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Abstract 

 

 

 

 This thesis aims to study the evolution of cranial form and its biomechanical 

adaptation to the function of feeding in papionins, a group of primates with well-

established phylogeny, large variations in cranial form, and well known ecologies and 

diets. The thesis firstly tests the hypothesis of evolutionary divergence of papionin 

cranial forms by random genetic drift with a quantitative genetic model (previously 

tested for acceptable type I error rates); if rejected, different cranial forms should reflect 

adaptations to the particular biomechanical demands of different diets. To study those 

adaptations, hypotheses about the cranial biomechanical performance under biting loads 

are then formulated in terms of the diet of each papionin species and tested using 3D 

finite element models and geometric morphometrics. Large scale deformations and 

cranial form are assessed using landmarks distributed over the cranium, and local strain 

distributions are assessed visually. Lastly, the association between cranial form, 

biomechanical parameters and diet among papionin species is tested using partial least 

squares. Results show that papionin cranial forms did not diverge by random genetic 

drift alone and thus adaptation must have occurred. When testing for biomechanical 

adaptation to biting, there are differences in cranial deformations between durophagous 

and graminivorous species, each with particular adaptations in the cranium that are thus 

apparent in cranial strains and deformations. Another striking result is that male and 

female crania of a single species (eating the same foods) deform similarly, albeit having 

different forms. The cranium of the phylogenetic outgroup Macaca deforms differently 

from all other papionins, but generally cranial deformations do not follow the 

phylogenetic relationship among papionins. Finally, a statistically significant association 

is found between cranial form and cranial deformations, and between diet and cranial 

form. Bite force and deformations show a less clear association with diet. 
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Chapter 1. Introduction and Background 

 

 

 

1.1. Motivation and Objectives 

  

Understanding the evolution and ecology of organisms and making predictions 

of behavioural habits in living and extinct taxa requires an understanding of the true 

relationship between form and function, which has always been difficult to establish 

(Wroe 2010). In order to study that relationship, an understanding of a wide range of 

disciplines is required, from evolution and development to statistics, biomechanics and 

physical properties of materials. 

The overall objective of this thesis is to understand the evolution of cranial form 

and its biomechanical adaptation to the function of feeding, using papionins as a model 

system. The particular biological system under study here is the papionin cranium. 

Papionins are a group of primates with well-established phylogeny, varying cranial form 

and known dietary strategies. Primate crania, in general, have different forms and each 

form is thought to have evolved for a different function, while constrained by their close 

phylogenetic relationships. Papionins, as a primate group, share a recent common 

ancestor and have the same gross musculo-skeletal anatomy, yet present different 

cranial forms and different diets. It is to be expected that the cranium of papionin 

species should have diverged and adapted to eat the different diets and, therefore, that 

each cranial form is the effect of adaptation to diet and not of random processes such as 

random genetic drift. Given the considerable evidence of dental (Hayes, Freedman, & 

Oxnard 1990) and morphological (Frost et al. 2003; Leigh 2006; Dunn 2011) variation 

in papionins, it seems indeed possible that some of this variation is adaptive and relates 

to dietary differences. 

However, it is not always easy to know for certain whether a particular trait 

evolved as an adaptation to a function. Natural selection could not be nearly as 

pervasive as previously thought (Gould & Lewontin 1979). Testing diversification by 

random genetic drift, then, is a useful starting point in the study of evolutionary 

variation. Initially in this thesis it is hypothesised that if random genetic drift was not 

the single driver of papionin cranial form evolution, the form of each papionin cranium 
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might reflect adaptation to the particular biomechanical demands of different dietary 

strategies. In other words, it is only reasonable to ask if the cranium is adapted to diet 

after random genetic drift have been eliminated as the sole cause of evolutionary 

divergence. Though a straightforward goal, the steps along the way are complex. First, 

the null hypothesis that random genetic drift was the single evolutionary process 

responsible for the cranial morphology of papionins is tested with a quantitative genetic 

model. To achieve such a goal, a simulation test on the validity of the quantitative 

genetic model to accommodate type I error rate within acceptable brackets for 

biological interpretation of results is first performed. Then, when satisfied that the error 

does stay within acceptable limits, the quantitative genetic model is applied to a 

papionin sample, and when the null hypothesis of random genetic drift is rejected a 

more adaptive interpretation of cranial form is favoured. 

Following from the results of the initial evolutionary tests, hypotheses about the 

mechanical performance of the cranium are formulated in terms of the type of foods 

eaten by each papionin species. Feeding is a fundamental animal behaviour. For this 

reason much of the morphological variation in an adaptive radiation tends to be 

interpreted as trophic adaptation (Schluter 2000). In numerous primates, dietary 

differentiation has been associated with morphological adaptation (Ravosa 1990; 

Daegling 1992; Singleton 2005; Taylor 2006). Indeed, Herring (1993) claims that the 

extent to which the mammalian cranium adapts dynamically during food manipulation 

has not yet been appreciated. Research into the relationship between feeding 

biomechanics and cranial morphology has focused on the role of loading regimens in 

shaping cranial adaptation, and how stresses are dissipated through the cranium (Chalk 

et al. 2011). Differences in how the cranium resists load biomechanically (i.e. deforms) 

are hypothesised as indicating differences in feeding strategies. However, the 

relationship between cranial deformations (here meaning only changes in size and 

shape, not translations or rotations) arising from biting and feeding (loading regimens) 

has never been formally assessed. While the deformations of the cranium are unlikely to 

be selected for in an evolutionary sense, cranial form interacts with loading (here due to 

biting) to cause deformations of the cranium. In turn, these deformations lead to 

ontogenetic adaptations of bony form and structure and, as such, are a possible indicator 

of feeding mechanism and dietary strategy. 

Mechanical performance hypotheses are tested using three-dimensional (3D) 

finite element models and geometric morphometrics. Biomechanical parameters 

estimated from finite element analysis (FEA; such as bite force, nodal displacements, 
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global deformations and resulting local strains) are here used as a measure of function. 

Finite element analysis provides a powerful approach to evaluating cranial deformation 

in response to masticatory loads (Chalk et al. 2011). The basis of finite element method 

is a virtual 3D model obtained from a series of image slices of the real object. With the 

increase in computational power, building 3D models has not only become possible but 

also common. Models are built to simulate real or create artificial situations with which 

“to increase knowledge and insight about reality, and to estimate or predict variables of 

interest” (Nigg & Herzog 2006). In studying the cranium of papionin monkeys, 

particularly biomechanical parameters when biting loads are applied, leading to 

deformation, models are the best solution: valuable (and many times unique) museum 

specimens that cannot be replaced are best tampered with inside the computational 

space, than in a real biomechanics laboratory. The damaging or destruction of the 

specimens would also render the reproducibility of experiments impossible.  

Subsequently, towards the end of the thesis, hypotheses that both maximum bite 

force and cranial deformations under biting load among papionin species, as resulting 

from FEA, are associated with cranial form and diet, and these two are associated with 

each other, are also tested using multivariate statistics. 

In this first chapter, attention is given to a review on the evolution and analysis 

of form and function, on the material properties and functional adaptation of bone (the 

key material in the cranium, and of great interest when testing cranial biomechanical 

performance under biting), on the biomechanics of support and movement, and on 

issues relating form, function and size. A review of papionin evolution, classification, 

ecology, diet, cranial and muscular anatomy is also provided, since this group of 

organisms is the system under study here. An appraisal of topics such as the concept of 

adaptation, the physical properties of food items and functional hypotheses of papionin 

adaptation to feeding is also outlined towards the end of the chapter.  

 

 

 

1.2. Form and Function 

 

 Can function be predicted from form? Many attempts have been made to answer 

that question (Lauder 1995; Alexander 2006; Hutchinson 2012). Yet, so far no 

straightforward and convincing answer has been provided. Differences in form alone are 



22 

often interpreted as differences in function (van der Meijden, Kleinteich, & Coelho 

2012, which states that in scorpions, shape types can be an approximation to 

biomechanical performance). 

 How to measure the relationship between form and function? The main 

assumption behind a possible answer is that structures are adapted in some way to some 

function, and that they are reasonably efficient at performing that function (Benton 

2005). Every structure and each organizational level may be associated with specific 

functional properties (Liem et al. 2001). Bones, as structures, should then provide much 

information about function, such as locomotion or mastication (Herring 1993; Benton 

2005). There are muscle scars on bone surfaces, and bony processes where muscles 

attach: muscles are an indicator of strength, leading to inferences about locomotion or 

other functions (Benton 2005). Cranial skeletal structures should be associated with 

functional properties of muscle (Herzog 2006). 

 In this section (1.2) and its subsections, a review of several aspects concerning 

form and function is provided, including the evolution and analysis of form and 

function, the material properties and functional adaptation of bone (the key material of 

interest throughout this thesis), the biomechanics of support and movement, and also 

issues relating form, function and size. 

 

 

1.2.1. Evolution of Form and Function 

 

 The form of an organism is a phenotype resulting from the sum of its genotype, 

its development, and the environment it occupies (Equations 1.1 and 1.2); function can 

be defined as any effect that a given form performs (Wolff 1991). In a purely 

adaptationist view, every structure has been said to exist because it performs (or has 

performed in the phylogenetic past of an organism) a function (Liem et al. 2001). 

Surviving, meaning an organism being able to pass on its genes, is the key to the 

understanding of biological form and function, suggesting that that a particular form-

function combination can be seen as an adaptation (see concept of adaptation in Section 

1.4.1) to a particular role, making the organism adapted to a particular environment, 

increasing its fitness (Wolff 1991). 
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Form evolves because there is variation in form within a population. Phenotypic 

variation in form can be described by phenotypic evolutionary theory, the basic 

principles of quantitative genetics, and can be summarized in the equation  

 

P = G + E       (1.1) 

 

The phenotypic value (P) is the combined effect of the genotypic value (G) and the 

environmental deviation (E). The genotypic value itself is the sum of all the genetic 

effects, which can be classified as additive ones and dominant ones (Falconer & 

Mackay 1996). The previous equation can then be written  

 

P = A + D + I + E      (1.2) 

 

with A being the additive genetic effect, D the dominant genetic effect and I the 

interaction between the genetic effects and the environmental one. The contributions of 

each effect cannot be determined in a single individual, but can be estimated for the 

whole population by estimating the variances of each genetic effect (Falconer & 

Mackay 1996; Ridley 2004; further developed in Gillespie 2004):  

 

VP = VA + VD + VI + VE     (1.3) 

 

The proportion of the total phenotypic variance VP that is explained by the genetic 

variance VG (and therefore inherited from the parent population) is called the 

heritability (Falconer & Mackay 1996). Considered in a broad sense, estimating the 

heritability of a trait will use the total genetic variance: H
2
 = VG/VP. But in a narrow 

sense will only use the additive variance: h
2
 = VA/VP. The latter is very useful for 

evolutionary studies because it gives an indication of how the mean z of a trait will 

respond to selection in 

 

Δz = h
2
S      (1.4) 

 

the so called breeder's equation, where S is the deviation of the population mean from 

the parental population mean S = zt – z0 (Falconer & Mackay 1996). 

The course of evolution of the average phenotype in a population in response to 

natural or artificial selection is determined by the additive genetic variance and 
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covariance between traits (Lande 1980a; Roff 2002). The evolutionary importance of 

covariation between characters in populations and its connection with correlated 

responses to natural or artificial selection has been apparent ever since Darwin (1859), 

and especially since Mendel’s (1866) work revealed the underlying genetic mechanisms 

(Lande 1979). Knowledge of genetic correlations (and covariances) is, thus, crucial for 

an understanding of evolution through correlated responses to selection (Cheverud 

1988). One of the basic principles in quantitative genetics is that the correlated response 

of a trait to selection on another trait is proportional to the genetic correlation between 

both traits (Zeng 1988). The quantitative analysis of the evolution of a vector z of traits 

requires two sets of parameters, the heritabilities (h
2
) of the traits and the correlations 

between each pair (Roff 1995). These correlations are made up of two elements, the 

genetic correlation (rG), which is the correlation of the breeding values, and the 

environmental correlation (rE), which is the correlation of environmental deviations plus 

non-additive genetic deviations (Roff 1995; Falconer & Mackay 1996). Estimating rG, 

unfortunately, requires extremely large sample sizes to minimize the error and increase 

the statistical power of the analysis (Roff 1995). The phenotypic correlation (rP) is more 

easily measured than rG or rE and is a simple function of the two: rP = rG√(hi
2
hj

2
) + 

rE√[(1 – hi
2
)(1 – hj

2
)], simplified above as P = G + E (Roff 1995). 

For a phenotype comprising multiple traits (such as the form of an organism), 

the single-generation response to selection is given by the multivariate version (Lande 

1979) of the above mentioned breeder's equation,  

 

Δz = βG       (1.5) 

 

where z is a vector of phenotypic means, β is the vector of directional selection 

gradients, and G is the genetic variance-covariance matrix. β can be considered the 

multivariate counterpart of the single-trait narrow sense heritability h
2
. When the mean 

values of two traits i and j are plotted against each other the slope of the line is Δzi/Δzj = 

hi
2
S/hj

2
S = hi(VAi/VP)S/[hj(VAj/VP)S] = (hi/hj)(VAiVP/VAjVP), which written in matrix 

notation is Δz = βG (Lande 1979). 

When this multivariate equation is extrapolated over many generations to 

reconstruct the evolutionary history or to predict the future trajectory of a phenotype, it 

constitutes a bridge between microevolutionary processes and macroevolutionary 

patterns (Lande 1979; Jones, Arnold, & Bürger 2003). That extrapolation is, however, 

only possible if G remains relatively constant over long spans of evolutionary time 
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(Jones et al. 2003). This not being the case, understanding selection over evolutionary 

time is impossible within the existing quantitative genetics theory framework (Jones et 

al. 2003). Understanding how G changes over evolutionary time has been the focus of 

many studies (e.g. Jones et al. 2003, using stochastic simulations). Arnold et al. (2008) 

review the literature on the evolution and stability of the G matrix. The ultimate forces 

that contribute to the structure of G are recombination, mutation, genetic drift and 

selection (Griswold, Logsdon, & Gomulkiewicz 2007). 

Natural selection does not operate on traits themselves, but rather on their 

functional consequences (Arnold 1983). One variant is selected if it confers an 

enhanced capacity, which in turn leads to a greater evolutionary fitness by increasing 

survival, mating success, or fecundity (Losos 2011). Investigating whether the trait 

actually produces a predicted increase in functional capability and a consequent increase 

in fitness of a population has been a common test of hypothesis in the field of 

biomechanics and physiology (Losos 2011). Nevertheless, in the same way that 

phenotypically different taxa can perform the same function in a way that their fitnesses 

are the same (see, for example, the phenotype-fitness map concept in Bull, Heineman, 

& Wilke 2011), taxa which are phenotypically similar may differ substantially in 

functional ability (Losos 2011). 

 Even if a trait confers increased functional capacities, it may not be favoured by 

natural selection, because such an increase will have to prove advantageous in terms of 

fitness (increased survival or reproductive success) (Futuyma 2009). Losos (2011) 

mentions the example of Anolis lizards (found in Irschick & Losos 1998), which rarely 

jump, so that an increase in maximal jumping ability would not provide any useful 

benefit. So the best way to study the functional adaptation of a structure is to investigate 

an increase in functional capability of the structure that actually results in an increase in 

fitness; and the best way to measure fitness is to study the organism in its natural 

environment (Greene 1986; Hertz, Huey, & Garland 1988; Irschick & Garland 2001). 

Yet, there is not a single phenotypic solution for an environmental problem, but rather 

multiple solutions. For example, predators preying on toxic prey may evolve resistance 

to the toxin or avoid eating the part of the body that contains it (Losos 2011). These are 

what can be called trade-offs, and they often result in different phenotypes having the 

same fitness in a particular environment (Losos 2011). 

 In biomechanics, attention has been paid to the phenomenon of many-to-one 

relationships between morphology and performance (Losos 2011). Many-to-one 

relationships mean that, for any structural system in which parts interact to produce a 



26 

function, the same functional capacity may be produced by different combinations of 

traits, for the different parts (Alfaro, Bolnick, & Wainwright 2004, 2005; Vanhooydonck 

et al. 2006; Wainwright 2007; Young, Sweeney, & Badyaev 2010). Fitton et al. (in 

prep.) demonstrate that, even though the durophagous papionin species Cercocebus has 

lower strains in the face during premolar biting, the omnivorous species Macaca is able 

to produce the bite forces needed to eat hard foods as well, although its cranial 

biomechanical performance is not optimized for this (see more details in Section 1.3). 

 The interrelationships among form, function, evolution, and environment are 

complex and difficult to understand (Wolff 1991) and their analysis requires a particular 

set of skills, which are discussed in the next subsection. 

 

 

1.2.2. Analysis of Form and Function 

 

 Quoting Herzog (2006), “morphology is the science of structure and form 

without regarding function.” Consequently, functional morphology can be considered 

morphology with function added, that is, it is the science of interpreting function from 

morphology (Dullemeijer 1980; Ashley-Ross & Gillis 2002; Benton 2005), and 

functional anatomy investigates the performance of structures within organisms (Liem 

et al. 2001). Since the form of a structure is linked to its function, form and function 

will always a strong association with each other (Wolff 1991; Liem et al. 2001; Boyd & 

Nigg 2006). To understand how a particular form with a particular function works it is 

necessary to analyse an organism as a whole, with its physiology and behaviour 

apparent (Dullemeijer 1980; Liem et al. 2001). For example, Dial et al. (1991), studying 

bird flight, discovered that the flight muscles perform differently than predicted on the 

basis of a static examination of bird anatomy. Notwithstanding, inferring function from 

form, for example in fossil organisms, is a widely used approach, even when (or 

precisely because, in the case of fossils) no other biological information is available 

(Lauder 1995).  

Studying form requires an early and comprehensive description of the structures 

that comprise it, eventually applying the comparative method to determine how 

universal those structures are (Wolff 1991). Comparative anatomy attempts to trace the 

evolutionary history of organisms (Liem et al. 2001), so that it can be known whether 

organisms have similar traits for similar functions, different traits for similar functions, 
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or similar traits for different functions. The comparative method can thus track 

evolutionary change along lineages and can be used to study adaptation (Harvey & 

Pagel 1991). One difficulty, though, lies in the assumption of independent evolution of a 

structure in several lineages, which requires counting of the number of independent 

convergent evolutionary events by which that structure evolved (analysed by 

phylogenetically independent contrasts, a method for incorporating phylogeny into 

statistical analysis by estimating values at nodes, Felsenstein 1985). Such information is 

not only hard to gather, the true independence of structure evolution is only apparent 

and not real, since every lineage will always be linked (tracing back for long enough) by 

a common ancestor. The assumption of independence, however, is found to be sufficient 

to approach the convergent evolution of many structures (Futuyma 2009). 

 Although modern-age comparative anatomy is a discipline dating back at least to 

the 18
th

 century, making it one of the oldest areas of the Natural Sciences, a surprising 

amount of research in comparative anatomy is still to be undertaken (Liem et al. 2001), 

with much to be learned from simple observational analysis (e.g. Curtis et al. 2011). A 

goal of functional anatomists is to find the connections between one form and its 

function, but a functional analysis is not just about describing a form and its function 

(Liem et al. 2001). Such an analysis is only complete when it leads to an understanding 

of how that form evolved within a population (phylogenetics): Losos (2011), for 

example, found that the shape of the head in lizards primarily reflects phylogeny, 

regardless of what they eat. Phylogeny can be studied by including fossils in the 

analysis of a particular structure, tracking the evolutionary changes along the lineage 

(Dullemeijer 1980; Harvey & Pagel 1991; Liem et al. 2001). How an individual 

develops within its own lifetime (ontogeny) is also very important and can be achieved 

by studying the different developmental stages of an individual, bearing in mind that in 

living organisms a function such as feeding must always be performed even when the 

form of the structure performing it is not yet fully mature (Liem et al. 2001). 

 Thorough anatomical knowledge is always needed in order to generate testable 

hypotheses of function. Once these hypotheses are generated, functional analysis can 

begin (Liem et al. 2001). One such approach in studying function is the use of 

mechanical models, where biological structures (often bones but not only) are compared 

with mechanical devices (such as levers or pulleys) and calculations made of the forces 

acting on them (Benton 2005; Kerr 2010). 

 Comparative analysis of form and function is complex: different organisms may 

do similar things in different ways; no one kind of organism has all the structural 
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modifications that are associated with its habitat; and one kind of organism may have 

not one but several specializations (Bock & von Wahlert 1965; Hildebrand & Goslow 

2001). Additionally, organisms can have behaviours that cannot be discerned by the 

analysis of structure alone (e.g. Cypher, Murdoch, & Ralls 2004). Conversely, some 

organisms may fail to function in ways for which they seem to be structurally adapted 

(Swartz 1993; Hildebrand & Goslow 2001). This often happens due to phylogenetic 

constraints, which are a result of the phylogenetic history a species or group of related 

species that make certain evolutionary pathways not likely to be followed (Ligon 1992; 

definition of phylogenetic constraint reviewed by McKitrick 1993). Although functions 

may be studied in isolation, it is the integration of all functions of a given form into a 

cohesive unit that serves the purpose of survival (Wolff 1991). 

 Nevertheless, determining the principal habits of a vertebrate from its structure 

is rarely difficult (Rubin & Lanyon 1982; Hildebrand & Goslow 2001; van der Meijden 

et al. 2012), and is often the only way to infer the ecological behaviours of a fossil 

species (e.g. Strait et al. 2009). The arrangement of cranial bones can be interpreted in 

terms of the stresses and strains acting in different directions (Benton 2005), and 

understanding the properties of bone as a biological tissue is thus key to understand the 

form and mechanical function of bone structures such as the cranium. 

 

 

1.2.3. Material Properties and Architecture of Bone 

 

 In vertebrate animals, the materials of the body that provide support and 

movement are bone, cartilage, muscle, tendon, and ligament (Rogers 1992; Hildebrand 

& Goslow 2001). Three important properties of living supporting tissues are not shared 

by any material available to an architect or an engineer: (1) they all grow without 

interruption of function; (2) they are capable of adjusting to circumstance; and (3) they 

are durable for an entire lifetime of use (Hildebrand & Goslow 2001). In this thesis, 

bone alone is the supporting material of interest.  

 Stress is force per unit area (Hildebrand & Goslow 2001; Kerr 2010). Biting on 

food exerts a stress on the teeth and jaws (Liem et al. 2001). Stress is expressed in 

kilograms per square centimetre, or Newtons per square metre, or Pascals. 

 Load is a general term referring to any force that is applied to a solid object 

(Hildebrand & Goslow 2001; Kerr 2010). It can be assessed quantitatively by 
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computing the sum of all forces and moments applied to that object (Boyd & Nigg 

2006). When any load is applied to an object, deformation occurs, meaning a change in 

length, volume, or angle (Hildebrand & Goslow 2001; see definitions of two kinds of 

deformation in Section 2.5). Deformations can be measured globally (of the object as a 

whole; O’Higgins et al. 2011, 2012; see also Section 2.5), but is more often measured 

using strains that describe deformations locally (at a particular point in the object). For 

a change in length, strain equals that change in length divided by the original length 

(Hildebrand & Goslow 2001; Truesdell & Noll 2004). Because strain is a ratio it has no 

units. However the vectors of principal strains at a point collectively describe changes in 

size and shape at that point. For materials with homogenous and isotropic material 

properties, strain is directly proportional to stress (Figure 1.1). Strain levels in stiff 

materials such as bone are typically measured in terms of microstrain (Shrive 2006). 

In mechanical terms, the application of a load results in stresses and strains in 

the structure, defined by the formulae: 

      

   σ = F/A       (1.6) 

 

   ϵ = ΔL/L0       (1.7) 

 

where σ is stress, F is force, A is area, ϵ is strain, ΔL is change in length, and L0 is the 

original length (Richmond et al. 2005). By convention, positive strain is stretching 

(tension), and negative strain is compression (Richmond et al. 2005; Figure 1.1).  

 

 

 

Figure 1.1. Load-deformation curve. Adapted from Hildebrand & Goslow (2001). 
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 Deformation may be permanent or temporary: the capacity of a material to 

return completely to its original shape after a load is removed is called elasticity 

(Hildebrand & Goslow 2001; Truesdell & Noll 2004). The ratio of stress to strain (the 

slope of the regression of strain on stress) is a measure of stiffness and is called the 

modulus of elasticity or Young’s modulus (Hildebrand & Goslow 2001; Kerr 2010; 

further discussed in Subsection 2.4.2). It has the same units as stress.  

Figure 1.2 exemplifies compression, tension, shear force, and torsion on a cat 

humerus. Compression is the application of pushing forces to different points on a 

material; tension, by contrast, is the application of pulling forces on a material; shearing 

forces are directed so as to displace layers of the material parallel to each other; and 

torsion is the twisting of a material due to an applied torque (Beer, Johnston, & DeWolf 

1992). As a matter of curiosity, fresh compact bone has compressive strength of 1330 to 

2100 kg/cm
2
, tensile strength of 620 to 1050 kg/cm

2
, and shear strength of 500 to 1176 

kg/cm
2
 (Hildebrand & Goslow 2001). 

 In order to save on weight, bulk, and metabolic requirements, the supportive 

elements of the body provide adequate strength with minimum material (Hildebrand & 

Goslow 2001). This principle is important when the focus of the analysis is the skeleton. 

Bones are not solid, but neither are they hollow. Cortical or compact bone is the solid, 

dense material comprising the walls of diaphyses and external surfaces of bones 

(reviewed by Boyd & Nigg 2006). Flat bones, such as the ones making the cranial vault, 

are made of two layers of cortical bone with trabecular bone (called diploe) in between 

(reviewed by Boyd & Nigg 2006). Trabecular, cancellous or spongy bone is formed by 

thin bony spicules and plates, called trabeculae, that have been observed to orient 

themselves primarily in the direction of the forces applied to the bone (Boyd & Nigg 

2006). Trabeculae are thus organized to withstand mechanical loads while minimizing 

the weight of the bone (Boyd & Nigg 2006).  

Bones can resist bending if the longer dimension is parallel to the load, as is 

exemplified by a beam supported only at the edges (Hildebrand & Goslow 2001). 

Beam-like bones withstand bending in one plane; hollow cylindrical bones withstand 

bending in several planes (Hildebrand & Goslow 2001). The mandible at the level of the 

teeth, for example, can be regarded as a bony beam turned on edge to the muscles acting 

on it (e.g. Smith 1978; Bucinell et al. 2010). The zygomatic arch has been regarded in 

the same way (e.g. Preuschoft et al. 1986; Herring et al. 1996), but this view has been 

recently disputed (Curtis et al. 2011) and the structure is now starting to be compared 

more to an arch than to a beam. Evidence suggests that the zygomatic arch bears 



31 

compressive forces, being stabilized during biting by the tensioning of the temporal 

fasciae opposing the pulling of the masseter muscle on the other direction (Curtis et al. 

2011). 

 Where several bones function as a unit in sustaining usual loads (such as in the 

cranium), trabeculae also traverse those bones as a unit (Hildebrand & Goslow 2001). 

Sutures and joints also play an important role in skeletal adaptation to load, mainly by 

modifying stresses (Jaslow 1990; Herring & Teng 2000; Hildebrand & Goslow 2001; 

Rafferty, Herring, & Marshall 2003; Herring 2008; Bright 2012). Bone can thus be 

adapted to load as a result of a repetitive, mechanical function. 

 

 

 

Figure 1.2. Major stresses shown on a cat humerus: compression, tension, shear force, 

and torsion. Stresses are shown by arrows and the resulting strains by deformation of 

the bone. Adapted from Liem et al. (2001).  

 

 

1.2.4. Functional Adaptation of Bone 

 

An animal inherits the transmissible, genetic form of its skeleton, but its detailed 

form is determined by its mechanical use (Hildebrand & Goslow 2001). Galileo Galilei 

(1638) was among the first to recognize the relation between mechanical forces and 

skeletal morphology (mentioned by Ruff 2008). Julius Wolff (1892) promulgated his 
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“law” that states that mechanical loading influences bone structure, meaning that bone 

is functionally adapted to its mechanical environment during life (Ruff 2008). Ruff 

(2008) suggests that the expression “bone functional adaptation” should be substituted 

for “Wolff’s law”. As mentioned before (Subsections 1.2.1 and 1.2.2), form is often 

hypothesised as the consequence of function, constrained by phylogeny. Particularly, 

skeletal form is perceived as a compromise between mechanics and other influences 

(Ruff, Holt, & Trinkaus 2006). Because bone can adapt to load, the skeleton preserves 

in its form the particular mechanical loadings to which it was subjected during the 

lifetime of an individual, allowing inferences about the behaviours that produced those 

loadings (Ruff 2008). The concept of adaptation on a population level is dealt with in 

Subsection 1.4.1. 

The configuration and thickness of bones and the patterns of their trabeculae are 

established only as the young animal moves about while growing, and they are modified 

if changes in the distribution of mass or in behaviour alter usual loads (Hildebrand & 

Goslow 2001). To understand how structural elements of the body are constructed for 

maximum effectiveness one has to consider the transmission of forces within solid 

objects. Any force applied to a solid object is opposed by an equal force in the opposite 

direction. Within that object, units of force have the same magnitude and direction as 

the externally applied forces: the path followed by those units of force as they pass 

along an object are called stress lines (Hildebrand & Goslow 2001; Currey 2002; 

Alexander 2005). Thorough discussion of stress lines is provided by Buckland-Wright 

(1978), following research on cat crania. 

Responses of bone to factors that generate adaptive tissue responses (namely 

exercise and disuse) are two (Currey 2002; Zernicke, Judex, & Lorincz 2006): bone can 

respond to stimuli by triggering (1) remodelling or (2) modelling events. In both, 

resorption of bone tissue is followed by subsequent bone formation which, in 

modelling, alters the shape and size of the bone structure, whereas in remodelling it 

does not (Bromage 1986; Bromage & Boyde 2008). 

Remodelling affects all surfaces of the bone, including the internal body of the 

bone (Currey 2002) but does not alter its form. It plays a role in maintaining stable 

blood calcium levels: calcium stored in bone is released into the blood stream if levels 

are too low, and captured into bone (or excreted) if levels are too high. This calcium 

shifting in and out of bones is ultimately what makes bone remodel and this plays a role 

in maintaining skeletal mechanical integrity. Remodelling is responsible for all events 

that occur within the cortical bone (intracortical), and does not change the overall shape 
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of the particular bone (Zernicke et al. 2006). Functional adaptation of bone requires the 

remodelling of existing bone (Prendergast & Taylor 1994; Hildebrand & Goslow 2001). 

Since bone tissues are unavoidably linked to their mechanical, biochemical, and 

electrical environment they can modify their structure and composition in response to 

changes in their mechanical loading environment (Zernicke et al. 2006). When physical 

stimuli are increased through activity, bone can be removed from one place and 

deposited where it is most needed to accommodate the new loading levels. In contrast, 

when no loads are applied, bone can be reabsorbed as the skeleton adapts to the 

decreasing loading regime (Zernicke et al. 2006). 

Modelling acts exclusively on endosteal and periosteal surfaces, and therefore 

can change the shape (and size) of the bone. Bone can be added or removed from these 

surfaces, but bone resorption is not followed by formation on the same surface 

(Zernicke et al. 2006). Modelling is associated with changes during growth, while most 

changes happening after skeletal maturation are due to remodelling in response to 

mechanical usage (Zernicke et al. 2006). 

In spite of it all, heredity has been shown to be the principal determinant of bone 

mineral density, although half of its variance is influenced by other factors like physical 

exercise: in humans, the skeletal response to exercise varies with age and physiological 

status (competitive runners, Lane et al. 1986, Bemben et al. 2004; young adults, 

Friedlander et al. 1995; studies on pre-menarcheal girls, Morris et al. 1997; Forwood & 

Burr 1993 provide an earlier review of skeletal responses to exercise in humans). Bone 

mass gained during exercise is largely temporary and is lost quickly if the exercise 

programme is discontinued (Dalsky et al. 1988; Michel et al. 1991; Nordström et al. 

2005). It is generally understood that exercise effects are local and site-specific (e.g. 

running does not cause a change in the humerus; Zernicke et al. 2006), but Lieberman 

(1996) found that exercised pigs and armadillos, when compared to control individuals, 

had an increase in cortical bone thickness not only on the weight-supporting limb bones, 

but also in the cranial vault, particularly in the nuchal region (which is also stressed 

during running). 

Frost (1964, 1987) and Rubin (1984) proposed that bone attempts to keep strains 

within a narrow and beneficial range, rather than to minimize strains within its matrix. 

This has been supported by experimental data demonstrating that peak bone strains are 

similar in a variety of vertebrate species (buffalo, elephant, mouse, human, turkey), 

ranging from 2000 to 3500 microstrain (Rubin & Lanyon 1982; Burr et al. 1996): 

dynamic strain similarity (Rubin & Lanyon 1984). Removing mechanical stimuli results 
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in bone loss; recovery of bone does not occur as rapidly as loss of bone (Tuukkanen, 

Peng, & Väänänen 1994, in rats). Recovery of cortical bone takes longer than that of 

trabecular bone (Lane et al. 1996). 

Bone can only adapt to load if the application of that load is continuous or 

repetitive on a long-term basis. Such loads can be originated either from support or 

repetitive movement, which are regulated by the principles of biomechanics. 

 

 

1.2.5. Biomechanics of Support and Movement 

 

 Biomechanics is the science of applying the principles of mechanics to living 

systems (Hatze 1974; Liem et al. 2001; Alexander 2005), principles that are important 

when analysing musculo-skeletal systems, as is the case in this thesis with the 

masticatory system. It thus deals with forces acting on bodies and structures. 

 Mechanical force is an interaction between bodies that results in a change in 

motion of all the interacting bodies (Kerr 2010). Forces are vector quantities because 

they have a direction as well as a magnitude (Liem et al. 2001). The direction of the 

force is the vectorial component of a force, while the magnitude (amount, quantity, 

number) is the scalar component of a force (Kerr 2010). Forces can also cause a change 

in form of a body (Kerr 2010; see also Subsections 1.2.3 and 1.2.4). In musculo-skeletal 

systems forces are generated by the pulling of contracting muscles.  

Muscles produce three types of contractions (Faulkner 2003; Kerr 2010): (1) 

concentric contraction, muscle shortening; (2) eccentric contraction, muscle lengthening 

while tense; or (3) static or isometric contraction, remaining at the same length while 

tense. Muscles always pull, never push, on bone, and they can only produce one type of 

contraction at a time (Kerr 2010). The point of application (expressed by Cartesian 

coordinates) of a muscle force is the point where the muscle force is applied, which is 

the tendinous attachments on the bone (Osborn 1995; Kerr 2010). An important 

mechanical feature of the force generated by most skeletal muscles is that it is applied at 

a distance from the centre of a joint (fulcrum, or hinge); this creates moment or torque 

(Ross 2008; Kerr 2010). The magnitude of the moment is the product of the applied 

force and its perpendicular distance from the fulcrum (this distance also known as the 

moment or the lever arm): Moment = force (N) × lever arm (m) (levers in the musculo-

skeletal system are reviewed by Kerr 2010). The magnitude of the pull corresponds, in 
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general, to the size of the muscle, i.e., its physiological cross-sectional area (Patel et al. 

2002; Taylor & Vinyard 2004; Kerr 2010; Myatt et al. 2012), which is discussed 

thoroughly in Chapter 5. 

If forces are the interaction between bodies and can influence their form, the size 

of those bodies must also play a role. A final consideration in this Section 1.2 refers to 

the relationship between form, function and size and how scaling has been measured 

and described in relation to animal morphology. 

 

 

1.2.6. Form, Function and Size 

 

 Size has a deep influence on form and function. One reason is that surface and 

volume do not increase linearly when dimensions increase. Scaling is then defined as 

the relationship between body proportions and body size among related and similarly 

shaped organisms (Thompson 1942; Gould 1966; Hildebrand & Goslow 2001). When 

growth results in no change in proportions it is said to be isometric: the large animal has 

exactly the same proportions as the small animal (Gould 1966; Hildebrand & Goslow 

2001; Liem et al. 2001). In most animal lineages, however, growth is constrained by 

developmental processes and mechanisms, by form and by function, and is not 

isometric; it is said to be allometric (Gould 1966; Hildebrand & Goslow 2001). 

Allometry is the study of the association between form and size (Hildebrand & Goslow 

2001). Allometry relates to both ontogeny and phylogeny and is an important concept in 

relation to structure since it is considered to be of adaptive value (Cheverud 1982; 

Klingenberg 1998; Hildebrand & Goslow 2001; Mitteroecker et al. 2004; Leigh 2006). 

The allometric equation y = bx
a
 gives an adequate line of best fit (regression) that 

represents the relationship between dimensions of two structures of the same animal 

body (Gould 1966; Hildebrand & Goslow 2001), where the intercept is zero in both 

dimensions. The parameter b changes the slope of the line; x and y are the linear 

measurements; and a is the exponent slope of the line. 

 The selective advantages of a large size are (1) decreased predation probability; 

(2) the ability to roam over large areas in search of water, food, shelter, or breeding 

areas; (3) generating and using energy relatively more slowly so relatively little food is 

required per unit of body weight; and (4) a low surface-to-volume ratio enables the 

animal to store heat more effectively (Hildebrand & Goslow 2001; Fernandez-Duque 
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2011; Cowgill et al. 2012). But still more food is needed to fuel a bigger size, which is 

costly for the animal. This means that there is a trade-off between size and function: an 

animal can only grow in size as much as it can support such a metabolism, meaning that 

the energy of fitness gains of a larger size must be higher than the energy or fitness cost 

of maintaining a larger size. The necessary trade-off between overall size and the 

required energy intake to maintain it might have an impact on cranial form, particularly 

at the food processing stage. 

 In papionins, differences in body size among species are apparent and related to 

differences in cranial form (Ravosa 1990), and the way the cranium behaves 

mechanically during food processing. Section 1.3 discusses aspects of papionin biology 

such as evolution, ecology, diet and anatomy, which are important for an understanding 

of their cranial evolution and adaptation to feeding, later to be analysed in this thesis. 

 

 

 

1.3. Papionin Biology 

 

 Papionin monkeys have been extensively used for testing many biomechanical 

hypotheses (e.g. Hylander 1975; Oyen, Walker, & Rice 1979; Ravosa 1991a; b; Ravosa 

& Profant 2000), particularly because they have physiological, ecological, cultural and 

evolutionary connections with humans. For example, since the early 1960s papionins 

have been considered an especially useful system for modelling human evolution 

(reviewed by Cachel 2006). Jolly (2001) proposes that analogies between early hominin 

evolution and papionin evolution can be made that are more useful than analogies with 

the great apes. In terms of diet, papionins are less specialized than apes, and that could 

explain why they survived the climatic changes that drastically reduced hominoid 

diversity, 15-20 million years ago (Fleagle 1999; molecular data suggest that hominoids 

and cercopithecoids diverged around 23–30 million years ago, Steiper, Young, & 

Sukarna 2004; a recently found fossil corroborates a divergence at 25.2 million years 

ago, Stevens et al. 2013). Papionin dietary habits range from marked specialization to 

generalist feeding; their cranial form is also diverse enough to allow for speculation 

about its adaptive history, particularly whether diet (through masticatory function) did 

play or, better still, is playing a role in the evolution and mechanical performance of the 

papionin cranium. 
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 In the following subsections, a review of aspects of papionin biology is 

provided, including papionin evolution and classification, distribution and ecology, diet 

and feeding strategies, cranial form and anatomy, and masticatory muscle anatomy. 

 

 

1.3.1. Papionin Evolution and Classification 

 

 The earliest fossil findings attributed to the Superfamily Cercopithecoidea are 

dated from 19 to 12.5 million years ago (Benefit & McCrossin 2002). They were found 

in the African deposits of Wadi Moghara, Egypt, a faunal deposit of early Miocene 

mammals known since the 19
th

 century (Miller 1999). They are currently classified as 

members of the Family Victoriapithecidae, sister taxon to the Family Cercopithecidae, 

incuding two genera, Victoriapithecus and Prohylobates (Leakey 1985). They are 

described as having a Macaca-like cranium with a long and low calvarium and 

moderately long snout (Benefit & McCrossin 2002). 

 In the middle Miocene, cercopithecoids seem to have been a well-established 

group, although not a taxonomically diverse one, but in the late Miocene and Plio-

Pleistocene a radiation of the Family Cercopithecidae can be seen in the fossil record 

(Foley 1993). The recency of this radiation obscures the clear demarcation of extant 

species into subgroups since they did not have a long, independent branch evolution 

(Jablonski 2002). There are, nevertheless, several proposed divisions of the family into 

subfamilies and tribes using varying criteria (e.g. Jolly 1966, 1970; Fleagle 1999). One 

such subgroup is the Tribe Papionini. 

 Extant members of the Tribe Papionini are classified in 7 genera (see Appendix 

A for a complete taxonomy of extant papionins within the Order Primates). Phenetic 

classifications based on morphological characters have traditionally clustered the large-

bodied and long-faced genera, Mandrillus and Papio (Delson 1975, 1993; Groves 1978) 

together, and the small-bodied and short-faced genera, Cercocebus and Lophocebus, 

also together (even in the same genus, Cercocebus; Delson 1975), while outgrouping 

the small-bodied genus Macaca and the large-bodied genus Theropithecus (Jolly 1966; 

Delson 1975). Szalay and Delson (1979) later understood that the genus Macaca was 

the sister group of the rest of the papionins, and that Theropithecus was in fact closer to 

Papio and only functionally different from it. Recently, Gilbert (2007, 2008) rejected 
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the taxonomic separation of papionins into short-faced and long-faced genera on the 

grounds of cranio-mandibular morphology alone. 

Recent molecular cladistic classifications (Disotell, Honeycutt, & Ruvolo 1992; 

Disotell 1994, 1996; Harris & Disotell 1998; Harris 2000; Tosi et al. 2003; Zinner et al. 

2012) helped to clarify the intergeneric relationships within the Tribe Papionini. The 

consensus molecular phylogeny groups the genera Papio, Lophocebus and 

Theropithecus together, in a yet unresolved trichotomy, while grouping the genera 

Mandrillus and Cercocebus as sister taxa, and Macaca as an outgroup (Figure 1.3). This 

will be the phylogenetic tree used throughout this thesis as a framework assumption for 

every analysis. 

 

 

 

Figure 1.3. Consensus phylogenetic tree of the papionin monkeys as resulting from 

molecular cladistic analyses, showing male crania of the 7 species used in this study.  
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Goodman et al. (1998) go so far as to place Mandrillus in the genus Cercocebus, 

calculating its separation from the main branch as having happened only 4 million years 

ago; these authors claim the same time of separation for Theropithecus and Papio, with 

a similar classification of Theropithecus under genus Papio. A few cases of 

interbreeding have indeed been observed between Theropithecus gelada and Papio 

species (anubis and hamadryas), but these are considered to be infrequent (Jolly et al. 

1997). Papio species, on the other hand, are known to interbreed producing fertile 

offspring in border regions, where the geographic range of one species overlaps with 

another: in the so-called hybrid zones (Groves 2001; Dunn 2011). This has brought 

some authors (Thorington & Groves 1970; Groves 2001, p. 237) to the suggestion that 

Papio species should in fact be considered subspecies, unifying all or most into the 

species Papio hamadryas. This view, however, is not yet widespread. Conversely, 

doubts about the monophyly of Macaca as a genus have been raised (Groves 1989), but 

were dismissed after molecular studies (Morales & Melnick 1998; Tosi, Morales, & 

Melnick 2000; Tosi et al. 2003). Nevertheless, the genus is frequently divided into four 

species-groups for pragmatic purposes (see Groves 2001 for the distinctions among 

them and the rationale for this division). Macaca is a very old genus, having separated 

from the other papionins about 7 million years ago (Stewart & Disotell 1998).  

There are 5 species of Papio, 23 of Macaca, 2 of Mandrillus, 3 of Lophocebus, 6 

of Cercocebus, and a single species of Theropithecus (Groves 2001). This makes 40 

species attributed to the Tribe Papionini, plus the recently classified single species (R. 

kipunji, Jones et al. 2005) belonging to the genus Rungwecebus (Davenport et al. 2006). 

Rungwecebus is a disputed genus: it was created based on two sightings in Africa, in 

2003 and 2004, but it is thought to be a hybrid between Papio and Lophocebus. Should 

it be confirmed as a new sister genus, it should be included in their phylogenetic group. 

In the next subsection, papionin geographic distribution and habitat ecology is 

shown before turning to a detailed account of the diet and feeding habits of the species 

used in this thesis. 

 

 

1.3.2. Papionin Distribution and Ecology 

 

Papionin monkeys are mostly African species. The exception is the genus 

Macaca, which has a much wider distribution, from North Africa to Southeast Asia, 
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with a small population of the North African species M. sylvanus living in Gibraltar 

(Europe); the genus Papio also occurs outside Africa in Southern Arabia (IUCN 2011). 

They occur in a range of habitats from tropical rainforest to desert savannah. 

Genera Cercocebus, Lophocebus, Mandrillus, and Rungwecebus are rainforest dwellers, 

(IUCN 2011). Of interest for this study are the species Cercocebus torquatus which 

occurs along the West African coast from West Nigeria to Sette Camma on the Gabon 

coast; Lophocebus albigena which occurs from Southern Cameroon, inland to the 

Oubangui, and South into Gabon; and Mandrillus sphinx which occurs between the 

River Sanga in Cameroon and the River Kouilou in Congo (Groves 2001). Even though 

the habitat of M. sphinx is rainforest, it is basically a terrestrial species (Hoshino 1985).  

 

 

 

Figure 1.4. Geographic distribution of the papionin species used in this study. Blue, 

Cercocebus torquatus; yellow, Lophocebus albigena; brown, Macaca fascicularis; 

purple, Mandrillus sphinx; red, Papio anubis; orange, Papio hamadryas; and green, 

Theropithecus gelada. Data taken from IUCN (2011).  
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The genera Papio and Theropithecus include savannah dwelling animals (IUCN 

2011). Papio hamadryas occurs in the arid zone of northern Ethiopian lowlands, 

eastwards into Northern Somalia, with populations across the Red Sea in the Southern 

tip of the Arabian Peninsula (Groves 2001; IUCN 2011). The geographic range of Papio 

anubis is spread longitudinally from Southern Mali and East Guinea-Conakry to 

Ethiopia, Kenya and North Tanzania, with population patches on the Sahara Desert 

(IUCN 2011). Theropithecus gelada occurs in high grasslands in Tigre, Begemdir, 

Wolle, and Shoa Provinces of Ethiopia (Groves 2001).  

The genus Macaca is the most diverse of all genera, occurring in forest, 

savannah and other habitats; Macaca fascicularis, the macaque species of interest for 

this thesis, occurs in Southeast Asia, from coastal Myanmar, southwards to the Lesser 

Sunda Islands of Indonesia and Timor-Leste, and eastwards to South Vietnam and the 

Philippines, mostly in rainforest (IUCN 2011). 

Figure 1.4 shows the geographic distribution of the papionin species considered 

in this study. Ocasionally, P. anubis and T. gelada are sympatric in some areas and can 

interbreed (Jolly et al. 1997), yet present niche separation (Dunbar & Dunbar 1974a). P. 

hamadryas occupies semi-desert habitats, too arid for other papionin species (Dunbar & 

Dunbar 1974b). As mentioned before, overlaping areas where Papio species interbreed 

are called hybrid zones (Groves 2001; Dunn 2011).  

 

 

1.3.3. Papionin Diets and Feeding Strategies 

  

Papionins show considerable dietary variation among genera and even among 

species within a single genus. While a description of the dietary intake of every species 

in the Tribe Papionini is superfluous here, a detailed review of the diet and feeding 

strategies of species sampled for this thesis is necessary. 

Primate diets can be categorized as primary and secondary (Fitton 2007). Food 

items consumed throughout the year and considered the most important part of the diet 

are called the primary diet. Food items available to eat during seasons of the year when 

primary food resources are scarce are called secondary foods or fallback foods 

(Marshall & Wrangham 2007; Marshall et al. 2009). These, although not much 

consumed throughout the year even if available, may be the most critical food items in 

the whole diet: the opportunity (and ability) of an individual to consume them may be 
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the key to its survival into the next primary food abundance season (Fitton 2007). 

Fallback foods are at least as likely to exert a strong selective pressure on cranial form 

as primary foods. 

The species Cercocebus torquatus feeds on fruits and seeds (Jones & Sabater Pi 

1968; Mitani 1991; Wieczkowski 2009), and also on young leaves, shoots, flowers, 

gum, and insects (Mitani 1989). Cercocebus is strongly dependent on fruits (60 to 80% 

of their diet; Mitani 1989) and is known for regularly consuming extremely hard nuts 

and seeds found on the forest floor. Discarding of seeds (spitting seeds) is a rare 

occurrence (Wieczkowski 2009). Interestingly, in Côte d’Ivoire, Cercocebus are most 

easily located by the loud sound of cracking nuts with their teeth (Fleagle & McGraw 

1999). Food items described by Wieczkowski (2009) include unripe fruit, ripe fruit, 

unripe seeds, ripe seeds, and dry seeds. The fruits included in its diet soften and the 

seeds harden as they ripen (Wieczkowski 2009). Cercocebus were recorded eating 

unripe and ripe seeds when they discarded the pulp from unripe and ripe fruit, 

respectively (Wieczkowski 2009). Not related to C. torquatus but interesting to note is 

that Shah (2003) found that C. agilis fed on harder diet items than did its sympatric 

species Lophocebus albigena. 

 Species of the genus Lophocebus have been observed eating hard items, 

especially seeds (Horn 1987; Lambert et al. 2004). Lambert et al. (2004) describe the 

species Lophocebus albigena as a hard object consumer, just like Cercocebus. 

Nevertheless they found L. albigena eats a wide variety of diet items, including a high 

percentage of soft ripe fruit in its annual diet (Lambert et al. 2004). Fruit makes up to 

33% of its diet, and seeds up to 29% (Poulsen, Clark, & Smith 2001). Ham (1994, cited 

in Tutin et al. 1997) found the following numbers: 24% fruits, 41.4% seeds, 4.5% 

leaves, 1.6% pith, 3.3% flowers, and 25.3% animal matter. Poulsen, Clark and Smith 

(2001) also consider L. albigena as a largely frugivorous animal (plant species 

consumption correlating with their fruit production), yet eating a wide range of other 

plant foods such as seeds, leaves and flowers. It relies mostly on the latter two during 

the season with less fruit abundance, a period where the diversity of food items 

consumed increases (Poulsen et al. 2001). As mentioned above, L. albigena is found to 

feed on less hard items than its sympatric species C. agilis (Shah 2003). It also 

frequently searches for invertebrate prey, especially ants, ant larvae, and caterpillars 

(Poulsen et al. 2001). 

Yeager (1996) considers Macaca fascicularis as primarily frugivorous, fruits 

occupying 66.7% of diet. Yet it is omnivorous in also consuming leaves (17.2%), 
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flowers (8.9%), insects (4.1%), and other foods, such as seeds and even bark, as primary 

diet (Yeager 1996). It eats insects, stems, leaves, and dipterocarp seeds as fallback foods 

during periods and in regions where no fruits are available (Berenstain 1986). While 

having the ability to exploit a variety of food sources during periods of food scarcity, M. 

fascicularis appears to be highly selective: if fruits are available, they are readily 

preferred over other foods (Ungar 1995; Yeager 1996). Corlett and Lucas (1990) even 

go so far as to say the species omnivory is imposed by geographical food availability, 

rather than by food choice. This species has been observed fishing, but this foraging 

behaviour is considered to be rare (Stewart et al. 2008). Even if not very often, it eats 

crabs (Swindler 2002), hence it being called the “crab-eating macaque,” and has been 

observed using stone tools to open nuts, oysters, other bivalves, and various types of sea 

snails (Gumert, Kluck, & Malaivijitnond 2009). 

The genus Mandrillus is known to eat hard seeds, like its sister taxon 

Cercocebus (Rogers et al. 1996; Fleagle & McGraw 1999). Both genera can be said to 

be omnivorous with a high percentage of fruit in their diet (Astaras, Mühlenberg, & 

Waltert 2008). Mandrillus eats food that naturally falls to the ground (Norris 1988). The 

study group described by Norris (1988) obtained most of their food (mostly fruit and 

seeds) from the ground. Once the fruit fell, generally into water, it remained there for 

several days where it softened, and Mandrillus readily ate it (Norris 1988). Yet, the 

seasonal availability of many of these arboreal foods needs to be stressed (Norris 1988). 

Folivory is a relatively small part of their diet (Norris 1988). Mandrillus feeds on fallen 

seeds and monocotyledonous plant leaves more frequently in the minor fruiting season 

than in the major fruiting season (Hoshino 1985; Astaras et al. 2011). Still, seeds are the 

most frequently consumed food item, especially the ones from Sacoglottis gabonensis, a 

large tree which characterizes the forest in Campo Animal Reserve, Cameroon (Hoshino 

1985). Individuals in Hoshino (1985) study field ate the pulp of S. gabonensis, which 

was observed to be their most important food from August to October. Hard nuts and 

seeds that can lay on the forest floor without decomposing are the major food sources of 

Mandrillus sphinx in Cameroon during the dry season when fruits are scarce (Fleagle & 

McGraw 1999). Crushed seeds were found frequently in the faeces of M. sphinx 

(Hoshino 1985). The same type of forest utilization and feeding has been reported for 

the congeneric species M. leucophaeus (Gartlan & Struhsaker 1972; Astaras et al. 

2008). Lahm (1986) lists the stomach contents of M. sphinx as fruits, seeds, 

invertebrates, bark, leaves, stems, residual proportions of fibre, and some earth and 

fungi. Lahm (1986) also found that the kernel of the nut-like fruit Coula edulis is 
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consumed, but the hard covering is discarded, and that while small and medium-sized 

fruits with abundant small seeds were usually consumed whole; apparently, ripe fruits 

are mostly preferred. The majority of identified fruit species (88%) were small to 

medium-sized (Lahm 1986). Tutin et al. (1997) found that in Lope Reserve, Gabon, the 

diet of the M. sphinx was composed of 46.7% fruits, 34.4% seeds, 5.7% leaves, 5.7% 

pith, 0.8% flowers, 4.9% animals, and 1.6% other. 

 Most Papio species are generalist omnivores with seasonal and regional 

variations in diet (Norris 1988; Hill & Dunbar 2002). P. anubis primarily forages on the 

ground (Aldrich-Blake et al. 1971; Rowe 1996) and feeds on grass, tubers, bulbs, 

corms, rhizomes, flowers, fruit, leaves, seeds, and tree gum (Aldrich-Blake et al. 1971; 

Harding 1976). It supplements its diet with meat and other animal matter (Melnick & 

Pearl 1987). It preys opportunistically on Chlorocebus aethiops, infant gazelles, hares 

(Rowe 1996), and is known to eat dead birds, insects and other invertebrates, and eggs 

(Aldrich-Blake et al. 1971). Dunbar and Dunbar (1974a) found that P. anubis diet 

comprises 54.9% fruits and seeds, 32% leaves, 7.5% flowers, 2.7% insects, 1.7% roots 

and bulbs, and 0.7% bark. Young leaves, fruits and flowers are consumed during the 

rainy season, while roots and tubers are an important food source during the dry season 

(Barton & Whiten 1993). 

 P. hamadryas eats mainly dry leaves, flowers, beans, and berries from the plant 

genera Acacia, Dobera, and Grewia (Stammbach 1987). Grass seeds and Acacia 

flowers seem to be its preferred food during the rainy season, complementing its diet 

with dug-out roots and tubers (Stammbach 1987). Swedell (2002) found that the main 

food items eaten during the whole year were the nuts of doum palm trees (Hyphaene 

thebaica) and the leaves, flowers, pods and seeds of Acacia senegal and A. mellifera, as 

well as grass seeds, blades and flowers, A. nubica leaves and seeds, Grewia tenax 

berries, grass roots, A. tortilis seeds, and sap from A. senegal. Schreier (2010) 

observations seem to corroborate the previous ones: palm forest P. hamadryas at Filoha, 

Ethiopia, fed most frequently on the seeds, leaves and flowers of A. senegal (23.5%) 

and doum palm fruit (H. thebaica; 21.2%). The flowers, leaves and seeds of Tribulus 

cistoides comprised at least 10.1% of its feeding budget, and no other plant species 

contributed more than 8% of the feeding budget (Schreier 2010). Hill and Dunbar 

(2002) calculated from the literature a diet comprised of 45% fruits, 28% leaves, and 

22% flowers for P. hamadryas. Wieczkowski (2009) found that members of the genus 

Papio do not appear to discard fruit pulp to feed on unripe and ripe seeds like 
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Cercocebus and Lophocebus do. Swedell (2002) also observed P. hamadryas adult 

individuals eating hares on three occasions. 

Theropithecus gelada is unique in being an almost exclusive graminivore: it 

feeds on grass (Dunbar & Dunbar 1974a; Iwamoto 1979). Individual T. gelada grazes 

sitting upright and plucking grass blades and seeds from the ground using their hands 

(Dunbar & Dunbar 1974a), not using their teeth in grazing, like other animals. Grass 

blades constitute 96.9% of its diet (Dunbar & Dunbar 1974a), especially grasses of the 

species Danthonia subulata, Festuca abyssinica, and Poa simensis (Iwamoto 1979). It 

complements its diet with stems, roots, flowers, seeds, tubers, and rhizomes from herbs, 

trees, and shrubs, and was also observed eating insects (Iwamoto 1979). Because this 

diet is of low nutritional value, T. gelada spends a significant portion of the day feeding 

and foraging, from 50 to 75% of the day (Iwamoto & Dunbar 1983), and even up to 

79.9% (Kawai & Iwamoto 1979). 

  

 

Table 1.1 Dietary categorization of papionin species used in this study 

Species Predominant Foods (%) Dietary Categories 

Cercocebus torquatus fruits (60-80%) Frugivory, Durophagy 

Lophocebus albigena 
fruits (33%) 

seeds (29%) 
Frugivory, Durophagy 

Macaca fascicularis 

fruits and seeds (66.7%) 

leaves (17.2%) 

flowers (8.9%) 

Frugivory, Omnivory 

Mandrillus sphinx 
fruits (46.7%) 

seeds (34.4%) 
Frugivory, Durophagy 

Papio anubis 

fruits and seeds (54.9%) 

leaves (32%) 

flowers (7.5%) 

Frugivory, Omnivory 

Papio hamadryas 

fruits and seeds (45%) 

leaves (28%) 

flowers (22%) 

Folivory, Omnivory 

Theropithecus gelada grass (96.9%) Graminivory 
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The dietary and feeding habits of the genus Rungwecebus are little known and, 

since the genus will not be part of the study sample, this will not be dealt with here. 

Table 1.1 summarises the percentage of predominant food and the attributed dietary 

categories of each of the above mentioned species. To understand how these different 

types of diet impacted on the adaptation of the cranium, first the cranial anatomy has to 

be known. Descriptions of papionin cranium and muscle anatomy follow next. 

 

 

1.3.4. Papionin Anatomical Terminology 

 

A brief technical note is useful before advancing to description of papionin 

cranial form and anatomy. When needed, terms describing the relative position and 

orientation of skeletal structures throughout this thesis follow Hillson (1992) and 

Fleagle (1999). The median sagittal plane is the imaginary plane that divides the 

skeleton into two equal halves, left and right. As Hillson (1992) writes, every bone has 

six surfaces that can be described as medial (facing towards the median sagittal plane), 

lateral (facing away from the median sagittal plane), cranial or proximal (facing 

towards the front of the skull), caudal or distal (facing towards the tip of the tail), 

dorsal (facing towards the dorsum), and ventral (facing towards the belly). The cranium 

is described as anterior (to the front of the cranium), posterior (to the back of the 

cranium), lateral (either side, right or left), superior (upper part) and inferior (lower 

part). Terms describing more than one surface or their orientation are eventually used, 

for example, disto-medial, which describes a distal position on the medial plane.  

 Body movement is described as flexion (in general, two parts of the body 

moving towards each other), opposing extension (two parts of the same body moving 

away from each other); protraction (a structure moving forward), opposing retraction (a 

structure moving backwards); abduction (movement away from the midline), opposing 

adduction (movement toward the midline) (Liem et al. 2001). Movement direction is 

described in terms of orientation, for example, a muscle can pull infero-superiorly, 

meaning a movement from the lower part to the upper part, or even in a direction as 

complicated as inferoanterior-superoposterior, meaning a pull from the lower part of the 

front to the upper part of the back.  
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1.3.5. Papionin Cranial Form and Anatomy 

 

The papionin skull, like any other mammalian skull, is exceedingly variable with 

regard to strength and proportions, and yet very conservative with regard to the basic 

plan of a vault containing the brain and a face containing most of the sensory organs and 

feeding organs (Hildebrand & Goslow 2001). Figure 1.5 shows a depiction of the skull 

of an adult male papionin specimen representing genus Papio. The skull can be said to 

consist of two parts, the mandible (jaw bone) and the cranium (braincase and face) 

(White, Black, & Folkens 2012). This thesis will be concerned with the cranium only. 

As with all other vertebrates, the cranium of papionins protects and supports the brain 

and the sense organs, and is also used in food gathering and processing (De Iuliis & 

Pulerà 2011). The facial region, or splanchnocranium (Fleagle 1999), includes the nose, 

orbits, and upper jaw, while the calvarium (White et al. 2012) includes the braincase 

(neurocranium) and ear (De Iuliis & Pulerà 2011), thus excluding the face. 

 The adult papionin cranium, as any typical primate cranium, has 27 bones 

(including the ear bones, excluding the mandible) plus occasional sutural bones, which 

are irregular ossicles occurring along sutures (White et al. 2012). The calvarium is made 

up of the frontal (os frontale), occipital (os occipitale), sphenoid (os sphenoidale) and 

the paired parietal (os parietale) and temporal (os temporale), as seen in Figure 1.5 

(Fleagle 1999; White et al. 2012). On the external surface of the side wall of the 

cranium, papionins (and all catarrhines) have the frontal bone contacting the sphenoid 

bone, thus separating the zygomatic bone anteriorly from the parietal bone posteriorly 

(Fleagle 1999). The auditory region shows a tubular external auditory meatus (meatus 

acusticus externus, Figure 1.5), formed by the laterally extending tympanic bone 

(Fleagle 1999). On either side of the cranium, dorsal to the posterior teeth, are the 

orbits, and posterior to each orbit there is the temporal fossa, where the temporal 

muscle takes part of its origin (De Iuliis & Pulerà 2011). The temporal fossa evolved 

from a depressed region on the early synapsid cranium (MacLean 1990), that is why it 

is called a fossa despite having a convex floor in most mammals (including Primates). 

Infero-lateral to the orbits there is the zygomatic arch (arcus zygomaticus, Figure 1.5), 

formed by the jugal or zygomatic bone (os zygomaticum, Figure 1.5) and the temporal 

bone (De Iuliis & Pulerà 2011). Inferiorly, on the basicranium, the sphenoid bone forms 

thin pterygoid plates (not shown in Figure 1.5), where the pterygoid muscles attach (De 

Iuliis & Pulerà 2011). The nasal region consists of a large nasal chamber, in part filled 

by delicate scrolls of bone, the turbinates or conchae, which are outgrowths from the 
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inside walls of the maxillae, nasals, and ethmoids (Hildebrand & Goslow 2001). They 

are interpreted as an adaptation to endothermy, serving to warm, humidify and clean 

inspired air before it goes into the lungs (Hildebrand & Goslow 2001). The interorbital 

region is narrow, and the lacrimal canal is formed by both the maxillary and the lacrimal 

bones (Fleagle 1999). 

 

 

 

Figure 1.5. Representation of the skull of an adult male Papio sp. shown in lateral view. 

Adapted from Swindler & Wood 1973. See text for more details.  

 

 

 Primates have generally 4 types of teeth: incisors, canines, premolars and 

molars. Papionins have 2 incisors, 1 canine, 2 premolars and 3 molars per quadrant 

(Figure 1.5, dental formula 2.1.2.3/2.1.2.3; Fleagle 1999). The molar teeth in papionins 

are specialized, with the anterior two cusps and the posterior two cusps aligned to form 

two ridges, or lophs (Fleagle 1999). The canines are dagger-like, but smaller in females 

than in males, and sharpened by a narrow anterior lower premolar (Fleagle 1999). Broad 

incisors and molars with high crowns and relatively low cusps are generally found in 

frugivores and thus considered dietary adaptations to eating fruit (Fleagle 1999). Pirie 

(1978) found that tooth area may in part be related to the amount of food ingested, 

having found relatively large molars in leaf-eating primates, and in the grass-eating 
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Theropithecus; relatively small molars in insectivore primates and in one frugivore 

(Ateles). She suggested that the amount of mastication required to break down the 

preferred food is one factor in determining the most adaptive tooth size. Additionally, 

allometric analysis of primate post-canine dentition has revealed that there is a 

remarkably close correlation between tooth size and body size and very slight deviations 

from this general trend seem to relate closely to known dietary preferences (Pirie 1978). 

Nevertheless, she posits that the amount of mastication required by the preferred food 

item may be more important in determining the adaptive value of tooth size than the 

specific type of food eaten (Pirie 1978). 

 As for the particular differences in cranial anatomy among the papionin species 

sampled for this study, according to Groves (2001) the only real morphological 

similarity between Cercocebus and Lophocebus is the depth of the suborbital fossae, 

which is thought to be convergent as a result of facial shortening. Groves (1978) 

summarizes the differences between the genera Lophocebus and Cercocebus, and was 

the first to separate the two groups at the genus level. Mandrillus is a long-faced species 

like Papio, but its cranium is distinguished from the latter genus by its paranasal ridges, 

combination of large incisors and relatively small postcanine teeth, posteriorly 

convergent tooth rows, shelflike superior temporal lines overlying the origins of the 

temporal muscle (Groves 2001). Theropithecus can be differentiated from Papio by 

small incisors and larger, high-crowned postcanine teeth with accessory cusps and much 

reduced molar flare, and relatively shorter but deep face (Groves 2001). 

 

 

1.3.6. Papionin Masticatory Muscle Anatomy 

 

 Of the three muscle types found in primates and other mammals (non-striated, 

skeletal, and cardiac), biomechanics is mostly concerned with skeletal muscle that is not 

controlled by the autonomic nervous system but is under direct voluntary control 

(Herzog 2006). The mammalian head has a large number of specialized muscles, but 

only four paired muscles are involved in mastication (Rogers 1992; Snell 1995), 

attaching the mandible to the base of the cranium. These might have played a role in the 

biomechanical performance and the adaptive evolution of the cranium. They are jointly 

called adductors of the mandible (Hildebrand & Goslow 2001), and in primates and 

other mammals they are individually named temporal, masseter, medial pterygoid, and 
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lateral pterygoid muscles. Figure 1.6 shows a depiction of the masticatory muscle 

anatomy of an adult male specimen of the genus Papio sp. 

The fan-shaped temporal muscle (musculus temporalis), with its posterior fibres 

running almost horizontally forward and the anterior fibres running vertically 

downwards (Rogers 1992), originates on the braincase and sagittal crest, when it exists 

(Hildebrand & Goslow 2001). It runs from the lateral surface of the cranium (temporal 

fossa) between the superior and inferior temporal lines, and from the strong fascia 

which covers its superficial surface (Figure 1.6). Its fibres converge on both the outside 

and inside of the coronoid process of the mandible, passing deep to the zygomatic arch 

(Rogers 1992; Hildebrand & Goslow 2001). The deep portion of the temporal, attaching 

the sphenoid to the mandible, was recognized as a separate muscle, musculus 

sphenomandibularis (Dunn et al. 1996), but that has been refuted on the grounds that it 

is simply the deep portion of temporal (Türp, Cowley, & Stohler 1997). The temporal 

closes the jaw (Hildebrand & Goslow 2001).  

 

 

 

Figure 1.6. Masticatory muscle anatomy of an adult male Papio sp. shown in lateral 

view. Adapted from Swindler & Wood 1973. See text for more details.  
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The rectangular masseter muscle (musculus masseter) is attached to the 

zygomatic arch, its fibres running downwards and slightly posteriorly to insert on the 

lateral surface of the ramus, from the base of the coronoid process down to the gonial 

angle of the mandible (Rogers 1992; Hildebrand & Goslow 2001). It can be 

differentiated into a superficial portion and deep portion (Swindler & Wood 1973). 

Masseter is thought to have evolved from a portion of the temporal, while both of these 

muscles evolved from the musculus adductor mandibulae that existed in basal synapsids 

(Liem et al. 2001). This anatomical change during evolution increased bite force and 

allowed control over the movements of the mandible needed to position the teeth for 

cutting and masticating food (Liem et al. 2001). The masseter also closes the jaw 

(Hildebrand & Goslow 2001). 

 The medial pterygoid muscle (musculus pterygoideus medialis) runs from the 

medial side of the lateral pterygoid plate (Rogers 1992). In humans a superficial slip 

arises from the maxillary tuberosity, a rounded projection behind the third upper molar 

tooth. Both parts pass downwards, posteriorly and laterally to insert into the deep 

surface of the mandible, in the roughened area near the gonial angle of the mandible 

(Rogers 1992). The lateral pterygoid muscle (musculus pterygoideus lateralis) also has 

two parts: the larger, inferior part arises from the lateral side of the lateral pterygoid 

plate; the superior part arises from the inferior surface of the greater wing of the 

sphenoid. Both pass almost horizontally backwards to insert into the anterior surface of 

the disc of the temporo-mandibular joint and into the neck of the mandible. The lower 

part lies between the two parts of the medial pterygoid muscle (Rogers 1992). Both 

types of pterygoid close the jaw and pull it medially (Hildebrand & Goslow 2001). 

 More detailed descriptions and illustrations of the anatomy of masticatory 

muscles in papionins can be found in Chapter 5 (Section 5.1). In the next section, 

several issues related to papionin adaptation to masticatory function that contribute for 

its better understanding are discussed, as well as some functional hypotheses about 

papionin cranial biomechanics.  
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1.4. Adaptations to Diet and Cranial Form Evolution 

 

Changes in the form of the cranium can often be understood in terms of 

adaptation to achieve a stronger bite at the front of the mouth, or to perform an efficient 

grinding system at the back or the mouth, or to other types of feeding (Benton 2005). 

The different cranial forms observed among papionins could mean (if neutral evolution 

is excluded) that each species has adapted to different masticatory performance. 

This section (1.4) reviews issues concerning papionin cranial adaptation to 

feeding, starting with the concept of adaptation (and adaptations, which are slightly 

different), moving on to physical properties of food items, a description of papionin 

adaptations to feeding, and finally some functional hypotheses about papionin 

adaptations to feeding. 

 

 

1.4.1. Concept of Adaptation 

 

Section 1.2.4 describes how bone can functionally adapt under mechanical loads 

during the lifetime of an individual. Yet, on a populational level, adaptation has been a 

widely discussed and controversial topic. Indeed, it is a highly complex concept in any 

field of biology. Primatologists, for instance, have generally paid little attention to the 

definition of adaptation and have used the term broadly as an equivalent of behaviour 

(Ross et al. 2002). Persistent questions about which there is disagreement include the 

very definition of adaptation (Ross et al. 2002). 

Adaptation can be defined both as a trait and as a process (Wolff 1991; Ross et 

al. 2002; Futuyma 2009). As a trait, an adaptation becomes fixed in a population by 

natural selection because of the effect on its ability to perform a particular function, i.e., 

a trait that confers a significant selective advantage through the improvement in such 

function (and which still performs that function) (Ross et al. 2002; Futuyma 2009). 

Most of the time a direct relationship between a trait and its natural selective fixation 

cannot be proved, which means in practical terms that adaptations are often simply traits 

that perform a particular function (Ross et al. 2002). As a process, adaptation refers to 

genetic change in a population through natural selection, or more accurately it refers to 

changes in gene frequency that can improve survival and reproduction of that 
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population in its environment (Futuyma 2009). The process of adaptation necessarily 

happens over long periods of time, which means it has a historical component: a 

character state can be better adapted in relation to its ancestral state (Futuyma 2009). 

Some authors prefer a more non-historical definition, where the extent of adaptation is 

assessed only among populations in a given environment, not in relation to their 

ancestral population (e.g. Reeve & Sherman 1993). 

 The two definitions of adaptation are nevertheless interrelated. Since not all 

traits are adaptations (Futuyma 2009), and gene frequency is ultimately dependent on 

the number of traits that can confer an adaptive advantage (reviewed by Gillespie 2004), 

recognizing whether a trait is an adaptation or not is essential to the understanding of 

adaptation as a process. Considering a particular trait as an adaptation depends on the 

criteria an author chooses to define adaptation. For example, some of Kayʼs (1984) 

criteria for considering a morphological trait as an adaptation include (1) it having the 

same adaptive role in every extant species that possesses it; (2) no evidence that it 

evolved, in the same lineage, to perform a different role; and (3) it having a functional 

relationship to an adaptive role. Otherwise, a trait might have evolved neutrally (by 

random genetic drift), rather than by natural selection (Futuyma 2009), and thus is not 

explicitly adapted to a function, but able to perform it due to chance alone. It could also 

be linked to another trait that is actually the adaptation and evolve with it, or simply 

exist because of its phylogenetic history (Futuyma 2009). As such, some authors believe 

it is better not to assume a priori that a trait is an adaptation, but discern first whether 

evidence favours that interpretation or not (Williams 1996).  

 In papionin populations, many traits that are generally considered adaptations to 

feeding or, better said, to intra-oral food processing (such as length of the snout, tooth 

surface or muscle cross-sectional area; see Subsection 1.4.3) are related to the physical 

properties of food stuffs. For example, large maxillary and mandibular fourth premolars 

are used to crush seeds in Cercocebus, Fleagle & McGraw 2002; see Section 1.4.3). A 

hard food difficult to break open requires masticatory adaptations different to those 

required for a tough and fibrous food. A brief discussion of physical properties of foods 

will follow. 
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1.4.2. Physical Properties of Foods 

  

 The physical properties of different kinds of foods are not entirely well known, 

but it is established that they affect mastication and intra-oral processing (Hildebrand & 

Goslow 2001), and cranial form adapts in response to loads generated by intra-oral food 

processing. Thus the material properties of a given food (and not the foods per se; 

Yamashita 1998; Lucas 2004; Dunn 2011) are important determinants of how the cranial 

skeleton is loaded during food processing. In order to be of any metabolic value, food 

items have to be acquired and processed before their nutrients can be released and 

become available for assimilation (Ungar 2010). Their physical properties govern how 

they are processed by a masticatory system, e.g. the size and shape of a food item can 

limit ingestion, as well as its toughness (Ungar 2010). Surface area and volume are also 

important in determining the probability of food-tooth contact during mastication, and 

the number of chews needed before swallowing (Ungar 2010). Abrasiveness is another 

important property: many plant foods have silica crystals both endogenously and 

adherent to the external surface (Ungar 2010). These particles are responsible for much 

tooth wear in mammals (Baker, Jones, & Wardrop 1959). 

 The physical properties of wild animal foods are often disregarded by field 

researchers and unreported, limiting our ability to generate hypotheses of biomechanical 

adaptation that can be tested in laboratory. Field researchers are more interested in food 

chemical contents such as total tannins, phenolic or alkaloids (Whiten et al. 1991; 

Cowlishaw 1997) or the spread of resources (Barton, Byrne, & Whiten 1996). 

Fortunately, Lucas (2004) provides an extensive list of properties of food items, such as 

toughness and hardness, and even Young’s modulus when available in the literature. 

 The mechanical behaviour of a material when a force is applied to it is best 

described by its mechanical properties (Ungar 2010). Two of them are stiffness and 

strength (Lucas 2004). Stiffness is related to elasticity, i.e. Young’s modulus (see 

Subsections 1.2.3 and 2.4.2), while strength is the force required to cause a fracture. 

Another property is toughness, which is defined as the resistance of a solid to fracture 

(crack propagation); tough objects are more resistant than brittle ones (Ungar 2010). 

The latter will deform little and fracture at low strains. One other property is hardness: 

according to Lucas (2004) it is not a property in itself, but a concept that means 

resistance to deforming under indentation. As such, hardness is an indirect measurement 

of the yield stress of a solid (Lucas 2004): the stress required to initiate fracture (Ungar 

2010). 
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For instance, roots and tubers are quite variable in toughness and stiffness 

(Dominy et al. 2008). Also, as Barton (1989) points out, the rather broad term “fruit” 

includes fleshy, sugary storage structures; drier, less digestible nuts; fruit-like vegetable 

matter; and seeds… In most studies, the consumed fruits reported include seeds, yet 

these have different properties, and primates that are seed crushers have different 

morphologies from seed spitters or swallowers (Lucas 2004). 

While each dietary item has its own physical properties, certain generalisations 

can be made. For instance leaves are a very tough food (Lucas 2004; Wright et al. 

2008), meaning that a large amount of energy is required to digest them and extract their 

nutrients. Young leaves are less tough than old leaves (Lucas 2004). Fruits (diverse as 

they can be) are typically not tough, though they may be rather stiff (Williams, Wright, 

& Truong 2005) necessitating a high bite force to break them. Corms, bulbs and 

rhizomes have a higher Young’s modulus than leaves or fruits, while all three have a 

higher toughness than fruits (Dunn 2011). However, rhizomes are tougher and stiffer 

than all other foods (Dunn 2011). Thus while there is considerable variation in physical 

properties between the categories of diet, there is also confounding variation within 

categories. Both are likely to influence cranial form via biomechanical adaptations. 

The papionin species have cranial traits that are often interpreted as adaptations 

to masticatory function (intra-oral food processing) on a basis of comparative anatomy 

(e.g. Fleagle & McGraw 2002). The following section describes aspects of morphology 

that have been hypothesised to be adaptations to feeding in papionins. 

 

 

1.4.3. Papionin Cranial Adaptations to Diet 

 

Typical vertebrate adaptations to feeding can be roughly categorized as 

adaptations to a diet with particular physical properties: (1) hard foods; (2) turgid, brittle 

and varied foods; (3) tough and fibrous foods; and (4) tough and soft foods (Hildebrand 

& Goslow 2001). An inspection of their diets (see Section 1.3.3 above) suggests that 

papionin genera can be included in the first three food categories. 

 The genera Cercocebus, Lophocebus and Mandrillus are generally understood to 

be durophagous (Gartlan & Struhsaker 1972; Hoshino 1985; Horn 1987; Rogers et al. 

1996; Fleagle & McGraw 1999; Lambert et al. 2004; Astaras et al. 2008; summarized in 

Table 1.1), meaning they often rely on hard foods (particularly as fallback sources of 
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nutrients). Durophagous animals crush or crack hard nuts, shells, woody seeds, etc., to 

make digestible food available (Hildebrand & Goslow 2001). Anatomical traits that can 

be adaptations to crush or crack foods, such as powerful jaws and teeth with large, 

plate-like or even flat surfaces (Hildebrand & Goslow 2001), are thus to be expected on 

those three papionin genera. A comparative analogy can be made with hyenas that crack 

open hard bones to reach the bone marrow; their adaptations include extra heavy jaws 

and teeth, enormous adductor muscles and sagittal crest; also an early closure of cranial 

sutures (Hildebrand & Goslow 2001).  

Fleagle and McGraw (1999, 2002) describe both genera Cercocebus and 

Mandrillus as having relatively large upper and lower posterior premolars that resemble 

the first molar in size, claiming this as an adaptation for cracking open hard nuts. 

Cercocebus on its own has been described as having adaptations for feeding on tough-

skinned fruits and on hard nuts and seeds, including large incisors that can 

accommodate wear from puncturing tough-skinned fruit  (Hylander 1975), thick molar 

enamel to withstand the stress of crushing forces (Kay 1981), large maxillary and 

mandibular second premolars (P4) to increase surface area to crush seeds (Fleagle & 

McGraw 2002), and a shortened face that increases bite force (Singleton 2004). The 

genus Mandrillus has, like Cercocebus, cranio-mandibular traits that can be interpreted 

as suited to cracking open hard seeds and nuts, especially when the genus is known to 

exploit hard seeds as a dietary niche (Fleagle & McGraw 1999). Both Cercocebus and 

Mandrillus have been reported to eat the pith and bark of various grasses and they may 

also use their premolars for stripping these foods (Harrison 1988). Yet, Astaras et al. 

(2008) found no evidence of dietary specialization in the genus Mandrillus for hard 

decaying seeds on the forest floor, as Fleagle and McGrawʼs (1999) morphological 

analysis suggests. Conversely, species of the genus Lophocebus are also reported to eat 

hard nuts such as palm nuts (Subsection 1.3.3), but Fleagle and McGraw (2002) find 

they lack the enlarged premolars of Cercocebus. Although Mandrillus is of larger size 

than the other two durophagous species, the ability to deal with foods of equivalent 

mechanical properties requires equality of performance irrespective of size. 

The Papio species and Macaca are good examples of feeders on turgid, brittle 

and varied foods: they are omnivorous, feeding on dry leaves, flowers, seeds, fruits, 

berries, roots and tubers, bark, tree gum and bulbs (Aldrich-Blake et al. 1971; Harding 

1976; Stammbach 1987; Yeager 1996; summarized in Table 1.1). Foods like the cells of 

fruits and berries (turgid) or large seeds and nuts (brittle) must be burst open or 

fractured to prepared them to digestion, an action that is more effectively performed by 
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crushing and rolling by a tooth combination resembling a mortar and pestle: a low cone 

on one tooth fits into a basin on an opposing tooth (Hildebrand & Goslow 2001). Most 

frugivorous animals (like fruit bats), and granivorous (like squirrels), have postcanine 

teeth with such a design (Hildebrand & Goslow 2001). Like other animals with a varied 

diet, the omnivorous Papio and Macaca have varied teeth that are not specialized solely 

for shearing or grinding, the postcanine teeth are moderately broad, with low cusps and 

basins suitable for crushing (Hildebrand & Goslow 2001). P. anubis supplements its diet 

with meat and other animal matter (Melnick & Pearl 1987), which are tough and soft 

foods (Lucas 2004), but does so only in an opportunistic manner with perhaps little 

effect on the cranial morphology. 

The genus Theropithecus, among all papionin genera, is exclusively 

graminivorous (Dunbar & Dunbar 1974a; Iwamoto 1979; summarized in Table 1.1), 

with traits that can be considered adaptations to feeding on tough, fibrous foods, such as 

leaves, stems, roots and other vegetable material (Lucas 2004). Animals that eat them 

are said to be herbivorous (Hildebrand & Goslow 2001); if they specialize in grass, they 

are said to be graminivorous. Most mammalian herbivores crush and grind food with 

their postcanine teeth, while their anterior teeth are instead specialized for shearing, 

gnawing, or cropping; the two sets of teeth can be separated by a toothless space called 

the diastema (Hildebrand & Goslow 2001). Postcanine teeth are broad and similar to 

one another, with premolars often resembling molars (Hildebrand & Goslow 2001). 

Theropithecus has no clear diastema, but is found to have wider condylar heads 

(Bouvier 1986b; Jablonski 1993), a trait related to feeding mainly on leaves and grasses, 

food items that require greater masticatory effort, particularly lateral movements of the 

mandible (Hylander 1992). The genus Theropithecus exhibits a somewhat shorter face 

(when compared with similar-sized papionins, like Papio sp.) but also a relatively 

longer masseter lever arms, higher jaw joints, and other cranial specializations similar to 

colobines (that also have a longer masseter lever arm and shorter face, interpreted as 

adaptations to efficiently processing a tougher leaf and seed diet; Hylander 1979a) 

(Jolly 1970; Jablonski 1993; Ravosa 1996). Theropithecus, as is the case for other 

graminivorous animals, needs to produce large amounts of effort to masticate their 

tough and fibrous foods, while requiring only minimal amounts of gape (Fitton 2007). 

Major anatomical differences among papionins concern mainly the length of the 

rostrum, with larger sized species having longer snouts, suggesting an allometric 

component in that trait. Another particular difference is the existence of a maxillary 

sinus in the genus Macaca, common in most Old World monkeys, humans, greater apes, 
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and various New World monkeys (Ankel-Simons 2007), but not found in any of the 

other papionins. The presence of a supra-orbital torus has also been controversially 

associated with feeding as an adaptation to withstand masticatory loads (Hylander, Picq, 

& Johnson 1991a; b, with in vivo experiments). The very existence of a supra-orbital 

torus on primate species has puzzled researchers for some time. Some have argued that 

it is an adaptation to anterior dental loading, preventing the deformation of the glabellar 

region when incisor-bite forces are applied (Endo 1966, 1970; Oyen et al. 1979; Oyen 

& Russell 1982; Russell 1982, 1985). The torus would also prevent bending of the inter-

orbital and dorsal orbit in the frontal plane (a region that would suffer from greater 

stress during incision than during mastication) due to bilateral contraction of the 

adductor muscles (Endo 1966, 1970; Oyen et al. 1979; Oyen & Russell 1982; Russell 

1982, 1985). Russell (1985), in her review of the supra-orbital torus, suggested that its 

formation occurs in primates that lack a more vertically-oriented frontal bone (all except 

humans), precisely to oppose the anterior dental loads transmitted superiorly. Oyen et 

al. (1979), studying baboons, suggest that an enlarged supra-orbital torus is a response 

to an increase in jaw-adductor force levels, which is required to compensate changes in 

the elongation of the incisor load arm relative to the masseter arm, in order to maintain 

similar incisor-bite forces. However, this was shown to be a spurious correlation 

reflecting increases in overall skull size during growth (Ravosa 1991b). Hylander et al. 

(1991a; b) in vivo results offer mixed support for the anterior dental loading model, 

because while circum-orbital strain directions during incision are as predicted by the 

model, since there is the occurrence of a significant strain gradient, this indicates that 

the supra-orbital torus is overbuilt to counter routine masticatory loads. Circum-orbital 

strain levels during incision are not higher than those produced during mastication, 

which goes against the anterior dental loading model (Hylander et al. 1991a; b; 

Hylander & Johnson 1992; Hylander & Ravosa 1992). 

Are these adaptations in papionins actually related to feeding? If they are, how 

are they related to it? There have been a number of hypotheses generated to try and 

answer those questions, many of them biomechanical or functional. The most relevant 

to papionins are discussed next. 

 

 

 



59 

1.4.4. Functional Hypotheses of Papionin Cranial Form Evolution 

 

Understanding of the functional determinants of primate cranial form has 

benefited greatly from experimental studies (Luschei & Goodwin 1974; McNamara 

1974; Hylander 1979a; b; c, 1984, 1985; Hylander & Bays 1979; Bouvier & Hylander 

1981; Hylander, Johnson, & Crompton 1992; Hylander et al. 1998; Hylander, Johnson, 

& Crompton 1987; Hylander et al. 1991a; Dechow & Carlson 1990), while 

understanding of the functional bases of cranio-dental variation have been enhanced by 

morphological studies of cercopithecid subfamilies (Hylander 1975; Kay 1978; Kay & 

Hylander 1978; Bouvier 1986a; b; Ravosa 1991c, 1996, 1988, 1990, 1991a; b; Lucas & 

Teaford 1994). The primate mandibular form has also been the subject of extensive 

work in the same way (e.g. Hylander 1977; Hylander & Johnson 1994; Marinescu, 

Daegling, & Rapoff 2005; Gröning et al. 2009; Panagiotopoulou, Kupczik, & Cobb 

2011a; Daegling et al. 2011; Gröning, Fagan, & O’Higgins 2011; de Jong, Korfage, & 

Langenbach 2011). The macaque and baboon primate groups have been more 

extensively used for testing many biomechanical hypotheses (e.g. Hylander 1975; Oyen, 

Walker, & Rice 1979; Ravosa 1991a; b; Ravosa & Profant 2000).  

At the simplest level, there are four main recognized hypotheses that 

characterize how loading regimens act on the primate cranial skeleton (Chalk et al. 

2011): (1) bending in the frontal plane; (2) bending in the sagittal plane; (3) dorso-

ventral shear of the face relative to braincase; and (4) torsion of the face on the 

braincase about the antero-posterior axis of the skull.  

Bending in the frontal plane is the result of inferiorly directed temporal and 

masseteric forces applied to the lateral aspects of the orbits and zygomatic arches, and 

of superiorly directed forces when biting on the anterior dentition (Endo 1966, 1970; 

Russell 1985; Hylander et al. 1991a; b). Following Hylander et al. (1991a), when the 

supra-orbital region is modelled as a simple beam, it is predicted that tensile strains are 

perpendicular to the mid-sagittal plane of the cranium, and the strain magnitudes are 

predicted to be highest in the dorsal inter-orbital region. The superiorly directed bite 

force is expected to yield compressive strain concentrations parallel to the mid-sagittal 

plane of the cranium (Endo 1966, 1970; Hylander et al. 1991a; b). 

Bending in the sagittal plane is predicted to be due to superiorly directed bite 

forces at the teeth and joint reaction forces at the temporo-mandibular joint, combined 

with inferiorly directed masticatory muscle forces (Hylander et al. 1991a). The simple 

geometric cranial model of a beam with triangular cross section predicts tensile strains 
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to occur along the palate, the pterygoid processes and the zygomatic arches; 

compressive strains should be concentrated in the dorsal face, including the maxilla and 

inter-orbital region (Hylander et al. 1991a). Both tensile and compressive strains are 

predicted to be oriented parallel to the sagittal plane (Hylander et al. 1991a). 

Dorso-ventral shearing is caused by the inferiorly-directed masticatory muscle 

forces and the superiorly directed bite and temporo-mandibular joint reaction forces, 

resulting in the displacement of the facial skeleton superiorly relative to the braincase 

(Chalk et al. 2011). The displacement of the face in the sagittal plane is resisted by bone 

in that plane. Tensile strains are expected to occur in the dorsal and ventral aspects of 

the face, with rostral regions experiencing higher strains relative to areas with thicker 

bone such as the supra-orbital torus. Dorso-ventral shearing is also predicted to cause 

shear in the lateral surfaces of the rostrum and orbits (Preuschoft et al. 1986; Hylander 

et al. 1991a). 

Twisting of the face on the braincase about the antero-posterior axis of the 

cranium is due to the torsional moments of the balancing side muscle force and bite 

force exceeding the working side muscle force, during unilateral mastication (Greaves 

1985, 1995). The face is modeled as a cylinder that twists, and tensile and compressive 

strain orientations are predicted to be 45º to the twisting axis (i.e., the long-axis of the 

cranium) (Greaves 1985, 1995; Hylander et al. 1991a; Ross 2001, 2008), meaning that 

the directions of tensile and compressive strains should present the reverse pattern when 

molar biting and chewing shifts from one side of the face to the other (Greaves 1985, 

1995). This hypothesis has been tested experimentally on P. anubis, M. fascicularis 

(Hylander et al. 1991a; b), and on Cercopithecus aethiops (Oyen & Tsay 1991): forces 

experienced during molar biting and mastication produce a net twisting (torsion) of the 

facial skeleton about the antero-posterior axis of the cranium (Greaves 1985, 1995), 

affecting especially the circum-orbital region. While Papio and Macaca show this 

characteristic reversal pattern predicted in the theory, circum-orbital strain directions are 

the opposite of what would be expect, with the working-side browridge experiencing 

compression during molar biting, not tension (Hylander et al. 1991a; b; Hylander & 

Johnson 1992; Hylander & Ravosa 1992). 

These hypotheses were first formulated when strain gauges were the only way to 

study biomechanical problems and deformations were hard to observe as a whole. 

Nowadays, other than testing a single biomechanical hypothesis about how a real 

cranium deforms, computational methods such as finite element analysis are more 

commonly used because they allow for a visualization of a virtual cranium deforming 
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after load (Chalk et al. 2011). Like shape, deformations are complex and likely involve 

various combinations of bending, shearing and twisting at the same time.   

When speaking of bite force, moving the muscle resultant force closer to the 

dentition increases the length of the lever arm producing a higher bite force (Osborn 

1987; Greaves 2009). Higher bite force also arises when moving the bite point closer to 

the temporo-mandibular joint, which decreases the length of the load arm. From this 

follows that, all other factors being equal, relatively shorter rostrums increase the 

mechanical advantage of the jaw muscles, particularly over the anterior dentition, and 

increases the efficiency of the muscle force transferred to the dentition (Osborn 1987; 

Dumont 1997) allowing for an increase in biting force capacity, at the expense of a 

larger gape (Fitton 2007). Using allometric analysis, Ravosa (1990) investigated the 

functional significance of differences in facial form between cercopithecines and 

colobines. Results indicated that there is a stronger positive allometry in the 

cercopithecine facial skeleton, when compared with colobines (Ravosa 1990). When the 

angle between the maxilla and the mandible, during maximum jaw opening, is similar, a 

long face facilitates both an increased gape so the animal can accommodate larger 

canines, such as found in cercopithecines (Ravosa 1990). They also have a large gonial 

angle, allowing for the increase in gape by increasing the distance between upper and 

lower canines, for a set amount of mandibular retraction (Ravosa 1990).  

These functional aspects of the cercopithecine cranial form could indicate 

cranial adaptation to a particular biomechanical loading. Intra-oral food processing 

when feeding is a source of repetitive loading to the cranium, and the papionin cranium, 

as discussed in Subsection 1.4.3, is often described as having adaptations to particular 

types of food, making diet an important factor that could have contributed to the present 

cranial form in those primates. Since different papionin species occupy different 

ecological and dietary niches and, thus, respond to different selective pressures, 

differences in cranial form are often assumed (Hayes et al. 1990; Ravosa 1990; 

Daegling 1992; Frost et al. 2003; Singleton 2005; Taylor 2006; Leigh 2006; Dunn 2011) 

to reflect adaptations in each papionin cranial form to their functional demands, 

constrained by phylogeny (Fitton 2007). 

But is the papionin cranial form adapted at all? It is conceivable that, because it 

is a relatively recent group (see Subsection 1.3.1), their phenotype did not have time to 

adapt, and the presently observed form is but the result of random processes such as 

genetic drift. In other words, is it admissible to discuss adaptation of form to something 

when there is no certainty about the rejection of random factors producing that form? 
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Only if random genetic drift is not the single driver of papionin cranial form evolution 

should its form reflect adaptation that could be interpreted as adaptation to the particular 

biomechanical demands of different dietary strategies. The necessary test on whether 

random genetic drift alone is responsible for a phenotypic trait can be performed with 

the help of a quantitative genetic model 

If the outcome of the test is that random genetic drift is not the single driver of 

cranial evolution, discussing cranial adaptation to diet then becomes acceptable, and 

how it happened can be approached. One hypothesis is that if a species is particularly 

specialized in feeding on one food item (for example hard foods, rather than tough, 

fibrous foods; see Subsection 1.4.2), then its cranium will have adapted to the 

biomechanical demands that processing that food item for nutrients requires. This is 

relevant, for example, for the specialist graminivorous species Theropithecus gelada 

(Dunbar & Dunbar 1974a), and even for the durophagous species Cercocebus torquatus, 

Lophocebus albigena and Mandrillus sphinx, that, although feeding on softer foods 

often, they rely on vitally important hard fallback foods for survival in the dry season 

(see Subsections 1.3.3 and 1.4.3). Intra-specific differences in cranial form are also 

interesting in studying cranial adaptation to food processing, for if a male and a female 

of the same species show great differences in the form of the cranium while eating the 

same diet (see Subsection 1.3.3). Their cranium should be adapted in the same way to 

that diet, even if there are differences in form.  

Biomechanical adaptation can be measured in terms of local strains, global 

deformations, and force magnitudes with the help of powerful computational methods 

such as finite element analysis. The results can be compared statistically using 

geometric morphometrics and multivariate methods, and then related to diet and cranial 

form. If cranial form has not evolved randomly and is indeed adapted to diet, some 

degree of association must necessarily exist between diet and biomechanical traits such 

as deformation and bite force. 
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1.5. Summary 

 

 In summary, the relationship between form and function is of paramount 

importance for the understanding of phenotypic evolution of biological organisms. The 

evolution of cranial form can be studied with established quantitative genetic theory, 

and its function can be understood through biomechanics. If random processes (like 

genetic drift) are not the key driver of form, then (selection towards adaptive) function 

can be assumed to be. Papionins, on account of their biology and evolutionary 

relationship to humans, are almost uniquely positioned to be used as a model system in 

studies of form evolution and biomechanical adaptation. Diet remains a recognised 

adaptive pressure in the evolution of all vertebrates, possibly making masticatory 

function responsible for the form of the cranium in papionins. The studies in this thesis, 

then, consider papionin cranial form evolution and its functional adaptations to diet, 

under an evolutionary framework. 

The following chapter provides an overview of the methods used throughout the 

thesis. Chapters 3 and 4 concern a test on the divergence of the papionin cranium by the 

action of a random genetic drift. Chapters 5, 6 and 7 relate respectively to building 3D 

models, sensitivity analyses, and dietary adaptation hypotheses using biomechanical 

parameters estimated from the 3D models using finite element analysis. Finally,  

Chapter 8 tests the association between diet, cranial form and several parameters 

estimated with finite element analysis and geometric morphometrics. Chapter 9 will 

summarize the major findings and suggest future research. 
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Chapter 2. Overview of Methods 

 

 

 

2.1. Introduction 

 

This chapter provides an overview of the most important methods used 

thoughout this thesis. These are quantitative genetic analysis, geometric morphometric 

analysis, finite element analysis, landmark-based deformation analysis and multivariate 

statistical analysis. The material used and samples range from simulated data to three-

dimensional (3D) landmarks to computerized tomography scans. Each one will be 

described in detail in the chapters where they are used. Additionally, the quantitative 

genetic model used in Chapters 3 and 4 is described in more detail in these chapters. 

 

 

 

2.2. Quantitative Genetic Analysis 

 

Quantitative genetics was developed initially by Fisher (1918), Wright (1921a; 

b; c; d; e, 1922) and Haldane (1932) when progress in the field of population genetics 

(the study of genetic variation between individuals; Conner & Hartl 2004) encountered 

limitations in dealing with complex, multivariate traits. Very often phenotypic traits are 

not discrete but continuous, caused by additive genetic variation at multiple loci 

(Falconer & Mackay 1996; Roff 1997). Those traits (for example, shape or form) vary 

continuously within a population and in a single environment, and their evolution is best 

studied using the quantitative genetic framework (Lande 1979, 1980a; b; Lande & 

Arnold 1983; Lofsvold 1986, 1988; Zeng 1988; comprehensive reviews can be found in 

Falconer & Mackay 1996; Roff 1997; Lynch & Walsh 1998; a simpler introduction is 

provided by Conner & Hartl 2004).  

Quantitative genetics works with the population variance (both genotypic and 

phenotypic) to estimate the heritability of continuous traits (see Subsection 1.2.1). 

Empirical applications of quantitative genetics rely on field or laboratory estimates of 

heritabilities, additive genetic variances and covariances, and regression of trait means 
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against fitness parameters (Schlichting & Pigliucci 1998). In real outbreeding species, 

heritability and additive genetic variance can be estimated with methods such as 

offspring-parent regression, full-sibling and half-sibling analyses (Conner & Hartl 

2004). Estimating additive genetic variance is central when studying the connection 

between neutral microevolutionary processes and macroevolutionary patterns (Lande 

1980b; Arnold, Pfrender, & Jones 2001; Jones et al. 2003; Bégin & Roff 2004) because 

it is thought to determine both the response to selection and the pattern of neutral 

divergence, at least among populations over a small time scale (Lande 1980b; 

Felsenstein 1988; Zeng 1988). In evolutionary divergence studies, the expected pattern 

of phenotypic divergence among populations caused by random genetic drift in 

correlated traits can be used as a null hypothesis to test for neutral evolution (Lande 

1979, 1980b). 

In addition to single continuous traits in a single environment, quantitative 

genetics can deal with multiple continuous traits in multiple environments. It can be 

utilized to take the correlation among traits into account in such studies, including the 

relationship between genotype and phenotype among multiple traits (Conner & Hartl 

2004; Gillespie 2004; see also Section 1.2.1). Quantitative trait loci (QTL) mapping has 

also been used to study traits that have polygenic effects as a complement to purely 

statistical quantitative genetics because it is closer to the actual mechanisms underlying 

quantitative traits (Roff 1997; Schlichting & Pigliucci 1998; Conner & Hartl 2004). 

Although quantitative genetics cannot be inherently right or wrong because it is 

mathematically consistent, criticism of the quantitative genetics framework has been 

based mainly on discrepancies between its theoretical assumptions and the reality of 

natural populations (reviewed by Schlichting & Pigliucci 1998). Any type of continuous 

traits can be used in quantitative genetic analysis, since the method uses the correlation 

and the variance-covariance matrix among traits. In Chapters 3 and 4 of this thesis all 

data, simulated or real, are landmark coordinates describing form, a type of multivariate 

data developed in the field of geometric morphometrics, which will be discussed in the 

next section. 
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2.3. Geometric Morphometric Analysis 

 

Morphometric analysis is the statistical study of shape and size variation and 

their covariations with other variables (Claude 2008). Formally, it is a subfield of 

statistics (Mitteroecker & Gunz 2009). Shape is commonly described as the geometric 

property of an object invariant under scaling, rotation, or translation. Size is a scalar, 

based on distances or coordinates of points specified on the object. An object can have 

other attributes that are not shape properties, like colour or texture (Claude 2008). In the 

1980s, morphometrics went through a major “revolution” (Rohlf & Marcus 1993) with 

the development of coordinate-based methods, generalised Procrustes analyses, the 

associated discovery of the statistical theory of shape, and the computational realization 

of transformation grids using the thin-plate spline, effectively inaugurating the field of 

geometric morphometrics (reviews on the whole geometric morphometric method can 

be found in Rohlf & Marcus 1993; Bookstein 1998; O’Higgins 2000; Adams, Rohlf, & 

Slice 2004; Zelditch et al. 2004; Slice 2005; Mitteroecker & Gunz 2009). 

 Geometric morphometrics is, thus, the statistical analysis of shape based on 

Cartesian landmark coordinates (Mitteroecker & Gunz 2009). All objects have a shape, 

and since they are everywhere, natural or man-made, collecting geometric information 

has become routine (Dryden & Mardia 1998). Following Kendall (1984) and Dryden 

and Mardia (1998) the notation used here will be that there are k landmarks in m 

dimensions, usually k ≥ 3 and m = 2 or m = 3. The concept and nature of landmarks is 

discussed next, with the connection between shape and size and superimposition 

methods being discussed later. This section ends with a review on the thin-plate spline. 

 

 

2.3.1. Landmarks 

 

A landmark is reference point on an object. To be useful in comparing objects, 

landmarks must correspond, i.e. be equivalent, among them (Dryden & Mardia 1998). 

The shape of an object is described by a finite number of landmarks (Dryden & Mardia 

1998). In the literature there have been various synonyms for landmarks, including 

vertices, anchor points, sites, etc. (Dryden & Mardia 1998). Geometric morphometric 

analyses depend entirely on the definition of equivalent landmarks between forms 

(Oxnard & O’Higgins 2009). 
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There are three types of landmarks. Anatomical landmarks are reference points 

that correspond between organisms in some meaningful way, usually in terms of 

biological derivation, either in terms of development or of phylogeny – the landmarks 

are called homologous (Dryden & Mardia 1998; but see discussion below). 

Mathematical landmarks are reference points located on an object according to a 

mathematical or geometrical property of the object, e.g. a point of maximum curvature 

or an extreme point (Claude 2008). Pseudo-landmarks are constructed points on an 

organism, located either around the outline or in between anatomical or mathematical 

landmarks (Dryden & Mardia 1998). 

 Another classification assigns landmarks to a further three types. Type I 

landmarks are discrete juxtaposition of tissues, or sufficiently small features to be 

defined by a single point (Bookstein 1991a; reviewed by Claude 2008). Type II 

landmarks are defined by local properties, such as maximal curvatures, where homology 

may have weaker biological grounds (Claude 2008). Type III landmarks are extremal 

points that can correspond to an end-points of diameters, a centroid, or an intersection 

between inter-landmark segments; they are constructed on a curve geometrically 

(Dryden & Mardia 1998; Claude 2008). 

 Anatomical landmarks are usually of type I or II, and mathematical landmarks 

are usually of type II or III. Pseudo-landmarks are commonly taken equally spaced 

along outlines between pairs of landmarks of type I or II, and in this case they are type 

III (Dryden & Mardia 1998). Type I landmarks are the easiest to locate and the most 

reliable for biological studies (Dryden & Mardia 1998). 

 Geometric morphometrics is based on landmarks as well as on Cartesian 

coordinates, but landmarks must be equivalent in some meaningful sense. Traditionally, 

that equivalence is called “homology”, a concept that is far from established and 

irrefutable in biology. Three classical definitions of homology coexist, depending on the 

origin of the landmark: structural/functional, developmental, and phylogenetic/ 

evolutionary. Initially, Owen (1848) defined homology as a “structural correspondence,” 

as opposed to analogy, a “non-correspondent similarity” (Mitteroecker 2007). 

Furthermore, homology in genetics refers, somewhat inaccurately, to the similarity in 

DNA or protein sequences (see a good review of the concept of homology in fields 

other than geometrics morphometrics in Hall 1994). Oxnard and O’Higgins (2009), 

rather than use the word homology prefer to speak simply about the equivalence or 

correspondence of landmarks, which varies depending on whether the question of 

interest is about function, development or phylogeny. 
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 In fact, the morphometric toolkit does not implicate a priori choice of any 

specific definition of homology per se, rather the choice of landmarks determines the 

kind of information that is equivalent across the observed forms (Mitteroecker 2007). 

Any choice of landmarks should be driven by the hypothesis under test, and situations 

are common where landmarks on the same structure are deemed equivalent or not 

according to the question being asked (Oxnard & O’Higgins 2009). The selection of the 

equivalence that corresponds to the actual scientific question thus belongs to the 

researcher (Mitteroecker 2007). 

 There is a further type of landmark in the geometric morphometric toolkit: the 

sliding semi-landmark, which is located on a curve or surface and allowed to slide a 

small distance with respect to another equivalent curve (Dryden & Mardia 1998). The 

concept of sliding semi-landmarks was invented to extend landmark-based statistics 

from fixed landmarks to equivalent smooth curves and surfaces. It was first developed 

and applied to two-dimensional outlines by Bookstein (1997). Thus, assuming that the 

curves in different specimens will be equivalent according to the hypothesis being 

tested, a whole sample of semi-landmarks placed on a curve or surface is made to slide 

on that curve or surface iteratively, with reference to true landmarks, and the 

configuration of landmarks and semi-landmarks on the (current iteration) consensus 

form (Oxnard & O’Higgins 2009). As such, the resulting semi-landmarks (after sliding) 

respect point equivalences between forms in the sense that these are embodied in the 

true landmarks, minimizing error between specimens (Oxnard & O’Higgins 2009). 

 

 

2.3.2. Shape and Form 

 

 In everyday language, the word shape usually refers to the appearance of an 

object (Dryden & Mardia 1998). In morphometrics, the term shape is used to designate 

the geometric information present in a landmark configuration that is independent of the 

overall position (location), size (scale) and orientation of an object (Dryden & Mardia 

1998; Mitteroecker & Gunz 2009). Two objects have the same shape if they can be 

translated, scaled and rotated with respect to each other so that they match exactly 

(Dryden & Mardia 1998). In practice, researchers who are interested in comparing two 

objects with different shapes require a way of measuring shape and some notion of 
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distance between two shapes, as well as methods for the statistical analysis of shape 

(Dryden 1989; Bookstein 1991a; Dryden & Mardia 1998). 

 Apart from comparing shapes alone, retaining scale information (size) as well as 

the shape of an object is often of great interest (Dryden & Mardia 1998). Thus, the term 

form denotes the geometric information that is independent only of the position 

(location) and orientation of an object (Dryden & Mardia 1998), that is to say it 

comprises both the shape and the size of an object (Mitteroecker & Gunz 2009). Two 

objects have the same form if they can be translated and rotated to each other so that 

they match exactly (Dryden & Mardia 1998). Some hypotheses about evolution or 

development (like heterochrony) require explicit size and shape for an empirical 

assessment of how these relate (Klingenberg 1998; Mitteroecker 2007). 

 One method to compare shapes is called two-point shape coordinates or 

Bookstein shape coordinates (Bookstein 1991b). Translation, scaling and rotation the 

triangle ABC until A has coordinates (0,0) and B (1,0), the coordinates of C describe the 

shape of the triangle, and are therefore the shape coordinates of the said triangle 

(Mitteroecker & Gunz 2009). Progress in the analysis of shape, however, lead to the 

development of Procrustes superimposition, which was found to be a more general way 

to compute shape coordinates with clear advantages over Bookstein shape coordinates 

(such minimizing the distance between configurations, Zelditch et al. 2004). The 

Procrustes superimposition is described in the next subsection. 

 

 

2.3.3. Procrustes Superimposition: Generalized Procrustes Analysis 

 

 To compare different shapes it is not enough just to measure their landmark 

configurations; these also need to match in a logical way. This matching of landmark 

configurations is called superimposition because the configurations are placed on top of 

each other (Zelditch et al. 2004). Several superimposition methods are available, but the 

Procrustes superimposition is the most extensively used, and will be the only one used 

in this thesis. The method earned its name by analogy with the Greek myth of 

Procrustes, a character who would fit his guests to a bed by stretching them or cutting 

their legs (Zelditch et al. 2004).  

Procrustes superimposition minimizes the differences between landmark 

configurations so that they best fit each other, in a sense like the mythological 
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Procrustes did with his guests and the bed. In fact, statistically, Procrustes 

superimposition is less about superimposing than about getting shape variables by 

removing nuisance parameters, following Goodallʼs (1991) perturbation model. 

Estimates of shape variation must be independent of the effects of variation in 

parameters unrelated to shape variation (nuisance parameters) even though a mean 

shape may be expressed relatively to some particular coordinate system. The parameters 

describing the shapes of two equivalent landmark configurations are estimated by a 

Procrustes superimposition with a least-squares oriented approach involving three steps 

(Rohlf & Slice 1990; Mitteroecker 2007; Figure 2.1): 

(1) Translation: to centre each landmark configuration at the origin by 

subtracting the coordinates of its centroid from the corresponding coordinates of each 

landmark. The centroid is the coordinate-wise average of the landmarks of one shape, 

and the landmark coordinates now reflect their deviation from the centroid. 

(2) Scaling: to scale the landmark configurations to the same centroid size (the 

square root of the summed squared deviations of the coordinates from their common 

centroid). Centroid size is a measure of scale for landmark configurations, which has 

been shown to be approximately uncorrelated with shape for small isotropic landmark 

variation (Bookstein 1991b; Dryden & Mardia 1998). As a convention, and because 

computation becomes easier, centroid size is set to one for all landmark configurations 

(unit centroid size).  

 (3) Rotation: one of the two translated and scaled landmark configurations is 

rotated until the sum of the squared Euclidean distances between the equivalent 

landmarks is minimized (i.e., to minimize the partial Procrustes distance). 

For more than two landmark configurations, this algorithm has been extended 

and is known as generalized least-squares (GLS) Procrustes superimposition, also called 

generalized Procrustes analysis (GPA, Rohlf & Slice 1990). GPA uses as a criterion to 

minimize differences between configurations, the summed squared distances between 

corresponding landmarks (the Procrustes distances). In more than two configurations, 

the rotation step becomes an iterative algorithm. First, the translated and scaled 

landmark configurations are rotated to one of these configurations (usually the first 

one). The ensuing coordinates are averaged and all configurations are then rotated to fit 

this initial consensus. The resulting coordinates are averaged again to yield a new 

consensus configuration to fit to. The algorithm is repeated until convergence is 

reached, usually after a few iterations. The resulting average is the shape whose sum of 

squared distances to the other shapes is minimal and is thus the maximum likelihood 
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estimate of the mean for certain statistical models (Dryden & Mardia 1998; 

Mitteroecker 2007). 

 

 

 

Figure 2.1. Procrustes superimposition: the three steps. A, two raw configurations of 

landmarks. B, translation of the two configurations onto each other, centred at the 

centroid. C, scale the translated landmark configurations to the same centroid size. D, 

rotation of the translated and scaled configurations to minimize the sum of the squared 

distances between equivalent landmarks. Adapted from Mitteroecker & Gunz (2009).  

 

 

 The coordinates of the resulting translated, scaled and rotated landmarks are 

called Procrustes shape coordinates and their individual differences from the average 

shape are often termed Procrustes residuals (Mitteroecker 2007). The average shape (the 

consensus configuration) is the shape whose sum of squared distances to the other 

shapes is minimal and is thus the maximum likelihood estimate of the mean for certain 

statistical models (Dryden & Mardia 1998; Mitteroecker & Gunz 2009). Scaling the 

specimens to unit centroid size (called a partial Procrustes fit) may resemble several 

other standard approaches to size correction, but Procrustes scaling (a better, full 

Procrustes fit) is not the actual least-squares solution. A least-squared solution can be 

achieved by scaling. Dryden and Mardia (1998) refer to it as partial Procrustes fitting. A 

full Procrustes fit (Rohlf 1999) would be a smaller sum of squared deviations among the 

landmark configurations, achieved by constraining the size of a configuration to cos θ, 

where θ is the angle, in radians, between the vector of shape coordinates of that 

specimen (single column vector with kp elements) and the vector of the mean shape. 

Most applications of this method use only partial Procrustes fitting (Mitteroecker 2007).  

The scaling step removes all information on the overall size. As mentioned 

before, in many biological studies it is desirable to include size in the analysis. This is 
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achieved by augmenting the Procrustes shape coordinates by the natural logarithm of 

centroid size into the analysis (Mitteroecker et al. 2004; Mitteroecker, Gunz, & 

Bookstein 2005). Such an analysis is said to be carried out in form space, rather than in 

shape space (Mitteroecker & Gunz 2009).  

When two or more configurations are to be mapped on one another, the use of 

the interpolation function called thin-plate spline is an established practice and is 

explained in the next subsection. 

 

 

2.3.4. The Thin-plate Spline 

 

In morphometrics, thin-plate spline (TPS) interpolation (Bookstein 1989, 1991b) 

is used to compute a mapping function from one template landmark configuration to a 

target configuration, very much in the sense of D'Arcy Thompson’s (1917) 

transformation grids (Mitteroecker 2007). This mapping function can also be applied to 

points other than the template configuration, like the nodes of a regular square grid (in 

the template figure space). The parameters characterizing the mapping from one form to 

another can then be visualized by the “deformation” that results from applying the 

mapping to this regular grid. The transformation grids indicate relative stretchings and 

contractions of the space of the landmark configuration, rather than the physical 

mapping of particles between two objects. Transformation grids are simply a visual aid 

to assessing shape differences. 

 The TPS interpolation function from a template configuration to a target 

configuration is usually applied to the vertices of a regular grid, so that the shape 

differences between the two geometries can be read from the transformation of this grid 

(Mitteroecker & Gunz 2009). When the actual shape differences are subtle, the 

transformation can be extrapolated by an arbitrary factor to ease the interpretation of the 

grid. In the course of computation, the TPS function is applied to each coordinate axis 

separately and so can be used for both two-dimensional (2D) and three-dimensional 

(3D) data. Though less effective for visualizing 3D shape differences, the mapping 

function of the transformation grid can be applied to any points in the vicinity of the 

template landmarks and the algorithm can be used effectively to transformation a 3D 

model of the template specimen (Bookstein 1989, 1991b; Mitteroecker & Gunz 2009). 

Nevertheless, a sequence of warped surfaces can provide a useful alternative to 
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transformation grids for describing 3D shape and form differences (Mitteroecker & 

Gunz 2009). 

 The TPS function can also be applied to the pixels of an image or to the voxels 

of volumetric data derived from CT or MRI scans (Mitteroecker & Gunz 2009). 

However, when warping the pixel locations from the template to the target space 

according to the two landmark configurations, pixels may overlap in the target image or 

positions in the image may be empty. To avoid such fragmented images, the TPS 

algorithm is often used instead to unwarp an image (Mitteroecker & Gunz 2009). The 

pixel positions of the target image are warped to the template, identifying the pixels that 

correspond across the two images. The grey values or the colour values of the target 

pixels are then substituted by the corresponding values in the template image; the 

resulting unwarped image is a continuous image with no gaps or holes (Mitteroecker & 

Gunz 2009). 

 A mention of the concept of bending energy is pertinent. Bending energy is a 

measure of shape differences between two landmark configurations, which does not 

depend on the registration of the configurations. But bending energy is not a metric 

measure of distance rather it is just the non-affine part of the transformation and hence 

is usually not used for statistical analysis. Its main current use is in controlling the 

sliding of semi-landmarks (Bookstein, Gunz, & Mitteroecker 2005). The TPS formalism 

can also be applied to decompose shape transformations into a range of geometrically 

independent components (partial warps) with different geometric scale and hence 

different bending energy (Bookstein 1989, 1991b). A decomposition of the mean form 

(principal warps) can be used as an orthogonal basis to span tangent space, but is of 

limited biological relevance (Rohlf 1998; Monteiro 2000).  

Geometric morphometrics has been used (with some degree of criticism; Weber, 

Bookstein, & Strait 2011; see also O’Higgins et al. 2012) to complement the 

biomechanically focused method of finite elements analysis, which is discussed next. 
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2.4. Finite Element Analysis 

 

Computer-based approaches to the study of functional morphology have become 

more common and complementary to traditional comparative anatomy and 

experimentation (Kupczik 2008). Finite element analysis (FEA) is a technique that 

reconstructs stress, strain, and deformation in material structures and has its origin in 

mathematical and engineering problems (reviewed by Rayfield 2007). FEA became 

prominent as an analytical technique still within the field of engineering (Zienkiewicz 

1971), where it is used to predict structural performance of mechanical systems, but it 

spread to areas outside it such as orthopaedic medicine (Huiskes & Chao 1983) and has 

since been applied to vertebrate musculo-skeletal biomechanics to model deformation 

and the stress-strain regimen in existing biological structures (Kupczik 2008). It allows 

the study of vertebrate functional morphology in a non-invasive way and where 

traditional experimental approaches are not feasible (Kupczik 2008). Reviews on the 

use of this modelling technique to study biological systems can be found in Richmond 

et al. (2005); Ross (2005); Rayfield (2007); or Panagiotopoulou (2009). 

FEA is often used to study stresses and strains in extant (e.g. Pierce, Angielczyk, 

& Rayfield 2008, 2009; Cox et al. 2011, 2012) and fossil animals (e.g. Rayfield et al. 

2001; Grine et al. 2010) and, more rarely, in artificial constructs such as hypothesised 

representations of ancestral conditions (Ross 2005). FEA can also add to the study of 

patterns of growth and development, and to investigations of adaptive hypotheses 

concerning skeletal form using an iterative adaptive approach in which loading and 

removing elements can generate close-to-reality shapes from amorphous blocks 

(Preuschoft & Witzel 2004a; b; Witzel & Preuschoft 2005). Ross (2005) states that 

improvements in model building techniques will make possible increased applications 

of FEA to study the functional effects of variation in morphology through ontogenetic 

or phylogenetic transformations. The question arises as to whether FEA is actually 

producing answers that reflect reality; what are the sources or error that can be 

introduced in each step of the method? 

Constructing and analysing a finite element model from 3D digital data can be 

divided into four major steps: pre-processing, solution, post-processing and validation 

(Kupczik 2008). Richmond et al. (2005) actually consider only three steps, combining 

validation and post-processing (interpretation). A schematic simplification of the 

process is provided in Figure 2.2. 
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Figure 2.2. A schematic simplification of steps in finite element analysis (FEA). See text 

for more details.  
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2.4.1. Pre-processing: Finite Element Model Building 

 

The pre-processing step starts with acquiring image data that will then be 

converted into a finite element mesh. Some authors (Richmond 1998; Rayfield 2004; 

Richmond et al. 2005) previously claimed that for most questions at hand 2D analyses 

are adequate, but since the advances in engineering computing of the early 2000s, the 

use of 3D became feasible and is now common. Laser scans of structures can be 

transformed into wireframe models (Richmond et al. 2005), but omit internal 

architecture. Most used today are 3D imaging techniques such as computerized 

tomography (CT) (Kupczik 2008). The result of CT scanning an object is a series of 

image slices which together form a virtual 3D representation of the object surface and 

interior (Hsieh 2009). The process of extracting the object from the digital image slices 

and assigning its parts to discrete labels is called segmentation (Kupczik 2008). 

Procedures and algorithms for segmentation include semi-automatic approaches, but 

finding appropriate thresholding algorithms to demarcate the bone from surrounding 

material reliably throughout a structure where bone varies in thickness and density 

(Fajardo, Ryan, & Kappelman 2002) is complex and error prone (Richmond et al. 2005) 

and so is most often done manually. 

When image segmentation has been completed, a (2D or 3D) model can be 

generated and converted into a finite element mesh consisting of finite elements which 

are commonly tetrahedrons or voxels. Finite elements are no more than geometrically 

simple domains interconnected at their vertices, together making up a bigger, 

geometrically complex domain (the whole model). Element vertices are called nodes 

and are a coordinate location in Cartesian space where degrees of freedom, i.e., 

displacements, are defined; displacements are determined in response to the load 

(Richmond et al. 2005; see solution step below). When the finite elements are voxels, 

each voxel can be directly and conveniently converted into a cubic finite element 

(Kupczik 2008).  

Mathematically, FEA aims to find approximate solutions for partial differential 

equations (Fagan 1992; Bhatti 2005). After the model is discretized (i.e., subdivided 

into finite elements), the equations governing each element are calculated and 

assembled in a system that describes the behaviour of the body as a whole (Fagan 

1992). This system generally takes the form Au = f, where A is a square matrix of 

stiffness, u is the vector of (unknown) nodal displacements, and f is the vector of 

applied nodal forces (Fagan 1992).  
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Building finite element models can be extremely time-consuming. The process 

has yet to be optimized and accelerated in order for it be possible to build the large 

number of models required to investigate the actual effects of variation in form on 

variation in function (Ross 2005). A high number of elements and nodes make the 

model computationally expensive, an issue that is less and less problematic as 

computational power increases. It nevertheless can be successfully overcome by 

modelling only half of the structure (assuming symmetry) or by using a coarser mesh 

with fine elements only near regions of geometric complexity; or by using a 2D model 

when it suffices (Richmond et al. 2005). In any case, material properties and boundary 

conditions of a model have to be put in place requiring some time to estimate. 

 

 

2.4.2. Pre-processing: Material Properties and Boundary Conditions 

 

After the finite element mesh is created, the mechanical properties of the 

elements (materials) of the objects involved must be specified. Two of the most 

common are stiffness (Young’s modulus of elasticity, see also Subsection 1.2.3) and 

Poisson’s ratio (Currey 2002; Kupczik 2008). The magnitude and orientation per 

element of these properties, as well as their spatial variation within the model has 

significant implications for the results of an FEA (Kupczik 2008). Elastic property data 

for the cortical bone of the human, macaque and baboon skull determined by 

mechanical testing can be found in Peterson and Dechow (2003) and in Wang et al. 

(2006). In voxel models, elastic property data can also be derived from the density 

values of CT scans, using the scaling relationships between CT numbers, bone density 

and elasticity (Marinescu et al. 2005). 

The elastic or Young’s modulus (E) is defined as 

 

E = σ/ϵ       (2.1) 

 

where σ denotes stress and ϵ strain, measured in simple extension or compression 

(Richmond et al. 2005). It is, thus, a measure of stiffness. Poisson’s ratio is the lateral 

strain divided by axial strain, representing how much the sides of a material will 

contract as it is tensed to maintain volume (Richmond et al. 2005). 
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Apart from assigning material properties, it is necessary to define some 

boundary conditions (Bhatti 2005). There are two types of boundary conditions: the 

kinematic or essential boundary conditions that prevent rigid movement of the model, 

and the natural or non-essential boundary conditions that include the forces applied to 

the model (Richmond et al. 2005). The first type includes the displacement constraints 

required to anchor the model in space (Kupczik 2008). The second type includes the 

force estimates that are going to load the model. These estimates are derived from 

experimental data and estimated using physiological cross-sectional areas (PCSA) of 

the muscles through dissection (discussed further in Chapter 5). They take into account 

the muscle activity pattern of the individual muscles in living animals (Ross et al. 2005; 

Kupczik 2008). The forces applied to the model (loads; Subsection1.2.3) are vectors 

with points of application, magnitudes and directions (Richmond et al. 2005). The 

locations of the loads (e.g. muscle forces) may be either approximations based on 

knowledge of the anatomical region, or more precisely from images or dissections 

(Richmond et al. 2005). In the case of muscle direction, it can be approximated by a line 

drawn from the origin of the entire muscle to its insertion (Ross et al. 2005). As for 

magnitude of muscle force, it can be approximated using muscle PCSA as an estimate 

of maximum potential muscle force (Ross et al. 2005). Force estimates are available for 

the masticatory muscles of macaques (Strait et al. 2005, 2007; Ross et al. 2005). 

Since there is no available bite and joint reaction force data for most papionins 

(also required boundary conditions), a common approach is to constrain the teeth and 

jaw joint to fix the cranium in the same position, thus mimicking the reaction forces in 

the direction of the load (Strait et al. 2005; Ross et al. 2005; Kupczik et al. 2007). 

Alternatively, multibody dynamics analysis (MDA) can be used to estimate bite and 

joint reaction forces and facilitate experimentation with muscle architecture and activity 

patterns (Curtis et al. 2008). 

 

 

2.4.3. Solution and Post-processing 

 

After setting the material properties and the boundary conditions, the model has 

to be solved. This is usually done in a high-performance workstation with multiple 

processors and a fast graphics interface (Kupczik 2008). Solving a model means that 
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node displacements are computed, and from them, the resulting strains and stresses are 

calculated (Richmond et al. 2005; Kupczik 2008). 

The elastic modulus (Young’s modulus E; see also Subsection 1.2.3) determines 

the nodal displacements resulting from the nodal forces (Richmond et al. 2005). As seen 

before, stress and strain are related through E for a given elastic property (Equation 2.1). 

In most biomechanical models, stresses or strains (as well as deformations) resulting 

from an FEA are the data of interest (Richmond et al. 2005).  

When the model is solved, the post-processing step takes place and the results 

can be presented and visualized in the form of scaled strain contour plots or animated 

deformations (Kupczik 2008; Figure 2.2). The results should obviously be interpreted in 

the context of the question asked (Richmond et al. 2005). 

 

 

2.4.4. Validation and Sensitivity 

 

Validation is a critical step in FEA without which researchers would not be able 

to assess how much the model actually represents the real biological specimen 

(Richmond et al. 2005). Researchers need to be able to tackle both the precision and 

accuracy (sensu Richmond et al. 2005) of the model. Precision can be assessed through 

a convergence test in which the model is repeatedly calculated with increasingly finer 

meshes until the displacement magnitude of a chosen test area converges towards a 

precise solution of that model; accuracy can be improved by including data from 

experimental work into the model, seeking to minimize discrepancies between the 

model and in vivo results (Richmond et al. 2005). Ultimately, it is the researcher who 

has to decide how accurate is accurate enough (Richmond et al. 2005).  

Independent experiments are critical to modelling a mechanical problem in a 

realistic manner, the best means of validation inevitably being the direct measurements 

of strain, as in in vivo gauge experiments (Rubin & Lanyon 1982; Hylander & Johnson 

1992; Ross 2001; Richmond et al. 2005). Strain gauges have to be glued on the bone 

surface and not only offer limited data about the surface strain distribution (Gröning et 

al. 2009), but also raise issues of in vivo animal welfare or ex vivo specimen integrity 

(for example, irreplaceable museum specimens should not be damaged). One other way 

of measuring strain that is becoming popular is laser speckle interferometry, which is a 

non-contact system for measuring displacements from which principal strains can be 
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calculated (Kessler et al. 2006; Yang et al. 2007; Gröning et al. 2009; Panagiotopoulou 

et al. 2012). Results from any FEA can only be interpreted when matched to the actual 

biological variation (Kupczik 2008). Potentially, the best validation includes in vitro as 

well as in vivo experimentation (Richmond et al. 2005). 

However, independent empirical data must be available to test the reliability of a 

model (Richmond et al. 2005; Strait et al. 2005, 2007; Marinescu et al. 2005; Ross et al. 

2005; Kupczik et al. 2007). Fortunately, some published data on in vivo strain 

magnitude and orientation are becoming increasingly available and can be used to 

validate models (e.g. Marinescu et al. 2005). 

Essential for the understanding of consequences of error in the input parameters 

of a finite element model (especially in the absence of available experimental data for 

validation) is a sensitivity analysis (Kupczik 2008). It should test for the effects of 

changes of the applied loads, variations of the material properties of differences in the 

structure and size of the model on the modelling results, among other things (Strait et al. 

2005; Ross et al. 2005; Kupczik et al. 2007; Curtis et al. 2008). Many FEA-based 

studies have focused on the sensitivity of the method to different variables 

(Panagiotopoulou, Kupczik, & Cobb 2011; Gröning et al. 2011; Parr et al. 2012). 

FEA allows the study of deformation by expressing it in terms of stress and 

strain at each node comprising the model. Recently, a link between FEA and geometric 

morphometrics has been attempted, using landmark configurations to read and compare 

global deformations from FEA (O’Higgins et al. 2011). Strain is one way of assessing 

changes in size and shape but landmark-based methods are another. Analysis of size and 

shape-changing deformations under biting loads using geometric morphometrics are 

complementary to strain-based assessments of deformation in that they relate to large 

scale (global) deformations, while strains describe deformations at each node, using 

strain contour plots as the only indication of global deformations (O’Higgins et al. 2011, 

2012). A brief review and description of the landmark-based deformation analysis is 

given next and used extensively in Chapters 6 and 7 of this thesis. 
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2.5. Landmark-based Deformations Analysis 

 

 Landmark-based analysis of deformations is a novel methodology developed 

recently and with only a few published examples of its use (O’Higgins et al. 2011; 

Gröning et al. 2011; Cox et al. 2011; Parr et al. 2012). It combines FEA and geometric 

morphometrics in a way that allows visualisation of global deformations from FEA and 

comparison among models, providing a quantitative method to compare the behaviour 

of different finite element models. It is anticipated that, with development, it will open 

the door to inter- and intra-population FEA studies. 

 The concept of engineering or size and shape-changing deformations (large 

scale, global deformations) describes deformations as the change in shape (or size) of an 

object due to an applied force (Truesdell & Noll 2004; O’Higgins et al. 2011). It 

opposes the continuum mechanics concept of deformation which means the 

transformation of a rigid body from a reference configuration to a new configuration 

even without change in shape (Truesdell & Noll 2004). Throughout this thesis the single 

word deformation will always mean size and shape-changing deformation.  

 

 

2.5.1. Landmark Displacement in Finite Element Analysis 

 

Visualizing and analysing deformations relies on the ability of a finite element 

model to predict them (see Section 2.4). A set of GMM landmarks is chosen as 

described in Section 2.3. Each landmark is placed on the surface of the model cranium, 

in a position that has to be equivalent among all the specimens in the comparative study 

(see Subsection 2.3.1). The Cartesian coordinates of each landmark change as the 

cranium deforms, each one of them being displaced to different XYZ coordinates. This 

causes the landmark configuration to change in size and shape. Whereas the pure 

displacement of each landmark is not directly interpretable in terms of changes in size 

and shape because translations and rotations intrude, the global landmark configuration 

is. When these changes are compared, differences in deformation reflect differences in 

mechanical performance within that same model. In comparing FEA results following 

different loadings of the same model specimen, the full configurations of landmarks 

after translation and rotation can be put through a full geometric morphometric analysis 

to assess deformations at the scale of the landmark configuration as a whole, which is 
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usually large (global). This contrasts with strains which describe deformations in each 

element one by one. 

This geometric morphometric approach can potentially be extended to allow the 

comparison of several finite element models. When resulting landmark configurations 

of several models are analysed, differences in deformation reflect differences in 

mechanical performance among them. However, there are several difficulties in directly 

comparing changes in size and shape between different models. In fact these difficulties 

are in part a consequence of the difference in size and shape of models even before any 

load is applied to them. The very question of differences in deformation becomes less 

sensible as the differences among models increase. Conversely, when size and shape 

differences between models are few (and disappear altogether between identical 

models) comparing their deformation is unequivocal when they are loaded in the same 

way. This means that the issue of similarity of deformation can only be approached 

approximately, but with increasing security as unloaded forms converge on a single 

form. Additionally, size and shape differences among the various unloaded models tend 

to dominate the analysis, because they are very large compared to the differences in size 

and shape among the different loadcases of each model. In consequence, differences in 

size and shape among unloaded models must be discounted prior to analysis of 

differences due to deformation. This is achieved by first carrying out a GPA with all 

loaded and unloaded specimens to produce shape variables. Next, the residual size-and-

shape variables due to loading are computed by subtracting the landmark configurations 

of the unloaded from the loaded state for each specimen. 

 

residuals = loaded (x, y, z) – unloaded (x, y, z)   (2.2) 

 

Subsequent analyses use the residuals to compare deformations, and visualise them by 

drawing them on the mean of all the unloaded specimens, which is achieved by adding 

it to the residuals. This effectively eliminates the differences in size and shape among 

the unloaded models (in a purely isometric and non-mechanical sense), leaving only 

differences in deformation.  

 

 

 

 



83 

2.5.2. Scaling to Bite Force 

 

In comparative studies of relative deformation after simulated biting loads, in 

order to ensure that the observed differences in deformation among models can be 

interpreted as differences in skeletal response to the same bite force among specimens, 

rather than as an artefact of differences in applied force, some equivalent loading has to 

be decided upon. One possibility is to consider equivalence in terms of applied muscle 

forces; another is in terms of bite force (Fitton et al. in prep.). Since deformation scales 

linearly and with a slope of 1 with force, this latter is achieved by first measuring the 

predicted bite force and, knowing the desired bite force, scaling the deformations 

(changes in size and shape of the landmark configuration) accordingly. In this thesis the 

equivalent loading is a bite force of 100N, to which value all the calculated bite forces 

(see Section 7.2 for further details) and landmark configuration deformations are scaled. 

The scaling to the same bite force step is computed on the residuals and only 

after this should the mean unloaded configurations be added to the (now scaled) 

residuals. It is processed firstly by computing the residuals from the original unloaded 

specimens, using Equation 2.2. Then, each residual is multiplied by a scaling factor, 

using the formula: 

  

residual × (same bite force  / calculated bite force)    (2.3) 

 

where the same bite force is the desired bite force to scale the deformations to (100N in 

this thesis, see Section 7.2), and the calculated bite force should be computed from a 

finite element model after loading on a particular tooth. The scaled value is then added 

to the original unloaded data and a full shape GPA is performed. After that, the residuals 

from the Procrustes registered landmark coordinates are computed. Then the mean of all 

original unloaded specimens is calculated and added to the residuals.  

Finally, size differences among configuration due to loading are restored by 

using, for each loadcase, the ratios of their centroid sizes to their unloaded centroid size 

to proportionately scale the configurations relative to each other: 

 

(mean + residual) × (mean unloaded CS × [loaded CS/unloaded CS]) (2.4) 

 

to each coordinate value, where CS denoted the natural logarithm of the centroid size of 

each configuration after the full GPA. The mean original configuration must also be 
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multiplied by the mean centroid size of the original, unloaded configuration so that it 

can be plotted together with the loaded configurations. Changes in size and shape 

among and within models due to loading are then assessed using principal component 

analysis (PCA). 

 

 

2.5.3. Visualizing Deformation 

 

The results of subsequent size-and-shape analysis can be visualized using 

warped surface visualizations. Transformation grids computed using TPSs between the 

reference and target load cases (although issues have been raised about this, see 

Subection 2.3.4) can be used to aid in the interpretation of the deformation differences 

along the axes or between points on the principal component plot, such as in every 

geometric morphometric analysis. As with landmark configuration among specimens, 

geometric morphometrics facilitates the assessment of variations in form (size and 

shape) among load cases using multivariate methods (Bookstein 1991b; O’Higgins 

1997; Dryden & Mardia 1998; Rohlf 2000; Slice 2007; Milne & O’Higgins 2012; 

O’Higgins & Milne 2013). The Procrustes size and shape distances between the 

loadings indicate the magnitudes of the differences in form among unloaded and loaded 

models. PCA is carried out with size-and-shape variables resulting from translation and 

rotation of the unloaded and loaded landmark configurations. 

Apart from the so far reviewed methods, some other multivariate statistics must 

be discussed in this chapter before closing. These include ordination methods (such as 

principal components analysis), correlation methods (two-block partial least squares 

analysis) and significance tests. 

 

 

 

2.6. Multivariate Statistical Analysis 

 

In addressing complex problems such as the comparison of shape (and form), a 

multivariate approach is fundamental for testing and visualizing hypotheses. Here, the 

pertinent statistical methods used in later chapters of this thesis are outlined. 
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2.6.1. Principal Components Analysis 

 

Principal components analysis (PCA, Pearson 1901) is a method for reducing a 

large set of variables to few dimensions (principal components) that represent most of 

the variation in the data. PCA is computed by an eigendecomposition of the sample 

covariance matrix (an excellent explanation of matrix algebra can be found in Carroll, 

Green, & Chaturvedi 1997) and is a rigid rotation of the data preserving the distances 

among the specimens (Mitteroecker & Gunz 2009). Principal component scores are the 

projections of (sizes and) shapes onto the space spanned by the eigenvectors. The space 

has the same dimensions as the original distances, but ordered according to variance. 

They can be plotted as 2D or 3D graphs and allow one to assess group differences, 

growth trends, outliers, etc., in data based on the shape and form variables only (without 

incorporating prior information, e.g. such as group affiliation) (Mitteroecker & Gunz 

2009). The eigenvectors, or principal components, can be visualized as actual 

deformations by working backwards from the loadings of coordinates on these 

components. 

 Principal components are statistical artefacts, rather than biological entities, 

largely depending on the composition of the sample, they do not represent biologically 

meaningful factors (Mitteroecker & Gunz 2009). In morphometrics there is one known 

exception: the first principal component of a single species or population sometimes 

represents allometry, the shape variation induced by overall size variation (Klingenberg 

1998). This happens only if allometric variation is the dominant factor in the data, such 

as in ontogenetic studies. Multivariate regression is preferred to estimate allometry 

otherwise (Mitteroecker & Gunz 2009). 

 

 

2.6.2. Partial Least Squares Analysis 

 

 Partial least squares (PLS) is a method to assess relationships among two (or 

more) blocks of variables measured on the same entities (Wold 1966). It can be used to 

examine the relationship between two blocks of size-and-shape variables, one block of 

size-and-shape and another of non-shape variables, and, of course, two blocks of non-

shape variables (Zelditch et al. 2004; Mitteroecker & Gunz 2009). Blocks of size-and-

shape variables can be related to each other, such as in morphological integration (e.g. 
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Monteiro, Bonato, & Dos Reis 2005); or to biomechanical variables, such as 

deformations or bite force (e.g. Cox et al. 2011); or to ecological and behavioural 

factors, such as geographical variation or dietary categories (e.g. Meloro & O’Higgins 

2011). An important feature of PLS is that the data must be partitioned a priori into 

blocks before the analysis begins (Zelditch et al. 2004).  

Specifically, two-block PLS analysis of covariation yields linear combinations 

that optimally (in a least squares sense) describe the covariances among the sets of 

variables and so provide a low-dimensional basis to assess the association between 

different blocks of variables. The method employs a mathematical technique called 

singular value decomposition (SVD), related to an eigendecomposition used to extract 

principal components from the variance-covariance matrix (Rohlf & Corti 2000) and 

partial warps from the bending-energy matrix (Bookstein 1989, 1991b). Because PLS 

uses SVD, the vectors generated by PLS are called singular axes (Zelditch et al. 2004). 

When size-and-shape variables are concerned, the results of a PLS can be visualized as 

shape deformations (singular warps) (Mitteroecker & Gunz 2009).  

 

 

2.6.3. Statistical Significance Tests 

 

 A mention of statistical significance tests is required here. Many geometric 

morphometric analyses are based on randomization tests, such as permutation tests or 

bootstrap tests (Mitteroecker & Gunz 2009), rather than parametric methods to assess 

the statistical significance level of a given hypothesis. Most parametric tests require 

more cases than variables and a specific (usually a normal) distribution of the variables, 

whereas randomization tests are free from these restrictions as long as the cases are 

sampled independently. Furthermore, test statistics can be designed even for complex 

hypotheses and compared with their permutation distribution (Mitteroecker & Gunz 

2009). Geometric morphometric analyses in Chapters 3 and 4 utilize randomization 

tests embedded in the software, as well as a t-test to test if the slope of the regression is 

different from 1. Chapter 8 uses the RV-coefficient (Escoufier 1973; Robert & Escoufier 

1976), which is equivalent to a permutation test using the sum of squared covariances or 

the sum of squared singular values (from a PLS) as the test statistic. Analyses in 

Chapters 6 and 7 are not suitable for significance testings due to low sample size.  
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2.7. Summary 

 

In summary, the methods used thoughout this thesis to study the evolution of the 

papionin cranial form and its potential biomechanical adaptation to feeding are 

quantitative genetic analysis, geometric morphometric analysis, finite element analysis, 

the novel landmark-based deformations analysis and multivariate statistical analysis. 

Quantitative genetics studies the correlation and the variance-covariance matrix among 

multivariate traits. Geometric morphometrics is the statistical analysis of form (shape 

and size) based on Cartesian landmark coordinates and associated to the statistical 

theory of shape. Finite element analysis is an analytical technique used to predict 

structural performance of mechanical systems, including the vertebrate musculo-skeletal 

system, in a non-invasive way. Landmark-based deformation analysis combines the 

previous two methods in a way that allows visualisation of size and shape-changing 

deformations from finite element analysis and comparison among models, providing a 

quantitative method to compare the behaviour of different finite element models in 

terms of deformations. Multivariate statistical methods are essential for testing and 

visualizing hypotheses about complex problems, such as the comparison of form. The 

material used are simulated data (in part of the quantitative genetic analysis), 3D 

computerized tomography scans of dry crania (used in model building for FEA), and 3D 

landmark data chiefly taken from 3D computerized tomography scans. 

The remaining chapters of this thesis regard the testing of hypotheses concerning 

papionin cranial evolution and mechanical adaptation as outlined in Section 1.1. The 

immediate Chapters 3 and 4 deal with a test on the evolutionary divergence of papionin 

crania by the action of a neutral microevolutionary force (random genetic drift). 
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Chapter 3. Simulating Type I Error Rates for Testing Random 

Genetic Drift with Phenotypic Covariance Matrices 

 

 

 

Published research paper (see Appendix C) with reference:  

Prôa, M., O’Higgins, P. & Monteiro, L.R. (2013) Type I error rates for testing 

genetic drift with phenotypic covariance matrices: a simulation study. 

Evolution, 67(1), 185–195. DOI: 10.1111/j.1558-5646.2012.01746.x 

 

 

 

3.1. Introduction 

 

Understanding the evolution of cranial form and its mechanical adaptation to the 

function of feeding first requires an understanding of the evolutionary processes acting 

on it. There are two main types of evolutionary processes: neutral processes (the most 

important of which is random genetic drift), and adaptive processes, including natural 

selection. When no adaptive processes are acting on a form, then that form is evolving 

neutrally, i.e, it is not directed towards a greater degree of adaptation. If random genetic 

drift was the single driver of the evolution of papionin cranial form, responsible for the 

divergence of cranial form among the papionins, then it follows that differences in 

cranial form among the papionins cannot be interpreted as adaptations to any particular 

function. On the other hand, if random genetic drift can be excluded as a single 

evolutionary driver of evolution, then differences found in papionin cranial form likely 

have a more adaptive interpretation (such as the biomechanical demands of different 

dietary strategies). Thus, it is important that before finite element analysis is used to 

assess functional adaptation in the cranium, random genetic drift is excluded as an 

explanation of these differences. 

When testing for evolutionary processes, quantitative genetic methods are the 

best approach (see Subsection 2.1). Quantitative genetics provides inferences of 

evolutionary processes via the study of evolutionary divergence patterns and their 
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relationship to intra-population adult variation (Lande 1979; Ackermann & Cheverud 

2002, 2004; Marroig & Cheverud 2004; Monteiro & Gomes-jr 2005; Perez & Monteiro 

2009). The connection between neutral microevolutionary processes and 

macroevolutionary patterns is centred around the additive genetic variance-covariance 

matrix (G) (Lande 1980b; Arnold et al. 2001; Jones et al. 2003; Bégin & Roff 2004; see 

also Subsection 1.2.1), which is thought to determine both the response to selection and 

the pattern of neutral divergence, at least among populations over a small time scale 

(Lande 1980b; Felsenstein 1988; Zeng 1988). 

 The expected pattern of phenotypic divergence among populations caused by 

random genetic drift in correlated traits can be used as a null hypothesis to test for 

neutral evolution (Lande 1979, 1980b). Put simply, the quantitative genetic approach 

relies on showing that the pattern of morphological divergence observed among 

sampled species means differs from that within species. This assumes that drift will 

follow the “line of least resistance” (Schluter 1996; Marroig & Cheverud 2005) and 

occur in ways that simply replicate within taxon variation. If variation among taxa 

follows a different pattern to that within, it is more likely that these interspecific 

differences have been acquired through a more active evolutionary process such as 

natural selection. The aim of this chapter is to assess the extent to which such 

quantitative genetic models are robust in the face of violations of their underlying 

assumptions as a preliminary to applying these methods to assess the likelihood that 

drift alone underlies differences in cranial form among papionins, in the next chapter. 

This assessment of whether or not random genetic drift underlies differences among 

papionins is, in turn, an essential preliminary to comparative biomechanical simulations 

of masticatory system functioning since the interpretation of these assumes that the 

differences observed are not neutral. 

The sampling distribution of the change in trait means in one generation (∆z̅) has 

a mean of 0 and variance-covariance matrix G/Ne, the genetic covariance matrix in a 

population divided by the effective population size (Lande 1979). If the average 

phenotype of a population a is represented by a column vector z̅a of polygenic traits 

with additive genetic and environmental components following multivariate normal 

distributions (Lande 1980b), the probability distribution Φ of after t generations will be  

 

Φ(z̅a,t) ~ N[z̅0,G(t/Ne)]    (3.1) 
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which is a normal distribution with a mean equal to that of the initial population  and 

variance-covariance matrix G(t/Ne) (Lande 1979). If a number of populations are 

evolving independently (i.e. without gene flow), the expected among-population 

phenotypic variance-covariance matrix (B) is a function of the genetic covariance 

matrix (G), effective population size (Ne) and the number of generations (t): 

 

B = G(t/Ne)      (3.2) 

 

As a result, the comparison of among-population (B phenotypic) and within-group (G 

genetic) variance-covariance matrices can be used as a means to determine whether 

genetic drift as a null model explains the pattern of divergence observed (Lofsvold 

1986, 1988; Roff, Mousseau, & Howard 1999; Ackermann & Cheverud 2002; Bégin & 

Roff 2004).  

 Because phenotypic covariances are much easier to estimate than their genetic 

counterparts, replacing average G with the pooled phenotypic within-group covariance 

matrix (W), provided that the phenotypic covariance matrices for diverging populations 

remain similar, has been a widely used approach to study the evolutionary mechanisms 

of divergence (Ackermann & Cheverud 2002, 2004; Marroig & Cheverud 2004; Perez 

& Monteiro 2009). Cheverud (1988) investigated the relationship between genetic and 

phenotypic correlation matrices using data taken from the literature and concluded that 

phenotypic correlations were reasonable estimates (and generally proportional, though 

perhaps not in a strict mathematical sense) of the respective genetic correlations. A 

second conclusion from these data was that phenotypic covariances W estimated with 

large samples might approach G more accurately than genetic covariances estimated 

from small effective sample sizes, at least for morphometric data (Cheverud 1988; 

Revell et al. 2010). A number of meta analyses from literature reviews and empirical 

results have to some degree corroborated Cheverud's findings (Roff 1995, 1996; Koots 

& Gibson 1996; Waitt & Levin 1998; Roff et al. 1999). Nonetheless, this approach has 

been criticized on several grounds (Willis, Coyne, & Kirkpatrick 1991), but mostly 

because W is not mathematically proportional (i.e. having a constant ratio) to average 

G. Apart from the issue of similarity and proportionality between matrices, more 

specific consideration of the actual consequences of using W as a surrogate of average 

G in empirical studies (Bégin & Roff 2004; Klingenberg, Debat, & Roff 2010) should 

prove fruitful and one such aspect, the impact in terms of type I error rates, is the focus 

of the present study. 
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 Quantitative genetic theory predicts phenotypic covariances within a single 

population (P) to be the sum of the genetic covariation (G) and the environmental 

covariances (E), P = G + E (Falconer & Mackay 1996), as seen in Section 1.2.1. A part-

whole correlation is expected between phenotypic and genetic covariances; therefore 

phenotypic covariances can be considered an estimate of genetic covariances with 

added error due to environmental covariances, even if not mathematically proportional. 

 Most of the discussion on the surrogacy of average G by W revolves around the 

similarities and differences between phenotypic and genetic covariances in single 

populations or from literature reviews, and the differences in empirical comparative 

results obtained when using one kind of estimate or the other. The latter are rare, due to 

the difficulty in estimating genetic parameters for a large number of species at the same 

time (Bégin & Roff 2004). Considering that Landeʼs (1979, 1980) model expects the 

among-population covariance matrix B to be proportional to the average G when 

genetic drift is the sole evolutionary mechanism, for the purpose of evolutionary 

divergence tests of neutral evolution, the relevant discussion is not whether G and P are 

exactly proportional in single populations, but whether using the phenotypic pooled 

within-group covariance matrix W instead of the average G will add enough error 

(caused by the environmental covariances) to lead into erroneous conclusions. The tests 

that have been used in the comparison of among-species phenotypic covariances and 

genetic covariances (Lofsvold 1988; Ackermann & Cheverud 2002, 2004) do not test 

for exact proportionality between B and average G, but for similarity in different matrix 

features, such as the correlation of principal components and the distribution of 

eigenvalues. The expectation of proportionality rests on a number of assumptions 

(Lande 1979) that are probably violated in most natural populations (Lofsvold 1988), 

e.g. through the lack of large effective population sizes (Lofsvold 1988), or because of 

differences in the starting times of lineages (Revell 2007). Furthermore, error in the 

estimation of the average G might lead to unpredictable deviations from the 

expectation. Lofsvold (1988) has suggested that the acceptance of genetic drift as a null 

hypothesis will be more robust to the breaking of the model’s assumptions than the 

rejection (so type I error rates are of more concern than the power), and in real studies it 

might be hard to determine the actual cause of rejection, natural selection being one of 

the possible explanations. One might expect that a consequence of using pooled within-

group phenotypic instead of genetic covariances would be to increase the probability of 

rejecting (type I error rate) a true null hypothesis of genetic drift. 
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 In this study, the consequences of using pooled within-group phenotypic instead 

of average genetic covariance matrices in the Ackermann and Cheverud (2002) test of 

genetic drift (referred to as the AC test from here on) in terms of type I error rates are 

examined using a simulation of phenotypic evolution in diverging populations. The 

most relevant parameters are identified and a number of recommendations are 

discussed. 

 

 

 

3.2. Material and Methods 

 

The material used is both real shape data retrieved from the literature (see 

Subsection 3.2.1) and simulated data. The methods are simulations run on programmed 

code (Appendix B). The simulations were performed using the quantitative genetic 

theory from Lande (1979, 1980). Starting from an ancestral population with genetic 

covariance matrix G and mean vector z̅0, a number (15 or 30) of descendant population 

mean vectors z̅a were generated using the t-fold convolution in Equation 3.1 for a range 

of t/Ne ratios (0.000001 to 100 in increments of 1 in log10 scale). This approach is 

equivalent to a random walk in multivariate space where each descendant population is 

evolving at a rate equivalent to G/Ne. Instead of generating the intermediate phenotypes 

for each step (generation) of the random walk, the convolution allows for a direct 

generation of the end points with the same results and in a computationally efficient 

way.  

 The descendant populations from the ancestral distribution N[z̅0,G] were 

sampled n times (sample sizes 10 to 100, in increments of 10) according to the 

multivariate normal distribution N[z̅a,P], for each population. The first step in the 

simulations required an ancestral genetic variance-covariance matrix (G) to generate 

species means and the second step required a phenotypic within-population variance-

covariance matrix (P) to generate individual specimens for each population. The same P 

was used for all populations (the pooled within-group phenotypic covariance matrix W 

is an estimate of the original P). Different simulation models were used, either 

generating random G and P matrices as starting parameters (fully stochastic), or using 

predetermined matrices obtained from real data sets. The fully stochastic sets of 

simulations required the generation of random positive definite covariance matrices 
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(where all eigenvalues are > 0) that could be used as parameters in the generation of 

random multivariate normal numbers representing individuals sampled, as described 

below. 

 Throughout the chapter, correlations of lower triangular covariance matrices 

excluding diagonals (variances) are used as one measure of structural similarity 

(alongside Common Principal Components – CPC, Phillips & Arnold 1999). Note that 

permutations of the matrix elements were not used for testing significance of 

correlations. This procedure is not indicated for testing similarity in covariance matrices 

if variables have differences in scale (Cheverud & Marroig 2007), but was the most 

appropriate choice for these simulations. This is because the algorithm for the 

generation of random positive definite matrices (see details below) yielded matrices 

where covariances were small relative to variances. As a result, even when two 

covariance matrices were independently generated, they presented high positive matrix 

correlations when the diagonal was included (or when using comparison methods such 

as random skewers), because the variances and covariances would systematically form 

two groups of values in the matrix scatterplot. Only when diagonals were excluded, was 

the expected correlation for independent matrices 0. This particular structure in the 

random matrices (high variances, small covariances) is a consequence of generating 

positive definite matrices, because matrices with high covariances relative to variances 

are likely to be non-positive definite. Therefore, the most accurate description of matrix 

similarities in our simulations was derived from matrix correlations, using the lower 

triangular elements, excluding the diagonals. This is equivalent to comparing correlation 

matrices derived from the covariance matrix, as the information regarding variances is 

disregarded. In real data sets there would be no justification to exclude the variances 

from the structural comparisons, as differences in scale of variances and covariances are 

a relevant part of the structure. 

 

 

3.2.1. Simulation Model 1 

 

 As a first set of simulations, real matrices rather than randomly generated ones 

are used. The matrices for the main simulations were obtained from a honey bee (Apis 

mellifera) wing shape data set with 16 shape variables (partial warps), modified (used 

only landmarks 11-20) from Monteiro et al. (2002), and a gastropod shell shape data set 
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(Physa heterostropha) with 14 shape variables (DeWitt 1996, 1998). The average 

heritability of bee wing variables (calculated as 1(IoG)(IoP)
-1

 1 m
-1

 , where 1 is a row 

vector of ones, I is the identity matrix, o is a Hadamard (element-wise) product, and m 

is the number of variables) was 0.217, and the effective sample size, given that 21 bee 

colonies were used was 4.6. The effective sample size was calculated as the product of 

heritability and the number of families, as described in Cheverud (1988). For the shell 

shape data set, the average heritability was 0.607, and the effective sample size was 11.5 

(19 families were used). These two data sets present important differences in the 

structural similarity of G and P. For the bee wing data, the matrix correlation between 

G and P was 0.804, whereas for the shell data set the correlation was 0.442. Although 

the average heritability was smaller for the bee wing data, their genetic and phenotypic 

matrices were more similar than in the shell data set. This is not unexpected, as these 

average heritabilities do not measure matrix similarity, only the relative magnitudes of 

the genetic and phenotypic variances. A comparison of these genetic and phenotypic 

covariance matrices via CPC indicated that the bee data set matrices shared the full set 

of principal components (full CPC model supported by the jump-up approach) and the 

shell data set matrices shared no principal components (Unrelated model supported). 

 

 

3.2.2. Simulation Model 2 

 

 In this model, P and G were exactly proportional and differed only by a scalar 

multiplication. G was defined first as a random positive definite covariance matrix 

using the eigenvector method from Marsaglia and Olkin (1984) and Joe (2006). The 

eigenvector method first generates random eigenvalues (1, ..., m) from a uniform 

distribution (the diagonal matrix L). A lower bound of eigenvalues was set to 1 and an 

eigenvalue ratio (between upper and lower bound) set to 10. The algorithm then 

generates a random orthogonal matrix of eigenvectors Q (via QR-decomposition) and 

constructs the genetic covariance matrix G as QLQ
T
. The phenotypic covariance matrix 

was defined by the scalar multiplication P = kG, where k is a uniform random number 

from 1 to 10. This approach generates a random uniform distribution of covariance 

matrices in the space of positive definite covariance matrices (Joe 2006). In this set of 

simulations, as in all other fully stochastic models, G and P had 15 dimensions. 
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3.2.3. Simulation Model 3 

 

 In this model, G and P are defined as independent random positive definite 

covariance matrices using the uniform correlation matrix method (Joe 2006), where a 

random correlation matrix (R) is first generated from a uniform distribution of partial 

correlation coefficients. The variances are generated separately as a diagonal matrix S = 

diag(1
2
, …, m

2
) with elements obtained from a uniform distribution ranging from 1 to 

10. The random covariance matrices are constructed as SRS. G and P were 

independently derived in this model, with the restriction that the variances in P are 

always larger than the respective variances in G. To achieve this, the variances 

(diagonal) of P were random multiples of the respective variances in G. This procedure 

ensures that the variances of P were always larger, but P and G were independent. A 

series of 1000 simulations using this model yielded a distribution of G and P matrix 

correlations with a 95% confidence interval (using 2.5 and 97.5 quantiles) of –0.194 to 

0.201, and a median of 0.0004. A further structural comparison of model 3 matrices was 

performed by CPC of 100 simulated G P pairs. Comparisons were done among 

estimated covariance matrices after generating 300 random observations from a 

multivariate normal distribution with a mean vector of zeros and random G and P 

(defined as above) as parametric covariance matrices. Because the model fitting in CPC 

depends on sample sizes, a standard n = 300 was maintained for all other comparisons 

as well. The results indicated the Unrelated model (no shared principal components) in 

all comparisons. Although the covariance structure is independently generated, all 

matrices generated by this method have variances on a much larger scale than the 

covariances. Therefore, there is some structural similarity because all matrices have 

clearly two groups of elements (covariances and variances), and the variances are 

always much larger than the covariances. This model is not biologically reasonable 

because G and P independence is unlikely (even if not proportional) due to a part-whole 

relationship. The model is included as a control, as the opposite to the mathematical 

proportionality of simulation model 2, allowing for a check that the simulations behaved 

as expected at extremes of G and P similarity and independence. 
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3.2.4. Simulation Model 4 

 

 Simulation model 4 was designed to generate correlated G and P matrices, but 

without a common principal component structure. In order to achieve this, the 

quantitative genetic relation P = G + E was used. In these models, G and E were 

defined first and independently. P was then defined as a random matrix with expected 

value G and a random perturbation E (Marsaglia & Olkin 1983). E and G were 

generated by the uniform correlation matrix method described in simulation model 3, 

where G has a range of variances between 1 and 


maxG (with a maximum of 10), and E 

has a range of variances between 0 and 


maxE , where 


maxG and 


maxE are the function 

parameters determining the upper limits of the range of variances in G and E, 

respectively. The expected value of the average heritability of the variables in the 

simulations is the ratio (


maxG  – 1)/([


maxG – 1] + 

maxE). This method generated 

correlated P and G, but without a common PC structure. This pattern is ensured because 

the variables with larger variances in E will be generally different than the variables 

with larger variances in G so that P is less likely to inherit principal components from G 

(H. Joe, pers. comm.). Of course, as the variances in E become smaller than variances in 

G (


maxE << 

maxG), common principal components between P and G appear. The 

distribution of matrix correlations from 1000 model 4 simulations (using 


maxG = 10 

and 

maxE = 9 for a similar range of variances) presented a 95% CI of 0.560 to 0.897, 

and a median of 0.776. A CPC analysis of 100 model 4 simulations of G and P was 

performed to check for common eigenstructure. The simulations showed strong support 

for the Unrelated model (no common principal components) in 65% of the cases, using 

the jump-up approach. The remaining simulations supported 1 (26%) or 2 (9%) 

common principal components. In simulation model 4, the perturbation of expected 

value G by E included random rotations of its eigenstructure, even if matrix correlations 

were high. 
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3.2.5. Simulation Model 5 

 

 In simulation model 5, G was defined as a random positive definite covariance 

matrix using the eigenvector method from Marsaglia and Olkin (1984) and Joe (2006), 

but where 

maxG is the max/min eigenvalue ratio (this parameter will have a different 

interpretation than in model 4, but the average heritabilities expected are exactly the 

same in models 4 and 5). P was defined as the sum G+E, where E was generated by the 

uniform correlation method, with a variance range of 0 to 


maxE. In this model, P 

readily inherits the principal component structure of G, even when 

maxE ~ 


maxG. The 

matrix correlation in these simulated matrices (with 


maxG = 10, and 


maxE = 9) were 

smaller than in model 4 (matrix correlation distribution 95% CI = 0.061 to 0.462, 

median = 0.274), but the CPC analysis shows strong support for a shared latent 

structure, where 13% of the simulations supported the Unrelated model (0 CPCs), and 

60% of the simulations supported models with 3 or more common PCs. The 

perturbation caused by E generates random differences between P and G, but not a 

random rotation of the eigenstructure of G (when 

maxG > 


maxE). This pattern is 

caused by a lambda ratio (


maxG) of 10 or larger, which will produce G matrices with 

sharp elliptical contours (noticeable principal components), ensuring that the principal 

component structure of G is inherited by P, even when 


maxG ~ 

maxE (H. Joe, pers. 

comm.). 

An illustrative bivariate example of the typical main differences between 

simulation models 4 and 5 is depicted in Figure 3.1. For each model and t/Ne, 

simulations are shown with four populations descending from an ancestor (0,0) with a 

random genetic covariance matrix (shown as dashed lines in Figure 3.1) and a random 

phenotypic matrix. The same phenotypic covariance matrices were used to generate 30 

observations in each population and these are depicted as distinct clusters around each 

descendant. In simulation model 4, the matrix P is a random rotation of G, whereas in 

simulation model 5, the main axes of G are preserved in P. 
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Figure 3.1. Simulation of genetic drift in four populations.The means of each population 

were evolved from an ancestral multivariate normal distribution with mean = (0,0) and 

covariance matrix = G(t/Ne). Each population was randomly sampled 30 times using 

the respective average and covariance matrix P. Left panels correspond to simulation 

model 4, where P and G are correlated, but do not share principal components. Right 

panels correspond to simulation model 5, where P and G share principal components 

but have low correlation. The ancestral genetic covariance matrix is depicted as a 

dashed ellipse. The population phenotypic covariance matrices are depicted as solid 

ellipses. Filled circles correspond to population means and open circles correspond to 

individual observations.  
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3.2.6. Genetic Drift Test 

 

Genetic drift as a neutral model for phenotypic divergence was tested by 

comparing the among-population covariance matrix (B) and the within-population 

phenotypic covariance matrix (W, as a surrogate of the average G) for the simulated 

data using the method of Ackermann and Cheverud (2002, 2004). This involved 

extracting the eigenvectors (M) and eigenvalues (m) of W, and projecting each 

population phenotypic vector of means z̅ on M, Y = z̅M. The vector of means for each 

population was the one estimated from the simulated samples, not the parametric means 

generated from the ancestral G and ancestral vector of means. Finally, the variances for 

each column of Y were calculated and a regression of the variances of Y on m 

performed following 

 

ln(Yi)  =  ln(t/Ne) + β ln(mi).    (3.3) 

 

 Testing with a t-test whether the slope of the regression (β) is different from 1 

indicates whether the pattern is compatible with genetic drift. The null hypothesis of 

genetic drift is rejected if the slope deviates significantly from 1 (Ackermann & 

Cheverud 2002, 2004). 

 For each combination of parameters (ancestral G, P, t/Ne ratio, sample size, 

number of descendant populations, 

maxE/


maxG) in different models, 1000 data sets 

were simulated to estimate type I error rates. In the simulated data sets, the only 

mechanism producing phenotypic divergence among the descendant populations was 

genetic drift. When using a significance level of α = 0.05, a true null hypothesis is 

expected to have a 5% chance of being rejected (a type I error). If the use of phenotypic 

covariances as proxies for genetic ones in the genetic drift test does increase the type I 

error rates, it is expected that, using a significance level of 5%, the null model of genetic 

drift will be rejected in more than 5% of the simulated samples. 

 All the simulations and analyses were run in the R environment (R Development 

Core Team 2013) using functions from the packages MASS (Venables & Ripley 2002), 

clusterGeneration (Qiu & Joe 2009), and vegan (Oksanen et al. 2007). The R code 

(commented) used for the simulations is available in Appendix B. 
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3.3. Results 

 

For the simulation using the bee wing shape data (genetic and phenotypic 

covariance matrices) as starting parameters, the type I error rate decreased with 

increasing sample sizes for small t/Ne ratios (between 0.01 and 0.000001) irrespective of 

the number of populations (15, 30) used (Figures 3.2A, 3.3A). The error rate increased 

for larger sample sizes when t/Ne ≥ 0.1. The correlation between G and W remained 

stable over simulations for all t/Ne, with a median matrix correlation of 0.788, and a 

95% confidence interval (based on 0.025 and 0.975 quantiles) from 0.741 to 0.830. The 

matrix correlation for the ancestral (original) P and G was 0.804.  

 For the simulation using the shell shape data as starting parameters, the type I 

error rates remain at acceptable levels for sample sizes above 20 in t/Ne ratios equal to 

or below 0.001, and both numbers of populations (15, 30) (Figures 3.2B, 3.3B). For the 

simulation with t/Ne = 0.01, the error rates increase with sample size. This is a slightly 

worse result than in the simulations with bee wing parameters, because in the latter, the 

simulation with t/Ne = 0.01 yielded acceptable error rates (Figure 3.2A and B). The 

correlation between average G and W also remained stable over simulations using the 

shell data set for all t/Ne, with a median matrix correlation of 0.441, and a 95% 

confidence interval (based on 0.025 and 0.975 quantiles) from 0.405 to 0.479. The 

matrix correlation for the ancestral (original) P and G was 0.442. 

In the simulation model 2, where G and P differed only by a random constant 

(Figure 3.2C), the resulting pattern showed slight fluctuations around the expected type 

I error rate (0.05) for any value of t/Ne. This result was observed for sample sizes above 

40 individuals per population regardless of the number of populations (15 or 30 – 

Figures 3.2C, 3.3C). 

 The simulation model 3, where P and G were generated independently (Figure 

3.2D, 3.3D), presented acceptable type I error rates only for t/Ne ratios equal to or below 

0.00001, regardless of the number of populations. The simulations with t/Ne > 0.001 all 

presented type I error rates above 0.8 and are not shown in the Figure. Because in this 

model, G and P have independent covariances, the test would be expected to show 

significant deviations from the unity slope for any combination of parameters. This 

suggests that the power of the test must be small for such values of t/Ne. 
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Figure 3.2. Type I error rates for the simulated analyses with varying sample sizes and 

t/Ne ratios (drift intensities). The legends and line types indicate the value of t/Ne used 

(only when differences among lines are noticeable). The dashed horizontal straight line 

indicates the expected type I error rate of 0.05. All simulations in this Figure were 

performed with 15 populations. A) Error rates for the bee wing data set. B) Error rates 

for the shell data set. C) Stochastic simulations (model 2) where G was random and P 

was exactly proportional to it P = kG (multiplication by a random scalar k drawn from 
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a uniform distribution between 1 and 10). D) Stochastic simulation (model 3) where 

both G and P were random and completely independent. E) Stochastic simulation 

(model 4) where G and P were correlated (P = G + E), but did not share a common 

latent structure (G and E with the same range of variances). F) Stochastic simulation 

(model 5) where G and P were correlated and shared a common latent structure (G and 

E with the same range of variances). See text for model details.  
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Figure 3.3. Type I error rates for the simulated analyses with varying sample sizes and 

t/Ne ratios (drift intensities). The legends and line types indicate the value of t/Ne used. 

The dashed horizontal straight line indicates the expected type I error rate of 0.05. All 

simulations in this Figure were performed with 30 populations. A) Error rates for the 

bee wing data set. B) Error rates for the shell data set. C) Stochastic simulations (model 

2) where G was random and P was exactly proportional to it P = kG (multiplication by 
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a random scalar k drawn from a uniform distribution between 1 and 10). D) Stochastic 

simulation (model 3) where both G and P were random and completely independent. E) 

Stochastic simulation (model 4) where G and P were correlated (P = G + E), but did 

not share a common latent structure (G and E with the same range of variances). F) 

Stochastic simulation (model 5) where G and P were correlated and shared a common 

latent structure (G and E with the same range of variances).  
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Simulation models 4 and 5 were designed to generate G and P correlated 

matrices, where P = G + E. In simulation model 4, the random matrix E adds variation 

to the genetic covariances and variances, including a random rotation of the 

eigenstructure when P is calculated, even if the range of variances in E (


maxE) is the 

same or a bit smaller than the range of variances in G (


maxG). In simulation model 5, 

the E matrix only causes differences in the principal components of G and P when 




maxE > 


maxG. The first set of analyses was performed using the same range of 

variances in G and E for both models. The simulation model 4 presented acceptable 

error rates for sample sizes larger than 20 regardless of t/Ne ratio and number of 

populations. The simulation model 5 presented acceptable type I error rates only for t/Ne 

ratios equal to or below 0.001, regardless of the number of populations (Figures 3.2E 

and F; 3.3E and F). 

 Exploring the simulations with a larger range of parameters, it was found that 

the ratio of upper limits of environmental and genetic variance ranges (


maxE/


maxG) 

also influences the type I error rates of the test. One unexpected result was that in 

simulation model 4, as 


maxE gets smaller than 


maxG, the type I error rates increase. 

Simulations were again performed with fixed sample sizes (100), number of groups (15) 

and t/Ne (10) to assess the influence of 

maxE/


maxG on the slope of the AC test (Figure 

3.4). In the right panel of Figure 3.4, using simulation model 5 (where P readily inherits 

the eigenvectors of G), as the value of 

maxE/


maxG gets smaller, the slope of the test 

converges to 1, as expected under genetic drift. On the other hand, in the simulation 

model 4 (left panel of Figure 3.4), the expected value of the slope under simulation of 

drift is 1 only when 


maxE ~ 


maxG. As the ratio of variance ranges get smaller, the 

expected slope converges to ~ 1.3, and this pattern explains why the type I error rates 

increase when 

maxE gets smaller than 


maxG. The simulations using the real matrices 

(model 1) and the same parameters described above had expected slopes of 1.3 (bees) 

and 0.8 (Physa shells). Slopes larger than 1 might be obtained when the variance among 

population averages projected on the first eigenvectors of W is larger than the 

corresponding eigenvalues, whereas slopes smaller than 1 are the result of less among 

population variation than predicted by the eigenvalues of the first PCs of W. 

 Considering that, for simulation model 5, smaller variance range ratios lead to 

the expected slope under genetic drift, the combination of simulation parameters that 

would lead to acceptable type I error rates on the AC test were explored (Table 3.1). 

When the ratio 


maxE/


maxG is decreased, the correlations between P and G increase, as 
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well as the number of common principal components. If 


maxE is around 20% of 


maxG, 

the matrix correlations observed are not particularly high, as compared to real P and G 

matrices estimated with large sample sizes, but they do share a common eigenstructure, 

and for any value of t/Ne, the type I error rates approach acceptable values. Performing 

the same simulations with more variables (m = 30), the same results are obtained with 

larger within-population sample sizes (n > 100) (results not shown). It is evident from 

these results that the combination of parameters yielding acceptable type I error rates is 

sensitive to the models under which the starting matrices were generated. 

 

 

 

Figure 3.4. Slopes (β) of the Ackermann and Cheverud test in relation to the ratio of 

upper bounds of environmental (maxE) and genetic (maxG) variances in the 

simulations for models 4 (Sim4) and 5 (Sim5), using t/Ne = 10, 15 dimensions in G, 15 

populations, and 100 observations per population. Genetic variances ranged between 1 

and maxG = 10 and the environmental variances ranged between 0 and maxE = 1 to 

15. The solid lines show the expected (mean) value for the slope over 1000 simulations, 

whereas the dashed lines indicate the upper and lower limits of 95% confidence 

intervals. The dotted line indicates the unity slope, which is the theoretical expectation 

under genetic drift.  

 

 

 



107 

Table 3.1. Type I error rates for the genetic drift test using simulation model 5 (1000 

repetitions), with 15 variables, 15 groups and 50 individuals per group ( = 0.05), with 

varying t/Ne. 

maxE/maxG is the ratio of the upper bounds of variances in the 

environmental and genetic matrices (see text), CI-h
2
 is the 95% confidence interval for 

the average heritability in each set of simulations, CI-MatCor is the 95% confidence 

interval for G P matrix correlations in each set of simulations, fCPC is the percentage 

of significant full CPC models for G and P in 100 simulations, CICPCs is the 95% 

confidence interval (percentiles) for the number of common principal components for G 

and P in 100 simulations.  

 GP Matrix comparisons  t/Ne 




maxE/

maxG CI-h

2 
CI-MatCor fCPC CICPCs  100 10 1 0.1 

0.1 0.86-0.94 0.808-0.970 100 14  0.058 0.062 0.056 0.048 

0.2 0.76-0.88 0.543-0.891 100 14  0.048 0.057 0.058 0.043 

0.3 0.70-0.84 0.385-0.812 79 7-14  0.097 0.084 0.102 0.077 

0.4 0.64-0.80 0.277-0.729 67 4-14  0.139 0.159 0.188 0.132 

 

 

 

3.4. Discussion 

 

 Testing diversification by genetic drift is a useful starting point in the study of 

evolutionary variation (Lynch 1990; Ackermann & Cheverud 2004; Weaver, Roseman, 

& Stringer 2007; Perez & Monteiro 2009). Cheverudʼs (1988) suggestion that genetic 

covariance matrices could be safely replaced by phenotypic matrices for evolutionary 

inferences was greeted with scepticism, and “Cheverud's conjecture” (Roff 1995) has 

been tested and discussed in a number of papers (e.g. Roff 1995, 1996; Koots & Gibson 

1996; Waitt & Levin 1998; Roff et al. 1999; Bégin & Roff 2004; Hadfield et al. 2007; 

Kruuk, Slate, & Wilson 2008), usually by comparing the similarity of genetic and 

phenotypic covariances, seldom by checking the influence of matrix differences in the 

results of tests. Thus, the evidence gathered has been equivocal and the most relevant 

studies (large reviews of data) indicate a general agreement with Cheverud (1988), but 

also recommend caution in the interpretations of results because matrix comparisons 

among isolated populations using genetic or phenotypic covariances might differ in 

important ways (Roff et al. 1999; Bégin & Roff 2004). 
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 The results of this study indicate that the type I error of Ackermann and 

Cheverudʼs (2002, 2004) test of proportionality between B and W is influenced mainly 

by the structural similarity between the ancestral G and P, the ratio of variance ranges 

(approximated by the average heritability), and the ratio of time and effective 

population size t/Ne. If the parametric genetic and phenotypic covariance matrices are 

exactly proportional, as in the simulation model 2, the type I error rates are acceptable 

for any t/Ne ratio (as expected). On the other extreme (simulation model 3), where G 

and P were generated with an unrealistic minimum of structural similarity, the type I 

error rate is unacceptable for most values of t/Ne. 

 The simulations showed that, even if the ancestral G and P are not proportional, 

but do share a large number of principal components, have a average heritability around 

0.5 and matrix correlation above 0.7 over all variables (as in our simulation model 5), 

acceptable type I error rates will be obtained for any t/Ne ratio. When G and P do not 

share principal components but are highly correlated (r > 0.7) and have average 

heritabilities approaching 0.5, the type I error rates should be acceptable for any t/Ne 

ratio (as in simulation model 4). Average heritabilities different from 0.5 will bias the 

expectation of the slope in the AC test due to concentration of variation among 

projections of population averages in the first eigenvectors of W. In these cases, type I 

error rates will still be acceptable for t/Ne < 0.01. 

 The combination of parameters laid out is not an unrealistic expectation. The 

literature indicates that considerable agreement between genetic and phenotypic 

correlations is often found and that the correlations between G and P are usually above 

0.6 for morphological data when effective sample sizes are large (Cheverud 1988; Roff 

1996; Koots & Gibson 1996; Waitt & Levin 1998; Bégin & Roff 2004; Kruuk et al. 

2008; de Oliveira, Porto, & Marroig 2009). 

 In a study where only phenotypic data are available, it might be complicated or 

impossible to determine whether the relationship between the ancestral G and P fits into 

the assumptions outlined above. These parameter values can, nevertheless, be used as 

guidelines for comparisons among populations as indirect evidence of ancestral G and P 

similarity (de Oliveira et al. 2009), or one might use the Monte Carlo simulation 

approach described below to estimate a confidence interval for the slope of the AC test 

under drift. 

 The example data sets used here (simulation model 1) seem to behave in a 

similar way to simulation model 4 for extremes of low and high 

maxE/


maxG. The 

expected slope for the simulations using the bee matrices was 1.3, the similarity of G 
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and P was high and they did share principal components, but the average heritability 

was low (it should have been higher than 0.6 to fit the model 4 more closely). On the 

other hand, the simulations with shell matrices had an expected slope of 0.8, G and P 

similarity was low, they did not share principal components, but the average heritability 

was high (should have been lower than 0.3). Such results would be observed if model 4 

was changed to calculate P = k(G + E), so that the average heritability would be 

decreased or increased by the scalar k without influence in the correlation or shared 

structure between P and G. These results suggest that G and P are related in complex 

ways which can hardly be reduced to scalar comparisons without considerable loss of 

information. If some information about G and P is available, this simulation approach to 

estimate the expected slope of the AC test might be used and this expectation in the test 

of the real data might be taken (instead of the theoretical unity slope). For example, in 

the bee wing analyses, a slope of 1.3 could have been used as parameter in the t-test of 

the AC tests and the type I error rates would be acceptable for any value of t/Ne. 

Alternatively, the 95% confidence interval for the expected AC test slope under genetic 

drift simulations ranged from 1.1 to 1.5, and an observed slope could be compared with 

this interval for evidence of departure from the neutral expectation. When genetic data 

are not available, it might be possible to use the between-population covariance matrix 

(B), estimated from phylogenetic independent contrasts if possible (Revell 2007) and 

the within-population phenotypic covariance matrix W as proxies for the ancestral G 

and P, respectively, in the simulations to estimate the expected slope under drift. A 

simulation function provided in Appendix B (simulationAC-slope.R) calculates a mean 

estimate and a 95% confidence interval for AC test slopes under genetic drift for any 

ancestral G and P. Observed slopes can be compared to the confidence interval or the 

mean estimate can replace the parameter slope = 1 in the ordinary t-test. 

 Within-population sample sizes influence the type I error rates, but they need to 

be considered in conjunction with the number of populations and the dimensionality of 

the matrices. For the fully stochastic simulations here performed, all matrices had 15 

dimensions and most acceptable type I errors were observed for within-population 

samples larger than 40. The number of populations used had a slight but negligible 

effect. 

 It is possible that sampling error in the estimation of G might lead to a similar 

pattern of type I errors as when average G is replaced by W, because the parametric and 

estimated G matrices are not likely to be exactly proportional as well. It is not clear 

whether sampling error in the estimation of G is comparable to the environmental 
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covariance matrix E, but a part of Cheverud’s conjecture was that W could be a more 

reliable estimate of the parametric G than a genetic matrix estimated from a small 

effective sample size (Cheverud 1988), and phenotypic correlation estimates are often 

within the confidence intervals of genetic correlations (Roff 1996; Koots & Gibson 

1996). The instability of covariance matrix and factor estimation for small sample sizes 

is well known in multivariate statistics (MacCallum et al. 1999; Krzanowski 2000), and 

genetic covariance matrices can be particularly demanding with respect to samples sizes 

(Cheverud 1988). Patterns caused by sampling error in the estimation of genetic 

covariance matrices, such as biases on eigenvalues are well known (Meyer & 

Kirkpatrick 2010) and a considerably large statistical literature is devoted to such topics. 

As long as the sampling error can be considered independent from the parametric G, the 

simulation function provided in Appendix B can be adjusted to address specific 

concerns regarding the error in the estimation of G. 

 In some of the simulations, particularly model 1 (with predetermined matrices) 

and the fully stochastic simulation where G and P where random and completely 

independent (model 2), a trend was observed where for higher values of t/Ne, the type I 

error rates increase with within-population sample size (see Figures 3.2A, B and D). 

This counterintuitive result was also observed in simulation model 4, when 


maxE is 

smaller than 

maxG (Figure 3.5). Considering that, depending on this ratio, the 

differences between G and P caused the expected value of the slope of the AC test to be 

larger than 1 (as shown in Figure 3.4 due to more variation among populations than 

predicted by the eigenvalues of W), the type I error rates increase with sample sizes 

because the confidence intervals become narrower (there is an expected increase in 

power) and a larger percentage of simulated tests will show significant results. The type 

I error converges to a value that depends on the magnitude of deviation of the expected 

AC test slope from 1 and the size of the confidence interval. For smaller t/Ne ratios, 

there is a reduction in the contribution of the G matrix to among-population variation (it 

will be proportional to t/Ne G). Because the simulations calculate among group variation 

using averages estimated from the n observations generated by P at each population 

(and not the parametric means generated by G), when t/Ne decreases, most among-

population variation is generated and predicted by W, and the expected slope of the AC 

test is 1. This also explains the effect in reverse, when 

maxE > 


maxG, causing among 

population variation to be smaller than the eigenvalues of W and the expected slope of 

the AC test to be < 1 (Figure 3.4). 
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 In the next chapter, the genetic drift test proposed by Ackermann and Cheverud 

(2002, 2004) is applied to a papionin sample of cranial landmarks to understand 

whether as neutral pattern of divergence is likely, or whether papionin cranial form is 

more likely to have evolved due to non-random processes such as natural selection. 

 

 

 

Figure 3.5. Type I error rates for the simulated analyses under model 4 with varying 

maxE/maxG, sample sizes and t/Ne ratios (drift intensities). The legends and line types 

indicate the value of t/Ne used when differences are meaningful. The dashed horizontal 

straight line indicates the expected type I error rate of 0.05. All simulations in this 

Figure were performed with 15 populations. The value of maxE/maxG for each set is 

indicated on the top of each panel.  
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Chapter 4. Testing the Role of Random Genetic Drift in the 

Evolutionary Divergence of Papionin Crania  

 

 

 

4.1. Introduction 

 

It follows from the previous chapter that the parameters influencing the type I 

error of Ackermann and Cheverudʼs (2002, 2004) test of proportionality between the 

among-population covariance matrix (B) and the phenotypic within-group variance-

covariance matrix (W) are the structural similarity between the ancestral additive 

genetic variance-covariance matrix (G) and the ancestral phenotypic covariance matrix 

within a single population (P), the ratio of variance ranges (approximated by the 

average heritability), and the ratio of time and effective population size t/Ne. If the 

parametric G and P are exactly proportional (Section 3.2.2, simulation model 2), the 

type I error rates are acceptable for any t/Ne ratio (as expected). If G and P are not 

exactly proportional (Section 3.2.3, simulation model 3), the type I error rate is 

unacceptable for a range of values of t/Ne. 

This procedure can thus be used as a null hypothesis to test for neutral evolution 

in the pattern of divergence of papionin cranial form. Papionins are variable in terms of 

cranial form and each form is argued to have evolved for a different function, while 

constrained by their close phylogenetic relationships (see Subsections 1.3.1 and 1.3.5). 

For example, the genus Cercocebus has adaptations such as a shortened face that 

increases bite force (Singleton 2004), but its sister genus Mandrillus does not (Fleagle 

& McGraw 1999). Bearing the molecular phylogeny in mind (Figure 1.3), the question 

arises as to why sister genera have evolved different cranial forms. Since feeding is a 

fundamental animal behaviour, form variation in an adaptive radiation tends to exhibit 

itself as trophic adaptation (Schluter 2000). Indeed, in numerous primates dietary 

differentiation has been associated with morphological adaptation (Ravosa 1990; 

Daegling 1992; Singleton 2005; Taylor 2006). Ecological differences between, for 

example again, Cercocebus and Mandrillus would suggest some adaptation of each 

genus to different environments, and so natural selection would have acted to produce a 

short face in one case and a long face in the other (see Subsection 1.3.5).  
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It is not always easy to know for certain whether a particular trait evolved as an 

adaptation to a function, and criticisms against a strict “adaptationist programme” arose 

in the 1970s (Gould & Lewontin 1979). That criticism lead to a view that natural 

selection could not be nearly as pervasive as previously thought (Gould & Lewontin 

1979; Alberch 1983; Wake & Larson 1987; Goodwin 1994; reviewed by Schwenk & 

Wagner 2004). More than that, many authors argue that intrinsic constraints on the 

production of variation are at least as important as natural selection in shaping patterns 

of phenotypic diversity (reviewed by Gould 2002, and Schwenk & Wagner 2004). 

Testing diversification by random genetic drift is a useful starting point in the study of 

evolutionary variation (Lynch 1990; Ackermann & Cheverud 2004; Weaver et al. 2007; 

Perez & Monteiro 2009) and indeed some papionins are already considered a good 

example of random genetic drift: the species attributed to the genus Macaca show 

considerable variation in face size, all of it verified to be natural variation within the 

group (O’Higgins & Collard 2002). On the whole, the recency of the papionin radiation 

(see Section 1.3) impairs the clear demarcation of subgroups since they have not had a 

long, independent evolution (Jablonski 2002), particularly within the Papio, 

Theropithecus and Lophocebus branch (Harris 2000; Singleton 2002; Tosi et al. 2003). 

This makes testing for the neutral evolution of their cranial form even more relevant 

prior to making interpretations about cranial adaptation. 

Although molecular sequence data for some papionin monkey species is 

available (e.g. Zinner et al. 2012), neither is there a large enough number of species 

sequenced for a comparative analysis, nor is the genotype-phenotype matching 

established (studies on the relationship between genotype and phenotype in papionins 

are scarce and include Willmore et al. 2009a; b). One of the few possible ways to study 

phenotype divergence, thus, is by using the W matrix instead of the G matrix (see 

Chapter 3 and Subsection 4.2.2), following Cheverudʼs (1988) suggestion that genetic 

covariance matrices can be safely replaced by phenotypic matrices for evolutionary 

inferences. The evidence gathered has been equivocal and the most relevant studies 

(which are mostly large reviews of data; Roff 1995; Waitt & Levin 1998; Reusch & 

Blanckenhorn 1998; Dochtermann 2011) indicate a general agreement with Cheverud 

(1988), but also recommend caution in the interpretations of results.  

The aim of this study was to test the hypothesis that the cranial form of each 

papionin genus (represented by the 7 species used throughout this thesis and outlined in 

Section 1.3) has diverged from the common ancestor by random genetic drift, i.e., to 

assess whether random genetic drift alone could explain the observed cranial differences 
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in form among the papionin tribe by applying a quantitative genetic model (Ackermann 

& Cheverud 2002, 2004) and using a well-established papionin molecular phylogeny 

(Disotell 1994; Harris 2000) as a basis for interpretation of results. Based on that 

phylogeny, it is more likely, for example, that the differences in cranial form between 

the sister genera Cercocebus and Mandrillus have not arisen by the action of random 

genetic drift alone, and the same for the group including Papio, Lophocebus and 

Theropithecus. 

 

 

 

4.2. Material and Methods 

 

The R functions used in Chapter 3 (Appendix B) are utilised here, using actual P 

matrices for data much as in Simulation Model 1 (Section 3.2.1). The P matrices were 

extracted from landmark data of real papionin crania not previously studied, rather than 

simulated data or previously analysed real data sets as was the case in Chapter 3. 

 

 

4.2.1. Sample Data Set 

 

The data comprise 46 three-dimensional landmarks (see Subsection 2.3.1) 

digitized on the left side of a sample of 181 adult male crania belonging to 6 genera and 

7 species within the Tribe Papionini, namely 15 Cercocebus torquatus, 20 Lophocebus 

albigena, 39 Macaca fascicularis, 20 Madrillus sphinx, 40 Papio anubis, 30 Papio 

hamadryas, and 17 Theropithecus gelada.  

Table 4.1 and Figure 4.1 present the actual landmarks descriptively and 

topographically; they were first described (on a different group of primates) in the 

literature (Cardini, Jansson, & Elton 2007; Cardini & Elton 2008). This landmark 

dataset was retrieved from a complete and comprehensive Old World monkey dataset 

presently unpublished and collected by Dr Andrea Cardini; it is used here with his kind 

permission. 
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Table 4.1. Landmarks used for the random genetic drift test, adapted from Cardini, 

Jansson, & Elton (2007). They were placed on the midline and left side only.  

Number Description 

1 Prosthion: antero-inferior point on projection of pre-maxilla between central incisors 

2 Equivalent to prosthion but between central and lateral incisors 

3 Posterior-most point of lateral incisor alveolus 

4 Anterior-most point of canine alveolus 

5 Mesial P3: most mesial point on P3 alveolus, projected onto alveolar margin 

6–9 Contact points between adjacent pre-molars/molars, labially onto alveolar margin 

10 Posterior midpoint onto alveolar margin of M3 

11–14 Contact points between adjacent pre-molars/molars, lingually onto alveolar margin 

15  Greater palatine foramen 

16 Point of maximum curvature on the posterior edge of the palatine 

17 Tip of posterior nasal spine 

18 Meeting point between the basisphenoid, basioccipital and petrous temporal bone 

19 Most medial point on the petrous part of temporal bone 

20 Most medial point of the foramen lacerum 

21 Meeting point of petrous temporal bone, alisphenoid and base of zygomatic process 

22–23 Anterior and posterior tip of the external auditory meatus 

24 Stylomastoid foramen 

25 Distal extremity of jugular foramen 

26  Carotid foramen 

27 Medial extremity of jugular foramen 

28 Basion: anterior-most point of foramen magnum 

29 Anterior extremity of occipital condyle along margin of foramen magnum 

30 Hypoglossal canal 

31 Centre of condylar fossa 

32 Posterior extremity of occipital condyle along margin of foramen magnum 

33 Opisthion: posterior-most point of foramen magnum 

34  Inion: most posterior point of the cranium 

35  Most lateral meeting point of mastoid part of temporal bone and supraoccipital 

36 Nasospinale: inferior-most midline point of piriform aperture 

37 Point corresponding to largest width of piriform aperture 

38 Meeting point of nasal and pre-maxilla on margin of piriform aperture 

39 Rhinion: most anterior midline point on nasals 

40 Nasion: midline point on fronto-nasal suture 

41 Glabella: most projecting midline point of frontals at the level of supra-orbital ridges 

42 Supra-orbital notch 

43 Antero-superior point of zygomaticomaxillary suture taken at orbit rim 

44 Centre of optic foramen 

45 Superior point of zygomaticotemporal suture on lateral face of zygomatic arch 

46 Antero-inferior point of zygomaticomaxillary suture 
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Figure 4.1. Set of 46 landmarks on the midline and left side showed on the surface of a 

male Theropithecus gelada cranium. See Table 4.1 for description of landmarks.  

 

 

4.2.2. Genetic Drift Test 

 

To study whether or not the observed differences could be explained by random 

genetic drift, the within- and among-group variance-covariance matrices were 

compared. Exactly as in Chapter 3, following the claim (Cheverud 1988) that, in 

contemporary populations, the W matrix is often proportional to the G matrix, one can 

substitute the latter by the former (Lande 1979; Felsenstein 1988). If the populations 

under study have diversified by random (neutral) processes alone, the pattern of among-

group phenotypic variation is expected to be proportional to the within-group 

phenotypic variation. 

As described in Chapter 3 (Subsection 3.2.6), random genetic drift as a neutral 

model for phenotypic divergence was tested by comparing B and W (as a surrogate of 

the average G) using the method of Ackermann & Cheverud (2002, 2004). This 

involved an eigendecomposition of W to extract its eigenvectors (M) and eigenvalues 

(m), and projecting each population phenotypic vector of means z̅ on M, Y = z̅M. The 

vector of means for each population was the one estimated from the landmark data set, 

not the parametric means generated from the ancestral G and ancestral vector of means. 

The variances for each column of Y were then calculated and a regression of the 

variances of Y on the eigenvalues m was performed (Equation 3.3). 

 Testing with a t-test whether the slope of the regression (β) is different from 1 

indicates whether the pattern is compatible with random genetic drift. The null 



117 

hypothesis of random genetic drift is rejected if the slope deviates significantly from 1 

(Ackermann & Cheverud 2002, 2004). 

 When using a significance level of α = 0.05, it is expected that a true null 

hypothesis has a 5% chance of being rejected (a type I error). If the use of phenotypic 

covariances as proxies for genetic ones in the genetic drift test does increase the type I 

error rates, it is expected to find that, using a significance level of 5%, the null model of 

genetic drift is rejected in more than 5% of the simulated samples. Lofsvold (1988) has 

suggested that the acceptance of random genetic drift as a null hypothesis is more robust 

to the breaking of model assumptions than its rejection (so type I error rates are of more 

concern than the power), and in real data studies it might be hard to determine the actual 

cause of random genetic drift rejection, natural selection being one of the possible 

explanations. 

 Like in Ackermann and Cheverud (2002, 2004), a papionin phylogenetic tree 

(Disotell et al. 1992; Disotell 1994; Harris 2000) is used here as a basis for the analyses 

and for the interpretation of results. In total, 6 analyses were performed: an analysis 

with the whole sample (all genera), another with all genera except Macaca, which is the 

most different genus and can be said to be the outgroup of this phylogenetic tree; 

another analysis for the sister taxa Cercocebus and Mandrillus, another for the Papio, 

Lophocebus and Theropithecus group, which is an unresolved polytomy; another with 

Lophocebus and Theropithecus, which is one of the possibilities to resolve the 

polytomy, and finally an analysis with only the two species of the genus Papio, P. 

anubis and P. hamadryas. Grouping Lophocebus with Theropithecus was decided here 

as opposed to grouping any one of these taxa with Papio because the Papio, 

Lophocebus and Theropithecus polytomy prevents a fully resolved consensus molecular 

phylogeny for papionins. An analysis grouping two species of Papio and another genus 

would be biased in terms of number of species per genus, and thus this arrangement 

seems to be acceptable for this analysis (see also Section 4.1; Harris 2000). 

All the analyses were run in the R environment (R Development Core Team 

2013) using functions from the packages MASS (Venables & Ripley 2002), 

clusterGeneration (Qiu & Joe 2009), and vegan (Oksanen et al. 2007). The R code used 

to run the analyses is presented in Appendix B. 
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4.3. Results 

 

In Figure 4.2 a modified version (fully resolved) of the consensus phylogeny 

(Figure 1.3) of papionins is shown. The values of the slope test and the p-value of 

significance are shown on tree nodes. Each corresponds to the analysis computed on all 

the species to the right of that node. An image of the form of each papionin cranium is 

also shown, as well as species names. 

 

 

 

Figure 4.2. Phylogenetic tree showing the 6 analyses performed. Slope and p-values 

shown on tree nodes, each corresponding to one analysis with all the species to the right 

of the node. The values are significant for an α of 0.05, meaning that the results are not 

consistent with a species divergence driven by random genetic drift alone.  
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The test on the null hypothesis of divergence by random genetic drift alone is 

significant for every analysis. The slope between among- and within-group genotypic 

variance-covariance matrices differs significantly from one in every analysis, even 

though the test results in a slope of 0.917 for the analysis on the whole sample. The 

hypothesis is therefore rejected in every analysis, even in the analysis that includes only 

the two species of Papio which are very close both phylogenetically and in terms of 

cranial form. 

 

 

 

4.4. Discussion 

 

A test on the null hypothesis of the divergence of papionins by random genetic 

drift alone was carried out supported by an established molecular phylogeny. From the 

results it can be concluded that random genetic drift was most likely not the single 

microevolutionary process acting on the form of the papionin cranium. Non-random 

processes are therefore likely to have acted, driving the form of the cranium as a 

response to environmental pressures, such as geography, climate, competition, 

predators, and especially diet. But interpreting these results directly as biological is ill 

advised. First, as demonstrated in Chapter 3, the sample size required to increase the 

power of the test enough to make such interpretations is not met by the sample size 

available for this study. A sample size of hundreds of specimens would fit the 

assumptions of the model better. Second, this study included only male specimens and if 

the analyses were repeated including females (and females can differ extensively from 

males in terms of cranial morphology), the slope deviation from 1 may or may not be 

significant in all the analyses.  

Thirdly, the landmarks describing the shape of the cranium might not be the 

most appropriate to capture the geometry of the actual evolving morphology. The use of 

midline and left side landmarks only might have had an effect on the analysis, and the 

full set of cranial landmarks (including the right side, paired landmarks) might result in 

a different outcome. The right side landmarks were not collected originally in order to 

increase the efficiency of an otherwise time-consuming task, but they can be easily 

produced by reflecting the left side landmarks on the midline, creating a symmetric 

landmark set (Klingenberg, Barluenga, & Meyer 2002). Of course, the real crania are 
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not symmetric, but statistically the error introduced in the shape analysis by 

symmetrizing or averaging the paired landmarks is small when compared, for example, 

with errors in landmark collection or superimposition (Zelditch et al. 2004). This means 

that adding right side landmarks (either by collecting them or by reflecting the left side 

ones) would add new information to the analysis only if asymmetry was significant, 

which is not the case in papionins. 

Yet, the test was proved to be robust in falsifying the underlying assumptions 

(Prôa, O’Higgins, & Monteiro 2013; see also Chapter 3), and the results indicate that 

the form of the cranium of papionin species, within the Tribe Papionini, has not 

diverged solely at random from a common ancestor. Even the two very closely related 

Papio species (that even interbreed between them; Jolly et al. 1997) failed to meet the 

assumptions of the random genetic drift model, and appear to be sufficiently different in 

terms of cranial form (as described by this landmark set) to each have specific 

adaptations. Since one important function of the cranial anatomy is feeding and intra-

oral food processing, hypotheses can be constructed with regard to the role diet might 

have had in the adaptive evolution of papionin cranial form and finite element models 

can be used to test those assumptions. 

The following chapters are concerned with the process of building finite element 

models for finite element analysis (FEA), with sensitivity analyses to test the effect of 

several model-building issues on the results of the FEA analyses, and with testing 

biomechanical hypothesis of papionin cranial adaptation to different diets. The very last 

analytical chapter of this thesis attempts to directly relate the biomechanical parameters 

as resulting from FEA with diet and cranial form in papionins. 
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Chapter 5. Building Three-dimensional Models of Papionin 

Crania for Finite Element Analysis 

 

 

 

5.1. Introduction 

 

 It was shown in the previous chapter that random genetic drift was most likely 

not the single microevolutionary process acting on the form of the papionin cranium. 

Non-random processes must therefore have been acting on the cranium, driving its 

evolution as a response to environmental pressures, such as geography, climate, 

competition, predators, or diet. To test hypotheses of how diet could have played a role 

in the evolution of the papionin cranium, virtual biomechanical models are believed to 

be a good tool to use (Chalk et al. 2011). The extent to which such modelling is 

informative with regard to diet will also be a focus of this and subsequent chapters. 

The cranium is a highly complex structure that encloses and protects the brain 

and the sensory organs of vision, hearing, smell and taste. It also supports the structures 

that allow food intake and processing (De Iuliis & Pulerà 2011). Because of its 

complexity, it is difficult to measure, visualize, and describe (Hildebrand & Goslow 

2001) and is best visualized in three dimensions (3D). Historically, an intuitive way to 

create 3D pictures is to use stereopairs of images, which are images of the same 

specimen taken from slightly different angles and printed side-by-side; the user then 

stares at a point in between and allows the eyes to focus beyond the page (Hildebrand & 

Goslow 2001). However, a technique to create 3D images of objects extensively used 

today is modelling (not to be confused with bone modelling, Subsection 1.2.4). 

 Modelling consists of building a 3D model from a series of slices of the object, 

usually in a virtual environment (Hildebrand & Goslow 2001). Models are built to 

simulate real situations: models are expected “to increase knowledge and insight about 

reality, and to estimate or predict variables of interest” (Nigg & Herzog 2006). Models 

are considered the best solution particularly when studying biomechanical parameters of 

the cranium of papionins: valuable (and often unique) museum specimens that cannot 

be replaced, such as those so often used in such studies, are best tampered with inside 

the computational space, rather than in a real biomechanics laboratory. The damage to, 
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or destruction of specimens would also render the reproducibility of experiments 

impossible. With the advent of X-ray computerized tomography (CT) and increments of 

computer power, visualization of the cranium in 3D is not only possible, but desirable, 

since it allows for simulation analyses that would be destructive if done on the actual 

specimen (Hildebrand & Goslow 2001). 

Building 3D models for finite element analysis (FEA), virtual as they may be, is 

not a trivial problem and has to be handled cautiously, especially due to their eventual 

interpretation in the light of biological reality. When aiming to interpret results as 

reflecting biology, attention should always be paid to the model building step, because 

simple geometric abstractions of real biological structures limit the potential of the 

model to be interpreted and may not be a valid representation of the behaviour of the 

real structure (Richmond et al. 2005). As George E. P. Box famously said, “all models 

are wrong, but some are useful” (Box & Draper 1987, p. 424). Biological structures like 

bone can react biologically (e.g. bone resorption or bone formation; see Subsection 

1.2.4) or mechanically (e.g. deformation), or both, to external forces (Nigg & Herzog 

2006).  

In building 3D models of bone structures, the material properties of the various 

types of bone must be taken into account. Yet, several papers (Gong, Arnold, & Cohn 

1964; Turner et al. 1999; Bumrerraj & Katz 2001) indicate that, for the cranium, cortical 

bone and trabecular bone have, in fact, the same material properties (or rather, the 

Young’s modulus of trabecular bone falls within the range of that of cortical bone), and 

thus need not be considered separately.  

Likewise, the boundary conditions of the model (see Subsection 2.4.2) must be 

set. In the case of models of the cranium, the muscles and muscle forces acting on the 

living organisms have to be modelled accordingly, as well as the constraints the cranium 

has to endure. According to Antón (1996, 1999), the architecture of a muscle and the 

bone morphology supporting it are well correlated. The masticatory musculature of a 

young Macaca mulatta (Schwartz & Huelke 1963), and that of an adult Papio sp. 

(Swindler & Wood 1973) are the only such anatomy described for papionins in the 

literature. These two descriptions were used in this thesis as a conservative model to 

extrapolate the masticatory muscle anatomy of the other papionin species. This was 

considered reasonable due to lack of actual specimens to dissect, and due to the 

phylogenetic similarity among the species used. Indeed, Swindler and Wood (1973), 

who describe the anatomy of genera so phylogenetically distant (even if within the order 
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Primates) as Pan, Papio and Homo, found that the masticatory musculature of these 

species to be roughly the same (the same set of muscles), with minor differences. 

 

 

 

Figure 5.1. Origin and insertion of the temporal muscle in a specimen of Macaca 

mulatta. Adapted from Schwartz & Huelke 1963.  

 

Regarding the anatomy of the temporal muscle (Figure 5.1 in a young Macaca 

specimen), Swindler and Wood (1973) found that in Papio adult males it reaches the 

midline, attaching to a sagittal crest particularly along the posterior surface of the 

parietal bone. This muscle seems to be divisible into superficial and deep portions both 

in Papio (Swindler & Wood 1973) and in Macaca (Schwartz & Huelke 1963). As for 

the anatomy of the masseter muscle of these primates, it is not different from that 

described in general terms in Chapter 1 (Subsection 1.3.6) and can be seen in Figure 5.2 

in a Macaca specimen. The Macaca medial pterygoid muscle (Figure 5.3) is a paired 

quadrilateral muscle situated between the medial surface of the mandibular ramus and 

the lateral pharyngeal wall; it originates from the pterygoid fossa, between the medial 

and lateral pterygoid plates, filling its entire depth (Schwartz & Huelke 1963). Some 

fibres arise from the inferior portion of the lateral surface of the lateral pterygoid plate, 

and the immediately adjacent area of the palatine and maxillary bones (this is hardly 

surprising since in other mammals, for instance, canids, this muscle originates on the 

lateral surface of the pterygoid plate, rather than on its medial surface; Ström et al. 

1988; Evans & de Lahunta 2010). Fibres insert on to the medial surface of the gonial 

angle of the mandible beneath the mandibular foramen and onto the base of the 

mandible at the angle (Schwartz & Huelke 1963). The lateral pterygoid muscle is the 

smallest of the group, and, in being principally a jaw opening muscle, it only stabilizes 



124 

the mandible (Osborn 1995; Shi et al. 2012). It had little effect on a previously built 

masticatory model of a Macaca fascicularis in the laboratory (L. Fitton pers. comm.), 

and so was not included in the models built in the present thesis.  

 

 

 

Figure 5.2. Left panel: Origin and insertion of the masseter muscle in a specimen of 

Macaca mulatta; right panel: Coronal section at the ramus of the mandible illustrating 

the relative positions of temporal, masseter and medial pterygoid muscles. Adapted from 

Schwartz & Huelke 1963.  

 

 

 

Figure 5.3. Origin and insertion of the medial pterygoid muscle in a specimen of 

Macaca mulatta. Adapted from Schwartz & Huelke 1963.  

 

The main objective of this chapter is to describe the building of virtual 3D 

models of papionin crania for FEA (pre-processing step; see Subsections 2.4.1 and 

2.4.2), starting with a review of image segmentation techniques, moving on to the 

necessary boundary conditions. A second objective of this chapter is to describe the 



125 

model solution step of FEA (see Subsection 2.4.3) where maximum bite force is 

computed and landmark displacement happens. Both these types of data are an integral 

part of subsequent FEA (post-processing step; see Subsection 2.4.4) and analysis of 

deformations, including its visualization. 

 

 

 

5.2. Building 3D Models of Papionin Crania 

 

This section describes the material (sample specimens) and methods (image 

segmentation and boundary conditions) used to build the models used for FEA in this 

and subsequent chapters of this thesis. Example figures from one of the models (a 

model of a male Theropithecus gelada) are provided. All models are built using the 

same protocol described here, making model building error consistent among them. 

Errors and sensitivity analyses of the effects that model building decisions have on FEA 

results are discussed in Chapter 6. 

 

 

5.2.1. Sample Specimens 

 

The data used to build the models were CT scans of 9 different papionin 

individuals, 7 adult males and 2 adult females. Dry crania of representatives of each 

species (Cercocebus torquatus, Lophocebus albigena, Macaca fascicularis, Mandrillus 

sphinx, Papio anubis, Papio hamadryas and Theropithecus gelada) were obtained for 

CT scanning from various museums (Table 5.1). Dry crania coming from animals shot 

in the wild were given preference, but this was not always possible. All genera of the 

Tribe Papionini are represented with the exception of the recently attributed genus 

Rungwecebus (Jones et al. 2005; Davenport et al. 2006), which was left out due to its as 

yet incertae sedis status in papionin taxonomy and phylogeny (see Subsection 1.3.1) 

and lack of available crania. Species were chosen to represent varying diets among the 

group (including the extreme specialist genus Theropithecus). 
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Table 5.1. Dry crania specimens used to build models. 

Species 
Age 

Sex 
Specimen Repository Provenance 

Cercocebus 

torquatus 

adult 

male 
C13.21 

University of 

Liverpool 
Unknown 

Lophocebus 

albigena 

adult 

male 
RCS A 81.441 

RCS Hunterian 

Museum 

Batouri District, 

French Cameroons 

Macaca 

fascicularis 

adult 

male 
Mac 17 

The Hull York 

Medical School 
Unknown 

Mandrillus 

sphinx 

adult 

male 
0173.dc3 

University of 

Liverpool 
Unknown 

Papio 

anubis 

adult 

female 
RCS A 92.28 

RCS Hunterian 

Museum 

Mount Meru East, 

Tanganika Territories 

Papio 

anubis 

adult 

male 
RCS A 92.25 

RCS Hunterian 

Museum 

Mount Meru East, 

Tanganika Territories 

Papio 

hamadryas 

adult 

male 

LEEDM.C. 

1982.320.4144 

Leeds Museum 

Discovery Centre 
Unknown 

Theropithecus 

gelada 

adult 

female 
0177.dc3 

University of 

Liverpool 
Unknown 

Theropithecus 

gelada 

adult 

male 

PRICT 446, 

ID 9030 

Digital Morphology 

Museum KUPRI 
Unknown 

 

 

 

5.2.2. Image Segmentation 

 

One of the first steps of building a model from a CT image stack is image 

segmentation (see also Subsection 2.4.1). The process of segmentation consists simply 

of extracting the material of interest (in this case bone) out of the void (or other 

surrounding background and tissues) where it is embedded in a CT image (Hsieh 2009). 

However, distinguishing between the material of interest and the background is not 

trivial: although finding the exact threshold between the two can be done using 

objective methods, some subjective decisions have to be taken, commonly making the 

final segmented model effectively a combination of threshold and manual segmentation. 

Ideally, the model should be as anatomically accurate as possible, representing a 
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minimal amount of simplification (Nigg & Herzog 2006). In CT imaging, the threshold 

between two tissues is most reliably estimated as being located exactly half way 

between two CT number levels. This level is known as half maximum height (HMH, 

Spoor & Zonneveld 1995) and equals the mean of the two CT number levels at either 

side of the threshold. HMH is calculated by setting the window width of the 

segmentation editor at the CT scanner maximum, usually 4095HU (Hounsfield units, 

unit of grey-scale values on the Hounsfield scale of radiodensity, where radiodensity of 

air is –1000HU and that of distilled water is 0HU; radiodensity of bone will be several 

thousands; Hsieh 2009), meaning a window width ranging from –1024HU to 3071HU 

(Spoor & Zonneveld 1995). All the CT scans here were segmented using this exact 

grey-scale window range, but HMH was decided against, since preliminary 

investigations (not shown) resulted in ambiguous and highly variable segmentation, not 

only between different regions of the cranium (as Fajardo et al. 2002 pointed out), but 

also within the same region. An iterative approach to thresholding is also possible, but is 

most effective in high-resolution CT scans (Ryan & van Rietbergen 2005) unlike the 

ones available for this study (Table 5.2). Thus the images here were segmented using an 

initial automated threshold using the built-in function in the segmentation software 

Avizo and finished with extensive manual segmentation.  

 

 

Table 5.2. Computerized tomography (CT) image resolution. 

Species Specimen 
Resolution 

x y z 

C. torquatus C13.21 0.151 0.151 0.151 

L. albigena RCS A 81.441 0.309 0.309 0.700 

M. fascicularis Mac 17 0.099 0.099 0.099 

M. sphinx 0173.dc3 0.143 0.143 0.143 

P. anubis (f) RCS A 92.28 0.320 0.320 0.700 

P. anubis (m) RCS A 92.25 0.400 0.400 0.699 

P. hamadryas LEEDM.C.1982.320.4144 0.436 0.436 0.699 

T. gelada (f) 0177.dc3 0.488 0.488 0.625 

T. gelada (m) PRICT 446, ID 9030 0.300 0.300 0.300 

Resolution in millimeters (mm). 
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The stack of all slices of a CT scan can be regarded as a data volume, which can 

be used to create a 3D volume model of the scanned object. Each element of the model 

(voxel) will have dimensions lp
2
 × lt, where lp

2
 are the dimensions of the square pixel, 

and lt is the slice thickness (Hsieh 2009). For a comparative study with different models, 

all models should be downsampled to the same voxel size to eliminate false differences 

in size among models due to the number of voxels constituting each model; this is not a 

scaling of the models, but rather ensures that a proportionately different amount of 

voxels is used to build differently sized specimens. For consistency, all the models here 

were downsampled from their varying original resolutions (Table 5.2) to a common 

voxel size of 0.428 × 0.428 × 0.428 mm. Differences in CT scanner resolution create 

difficulties in segmenting accurately the trabecular bone and the comparative nature of 

this study raised issues about the accurate modelling of the internal architecture of the 

trabecular bone. As such the question arises as to whether or not trabecular bone need be 

represented at all as being different from cortical bone within the models. However, the 

effects of differences in segmentation of trabeculae relative to the error introduced by 

modelling bone as a solid material with no trabecular spaces is yet unknown. Thus, a 

sensitivity analysis to assess the relative impacts of these different approaches in terms 

of local strains and global deformations is described in Chapter 6. 

All image processing was carried out using Avizo, an image processing software 

(Visualisation Sciences Group, USA). Once the image processing was finished, a model 

was generated using non-commercial, custom built software vox2vec.exe to produce a 

finite element mesh consisting of eight-noded cubic elements. It is these meshes that 

were imported into the software VOX-FE, an FEA pre- and post-processing voxel-based 

software tool that uses direct voxel conversion (Fagan et al. 2007; Liu et al. 2012). 

 

 

5.2.3. Boundary Conditions 

 

Almost all papionins species are endangered, and the difficulty and the enormity 

of the task of obtaining wild papionin cadavers prevented the determination of muscle 

attachments and orientation from dissected material as would have been desirable. Thus, 

muscle information was retrieved from the literature (Schwartz & Huelke 1963; 

Swindler & Wood 1973; Antón 1999, 2000; Diogo & Abdala 2010). In vivo, the 

estimation of muscle force is normally achieved by calculating the physiological cross-
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sectional area (PCSA, Alexander & Vernon 1975; see also Subsection 2.4.2) of the 

muscle, the area of a plane perpendicular to the line of action of the muscle (line 

between the origin and the insertion of the muscle) at the mid-point (midway on that 

line). In the case where no real muscle information is available, the anatomical cross-

sectional area (ACSA) is often used instead (Demes & Creel 1988; Antón 1999; 

Christiansen & Adolfssen 2005; Ellis et al. 2008). ACSA is based on bony proxies, 

assuming that muscles are intimately related to the bones where they originate and 

insert (Antón 1996, 1999), and that it is possible to estimate the muscle area even when 

only bone information is available. Understandably, it is a widely used protocol in fossil 

studies (Demes & Creel 1988; O’Higgins et al. 2011). Maximum muscle force is then 

calculated using the formula: Fmax = ACSA × k, where k is the specific tension constant 

(37 N/cm
2
, Weijs & Hillen 1985). 

For the studies in this thesis, muscle attachments, PCSA and orientations 

(ascertained via dissection) and also muscle activation (loading predicted via multibody 

dynamic analysis, MDA) are available for the Macaca fascicularis model (Kupczik et 

al. 2007; Liu et al. 2012; Fitton et al. 2012) but for none of the others. Since the impact 

of varying muscle loadings in the biomechanical response of a finite element model 

cranium was shown to be much less than that of varying bite location (for controlled 

bite force magnitude; Fitton et al. 2012), a decision to use ACSA in all models was 

taken, including Macaca for consistency when comparing among models.  

 

 

Figure 5.4. Anatomical cross sectional area (ACSA) of the temporal muscle in a male 

Theropithecus gelada. Area shown in green. Areas on both sides are calculated and then 

averaged.  
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Figure 5.4 shows the ACSA of the temporal muscle in an example model. 

Having the occlusal plane as reference, the ACSA of the temporal muscle is calculated 

by first measuring the number of voxels of the temporal fossa through the zygomatic 

arch; since the area is in pixels and the standard pixel area is 0.25 mm × 0.25 mm = 

0.0625 mm
2
, the area in cm

2
 is calculated by multiplying the number of voxels (volume) 

by the standard pixel area. That area is then divided between anterior and posterior 

muscle according to the number of nodes selected for each muscle (based mostly on 

Schwartz & Huelke 1963 and Swindler & Wood 1973) on the FEA model. The division 

of the temporal muscle into anterior and posterior was devised because the division in 

superficial and deep proved difficult to model in VOX-FE. The anterior/posterior 

division, on either side, is not clear even in wet samples and was initially done by 

inferring the direction in which the muscle fibres would pull, infero-superiorly by the 

anterior, or inferoanterior-superoposterior by the posterior. Yet, the separation between 

anterior and posterior fibres is approximate and was finally inferred from comparison 

with accounts of the musculature of Macaca, available in the literature (Schwartz & 

Huelke 1963; Swindler & Wood 1973) and from dissections in our research group.  

The ACSA of the masseter muscle is here calculated by taking the length of the 

muscle scar on the zygomatic arch to approximate the length of the muscle, and the 

Euclidean distance from a midpoint on the mandibular ramus to the zygomatic arch, 

perpendicular to the ramus, on the occlusal plane, to approximate its width. Since the 

masseter is mostly a rectangular muscle (Rogers 1992), this gives an estimate of the real 

area. Figure 5.5 shows the estimation of the ACSA of the masseter muscle in an 

example model. As for the ACSA of the medial pterygoid muscle, it is estimated by 

defining a region on the internal aspect of the gonial angle of the mandible delimited by 

the muscle scar (Antón 2000). Even though this is not the ideal location to measure 

ACSA, measuring closer to the midpoint of the muscle proved impossible with the 

available data. Figure 5.6 shows the estimation of the ACSA of the medial pterygoid 

muscle. The lateral pterygoid is excluded from the models; the division of the masseter 

muscle into superficial and deep masseter (see Subsection 1.3.6) is also not included. 

These decisions are here taken on the basis of the difficulty of estimating the relative 

anatomical position (and consequently the ACSA) of these muscles in a virtual model 

and, in the case of the lateral pterygoid, to the realisation that this muscle contributes 

more to the stability of the mandible than to the production of bite force during 

mastication (Osborn 1995; Shi et al. 2012). Estimated ACSA values and calculated 

muscle force for each muscle are presented in Tables 5.3 and 5.4. 
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Figure 5.5. Estimation of the anatomical cross sectional area (ACSA) of the masseter 

muscle in a male Theropithecus gelada. The area is calculated by considering the 

rectangle as the simplest geometric shape capturing most of the masseter area. The 

length of the muscle scar on the zygomatic arch (l) and the distance from mid-ramus to 

the furthest zygomatic point (w) are used as area parameters. Areas on both sides are 

calculated and then averaged. Landmarks are shown as guidelines only.  

 

 

 

Figure 5.6. Estimation of the anatomical cross sectional area (ACSA) of the medial 

pterygoid muscle in a male Theropithecus gelada. Area shown in green. The furthest 

extent of the muscle scar on the inside of the mandible was delimited with landmarks. 

The triangle was deemed the simplest geometric shape capturing most of the bony scar 

area. Areas on both sides are calculated and then averaged.  
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Table 5.3. Estimated muscle anatomical cross-sectional area (ACSA) and muscle forces. 

Species 
Temporal  Masseter  Medial Pterygoid 

ACSA Force  ACSA Force  ACSA Force 

C. torquatus 8.49 314.29  5.39 199.40  2.46 90.85 

L. albigena 7.97 295.03  3.66 132.76  1.84 67.99 

M. fascicularis 5.93 219.45  5.31 196.59  1.35 50.07 

M. sphinx 11.93 441.58  11.62 430.10  3.44 127.24 

P. anubis (f) 7.71 285.28  4.75 175.73  2.16 79.80 

P. anubis (m) 12.10 447.73  9.99 369.99  3.09 114.48 

P. hamadryas 15.37 568.66  11.21 414.92  2.25 83.24 

T. gelada (f) 5.75 212.64  5.72 211.78  2.19 81.05 

T. gelada (m) 12.32 455.77  8.44 312.29  3.04 112.41 

ACSA in squared centimetres (cm
2
); force in Newtons (N). 

 

 

Table 5.4. Estimated anterior and posterior temporal parameters, modelled as 

percentage contributions of anterior and posterior temporal muscle.  

Species 
Anterior Temporal  Posterior Temporal 

% Tem. ACSA Force  % Tem. ACSA Force 

C. torquatus 36.53 3.10 114.80  63.47 5.39 199.49 

L. albigena 27.95 2.23 82.61  72.05 5.74 212.43 

M. fascicularis 33.38 1.98 73.27  66.62 3.95 146.18 

M. sphinx 27.69 3.43 126.87  72.31 8.51 314.71 

P. anubis (f) 24.76 1.91 70.64  75.24 5.80 214.65 

P. anubis (m) 24.01 2.91 107.50  75.99 9.20 340.24 

P. hamadryas 21.12 3.25 120.28  78.88 12.12 448.53 

T. gelada (f) 31.20 1.79 66.34  68.80 3.95 146.31 

T. gelada (m) 29.31 3.29 121.65  70.69 9.03 334.13 

ACSA in squared centimetres (cm
2
); force in newtons (N). 

 

 

All finite element models were constrained at the working (left) side tooth in the 

infero-superior (vertical) direction and at the glenoid fossae for anchoring (the average 

number of nodes constrained was 120; but see Chapter 6 for a sensitivity analysis on the 

jaw joint constraint). Bites on all teeth except the canine were simulated. The canine 
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was chosen not to enter the analyses because it is highly sexually dimorphic, which 

makes equivalent loading between sexes difficult, and also because it seems to play 

little role in feeding in this particular group of animals (Fleagle 1999). The vertical 

constraint placed in each left side tooth (cusps only) simulated the bite, whose force is 

the reaction force to this constraint (see further below Subsection 5.3.1 for more 

details). The load applied in each loading regimen was the sum of the maximum muscle 

force magnitudes estimated by ACSA, averaged from each side. They were designed to 

reflect the maximum bite force the specimens under study could produce. The 

orientation of the muscles was estimated by landmarking the further most insertion 

point of each masticatory muscle on the mandible in closed position, and later using that 

single landmark as a guideline to direct the force of the respective muscle in VOX-FE. 

Figure 5.7 shows a fully built FEA model before solution. 

 

 

 

Figure 5.7. Example of a fully built FEA model before solution (male Theropithecus 

gelada), with a P4 bite, and shown at three quarters and inferior view. Blue, posterior 

temporal muscle; red, anterior temporal muscle; orange, masseter muscle; and green, 

medial pterygoid muscle. The vectors of force are shown in the same colour as the 

muscles whose force they represent. The green landmarks represent muscle insertion 

points on the mandible and were used as guidelines for muscle force vectors. The red 

landmarks are chosen to assess global deformations after FEA. Notice the black box 

representing the nodes constrained at the left P4, simulating a bite on that tooth. 

Anchoring constraints placed at the glenoid fossae are shown in brown. All other 

specimens and simulated bites were built the same way.  

Landmarks 

Masseter 

Medial Pterygoid 

Anterior Temporal 

Posterior Temporal 
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The Young’s modulus of bone in the primate cranium varies among anatomical 

locations, ranging from 12.5 GPa in the posterior part of the zygomatic arch to 20.8 GPa 

in the anterior zygomatic region (Strait et al. 2005 studying a Macaca fascicularis 

model). The average of Young’s modulus values from all cranial regions is 17.3 GPa 

(Strait et al. 2005; see also Ethier & Simmons 2007 and Kupczik et al. 2007), which is 

the value used in all studies in this thesis. All materials were modelled as linear elastic 

and isotropic with a Poisson’s ratio of 0.28, again an average of values from all cranial 

regions (Strait et al. 2005). Due to the large number of elements, the solution of each 

model was performed using a Dell™ high-performance cluster (HPC) with 45 cores 

(Dell Inc., Round Rock, Texas, USA) available in the Hull York Medical School, York. 

The solver software (Liu et al. 2012) is a Linux-based, non-commercial, and custom 

built PARA_BMU, which is a modified iterative solver, similar to that reported by van 

Rietbergen et al. (1996). 

The next section describes how bite force and landmark displacement data are 

calculated after FEA solution. Resulting bite force values and the visualization of 

landmark-based deformation of the 9 built models are discussed. An example of the 

strains and deformations is shown, but these are given greater centrality in Chapters 6 

and 7 in relation to specific tests of hypotheses. 

 

 

 

5.3. Model solution: bite force and landmarks 

 

 Apart from allowing for the visualization of strain distributions and strain 

magnitudes, results output from an FEA include calculated maximum bite force and 

landmark data (when selected landmarks are included in the analysis). This section 

describes how maximum bite force was calculated and how landmark displacement data 

was used after FEA solution to study deformations on the 9 models of papionin crania. 

Maximum bite force results are presented in Table 5.5 (a, b), and deformations (Figure 

5.8) are visualized as a comparative principal components plot of deformations with 

surface warpings and transformation grids (Figure 5.9). These data are of great 

importance in the landmark-based analysis of deformations (see Section 2.5) used in 

subsequent chapters. 
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Table 5.5a. Bite forces and jaw joint reaction forces, as computed from FEA. 

Bite Forces C. torquatus L. albigena M. fascicularis M. sphinx P. hamadryas 

I1 
bite force 237.18 178.40 197.64 316.00 278.34 

reaction force 776.50 658.84 550.10 1414.75 1070.98 

I2 
bite force 249.44 185.45 209.24 322.71 285.95 

reaction force 764.60 652.27 538.56 1408.26 1063.51 

P3 
bite force 329.94 258.16 283.80 473.67 384.60 

reaction force 686.28 584.29 464.49 1262.00 966.56 

P4 
bite force 357.72 283.99 309.55 518.52 415.77 

reaction force 659.41 560.46 438.95 1218.69 935.98 

M1 
bite force 400.25 316.26 342.01 580.73 466.27 

reaction force 618.46 531.01 406.78 1159.26 886.23 

M2 
bite force 467.81 373.91 419.53 674.32 543.48 

reaction force 553.86 479.09 330.30 1069.64 811.11 

M3 
bite force 566.78 458.03 522.36 764.48 650.46 

reaction force 460.72 406.31 229.64 877.13 707.10 

Forces in Newtons (N). 

 

Table 5.5b. Bite forces and jaw joint reaction forces (continued). 

Bite Forces P. anubis (m) T. gelada (m) P. anubis (f) T. gelada (f) 

I1 
bite force 292.69 366.62 186.77 216.02 

reaction force 1260.72 1193.85 696.84 635.31 

I2 
bite force 299.89 372.83 192.77 223.14 

reaction force 1253.89 1187.91 691.25 628.17 

P3 
bite force 387.70 478.17 236.77 262.46 

reaction force 1170.45 1088.21 650.49 589.06 

P4 
bite force 422.23 508.83 257.84 281.35 

reaction force 1137.78 1059.35 631.13 570.27 

M1 
bite force 467.48 570.46 293.19 317.61 

reaction force 1095.19 1001.75 598.88 534.22 

M2 
bite force 542.33 681.20 350.41 378.97 

reaction force 1025.21 899.62 547.44 473.12 

M3 
bite force 648.80 846.49 434.37 481.58 

reaction force 735.94 751.64 474.64 371.56 

Forces in Newtons (N). 
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5.3.1. Maximum Bite Force 

 

 Maximum bite force is calculated in VOX-FE simply by summing the reaction 

forces at each node constrained in the vertical direction at the tooth (the bite location), 

after a muscle load case. A different bite force is thus calculated per tooth, and each load 

case also results in reaction forces at the glenoid fossae (Table 5.5a, b). Maximum bite 

forces from each FEA are used in the analysis of deformations (described below in 

Subsection 5.3.2) and later, in Chapter 8, to assess the relationship with diet. 

 In general, larger sized specimens have a higher absolute maximum bite force, 

due to absolutely larger muscles (measured by ACSA; Tables 5.3 and 5.4) producing 

absolute higher muscle forces. The male T. gelada and M. sphinx have the highest 

maximum bite force values, while the smaller L. albigena and the female P. anubis have 

comparatively smaller bite forces. In every specimen the highest maximum bite force 

among all teeth is achieved by the third molar (M3), with maximum bite force 

decreasing disto-mesially along the dental row from M3 to I1. This is a straightforward 

consequence of lever-arm mechanics and so is related to the length of the rostrum. The 

jaw joint reaction forces at the glenoid fossae show, as expected, the inverse of the bite 

force: a decrease from I1 to M3. Absolute maximum bite force is used in later chapters 

to scale the deformations of each model to the same bite force at each tooth (100N; see 

also Section 7.2) as a preliminary to PCA (Figure 5.9; Chapters 6 and 7). It is also used 

as a biomechanical parameter in itself in relation to investigation of the mechanical 

correlates of diet (Chapter 8). 

 

 

5.3.2. Landmarks and Visualizing Deformations 

 

To compare global deformations predicted by FEA among a sample, a common 

set of 70 anatomically equivalent 3D landmarks (Table 5.6) is placed on each cranium 

(Figures 5.7 and 5.8). Landmarks were chosen based on the cranial shape literature and 

on previous models of the papionin crania. The landmark configuration was designed to 

capture the shape of the cranium including a good description of the face. The Cartesian 

coordinates of each landmark change as the cranium deforms in FEA. This causes the 

landmark configuration to change in size and shape, creating a new landmark 

configuration which can be compared to the original, undeformed landmark 
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configuration. When resulting landmark configurations of several models are analysed, 

differences in deformations reflect differences in mechanical performance. The analysis 

of deformations is fully described in Section 2.5.  

 

 

 

Figure 5.8. Results of a finite element analysis. A, von Mises’ strain contour plot 

resulting from a simulated bite on the first incisor (I1), in a model of a male 

Theropithecus gelada; the strain magnitudes have been scaled to 100N bite force. B, 

global deformations (displacements ×50) of the model after the I1 bite, where the form 

of the landmark configuration can be seen to change as the cranium deforms.  

  

 

 Figure 5.8 depicts an example of the results expected from FEA, including a 

strain contour plot and a visualization of deformations after loading on an example 

model, with landmarks to be used in assessing that global deformation quantitatively. In 

Figure 5.9 a principal components plot is presented that shows size and shape changes 

(here read as global deformations) among the 9 finite element models, with 

transformation grids for visualization of change. Transformation grids are simply a 

visual aid to assessing shape differences and do not represent actual physical movement 

(see Subsection 2.3.4). With the landmark set chosen, the first principal component axis 

(PC1) describes mostly antero-posterior bending, while the second axis (PC2) is mostly 

describing deformation of the zygomatic arches, due to the pull of the masseter muscle; 

the third (PC3) and fourth (PC4) axes describe torsion of the face (not shown). These 

four principal components account for 90% of the total variance in the sample. 
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Table 5.6. Landmarks for deformations analyses used in subsequent chapters. 

Number Description 

1 Central point between incisors at alveolar margin 

2 Premaxillary suture at inferior margin of nasal aperture 

3 Tip of nasal bones in midline 

4 Naso-frontal suture in the midline 

5 Upper margin of supra-orbital rim in the midline 

6 Bregma 

7 External occipital protuberance 

8 Basilar 

9 Midline of transverse palatine suture 

10 / 38 Uppermost central point on orbital aperture 

11 / 39 Most lateral part of nasal aperture 

12 / 40 Inferior border of alveolar margin between I2 and C 

13 / 41 Inferior border of alveolar margin between C and P3 

14 / 42 Inferior border of alveolar margin between P3 and P4 

15 / 43 Inferior border of alveolar margin between P4 and M1 

16 / 44 Inferior border of alveolar margin between M1 and M2 

17 / 45 Inferior border of alveolar margin between M2 and M3 

18 / 46 Inferior border of alveolar margin behind M3 

19 / 47 Superior apex of the inferior orbital fissure 

20 / 48 Porion 

21 / 49 Zygomatico-maxillary suture on the inferior orbital margin 

22 / 50 Zygomatico-frontal suture on the lateral orbital margin 

23 / 51 Fronto-lacrimal suture on the medial orbital margin 

24 / 52 Nearest point to maxillary-premaxillary suture on the nasal aperture 

25 / 53 Zygomatico-maxillary suture at root of zygomatic arch 

26 / 54 Superior root of zygomatic arch 

27 / 55 Inferior root of zygomatic arch 

28 / 56 Infra-orbital foramen 

29 / 57 Most supero-lateral point on the supra-orbital rim 

30 / 58 Most lateral point on zygomatico-frontal suture on the orbital rim 

31 / 59 Most anterior point along the temporal line 

32 / 60 Zygomatico-temporal suture on the superior border of the zygomatic arch 

33 / 61 Superior root of the zygomatic arch between the suture and porion 

34 / 62 Most lateral point behind the porion, on the temporal line 

35 / 63 Point directly inferior to the zygomatico-temporal suture, on the superior border 

36 / 64 Posterior root of zygomatic arch inferior border, anterior to glenoid 

37 Posterior border of foramen magnum in the midline 

65 / 68 Central nasal region 

66 / 69 Central zygoma region 

67 / 70 Central maxillary region, above premolars 
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Figure 5.9. PCA showing cranial deformations after bites along the left dental row (I1 

to M3) scaled to 100N force, in 9 finite element models, along the first two principal 

components, PC1 and PC2 (the proportion of total variance explained by PC1 and PC2 

is also shown). Ct, blue: Cercocebus torquatus. La, yellow: Lophocebus albigena. Mf, 

brown: Macaca fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: male Papio 

anubis. Paf, light red: female Papio anubis. Ph, orange: Papio hamadryas. Tgm, green: 

male Theropithecus gelada. Tgf, light green: female Theropithecus gelada. The shape 

changes associated to each principal component are visualized using a mean specimen 

surface and a transformation grid; here, shape changes correspond to global 

deformations after load.  
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 The deformations depicted in the Figure 5.9 show the undeformed (original, 

unloaded) mean of all specimens, and a trajectory of deformed states ranging from the 

M3 bite (least deformed) to I1 (most deformed) along PC1, for every specimen. The 

main differences among specimens are found in the “length” of the deformation along 

PC1 (extent of antero-posterior bending) and PC2 (zygomatic arch deformation) and in 

their directions through size and shape space. This Figure 5.9 introduces the 

methodology while specific hypothesis-testing comparisons between two or more 

specimens will follow in Chapter 7. 

 

 

 

5.4. Discussion 

 

This chapter describes the steps taken in the process of building 9 finite element 

models of papionin crania, as well as the FEA results that will be used in subsequent 

chapters. It outlines the sample specimens, reviews image segmentation techniques and 

boundary conditions of the models, and how maximum bite force and landmarks are 

utilised after the model solution step of FEA. This chapter serves as a preliminary 

approach to subsequent chapters that use the models, bite force and landmark data for 

analyses of deformations. These are complementary to strain-based assessments of 

deformations in that they relate to global (large scale) deformations while strains 

describe deformations locally at each node (O’Higgins et al. 2011, 2012). 

It is apparent that building 3D models from CT scans is not a trivial task. Issues 

immediately arise with respect to the resolution of available scans (Table 5.1): there are 

differences in scanner specifications and even in the type of scanning (micro CT or 

medical CT). This produces CT stacks with resolutions that render comparisons 

between two or more specimens not straightforward. Ideally, a sample of specimens to 

test particular hypotheses would be scanned at the same resolution and in the same 

scanner device. This is not always possible due to the rarity of some specimens, 

museum loan rules (many place constraints on transport and removal of specimens from 

their premises) and availability of an adequate CT scanner. 

 Differences in image resolution results in differences in image segmentation, 

because it becomes difficult to distinguish presence from absence of bone in certain 

anatomical regions, for example, the trabecular bone of the basicranium or the sphenoid 
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region. Thus, some compromises are necessary to build models that are comparable 

from different CT scans. One such compromise might be reached by filling in all the 

spaces in the trabecular bone of every cranium, regardless of their CT resolution, and 

attributing to this filling material the properties of cortical bone. A sensitivity test on the 

behaviour of a finite element model using this approach is attempted in Chapter 6. 

Specific issues in building these particular 9 papionin models include the 

segmentation of teeth. The set of studies in this thesis includes a large scale FEA 

comparison (the largest ever attempted to date), and considering that models should be 

built with increasing complexity, teeth and other cranial features were not, at present, 

modelled with material properties of their own (they were attributed the material 

properties of cortical bone). This is the first study of a wide range of different species 

models ever done and there is a large amount of data to compare before complexity 

must be added. 

 Another of the major immediate problems that arise when building 3D 

biomechanical models is the accuracy of the muscle forces estimated. Estimation from 

bony proxy ACSA provides maximum muscle forces that can be widely different from 

in vivo measured maximum muscle forces (L. Fitton, pers. comm.). Moreover, they 

raise questions of usefulness of the parameter maximum muscle force as a proxy for the 

extreme ability of an animal. It is thought that most animals use their muscles to their 

fullest extent but very rarely during their lifetime. Thus, it would be perhaps more 

useful to use an estimated average muscle force for single individuals or populations, 

but no method has yet proved to be effective in making that estimation.  

Maximum bite force estimation, following muscle force estimation, diverges in 

the same way as the latter from in vivo measured bite force (Hylander 1986 in Macaca), 

but remains correct within the environment of the respective model, i.e., when 

comparing bite forces at different teeth in the same animal. Another way of calculating 

maximum bite force is using lever-arm mechanics, whose results (not shown) are 

similar to the FEA calculations, but perhaps more prone to user error due to the many 

manual measurements that need to be taken, while in a computerized method forces are 

computed to an accuracy of several decimal places. 

 Studying cranial deformations using landmarks in FEA is a novel methodology 

made possible by bringing together the resources of geometric morphometrics and FEA. 

The more common statistical analysis of shape is here extended to include size and 

shape, which serves as an adjunct to the more established approach to deformations 

using local strains and coloured contour plots (see also Subsection 2.4.4 and Section 
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2.5). Proper use of the method and discussion of its results are given in Chapters 6 and 

7. Here only an example of the PCA of deformations was shown together with 

visualisations of cranial shape changes described by principal components (Figure 5.9). 

Most variation in deformations occurs in anterior-posterior and zygomatic arch bending, 

both being described by the first two principal components. These differences among 

the papionin specimens in deformations due to biting are later (Chapter 8) related to 

cranial form, ecological factors (diet) and other biomechanical variables (maximum bite 

force) to study their importance in the evolution of papionin cranial form and the extent 

to which the use of FEA can provide insight into it. 

The next chapter presents sensitivity analyses that are essential before moving 

on to the biological hypothesis-testing analyses found in Chapter 7. 
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Chapter 6. Testing the Effects of Model Building Decisions on 

the Results of Finite Element Analysis 

 

 

 

6.1. Introduction 

 

The previous chapter described how the three-dimensional (3D) models used in 

this thesis were built for finite element analysis (FEA). Building any model, 3D or 

otherwise, is a non-trivial matter and there are many potential model building decisions 

that should be taken into account when interpreting results. It is desirable to validate a 

finite element model (see Subsection 2.4.4) by comparing model results with data 

collected from in vivo (strain gauges, e.g. Hylander & Bays 1979), in vitro (MDA, e.g. 

Curtis et al. 2008) and bone strain experiments (Chalk et al. 2011), and by incorporating 

some of these into the model (e.g. Fitton et al. 2012), but such validation is not always 

possible. In this study, with the exception of the Macaca model, it was not possible to 

obtain crania that could be subjected to laboratory testing (due mostly to museum loans 

policies; see also Subsections 2.4.4 and Section 5.1). Furthermore, given the constraints 

imposed by CT scanning, the original data for each model differ considerably in 

resolution and grey scale (see Table 5.2), rendering the production of comparable 

anatomically detailed models difficult. Thus it was necessary to adopt a standard 

approach to model building that limited anatomical accuracy in all models to the quality 

obtained in the least good CT scan. This meant that details of cortical thicknesses and 

internal architecture could not be reproduced with any accuracy. Thus, models were 

simplified; the internal architecture and variations in cortical thickness were not 

represented. This inevitably means that the models behave differently than if detailed 

anatomical representations were in place and are unlikely to yield strains and 

deformations that match the actual strains and deformations arising from physical 

loading of the cranium in vivo. 

Over the last ten years, there have been several studies that have related finite 

element model performance to the measured performance of physical crania and 

mandibles (Rayfield et al. 2001; Marinescu et al. 2005; McHenry et al. 2006; Pierce et 

al. 2008, 2009; Dumont et al. 2011; O’Higgins et al. 2011; Tseng et al. 2011; Cox et al. 
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2011, 2012). These have demonstrated repeatedly that models perform reliably, at least 

in terms of relative strains among anatomical regions when cortical thicknesses are 

close to actual thicknesses and trabecular bone is modelled as a bulk material with low 

Young’s modulus. 

In this thesis, model building is further simplified for the reasons outlined above, 

and so it becomes important to know how such simplifications impact on model 

performance. To these ends, sensitivity analyses are performed. As mentioned in 

Chapter 2 (Subsection 2.4.4), a sensitivity analysis should test the effects of changes in 

the applied loads, variations of the material properties of differences in the structure and 

size of the model on the modelling results, among other things (Strait et al. 2005; Ross 

et al. 2005; Kupczik et al. 2007; Curtis et al. 2008). The aim is to understand the 

consequences of model building decisions in order to allow proper interpretation of 

results. Many FEA-based studies have focused on the sensitivity of the method to 

different variables (Sellers & Crompton 2004; Ross et al. 2005; Panagiotopoulou et al. 

2011; Gröning et al. 2011; Cox et al. 2011; Parr et al. 2012; Fitton et al. 2012). 

 Ultimately, it is the researcher who has to decide how sensitive a model has to be 

to different model building decisions in order for FEA results to be interpretable 

biologically (Richmond et al. 2005). As such, all the FEA studies in this thesis were 

carried out under the assumption that, whatever errors might be introduced, if they are 

consistent among all models, then the model performances should be comparable for the 

type of questions that are of interest here. This is the reason why, as explained in the 

previous chapter, all of the 9 models were built using the very same protocol. Yet, some 

sensitivity tests were considered necessary and are described in this chapter.  

As noted above, here it was necessary to simplify model building to account for 

significant differences in raw data (CT images). Among the difficulties caused by these 

differences are inevitable errors in representing varying cortical thicknesses and internal 

bone architecture. Beyond this, issues arise with regard to how best to constrain and 

load models. Thus, in this chapter three major model building decisions are assessed in 

sensitivity analyses: 

(1) First, constraints imposed by CT scanning differences in the cortical 

thicknesses and internal architecture from one specimen to another, which cannot be 

reliably represented (Parr et al. 2012). Thus, models of the same specimen could 

conceivably show significant differences in strains and deformations depending on 

whether trabecular bone is segmented in great detail or represented as a solid material 

with spaces filled. While the issue of how to represent trabeculae and other internal 
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aspects of bone anatomy is important in this context it is of special importance, for 

example, for fossil analyses because internal architecture is often filled with amorphous 

matter during the fossilization process, rendering subsequent detailed reconstruction 

impossible. It is also relevant to note that anatomical exactitude would require imaging 

and computer processing power beyond what is currently available.  

(2) Second, when simulating the forces applied to a cranium in 3D space it is 

necessary to anchor the cranium to prevent it from moving freely in space as if pushed 

or pulled, not loaded (Kupczik 2008). Since there is no available bite and joint reaction 

force data for most papionins, a common approach is to constrain the teeth and jaw joint 

to fix the cranium, thus mimicking the reaction forces (Strait et al. 2005; Ross et al. 

2005; Kupczik et al. 2007). Whereas biting is simulated by a single tooth constraint, 

here applied vertically to mimic a downwardly directed bite, the most sensible way of 

constraining the jaw joint is less evident and can be done by anchoring both sides of the 

jaw joint or only one, leaving the other one free to deform with the whole cranium. It is 

expected that, in the second case, part of the muscle force exerted should be expended 

in creating a rotatory movement around the fully constrained fulcrum, and thus 

preventing the model from deforming properly. 

(3) Finally, input muscle force has been considered to have a major effect in 

biomechanical models (Sellers & Crompton 2004; Ross et al. 2005; Tseng et al. 2011; 

Fitton et al. 2012). Particularly the force applied by the masseter and temporal muscles 

appears to have the greatest effect on the tooth (bite) reaction force estimated with FEA 

(Sellers & Crompton 2004). Papionins in the wild never bite with the same force every 

time and almost never use the maximum force the muscles can achieve, which means 

that to accurately estimate strains and deformations it is important to accurately estimate 

applied masticatory muscle forces at a particular instant during feeding (Ross et al. 

2005). But this is not possible in most cases, due to the difficulty in measuring muscle 

forces even in in vivo experimental conditions (which, in any case, can never reproduce 

exactly the natural conditions the animal experiences in the wild). Sensitivity analyses 

are therefore undertaken here to assess the effect of variant muscle forces on the 

behaviour of a finite element model. It is expected that, for any muscle, a higher force 

should result in higher strains and higher deformations, and lower forces in lower 

strains and deformations.  

The objectives of this chapter are, then, to explore the effect of 3D model 

building decisions on the local strains and global deformations arising from FEA. The 

hypotheses being tested can be phrased as null hypotheses: (1) a change in the internal 
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structure of the model does not have a major effect on strains and deformations arising 

from FEA; (2) a change in jaw joint anchoring constraint does not have a major effect 

on strains and deformations arising from FEA; and (3) changes in muscle force 

magnitudes do not have a major effect on strains and deformations arising from FEA.  

 

 

 

6.2. Material and Methods 

 

The material used here is a dry cranium of a male Theropithecus gelada (see 

Table 5.1). The analyses are performed only in the male Theropithecus model because 

they are very time consuming, and all the other models, built in the same way, are 

assumed to behave in the same manner. The cranium was CT scanned (Table 5.2) and a 

3D model was built for FEA according to every step described in Chapter 5 (Section 

5.2), from CT image segmentation to boundary conditions, finite element solution and 

post-processing. The results are presented in (1) the form of scaled contour plots, with 

corresponding strain values at each landmark location reported in table format in 

Appendix D, and (2) principal components plots of deformations (as described in 

Subsections 2.5.3 and 5.3.2). 

All the different models and load cases were submitted to FEA simulating bites 

along the left-side dental row, as described in Chapter 5 (Subsection 5.2.3). The 

deformations of each cranium resulting from each bite are compared using landmark-

based geometric morphometrics, as described in Section 2.5. Principal components plots 

of deformations include all other species models to provide an indication of the 

magnitude of the model building decision effect in relation to the magnitude of 

differences among models. 

 

 

6.2.1. Differences in Internal Architecture 

 

To test the effect of varying the internal architecture of a model on the results of 

FEA, the Theropithecus model cranium had its internal architecture built in two ways: 

(1) all hollow spaces in the trabecular bone filled in with bulk material and given the 
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material properties of cortical bone (filled model); and (2) all hollow spaces in the 

trabecular bone left intact and the trabeculae carefully segmented (unfilled model), 

within the limits of CT scan resolution, as shown in Figure 6.1. Major anatomical 

features, such as the external auditory meatus, were left unfilled in both models. Due to 

the complexity of the task, teeth were neither fully segmented nor fully filled in any of 

the models: they were segmented using an automated threshold function in the 

segmentation software, and were given the material properties of cortical bone. It is to 

be expected that the unfilled model presents higher strains and deforms more than the 

filled model due to the absolute quantity of “bone” (number of voxels in the model, 

higher in the filled model).  

 

 

 

Figure 6.1. Cross-section through two differently built models of male Theropithecus 

gelada to show the two ways the internal architecture was modelled: on the left, the fully 

segmented internal architecture model (unfilled model), where all the hollow spaces in 

the trabecular bone can be seen; on the right, the hollow spaces in the trabecular bone 

filled and given the material properties of cortical bone (filled model).  

 

 

6.2.2. Differences in Jaw Joint Constraint 

 

To test the effect of varying jaw joint constraints of a model on FEA results, the 

Theropithecus model had the jaw joint constrained in two ways: (1) in all three axes of 

the 3D space (effectively fully anchoring the joint in that position), or (2) only in the 

axis of the reaction force, parallel to the vertical bite (thus allowing the model to move 
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freely in the other two axes). However, for FEA, full anchoring is required in at least 

one side of the jaw joint (to prevent the model from continuously moving in space, 

rather than deform) and thus the balancing (right) side of the jaw joint was constrained 

in all three axes; the working (left) side was thus constrained in the vertical axis only. 

The filled Theropithecus model used in the previous sensitivity analysis is used here 

fully constrained for comparison. Full anchoring is also used in the crania of other 

species with which the results of this experiment will be compared. 

 

 

6.2.3. Differences in Estimated Muscle Force 

 

Since muscle force magnitudes vary among different muscles and within the 

same muscle across several specimens (Table 6.1), it was necessary to asses the effects 

of estimated muscle forces on FEA results. To this end, the filled Theropithecus model 

is loaded in two ways that are rather extreme in their deviation from biological reality: 

(1) all muscle forces set to 300N (Load Case 1 in Table 6.1); and (2) all muscle forces 

set to 300N except for masseter muscle on both sides of the cranium, which was set to 

150N (Load Case 2 in Tabel 6.1). Masseter force rather than the forces of other muscles 

was varied because estimation of its magnitude is considered one of the major sources 

of error in finite element models (Sellers & Crompton 2004; Fitton et al. 2012). Both 

load cases are compared to the model built with ACSA-estimated muscle forces. 

 

 

Table 6.1. Muscle force magnitudes of different load cases of the same model. 

Muscle 
Force Magnitude 

ACSA Load Case 1 Load Case 2 

Anterior Temporal 121.646 300.000 300.000 

Posterior Temporal 334.126 300.000 300.000 

Masseter 312.287 300.000 150.000 

Medial Pterygoid 112.408 300.000 300.000 

Forces in Newtons (N). 
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6.3. Results 

 

Results are here presented as strain contour plots resulting from the VOX-FE 

software (see Subsection 5.2.2) and as principal components plots of deformations. For 

the scaling step of the landmark-based deformations analysis (see Subsections 2.5.2 and 

5.3.2) the bite force calculated at each bite point in each model is required and is 

presented in Table 6.2 (also refer to Table 5.5b for the filled model bite force). Tables of 

strain values at landmark locations are provided in Appendix D.  

 

 

Table 6.2. Bite forces and jaw joint reaction forces of the models in this chapter. 

Bite Forces Filled Unfilled Jaw Joint Load Case 1 Load Case 2 

I1 
bite force 366.62 366.59 374.37 506.33 426.30 

reaction force 1193.85 1193.86 1186.50 1657.83 1474.64 

I2 
bite force 372.83 372.77 380.96 514.85 433.50 

reaction force 1187.91 1187.99 1180.14 1649.52 1467.83 

P3 
bite force 478.17 478.10 488.24 660.39 556.04 

reaction force 1088.21 1088.25 1078.75 1508.72 1352.07 

P4 
bite force 508.83 508.77 519.74 702.79 591.74 

reaction force 1059.35 1059.41 1049.15 1467.89 1318.58 

M1 
bite force 570.46 571.29 582.33 790.15 665.32 

reaction force 1001.75 1000.98 990.90 1384.07 1249.98 

M2 
bite force 681.20 682.26 695.03 944.46 795.32 

reaction force 899.62 898.65 887.04 1237.23 1130.28 

M3 
bite force 846.49 843.24 863.64 1167.40 983.24 

reaction force 751.64 754.50 736.85 1028.80 961.96 

Forces in Newtons (N). 
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6.3.1. Differences in Internal Architecture 

 

Strain contour plots in the first sensitivity analysis (Figure 6.2, first and second 

column from the left) show little overall difference in strain distribution between the 

filled and the unfilled models. The major differences seen in strains are among different 

bites of the same model, not between models with variant internal architecture. In fact, 

the bite force generated by both models is almost exactly the same (Table 6.2). There 

are, however, differences in magnitudes of strains in localized regions of the cranium, 

such as the orbit and the zygomatic arch, with higher strains in the unfilled model for all 

bites (strain values in Tables D.1 to D.7 in Appendix D; see also Table 5.6 and Figure 

5.7 for landmark location). The PCA of deformations (Figure 6.3) shows both models, 

filled and unfilled, clustering close together for all bite points along the dental row, and 

away from models of all the other papionin species. The magnitude of deformation is 

higher in the unfilled model for every bite load (the point representing each load case is 

further from the unloaded model than the filled, albeit slightly), as expected, but the 

trajectory of deformation is similar between both models. The first two principal 

components explain 87.52% of the total variance in the papionin sample. 
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Figure 6.2. Von Mises’ strain contour plots of the male Theropithecus gelada: filled, 

unfilled, and modified jaw joint constraint (see text for details). Each row represents a 

bite on one left tooth, first incisor (I1), second incisor (I2), first premolar (P3), second 

premolar (P4), first molar (M1), second molar (M2), and third molar (M3). Values in 

microstrain (μstrain). All bites scaled to 100N.  
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Figure 6.3. PCA of deformations with the two models of Theropithecus gelada with 

different internal architecture, filled and unfilled, among other species models. Lines 

denote the deformations arising from bites in a single specimen at different points along 

the left dental row,,first incisor (I1), second incisor (I2), first premolar (P3), second 

premolar (P4), first molar (M1), second molar (M2), and third molar (M3). Ct, blue: 

Cercocebus torquatus. La, yellow: Lophocebus albigena. Mf, brown: Macaca 

fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: male Papio anubis. Paf, light red: 

female Papio anubis. Ph, orange: Papio hamadryas. Tgf, light green: female 

Theropithecus gelada. Tgm, green: male Theropithecus gelada (filled model). TgmUn, 

black dashed: male Theropithecus gelada (unfilled model). The isolated point marked U 

represents the undeformed mean of all models.  
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6.3.2. Differences in Jaw Joint Constraint 

 

The same lack of difference arises in the second sensitivity analysis, where 

strain contour plots show almost identical strain maps between the models (Figure 6.2, 

first and third columns from left). Major differences in strain distribution remain among 

different bites of the same model and not between the differently constrained models. In 

fact, for any one bite, the bite force generated by either model is very similar (Table 

6.2). Magnitudes of strains show even less difference between models than in the first 

sensitivity analysis, and are localized mainly to the zygomatic region for each tooth bite 

(strain values in Tables D.1 to D.7 in Appendix D; see also Table 5.6 and Figure 5.7 for 

landmark location). The PCA of deformations (Figure 6.5) shows that the model with 

modified constraints behaves very similarly to the model with full constraints for all 

bites along the dental row. It is however displaced in PC2 (noted in Figure 5.9 to relate 

mainly to zygomatic arch deformation), indicating a similar trajectory of deformations 

but with a consistent difference. The trajectory of deformations and the magnitudes of 

strains remain very similar between both models. The first two principal components 

explain almost 90% (87.01%) of the total variance in the papionin sample. In Figure 

6.4A the displacements (here meaning deformation plus rigid body motion; see the 

difference between continuum mechanics deformation and engineering deformation in 

Section 5.2) of the fully constrained model are shown. Deformations are evident and 

dominate the visualisation. In contrast, in Figure 6.4B, the displacements of the model 

that is constrained only in one axis in the balancing side of the jaw, for every bite, are 

dominated by a rotatory motion, which is much greater in magnitude than the actual 

deformations.  
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Figure 6.4. Displacement (deformation plus rigid body motions) when the model is (A) 

constrained in all three axes in both sides of the jaw joint, and (B) constrained in the 

working side only in the vertical axis (the balancing side was kept constrained in all 

three axes for anchoring purposes), multiplied by a scalar of 50 for visualization, 

during bite loads in the first incisor (I1) and second molar (M2). In (A), deformations of 

the face and zygomatic arches dominate the visualization, whereas in (B) rotation rather 

than deformation dominates the visualization, i.e., the model rotates around the fully 

constrained balancing side axis. Values in microstrain (μstrain). All bites scaled to 

100N.  
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Figure 6.5. PCA of deformations with the two models of Theropithecus gelada with 

different jaw joint constraints, among other species models. Lines denote the 

deformations arising from bites in a single specimen at different points along the left 

dental row, first incisor (I1), second incisor (I2), first premolar (P3), second premolar 

(P4), first molar (M1), second molar (M2), and third molar (M3). Ct, blue: Cercocebus 

torquatus. La, yellow: Lophocebus albigena. Mf, brown: Macaca fascicularis. Ms, violet: 

Mandrillus sphinx. Pam, red: male Papio anubis. Paf, light red: female Papio anubis. 

Ph, orange: Papio hamadryas. Tgf, light green: female Theropithecus gelada. Tgm, 

green: male Theropithecus gelada, model constrained in all three axes in both sides of 

the jaw joint. TgmJJ, black dashed: male Theropithecus gelada, model constrained in 

the working side only in the vertical axis (the balancing side was kept constrained in all 

three axes for anchoring purposes). The isolated point marked U represents the 

undeformed mean of all models.  
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6.3.3. Differences in Estimated Muscle Force 

 

The results of the sensitivity analysis on the effects of varying muscle force 

showed the biggest differences when compared to the other two analyses. Strain contour 

plots (Figure 6.6) show no difference in strain distributions between load cases yet 

substantial differences in strain magnitudes across the cranium, with greater differences 

again in the zygomatic region. The major strain distribution differences, in any case, are 

found among different bites, not between varied muscle load cases. Major strain 

magnitude differences between the ACSA load case and the other two load cases are in 

the midline and in the zygomatic region, for each bite (strain values in Tables D.8 to 

D.14 in Appendix D; see also Table 5.6 and Figure 5.7 for landmark location). 

Deformations, as shown in the PCA (Figure 6.7), also diverge from the standard ACSA 

load case in this specimen, indicating differences both in trajectory and in magnitude of 

deformations. As expected, higher maximum muscle forces lead to larger deformation 

(longer trajectories). Additionally, the dislocation of the two experimental load cases 

trajectories from the standard ACSA-loaded trajectory suggests that the models also 

deform differently. The two experimental load case trajectories nevertheless cluster 

closer to the male Theropithecus model with ACSA-estimated muscle forces, and so the 

differences are still quite small when compared to the differences in trajectories among 

all species models. The first two principal components explain again almost 90% 

(87.35%) of the total variance in the papionin sample, yet with relatively more variance 

explained by the second principal component than by the first principal component, 

compared to the previous analyses. This is likely because the experimental load cases 

are principally displaced in the second principal component, related to zygomatic 

bending (see Figure 5.9). The magnitude of muscle force seems to bear a greater effect 

in the behaviour of the finite element model than the other two model building decisions 

here examined. 
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Figure 6.6. Von Mises’ strain contour plots of the male Theropithecus gelada model with 

ACSA muscle forces and two other load cases as seen in Table 6.1. Each row represents 

a bite in each left tooth, first incisor (I1), second incisor (I2), first premolar (P3), 

second premolar (P4), first molar (M1), second molar (M2), and third molar (M3). 

Values in microstrain (μstrain). All bites scaled to 100N.  



158 

Figure 6.7. PCA of deformations with the Theropithecus gelada model loaded with 

different muscle load cases (Table 6.1) and showed among other species models. Lines 

denote the deformations arising from bites in a single specimen at different points along 

the left dental row,,first incisor (I1), second incisor (I2), first premolar (P3), second 

premolar (P4), first molar (M1), second molar (M2), and third molar (M3). Ct, blue: 

Cercocebus torquatus. La, yellow: Lophocebus albigena. Mf, brown: Macaca 

fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: male Papio anubis. Paf, light red: 

female Papio anubis. Ph, orange: Papio hamadryas. Tgf, light green: female 

Theropithecus gelada. Tgm, green: male Theropithecus gelada, ACSA-estimated muscle 

force. TgmLC1, black dashed: male Theropithecus gelada, Load Case 1 (see Table 6.1). 

TgmLC2, black dashed: male Theropithecus gelada, Load Case 2 (see Table 6.1). The 

isolated point marked U represents the undeformed mean of all models.  
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6.4. Discussion 

 

 This chapter explores the effect of three model building decisions on local 

strains and global deformations resulting from FEA. The assessments focused on the 

effects of varying internal architecture, jaw joint anchoring constraints, and muscle 

force magnitudes. None of these was expected to have a major effect on the strains and 

deformations arising from FEA for comparing among species, and that expectation was 

generally met, although muscle force magnitude had the greatest effect. 

On the whole, different decisions to building the male Theropithecus gelada 

model had effects that were small and so results were within an acceptable range for 

comparative biomechanical performance with FEA. A priori, the results would be 

considered acceptable if the different models would all fall in the same region of the 

PCA plot (in terms of deformations); conversely, the results would be unacceptable if 

different models of the same cranium would fall in different regions of the plot, 

preventing the comparison between species. Ideally, for an even better understanding of 

those effects these sensitivity analyses should be expanded to other models (including 

models of the same animal species) and, if possible, significance statistics should be 

attempted. This, however, would be a much larger study than the one presented here and 

even here it was the extremely time-consuming nature of model building and sensitivity 

analyses that forced the application of these analyses to only one model, with the 

assumption that all other models perform similarly. There is no reason to expect that the 

behaviour of other models will be very different to this one and massive effort in model 

building and analysis would be required to apply sensitivity analyses to all models 

considered in a comparative study. Such study awaits advances in model building and 

computational power to facilitate the analysis of large samples.  

 In the first analysis, the trajectory of deformations remains the same and only 

the magnitude of deformations appears to have changed. Thus, shape transformations 

described by the first two principal components remain the same as in Figure 5.9, with 

mostly antero-posterior bending in PC1, and mostly zygomatic arch deformation in 

PC2. The same magnitude difference can be seen in the strain contour plots. These 

magnitude differences are likely due to stiffening of the cranium in the filled model 

(deforms less). The differences probably fall within the range of variation of the species 

Theropithecus gelada, and had models of other Theroptihecus specimens been included 

in the analysis this realization would have been no doubt clearer. Thus, varying the 

internal architecture of a model appears to have little effect on the results of the FEA. 
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This is particularly interesting because it endorses the filling of hollow spaces in 

trabecular bone when CT scans resolution is low, and also grants confidence in using a 

bulk filled model of a fossil when the internal architecture has been lost in the 

fossilization process.  

 The major difference when constraining the working side jaw joint only in one 

of the three axes is that the model now rotates around the fully constrained region (the 

balancing side jaw joint). Since this rotatory motion tends to dominate the analysis, 

anchoring of only one of the jaw joint sides and leaving the other one free is not a 

satisfactory approach to studying deformations. The strain contour plots (Figure 6.4) 

return the same distribution of strains across the cranium as the fully anchored model 

(Figure 6.2, right column), even when scaled to 100N bite force; but there is a 

difference (small as it may be) in magnitude of strain (Tables D.1 to D.7), reflecting the 

lower deformations that are overshadowed by the dominant rotation. The rotation is 

undesirable for the deformations-related questions addressed here, thus the model with 

full, three axes anchoring on both sides of the jaw joint is used in subsequent chapters. 

 Among the three examined model building decisions, the one that has the 

greatest effect on the behaviour of the model is without a doubt the magnitude of the 

input muscle forces. This finding is corroborated by published findings (Sellers & 

Crompton 2004; Ross et al. 2005; Tseng et al. 2011; Fitton et al. 2012). As was 

expected, a higher force resulted in higher strains and higher deformations. Changing 

the masseter force appears to have a major effect, but more studies are needed in order 

to establish whether it has greater effect on FEA results then other muscles. Since, 

although desirable, accuracy of forces can never be fully achieved, the ability to 

interpret results biologically in a large sample comparative study has to rely on 

consistency of approach to muscle loading across all models to be compared. Thus, 

analyses in subsequent chapters use the ACSA-estimated muscle forces, which is a 

consistent and previously applied (Demes & Creel 1988; Antón 1999; Christiansen & 

Adolfssen 2005; Ellis et al. 2008) procedure. 

 In conclusion, considering the results of the sensitivity analyses, filled models 

(as mentioned before, chosen over unfilled models because of the differences in 

segmentation from different CT resolution quality), with jaw joint constraints in three 

axes in both working and balancing sides (to avoid unwanted model rotatory motion), 

and muscle forces estimated from ACSA as described in Chapter 5 (Subsection 5.2.3) 

can be expected to perform reasonably in relation to reality and so can be used to test 



161 

biologically relevant biomechanical hypotheses of papionin adaptation to diet in 

Chapter 7, in a comparative approach. 
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Chapter 7. Comparative Studies of Cranial Biomechanical 

Performance under Biting Loads among Papionins 

 

 

 

7.1. Introduction 

 

It was established in the previous chapter that the effect of model building 

decisions such as the effect of varying internal architecture, jaw joint constraints or even 

muscle force, are within an acceptable range for comparisons of relative biomechanical 

performance of finite element models of the cranium, if applied consistently to the 

whole sample (Chapter 5). Thus papionin cranial models built and loaded in the same 

ways can reasonably be used to test hypotheses of comparative biomechanical 

performance during biting loads. The aim of this chapter is to test for differences in 

local strains and global deformations that might be attributed to differences in papionin 

diet and feeding habits, in various comparative scenarios. Potential relationships, e.g. 

between diet and performance that emerge in this chapter are formally tested in the next. 

Diets are varied within the Tribe Papionini, even though they are closely 

phylogenetically related, with some species having been observed eating hard foods 

(durophagous: Cercocebus torquatus, Lophocebus albigena, and Mandrillus sphinx), 

and others almost exclusively tough foods (graminivorous: Theropithecus gelada), 

while some others can be considered generalists (omnivorous: Papio spp. and Macaca 

fascicularis), eating mainly fruits and brittle foods (see Table 1.1, Subsection 1.3.3). 

Differences in the form of the cranium in each species might thus be interpreted as the 

consequence of biomechanical adaptation to feeding on the particular diets of each 

species (Subsection 1.4.3). 

Since the forms of (male) crania among papionins have most likely not evolved 

by random genetic drift alone (see Chapter 4), diet will be assessed here as a possible 

selective agent driving the evolution of cranial form. Each of these different diets is 

hypothesised as having an effect on the biomechanics of cranial form, with different 

repetitive masticatory habits having driven the definition of the cranial anatomies of the 

different species. Five comparative scenarios are here analysed: 
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(1) A comparison between the three durophagous genera. The hard-food eating 

genera share adaptations that are expected to strengthen the cranium, minimizing strains 

and deformations (Subsection 1.4.3). Cercocebus and its sister taxon, Mandrillus, 

although differing hugely in size and cranial shape, both exhibit cranio-mandibular traits 

that can be interpreted as suited to crack open hard seeds and nuts (Fleagle & McGraw 

1999), and thus are expected to perform similarly in terms of strains and deformations 

under biting loads. If so, this may reflect constraints placed on the evolution of cranial 

anatomy by the need to crack hard foods, although Astaras et al. (2008) found no 

evidence of dietary specialization in the genus Mandrillus for hard decaying seeds on 

the forest floor. In fact, Mandrillus, while observed to eat hard foods, is known to eat 

more soft pulp fruits than the other two durophagous genera (Lahm 1986) and its larger 

size and snout length is thought to be highly related not to dietary beiomechanical 

requirements but to sexual and social behaviour. The presence of paranasal ridges on the 

male Mandrillus and the shelf-like superior temporal lines overlying the origins of the 

temporal muscle (Groves 2001) may cause a stiffening of the cranium, possibly with an 

effect on its biomechanical performance. Conversely, the genus Lophocebus, not a sister 

taxon of the other two but also reported to eat hard foods, lacks several hard-food eating 

anatomical features that are present in Cercocebus (Fleagle & McGraw 2002; see 

Subsection 1.4.3), but shares the same short snout, raising questions of convergent 

adaptation. Lophocebus is thus expected to perform similarly to Cercocebus on the 

grounds of form similarity but perhaps deform more for the same bite force, since it 

does not appear to have the anatomical adaptations to high bite force that Cercocebus 

has (Fleagle & McGraw 2002). The three species of papionins considered durophagous 

(C. torquatus, L. albigena, and M. sphinx) are thus expected to perform similarly in 

terms of strains and deformations due to having similar diets and despite differences in 

cranial anatomy or phylogenetic relationships. 

(2) A comparison between long-faced omnivorous and long-faced specialized 

graminivorous species. These long-faced papionins (Papio anubis, Papio hamadryas 

and Theropithecus gelada) share a recent common ancestor and their distribution 

territories border one another (indeed, they are known to interbreed, Jolly et al. 1997; 

see also Subsections 1.3.1 and 1.3.2), but they eat diets that impose very different 

biomechanical constraints on the cranium (see Subsection 1.4.3). The more omnivorous 

Papio spp. have teeth that are not specialized, with postcanine teeth moderately broad 

with low cusps and basins (Hildebrand & Goslow 2001) and a long snout (Groves 

2001), while the exclusively graminivorous genus Theropithecus has adaptations to 
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repetitive feeding on leaves or grass (Hylander 1979a, 1992; Bouvier 1986b; Jablonski 

1993). Theropithecus exhibits larger, high-crowned postcanine teeth with accessory 

cusps and a somewhat shorter but deep face (when compared with other long-faced 

papionins; Groves 2001), but also a relatively longer masseter lever arm and higher jaw 

joint (Jolly 1970; Jablonski 1993; Ravosa 1996). Theropithecus needs to produce large 

amounts of effort over time to masticate its tough and fibrous foods (Fitton 2007), 

contrary to other long-faced papionins, and the model is thus expected to deform rather 

singularly compared to the other papionins. It should be noted that P. anubis 

supplements its diet with meat and other animal matter (Melnick & Pearl 1987), which 

are tough and soft foods (Lucas 2004), but does so only in an opportunistic manner with 

perhaps little effect on cranial adaptation. The expectation here is the following: crania 

of omnivorous species, P. anubis and P. hamadryas, are expected to perform similarly in 

terms of strains and deformations, while the cranium of graminivorous T. gelada is 

expected to perform singularly, differently from the two Papio. 

 

 

 

Figure 7.1. The crania of male and female of two species of long-faced papionins. 

Above left a male Papio anubis, below left a female Papio anubis; above right a male 

Theropithecus gelada, below right a female Theropithecus gelada.  
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 (3) A comparison of cranial biomechanical performance between sexes. In the 

two species Papio anubis and Theropithecus gelada, males and females eat the same 

foods (see Subsection 1.3.3), yet differences in cranial form between the sexes in those 

species are striking (Figure 7.1). Females tend to be smaller in size and have shorter 

snouts and much shorter canines. However, since they have the same diet, it is expected 

that adaptation to that same diet must have occurred in both sexes, despite differences in 

form. Many cranial features are interpreted in the literature as being sexually dimorphic, 

which implies that diet had a less important effect on the evolution of cranial form than 

sexual selection. Conversely, if differences in cranial biomechanical performance 

between sexes are smaller than differences between species with different diets, this 

could be interpreted as a strong signal for diet as a major driver of cranial form. The 

expectation here is the following: female and male crania of the same species that eat 

the same diet are expected to perform similarly under biting loads in terms of strains 

and deformations (despite differences in cranial form between sexes) and differently 

from other species. 

 (4) A comparison between the species with extreme dietary specializations: 

durophagous and graminivorous. The durophagous genus Cercocebus is here used 

rather then Lophocebus or Mandrillus not only because it is widely described as an 

example of a hard foods eater (Fleagle & McGraw 1999; Shah 2003), but also because 

it is described as actually having clear cranial anatomical features interpreted as 

adaptations to feeding on hard foods (Hylander 1975; Kay 1981; Fleagle & McGraw 

2002; Singleton 2004), while morphological descriptions in the literature about the 

other two are less clear. Those adaptations are relatively large upper second premolars 

(P4) that resemble the first molar in size to increase surface area to crush seeds (Fleagle 

& McGraw 2002), and a shortened face that increases bite force (Singleton 2004). The 

graminivorous genus Theropithecus has adaptations to repetitive feeding on leaves or 

grass (Hylander 1979a, 1992; Bouvier 1986b; Jablonski 1993). As mentioned before, it 

has larger, high-crowned postcanine teeth with accessory cusps and a somewhat shorter 

but deep face (when compared with other long-faced papionins; Groves 2001), but also 

relatively longer masseter lever arms and higher jaw joints (Jolly 1970; Jablonski 1993; 

Ravosa 1996). Theropithecus need to produce large amounts of effort to masticate their 

tough and fibrous foods (Fitton 2007) and the model is thus expected to deform quite 

differently to the durophagous extreme. The durophagous Cercocebus is thus expected 

to perform relatively more efficiently (minimizing strains) at the premolars in relation to 

the graminivorous Theropithecus, which uses the postcanine teeth as a grinding stone, 
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and is thus expected to perform relatively more efficiently at molar bites both in terms 

of strains and deformations. 

(5) A comparison between the omnivorous phylogenetic outgroup Macaca and 

all other papionins. The omnivorous Macaca is the phylogenetic outgroup within the 

papionins and retains ancestral traits that might impact on cranial performance. The 

existence of a maxillary sinus in the genus Macaca alone among all papionins (Ankel-

Simons 2007) is expected to have an effect on strains and deformations of the cranium 

because it introduces a void into the face (the Macaca model is the smallest and has the 

lowest skeletal volume of them all, see Table 7.1, thus making it likely to deform more). 

The ability to eat hard foods, for example, might not be present in this genus due to that 

anatomical feature. In terms of diet alone, though, the omnivorous Macaca fascicularis 

species would be expected to fall out closer to the two Papio spp. which have a similar 

omnivorous diet, and not as an outgroup. Inter-generically (and inter-specifically), the 

major trend in anatomical cranial difference among papionins relates to the length of the 

rostrum: the genera Papio, Mandrillus and Theropithecus have long faces, while the 

face of Cercocebus and Lophocebus is shorter; Macaca is generally considered to have 

a moderately enlongated face (Singleton 2004; Ankel-Simons 2007). The expectation 

here is that the cranium of Macaca fascicularis performs differently from all other 

papionins due to a strong phylogenetic signal (less derived morphology), or closer to 

other omnivores if diet is a signal stronger than phylogeny. 

It is generally expected that, regardless of the species, strains and deformations 

are higher when biting on the incisors, progressively decreasing when the load arm 

length decreases along the dental row, reaching lower values when biting on the molars. 

As such, long-faced papionins are expected to deform relatively more on the antero-

posterior direction than short-faced papionins, for the same bite force. 

The objectives of this chapter are thus to test for differences in cranial 

biomechanical performance (local strains and global deformations) that could be 

attributed to differences in diet and feeding habits in papionins. The expectations 

described above are formulated as null hypotheses to be tested: (1) there are no 

differences in cranial biomechanical performance among the durophagous genera, 

despite differences in cranial form or phylogenetic relationships; (2) there are no 

differences in cranial performance between long-faced omnivorous and graminivorous  

papionins; (3) there are no differences in cranial performance between the sexes in P. 

anubis and T. gelada; (4) there are no differences in cranial performance between a 

durophagous species and a graminivirous species; and (5) there are no differences in 
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cranial performance between the omnivorous outgroup Macaca and the other species. 

The overall expectation is that specialized feeders will perform differently than 

generalists; that male-female differences will be smaller than inter-specific differences; 

and that phylogeny is the dominant signal reflected in cranial biomechanical 

performance within papionins. 

 

 

Table 7.1. Cranium and rostrum lengths of the models. The length of the cranium is 

defined as the distance from the central point between incisors at alveolar margin to the 

external occipital protuberance; the length of rostrum is defined as the distance from 

the central point between incisors at alveolar margin to the alveolare. Also shown are 

model volumes expressed in number of nodes per model.  

Species Cranium length (cm) Rostrum length (cm) Volume (nodes) 

C. torquatus 13.6 6.2 1136507 

L. albigena 12.6 5.6 1148144 

M. fascicularis 11.8 5.3 804159 

M. sphinx 23.3 11.1 4850691 

P. anubis (f) 15.4 6.7 1752113 

P. anubis (m) 19.5 8.8 2738941 

P. hamadryas 19.9 8.9 3203614 

T. gelada (f) 15.3 6.4 2190709 

T. gelada (m) 17.5 7.9 1992109 

 

 

 

7.2. Material and Methods 

 

The material used here comprises dry crania of 7 male and 2 female individual 

specimens corresponding to 7 species and 6 genera of papionins (Table 5.1). The crania 

were scanned (Table 5.2) and three-dimensional (3D) models were built for finite 

element analysis (FEA) according to every step described in Chapter 5, from 

computerized tomographic (CT) image segmentation to boundary conditions, finite 

element solution and post-processing. Internal bony architecture was not represented in 

the model; instead regions of trabecular bone were filled and allocated the material 
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properties of cortical bone, due to discrepancies in CT resolution among the models, as 

discussed in Chapter 5 (Subsection 5.2.2) and analysed in Chapter 6 (Subsection 6.3.1). 

The muscle forces were estimated from anatomical cross-sectional area (ACSA; Tables 

5.3 and 5.4). The sensitivity analysis (Subsection 6.3.3) showed that model building 

decisions in input muscle forces were unlikely to have a large impact in the 

interpretation of FEA results if there is consistency of muscle loading across all models 

to be compared (see Subsection 6.4). Bites were simulated on all teeth on the left side 

except the canine. The results are presented (1) in the form of scaled contour plots, with 

corresponding strain values at each landmark location (Appendix E), and (2) as PCA of 

deformations under biting loads (see Subsections 2.5.3 and 5.3.2). 

To make the models comparable, the strains and deformations were scaled 

(Subsection 2.5.2) to the expected magnitudes arising from a bite force of 100N on each 

tooth. Since the relationship between force and strain is linear with a slope of 1 

(O’Higgins & Milne 2013), scaling is straightforward and 100N is physiologially 

realistic (see Subsection 2.5.2). A bite of 100N was chosen because the estimated 

maximum muscle force is heavily dependent on muscle ACSA, yet a muscle of larger 

size does not mean that the animal applies the maximum force all the time while 

feeding. In fact, a bite force of 100N seems to be in the range of frequent bite forces for 

papionins based on the type of foods they eat and the average force necessary to process 

most of them (Lucas 2004). So given the measured bite force in FEA it is 

straightforward to scale strains and residuals to any value by ratio. 

On the other hand, a large muscle can mean not only that the animal is capable 

of generating a higher bite force, but also that the animal uses that muscle continuously 

(a large muscle reduces muscle fatigue from overuse by allowing sequential recruitment 

of muscle fibres; e.g. Biewener 2005), meaning perhaps an evolutionary adaptation to 

that action. 
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7.3. Results 

 

Results are presented as strain contour plots resulting from the FEA software 

(see Section 5.2) and as principal component plots of deformations under biting loads. 

Tables of strain magnitudes at landmark locations are provided in Appendix E.  

 

 

7.3.1. Among Durophagous Genera 

 

Strain contour plots of the comparative test among durophagous genera can be 

seen in Figure 7.2. Major differences in strain distribution are present among different 

bites of the same model but not among different models. For all genera, von Mises’ 

strains (an index gained from the combinations of principal strains at any given point) 

are always higher along the zygomatic arch compared with the rest of the cranium for 

all bites, in all three models. There are marked differences in the distribution of strains 

between Mandrillus and the other genera, with low strains along the paranasal ridges, an 

anatomical feature unique to that genus. The strains in Cercocebus and Lophocebus, 

though similar in distribution, are somewhat greater in the Cercocebus than in the 

slightly smaller Lophocebus, contrary to what would be expected. In all three models, 

strains are greater when biting on the incisors along the maxilla, nasal and zygomatic 

bones, progressively decreasing as the load arm length decreases along the dental row, 

reaching the lowest values at molar bites. Values of maximum and minimum principal 

strains for the chosen landmarks and differences in strain between models at landmark 

locations are listed in Tables E.1 to E.7 (Appendix E). Strain differences between 

models are largest between Cercocebus and the other two models, Lophocebus and 

Mandrillus, particularly in the midline (when biting with the incisors), the inferior 

region of the orbit (for all bites) and the zygomatic region (for all bites).  

 A principal components plot of large scale deformations is shown in Figure 7.3. 

The largest deformations are achieved by the I1 bite in Cercocebus, with Lophocebus 

performing closer to Cercocebus, differences between the two being in magnitude of 

deformation rather than in trajectory of deformation. It is apparent that deformations are 

smaller in Mandrillus than in the other two genera for all bites, as would be expected 

from size differences, but the trajectory of deformations appears to be quite similar to 

the other two genera, with differences being mostly in magnitude of deformations. The 
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first two principal components explain 93.03% of the total variance in this sample. To 

facilitate interpretation of Figure 7.3, Figure 7.4 presents a visualization of differences 

in deformations due to two bites (I1 and M3) between two specimens. Deformation 

differences between the least deforming Mandrillus and Cercocebus during I1 biting are 

increased antero-posterior bending in Cercocebus. Comparing an M3 bite between 

Mandrillus and Lophocebus shows in Lophocebus increased torsion of the face and 

greater relative superior deformation of the maxilla in the region of M3. 
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Figure 7.2. Von Mises’ strain contour plots of three cranial models of durophagous 

genera: Cercocebus, Lophocebus and Mandrillus. Each row represents a bite on a 

particular left tooth; first incisor (I1), second incisor (I2), first premolar (P3), second 

premolar (P4), first molar (M1), second molar (M2), and third molar (M3); each 

column represents a different species model. Values in microstrain (μstrain). All bites 

scaled to 100N.  
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Figure 7.3. Cranial deformations among durophagous genera visualized using PCA of 

size-and-shape variables. Lines denote the deformations arising from bites in a single 

specimen at different points along the left dental row, first incisor (I1), second incisor 

(I2), first premolar (P3), second premolar (P4), first molar (M1), second molar (M2), 

and third molar (M3).  Yellow, Lophocebus; Blue, Cercocebus; Violet, Mandrillus. The 

isolated point marked U represents the undeformed mean of the three models.  
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Figure 7.4. Visualization of differences in deformations due to two bites (I1 and M3) 

between specimen pairs. Deformations magnified ×1000 for I1 bite, ×3000 for M3 bite.  
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7.3.2. Omnivorous versus Graminivorous 

 

Figure 7.5 presents von Mises’ strain contour plots for the comparative analysis 

between long-faced omnivorous and graminivorous species. Major differences in strain 

distribution are present among different bites of the same model and not among 

different models. As with the previous models, von Mises’ strains are always higher 

along the zygomatic arch compared with the rest of the cranium for all bites, in all three 

models. The major differences in von Mises’ strain distributions are between 

Theropithecus and the two Papio spp. Theropithecus shows higher strains along the 

nasal and maxillary region than do the Papio spp., particularly for the more mesial bite 

points; conversely, the two Papio show higher strains in the zygomatic region, inferior 

to the orbit. Lower strains are present in the zygomatic arch during P4 and molar bites 

in Theropithecus, compared to both Papio. Strains show higher values when biting on 

the incisors, progressively decreasing when the load arm length decreases along the 

dental row, reaching the lowest values during molar bites. Values of maximum and 

minimum principal strains for the chosen landmarks and strain differences between 

models at those landmark locations are listed in Tables E.8 to E.14 (Appendix E). 

Smaller strain differences can be seen between both Papio models, each of them 

differing from Theropithecus in the zygomatic region for all bites. Differences between 

P. anubis and P. hamadryas are also greater in the zygomatic region, particularly during 

premolar bites. 

 A principal components plot of deformations is shown in Figure 7.6. The two 

Papio spp. deform almost exactly the same, with P. hamadryas deforming only slightly 

more than P. anubis for all bites. Theropithecus deforms differently than the Papio spp., 

following a different deformation trajectory along PC2 (mostly zygomatic arch 

deformation and some frontal bending; see Section 5.3) and showing differences, such 

as deforming much less in M3 biting and deforming virtually the same at I1 and I2 

bites, in relation to the undeformed mean. The first two principal components explain 

86.52% of the total variance in the papionin sample. Figure 7.7 presents a visualization 

of deformations due to two bites (I1 and M3) between the omnivorous P. hamadryas 

and the graminivorous T. gelada. The differences in deformation between them in both 

bites relate to torsion of the face and relative displacement of the zygomatic arch. There 

is a greater degree of deformation in the anterior face in T. gelada during I1 bite, while 

the zygomatic arch shows much less relatively inferior displacement. Similarly during 

M3 bite the zygomatic arch appears much stiffer, displacing relatively much less 
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inferiorly (appearing as relative superior displacement in the visualisation). Again there 

is more torsion in T. gelada, but more concentrated in the mid-face region. 

Visualisations of differences in both bites show a relative inferior displacement of the 

maxilla as a whole in T. gelada, reflecting greater relative upward displacement for both 

bites in P. hamadryas; a less stiff maxilla in the latter. Thus relative to P. hamadryas, T. 

gelada appears to manifest a stiffer zygomatic arch and maxilla in relation to vertical 

displacements, while being more prone to torsion. While only M3 and incisor biting 

have been visualised, the displacements of bites on PC2 (more negative) in T. gelada 

relative to P. hamadryas are consistent and so the differences in deformation that arise 

along the dental row grade smoothly between these bites. 
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Figure 7.5. Von Mises’ strain contour plot of omnivorous (P. anubis, P. hamadryas) and 

graminivorous species (T. gelada). Each row represents a bite on a particular left tooth; 

first incisor (I1), second incisor (I2), first premolar (P3), second premolar (P4), first 

molar (M1), second molar (M2), and third molar (M3); each column represents a 

different species model. Values in microstrain (μstrain). All bites scaled to 100N.  
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Figure 7.6. Cranial deformations between omnivorous (P. anubis, P. hamadryas) and 

graminivorous species (T. gelada) visualized using PCA of size-and-shape variables. 

Lines denote the deformations arising from bites in a single specimen at different points 

along the left dental row, first incisor (I1), second incisor (I2), first premolar (P3), 

second premolar (P4), first molar (M1), second molar (M2), and third molar (M3). 

Light blue, male Papio anubis; Blue, male Papio hamadryas; Green, male Theropithecus 

gelada. The isolated point marked U represents the undeformed mean of the three 

models.  
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Figure 7.7. Visualization of differences in deformations due to two bites (I1 and M3) 

between specimen pairs. Deformations magnified ×1000.  

  

I1 

M3 

T. gelada 

T. gelada 

P. hamadryas 

P. hamadryas 



179 

7.3.3. Male versus Female 

 

Strain contour plots for the comparisons between male and female are shown in 

Figure 7.8. Again, major differences in strain distribution are among different bites of 

the same model and then to a lesser extent among models. Von Mises’ strains are always 

higher along the zygomatic arch compared with the rest of the cranium for all bites, in 

all four models. It is clear that larger differences are seen between species than between 

male and female of the same species. The female P. anubis shows the same pattern as 

the male with little difference in strains: higher strain in the nasal region during incisor 

bites, and lower strain in the zygomatic arch overall. The female Theropithecus differs 

more from the male, with strains lower than the male, particularly in P4 and molar bite. 

As expected, in all four models strains show higher values when biting on the incisors 

with higher strain along the maxilla, nasal and zygomatic bones, progressively 

decreasing when the load arm length decreases along the dental row, reaching lower 

values at molar bites. Values of maximum and minimum principal strains for the chosen 

landmarks and strain differences between models at those landmark locations are listed 

in Tables E.15 to E.21 (Appendix E). Differences can be seen between male and female 

of each species, but differences between male and female Theropithecus are much larger 

than between male and female P. anubis for all bites. Differences between P. anubis 

male and female are smaller during premolar and molar bites. As in the previous 

analysis, the anatomical region where large differences can be seen is the zygomatic in 

both species. 

 A principal components plot of deformations is shown in Figure 7.9. 

Deformations described by PC1 and PC2, approximate those in the visualisations of 

Figure 7.7. Note that male and female of each species fall with each other, and away 

from the other species. P. anubis male and female deform almost identically, with the 

female deforming only slightly less than the male for all bites. Differences between 

male and female Theropithecus are more marked, with the female deforming far less 

than the male particularly during incisor bites; the trajectory followed, though, is the 

same, with differences being mainly in magnitude of deformation. The first two 

principal components explain 82.16% of the total variance in the papionin sample. 



180 

 

Figure 7.8. Von Mises’ strain contour plots of models representing male (m) and female 

(f) of the species P. anubis and T. gelada. Each row represents a bite on a particular left 

tooth; first incisor (I1), second incisor (I2), first premolar (P3), second premolar (P4), 

first molar (M1), second molar (M2), and third molar (M3); each column represents a 

different species model. Values in microstrain (μstrain). All bites scaled to 100N.  
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Figure 7.9. Cranial deformations between male and female in two papionin species (P. 

anubis and T. gelada) visualized using PCA of size-and-shape variables. Lines denote 

the deformations arising from bites in a single specimen at different points along the left 

dental row, first incisor (I1), second incisor (I2), first premolar (P3), second premolar 

(P4), first molar (M1), second molar (M2), and third molar (M3). Red, Papio anubis 

(male and female); Green, Theropithecus gelada (male and female). The isolated point 

marked U represents the undeformed mean of the four models.  
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7.3.4. Durophagous versus Graminivorous 

 

Strain contour plots from the comparative analysis between a durophagous 

species and an exclusively graminivorous species are presented in Figure 7.10. Once 

again, major differences in strain distribution are among different bites of the same 

model and not among different models. The two models used in this analysis are the 

same ones described for the previous analyses (Cercocebus, Subsection 7.2.1; male 

Theropithecus, Subsection 7.2.2 and 7.2.3). As described above, von Mises’ strains are 

always higher along the zygomatic arch compared with the rest of the cranium for all 

bites, in both models. There are marked differences in von Mises’ strain distributions 

between both models. Whereas both exhibit high strains along the nasal and maxillary 

regions in I1 and I2 bite, those strains almost disappear in Cercocebus at premolar and 

molar bites. Cercocebus also exhibits somewhat higher strain in the zygomatic region 

inferior to the orbit when compared with Theropithecus. In general, the striking 

differences between these two models appear to be at premolar bites, where strains in 

Cercocebus are much less than in Theropithecus. Again as expected, in both models 

strains show higher values when biting on the incisors with higher strain along the 

maxilla, nasal and zygomatic bones, progressively decreasing when the load arm length 

decreases along the dental row, reaching lower values at molar bites. Values of 

maximum and minimum principal strains for the chosen landmark locations and strain 

differences between models at those landmark locations are listed in Tables E.22 to E.29 

(Appendix E). Larger differences can be seen along the midline, the maxilla and the 

zygomatic region in both models. 

 A principal components plot of deformations is shown in Figure 7.11. 

Cercocebus and Theropithecus follow different deformation trajectories. Cercocebus 

deforms almost entirely along PC1, with greater deformation in I1 bite. Theropithecus 

deforms in both PC1 and PC2 (these two PCs comprise 90.39% of the total variation) 

with M3 bite making the cranium deform less than Cercocebus. Since PC2 is associated 

with deformations of the zygomatic arch, this structure appears to deform differently in 

Theropithecus relative to Cercocebus. Cercocebus is smaller than Theropithecus (Table 

7.1) so it would be expected to deform more, but it is interesting to note that this is not 

true except for incisor bites. Figure 7.12 presents a visualization of deformations due to 

two bites (I1 and M3) between two specimens. The difference in deformation between 

Theropithecus and Cercocebus during I1 biting is an increase in antero-posterior 

bending and zygomatic arch deflection in Cercocebus relative to Theropithecus. M3 bite 
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shows in Cercocebus relative to Theropithecus mostly increased deflection of the 

zygomatic arch and increased relative vertical deformation of the maxilla.  
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Figure 7.10. Von Mises’ strain contour plot of the durophagous species Cercocebus 

torquatus and the graminivorous species Theropithecus gelada (male). Each row 

represents a bite on a particular left tooth; first incisor (I1), second incisor (I2), first 

premolar (P3), second premolar (P4), first molar (M1), second molar (M2), and third 

molar (M3); each column represents a different species model. Values in microstrain 

(μstrain). All bites scaled to 100N.  
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Figure 7.11. Cranial deformations between the durophagous species Cercocebus 

torquatus and the graminivorous species Theropithecus gelada (male) visualized using 

PCA of size-and-shape variables. Lines denote the deformations arising from bites in a 

single specimen at different points along the left dental row, first incisor (I1), second 

incisor (I2), first premolar (P3), second premolar (P4), first molar (M1), second molar 

(M2), and third molar (M3). The green lines denote the deformation across the left 

dental row of the male Theropithecus model and the blue lines represent the same on the 

Cercocebus model. The isolated point marked U represents the undeformed mean of the 

two models.  
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Figure 7.12. Visualization of differences in deformations due to two bites (I1 and M3) 

between specimen pairs. Deformations magnified ×1000 for I1 bite, ×2000 for M3 bite.  
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7.3.5. All Models 

 

The last comparison concerns all the models used up to here plus a model of the 

outgroup genus Macaca. The strain contour plot of the Macaca model can be seen in 

Figure 7.13, far right column, among strain contour plots for all other models. Not 

differently from the others, Macaca shows von Mises’ strains higher along the 

zygomatic arch compared with the rest of the cranium for all bites. However, strains are 

higher over the face compared to the other models, particularly during incisor bites, and 

these remain high in the zygomatic arch during all bites along the dental row. Also the 

cranial vault shows much higher strains than those exhibited by any other model. In 

Macaca as in all other models, strains show the same higher values when biting on the 

incisors progressively decreasing when the load arm length decreases along the dental 

row, reaching lower values at molar bites. Values of maximum and minimum principal 

strains for the chosen landmark locations in Macaca are listed in Tables E.22 to E.29 

(Appendix E).  

A principal components plot of deformations is shown in Figure 7.14. The 

Macaca model is clearly different from the other models. It follows a similar curved 

trajectory, albeit displaced towards the negative pole of PC2 but it is longer, indicating a 

greater degree of deformation. The magnitudes of the large scale deformations are much 

greater than any other model for all bites. These results are in line with the strain 

contour plots, where Macaca is the most different from other models. Deformations 

appear to reflect the phylogeny of the group only in the clear demarcation of Macaca 

from the rest of the group. From a phylogenetic point of view, whereas Lophocebus, the 

Papio models and Theropithecus can conceivably be interpreted as clustering together, 

the sister taxa Cercocebus and Mandrillus are located in very different regions on the 

plot, with Cercocebus falling out with the similarly durophagous and short-faced 

Lophocebus, and Mandrillus falling out with the long-faced species. The first two 

principal components explain almost 90% (88.61%) of the total variance in the whole 

papionin sample. Visualizations of deformations along PC1 and PC2 can be found in 

Figure 5.9. 
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Figure 7.14. Cranial deformations of the whole sample visualized using PCA of size-

and-shape variables. Lines denote the deformations arising from bites in a single 

specimen at different points along the left dental row, first incisor (I1), second incisor 

(I2), first premolar (P3), second premolar (P4), first molar (M1), second molar (M2), 

and third molar (M3). Ct, blue: Cercocebus torquatus. La, yellow: Lophocebus 

albigena. Mf, brown: Macaca fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: 

male Papio anubis. Paf, light red: female Papio anubis. Ph, orange: Papio hamadryas. 

Tgm, green: male Theropithecus gelada. Tgf, light green: female Theropithecus gelada. 

The isolated point marked U represents the undeformed mean of all models.  
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7.4. Discussion 

 

 This chapter aimed to test for differences in biomechanical performance (local 

strains and global deformations) of the papionin cranium that could be attributed to 

differences in diet of papionin species, testing five comparative scenarios. The overall 

expectations were that the cranium of specialized feeders performs differently to 

generalists during biting loads; that male-female differences were smaller than inter-

specific differences in biomechanical performance; and that phylogeny was reflected in 

the biomechanical performance within this group. In general, these expectations were 

met, even though phylogeny is not strongly reflected in the performance of the cranium. 

 In all models, as expected from lever-arm mechanics due to the length of the 

snout, the incisor load made the cranium deformed more, while strain and deformation 

decreased progressively when the lever arm length decreased along the dental row, 

reaching lower values when biting on M3. This is the general aspect of a single model 

with varying tooth bite loads, deforming in a trajectory along PC1 (antero-posterior 

bending). Along PC2, trajectories with different direction reflected differences in 

deformation generally regarding deformation of the zygomatic arch (Figure 5.9). 

Nevertheless, generally long-faced specimens did not deform more than short-faced 

ones, but that could be attributed to size since the short-faced species are also smaller in 

size than long-faced ones (Table 7.1).  

In the first comparative scenario, the three cranial models belonging to 

durophagous genera performed quite similarly, as expected. The model of Mandrillus 

showed lower strains and deformed less than Lophocebus and Cercocebus (Figure 7.3), 

but the distribution of strains and the trajectory of deformations was mostly the same 

with differences only in the magnitude. This can be explained by the overall robustness 

of the Mandrillus cranium and also by its anatomical peculiarities such as paranasal 

ridges (which showed much lower strains for all bites) and enlarged sagital crest that 

stiffen the cranium preventing it from deforming greatly. It can also be explained simply 

by differences in size between Mandrillus and the other species since the Mandrillus 

cranium model is of much greater size than the smaller Cercocebus or Lophocebus 

(Table 7.1), it was thus expected to show less strains and deformations than them (where 

there is no change in shape, doubling the size halves the strains, O’Higgins & Milne 

2013). Both similar-sized, short-faced, durophagous species presented similar strains 

and, in the PCA of deformations, clustered together and away from Mandrillus, 

suggesting some degree of convergence between the two. Yet Cercocebus seemed to 
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have higher strains and deform at a higher magnitude than the slightly smaller 

Lophocebus, and showed the greatest degree of deformations of all three durophagous 

species. This might be due to model building issues, such as technical issues in CT 

scanning, or even to the idiosyncratic nature of these two particular individuals (thus, 

reinforcing the need to increase the intra-specific sample size), and not to specific 

(generic) adaptation to diet. However, if borne out by studies of more specimens 

belonging to this species (genus), it would imply that, despite hard object feeding in 

Cercocebus, its cranium presents less resistance to biting loads. 

 The second scenario returned striking differences both in strains and 

deformations between the two Papio spp. and Theropithecus (Figures 7.5 and 7.6). The 

formal null hypothesis of no differences between omnivorous and graminivorous 

species was rejected. As expected, the two omnivorous Papio spp. exhibited similar 

strains and deformations, while the graminivorous Theropithecus performed rather 

differently from them. It is interesting to notice the similar deformations in both incisor 

bites of the male Theropithecus which showed little difference between them in relation 

to the unloaded mean (at least along PC1), reflecting a relatively shorter (less 

prognathic) snout, perhaps a reflection of the species feeding habits (exclusive use of 

the postcanine teeth for food processing). 

 In the third scenario, an immediate realization was that male and female of each 

species clustered unmistakenly together and away from other species, for both strains 

and deformations. Even though the magnitude of strains and deformations between 

male and female Theropithecus was very different, the trajectory of deformations was 

largely the same, with the male showing perhaps larger deformations along PC1 (antero-

posterior bending, Figure 5.9). The male Theropithecus retained similar deformation in 

I1 and I2 bites as already mentioned, but this did not happen in the female model, which 

cannot be explained by differences in diet. On the other hand, although there were some 

differences in strains, large scale deformation differences between male and female P. 

anubis were very small, which means that resistance to load appears to be conserved in 

this species, even though they vary in cranial form. The differences in incisor bite 

performance among sexes of T. gelada may reflect reduced dietary constraints on the 

anterior dentition and facial skeleton, since the postcanine dentition plays a relatively 

more dominant role in food processing in this species than is the case in P. anubis. The 

increased deformation seen in the males is probably due to increased prognathism, 

which is adaptive for social display and the use of canine weaponry. The male T. gelada, 
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unlike P. anubis, does not require extensive adaptations to increase cranial mechanical 

resistance to load during incisor biting due to its molar dominated graminivorous diet. 

 In the fourth scenario, there were clear differences in the biomechanical 

performance between crania from the two dietary extremes. The trajectory of 

deformations was completely different and lower deformations in postcanine bite in 

Theropithecus might be an indication of the use of these teeth in repetitive tough-food 

consumption. The fact that the zygomatic arch appears to deform more in Cercocebus 

can perhaps be explained by the more frequent and repetitive loading experienced in the 

graminivorous Theropithecus, which requires a stouter, stiffer zygomatic arch. 

Deformation differences at bites with I1 and I2 in Theropithecus were small, compared 

with the same bites in Cercocebus, suggesting differences in anterior dental loading 

patterns. The hypothesized expectation that the durophagous Cercocebus would perform 

relatively more efficiently (minimizing strains) at premolar bites in relation to the 

graminivorous Theropithecus is accepted (Tables E.24 and E.25), and so is the 

hypothesis that Theropithecus was expected to perform relatively more efficiently at the 

molar bites, both in terms of local strains and large scale deformations (Figure 7.10; 

Tables E.26, E.27 and E.28). 

 In the analysis of all taxa including the omnivorous phylogenetic outgroup 

Macaca, the durophagous Mandrillus was expected to deform less than generalists 

because of its diet and because it is the largest in size (Table 7.1). It did deform less than 

all the others (except Theropithecus), but the other two durophagous species actually 

deformed much more. This might be because these are the smaller and shorter-faced 

species, for which a bite force of 100N is higher than the average bite force they 

perform in the wild. The same could be said for Macaca, even though the distance in 

terms of deformation from the other models was too large to be due to such a simple 

explanation. Was there an apparent size effect? It seems possible in that smaller species 

had more negative scores on PC2 and larger curves along PC1. This will be returned to 

in Chapter 8. But perhaps the most striking result of these analyses is that Macaca fell 

out away from the rest of the group (Figure 7.14). The interpretation of this might be 

that Macaca is the phylogenetic outgroup within the Tribe Papionini, thus retaining 

ancestral traits that might be important mechanically and sharing less derived characters 

with the other papionins than they do among themselves. The presence of the hollow 

sinus may have had an effect on the cranial stiffness, since it considerably lightens the 

internal structure of the cranium, diminishing its resistance to load and making it 

deform more than would be expected for a short-faced papionin. Indeed, even the short-
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faced durophages Lophocebus and Cercocebus deformed less than the relatively short-

faced generalist Macaca. It would be imaginable that the cranium of Macaca would be 

less adapted to feeding, for example, on hard foods and, thus, have not have cranial 

form selected for that particular feeding strategy. This leads to a possible scenario for 

the divergence of papionins from a Macaca-like ancestor (Benefit & McCrossin 2002; 

see also Subsection 1.3.1): that the maxillary sinus was lost and the face stiffened in the 

common ancestor of all papionins excluding Macaca in response to a shift in diet 

towards durophagy. Later evolution related to social systems and adaptation to diverse 

diets underpinned further diversification of the group. This is speculation consistent 

with the findings and requires further testing. 

 Despite this discussion, interpreting FEA results, whether in terms of strains or 

deformations, as biologically meaningful propositions is not trivial. An initial difficulty 

in making interpretations about the evolution of the papionin cranium from these results 

rests upon the small sample size used in these analyses. Robust biological extrapolations 

from the results of any test to the evolution and ecology of populations have to be 

supported by statistical significance drawn on a sample size large enough to reflect the 

behaviour of a group of animals, and reduce the chances of the test picking up 

individual (or small sample size) biases in the population under study. Further FEAs and 

analyses of deformations should then deal with expanded sample sizes (larger than a 

single model per species), and significance statistics should be applied. This should then 

show whether or not inter-specific differences are real and significantly different from 

intra-specific patterns. 

 Nevertheless, the results of this chapter point towards the possibility that 

different diets can be interpreted from differences in strains and deformations. How 

these differences in biomechanical performance actually relate to diet is a problem 

tackled in the next chapter. 
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Chapter 8. The Association between Diet, Cranial Form, 

Maximum Bite Force, and Cranial Deformations in 

Papionins 

 

 

 

8.1. Introduction 

 

In Chapter 7, comparative scenarios for interpreting differences in cranial strains 

and deformations under biting loads in relation to differences in diet of papionin species 

were assessed. This was a largely qualitative approach which yielded some potentially 

interesting insights. In this chapter, the associations among diet, cranial form, and 

performance during biting simulations (large scale cranial deformations and maximum 

bite force) are further assessed using statistical techniques to quantify the degree of each 

apparent association and its significance. These analyses are largely exploratory, 

utilising novel methods and approaches, as much to assess if they are informative as to 

understand how form and function interact. Thus, the analyses presented here represent 

a starting point, a preliminary investigation, rather than a complete survey which would 

be well beyond the scope of this thesis.     

As discussed before (Chapter 5), biomechanical performance parameters that 

derive from finite element analysis (FEA) include estimates of maximum bite force. It 

was demonstrated that different papionin species undergo different cranial deformations 

under biting load (see Figures 5.9 and 7.14). Maximum bite force also differs among the 

sampled species (see Table 5.5a and b), and is commonly used to study biomechanical 

performance in both extant and fossil species (Oyen & Tsay 1991; Sellers & Crompton 

2004; Christiansen & Adolfssen 2005; Wroe, McHenry, & Thomason 2005; 

Christiansen & Wroe 2007; Nogueira, Peracchi, & Monteiro 2009; Sakamoto, Lloyd, & 

Benton 2010). However, the relationship between those performance parameters and 

other biologically interesting variables such as form and diet remains unclear after these 

comparisons. Diet is certainly one of the most apparent selective agents in the life of an 

animal (Herring 1993; Schluter 2000), with many studies based on the hypothesis that 

cranial form is influenced by the functioning of the masticatory system, and that it is 

adapted to food acquisition and intra-oral processing (e.g. Hylander et al. 1991a; 
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Jablonski 1993; Taylor 2002; Lieberman et al. 2004; Nogueira et al. 2005; Dumont et 

al. 2011; Hogg et al. 2011; Terhune 2011). Since the species under scrutiny in this thesis 

are known to have different diets (Subsection 1.3.3), it is hypothesised that diet is 

associated with maximum bite force and deformations. Indeed, this assumption is 

already often used in palaeontological analyses, where biomechanical tests are 

performed in fossils and the results interpreted in terms of ecological behaviour, 

including the type of diet consumed (e.g. Strait et al. 2009). But no attempt has been 

made to compare such performance parameters among extant organisms with known 

diets, in order to understand if and how they reflect on diet. A statistical association 

would be of paramount importance when inferring diet from fossils, but also in 

comparative analysis of other extant species. If cranial deformations or maximum bite 

force are strongly associated with diet, then it is conceivable that a simple 

biomechanical analysis could infer diet of, for example, fossil hominins, by analogy 

with the papionins, as Jolly (2001) posits.  

The objectives of this chapter are to test whether or not differences in cranial 

form, in maximum bite force and in cranial deformations under biting simulations 

among papionin species are associated with differences in diet among species. Also, it 

aims to assess if and how cranial form is associated with both maximum bite force and 

deformations. The null hypotheses are: (1) there is no association (and no significant 

correlation) between diet and cranial form; (2) there is no association (and no significant 

correlation) between diet and maximum bite force; and (3) there is no association (and 

no significant correlation) between diet and cranial deformations under biting. 

Additionally, the following null hypotheses relate to the association between cranial 

form and the two biomechanical parameters: (4) there is no association (and no 

significant correlation) between cranial form and maximum bite force; and (5) there is 

no association (and no significant correlation) between cranial form and cranial 

deformations under biting. 

 

 

 

8.2. Material and Methods 

 

Crania from 7 species of papionin monkeys were modelled using CT data, as 

described in Chapter 5. They were the same models used in Chapter 7, including the 2 
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female papionin models. As in the previous chapters, papionins were chosen as a system 

because they comprise a group of primates with well-established phylogeny, large 

variations in cranial form and well known ecologies and diets (Subsection 1.3.3). FEA 

was used to simulate bites at different teeth, as was described in Chapter 5. Cranial form 

and cranial deformations were assessed using 70 landmarks distributed over the cranium 

(see Subsection 5.3.2). Geometric morphometric size and shape analyses were used to 

characterise global deformations produced during 100N bites (see Sections 2.5 and 7.2). 

Maximum bite forces were computed from FEA during bites (Table 5.5a and b). 

The associations between blocks of data were assessed by two-block partial least 

squares (PLS, Rohlf & Corti 2000; see Subsection 2.6.2), a multivariate analysis of 

association. The blocks of data analysed with PLS are multivariate matrices extracted 

from maximum bite force at each tooth, large scale deformations, diet and form. 

Maximum bite force values were used directly in an m × n matrix where m denotes the 

specimens (9) and n the bites (7). Further, to reduce the number of dimensions of the 

deformations, each set of 7 deformations arising from different biting loads per model 

was condensed into a single point describing the shape of the trajectory of deformations 

using an approach similar to two-state multivariate change analysis (Chun et al. 2007; 

Adams & Collyer 2007, 2009; Collyer & Adams 2007). This was achieved by taking all 

9 principal components scores from the previous whole-sample analysis (Subsection 

7.3.6) and reordering them into an m × p matrix where m denotes the specimens (9) and 

p the number of principal components for each bite (n × p). Then, a principal 

component analysis (PCA; Subsection 2.3.3) was computed; the resulting 9 principal 

component score vectors that describe differences in the form and location of biting 

performance trajectories (from Figure 7.12) were used as a block of data for the PLS 

analyses. Additionally, the scatter of trajectories is examined for correlation with size, 

using cranial length (Table 7.1) as a measure of size, with an RV-coefficient. 

Broad qualitative dietary categories such as attributed in Table 1.1 were not used 

here, but instead a quantitative proportion of each food category consumed per species 

based on the literature was calculated and used (Table 8.1). When performing the 

analyses, food category percentage was expressed as a proportion with 1 being 100 (by 

dividing each value by 100). Finally, a matrix of landmark coordinates (m specimens × 

k shape coordinates) after a full GPA was used as descriptor of cranial form. 

The significance of the association between blocks was tested using permutation 

tests for the null hypothesis of complete independence between the two blocks of data. 

Significance levels are calculated for the singular value associated with each pair of 
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PLS axes, and also for the correlation between the scores for each pair of PLS axes. 

Since PLS extracts axes of maximum covariation between two blocks of data, cranial 

form variation and cranial deformations variation can be visualised at the extremes of 

these axes. Other multivariate data (maximum bite force and diet) can be interpreted 

with the loadings, where a high loading is an important factor in the covariation. The 

RV-coefficient (Escoufier 1973; Robert & Escoufier 1976; Claude 2008) was also used 

as a means to test that association. The RV-coefficient takes values between 0 and 1 and 

assesses the extent of covariation between two blocks of variables (see also Subsection 

2.6.2). PLS and correlation analyses were performed in the data analysis packages 

PAST, version 2.17 (Hammer, Harper, & Ryan 2001; Hammer & Harper 2006) and 

MorphoJ (Klingenberg 2011). PLS plots and RV-coefficients were drawn and calculated 

using R functions (R Development Core Team 2013). 

 

 

Table 8.1. Proportion of each food category consumed per species shown in percentage 

(%) of total diet. Taken from the literature (see Subsection 1.3.3).  

Species 
Food Categories 

fruits leaves flowers roots animals other 

C. torquatus 86.0 10.0 1.0 0.0 2.0 1.0 

L. albigena 65.4 4.5 3.3 0.0 25.3 1.5 

M. fascicularis 66.7 17.2 8.9 0.0 4.1 3.1 

M. sphinx 81.1 5.7 0.8 1.0 4.9 6.5 

P. anubis 54.9 32.0 7.5 1.7 2.7 1.2 

P. hamadryas 45.0 28.0 22.0 2.0 0.0 3.0 

T. gelada 6.9 91.8 0.8 0.5 0.0 0.0 

 

 

 

8.3. Results 

 

Results are presented as tables of singular values and correlations, and as PLS 

plots with visualizations of transformations along the axes. Figure 8.1 presents the 

scatter plot (PCA) of the 9 principal component score vectors that describe differences 

in the form and location of biting performance trajectories (i.e., summarises curves as 
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single points in a new PCA based on PCs1-9 of the analysis in Figure 7.14). The RV-

coefficient of those 9 principal components scores and size (cranial length) is 0.31832, 

with a P-value of 0.09969 (not significant for 0.05). This indicates that size alone does 

not explain the differences in large scale deformations arising from biting among these 

species. 

 

 

 

Figure 8.1. Scatter plot of the 9 principal component score vectors that describe cranial 

deformations of the whole sample visualized using a PCA. Points denote differences in 

the form and location of biting performance trajectories for each species in the analysis 

of Figure 7.14. Ct, blue: Cercocebus torquatus. La, yellow: Lophocebus albigena. Mf, 

brown: Macaca fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: male Papio 

anubis. Paf, light red: female Papio anubis. Ph, orange: Papio hamadryas. Tgm, green: 

male Theropithecus gelada. Tgf, light green: female Theropithecus gelada.  
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8.3.1. Diet versus Cranial Form 

 

Table 8.2 presents the singular values and pairwise correlations of PLS scores 

between cranial form and diet. The only significant singular axis is PLS1 (describing 

98.213% of the total covariance). The RV-coefficient for the whole PLS is 0.4484597 (p 

= 0.06117582), not significant for a significance level of 0.05. Figure 8.2 presents a plot 

of the first singular axis (PLS1) from the PLS of cranial form and diet. This association 

is highly significant (Table 8.2; p = 0.0057). Loadings for the dietary categories and a 

depiction of change in cranial form along PLS1 for this block of data are also shown. 

The positive extreme of PLS1 for cranial form shows an enlarged cranium with 

enlongated snout corresponding to a diet high in leaves, versus a small cranium with 

shorter snout corresponding to a diet high in fruit. Three groups can be seen in the plot: 

the two models of Theropithecus, male and female, that stand out as the most different 

in both cranial form and diet along PLS1; the long-faced, frugivorous/omnivorous 

Papio species; and the short-faced, mostly frugivorous species plus Mandrillus. It is 

interesting to note that the sister taxa Cercocebus (short-faced) and Mandrillus (long-

faced), that have similar diet (frugivory/durophagy) yet are very different in terms of 

cranial form, actually cluster together. However, the plot does not show a patterning of 

relationships between species that might be expected from the phylogenetic relationship 

between them. Sister taxa, such as Theropithecus, Lophocebus and Papio cluster far 

from one another, while the outgroup Macaca does not stand out as different from other 

short-faced species.  

 

 

Table 8.2. Singular values with P-values, percentage of total covariance explained by 

each axis, and pairwise correlations of PLS scores between cranial form and diet with 

P-values. Significant P-values (α = 0.05) are shown in italics and marked with *.  For 

the whole analysis RV = 0.4484597, p = 0.06117582.  

 Singular value P-value (perm.) % total covar. Correlation P-value (perm.) 

PLS1 0.02953201 0.0737 98.213 0.93694 0.0057* 

PLS2 0.00321861 0.8418 1.167 0.51995 0.9178 

PLS3 0.00221859 0.5635 0.554 0.90410 0.0460 

PLS4 0.00072518 0.1827 0.059 0.60112 0.7175 

PLS5 0.00024752 0.1035 0.007 0.67828 0.6247 
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Figure 8.2. PLS analysis of cranial form and dietary categories. Loadings for the 

dietary categories and a depiction of change in cranial form along PLS1 are also 

shown. Ct, blue: Cercocebus torquatus. La, yellow: Lophocebus albigena. Mf, brown: 

Macaca fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: male Papio anubis. Paf, 

light red: female Papio anubis. Ph, orange: Papio hamadryas. Tgm, green: male 

Theropithecus gelada. Tgf, light green: female Theropithecus gelada.  
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8.3.2. Diet versus Maximum Bite Force 

 

Table 8.3 presents the singular values and pairwise correlations of PLS scores 

between maximum bite force and diet. No significant correlation is found for any PLS 

axis. The low association between maximum bite force and diet is further evidenced by 

the RV-coefficient for the PLS which is 0.03417624 (p = 0.7269898), not significant for 

a significance level of 0.05. Figure 8.3 presents a plot of the first singular axis (PLS1) 

from the PLS of maximum bite force and diet, which is not significant (Table 8.3). 

Loadings for both blocks of data are also shown. The extremes of variation are fruit 

eaters, biting with the incisors and leaf eaters biting with the molars. The plot shows no 

clear groupings, apart from perhaps the two male Papio that have the similar (but not 

the same) diet. The distancing of male and female models in both Papio anubis and 

Theropithecus is also apparent. Interesting to note is the frugivorous/durophagous 

Mandrillus showing the same extreme bite force as the graminivorous Theropithecus 

male, while the female Theropithecus shows maximum bite forces of the level of the 

frugivorous short-faced species. 

 

 

Table 8.3. Singular values with P-values, percentage of total covariance explained by 

each axis, and pairwise correlations of PLS scores between maximum bite force and 

diet with P-values. Significant P-values (α = 0.05) are shown in italics and marked with 

*. For the whole analysis RV = 0.03417624, p = 0.7269898.  

 Singular value P-value (perm.) % total covar. Correlation P-value (perm.) 

PLS1 21.94906594 0.6924 97.870 0.21189 0.8219 

PLS2 3.23280249 0.1609 2.123 0.17927 0.8683 

PLS3 0.17912346 0.9150 0.007 0.19889 0.7080 

PLS4 0.04078020 0.7414 0.000 0.21114 0.6581 

PLS5 0.01359169 04312 0.000 0.09545 0.9639 

 

 



202 

 

Figure 8.3. PLS analysis of maximum bite force and diet. Loadings for both blocks of 

variables are also shown. Ct, blue: Cercocebus torquatus. La, yellow: Lophocebus 

albigena. Mf, brown: Macaca fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: 

male Papio anubis. Paf, light red: female Papio anubis. Ph, orange: Papio hamadryas. 

Tgm, green: male Theropithecus gelada. Tgf, light green: female Theropithecus gelada.  
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8.3.3. Diet versus Cranial Deformations 

 

Table 8.4 presents the singular values and pairwise correlations of PLS scores 

between cranial deformations and diet. The correlation for the first PLS axis (describing 

98.865% of the total covariance) is not significant. Only PLS3 shows significant 

correlation, but it describes only a minute percentage of the total covariance. The RV-

coefficient of the PLS is 0.1662508 (p = 0.3444324), not significant for a significance 

level of 0.05. Figure 8.4 presents a plot of the first singular axis (PLS1) from the PLS of 

cranial deformations and diet. These are not significantly correlated (Table 8.4). 

Loadings for the dietary categories and a visualization of the extremes of deformation 

along PLS1 are also shown. The inset transformation grids visualising these differences 

are enlarged and shown in Figure 8.5. Fruits and leaves are the extremes of PLS1 for the 

first block of data, while the extremes of PLS1 for the second block are higher 

deformation versus lower deformation, particularly in the zygomatic arch (Figure 8.5; 

see also Figure 5.9). Standing out in the plot is the Macaca model, with higher 

deformations and a frugivorous diet. All the other specimens deform much less than 

Macaca, regardless of their diet. They cluster in three groups, mainly due to differences 

in diet on PLS1 of that block of data: male and female Theropithecus, graminivorous, 

deforming the least; the three Papio specimens, omnivorous; and the short-faced species 

plus Mandrillus, all frugivorous/durophagous species. Apart from the Papio species, 

sister taxa do not cluster together, not even Cercocebus and Mandrillus that do so when 

cranial form is considered (Figure 8.2). 

 

 

Table 8.4. Singular values with P-values, percentage of total covariance explained by 

each axis, and pairwise correlations of PLS scores between cranial deformations and 

diet with P-values. Significant P-values (α = 0.05) are shown in italics and marked with 

*. For the whole analysis RV = 0.1662508, p = 0.3444324.  

 Singular value P-value (perm.) % total covar. Correlation P-value (perm.) 

PLS1 0.01323222 0.3244 98.865 0.43616 0.3926 

PLS2 0.00132619 0.4500 0.993 0.48512 0.2784 

PLS3 0.00049557 0.1933 0.139 0.76557 0.0330* 

PLS4 0.00007009 0.5124 0.003 0.32480 0.5116 

PLS5 0.00001625 0.5767 0.000 0.30704 0.4951 
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Figure 8.4. PLS analysis of cranial deformations and diet. Loadings for the dietary 

categories and a visualization of the extremes of deformation along PLS1 (I1 and M3 

bites) are also shown. Ct, blue: Cercocebus torquatus. La, yellow: Lophocebus albigena. 

Mf, brown: Macaca fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: male Papio 

anubis. Paf, light red: female Papio anubis. Ph, orange: Papio hamadryas. Tgm, green: 

male Theropithecus gelada. Tgf, light green: female Theropithecus gelada.  
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Figure 8.5.Visualization of deformations between the two extremes of deformation along 

PLS1. Deformation of the zygomatic arch is dominant during I1 bite, while an M3 bite 

makes it deform much less. Deformations magnified ×1000.  
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8.3.4. Cranial Form versus Maximum Bite Force 

 

Table 8.5 presents the singular values and pairwise correlations of PLS scores 

between maximum bite force and cranial form. Although the correlation for PLS2, 

PLS4 and PLS5 is significant, together those PLS axes describe less than 1% of the 

covariance between the two blocks, while the non-significant PLS1 describes 99.186%. 

The RV-coefficient of the PLS is 0.4547798 (p = 0.05497457), not quite significant for 

a significance level of 0.05. Figure 8.6 presents a plot of the first singular axis (PLS1) 

from the PLS of maximum bite force and cranial form. Loadings for the maximum bite 

force (from these loadings more negative scores on PLS1 from the block of bite force 

data indicate greater bite force) and a depiction of change in cranial form along PLS1 

are also shown. The long-faced Mandrillus and male Theropithecus are at one extreme 

and the short-faced species are at the other. The male Papio anubis and Papio 

hamadryas cluster in the middle. Mandrillus and male Theropithecus have higher 

maximum bite forces than all other specimens, including the females of both Papio 

anubis and Theropithecus that cluster closer to the short-faced species with low 

maximum bite forces. 

 

 

Table 8.5. Singular values with P-values, percentage of total covariance explained by 

each axis, and pairwise correlations of PLS scores between maximum bite force and 

cranial form with P-values. Significant P-values (α = 0.05) are shown in italics and 

marked with *. For the whole analysis RV = 0.4547798, p = 0.05497457.  

 Singular value P-value (perm.) % total covar. Correlation P-value (perm.) 

PLS1 18.37787939 0.0683 99.186 0.75565 0.1979 

PLS2 1.57494327 0.0744 0.728 0.95695 0.0005* 

PLS3 0.53250333 0.2799 0.083 0.72826 0.3300 

PLS4 0.07479704 0.9289 0.002 0.89223 0.0317* 

PLS5 0.04365700 0.7424 0.001 0.95208 0.0039* 

PLS6 0.02120313 0.9977 0.000 0.88924 0.1636 

PLS7 0.00713779 0.7517 0.000 0.80546 0.3734 
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Figure 8.6. PLS analysis of maximum bite force and cranial form. Loadings for the 

maximum bite force and a depiction of change in cranial form along PLS1 are also 

shown. Ct, blue: Cercocebus torquatus. La, yellow: Lophocebus albigena. Mf, brown: 

Macaca fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: male Papio anubis. Paf, 

light red: female Papio anubis. Ph, orange: Papio hamadryas. Tgm, green: male 

Theropithecus gelada. Tgf, light green: female Theropithecus gelada.  
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8.3.5. Cranial Form versus Cranial Deformations 

 

Table 8.6 presents the singular values and pairwise correlations of PLS scores 

between cranial deformations and cranial form. No significant correlation is found for 

any PLS axis considered alone. However, the RV-coefficient for the whole PLS is 

0.5047034 (p = 0.0207365), significant for a significance level of 0.05. Figure 8.7 

presents a plot of the first singular axis (PLS1) from the PLS of cranial deformations 

and cranial form. The principal component plot of deformations (Figure 7.11) and a 

depiction of change in cranial form along PLS1 are also shown. The two extremes of 

PLS1 for cranial form show a long face corresponding to lower deformations, versus a 

short face corresponding to higher deformations. Macaca stands out as the most distant 

from the others both in cranial form and deformations. Nevertheless, the two blocks of 

data show a good association between them, with Macaca and Mandrillus as extremes 

of the covariation. In essence, large crania with long faces deform less. 

 

 

Table 8.6. Singular values with P-values, percentage of total covariance explained by 

each axis, and pairwise correlations of PLS scores between cranial deformations and 

cranial form with P-values. Significant P-values (α = 0.05) are shown in italics marked 

with *. For the whole analysis RV = 0.5047034, p = 0.0207365.  

 Singular value P-value (perm.) % total covar. Correlation P-value (perm.) 

PLS1 0.00521006 0.0217* 97.120 0.78451 0.1261 

PLS2 0.00084623 0.4557 2.562 0.65764 0.4352 

PLS3 0.00024851 0.7028 0.221 0.68888 0.3835 

PLS4 0.00013482 0.7507 0.065 0.86108 0.0993 

PLS5 0.00008688 0.4021 0.027 0.62277 0.8418 

PLS6 0.00002813 0.7086 0.003 0.81502 0.2488 

PLS7 0.00002015 0.2564 0.001 0.87718 0.1431 

PLS8 0.00000788 0.9433 0.000 0.86831 0.2248 
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Figure 8.7. PLS analysis of cranial deformations and cranial form. A visualization of 

the extremes of deformation along PLS1 (I1 and M3 bites) and a depiction of change in 

cranial form along PLS1 are also shown. Ct, blue: Cercocebus torquatus. La, yellow: 

Lophocebus albigena. Mf, brown: Macaca fascicularis. Ms, violet: Mandrillus sphinx. 

Pam, red: male Papio anubis. Paf, light red: female Papio anubis. Ph, orange: Papio 

hamadryas. Tgm, green: male Theropithecus gelada. Tgf, light green: female 

Theropithecus gelada.  
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8.4. Discussion 

 

 This chapter tests the association among cranial form, diet, and biomechanical 

parameters resulting from FEA (maximum bite force and deformations under biting 

load), in a sample of papionin species with known diets. Results show that the best 

overall association (RV) is between cranial form and cranial deformations under biting, 

whereas the association between diet and cranial form is weaker overall but significant 

for the first axis of covariation (explaining 98.213% of the total covariance). The 

biomechanical parameters appear to be less clearly associated with diet.  

The strong association (significant RV) between cranial deformations and 

cranial form is expected, since the relationship between function and form is universally 

recognized (Wolff 1991; Liem et al. 2001; Benton 2005; Boyd & Nigg 2006; see also 

Section 1.2). The strong association (significant correlation) between cranial form and 

diet in the first singular axis is not unexpected again because form is generally 

perceived as corresponding to function and masticatory function necessary to process a 

particular diet was expected to relate to cranial form. The striking result here is that 

cranial form has such an unequivocal relation to diet, although the result was not 

significant overall when measured by the RV-coefficient. This is probably due to small 

sample size. Inequivocal is that the PLSs indicate a much greater association between 

diet and cranial form than between diet and any of the biomechanical performance 

parameters. Maximum bite force and deformations under biting show a non-significant 

correlation with diet. Again this result might be due to the exiguous sample size used 

here, a problem which comes from the time-consuming nature of building finite element 

models (Chapter 5). It does however suggest that in studies that aim to predict diet from 

the cranium (such as with fossil material), form described by a set of landmarks would 

be a better predictor of diet than any biomechanical parameter calculated from that 

cranium. 

The association between cranial deformations and diet, despite not being 

significant, point to Macaca (the phylogenetic outgroup) as being distinct from all other 

species. Althought feeding on an omnivorous diet similar to Papio spp., Macaca 

deforms at a greater magnitude than any other papionin, possibly as a consequence of 

retaining ancestral traits (such as the maxillary sinus) that have an effect on the 

biomechanical behaviour of the cranium. A future analysis where Macaca is removed 

from the sample will perhaps show a less weak association between diet and 

deformations. 
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What became clear with these results is that these associations do not match the 

expected groupings if phylogeny was the only driver of cranial form and biomechanical 

performance. Contrary to Losos (2011) finding that the shape of the head in lizards 

primarily reflects phylogeny, regardless of what they eat, for example, none of the 

papionin analysis showed any phylogenetic signal and more readily presented 

differences in anatomy (length of face, robustness) than the phylogenetic relationship 

among species. In the analyses including maximum bite force, even males and females 

of the same species clustered separately, meaning that biomechanical performance in 

these animals is related less to phylogenetic constraints than to anatomical differences 

between them. A test on the association (and correlation) between biomechanical 

parameters and phylogeny can be performed in future when a larger sample size is 

available (both in number of species and in number of individuals per species) in order 

to better clarify the role of phylogeny on cranial biomechanical performance.  

Moreover, it cannot be excluded that the dietary proportions as they were 

calculated might have biased the analyses towards a weak association between 

biomechanical parameters and dietary categories (although they appear sufficient to 

show a clear association with cranial form). The information about dietary categories 

was taken from literature describing reports of sightings in the wild which are often 

incomplete or even contradictory (see review in Subsection 1.3.3). Repeating the PLS 

analyses with an improved dietary categories matrix might shed some light on the 

perceived weak association between deformations and diet, even though cranial form so 

clearly associates with it. 

Problems with estimating performance parameters from FEA, including model 

building issues and large scale deformation analysis, cannot be ruled out either. As seen 

in Chapter 6, differences in internal architecture modelling and anchoring constraints 

are likely to have little effect on the results of an FEA, but estimating muscle forces 

from ACSA can result in substantial differences in finite model performance, leading to 

biases in the PLS analysis. Model building problems were thoroughly discussed in 

Chapters 5 and 6.  

In conclusion, the association between cranial form and cranial deformations is 

strong. However, the maximum bite force and cranial deformations under biting, as 

resulting from FEA, appear to associate with diet less well than does cranial form 

defined by a set of landmarks. Further work is therefore needed before ecological and 

behavioural interpretations from FEA can be made. Future studies will ideally require 

an extended sample and a better characterised diet.  
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Chapter 9. Conclusion 

 

 

 

9.1. Summary of Key Findings 

 

The overall, broad aim of this thesis is to move towards a greater understanding 

of the evolution of cranial form and its biomechanical adaptation to the function of 

feeding, using the papionin cranium as a system. It starts by testing the hypothesis of 

cranial form divergence by random genetic drift alone; if rejected, the form of each 

papionin cranium should reflect adaptation to the particular biomechanical demands of 

different dietary strategies. To study that adaptation, after model building and sensitivity 

analyses, hypotheses about the biomechanical performance of the cranium are then 

formulated in terms of the diet of each papionin species, and tested using 3D finite 

element models and geometric morphometrics. Lastly, the hypothesis that cranial form, 

maximum bite force and cranial deformations under biting load are associated with one 

another is also tested using multivariate statistics. 

A review of principal aspects required for the understanding of the evolution of 

form and function of the papionin cranium was undertaken in Chapter 1. In Chapter 2, 

an overview of methods used in the thesis was provided. After that, the actual research 

questions concerning the evolution of papionin cranial form and feeding adaptations (as 

well as the necessary tests on the methods used) were addressed.  

From Chapter 3, type I error rates in comparing genetic and phenotypic matrices 

are kept within acceptable ranges if particular conditions are observed. In summary 

(Chapter 3), replacing G with W when testing the null hypothesis of divergence by 

genetic drift is not likely to increase the type I error rates of the AC test, unless the 

ancestral G and W are structurally dissimilar (mathematical proportionality is not a 

required condition), the t/Ne ratio is large and sample sizes are small (< 40 per group). A 

Monte Carlo simulation approach might be used to estimate the expected slope of the 

AC test under drift, taking into account the structural differences between G and P. A 

number of other methods have been proposed to compare among-population and within 

population covariance matrices (Lofsvold 1988; Bégin & Roff 2001; Revell et al. 2007). 

Not all of these alternative methods will have increased type I error rates when average 
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G is replaced by W. Type II errors are also a possibility, as genetic drift is the 

alternative hypothesis in some tests (Revell et al. 2007). The simulation function 

provided as an appendix (Appendix B) can be modified to account for other methods of 

matrix comparison. Alternatively, model-based approaches (Butler & King 2004) should 

provide reliable and possibly more informative tests of evolutionary processes and 

scenarios. The simulation approaches, particularly the more sophisticated individual-

based models (Revell 2007) should prove useful in further analyses, comparing methods 

and testing evolutionary quantitative genetics models. 

In Chapter 4, a test on the null hypothesis of the divergence of papionin cranial 

forms by random genetic drift alone, supported by an established molecular phylogeny, 

concluded that random genetic drift was most likely not the single microevolutionary 

process acting on the form of the papionin cranium. Non-random processes are 

therefore likely to have acted, driving the form of the cranium as a response to 

environmental pressures including diet. The test is proved to be robust in falsifying the 

underlying assumptions (Prôa, O’Higgins, & Monteiro 2013; see also Chapter 3), and 

the results indicate that the form of the cranium of papionin species, within the Tribe 

Papionini, has not diverged solely neutrally from a common ancestor, with diet being 

possibly a selective agent driving the evolution of papionin cranial form. Interpreting 

these results directly as biological, though, is ill advised due to the small sample size 

used. Likewise this particular set of landmarks may be inaccurately describing the 

cranium and another, more comprehensive set, might reflect better the evolution of the 

papionin cranium. The inclusion of female specimens would also add to the accuracy of 

the analysis.  

After discarding the hypothesis that the papionin cranium evolved by random 

genetic drift alone, biomechanical models were built to test evolutionary adaptation to 

diet. Chapter 5 described the steps taken in the process of building 3D finite element 

models of papionin crania used in subsequent chapters. It reviewed image segmentation 

techniques and boundary conditions of the models, described how bite force and 

landmarks are utilised after the model solution step of FEA, and discussed problems 

encountered in collecting or estimating the input parameters for such models. Low 

resolution of available scans, leading to difficulties in image segmentation, was dealt 

with by using filled, less complex models. The models were fully anchored at both sides 

of the jaw joint to avoid unwanted rigid body motion. Muscle forces were estimated 

from bony proxies and applied consistently among models. Nevertheless, to test the 

feasibility of these models building decisions, sensitivity analyses were undertaken. 
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 In Chapter 6, three tests on the effect that model building decisions might have 

on FEA results concluded that varying the internal architecture has a minimal effect; 

that incomplete anchoring in the jaw joint reduces deformations by creating a rotation 

movement around the single fully constrained fulcrum; and that muscle force input has 

a large effect on FEA results, but nevertheless deformations differences among models 

are bigger than differences among load cases of the same model thus making a 

reasonable comparison among models viable. 

 That established, the models were used in Chapter 7 to perform comparative 

analyses of strains and deformations between species, testing hypotheses of dietary 

differences among papionins. In all models incisor bite results in higher strains and 

deformations of the cranium, decreasing progressively when the load arm length 

decreases along the dental row, reaching lower values when biting on M3. The 

durophagous Mandrillus deforms less than Lophocebus and Cercocebus, other 

durophagous species, which can be explained by the larger size and overall robustness 

of Mandrillus and also by its paranasal ridges and enlarged sagital crest that stiffen the 

cranium. Durophagous Lophocebus and Cercocebus deform similarly, with only 

differences in magnitude of deformations. These differences suggest that Cercocebus is 

less able to resist biting forces than Lophocebus despite being of slightly greater size 

(cranial length; although note it has very similar skeletal volume to Lophocebus; Table 

7.1). There are clear differences between the two omnivorous Papio spp. and the 

graminivorous Theropithecus. Male and female crania of the same species tend to 

perform similarly to each other and differently from other species. There are also clear 

differences in strains and deformations between the two dietary extremes, durophagous 

and graminivorous, each with particular adaptations in the cranium that can be seen in 

the biomechanical performance of the cranium. The cranium of the omnivorous 

outgroup of papionins, Macaca, performs differently from all other species, which can 

be interpreted as being due to its retaining of ancestral traits that are important 

mechanically, such as the maxillary sinus.  

 Lastly, Chapter 8 attempted the understanding of the association between diet 

and cranial form, maximum bite force and cranial deformations under biting load, and 

between cranial form and the two biomechanical performance parameters. Results show 

that the statistically significant association is between cranial form and cranial 

deformations, with a strong correlation between diet and cranial form along the first 

singular axis of a PLS analysis. Bite force and deformations show a much less clear 

association with diet but point to Macaca and Theropithecus as being distinct from all 
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other species, a pattern that does not match the expected groupings if phylogeny were 

the only driver of cranial form and biomechanical performance.  

 

 

 

9.2. Implications for Future Research 

 

Future research on the evolution of the papionin cranium and its adaptation to 

diet and feeding habits should address both biological and methodological questions. 

Quantitative genetic models (like the model used here in Chapters 3 and 4) are a 

commonly used approach to study the effect of microevolutionary processes (such as 

natural selection or random genetic drift) on macroevolutionary patterns (such as cranial 

form evolution) (e.g. Perez & Monteiro 2009). For biomechanical studies it has been 

suggested that complex models (like finite element models) should be used instead of 

simple geometric models of the cranium when testing hypotheses of about craniofacial 

biomechanics and diet (Chalk et al. 2011). 

In evolutionary studies, the approach taken in Chapter 4 of working under the 

assumption of neutral evolution is a good starting point, but future research in species 

evolution (divergence) by means of natural selection, using landmark, biomechanical or 

other data, are perhaps better tackled under the quantitative genetic framework known 

as the Hansen model (Hansen 1997; Butler & King 2004) or using an individual-based 

model (Revell 2007), rather than under a purely neutral model of divergence by random 

genetic drift. Moreover, combining these form and function studies with phylogenetic 

comparative methods is starting to be a more utilized approach (Monteiro 2013), and 

might provide a more complete approach to future studies of form and function under 

an evolutionary approach. 

In terms of the technical use of FEA in further studies that focus on comparing 

species, they would benefit enormously from preliminary studies of intra-specific 

variation. A comparison between models of specimens of the same species would 

enlighten greatly their comparative biomechanical behaviour, particularly from an 

evolutionary point of view. The differences found among specimens of the same species 

might be similar to the differences found among specimens of different species, thus 

bluring the interpretation of FEA results altogether. This said, ongoing related work in 

humans by close colleagues shows considerable similarity of strain contour maps within 
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humans (M. V. Toro-Ibacache, pers. comm.). As suggested already in Chapters 7 and 8, 

repeating these FEAs and deformations analyses with an enlarged sample size would 

greatly increase the ability to make more robust interpretations, particularly when those 

interpretations are evolutionary. 

 Furthermore, in building finite element models gathering data from real 

specimens, such as bite force from in vivo experiments and real muscle PCSA, is a 

further step to increase the complexity and accuracy of these finite element models and 

so, the robustness of the analysis of deformations under loading. Increasing the 

complexity of the 3D models which could involve segmenting teeth (Benazzi et al. 

2012), periodontal ligament (Panagiotopoulou et al. 2011; Gröning et al. 2011), lateral 

pterygoid muscle (Osborn 1995; Sellers & Crompton 2004), including the temporal 

fascia (Curtis et al. 2011), and even including the mandible (Marinescu et al. 2005; 

Wroe et al. 2010) is definitely a path to follow. In future research, rescanning the 

specimens in the same CT scanner (microCT scanner preferentially) to bypass 

differences in CT resolution would also be a sensible course of action. 

 Questions about size need also be taken into account in further analyses of 

deformations, for example, an analysis of the relationship between deformations and 

size by performing a regression of the principal component scores of deformations 

against centroid size. If it is found that there is a significant relationship between 

deformations and size, further analyses related to scaling can then be considered. 

Scaling can be done is several ways, one of them is scaling of muscle forces to the same 

bite forces, but muscle forces could be scaled according to cranium length (to the square 

of cranium length, because as length increases, muscle cross-sectional area increases by 

the square). This is all about what aspects of performance are of interest and these will 

vary from study to study, questions and analyses should be focused on the questions 

under study. Some consideration needs to be given in future work to what different 

scalings mean in terms of performance comparisons, what is being compared and 

whether this is appropriate to the biological question at hand. 

Future developments could also include looking in detail at particular regions, 

such as the zygomatic arch. Deformation of the zygomatic arch seems to dominate the 

analysis of deformations under this modelling approach, but that might not be the case 

when the temporal fascia is taken into account in model building to counterbalance the 

force of the masseter muscle during biting (Curtis et al. 2011). Thus, removing from the 

analysis the raw landmarks placed on the zygomatic arches shows a rather different 

picture of cranial deformations among these animals (Figure 9.1). Also focusing more 
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on the subtle changes in the face that are more likely related to diet is desirable, such as 

specific bites or degree of prognathism (which is related to gape, Fitton 2007), rather 

than considering the whole cranium. 

 

 

 

Figure 9.1. Cranial deformations excluding landmarks on the zygomatic arch of the 

whole sample visualized using a preliminary PCA of size-and-shape variables. Lines 

denote the deformations arising from bites in a single specimen at different points along 

the left dental row, first incisor (I1), second incisor (I2), first premolar (P3), second 

premolar (P4), first molar (M1), second molar (M2), and third molar (M3). Ct, blue: 

Cercocebus torquatus. La, yellow: Lophocebus albigena. Mf, brown: Macaca 

fascicularis. Ms, violet: Mandrillus sphinx. Pam, red: male Papio anubis. Paf, light red: 

female Papio anubis. Ph, orange: Papio hamadryas. Tgm, green: male Theropithecus 

gelada. Tgf, light green: female Theropithecus gelada. The isolated point marked U 

represents the undeformed mean of all models.  

 

-0.02 0.00 0.02 0.04 0.06

-0
.0

4
-0

.0
2

0
.0

0
0

.0
2

PC1 ( 77.49 %)

P
C

2
 (

 8
.8

9
 %

)

PC1 versus PC2

  U CtLa
Mf 

I1

I2

P3
P4

M1

M2

M3

Ms
Pam

Ph

Tgm

PafTgf



218 

Results in Chapter 7 showed that the cranium of Macaca appears to be less 

adapted to feeding on hard foods and, thus, have not have cranial form selected for that 

particular feeding strategy. Further testing is thus possible under the scenario of 

divergence of the papionins (excluding Macaca) from a Macaca-like ancestor towards a 

more durophagous diet, with the loss of maxillary sinus and the face stiffening in 

response to that shift in diet. Later evolution related to social systems and adaptation to 

diverse diets may have then underpinned the diversification of the group into the extant 

species (genera). 

Apparent from the results of Chapter 8 is the usefulness of using form to predict 

ecological context, especially diet. Form appears to be more useful than biomechanical, 

functional parameters in this regard. With a sufficiently large sample, analyses of form 

seem to be a direct and clear method to make behavioural inferences rather than 

“functional signals,” at least when the “functional signal” arises from FEA. 

Biomechanical adaptation occurs as a consequence of changes in form, and form is 

driven by several and diverse factors. Thus, skeletal form is perceived as a compromise 

between mechanics and other influences (Ruff et al. 2006). It is clear from the results of 

this thesis that further work is needed before ecological and behavioural interpretations 

from FEA can be made with any reliability. The findings of Chapter 7 provide 

tantalising clues as to how FEA might be informative about diet, thus detailed 

comparisons of particular species and focal areas of deformation do seem to yield 

important information about diet. Consequently, other than an extended sample size, 

future FEA studies of this kind will require a more detailed approach to modelling 

crania, and the scaling considerations mentioned above, as well as better characterised 

dietary categories as well. 

Nevertheless, the application of FEA and analysis of global deformations to 

fossils is a promising avenue that requires much more development. In fossils, often 

form is the only biological trait preserved and inferences of dietary behaviour directly 

from form are very common (e.g. Kay 1981; Strait et al. 2007; and even Grine et al. 

2012). The reliability of those inferences, though, are unknown at present and the only 

way to make them is by analogy with the form of extant organisms with known diets. 

Assumptions on which functional interpretations of fossils from FEA are based had not 

been tested with extant species until this thesis. Only through a more thorough 

understanding of the mechanical demands that different diets place on the masticatory 

system of extant species, and of the behavioural strategies that extant species employ to 

mitigate those demands, can inferences be made regarding fossil species. “The logical 
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and statistical basis for inference about trait function in fossils is the relationship 

between form and function in living taxa” (Ross et al. 2002). The trait is studied in 

extant taxa to determine its function and then hypothesised to have the same function in 

the fossil taxon (Ross et al. 2002). FEA provides an alternative method to study 

structure-function relationships in fossil animals, even in the absence of living 

analogues (Ross 2005). However, more studies are needed to establish how skeletal 

performance in resisting loads from specific tasks (e.g. biting) relates to ecological 

parameters. The results of this thesis are certainly a precedent and a starting point for 

these types of studies, but indicate that much work is yet to be done in order to 

understand how inferences can be made from FEA.  
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Appendix A. Complete Taxonomy of Papionins 

 

 

 

 The taxonomic nomenclature presented here follows Groves (2001) and 

Vaughan et al. (2010). This table includes extant species only. 

 

Domain Eukarya (Whittaker & Margulis, 1978) 

  Kingdom Animalia (Linnaeus, 1758) 

    Superphylum Deuterostomia (Grobben, 1908) 

      Phylum Chordata (Bateson, 1885) 

        Class Mammalia (Linnaeus, 1758) 

          Subclass Theria (Parker & Haswell, 1897) 

            Infraclass Eutheria (Huxley, 1880) 

              Order Primates (Linnaeus, 1758) 

                Suborder Anthropoidea (Mivart, 1864) 

                  Infraorder Catarrhini (É. Geoffroy, 1812) 

                    Superfamily Cercopithecoidea (Gray, 1821) 

                      Family Cercopithecidae (Gray, 1821)  

                        Subfamily Cercopithecinae (Gray, 1821) 

                          Tribe Papionini (Burnett, 1828) 

     Genus Macaca (Lacépède, 1799) 

       Species Macaca sylvanus (Linnaeus, 1758) 

       Species Macaca silenus (Linnaeus, 1758) 

       Species Macaca nemestrina (Linnaeus, 1766) 

       Species Macaca leonina (Blyth, 1863) 

       Species Macaca pagensis (Miller, 1903) 

       Species Macaca siberu (Fuentes & Olson, 1995) 

       Species Macaca maura (F. Cuvier, 1823) 

       Species Macaca ochreata (Ogilby, 1840) 

       Species Macaca tonkeana (Meyer, 1899) 

       Species Macaca hecki (Matschie, 1901) 

       Species Macaca nigrescens (Temminck, 1849) 

       Species Macaca nigra (Desmarest, 1822) 

       Species Macaca fascicularis* (Raffles, 1821) 

       Species Macaca arctoides (I. Geoffroy, 1831)         → 
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→       Species Macaca mulatta (Zimmermann, 1780)  

       Species Macaca cyclopis (Swinhoe, 1862) 

       Species Macaca fuscata (Blyth, 1875) 

       Species Macaca sinica (Linnaeus, 1771) 

       Species Macaca radiata (É. Geoffroy, 1812) 

       Species Macaca assamensis (M’Clelland, 1840) 

       Species Macaca thibetana (Milne-Edwards, 1870) 

       Species Macaca munzala (Sinha et al., 2005) 

       Species Macaca brunnescens (Matschi, 1901) 

     Genus Cercocebus (É. Geoffroy, 1812) 

       Species Cercocebus atys (Audebert, 1797) 

       Species Cercocebus torquatus* (Kerr, 1792) 

       Species Cercocebus agilis (Milne-Edwards, 1886) 

       Species Cercocebus chrysogaster (Lydekker, 1900) 

       Species Cercocebus galeritus (Peters, 1879) 

       Species Cercocebus sanjei (Mittermeier, 1986) 

     Genus Papio (Erxleben, 1777) 

       Species Papio hamadryas* (Linnaeus, 1758) 

       Species Papio papio (Desmarest, 1820) 

       Species Papio anubis* (Lesson, 1827) 

       Species Papio cynocephalus (Linnaeus, 1766) 

       Species Papio ursinus (Kerr, 1792) 

     Genus Lophocebus (Palmer, 1903) 

       Species Lophocebus albigena* (Gray, 1850) 

       Species Lophocebus aterrimus (Oudemans, 1890) 

       Species Lophocebus opdenboschi (Schouteden, 1944) 

     Genus Mandrillus (Ritgen, 1824) 

       Species Mandrillus sphinx* (Linnaeus, 1758) 

       Species Mandrillus leucophaeus (F. Cuvier, 1807) 

     Genus Theropithecus (I. Geoffroy, 1843) 

       Species Theropithecus gelada* (Rüppell, 1835) 

     Genus Rungwecebus (Davenport et al., 2006) 

       Species Rungwecebus kipunji (Jones et al., 2005) 

 

 

* Species used in this thesis  
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Appendix B. R Functions used in Chapters 3 and 4 

 

 

 

 For the analyses presented in Chapters 3 and 4 two R functions were written. 

The first, with file name simulationAC-typeIerror.R, performs completely stochastic 

simulations and calculates the type I error rate of the Ackermann and Cheverud (AC) 

random genetic drift test. The second, with file name simulationAC-slope.R, performs 

completely stochastic simulations and calculates the expected slope of the AC random 

genetic drift test for pre-determined G and P matrices or simulations. 

 

 

Function to perform completely stochastic simulations and 

calculate the type I error rate of the AC test. 

 

#Function parameters: 

#method = choose "sim1", "sim2", "sim3", "sim4", "sim5", 

according to description in the text (Chapter 3) 

#m = genetic covariance matrix dimension 

#tNe = number of generations (t) divided by effective 

population size (Ne) 

#pop = number of populations 

#n = sample size for each population 

#sim.n = number of simulations 

 

simulateGP<-function(method,m,tNe,pop,n,sim.n,  

G="NULL",P="NULL"){ 

 

#Define an empty variable to contain the results 

prob <- vector() 

 

require(MASS) 

require(clusterGeneration) 

for (i in 1:sim.n){ 

 if (method=="sim1"){ 

  if (G=="NULL"){ 

   stop("you need to provide a valid G matrix!\n")} 

  if (P=="NULL"){ 

   stop("you need to provide a valid P matrix!\n")} 

} 

 

#Predetermined G and P will be used 

if (method=="sim2"){ 

 

#G is defined as a random positive definite matrix, and P = xG, 

only different by a random constant of proportionality. 

   G<-genPositiveDefMat(dim=m,lambdaLow=1,ratioLambda=10)$Sigma 

  P<-runif(1,min=1,max=10)*G 

 } 

 if (method=="sim3"){ 

 

#G and P matrices are defined randomly and independently from 

each other, with the constraint that the variances in P are 

always larger than the respective variances in G. 
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  G<-genPositiveDefMat( 

dim=m,covMethod="unifcorrmat",rangeVar=c(1,10))$Sigma 

  R<-genPositiveDefMat( 

dim=m,covMethod="unifcorrmat",rangeVar=c(1,1))$Sigma 

  var<-runif(m,2,9)*diag(G) 

  P<-diag(sqrt(var))%*%R%*%diag(sqrt(var)) 

 } 

 if (method=="sim4"){ 

 

#G and E matrices are defined randomly and independently from 

each other, whereas P = G+E. P and G do not share a common PC 

structure but are related 

  G<-genPositiveDefMat(~ 

dim=m,covMethod="unifcorrmat",rangeVar=c(1,10))$Sigma 

  P<-G+genPositiveDefMat( 

dim=m,covMethod="unifcorrmat",rangeVar=c(1,15))$Sigma 

 } 

 if (method=="sim5"){ 

 

#G and E matrices are defined randomly and independently from 

each other, whereas P = G+E. P and G share a common PC structure 

  G<-genPositiveDefMat( 

dim=m,lambdaLow=1,ratioLambda=10)$Sigma 

  P<-G+genPositiveDefMat( 

dim=m,covMethod="unifcorrmat",rangeVar=c(1,5))$Sigma 

 } 

 

#Generate samples from pop populations with n obs each. the 

ancestral vector is composed of m zeros. 

 M<-mvrnorm(pop,rep(0,ncol(G)),tNe*G) 

 group<-factor(rep(seq(1:pop),each=n)) 

 data <- matrix(0,pop*n,ncol(P)) 

 for (j in 1:(n*pop)){ 

  data[j,]<-mvrnorm(1,M[group[j],],P) 

 } 

 

#Calculate matrix of mean vectors from simulations 

 zmeans<-matrix( 

 unlist(by(data,group,colMeans)),nrow=pop,ncol=ncol(G), 

byrow=T) 

 

#Calculate within-group phenotypic covariance and extract 

eigenvalues 

 eigW<-eigen( 

cov(data-zmeans[rep(1:nrow(zmeans),each=n),])) 

 

#Project mean vectors for the 15 pops on within group 

eigenvectors 

 zm.proj<-zmeans%*%eigW$vectors 

 

#Calculate among-group variance 

 v<-diag(cov(zm.proj)) 

 

#Perform the AC test with t-test for unity slope 

 model<-summary(lm(log(v)~log(eigW$values))) 

 prob[i]<-pt(abs((model$coefficients[2,1]- 

1)/model$coefficients[2,2]), 

df=model$df[2],lower.tail=F)*2 

 } 

tIe<-mean(prob<0.05) 

return(tIe) 

} 
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Function to perform completely stochastic simulations and 

calculate expected slope of AC-test for specific G and P 

matrices or simulations. 

 

#Function parameters: 

#method = choose "sim1", "sim2", "sim3", "sim4", "sim5", 

according to description in the text (Chapter 3) 

#m = genetic covariance matrix dimension 

#tNe = number of generations (t) divided by effective  

population size (Ne) 

#pop = number of populations 

#n = sample size for each population 

#sim.n = number of simulations 

#smax = maximum variance in environmental matrix (min is always 

0), genetic variances always between 1 and 10. 

 

simulateGPBeta<-function(method,m,tNe,pop,n,sim.n, G="NULL", 

P="NULL",smax){ 

 

#define an empty variable to contain the results 

beta <- vector() 

 

require(MASS) 

require(clusterGeneration) 

for (i in 1:sim.n){ 

 if (method=="sim1"){ 

  if (G=="NULL"){ 

   stop("you need to provide a valid G matrix!\n")  

  } 

  if (P=="NULL"){ 

   stop("you need to provide a valid P matrix!\n")  

  } 

} 

 

#Predetermined G and P will be used 

if (method=="sim2"){ 

 

#G is defined as a random positive definite matrix, and P = xG, 

only different by a random constant of proportionality. 

  G<-genPositiveDefMat(dim=m,lambdaLow=1,ratioLambda=10)$Sigma 

  P<-runif(1,min=1,max=10)*G 

 } 

 if (method=="sim3"){ 

 

#G and P matrices are defined randomly and independently from 

each other, with the constraint that the variances in P are 

always larger than the respective variances in G. 

  G<-genPositiveDefMat( 

dim=m,covMethod="unifcorrmat",rangeVar=c(1,10))$Sigma 

  R<-genPositiveDefMat( 

dim=m,covMethod="unifcorrmat",rangeVar=c(1,1))$Sigma 

  var<-runif(m,2,9)*diag(G) 

  P<-diag(sqrt(var))%*%R%*%diag(sqrt(var)) 

 } 

 if (method=="sim4"){ 

 

#G and E matrices are defined randomly and independently from 

each other, whereas P = G+E. P and G do not share a common PC 

structure but are related 

  G<-genPositiveDefMat( 

dim=m,covMethod="unifcorrmat",rangeVar=c(1,10))$Sigma 

  P<-G+genPositiveDefMat( 

dim=m,covMethod="unifcorrmat",rangeVar=c(0,smax))$Sigma 

 } 
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 if (method=="sim5"){ 

 

#G and E matrices are defined randomly and independently from 

each other, whereas P = G+E. P and G share a common PC structure 

  G<-genPositiveDefMat( 

dim=m,lambdaLow=1,ratioLambda=10)$Sigma 

  P<-G+genPositiveDefMat( 

dim=m,covMethod="unifcorrmat",rangeVar=c(0,smax))$Sigma 

 } 

 

#Generate samples from pop populations with n obs each. the 

ancestral vector is composed of m zeros. 

 M<-mvrnorm(pop,rep(0,ncol(G)),tNe*G) 

 group<-factor(rep(seq(1:pop),each=n)) 

 data <- matrix(0,pop*n,ncol(P)) 

 for (j in 1:(n*pop)){data[j,]<-mvrnorm(1,M[group[j],],P)} 

 

#Calculate matrix of mean vectors from simulations 

 zmeans<-matrix( 

unlist(by(data,group,colMeans)),nrow=pop,ncol=ncol(G), 

byrow=T) 

 

#Calculate within-group phenotypic covariance and extract 

eigenvalues 

 eigW<-eigen( 

cov(data-zmeans[rep(1:nrow(zmeans),each=n),])) 

 

#Project mean vectors for the 15 pops on within group 

eigenvectors 

 zm.proj<-zmeans%*%eigW$vectors 

 

#Calculate among-group variance 

 v<-diag(cov(zm.proj)) 

 

#Calculate slope of the AC test 

 model<-summary(lm(log(v)~log(eigW$values))) 

   beta[i]<-model$coefficients[2,1] 

 } 

 

#Calculate 95% confidence limits 

UL<-mean(beta)+1.96*sd(beta) 

LL<-mean(beta)-1.96*sd(beta) 

return(c(mean(beta),UL,LL)) 

} 
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Appendix C. Published Research Paper 

 

 

 

 A modified version of Chapter 3 of this thesis has been published as a research 

paper in the peer-review journal Evolution (accepted for publication in July 2012, 

published online in August 2012, published in print in January 2013) with the title 

“Type I error rates for testing genetic drift with phenotypic covariance matrices: a 

simulation study,” and citation reference:  

 

Prôa, M., O’Higgins, P. & Monteiro, L.R. (2013) Type I error rates for testing 

genetic drift with phenotypic covariance matrices: a simulation study. 

Evolution, 67(1), 185–195. DOI: 10.1111/j.1558-5646.2012.01746.x 

 

 The author of this thesis contributed with designing the simulations, writing the 

R functions (Appendix B), performing analyses, and writing the paper. A copy of the 

paper is shown here as image files. 
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Appendix D. Strain values from Chapter 6 

 

 

 

Strain values as output from FEAs performed in Chapter 6 are here presented in 

table form. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks are displayed in microstrain (μstrain). Each table represents a simulated 

bite with one tooth along the dental row, from first incisor (I1) to third molar (M3), to 

the exclusion of the canine. Also displayed are strain differences (Δε1 and Δε3) at 

landmark locations between models or load cases (see Chapter 6 for details). The 

placing of these strain tables here rather then in the chapter proper is due to the vastness 

of space they require, which is easier to manage in an appendix. 
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Table D.1. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during first incisor (I1) bite load for the filled, unfilled and jaw joint 

constraint sensitivity tests (see text for more details), and strain differences (Δε1 and 

Δε3) at landmark locations between models. Strain values are in microstrain (μstrain).  

I1 bite Filled Unfilled Jaw Joint Filled-Unfilled Filled-JawJoint 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 646.29 -552.11 654.99 -560.54 657.09 -563.60 -8.70 8.43 -10.80 11.48 

2 208.52 -109.23 279.06 -125.97 211.68 -110.72 -70.55 16.74 -3.16 1.49 

3 266.00 -96.64 291.42 -105.16 272.74 -99.34 -25.42 8.51 -6.74 2.70 

4 52.97 -235.65 65.46 -291.28 57.97 -258.11 -12.50 55.64 -5.01 22.46 

5 59.08 -18.98 69.12 -22.18 58.74 -18.83 -10.04 3.21 0.35 -0.15 

6 32.80 -99.76 40.46 -121.28 32.90 -100.16 -7.66 21.52 -0.10 0.40 

7 2.14 -0.85 3.69 -1.47 7.17 -2.78 -1.56 0.62 -5.03 1.93 

8 217.62 -70.22 224.43 -78.78 267.82 -103.34 -6.82 8.56 -50.20 33.12 

9 153.01 -324.59 165.78 -289.06 157.21 -331.74 -12.77 -35.52 -4.20 7.16 

10 19.85 -14.72 24.51 -17.42 18.69 -14.60 -4.66 2.71 1.16 -0.12 

11 167.55 -489.47 172.24 -503.44 171.80 -502.15 -4.69 13.97 -4.25 12.68 

12 265.55 -158.28 365.44 -259.08 272.09 -162.30 -99.90 100.79 -6.55 4.02 

13 23.13 -51.89 24.08 -53.61 23.83 -53.41 -0.96 1.71 -0.70 1.52 

14 222.93 -117.64 229.51 -121.22 228.11 -120.41 -6.57 3.58 -5.18 2.77 

15 149.83 -97.46 154.39 -100.61 153.18 -99.72 -4.56 3.15 -3.35 2.26 

16 110.40 -53.01 119.98 -56.58 114.38 -54.64 -9.58 3.57 -3.98 1.63 

17 102.17 -42.26 108.67 -44.75 104.54 -43.17 -6.50 2.49 -2.37 0.91 

18 161.90 -62.75 282.21 -100.52 163.35 -63.29 -120.31 37.77 -1.45 0.54 

19 44.85 -94.33 56.59 -57.76 47.98 -141.66 -11.74 -36.57 -3.12 47.33 

20 0.79 -0.14 0.75 -0.47 0.77 -0.69 0.03 0.33 0.01 0.54 

21 295.63 -88.27 344.48 -104.24 267.85 -79.83 -48.85 15.96 27.78 -8.44 

22 224.28 -101.30 266.46 -115.68 232.77 -104.18 -42.18 14.37 -8.49 2.88 

23 115.10 -377.12 121.57 -399.06 119.18 -391.68 -6.47 21.94 -4.07 14.56 

24 125.98 -386.48 129.48 -395.56 131.41 -402.92 -3.50 9.07 -5.43 16.43 

25 260.30 -265.86 256.93 -264.11 261.76 -262.91 3.37 -1.75 -1.46 -2.95 

26 476.56 -203.76 500.14 -213.97 439.93 -190.59 -23.59 10.21 36.62 -13.16 

27 220.30 -391.01 223.10 -395.03 220.03 -387.45 -2.81 4.02 0.26 -3.55 

28 342.56 -76.96 332.47 -80.29 304.75 -69.43 10.09 3.33 37.80 -7.54 

29 37.35 -107.10 40.40 -115.58 37.83 -108.58 -3.05 8.48 -0.49 1.48 

30 39.68 -103.24 44.14 -114.01 40.83 -105.72 -4.46 10.77 -1.15 2.48 

31 44.71 -18.17 57.96 -25.88 53.84 -20.34 -13.25 7.71 -9.13 2.17 

32 183.21 -647.35 188.56 -668.10 180.86 -638.99 -5.34 20.75 2.36 -8.36 

33 126.14 -42.46 120.35 -45.30 161.09 -52.40 5.79 2.85 -34.96 9.94 

34 6.72 -17.70 44.50 -34.86 1.77 -3.96 -37.77 17.16 4.96 -13.74 

35 427.56 -134.12 426.25 -131.66 424.23 -133.89 1.31 -2.46 3.32 -0.23 

36 161.31 -74.62 143.16 -49.69 175.22 -94.56 18.15 -24.93 -13.91 19.94 

37 13.83 -38.93 17.20 -42.92 142.41 -62.77 -3.37 4.00 -128.58 23.84 

38 26.76 -8.52 33.33 -10.15 27.92 -8.57 -6.57 1.63 -1.17 0.05 

39 143.87 -501.44 145.88 -508.37 146.49 -510.91 -2.01 6.92 -2.62 9.47 

40 227.23 -59.49 252.94 -63.12 231.26 -60.59 -25.71 3.63 -4.03 1.10 

41 127.80 -49.22 120.43 -51.84 131.48 -50.00 7.36 2.62 -3.69 0.78 

42 128.08 -58.33 137.97 -62.69 130.08 -59.31 -9.89 4.36 -1.99 0.98 

43 400.62 -97.65 410.08 -100.64 405.78 -98.91 -9.46 2.99 -5.17 1.26 

44 333.28 -85.83 339.43 -87.65 338.06 -86.77 -6.15 1.82 -4.78 0.94 

45 144.40 -47.59 153.31 -50.27 146.89 -48.23 -8.90 2.68 -2.49 0.64 

46 89.11 -42.87 148.83 -55.73 89.77 -43.25 -59.73 12.85 -0.67 0.37 

47 146.58 -36.38 163.88 -50.34 118.18 -33.92 -17.30 13.96 28.39 -2.47 

48 5.16 -13.32 9.62 -23.94 18.27 -41.06 -4.46 10.62 -13.11 27.74 

49 341.26 -108.51 385.85 -125.08 271.51 -85.67 -44.59 16.57 69.75 -22.84 

50 254.82 -89.60 295.55 -103.50 224.60 -79.17 -40.73 13.90 30.22 -10.43 

51 124.96 -385.14 133.82 -412.38 129.87 -399.59 -8.85 27.23 -4.91 14.45 

52 211.00 -230.27 240.92 -244.34 214.23 -236.14 -29.92 14.07 -3.24 5.87 

53 270.84 -455.38 267.93 -445.45 278.10 -479.15 2.91 -9.93 -7.26 23.76 

54 465.01 -225.92 499.61 -240.46 361.81 -196.25 -34.60 14.54 103.19 -29.67 

55 114.54 -222.35 119.42 -243.57 108.08 -194.72 -4.88 21.23 6.46 -27.63 

56 149.94 -96.57 189.01 -87.98 102.48 -92.18 -39.07 -8.59 47.46 -4.39 

57 38.23 -124.15 41.47 -133.02 37.68 -122.31 -3.24 8.87 0.55 -1.84 

58 53.52 -111.50 59.54 -120.44 51.63 -108.16 -6.02 8.94 1.90 -3.34 

59 25.74 -8.83 36.42 -12.02 19.48 -6.74 -10.68 3.19 6.26 -2.09 

60 150.67 -462.22 163.84 -495.70 123.55 -384.17 -13.17 33.47 27.13 -78.05 

61 103.40 -52.50 102.67 -86.41 223.68 -72.23 0.73 33.91 -120.28 19.73 

62 4.22 -11.43 16.23 -37.24 14.73 -6.08 -12.01 25.81 -10.51 -5.35 

63 350.48 -188.64 348.23 -184.26 298.96 -162.89 2.26 -4.37 51.52 -25.75 

64 282.42 -107.88 282.76 -98.49 322.36 -207.27 -0.33 -9.39 -39.94 99.40 

65 209.70 -573.74 229.43 -614.36 211.70 -579.91 -19.73 40.61 -1.99 6.17 

66 248.95 -158.21 251.03 -167.15 215.03 -147.72 -2.08 8.94 33.93 -10.48 

67 46.07 -178.52 52.48 -196.50 47.98 -184.11 -6.41 17.98 -1.91 5.59 

68 184.64 -562.04 190.88 -583.78 194.22 -582.55 -6.24 21.74 -9.58 20.51 

69 225.95 -133.85 229.04 -145.56 154.62 -81.82 -3.09 11.71 71.32 -52.02 

70 53.91 -117.58 57.25 -118.10 53.99 -119.64 -3.34 0.53 -0.08 2.07 
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Table D.2. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during second incisor (I2) bite load for the filled, unfilled and jaw joint 

constraint sensitivity tests (see text for more details), and strain differences (Δε1 and 

Δε3) at landmark locations between models. Strain values are in microstrain (μstrain). 

I2 bite Filled Unfilled Jaw Joint Filled-Unfilled Filled-JawJoint 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 147.64 -397.31 164.47 -420.39 149.93 -404.84 -16.83 23.08 -2.28 7.53 

2 273.62 -211.46 359.01 -253.61 277.83 -214.71 -85.39 42.15 -4.22 3.25 

3 272.14 -100.94 297.25 -109.45 279.25 -103.76 -25.11 8.51 -7.11 2.82 

4 51.87 -231.54 64.20 -286.33 56.93 -253.87 -12.33 54.79 -5.06 22.33 

5 59.19 -19.01 69.23 -22.24 58.65 -18.85 -10.04 3.24 0.54 -0.15 

6 33.28 -101.32 40.99 -123.03 33.45 -101.96 -7.71 21.71 -0.17 0.64 

7 2.17 -0.88 3.72 -1.49 7.29 -2.85 -1.55 0.62 -5.12 1.98 

8 218.27 -71.04 224.66 -80.09 269.70 -106.01 -6.39 9.05 -51.43 34.97 

9 160.63 -337.63 174.15 -304.27 165.54 -345.73 -13.52 -33.35 -4.91 8.10 

10 23.75 -15.70 28.28 -18.31 22.74 -15.51 -4.53 2.62 1.00 -0.19 

11 184.50 -547.32 191.31 -568.05 189.26 -561.58 -6.81 20.73 -4.76 14.26 

12 797.07 -523.21 950.41 -713.88 815.45 -534.72 -153.34 190.68 -18.38 11.52 

13 12.79 -33.16 14.01 -36.49 13.27 -34.33 -1.22 3.34 -0.48 1.18 

14 222.47 -122.54 232.15 -126.46 227.76 -125.43 -9.67 3.93 -5.29 2.90 

15 160.55 -105.55 167.32 -109.96 163.73 -107.72 -6.77 4.42 -3.18 2.17 

16 51.77 -35.72 61.03 -39.32 54.40 -36.89 -9.27 3.60 -2.64 1.17 

17 96.08 -42.40 100.70 -43.72 98.31 -43.28 -4.63 1.32 -2.23 0.87 

18 196.05 -76.23 334.91 -119.59 198.42 -77.06 -138.86 43.36 -2.37 0.83 

19 47.63 -113.45 53.38 -70.13 52.11 -162.81 -5.75 -43.32 -4.47 49.36 

20 0.73 -0.14 0.73 -0.42 0.73 -0.70 0.00 0.28 0.00 0.56 

21 310.33 -92.77 364.12 -110.33 283.63 -84.64 -53.79 17.56 26.71 -8.13 

22 181.80 -90.14 222.05 -103.53 190.12 -92.95 -40.26 13.39 -8.32 2.80 

23 118.82 -388.54 125.60 -411.02 123.03 -403.68 -6.78 22.48 -4.20 15.15 

24 188.81 -581.47 195.46 -601.95 195.75 -602.41 -6.65 20.47 -6.94 20.93 

25 264.10 -272.91 261.01 -271.20 265.74 -270.34 3.09 -1.71 -1.64 -2.57 

26 501.67 -212.33 527.54 -223.28 468.02 -200.37 -25.87 10.94 33.65 -11.96 

27 223.50 -405.38 226.01 -409.87 223.70 -403.89 -2.50 4.49 -0.20 -1.49 

28 367.77 -81.13 364.10 -87.11 330.35 -73.71 3.66 5.98 37.42 -7.42 

29 36.86 -105.85 39.88 -114.24 37.38 -107.46 -3.02 8.39 -0.52 1.61 

30 38.30 -98.67 42.77 -109.71 39.37 -101.19 -4.46 11.04 -1.07 2.52 

31 25.01 -12.70 35.06 -19.08 32.83 -13.78 -10.05 6.38 -7.82 1.09 

32 184.39 -651.78 189.00 -669.89 182.46 -644.84 -4.61 18.11 1.93 -6.95 

33 101.60 -36.78 95.26 -41.71 131.35 -44.29 6.34 4.92 -29.76 7.50 

34 6.72 -17.69 43.29 -34.83 1.52 -3.60 -36.57 17.14 5.20 -14.10 

35 426.10 -131.93 422.38 -128.61 424.07 -132.26 3.72 -3.32 2.04 0.33 

36 155.48 -64.63 137.14 -39.44 167.27 -83.30 18.34 -25.19 -11.80 18.67 

37 13.97 -38.42 17.72 -42.64 143.26 -63.02 -3.75 4.22 -129.29 24.60 

38 22.44 -8.30 29.12 -9.75 23.26 -8.11 -6.68 1.46 -0.81 -0.19 

39 116.57 -407.60 116.07 -405.76 118.77 -415.52 0.51 -1.84 -2.20 7.92 

40 241.29 -72.36 255.66 -79.72 246.34 -73.85 -14.37 7.35 -5.05 1.49 

41 268.20 -41.23 260.19 -43.07 275.02 -41.94 8.01 1.83 -6.82 0.71 

42 123.71 -61.47 132.40 -63.77 125.73 -62.70 -8.69 2.30 -2.02 1.22 

43 349.71 -87.06 354.24 -87.57 354.27 -88.27 -4.54 0.51 -4.56 1.21 

44 409.61 -97.19 413.02 -97.99 416.36 -98.50 -3.41 0.79 -6.75 1.31 

45 152.04 -48.15 162.09 -51.31 154.85 -48.80 -10.05 3.16 -2.81 0.66 

46 62.40 -30.01 110.29 -40.92 62.61 -30.19 -47.89 10.92 -0.21 0.19 

47 169.13 -40.76 189.61 -55.39 138.77 -36.37 -20.48 14.63 30.36 -4.39 

48 5.49 -14.19 10.05 -25.12 18.56 -41.82 -4.57 10.93 -13.07 27.63 

49 331.08 -105.17 370.60 -120.02 261.38 -82.33 -39.53 14.85 69.69 -22.84 

50 276.13 -96.76 319.67 -111.83 246.43 -86.30 -43.54 15.07 29.71 -10.46 

51 121.60 -372.06 130.73 -399.22 126.54 -386.42 -9.14 27.16 -4.95 14.36 

52 250.05 -147.65 285.85 -159.57 253.40 -151.42 -35.80 11.92 -3.35 3.77 

53 264.36 -432.23 261.11 -421.39 271.71 -455.46 3.25 -10.84 -7.36 23.23 

54 444.13 -224.23 477.37 -238.90 342.71 -195.98 -33.25 14.66 101.42 -28.25 

55 111.18 -216.52 115.79 -237.41 104.86 -189.84 -4.61 20.88 6.32 -26.68 

56 138.81 -78.82 174.61 -72.80 89.84 -72.15 -35.80 -6.02 48.97 -6.67 

57 37.99 -123.68 41.24 -132.56 37.47 -121.88 -3.25 8.88 0.53 -1.79 

58 54.70 -115.08 60.71 -123.64 52.86 -111.88 -6.01 8.56 1.84 -3.20 

59 45.59 -15.10 57.87 -19.15 39.16 -12.96 -12.27 4.05 6.43 -2.14 

60 145.71 -445.86 159.00 -479.77 118.80 -368.47 -13.28 33.90 26.91 -77.39 

61 117.51 -52.86 115.41 -84.18 240.54 -75.73 2.11 31.32 -123.02 22.86 

62 4.10 -11.17 16.16 -37.03 14.97 -6.17 -12.05 25.87 -10.87 -5.00 

63 345.79 -186.96 344.76 -183.01 294.15 -160.95 1.03 -3.95 51.63 -26.01 

64 285.14 -112.32 285.24 -101.16 326.11 -214.88 -0.10 -11.17 -40.98 102.56 

65 223.38 -612.74 245.92 -659.43 225.75 -620.01 -22.53 46.69 -2.37 7.27 

66 274.91 -193.37 279.04 -202.31 242.48 -184.86 -4.13 8.94 32.43 -8.51 

67 131.93 -285.57 134.16 -313.42 133.65 -293.91 -2.23 27.85 -1.71 8.33 

68 159.67 -486.77 162.81 -500.82 168.85 -506.23 -3.14 14.06 -9.19 19.47 

69 205.31 -107.54 206.27 -118.03 135.29 -56.91 -0.96 10.49 70.03 -50.63 

70 63.28 -156.18 63.59 -158.92 68.76 -161.46 -0.31 2.74 -5.48 5.28 
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Table D.3. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during first premolar (P3) bite load for the filled, unfilled and jaw joint 

constraint sensitivity tests (see text for more details), and strain differences (Δε1 and 

Δε3) at landmark locations between models. Strain values are in microstrain (μstrain). 

P3 bite Filled Unfilled Jaw Joint Filled-Unfilled Filled-JawJoint 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 24.92 -37.60 28.83 -43.92 24.82 -37.61 -3.90 6.33 0.10 0.02 

2 73.76 -147.59 89.76 -167.26 73.71 -149.61 -15.99 19.67 0.05 2.02 

3 232.67 -90.58 249.11 -96.45 238.73 -93.08 -16.44 5.87 -6.07 2.50 

4 44.21 -197.99 54.96 -245.41 48.71 -218.95 -10.75 47.42 -4.51 20.96 

5 55.72 -18.02 66.01 -21.46 55.11 -17.78 -10.29 3.44 0.61 -0.25 

6 35.72 -109.04 43.72 -131.68 35.99 -110.01 -8.00 22.64 -0.26 0.97 

7 3.38 -1.38 4.86 -1.97 8.50 -3.41 -1.47 0.59 -5.12 2.03 

8 199.47 -68.40 206.89 -78.34 253.35 -110.63 -7.42 9.93 -53.88 42.23 

9 190.23 -351.20 203.02 -334.26 196.82 -360.78 -12.79 -16.94 -6.59 9.58 

10 34.46 -19.52 38.61 -21.92 33.40 -19.25 -4.15 2.39 1.06 -0.27 

11 73.16 -209.72 77.27 -221.25 75.42 -216.54 -4.11 11.53 -2.25 6.82 

12 48.73 -44.97 81.36 -75.02 50.06 -45.60 -32.62 30.05 -1.32 0.63 

13 246.69 -658.09 249.78 -669.31 252.03 -672.43 -3.09 11.22 -5.34 14.34 

14 423.89 -966.92 419.92 -954.40 433.29 -987.67 3.98 -12.52 -9.40 20.74 

15 322.15 -459.34 326.21 -462.29 327.83 -468.11 -4.06 2.95 -5.68 8.77 

16 66.61 -244.02 65.39 -244.08 67.48 -247.51 1.22 0.05 -0.87 3.49 

17 54.81 -71.97 53.68 -73.50 55.85 -73.05 1.14 1.53 -1.04 1.08 

18 236.48 -92.54 380.48 -136.79 239.46 -93.72 -144.00 44.26 -2.98 1.18 

19 62.25 -140.55 68.35 -98.25 61.02 -186.91 -6.10 -42.30 1.22 46.36 

20 0.55 -0.16 0.68 -0.28 0.45 -0.48 -0.12 0.12 0.10 0.32 

21 359.58 -108.33 421.91 -128.34 333.90 -100.60 -62.33 20.02 25.68 -7.73 

22 87.29 -70.59 117.99 -78.01 93.08 -72.08 -30.70 7.42 -5.78 1.49 

23 123.35 -403.06 130.72 -425.96 127.57 -418.01 -7.37 22.91 -4.23 14.95 

24 262.76 -801.91 272.35 -832.38 271.13 -826.97 -9.59 30.46 -8.37 25.06 

25 277.64 -289.48 276.19 -287.80 279.53 -287.71 1.46 -1.68 -1.88 -1.77 

26 576.89 -238.89 611.51 -252.81 545.46 -227.49 -34.63 13.92 31.43 -11.41 

27 231.35 -448.01 233.21 -455.52 231.95 -448.01 -1.85 7.51 -0.59 0.00 

28 411.10 -86.08 426.34 -97.84 374.00 -78.89 -15.24 11.76 37.09 -7.19 

29 34.31 -98.78 36.96 -106.05 34.76 -100.10 -2.65 7.27 -0.45 1.32 

30 32.62 -80.10 36.61 -90.63 33.65 -82.19 -3.99 10.54 -1.03 2.10 

31 12.33 -34.70 11.30 -30.46 10.67 -26.84 1.02 -4.24 1.66 -7.86 

32 185.44 -656.35 187.76 -666.04 183.52 -649.19 -2.33 9.69 1.91 -7.16 

33 47.79 -37.95 48.54 -57.94 65.30 -34.65 -0.76 19.99 -17.51 -3.30 

34 6.13 -15.91 35.93 -31.60 0.78 -1.79 -29.81 15.69 5.35 -14.11 

35 414.50 -125.60 401.85 -119.25 413.13 -127.24 12.65 -6.34 1.37 1.65 

36 143.07 -38.22 125.44 -12.15 150.74 -55.46 17.63 -26.07 -7.67 17.25 

37 13.88 -29.89 18.95 -35.05 152.25 -64.35 -5.08 5.15 -138.37 34.46 

38 12.59 -11.06 17.95 -10.87 12.57 -10.21 -5.36 -0.19 0.02 -0.85 

39 37.21 -128.30 34.58 -118.69 37.65 -130.17 2.63 -9.61 -0.44 1.87 

40 81.12 -21.51 91.86 -24.76 82.85 -21.85 -10.74 3.25 -1.73 0.34 

41 236.85 -75.35 221.93 -67.08 242.86 -77.79 14.92 -8.27 -6.01 2.44 

42 50.53 -38.78 52.12 -37.22 51.19 -39.58 -1.59 -1.56 -0.67 0.80 

43 108.15 -36.04 105.21 -32.99 108.33 -37.08 2.93 -3.05 -0.19 1.04 

44 289.04 -61.07 279.28 -59.04 293.00 -61.49 9.76 -2.02 -3.96 0.43 

45 99.21 -28.92 103.72 -30.53 100.96 -29.17 -4.51 1.61 -1.76 0.25 

46 12.46 -5.99 35.14 -12.61 11.56 -5.64 -22.68 6.62 0.89 -0.35 

47 192.07 -45.16 215.91 -57.46 159.95 -37.36 -23.85 12.31 32.12 -7.80 

48 5.84 -15.11 10.56 -26.60 18.74 -42.26 -4.73 11.49 -12.90 27.15 

49 280.86 -89.48 309.01 -99.82 210.46 -66.43 -28.14 10.34 70.40 -23.06 

50 309.20 -108.51 357.99 -125.88 280.42 -98.27 -48.79 17.38 28.78 -10.23 

51 99.35 -292.82 108.97 -318.11 103.72 -305.13 -9.63 25.29 -4.37 12.31 

52 311.10 -117.41 335.11 -126.43 314.94 -118.60 -24.01 9.02 -3.84 1.19 

53 259.98 -415.41 257.05 -406.08 268.11 -439.41 2.93 -9.32 -8.13 24.00 

54 425.95 -222.53 458.73 -237.32 328.01 -195.85 -32.78 14.79 97.94 -26.68 

55 109.00 -206.69 113.54 -226.85 103.18 -181.11 -4.54 20.16 5.81 -25.58 

56 110.90 -44.72 141.06 -49.15 58.26 -30.35 -30.16 4.43 52.64 -14.37 

57 33.85 -110.51 36.91 -118.84 33.24 -108.44 -3.06 8.33 0.61 -2.07 

58 52.18 -114.38 57.73 -122.24 50.35 -111.18 -5.55 7.86 1.84 -3.20 

59 91.93 -30.13 107.96 -35.57 86.58 -28.35 -16.03 5.44 5.35 -1.78 

60 135.23 -409.95 148.31 -443.36 108.91 -334.15 -13.08 33.41 26.32 -75.81 

61 139.67 -54.32 135.18 -82.08 264.40 -83.93 4.48 27.76 -124.73 29.60 

62 3.35 -9.14 14.13 -32.18 17.05 -7.00 -10.78 23.03 -13.70 -2.14 

63 329.22 -180.21 328.32 -176.26 277.57 -153.85 0.90 -3.95 51.66 -26.37 

64 288.86 -119.34 288.38 -105.43 331.25 -225.63 0.49 -13.91 -42.39 106.29 

65 170.98 -530.47 188.95 -573.94 172.04 -535.67 -17.97 43.47 -1.06 5.20 

66 333.81 -289.24 342.67 -297.99 304.24 -284.15 -8.86 8.75 29.57 -5.09 

67 360.85 -539.38 370.87 -585.77 368.35 -554.09 -10.01 46.39 -7.50 14.71 

68 90.40 -271.88 89.33 -272.29 98.10 -286.40 1.07 0.40 -7.69 14.52 

69 169.17 -73.68 165.84 -82.34 101.91 -30.00 3.32 8.67 67.26 -43.67 

70 136.65 -157.82 141.19 -158.89 143.89 -163.23 -4.54 1.08 -7.24 5.41 
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Table D.4. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during second premolar (P4) bite load for the filled, unfilled and jaw joint 

constraint sensitivity tests (see text for more details), and strain differences (Δε1 and 

Δε3) at landmark locations between models. Strain values are in microstrain (μstrain). 

P4 bite Filled Unfilled Jaw Joint Filled-Unfilled Filled-JawJoint 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 18.07 -31.83 21.07 -37.22 17.83 -31.97 -3.00 5.39 0.24 0.13 

2 55.65 -136.71 66.30 -156.48 55.54 -138.74 -10.65 19.77 0.11 2.03 

3 216.65 -85.15 230.94 -90.34 222.56 -87.64 -14.29 5.19 -5.91 2.49 

4 42.09 -188.24 52.32 -233.24 46.62 -208.78 -10.23 45.01 -4.53 20.54 

5 54.81 -17.79 65.41 -21.39 54.10 -17.54 -10.60 3.60 0.70 -0.25 

6 36.39 -111.16 44.45 -134.01 36.72 -112.33 -8.06 22.86 -0.34 1.17 

7 3.72 -1.52 5.17 -2.10 8.89 -3.59 -1.45 0.58 -5.17 2.07 

8 194.83 -68.22 203.06 -78.41 249.35 -112.66 -8.24 10.19 -54.52 44.44 

9 197.41 -335.68 209.47 -324.60 204.38 -345.42 -12.06 -11.08 -6.97 9.73 

10 37.57 -20.79 41.68 -23.14 36.49 -20.59 -4.12 2.35 1.08 -0.20 

11 58.11 -142.49 61.82 -151.86 60.12 -147.90 -3.71 9.37 -2.01 5.41 

12 42.27 -38.65 69.78 -63.48 43.27 -39.25 -27.51 24.83 -1.01 0.60 

13 50.70 -116.72 55.29 -130.90 51.94 -119.59 -4.59 14.18 -1.24 2.87 

14 291.26 -399.59 300.93 -398.23 298.38 -409.04 -9.67 -1.36 -7.12 9.46 

15 308.18 -1197.92 301.44 -1186.90 315.08 -1223.94 6.74 -11.01 -6.90 26.03 

16 104.33 -373.43 103.66 -375.57 106.13 -379.78 0.67 2.14 -1.79 6.35 

17 63.47 -109.82 63.76 -113.96 64.60 -111.86 -0.29 4.15 -1.13 2.04 

18 245.34 -96.23 389.80 -140.80 248.67 -97.52 -144.45 44.57 -3.33 1.29 

19 68.10 -145.97 74.90 -106.65 64.77 -190.08 -6.80 -39.32 3.34 44.11 

20 0.54 -0.18 0.67 -0.24 0.38 -0.41 -0.12 0.06 0.16 0.23 

21 372.26 -112.39 435.99 -132.74 347.38 -104.80 -63.73 20.36 24.88 -7.59 

22 66.87 -70.85 92.23 -74.79 72.02 -71.77 -25.36 3.94 -5.15 0.93 

23 124.28 -406.41 131.56 -428.63 128.38 -421.59 -7.28 22.22 -4.10 15.18 

24 261.73 -797.17 271.11 -826.96 270.16 -822.47 -9.38 29.80 -8.44 25.30 

25 281.55 -293.63 280.44 -291.93 283.63 -292.06 1.11 -1.70 -2.08 -1.57 

26 597.43 -246.28 634.62 -261.09 568.80 -235.91 -37.20 14.81 28.62 -10.37 

27 233.50 -459.44 235.35 -468.00 234.44 -461.38 -1.85 8.56 -0.93 1.93 

28 418.43 -86.45 439.94 -99.73 381.97 -79.25 -21.51 13.29 36.46 -7.20 

29 33.54 -96.60 36.06 -103.49 33.98 -97.92 -2.52 6.89 -0.44 1.32 

30 31.09 -74.71 34.88 -84.88 32.13 -76.78 -3.79 10.17 -1.04 2.07 

31 15.41 -47.62 14.37 -44.58 13.54 -39.47 1.05 -3.03 1.87 -8.15 

32 185.68 -657.42 187.44 -664.96 184.13 -651.61 -1.76 7.55 1.55 -5.81 

33 41.59 -46.47 46.05 -72.21 51.66 -38.58 -4.46 25.74 -10.08 -7.89 

34 6.00 -15.43 33.98 -30.76 0.92 -1.73 -27.98 15.33 5.08 -13.70 

35 411.54 -124.46 396.59 -117.38 411.15 -126.76 14.95 -7.08 0.39 2.30 

36 140.54 -31.50 123.40 -5.22 146.95 -47.74 17.14 -26.28 -6.41 16.24 

37 14.29 -27.88 19.68 -33.38 154.48 -64.56 -5.39 5.50 -140.18 36.67 

38 11.26 -13.05 15.89 -12.08 10.97 -12.02 -4.64 -0.96 0.28 -1.02 

39 29.63 -100.66 27.05 -90.97 30.06 -102.07 2.58 -9.69 -0.43 1.41 

40 72.51 -18.52 84.07 -21.40 74.21 -18.94 -11.56 2.88 -1.71 0.42 

41 214.57 -74.14 201.39 -67.01 219.90 -76.56 13.18 -7.12 -5.33 2.42 

42 40.67 -34.95 41.36 -33.13 41.13 -35.74 -0.69 -1.82 -0.45 0.79 

43 79.00 -37.28 75.05 -33.44 79.11 -38.79 3.95 -3.84 -0.10 1.52 

44 249.43 -51.05 239.63 -49.07 252.60 -51.48 9.80 -1.98 -3.18 0.43 

45 87.11 -24.78 90.60 -26.11 88.71 -25.01 -3.49 1.33 -1.59 0.23 

46 6.78 -3.35 25.71 -9.14 5.83 -2.98 -18.93 5.79 0.94 -0.37 

47 192.07 -46.19 215.81 -58.16 158.90 -37.22 -23.74 11.97 33.17 -8.97 

48 5.89 -15.27 10.65 -26.88 18.74 -42.28 -4.76 11.60 -12.85 27.01 

49 264.98 -84.50 291.35 -94.08 194.63 -61.44 -26.37 9.58 70.35 -23.06 

50 314.57 -110.61 364.20 -128.37 286.10 -100.52 -49.63 17.75 28.47 -10.10 

51 92.35 -267.72 102.21 -292.62 96.52 -279.53 -9.86 24.90 -4.18 11.81 

52 307.64 -117.14 328.52 -125.17 311.52 -118.35 -20.88 8.03 -3.88 1.21 

53 260.30 -415.96 257.65 -407.59 268.63 -440.40 2.65 -8.37 -8.33 24.44 

54 424.37 -222.13 457.30 -236.94 327.30 -195.59 -32.93 14.81 97.07 -26.54 

55 109.01 -204.56 113.61 -224.63 103.35 -179.15 -4.60 20.07 5.66 -25.40 

56 105.05 -39.74 134.41 -46.44 51.94 -23.54 -29.36 6.70 53.10 -16.20 

57 32.41 -105.91 35.44 -114.17 31.80 -103.77 -3.02 8.25 0.61 -2.14 

58 51.08 -113.38 56.51 -121.18 49.23 -110.22 -5.43 7.80 1.85 -3.16 

59 102.68 -33.64 119.26 -39.26 97.54 -31.98 -16.58 5.62 5.14 -1.65 

60 132.71 -401.15 145.73 -434.40 106.57 -325.82 -13.02 33.25 26.15 -75.33 

61 144.14 -54.70 139.15 -81.76 268.73 -85.53 4.98 27.07 -124.59 30.83 

62 3.15 -8.60 13.59 -30.87 17.62 -7.23 -10.43 22.27 -14.47 -1.37 

63 324.54 -178.23 323.53 -174.22 272.85 -151.78 1.01 -4.01 51.69 -26.45 

64 289.55 -120.80 288.92 -106.36 332.13 -227.56 0.63 -14.44 -42.58 106.76 

65 145.21 -479.42 160.71 -521.05 145.81 -483.92 -15.50 41.63 -0.60 4.50 

66 348.71 -318.42 358.88 -327.32 320.50 -315.18 -10.17 8.91 28.21 -3.24 

67 295.75 -509.72 305.76 -553.39 302.36 -524.13 -10.01 43.67 -6.61 14.41 

68 82.76 -243.30 81.65 -242.34 90.27 -257.32 1.11 -0.96 -7.51 14.01 

69 162.16 -68.57 158.10 -77.04 95.57 -28.73 4.06 8.47 66.59 -39.85 

70 141.48 -155.76 147.08 -157.73 148.89 -161.14 -5.61 1.97 -7.41 5.38 
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Table D.5. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during first molar (M1) bite load for the filled, unfilled and jaw joint 

constraint sensitivity tests (see text for more details), and strain differences (Δε1 and 

Δε3) at landmark locations between models. Strain values are in microstrain (μstrain). 

M1 bite Filled Unfilled Jaw Joint Filled-Unfilled Filled-JawJoint 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 3.30 -9.60 3.51 -11.09 2.92 -9.38 -0.22 1.49 0.38 -0.22 

2 11.12 -30.54 21.29 -32.79 10.44 -31.30 -10.16 2.26 0.68 0.76 

3 186.56 -72.97 197.62 -76.98 191.64 -75.13 -11.07 4.01 -5.08 2.16 

4 37.92 -168.81 47.21 -209.65 42.32 -189.06 -9.29 40.84 -4.39 20.25 

5 52.95 -17.22 63.56 -20.83 52.30 -16.97 -10.62 3.61 0.65 -0.25 

6 37.36 -114.16 45.56 -137.41 37.65 -115.13 -8.20 23.25 -0.29 0.98 

7 4.46 -1.81 5.89 -2.38 9.48 -3.78 -1.43 0.57 -5.02 1.97 

8 181.47 -65.45 191.25 -75.80 236.42 -112.27 -9.78 10.35 -54.95 46.82 

9 188.66 -303.31 196.59 -295.41 195.80 -312.49 -7.93 -7.90 -7.13 9.18 

10 39.79 -22.06 43.82 -24.41 38.80 -21.88 -4.03 2.35 0.99 -0.17 

11 48.75 -26.86 52.32 -27.96 48.78 -27.69 -3.56 1.10 -0.03 0.83 

12 2.34 -4.48 1.76 -6.20 2.77 -4.46 0.58 1.72 -0.43 -0.02 

13 21.30 -41.49 22.21 -46.65 21.12 -42.50 -0.92 5.17 0.17 1.01 

14 98.45 -60.77 101.49 -54.35 100.21 -62.03 -3.03 -6.42 -1.76 1.26 

15 132.15 -79.95 142.44 -78.08 136.53 -84.98 -10.29 -1.87 -4.39 5.03 

16 65.29 -247.18 62.58 -239.99 66.47 -252.52 2.70 -7.19 -1.19 5.34 

17 53.59 -107.81 53.81 -111.49 54.87 -110.44 -0.23 3.68 -1.28 2.63 

18 187.22 -72.89 287.65 -103.96 189.77 -73.92 -100.43 31.07 -2.56 1.02 

19 78.87 -155.23 84.48 -114.13 72.94 -197.46 -5.61 -41.11 5.93 42.22 

20 0.54 -0.19 0.67 -0.23 0.37 -0.30 -0.13 0.05 0.17 0.11 

21 402.15 -121.96 466.42 -142.29 377.03 -114.36 -64.26 20.33 25.12 -7.60 

22 62.62 -72.79 85.71 -75.11 66.69 -73.50 -23.09 2.33 -4.07 0.72 

23 122.86 -402.91 130.06 -424.61 126.85 -417.71 -7.20 21.70 -4.00 14.80 

24 198.83 -604.91 201.32 -613.26 206.29 -627.20 -2.49 8.35 -7.46 22.29 

25 282.14 -290.67 281.57 -289.34 284.16 -289.09 0.57 -1.33 -2.02 -1.59 

26 606.46 -249.77 646.28 -265.50 575.40 -238.54 -39.82 15.73 31.06 -11.23 

27 234.15 -465.30 236.26 -475.34 234.58 -465.49 -2.11 10.04 -0.43 0.19 

28 428.07 -86.71 450.69 -99.71 391.19 -79.63 -22.62 12.99 36.88 -7.08 

29 33.22 -95.65 35.50 -101.82 33.60 -96.75 -2.28 6.17 -0.38 1.09 

30 29.31 -68.18 32.70 -77.53 30.37 -70.01 -3.39 9.35 -1.05 1.84 

31 15.48 -48.64 13.96 -45.05 13.67 -40.78 1.51 -3.59 1.80 -7.86 

32 185.35 -656.37 187.00 -663.43 183.75 -649.96 -1.65 7.06 1.61 -6.41 

33 40.16 -51.94 46.24 -81.51 49.03 -40.43 -6.07 29.57 -8.87 -11.51 

34 5.65 -14.24 30.63 -28.48 1.52 -1.66 -24.99 14.24 4.13 -12.58 

35 407.86 -123.33 391.71 -115.82 407.44 -125.66 16.14 -7.51 0.41 2.33 

36 139.60 -28.83 122.56 -1.96 145.92 -45.59 17.03 -26.87 -6.33 16.76 

37 14.77 -23.60 20.32 -29.21 159.06 -65.21 -5.55 5.61 -144.29 41.61 

38 9.99 -14.34 13.79 -12.84 9.65 -13.26 -3.81 -1.50 0.33 -1.08 

39 21.93 -73.66 19.83 -65.81 22.15 -74.30 2.10 -7.85 -0.22 0.64 

40 19.51 -8.24 22.17 -8.92 20.57 -9.26 -2.66 0.68 -1.06 1.02 

41 111.86 -39.29 98.23 -32.18 116.00 -41.33 13.63 -7.11 -4.14 2.04 

42 19.06 -20.21 18.06 -17.69 19.23 -20.87 1.00 -2.51 -0.17 0.66 

43 35.68 -27.43 31.12 -22.15 35.65 -29.70 4.56 -5.28 0.03 2.28 

44 140.04 -27.32 128.78 -25.30 141.40 -27.24 11.27 -2.02 -1.36 -0.08 

45 59.34 -16.32 59.98 -16.71 60.41 -16.48 -0.64 0.38 -1.07 0.15 

46 9.62 -4.79 28.01 -10.07 8.63 -4.38 -18.39 5.28 0.99 -0.42 

47 175.23 -42.16 197.67 -53.03 142.90 -32.77 -22.44 10.87 32.33 -9.39 

48 5.64 -14.61 10.35 -26.13 18.45 -41.41 -4.71 11.52 -12.81 26.79 

49 247.86 -79.38 275.66 -89.06 177.16 -56.18 -27.80 9.68 70.69 -23.19 

50 305.14 -107.55 354.28 -125.24 276.69 -97.46 -49.14 17.69 28.45 -10.09 

51 80.44 -226.45 90.42 -250.28 84.46 -237.60 -9.99 23.84 -4.02 11.16 

52 247.26 -93.30 259.47 -97.73 250.14 -94.25 -12.21 4.43 -2.88 0.95 

53 267.10 -439.85 265.19 -433.92 275.77 -465.98 1.91 -5.93 -8.67 26.13 

54 442.85 -222.80 477.38 -237.54 345.10 -194.95 -34.52 14.74 97.75 -27.85 

55 112.95 -206.98 117.91 -227.35 107.50 -180.99 -4.95 20.37 5.45 -25.98 

56 103.47 -41.06 133.12 -47.65 51.16 -26.37 -29.65 6.59 52.31 -14.69 

57 29.97 -97.80 32.87 -105.67 29.32 -95.51 -2.90 7.87 0.65 -2.28 

58 47.91 -108.29 53.11 -116.31 46.06 -105.03 -5.19 8.02 1.86 -3.26 

59 104.34 -34.13 121.09 -39.78 99.34 -32.43 -16.76 5.65 5.00 -1.70 

60 133.15 -401.87 145.88 -434.35 107.20 -326.89 -12.73 32.47 25.94 -74.99 

61 135.66 -53.23 130.34 -80.84 258.65 -82.05 5.32 27.61 -122.99 28.82 

62 2.89 -7.71 12.34 -27.92 18.61 -7.65 -9.45 20.21 -15.73 -0.07 

63 320.15 -176.01 317.68 -171.50 268.90 -149.93 2.46 -4.50 51.25 -26.08 

64 287.45 -116.74 286.70 -102.45 329.49 -222.60 0.75 -14.29 -42.05 105.86 

65 134.05 -395.60 148.02 -435.66 137.35 -398.48 -13.97 40.06 -3.30 2.88 

66 347.03 -319.17 359.12 -330.30 318.57 -315.26 -12.09 11.14 28.47 -3.90 

67 165.55 -296.48 164.23 -317.84 169.47 -307.39 1.32 21.36 -3.92 10.91 

68 82.94 -241.86 83.81 -244.73 90.26 -255.23 -0.88 2.87 -7.32 13.37 

69 169.16 -83.08 166.32 -92.86 99.32 -33.47 2.84 9.78 69.84 -49.61 

70 98.25 -99.35 103.20 -99.12 105.10 -103.84 -4.95 -0.23 -6.85 4.50 
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Table D.6. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during second molar (M2) bite load for the filled, unfilled and jaw joint 

constraint sensitivity tests (see text for more details), and strain differences (Δε1 and 

Δε3) at landmark locations between models. Strain values are in microstrain (μstrain). 

M2 bite Filled Unfilled Jaw Joint Filled-Unfilled Filled-JawJoint 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 3.44 -5.75 5.16 -7.71 4.24 -6.37 -1.72 1.96 -0.80 0.61 

2 12.34 -18.20 19.75 -24.19 13.93 -20.49 -7.41 6.00 -1.59 2.30 

3 124.32 -49.41 129.83 -51.59 128.23 -51.15 -5.50 2.18 -3.91 1.74 

4 32.13 -133.82 38.76 -166.07 35.14 -151.96 -6.63 32.25 -3.01 18.14 

5 50.56 -16.69 61.82 -20.66 49.79 -16.39 -11.26 3.97 0.77 -0.30 

6 39.46 -120.79 47.85 -144.66 39.94 -122.37 -8.40 23.87 -0.48 1.58 

7 5.73 -2.33 7.08 -2.87 11.03 -4.47 -1.35 0.53 -5.30 2.14 

8 166.41 -66.17 181.37 -78.41 221.64 -118.45 -14.96 12.24 -55.23 52.28 

9 151.09 -209.28 155.99 -206.40 157.86 -217.25 -4.90 -2.89 -6.77 7.96 

10 48.59 -25.97 52.58 -28.21 47.69 -25.74 -3.99 2.25 0.90 -0.22 

11 54.71 -23.63 59.28 -25.32 53.93 -23.49 -4.58 1.69 0.77 -0.14 

12 4.15 -3.67 10.38 -11.44 4.52 -3.63 -6.23 7.77 -0.37 -0.05 

13 6.60 -20.02 7.14 -22.40 6.89 -20.63 -0.54 2.38 -0.29 0.61 

14 25.31 -14.57 27.22 -11.78 26.80 -15.54 -1.91 -2.79 -1.50 0.97 

15 58.67 -36.61 63.46 -36.42 61.63 -39.10 -4.79 -0.20 -2.96 2.49 

16 14.50 -12.23 36.05 -21.83 18.07 -13.28 -21.55 9.59 -3.57 1.05 

17 73.74 -175.11 76.75 -184.47 75.63 -179.26 -3.01 9.36 -1.89 4.15 

18 97.91 -37.51 133.17 -50.22 99.19 -37.93 -35.25 12.71 -1.28 0.42 

19 100.78 -184.85 99.94 -146.07 90.64 -222.09 0.84 -38.77 10.14 37.24 

20 0.60 -0.27 0.66 -0.18 0.38 -0.31 -0.06 -0.09 0.22 0.04 

21 459.14 -140.20 525.02 -160.68 436.41 -133.32 -65.87 20.48 22.73 -6.88 

22 39.24 -101.47 45.14 -94.04 41.00 -99.59 -5.90 -7.43 -1.76 -1.88 

23 122.01 -402.31 128.26 -420.32 126.02 -416.98 -6.25 18.02 -4.01 14.68 

24 147.68 -446.27 147.40 -445.74 153.98 -464.89 0.28 -0.52 -6.30 18.62 

25 286.50 -292.73 286.46 -292.03 288.85 -291.63 0.04 -0.70 -2.35 -1.10 

26 654.20 -267.31 702.81 -286.14 629.34 -258.23 -48.61 18.83 24.86 -9.08 

27 239.17 -489.67 242.08 -503.59 240.63 -493.96 -2.91 13.92 -1.46 4.29 

28 469.36 -91.82 507.65 -108.38 434.63 -85.15 -38.29 16.56 34.72 -6.67 

29 31.43 -90.58 33.05 -94.95 31.83 -91.71 -1.62 4.36 -0.40 1.13 

30 25.41 -51.45 27.65 -58.70 26.33 -53.15 -2.24 7.25 -0.92 1.70 

31 25.63 -79.02 24.45 -80.80 23.87 -71.14 1.18 1.78 1.76 -7.88 

32 186.76 -661.68 187.73 -666.14 185.55 -656.63 -0.97 4.46 1.21 -5.05 

33 42.15 -87.58 54.44 -129.85 40.96 -71.44 -12.29 42.27 1.20 -16.14 

34 5.42 -12.57 24.24 -25.17 4.40 -3.01 -18.83 12.60 1.02 -9.57 

35 404.80 -122.44 385.51 -113.96 405.89 -126.00 19.28 -8.48 -1.09 3.56 

36 134.90 -13.45 119.63 14.74 138.89 -27.68 15.27 -28.19 -3.99 14.23 

37 17.78 -18.32 23.26 -23.92 166.31 -65.16 -5.48 5.60 -148.53 46.84 

38 9.52 -21.72 11.36 -18.40 9.04 -20.69 -1.84 -3.32 0.48 -1.03 

39 11.72 -35.26 10.33 -27.82 12.00 -35.44 1.39 -7.44 -0.28 0.18 

40 8.68 -12.19 10.31 -13.93 9.52 -13.39 -1.63 1.74 -0.84 1.20 

41 56.00 -23.20 45.17 -18.30 58.70 -24.73 10.82 -4.90 -2.70 1.53 

42 6.85 -11.47 5.21 -9.28 7.12 -12.14 1.64 -2.19 -0.27 0.67 

43 13.49 -29.08 9.81 -25.03 14.29 -32.39 3.68 -4.05 -0.80 3.30 

44 51.00 -8.70 39.40 -6.98 50.83 -8.57 11.60 -1.72 0.17 -0.13 

45 31.97 -7.99 30.17 -7.69 32.71 -8.16 1.80 -0.30 -0.74 0.17 

46 6.70 -3.63 20.26 -7.35 5.84 -3.28 -13.56 3.72 0.86 -0.35 

47 166.20 -43.97 187.07 -54.37 132.48 -32.72 -20.87 10.41 33.72 -11.25 

48 5.56 -14.42 10.30 -26.12 18.23 -40.80 -4.73 11.69 -12.67 26.38 

49 208.75 -67.25 236.35 -76.43 137.83 -44.02 -27.60 9.17 70.92 -23.24 

50 307.39 -109.12 356.05 -126.80 279.49 -99.32 -48.67 17.68 27.90 -9.80 

51 59.01 -143.90 70.17 -166.80 62.48 -153.01 -11.16 22.90 -3.47 9.11 

52 191.13 -72.15 195.62 -73.72 192.64 -72.65 -4.49 1.57 -1.51 0.51 

53 273.08 -460.25 272.25 -458.10 282.30 -488.67 0.82 -2.15 -9.22 28.41 

54 454.95 -222.74 490.65 -237.37 358.96 -194.23 -35.71 14.63 95.99 -28.51 

55 116.46 -206.04 121.71 -226.57 111.64 -180.15 -5.24 20.53 4.82 -25.89 

56 94.76 -36.32 123.78 -45.44 42.39 -21.07 -29.02 9.12 52.37 -15.25 

57 25.40 -82.87 28.11 -90.20 24.65 -80.29 -2.71 7.33 0.76 -2.58 

58 43.81 -102.92 48.53 -110.69 41.95 -99.66 -4.72 7.77 1.87 -3.26 

59 125.16 -40.85 142.17 -46.57 120.76 -39.39 -17.01 5.72 4.40 -1.46 

60 129.00 -386.82 141.38 -418.32 103.52 -312.94 -12.38 31.50 25.48 -73.88 

61 137.08 -52.73 130.65 -79.41 258.18 -82.07 6.43 26.68 -121.09 29.34 

62 2.44 -6.15 10.41 -23.35 20.50 -8.41 -7.97 17.20 -18.06 2.26 

63 308.44 -170.71 304.75 -165.78 257.41 -144.87 3.68 -4.93 51.03 -25.84 

64 287.04 -116.32 285.94 -101.08 328.90 -221.99 1.11 -15.24 -41.86 105.67 

65 157.91 -232.07 184.68 -270.20 162.99 -233.03 -26.77 38.13 -5.08 0.96 

66 378.86 -381.79 399.22 -401.72 352.99 -381.68 -20.36 19.93 25.87 -0.12 

67 60.25 -186.83 57.31 -196.75 61.71 -194.71 2.94 9.92 -1.47 7.88 

68 73.98 -201.72 76.18 -204.37 81.29 -214.65 -2.20 2.65 -7.31 12.93 

69 163.40 -86.20 160.94 -97.16 92.95 -35.75 2.45 10.95 70.45 -50.45 

70 91.52 -68.62 98.79 -68.08 97.99 -72.33 -7.28 -0.54 -6.48 3.71 

 



281 

Table D.7. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during third molar (M3) bite load for the filled, unfilled and jaw joint 

constraint sensitivity tests (see text for more details), and strain differences (Δε1 and 

Δε3) at landmark locations between models. Strain values are in microstrain (μstrain). 

M3 bite Filled Unfilled Jaw Joint Filled-Unfilled Filled-JawJoint 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 11.68 -11.03 17.12 -15.06 12.52 -11.93 -5.44 4.02 -0.85 0.89 

2 35.16 -30.62 55.59 -42.85 37.13 -32.99 -20.42 12.23 -1.97 2.36 

3 43.75 -19.27 45.69 -20.49 46.11 -20.36 -1.94 1.22 -2.36 1.08 

4 39.85 -91.84 48.38 -113.83 39.90 -105.95 -8.53 21.98 -0.05 14.11 

5 47.12 -16.06 58.90 -20.41 46.40 -15.74 -11.78 4.34 0.72 -0.33 

6 42.49 -130.32 51.12 -154.93 43.17 -132.48 -8.63 24.61 -0.68 2.16 

7 7.70 -3.13 8.88 -3.60 13.26 -5.30 -1.18 0.46 -5.56 2.16 

8 152.90 -74.63 178.21 -92.09 205.38 -131.24 -25.31 17.47 -52.48 56.61 

9 58.65 -115.08 62.79 -109.89 63.07 -121.11 -4.15 -5.19 -4.42 6.03 

10 59.70 -31.02 63.65 -33.08 58.97 -30.88 -3.94 2.06 0.73 -0.14 

11 16.56 -7.27 25.16 -10.60 15.55 -6.80 -8.60 3.33 1.01 -0.48 

12 9.89 -5.43 21.83 -17.59 10.36 -5.48 -11.94 12.15 -0.47 0.05 

13 2.06 -5.84 1.69 -4.72 2.41 -6.45 0.37 -1.12 -0.35 0.62 

14 17.18 -10.76 23.90 -15.21 18.15 -11.37 -6.72 4.45 -0.98 0.62 

15 20.86 -17.22 20.32 -15.68 22.59 -18.83 0.54 -1.54 -1.72 1.62 

16 29.74 -9.82 33.85 -12.87 32.32 -10.56 -4.11 3.06 -2.58 0.74 

17 17.59 -21.43 14.39 -14.02 17.47 -20.67 3.20 -7.42 0.12 -0.77 

18 109.64 -157.89 130.65 -327.45 111.57 -162.11 -21.01 169.56 -1.93 4.22 

19 126.07 -215.64 111.28 -185.42 110.58 -248.02 14.79 -30.22 15.49 32.38 

20 0.70 -0.44 0.67 -0.30 0.46 -0.39 0.03 -0.14 0.24 -0.04 

21 545.72 -167.93 609.37 -187.18 525.61 -161.93 -63.65 19.25 20.11 -6.00 

22 45.66 -170.57 45.68 -169.08 45.35 -167.20 -0.01 -1.49 0.31 -3.37 

23 118.73 -395.60 122.90 -406.75 122.50 -409.92 -4.17 11.15 -3.78 14.32 

24 75.16 -221.31 72.37 -212.71 79.86 -234.95 2.80 -8.61 -4.69 13.64 

25 284.74 -287.28 283.40 -286.21 287.12 -285.98 1.34 -1.07 -2.38 -1.31 

26 710.93 -288.56 770.51 -311.29 691.18 -281.39 -59.58 22.74 19.75 -7.17 

27 244.29 -511.53 248.20 -528.45 246.54 -519.37 -3.91 16.92 -2.25 7.84 

28 542.86 -115.59 596.54 -125.55 510.57 -111.18 -53.69 9.96 32.28 -4.42 

29 29.42 -84.66 29.84 -86.11 29.86 -85.62 -0.43 1.45 -0.44 0.96 

30 24.15 -31.88 23.98 -35.16 25.26 -33.31 0.17 3.27 -1.11 1.42 

31 38.89 -114.16 40.82 -123.42 37.39 -106.64 -1.93 9.26 1.49 -7.52 

32 190.02 -673.49 191.38 -679.26 189.20 -670.29 -1.36 5.77 0.82 -3.21 

33 53.91 -137.63 71.54 -193.27 50.81 -124.03 -17.63 55.64 3.10 -13.60 

34 5.77 -10.54 15.74 -20.83 8.67 -4.91 -9.97 10.29 -2.90 -5.63 

35 408.88 -123.67 390.80 -115.56 411.92 -128.61 18.08 -8.10 -3.04 4.94 

36 130.86 2.98 119.62 3.65 132.74 -6.84 11.25 -0.67 -1.88 9.82 

37 25.63 -13.70 28.95 -17.70 177.00 -65.05 -3.32 4.00 -151.37 51.35 

38 11.33 -32.97 11.46 -27.99 10.98 -32.37 -0.13 -4.98 0.35 -0.60 

39 14.14 -8.60 20.97 -9.76 15.20 -8.96 -6.83 1.16 -1.06 0.36 

40 4.28 -17.33 4.83 -20.60 4.63 -18.62 -0.55 3.27 -0.35 1.29 

41 10.75 -8.91 3.83 -9.24 12.28 -10.05 6.92 0.33 -1.53 1.15 

42 3.88 -7.82 4.22 -9.71 4.38 -8.66 -0.34 1.89 -0.50 0.84 

43 5.83 -22.11 7.12 -23.45 6.63 -25.53 -1.29 1.34 -0.80 3.42 

44 6.53 -19.92 8.96 -34.15 7.45 -22.81 -2.43 14.24 -0.92 2.89 

45 8.79 -3.39 7.41 -5.32 9.44 -4.09 1.39 1.93 -0.65 0.70 

46 6.74 -3.75 17.39 -6.56 5.86 -3.44 -10.64 2.81 0.88 -0.32 

47 162.99 -46.34 179.44 -56.43 129.21 -35.09 -16.46 10.09 33.77 -11.25 

48 5.37 -13.96 10.12 -25.86 17.84 -39.72 -4.75 11.89 -12.47 25.76 

49 163.65 -53.30 195.15 -63.28 92.55 -30.01 -31.50 9.98 71.09 -23.29 

50 309.54 -110.85 354.96 -127.50 282.65 -101.49 -45.42 16.65 26.89 -9.37 

51 50.78 -53.18 61.31 -73.54 52.54 -58.77 -10.54 20.36 -1.76 5.59 

52 104.32 -37.73 105.82 -38.37 104.53 -37.98 -1.50 0.64 -0.21 0.24 

53 280.32 -485.70 280.96 -489.06 290.21 -516.70 -0.64 3.36 -9.88 31.00 

54 474.93 -223.54 512.54 -238.10 381.57 -194.44 -37.60 14.55 93.36 -29.10 

55 121.57 -207.84 127.18 -228.78 117.73 -183.08 -5.61 20.94 3.84 -24.76 

56 84.98 -33.34 116.13 -45.13 34.16 -20.06 -31.15 11.79 50.82 -13.28 

57 19.66 -63.84 22.16 -70.48 18.78 -60.95 -2.50 6.65 0.88 -2.88 

58 39.27 -96.79 43.27 -103.83 37.53 -93.68 -4.00 7.04 1.74 -3.11 

59 150.10 -48.84 165.84 -54.09 146.38 -47.64 -15.73 5.25 3.72 -1.20 

60 125.03 -372.07 137.01 -402.59 100.24 -300.02 -11.98 30.52 24.78 -72.04 

61 135.15 -51.58 127.50 -77.47 253.26 -80.56 7.65 25.89 -118.11 28.98 

62 2.27 -4.38 7.61 -16.82 23.27 -9.54 -5.35 12.44 -21.00 5.16 

63 295.52 -164.79 290.46 -159.40 245.15 -139.35 5.06 -5.39 50.37 -25.44 

64 285.65 -113.88 284.10 -97.61 327.03 -218.83 1.55 -16.27 -41.37 104.94 

65 188.12 -70.84 224.25 -105.02 196.68 -71.13 -36.13 34.18 -8.56 0.29 

66 417.75 -453.07 454.08 -493.24 394.51 -456.38 -36.32 40.17 23.25 3.31 

67 28.80 -100.55 29.57 -106.27 30.52 -105.71 -0.77 5.72 -1.72 5.16 

68 59.37 -144.47 64.29 -151.32 66.55 -156.56 -4.92 6.85 -7.18 12.10 

69 162.43 -96.74 162.33 -110.29 91.42 -46.09 0.10 13.54 71.01 -50.65 

70 76.10 -32.37 84.20 -30.43 82.21 -35.16 -8.10 -1.94 -6.11 2.79 
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Table D.8. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during first incisor (I1) bite load for the varying muscle force load cases 

sensitivity tests (see text for more details), and strain differences (Δε1 and Δε3) at 

landmark locations between models. Strain values are in microstrain (μstrain). 

I1 bite ACSA Load Case 1 Load Case 2 ACSA-LoadCase1 ACSA-LoadCase2 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 646.29 -552.11 904.02 -774.40 761.32 -652.19 -257.73 222.29 -115.03 100.08 

2 208.52 -109.23 380.22 -174.43 316.58 -147.04 -171.71 65.20 -108.06 37.81 

3 266.00 -96.64 413.23 -148.98 354.15 -127.57 -147.23 52.34 -88.15 30.93 

4 52.97 -235.65 95.38 -424.58 81.65 -363.76 -42.41 188.93 -28.68 128.11 

5 59.08 -18.98 99.55 -31.96 80.41 -25.84 -40.46 12.98 -21.33 6.86 

6 32.80 -99.76 41.71 -125.45 42.44 -127.31 -8.91 25.68 -9.64 27.55 

7 2.14 -0.85 0.93 -2.31 0.83 -2.09 1.21 1.46 1.30 1.24 

8 217.62 -70.22 368.08 -129.23 336.70 -119.67 -150.46 59.01 -119.08 49.45 

9 153.01 -324.59 235.15 -332.17 198.98 -232.13 -82.14 7.58 -45.97 -92.45 

10 19.85 -14.72 37.71 -23.33 34.61 -19.41 -17.86 8.61 -14.75 4.70 

11 167.55 -489.47 239.09 -699.25 202.02 -591.04 -71.55 209.78 -34.47 101.56 

12 265.55 -158.28 503.32 -356.78 422.70 -299.40 -237.78 198.50 -157.16 141.12 

13 23.13 -51.89 35.51 -74.61 31.39 -63.21 -12.38 22.71 -8.26 11.31 

14 222.93 -117.64 314.86 -168.25 263.87 -142.42 -91.92 50.61 -40.94 24.78 

15 149.83 -97.46 209.91 -138.98 174.84 -117.29 -60.08 41.51 -25.01 19.82 

16 110.40 -53.01 167.32 -77.16 141.95 -64.38 -56.91 24.15 -31.54 11.37 

17 102.17 -42.26 145.70 -59.90 120.43 -49.47 -43.54 17.65 -18.26 7.21 

18 161.90 -62.75 365.80 -130.49 294.25 -105.07 -203.90 67.74 -132.34 42.32 

19 44.85 -94.33 88.90 -110.18 87.44 -111.28 -44.05 15.85 -42.58 16.95 

20 0.79 -0.14 0.89 -0.54 0.80 -0.29 -0.11 0.40 -0.02 0.14 

21 295.63 -88.27 347.19 -104.78 210.92 -63.48 -51.55 16.51 84.71 -24.79 

22 224.28 -101.30 201.21 -102.97 66.00 -54.18 23.07 1.67 158.28 -47.12 

23 115.10 -377.12 172.79 -567.72 149.58 -492.05 -57.69 190.60 -34.48 114.93 

24 125.98 -386.48 183.72 -561.61 157.63 -482.06 -57.73 175.13 -31.65 95.57 

25 260.30 -265.86 235.53 -261.81 107.83 -143.75 24.77 -4.05 152.47 -122.11 

26 476.56 -203.76 409.90 -178.83 166.67 -74.78 66.66 -24.93 309.89 -128.98 

27 220.30 -391.01 218.51 -337.69 132.94 -151.34 1.79 -53.32 87.35 -239.66 

28 342.56 -76.96 298.73 -70.57 145.49 -32.86 43.83 -6.39 197.07 -44.11 

29 37.35 -107.10 54.10 -156.14 43.46 -126.12 -16.75 49.04 -6.12 19.02 

30 39.68 -103.24 57.50 -154.25 45.03 -124.56 -17.82 51.01 -5.35 21.32 

31 44.71 -18.17 43.69 -33.56 22.51 -36.62 1.02 15.38 22.20 18.45 

32 183.21 -647.35 187.97 -662.71 104.47 -363.31 -4.76 15.36 78.74 -284.03 

33 126.14 -42.46 182.81 -59.40 126.29 -40.07 -56.68 16.95 -0.16 -2.39 

34 6.72 -17.70 68.97 -52.96 65.47 -50.13 -62.24 35.26 -58.74 32.43 

35 427.56 -134.12 453.07 -147.13 279.10 -102.39 -25.51 13.02 148.46 -31.72 

36 161.31 -74.62 143.91 -59.88 67.85 -24.27 17.41 -14.74 93.46 -50.35 

37 13.83 -38.93 33.35 -101.11 32.00 -96.76 -19.52 62.19 -18.16 57.84 

38 26.76 -8.52 48.71 -13.89 42.96 -11.99 -21.95 5.37 -16.20 3.47 

39 143.87 -501.44 201.29 -701.32 169.11 -589.13 -57.42 199.88 -25.24 87.69 

40 227.23 -59.49 348.61 -87.26 292.92 -73.48 -121.38 27.77 -65.70 13.99 

41 127.80 -49.22 170.07 -70.91 145.56 -59.29 -42.27 21.69 -17.76 10.07 

42 128.08 -58.33 189.22 -85.61 158.41 -71.53 -61.14 27.28 -30.33 13.20 

43 400.62 -97.65 552.47 -135.27 456.30 -111.56 -151.85 37.62 -55.69 13.91 

44 333.28 -85.83 472.33 -119.72 399.75 -100.01 -139.05 33.88 -66.48 14.18 

45 144.40 -47.59 209.46 -68.59 175.18 -57.38 -65.05 21.00 -30.78 9.79 

46 89.11 -42.87 185.65 -69.51 145.05 -54.31 -96.54 26.64 -55.94 11.44 

47 146.58 -36.38 176.89 -64.10 124.06 -46.34 -30.31 27.71 22.51 9.95 

48 5.16 -13.32 12.24 -30.31 9.90 -24.00 -7.08 16.99 -4.74 10.68 

49 341.26 -108.51 405.40 -131.95 257.21 -84.52 -64.14 23.44 84.05 -23.99 

50 254.82 -89.60 301.73 -106.12 183.33 -64.31 -46.91 16.51 71.49 -25.29 

51 124.96 -385.14 190.65 -583.75 166.27 -504.89 -65.69 198.60 -41.31 119.75 

52 211.00 -230.27 340.51 -348.52 291.26 -299.29 -129.51 118.25 -80.27 69.02 

53 270.84 -455.38 245.31 -382.70 123.41 -162.57 25.53 -72.69 147.43 -292.81 

54 465.01 -225.92 397.69 -223.35 146.74 -114.74 67.32 -2.57 318.26 -111.18 

55 114.54 -222.35 98.94 -226.14 76.61 -126.37 15.61 3.79 37.93 -95.97 

56 149.94 -96.57 176.71 -97.95 90.78 -73.66 -26.78 1.37 59.15 -22.91 

57 38.23 -124.15 55.50 -177.85 45.09 -143.87 -17.27 53.70 -6.86 19.72 

58 53.52 -111.50 76.16 -165.18 59.48 -137.34 -22.63 53.68 -5.96 25.84 

59 25.74 -8.83 18.90 -14.58 15.76 -34.41 6.84 5.75 9.98 25.58 

60 150.67 -462.22 153.70 -469.53 81.06 -254.28 -3.03 7.30 69.61 -207.95 

61 103.40 -52.50 135.66 -80.67 87.27 -42.42 -32.26 28.17 16.13 -10.09 

62 4.22 -11.43 26.36 -61.45 24.67 -57.48 -22.14 50.02 -20.45 46.05 

63 350.48 -188.64 358.15 -188.94 213.25 -113.38 -7.67 0.30 137.23 -75.26 

64 282.42 -107.88 277.60 -102.12 139.67 -51.32 4.83 -5.75 142.76 -56.56 

65 209.70 -573.74 320.89 -860.16 271.97 -730.51 -111.19 286.41 -62.26 156.76 

66 248.95 -158.21 293.76 -169.74 220.15 -109.06 -44.81 11.54 28.80 -49.14 

67 46.07 -178.52 76.57 -271.91 67.49 -230.02 -30.50 93.38 -21.42 51.50 

68 184.64 -562.04 268.80 -821.91 229.12 -701.33 -84.16 259.87 -44.48 139.29 

69 225.95 -133.85 257.57 -133.79 185.53 -78.64 -31.62 -0.05 40.42 -55.21 

70 53.91 -117.58 83.03 -165.85 72.40 -142.02 -29.12 48.27 -18.49 24.45 
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Table D.9. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during second incisor (I2) bite load for the varying muscle force load cases 

sensitivity tests (see text for more details), and strain differences (Δε1 and Δε3) at 

landmark locations between models. Strain values are in microstrain (μstrain). 

I2 bite ACSA Load Case 1 Load Case 2 ACSA-LoadCase1 ACSA-LoadCase2 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 147.64 -397.31 227.14 -580.67 191.36 -489.37 -79.50 183.37 -43.72 92.07 

2 273.62 -211.46 493.04 -353.31 413.07 -299.22 -219.42 141.86 -139.45 87.76 

3 272.14 -100.94 421.29 -154.89 360.91 -132.52 -149.15 53.94 -88.77 31.58 

4 51.87 -231.54 93.65 -417.79 80.21 -358.05 -41.77 186.25 -28.33 126.51 

5 59.19 -19.01 99.72 -32.09 80.57 -25.95 -40.53 13.08 -21.38 6.94 

6 33.28 -101.32 42.46 -127.89 43.06 -129.37 -9.18 26.57 -9.78 28.05 

7 2.17 -0.88 0.88 -2.26 0.81 -2.05 1.29 1.38 1.36 1.17 

8 218.27 -71.04 368.14 -130.95 336.74 -121.14 -149.87 59.91 -118.47 50.10 

9 160.63 -337.63 247.44 -353.91 210.02 -251.12 -86.81 16.29 -49.39 -86.51 

10 23.75 -15.70 43.39 -25.08 39.63 -21.18 -19.64 9.39 -15.88 5.48 

11 184.50 -547.32 265.46 -788.57 224.21 -666.25 -80.96 241.26 -39.71 118.93 

12 797.07 -523.21 1311.83 -984.93 1103.57 -828.43 -514.76 461.72 -306.49 305.22 

13 12.79 -33.16 20.40 -50.42 18.12 -42.56 -7.61 17.26 -5.33 9.40 

14 222.47 -122.54 318.11 -175.18 266.40 -148.03 -95.64 52.65 -43.92 25.49 

15 160.55 -105.55 226.11 -150.79 187.38 -126.48 -65.56 45.25 -26.83 20.94 

16 51.77 -35.72 85.75 -53.27 73.27 -44.27 -33.98 17.55 -21.50 8.54 

17 96.08 -42.40 134.58 -58.28 111.04 -48.01 -38.50 15.88 -14.96 5.60 

18 196.05 -76.23 438.71 -156.84 355.64 -127.26 -242.66 80.61 -159.59 51.03 

19 47.63 -113.45 86.78 -130.65 85.64 -129.39 -39.15 17.19 -38.01 15.94 

20 0.73 -0.14 0.82 -0.47 0.75 -0.25 -0.09 0.33 -0.02 0.11 

21 310.33 -92.77 374.34 -113.21 233.74 -70.59 -64.01 20.45 76.59 -22.17 

22 181.80 -90.14 144.75 -91.15 38.06 -64.56 37.05 1.00 143.74 -25.58 

23 118.82 -388.54 178.35 -584.25 154.25 -506.01 -59.53 195.72 -35.43 117.48 

24 188.81 -581.47 274.92 -846.95 234.43 -722.34 -86.11 265.48 -45.62 140.87 

25 264.10 -272.91 241.32 -271.00 112.94 -150.39 22.78 -1.91 151.15 -122.52 

26 501.67 -212.33 447.47 -191.41 198.12 -85.17 54.20 -20.93 303.55 -127.16 

27 223.50 -405.38 220.31 -355.43 129.42 -161.39 3.19 -49.95 94.09 -243.99 

28 367.77 -81.13 343.33 -80.39 184.92 -41.85 24.43 -0.74 182.85 -39.27 

29 36.86 -105.85 53.38 -154.31 42.85 -124.55 -16.52 48.46 -6.00 18.70 

30 38.30 -98.67 55.52 -148.22 43.27 -119.39 -17.22 49.55 -4.97 20.72 

31 25.01 -12.70 25.23 -36.58 21.30 -53.53 -0.22 23.88 3.71 40.83 

32 184.39 -651.78 188.60 -665.08 105.00 -365.22 -4.22 13.30 79.38 -286.57 

33 101.60 -36.78 143.75 -49.15 92.19 -29.66 -42.16 12.37 9.41 -7.13 

34 6.72 -17.69 67.24 -52.86 63.99 -50.03 -60.52 35.17 -57.28 32.34 

35 426.10 -131.93 446.05 -140.73 271.22 -94.65 -19.94 8.80 154.88 -37.28 

36 155.48 -64.63 135.42 -45.67 64.02 -12.62 20.06 -18.96 91.46 -52.00 

37 13.97 -38.42 33.10 -100.26 31.76 -96.03 -19.14 61.84 -17.79 57.61 

38 22.44 -8.30 42.28 -12.64 37.20 -10.55 -19.84 4.34 -14.76 2.26 

39 116.57 -407.60 160.07 -559.54 134.39 -469.70 -43.49 151.94 -17.81 62.10 

40 241.29 -72.36 353.23 -110.26 297.30 -92.91 -111.94 37.90 -56.01 20.54 

41 268.20 -41.23 364.47 -58.79 309.79 -49.06 -96.27 17.56 -41.59 7.83 

42 123.71 -61.47 181.88 -88.59 152.45 -74.88 -58.17 27.12 -28.74 13.41 

43 349.71 -87.06 476.29 -118.55 392.81 -98.32 -126.58 31.49 -43.10 11.26 

44 409.61 -97.19 574.98 -134.63 486.68 -112.90 -165.37 37.44 -77.07 15.71 

45 152.04 -48.15 221.76 -70.05 185.59 -58.60 -69.71 21.91 -33.55 10.45 

46 62.40 -30.01 132.37 -49.06 100.20 -37.09 -69.97 19.05 -37.80 7.09 

47 169.13 -40.76 212.06 -71.25 151.36 -52.18 -42.93 30.49 17.78 11.42 

48 5.49 -14.19 12.83 -31.93 10.40 -25.37 -7.34 17.74 -4.92 11.18 

49 331.08 -105.17 384.40 -124.94 239.57 -78.61 -53.32 19.77 91.51 -26.56 

50 276.13 -96.76 334.72 -116.85 210.90 -72.94 -58.59 20.09 65.23 -23.82 

51 121.60 -372.06 186.45 -565.58 162.78 -489.57 -64.85 193.52 -41.18 117.52 

52 250.05 -147.65 400.49 -229.06 340.73 -197.64 -150.44 81.42 -90.68 50.00 

53 264.36 -432.23 235.67 -351.65 117.61 -142.85 28.69 -80.58 146.75 -289.38 

54 444.13 -224.23 369.68 -223.53 128.95 -120.14 74.45 -0.70 315.18 -104.09 

55 111.18 -216.52 96.89 -221.75 84.67 -125.46 14.29 5.23 26.51 -91.07 

56 138.81 -78.82 156.10 -74.41 71.80 -51.78 -17.29 -4.41 67.00 -27.04 

57 37.99 -123.68 55.19 -177.22 44.81 -143.31 -17.20 53.54 -6.82 19.64 

58 54.70 -115.08 77.87 -169.71 61.00 -141.24 -23.18 54.64 -6.30 26.16 

59 45.59 -15.10 39.94 -14.63 16.38 -17.03 5.66 -0.47 29.22 1.93 

60 145.71 -445.86 147.14 -447.79 75.56 -236.25 -1.42 1.93 70.15 -209.62 

61 117.51 -52.86 157.51 -81.97 107.55 -45.46 -40.00 29.11 9.96 -7.40 

62 4.10 -11.17 26.27 -61.21 24.60 -57.31 -22.17 50.04 -20.50 46.15 

63 345.79 -186.96 354.01 -187.73 210.52 -113.25 -8.23 0.77 135.27 -73.71 

64 285.14 -112.32 281.39 -107.69 142.55 -54.57 3.75 -4.63 142.59 -57.75 

65 223.38 -612.74 343.68 -922.49 291.15 -782.96 -120.30 309.75 -67.76 170.22 

66 274.91 -193.37 330.31 -216.18 248.73 -145.90 -55.40 22.80 26.18 -47.47 

67 131.93 -285.57 174.72 -434.65 140.37 -367.70 -42.78 149.08 -8.43 82.12 

68 159.67 -486.77 229.99 -707.46 196.45 -605.14 -70.32 220.70 -36.78 118.38 

69 205.31 -107.54 229.53 -99.17 166.44 -54.02 -24.21 -8.37 38.88 -53.53 

70 63.28 -156.18 81.98 -224.17 65.72 -192.11 -18.69 67.99 -2.44 35.92 
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Table D.10. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first premolar (P3) bite load for the varying muscle force load 

cases sensitivity tests (see text for more details), and strain differences (Δε1 and Δε3) at 

landmark locations between models. Strain values are in microstrain (μstrain). 

P3 bite ACSA Load Case 1 Load Case 2 ACSA-LoadCase1 ACSA-LoadCase2 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 24.92 -37.60 40.13 -61.51 33.91 -52.29 -15.21 23.92 -8.99 14.69 

2 73.76 -147.59 124.17 -236.93 104.51 -203.16 -50.41 89.34 -30.75 55.57 

3 232.67 -90.58 354.70 -136.85 304.80 -117.29 -122.03 46.27 -72.13 26.71 

4 44.21 -197.99 80.84 -361.33 69.49 -310.75 -36.63 163.34 -25.28 112.76 

5 55.72 -18.02 95.27 -31.04 76.89 -25.13 -39.56 13.01 -21.17 7.10 

6 35.72 -109.04 46.25 -139.90 46.26 -139.46 -10.53 30.86 -10.53 30.43 

7 3.38 -1.38 0.54 -0.85 0.47 -0.83 2.84 -0.53 2.91 -0.55 

8 199.47 -68.40 341.91 -127.77 314.52 -118.34 -142.44 59.36 -115.05 49.94 

9 190.23 -351.20 291.35 -399.20 250.65 -292.74 -101.12 48.00 -60.42 -58.47 

10 34.46 -19.52 58.26 -30.77 52.45 -26.32 -23.79 11.25 -17.98 6.80 

11 73.16 -209.72 108.00 -309.54 91.65 -262.87 -34.83 99.82 -18.49 53.15 

12 48.73 -44.97 113.72 -105.16 96.53 -89.44 -64.99 60.19 -47.79 44.47 

13 246.69 -658.09 344.03 -920.93 289.19 -773.57 -97.34 262.84 -42.50 115.48 

14 423.89 -966.92 578.46 -1318.09 485.93 -1109.59 -154.57 351.17 -62.04 142.67 

15 322.15 -459.34 444.17 -636.02 369.89 -533.76 -122.02 176.68 -47.74 74.42 

16 66.61 -244.02 91.30 -335.54 77.41 -281.34 -24.68 91.51 -10.79 37.31 

17 54.81 -71.97 72.14 -101.78 59.85 -85.89 -17.33 29.81 -5.04 13.92 

18 236.48 -92.54 501.61 -180.62 408.56 -147.28 -265.13 88.08 -172.08 54.74 

19 62.25 -140.55 107.74 -170.78 103.39 -164.43 -45.49 30.23 -41.14 23.88 

20 0.55 -0.16 0.64 -0.29 0.57 -0.19 -0.09 0.12 -0.02 0.03 

21 359.58 -108.33 454.10 -138.07 300.90 -91.48 -94.51 29.74 58.68 -16.85 

22 87.29 -70.59 50.31 -106.31 44.64 -163.66 36.98 35.72 42.66 93.07 

23 123.35 -403.06 185.40 -604.94 160.14 -523.44 -62.05 201.88 -36.80 120.39 

24 262.76 -801.91 380.92 -1164.80 323.56 -989.72 -118.16 362.89 -60.80 187.81 

25 277.64 -289.48 261.91 -291.62 129.38 -164.03 15.73 2.14 148.26 -125.45 

26 576.89 -238.89 563.35 -232.09 296.21 -119.92 13.54 -6.81 280.67 -118.97 

27 231.35 -448.01 223.28 -410.04 117.81 -193.98 8.07 -37.97 113.55 -254.03 

28 411.10 -86.08 432.90 -95.89 265.50 -59.53 -21.81 9.81 145.60 -26.55 

29 34.31 -98.78 49.36 -142.95 39.47 -115.02 -15.05 44.17 -5.16 16.23 

30 32.62 -80.10 46.74 -121.60 35.67 -96.77 -14.12 41.50 -3.05 16.68 

31 12.33 -34.70 28.81 -90.52 33.37 -110.22 -16.48 55.82 -21.04 75.52 

32 185.44 -656.35 186.73 -659.51 103.39 -360.22 -1.29 3.16 82.05 -296.12 

33 47.79 -37.95 53.02 -45.19 21.26 -30.80 -5.24 7.23 26.53 -7.15 

34 6.13 -15.91 56.83 -48.17 55.16 -46.00 -50.71 32.26 -49.03 30.09 

35 414.50 -125.60 413.67 -122.51 239.20 -72.73 0.83 -3.09 175.30 -52.87 

36 143.07 -38.22 120.87 -7.97 60.66 -8.54 22.20 -30.25 82.41 -29.67 

37 13.88 -29.89 29.39 -86.32 28.26 -84.08 -15.52 56.43 -14.38 54.19 

38 12.59 -11.06 24.31 -11.34 20.47 -7.62 -11.71 0.28 -7.88 -3.44 

39 37.21 -128.30 47.49 -163.10 39.59 -135.97 -10.28 34.80 -2.38 7.68 

40 81.12 -21.51 127.59 -34.37 107.73 -28.99 -46.47 12.86 -26.61 7.47 

41 236.85 -75.35 311.83 -96.16 265.48 -82.93 -74.99 20.82 -28.63 7.59 

42 50.53 -38.78 71.90 -52.85 60.39 -45.34 -21.37 14.07 -9.87 6.56 

43 108.15 -36.04 138.68 -48.94 112.93 -43.83 -30.53 12.90 -4.79 7.79 

44 289.04 -61.07 391.55 -81.39 333.03 -68.43 -102.51 20.32 -43.99 7.36 

45 99.21 -28.92 141.48 -41.38 118.17 -34.44 -42.28 12.45 -18.97 5.52 

46 12.46 -5.99 28.63 -10.17 12.88 -4.65 -16.17 4.18 -0.42 -1.34 

47 192.07 -45.16 252.55 -76.89 187.80 -58.45 -60.48 31.73 4.27 13.29 

48 5.84 -15.11 13.54 -33.98 10.99 -27.07 -7.70 18.87 -5.15 11.96 

49 280.86 -89.48 299.65 -96.95 168.64 -55.13 -18.79 7.47 112.22 -34.35 

50 309.20 -108.51 387.19 -135.91 255.05 -89.66 -77.99 27.40 54.15 -18.84 

51 99.35 -292.82 156.47 -453.59 137.73 -395.39 -57.13 160.76 -38.38 102.57 

52 311.10 -117.41 462.31 -173.25 389.63 -145.33 -151.21 55.84 -78.53 27.92 

53 259.98 -415.41 227.72 -329.06 103.25 -124.31 32.26 -86.35 156.74 -291.10 

54 425.95 -222.53 346.62 -223.77 115.99 -126.14 79.33 1.24 309.96 -96.40 

55 109.00 -206.69 92.69 -209.52 83.40 -117.66 16.30 2.83 25.60 -89.03 

56 110.90 -44.72 111.10 -35.75 34.35 -14.50 -0.20 -8.97 76.55 -30.22 

57 33.85 -110.51 49.19 -158.29 39.76 -127.41 -15.33 47.79 -5.91 16.90 

58 52.18 -114.38 74.57 -168.64 58.93 -141.09 -22.39 54.26 -6.74 26.71 

59 91.93 -30.13 105.58 -35.14 58.92 -19.88 -13.66 5.01 33.00 -10.25 

60 135.23 -409.95 132.61 -397.81 63.49 -194.80 2.63 -12.15 71.75 -215.15 

61 139.67 -54.32 190.59 -85.00 137.99 -50.91 -50.92 30.68 1.68 -3.41 

62 3.35 -9.14 23.47 -54.56 22.24 -51.73 -20.12 45.42 -18.89 42.58 

63 329.22 -180.21 332.62 -179.34 194.25 -108.08 -3.40 -0.87 134.98 -72.13 

64 288.86 -119.34 286.62 -117.27 147.02 -62.63 2.24 -2.06 141.84 -56.71 

65 170.98 -530.47 265.03 -805.30 224.94 -684.97 -94.05 274.82 -53.96 154.49 

66 333.81 -289.24 414.40 -344.55 316.15 -250.72 -80.59 55.31 17.66 -38.52 

67 360.85 -539.38 506.75 -815.98 422.93 -691.80 -145.90 276.60 -62.07 152.41 

68 90.40 -271.88 128.52 -392.83 111.02 -340.93 -38.12 120.94 -20.61 69.05 

69 169.17 -73.68 178.74 -54.91 133.30 -40.69 -9.57 -18.76 35.87 -32.99 

70 136.65 -157.82 189.21 -224.44 155.87 -192.43 -52.56 66.62 -19.22 34.61 
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Table D.11. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second premolar (P4) bite load for the varying muscle force load 

cases sensitivity tests (see text for more details), and strain differences (Δε1 and Δε3) at 

landmark locations between models. Strain values are in microstrain (μstrain). 

P4 bite ACSA Load Case 1 Load Case 2 ACSA-LoadCase1 ACSA-LoadCase2 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 18.07 -31.83 29.40 -52.27 24.88 -44.51 -11.33 20.43 -6.81 12.68 

2 55.65 -136.71 92.27 -222.47 77.98 -191.29 -36.61 85.76 -22.33 54.58 

3 216.65 -85.15 329.56 -128.40 283.64 -110.17 -112.91 43.24 -67.00 25.02 

4 42.09 -188.24 77.15 -344.46 66.38 -296.60 -35.06 156.22 -24.29 108.36 

5 54.81 -17.79 94.48 -30.95 76.23 -25.07 -39.67 13.16 -21.42 7.28 

6 36.39 -111.16 47.26 -143.10 47.10 -142.15 -10.87 31.94 -10.72 31.00 

7 3.72 -1.52 0.60 -0.57 0.50 -0.57 3.11 -0.95 3.22 -0.95 

8 194.83 -68.22 335.78 -127.47 309.21 -117.96 -140.96 59.25 -114.38 49.74 

9 197.41 -335.68 301.35 -386.92 260.04 -283.31 -103.94 51.23 -62.63 -52.38 

10 37.57 -20.79 62.62 -32.59 56.17 -27.92 -25.06 11.80 -18.61 7.13 

11 58.11 -142.49 86.59 -213.60 73.59 -182.06 -28.47 71.11 -15.48 39.57 

12 42.27 -38.65 97.71 -89.19 83.10 -76.04 -55.44 50.54 -40.84 37.39 

13 50.70 -116.72 75.81 -178.54 63.48 -148.88 -25.11 61.82 -12.78 32.16 

14 291.26 -399.59 413.76 -551.11 347.62 -465.21 -122.50 151.53 -56.37 65.62 

15 308.18 -1197.92 418.03 -1638.34 352.90 -1378.77 -109.84 440.42 -44.72 180.85 

16 104.33 -373.43 144.18 -517.21 121.94 -434.29 -39.85 143.77 -17.60 60.85 

17 63.47 -109.82 87.23 -158.66 73.12 -134.26 -23.76 48.84 -9.65 24.45 

18 245.34 -96.23 514.51 -186.15 419.45 -151.93 -269.17 89.92 -174.10 55.70 

19 68.10 -145.97 116.62 -182.10 110.91 -174.15 -48.52 36.12 -42.80 28.17 

20 0.54 -0.18 0.62 -0.24 0.56 -0.19 -0.07 0.07 -0.02 0.01 

21 372.26 -112.39 473.57 -144.15 317.30 -96.58 -101.32 31.76 54.96 -15.81 

22 66.87 -70.85 45.50 -133.13 54.37 -199.30 21.37 62.28 12.51 128.46 

23 124.28 -406.41 186.57 -608.65 161.11 -526.55 -62.29 202.24 -36.83 120.15 

24 261.73 -797.17 379.22 -1157.40 322.11 -983.45 -117.49 360.23 -60.38 186.28 

25 281.55 -293.63 267.65 -296.86 133.89 -167.72 13.90 3.23 147.66 -125.92 

26 597.43 -246.28 595.28 -243.57 323.32 -129.79 2.15 -2.71 274.10 -116.48 

27 233.50 -459.44 224.99 -425.67 116.92 -204.79 8.51 -33.77 116.58 -254.65 

28 418.43 -86.45 452.80 -98.74 283.35 -65.08 -34.37 12.29 135.08 -21.37 

29 33.54 -96.60 48.11 -139.38 38.41 -112.02 -14.57 42.78 -4.87 15.42 

30 31.09 -74.71 44.22 -113.49 33.43 -89.84 -13.13 38.79 -2.34 15.14 

31 15.41 -47.62 33.65 -110.60 37.64 -127.50 -18.24 62.98 -22.23 79.88 

32 185.68 -657.42 186.20 -657.98 102.94 -358.92 -0.52 0.56 82.74 -298.49 

33 41.59 -46.47 44.82 -60.24 23.60 -52.40 -3.23 13.78 17.98 5.93 

34 6.00 -15.43 54.07 -46.92 52.80 -44.92 -48.06 31.48 -46.80 29.48 

35 411.54 -124.46 405.41 -118.73 231.07 -67.77 6.13 -5.73 180.47 -56.69 

36 140.54 -31.50 118.80 1.40 61.96 -17.53 21.74 -32.89 78.59 -13.97 

37 14.29 -27.88 28.80 -82.84 27.56 -81.09 -14.51 54.95 -13.26 53.20 

38 11.26 -13.05 20.66 -12.17 16.76 -7.62 -9.40 -0.88 -5.50 -5.42 

39 29.63 -100.66 37.07 -124.77 30.83 -103.72 -7.44 24.11 -1.20 3.06 

40 72.51 -18.52 116.93 -29.73 98.86 -25.11 -44.43 11.21 -26.35 6.59 

41 214.57 -74.14 283.53 -96.12 241.65 -82.92 -68.96 21.98 -27.07 8.78 

42 40.67 -34.95 57.24 -47.40 48.19 -40.89 -16.56 12.45 -7.52 5.94 

43 79.00 -37.28 100.13 -52.73 82.60 -49.09 -21.13 15.45 -3.59 11.81 

44 249.43 -51.05 337.02 -67.72 287.26 -56.96 -87.59 16.67 -37.83 5.91 

45 87.11 -24.78 123.44 -35.26 103.04 -29.28 -36.33 10.48 -15.93 4.50 

46 6.78 -3.35 15.60 -5.53 2.12 -1.26 -8.82 2.18 4.66 -2.09 

47 192.07 -46.19 254.20 -79.52 190.27 -61.74 -62.13 33.33 1.81 15.55 

48 5.89 -15.27 13.66 -34.35 11.09 -27.39 -7.77 19.08 -5.20 12.11 

49 264.98 -84.50 275.33 -89.01 148.35 -48.56 -10.35 4.51 116.62 -35.95 

50 314.57 -110.61 395.72 -139.39 262.35 -92.72 -81.15 28.77 52.23 -17.89 

51 92.35 -267.72 147.12 -418.33 129.91 -365.75 -54.78 150.61 -37.56 98.02 

52 307.64 -117.14 452.33 -171.46 380.69 -143.76 -144.69 54.32 -73.05 26.62 

53 260.30 -415.96 228.03 -330.01 100.88 -122.95 32.27 -85.95 159.42 -293.01 

54 424.37 -222.13 344.83 -223.34 114.86 -126.14 79.54 1.21 309.51 -95.99 

55 109.01 -204.56 91.74 -206.31 81.10 -115.22 17.27 1.76 27.91 -89.34 

56 105.05 -39.74 103.34 -32.07 31.56 -13.01 1.70 -7.67 73.49 -26.73 

57 32.41 -105.91 47.16 -151.82 38.06 -121.97 -14.75 45.91 -5.64 16.06 

58 51.08 -113.38 73.12 -167.40 57.95 -140.32 -22.04 54.02 -6.87 26.94 

59 102.68 -33.64 120.90 -40.16 71.38 -23.92 -18.22 6.52 31.30 -9.71 

60 132.71 -401.15 129.07 -385.45 60.54 -184.45 3.64 -15.69 72.18 -216.70 

61 144.14 -54.70 197.07 -85.64 143.96 -52.05 -52.93 30.94 0.18 -2.65 

62 3.15 -8.60 22.72 -52.78 21.61 -50.23 -19.57 44.17 -18.45 41.62 

63 324.54 -178.23 326.28 -176.70 189.32 -106.29 -1.74 -1.53 135.23 -71.94 

64 289.55 -120.80 287.59 -119.36 147.94 -64.65 1.97 -1.44 141.61 -56.15 

65 145.21 -479.42 225.99 -732.53 192.08 -623.99 -80.78 253.11 -46.87 144.57 

66 348.71 -318.42 435.95 -384.25 333.66 -283.51 -87.24 65.83 15.05 -34.91 

67 295.75 -509.72 418.26 -772.70 349.26 -656.19 -122.52 262.98 -53.51 146.47 

68 82.76 -243.30 117.93 -351.60 102.12 -306.32 -35.17 108.30 -19.36 63.01 

69 162.16 -68.57 168.73 -48.30 127.01 -39.69 -6.57 -20.27 35.15 -28.88 

70 141.48 -155.76 197.36 -222.82 162.69 -191.04 -55.88 67.07 -21.21 35.28 
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Table D.12. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first molar (M1) bite load for the varying muscle force load cases 

sensitivity tests (see text for more details), and strain differences (Δε1 and Δε3) at 

landmark locations between models. Strain values are in microstrain (μstrain). 

M1 bite ACSA Load Case 1 Load Case 2 ACSA-LoadCase1 ACSA-LoadCase2 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 3.30 -9.60 4.95 -15.78 4.26 -13.69 -1.66 6.18 -0.96 4.09 

2 11.12 -30.54 28.76 -49.17 23.96 -44.14 -17.63 18.63 -12.84 13.60 

3 186.56 -72.97 282.99 -109.70 244.45 -94.42 -96.43 36.74 -57.89 21.46 

4 37.92 -168.81 69.92 -311.39 60.32 -268.79 -32.00 142.58 -22.39 99.98 

5 52.95 -17.22 91.87 -30.16 74.03 -24.41 -38.92 12.94 -21.08 7.19 

6 37.36 -114.16 48.80 -147.83 48.40 -146.15 -11.45 33.68 -11.04 32.00 

7 4.46 -1.81 1.01 -0.38 0.74 -0.26 3.44 -1.43 3.72 -1.55 

8 181.47 -65.45 317.90 -123.15 293.84 -114.09 -136.43 57.70 -112.37 48.64 

9 188.66 -303.31 284.84 -347.50 247.41 -251.55 -96.18 44.19 -58.75 -51.75 

10 39.79 -22.06 65.54 -34.30 58.54 -29.28 -25.75 12.24 -18.75 7.22 

11 48.75 -26.86 71.53 -38.75 59.55 -32.70 -22.78 11.89 -10.80 5.84 

12 2.34 -4.48 2.90 -9.48 2.80 -8.59 -0.56 5.00 -0.45 4.12 

13 21.30 -41.49 29.22 -60.61 23.81 -48.80 -7.92 19.12 -2.52 7.31 

14 98.45 -60.77 139.03 -75.93 117.06 -65.23 -40.58 15.16 -18.61 4.46 

15 132.15 -79.95 198.25 -106.53 168.04 -91.50 -66.10 26.58 -35.89 11.55 

16 65.29 -247.18 85.45 -323.07 72.32 -269.41 -20.17 75.89 -7.04 22.23 

17 53.59 -107.81 74.07 -155.78 61.96 -131.18 -20.48 47.96 -8.37 23.37 

18 187.22 -72.89 371.41 -134.54 297.82 -108.05 -184.20 61.65 -110.61 35.16 

19 78.87 -155.23 129.28 -191.47 121.50 -182.20 -50.41 36.24 -42.63 26.97 

20 0.54 -0.19 0.63 -0.22 0.54 -0.17 -0.09 0.04 -0.01 -0.01 

21 402.15 -121.96 516.14 -157.50 353.19 -107.82 -113.99 35.54 48.96 -14.14 

22 62.62 -72.79 45.96 -143.29 57.20 -209.73 16.66 70.51 5.42 136.94 

23 122.86 -402.91 184.45 -603.02 159.30 -521.74 -61.59 200.11 -36.44 118.83 

24 198.83 -604.91 281.71 -858.68 239.53 -730.40 -82.88 253.77 -40.70 125.49 

25 282.14 -290.67 268.94 -292.90 134.49 -163.82 13.21 2.23 147.66 -126.85 

26 606.46 -249.77 611.52 -249.73 336.79 -134.94 -5.06 -0.04 269.68 -114.84 

27 234.15 -465.30 225.32 -434.64 115.70 -210.72 8.83 -30.66 118.45 -254.58 

28 428.07 -86.71 469.10 -98.92 298.20 -71.38 -41.03 12.21 129.87 -15.33 

29 33.22 -95.65 47.33 -137.02 37.77 -110.08 -14.11 41.36 -4.56 14.43 

30 29.31 -68.18 41.02 -103.09 30.67 -81.01 -11.71 34.91 -1.35 12.83 

31 15.48 -48.64 33.23 -111.20 37.28 -127.89 -17.75 62.56 -21.81 79.25 

32 185.35 -656.37 185.53 -655.82 102.36 -357.08 -0.18 -0.55 82.99 -299.29 

33 40.16 -51.94 43.96 -72.11 26.82 -65.91 -3.80 20.16 13.34 13.97 

34 5.65 -14.24 49.29 -43.63 48.74 -42.11 -43.65 29.40 -43.10 27.87 

35 407.86 -123.33 398.38 -116.22 224.86 -65.14 9.47 -7.11 183.00 -58.19 

36 139.60 -28.83 118.02 5.78 63.03 -21.65 21.58 -34.61 76.57 -7.18 

37 14.77 -23.60 27.08 -74.76 25.80 -74.17 -12.31 51.15 -11.03 50.56 

38 9.99 -14.34 17.05 -12.56 13.20 -7.38 -7.07 -1.78 -3.21 -6.96 

39 21.93 -73.66 27.02 -89.79 22.39 -74.41 -5.09 16.14 -0.46 0.75 

40 19.51 -8.24 30.67 -12.92 25.91 -11.31 -11.16 4.68 -6.40 3.07 

41 111.86 -39.29 139.65 -47.59 120.03 -41.89 -27.79 8.30 -8.18 2.60 

42 19.06 -20.21 25.07 -26.16 21.26 -23.16 -6.02 5.96 -2.21 2.95 

43 35.68 -27.43 42.62 -40.61 36.62 -41.21 -6.94 13.18 -0.94 13.78 

44 140.04 -27.32 182.58 -34.53 157.18 -28.99 -42.54 7.21 -17.14 1.67 

45 59.34 -16.32 80.83 -22.12 67.16 -18.19 -21.49 5.80 -7.82 1.87 

46 9.62 -4.79 18.90 -6.53 5.00 -1.72 -9.28 1.74 4.62 -3.08 

47 175.23 -42.16 232.01 -74.37 174.81 -59.45 -56.78 32.21 0.42 17.29 

48 5.64 -14.61 13.24 -33.32 10.73 -26.51 -7.60 18.71 -5.09 11.89 

49 247.86 -79.38 253.33 -81.90 129.86 -42.50 -5.47 2.52 118.00 -36.88 

50 305.14 -107.55 381.82 -135.10 250.67 -89.24 -76.69 27.55 54.47 -18.32 

51 80.44 -226.45 130.62 -359.10 116.06 -315.94 -50.18 132.65 -35.63 89.50 

52 247.26 -93.30 356.18 -133.30 299.57 -111.56 -108.91 40.00 -52.30 18.26 

53 267.10 -439.85 238.14 -363.14 105.93 -140.19 28.96 -76.72 161.17 -299.66 

54 442.85 -222.80 369.66 -221.30 128.34 -117.54 73.19 -1.50 314.51 -105.26 

55 112.95 -206.98 93.40 -204.55 67.03 -110.93 19.56 -2.43 45.92 -96.04 

56 103.47 -41.06 99.73 -33.34 24.59 -11.45 3.74 -7.72 78.88 -29.61 

57 29.97 -97.80 43.55 -139.93 35.04 -111.98 -13.58 42.13 -5.07 14.19 

58 47.91 -108.29 68.83 -161.11 54.79 -135.51 -20.92 52.82 -6.88 27.22 

59 104.34 -34.13 123.22 -40.80 72.96 -24.29 -18.88 6.67 31.38 -9.84 

60 133.15 -401.87 129.20 -385.12 60.65 -183.92 3.94 -16.76 72.50 -217.96 

61 135.66 -53.23 183.08 -82.62 131.31 -48.66 -47.42 29.38 4.35 -4.57 

62 2.89 -7.71 20.97 -48.63 20.13 -46.73 -18.08 40.92 -17.24 39.01 

63 320.15 -176.01 317.88 -172.55 182.03 -102.37 2.27 -3.46 138.11 -73.64 

64 287.45 -116.74 284.23 -113.14 144.96 -59.12 3.21 -3.60 142.48 -57.62 

65 134.05 -395.60 208.64 -613.85 178.92 -524.86 -74.59 218.25 -44.87 129.26 

66 347.03 -319.17 436.22 -388.35 333.52 -286.39 -89.19 69.18 13.51 -32.77 

67 165.55 -296.48 220.99 -443.87 183.21 -378.10 -55.44 147.40 -17.66 81.62 

68 82.94 -241.86 121.04 -355.10 104.83 -309.64 -38.10 113.24 -21.89 67.78 

69 169.16 -83.08 174.82 -65.02 124.75 -36.18 -5.66 -18.06 44.41 -46.91 

70 98.25 -99.35 135.85 -140.71 110.34 -121.32 -37.60 41.36 -12.09 21.97 
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Table D.13. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second molar (M2) bite load for the varying muscle force load 

cases sensitivity tests (see text for more details), and strain differences (Δε1 and Δε3) at 

landmark locations between models. Strain values are in microstrain (μstrain). 

M2 bite ACSA Load Case 1 Load Case 2 ACSA-LoadCase1 ACSA-LoadCase2 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 3.44 -5.75 6.84 -10.68 5.49 -9.01 -3.40 4.93 -2.05 3.26 

2 12.34 -18.20 25.08 -34.91 19.66 -30.60 -12.74 16.72 -7.32 12.41 

3 124.32 -49.41 188.66 -74.36 164.92 -64.61 -64.34 24.94 -40.60 15.20 

4 32.13 -133.82 57.25 -250.12 49.66 -217.21 -25.12 116.30 -17.53 83.39 

5 50.56 -16.69 89.48 -29.92 72.07 -24.26 -38.93 13.23 -21.51 7.57 

6 39.46 -120.79 52.00 -157.93 51.09 -154.65 -12.54 37.14 -11.64 33.86 

7 5.73 -2.33 2.55 -1.04 2.00 -0.82 3.18 -1.29 3.73 -1.51 

8 166.41 -66.17 299.34 -123.61 277.00 -113.47 -132.93 57.45 -110.59 47.30 

9 151.09 -209.28 230.02 -225.77 203.80 -151.58 -78.93 16.49 -52.72 -57.70 

10 48.59 -25.97 77.85 -39.77 68.97 -33.96 -29.26 13.80 -20.39 8.00 

11 54.71 -23.63 79.42 -34.12 65.52 -28.28 -24.72 10.49 -10.82 4.65 

12 4.15 -3.67 13.65 -15.40 10.95 -12.61 -9.50 11.72 -6.79 8.94 

13 6.60 -20.02 9.05 -27.68 7.18 -21.44 -2.45 7.66 -0.58 1.43 

14 25.31 -14.57 36.91 -18.02 30.82 -16.48 -11.60 3.45 -5.51 1.91 

15 58.67 -36.61 87.85 -54.30 74.54 -48.41 -29.18 17.69 -15.87 11.80 

16 14.50 -12.23 44.87 -27.17 35.87 -21.54 -30.37 14.94 -21.38 9.31 

17 73.74 -175.11 105.59 -254.48 88.39 -213.44 -31.85 79.37 -14.65 38.33 

18 97.91 -37.51 153.11 -58.43 113.34 -43.64 -55.20 20.92 -15.43 6.13 

19 100.78 -184.85 150.70 -235.21 139.48 -219.16 -49.92 50.36 -38.70 34.32 

20 0.60 -0.27 0.62 -0.14 0.60 -0.17 -0.02 -0.12 0.00 -0.09 

21 459.14 -140.20 597.82 -183.09 422.30 -129.45 -138.67 42.89 36.84 -10.75 

22 39.24 -101.47 64.20 -242.79 85.04 -305.43 -24.96 141.32 -45.80 203.96 

23 122.01 -402.31 181.90 -596.94 157.14 -516.59 -59.89 194.63 -35.13 114.28 

24 147.68 -446.27 206.56 -625.26 176.33 -534.08 -58.88 178.99 -28.65 87.81 

25 286.50 -292.73 275.43 -296.14 139.63 -165.95 11.07 3.41 146.86 -126.78 

26 654.20 -267.31 689.91 -278.49 403.08 -159.54 -35.71 11.18 251.12 -107.77 

27 239.17 -489.67 231.96 -471.72 119.17 -239.52 7.21 -17.95 120.00 -250.15 

28 469.36 -91.82 552.10 -117.22 371.65 -100.98 -82.74 25.40 97.71 9.15 

29 31.43 -90.58 43.92 -127.41 34.91 -102.04 -12.50 36.82 -3.48 11.46 

30 25.41 -51.45 33.39 -76.27 23.72 -57.91 -7.97 24.82 1.69 6.46 

31 25.63 -79.02 46.44 -159.98 49.39 -168.91 -20.81 80.95 -23.76 89.88 

32 186.76 -661.68 186.50 -659.58 103.17 -360.16 0.26 -2.09 83.59 -301.52 

33 42.15 -87.58 55.91 -139.63 45.98 -131.10 -13.76 52.05 -3.83 43.52 

34 5.42 -12.57 39.98 -38.62 40.71 -37.70 -34.57 26.04 -35.30 25.13 

35 404.80 -122.44 388.21 -111.84 214.15 -58.44 16.59 -10.60 190.65 -64.00 

36 134.90 -13.45 116.65 4.16 74.88 -45.32 18.25 -17.61 60.02 31.87 

37 17.78 -18.32 25.34 -61.97 23.68 -63.00 -7.55 43.65 -5.90 44.68 

38 9.52 -21.72 12.50 -19.08 8.13 -11.62 -2.98 -2.65 1.39 -10.10 

39 11.72 -35.26 13.85 -37.22 11.40 -30.15 -2.13 1.96 0.33 -5.11 

40 8.68 -12.19 14.69 -20.16 12.73 -17.61 -6.01 7.97 -4.05 5.42 

41 56.00 -23.20 66.00 -28.36 58.23 -25.87 -10.00 5.17 -2.23 2.67 

42 6.85 -11.47 8.22 -15.20 7.63 -14.37 -1.37 3.73 -0.77 2.89 

43 13.49 -29.08 18.26 -49.12 18.43 -50.66 -4.77 20.04 -4.93 21.57 

44 51.00 -8.70 60.57 -9.55 55.67 -8.25 -9.57 0.85 -4.67 -0.45 

45 31.97 -7.99 40.05 -9.85 33.09 -8.15 -8.08 1.85 -1.11 0.16 

46 6.70 -3.63 8.77 -3.23 2.40 -5.24 -2.07 -0.40 4.31 1.61 

47 166.20 -43.97 223.80 -82.33 171.88 -71.14 -57.60 38.36 -5.68 27.17 

48 5.56 -14.42 13.15 -33.28 10.65 -26.47 -7.59 18.85 -5.09 12.04 

49 208.75 -67.25 199.08 -64.36 84.52 -27.93 9.67 -2.90 124.23 -39.33 

50 307.39 -109.12 384.42 -137.40 253.45 -91.38 -77.03 28.28 53.94 -17.74 

51 59.01 -143.90 102.15 -242.80 92.00 -217.89 -43.14 98.90 -32.99 73.98 

52 191.13 -72.15 264.94 -99.66 221.73 -83.22 -73.81 27.52 -30.60 11.07 

53 273.08 -460.25 247.35 -393.73 111.10 -158.02 25.73 -66.52 161.98 -302.23 

54 454.95 -222.74 386.39 -219.42 138.37 -112.22 68.55 -3.32 316.58 -110.52 

55 116.46 -206.04 95.57 -198.41 54.11 -103.67 20.89 -7.64 62.35 -102.37 

56 94.76 -36.32 86.78 -30.12 14.30 -8.25 7.98 -6.20 80.46 -28.07 

57 25.40 -82.87 36.95 -118.48 29.53 -93.96 -11.54 35.61 -4.12 11.09 

58 43.81 -102.92 63.42 -154.31 51.10 -130.76 -19.61 51.39 -7.29 27.84 

59 125.16 -40.85 151.97 -50.07 96.66 -31.95 -26.81 9.22 28.50 -8.90 

60 129.00 -386.82 123.04 -362.90 55.51 -165.17 5.96 -23.92 73.49 -221.65 

61 137.08 -52.73 184.11 -81.36 132.50 -48.09 -47.03 28.63 4.58 -4.64 

62 2.44 -6.15 18.27 -42.26 17.86 -41.36 -15.83 36.11 -15.42 35.21 

63 308.44 -170.71 300.39 -164.65 167.97 -96.16 8.05 -6.05 140.47 -74.54 

64 287.04 -116.32 283.42 -112.22 144.35 -58.66 3.63 -4.11 142.70 -57.67 

65 157.91 -232.07 259.88 -385.12 222.84 -333.01 -101.96 153.05 -64.92 100.94 

66 378.86 -381.79 490.37 -485.58 377.96 -366.93 -111.51 103.79 0.89 -14.86 

67 60.25 -186.83 77.35 -275.36 66.53 -235.68 -17.10 88.53 -6.29 48.85 

68 73.98 -201.72 110.45 -298.83 95.90 -261.99 -36.47 97.11 -21.92 60.26 

69 163.40 -86.20 164.56 -68.27 113.38 -31.93 -1.17 -17.94 50.02 -54.28 

70 91.52 -68.62 129.29 -97.13 104.92 -84.58 -37.77 28.50 -13.40 15.95 
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Table D.14. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during third molar (M3) bite load for the varying muscle force load cases 

sensitivity tests (see text for more details), and strain differences (Δε1 and Δε3) at 

landmark locations between models. Strain values are in microstrain (μstrain). 

M3 bite ACSA Load Case 1 Load Case 2 ACSA-LoadCase1 ACSA-LoadCase2 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 11.68 -11.03 23.16 -20.69 19.14 -17.39 -11.48 9.66 -7.46 6.35 

2 35.16 -30.62 72.98 -59.89 58.95 -51.10 -37.82 29.27 -23.79 20.47 

3 43.75 -19.27 71.29 -30.53 65.50 -27.32 -27.53 11.26 -21.74 8.05 

4 39.85 -91.84 67.08 -174.72 57.59 -153.24 -27.23 82.88 -17.74 61.40 

5 47.12 -16.06 85.39 -29.54 68.68 -24.01 -38.27 13.48 -21.56 7.94 

6 42.49 -130.32 56.54 -172.16 54.92 -166.65 -14.05 41.84 -12.43 36.33 

7 7.70 -3.13 5.01 -2.05 4.07 -1.67 2.70 -1.08 3.63 -1.46 

8 152.90 -74.63 285.90 -133.20 263.00 -118.44 -133.01 58.57 -110.10 43.82 

9 58.65 -115.08 97.26 -89.15 90.81 -35.52 -38.61 -25.93 -32.16 -79.56 

10 59.70 -31.02 93.27 -46.65 82.03 -39.84 -33.57 15.63 -22.33 8.82 

11 16.56 -7.27 31.34 -13.42 24.74 -10.72 -14.78 6.15 -8.19 3.45 

12 9.89 -5.43 29.02 -23.31 23.67 -18.98 -19.13 17.88 -13.78 13.55 

13 2.06 -5.84 3.18 -6.12 4.17 -5.55 -1.12 0.28 -2.11 -0.28 

14 17.18 -10.76 31.19 -22.03 25.15 -19.23 -14.02 11.28 -7.97 8.47 

15 20.86 -17.22 26.79 -23.53 22.28 -21.43 -5.93 6.31 -1.42 4.21 

16 29.74 -9.82 46.35 -16.17 39.12 -12.79 -16.61 6.36 -9.38 2.98 

17 17.59 -21.43 22.17 -25.91 20.14 -25.20 -4.58 4.48 -2.55 3.76 

18 109.64 -157.89 193.84 -486.20 169.24 -425.61 -84.21 328.31 -59.61 267.72 

19 126.07 -215.64 165.77 -288.40 151.91 -263.89 -39.70 72.76 -25.84 48.25 

20 0.70 -0.44 0.65 -0.25 0.67 -0.23 0.05 -0.19 0.03 -0.20 

21 545.72 -167.93 714.96 -219.83 521.24 -160.43 -169.24 51.91 24.48 -7.50 

22 45.66 -170.57 101.91 -382.22 121.35 -427.72 -56.24 211.65 -75.69 257.16 

23 118.73 -395.60 174.46 -578.10 150.84 -500.59 -55.73 182.49 -32.12 104.98 

24 75.16 -221.31 103.15 -304.01 89.36 -263.87 -27.99 82.70 -14.19 42.56 

25 284.74 -287.28 271.37 -288.47 136.65 -160.13 13.38 1.19 148.09 -127.15 

26 710.93 -288.56 783.92 -313.61 482.86 -189.61 -73.00 25.05 228.07 -98.95 

27 244.29 -511.53 240.04 -505.56 125.50 -267.47 4.25 -5.97 118.79 -244.06 

28 542.86 -115.59 680.25 -166.74 483.33 -148.79 -137.40 51.14 59.53 33.20 

29 29.42 -84.66 39.48 -115.09 31.17 -91.73 -10.06 30.43 -1.75 7.07 

30 24.15 -31.88 27.17 -42.54 17.71 -28.69 -3.02 10.65 6.43 -3.19 

31 38.89 -114.16 68.32 -218.04 67.73 -217.80 -29.43 103.88 -28.84 103.64 

32 190.02 -673.49 191.84 -677.83 107.70 -375.49 -1.82 4.34 82.32 -298.00 

33 53.91 -137.63 81.85 -229.50 71.13 -210.22 -27.94 91.86 -17.22 72.58 

34 5.77 -10.54 27.04 -31.45 29.25 -31.09 -21.27 20.91 -23.48 20.55 

35 408.88 -123.67 394.67 -113.18 218.52 -58.21 14.21 -10.49 190.36 -65.45 

36 130.86 2.98 123.30 -31.08 99.80 -76.42 7.56 34.06 31.07 79.40 

37 25.63 -13.70 22.62 -42.84 20.40 -46.05 3.00 29.14 5.23 32.35 

38 11.33 -32.97 12.67 -32.34 8.45 -22.95 -1.34 -0.63 2.88 -10.02 

39 14.14 -8.60 30.00 -13.44 26.41 -11.43 -15.85 4.83 -12.27 2.83 

40 4.28 -17.33 6.95 -29.36 6.20 -25.47 -2.68 12.03 -1.93 8.13 

41 10.75 -8.91 7.19 -13.82 7.82 -13.05 3.56 4.91 2.93 4.14 

42 3.88 -7.82 6.88 -14.85 6.62 -13.61 -3.00 7.04 -2.74 5.79 

43 5.83 -22.11 11.61 -44.64 11.46 -46.17 -5.78 22.53 -5.62 24.06 

44 6.53 -19.92 12.78 -43.98 11.99 -35.77 -6.25 24.06 -5.46 15.85 

45 8.79 -3.39 10.52 -9.66 9.00 -9.47 -1.72 6.27 -0.21 6.08 

46 6.74 -3.75 5.50 -3.17 3.32 -8.65 1.24 -0.58 3.42 4.90 

47 162.99 -46.34 219.48 -91.47 171.85 -84.34 -56.50 45.13 -8.86 38.00 

48 5.37 -13.96 12.92 -32.93 10.44 -26.15 -7.55 18.97 -5.07 12.19 

49 163.65 -53.30 141.99 -46.03 37.01 -13.08 21.65 -7.27 126.63 -40.22 

50 309.54 -110.85 383.64 -138.55 254.25 -92.58 -74.10 27.70 55.29 -18.27 

51 50.78 -53.18 86.61 -110.61 76.55 -104.13 -35.83 57.43 -25.77 50.95 

52 104.32 -37.73 136.85 -49.90 111.39 -40.82 -32.53 12.17 -7.07 3.09 

53 280.32 -485.70 259.05 -434.33 119.99 -187.18 21.27 -51.37 160.33 -298.52 

54 474.93 -223.54 414.26 -218.34 157.12 -107.14 60.67 -5.21 317.81 -116.41 

55 121.57 -207.84 100.80 -193.98 43.25 -96.04 20.77 -13.86 78.31 -111.80 

56 84.98 -33.34 75.28 -29.85 6.87 -8.74 9.70 -3.49 78.10 -24.60 

57 19.66 -63.84 28.70 -91.20 22.67 -71.07 -9.05 27.36 -3.01 7.23 

58 39.27 -96.79 57.52 -146.32 47.42 -125.55 -18.25 49.53 -8.15 28.77 

59 150.10 -48.84 184.40 -60.38 123.73 -40.59 -34.30 11.54 26.37 -8.25 

60 125.03 -372.07 116.99 -340.91 50.39 -146.26 8.04 -31.16 74.64 -225.81 

61 135.15 -51.58 179.82 -78.79 129.10 -46.22 -44.67 27.21 6.05 -5.36 

62 2.27 -4.38 14.38 -33.15 14.58 -33.68 -12.12 28.77 -12.32 29.30 

63 295.52 -164.79 281.02 -155.81 152.43 -89.25 14.50 -8.98 143.09 -75.54 

64 285.65 -113.88 281.01 -108.06 142.39 -55.51 4.64 -5.82 143.26 -58.38 

65 188.12 -70.84 312.50 -155.32 266.10 -138.24 -124.38 84.48 -77.98 67.40 

66 417.75 -453.07 565.35 -611.11 440.53 -472.13 -147.60 158.04 -22.78 19.06 

67 28.80 -100.55 44.48 -148.24 40.29 -127.11 -15.68 47.69 -11.49 26.56 

68 59.37 -144.47 93.75 -223.03 81.77 -197.08 -34.38 78.56 -22.40 52.61 

69 162.43 -96.74 162.62 -82.50 106.52 -36.42 -0.19 -14.24 55.91 -60.33 

70 76.10 -32.37 109.32 -43.10 88.13 -38.37 -33.22 10.73 -12.03 6.01 
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Appendix E. Strain values from Chapter 7 

 

 

 

Strain values as output from FEAs performed in Chapter 7 are here presented in 

table form. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks are displayed in microstrain (μstrain). Each table represents a simulated 

bite with one tooth along the dental row, from first incisor (I1) to third molar (M3), to 

the exception of the canine tooth. Also displayed are strain differences (Δε1 and Δε3) at 

landmark locations between models for each analysis (see Chapter 7 for details). The 

placing of these strain tables in an appendix rather then in the chapter proper is due to 

the vastness of space they require, which is easier to manage here. 
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Table E.1. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during first incisor (I1) bite load for the 3 models of durophagous species, 

and strain differences (Δε1 and Δε3) at landmark locations between models. Strain 

values are in microstrain (μstrain). 

I1 bite Cercocebus Lophocebus Mandrillus Cercocebus-Lophocebus Cercocebus-Mandrillus Lophocebus-Mandrillus 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 511.69 -672.17 194.02 -321.04 153.22 -234.08 317.67 -351.13 358.47 -438.10 40.80 -86.96 

2 628.19 -376.16 400.12 -102.73 149.43 -111.74 228.07 -273.43 478.76 -264.42 250.69 9.01 

3 980.40 -272.94 44.30 -21.16 32.70 -17.70 936.10 -251.78 947.70 -255.24 11.60 -3.46 

4 151.60 -399.15 42.26 -123.09 97.98 -325.00 109.34 -276.06 53.63 -74.15 -55.72 201.91 

5 22.71 -43.94 17.63 -15.99 30.52 -11.55 5.08 -27.95 -7.81 -32.39 -12.89 -4.44 

6 49.58 -17.26 32.93 -42.79 19.07 -47.52 16.66 25.53 30.52 30.26 13.86 4.73 

7 2.15 -1.05 22.10 -8.11 5.39 -20.08 -19.96 7.07 -3.24 19.04 16.71 11.97 

8 59.50 -46.18 56.39 -11.01 260.36 -47.64 3.11 -35.17 -200.86 1.45 -203.97 36.62 

9 158.86 -249.21 72.62 -164.71 53.42 -154.11 86.23 -84.50 105.43 -95.10 19.20 -10.60 

10 61.43 -27.62 24.52 -10.21 103.78 -32.04 36.90 -17.42 -42.36 4.42 -79.26 21.84 

11 178.19 -629.68 117.99 -360.20 53.67 -194.11 60.20 -269.48 124.53 -435.58 64.33 -166.09 

12 307.09 -162.59 254.66 -112.75 123.68 -41.57 52.43 -49.84 183.41 -121.02 130.98 -71.18 

13 275.53 -83.70 90.42 -32.02 114.02 -33.10 185.10 -51.68 161.51 -50.60 -23.59 1.07 

14 134.68 -48.31 70.04 -39.87 137.14 -44.26 64.64 -8.44 -2.46 -4.05 -67.10 4.39 

15 222.70 -79.11 43.04 -29.32 46.49 -25.53 179.67 -49.79 176.22 -53.58 -3.45 -3.79 

16 68.05 -23.21 77.68 -22.36 54.57 -14.11 -9.63 -0.85 13.49 -9.10 23.12 -8.25 

17 43.65 -19.81 30.92 -19.07 36.02 -9.75 12.73 -0.74 7.63 -10.06 -5.09 -9.32 

18 154.64 -44.07 84.12 -34.13 186.63 -55.96 70.52 -9.94 -31.99 11.89 -102.51 21.83 

19 147.25 -64.01 46.14 -37.74 94.34 -36.34 101.11 -26.27 52.91 -27.67 -48.20 -1.41 

20 87.70 -72.09 70.55 -150.10 25.34 -78.68 17.15 78.00 62.36 6.58 45.21 -71.42 

21 434.19 -145.77 111.60 -39.09 171.35 -57.47 322.59 -106.67 262.84 -88.30 -59.75 18.38 

22 121.87 -84.47 25.73 -27.81 71.97 -205.36 96.13 -56.66 49.90 120.89 -46.23 177.55 

23 97.39 -342.43 37.04 -155.24 65.55 -201.23 60.35 -187.19 31.83 -141.20 -28.51 45.98 

24 268.26 -336.33 115.71 -175.02 186.25 -85.07 152.55 -161.30 82.01 -251.26 -70.54 -89.96 

25 64.20 -32.69 90.78 -314.63 190.83 -297.63 -26.58 281.94 -126.63 264.93 -100.05 -17.01 

26 931.55 -272.48 675.29 -221.62 566.62 -282.49 256.26 -50.87 364.93 10.01 108.67 60.88 

27 235.65 -426.34 188.77 -241.59 305.64 -335.19 46.88 -184.75 -69.99 -91.15 -116.87 93.60 

28 193.54 -65.28 180.06 -86.86 50.45 -153.96 13.48 21.57 143.08 88.68 129.60 67.10 

29 43.04 -93.35 17.93 -47.28 12.20 -9.79 25.11 -46.07 30.84 -83.56 5.73 -37.49 

30 29.75 -68.35 24.12 -55.26 93.35 -28.12 5.63 -13.10 -63.59 -40.23 -69.23 -27.13 

31 113.49 -55.90 30.69 -11.53 19.50 -70.86 82.81 -44.37 93.99 14.96 11.19 59.33 

32 124.63 -365.61 100.19 -291.29 134.64 -363.62 24.44 -74.31 -10.01 -1.99 -34.45 72.33 

33 380.03 -134.90 187.51 -69.80 204.15 -76.20 192.52 -65.10 175.88 -58.70 -16.64 6.39 

34 9.47 -25.92 12.36 -18.51 3.25 -7.35 -2.88 -7.41 6.23 -18.57 9.11 -11.16 

35 192.17 -197.38 247.37 -54.89 318.58 -73.48 -55.20 -142.49 -126.41 -123.90 -71.21 18.58 

36 291.88 -611.14 163.44 -467.56 187.69 -403.02 128.43 -143.58 104.18 -208.12 -24.25 -64.53 

37 1.79 -1.03 46.76 -13.16 12.15 -3.65 -44.97 12.13 -10.36 2.63 34.62 -9.51 

38 15.03 -11.97 3.76 -12.25 73.16 -20.28 11.27 0.28 -58.13 8.31 -69.40 8.03 

39 170.42 -501.43 112.62 -428.58 43.83 -146.33 57.80 -72.85 126.59 -355.10 68.79 -282.25 

40 578.06 -181.77 247.66 -75.63 104.15 -39.35 330.40 -106.14 473.91 -142.42 143.51 -36.28 

41 275.97 -128.02 57.87 -25.55 206.57 -40.95 218.10 -102.46 69.40 -87.07 -148.70 15.39 

42 194.16 -63.31 64.46 -27.59 245.64 -52.40 129.70 -35.72 -51.47 -10.91 -181.18 24.81 

43 171.66 -55.58 84.68 -29.66 97.93 -24.70 86.98 -25.92 73.73 -30.88 -13.25 -4.97 

44 123.32 -30.65 59.61 -23.66 51.03 -13.13 63.71 -6.99 72.29 -17.53 8.57 -10.53 

45 49.89 -41.71 50.46 -30.85 33.18 -6.25 -0.58 -10.86 16.71 -35.46 17.29 -24.60 

46 98.13 -58.39 141.33 -41.50 90.71 -28.29 -43.21 -16.89 7.42 -30.10 50.62 -13.21 

47 122.90 -114.71 76.60 -27.03 73.94 -29.83 46.30 -87.69 48.96 -84.89 2.66 2.80 

48 68.09 -171.89 51.80 -166.13 24.69 -79.80 16.30 -5.77 43.40 -92.10 27.11 -86.33 

49 393.05 -125.02 305.31 -63.27 130.23 -38.69 87.75 -61.75 262.82 -86.33 175.08 -24.58 

50 124.36 -93.91 33.10 -24.44 30.17 -99.22 91.26 -69.47 94.19 5.31 2.93 74.78 

51 102.75 -349.71 49.63 -159.39 80.15 -286.78 53.12 -190.32 22.60 -62.93 -30.52 127.39 

52 1203.18 -286.31 95.97 -54.30 222.05 -67.92 1107.22 -232.01 981.14 -218.39 -126.08 13.62 

53 108.02 -70.59 163.85 -753.68 36.03 -32.58 -55.83 683.09 72.00 -38.02 127.82 -721.10 

54 815.71 -357.81 605.77 -161.76 1070.75 -249.36 209.94 -196.05 -255.04 -108.45 -464.98 87.60 

55 225.86 -520.69 144.84 -442.61 231.17 -417.13 81.02 -78.08 -5.31 -103.56 -86.33 -25.48 

56 87.20 -120.58 164.39 -159.97 33.80 -80.64 -77.19 39.39 53.40 -39.93 130.60 -79.33 

57 58.60 -137.25 23.15 -52.33 18.00 -17.61 35.45 -84.92 40.60 -119.63 5.15 -34.71 

58 43.15 -66.56 17.11 -42.32 32.05 -13.72 26.04 -24.24 11.11 -52.84 -14.93 -28.60 

59 121.87 -46.01 60.42 -16.62 12.00 -25.45 61.45 -29.39 109.87 -20.56 48.42 8.83 

60 172.82 -522.74 105.64 -312.28 106.64 -357.58 67.19 -210.46 66.19 -165.16 -1.00 45.31 

61 494.29 -158.98 208.24 -76.41 103.42 -48.81 286.05 -82.56 390.87 -110.17 104.82 -27.60 

62 8.01 -21.52 13.07 -15.50 0.92 -0.91 -5.07 -6.02 7.09 -20.61 12.16 -14.59 

63 681.47 -227.83 313.90 -102.83 103.65 -24.90 367.57 -125.00 577.82 -202.93 210.25 -77.93 

64 352.98 -862.32 168.82 -526.73 123.78 -241.91 184.17 -335.59 229.20 -620.41 45.04 -284.81 

65 94.21 -171.60 93.00 -115.49 14.07 -34.20 1.21 -56.11 80.14 -137.40 78.93 -81.29 

66 314.26 -163.75 137.97 -64.55 353.47 -174.31 176.29 -99.20 -39.21 10.56 -215.50 109.76 

67 35.05 -66.91 9.65 -19.28 19.17 -12.10 25.40 -47.63 15.87 -54.80 -9.53 -7.17 

68 129.36 -120.16 137.27 -185.82 11.80 -25.71 -7.91 65.66 117.56 -94.45 125.47 -160.11 

69 446.75 -201.70 208.10 -101.26 260.95 -92.71 238.64 -100.44 185.80 -108.99 -52.85 -8.55 

70 26.13 -59.38 31.24 -25.25 10.79 -5.22 -5.11 -34.12 15.34 -54.16 20.45 -20.04 
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Table E.2. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during second incisor (I2) bite load for the 3 models of durophagous species, 

and strain differences (Δε1 and Δε3) at landmark locations between models. Strain 

values are in microstrain (μstrain). 

I2 bite Cercocebus Lophocebus Mandrillus Cercocebus-Lophocebus Cercocebus-Mandrillus Lophocebus-Mandrillus 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 192.44 -348.01 177.61 -266.08 83.87 -139.61 14.83 -81.93 108.57 -208.40 93.74 -126.47 

2 561.70 -327.76 335.74 -129.86 177.98 -169.11 225.96 -197.90 383.72 -158.66 157.76 39.25 

3 889.70 -245.11 46.74 -21.96 31.52 -17.11 842.96 -223.14 858.18 -228.00 15.22 -4.85 

4 149.96 -398.13 45.16 -125.84 97.11 -322.73 104.80 -272.28 52.85 -75.39 -51.94 196.89 

5 21.63 -42.32 18.23 -15.98 31.55 -11.63 3.40 -26.33 -9.92 -30.69 -13.32 -4.35 

6 47.99 -19.03 33.22 -42.88 19.18 -47.83 14.78 23.85 28.82 28.80 14.04 4.95 

7 1.66 -0.81 22.29 -8.18 5.40 -20.08 -20.63 7.37 -3.74 19.27 16.90 11.90 

8 52.14 -44.88 57.94 -11.10 261.20 -47.60 -5.80 -33.78 -209.06 2.72 -203.26 36.50 

9 166.13 -256.02 77.24 -164.83 54.32 -161.33 88.89 -91.19 111.81 -94.69 22.92 -3.50 

10 80.53 -30.02 43.50 -17.15 105.93 -32.17 37.02 -12.87 -25.40 2.15 -62.42 15.02 

11 181.46 -640.56 119.40 -382.53 57.32 -200.83 62.06 -258.03 124.14 -439.72 62.08 -181.70 

12 483.26 -369.87 340.44 -219.10 137.31 -62.83 142.81 -150.77 345.95 -307.04 203.14 -156.27 

13 365.72 -109.36 127.37 -56.42 138.44 -39.70 238.35 -52.94 227.28 -69.66 -11.07 -16.72 

14 171.06 -60.09 88.89 -44.78 147.04 -48.72 82.17 -15.32 24.02 -11.37 -58.15 3.94 

15 237.59 -88.69 39.24 -21.66 50.12 -29.67 198.35 -67.03 187.46 -59.02 -10.89 8.01 

16 48.04 -16.80 58.47 -16.63 52.57 -13.32 -10.43 -0.17 -4.53 -3.48 5.90 -3.32 

17 33.85 -14.92 32.58 -19.15 37.71 -10.18 1.27 4.23 -3.86 -4.73 -5.14 -8.97 

18 194.63 -46.29 98.58 -40.74 197.13 -59.42 96.05 -5.56 -2.50 13.13 -98.55 18.68 

19 109.40 -45.70 28.95 -29.08 82.90 -27.85 80.45 -16.62 26.50 -17.85 -53.95 -1.23 

20 82.10 -66.63 69.51 -144.04 23.25 -72.25 12.59 77.41 58.85 5.62 46.26 -71.79 

21 463.14 -155.28 120.23 -41.72 190.69 -64.12 342.91 -113.56 272.45 -91.16 -70.46 22.40 

22 74.72 -89.70 18.30 -49.07 79.48 -224.29 56.42 -40.63 -4.75 134.59 -61.17 175.22 

23 105.33 -365.46 35.74 -163.72 64.83 -195.35 69.59 -201.74 40.50 -170.10 -29.09 31.63 

24 251.66 -373.83 100.90 -188.19 157.60 -82.65 150.76 -185.64 94.06 -291.19 -56.70 -105.55 

25 61.55 -36.01 93.93 -318.69 192.04 -314.02 -32.38 282.69 -130.49 278.01 -98.11 -4.68 

26 945.72 -277.22 676.64 -222.12 580.20 -281.16 269.08 -55.10 365.52 3.94 96.44 59.04 

27 225.75 -426.33 182.63 -237.00 306.95 -340.40 43.12 -189.33 -81.20 -85.94 -124.32 103.40 

28 212.14 -67.56 189.39 -94.00 52.80 -164.34 22.75 26.44 159.35 96.79 136.60 70.35 

29 41.12 -87.41 19.19 -50.59 11.55 -8.75 21.94 -36.82 29.57 -78.66 7.63 -41.84 

30 25.17 -49.49 18.58 -42.41 94.10 -28.40 6.59 -7.08 -68.93 -21.09 -75.52 -14.01 

31 93.68 -55.95 13.15 -7.24 30.90 -106.54 80.54 -48.70 62.79 50.60 -17.75 99.30 

32 114.44 -340.64 97.15 -282.59 135.62 -366.35 17.29 -58.06 -21.18 25.70 -38.47 83.76 

33 349.74 -129.48 173.71 -67.95 193.35 -73.03 176.03 -61.53 156.39 -56.45 -19.63 5.08 

34 8.03 -22.67 11.37 -17.26 2.98 -6.72 -3.34 -5.41 5.06 -15.94 8.40 -10.53 

35 194.79 -210.87 240.87 -54.02 317.60 -72.79 -46.09 -156.85 -122.82 -138.08 -76.73 18.77 

36 281.26 -577.87 158.17 -445.68 183.41 -392.80 123.09 -132.19 97.84 -185.07 -25.25 -52.88 

37 2.15 -1.44 47.67 -13.49 12.34 -3.75 -45.52 12.05 -10.19 2.31 35.32 -9.74 

38 9.59 -16.95 7.42 -24.52 70.23 -19.78 2.17 7.57 -60.64 2.83 -62.81 -4.74 

39 122.20 -354.75 87.00 -328.03 33.83 -112.57 35.20 -26.72 88.37 -242.18 53.17 -215.46 

40 377.49 -111.89 185.48 -56.88 74.34 -30.93 192.01 -55.00 303.16 -80.96 111.14 -25.96 

41 166.88 -89.25 41.52 -23.64 162.70 -32.72 125.35 -65.61 4.18 -56.53 -121.18 9.08 

42 146.86 -66.12 50.22 -25.66 214.60 -45.81 96.64 -40.46 -67.74 -20.31 -164.38 20.15 

43 134.34 -42.86 76.57 -30.47 88.36 -21.63 57.77 -12.40 45.98 -21.23 -11.79 -8.83 

44 108.25 -26.94 51.10 -21.64 47.70 -12.34 57.15 -5.30 60.55 -14.61 3.40 -9.30 

45 37.26 -32.79 38.72 -24.91 29.83 -5.62 -1.46 -7.88 7.43 -27.17 8.88 -19.28 

46 73.67 -50.37 112.51 -32.59 80.60 -25.00 -38.84 -17.78 -6.93 -25.37 31.91 -7.59 

47 150.38 -112.54 96.56 -32.14 74.32 -36.42 53.82 -80.40 76.06 -76.11 22.24 4.28 

48 68.80 -176.67 52.60 -171.65 25.54 -84.39 16.20 -5.02 43.26 -92.28 27.05 -87.25 

49 353.31 -112.19 271.97 -56.80 96.16 -29.61 81.34 -55.39 257.15 -82.58 175.81 -27.19 

50 172.57 -85.65 58.89 -24.87 26.91 -81.18 113.68 -60.79 145.65 -4.47 31.98 56.31 

51 98.28 -314.94 48.10 -138.52 85.12 -292.71 50.17 -176.42 13.16 -22.23 -37.01 154.19 

52 1259.53 -281.32 105.71 -56.38 230.44 -69.55 1153.81 -224.94 1029.09 -211.77 -124.73 13.17 

53 107.46 -66.98 153.07 -705.73 45.02 -27.06 -45.62 638.74 62.44 -39.93 108.06 -678.67 

54 801.35 -354.05 600.87 -160.96 1062.90 -254.86 200.47 -193.10 -261.55 -99.19 -462.03 93.91 

55 220.46 -505.30 144.34 -445.07 229.91 -406.71 76.11 -60.22 -9.45 -98.58 -85.56 -38.36 

56 79.00 -96.92 141.62 -127.65 33.68 -73.78 -62.62 30.73 45.32 -23.14 107.94 -53.87 

57 57.24 -135.92 20.78 -47.00 19.42 -19.14 36.46 -88.92 37.82 -116.78 1.37 -27.86 

58 45.08 -76.07 20.04 -51.00 30.22 -13.14 25.04 -25.07 14.86 -62.93 -10.18 -37.86 

59 139.49 -53.46 78.60 -21.90 11.37 -16.95 60.88 -31.56 128.12 -36.51 67.24 -4.95 

60 177.48 -537.28 107.84 -318.77 105.78 -354.50 69.65 -218.51 71.70 -182.78 2.06 35.73 

61 509.64 -163.26 221.10 -79.62 110.94 -49.27 288.54 -83.64 398.71 -114.00 110.17 -30.36 

62 8.23 -22.21 13.70 -16.33 0.97 -0.93 -5.47 -5.87 7.26 -21.28 12.73 -15.40 

63 688.99 -230.35 318.12 -103.96 103.73 -24.84 370.86 -126.40 585.25 -205.51 214.39 -79.11 

64 361.94 -885.14 173.59 -546.05 126.92 -251.25 188.34 -339.09 235.02 -633.90 46.67 -294.81 

65 70.65 -184.75 77.31 -107.71 13.90 -32.98 -6.65 -77.04 56.75 -151.77 63.40 -74.73 

66 313.41 -161.65 136.75 -65.63 378.00 -192.60 176.66 -96.02 -64.59 30.95 -241.26 126.97 

67 50.51 -111.26 21.23 -46.70 26.78 -11.60 29.28 -64.55 23.73 -99.65 -5.55 -35.10 

68 155.95 -111.43 148.83 -161.38 11.35 -23.67 7.12 49.95 144.60 -87.76 137.48 -137.71 

69 433.24 -200.85 209.02 -99.75 247.35 -84.97 224.22 -101.09 185.89 -115.87 -38.33 -14.78 

70 61.60 -60.31 50.63 -26.86 9.60 -4.64 10.97 -33.45 51.99 -55.67 41.02 -22.22 

  



292 

Table E.3. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during first premolar (P3) bite load for the 3 models of durophagous species, 

and strain differences (Δε1 and Δε3) at landmark locations between models. Strain 

values are in microstrain (μstrain). 

P3 bite Cercocebus Lophocebus Mandrillus Cercocebus-Lophocebus Cercocebus-Mandrillus Lophocebus-Mandrillus 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 6.17 -7.74 14.59 -13.57 4.51 -5.68 -8.42 5.83 1.66 -2.06 10.08 -7.89 

2 141.43 -32.20 40.30 -12.37 16.72 -8.68 101.13 -19.83 124.72 -23.52 23.59 -3.69 

3 563.54 -154.45 36.16 -17.30 15.46 -9.10 527.39 -137.16 548.09 -145.35 20.70 -8.19 

4 129.72 -353.13 47.42 -117.17 83.51 -286.35 82.31 -235.96 46.21 -66.78 -36.09 169.19 

5 15.08 -33.89 19.98 -13.52 39.87 -12.99 -4.90 -20.37 -24.78 -20.90 -19.88 -0.53 

6 48.53 -25.93 34.12 -43.00 19.82 -49.63 14.41 17.07 28.71 23.70 14.30 6.64 

7 0.41 -0.48 24.39 -8.91 5.38 -20.04 -23.98 8.43 -4.97 19.57 19.01 11.14 

8 50.23 -36.12 57.53 -10.85 246.15 -45.15 -7.30 -25.26 -195.92 9.04 -188.61 34.30 

9 167.44 -241.04 85.18 -137.63 52.21 -158.34 82.27 -103.41 115.24 -82.70 32.97 20.71 

10 117.24 -44.24 81.32 -30.82 114.92 -33.30 35.92 -13.42 2.32 -10.93 -33.60 2.48 

11 81.52 -96.94 53.69 -41.12 39.35 -12.03 27.83 -55.82 42.17 -84.91 14.34 -29.09 

12 49.97 -42.04 5.82 -12.00 11.83 -17.00 44.16 -30.04 38.15 -25.04 -6.01 5.00 

13 130.81 -317.42 111.11 -203.34 87.02 -296.02 19.70 -114.09 43.80 -21.40 24.10 92.69 

14 111.72 -49.47 232.41 -578.77 157.90 -261.44 -120.69 529.30 -46.17 211.97 74.52 -317.33 

15 148.01 -124.74 111.07 -124.57 53.82 -100.81 36.93 -0.17 94.19 -23.94 57.26 -23.76 

16 74.99 -86.43 55.37 -144.97 31.51 -74.07 19.62 58.54 43.48 -12.35 23.86 -70.89 

17 11.05 -29.71 3.75 -4.73 11.91 -4.41 7.30 -24.97 -0.86 -25.29 -8.16 -0.32 

18 194.79 -45.04 79.67 -33.33 160.35 -49.18 115.12 -11.70 34.45 4.15 -80.67 15.85 

19 34.43 -24.85 14.38 -37.95 59.02 -34.31 20.05 13.10 -24.59 9.46 -44.64 -3.64 

20 66.00 -54.35 66.52 -127.96 11.09 -34.71 -0.52 73.61 54.91 -19.65 55.43 -93.25 

21 494.25 -165.15 125.73 -42.07 271.88 -92.86 368.53 -123.09 222.37 -72.29 -146.15 50.80 

22 53.50 -169.92 44.06 -142.32 111.91 -305.92 9.44 -27.60 -58.41 135.99 -67.84 163.60 

23 100.99 -345.32 29.15 -143.25 57.49 -161.89 71.84 -202.08 43.50 -183.43 -28.35 18.64 

24 161.36 -273.41 53.22 -148.58 85.29 -45.36 108.14 -124.83 76.07 -228.05 -32.07 -103.22 

25 63.57 -48.63 104.78 -325.92 192.00 -382.31 -41.20 277.29 -128.42 333.67 -87.22 56.39 

26 996.95 -294.11 716.21 -235.46 647.13 -285.19 280.74 -58.65 349.82 -8.92 69.08 49.73 

27 210.95 -444.13 171.48 -228.15 299.72 -356.76 39.47 -215.98 -88.77 -87.37 -128.24 128.61 

28 271.92 -91.38 195.34 -90.13 50.77 -153.07 76.57 -1.25 221.15 61.70 144.58 62.94 

29 33.29 -66.12 18.35 -48.05 8.43 -3.61 14.94 -18.06 24.86 -62.51 9.92 -44.44 

30 24.08 -15.34 7.57 -6.90 99.42 -30.20 16.51 -8.43 -75.34 14.86 -91.85 23.29 

31 58.05 -61.93 11.67 -34.47 73.03 -240.16 46.38 -27.46 -14.98 178.24 -61.36 205.69 

32 93.25 -286.89 90.55 -263.68 138.26 -373.81 2.70 -23.20 -45.00 86.92 -47.71 110.12 

33 276.50 -120.16 133.14 -66.02 147.73 -60.40 143.36 -54.14 128.76 -59.76 -14.59 -5.62 

34 4.29 -12.53 8.15 -13.17 1.47 -2.87 -3.86 0.64 2.82 -9.66 6.68 -10.30 

35 201.55 -244.09 220.12 -51.18 310.23 -69.31 -18.56 -192.91 -108.68 -174.78 -90.11 18.13 

36 258.12 -505.89 145.29 -391.77 165.57 -351.45 112.83 -114.12 92.55 -154.45 -20.28 -40.33 

37 3.60 -2.65 52.46 -14.91 12.74 -4.05 -48.86 12.26 -9.14 1.40 39.73 -10.86 

38 10.80 -29.67 11.87 -40.59 59.31 -20.68 -1.07 10.92 -48.51 -8.99 -47.45 -19.91 

39 35.56 -101.81 26.20 -90.80 9.26 -26.98 9.36 -11.01 26.29 -74.83 16.93 -63.82 

40 27.95 -15.28 30.26 -9.01 6.27 -5.26 -2.31 -6.26 21.68 -10.01 23.99 -3.75 

41 37.88 -24.46 9.94 -7.79 56.22 -11.01 27.95 -16.67 -18.33 -13.45 -46.28 3.22 

42 49.39 -24.12 14.58 -7.76 105.90 -22.54 34.80 -16.36 -56.51 -1.59 -91.32 14.78 

43 50.08 -15.99 25.28 -9.27 46.08 -12.02 24.80 -6.72 4.00 -3.98 -20.80 2.74 

44 38.86 -8.78 16.86 -8.25 26.18 -6.67 22.00 -0.52 12.68 -2.11 -9.32 -1.58 

45 11.39 -20.49 12.93 -14.09 14.76 -2.48 -1.54 -6.40 -3.37 -18.01 -1.83 -11.61 

46 44.84 -36.53 65.10 -18.97 50.36 -15.21 -20.26 -17.56 -5.52 -21.32 14.74 -3.75 

47 139.41 -76.35 106.17 -36.23 75.43 -54.81 33.24 -40.12 63.98 -21.55 30.74 18.57 

48 65.31 -178.93 52.72 -174.96 25.46 -86.76 12.59 -3.97 39.85 -92.17 27.26 -88.20 

49 281.96 -89.16 202.92 -43.14 22.47 -14.33 79.05 -46.02 259.50 -74.82 180.45 -28.81 

50 238.03 -88.88 102.60 -34.39 33.03 -39.08 135.44 -54.49 205.00 -49.80 69.56 4.69 

51 88.49 -243.38 48.97 -99.69 95.74 -277.87 39.52 -143.70 -7.25 34.49 -46.77 178.18 

52 918.22 -193.90 75.88 -32.84 90.73 -27.02 842.34 -161.06 827.48 -166.87 -14.86 -5.82 

53 108.57 -69.51 153.75 -700.26 56.47 -22.91 -45.18 630.74 52.10 -46.60 97.28 -677.35 

54 807.32 -358.85 602.35 -161.93 1063.83 -269.08 204.97 -196.92 -256.51 -89.78 -461.48 107.15 

55 223.37 -512.29 145.73 -451.01 212.73 -382.49 77.64 -61.28 10.63 -129.80 -67.01 -68.52 

56 86.32 -54.08 93.51 -57.68 28.34 -51.69 -7.19 3.60 57.98 -2.39 65.17 -5.99 

57 51.77 -125.41 18.72 -40.37 22.11 -23.08 33.05 -85.03 29.65 -102.33 -3.39 -17.29 

58 45.89 -82.98 24.45 -63.53 23.50 -10.72 21.44 -19.45 22.39 -72.26 0.95 -52.81 

59 148.69 -57.68 107.32 -28.84 33.55 -10.64 41.36 -28.84 115.14 -47.03 73.78 -18.20 

60 179.80 -545.45 111.38 -329.37 102.45 -342.90 68.42 -216.09 77.35 -202.55 8.93 13.53 

61 508.89 -162.90 232.19 -82.63 127.35 -50.68 276.70 -80.27 381.54 -112.22 104.84 -31.95 

62 7.31 -19.79 13.54 -16.32 0.90 -0.70 -6.23 -3.47 6.41 -19.09 12.64 -15.62 

63 671.82 -224.66 319.79 -104.38 100.92 -23.78 352.03 -120.28 570.90 -200.89 218.86 -80.61 

64 367.36 -897.26 179.43 -570.39 135.20 -276.48 187.93 -326.87 232.16 -620.78 44.23 -293.91 

65 112.50 -155.05 52.20 -41.46 23.07 -9.13 60.30 -113.60 89.43 -145.92 29.13 -32.33 

66 302.93 -151.58 136.16 -63.80 478.46 -265.95 166.77 -87.78 -175.53 114.36 -342.30 202.15 

67 211.27 -320.96 114.95 -213.14 84.26 -111.64 96.32 -107.82 127.01 -209.33 30.69 -101.51 

68 104.95 -61.60 82.80 -69.56 7.84 -12.07 22.15 7.96 97.10 -49.52 74.96 -57.48 

69 398.40 -192.19 206.28 -96.34 218.39 -71.25 192.12 -95.85 180.01 -120.93 -12.11 -25.08 

70 26.42 -12.17 25.13 -8.89 8.51 -3.44 1.29 -3.28 17.91 -8.73 16.62 -5.45 
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Table E.4. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during second premolar (P4) bite load for the 3 models of durophagous 

species, and strain differences (Δε1 and Δε3) at landmark locations between models. 

Strain values are in microstrain (μstrain). 

P4 bite Cercocebus Lophocebus Mandrillus Cercocebus-Lophocebus Cercocebus-Mandrillus Lophocebus-Mandrillus 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 7.63 -6.83 8.43 -7.69 3.95 -4.84 -0.80 0.86 3.68 -1.99 4.48 -2.85 

2 141.58 -31.51 34.36 -10.98 15.83 -7.33 107.22 -20.53 125.74 -24.18 18.53 -3.65 

3 519.63 -141.40 32.08 -15.82 13.93 -8.26 487.55 -125.58 505.69 -133.14 18.15 -7.56 

4 120.53 -330.68 46.67 -109.62 78.84 -275.14 73.86 -221.06 41.68 -55.54 -32.18 165.52 

5 12.97 -30.50 20.57 -12.24 42.31 -13.47 -7.60 -18.26 -29.34 -17.02 -21.74 1.23 

6 49.06 -27.89 34.27 -42.86 19.99 -50.08 14.78 14.96 29.06 22.18 14.28 7.22 

7 0.76 -1.04 25.03 -9.13 5.39 -20.03 -24.27 8.09 -4.63 18.99 19.65 10.90 

8 51.75 -33.21 57.76 -17.14 242.02 -44.80 -6.01 -16.06 -190.27 11.60 -184.26 27.66 

9 162.41 -231.45 84.47 -127.76 49.39 -145.15 77.94 -103.69 113.02 -86.30 35.08 17.39 

10 125.17 -47.42 89.99 -33.95 117.52 -33.78 35.18 -13.47 7.65 -13.64 -27.53 -0.17 

11 77.68 -68.78 56.71 -25.03 32.38 -10.24 20.97 -43.75 45.30 -58.54 24.32 -14.79 

12 49.37 -50.21 10.16 -22.75 10.70 -16.02 39.20 -27.46 38.67 -34.19 -0.54 -6.73 

13 36.64 -106.59 60.05 -103.69 35.77 -133.52 -23.42 -2.90 0.87 26.93 24.29 29.83 

14 85.45 -174.62 108.45 -490.18 193.45 -329.54 -22.99 315.56 -107.99 154.92 -85.00 -160.64 

15 128.07 -162.24 183.76 -402.32 346.12 -649.35 -55.69 240.08 -218.05 487.11 -162.36 247.04 

16 90.34 -111.20 98.42 -301.19 68.73 -176.84 -8.08 189.99 21.61 65.64 29.69 -124.35 

17 20.22 -53.70 8.69 -18.71 9.68 -8.58 11.53 -34.99 10.54 -45.13 -0.99 -10.13 

18 154.01 -41.05 61.71 -25.80 155.71 -48.41 92.30 -15.26 -1.70 7.36 -94.00 22.62 

19 40.02 -44.91 19.94 -52.56 65.39 -50.01 20.09 7.65 -25.37 5.10 -45.45 -2.55 

20 61.33 -50.80 66.04 -124.13 8.04 -25.27 -4.71 73.33 53.29 -25.53 58.00 -98.86 

21 504.53 -168.53 129.43 -44.28 294.25 -100.91 375.10 -124.26 210.28 -67.63 -164.82 56.63 

22 57.76 -194.69 51.65 -166.06 120.74 -328.52 6.12 -28.64 -62.97 133.83 -69.09 162.46 

23 96.37 -328.59 27.21 -130.19 55.24 -153.88 69.16 -198.40 41.14 -174.71 -28.02 23.69 

24 144.96 -241.25 46.50 -135.08 87.01 -42.73 98.46 -106.17 57.95 -198.53 -40.51 -92.35 

25 65.72 -51.73 106.85 -324.91 192.97 -399.57 -41.13 273.18 -127.26 347.84 -86.13 74.66 

26 1011.43 -298.79 731.23 -240.52 664.36 -288.50 280.20 -58.27 347.07 -10.29 66.86 47.98 

27 210.19 -451.15 170.81 -227.70 296.61 -359.79 39.38 -223.45 -86.42 -91.36 -125.80 132.09 

28 289.78 -99.82 196.29 -84.05 49.97 -142.87 93.49 -15.77 239.81 43.05 146.32 58.82 

29 31.36 -60.90 18.07 -46.88 7.62 -2.57 13.30 -14.02 23.75 -58.33 10.45 -44.32 

30 29.98 -13.40 15.90 -8.52 101.58 -30.89 14.08 -4.88 -71.59 17.49 -85.67 22.37 

31 52.24 -65.14 15.32 -44.31 83.40 -273.17 36.92 -20.83 -31.15 208.04 -68.08 228.87 

32 89.94 -276.54 89.61 -261.01 138.73 -375.17 0.33 -15.53 -48.79 98.62 -49.12 114.16 

33 261.00 -119.21 124.51 -67.02 137.45 -57.87 136.49 -52.20 123.54 -61.34 -12.95 -9.15 

34 3.39 -9.36 7.27 -12.08 1.28 -2.06 -3.88 2.72 2.11 -7.29 6.00 -10.01 

35 203.08 -251.30 215.84 -50.62 308.35 -68.52 -12.76 -200.69 -105.27 -182.79 -92.51 17.90 

36 253.44 -491.50 142.86 -380.70 161.47 -342.14 110.58 -110.79 91.97 -149.35 -18.61 -38.56 

37 3.96 -2.95 53.75 -15.28 12.57 -4.08 -49.79 12.33 -8.61 1.13 41.18 -11.20 

38 11.29 -31.26 12.19 -42.00 57.14 -21.26 -0.91 10.74 -45.85 -10.00 -44.94 -20.74 

39 30.90 -88.59 21.42 -73.33 8.34 -24.34 9.48 -15.27 22.56 -64.26 13.09 -48.99 

40 24.93 -22.01 19.56 -6.05 5.30 -4.60 5.38 -15.96 19.64 -17.41 14.26 -1.45 

41 31.51 -19.88 6.67 -5.34 47.31 -9.29 24.85 -14.54 -15.79 -10.59 -40.64 3.95 

42 40.68 -18.59 10.41 -5.26 91.71 -19.52 30.27 -13.33 -51.02 0.92 -81.30 14.26 

43 41.10 -13.03 17.81 -6.49 39.92 -10.59 23.29 -6.54 1.17 -2.44 -22.11 4.10 

44 30.41 -7.32 12.34 -6.91 22.72 -5.76 18.07 -0.41 7.70 -1.57 -10.37 -1.15 

45 9.89 -20.50 10.06 -13.42 12.91 -2.14 -0.17 -7.08 -3.02 -18.36 -2.85 -11.28 

46 41.70 -34.73 58.24 -17.03 46.96 -14.11 -16.54 -17.70 -5.26 -20.62 11.28 -2.92 

47 126.76 -70.31 103.33 -36.46 75.74 -59.93 23.44 -33.85 51.02 -10.38 27.58 23.47 

48 63.95 -178.26 52.58 -174.42 25.38 -86.75 11.37 -3.83 38.56 -91.50 27.19 -87.67 

49 275.55 -87.13 196.44 -41.83 16.26 -18.19 79.11 -45.31 259.29 -68.95 180.18 -23.64 

50 245.22 -90.26 107.75 -36.03 39.61 -35.72 137.47 -54.23 205.62 -54.54 68.14 -0.31 

51 85.55 -225.33 48.45 -90.21 97.47 -269.39 37.10 -135.11 -11.93 44.06 -49.03 179.18 

52 843.15 -178.22 67.74 -28.88 76.05 -22.62 775.41 -149.34 767.10 -155.60 -8.31 -6.26 

53 109.14 -70.77 156.05 -707.44 55.21 -22.48 -46.91 636.66 53.93 -48.30 100.84 -684.96 

54 810.74 -360.62 603.67 -162.35 1067.60 -271.75 207.08 -198.27 -256.85 -88.86 -463.93 109.41 

55 225.18 -517.18 146.26 -452.13 208.03 -378.76 78.93 -65.06 17.15 -138.42 -61.77 -73.36 

56 85.86 -51.68 88.30 -50.53 26.82 -49.78 -2.44 -1.15 59.04 -1.90 61.48 -0.75 

57 51.13 -124.24 18.95 -40.51 22.46 -23.89 32.19 -83.73 28.67 -100.34 -3.52 -16.61 

58 46.07 -83.49 25.21 -65.60 21.89 -10.12 20.85 -17.88 24.17 -73.37 3.32 -55.48 

59 147.51 -57.31 111.99 -29.49 40.26 -13.19 35.52 -27.81 107.25 -44.12 71.72 -16.31 

60 179.98 -546.32 112.14 -331.67 101.76 -340.59 67.84 -214.66 78.21 -205.74 10.38 8.92 

61 505.76 -161.97 232.23 -82.70 129.69 -50.88 273.53 -79.27 376.08 -111.10 102.54 -31.82 

62 6.87 -18.62 13.28 -16.04 0.87 -0.63 -6.40 -2.58 6.00 -17.99 12.41 -15.41 

63 665.42 -222.51 319.54 -104.32 100.21 -23.53 345.88 -118.19 565.20 -198.98 219.33 -80.79 

64 367.65 -897.33 180.07 -573.33 136.79 -281.58 187.58 -324.00 230.86 -615.75 43.28 -291.75 

65 117.67 -128.92 69.06 -39.65 25.96 -7.72 48.61 -89.26 91.71 -121.19 43.10 -31.93 

66 300.75 -149.21 138.61 -64.42 502.87 -284.49 162.14 -84.79 -202.12 135.29 -364.26 220.07 

67 199.00 -283.75 110.74 -204.94 64.95 -105.45 88.26 -78.82 134.05 -178.31 45.79 -99.49 

68 97.88 -57.86 73.41 -61.04 7.55 -11.89 24.47 3.18 90.33 -45.97 65.86 -49.15 

69 392.79 -190.70 205.45 -96.29 214.52 -70.11 187.35 -94.41 178.27 -120.60 -9.08 -26.19 

70 21.83 -9.04 22.40 -8.07 7.71 -3.09 -0.58 -0.97 14.12 -5.96 14.70 -4.99 
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Table E.5. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during first molar (M1) bite load for the 3 models of durophagous species, 

and strain differences (Δε1 and Δε3) at landmark locations between models. Strain 

values are in microstrain (μstrain). 

M1 bite Cercocebus Lophocebus Mandrillus Cercocebus-Lophocebus Cercocebus-Mandrillus Lophocebus-Mandrillus 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 6.11 -6.06 6.58 -1.80 2.94 -2.60 -0.48 -4.26 3.16 -3.46 3.64 0.80 

2 97.20 -21.25 68.14 -19.37 22.51 -7.84 29.06 -1.89 74.70 -13.41 45.64 -11.52 

3 406.48 -111.44 28.54 -14.65 14.04 -8.19 377.95 -96.79 392.44 -103.25 14.50 -6.45 

4 106.70 -299.00 42.48 -95.08 72.38 -256.46 64.22 -203.93 34.32 -42.55 -29.90 161.38 

5 14.55 -25.55 21.07 -10.10 44.72 -14.26 -6.52 -15.45 -30.16 -11.29 -23.65 4.16 

6 51.38 -34.48 34.22 -42.53 20.15 -50.46 17.16 8.04 31.23 15.98 14.07 7.93 

7 1.36 -2.05 25.85 -9.42 5.40 -20.10 -24.49 7.37 -4.04 18.06 20.46 10.68 

8 56.14 -28.85 54.88 -24.07 232.33 -43.53 1.26 -4.78 -176.19 14.68 -177.46 19.46 

9 150.06 -199.67 78.31 -126.42 41.48 -136.06 71.75 -73.25 108.58 -63.61 36.83 9.64 

10 146.78 -56.13 92.02 -34.68 119.75 -34.31 54.77 -21.45 27.03 -21.81 -27.73 -0.37 

11 64.77 -42.29 65.28 -24.10 23.29 -7.88 -0.51 -18.19 41.48 -34.41 41.98 -16.22 

12 34.15 -41.29 25.67 -41.77 12.16 -15.16 8.48 0.48 21.99 -26.14 13.51 -26.61 

13 24.23 -70.10 7.68 -13.04 17.06 -4.83 16.55 -57.06 7.17 -65.27 -9.38 -8.21 

14 41.06 -75.73 34.94 -87.85 37.35 -84.56 6.12 12.12 3.71 8.83 -2.41 -3.29 

15 206.76 -417.71 65.73 -248.68 53.41 -93.10 141.03 -169.03 153.36 -324.61 12.32 -155.58 

16 175.74 -205.02 107.88 -394.39 108.69 -256.66 67.86 189.37 67.05 51.64 -0.81 -137.73 

17 59.39 -133.24 12.69 -30.15 13.50 -36.60 46.70 -103.09 45.89 -96.65 -0.80 6.45 

18 115.37 -23.83 33.88 -12.97 83.13 -25.40 81.48 -10.85 32.23 1.57 -49.25 12.43 

19 56.31 -95.39 26.86 -58.86 70.65 -69.57 29.45 -36.52 -14.34 -25.82 -43.80 10.70 

20 52.01 -42.86 66.44 -122.27 5.41 -17.02 -14.43 79.41 46.60 -25.84 61.03 -105.25 

21 505.35 -168.97 135.56 -47.35 310.03 -106.75 369.79 -121.62 195.32 -62.22 -174.47 59.40 

22 80.73 -271.42 52.61 -169.39 125.68 -341.52 28.12 -102.03 -44.95 70.11 -73.07 172.14 

23 91.07 -304.06 24.67 -113.37 52.24 -145.79 66.39 -190.69 38.82 -158.28 -27.57 32.41 

24 112.57 -195.46 46.69 -124.80 102.89 -46.37 65.88 -70.65 9.69 -149.08 -56.20 -78.43 

25 66.76 -59.96 106.40 -321.28 188.22 -397.09 -39.64 261.32 -121.46 337.13 -81.82 75.81 

26 1043.01 -309.21 744.40 -244.96 674.39 -291.09 298.62 -64.25 368.62 -18.12 70.00 46.14 

27 210.84 -467.48 171.98 -229.05 292.62 -360.95 38.86 -238.43 -81.78 -106.53 -120.64 131.90 

28 314.85 -111.81 198.34 -76.95 48.40 -125.54 116.51 -34.86 266.44 13.73 149.94 48.59 

29 26.77 -47.33 17.72 -45.90 7.20 -2.72 9.05 -1.43 19.57 -44.61 10.52 -43.18 

30 52.94 -16.72 18.81 -9.56 104.04 -31.64 34.14 -7.16 -51.09 14.92 -85.23 22.08 

31 45.34 -81.71 16.66 -44.99 86.96 -284.51 28.68 -36.72 -41.62 202.80 -70.30 239.52 

32 83.73 -247.85 90.57 -263.81 138.73 -375.25 -6.85 15.97 -55.01 127.41 -48.16 111.44 

33 224.57 -118.05 121.66 -68.14 131.59 -56.46 102.90 -49.91 92.98 -61.59 -9.92 -11.68 

34 1.90 -3.75 6.55 -11.15 1.30 -1.50 -4.66 7.40 0.59 -2.26 5.25 -9.66 

35 207.35 -270.35 216.10 -50.62 306.78 -67.95 -8.75 -219.74 -99.43 -202.40 -90.68 17.33 

36 241.65 -454.54 143.04 -379.64 159.32 -337.47 98.61 -74.89 82.32 -117.07 -16.28 -42.17 

37 4.99 -3.68 55.26 -15.64 12.39 -4.07 -50.26 11.96 -7.39 0.39 42.87 -11.57 

38 13.17 -37.89 11.31 -38.83 55.91 -21.09 1.86 0.94 -42.74 -16.80 -44.60 -17.74 

39 22.00 -62.89 19.16 -65.53 7.60 -22.74 2.84 2.64 14.41 -40.15 11.56 -42.79 

40 16.06 -17.39 11.06 -4.62 4.24 -3.64 5.00 -12.77 11.81 -13.74 6.81 -0.98 

41 22.41 -14.04 4.08 -2.56 49.64 -9.45 18.33 -11.48 -27.24 -4.59 -45.56 6.89 

42 28.11 -10.99 7.12 -2.96 90.03 -19.11 21.00 -8.04 -61.92 8.12 -82.91 16.15 

43 27.87 -8.82 10.84 -4.29 37.01 -11.08 17.02 -4.53 -9.14 2.26 -26.16 6.79 

44 17.30 -6.34 8.84 -6.57 18.45 -4.65 8.46 0.23 -1.14 -1.70 -9.61 -1.93 

45 8.49 -20.29 8.90 -14.04 8.96 -1.43 -0.41 -6.25 -0.47 -18.86 -0.06 -12.61 

46 34.37 -30.38 54.37 -16.13 42.99 -13.06 -20.00 -14.25 -8.62 -17.32 11.37 -3.07 

47 125.68 -63.35 88.83 -33.53 72.58 -57.13 36.84 -29.82 53.09 -6.22 16.25 23.60 

48 62.78 -179.62 51.88 -170.17 24.19 -81.44 10.89 -9.45 38.59 -98.18 27.70 -88.73 

49 250.83 -79.34 201.30 -42.69 20.79 -13.07 49.52 -36.66 230.04 -66.27 180.51 -29.62 

50 278.16 -97.62 99.68 -33.58 39.71 -35.21 178.48 -64.03 238.45 -62.40 59.97 1.63 

51 84.69 -197.37 44.42 -78.31 94.67 -250.93 40.27 -119.06 -9.97 53.56 -50.25 172.62 

52 687.83 -144.38 62.80 -28.16 67.34 -19.95 625.03 -116.21 620.49 -124.42 -4.54 -8.21 

53 110.16 -71.54 161.95 -729.16 42.29 -22.69 -51.79 657.63 67.87 -48.84 119.66 -706.47 

54 807.50 -360.74 608.57 -163.34 1079.52 -269.92 198.94 -197.40 -272.02 -90.82 -470.95 106.58 

55 225.01 -516.43 147.38 -452.78 202.34 -383.17 77.62 -63.65 22.66 -133.27 -54.96 -69.61 

56 76.74 -43.83 91.34 -52.39 23.53 -49.02 -14.60 8.57 53.21 5.20 67.82 -3.37 

57 50.37 -123.22 19.03 -41.16 21.80 -23.77 31.34 -82.06 28.57 -99.45 -2.77 -17.39 

58 48.08 -88.69 24.52 -63.67 21.26 -9.75 23.57 -25.02 26.82 -78.93 3.25 -53.92 

59 152.20 -59.51 110.49 -27.86 40.56 -13.31 41.71 -31.65 111.63 -46.20 69.92 -14.56 

60 182.49 -554.60 111.87 -330.93 101.50 -339.89 70.63 -223.67 80.99 -214.71 10.37 8.96 

61 509.43 -162.89 224.90 -80.88 125.39 -50.06 284.53 -82.01 384.04 -112.83 99.51 -30.82 

62 6.45 -17.53 12.48 -15.14 0.76 -0.51 -6.04 -2.38 5.68 -17.02 11.72 -14.63 

63 660.33 -220.80 316.65 -103.56 98.86 -23.09 343.68 -117.25 561.47 -197.72 217.79 -80.47 

64 372.60 -908.73 178.25 -566.41 135.82 -279.09 194.35 -342.32 236.78 -629.64 42.43 -287.32 

65 122.64 -120.98 70.82 -30.27 27.38 -8.66 51.82 -90.71 95.26 -112.32 43.44 -21.61 

66 292.17 -143.93 144.10 -65.55 514.72 -291.01 148.06 -78.38 -222.55 147.08 -370.62 225.46 

67 155.04 -253.24 79.56 -136.32 27.00 -55.71 75.48 -116.92 128.04 -197.53 52.56 -80.61 

68 82.25 -48.90 70.88 -58.95 6.56 -10.83 11.37 10.05 75.69 -38.07 64.32 -48.12 

69 380.21 -188.92 204.70 -96.58 219.28 -71.82 175.51 -92.34 160.92 -117.10 -14.58 -24.76 

70 18.47 -6.13 23.48 -7.90 9.66 -3.79 -5.01 1.77 8.80 -2.34 13.81 -4.11 
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Table E.6. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during second molar (M2) bite load for the 3 models of durophagous 

species, and strain differences (Δε1 and Δε3) at landmark locations between models. 

Strain values are in microstrain (μstrain). 

M2 bite Cercocebus Lophocebus Mandrillus Cercocebus-Lophocebus Cercocebus-Mandrillus Lophocebus-Mandrillus 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 11.20 -8.76 8.81 -1.49 1.54 -1.12 2.39 -7.27 9.65 -7.64 7.27 -0.37 

2 129.71 -28.01 66.47 -18.14 20.63 -6.91 63.24 -9.87 109.08 -21.10 45.84 -11.23 

3 371.42 -98.75 20.64 -11.33 10.80 -6.29 350.78 -87.42 360.63 -92.47 9.85 -5.04 

4 86.09 -244.42 41.92 -78.81 62.09 -229.56 44.18 -165.61 24.01 -14.87 -20.17 150.74 

5 15.98 -16.43 21.78 -6.77 49.40 -15.62 -5.80 -9.66 -33.42 -0.80 -27.62 8.86 

6 52.11 -36.54 34.50 -42.42 20.38 -51.06 17.61 5.88 31.73 14.51 14.12 8.63 

7 2.34 -3.67 27.52 -10.00 5.42 -20.19 -25.18 6.33 -3.08 16.52 22.10 10.19 

8 58.51 -22.68 53.98 -40.28 219.21 -42.39 4.53 17.60 -160.71 19.71 -165.24 2.11 

9 125.67 -184.92 51.66 -104.33 21.53 -110.10 74.02 -80.59 104.14 -74.82 30.12 5.77 

10 152.26 -58.19 100.93 -37.87 124.34 -35.39 51.34 -20.31 27.92 -22.80 -23.41 -2.48 

11 65.42 -25.15 59.71 -22.01 15.33 -5.29 5.70 -3.14 50.08 -19.86 44.38 -16.72 

12 49.74 -58.22 27.73 -39.68 10.77 -11.88 22.02 -18.54 38.98 -46.34 16.96 -27.80 

13 3.32 -2.83 5.13 -5.99 64.16 -17.27 -1.81 3.17 -60.85 14.44 -59.03 11.27 

14 2.56 -6.08 11.41 -31.48 5.39 -9.73 -8.85 25.40 -2.83 3.65 6.02 -21.75 

15 36.26 -100.30 34.17 -68.66 3.66 -8.57 2.09 -31.64 32.60 -91.72 30.51 -60.08 

16 49.58 -124.00 40.43 -95.19 35.05 -112.91 9.16 -28.82 14.53 -11.10 5.37 17.72 

17 86.13 -204.99 39.32 -68.63 72.03 -202.62 46.81 -136.36 14.10 -2.37 -32.71 133.99 

18 14.17 -74.42 21.38 -50.97 33.54 -104.79 -7.22 -23.45 -19.38 30.37 -12.16 53.82 

19 82.45 -126.41 49.70 -76.34 83.30 -108.71 32.76 -50.07 -0.85 -17.70 -33.60 32.37 

20 43.21 -36.64 66.63 -115.94 3.46 -4.57 -23.42 79.31 39.75 -32.07 63.17 -111.37 

21 532.49 -178.30 140.73 -51.15 342.09 -118.46 391.76 -127.15 190.40 -59.84 -201.36 67.30 

22 85.50 -286.05 59.98 -192.35 135.75 -367.80 25.52 -93.70 -50.25 81.75 -75.77 175.45 

23 83.45 -269.86 23.10 -91.44 47.50 -133.81 60.35 -178.42 35.95 -136.05 -24.40 42.37 

24 95.07 -146.93 36.74 -97.11 86.36 -37.75 58.33 -49.82 8.71 -109.18 -49.62 -59.36 

25 76.16 -63.93 108.11 -318.78 182.23 -396.36 -31.95 254.84 -106.07 332.42 -74.12 77.58 

26 1069.07 -317.26 770.00 -253.57 693.11 -295.84 299.07 -63.69 375.96 -21.42 76.89 42.27 

27 214.47 -483.44 172.96 -230.85 288.04 -365.16 41.51 -252.59 -73.56 -118.28 -115.08 134.32 

28 348.07 -127.80 192.99 -64.11 48.77 -104.66 155.08 -63.69 299.30 -23.14 144.22 40.55 

29 24.39 -41.76 16.97 -43.36 6.42 -3.15 7.42 1.60 17.97 -38.60 10.55 -40.20 

30 64.70 -20.60 31.74 -14.77 108.54 -33.01 32.96 -5.83 -43.84 12.41 -76.80 18.24 

31 42.34 -86.88 21.67 -54.08 95.41 -311.51 20.66 -32.81 -53.08 224.63 -73.74 257.43 

32 82.85 -240.29 90.00 -262.22 139.05 -376.22 -7.15 21.93 -56.20 135.93 -49.05 114.00 

33 208.09 -119.77 111.82 -71.27 120.27 -54.01 96.26 -48.51 87.81 -65.77 -8.45 -17.26 

34 3.51 -3.79 4.81 -8.85 2.18 -1.36 -1.29 5.06 1.33 -2.43 2.63 -7.49 

35 209.03 -278.64 211.50 -50.07 303.93 -66.85 -2.48 -228.57 -94.90 -211.79 -92.43 16.78 

36 236.85 -440.27 140.45 -365.66 154.79 -327.40 96.40 -74.60 82.07 -112.87 -14.34 -38.27 

37 5.61 -4.01 58.36 -16.42 12.02 -4.06 -52.75 12.42 -6.40 0.05 46.34 -12.36 

38 13.05 -36.99 11.56 -39.39 53.73 -21.38 1.49 2.39 -40.67 -15.61 -42.16 -18.01 

39 15.57 -45.13 13.25 -44.51 6.02 -18.14 2.32 -0.63 9.55 -26.99 7.23 -26.36 

40 23.36 -37.54 9.80 -5.13 3.01 -2.91 13.57 -32.41 20.35 -34.63 6.78 -2.22 

41 20.83 -10.58 4.28 -1.68 48.43 -8.94 16.54 -8.90 -27.61 -1.64 -44.15 7.26 

42 20.33 -5.86 6.44 -1.87 86.55 -18.37 13.88 -3.99 -66.22 12.51 -80.11 16.50 

43 19.91 -6.72 4.76 -1.69 34.49 -11.68 15.16 -5.03 -14.58 4.97 -29.74 9.99 

44 8.52 -4.80 4.37 -4.94 15.76 -4.50 4.15 0.14 -7.24 -0.31 -11.39 -0.45 

45 8.23 -19.54 6.46 -13.15 4.48 -1.05 1.77 -6.39 3.75 -18.49 1.98 -12.10 

46 30.96 -27.68 44.74 -13.47 34.94 -10.96 -13.77 -14.22 -3.98 -16.72 9.80 -2.50 

47 88.18 -53.23 76.82 -31.71 68.78 -56.46 11.36 -21.52 19.40 3.23 8.04 24.75 

48 58.95 -174.47 51.41 -166.09 22.83 -75.58 7.54 -8.38 36.12 -98.88 28.58 -90.51 

49 250.27 -79.10 192.93 -40.86 21.91 -11.78 57.33 -38.25 228.36 -67.32 171.02 -29.07 

50 271.93 -95.82 101.38 -34.14 45.14 -33.90 170.55 -61.68 226.79 -61.92 56.24 -0.24 

51 78.46 -157.88 42.67 -59.46 92.62 -225.82 35.79 -98.43 -14.15 67.94 -49.94 166.37 

52 580.26 -123.48 47.78 -22.41 44.06 -13.14 532.48 -101.07 536.20 -110.34 3.71 -9.26 

53 111.59 -75.49 168.87 -752.71 31.07 -23.54 -57.28 677.21 80.52 -51.95 137.80 -729.17 

54 825.81 -367.93 614.08 -164.67 1094.05 -269.88 211.73 -203.26 -268.25 -98.06 -479.97 105.20 

55 232.61 -537.49 148.89 -454.92 194.75 -386.51 83.72 -82.56 37.86 -150.98 -45.86 -68.42 

56 86.65 -42.49 85.66 -42.22 21.07 -46.12 0.99 -0.28 65.58 3.63 64.59 3.90 

57 48.59 -119.23 19.29 -41.45 21.61 -24.45 29.30 -77.78 26.98 -94.78 -2.32 -17.00 

58 46.58 -85.21 25.05 -65.12 19.69 -9.04 21.54 -20.09 26.89 -76.17 5.35 -56.08 

59 143.00 -55.72 116.66 -27.76 45.60 -15.21 26.34 -27.96 97.40 -40.50 71.06 -12.54 

60 180.01 -547.56 112.46 -332.82 100.90 -338.07 67.55 -214.74 79.11 -209.49 11.57 5.25 

61 492.97 -158.27 219.53 -79.64 122.27 -49.34 273.44 -78.62 370.69 -108.92 97.26 -30.30 

62 5.09 -13.86 11.46 -14.01 0.66 -0.38 -6.37 0.15 4.43 -13.48 10.81 -13.63 

63 640.50 -214.12 314.34 -102.95 97.22 -22.56 326.17 -111.17 543.28 -191.56 217.12 -80.40 

64 368.06 -895.63 177.59 -564.43 135.74 -279.52 190.47 -331.20 232.32 -616.11 41.85 -284.91 

65 102.82 -62.79 70.40 -31.01 23.90 -7.29 32.43 -31.78 78.92 -55.50 46.49 -23.72 

66 294.43 -141.77 151.39 -66.87 538.25 -303.36 143.04 -74.89 -243.81 161.60 -386.86 236.49 

67 93.51 -149.72 46.76 -89.13 12.83 -25.63 46.74 -60.58 80.68 -124.09 33.94 -63.50 

68 72.84 -41.26 56.38 -45.95 5.65 -9.23 16.46 4.68 67.19 -32.03 50.74 -36.71 

69 372.27 -185.32 203.48 -96.78 221.23 -72.59 168.79 -88.55 151.04 -112.74 -17.75 -24.19 

70 15.26 -8.17 22.10 -7.84 10.33 -4.00 -6.84 -0.33 4.93 -4.17 11.76 -3.84 
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Table E.7. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during third molar (M3) bite load for the 3 models of durophagous species, 

and strain differences (Δε1 and Δε3) at landmark locations between models. Strain 

values are in microstrain (μstrain). 

M3 bite Cercocebus Lophocebus Mandrillus Cercocebus-Lophocebus Cercocebus-Mandrillus Lophocebus-Mandrillus 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 14.19 -11.53 12.52 -4.69 2.31 -0.89 1.67 -6.84 11.88 -10.63 10.21 -3.80 

2 130.49 -28.29 63.85 -16.49 18.41 -6.35 66.64 -11.80 112.08 -21.94 45.44 -10.14 

3 294.34 -76.37 11.27 -7.31 6.38 -3.71 283.07 -69.06 287.96 -72.66 4.89 -3.61 

4 70.46 -175.23 45.13 -60.19 47.27 -180.86 25.32 -115.03 23.18 5.63 -2.14 120.67 

5 16.82 -6.97 22.31 -8.35 56.42 -18.09 -5.49 1.38 -39.60 11.12 -34.11 9.74 

6 53.73 -40.46 34.95 -42.44 20.80 -52.10 18.78 1.98 32.93 11.64 14.15 9.66 

7 3.88 -6.21 30.14 -10.91 5.55 -20.72 -26.26 4.70 -1.67 14.51 24.59 9.81 

8 62.92 -44.16 51.89 -65.20 178.40 -38.05 11.03 21.04 -115.48 -6.11 -126.51 -27.15 

9 85.84 -170.06 28.21 -86.48 15.75 -86.44 57.63 -83.59 70.09 -83.63 12.46 -0.04 

10 157.43 -60.14 104.96 -39.29 128.45 -36.45 52.46 -20.84 28.97 -23.69 -23.49 -2.84 

11 58.05 -17.42 48.67 -17.32 6.30 -2.17 9.38 -0.10 51.75 -15.25 42.37 -15.15 

12 52.05 -58.51 28.80 -32.90 8.77 -7.55 23.25 -25.61 43.29 -50.96 20.04 -25.35 

13 44.93 -13.70 22.74 -14.92 102.98 -27.58 22.20 1.22 -58.05 13.88 -80.24 12.66 

14 25.70 -11.28 7.57 -6.66 67.26 -39.75 18.14 -4.63 -41.55 28.46 -59.69 33.09 

15 11.71 -27.90 6.98 -11.35 31.83 -33.71 4.74 -16.55 -20.12 5.81 -24.86 22.36 

16 48.68 -60.22 22.87 -30.69 23.05 -47.50 25.82 -29.53 25.64 -12.71 -0.18 16.82 

17 30.57 -77.65 52.55 -88.32 42.61 -121.63 -21.98 10.66 -12.04 43.98 9.94 33.32 

18 109.18 -975.79 309.48 -624.75 236.27 -675.80 -200.30 -351.04 -127.09 -299.99 73.21 51.04 

19 139.23 -185.28 88.53 -93.11 99.90 -159.57 50.70 -92.17 39.33 -25.72 -11.36 66.46 

20 29.59 -26.07 67.88 -108.69 28.16 -9.26 -38.29 82.62 1.43 -16.81 39.72 -99.43 

21 553.70 -185.97 146.85 -55.86 370.57 -129.03 406.85 -130.11 183.13 -56.94 -223.72 73.17 

22 90.97 -302.17 61.53 -197.76 139.60 -379.22 29.44 -104.41 -48.63 77.04 -78.06 181.46 

23 77.19 -230.79 22.93 -69.19 39.82 -117.32 54.26 -161.60 37.37 -113.47 -16.89 48.13 

24 69.95 -89.04 25.55 -61.98 61.67 -25.81 44.41 -27.06 8.28 -63.23 -36.12 -36.17 

25 91.82 -72.99 110.53 -325.02 167.18 -373.31 -18.71 252.03 -75.36 300.32 -56.65 48.29 

26 1107.89 -329.39 796.27 -262.33 711.39 -301.39 311.62 -67.06 396.50 -28.00 84.88 39.06 

27 222.16 -510.91 175.16 -234.57 281.02 -371.31 47.00 -276.34 -58.87 -139.61 -105.87 136.74 

28 383.02 -145.04 189.65 -64.82 45.80 -71.32 193.37 -80.23 337.22 -73.72 143.85 6.51 

29 20.40 -32.84 15.76 -40.17 6.17 -3.73 4.64 7.33 14.23 -29.11 9.59 -36.44 

30 81.21 -26.38 39.96 -18.25 115.79 -35.16 41.25 -8.13 -34.58 8.78 -75.83 16.92 

31 41.85 -97.40 26.44 -55.46 88.99 -290.61 15.41 -41.94 -47.14 193.21 -62.55 235.15 

32 81.74 -227.99 90.48 -263.68 138.69 -375.47 -8.74 35.70 -56.95 147.48 -48.21 111.78 

33 184.65 -123.47 103.57 -75.78 108.54 -51.64 81.07 -47.70 76.11 -71.83 -4.97 -24.13 

34 14.31 -8.23 2.45 -5.66 5.24 -2.39 11.86 -2.57 9.07 -5.83 -2.79 -3.26 

35 211.90 -291.26 208.64 -49.85 299.74 -65.39 3.26 -241.40 -87.84 -225.87 -91.10 15.54 

36 230.59 -422.17 139.13 -355.09 150.19 -317.69 91.46 -67.08 80.40 -104.47 -11.06 -37.39 

37 7.12 -4.42 63.08 -17.57 11.82 -4.06 -55.95 13.15 -4.70 -0.36 51.26 -13.51 

38 13.76 -38.21 11.55 -38.84 51.06 -20.79 2.21 0.63 -37.29 -17.42 -39.51 -18.05 

39 6.24 -19.20 6.57 -20.63 3.71 -11.43 -0.33 1.44 2.53 -7.77 2.86 -9.20 

40 25.64 -48.83 10.03 -7.11 1.48 -2.37 15.61 -41.72 24.15 -46.46 8.54 -4.74 

41 20.58 -8.05 8.93 -2.95 43.89 -7.79 11.66 -5.10 -23.31 -0.27 -34.96 4.83 

42 15.49 -5.15 10.56 -3.82 82.32 -17.50 4.93 -1.34 -66.83 12.35 -71.76 13.68 

43 14.50 -6.77 8.02 -4.17 33.50 -13.07 6.48 -2.60 -19.00 6.30 -25.48 8.90 

44 2.62 -2.60 1.81 -2.59 16.68 -6.14 0.81 -0.01 -14.06 3.54 -14.87 3.55 

45 7.04 -15.92 4.48 -10.47 2.95 -1.00 2.57 -5.45 4.10 -14.92 1.53 -9.47 

46 25.10 -22.76 34.56 -10.29 26.73 -9.22 -9.46 -12.46 -1.63 -13.54 7.82 -1.07 

47 48.40 -41.31 55.10 -26.92 57.78 -45.44 -6.70 -14.38 -9.38 4.14 -2.68 18.52 

48 54.14 -165.99 50.96 -158.31 17.94 -54.32 3.17 -7.68 36.20 -111.67 33.03 -103.99 

49 238.12 -75.11 182.51 -38.49 43.14 -15.00 55.61 -36.62 194.98 -60.11 139.37 -23.49 

50 276.19 -96.10 97.51 -33.01 46.51 -33.00 178.68 -63.10 229.68 -63.10 51.00 -0.01 

51 78.94 -108.78 43.93 -37.87 83.88 -177.66 35.02 -70.91 -4.93 68.88 -39.95 139.79 

52 407.88 -88.96 29.68 -15.82 11.92 -4.02 378.20 -73.14 395.96 -84.94 17.75 -11.80 

53 113.53 -80.16 180.19 -792.76 17.09 -39.18 -66.66 712.60 96.44 -40.99 163.10 -753.58 

54 850.09 -377.57 624.11 -166.87 1128.99 -265.59 225.98 -210.70 -278.90 -111.98 -504.87 98.72 

55 242.27 -564.39 151.30 -457.73 184.60 -404.70 90.96 -106.66 57.66 -159.69 -33.30 -53.03 

56 101.89 -38.76 80.32 -31.27 17.83 -41.97 21.57 -7.49 84.06 3.21 62.49 10.69 

57 45.62 -112.61 19.33 -41.33 20.84 -25.11 26.29 -71.27 24.79 -87.50 -1.50 -16.22 

58 44.98 -82.19 24.87 -64.72 18.50 -8.24 20.11 -17.47 26.47 -73.94 6.37 -56.48 

59 133.88 -51.78 123.06 -26.66 49.63 -16.69 10.82 -25.12 84.25 -35.09 73.43 -9.97 

60 176.67 -538.02 112.27 -332.43 100.54 -337.32 64.39 -205.59 76.12 -200.70 11.73 4.89 

61 473.57 -152.84 207.21 -76.70 109.25 -47.25 266.35 -76.14 364.32 -105.59 97.97 -29.45 

62 3.11 -8.55 9.64 -12.03 0.88 -0.34 -6.53 3.48 2.23 -8.20 8.76 -11.69 

63 614.62 -205.40 309.35 -101.64 94.07 -21.63 305.28 -103.76 520.55 -183.77 215.28 -80.01 

64 363.09 -880.82 174.83 -554.25 132.17 -270.03 188.26 -326.57 230.91 -610.79 42.66 -284.23 

65 64.83 -28.60 58.37 -28.47 19.69 -9.05 6.46 -0.12 45.14 -19.55 38.68 -19.42 

66 295.86 -138.32 160.80 -66.66 546.60 -294.53 135.05 -71.66 -250.75 156.21 -385.80 227.87 

67 46.07 -74.91 21.69 -45.80 19.86 -31.22 24.38 -29.12 26.21 -43.69 1.83 -14.58 

68 55.20 -26.74 37.74 -29.43 4.13 -6.45 17.46 2.69 51.07 -20.29 33.61 -22.98 

69 360.21 -180.81 202.20 -97.03 233.00 -76.69 158.01 -83.79 127.21 -104.12 -30.80 -20.34 

70 19.17 -11.51 21.13 -8.55 10.85 -4.22 -1.96 -2.95 8.32 -7.28 10.28 -4.33 
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Table E.8. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during first incisor (I1) bite load for the 3 models of baboon species, and 

strain differences (Δε1 and Δε3) at landmark locations between models. Strain values 

are in microstrain (μstrain). 

I1 bite P. anubis P. hamadryas T.gelada P.anubis-P.hamadryas P.anubis-T.gelada P.hamadryas-T.gelada 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 136.04 -207.36 216.52 -238.07 646.29 -552.11 -80.48 30.70 -510.25 344.75 -429.77 314.05 

2 410.20 -155.96 171.02 -133.07 208.52 -109.23 239.17 -22.89 201.68 -46.73 -37.49 -23.84 

3 215.06 -63.33 32.15 -11.92 266.00 -96.64 182.91 -51.42 -50.94 33.31 -233.85 84.73 

4 44.27 -284.71 59.86 -192.99 52.97 -235.65 -15.59 -91.72 -8.70 -49.07 6.89 42.66 

5 5.39 -14.90 21.76 -8.05 59.08 -18.98 -16.37 -6.85 -53.69 4.08 -37.32 10.93 

6 15.67 -31.19 8.67 -20.12 32.80 -99.76 7.00 -11.06 -17.13 68.58 -24.13 79.64 

7 0.42 -0.80 0.03 -0.07 2.14 -0.85 0.40 -0.73 -1.71 0.05 -2.11 0.78 

8 94.78 -54.09 156.41 -40.84 217.62 -70.22 -61.63 -13.26 -122.83 16.13 -61.21 29.38 

9 189.49 -150.76 115.32 -109.74 153.01 -324.59 74.18 -41.02 36.48 173.83 -37.70 214.84 

10 62.05 -20.13 44.90 -15.94 19.85 -14.72 17.15 -4.19 42.20 -5.41 25.05 -1.22 

11 121.39 -281.97 82.57 -217.72 167.55 -489.47 38.82 -64.25 -46.16 207.50 -84.98 271.76 

12 282.55 -85.58 383.44 -119.94 265.55 -158.28 -100.89 34.36 17.00 72.70 117.89 38.35 

13 116.36 -33.56 167.97 -57.92 23.13 -51.89 -51.62 24.36 93.23 18.33 144.85 -6.03 

14 91.96 -33.47 152.08 -40.13 222.93 -117.64 -60.12 6.66 -130.97 84.17 -70.85 77.52 

15 85.85 -26.19 103.89 -34.93 149.83 -97.46 -18.04 8.74 -63.98 71.28 -45.94 62.54 

16 62.78 -17.71 103.95 -26.63 110.40 -53.01 -41.17 8.92 -47.62 35.30 -6.45 26.38 

17 38.53 -13.96 29.18 -9.24 102.17 -42.26 9.35 -4.72 -63.64 28.30 -72.99 33.02 

18 186.20 -83.57 13.50 -12.79 161.90 -62.75 172.69 -70.78 24.29 -20.82 -148.40 49.96 

19 49.76 -36.18 136.58 -49.21 44.85 -94.33 -86.82 13.03 4.91 58.15 91.73 45.12 

20 49.52 -58.15 65.07 -77.33 0.79 -0.14 -15.55 19.17 48.73 -58.01 64.28 -77.18 

21 254.42 -81.94 278.24 -85.70 295.63 -88.27 -23.82 3.76 -41.21 6.33 -17.39 2.57 

22 170.16 -59.45 137.35 -75.52 224.28 -101.30 32.82 16.08 -54.12 41.85 -86.93 25.78 

23 74.19 -227.96 61.08 -244.30 115.10 -377.12 13.11 16.35 -40.91 149.16 -54.03 132.82 

24 161.83 -73.01 163.56 -67.95 125.98 -386.48 -1.73 -5.06 35.84 313.48 37.58 318.54 

25 306.53 -897.05 192.00 -237.50 260.30 -265.86 114.52 -659.55 46.23 -631.19 -68.30 28.36 

26 134.36 -324.32 876.44 -222.29 476.56 -203.76 -742.08 -102.03 -342.19 -120.56 399.88 -18.53 

27 229.45 -205.44 355.07 -192.44 220.30 -391.01 -125.62 -13.00 9.15 185.57 134.78 198.57 

28 149.01 -157.93 79.39 -105.77 342.56 -76.96 69.62 -52.17 -193.55 -80.97 -263.17 -28.80 

29 22.32 -69.64 22.18 -55.51 37.35 -107.10 0.14 -14.13 -15.03 37.46 -15.17 51.59 

30 8.83 -25.38 20.14 -54.56 39.68 -103.24 -11.31 29.19 -30.85 77.86 -19.54 48.68 

31 10.26 -26.67 8.47 -6.75 44.71 -18.17 1.79 -19.92 -34.45 -8.50 -36.24 11.42 

32 178.25 -572.73 266.89 -922.38 183.21 -647.35 -88.64 349.65 -4.96 74.62 83.68 -275.03 

33 177.15 -163.96 65.02 -42.41 126.14 -42.46 112.13 -121.56 51.01 -121.51 -61.12 0.05 

34 6.95 -29.98 34.52 -50.13 6.72 -17.70 -27.57 20.16 0.23 -12.28 27.80 -32.43 

35 422.30 -122.53 576.40 -171.20 427.56 -134.12 -154.11 48.67 -5.26 11.59 148.84 -37.08 

36 332.37 -1560.99 279.51 -376.18 161.31 -74.62 52.85 -1184.80 171.05 -1486.36 118.20 -301.56 

37 4.34 -13.62 8.26 -4.37 13.83 -38.93 -3.92 -9.26 -9.49 25.30 -5.57 34.56 

38 13.65 -17.62 32.08 -12.16 26.76 -8.52 -18.42 -5.46 -13.10 -9.10 5.32 -3.64 

39 78.08 -285.35 64.60 -168.30 143.87 -501.44 13.49 -117.06 -65.79 216.09 -79.27 333.15 

40 158.88 -70.02 382.78 -138.36 227.23 -59.49 -223.90 68.34 -68.34 -10.53 155.55 -78.87 

41 70.79 -28.83 190.22 -130.02 127.80 -49.22 -119.42 101.18 -57.00 20.38 62.42 -80.80 

42 62.62 -26.37 82.29 -61.68 128.08 -58.33 -19.67 35.31 -65.47 31.96 -45.80 -3.35 

43 70.61 -22.47 70.75 -47.59 400.62 -97.65 -0.14 25.12 -330.01 75.18 -329.87 50.06 

44 62.96 -16.58 120.46 -36.22 333.28 -85.83 -57.50 19.63 -270.32 69.25 -212.82 49.62 

45 41.93 -19.15 31.19 -10.48 144.40 -47.59 10.74 -8.67 -102.47 28.44 -113.21 37.11 

46 74.07 -23.00 24.00 -21.42 89.11 -42.87 50.07 -1.58 -15.03 19.88 -65.10 21.46 

47 213.51 -71.66 44.24 -31.03 146.58 -36.38 169.26 -40.63 66.93 -35.28 -102.33 5.35 

48 57.51 -204.22 52.05 -48.47 5.16 -13.32 5.46 -155.75 52.35 -190.90 46.89 -35.14 

49 220.21 -75.27 237.24 -75.28 341.26 -108.51 -17.04 0.01 -121.05 33.24 -104.02 33.23 

50 193.18 -57.31 110.35 -65.42 254.82 -89.60 82.83 8.12 -61.64 32.29 -144.47 24.18 

51 75.57 -219.53 63.59 -187.97 124.96 -385.14 11.97 -31.56 -49.40 165.62 -61.37 197.17 

52 155.52 -57.64 183.10 -84.42 211.00 -230.27 -27.59 26.78 -55.48 172.63 -27.89 145.85 

53 195.80 -484.39 233.26 -464.55 270.84 -455.38 -37.47 -19.83 -75.04 -29.00 -37.57 -9.17 

54 953.96 -361.44 651.00 -244.22 465.01 -225.92 302.96 -117.22 488.95 -135.52 185.99 -18.30 

55 160.68 -164.09 249.32 -361.72 114.54 -222.35 -88.64 197.63 46.14 58.26 134.78 -139.37 

56 121.21 -140.20 85.06 -149.06 149.94 -96.57 36.15 8.86 -28.73 -43.62 -64.88 -52.49 

57 30.32 -58.56 18.48 -56.56 38.23 -124.15 11.84 -2.01 -7.91 65.59 -19.74 67.59 

58 17.36 -58.38 9.00 -31.10 53.52 -111.50 8.36 -27.27 -36.16 53.12 -44.53 80.40 

59 30.47 -40.65 6.56 -7.69 25.74 -8.83 23.91 -32.95 4.73 -31.82 -19.18 1.14 

60 213.70 -739.71 289.86 -836.88 150.67 -462.22 -76.16 97.17 63.03 -277.49 139.19 -374.66 

61 279.43 -121.60 42.86 -95.95 103.40 -52.50 236.58 -25.65 176.04 -69.10 -60.54 -43.44 

62 8.59 -28.66 7.10 -10.30 4.22 -11.43 1.49 -18.36 4.37 -17.23 2.88 1.13 

63 401.61 -139.42 452.56 -588.89 350.48 -188.64 -50.95 449.47 51.12 49.22 102.07 -400.25 

64 267.53 -759.13 250.60 -633.77 282.42 -107.88 16.93 -125.36 -14.89 -651.25 -31.82 -525.89 

65 71.42 -162.62 55.12 -140.42 209.70 -573.74 16.30 -22.20 -138.28 411.13 -154.59 433.33 

66 324.68 -242.64 808.58 -168.48 248.95 -158.21 -483.90 -74.16 75.72 -84.44 559.62 -10.28 

67 58.53 -51.05 36.33 -19.05 46.07 -178.52 22.20 -32.01 12.46 127.47 -9.74 159.48 

68 43.02 -141.15 37.95 -85.65 184.64 -562.04 5.06 -55.50 -141.62 420.89 -146.68 476.40 

69 381.66 -184.24 537.25 -150.55 225.95 -133.85 -155.59 -33.69 155.71 -50.39 311.30 -16.70 

70 78.74 -44.02 66.83 -45.67 53.91 -117.58 11.91 1.65 24.83 73.56 12.92 71.91 
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Table E.9. Maximum (ε1) and minimum (ε3) principal strain values at the location of 70 

landmarks during second incisor (I2) bite load for the 3 models of baboon species, and 

strain differences (Δε1 and Δε3) at landmark locations between models. Strain values 

are in microstrain (μstrain). 

I2 bite P. anubis P. hamadryas T.gelada P.anubis-P.hamadryas P.anubis-T.gelada P.hamadryas-T.gelada 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 76.02 -99.61 141.11 -207.56 147.64 -397.31 -65.08 107.95 -71.62 297.70 -6.54 189.74 

2 346.34 -200.68 163.83 -177.47 273.62 -211.46 182.51 -23.21 72.72 10.77 -109.79 33.98 

3 185.37 -58.21 29.75 -11.56 272.14 -100.94 155.63 -46.65 -86.77 42.73 -242.39 89.38 

4 45.53 -281.51 60.10 -195.98 51.87 -231.54 -14.56 -85.53 -6.34 -49.97 8.22 35.56 

5 5.32 -14.25 22.03 -8.33 59.19 -19.01 -16.70 -5.92 -53.87 4.76 -37.16 10.68 

6 15.79 -31.60 8.45 -19.87 33.28 -101.32 7.34 -11.72 -17.49 69.72 -24.83 81.44 

7 0.43 -0.82 0.04 -0.06 2.17 -0.88 0.39 -0.76 -1.74 0.05 -2.13 0.82 

8 98.18 -54.16 153.49 -40.64 218.27 -71.04 -55.31 -13.52 -120.09 16.87 -64.78 30.39 

9 191.45 -150.03 117.19 -113.29 160.63 -337.63 74.25 -36.75 30.82 187.59 -43.44 224.34 

10 68.09 -19.81 49.90 -17.71 23.75 -15.70 18.19 -2.10 44.35 -4.12 26.15 -2.01 

11 111.76 -253.36 84.82 -225.00 184.50 -547.32 26.93 -28.36 -72.74 293.96 -99.68 322.32 

12 306.89 -172.75 424.57 -156.60 797.07 -523.21 -117.68 -16.15 -490.19 350.46 -372.50 366.61 

13 144.44 -43.78 204.83 -66.36 12.79 -33.16 -60.38 22.58 131.65 -10.62 192.04 -33.20 

14 112.05 -40.78 171.88 -46.65 222.47 -122.54 -59.83 5.86 -110.42 81.76 -50.59 75.89 

15 107.67 -36.95 105.10 -41.69 160.55 -105.55 2.57 4.74 -52.88 68.60 -55.45 63.86 

16 64.34 -17.92 103.46 -26.07 51.77 -35.72 -39.12 8.15 12.57 17.80 51.69 9.65 

17 31.27 -8.86 30.94 -8.46 96.08 -42.40 0.34 -0.40 -64.80 33.55 -65.14 33.95 

18 213.23 -95.48 15.41 -13.95 196.05 -76.23 197.82 -81.53 17.18 -19.25 -180.63 62.28 

19 48.11 -24.81 128.46 -48.78 47.63 -113.45 -80.35 23.97 0.48 88.64 80.83 64.67 

20 48.39 -56.22 64.63 -76.75 0.73 -0.14 -16.24 20.53 47.66 -56.07 63.90 -76.60 

21 268.92 -83.72 297.25 -91.80 310.33 -92.77 -28.34 8.09 -41.42 9.05 -13.08 0.96 

22 145.83 -53.71 105.37 -68.90 181.80 -90.14 40.46 15.18 -35.96 36.43 -76.42 21.25 

23 75.86 -230.37 55.93 -239.78 118.82 -388.54 19.93 9.41 -42.96 158.16 -62.89 148.76 

24 124.72 -84.15 120.02 -57.64 188.81 -581.47 4.70 -26.52 -64.09 497.32 -68.79 523.84 

25 307.49 -905.93 194.87 -245.10 264.10 -272.91 112.62 -660.83 43.39 -633.02 -69.22 27.82 

26 131.16 -317.64 891.27 -224.66 501.67 -212.33 -760.11 -92.97 -370.51 -105.30 389.60 -12.33 

27 229.09 -209.58 354.60 -193.02 223.50 -405.38 -125.51 -16.56 5.59 195.80 131.10 212.36 

28 160.05 -168.21 92.60 -112.13 367.77 -81.13 67.45 -56.08 -207.71 -87.09 -275.16 -31.00 

29 21.57 -67.53 21.66 -53.27 36.86 -105.85 -0.09 -14.26 -15.29 38.32 -15.20 52.58 

30 7.45 -21.32 17.81 -47.80 38.30 -98.67 -10.36 26.48 -30.85 77.34 -20.49 50.86 

31 11.92 -21.98 4.89 -12.55 25.01 -12.70 7.02 -9.43 -13.10 -9.28 -20.12 0.14 

32 178.58 -574.04 266.80 -921.90 184.39 -651.78 -88.22 347.86 -5.81 77.74 82.41 -270.12 

33 171.90 -166.55 60.05 -44.26 101.60 -36.78 111.84 -122.29 70.30 -129.77 -41.54 -7.48 

34 6.83 -29.45 34.33 -50.07 6.72 -17.69 -27.49 20.63 0.12 -11.75 27.61 -32.38 

35 421.09 -121.77 576.56 -171.23 426.10 -131.93 -155.47 49.46 -5.01 10.16 150.46 -39.30 

36 330.98 -1547.82 273.82 -367.98 155.48 -64.63 57.16 -1179.84 175.50 -1483.19 118.35 -303.35 

37 4.21 -13.51 8.26 -4.39 13.97 -38.42 -4.05 -9.12 -9.76 24.91 -5.71 34.03 

38 13.20 -22.48 27.41 -10.62 22.44 -8.30 -14.21 -11.86 -9.25 -14.18 4.96 -2.32 

39 57.93 -214.93 48.29 -128.44 116.57 -407.60 9.64 -86.50 -58.65 192.66 -68.29 279.16 

40 124.82 -58.96 299.67 -107.14 241.29 -72.36 -174.86 48.18 -116.47 13.41 58.39 -34.77 

41 48.13 -21.19 129.13 -89.73 268.20 -41.23 -81.00 68.53 -220.06 20.04 -139.06 -48.49 

42 47.58 -23.27 58.80 -52.53 123.71 -61.47 -11.22 29.26 -76.13 38.20 -64.91 8.94 

43 54.04 -26.00 62.83 -43.86 349.71 -87.06 -8.79 17.86 -295.67 61.06 -286.88 43.20 

44 61.91 -18.74 113.84 -33.72 409.61 -97.19 -51.93 14.98 -347.70 78.45 -295.77 63.47 

45 41.26 -20.99 25.92 -10.32 152.04 -48.15 15.34 -10.66 -110.78 27.16 -126.13 37.82 

46 62.46 -19.75 20.10 -18.98 62.40 -30.01 42.35 -0.78 0.06 10.25 -42.29 11.03 

47 214.45 -79.76 38.67 -27.77 169.13 -40.76 175.78 -51.99 45.32 -39.00 -130.47 12.99 

48 58.85 -208.78 53.07 -49.42 5.49 -14.19 5.78 -159.36 53.37 -194.59 47.59 -35.23 

49 206.83 -71.95 213.24 -71.46 331.08 -105.17 -6.41 -0.49 -124.25 33.22 -117.84 33.71 

50 211.29 -62.29 138.74 -66.84 276.13 -96.76 72.55 4.55 -64.84 34.47 -137.39 29.92 

51 72.32 -213.75 63.20 -188.33 121.60 -372.06 9.13 -25.42 -49.27 158.30 -58.40 183.73 

52 148.24 -53.27 277.08 -75.07 250.05 -147.65 -128.85 21.80 -101.81 94.37 27.03 72.58 

53 195.27 -477.14 231.32 -454.38 264.36 -432.23 -36.05 -22.76 -69.09 -44.91 -33.04 -22.15 

54 941.08 -361.30 647.84 -249.41 444.13 -224.23 293.25 -111.90 496.96 -137.07 203.71 -25.17 

55 160.95 -162.36 249.06 -358.43 111.18 -216.52 -88.10 196.07 49.77 54.16 137.88 -141.91 

56 108.02 -125.75 74.58 -131.57 138.81 -78.82 33.44 5.82 -30.78 -46.93 -64.22 -52.75 

57 30.06 -57.79 19.44 -59.74 37.99 -123.68 10.62 1.95 -7.93 65.89 -18.55 63.94 

58 18.08 -61.06 10.50 -36.08 54.70 -115.08 7.59 -24.98 -36.61 54.01 -44.20 78.99 

59 39.43 -43.55 18.72 -8.87 45.59 -15.10 20.72 -34.69 -6.16 -28.45 -26.88 6.23 

60 214.53 -742.31 288.94 -833.87 145.71 -445.86 -74.41 91.55 68.81 -296.45 143.23 -388.00 

61 290.27 -123.68 41.51 -89.80 117.51 -52.86 248.76 -33.88 172.75 -70.82 -76.01 -36.94 

62 8.66 -28.87 7.04 -10.17 4.10 -11.17 1.62 -18.70 4.56 -17.70 2.94 1.00 

63 401.34 -139.72 454.03 -590.13 345.79 -186.96 -52.70 450.41 55.55 47.24 108.25 -403.17 

64 269.85 -766.71 256.02 -649.89 285.14 -112.32 13.83 -116.82 -15.28 -654.39 -29.11 -537.57 

65 75.39 -167.99 58.50 -137.72 223.38 -612.74 16.89 -30.27 -148.00 444.76 -164.89 475.02 

66 342.44 -261.05 844.24 -180.57 274.91 -193.37 -501.80 -80.48 67.54 -67.68 569.33 12.80 

67 43.82 -67.91 36.68 -44.88 131.93 -285.57 7.14 -23.03 -88.12 217.67 -95.25 240.70 

68 36.00 -113.76 32.65 -77.43 159.67 -486.77 3.35 -36.34 -123.67 373.00 -127.02 409.34 

69 362.99 -172.34 512.37 -147.20 205.31 -107.54 -149.38 -25.14 157.67 -64.79 307.05 -39.65 

70 75.23 -35.66 97.31 -53.03 63.28 -156.18 -22.07 17.36 11.95 120.52 34.02 103.16 
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Table E.10. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first premolar (P3) bite load for the 3 models of baboon species, 

and strain differences (Δε1 and Δε3) at landmark locations between models. Strain 

values are in microstrain (μstrain). 

P3 bite P. anubis P. hamadryas T.gelada P.anubis-P.hamadryas P.anubis-T.gelada P.hamadryas-T.gelada 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 17.80 -18.65 5.93 -19.34 24.92 -37.60 11.87 0.69 -7.12 18.95 -18.99 18.26 

2 28.66 -31.80 16.38 -49.16 73.76 -147.59 12.28 17.36 -45.10 115.79 -57.38 98.43 

3 64.45 -47.61 11.16 -6.86 232.67 -90.58 53.30 -40.75 -168.21 42.97 -221.51 83.72 

4 47.77 -255.96 56.35 -196.44 44.21 -197.99 -8.58 -59.52 3.56 -57.97 12.15 1.55 

5 4.77 -10.30 23.99 -8.99 55.72 -18.02 -19.22 -1.31 -50.94 7.72 -31.73 9.03 

6 16.60 -33.23 8.80 -20.68 35.72 -109.04 7.80 -12.55 -19.12 75.81 -26.92 88.36 

7 0.50 -0.97 0.03 -0.06 3.38 -1.38 0.47 -0.91 -2.88 0.41 -3.35 1.31 

8 105.02 -49.56 134.11 -37.80 199.47 -68.40 -29.09 -11.76 -94.45 18.84 -65.36 30.60 

9 197.96 -152.86 121.10 -119.24 190.23 -351.20 76.86 -33.62 7.73 198.35 -69.13 231.97 

10 88.88 -24.38 60.66 -21.54 34.46 -19.52 28.21 -2.84 54.42 -4.85 26.20 -2.01 

11 79.54 -30.43 38.66 -21.17 73.16 -209.72 40.87 -9.26 6.37 179.29 -34.50 188.55 

12 8.04 -21.73 15.57 -21.34 48.73 -44.97 -7.53 -0.39 -40.69 23.24 -33.16 23.63 

13 81.84 -82.11 172.72 -339.96 246.69 -658.09 -90.88 257.85 -164.85 575.98 -73.97 318.13 

14 113.01 -203.90 195.72 -165.79 423.89 -966.92 -82.71 -38.11 -310.89 763.02 -228.18 801.13 

15 138.72 -119.71 115.44 -180.21 322.15 -459.34 23.29 60.51 -183.43 339.63 -206.72 279.13 

16 94.53 -98.21 89.02 -103.97 66.61 -244.02 5.51 5.76 27.91 145.82 22.41 140.05 

17 33.43 -46.35 24.79 -11.30 54.81 -71.97 8.64 -35.05 -21.38 25.62 -30.02 60.67 

18 228.50 -102.44 17.33 -14.01 236.48 -92.54 211.17 -88.42 -7.98 -9.90 -219.15 78.52 

19 92.00 -37.68 84.39 -60.47 62.25 -140.55 7.61 22.79 29.75 102.87 22.15 80.08 

20 44.93 -49.30 63.50 -74.63 0.55 -0.16 -18.57 25.33 44.38 -49.14 62.95 -74.47 

21 305.78 -95.03 337.34 -104.86 359.58 -108.33 -31.56 9.84 -53.81 13.30 -22.24 3.46 

22 83.02 -42.42 43.03 -73.01 87.29 -70.59 39.99 30.59 -4.27 28.17 -44.26 -2.42 

23 77.11 -230.96 42.88 -211.15 123.35 -403.06 34.23 -19.81 -46.24 172.10 -80.47 191.90 

24 48.80 -105.05 34.33 -72.57 262.76 -801.91 14.47 -32.48 -213.96 696.87 -228.44 729.34 

25 307.14 -920.00 204.47 -270.73 277.64 -289.48 102.67 -649.27 29.50 -630.52 -73.17 18.75 

26 121.56 -297.42 936.66 -236.44 576.89 -238.89 -815.10 -60.98 -455.33 -58.52 359.77 2.46 

27 226.43 -221.76 351.77 -193.72 231.35 -448.01 -125.34 -28.04 -4.92 226.25 120.42 254.30 

28 177.34 -163.95 153.03 -113.69 411.10 -86.08 24.30 -50.26 -233.76 -77.87 -258.06 -27.61 

29 19.16 -60.45 19.11 -44.18 34.31 -98.78 0.05 -16.26 -15.15 38.34 -15.20 54.60 

30 4.29 -9.49 10.40 -26.87 32.62 -80.10 -6.10 17.38 -28.33 70.61 -22.23 53.23 

31 19.24 -34.03 14.00 -43.69 12.33 -34.70 5.24 9.66 6.91 0.67 1.68 -8.99 

32 178.55 -574.46 265.85 -918.29 185.44 -656.35 -87.31 343.82 -6.89 81.88 80.42 -261.94 

33 158.09 -175.33 52.13 -55.27 47.79 -37.95 105.96 -120.05 110.30 -137.37 4.35 -17.32 

34 5.92 -25.51 33.33 -49.47 6.13 -15.91 -27.41 23.96 -0.20 -9.60 27.20 -33.56 

35 415.35 -119.17 572.21 -169.68 414.50 -125.60 -156.86 50.51 0.86 6.43 157.71 -44.08 

36 330.86 -1515.98 258.63 -345.82 143.07 -38.22 72.22 -1170.16 187.79 -1477.76 115.57 -307.60 

37 3.37 -11.75 9.41 -4.99 13.88 -29.89 -6.04 -6.76 -10.51 18.14 -4.47 24.90 

38 14.46 -35.47 17.07 -7.81 12.59 -11.06 -2.60 -27.66 1.87 -24.41 4.47 3.25 

39 20.11 -69.51 17.76 -41.92 37.21 -128.30 2.36 -27.58 -17.10 58.79 -19.46 86.37 

40 39.39 -16.00 59.34 -19.10 81.12 -21.51 -19.95 3.10 -41.73 5.51 -21.78 2.41 

41 13.33 -6.60 12.43 -8.33 236.85 -75.35 0.90 1.72 -223.52 68.74 -224.42 67.02 

42 19.11 -11.85 10.51 -17.26 50.53 -38.78 8.60 5.41 -31.42 26.92 -40.02 21.52 

43 26.96 -17.11 19.60 -13.69 108.15 -36.04 7.36 -3.42 -81.19 18.93 -88.55 22.35 

44 37.48 -13.29 44.95 -13.16 289.04 -61.07 -7.46 -0.13 -251.56 47.78 -244.09 47.90 

45 25.22 -17.44 10.51 -8.49 99.21 -28.92 14.71 -8.95 -73.99 11.48 -88.70 20.43 

46 40.44 -13.17 13.04 -13.26 12.46 -5.99 27.40 0.09 27.99 -7.18 0.58 -7.27 

47 206.75 -100.39 33.32 -25.70 192.07 -45.16 173.44 -74.70 14.69 -55.24 -158.75 19.46 

48 59.97 -212.74 54.01 -49.91 5.84 -15.11 5.96 -162.83 54.14 -197.63 48.17 -34.80 

49 175.31 -63.98 166.05 -62.96 280.86 -89.48 9.26 -1.02 -105.55 25.50 -114.82 26.53 

50 239.87 -69.99 194.15 -71.14 309.20 -108.51 45.72 1.16 -69.33 38.52 -115.05 37.36 

51 55.84 -176.33 55.74 -161.48 99.35 -292.82 0.10 -14.86 -43.51 116.49 -43.61 131.35 

52 72.69 -32.45 304.17 -88.86 311.10 -117.41 -231.48 56.42 -238.41 84.96 -6.93 28.55 

53 191.70 -466.44 232.25 -454.39 259.98 -415.41 -40.55 -12.05 -68.29 -51.03 -27.74 -38.98 

54 927.36 -362.28 645.47 -253.73 425.95 -222.53 281.89 -108.55 501.40 -139.75 219.52 -31.20 

55 159.03 -160.00 248.00 -356.12 109.00 -206.69 -88.97 196.11 50.03 46.69 139.00 -149.43 

56 87.23 -96.17 50.41 -93.10 110.90 -44.72 36.82 -3.08 -23.67 -51.45 -60.49 -48.38 

57 28.19 -53.34 20.83 -63.02 33.85 -110.51 7.36 9.68 -5.66 57.17 -13.02 47.49 

58 19.24 -64.85 13.00 -44.27 52.18 -114.38 6.24 -20.59 -32.94 49.53 -39.18 70.11 

59 59.56 -45.83 48.84 -17.46 91.93 -30.13 10.71 -28.37 -32.37 -15.70 -43.08 12.68 

60 215.12 -743.98 285.48 -823.05 135.23 -409.95 -70.36 79.07 79.89 -334.02 150.25 -413.10 

61 304.85 -126.34 39.93 -82.00 139.67 -54.32 264.93 -44.34 165.18 -72.01 -99.74 -27.67 

62 8.10 -26.98 6.84 -9.88 3.35 -9.14 1.26 -17.10 4.75 -17.83 3.49 -0.73 

63 397.60 -139.34 453.73 -588.50 329.22 -180.21 -56.13 449.16 68.38 40.88 124.51 -408.28 

64 274.42 -779.13 263.39 -671.58 288.86 -119.34 11.03 -107.55 -14.44 -659.79 -25.48 -552.24 

65 59.41 -73.39 43.74 -31.47 170.98 -530.47 15.67 -41.92 -111.57 457.08 -127.24 499.00 

66 385.15 -309.25 922.53 -210.75 333.81 -289.24 -537.38 -98.50 51.34 -20.00 588.72 78.50 

67 156.23 -300.98 173.72 -247.07 360.85 -539.38 -17.50 -53.91 -204.63 238.40 -187.13 292.31 

68 24.98 -68.12 17.40 -47.32 90.40 -271.88 7.58 -20.80 -65.42 203.76 -73.00 224.56 

69 330.35 -152.62 471.79 -141.02 169.17 -73.68 -141.44 -11.60 161.19 -78.94 302.62 -67.34 

70 44.82 -20.07 78.85 -37.48 136.65 -157.82 -34.03 17.40 -91.83 137.74 -57.80 120.34 
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Table E.11. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second premolar (P4) bite load for the 3 models of baboon 

species, and strain differences (Δε1 and Δε3) at landmark locations between models. 

Strain values are in microstrain (μstrain). 

P4 bite P. anubis P. hamadryas T.gelada P.anubis-P.hamadryas P.anubis-T.gelada P.hamadryas-T.gelada 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 13.13 -15.04 4.52 -13.25 18.07 -31.83 8.61 -1.79 -4.94 16.79 -13.55 18.58 

2 16.13 -29.63 13.62 -39.11 55.65 -136.71 2.51 9.48 -39.53 107.08 -42.03 97.60 

3 52.89 -49.08 8.35 -6.18 216.65 -85.15 44.54 -42.90 -163.76 36.07 -208.29 78.97 

4 48.03 -245.63 55.51 -195.76 42.09 -188.24 -7.48 -49.87 5.93 -57.39 13.41 -7.52 

5 4.50 -8.77 24.67 -9.15 54.81 -17.79 -20.17 0.38 -50.31 9.02 -30.14 8.64 

6 16.86 -33.65 8.96 -21.01 36.39 -111.16 7.91 -12.65 -19.53 77.50 -27.43 90.15 

7 0.52 -1.02 0.04 -0.05 3.72 -1.52 0.48 -0.97 -3.20 0.50 -3.68 1.47 

8 105.79 -47.51 128.72 -36.95 194.83 -68.22 -22.93 -10.56 -89.03 20.71 -66.10 31.26 

9 196.38 -148.43 120.00 -116.67 197.41 -335.68 76.37 -31.76 -1.03 187.26 -77.41 219.02 

10 94.67 -26.08 63.03 -22.38 37.57 -20.79 31.65 -3.69 57.11 -5.29 25.46 -1.60 

11 73.80 -28.88 55.16 -24.42 58.11 -142.49 18.64 -4.46 15.69 113.61 -2.95 118.07 

12 7.86 -24.94 8.49 -13.92 42.27 -38.65 -0.64 -11.02 -34.41 13.71 -33.77 24.73 

13 54.30 -47.26 90.69 -174.50 50.70 -116.72 -36.39 127.24 3.60 69.46 39.99 -57.78 

14 102.21 -183.71 152.17 -420.90 291.26 -399.59 -49.95 237.19 -189.04 215.88 -139.09 -21.31 

15 139.30 -261.89 168.80 -309.05 308.18 -1197.92 -29.50 47.16 -168.88 936.03 -139.38 888.87 

16 120.69 -140.33 109.04 -143.83 104.33 -373.43 11.64 3.50 16.35 233.10 4.71 229.60 

17 48.17 -71.24 33.47 -21.47 63.47 -109.82 14.70 -49.77 -15.30 38.58 -30.00 88.35 

18 215.48 -96.45 17.43 -13.52 245.34 -96.23 198.05 -82.93 -29.87 -0.22 -227.91 82.71 

19 109.13 -45.47 73.03 -66.96 68.10 -145.97 36.09 21.49 41.02 100.51 4.93 79.02 

20 44.09 -47.42 63.25 -74.08 0.54 -0.18 -19.17 26.66 43.54 -47.25 62.71 -73.91 

21 314.14 -98.40 346.59 -107.87 372.26 -112.39 -32.45 9.47 -58.11 13.99 -25.66 4.52 

22 70.67 -41.61 36.91 -82.12 66.87 -70.85 33.76 40.50 3.80 29.24 -29.96 -11.27 

23 76.83 -230.56 41.46 -202.10 124.28 -406.41 35.37 -28.46 -47.45 175.85 -82.82 204.31 

24 41.44 -99.15 30.48 -72.45 261.73 -797.17 10.95 -26.70 -220.29 698.02 -231.24 724.71 

25 306.42 -920.24 206.39 -276.06 281.55 -293.63 100.03 -644.18 24.88 -626.60 -75.16 17.58 

26 119.49 -293.05 946.82 -239.42 597.43 -246.28 -827.33 -53.63 -477.93 -46.77 349.40 6.86 

27 225.65 -224.41 351.07 -193.78 233.50 -459.44 -125.42 -30.63 -7.85 235.03 117.57 265.67 

28 178.49 -154.50 174.28 -114.11 418.43 -86.45 4.21 -40.39 -239.94 -68.05 -244.15 -27.66 

29 18.61 -58.79 18.40 -41.77 33.54 -96.60 0.21 -17.02 -14.93 37.81 -15.13 54.83 

30 4.54 -7.25 8.53 -21.67 31.09 -74.71 -3.99 14.42 -26.55 67.46 -22.56 53.03 

31 20.59 -40.57 15.95 -50.22 15.41 -47.62 4.64 9.64 5.17 7.04 0.53 -2.60 

32 178.43 -574.16 265.67 -917.60 185.68 -657.42 -87.24 343.45 -7.25 83.26 79.99 -260.19 

33 155.33 -177.69 51.55 -58.76 41.59 -46.47 103.78 -118.93 113.74 -131.22 9.96 -12.29 

34 5.60 -24.12 33.03 -49.24 6.00 -15.43 -27.43 25.11 -0.40 -8.69 27.03 -33.81 

35 413.89 -118.59 570.93 -169.23 411.54 -124.46 -157.05 50.64 2.35 5.87 159.39 -44.77 

36 331.62 -1510.01 255.46 -341.17 140.54 -31.50 76.16 -1168.84 191.08 -1478.51 114.92 -309.68 

37 3.71 -11.20 9.77 -5.17 14.29 -27.88 -6.06 -6.03 -10.58 16.68 -4.52 22.71 

38 14.78 -37.75 15.35 -7.55 11.26 -13.05 -0.56 -30.20 3.53 -24.70 4.09 5.50 

39 17.64 -59.82 16.40 -37.94 29.63 -100.66 1.24 -21.87 -11.99 40.84 -13.23 62.72 

40 31.81 -12.50 45.41 -16.42 72.51 -18.52 -13.59 3.91 -40.69 6.02 -27.10 2.10 

41 10.30 -5.20 6.57 -5.93 214.57 -74.14 3.74 0.74 -204.27 68.94 -208.01 68.20 

42 14.22 -9.22 6.81 -13.82 40.67 -34.95 7.41 4.60 -26.45 25.73 -33.86 21.13 

43 21.00 -13.60 13.78 -10.10 79.00 -37.28 7.22 -3.50 -58.00 23.68 -65.22 27.18 

44 30.13 -11.30 34.56 -10.18 249.43 -51.05 -4.44 -1.12 -219.30 39.75 -214.86 40.87 

45 21.22 -16.63 9.05 -8.77 87.11 -24.78 12.17 -7.85 -65.89 8.15 -78.07 16.01 

46 37.84 -12.24 12.23 -12.35 6.78 -3.35 25.62 0.10 31.06 -8.89 5.45 -9.00 

47 199.85 -103.07 32.57 -28.08 192.07 -46.19 167.28 -75.00 7.78 -56.88 -159.50 18.11 

48 59.76 -212.07 53.99 -49.76 5.89 -15.27 5.76 -162.31 53.87 -196.79 48.10 -34.49 

49 169.92 -62.22 159.30 -61.40 264.98 -84.50 10.62 -0.82 -95.06 22.29 -105.68 23.10 

50 241.29 -70.28 202.40 -71.47 314.57 -110.61 38.89 1.20 -73.28 40.34 -112.17 39.14 

51 50.00 -161.94 54.16 -150.38 92.35 -267.72 -4.16 -11.56 -42.35 105.78 -38.19 117.34 

52 63.69 -31.90 290.84 -86.66 307.64 -117.14 -227.15 54.76 -243.95 85.24 -16.80 30.48 

53 190.45 -466.35 233.40 -458.86 260.30 -415.96 -42.96 -7.50 -69.85 -50.39 -26.89 -42.90 

54 929.33 -362.73 645.86 -253.11 424.37 -222.13 283.48 -109.62 504.96 -140.60 221.49 -30.98 

55 158.03 -160.12 247.73 -356.61 109.01 -204.56 -89.69 196.49 49.02 44.44 138.71 -152.05 

56 86.08 -92.66 47.17 -90.98 105.05 -39.74 38.91 -1.68 -18.97 -52.92 -57.87 -51.24 

57 27.51 -51.82 20.99 -63.13 32.41 -105.91 6.52 11.32 -4.90 54.10 -11.42 42.78 

58 19.29 -64.88 13.38 -45.48 51.08 -113.38 5.91 -19.40 -31.79 48.50 -37.70 67.90 

59 62.95 -45.00 53.80 -19.00 102.68 -33.64 9.15 -26.00 -39.73 -11.37 -48.88 14.63 

60 214.89 -743.19 284.62 -820.34 132.71 -401.15 -69.73 77.15 82.18 -342.05 151.90 -419.20 

61 304.17 -126.04 39.77 -81.54 144.14 -54.70 264.41 -44.50 160.03 -71.35 -104.37 -26.84 

62 7.82 -26.07 6.81 -9.84 3.15 -8.60 1.01 -16.23 4.67 -17.46 3.66 -1.23 

63 396.11 -138.97 452.84 -587.41 324.54 -178.23 -56.72 448.44 71.57 39.25 128.29 -409.18 

64 274.84 -779.42 263.96 -673.22 289.55 -120.80 10.89 -106.20 -14.71 -658.62 -25.60 -552.43 

65 56.80 -35.60 43.09 -16.04 145.21 -479.42 13.72 -19.56 -88.41 443.82 -102.12 463.38 

66 393.03 -319.72 936.05 -217.15 348.71 -318.42 -543.01 -102.57 44.32 -1.30 587.34 101.26 

67 139.01 -286.24 163.13 -255.61 295.75 -509.72 -24.12 -30.62 -156.74 223.48 -132.62 254.11 

68 24.01 -69.72 16.29 -46.69 82.76 -243.30 7.72 -23.04 -58.75 173.58 -66.47 196.62 

69 327.55 -150.82 467.65 -140.26 162.16 -68.57 -140.10 -10.56 165.39 -82.25 305.49 -71.69 

70 44.48 -20.58 76.18 -36.56 141.48 -155.76 -31.70 15.98 -97.00 135.18 -65.30 119.20 
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Table E.12. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first molar (M1) bite load for the 3 models of baboon species, and 

strain differences (Δε1 and Δε3) at landmark locations between models. Strain values 

are in microstrain (μstrain). 

M1 bite P. anubis P. hamadryas T.gelada P.anubis-P.hamadryas P.anubis-T.gelada P.hamadryas-T.gelada 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 10.21 -12.10 3.77 -3.18 3.30 -9.60 6.45 -8.92 6.92 -2.50 0.47 6.42 

2 22.34 -8.75 6.46 -6.32 11.12 -30.54 15.88 -2.43 11.22 21.78 -4.67 24.22 

3 47.81 -43.46 7.28 -5.51 186.56 -72.97 40.53 -37.96 -138.74 29.50 -179.28 67.46 

4 46.97 -231.97 52.51 -183.65 37.92 -168.81 -5.54 -48.33 9.05 -63.16 14.59 -14.84 

5 4.22 -7.09 25.11 -9.22 52.95 -17.22 -20.90 2.13 -48.73 10.13 -27.83 8.00 

6 17.12 -34.03 9.17 -21.68 37.36 -114.16 7.95 -12.35 -20.23 80.12 -28.18 92.47 

7 0.54 -1.06 0.03 -0.05 4.46 -1.81 0.50 -1.01 -3.92 0.75 -4.42 1.76 

8 103.59 -44.45 118.89 -35.07 181.47 -65.45 -15.30 -9.38 -77.88 21.00 -62.58 30.38 

9 193.29 -139.81 114.04 -112.86 188.66 -303.31 79.25 -26.94 4.63 163.50 -74.62 190.44 

10 98.84 -27.24 63.48 -22.57 39.79 -22.06 35.37 -4.67 59.05 -5.18 23.68 -0.51 

11 65.10 -25.99 66.22 -26.66 48.75 -26.86 -1.11 0.67 16.35 0.86 17.47 0.20 

12 12.58 -38.59 11.11 -14.65 2.34 -4.48 1.46 -23.95 10.23 -34.12 8.77 -10.17 

13 15.51 -13.45 24.70 -18.83 21.30 -41.49 -9.19 5.38 -5.79 28.04 3.40 22.65 

14 34.39 -39.74 18.61 -14.85 98.45 -60.77 15.79 -24.89 -64.06 21.03 -79.84 45.92 

15 56.50 -71.03 32.81 -49.16 132.15 -79.95 23.69 -21.87 -75.65 8.91 -99.34 30.78 

16 102.71 -126.60 60.05 -97.55 65.29 -247.18 42.65 -29.05 37.42 120.58 -5.23 149.63 

17 44.57 -73.54 21.15 -25.09 53.59 -107.81 23.42 -48.45 -9.02 34.27 -32.44 82.72 

18 160.29 -72.17 11.76 -10.10 187.22 -72.89 148.53 -62.07 -26.92 0.73 -175.45 62.79 

19 121.74 -53.13 59.40 -75.58 78.87 -155.23 62.34 22.45 42.87 102.10 -19.47 79.66 

20 43.51 -45.79 63.13 -73.50 0.54 -0.19 -19.62 27.71 42.97 -45.61 62.59 -73.32 

21 322.87 -101.70 355.22 -110.70 402.15 -121.96 -32.35 9.00 -79.28 20.26 -46.93 11.26 

22 67.40 -42.65 38.27 -86.11 62.62 -72.79 29.12 43.47 4.78 30.14 -24.34 -13.33 

23 75.70 -228.91 39.94 -189.58 122.86 -402.91 35.76 -39.33 -47.16 173.99 -82.92 213.33 

24 38.35 -77.05 25.35 -43.71 198.83 -604.91 13.00 -33.34 -160.48 527.86 -173.48 561.19 

25 305.33 -916.87 205.07 -271.99 282.14 -290.67 100.26 -644.89 23.18 -626.20 -77.07 18.69 

26 118.78 -291.34 948.32 -240.01 606.46 -249.77 -829.54 -51.33 -487.69 -41.56 341.86 9.77 

27 224.99 -225.51 350.63 -193.74 234.15 -465.30 -125.65 -31.77 -9.16 239.79 116.48 271.56 

28 177.03 -140.24 193.68 -112.57 428.07 -86.71 -16.65 -27.67 -251.04 -53.53 -234.39 -25.86 

29 18.38 -58.01 17.88 -40.34 33.22 -95.65 0.50 -17.68 -14.83 37.64 -15.33 55.32 

30 5.35 -5.87 7.51 -19.12 29.31 -68.18 -2.16 13.25 -23.96 62.30 -21.80 49.06 

31 20.38 -42.53 14.79 -46.87 15.48 -48.64 5.59 4.34 4.91 6.11 -0.69 1.77 

32 178.27 -573.62 265.81 -918.14 185.35 -656.37 -87.54 344.52 -7.08 82.75 80.46 -261.77 

33 154.17 -178.95 51.52 -60.27 40.16 -51.94 102.65 -118.68 114.01 -127.00 11.36 -8.32 

34 5.20 -22.44 32.64 -48.87 5.65 -14.24 -27.44 26.44 -0.44 -8.20 27.00 -34.63 

35 412.93 -118.30 570.42 -169.04 407.86 -123.33 -157.49 50.74 5.07 5.03 162.56 -45.71 

36 333.41 -1509.02 254.56 -339.82 139.60 -28.83 78.85 -1169.20 193.81 -1480.19 114.96 -310.99 

37 4.10 -10.27 10.30 -5.44 14.77 -23.60 -6.20 -4.83 -10.68 13.33 -4.48 18.17 

38 14.65 -38.00 15.38 -7.45 9.99 -14.34 -0.73 -30.55 4.67 -23.67 5.40 6.88 

39 15.67 -54.01 14.57 -35.33 21.93 -73.66 1.10 -18.68 -6.26 19.64 -7.36 38.32 

40 21.51 -8.73 22.42 -9.04 19.51 -8.24 -0.91 0.31 2.00 -0.49 2.91 -0.80 

41 7.69 -4.38 4.06 -4.32 111.86 -39.29 3.63 -0.06 -104.17 34.91 -107.80 34.97 

42 10.98 -5.89 4.25 -6.11 19.06 -20.21 6.73 0.21 -8.08 14.31 -14.81 14.10 

43 17.68 -8.11 6.04 -3.98 35.68 -27.43 11.64 -4.13 -18.00 19.32 -29.64 23.45 

44 21.60 -8.30 20.15 -6.06 140.04 -27.32 1.46 -2.24 -118.44 19.02 -119.90 21.26 

45 16.93 -15.55 7.47 -9.39 59.34 -16.32 9.45 -6.15 -42.41 0.78 -51.87 6.93 

46 37.18 -11.79 11.90 -11.67 9.62 -4.79 25.28 -0.12 27.56 -7.00 2.28 -6.88 

47 185.89 -98.65 27.99 -23.59 175.23 -42.16 157.90 -75.06 10.67 -56.49 -147.24 18.57 

48 58.77 -208.75 53.12 -48.67 5.64 -14.61 5.65 -160.09 53.12 -194.14 47.48 -34.05 

49 167.68 -60.60 165.63 -59.93 247.86 -79.38 2.05 -0.66 -80.18 18.78 -82.23 19.44 

50 235.35 -68.46 191.68 -68.22 305.14 -107.55 43.67 -0.24 -69.79 39.10 -113.46 39.33 

51 43.46 -144.61 49.26 -130.28 80.44 -226.45 -5.80 -14.33 -36.98 81.84 -31.18 96.17 

52 55.98 -27.95 258.12 -75.34 247.26 -93.30 -202.15 47.38 -191.29 65.35 10.86 17.97 

53 188.91 -469.66 236.49 -473.16 267.10 -439.85 -47.58 3.50 -78.19 -29.81 -30.60 -33.31 

54 938.22 -363.38 648.95 -248.09 442.85 -222.80 289.27 -115.29 495.37 -140.58 206.09 -25.29 

55 156.66 -161.27 247.64 -360.33 112.95 -206.98 -90.98 199.07 43.71 45.71 134.69 -153.36 

56 88.10 -90.59 46.74 -94.17 103.47 -41.06 41.36 3.58 -15.37 -49.53 -56.73 -53.11 

57 26.77 -50.22 20.17 -60.50 29.97 -97.80 6.60 10.28 -3.20 47.57 -9.80 37.29 

58 19.03 -63.88 12.79 -43.48 47.91 -108.29 6.24 -20.40 -28.88 44.41 -35.12 64.81 

59 63.76 -42.38 50.10 -17.77 104.34 -34.13 13.66 -24.61 -40.58 -8.25 -54.24 16.36 

60 214.23 -741.03 284.16 -819.01 133.15 -401.87 -69.93 77.97 81.09 -339.16 151.02 -417.13 

61 297.47 -124.46 40.37 -85.88 135.66 -53.23 257.09 -38.59 161.81 -71.23 -95.29 -32.64 

62 7.40 -24.64 6.81 -9.89 2.89 -7.71 0.59 -14.75 4.51 -16.93 3.92 -2.17 

63 394.31 -138.36 450.10 -584.97 320.15 -176.01 -55.79 446.61 74.17 37.64 129.95 -408.96 

64 274.25 -775.75 260.36 -662.37 287.45 -116.74 13.89 -113.37 -13.20 -659.01 -27.08 -545.63 

65 63.48 -26.91 54.52 -24.56 134.05 -395.60 8.96 -2.35 -70.57 368.69 -79.53 371.04 

66 393.64 -321.37 928.04 -215.48 347.03 -319.17 -534.40 -105.89 46.61 -2.20 581.01 103.69 

67 94.56 -208.09 103.94 -163.07 165.55 -296.48 -9.38 -45.02 -70.99 88.39 -61.61 133.41 

68 22.75 -75.78 16.12 -47.88 82.94 -241.86 6.63 -27.90 -60.18 166.08 -66.81 193.99 

69 332.27 -153.67 480.53 -142.06 169.16 -83.08 -148.27 -11.61 163.11 -70.58 311.37 -58.98 

70 52.59 -22.24 73.56 -30.58 98.25 -99.35 -20.97 8.34 -45.66 77.10 -24.69 68.76 

  



302 

Table E.13. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second molar (M2) bite load for the 3 models of baboon species, 

and strain differences (Δε1 and Δε3) at landmark locations between models. Strain 

values are in microstrain (μstrain). 

M2 bite P. anubis P. hamadryas T.gelada P.anubis-P.hamadryas P.anubis-T.gelada P.hamadryas-T.gelada 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 7.42 -7.80 9.56 -4.85 3.44 -5.75 -2.15 -2.95 3.98 -2.05 6.12 0.90 

2 31.09 -9.16 19.14 -10.06 12.34 -18.20 11.95 0.89 18.75 9.03 6.80 8.14 

3 36.52 -39.76 3.68 -4.11 124.32 -49.41 32.83 -35.65 -87.80 9.65 -120.64 45.30 

4 47.18 -209.40 58.96 -176.20 32.13 -133.82 -11.78 -33.19 15.05 -75.58 26.83 -42.38 

5 3.83 -4.31 26.44 -9.54 50.56 -16.69 -22.61 5.23 -46.73 12.39 -24.12 7.15 

6 17.61 -34.84 9.51 -22.55 39.46 -120.79 8.10 -12.29 -21.84 85.96 -29.94 98.24 

7 0.58 -1.15 0.04 -0.04 5.73 -2.33 0.55 -1.10 -5.15 1.19 -5.69 2.29 

8 102.71 -39.62 105.50 -32.52 166.41 -66.17 -2.79 -7.10 -63.71 26.55 -60.91 33.64 

9 174.44 -115.75 90.18 -95.02 151.09 -209.28 84.26 -20.73 23.35 93.54 -60.91 114.27 

10 108.21 -29.99 67.43 -24.00 48.59 -25.97 40.78 -6.00 59.62 -4.03 18.84 1.97 

11 50.51 -20.48 62.02 -24.25 54.71 -23.63 -11.51 3.77 -4.20 3.15 7.31 -0.62 

12 14.01 -36.41 16.50 -15.89 4.15 -3.67 -2.49 -20.53 9.86 -32.74 12.35 -12.22 

13 6.60 -6.42 26.08 -8.70 6.60 -20.02 -19.48 2.27 0.01 13.59 19.49 11.32 

14 7.29 -13.01 12.52 -3.53 25.31 -14.57 -5.22 -9.48 -18.01 1.56 -12.79 11.04 

15 19.35 -21.76 12.52 -16.06 58.67 -36.61 6.83 -5.70 -39.32 14.85 -46.16 20.55 

16 12.70 -47.40 29.05 -105.54 14.50 -12.23 -16.34 58.14 -1.80 -35.16 14.55 -93.31 

17 54.53 -102.18 35.09 -52.36 73.74 -175.11 19.43 -49.82 -19.21 72.93 -38.64 122.75 

18 52.99 -26.31 4.36 -4.50 97.91 -37.51 48.63 -21.82 -44.93 11.20 -93.56 33.01 

19 151.10 -70.52 46.97 -101.52 100.78 -184.85 104.14 31.00 50.33 114.33 -53.81 83.33 

20 42.12 -42.36 62.61 -72.22 0.60 -0.27 -20.48 29.87 41.52 -42.09 62.01 -71.96 

21 340.53 -108.76 380.15 -118.71 459.14 -140.20 -39.62 9.95 -118.61 31.44 -78.99 21.49 

22 54.58 -44.74 36.66 -107.39 39.24 -101.47 17.93 62.64 15.34 56.73 -2.59 -5.92 

23 74.34 -226.46 37.95 -167.51 122.01 -402.31 36.39 -58.95 -47.67 175.84 -84.06 234.80 

24 29.94 -58.94 18.54 -41.81 147.68 -446.27 11.41 -17.14 -117.73 387.33 -129.14 404.46 

25 303.92 -914.46 204.94 -271.52 286.50 -292.73 98.99 -642.94 17.43 -621.73 -81.56 21.21 

26 116.37 -286.16 961.29 -243.89 654.20 -267.31 -844.92 -42.27 -537.83 -18.85 307.10 23.42 

27 224.12 -229.34 349.91 -194.13 239.17 -489.67 -125.80 -35.21 -15.05 260.32 110.75 295.53 

28 180.67 -116.57 230.67 -112.93 469.36 -91.82 -50.00 -3.64 -288.69 -24.74 -238.69 -21.10 

29 17.61 -55.57 16.63 -36.23 31.43 -90.58 0.98 -19.34 -13.82 35.01 -14.80 54.36 

30 9.32 -5.27 4.30 -10.33 25.41 -51.45 5.02 5.06 -16.09 46.18 -21.11 41.12 

31 21.45 -50.43 16.56 -53.32 25.63 -79.02 4.90 2.89 -4.18 28.59 -9.08 25.71 

32 178.22 -573.54 266.10 -919.06 186.76 -661.68 -87.88 345.52 -8.55 88.14 79.34 -257.38 

33 150.68 -182.42 51.48 -66.70 42.15 -87.58 99.20 -115.72 108.53 -94.84 9.33 20.88 

34 4.52 -19.42 31.88 -48.16 5.42 -12.57 -27.36 28.74 -0.89 -6.85 26.46 -35.59 

35 411.08 -117.54 570.10 -168.92 404.80 -122.44 -159.03 51.38 6.28 4.90 165.31 -46.48 

36 336.16 -1503.18 249.70 -332.71 134.90 -13.45 86.46 -1170.47 201.26 -1489.73 114.79 -319.26 

37 5.45 -9.32 11.18 -5.87 17.78 -18.32 -5.73 -3.45 -12.33 9.00 -6.60 12.45 

38 15.03 -40.73 13.31 -7.22 9.52 -21.72 1.72 -33.52 5.51 -19.01 3.79 14.51 

39 12.35 -42.48 11.65 -27.45 11.72 -35.26 0.70 -15.03 0.62 -7.22 -0.08 7.81 

40 14.87 -6.80 12.59 -6.97 8.68 -12.19 2.28 0.17 6.19 5.40 3.91 5.23 

41 4.84 -3.68 7.22 -5.47 56.00 -23.20 -2.38 1.79 -51.16 19.52 -48.78 17.73 

42 11.20 -4.18 7.58 -3.95 6.85 -11.47 3.62 -0.24 4.35 7.29 0.73 7.53 

43 19.33 -3.65 7.03 -3.66 13.49 -29.08 12.30 0.02 5.84 25.44 -6.46 25.42 

44 12.81 -4.67 11.09 -3.70 51.00 -8.70 1.71 -0.97 -38.19 4.03 -39.91 5.00 

45 11.83 -13.99 5.88 -9.21 31.97 -7.99 5.95 -4.79 -20.14 -6.00 -26.09 -1.22 

46 34.44 -10.65 10.72 -9.93 6.70 -3.63 23.72 -0.73 27.74 -7.02 4.01 -6.30 

47 168.76 -98.05 24.15 -23.09 166.20 -43.97 144.61 -74.97 2.56 -54.08 -142.05 20.88 

48 57.57 -204.74 52.49 -47.74 5.56 -14.42 5.08 -157.00 52.01 -190.31 46.93 -33.31 

49 160.07 -57.58 159.86 -56.95 208.75 -67.25 0.22 -0.62 -48.68 9.68 -48.89 10.30 

50 233.14 -67.65 197.79 -67.22 307.39 -109.12 35.35 -0.43 -74.24 41.47 -109.60 41.90 

51 35.85 -117.46 45.74 -103.58 59.01 -143.90 -9.89 -13.88 -23.16 26.45 -13.27 40.33 

52 44.64 -24.44 217.82 -64.90 191.13 -72.15 -173.17 40.46 -146.49 47.71 26.69 7.25 

53 186.68 -472.44 239.81 -487.46 273.08 -460.25 -53.13 15.02 -86.40 -12.19 -33.27 -27.20 

54 946.78 -364.30 651.29 -244.61 454.95 -222.74 295.49 -119.69 491.84 -141.57 196.34 -21.88 

55 154.91 -162.47 247.34 -363.18 116.46 -206.04 -92.43 200.70 38.45 43.57 130.88 -157.13 

56 87.80 -84.91 41.85 -90.82 94.76 -36.32 45.95 5.91 -6.95 -48.59 -52.91 -54.50 

57 25.67 -47.81 20.11 -59.73 25.40 -82.87 5.56 11.92 0.27 35.06 -5.29 23.14 

58 19.04 -63.65 13.11 -44.43 43.81 -102.92 5.93 -19.23 -24.77 39.27 -30.71 58.49 

59 68.35 -39.20 55.04 -19.21 125.16 -40.85 13.31 -19.99 -56.81 1.65 -70.12 21.64 

60 213.52 -738.64 282.83 -814.85 129.00 -386.82 -69.31 76.22 84.52 -351.82 153.83 -428.04 

61 291.80 -122.99 40.56 -87.91 137.08 -52.73 251.24 -35.08 154.72 -70.26 -96.52 -35.18 

62 6.73 -22.43 6.74 -9.84 2.44 -6.15 -0.01 -12.59 4.29 -16.28 4.30 -3.69 

63 391.44 -137.54 447.17 -582.30 308.44 -170.71 -55.74 444.76 83.00 33.16 138.73 -411.60 

64 274.71 -774.39 259.15 -658.58 287.04 -116.32 15.56 -115.81 -12.33 -658.07 -27.89 -542.25 

65 87.55 -41.32 80.81 -30.63 157.91 -232.07 6.74 -10.69 -70.37 190.75 -77.11 201.43 

66 401.97 -331.91 938.66 -221.63 378.86 -381.79 -536.69 -110.28 23.11 49.88 559.80 160.16 

67 57.31 -141.35 54.83 -116.14 60.25 -186.83 2.48 -25.21 -2.93 45.48 -5.42 70.69 

68 23.29 -77.32 15.51 -44.93 73.98 -201.72 7.77 -32.39 -50.69 124.40 -58.47 156.79 

69 332.80 -154.37 482.04 -142.11 163.40 -86.20 -149.24 -12.26 169.41 -68.17 318.64 -55.91 

70 58.21 -22.12 71.73 -27.25 91.52 -68.62 -13.53 5.14 -33.31 46.51 -19.78 41.37 
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Table E.14. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during third molar (M3) bite load for the 3 models of baboon species, and 

strain differences (Δε1 and Δε3) at landmark locations between models. Strain values 

are in microstrain (μstrain). 

M3 bite P. anubis P. hamadryas T.gelada P.anubis-P.hamadryas P.anubis-T.gelada P.hamadryas-T.gelada 

landmark ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 Δε1 Δε3 

1 4.34 -3.44 13.41 -7.15 11.68 -11.03 -9.07 3.71 -7.34 7.60 1.73 3.89 

2 34.61 -9.27 27.37 -13.54 35.16 -30.62 7.23 4.27 -0.56 21.35 -7.79 17.08 

3 24.86 -35.39 1.55 -3.76 43.75 -19.27 23.31 -31.63 -18.90 -16.12 -42.20 15.51 

4 49.83 -179.81 72.94 -168.11 39.85 -91.84 -23.10 -11.70 9.98 -87.97 33.09 -76.27 

5 3.55 -2.62 27.79 -9.90 47.12 -16.06 -24.23 7.28 -43.57 13.45 -19.33 6.17 

6 18.33 -36.02 10.03 -23.91 42.49 -130.32 8.30 -12.12 -24.16 94.30 -32.46 106.41 

7 0.65 -1.27 0.04 -0.04 7.70 -3.13 0.61 -1.24 -7.05 1.86 -7.66 3.09 

8 102.30 -32.90 90.45 -28.84 152.90 -74.63 11.85 -4.06 -50.60 41.73 -62.45 45.78 

9 114.24 -85.75 51.73 -73.81 58.65 -115.08 62.52 -11.94 55.60 29.33 -6.92 41.26 

10 121.32 -33.92 71.84 -25.61 59.70 -31.02 49.49 -8.31 61.62 -2.90 12.13 5.41 

11 33.88 -13.93 46.60 -17.80 16.56 -7.27 -12.72 3.87 17.32 -6.66 30.05 -10.53 

12 12.10 -25.80 19.41 -13.16 9.89 -5.43 -7.31 -12.63 2.22 -20.36 9.53 -7.73 

13 10.56 -8.41 43.66 -13.52 2.06 -5.84 -33.10 5.11 8.49 -2.57 41.60 -7.69 

14 3.77 -5.44 33.71 -10.23 17.18 -10.76 -29.94 4.79 -13.41 5.32 16.53 0.52 

15 3.20 -9.99 8.27 -5.66 20.86 -17.22 -5.07 -4.34 -17.67 7.22 -12.59 11.56 

16 9.46 -26.09 6.70 -27.24 29.74 -9.82 2.76 1.15 -20.28 -16.27 -23.04 -17.43 

17 21.77 -68.90 26.77 -56.01 17.59 -21.43 -5.00 -12.89 4.18 -47.46 9.18 -34.58 

18 164.45 -343.28 10.98 -12.37 109.64 -157.89 153.47 -330.91 54.82 -185.38 -98.66 145.53 

19 194.61 -97.89 44.15 -143.03 126.07 -215.64 150.47 45.14 68.54 117.75 -81.93 72.61 

20 40.35 -37.47 61.70 -70.21 0.70 -0.44 -21.35 32.74 39.65 -37.03 61.00 -69.78 

21 366.26 -119.22 415.30 -130.02 545.72 -167.93 -49.04 10.80 -179.46 48.71 -130.42 37.91 

22 40.45 -51.72 40.05 -134.75 45.66 -170.57 0.40 83.02 -5.21 118.85 -5.61 35.82 

23 72.86 -223.90 36.57 -141.34 118.73 -395.60 36.29 -82.56 -45.86 171.71 -82.16 254.26 

24 19.49 -40.03 15.25 -42.04 75.16 -221.31 4.24 2.01 -55.67 181.28 -59.91 179.27 

25 302.52 -911.80 202.67 -265.18 284.74 -287.28 99.85 -646.62 17.77 -624.52 -82.07 22.11 

26 114.05 -281.28 972.84 -247.34 710.93 -288.56 -858.79 -33.94 -596.88 7.27 261.92 41.22 

27 224.15 -234.19 349.72 -194.93 244.29 -511.53 -125.58 -39.26 -20.14 277.34 105.43 316.60 

28 191.99 -85.05 264.29 -110.03 542.86 -115.59 -72.29 24.98 -350.86 30.54 -278.57 5.56 

29 16.45 -51.87 15.12 -31.46 29.42 -84.66 1.33 -20.41 -12.97 32.79 -14.30 53.20 

30 17.61 -6.98 3.28 -2.72 24.15 -31.88 14.33 -4.26 -6.54 24.90 -20.87 29.17 

31 23.26 -61.53 17.49 -57.25 38.89 -114.16 5.78 -4.28 -15.62 52.63 -21.40 56.91 

32 178.86 -575.94 267.03 -922.22 190.02 -673.49 -88.17 346.28 -11.16 97.55 77.01 -248.73 

33 146.70 -187.21 52.34 -74.70 53.91 -137.63 94.36 -112.51 92.80 -49.58 -1.57 62.93 

34 3.58 -14.99 30.66 -46.88 5.77 -10.54 -27.09 31.89 -2.19 -4.46 24.89 -36.34 

35 410.53 -117.05 571.99 -169.54 408.88 -123.67 -161.46 52.50 1.65 6.62 163.11 -45.88 

36 339.99 -1495.10 244.32 -324.92 130.86 2.98 95.67 -1170.18 209.12 -1498.08 113.46 -327.89 

37 8.25 -8.66 12.24 -6.39 25.63 -13.70 -3.98 -2.27 -17.37 5.04 -13.39 7.31 

38 15.82 -45.19 11.01 -7.15 11.33 -32.97 4.81 -38.04 4.49 -12.22 -0.32 25.82 

39 8.24 -27.96 7.48 -15.98 14.14 -8.60 0.76 -11.97 -5.91 -19.36 -6.66 -7.38 

40 10.04 -5.30 5.79 -7.57 4.28 -17.33 4.25 2.27 5.76 12.04 1.51 9.77 

41 5.14 -3.28 11.87 -7.31 10.75 -8.91 -6.73 4.04 -5.61 5.63 1.12 1.59 

42 15.49 -5.28 16.33 -6.34 3.88 -7.82 -0.84 1.06 11.61 2.54 12.45 1.48 

43 29.30 -6.21 15.26 -8.67 5.83 -22.11 14.04 2.47 23.47 15.90 9.43 13.44 

44 9.01 -2.41 14.06 -4.60 6.53 -19.92 -5.05 2.19 2.48 17.50 7.53 15.32 

45 7.61 -10.92 4.13 -6.36 8.79 -3.39 3.48 -4.55 -1.18 -7.52 -4.66 -2.97 

46 30.28 -9.17 9.43 -7.69 6.74 -3.75 20.86 -1.47 23.54 -5.42 2.68 -3.94 

47 148.58 -98.27 18.77 -20.32 162.99 -46.34 129.82 -77.95 -14.40 -51.93 -144.22 26.02 

48 55.88 -198.96 51.30 -46.15 5.37 -13.96 4.58 -152.81 50.51 -185.00 45.93 -32.19 

49 148.06 -53.30 153.08 -53.16 163.65 -53.30 -5.02 -0.14 -15.58 0.01 -10.56 0.14 

50 232.66 -67.31 203.98 -65.91 309.54 -110.85 28.68 -1.41 -76.88 43.54 -105.56 44.95 

51 41.54 -84.72 44.11 -72.29 50.78 -53.18 -2.58 -12.43 -9.24 -31.54 -6.66 -19.12 

52 31.29 -20.54 156.14 -48.88 104.32 -37.73 -124.85 28.34 -73.04 17.20 51.81 -11.14 

53 184.09 -475.49 243.91 -505.61 280.32 -485.70 -59.81 30.12 -96.23 10.21 -36.42 -19.91 

54 956.28 -365.45 654.62 -239.93 474.93 -223.54 301.65 -125.52 481.34 -141.91 179.69 -16.39 

55 153.10 -164.05 247.15 -367.23 121.57 -207.84 -94.04 203.18 31.53 43.79 125.58 -159.39 

56 84.87 -74.74 34.34 -82.28 84.98 -33.34 50.53 7.54 -0.11 -41.39 -50.64 -48.94 

57 24.28 -44.73 20.03 -58.73 19.66 -63.84 4.25 13.99 4.62 19.11 0.37 5.11 

58 19.26 -63.92 13.47 -45.49 39.27 -96.79 5.79 -18.44 -20.01 32.86 -25.80 51.30 

59 75.91 -34.93 60.42 -20.64 150.10 -48.84 15.49 -14.29 -74.20 13.91 -89.69 28.20 

60 212.72 -735.96 281.46 -810.59 125.03 -372.07 -68.75 74.63 87.69 -363.89 156.44 -438.52 

61 285.59 -121.32 41.08 -91.38 135.15 -51.58 244.51 -29.93 150.44 -69.73 -94.07 -39.80 

62 5.78 -19.26 6.63 -9.74 2.27 -4.38 -0.85 -9.51 3.52 -14.88 4.36 -5.36 

63 387.91 -136.57 443.25 -579.02 295.52 -164.79 -55.34 442.45 92.39 28.22 147.73 -414.23 

64 275.86 -773.94 256.89 -651.48 285.65 -113.88 18.97 -122.46 -9.80 -660.06 -28.77 -537.59 

65 91.49 -43.91 97.36 -32.24 188.12 -70.84 -5.87 -11.68 -96.63 26.93 -90.76 38.60 

66 414.32 -347.52 942.48 -224.87 417.75 -453.07 -528.15 -122.65 -3.43 105.55 524.72 228.20 

67 37.16 -95.56 31.80 -81.89 28.80 -100.55 5.36 -13.67 8.36 4.99 3.00 18.66 

68 22.50 -70.72 13.04 -36.09 59.37 -144.47 9.46 -34.63 -36.87 73.75 -46.33 108.38 

69 331.70 -154.55 486.56 -142.73 162.43 -96.74 -154.87 -11.83 169.26 -57.81 324.13 -45.98 

70 59.95 -21.08 66.67 -22.82 76.10 -32.37 -6.72 1.74 -16.15 11.29 -9.43 9.54 
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Table E.15. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first incisor (I1) bite load for the models of male and female P. 

anubis and T. gelada species, and strain differences (Δε1 and Δε3) at landmark 

locations between male and female models. Strain values are in microstrain (μstrain). 

I1 bite P.anubis (male) P.anubis (female) T.gelada (male) T.gelada (female) P.anubis(m)-P.anubis(f) T.gelada(m)-T.gelada(f) 

landmark ε1 ε3 ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 136.04 -207.36 57.76 -161.38 646.29 -552.11 253.83 -506.64 78.28 -45.98 392.46 -45.47 

2 410.20 -155.96 216.46 -81.55 208.52 -109.23 89.03 -47.34 193.73 -74.41 119.49 -61.89 

3 215.06 -63.33 232.92 -77.67 266.00 -96.64 85.76 -38.91 -17.86 14.34 180.24 -57.73 

4 44.27 -284.71 56.55 -191.64 52.97 -235.65 32.40 -79.74 -12.29 -93.08 20.57 -155.91 

5 5.39 -14.90 11.44 -14.76 59.08 -18.98 36.78 -12.04 -6.05 -0.14 22.31 -6.93 

6 15.67 -31.19 5.42 -10.91 32.80 -99.76 10.28 -10.72 10.25 -20.27 22.52 -89.04 

7 0.42 -0.80 0.75 -0.45 2.14 -0.85 0.54 -0.47 -0.33 -0.35 1.59 -0.38 

8 94.78 -54.09 31.60 -31.01 217.62 -70.22 32.53 -23.78 63.18 -23.08 185.08 -46.44 

9 189.49 -150.76 81.29 -167.69 153.01 -324.59 54.50 -112.50 108.20 16.93 98.51 -212.09 

10 62.05 -20.13 10.81 -7.36 19.85 -14.72 14.54 -6.60 51.24 -12.77 5.31 -8.11 

11 121.39 -281.97 82.35 -254.07 167.55 -489.47 85.88 -211.92 39.04 -27.89 81.67 -277.55 

12 282.55 -85.58 261.12 -96.70 265.55 -158.28 503.18 -193.11 21.43 11.12 -237.64 34.83 

13 116.36 -33.56 56.59 -29.49 23.13 -51.89 95.39 -54.56 59.77 -4.07 -72.26 2.67 

14 91.96 -33.47 85.23 -29.28 222.93 -117.64 119.79 -51.59 6.74 -4.19 103.14 -66.05 

15 85.85 -26.19 76.00 -23.42 149.83 -97.46 87.68 -39.22 9.85 -2.77 62.15 -58.24 

16 62.78 -17.71 79.12 -21.37 110.40 -53.01 63.73 -28.97 -16.34 3.66 46.67 -24.04 

17 38.53 -13.96 40.00 -20.87 102.17 -42.26 85.80 -28.11 -1.47 6.91 16.37 -14.15 

18 186.20 -83.57 144.10 -44.71 161.90 -62.75 71.16 -21.21 42.10 -38.86 90.74 -41.54 

19 49.76 -36.18 41.22 -18.58 44.85 -94.33 21.99 -53.53 8.54 -17.60 22.86 -40.80 

20 49.52 -58.15 24.38 -69.66 0.79 -0.14 11.86 -17.50 25.14 11.51 -11.08 17.36 

21 254.42 -81.94 215.60 -64.35 295.63 -88.27 99.04 -36.59 38.83 -17.59 196.59 -51.69 

22 170.16 -59.45 64.02 -37.11 224.28 -101.30 90.03 -55.36 106.14 -22.33 134.25 -45.94 

23 74.19 -227.96 44.76 -139.10 115.10 -377.12 41.61 -129.50 29.42 -88.86 73.49 -247.62 

24 161.83 -73.01 136.86 -98.10 125.98 -386.48 76.67 -145.28 24.97 25.10 49.31 -241.20 

25 306.53 -897.05 121.21 -236.73 260.30 -265.86 119.85 -200.79 185.32 -660.32 140.45 -65.07 

26 134.36 -324.32 566.32 -139.69 476.56 -203.76 81.89 -146.33 -431.95 -184.62 394.67 -57.42 

27 229.45 -205.44 111.52 -210.11 220.30 -391.01 195.52 -103.71 117.93 4.66 24.77 -287.30 

28 149.01 -157.93 72.42 -101.11 342.56 -76.96 78.15 -60.03 76.59 -56.82 264.40 -16.94 

29 22.32 -69.64 38.04 -107.99 37.35 -107.10 23.34 -56.75 -15.72 38.35 14.01 -50.35 

30 8.83 -25.38 29.95 -82.91 39.68 -103.24 62.80 -18.28 -21.12 57.53 -23.12 -84.96 

31 10.26 -26.67 17.97 -41.16 44.71 -18.17 40.38 -43.20 -7.72 14.49 4.33 25.03 

32 178.25 -572.73 133.29 -423.47 183.21 -647.35 56.96 -196.16 44.97 -149.26 126.25 -451.19 

33 177.15 -163.96 76.97 -69.30 126.14 -42.46 96.72 -45.01 100.18 -94.66 29.41 2.56 

34 6.95 -29.98 5.94 -13.88 6.72 -17.70 4.78 -9.92 1.01 -16.10 1.95 -7.78 

35 422.30 -122.53 216.24 -95.58 427.56 -134.12 147.55 -78.30 206.06 -26.95 280.00 -55.82 

36 332.37 -1560.99 111.98 -310.51 161.31 -74.62 65.43 -184.04 220.39 -1250.48 95.88 109.42 

37 4.34 -13.62 0.93 -0.49 13.83 -38.93 1.63 -1.13 3.41 -13.14 12.20 -37.80 

38 13.65 -17.62 10.65 -32.16 26.76 -8.52 10.60 -8.15 3.01 14.54 16.15 -0.37 

39 78.08 -285.35 68.87 -225.66 143.87 -501.44 79.06 -204.27 9.21 -59.69 64.81 -297.18 

40 158.88 -70.02 84.04 -36.35 227.23 -59.49 203.25 -76.79 74.84 -33.68 23.98 17.29 

41 70.79 -28.83 67.20 -23.94 127.80 -49.22 88.95 -51.17 3.60 -4.89 38.85 1.95 

42 62.62 -26.37 85.88 -25.59 128.08 -58.33 86.13 -44.55 -23.27 -0.79 41.95 -13.78 

43 70.61 -22.47 82.80 -19.44 400.62 -97.65 95.87 -34.62 -12.19 -3.03 304.75 -63.03 

44 62.96 -16.58 66.78 -21.28 333.28 -85.83 102.39 -30.25 -3.82 4.69 230.89 -55.59 

45 41.93 -19.15 65.98 -20.97 144.40 -47.59 69.33 -21.35 -24.05 1.82 75.07 -26.24 

46 74.07 -23.00 239.61 -62.24 89.11 -42.87 72.55 -9.44 -165.53 39.24 16.56 -33.43 

47 213.51 -71.66 110.36 -32.34 146.58 -36.38 39.11 -92.67 103.15 -39.32 107.46 56.28 

48 57.51 -204.22 22.16 -81.82 5.16 -13.32 31.16 -71.93 35.35 -122.40 -26.00 58.61 

49 220.21 -75.27 167.09 -53.50 341.26 -108.51 151.68 -49.69 53.11 -21.77 189.58 -58.82 

50 193.18 -57.31 113.53 -43.90 254.82 -89.60 52.11 -54.01 79.65 -13.41 202.71 -35.59 

51 75.57 -219.53 45.58 -159.29 124.96 -385.14 46.68 -146.06 29.99 -60.23 78.29 -239.08 

52 155.52 -57.64 181.75 -70.94 211.00 -230.27 304.44 -66.63 -26.23 13.30 -93.44 -163.64 

53 195.80 -484.39 170.41 -380.40 270.84 -455.38 521.60 -150.69 25.38 -103.99 -250.76 -304.70 

54 953.96 -361.44 382.18 -133.00 465.01 -225.92 124.12 -161.40 571.78 -228.44 340.88 -64.52 

55 160.68 -164.09 163.36 -239.49 114.54 -222.35 289.55 -129.58 -2.68 75.40 -175.01 -92.76 

56 121.21 -140.20 76.69 -113.55 149.94 -96.57 92.22 -87.90 44.51 -26.65 57.72 -8.67 

57 30.32 -58.56 21.39 -77.96 38.23 -124.15 16.29 -25.01 8.94 19.40 21.94 -99.14 

58 17.36 -58.38 35.47 -78.31 53.52 -111.50 56.44 -17.66 -18.11 19.93 -2.91 -93.84 

59 30.47 -40.65 20.11 -48.10 25.74 -8.83 44.36 -44.92 10.36 7.45 -18.62 36.09 

60 213.70 -739.71 113.26 -357.70 150.67 -462.22 74.19 -247.87 100.44 -382.01 76.48 -214.36 

61 279.43 -121.60 121.12 -92.42 103.40 -52.50 82.66 -41.91 158.31 -29.18 20.74 -10.59 

62 8.59 -28.66 12.42 -18.33 4.22 -11.43 3.47 -7.99 -3.82 -10.33 0.75 -3.44 

63 401.61 -139.42 357.03 -119.13 350.48 -188.64 212.32 -105.33 44.57 -20.29 138.16 -83.31 

64 267.53 -759.13 161.52 -426.43 282.42 -107.88 86.86 -286.47 106.02 -332.70 195.56 178.59 

65 71.42 -162.62 87.77 -177.53 209.70 -573.74 71.83 -229.20 -16.35 14.92 137.88 -344.55 

66 324.68 -242.64 166.31 -111.07 248.95 -158.21 157.84 -65.87 158.37 -131.57 91.11 -92.34 

67 58.53 -51.05 15.02 -40.46 46.07 -178.52 43.58 -85.62 43.51 -10.59 2.49 -92.90 

68 43.02 -141.15 70.66 -141.47 184.64 -562.04 77.37 -190.84 -27.65 0.32 107.27 -371.21 

69 381.66 -184.24 124.40 -84.35 225.95 -133.85 121.82 -80.51 257.26 -99.89 104.13 -53.34 

70 78.74 -44.02 26.81 -34.91 53.91 -117.58 6.86 -18.83 51.93 -9.11 47.05 -98.75 
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Table E.16. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second incisor (I2) bite load for the models of male and female P. 

anubis and T. gelada species, and strain differences (Δε1 and Δε3) at landmark 

locations between male and female models. Strain values are in microstrain (μstrain). 

I2 bite P.anubis (male) P.anubis (female) T.gelada (male) T.gelada (female) P.anubis(m)-P.anubis(f) T.gelada(m)-T.gelada(f) 

landmark ε1 ε3 ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 76.02 -99.61 48.56 -35.85 147.64 -397.31 83.27 -62.88 27.46 -63.76 64.38 -334.42 

2 346.34 -200.68 172.38 -137.53 273.62 -211.46 105.53 -61.22 173.95 -63.15 168.09 -150.23 

3 185.37 -58.21 186.10 -60.29 272.14 -100.94 73.59 -36.19 -0.73 2.08 198.55 -64.75 

4 45.53 -281.51 56.30 -189.72 51.87 -231.54 32.15 -80.38 -10.77 -91.79 19.73 -151.16 

5 5.32 -14.25 11.71 -14.89 59.19 -19.01 36.52 -11.93 -6.38 0.64 22.67 -7.08 

6 15.79 -31.60 5.42 -10.96 33.28 -101.32 10.21 -10.87 10.37 -20.63 23.07 -90.45 

7 0.43 -0.82 0.82 -0.49 2.17 -0.88 0.62 -0.49 -0.39 -0.34 1.55 -0.38 

8 98.18 -54.16 33.23 -30.52 218.27 -71.04 34.38 -23.37 64.95 -23.64 183.89 -47.67 

9 191.45 -150.03 85.25 -163.33 160.63 -337.63 59.29 -115.76 106.20 13.30 101.34 -221.86 

10 68.09 -19.81 16.87 -6.60 23.75 -15.70 17.06 -6.37 51.22 -13.21 6.69 -9.33 

11 111.76 -253.36 88.76 -251.96 184.50 -547.32 89.47 -222.49 23.00 -1.40 95.03 -324.83 

12 306.89 -172.75 377.81 -171.14 797.07 -523.21 590.28 -238.99 -70.92 -1.61 206.79 -284.22 

13 144.44 -43.78 90.87 -53.27 12.79 -33.16 123.28 -77.09 53.58 9.50 -110.49 43.94 

14 112.05 -40.78 110.41 -42.32 222.47 -122.54 151.71 -71.67 1.64 1.54 70.76 -50.87 

15 107.67 -36.95 89.40 -29.27 160.55 -105.55 114.44 -61.43 18.26 -7.68 46.11 -44.11 

16 64.34 -17.92 80.03 -23.70 51.77 -35.72 71.86 -26.03 -15.69 5.78 -20.09 -9.69 

17 31.27 -8.86 36.88 -21.26 96.08 -42.40 93.58 -26.91 -5.61 12.41 2.49 -15.49 

18 213.23 -95.48 166.00 -51.33 196.05 -76.23 83.43 -24.99 47.23 -44.15 112.62 -51.24 

19 48.11 -24.81 61.95 -23.40 47.63 -113.45 17.53 -43.50 -13.84 -1.41 30.11 -69.95 

20 48.39 -56.22 23.23 -67.17 0.73 -0.14 11.55 -16.74 25.16 10.96 -10.82 16.59 

21 268.92 -83.72 226.26 -66.93 310.33 -92.77 105.68 -36.31 42.65 -16.79 204.65 -56.46 

22 145.83 -53.71 38.97 -39.28 181.80 -90.14 80.58 -56.45 106.86 -14.43 101.22 -33.70 

23 75.86 -230.37 42.89 -128.06 118.82 -388.54 45.91 -140.71 32.97 -102.32 72.91 -247.82 

24 124.72 -84.15 118.33 -159.27 188.81 -581.47 68.24 -186.07 6.39 75.12 120.57 -395.40 

25 307.49 -905.93 122.84 -243.08 264.10 -272.91 121.67 -210.28 184.65 -662.86 142.43 -62.64 

26 131.16 -317.64 579.26 -142.45 501.67 -212.33 83.03 -140.22 -448.10 -175.19 418.64 -72.11 

27 229.09 -209.58 111.05 -213.04 223.50 -405.38 195.89 -106.15 118.05 3.46 27.62 -299.23 

28 160.05 -168.21 89.35 -116.11 367.77 -81.13 83.70 -66.61 70.70 -52.10 284.07 -14.52 

29 21.57 -67.53 40.30 -115.09 36.86 -105.85 24.42 -58.39 -18.73 47.56 12.44 -47.46 

30 7.45 -21.32 27.75 -75.09 38.30 -98.67 66.66 -18.95 -20.30 53.77 -28.36 -79.72 

31 11.92 -21.98 13.33 -42.68 25.01 -12.70 33.51 -40.28 -1.42 20.70 -8.50 27.59 

32 178.58 -574.04 129.85 -412.46 184.39 -651.78 58.82 -202.33 48.73 -161.58 125.57 -449.45 

33 171.90 -166.55 72.07 -70.65 101.60 -36.78 88.36 -44.26 99.82 -95.90 13.23 7.48 

34 6.83 -29.45 5.52 -13.05 6.72 -17.69 4.54 -9.51 1.31 -16.40 2.18 -8.19 

35 421.09 -121.77 209.25 -92.27 426.10 -131.93 148.03 -78.19 211.84 -29.50 278.07 -53.74 

36 330.98 -1547.82 106.78 -295.68 155.48 -64.63 64.09 -178.78 224.21 -1252.14 91.38 114.15 

37 4.21 -13.51 1.65 -0.76 13.97 -38.42 1.85 -1.23 2.56 -12.75 12.12 -37.19 

38 13.20 -22.48 14.61 -44.43 22.44 -8.30 8.98 -9.22 -1.42 21.95 13.46 0.93 

39 57.93 -214.93 52.77 -173.98 116.57 -407.60 62.65 -162.22 5.16 -40.96 53.93 -245.38 

40 124.82 -58.96 87.04 -30.33 241.29 -72.36 157.33 -65.28 37.78 -28.63 83.96 -7.09 

41 48.13 -21.19 55.56 -23.79 268.20 -41.23 66.27 -38.98 -7.43 2.60 201.93 -2.25 

42 47.58 -23.27 67.64 -20.20 123.71 -61.47 68.43 -35.63 -20.06 -3.07 55.28 -25.84 

43 54.04 -26.00 73.90 -17.70 349.71 -87.06 85.44 -29.29 -19.87 -8.30 264.27 -57.77 

44 61.91 -18.74 59.90 -19.07 409.61 -97.19 102.04 -34.71 2.01 0.33 307.57 -62.49 

45 41.26 -20.99 55.32 -18.41 152.04 -48.15 65.16 -21.81 -14.06 -2.58 86.89 -26.33 

46 62.46 -19.75 202.16 -51.57 62.40 -30.01 54.18 -7.82 -139.70 31.81 8.22 -22.19 

47 214.45 -79.76 108.03 -40.15 169.13 -40.76 45.67 -107.35 106.42 -39.61 123.46 66.59 

48 58.85 -208.78 22.93 -83.71 5.49 -14.19 32.11 -74.33 35.92 -125.07 -26.63 60.14 

49 206.83 -71.95 156.34 -50.32 331.08 -105.17 137.56 -45.05 50.49 -21.63 193.52 -60.12 

50 211.29 -62.29 151.30 -51.39 276.13 -96.76 62.29 -50.39 60.00 -10.90 213.84 -46.37 

51 72.32 -213.75 49.49 -163.58 121.60 -372.06 47.21 -140.54 22.83 -50.18 74.39 -231.52 

52 148.24 -53.27 222.14 -86.12 250.05 -147.65 392.42 -89.83 -73.90 32.85 -142.37 -57.81 

53 195.27 -477.14 167.96 -372.61 264.36 -432.23 521.13 -149.98 27.31 -104.53 -256.77 -282.25 

54 941.08 -361.30 378.83 -130.62 444.13 -224.23 122.30 -164.83 562.25 -230.69 321.82 -59.40 

55 160.95 -162.36 162.69 -236.67 111.18 -216.52 288.15 -127.30 -1.74 74.30 -176.97 -89.22 

56 108.02 -125.75 56.69 -91.84 138.81 -78.82 79.05 -69.91 51.33 -33.91 59.76 -8.91 

57 30.06 -57.79 18.19 -63.25 37.99 -123.68 15.80 -25.11 11.88 5.46 22.19 -98.57 

58 18.08 -61.06 35.83 -79.47 54.70 -115.08 52.29 -16.29 -17.75 18.40 2.41 -98.79 

59 39.43 -43.55 23.85 -48.46 45.59 -15.10 52.43 -47.33 15.58 4.91 -6.83 32.23 

60 214.53 -742.31 114.76 -364.50 145.71 -445.86 72.26 -241.08 99.77 -377.81 73.45 -204.78 

61 290.27 -123.68 124.99 -91.84 117.51 -52.86 85.46 -42.98 165.28 -31.85 32.05 -9.88 

62 8.66 -28.87 12.81 -18.85 4.10 -11.17 3.51 -7.94 -4.15 -10.01 0.59 -3.23 

63 401.34 -139.72 361.11 -120.17 345.79 -186.96 213.34 -105.53 40.23 -19.55 132.44 -81.43 

64 269.85 -766.71 165.40 -438.30 285.14 -112.32 87.88 -293.40 104.46 -328.41 197.25 181.08 

65 75.39 -167.99 98.73 -186.19 223.38 -612.74 85.56 -252.45 -23.35 18.21 137.83 -360.30 

66 342.44 -261.05 179.41 -121.74 274.91 -193.37 165.67 -76.21 163.03 -139.31 109.24 -117.16 

67 43.82 -67.91 53.88 -101.09 131.93 -285.57 85.98 -135.99 -10.06 33.18 45.95 -149.58 

68 36.00 -113.76 49.19 -105.17 159.67 -486.77 66.90 -154.34 -13.19 -8.60 92.77 -332.42 

69 362.99 -172.34 115.63 -76.18 205.31 -107.54 115.52 -74.47 247.36 -96.15 89.80 -33.07 

70 75.23 -35.66 40.49 -30.12 63.28 -156.18 26.87 -39.49 34.74 -5.54 36.41 -116.69 
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Table E.17. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first premolar (P3) bite load for the models of male and female P. 

anubis and T. gelada species, and strain differences (Δε1 and Δε3) at landmark 

locations between male and female models. Strain values are in microstrain (μstrain). 

P3 bite P.anubis (male) P.anubis (female) T.gelada (male) T.gelada (female) P.anubis(m)-P.anubis(f) T.gelada(m)-T.gelada(f) 

landmark ε1 ε3 ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 17.80 -18.65 17.24 -12.16 24.92 -37.60 18.34 -8.98 0.56 -6.48 6.58 -28.62 

2 28.66 -31.80 40.88 -42.10 73.76 -147.59 47.73 -48.39 -12.21 10.30 26.03 -99.20 

3 64.45 -47.61 86.39 -33.04 232.67 -90.58 53.34 -38.79 -21.94 -14.57 179.32 -51.79 

4 47.77 -255.96 51.96 -171.71 44.21 -197.99 30.13 -79.75 -4.19 -84.25 14.08 -118.24 

5 4.77 -10.30 13.04 -14.03 55.72 -18.02 34.94 -11.35 -8.27 3.73 20.78 -6.68 

6 16.60 -33.23 6.19 -11.84 35.72 -109.04 10.44 -11.54 10.41 -21.39 25.29 -97.50 

7 0.50 -0.97 1.25 -0.65 3.38 -1.38 0.91 -0.48 -0.75 -0.33 2.47 -0.90 

8 105.02 -49.56 33.92 -26.75 199.47 -68.40 36.48 -20.78 71.09 -22.81 162.99 -47.62 

9 197.96 -152.86 87.53 -154.68 190.23 -351.20 71.82 -114.42 110.43 1.82 118.41 -236.79 

10 88.88 -24.38 28.12 -9.21 34.46 -19.52 21.57 -6.45 60.76 -15.17 12.89 -13.08 

11 79.54 -30.43 35.02 -59.69 73.16 -209.72 48.40 -127.54 44.52 29.26 24.77 -82.18 

12 8.04 -21.73 32.11 -76.60 48.73 -44.97 80.44 -154.40 -24.07 54.87 -31.70 109.43 

13 81.84 -82.11 72.94 -126.44 246.69 -658.09 130.40 -113.53 8.90 44.33 116.29 -544.56 

14 113.01 -203.90 146.61 -143.35 423.89 -966.92 272.23 -299.94 -33.61 -60.56 151.66 -666.99 

15 138.72 -119.71 131.74 -85.58 322.15 -459.34 214.22 -187.40 6.98 -34.13 107.93 -271.95 

16 94.53 -98.21 83.00 -40.13 66.61 -244.02 123.28 -69.72 11.53 -58.08 -56.67 -174.30 

17 33.43 -46.35 24.71 -29.16 54.81 -71.97 99.59 -31.95 8.72 -17.19 -44.78 -40.02 

18 228.50 -102.44 163.08 -50.39 236.48 -92.54 94.77 -28.69 65.41 -52.05 141.71 -63.85 

19 92.00 -37.68 103.56 -30.40 62.25 -140.55 8.16 -22.36 -11.56 -7.28 54.08 -118.19 

20 44.93 -49.30 21.42 -63.50 0.55 -0.16 10.76 -14.67 23.51 14.20 -10.20 14.50 

21 305.78 -95.03 237.01 -69.83 359.58 -108.33 114.37 -36.00 68.76 -25.19 245.21 -72.32 

22 83.02 -42.42 25.87 -58.89 87.29 -70.59 62.46 -58.37 57.15 16.47 24.83 -12.22 

23 77.11 -230.96 37.55 -107.75 123.35 -403.06 50.64 -150.74 39.56 -123.21 72.71 -252.32 

24 48.80 -105.05 70.02 -162.09 262.76 -801.91 86.02 -207.96 -21.22 57.05 176.74 -593.95 

25 307.14 -920.00 124.83 -251.09 277.64 -289.48 126.66 -237.30 182.31 -668.92 150.98 -52.18 

26 121.56 -297.42 603.00 -148.32 576.89 -238.89 87.82 -127.21 -481.44 -149.10 489.07 -111.69 

27 226.43 -221.76 110.70 -219.29 231.35 -448.01 195.25 -111.47 115.74 -2.47 36.10 -336.54 

28 177.34 -163.95 108.94 -113.39 411.10 -86.08 90.80 -71.42 68.40 -50.56 320.30 -14.66 

29 19.16 -60.45 41.75 -120.20 34.31 -98.78 25.19 -58.27 -22.59 59.75 9.12 -40.51 

30 4.29 -9.49 24.51 -63.86 32.62 -80.10 70.82 -19.32 -20.22 54.37 -38.20 -60.77 

31 19.24 -34.03 13.32 -45.22 12.33 -34.70 19.88 -33.54 5.92 11.19 -7.56 -1.16 

32 178.55 -574.46 124.72 -395.80 185.44 -656.35 63.05 -216.47 53.82 -178.66 122.39 -439.88 

33 158.09 -175.33 65.40 -73.87 47.79 -37.95 71.09 -44.05 92.69 -101.46 -23.30 6.10 

34 5.92 -25.51 4.48 -10.74 6.13 -15.91 3.83 -8.15 1.45 -14.76 2.30 -7.75 

35 415.35 -119.17 198.03 -86.86 414.50 -125.60 148.11 -77.68 217.33 -32.30 266.39 -47.91 

36 330.86 -1515.98 101.52 -277.33 143.07 -38.22 62.14 -170.04 229.33 -1238.64 80.93 131.82 

37 3.37 -11.75 2.59 -1.08 13.88 -29.89 2.16 -1.46 0.78 -10.68 11.71 -28.43 

38 14.46 -35.47 17.46 -53.35 12.59 -11.06 7.21 -11.68 -3.00 17.88 5.38 0.62 

39 20.11 -69.51 24.91 -82.28 37.21 -128.30 29.27 -77.42 -4.80 12.78 7.94 -50.88 

40 39.39 -16.00 28.23 -10.33 81.12 -21.51 64.17 -28.13 11.16 -5.67 16.95 6.62 

41 13.33 -6.60 19.50 -9.82 236.85 -75.35 25.47 -18.16 -6.17 3.22 211.38 -57.18 

42 19.11 -11.85 27.94 -8.69 50.53 -38.78 30.60 -19.30 -8.83 -3.17 19.93 -19.47 

43 26.96 -17.11 34.08 -7.80 108.15 -36.04 45.88 -17.97 -7.12 -9.31 62.27 -18.07 

44 37.48 -13.29 31.85 -9.91 289.04 -61.07 61.08 -23.76 5.64 -3.38 227.96 -37.31 

45 25.22 -17.44 30.98 -10.66 99.21 -28.92 38.48 -14.39 -5.76 -6.79 60.72 -14.53 

46 40.44 -13.17 153.93 -38.52 12.46 -5.99 31.13 -5.48 -113.49 25.35 -18.67 -0.51 

47 206.75 -100.39 96.15 -50.70 192.07 -45.16 54.02 -131.34 110.61 -49.70 138.05 86.18 

48 59.97 -212.74 22.81 -83.69 5.84 -15.11 32.68 -75.88 37.16 -129.04 -26.85 60.77 

49 175.31 -63.98 140.96 -45.36 280.86 -89.48 109.13 -35.72 34.35 -18.62 171.74 -53.76 

50 239.87 -69.99 179.10 -57.31 309.20 -108.51 80.62 -46.92 60.77 -12.68 228.58 -61.59 

51 55.84 -176.33 50.67 -153.59 99.35 -292.82 46.29 -124.21 5.17 -22.75 53.06 -168.62 

52 72.69 -32.45 177.25 -69.12 311.10 -117.41 393.52 -89.40 -104.56 36.67 -82.42 -28.01 

53 191.70 -466.44 166.93 -369.27 259.98 -415.41 520.45 -148.14 24.77 -97.17 -260.46 -267.27 

54 927.36 -362.28 379.93 -131.04 425.95 -222.53 121.75 -166.95 547.43 -231.24 304.20 -55.58 

55 159.03 -160.00 162.92 -239.67 109.00 -206.69 284.21 -126.00 -3.90 79.66 -175.21 -80.70 

56 87.23 -96.17 40.35 -67.17 110.90 -44.72 55.82 -39.95 46.89 -29.00 55.08 -4.76 

57 28.19 -53.34 14.26 -45.76 33.85 -110.51 14.46 -24.21 13.92 -7.57 19.39 -86.30 

58 19.24 -64.85 34.64 -77.20 52.18 -114.38 43.00 -13.44 -15.40 12.35 9.18 -100.94 

59 59.56 -45.83 26.99 -46.11 91.93 -30.13 62.81 -48.77 32.57 0.28 29.11 18.64 

60 215.12 -743.98 115.28 -366.93 135.23 -409.95 69.80 -232.67 99.84 -377.05 65.44 -177.29 

61 304.85 -126.34 125.34 -92.03 139.67 -54.32 87.83 -43.95 179.51 -34.30 51.84 -10.37 

62 8.10 -26.98 12.30 -18.02 3.35 -9.14 3.35 -7.30 -4.20 -8.95 0.00 -1.84 

63 397.60 -139.34 357.32 -119.30 329.22 -180.21 213.10 -105.36 40.28 -20.03 116.12 -74.85 

64 274.42 -779.13 167.75 -444.93 288.86 -119.34 89.79 -302.61 106.67 -334.20 199.08 183.27 

65 59.41 -73.39 101.63 -113.77 170.98 -530.47 104.18 -253.74 -42.22 40.38 66.80 -276.73 

66 385.15 -309.25 190.01 -135.19 333.81 -289.24 178.84 -96.47 195.15 -174.06 154.97 -192.77 

67 156.23 -300.98 115.91 -173.79 360.85 -539.38 128.17 -177.87 40.32 -127.20 232.68 -361.51 

68 24.98 -68.12 24.57 -64.14 90.40 -271.88 47.43 -96.53 0.41 -3.99 42.97 -175.35 

69 330.35 -152.62 107.82 -72.63 169.17 -73.68 103.67 -64.24 222.53 -79.99 65.49 -9.43 

70 44.82 -20.07 32.31 -18.78 136.65 -157.82 29.19 -43.02 12.50 -1.29 107.46 -114.80 
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Table E.18. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second premolar (P4) bite load for the models of male and female 

P. anubis and T. gelada species, and strain differences (Δε1 and Δε3) at landmark 

locations between male and female models. Strain values are in microstrain (μstrain). 

P4 bite P.anubis (male) P.anubis (female) T.gelada (male) T.gelada (female) P.anubis(m)-P.anubis(f) T.gelada(m)-T.gelada(f) 

landmark ε1 ε3 ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 13.13 -15.04 11.17 -8.95 18.07 -31.83 10.66 -6.51 1.96 -6.10 7.41 -25.32 

2 16.13 -29.63 24.60 -28.81 55.65 -136.71 30.80 -30.59 -8.47 -0.81 24.85 -106.12 

3 52.89 -49.08 66.15 -27.12 216.65 -85.15 51.65 -37.52 -13.25 -21.97 165.00 -47.64 

4 48.03 -245.63 49.81 -162.33 42.09 -188.24 29.01 -78.36 -1.78 -83.29 13.08 -109.88 

5 4.50 -8.77 13.77 -13.56 54.81 -17.79 34.44 -11.17 -9.27 4.79 20.36 -6.62 

6 16.86 -33.65 6.60 -12.28 36.39 -111.16 10.50 -11.75 10.27 -21.37 25.89 -99.41 

7 0.52 -1.02 1.53 -0.72 3.72 -1.52 1.08 -0.50 -1.01 -0.30 2.64 -1.02 

8 105.79 -47.51 34.13 -24.98 194.83 -68.22 36.69 -19.53 71.67 -22.53 158.14 -48.69 

9 196.38 -148.43 86.65 -149.90 197.41 -335.68 73.89 -113.09 109.73 1.47 123.52 -222.59 

10 94.67 -26.08 32.89 -10.59 37.57 -20.79 22.54 -6.56 61.78 -15.49 15.02 -14.23 

11 73.80 -28.88 29.29 -23.96 58.11 -142.49 35.16 -78.71 44.51 -4.92 22.95 -63.78 

12 7.86 -24.94 13.55 -30.94 42.27 -38.65 31.63 -60.63 -5.69 6.00 10.64 21.98 

13 54.30 -47.26 29.90 -46.00 50.70 -116.72 47.74 -42.91 24.40 -1.25 2.96 -73.81 

14 102.21 -183.71 81.97 -174.50 291.26 -399.59 139.67 -278.90 20.25 -9.21 151.58 -120.68 

15 139.30 -261.89 142.92 -83.53 308.18 -1197.92 238.54 -281.34 -3.61 -178.36 69.64 -916.57 

16 120.69 -140.33 98.69 -61.20 104.33 -373.43 136.53 -83.61 22.00 -79.13 -32.20 -289.82 

17 48.17 -71.24 27.84 -40.47 63.47 -109.82 96.84 -33.75 20.33 -30.77 -33.37 -76.06 

18 215.48 -96.45 156.17 -48.22 245.34 -96.23 89.70 -27.17 59.30 -48.23 155.64 -69.06 

19 109.13 -45.47 120.61 -33.07 68.10 -145.97 6.73 -15.98 -11.49 -12.40 61.37 -130.00 

20 44.09 -47.42 20.76 -62.20 0.54 -0.18 10.51 -13.93 23.33 14.78 -9.96 13.75 

21 314.14 -98.40 242.16 -71.32 372.26 -112.39 117.08 -37.34 71.98 -27.08 255.18 -75.05 

22 70.67 -41.61 25.72 -70.58 66.87 -70.85 59.23 -59.00 44.95 28.97 7.64 -11.85 

23 76.83 -230.56 35.12 -99.77 124.28 -406.41 50.88 -150.56 41.71 -130.79 73.40 -255.84 

24 41.44 -99.15 55.25 -141.68 261.73 -797.17 72.58 -179.73 -13.82 42.53 189.14 -617.44 

25 306.42 -920.24 125.43 -253.67 281.55 -293.63 128.05 -245.02 180.99 -666.57 153.50 -48.61 

26 119.49 -293.05 612.32 -150.70 597.43 -246.28 89.52 -124.37 -492.83 -142.35 507.90 -121.91 

27 225.65 -224.41 110.67 -221.78 233.50 -459.44 194.75 -112.71 114.98 -2.63 38.75 -346.73 

28 178.49 -154.50 116.36 -109.02 418.43 -86.45 93.80 -71.62 62.14 -45.48 324.62 -14.82 

29 18.61 -58.79 42.34 -122.33 33.54 -96.60 25.07 -57.56 -23.73 63.54 8.47 -39.04 

30 4.54 -7.25 23.45 -59.98 31.09 -74.71 72.22 -19.58 -18.92 52.73 -41.13 -55.12 

31 20.59 -40.57 14.24 -46.82 15.41 -47.62 16.71 -31.26 6.34 6.24 -1.30 -16.35 

32 178.43 -574.16 122.87 -389.74 185.68 -657.42 64.12 -220.09 55.57 -184.41 121.56 -437.33 

33 155.33 -177.69 63.20 -75.38 41.59 -46.47 67.25 -44.41 92.13 -102.30 -25.66 -2.05 

34 5.60 -24.12 4.03 -9.74 6.00 -15.43 3.55 -7.61 1.57 -14.38 2.45 -7.82 

35 413.89 -118.59 193.95 -84.84 411.54 -124.46 147.90 -77.51 219.94 -33.75 263.64 -46.95 

36 331.62 -1510.01 99.87 -271.03 140.54 -31.50 62.05 -168.95 231.75 -1238.98 78.49 137.46 

37 3.71 -11.20 2.93 -1.20 14.29 -27.88 2.20 -1.52 0.78 -10.00 12.09 -26.37 

38 14.78 -37.75 18.15 -55.53 11.26 -13.05 6.96 -12.16 -3.37 17.78 4.30 -0.89 

39 17.64 -59.82 19.78 -65.55 29.63 -100.66 23.75 -63.28 -2.14 5.73 5.88 -37.38 

40 31.81 -12.50 18.58 -6.95 72.51 -18.52 43.10 -19.07 13.23 -5.55 29.41 0.55 

41 10.30 -5.20 12.18 -6.48 214.57 -74.14 17.06 -13.10 -1.88 1.28 197.51 -61.04 

42 14.22 -9.22 19.00 -5.98 40.67 -34.95 21.55 -14.48 -4.78 -3.24 19.12 -20.47 

43 21.00 -13.60 23.40 -5.02 79.00 -37.28 33.36 -13.32 -2.39 -8.58 45.64 -23.96 

44 30.13 -11.30 23.40 -7.27 249.43 -51.05 46.60 -18.30 6.73 -4.03 202.83 -32.75 

45 21.22 -16.63 24.19 -8.72 87.11 -24.78 30.99 -12.12 -2.96 -7.91 56.12 -12.66 

46 37.84 -12.24 138.06 -34.22 6.78 -3.35 28.32 -5.10 -100.21 21.97 -21.54 1.75 

47 199.85 -103.07 90.71 -54.83 192.07 -46.19 53.83 -133.70 109.14 -48.25 138.25 87.51 

48 59.76 -212.07 22.66 -83.51 5.89 -15.27 32.34 -75.10 37.10 -128.55 -26.45 59.82 

49 169.92 -62.22 136.32 -43.80 264.98 -84.50 103.85 -34.01 33.60 -18.41 161.13 -50.49 

50 241.29 -70.28 186.30 -59.27 314.57 -110.61 83.43 -46.00 54.99 -11.01 231.14 -64.62 

51 50.00 -161.94 50.41 -147.00 92.35 -267.72 45.25 -117.23 -0.42 -14.94 47.10 -150.49 

52 63.69 -31.90 160.69 -62.95 307.64 -117.14 377.54 -84.57 -97.00 31.05 -69.90 -32.57 

53 190.45 -466.35 166.92 -369.19 260.30 -415.96 520.39 -147.67 23.53 -97.16 -260.09 -268.29 

54 929.33 -362.73 380.99 -131.66 424.37 -222.13 122.55 -165.63 548.35 -231.07 301.82 -56.50 

55 158.03 -160.12 163.19 -241.75 109.01 -204.56 283.05 -126.99 -5.15 81.63 -174.03 -77.57 

56 86.08 -92.66 36.96 -60.73 105.05 -39.74 52.36 -35.41 49.12 -31.94 52.68 -4.33 

57 27.51 -51.82 12.93 -39.83 32.41 -105.91 14.06 -23.73 14.58 -11.99 18.36 -82.18 

58 19.29 -64.88 34.04 -76.01 51.08 -113.38 40.32 -12.66 -14.75 11.13 10.76 -100.72 

59 62.95 -45.00 27.80 -44.72 102.68 -33.64 63.79 -47.98 35.15 -0.29 38.89 14.34 

60 214.89 -743.19 115.26 -366.97 132.71 -401.15 69.68 -232.42 99.63 -376.22 63.03 -168.73 

61 304.17 -126.04 124.83 -92.20 144.14 -54.70 87.29 -43.77 179.34 -33.84 56.85 -10.93 

62 7.82 -26.07 11.99 -17.53 3.15 -8.60 3.22 -6.96 -4.16 -8.53 -0.06 -1.65 

63 396.11 -138.97 354.71 -118.69 324.54 -178.23 212.09 -105.06 41.40 -20.28 112.45 -73.16 

64 274.84 -779.42 168.29 -446.27 289.55 -120.80 90.20 -303.29 106.55 -333.15 199.36 182.49 

65 56.80 -35.60 104.51 -80.38 145.21 -479.42 107.42 -242.21 -47.71 44.78 37.79 -237.21 

66 393.03 -319.72 192.63 -140.19 348.71 -318.42 180.99 -100.03 200.40 -179.53 167.72 -218.38 

67 139.01 -286.24 97.56 -156.82 295.75 -509.72 95.01 -108.03 41.45 -129.42 200.74 -401.69 

68 24.01 -69.72 20.12 -58.29 82.76 -243.30 42.74 -85.87 3.89 -11.43 40.02 -157.44 

69 327.55 -150.82 105.29 -71.60 162.16 -68.57 101.93 -62.60 222.26 -79.22 60.23 -5.97 

70 44.48 -20.58 31.55 -17.58 141.48 -155.76 20.86 -34.60 12.93 -3.00 120.62 -121.16 
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Table E.19. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first molar (M1) bite load for the models of male and female P. 

anubis and T. gelada species, and strain differences (Δε1 and Δε3) at landmark 

locations between male and female models. Strain values are in microstrain (μstrain). 

M1 bite P.anubis (male) P.anubis (female) T.gelada (male) T.gelada (female) P.anubis(m)-P.anubis(f) T.gelada(m)-T.gelada(f) 

landmark ε1 ε3 ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 10.21 -12.10 4.90 -6.45 3.30 -9.60 2.58 -3.11 5.31 -5.65 0.72 -6.49 

2 22.34 -8.75 22.04 -8.03 11.12 -30.54 13.34 -7.75 0.30 -0.72 -2.21 -22.79 

3 47.81 -43.46 60.20 -23.68 186.56 -72.97 47.84 -33.71 -12.38 -19.78 138.71 -39.25 

4 46.97 -231.97 45.67 -145.57 37.92 -168.81 26.71 -75.34 1.31 -86.40 11.21 -93.47 

5 4.22 -7.09 15.02 -12.42 52.95 -17.22 33.65 -10.89 -10.80 5.33 19.29 -6.33 

6 17.12 -34.03 6.79 -12.55 37.36 -114.16 10.57 -12.10 10.33 -21.48 26.79 -102.05 

7 0.54 -1.06 1.97 -0.83 4.46 -1.81 1.47 -0.59 -1.44 -0.23 2.98 -1.22 

8 103.59 -44.45 33.13 -22.17 181.47 -65.45 37.08 -17.18 70.46 -22.29 144.38 -48.27 

9 193.29 -139.81 77.44 -147.70 188.66 -303.31 74.52 -109.40 115.85 7.89 114.15 -193.90 

10 98.84 -27.24 38.03 -12.04 39.79 -22.06 24.14 -6.95 60.82 -15.20 15.65 -15.11 

11 65.10 -25.99 32.16 -10.62 48.75 -26.86 29.76 -28.99 32.94 -15.38 18.99 2.13 

12 12.58 -38.59 5.84 -14.52 2.34 -4.48 7.78 -18.47 6.73 -24.08 -5.43 13.99 

13 15.51 -13.45 4.30 -3.13 21.30 -41.49 10.26 -3.74 11.21 -10.32 11.04 -37.75 

14 34.39 -39.74 14.14 -13.85 98.45 -60.77 13.26 -5.04 20.25 -25.89 85.19 -55.73 

15 56.50 -71.03 62.37 -43.68 132.15 -79.95 45.03 -82.19 -5.87 -27.35 87.12 2.24 

16 102.71 -126.60 88.69 -54.44 65.29 -247.18 147.36 -122.22 14.02 -72.17 -82.07 -124.96 

17 44.57 -73.54 30.62 -47.18 53.59 -107.81 89.97 -36.44 13.95 -26.36 -36.38 -71.37 

18 160.29 -72.17 128.14 -39.60 187.22 -72.89 74.34 -22.49 32.15 -32.56 112.87 -50.41 

19 121.74 -53.13 136.74 -35.21 78.87 -155.23 9.91 -7.91 -15.00 -17.92 68.96 -147.32 

20 43.51 -45.79 20.09 -61.13 0.54 -0.19 10.07 -12.61 23.41 15.34 -9.53 12.42 

21 322.87 -101.70 254.43 -74.84 402.15 -121.96 123.54 -40.40 68.44 -26.86 278.61 -81.56 

22 67.40 -42.65 27.03 -79.43 62.62 -72.79 55.17 -60.38 40.37 36.78 7.44 -12.41 

23 75.70 -228.91 31.81 -90.96 122.86 -402.91 51.14 -149.66 43.88 -137.95 71.72 -253.24 

24 38.35 -77.05 41.38 -95.06 198.83 -604.91 46.95 -126.17 -3.03 18.01 151.88 -478.74 

25 305.33 -916.87 125.65 -254.64 282.14 -290.67 130.26 -257.42 179.68 -662.23 151.88 -33.26 

26 118.78 -291.34 620.65 -152.94 606.46 -249.77 92.54 -120.19 -501.88 -138.39 513.93 -129.59 

27 224.99 -225.51 110.80 -224.29 234.15 -465.30 193.83 -114.70 114.19 -1.22 40.32 -350.60 

28 177.03 -140.24 124.05 -97.59 428.07 -86.71 101.08 -71.74 52.99 -42.66 326.99 -14.97 

29 18.38 -58.01 43.01 -124.96 33.22 -95.65 24.77 -56.23 -24.63 66.95 8.45 -39.42 

30 5.35 -5.87 23.03 -58.07 29.31 -68.18 75.43 -20.37 -17.68 52.20 -46.12 -47.81 

31 20.38 -42.53 14.55 -47.32 15.48 -48.64 11.78 -27.07 5.83 4.79 3.70 -21.57 

32 178.27 -573.62 121.56 -385.39 185.35 -656.37 65.85 -225.92 56.71 -188.22 119.50 -430.46 

33 154.17 -178.95 61.58 -77.02 40.16 -51.94 61.60 -45.38 92.59 -101.93 -21.43 -6.56 

34 5.20 -22.44 3.42 -8.27 5.65 -14.24 3.05 -6.60 1.79 -14.16 2.60 -7.64 

35 412.93 -118.30 190.81 -83.26 407.86 -123.33 147.48 -77.22 222.12 -35.04 260.38 -46.11 

36 333.41 -1509.02 99.97 -267.53 139.60 -28.83 62.19 -167.91 233.44 -1241.49 77.41 139.08 

37 4.10 -10.27 3.23 -1.30 14.77 -23.60 2.26 -1.61 0.87 -8.97 12.52 -21.99 

38 14.65 -38.00 17.75 -54.47 9.99 -14.34 6.62 -12.89 -3.10 16.47 3.37 -1.45 

39 15.67 -54.01 15.64 -52.70 21.93 -73.66 17.00 -45.95 0.03 -1.31 4.93 -27.71 

40 21.51 -8.73 4.14 -2.75 19.51 -8.24 19.29 -7.93 17.37 -5.97 0.22 -0.31 

41 7.69 -4.38 4.15 -1.92 111.86 -39.29 7.81 -6.86 3.53 -2.46 104.04 -32.43 

42 10.98 -5.89 10.25 -3.31 19.06 -20.21 10.96 -7.96 0.73 -2.58 8.10 -12.24 

43 17.68 -8.11 12.20 -3.36 35.68 -27.43 17.50 -6.90 5.48 -4.74 18.19 -20.53 

44 21.60 -8.30 13.88 -4.39 140.04 -27.32 26.86 -10.70 7.72 -3.91 113.18 -16.62 

45 16.93 -15.55 17.71 -7.05 59.34 -16.32 20.81 -9.24 -0.78 -8.49 38.53 -7.08 

46 37.18 -11.79 121.58 -29.67 9.62 -4.79 24.85 -4.65 -84.40 17.89 -15.22 -0.14 

47 185.89 -98.65 80.01 -54.05 175.23 -42.16 52.14 -134.54 105.88 -44.60 123.09 92.38 

48 58.77 -208.75 21.99 -82.31 5.64 -14.61 31.54 -73.19 36.77 -126.44 -25.90 58.57 

49 167.68 -60.60 134.24 -43.00 247.86 -79.38 97.17 -31.85 33.44 -17.60 150.69 -47.53 

50 235.35 -68.46 183.56 -58.47 305.14 -107.55 87.23 -44.46 51.79 -9.99 217.91 -63.09 

51 43.46 -144.61 48.00 -133.12 80.44 -226.45 43.22 -103.81 -4.54 -11.49 37.21 -122.64 

52 55.98 -27.95 141.47 -55.57 247.26 -93.30 348.27 -76.62 -85.50 27.61 -101.01 -16.68 

53 188.91 -469.66 167.85 -372.09 267.10 -439.85 520.42 -147.13 21.06 -97.58 -253.32 -292.72 

54 938.22 -363.38 384.17 -133.80 442.85 -222.80 124.40 -162.51 554.05 -229.58 318.45 -60.29 

55 156.66 -161.27 164.05 -246.79 112.95 -206.98 281.33 -129.77 -7.39 85.52 -168.37 -77.20 

56 88.10 -90.59 37.34 -53.91 103.47 -41.06 48.56 -29.83 50.77 -36.68 54.91 -11.23 

57 26.77 -50.22 11.92 -35.80 29.97 -97.80 13.40 -22.90 14.84 -14.42 16.57 -74.90 

58 19.03 -63.88 33.03 -73.89 47.91 -108.29 35.77 -11.38 -14.00 10.01 12.14 -96.91 

59 63.76 -42.38 27.05 -41.81 104.34 -34.13 64.77 -46.07 36.70 -0.57 39.57 11.93 

60 214.23 -741.03 114.68 -364.45 133.15 -401.87 69.81 -233.12 99.55 -376.58 63.33 -168.75 

61 297.47 -124.46 122.06 -92.94 135.66 -53.23 85.80 -43.23 175.41 -31.52 49.85 -10.01 

62 7.40 -24.64 11.26 -16.47 2.89 -7.71 2.96 -6.32 -3.86 -8.17 -0.07 -1.40 

63 394.31 -138.36 348.66 -117.26 320.15 -176.01 209.89 -104.43 45.65 -21.10 110.25 -71.58 

64 274.25 -775.75 167.46 -443.37 287.45 -116.74 90.84 -303.52 106.79 -332.38 196.61 186.78 

65 63.48 -26.91 104.55 -36.05 134.05 -395.60 112.02 -216.85 -41.07 9.14 22.03 -178.75 

66 393.64 -321.37 190.72 -141.63 347.03 -319.17 183.87 -104.46 202.92 -179.74 163.17 -214.71 

67 94.56 -208.09 48.66 -85.92 165.55 -296.48 38.62 -34.41 45.89 -122.17 126.93 -262.07 

68 22.75 -75.78 19.14 -55.07 82.94 -241.86 35.33 -69.94 3.61 -20.71 47.61 -171.92 

69 332.27 -153.67 103.59 -71.81 169.16 -83.08 100.05 -60.52 228.68 -81.86 69.11 -22.56 

70 52.59 -22.24 33.02 -16.22 98.25 -99.35 10.04 -20.81 19.56 -6.03 88.21 -78.54 
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Table E.20. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second molar (M2) bite load for the models of male and female P. 

anubis and T. gelada species, and strain differences (Δε1 and Δε3) at landmark 

locations between male and female models. Strain values are in microstrain (μstrain). 

M2 bite P.anubis (male) P.anubis (female) T.gelada (male) T.gelada (female) P.anubis(m)-P.anubis(f) T.gelada(m)-T.gelada(f) 

landmark ε1 ε3 ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 7.42 -7.80 6.00 -7.19 3.44 -5.75 1.82 -1.75 1.41 -0.61 1.62 -4.00 

2 31.09 -9.16 26.30 -9.43 12.34 -18.20 7.99 -3.72 4.79 0.26 4.35 -14.47 

3 36.52 -39.76 44.39 -18.24 124.32 -49.41 37.23 -28.38 -7.87 -21.52 87.09 -21.03 

4 47.18 -209.40 40.88 -120.31 32.13 -133.82 22.70 -70.68 6.31 -89.09 9.43 -63.14 

5 3.83 -4.31 16.89 -10.57 50.56 -16.69 32.22 -10.38 -13.06 6.26 18.34 -6.31 

6 17.61 -34.84 7.49 -13.41 39.46 -120.79 10.77 -12.82 10.12 -21.43 28.69 -107.97 

7 0.58 -1.15 2.72 -1.03 5.73 -2.33 2.29 -0.84 -2.14 -0.12 3.44 -1.49 

8 102.71 -39.62 32.95 -17.65 166.41 -66.17 38.35 -13.31 69.76 -21.96 128.07 -52.85 

9 174.44 -115.75 54.25 -128.70 151.09 -209.28 62.72 -94.57 120.19 12.95 88.37 -114.72 

10 108.21 -29.99 47.59 -14.95 48.59 -25.97 26.57 -7.79 60.62 -15.04 22.02 -18.18 

11 50.51 -20.48 31.88 -10.12 54.71 -23.63 29.70 -12.63 18.62 -10.36 25.01 -11.01 

12 14.01 -36.41 7.45 -14.05 4.15 -3.67 6.89 -13.78 6.57 -22.36 -2.74 10.10 

13 6.60 -6.42 7.09 -4.62 6.60 -20.02 12.25 -6.81 -0.49 -1.80 -5.66 -13.21 

14 7.29 -13.01 3.92 -1.51 25.31 -14.57 13.87 -5.56 3.37 -11.51 11.43 -9.01 

15 19.35 -21.76 12.34 -6.83 58.67 -36.61 6.97 -2.86 7.01 -14.93 51.70 -33.75 

16 12.70 -47.40 7.40 -28.13 14.50 -12.23 22.60 -83.04 5.30 -19.26 -8.10 70.80 

17 54.53 -102.18 45.76 -77.49 73.74 -175.11 88.81 -61.45 8.77 -24.68 -15.07 -113.66 

18 52.99 -26.31 61.75 -19.75 97.91 -37.51 41.20 -12.32 -8.76 -6.56 56.71 -25.19 

19 151.10 -70.52 171.23 -40.47 100.78 -184.85 33.50 -14.71 -20.12 -30.05 67.27 -170.14 

20 42.12 -42.36 18.81 -58.97 0.60 -0.27 9.27 -10.28 23.31 16.61 -8.67 10.02 

21 340.53 -108.76 272.93 -80.30 459.14 -140.20 137.24 -46.64 67.60 -28.45 321.90 -93.56 

22 54.58 -44.74 30.13 -98.61 39.24 -101.47 48.40 -62.93 24.45 53.87 -9.15 -38.54 

23 74.34 -226.46 26.81 -78.73 122.01 -402.31 51.68 -147.92 47.53 -147.73 70.33 -254.39 

24 29.94 -58.94 26.29 -57.51 147.68 -446.27 22.80 -69.94 3.66 -1.44 124.88 -376.33 

25 303.92 -914.46 126.02 -256.33 286.50 -292.73 134.12 -278.21 177.90 -658.14 152.38 -14.52 

26 116.37 -286.16 637.07 -157.30 654.20 -267.31 98.51 -113.08 -520.70 -128.86 555.69 -154.23 

27 224.12 -229.34 111.07 -228.75 239.17 -489.67 192.56 -118.58 113.04 -0.60 46.61 -371.09 

28 180.67 -116.57 131.20 -74.16 469.36 -91.82 112.78 -67.66 49.47 -42.41 356.58 -24.17 

29 17.61 -55.57 44.10 -129.24 31.43 -90.58 24.08 -53.49 -26.49 73.67 7.35 -37.09 

30 9.32 -5.27 21.92 -53.26 25.41 -51.45 80.50 -21.72 -12.60 47.99 -55.09 -29.73 

31 21.45 -50.43 15.67 -50.72 25.63 -79.02 5.80 -21.08 5.78 0.29 19.83 -57.94 

32 178.22 -573.54 119.01 -376.99 186.76 -661.68 68.63 -235.26 59.20 -196.54 118.13 -426.42 

33 150.68 -182.42 58.80 -80.02 42.15 -87.58 53.09 -48.13 91.88 -102.39 -10.94 -39.45 

34 4.52 -19.42 2.33 -5.76 5.42 -12.57 2.16 -4.86 2.19 -13.66 3.25 -7.71 

35 411.08 -117.54 185.19 -80.31 404.80 -122.44 146.62 -76.68 225.89 -37.23 258.18 -45.75 

36 336.16 -1503.18 99.04 -259.44 134.90 -13.45 62.21 -165.36 237.12 -1243.75 72.69 151.91 

37 5.45 -9.32 3.78 -1.56 17.78 -18.32 2.33 -1.77 1.67 -7.76 15.45 -16.55 

38 15.03 -40.73 18.01 -55.49 9.52 -21.72 6.29 -14.34 -2.98 14.76 3.23 -7.39 

39 12.35 -42.48 11.22 -37.84 11.72 -35.26 10.58 -29.43 1.13 -4.64 1.15 -5.82 

40 14.87 -6.80 3.88 -3.58 8.68 -12.19 6.10 -4.34 10.99 -3.21 2.58 -7.85 

41 4.84 -3.68 3.53 -1.80 56.00 -23.20 2.88 -2.77 1.30 -1.88 53.11 -20.43 

42 11.20 -4.18 7.65 -3.47 6.85 -11.47 4.59 -3.16 3.55 -0.71 2.27 -8.31 

43 19.33 -3.65 8.28 -5.50 13.49 -29.08 7.01 -2.41 11.05 1.86 6.48 -26.68 

44 12.81 -4.67 6.59 -2.32 51.00 -8.70 10.94 -4.23 6.22 -2.35 40.06 -4.47 

45 11.83 -13.99 10.69 -5.25 31.97 -7.99 11.31 -6.59 1.14 -8.74 20.66 -1.40 

46 34.44 -10.65 98.77 -23.74 6.70 -3.63 20.04 -4.00 -64.33 13.09 -13.34 0.37 

47 168.76 -98.05 66.30 -56.91 166.20 -43.97 49.75 -134.74 102.46 -41.14 116.45 90.77 

48 57.57 -204.74 21.16 -80.94 5.56 -14.42 30.33 -70.16 36.41 -123.79 -24.76 55.74 

49 160.07 -57.58 128.56 -41.03 208.75 -67.25 88.61 -29.08 31.51 -16.55 120.13 -38.18 

50 233.14 -67.65 187.99 -60.02 307.39 -109.12 94.72 -43.22 45.16 -7.63 212.67 -65.90 

51 35.85 -117.46 45.64 -112.79 59.01 -143.90 40.98 -83.46 -9.79 -4.67 18.03 -60.44 

52 44.64 -24.44 113.00 -44.51 191.13 -72.15 286.17 -62.34 -68.36 20.07 -95.04 -9.81 

53 186.68 -472.44 168.79 -375.05 273.08 -460.25 520.58 -146.95 17.89 -97.39 -247.50 -313.30 

54 946.78 -364.30 388.13 -136.36 454.95 -222.74 127.06 -158.25 558.66 -227.94 327.89 -64.49 

55 154.91 -162.47 165.20 -253.46 116.46 -206.04 279.33 -134.65 -10.29 90.98 -162.87 -71.39 

56 87.80 -84.91 35.82 -44.20 94.76 -36.32 43.57 -22.36 51.98 -40.71 51.18 -13.96 

57 25.67 -47.81 9.81 -26.61 25.40 -82.87 12.58 -21.92 15.86 -21.20 12.82 -60.95 

58 19.04 -63.65 31.63 -71.02 43.81 -102.92 29.21 -9.52 -12.58 7.37 14.60 -93.40 

59 68.35 -39.20 27.15 -37.57 125.16 -40.85 67.22 -43.16 41.20 -1.63 57.94 2.31 

60 213.52 -738.64 114.12 -362.00 129.00 -386.82 69.99 -234.09 99.41 -376.63 59.01 -152.73 

61 291.80 -122.99 118.95 -93.79 137.08 -52.73 83.76 -42.51 172.85 -29.20 53.33 -10.22 

62 6.73 -22.43 10.20 -14.96 2.44 -6.15 2.53 -5.24 -3.47 -7.46 -0.09 -0.91 

63 391.44 -137.54 340.74 -115.42 308.44 -170.71 206.60 -103.46 50.70 -22.13 101.84 -67.24 

64 274.71 -774.39 167.12 -441.58 287.04 -116.32 91.98 -304.43 107.59 -332.81 195.06 188.11 

65 87.55 -41.32 89.78 -39.17 157.91 -232.07 111.53 -169.06 -2.24 -2.15 46.38 -63.00 

66 401.97 -331.91 189.04 -146.58 378.86 -381.79 188.96 -111.41 212.93 -185.33 189.89 -270.39 

67 57.31 -141.35 22.83 -44.34 60.25 -186.83 20.02 -19.06 34.48 -97.01 40.23 -167.77 

68 23.29 -77.32 15.21 -46.78 73.98 -201.72 25.46 -49.44 8.08 -30.54 48.52 -152.28 

69 332.80 -154.37 100.14 -71.34 163.40 -86.20 97.13 -57.37 232.66 -83.04 66.27 -28.83 

70 58.21 -22.12 33.65 -14.83 91.52 -68.62 4.19 -8.79 24.56 -7.29 87.33 -59.83 
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Table E.21. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during third molar (M3) bite load for the models of male and female P. 

anubis and T. gelada species, and strain differences (Δε1 and Δε3) at landmark 

locations between male and female models. Strain values are in microstrain (μstrain). 

M3 bite P.anubis (male) P.anubis (female) T.gelada (male) T.gelada (female) P.anubis(m)-P.anubis(f) T.gelada(m)-T.gelada(f) 

landmark ε1 ε3 ε1 ε3 ε1 ε3 ε1 ε3 Δε1 Δε3 Δε1 Δε3 

1 4.34 -3.44 5.59 -7.76 11.68 -11.03 2.22 -3.25 -1.25 4.32 9.46 -7.78 

2 34.61 -9.27 27.60 -8.94 35.16 -30.62 11.65 -4.43 7.00 -0.33 23.51 -26.19 

3 24.86 -35.39 26.03 -11.59 43.75 -19.27 21.07 -19.23 -1.17 -23.80 22.69 -0.04 

4 49.83 -179.81 39.29 -91.05 39.85 -91.84 28.35 -63.38 10.54 -88.76 11.50 -28.47 

5 3.55 -2.62 19.12 -7.68 47.12 -16.06 29.26 -9.38 -15.56 5.07 17.86 -6.69 

6 18.33 -36.02 8.66 -14.97 42.49 -130.32 11.19 -14.15 9.67 -21.05 31.30 -116.17 

7 0.65 -1.27 3.89 -1.33 7.70 -3.13 3.81 -1.34 -3.24 0.05 3.89 -1.80 

8 102.30 -32.90 33.03 -13.50 152.90 -74.63 40.14 -25.18 69.27 -19.39 112.76 -49.44 

9 114.24 -85.75 31.66 -101.10 58.65 -115.08 28.95 -74.19 82.59 15.34 29.70 -40.89 

10 121.32 -33.92 59.56 -18.74 59.70 -31.02 28.67 -8.57 61.76 -15.18 31.04 -22.45 

11 33.88 -13.93 24.00 -8.13 16.56 -7.27 21.03 -8.24 9.88 -5.80 -4.47 0.97 

12 12.10 -25.80 12.35 -10.09 9.89 -5.43 18.46 -11.54 -0.25 -15.70 -8.57 6.11 

13 10.56 -8.41 10.16 -5.99 2.06 -5.84 13.22 -8.05 0.39 -2.42 -11.16 2.22 

14 3.77 -5.44 12.14 -5.70 17.18 -10.76 18.24 -8.62 -8.38 0.26 -1.06 -2.14 

15 3.20 -9.99 12.48 -6.11 20.86 -17.22 15.00 -9.32 -9.28 -3.88 5.87 -7.90 

16 9.46 -26.09 14.19 -16.47 29.74 -9.82 11.85 -4.29 -4.73 -9.62 17.89 -5.53 

17 21.77 -68.90 26.65 -46.82 17.59 -21.43 33.42 -152.44 -4.88 -22.08 -15.82 131.01 

18 164.45 -343.28 58.25 -180.85 109.64 -157.89 36.78 -111.80 106.20 -162.42 72.86 -46.10 

19 194.61 -97.89 223.07 -50.19 126.07 -215.64 83.86 -35.11 -28.45 -47.70 42.22 -180.53 

20 40.35 -37.47 16.91 -55.50 0.70 -0.44 8.22 -6.41 23.45 18.03 -7.52 5.97 

21 366.26 -119.22 292.81 -86.45 545.72 -167.93 160.42 -56.31 73.45 -32.77 385.30 -111.62 

22 40.45 -51.72 34.48 -120.99 45.66 -170.57 40.00 -65.29 5.97 69.26 5.66 -105.28 

23 72.86 -223.90 22.20 -70.48 118.73 -395.60 51.98 -144.17 50.66 -153.42 66.75 -251.43 

24 19.49 -40.03 13.90 -25.51 75.16 -221.31 13.78 -22.03 5.59 -14.52 61.38 -199.28 

25 302.52 -911.80 126.36 -257.89 284.74 -287.28 140.70 -311.78 176.16 -653.91 144.04 24.50 

26 114.05 -281.28 657.32 -162.74 710.93 -288.56 109.93 -103.18 -543.27 -118.55 600.99 -185.38 

27 224.15 -234.19 111.57 -234.24 244.29 -511.53 190.95 -125.39 112.57 0.05 53.34 -386.15 

28 191.99 -85.05 125.10 -42.12 542.86 -115.59 123.35 -51.56 66.89 -42.94 419.51 -64.04 

29 16.45 -51.87 44.56 -132.07 29.42 -84.66 22.19 -47.71 -28.12 80.20 7.23 -36.95 

30 17.61 -6.98 20.40 -46.61 24.15 -31.88 86.01 -23.56 -2.79 39.63 -61.86 -8.32 

31 23.26 -61.53 17.94 -56.90 38.89 -114.16 5.69 -19.32 5.32 -4.63 33.20 -94.84 

32 178.86 -575.94 115.73 -366.18 190.02 -673.49 72.45 -248.08 63.14 -209.76 117.57 -425.41 

33 146.70 -187.21 55.72 -83.69 53.91 -137.63 43.52 -55.09 90.99 -103.51 10.39 -82.54 

34 3.58 -14.99 0.71 -2.09 5.77 -10.54 0.86 -2.14 2.87 -12.90 4.91 -8.40 

35 410.53 -117.05 178.39 -76.53 408.88 -123.67 144.70 -75.69 232.14 -40.52 264.18 -47.98 

36 339.99 -1495.10 97.86 -248.19 130.86 2.98 62.42 -161.58 242.13 -1246.91 68.44 164.56 

37 8.25 -8.66 4.57 -2.01 25.63 -13.70 2.32 -2.01 3.69 -6.64 23.31 -11.69 

38 15.82 -45.19 18.85 -58.37 11.33 -32.97 6.08 -16.80 -3.03 13.18 5.25 -16.17 

39 8.24 -27.96 6.53 -21.45 14.14 -8.60 4.80 -12.83 1.71 -6.51 9.35 4.22 

40 10.04 -5.30 3.43 -6.60 4.28 -17.33 2.29 -5.42 6.61 1.30 1.98 -11.91 

41 5.14 -3.28 5.28 -3.15 10.75 -8.91 1.12 -0.92 -0.14 -0.13 9.63 -7.99 

42 15.49 -5.28 8.15 -4.80 3.88 -7.82 2.67 -1.47 7.34 -0.47 1.21 -6.34 

43 29.30 -6.21 8.79 -7.79 5.83 -22.11 5.03 -2.88 20.52 1.58 0.80 -19.23 

44 9.01 -2.41 7.07 -1.58 6.53 -19.92 3.92 -1.87 1.94 -0.83 2.61 -18.05 

45 7.61 -10.92 5.28 -3.32 8.79 -3.39 3.95 -3.53 2.34 -7.59 4.85 0.14 

46 30.28 -9.17 75.66 -18.11 6.74 -3.75 14.11 -2.87 -45.38 8.94 -7.36 -0.88 

47 148.58 -98.27 51.08 -59.58 162.99 -46.34 45.21 -128.33 97.50 -38.69 117.78 81.99 

48 55.88 -198.96 19.72 -78.41 5.37 -13.96 28.15 -64.24 36.16 -120.56 -22.78 50.28 

49 148.06 -53.30 118.74 -37.72 163.65 -53.30 78.15 -25.68 29.32 -15.58 85.50 -27.62 

50 232.66 -67.31 198.38 -63.84 309.54 -110.85 106.55 -42.77 34.28 -3.48 202.99 -68.08 

51 41.54 -84.72 44.22 -87.75 50.78 -53.18 40.15 -57.00 -2.68 3.03 10.63 3.82 

52 31.29 -20.54 73.89 -29.19 104.32 -37.73 177.60 -38.52 -42.61 8.65 -73.28 0.79 

53 184.09 -475.49 169.62 -377.74 280.32 -485.70 520.85 -147.73 14.47 -97.75 -240.53 -337.97 

54 956.28 -365.45 392.92 -139.44 474.93 -223.54 131.00 -151.62 563.36 -226.01 343.93 -71.92 

55 153.10 -164.05 166.65 -261.33 121.57 -207.84 277.62 -143.19 -13.55 97.27 -156.05 -64.65 

56 84.87 -74.74 31.61 -30.30 84.98 -33.34 36.71 -13.24 53.26 -44.44 48.27 -20.10 

57 24.28 -44.73 6.77 -12.93 19.66 -63.84 11.67 -20.83 17.51 -31.80 7.99 -43.01 

58 19.26 -63.92 29.61 -66.94 39.27 -96.79 20.60 -7.03 -10.35 3.01 18.67 -89.76 

59 75.91 -34.93 28.15 -32.23 150.10 -48.84 71.78 -38.50 47.75 -2.69 78.32 -10.34 

60 212.72 -735.96 113.48 -358.92 125.03 -372.07 70.38 -235.90 99.23 -377.04 54.65 -136.17 

61 285.59 -121.32 115.66 -94.61 135.15 -51.58 80.68 -41.43 169.93 -26.71 54.46 -10.15 

62 5.78 -19.26 8.55 -12.62 2.27 -4.38 1.72 -3.19 -2.76 -6.63 0.55 -1.19 

63 387.91 -136.57 331.76 -113.34 295.52 -164.79 201.46 -101.93 56.15 -23.22 94.06 -62.86 

64 275.86 -773.94 166.77 -439.45 285.65 -113.88 93.74 -304.69 109.09 -334.49 191.91 190.81 

65 91.49 -43.91 57.90 -32.23 188.12 -70.84 94.63 -95.84 33.59 -11.68 93.49 25.00 

66 414.32 -347.52 185.41 -152.05 417.75 -453.07 193.82 -116.88 228.91 -195.47 223.93 -336.19 

67 37.16 -95.56 15.05 -23.46 28.80 -100.55 15.71 -14.44 22.11 -72.10 13.09 -86.11 

68 22.50 -70.72 9.91 -31.85 59.37 -144.47 13.59 -25.63 12.59 -38.87 45.78 -118.83 

69 331.70 -154.55 96.73 -71.08 162.43 -96.74 92.75 -52.97 234.96 -83.47 69.68 -43.78 

70 59.95 -21.08 29.36 -12.12 76.10 -32.37 6.17 -2.81 30.59 -8.96 69.93 -29.55 
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Table E.22. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first incisor (I1) bite load for the models of a durophagous, a 

graminivorous and Macaca species, and strain differences (Δε1 and Δε3) at landmark 

locations between the two models. Strain values are in microstrain (μstrain). 

I1 bite Cercocebus Theropithecus Cercocebus-Theropithecus   Macaca fascicularis  

landmark ε1 ε3 ε1 ε3 Δε1 Δε3   ε1 ε3  

1 511.69 -672.17 646.29 -552.11 -134.60 -120.06   310.42 -583.26  

2 628.19 -376.16 208.52 -109.23 419.67 -266.93   442.05 -182.16  

3 980.40 -272.94 266.00 -96.64 714.40 -176.29   38.45 -97.38  

4 151.60 -399.15 52.97 -235.65 98.64 -163.51   134.86 -437.00  

5 22.71 -43.94 59.08 -18.98 -36.38 -24.96   75.85 -24.57  

6 49.58 -17.26 32.80 -99.76 16.78 82.50   37.57 -73.66  

7 2.15 -1.05 2.14 -0.85 0.01 -0.20   8.55 -3.60  

8 59.50 -46.18 217.62 -70.22 -158.12 24.04   54.38 -24.43  

9 158.86 -249.21 153.01 -324.59 5.85 75.37   91.64 -95.31  

10 61.43 -27.62 19.85 -14.72 41.57 -12.91   255.61 -79.12  

11 178.19 -629.68 167.55 -489.47 10.64 -140.21   151.73 -532.50  

12 307.09 -162.59 265.55 -158.28 41.55 -4.31   419.89 -154.09  

13 275.53 -83.70 23.13 -51.89 252.40 -31.81   144.27 -44.18  

14 134.68 -48.31 222.93 -117.64 -88.26 69.33   143.65 -77.60  

15 222.70 -79.11 149.83 -97.46 72.87 18.36   83.05 -54.18  

16 68.05 -23.21 110.40 -53.01 -42.35 29.80   95.22 -39.19  

17 43.65 -19.81 102.17 -42.26 -58.52 22.45   47.98 -35.24  

18 154.64 -44.07 161.90 -62.75 -7.26 18.68   9.89 -18.29  

19 147.25 -64.01 44.85 -94.33 102.39 30.32   298.95 -127.48  

20 87.70 -72.09 0.79 -0.14 86.91 -71.95   120.71 -216.57  

21 434.19 -145.77 295.63 -88.27 138.56 -57.50   372.94 -115.98  

22 121.87 -84.47 224.28 -101.30 -102.41 16.83   183.86 -114.15  

23 97.39 -342.43 115.10 -377.12 -17.72 34.69   134.31 -439.12  

24 268.26 -336.33 125.98 -386.48 142.27 50.16   65.31 -203.99  

25 64.20 -32.69 260.30 -265.86 -196.10 233.17   431.85 -823.53  

26 931.55 -272.48 476.56 -203.76 454.99 -68.73   1073.09 -471.38  

27 235.65 -426.34 220.30 -391.01 15.35 -35.33   435.77 -897.15  

28 193.54 -65.28 342.56 -76.96 -149.02 11.68   228.68 -104.93  

29 43.04 -93.35 37.35 -107.10 5.70 13.75   36.82 -114.09  

30 29.75 -68.35 39.68 -103.24 -9.92 34.89   142.77 -54.41  

31 113.49 -55.90 44.71 -18.17 68.78 -37.73   141.34 -57.13  

32 124.63 -365.61 183.21 -647.35 -58.58 281.74   276.04 -828.75  

33 380.03 -134.90 126.14 -42.46 253.89 -92.44   449.03 -182.14  

34 9.47 -25.92 6.72 -17.70 2.75 -8.22   8.43 -18.69  

35 192.17 -197.38 427.56 -134.12 -235.39 -63.26   121.75 -151.46  

36 291.88 -611.14 161.31 -74.62 130.57 -536.52   153.80 -167.12  

37 1.79 -1.03 13.83 -38.93 -12.04 37.90   16.52 -5.61  

38 15.03 -11.97 26.76 -8.52 -11.73 -3.45   94.58 -28.01  

39 170.42 -501.43 143.87 -501.44 26.55 0.01   167.41 -464.35  

40 578.06 -181.77 227.23 -59.49 350.84 -122.28   1086.34 -257.07  

41 275.97 -128.02 127.80 -49.22 148.18 -78.80   201.36 -86.56  

42 194.16 -63.31 128.08 -58.33 66.08 -4.98   224.54 -98.86  

43 171.66 -55.58 400.62 -97.65 -228.96 42.07   113.32 -100.44  

44 123.32 -30.65 333.28 -85.83 -209.96 55.18   96.95 -39.01  

45 49.89 -41.71 144.40 -47.59 -94.52 5.88   59.84 -42.87  

46 98.13 -58.39 89.11 -42.87 9.02 -15.52   29.39 -36.13  

47 122.90 -114.71 146.58 -36.38 -23.67 -78.33   246.99 -130.42  

48 68.09 -171.89 5.16 -13.32 62.93 -158.57   97.04 -300.35  

49 393.05 -125.02 341.26 -108.51 51.79 -16.51   512.38 -189.01  

50 124.36 -93.91 254.82 -89.60 -130.46 -4.30   182.97 -161.48  

51 102.75 -349.71 124.96 -385.14 -22.21 35.43   134.49 -517.54  

52 1203.18 -286.31 211.00 -230.27 992.19 -56.04   1396.94 -358.52  

53 108.02 -70.59 270.84 -455.38 -162.81 384.79   391.12 -397.37  

54 815.71 -357.81 465.01 -225.92 350.70 -131.89   1328.88 -378.10  

55 225.86 -520.69 114.54 -222.35 111.32 -298.34   333.32 -706.58  

56 87.20 -120.58 149.94 -96.57 -62.74 -24.01   235.82 -147.01  

57 58.60 -137.25 38.23 -124.15 20.37 -13.10   37.32 -99.45  

58 43.15 -66.56 53.52 -111.50 -10.37 44.94   146.79 -48.22  

59 121.87 -46.01 25.74 -8.83 96.13 -37.18   135.77 -52.98  

60 172.82 -522.74 150.67 -462.22 22.15 -60.52   326.01 -1104.85  

61 494.29 -158.98 103.40 -52.50 390.89 -106.47   220.50 -104.01  

62 8.01 -21.52 4.22 -11.43 3.78 -10.09   4.61 -16.21  

63 681.47 -227.83 350.48 -188.64 330.99 -39.19   622.88 -355.82  

64 352.98 -862.32 282.42 -107.88 70.56 -754.44   250.79 -390.35  

65 94.21 -171.60 209.70 -573.74 -115.50 402.15   172.24 -156.84  

66 314.26 -163.75 248.95 -158.21 65.31 -5.54   539.60 -192.09  

67 35.05 -66.91 46.07 -178.52 -11.02 111.62   16.95 -19.15  

68 129.36 -120.16 184.64 -562.04 -55.28 441.88   159.02 -152.69  

69 446.75 -201.70 225.95 -133.85 220.80 -67.85   806.79 -307.85  

70 26.13 -59.38 53.91 -117.58 -27.78 58.20   52.90 -18.56  
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Table E.23. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second incisor (I2) bite load for the models of a durophagous, a 

graminivorous and Macaca species, and strain differences (Δε1 and Δε3) at landmark 

locations between the two models. Strain values are in microstrain (μstrain). 

I2 bite Cercocebus Theropithecus Cercocebus-Theropithecus   Macaca fascicularis   

landmark ε1 ε3 ε1 ε3 Δε1 Δε3   ε1 ε3  

1 192.44 -348.01 147.64 -397.31 44.79 49.29   158.95 -278.35  

2 561.70 -327.76 273.62 -211.46 288.08 -116.31   470.02 -213.53  

3 889.70 -245.11 272.14 -100.94 617.56 -144.16   35.53 -83.83  

4 149.96 -398.13 51.87 -231.54 98.09 -166.59   132.07 -425.34  

5 21.63 -42.32 59.19 -19.01 -37.56 -23.31   71.43 -22.90  

6 47.99 -19.03 33.28 -101.32 14.71 82.28   38.00 -73.68  

7 1.66 -0.81 2.17 -0.88 -0.51 0.07   9.27 -3.83  

8 52.14 -44.88 218.27 -71.04 -166.13 26.16   52.40 -23.23  

9 166.13 -256.02 160.63 -337.63 5.50 81.61   102.90 -107.06  

10 80.53 -30.02 23.75 -15.70 56.78 -14.32   279.13 -85.33  

11 181.46 -640.56 184.50 -547.32 -3.04 -93.24   142.22 -499.51  

12 483.26 -369.87 797.07 -523.21 -313.82 153.33   498.43 -260.56  

13 365.72 -109.36 12.79 -33.16 352.93 -76.21   137.98 -80.82  

14 171.06 -60.09 222.47 -122.54 -51.41 62.44   136.53 -99.98  

15 237.59 -88.69 160.55 -105.55 77.04 16.85   32.11 -57.76  

16 48.04 -16.80 51.77 -35.72 -3.72 18.92   57.10 -23.27  

17 33.85 -14.92 96.08 -42.40 -62.22 27.49   35.34 -34.84  

18 194.63 -46.29 196.05 -76.23 -1.42 29.94   9.77 -18.94  

19 109.40 -45.70 47.63 -113.45 61.77 67.76   245.71 -104.35  

20 82.10 -66.63 0.73 -0.14 81.37 -66.49   114.76 -202.40  

21 463.14 -155.28 310.33 -92.77 152.81 -62.52   412.91 -128.00  

22 74.72 -89.70 181.80 -90.14 -107.07 0.45   130.49 -110.88  

23 105.33 -365.46 118.82 -388.54 -13.49 23.08   149.53 -478.83  

24 251.66 -373.83 188.81 -581.47 62.85 207.64   -12.22 -135.41  

25 61.55 -36.01 264.10 -272.91 -202.55 236.91   435.91 -873.97  

26 945.72 -277.22 501.67 -212.33 444.05 -64.88   1085.01 -475.83  

27 225.75 -426.33 223.50 -405.38 2.25 -20.96   435.36 -892.77  

28 212.14 -67.56 367.77 -81.13 -155.62 13.57   224.54 -104.69  

29 41.12 -87.41 36.86 -105.85 4.26 18.44   30.57 -93.68  

30 25.17 -49.49 38.30 -98.67 -13.13 49.18   162.78 -61.84  

31 93.68 -55.95 25.01 -12.70 68.67 -43.25   117.89 -48.69  

32 114.44 -340.64 184.39 -651.78 -69.94 311.14   278.68 -835.01  

33 349.74 -129.48 101.60 -36.78 248.14 -92.69   422.11 -175.14  

34 8.03 -22.67 6.72 -17.69 1.31 -4.97   7.10 -16.19  

35 194.79 -210.87 426.10 -131.93 -231.32 -78.94   122.13 -151.53  

36 281.26 -577.87 155.48 -64.63 125.78 -513.24   152.57 -165.69  

37 2.15 -1.44 13.97 -38.42 -11.82 36.98   18.52 -6.35  

38 9.59 -16.95 22.44 -8.30 -12.85 -8.65   45.78 -19.26  

39 122.20 -354.75 116.57 -407.60 5.63 52.85   123.43 -340.81  

40 377.49 -111.89 241.29 -72.36 136.20 -39.52   741.70 -177.07  

41 166.88 -89.25 268.20 -41.23 -101.32 -48.02   148.00 -63.11  

42 146.86 -66.12 123.71 -61.47 23.15 -4.64   159.71 -80.05  

43 134.34 -42.86 349.71 -87.06 -215.36 44.20   95.00 -79.12  

44 108.25 -26.94 409.61 -97.19 -301.36 70.25   76.19 -29.77  

45 37.26 -32.79 152.04 -48.15 -114.78 15.36   52.82 -32.19  

46 73.67 -50.37 62.40 -30.01 11.27 -20.37   28.36 -33.11  

47 150.38 -112.54 169.13 -40.76 -18.75 -71.78   261.03 -130.79  

48 68.80 -176.67 5.49 -14.19 63.31 -162.48   99.21 -308.04  

49 353.31 -112.19 331.08 -105.17 22.24 -7.02   443.30 -163.64  

50 172.57 -85.65 276.13 -96.76 -103.57 11.11   218.63 -154.25  

51 98.28 -314.94 121.60 -372.06 -23.32 57.12   115.78 -441.68  

52 1259.53 -281.32 250.05 -147.65 1009.48 -133.68   1330.29 -340.29  

53 107.46 -66.98 264.36 -432.23 -156.90 365.25   384.94 -383.68  

54 801.35 -354.05 444.13 -224.23 357.22 -129.82   1319.79 -375.28  

55 220.46 -505.30 111.18 -216.52 109.28 -288.78   331.25 -704.03  

56 79.00 -96.92 138.81 -78.82 -59.81 -18.09   206.04 -114.13  

57 57.24 -135.92 37.99 -123.68 19.25 -12.24   41.62 -111.33  

58 45.08 -76.07 54.70 -115.08 -9.62 39.01   124.17 -42.77  

59 139.49 -53.46 45.59 -15.10 93.89 -38.36   153.19 -58.53  

60 177.48 -537.28 145.71 -445.86 31.77 -91.42   324.10 -1098.17  

61 509.64 -163.26 117.51 -52.86 392.13 -110.40   231.78 -106.29  

62 8.23 -22.21 4.10 -11.17 4.13 -11.04   5.32 -17.55  

63 688.99 -230.35 345.79 -186.96 343.20 -43.39   621.45 -354.66  

64 361.94 -885.14 285.14 -112.32 76.80 -772.82   254.25 -396.21  

65 70.65 -184.75 223.38 -612.74 -152.73 428.00   128.46 -140.01  

66 313.41 -161.65 274.91 -193.37 38.50 31.72   557.14 -200.16  

67 50.51 -111.26 131.93 -285.57 -81.43 174.32   34.99 -84.43  

68 155.95 -111.43 159.67 -486.77 -3.72 375.34   164.27 -123.82  

69 433.24 -200.85 205.31 -107.54 227.93 -93.30   785.69 -290.96  

70 61.60 -60.31 63.28 -156.18 -1.69 95.88   59.08 -18.74  
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Table E.24. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first premolar (P3) bite load for the models of a durophagous, a 

graminivorous and Macaca species, and strain differences (Δε1 and Δε3) at landmark 

locations between the two models. Strain values are in microstrain (μstrain). 

P3 bite Cercocebus Theropithecus Cercocebus-Theropithecus   Macaca fascicularis   

landmark ε1 ε3 ε1 ε3 Δε1 Δε3   ε1 ε3   

1 6.17 -7.74 24.92 -37.60 -18.76 29.85   23.29 -22.45   

2 141.43 -32.20 73.76 -147.59 67.67 115.39   136.95 -49.14   

3 563.54 -154.45 232.67 -90.58 330.88 -63.87   21.92 -44.90   

4 129.72 -353.13 44.21 -197.99 85.52 -155.14   116.55 -348.74   

5 15.08 -33.89 55.72 -18.02 -40.63 -15.87   67.94 -22.32   

6 48.53 -25.93 35.72 -109.04 12.81 83.11   39.19 -72.52   

7 0.41 -0.48 3.38 -1.38 -2.97 0.90   13.26 -5.35   

8 50.23 -36.12 199.47 -68.40 -149.24 32.29   48.81 -16.27   

9 167.44 -241.04 190.23 -351.20 -22.78 110.16   120.19 -123.57   

10 117.24 -44.24 34.46 -19.52 82.78 -24.71   321.52 -98.79   

11 81.52 -96.94 73.16 -209.72 8.35 112.78   99.60 -96.14   

12 49.97 -42.04 48.73 -44.97 1.24 2.92   15.70 -35.15   

13 130.81 -317.42 246.69 -658.09 -115.87 340.67   208.04 -291.28   

14 111.72 -49.47 423.89 -966.92 -312.17 917.45   326.73 -854.50   

15 148.01 -124.74 322.15 -459.34 -174.15 334.60   231.77 -790.27   

16 74.99 -86.43 66.61 -244.02 8.37 157.60   87.02 -218.25   

17 11.05 -29.71 54.81 -71.97 -43.76 42.27   31.57 -101.50   

18 194.79 -45.04 236.48 -92.54 -41.69 47.50   10.16 -16.61   

19 34.43 -24.85 62.25 -140.55 -27.81 115.70   28.79 -22.89   

20 66.00 -54.35 0.55 -0.16 65.44 -54.19   91.55 -149.35   

21 494.25 -165.15 359.58 -108.33 134.67 -56.82   474.64 -143.95   

22 53.50 -169.92 87.29 -70.59 -33.79 -99.34   65.51 -202.87   

23 100.99 -345.32 123.35 -403.06 -22.35 57.73   157.66 -496.69   

24 161.36 -273.41 262.76 -801.91 -101.40 528.50   28.18 -234.01   

25 63.57 -48.63 277.64 -289.48 -214.07 240.85   478.91 -1112.34   

26 996.95 -294.11 576.89 -238.89 420.06 -55.21   1133.77 -493.47   

27 210.95 -444.13 231.35 -448.01 -20.40 3.89   437.95 -870.26   

28 271.92 -91.38 411.10 -86.08 -139.18 -5.30   250.32 -105.93   

29 33.29 -66.12 34.31 -98.78 -1.02 32.67   11.65 -22.42   

30 24.08 -15.34 32.62 -80.10 -8.54 64.76   197.83 -74.51   

31 58.05 -61.93 12.33 -34.70 45.72 -27.23   38.74 -22.14   

32 93.25 -286.89 185.44 -656.35 -92.18 369.46   288.39 -856.65   

33 276.50 -120.16 47.79 -37.95 228.71 -82.21   325.38 -153.82   

34 4.29 -12.53 6.13 -15.91 -1.83 3.37   1.86 -5.57   

35 201.55 -244.09 414.50 -125.60 -212.94 -118.49   125.27 -152.62   

36 258.12 -505.89 143.07 -38.22 115.05 -467.68   149.54 -165.50   

37 3.60 -2.65 13.88 -29.89 -10.28 27.24   26.65 -9.48   

38 10.80 -29.67 12.59 -11.06 -1.80 -18.61   25.07 -83.47   

39 35.56 -101.81 37.21 -128.30 -1.65 26.48   39.99 -110.10   

40 27.95 -15.28 81.12 -21.51 -53.17 6.24   200.73 -46.86   

41 37.88 -24.46 236.85 -75.35 -198.96 50.89   58.56 -24.74   

42 49.39 -24.12 50.53 -38.78 -1.14 14.66   62.23 -28.44   

43 50.08 -15.99 108.15 -36.04 -58.06 20.05   34.34 -27.48   

44 38.86 -8.78 289.04 -61.07 -250.18 52.29   17.30 -12.01   

45 11.39 -20.49 99.21 -28.92 -87.82 8.43   41.72 -21.27   

46 44.84 -36.53 12.46 -5.99 32.38 -30.54   24.81 -25.33   

47 139.41 -76.35 192.07 -45.16 -52.66 -31.20   294.95 -125.92   

48 65.31 -178.93 5.84 -15.11 59.48 -163.82   102.48 -319.89   

49 281.96 -89.16 280.86 -89.48 1.10 0.32   282.91 -105.05   

50 238.03 -88.88 309.20 -108.51 -71.17 19.63   302.88 -147.07   

51 88.49 -243.38 99.35 -292.82 -10.86 49.44   87.48 -248.08   

52 918.22 -193.90 311.10 -117.41 607.11 -76.48   846.10 -215.36   

53 108.57 -69.51 259.98 -415.41 -151.42 345.89   367.60 -388.42   

54 807.32 -358.85 425.95 -222.53 381.37 -136.32   1308.25 -371.66   

55 223.37 -512.29 109.00 -206.69 114.37 -305.60   330.46 -698.58   

56 86.32 -54.08 110.90 -44.72 -24.58 -9.36   125.27 -51.52   

57 51.77 -125.41 33.85 -110.51 17.91 -14.90   50.76 -135.64   

58 45.89 -82.98 52.18 -114.38 -6.29 31.40   72.11 -33.50   

59 148.69 -57.68 91.93 -30.13 56.76 -27.54   187.67 -64.90   

60 179.80 -545.45 135.23 -409.95 44.57 -135.50   320.63 -1085.64   

61 508.89 -162.90 139.67 -54.32 369.22 -108.57   251.62 -110.31   

62 7.31 -19.79 3.35 -9.14 3.96 -10.65   6.52 -18.53   

63 671.82 -224.66 329.22 -180.21 342.60 -44.45   614.13 -351.32   

64 367.36 -897.26 288.86 -119.34 78.49 -777.93   260.27 -406.74   

65 112.50 -155.05 170.98 -530.47 -58.48 375.42   144.49 -97.19   

66 302.93 -151.58 333.81 -289.24 -30.88 137.66   611.16 -276.80   

67 211.27 -320.96 360.85 -539.38 -149.58 218.42   200.85 -300.49   

68 104.95 -61.60 90.40 -271.88 14.54 210.29   106.17 -54.97   

69 398.40 -192.19 169.17 -73.68 229.23 -118.51   741.71 -261.96   

70 26.42 -12.17 136.65 -157.82 -110.23 145.65   17.23 -10.10   
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Table E.25. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second premolar (P4) bite load for the models of a durophagous, a 

graminivorous and Macaca species, and strain differences (Δε1 and Δε3) at landmark 

locations between the two models. Strain values are in microstrain (μstrain). 

P4 bite Cercocebus Theropithecus Cercocebus-Theropithecus   Macaca fascicularis   

landmark ε1 ε3 ε1 ε3 Δε1 Δε3   ε1 ε3   

1 7.63 -6.83 18.07 -31.83 -10.44 25.00   23.34 -18.46   

2 141.58 -31.51 55.65 -136.71 85.92 105.20   115.46 -43.17   

3 519.63 -141.40 216.65 -85.15 302.98 -56.25   19.09 -39.48   

4 120.53 -330.68 42.09 -188.24 78.44 -142.44   110.93 -320.98   

5 12.97 -30.50 54.81 -17.79 -41.83 -12.71   68.77 -24.37   

6 49.06 -27.89 36.39 -111.16 12.67 83.26   39.74 -72.17   

7 0.76 -1.04 3.72 -1.52 -2.96 0.48   14.62 -5.88   

8 51.75 -33.21 194.83 -68.22 -143.08 35.01   50.52 -19.39   

9 162.41 -231.45 197.41 -335.68 -35.00 104.24   113.87 -115.77   

10 125.17 -47.42 37.57 -20.79 87.60 -26.63   327.59 -101.25   

11 77.68 -68.78 58.11 -142.49 19.57 73.71   94.25 -72.26   

12 49.37 -50.21 42.27 -38.65 7.10 -11.56   17.86 -45.45   

13 36.64 -106.59 50.70 -116.72 -14.07 10.13   78.53 -101.31   

14 85.45 -174.62 291.26 -399.59 -205.80 224.97   164.88 -558.33   

15 128.07 -162.24 308.18 -1197.92 -180.11 1035.68   404.73 -1632.31   

16 90.34 -111.20 104.33 -373.43 -13.99 262.24   188.29 -457.10   

17 20.22 -53.70 63.47 -109.82 -43.25 56.11   60.62 -213.24   

18 154.01 -41.05 245.34 -96.23 -91.33 55.18   10.59 -16.21   

19 40.02 -44.91 68.10 -145.97 -28.08 101.06   46.31 -98.93   

20 61.33 -50.80 0.54 -0.18 60.79 -50.62   84.47 -133.01   

21 504.53 -168.53 372.26 -112.39 132.27 -56.15   469.39 -141.76   

22 57.76 -194.69 66.87 -70.85 -9.11 -123.84   75.49 -260.68   

23 96.37 -328.59 124.28 -406.41 -27.91 77.82   151.78 -479.64   

24 144.96 -241.25 261.73 -797.17 -116.76 555.91   21.16 -193.87   

25 65.72 -51.73 281.55 -293.63 -215.83 241.90   503.07 -1203.05   

26 1011.43 -298.79 597.43 -246.28 414.01 -52.51   1152.39 -499.90   

27 210.19 -451.15 233.50 -459.44 -23.31 8.29   441.25 -863.65   

28 289.78 -99.82 418.43 -86.45 -128.65 -13.37   264.72 -105.59   

29 31.36 -60.90 33.54 -96.60 -2.18 35.70   18.42 -12.02   

30 29.98 -13.40 31.09 -74.71 -1.11 61.31   202.05 -75.89   

31 52.24 -65.14 15.41 -47.62 36.83 -17.52   26.83 -20.64   

32 89.94 -276.54 185.68 -657.42 -95.74 380.88   291.47 -863.17   

33 261.00 -119.21 41.59 -46.47 219.41 -72.75   295.42 -149.31   

34 3.39 -9.36 6.00 -15.43 -2.61 6.07   0.98 -2.41   

35 203.08 -251.30 411.54 -124.46 -208.46 -126.85   126.45 -153.06   

36 253.44 -491.50 140.54 -31.50 112.90 -460.00   149.42 -166.42   

37 3.96 -2.95 14.29 -27.88 -10.33 24.94   28.62 -10.24   

38 11.29 -31.26 11.26 -13.05 0.03 -18.22   29.44 -103.26   

39 30.90 -88.59 29.63 -100.66 1.27 12.07   32.57 -89.65   

40 24.93 -22.01 72.51 -18.52 -47.57 -3.49   158.50 -36.79   

41 31.51 -19.88 214.57 -74.14 -183.06 54.25   46.60 -19.75   

42 40.68 -18.59 40.67 -34.95 0.01 16.36   47.09 -22.03   

43 41.10 -13.03 79.00 -37.28 -37.90 24.25   26.53 -20.66   

44 30.41 -7.32 249.43 -51.05 -219.01 43.73   13.25 -12.90   

45 9.89 -20.50 87.11 -24.78 -77.22 4.28   41.18 -23.27   

46 41.70 -34.73 6.78 -3.35 34.93 -31.38   24.13 -23.91   

47 126.76 -70.31 192.07 -46.19 -65.31 -24.12   308.32 -126.83   

48 63.95 -178.26 5.89 -15.27 58.06 -162.98   103.34 -322.96   

49 275.55 -87.13 264.98 -84.50 10.57 -2.63   256.04 -95.07   

50 245.22 -90.26 314.57 -110.61 -69.35 20.35   322.72 -148.43   

51 85.55 -225.33 92.35 -267.72 -6.80 42.40   86.54 -210.20   

52 843.15 -178.22 307.64 -117.14 535.51 -61.08   722.80 -183.77   

53 109.14 -70.77 260.30 -415.96 -151.16 345.19   363.67 -389.38   

54 810.74 -360.62 424.37 -222.13 386.37 -138.49   1305.12 -370.67   

55 225.18 -517.18 109.01 -204.56 116.17 -312.63   330.09 -697.18   

56 85.86 -51.68 105.05 -39.74 -19.19 -11.94   112.91 -45.91   

57 51.13 -124.24 32.41 -105.91 18.72 -18.32   52.95 -141.33   

58 46.07 -83.49 51.08 -113.38 -5.01 29.90   63.78 -33.06   

59 147.51 -57.31 102.68 -33.64 44.83 -23.67   195.37 -65.47   

60 179.98 -546.32 132.71 -401.15 47.26 -145.18   319.96 -1083.17   

61 505.76 -161.97 144.14 -54.70 361.62 -107.28   256.86 -111.48   

62 6.87 -18.62 3.15 -8.60 3.72 -10.02   6.82 -18.67   

63 665.42 -222.51 324.54 -178.23 340.87 -44.29   612.75 -350.69   

64 367.65 -897.33 289.55 -120.80 78.10 -776.53   261.94 -409.73   

65 117.67 -128.92 145.21 -479.42 -27.54 350.50   144.82 -83.83   

66 300.75 -149.21 348.71 -318.42 -47.96 169.21   627.65 -305.92   

67 199.00 -283.75 295.75 -509.72 -96.75 225.97   168.62 -254.50   

68 97.88 -57.86 82.76 -243.30 15.12 185.44   91.65 -46.89   

69 392.79 -190.70 162.16 -68.57 230.63 -122.13   732.13 -256.53   

70 21.83 -9.04 141.48 -155.76 -119.65 146.71   12.05 -7.79   
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Table E.26. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during first molar (M1) bite load for the models of a durophagous, a 

graminivorous and Macaca species, and strain differences (Δε1 and Δε3) at landmark 

locations between the two models. Strain values are in microstrain (μstrain). 

M1 bite Cercocebus Theropithecus Cercocebus-Theropithecus   Macaca fascicularis   

landmark ε1 ε3 ε1 ε3 Δε1 Δε3   ε1 ε3   

1 6.11 -6.06 3.30 -9.60 2.81 3.54   39.57 -16.41   

2 97.20 -21.25 11.12 -30.54 86.08 9.29   143.62 -59.99   

3 406.48 -111.44 186.56 -72.97 219.93 -38.48   19.99 -44.09   

4 106.70 -299.00 37.92 -168.81 68.77 -130.19   101.90 -287.05   

5 14.55 -25.55 52.95 -17.22 -38.39 -8.33   69.92 -24.14   

6 51.38 -34.48 37.36 -114.16 14.02 79.67   39.09 -70.92   

7 1.36 -2.05 4.46 -1.81 -3.10 -0.23   16.11 -6.49   

8 56.14 -28.85 181.47 -65.45 -125.33 36.60   47.87 -23.94   

9 150.06 -199.67 188.66 -303.31 -38.60 103.64   110.41 -120.62   

10 146.78 -56.13 39.79 -22.06 106.99 -34.07   328.08 -101.38   

11 64.77 -42.29 48.75 -26.86 16.02 -15.43   91.46 -56.35   

12 34.15 -41.29 2.34 -4.48 31.81 -36.81   32.88 -60.53   

13 24.23 -70.10 21.30 -41.49 2.94 -28.61   26.86 -23.22   

14 41.06 -75.73 98.45 -60.77 -57.39 -14.96   42.81 -131.13   

15 206.76 -417.71 132.15 -79.95 74.61 -337.76   147.77 -589.02   

16 175.74 -205.02 65.29 -247.18 110.45 42.17   241.80 -568.63   

17 59.39 -133.24 53.59 -107.81 5.80 -25.43   66.71 -234.51   

18 115.37 -23.83 187.22 -72.89 -71.85 49.07   10.34 -13.96   

19 56.31 -95.39 78.87 -155.23 -22.56 59.85   69.44 -170.60   

20 52.01 -42.86 0.54 -0.19 51.48 -42.68   81.49 -123.54   

21 505.35 -168.97 402.15 -121.96 103.20 -47.01   464.07 -141.13   

22 80.73 -271.42 62.62 -72.79 18.11 -198.63   77.44 -268.64   

23 91.07 -304.06 122.86 -402.91 -31.79 98.85   139.86 -448.89   

24 112.57 -195.46 198.83 -604.91 -86.26 409.45   -0.09 -138.47   

25 66.76 -59.96 282.14 -290.67 -215.39 230.71   505.97 -1217.28   

26 1043.01 -309.21 606.46 -249.77 436.55 -59.44   1157.05 -502.44   

27 210.84 -467.48 234.15 -465.30 -23.31 -2.18   442.94 -861.10   

28 314.85 -111.81 428.07 -86.71 -113.22 -25.10   265.07 -104.44   

29 26.77 -47.33 33.22 -95.65 -6.45 48.32   22.45 -12.06   

30 52.94 -16.72 29.31 -68.18 23.63 51.46   205.91 -77.31   

31 45.34 -81.71 15.48 -48.64 29.86 -33.08   28.56 -18.09   

32 83.73 -247.85 185.35 -656.37 -101.62 408.52   292.47 -865.49   

33 224.57 -118.05 40.16 -51.94 184.41 -66.11   287.30 -148.56   

34 1.90 -3.75 5.65 -14.24 -3.75 10.48   1.22 -1.61   

35 207.35 -270.35 407.86 -123.33 -200.50 -147.02   126.93 -153.25   

36 241.65 -454.54 139.60 -28.83 102.05 -425.71   149.53 -166.69   

37 4.99 -3.68 14.77 -23.60 -9.78 19.92   32.49 -11.81   

38 13.17 -37.89 9.99 -14.34 3.18 -23.55   28.00 -95.38   

39 22.00 -62.89 21.93 -73.66 0.07 10.77   30.83 -84.59   

40 16.06 -17.39 19.51 -8.24 -3.45 -9.15   133.69 -30.69   

41 22.41 -14.04 111.86 -39.29 -89.45 25.25   45.34 -18.86   

42 28.11 -10.99 19.06 -20.21 9.06 9.21   46.72 -19.38   

43 27.87 -8.82 35.68 -27.43 -7.82 18.61   23.34 -18.37   

44 17.30 -6.34 140.04 -27.32 -122.74 20.98   11.40 -13.24   

45 8.49 -20.29 59.34 -16.32 -50.85 -3.97   40.52 -23.65   

46 34.37 -30.38 9.62 -4.79 24.75 -25.59   23.02 -22.77   

47 125.68 -63.35 175.23 -42.16 -49.55 -21.19   285.23 -117.70   

48 62.78 -179.62 5.64 -14.61 57.14 -165.01   101.16 -314.23   

49 250.83 -79.34 247.86 -79.38 2.97 0.03   275.88 -102.57   

50 278.16 -97.62 305.14 -107.55 -26.98 9.94   314.10 -146.42   

51 84.69 -197.37 80.44 -226.45 4.26 29.08   83.88 -184.10   

52 687.83 -144.38 247.26 -93.30 440.57 -51.08   710.16 -179.82   

53 110.16 -71.54 267.10 -439.85 -156.93 368.32   360.86 -410.02   

54 807.50 -360.74 442.85 -222.80 364.65 -137.94   1312.36 -372.87   

55 225.01 -516.43 112.95 -206.98 112.05 -309.46   333.11 -698.35   

56 76.74 -43.83 103.47 -41.06 -26.73 -2.77   122.80 -52.00   

57 50.37 -123.22 29.97 -97.80 20.40 -25.42   52.23 -139.41   

58 48.08 -88.69 47.91 -108.29 0.17 19.61   64.54 -32.48   

59 152.20 -59.51 104.34 -34.13 47.86 -25.38   193.75 -61.71   

60 182.49 -554.60 133.15 -401.87 49.34 -152.73   321.28 -1087.51   

61 509.43 -162.89 135.66 -53.23 373.77 -109.66   249.56 -109.50   

62 6.45 -17.53 2.89 -7.71 3.56 -9.81   6.15 -16.14   

63 660.33 -220.80 320.15 -176.01 340.18 -44.80   610.98 -350.72   

64 372.60 -908.73 287.45 -116.74 85.15 -791.99   259.91 -406.33   

65 122.64 -120.98 134.05 -395.60 -11.41 274.62   136.08 -61.70   

66 292.17 -143.93 347.03 -319.17 -54.87 175.24   623.59 -300.32   

67 155.04 -253.24 165.55 -296.48 -10.51 43.24   131.88 -142.38   

68 82.25 -48.90 82.94 -241.86 -0.69 192.96   92.42 -44.26   

69 380.21 -188.92 169.16 -83.08 211.05 -105.84   734.85 -261.13   

70 18.47 -6.13 98.25 -99.35 -79.78 93.22   15.01 -9.17   
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Table E.27. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during second molar (M2) bite load for the models of a durophagous, a 

graminivorous and Macaca species, and strain differences (Δε1 and Δε3) at landmark 

locations between the two models. Strain values are in microstrain (μstrain). 

M2 bite Cercocebus Theropithecus Cercocebus-Theropithecus   Macaca fascicularis   

landmark ε1 ε3 ε1 ε3 Δε1 Δε3   ε1 ε3   

1 11.20 -8.76 3.44 -5.75 7.76 -3.01   45.32 -12.74   

2 129.71 -28.01 12.34 -18.20 117.37 -9.82   149.78 -60.66   

3 371.42 -98.75 124.32 -49.41 247.10 -49.34   17.33 -40.57   

4 86.09 -244.42 32.13 -133.82 53.96 -110.60   85.43 -212.32   

5 15.98 -16.43 50.56 -16.69 -34.58 0.27   67.63 -23.90   

6 52.11 -36.54 39.46 -120.79 12.66 84.25   38.91 -69.44   

7 2.34 -3.67 5.73 -2.33 -3.39 -1.34   19.84 -8.00   

8 58.51 -22.68 166.41 -66.17 -107.90 43.48   49.19 -43.09   

9 125.67 -184.92 151.09 -209.28 -25.42 24.36   78.32 -103.17   

10 152.26 -58.19 48.59 -25.97 103.68 -32.22   319.95 -99.35   

11 65.42 -25.15 54.71 -23.63 10.71 -1.52   71.15 -37.06   

12 49.74 -58.22 4.15 -3.67 45.59 -54.55   38.99 -52.83   

13 3.32 -2.83 6.60 -20.02 -3.28 17.19   29.14 -20.66   

14 2.56 -6.08 25.31 -14.57 -22.74 8.49   17.45 -7.67   

15 36.26 -100.30 58.67 -36.61 -22.41 -63.68   21.59 -8.34   

16 49.58 -124.00 14.50 -12.23 35.09 -111.77   87.94 -199.13   

17 86.13 -204.99 73.74 -175.11 12.39 -29.88   197.84 -696.71   

18 14.17 -74.42 97.91 -37.51 -83.74 -36.91   12.21 -9.13   

19 82.45 -126.41 100.78 -184.85 -18.33 58.43   146.24 -390.87   

20 43.21 -36.64 0.60 -0.27 42.61 -36.37   72.20 -95.66   

21 532.49 -178.30 459.14 -140.20 73.34 -38.10   442.10 -138.58   

22 85.50 -286.05 39.24 -101.47 46.26 -184.58   87.43 -310.11   

23 83.45 -269.86 122.01 -402.31 -38.56 132.45   116.80 -384.10   

24 95.07 -146.93 147.68 -446.27 -52.61 299.34   2.68 -91.01   

25 76.16 -63.93 286.50 -292.73 -210.34 228.79   531.37 -1318.13   

26 1069.07 -317.26 654.20 -267.31 414.87 -49.95   1183.96 -513.93   

27 214.47 -483.44 239.17 -489.67 -24.70 6.23   451.51 -852.69   

28 348.07 -127.80 469.36 -91.82 -121.28 -35.97   213.62 -95.67   

29 24.39 -41.76 31.43 -90.58 -7.04 48.83   43.03 -16.46   

30 64.70 -20.60 25.41 -51.45 39.29 30.85   205.11 -76.82   

31 42.34 -86.88 25.63 -79.02 16.70 -7.86   40.03 -28.59   

32 82.85 -240.29 186.76 -661.68 -103.91 421.39   296.31 -873.32   

33 208.09 -119.77 42.15 -87.58 165.94 -32.19   251.76 -146.68   

34 3.51 -3.79 5.42 -12.57 -1.90 8.78   9.47 -5.27   

35 209.03 -278.64 404.80 -122.44 -195.77 -156.20   128.70 -153.91   

36 236.85 -440.27 134.90 -13.45 101.95 -426.82   149.90 -168.49   

37 5.61 -4.01 17.78 -18.32 -12.17 14.31   43.18 -16.19   

38 13.05 -36.99 9.52 -21.72 3.53 -15.27   31.53 -110.19   

39 15.57 -45.13 11.72 -35.26 3.84 -9.88   21.32 -58.26   

40 23.36 -37.54 8.68 -12.19 14.68 -25.35   87.34 -20.25   

41 20.83 -10.58 56.00 -23.20 -35.17 12.62   40.54 -15.98   

42 20.33 -5.86 6.85 -11.47 13.47 5.61   42.51 -15.02   

43 19.91 -6.72 13.49 -29.08 6.42 22.37   15.89 -12.50   

44 8.52 -4.80 51.00 -8.70 -42.48 3.90   10.00 -15.95   

45 8.23 -19.54 31.97 -7.99 -23.74 -11.55   38.27 -25.34   

46 30.96 -27.68 6.70 -3.63 24.26 -24.05   20.31 -19.66   

47 88.18 -53.23 166.20 -43.97 -78.02 -9.26   262.68 -106.46   

48 58.95 -174.47 5.56 -14.42 53.39 -160.04   98.39 -302.00   

49 250.27 -79.10 208.75 -67.25 41.52 -11.85   266.94 -99.41   

50 271.93 -95.82 307.39 -109.12 -35.46 13.30   325.72 -145.63   

51 78.46 -157.88 59.01 -143.90 19.45 -13.98   95.56 -137.01   

52 580.26 -123.48 191.13 -72.15 389.13 -51.33   567.75 -143.10   

53 111.59 -75.49 273.08 -460.25 -161.48 384.76   354.33 -436.21   

54 825.81 -367.93 454.95 -222.74 370.86 -145.20   1319.78 -375.16   

55 232.61 -537.49 116.46 -206.04 116.15 -331.44   337.14 -699.18   

56 86.65 -42.49 94.76 -36.32 -8.11 -6.17   119.44 -50.12   

57 48.59 -119.23 25.40 -82.87 23.18 -36.36   53.96 -143.99   

58 46.58 -85.21 43.81 -102.92 2.77 17.71   56.58 -31.43   

59 143.00 -55.72 125.16 -40.85 17.84 -14.87   203.65 -64.47   

60 180.01 -547.56 129.00 -386.82 51.01 -160.74   322.13 -1089.94   

61 492.97 -158.27 137.08 -52.73 355.88 -105.54   243.74 -107.76   

62 5.09 -13.86 2.44 -6.15 2.65 -7.71   5.71 -12.27   

63 640.50 -214.12 308.44 -170.71 332.07 -43.42   606.81 -349.91   

64 368.06 -895.63 287.04 -116.32 81.02 -779.31   258.25 -403.55   

65 102.82 -62.79 157.91 -232.07 -55.09 169.28   94.76 -62.86   

66 294.43 -141.77 378.86 -381.79 -84.43 240.03   628.54 -299.71   

67 93.51 -149.72 60.25 -186.83 33.26 37.11   73.99 -44.40   

68 72.84 -41.26 73.98 -201.72 -1.14 160.46   79.12 -31.34   

69 372.27 -185.32 163.40 -86.20 208.87 -99.12   730.15 -261.08   

70 15.26 -8.17 91.52 -68.62 -76.26 60.46   22.27 -11.12   
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Table E.28. Maximum (ε1) and minimum (ε3) principal strain values at the location of 

70 landmarks during third molar (M3) bite load for the models of a durophagous, a 

graminivorous and Macaca species, and strain differences (Δε1 and Δε3) at landmark 

locations between the two models. Strain values are in microstrain (μstrain). 

M3 bite Cercocebus Theropithecus Cercocebus-Theropithecus   Macaca fascicularis   

landmark ε1 ε3 ε1 ε3 Δε1 Δε3   ε1 ε3   

1 14.19 -11.53 11.68 -11.03 2.51 -0.49   44.72 -11.39   

2 130.49 -28.29 35.16 -30.62 95.33 2.34   143.05 -54.06   

3 294.34 -76.37 43.75 -19.27 250.58 -57.10   13.99 -34.43   

4 70.46 -175.23 39.85 -91.84 30.60 -83.39   73.21 -126.70   

5 16.82 -6.97 47.12 -16.06 -30.30 9.09   62.08 -21.52   

6 53.73 -40.46 42.49 -130.32 11.24 89.86   38.23 -67.57   

7 3.88 -6.21 7.70 -3.13 -3.83 -3.08   24.77 -10.00   

8 62.92 -44.16 152.90 -74.63 -89.98 30.46   54.50 -72.87   

9 85.84 -170.06 58.65 -115.08 27.19 -54.98   40.75 -70.01   

10 157.43 -60.14 59.70 -31.02 97.72 -29.12   302.37 -93.92   

11 58.05 -17.42 16.56 -7.27 41.49 -10.15   53.03 -22.52   

12 52.05 -58.51 9.89 -5.43 42.16 -53.08   42.62 -40.51   

13 44.93 -13.70 2.06 -5.84 42.87 -7.87   34.22 -28.40   

14 25.70 -11.28 17.18 -10.76 8.53 -0.52   41.88 -31.28   

15 11.71 -27.90 20.86 -17.22 -9.15 -10.69   17.04 -37.72   

16 48.68 -60.22 29.74 -9.82 18.94 -50.40   51.32 -129.52   

17 30.57 -77.65 17.59 -21.43 12.98 -56.22   167.42 -246.85   

18 109.18 -975.79 109.64 -157.89 -0.46 -817.90   119.13 -36.81   

19 139.23 -185.28 126.07 -215.64 13.16 30.36   236.22 -678.40   

20 29.59 -26.07 0.70 -0.44 28.89 -25.63   67.70 -70.43   

21 553.70 -185.97 545.72 -167.93 7.98 -18.04   446.07 -144.44   

22 90.97 -302.17 45.66 -170.57 45.31 -131.60   85.41 -303.59   

23 77.19 -230.79 118.73 -395.60 -41.53 164.81   90.21 -302.92   

24 69.95 -89.04 75.16 -221.31 -5.21 132.27   26.82 -79.05   

25 91.82 -72.99 284.74 -287.28 -192.92 214.29   555.27 -1422.79   

26 1107.89 -329.39 710.93 -288.56 396.97 -40.83   1206.68 -525.35   

27 222.16 -510.91 244.29 -511.53 -22.13 0.62   464.24 -847.07   

28 383.02 -145.04 542.86 -115.59 -159.84 -29.45   163.51 -90.44   

29 20.40 -32.84 29.42 -84.66 -9.02 51.82   49.92 -18.32   

30 81.21 -26.38 24.15 -31.88 57.06 5.50   197.22 -73.83   

31 41.85 -97.40 38.89 -114.16 2.96 16.76   56.35 -26.08   

32 81.74 -227.99 190.02 -673.49 -108.28 445.50   301.42 -884.88   

33 184.65 -123.47 53.91 -137.63 130.74 14.16   221.95 -148.86   

34 14.31 -8.23 5.77 -10.54 8.54 2.31   20.08 -9.93   

35 211.90 -291.26 408.88 -123.67 -196.98 -167.59   132.77 -155.80   

36 230.59 -422.17 130.86 2.98 99.73 -425.14   148.34 -170.91   

37 7.12 -4.42 25.63 -13.70 -18.51 9.28   59.74 -23.10   

38 13.76 -38.21 11.33 -32.97 2.43 -5.24   36.12 -129.77   

39 6.24 -19.20 14.14 -8.60 -7.91 -10.59   10.70 -28.82   

40 25.64 -48.83 4.28 -17.33 21.36 -31.49   45.36 -12.14   

41 20.58 -8.05 10.75 -8.91 9.83 0.86   40.40 -14.27   

42 15.49 -5.15 3.88 -7.82 11.61 2.66   46.63 -15.59   

43 14.50 -6.77 5.83 -22.11 8.67 15.34   9.84 -9.95   

44 2.62 -2.60 6.53 -19.92 -3.91 17.32   12.36 -21.02   

45 7.04 -15.92 8.79 -3.39 -1.75 -12.52   34.35 -26.31   

46 25.10 -22.76 6.74 -3.75 18.35 -19.01   15.95 -15.21   

47 48.40 -41.31 162.99 -46.34 -114.58 5.03   221.34 -89.41   

48 54.14 -165.99 5.37 -13.96 48.77 -152.03   93.62 -280.47   

49 238.12 -75.11 163.65 -53.30 74.48 -21.81   260.32 -97.19   

50 276.19 -96.10 309.54 -110.85 -33.35 14.75   337.24 -143.95   

51 78.94 -108.78 50.78 -53.18 28.16 -55.60   134.00 -112.00   

52 407.88 -88.96 104.32 -37.73 303.56 -51.23   419.84 -105.11   

53 113.53 -80.16 280.32 -485.70 -166.79 405.54   348.94 -472.61   

54 850.09 -377.57 474.93 -223.54 375.16 -154.03   1333.02 -379.41   

55 242.27 -564.39 121.57 -207.84 120.70 -356.55   343.57 -701.91   

56 101.89 -38.76 84.98 -33.34 16.91 -5.42   117.75 -50.18   

57 45.62 -112.61 19.66 -63.84 25.96 -48.77   56.05 -149.64   

58 44.98 -82.19 39.27 -96.79 5.70 14.60   47.51 -30.10   

59 133.88 -51.78 150.10 -48.84 -16.22 -2.94   218.25 -76.94   

60 176.67 -538.02 125.03 -372.07 51.64 -165.95   323.30 -1093.17   

61 473.57 -152.84 135.15 -51.58 338.42 -101.26   231.84 -104.61   

62 3.11 -8.55 2.27 -4.38 0.84 -4.16   6.47 -7.60   

63 614.62 -205.40 295.52 -164.79 319.10 -40.61   600.75 -348.73   

64 363.09 -880.82 285.65 -113.88 77.44 -766.94   254.40 -396.77   

65 64.83 -28.60 188.12 -70.84 -123.29 42.24   78.00 -54.73   

66 295.86 -138.32 417.75 -453.07 -121.90 314.75   624.16 -273.89   

67 46.07 -74.91 28.80 -100.55 17.27 25.64   47.29 -19.48   

68 55.20 -26.74 59.37 -144.47 -4.17 117.72   66.69 -25.34   

69 360.21 -180.81 162.43 -96.74 197.78 -84.07   729.56 -262.90   

70 19.17 -11.51 76.10 -32.37 -56.93 20.86   32.12 -14.41   

 


