such a big loss
in cred1bi11ty for anyone country as would result from a unilateral
adjustment. Hence, it would allow both the Italians to realign
downwards and the Germans to realign upwards.

Moreover, as 18 shown in Fig. 6.9, over the past decade interest-
rate fluctuations seem to be followed by the cyclical movements of
their corresponding LGDP/LGNP after one or one-and-a-half years,
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reflecting in part the policy stance of different governments by
changes in interest rates in response to economic growth at
different periods. Usually, the introduction of a high real interest
rate may either be to dampen the overheated economy or be regarded
as the signs of a recession, although the precise effects of this
instrument are by no means perfectly understood. It may take a
couple of years or more to have its full effects [George (1997),
p.7]. A sharp cut in interest rates can be conceived of as an
important stimulus to economic recovery and we would thus expect
GOP/GNP to grow after such a cut.

Fig. 6.9 also shows that the British authori ties had been cutting
interest rates in response to a slowdown in activity, whilst the
Germans probably had not. The sustained high level of German real
interest rates, largely due to the pressure of the burgeoning fiscal
deficit and its implications for the stock of debt, had serious
consequences. The commitment of Sterling, the Franc and the Lira to
the European exchange rate mechanism (ERM) of the EMS meant that the
other competitors had also to keep their interest rates high
vis-a-vis Germany. This did not suit the cyclical position of those
countr les, and the constraint on output growth of high real interest
rates was exacerbated by the consequent loss of compet it1veness.
Clearly, sterling's leaving the ERM in September 1992 was germane to
all of this.

Fig. 6.10 shows (to a roughly comparable scale) the graph of LGOP
and that of TBR shifted 6 quarters to the right (i.e., the latter
led the former by 6 quarters) for the UK over the last 30 years or
so. Comparing the .UK's LGDP and TBR, the historical negative
correlation between the two stands out. That is, if the UK short
interest rates are moved 6 quarters to the right relative to her
LGDP along the time-axis, the two series will move inversely.
Sometimes, however, the nature of what we observe may well be as
much political as economic, as it may be largely generated by the
artificially stimulated recovery before elections. The sharp cuts in
interest rates in the hope they would aid the recovery indicate
again that the lovernment in office was willing to take any action
to kick-start recovery. It also smacked of political desperation.
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§6.3 Multi-Country Modelling(MCM) ---A Flexible Method of Hypothesis
Testing on Popular Econometric Software Packages

The aim of this section is to proceed further along the six-step
process wi th a focus on formulation of empirical BVAR and BVAR-EC
forecasting models for the four major European economies. Several
frequently requested tests associated with them will be considered
successively. These are: (a) the treatment of the order of
integration of each series involved; (b) the choice of the
appropriate lag length of a finite-order VAR in levels; (c) the
determination of stationary cointegrated linear comb inations; and
(d) the exploration of the best setting of the prior
hyperparameters. In this study, all the necessary computations will
be carried out using the available Microfit, MicroTSP and RATS
software packages on a PC, with graphic and tabular displays for the
final resul ts.

6.3.1 Determination of Long-Run Equilibrium Relationships

In order to characterise the long-run properties of potentially
nonstationary macroeconomic time series from the given set of data
samples, we begin with an analysis of the order of integration of
each series within the sample via the use of a one-sided ADF test
statistic.

6.3.1a Testing for Unit Roots or the Degree
of Integration of Individual Series

It is customary to test for the number of unit roots (or the orders
of integration) of all the variables being analysed prior to testing
for cointegration. Obviously, without stochastic trends there will
be no common stochastic trends (CSTs), and without common trends
there will be no cointegration. In this work, a series of ADF
regressions (constructed along the lines of Dickey & Fuller 1979,
1981) is applied to each series separately to investigate whether or
not the data are consistent with the hypothesis of one unit root at
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the 5 percent level of significance.5 To save space, only the
resul ts of the scalar ADF tests with different specified lags for
the var iables examined are reported in Table 6. 1, rather than all
the estimated equations.

Table 6.1: AnF unit root tests of individual series •
UK LGDP LMO LCPI TBR

Null 1(1) -0.79 -0.55 -1.45 -2.05
(with trend) (with trend)

hypotheslsI(2) -5.13 -2.57 -2.63 -5.18
(with trend)(with trend)

GERMANY LGNP LM1 LCPI TBR

Null 1(1) -1.13 -0.82 -1. 21 -1.96
(with trend)

hypothesis I(2) -4.37 -5.03 -2.25 -4.06
(with trend)

FRANCE LGDP LM1 LCPI TBR

Null 1(1) -1.43 -1.12 -1.17 -1.32
(with trend)

hypothesisI(2) -3.35 -3.96 -2.73 -3.79
(with trend)

ITALY LGDP LM1 LCPI TBR

Null 1(1) -0.78 -0.93 -0.53 -1.52
(with trend) (with trend)

hypothesiSI(2) -5.19 -3.52 -3.51 -3.15
(with trend)(with trend)

-Note: the 5 percent critical value of the ADF test (with
drift) Is -2.89 for T=I00 (or -2.86 for T=m)
(Mackinnon 1991). When a (deterministic) time trend
Is Included with a coefficient that appears to be
siqnlflcantly nonzero (under the null), the relevant
ADF critical value will be -1.64 asymptotically, I.e.
the usual lower-bound critical value of the standard
nor_l N(O,1) distribution (Nankervis lie Savin 1987,
the bottom panel of Table 1). Otherwise, the
.ssocl.ted critical value wIll be -3.45 Instead for
the s-.ple sizes consideredhere (Mackinnon1991).

SAs Sims (1987, p.443) points out, there is no scientific
Justification for testing hypotheses at the 5% slgnificance level in
every application. Publishing such statistics and focusing on 5%
levels is common because testing at flxed levels facilitates
communication.
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Here, in most cases, the above 't-ratio' unit root tests on the
lagged levels are based upon the ADF regressions wi th a drift and
with 4 lagged first differences over the sample through 1990Q4. The
only exceptions are those tests of TBRs for Germany, France and
Italy, and of the British LMO, Italian LM1 and LCPIs in all four
countries. The former have a relatively short lag structure of 2
quarters due to the sample size restrictions, while the latter have
time, denoted T, included in addition to an intercept, denoted INPT,
as a regressor. For each level series, using the relevant 5 percent
critical values, the estimates (given by the t-statistics) in Table
6.1 fail to reject the hypothesis that there is a unit root in the
autoregressive representation. LCPIs, the UK's LHO and Italy's LM1

6will be tentatively treated as 1(1) around a trend. Thus, one
plausible characterization of the long-run properties of the data
consistent with the empirical evidence can be summarized in Table
6.2.

UK

LGDP/LGNP LMO/LMl LCPI

1(1) 1(1) 1(1)
(with trend)(with trend)

TBR

1(1)

Table 6.2: One possible characterization of
the trend properties of the data

GERMANY I ( 1 )

ITALY

1(1) 1(1)
(with trend)

1(1) 1(1)
(with trend)

1(1) 1(1) 1(1) 1(1)
(with trend)(with trend)

1(1)

FRANCE 1(1) 1(1)

It is important to· reiterate that, although the ADF t-tests are
widely used, care should be exercised in their use as the power of

6However, it is argued that the data need not be detrended. In a
VAR, a trending variable will be well approximated by a unit root
plus drift, and the drift will dominate the long-run behaviour of
the nonstatlonary process [see Enders (1995), pp.300-1]. Moreover, a
study by Hansen (1989) has shown that if the genuine data contain
both deterministic and stochastic trends, removal of time trends
from the data may worsen the performance of the normal asymptotics
considerably.
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these tests may be small, especially against trend-stationary
alternatives. Three applied issues concerning the computation of the
classical ADF tests need to be mentioned here.

Firstly, since the nonstandard (large and small sample)
distributions of the test statistics are tabulated by simulation on
unadjusted series, it is likely that test statistics computed using
seasonally adjusted data will be severely biased in favour of the
null of a unit root. Hence, if quarterly data are to be used, they
should if possible not be seasonally adjusted. On this point see,
inter alia, Davidson and Mackinnon (1993), p.714, but see all of
Chapter 20. Unfortunately, seasonally unadjusted data for many
important time series, like real GOP/GNP, are not available in the
economies investigated here. In addition, the quarterly nature of
seasonally unadjusted data may make it necessary to include a set of
seasonal dummies and to account for as far back as fourth-quarter or
eighth-quarter serial correlation. Even twelve quarters are not
uncommon. Hence, the inclusion of data that exhibit strong
seasonality into the information set will come at the potential cost
of requiring many degrees of freedom and may lead to the problem of
overfi tting.

Secondly, it may well be that the ADF outcome is quite sensitive to
the choice of lag length even for the same data (see Davidson &

Mackinnon, op. cit., pp.710-S). One way of dealing with this would
be to try a group of tests associated with various possible
autocorrelations to ensure that the OLS residuals approximate an
empirical white-noise process.

Finally, Christiano and Eichenbaum (1989) have demonstrated that,
when deterministic nonstationarities are present, it is difficult or
impossible to distinguish between deterministic and stochastic
nonstationarities. In particular, structural breaks and regime
shifts are likely to bias such tests toward the acceptance of a unit
root [see Godfrey (ed) (1992), Chapter I, especially pp.44-57]. For
example, the failure to reject the unit root null in French LMl may
be the result of a Type II error. The series may be better expressed
as trend~stationary, possibly about a one-time structural break at
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the fourth-quarter of 1977.

Taking these factors into account, it may be said that testing for
unit roots, while extremely important, is not without difficulties.
The test results given in Table 6.2 are just one possibility. This
characterization of the long-run properties of the data will also
need to pass the test of time; that is, it needs to continue to hold
outside the period of estimation.

6.3.1b Testing for Cointegration Relationships
for Those Variables That Are Integrated
in Both Slngle- and Multi-Country Cases

Once the univariate unit root tests have been completed, we move on
to the estimation and testing of long-run cointegration
relationships among subsets of the integrated (1(1» variables,
using Johansen's full-system maximum likelihood (ML) estimation
methodology. However, prior' to the determination of the
cointegration rank, r , 1.e. the number of independent CVs, the
'pre-test' specification of maximum lag truncation parameter, p, in
the underlying VAR must also be made.

Since it is not feasible to model all the series concerned with a
reasonably distributed lag Jointly and the series are chosen for
their economic importance, not for their statistical properties
[Johansen (1996), p.34], in the following subsections we will mainly
consider two types of quadrivariate systems: closed single-country
and open cross-country ones. The former are various country models
of the four different series in domestic economies (which are set to
examine activities in individual countries), whilst the latter are
systems of the four similar series across countries (which are used. 7
to characterize the dynamic interactions among the economies).

7At the Johansen's estimation stage, the maximum number of
endegenous 1(1) variables associated with the student version of
Microl1t 3.0 (that is available at the time of research) is only 10
[see Pesaran. M.H. & B. Pesaran (1991). pp.175-7]. With advances in
eco~ometric lIterature and software, the limitation on that number
has been released to 12 after the first draft of this thesis
[Pesaran, M.H. & B. Pesaran (1997), pp.449-50J.
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(1) Test for the value of the truncation lag p

Commonly, a listing of the likelihood ratio (LR) tests associated
with successively reducing the lag length of the VAR representation
by one is an integral and crucial step in empirical multivariate
cointegration studies.8 To test systematically the null of a
restricted VAR(I) against the alternative of a common unrestricted
VAR(m), l<m, we need to run two VARs over the same sample period and
save the residuals for their covariance matrices. This sample
statistic has the asymptotic chi-square distribution with degrees of
freedom equal to the number of restrictions in the system.9

Given degrees of freedom considerations, the reported work in this
study was to take the same feasible upper bound of m=6 for each
integer valued VAR lag order and thus set aside the first six
entries as presample values. A sequential testing scheme in the VAR
context was based on LR tests, which were adjusted along the lines
of that advanced by Sims (1980a), with small-sample corrections, and
carried out on RATS software package. The corresponding outcome of
the log-likelihood of each modified test statistic in such a
sequence for both single- and multi-country models are displayed in
Tables 6.3 and 6.4, respectively.

8practice has shown that it is necessary to work with an
approximated 'truncated' version of what would otherwise generally
be an infinite-order VAR [cf. Gali (1992), p.719]. Also, a low-order
VAR system can, from a practical viewpoint, provide a reasonable
approximation [cf. 50derlind & Vredin (1996), p.371-2].
9As Sims et al. (1990) assert, tests of the Joint significance of
additional lags in a VAR do not suffer from the existence of unit
roots, even if the VAR is estimated in levels. Hence, the LR test
statistic. along the lines of Sims' (1980a). can be applied to both
stationary and nonstationary processes. See also LUtkepohl (1991a),
pp.382-4.

153



Table 6.3:The likelihood ratio (LR) tests for the
lag lengths of single-country models

model Lag 1 vs lag ml LR test statistic ISignif

Lag 5 vs lag 6 Chi-Squared(16)=23.91 0.091

Lag 4 vs lag 6 Chi-Squared(32)=63.00 0.001
UK

Lag 3 vs lag 6 Chl-Squared(48)=76.34 0.006

Lag 2 vs lag 6 Chi-Squared(64)=92.12 0.012

Lag 5 vs lag 6 Chi-Squared(16)=12.06 0.740

Lag 4 vs lag 6 Chl-Squared(32)=36.47 0.269
GERMANY

Lag 3 vs lag 6 Chi-Squared(48)=54.27 0.248

Lag 2 vs lag 6 Chi-Squared(64)=71.01 0.256

Lag 5 vs lag 6 Chi-Squared(16)=20.00 0.220

Lag 4 vs lag 6 Chi-Squared(32)=33.83 0.379
FRANCE

Lag 3 vs lag 6 Chi-Squared(48)=45.09 0.593

Lag 2 vs lag 6 Chi-Squared(64)=56.17 0.746

Lag 5 vs lag 6 Chi-Squared(16)=18.80 0.279

Lag 4 vs lag 6 Chi-Squared (32)=38.51 0.199
ITALY

Lag 3 vs lag 6 Chi-Squared(48)=56.45 0.189

Lag 2 vs lag 6 Chi-Squared(64)=66.89 0.378
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Table 6.4: The likelihood ratio (LR) tests for the
lag lengths of multi-country models

model Lag I vs lag ml LR test statistic ISignif
Lag 5 vs lag 6 Chi-Squared(16)=10.77 0.823
Lag 4 vs lag 6 Chi-Squared(32)=32.93 0.421LGDP
Lag 3 vs lag 6 Chi-Squared(48)=47.00 0.514
Lag 2 vs lag 6 Chi-Squared(64)=65.18 0.435
Lag 5 vs lag 6 Chi-Squared(16)=13.77 0.616
Lag 4 vs lag 6 Chi-Squared(32)=31.74 0.480

LMON
Lag 3 vs lag 6 Chi-Squared(48)=49.33 0.420
Lag 2 vs lag 6 Chi-Squared(64)=59.08 0.651
Lag 5 vs lag 6 Chi-Squared(16)=18.63 0.288
Lag 4 vs lag 6 ChI-Squared (32)=54.00 0.009

LCPI
Lag 3 vs lag 6 Chi-Squared (48)=78.52 0.004
Lag 2 vs lag 6 Chi-Squared(64)=127.67 0.000
Lag 5 vs lag 6 ChI-Squared(16)=17.91 0.329

Lag 4 vs lag 6 Chi-Squared(32)=27.86 0.676
TBR

Lag 3 vs lag 6 Chi-Squared (48)=36.54 0.887

Lag 2 vs lag 6 Chi-Squared(64)=46.92 0.946

The LR statistic can be viewed as a kind of residual analysis where
residuals computed under the null are tested against those of a
general alternative to see whether they include extra useful
information which should not be omitted. Now, suppose we want to
determine whether 4 lags are appropriate for all equations. If the
restriction of a reduced number of lags is not bindIng, we would
expect Inllu(4) I to be equal to InIIu(6) I. Large calculated values
of the statistic would mean the restriction of only 4 lags, or the
imposi tion of a block of zero restr ictions on lags 5 to 6, Is
binding. Hence,we can reject the null hypothesis that lag length
-4. Ii the resulting LR test is less than 'X,2at a prespecified
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significance level, we would not be able to reject the null of 4
lags being tested, i.e. the restriction is not binding. For a
readable account of this property, see Enders (1995), pp.312-5.

According to the tables, in almost all applications encountered
here, the minimum significance level of LR test statistic is around
p=3. Most succeeding tests appear to be insignificant, however. Part
of the problem results from the fact that the LR test is based on
asymptotic theory which may not be very useful in small estimation
samples. In general, we may adopt the parsimony principle on the
selection of lag length, as longer lags may give rise to overfitting
and thus result in poor out-of-sample forecasts. But unless we face
severe data constraints, a lag order of at least 2 is necessary.
Apart from this, specification of the Bayesian prior in certain ways
will allow a more generous lag length than in an unrestricted VAR
model. The selected maximum lags for both single- and multi-country
systems will in most cases be a 1-year-worth (i.e. the periodicity
of the data), as summarized in Table 6.5.

Table 6.5: The 'truncated' lag lengths of
different VARs in levels

N_ of the IIOdel Truncation lag ~(LR)
UJC 6

StOlle-country GERMANY 4
models FRANCE 4

ITALY 4

LGDP 2

Multi-country LMON 4
models LCPI 4

TBR 2

After a tentative moderate value of p has been specified, the
determination of the number of cointegratlng relations, r, can be
obtained. Also, a VAH of order 2, 4 or 6 in levels implies a VECM
representation of order 1, 3 or 5 if the series are cointegrated.
All subsequent empirical inferences will depend on these selected
lag lengths, and all relevant computer programs (saved in ordinary
ASCII text files) can be referred to the Appendix D of this thesis.
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In any chosen model, the choice of the length of consecutive lags
will be an iterative process as well as other specification issues,
and the primary selection criterion is forecasting accuracy. Hence,
in a modelling exercise, less reliance should be placed on those
indices of model adequacy that are used as 'guidelines' to model
construction, and more emphasis should be given to the performance
of models outside sample periods and against rival models. For
extensive discussion of these issues see, in particular, Pesaran
(1987, p.18) and Spencer (1993, pp.407-21).

(2) Test for the rank of the cointegration space r

Conditional on a given value of p, the number of CVs, r, can be
determined sequentially by means of the Johansen (1989) maximal
eigenvalue (~ ) statistics. It has been found that Johansen (1988,max .
1991) trace (~tr) tests of the cOintegration rank give very similar,
but slightly higher, values of r. A variety of test results of the
cOintegration rank, together with their associated 5 percent
critical values, for both specific- and cross-country models are
presented in Tables 6.6 to 6.13.

Table 6.6: Cointesration LA test based on Johansen
.ui~l eilenvalue (~ ) for the UK
model max

Null Alternative Test Statistic 9SX Critical Value
r = 0 r == 1 27.86 27.14
r ~ 1 r = 2 19.47 21.07

-Note: (1) the estimation period Is 1970Q4-1990Q4;
(II) the maximum 1a9 In VAR Is 6. Estlmallon for

lrended variables, no trend In DGP.

Table 6.7: Colntecratl~ LR test based on Johansen
Cc .-JIrl!11eilenvalue (~.u) for the GERMANY
IIOdel

Null Alternative Test Statistic 9SX Critical Value
r = 0 r = 1 34.76 27.14
r ;is 1 r= 2 -29.95 21.07
r :5 2 r = 3 4.34 14.90. ,,"'" •

-Note: (1) the j.tl ••tton period Is 197603-1990Q4;
(II) the .axl.ua 1a9 In VAR 1. 4. Estimation ,for

trended variable •• no trend In DGP.
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Table 6.8: Cointegration LR test based on Johansen
maxi~l eigenvalue (~ ) for the FRANCE
model max

Null Alternative Test Statistic 95Y. Critical Value
r = 0 r = 1 40.58 27.14
r ~ 1 r = 2 18.22 21.07

.Note: (i) the estimation period Is 198001-1990Q4;
(ii) the maximum laq in VAR Is 4. Estimation for

trended variables. no trend in DGP.

Table 6.9: Cointegration LR test based on Johansen
maxi~l eigenvalue (~max) for the ITALY
model

Null Alternative Test Statistic 95Y. Critical Value
r = 0 r = 1 26.99 27.14

.Note: (1) the estimation period Is 197802-1990Q4;
(11) the maximum laq In VAR Is 4. Estimation for

trended variables, no trend In DGP.

Table 6.10: Colntegration LR test based on Johansen
.axi~l eigenvalue (~max) for the LGDP
model

Null Alternative Test Statistic 9SY. Critical Value
r = 0 r = 1 28.94 27.14
r s 1 r = 2 11.83 21.07

.Note: (i) the estimation period Is 197103-1990Q4;
(11) the maximum laq In VAR Is 2. Estimation for

trended variables, no trend in DGP.

Table6.11: Cointearatlon LR test based on Johansen
.azl~l e1s.nvalue (~max) for the LMON
IIOdel

Null Alt.ernative Test Statistic 95" Critical Value
r = 0 r = 1 44.59 27.14
r s 1 r = 2 18.18 21.07

.No~el (1) the estlm.tlon period Is 1970Q2-1990Q4;
(u) the max.lmUm laC) In YAR Is 4. Estimation for

trend.d varlabl •• , no trend In DGP.
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Table 6.12: Cointegration LR test based on Johansen
maxi~l eigenvalue (~max) for the LCPI
model

Null Alternative Test Statistic 95X Critical Value
r = 0 r = 1 14.68 27.07

.Note: (i) the estimation period is 196101-199004;
(ill the maximum laC) In VAR I. 4. Estimation for

trended variables, with trend In DGP.

Table 6.13: Cointegration LR test based on Johansen
maxi~l eigenvalue (~max) for the TBR
model

Null Alternative Test Statistic 95X Critical Value
r = 0 r = 1 32.05 27.14
r s 1 r = 2 15.50 21.07

.Note: (I) the estimation period Is 197903-199004;
(11) the maximum la; in VAR Is 2. Estimation for

trended variables, no trend In DGP.

It can be seen from Tables 6.6 to 6.13 that at the usual 5 percent
significance level, data support the existence of Just one
cointegration relation in most situations. The only exceptions are
those tests for Germany, Italy and the LCPI. A 5% level test for
Germany shows the presence of two stationary cointegration
combinations, while the latter two cases show no sample evidence of
cointegraUon in eIther ofth$ systems of four series.10 There are,
therefore, arguments for working within an integrated framework
where LGDP/LGNP, LMO/LM1, LCPI and TBR are allowed to link
explicitly together either in the main specific European economies
or across tll~q~trieS;Qyer the long run. The summary statistics of
the estimated rank of the r-dlmensional colntegration space for both
the slngle- and mult~"'co\intrymode!!; are reported in Table 6.14.

10More specirl~ly, ttle;A statistics for Italy and the LePI,.. ··,······c' .," max
26.99 and 14.~, are\>elQIrfthe respective 5 percent critical values,
27.14 and ~7.07 and, thus; the hypothesis of noncointegration cannot
be rejected.
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Table 6.14: The estimated number of CVs for
different models concerned

Name of the model Cointegration rank ~(;\ max)

UK 1

Single-country GERMANY 2
models FRANCE 1

ITALY 0

LGDP 1

Multi-country LMON 1
models LCPI 0

TBR 1

Johansen's post estimation of cointegrating vectors (~, adjustment
matrix (~ and long-run matrix (~(1)=W«')' after an arbitrary
normalization, can be found based on the relevant maintained
cointegration rank.

(3) Estimate cointegrating vectors and adjustment matrix, and
save the residual vectors associated with the r CVs

Given the dimension of the cointegration space, r, Johansen's
normalised ML estimates of CVs and adjustment matrices of different
four-equation models, except for Italy and the LePI, are displayed
in Tables 6.15 and 6.16.

Table 6.15: The ML estimates of normalised
exand w for the UK,GERMANY and
fRANcE-models

UK LGDP LMO LCPI TBR
A 1.000 0.295 -1.199 0.278et-
A 0.016 0.004 -0.014 1.160w-

GERMANY LGHP LMI LCPI TBR

A 1.000 -0.286 0.086 -0.017
et 1.000 -1.590 2.871 -0.024-
A 0.024 -0.173 0.121 -9.451w 0.019 0.033 0.026 1.979-

FRANCE LGDP LMt LCPI TBR
A 1.000 . -1.033 0.567 0.051ex-A 0.012 0.037 -0.034 1.936w-
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Table 6.16: The ML estimates of normalised
a and w for the LGDP, LMON and
TIm models

LGDP UICLGDP GERLGNP FRALGDP ITALGDP
A 1.000 1.093 3.960 -5.360a-
A -0.014 -0.053 -0.009 -0.053w-

LMON UKLMO GERLMl FRALMl ITALMl
" 1.000 -2.872 -4.414 4.323a-
" -0.009 0.004 -0.057 0.053w
-

TBR U1CTBR GERTBR FRATBR ITATBR
" 1.000 107.804 -465.050 309.644a-
" -0.000 -0.001 -0.002 0.000w-

It can be seen from Table 6.15 that there is a negative relationship
holding between a cointegrated pair of series, LGDP and TBR, in both
UK and France, but a positive one between the two model series, LGNP
and TBR, in Germany. In addition, monetary aggregates go positively
with consumer price indices through time in all three countries.
Also, as demonstrated by Table6.16, there is an explicit historical
linkage amongst output growth, or money supply, series across the
four countries. But for TBRs, the close long-run, or equilibrium,
relationship appears only among Germany, France and Italy; UK's TBR
is virtually excluded from the error-correction process. In
particular, theML estimate of the single CV ~ for the former three
is calculated to be (1.000, -4.243, 2.830)', with w'=(-0.091,

-0.213, 0.025). Hence, a TBR system of the four series should be
equivalent to a partial VAR of the three with UK's TBR built on a
single linear dyna.mic'equation; with no EC term.

After the1Johansen' s "COintegration test results, the estimated
residual 'Vectors associated with the r CVs should be saved and
tested for. statlonarlty;cSo.eUmes, the plotting of the residuals is
an impor,tantdl'8lIlostlc tool ,for checking stationarity. Only if all
saved -.co1ntegratlng !.residuals'are stationary, or 1(0), will the
lagged reslduals.'L~t ,·.··,(~·~·:};·t·T, be fitted into each of the

- -p - -pi
equations.'ofa colntegrated VAR .(VECM) as an add! tional regressor to
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correct for short-run dynamics. Otherwise, the system should be
built on a simple unrestricted VAR of order of p-l in (first)
differences.

6.3.2 Determination of the Best Scalar Prior Hyperparameter
Settings

The present focus will be on revealing numerically the best scalar
settings of the prior hyperparameters for all four-variable systems
under scrutiny. According to the standard Minnesota prior, the
choice of the best setting of the hyperparameters is consistent with
the selection of the final version of a forecasting model, and both
can be determined simultaneously. The final criterion for specifying
hyperparameters over a certain range of values will be forecasting
ability, rather than the usual specification tests or any other
in-sample measures [see Spencer (1993), pp.409-11].

The sample period is divided into two non-overlapping sub-sample
periods: a subperiod over which the model is estimated the
initial estimation period; and a subperiod over which forecasts are
obtained and checked against actual data - the ex-post forecast
period. If the anticipated future values of the series are
reasonably well Gorrelated with past episodes, we could expect that
knowledge of the errors in the ex-post forecast period will allow us
to modify our prediction of the error in the ex-ante forecast
period. The ex-post, or simulated 'out-of-sample', forecasting
performance will then be treated as an indicator for tuning the best
choice of hyperparameters.

However, there exists a difficul ty in using absolute measures of
forecast accuracy such as the mean absolute percentage error (MAPE)
or root mean square error (RMSE) to deliver rankings across models
or forecasts, since such measures are not invariant under
nonsingular,. scale-preserving linear transformations for which
l1nearmoa~ls are invariant [see Clements & Hendry (1995), p.130].
Also.the·optimality' of forecasts is usually defined, using
absolute.!,t~nearle.~st squaree, with respect to a given information
set. ,Econollic' forecasters may not agree about the relevant
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information set, which in the widest sense is in any case unknown,
ex ante and ex post, and unmanageably large [see Wallis (1989),
pp.43-4] . In the absence of an absolute standard, various
comparative summary statistics have been developed and used for
evaluating the relative accuracy of alternative forecasts. Among
these, the informal use of Theil U statistics in the RATS software

11package is often preferred.

The design of the experiment is as follows. We start with a common
combination of v=0.15 and w=0.5 for the overall tightness parameter,
V, and the tightness parameter on the 'other' variables for the
relative tightness function f(i,j), w, in the highly restricted
2-parameter symmetric prior by default. For switching the prior from
SYMMETRIC to GENERAL, a simple specification search procedure used
in this application is to find weights (Vj,Wjl,Wj2,Wj3) on each row
of the matrix of prior variances, by altering one while holding the
others fixed, that minimize the Theil U values for each equation of
the system. That is:

(a) run a system of unrestricted univariate OLS models by choosing
vj=3.0 and the others zero to get benchmark Theil U's;

(b) run a system of restricted univariate models with a standard
value for TIGHTNESS, vj=0.15. If the Theil U's in an equation become
worse, then loosen up on the own lags by setting the diagonal
element to 1.5 or 2.0; and

(c) run a standard SYMMETRIC prior for fractions wJl' wj2' wj3 =

0.5, respectively. IJ the Theil U's for one weight in an equation
become worse, then tighten up on the 'other' variables by reducing

llThell U statistic can be viewed as the ratio of the root mean
square error (RMSE) of the forecast in question to the RMSE of the
naive 'no-change' prediction from a random walk. When the value of
Theil U's is less than unity, the forecasts of the model are judged
to be more accurate than the naive forecasts. As a relative accuracy
measure. Thell U statistic is likely to be superior to the use of
absolute forecast error measures, such as the minimum MAPEs or
RMSEs. For an entertaining account of the relevant issues, see
Armstrong & Collopy (t992).and Fildes (1992) and the associated
commentary.
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the off-diagonal element to 0.1 or 0.01.

This would complete the selection of the hyperparameters as well as
of the final forecasting model. The modeller might also examine
changing patterns in Theil U values computed with successive
overlapping two-, four-, six- or eight-step-ahead forecasts in a
similar way before selecting the best setting of the
hyperparameters. Such a procedure has the advantage of making the
hyperparameter searches more objective and, in principle,
statistically replicable. Moreover. an improvement over the
traditional two-dimensional grid search strategy [Spencer (1993),
pp.413-20] is that, in our modelling process, the search over values
for the hyperparameters is straightforward and unbounded.

In terms of Leamer's (1982, 1991) sensitivity analysis, a study on
the effect of a change in the prior covariance matrix Yj for the
parameter vector (3J' j=l, ...,4, is also carried out to see how
sensitively our forecasts depend on departures of Yj from its 'best'
choice YJO' This is normally done by entertaining a range of Bayes
estimates given by the range of different values of prior covariance

-2 2matrices around Yjo! ~ YjO~Yj~~ YJo; ~>1, which could be considered
plausible in the light of the scientific context.

The final selections of the hyperparameters associated with the
lowest values of the Thell U statistics for the two competing
forecasting procedures developed: BVAR (specified in levels) and
BVAR-EC (in differences), over the entire ex-post forecast period,

12are reported in Tables 6.17 and 6.18.

12Space prevents us from exhibiting all findings here. Thus only the
results obtained for the United Kingdom are presented. Other Tables
6.19 through 6.30 for both specific- and cross-country cases can be
found in appendix E.
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Table 6.17: Determination of the best hyperparameter
setting (vj,Wjk) for UK BVAR forecasting
model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var (vj,O,o,o) (v j ,W j1'0,0) (vJ ' Wj1'Wj2 '0) (v j'Wj1 'Wj2'Wj3)

0.96900 0.92544 0.95482 0.73713
L (.06 ,0,0 ,0 ) (.05, .5,0,0 ) (.05, 1,.5,0) (.05, 1,1,.5)
G 0.96783 0.91220 0.92884 0.67329D (.05 ,0,0 ,0 ) (.05, .8,0,0) (.05, 1,.8,0) (.05, 1,1,.8)
P 0.65727-0.96812 0.90443 0.92006

(.04,0,0 ,0 ) (.05,1,0,0) (.05, 1,1,0) (.05, 1,1,1)
0.50158 0.48872 0.37624 0.35828

(.5,0,0,0) (.4, .06 ,0,0 ) (.4, .05, .1,0) (.4, .05, .01 ,.5)
L 0.50095 0.48870 0.37204 0.35821-
M (.4,0,0,0) (.4,.05,0,0) (.4, .05, .05 ,0) (.4, .05, .01 ,.6)0

0.50097 0.48873 0.36958 0.35824
(.3,0,0,0) (.4, .04,0,0 ) (.4,.05, .01,0) (.4, .05, .01 ,.7)
0.60353 0.61475 0.59945 0.53707

L (3,0,0,0) (3,.5,0,0) (3,1,.09,0) (3,1,.08, .06 )
C 0.61340 0.60883 0.59923 0.53387-
P (2.5,0,0,0) (3,.8,0,0) (3,1,.08,0) (3,1,.08, .05 )
I

0.63078 0.60709 0.59929 0.53412
(2,0,0,0) (3,1,0,0) (3,1,.07,0) (3,1,.08, .04 )
1.38981 1.16896 1.00747 0.98875

T (.1,0,0,0) (.01,.5,0,0) (.01,1,1, 0) (.01,1,.9,.5)
B 1.22655 1.16760 1.00720 0.98217
R (.05.0,0,0 ) (,01,.8,0,0) (.01,1,.9,0) (,01,1,.9,.8)

1.10833 1.16644 1.00727 0.97920-
(.01 •0,O.0 ) ('01,1,0,0) (.01,1,.8,0) (.01,1,.9,1)

Note: _ Indicates the minimum valuo in Tholl U statistics of
each equation associated with the choson
hyperparameters during the ex post forecast period.
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Table 6.18: Determination of the best hyperparameter
setting (Vj,w.k) for UK BVAR-EC forecasting
model J

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var (vj,o,o,o) (vr"jl'O,o) (vj,wj1'Wj2 '0) (Vj,wJ1,Wj2,Wj3)

1.07926 1.07234 1.121010 0.752811
L (.1,0,0,0) (.01, .5,0,0) (.01,1,.5,0) (.01 ,1,1,.1)
G 1.05810 1.07223 1.121002 0.752808D
P

(.05,0,0,0) (.01,.8,0,0) (.01,1,.8,0) (.01,1,1, .05)
1.05200 1.07213 1.120996 0.752807-

(.01,0,0,0) (.01,1,0,0) (.01,1,1,0) (.01 ,1,1,.01)
0.75969 0.77780 0.93285 0.78767
(.5,0,0,0) (.4,.5,0,0) (,4,1,.5,0) (.4,1,1,.03 )

L 0.75350 0.77248 0.88597 0.78729-M
0 (.4,0,0,0) (,4,.8,0,0) (.4,1,.8,0) (.4,1,1,.02 )

0.75724 0.76919 0.86293 0.79397
(.3,0,0,0) (.4,1,0,0) ('4,1,1,0) ('4,1,1,.01)
0.44583 0.44783 0.39865 0.30693

L (3,0,0,0) (3,.5,0,0) (3,1,.04,0) (3,1,.03, .12)
C 0.45096 0.44670 0.39680 0.30651-P
I (2,0,0,0) (3,.8,0,0) (3,1,.03,0) (3,1,.03, .11)

0.48625 0.44640 0.39807 0.30665
(1,0,0,0) (3,1,0,0) (3,1,.02,0) (3,1,.03, .10)
0.48142 0.41241 0.39236 0.39910
(3,0,0,0) (3,.1,0,0) (3,.01,.15,0) (3,.01,.14,.5)

T 0.48214 0.40027 0.39233 0.39458
B (2,0,0,0) (3,.05,0,0) (3,.01,.14,0) (3,.01,.14,.8)
R

0.39370-0.48787 0.39958 0.39239
(1,0,0,0) (3, •01,0,0 ) (3,.01,.13,0) (3,.01,.14,1)

Note: • Indicates the minimum value In Theil U statistics of
each equation assoe1ated wlth the chosen
hype~para.eter. durinq the ex post forecast perlod.

Because of the shortage of data on German real GNP (available only
through 1992Q4) ,the missing values must themselves be predicted
first in both GERMANY and LGDP models. The ex-post, or inside-
sample, forecast period for the variable concerned will therefore be
1991Ql-1992Q4.The period commencing with 199301 will be treated as
ex-ante, or outside"'sample, period. In this regard, the practical
forecasts made on . ~future' value.s of German GNP from these two
models 'are condit1c,.u..lrather thartlincondltlonal and are not endowed
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with the same information set as other formal, model-based
forecasts.13

Once the hyperparameters that seem to lead to the best forecasting
model have been chosen, they are usually re-evaluated only every few
years. More frequent updating of the hyperparameters is expensive,
and experience in searching over the best settings of the
hyperparameters has shown that it would probably yield little gains
in the average accuracy of the forecasts. Although the
hyperparameters are infrequently revised, the coefficients
associated with the chosen hyperparameters are routinely updated
using the Kalman filter (KF) estimation method each time, as a new

14data point becomes available.

The Minnesota system of prior information or beliefs is not simple
to use, but it does give forecasters a flexible way to express
personal beliefs and an objective procedure for combining those
beliefs with historical data to produce forecasts. In that sense, it
represents a move away from traditional forecasting procedures
towards comparatively cheap Bayesian procedures that seemed, by the
late 1970s, more promising to at least some economists [see Todd
(1984), pp.28-9].

§6.4 Conclusion

So far, we have developed a systematic six-step BVAR and/or BVAR-EC
modelling procedure that can be readily carried out using the
popular econometric software packages. To implement such a

13For a thorough discussion on the distinction between ex-post and
ex-ante forecasts, as well as that between conditional and
unconditional forecasts, see Pindyck & Rubinfeld (1991), Chapter 8.
14Here, the KF algorithm is applied in this way: ESTIMATE initializes
the KF over the pre-forecast period, then the loop executes each
KALMAN command to update continually the estimates till the time of
the forecast period as new observations become available. This opens
the way for estimating and evaluating models where coefficients are
allowed to vary over time and makes it highly useful for model
specification and prediction [see Hall (1993), pp.95-7].
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procedure, the available quarterly time-series data used in
estimations and analyses are obtained from various currently
existing IMF, DECO and DNS databanks through MIDAS. Recent advances
relating to unit roots, lag structures and cointegrated relations
are tested in sequence in both specific- and cross-country cases.
The best settings of the prior hyperparameters associated with the
final forecasting models are revealed, making informal use of Theil
U statistics. In the next chapter, the resulting BVAR models that
incorporate both prior and cointegration restrictions will be
estimated and used for forecasting the main European economies,
utilizing the Kalman filter recursions.

168



CHAPTER 7

FORMULATION, ESTIMATION AND EVALUATION OF MACRO
BVAR FORECASTING MODELS FOR THE EUROPEAN ECONOMIES

§7.1 Introduction

The main objective of this chapter is to use the models constructed
as forecasting devices to obtain quarterly forecasts of selected
variables for the leading European economies and to assess the gains
for forecast accuracy from imposing prior and long-run constraints.
The empirical setting-up process of K=4-dimensional BVAR, and also
BVAR-EC, forecasting models based on the chosen prior hyperparameter
settings and the reported ML estimates of A (1 )=wa' consists of-p -

First, the r lagged stationary residual series,three stages.
A (A )£ =a.'Y-t-p - -t-p ,
unrestrictedly

from the previous estimation are included
additionalin each equation of the system as

regressors if there is cointegration. Next, the multivariate normal
prior distributions are imposed on the other parameters of the
system (except for the constant and error-correction terms).
Finally, the coefficients of the resulting four-equation dynamic
system satisfying both prior and cOintegratlon constraints are
estimated Jointly using the mixed estimation technique proposed by
Theil (1971, pp.347-52). It is hoped that, through this work, we
will be able to generate useful ex ante forecasts; to promote an
understanding of different national economies investigated; and to
capture interdependencies among European economies.

§7.2 Estimated Version of BVARand BVAR-ECForecasting Models in
Matrix Notations - An Appropriate Procedure for Sequentially
Upclatlq thelloclels' l'araaeter EsU_tes

In retrospect. we know that a typical dynamic forth-order

169



four-dimensional BVAR forecasting model can be given by:

4 4= C. + E E A. iV t i + u·t;J n=li=l In, n, - J

Ujt~NID(O, ~j~); O.Ol~Vj~3.0; O.Ol~Wjk~1.0;
j, k = 1, ..., 4; t = 1, ..., T.

(7.1)

Here, (7.1) is a set of four recursive equations specified in
levels, in which the unknown parameter values are to be
replaced by estimates; and

Vj and VJwjk are the hyperparameters of the prior
distributions imposed on the lagged coefficients of the
jth-equation of the system.

Litterman (1986a) specifically advises against taking first
differences even if the variables contain a unit root, since
information concerning the comovements in the data is thrown away.
He argues that the goal of a VAR analysis is to determine the
important interrelationships among the variables, not the parameter
estimates. This is especially good advice when constructing a
Bayesian VAA forecasting model with unit roots, since the belief
that the series has a unit root in its autoregressive representation
is easily incorporated in the stochastic prior restrictions centred
about a random walk (plus drift) process. [See, for example, Enders
(1995), p.301, and Spencer (1993), p.411.]

In contrast, if cointegration exists, its third-order
four-dimensional reduced form BVAR-EC model can be written as:

4 3 t
VVjt - Cj + E E Ajn iVYn t-in-li=1 ' ,

. 2
UJt"'NID(O, ~Jj);

r 1\ 1\

-S~1WjS£s,t-4 + Ujt:

0.01~Wjk~1.0:

(7.2)

j. k • 1•...• 4; t = 1•...• T:

4
" " 1\£ = «'Y = ~«Y .S t-4 -s-t-4 L si i t-4'

I 1=1 I

s = 1•... , r ; (7.3)

J = 1•...• 4. (7.4)

Here. (7.2) is a group of four estimated recursive equations in
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first differences;
(7.3) is the lagged estimated cointegrating residuals, denoted

EC(-p), included in each of the four equations as an
exogenous variable at full weight along with the intercept
term. It is then computed and updated at each forecast step
to influence continually the forecasts of VYjt, j=1, ...,4,
assuming that the underlying equilibrium relationships
defined by the r estimated CVs ~ can be carried over into
the forecast interval;

vJ and vJwJk are the prior hyperparameters specified and
imposed on all the coefficients except the constant and
error-correction terms; and

(7.4) is a collection of four identities required to transform
the four forecasted difference series into the needed level
series, which will then be used to calculate the EC term in
subsequent forecasts.

Based upon these fundamental equations, a selection of the empirical
results of estimated coefficients, t and R2 statistics for the
proposed two competing quarterly forecasting systems of equations 1
to 4 for the UK can be summarized as in Tables 7.1 and 7.2 below.1

tHere, only the results and analyses for the UK are provided,
otherwise it would be excessively burdensome to report them all.
SI.ilar analyses apply as well to the other cases.
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Table 7.1: Mixed estimates of the final BVAR
forecasting model for the UK

Dependent Eq.l I Eq.2 I Eq.3 I Eq.4
variable LGDP T LMO I LCPI I TBR

Constant ?i~ln ?034f -0.s91la -6.412f0.47 (-2.4 (-0.73
LGDP_1 0.974fb ?oosy ?OS3~ ?384I(30.04 0.36 0.68 0.41
LGDP_2 ?b?Uf ?001~ -0.219~a ?086f0.16 (-2.41 0.18
LGDP_3 ?b??Of ?b?YY~ ?221la ?032l2.42 0.10
LGDP_4 ?OOlf ?OOO~ ?0187 ?012f0.11 0.07 0.(1) 0.05
LGDP_S ?b??lf ?OOO~ (~2~8~fa ?004~0.09 0.02
LGDP_6 ?b?iir ?OOO~ ?i~~~r 0.00350.06 (0.02)
LMO_t (~b?i6t d·15SJb ?200?b ?503~2.61 3.16 0.49
LMO_2 (~b?~g~ ?b?l~f (~b?g~J ?b?Uf
LMO_3 -0.0~4J -0.128f (0.031~ ?022r(-0. 2 (-1.32 -0.57 0.06
LMO_4 -0.004J -0.02~? (0.039f ?OOS~(-0.26 (-0.2 -0.92 0.02
LMO_S (~b?iH ?b?~n -0.016? -0.001?(-0.45 (-0.00
LMO_6 ?b?g~t -0.0~5f (0.008r -o.oOOf(-1. 3 -0.29 (-0.00
LCPI_1 ?b?8if -ooogof (1. 15~?b -0.502f(- . 4 11.4 (-0.55
LCPI_2 ?b?~n (~b?g?? (0.27~Ja -0.Of6f-1. 9 (-0. 7
LCPI_3 ?b?~'? -0.og8? (~i~UJ -0.03"?(-0. (-0.09
LCPI_4 ?b?gn (~b?8g? ?4~Ufb -0.0081(-0.03
LCPI_S ?b?~n (~b?8g? -0.61Hb ?b?8~f(-4.6
LCPI_6 ?b?iar -0.083? ?2~Ura ?b?8~r(-0.
TBR_l (~i?git '(~i?8gJ ?2?~Hb (0.99Ub96.4
TBR_2 '(2b?i8J ?o?g2J ?o?g~f (~b?g~f
TBR_3 (~b?iiJ ?b?32~ ?o?~~J -o.o~g~(-0.
TBR_4 '(~b??8? ?b?ggJ (o.oogy -O.OOO?-0.0 (-0.11
TBR_S (~b?99? -0'023J ?b?g~f -0'009f(-0. (-0.°
TBR_6 (~b?Y~? (~b?3gJ ?b?2~! -o.ogg!(-0.

"j'''jl'''j2'''j3.05,1,1,1 .4,.05, .01,.6 3,1,.08,.05 .01,1,.9,1
12 0.9880 0.9994 0.9998 0.7654

SEE 0.0135 0.0108 0.0084 1.3683
ssa 0.0146 0.0093 0.0057 149.7889
T 104

l.tl_Uon 1970:4-1996:3perlod
Not.: figur •• giv.n in p.r.nth •••• denote t-ratio8; a and b

Indicate .tati.tic.lly .ignificant at 5X and lX
.i,nl£lcanc. level., re.p.ctlvely.
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Table 7.2: Mixed estimates of the final BVAR-EC
forecasting model for the UK

Dependent Eq.l I Eq.2 I Eq.3 I Eq.4
variable VLGDP I VLMO I VLCPI I VTBR
Constant ?02°f ?0151 -0.013~ h:~~~1. 21 0.93 (-0.71

EC_6 -0.002J -o.OOlf ?002~ -1.052ta(-0.90 (-0.67 0.93 (-2.28
VLGDP_1 ,(O.OOlt ?025f ?067? -0.5014-0.13 0.28 0.79 (-0.19)
VLGDP_2 -O.OOO~ ?039? -0.136~ ?0644(-0.00 0.49 (-1.55 0.05)
VLGDP_3 '(0'08°~ ?b?~U ?122j -0.012j-0. 1 1. 34 (-0.01
VLGDP_4 -0.000~ -0.024f ?128~ ?016?(-0.02 (-0.41 1. 44 0.03
VLGDP_s (~b?88Y ?020Y -0.119f -0.016~0.40 (-1.38 (-0.03
VLMO_1 ?b?8~~ ?237ta 0.134fa t·648?2.41 (2.28 0.39

VLMO_2 -o.oogJ ? 272yb ?036j 1~.191t(-0.0 2.85 1. 01 1.06
VLMO_3 ?b?88Y ?005? ?011? r 762~0.06 0.47 0.36
VLMO_4 -o.OOOl -0.059~ ?OOOj ~.185?(-0.04 (-0.79 0.04 0.57
VLMO_S (~b?8~l ?i~~~J ?6?g~f ?426~0.05
VLCPI_1 -O'OOH -o.041f ?461~b -7.048}(-0.1 (-0.41 4.60 (-0.47
VLCPI_2 '(~b?82t -0.025r ?08~7 11·726Y(-0.29 0.8 ) 1. 08
VLCPI_3 '(~b?8gJ ?14Of -0.148t l·535l1. 80 (-1.6 0.12
VLCPI_4 (~b?8gJ ?b?in ?5~~~Jb -F·231~-1.34
VLCPI_S (~b?8~J (~b?19f -0.27Ub 2?658~(-2.8 1. 66
VTBR_l (~b?889 (~b?899 ?2?~~?b (~b?~~?
VTBR_2 ?b?88V (~b?8~Y ?i?9H -O.llS}(-0.95
VTBR_3 (~b?88V -0.O88~ ?i?g91 (~i~~~~(-0.
VTBR_4 ?b?88V ?b?8~~ (~i?88~ -0.213,

(-1. 59
VTBR_S -0.0889 (~b?8g9 ?i?2~f (~i ~U9(-0.

"J'WJ1'WJ2'WJ3 .01,1,1,.01 .4,1,1,.02 3,1,.03,.11 3,.01,.14,1
R2 0.0118 0.3677 0.6803 0.2203

SEE 0.0142 0.0107 0.0093 1.2304

SSR 0.0160 0.0090 0.0068 119.5946

T 104
htl_tion 1910:4-1996:3perloci

Rotel f19ure. 91ven In parentheses denote t-ratloa; a and b
lndlcate statistically sl9nlflcant at 5X and IX
.'9nlfleanee level., respectively.

For comparison, the point estimates for both BVARand BVAR-EC
forecasting models were ode (at the end of the maximumpossible
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sample) by mixed-estimation for the same set of variables over the
same estimation sample period. It may be seen from Table 7.1 that,
among the four linear estimated equations of the 'final' quarterly
BVAR forecasting model, the estimates recovered from the whole
sample for all but UK's LCPI appear to be a random walk process. The
LCPI may be better expressed as a random walk about a trend process.

It can be seen from Table 7.2 that among the four estimated
equations of the reduced form BVAR-EC forecasting model, both VLGDP
and VTBR behave more or less like a 'white noise' process. The
constant as well as the error-correction term appears to be
statistically significant for UK's VTBR within the system. This
confirms not only the standard prior for nonstationary series which
has one unit root but also the standard white noise-like prior for
stationary series. Since these variables are likely to be close to
white noise, they may be easily buried in and hardly picked out from
the disturbance terms. VLCPI and VLMO, however, show statistically
significant dependence on the past. VLCPI also shows a significant
relationship with the first lag of VLMO and of VTBR.

Many of the parameter estimates of the models turn out to be
statistically insignificant at conventional significance levels. The
decision as to whether the 'true' parameter values are really zero
is sometimes of crucial importance. The finding of a t-statlstic
within some given distance of zero might mean that the coefficient
is really zero, or it could simply be that the data do not contain
enough information to show convincingly that the coefficient is

significantly different from zero. This problem is exacerbated in
the case of existence of serious multicollinearity, because of the
increased probabill ty oC type II error. Hence, the t-tests on
individual regression coefl1cients may not be reliable guides for
'paring down' the model. [For an excellent and lucid account of the
analysis, see Steward (1986), pp.129-34.]

A slightly diCferent approach to the significance test may be
adopted. Instead of using the critical value for a particular
algnlncance ·level as a definite boundary between acceptance and
rejection of the null hypothesis, the reported statistics are viewed
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as an indicator of the performance of a particular regressor in
explaining the dependent variable, especially when the presence of
multicollinearity is suspected. In taking such decisions, some
weight should be given to any prior beliefs concerning the role of
the variable in question and also to the likely costs of
misspecification that would result from taking the wrong decision.
If there is reason to believe that a variable was relevant to the
explanation of the behaviour of the dependent variable, a small
value of t-ratio might indicate the need to experiment further,
rather than be as definite evidence that the corresponding
coefficient is zero. This would be especially true of a variable
that could be subject to very large changes. In such a situation,
improperly treating even small nonzero values of coefficients as if
they were zero could lead to rather serious errors when the model is
used for forecasting or policy simulation.

As shown in Table 7.2, the estimated coefficients of
error-correction terms, EC(-6), in all but VLCPI equations appear to
be 'desired' negative. At the same time, the coefficient attached to
the EC term in VLCPI equation appears to be 'unwanted' positive. The
appearance of the positive sign in VLCPI could suggest that a given
cointegrating relationship in the past may not be appropriate for
use in this equation much beyond its range of estimation. It could
also suggest that the specification of the model is appropriate, but
that many coefficients have evolved through time due to structural
breaks and regime shifts. If this is the case, it may be a caution
against extending the so-called 'long-run' cOintegrattng
relationships for real-time forecasts farther into the future.

In what follows, the experiment-based BVAR as well as BVAR-EC
versions will be used in both individual- and multi-country contexts
to produce a series of one-step-ahead quarterly forecasts for the
principal western European economies. Certain properties of the
forecasts obtained will be tested and the forecasting performance of
alternative empirical models can then be analysed and compared. In
addi tion, the resulting forecast errors, defined as actual minus
forecast, can be decomposed into avoidable (systematic) and
unavoidable (stochastic) components.
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§7.3 Prediction and Evaluation of Estimated BVAR Forecasting
Models for the European Economies

Once a BVAR or BVAR-EC forecasting model has been properly specified
and estimated on some given set of data, the genuine 'out-of-sample'
forecasts about future observations can be made by extrapolating the
models beyond the period over which they were estimated. As well as
being useful for policy formulations, ex ante forecasts also have
the potential for evaluating model reliability. A forecast which is
found to be way off target when actual data are available provides
evidence which may lead to the revision of the model that provided
the forecast (see Pindyck & Rubinfeld, Ope cit., pp.180-4).

7.3.1 Construction of Short-Tera Successive Forecasts

In this work, the computation of successive 1-quarter ex-post
forecasts from 1991Q1 onwards was done recursively using KF
techniques to update the estimation with the passage of time first.
Sequences of 1-quarter ex ante forecasts for the period one or two
years ahead of the date of publication were then calculated based on
the estimated BVAR and BVAR-EC models in both single- and
multi-country context. The ex post and ex ante forecasted series of
the variables being modelled with either a general (G) prior (narrow
solid Une) or a symmetric (S) prior (long dashed line) and the
actual series (broad solid line) over the period 1991Q1-1998Q4 for
the four principal European economies are appended and shown in

2Figs. 7.1 through 7.56.

It would seem from these graphics that, for many variables, the
fitted BVAR and BVAR-EC forecasting models have succeeded in
capturing the overall trends of the actual series considered. What
the forecasts fail to take into account Is the 'lag-effects'
tracking these variables at tUrning points of the business cycles.

2Again,OnlY those figures for the UK are given here. The time plots
of forecasts versus actuals for the other countries can be found In
appendix F.
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Some observed practical difficulties involved in the forecasting
process need to be accentuated.

As can be seen from Figs. 1.1-1.4 for the logarithm of UK real GOP,
while moving in the same directions as the original series, the
forecasted series (made either in a single- or a multi-country
context) cannot fully reflect the onset, depth and duration of the
latest economic trough, namely 1991QI-1992Q4. Similar problems have
also arisen for Germany's real GNP over 1991QI-1992Q4, and for the
level of output in France and Italy over 1992Q2-1994Q2, as the
period unfolded. Although this in itself may not be surprising, what
Is unusual is a significant consistent, or systematic,
underprediction of UK output growth in cross-country forecasts over
a two-year period from 1993Ql to 199404, and a sustained run of
overpredictions in single-country BVAR-EC forecasts over the period
from 199404 onwards. The most likely explanation for the former is
the lack of data on German real GNP, while the latter largely stems
from the inclusion of the EC term much beyond the end of its
estimation period.

Poor forecasts may happen when there are strong cyclical movements
in the dependent variable that are inherently difficult to
anticipate. In this case, even if a model has a good fit with
statistically significant parameters, it may still forecast very
weakly. A deterioration in forecasts may also occur when shifts in
underlying behavioural relationships have not yet been fully
incorporated into the model representation. If this poor performance
appears to be due ·to an extraordinary event (such as dramatic
oll-price developments or government pollcy changes) that are not
accounted for by the model, another round of forecast has to take
place before the model is proved unreliable. By contrast, good
forecasts may happen when there is very 11ttle fluctuation in the
dependent variable. In this case, even if a model has a relatively
low R2 and so~ insignificant regression coefficients, it may still
predict quite easUy. The forecasts for UK's MO and CPI are notable
example •.
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Additionally, as shown in a group of Figs. 7.12-7.15, with the
exception of single-country BVAR-EC forecasts, the forecasted series
under a general prior underpredict UK's interest rates through most
or the period or 1991Ql-199I1.Ql, but then overpredict them durLng
most of the 1994-1995 quarters. It can, therefore, be anticipated
t.hat Lhe resulting ex ante forecasts with a general prior will be
substantially below the actual interest rate series for the UK in
most cases. Also, the corresponding forecasting results appear to be
relatively sensiUve to variations in the prior hyperparameters.
These are similar to Lhe forecasts of the short-term interest rates
in the other three countries. The inclusion of cointegration
restrictions, however, seem to reduce the sensitivity of forecasts
to a great extent across the values of hyperparameters.

As regards prior restrictions, it is found that although in most
cases forecasts with a proper general prior are better than those
with a simple symmetric one, the gains for models of modest size in
terms of improved forecast accuracy are in many cases only marginal.
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On the other hand, with respect to cointegration restrictions, it is
found that as the forecast horizon lengthens, there is little
benefit for forecast accuracy from imposing reduced rank
cointegration restrictions unless the sample size is small. That is,
relative to BVAR forecasts, cointegration restrictions add little to
forecasting, though the empirical BVAR-EC models are time-consuming
and costly to build. From a practical viewpoint, in short-term
forecasting, this point is quite important as it implies that the
simple, inexpensive BVAR models themselves may provide a robust
standard of comparison for forecasts produced by more classical
methods. To pursue this matter further, we consider the following
forecast appraisals and model comparisons on a quarterly basis.

7.3.2 Statistical Assessment of Forecasts and Model Evaluation

The main aim in this section of the study is to use forecasting
itself as a means of model evaluation. The intention is twofold. The
first is to analyse the 'rationality' of past economic forecasts in
terms of their unbiasedness and efficiency. The second is to compare
the forecasting performance of alternative models over the ex post
forecast horizons.

7.3.2a Tests of the Efficiency and Unbiasedness
Propert1es of the Forecasts

An appropriate simple regression exercise allows us to examine
whether the individual forecasts described above can be said. to
satisfy the minimum requirements expected of an efficient, or
optimal, forecast.

(1) A test of eff1c1ency

If Yjt is taken to denote the actual outcome, and t-iYjt the
forecast for time t made at time t-i, one standard test of
efficiency by Mincer and Zarnow1tz (1969, p.9) involves a jo1nt test
of «jaO and ~j.1 1n the 'realisation-forecast' regression:

j = I, ... , K. (7.5)

186



Rejection of the null implies that the forecasts could be improved
by knowledge of the exj and fjj parameters and therefore provides
evidence of inefficiency in the forecast. In particular, since

j = 1, ... , K,

the estimate of the slop coefficient (fjj) in the above regression
only deviates from 1 if the forecast (t-iYjt) and the forecast error
(ejt) are correlated. Such a correlation indicates that the forecast
is not making efficient use of the given information and therefore
it would be possible to improve the forecast by exploiting the
correlation. For details, see Pain and Britton (1992, pp.81-93), and
Wallis (1989, pp.44-6). A significant deviation of the estimates of
exj and fjj from 0 and 1, respectively, does not necessarily imply
significant bias, for the efficiency hypothesis that ex.=O and fj.=1

J Jis only a sufficient condition of unbiasedness, i.e.:

(7.6)

Here, It-i-s is the information set available at the time of the
forecast; s is the 'information lag' the time between the latest
available observed data and the time at which the forecast is
prepared; and E denotes an expectations operator. A necessary and
sufficient condition for the absence of bias is exj=(I-fj)E( Y)j t-i jt '
revealing that the forecast error has an expected value of zero.

Granger and Newbold (1986, p.284) raise a practical objection to the
so-called 'efficiency' underlying the realisation-forecast
regression. They argue that the hypothesis exj=O, fjj=1 consti tutes
only a necessary condition for forecast efficiency, since it
neglects possible autocorrelation of the forecast error. Generally,
the serial autocorrelation of errors indicates an inefficient
forecast, as knowledge of past forecast errors for the variable in
question can then improve current forecasts. Even in an optimal
n-step-ahead forecast, such an autocorrelation may still appear but
is of order n-l, not nj so it cannot be expected to improve the
forecast [for further details about the test of efficiency. see
Wallis (1989), pp.44-6].
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An alternative approach proposed by Figlewski and Wachtel (1981) for
efficiency is to test the joint hypothesis of «=~ =0 in a

j j
regression of the forecast error on the most recent error perceived
at the time of the forecast:

y - y =« + ~ (y - y ) + £ (7 7)jt t-i jt j J J,t-i-l t-2i-l J,t-i-l Jt' .
J = I, ... , K.

This means that efficient forecasts should make best use of the
information contained in pass errors. In other words, forecasters
always try to learn from their mistakes made in previous forecasts.
See also Holden and Peel (1990), and Zellner (1986).

(2) A test of unblasedness

A standard test for bias is thus to test the null that «j=O in
(7.8):

J = I, ... , K. (7.8)

It is also useful to amend (7.7) and (7.8) so as to investigate
whether the above forecasting results are sensitive to particular
unanticipated exogenous shocks (such as an oil-price rise, financial
shocks and major legislative changes). Such unforeseen events can
generate large outliers in the observed forecast errors. The
resulting equations augmented by dummy variables take the form:

y - y .« + ~ (y - y )jt t-i jt j j j.t-i-l t-2i-l j.t-i-l
+ ~jiDUM(i) + £jt'

(7.9)

and
(7.10)

For simplicity. the empirical tests for the quarterly forecasts will
be based on (7.7) and (7.8). and the corresponding testing results
made since 1991Ql are reported in tables 7.3 and 7.4.
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Table 7.3: Test of efficiency hypothesis « =~ =0
( A ( A j j
YJt-t-1YJt="J+~J Yj,t-i-l-t-21-1YJ,t-i-l)+£Jt)

Dep SCM MCM
Var BVAR BVAR-EC BVAR BVAR-EC

«j ~j "j ~j "j ~j "J ~j

UKLGDP -. ODD? (.28°1 -'OOF) . 188}- .001f 2517f- .000l .5956-
(-.98 1.30 (-2. S (.86 (1.42 ( .71 (.06 (3.43 )

UKLMO -.OOOy -.0421 -.ooor -.03n ('ooo~ .173? .oooy .043f
(-.26 (-. 19 (-.63 (-. 1 -.38 (. 80 (.67 (.20

UKLCPI -.OOOf .182~ (:?~g~ -.227~ -.001~ -.4186
(-.36 (.78 (-1.0 ) (-.96 (-2.08) -- --

UKTBR -.15~f .3R8? (:~~n) .31~I- -.17?7 .3R5J (:f?~~).3654(-.9 (1. S (1. 5 (-1. 0) (1. 7 (1. 76)

GERLGNP -.~090 ~~nY-(:~?n) .OS~~- -.002? •0231 (:g~~~)-.020,-(- .43) (.1 (-.93 (.0 (-.06

GERLMI (:?~8' (:~~~~r(:g?¥~) (:.p~n (:?8g~ (:E~g) (:?gH -.1174
(-1. 45)

GERLCPI (i?3Ar (~~b~ <i?~n -·f943 . 002} -.09n-(- .92) (2.10 (-.4 -- --

GERTBR -'1431 ~?8U
-.1566) -.Oln ~?~5l -.osH - ~1~3 .104f-

(- . 1) (-1. 9 (-.0 (-.3 (:. . 4) (.47

FRALGDP (:.?2gf ~~Uf (:~?H) .20n -.OOO~ .2017 -.0026 .0234
(.9 (-.35 (.92 ) (-1.59) ( . 10)

FRALMI (:?~9t ~~Uf ~?g~r ~~~~?
-.003f .12OJ -.0142 .11St-(-.98 (.63 (-3.04) (.60

FRALCPI ~?8g? (:~~n ~?gg~ .067? -.0014 c048y(.28 (-1.89) .20 -- --

FRATBR (:~~8f -.023? -.204' -.0251 -.442; (:?Ul (1. 053~ -.~4S6-
(-.11 (-.91 (-.11 (-1.9 ) -4.02 (- .15)

ITALGDP ,:?~~? - 1~ly (:g?~g)
-.5507_ -.g107 -.531~-

(:. 9 -- -- (-2.97) (- .83) (-2.7 )

ITALMl ,:?gn - 09~y -.0072 -.054Y -.01S6 -.OS8J-
(:'.4 -- -- (-1.79) (-.25 (-3.49) (-.40

ITALCPI -.oog} (:?AH .OOOI .287Y(-.1 (.16 (1.10

ITATBR (:.?~~f (i~nY -.096? (i~~2} (:.~~gt (i~2'f- -- (-.44

Note: (1) SCM .tends for slnqle-country model and HCH Cor multl-
country modelj

(Ill The value. within (.) are t-ratlosj
(111) _ indicates inefficient forecast at S~ slqnlClcance

1eve 1.
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Table 7.4: Test of unbiasedness property
aj=O (YJt-t-iYjt=«j+£jt)

Dep SCM HCM
Var BVAR BVAR-EC BVAR BVAR-EC

aJ aJ aJ aJ
UKLGDP (:i?RH (:3?g~r· (.003~. -.ooof3.10 (-.41
UKLMO (.ooo~ -.OOor -.OOOf .Ooor-.24 (-.76 (-.54 (.69
UKLCPI (.oooT -.OO~~ (.001?-.57 (-.5 -.79 --
UlCTBR -.258T (:,~Xg~·(-.292~ -.3~4~-(-1.69 -1.93 (-2. 5

GERLGNP (:!!?g;n· -!!008~. (:?~~? -.010~.(- .50 (-3.32
GERLMI (?Rn (:?~gr (006l .004f.8t (.63

GERLCPI ci?iU (i ?~Of .00t?-(2.11 --
GERTBR -.t40J (:2~~n- .017t -.341?(-2.03 (.25 (-3.56

FRALGDP -.OglJ -.og3J- (.001~ (-.002?(-. 7 (-2. 9 -.74 -2.12
FRALMl -.002~ -.001~ -.005T -.017r·(-.69 (-.23 (-1.65 (-5.35

FRALCPI .OOO~ (ooo~ -.OOlf·e. 01 .23 (-2.48 --
FRATBR (.106f (:~n~ -.4?9~. (:,?U?·-.52 (-2. 4

ITALGDP -.ooU (:2?g~r- (-.006T·(-.6 -- -4.99
ITALMI (:i?8~f -.007~ (-.017~_-- (-2.01 -4.71

ITALCPI (?8g~ (OOO?-- .47 --
ITATBR (:.?ur -- (:~~~? (:~g~~

Note: (1) SCM stands for single-country model
and MCM for multi-country model;

(ii) The values within (.) are t-ratiosj
(iii) • indicates siqnificant bias at 5~

Ieve 1.

Of the 56 cases considered in Table 7.3, the efficiency hypothesis
Is rejected at the 5% significance level in 16 cases. But 19 of the
56 cases are found to be biased according to Table 7.4, with many of
the inefficient forecasts also being biased. Comparlng the two
tables, it can be seen that in most cases the inefficiencies in the
forecasts associated with a significant intercept term (aJ) will
simply confirm the biases, and that many such biases appear to be
upward, implying a systematic overprediction over the forecast
period as a whole.

The results are consistent with earlier studies in showing that the
observed forecasting difficulties arise largely from GDP/GNP growth

190



and short-term interest rates across four selected variables, which
account for nearly 70% and SO% of rejections in the respective
hypotheses tests of the forecasts. Especially for forecasts of
Germany's real GNP, only one of the four cases, namely the cross-
country BVAR forecasts (one-step-ahead) over the period 1991Ql-
1992Q4, fail to reject the null of efficiency and of unbiasedness.
However, as with the previous studies, the evidence of efficiency
appears greatest in the forecasts of single-country BVAR forecasting
models over the period from 1991Q1 onwards, with the null only being
rejected for Germany's GNP and H1 at conventional levels. These
results can be further confirmed through the following forecast
comparisons across alternative models.

7.3.2b Comparison of Alternative Forecasting Hodels

The forecasting 11terature has a long history of assessing the
relative accuracies in predictions of alternative models using
appropriate statistical tests, and of taking these assessments as an
important input into the forecasting process, since without
comparison we could never say which one is 'good' and which one is
'poor'. A useful, but controversial, principle is that if one group
consistently outperforms another, then the poorer of the two cannot
sensibly be used for policy purposes, which makes forecast
comparisons important.

For simplicity, only the one-quarter-ahead forecasting performance
of the BYAR versions is systematically compared with that of their
BVAR-EC counterparts for Europe's major four economies, based upon
the Theil U statistics reported in Tables 7.5 through 7.S. Since the
two groups of forecasters 'breath the same air' with exactly the
same vector contents and forecast horizons, the tedious problem of
the 'alignment' of base-line information assumptions embodied in
different systems can be avoided.

The comparison of Theil U statistics in Table 7.5 demonstrates a
relative superiority of the single-country BVAR models over the
other specifications for the UK economy. For the one-quarter
forecasts of the four macroeconomic aggregates of interest, the
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single-country BVAR forecasts have the smallest Theil U values in 3
out of 4 cases and all of these values are less than unity.
Additionally, the root mean squared errors (RMSEs) are well above
the mean absolute errors (MAEs) in all cases.

Table 7.5: One-step-ahead forecast comparison
for UK economy: BVAR and BVAR-EC

Dep Model Criteria
Var ME MAE RMSE Theil U
U SCM- BVAR -0.0013 0.0028 0.0042 0.6573-K UK
L BVAR-EC -0.0052 0.0055 0.0069 0.7528
G MCM- BVAR 0.0000 0.0036 0.0046 1.0429D
P

LGDP BVAR-EC -0.0078 0.0078 0.0080 0.8897
U SCM- BVAR -0.0002 0.0040 0.0049 0.3582-
K UK BVAR-EC -0.0031 0.0036 0.0047 0.7873L
M MCM- BVAR -0.0006 0.0046 0.0057 0.4082
0 LMON BVAR-EC -0.0022 0.0030 0.0037 0.6866
U SCM- BVAR -0.0007 0.0046 0.0054 0.5339K
L UK BVAR-EC 0.0001 0.0031 0.0036 0.3065-
C

MCM-
P LCPI BVAR -0.0013 0.0068 0.0079 0.7723
I

U SCM- BVAR -0.2587 0.4575 0.7645 0.9792-
K UK BVAR-EC -0.3083 0.5101 0.7825 0.9937T
B MCM- BVAR -0.2922 0.4659 0.7677 0.9833
R TBR BVAR-EC -0.4865 0.4865 0.8344 1.4800

Note: (I) SCM stands for slnqle-country .odel; MCM
for multi-country model; ME for mean
error; MAE for mean absolute error; and
RMSE for root mean squared error;

(II) - Indicates the ex-post forecast with
the lowest Theil U statistic.

The evidence that the BVAR model is substantially more accurate than
its BVAR-EC counterpart may also be shown from Table 7.6 in the
forecasts for the German economy. Although the forecast results in
this case cannot be matched with those in the previous one, the
relative pattern of forecast performance is not reversed. The
resulting Theil U statistics indicate the comparative advantage of
the single-country. and of the cross-country. BVAR models over the

192



other versions in a quarter. and a half. respectively. of the number
of cases examined.

Table 7.6: One-step-ahead forecast comparison for
GERMAN economy: BVAR and BVAR-EC

Dep Model Criteria
Var ME MAE RMSE Theil U
G SCM- BVAR -0.0075 0.0104E 0.0117 1.3272

GERMANYL BVAR-EC -0.0104 0.0120 0.0134 1.0600
G MCM- BVAR -0.0009 0.0071 0.0085 0.9638-
N
P LGDP BVAR-EC -0.0086 0.0128 0.0145 1.2226
G SCM- BVAR 0.0147 0.0408 0.0645 0.9518
E GERMANY BVAR-EC -0.0024 0.0149 0.0155 1.3343
L
M MCM- BVAR 0.0061 0.0172 0.0363 0.8421
1 LMON BVAR-EC 0.0310 0.0493 0.0811 0.6934-
G SCM- BVAR 0.0041 0.0044 0.0051 0.5183-E GERMANYL BVAR-EC 0.0031 0.0045 0.0059 1.2878
C MCM-P LCPI BVAR 0.0019 0.0035 0.0045 0.5235
I

G SCM- BVAR -0.0605 0.2389 0.3758 0.9081
E GERMANY BVAR-EC -0.3989 0.3989 0.6786 0.9831
T

0.8339-B MCM- BVAR 0.0171 0.2591 0.3284
R TBR BVAR-EC -0.1366 0.1366 0.1874 0.8509

Nole: (1) SCM slands for sinqle-country model; MCM
for mulli-country model; ME for mean error;
MAE for mean absolute errorj and RMSE for
Root mean squared error;

(11) _ Indlcale. the ex-post forecasl with the
lowest Theil U statlslic.

A perusal of the Theil U statistics summarized in Table 7.7 finds
that the BVAR models outperform their BVAR-EC counterparts in most
cases for the French economy. The single-country BVAR models have a
superior forecasting performance to the others in 3 out of 4
instances, although there is one case in which the Theil U statistic
exceeds unity.
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Table 7.7:0ne-step-ahead forecast comparison for
FRENCH economy: BVAR and BVAR-EC

Dep Model Criteria
Var ME MAE RMSE Theil U
F SCM- BVAR -0.0011 0.0047 0.0062 0.8949-R
L FRANCE BVAR-EC -0.0041 0.0041 0.0052 1.3308
G MCM- BVAR -0.0027 0.0038 0.0045 1.0719D
P LGDP BVAR-EC -0.0068 0.0068 0.0074 1.5164
F SCM- BVAR -0.0025 0.0123 0.0168 1.0725-
R FRANCE BVAR-EC -0.0199 0.0199 0.0231 1.0831L
M MCM- BVAR -0.0057 0.0133 0.0176 1.1409
1 LMON BVAR-EC -0.0349 0.0349 0.0371 1.2890
F SCM- BVAR 0.0000 0.0019 0.0026 0.4587-R

FRANCEL BVAR-EC -0.0012 0.0023 0.0030 0.5223
C MeM-
P LCPI BVAR -0.0016 0.0025 0.0033 0.5850
I

F SCM- BVAR -0.1066 0.6083 0.9742 0.9810
R FRANCE DVAR..EC -0.0919 0.5401 0.8626 0.8987-T
B MeM- DVAR -0.4092 0.6703 0.9861 0.9930
R TBR BVAR-EC -0.3736 0.7512 1.0681 1.0934

Note: (1) SCM stands for si nq Ie-country mode I; MCM
for multi-country model; ME for mean
error; MAE for mean absolute error; and
RNSE for root mean squared error;

(11) - indicate. the ex-post forecast with the
lowest Theil U statistic.

Finally, as shown in Table 7.8, the BVAR models again prove to be
capable of producing forecasts comparable in quality for the Italian
economy. According to the table, the results of single-country BVAR
forecasts would still appear to be fairly encouraging and the
correspondIng U values reported here are all satisfactorily below
unity.
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Table 7.8:0ne-step-ahead forecast comparison forITALIAN economy: BVAR and BVAR-EC
Dep Model CriteriaVar

ME MAE HMSE Theil UI SCM-T ITALY BVAR -0.0007 0.0040 0.0055 0.8206·L
G MCM- BVAR -0.0025D 0.0031 0.0050 1.0168LGDPP BVAR-EC -0.0051 0.0051 0.0064 1.3402
I SCM- BVAR -0.0036 0.8417·T ITALY 0.0139 0.0172
L
M MCM- BVAR -0.0070 0.0150 0.0181 0.8980
1 LMON BVAR-EC -0.0005 0.0131 0.0159 0.8676
I SCM-T ITALY BVAR 0.0000 0.0025 0.0033 0.2744
L
C MCM-P BVAR 0.0003 0.0021 0.0031 0.2580·
I LCPI
I SCM- BVAR -0.0255 0.7981 1.0886 0.9999T ITALY
T
B MCM- BVAR -0.1403 0.7207 0.9884 0.9078
R TBR BVAR-EC 0.4064 0.6367 0.7553 0.8000·

Note: (I) SCM stands for sin91 e-country mode I; MCM
for multi-country model; ME for mean
error; MAE for mean absolute error; and
RMSE for root mean squared error;

(II) • Indicates the ex-post forecast wlth the
lowest Theil U statlstlc.

Overall the results are mixed. It may be concluded from this
particular application that the single-country BVAR forecasts one-
quarter-ahead are, on average, marginally superior for the four
leading European countries across the alternative forecasting models
under study. Of the 16 comparisons, the single-country BVAR
forecasts are more accurate in 9 cases. Perhaps, the least accurate
forecasts generated by both BVAR and BVAR-EC models are those
associated with the interest rate on Treasury bills, where the
reported Theil U values generally appear to be the largest
throughout the experiment.
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§7.4 Conclusion

In this chapter, the empirical BVAR forecasting models are estimated
and employed to generate one-quarter-ahead ex post and ex ante
forecasts of some key macroeconomic variables for the four major
European economies with the aid of KF estimation technique. The full
resul ts obtained from the mixed-estimated BVAR and BVAR-EC models
are illustrated with charts over the forecast horizon, 1991Q1-
1998Q4, in both specific- and cross-country context and as reported
in Appendix F. The assessments of the efficiency and bias of the
forecasts as well as the comparisons of the Theil U statistics
indicate that in overall terms the single-country BVAR models emerge
as providing a high standard of forecasting, especially for small
sample sizes and long forecast horizons.

However, this conclusion has to be treated as tentative. An

improvement for forecast accuracy could be gained occasionally from
imposing cointegrated combinations of variables within or across the
countries. In fact, such cross-model comparisons cannot be used to
rank models because, as we observed, under an appropriate
forecasting criterion (e.g. Theil's U statistic), no one forecast
set 'dominates' another fOr all variables over all time horizons. It
would, therefore, be more fruitful to regard several different
approaches less as rivals than as complementary tools that can shed
different kinds of light from different viewpoints on our
projections of wh.t the potential rule for each of the series would
be like in the future. See Granger (ed) (1991), pp.1-23.
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CHAPTER 8

SUMMARY, CONCLUSIONS AND POTENTIAL DEVELOPMENTS

§8.1 Sunmary

Recent forecast failures in the world economy clearly highlight the
importance of exploiting the sources of forecast accuracy, both for
their substantive implications and for their implications as to how
we should improve our methodologies in order to provide the best
strategy for macroeconometric modelling. It is now generally
recognized that macroeconometric models are important tools in the
hands of analysts. They are used, inter alia, for explaining
economic phenomena, making forecasts and assessing policy changes,
and their usefulness is unlikely to be superceded by other methods
in the foreseeable future.

However, much work still needs to be done on alternative research
strategies. The economic theory-oriented approach related to the
Lucas critique and the rational expectations hypothesis (see, for
example, Lucas and Sargent, 1981) has criticized the modelling of
expectations and casts considerable doubt upon the invariance of
so-called structural parameters. The time series-oriented criticism
has questioned the existence of legitimate prior theoretical
knowledge and emphasized the significance of the Joint temporal
structure of the observed data on relevant variables (Sims, 1980a,
1982). The Bayeslan~orlented school of thought, for its part, has
criticized the ad hoc nature of traditional econometrics and
prescrIbed a more formal treatment using appropriate techniques
(Litterman, 1980, 1986a).

The explicitly Bayesian forecasting procedure with stochastic priors
provides key insights into the process of macroeconometric
modelling. It allows the problem of overfitting to be ameliorated,
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and creates useful and natural vehicles for working with the
available data (Shoesmith. 1990. 1992). In this study. a systematic,
practical six-step procedure has been developed for the formulation,
estimation and selection of appropriate BVAR and BVAR-EC forecasting
models. Their worth has been suggested as an operating system for
forecasting the European economies, not only in the realm of
scientific discourse, but also in the domain of practical
applicability. thereby laying the groundwork for further
improvements. In addition, some of the conclusions obtained have
contributed to an improved understanding of the workings of some of
the major European economies.

§8.2 Main Contributions

The main contributions made in this work can be summarized as
follows:

Ca) A large macro data set is assembled from the currently
existing IMF. DECD and DNS databanks through MIDAS. and then
transformed and analysed for the European economies.

Cb) Some forecasting records for the major European countries in
the process of transition are examined. and the interactions among
national economies are evaluated.

Cc) Appropriate BVAR and BVAR-EC forecasting models for the UK.
Germany. France and Italy are selected in both a single- and a
multi-country context.

Cd) Probablli ty elicitation in Bayesian methodologies is
conducted and programs using Bayesian networks are designed.

(e) Estimation and testing of unit roots and multicointegra~ion
in systems of equations are carried out.

Cf) The best settings of the scalar prior hyperparameters are
determined.

(s)Cointegration and BVAR techniques are combined.
Cb) The rationality of forecasts in terms of their efficiency

and unbiasedness properties is assessed. and the system~tic
comparison of alternative forecasting models is implemented.
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(1) Forecast errors are decomposed into avoidable (systematic)
and unavoidable (stochastic) components.

In terms of empirical practice, there are three main arguments in
favour of Bayesian methods:

(a) BVAR models with a proper prior have a superiority in coping
with nonstationarity in the data as the presence of unit roots
cannot affect Bayesian asymptotics [cf. Phillips (1995c), p.93].

(b) BVAR models have inherent protection against
overparameterization and can consistently outperform traditional
methods by providing more precise forecasts in finite samples [cf.
Koop & Potter (F'?T), p.10]. This highlights the importance of using
BVAR in prediction.

(c) Long-run cointegration restrictions can reduce the
sensi tivity of BVAR forecasts across the values of prior
hyperparameters, although imposing such restrictions may make little
benefit for forecast accuracy, sometimes substantially so.

In conclusion, it may be said that the relatively simple BVAR
models, which combine both prior and sample information in a
flexible coherent manner, can lead to value-added in terms of
forecast accuracy over classical methods, although as Artis et al.·

(1990b, p.16) point out:
the BVAR models must be 'tuned'
achieve such results; inappropr late
yield less clear cut conclusions.

correctly to
pr lors could

In general, we concur with the argument that the BVAR forecasting
models, on a pr ior i grounds, can act as a highly effective standard
of comparison for forecasts produced by more conventional methods.

§8.3 Probl_

BVAR models have inherited the main advantages of UVARs in that they
can generate unconditional forecasts without either designating
which economic variables should be treated as underlying
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determinants, or requiring the explicit theoretical restrictions.
They can also avoid the overparameterization faced by any but very
small UVAR models by incorporating the priors derived from
statistical regularities. Unfortunately, it is these elaborated
priors that put the BVAR approach under challenge.

The most commonly cited criticism of the BVAR models is that they
are subjective, unscientific, or even capricious, relative to
standard models, so that although they may capture the general
tendency in the future, they cannot detect the significant cyclical
turning points. Even if models of this class possess superior
forecasting qualities, their usefulness would be in doubt if they
could not enforce consistency or accommodate variation for policy or
structural changes.

According to our records, no one model has ever given a perfect
account of economic behaviour through time. There are a number of
explanations for this. Given the complexity of 'real' economic
systems, it is not surprising that forecasts are subject to errors.
Some of the errors may be due to the stochastic nature of data and
lack of knowledge of the parameters of the models. The parameters
themselves may change over time in an inherently unpredictable way,
so that the prior weight matrix may be both data- and
time-dependent. All of these may lead to the deviation of forecasts
from realized observations. However, one thing Is certain. As ~ong
as the prior and cointegratlon restrictions are carefully chosen,
and as long as the basic assumption that the same stochastic process
will hold both during and after the estimation period is acceptable
[Sargent (1984), pp.411-2], the gains from adopting BVAR and BVAR-EC
models can be significant.

§8.4 Prospects for Future Developaenta

Whl1ethe procedure developed here is likely to be useful, there are
several directions in which it might be extended. The first of these
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is to include an option to relax the restrictions of the standard
Minnesota prior by specifying more general prior distributions that
allow for dependencies between the VAR equations. In some cases, for
example, economic variables are not well characterised as trending
stochastically. Consequently, the standard Minnesota prior is not
appropriate and an alternative prior is called for.

BVAR and BVAR-EC models are adaptive in nature. They represent only
our best state of knowledge at a given time and use exclusively the
previous information to adjust our ex ante forecasts mechanically.
An intriguing avenue for further research would seem to be the
development of the optimal forecast combination methodology using
ancillary indicators in a Bayesian framework. In practice, much of
the research to date demonstrates that forecast accuracy can be
substantially improved through aggregating over multiple competing
forecasts [Clemen (1989), p.559], a phenomenon supported by sound
empirical resul ts but which appears to be inconsistent with the
encompassing approach. In theory, it should be possible to attain a
single, catholic analytical model through the pooling of alternative
information sets used by the component forecasts in the combination.
This is certainly consistent with the encompassing approach but
would appear to be either impossible or prohibitively costly.

In this respect, an eclectic but mOre comprehensive technique would
be the combination of multiple forecasts with extraneous information
developed by Fair & Shiller (1990), which entails treating forecasts
themse 1ves as pieces of information in a formal, general Bayesian
framework. The motivation for building such a general Bayesian model
by the effective use of additional information is, at its most basic
level, the simple idea of the quest for 'rationality' in terms of
both new information employed and increased forecast accuracy. This
is, perhaps, a second best way forward but it is consistent with. the
literature of encompassing tests and of composite forecasts.

Another extension which may significantly improve forecast accuracy·
is the allowance of time-varying parameters. Doan et al. (1984) and
Sims (1989) have done excellent work in constructing BVAR models
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with time-varying parameters. Such an extension is likely to be most
useful when the model appears to wander from the actual path.
Furthermore, the extension of the methods to models with seasonal
components, non-Gaussian and non-linear models for economic time
series may also be sources of improving forecasts. Finally,
'impulse-response' policy simulations can be carried out in a
multi-country context to determine how actual economies would react
to specific shocks and, thereby, to investigate how a government
would apply monetary and fiscal policies to pursue certain
objectives in general environments.

Ultimately, it is anticipated that, with advances in econometric
techniques, a fully formalised computable model could be established
to deliver frequently optimal ex ante forecasts in the near future.
In any case, it is essential that a macro model can interpret some
macroeconomic episodes, fulfil consistency and parsimony criteria,
and cope with both current and forward-looking information.
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APPENDIX A

DOCUMENT EXAMINATION

The up-to-date document examination is carried out either through
the Joint Academic NETwork (JANET) to the computer facilities of
academic and other educational institutions world-wide, or through
the NISS Gateway to all British library catalogues (OPACs). These
facilities allow us access to data bases and other resources not
available locally. Besides, we can also search via the Web
(http://www.hull.ac.uk/lib/homepage.html) on Windows, or via the
Social Science Citation Index (SSCI) in BIDS (Bath Information and
Data Services) for articles and books (titles, citations, abstracts
references) (published from 1960 forwards). This is normally done in
two ways:

(1) search for journals in which the article has been published;
and

(2) search for journals (or working papers) in which the article
has been quoted (or cited).

The search results can then be sent directly to an email address and
downloaded onto a floppy disk in plain text (-.txt) format.
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APPENDIX B

MATHEMATICAL ELICITATION

This appendix provides the mathematical proof and elicitation of
some important econometric propositions used in various chapters.

PROPOSITION: The first two moments of a stationary VAR(p) process,
i.e. means, autocovariances and autocorrelations, can be written as:

01)

f.ly = E[Yd = I: t!i~;i=O
'rIs it 0; and

-1 -1Ry(s) = Q ry(s)Q , 'rIs it O.

Here
min(i,p)

t!i= I: Mi-JAJ, and Mo = IK;J=l
vecr cu(O) = (1 - ~®~ -lvecl:; and

J (Kp)2 U

Q-l = diag[l//71lCO)', ... ,1//rKl((Or].

PROOF: Provided that the stationarity condition (2.5) is satisfied,
then the illeciClS, autocovariances and autocorrelations of a stationary
VAR(p) process may be derived by the following procedure.

Let
00

M(L) ~ r M Li
1=0-1

be an operator such that

M(L)A (L) = IK,- -p
or

(B.1)

Note also that Eq.C2.4) can be written alternatively as
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(B.2)

Substituting (B.1) into (B.2) and rearranging yields

Yt = M(L)~ + M(L)Yt

=( r Mi)~ + r MiYt-i·i=O i=O

This form of the process is called the infinite, or nonparsimonious,
moving average (MA) representation, which expresses Yt as an
inflni tedistributed lag of the orthogonal innovations Yt, and can
be used to obtain the mean and autocovariances of Yt. That is,

00

Ity = E[Yt] = 1: Mi~
i=O

(B.3)
and

00

= 1: Mi+s~uMi' s ~ 0,
i=O

or (B.4)

Here Iu=E[Ytyi] is again the white-noise variance-covariance matrix,
and the M-weights can be drawn from the relationship (B.I), given
A-weights, using the following recursions:

Me • IK

Ml • MoAt
M2 • MIAI + MeA2

(B.S)

For a stationary VAR(p) process, the Hi matrices will, in general,
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approach zero as i tends to infinity. A more natural and attractive
way of computing the autocovariances may be from the VAR coefficient
matrices directly rather than from the MA coefficients, since (B.4)
involves an infinite sum.

For exposi tory purposes, any I(-dimensional VAR(p) process can be
stacked into '1 "orresponding I(p-dimensional VAR(1) form after a
suitable change of notation. The simple multivariate first-order VAR
is fully general, i.e.,

~ t = ! + AY t-1 + ~t' (B.6)

where

1\ ~ ~1 ~2 A A !:!t-p-1 -p
Y ~

y
6. 0

A ~
IK 0 0 0

~
0-t-l

-t t'f,' =
0 II( 0 0

, ~t

Y 0 0 0 II( 0 0-t-p-1
(Kpx1) (Kpxl) (KpxKp) (l(px1)

Since

II(-~1~-~~ -~3~
-IK~ IK 0
o -IK~ IK

-~-1~ -~~
o 0
o 0

f-- expanding
according to
the cofactors
of the first
row

o o
(KpxKp)

= det[IK - Al~ - ... - ~~IJ* 0, I~I :s 1,

we know that ~t Is also stationary and that the eigenvalues of A
have modulus less than 1. As such, the VAR(1) process may be written
in mean-adjusted form as

~t - f!y = ~(!t-l- 1''':1) + ~t (B.7)

with l'y~(IlY' ... '1lY) •.E~t] and white noise covariance matrix
E~t~t]=Iu· Postmultlplylng (B.1) by (!t-s-I''!I)' and taking
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expectations gives

E[(~t - ~Y)(~t-s- ~Y)']= ~E[(~t-l- ~Y)(~t-s- ~Y)']
+ E~t(~t-s- ~Y)']'

Thus, for s=O
(B.8)

and for s>O
(B.9)

These vector difference equations are often referred to as
Yule-Walker equations with solution

S ~ 0, (B. 10)

where

ryes) ry(s+ll ry(s+p-ll

1'= ry(s-l) ryes) ry(S+p-2) s ~ o.
ry(s-p+1) ry(s-p+2) ryes)

(KpxKp)

If A and Iu are known. the initial covariance matrix ry(O) can be
determined as follows. For s=1 we have ry{ll="ry(O). Substituting
ry(l) into (B.8) results in

or
vecry(O) = vec(~ry(O)~') + vecIu

= (~.~)vecry(O) + vecIu'

where • denotes the matrix Kronecker direct product, while vec Lr )
signifies the column vectoring operator, which transforms the matrix
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into a vector by stacking the columns one upon the other; hence,

(B. 11)

The invertibility of I(Kp)2 -~®~ follows from the stationarity of ~t
because the eigenvalues of A®A, being the products of the
eigenvalues of ~, must have modulus less than 1. Accordingly,
det [I(Kp)2 -~®~;t0.

Furthermore, the unit-dependent autocovariance matrices may be
standardised to yield the corresponding unit-free autocorrelation
matrices

(8.12)

which are generally more convenient to work with. Here Q is a
diagonal matrix with the square roots of the diagonal elements of
ry(O) on its diagonal. Denoting the iJ-th elements of ryes) (or the
covariance between Yi,t and YJ,t-s) as 1ij(S) and the diagonal
elements of ry(O) (or the variances of Ylt, ... ,YKt) as 1i/0), we
have

The ij-th element of Ry(s) signifies the auto- or cross-correlation
between a pair of elements, Yi and YJ' in the vector r at lag s,
1.e. ,

and therefore the temporal (dual) symmetric crosscorrelation
function (CCF) between Yi and Yj, say, is Pij(s)(=PiJ(-S»), VS~o.

Q.E.D.

In practice, the easiest way to remove ~ is to convert rt, observed
for t=l, ..., T periods, into deviations from its sample mean:

208



given that the process is stationary. This can be done simply by
stacking the observations
YK, l' ... ,YK, T) , :

(~(L)®IT)Y = ~®JT + y,

into a KT-vector y=(y1,1'··· 'Y1,T' ...'

where JT is a T-rack identity matrix, and JT a T-vector of ones.
Define

QT i! IT - iJTJr,
which is symmetric and idempotent. Premultiplying by IK®QT is
equivalent to scaling the equations in terms of deviations about the
means:

Here (IK®QT) (~(L)®IT) = ~(L)®QT and

(IK®QT)(~®JT) = ~®(QTJT) = 0; as QTJT = o.

PROPOSITION: The marginal or predictive pdf for r, f(rly), in (3.22)
can be written as:

(B.13)

where

w Q (I~1/2®Ih)' [IKb-(I~1/2®&)N-1 (I~1/2®&) 'J (I~1/2®Ih) ;
H ~ V-l+(~-1/2.G)' (~-1/2.x). and
- -(3 u A u -'

r = T+h-(l+J(p).

PROOF: To integrate the unknown parameter vector f3 out of the
predictive pdf for X. f(xlx). in (3.22):

f(xIX) cc fe~- ~ [~1/2(~_ID)' (Y;1/2(~-ID)

+ ((~~1/2.Ih)X_(~~1/2®&)~. ((~~1/2.Ih)y_(~~1/2.&)~] r!!!'
(B.14)
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we define

and complete the square on ~ for the integrand. This gives

ex~- ~ (m-At~)' (m-At~) }

= ex~ - ~ (m' m +~ , At ' At~ - ~ , At ' m- m ' At(3) }

= ex~ - ~ ~'m + (~ - (M ' M) -1 At ' m) , At ' At

(J!-(M'At) -1M'~-m'At(M'At)-1At,~},

On substituting this expression in (B.14), properties of the Wishart
pdf can be utilized to integrate with respect to the K(l+Kp)
elements of ~_,given I , which yields the predictive pdf for y, i.e.u -

1
f(iIY) ex Im'm-m'M(M'M) -1 M'ml '1/2

x[{exp{- + f!!!'m-m'M(M'M)-IM'm +

~- (M' M) -1M' ~'M' M(~-(M' !)-1M'~]}/

Im'm-m' M(M' M) -1M' ml-'¥/2}d~,

or

since the accumulated new data points are allowed to assist in
selecting the most appropriate forecasting model and the above
integral is Just equal to the normalizing constant of the Wishart

1pdf which does not depend on the parameter vector ~.

To put (8.14) in a more convenient form, we define

1For details, see Zellner (1971), Chapter VIII.
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and complete the square on X as follows:

m'm-m' M(M,!)-1M'm

= s: y. - 173+Y' (t -1/2@ I ), (t -1/2 ®I ) V _
- ~- u h u h-

[~'y; 1+Y' (l:~1/2® Ih) , (l:~1/2®&)JN-1 [Y;1~+(l:~1/2®&), (l:~1/2®Ih)YJ
= 73' (y-1_y-1N-1y-1)o +
- -~ -~ - -~ ~

X' (l:~ 1/2®Ih)' [IKh _(l:~1/2®&)N-1 (l:~1/2@&)'J (l:~1/2®Ih)X -
~'V-1N-1(t-1/2®X) '(l:-1/2®I )V _ V' (l:-1/2®I )'(l:-1/2@X)N-1V-10- -~ - u - u h - - u h u - - -~~.

(B.1S)
Let

the quantity in the third line of (B.1S) can be expressed as

Further, we have
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Also

Finally

(B.18)

Substitution from (B.17) and (B.18) in (B.16) leads to

As it stands, the predictive pdf (3.23) can be readily obtained

(B.19)
Q.E.D.
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APPENDIX C

DATABASE ASSEMBLY

This appendix only presents the macro data used in this work. The
data sets are assembled from the currently eXisting DECO Main
Economic Indicators, IMF International Financial Statistics (IFS)
and ONS Macro-Economic Time Series databanks in Manchester Computing
Centre (MCC) through MIDAS. The complete macro data for the four
leading (and other) European economies are stored in ASCII files
ending with suffix *.ASC in an accompanying data diskette.

UNITED KINGDOM

(I) IMF IFS DATABASE

• MONEY (Billions of Pounds: End of Period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
* stops: 1994Q4 no. of obs: 137 last updated: 1994Q1
• one line of data represents two years

10.894 10.808 11.551 11.246 11.202 11.166 11.045 11.473
10.784 11.110 11.254 10.852 11.322 11.633 11.789 12.425
12.126 12.257 12.517 12.824 12.486 12.661 12.809 13.318
13.175 13.114 13.246 13.311 13.190 13.404 13.957 14.327
13.932 14.180 13.738 14.906 14.151 13.895 14.105 14.953
14.436 15.021 15.327 16.350 16.445 16.683 17.326 18.816
19.048 19.903 20.245 21.478 20.928 22.357 21.860 22.574
21.673 22.357 22.931 25.011 25.004 26.983 28.463 29.666
30.207 31.037 32.625 33.034 33.202 34.635 37.416 39.917
40.908 41.665 43.866 46.435 46.325 46.924 48.748 50.664
49.176 50.082 50.174 52.680 53.354 55.217 56.152 58.704
57.694 63.233 64.827 68.993 70.790 72.643 73.401 72.056
79.465 82.996 85.433 81.537 91.662 95.696 100.196 96.173

110.003 116.808 125.235 117.539 138.501 145.111 149.012 154.118
159.933 166.270 170.086 170.673 175.037 185.919 191.741 195.309
198.868 205.509 207.334 214.940 217.140 225.180 227.180 229.220
232.390 235.590 237.950 238.950 242.350 243.240 245.210 252.340
254.920 0.000 0.000 0.000

• QUASI-MONEY (Billlons of Pounds: End of Period)
* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Ql
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* stops: 1994Q4 no. of obs: 125 last updated: 1994Q1
* one line of data represents two years

0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
5.846 6.146 6.249 6.548
7.428 7.689 7.812 8.139
9.332 9.885 10.494 10.436

10.865 11.454 11.776 12.181
14.515 16.182 17.616 19.535
30.219 30.358 32.239 33.251
32.618 34.582 36.270 37.038
38.369 41.182 40.715 42.142
49.985 55.545 59.152 64.104
87.186 91.827 93.505 96.341

108.910 109.958 112.854 121.289
136.295 145.319 153.951 159.873
194.875 204.037 219.808 231.932
299.990 309.400 320.500 318.530
310.500 312.310 319.130 326.660
356.970 0.000 0.000 0.000

0.000 0.000 0.000 0.000
5.421 5.670 5.726 5.981
6.476 6.945 7.058 7.453
7.981 8.423 8.639 9.375

10.591 10.754 10.859 11.120
12.080 12.596 12.748 13.526
21.150 22.114 25.946 29.075
32.768 32.184 32.982 33.144
35.896 37.807 36.771 37.314
41.420 45.454 45.765 48.760
65.235 72.445 78.081 86.493
99.792 103.255 104.747 109.694

119.473 122.129 126.472 130.206
167.971 174.427 182.675 189.073
245.310 258.140 268.960 286.060
319.930 325.740 326.490 302.740
328.250 334.350 339.940 349.600

* MONEY PLUS QUASI-MONEY (Billions of Pounds: End of Period)
* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
* stops: 1996Q4 no. of obs: 135 last updated: 1996Q3
* one line of data represents two years

0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

17.972 18.403 18.765 19.371
20.603 20.803 21.059 21.450
23.264 24.064 24.233 25.342
25.301 26.475 27.103 28.531
33.564 36.085 37.861 41.013
51.893 52.716 55.169 58.263
62.826 65.619 68.896 70.072
79.277 82.847 84.581 88.577
99.161 105.627 109.325 116.784

144.881 155.060 158.332 165.333
188.375 192.954 198.286 202.825
246.298 262.127 279.186 277.412
354.808 370.307 389.894 402.605
498.858 514.909 527.834 533.470
542.890 547.900 573.790 582.810
626.310 633.840 637.660 646.470
759.890 783.330 796.210 0.000

0.000 0.000 0.000 0.000
16.743 17.302 17.514 18.406
18.962 19.606 19.866 20.771
21.171 21.828 22.596 23.702
24.742 24.648 24.964 26.073
28.525 29.278 30.074 32.342
42.078 44.471 47.806 51.649
57.772 59.168 61.445 62.810
69.099 72.442 74.187 77.231
87.745 92.378 94.513 99.424

118.589 127.662 134.233 145.197
170.582 175.898 178.148 181.750
211.135 217.824 226.668 226.379
306.472 319.538 331.687 343.191
420.347 444.059 460.701 481.369
537.070 550.920 553.670 531.960
585.730 590.910 596.190 610.990
668.930 683.990 700.800 729.630

• MO (Billions of Pounds: End of Period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
• stops: 199604 no. of obs: 110 last updated: 1996Q3
• one line of data represents two years

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 3.819 3.818 3.993
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3.834 3.943 4.045 4.206 4.289 4.322 4.307 4.4254.316 4.583 4.638 5.053 4.888 5.096 5.187 5.5935.420 5.575 5.886 6.444 6.341 6.535 6.689 7.2286.956 7.279 7.534 7.988 7.700 8.139 8.256 9.1228.898 9.225 9.528 10.362 9.989 10.352 10.725 11.62010.994 11.295 11.523 12.243 11.755 11.931 11.889 12.55511.729 11.960 12.155 12.948 12.431 12.678 12.830 13.84913.030 13.339 13.575 14.615 13.738 14.023 14.090 15.16114.440 14.509 14.755 16.098 14.809 15.083 15.533 16.63315.751 16.247 16.793 18.040 16.815 17.089 17.504 19.00617.600 18.194 18.330 19.490 18.180 18.590 18.750 20.09018.410 18.850 19.230 20.580 19.310 19.840 20.270 21.73020.560 21.160 21.610 23.320 21.880 22.270 22.800 24.54023.120 23.930 24.440 0.000

• CONSUMER PRICE INDEX (CPI): PERIOD AVERAGES (1990=100)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Ql
• stops: 1996Q4 no. of obs: 147 last updated: 1996Q3
• one line of data represents two years

9.8 9.8 9.8 9.9 10.0 10.1 10.2 10.2
10.4 10.7 10.7 10.7 10.9 10.9 10.8 10.9
11.0 11.2 11.3 11.4 11.5 11.7 11.8 11.9
11.9 12.3 12.3 12.4 12.4 12.5 12.5 12.6
12.8 13.1 13.2 13.3 13.6 13.8 13.8 13.9
14.3 14.6 14.8 15.1 15.5 16.0 16.3 16.5
16.7 17.0 17.3 17.7 18.1 18.6 18.9 19.6
20.4 21.6 22.1 23.1 24.5 26.8 28.0 29.0
30.0 31. 1 31.8 33.3 35.0 36.5 37.1 37.6
38.3 39.3 40.0 40.7 42.0 43.5 46.4 47.7
50.0 52.9 54.0 55.0 56.3 59.1 60.1 61.6
62.6 64.6 64.9 65.4 65.7 67.1 67.9 68.7
69.1 70.5 71.1 72.0 72.9 75.4 75.6 76.0
76.5 77.6 77.6 78.6 79.6 80.8 81.0 81.8
82.2 84.2 85.4 87.2 88.6 91.1 92.0 93.8
95.5 99.9 101.6 103.1 103.7 105.9 106.4 107.4

108.0 110.3 110.2 110.7 109.9 111.7 112.0 112.4
112.6 114.6 114.6 115.4 116.4 118.5 118.8 119.0
119.6 121.2 121.4 0.0

• TREASURY BILL RATE (Percent Per Annum)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 196001
• stops: 1996Q4 no. of obs: 147 last updated: 1996Q3
• one line of data represents two years

4.40 4.71 5.56 4.85 4.35 4.45 6.14 5.57
5.21 4.00 3.79 3.71 3.51 3.69 3.72 3.72
3.98 4.36 4.62 5.47 6.51 6.12 5.56 5.45
5.56 5.65 6.58 6.62 5.99 5.30 5.44 6.57
7.39 7.15 6.95 6.65 7.19 7.83 7.81 7.71
7.54 6.89 6.83 6.82 6.74 5.67 5.39 4.52
4.36 4.59 5.96 7.15 8.13 7.36 10.24 11.62

11.99 11.36 11.18 10.96 10.01 9.39 10.17 11.13
9.04 10.19 11.26 13.99 11.20 7.72 6.55 5.26
5.90 8.11 6.34 11.00 11.94 11.75 13.34 14.87

16.04 16.02 14.60 13.99 12.16 11.59 13.55 14.82
13.37 12.57 10.61 9.33 10.58 9.64 9.29 8.85
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8.72
11.67
8.49

14.47
9.94
4.82
5.95

8.69
9.67
7.92

14.47
9.60
4.86
5.73

10.40
9.48

10.75
14.30
9.41
5.27
5.52

9.39
10.64
11.96
13.08
6.78
5.65
0.00

12.06
10.05
12.42
12.83
5.60
6.06

11.92
8.81

12.87
10.89
5.27
6.29

11.14
9.44

12.45
10.13
5.12
6.58

11.10
8.69

14.47
9.98
4.99
6.41

• GROSS DOM. PROD. 1990 PRICES (Billions of Pounds)
• periodicity: QUARTERLY seasonally: ADJUSTED (at Annual Rates and
• May Not Average to Yearly Data) starts: 1960Q1 stops: 1996Q4
• no. of obs: 42 last updated: 1996Q2
• one line of data represents two years

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

476.23
522.71
554.64
535.83
560.39
591.36

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

480.91
539.19
557.65
536.10
567.34
594.01

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

484.88
533.18
551.74
538.68
573.07
598.44

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

490.52
537.85
546.73
539.18
577.73

0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

495.73
540.43
543.12
543.88
580.28

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

501.22
542.73
539.87
545.31
582.42

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

511.98
545.62
538.66
550.79
584.93

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

516.98
547.52
539.58
554.36
587.83

• GROSS DOM. PROD. 1985 PRICES (Billions of Pounds)
• periodicity: QUARTERLY seasonally: UNADJUSTED (at Annual Rates
• and May Not Average to Yearly Data) starts: 1960Ql stops: 1988Q4
• no. of obs: 65 last updated: 1988Ql
• one line of data represents two years

0.00
0.00
0.00
0.00
0.00
0.00

64.97
68.56
72.93
76.72
78.64
79.67
83.94
88.81
93.69

0.00
0.00
0.00
0.00
0.00
0.00

69.65
72.10
72.38
77.36
76.72
77.78
81.73
87.45
0.00

0.00
0.00
0.00
0.00
0.00
0.00

69.03
74.49
75.47
79.70
79.62
80.50
85.38
90.74
0.00

0.00
0.00
0.00
0.00
0.00
0.00

73.29
77.50
79.56
83.16
81.65
84.15
90.09
96.94
0.00
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0.00
0.00
0.00
0.00
0.00
0.00

70.62
69.42
73.66
77.45
79.04
82.40
86.40
91.38

0.00
0.00
0.00
0.00
0.00
0.00

72.16
70.45
74.21
79.54
77.06
79.41
85.81
89.53

0.00
0.00
0.00
0.00
0.00
0.00

72.98
71.34
76.55
81.79
79.52
84.08
89.11
95.60

0.00
0.00
0.00
0.00
0.00
0.00

76.27
75.52
81.62
84.05
82.74
86.98
92.39

100.39



(II) OECD MEl DATABASE

* GROSS DOMESTIC PRODUCT: CONSTANT PRICES OF 1990
* (Billions of Pounds, Market Prices, Annual Rates)
* periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
* stops: 96Q4 no. of obs: 148 last updated: 96Q4
* one line of data represents two years

263.160 258.807 262.987 266.208
270.424 276.055 275.500 275.562
295.995 300.735 299.206 306.984
311.153 313.416 313.777 317.328
334.828 329.784 337.797 341.946
341.123 348.964 350.609 354.652
360.665 367.113 365.913 375.619
386.686 391.086 397.298 392.715
401.991 398.162 402.834 410.680
417.552 420.810 422.685 428.536
429.961 422.560 427.326 420.349
424.094 426.027 424.938 429.966
450.492 448.099 447.669 453.352
477.210 481.699 487.906 493.499
521.884 524.621 529.845 536.143
550.388 553.003 545.555 540.180
533.574 536.367 538.442 539.660
561.200 567.340 573.070 577.730
591.290 593.930 596.560 603.380

271.430 271.938 272.441 270.199
276.547 287.211 286.787 293.250
305.444 305.198 307.654 311.567
322.629 321.911 324.656 321.241
335.037 338.902 342.637 345.628
348.262 356.863 364.311 364.567
397.890 395.837 396.701 391.479
390.667 389.709 384.088 392.485
403.725 403.416 406.925 416.934
419.883 442.940 431.500 434.685
421.376 419.899 419.967 421.145
439.640 439.886 443.395 447.496
461.743 466.997 467.777 469.909
497.203 502.477 513.314 518.337
537.582 538.338 542.528 547.848
540.702 538.066 537.508 538.448
543.600 546.610 552.300 555.840
579.600 582.770 584.600 588.300

* IMPLICIT PRICE LEVEL: 1990==100
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 148 last updated: 96Q4
• one line of data represents two years

9.6 9.8 9.8 9.9 10.0 9.9 10.3 10.2
10.4 10.5 10.5 10.6 10.6 10.7 10.8 10.9
10.8 11.1 11.2 11.3 11.5 11.6 11.8 11.8
12.0 12.1 12.3 12.4 12.4 12.6 12.6 12.7
12.8 13.1 13.2 13.4 13.6 13.7 13.9 14.0
14.4 14.6 15.0 15.3 15.7 16.0 16.4 16.7
17.0 17.3 17.6 18.1 18.4 18.3 18.8 19.5
19.8 21.0 22.0 23.4 25.1 27.0 28.3 29.3
30.2 31.0 31.9 33.1 34.2 35.6 36.5 37.3
38.6 39.6 40.4 41.4 42.8 44.0 47.3 49.0
51.4 53.8 55.9 57.9 59.3 60.3 61.3 62.9
64.1 64.9 66.0 67.3 68.1 68.2 69.3 70.5
70.7 71.9 72.5 73.6 74.7 75.9 76.9 78.0
78.3 78.4 79.0 80.1 81.0 82.4 83.5 84.8
85.7 87.6 89.3 91.0 92.7 94.0 95.0 96.4
98.5 99.0 101.9 102.9 103.9 106.3 107.2 108.6

109.6 111.3 111.7 111.9 113.5 114.2 115.4 116.0
116.5 116.7 117.7 117.8 118.8 119.8 120.1 120.9
122.3 123.0 124.3 124.9

• MONEY SUPPLY H1 (Billions of Pounds)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Ql
• stops: 1993Q4 no. of obs: 75 last updated: 1990Q3
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• one line of data represents two years
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5.968 1.213 8.395 9.183 10.613 10.891 12.843 13.814

16.121 11.000 11.804 18.180 18.110 18.465 19.133 19.543
19.612 20.311 21.182 22.423 22.385 23.108 23.820 24.241
24.612 26.051 26.041 26.931 21.141 28.619 29.210 30.158
31.114 33.036 35.111 35.901 31.255 39.314 43.133 41.211
53.936 58.192 61.844 65.805 71.612 13.419 11.060 82.238
86.100 90.684 95.006 102.955 112.161 114.522 114.921 118.691

122.211 129.989 131.682 149.883 151.659 111.342 180.908 190.749
196.186 206.813 221.554 233.364 250.335 261.044 309.081 324.293
331.881 342.099 345.914 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

• IMPORTS C.I.F. (millions of pounds, monthly averages)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 1960Q1
• stops: 1996Q4 no. of obs: 148 last updated: 1996Q4
• one line of data represents two years

314 388 390 400 392 319 369 315
318 384 393 388 390 409 423 439
410 470 473 485 456 482 488 491
504 492 510 418 525 524 526 510
644 644 669 676 614 699 695 103
120 170 751 796 191 830 809 836
812 889 882 1049 1132 1225 1361 1511

1735 1968 1991 2019 1980 1815 2062 2099
2180 2516 2696 2909 2959 3145 3011 2951
3115 3333 3351 3373 3473 4000 3945 4223
4451 4351 3981 3807 3617 3959 4722 4758
4653 4892 4695 4753 5299 5244 5505 5186
5940 6437 6712 7200 1521 1182 6714 6185
6914 6829 7271 7756 7273 1606 8329 8289
8042 8635 9331 9412 9655 9966 10438 10226

10718 10802 10210 10407 9124 9822 9998 10062
10164 10404 10351 11047 11089 11195 11471 11628
12016 12282 12447 13158 13291 13964 14434 14844
15418 15431 15281 15176

• EXPORTS F.O.B. (millions of pounds, monthly averages)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 1960Ql
• stops: 1996Q4 no. of obs: 148 last updated: 1996Q4
• one line of data represents two years

322 314 310 317 330 327 333 328
328 342 339 345 350 360 369 311
376 384 375 388 394 401 415 424
428 417 442 465 463 448 436 396
519 510 552 563 562 600 640 645
668 660 639 732 683 618 664 791
767 795 709 930 922 969 1039 1099
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1205 1345 1437 1450 1569 1551 1630 1786
1873 2054 2139 2359 2496 2656 2819 2693
2791 2953 2976 3074 2782 3570 3500 3693
3986 3979 3912 3911 3929 4057 4358 4556
4502 4622 4590 4806 4881 4893 5088 5366
5569 5632 5864 6431 6716 6753 6276 6366
6086 5938 5887 6449 6546 6439 6784 6922
6316 6798 7098 6858 7302 7550 7986 8372
8511 8787 8644 8722 8431 8743 8904 8871
8817 9045 8917 9320 9865 9735 9963 10114

10679 11092 11500 11792 12579 12601 13077 13400
13826 13799 14069 13831

(III) eso MTS DATABANK (SOURCE: BANK OF ENGLAND)

• MO - THE WIDE MONETARY BASE: AMOUNT OUTSTANDING (AVER: L million)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 1960Q1
• stops: 1996Q4 no. of obs: 111 last updated: 1996Q4
• one line of data represents two years

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 3785 3803 3917

3882 3915 4042 4097 4348 4299 4314 4289
4376 4564 4655 4845 4976 5088 5200 5339
5525 5586 5882 6157 6369 6541 6686 6872
7081 7272 7511 7648 7826 8127 8280 8651
8949 9276 9571 9836 10136 10420 10782 11013

11151 11376 11566 11649 11946 12018 11893 11925
11911 11993 12144 12302 12550 12702 12850 13038
13230 13401 13591 13746 13959 14093 14083 14266
14461 14570 14751 15022 15103 15203 15463 15666
15978 16279 16761 16866 16969 17168 17468 17824
18009 18253 18288 18300 18455 18649 18722 18857
18846 18943 19144 19394 19695 19850 20182 20561
20819 21185 21609 21968 22304 22355 22752 23206
23540 24012 24356 24824
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GERMANY

(I) IMF IFS DATABASE

• MONEY SUPPLY M1 (billions of Deutsche Mark)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
• stops: 1996Q4 no. of obs: 147 last updated: 1996Q3
• one line of data represents two years

43.2 44.6 45.3 47.4 46.3 48.6 50.4 54.4
51.6 53.9 55.2 58.0 55.0 57.5 59.0 62.2
59.6 62.8 63.8 67.6 65.6 69.1 69.4 72.8
69.4 72.3 71.9 74.2 70.8 73.5 75.0 80.5
78.3 81.8 83.2 90.6 84.8 89.9 91.2 95.4
90.7 95.5 96.5 103.7 99.4 106.9 109.5 116.9

114.4 123.0 124.8 133.3 128.9 128.8 125.1 135.7
128.7 136.0 137.4 150.3 144.9 155.7 160.1 171.6
162.1 173.7 171.8 177.3 173.3 183.1 186.5 198.6
197.4 208.4 211.0 227.5 218.0 224.6 222.0 234.2
221.6 228.8 229.2 243.4 224.9 233.2 226.5 239.6
228.8 240.2 238.8 256.7 253.0 266.7 263.2 278.2
263.1 271.5 270.6 294.8 272.5 281.2 284.8 314.5
299.2 313.4 315.7 340.2 324.4 344.7 344.5 365.7
356.9 379.4 376.8 408.3 390.9 398.5 394.5 431.6
400.5 463.8 480.4 551.4 508.9 518.8 527.2 575.0
535.3 555.7 565.1 641.0 590.7 610.4 622.6 697.6
650.1 676.8 675.9 732.0 675.6 697.4 704.7 783.7
751.5 772.6 784.7 0.0

• QUASI-MONEY (billions of Deutsche Mark)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
• stops: 199604 no. of obs: 147 last updated: 1996Q3
• one line of data represents two years

55.1 56.1 57.7 60.4 63.3 64.0 64.8 67.3
70.3 71.5 72.7 76.6 80.1 81.4 83.6 88.6
92.2 94.0 96.5 102.5 106.9 109.8 111.7 119.8

123.6 126.7 130.9 139.7 144.1 147.8 150.6 161.6
164.7 167.4 172.6 185.9 190.8 195.4 202.0 209.8
209.7 212.7 215.3 228.7 233.9 236.5 241.2 260.1
262.7 268.3 274.9 296.4 298.9 305.3 310.9 332.0
331.5 329.2 327.3 351.1 348.7 346.9 354.6 387.1
386.5 386.6 396.1 423.7 420.8 417.8 429.5 464.6
451.6 454.5 468.8 503.7 499.3 504.4 506.7 534.8
525.5 518.2 519.8 560.5 553.0 552.4 560.4 594.0
594.7 594.0 601.4 634.1 629.4 621.0 632.0 663.5
657.4 657.1 668.1 699.7 700.7 700.8 703.4 759.9
756.5 755.7 766.6 804.1 809.0 802.7 807.4 847.1
839.8 835.4 844.7 874.7 869.5 863.6 876.9 916.4
914.3 1032.9 1038.2 1047.0 1057.9 1054.3 1061.0 1125.6

1145.4 1156.1 1188.7 1194.7 1229.5 1242.6 1263.1 1350.6
1388.7 1375.5 1366.7 1366.7 1367.9 1359.0 1371.7 1411.6
1446.6 1435.4 1436.6 0.0
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• CONSUMER PRICE INDEX (CPI): PERIOD AVERAGES (1991=100)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Ql
• stops: 1996Q4 no. of obs: 147 last updated: 1996Q3
• one line of data represents two years

35.4
37.1
39.1
42.1
43.3
45.6
50.1
57.3
63.9
68.3
74.3
83.2
88.9
91.8
92.2
96.9

104.0
111.9
115.9

35.7
37.4
39.5
42.5
43.4
45.9
50.7
58.2
64.6
68.9
75.4
84.1
89.4
91.5
92.6
97.5

105.1
112.6
116.5

35.4
37.4
39.5
42.5
43.4
46.1
51.4
58.8
64.8
68.9
76.0
85.2
89.4
91.1
92.7
97.9

105.6
113.3
116.9

35.7
37.4
39.8
42.5
43.8
46.5
52.1
59.5
65.2
69.1
76.6
85.9
90.1
90.9
93.1
98.8

106.5
113.2

0.0

36.0
38.4
40.2
42.8
44.6
47.5
53.3
60.7
66.2
70.3
78.5
86.5
91.1
91.3
94.4
99.6

108.6
114.1

36.4
38.4
40.6
43.0
44.8
48.3
54.4
61.8
66.9
71.2
79.8
86.9
91.6
91.6
95.3

100.6
109.6
114.7

36.7
38.4
41.3
42.9
44.8
48.6
54.9
62.3
67.1
72.2
81.0
87.9
91.4
91.6
95.3

102.0
110.3
115.2

36.7
38.8
41.3
42.8
45.2
49.1
56.0
62.9
67.4
72.8
82.1
88.1
91.7
91.7
95.9

102.7
110.4
115.2

• TREASURY BILL RATE (on 3-month loans, percent per annum)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Q1
• stops: 1996Q4 no. of obs: 85 last updated: 1996Q3
• one line of data represents two years

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5.22
3.64
8.05
9.56
5.79
4.07
3.15
7.63
8.50
5.10
3.40

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5.02
3.57
8.30
8.53
5.73
3.66
3.15
8.17
8.50
4.95
3.42

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5.37
3.71
7.41
8.40
5.76
3.84
3.96
8.25
8.70
4.98
3.29

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
5.08
4.00
7.41
6.77
5.38
3.87
4.20
8.25
7.57
5.17
0.0

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4.82
4.22
9.40
5.44
5.65
3.57
5.30
8.25
6.98
5.08

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
4.44
5.01

10.70
5.23
5.62
2.99
6.23
8.25
6.55
4.43

0.00
0.00
0.00
0.00
0.00
0.00
0.00
5.40
4.06
5.82

11.92
5.88
4.53
3.18
6.49
8.25
5.95
4.27

0.00
0.00
0.00
0.00
0.00
0.00
0.00
5.40
4.00
7.42

10.24
5.95
4.35
3.40
7.12
8.27
5.40
3.83

• GROSS DaM. PROD. 1990 PRICES (billions of Deutsche Mark)
• periodicity: QUARTERLY seasonally: ADJUSTED (at Annual Rates)
• starts: 196OQ1 stops: 199604 no. of obs: 22 last updated: 1996Q2
• one Une of data represents two years

0.0 0.0 0.0 0.0 0.0
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0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.0 0.0 0.0 0.0 2512.0 2561.7 2555.5 2560.92604.8 2587.1 2590.2 2580.5 2753.7 2761.8 2788.7 2790.32822.3 2846.6 2863.5 2892.1 2899.0 2919.4 2922.5 2922.5
2908.6 2951.8 0.0 0.0

• GROSS NATIONAL PRODUCT: 1990 PRICES (billions of Deutsche Mark)
• periodicity: QUARTERLY seasonally: ADJUSTED (at Annual Rates)
• starts: 1960Ql stops: 1994Q4 no. of obs: 89 last updated: 1994Q1
• one line of data represents two years

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01606.5 1610.0 1621.7 1656.1 1703.1 1701.9 1707.8 1714.61722.1 1718.6 1714.2 1675.0 1653.4 1652.6 1668.6 1701.61737.6 1757.2 1767.9 1780.3 1798.1 1801.6 1811.5 1831.91838.9 1868.3 1886.2 1908.4 1902.6 1945.8 1940.8 1971.51999.4 1963.1 1968.8 1963.1 1972.1 1956.6 1979.0 1972.11951.8 1962.4 1952.8 1949.2 1963.5 1997.0 1984.7 2014.02062.2 2020.2 2063.7 2080.3 2074.6 2085.8 2123.1 2117.72104.1 2156.7 2167.4 2168.4 2145.1 2168.0 2201.0 2216.9

2228.5 2235.4 2266.0 2287.5 2319.4 2321.2 2337.2 2358.6
2402.9 2427.9 2475.8 2499.0 2540.0 2543.2 2545.0 2533.6
2565.1 2567.8 2545.7 2527.0 2488.8 2500.3 2509.0 2513.6
2543.0 0.0 0.0 0.0

( I I) OECD MEl DATABASE

• GNP 1985 PRICES (billion OM)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
• stops: 92Q4 no. of obs: 132 last updated: 92Q4
• one line of data represents two years

829.5 842.6 869.7 879.5 890.3 886.1 894.0 901.0
920.7 930.0 944.5 94S.0 911.8 951.5 988.5 990.8
998.3 1024.S 1028.7 1043.2 1061.0 1079.2 1080.6 1094.2

1115.7 1118.0 1110.1 1098.8 1094.6 1104.4 1104.9 1134.8
1124.1 1156.8 1197.0 1217.6 1206.4 1248.5 1289.1 1304.1
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1269.5
1402.8
1505.6
1529.9
1623.9
1759.1
1724.9
1817.5
1846.5

1333.6
1411.2
1491.6
1555.7
1640.8
1728.7
1726.3
1777.3
1892.3

1967.9 1971.1
2114.4 2132.5
2256.8 2256.8

1341.5
1427.5
1501.0
1544.9
1644.0
1734.3
1714.2
1812.8
1905.9
1977.2
2174.9
2234.0

1358.3
1449.5
1470.1
1580.0
1674.4
1723.1
1712.8
1830.6
1905.4
1999.6
2195.3
2220.1

1350.4
1487.4
1447.2
1587.5
1679.1
1739.0
1737.1
1819.4
1890.7
2041.2
2231.3

1361.1
1481.8
1461.7
1583.7
1710.9
1726.8
1753.0
1832.0
1904.5
2030.4
2234.0

1374.2 1375.6
1495.8 1492.5
1479.4 1493.9
1579.5
1718.4
1743.2
1744.1
1865.7
1933.7
2050.0
2235.2

• GNP IMPLICIT PRICE LEVEL: 1985=100
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
• stops: 92Q4 no. of obs: 132 last updated: 92Q4
• one line of data represents two years

35.1
37.9
40.5
43.5
45.2
49.8
57.0
63.7
71.4
77.4
84.0
91.7
97.2

102.0
105.9
112.2
121.5

34.8
38.5
40.7
43.6
45.2
50.9
57.7
65.4
72.3
78.3
85.5
92.3
97.5

102.7
106.7
112.9
123.2

36.0
38.8
41.2
44.3
45.3
51.1
58.1
66.6
73.3
79.0
86.0
93.4
98.0

103.6
107:1
114.1
124.3

35.8
39.1
41.6
44.1
46.1
52.1
59.2
68.6
73.1
79.3
86.8
94.1
98.6

104.2
107.7
114.5
125.2

36.4
39.5
42.0
44.4
46.7
53.8
60.5
68.8
74.1
80.4
87.3
95.0
99.1

105.0
108.7
115.7

36.7
39.8
42.2
44.4
46.9
54.9
61.1
69.8
75.4
80.9
88.5
95.3
99.5

105.1
109.2
118.1

37.4
39.8
42.7
44.5
47.3
55.3
61.6
70.1
75.3
82.2
89.3
96.4

100.4
105.0
109.7
118.9

1624.4
1735.2
1736.2
1775.0
1861.5
1946.3
2070.6
2225.7

37.9
40.1
43.0
44.6
48.6
56.2
63.6
71.3
76.2
83.0
90.9
97.0

101.1
105.7
111.0
119.8

• MONEY SUPPLY H1 (billion DM. end of period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Ql
• stops: 199304 no. of obs: 135 last updated: 1993Q3
• one line of data represents two years

46.409 47.770 48.387 51.072
55.273 57.858 59.251 63.351
64.439 67.860 68.536 73.037
74.316 77.908 76.933 79.614
81.128 85.487 86.963 93.466
93.452 98.550 99.142 108.219

117.175 125.996 128.264 139.298
132.873 140.795 141.477 158.432
166.800 180.171 176.915 186.852
204.242 215.359 217.498 237.909
228.689 237.063237.761 257.335
237.602 250.712 248.466 273.047
272.542 282;798281.455 314.235
313.436 329.320 326.936 358.747
369.503 393.475 389.095 426.997
412.827 483.000 502.800 584.300

223

49.465 51.960 53.902 58.707
59.116 62.160 63.553 67.760
70.276 74.196 74.353 78.520
75.821 78.950 80.406 87.921
87.551 92.759 94.281 99.429

101.879 110.146 112.389 121.522
133.354 133.359 129.098 142.862
149.341 160.641 164.425 179.898
179.738 190.483 193.081 208.076
225.460 233.116 230.226 247.869
232.375 242.478 234.283 255.277
263.403 277.861 273.975 295.795
285.223 294.411 297.800 334.097
336.807 358.731 357.178 385.170
403.190 412.016 408.688 450.623
530.300 541.000 546.800 604.000



556.600 576.400 588.200 669.600 610.100 631.500 643.700 0.000
• M1 + QUASI-MONEY (billion DM, end of period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 1960Ql
• stops: 1993Q4 no. of obs: 135 last updated: 1993Q3
• one line of data represents two years

67.078 68.570 69.617 72.692
79.900 82.976 83.851 88.544
91.025 94.694 95.113 100.813

103.279 107.615 108.483 113:384
123.030 129.414 133.033 142.327
148.834 158.950 160.293 173.383
192.068 204.661 210.432 232.330
255.762 262.227 258.004 279.603
260.571274.580 276.006 298.180
310.983 324.448 335.710 375.408
389.602 399.451 401.309 440.616
460.014 473.352 477.318 502.200
485.729 501.743 509.787 542.322
547.989 562.937 570.222 610.925
616.813 639.419 645.226 696.075
752.944 839.900 881.000 987.600

1060.10 1091.30 1139.30 1196.500

72.186 75.437 77.194 82.172
84.543 87.730 89.275 94.508
97.819 101.413 100.991 106.916

110.561 114.191 116.322 127.574
137.282 145.455 150.538 156.875
169.345 179.487 181.813 198.595
231.316 241.730 246.920 265.861
260.153 254.890 254.176 279.318
283.089 292.816 298.432 331.812
350.342 367.051 369.228 406.492
421.508 443.780 451.705 478.132
478.033 485.028 487.359 515.364
511.413 528.211 527.053 577.103
584.824 603.517 602.161 645.646
674.102 691.758 705.639 776.381
956.100 976.700 999.40 1084.500

1162.20 1193.10 1206.40 0.000

• MONEY SUPPLY M1 (billion DM, end of period)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 1960Q1
• stops: 1996Q4 no. of obs: 148 last updated: 1996Q4
• one line of data represents two years

47.2 47.8 48.3 49.0 50.4 52.0 53.8 56.3
56.4 57.8 59.2 60.8 60.4 62.0 63.5 65.1
65.9 67.6 68.6 70.2 72.1 73.8 74.5 75.4
76.2 77.4 76:9 76.4 77.9 78.5 80.6 84.0
83.5 84.9 87.0 89.2 89.5 91.5 94.6 94.4
95.9 97.5 99.8 102.8 104.8 109.3 113.5 115.4

120.8 125.3 129.2 131.8 136.8 132.2 130.1 134.4
136.1 139.6 141.9 149.8 153.0 158.5 165.8 170.6
171.1 179.1 179.6 177.7 184.8 189.9 196.2 197.2
210.1 214.8 220.3 225.5 231.1 231.8 233.3 233.6
232.9 234.5 240.7 244.1 237.7 240.9 238.0 242.2
243.8 249.7 252.9 258.7 270.9 277.1 278.8 278.9
279.3 280.9 285.3 294.3 292.1 292.3 300.2 314.1
320.2 324.4 331.2 338.8 344.3 355.6 363.7 364.1
378.9 392.1 396.9 402.9 414.0 411.1 415.8 423.9
423.1 423.5 436.7 453.1 541.9 539.4 552.1 559.7
567.7 576.6 597.8 626.5 624.6 634.2 653.9 676.6
691.9 707.2 713.6 711.8 712.9 724.9 738.7 757.6
788.1 800.5 814.9 843.1

• IMPORTS C.!. F. (billion OH, monthly averages)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 1960Ql
• stops: 1996Q4 no. of obs: 148 last updated: 1996Q4
• one line of data represents two years

3.47 3.56 3.50 3.69 3.55 3.68 3.70 3.88
4.11 4.05 4.10 4.28 4.17 4.45 4.52 4.35
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4.58 4.66 5.00 5.32 5.58 5.72 5.99 6.06
6.13 6.02 5.99 6.07 5.62 5.64 5.81 6.38
6.41 6.46 7.00 7.23 7.78 8.16 8.37 8.40
8.87 8.95 9.25 9.48 9.87 9.94 10.15 9.92

10.17 10.54 10.79 11.41 11.89 11.97 11.81 12.86
13.84 15.01 15.88 15.50 14.51 15.09 15.51 16.52
17.22 18.03 19.12 19.07 19.07 19.29 19.88 19.93
19.59 19.89 20.53 21.26 21.84 23.67 25.48 26.60
28.29 28.75 28.07 28.69 30.27 30.39 31.53 30.91
31.86 31.55 30.92 30.82 30.53 31.83 32.92 34.46
35.12 35.35 37.10 37.40 39.50 38.76 39.15 37.97
36.48 34.87 33.37 33.53 33.10 34.23 34.50 34.63
33.63 35.60 37.43 39.17 40.27 42.50 42.43 43.70
43.57 43.57 47.87 51.70 53.47 54.03 54.97 53.37
54.47 52.77 52.37 51.47 46.70 46.57 47.73 46.83
48.60 51.33 52.77 53.60 54.13 55.53 56.20 55.30
56.17 56.50 56.87 59.30

• EXPORTS F.O.B. (billion OM, monthly averages)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 1960Ql
• stops: 1996Q4 no. of obs: 148 last updated: 1996Q4
• one line of data represents two years

3.95 3.84 3.94 4.24 4.21 4.24 4.34 4.26
4.26 4.38 4.53 4.52 4.38 4.86 5.06 5.20
5.36 5.34 5.33 5.55 5.57 5.76 5.94 6.14
6.37 6.55 6.85 6.72 7.06 7.19 7.21 7.63
7.83 7.73 8.49 9.17 8.69 9.62 9.77 9.80
9.94 10.28 10.65 10.84 11.13 11.25 11.71 11.06

11.71 12.05 12.37 13.52 13.86 14.52 15.31 15.95
18.40 19.24 19.96 19.70 18.34 18.30 18.36 19.20
20.16 20.68 22.04 21.81 22.10 22.58 22.72 23.45
22.81 23.27 24.03 24.88 24.54 26.09 26.96 27.52
29.40 29.38 28.81 29.17 30.57 32.63 34.19 34.78
35.98 35.94 35.20 34.89 34.86 35.24 36.04 37.43
39.25 38.18 41.79 43.70 44.67 45.12 45.53 44.76
44.98 44.23 43.76 43.23 42.57 43.80 44.07 45.20
42.17 47.03 48.17 50.97 52.23 53.83 54.20 53.60
55.53 53.23 56.63 56.40 55.93 54.07 56.60 56.93
56.73 55.50 56.57 53.67 51.70 51.33 51.83 53.07
54.73 58.20 58.37 59.20 61.10 62.60 62.97 62.83
63.33 63.73 65.97 68.43
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(I) IMF IFS DATABASE

FRANCE

• MONEY (Billions of Francs: End of Period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 146 last updated: 96Q2
• one line of data represents two years

97.91 102.24 106.83
132.41 140.25 146.14
175.72 179.91 185.85
207.84 215.44 218.86
226.12 245.71 248.20
241.73 249.67 254.15
307.65 326.67 337.10
402.41 404.05 392.59
488.79 514.51 513.09
579.90 599.10 620.30
713.80 742.60 757.90
881.60 925.10 942.90

1073.90 1119.50 1136.40
1310.50 1320.30 1337.30
1366.50 1416.00 1400.40
1523.00 1581.00 1566.00
1487.00 1540.00 1520.00
1540.00 1570.00 1542.00
1649.00 1701.00 0.00

113.34
154.71
191.83
226.13
255.86
277.71
357.23
451.27
545.95
665.90
801.20
985.00

1219.20
1406.80
1531.60
1703.00
1608.00
1673.00

0.00

115.34
156.88
189.31
223.00
252.71
274.46
339.48
417.95
524.65
660.30
784.70
965.30

1193.10
1359.90
1418.00
1522.00
1498.00
1530.00

119.61
163.29
196.62
230.66
259.02
289.09
361.79
441.37
542.98
691.90
822.00

1014.90
1215.60
1401.20
1476.00
1576.00
1544.00
1588.00

123.03
169.43
201.55
230.85
259.73
292.86
363.04
455.98
555.58
697.80
858.20

1015.50
1226.60
1377.80
1511.00
1532.00
1505.00
1591.00

130.94
177.16
209.86
236.93
250.53
310.48
391.74
507.97
606.67
751.40
899.80

1108.40
1312.40
1471.10
1633.00
1609.00
1620.00
1819.00

• QUASI-MONEY (Billions of Francs: End of Period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Ql
• stops: 96Q4 no. of obs: 146 last updated: 9602
• one line of data represents two years

16.40 17.54 19.20 20.81
30.19 30.69 32.27 33.66
40.47 41.57 43.47 45.20
60.48 62.71 66.61 69.96

123.91 124.31 130.84 135.21
184.13 189.78 200.09 212.19
301.57 318.71 335.76 352.48
459.42 469.77 503.37 525.30
673.24 694.25 720.05 747.65
924.60 942.20 967.10 1015.20

1208.20 1212.60 1240.20 1300.40
1486.90 1506.50 1532.50 1592.70
1790.70 1804.70 1827.60 1888.00
2103.90 2088.50 2110.40 2164.50 .
2414.40 2413.88 2453.80 2484.10
2527.00 2476.00 2484.00 2509.00
2594.00 2581.00 2573.00 2618.00
2814.00 2816.00 2812.00 3013.00
3420.00 3420.00 0.00 0.00
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23.57 25.30 26.46 27.47
36.22 35.77 36.49 37.27
48.55 49.96 52.91 54.75
75.80 79.37 98.07 109.01

145.94 149.52 159.96 166.85
231.63 241.54 258.23 280.72
367.93 382.41 410.72 431.83
563.96 573.72 603.17 630.84
793.08 804.04 844.97 886.82

1058.00 1073.70 1110.70 1171.10
1346.00 1368.40 1365.50 1422.90
1644.00 1646.80 1659.80 1752.70
1931.00 1924.10 1951.80 2005.90
2219.10 2238.40 2271.50 2333.40
2417.00 2435.00 2464.00 2479.00
2556.00 2524.00 2542.00 2564.00
2665.00 2652.00 2659.00 2766.00
3144.00 3196.00 3245.00 3374.00



* M2 (Billions of Francs: Average of Figures for Last Month in
* Period)
* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
* stops: 93Q4 no. of obs: 63 last updated: 93Q2
* one line of data represents two years

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1067.2
1343.0
1691.8
2114.1
2479.6
2593.8
2768.3
2710.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1093.0
1370.5
1743.8
2163.2
2469.1
2636.3
2819.0
2737.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1132.4
1399.4
1787.0
2196.2
2480.0
2641.7
2811.0
2711.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1213.3
1482.4
1887.2
2335.9
2587.7
2798.9
2956.0
2821.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1232.0
1482.1
1891.3
2301.4
2523.1
2699.1
2770.0
2686.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1271.1
1523.4
1951.3
2321.6
2558.1
2742.6
2800.0
2735.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1290.0
1581.1
1963.1
2332.9
2551.8
2784.0
2756.0

0.0
* M3 (Billions of Francs: Average of Figures for Last Month in
* Period)
* periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
* stops: 9304 no. of obs: 63 last updated: 93Q2
* one line of data represents two years

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1418.1
1796.4
2241.1
2805.9
3378.1
3874.6
4623.0
5190.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1450.9
1830.6
2311.2
2888.0
3398.8
3948.7
4737.0
5295.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1491.8
1872.3
2359.6
2949.7
344~.5
4035.7
4806.0
5308.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1579.4
1973.5
2463.8
3092.6
3543.6
4208.6
5034.0
5430.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1607.9
2002.0
2497.6
3112.2
3567.4
4237.0
4993.0
5465.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1651.5
2060.2
2560.8
3150.9
3637.5
4334.0
5043.0
5445.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1691.1
2092.1
2593.3
3185.0
3703.9
4444.0
5067.0

0.0

• CONSUMER PRICE INDEX CCPI): PERIOD AVERAGES (1990=100)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Ql
* stops: 96Q4 no. of obs: 147 last updated: 96Q3
• one line of data represents two years

14.5
15.5
16.9

14.5
15.6
16.9

14.6
15.7
17.0

14.8
16.0
17.2

227

14.8
16.3
17.3

14.8
16.4
11.5

14.9
16.7
11.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1070.6
1371.4
1685.1
2138.5
2473.4
2699.1
2930.6
2858.0

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1405.2
1800.9
2192.8
2787.3
3320.9
3881.9
4624.0
5160.0

0.0

15.3
16.8
17.6



17.8
19.0
21.3
23.6
27.9
34.9
41.5
51.8
66.6
79.1
87.2
92.2
98.7

104.9
109.0
113.2

17.8
19.1
21.5
23.9
29.1
35.7
42.7
53.5
68.6
80.6
87.8
93.2
99.6

105.7
109.6
114.1

18.0
19.3
21.7
24.4
30.0
36.5
43.8
55.1
69.5
82.0
88.4
94.0

100.4
105.7
109.8
113.8

18.1
19.7
22.0
24.9
31.0
37.4
44.7
56.7
70.9
83.1
88.9
94.5

101.4
106.3
110.3

0.0

18.3
20.0
22.3
25.1
31.8
38.0
45.7
58.4
72.7
84.2
90.1
95.4

102.1
107.1
110.9

18.3
20.3
22.6
25.6
32.6
39.2
47.0
60.3
74.8
85.8
90.8
96.5

102.9
107.8
111.4

18.5
20.5
22.9
26.2
33.3
40.1
48.6
62.7
76.4
86.6
91.4
97.2

103.5
108.0
111.8

18.7
20.8
23.3
26.9
34.0
40.9
49.9
64.7
77.8
87.1
91.8
98.0

104.4
108.5
112.4

• TREASURY BILL RATE (Percent Per Annum)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 71 last updated: 96Q3
• one line of data represents two years

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

13.00
17.39
12.68
8.78
7.94

10.63
10.24
6.26
4.39

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

12.65
17.33
12.98
7.02
7.75
9.91

10.32
5.76
3.87

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

11.68
14.71
12.05
7.20
7.66

10.14
10.65
5.63
3.76

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

11.47
13.35
10.44
7.70
8.16

10.05
10.73
5.49
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
6.85

11.98
13.02
11.08
8.33
8.97
9.83

11.62
6.51

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
7.76

15.94
13.10
10.52
8.13
8.83
9.58
8.09
7.59

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

10.82
17.44
12.93
10.05
7.92
9.15
9.69
7.34
6.17

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

12.50
15.69
12.53
9.05
8.51

10.40
9.65
6.58
6.06

• GROSS DOH. PROD. 1990 PRICES (Billions of Francs)
• periodicity: QUARTERLY seasonally: ADJUSTED (at Annual Rates)
• starts: 6001 stops: 96Q4 no. of obs: 86 last updated: 96Q2
• one line of data represents two years

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

3945.6
4800.2

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

3985.7
4880.6

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

4029.4
4889.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

4062.6
4958.9
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0.0
0.0
0.0
0.0
0.0
0.0
0.0

3720.7
4121.2
4968.1

0.0
0.0
0.0
0.0
0.0
0.0
0.0

3769.8
4108.6
5013.7

0.0
0.0
0.0
0.0
0.0
0.0
0.0

3758.7
4142.5
5095.9

0.0
0.0
0.0
0.0
0.0
0.0
0.0

3875.9
4147.8
5114.1



5129.5 5087.5 5093.1 5080.2 5050.6 5101.7 5132.8 5180.3
5193.2 5227.8 5218.6 5242.4 5242.4 5264.3 5246.1 5280.7
5478.1 5528.9 5492.1 5507.6 5506.6 5535.3 5583.1 5608.1
5622.3 5695.0 5709.0 5729.6 5734.7 5803.8 5854.4 5913.9
6002.8 6039.6 6094.5 6150.5 6278.9 6331.7 6360.4 6393.9
6480.8 6502.6 6546.6 6510.5 6510.4 6542.0 6580.9 6611.0
6658.8 6655.1 6657.3 6624.3 6535.4 6536.1 6553.8 6567.7
6606.6 6717.5 6770.4 6839.5 6877.7 6887.2 6898.2 6868.1
6945.2 6921.0 0.0 0.0

(II) OEeD MEl DATABASE

• GDP CONSTANT PRICES OF 1980 (Billions of FFrancs)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 108 last updated: 96Q4
• one line of data represents two years

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1980.2 2014.8 2047.1 2073.6 2079.2 2112.3 2147.2 2165.1
2193.6 2202.8 2225.1 2259.1 2300.7 2327.7 2353.1 2382.3
2398.8 2414.7 2440.0 2401.4 2385.4 2395.8 2406.5 2440.3
2475.3 2503.4 2517.8 2540.1 2572.3 2579.4 2597.8 2609.9
2637.4 2678.9 2680.9 2709.4 2727.6 2751.6 2784.2 2790.3
2812.7 2801.9 2809.0 2809.6 2793.2 2831.5 2856.5 2884.0
2891.2 2915.4 2913.2 2934.9 2925.3 2938.8 2927.6 2943.8
2976.7 2956.3 2970.0 2986.8 2988.4 3017.2 3044.0 3063.9
3062.6 3107.1 3120.3 3130.4 3123.1 3154.6 3191. 1 3239.4
3272.5 3282.3 3324.2 3358.5 3406.8 3430.2 3466.9 3488.7
3531.7 3528.9 3570.6 3556.4 3550.4 3567.1 3590.1 3601.0
3628.8 3621.8 3620.9 3615.7 3563.4 3564.1 3571.4 3576.2
3598.5 3658.2 3687.9 3725.7 3745.1 3750.7 3758.4 3739.8
3786.4 3781.5 3810.7 3816.8

- IMPLICIT PRICE LEVEL: 1990-100
-periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Ql
- stops: 96Q4 no. of obs: 107 last updated: 96Q3
- one line of data represents two years

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0,0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

20.8 21.1 21.5 21.8 22.2 22.5 22.8 23.2
23.5 24.0 24.5 25.0 25.3 25.9 26.6 27.4
27.8 28.9 30.0 31.0 32.1 32.8 33.7 34.4
35.3 36.5 37.5 38.5 38.9 39.8 40.9 41.8
42.6 43.7 45.2 46.2 47.2 48.2 49.4 50.9
52,2 53.7 55.5 56.7 58.0 59.4 61.4 63.9
6S.7 67.6 68.4 69.S 71.9 73.8 75.3 76.8
78.2 79.5 80.6 81.6 82.7 83.9 85.3 86.4
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88.0
93.1
99.0

104.8
109.2
112.8

88.7
93.6

100.2
105.2
109.5
113.2

89.4
94.7

100.4
105.7
109.9
113.4

89.7
95.6

101.0
106.2
110.3

0.0

90.5
96.2

101.9
107.4
110.9

91.1
96.8

102.6
108.0
111.4

91.5
97.4

103.2
108.4
111.8

92.5
98.9

104.0
108.6
112.2

• MONEY SUPPLY Ml (billion francs, end of period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
• stops: 93Q4 no. of obs: 95 last updated: 93Q2
• one line of data represents two years

0.00
0.00
0.00
0.00
0.00

201.61
257.28
316.85
409.37
582.04
717.51
886.63

1087.52
1331.04
1366.49
1514.80
1487.60

0.00 0.00 0.00
0.00 0.000.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

208.38 212.33 232.20
273.14 281.79 298.86
328.51 328.43 365.76
430.41 429.42 457.42
601.25 622.08 668.81
746.41 761.48 806.04
930.96 949.25 992.66

1136.28 1156.43 1245.73
1337.22 1339.20 1408.36
1392.50 1383.90 1508.60
1579.70 1565.30 1688.50
1539.10 1518.80 1607.10

0.00
0.00
0.00
0.00
0.00

229.22
284.03
349.50
438.89
662.89
789.00
972.92

121l.75
1362.81
1415.70
1514.80
1504.60

0.00
0.00
0.00
0.00
0.00

241.27
302.14
369.55
454.51
694.59
826.24

1024.77
1241.17
1404.35
1473.90
1566.10
1547.50

0.00
0.00
0.00
0.00
0.00

244.47
303.47
382.47
465.57
700.75
864.18

1025.40
1238.40
1376.45
1507.60
1522.60

0.00

0.00
0.00
0.00
0.00

208.04
259.56
327.70
426.47
603.20
754.82
905.80

1121.08
1328.69
1471.09
1634.60
1609.20

0.00

• M1 + QUASI-MONEY (billion francs, end of period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Ql
• stops: 9304 no. of obs: 95 last updated: 93Q2
• one line of data represents two years

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

300.60 310.27 319.47 345.91
416.69 442.44 459.20 484.65
558.88 576.13 593.90 642.59
764.60 795.57 809.01 852.23

1419.94 1452.81 1493.54 1582.00
1800.32 1834.03 1875.37 1978.27
2236.50 2300.83 2345.37 2448.09
2725.82 2791.41 2839.47 2990.16
3190.22 3187.95 3201.68 3317.90
3602.91 3948.70 4035.70 4208.60
4626.30 4736.60 4806.00 5034.30
5189.60 5295.00 5307.60 5429.50

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 300.00

352.81 369.71 381.34 408.08
478.50 503.69 519.47 555.66
646.57 671.77 700.23 758.81
858.48 878.85 913.25 1406.94

1610.41 1654.20 1693.96 1804.56
2006.75 2064.88 2097.68 2194.22
2473.28 2530.08 2544.16 2729.21
3000.22 3023.61 3059.57 3167.51
3353.90 3436.05 3456.52 361~.32
4241.60 4339.20 4447.90 4627.60
4992.50 5042.90 5066.80 5160.30
5474.20 5465.70 0.00 0.00

• HONEY SUPPLY Hl (billion francs, end of period)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 148 last updated: 96Q4
• one lIne of data represents two years
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82.0 85.3 89.3 92.7 96.7 99.8 102.7 107.1111.1 117.0 121.8 126.5 131.7 136.2 141.0 144.7147.7 150.4 153.8 156.7 160.1 164.1 168.4 169.2174.3 175.8 178.7 182.1 186.9 188.3 188.6 190.5189.3 200.7 202.9 205.4 209.7 209.1 210.3 200.3203.5 205.6 212.2 223.0 231.2 237.9 244.4 248.3259.2 269.2 281.5 284.8 286.0 297.6 303.4 310.8318.8 323.5 328.4 345.7 351.9 364.2 382.6 402.1412.3 424.4 429.3 431.6 442.0 448.6 464.8 579.5
584.5 594.9 619.0 642.6 666.0 687.4 697.5 725.5
721.8 738.7 758.0 775.3 795.3 817.8 861.3 869.8
894.0 921.0 946.9 951.1 980.4 1013.6 1024.0 1071.21094.1 1123.0 1156.4 1187.1 1216.9 1226.2 1240.3 1264.4

1333.9 1318.8 1342.9 1338.4 1365.4 1389.3 1383.1 1395.2
1383.8 1386.0 1388.0 1423.6 1443.0 1468.9 1509.0 1540.0
1544.7 1567.0 1566.5 1588.4 1544.4 1550.6 1525.5 1516.3
1514.8 1516.0 1524.0 1516.6 1521.0 1523.2 1515.5 1532.6
1563.4 1551.8 1553.4 1568.6 1545.4 1564.9 1602.4 1686.4
1665.0 1676.3 1682.6 1696.2

• IMPORTS F.O.B. (billion francs, monthly averages)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 148 last updated: 96Q4
• one line of data represents two years

2.51 2.48 2.68 2.65 2.59 2.77 2.76 2.90
3.04 2.96 3.21 3.33 3.24 3.59 3.65 3.88
4.06 4.22 4.12 4.11 4.05 4.19 4.30 4.47
4.67 4.87 4.98 5.06 5.21 4.98 5.04 5.20
5.42 4.90 6.16 6.47 6.74 7.32 7.56 7.95
7.92 8.13 8.47 8.76 8.61 8.78 9.46 9.65

10.01 10.39 10.51 11.55 11.85 12.40 13.37 14.21
18.20 20.34 21.27 19.77 18.64 17.33 17.97 19.87
21.39 23.38 25.66 27.46 27.39 27.27 27.69 27.99
29.01 29.11 29.40 30.83 32.21 34.87 38.73 40.20
44.46 45.58 46.01 47.62 47.98 50.79 54.17 56.14
56.51 59.76 62.98 62.88 62.64 63.26 64.53 66.75
70.84 72.50 72.45 75.81 78.82 78.41 77.96 77.06
72.68 72.78 72.47 70.17 73.05 75.60 77.53 80.67
80.42 83.45 88.84 90.74 95.99 99.18 98.69 101.91

101.43 100.93 102.92 103.66 103.09 103.41 106.97 103.55
103.37 102.91 100.92 98.77 91.47 91.66 91.92 92.57
97.92 100.82 102.92 106.82 111.08 112.93 113.55 112.10

113.92 113.36 115.16 116.97

• EXPORTS F.O.B. (billion francs, monthly averages)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Ql
• stops: 96Q4 no. of obs: 148 last updated: 96Q4
• one line of data represents two years

2.91 2.74 2.77 2.86 2.87 2.95 3.07 3.04
3.05 2.94 3.00 2.98 3.09 3.40 3.38 3.46
3.63 3.65 3.63 3.84 3.89 4.05 4.26 4.38
4.35 4.54 4.59 4.51 4.51 4.68 4.72 4.89
5.19 4.26 5.83 5.61 5.86 6.20 6.48 7.12
8.10 8.16 8.45 8.71 9.16 9.16 9.94 10.16
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10.16 11.08 11.16 12.33 12.52 13.10 13.88 14.65
17.21 18.47 19.33 19.36 19.25 18.43 18.73 19.29
20.69 22.41 23.34 24.64 25.71 26.01 26.93 27.94
28.94 29.45 29.79 30.96 32.60 34.64 36.98 38.36
39.68 40.69 40.59 42.57 44.22 47.84 50.11 50.02
51.29 51.34 52.87 55.43 55.18 58.97 61.52 65.15
67.61 69.83 71.98 73.91 75.26 76.65 74.88 75.30
73.61 70.94 72.39 70.98 70.70 71.54 75.47 78.62
78.63 82.25 84.89 86.77 94.32 94.57 94.50 97.65

100.20 97.02 96.99 98.19 98.33 100.45 104.00 104.38
105.16 106.51 102.93 101.69 95.92 98.42 100.24 102.42
103.62 107.24 109.49 115.37 116.83 119.65 116.60 118.98
120.47 120.07 124.05 125.84
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(I) IMF IFS DATABASE

ITALY

• MONEY (M1) (Trillions of Lire: End of Period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 146 last updated: 96Q2
• one line of data represents two years

6.287 6.531 6.915 7.414
10.529 10.863 11.405 12.180
9.095 9.438 9.772 10.945

12.269 12.653 13.060 14.154
15.992 16.794 17.386 18.970
22.833 24.929 26.302 29.885
35.157 36.696 37.699 42.229
51.765 53.889 53.946 57.194
65.681 67.192 68.682 76.311
95.067 99.764 103.932 116.763

140.635 143.250 143.598 164.616
171.378 175.575 180.620 212.029
226.247 228.723 234.391 269.575
284.623 287.444 294.277 331.039
335.494 343.327 352.666 386.037
409.340 420.230 423.720 482.230
486.690 499.310 493.670 545.790
561.690 563.090 549.110 597.330
548.420 560.370 0.000 0.000

7.244 7.492 7.795 8.601
12.210 12.449 12.775 9.423
10.595 11.079 11.489 12.672
13.921 14.476 15.004 16.428
18.953 19.709 20.449 22.477
29.417 31.003 32.131 35.567
41.680 45.151 46.825 52.460
54.971 54.897 57.600 64.011
77.161 79.953 82.625 92.702

116.832 122.098 127.440 145.069
159.843 159.653 158.374 181.044
198.824 202.631 211.133 239.210
258.007 259.709 267.923 297.951
312.915 321.552 325.879 357.151
361.559 374.275 377.967 433.334
443.700 455.810 459.910 537.530
505.090 517.630 522.110 579.080
551.840 557.150 553.020 604.490

• QUASI-MONEY (Trillions of Lire: End of Period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Ql
• stops: 9404 no. of obs: 139 last updated: 94Q3
• one line of data represents two years

3.794 3.887 4.011 4.252
5.092 5.211 5.416 5.795
8.871 8.898 9.058 9.650

11.322 11.504 11.852 12.646
14.318 14.512 14.821 15.656
16.543 16.183 15.955 16.481
19.518 20.189 20.972 22.552
28.947 29.839 30.675 33.589
48.653 49.508 51.371 56.951
71.608 73.134 75.363 83.085
96.614 96.425 97.999 108.617

118.845 119.255 122.646 142.748
158.435 158.911 163.679 178.021
196.243 194.672 198.616 214.519
234.532 231.785 244.409 257.162
292.110 295;140 303.570 323.730
350 .860357 .090 366.560 388.240
431.030 425.180 419.360 0.000
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4.376 4.485 4.648 4.928
5.959 6.060 6.218 8.777
9.853 9.992 10.279 11.075

12.844 13.041 13.337 14.113
15.764 15.815 16.091 16.750
16.444 16.865 17.552 18.883
23.307 23.903 24.761 27.393
37.418 40.378 42.529 46.661
58.993 60.251 61.996 69.485
84.573 85.983 88.294 97.082

107.663 106.493 107.210 119.195
140.738 142.054 145.640 159.286
181.953 183.628 186.452 199.032
219.581 220.573 221.267 234.644
267.603 270.067 274.497 285.361
323.740 324.930 329.180 345.800
399.780 402.420 409.400 423.980



• CONSUMER PRICE INDEX (CPI): PERIOD AVERAGES (1990=100)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Ql
• stops: 96Q4 no. of obs: 147 last updated: 96Q3
• one line of data represents two years

7.3
7.7
8.7
9.5

10.0
10.6
11.6
14.5
19.9
27.1
36.9
51.0
67.4
79.2
86.9
97.9

110.0
120.0
131.3

7.3
7.8
8.8
9.5

10.0
10.7
11.8
15.2
21.2
27.9
38.3
52.6
68.9
80.0
87.8
99.1

111.3
120.8
132.9

7.4
7.8
9.0
9.5

10.0
10.8
12.0
16.2
21.5
28.6
39.9
54.8
69.9
80.5
88.6

100.5
112.2
121.8
133.2

7.4
8.0
9.1
9.6

10.0
11.0
12.3
17.1
22.9
29.4
42.0
57.2
71.6
81.5
90.2

102.3
113.5
123.1

0.0

7.4
8.3
9.2
9.8

10.1
11.1
12.7
17.8
24.0
30.6
43.6
59.3
73.7
82.6
92.0

104.2
114.8
125.2

7.5
8.3
9.2
9.8

10.2
11.2
13.1
18.2
24.9
31. 7
45.5
61.0
75.4
83.6
93.5

105.7
116.2
127.3

7.5
8.4
9.3
9.9

10.3
11. 3
13.4
18.6
25.5
32.8
46.9
62.4
76.3
84.4
94.3

106.9
117.3
128.6

7.5
8.6
9.4

10.0
10.4
11. 5
13.8
19.1
26.4
34.6
49.1
64.6
78.0
85.8
95.9

108.4
118.5
130.0

• TREASURY BILL RATE (WGHTD AV BEFORE TAX, Percent Per Annum)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 78 last updated: 96Q3
• one line of data represents two years

0.00
0.00
0.00
0.00
0 ..00
0.00
0.00
0.00
0.00

12.28
15.24
20.24
16.11
13.35
10.81
12.93
12.44
8.78
9.70

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

11.97
15.74
19.95
15.25
11.40
10.78
12.12
13.53
8.52
8.69

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

11.87
15.80
18.69
15.16
10.58
11.36
11.77
16.13
9.50
8.41

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

11.85
16.88
18.88
14.94
10.29
11.55
12.69
15.17
9.86
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

12.05
17.55
18.95
13.53
10.00
12.12
13.01
12.31
10.68

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

16.23
11.96
19.45
17.78
14.17
9.88

11.97
12.06
11.46
11.14

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

13.82
12.06
20.37
17.46
13.95
11.20
12.80
12.44
9.62

10.81

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

12.89
13.98
21.43
17.36
1~.20
11.85
13.43
12.63
8.94

10.77

• GROSS DaM. PROD. 1990 PRICES (Trillions of Lire)
• periodicIty: QUARTERLY seasonally: ADJUSTED (at Annual Rates)
• starts: 196001 stops: 1993Q4 no. of obs: 83
• last updated: 199303
• one line of data represents two years

0.00 0.00 0.00 0.00 0.00
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 639.72 704.96 720.61 786.06717.46 721.09 709.51 691.28 691.57 684.98 682.61 700.56778.43 792.69 796.34 816.32 822.69 808.69 807.71 808.56821.38 824.99 831.26 853.72 864.37 858.51 868.73 903.07918.19 912.34 895.40 904.99 915.57 910.47 904.45 906.78923.17 902.92 901.01 891.29 899.35 891.75 901.26 910.861077.86 1097.01 1113.57 1111.55 1124.71 1133.37 1139.62 1149.461148.97 1161.36 1162.50 1173.49 1178.60 1192.36 1198.77 1218.481240.95 1248.97 1261.68 1272.22 1268.21 1280.05 1291.09 1296.581307.23 1306.23 1320.22 1314.58 1320.03 1327.09 1330.16 1336.721343.04 1347.27 1339.90 1333.12 1330.40 1339.80 1333.40 0.00

(II) OEeD MEl DATABASE

• GROSS DOMESTIC PRODUCT: 1990 PRICES (Trillions of Lire)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 103 last updated: 96Q3
• one line of data represents two years

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 771.24 773.02 782.88 791.38

800.28 792.37 799.32 821.39 821.08 849.40 876.42 892.41
901.15 905.18 900.13 875.28 854.35 858.50 859.10 879.53
888.18 905.30 922.00 938.60 939.56 934.20 926.41 923.35
932.91 952.74 961.89 975.98 981.46 988.04 1009.42 1032.09

1045.19 1046.79 1037.15 1038.80 1045.78 1056.76 1049.48 1055.87
1059.10 1058.85 1049.34 1054.29 1059.82 1060.73 1069.25 1079.31
1090.41 1095.85 1101.34 1110.12 1114.16 1126.19 1133.85 1139.04
1144.79 1161.89 1173.03 1167.46 1170.93 1187.12 1193.13 1212.05
1225.66 1234.03 1244.74 1255.53 1266.32 1275.75 1285.85 1290.58
1301.05 1300.49 1313.68 1307.70 1314.32 1321.19 1323.06 1329.62
1335.84 1338.04 1325.22 1324.97 1317.60 1317.60 1305.11 1320.37
1327.00 1344.00 1354.00 1359.00 1380.00 1382.00 1390.00 1391.00
1397.00 1392.00 1400.00 0.00

• IMPLICIT PRICE LEVEL: 1990=100
• per1od1c1ty: QUARTERLY seasonally: ADJUSTED starts: 60Ql
• stops: 96Q4 no. of obs: 99 last updated: 96Q3
• one l1ne of data represents two years

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
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10.4 10.8 10.8 11.0 11.3 11.7 12.3 12.613.1 13.8 14.6 15.3 16.1 16.4 16.8 17.217.9 19.1 20.1 21.2 22.4 22.9 23.7 24.525.4 26.0 27.1 27.9 28.8 30.1 31.3 33.034.6 36.4 37.8 39.4 40.9 42.7 45.0 47.0
48.6 50.3 52.4 54.4 56.5 58.1 59.7 62.0
64.0 65.4 66.4 67.6 69.6 70.9 72.6 73.7
75.4 76.6 77.9 78.7 79.9 81.7 82.1 83.3
84.6 86.1 87.8 88.9 90.3 91.9 93.4 95.2
97.4 98.8 100.3 103.1 104.8 106.5 108.4 109.7

110.9 111.9 112.8 114.0 115.5 116.8 118.2 118.9
120.4 121.1 122.0 123.2 124.8 127.0 128.8 130.6
132.0 132.9 133.9 0.0

• MONEY SUPPLY Ml (100 billion Lire, end of period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts: 60Ql
• stops: 93Q4 no. of obs: 134 last updated: 93Q2
• one line of data represents two years

63.86 66.26 70.22 75.16 73.55 75.99 79.26 87.30
85.31 88.65 92.69 101.74 101.82 105.09 108.37 94.22
90.95 94.38 97.72 109.45 105.95 110.79 114.89 126.72

122.69 126.53 130.60 141.54 139.21 144.76 150.04 164.28
159.92 167.94 173.86 189.70 189.53 197.09 204.49 224.77
228.33 249.29 263.02 298.85 294.17 310.03 321.31 355.67
351.57 366.96 376.99 422.29 416.80 451.51 468.25 524.60
517.65 538.89 539.46 571.94 549.71 548.97 576.00 640.11
656.81 671.92 686.82 763.11 771.61 799.53 826.25 927.02
950.67 997.64 1039.32 1167.63 1168.32 1220.98 1274.40 1450.69

1406.34 1432.50 1435.98 1646.15 1598.43 1596.53 1583.76 1810.44
1713.78 1755.75 1806.20 2120.29 1988.24 2026.312111.33 2392.10
2262.47 2287.23 2343.91 2695.75 2580.07 2597.08 2679.23 2979.51
2846.23 2874.44 2942.76 3310.39 3129.15 3215.51 3258.79 3571.51
3354.94 3433.27 3526.66 3860.38 3615.59 3742.75 3896.00 4518.00
4097.00 4206.00 4239.00 4824.00 4437.00 4558.00 4599.00 5375.00
4863.00 4988.00 4931.00 5442.00 5033.00 5151.00 0.00 0.00

• HI + QUASI-MONEY (lOO billion Lire, end of period)
• periodicity: QUARTERLY seasonally: UNADJUSTED starts:6OQl
• stops: 9304 no. of obs: 134 last updated: 93Q2
• one line of data represents two years

132.90 136.38 142.38 151.47
174.73 179.85 187.19 202.76
206.65 210.43 215.85 235.30
270.35 276.56 285.18 306.47
346.65 357.20 367.15 393.88
444.09 460.35 471.11 513.79
606.13 630.27 650.51 716.41
895.18 928.05 939.53 1009.66

1290.80 1317.08 1356.22 1505.25
1885.20 1952.16 2022.98 2252.17
2668.30 2692.03 2716.10 3065.14
3267.193314.55 3409.36 3986.42
4334.15 4365.26 4487.19 5025.57
5416.11 5424.86 5545.796121.20
·6430.61·6552.606136.177236.75
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152.00 155.74 161.65 175.41
205.68 210.52 216.45 208.70
234.45 241.11 248.95 271.16
306.12 314.84 323.98 348.34
395.12 403.35 414.35 443.23
508.63 529.99 550.22 601.94
120.11 163.25 791.19 881.86

1031.29 1015.11 1130.11 1248.13
1540.40 1584.11 1634.20 1832.60
2212.46 2343.62 2421.29 2718.50
3005.41 2988.26 2984.94 3368.52
3828.29 3883.65 4015.11 4475.21
4961.01 5000.33 5120.18 5585.14
6001.11 6101.91 6162.51 6647.62
7105.68 1264.98 6634.00 7384.00



6988.00 7123.00 7237.00 8020.00
8301.00 8482.00 8455.00 9200.00

7630.00 7769.00 7843.00 8781.00
8882.00 9035.00 0.00 0.00

• MONEY SUPPLY Ml (1000 billion Lire, end of period)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Ql
• stops: 96Q4 no. of obs: 112 last updated: 96Q4
• one line of data represents two years

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 19.124 19.702 20.601 21.445

23.036 24.902 26.552 28.471 29.674 30.955 32.507 33.842
35.413 36.640 38.178 40.160 41.865 45.113 47.471 49.910
51.816 53.903 54.741 55.414 55.738 56.016 59.578 62.170
66.671 68.789 71.393 74.324 78.480 82.238 86.179 89.986
96.217 102.350 108.385 112.663 118.555 125.637 133.488 139.284

143.071 147.902 150.811 157.039 162.407 164.910 166.124 171.981
174.559 181.586 188.697 199.915 201.984 209.207 219.388 225.339
229.718 235.950 242.524 253.567 262.247 267.937 276.706 280.167
288.381 295.298 302.788 310.585 316.739 329.201333.684 335.999
337.108 346.668 355.165 363.078 363.798 376.372 393.300 414.300
412.400 421.500 428.800 442.200 446.500 454.500 465.400 490.200
488.800 497.100 498.900 497.100 506.600 512.500 528.500 532.400
561.500 557.200 552.900 548.100 551.800 551.100 554.300 553.900
545.800 552.200 567.100 571.900

• IMPORTS C.I.F. (billion Lire, monthly averages)
• periodicity: QUARTERLY seasonally: ADJUSTED starts: 60Q1
• stops: 96Q4 no. of obs: 148 last updated: 96Q4
• one line of data represents two years

228 243 258 254 262 273 277 279
290 302 332 337 345 392 427 416
424 396 343 345 362 373 396 408
431 438 455 467 487 501 511 553
474 534 551 576 605 638 670 682
724 777 812 805 843 791 816 850
892 886 937 1026 1054 1301 1477 1557

2047 2123 2484 2246 1999 1877 2166 2297
2616 2957 3148 3445 3537 3508 3420 3611
3434 3662 3948 4696 4751 4882 5338 6381
6709 6681 7784 7422 7320 8950 9510 8838

10300 9738 9740 9190 9835 9742 10551 10629
11723 11387 12617 13698 14201 14664 13267 15329
13870 12493 11330 11910 12661 13271 13489 14253
13838 14912 14993 16221 17035 17778 17517 17708
18213 17819 17766 18750 18359 18975 18909 18932
19339 19545 18735 19259 18826 19038 18902 20769
20669 21479 23035 24691 25738 27826 28840 29765
27345 25849 25805 26948

• EXPORTS F.O.B. (billion Lire, monthly averages)
• periodlcity: QUARTERLY seasonally: ADJUSTED starts: 60Ql
• stops: 96Q4 no. of obs: 148 last updated: 96Q4
• one line of data represents two years
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181 196 190 191 205 209 223 237
236 242 244 250 253 257 269 277
283 299 328 329 357 368 384 396
397 415 429 435 455 440 445 481
496 505 535 581 601 626 631 580
640 682 718 709 746 739 815 818
884 876 878 956 854 1026 1176 1245

1418 1504 1810 1789 1836 1754 1983 2002
2200 2460 2738 2911 3116 3279 3388 3468
3365 3806 3764 4712 4613 4728 5120 5472
5493 5440 5524 5773 5744 7026 7904 7950
8510 8451 8118 8121 8626 8970 9057 10116

10677 9625 11141 11486 11976 12029 12552 13198
12652 12380 11781 11641 12259 11748 13013 12986
12762 14408 13732 14744 15405 16258 15978 16574
16930 17039 16816 17299 17558 17250 17209 17887
18445 17682 18388 18847 20490 21550 22063 24164
23995 24454 26652 26902 28925 31607 33152 33323
31992 32144 32796 32247
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APPENDIX D

COMPUTER PROGRAMS IN RATS PACKAGE

/* (la) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE UK MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with «««.
UKLGDP = LOG OF UK REAL GDP (1990 PRICES)
UKLMO = LOG OF UK MONEY SUPPLY MO

UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)
UKTBR = UK 3-MONTH TREASURY BILL RATES
*/
CAL 1969 2 4 :* Set CALENDAR for quarterly data beginning with 69:2
ALL 8 1996:3 :* and ending 96:3. ALLOCATE "space" of at least 4*2=8

:* series for the residuals.
OPEN DATA A:\UK.DAT :* Data set is assumed to be on drive a:\.
CLEAR UKLGDP UKLMO UKLCP I UKTBR
DATA (ORG=VAR) / UKLGDP UKLMO UKLCPI UKTBR
• The next three lines transform GDP, MO and CPI to their logs.
DOFOR I = UKLGDP UKLMO UKLCPI

LOG I
END DOFOR
•
SMPL 1970:4 1990:4 :. Both restricted and unrestricted VARs are

:* estimated over the same sample period.
/* The next five lines set up an 'unrestricted' VAR using 6 lags of
each variable plus an intercept.
*/
SYSTEM 1 TO 4
VAR UKLGDP UKLMO UKLCPI UKTBR
LAGS 1 TO 6
DET CONSTANT
END (SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the
given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to
be suppressed ../
ESTIMATECNOPRINT, NOFTESTS) / 1 :. Residuals into series 1 through 4
/. Next, define a 'restricted' system using 5 lags of each variable
and estimate the model over the same sample ../
SYSTEM 1 TO 4
VAR UKLGDP UKLMO UKLCPI UKTBR
LAGS 1 TO 5 «««
DET CONSTANT
ENDCSYSTEM)
ESTIMATE CNOPRINT , NOFTESTS) / 5 :. Residuals into series 5 through 8
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1* When testing a restricted VAR(l) against an unrestricted VAR(m),
l<m, the degrees of freedom are K*K*(m-U=4*4*(6-S)=16, i.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction is
K*m+l=4*6+1=2S, i.e. the number of regressors per equation in the
unrestricted system.
*/
RATIO (DEGREES=16, MCORR=2S) «««
# 1 TO 4
# 5 TO 8
END

Normal Completion
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/* (Ib) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE UK ECONOMY

UKLGDP = LOG OF UK REAL GDP (1990 PRICES)
UKLMO = LOG OF UK MONEY SUPPLY MO

UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)
UKTBR = UK 3-MONTH TREASURY BILL RATES
*/
CAL 1969 2 4
ALL 0 1998:4
OPEN DATA A:\UK.DAT
CLEAR UKLGDP UKLMO UKLCPI UKTBR
DATA (ORG=VAR) 1969:2 1996:3 UKLGDP UKLMO UKLCPI UKTBR
*SYSTEM (KALMAN) 1 TO 4
VAR UKLGDP UKLMO UKLCPI UKTBR
LAGS 1 TO 6
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

5.00 5.00 5.00 5.00
2.00 40.00 0.40 24.00

300.00 24.00 300.00 15.00
1.00 0.90 1.00 1.00

SPECIFY (TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)
END (SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guldelines for model
building.
*/
THEIL (SETUP) 4 1 1996:3
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTs) 1970:4 1990:4
/* This instruction is used to suppress the prInting of the OLS
output and F-tests, and to estimate the model over the period 1970:4
to 1990:4.
*/
THEIL
DO TIME - 1991:1, 1996:3

FORECAST (PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

END 00 TIME
THEIL (DUMP)
/* Next, the FORECAST instruction creates ex ante forecasts of the
dependent variables beyond the estimation period, uslng explanatory
variables that mayor may not be known with certainty. Each
supplementary card lIsts the equation to be used for forecasting and
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provides a name so that the forecasts can be stored for later use.
*/
THEIL (SETUP) 4 1 1998:4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1970:4 1996:3
THEIL
DO TIME=1996:4. 1998:4

FORECAST 4 1
# 1 F_UKLGDP
# 2 F_UKLMO
# 3 F_UKLCPI
# 4 F_UKTBR
KALMAN
THEIL

END DO TIME
THE IL (DUMP)
*PRINT (DATES) 1996:4 1998:4 F_UKLGDP F_UKLMO F_UKLCPI F_UKTBR
*OPEN COPY A:\UKBV.FOR
COpy (DATES, ORG=VAR) 1996:4 1998:4 F_UKLGDP F_UKLMO F_UKLCPI F_UKTBR
END
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/. (Ic) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE UK ECONOMY

UKLGDP = LOG OF UK REAL GDP (1990 PRICES)
UKLMO = LOG OF UK MONEY SUPPLY MO

UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)
UKTBR = UK 3-MONTH TREASURY BILL RATES

EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
./
CAL 1969 2 4
ALL 0 1999:4 ;. The time span given here must be long enough.
CLEAR UKLGDP UKLMO UKLCPI UKTBR EC
OPEN DATA A:\UK.DAT
DATA (ORG=VAR) 1969: 2 1996: 3 UKLGDP UKLMO UKLCPI UKTBR
OPEN DATA A:UKRSS.DAT
DATA (ORG=VAR) 1969:2 1990:4 EC
SET TREND = T
/. Taking the first difference of each variable to be used in the
VAR: taking one difference loses one observation ../
SMPL 1969:3 1996:3

SET DIUKLGDP = UKLGDP(T) - UKLGDP(T-l)
SET DlUKLMO = UKLMO (T) - UKLMO (T-1)
SET DIUKLCPI = UKLCPI(T) - UKLCPI(T-1)
SET DIUKTBR = UKTBR(T) - UKTBR(T-l)

• Set up a four-variable BVAR including the error-correction term .
•
SYSTEM (KALMAN) 1 TO 4
VAR D1UKLGDP D1UKLMO DlUKLCPI D1UKTBR
LAGS 1 TO 5 ;. Use five lags of each variable
DET CONSTANT EC{6} :. Include a constant and the

:. error-correction term
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

1.00 1.00 1.00 0.01
40.00 40.00 40.00 0.80

300.00 9.00 300.00 33.00
3.00 42.00 300.00 300.00

SPECIFY(MVECTOR-: :0.0, 0.0, 0.0, 0.0::, $
TYPEaGENERAL, MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)

END (SYSTEM)
/. Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instruction prepares RATS to create ex post
forecasts of the four variables over the period 1991: 1 through
1996:3 first, so that the forecasting results can be checked against
existing data and used as guidelines for model building. At this
stage, the output from the ESTIMATE instruction is unnecessary. Use
the NOPRINT and NOFTESTS options to suppress the display ../
COMPUTE TIME • 1990: 4
DO I = 1, 4
THEIL (SETUP) 4 1 TIME+6
# 1T04
ESTIMATE (NOPRINTS, NOFTESTS) 1970:4 TIME
THEIL
DO N = TIME+l, TIME+6
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FORECAST (PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

END DO N
THEIL (DUMP)
•
SMPL TIME+l TlME+6

SET TREND = T
SET EC = UKLGDP(T) + 0.29S·UKLMO(T) $

- 1.199·UKLCPI(T) + 0.218·UKTBR(T)
COMPUTE TIME = TIME + 6
END DO I
/. Next, the FORECAST instruction creates ex ante forecasts of the
variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provides the
dependent variable name so that the data can be extended with the
forecasts ../
COMPUTE TIME = 1996:3
001:=12
THEIL(SETUP) 4 1 TIME+6
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1970:4 TIME
THEIL
DO N = TlME+1, TlME+6

FORECAST 4 1
# 1 D1UKLGDP
# 2 DlUKLMO
# 3 D1UKLCP I
# 4 DIUKTBR
KALMAN
THEIL

END 00 N
THEIL (DUMP)
•
SHPL TIME+1 TIME+6

SET TREND = T
SET UKLGDP • UKLGDP(T-1) + D1UKLGDP(T)
SET UKLMO = UKLMO(T-1) + DIUKLMO(T)
SET UKLCPI = UKLCPI(T-1) + DIUKLCPI(T)
SET UKTBR = UKTBR(T-1) + D1UKTBR(T)
SET EC = UKLGDPCT) + O.29S·UKLMOCT) $

- 1.199·UKLCPI(T) + O.218·UKTBR(T)
COMPUTE TIME = TIME + 6
END DO I
•
PRINTCDATES) 1969:2 1998:4 UKLGDP UKLMO UKLCPI UKTBR
•
OPEN COPY A:\UKBVEC.FOR
COpy (DATES. ORG-V AR) 1996:4 1998:4 UKLGDP UKLMO UKLCP I UKTBR
END
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/* (IIa) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE GERMANY MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with «««.
GERLGNP = LOG OF GERMANY REAL GOP (1985 PRICES)
GERLM1 = LOG OF GERMANY MONEY SUPPLY M1

GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES
*/
CAL 1975 3 4 ;* Set CALENDAR for quarterly data beginning with 75:3
ALL 8 1992:4 ;* and ending 92:4. ALLOCATE "space" of at least 4*2=8

;* series for the residuals.
OPEN DATA A:\GER.DAT ;* Data set is assumed to be on drive a:\.
CLEAR GERLGNP GERLM1 GERLCPI GERTBR
DATA (ORG=VAR) / GERLGNP GERLM1 GERLCPI GERTBR
* The next three lines transform GNP, M1 and CPI to their logs.
DOFOR I = GERLGNP GERLM1 GERLCPI

LOG I
END DOFOR
SMPL 1977:1 1990:4 ;* Both restricted and unrestricted VARs are

;* estimated over the same sample period.
/* The next five lines set up an 'unrestricted' VAR using 6 lags of
each variable plus an intercept.
*/
SYSTEM 1 TO 4
VAR GERLGNP GERLMl GERLCPI GERTBR
LAGS 1 TO 6
DET CONSTANT
END (SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the
given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to
be suppressed.
*/
ESTIMATECNOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/. Next, define a 'restricted' system using 5 lags of each variable
and estimate the model over the same sample.
*/
SYSTEM 1 TO 4
VAR GERLGNP GERLM1 GERLCPI GERTBR
LAGS 1 TO 5 «««
DET CONSTANT
END (SYSTEM)
ESTIMATECNOPRINT, NOFTESTS) / 5 ;. Residuals into series 5 through 8
/. When testing a restricted VAR(I) against an unrestricted VAR(m),
l<m. the degrees of freedom are K-K- (m-l )=4*4* (6-5)=16, 1.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also. the multiplier correction is
K·m+l=4·6+1=25. 1.e,· the number of regressors per equation in the
unrestricted system ../
RATIO(DEGREES=16. HCORR=25) «««
# 1 TO 4
#5 TO 8
END
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/. (lIb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE GERMAN ECONOMY

GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)
GERLMl = LOG OF GERMANY MONEY SUPPLY M1

GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES

'*/
CAL 1975 3 4
ALL 0 1998:4
OPEN DATA A:\GER.DAT
CLEAR GERLGNP GERLMl GERLCPI GERTBR
DATA (ORG=VAR) 1975:3 1996:3 GERLGNP GERLM1 GERLCPI GERTBR
'*
SYSTEM(KALMAN) 1 TO 4
VAR GERLGNP GERLM1 GERLCPI GERTBR
LAGS 1 TO 6
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT
300.00 3.00 3.00 12.00
20.00 20.00 1.40 20.00
1.00 1.00 1.00 1.00

90.00 0.90 0.90 90.00
SPECIFY (TVPE=GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END (SYSTEM)
/. Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables first, so that the output can be checked against existing
data and used as guidelines for model building.
-/
THEIL (SETUP) 4 1 1992:4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1977:1 1990:4
/. This instructlon Is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1977:1
to 1990:4.
-/
THEIL
DO TIME=1991:1, 1992:4

FORECAST (PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

END DO TIME
THEIL (DUMP)-THEIL (SETUP) 4 1 1996:3
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1977: 1 1992:4
THEIL
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DO TIME=1993:1, 1996:3
FORECAST (PRINT) 4 1
# 1 F_GERLGNP
# 2
# 3
# 4
KALMAN
THEIL

END DO TIME
THE IL (DUMP)
/. Ne"" the FORECAST instruction creates ex ante forecasts of the
depend,nt variables beyond the estimation period, using explanatory
variables that mayor may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
provides a name so that the forecasts can be stored for later use ../
THEIL (SETUP) 4 1 1998:4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1977:1 1996:3
THEIL
DO TlME=1996:4, 1998:4

FORECAST 4 1
# 1 F_GERLGNP
*' F_GERLM1
# 3 F_GERLCPI
# 4 F_GERTBR

KALMAN
THEIL
END DO TIME
THEILCDUMP)
•
PRINT (DATES) 1993:1 1998:4 F_GERLGNP
PRINT(DATES) 1996:4 1998:4 F_GERLM1 F_GERLCPI F_GERTBR
•
OPEN COpy A:\GERBV1.FOR
COPY(/ :S, ORG=VAR) 1993:1 1998:4 F_GERLGNP
OPEN COpy A:\GERBV2.FOR
COPY (DATES, ORG=VAR) 1996:4 1998:4 F_GERLM1 F_GERLCPI F_GERTBR
END
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/. (IIc) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
''C FORECASTING MODEL FOR THE GERMAN ECONOMY

GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)
GERLM1 = LOG OF GERMANY MONEY SUPPLY M1

GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES

EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
./
CAL 1975 3 4
ALL 0 1999:4 ;. The time span given here must be long enough.
CLEAR GERLGNP GERLM! GERLCPI GERTBR EC1 EC2
OPEN DATA A:\GER.DAT
DATA (ORG=VAR) 1975:3 1996:3 GERLGNP GERLM1 GERLCPI GERTBR
OPEN LA ;'A A:GERRSS1. DAT
DATA (ORG=VAR) 1975:3 1990:4 EC1 EC2
SET TREND = T
/. Taking the first difference of each variable to be used in the
VAR; taking one difference loses one observation ../
SMPL 1975:4 1992:4
SET D1GERLGNP = GERLGNP(T) - GERLGNP(T-1)
SMPL 1975:4 1996:3
SET D1GERLM1 = GERLM1(T) - GERLM1(T-1)
SET D1GERLCPI = GERLCPI(T) - GERLCPI(T-l)
SET D1GERTBR = GERTBR(T) - GERTBR(T-l)
• Se t ',,::-a four-variable BVAR including the error-correction term .
•
SYSTEM (KALMAN) 1 TO 4
VAR D1GERLGNP D1GERLM1 DIGERLCPI DIGERTBR
LAGS 1 TO 3 ;. Use three lags of each variable
DET CONSTANT EC1{4} EC2{4} ;. Include a constant and the

;. error-correction terms
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

1.00 0.01 1.00 1.00
0.01 1.00 1.00 0.01

300.00 3.00 300.00 15.00
1.t,:',' 1.00 1.00 1.00

SPECIFY (MVECTOR=: :0.0, 0.0, 0.0, 0.0::, S
TVPE=GENERAL, MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)

END (SYSTEM)
/. Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instruction prepares RATS to create ex post
forecasts of the four variables first, so that the forecasting
results can be checked against existing data and used as guidelines
for model building. At this stage, the output from the ESTIMATE
instruction is unnecessary. Use the NOPRINT and NOFTESTS options to
suppress the display ../
COMpr~TE: TIME = 1990:4
00 I ::. I, 2
THEIL (SETUP) 4 1 TlME+4
# 1 TO 4-
ESTIMATECNOPRINTS, NOFttSTS) 1977: 1 TIME
THEIL
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DO N = TIME+l, TIME+4
FORECAST (PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

END DO N
THEIL (DUMP)
•
SMPL TIME+l TIME+4

SET TREND = T
SET ECl = GERLGNP(T) - O.286·GERLM1(T) $

+ O.086·GERLCPI(T) - O.017·GERTBR(T)
SET EC2 = GERLGNP(T) - 1.590*GERLM1(T) $

+ 2.871*GERLCPI(T) - O.024·GERTBR(T)
COMPUTE TIME = TIME + 4
END DO I
•
COMPUTE TIME = 1992:4
DO I = 1, 4
THEIL (SETUP) 4 1 TlME+4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1977:1 TIME
THEIL
DO N = TIME+l, TIME+4

FORECAST(PRINT) 4 1
# 1 DIGERLGNP
# 2
# 3
#:
KALMAN
THEIL

END 00 N
THE I L (DUMP )
•
SMPL TlME+l TlME+4

SET TREND = T
SET GERLGNP = GERLGNP(T-l) + DIGERLGNP(T)
SET ECl = GERLGNP(T) - O.286·GERLM1(T) $

+ O.086*GERLCPI(T) - O.017*GERTBR(T)
SET EC2 = GERLGNP(T) - 1.590*GERLM1(T) $

+ 2.871*GERLCPI(T) - O.024·GERTBR(T)
COMPUIE TIME = TIME + 4
END 00 I
/. Next, the FORECAST instruction creates ex ante forecasts of the
variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provides the
dependent variable name so that the data can be extended with the
forecasts ../
COMPUTE TIME = 1996:3
00 I = 1, 3
THEIL(SETUP) 4 1 TlME+4
# 1 TO 4
ESTI:< ,::(NOPRINTS,NOFTESTS) 1977:1 TIME
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THEIL
DO N = TIME+l. TIME+4

FORECAST 4 1
# 1 DIGERLGNP
# 2 DIGERLMI
# 3 DIGERLCPI
# 4 DIGERTBR
KALMAN
THEIL

END n0 f<.l
TE
•
SMPL TIME+l TIME+4

SET TREND = T
SET GERLGNP = GERLGNP(T-l) + DIGERLGNP(T)
SET GERLMI = GERLM1(T-l) + DIGERLM1(T)
SET GERLCPI = GERLCPI(T-l) + DlGERLCPI(T)
SET GERTBR = GERTBR(T-l) + DIGERTBR(T)
SET ECl = GERLGNP(T) - 0.286·GERLM1(T) $

+ 0.086·GERLCPI(T) - 0.017·GERTBR(T)
SET EC2 = GERLGNP(T) - 1.590·GERLM1(T) $

+ 2.87l·GERLCPI(T) - 0.024·GERTBR(T)
COMr'" TIME = TIME + 4
END L-'~ .J.

•
PRINT (DATES) 1975:3 1998:4 GERLGNP GERLMI GERLCPI GERTBR
•
OPEN COPY A:\GERBVEC.FOR
COPY (DATES, ORG=VAR) 1993:1 1998:4 GERLGNP GERLMI GERLCPI GERTBR
END
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/* (IlIa) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR
TESTING THE MAXIMUM VAR ORDER OF THE FRANCE MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with «««.
FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)
FRALM1 = LOG OF FRANCE MONEY SUPPLY M1

FRALCPI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES
*/
CAL 1979 1 4 ;* Set CALENDAR for quarterly data beginning with 79:1
ALL 8 1996:3 ;* and ending 96:3. ALLOCATE "space" of at least 4*2=8

;* serIes for the residuals.
OPEN DATA A:'FRA.DAT ;* Data set is assumed to be on drive a:'.
CLE, ~"~ALGDP FRALMI FRALCPI FRATBR
DATA(OHG=VAR) / FRALGDP FRALM1 FRALCPI FRATBR
* The next three lines transform GDP, Ml and CPI to their logs.
DOFOR I = FRALGDP FRALMI FRALCP!

LOG I
END DOFOR
SMPL 1980:3 1990:4 ;* Both restricted and unrestricted VARs are

;* estimated over the same sample period.
/* The next five lines set up an 'unrestricted' VAR using 6 lags of
each variable plus an intercept.
*/
SYSTEM 1 TO 4
VAP' \.',np FRALM1 FRALCPI FRATBR
LAG::;;, 6
DET CONSTANT
END (SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the
given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to
be suppressed ../
ESTIMATECNOPRINT, NOFTESTS) / 1 j* Residuals into series 1 through 4
/- Next, define a 'restricted' system using 5 lags of each variable
and estimate the model over the same sample.
*/
SYSTEM 1 TO 4
VAR FRALGDP FRALM1 FRALCPI FRATBR
LAGS 1 TO 5 «««
DET CONSTANT
END (SYSTEH)
ESTIMATE (NOPRINT , NOFTESTS) / 5 j* Residuals into series 5 through 8
/* When testing a restricted VAR(l) agaInst an unrestricted vAR(m),
l<m, the degrees of freedom are 1(*1(*(m-l)=4*4· (6-5)=16, 1.e. the
total number of parametric restrictions imposed on the entire
(K-diRlenaional) system. Also, the mul tipl1er correction Is
l(*m+1~4·6+1=25, 1.e. the number of regressors per equation In the
unr ','. ted system.
*/
RATIO(DEGREES-16, MCORR*25) «««
.. 1 TO "
.. 5 TO 8
END
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/* (IIIb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE FRENCH ECONOMY

FRALGDP = LOG OF FRANCE REAL GOP (1980 PRICES)
FRALMI = LOG OF FRANCE MONEY SUPPLY M1

FRALePI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES
*/
CAL 1979 1 4
ALL 0 1998:4
OPEN DATA A:\FRA.DAT
CLEAR FRALGDP FRALM1 FRALCP I FRATBR
DATA(ORG=VAR) 1979:1 1996:3 FRALGDP FRALM1 FRALCPI FRATBR
*SYSTEM (KALMAN) 1 TO 4
VAR FRALGDP FRALM1 FRALCPI FRATBR
LAGS 1 TO 4
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT
12.00 12.00 0.12 12.00
6.00 6.00 6.00 0.06
5.00 5.00 5.00 2.50
0.01 0.01 0.60 1.00

SPECIFY (TVPE=GENERAL , MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)
END (SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guidelines for model
building ../
THEIL (SETUP) 4 1 1996:3
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1980:1 1990:4
/. This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1980:1
to 1990:4.
*/
THEIL
DO TlME=1991:1, 1996:3

FORECAST (PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

END DO TIME
THEIL (DUMP)
/. Next, the FORECAST instruction creates ex ante forecasts of the
dependent variables beyond the estimation period, using explanatory
variables that mayor may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
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proviaes a name so that the forecasts can be stored for later use.
*/
THEIL (SETUP) 4 1 1998:4
# 1 TO 4
ESTIMATE (NOPRINTS , NOFTESTS) 1980:1 1996:3
THEIL
DD TIME=1996:4, 1998:4

FORECAST 4 1
# 1 F_FRALGDP
# 2 F_FRALM1
*'" ~ F_FRALePI

F_FRATBR
KALMAN
THEIL
END DO TIME
THEIL (DUMP)
*PRINT(DATES) 1996:4 1998:4 F_FRALGDP F_FRALMI F_FRALCPI F_FRATBR
*OPEN COPY A:\FRABV.FOR
COPY (DATES, ORG=VAR) 96:4 98:4 F_FRALGDP F_FRALM1 F_FRALCPI F_FRATBR
END
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/* (IIIc) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE FRENCH ECONOMY

FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)
FRALM1 = LOG OF FRANCE MONEY SUPPLY M1

FRALCPI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES

EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/
CAL 1979 1 4
ALL 0 1999:4 ;* The time span given here must be long enough.
CLEAR FRALGDP FRALM1 FRALCPI FRATBR EC
OPEN DATA A:'FRA.DAT
DATl>VAR) 1979: 1 1996:3 FRALGDP FRALM1 FRALCPI FRATBR
OPEN DAfA A:FRARSS.DAT
DATA (ORG=VAR) 1979:1 1990:4 EC
SET TREND = T
/* Taking the first difference of each variable to be used in the
VAR; taking one difference loses one observation.
*/
SMPL 1979:2 1996:3

SET D1FRALGDP = FRALGDP(T) - FRALGDP(T-1)
SET D1FRALM1 = FRALM1 (T) - FRALM1 (T-1)
SET D1FRALCPI = FRALCPI(T) - FRALCPI(T-1)
SET D1FRATBR = FRATBR(T) - FRATBR(T-1)

* Set up a four-variable BVAR including the error-correction term.
*SYSTEM (KALMAN) 1 TO 4
VAR D1FRALGDP D1FRALM1 D1FRALCPI D1FRATBR
LAGS 1 TO 3 ;* Use three lags of each variable
DET CONSTANT EC{4} ;. Include a constant and the

;* error-correction term
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMA T

1.00 1.00 1.00 1.00
300.00 300.00 33.00 300.00

0.40 32.00 40.00 40.00
0,',1 0.01 0.01 1.00

SPECIF1(MVECTOR-::0.O, 0.0, 0.0, 0.0::, S
TVPE-GENERAL, MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)

END (SYSTEM)
/. Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instruction prepares RATS to create ex post
forecasts of the four variables over the period 1991: 1 through
1996:3 first, so that the forecasting results can be checked against
existing data and used as guidelines for model bullding. At this
stage, the output from the ESTIMATE instruction is unnecessary. Use
the NOPRINT and NOFTESTS options to suppress the display.
*/
COMPUTE TIME = 1990:4
DOI~"l,6
THEIL (SETUP) 4 1 TIME+4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1980: 1 TIME
THEIL
DO N • TIME+l, TIME+4
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FORECASTCPRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THETL

END DO N
THE I L (DUMP)
•
SMPL TIME+1 TIME+4

SET TREND = T
SET EC = FRALGDPCT) - 1.033·FRALM1CT) $

- 0.567·FRALCPICT) + 0.051·FRATBRCT)
COMPUTE TIME = TIME + 4
END 00 I
/. Next, the FORECAST instruction creates ex ante forecasts of the
variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provides the
dependent variable name so that the data can be extended with the
forecasts ../
COMPUTE TIME = 1996:3
DO I = 1, 3
THEILCSETUP) 4 1 TIME+4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1980:1 TIME
THEIL
DO N = TIME+l, TIME+4

FORECAST 4 1
# 1 DIFRALGDP
# DlFRALM1
# J DIFRALCPI
# 4 D1FRATBR
KALMAN
THEIL

END 00 N
THEIL (DUMP)
•
SMPL TIME+1 TIME+4

SET TREND = T
SET FRALGDP = FRALGDP(T-l) + DIFRALGDP(T)
SET FRALMI = FRALM1(T-l) + DIFRALM1(T)
SET FRALCPI • FRALCPI(T-l) + D1FRALCPI(T)
SET FRATBR = FRATBR(T-l) + DIFRATBR(T)
SET EC = FRALGDP(T) - 1.033·FRALMl(T) S

- 0.561·FRALCPI(T) + 0.051·FRATBRCT)
COMPUTE TIME • TIME ~ 4
END DO I
•
PRINTCDATES) 1979:1 1998:4 FRALGDP FRALMl FRALCPI FRATBR•OPEN COpy A:\FRABVEC.FOR
COpy (DATES, ORG-VAR) 1996:4 1998:4 FRALGDP FRALMI mALCPI FRATBR
END

255



/* (IVa) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE ITALY MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with «««.
ITALGDP = LOG OF ITALY REAL GDP (1990 PRICES)
ITALM1 = LOG OF ITALY MONEY SUPPLY M1

ITALCPI = LOG OF ITALY CONSUMER PRICE INDEX (1990=100)
ITATBR = ITALY 3-MONTH TREASURY BILL RATES
*/
CAL F'"/ 2 4 ;* Set CALENDAR for quarterly data beginning with 77:2
ALL 8 1996:3 ;* and ending 96:3. ALLOCATE "space" of at least 4*2=8

;* series for the residuals.
OPEN DATA A:\ITA.DAT ;* Data set is assumed to be on drive a:\.
CLEAR ITALGDP ITALM1 ITALCP I ITATBR
DATA (ORG=VAR) / ITALGDP ITALM1 ITALCP I ITATBR
* The next three lines transform GOP, M1 and CPI to their logs.
DOFOR I = ITALGDP ITALM1 ITALCPI

LOG I
END DOFOR
SMPL 1978:4 1990:4 ;* Both restricted and unrestricted VARs are

;* estimated over the same sample period.
/* The next five lines set up an 'unrestricted' VAR using 6 lags of
each variable plus an intercept.
*/
SYSTEM 1 TO 4
VAR ITALGDP ITALM1 ITALCP I ITATBR
LAGS 1 TO 6
DET CONSTANT
END (SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the
given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to
be suppressed.
*/
ESTIMATE (NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/. Next, define a 'restricted' system using 5 lags of each variable
and estimate the model over the same sample ../
SYSTEM 1 TO 4
VAR ITALGDP ITALMl ITALCPI ITATBR
LAGS 1 TO 5 «««
DET CONSTANT
END (SYSTEM)
ESTIMATECNOPRINT. NOFTESTS) / 5 ;* Residuals into series 5 through 8
/. When testing a restricted VAR(l) against an unrestricted VAR(m),
l<m, iI", degrees of freedom are K*K*(m-1)=4*4*(6-S)=16, l.e. the
total number of parametric restrictions imposed on the entire
CK-dimensional) system. Also, the multiplier correction is
K·m+l=4·6+1=25. i.e. the number of regressors per equation in the
unrestricted system ../
RATIOCDEGREES=16. HCORR=25) «««
# 1 TO 4
# 5 TO 8
END
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/* CIVb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE ITALIAN ECONOMY

ITALGDP = LOG OF ITALY REAL GOP (1990 PRICES)
ITALM1 = LOG OF ITALY MONEY SUPPLY M1

ITALCPI = LOG OF ITALY CONSUMER PRICE INDEX C1990=100)
ITATBR = ITALY 3-MONTH TREASURY BILL RATES
*/
CAL 1977 2 4
ALL 0 1998:4
OPEN DATA A:\ITA.DAT
CLEAR ITALGDP ITALM1 ITALCP I ITATBR
DATACORG=VAR) 1977:2 1996:3 ITALGDP ITALM1 ITALCPI ITATBR
*SYSTEMCKALMAN) 1 TO 4
VAR ITALGDP ITALM1 ITALCPI ITATBR
LAGS 1 TO 4
DET CONSTANT
DECLARE RECT PRIORMATC4,4)
INPUT PRIORMAT

4.00 0.04 3.20
6.00 6.00 0.06
3.00 3.00 300.00
0.01 1.00 1.00

SPECIFYCTYPE=GENERAL,
ENDCSYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guidelines for model
bu1lding ../
THEIL (SETUP) 4 1 1996:3
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1978:2 1990:4
/. This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1978:2
to 1990:4 ../
THEIL
DO TIHE-1991:1, 1996:3

FORECAST(PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

4.00
6.00
3.00
1.00

MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)

END Dn TIME
THEIL (DUMP)
/. Next, the FORECAST instruction creates ex ante forecasts of the
dependent variables beyond the estimation period, using explanatory
variables that mayor may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
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provides a name so that the forecasts can be stored for later use.
*/
THEIL (SETUP) 4 1 1998:4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1978:2 1996:3
THEIL
DO TIME=1996:4, 1998:4

FORECAST 4 1
# 1 F_ITALGDP
# 2 F_ITALM1
# 3 F_ITALCPI
# 4 F_ITATBR
KALMAN
THEIL

END DO TIME
THEIL(DUMP)
*PRINT (DATES) 1996:4 1998:4 F_ITALGDP F_ITALM1 F_ITALCPI F_ITATBR
*OPEN COPY A:'ITABV.FOR
COPY(DATES, ORG=VAR) 96:4 98:4 F_ITALGDP F_ITALM1 F_ITALCPI F_ITATBR
END
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/* (Va) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE LGDP MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with «««.
UKLGDP = LOG OF UK REAL GDP (1990 PRICES)

GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)
FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)
ITALGDP = LOG OF ITALY REAL GDP (1990 PRICES)
*/
CAL 1 rl 14 ;* Set CALENDAR for quarterly data beginning with 71:1
ALL 8 1992:4 ;* and ending 92:4. ALLOCATE "space" of at least 4*2=8

;* series for the residuals.
OPEN DATA A:\GDP.DAT ;* Data set is assumed to be on drive a:\.
CLEAR UKLGDP GERLGNP FRALGDP ITALGDP
DATA (ORG=VAR) / UKLGDP GERLGNP FRALGDP ITALGDP
* The next three lines transform the selected series to their logs.
DOFOR I = UKLGDP GERLGNP FRALGDP ITALGDP

LOG I
END DOFOR
SMPL 1972:3 1990:4 ;* Both restricted and unrestricted VARs are

;* estimated over the same sample period.
/* The next five lines set up an 'unrestricted' VAR using 6 lags of
each variable plus an intercept.
*/
SYSTEM 1 TO 4
VAR UKLGDP GERLGNP FRALGDP ITALGDP
LAGS 1 TO 6
DET CONSTANT
END (SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the
given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to
be s1-';'lcessed.
*/
ESTIMATE (NOPRINT, NOFTESTS) / 1 ;* Residuals into series 1 through 4
/* Next. define a 'restricted' system using 5 lags of each variable
and estimate the model over the same sample.
*/
SYSTEM 1 TO 4
VAR UKLGDP GERLGNP FRALGDP ITALGDP
LAGS 1 TO 5 «««
DET CONSTANT
END (SYSTEH)
ESTIMATE (NOPRINT, NOFTESTS) / 5 ;* Residuals into series 5 through 8
/* When testing a restricted VAR(l) against an unrestric~ed VAR(m),
l<m, the degrees of freedom are J(*J(*(m-1)=4*4*(6-5)=16, 1.e. the
total number of parametric restrictions imposed on the entire
(J(-dimensional) system. Also, the multiplier correction is
J(*m+l=4*6+1=25, 1.e. the number of regressors per equation in the
unrestricted system.
*/
RATIO(DEGREES-16, MCORR=25) «««
# 1 TO 4
I 5 TO 8
END
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/* (Vb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE BIG FOUR OUTPUT GROWTH

UKLGDP = LOG OF UK REAL GOP (1990 PRICES)
GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)
FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)
ITALGDP = LOG OF ITALY REAL GDP (1990 PRICES)
*/
CAL 1971 1 4
ALL 0 1998:4
OPEN DATA A:\LGDP.DAT
CLEAR UKLGDP GERLGNP FRALGDP ITALGDP
DATA (ORG=VAR) 1971:1 1996:3 UKLGDP GERLGNP FRALGDP ITALGDP
*SYSTEM(KALMAN) 1 TO 4
VAR UKLGDP GERLGNP FRALGDP ITALGDP
LAGS 1 TO 2
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PR IORMAT
300.00 12.00 300.00 3.00
13.00 13.00 13.00 1.43
1.00 0.01 1.00 1.00

24.00 3.00 3.00 300.00
SPECIFYCTYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)
END (SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guidelines for model
building.
*/
THEIL (SETUP) 4 1 1992:4
# 1 TO 4
ESTIMATE (NOPRINTs, NOFTESTs) 1971:3 1990:4
/* This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1971:3
to 1990:4.
*/
THEIL
DO TIME=1991:1, 1992:4

FORECAST (PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THLIL

END DO TIME
THEIL (DUMP)
*THEIL(SETUP) 4 1 1996:3
# 1 TO 4
ESTIMATE (NOPRINTS , NOFTESTS) 1911:3 1992:4
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THEIL
DO TIME=1993:1, 1996:3

FORECAST (PRINT) 4 1
# 1
# 2 F_GERLGNP
# 3
# 4
KALMAN
THEIL

END DO TIME
THEIL (DUMP)
/. Next, the FORECAST instruction creates ex ante forecasts of the
dependent variables beyond the estimation period, using explanatory
variables that mayor may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
provides a name so that the forecasts can be stored for later use ../
THEIL (SETUP) 4 1 1998:4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1911:3 1996:3
THEIL
DO TIME=1996:4, 1998:4

FORECAST 4 1
# 1 F_UKLGDP
# 2 F_GERLGNP
# 3 F_FRALGDP
# 4 F_ITALGDP
KALMAN
THEIL

END DO TIME
THEIL (DUMP)

•PRINTCDATES) 1993:1 1998:4 F_GERLGNP
PRINTCDATES) 1996:4 1998:4 F_UKLGDP F_FRALGDP F_ITALGDP
•OPEN COpy A:\GDPBV1.FOR
COPYCDATES, ORG-VAR) 1993:1 1998:4 F_GERLGNP
OPEN COPY A:\GDPBV2.FOR
COPY (DATES, ORG=VAR) 1996:4 1998:4 F_UKLGDP F_FRALGDP F_ITALGDP
END
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/* (Vc) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE BIG FOUR OUTPUT GROWTH

UKLGDP = LOG OF UK REAL GDP (1990 PRICES)
GERLGNP = LOG OF GERMANY REAL GNP (1985 PRICES)
FRALGDP = LOG OF FRANCE REAL GDP (1980 PRICES)
ITALGDP = LOG OF ITALY REAL GDP (1990 PRICES)

EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/
CAL 1971 1 4
ALL 0 1999:4 ;* The time span given here must be long enough.
CLEAR UKLGDP GERLGNP FRALGDP ITALGDP EC
OPEN DATA A:\LGDP.DAT
DATA (ORG=VAR) 1971:1 1996:3 UKLGDP GERLGNP FRALGDP ITALGDP
OPEN DATA A:LGDPRSS.DAT
DATA (ORG=VAR) 1971:1 1990:4 EC
SET TREND = T
/* Taking the first difference of each variable to be used in the
VAR; taking one difference loses one observation.
*/
SMPT 71:2 1996:3

SET DlUKLGDP = UKLGDP (T) - UKLGDP rr-i )
SET DIFRALGDP = FRALGDP(T) - FRALGDP(T-l)
SET DIITALGDP = ITALGDP(T) - ITALGDP(T-l)

SMPL 1971:2 1992:4
SET DIGERLGNP = GERLGNP(T) - GERLGNP(T-l)
* Set up a four-variable BVAR including the error-correction term.
*SYSTEM (KALMAN) 1 TO 4
VAR DIUKLGDP DIGERLGNP DIFRALGDP DIITALGDP
LAG 1 ;* Use Just one lag of each variable
DET CONSTANT EC{2} ;* Include a constant and the

;* error-correction term
DECLN{E RECT PRIORMAT(4,4)
INPUT PRIORMAT
300.00 3.00 3.00 21.00

1.00 1.00 1.00 1.00
0.01 0.01 1~00 1.00

300.00 3.00 3;00 300.00
SPECIFY(MVECTOR-:IO.O, 0.0, 0.0, 0.0::, $

TVPE=GENERAL, MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)
END(SYSTEM) ,
/* Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instructIon prepares RATS to create ex post
fOr'ecastsof the four variables first, so that the forecasting
results can be checked against existIng data and used as guidelines
for model building. At this stage, the output from the ESTIMATE
instruction is unnecessary. Use the NOPRINT and NOFTESTS options to
wppress the display.
-/
COMPUtE TIME • 1990:4
DOr- 1, '.
THEtLCSEnJP) 4 1 TlME+2
•• 1,10 4
ESTIMkTECNOPRINTS, NOF'TESTS) 1971:3 TIME
THEiL
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DO N = TIME+1, TIME+2
FORECAST (PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

END 00 N
THEIL (DUMP)
•
SMPL TIME+1 TIME+2

SET TREND = T
SET EC = UKLGDP(T) + 1.093·GERLGNP(T) S

+ 3.960·FRALGDP(T) - 5.360·ITALGDP(T)
COMPUTE TIME = TIME + 2
END DO I
*COMPUTE TIME = 1992:4
DO I = 1, 8
THEIL (SETUP) 4 1 TIME+2
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1911:3 TIME
THEIL
DO N = TIME+1, TIHE+2

FORECAST (PRINT) 4 1
# 1
# 2 D1GERLGNP
# 3
# 4
KALMAN
THEIL

END DO N
THEIL (DUMP)

*SMPL TlME+1 TlME+2
SET TREND· T
SET GERLGNP • GERLGNP(T-1) + D1GERLGNP(T)
SET EC • UKLGDP(T) + 1.093*GERLGNP(T) S

+ 3.960*FRALGDP(T) - 5.360*ITALGDP(T)
COMPUTE TIME • TIME + 2
END00 I
/- Next, the FORECAST instruction creates ex ante forecasts of the
variables concerned beyond the estimation period. Each supplementary
card lists the equaUon to be used for forecasting and provides the
dependent variable name so that the data can be extended with the
forecasts.
*/
COMPUTE T IHE = 1996:3
DO I • 1, 5
THEIL (SETUP) 4 1 TlME+2
# 1 TO 4
ESTlMATECNOPRINTS. NOFTESTS) 1911:3 TIME
THEIL
DO N • TIME+1, TIHE+2

FORECAST 4 1
I 1 D1UKLGDP

263



# 2 D1GERLGNP
# 3 D1FRALGDP
# 4 DlITALGDP
KALMAN
THEIL

END 00 N
THEIL (DUMP)
*SMPL TIME+1 TIME+2

SET TREND = T
SET UKLGDP = UKLGDP(T-1) + D1UKLGDP(T)
SET GERLGNP = GERLGNP(T-l) + DIGERLGNP(T)
SET FRALGDP = FRALGDP(T-l) + D1FRALGDP(T)
SET ITALGDP = ITALGDP(T-l) + D1ITALGDP(T)
SET EC = UKLGDP(T) + 1.093*GERLGNP(T) $

+ 3.960*FRALGDP(T) - 5.360*ITALGDP(T)
COMPUTE TIME = TIME + 2
END DO I
*PRINT (DATES) 1971:1 1998:4 UKLGDP GERLGNP FRALGDP ITALGDP
*OPEN COPY A:\LGDPBVEC.FOR
COPY (DATES. ORG=VAR) 1993:1 1998:4 UKLGDP GERLGNP FRALGDP ITALGDP
END



/. (VIa) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR TESTING
THE MAXIMUM VAR ORDER OF THE LMON MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with «««.
UKLMO = LOG OF UK MONEY SUPPLY MO

GERLMI = LOG OF GERMANY MONEY SUPPLY Ml
FRALMI = LOG OF FRANCE MONEY SUPPLY Ml
ITALMl = LOG OF ITALY MONEY SUPPLY Ml
./
CAL 1969 2 4 ;. Set CALENDAR for quarterly data beginning with 69:2
ALL 8 1996:4 ;. and ending 96:4. ALLOCATE "space" of at least 4*2=8

;. series for the residuals.
OPEN DATA A:\MON.DAT :. Data set is assumed to be on drive a:\.
CLEAR UKLMO GERLMI FRALMI ITALMI
DATA (oRG==VAR) / UKLMO GERLMI FRALMI ITALMI
- The next three lines transform the selected series to their logs.
OOFOR I = UKLMO GERLMI FRALMI ITALMl

LOG I
END OOFOR
SMPL '970:4 1990:4 ;. Both restricted and unrestricted VARs are

:. estimated over the same sample period.
/. The next five lines set up an 'unrestricted' VAR using 6 lags of
each variable plus an intercept.
*/
SYSTEM 1 TO 4
VAR UKLMO GERLMl FRALMl ITALMl
LAGS 1 TO 6
DET CONSTANT
END (SYSTEM)
/. The next line instructs RATS to estimate the 6-lag model over the
given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to
be suppressed.
'/
ESTIMATE (NOPRINT, NOFTESTS) / 1 ;. Residuals into series 1 through 4
/' Next, define a 'restricted' system using 5 lags of each variable
and estimate the .odel over the same sample.
'/
SYSTEM 1 TO 4
VAR UKLMO GERLMl FRALMl ITALM1
LAGS 1 TO 5 «««
DET CONSTANT
END(SYSTEM)
ESTIMATE (NOPRINT, NOFTESTS) / 5 :. Residuals into series 5 through 8
/* When testing a restricted VAR(l) against an unrestricted VAR(m),
l<m. the degrees of freedom are K*K* (m-1)=4·4· (6-5)=16, 1.e. the
total number of parametric restrictions imposed on the entire
(K-dimens1onal) system. Also, the mu! tipller correction is
K-m+l .•4·6+1=25, 1.e. the number of regressors per equation in the
unrestricted system.
'/
RATl.Q(DEGRl:ES-t16.~MCORR·25) <<<<<<
':l'to'"
';5 TO,S',·
ENJ),
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/* (VIb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE BIG FOUR MONETARY GROWTH

UKLMO = LOG OF UK MONEY SUPPLY MO
GERLHl = LOG OF GERMANY MONEY SUPPLY Ml
FRALMl = LOG OF FRANCE MONEY SUPPLY Ml
ITALMl = LOG OF ITALY MONEY SUPPLY Ml
*/
CAL 1969 2 4
ALL 0 1998:4
OPEN DATA A:\LMON.DAT
CLEAR UKLMO GERLMl FRALMl ITALMl
DATA (QRG=VAR) 1969:2 1996:4 UKLMO GERLMl FRALMl ITALMl
•
SYSTEM (KALMAN) 1 TO 4
VAR UKLMO GERLHl FRALMl ITALMl
LAGS 1 TO 4
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT
300.00 3.00 3.00

1.00 1.00 0.01
1.00 0.60 1.00
1.00 0.01 1.00

SPECIFY (TVPE=GENERAL,
END (SYSTEM)
/. Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:4 first, so that the output can be
checked against existing data and used as guidelines for model
building ../
THEIL (SETUP) 4 1 1996:4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1970:2 1990:4
/. This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1970:2
to 1990:4../
THEIL
DO TlME-1991:1, 1996:4

FORECAST(PRINT) 4 1
# 1
# 2
# 3
I 4
KALMAN
THEIL

END DO TIME
THEIL(DUMP)
/. Next. the FORECAST 1nstruction creates ex ante forecasts of the
dependent variable. beyond the estimation period, using explanatory
variables that mayor MY not be known with certalnty. Each
supplementary card lists the ~at1on to be used for forecastlng and

3.00
0.90
1.00
1.00

MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)
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provides a name so that the forecasts can be stored for later use.
*/
THEIL (SETUP) 4 1 1998:4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1970:2 1996:4
THEIL
DO TIME=1997:1, 1998:4

FORECAST 4 1
# 1 F_UKLMO
# 2 F_GERLM1
# 3 F_FRALM1
# 4 F_ITALM1
KALMAN
THEIL

END DO TIME
THEIL (DUMP)
*
PRINT (DATES) 1997:1 1998:4 F_UKLMO F_GERLM1 F_FRALM1 F_ITALM1
*OPEN COPY A:\MONBV.FOR
COPY (DATES , ORG=VAR) 97:1 98:4 F_UKLMO F_GERLM1 F_FRALM1 F_ITALM1
END
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/* (VIc) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE BIG FOUR MONETARY GROWTH

UKLMO = LOG OF UK MONEY SUPPLY MO
GERLMI = LOG OF GERMANY MONEY SUPPLY HI
FRALMI = LOG OF FRANCE MONEY SUPPLY Ml
ITALMl = LOG OF ITALY MONEY SUPPLY HI

EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/
CAL 1969 2 4
ALL 0 1998:4 ;* The time span given here must be long enough.
CLEAR UKLMO GERLMI FRALMI ITALMI EC
OPEN DATA A:\LMON.DAT
DATA (ORG=VAR) 1969:2 1996:4 UKLMO GERLM1 FRALM1 ITALM1
OPEN DATA A:LMONRSS.DAT
DATA (ORG=VAR) 1969:2 1990:4 EC
SET TREND = T
/* Taking the first difference of each variable to be used in the
VAR; taking one difference loses one observation.
*/
SHPL 1969:3 1996:4

SET DlUKLMI = UKLMO(T) - UKLMO(T-l)
SET DIGERLMI = GERLHl(T) - GERLMl(T-l)
SET DlFRALMl = FRALMl(T) - FRALMl(T-l)
SET DIITALMI = ITALMl(T) - ITALMl(T-l)

* Set up a four-variable BVAR including the error-correction term.
*SYSTEM (KALMAN) 1 TO 4
VAR D1UKLMO DIGERLMI D1FRALM1 DIITALMI
LAGS 1 TO 3 ;* Use three lags of each variable
DET CONSTANT EC{4} ;* Include a constant and the

;* error-correction term
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT
300.00 3.00 3.00 12.00

0.01 1.00 0.01 1.00
1.00 0.01 1.00 1.00
1.00 1.00 0.01 1.00

SPECIFY(MVECTOR=: :0.0, 0.0, 0.0, 0.0::, S
TVPE-GENERAL, HATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=l.OO)

END (SYSTEM)
/* Here, both ex post and ex ante (point) forecasts are produced.
The following FORECAST instruction prepares RATS to create ex post
forecasts of the four variables over the period 1991: 1 through
1996:4 first, so that the forecasting results can be checked against
existing data and used as guidelines for model buUding. At this
stage, the output from the ESTIMATE instruction is unnecessary. Use
the NOPRINT and NOFTESTS options to suppress the display.
*/
COMPUTE T IHE = 1990: 4
DO I = I, 6
THEILCSEnJP) 4: 1 TlME+4
# 1 TO 4:
ESTIMATE (NOPRINTS, NOFTESTS) 1970:2 TIME
THEIL
DO N = TIME+l, TIHE+4
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FORECAST(PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

END DO N
THE IL (DUMP )
•
SMPL TlME+l TIME+4

SET TREND = T
SET EC = UKLMO(T) - 2.872·GERLM1(T) $

- 4.414·FRALM1(T) + 4.323·ITALM1(T)
COMPUTE TIME = TIME + 4
END DO I
/. Next, the FORECAST instruction creates ex ante forecasts of the
variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provldes the
dependent variable name so that the data can be extended with the
forecasts ../
COMPUTE TIME = 1996:4
DO I = 1, 2
THEIL (SETUP) 4 1 TlME+4
# 1 TO 4
ESTIMATE (NOPRINTS , NOFTESTS) 1970:2 TIME
THEIL
DO N = TIME+1, TIME+4

FORECAST 4 1
# 1 DIUKLMO
# 2 D1GERLM1
# 3 D1FRALM1
# 4 DIITALMl
KALMAN
THEIL

END DO N
THEIL (DUMP)
•
SMPL TlME+1 TIME+4

SET TREND = T
SET UKLMO I: UKLMO(T-l) + D1UKLMO(T)
SET GERLM1 = GERLM1(T-1) + D1GERLM1(T)
SET FRALM1 = FRALM1(T-1) + D1FRALM1(T)
SET ITALM1 = ITALM1(T-1) + D1ITALM1(T)
SET EC • UKLMO(T) - 2.872·GERLM1(T) S

- 4.414.FRALM1(T) + 4.323·ITALM1(T)
COMPUTE TIME • TIME ~ 4
END DO I
•
PRINT(DATES) 1969:2 1998:4 UKLMO GERLM1 FRALMl ITALMl
•OPEN COPY A:\LMONBVEC.FOR
COpy (DATES. ORG=VAR) 1991:1 1998:4 UKLMO GERLM1 FRALM1 ITALM1
END
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/* (VIla) THE SIMS (1980) LIKELIHOOD RATIO (UR) STATISTIC FOR
TESTING THE MAXIMUM VAR ORDER OF THE LCPI MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with «««.
UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)

GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
FRALCPI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
ITALCPI = LOG OF ITALY CONSUMER PRICE INDEX (1990=100)
*/
CAL 1960 1 4 :* Set CALENDAR for quarterly data beginning with 60:1
ALL 8 1996:3 :* and ending 96:3. ALLOCATE "space" of at least 4*2=8

:* series for the residuals.
OPEN DATA A:\CPI.DAT :* Data set is assumed to be on drive a:\.
CLEAR UKLCP I GERLCP I FRALCP I ITALCPI
DATA (ORG=VAR) / UKLCPI GERLCPI FRALCPI ITALCPI
* The next three lines transform the selected series to their logs.
DOFOR I = UKLCP I GERLCP I FRALCP I ITALCP I

LOG I
END DOFOR
SMPL 1961:3 1990:4 :* Both restricted and unrestricted VARs are

:* estimated over the same sample period.
/* The next five lines set up an 'unrestricted' VAR using 6 lags of
each variable plus an intercept.
*/
SYSTEM 1 TO 4
VAR UKLCPI GERLCPI FRALCPI ITALCP I
LAGS 1 TO 6
DET CONSTANT
END (SYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the
given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to
be suppressed.
*/
ESTIMATE (NOPRINT , NOFTESTS) / 1 j* Residuals into series 1 through 4
/. Next, define a 'restricted' system using 5 lags of each variable
and estimate the model over the same sample.
*/
SYSTEM 1 TO 4
VAR UKLCP I GERLCP I FRALCP I ITALCP I
LAGS 1 TO 5 «««
DET CONSTANT
END (SYSTEM)
ESTIMATE (NOPRINT , NOFTESTS) / 5 j* Residuals into series 5 through 8
/* When testing a restricted VAR(l) against an unrestricted VAR(m),
l<m, the degrees of freedom are K*K*(m-1)=4*4*(6-S)=16, Le. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction is
K·m+1-4*6+1-25, i.e. the number of regressors per equation in the
unrestricted system ../
RATIO(DEGREES-16, MCORR=25) «««
# 1 TO 4
# 5 TO 8
END
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/* (VIIb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE BIG FOUR CONSUMER PRICES

UKLCPI = LOG OF UK CONSUMER PRICE INDEX (1990=100)
GERLCPI = LOG OF GERMANY CONSUMER PRICE INDEX (1991=100)
FRALCPI = LOG OF FRANCE CONSUMER PRICE INDEX (1990=100)
ITALCPI = LOG OF ITALY CONSUMER PRICE INDEX (1990=100)
*/
CAL 1960 1 4
ALL 0 1998:4
OPEN DATA A:\LCPI.DAT
CLEAR UKLCPI GERLCPI FRALCPI ITALCPI
DATA (ORG=VAR) 1960:1 1996:3 UKLCPI GERLCPI FRALCPI ITALCP I
•
SYSTEM (KALMAN) 1 TO 4
VAR UKLCPI GERLCPI FRALCPI ITALCPI
LAGS 1 TO 4
DET CONSTANT
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

9.00 1.44 4.50 9.00
300.00 300.00 3.00 300.00
300.00 3.00 300.00 90.00
50.00 30.00 50.00 50.00

SPECIFY (TVPE=GENERAL , MATRIX=PRIORMAT, TIGHT=0.01, DECAY=1.00)
END (SYSTEM)
/. Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guidelines for model
building.
*/
THEIL (SETUP) 4 1 1996:3
# 1 TO 4
ESTlMATE(NOPRINTS, NOFTESTS) 1960:1 1990:4
/. This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1960:1
to 1990:4 ../
THEIL
DO TlME=1991:1, 1996:3

FORECAST (PRINT) 4 1
# 1
# 2
..3
# 4
KALMAN
THEIL

END DO TIME
THEIL (DUMP)
/. Next, the FORECAST instruction creates ex ante forecasts of the
dependent variables beyond the estimation period, using explanatory
variables that mayor may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
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provIdes a name so that the forecasts can be stored for later use.
*/
THEIL (SETUP) 4 1 1998:4
# 1 TO 4
ESTIMATE(NOPRINTS, NOFTESTS) 1960:1 1996:3
THEIL
DO TIME=1996:4, 1998:4

FORECAST 4 1
# 1 F_UKLCPI
# 2 F_GERLCPI
# 3 F_FRALCPI
# 4 F_ITALCPI
KALMAN
THEIL

END DO TIME
THEILe DUMP)
*PRINT(DATES) 1996:4 1998:4 F_UKLCPI F_GERLCPI F_FRALCPI F_ITALCPI
*OPEN COpy A:\CPIBV.FOR
COPY (DATES,ORG=VAR) 96:4 98:4 F_UKLCPI F_GERLCPI F_FRALCPI F_ITALCPI
END
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/* (VIlla) THE SIMS (1980) LIKELIHOOD RATIO (LR) STATISTIC FOR
TESTING THE MAXIMUM VAR ORDER OF THE TBR MODEL

In such a (modified) testing scheme, the only lines that need to be
consecutively changed are those tagged with «««.
UKTBR = UK 3-MONTH TREASURY BILL RATES

GERTBR = GERMANY 3-MONTH TREASURY BILL RATES
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES
ITATBR = ITALY 3-MONTH TREASURY BILL RATES
*/
CAL 1979 1 4 ;* Set CALENDAR for quarterly data beginning with 79:1
ALL 8 1996:3 ;* and ending 96:3. ALLOCATE "space" of at least 4*2=8

;* series for the residuals.
OPEN DATA A:\TBR.DAT ;* Data set is assumed to be on drive a:\.
CLEAR UKTBR GERTBR FRATBR ITATBR
DATA (ORG=VAR) / UKTBR GERTBR FRATBR ITATBR
*
SMPL 1980:3 1990:4 ;* Both restricted and unrestricted VARs are

;* estimated over the same sample period.
/* The next five lines set up an 'unrestricted' VAR using 6 lags of
each variable plus an intercept.
*/
SYSTEM 1 TO 4
VAR UKTBR GERTBR FRATBR ITATBR
LAGS 1 TO 6
DET CONSTANT
ENDCSYSTEM)
/* The next line instructs RATS to estimate the 6-lag model over the
given sample and to save the residuals into series 1 through 4,
respectively. At this stage, the regression output is not important;
the options noftests and noprint cause the printing of all output to
be suppressed ../
ESTIMATE (NOPRINT, NOFTESTS) / 1 ;. Residuals into series 1 through 4
/. Next, define a 'restricted' system using 5 lags of each variable
and estimate the model over the same sample ../
SYSTEM 1 TO 4
VAR UKTBR GERTBR FRATBR ITATBR
LAGS 1 TO 5 «««
DET CONSTANT
ENDCSYSTEM)
ESTIMATECNOPRINT, NOFTESTS) / 5 ;* Residuals into series 5 through 8
/. When testIng a restricted VAR(I) against an unrestricted VAR[m),
l<m, the degrees of freedom are K*K* (m-l )=4*4* C6-5)=16, 1.e. the
total number of parametric restrictions imposed on the entire
(K-dimensional) system. Also, the multiplier correction is
K·m+l"4·6+1=25, i.e. the number of regressors per equation in the
unrestricted system.
*/
RATIOCDEGREES=16, MCORR=25) «««
# 1 TO 4
# 5 TO 8
END
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/* (VIIIb) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
NO EC FORECASTING MODEL FOR THE BIG FOUR TREASURY BILLS

UKTBR = UK 3-MONTH TREASURY BILL RATES
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES
ITATBR = ITALY 3-MONTH TREASURY BILL RATES
*/
CAL 1979 1 4
ALL 0 1998:4
OPEN DATA A:\TBR.DAT
CLEAR UKTBR GERTBR FRATBR ITATBR
DATA (ORG=VAR) 1979:1 1996:3 UKTBR GERTBR FRATBR ITATBR
*SYSTEM(KALMAN) 1 TO 4
VAR UKTBR GERTBR FRATBR ITATBR
LAGS 1 TO 2
DET CONSTANT
DECLARE RECT PRIORMAT(4,4}
INPUT PRIORMAT
1.00 1.00 1.00 1.00

15.00 300.00 3.00 3.00
2.20 0.11 11.00 11.00
6.00 60.00 30.00 60.00

sPECIFY(TYPE=GENERAL, MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)
END (SYSTEM)
/* Here, prior means (MVECTOR) of the first own lags consist of a
vector of ones, by default. In this experiment, both ex post and ex
ante (point) forecasts are produced. The following FORECAST
instruction prepares RATS to create ex post forecasts of the four
variables over 1991:1-1996:3 first, so that the output can be
checked against existing data and used as guidelines for model
building.
*/
THEILCSETUP) 4 1 1996:3
# 1 TO 4
ESTIMATE CNOPRINTS , NOFTEsTS} 1979:3 1990:4
/* This instruction is used to suppress the printing of the OLS
output and F-tests, and to estimate the model over the period 1979:3
to 1990:4.
*/
THEIL
DO TIME = 1991:1, 1996:3

FORECAST (PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

END DO TIME
THEIL (DUMP)
/* Next, the FORECAST instruction creates ex ante forecasts of the
dependent variables beyond the estimation period, using explanatory
variables that mayor may not be known with certainty. Each
supplementary card lists the equation to be used for forecasting and
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provides a name so that the forecasts can be stored for later use.
*/
THEIL (SETUP) 4 1 1998:4
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1979:3 1996:3
THEIL
DO TIME = 1996:4, 1998:4

FORECAST 4 1
# 1 F_UKTBR
# 2 F_GERTBR
# 3 F_FRATBR
# 4 F_ITATBR
KALMAN
THEIL

END DO TIME
THEIL(DUMP)
•
PRINT (DATES) 1996:4 1998:4 F_UKTBR F_GERTBR F_FRATBR F_ITATBR
•
OPEN COPY A:\TBRBV.FOR
COPY (DATES, ORG=VAR) 96:4 98:4 F_UKTBR F_GERTBR F_FRATBR F_ITATBR
END
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/* (VIlle) THE CONSTRUCTION AND EVALUATION OF AN EMPIRICAL BVAR WITH
EC FORECASTING MODEL FOR THE BIG FOUR TREASURY BILLS

UKTBR = UK 3-MONTH TREASURY BILL RATES
GERTBR = GERMANY 3-MONTH TREASURY BILL RATES
FRATBR = FRANCE 3-MONTH TREASURY BILL RATES
ITATBR = ITALY 3-MONTH TREASURY BILL RATES

EC = COINTEGRATING RESIDUALS ADJUSTED FOR SHORT-RUN DYNAMICS
*/
CAL 1979 1 4
ALL 0 1999:4 ;* The time span given here must be long enough.
CLEAR UKTBR GERTBR FRATBR ITATBR EC
OPEN DATA A:\TBR.DAT
DATA (ORG=VAR) 1979:1 1996:3 UKTBR GERTBR FRATBR ITATBR
OPEN DATA A:TBRRSS2.DAT
DATA(ORG=VAR) 1979:1 1990:4 EC
SET TREND = T
/* Taking the first difference of each variable to be used in the
VAR; taking one difference loses one observation.
*/
SMPL 1979:2 1996:3

SET D1UKTBR = UKTBR(T) - UKTBR(T-1)
SET D1GERTBR = GERTBR(T) - GERTBR(T-1)
SET D1FRATBR = FRATBR(T) - FRATBR(T-1)
SET D11TATBR = ITATBR(T) - ITATBR(T-1)

* Set up a four-variable BVAR including the error-correction term .
•
SYSTEM (KALMAN) 1 TO 4
VAR D1UKTBR D1GERTBR D1FRATBR D1ITATBR
LAG 1 ;* Use Just one lag of each variable
DET CONSTANT EC{2} ;* Include a constant and the

;* error-correction term
DECLARE RECT PRIORMAT(4,4)
INPUT PRIORMAT

1.00 1.00 0.01 1.00
3.00 300.00 300.00 300.00
3.00 3.00 300.00 300.00
1.00 0.01 1.00 1.00

SPECIFYCHVECTOR=: :0.0, 0.0, 0.0, 0.0::, $
TYPE-GENERAL, MATRIX=PRIORMAT, TIGHT=O.Ol, DECAY=1.00)

ENDCSYSTEM)
/* Here, both ex post and ex ante Cpoint) forecasts are produced.
The following FORECAST instruction prepares RATS to create ex post
forecasts of the four variables over the period 1991: 1 through
1996:3 first, so that the forecasting results can be checked against
existing data and used as guidelines for model building. At this
stage, the output from the ESTIMATE instruction is unnecessary. Use
the NOPRINT and NOFTESTS options to suppress the display.
*/
COMPUTE TIME = 1990: 4
00 I = 1, 12
THEIL(SETUP) 4 1 TIM£+2
# 1 TO 4
ESTIMATECNOPRINTS, NOFTESTS) 1979:3 TIME
THEIL
DO N = TIME+l, TIME+2
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FORECAST (PRINT) 4 1
# 1
# 2
# 3
# 4
KALMAN
THEIL

END DO N
THEIL (DUMP)
•
SMPL TIME+1 TIME+2

SET TREND = T
SET EC = UKTBR(T) + 107.804·GERTBR(T) S

- 46S.0S0·FRATBR(T) + 309.644.ITATBR(T)
COMPUTE TIME = TIME + 2
END DO I
/. Next, the FORECAST instruction creates ex ante forecasts of the
variables concerned beyond the estimation period. Each supplementary
card lists the equation to be used for forecasting and provldes the
dependent variable name so that the data can be extended with the
forecasts ../
COMPUTE TIME = 1996:3
00 I = 1, 5
THEIL (SETUP) 4 1 TIME+2
# 1 TO 4
ESTIMATE (NOPRINTS, NOFTESTS) 1979:3 TIME
THEIL
DO N = TIME+1, TIME+2

FORECAST 4 1
# 1 D1UKTBR
# 2 DIGERTBR
# 3 D1FRATBR
# 4 D1ITATBR
KALMAN
THEIL

END 00 N
THEIL (DUMP)
•
SMPL TIME+1 TIHE+2

SET TREND == T
SET UKTBR == UKTBR(T-1) + D1UKTBR(T)
SET GERTBR • GERTBR(T-l) + DIGERTBR(T)
SET FRATBR == FRATBR(T-1) + DIFRATBR(T)
SET ITATBR = ITATBR(T-l) + D1ITATBR(T)
SET EC == UKTBR(T) + 107.804·GERTBR(T) S

- 46S.0S0·FRATBR(T) + 309.644·ITATBR(T)
COMPUTE TIME == TIME + 2
END 00 I
•
PRINT (DATES) 1979:1 1998:4 UKTBR GERTBR FRATBR ITATBR
•
OPEN COpy A: \ TBRBVEC. FOR
COPY(DATES, ORG-YAR) 1996:4 1998:4 UKTBR GERTBR FRATBR ITATBR
END
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APPENDIX E

DETERMINATION OF THE BEST SCALAR
PRIOR HYPERPARAMETER SETTINGS

Table 6.19: Determination of the best hyperparameter
setting (v.,Wjk) for Germany BVAR forecasting
model J

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var (vJ,o,o.o) (vj'WJl 'o. 0) (vj•Wj1'Wj2 '0) (Vj,Wj1,Wj2'WJ3)

2.86379 1.92519 1.54057 1.33074
L (3,0,0,0) (3,.1,0,0) (3,.01,.1,0) (3, .01 ,.01 ,.05 )
G 2.90135 1.74261 1.53225 1.32716-
N
P (2,0,0,0) (3,.05,0,0) (3,.01,.05,0) (3,.01,.01,.04)

2.97880 1.56003 1.49889 1.32781
(1,0,0,0) (3,.01,0,0) (3,.01,.01,0) (3, .01 ,.01 ,.03 )
0.99277 0.95494 0.91804 0.97423

(.25,0,0,0) (.2,.5,0,0) (.2,1,.08 ,0) (.2 ,1,.07 ,.5)
L 0.98875 0.94417 0.91792 0.95949
M (.2,0,0,0) (.2,.8,0,0) (.2,1,.07,0) (.2,1,.07 ,.8 )1

0.95184-0.98932 0.94026 0.91802
(.15,0,0,0) (.2,1,0,0) (.2,1,.06 ,0 ) (.2,1,.07 ,1)

0.64803 0.59359 0.34728 0.53937
L ('1,0,0,0) (.01,.5,0,0) (.01,1,.5,0) (.01,1,1,.5)
C 0.61086 0.59348 0.34532 0.52796
P (.05,0,0,0) (.01,.8,0,0) (.01, 1,.8,0) ('01,1,1,.8)
I

0.51831·0.51049 0.59339 0.34412
(•01 ,0,0,0 ) ('01,1,0,0) (.01,1,1,0) (.01 ,1,1,1)

1.56406 2.17485 1.02033 1.00845
0,0,0,0) (.9,.5,0,0) (.9,1,.1,0) (.9,1,.01,.1)

T 1.56346 2.03027 0.99354 0.99853
B (.9,0,0,0) (.9,.8,0,0) (.9,1,.05 ,0 ) (.9,1,.01 ,.05)
R

0.90815·1.56614 1.94532 0.97763
(.8,0,0,0) (.9,1,0,0) (.9,1,•01,0 ) (.9,l,.oi,.0t)

Note: • indicates the minimum value in Theil U statistics of
each equation associated with the chosen
hyperparameters durlnq the ex post forecast period.
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Table 6.20:Determination of the best hyperparameter setting
(vJ,wjk) for Germany BVAR-EC forecasting model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var (vj,o,o,o) (vj,Wjl '0,0) (vj,Wj1'Wj2 '0) (Vj'W.11,Wj2,Wj3)

0.92122 0.8921158 1.06305 1.060051
L (.1,0,0,0) (.01,.1,0,0) (.01, .01, .5,0) (.01, .01,1, .5)
G 0.90101 0.8921151 1.06221 1.060042
N (.05,0 ,0,0 ) L 01, .05,0,0 ) L01, .01, .8,0) L01, .01,1, .8)
p

1.060028-0.89766 0.8927156 1.06155
(.01 ,0 ,0,0 ) (.01, .01,0,0) (.01, .01,I,0) ('01,.01,1,1)

1.43180 1.414912 1.365229 1.3343138
('1,0,0,0) (.01,.1,0,0) (.01, .01, .5,0) (.01, .01,1, .1)

L 1.40931 1.414908 1.365226 1.3343114
M (.05,0,0,0 ) (.01, .05,0, 0 ) (.01 ,.01,.8,0) (.01, .01,1, .05)1

1.39669 1.474907 1.365223 1.3343106-
(•01 ,0,0,0 ) (.01, .01,0,0) (,01, .01,1,0) L 01, .01,1, .01)

1.46026 1.46883 1.38436 1.28832
L (3,0,0,0) (3,.5,0,0) (3,1,.1,0) (3, 1,.01 ,.06) .
C 1.46301 1.46384 1.34101 1.28777-
P (2,0,0,0) (3,.8,0,0) (3,1, .OS,0) (3,1, .01, .05)
I

1.47692 1.46259 1.32589 1.28835
(1,0,0,0) (3,1,0,0) (3,I,.01,0) (3,1,.0I, .04)
0.69578 0.86809 0.87641 0.98321
(.1,0,0,0) (.01, .5,0,0) (.01,1, .5,0) (.01 ,1,1,.5)

T 0.68046 0.86782 0.81644 0.98316
B (.05,0,0,0) (.01, .8,0,0) (,01,1, .8,0) (.01,1,1,.8)
R 0.98312-0.67406 0.86757 0.87641

(•01.O.0,0 ) (.01,1,0,0) (.01, 1,1,0) (.01,1,1,1)
Note: _ Indicates the minimum value In Theil U statistics of

each equation associated with the chosen
hyperparameters during the ex post forecast period.
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Table 6.21: Determination of the best hyperparameter setting
(vj,Wjk) for France BVAR forecasting model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var

(vj,o,o,O) (vJ'~jl' 0,0) (vj ,Wj 1'WJ2 ' 0) (vJ, WJl' wj2,WJ3)

0.95903 0.91713 0.93565 0.90524
L (,13,0,0,0) (.12, .5,0,0) (.12,1,.1,0) ('12,1, .01, .5)
G 0.95897 0.91651 0.92974 0.89678D
P (.12,0,0,0) (.12, .8,0,0) ( . 12, 1, . 05, 0) ('12,1, .01, .8)

0.95899 0.91649 0.92713 0.89489-
('11,0,0,0) (.12,1,0,0) ( . 12,1, .01, 0) (. 12,1, .01,1)

1.18458 1. 18261 1.14189 1.07261
(. 07, 0, 0, 0) (. 06, . 5 , 0, 0 ) (. 06, 1, . 5 , 0 ) (. 06, 1, 1, . 1)

L 1.18402 1.17521 1. 13915 1.07250

" ('06,0,0,0) L 06, . 8, 0, 0) (.06,1,.8,0) ( . 06, 1, 1, . 05 )1
1.18553 1.17339 1.13857 1.07246-

(.05,0,0,0) L06,I,O,O) L 06, 1•1,0 ) ( . 06, 1, 1, . 01 )

0.59169 0.54899 0.59418 0.45867
L (.06,0,0,0) ( .05, . 5, 0, 0 ) ( . 05, 1, . 5, 0) ( . 05, 1, 1, . 6 )
C 0.59159 0.53095 0.58422 0.45865-P (.OS,O,O,O) ( . 05, . 8, 0, 0 ) (. 05, 1, . 8, 0 ) ( . 05, 1, 1, •5 )I

0.59202 0.S2932 0.57977 0.45889
(. 04, 0 , 0 , 0 ) (. 05, 1,0 , 0 ) (. 05, 1, 1,0) ( . 05, 1, 1, . 4 )

1. 13103 0.99233 0.991903 0.981035
Ll,O,O,O) L01, .1,0,0) (.01, .01, .1,0) (,01, .01, .01,.7)

T 1.09115 0.99231 0.991900 0.981031·
B ( . 05 , 0 , 0 , 0 ) (.01, .05,0,0) L 01, . 01 , . 05, 0) (.01, .01, .01, .6)
R

1.08999 0.99230 0.991899 0.98105
( •01 , 0, 0, 0 ) (.01, .01,0,0) (.01, .01, .01,0) (.01, .01, .01, .5)

Note: - lndicates the minimum value in Theil U statistics of
each equation associated with the chosen
hyperparameter. during the ex post forecast period.
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Table 6.22: Determination of the best hyperparameter setting
Cvj'Wjk) for France BVAR-EC forecasting model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var

(vj,o,o,o) (vj,Wjl,o,o) (v j' Wj1' Wj2' 0) (Vj,Wj1,Wj2,Wj3)

1.55284 1.31128 1.29921 1.33078
L ('1,0,0,0) (.01, .5,0,0) (.01,1,.5,0) ('01,1,1,.5)
G 1.53048 1.31051 1.29918 1.33077D (. 05, 0, 0 ,0) (.01, .8,0,0) (. 01, 1, .8, 0) ('01,1,1,.8)p

1.52152 1.30981 1.29916 1.33076-
L01, 0, 0,0) ('01,1,0,0) (.01,1,1,0) ( . 01, 1, 1, 1)
1.33390 1.23842 1.18137 1.08817
(3,0,0,0) (3, .5,0,0) (3,1,.12,0) (3,1,.11,.5)

L 1.33757 1.23576 1.18128 1.08408M (2,0,0,0) (3,.8,0,0) (3,1,.11,0) (3,1,.11,.8)1
1.34442 1.23511 1.18145 1.08309-
(1,0,0,0) (3,1,0,0) (3,1, .10,0) (3,1,.11,1)
1.02107 0.87544 0.76483 0.66990

L ('5,0,0,0) ('4,.1,0,0) (.4, .01, .9,0) (.4, .01, .8, .5)
C

1.02022 0.86171 0.76025 0.56367p
(.4,0,0,0) (. 4, . 05, 0, 0) (.4, .01, .8,0) (.4, .01, .8, .8)I
1.02817 0.85747 0.76315 0.52228-
('3,0,0,0) (. 4, •01,°,0) (.4, .01,.7,0) (.4,.01,'.8,1)

3.65296 2.18386 1.08928 0.89874
(.1,0,0,0) (.01,.1,0,0) (. 01, . 01, . 1, 0) (.01,.01,.01,.1)

T 3.54497 .2.18385 1.08924 0.898734B (.05,0,0,0) (. 01, . 05, 0, 0) (.01,. 01, .OS,0) (. 01 , . 01 , . 01 , . 05 )R
3.49944 2.18384 1.08923 0.898733-

( •01 ,0, 0, 0) (.01, .01,0,0) (.01, . 01, .01,0) (.01, .01, .01,.01)

Note: - indlcatea the minimum value In Theil U atatlstlcs of
each equation aaBoclated with the chosen hyperparameters
durln9 the ex POBt forecaat period.
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Table 6.23: Determination of the best hyperparameter
settins (vJ' WJk ) for Italy BVAR forecasting
model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var

(vJ,o,o,o) (vJ 'WJl ' 0, 0) (vJ ' Wj 1'WJ2 ' 0) (Vj'WJ1,Wj2'WJ3)

0.78721 0.79987 0.75460 0.87277
L (.05,0,0,0) (. 04, . 1, 0 ,0) (.04, .01, .9,0) (. 04, .01, . 8, . 5)
G 0.78658 0.79978 0.75456 0.83659D ('04,0,0,0) ( .04, .05, 0, 0) (. 04, .01, .8, 0) (. 04, .01 , . 8, .8 )P

0.78867 0.79974 0.75457 0.82063-
( .03, 0, 0, 0 ) ( .04, •01,0, 0 ) ( . 04, .01, .7, 0) ( .04, . 01, . 8, 1)

0.82442 0.83522 0.81418 0.84992
L 07, 0, 0, 0) (.06, .5,0,0) ( .06, 1, . 1, 0 ) (.06, 1, .01, .5)

L 0.82438 0.83270 0.81233 0.84580M (.06,0,0,0) (. 06, .8, 0, 0 ) ( .06, 1, . 05, 0) (.06, 1, .01, .8)1
0.82528 0.83219 0.81167 0.84166-

(.05,0,0,0) (.06,1,0,0) ( .06, 1, •01,0) ( .06, 1, .01, 1)

0.57534 0.53788 0.44304 0.31540
L (3,0,0,0) (3, .1,0,0) (3,.01,.1,0) (3,.01,.01,.1)
C 0.57750 0.51374 0.43039 0.30233
P (2.5,0,0,0) (3,.05,0,0) (3, .01, .05, 0 ) (3, .01, .01, .05)
I

0.27441-0.58116 0.44622 0.34926
(2,0,0,0) (3,.01,0,0) (3, .01, .01, 0) (3, .01, .01, .on
1. 19419 1.14274 0.99983 1.00248
('1,0,0,0) (.01, .1,0,0) (. 01,.01, .5, 0) L01, .01,1, .5)

T 1.18891 1.142732 0.99768 1.00062
B L 05, 0 , 0, 0) (. 01, .05, 0, 0 ) (,01, .01, .8,0) L01, .01,1, .8)
R

1.18668 1.142730 0.99655 0.99993-
(.01,0,0,0) (. 01, .01 ,0, 0) ('01,.01,1,0) (. 01, .01 , 1,1 )

Note: • Indicate. the minimum value In Theil U
each equation associated with

statistics of
the chosen

hyperpara.eter. durin; the ex post forecast period.
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Table 6.24: Determination of the best hyperparameter
setting (vj,Wjk) for LGDP BVAR forecasting
model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var (vJ,o,o,o) (vj'WJl'0,0) (vj,Wj1'WJ2 '0) (Vj,Wjl,Wj2'WJ3)

U 1.36837 1.09243 1.08328 1.06502
K (3,0,0,0) (3,.05,0,0) (3, .04, .5,°) (3,.04,1, .1)
L 1.36885 1.08268 1.08290 1.05438
G (2,0,0,0) (3,.04,0,0) (3,.04,.8,0) (3,.04,1, .05)
D 1.37132 1.08786 1.08282 1.04295-P 0,0,0,0) (3,.03,0,0) (3,.04, 1,°) (3,.04,1,.01)
G 0.95361 0.96337 0.97996 0.9638146
E (.14,0,0,0) (.13,.5,0,0) (.13,1,.5,0) ('13,1,1, .12)
R 0.95276 0.94724 0.97153 0.9638095-L
G (,13,0,0,0) (,13,.8,0,0) (.13,1,.8,0) (.13,1,1,.11)
N 0.95278 0.94331 0.96778 0.9638098
P (.12,0,0,0) (,13,1,0,0) ('13,1,1,0) (.13,1,1,.1)
F 0.78251 1.00607 0.84407 1.07870
R (.1,0,0,0) (.01,.5,0,0) (.01,1,.1,0) (.01,I,.01, .5)
A 0.77445 1.00271 0.84405 1.07478L (.05.0,0,0) (.01,.8,0,0) (.01 ,1,.05,°) (.01,1,.01, .8)G
D 0.76574 0.99971 0.84404 1.07193-
P (•01 ,0,0,0) (.01,1,0,0) (.01,1,.01,0) (.01,1, .01,1)
I 1.85606 1.83631 1.73507 1. 11521
T (3,0,0,0) (3,.09,0,0) (3,.08, .I, 0) (3,.08,.01, .1)
A 1.85768 1.83595 1.58368 1.08803L (2,0,0,0) (3,.08,0,0) (3,.08, .05,°) (3,.08, .01 ,.05 )G

1.01685-D 1.86589 1.83655 1.15678
P 0,0,0,0) (3,.07,0,0) (3,.08, •01 ,°) (3,.08, .01 ,.01)

Note: • indicates the minimum value in Theil U statistics of
each equation associated with the chosen
hyperparameters during the ex post forecast period.
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Table 6.25: Determination of the best hyperparameter setting
(vj,Wjk) for LGDP BVAR-EC forecasting model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var (vj,o,o,o) (vj,Wj1,o,o) (v j ,Wj 1' Wj2 ' 0) (v j ,wJ l' WJ2' WJ3)

U 1.37244 1.28916 1.02712 0.89082

K
(3,0,0,0) (3,.1,0,0) (3,.01,.1,0) (3, .01 , . 01 , . 08)

L 1.37246 1.16136 0.98465 0.88974-
G (2,0,0,0) (3, .05, 0, 0) (3, . 01 , .05, 0) (3, .01, .01, .07)
D 1.37252 1.05391 0.91960 0.89562P (1,0,0,0) (3, .01, 0, 0) (3, . 01, .01, 0) (3, .01, .01, .06)

G 1.77483 1.56676 1.367357 1.22378
E L1,O,O,O) (.01, .5,0,0) (.01,1,.5,0) ( . 01 , 1. 1, .5)
R 1.73601 1.56661 1.367351 1.22315L L 05, 0, 0, 0) (,01, .8,0,0) (.01,1,.8,0) (. 01 , 1, 1, .8)
G

1.22257-N 1. 71735 1.56647 1.367346
P ( . 01 , 0, 0, 0) (.01,1,0,0) (.01,1,1,0) ('01,1,1,1)

F 1.61247 1.5956028 1.5829638 1.51656
R (.1,0,0,0) (.01, .1,0,0) (,01, .01, .1,0) (. 01, . 01, . 01, .5)
A 1.61017 1.5956020 1.5829630 1.51645
L (.05,0,0,0) (. 01, . 05, 0, 0) (. 01, .01, .05, 0) (.01, .01, .01, .8)
G

1.51638-D 1.60914 1.5956018 1.5829627
P ( •01 ,0, 0, 0) (.01,.01,0,0) (.01, .01,.01,0) (.01,.01,.01,1)

I 1.75977 1.56106 1.45772 1.34483
T (3,0,0,0) (3,.5,0,0) (3,1,.1,0) (3,1,.01,.1)
A 1.76044 1.56028 1.45365 1.34315
L (2,0,0,0) (3,.8,0,0) (3,1,.05,0) (3, 1, .01 , . 05)
G

1.34019-D 1.76401 1.56010 1.44585
P (1,0,0,0) (3,1,0,0) (3,1, .01,0) (3, 1, .01 , •01)

Note: _ Indicate. the minimum value In Theil U statistics of
each equation associated with the chosen hyperparameters
during the ex post forecast period.
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Table 6.26: Determination of the best hyperparameter
setting CVJ,wjk) for LMON BVAR forecasting
model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var

(vj,O,o,O) (v j'Wjl ,0, 0) (Vj,Wjl,Wj2'0) (vJ' W jl' WJ2' Wj3)

0.69115 0.61608 0.53810 0.44847
U (3,0,0,0) (3,.1,0,0) (3,.01,.1,0) (3,.01,.01,.1)
K 0.69202 0.58297 0.52722 0.42627L (2,0,0,0) (3,.05,0,0) (3, .01, .OS,0) (3, . 01, .01 , .05)M
0 0.69643 0.54957 0.48836 0.40815-

0,0,0,0) (3, . 01, 0, 0) (3, .01, . 01,0) (3, .01, .01, .01)

G
0.89145 0.86187 0.848194 0.8421336

E (,1,0,0,0) (.01,.5,0,0) (,01,1,.1,0) (,01,1, .01,1)

R 0.88085 0.86095 0.848189 0.8421312-
L (.05,0,0,0) (.01, .8,0,0) (. 01,1, .05, 0) (,01,1,.01,.9)
M 0.86693 0.86027 0.848188 0.84213141 ( •01, 0, 0, 0 ) (. 01,1, 0, 0) (. 01, 1, .01, 0) (. 01,1, . 01, .8)

F 1.70419 1.42965 1. 14119 1. 15654
('1,0,0,0) L01, .5,0,0) (. 01, 1, .7, 0) (.01,1,.6,.5)

R
A 1.51727 1.41829 1.14118 1. 14592
L (. 05, 0 ,0 ,0 ) L01, .8,0,0) (.01,1,.6,0) (.01,1,.6,.8)
M 1.38944 1.41023 1.14125 1.14089-
1 (•01, 0, 0, 0) (.01,1,0,0) (,01,1, .5,0) ('01,1,.6,t)

1.00104 0.85919 0.90250 0.90355I (,1,0,0,0) LOl,.5,0,0) (. 01, 1, .1,0) (. 01, 1, .01, .5)T
A 0.95457 0.85895 0.90243 0.90044
L L 05, 0, 0, 0) (,01, .8,0,0) (. 01, 1, .05,0 ) ( .01,1, .01, .8)
M 0.88540 0.85876 0.90241 0.89803-
1 (.01,0,0,0) (.01,1,0,0) (. or. 1, .01,0) (,01,1,.01,1)

Note: _ Indicates the minimum value In Theil U statistics of
each equation associated with the chosen
hyperparameters during the ex post forecast period.
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Table 6.27: Determination of the best hyperparameter setting
(vj,Wjk) for LMON BVAR-EC forecasting model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var (vj,o,o,o) (v j' W.n: 0, 0) (v j ,Wj 1'Wj2 ' 0) (vJ,Wj1,Wj2,Wj3)

2.57628 2.06291 0.75129 0.68725
U (3,0,0,0) (3,.1,0,0) (3,.01,.1,0) (3, . 01 , . 01 , . 05 )
K 2.58030 1.42145 0.72152 0.68656-
L (2,0,0,0) (3, .05, 0 ,0) (3, .01, .05,0) (3,.01,.01,.04)
M
0 2.60155 0.82206 0.70881 0.68841

(1,0,0,0) (3, . 01 ,0, 0) (3, .01, .01,0) (3, . 01, . 01 , . 03)

G 0.72328 0.7010979 0.6932006 0.6934116
('1,0,0,0) (,01, .1,0,0) ('01, .01, .1,0) (. or. .01, .01, .5)

E
R 0.71169 0.7010974 0.69320054 0.6934113
L (. 05 ,0, 0 ,0) (, or. .05,0,0) (. 01 , . 01 , . 05, 0) r. 01, .01, .01, .8)
M 0.70770 0.7010972 0.69320051 0.6934110·
1 (. 01 ,0, 0 ,0) (.01, .01,0,0) (.01, .01, .01,0) (,01, .01, .01,1)

F 1.76415 1.81823 1. 14765 1.28943
(.1,0,0,0) (.01, .5,0,0) (.01 , 1, . 1,0) ('01,1, .01, .5)

R
A 1.73302 1.81812 1.147631 1.28923
L (.05,0,0,0) (.01,.8,0,0) (. or. I, . 05,0) ( .01, 1, .01, .8)
M 1.72086 1.81803 1.147626 1.28905-
1 ( •01 ,0 , 0 ,0 ) (.01,1,0,0) (.01,1,.01,0) ( . 01, 1, .01,1 )

1. 11951 1. 11379 1.29290 0.867562
I (,1,0,0,0) (.01, .5,0,0) (.01,1, .5,0) ('01,1,1, .1)T
A 1.10765 1.11373 1. 29281 0.867557
L (. OS, 0, 0, 0 ) (.01, .8,0,0) (.01,1, .8,0) (. 01 , I, 1, . 05)
M 1.10372 1.11369 1.29272 0.867555-
1 ( •01. 0•0, 0 ) (.01,1,0,0) ( .01,1,1,0) (.01, I, 1, .01 )

Note: • Indicates the minimum value In Theil U statistics of
each equation associated with the chosen hyperparameters
during the ex post forecast period.
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Table 6.28: Determination of the best hyperparameter
setting (vJ,WJk) for LCPI BVAR forecasting
model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var (VJ,O,O,O) (vJ'WJl'0,0) (" J 'Wj_1'WJ2 '0) (VJ'WJ1'Wj_2'WJ3)

U 0.69100 0.70990 0.72808 0.80795
K

('1,0,0,0) (.09, .17,0,0 ) (.09, .16,.6,0 ) (.09, .16,.5, .5)
L 0.69084 0.70984 0.72807 0.78264
C ('09,0,0,0) (.09, .16,0,0) (.09, .16,.5,0 ) (.09, .16,.5, .8 )
P 0.69090 0.70996 0.72841 0.77230-I (.08,0,0,0) (.09, .15,0,0 ) (.09, .16,.4,0) (.09,.16,.5,1)
G 0.57594 0.58510 0.57728 0.52348
E (3,0,0,0) (3,.5,0,0) (3,1,.1,0) (3,1,.01,.5)
R 0.57598 0.57978 0.57452 0.523459L (2,0,0,0) (3,.8,0,0) (3,1,.05,0) (3,1,.01,.8)C
P 0.57671 0.57844 0.52346 0.523457-
I 0,0,0,0) (3,1,0,0) (3,1,.01,0) (3,1,.01,1)
F 0.76242 0.76331 0.69796 0.58562
R (3,0,0,0) (3,.5,0,0) (3,1,.1,0) (3,1,.01,.4)
A 0.76245 0.76274 0.65591 0.58498-L (2,0,0,0) (3,.8,0,0) (3,1,.OS,0 ) (3,1,.01,.3)C
p 0.76260 0.76262 0.58755 0.58509
I (1,0,0,0) (3,1,0,0) (3,1,•01 ,0 ) (3,1,.01,.2)
I 0.26857 0.28823 0.25743 0.26221
T (.6,0,0,0) (.5,.5,0,0) ('5,1,.7,0) (,5,1,.6,.5)
A 0.26844 0.28131 0.25713 0.25876L (.5,0,0,0) (.5,.8,0,0) (,5,1,.6,0) (,5,1,.6,.8)C

0.25803-P 0.26852 0.27798 0.25732I <. (.4,0,0,0) (,5.1.0,0) (.5.1•.5.0) (.5.1•.6,1)
Notel _ Indicates the minimum value In Theil U statistics of

each equation aasoclated with the chosen
hyperparameters durlnq the ex post forecast period.
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Table 6.29: Determination of the best hyperparameter
setting (vj,Wjk) for TBR BVAR forecasting
model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var

(vj,o,o,o) (vj,Wj1,o,o) (v j ,Wj 1' W j2 ' 0) (v j' wJ1' W j2' WJ3)

1.07794 1.12446 1.09650 0.98371
U ('1,0,0,0) (.01, .5,0,0) (. 01, 1, .5, 0) (.01,1,1,.5)
K 0.98548 1.12322 1.09645 0.98345T ( .05, 0, 0, 0 ) (.01, .8,0,0) (.01,1,.8,0) ( .01, 1, 1, .8)
B

0.98331-R 0.95928 1.12211 1.09640
(. 01,0, 0, 0 ) (.01,1,0,0) (. 01,1, I, 0) (.01,1,1,1)

G 1.34050 1.29856 1.11137 0.89820
(3,0,0,0) (3,.06,0,0) (3, .OS, . 1, 0) (3, .05, . 01, . 1)

E
R 1.34117 1.29659 1.03664 0.86150
T (2,0,0,0) (3,.05,0,0) (3,.05,.05,0) (3, .05, . 01, . 05)
B 1.34488 1.29736 0.97746 0.83390-
R (1,0,0,0) (3,.04,0,0) (3, .OS, .01,0) (3, .05, .01, .01 )

F
0.90057 0.90077 0.93730 1. 01695

(.12,0,0,0) ( . 11, .25, 0, 0) (.11,.2,.1,0) (.11,.2,.01,.5)
R
A 0.90034 0.90071 0.93648 1.00159
T (.11,0,0,0) (.11,.2,0,0) (. 11, . 2, .05, 0) (.11, .2, .01. .8)
B 0.90085 0.90072 0.93621 0.99298-
R (.10,0,0,0) (.11, .15,0,0) (. 11, . 2, •01,0) (.11,.2,.01.1)

0.94160 0.90461 0.92625 0.90811
I (.7,0,0,0) (,6,.1,0,0) (,6, .01, .5,0) (.6,.01,1..6)
T

0.90781-A 0.94158 0.89634 0.91715
T (.6,0,0,0) (. 6, .05, 0, 0) (.6, .01, .8,0) (.6,.01,1,.5)
B 0.94168 0.89236 0.91351 0.90801
R (,5,0,0,0) ( .6, •01, 0, 0) (.6,.01,1,0) (.6,.01,1,.4)

Note: _ Indicate. the minimum value in Theil U statisticS oC
e.ch equation a.sociated with the chosen
hyperparameters durlnq the ex post forecast period.

288



Table 6.30: Determination of the best hyperparameter setting
(VJ,wjk) for TBR BVAR-EC forecasting model

Dep Theil U Statistics for One-Step-Ahead Forecasts
Var (vj,O,o,o) (v .r"j1 ,0,0) (v J ' WJ 1'Wj2 ' 0) (vJ,wJl,wJ2,Wj3)

1.59373 1.60929 1.447984 1.48018
U ('1,0,0,0) (.01,.5,0,0) ('01,1,.1,0) ('01,1, .01, .5)
K 1.59369 1.60926 1.447981 1.48009T
B

( .05 ,0, 0, 0 ) (.01, .8,0,0) (. 01 , 1, . 05, 0) (.01,1, .01, .8)

R 1.59368 1.60923 1.447980 1.48001·
( •01, 0, 0, 0 ) (.01,1,0,0) (. 01 , 1, . 01 ,0) (.01,1,.01,1)

G
0.85311 0.85255 0.85070 0.85196
(3,0,0,0) (3,.1,0,0) (3, .01, .5,0) (3,.01,1,.5)

E
R 0.85315 0.85171 0.85054 0.85107
T (2,0,0,0) (3,.05,0,0) (3,.01,.8,0) (3,.01,1,.8)
B 0.85334 0.85043 0.85050 0.85087-
R (1,0,0,0) (3, .01.0,0) (3, .01,1,0) (3,.01,1,1)

F
1.29980 1.29938 1.19664 1.09528
(3.0.0,0) (3, .1.0,0) (3,.01,.1,0) (3, .01, .01, .5)

R
A 1.30038 1.29875 1.19498 1.09374
T (2,0,0.0) (3,. OS,0,0) (3 •• 01, .05,0) (3, .01, .01, .8)

B 1.30346 1.29780 1.19274 1.09338-
R (1,0,0,0) (3, .01,0,0) (3, .01, .01,0) (3, .01, .01,1)

I
0.73991 0.74207 0.7267013 0.80032

T (.1,0,0,0) (.01, .5,0,0) (.01, 1, . 1,0) ('01,1, .01, .5)

A 0.73730 0.74200 0.7267007 0.80015
T (.05,0,0,0) (.01, .8.0,0) (.01, 1, .05,0) (.01, 1, .01, .8)
B 0.73615 0.74199 0.7267005 0.79999·
R ( •01, 0, 0, 0 ) (.01,1,0,0) (.01,1, .01,0) (.01,1, .01,1)

Note: • Indicate. the .lnl.u. value in Theil U statistics of
each equation associated with the chosen
hyperpara.eter. durinq the ex po.t forecast period.
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APPENDIX F

FORECASTING RESULTS

This appendix provides graphic displays of the BVAR and BVAR-EC
quarterly forecasts made over 1991Ql-1998Q4 for Germany, France and
Italy.
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