
THE UNIVERSITY OF HULL

A Modelling and Networking Architecture

for Distributed Virtual Environments

with Multiple Servers

being a Thesis submitted for the Degree of

Doctor of Philosophy

in the University of Hull

by

Jaewoong Chang

B.B. Naval Academy, Korea

B.S. Yonsei University, Korea

M.S.C. Western Illinois University, USA

December 1999

TEXT
BOUND INTO THE

SPINE

ABSTRACT

Virtual Environments (VEs) attempt to give people the illusion of immersion that they are in a

computer generated world. VEs allow people to actively participate in a synthetic environment.

They range from a single-person running on a single computer, to multiple-people running on

several computers connected through a network. When VEs are distributed on multiple

computers across a network, we call this a Distributed Virtual Environment (DVE). Virtual

Environments can benefit greatly from distributed strategies.

A networked VE system based on the Client-Server model is the most commonly used

paradigm in constructing DVE systems. In a Client-Server model, data can be distributed on

several server computers. The server computers provide services to their own clients via

networks. In some client-server models, however, a powerful server is required, or it will

become a bottleneck. To reduce the amount of data and traffic maintained by a single server, the

servers themselves can be distributed, and the virtual environment can be divided over a

network of servers.

The system described in this thesis, therefore, is based on the client-server model with multiple

servers. This grouping is called a Distributed Virtual Environment System with Multiple-

Servers (DVM). A DVM system shows a new paradigm of distributed virtual environments

based on shared 3D synthetic environments. A variety of network elements are required to

support large scale DVM systems. The network is currently the most constrained resource of the

DVM system. Development of networking architectures is the key to solving the DVM

challenge. Therefore, a networking architecture for implementing a DVM model is proposed.

Finally, a DVM prototype system is described to demonstrate the validity of the modelling and

network architecture of a DVM model.

ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisor, Brian Tompsett, for all of his guidance, advice

and support throughout the duration of my thesis work. In addition I would like to thank the

Korean Navy for the assistance given to me throughout the course of my studies.

My thanks also goes to James Ward for his valuable proof reading and advice. In addition I

would like to thank members of the Distributed Systems Engineering Group for the research

discussions that take place.

Finally I would like to thank members of my family especially my parents, my brothers, my

wife, my sons Kihyun and Woohyun.

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xiv

1 INTRODUCTION 1

1.1 Motivation 2

1.2 Overview of Problems 3

1.3 Aims 4

1.4 Preview 5

2 OVERVIEW OF DISTRIBUTED VIRTUAL ENVIRONMENT (DVE)

TECHNOLOGIES 7

2.1 Typical VE Technologies 8

2.1.1 Components of a Typical VE system 8

2.1.1.1 Visual Display Systems 9

2.1.1.2 Tracking Systems 10

2.1.1.3 Computation Systems 11

2.1.1.4 Haptic Interfaces 12

2.1.1.5 Auditory Systems 12

2.1.1.6 Summary 13

2.1.2 Technical Issues 14

2.1.2.1 High Fidelity Images 14

2.1.2.2 Real-time Management 14

2.1.2.3 Real-time Collision Detection and Response 15

2.1.2.4 Physically Realistic Entity Modelling 15

2.2 DVE Technologies 16

2.2.1 Communication Models 16

2.2.1. IA Centralised Model 17

2.2.1.2 A Peer-to-Peer Model.. 17

2.2.1 .3 Broadcast and Multicast Model 18

2.2.2 Technical Issues 19

2.2.2.1 Process Migration 20

2.2.2.2 Network Efficiency 20

2.2.3 Summary of DVE Technologies 21

2.3 Technical Overview Of Significant DVE Systems 22

2.3.1 Distributed Interactive Simulation (DIS) 22

2.3.1.1 Basic Architecture 22

2.3.1.2 Packet Data Unit 24

2.3.1.3 Limitations and Problems 25

2.3.2 Naval Postgraduate School Networked Vehicle Simulator IV (NPSNET-IV) 28

2.3.2.1 Basic Architecture 28

2.3.2.2 Limitations and Problems 30

2.3.3 Distributed Interactive Virtual Environment (DIVE) 31

2.3.3.1 Basic Architecture 31

2.3.3.2 Basic Modules 32

2.3.3.3 DIVE Implementation 33

2.3.3.4 Limitations and Problems 33

2.3.4 The Minimal Reality (MR) Toolkit.. 35

2.3.4.1 Basic Architecture 35

ii

2.3.4.2 Software Structure 36

2.3.4.3 Relationship between the MR Tool Components 37

2.3.4.4 Implementation of MR Applications 38

2.3.4.5 Limitations and Problems 39

2.3.5 Network PC Games 40

2.3.5.1 Basic Architecture .40

2.3.5.2 Limitations and Problems 41

2.3.6 Summary of the Technical Overview 42

2.4 Summary 42

3 CREATING DISTRIBUTED VIRTUAL ENVIRONMENT SYSTEMS WITH

MULTIPLE SERVERS (DVM) 45

3.1 Concepts of a DVM system 46

3.1.1 Basic Characteristics of a DVM system 47

3.1.2 Structure of a DVM system 51

3.1.3 Limitations of a Real-Time DVM .Systems 53

3.1.3.1 Memory 53

3.1.3.2 Processor 53

3.1.3.3 Bandwidth and Protocol 54

3.1.3.4 Operating Systems 54

3.1.4 Target Applications of a DVM system 55

3.2 Proposed Architecture of a DVM System 55

3.2.1 The components and connections 56

3.2.1.1 Server Node (SN) 57

3.2.1.2 Client Node (CN) 58

3.2.1.3 Master Manager (MM) 58

III

3.2.1.4 Network Input/Output Manager (NM) 59

3.2.1.5 Database Input/Output Manager (DM) 59

3.2.1.6 Computation Manager (CM) 59

3.2.1.7 Rendering Manager (RM) 60

3.2.1.8 Interaction Manager (IM) 60

3.2.1.9 Audio Manager (AM) 60

3.2.1.10 Connections between components 6 1

3.2.2 Co-ordinate Systems 61

3.2.2.1 Real-world Co-ordinate System 62

3.2.2.2 Map Projection 62

3.2.2.3 Map Distortion 63

3.2.2.4 Planar Co-ordinate Systems 64

3.2.2.5 Transformation of Co-ordinate System 64

3.2.2.6 DVM Co-ordinate System 66

3.2.2.7 Segmentation of DVM Co-ordinate System 67

3.2.3 Data Management 67

3.2.3.1 Data Distribution 69

3.2.3.1.1 Complete Distribution 69

3.2.3.1.2 Data Replication 70

3.2.3.2 Data Segmentation 71

3.2.4 Computation Management 72

3.2.5 Fault Tolerance 73

3.2.6 Time Management 74

3.2.7 Security 76

3.2.8 Communication Management 76

3.3 System Operations 77

3.3.1 Initial Join 77

iv

3.3.2 Initial Data Transmission 79

3.3.3 Data Loading Hierarchy 80

3.3.4 Screen Generation 83

3.3.5 Screen Control 84

3.3.6 Update of Entity State 85

3.3.7 Time-Based versus Frame-Based VE simulation 86

3.4 Summary 87

4 NETWORKING ARCHITECTURE FOR THE DVM SYSTEM 88

4.1 Goals of DVM Networking 89

4.2 Basic Restrictions of DVM Communication 91

4.2.1 Limited Bandwidth 91

4.2.2 Network Latency 93

4.2.3 Summary of the Communication Restrictions 93

4.3 DVM Networking Subsystem 93

4.3.1 Requirements for a DVM communication 94

4.3.2 Subsystem Structure 95

4.3.3 Packet Interface Layer 96

4.3.4 Socket Interface Layer 97

4.3.5 DCP Protocol Layer 99

4.3.5.1 DCP Protocol Specification 100

4.3.5.1.1 Joining / Detach 102

4.3.5.1.2 Initial Data Transmission 106

4.3.5.1.3 Entity State Updating 109

4.3.5.2 DCP Protocol Units 111

4.3.5.3 DCP Packets 112

v

4.3.5.3.1 Data Encapsulation 113

4.3.5.3.2 DCP Packet Types 115

4.3.6 Process Interface Layer 120

4.4 Major Techniques for Networking of a DVM 121

4.4.1 Communication Schemes of the DVM 122

4.4.1.1 Unicast 122

4.4.1.2 Multicast. 122

4.4.2 Message Communication between nodes 123

4.4.2.1 Loosely-coupled Message Communication 124

4.4.2.2 Tightly-coupled Message Communication 124

4.4.2.3 Summary of the Message Communication 124

4.4.3 Data Portability 125

4.4.3.1 Data Representation 125

4.4.3.2 Network Byte Ordering 126

4.4.4 Data Compression 127

4.4.5 Dead-Reckoning 128

4.4.6 TCP windows 130

4.5 Summary 132

5 A PROTOTYPE DVM SYSTEM 133

5.1 Case Study: The Aircraft Manoeuvre Operations 134

5.1.1 Scenario 134

5.1.2 Implementation Requirements of the Prototype 135

5.1.3 Implementation Environments 136

5.1.3.1 Hardware 136

5.1.3.2 Software 136

VI

5.1.3.3 Networking 137

5.1.4 Structures of the Prototype System 138

5.1.4.1 The Context Diagram 139

5.1.4.2 Dataflow Diagrams 140

5.1.5 Relationships for communication between DVM components 142

5.1.6 Implementation Sequences 143

5.1.6.1 System Initialisation 143

5.1.6.2 Initial Join 144

5.1.6.3 Initial Data Transmission 145

5.1.6.4 Screen Generation 148

5.1.6.5 Execution 150

5.1.6.6 System Release 152

5.2 Fundamental Techniques used for Developing the Prototype IS3

5.2.1 Graphical Techniques 153

5.2.1.1 View Display 154

5.2.1.2 Screen Co-ordinates 154

5.2.1.3 Scale Factor 155

5.2.1.4 Terrain Representation 155

5.2.1.5 Aircraft Representation 156

5.2.1.6 Basic Rendering Techniques 157

5.2.1.6.1 Z-buffering 157

5.2.1.6.2 Colouring 157

5.2.1.6.3 Texturing 157

5.2.2 Communication Techniques 158

5.2.2.1 Domains 158

5.2.2.2 Socket Addresses 159

5.2.2.3 Internet Addresses 160

vii

5.2.2.4 Port Addresses 161

5.2.2.5 Socket System Calls 161

5.3 Demonstration of the Prototype System 162

5.3.1 System Integration 162

5.3.2 Execution 163

5.3.3 Summary of the Demonstration 166

5.4 Evaluation of the Prototype System 166

5.4.1 Test I : Initial Data Transmission Time Check 167

5.4.1.1 Configurations 167

5.4.1.2 Checking of the Initial Data Transmission Time 167

5.4.1.3 Test Results 171

5.4.2 Synchronisation Capability Test.. 175

5.4.2. I Configurations 175

5.4.2.2 Checking of the Total Entity State Update Time 177

5.4.2.2.1 Round Trip Time Check 177

5.4.2.2.2 One-way Trip Time Check 179

5.4.2.3 Test Results 180

5.4.2.3.1 Round Trip Time Check 181

5.4.2.3.2 One-way Trip Time Check 183

5.4.3 Summary of Evaluation 189

5.5 Summary J 89

6 CONCLUSION 190

6. J Research Experience J 90

6.2 Research Contribution of this Thesis , 192

6.3 Future Work 194

viii

6.3.1 Three Dimensional Implementation 195

6.3.2 Multiple Processes 195

6.3.3 Portability 195

6.3.4 Extending Functionality 196

6.3.5 Enriching the behaviour of entities 196

6.3.6 Audio Integration 196

6.4 Final Comments 197

APPENDIX 198

GLOSSARY 204

REFERENCES 210

ix

LIST OF FIGURES

F·· 8igure 2.1 Components of Typical VE Systems .

Figure 2.2 NASA Ames BOOM display system 9

Figure 2.3 DVE Technologies 16

Figure 2.4 Centralised Model 17

Figure 2.5 Peer-to-Peer Model 18

Figure 2.6 Broadcast and Multicast Model 19

Figure 2.7 Technical Issues related to implementing of DVEs 20

Figure 2.8 NPSNET - IV key functional components 29

Figure 2.9 Three level software structure of the MR Toolkit.. 37

Figure 2.10 MR Toolkit Architecture and its Component Relationships 37

Figure 2.11 Process Structure of MR application 38

Figure 2.12 Synchronisation between clients and server .42

Figure 3.1 The diversity of information in the virtual world 46

Figure 3.2 Basic Context Diagram of DVM system 47

Figure 3.3 The logical routing structure of DVM 52

Figure 3.4 Components of DVM system 57

Figure 3.5 Connections between components 61

Figure 3.6 Map Projection 62

Figure 3.7 Map Distortion 63

Figure 3.8 DVM Coordinate Units 66

Figure 3.9 DVM Coordinate System 67

x

Figure 3.10 The Segmentation of DVM Coordinate system 68

Figure 3.11 Logical Data Inclusion 71

Figure 3.12 Time sequences for Common VE Time Synchronisation 75

Figure 3.13 Routing Sequence for Initial Join 78

Figure 3.14 Routing Sequence for Transmission of Initial Data 79

Figure 3.15 Data Loading Hierarchy 81

Figure 3.16 The movement of FOV and Entities in the virtual world 84

Figure 3.17 Order of events for an entity update 85

Figure 4 INk' C to, . f DVM 90. etwor mg on iguratron 0 a system .

Figure 4.2 The Technology Scenario 92

Figure 4.3 DVM Network Subsystem in the TCP/IP Protocol Suite 94

Figure 4.4 DVM Networking subsystem structure 95

Figure 4.5 TCP/IP protocol suite using 4-layer model 97

Figure 4.6 The State -Transition Diagrams for a DVM system 101

Figure 4.7 Message Exchange Sequence for Joining I Detach 103

Figur 48 M for transmi Ide. essage Exchange Sequence or transrmssron mitra ata 106

Figure 4 9 M .. E h S f U d t' f E tit St t 110. essage xc ange equence or p a mg 0 n I y a e .

Figure 4.10 Order of Headers 113

Figure 4.11 Encapsulation of DCP data 114

Figure 4.12 PJR packet. 116

Figure 4.13 PJG packet 116

Figure 4.14 SJR packet. I 16

Figure 4.15 SJG packet 117

Figure 4.16 RRQ packet 117

Figure 4.17 RRS packet. 117

Figure 4.18 DRQ packet. 118

xi

Figure 4.19 DRS packet 118

Figure 4.20 GPD packet 119

Figure 4.21 EPD packet. 119

Figure 4.22 ESD packet. 119

Figure 4.23 TXD packet 120

Figure 4.24 Communication Schemes 121

Figure 4.25 Byte Orders for a 16-bit quantity 126

Figure 4.26 Byte Ordering functions 127

Figure 4.27 Error Based Dead Reckoning 130

Figure 4.28 TCP window for Congestion Control 131

Figure 5.1 Network Configuration for the Distributed Processing 138

Figure 5.2 System Context Diagram 139

Figure 5.3 The Level I Data Flow Diagram 140

Figure 5.4 The level2 DID for the prototype system 141

Figure 5.5 Relationships for communication between DVM Components 142

Figure 5.6 Phases of Implementation 143

Figure 5.7 Procedure of the System Initialisation 144

Figure 5.8 Procedure of the Initial Join 145

Figure 5.9 Procedure of the Initial Data Transmission 146

Figure 5.10 Example code of the Initial Data Transmission 148

Figure 5.11 The User's Screen 149

Figure 5.12 Procedure of Screen Generation 150

Figure 5.13 Procedure of the Execution 151

Figure 5.14 Example codes of Entity Control 152

Figure 5.15 Procedure of Release 153

Figure 5.16 Viewing Point for Rendering 154

xii

Figure 5.17 Screen Co-ordinates 155

Figure 5.18 Sequence followed in representing the terrain 156

FIgure 5.19 Socket Address Structure 159

Figure, 5.20 Address Structures for Internet family 160

Figure 5.21 Control of the aircraft... 163

Figure 5.22 Synchronisation of the aircraft activity 164

Figure 5.23 Taking over control of the entity 165

Figure 5.24 Network Configurations for the Initial Data Transmission 168

Figure 5.25 Time Progression Diagrams for Transmission of Initial data 169

Figure 5.26 Comparison of Average Maximum Total Transmission Time 174

Figure 5.27 Configurations for the entity state updates 176

Figure 5.28 Total Entity State Update Time Check by Round Trip 178

Figure 5.29 Total Entity State Update Time Check by One-way Trip 180

Figure 5.30 Comparison of Average Total Entity State Update Time by Round Trip 183

Figure 5.31 A Configuration for Transmission Time Check using a Logic Analyser 185

Figure 5.32 Comparison of Average Total Entity State Update Time by One-way Trip 188

XIII

LIST OF TABLES

Table 2. IEntity State PDU 25

Table 2.2 Summary of Current Major DVE systems 44

Table 3.1 Summary of Characteristics of a DVM system 48

Table 3.2 Real World Conversion 65

Table 3.3 Prefetching of VEs 82

Table 4. I A Summary of Stream Sockets and Datagram Sockets 99

Table 4.2 Protocol Units I 12

Table 4.3 JPEG Image File size and Transmission Time 128

Table 5. I Maximum Total Transmission Time based on Multiple Servers 173

Table 5.2 Maximum Total Transmission Time based on Single Server 174

Table 5.3 Average Maximum Total Transmission Time (s) 174

Table 5.4 A Case of Multicasting by Round Trip 182

Table 5.5 A Case of Unicasting by Round Trip 182

Table 5.6 Average Total Entity State Updating Time (sec) by Round Trip 182

Table 5.7 A Case of Multicasting by One-way Trip 174

Table 5.8 A Case of Unicasting by One-way Trip 182

Table 5.9 Average Total Entity State Updating Time (sec) by One-way Trip 182

XIV

CHAPTERl

INTRODUCTION

People have explained that the term Virtual Reality (VR) or Virtual Environment (VE) has

many meanings. VR is used to refer to the whole subject area, its hardware, software,

applications, etc., and a VE is the thing being partly or wholly simulated by the VR system. In

general, VR and VE are used as equivalent words since there is little difference in their

meaning. VE is explained as a computer-generated simulation that uses real time three-

dimensional (3D) computer graphics. VEs range from a single-user runmng on a single

computer, to multiple-users running on several computers connected by a network.

When VEs are distributed on several computers across a network, they are referred to

Distributed Virtual Environments (DVEs). DVEs allow a large number of users to actively

participate in a synthetic environment and interact with it in real time. DVEs give the users the

illusion of immersion that they are in a computer generated world. The users can move, see,

meet and directly manipulate objects within the DVEs. To interact with the DVEs, users use

general input devices such as keyboard and mouse, or special devices, such as Head-Mounted

Displays and Glove Input Devices.

VE or VR has been the subject of an enormous amount of publicity and academic research.

Over the past few years, DVEs have been one of the important topics in VE research. However,

very little work has been done on methods for designing and implementing efficient Distributed

Virtual Environments [Stytz, 96]. This thesis, therefore, will mainly deal with new methods for

designing and implementing Distributed Virtual Environments. This chapter describes the

motivation, presents an overview of the problems, the aims of the research, and concludes with

a preview of the chapter organisation.

1.1 Motivation

The author became interested in the field of DVE after serving as a naval officer in the Korean

Navy. So far, DVEs have been used frequently for military purposes, and then primarily for

individual and small-unit training. A large-scale battlefield simulation requires integrating

information from various sources, including digital map data, simulation entities such as

vehicles, aeroplanes, and humans, and events expected to take place during the interactions

with that simulation [poils, 95].

A large-scale virtual environment for battlefield simulation should also support multiple

interactive users within the same environment. However, most virtual environments today

Usually do not support multiple concurrent users. Instead, they typically immerse one user in a

synthetic environment. The users are often restricted to a limited role for interacting with the

environment [Mastaglio, 95]. Therefore, the author perceived a need for new DVE technology

to support the large-scale simulations.

2

1.2 Overview of Problems

In 1965 Ivan Sutherland, a pioneer in the field of computer graphics, stated that the user should

be able to look in through a window into a virtual world and the world should be realistic.

Afterwards, most research has been mainly concentrated on accomplishing this goal. Recently,

the cost of hardware has fallen while the performance of hardware such as processors, memory,

and graphics display systems have been improving. The capabilities of presenting a realistic

virtual environment that users can interact with have also been improving day by day.

The more complex a YE becomes, the more powerful the computing system which will be

required to execute it. Some YEs will require very complex processing. A single computer

system still can not provide the YE with enough complexity, scale, and fidelity. So we can

distribute YEs across computer networks, and gain several advantages in doing so.

By distributing the processing over several computers, the performance can be improved

significantly. DYEs also allow multiple users to share the same environment [Pryce, 96]. DYE

technology will offer enormous benefits to many different application areas, including

education, scientific visualisation, architectural visualisation, entertainment, design,

teleoperation and training [Gigante, 93].

However, the design of current DYE systems involves a number of problems which limits their

scope and complexity. The problems of current methods will be discussed in Section 2.3. This

thesis will pursue a new approach to DYE systems compared to current methods.

3

1.3 Aims

This thesis cannot deal with all of the areas of DYE systems. The main aim of this thesis is to

deal with the modelling of a DYE system, to design the networking architecture for

communicating between multiple computers across the network, and to make a prototype for

implementation of the modelling and networking architectures. Therefore, this thesis will 10

particular:

• Design the architecture of a DYE model with multiple servers, where multiple users can

simultaneously share virtual environments.

• Allow for real-time interaction between multiple users in the distributed virtual

environment, even though they may be geographically dispersed.

• Develop networking architecture to minimise bandwidth consumption for communication

between clients and servers on the DYE system. When the DYE system is used over wide

area networks, it is made up from many independent, heterogeneous hosts connected by

communications links that suffer from low bandwidth and high latency.

• Provide a detailed description of a prototype system based on the proposed solution.

• Evaluate this prototype which is to be implemented on some test platforms and draw

conclusions by outlining a number of enhancements which are required to improve the

performance of this prototype.

4

1.4 Thesis Preview

This Chapter has presented a brief introduction, motivation, overview of problems, and aims of

the research. The following is a brief summary of the remaining chapters.

Chapter 2 provides an overview of current DVE technologies, the major technical issues for

DVEs, and a technical overview of significant DVE systems, including basic techniques and the

technical limitations of existing work.

Chapter 3 presents the whole concept for creating a model of a DVE system with Multiple

servers (DVM). In this chapter, which is based on the investigation in Chapter 2, the

requirements and limitations of this thesis are proposed, and the details of a DVM system,

including concepts, organisations and mechanisms, are described. This chapter explains where

the model differs from existing distributed virtual environment systems, and concludes with the

advantages and disadvantages of a DVM system.

Chapter 4 mainly describes the networking architecture for communication in a DVM system.

This chapter not only illustrates the structure of nodes across networks, but also defines the

application-layer protocols for communicating between processes in the DVM system.

Chapter 5 describes a prototype of a DVM system that is used as a test-bed to show how the

DVM system is implemented. The details of the DVM prototype include a case study, the

demonstration, the fundamental techniques for implementation, and the results of the

evaluation.

5

Chapter 6 is the conclusion of the thesis. It reviews the main points of the research, draws

conclusions based on the experimental evaluation and includes suggestions for future research.

6

CHAPTER2

OVERVIEW OF DISTRIBUTED VIRTUAL

ENVIRONMENT (DVE) TECHNOLOGIES

VE technologies make it possible to insert users into virtual environments and allow the users

to actively participate in the environments. In the VE systems, user should be able to change the

viewpoint to navigate in the virtual world, manipulate the objects in the virtual scene, and

become immersed in it. Distributed Virtual Environment (DVE) technology allows users to

interact in real time with complex environments based on 3D graphical representations on

mUltiple computers across networks.

To achieve these goals, the development of technologies for DVE systems has become one of

the major areas in the VE research field. Powerful hardware and software is required to create

realistic DVEs. So far, an enormous amount of specialised hardware and software technology

has been introduced. However, the current state of technology still has many problems for

generating a situation acceptably close to reality. Current DVEs are limited in their complexity

and scope. So this chapter will describe the DVE technologies and technical issues of DVE

design, review significant existing DVE systems, investigate the problems of such systems, and

propose the aims and objectives of this research.

7

2.1 Typical VE Technologies

YE technologies supply computer-generated inputs to human sensory systems, monitor their

response, and respond to the output. YE technologies use displays, sensors, and effectors to

percei-ve and interact with a virtual world. To achieve these, a typical YE system requires

various technologies. However, it has still many technical issues to be improved.

2.1.1 Components of a Typical VE system

Typical YE systems contain five components. As shown in Figure 2.1, the components include

visual display systems, tracking systems, computation systems, haptic interfaces, and auditory

systems.

Haptic
Interfaces

Auditory
System Typical

VE
System

Visual Display
System

Tracking
System

Computation
System

Figure 2.1 Components of Typical VE systems

2.1.1.1 Visual Display Systems

Much of the emphasis in VE research is placed on the visualisation. Visual display systems are

the primary means for the visualisation of virtual environments. Human eyes normally have a

horizontal field of view of 1500 and a vertical field of view of 1200• Kalawsky states that the

minimum requirements for a visual display system are that the VEs are greater than 1100 for

horizontal field of view, greater than 600 for vertical field of view, and greater than 300 of

stereo overlap [Kalawsky, 91]. Visual display systems still do not provide this field of view

(FOV).

There are several types of visual display systems such as monitors, head mounted displays

(HMD), boom-mounted displays, and projection systems. We can choose any of these systems

to render the 3D images. Monitors are the cheapest systems but provide for the lowest level of

immersion. For immersive display HMDs are the most widely used displays in VE systems.

HMDs display directly in front of the user's eyes.

Figure 2.2 NASA Ames BOOM display system

9

The displays can be Cathode Ray Tubes (CRTs) or Liquid Crystal Displays (LCDs). The CRTs

give better image quality and higher resolution but are usually considered too heavy for a

HMD. The normal human can see details approximately a half-inch apart from 100 yards away

[Sheridan, 93]. The LCDs which are mainly used in HMDs can display only about one-tenth of

this resolution. The quality of the image is degraded by the limited resolution of the LCD

screen.

2.1.1.2 Tracking Systems

Tracking systems are used to track the position and orientation of the parts of the user's body in

Space. When users interact with an immersive environment, they should feel natural and

unencumbered. This often influences the choice of tracking system. There are many different

systems, including electromagnetic, mechanical, acoustic, optical, and inertial systems. Each

has some advantages and disadvantages, some of which are described below:

• The electromagnetic system uses a transmitter as a source that radiates electromagnetic

fields and sensors that detect these fields. The sensors use the field strength to determine

their position and orientation. This system is very sensitive to the presence of metallic

objects but does not rely on line-of-sight observation [Bishop, 92].

• The mechanical systems use a rigid framework with several joints. Typically, one end is

attached to the object to be tracked, and the other is fixed to a rigid base. It measures the

angles between joints and calculates the position and orientation of the object. The

accuracy is high, but it can not be freely moved, having a limited workspace.

• The acoustic systems use high frequency ultrasonic pulses to triangulate a source within the

environment. A source produces pulses, and microphones receive the pulses. It measures

10

the time that each pulse arrives at the different microphones, and reports the source position

and orientation. Acoustic systems have approximately the same range and latency problem

as electromagnetic systems. These systems rely on line-of-sight between the source and the

microphones. Accuracy is limited by many factors, such as air density and body parts,

between the source and the microphones.

• The optical systems use two common methods. One is to put markers such as infrared

LEDs (Light Emitting Diode) or infrared-reflecting dots on the body. Several cameras

surround the body so that 3D co-ordinates can be found by using multiple 2D views.

Another is to use a single camera to capture an image of tracking targets, analyse the image,

and determine the 3D position [Sturman, 94]. These systems need processing time to

analyse the image and to determine the position. Accuracy is affected by intervening

objects.

• Inertial systems use gyroscopes to measure the three orientation angles. To produce a

small, inexpensive inertial system, advances in micro-accelerometers and gyros are

required. These devices are commercially available but are still experimental.

2.1.1.3 Computation Systems

Computation systems generate graphics for the display system, compute the state of the

environment, control and interpret the input and output devices. The computational

requirements are considerable and demand a high performance system. All of these tasks should

be synchronised for each frame and require the co-ordination of multiple devices. Computation

systems receive input data from tracking sensors and provide output data to visual display

systems, force feedback systems, auditory systems, etc. They may lise several hardware

Configurations, including a single workstation with one CPU, a single workstation with multiple

II

CPUs, a workstation with several graphics engmes and multiple CPUs and a workstation

connected via a high speed network to a supercomputer that performs the computations while

the workstation performs the rendering.

2.1.1.4 Haptic Interfaces

Interaction through touch and manipulation in the virtual environments is known as haptic

interaction. Haptic interfaces are devices that support manual interaction with the virtual

environments and manipulation of virtual objects. Haptic interfaces allow human users to

touch, feel, grasp, and manipulate objects which may be located remotely, exist only In

simulated worlds, are too small or too large for normal human interaction, or are too dangerous

to touch with human hands. Haptic interfaces not only measure the position of the parts of each

User but also provide feedback forces to the user.

These devices employ human tactile, kinaesthetic and motor systems for interaction with the

virtual environment. Haptic exploration is a sensory task for identifying properties. The tactile

sensory system for getting information uses either tactile sensors or kinaesthetic sensors.

Tactile sensors use mechanoreceptors in the finger pad, and the kinaesthetic sensors use

receptors in the skin around the joints, joint capsules, tendons, and muscles. There are four

categories of haptic devices: devices to measure hand position and orientation, force and torque

feedback devices, tactile devices, and devices to produce other stimuli such as hot or cold

[Bishop,92].

2.1.1.5 Auditory Systems

In a virtual environment, some information can be communicated from the computer system to

the user via sound. A realistic VE requires an auditory system to generate sounds associated

12

with objects in the VE. Auditory systems allow for sound output and voice input, and recognise

speech for control of the virtual environment. They supply audio feedback from and to the

user's virtual environment.

Auditory systems usually use one of two types of sound source. One is a synthesised sound

source that reflects the many ways to generate sound from basic waveforms, filters, and

envelopes. Synthesised sounds generate very flexible sound and have relatively a compact

representation. Another type is sampled sound source that digitally records sounds that are

triggered for playback by the interface. Sampled sounds are able to reproduce real world sounds

very accurately. Sampled sounds, however, require relatively large amounts of memory. To

display sounds auditory systems use either on-head devices (headphones) or off-head devices

(loudspeakers).

2.1.1.6 Summary

Since the current technologies are not capable of generating a situation close to reality, more

advanced technologies are required. Visual display systems are still not sufficient for

immersion. There are latency and accuracy problems for tracking systems. The current

computation systems do not provide the ability to render images realistic enough to be

convincing to the system user. Haptic interfaces are required to improve a variety of parts

related to touch perception and feedback including the development of devices to effect haptic

stimulation and software to render the sensation of touch. Auditory systems still require more

advanced audio equipment and audio feedback to generate real world sounds very accurately.

Development of equipment capable of addressing all of the needs is still currently out of reach.

13

2.1.2 Technical Issues

There are several important technical issues to be considered when building up large, realistic,

rapidly changing YEs. These issues include the provision of high fidelity images, real-time

entity management, the real-time collision detection and response, the physically realistic entity

modelling, and so on.

2.1.2.1 High Fidelity Images

YEs are aiming to achieve a high degree of visual realism. Users accept the image and act as

though it were real. Users do not need the visual accuracy of a photograph, but users will

require the most accurate model and best possible image while maintaining interactivity. To

support realistic YEs, users must consider the required level of fidelity at reasonable cost in

their design and assembly. To achieve the YEs with high fidelity images, users may sacrifice

interactivity. There are trade-offs between high fidelity images and interactivity

2.1.2.2 Real-time Management

Complex YEs usually require a few thousand entities. Some YEs contain a large number and

variety of active entities such as vehicles, humans, and planes, which are under active control.

There are also passive entities, such as buildings, trees and hills. The state of these entities is

often changed, so that YEs require real time updates to share the same environment between

participants. However, it usually takes a long time to update the data associated with these

entities, particularly in real time.

14

If the state of some entities is changed, YEs need the ability to update the change of entities'

state at hosts during the operation. For example, in the battle field simulation, if a fighter

attacks buildings or vehicles, the state of the buildings and vehicles must be changed, to reflect

the damage. Every participant should recognise this situation in real time. However, a solution

to this problem is still an open area of research [Stytz, 96].

2.1.2.3 Real-time Collision Detection and Response

To achieve a realistic YE, it is required to detect and respond to collisions between entities in

real time. Without this feature, the realism of a YE will be poor. So this feature is potentially a

matter of great importance in a YE. However, real-time collision detection and response is a

fundamental problem in a YE. When some entities are managed in a YE, collision detection and

response may take a long time to compute.

In a YE, an entity's motion is constrained by collisions with other entities and by other dynamic

constraints. The greater the number of entities in the YE, the more complicated collision

detection and response becomes. Real-time collision detection and response has important

issues, including models with curved surfaces, very large numbers of entities, frame-to-frame

spatial coherence, and discrimination between contact and interference [Serrano, 94].

2.1.2.4 Physically Realistic Entity Modelling

Users require realistic, correct and smooth updating in the virtual environment. To achieve

accurate models with realistic images, the YE system should consider the state characteristics

of the entity being modelled. Ideally collisions would give realistic bending, crumpling and

moulding that are expensive to compute. In the case where two moving entities collide with

15

each other, it requires a powerful computing system, or collision detection and entity

deformation may take a long time to compute.

2.2 DVE Technologies

DYE technology is not only based on typical YE technologies, but also require various

networking technologies (see Figure 2.3). Current DYE technology is commonly limited to

visual cues. To provide appropriate visual cues to a user in a distributed virtual environment, it

is necessary that all of these typical YE and communication technologies are efficiently co-

ordinated. A variety of communication technologies is required to collectively provide almost

unlimited connectivity. The details of communication technologies for DYE will be described

in Chapter 4. This section will briefly describe communication models of DYE systems and

technical issues to be considered when implementing DYEs.

Figure 2.3 DVE Technologies

2.2.1 Communication Models

DYE systems usually use one of three models: a centralised model, a peer-to-peer model, or a

broadcast and multicast model.

16

2.2.1.1 A Centralised Model

In a centralised model (see Figure 2.4), there is one server, attached to centralised resources.

All other clients communicate only with the central server. Client-to-client communication is

indirect, mediated by the central server. A server computer collects data from the clients, stores

the changes of data in its own database, and then sends the results back to the clients. Each

client renders the results and handles user input. This model has a simple structure to store and

handle the data, but it is not scalable for the more common DVE situation today of a collection

of nodes that wish to directly exchange data with other nodes.

))

Figure 2.4 Centralised Model

2.2.1.2 A Peer-to-Peer Model

In a peer-to-peer model, each computer maintains the complete or part of the VE data, and

performs the rendering and computation of entities. When a node makes changes to its own

data, it sends the updated data out, enabling the other nodes to update their individual data.

17

Basically, in a peer-to-peer model, nodes find each other by broadcasting an initial

connect request and waiting until they get a reply from other nodes that are currently

running. It therefore requires listening for such connect requests and forming

connections between nodes. The more nodes that join the group, the more rapidly the

number of connections between nodes and the number of messages being sent is

incrcaseo. Peer-to-peer communication requires a total connection of (N*(N-l)) / 2 in a

network group (see Figure 2.5). Therefore, in the peer-to-peer model, the number of

nodes is limited. In spite of this problem, a peer-to-peer model is a more scaleable

approach to incorporate than a centralised model. Today, many real-time DVE systems

are moving from a centralised to a peer-to-peer model because of flexibility and cost-

effectiveness.

Figure 2.5 Peer-to-Peer Model

2.2.1.3 Broadcast and Multicast Model

To reduce the number of connections and the number of messages being sent, a Broadcast and

MUlticast Model (see Figure 2.6) is employed. Broadcasting is a protocol which allows a

18

computer to send one message out, and allows all of the other computers to read that single

message. Multicast allows the message to be simultaneously sent to a subset of machines. In the

multicast model, the groups of nodes can be established, and when a node multi casts a message,

only nodes in the chosen group can receive the message.

) Broadcast

~ t ----~ Multicast
I

1'"

~

I

~ ~

I I
I I I

1'" 1'" 1'"

Figure 2.6 Broadcast and Multicast Model

2.2.2 Technical Issues

The design of a DVE system involves a number of many technical issues compared to a

traditional YE. Figure 2.7 shows some of the fundamental issues involved when implementing

a DVE [Blau 92]. Some of these are given higher priority than others. This is merely because

they are relatively important for implementation of the DVEs. Most importantly, a DVE system

is an interactive real time system. Therefore, in DVE systems, it is more important for

transmitted data to arrive on time than it is for data to arrive uncorrupted. This section will

describe the issues that are related to communication during the implementation of DVE

system. These issues include process migration and network efficiency.

19

Figure 2.7 Technical Issues related to implementing of DVEs

2.2.2.1 Process Migration

DVE technology can use parallelism to improve performance and reliability. In some cases, if a

computer on the network either fails, or becomes overloaded with too many processes, one can

migrate processes to other processors which are not as heavily loaded. This involves migrating

the entire state of the process, and either suspending its activity during the movement, or being

able to have it continue to process messages during the transition. This is not just a simulation

problem, it is related to many distributed applications.

2.2.2.2 Network Efficiency

The DVE systems often work on a wide area network. Such systems usually suffer from low

bandwidth and high latency. Network efficiency usually means both bandwidth and latency.

20

The effective bandwidth is determined not only by the raw bandwidth of the network interface,

but by overhead occurred due to the protocol and the protocol implementation.

Latency can be reduced to a certain extent by using dedicated links, improvements in router and

switching technologies, faster interfaces and computers. However, where the VE is widely

distributed, the latency can never be totally eliminated because of delays induced by long paths,

switches and routers. For networks spanning the same distance, the larger the bandwidth of the

network, the smaller the latency can be incurred. In the most DVE system, however, the

bandwidth can not be increased unlimitedly, the bandwidth of the network is limited. The

latency, therefore, usually depends on the protocol overhead.

To maintain consistency across the DVE it is necessary to reduce the latency within the limited

bandwidth of the network. There are trade-offs between reducing latency and increasing

reliability. DVE applications usually require low latency, because speed is important. However,

most techniques that can be used to decrease latency will be less reliable. Many DVE

applications, therefore, use less reliable protocols. For example, in the Internet protocol suite,

the UDP data packet, which uses an unreliable protocol, is smaller and faster than TCP, a more

reliable protocol. UDP is usually used when speed is more important than accuracy. TCP is

usually used when accuracy is more important then speed. In general, increasing network

efficiency is a difficult engineering problem.

2.2.3 Summary of DVE Technologies

This section and the previous one have presented a number of technologies and technical issues

that must be considered to produce realistic VE and DVE systems. These technologies and

21

issues are interdependent, and a DYE system must consider all these issues in its design and

assembly. The solution to these issues is important to increase the realism of DYE systems

As diversity and detail of distributed virtual environments increase without bound, network

requirements have become the primary bottleneck. This requires changes in the hosts,

protocols, bandwidth, software, and hardware architectures. In order to achieve a high-

performance and realism, an advanced networking technology is required.

2.3 Technical overview of Significant DVE Systems

There are many possible YE models, and each model has its own particular set of laws and

technologies. This section reviews the basic techniques and technical limitations of the current

well known DYE systems.

2.3.1 Distributed Interactive Simulation (DIS)

DIS has been developed in the Department of Defence (000) community. This system has

evolved from the earlier SIMNET, which was developed with DARPA funds in the late 1980s.

The DIS protocol has become an IEEE standard (IEEE 1278.1) for logical communication

among entities in a real-time distributed fashion with interactive users in the loop. DIS is only

a protocol definition and does not specify the structure of implementation.

2.3.1.1 Basic Architecture

DIS is a virtual environment within which humans may interact through simulation at multiple

sites. DIS exercises involve the interconnection of a number of simulators. The simulators may

22

be present in one location or be distributed geographically and the communications are

conducted over the network.

DIS is based on a peer-to-peer structure. There is no central computer, event scheduler, clock,

or conflict arbitration system. DIS was designed to link distributed, autonomous,

heterogeneous hosts over a network into a real-time DYE [Katz, 94]. The DIS protocol

provides a standard mechanism for communication between nodes, facilitating interaction

between multiple entities in multiple virtual worlds. Heterogeneous nodes, which may have

different architectures, can interact with each other using the DIS protocol.

Data may be sent using broadcast, multicast or point-to-point. Sending a multicast message is

more efficient than having to send point-to-point messages to every host in the simulation.

Hosts that are not in a particular multicast group will ignore the packet at a very low level',

with minimal overhead.

The DIS system also uses the dead reckoning algorithm to reduce the amount of network traffic.

A host sends a message that includes the entity's location, a timestamp, and a velocity vector.

Using that information, the location of the entity in each host is calculated and updated without

additional messages. The position and orientation of the entity are set using the entity state

PDU (refer to Section 2.3.1.2) which arrived most recently. When an entity exceeds the dead

reckoning threshold (refer to Section 4.4.5), it sends out another Entity State PDU.

This architecture provides very flexible trade-offs between computational loading, positional

error and network bandwidth. If a simulation model requires a highly accurate position, the

I The network interface card typically handles this process, so that no consideration is necessary in
software.

23

error threshold can be reduced, which will result in more network broadcasts, clarifying the

new position.

The DIS protocol is self-healing. When a new entity enters the virtual world, it begins to

broadcast entity state packets. If recipients have never heard from this entity before, they can

add it to their remote entity database. If an entity is not heard from within five seconds,

recipients will remove it from the remote entity database. Users can enter and leave at will

without disturbing other participants, and dropped packets do not cause a failure of the system.

Since there is no central server, there is no single point of failure.

2.3.1.2 Packet Data Unit

DIS defines a standard message format for interchanging information between simulation hosts.

This standard format is called a PDU, for Protocol Data Unit. It consists of some 27 different

network packets for communication, and is defined by the IEEE 1278 DIS standard [Steven,

94]. The DIS protocol uses an open format Message PDU that affords user-defined extensions.

This provides flexibility for extension of the message-passing paradigm to a large-scale

distributed system. The PDUs are encapsulated in UDP packets in Ethernet frames. The packets

can be sent over any network medium, from telephone lines to ATM switches. More bandwidth

allows more entities to be supported [Zyda, 95].

The principal PDU type is the Entity State PDU (ESP) (see Table 2.1). The ESP encapsulates

the position and posture of a given entity at a given time, and is broadcast to all nodes.

Additional PDU types include sensor or weapon interaction, signals, radio communications,

collision detection and logistics support.

24

Field Size
Entity State PDU Fields

(Bytes)
12 PDU Header Protocol version, Exercise ID

PDU Type, Padding, Time Stamp
Length in bytes

6 Entity ID Site, Application, Entity
1 Force ID
1 Name of Articulation N

parameters
8 Entity Type Entity kind, Domain, Country,

Category, Subcategory, Specific,
Extra

8 Alternative Entity Type Same type of information
as above

12 Linear Velocity X, Y, and Z (32 bit components)
24 Location X, Y, and Z (64 bit components)
12 Orientation Psi, Theta, Phi (32 bit components)
4 Appearance
40 Dead Reckoning Algorithm, other parameters

Parameters Entity Linear Acceleration
Entity Angular Velocity

12 Entity Marking
4 Capabilities 32 Boolean Fields

N*16 Articulation Parameters Change, ID Parameter Type, Value

Table 2.1 Entity State PDU

2.3.1.3 Limitations and Problems

NPSNET Research Group describes a number of practical problems with DIS in their paper

1Steven, 941. DIS does not provide an efficient method of reducing the bandwidth and

computational resources in a large-scale simulation. Large-scale simulation usually requires

enormous bandwidth and computational resources. For example, in a simulation with about

100,000 users, the required bandwidth will be about 375 Mbps to each computer [Loral, 92]. It

requires a more powerful network medium than FOOl (Fibre Distributed Data Interface).

However, this requirement is unrealistic in the near future. What is required is to use efficient

methods of bandwidth reduction rather than increased computational or network resources.

The underlying problem is the DIS paradigm. Entities that are physically far apart do not need

to know what each one is doing until they are in closer proximity to one another. Entities,

however, broadcast "keep-alive" PDUs to every entity at least every 15 seconds.

Models and world databases must be replicated at each simulator. Complete replication of the

database is grossly inefficient and some means of partitioning information is required. At

present the DIS has no mechanism for distributing data on demand, which is necessary for

large-scale simulations. Besides reducing the required bandwidth, distribution of data increases

protection against malfunctioning devices or software in the simulation.

Although the simulation usually contains a large number of static objects, DIS does not provide

an efficient method for handling them. Static objects such as buildings and trees must

repeatedly broadcast their state, even though they have not changed, so that new players can

pick up their state if they missed earlier changes. If a node lost the last message, the entire

simulation database must be replicated at each node since there is no method of partitioning the

database. This wastes both bandwidth and computational time.

Different types of real-time data (e.g. simulation packets, video, and audio) are currently

multiplexed and demultiplexed at the application layer rather than the network or transport

layer. This means that video and audio must be treated in the same way, causing multiplexing

and demultiplexing overheads in the application.

26

There is no software layer to mediate between the simulation and the network. A network using

routers is limited only by the address space. DIS, however, must use bridges for large-scale

simulation. The number of nodes is limited to tens of thousands.

DIS has problems of limited scale and inflexibility caused by its architecture, inherited from

SIMNET [Kanarick, 91], which was originally constructed for small unit training. DIS is only

used for small-scale environments suitable for distribution over a single LAN. For this reason

simulations do not scale well and are not currently suitable for large scale YEs [Macedonia,

95].

The broadcast approach is another obstacle to scaling of DIS. As the number of entities grows

larger, the slower-speed links become saturated. The processing of updates for a large number

of entities begins to exceed the capacity of the slower hosts, especially since they must also

perform tasks such as rendering, input device processing, etc. The broadcast can flood the

network with unwanted traffic, and cause routing loops. It can also incur a performance penalty

by forcing packets to be checked at the operating system, or application level.

Although the DIS provides multicast transport, it is insufficiently broad and adaptable to meet

general virtual environment requirements. The most important limitation is that it is not

universally implemented, and is available only for a restricted number of platforms.

DIS was designed for a very specific application and most of the PDUs are therefore

inappropriate for general VR use. The Entity State PDU is too specific, and cannot easily be

applied in a general way. It also includes a great deal of superfluous information. This makes

the individual PDUs very big, which greatly increases the bandwidth requirements. A leaner,

simpler format is needed.

27

2.3.2 Naval Postgraduate School Networked Vehicle

Simulator IV (NPSNET -IV)

NPSNET started as a test-bed for a research project by faculty and students at the Computer

Science Department of the Naval Postgraduate School in February of 1990. The focus of

NPSNET is to design and implement a very large scale, real-time distributed virtual

environment based on a ground combat world using inexpensive, commercial, off-the-shelf

components [NPSNET, 95].

2.3.2.1 Basic Architecture

NPSNET is a workstation-based, 3D visual simulator. It utilises SIMNET databases with

hierarchical data structures and DIS (Distributed Interactive Simulation) protocol for

application level communication among independently developed simulators.

NPSNET is a real-time, 3D visual simulation system capable of displaying object movement

over the ground or in the air. All nodes connected to the same network simulate the same YE.

The architectures use spatial, temporal, and functional relationships to partition the

dissemination of information in the DYE. NPSNET has a number of key functional

components (see Figure 2.8).

NPSNET-IY uses the Ethernet network (lOMbps) and TCPIIP multicast packets, and uses

unreliable (UDP) messaging. NPSNET-IY is capable of playing across the MBONE of the

wide area network, bandwidth is generally limited to TI (l.5Mbps).

28

Figure 2.S NPSNET-IV key functional components

The NPSNET Research Group has devoted itself to improving several functional issues of

DIS. The issues being implemented are as follows:

• Large scale, wide area, multi-platform virtual environments (over 1,000 players) using DIS

communication protocols.

• Support for IP multicasting across the multicast backbone (MBONE) of the wide area

network.

• Heterogeneous parallelism to minimise system latency. The parallelism includes multi-

processor / multi-machine interprocess synchronisation and communication using reflective

memory.

29

• Real-time expert systems to provide "intelligent" autonomous agents m virtual world

simulations.

• Real-time, 3D computer graphics simulators utilising texture mapping, efficient polygon

culling, multiple LOD (Level of Detail) models, lighting models, etc.

• Real-time atmospheric affects, including wind, smoke, clouds, haze, rain and snow.

• Integration of video and audio.

• Physically based motion and physical reactions.

• Integration of dynamic terrain.

2.3.2.2 Limitations and Problems

NPSNET-IV was designed for supporting more than 1,000 users. However, at present

NPSNET-IV can only support about 250-300 players using currently available technology.

Since NPSNET-IV implements the DIS communication protocols, it also has the same

limitations and problems as the DIS.

NPSNET-IV provides mainly mechanisms for communication between nodes, and solutions for

collision detection, terrain rendering, and so on. Like DIS, the NPSNET-IV does not support

technologies such as tracking, haptic interfaces, and sound feedback.

30

NPSNET Research Group describes also several practical limitations to the NPSNET-IV

approach in its paper [Steven, 94].

• The implementation is based only on the SGI workstations.

• Extra data copying can cause more contention for memory, bus bandwidth, and the CPU.

• DIS handles the traffic at the application level. It will likely become more complicated as

the protocol matures, demanding more processing resources.

2.3.3 Distributed Interactive Virtual Environment (DIVE)

DIVE is a system designed and built by the Swedish Institute of Computer Science (SICS).

DIVE is a toolkit for building a DVE application in a heterogeneous networked environment

based on UNIX and Internet networking protocols within local and wide area networks

IHagsand, 96].

2.3.3.1 Basic Architecture

DIVE is based on shared 3D synthetic environments. It supports multi-user applications. In a

DIVE world, a user is called an actor and is represented by a body-icon. A user can see a virtual

world through a rendering application that renders a scene from the actor's viewpoint. Users

can navigate in a shared synthetic 3D environment. Several networked users can see, meet and

interact with other users over an Internet. The DIVE system is a truly distributed system that

uses a concurrent runtime model, based on a peer-to-peer approach with no centralised server.

Peers communicate by reliable multicast, based on IP. DIVE uses the concept of a shared

31

memory to describe its model. A set of processes interacts by making concurrent accesses to the

shared memory and by sending messages to each other.

A DIVE process is either a human or an application process. A process group in DIVE is a set

of processes, which can be addressed as one entity. The process group consists of all processes

that are members of a virtual world. A process can join, leave or travel across groups at any

time.

The database of a DIVE is partitioned into worlds. Each database of DIVE contains 3D

graphical objects (polygons, spheres, boxes, etc.) that make up a virtual world. The world

represents a specific set of objects and parameters. Each world has an associated process

group. Each member of the process group has a copy of the world database and there is no

main server. When a process joins a group, it receives a copy of the world data from one of the

other processes. Each world is a separate DIVE process. A DIVE process can access one of the

databases, which they can update concurrently.

DIVE uses three mechanisms to ensure the consistency of the replicated database. The first is

mutual exclusive locks to prevent concurrent modifications of the local database. The second

is sequential ordering. Messages sent from a single process always reach all recipients in the

order they were sent. The last message is a distributed lock on an object. By using a distributed

lock, a process can manage an object exclusively in the local database, and then distribute the

changes.

2.3.3.2 Basic Modules

The basic modules of DIVE include the following: Threads, Sid, dive core, dive aux, Graphics,

Audio and Video libraries. The Threads library contains a slimmed and extended threads

32

interface with a multiplexing 1/0 and timer module. The Sid library is a basic communication

library based on IP multicast and Scalable Reliable Multicast (SRM). The dive core library

contains basic DIVE functionality. The dive aux contains a variety of DIVE modules adding

extra functionality useful for an application builder, including the implementation of the

DivelTcl interface. The Graphics library is a variety of graphic libraries for rendering 3D

modules. The Audio library is a real-time audio library for 3D conference and object-based

audio. Finally, the Video library is a real-time video library for texture-based video

communication.

2.3.3.3 DIVE Implementation

The DIVE platform is basically implemented in C. The core DIVE source consists of C files, tel

files and yaccllex files. The source taken from these files is compiled into libraries. An

application file needs to be compiled and linked with the DIVE libraries and external libraries

so that it can be used to create an executable application. A dynamic entity's behaviour and

user interface are implemented in Tcl/Tk.

2.3.3.4 Limitations and Problems

DIVE manipulates the object's visual properties, spatial translation I orientation changes,

generates a sound or triggers a behaviour in another object. However, current DIVE (version

3.2) can support only simple, fixed behaviours in distributed environments. For example, an

object can be made to move or rotate when clicked on. More complex actor motion, such as

general human motion, generates more continuous network traffic.

33

Over the Internet, messages might have to be delivered among many participants over high

latency paths. However, as the number of peers increases in the DIVE system, the number of

messages needed to communicate between these peers increases. The amount of traffic between

peers will be rapidly increased. This increases the load on sending and receiving peers, as well

as on the network. The latencies will be also increased.

Peers of an advanced distributed application need to exchange large amounts of information,

including object and world definitions, navigation commands, audio, and bitmaps. This is

essentially limited by network bandwidth.

DIVE uses a reliable multicast protocol. While the reliance on a reliable protocol eases the

distribution of the world databases, it counteracts scalability. The scalability of a DIVE is

limited by the available network bandwidth. As the number of users increases so do the

bandwidth requirements. Higher levels of reliability require more bandwidth, and restrict

scalability.

DIVE has focused on multi-user aspects and 3D interaction, it uses a multi-user environment

where every user can see what other users see. So an object cannot have a state associated with

one user alone. For example, a user has to send the information of an object to other users,

although the others do not need to receive the information, a network may become flooded with

the unwanted messages' traffic and incur a performance penalty, interrupting operations in

order to perform this task.

34

2.3.4 The Minimal Reality (MR) Toolkit

The MR Toolkit was developed by University of Alberta in Canada. The MR Toolkit is a low-

level toolkit supporting the development of VR applications. It is a set of software tools for the

production of virtual reality systems and other forms of 3D user interfaces.

2.3.4.1 Basic Architecture

The goal of the MR Toolkit is to provide a software foundation on which a programmer can

easily build single-user virtual environments. It focuses on providing software that supports

real-time interaction with a virtual environment using a head-mounted display.

MR is based on a bottom-up development philosophy [Green. 991. MR (Version 1.5) supports

the following features:

• Device drivers are provided for a wide range of standard VR devices.

• MR provides a standard facility for recording each site's hardware configuration and room

geometry. Applications are independent of devices and their location within the room.

• MR provides efficient and convenient mechanisms for dividing an application into multiple

processes and handling communication between these processes.

• MR provides a set of tools for monitoring the real-time performance of VR applications.

• MR provides a set of standard 2D and 3D interaction techniques.

35

• The OML (Object Modelling Language) language can be used to define the geometry and

behaviour of objects. An interactive 3D modeller can be used to produce object geometry

and behaviour.

The MR toolkit is designed for the production of VR applications that run at more than one site

using different hardware configurations. MR provides a portable, device-independent platform

for the development of VR applications. MR applications can easily be ported to other sites

with little or no change to the source code. The MR Toolkit can easily integrate the driver of

any new device into its system, so that it is versatile and can support many VR devices.

The MR toolkit was designed to be easy to extend. Frameworks are provided for adding new

device drivers, interaction techniques and tools. The MR Toolkit (version 1.5) provides support

for common VR devices, such as 3D trackers, Gloves and Head-mounted displays. The MR

Toolkit also includes support for SGI Videosplitter, SGI Multi-channel, and sound synthesis

equipment.

2.3.4.2 Software Structure

The MR Toolkit consists of three software levels (see Figure 2.9). The lowest level consists of

the routines that interact with the hardware devices. The second level of the MR Toolkit

consists of a collection of packages. Each package handles one aspect of a VR user interface.

This level also changes the messages it has received from the device drivers into a more usable

format, and provides data sharing services between workstations. The third level is an

application level. A MR application consists of one or more processes, with one designated as

the master process and others as slave or computation process.

36

MR

Data Work Data
Sharing Space Time Gloves Sound
Package Mapping Package ... Package Package

Device Level Routines

Figure 2.9 Three-level software structure of the MR Toolkit

2.3.4.3 Relationship between the MR Tool Components

MR tools for developing virtual environments include Object Modelling Language (OML), 3D

modeller (JDCAD+), and Environment Manager (EM) for running multi-user networked

applications. Figure 2.10 shows the architecture of the MR tool package and the relationship

between its components [Wang, 95]. EM is responsible for constructing the YE, and provides

facilities for monitoring the execution of the YE. OML is used to describe the geometry and

behaviour of 3D objects.

OML

MR Toolkit

Figure 2.10 MR Toolkit Architecture and its Component Relationships

37

2.3.4.4 Implementation of MR Applications

MR is based on a peer-to-peer approach. One MR application runs on one machine at a time.

The MR application can start up the peer package at any time, and may initiate and quit

communications with other processes. Application-specific information may be shared between

machines using UDP to send messages to specific addresses [Shaw, 93].

The MR peer mechanism supports communications between multiple applications running at

different sites. The peer package allows a master process to communicate with other master

processes on other machines. This allows multiple users to share the same 3D environment

[Green, 96].

Server
Processes

Master
Process

I
Computation 1..(~--4>~1
Processes

Slave
Processes

Figure 2.11 Process Structure of MR application

Figure 2. II shows the relations of processes in a MR application. Each application has a

master process that initiates the execution of other programs. The master process maintains all

the state variables and geometric model of the virtual environment. When an application starts,

the master process first initialises all existing resources and summons up the slave and

computation processes. Each master program keeps a list of other peers that it is connected to.

38

Slave processes are usually in charge of the input and output of all the devices. The slaves

receive data from their peers via their master, slaves do not communicate directly with other

slaves or computation processes. At the beginning of the loop, the computation process reads

the state variables from the master process. Then, it computes the new scene according to the

input and sends the result to the master process at the end of each loop.

The MR Toolkit implements a hybrid runtime model which combines the simulation loop

model and event-driven model together. The device input and display refreshing commands are

obtained through an event-driven mechanism, while the update of the scene data is done by the

simulation loop in the computation process.

2.3.4.5 Limitations and Problems

All peers are connected directly to one another which requires a lot of network traffic to

maintain and, as a result, the use of more than five networked machines is not recommended

[Green, 96J.

MR Toolkit's process structure can cause a bottleneck problem. Everything must go to the

master process first. If the master process breaks down, the whole system is likely to break

down.

The MR Toolkit peers package does not currently use multicasting, and relies on unicast for

communications among the applications. This scheme is bandwidth inefficient for large groups.

39

2.3.5 Networked PC Games

There are three basic levels of networked PC game that include Play by mail (Imperial

Nomic ...), Turn based games (Go, Chess, Bridge, etc ..), and Real time (Quake, Half-Life,

Unreal, etc ...) [Flipcode, 991. Play by mail does not require a server. Turn based and play by

mail games allow relatively long delays between turns, and are not subject to real time

constraints typical of VE applications. Real time games are the main concern of the game

industry today. Therefore, this section reviews the basic techniques and the technical

limitations of real time games.

2.3.5.1 Basic Architecture

The complexity or size of the game should be considered. The greater the level of interactivity

with the game, the bigger it becomes. As the game becomes more complex, more data must be

transmitted. The more data that has to be transmitted, the more bandwidth that is needed. These

problems tend to restrict the number of players that can be supported, or result in lag. Based on

these considerations, a client/server or peer-to-peer model is chosen. There are two types that

are generally chosen in current systems.

The first is a peer-to-peer model. In the distributed model, every client is connected to every

other. Currently, this model is not recommended for a large scale multi-player game because

the number of connections is 0 (n2
) which almost guarantees that users will lose some crucial

data and fallout of synchronisation. However, a distributed model can have some advantages.

Although one computer logs off, the game does not end. Theoretically the game data could be

maintained forever, as long as there always were two or more players in the system.

40

The second is a centralised model. In the centralised model, all clients are connected to a

central server. There are O(n) connections at any time, meaning much less work on the part of

the client computers. The advantage of this model is that the server can keep everyone in

synchronisation, which is very important for real time games. However, there are some

disadvantages. If the server fails, the game is over. If the server lags, everyone lags.

Furthermore, the server has to be 0 (n) times more powerful than any client computer in terms

of bandwidth in order to be able to handle the transmitted data.

2.3.5.2 Limitations and Problems

Network games use the TCP/IP protocol suite including TCP and UDP. TCP is a simple and

effective way of transmitting data. It is very good at ensuring that client and server can

communicate reliably. However, it carries with it a lot of overhead and extra network lag, so

that games usually use connection less unreliable transport (UDP) for performance reasons.

UDP unfortunately brings some serious problems. For example, some data may not reach the

other computer, or data might arrive in the wrong order. The problems of UDP communications

will not be covered in any more detail here, as they are well documented [RFC, 87].

Synchronisation is extremely important because it makes sure that what people see on their

screen is the same as everybody else. To solve this problem, the server keeps a copy of

everything going on in the game and updates players as necessary. However, as shown in

Figure 2.12, this method results in a latency problem. At time t I the source client copy starts to

move forward. The message is sent through the network. A little later at time t2 it arrives at the

server. At this point the server copy starts moving forward. It is already behind the actual

position because it was late receiving the message. Now the server broadcasts to all clients. At

time t3 every target client receives the message. All clients are now behind the server. Everyone

see the object at a slightly 'old' position.

41

To T, T2 T3

~ 1 1, 1 Source Client'1
1
1

1 1
1 1
1 ",I i Server

'1
1
1
1 ",I Target Client

'1 ,

Figure 2.12 Synchronisation between clients and server

2.3.6 Summary of the Technical Overview

In the above section, some of the major DYE systems have been described. A summary of the

major DYE systems is shown in Table 2.2. All these systems have their own advantages and

disadvantages. From the analysis presented above, a new architecture for implementing DYE

systems can be derived to effectively utilise the technologies and solve the technical issues that

have been described in Sections 2.1 and 2.2. This new architecture will be described in the next

Chapter.

2.4 Summary

In the future there will be practically no limit to the diversity and detail which DYEs can

provide. DYE construction can include concepts and components from nearly any subject area.

The scope of distributed virtual environment development is so broad that it can be seen as an

inclusive superset of all other global information infrastructure applications.

42

However, the development of DYE applications has been so far limited because of several

factors. Because graphics workstations require specialised real-time performance, they are

currently very expensive. The development of graphics databases and software has been

progressing slowly. Large-scale YEs may require the use of a WAN (Wide Area Network) to

enlarge geographic scope and number of participants. However, present network technology

has usually implemented distributed YEs on Ethernet LAN (Local Area Network). These

problems are being overcome little by little through the rapid growth of high speed inter-

networks, the recent availability of low-cost graphics workstations, and the development of

graphics software including tools and libraries [Durlach, 951.

Especially, in a DYE system, the major advance in performance will largely depend on

advances in modelling, computer architecture, operating systems and networks. The modelling

issue is really at the core of every DYE system. The feasibility of realistic rendering in real

time largely depends on the improvement of modelling. Network requirements are likely to

become the primary bottleneck. However, little work has been done on the efficient modelling

of large DYE system and networking methods between DYE processes over a network. So this

research will mainly concentrate on the modelling of DYE systems with multiple servers and

the design of a networking architecture that inter-operates with the applications in the DYE.

43

Networked
Feature DIS NPSNET DIVE MR Toolkit PC

games

Specification Protocol Implement Toolkit Toolkit Application
Definition DIS Protocol

Running Unspecified Workstation Workstation PC& PC
Platform Workstation

Operating Unspecified UNIX UNIX DOS/ UNIX Windows
System

Communication UDP UDP TCP UDP TCP or UDP
Protocols

Communication Point-to-Point, Multicast Multicast Point-to-Point Point-to-
Scheme Broadcast, or or Broadcast Point, or

Multicast Broadcast

Bandwidth Unspecified 10 Mbps+ 10 Mbps+ 10 Mbps+ 14.4 Kbps+

Interaction Peer-to-peer Peer-to-Peer Peer-to-Peer Peer-to-Peer Peer-to-Peer
Model Client/ Server

Servers NO NO NO NO Single

Distributed YES YES YES NO YES
Execution

Multi-Users YES YES YES NO YES
Scene Sharing

Data Replication Total Total Total Partial Total

Computation Partial Partial Total Total! Partial Total
Replication

Interactive YES YES YES YES YES
behaviours

Scalability Small Small Small Small Small

Visual Display Unspecified W/S Monitor W/S Monitor & HMD PC Monitor
System HMD

Tracking System NO NO NO YES NO

Haptic Interfaces NO NO YES YES NO

Auditory System NO YES NO YES YES

Table 2.2 Summary of Current Major DVE systems

44

CHAPTER3

CREATING DISTRIBUTED VIRTUAL

ENVIRONMENT SYSTEMS WITH

MULTIPLE SERVERS (DVM)

Traditional simulations differ from YEs in several respects. They operate with a fixed time

quantum of minutes or even hours between successive states in the simulation, while YEs

operate in continuous time. Especially, a virtual environment has to allow users the same type

of interaction that they experience in the real world. Realistic rendering of the VE requires 3D

computer graphics. The virtual environment is a set of data elements that describe a

geographical region, entities such as vehicles and humans, and that are events expected to take

place during the interactions with that environment.

Constructing 3D graphical virtual worlds requires integrating information from vanous

standard data sources, including digital map data, aerial imagery, detailed line drawing, terrain

data, etc. (Figure 3.1). A complex virtual environment requires a high degree of collaboration

and co-operative engineering in hardware, software, human factors, visual systems, and

usability.

45

Rules

Entity Digital Behaviour
Map

Figure 3.1 The diversity of information in the virtual world

To achieve this effectively, it will be necessary to distribute the VE between a number of

computers. Virtual Environments can benefit greatly from distribution strategies. Such systems

are called Distributed Virtual Environments (DVEs). Not only can a VE be spread between

many computers but information from across the network can also be combined within a single

environment as shown in Figure 3.2. This chapter will describe a new model of DVE systems

with Multiple-Servers (DVM) which run on multiple computers across a network.

3.1 Concepts of a DVM system

In Section 2.3, some of the other DVE approaches have been described, and compared. These

approaches have some advantages and disadvantages. From an analysis of these approaches, the

concepts for an effective new DVE system can be derived. This section will describe the DVM

concepts based on this analysis.

46

VIRTUAL WORLD I Shared Zone I

Zone A ~ := :=: = ~ ._. _ ._ .Zon.e.!!... _ . _ . _ .
.-.-.-.-.-.-.-.-.-.~.-.-.-.~

~OV2:
FOV3

~ i
, FOV I EJ

NETWORK

Client
Computer B

•
::
·

·
·
··..El

..

..I. .

. .:.

, FOV 1

-- Physical Connection

- - - Logical Connection

FOV: Field of View
DVM SYSTEM

Figure 3.2 Basic Context Diagram of DVM system

3.1.1 Basic Characteristics of a DVM system

This section will describe the characteristics that a DVM system should include, and explain

where the new model differs from current DVE systems. Table 3.1 identifies the common

47

features within current DVE systems as described in Chapter 2, in terms of the characteristics

that are required to support DVM systems.

Features Characteristics Features Characteristics

Specification Architecture Running Platform WIS, PC

Operating System Unix, Windows Communication UDP, TCP, DCP

Protocol

Communication Unicast, Multicast Bandwidth 10 Mbps+

Scheme

Interaction Model Client I Server Servers Multiple

Multi-User YES Multi-User YES

Interaction Scene Sharing

Data Replication Partial Computation Partial,

Replication Total

Scalability Large Visual Display WIS, PC Monitor

System

I/O Devices Keyboard, Mouse Tracking System NO
Haptic Intefaces NO Auditory System NO'

* refer to section 6.3.

Table 3.1 Summary of Characteristics of a DVM system

• Specification: A DVM is a working system. It provides an architecture that defines a

model of DVE systems with Multiple-Servers (DVM) which run 011 multiple computers

across a network. The DVM system specifies how the implementation is structured, and

also provides a protocol definition with associated guidelines.

48

• Running Platform : A DVM should be portable to a number of different computing

platforms due to the cost of replacing existing systems. It should be also possible to use

commercially available computers, including workstations and PCs, without having to

purchase dedicated VE workstations.

• Operating System : A DVM runnmg over a wide area network should be used in a

heterogeneous environment. That is, it should be able to inter-work to provide a seamless

DVM on various operating systems. However, most workstations and PCs are currently

based on the Unix and Windows operating system. Therefore, the DVM system will

support to run on workstations under UNIX and PC under Windows.

• Communication Protocol : TCP/IP currently provides better reliability than any other

protocol suite for interworking in the heterogeneous systems. Therefore, the

communication of a DVM system is based on TCP/IP, including a reliable connection-

oriented protocol (TCP) and a connectionless and unreliable protocol (UDP). In the DVM

system, to enable a client and a server to communicate with each other, an application-layer

protocol will be used. Section 4.3.3 examines protocol issues in more detail.

• Communication Scheme: To implement a DVM system, two communication schemes are

used in the DVM. One is one-to-one communication (Unicast) between two nodes, another

is a one-to-many communication (multicast) that communicates with several other nodes

simultaneously. More detailed explanation can be found in Section 4.4.1.

• Bandwidth : The DVM can require enormous bandwidth to implement complex

environments in real time. The bandwidth available in the DVM will vary depending on the

communication protocol used across networking mediums and the amount of traffic.

49

However, a DVM basically requires over 10 Mbps bandwidth for example, that could be

based on an Ethernet (10 - 100Mbps) LAN. Please refer to Section 4.2.1.

• Interaction Model : The DVM system is based on a client-server model with multiple

servers. In a DVM model, to reduce the amount of data and traffic maintained by a single

server, the servers are to be distributed across a network, and the DVM is divided over a

network of servers. The detail will be described in section 3.1.2.

• Multi-User Interaction: It should be possible for multiple users to interact within the same

DVM. It should be also possible to support real-time interaction. Especially, it should be

tuned for multi-user applications, where several networked users interact in real time over

the Internet, even though they may be geographically dispersed. Please refer to Section

4.3.5.

• Multi-user Scene Sharing: Every user in the DVM should recognise what other users are

doing. The state of the entities should be exchanged to share the same environment between

users in real time. Please refer to Section 3.3.6.

• Data Replication : Data should be distributed across more than one server node. To

replicate the data, the DVM will use a partial data replication methods. Please refer to

Section 3.2.3.2.

• Computation Replication : Rendering of the complex DVM can be a large computational

burden. To reduce the computational load, a DVM uses two computation methods,

including partial and total replication. Please refer to Section 3.2.4.

50

• Scalability: The DVM system should have unlimited servers and clients connected in a

heterogeneous network. It should be possible to support both small and large scale DVMs

with many computers. A scalable DVM system is one that can easily cope with the addition

of users and nodes, and whose growth involves minimal expense, performance degradation,

and administrative complexity. Please refer to Section 3. I .2.

• Visual Display System: A DVM can use several types of visual display systems such as

monitors, head mounted displays (HMD), boom-mounted displays, and projection systems.

However, currently a DVM typically uses monitors as the primary means for display.

Please refer to Section 5.1.6.4.

3.1.2 Structure of a DVM system

Current VE systems usually use one of four VE computing architectures: PC based YE,

workstation based YE, parallel VE and distributed YE. The first three architectures run a VE on

a single computer. The last distributes a VE among several computers over networks [Burdea,

94].

A networked VE system is currently the most popular Distributed VE system. A networked VE

system is a typical application of distributed graphics. It consists of a set of workstations / PCs

and servers interconnected with a network. Networked YE systems are a popular and powerful

computing paradigm for DYE systems. Networked YE systems allow the sharing of

information and resources over a wide geographic and organisational spread. However, it is far

more difficult to design distributed graphics rendering programs than to design programs

running on a single processor. The reason is that several problems derived from a distributed

51

environment must be considered: task partition and allocation, communication,

synchronisation, protection of shared resources, consistency controlling and load balancing.

The networked YE systems are mainly based on the Client-Server model. In the Client-Server

model, the data is stored on a server computer. The server computer in a DYE system

communicates with its client or other server computers via networks. In some client-server

models, however, a powerful server is required, or it will become a bottleneck. To reduce the

amount of data and traffic maintained by a single server, the servers themselves can be

distributed, and the virtual environment can be divided over a network of servers, each of which

is responsible for a local region. Each server co-operates with the YE in a different region.

WANLAN LAN

DB

Backing
Storage

SN : Server Node
DB : Database

Figure 3.3 The logical routing structure of DVM

52

The system described in this thesis, therefore, is based on the client-server model with multiple

servers as shown in Figure 3.3. This grouping is called a Distributed Virtual Environment

System with Multiple-Servers (DVM). A DVM System is a new experimental platform for the

development of distributed virtual environments, user interfaces and applications based on

shared 3D synthetic environments.

3.1.3 Limitations of a Real-time DVM system

To design DVE systems, the most important issue is "How can we best exploit the potential of

a large number of networked computers to meet real-time requirements of multiple interacting

users and applications?" [Bryson, 94]. To design real-time DVM systems, it is necessary to

consider several limiting factors that have to do with the very nature of hardware and software

architectures.

3.1.3.1 Memory

Most computers have a finite amount of physical or virtual memory. In the future, memory

prices may fall. However, memory is often the expensive component of any system these days

and therefore physical memory may be seen as a precious resource [Hawke, 96]. A current

(1999) Pentium PC usually has on average 16-64 Mbytes of memory. Silicon Graphics

workstations usually have 64 Mbytes as standard.

3.1.3.2 Processor

On faster networks or in large simulation, when the amount of computation that is involved in a

networked VE exceeds what is currently available from a single CPU, or when the CPU fails to

53

keep up with the traffic, this will become a bottleneck. To reduce the amount of computation,

we can consider the use of parallel processing and spread the computational load among several

processors within one or several computers. However, these systems are currently more

expensive and thus less common.

3.1.3.3 Bandwidth and Protocol

As the number of users increases the higher the bandwidth required. The network bandwidth

has an effect on the size and richness of a DVE. The actual bandwidth available will vary

depending on the protocol used across the mediums and the amount of traffic. The effective

bandwidth is determined not only by the raw bandwidth of the network interface, but also by

the overhead of the protocol.

The performance of the network will have serious effects on the performance of the DVE

system. When the DVE is running over a WAN, the round trip time of the package will

probably be too long to meet real-time requirements. The improvement of a DVE model will

largely depend on advances in network technology (refer to Section 4.2.1) such as in bandwidth

and protocols.

3.1.3.4 Operating Systems

Current Operating Systems usually provide only minimal support for the transmission of real-

time data. At the operating system level, most DVE applications are built on commercial

versions of UNIX which are not designed for real-time performance. The transparency and the

simplification of DVE operations will depend on the improvement of the operating system

software.

54

3.1.4 Target Applications of a DVM system

Many target applications may be possible in the future, it may depend on the environment in

which they are performed. If the above characteristics are adequately supported in the DVM

system, the feasible target applications that are being explored may be as follows:

• Military training: Small or large numbers of live networked participants 111 real-world

exercises are feasible. It has lower operating costs and is safer to use than real training.

• Distributed design: The DVM application can support interaction among networked remote

participants, for the purpose of industrial design. The advantages of distributed design

stations are numerous, but an essential point is economy and time-to-market.

• Education: Education can benefit with regard to long distance learning. No more travel

time to study, no more expensive building environments. For this to be possible, very high

bandwidth networks will be required.

• Entertainment: Networked entertainment allows for the simultaneous support of multiple

players within the same immersive environments, joined over long distance. Networked

multi-player VE entertainment is likely to become popular in the next few years.

3.2 Proposed Architecture of a DVM system

The problems of distributing a VE over a number of nodes are many and are

compounded by increasing the distance between nodes. These problems are slightly

different depending on the combination of hardware used and the geographical distance

55

covered. There is no one-level solution that can be applied at all levels of DVE that will

address all of the problems posed. A DVE needs suitable multi-level solution. Therefore

this section describes the architecture that refers to the operational components and their

interconnections among the techniques for a DVM system.

3.2.1 The components and connections

In a distributed VE system, the processors have different sizes and functions. The processors

include small microcomputers, workstations, minicomputers, large general-purpose computer

systems, and so on. The processor is referred to by a number of different names, such as sites,

nodes, and computers. It is mainly referred to by the term node in the DVM system, in order to

emphasise the distribution of these systems. The DVM architecture is divided into server and

client nodes. Each node includes a number of processes. Distributing processes to multiple

nodes increases the aggregate computing power associated with a simulation. The DVM system

can use this not only to provide the capability to distribute views but also to handle a variety of

input devices.

A DVM system assumes the logical connections of its components that can be viewed as shown

in Figure 3.4. A DVM system contains seven components: a master manager module, rendering

manager module, interaction manager module, computation manager module, network I/O

manager module, network I/O manager module, and audio manager module.

A DVM system also assumes that the same kinds of processes are running on each server node

or client node that has the same function. This is a logical view and does not consider the

physical path for communications between the components. This section describes the

components shown and the connections between them.

56

SN Server Node
CN Client Node
AM Audio Manager

MM Master Manager
RM Rendering Manager
1M Interaction Manager

CM
NM
OM

Computation Manager
Network I/O Manager
Database I/O Manager

Figure 3.4 Components of DVM system

3.2.1.1 Server Node (SN)

The major responsibility of a server node is to provide a bridge between its client nodes and

databases. The server node is also responsible for maintaining the data consistency between its

client nodes. It is usually the central workstation co-ordinating most of the VE activities. The

server node loads data from databases, checks the requests from its clients or other servers,

transmits the requested data to its clients or other servers, monitors its clients' activity,

performs the maintenance of updated data, and manages network traffic. It has the

responsibility of maintaining the state of all of the virtual entities in the local area of the DVM.

57

The server node runs four important process modules: Master Manager, Database Input/Output

Manager, Computation Manager, and Network Input/Output Manager. Services provided by the

Server nodes include

• Co-ordination of the client node when joining and departing from the DVM.

• Co-ordination of global VE time.

• Loading the initial data from the database and transmitting it to the client node upon request.

• Maintaining the data updated from its client nodes to keep the data consistent.

3.2.1.2 Client Node (CN)

The users use the client node to interact with the DVM system. Each client node manages the

local VE, interacts with 110 devices and perform graphics rendering. The client node

establishes communications with the server node and through it or directly, transmits the data to

the server or the other client nodes. Most client nodes must operate alone in other operations.

The management routines required by a client node can be divided up into six processes:

Master Manager, Interaction Manager, Computation Manager, Rendering Manager, Network

Input/Output Manager, and Audio Manager.

3.2.1.3 Master Manager (MM)

When a server or a client application starts, the master process first sets all resources and

summons up the Network, Computation, Database, Rendering, Interaction and Audio

58

Managers. The MM maintains all the state variables of entities and the geometric model of the

virtual environment. It is also responsible for routing messages appropriately.

3.2.1.4 Network Input/Output Manager (NM)

The NM is responsible for dealing with the network. It is a process that makes it possible for

users using the same YE to communicate with each other. The NM keeps a list of other nodes

that it is connected to. When an operation takes place, the NM is in charge of the data exchange

between the nodes. The client NM requests initial data from the server NM. The server NM

checks the requests from the client NM. It transmits initial data to the client NM. The client

NM receives the initial data from the server NM. It retransmits updated data to the server NM

again. The server NM receives the updated data from the client NM. If the data in the shared

area is updated, then the server retransmits to the other server NMs. The other server NMs

retransmit the updated data to its own client NMs.

3.2.1.5 Database Input/Output Manager (DM)

A DM is a process that runs on the server nodes. The DM handles a collection of data forming

the virtual environment. Its primary function is to load the initial data, e.g. images, entities,

sounds, etc., from the databases. It provides the initial data to its own clients. It also restores the

updated data, which is sent from the client node to the database.

3.2.1.6 Computation Manager (CM)

The CM is a process that runs on the server and client nodes. It is in charge of the computation

of all events. When an operation takes place in the client node, a CM reads the initial state

S9

variables from NM or the changes of state variables from RM via MM. Then the CM computes

the new scene according to the input, and sends the result to RM (defined in Section 3.2.1.7) for

display. In the server node, CM computes the new state according to the input, and sends the

result to DM via MM for saving.

3.2.1.7 Rendering Manager (RM)

The RM is a process that runs on the client node. It provides services for rendering and

managing the visual representation, including shaded, texture-mapped surfaces, and coloured

lighting. Each CM is actually an indefinite simulation loop. At the beginning of the loop, the

RM reads the input from CM via MM. Then, it displays the new scene according to the input.

Entities can be controlled directly by the user on the screen. RM also keeps track of the client's

AOI (Area of Interest) and transfers updates on entities to MM as necessary.

3.2.1.8 Interaction Manager (1M)

An 1M is a process that provides services related to interaction devices. IM is usually in charge

of the input and output of all the devices (such as 3D trackers, data gloves, and visual display,

etc.).

3.2.1.9 Audio Manager (AM)

An AM is a process that provides services related to the audio display. AM derives the sound

source for auditory display and deals with the processing of the sound for placement, including

stereo sound, enhanced stereo processing, or true 3D spatial placement. AM displays the final

sound to the client user, usually via speakers or earphones.

60

3.2.1.10 Connections between components

Communication between components of the DVM system is divided into two methods: within a

same node and between two nodes, according to the placement of nodes in which processes

reside. Figure 3.5 shows the connections between these components.

Client Node

NETWORK

Server Node

Figure 3.5 Connections between Components

3.2.2 Co-ordinate Systems

We cannot directly use a real-world co-ordinate system in the DVE (refer to Section 3.2.2.3).

We need a conversion from the real-world co-ordinate to the DVE co-ordinate. This section

presents the co-ordinate systems of a DVM system.

61

3.2.2.1 Real-world Co-ordinate System

The most familiar location reference system of a real world is the spherical co-ordinate system

measured in latitude and longitude. Longitude and latitude are angles measured from the

Earth's centre to a point on the Earth's surface. Longitude is measured East and West, while

latitude is measured North and South. Latitude and longitude are measured in degrees, minutes,

and seconds (DMS). Latitude values range from 0 at the equator to +900 at the North Pole and

-900 at the South Pole. Longitude ranges from 00 at the Prime Meridian to 1800 when moving

east and from 00 to -1800 moving west from the Prime Meridian.

3.2.2.2 Map Projection

A map projection is a mathematical conversion from spherical to planar co-ordinates. Most

maps display co-ordinate data by conforming to a recognised global co-ordinate system. Map

projections are used to represent the earth's three-dimensional features on a flat surface (Figure

3.6).

Original map surface

Figure 3.6 Map Projection

62

Any representation of the Earth's surface in two dimensions always distorts shape, area,

distance, or direction. Map projections ensure a known relationship between locations on a map

and their true locations on the Earth. The co-ordinate values in the database are measured in a

real-world co-ordinate system. A mathematical conversion must be used to create a flat map

sheet from the three dimensional surface.

3.2.2.3 Map Distortion

Latitude-Longitude is a geographical reference system. The length of one degree of longitude

varies depending upon the latitude at which it is measured (Figure 3.7). For example, one

degree of longitude at the equator is I I I km in length, but the length of one degree of longitude

converges to zero at the poles. This reference system measures angles from the centre of the

Earth, rather than distances on the Earth's surface. Degrees cannot be used as an accurate

measure of distance or area because they are not associated with a standard length.

N 200000 __,-+- -+-,..-_

distorted longitude

real longitude

0.8

i 00000

88.8 km / one degree

0.9N 100000 __ -+ --'1:-_

99.9 km / one degree

1.0
Latitude I II km / one degree at the equator

scale factor
E I to 00 00 E I I I 00 00

Longitude >
Figure 3.7 Map distortion

63

3.2.2.4 Planar Co-ordinate Systems

Planar co-ordinate systems have several properties that make them useful for representing real-

world co-ordinates on maps. There are two dimensions: X measures distance in a horizontal

direction, and Y measures distance in a vertical direction. Measures of length, angle, and area

are constant across the two dimensions.

Various mathematical formulas exist to project the Earth's spherical surface onto a flat, two-

dimensional surface. Geographical information systems, like flat maps, use various planar co-

ordinate systems to map the Earth's surface. Each co-ordinate system used is based on a

particular map projection.

3.2.2.5 Transformation of Co-ordinate System

Co-ordinate system transformation for display and sensor analysis is one of the major issues

that affect 3D graphical models and terrain modelling. The real terrain model and 3D graphical

models used in the DVM must be transformed into the DVM co-ordinate system for display.

Co-ordinate system transformation for display affects 3D graphical models and terrain

modelling. Co-ordinate data must be transformed from the real-world co-ordinate system into

the DVE co-ordinate system. After loading and before proceeding with simulation, real-world

co-ordinates must be converted from degrees, minutes, and seconds (DMS) into decimal

degrees (DD). Decimal degrees can be computed using the following equation:

Decimal Degrees (DD) = Degrees +Minutes/60 + seconds/3600 (DMS)

64

When an integral co-ordinate value of DMS type is converted to floating value of DD type, the

value is in the representable range. The range of values will be usually represented in a 32-bit

word. The precision of value uses a rounding scheme. The decimal value of the co-ordinate is

rounded up from the fifth place of decimal expansion of floating point (This value provides a

guide only; this value depends on the resolution of terrain model). Table 3.2 shows an example

of the real world conversion

DMS DD

X Y X Y

850000 400345 85.0000 40.0625

8559 15 400345 85.9875 40.0625

855830 400300 85.9750 40.0500

Table 3.2 Real World Conversion

The size of YE passed to the client has a major impact on the performance of the DYM system.

The entire YE can not be passed to a client because of the limitations and capabilities of the

hardware. In order to minimise the size of YE passed to the client for rendering, the YE should

be segmented. Figure 3.8 shows an example of DYM co-ordinate units used to segment the YE.

A global YE represents a world with a length of one degree of longitude and latitude. To

segment the YE, a global YE is first subdivided into sixteen sub-YEs. Each one of the sub-YEs

is subdivided into twenty five sub-YEs. The sub-YE is subdivided until some minimum sub-YE

is reached.

65

360300 .-----~------_r------~------~----~~----~
36.05 1

1
1

1 1 1 1 1-----~-----~-----~------~-----~-----1 1 1 1 1
1 1 1 1

1 1 1
1 1 1 1 1_____ l J J L l _
1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1 1 1 1 1----- ------r-----r-----

1
1
1
1-----~-----~-----1 1

1
1
1 1______ L L _

1 1 1
1
1
1
1

36150°r- -, 1

36.25

.15

1
1

: .025
-----~--

1
1
1
1

_____l _
1
1

3~.008
____ l6~OQ 3,0_

.20

370000

37.00

36.50

: .10
-----~--

1
1
1
136.05_____l __
1

36.75

_____ L _il_OQ&... j 1 __ :U.ilz.'i_
1 1 1
1 51 00 301 1 51 0 I 30
1 1
1 1
1 1

51.05

510300

36.25
_____ L __ il_O,2 j J Q.

: 51 03 d>
1
1
1

.15 .20 51.25

51 1500

36.00

360000 51.00 5125

510000 511500

51.50 51.75

51 30 00 51 45 00

52.00

520000

Figure 3.8 DVM Co-ordinate Units

3.2.2.6 DVM Co-ordinate System

A DVM system uses three dimensions that are useful for representing virtual-world co-

ordinates on the screen. As shown in Figure 3.9, the co-ordinate system has (0,0,0) located at

the left under corner of the virtual world. The X-axis represents the latitude of the world; the

positive is heading east. The Y-axis represents the longitude of the world; the positive is

heading north. The Z-axis represents the altitude of the world; the positive is the altitude above

sealevel.

66

(XMAX, YMAX. ZMAX)

x

z

Figure 3.9 DVM Coordinate System

3.2.2.7 Segmentation of DVM Co-ordinate System

DVM uses two co-ordinate systems (Figure 3.10), one for the local co-ordinates and the second

for the global co-ordinates, to represent the location of grid square. The local co-ordinates are

used for the rendering of the local virtual world passed to each client computer. The global co-

ordinates are used to represent the relative position of the local world in the global world.

3.2.3 Data Management

When the VE is distributed across more than one server node then the VE data is moved around

from one node to other nodes. It is desirable to manage the data in some logical method. There

are several methods for data management in a DVE system. DVM uses data distribution, and

data segmentation.

67

50 50

40 40

30 30

20 20

10 10

50 50

40 40

30 30

20 20

10 10

Global Y

90

80

70

60

50

40

30

20

::::::::::!::::::::::l:L::i-:-i:::l:L::L:Jt;::::l:LJ·:::
l lYE 4, I 1 lYE ~: lYE ~ l

·········T····..····r·········T........·T ..········~···..·....T·········T·······..·r····..···i·....······r·········T··········r·····
····~·····~·····~·····i·····I·····~·····~·····~····ir··..~.•••.~•.•..~ .

~ ~ 1: ~ ~: ~ ~ ~- ..-_:- -+ - .. - _:_._ - III _ _: __

··········I···········~···········I···········,·······! ! ...! L + ·!······· ·I····..····.!·····.·.··
~ il.ocali I ~LocaH: ll.ocali ~

rl~rr::::::l::::::::::r=:l:rT::::::r=::rr10

(

o 10 20 30 40 50 60 70 80 90 100 I10 120 130

(a) Global Co-ordinates

o 0

. ,
--I.-~.--.L--l
.............i 1 1 1. .

[[Local] ,:
: : YE 1:············t··············~····· (, .

............ .l t l , .
~ ~ ~ i
[[[i

o
o

10
10

30
30

40
40

20
20

Global X = X offset 0 + Local X
Global Y = Y offset 0 + Local Y

I
- -1- --1 - - +-- - ~
............1 .1. 1. .1. .

1 ~ Local] ~

t ~VE 3~ ~............. ··············~··············r··············~·········.....

·i1-1-····1

50 50 I
1

40 40 - -1- ~ - - i:. --

1 ~ . •
30 30 ..··········..I················~··············r·········: .

: Local: •

20 20 ··············~···········l·Y.E..2t··············~···· .

. ~ ~ ~ ; .
10 10 ~ I I .
o 0

50
50

o
40

20
60

30 40 50
70 80 90

10
50

Global X = X offset 40 + Local X
Global Y = Y offset 0 + Local Y

90 50 I

.............: : ~ J .

..............I I .l.. ~ .
: : Local:
l l VE 4l 1

·············l···············(············t·············r············

······I······j·······r······:······

80 40

70 30

60 20

50 10

40 0
10 20 30 40 50 II(I 0 10 20 30 40 50
90 lOO 110 120 l30+-- 0 10 20 30 40 50

Global X = X offset 80 + Local X I Local X Global X = X offset 0 + Local X
Global Y = Y offset 0 + Local Y Global X Global Y = Y offset 40 + Local Y

(b) Local Co-ordinates

Figure 3.10 The Segmentation of DVM Co-ordinate System

68

3.2.3.1 Data Distribution

In the case where all VE data is stored on a single database, managed by a single central server,

this database can become very large. This prohibits the exploration of large, continuous data

spaces. Furthermore, in distributed VE applications, potential disadvantages of a centralised

server are that it could become a bottleneck and that it is potentially a single point of failure. A

solution to these problems is data distribution. An approach to data distribution is the

distributed server.

With the distributed server, the VE data may be present in one location or be distributed

geographically. Each location has a local server, which responds to client requests for that

location's data. The VE data that is collected at several locations is stored at those locations.

The VE data can be managed by multiple servers, which can be distributed across multiple

databases.

Even though the distributed database construction issue currently obstructs the development of

very large scale VE, and distributing the virtual world over several databases can lead to

problems with consistency and lag, there are several advantages for data distribution, including

reliability, availability, and speed-up of processing.

3.2.3.1.1 Complete Distribution

In the complete distribution, there is no duplication of data between nodes across the networks.

Each node controls its own data. Each node has different data from others. The state of the VE

is completely distributed in several nodes across the networks. If a node wants to update some

VE state under the control of another node, a node should make a request to the node managing

that VE state. A given VE state is only held in one place. Sometimes, in the DVM system,

69

several nodes should share some VE state at a time, and should change part of the VE state.

Therefore, it is not adequate for the DVM system.

3.2.3.1.2 Data Replication

With data replication, the same data is duplicated in more than one location in order to speed up

access to the data. It is of course important to ensure that procedures exist for updating the local

copies of the replicated data so that the data does not get out of date. Two common approaches

for data replication between nodes are to either use a server to hold all the data and partially

replicate this in the client node or to replicate the whole environment at every client node in the

network. The former burdens the server and the latter burdens the clients.

By replicating data, we can improve the overall throughput by placing server replicas at nodes

where the data is needed. To optimise transmission of data in a client-server system, the server

stores the data for a virtual environment, composed of entities that are arranged spatially. The

client allows the user to display and navigate this VE database. For this purpose, the client

needs only those data items that are actually being displayed.

The DVM system uses partial replication in one form or another. Instead of replicating entities

in each node, requests are sent to a server over the network. There is no need to transmit the

whole data from the server and store it in the client node. Clients only receive the data they

need, thus reducing bandwidth consumption. In particular, a DVM system uses active

replication. Most data is modified at the clients locally and the updated data is sent back to the

server and the other clients. The complete replication of the database is also grossly inefficient

and some means of partitioning data is required. If the whole scene is stored locally, it must

contain all data, even if some data is never actually used. The DVM system does not use the

complete replication method.

70

3.2.3.2 Data Segmentation

In order to display some VE scenes, all VE data needed to be displayed should be stored

locally; so the data must fit into memory. The number of polygons passed to the client node has

a major impact on the frame rate of the system. The texturing of the polygons, depth

complexity, and vertex transformation also has an impact on the system's performance as well.

Therefore, in order to increase the performance, the virtual world can be segmented to reduce

the amount of data passed to the rendering process on the client node. So the VE area is divided

into a number of areas, the whole VE data is divided into small groups. That is, the global

virtual environment is divided into a number of local virtual environments. Each local virtual

environment consists of grid squares (Figure 3.11).

Virtual World

Global Area

Figure 3.11 Logical Data Inclusion

71

3.2.4 Computation Management

The computations required to realise a YE can be performed within a single node or through a

set of nodes communicating via networks. Rendering the virtual environment on a single node

requires a large computational burden. The computation needed for rendering complex scenes

affects the real-time property of DYE systems. Computational load distribution is required

owing to the characteristics of real-time DYE systems. The distribution of computation is very

important for a DYE with a large number of entities.

A distributed computation describes the execution of a distributed application by a collection of

processes on multiple computers. It is important to increase computation capability, to broaden

disk bandwidth, and to extend physical memory capacity. The distribution of computational

load could greatly improve the performance of a DYE system. There are several methods for

computation management in a DYE system, including Complete Distribution, Partial

Distribution, Partial Replication and Total Replication.

In the complete distribution, all operations on an entity are executed on the same node that

includes the entity. If one process that manages an entity wants to be executed on another node,

then it must send a request for process migration to the other node. This method is useful for a

tightly-coupled system. The partial distribution is similar to complete distribution except that

partial data replication is used to acquire the state of an entity. The state of the entity is locally

changed, and computation is not duplicated.

In partial replication, which is based on a loosely-coupled system, it is possible to replicate

some of the entity state computation on the client nodes. Ghost or proxy processes are usually

used to approximate the entity's behaviour using a dead-reckoning method (refer to Section

72

4.4.5). This method is useful for reducing the amount of bandwidth required. In total

replication, also based on a loosely-coupled system, if the DVE is running over a very large

distance, partial replication that receives periodic updates is not efficient. Therefore, all

computation is performed locally, and only information that changes the state of the entity is

sent. Every node can have the same state of entities. However, this method requires duplication

of computation.

A DVM system is mainly based on a loosely-coupled system that operates over a large distance.

Therefore, a DVM system uses both partial and total replication. When the state of an entity

using an algorithm such as dead-reckoning is updated, to reduce network traffic, it uses partial

replication to update some of the entity state. Otherwise, total replication is usually used during

the implementation of the DVM system.

3.2.5 Fault Tolerance

As networked systems gain increasing importance, system down-time becomes less and less

tolerable. The down-time of a network system, even for a short time, will affect the whole

system significantly. The purpose of a fault-tolerant system is to overcome system faults and

continue the execution of user programs. In other words, fault tolerance means that a system

will continue to process even when a component has failed. There are many reasons for the

failure of the system, including software and hardware component failure, node failure, and

failure of a communication path. To overcome these problems, a variety of systems have been

used for implementing fault-tolerance. Fault tolerance is a very important issue for a DVM

system as well. It may be considered as a future work. This is currently out of the scope of this

thesis.

73

Although a DVM system does not support complete fault tolerance, it can be a fault-tolerant

system. If a server or client node fails, a whole DVM system is never disabled by a single node

failure. In a DVM system, all server and client nodes in the same VE group keep the same copy

of entities that is currently running, if a node fails then it can be recovered by restarting the

node and receiving the appropriate data from a client or server node. The node can be

recoverable, it can therefore be fault tolerant.

3.2.6 Time Management

In the DVM system, there is a need to synchronise the clocks between nodes since the

execution of the schedule for a node is done globally. VE time must be co-ordinated so event

causality is maintained for all VEs. A DVM system co-ordinates VE time among all client and

server nodes.

Figure 3.12 shows the time sequences for common VE time synchronisation of a DVM system.

When a server node starts up, a server node sets the global VE time. When a client node starts

up, a client node sets the local VE time. To perform time synchronisation and establish a

common VE time, a client node requests the global VE time from the server nod. The server

node then transmits the global VE time to the client node. The client node calculates the round

trip time to check the amount of time, as latency and lag, that elapses between the time at

which the global VE time was requested and the time of receipt.

The round trip time is calculated by sending a message to request the global VE time from the

server and waiting for the global VE time be returned by the server. After calculating the round

trip time, values that are too small will be ignored. Finally, the client node replaces the local

VE time with the global VE time. All messages in the DVM system are time stamped; this is to

74

identify messages that have been processed. Each node resets the global YE time every fixed

time period (for example, 100 or 200 seconds).

SERVER:
Global_ VE_Time

Til : Set global , VE_time ()

TI : Send global VE_time ()

100.0T 2 : Reset global , VE_time ()

Time (sec)

CLIENT:
Local_ VE_Time

--- --- ---

100.0

Til : Set loeal_ VE_time ()

T I : Request global_ VE_time ()

T2 : Get global , VE_time ()

T 3 : Reset loeal_ VE_time ()

• Round jrip jime (RI)

= T2 - TI = 2 - 2.004 = 0.004 sec

(if too small, ignore the value)

• Reset local ; VE_Iime

= global , VE_Iime + RI / 2

= .5 + 0.004/ 2 =.5 sec

T4 : Reset loval_ VE_time ()
• every 100 seconds

Figure 3.12 Time Sequences for Common VE Time Synchronisation

75

3.2.7 Security

DVE systems have multiple security domains and thus exhibit the set of security properties.

The trusted computing base is scattered among many components that operate in environments

with varying degrees of physical security, differing security policies, and possibly under

different authorities. The interconnections among the computers are physically insecure. It is

hard to know what is being trusted and what can be trusted. But, because the system contains

many computers, exploiting a security flaw in the software or environment of one computer

does not automatically compromise the entire system. In the DVM system, current efforts in

this area is out of the scope of this thesis.

3.2.8 Communication Management

A DVM uses a network to distribute entity-state information and graphical images. A DVM has

its own local virtual environment, and it is based on the client-server model. A server node

communicates with its clients or other servers using process-to-process communication. Each

server node keeps a list of its client nodes. The client node exchanges data with the server

process. Each client node can also communicate directly with other client nodes.

The DVM protocol can be symmetric or asymmetric. In a symmetric protocol, either side can

play the master or slave role. In an asymmetric protocol, one side is always the master, and the

other is the slave. The DVM protocol uses reliable point-to-point or multicast, based on IP

using Berkeley Sockets. The DVM system is a loosely coupled heterogeneous distributed

system based on UNIX and Internet networking protocols within local and wide area networks.

The DVM uses UDP and TCP sockets for handling the network connections between clients

and server, which are bi-directional. This section contains only short explanations about the

76

communication of the DVM system. The details of communication management will be

covered in Chapter 4.

3.3 System Operations

All of the components in a DVM system are independent processes, but individual processes

can not properly run without the interactions with other processes. Each process has some

functional relationships with other processes. In this section, we will describe the major

operations that are performed by processes and the relationships between them.

3.3.1 Initial Join

In the DVM system there are several server nodes, each server node operates independently.

There is no central server node among the server nodes. The various server nodes are aware of

one another. The execution of the global VE will require communications via networks

between the server nodes and client nodes. Each server node provides an environment for

processing both local and global VEs. When a server node starts, it can connect to the other

server nodes in the same local VE. Each server supports its own client nodes. The server node

must normally be able to support requests from multiple clients.

Most client nodes operate independently. Each client node is able to access data in a

server node to process a local YE. A client node can also participate in the execution of

global YEs that access data in several server nodes across the WAN. A client node can

freely access, connect, and communicate directly with one of the server nodes in the

same global YE. A client node would be permitted to join and leave the server node at

77

will without disturbing other client nodes. A fault in the client node does not lead to the

breakdown of the server node. A client node application can be turned off at any time

without fear of inconveniencing other client nodes.

Figure 3.13 shows a routing sequence for the initial join between client and server node. When

a DVM application in the client node starts, the client node always requests the initial join to a

server node. The Master Manager (MM) first starts and summons up the Network I/O Manager

(NM) in the same node. The NM of the client node requests the initial join to the NM of a

server node. The server node normally listens at a well-known address for service requests. At

such a time the server node responds to the request for the initial join. That is, the NM of the

server node checks the requests from the NM of a client node. The NM of the server node

transfers the initial requests to the MM of the same node. The MM of the server node decides

whether to permit the initial join or not. The MM of the server node transfers the result to the

NM. The NM of server node transmits the result to the NM of the client node.

Server Node Client Node

.----------------,, MM ,, ,, Check ,,
Requests

,, ,, ,, ,, ,
- -1=esulC- - --- - recjLlest
,-------- - - - - - -- ,-----------------

--+ Waiting for
request

l Requests ~
Requests Initial Join

result ! !
Grants Receive
the Join

result
Grant

I I
, NM NM----------------- , L ________________ ,

Figure 3.13 Routing Sequence for Initial Join

78

3.3.2 Initial Data Transmission

Each server node has its own databases. Client nodes can access any databases via a server

node in the same DVM system. That is, the client nodes can load initial data from the databases

via a server node, no matter whether they are on the same or different networks.

As shown in Figure 3.14, the NM (Network 110 Manager) of a client node sends a request to

the NM of the server node to load the initial data. The NM of the server node sends the request

to the MM (Master Manager) to load data from the databases. The MM gives commands to the

DM (Database 110 Manager). The DM of the server node directly interfaces with the databases.

The DM loads the initial data from the databases, and transfers to the NM of the same node.

The NM of the server node transmits the initial data to the NM of the client node. The client

node does not need to remember the databases on which data are currently located or where

they were created.

r-,

JDB
I

SN eN

OM CM RM
data data

req data

data
MM NM NM MM

req req
req

Figure 3.14 Routing Sequence for Transmission of Initial Data

79

3.3.3 Data Loading Hierarchy

In a DVM system, a client node allows the user to display and navigate the virtual world. The

virtual world usually contains large amounts of data, e.g. buildings, trees, bridges, cars, planes,

people, etc. The data of the virtual world is loaded from a number of databases over networks.

However, access to the databases is slow; fetching the data from the databases is the difficult

part of the process. It is one of the major problems in implementing the YE. If the required data

can be delivered over the network just in time for the rendering process, the distribution of data

is very useful. So we attempt to optimise transmission of VE data in a client-server system, and

to gain significant savings in local memory requirements and network bandwidth.

For this purpose, there is no need to transmit all of the data from the databases and store it at

the client, the client needs only those data items that are actually being displayed. Therefore,

the client node loads the part of the VE data required for rendering the VE scene from the

databases. The selection of data is up to the client node, so that various strategies for data

management are possible.

Figure 3.15 shows a strategy for loading of VE data for the DVM system. The VE data is

distributed on two databases A and B. A DVM system uses a hierarchical structure to load the

data from the databases. Each database stores the data for a local virtual environment,

composed of entities that are arranged spatially. Users invoke an individual client node to

interact with the environment. The client node can request data from the server node. If a client

node wants to access the local VE 2, the client node requests the data of local VE 2 from the

server node A. The server node A loads the data from the database A, the data of the local VE 2

is stored on the server node A locally for access by the client node. The data is replicated in the

80

memory X of the client node. The data replication means that the VE scene must be stored

locally.

Database A

Server

Node A

Virtual

World

Geometry &Entity Data

I VE5
1

VE6 VE7 I VE8
1

y X'x y'

Client

Node
yx

1

VE2 1
, '.1 1 iii

I,', ,I I, " ,j I, ,',I

.--.:--~-.~-~-4:--~-->
I, 1 I . ,'i I, , , 1

tl : t2, 1 t3 I, t4. j t5 I, t6 1 t7

---~.-,-----H-~-~--H~~,---,-j- ., .,r -~- -,-- -~,-_' L.:~J L;_~J_' L __ ..I _' ~ _
1 ',I 1 I I, 1
1 iii 1 i
1 ,i I, Iii
1 .,1 I, j I, 1
1 1 1 I 1 ,I
1 1 1 1 1
I ,I loo, I 'I
1 1 I, I, 1

VEl i. 1 ill VE8

Main memory• FOV
- -I Shared zone
~,.:.I

~ Data loading path

- _> Direction of FOV

Figure 3.15 Data Loading Hierarchy

81

Database B

Server

Node B

In order to be displayed at the client node, the data of the local VE 2 must be replicated from

server node A to the client node. The data of the whole local VE 2 does not usually fit into

main memory of the client node. This prohibits the exploration of large, continuous data spaces.

Therefore, a part of the local VE 2 is replicated at the client node.

As the FOV moves through the DVM, the VE areas behind the FOV are paged out and VE

areas ahead of FOV is loaded in. To compensate for the delay introduced by the network

transmission, data prefetching is used to load the data of the next YE. For example, as can be

seen Table 3.3, if a FOV moves into the shared zone (t2), the client requests the data of VE 3

from the server node A. The data is replicated in memory Y of the client node. When the

complete data for VE 3 has been loaded, the client node can swap the VE scene. When the FOV

of the client moves into the shared zone (t4), the client node requests the data of local VE 6

from the server node and repeats the above procedures. The data is replicated in the memory X

of the client node. After loading the complete data for VE 6, the client can swap the VE scene.

Time Request Loaded YEs

tl none VE2

t2 VE3 VE2& VE3

t3 none VE3

t4 VE6 VE3 & VE6

t5 none VE6

t6 VE7 VE6& VE 7

Table 3.3 Prefetching of YEs

82

3.3.4 Screen Generation

The available memory works like a cache. Naturally, its size is limited, so the active data set

must exceed neither the processing capacity of the renderer nor the cache size. As typical

workstations have ample memory, the graphics processing power is usually the more restrictive

factor. The image presented to the user should be smoothly animated and updated at a

sufficiently high and constant frame rate. Both the user and simulated entities can change their

position, but if the user moves too fast, or entities move too fast, the data needed for display at

the appropriate resolution cannot be made available in time. In some situations the client may

be able to store and display a scene at high resolution, but the network is so slow that the data

cannot be transmitted in time.

Polygons are used to draw and depict the virtual world viewed by the user. By decreasing the

size of the polygons, more detailed images can be created. Using levels of detail (LOO), users

can keep the total polygon count in their view fairly constant and thus allow the scene to

maintain an adequate frame rate as they move through the environment. While moving closer

towards an entity will increase the number of polygons for that particular entity, the total

number of polygons that have to be rendered in the scene may actually go down because other

entities may move out of view and no longer need to be displayed. Modern high performance

Computer Graphic Workstations can render as many as 350,000 independent facets (polygons)

per second when giving medium quality shaded images. This includes hidden surface removal

and some lighting effects [Gigante, 93]. Approximately thirty frames per second are a minimum

for providing acceptable performance in a virtual environment. It has been estimated that

rendering of a realistic image consists of approximately 80 million polygons per second

[Rheingold, 91]. However, current systems might only produce such detailed pictures at a rate

of five or six frames per second.

83

3.3.5 Screen Control

All client nodes connected to the same server node simulate the same local YE. The server

node monitors the movement of entities for every connected client node. Two geographically

distant client nodes do not need to be aware of each others activities until they connect to the

same server node. Figure 3.16 shows the movement of the FOV (Field Of View) and entities in

a YE. The FOV of the client node can move in any direction within the local YE. The entities

can also move in any direction within the YE. If entity-a moves into the shared area between L1

and L2, the entity a has to be newly introduced to the server node B that cannot otherwise know

about this entity. If entity a moves out of the shared area, it is removed from VE A. The FOV -B

in the VE A and FOV -C in VE B can both share the entity d.

Ll L2

VEA

Field
of
View

B
FOVA

c••
•shared

zone

• entity III Shared zone

e•

B

VEB

•
Figure 3.16 The movement of FOV and Entities in the virtual world

84

3.3.6 Update of Entity State

The changes of entity state can be transferred between the nodes using multicast or unicast,

after establishing a logical connection with the destination node (Figure 3.17). If the state of

entities in a client node is updated, the data is sent to the server and client nodes. Changes in

the state of entities can be directly sent to all of clients within the same local YE. Changes in

the state of entities within the shared area can be sent to other server nodes in the different local

YEs. The other server node in a different local VE retransmits the data to its own client nodes.

Backup is needed only on the server node running the DM, since the client node not running the

DM is merely used for caching.

Client 1.1

Update
an Entity

SA: Shared Area
ESD: Entity State Data

Client 1.2

Server 2

Client 2.1

Update
the Entity

Update
the Entity

Update the
Entity &
forward the
ESD to its
own clients

Client 1.3

Figure 3.17 Order of events for an entity update

Update
the Entity

Server 1
Update the
Entity &
forward the
ESD to its
own clients

If the entity i
in the SA,
forward the
update to the
next server

85

In order to prevent an inconsistent instance state of the entity when VE worlds simultaneously

try to update it, the concurrency control scheme can be used. It maintains the consistency of the

distributed virtual world database by restricting manipulation in such a way that only one site

can perform operations to alter the status of the virtual world at a time.

Furthermore, when a client node updates some data, it has to transmit the updated data to the

server node. The server keeps the current states of the entities in the DVM. Therefore, if a

client node fails, then the client node can try to recover the current DVM environment, by

restarting the client node and receiving the data from the server node. Backup operation is

needed only on the server node running the OM.

3.3.7 Time-Based versus Frame-Based VE simulation

On a particular computer, the VE is calculating the position of the entities usmg the last

reported velocity. The process may draw the entity in one position, then clear the image and

draw it again in another position. These drawings are called frames. When the velocity of an

entity is specified in frames, if the entity moves one centimetre per frame, the entity may end up

at different locations on different machines. For fast machines drawing at fifty frames per

second, in one second the entity will have moved over half a metre. For a slower machine,

drawing at ten frames per second, the entity will only move a tenth of a metre.

To solve this, the entity's speed must be specified in distance per unit of time, rather than

distance per frame. Instead of I cm/frame, we specify velocity as I cm/second. On fast

machines the animation would be smoother than on slower machines, but both would present

the entity at the same position.

86

3.4 Summary

This chapter has described where a proposed DVM system differs from traditional VEs and

DVEs. First, the concepts of a DVM system were described. The concepts include a basic

structure, characteristics, requirements, limitations, and target applications of a DVM system.

Next, the proposed architecture capable of implementing a DVM was described. The

architecture presents the components and their connections, co-ordinates, data management,

computation management, and so on. Finally, the operations of the DVM system are described.

The operations show how the DVM system works, how components interact each other, how

data is loaded, how data is updated, how the screen is controlled, and so on. The issues

discussed show what the DVM actually does.

To implement this DVM system, much effort is required. Especially, a DVM system requires

fast data communication, with the overall goal of minimising bandwidth consumption and

latency on the network. It is reasonable to assume that the data communication is the most

constrained functionality of the DVM system. A new networking architecture is therefore

required for implementation of a DVM system. The technical details of a networking

architecture are presented in Chapter 4.

87

CHAPTER4

A NETWORKING ARCHITECTURE

FOR THE DVM SYSTEM

The general architecture for implementing a DVM model was described in Chapter 3. This

chapter will concentrate on the networking aspects of a DVM based on the architecture

described in the previous chapter. The DVM system, which is made up from nodes (computing

resources) connected to Local Area Networks (LANs) and Wide Area Networks (WANs), will

host several independent programs, called processes, which will be working concurrently. The

DVM system attempts to simultaneously connect many nodes in order to create the functionality

of a realistic world in meaningful ways. The interconnection of all nodes is the best way of

supporting the global interaction of users and processes in the DVM. Each individual node will

wish to communicate over the network to other nodes. To accomplish this, the network becomes

more than one connection between nodes.

A variety of network elements is required to scale up the DVM to arbitrarily large size,

simultaneously connecting thousands of interacting users and all kinds of information entities.

The DVM systems require the distribution of ongoing events and user actions. This requirement

quickly exceeds network capacity even for a moderately sized network group. So it is important

88

to design new methods for the distribution and transmission of VE data, with the overall goal of

minimising bandwidth consumption on the network. The networking is the most constrained

resource of the DVM system. The networking architecture determines not only the performance

of the network module, but also the capabilities of a DVM application. Development of

networking architectures is the key to solving DVM challenges.

4.1 Goals of DVM Networking

As already described in Section 3.1, a DVM is based on the client/server mechanism with

multiple servers. A DVM system therefore consists of a collection of nodes that include clients

and servers. As shown in Figure 4.1, a DVM system establishes connections between a client

and a serve, between servers, or between clients. A global VE is divided into several local VEs.

The nodes are grouped into a local VE group based on a server node. That is, the servers are

distributed across multiple locations. A server connects physically to a local VE database. A

client can be connected logically to one of the servers. The client nodes can be distributed

physically either over a large geographical area or over a small geographical area. The former

type of network is referred to as a wide area network (WAN); the latter is referred to as a local

area network (LAN).

If a client in one network wishes to load data stored in another database in the wide area

network, it is possible to load packets from the database via a server node on another

local network. A long distance telecommunication link and a pair of boxes called IP

Routers attach the networks. The forwarding of packets requires routers that are

attached to networks. They forward packets based upon their destination IP address.

Remote router-linked networks are physically distant from each other and use a pair of

routers to connect two networks over a telecommunications link, to make the two nets

89

operate as one. Packets between the server nodes on the networks will have to go

through the paired IP Routers in order to reach their destination.

Group B

LANA

To implement a DVM system based on above configuration, a networking architecture for

@~
G~ Group C

- I LAN B

D IP Router

exchanging messages between the nodes on the networks is required. The network performance

r- I
1- •

Local YE

and correct co-operation between nodes are very important as well. This section, therefore,

s
C

Server Node
Client Node

describes the major goals for the design and implementation of the DVM networking

Figure 4.1 Networking Configuration of a DVM system

architecture. These are summarised below:

• Allow for low latency interaction between nodes in the DVM.

• Allow for implementation even in low-bandwidth environments.

• Each server to support simultaneous handling of multiple clients

90

• VE operations should be distributed on the multiple nodes, and these nodes should correctly

inter-operate in real time.

• A server node controls and monitors all its own client nodes

• Allow the DVM to run on multiple processors.

To achieve the above goals, the following sections will mainly concentrate on the networking

subsystem and the major techniques for implementation of a DVM based on a client/server

structure over the Internet and LAN. These sections will describe the basic restrictions of DVM

communication, the layered structures of DVM networking, and DVM operations. It also

details how users interact with the DVM and its networking, what users can and cannot do, how

messages are transmitted, what messages are exchanged, and what techniques are useful.

4.2 Basic Restrictions of DVM Communication

There are several restricting factors for communication in a DVM. The major concerns are

limited bandwidth and network latency, and there is a relationship between the two. As already

described in Section 2.2.2.2, network efficiency is usually expressed as bandwidth. For a DVM

system, bandwidth and latency are equally important. The greater the bandwidth of a

transmission system, the smaller the network latency between nodes. Every DVM transmission

system has a limited bandwidth that can not be increased unlimitedly.

4.2.1 Limited Bandwidth

A DVM can require enormous bandwidth to include multiple users, video, audio and the

exchange of 3D graphic primitives and models in real time. If a DVM application violates the

bandwidth limits of inter-networks, it can cause congestion and loss of packets, or overrun of

91

the receiving hosts. As the number of participants increases so the bandwidth requirements do.

The larger the geographical distance covered by a network, the smaller the effective bandwidth

available to each node. So the available network bandwidth determines the size and richness of

a distributed virtual environment. The bandwidth available in the DVM will also vary

depending on the communication protocol used across networking mediums, and on the amount

of traffic.

13.2 Gbps
SONE"

1 Gbps ATM

ATM (Early)

B-

100 Mbps FOD!

16 Mbps +---- Token Ring ~
SMO

10 Mbps Ethernet ~

1.5 Mbps Frame Relay

(Current)
56 Kbps

I+---- Local Area ~. Wide Area

Figure 4.2 The Technology Scenario

Figure 4.2 shows the bandwidth technology scenario for networking services [Nees, 94 J. On the

Local Area Networks (LAN) like Ethernet (10 - IOOMbps), this is not a major issue. LAN-

based DVEs have a relatively limited number of users. However, on Wide Area Networks

(WAN), maximum bandwidths have been currently limited to Asynchronous Transfer Mode (up

92

to 2.S Gbps) but the potential user base is much larger because of the Internet. In the future, the

bandwidth requirements will be a less important problem for communication in the DVM.

4.2.2 Network Latency

The interactive and dynamic nature of the DVM is controlled by network latency. If a DVM

system is to mirror the real world, the DVM system should deliver packets with minimal

network latency and generate textured 3D graphics at 30-60 Hz to guarantee the illusion of

reality. Network latency will range from under a millisecond on local area networks up to

several hundred milliseconds on a wide area network. In general, the distributed systems that

use wide area networks, long paths, switches and routers induce latency. Latency is a problem

for network cue correlation including the delay of an individual cue and variation in the length

of the delay [Sawler, 911. Although lag can never be totally eliminated for environments where

the DVM is widely distributed, network latency can be reduced to a certain extent by using

dedicated links, improvements in router and switching technologies, faster interfaces and

computers, better communication protocols, and so on.

4.2.3 Summary of the Communication Restrictions

To reduce latency and the amount of bandwidth required, trade-offs obviously have to be made.

A common approach is to sacrifice exact consistency at all times in favour of approximate

consistency. Another common technique is to subdivide the environment into zones, pieces that

can be treated more independently [Barrus, 96]. The DVM networking, therefore, is based on

these approaches.

93

4.3 DVM Networking Subsystem

As described in Section 3.2, a DVM system is implemented by exchanging messages between

nodes on the network. The Network I/O Manager (NM) at each node is in charge of the

communication of all messages between nodes. The DVM Subsystem is implemented on the

TCP/IP Protocol Suite. Figure 4.3 shows the DVM Network Subsystem in the TCP/IP Protocol

Suite. The messages are transmitted to the targets, using TCP/IP and the DVM network

subsystem.

Client
Node 2

Client
Node J

Server
Node J

Server
Node 2

Client Client

~
Server

NM NM NMM

T
DVM DVM DVM DVM

Subsystem Subsystem Subsystem Subsystem

TCPIIP TCP/IP TCP/IP TCPIIP
~ ~ t ~
I I I I I: : I I :I Messages Messages I I MessagesL______________ J L______________ J L______________ J

Network

Figure 4.3 DVM Network Subsystem in the TCPIIP Protocol Suite

4.3.1 Requirements for DVM communication

In a DVM environment, when several client and server nodes connect to the network, each individual

node can try to communicate over the network to other nodes. This requires pre-agreed communication

mechanisms. The communication between the nodes usually requires reliability and high speed.

Reliability means that data being sent is always received correctly, thus excluding the need to

periodically re-send information. However, to guarantee delivery, the communication should

94

use acknowledgement and error recovery schemes that can involve long delays. Higher levels of

reliability involve more overheads, slowing communication. These two issues are often at odds.

A DVM, therefore, should consider these two potential problems of communication. The

communication reliability between nodes negatively affects the real-time response of the entire

system and is also prohibitively expensive in terms of bandwidth. Deciding whether to use a

reliable message delivery service or not is a key decision in the networking design of a DVM

.-system.

4.3.2 Subsystem Structure

The DVM networking subsytem basically consists of four distinct layers. These layers contain a

Packet Interface Layer, a Socket Interface layer, a DCP (Communication Protocol for a DVM

system) Protocol Layer, and a Process Interface Layer. Figure 4.4 shows the DVM Networking

subsystem structure containing these layers. The incoming packet is passed up to the NM via

these layers in sequence.

Network I/O Manager

Figure 4.4 DVM Networking subsystem structure

95

4.3.3 Packet Interface Layer

There are many different kinds of communication protocols running on networks. The current

implementation of the DVM system uses TCP/IP to let clients and server communicate with

each other. This was chosen because a reliable protocol is preferred, and the interworking of

multi-vendor equipment is implemented better with TCP/IP than by any other current protocol

suite. TCP/IP can provide more than one protocol, as can be seen in Figure 4.5. There are two

very popular protocols, TCP (Transmission Control Protocol) and UDP (User Datagram

Protocol). TCP and UDP provide services at the Transport Layer and JP protocols offer

services at the Network Layer. The JP layer handles routing through an inter-network. It is also

responsible for breaking up large datagrams into smaller ones for transmission and reassembling

them at the other end. The IP layer provides a connectionless and unreliable delivery system.

The Packet Interface layer is responsible for sending packets over the network, using UDP or

TCP. This layer encapsulates the networking protocol (transport protocol) provided by the host

system. This layer also encapsulates the physical network address format. The TCP is a reliable

connection-oriented protocol, while UDP is a connection less and unreliable protocol. Although

TCP provides a reliable service and UDP gives no guarantee, the probability of a given

message arriving is typically very high. There is the trade-off between using a reliable protocol

such as TCP and a faster but unreliable protocol such as UDP. UDP is usually used when speed

is more important than accuracy. UDP is faster than TCP, it is more representative of the

communication protocol used by sophisticated distributed simulations, and the communication

code is simpler. Applications using TCP will approximately run as much as ten times slower

than those written using UDP. Therefore, in the DVM system, a TCP connection is used to

transmit large amounts of data like textures from the server to the client, and UDP is used to

exchange smaller objects between nodes, like the entity state data. TCP and UDP both have Port

96

Numbers, to distinguish among different data exchange participants. The same Port Number can

involve two different processes, if one uses the number for TCP and the other uses it for UDP .

Process
Layer

Transport
Layer

Network
Layer

Data-Link
Layer

•---------------------------------1
~ I User Process I ~
1- - - - - - - -t--------------s-------~
r -r ---~C; - - - -i---,-----UD~- - -i--I
1 --- _ ~

j" - - - - - - - - -r------------____:L------------...,- - - - - - - - - -I
1 1
1
1
1
1I J

Hardware
Interface

Figure 4.5 TCPIIP protocol suite using 4.layer model

4.3.4 Socket Interface Layer

For two processes to communicate with each other, they must both agree to it, and the operating

system must provide application program interfaces (APIs) for the lnterprocess

Communication (lPC). The API is the interface available to a programmer. The API is the

interface between a user process and a networking protocol. The availability of an API depends

on both the operating system being used and the programming language. Examples of APIs

include the Unix sockets, WinSock and Java sockets. These APIs use sockets to exchange data.

A socket is a data structure maintained by the operating system to handle network connections.

Sockets are represented by integers, and can be treated much like file descriptors. A connection

97

is defined by the combination of the two processes' socket numbers. A socket is an endpoint of

communication which can be named. Each socket in use has a type and one or more associated

processes. Once a socket is created, a user process will read from it, and write to it, and finally

close it. It is the basic building block for socket-based IPC.

In general, there is one protocol for each socket type within each domain. The socket interface

supports the TCP/IP protocol. To create a socket, the communication protocol to use (e.g. UDP

or TCP) should be indicated. The code that implements a protocol keeps track of the names that

are bounded to sockets, sets up connections, and transfers data between sockets, sending the

data across a network. It is also possible for several protocols, differing only in low-level

details, to implement the same style of communication within a particular domain.

Another important input parameter is the port number. For a process in a client host to

communicate with a process in a server host, each process within a host must have its own

unique address within the host. This allows the data to be delivered ultimately to the proper

process. This is a 16 bit number. To send a message to a server, it should be sent to the port for

that service of the host that it is running on. These addresses are known as port numbers. The

lower numbers are often reserved, or "well-known" port numbers used for telnet and other

communication software. Ports in the region 1-255 are reserved by TCP/IP. The system may

reserve more. User processes may have their own ports above 1023.

Sockets are either connection-oriented or connectionless. Connection-oriented sockets allow for

data to flow back and forth as needed, while connection less sockets allow only one message at a

time to be transmitted, without an open connection. There are different socket families. The two

most common are AF_INET for Internet connections, and AF_UNIX for Unix IPC (interprocess

communication), but the DVM deals only with AF_INET sockets.

98

The DVM uses two types of sockets: stream socket and datagram socket. A stream socket

provides a bi-directional, reliable, sequenced, and unduplicated flow of data without record

boundaries. A datagram socket supports bi-directional data flow, but doesn't guarantee that the

message data is sequenced, reliable, or unduplicated. Datagram sockets provide routing and

fragmentation. Routing is used to forward messages from one local network to another nearby

or distant network. Fragmentation divides large messages into pieces small enough to fit the

local medium. Table 4.1 shows a summary of stream sockets and datagram sockets.

Role Steps Stream Sockets Datagram Sockets
create endpoint socket () socket ()

Server bind address bind () bind ()
~ecifY_9.ueue listen ()

wait for connection accept ()
transfer data read () recvfrom ()

write() sendto ()
recv ()
send ()

create enc!Qoint socket () socket ()
Client bind address bind () bind ()

connect to server connect ()
transfer data read () recvfrom ()

write () sendto ()
recv ()
send ()

Both terminate close () close ()
shutdown () shutdown ()

Table 4.1 A Summary of Stream Sockets and Datagram Sockets

4.3.5 DCP Protocol Layer

The DCP Protocol Layer has nothing to do with the networking protocols provided by the host

system. The important functions of this layer are to establish and break a connection to a server,

99

and to join and leave a server. These functions are interfaced to the NM via the process interface

layer. DCP also relates to the way clients communicate with each other. The OCP Protocol

layer employs a Client / Server model, which contains Client OCP and Server OCP

components. The client OCP provides services to enable a client to connect to the remote server

node, and then to interact with the Server OCP.

4.3.5.1 DCP Protocol Specification

In general, it is very complex to define the operation of a protocol allowing for all the possible

events and error conditions that can arise. Protocols are usually specified using one of a number

of more precise methods and formalisms. A protocol is modelled as a finite state machine or

automaton. The most common method used for specifying protocols is the state transition

diagram (STO) [Halsall, 92]. The protocol can be in just one of a finite number of defined states

at any instant. Transitions between states take place as a result of an incoming event. As a result

of an incoming event, an associated outgoing event is normally generated.

The STO notation is used to document the time-dependent behaviour of the system. For real-

time systems, the STO would usually address the whole system and its changes, and to model

the inside of all control bubbles. Figure 4.6 shows the State Transition Diagrams for

communication between server and client in the OVM system. These state diagrams illustrate

the protocol using pseudo-code to describe what actions are taken in each state. All possible

states are shown in the diagram together with the reasons for changes of state. The STOs show

the observable states in which the system resides subsequent to an event and whilst waiting for

the next event. These STOs show two major loops that are of importance to both client and

server and are part of the STO representation at each node. The loops are the message-check

loop and the operation loop. After starting up, each node enters the message-check loop, and

also enters the operation loop. The message-check loop and the operation loop run in parallel.

100

Communication Activated I

Checked Message ==
Object data / Update
Object

Updating Complete /
Prepare for receiving
next Message

linixhed Sending /
Prepare for receiving
next Message

Checked Message ==
Request data / Load data

Checked Message ==
Request Join / Grant Join

Checked Message ==
Error / Reload last data

Reloading Complete /
Send the last data

Sending
Message

Loading Complete /
Send loaded data

Join OK / Send
Join Grant

(a) Part of the STD representation at a server node

Finished Sending I
Prepare for receiving
next Message

Checked Message ==
Error / Reload last data

Done / Send
the last Data

Communication Activated I

_____ (_''_It_a_~_ii;'::f::~''," M","~

Checked Message == Acknowledgement
Continue Update

Done / Update data

Done / Send
Object Data

Checked Message =;::;

VE data / Loading
Complete

Done /
Process
Data

(b) Part of the STD representation at a client node

Figure 4.6 The State-Transition Diagram for a DVM system

101

The message-check loop checks all messages that arrive from other nodes, and transfers the

received messages to the operation loop. The operation loop performs actual VE operations,

including controlling, rendering, etc. These STDs consist of three major message management

groups. These message groups contain a Joining/Detach group, an Initial Data Transmission

group, and an Entity State Updating group. More detailed explanation about these message

groups can be found in Section 4.3.5.2.

The DVM communication protocol proposed in these STDs is called the Communication

Protocol for a DVM system (DCP). The DCP is an application layer protocol to support

DVM systems on local area networks as well as on the Internet. The DCP is a protocol that

permits integration between nodes in the DVM system. It describes the format used to send and

receive messages between nodes. The DCP is mainly used to exchange the visual data. It is a

protocol definition with associated guidelines and specifies how the implementation is

structured. The DCP is used for simulating large scale distributed virtual environments, and will

allow a DVM system to run over wide area networks.

4.3.5.1.1 Joining / Detach

In DVM environments, every client can join any server at any time, therefore joining a server is

a fundamental requirement of the clients. The join operation is started at the request of the

clients. The server should be running before the clients start. Each client has an initial list of

servers. Whenever a client starts up it chooses a server from the initial list of servers, then sends

a request message to join. When a server starts, it does not have a complete list of clients. When

a client joins to the server, the client is added to the list of clients. When a client releases from

the server, the client is removed from the list of clients. The list of clients is updated at each

server. When a client attempts to join a server, it will generally specify the server to join by

102

name, rather than Internet address. The client has to translate that name to an address before it

can do anything.

The server decides how many clients are currently connected and how many clients are allowed

as a maximum. The server checks the request, and permits a join as long as the permission to

the client is granted, and the limit to the number of joining clients is not exceeded. If the

number of clients is already over the limit, the new client cannot join the server. Each server

also maintains a list of currently running servers in the DVM, allowing another server to

replicate the list of servers. Whenever a server is added to the list or removed from it, the list

gets updated at each other server, so that every server knows the state of all other servers at any

time.

Client DCP TCPIIP Server DCP

Request Primary Join ,'p.n ioin prime)
....
"7

_J

grntjoin nrinu.) Grant Primary Join
......_

Request Secondary Join ,'p.n ioin scnd()
~

grntjoin scndi 'I Grant Secondary Join
~

Request Release reo release()
-,-

res releaser I Response Release
J

I""""

Figure 4.7 Message Exchange Sequence for Joining / Detach

Figure 4.7 shows the message exchange sequence for Joining/Detach using pseudo-code. When

a client starts, it tries an initial join with one of the servers. It is called the" primary join". To

start a primary join operation, a client sends a req joinprim ()message to the server.

103

For example, the client might display the following message (This message is used only as an

aid to understanding; it does not need to be displayed if not required) :

"Requested a Primary Join to the Server: Primary_Server _Name"

When the server has successfully received the req_join_JJrim () message, the server responds

with a gmr join jnim () message to grant the primary join to the client and acknowledge the

receipt of the req_join_JJrim () message. This is the acknowledgement for the client that the

joining request was accepted from the server.

For example, the server might reply with one of the following messages:

"Join accepted"

"You're rejected from this server"

"You sent an invalid request"

A client needs to wait until it receives a message from the server allocating a join for the client.

After a successful join, the server will send the client an acknowledgement message. If after a

certain amount of time no reply has been received from a server, the client retransmits a join

message to the node.

As described in Section 3.3.3, if the FOY of a client moves into the shared zone, the client tries

to prefetch the data of next YE zone from an adjacent server sharing the shared zone. To

prefetch the next YE data, the client tries to join the adjacent server. This is called the

"secondary join". In this case, the client sends a reqjoin_scnd () message to the adjacent

server.

For example, the client could proceed like this:

104

"Requested Secondary Join to the Server"

The server sends a gmt _join_scnd () message to grant the secondary join. The server will pass

the next server name to the client.

For example, the server might then reply with one of the following messages:

"Secondary Join accepted. The Secondary Server Name: SecondaryjServer _Name"

"You're rejected from the secondary server"

"You sent an invalid request"

Finally, if a client wants to leave the server, it simply sends a reqjrelease () message to the

server.

For example, the client might display the following message:

"Requested a Release from the Server: Primary _Server_Name"

The server simply responds with a res_release () message to the client as well.

For example, the server might simply reply with the following message:

"Releasing You"

A server can respond to requests from multiple clients concurrently. After receiving a message

from clients, if messages arrive approximately at the same time, the conflicts can be resolved by

comparing the clients' node addresses. That is, the higher address will be served first.

105

4.3.5.1.2 Initial Data Transmission

Once a client has joined a server, the initial data transmission phase is started. Figure 4.8 shows

the message exchange sequence for the loading of initial data using pseudo-code. First, the

client sends a req_data_init () message to the server to request the initial data for the local VE

area.

Client DCP TCP/IP Server DCP

Request Initial Data - n~(l init datat) Time ~~
data geo polv()

} Transmit-- Geometry- Polygons

-
data ent _polv ()

}Transmit- Entity
~ Polygons

--
~ata ent state ()

} Transmit- Entity State
""-C Data

~
data txt ()

}Transmit
""-C

Texture
~ Data

- TransmitIata send done()
I"'_" Done

Figure 4.8 Message Exchange Sequence for transmission of Initial Data

106

For example, the client might display the following message:

"Requested Initial Data to the Server: Local_ VE_Area"

On receiving this, the server transmits the initial data to the client in sequence. Messages are

sent by a nonblocking send operation. UDP is used for transmitting of the initial data, except the

texture data.

For example, the client might display the following messages:

"Receiving GPD "

"Got all of GPO"

"Receiving EPD "

"Got all of EPD"

"Receiving ESD "

"Got all of ESD"

Whenever a client loads the texture data from the server, a TCP connection is used. The client

does not need to notify acknowledgement of the received message because this DVM

communication is based on the TCP protocol. The client first has to establish a connection with

the server. This means an explicit connection in the sense of a client-server connection.

For example, if the connection is successful, the client might display the following messages:

"Trying to connect to the Server"

"Accepted connection to 224.1.1.123"

107

After the connection has been successfully accepted from the server, the server sends an

acknowledgement to the client. The server then starts to send the texture data to the

client. Because DVM communication uses a TCP window (see Section 4.4.6) to control

congestion, a client node allocates buffer space for receiving data, and a server is

allowed to send data without waiting for an acknowledgement response providing that it

will fit within the buffer. The flow-control mechanism is used to send data in sequence.

For example, the client might display the following messages:

"ReceivingTXD "

"Got all of TXD"

The server monitors the transmission of texture data until the connection is broken. After the

transmission of the texture data has been completed, the TCP link is disconnected.

For example, the client and the server might display one of the following messages:

"TCP socket closed"

"TCP socket close failed"

Finally, the data_send_done() command is signalled by the server. The server terminates the

initial data transmission phase.

For example, the client might display the following message:

"Got all of Initial Data"

108

4.3.5.1.3 Entity State Updating

The information created at each client can be categorised as entity state information. The entity

state information is the current state of every entity that all other clients always need to know

about. The client is allowed to inform the server about its actions, and to obtain information

from the server about other clients. The client informs the server about events, the server then

forwards this information to the other servers who then replicate the events. All this entity state

information has to be replicated over the network at all the other nodes.

In a DVM system, latency can increase in some nodes. The time between a user performing an

operation and when it is seen and can be reacted to by all users in the system, can make a

difference. There are many reasons for this latency, including delays from sending and receiving

information on the network, from processing and computation, and from displaying the

graphical results to the user. In general, reducing latency is a difficult system engineering

problem, as it has so many contributory factors. One popular technique is to use protocols that

do not require acknowledgements for network messages. These can run more quickly, but

provide no guarantees that the message actually arrived.

A DVM usually uses less reliable protocols to reduce latency. First, the DVM uses UDP to

reduce the amount of message passing, to minimise network load, and to increase scalability,

although it still has unreliable communication problems because the current UDP

communication does not have tlow control over data transfers. Second, the DVM uses a

multicast scheme in order to guarantee that a packet is simultaneously received at every node in

the group.

Figure 4.9 shows the message exchange sequence for updating of the entity state between

nodes. When a client updates the state of an entity, it multicasts an entitv jstatet) message to

109

update the entity state to the server and client nodes within the same local YE group, and the

nodes update the corresponding entity (e.g., aircraft).

Server I DCP TCP/IP

.-,
I,,
\,
"

Client 1.1DCP

Transmit
Entity State

Transmit
Entity State

(in the shared area)

---- ----- ---

TCP/IP Client 1.2 DCP

Server 2 DCP Client 2.1 DCP

Figure 4.9 Message Exchange Sequence for Updating of Entity State

When an entity_stater) message is received, as described above, the clients and the server don't

send back an acknowledgement message to the sender. When an entity state message is lost or

undelivered, the state of the entity will be recovered quickly because the state of entities usually

changes continuously.

The server keeps track of the entities In the local YE. As described in Section 3.3.6, for

example, if an entity moves into the area that is shared between Server-I and Server-2, a client

110

transmits an entity _state() message to Server-l in the same local VE group, and Server-l

retransmits the entity_state() message to Server-2 that is sharing the entity. On receiving this,

Server-2 transmits the entity_state() message to its own clients. After the entity moves out of

the shared area, and the two servers no longer share the entity, then no unnecessary packets are

sent.

4.3.5.2 DCP Protocol Units

The format of the messages exchanged between the two nodes - oCP protocol units - must be in

an agreed syntax to ensure they have same meaning in both computers. Within the DVM

system, communication between nodes is for two purposes. The first of these is control, which

can be defined as transfer of details about the sender's state between a sender and another

node. Control messages are not generally visible to the users of the DVM system. The second is

data itself. The data is received, processed, stored and distributed to and from nodes in the DVM

system.

As can be seen in Table 4.2, the Protocol Units of OCP involve three message groups for

Joining/Detach, Initial Data Transmission, and Entity State Updating. The Joining/Detach

message group is used to establish or release the initial connection between server and client

node, or between server and server node. The Initial Data Transmission group is used to

transmit the initial data from the server node to client node. The Entity State Updating group

manages the exchange of entity information between server and client nodes, or between server

and server node. The direction of each message is distinguished by whether the client or server

node sends the message. Each message involves the combination of information, including

operation code, operation time, etc. To achieve operation of these groups, the OCP packet types

(describe in section 4.3.5.3.2) are used.

III

Management Message Direction Pseudo-code

Joining/Detach Req uest_Primary _J oin C~S, S~S reqjoin_prim()

Request_Secondary _J oin C~S reqjoin_scnd()

Request_Release C~S req_release()

ResponseRelease S~C resjeleasei)

Grant_Join S~C, S~S grntjoin_prim()

S~C grntjoin_scnd()

Initial Data Request_Data C~S req_data_init()

Transmission Transmit_Data S~C data_geo_poly()

data_ent_poly()

data_ent_state()

data_txt ()

data_send_done()

Entity State Update_Entity _State C~S, S~S entity _state()

Updating C~C

Table 4.2 Protocol Units

4.3.5.3 DCP Packets

The DCP is designed to be implemented on top of TCP and UDP. Since TCP and UDP are

underpinned by lP, packets will have an IP header, a TCP or UDP header, and a DCP header.

Additionally, the packets will have a header (eg. an Ethernet header) to allow them through the

local transport medium. The UDP header and the TCP header both contain the source port

number and the destination port number. The TCP ports are independent of the UDP ports, since

the IP header specifies the protocol.

112

As shown in Figure 4.10, the order of the contents of a packet will be : local medium header, IP

header, TCP/UDP header, DCP header, followed by the remainder of the DCP packet. The DCP

uses the source and destination port fields of the JP header and the length field reflects the size

of the DCP packet. The DCP header consists of a 2 byte opcode field that indicates the packet's

type (e.g., ERROR, DATA etc.). These opcodes and the formats of the various types of packets

are discussed further in the section 4.3.5.3.2 on DCP packets.

Local Medium JP TCPIUDP DCP

Figure 4.10 Order of Headers

4.3.5.3.1 Data Encapsulation

The addition of control information to data is called encapsulation. When we assume the DCP

applications, using TCP/JP or UDP/JP protocols, between two systems that are connected with

an Ethernet, Figure 4.11 shows the encapsulation by each layer. If there are 100 bytes for the

DCP client process to transfer to the DCP server process, the DCP client process adds 4 bytes of

control information to the beginning of the data buffer, before passing the data down one layer

to the UDP layer. The UDP layer does not interpret the 4-byte DCP header at all. The task of the

UDP layer is to transfer 104 bytes of data to the other UDP layer. The UDP layer then adds its

own 8-byte header and passes the I12 byte buffer to the JP layer. The JP layer adds its 20 byte

header and passes the 132 byte buffer to the datu link layer for the Ethernet. At this layer a 14

byte header and a 4 byte trailer are added to the buffer of information. The final diagram of

Figure 4.11 (a) shows the Ethernet frame that is physically transmitted across the Ethernet,

along with the sizes of each of the headers and trailers, in bytes. We call the unit of interchange

113

at the network layer packets. At the data-link layer we call them frames, and at the lowest layer,

the physical layer, hits are exchanged.

data

DCP message DCP data
header

UDP message UDP DCP data
header header

IP packet data

Ethernet frame Ethernet data
header

14 20 8 4 4

(a) over UDP/IP on an Ethernet

data
DCP message

DCP data
TCP message

header

TCP DCP data
IP packet

header header

data
Ethernet frame

Ethernet data
header

14 20 20 4 4

(b) over TCPIIP on an Ethernet

Figure 4.11 Encapsulation of DCP data

114

4.3.5.3.2 DCP Packet Types

DCP supports twelve types of packets. The DCP header of a packet contains the opcode

associated with that packet. The types of packets are as follows:

Opcode Operation

Primary Join Request (PJR)

2 Primary Join Grant (PJG)

3 Secondary Join Request (SJR)

4 Secondary Join Grant (SJG)

5 Release Request (RRQ)

6 Release Response (RRS)

7 Data Request (DRQ)

8 Data Response (DRS)

9 Geometry Polygon Data (GPD)

10 Entity Polygon Data (EPD)

II Entity State Data (ESD)

12 Texture Data (TXD)

A client node can join one of servers in a DVM system at any time. Whenever a client node

wants to join a server, it first has to transmit a PJR packet to a server node to get a join

permission. PJR packets have the format shown in Figure 4.12. PJR packets (opcode I) contains

Client_Identification (Client_ID) field. Every client has a unique Client_ID. The Client ID is a

sequence of bytes in netascii terminated by a zero byte. A node that receives netascii mode data

must translate the data to its own format.

115

I Opcode
2 bytes

I Client ID
string

I 0 I
I byte

Figure 4.12 PJR packet

When a server node receives a PJR packet from a client node, it transmits a PJG packet to a

client node as long as the permission to the client is not denied. PJG packets have the format

shown in Figure 4.13. PJG packets (opcode 2) contains Operation_Time (Optime) field.

2 bytes 8 bytes
Opcode Optime

Figure 4.13 PJG packet

As described in Section 3.3.3, if a client node wants to access an adjacent YE area that another

server maintains, then it transmits a SJR packet to the current server node to get the adjacent

server's address. SJR packets have the format shown in Figure 4.14. SJR packets (opcode 3)

contains the Current_Area_Number (Curr _Area_#) and Direction (DIR) fields.

2 bytes 8 bytes 3 bytes 2 bytes
Opcode Optime Curr Area # DIR

Figure 4.14 SJR packet

When a server node receives a SJR packet from a client node, it transmits a SJG packet to a

client node to inform the adjacent server's name. SJG packets have the format shown in Figure

4.15. SJG packets (opcode 4) contains Next_Server_Name (Nxt_Sv_Name) field.

116

2 bytes 8 bytes string
Opcode Optime Nxt Sv Name

Figure 4.15 SJG packet

A client node can leave from a server in a DVM system at any time. Whenever a client node

wants to release from the server, it transmits a RRQ packet to a server node. RRQ packets have

the format shown in Figure 4.16. RRQ packets (opcode 5) contains just client_ID field.

2 bytes 8 bytes string
Opcode Optime Client ID

Figure 4.16 RRQ packet

When a server node receives a RRQ packet from a client node, it transmits a RRS packet to a

client node to inform the acknowledgement of RRQ. When a client receives the RRS, it leaves

from the server and logs out of the corresponding DVM. RRS packets have the format shown in

Figure 4.17. RRS messages (opcode 6) contains just server _ID field.

2 bytes 8 bytes string
Opcode Optime Server ID

Figure 4.17 RRS packet

Whenever a client node wants to load some local VE data from a server, it has to transmit a

DRQ packet to a server node. DRQ packets have the format shown in Figure 4.18. DRQ

messages (opcode 7) contains just Data Type (Dtype) field.

117

Ope ode Optime
2 bytes 8 bytes

Figure 4.18 DRQ packet

When a client node completely receives the requested YE data from a server, it transmits a DRS

packet to a server node. DRS packets have the format shown in Figure 4.19. The DRS packet

(opcode = 8) has a data_number (Data_#) field.

2 bytes 8 bytes 2 bytes 8 bytes
Opcode Optime Data # MsgOptime

Figure 4.19 DRS packet

When a server receives a DRQ packet from a client, it transmits the local YE data to the client

node. All transmitted packets are not acknowledged by the client. The local YE data includes

geometry polygon data, entity polygon data, entity state data, and texture data.

Geometry polygon data is transferred in GPD packets depicted in Figure 4.20. Each GPD packet

(opcode = 9) has an Area_Number (Area_#), Polygon_Number (Po!y_#), Offset, and Vertex

fields.

118

Figure 4.20 GPD packet

Entity polygon data is transferred in EPD packets depicted in Figure 4.21. The EPD packet

(opcode = 10) has Polygon Number (Poly_#), Patch_Number (Patch_#), Vertex (Vt), Normal

(Nor), and Colour (Col) fields.

Figure 4.21 EPD packet

Entity state data is transferred in ESD packets depicted in Figure 4.22. The ESD packet (opcode

= II) has Data_Type (Dtype), Area_Number (Area_#), EntityType (Otype), Entity_ID

(O/~j_ID), Offset, Position (POS), Direction (DIR), Speed (SP) and Dead-Reckoning flag

(D/lag) fields.

Figure 4.22 ESD packet

119

Texture data is transferred in TXD packets depicted in Figure 4.23. The TXD packet (opcode =

J 2) has Texture Number (Txt_#) and Imagefile (ImgF) fields.

2 bytes 8 bytes 2 bytes n bytes
Opcode Optime Txt # ImgF

Figure 4.23 TXD packet

The format of DCP packets are shown in detail in Appendix A.

4.3.6 Process Interface Layer

When developing a DVM application there is the problem of how the actual VE processes,

including client and server, interface to the network. In DVM this is done through the process

interface layer. This interface mostly is a collection of functions, each corresponding to a

specific event. The actual VE process interfaces to the DCP protocol layer via the process

interface layer. The process interface layer couples the actual VE process with all functions that

are related to the networking.

Every time an event occurs inside the actual VE process, the VE process calls the corresponding

function to inform the networking process. If the actual VE process causes an event, for

instance, it calls the corresponding function of the networking process. The networking process

is also invoked to establish or break a connection and to join and leave a DVM. Everything else

the DCP protocol layer provides is exclusively used by the process interface layer.

120

4.4 Major Techniques for Networking of a DVM

There are many important techniques to be considered to improve the communication efficiency

when implementing a networked for a DVM system. These techniques include communication

schemes, message communication methods, data portability, data compression, dead-reckoning

algorithm, and so on. This section describes these major techniques.

4.4.1 Communication Schemes of the DVM

There are two communication schemes that have been used in the DVM (Figure 4.24). These

communication schemes are unicast and multicast. A DVM system usually employs one form

of these communication schemes. This section describes these two methods.

Group NETW

- -> Unicast

~ Multicast

Figure 4.24 Communication Schemes

121

4.4.1.1 Unicast

Unicast establishes communication between two nodes. Unicast requires the establishment of a

connection or path from each node to every other node in the network. A link must be

established between every node to communicate with each other. If there are 11 nodes in a DVE,

this will require links for a total of n(n-I) virtual connections in a group. If one node makes a
change, that node must be connected to n-I other nodes and send /1-1 messages. If each node

updates its individual entity's position before rendering and informs every node, this results in

n(I1-I) messages per rendering frame. Unicast can place a burden on each node that can quickly

become a performance bottleneck. So in a real-time environment, unicast communications

between nodes should be avoided.

4.4.1.2 Multicast

Broadcast allows a node to send data to every node. Each node sends data with an address that

catches every node's attention. A new node must simply know on what broadcast channel to

listen. Once the node knows this channel number, the node can listen for broadcasts from other

nodes and broadcast its own updates. Broadcast relieves the overhead of maintaining links.

However, broadcast is not suitable for networks of the DVM because the network becomes

flooded with unwanted messages' traffic and it is difficult to avoid routing loops. Moreover, IP

broadcast requires that all nodes examine a packet even if the information is not intended for

that node, incurring a major performance penalty for that node because it must interrupt

operations in order to perform this task at the operating system level.

DVM, therefore, uses multicast. Multicast reduces the load on nodes and is an alternative to

broadcast. Multicast is simply a subset of broadcast. Multicast provides one-to-many delivery

services for applications that communicate with several other nodes simultaneously. Multicast

122

protocols add a group ID so that several multicast streams can run concurrently [Gossweiler 941.

A node should be a member of one group at a time. The node will join and leave groups at any

time. There is no restriction on the location or number of nodes in a group.

Multicast allows a group to communicate on a network via a single transmission by the source.

The nodes in a group can communicate with each other, and only the nodes in the group receive

the message, rather than every node on the network. Multicast protocols permit moderately

large real-time bandwidths to be efficiently shared by an unlimited number of nodes. Multicast

provides a way of overcoming these disadvantages whilst still retaining the low transmission

overhead, but it is not widely available and is, like broadcast, unreliable. Using multicast for

updates reduces aggregate message traffic. However, if the systems are to be geographically

dispersed, then high-speed multicast is required.

If a client is connected to a server, it has to send all packets to the server. The server receives the

packets, and decides which information should be forwarded to which of the other clients. This

method greatly reduces the necessary bandwidth requirement for the client's connection to the

network. However, the crucial thing about this approach is latency. If the latency is not

extremely low the user will experience a perceptible delay between entity action on the source

client and entity action on target clients. The user will perceive considerable lag if the latency is

too high. In the DVM, therefore, communication to update the state of entities between nodes

uses a peer-to-peer approach. Packets that transmit the current entity state to the nodes are sent

in a multicast fashion. Theoretically, it would be ideal to use multicasting for this purpose.

4.4.2 Message Communication between nodes

As DVE systems are potentially distributed on different nodes, all communication between

nodes is restricted to message communication. The DVM system uses two message

123

communication methods: Loosely-coupled Message Communication and Tightly-coupled

Message Communication. This section describes the message communication between different

nodes.

4.4.2.1 Loosely-coupled Message Communication

With loosely-coupled message communication, the source node sends a message to the

destination node and does not wait for a reply. The two nodes proceed asynchronously and a

message queue will build up between them. If the source node expects to receive a positive or

negative acknowledgement, indicating whether the message has safely arrived at its destination

or not, an additional effort is required. It is up to the source node to decide how to handle a

failure in message transmission.

4.4.2.2 Tightly-coupled Message Communication

The source node sends a message to the destination node and then waits for a reply from the

destination. Tightly-coupled message communication should only be used when a response is

required. In the typical client/server situation, several clients request services from a server by

sending messages to it. In this case, a message queue can build up at the server. The client can

use tightly-coupled message communication and wait for a response from the server.

4.4.2.3 Summary of the Message Communication

Whether the client uses loosely-coupled or tightly-coupled message communication with the

server is application dependent and does not affect the design of the server. It is possible for a

server to have some of its clients communicating with it using tightly-coupled message

communication while others use loosely-coupled message communication. When the client

124

waits for message from other client nodes in addition to the response from the server, it can use

loosely-coupled message communication.

4.4.3 Data Portability

No data conversion need occur when a DVM application is based on a homogeneous system,

where all operations run in the same environment. However, one of the goals of a DVM is to

support distributed processing across heterogeneous environments. Communication in a

heterogeneous environment will require data conversions. There are two kinds of data

conversion: Type conversion and Representation conversion. Type conversion changes the data

type of a value, for example, by rounding a REAL to an INTEGER. Representation conversion

changes the binary representation of a value such as network byte ordering. DVM

communications do not deal with type conversion. On the other hand, DVM requires that a

representation conversion be performed when a typed value is transferred across environments

that use different representations for such a value.

4.4.3.1 Data Representation

On networks, many data items transmitted between computers require more than a single byte

of storage. However, unfortunately, some computers store the bytes that comprise a multibyte

value in different orders. For example, 16-bit integers usually require two bytes. There are two

ways to store this value. As can be seen in Figure 4.25, when the higher-order byte is stored at

the lower address, it is referred to as big-endian (the most significant byte is stored first). Some

machines store the lower-order byte first. This representation is referred to as little-endian (the

least significant byte is stored first). To communicate between two machines which uses

different byte-order, two communicating machines must agree on data representation.

125

Little endian byte order I low-order byte I high-order byte

t t
addr A addr A+l

Big endian byte order I high-order byte I low-order byte

t t
addr A addr A+l

Figure 4.25 Byte Orders for a 16-bit quantity

4.4.3.2 Network Byte Ordering

There are potential byte order differences between different computer architectures and different

network protocols. For a DVM system, therefore, a solution to this problem is for a network

protocol to specify its network byte order. The TCP/IP protocol uses the big endian format for

the l6-bit and 32-bit integers that it maintains in the protocol headers. The TCP/IP protocol

maintains only integer fields, as the differences in the internal formats for floating point data are

even worse. A DVM communication uses a big endian format because it is based on the TCP/IP

protocol. The TCP/IP protocol only specifies the format for the fields that it maintains, it has no

control over the format of the data that the DVM applications transfer across the network. To

handle byte ordering for non-standard size integers, there are four functions that have been

designed for the Internet protocols. The figure 4.26 shows the conversions done by these

functions.

126

htonl convert host-to-network, long integer

htons convert host-to-network, short integer

ntohl convert network-to-host, long integer

ntohs convert network-to-host, short integer

Figure 4.26 Byte ordering functions

4.4.4 Data Compression

For a DVM system, compression of data can be used to save bandwidth. For example, the

following cases 1 and 2 show some examples of JPEG data compression. The JPEG can

typically achieve a high ratio of 10 : I to 20 : I without visible loss for compressing

photographic images/textures. The first case shows an example where a typical image file is

compressed by a ratio of 10 : I, from a file of over 31 megabits down to a file of about 3

megabits. The second case shows that an image file is compressed by a ratio of 10 : I from, a

file of slightly under 2 megabits down to a file of about 0.2 megabits. Table 4.3 shows the

transmission time comparison at various bandwidths with and without compression. Large

savings in network bandwidth can be gained by compressing the geometry data before sending

it through the network.

Case 1 :

• 1280 x 1024 pixels at 24-bits/pixel = 31.45 Mbits

• Compression ratio 10: I 31.45 Mbits I 10= 3.145 Mbits

Case 2:

• 320 x 256 pixels at 24-bits/pixel = 1.97 Mbits

• Compression ratio 10: I 1.97 Mbits / I() = 0.197 Mbits

127

Image File Size Tel. Line Switched T-l' T_32

(JPEG) 4.8 Kbps 56 Kbps 1.544 Mbps 45 Mbps

3.145 Mbits 655 sec 56 sec 2.04 sec 0.07 sec

0.197 Mbits 41.04 sec 3.52 sec 0.13 sec 0.004 sec

Table 4.3 JPEG Image File size and Transmission Time

Because data compression / decompression is actually independent and outside of this research,

a DVM communication does not specify the detailed rules for data compression. However, a

data compression techniques are a major factor that is needed to design a real-time DVM system

for transmitting data among nodes. Without data compression and decompression, a DVM

system will operate much more slowly and would require substantially higher bandwidth as well

as more storage capacity. For a DVM system, therefore, the compression / decompression

operation can be handled by software as well as hardware. Although the hardware method is

more expensive, it is substantially faster than software-based solutions. However, more recently,

the performance of software-based systems has been dramatically improved. Various

commercial products (JPEG, ZIP, GZIP, etc ..) have been announced. DVM can choose one of

these commercial products.

4.4.5 Dead-Reckoning

As already described in Section 4.2.1, in general the biggest limitation of networks is the limited

bandwidth. Bandwidth can be saved when transmitting state information by using dead-

1 A network facility capable of transmitting information at the rate of 1.544 Megabits per second
(nominally 1.5 Megabits per second). Also known as DS I.
2 A network facility capable of transmitting information at the rate of 44.736 Megabits per second
(nominally 45 Megabits per second). Also known as DS3.

128

reckoning. In general, dead-reckoning describes an approach to state transmission where

prediction of an entity's actions is used to cut down on the amount of information that needs to

be sent. The dead-reckoning algorithm greatly reduces network traffic, allowing more nodes

within the limits set by network bandwidth. A DVM, therefore, uses dead-reckoning algorithms

to reduce network traffic, although the method can cause problems if updates are sent too

infrequently.

In a DVM, a user has to do something in order to create a change of state in an entity at a client.

This could be something like pressing the button of a joystick or mouse to move the entity. If a

user does not do anything, there will be no events. The state will normally change every single

frame if an entity is moving or rotating at all. The state is only omitted from sending if an entity

has not changed at all. However, if an entity moves along the same path at a previously

established velocity, instead of just sending an entity's location, a source client sends a message

that contains the entity's location, orientation, a timestamp, a velocity vector, and a dead-

reckoning flag. The other target clients in the network can extrapolate the entity's location

without additional updates. The other target clients will already know where the entity is

because they have the entity's old position and current velocity. Updates are only sent when

needed and the amount of traffic is greatly reduced.

A DVM uses a simple error-based approach to dead-reckoning thresholds. Figure 4.27 shows

the error-based dead reckoning diagram. In error-based dead reckoning, if the difference

between the entity's computed position and the actual position exceeds a predetermined error

threshold range, then the source client informs the other target clients to update the entity with

the new position and velocity. Normally, only the target clients that receive the entity state

update perform the prediction algorithm, in order to determine whether the deviation of the

predicted position from the actual position is high enough to justify sending another state

update. If a target client's entity strays only slightly from the dead-reckoning path, then the

target client will decide that the difference is negligible, and does not send messages to the other

129

target clients. The target client only needs to send a message out to the other clients when the

change is significant. When a target client receives a message to update the dead reckoned

entity, the target client uses a snap back method so that the location of the entity is corrected

immediately to reduce computational loads, although it results in the entities apparently

jumping.

Threshold
Ranges

Actual Entity Location

.._.:~~:\~\E"ti~.~'.'~.;':-_~_ r.-: ~_~_~1..;;:,~:,,;ately
...... I

...... I
... I Computed

Entity Location
Arrived
Update Message

I

Dead Reckoned Entity Path

Figure 4.27 Error Based Dead Reckoning

4.4.6 TCP windows

As described in Section 4.3.3, in a DVM system, UDP is usually used, a TCP connection is only

used to transmit large amounts of data like textures. When a TCP connection is used, sometimes

the network connection between the nodes will have a bottleneck, limiting the rate of data

transfer. Unless the bottleneck is the transmission rate of the sender, then if transmitting of data

occurs too fast, it will result in congestion at the receiver. To throttle the transmission speed

130

down to a level where congestion does not occur, a TCP window is used. The primary reason

for the TCP window is to control congestion.

A TCP window means that a sender can send a limited amount of data on a particular

connection until it gets an acknowledgement back from the receiver that it is ready for more.

For example, as can be seen in Figure 4.28, if a pair of hosts are talking over a TCP connection.

that has a TCP window size of 64 KB, the sender can only send 64 KB of data and then it must

stop and wait for an acknowledgement from the receiver that some or all of the data has been

received. If the receiver acknowledges that all the data has been received then the sender is free

to send another 64 KB. If the sender gets back an acknowledgement from the receiver that it

received the first 32 KB, although the second 32 KB is still in transit, then the sender could only

send another 32 KB.

Sender Receiver

Buffer (64 KB) Buffer (64 KB)

3rd 2nd

3rd:

32KB 32KB

send got

3rd 1st

Control Ack
Control

For a DVM system the window size is determined by setting the socket send and receive FIFO

Figure 4.28 A TCP window for Congestion Control

.buffer sizes. For communication between the nodes, the FIFO buffer sizes should be correctly

131

set before making the connection. In theory the TCP window size should be set to the product of

the available bandwidth of the network and the round trip time of data going over the network

[RFC, 98]. A way to determine the round trip time in the DVM is to use a ping from one node to

the another and use the response times returned. For example, if a network had a bandwidth of

100 Mbits/s and the round trip time was 10 msec, the TCP window size should be 125 KB (100

x 106x 10 x IO-3bits).

4.5 Summary

This chapter has presented a networking architecture capable of implementing the DVM model

described in Chapter 3. The details of the proposed networking architecture include the major

goals to be achieved in DVM networking; the basic restrictions and their relationship to DVM

communication, the networking subsystem for exchanging messages between nodes, and major

techniques used for networking of the DVM system. The details of a prototype system are

presented in Chapter 5. This Chapter will describe the structure, implementation techniques,

demonstration, and evaluation of the DVM prototype. The emphasis will be on the modelling

and networking aspects of the DVM system as presented in Chapters 3 and 4.

132

CHAPTERS

A PROTOTYPE DVM SYSTEM

The overall modelling and networking architectures of the DVM system were described in

Chapters 3 and 4. This chapter describes a DVM prototype which is used as a test-bed to show

how the DVM system, as outlined in the previous chapters, might be implemented. The purpose

of the DVM prototype is to test the correctness and validity of the modelling and networking

architecture of a DVM system to show that it is efficient, and to describe how DVM

networking can be implemented. A full implementation of the DVM design concepts would

take a long time. Therefore, not all of the design's elements are fully implemented, though the

prototype is sufficient to verify the viability of the ideas used in the proposed solution.

Especially, the implementation of the prototype system concentrates on communication

between nodes.

This chapter begins by describing the details of the prototype DVM system with a substantial

case study. This is followed by an explanation of the fundamental techniques for

implementation of the prototype system. Next, the demonstration results of the prototype

133

system are presented. Finally, the remainder of the chapter is concerned with performance

testing.

5.1 Case Study: The Aircraft Manoeuvre Operations

The case study will incorporate many key points of the DVM techniques we have described in

previous chapters. This section includes the scenario, implementation requirements,

environment, structures, relationships for communication between components and the

implementation sequences of the DVM prototype system.

5.1.1 Scenario

Small unit military operations have been chosen as a case study for the DVM prototype system.

The case study has implemented the aircraft manoeuvre operation. The environment consists

of a large 2D ground area. The system for the case study is based on a networked environment,

and implements a distributed application where multiple users participate in the aircraft

manoeuvre operation. Each user participating in the operation can sit at any of the client nodes,

which are connected to each other through the network. Each user can enter and leave the

operation at any time.

In this case study, a number of software units run on multiple nodes including the server and

the client nodes. Each user's virtual world represents one part of the global VE. Client software

is used to generate a virtual world for each user. The virtual world space size is the same across

all the users. Each user's local VE is represented by the view scope.

134

The size of the view scope (FOY) is the same for all the users. If some users' FOY is sharing

the same local virtual area, the users can see the virtual world with the same aircraft and terrain.

Each user can have a view of all the aircraft that are currently in the same local YE. They are

also able to see the same activity of all the aircraft in the FOY. If an aircraft is moved into the

shared area of the local YE, its representation in the next local YE will appear. If an aircraft is

moved out of the local YE, its representation in the local YE disappears, its representation in

the next local YE is still displayed.

This system allows the networked users to control aircrafts. If a user has a permission to control

an aircraft, the user can move the aircraft in any direction within the field of view (FOY), and

stop at any time. The user can also change the speed and the direction of the aircraft. That is,

each user can accelerate, decelerate or rotate the aircraft. When a user changes the state of an

aircraft in the FOY, the system sends a message to inform the other users of the new position

and velocity.

5.1.2 Implementation Requirements of the Prototype

This section describes the requirements for the implementation of the prototype system. The

statement of requirements forms the basis for the design of the prototype. These requirements

are as follows.

• It should support the synchronous update of the entity-state between nodes.

• It should support multiple servers and clients.

• It should support GUI-based user interactions.

• Data should be distributed on the multiple servers.

• Multiple users should be able to join or leave the system at any time.

135

• The system should allow clients access to any server.

• The system should allow users to control any entity.

5.1.3 Implementation Environments

The implementation of a DVM prototype system is undertaken at the network environment

level. These environments consist of a number of hardware and software components. This

section briefly describes these environments, including hardware, software, and networking

components that are required to implement the DVM prototype system.

5.1.3.1 Hardware

A DVM prototype system should be executable on a number of different computers. However,

the initial development of a prototype system was planned to implement in a homogeneous

environment, namely a network of Silicon Graphics Indy workstations. Currently there are 8

workstations available. Although these systems would not be suitable for the fast

implementation of the prototype system, if more specialised hardware is added, much of the

graphics capabilities of this system can be improved.

5.1.3.2 Software

Software development of prototype has been done on a UNIX-based system, namely the IRIX

Operating System (version 6.2) that uses virtual memory. The prototype system was written

using the IRIX Graphics Library (GL) on a Silicon Graphics workstation. This provides a set of

subroutines created for the purpose of constructing both 2D and 3D computer graphics. The GL

library is extensively described in the GL manuals [Silicon, 92]. The ANSI C language was

136

chosen as the implementation language to develop the prototype under IRIX OS. The standard

C library of the UNIX version, which includes some functions not defined by the ANSI

standard, was used.

5.1.3.3 Networking

The behaviour of the prototype system is that of a concurrent system. There are three

environments, multiprogramming, multiprocessing and distributed processing for the

development of concurrent systems. In the multiprogramming environment, there are multiple

tasks sharing one processor. In the multiprocessing environment, there are two or more

processors with a shared memory.

In the distributed processing environment, there are several computers connected to each other

by a network. Each computer has its own local memory and there is no shared memory between

the processors. Thus a distributed application consists of concurrent tasks distributed over the

network and communicating via messages. The prototype system is mainly based on a

distributed processing environment.

A Local Area Network (LAN) is usually used to link nodes within a single area and

geographically dispersed sites are usually linked using the Internet. The prototype DVM system

is based upon a LAN because the workstations are distributed over an Ethernet. The Ethernet

link has a theoretical speed limit of 10 Mbps. Recently, networking mediums such as FOOl and

Fast Ethernet, capable of operating at 100 Mbps, have become widely available.

The network configuration for the distributed processing environment IS shown in

Figure 5.1. As mentioned earlier, this configuration consists of a network of

137

workstations (Silicon Graphics Indy). This configuration represents the physical

connections between the servers and the clients involved in the demonstration and the

evaluation.

There are two servers, called SI and S2, and six clients, called Cl, C2, C3, C4, CS, and

C6, on the Ethernet. The communication schemes of the prototype use Unicast and

Multicast. As described in section 4.4.1, either Unicast or Multicast can be chosen to

deliver messages from one client node to all other nodes in the same VE group. Unicast

is used to establish communication between two server nodes. Multicast is mainly used

to update the entity states between nodes.

Cl C2 C4 S2

....
Ethernet

....

C : Client,
C3 SI CS C6 S : Server

Figure 5.1 Network Configuration for Distributed Processing

5.1.4 Structure of the Prototype System

The prototype system contains two different types of software : the server and the client

software. They exchange information with each other on the network. This section describes

138

the overall structure of the prototype system, and shows the interrelations among the modules

within the system.

5.1.4.1 The Context Diagram

The context diagram is usually the first model to be constructed. The context diagram shows

the total prototype system, its parts, and how they interrelate with the system. It specifies the

boundaries of the prototype system, shows all the inputs to the system and outputs from the

system, and clarifies the system requirements.

Figure 5.2 shows the system context diagram of the prototype system. The diagram shows the

terminators that interface with the system. The terminators represent the people (e.g. client

users, server managers) that use the prototype system. The terminators are parts of the world

with which the prototype system must interact. The terminators can be used to represent the

boundary. The terminators have their role and function. They receive information from the

system, or send information to control it.

User Request Input Control

Prototype
System

Client
Player

Server
Manager

Figure 5.2 System Context Diagram

139

5.1.4.2 Dataflow Diagrams

Having completed the initial requirement analysis, the dataflow diagram (DID) notation is used

to complete the logical process model. Below the context diagram, the system has the level 1

DfD shown in Figure 5.3. The dataflow diagram is drawn from a restricted number of

components, namely processes, terminators, dataflows and data stores. The DID shows what

data flow into, through, and out of the system, what data is stored, and how it is transformed by

processes.

User
Request

Input
Control

Request Data,
Updated Data

Display
System
Status

Requested Data,
Updated Data

Display VE

Figure 5.3 The Level 1 Data Flow Diagram

As shown in Figure 5.3, the data items flowing into and out of this DID also appear in the

context diagram. The system really performs two main processes : Client system and Server

system. Rather than operating under the control of a central process, these are independently

activated by control of the terminator. Figure 5.4 shows the Level 2DIDs.

140

PJR. SJR.
DRQ.RRQ

Messages:
Request Data,
Updated Data

Messages
Requested data,
Updated Data

User
Request

Change
ESD

Control
Data

Updated Scene &
Entity data

ESO. EPO.
GPO. TXD

Disp!ay 1'£

(a) DID 1-1

Messages:
Requested data,
Updated Data

GPO.TXO.
DRS. RRS

Input
Control

GPD. TXO

/
YE data

Display
System
Status

(b) DID 1-2

Figure 5.4 The level 2 DID for the prototype system

141

5.1.5 Relationships for communication between DVM

components

In the DVM prototype system, the server node includes the functions of four modules: Master

Manager (MM), Network Input/Output Manager (NM), Computation Manager (CM), and

Database Input/Output Manager (DM). The client node includes the functions of four modules:

Master Manager (MM), Network Input/Output Manager (NM), Computation Manager (CM),

and Rendering Manager (RM). Figure 5.5 shows the relationships for communication between

DVM components defined in Section 3.2.1. The communication between NMs utilises the

networking architecture described in the Chapter 4.

SN

ESD CM ESD

DRQ

MM DM
PJG,RRS,DRS.GPD, ~
EPD, ESD,TXD GPD,EPD.

ESD.TXDNM
PJR,DRQ,ESD,RRQ,DRS

~

PJG,SJG,GPD,EPD. PJR,SJR DRQ,
ESD,TXD,DRS,RRS ESD.RRQ.DRS

eN GPD,EPD PJR.SJR DRQ.

.ESD.TX
ESD.RRQ

NM
PJG.SJG

~RRS.DRS

CM MM
GPD,EPD i.ESD,TX ESDRM

Figure 5.5 Relationships for communication between DVM Components

142

5.1.6 Implementation Sequences

This section describes the implementation of the prototype system. There are six phases in this

implementation of the system. The phases include System Initialisation, Initial Join, Initial

Data Transmission, Screen Generation, Execution, and System Release. Figure 5.6 shows the

phases of the implementation.

System Initialisation

Initial Join

Initial Data Transmission

Screen Generation

Execution

System Release

Figure 5.6 Phases of Implementation

5.1.6.1 System Initialisation

Figure 5.7 shows the procedure for the system initialisation. During the System Initialisation

phase, each node starts its own program, initialises its system, starts up processes, and sets

143

some initial values of variables. The server program loads the initial data from database. After

loading the initial data, the server program waits for the requests from its own clients. The

client program sets up the screen to generate the local YE. After setting up the screen, the client

program requests the initial join to the server.

MM

DM

MM

RM

I
I
I
I___________ ----------_1

Figure 5.7 Procedure of the System Initialisation

5.1.6.2 Initial Join

Each client tries to join a server, the server maintains permissions to execute communication

from all the nodes. When a client enters the system, the server saves the ID of the client. When

the next client enters the system, it connects to the multicast channel, informing the other

l44

clients that it has joined. As described in Section 4.3.5.1.1, to join the system a client first

unicasts a PJR message to the server node and its request is accepted or rejected. The server

node normally checks the requests from the client nodes, it responds by accepting or denying

the requests. If the request is accepted, the server sends a PJG message to grant the initial join.

Information about the client nodes joining the system is kept by the server node. The following

Figures 5.8 shows the simple procedure to be followed when the client node joins the server

node and the example code of the initial join.

NM

Unicast

NM

---------,

Figure 5.8 Procedure of the Initial Joi

5.1.6.3 Initial Data Transmission

The following Figures 5.9 and 5.10 show the procedure and the example code for the initial

data transmission. After joining the server, the client node requests the initial data from the

IA5

server node. In the case study (Section 5.1), the client loads initial data from the server node to

create terrain and aircraft on the screen. The server provides its own initial data to the clients by

First-Come-First-Served (FCFS). This is a very simple operation and consists merely of

keeping in strict order all the requests coming into the server. Later requests are not allowed to

complete their operation before earlier ones.

- - - - - - - - - -,
Unicast :

r-------------

NM NM

,--------------

TXD

Figure 5.9 Procedure of the Initial Data Transmission

146

Server:

void Check_Network_Request (void) {

If (NetReceived_Packet (&packet_type, &client_addr» {

Switch (packet_type)

case DRQ:

NetRecvData(&DRQ_data, sizeof (DRQ_data»;

If (DRQ_data.req_type == 1) { /* Initial Data */

send_geometry _polygon_data ();

send_entity_polygon_data ();

send_entity_state_data ();

send_texture_data ();

break;

Client:

void Load_Initial_Data (void) {

DRQ_data.req_type = I; /* Initial Data */

NetSendData (client_addr, DRQ, &DRQ_data, sizeof(DRQ_data»;

while (CHECK_IO) {

If (NetReceived_Packet (&packet_type, &server_addr»){

Switch (packet_type) {

case GPD:

NetRecvData(&GPD_data, sizeof (GPD_data»;

Receive_geometry_polygon_data ();

break;

case EPD:

147

NetRecvData(&EPD_data, sizeof (EPD_data»;

Receive_entity_polygon_data ();

break;

case ESD:

NetRecvData(&EPD_data, sizeof (EPD_data»;

Receive_entity _state_data ();

break;

case TXD:

NetRecvData(&EPD_data, sizeof (EPD_data»;

Receive_texture_data ();

break;

Figure 5.10 Example codes of the Initial Data Transmission

5.1.6.4 Screen Generation

After loading the initial data from the server, the client node will generate the screen for

rendering the entities and terrain of the local VE on the monitor. Figure S.I I shows the screen

of the user. There are three windows displayed on the screen. The screen is a combination of

the 2D field of view (FOV), the local VE view, and the information view panel. The FOV

window displays the current section of the local VE. The size and the initial location of the

FOV have default settings. The local VE view window displays the 2D terrain of the whole

local VE area. It shows the position of the FOV. The window of information view panel

contains textual information such as the speed, orientation and position of the aircraft, and the

FOV position.

148

Information
View Panel Field Of View (2D)

Local VE View

Figure 5.11 The User's Screen

Figure 5.12 shows the procedure for the screen generation. In the case study (Section 5.3.1), the

FOV generates the aircraft and the terrain on the screen. Then, the Local VE View generates

the terrain of the whole local VE and draws the boxes to show the position of the FOV. The

user can control the FOV, which can be moved in any direction, and regenerated. Finally, the

Information View Panel shows information about the aircraft that the user is controlling, and

the position of the FOV. The prototype uses a simple aircraft as an example entity model.

Because the terrain in the prototype is flat, the prototype uses simple aircraft motion based on a

2D scene.

149

Gen_FOV

RM

Gen_Local_ VE_View

Gen_lnform_ View_Panel

Figure 5.12 Procedure of Screen Generation

5.1.6.5 Execution

In the execution phase, the entities are controlled and updated. Figures 5.13 and 5.14 show the

procedure and example code for entity control and update. The client program looks for the

control of the entities from the user (move, rotate, quit) or the other users, and multicasts the

updates of entities to the other nodes. To control the entities directly, combinations of mouse

and key inputs are used. The speed and direction of the entities are modified directly according

to user input. The state vec~or of the entity is made up of its speed and direction. If the state of

the entities is modified, then the client transmits the updates to the server and the clients in the

same local YE.

\

150

r----------- -----------1
I I

I
I
I

NM

I

:Multicast

so

I
I
I
I
I
I
I
I
I
I
I
I

I I
I I
.. _---- 1

Figure 5.13 Procedure of the Execution

CM

Server:

void Check_Network_Request (void) {

If (NetReceived_Packet (&packet_type, &client_addr)) {

Switch (packet_type) {

case ESD:

NetRecvData(&ESD_data, sizeof (ESD_data));

Receive_entity _state_data ();

break;

151

if (getbutton (LEFTMOUSE) {

Calculate_Direction;

/* Turn Left */

Client:

void Control_Entity (void) {

aircraft = pick_aircraft ();

if (airplane) {

if (getbutton (MIDDLEMOUSE) {

Calculate_Movement;

/* Move Forward */

if (getbutton (RIGHTMOUSE) {

Calculate_Direction;

/* Turn Right */

Update_entity_data();

NetSendDataMulticast (ESD, &ESD_data, sizeof(ESD_data»;

} else

Figure 5.14 Example code for Entity Control

5.1.6.6 System Release

The final phase, the release phase, is initiated by the client. A client node can release the Join

by sending a release message (RRQ) to the server node. A client simply sends a release

message (RRQ) to inform the server that this client is leaving the system. This action allows the

server to remove the client from the system. Figure 5.15 shows the procedure for the system

release.

152

----------I

I Unicast

Figure 5.15 Procedure of Release

5.2 Fundamental Techniques for Developing the

Prototype

This section describes the fundamental techniques used for implementing the prototype system.

These techniques mainly concentrate on graphical and communication aspects.

5.2.1 Graphical Techniques

The implementation of the prototype concentrates on the communication aspects between the

nodes, so the details of the graphical techniques used for rendering the VE are not presented.

The prototype developed just provides details about the generation of the terrain and the

aircraft.

153

5.2.1.1 View Display

A view display presents a plane view to the user showing the terrain of the surrounding area in

addition to details of the position of aircraft. Absent from this display is a visual representation

of the height of the aircraft, this is only provided numerically. The terrain is represented as a

flat plane with a fixed height. Figure 5.16 shows the viewing point for rendering the prototype

system on the screen.

view point,

--).x
Figure 5.16 Viewing Point for Rendering

5.2.1.2 Screen Co-ordinates

Figure 5.17 shows the co-ordinates on the screen of the workstation. The X co-ordinate means

how far to the East or to the West of the origin the point is on the X axis. The positive X values

are to the East of the origin, and the negative X values are to the West of it. The Yeo-ordinate

means how far to the North or to the South from the origin, the point is on the Y axis. Positive Y

values are to the North of the origin and negative Y values are to the South of it. The Z co-

ordinate describes how far in front of or behind the origin the point is on the Z axis. Positive Z

values extend towards the user and negative Z values extend away from the user, away from the

origrn.

154

+Z +Y

Aircraft
Location--- --- (300,300, I DO)--.

/ I-- /- - - - -~ - 'if
/

/
/

/
/

/

-X
/
/

/
I /

I /

+X

-y
-z

Figure 5.17 Screen Co-ordinates

5.2.1.3 Scale Factor

To scale the display the simulation on the screen, the scale factor is maintained at a fixed value

showing a virtual area representing roughly 200 km by 200 km, This value represents an

intermediate value between the 80 and 320 km of as being of primary importance for global

situation awareness.

5.2.1.4 Terrain Representation

The polygonal technique is used for representing and processing terrain data in the geographic

database. Therefore, the terrain of the DVM system is represented as a set of polygons. A

polygon is specified by a connected sequence of vertices that all lie in a plane. The boundary of

the polygon is defined by connecting the vertices in order: vito v2, v2 to v3, and so on, finally

connecting vn back to v1. Even though the Graphics Library (GL) can support polygons with up

155

to 255 vertices, the performance is usually optimised only for polygons of 3 or 4 vertices. So

the 4-sided (quadrilateral) polygons are used to draw the terrain, the shape of polygon is a

square containing a grid of equidistant cells. A mesh made of quadrilaterals is called a

quadrilateral strip (q-strip). The GL quadrilateral strips are used to render the terrain.

2 4 6 8

1 3 5 7

Figure 5.18 Sequence followed in representing the terrain

As shown in Figure 5.18, the grid was split into a series of rows and the rows were rendered as

a group. The quadrilateral strips method can improve the performance. For example, to produce

the three squares, the quadrilateral strips use this sequence: (1,2,3,4), (5,6), (7,8). However, if

the squares are individually rendered, this sequence draws the three quadrilaterals: (1,2,3,4),

(3,4,5,6), and (5,6,7,8). It would require nearly twice as many calls.

5.2.1.5 Aircraft Representation

Aircraft are represented using a model supplied with the ModelGen software package

developed by Software System Inc. Each aircraft requires a position and an orientation

allowing it to be placed accurately above the terrain. Storing values in a file makes it possible to

fix the positions of all aircrafts at the start of each simulation.

156

5.2.1.6 Basic Rendering Techniques

This section describes the techniques needed to render the prototype system on the screen.

These techniques include Z-buJfering, Colour Display, and Texturing.

5.2.1.6.1 Z-buffering

Whilst drawing a scene it is imperative that entities within the field of view are ordered

correctly so that closer entities exclude those behind them. To achieve this a technique known

as Z-buffering is used [Silicon, 92]. A Z-buffer is an area of memory that stores a value

representing each pixel's depth. Thus when drawing a pixel it is first tested against the

corresponding pixel in the Z-buffer. If it is closer, i.e. visible, then the screen pixel is updated

along with the depth in the Z-buffer.

5.2.1.6.2 Colouring

As colour is an integral part of the display, the image generation system must be able to provide

an adequate number of different colours. Systems are generally based around an 8-bit, 16-bit or

24-bit colour table. With only 8 bits per pixel, allowing 256 colours, artefacts such as banding

can be seen and so a 24-bit system, allowing over 16 million colours is generally preferable.

5.2.1.6.3 Texturing

Texturing is one of the most effective methods employed for adding realism to a scene [Silicon,

92]. Rather than simply assigning a colour to the surface of an entity, texturing applies an

image to the surface. This image can be used to add realism as in adding an image of wood to a

157

table, or else to simplifying an entity by enabling the underlying entity to be simplified with the

detail being made up by the texture.

5.2.2 Communication Techniques

Sockets are the basis for network programrmng 111 the prototype. So this section describes

details of the basic techniques used in network programming with sockets. As described in

Section 4.3.4, there are various API types, including Unix, Windows and Java, etc. For the

DVM prototype, the scope will be limited to the Unix environment. The DVM prototype will

concentrate on the API for Interprocess Communication (IPq in the UNIX environment. In the

future, a DVM prototype could provide environments for WinSock, Java, and maybe others.

The implementation of a DVM prototype also concentrates on the API for C programmers

under Unix.

5.2.2.1 Domains

Sockets created by different programs use host names and port numbers to refer to one another.

These names must be translated into network addresses for use by IP communications. Each

network address format is called a domain. We restrict the implementation of the prototype to

the Internet domain (AF_INET). The following structure shows Socket System Call for the

prototype system.

int socket (int family, int type, int protocol);

158

The family is AF_INET (Internet protocols) for IP communications, the type depends on

whether TCP or UDP is used, and the protocol is typically set to zero for most user

applications.

5.2.2.2 Socket Addresses

The combination of the network addresses and the port numbers is referred to as a socket

address. Networking system calls require two socket address structure representations. One is

the protocol-specific socket address structure that the user employs, and the other is common to

all protocols that the kernel uses. Figure 5.19 shows the socket address structure in

-csys/socket.h> .

struct sockaddr {

u_short

char

safamily;

sa_data r 14J;

1* Internet address family, AF_INET *1

1* up to 14 bytes of protocol-specific address *1

);

Figure 5.19 Socket Address Structure

The sa_data contains a destination address and port number for the socket. The safamily for

the prototype system will be AF_INET. Figure 5.20 shows structures for the Internet address

family in -cnetinet/in.h>.

#include <netinet/in.h>

struct in_addr {

u_long s_addr; 1* 32 bit netid I hostid, network byte ordered *1

};

159

struct sockaddr_in {

short int

u_short

struct m , addr

char

sin_family;

sin_port;

sin_addr;

sin_zero [8]

/* Address family */

/* 16 bit Port number */

/* 32 bit netid / hostid */

/* not used */

};

Figure 5.20 Address Structures for Internet family

The sin family corresponds to safamily in a struct sockaddr and should be set to "AF _INET".

The sin_port and sin oddr in a struct sochaddr .in must be in Network Byte Order. Network

byte order uses big-end ian format where the most significant byte is stored first. The sin jrero

should be set to all zeros with the function bzero O.

5.2.2.3 Internet Addresses

Most communication protocol suites define some type of addressing that identifies networks

and hosts. Each host on the Internet is assigned a unique 32-bit Internet address, each Internet

address encodes both a network ID and a host ID. The 32-bit Internet address is represented by

the dotted decimal notation (eg. 150.237.28.214).

The network ID falls into various classes according to the size of the network address. Class A

uses 8 bits for the network address with 24 bits left over for other addressing. Class Buses 16

bit network addressing. Class C uses 24 bit network addressing and class D uses all 32 bits. The

University of Hull is registered as a Class B network, so the prototype DVM system uses a 16

bit network address with 16 bits left to identify each machine.

160

Any organisation with an Internet address of any class can subdivide the available host address

space in any way it desires, to provide subnetworks. Internally, the University network is

divided into subnetworks. 8 bits are used for this. 8 bits are finally used for host addresses

within a department subnet. This places a limit of 254 machines that can be on each subnet.

5.2.2.4 Port Addresses

As described in Section 4.3.4, a service exists on a host, and is identified by its port. Ports in

the region 1-255 are reserved by TCP/IP. The system may reserve more. So DVM processes

must use ports numbered above 1023.

5.2.2.5 Socket System Calls

In a DVM application, a server NM communicates with a client NM. Socket-Related system

calls are required to perform the communication between these processes. The socket system

calls can be used in both the connectionless protocol (UDP) and the connection-oriented

protocol (TCP).

In the connectionless protocol, the client does not establish a connection with the server. The

client sends a datagram to the server, and the server waits until data arrives from some client.

By using the network address of the client process, along with the datagram, the server can send

its response to the correct process.

In the connection-oriented protocol. first the server is started, then later a client is started.

Before the communication starts, each process opens a socket of its own. The server then binds

its socket descriptor to its local Internet address and port number, and waits for the connection

I Cl I

from the client processes. After the connection is established, the client process initiates the

requests, and the server process responds.

5.3 Demonstration of the Prototype System

This section illustrates details of the demonstration. In order to show whether the system

is properly working or not, a graphical display is provided. Especially, the focus in the

implementation of the demonstration is the communication between the nodes. The

demonstration is divided into the system integration and the system execution phase.

5.3.1 System Integration

The system integration includes the system initialisation, the initial join, the initial data

transmission, and the initial display generation. First, to start the system integration, the users

start their own program. The user at the client inputs the program name, the area name of the

local YE to load, and the name of the server to access. The system manager at the server node

inputs the program name and the area name of the local YE to load. The server loads the initial

data, including geometry polygon data, entity polygon data, entity state data, and texture data

from the database.

After loading the initial data, the server waits for requests from its own clients. The client sets

the initial value of variables, and sets lip the screens. Then the client tries to create the initial

join with the server, when the server saves the ID of the user. After joining the server, the client

node requests the initial data from the server node, and loads the initial data from the server

162

node. Finally, after loading the initial data, each client node displays the aircraft and the terrain

of the local VE on the screen.

5.3.2 Execution

The client program runs on a schedule, and each execution consists of reading inputs,

processing them, producing updates to the state of the entities, generating the VE screens, and

transmitting updates to the others. The inputs can come from the networks, or from the controls

operated by the users. The inputs can be changed by the users. To maintain all of the aircraft

positions and velocities, a complete database is kept on the server node. In the aircraft

information display, "Heading" represents the direction of the aircraft, the values of the X and

the Y axis components (Latitude and Longitude) represent the aircraft's position, and the value

of the Z-axis component (Altitude) is a fixed value.

Turn Right (Right Button) Picking region

.J.................. . .
..........

»-: ... "',""'"I
I
I

It-

....
......

Move Forward
(Middle Button)

Turn Left (Left Button)

Figure 5.21 Control of the aircraft

163

Figure 5.21 shows the method for the control of the aircraft. The user can control the

movements and the activities of the aircraft using mouse and keyboard. A user can control only

one aircraft at a time. To control the aircraft, the user moves the cursor on the aircraft, and the

shape of the cursor changes. The cursor as a diamond indicates which user has the right to

control the aircraft. The buttons of the mouse are used to change the direction and the position

of the aircraft. The user presses one of the buttons of the mouse. The right button is used to turn

right, the left is used to turn left, and the middle is used to move forward. To change the speed

of the aircraft, the user positions the cursor on an aircraft and presses the function keys of the

keyboard. The FS key is used to increase the speed, and the F6 key is used to decrease the

speed. If the user does not press any of the keys or buttons, the aircraft continues at the same

speed and direction until it reaches the end of the VE area.

ESD

User A

User B

I K- ~
i f~
I 'I 1..-- ---1

1 --- _

Figure 5.22 Synchronisation of the aircraft activity

User C

164

The VE world can respond to actions by altering the status and multicasting the updates to the

other VE worlds. Figure 5.22 shows the synchronisation of the activity of an aircraft. While the

users are controlling the aircraft, it updates the other users' view by sending out information

about the activities of the aircraft. The DCP packet units are used to transmit this information.

When a user moves an aircraft, messages are sent by multicasting. At the same time, the aircraft

in the other users' view changes its position or direction. Not only can the user see the

movement, but also all the other users; the aircraft moves on all screens as a result of the

update.

Local VE A

Position B

Position C

r--------------~----------_.------------__.
Out of Area Shared Area i

I
I
I
I
I
I

: .>:
Position B i /'

I .;,

~~.> -.
..............

West Area

Local VE B

"''''''''

Position A

Position C

---------------~----------~---------------
East Area

Figure 5.23 Taking over control of the entity

The environment illustrated in figure 5.23 consists of two different VE worlds, each of which

has different aircraft and area. Two different VE worlds representing the East Area and the

West Area are built at different workstations individually. Figure 5.23 shows the views (FOV)

of the users in the two areas. As shown this figure, if a user in the east area moves an aircraft

into the shared area, the user in the west area can also see the aircraft. The users in both the east

165

and the west can control the aircraft in the shared area. If the aircraft moves out of the east area

and moves into the west area, the user in the east area cannot control the aircraft. Only the user

in the west area can control the aircraft, the user can take over control.

If an aircraft moves at the same speed and direction, the users don't need to transmit the state of

the aircraft at every time step. Whenever an aircraft is moving, each client node computes the

aircraft's state. If the movement does not deviate much from the dead-reckoning, then no

messages are sent. The aircraft still moves on all screens as a result of the dead-reckoning

algorithm. If the aircraft does deviate significantly from the dead-reckoning path, then the user

informs all the other users to update their aircraft with the new correct aircraft position and

velocity. Colliding with the terrain or other aircraft can cause the destruction of the aircraft.

5.3.3 Summary of the Demonstration

The DYM prototype has been used to demonstrate that the DYM techniques function correctly

for the transmission of data between nodes in the DYE. Though the demonstration does not

guarantee real-time execution, the demonstration shows that the clients are able to realise an

acceptable level of service using the DYM networking architecture.

5.4 Evaluation of the Prototype System

The key aspects of the theory presented in this thesis were implemented on the prototype

system. A performance test of the prototype system was carried out to evaluate the overall

effectiveness. There are many methods that can be used to test the performance. The prototype

system has been subject to two performance tests : the Initial Data Transmission Time Check

and the Synchronisation Capability Check. This section will describe the results of the

166

prototype system tests as a whole. All of the benchmarks used in this chapter were run under

similar conditions. The tests were conducted on multiple node systems. No users were

permitted access to the networks during testing.

5.4.1 Test 1 Initial Data Transmission Time Check

In this test, a server transmits the initial data to the clients, and its Initial Data Transmission

Time is checked to evaluate the performance of the prototype system. The Initial Data

Transmission is taken for two network configurations: a case that uses multiple servers and

another case that uses a single server.

5.4.1.1 Configurations

The two network configurations for the evaluation are shown in Figure 5.24. Figure 5.24 (a)

shows a configuration that includes two servers with their own client nodes. Each server

transmits the initial data to its own client nodes. Figure 5.24 (b) shows a configuration that

includes a server with its own client nodes. The single server transmits the initial data to its

own client nodes. In both configurations, disk accesses to load the initial data occur only at the

beginning of the system execution.

5.4.1.2 Checking the Initial Data Transmission Time

The value of the initial data transmission time does not include the processing delay in the

workstations. The value means just the propagation time from the server to the client and the

response time. As shown in Figure 5.25, to check the initial data transmission time, each server

167

checks the arrival time of the DRQ packet from the clients, and the last response time from the

clients. These two values are used to calculate the elapsed time.

Global VE (3 MB)

Local YE A
(1.5 MB)

1.5 MB~--------------- ---------------,

1.5 MB

Group A

Local YE B
(1.5 MB)

l.S MB~--------------- ---------------,

Group B

(a) Case 1 : Configuration using Multiple Servers

Global YE (3 MB)

3MB

(a) Case 2: Configuration using a Single Server

Figure 5.24 Network Configurations for the Initial Data Transmission

168

f t 11

a_t 1 I a_t rl I
client 1.1 Time (t)

I I

Server A
t x I tw I a_t2 I a_t r2 I

client 1.2
1 1 1 I

t t 11

f t a

b_t 1 I b_t rl I
client 2.1 Time (t)

1 1

Server B tie I tw I b_t2 I b_t r2 I
client 2.2

1 1 1 I

t t a

(a) Case 1 : Using Multiple Servers

f t a

t 1 I trl I Time (t)
I I

f t 11

t 2~~_I t ; I I t r2 I

I 1 I I
Server

f t a

tie tw t} t r} 1---- 1 I I

1 I 1 1

f t 11

tie
1

tw
I

t 4
I t r4 I

- - - --
1 I I I

(b) Case 2 : Using Single Server

Figure 5.25 Time Progression Diagrams for Transmission of Initial Data

169

The examples of the time progression diagrams for transmission of initial data are shown in

Figures 5.25 (a) and (b). Figure 5.25 (a) shows a case where multiple servers transmit the initial

data to the client nodes, Figure 5.25 (b) shows a case where a single server transmits the initial

data to the clients.

In these figures, the value of til indicates the arrival time of the DRQ packets from the clients to

the server, the value of tAindicates the time gap between DRQ packets arriving from the clients

to the server. The value of t., indicates the waiting time while each client waits for the service

from the server. The value of t, (x = 1,2,3, ...) indicates the data transmission time while the

server transmits the initial data to the client. And the value of trx (x = 1,2,3, ...) indicates the

response time before the clients confirm the completion of data transfer to the server.

The following cases I and 2 show some examples for calculation of Total Initial Data

Transmission Time from the servers. Case I shows an example where two servers transmit the

initial data of about 10MB to their own client nodes. If TB is bigger than TA, TB is the

Maximum Total Initial Data Transmission Time (Tmilx)' Case 2 shows an example where a

single server transmits the initial data of about 20 MB to its own client nodes. Maximum Total

Initial Data Transmission Time (Tmilx) is calculated by adding each transmission time and the

response time from the last client in sequence.

Case 1 : Using Multiple Servers

Total Initial Data Transmission Time from the server A TA= a_t J + a_t 2 + a_t r 2

Total Initial Data Transmission Time from the server B TB = b_t J + b_t 2 + b_t r2

Maximum Total Data Transmission Time : Tmax= max (TA , TB)

170

Case 2 : Using a Single Server

Maximum Data Transmission Time

Tmax= t I + t 2 + t 3 + t 4 + t r4

5.4.1.3 Test Results

The time taken to transmit the initial data is to some extent dependent on network conditions.

The final evaluation is produced using these average values. AveraRe Total Initial Data

Transmission Time is used to compare the difference of the performance in two cases. Average

Maximum Total Transmission Time is the results of the comparison of Average Total Initial

Data Transmission Time taken to transfer the initial data with several different sizes.

Although all of the results produced during Initial Data Transmission Time Check Tests cannot

be presented here, Tables 5.1 and 5.2 show representative samples of the results. Table 5.3

shows the final test results. These results are the average values of a hundred test results.

Figure 5.26 is a graphical representation of the results whilst Table 5.3 details the average

maximum total initial data transmission time. The solid line shows the Average Maximum

Total Transmission Time using single server. The dashed line shows the Average Maximum

Total Transmission Time using multiple servers. As can be seen, with an increase in the

number of clients, the Average Maximum Total Transmission time for the case of multiple

servers increases less sharply than the case of using a single server.

171

Number of Test
Group A (TA) Group B (TB)

Tmax(sec)
I I

I 4.72 5.86 5.86

2 4.71 5.50 5.50

3 4.25 4.99 4.99

4 4.69 5.30 5.30

100 4.41 5.62 5.62

Average (sec) 4.57 5.44 5.44

(a) Numbers of Clients = 2

Number of Test
Group A (TA) Group B (TB)

Tmax(sec)
2 I

I 7.35 5.21 7.35

2 7.64 5.45 7.64

3 7.20 5.20 7.20

4 8.05 5.26 8.05

100 8.20 5.72 8.20

Average (sec) 7.71 5.39 7.71

(b) Numbers of Clients = 3

Number of Test
Group A (TA) Group B (TB)

Tillax(sec)
2 2

I 8.10 8.74 8.74

2 7.65 7.78 7.78

3 7.99 8.52 8.52

4 7.48 7.96 7.96

172

lOO 7.76 8.10 8.[0

Average (sec) 7.81 8.24 8.24

Cc) Numbers of Clients = 4

Number of Test
Group A (TA) Group B (TB)

Tlllax (sec)
2 3

[7.32 [[.60 [[.60

2 7.25 [[.47 [[.47

3 7.45 [[.79 [[.79

4 7.95 [2.32 [2.32

[00 8.[3 [2.54 [2.54

Average (sec) 7.64 [1.96 1[.96

(d) Numbers of Clients = 5

Number of Test
Group A (T i\) Group B (TB)

Tlllax (sec)
3 3

[11.70 12.10 12.10

2 11.43 [1.4 [I 1.43

3 11.87 12.43 12.43

4 11.98 12.51 12.51

[00 [2.17 12.74 12.74

Average (sec) 1[.83 12.23 12.23

(e) Numbers of Clients = 6

Table 5.1 Maximum Total Transmission Time based on Multiple Servers

173

Number Numbers of Clients
of Test 2 3 4 5 6

1 12.46 19.94 25.88 32.82 37.79

2 13.15 18.76 24.76 31.95 38.45

3 14.64 19.10 23.93 33.35 38.92

4 12.70 17.90 26.22 32.67 39.23

100 14.20 20.12 24.79 33.46 39.14

Average (sec) 13.44 19.15 25.17 32.83 38.76

Table 5.2 Maximum Total Transmission Time based on Single Server

Number of Number of Total Target Clients
Servers

2 3 4 5 6

1 13.44 19.15 25.17 32.83 38.76

2 5.44 7.71 8.24 11.96 12.23

Table 5.3 Average Maximum Total Transmission Time (s)

I-+-1 -'11-21

Q 50
Q)E (J):::J-; 40.~ Ex ._

30ttlf-
:2: c
Q) .Q 200l(J)
ttl .~..... EQ) 10> (J)« c

ttl
~ 0

2 3 4 5 6

Number of Clients

Figure 5.26 Comparison of Average Maximum Total Transmission Time

174

5.4.2 Synchronisation Capability Check

The synchronisation capability is directly related to the system performance. To achieve good

synchronisation of entity movements among multiple users across a network, a good system

performance is required. The biggest influence on the system performance is the number of

entity state updates that the nodes must handle. Data such as entity state updates will be sent

frequently whereas initial data will be sent less frequently. The number of entity state updates

sent is dependent upon the frequency of changes and events at each client. The number of

nodes in a system plays an important part in the system performance. The higher the number of

clients, the sharper the increase in entity state updates. The number of entity state updates has

an effect on the system performance. To increase system performance, it is important to reduce

the number of entity state updates that the nodes must handle.

To achieve this effectively, it will be necessary to choose a communication scheme that can

reduce the number of communications between nodes. The communication scheme affects the

total transmission time. In this test, therefore, a client transmits a state update to the others by

using the Unicast or the Multicast communication scheme, its total update time is tested and

the difference is compared. This test is based upon the same methodology used in the previous

section for message transmissions. The same test conditions were used.

5.4.2.1 Configurations

Figure 5.27 shows a configuration with a server and client nodes. Figure 5.27 (a) shows a

configuration that uses the Unicast scheme. In this figure, the entity state update (ESD) from a

client is sent to the server first, and the server forwards it to the other target clients. Figure 5.27

(b) shows a configuration that uses Multicast. Multicast allows a single transmission to reach

175

each node running the VE system. With a Multicast only one message would be required which

would reach a server and three client nodes almost simultaneously. A client node could

multicast update messages to the other target nodes.

Client 2 1-.. Sequential 1
t2 t

Client 1 Server Client 3

t4 t

Client 4

(a) Case 1 : Unicast

I-~SimultaneousClient 2

Server Client 1 Client 3

Client 4

(b) Case 2 : Multicast

Figure 5.27 Configurations for the entity state updates

176

5.4.2.2 Checking of the Total Entity State Update Time

To check the total entity state update time from a source node to the target nodes, the

experiments had been taken at two methods: a method that checks Round Trip Time and another

method that checks One-way Trip Time.

5.4.2.2.1 Round Trip Time Check

The time progression diagrams for updating of the entity states by the Round Trip Time Check

are shown in Figures 5.28 (a) and (b). In these figures, the value of t, (t., 2. .) indicates the

value of tA; (tA' tA2...) indicates the time delay (eg. software overhead) at each node when

transmitting an ESD message to one or more nodes, the data transmission time required to

transmit an ESD packet from a client node to the other nodes, and the value of tr; (tr' trl. .)

indicates the response time from the each target node that received the ESD.

Figure 5.28 (a) is a case where a source client sends the ESD to a server first, and forwards it to

the target nodes by Unicast in sequence. Figure 5.28 (b) is a case where a client sends the ESD

to the target nodes simultaneously by Multicast. A source node checks the return times of the

response messages from the target nodes, in order to calculate elapsed time.

Total Entity State Update Time (Tto!) is checked by calculating the difference between the time

of transmitting the ESD from a source node to the first target node and the time at which the

last response arrives from the target nodes.

Case I : Unicast

Total Entity State Update Time

177

Case 2 : Multicast

Total Entity State Update Time Ttol = max (tAi + t i + tri) i= { I, 2, 3, 4}

f Start transmission

t td t 1
1

t 1'1
1__ I Time (t) "Server 1 1 1 ,

t 1..2 t 2 t r2

Client 2 ------- ~--I)

Client 3
t 1..3 t 3

-----------------I=-r--~I ~===+---+)
t r3

t r4tM

--------------------.j::.:~--~I =t===+---+)Client 4

(a) Case 1 : Unicast

~AI

Start transmission
t 1 t rl

Server
__ --I 1 I Time (t)"

1 1 1 ,

t 1..1 t 2
1

t 1'2
1Client 2 _)o,

1 1 1 r

~P t 3
I

t 1'3

Client 3 J
"1 1 I r

tM
I

t 4 t 1'4
I 1Client 4 _)o,

1 1 1 r

(b) Case 2 : Multicast

Figure 5.28 Total Entity State Update Time Check by Round Trip

178

5.4.2.2.2 One-way Trip Time Check

The time progression diagrams for updating of the entity states by the Round Trip Time Check

are shown in Figures 5.29 (a) and (b). In these figures, the value of tx (tl. 1.,,) indicates the data

transmission time required to transmit an ESD packet from a client node to the other nodes, and

the value of tAj (tAl.tAl.' ,) indicates the time delay (eg. software overhead) at each node when

transmitting an ESD message to one or more nodes.

Figure 5.29 (a) is a case where a client sends the ESD to a server first, and forwards it to the

target nodes by Unicast in sequence. Figure 5.29 (b) is a case where a client sends the ESD to

the target nodes simultaneously by Multicast. Each target node checks the arrival time of the

ESD packet from the source client node, in order to calculate elapsed time.

r Start transmission

t 1.1 t 1
__'I I Time (t)Server I 1

Client 2
t 1.2 t 2

-+=~- F~----+------- ~ .)

Client 3
t 1.3 t 3

-----------------~~--~I~----+)
tA,4

--------------------~~--~I~~-~)Client 4

(c) Case 1 : Unicast

179

Server

Client 2

Client 3

Client 4

f. Start transmission
tAl t I
1 I Time (t)..
I I

I

I

I

I I

tM___ L I
__"

I I

(d) Case 2 : Multicast

Figure 5.29 Total Entity State Update Time Check by One-way Trip

Total Entity State Update Time (Ttnt) is checked by calculating the difference between the time

of transmitting the ESD from a source node to the first target nodes and the time that the ESD

arrives at the last target node.

Case / : Unicast

Total Entity State Update Time

Case 2 :Multicast

Total Entity State Update Time Ttot = max (tAi + t i) i = { I, 2, 3, 4 }

5.4.2.3 Test Results

This section compares the results of two experiment methods that described in the previous

section. Average Total Entity State Update Time is used to compare the difference between two

180

cases: Unicast and Multicast. The time taken to update the ESD packet is also dependent on

network conditions. The final test results shown here are the average values of a hundred test

result

5.4.2.3.1 Round Trip Time Check

Tables 5.4 and 5.5 show a number of sample results. Table 5.6 shows the final test results of the

comparison of Total Entity State Update Time taken to transfer the ESD. Figure 5.30 is a

graphical representation of the results whilst Table 5.6 details the update time. The solid line

shows the Average Total Entity State Update Time of using Unicast. The dashed line shows the

Average Total Entity State Update Time of using Multicast.

As can be seen in this figure, there is a linear relationship between the time taken to update the

ESD and the number of nodes. Although the average total entity state update time of the case of

Unicast sharply increases much more than that of the case of using Multicast, the greater the

number of clients, the more updating time increased by using Muticast. In the case using

Multicast, the average value of total entity state update time is about 0.168 sec. In the case

using Unicast, the average value of total entity state update time is about 0.194 sec.

This result means that the transmission speed is very slow, although a relatively small amount

of data is sent. The actual transmission time is not the issue, rather it is the software overhead.

Therefore, this method is inadequate for the experiment that checks the transmission times of

the ESD.

181

Number Numbers of Clients
of Test I 2 3 4 5

I 0.17 0.19 0.19 0.20 n.21

2 0.16 O.IS 0.19 0.21 0.22

Total 3 0.17 0.17 0.20 0.22 n.23
Update

4 O.IS 0.18 0.19 0.20 0.22Time
(sec)

5 0.16 O.IS 0.20 0.21 0.23

Avg. Time 0.16S O.IS 0.194 O.20S 0.222

Table 5.4 A Case of Multicasting by Round Trip

Number Numbers of Target Clients
of Test

I 2 3 4 5

I 0.16 0.17 0.17 0.19 0.19

2 0.17 0.16 O.IS O.IS 0.19

Total 3 0.13 0.15 0.17 0.17 O.IS
Update

4 0.17 0.17 0.16 0.17 O.ISTime
(sec)

lOa 0.15 0.15 0.16 0.17 0.17

Avg. Time 0.156 0.16 0.16S 0.176 0.IS2

Table 5.5 A Case of Unicasting by Round Trip

Communication Number of Target Clients
Schemes 2 3 4 5 6

Multicast 0.156 0.16 0.168 0.176 0.IS2

Unicast 0.16S O.IS 0.194 0.20S 0.222

Table 5.6 Average Total Entity State Update Time (sec) by Round Trip

182

!--+-unicast -fllt-Multicast!

0.25
QI

E
i= 0.2Cl
c:

~
"C 0.15Co
:::l 0
QI QI

~ .!!!.. 0.1u;
>--:;:::;c: 0.05w
ca
"0

0~
2 3 4 5

Number of Clients

6

Figure 5.30 Comparison of Average Total Entity State Update Time by Round Trip

5.4.2.3.2 One-way Trip Time Check

To check the transmission time of the ESD from a source node to the target nodes by one-way

trip, The experiment was considered at two methods : a method that uses the time

synchronisation between the workstations and another method that uses a logic analyser.

First, to synchronise time between the workstations, the internal clocks on all the Indys were

synchronised with the time server of MCC (Manchester Computing Centre) several times in

succession. The NTP (Network Time Protocol) was used to synchronise the time. The

architecture and design of NTP is described in [Mills, 92]. After severa) attempts, the largest

offset was 0.044 seconds and the smallest was 0.003 seconds. It was not possible to synchronise

any better than this, therefore NTP cannot be expected to give accurate results. This method is

also inadequate for the experiment that checks the transmission times of the ESD.

183

To check accurate transmission times, another method that uses a logic analyser was

considered. Figure 5.31 shows a configuration for the transmission time check between the

workstations and a logic analyser. The Indy workstation parallel port was used as a digital

output port, so that the sender and receiver were able to signal the point at which the packet was

transmitted and the point at which it was received. The elapsed time between these two pulses

was then timed using a logic analyser (Thandar TA 2000), connected to both sender and

recerver.

Normally, the parallel port uses a number of handshake signals to communicate with a printer,

and eight digital outputs to transfer data. For the purposes of this experiment, only one of these

outputs was used: D I. The signal pulses were produced by momentarily taking this output high

(logic I) then low (logic 0).

In order to achieve this, it was necessary to override the existing handshake protocol used by

the port. This was achieved by wiring the BUSY signal to Ground, to indicate that the device is

always ready to accept data, and wiring ISTB to lACK. This is necessary because the Indy

would normally pulse ISTB low and then wait for a corresponding lACK pulse from the printer.

In wiring these two pins together, the Indy effectively acknowledges itself.

This makes it possible to use the port as a simple digital output, by opening the port '/dev/plp' as

a file stream and writing appropriate values to it. For example, writing the value 255 takes all

outputs high, while writing the value () takes all outputs low. The time taken to write to the port

is assumed to be constant on both Indys, so that timing the elapsed period between the leading

edge of the two pulses (sender and receiver) gives an accurate measure of the period between

packet transmission and receipt. It is not significantly affected by processing overhead, for

example.

184

Sender
Indy A

Receiver
Indy B

Receiver
Indy F

25 PIN
MALED

DI
BUSY
GND .J.

ISTB
IlACK

A
B LOGIC

: ANALYSER
DI F

BUSY GROUND

1GND

~

-
ISTB

lACK I
A/DI

: IB IDI

:
DI

F IDI
BUSY

1 ~ Time ~GND
ISTB

lACK I
Parallel Port

Figure 5.31 A Configuration for Transmission Time Check using a Logic Analyser

The logic analyser produces a graph of signal levels (high/low) against time. It functions by

sampling a number of digital inputs at regular intervals. The sampling rate is programmable

over a large range from kHz to MHz, so that high timing resolution is possible. There is a trade-

off, since the analyser has a fixed buffer size for storing samples, so that using a faster clock

185

will use the available buffer more quickly while producing more accurate timing results. For the

purposes of this experiment, the clock was set to the maximum possible rate that would allow

the entire transmit-receive cycle to fit within the buffer. The sample frequency used was 25

MHz, which results in a timing resolution of ± 40 us.

The time interval between pulses was measured by manually marking the start of each pulse

with a cursor, and then reading off the elapsed time from the analyser display. The cursor can

be positioned exactly at particular samples, so that any error depends purely upon the timing

accuracy of the analyser, and is not affected by the manual placement of the cursor.

Although all of the results produced during Total Entity State Update Time Check Tests cannot

be presented here, Tables 5.7 and 5.8 show a number of sample results. Table 5.9 shows the

final test results. Figure 5.30 is a graphical representation of the results whilst Table 5.9 details

the update time. The solid line shows the Average Total Entity State Update Time using

Unicast. The dashed line shows the Average Total Entity State Update Time using Multicast.

As can be seen in this figure, there is a linear relationship between the time taken to update the

ESD and the number of nodes. Using the Unicast scheme, the update time increases as the

number of clients increase. The average total entity state update time of the case of Unicast

increases more sharply than the case where Multicast is used.

In the case using Multicast, there is very little difference in the average total entity state update

time between the nodes, which means that the users across the network would perceive entity

movement to be well synchronised. However, in the case using Unicast, the average difference

of total entity state update time between the first target node and fifth target node is about

11.62 ms, which means that the more the number of target clients increases, the bigger the

186

difference of total entity state update time between the nodes, the users across the network

would not see well synchronised movement of entities.

Number Numbers of Target Clients
of Test

I 2 3 4 5

I 8.98 10.04 10.92 9.84 10.92
2 11.28 8.72 8.56 10.72 8.16

Total 3 10.56 10.68 10.4 11.36 10.76
Update

4Time (ms) 9.56 10.84 11.24 10.96 10.96

100 10.82 9.76 11.44 9.68 11.92
Avg. Time 10.34 10.37 10.39 10.42 10.48

Table 5.7 A Case of Multicasting by One-way Trip

Number Numbers of Target Clients
of Test

I 2 3 4 5

I 16.24 19.52 21.68 25.04 28.2

2 16.16 19.15 23.12 24.32 28.56
Total 3Update 14.88 17.52 21.88 24.28 28.32

Time (ms) 4 16.92 17.96 20.88 23.96 25.88

100 16.84 19.12 22.04 24.96 26.52

Avg. Time 16.09 18.67 21.82 24.43 27.71

Table 5.8 A Case of Unicasting by One-way Trip

187

Figure 5.32 shows that a Multicast method would produce greater performance benefits as more

client nodes are added to the system. One of the most limiting aspects of the real-time

implementation is the use of Unicast communications between nodes. Figure 5.32 indicates the

performance increase that would be experienced if the updates could be sent to all nodes

simultaneously rather than sequentially, using Multicasting, that is.

Communication Number of Total Target Clients
Schemes

2 3 4 5 6

Unicast 16.09 18.67 21.82 24.43 27.7]
Multicast 10.34 10.37 10.39 10.42 10.48

Table 5.9 Average Total Entity State Update Time (ms) by One-way Trip

30
Cl)

E
i= 25
Cl
c:

:;::::; 20III
"C
Q.
::>-UI 15$ E
1Il--en 10>--:;::::;e
w 5
iii-0~ 0

2 3 4 5

Number of Clients

I-+- Unicast Multicast I

6

Figure 5.32 Comparison of Average Total Entity State Update Time by One-way Trip

188

5.4.3 Summary of Evaluation

This section has presented an evaluation of the DVM prototype concentrating on the system's

performance. As can be seen from the above results, the system performance is dependent upon

the configurations. A DVM model can produce different performance ratings on different

configurations and communication schemes. The test results show that a configuration with two

servers produces better performance than a configuration with a single server, and a

configuration that uses a Multicast scheme produces greater performance than a configuration

that uses a Unicast scheme. Although the most limiting factor in a distributed configuration is

the network latency that has a substantial impact on performance, by allocating data to multiple

server nodes, the system performance can be increased. The distribution of a VE becomes a

necessity rather than a luxury.

5.5 Summary

This chapter has described the implementation of a prototype DVM system that is based on the

modelling and networking architecture of the DVM system described in the previous chapters.

In fact the prototype DVM system could not fully implement the overall architecture of a DVM

system. Full implementation of the DVM system will require considerable time, and additional

hardware resources. However, the current implementation is sufficient for specifying and

verifying the communication aspects of a DVM. Although communication is still a limitation of

the prototype DVM system and the current implementation is sometimes slow, it is quite well

implemented to the DVM theory.

189

CHAPTER6

CONCLUSION

This thesis has described a concept called DVM for designing and constructing distributed

virtual worlds, a networking architecture for a DVM system, and an experimental prototype

system for the development of DVM applications. This final chapter presents the experiences

of the research, the contributions made by this thesis, and outlines the scope for future work.

Finally, the chapter concludes with some final comments on the thesis.

6.1 Research Experience

The DVM research left us with three main experiences that show the difficulties of the full

implementation of the DVM design concepts, the limitations of our environments including

hardware and software, and technical limits for communication.

First, it was almost impossible to implement the full design of the DVM concepts within the

limited research time. The full design and implementation of a complex DVM requires huge

effort and takes a long time. The DVM design concepts were a broad multidisciplinary research

190

area that includes many different aspects of computer science. As described in Chapter 3 and 4,

a large and complicated DVM includes large numbers of computers and a greater quantity and

variety of information should be displayed on the screen in a manner that is effective for

participants.

The design of a DVM requires many of the features that are necessary in large, scalable,

complex virtual environments. The features of a DVM must adapt to increasing fidelity

requirements, changing database needs, higher resolution terrain models, higher communication

speed and improving input and output devices. These features require changes in the hosts,

protocols, bandwidth, and software architectures. Therefore, the prototype DVM system could

not exhaust all the considerations for implementing a DVM but has concentrated the aspects

critical to scaling environments, as described in Chapter 5.

Secondly, the important consideration when creating a distributed virtual environment is to

know the limitations of our environments including hardware and software. While good

architectural design of a DVE system often helps, not every problem can be solved by good

design. Better hardware and software environments can afford us greater capability to build a

large and complex DVE system. However, for some applications, such environments are not

available at prices that participants will support.

In the current environment for the implementation of the prototype DVM system, the hardware

limitations are typically more restrictive than the software limitations. So the work concentrated

less on the graphical aspects of distributed virtual environments and instead focused on multi-

user and communication aspects.

Third, technical limits for communication in a DVM still inhibit general use of a real-time

DVM. The importance of real-time performance and the difficulty of its implementation make

191

this an important issue in DVM research. Communication latency is currently the largest factor

responsible for inhibiting progress of real-time DVMs. Perfect communication reliability and

synchronisation between nodes has been shown to negatively affect the real-time response of

the entire system and is also prohibitively expensive in terms of bandwidth. Therefore, a

scalable DVE protocol, which can be used over wide area networks must sacrifice some

reliability for real-time performance.

Experience with the demonstration of a DVM prototype system has shown that socket

communications using the multicast mechanism of TCP/IP were not guaranteed: sometimes

messages sent did not reach their destination, and communication failed by an unexpected

signal. However, by experiments, the performance advantages of multicast messages outweigh

the risk of occasional lost message, although the protocol does not guarantee delivery. The

communication latency and reliability were reasonably satisfactory. The users were able to

realise fairly reliable and synchronous service. So DVM experience shows that high-speed,

multicast communication should be required for a DVM system that is geographically

dispersed.

6.2 Research Contribution of this Thesis

This thesis has presented only limited aspects of DVM system development. However, the

DVM system does not support a complete architecture for specifying and verifying properties

of a complex DVE. Based on the experience of the prototype development, we are satisfied that

the DVM architecture can enable specifying and verifying, in many small steps, the properties

of many DVE systems. The DVM system provides two primary contributions, including

modelling and networking architecture.

192

The first contribution comes from the modelling of the DVM system. As described in Chapter

3, a DVM model based on the Client-Server architecture, can be effectively used as a

framework or a platform for the further development of large virtual worlds. Compared with a

DVE based on a single server and multiple clients, a DVM based on multiple servers and

multiple clients has obvious advantages.

A DVE can bring together a large number of participants, and the participants can explore the

DVE. In the client-server system based on a single server, a server may have a bottle neck that

significantly slows down the DVE when many participants are connected. However, by

distributing the connections from participants to multiple servers, it can reduce the possibility

of the bottle neck problem.

In the DVE based on a single server, it may be less fail-safe and could even crash the whole

system if the server fails. However, in the DVM, although a server fails, the whole system does

not crash because the DVE is managed by multiple servers and it is also possible to recover by

receiving current entity state data from its own client nodes.

DVE applications have been less successful because of the large amount of data in such

applications. A large virtual world requires large quantities of VE data, leading to extensive

download times. Therefore, the DVM distributes the large VE over a network of servers to

avoid long download times. By experiments, this indicates that the DVM technology can

significantly contribute to reducing the amount of data maintained by a single server and the

data transmission time.

The second contribution of this thesis comes from the networking architecture of the DVM

system as described in Chapter 4. A networking architecture for the DVM system has been

designed and implemented. The DVM networking system provides a new paradigm and an

193

application layer protocol (DCP) for data communication in DVEs. However, communication is

still a limitation of the DVM system. Nonetheless, through experiments as described in Chapter

5, the DVM system has shown significant contributions to the area of communication for the

DVE system. The DVM networking scheme has been shown to work correctly, and therefore

provides the possibility of a DVE system that uses multiple servers. The DVM also offers more

efficient protocols, by sending messages only to relevant nodes. These methods proved are able

to efficiently manage distributed data with very little latency over short periods of time.

In the DVE there is a lot to be gained by reducing the bandwidth throughout a network of

computers because much time will be spent communicating. The DVM uses a method that

optimally utilises network bandwidth by downloading only the exact portion of the VE that is

necessary for rendering, instead of downloading entire VE data sets. This approach can reduce

long download times and improve network utilisation by adaptive use of both rendering and

network capacity. The Communication Protocol for a DVM system (DCP) provides message

formats and an implementation structure for reducing the network bandwidth between nodes in

the DVM system. By implementing the DCP protocols, the DVM system run effectively over

networks. Further enhancement of DVM communication can be expected accordingly with the

future development of technology. The DVM concepts concerning distribution strategy and

inter-process communication may serve to aid the development of larger, advanced DVEs in

the future.

6.3 Future Work

The DVM system provides many exciting challenges in different areas of computer science,

including distributed databases, user interfaces, information retrieval, parallel processing,

communication protocols, and so on. Because the DVM concept is fairly recent, its component

194

technologies still have many issues to be resolved. A complete DVM system requires a

continuing developmental effort. Future work lies in expanding the facilities of DVMs to

provide more realistic virtual worlds. The following sections consider directions for future

work to develop and improve DVMs.

6.3.1 Three Dimensional Implementation

The methods presented in the DVM prototype have been all been two dimensional. As

described in Chapter 5, the reason for choosing a two dimensional method for the development

of DVM prototype was that all the packet types used in two dimensions are easily extended to

three dimensions. However, to be able to improve realism it is likely that full three dimensional

models will be required.

6.3.2 Multiple Processes

The current implementation of the DVM prototype generates one process per processing node

for the communication and the generation of virtual environments. On a network of computers

it is possible to have more than one process per processing node. When communication and

processing (eg. displaying graphics) occur concurrently, the DVM can improve performance by

running multiple processes on a single node.

6.3.3 Portability

The prototype DVM implementation is currently limited to homogeneous systems, such as

IRIX OS. Although the portability is a separate research area, portability is an important area to

run the DVM system on various heterogeneous systems. The DVM should be ported to an

195

architecture independent system. To transfer existing code to the new architecture, higher level

programming tools should be developed to extend the lifetime of a program beyond that of the

computer for which it was originally developed.

6.3.4 Extending Functionality

The current implementation of DVM is limited in the functionality provided to the user. To

improve the reality of the DVM, the extension of new functionality requires more

developments that include the user interface, communication, VE generation, entity behaviour,

and so on.

6.3.5 Enriching the behaviour of entities

The prototype DVM included relatively simple behaviour of entities. To control the movement

of entities through a more realistic three dimensional space, a completely dynamic DVM model

is required. This requires further work to enrich the behaviour of entity operations, allowing for

constrained manipulation along arbitrary axes.

6.3.6 Audio Integration

As described in Chapter 5, the prototype DVM concentrated on the visual aspects, audio

integration was not considered. However, integration of audio communications with the DVM

is required to get a realistic VE. Sounds associated with entities in the VE are essential.

Therefore, a more advanced DVM model should include techniques which accurately generate

realistic sounds.

196

6.4 Final Comments

As distributed virtual environments become richer and more complex, the need for technology

for developing these DVEs will grow dramatically. This growing need will result in a

fundamental change to the future of distributed virtual environments. The DVM system has

presented a new paradigm for designing and implementing the DVEs. The DVM system has

illustrated how communications, views, data, and processes can be distributed and managed

within a DVE. Therefore, it is hoped that the DVM architecture will constitute a good start

towards addressing the demands of DVE applications.

197

APPENDIX

DCP Packet Formats

This appendix shows twelve type formats of packets that present in chapter 4. These were not

included in the main body of thesis because these packet formats are changeable.

C.I Primary Join Request (PJR)

PJR messages (opcode I) contains Client_Identification (Client_I D) field. Every client has a

unique Client_ID. The Client ID is a sequence of bytes in netascii terminated by a zero byte. A

node that receives netascii mode data must translate the data to its own format.

2 bytes string
I 0 I
Ibyte

Opcode Client ID

C.2 Primary Join Grant (PJG)

PJG messages (opcode 2) contains Operation_Time (Optime) field. The Optime means the

global time. The Optime is assigned a positive integer that represents the seconds, for example,

in the range I through 100.

2 bytes 6 bytes
Opcode Optime

198

C.3 Secondary Join Request (SJR)

SJR messages (opcode 3) contains the Current_Area_Number (Curr_Area_#) and Direction

(DIR) fields. The Curr_Area_# presents the local VE area number. The Curr _Area_# is

assigned a positive integer, for example, in the range I through 9999. The DIR shows a positive

integer which presents the location number (east: I, west: 2, south: 3, north: 4) of next local

VE area.

2 bytes 8 bytes 3 bytes 2 bytes
Opcode Optime Curr Area # DIR

C.4 Secondary Join Grant (SJG)

SJG messages (opcode 4) contains Next_Server_Name (Nxt_Sv_Name) field. The

Nxt_Sv _Name field allows the server to name up to I() characters.

2 bytes 8 bytes string
Opcode Optime Nxt Sv Name

C.S Release Request (RRQ)

RRQ messages (opcode 5) contains just client_ID field.

2 bytes 8 bytes string
Opcode Optime Client ID

199

C.6 Release Response (RRS)

RRS messages (opcode 6) contains just server _ID field.

Opcode
string2 bytes
Server ID

C.7 Data Request (DRQ)

DRQ messages (opcode 7) contains just Data_Type (Dtype) field. The Data Type (Dtype) field

contains the integer numbers (GPO: I,EPD : 2, ESD : 3, TXD : 4, Initial Data: 5, Next Area

Data: 6) associated with the types which are requested.

Opcode
2 bytes2 bytes

Dtype

C.S Data Response (DRS)

The DRS message (opcode = 8) has a data_number (Data_#) field. The Data_# field contains

the positive integer number (GPO: I, EPD : 2, ESD : 3, TXD: 4, All Done: 5) which presents

the type of acknowledgement. The Message_Operation_Time (MsgOptime) contains the Optime

of the received message.

8 bytes 2 bytes 8 bytes
Optime Data # MsgOptime

200

C.9 Geometry Polygon Data (GPD)

Each GPO message (opcode = 9) has an Area_Number (Area_#), Polygon_Number (Poly_#),

Offset, and Vertex fields. The Area_#field on the GPO message contains the integer numbers

(East: I, West: 2, South: 3, North: 4) for directions. The Offset is assigned a positive integer

that means the distances from the origin of global YE. The Vertex fields are assigned positive

integer numbers that presents vertices of each polygon.

C.IO Entity Polygon Data (EPD)

The EPO message (opcode = 10) has Polygon Number (Poly_#), Patch_Number (Patch_#),

Vertex (Vt), Normal (Nor), and Colour (Col) fields. These fields are assigned positive integer

numbers.

201

Vt[O][O] I ..
2 bytes 2 bytes 2 bytes

.. I Vt[n-1][2]
2 bytes 2 bytes

.. I Nor[O][2]
2 bytes

Vt[O][2] Vt[n-/][O] Nor[O][O]

C.II Entity State Data (ESD)

The ESD message (opcode = II) has Data_Type (Dtype), Area_Number (Area_#), Entity_Type

(Otype), Entity_ID (ObLID), Offset, Position (POS), Direction (DIR), Speed (SP) and Dead-

Reckoning_flag (Pllag) fields. The Etype field contains a positive integer number (Plane: I,

Car: 2, Human: 3) which presents the type of entity. The ObLID and SP fields are assigned a

positive integer, typically in the range I through 9999. The POS fields are assigned positive real

numbers. The DIR field is assigned a positive integer, typically in the range 1 through 360. The

Dflag field sets flag (On: I,Off: 0).

C.12 Texture Data (TXD)

The TXD message (opcode = 12) has Texture Number (Txt_#) and Imagefile (lmgF) fields. The

Txt_# field is assigned a positive integer, typically in the range 1 through 9999. The ImgF field

contains the image data of texture.

202

2 bytes
I ImgFOpcode

2 bytes
I Txt #

n bytes

203

GLOSSARY

AM Audio Manager. Audio Manager is a process that provides services

related to the audio display. Defined in section 3.2.1.9.

ASCII American Standard Code for Information Interchange.

Broadcast A name for a Data Link Layer frame which is addressed to all stations

attached to that Data Link.

CN Client Node. Client Node manages the local VE, interact with 110

devices and perform graphics rendering. The client node establishes

communications with the server node and through it or directly,

transmits the data to the server or the other client nodes. Described in

section 3.2.1.2.

CM Computation Manager. Computation Manger is a process that runs on

the server and client nodes. It is in charge of the computation of all

events. Defined in section 3.2.1.6.

DCP Inter-process Communication Protocol for a DVM system. The DCP is

an application-layer protocol that permits the integration between nodes

in the DVM system. The DCP describes the format to send and receive

204

messages between nodes.

DD Decimal Degrees.

DM Database Input / Output Manager. Database Input / Output Manager

handles a collection of data forming the virtual environment. Its

primary function is to load the initial data. Described in section 3.2.1.5.

DMS Degrees, Minutes, and Seconds

DRQ Data Request. The Data_Type (Dtype) field contains the integer

numbers associated with the types which are requested.

DVE Distributed Virtual Environments. When VEs are distributed on

multiple computers across a network, it is called as a Distributed

Virtual Environment (DVE).

DVM DVE systems with Multiple-Servers. DVM is a model of DVE based

on the client-server model with multiple servers. DVM is an

experimental platform for the development of distributed virtual

environments, user interfaces and applications based on shared 3D

synthetic environments.

ENTITY One of the essential system components. The YE state is represented by

the sum of each entity's state. Some YEs contain a large number and

variety of active entities such as vehicles, humans, and planes, which

205

are under active control. There are also passive entities, such as

buildings, trees and hills.

EPD Entity Polygon Data. The EPD message (opcode = 8) has

Polygon_Number (Poly_#), Patch_Number (Patch_#), Vertex (Vt),

Normal (Nor), and Colour (Col) fields.

ESD Entity State Data. The ESD message (opcode = 9) has Data_Type

(Dtype), Area_Number (Area_#), Entity Type (Otype), Entity_ID

(Ob}_ID), Offset, Position (PaS), Direction (DIR) and Speed (SP)

fields.

GPD Geometry Polygon Data. The GPD message (opcode = 7) has an

Area_Number (Area_#), Polygon_Number (Po[y_#), Offset, and Vertex

fields.

1M Interaction Manager. Interaction Manager is a process that provides

services related to interaction devices. 1M is usually in charge of the

input and output of all the devices. Described in section 3.2.1.8.

IP Internet Protocol. The standard used for sending the basic unit of

data, an IP datagram, through the Internet.

206

LAN Local Area Network. A network connecting various electronic devices

in a localised geographical area such as a single office building or

campus.

MM Master Manager. Master Manager maintains all the state variables of

entities and the geometric model of the virtual environment. It is also

responsible for routing messages appropriately. Described in section

3.2.1.3.

NM Network Input / Output Manager. Network Input / Output Manager is

responsible for dealing with the network. It is a process that makes it

possible for users using the same YE to communicate with each other.

The NM keeps a list of other nodes that it is connected to. Described in

section 3.2.1.4.

Multicast Multicast provides one-to-many and many-to-many delivery services

for applications that communicate with several other nodes

simultaneously.

PJG Primary Join Grant. The Primary Join Grant message contains

Operation_Time (Optime) field.

PJR Primary Join Request. The Primary Join Request message contains

Client_Identification (Client_ID) field. Every client has a unique

Client_ID.

207

Port The identifier used to select a particular process within a TCP/IP host.

RM Rendering Manager. Rendering is a process that runs on the client

node. It provides services for rendering and managing the visual

representation, including shaded, texture-mapped surfaces, and

coloured lighting. Described in section 3.2.1.7.

RRQ Release Request. The Release Request message contains just client_ID

field.

SJG Secondary Join Grant. The Secondary Join Grant message contains

Next_Server_Name (Nxt_Sv_Name) field.

SJR Secondary Join Request. The Secondary Join Request message

contains the Current_Area_Number (Curr _Area_#) and Direction

(DIR) fields.

SN Server Node. Server Node provides a bridge between its client nodes

and databases. The server node is also responsible for maintaining the

data consistency between its client nodes. Described in section 3.2.1.1.

Socket The concatenation of IP address and TCP port which together specify a

particular process or service within the Internet.

TCP Transmission Control Protocol. A transport protocol providing

connection-oriented, end-to-end reliable byte data transmission in

208

packet-switched computer subnetworks and internetworks.

Topology A description of how stations on a network connect to a cable.

TXD Texture Data. The Texture Data message (opcode = 10) has Texture

Number (Txt_#) and Imagefile (ImgF) fields.

UDP User Datagram Protocol. This protocol within the TCP/IP Protocol

Suite is transaction oriented, and delivery and duplicate protection are

not guaranted.

Unicast Unicast establishes communication between two nodes.

VE Virtual Environment. Virtual Environment is the thing being partly or

wholly simulated by the VR system.

VR Virtual Reality. Virtual Reality is used to refer to the whole subject

area, its hardware, software, applications, etc.

209

REFERENCES

[Barrus, 96] Barrus J. W., Waters R.C. and Anderson D.B., " Locales and Beacons:

Efficient and Precise Support for Large Multi-User Virtual

Environments," MERL Technical Report TR95-l6a, 1996.

[Birman, 87] Birman K., Josep T., Schmuck F., "ISIS - Distribute Programming

Environment, Version2.1 -User's Guide and Reference, 1987.

[Bishop, 92] Gary Bishop, "Research Directions in Virtual Environments, Report of

an NSF Invitational Workshop," Computer Graphics, Volume 26,

Number 3, August 1992, pp. 166-170.

[Blau,92] Brian Blau, Charles Huges, Michael Moshell and Curtis Lisle,

"Netwrked Virtual Environments," Computer Graphics, Special Issue

on !992 Symposium on Interactive Computer Graphics, March 1992,

PP 157-160.

[Boursier, 82] Patrice Boursier, Michel Scholl, "Performance Analysis of Compaction

Techniques for Map Representation in Geographic Databases,"

Computer & Graphics Vol. 6, No 2,1982, pp. 73-79.

210

[BroIl,95]

[Bryson,94]

[Burdea,94]

[Calvin, 93 J

[Carlsson, 93]

[DIS,94]

[DMSO,97]

Broil W. "Interacting 111 Distributed Collaborative Virtual

Environments," Proceedings of the IEEE VRAIS'95-Virtual Reality

Annual International Symposium, 1995, pp. 184-185.

S. Bryson and S. K. Feiner, "Research frontiers 111 virtual reality,"

SIGGRAPH '94 Proceedings, 1994, pp. 473-474.

G. Burdea and P.Coiffet, "Virtual Reality Technology," John Wiley &

Sons, Inc, 1994.

Calvin J., Dickens A., Gaines B., Metzger P., Miller M., Owen D, "The

SIMNET Virtual World Architecture," Proceedings of the IEEE

VRAIS'93 Conference, 1993, pp. 450-455.

Carlsson and Hagsand 0., "DIVE-a Multi-User Virtual Reality

System," Proceedings of the IEEE VRAIS'93 Conference, 1993, pp.

390-400.

DIS (I994) Standard for Distributed Interactive Simulation- Application

Protocols. Version2.0, Fourth Draft. Institute for Simulation and

Training, University of Florida, U.S.A.

DoD High Level Architecture. On-line paper.

http://hla.dmso.mil/

211

http://hla.dmso.mil/

[Durlach, 95]

[dVS,95]

[Flipcode,991

[Gigante,93]

[Gossweiler, 94J

[Green,99]

IGrimsdale,931

Durlach, Nathanliel I. and Mavor, Anne S., "Virtual Reality: Scientific

and Technological Challenges, National Academy Press, Washington,

D.C. 1995.

dVS for UNIX Workstations User Guide Rev. 3.0, pp.I3-15.

Online Paper, Daily Game Development News & Resources, (Web

address =http://www.flipcode.comlnetwork/)

Michael A. Gigante, R A Earnshaw, H Jones "Virtual Reality

Systems," Academic Press Ltd, 1993, pp. 8-13,16.

Gossweiler, R., and others, "An Introductory Tutorial for Developing

Multiuser Virtual Environments," Presence, 3(4), Fall 1994, pp. 255-

264.

M. Green, MR Toolkit. On-line paper. Computer Graphics Research

Laboratory, Department of Computing Science, The University of

Alberta, Edmonton, Alberta, Canada T6G 2H1 (Web address =

http://web.cs.ualberta.cal-graphics/MRToolkit.html)

Grimsdale c., "Virtual Reality Evolution or Revolution," proceedings of

the third annual conference on Virtual Reality, London, April 1993,

pp.15-18.

212

[Hagsand, 96]

[Halsall,92]

[Hawkes,96]

[Hensgergen, 96]

[IEEE,87]

[Kalawsky, 91]

[Kanarick, 91 J

Contact address:Olof Hagsand The distributed Collaborative

Environment Group, Swedish Institute of Computer Science, Box

1263, s-l64 28 kista, Sweden.

(Web address = http://www.sics.se/dce/dive.html)

Fred Halsall, "Data Communications, Computer Networks and Open

Systems," Addison-wesley, 1992, pp. 143-161.

Rycharde Hawkes, "A Software Architecture for Modelling and

Distributing Virtual Environments," Phd Thesis, The University of

Edinburgh,1996.

Eric Van Hensgergen. On-line paper.

(Web address = hup:llwww.csh.rit.edu/-airwick/dist.html)

IEEE Standard for Radix-Independent Floating-Point Arithmetic.

Kalawsky, R.S. "Visually coupled systems to virtual reality: an

aerospace perspective," In computer Graphics '91, Blenheim Online,

1991.

Kanarick, C.M. "A technical overview and history of the SIMNET

project," Proceedings of the SCS Multi-conference on Distributed

Simulation, 1991, pp. 104-111.

213

[Katz,94]

[Liskov,93]

[Loral,921

[Macedonia, 95]

IMastaglio,95]

IMills,921

IMullender,93]

Warren Katz, "Military Networking Technology Applied to Location-

Based, Theme Park and Home Entertainment Systems," Computer

Graphics, Volume 28, Number 2, May 1994, pp.110-114.

Liskov B. "Practical Uses of Synchronised Clocks in Distributed

Systems," Distributed Computing, 6, 1993, pp. 211-219.

Loral Systems Company, "Strawrnan Distributed Interactive

Simulation Architecture Description Document," Vol. I, Advanced

Distributed Simulating Technology Program Office, Orlando, Florida,

March 1992.

Macedonia, Michael R., Zyda, Michael J., Pratt, David R., Brutzman,

Donald P. and Barham, Paul T., "Exploiting Reality with Multicast

Groups," IEEE Computer Graphics & Applications (revised from

appearance in the VRAIS '95 Proceedings), September 1995, pp.38-45.

Thomas W. Mastaglio and Robert Callahan, "A Large-Scale Complex

Virtual Environment for Team Training," IEEE, July 1995, pp. 49-55.

Mills, D., "Network Time Protocol (Version 3) specification,

implementation and analysis," RFC 1305, University of Delaware,

March 1992, 113 pp.

Sape Mullender, "Distributed Systems," Addison-Wessley, 1993, p.2.

214

[Nees,94]

[NPSNET, 95]

[Poils,95]

[Pratt, 931

[Pryce,96]

[Rheingold,91]

[RFC,871

[RFC,89]

[Sawler,91]

Richard J. Nees, "Electronic Image Communications," Learned

Information, Inc., Medford, NJ, 1994, PP. 35-62.

NPSNET(1995) NPSNET IV.7J System Overview. Manual.

Michael F. Poils, Stephen J. Gifford, and David M. Mckeown Jr.,

"Automating the Construction of Large Scale Virtual Worlds," IEEE,

July 1995, pp. 57-58.

David R. Pratt, "A software Architecture for the Construction and

Management of Real-Time Virtual Worlds," PhD Thesis, Naval

Postgraduate School, Monterey, California, June 1993.

Nat Pryce, "The Use of Behaviour Specifications in Distributed Virtual

Environments," Imperial College London, April 1996.

Rheingold, "Virtual Reality," New York: Summit Books, 1991.

RFC 1001 "Protocol Standard for a NetBios Service on a TCP/UDP

Transport: Concepts and Methods," March 1987.

RFC 2415 "Simulation Studies of Increased Initial TCP window size,"

September 1998.

Sawler, Robert, Matusof, "Issues Concerning Cue Correlation and

Synchronous Networked Simulators," AIAA, 1991.

215

[Schmalstieg, 96]

[Serrano, 94]

[Shaw,93]

[Sheridan, 93]

[Silicon,921

[Snowdon, 95]

[Stallings,93]

ISteven, 94]

Dieter Schmalstieg and Michael Gervautz, "Demand-Driven Geometry

Transmission for Distributed Virtual Environments," Computer

Graphics, Volume 15, Number 3, 1996, pp.42l-43I.

Juan Flaquer.Alejando M. Garcia-Alonso, Nicolas Serrano, "Solving

the Collision Detection Problem," IEEE Computer Graphics .&

Applications, May 1994, pp.36-42.

Shaw, C. and Green, "The MR Toolkit Peers Package and

Experiment," IEEE Symposium on Research Frontiers in Virtual

Reality, October 25-36, 1993, San Jose, CA: pp. 463-469.

Sheridan, Zeltzer, "Virtual RealityCheck," Technology Review, Oct.

1993, pp. 19-28.

Silicon Graphics, Inc.(1992), "Graphics Library Programming Guide

Volume I & II".

Snowdon D.N., "AVIARY: A Model for a General Purpose Virtual

Environment," PhD Thesis, Department of Computer Science,

University of Manchester, 1995.

William Stallings, "Computer Organisation and Architecture," 4th ed.,

Macmillan Publishing Co., 1993, pp. 251-291.

Macedonia, Michael R., Zyda, Michael J., Pratt, David R., Barham,

Paul T. and Zeswitz, Steven, "NPSNET : A Network Software

216

[Sturman,94]

[Stytz, 961

[Talpede,95]

rVRML,97]

[Wang,94]

[Wang,95]

[West,93[

Architecture for Large Scale Virtual Environments," Presence, Vol. 3,

No 4, Fall 1994, pp. 265-287.

David J. Sturman, David Zeltzer, "A Survey of Glove-based Input,"

IEEE Computer Graphics & Applications, January 1994, pp. 30-31.

Martin R. Stytz, "Distributed Virtual Environments," IEEE Computer

Graphics & Applications, May 1996, pp. 19-20.

Talpede R. and Ammar M.H.(1995) Single Connection

Emulation(SCE): An Architecture for Providing a Reliable Multicast

Transport Service. Proceedings of the International Conference on

Distributed Computing Systems, Ch. 62: pp.144-l51.

Virtual Reality Modelling Language, ISO/IEC DIS 14772. On-line

paper. (Web address = http://vag.vrml.orgIVRML97/DIS/)

Q. Wang, "Networked Virtual Reality," Master Thesis, University of

Alberta, 1994.

Q. Wang, Mark Green, and Chris Shaw, "EM-An Environment

Manager For Building Networked Virtual Environments," Proceedings

of the IEEE VRAIS'95.

A.1. West, T.L.1. Howard, R.1. Hubbold, A.D. Murta, D.N. Snowdon,

D.A. Butler, "AVIARY - A Generic Virtual Reality Interface for Real

217

Applications ,"Virtual Reality Systems, Academic Press, 1993, pp. 213-

236.

[Wilson,92] Michael J. Zyda, David R.Pratt, James G. Monahan, Kalin P. Wilson,

"NPSNET: Constructing A 3D Virtual World," ACM, Proceedings of

the 1992 Symposium on Interactive 3D Graphics, pp.147 -155.

[Zyda,95] Donald P. Brutzman, Michael R. Macedonia and Michael J. Zyda,

"Internetwork Infrastructure Requirements for Virtual Environments,"

Computer Science Department, Naval Postgraduate School, Monterey

California, USA. Available at

(Web address = http://www.stl.nps.navy.mill-brutzman/vrmll

vrml_95.htm/)

21~

http://www.stl.nps.navy.mill-brutzman/vrmll

