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ABSTRACT 

Research has investigated clinical data that have embedded within them 

numerous complexities and uncertainties in the form of missing values, class 

imbalances and high dimensionality. The research in this thesis was motivated by 

these challenges to minimise these problems whilst, at the same time, maximising 

classification performance of data and also selecting the significant subset of 

variables. As such, this led to the proposal of a data mining framework and feature 

selection method. The proposed framework has a simple algorithmic framework and 

makes use of a modified form of existing frameworks to address a variety of different 

data issues, called the Handling Clinical Data Framework (HCDF). The assessment 

of data mining techniques reveals that missing values imputation and resampling data 

for class balancing can improve the performance of classification. Next, the proposed 

feature selection method was introduced; it involves projecting onto principal 

component method (FS-PPC) and draws on ideas from both feature extraction and 

feature selection to select a significant subset of features from the data. This method 

selects features that have high correlation with the principal component by applying 

symmetrical uncertainty (SU). However, irrelevant and redundant features are 

removed by using mutual information (MI). However, this method provides 

confidence in the selected subset of features that will yield realistic results with less 
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time and effort. FS-PPC is able to retain classification performance and meaningful 

features while consisting of non-redundant features. The proposed methods have been 

practically applied to analysis of real clinical data and their effectiveness has been 

assessed. The results show that the proposed methods are enable to minimise the 

clinical data problems whilst, at the same time, maximising classification 

performance of data. 
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NOTATIONS 

(Most common symbols) 

  = the datasets, investigated data matrix 

 = {    }                            

 =                   

=                   

     = each data object, each data element 

  = row or record of data 

  = column or attribute of data 

  = number of dataset records 

  = number of dataset attribute 

  = outcome of fully observed data 

  = number of dimensions 

   =                  set of data with   features 

  = a representation of feature    {  }          

  = a representation of it with lower dimensions, 

                 
  with     

  = subset of features 

  = threshold or criteria 
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  CHAPTER 1

INTRODUCTION 

Data mining is an evolving area in information technology because of the 

ready availability of large quantities of data. According to IBM every day 2.5 

quintillion bytes of data are generated, so much so that almost 90% of data present 

today has been generated in the last couple of years (IBM, 2011; Eaton et al., 2012). 

Datasets have been created that cover all areas of human endeavour, including 

business, medical and clinical, geographical, and image data. Data mining is used to 

extract hidden information from large databases (Han et al., 2012). It aims to 

automatically extract knowledge in an explicit form from large scale data. This means 

that the information and knowledge mined must be meaningful enough to provide 

some tangible reasons for this computational effort.  

This thesis investigates the data mining problems of clinical datasets and 

extracts meaningful information from them in order to develop decision support 

systems (Ming-Syan et al., 1996). As with all large datasets, clinical data provides its 

own challenges and complexities. Given the current climate where demands are made 

for reducing costs, increasing efficiency and improving care, data mining is providing 

valuable insights into many of these issues (Bardhan and Thouin, 2013; Groves et al., 

2013; Gupta and Sharda, 2013). It is also helping to develop new diagnostic, decision 
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support system and medical treatment tools. Clinical datasets that are used in this 

thesis have a number of variables, which are often used to diagnose a particular 

disease among a number of patients. Often these variables are directly related to the 

ailment or are associated with it. For example, heart failure datasets often contain 

variables related to the heart as well as renal failure. At the same time, the dataset is 

composed of several types of data, e.g. numerical, continuous and categorical data. 

This data could consist of historical data of the patients or simply snapshots at any 

given time of a set of patients. As a result, these datasets present a set of challenges 

such as (a) various systematic and human errors, (b) a great deal of missing data, (c) 

non-normally distributed data, (d) imbalanced classes and (e) large numbers of 

variables (Tanwani and Farooq, 2009; Poolsawad et al., 2011; Poolsawad et al., 

2012a; Poolsawad et al., 2012b).  

Data mining is often carried out within a framework, which consists of a 

number of different steps (Azevedo and Santos, 2008; Olson and Delen, 2008; Wright 

and Sittig, 2008)). A focus of this thesis is the problem of clinical datasets (section 

1.1). Given the nature of the dataset, the thesis is concerned with improving the 

performance of classification; and also this thesis focuses on feature selection 

techniques for selecting the significant variables. 

Methods for reduction of dimensions can be categorised as (a) feature 

extraction techniques and (b) feature selection techniques. Feature extraction 

combines all the original features and generates a set of new novel and synthetic 

features. Principal Component Analysis (PCA) (Tabachnick and Fidell, 1996) is the 

most commonly used feature extraction technique. It generates a feature set with 
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lower dimensionality and the features do not carry the original labels present in the 

dataset. An extension of PCA is Nonlinear Principal Component Analysis (NLPCA) 

(Zabiri et al., 2009). Depending on the requirements for the final solution, an 

alternative method for reducing the dimensionality is feature selection. Here an 

optimal subset of original features is selected based on some criterion. It not only 

reduces the number of features, but also removes irrelevant and redundant features. 

Feature selection is often used in the development of decision support systems (Polat 

and Güneş, 2007; Sivasankar and Rajesh, 2012). For clinical applications it is 

important that the labels of the variables are retained, and thus feature selection is 

often the strategy employed to reduce the dimensionality of the problem (Hardin and 

Chhieng, 2007; Bonney, 2011). Feature selection algorithms can be divided into two 

categories: (a) the filter model (Yu and Liu, 2004) which relies on the general 

characteristics of the data to evaluate and select the subset of features without 

involving any mining algorithm and (b) the wrapper model (Kohavi and John, 1997) 

which requires a data mining algorithm to search for features, as it aims to improve 

the performance of the subset of features but is  more computationally expensive than 

the filter model. 

1.1 Clinical dataset 

This research was carried out on a real heart failure dataset called 

“LIFELAB”. They have a large repository of data, historical, and geographical 

covering generations of the same family. In the thesis, a snapshot at a particular point 

of LIFELAB is used. It is composed of 463 continuous, categorical variables, and 
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2,032 patients. This dataset has many entities; these entities and the relationships 

between them are shown in Fig. 1.1. The examples of the significant entities are 

_MAIN entity contains the general information for each patient, e.g.  Link ID, sex, 

age, height and weight. These entities are linked to each other in a same ways by 

using Link ID from _ MAIN to bring information from each entity. Then _DEATH 

entity is the follow up data that provides mortality ‘Dead’ and ‘Alive’ data for each 

patient, and this data is also used to be a target variable for this research. _BLOOD, 

_ECG, _ECHO, _EXAM and _PFT are used for a group of input variables and the list 

of variables that contained in these entities has shown in Table 1.1. Rest of the entity 

is examined for the medical purpose that has not used in this current research. 

 

 

Figure 1.1: LIFELAB’s data relationship 
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The LIFELAB dataset presents information regarding the incidence, 

prevalence and persistence of Heart Failure. Within the dataset, variables with 

missing values greater than 25% are excluded to minimise problems during the data 

mining process. In the presence of moderate missing values (less than 25%), variables 

correlated with the outcome of interest are more impactful than those correlated with 

missingness (Collins et al., 2001). As a result, the numbers of variables and patients 

were substantially reduced to 60 variables (Table 1.1) and 1,944 patients. This 

indicates the challenges and complexities in clinical datasets, which are discussed in 

the following sections. 
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Table 1.1 (1): The analysis set 

Variable Units 

Demographics (Main) 
 

 
Age Years 

Laboratory (Blood) 
 

 
Sodium mmol/L 

 
Potassium mmol/L 

 
Chloride mmol/L 

 
Bicarbonate mmol/L 

 
Urea mmol/L 

 
Creatinine mmol/L 

 
Calcium mmol/L 

 
Adj Calcium mmol/L 

 
Phosphate mmol/L 

 
Bilirubin mmol/L 

 
Alkaline Phophatase IU/L 

 
ALT IU/L 

 
Total Protein g/L 

 
Albumin g/L 

 
Uric Acid mmol/L 

 
Glucose mmol/L 

 
Cholesterol mmol/L 

 
Triglycerides mmol/L 

 
Haemoglobin g/dL 

 
White Cell Count 10

9
/L 

 
Platelets 10

9
/L 

 
MCV fL 

 
Hct fraction 

 
Iron umol/L 

 
Vitamin B12 ng/L 

 
Ferritin ug/L 

 
CRP mg/L 

 
TSH mU/L 

 
MR-proANP 

 

 
MR-proADM 

 

 
CT-proET1 

 

 
CT-proAVP 

 

 
PCT 

 
ECG 

 Rate bpm 

 QRS Width msec 

 QT  
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1.1.1 Incomplete, errors and noisy data 

There is a wealth of clinical and health records generated every day and kept 

in storage. This raw clinical data is usually incomplete, containing missing values due 

to different systematic ways of collecting the data by healthcare practitioners. Clinical 

datasets are usually accompanied by missing values and misclassified values. 

Methods of data imputation (Acuna and Rodriguez, 2004; Lin and Haug, 2006) or 

missing value replacement are employed to cope with these issues. Inconsistent data 

Table 1. 1 (2): The analysis set 

Variable Units 

ECHO 

 
LVEDD cm 

 LVEDD  Hgt indexed 

 BSA m
2
 

 Aortic Root cm 

 Left Atrium cm 

 Left Atrium  BSA indexed 

 Left Atrium  Hgt indexed 

 Aortic Velocity m/s 

 E 

 

 

 

 

 
Examination 

mmol/L 
 

Height m 

 
Weight  kg 

 
Body mass index (BMI) kg/m

2
 

 
Pulse bpm 

 
Systolic BP  mmHg 

 
Diastolic BP mmHg 

 
Pulse BP mmHg 

Pulmonary function test (PFT) 

mmol/L 
 

FEV1 L 

 
FEV1 Predicted L 

 
FEV1 % Predicted % 

 
FVC L 

 
FVC Predicted  L 

 
FVC % Predicted  % 

 
PEFR L 
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can also exist: for example, the variables may have specific values but another might 

enter as free text; the data may also contain error and noise. Outliers may be due to 

many reasons, such as entry errors, and this was inspected to remove irrelevant 

variables (Lin and Haug, 2006; Olson and Delen, 2008).  

1.1.2 Diverse clinical features and their scales 

There are approximately 400 features in the dataset, comprising of many 

scales of measurement. Some variables consist of integer and decimal values and 

some scales have a wide range while some have a small range. Normalisation (Han et 

al., 2012) will be applied to solve these problems so that the data elements are within 

the same scale and manageable for sequential data mining processes.  

1.1.3 Class imbalance 

Medical data commonly has an imbalanced class distribution. Positive 

samples are special or rare cases that occur infrequently while negative samples are 

abundant. Then there are the causes of imbalanced classes. On the other hand, 

imbalanced classes mean that one class is represented by a large number of samples 

while the others are represented by small numbers. 

1.1.4 Large dimensionality 

From the issue of diverse features, we proceed to reducing the dimensionality 

of the dataset. Large dimensionality refers to the problem of the data containing too 
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many features. Feature selection efficiently copes with this issue; the technique 

selects meaningful features that can be used in predictive modelling. 

1.2 Motivation and research problem 

Healthcare systems typically generate huge amounts of data, which includes 

numbers, text, charts and images. Unfortunately, all of these data are rarely used to 

develop decision support systems. There is a wealth of hidden information in this data 

that is largely untapped (Palaniappan and Awang, 2008). Consider the case of deaths 

due to heart failure; a simple statistical analysis indicates that most human deaths are 

due to heart failure (Rees, 1997; NHS, 2010). At the same time, there is likely to be a 

huge underestimate of the actual number of deaths caused by heart failure. However, 

there are no models present to predict the progression of heart failure, the fast and 

efficient diagnosis of heart failure and the relationship with various medical titrations 

available. These models have become even more crucial with the recent demographic 

changes and the increased need for planned care. The Department of Cardiology of 

the Hull York Medical School (HYMS) is at the forefront of research in both Heart 

failure and the use of Tele-Health techniques. (Cleland et al., 1999; Cleland et al., 

2009; Paredes et al., 2009).  

Modern medicine is faced with the challenge of acquiring, analysing and 

applying the large amount of knowledge necessary to solve complex clinical 

problems (Ramesh et al., 2004). A major challenge facing healthcare organisations 

(hospitals, medical centres, etc.) is the provision of quality services at affordable 

costs. Quality service implies the timely diagnosis of patients and the timely 
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administration of treatments that are effective. Poor clinical decisions can lead to 

disastrous consequences which are unacceptable; thus, accuracy of results is given a 

high premium (Gupta et al., 2005). Currently, healthcare systems are often developed 

based on experts’ knowledge, intuition and experience rather than on the knowledge-

rich data hidden in the database. A common feature of diagnostic/prognostic 

predictive models is the need for medical experts or someone who has specific 

knowledge of a subject, for example, cardiologist and clinician. It is often the case 

that this expert will decide on what are the significant variables that will be used to 

develop the models, e.g. Seattle Heart Failure Model (SHFM) (Levy et al., 2006; 

Ketchum et al., 2010). However, a problem arises because not all of their expert 

knowledge is documented and is often focused within a narrow range of data that is 

available. Because of this, the results can have unwanted biases, errors and excessive 

medical costs, which may affect the quality of care and service.  

Implicit in the above is the importance of selecting significant or correct 

variables for developing accurate and correct predictive models. As a result, it is 

necessary to investigate further and develop an efficient predictive model, which 

would become a basis for developing proper and appropriate tools. Integrating the 

computational and medical knowledge for optimal care improves survival and quality 

of life for the many patients that suffer from diseases. One of the data mining 

techniques that we will investigate particularly and attempt to develop is feature 

selection. Herein, the properties of various feature selection schemes are considered 

with regard to heart failure clinical datasets. We strive to transform the dataset into an 

appropriate form so that data mining algorithms can be used successfully to develop 
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models for designing treatments to be use on patients with heart failure. Thus in turn 

would enable provision of optimal care that would increase the survival rate, and also 

improve quality of life for the many patients who suffer from heart failure. 

1.3 Research aim and objectives 

From the above it is apparent that there are numbers of challenges in clinical 

datasets. The main goal of this thesis is to address data complexities and improve the 

performance of classification. The former focuses on understanding the relationships 

between the properties of data as well as data mining problems. The development of 

the data mining framework and feature selection methodology will take into account 

the issues associated with missing values, and imbalances in classes.  

Thus, the objectives of the research are as follows:  

 To develop a data mining framework for classification based on the underlying 

statistical properties of the datasets and the existing frameworks 

 To investigate the relationship between the methods for imputation and the 

statistical properties of the datasets 

 To discover the effect of class imbalance on performance of classification and 

propose the sampling data method for balancing data 

 To investigate feature selection techniques in clinical datasets 

 To develop a new method for selecting the significant variables by integrating 

two techniques of dimensionality reduction, namely, feature extraction and 

feature selection. 
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1.4 Thesis structure 

This thesis will present the data mining techniques to address the research 

objectives stated above. These will be dealt with in the next seven chapters of this 

thesis. In Chapter 2, the framework for mining data is discussed and outlined. This 

framework consists of six stages, namely 1) Data analysis, 2) Imputation, 3) Data 

sampling, 4) Dimensionality reduction, 5) Classification and 6) Evaluation. After a 

discussion of the framework, in Chapter 3 the issue of imputing missing values is 

taken up. In this chapter, the relationships between the fundamental statistical 

properties of the data and the imputing methodologies are discussed. In Chapter 4, the 

principles for reduction of dimensions are discussed. This chapter covers both feature 

extraction and feature selection techniques. Missing values and the dimensions of the 

problems play a role in developing predictive models. The model developed is for 

classifying patients in terms of life expectancy. Imbalanced class is the one of the 

crucial issue, which is discussed in Chapter 5. In Chapter 6, a new methodology for 

selection of features is developed. The method is based on the use of Mutual 

Information and Symmetrical Uncertainty. In Chapter 7, the results of data mining 

using various methods are shown and discussed, in terms of missing values 

imputation, class balancing and feature selection affect classification. Chapter 8 

concludes the thesis with a summary of the main contributions of the thesis and gives 

some suggestions for future work. 
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 CHAPTER 2

FRAMEWORKS FOR DATA MINING 

2.1 Introduction 

Data mining in the main is a process whereby meaning, information and 

knowledge can be extracted from a dataset (Witten and Frank, 2005; Han et al., 

2012). A naïve approach would be to collect the data, and run clustering, 

classification, model identification or estimation algorithms on the data. However, 

such an approach is not likely to give good results since the data could have a large 

number of variables, both irrelevant and redundant, there could be pieces of data 

missing, and the outcomes in the dataset may not be balanced. These are some of the 

challenges faced by miners of data. Thus often, data mining algorithms are preceded 

by pre-processing and there may be some post processing to solve the data issues. 

Given the options available, there is a requirement for developing a framework for 

data mining (Azevedo and Santos, 2008; Olson and Delen, 2008; Kamath, 2009).  

There are a number of different frameworks available, e.g. CRISP (Chapman et 

al., 2000; Wirth and Hipp, 2000) and SEMMA (SAS Institute Inc.). These 

frameworks are similar, with small variations depending on the nature and type of 

data available for mining. In this chapter, a generic framework based on these 

frameworks with modifications for clinical datasets is outlined. 
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In Chapter 1, the challenges posed by clinical datasets were discussed. In this 

chapter, the data mining framework is proposed to deal with these issues. The 

proposed framework has a simple algorithmic framework and makes use of 

modification for different data issues. The main goal of this framework is to minimise 

the problems raised by missing values, imbalanced class and high dimensionality of 

data. The research in this thesis aims to enable more accurate selection of significant 

variables from clinical datasets. The chapter is organised along the following lines. In 

section 2.2, the concept of data mining is discussed. This section presents a general 

classification of data mining tasks, which can be classified into two categories: 

descriptive and predictive data mining approaches. Along with this, this section also 

outlines the approaches of supervised and unsupervised learning. In section 2.3, data 

mining frameworks are discussed, focusing on CRISP and SEMMA, which are the 

basic frameworks for development. Later on in section 2.3.3, the six procedures in the 

proposed data mining framework   Handling  linical Data Framework  H DF    are 

outlined: (1) data analysis (2) imputation, (3) sampling data, (4) dimensionality 

reduction, (5) classification and (6) evaluation. Specific examples using this 

framework are outlined in the later chapters of this thesis. It should be noted that 

whereas a data mining framework outlines an approach for solving the problem, a 

data mining technique applies the framework. This framework is used for handling 

clinical data issues to provide a better understanding of their characteristics, and 

producing better performance of classification on significant variables.  
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2.2 Data mining  

Data mining is one of the processes for discovering new knowledge and 

information. It can be defined as finding hidden information from a given set of data 

through the use of statistical and mathematical algorithms to extract meaningful 

information, trends and patterns (Han et al., 2012). Thus, data mining can be viewed 

as the analysis of observational datasets to find unexpected relationships and to 

summarise data in a meaningful manner that is both understandable and useful. It is 

an interdisciplinary area bringing together methods from machine learning, pattern 

recognition, statistics, datasets and visualization to address the issue of information 

extraction. One of the two primary goals of data mining is to perform prediction 

through the use of predictive models. The second goal of data mining is the 

construction of a descriptive model, which is able to identify patterns or relationships 

in data while exploring the underlying properties of data.  

2.2.1 Predictive modelling 

Predictive modelling (Witten and Frank, 2005; Hardin and Chhieng, 2007; Han 

et al., 2012) falls into the category of supervised learning. Thus, one variable is 

clearly labelled as the target variable and is a function of the other variables. Most 

models are typically built to predict the behaviour of new cases and to extend the 

knowledge to objects that are new or not yet understood. The following briefly 

explains several types of algorithms that are useful for predictive modelling: 
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1) Prediction: given a data item and a predictive model, it predicts the value for a 

specific attribute of the data item.  

2) Regression: determines the best function that is suitable for the data. Here data 

is mapped to show real value prediction of the target variable. On the other 

words, regression is used when the target variable is a continuous variable. 

3) Classification: given a set of predefined categorical classes (or discrete 

variable), it determines to which of these groups or classes a specific data item 

belongs.  

4) Evolution and deviation analysis: focuses on discovering the most significant 

changes in the data from previously measured values. 

2.2.2 Descriptive modelling 

For a preliminary exploration of data, a general description is required. In order 

to obtain this, algorithms for density estimation, smoothing, data segmentation and 

clustering are run on the data. These can be classified as unsupervised algorithms, 

since they do not have a specific target. Clustering is a well-studied technique in 

statistics often used for initial exploration. There is an underlying assumption that the 

dataset contains natural clusters which, when discovered, can be characterized and 

labelled. While for some cases it might be difficult to decide to which group they 

belong, it is often assumed that the resulting groups are clear-cut and carry an 

intrinsic meaning. In contrast, in segmentation analysis, the user typically sets the 

number of groups in advance and tries to partition all cases into homogeneous 
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subgroups. The following list describes methods of descriptive modelling (Witten and 

Frank, 2005; Hardin and Chhieng, 2007; Han et al., 2012): 

1) Clustering: similar to classification but the class(es) of data is not predefined. 

Clustering is best used for finding groups of items that are similar.  

2) Link Analysis (Associations rule or Affinity analysis): given a set of data 

items, it identifies relationships between attributes and items, such as the 

presence of one pattern implies the presence of another pattern. The 

investigation of relationships between items over a period of time is also often 

referred to as 'sequential pattern analysis'. 

3) Summarization: involves methods for finding a compact description for a 

subset of data. Summarization techniques are often applied to interactive 

exploratory data analysis and automated report generation.  

2.2.3 Supervised and unsupervised learning 

Machine learning has become essential in the mining of data as knowledge 

discovery and adaptive information extraction has to play an important role in 

modern life. Machine learning can be broadly classified as supervised or 

unsupervised learning (Hardin and Chhieng, 2007). Supervised learning creates 

models by using input attributes to predict the output attribute values. Output 

attributes are also known as dependent variables as their outcome depends on the 

values of one or more input attributes. Input attributes are referred to as independent 

variables. When learning is unsupervised, an output attribute does not define for 



Chapter 2 Frameworks for data mining 

18 

 

predicting. Therefore, all attributes used for model building are independent 

variables.  

 

 

Supervised learning (Fig. 2.1(a)) strategies can be further categorised according 

to whether output attributes are discrete or categorical, as well as by whether models 

are designed to determine a current condition or predict future outcome. Methods 

used for mining datasets are, mainly, supervised methods; thus, there is a particular 

pre-specified target variable and data is readily available. Within the method, there 

are many algorithms where the value of the target variable is provided so that the 

algorithm may learn which values of the target variable are associated with which 

values of the predictor variables.  

 

Data Data

Learning system

Data Learning system

Desired

Results

Actual 

Results

Feedback

(error signal)
(a)

(b)

 

Figure 2.1: Supervised and unsupervised learning  

(a) Supervised learning. 

(b) Unsupervised learning 

(Hardin and Chhieng, 2007) 
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On the other hand, unsupervised learning (Figure 2.1(b)) searches the data for 

interesting associations and does not have a specific target assigned to it. It attempts 

to group elements into a number of classes to cover all the items in the dataset. Thus 

unsupervised algorithms search for patterns and structure among all the variables. In 

unsupervised learning situations, all variables are treated in the same way. There is no 

distinction between explanatory and dependent variables. Intuitively, it can be seen 

that clustering would be the most popular and common method which is used. 

The dividing line between supervised learning and unsupervised learning is 

similar to the one that distinguishes discriminant analysis from cluster analysis. 

Supervised learning requires that the target variable is well defined and that a 

sufficient number of its values are given. For unsupervised learning, typically, the 

target variable is either unknown or has only been recorded for a small number of 

cases (Gentle and Hardle, 2004). 

2.3 Data mining frameworks 

The data mining framework consists of a method for representing the data and 

knowledge, and a method for data manipulation (Anand et al., 1996).The framework 

provides a solution to deal with the complexities of data by using the potential of data 

mining algorithms.  The realisations of processes in the framework are a unified 

approach for solving the different tasks of data mining. Approaches used for data 

mining have been problem specific, for example, classification problems. In this 

thesis, SEMMA and CRISP-DM have been chosen, because they are considered to be 
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the most popular and presented in many of the publications in the area and are widely 

used in practice (Azevedo and Santos, 2008).  

2.3.1 CRISP-DM 

There is a Cross-Industry Standard Process for Data Mining (CRISP-DM) 

(Chapman et al., 2000) widely used by industry members. This model consists of six 

phases intended as a cyclical process (see Fig. 2.2).  

 

1) Business Understanding: Business understanding includes determining 

business objectives, assessing the current situation, establishing data mining 

goals, and developing a project plan. 

 

Business 
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Data 
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Data 
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Figure 2.2: CRISP-DM Process Model (Chapman et al., 2000; Wirth and 

Hipp, 2000) 
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2) Data Understanding: the step considers data requirements including initial 

data collection, data description, data exploration, and the verification of data 

quality.  

3) Data Preparation: Once the data are available, data cleaning and data 

transformation need to occur in this phase.  

4) Modelling: Data mining models can be applied, for example, visualization 

and cluster analysis are useful for analysis and generalized rules can develop 

association rules. 

5) Evaluation: Model results should be evaluated in the context of the business 

objectives established in the business understanding phase. This phase will 

show the results using visualization, statistical, and artificial intelligence tools 

that show the user new relationships that provide a deeper understanding of 

organizational operations.  

6) Deployment: Models can be obtained that may then be applied to business 

operations for many purposes, including prediction or identification of key 

situations. These models need to be monitored for changes in operating 

conditions. If significant changes do occur, the model should be redone. 

 

CRISP-DM is extremely complete and well-documented. All its stages are 

duly organized, structured and defined, enabling a project to be easily understood or 

revised (Azevedo and Santos, 2008). This six-phase process is not rigid, in terms of 

the order of procedure. Additionally, experienced analysts may not need to apply 

each phase for every study. 
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2.3.2 SEMMA 

SEMMA (SAS Institute Inc.) is the methodology that SAS proposed for 

developing data mining products. The acronym SEMMA stands for Sample, Explore, 

Modify, Model, Assess. Beginning with a statistically representative sample of the 

data, SEMMA is intended to make it easy to apply exploratory statistical and 

visualisation techniques, select and transform the most significant predictive 

variables, model the variables to predict outcomes, and finally confirm a model’s 

accuracy (Olson and Delen, 2008). A pictorial representation of SEMMA is given in 

Fig. 2.3.  
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Figure 2.3: Steps in the SEMMA Methodology (SAS Institute Inc.) 



200893098 N.Poolsawad / Computer Dept. 

23 

 

1) Sample: For optimal cost and computational performance, a sampling 

strategy applies a reliable, statistically representative sample of the full 

detailed data. In the case of very large datasets, mining a representative 

sample instead of the whole volume may drastically reduce the processing 

time required to get crucial business information. It is also advised to create 

partitioned data sets for better accuracy assessment. 

2) Explore: Exploration helps refine and redirect the discovery process. If visual 

exploration does not reveal clear trends, one can explore the data through 

statistical techniques including factor analysis, correspondence analysis, and 

clustering.  

3) Modify: This is where the user creates, selects, and transforms the variables 

upon which to focus the model construction process. It may also be necessary 

to look for outliers and reduce the number of variables, to narrow them down 

to the most significant ones.  

4) Model: Modelling techniques in data mining include artificial neural 

networks, decision trees, rough set analysis, support vector machines, logistic 

models, and other statistical models – such as time series analysis, memory-

based reasoning, and principal component analysis. Each type of model has 

particular strengths, and is appropriate within specific data mining situations 

depending on the data.  
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5) Assess: This is where the user evaluates the usefulness and the reliability of 

findings from the data mining process. In this final step of the data mining 

process, the user assesses the model to estimate how well it performs. 

 

Although SEMMA is a methodology, it is based on the technical part of the 

project only, i.e. its aim is to solve the data mining part and it does not take into 

account all the management side. Like the above approach, SEMMA also sets out a 

waterfall life cycle, as the project is developed through to the end. If the solution is 

not interesting, developers go backwards through the stages (Azevedo and Santos, 

2008). 

2.3.3 Handling clinical data framework (HCDF) 

We are developing an already existing frameworks (SAS Institute Inc.; 

Chapman et al., 2000; Wirth and Hipp, 2000; Wright and Sittig, 2008; Poolsawad et 

al., 2011), being motivated by clinical dataset challenges to minimise these problems 

whilst, at the same time, maximising classification performance of data. Thus, the 

framework consists of the processes of (1) data analysis (2) imputation (3) data 

sampling (4) dimensionality reduction (5) classification and (6) evaluation. These are 

flexible procedures for dealing with a variety of data issues. This framework is 

outlined in Fig. 2.4 below:  
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2.3.3.1 Data analysis 

Data analysis is the process of understanding the requirements according to the 

business objectives and data mining goals. The first stage of the data mining process 

is to select the related data from available sources to correctly describe a given 

business task. There are at least three issues to be considered in the data selection. 

The first issue is to set up a concise and clear description of the problem. For 

example, with a LIFELAB dataset, the data mining project may seek to identify the 

mortality in patients suffering from heart failure. Another example may be to identify 

the significant variables associated with patient mortality. The second issue would be 

to identify the relevant data for the problem description. Most demographic, 

 

 

Figure 2.4: Handling clinical data framework (HCDF) 
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laboratory and examination data could be relevant to both examples. The third issue 

is that selected variables for the relevant data should be independent of each other. 

Variable independence means that the variables do not contain overlapping 

information. The variable selection issue will be discussed in details in discussing the 

dimensionality reduction process.   

Data variables for mining can vary; the data type can be categorised as 

quantitative or qualitative data. Quantitative data is measurable using numerical 

values. It can be either discrete (such as integers) or continuous (such as real 

numbers). Qualitative data, also known as categorical data, contains both nominal and 

ordinal data. Nominal data has finite non-ordered values; however, ordinal data has 

finite ordered values. Quantitative data can be represented by some sort of probability 

distribution. A probability distribution describes how the data is dispersed and 

shaped. For instance, normally distributed data is symmetric, and is commonly 

referred to as normal distribution. Qualitative data may be converted to numbers and 

then be described by frequency distributions.  

Once data analysis is discovered according to the data mining business 

objectives, data pre-processing should be pursued. In this framework, the pre-

processing is the main process for addressing the dataset issues. The data preparation 

is divided into three procedures: imputation, data sampling and dimensionality 

reduction. There are many statistical methods and visualisation tools that can be used 

to analyse the data. Common statistics, such as max, min, mean, and mode can be 

readily used to aggregate or smooth the data, while scatter plots and box plots are 

usually used to filter outliers. More advanced data mining techniques such as 
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regression analyses, cluster analysis, or decision tree may be applied depending on 

the requirements for the quality of the data. The pre-processing can provide the 

flexibility to implement various data mining algorithms and can make a difference to 

the data mining results. 

2.3.3.2 Imputation  

The purpose of data pre-processing is to clean and prepare available data for 

better quality. Some available data may have different formats because they are 

chosen from different data sources and different data collections. However, they 

should be converted to a consistent electronic format. Data cleaning generally refers 

to filtering data and filling in missing values (imputation). This process emphasises 

the missing values issue because it is the one of major problem in clinical datasets. 

Missing values imputation smoothes data by imputing them with reasonable values. 

The imputed values could be calculated by various methods such as the mean, the 

mode and data-mining algorithms to discover knowledge patterns. However, the 

missing values issue and imputation will be discussed in detail in next chapter 

(Chapter 3). Moreover, other preparations also can be made in this process, such as 

transforming data and normalising data, which eliminate differences in variable 

scales, and furthermore filtering data, which can be examined for outliers and 

redundancies. Outliers are data that differ greatly from the majority of the data, or are 

clearly out of the range of the data. Outliers may be caused by many reasons, such as 

human errors or technical errors, or may naturally occur in a dataset due to 

unfortunate events. Arbitrarily deleting an outlier could dismiss valuable information. 
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Redundant data occur where the same information is recorded in several different 

ways for example age and date of birth of patient. The result of the data cleaning 

process is a dataset that can readily be used for the process of applying data mining 

algorithms. 

2.3.3.3 Data sampling  

After sampling the data, unanticipated trends and anomalies can be found in 

order to gain a better understanding of the dataset. Data analysis and imputation 

processes help refine and redirect the discovered data. If a data mining algorithm does 

not reveal clear important results or cannot meet the business requirements, data 

sampling can help to improve the prepared data, especially where data poses the 

problem of imbalanced class, which are common in clinical datasets. In the other 

words, the proportion of positive and negative cases in a dataset is not equal. Usually 

only a small number of people diagnosed actually have the disease. There are many 

more negative cases (‘Alive’ class in our instance) than positive cases (‘Dead’ class). 

A limitation of data mining algorithms is that they often show a strong bias toward 

the majority class (negative case), since the goal of learning algorithms for clinical 

datasets is to minimise the overall prediction error rate especially the minority class 

(positive case). Thus, class balancing is an important process to improve the data 

mining performance. In this thesis, two strategies of sampling data, (1) over-sampling 

and (2) under-sampling, that can solve this problem, are outlined in Chapter 5. It 

should be noted that the size of samples for each class should be big enough to 

contain the significant information and not too small to represent the data. A 
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sampling strategy should yield a reliable, statistically representative sample of the full 

data. It is also advised to apply data sampling on imbalanced datasets for more 

accurate performance. 

2.3.3.4 Dimensionality reduction  

Clinical data often contains an extremely large number of variables. Using all 

of the variables in a data mining model is not practical in general, so dimensionality 

reduction (see more details in Chapter 4) plays a critical role in data mining 

modelling to reduce the number of variables. In this framework, feature selection is 

used to select the meaningful and relevant variables. The previous processes aim to 

prepare data for applying a data mining algorithm and gaining better accuracy in data 

mining modelling. Feature selection performs variable selection; however, this 

method may not perform well when one is evaluating datasets that contain hundreds 

of potential input variables. Furthermore, it should be kept in mind that the purpose of 

stepwise selection is not to improve the performance of accuracy but to gain an 

optimal subset of variables. Feature selection enables evaluation of the importance of 

input variables in predicting or classifying the target variable. Variable selection is 

often more critical for clinical or large datasets than others. Some of the data are not 

directly pertinent to the data mining exercise, and so may be eliminated. It may also 

be necessary to seek to reduce the number of variables, to narrow them down to the 

most significant ones.  
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2.3.3.5 Classification 

Once data are prepared, a data mining model can be constructed that explains 

patterns and extracts knowledge from the data. Data mining can be achieved by 

association, classification, clustering, predictions, sequential patterns, and similar 

time sequences. Modelling techniques in data mining include artificial neural 

networks, decision trees, support vector machines, and other statistical models. Each 

type of model has particular strengths, and is appropriate within specific data mining 

situations, depending on the data. Data mining modelling is used to generate results 

for various situations. In this framework, classification is used for data mining 

modelling, which assumes a given set of predefined classes of samples. Classification 

is one of the most important data mining problem types that occur in a wide range of 

predictive modelling or clinical applications such as diagnostic or prognostic models. 

The key examination problems related to classification results are the evaluation of 

misclassification and prediction performance.  

2.3.3.6 Evaluation 

The data evaluation stage is vital to assess clinical datasets. This process 

consists of two issues essential for evaluating the performance of a data mining 

model. One is how to identify the business objective from knowledge patterns 

discovered in the data mining stage. Another issue is how to show the data mining 

results. Good evaluation leads to productive and reliable business decisions, while 

poor interpretation analysis may miss useful information. In this thesis, the 

performance accuracy and redundancy rate are used for assessing the data mining 
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model to reveal the optimal subset of variables with good performance of accuracy. 

The results of the data mining study need to give feedback for improvement. The data 

mining study has uncovered new knowledge, which needs to be applied to the data 

mining project goals. It is important that the knowledge gained from a particular data 

mining study be monitored for change. 

A data mining framework is used for specific application, involving interesting 

aspects of data handling requirements. CRISP and SEMMA were created as broad 

frameworks, which need to be adapted to specific circumstances. The proposed 

framework started with a clearly defined goal – to develop tools that would better 

utilise the clinical decision support system. Table 2.1 compares the Handling Clinical 

Data Framework (HCDF) with the CRISP and SEMMA frameworks by comparing 

the processes of the frameworks. HCDF includes data sampling effort, like SAMMA, 

while CRISP would include it in data preparation. Data is handled by imputing 

missing values and reducing the dimensionality, which are equivalent to data 

preparation in CRISP and Modify in SEMMA. Thus, HCDF is the extension 

Table 2.1: Comparison of the data mining frameworks 

CRISP HCDF SEMMA 

Business understanding 

Data analysis 

- 

Data understanding 
Sample 

Explore 

Data preparation 

Imputation  

Modify Data sampling 

Dimensionality reduction 

Modelling Classification Model 

Evaluation 
Evaluation 

Assessment 

Deployment  
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framework of SEMMA that divided the ‘Modify’ step into imputation, data sampling 

and dimensionality reduction. It has seen that HCDF gives more flexibility and 

practical uses for handling different data issues.  

In the case study of the heart failure clinical dataset being analysed in this 

thesis, the primary requirement was to build a classification model for prediction. The 

design of the framework was primarily driven by the data mining analytics needed. 

There are six processes involved in effectively using the data mining functionality to 

provide predictive solutions. Each of these processes is performed using the data 

mining techniques, using the clinical data as input to the data mining process. These 

processes will be discussed in Chapter 3, 4, 5 and 6.  

2.4 Summary 

Data mining techniques are defined by an algorithm and the most commonly 

used techniques include artificial neural networks, decision trees, and the nearest-

neighbour method. Supervised and unsupervised learning are the techniques that 

distinguish the features and output of the data. The data mining model is then 

adjusted to minimize the error rate in the datasets. The data at hand is perfectly 

described, but generalisation to other data yields unsatisfactory outcomes. It is not 

only different data that might yield different models; different statistical methods or 

techniques can also affect the outcome of the model. The choice of the method is 

open to the user.  

In our approach, it is very important to point out that our framework does not 

eliminate the need to cleanse the data and analyse the characteristics of raw data. In 
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fact, to build predictive models for classification in clinical data, our data mining 

processes perform classification and prediction and present mining results. The 

mining algorithms in the data mining framework are designed to work on clinical 

data. The framework takes into consideration the data required for all kinds of 

analysis that are carried out. The results from this methodology can reveal the 

significant variables that will be used for a decision support system and this 

methodology also gives satisfactory predictive performance. 
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 CHAPTER 3

HANDLING MISSING VALUES 

3.1 Introduction 

There are two main drivers for the use of data mining techniques and the 

design of decision support systems: (a) the availability of rich and diverse types of 

data; (b) the drive to improve patient care and reduce hospitalisation costs. Hence, 

handling missing values is investigated with the aim of data preparation and 

performance improvement, since most medical applications encounter missing values 

in their data. Values can be missing for several reasons including incorrect data entry, 

erroneous measurements, equipment faults or unrecorded measurements, such as 

some variables that would not be important for a particular medical diagnosis (Juhola 

and Laurikkala, 2013). In addition, there could be other reasons for the data to be 

missing, e.g. patient refusal to continue in the study, patient withdrawals due to 

treatment failure, treatment success or adverse events, or patients relocating. At the 

same time in many clinical data, the medical records allow for some attributes to be 

left blank, if they are not relevant to some classes of illness or if the patient objects to 

the recording of this information (Committee for Medicinal Products for Human Use, 

2009). Missingness can be defined as both the existence of missing data and the 

mechanism that explains the reason for the data being missing. Existence of missing 
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values causes a number of problems, the primary one being the inability to extract 

and discover knowledge either manually or computationally. The reason for this is 

that there is an inbuilt biasing of the data even before the processing starts (Barnard 

and Meng, 1999; Jagannathan and Petrovic, 2009). On the other hand, ignoring 

missing data is not an acceptable option when planning, conducting or interpreting 

the analysis of a confirmatory clinical data (Committee for Medicinal Products for 

Human Use, 2009). This is important because missing data are a potential source of 

bias when analysing data from clinical data. At the same time, care should be taken 

that the strategy employed to handle missing values should not in itself become a 

source of bias. 

Along with the other issues discussed in Chapters 1 and 2, missing values 

create a unique set of problems for developing appropriate classification or prediction 

models, which aid in the development of decision support systems (Sittig et al., 2008; 

Fox et al., 2010). Three types of major difficulties usually associated with missing 

values challenge in data mining are: (a) loss of information and efficiency; (b) 

complication in handling and analysing the data; and (c) bias resulting from 

differences between missing and complete data (Barnard and Meng, 1999; Wang and 

Wang, 2010). In the particular case of classification, missing values and also missing 

values handling affect the classification performance (Acuna and Rodriguez, 2004; 

Juhola and Laurikkala, 2013). Therefore, missing values should be handled in such a 

way that the classification can tolerate even high numbers of missing values. When 

high numbers of missing values occur, the uncertainty of the likely treatment effect 

can become such that it is difficult to conclude that evidence of efficacy has been 
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established. However, impact of missing values has seldom been investigated for the 

purpose of evaluating their influence on classification results. In this thesis, a multi-

stage process is suggested for handling missing values, which consists of three stages, 

namely: (1) discard, (2) imputation and (3) evaluation, as shown in Fig. 3.1.  

 

3.2 Types of missing values 

In order to decide how to handle missing values, it is helpful to understand 

why they are missing. Little and Rubin (Little and Rubin, 1978) classify missing data 

into three categories: (1) missing completely at random (MCAR), (2) missing at 

random (MAR), and (3) missing not at random (MNAR). 

 

 

Figure 3.1: A multi-stage process for handling missing values 
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1) Missing completely at random (MCAR) 

If data are missing completely at random, then throwing out cases with 

missing data does not bias inferences. There is no relationship between whether a 

data point is missing and any values in the data set, missing or observed. An example 

of a MCAR mechanism would be that a laboratory sample is dropped, so the resulting 

observation is missing. 

2) Missing at random (MAR) 

Most missingness is not completely at random, as can be seen from the data 

itself. MAR means the propensity for a data point to be missing is not related to the 

missing data, but it is related to some of the observed data. For example, depressed 

people may be more likely to decline to report income, and thus when there is a high 

rate of missing data among depressed individuals, the existing mean income might be 

lower than it would be in observed data.  

3) Missing not at random (MNAR)  

This is missingness that depends on unobserved predictors. In addition, data is 

missing because there is no information recorded to confirm it so as to be able to 

predict the missing values. An example of MNAR is that some patients might drop 

out because they believe the treatment is not effective. 

3.3 Discarding method 

There are two main principles that are applied to discard data with missing 

values. These are: 
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3.3.1 Complete case analysis  

This is a direct approach to missing data and it excludes these records. In 

other words, only those data or records with all attributes having value are retained 

for analysis. However, there two problems with this approach: 

a) If the units with missing values differ systematically from the completely 

observed cases, a bias would be incorporated into the dataset. For 

example, it is possible that the majority of missing attributes could be for 

one class, and removing these data records could result in more 

complication in the analysis, including bias and the introduction of an 

imbalance of classes. 

b) If there are a large number of variables required for the model, it is 

possible that the number of records available would be far less than is 

required.  

3.3.2 Available case analysis 

Available-case analysis arises when a variable or set of variables are 

completely excluded from the analysis because of their percentage of missing data. 

This method consists of determining the extent of missing data in each instance and 

attribute, and deletes the instances and/or attributes with high levels of missing data. 

In a causal inference context, this may lead to omission of a variable that is necessary 

to satisfy the assumptions necessary for desired interpretations. 
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Thus, before deleting any attribute, consideration must be given to whether 

that variable or attribute is necessary to the analysis. In some situations, attributes 

should be retained even in the presence of a high degree of missing values. Both 

methods, complete case analysis and discarding instances and/or attributes, should be 

applied only if missing data are MCAR, because missing data that are not MCAR 

have non-random elements that can bias the results. Table 3.1 shows the reasons for 

missing physical data and the different imputation decisions to deal with the problems 

that are raised from different causes of missing values. 

3.4 Techniques for imputing  

Imputation is challenging as it could introduce additional biases, since records 

with missing values are often systematically different from records without missing 

values, even when they belong to the same class (Rubin, 1987). This method is 

different from complete-case and available-case analysis because rather than 

removing variables or observations with missing data, this approach is to fill in or 

impute missing values. At the same time, this method retains the full sample size. 
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A major methodological research interest is the analysis of data with missing 

values (Little and Rubin, 1978; Poolsawad et al., 2012a; Zhang et al., 2012). 

However, they can yield different kinds of bias, as detailed later in this section. These 

biases are difficult to eliminate since the precise reasons for missing data are usually 

Table 3.1: Reasons for missing physical data (Gilchrist et al., 2008) 

 

Reason Definition Imputation Decision 

No information The default null value, no 

context is provided and the value 

cannot be interpreted further.  

 

If MCAR/MAR, impute using 

entire dataset. If not 

MCAR/MAR, impute using 

data from individual patient 

or similar patients. 

Not applicable The data element does not  

apply in a given context, 

e.g., an answer to 

"gestational age" for an adult 

patient. 

Do not impute. 

Unknown The information may be 

applicable, but is not known in 

the given context. 

Impute a value based on 

similar patients. 

Not 

collected/tested 

The value was not 

collected/tested because that 

information was deemed 

unnecessary. 

Impute a normal value. 

Tested but 

unknown 

The value was tested/observed, 

but not recorded.  

Impute a value based on 

individual patient or similar 

patients. 
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not known. The approaches for imputation can be grouped into two broad categories: 

single imputation methods and multiple imputation methods. 

3.4.1 Single imputation 

As a method to deal with missing data, single imputation is often utilised 

because it is intuitively attractive. In single imputation, we fill in missing values with 

some type of predicted values. Kalton and Kasprzyk (1982) described many different 

methods for single imputation and the most important characteristics of the 

commonly used imputation methods (Kalton and Kasprzyk, 1982). The most 

common is mean imputation or median imputation, where a sample mean (median) of 

a variable replaces any missing data for that variable or feature or attribute (Here, 

variable, feature, dimension and attribute are interchangeably used). Missing values 

can also be replaced using values taken from matching records, also known as Hot-

decking for example, K-Nearest Neighbour Imputation (KNNI), K-Means Clustering 

Imputation (KMI), Fuzzy K-Means Clustering Imputation (FKMI) and Support 

Vector Machine Imputation (SVMI). 

Imputation performed by data predictors also has the important advantage of 

allowing the use of information available to the data predictors. This information may 

involve detailed knowledge of interviewing procedures and reasons for nonresponse 

that cannot be placed because of confidentiality constraints. Imputation by single 

imputation leads to greater consistency and thereby to reduced costs (Rubin, 1988). 
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3.4.2 Multiple Imputation 

A more computationally demanding and intensive approach is to use a strategy 

called multiple imputation (Rubin, 1987). In multiple imputation each of the missing 

values is replaced by imputed values to create complete datasets. Once this is done, 

analysis is carried out under each set of imputation and analyses combined to reflect 

within-imputation and between-imputation variability. A number of techniques are 

available for multiple imputation; the most popular is Expectation-Maximization 

(EM) algorithm (Little and Rubin, 1978; Rubin, 1987; Schafer, 1997; Schafer and 

Olsen, 1998). 

Multiple imputation methods have advantages and disadvantages. The major 

advantages of multiple imputation as indicated by Rubin (Rubin, 1987) are that 

standard complete-data methods are used to analyse each completed dataset. 

Moreover, the ability to utilise data collectors’ knowledge in handling the missing 

values is not only retained but also actually enhanced. In addition, multiple 

imputations allow data collectors to reflect their uncertainty as to which values to 

impute. Disadvantages include the time intensiveness involved when imputing five to 

ten data sets, testing models for each dataset separately, and recombining the model 

results into one summary (Rubin, 1987).  

In this thesis, a set of imputation methods are employed to handle missing 

values in a clinical dataset, however, the complete data sets obtained are not analysed 

in the same way using multiple imputation. Instead, metrics are used to compare the 

performance of different imputation methods. Whenever a single imputation strategy 
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is used, the standard errors of estimates tend to be too low. The intuition here is that 

we have substantial uncertainty about the missing values, but by choosing a single 

imputation, we in essence pretend that we know the true value with certainty. 

Examples of imputations are discussed as follows: 

3.4.3 Imputation methods 

Imputation methods involve replacing missing values with estimated ones 

based on information available within the data set. These methods vary from simple 

mean imputation, to the more robust methods based on relationships between the 

attributes (Zhang et al., 2012). In what follows is a brief description of these methods. 

3.4.3.1 Most common value imputation (MCI) 

This method is one of the simplest methods to implement amongst existing 

methods (Zhang et al., 2012). Depending on the nature of the attribute, there are 

differences in the manner in which MCI replaces missing values.  

 For nominal attributes, MCI imputes the missing value with the most 

common value of the attribute.  

 For numerical attributes, the missing value is replaced with the average 

value of the attribute.  

 For symbolic attributes, every missing attribute value should be 

replaced by the most common attribute value. 
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3.4.3.2 Concept most common value imputation (CMCI) 

CMCI is similar to MCI, the main difference being that it takes into account 

only instances with the same class rather than the whole dataset (Zhang et al., 2012) 

(or all the classes put together) (Here a concept is a subset of the set of all cases with 

the same outcome). Thus  

 The missing value is replaced by the mode if the attribute is nominal. 

 It is replaced by the mean value if it is numerical. 

 For symbolic attributes, every missing attribute value should be 

replaced by the most common attribute value that occurs for the class. 

3.4.3.3 K-nearest neighbour imputation (KNNI) 

The previous methods use a mean across the dataset or a mean/mode within a 

class. These methods do not generally take into account either values of other 

variables or attributes within the data space. On the other hand, KNNI (Batista and 

Monard, 2003) is an instance-based algorithm; for every missing value that is found, 

KNNI uses the k-nearest neighbours in order to determine a value from them, which 

is then imputed. With this method, a proximity measure between instances has to be 

defined. A default or near universal measure is the Euclidean distance. (Other 

distances are also used depending on the nature of the attributes). Typically for 

nominal attributes, the most common value amongst all neighbours is taken, and for 

numerical values, the average value is used (Batista and Monard, 2003).  

There are advantages in the use of this approach. These are (a) it can be used to 

predict both qualitative attributes (the most frequent value among the k-nearest 
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neighbours) and quantitative attributes (the mean among the k-nearest neighbours); 

and (b) a predictive model for each attribute is not necessary.  Here the dataset is used 

as a non-parametric lazy learning algorithm. As a result, the k-nearest neighbour 

algorithm can be easily adapted to work with any attribute classes, by modifying the 

attributes to be considered in the distance metric. Another advantage is that this 

approach can be extended to situations where there are multiple missing values within 

a record. The main drawback of the k-nearest neighbour approach is that it can 

become computationally expensive. Whenever the k-nearest neighbour looks for the 

most similar instances, it has to search for these in the whole data set. 

3.4.3.4 K-means clustering imputation (KMI) 

Both CMCI and KNNI use some form of a measure of similarity. The KMI (Li 

et al., 2004) method uses the dissimilarity measure within the cluster through the 

addition of distances among the objects and the centroid of the cluster to which they 

are assigned. A cluster centroid represents the mean value of the objects in the 

cluster. Once the clusters have converged, the last process is to fill in all the non-

reference attributes for each incomplete object based on the cluster information. Data 

objects that belong to the same cluster are taken to be nearest neighbours of each 

other, and KMI applies a nearest neighbour algorithm to replace missing values, in a 

similar way to KNNI (Li et al., 2004).  

Thus the algorithm for missing data imputation with K-means clustering 

method is multi-staged, and is shown in Algorithm 3.1  
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The two common measure used in this scheme are  

(a) A norm distance  

           ∑|          |
 

 

   

 
 

 ⁄                                                           

where      is the distance,      is the centroid and      is the data object in the cluster. 

The Euclidean distance    . 

 

(b) Cosine distance which is calculated from Cosine Similarity,  

            
∑            

 
   

√∑     
  

    ∑     
  

   

   and                                   

where the notations are as before. 

 

Algorithm 3.1: K-means clustering imputation method 

(i)  Randomly select K complete data objects as K centroids.  

(ii) Iteratively modify the partition to reduce the sum of the distances for 

each object from the centroid of the cluster to which the object belongs. 

The process terminates once the summation of distances is less than a 

user-specified threshold  .  

(iii)  Fill in all the non-reference attributes for each incomplete object based 

on the cluster information. 
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3.4.3.5 Fuzzy K-means clustering imputation (FKMI) 

In FKMI (Li et al., 2004), a data object cannot be assigned to a cluster 

represented by a cluster centroid (as is done in the basic K-mean clustering 

algorithm), because each data object belongs to all K clusters with different 

membership degrees. FKMI replaces non-reference attributes for each incomplete 

data object based on the information about membership degrees and the values of 

cluster centroids (Li et al., 2004). 

In fuzzy clustering, each data object    has a membership function, which 

describes the degree to which a data object belongs to particular cluster   . The 

membership function is defined in Eq. (3.3): 

 

          
          

       ⁄

∑         
       ⁄ 

   

                                         

where       is the fuzzifier, which deals with a mapping from the input space to 

the fuzzy set, and ∑             
    for any data object               . We 

cannot simply compute the cluster centroids by the mean values. Instead, we need to 

consider the membership degree of each data object. Eq. (3.4) provides the formula 

for cluster centroid computation: 

    
∑            

 
   

∑         
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Since there are unavailable data in incomplete objects, we use only reference 

attributes to compute the cluster centroids. The FMI approach is outlined in 

Algorithm 3.2  

3.4.3.6 Expectation-maximization imputation (EMI)  

EMI iteratively computes the expected values for missing observations by 

repeatedly updating maximum-likelihood (ML) parameter estimates and imputing 

updated expected values until convergence is achieved (Dempster et al., 1977). The 

expectation-maximization (EM) algorithm is an iterative method for solving the 

maximum-likelihood estimates for missing values. 

The algorithm proceeds in two steps (a) The E-Step: The expectation step 

evaluates the posterior probabilities of the unobserved data and (b) M-Step: The 

subsequent maximization step updates the model parameters using the posterior 

distribution of the missing data evaluated in the E-step. The EM algorithm is outlined 

in Algorithm 3.3. 

       ∑              

 

   

       

Algorithm 3.2: Fuzzy K-means clustering imputation method 

(i)  Pick K centroids, which are evenly distributed.  

(ii)  Iteratively update membership functions and centroids until the overall 

distance meets the user-specified distance threshold ε.  

(iii)  Impute non-reference attributes for each incomplete object,    based on 

the information and the values of cluster centroids. 
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3.4.3.7 Support vector machine imputation (SVMI) 

A support vector machine (SVM) can be used to impute the missing values as 

well. For each attribute in the training set that has missing values, an SVM is trained 

using all of the examples that have no missing values. It uses  the decision attributes 

(output or classes) as the condition attributes (input attributes) and the condition 

          ∑        |      
                  |  

    

 

           
 

          

          

Algorithm 3.3: The EM Algorithm for data with missing values 

Initial: 

A joint distribution            |   over the observation values      and 

the missing values     , and the model parameters  .  

The goal is to maximize the likelihood function       |  with respect to  . 

1. Choose an initial setting parameter  . 

E-step, evaluate        |      
     

2. M-step, evaluate      given by 

3. Check for convergence of either the log likelihood or the parameter values. 

If the convergence criterion is not satisfied, then let 

return to step 2. 
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attributes as the decision attributes, and then SVM is used to predict the missing 

condition attribute values (Honghai et al., 2005). 

This method ignores the original classification value from the dataset and uses 

the value of the attribute being imputed as the target value. It also ignores any other 

attributes that have any missing values when generating this new training data. If the 

attribute being imputed is continuous, the SVMI will use regression to generate the 

value.  If the attribute is continuous, we need to classify it with each of the SVM 

models and select the value corresponding to the SVM that classifies the example as 

positive. If more than one SVM generates a positive classification, we randomly 

select one value. 

3.5 Imputation for clinical data 

It has been seen that imputation of missing values can alleviate this problem 

in clinical data (Barnard and Meng, 1999; Abdala and Saeed, 2004; Vorobieva et al., 

2007; Gilchrist et al., 2008). However, it should be kept in mind that imputed values 

are only estimates of original values (Jagannathan and Petrovic, 2009). In this 

chapter, a variety of methods for handling missing data have been discussed. The 

main goal of so doing is to understand the mechanisms and study their effect on the 

mining of data. Real-life clinical data are often incomplete, and can have errors and 

inconsistencies. Table 3.2 summarises the unusable data in the LIFELAB dataset. It 

can be seen that missing values arise from various reasons and this is the predominant 

issue. 
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3.5.1 Missing values imputation for clinical datasets 

In what follows now and in subsequent chapters, the following terms and 

notations will be used. The dataset is considered to be a matrix of predictors       

             where   is the number of patients and   is the number of attributes. 

The outcome   is fully observed but some of the predictors have missing values. 

Thus the matrix of predictors can be partitioned as              , where      and 

     are the observed and missing predictors, respectively. 

Seven imputation methods have been discussed in this chapter. Of these 

methods, MCI, KNNI and EMI are commonly used. However, Luengo et al (Luengo 

et al., 2011) suggest that FKMI and SVMI are the best methods. However, what is of 

interest is not only the manner of replacing missing values, but also the changes they 

bring about to the dataset, primarily the statistical properties. It should be noted that 

these properties directly affect the classification results and the performance of the 

Table 3.2: Unusable data while extracting and cleaning the LIFELAB dataset variables for 

analysis 

Reason unusable Example 
# of 

variables 

% of total 

variables 

Missing values Data item was not collected 438 94.60 

Free-text 
Enters free text, remarks, 

description, or comment 
61 13.17 

Non meaningful Link ID,  update date 94 20.30 

Homologous values 
Same meaning or duplicated 

variabless 
4 0.86 
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Figure 3.2: Data distribution of variables in clinical dataset 

 

  

models. In what follows these imputation schemes are analysed in terms of the 

changes to the statistical properties of the datasets. 

3.5.2 Metrics for imputation 

The importance of the imputation is justified by the imputed data obtained by 

applying the methods. In this thesis, we evaluate the performance by studying the 

effect of imputing data by considering the statistics, data distribution and 

performance indicators. 

3.5.2.1 Statistics 

In this section, the fundamental statistical values that have been used to 

describe the data are means and standard deviation. The mean or average, which 

obtains an average value and the standard deviation, which describes the range of 

variation of data items. 
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The LIFELAB dataset is used for an illustration to show the missing values 

problem in a clinical dataset. Fig. 3.2 shows selected variables that contain missing 

values and presents the data distributions with statistical values. The results show that 

these variables generate non-normal distributions. Non-normal distribution in the 

presence of the missing data is considered and this difficulty is handled by a missing 

value imputation. 

Table 3.3 shows the variables with approximately 1-25% missing values. The 

table compares the statistical values between the original data and the data treated 

with different missing value imputation methods. Comparing the population mean (µ) 

and standard deviation  σ  before and after handling missing values with missing 

value imputation methods, these values are changed when compared with the original 

data variables containing missing values. 
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Table 3.3: The µ and σ before and after handling missing values by imputation 

techniques 

Variable Phosphate Cholesterol Uric acid 

Missing values (%) 5.77 10.38 14.04 

Imputation µ σ µ σ µ σ 

Original 

(with missing values) 
3.44 48.34 4.81 2.62 0.81 4.25 

CMCI 3.26 47.01 4.68 1.20 0.62 2.32 

EMI 3.49 47.26 5.75 2.38 0.67 2.32 

FKMI 3.38 47.01 4.67 1.19 0.60 2.28 

KMI 3.25 47.01 4.69 1.20 0.61 2.28 

KNNI 3.25 47.01 4.67 1.20 0.68 2.31 

MCI 3.25 47.01 4.67 1.21 0.60 2.28 

SVMI 3.25 47.01 4.67 1.20 0.61 2.29 

Variable Iron MCV LVEDD 

Missing values (%) 17.5 22.31 24.62 

Imputation µ σ µ σ µ σ 

Original 

(with missing values) 
13.54 7.22 91.23 9.81 6.20 6.34 

CMCI 13.38 5.69 91.31 8.22 5.86 1.08 

EMI 23.76 12.28 100.86 12.44 9.25 1.73 

FKMI 12.95 5.69 86.82 11.66 5.81 1.05 

KMI 13.33 5.65 91.60 8.12 5.87 1.07 

KNNI 13.35 5.68 91.42 8.16 5.88 1.06 

MCI 12.92 5.84 91.96 8.43 5.95 1.17 

SVMI 13.17 5.67 91.24 8.15 5.94 1.06 

 

 

The results show that different missing values rates are affected to the statistical 

values. The variable that contains lower missing values, after imputation µ and σ 

were changed less than the variable with more missing values. 
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3.5.2.2 Data distribution 

Data distribution is the basis of data analysis, which can describe the 

characteristics of data. In case of imputation, the data distribution also depicts the 

effect of the relationship between imputation methods and missing values rates.  

Any single performance estimator suffers the risk of being fitted, if many 

classifiers based on the estimators are compared. Thus, we carefully used a confusion 

matrix (Chapter 5) and probability density function (pdf) (Rubin, 1976; Subramonian, 

1998b; Poolsawad et al., 2012b) to evaluate and investigate the performance of the 

classification and imputation techniques used in experiments. Pdf has to be 

approximated by counting the frequency of occurrence of the event whose probability 

is being estimated (Subramonian, 1998a). Probability density is simply the 

probability of a variable existing between two values that bound an interval. The area 

under the pdf is always 1 or 100%.  

In a dataset of   records, let there be   attributes such 

that   [             ], and the dataset is a matrix of     dimensions.  Let 

  
 
            be the number of missing values of an attribute   . The ideal pdf of 

the attribute   , is given by the distribution of      values of the attribute      and let 

this pdf be given by      ̅    and let        be the pdf of the same attribute once the 

imputation has been completed. 

Definition 1: Given two probabilities p1 and p2, let           |     |.        

if           ;  else         (Zhang et al., 2013) 



Chapter 3: Handling missing values 

56 

 

Definition 2:             . if         ||          ; else       .  d( ) is a 

metric which measure the distance between two pdfs. (Subramonian, 1998a) 

Pdf of variables, which are continuous would require the evaluation of the 

differences or distances over the whole range of the attribute. However, in most 

situations, data is obtained in a discrete manner and in modern tele- health situations, 

this is more the case. In such cases, a less computationally intensive approach can be 

used to establish the similarities. If we assume that the discretisation is uniform, then 

the following can be applied:  
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Table 3.4: A comparison of the pdf with different percentages of missing values 

Phosphate (Missing values = 5.77%) Cholesterol (Missing values = 10.38%) 

 

 

Uric acid (Missing values = 14.04%) Iron (Missing values = 17.50%) 

  

MCV (Missing values = 22.31%) LVEDD (Missing values = 24.62%) 
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Table 3.5: A comparison of the pdf on Phosphate with different percentages of 

missing values 

Data with 5% missing values Data with 8% missing values 

  

Data with 10% missing values Data with 12% missing values 

  

Data with 15% missing values Data with 20% missing values 

  

Data with 25% missing values Data with 30% missing values 
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Table 3.4 presents the data distribution from different percentages of missing 

values along with different variables and Table 3.5 shows the data distribution (pdf) 

of the different missing value imputation techniques and different percentages of 

missing values on same variable. The different missing value percentages illustrate 

different pdf distributions; however, they still appeared to be normally distributed 

after the application of missing value imputation methods. 

3.5.2.3 Performance indicators 

The performance indicators were selected (N et al., 2011) to evaluate the 

performance for imputing were 1) prediction accuracy, 2) coefficient of 

determination, 3) mean absolute error, and 4) root mean square error. The imputed 

and observed data were compared to select the best method for estimating missing 

values. 

1) Predictive accuracy (PA)  

PA  is calculated by using 

    ∑
[      

   ̅          
   ̅    ]

          
     

 

   

                                                     

where   is the number of missing values to be imputed, and  ̅    ,  ̅    are the 

averages,      
 and      

 their standard deviations. PA values range from 0 to 1, with 

higher values of PA indicating a better fit. 
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2) Coefficient of determination (  )  

   explains how much of the variability in the imputed data can be explained 

by the fact that they are related to the observed values or how close the points are to 

the line. It is given by 

    [
 

 

∑ [      
   ̅          

   ̅    ]
 
   

     
     

]

 

                 

   takes on values between 0 and 1, with values closer to 1 implying a better 

fit. 

3) Mean absolute error (MAE)  

MAE is the average difference between predicted and actual data values, and 

is given by 

     
 

 
∑|     

       
|

 

   

                                                     

MAE ranges from 0 to infinity and a perfect fit is obtained when MAE = 0. 

4) Mean-squared error (RMSE)  

RMSE is one of the most commonly used measures of success for numerical 

prediction. Its value is computed by 

      √
 

 
∑[     

       
]
 

 

   

                                             

The smaller the RMSE value, the better the performance of the model. 
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Due to RMSE is the most commonly used measures then Fig. 3.3 shows the 

results of the RMSE of different numbers of missing value and different imputation 

methods on one variable  ‘Phosphate’ variable). It shows that the RMSE values of 

KNNI and KMI are lower, which means that the imputed data revealed better 

performance. With KNNI and KMI, a proximity (similarity and dissimilarity) 

measure between samples has to be defined for imputing the missing values. 

According to the imputation decision (Gilchrist et al., 2008) if data is not MCAR and 

MAR, the imputations using data from similar patients are more appropriate than the 

methods using entire dataset. However, SVMI and CMCI use the information in 
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Figure 3.3: Mean-squared error (RMSE) of different numbers of missing value 

and different imputation methods 
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whole data to assume the imputed data from the original values. These kinds of 

method are suitable for handling the MCAR and MAR missing values because there 

is no relationship between whether missing data and missing or observed data. The 

result shows that the missing values of this variable are dependent while higher 

numbers of missing values, the errors between imputed and observed data are 

increased. Thus, the nature of the data is the most important factor in finding the 

appropriate imputation method. 

As a result, we suggest that the percentages of missing values should not be 

higher than 25-30 (Collins et al., 2001). We observed that the imputation methods 

might not be recommended when considering the statistics values and data 

distribution. In addition, a large proportion of missing values will affect the 

performance of classification. The results will be shown in Chapter 7.  

3.6 Summary 

This chapter has shown that handling missing values using the underlined 

techniques is significant in data mining processes. Often a preliminary exercise is to 

discard variables with a large percentage of missing values to minimise the problem 

during mining the data, followed by imputing missing values. An alternative is to 

ignore missingness by analysing the incomplete data. This chapter looked at various 

methods for imputing missing values and it also suggested a multi-stage process for 

handling missing values. Imputation is a necessity, in order to keep the data rich. 

However, imputation merely imputes a value into the record and this value may not 

have any relationship to the real value. Thus, it often said that there is a limit to the 
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degree of imputation. Missing values is a major issue as it affects the analytical part 

of the data process and missing value imputation methods have shown to solve this 

problem while retaining the original size of the dataset. This strongly suggests that 

imputed missing values are appropriate to analyse and implement analysis such as 

confusion matrix and probability distribution methods.  

The imputations illustrated in this thesis have been applied to a heart failure 

dataset, and can be applied to various clinical datasets as these datasets present with 

similar issues. In theory, data would be precisely distributed but in the real world 

situation, data distribution is usually imprecise. The pre-processing step provides the 

story behind the data and tends to help in understanding the nature of the data. It also 

provides the opportunity to choose an appropriate technique. A key aspect to be kept 

in mind is that imputation is done before there is a reduction in the dimensionality of 

the problem, in order to ensure that whatever statistical method we use for 

imputation, the values inserted are correct as far as possible. In the next chapter, the 

issues around reduction of dimensionality are discussed. 

. 
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 CHAPTER 4

PRINCIPLES FOR DIMENSIONALITY REDUCTION TECHNIQUES 

4.1 Introduction 

In the previous chapter, the first of three discussing the challenges of missing 

values posed by clinical datasets was discussed. There are other challenges, for 

example dimensionality, class imbalance etc. In this chapter, the issues around 

dimensionality reduction will be discussed, while in Chapter 6 a new method for this 

will be developed. 

There are a few questions that need to be posed with regard to dimension 

reduction; these are (a) Why do we need dimensionality reduction? (b) Why do 

clinical datasets need a reduction of dimensions? and (c) How is dimensionality 

reduction performed on datasets? Developing strategies for data mining can become 

very complex and time consuming. It should be noted here that dimensionality 

reduction refers to reduction of the datasets in terms of variables (in the remainder of 

the thesis, variables, attributes, features and dimensions will be used in an 

interchangeable manner). In this chapter, dimensionality reduction in a dataset is the 

same as feature extraction or feature selection. 

In the following sections, different techniques for both feature extraction and 

selection are surveyed. A popular feature extraction algorithm is based on principal 
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components and is known as Principal Component Analysis (PCA); it is extended to 

include nonlinearities in Nonlinear Principal Component Analysis (NL-PCA). These 

and their variations are discussed in this chapter. It should be noted that even though 

feature extraction algorithms reduce the numbers of dimensions, the features they 

provide are essentially synthetic. With regard to feature selection, five methods are 

examined, which all use a “feature importance ranking measure” for ranking each 

feature according to its discriminative capability, e.g.  t-test (Zhou and Wang, 2007), 

entropy ranking (Fayyad and Irani, 1993; Liu et al., 2002), Bhattacharyya distance 

(Theodoridis and Koutroumbas, 2006; Guo et al., 2008), ROC (Fawcett, 2006; 

Theodoridis and Koutroumbas, 2006) and Wilcoxon test (Gibbons and Chakraborti, 

2003; Liao et al., 2006). The next stage investigates these procedures further. Based 

on a ranked list, different subsets of features (variables) are selected, and then tested 

on their ability to discriminate the classes present. In general, the optimal set of 

features is the one with the high classification accuracy and the minimum size. 

 

 

Figure 4. 1: Dimensionality reduction from high 

dimensionality to low dimensionality 
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4.2 Time complexity 

A number of features contribute to classification complexity (Ho and Basu, 

2002), so dimensionality reduction is important to improve the efficiency of 

classification. The O-notation, as used in algorithm analysis, is a simplification tool 

for complex expressions which arise due to the number of performed operations, 

assuming a given model of computation (Rutanen et al., 2013). In other words, it 

describes the performance or complexity of an algorithm. Here, time complexity is 

expressed as the relationship between the number of features (the size of the input) 

and the amount of time required to execute an algorithm (run time for the algorithm).  

The prevailing classification time of the feature selection will be changed 

according to the time complexity of several classification approaches. Suppose we 

have n data points in m dimensional space and a binary class variable. Consequently, 

examples of the average time complexity of classifiers are revealed. The k-nearest 

neighbour (kNN) classifier requires O(nm) (Kibriya and Frank, 2007), for the 

decision tree, the time is         (Martin and Hirschberg, 1996), and for random 

forest it is       for computing a single tree (it depends on the number of trees) 

(Biau et al., 2008), linear Support Vector Machine (SVM) has      , 

            for regression problems (Joachims, 2006) and multi-layer perceptron 

(MLP) can be computed in      (Yang and Amari, 1998). These examples show 

how much each feature contributes to the time complexity. Therefore, when the 

numbers of features are changed this effect becomes more noticeable on the 

execution time of the algorithm. With approximate algorithms this can be brought 
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down considerably at the expense of accuracy so that dimensionality reduction (Fig. 

4.1) is used to deal with this problem. At the same time, the classification 

performance of the system is expected to improve, to yield an optimal set of features, 

a technique can be considered superior in terms of time complexity, if it provides a 

lower error rate with the same complexity. To evaluate the feature selection methods 

in this thesis, the trade-off between accuracy and redundancy rate is analysed in 

Chapter 7. This can identify the most relevant features that provide nearly the same 

classification performance as the full set of features. 

4.3 Feature extraction 

Feature extraction is the process of creating a representation by the 

transformation of the original data into a new set of synthetic features (or 

components/dimensions). The technique requires the original feature set in order to 

determine the transformations required for the new features. A set of new synthetic 

features are defined by functions over all the features; in other words, the original set 

of features are projected onto a lower dimensional space while preserving as much 

information as possible (Fig. 4.2).  

 

Figure 4. 2: Dimensionality reduction: feature 

extraction 
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Extracted features (Kramer, 1991)are a set of derived variables, functions of the 

original problem variables, which efficiently capture the information contained in the 

original data. Good features (Foldiak, 1989) will reduce dimensionality with only a 

minimal loss of information. The quality of the process is dependent on the number 

of features extracted; often, the larger the number, the better the eventual result. The 

trade-off here is between the desired accuracy, and the total operational 

(computational) cost. This trade-off is not an exact science, but essentially a design 

feature where the decision is made by the user. However, the primary interest is often 

to select the fewest possible features/components, in order to make these problems 

more tractable (Jirapech-Umpai and Aitken, 2005). 

Feature extraction combines attributes into a new reduced set of features and 

creates new features based on transformation or combination of the original feature 

set. Principal Feature Analysis (PFA) (Lu et al., 2007) is a feature grouping that 

chooses a feature from each group and this technique is based on the popular 

principal component analysis (PCA) (Jolliffe, 2005) technique. PCA is an 

unsupervised approach to project the original feature space onto a low-dimensional 

subspace. It obtains a set of transformed features rather than a subset of the original 

features. 

There have been several successful methods (Yu and Liu, 2004; Wang et al., 

2007b), which have been developed and implemented. These methods are useful in 

applications where the labels associated with the reduced dimensions are not 

important. However, in clinical decision support systems, retention of labels is 

important from a clinical application point of view. 
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4.3.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a commonly used method for 

extraction of features (Tabachnick and Fidell, 1996; Jolliffe, 2005), and is the 

solution of choice for researchers who are primarily interested in reducing a large 

number of variables down to a small number of components. PCA is essentially an 

unsupervised pattern recognition technique and one of the many multivariable 

techniques available for data analysis. It describes the variation in multivariate data in 

terms of a set of uncorrelated variables by using singular value decomposition to find 

singular vectors and values of a centred version of the data matrix. Essentially the 

method creates new uncorrelated features that are linear combinations of the original 

features. Consider a data set which is represented by  , which is an nxm matrix, 

where m is the number of features (variables/attributes/dimensions) and n the number 

of records (samples).   

 

  [

      

      
 
 
 

    

    

  
      

 
 

    

]  
               
⇒                 

[
 
 
 
      

      
 
 
 

    

    

  
      

 
 

    ]
 
 
 
         

 

The PCA (Zabiri et al., 2009) allows a linear mapping of data from 

    to   
, with     . The optimal transformation of   via the PCA is shown in 

Eq. (4.1) 
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where   is called the score matrix with dimension    ,   is the column indicating 

the principal components (   ) of  , rows of SCORE correspond to observations. 

  represents the coefficient matrix, also known as loadings matrix with a dimension 

of    . The Euclidean norm of the residuals ‖ ‖ must be minimised for a given 

number of principal components for the optimality condition to be satisfied. This is 

achieved if the columns of   are the eigenvectors corresponding to the λ largest 

eigenvalues of the covariance matrix of  . If      , the linear mapping of the PCA 

is given by Eq. (4.2) 

                                                                              

where   represents a row of  , a single data vector, and   represents the 

corresponding row of   (the coordinates of   is the reduced  -dimensional variable 

space). The loadings matrix,  , are the coefficients for the linear transformation, and 

essentially define the orientation of the principal component plane with respect to 

original  -variables. The information lost in this mapping can be assessed by 

reconstruction of the measurement vector by reversing the projection back to   
 

                                                                              

where         is the reconstructed measurement error. The eigenvalues λ of 

covariance matrix   are calculated. 

                                                                                        

An eigenvector of a square matrix   is a scalar   and a nonzero vector   is 

satisfactory. 
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Hotelling's T-squared is a multivariate approach to select principal components 

by computing the distance between samples means using the metric of covariation. 

Hotelling's T-squared statistic is the sum of squares of the standardised scores. 

      ∑
     

  
 

 

   

                                                             

where      is the ith element in the vector  . 

The principal components (PCs), that is, the eigenvectors, are shown by their 

associated eigenvalues. A cut-off percentage of the number of principal components 

is related to Hotelling’s; commonly it is in the range of 70% to 90% and this is 

determined by applying the cumulative percentage of total variation. It can be higher 

or lower depending on dataset (Jolliffe, 2002) and the size of variance of principal 

components takes into consideration Kaiser’s rule (Kaiser, 1960) which states that 

any PC with variances less than 1 contains less information and so is not worth 

retaining. 

The power of PCA (Schwartzman et al., 2001) resides in the fact that, as the 

data are decomposed into uncorrelated components that are arranged in order of 

decreasing variance, most of the population variance is contained in the first principal 

component. The effect is that of reducing the number of variables required to 

represent the data. 
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4.3.2 Nonlinear Principal Component Analysis (NLPCA) 

NLPCA is an extension of principal component analysis. While PCA identifies 

only linear correlations between variables, NLPCA uncovers both linear and 

nonlinear correlations, without restriction of the characteristics of the nonlinearities 

present in the data. NLPCA, like PCA (Kramer, 1991), is used to identify and remove 

correlations among problem variables and is an aid in dimensionality reduction, 

visualisation, and exploratory data analysis. The key difference between PCA and 

NLPCA  is that NLPCA allows arbitrary nonlinear mapping from     to   
 whereas 

PCA only allows linear mapping(Zabiri et al., 2009).  

The NLPCA method uses artificial neural network (ANN) training procedures 

to generate nonlinear features. Consider a mapping of the type in Eq. (4.7). 

                                                                               

where   represents a row of an original data matrix   with dimension     (  = 

number of observations,   = the number of variables).   represents the 

corresponding row of the scores of matrix    with dimension     (  = number of 

observations,   = the number of principal components (   )). In this equation,   

is a nonlinear vector function, composed of   individual nonlinear functions; 

   {             }, such that, if    represents the  th element of    , 

                                                                               

By similarity to the linear case,    is referred to as the primary nonlinear 

principal component, and    is the  th nonlinear principal component of  .  
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The inverse transformation, the reconstruction of the original data is 

accomplished by a second nonlinear vector function    {             }: 

                                                                                 

The lost information is measured by: 

                                                                               

where   is the resulting error, measured by | | for individual measurement vectors, or 

‖ ‖ for the overall dataset. The function   and   are selected to minimise ‖ ‖. 

To generate   and  , any nonlinear function to an arbitrary degree of precision: 

     ∑     (∑           

  

   

)

  

   

                                              

      
 

      
                                                                                   

Eq. 4.11- 4.12 describe for a feedforward artificial neural network (ANN) with 

   inputs, a hidden layer comprised of    nodes with sigmoid transfer functions, and 

a linear output node for each  . In equation 4.11,      represents the weight on the 

connection from node   in layer   to node   in layer    , and   are the bias nodes. 
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The ability of the neural network to fit arbitrary nonlinear functions depends on 

the presence of a hidden layer with nonlinear nodes. Therefore, the architecture for 

the networks shown in Fig. 4.3, is representing   and  , is as follows. The network 

for  operates on the rows of   and has m inputs. The hidden layer   is called the 
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Figure 4. 3: Networks implementing mapping and demapping 

function  
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‘mapping’ layer. This layer contains    nodes with sigmoidal transfer functions, 

where   >p. The output of the network is the projection of input vector into feature 

space, and therefore contains   nodes. The output nodes can have linear or sigmoidal 

transfer functions, without affecting the generality of  . The function  , the ith 

nonlinear principal component, is defined by the weights and biases on the 

connections from the input to the  th output. 

 

The network represents the inverse mapping function   takes the rows of    as 

inputs and accordingly has   inputs. The hidden layer, which is referred to as the ‘de-

mapping’ layer, contains    nodes with sigmoidal transfer functions, where      . 
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Figure 4. 4: Network architecture for simultaneous determination of   nonlinear 

components using an autoassociative network  
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The output layer yields the reconstructed data,   , and thus contains   nodes. The 

nodes of the output layer can have linear or sigmoidal transfer function. The weights 

and biases connecting the inputs to the  th output node define the function   . 

Combining the two networks in series so that   feeds directly into  , a network is 

obtained whose inputs and desired output are known (Fig. 4.4).  

Therefore, the performance of an autoassociative network with only one 

internal layer of sigmoidal nodes is often no better than linear PCA (Kramer, 1991). 

The reconstructed outputs    match the inputs   as closely as possible. Training is 

complete when  , the sum of squared errors given in Eq. 4.13: 

   ∑∑      
   

 

 

   

 

   

                                                                

  is the square of ‖ ‖, the optimality criterion used in PCA. The data are propagated 

through   to project the data into low-dimensional feature space. 

In Chapter 7 it will be discussed in full how the results show that the NLPCA 

successfully reduces the dimensions and produces a feature space map resembling the 

actual distribution of the underlying system parameters. The NLPCA introduced here 

is a general purpose feature extraction algorithm producing features that retain the 

maximum possible amount of information from the original dataset for a given degree 

of data compression. Information preservation assures that the selected features will 

be useful in most situations, independent of the ultimate application. The NLPCA is 

commonly seen as a nonlinear generalization of the PCA. It generalizes the principal 
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components from straight lines to nonlinear. Thus, the subspace in the original data 

space which is described by all nonlinear components is also curved. 

NLPCA (Kramer, 1991) will describe the data with greater accuracy and/or by 

fewer features than PCA, provided that there are sufficient data to support the 

formulation of more complex mapping functions.  

4.4 Feature selection 

Feature selection, also known as subset selection, is a process that selects the 

most relevant attributes, in other words, it finds the best subset of the input feature 

(Fig. 4.5). In a sense it not only reduces the dimension of the system, but at the same 

time reduces the complexity and processing time while improving system 

performance on some dependent measure. A general feature selection algorithm is 

often composed of three components: an evaluation function, a performance function 

and a search algorithm. The evaluation function inputs a feature subset and outputs a 

numeric evaluation. The performance function provides the optimal subsets 

appropriate for classification. The search algorithm performs the search of an 

appropriate subset of features. These algorithms can be grouped into three categories, 

namely exponential, randomized and sequential.  
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There are two general forms of feature selection procedures: (a) a wrapper 

model and (b) a filter model (Yu and Liu, 2004). The wrapper model uses the 

predictive accuracy of a pre-determined learning algorithm to determine the goodness 

of the selected subsets. The learning algorithm is run with various subsets of features 

and the learner that performs the best is chosen. In contrast, the filter model presents 

the data with the chosen subset of features to a learning algorithm. It separates feature 

selection from classifier learning and selects feature subsets that are independent of 

any learning algorithm (Yom-Tov and Inbar, 2002; Jirapech-Umpai and Aitken, 

2005). In comparison to the wrapper model, the filter model is computationally 

efficient; however, the filter model is known to perform much worse than the wrapper 

model. 

Feature selection selects the most relevant attributes and tries to find the best 

subset of the input feature set. Feature selection algorithms are divided into two 

categories, the filter model and the wrapper model. The filter model (Yu and Liu, 

2004) relies on general characteristics of the data to evaluate and select the subset of 

features without involving any mining algorithm. The wrapper model (Kohavi and 

 

Figure 4. 5: Dimensionality reduction: feature 

selection 
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John, 1997) requires a data mining algorithm to search for features. Its aim is to 

improve the performance of the subset of features but it also tends to be more 

computationally expensive than the filter model. Correlation-based Feature Subset 

Selection (CFS) (Dag et al., 2012) uses a search algorithm along with a function to 

evaluate the merit of feature subsets. The heuristic by which CFS measures the 

“goodness” of feature subsets takes into account the usefulness of individual features 

for predicting the class label along with the level of inter-correlation among them 

(Hall and Smith, 1999). Good feature subsets contain features highly correlated with 

the class (predictive), yet uncorrelated with each other (not predictive). Examples 

include Information Gain Attribute Evaluation (Novakovic, 2009) and Symmetrical 

Uncertainty (Yu and Liu, 2003; Ali and Shahzad, 2012). 

A key aspect, which needs to be considered when selecting a subset of features, 

is the metrics used for determining the relevance or redundancy of a particular 

feature. An optimal subset of features should contain a set of robust and relevant 

features along with a set of weak features (Omid, 2011). This allows for the selection 

of features with a positive Z-score (Steinbach et al., 2000). It is possible to obtain 

different selection of subsets of features depending on the criterion used. Thus, the 

subset obtained using a statistical correlation criterion would be different from when 

mutual information is used. In the following sections of this thesis it will be 

demonstrated how five feature selection techniques, t-test, entropy ranking, 

Bhattacharyya distance, ROC and Wilcoxon test will be used. 
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Algorithm 4. 1: Algorithm for feature selection 

input:                    // a  training dataset with m features  

       // subset from which to start the search 

     // subset evaluation 

       // a stopping criterion 

output:          // an optimal subset 

begin 

initialize:           ; 

 
    

               ;  

do begin 

               ; // generate a subset for evaluation 

               ; // evaluate the current subset   by    

if                          

        ; 

       ; 

end until                 

return       ; 

end; 

 

//    is mostly differed between filter and wrapper model. Filter usually uses 

criteria not involving any machine learning, whereas wrapper uses the 

performance of a learning machine (see Fig. 4.6). 

 

 

1) Wrapper model: it proposes a learning task as the evaluation criterion to 

select a variable set. Here the aim is to select the variable set that yields 

the best results in the learning task. Unfortunately, the computational 

cost of these methods is high. 
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2) Filter model: it proposes evaluation functions called independent 

criteria. An independent criterion tries to evaluate the goodness of a 

feature subset by exploiting the intrinsic characteristics of the training 

data without involving any learning task. 
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(a) Filter model 
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(b) Wrapper model 

Figure 4.6: The subset evaluation of filter and wrapper models 
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Table 4.1: Example algorithms for feature selection 

Filter Model Wrapper Model 

• Correlation Based Feature Selection 

(CFS) (Dag et al., 2012) 

• Fast Correlation Based Filter (FCBF) 

(Yu and Liu, 2003; Senliol et al., 2008) 

• t-Test feature selection (Zhou and 

Wang, 2007) 

• Clearness-based feature scoring scheme 

(CBFS) (Seo and Oh, 2012) 

• Entropy ranking (Fayyad and Irani, 

1993; Liu et al., 2002) 

• Discrete Function Learning (DFL) 

algorithm (Zheng and Kwoh, 2011) 

• Info Gain (Dag et al., 2012)  

• Gain Ratio (Dag et al., 2012) 

• Mutual Information for Feature 

Selection (MIFS) (Battiti, 1994) 

• Unsupervised Feature Subset Selection 

(UFSS) (Søndberg-Madsen et al., 2003) 

• Recursive Feature Selection Based on 

Minimum Redundancy Maximum 

Relevancy (RFS-MRMR) (Yuansheng 

et al., 2010)  

• Unsupervised feature selection scheme 

for nominal data (UFSN) (Chow et al., 

2008) 

• Artificial Neural Net Input Gain 

Measurement Approximation 

(ANNIGMA) (Chun-Nan et al., 2002) 

• Sequential Floating Forward Selection 

(SFFS) (Ververidis and Kotropoulos, 

2008; Ververidis and Kotropoulos, 

2009) 

• Unsupervised Feature Subset Selection 

(UFSS) (Søndberg-Madsen et al., 2003) 

• Feature selection using feature 

similarity (FSFS) (Mitra et al., 2002) 

• Unsupervised Feature Selection for 

Relation Extraction (RLFS) (Jinxiu et 

al., 2005) 
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The hybrid model, which was developed at a later time, attempts to take 

advantage of the two models by combining the different evaluation criteria. The aim 

here is to design a heuristic that exploits both concepts and produces a better accuracy 

in the learning task. A typical hybrid algorithm makes use of both models and 

independent measure and a learning algorithm to evaluate feature subsets. It uses the 

independent measure to decide the best subsets for a given cardinality and uses the 

learning algorithm to select the final best subset among the best subsets across 

different cardinalities. 

4.4.1 t-Test method 

The Student’s t-test approach uses statistical tools to assess whether the means 

of two classes are statistically different from each other. It calculates a ratio between 

the difference of two-class means and the variability of two classes. The use of t-test 

is limited to two class challenges. This method has been found to be efficient in a 

variety of application domains, as shown in the following two examples:-  

(a) Genotype research (Liu et al., 2002; Coetzee, 2005; Zhou and Wang, 

2007) where the problem is one of evaluating differential expressions of genes from 

two experimental conditions. 

(b) The ranking of features for mass spectrometry (Wu et al., 2003; Levner, 

2005) and microarray data (Jaeger et al., 2003; Su et al., 2003).  

For multi-class problems the procedure requires the computing of a t-statistic 

value for each feature corresponding to each class. This is done by evaluating the 
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difference between the mean of one class and all the other classes, where the 

difference is standardized by within-class standard deviation (Eq. 4.16).  

      
  ̅       ̅      
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where      is the t-statistics value for the number of features and  ̅    ̅  are means of 

classes 1 and 2, while   
    

  are the within-class standard deviations of classes 1 

and 2,    is the number of all the samples in class 1 while    is the number of 

samples in class 2. 

4.4.2 Entropy ranking 

The t-test approach utilizes some statistical properties to determine the required 

features. Entropy based approaches not only take into account the statistical 

properties of the features, but also the compactness and density of the data for 

variables. Entropy is a measure of the information conveyed by the probability 

distribution function of a particular variable/feature. Using this entropy, Fayyad 

(Fayyad and Irani, 1993) suggests a cut-off point selection procedure by using class 

entropy of subset. In general, if we are given a probability,     , then the information 

conveyed by this distribution, also called the Entropy of P, is: 
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where the        measures the amount of information required to specify the classes 

in  .   is a set of attributes and         is the proportion of examples in   consisting 

of class   in the     feature. The entropy values are sorted in an ascending order and 

those features with the lowest entropy values are considered. 

4.4.3 Bhattacharyya distance 

The probability of error is the measure that finds an optimum of feature 

effectiveness. Bhattacharyya distance is related to the upper bound of error 

probability (Xuan et al., 1996; Reyes-Aldasoro and Bhalerao, 2006). The 

Bhattacharyya distance has been used as a class separability measure to evaluate the 

statistical dependence between two random variables and so can be used to measure 

the utility of selected features to classification (Theodoridis and Koutroumbas, 2006; 

Guo et al., 2008). In other words, this method selects features by utilising an error 

estimation selection and finding the subset of features with the lowest classification 

error (Choi and Lee, 2003; Theodoridis and Koutroumbas, 2006). For two normally 

distributed classes, the Bhattacharyya distance is defined as follows: 
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where    and    are the mean vector and covariance matrix of class  , respectively. 

Thus, the greater the difference of variances, the smaller the error bound (Theodoridis 

and Koutroumbas, 2006).  
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4.4.4 Receiver Operating Characteristics (ROC) Curve 

ROC is commonly used to evaluate an algorithm (or classification accuracy) 

(Fawcett, 2006). This feature selection method uses the ROC curve to measure the 

individual significance of input variables. The hypothesis tests presented offer 

statistical evidence about the difference of the mean values of a single feature in the 

various classes (Theodoridis and Koutroumbas, 2006).  

 

Fig. 4.6(a) illustrates an example of two overlapping probability density 

functions (pdf) describing the distribution of a feature in two classes, together with a 

threshold. This decision is associated with an error probability,  , of reaching a 

wrong decision concerning ‘class 1’. This is equal to the shaded area under the 

corresponding curve (similarly,   is associated with ‘class 2’ . If the two distributions 

have complete overlap, then for any position of the threshold,       . Fig. 4.6(b) 
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(a)                     (b) 

Figure 4.7: The overlapping of two classes and the ROC curve 

(a) overlapping pdf's of the same feature in two classes 

(b) the resulting ROC curve (Theodoridis and Koutroumbas, 2006) 
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demonstrates a case corresponding to a straight line, where the two axes are   and 

    . Thus, the area varies between zero, for complete overlap, and ½ (the area of 

the upper triangle), for complete separation, and it is a measure of the class 

discrimination capability of the specific feature. Instead, the Area Under the ROC 

Curve (AUC) can be used for feature selection methods by utilising the requirement 

of AUC maximization (Wang and Tang, 2009), and Algorithm 4.3 presents the 

algorithm for selecting the feature by calculating AUC. 

 

4.4.5 Wilcoxon rank sum test 

The Wilcoxon rank sum test or Mann-Whitney U test or Mann-Whitney-

Wilcoxon test is used to test whether two groups come from the same distribution; 
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Algorithm 4.2: ROC feature selection by calculating AUC 

 

for i = 1 to m do 

AUC[i]←AUC score of the  
 
; 

 //           
 be the rank of samples 

end 

sort(AUC); 

//pick out k features with highest AUC; 
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values in the two different groups should have values somewhat equally distributed 

between the two. This test is applied for feature selection to decrease the 

dimensionality. The accuracy rates are ranked in descending order of features (Liao et 

al., 2006). The Wilcoxon rank-sum test statistic is defined (Gibbons and Chakraborti, 

2003) as follows: 

    ∑  

 

   

                                                             

where    is the indicator random variable, the vector   , indicates the rank-order 

statistics of combined samples and in addition identifies the sample to which each 

observation belongs. Thus, the set of features can select as follows: 

 

(1) Combine the samples into one sample of   ’s. Order data in the combined 

sample                           

(2) Assign rank   to the     smallest observation  

(3) Let   
    is sum of  ranks in samples 1, and also   

    is sum of  ranks in 

samples 2 

(4)        
     

        

 
,        
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(6) By taking into account that    
        

                             

     then the sum is              

(7) The final value of   is taken as the maximum between    and   ,   

           . 
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(8) High values of   shows the most different value between two samples. 

Therefore, the   first  variables with   value are selected 

 

Feature selection has been successfully applied to clinical datasets e.g., 

lymphoma, gene expression, cancers (Liu et al., 2002; Li et al., 2006; Wang et al., 

2007b; Qi and Li, 2009). Aha (Aha and Bankert, 1996) claimed that feature selection 

consistently increased accuracy, reduced feature set size, and provided better 

accuracy of classification. Liu (Liu et al., 2002) said feature selection played an 

important role in classification and is effective in enhancing learning efficiency, 

increasing productive accuracy and reducing complexity of learning. Results reveal 

that learning can be achieved more efficiently and effectively with just relevant and 

non-redundant features. 

4.5 Summary 

This chapter has discussed principles for dimensionality reduction techniques, 

including feature extraction and feature selection techniques. There are useful for 

reducing the number of dimensions in high dimensionality datasets. Feature 

extraction is the process of transforming the original feature set into novel feature that 

are weighted combinations of the original features. It is applied to reduce the number 

of feature dimensions, so it is not useful for applications that need to use the 

meaningful labels of the features. Feature selection is a process of selecting a subset 

of the original features according to certain criteria. It selects meaningful features, 

which can be used in predictive modelling.  
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 CHAPTER 5

METHODS FOR CLASSIFICATION 

5.1 Introduction 

In Chapter 2 a framework, for mining clinical datasets, was developed and 

discussed. In Chapter 4 one of the key processing steps, namely that of reducing the 

dimensionality was analysed and discussed. In this chapter, issues associated with 

classification are discussed. It should be kept in mind that in Real Live Clinical 

Datasets, there will always be imbalance, i.e. there will more live patients than dead 

patients. Therefore, it is important to discuss classification methods in the presence of 

class imbalance. According to proposed framework (Figure 5.1), classification is used 

to assess the pre-processed data (after handling data issues). In order to evaluate the 

behaviour of classifiers by relating their performance to the nature of data, pre-

processing processes (imputation, resampling and feature selection) are used. In this 

thesis, classification is also used to compare the proposed feature selection scheme 

against some of the well-known algorithms. 



200893098 N.Poolsawad / Computer Dept. 

91 

 

The methods for classification are discussed in this chapter. Section 5.2 

explains the definition of classification and gives the examples of classifiers that are 

applied in this thesis. Section 5.3 demonstrates the problem of imbalanced classes and 

presents two strategies, over-sampling and under-sampling, to handle this issue. 

Section 5.4 explains the normalisation methods and the evaluation of classification is 

discussed in section 5.5. 

5.2 Classification 

Classification is supervised learning and it defines the class of outputs. Of 

course, if target classes are not provided in the training set, unsupervised learning 

 

 

Figure 5.1: Classification in Handling Clinical Data Framework (HCDF) 
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methods like clustering could be used for this purpose (Han et al., 2012). Data 

classification is a two-step process. In the first step a model is built describing a 

predetermined set of data classes or concepts. The model is constructed by analysing 

data samples (records) described by attributes, and each tuple belongs to a predefined 

class. In the context of classification, data tuples are also referred to as samples, 

examples or objects.  The individual tuples making up the training set are referred to 

as training samples and are randomly selected from the sample population. Since the 

class label of each training sample is provided, supervised learning (i.e., the learning 

of the model is “supervised” in that it is told to which class each training sample 

belongs) is ideal. In the second step, the model is used for classification. 

In the heart failure clinical dataset (LIFELAB) for this thesis, the two classes 

of patients who are alive and those who have dead are provided. In what follows, a 

selection of classification methods is surveyed, along with methods for dealing with 

class imbalances. 

5.2.1 Multilayer Perceptron (MLP) 

In Chapter 4, it was shown that a multi-layered neural network could be both 

structured and trained to provide a set of reduced features. In this chapter, a 

multilayer perceptron (MLP) will be used to learn the classification problem . In a 

multilayer perceptron (Gardner and Dorling, 1998; Autio et al., 2007; Suzuki, 2011), 

the architecture is such that information flows from one layer to the next, and no 

information is passed on within a layer. Here, the first layer is considered as the input 

layer, and has as many inputs as there are variables (attributes). This information is 
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then weighted and passed onto all the nodes in the next layer. After processing the 

information, each layer then passes on its outputs to the next layers till the output is 

obtained. Thus the design is based around a decision on the number of nodes in the 

intermediate layers and the number of intermediate layers (often called hidden layers 

and nodes). All the weights, connecting the nodes, are randomly initialized to a 

number and then updated by a back-propagation algorithm. A back-propagation 

algorithm is a typical learning algorithm which is used to train these networks. It 

consists of two phases, namely, a forward phase and a backward phase. In the 

forward phase the output value of each node is computed, layer by layer, using a 

weighted sum of its inputs. In the backward phase, the weights are updated after the 

error in the prediction and the target is evaluated, using a gradient descent algorithm. 

The algorithm essentially minimises the squared error between the network values 

and the target values.  
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Figure 5. 2: A multilayer perceptron structure 
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Fig. 5.2 illustrates the architecture of multilayer perceptron. It shows the output 

 , which is a vector composed of   components. The n components are determined in 

terms of   components of an input vector  . The hidden layer is composed of   

components. The mathematical representation is expressed as:  

      ∑[    (∑         

 

   

)     ]

 

   

                                   

where     and     are synaptic weights,    is the kth element of the input vector,      

is an activation function and         are the bias. The bias has the effect of increasing 

or decreasing the net input of the activation function depending on whether it is 

positive or negative, respectively. 

5.2.2 Radial Basis Function Network (RBFN) 

A radial basis function network (RBFN) (Suzuki, 2011) is an artificial neural 

network model that uses a RBF as an activation function. Fig. 5.3 presents the 

architecture of RBFN. It is composed of three layers: an input layer, a hidden layer 

and an output layer. Each hidden unit implements a radial activation function (a non-

linear transfer function) and each output unit implements a weighted sum of hidden 

unit outputs. 
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The output of ith neuron in the output layer of the RBF network is determined 

as shown in Eq. 5.2 below. 

       ∑    (‖    ‖)

 

   

                                         

where      is the basis function,    is the centre vector for hidden neuron   and     is 

the weight between the node   of the hidden layer and the node   of the output layer, 

and   is the number of nodes in the output layer. The norm is typically taken to be 

the Euclidean distance and the basic function is taken to be Gaussian: 

 (‖    ‖)     {
‖    ‖

 

   
 }                                                               

where    is the width parameter of the     hidden unit in the hidden layer. 
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Figure 5. 3: A radial basis function network architecture 
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5.2.3 Support Vector Machine (SVM) 

Support vector machines (SVMs) (Cortes and Vapnik, 1995) are supervised 

learning models. SVM’s are essentially non-probabilistic binary linear classifiers, 

which use a representation of the key example points, which are mapped so that 

separate categories are divided by a gap that is as wide as possible. New data points 

are then mapped onto the same space and a prediction is made depending on which 

side of the divide they fall. 

 

The learning in an SVM is the construction of a hyperplane which is used for 

classification. An ideal or optimal hyperplane can be defined as a linear decision 

Optimal margin

Optimal hyperplane

 

Figure 5. 4: A separable problem in a two dimensional space 

(Cortes and Vapnik, 1995) 
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Figure 5.5: A typical example that shows the input and output of the decision tree 

 

function which provides the maximal margin between the vectors of the two classes 

(see Fig. 5.4). The support vectors define the margin of largest separation between the 

two classes. SVMs are a popular classification tool as they have excellent 

generalization properties. However, the training is slow and the algorithms are 

numerically complex (Platt, 1999). This thesis uses the SVM algorithm called 

sequential minimal optimization or SMO (Hastie and Tibshirani, 1998; Platt, 1999). 

5.2.4 Decision Tree (DT) 

Decision trees are popular and powerful methods to classify cases as well as to 

predict values (David and Balakrishnan, 2010). Their attractiveness is mainly due to 

the fact that the basic principles of tree-based methods as well as their outcomes are 

easy to understand. The basic principle is the hierarchical division of all observations 

into subcategories in such a way that the resulting subcategories differ from each 

other as much as possible, while the subcategories themselves are as homogenous as 
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possible. The outcome of a decision tree is a rule that can be expressed in plain 

English as well as implemented as a database query in order to quickly and repeatedly 

apply it to new data.  

Decision trees use a supervised learning technique, in which the input features 

are partitioned into regions, and where each assigned label is a value or an action to 

characterize its data points (Fig. 5.5). In this thesis, a decision tree obtained using the 

C4.5 algorithm is generated for classification. C4.5 is an algorithm developed by 

Ross Quinlan that generates Decision Trees (DT), which can be used for 

classification problems (Quinlan, 1996). It improves (extends) the Iterative 

Dichotomiser 3 (ID3) algorithm (Quinlan, 1986) by dealing with both continuous and 

discrete attributes, missing values and pruning trees after construction. 

C4.5 builds decision trees from a set of training data in the same way as ID3, 

using the concept of information entropy. The training data is a set            of 

already classified samples. Each sample            is a vector where         

represent attributes or features of the sample. The training data is augmented with a 

vector            where         represent the class to which each sample 

belongs. At each node of the tree, C4.5 chooses one attribute of the data that most 

effectively splits its set of samples into subsets enriched in one class or the other. Its 

criterion is the normalized information gain (difference in entropy) that results from 

choosing an attribute for splitting the data. The attribute with the highest normalised 

information gain is chosen to make the decision. The C4.5 algorithm then recurses on 

the smaller sublists. 

http://en.wikipedia.org/wiki/ID3_algorithm
http://en.wikipedia.org/wiki/Entropy_(information_theory)
http://en.wikipedia.org/wiki/Information_gain
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Algorithm 5.1: C4.5 algorithm to build decision tree 

 

Choose attribute for root node   

Create branch for each value of that attribute  

Split cases according to branches  

Repeat process for each branch until all cases in the branch have the same 

class  

Choosing which attribute to be a root is based on highest gain of each 

attribute.  

where: 

               = partitions of   according to values of attribute  

  = number of attributes  

|  | = number of cases in the partition     

| | = total number of cases in    

where: 

  : Dataset  

  : number of cases in the partition    

   : Proportion of    to   
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5.2.5 Random Forest (RF) 

Random forest, as the name suggests, is a collection of trees: decision trees, in 

this case. An algorithm for classification using a random forest approach was 

developed by Leo Breiman (Breiman, 1996; Breiman, 2001). Here, a combination of 

tree predictors is used, such that each tree depends on the values of a random vector 

sampled independently and with the same distribution for all trees in the forest. The 

input class of the random forest for a given input is the mode of the classes predicted 

by individual trees. 

Random Forests is a classification algorithm with a simple structure (Breiman, 

2004). We examine the performance of this procedure when there are    strong 

variables and    weak ones. Choose mtry variables from among the M at random 

with replacement--then choose the one that gives the best split. Assume all strong 

variables give equal results on the split; the same for all weak variables. If the 

selection is all weak, then choose one at random to split on. If there is more than one 

strong variable selected in mtry, select one at random to split on. A forest of trees is 

grown as follows: 

1) The training set is a bootstrap sample from the original training set. 

2) An integer mtry is set by the user, where m mtry is less than the total number 

of variables. At each node, mtry variables are selected at random and the node is split 

on the best split among the selected mtry. The tree is grown to its maximal depth. 

3) In regression, as a test vector x is put down each tree it is assigned the 

average values of the y-values at the node it stops at. The average of these overall 
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trees in the forest is the predicted value for x. The predicted value for classification is 

the class getting the majority of the forest votes. 

At the optimal mtry, assume    is large compared to   , then 

                                                                               

Unlike single trees, where consistency is proved by letting the number of cases 

in each terminal node become large (Breiman, 2001) RF trees are built to have a 

small number of cases in each terminal node.  

5.3 Class imbalances  

Learning classification methods generally perform poorly in the presences of 

imbalanced data. This is because learning classifiers attempt to reduce global 

quantities such as the error rate, and do not take the data distribution into 

consideration. As a result, examples from the dominant class are well-classified 

whereas examples from the minority class tend to be misclassified. Thus, failure to 

properly represent the distributive characteristics of the data results in inaccuracies 

across the classes of the data. This implies that either the learning classification 

algorithms are modified or the data presented to them is modified. 

The current understanding of the imbalanced learning problem is that the 

number of records belonging to one class is much more or much less than that of all 

the other classes. Most machine learning algorithms are trained based on the 

assumption that the ratios of each class are almost equal and thus the errors associated 

with each class have the same cost. Since the cost gets skewed in favour of the 

majority class, learning classifiers are often biased towards them.  
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5.3.1 Sampling data 

Building a classification model with imbalanced dataset will cause the 

underrepresented class to be overlooked or even ignored. One way to correct the 

imbalance is to train a cost sensitive classifier with the misclassification cost of the 

minority class greater than that of the majority class. There are two techniques for 

sampling data: (a) oversampling and (b) under-sampling. These are discussed in the 

following sections. 

5.3.2.1 Over-sampling strategy 

Synthetic Minority Over-sampling Technique (SMOTE), developed by Chawla, 

Hall, & Kegelmeyer in 2002 (Chawla et al., 2002),  is an over-sampling technique 

whereby synthetic minority examples are generated. It combines informed over-

sampling of the minority class with random under-sampling of the majority class. 

Using the over-sampling approach the minority class is over-sampled by creating 

artificial examples of k nearest class neighbours as seen in figure 5.5. SMOTE 

currently yields the best results for re-sampling and modifying the probabilistic 

estimate techniques (Chawla et al., 2002). This technique is a popular one, which 

creates artificial samples to increase the size of minority class. It balances the data by 

increasing the number of minority instances by over-sampling them. SMOTE 

generates synthetic examples to the minority class; the minority class is over-sampled 

by taking each minority class sample and introducing synthetic examples along the 

line segments joining any/all of the   minority class nearest neighbours. 
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5.3.2.2 Under-sampling strategy 

Another strategy of sampling data is under-sampling that reduces the set of data 

examples (in this thesis means number of patients). The purpose of balancing data by 

using under-sampling is to achieve a high performance of classification and avoid the 

bias towards majority class examples (Garcia and Herrera, 2009). One simple method 

 

Algorithm 5.2: Algorithm for SMOTE 

 

For each minority sample 

Find its k-nearest minority neighbours 

• Randomly select q of these neighbours 

• Randomly generate synthetic samples along the lines 

joining the minority sample and its q selected neighbours 

• (q depends on the amount of oversampling desired) 

 

 

Synthetic instances

 

Figure 5.6: SMOTE - synthetic instances 

(Borovicka et al., 2012) 
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for under-sampling data is to select a subset of majority class samples randomly (Yen 

and Lee, 2006; Yan-ping et al., 2010). However, many researchers proposed different 

methods to select the samples from majority class for example, Near-miss methods 

(Zhang and Mani, 2003), Cluster based method (Altınçay and Ergün, 2004; Yen and 

Lee, 2006; Rahman and Davis, 2013), and  Distances between samples (Yen and Lee, 

2006).  

In this thesis, distance-based random under-sampling is proposed and used to 

compare the performance of classification between over-sampling and under-

sampling. The majority data is selected by using the pairwise distance; Euclidian 

distance is used in this thesis but for other distances can also be applied. This strategy 

also uses the similarity between the minority class and majority class to find the 

greatest distance between them for selecting the instance from majority data to be 

balanced with minority data (Fig. 5.7). 

 

Figure 5.7: Under-sampling method 
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According to the distance-based random under-sampling that shown in 

Algorithm 5.3, it selects the samples that belong to majority class by using the 

distance between samples that belong in different class. The balancing data from this 

method can reduce the bias from majority class and provide the appropriate dataset 

for data analysis. However, the relationship between training set size and improper 

classification performance for imbalanced data sets seems to be that on small 

imbalanced data sets the minority class is poorly represented by an excessively 

reduced number of examples that might not be sufficient for learning. For larger data 

sets, the effect of these complicating factors seems to be reduced, as the minority 

class is better represented by a larger number of examples. 

 

                   

 

   Algorithm 5.3: Algorithm for distance-based random under-sampling  

For sample data in majority class 

 Apply Euclidian distance for the samples of majority and 

minority 

 Select the samples by finding the largest distance between 

minority (  ) and majority      

 Randomly select data sample from majority class that tend to 

be balanced with minority data 
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5.4 Evaluation 

Performance evaluation is probably the most critical of all the steps in the data 

mining process that have shown in framework (Fig. 5.2). Commonly, the accuracy is 

assessed to evaluate the performance of classification. In classification, supervised 

learner models are designed to classify, estimate, and/or predict future outcome. For 

some applications the desire is to build models showing consistently high predictive 

accuracy. Classification correctness is best calculated by using unseen data in the 

form of a test set to evaluate the model. Test set model accuracy can be summarized 

in a table known as a confusion matrix (Table 5.1). 

The confusion matrix can be used to identify the performance of 

classification. The Positive Predictive Value (PPV) and the Negative Predictive Value 

(NPV) are both measures of the accuracy. True positive (TP) is equivalent to a hit. 

True negative (TN) is equivalent to correct rejection. False positive (FP) is equivalent 

to a false alarm. False negative (FN) is equivalent to a miss. These are used to 

calculate the positive predictive value, negative predictive value, sensitivity and 

 

Table 5.1: Confusion matrix 

Performance Measure 
Predict 

Positive Negative 

Actual 

Positive 
True Positive 

(TP) 

False Negative 

(FN) 

Negative 
False Positive  

(FP) 

True Negative 

(TN) 
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specificity as seen by the equation below. The PPV is equivalent to precision. In 

using population-based data for risk factor analyses it is important that identified 

cases are true cases (high PPV) (Ford et al., 2007). 

  

                  
  

         
                                                                 

      
  

         
                                                                

                       
  

         
                                                                

              
  

         
                                                                  

         
     

             
                                                 

 

The confusion matrix in Table 5.1 shows that TP and TN denote the number 

of positive and negative examples that are classified correctly. FN and FP denote the 

number of misclassified positive and negative examples respectively. 

 

Figure 5. 8: The performance indicators on target class 
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Any single performance indicator suffers the risk of not being suitable; Fig. 

5.8 and Fig. 5.9 show that the relationship of performance indicators. 

Precision is the ratio of the number of relevant records retrieved to the total 

number of irrelevant and relevant records retrieved. It is usually expressed as a 

percentage. 

Recall is the ratio of the number of relevant records retrieved to the total 

number of relevant records in the database. It is usually expressed as a percentage. 

Thus, it should be more carefully used a confusion matrix to investigate and 

evaluate the performance of the classification. 

 

Figure 5.9: Relationship of performance indicators 
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Table 5.2 is an example to demonstrate the results on the different classifiers; 

it shows the accuracy of the different classifiers when used on the ‘Original’ (unpre-

processing data) LIFELAB dataset, which consists of 60 variables, and contains 

missing values and imbalanced classes. In this thesis precision and recall are 

measured the effective of classification. In medical diagnosis, the default assumption 

of equal misclassification costs underlying machine learning techniques is most likely 

violated. Precision is important that identified cases are true cases (high precision). A 

false negative prediction that is used for recall may have more serious consequences 

than a false positive prediction (Yang et al., 2009). For example, consider prediction 

task, where we are predicting for patient who has a high probability of dead. Suppose 

that we are given a list of patients to classify as “relevant” or “non-relevant” for dead 

case, and then the cost of mistakenly assigning a relevant patient to the non-relevant 

patient class depends on whether there are any other relevant patents that we have 

Table 5.2: The classification accuracy of different 

classifications using the ‘Original’ LIFELAB dataset 

  

Class 

Original 

Accuracy 

Precision Recall 
C

la
ss

if
ic

at
io

n
 

MLP 
Dead 46.5 41.4 

Alive 81.2 84.2 

RBFN 
Dead 56.4 28 

Alive 79.5 92.8 

SVM 
Dead 68.4 32.6 

Alive 80.9 95 

DT 
Dead 43.4 36.1 

Alive 79.9 84.4 

RF 
Dead 61.2 23.1 

Alive 78.8 95.1 
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correctly classified. Recall tends to be neglected or averaged away in machine 

learning and computational linguistics where the focus is on how confident we can be 

in the rule or classifier (Powers, 2007). Consequently, in this paper both precision and 

recall are evaluated. From the results, it can be seen that as a classifier on the dead 

class (positive class), the SVM algorithm gives a better precision than other 

classifiers, at 68.4%, and the MLP gives a better recall than others at 41.4%. 

However, these results are assessed without pre-processing. The results with pre-

processing methods will be presented in Chapter 7. 

5.5 Summary 

In this thesis, classification accuracy was selected as the criteria to assess the 

effectiveness of the data mining methods. The classifier used were: multilayer 

perceptron (back-propagation), J48 (decision tree), RBFN (neural network), SVM 

and Random Forest. However, the fundamental factor here is to understand the nature 

of the dataset in order to choose a suitable technique. In addition, imbalanced class is 

an issue that does occur naturally in clinical datasets. Resampling of data sampling is 

one way to deal with this problem and is essentially a process, which enables the 

balancing of the proportions of majority and minority class in a dataset, such that they 

both have similar sizes in terms of number of samples in each class. A sampling 

strategy, which is applied, has to be such that reliable results are obtained, and is also, 

statistically representative of the full detail data.  A key reason for this resampling is 

that most data mining and classification algorithms often show a strong bias towards 

the majority class, and for purposes of clinical applications a goal is to minimise the 
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overall prediction error rate especially the minority class (positive case) are 

minimized. It should be noted that the size of samples for each class should be big 

enough to contain the significant information whether or be not too small to represent 

the data. 
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 CHAPTER 6

FEATURE SELECTION BY PROJECTING ONTO PRINCIPAL COMPONENT 

6.1 Introduction 

The problem of high dimensionality in datasets was discussed in Chapters 1 and 

4. High dimensionality results from the ability to gather data with a large number of 

variables, often without knowing whether they are suitable, required or significant. 

Number of features has an effect on the complexity of the algorithms that can be 

developed and used within any framework for data mining. In this chapter, a new 

methodology for reducing dimensions is proposed. This methodology combines 

elements from both feature extraction and selection, and is essentially part of feature 

selection. It is a filter model combined with a non-linear feature extraction. The 

advantage of this method is the retention of feature labels (gain in interpretability) 

while maintaining performance through the combining of the strengths of feature 

extraction and feature selection. This allows for accuracy in the data mining process 

to be maintained, while at the same time also keeping the computational overheads 

low. 

Real-world data, such as speech signals, digital photographs, bioinformatics, 

multimedia, economic and consumer transactions usually have high dimensionality 

(Fodor, 2002; Cunningham, 2008; van der Maaten et al., 2009). One of the key issues 
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with high dimensional datasets is that, in many cases, not all the measured variables 

are “important” for understanding the underlying phenomenon of interest (Fodor, 

2002). Thus, dimensions can be eliminated, thereby reducing complexity while 

retaining the performance of data mining algorithms. Essentially, dimension 

reduction is a process of projecting a high dimensional data space onto a space with 

fewer dimensions (see Fig. 6.1, repeated from Chapter 4). 

As discussed in earlier chapters (Chapters 1 and 4), techniques for reduction of 

dimension can be classified into two broad categories (a) feature extraction and (b) 

feature selection. In the main, feature extraction can give high accuracy for both 

classification and prediction problems. However, the reduced dimensionality of the 

data set is essentially one which yields new (and fewer) dimensions than before. 

These new dimensions do not necessarily carry any meaning, nor can they be directly 

associated with the variables of the dataset. On the other hand, feature selection, also 

 

Figure 6.1: Dimensionality reduction from high dimensionality to low 

dimensionality 
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reduces the dimensions, and retains the labels associated with the variables; in a sense 

the new set of features is a subset of the original set of features. Both the categories of 

techniques are used frequently, for example in image processing feature extraction is 

a popular technique, while where it is important that labels are retained for the 

features (e.g. clinical systems) feature selection is the dominant technique for 

reduction of dimensions.  

The key performance indicators of a data mining process are predictive 

accuracy, speed of the data mining algorithm, and ability to provide a greater insight 

into both the data and the application in order to develop good decision support 

systems. These indicators become even more important when dealing with clinical 

data, where such systems are often used to help support decision making and 

diagnosis at a lower level and also to support tele-health/tele-medicine systems (Sittig 

et al., 2008; Fox et al., 2010). For example in clinical systems, one of the key uses of 

prediction is to be able to both predict hospitalisation of patients, and develop 

systems for planned care of patients, thus enabling better control over costs and 

greater efficiency. The performance of prediction (or the accuracy of prediction) is 

highly dependent on the ability to select the most appropriate or relevant variables 

(dimensions) from a list of variables available in the dataset (Ramaswami and 

Bhaskaran, 2009). The most important question is which of the features is the most 

influential in determining the classification and hence should be chosen first. This 

thesis develops a new methodology for the selection of the right variables through the 

use of efficient dimension reduction for datasets with a large number of variables.  
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The proposed methodology combines both feature extraction and selection. In 

this new methodology, the advantages of feature extraction and feature selection are 

retained and combined.  The proposed method, called Feature Selection by Projecting 

onto Principal Component (FS-PPC) is an integrated filter combined with a non-

linear feature extraction. This allows for accuracy in the data mining process to be 

maintained, while at the same time also keeping the computational overheads low. 

The FS-PPC has three components  

 Principal component generation: Here principal components are 

generated by implementing the PCA (Kramer, 1991; Scholz, 2012) to 

determine the most significant principal components.  

 Features subset evaluation process: Here each candidate subset of 

features is evaluated using a Symmetrical Uncertainty (SU) measure.  

 Subset selection criterion: Here irrelevant and redundant features are 

removed from within the candidate set of features using Mutual 

Information (MI).  

This is an iterative process, and is carried out until all the features in the subset 

have been ranked, with the elimination of low-ranking features from the subset of 

features. If a subset turns out to be better, it replaces the current best one (a small 

example is used in this chapter to illustrate the method, whilst a more detailed set of 

results will be presented in Chapter 7).  

The chapter is structured as follows: section 6.2 outlines the preliminaries by 

providing some definitions, background and notations, which are then used later in 
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the chapter. Section 6.3 describes the steps of the proposed feature selection method, 

which has all the components of the methods. Finally, in section 6.4 we draw some 

concluding remarks, and summarize the methods. 

6.2 Background and notation 

Consider a dataset    {    }                            . We can 

define    {    } consisting of a set of   observations (records) of data while 

   {  }     is the   set of variables (attributes) and also introduce a class variable 

  {  } as output. Collecting the variables together the data set can be represented 

as       . It should be noted here that the term input variables is used to represent 

features presented to the algorithms, whilst observations is used to represent the data 

that is collected. 

6.2.1 Dimensionality reduction 

The problem can be stated as follows: given the   dimensional variable 

                   , find a representation of it with fewer dimensions, i.e.  

                 
  with    , that captures the content in the original data. 

The components of   are mostly called “variables” or “features” or “attributes” in 

computer science and machine learning literature. Dimensionality reduction is 

categorised into the following two techniques, feature extraction and feature 

selection.  



200893098 N.Poolsawad / Computer Dept. 

117 

6.2.2 Feature extraction 

The goal of feature extraction is to yield a new feature set with fewer 

dimensions by defining a mapping function      such that           

In general, the map       could be any function, linear or non-linear. The result 

of applying       is to create    {  }              , where   is  the number 

of a new feature of fewer dimensions (   ). 

The classification task of learning algorithms is introduced by       , 

        |{        }|   for each classifier, where       is the predicted class 

label of    by   .        is a classification error from   that is under control at a 

range  , i.e., |             |    . It shows that the loss information,   is 

measured by resulting error between an original subset of features        and a new 

subset of features       . By understanding this, it can be concluded that a smaller 

error can be achieved by reducing the new subset of feature errors.    

6.2.3  Feature selection 

It should be noted that in feature extraction the labels associated with the final 

set of features are meaningless. However, feature selection allows for the retention of 

labels of the variables. Given a criterion      , and a set of features  , the problem 

is to find a set   subset of   where    .  

Since the dataset has limitations, in that all instances of the relationship 

between observations and class cannot be collected, it is expected that there will be an 

error associated with the classification using the reduced set of features.       
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 |{        }|   for each classifier, where       is the predicted class label of    by 

  .        is a classification error from a feature subset   of   that should be a small 

error. 

6.2.4 Relevance and redundancy 

Let   denote the conditional probability of the class label   given a feature 

set. The statistical relevance and redundancy of a feature can be defined as: 

Definition 6.1: Relevance 

A feature    is relevant if 

                    ( |      )     |    

Otherwise, the feature    is said to be irrelevant. 

Definition 6.2: Redundancy  

A feature    is redundant if 

 ( |     )   ( |  )                          ( |     )     |    

Otherwise, the feature    is said to be non-redundant. 

6.2.5 Mutual information 

Mutual information (or Information Gain (IG)) is used to quantify how much 

information is shared by two variables   and  ,         is defined as 

         ∑∑         
      

        
  

                                                        



200893098 N.Poolsawad / Computer Dept. 

119 

From this definition, the value of          , if   and   are closely related 

to each other; otherwise,        = 0 denotes that these two variables are totally 

unrelated. Additionally,         can be rewritten as  

                   |                                                                            

Conditional mutual information of   and  , denoted as  

      |       |        |                                                                              

represents the quantity of information shared by   and   when   is known. 

That is to say,       |   implies   brings information about   which is not already 

contained in  . 

6.2.6 Symmetrical uncertainty 

The Symmetrical Uncertainty (SU) coefficient normalises the information gain 

by dividing the sum of the entropies of   and  . Both the gain ratio and the 

symmetrical uncertainty coefficient lie between 0 and 1. A value of 0 indicates that   

and   have no association; the value 1 for the gain ratio indicates that knowledge of   

completely predicts  ; the value 1 for the symmetrical uncertainty coefficient 

indicates that knowledge of one variable completely predicts the other. Both display a 

bias in favour of attributes with fewer values. 

     [
   

         
]                                                 

Eq. (6.5-6.8) are used to find the MI and SU. If   and   are discrete random 

variables, equations 6.5 and 6.6 give the entropy of   before and after observing  .  
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      ∑                                                              

 

 

   |    ∑    

 

∑   |      (   |  )                        

 

 

Eq. 6.7 gives the amount of information gained about   after observing   (and 

vice versa—the amount of information gained about   after observing  ). 

Information gain (IG) within the framework of data mining and in feature selection 

provides very valuable information, however, it should be noted that it is biased in 

favour of attributes with more values; in other words, attributes with a low percentage 

of missing values. Thus, missing value imputations schemes, discussed in Chapter 3, 

become important. There are three ways of determining information gain (IG): 

    {

         |  

        |  

                 

                                

The gain ratio (Eq. 6.8) is a non-symmetrical measure that tries to compensate 

for this bias. If   is the variable to be predicted, then the gain ratio normalises the 

gain by dividing by the entropy of  .  
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6.3 Feature Selection by Projecting onto Principal Components (FS-PPC) 

Feature extraction is a useful method for reduction of dimensions; however, it is 

not useful for the applications that need to use meaningful (and perhaps the original) 

labels of the features. It has a distinct advantage in that accuracy in classification is 

high. On the other hand, feature selection is a process of selecting a subset of original 

features based on a desired criterion. It reduces the number of features, removes 

variables that are irrelevant and redundant, and also the computational complexity is 

lower than that of feature extraction. Both these methods for reducing dimensions are 

extensively used, and the choice is dependent on the application and the problem to 

be solved. What is important to note is that often feature extraction has a higher 

degree of accuracy when compared to feature selection (Kotani et al., 1999; Addison 

et al., 2003; Cruz-Barbosa et al., 2011). Thus, it would be interesting to create a 

methodology which is a combination of the two methods. In this thesis, we develop a 

new feature selection algorithm, in which nonlinear principal feature selection is 

proposed for selecting the significant optimal subset of features. This method 

combines principal component and feature correlations (symmetrical uncertainty and 

mutual information), in order to obtain the exact values of symmetrical uncertainty of 

candidate features and the most significant principal component (1
st
 PC) that it is 

produced by PCA (or NLPCA).  Before identifying a desired feature, the mutual 

information of candidate features is applied to find irrelevant and remove redundant 

features. 
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The proposed methodology consists of the following steps (see Fig. 6.2): 

 

6.3.1 Principal component generation 

Principal component generation is used to generate the principal component by 

using PCA or NLPCA (in the results in Chapter 7, PCA is used to generate PC). PCA 

is a powerful multivariate data analysis method (for further details in Chapter 4). Its 

 

Figure 6.2: The components of FS-PPC 
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main purpose is to summarise large datasets by removing any redundancy in the data. 

Principal component (Kramer, 1991; Wang et al., 2007a; Zabiri et al., 2009) is used 

to identify and remove correlations among problem variables and is an aid in 

dimensionality reduction, visualisation, and exploratory data analysis. In this process, 

the first principal component represents the most significant principal component. 

6.3.2 Features subset evaluation 

Features subset evaluation is a process in which each candidate subset of 

feature is evaluated by calculating SU (see Section 6.2.5) with the most significant 

principal component. Here, candidate feature subsets are generated for evaluation 

based on a SU strategy. Each candidate subset is evaluated by calculating SU with the 

most significant feature component and compared with the threshold  δ  to find an 

appropriate feature subset. The subset of features is selected by determining the 

threshold  δ  of SU, and thus the subset with the highest relation to the most 

significant principal component. 

6.3.3 Subset selection criterion 

In general, it is widely recognised that a good subset of features should not 

only be individually relevant, but also should not be redundant with respect to each 

other features (Brown, 2009). The selection criterion is used to remove irrelevant and 

redundant features (Hall and Smith, 1999; Novakovic, 2009; Ali and Shahzad, 2012) 

from this subset by using MI measures (Yu and Liu, 2003) (see Section 6.2.4). The 

features are eliminated by a ranking criterion based on MI measures. The process is 
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repeated until all the features in the subset have been ranked, and then all low-ranking 

features are removed from the subset of features. This evaluation process is critical 

because if an inappropriate or unsuitable threshold, δ, is selected, the ranking of the 

features will be affected. 

6.3.4 FS-PPC Algorithm 

With the discussion and analysis above, we develop a new feature selection 

algorithm using PCA and feature correlations (symmetrical uncertainty and mutual 

information), in order to obtain the exact values of symmetrical uncertainty of 

candidate features and the most significant principal component (1
st
 PC) that it is 

produced by PCA.  Before identifying a desired feature, the mutual information of 

candidate features is applied to find irrelevant and remove redundant features. 

Explicitly, the details of our algorithm are shown as Algorithm 6.1. 
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Algorithm 6.1: Algorithm for Feature Selection by Projecting onto Principal 

Components (FS-PPC) 

Input: A training dataset         . 

Output: Selected features  . 

 

Initialize relative parameters:  

PC;  ;     ; 

//PC = Significant principal component 

//   = threshold to find appropriate feature subset 

//   = subset of selected features 

 

//Determine significant principal component 

PC = PCA(F); 

 

//Calculate its symmetrical uncertainty 

For each feature       do 

          on  ; 

Until     ; 

 

//Choose the feature    with the highest          ; 

  (     )    ; 

      {  }; 

 

//Rank relevant            and redundant            ; features     from   by 

calculating its mutual information  

For each feature       do 

       (    )  ∑         

   

   

 

Until     ; 
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It can be seen that the algorithm estimates MI for each candidate feature in   

with the label Y and for each candidate feature F and a feature will be immediately 

discarded from   if its SU is more than  . This procedure will be repeated until there 

are no more candidate features in  . After that, the feature with the highest MI of 

feature-class and the lowest MI of feature-feature will be chosen (Fig. 6.1). 

Example 6.1 Consider the Heart Disease dataset consisting of 270 observations 

(instances) and 13 variables (features) with 2 classes of output.  In order to 

demonstrate the Feature Selection by Projecting onto Principal Component (FS-PPC), 

this example follows the steps of the FS-PPC (as stated above) in order to draw 

comparisons between the theoretical method and its use in practice. 

Table 6.1: Example of the Heart Disease dataset 

no. age sex 
chest 

pain 

blood 

pressure 
cholesterol 

blood 

sugar 
ecg 

heart 

rate 
angina oldpeak 

ST 

segment 
vessel thak class 

1. 70 1 4 130 322 0 2 109 0 2.4 2 3 3 presence 

2. 67 0 3 115 564 0 2 160 0 1.6 2 0 7 Absence 

3. 57 1 2 124 261 0 0 141 0 0.3 1 0 7 presence 

4. 64 1 4 128 263 0 0 105 1 0.2 2 1 7 Absence 

5. 74 0 2 120 269 0 2 121 1 0.2 1 1 3 Absence 

6. 65 1 4 120 177 0 0 140 0 0.4 1 0 7 Absence 

7. 56 1 3 130 256 1 2 142 1 0.6 2 1 6 presence 

8. 59 1 4 110 239 0 2 142 1 1.2 2 1 7 presence 

9. 60 1 4 140 293 0 2 170 0 1.2 2 2 7 presence 

10. 63 0 4 150 407 0 2 154 0 4 2 3 7 presence 

11. 59 1 4 135 234 0 0 161 0 0.5 2 0 7 Absence 

12. 53 1 4 142 226 0 2 111 1 0 1 0 7 Absence 

13. 44 1 3 140 235 0 2 180 0 0 1 0 3 Absence 

14. 61 1 1 134 234 0 0 145 0 2.6 2 2 3 presence 

15. 57 0 4 128 303 0 2 159 0 0 1 1 3 Absence 

16. 71 0 4 112 149 0 0 125 0 1.6 2 0 3 Absence 

17. 46 1 4 140 311 0 0 120 1 1.8 2 2 7 presence 

18. 53 1 4 140 203 1 2 155 1 3.1 3 0 7 presence 

19. 64 1 1 110 211 0 2 144 1 1.8 2 0 3 Absence 

20. 40 1 1 140 199 0 0 178 1 1.4 1 0 7 Absence 
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  {
                                                              

                                                
} 

   {                } 

 

Step 1: Consider the significant principal component 

            

After applying       , the set of principal components,    is shown as below: 

Consider a significant principal component,    

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 

1.332 -0.129 -0.020 0.022 -0.133 0.045 0.005 0.015 -0.005 -0.014 0.017 0.007 0.046 

-0.279 -0.272 -0.057 -0.034 0.010 -0.024 -0.006 0.028 -0.011 0.041 -0.017 0.010 0.008 

-0.331 0.214 -0.060 -0.016 0.021 -0.006 0.019 0.021 -0.021 0.003 -0.003 -0.003 0.001 

-0.387 0.106 0.095 -0.005 -0.019 0.003 -0.003 0.015 -0.020 0.019 0.009 -0.004 0.019 

1.403 -0.231 0.064 -0.001 0.041 0.017 0.060 0.019 -0.037 0.016 -0.014 -0.007 0.034 

-0.336 0.187 -0.029 -0.026 -0.003 0.025 -0.033 0.037 -0.016 -0.005 -0.001 -0.002 0.000 

0.007 -0.123 0.024 0.091 0.063 -0.013 0.001 -0.024 -0.005 0.012 0.009 -0.003 0.012 

-0.436 -0.125 0.032 -0.033 0.013 0.008 0.000 -0.023 -0.013 0.013 0.005 -0.002 0.007 

-0.391 -0.129 -0.069 -0.018 -0.055 0.032 -0.006 0.003 0.016 0.017 0.011 0.004 0.016 

-0.301 -0.355 -0.027 -0.001 -0.082 0.035 0.009 0.012 0.017 -0.010 -0.008 0.011 0.034 

-0.338 0.152 -0.024 -0.028 -0.027 -0.012 -0.036 0.023 0.007 0.016 0.008 0.001 -0.003 

-0.430 -0.080 0.022 -0.045 0.077 0.026 -0.008 0.021 -0.010 -0.009 0.006 -0.007 0.000 

1.347 0.009 -0.077 -0.035 0.028 0.019 -0.013 0.002 0.011 0.001 0.006 -0.003 -0.006 

1.393 0.182 -0.017 0.033 -0.088 -0.028 0.076 -0.004 0.000 -0.013 0.012 0.001 0.040 

1.441 -0.222 -0.016 -0.023 -0.002 0.049 -0.017 0.006 0.002 0.008 -0.012 0.002 0.012 

1.482 -0.004 0.052 -0.013 -0.055 -0.021 -0.034 0.023 -0.022 -0.015 -0.006 0.004 0.013 

-0.393 0.084 0.097 0.000 -0.034 0.012 0.011 -0.021 0.009 -0.002 0.011 -0.001 0.021 

-0.443 -0.169 0.032 0.065 0.049 -0.068 -0.037 -0.021 0.016 -0.013 0.017 0.003 -0.004 

1.308 -0.038 0.016 -0.012 0.032 -0.056 0.067 -0.010 -0.025 0.005 0.009 -0.005 0.018 

-0.374 0.208 0.028 -0.021 0.104 -0.029 0.075 -0.019 0.007 -0.009 -0.003 -0.010 0.000 
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Step 2: Calculate Symmetrical Uncertainty 

between a significant principal component and each 

feature,           : 

Set the threshold,   = 0.25,  

then    {                     } or 

   {

                           
                                   

                      
} 

Step 3: Calculate Mutual Information          and           to retain the relevant 

features and remove the redundant features, features     from   by calculating its 

mutual information. The features are eliminated by a calculating as follows: 

       (    )  ∑         

   

   

 

  

The low-ranking features are removed 

from the subset of features,  . In this example, 

vessel and thak should be eliminated, and the 

optimal subset will be: 

 

 

 

 

 

Feature ID SU>0.25 

5 0.926181 

8 0.865926 

1 0.771938 

4 0.731095 

10 0.681432 

3 0.351744 

12 0.324462 

11 0.274706 

13 0.262114 

7 0.231119 

9 0.203428 

2 0.201875 

6 0.139412 

Ranking Feature 

1                

2             
3     

4         

5            

6            

7            

8        
9      
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6.4 Summary 

This thesis has presented a new approach to feature selection for machine 

learning. The proposed FS-PPC combines correlation features and PCA as an 

available method for feature selection. The FS-PP  uses principal component’s 

performance and feature correlations to guide its selection of a good subset of 

features. The relevance chooses the principal component that contains the most 

information. It uses correlation features to delete the features that contain less 

relevant information.  

no. age 
chest 

pain 

blood 

pressure 
cholesterol 

heart 

rate 
oldpeak 

ST 

segment 

1. 70 4 130 322 109 2.4 2 

2. 67 3 115 564 160 1.6 2 

3. 57 2 124 261 141 0.3 1 

4. 64 4 128 263 105 0.2 2 

5. 74 2 120 269 121 0.2 1 

6. 65 4 120 177 140 0.4 1 

7. 56 3 130 256 142 0.6 2 

8. 59 4 110 239 142 1.2 2 

9. 60 4 140 293 170 1.2 2 

10. 63 4 150 407 154 4 2 

11. 59 4 135 234 161 0.5 2 

12. 53 4 142 226 111 0 1 

13. 44 3 140 235 180 0 1 

14. 61 1 134 234 145 2.6 2 

15. 57 4 128 303 159 0 1 

16. 71 4 112 149 125 1.6 2 

17. 46 4 140 311 120 1.8 2 

18. 53 4 140 203 155 3.1 3 

19. 64 1 110 211 144 1.8 2 

20. 40 1 140 199 178 1.4 1 

 

   {

                       
                   
                    

           

} 
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 CHAPTER 7

RESULTS AND DISCUSSIONS 

7.1 Introduction 

The underlying theme in this thesis has been the challenges posed by real-

life clinical data and the development of methodologies for the extraction of 

information from this data. These challenges were discussed in Chapter 1, along 

with a framework (HCDF) in Chapter 2. In the later chapters (3 – 6) algorithms 

which would be incorporated in the HCDF framework were discussed. These 

chapters correspond to the main objectives highlighted in Chapter 1. This chapter 

assesses the methods already described for (a) handling missing values (section 

7.3.1), (b) class imbalance (section 7.3.2) and the effect of high dimensionality on 

classification (Section 7.3.3). The framework for the discussion of the results is 

based around the following: (a) the use of the original unmodified dataset(s) and 

(b) in the case of Hull-LIFELAB the additional use of a variable from the Seattle 

Heart Failure Model (SHFM), which is an expert driven model. When discussing 

the new feature selection algorithm, the performance is also evaluated based on 

the results from a set of clinical datasets present in the UCI  repository (Blake and 

Merz, 1998). 
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7.2 Framework for assessment 

The results were obtained using software provided within MATLAB
1
 (The 

MathWorks Inc.), Weka (Witten and Frank, 2005), and KEEL (Alcalá-Fdez et al., 

2009; Fernández et al., 2009). Where required additional functionality was 

provided within the environment. The performance was measured based on how 

well the algorithms contributed towards the required binary classification task, i.e. 

the Alive class and the Dead class. As mentioned above, all the algorithms were 

tested on the data from Hull-LIFELAB (discussed in Chapter 1). When the 

proposed feature selection algorithm was tested, the tests were carried out on 

additional clinical datasets obtained from the UCI repository. The performance 

was measured not only on how well the classification was carried out, but also on 

a “redundancy measure”   hapter 5, and section 7.3.3 . 

7.2.1 Datasets 

The LIFELAB dataset (Table 1.1(1-2)) (Poolsawad et al., 2011; Poolsawad 

et al., 2012b; Poolsawad et al., 2012a; Poolsawad and Kambhampati, 2014) is the 

main dataset used for this thesis. Table 7.1 provides for further details of class 

distribution. After a discussion of this dataset in Chapter 1, the size of classes of 

target output, as shown in Table 7.1, is imbalanced. 

 

                                                 

1
 MATLAB technical documentation - http://www.mathworks.co.uk/help/ 



Chapter 7: Results and discussions 

132 

 

In addition, clinical datasets  Breast cancer, Parkinson’s and Heart 

disease) drawn from the UCI repository of machine learning
2
 were applied in the 

feature selection experiments (Table 7.2). These contain continuous features; the 

rest contain only nominal features on two classes. These datasets were chosen 

because of the prevalence of continuous features and their predominance in the 

literature. 

 

7.2.2 Missing values imputation 

The missing values imputation algorithms that are provided in KEEL 

(Alcalá-Fdez et al., 2009; Fernández et al., 2009). The trend of most of the suites 

                                                 

2
 UCI Machine Learning Repository - http://archive.ics.uci.edu/ml/datasets.html 

Table 7. 2: Target classes’ distribution on LIFELAB 

No. of features 463 

No. of samples 1944 

Target output Mortality 

Class Alive Dead 

Frequency 1459 485 

Ratio 3 1 

 

Table 7. 1: Selected clinical datasets from UCI repository 

Dataset No. of features No. of instances No. of classes 

Breast Cancer 30 569 2 

Parkinson’s 22 197 2 

Heart Disease 13 270 2 
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is to offer a good feature selection and discretization set of methods, but they 

overlook specialized methods of missing values imputation. Usually, the 

contributions included are basic modules of replacing or generating null. We used 

seven missing values imputations are included in the KEEL: Data Preprocessing 

(Family), Missing Values (Subfamily). 

There is a wide selection of methods available for missing value 

imputations. However, of these seven have been found to be most useful for 

clinical data (Zhang et al., 2012), These are: most common value imputation 

(MCI); concept most common value imputation (CMCI); K-nearest neighbour 

imputation (KNNI); K-means clustering imputation (KMI); Fuzzy K-means 

clustering (FKMI); expectation-maximization imputation (EMI); and support 

vector machine imputation (SVMI). Of these seven, MCI, KNNI and EMI are the 

most commonly used imputation methods.  It should be noted that CMCI is an 

extension of MCI, while FKMI and SVMI are recommended  in literature 

(Luengo et al., 2011). 

7.2.3 Re-sampling techniques 

There is always in imbalance in real clinical datasets. The reason for this is 

that it is always the norm that healthy (or live) patients are more numerous than 

patients with ill-health (or dead). Thus, any framework for clinical datasets has to 

deal with this reality. There are two approaches that can be used, namely (a) over-

sampling the minority class e.g. SMOTE, or (b) under sampling the majority 

class.  
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7.2.3.1 Over-sampling by SMOTE 

Over sampling is essentially a process of generating new samples given an 

imbalanced dataset. An adhoc process is simply to replicate the minority class n-

number of times so that there is no major or minor class. A more systematic 

approach is to select some exemplars from the minority class, and then select 

extra samples by using nearest neighbours; often these are 3, 5, or 7 depending on 

the ratio of the classes. For this thesis this ratio is approximately three and thus the 

number of neighbours was set to be equal to 3 This is the principle behind 

SMOTE (section 5.3.2.1 from Chapter 5). In the experiment design, the positive 

examples were oversampled by using nearest neighbours = 3 that the size of 

positive class is 1459, roughly equal to the size of negative class 485. The 

SMOTE technique is embedded in the Weka package: 

weka.fiters.supervised.instance.SMOTE. 

 

7.2.3.2 Under-sampling by computing the distance values 

The under-sampling that is used in this thesis selects samples from the 

majority class  ‘Alive’ class  that are furthest from the minority class  ‘Dead’ 

class) (section 5.3.2.2 from Chapter 5). This is done using a Pairwise distance 

measure between the two classes  ‘Dead’ and ‘Alive’ classes  of samples. For the 

purposes of this thesis, the Euclidean distance measure has been used. However, if 

the data set was of a mixed type, other measures like the Mahalanobnis distance 

could be used. 
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7.2.4 Feature selection methods 

The experiments and results are based on the LIFELAB dataset and 

clinical datasets obtained from the UCI repository for machine learning databases. 

The Seattle Heart Failure Model (SHFM) (Levy et al., 2006)is also used in order 

to compare both the selected features and the classification, since SHFM consists 

of the expert’s selection of features without the help of a data mining algorithm. 

SHFM is a multivariate risk model that incorporates obtainable clinical data and 

laboratory variables, heart failure medications, and devices. SHFM consists of a 

large number of different predictors, including NYHA classification (Levy et al., 

2006). However, this study focuses on the variables obtained during routine blood 

tests, ECG, Echo and pulmonary function tests, which are all not present within 

the SHFM. The common variables between the two are the following eight 

variables Age, Sodium, Creatinine, White blood cell count, heart rate, blood 

pressure, albumin, BMI, Urea. All feature selection methods are based on some 

form of ranking of features. These rankings are obtained using ‘Bioinformatics 

Toolbox’ from MATLAB, one of the following measures: ‘t-Test’, ‘Entropy’, 

‘Bhattacharyya’, ‘RO ’, and ‘Wilcoxon’ (Chapter 4). Features obtained from these 

ranking schemes are then compared and evaluated along with the proposed new 

Feature selection algorithm (FS-PPC). 

7.2.5 Building the classifiers 

The key to any algorithm within a data mining framework is its ability to 

provide correct information to the classification algorithms. In other words the 

“goodness” of any imputation scheme, or feature selection algorithm, or methods 
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for handling skews in classes, is judged on how well the resultant dataset is 

classified. The classifiers used to assess the performance are (a) Feed Forward 

Networks (MLPs) (b) Radial Basis Function Networks (RBFN) (c) Support 

Vector machines (SVMs) (d) Decision Trees (DT) and (e) Random Forest (RF) 

and were discussed in Chapter 5. All of these methods are present in the software 

packages already mentioned. In all cases a 10-fold validation process was 

employed (discussed later in the next section). 

 Multilayer perceptron  

Three-layer feed forward neural networks (one hidden layer) were trained 

using the new data sets. Results experimented with different number of hidden 

units and selected the one with the best accuracy. There are used the default 

learning rate 0.3 and momentum rate 0.2. The training algorithm is 

weka.classifiers.functions.neural.NeuralNetwork. 

 Radial Basis Function Networks  

Results are used weka.classifiers.functions.RBFNetwork in Weka package 

to implement a normalized Gaussian radial basis function network. It uses the k-

means clustering algorithm to provide the basis functions, and also use the default 

values, e.g. clustering seed, number of clusters. Symmetric multivariate Gaussians 

are fit to the data from each cluster.  

 Support Vector Machine  

Support Vector Machine (linear, polynomial and RBF kernel) with 

Sequential Minimal Optimization Algorithm, weka.classifiers.functions.SMO. 
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This implementation globally replaces all missing values and transforms nominal 

attributes into binary ones. It also normalizes all attributes by default. 

 Decision Tree  

Decision Tree classifiers were trained using each of the three rebalanced 

training sets. Results use weka.classifiers.trees.j48.J48 in Weka package. When 

building the tree, these results selected the default pruning option.  

 Random Forest  

Random forest is also available in weka.classifiers.trees. 

RandomForestClass is used for constructing random. In Weka allows for selecting 

the number of trees and controlling the number of random attributes to be chosen 

for each node, in this thesis 10 trees is the number of trees in the forest. 

7.2.6 Assessment of the data mining process 

The performance of all algorithms within a data mining framework are 

assessed, individually or in combination, on how well the classification is carried 

out. This is shown in Fig. 7.1.  
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For clinical datasets, apart from the ability to predict the correct class, 

what is crucial is the number of false positives and false negatives and the amount 

of redundant information present within the dataset. Thus, the evaluation in this 

thesis is carried out using two types of metrics (1) classification accuracy and (2) 

redundancy rate (Quinlan, 1992; Ramaswami and Bhaskaran, 2009). Here, 

redundancy rate is used for assessing the subset of features from different feature 

selection methods (Zhao and Wang, 2010).  

Accuracy: Both Precision and Recall are used to assess the accuracy of the 

classifiers. These can be obtained from the data available in a Confusion matrix 

(Chapter 5). Both precision and recall are associated with false positives and false 

negatives. Thus for clinical datasets these two measure are significant (Forman, 

 

 

Figure 7. 1: HCDF for handling complexities of clinical dataset 
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2003; Powers, 2007). Two types of classification results are presented: 1) one 

with the 10-fold cross-validation and 2) a training set. The outcomes of 

classification which are used to form the confusion matrix are 

True positive (TP):  

A sample    is predicted to be in class   , and is actually in it.  

False positive (FP):  

A sample    is predicted to be in class   , but is actually not in it.  

True negative (TN):  

A sample    is not predicted to be in class   , and is actually not in it.  

False negative (FN):  

A sample    is not predicted to be in class   , but is actually in it.  

 

In this thesis precision and recall are measured the effectiveness of subset 

of features from different feature selection schemes (Turney, 2000; Forman, 2003; 

Cheong Hee et al., 2004; Powers, 2007). In medical diagnosis, the default 

assumption of equal misclassification costs underlying machine learning 

techniques is most likely violated. A false negative prediction may have more 

serious consequences than a false positive prediction (Yang et al., 2009). For 

example, consider prediction task, where we are predicting for patient who has a 

high probability of being dead. Suppose that we are given a list of patients to 

classify as “relevant” or “non-relevant” for the dead class case, and then the cost 

of mistakenly assigning a relevant patient to the non-relevant patient class 

depends on whether there are any other relevant patents that we have correctly 

classified. Recall tends to be neglected or averaged away in machine learning and 
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computational linguistics where the focus is on how confident we can be in the 

rule or classifier (Powers, 2007).Consequently, in this thesis both precision and 

recall are evaluated. 

Redundancy rate: The redundancy rates is obtained by calculating the 

averaged correlation among the selected features returned by different feature 

selection algorithm (Zhao). To decide the appropriate subset of selected features; 

the redundancy rate is measured to assess which optimal subset will be a suitable 

subset of features for the dataset. In a case where the different methods appear to 

give a similar performance of classification, measuring the redundancy can 

provide a better measure of confidence on the subset of features selected. A low 

redundancy rate is an indication of a good set of independent variables, and an 

indication of low bias in the classification. Thus, if   is the subset of selected 

features, and    is the data containing features in  . The redundancy rate 

measured by: 

        
 

      
∑ |    |

           

                                                   

where      returns the correlation between the ith and the jth features,   is number 

of features. A large value of        indicates that many selected features are 

strongly correlated and thus redundancy is expected to exist in  . 

7.3 Results and discussions 

The results presented here illustrate the data mining methods for handling 

the clinical data complexities that were introduced in previous chapters. Data were 

pre-processed for analysis and then explored to discover data characteristics.  
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A set of initial benchmark results were obtained, using the “Original” data 

(unpre-processed data). Table 7.3 shows the accuracy of the different classifiers 

when used on the “Original” LIFELAB dataset, which consists of 60 variables, 

and contains missing values and imbalanced classes. From the results, it can be 

seen that the classifier based on the Random forest (RF) algorithm gives better 

accuracy than other classifiers, with more than 90% precision and recall for both 

classes. This is of course on the training set. RF is a versatile classification 

algorithm suited for the analysis of these large datasets and a suitable 

classification for clinical data (Diaz and Alvarez, 2006; Pang et al., 2006; Strobl 

et al., 2008; Chen et al., 2013) because RF classification models provide 

information on the importance of variables for the classification, leading to its 

superior performance on high-dimensional data (Breiman, 2004; Touw et al., 

2013). 

On the other hand, when checked with cross validation it can be seen that 

the performance is not as good. For example RF precision and recall with the RF 

algorithm drops to 61.2% and 23.1%, for the dead class, and is at 78.8% and 

95.1% for the live class. A similar drop in precision and accuracy for all classes is 

exhibited by all the classifiers. For example SVM shows only a marginal 

improvement with precision of 68.4% and recall of 32.6% for the ‘Dead’ class, 

and 80.9% and 95% for the ‘Alive’ class. These differences are marginal at best. 

However, what is significant is that the accuracies associated with the ‘Alive’ 

class are higher than those for the ‘Dead’ class, and also the recall values on the 

‘Dead’ class are significantly lower than precision values. This indicates that the 
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‘Alive’ is better learnt than the dead class. This is a result of the existence of a far 

greater number of ‘Alive’ samples than ‘Dead’ samples. 

 

From the results in Table 7.3 it can be seen that that the recall values for 

the ‘Dead’ class are relatively low compared to the ‘Alive’ class. This could be 

the result of the presence of large amount of missing values and the imbalance of 

classes. Missing values could be compounding the class imbalance more for the 

dead class than the ‘Alive’ class. 

 

Table 7. 3: The classification accuracy of different classifications using ‘Original’ 

LIFELAB dataset 

  

Test option Class 

Original 

Accuracy 

Precision Recall 

C
la

ss
if

ic
at

io
n

 

MLP 

Cross-validation 
Dead 46.5 41.4 

Alive 81.2 84.2 

Training set 
Dead 98.7 93.4 

Alive 97.8 99.6 

RBFN 

Cross-validation 
Dead 56.4 28 

Alive 79.5 92.8 

Training set 
Dead 57.9 30.1 

Alive 80 92.7 

SVM 

Cross-validation 
Dead 68.4 32.6 

Alive 80.9 95 

Training set 
Dead 72.3 33.4 

Alive 81.2 95.8 

DT 

Cross-validation 
Dead 43.4 36.1 

Alive 79.9 84.4 

Training set 
Dead 93.5 74 

Alive 91.9 98.3 

RF 

Cross-validation 
Dead 61.2 23.1 

Alive 78.8 95.1 

Training set 
Dead 99.8 99.4 

Alive 99.8 99.9 
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Table 7.4 shows the classification from selected variables from the Seattle 

Heart Failure Model (SHFM). It is seen from the results that there is not much 

improvement in the overall performance using the features from SHFM. For 

example the ‘Dead’ class from RF  with cross-validation), precision with 

‘Original’ data  61.2%  was significantly higher than the  precision with  ‘SHFM’  

 53.8% , while the  recall with ‘Original’ data  23.1%  was higher than with the 

Table 7. 4: The classification accuracy of selected variables from SHFM 

compared with ‘Original’ data 

  

Test 

option 
Class 

Original SHFM 

Accuracy Accuracy 

Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n

 

MLP 

Cross-

validation 

Dead 46.5 41.4 52.5 30.5 

Alive 81.2 84.2 79.7 90.8 

Training 

set 

Dead 98.7 93.4 66.8 34 

Alive 97.8 99.6 81.1 94.4 

RBFN 

Cross-

validation 

Dead 56.4 28 57.1 17.3 

Alive 79.5 92.8 77.7 95.7 

Training 

set 

Dead 57.9 30.1 61.2 16.9 

Alive 80 92.7 77.7 96.4 

SVM 

Cross-

validation 

Dead 68.4 32.6 0 0 

Alive 80.9 95 75.1 100 

Training 

set 

Dead 72.3 33.4 0 0 

Alive 81.2 95.8 75.1 100 

DT 

Cross-

validation 

Dead 43.4 36.1 52 24.3 

Alive 79.9 84.4 78.6 92.5 

Training 

set 

Dead 93.5 74 73.5 34.2 

Alive 91.9 98.3 81.4 95.9 

RF 

Cross-

validation 

Dead 61.2 23.1 53.8 19.2 

Alive 78.8 95.1 77.9 94.5 

Training 

set 

Dead 99.8 99.4 99.6 97.7 

Alive 99.8 99.9 99.3 99.9 
 

Remarks: SHFM – Seattle Heart Failure Model 
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‘SHFM’ data  19.2% . What can be read from the results is that, in both cases, the 

accuracy (precision and recall) is very low for the dead class. This is an indication 

that, apart from issues associated with missing values, the imbalance in classes 

has a significant effect on the overall performance of the classification algorithms. 

7.3.1 Missing values imputation and classification 

The integrity of data is crucial in getting correct results from any analysis. 

Imputation schemes often predict a value that is missing. This value is often not 

an exact value which could have been obtained using a measurement or an 

observation. However, given the situation where it is missing, what can be done is 

to ensure that the value is as close as possible to a real value and that the overall 

distribution characteristics of the data are maintained. These aspects were 

discussed in Chapter 3 (section 3.6). The results presented here illustrate the 

imputation methods introduced in that chapter. The results shown in Table 7.5 are 

for the various imputation schemes using different classification algorithms. This 

table also gives the results for the same classification algorithms using the 

“Original” dataset. The results show that the combination of imputation based on 

SVM with Random Forest classification gives the best improvement in results. 

However, what cannot be ignored is that all imputation schemes, with any of the 

classification methods, give better results. The differences in the accuracy for the 

dead class are still lower than for the ‘Alive’ class, irrespective of the combination 

of imputation scheme and the classification algorithm. At the same time it can be 

seen that for the ‘Dead’ class, for all combinations, there is a significant difference 

between precision and recall. This is to do with the ability to learn the underlying 
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characteristics associated with the class, and is a result of the small number of 

samples for that class. The results (Table 7.6) for the SHFM based data also 

confirm that the variables within the model are not sufficiently informative in that 

the classification performance does not significantly improve. This does not mean 

that the SHFM is not clinically important, but that it has to be enhanced in terms 

of the features available to it. 
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Table 7. 5: The classification accuracy of different classifications using different imputation schemes 

on ‘Original’ data 

  

Test 

option 
Class 

Original Imputed 

Accuracy MCI CMCI SVMI 

Precision Recall Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n

 

MLP 

Cross-

validation 

Dead 46.5 41.4 51.2 44.3 52.2 44.9 53.2 46.6 

Alive 81.2 84.2 82.3 85.9 82.5 86.3 82.9 86.4 

Training 

set 

Dead 98.7 93.4 98.2 88.9 98 90.7 96.1 81 

Alive 97.8 99.6 96.4 99.5 97 99.4 94 98.9 

RBFN 

Cross-

validation 

Dead 56.4 28 57.1 27.4 59.9 29.3 60.9 32.4 

Alive 79.5 92.8 79.4 93.1 79.9 93.5 80.5 93.1 

Training 

set 

Dead 57.9 30.1 60.3 28.9 62.2 30.9 63.4 32.2 

Alive 80 92.7 79.8 93.7 80.3 93.8 80.6 93.8 

SVM 

Cross-

validation 

Dead 68.4 32.6 66.7 31.3 67.5 35.5 68.9 36.1 

Alive 80.9 95 80.6 94.8 81.5 94.3 81.7 94.6 

Training 

set 

Dead 72.3 33.4 72.2 34.8 73 38.6 74.2 39.8 

Alive 81.2 95.8 81.5 95.5 82.3 95.3 82.7 95.4 

DT 

Cross-

validation 

Dead 43.4 36.1 38.3 36.9 46.8 45.2 55.9 53 

Alive 79.9 84.4 79.3 80.3 82 82.9 84.6 86.1 

Training 

set 

Dead 93.5 74 97 93 95 94.8 97.6 92.8 

Alive 91.9 98.3 97.7 99 98.3 98.4 97.6 99.2 

RF 

Cross-

validation 

Dead 61.2 23.1 53.8 40.4 65.7 49.1 69.3 56.3 

Alive 78.8 95.1 81.7 88.5 84.4 91.5 86.3 91.7 

Training 

set 

Dead 99.8 99.4 99.8 99.8 99.8 99.6 99.6 100 

Alive 99.8 99.9 99.9 99.9 99.9 99.9 100 99.9 

  

Test 

option 
Class 

Imputed 

KNNI KMI FKMI EMI 

Precision Recall Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n

 

MLP 

Cross-

validation 

Dead 50.7 44.7 52.2 47.2 46.9 43.7 48.7 41.6 

Alive 82.3 85.5 83 85.6 81.7 83.6 81.5 85.4 

Training 

set 

Dead 98.4 89.5 95.4 80.8 98.9 89.3 85.7 75.3 

Alive 96.6 98 93.9 98.7 96.5 99.7 92.1 95.8 

RBFN 

Cross-

validation 

Dead 58.1 27.2 55.8 28.9 58.4 27.8 52.3 37.3 

Alive 79.4 93.5 79.6 92.4 79.6 93.4 81 88.7 

Training 

set 

Dead 55.6 46.4 60.5 29.7 62.4 29.5 55.4 39.2 

Alive 83.1 87.7 80 93.6 80.1 94.1 81.6 89.5 

SVM 

Cross-

validation 

Dead 69.6 32.2 68 30.7 66.4 30.1 67.5 27.8 

Alive 80.9 95.3 80.5 95.2 80.3 94.9 79.9 95.5 

Training 

set 

Dead 73 35.7 71.9 32.8 71.4 33 71.5 32.6 

Alive 81.7 95.6 81.1 95.8 81.1 95.6 81 95.7 

DT 

Cross-

validation 

Dead 39.5 39 38.5 36.7 40 38.4 36.8 33.2 

Alive 79.8 80.1 79.3 80.5 79.8 80.9 78.5 81 

Training 

set 

Dead 96.6 89.1 97.1 89.9 97.5 94.6 93.8 80.8 

Alive 96.5 99 96.7 99.1 98.2 99.2 93.9 98.2 

RF 

Cross-

validation 

Dead 52.9 39.2 54.3 39 51.8 37.7 49 34 

Alive 81.4 88.4 81.5 89.1 81 88.3 80.1 88.2 

Training 

set 

Dead 99.8 99.6 99.8 99.8 100 99.8 99.6 99.8 

Alive 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
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Table 7. 6: The classification accuracy of different classifications using different imputation schemes on 

‘SHFM’ selected variables 

  
Test 

option 
Class  

Imputed 

 

SHFM MCI CMCI SVMI 

Precision Recall Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n

 

MLP 

Cross-

validation 

Dead 52.5 30.5 56.4 29.9 56.7 27.8 62 30.3 

Alive 79.7 90.8 79.8 92.3 79.5 92.9 80.2 93.8 

Training 

set 

Dead 66.8 34 63.5 32.6 68.5 30.1 67.7 35.1 

Alive 81.1 94.4 80.7 93.8 80.4 95.4 81.4 94.4 

RBFN 

Cross-

validation 

Dead 57.1 17.3 56 16.3 57.5 17.3 57.7 21.6 

Alive 77.7 95.7 77.5 95.8 77.7 95.8 78.4 94.7 

Training 

set 

Dead 61.2 16.9 61.1 16.5 61.8 17.3 60.5 21.4 

Alive 77.7 96.4 83.5 77.7 77.8 96.4 78.5 95.3 

SVM 

Cross-

validation 

Dead 0 0 0 0 0 0 0 0 

Alive 75.1 100 75.1 100 75.1 100 75.1 100 

Training 

set 

Dead 0 0 0 0 0 0 0 0 

Alive 75.1 100 75.1 100 75.1 100 75.1 100 

DT 

Cross-

validation 

Dead 52 24.3 49.5 22.3 50.9 24.1 53.7 32.8 

Alive 78.6 92.5 78.2 92.5 78.5 92.3 80.2 90.6 

Training 

set 

Dead 73.5 34.2 76.3 37.1 82.1 35.1 77.2 41.9 

Alive 81.4 95.9 82.1 96.2 81.9 97.5 83.2 95.9 

RF 

Cross-

validation 

Dead 53.8 19.2 44.6 35.5 44.8 34.8 48.9 40.4 

Alive 77.9 94.5 79.9 85.3 79.8 85.7 81.3 85.9 

Training 

set 

Dead 99.6 97.7 99.4 100 99.2 99.6 99.4 99.8 

Alive 99.3 99.9 100 99.8 99.9 99.7 99.9 99.8 

  

Test 

option 
Class 

Imputed 

KNNI KMI FKMI EMI 

Precision Recall Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n

 

MLP 

Cross-

validation 

Dead 56.2 30.7 55 28.5 53.6 27.6 47.1 21.4 

Alive 80 92 79.5 92.3 79.3 92 77.9 92 

Training 

set 

Dead 65.5 27.4 65.7 28.9 67.3 27.6 65.9 18.4 

Alive 79.8 95.2 80.1 95 79.9 95.5 78.1 96.8 

RBFN 

Cross-

validation 

Dead 55.8 15.9 55.8 15.9 56.7 15.7 54.8 14.2 

Alive 77.4 95.8 77.4 95.8 77.4 96 77.1 96.1 

Training 

set 

Dead 61.7 16.3 60.9 16.7 60.7 18.1 55.7 19.2 

Alive 77.6 96.6 77.7 96.4 77.9 96.1 77.9 94.9 

SVM 

Cross-

validation 

Dead 0 0 0 0 0 0 0 0 

Alive 75.1 100 75.1 100 75.1 100 75.1 100 

Training 

set 

Dead 0 0 0 0 0 0 0 0 

Alive 75.1 100 75.1 100 75.1 100 75.1 100 

DT 

Cross-

validation 

Dead 52.4 22.7 49.8 21.6 51.1 23.3 44.7 17.3 

Alive 78.4 93.1 78.1 92.7 78.4 92.6 77.2 92.9 

Training 

set 

Dead 83.1 36.5 79.8 36.7 76.3 44.5 71.7 17.7 

Alive 82.2 97.5 82.2 96.9 83.8 95.4 78.1 97.7 

RF 

Cross-

validation 

Dead 44.7 35.9 47.4 35.1 45 33.6 39.6 29.3 

Alive 80 85.3 80.1 87 79.6 86.4 78.4 85.1 

Training 

set 

Dead 99.8 99.6 99.2 99.8 99.6 99.6 99.2 99.4 

Alive 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.7 
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From both the tables it can be seen that there is an improvement in 

accuracy when missing values are imputed. What can be seen within the details is 

that precision improves significantly but recall does not improve at the same level. 

It should be noted that “recall” is associated with false positive classification  i.e. 

the ‘Dead’ class in this case), and thus for clinical application recall becomes 

important. Given the lack of a sufficient number of samples in this class, 

imputation can only improve it by small amounts. It is also evident that the 

imputation scheme based on SVMs provides greater improvements in the 

performance of classification algorithms. This method reflects the hidden 

information in the whole data in contrast to other methods, such as by assuming 

that the missing points are the same as their nearest neighbours, where local 

information is taken into account, resulting in bigger errors. (Honghai et al., 

2005). SVMI would also be useful to attempt to find heuristics to characterize the 

data that would act as a guide for choosing the most appropriate imputation 

method (Honghai et al., 2005; Mallinson and Gammerman, 2005) and also it is 

recommended for the processing of clinical data (Wang and Wang, 2010; Zhang 

et al., 2012). Given the performance of SVM based imputation, it is only natural 

to use this scheme for all future results and analysis. 

7.3.2 Class balancing and classification 

There are often three key components at the core of any data mining 

framework. These are (a) missing value (b) class imbalance and (c) 

dimensionality reduction and finally classification.  Intuitively, it can be seen that 

a reduction of dimensions with the presence of imbalanced classes may not yield 
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the right subset of features required for an improvement in performance. Thus, 

carrying out a balancing of classes before reduction of dimensions would be 

preferable. 

Typically, the proportion of positive and negative cases in a dataset is not 

equal (usually there are many more negative cases (‘Alive’ in our instance) than 

positive cases (‘Dead’ class)). This imbalance affects the learning process (He and 

Garcia, 2009). There are two approaches which can be applied here   namely over- 

and under-sampling. These two sampling approaches change the number of 

positive or negative cases in the dataset to balance their proportions; Table 7.7 

shows the result of these two sampling methods.  

 

What is clear from the table is that both methods change the number of 

samples available. Over-sampling increases the ‘Dead’ class and thus increases 

the total number of sample, while under-sampling decreases the ‘Alive’ class 

sample and thus decreases the number of the total sample. It should be noted that 

Table 7. 7: The LIFELAB with different resampling methods 

Resampling No. of patient Class No. of patient 

Original 1944 
Alive 1459 

Dead 485 

Over-sampling 2429 
Alive 1459 

Dead 970 

Under-sampling 1009 
Alive 524 

Dead 485 
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under-sampling can result in the removal of important examples/exemplars from 

the dataset, whereas over-sampling can lead to overfitting (Mease et al., 2007).  

Table 7.8 compares three different sets of results. In all cases, a SVM-

based imputation scheme was used.  The first set is the classification performance 

using the original, imbalanced, data set and the next two are based on the 

balancing approaches taken. It can be seen that balancing the classes greatly 

improves the performance of the algorithms. The key indicator of recall shows a 

significant improvement with all classification algorithms. Thus balancing of 

classes does lead to better performance in all indicators but shows significant 

improvement in the key indicators. For example, with the RF classification, 

precision on ‘Dead’ Class rises from 69.3% to 77.6% using oversampling, and 

75.3% with under-sampling, while recall changes from 56.3% to 79.8% and 

82.6%. A similar situation exists with data based on SHFM (Table 7.9). However, 

this table also illustrates the issue of reducing dimensions before balancing is 

carried out. Although it can be argued that the variable set is not an optimal one; it 

is nevertheless one used by expert clinicians. What can be concluded is that both 

the sampling methods improve classification (Burez and Poel, 2009; Hunt et al., 

2011; Liang and Zhang, 2012; Wang et al., 2013), since classifiers are often 

biased towards the majority class (Afzal et al., 2013). A key focus should be the 

effect of the individual strategy on rates of recall, and it can be seen that under-

sampling provides marginally better recall rates.  
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Table 7. 8: The classification accuracy on imbalanced and balanced data 

  

Test 

option 
Class 

Imbalanced data 
Sampling Method 

Over-sampling Under-sampling 

Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n

 

MLP 

Cross-

validation 

Dead 53.2 46.6 70.2 70 73 70.8 

Alive 82.9 86.4 80.1 80.3 69.5 71.8 

Training 

set 

Dead 96.1 81 81 96.2 98.3 98.1 

Alive 94 98.9 97.1 85 97.9 98.1 

RBFN 

Cross-

validation 

Dead 60.9 32.4 67.2 66.8 70.9 71 

Alive 80.5 93.1 78 78.3 68.6 68.5 

Training 

set 

Dead 63.4 32.2 68.8 67.8 74.8 71.8 

Alive 80.6 93.8 78.8 79.6 70.8 73.8 

SVM 

Cross-

validation 

Dead 68.9 36.1 74.8 66.3 73.9 74.6 

Alive 81.7 94.6 79.2 85.1 72.3 71.5 

Training 

set 

Dead 74.2 39.8 76.6 67.5 76.8 76.5 

Alive 82.7 95.4 80 86.3 74.7 75.1 

DT 

Cross-

validation 

Dead 55.9 53 70 69.9 74.4 75.4 

Alive 84.6 86.1 80 80.1 73 72 

Training 

set 

Dead 97.6 92.8 97.8 98.2 97.2 98.5 

Alive 97.6 99.2 98.8 98.6 98.3 96.9 

RF 

Cross-

validation 

Dead 69.3 56.3 77.6 79.8 75.3 82.6 

Alive 86.3 91.7 86.3 84.6 79 70.7 

Training 

set 

Dead 99.6 100 100 99.9 99.6 100 

Alive 100 99.9 99.9 100 100 99.6 

          Remarks: SVM imputation 
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Fig. 7.2 represents the results from Table 7.8 that comparing the precision 

and recall of different classifiers on imbalanced and balanced (over-sampling and 

under-sampling) data. The results illustrate that the balanced data after applying 

sampling methods, greatly improves the performance; especially recall (steep 

slopes) values. As a result, the sampling strategies were validated by comparison 

of different classifiers reveal that an under-sampling may be more suitable for 

clinical datasets, as it reduces the proportion of negative cases and keeps the 

positive cases, at the same time the error rates of minority class (positive case) are 

minimised. 
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Figure 7. 2: The classification accuracy on imbalanced and balanced data 
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Table 7. 9: A comparison of the accuracies on different set of variables on imbalanced and balanced data 

  

Test 

option 
Class 

Original SHFM 

Imbalanced 
Sampling Method 

Imbalanced 
Sampling Method 

Over-sampling Under-sampling Over-sampling Under-sampling 

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n
 

MLP 

Cross-

validation 

Dead 53.2 46.6 70.2 70 73 70.8 62 30.3 64.1 58.5 71.8 62.2 

Alive 82.9 86.4 80.1 80.3 69.5 71.8 80.2 93.8 73.9 78.3 64.3 73.6 

Training 

set 

Dead 96.1 81 81 96.2 98.3 98.1 67.7 35.1 57.8 84.2 71.6 68.9 

Alive 94 98.9 97.1 85 97.9 98.1 81.4 94.4 84.9 59.1 67.7 70.5 

RBFN 

Cross-

validation 

Dead 60.9 32.4 67.2 66.8 70.9 71 57.7 21.6 64.6 47 70.6 61.5 

Alive 80.5 93.1 78 78.3 68.6 68.5 78.4 94.7 70.2 82.9 63.5 72.4 

Training 

set 

Dead 63.4 32.2 68.8 67.8 74.8 71.8 60.5 21.4 65.7 49.1 73.6 61.1 

Alive 80.6 93.8 78.8 79.6 70.8 73.8 78.5 95.3 71 82.9 64.5 76.3 

SVM 

Cross-

validation 

Dead 68.9 36.1 74.8 66.3 73.9 74.6 0 0 67.5 42.3 67.5 64.7 

Alive 81.7 94.6 79.2 85.1 72.3 71.5 75.1 100 69.3 86.5 63.5 66.4 

Training 

set 

Dead 74.2 39.8 76.6 67.5 76.8 76.5 0 0 68.2 43.9 69.5 66 

Alive 82.7 95.4 80 86.3 74.7 75.1 75.1 100 69.8 86.4 65.2 68.7 

DT 

Cross-

validation 

Dead 55.9 53 70 69.9 74.4 75.4 53.7 32.8 65.3 61.4 65 67.6 

Alive 84.6 86.1 80 80.1 73 72 80.2 90.6 75.3 78.3 63.4 60.6 

Training 

set 

Dead 97.6 92.8 97.8 98.2 97.2 98.5 77.2 41.9 75.9 69.6 74.2 76.9 

Alive 97.6 99.2 98.8 98.6 98.3 96.9 83.2 95.9 80.8 85.3 74 71.1 

RF 

Cross-

validation 

Dead 69.3 56.3 77.6 79.8 75.3 82.6 48.9 40.4 64.9 68.6 66 71.8 

Alive 86.3 91.7 86.3 84.6 79 70.7 81.3 85.9 78.3 75.4 66.3 60 

Training 

set 

Dead 99.6 100 100 99.9 99.6 100 99.4 99.8 99.7 99.9 99.6 100 

Alive 100 99.9 99.9 100 100 99.6 99.9 99.8 99.9 99.8 100 99.6 

                Remarks: SVM imputation 
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The graphs in Fig. 7.3 (a-b) and Fig. 7.4 (a-b) illustrate the above analysis 

further. These graphs show the changes to precision and recall, under three 

different conditions, namely: original data set, dataset with imputation and dataset 

with different sampling strategies. It can be seen that improvements are made 

progressively at each stage. It can be seen that there are sharp increases after 

sampling the data post imputation. Fig. 7.3 (a) and Fig. 7.4 (a) show that precision 

from both sampling have a slightly different improvement. Fig. 7.3 (b) and Fig. 
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Figure 7. 3 (a-b): The classification accuracy on data mining process for over-

sampling 
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Figure 7. 4 (a-b): The classification accuracy on data mining process for under-

sampling 
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7.4 (b) show that under-sampling provides improved marginally better recall rates 

than over-sampling. This further reinforces the evidence for the proposed 

framework, and also for the steps described earlier in this section.  However, a 

key component of the framework, i.e. the high dimensionality, has not been 

examined as yet. 

7.3.3 Feature selection and classification 

Reduction of dimensions is essentially carried out not to improve 

performance but to increase the numerical tractability of the data mining problem. 

The reason for this expectation is that a reduction in dimensionality often leads to 

a reduction in the overall information present in the reduced dimensions. What is 

important is to keep this loss to a minimum, and thus there is always a 

compromise to be made between loss of information and numerical complexity. 

Often clinical data consists of variables, which are useful, marginally 

useful and not useful at all, from an information content point of view. Therefore, 

it is possible that there are variables which are important for a clinician but do not 

necessarily have much information present within them for the classification 

algorithm. To surmount the difficulties caused by high dimensionality, various 

approaches have been proposed and developed. The problem is one of 

computationally selecting a small set of relevant variables from a large set (high 

dimensionality) such that the selected variables are representative of the whole 

dataset. Often the reduction in dimensions, and thus selection of features, is 

carried out by ranking them in order of importance or information content. By 

selecting an appropriate threshold, different numbers of features can be selected at 



Chapter 7: Results and discussions 

156 

 

any given time. Thus, the results shown in this section illustrate the effect of 

selecting different numbers of features (variables/dimensions). These are also 

compared to feature extraction methods. Often, it is considered that feature 

extraction carries more information to the new dataset. However, for clinical 

datasets, the meaning of the new variables is important. In terms of information 

content present, the data set obtained using feature extraction is more than that 

with feature selection. Based on these results a new feature selection algorithm 

has been suggested in Chapter 6. The method is very similar to the feature 

selection methods, and is an integration of both extraction and selection, using 

mutual information and redundancy tools. As a benchmark, Table 7.10 has a set of 

results, which illustrates the performance of feature extraction. In all cases, the 

dataset used SVM for imputation, and over-sampled the dead-class, in order to 

show changes within an already low performance. Two types of feature extraction 

schemes (a) PCA and (b) NL-PCA were tested. The performance does not change 

much; indeed in the odd situation there is an improvement in the accuracy. This 

could be a result of removing non-independent features from the data set. It 

should be noted that in general, a larger number of features should give better 

classification performance, however, it has been found that in practice, fewer 

features are required to retain or improve the performance (Janecek et al., 2008). 
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Table 7. 10: The classification accuracy of different selection methods on imputed missing values by SVMI and balanced data by over-

sampling 

  

Test option Class 

Original 
Feature Extraction 

PCA NLPCA 

60 features 33 features  20 features  33 features  20 features 

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n

 

MLP 

Cross-validation 
Dead 70.2 70 70 69.9 68.1 67.4 64.5 64.7 64.7 58.9 

Alive 80.1 80.3 80 80.1 78.1 78.7 76.5 76.3 74.2 78.7 

Training set 
Dead 81 96.2 88 93.7 77.1 90.1 96.6 94.1 67.5 73.8 

Alive 97.1 85 95.6 91.5 92.6 82.2 96.2 97.8 81.4 76.4 

RBFN 

Cross-validation 
Dead 67.2 66.8 67.6 60.7 67.9 59.1 64.6 52.8 63.5 43.2 

Alive 78 78.3 75.5 80.7 75 81.4 72 80.8 68.9 83.5 

Training set 
Dead 68.8 67.8 71.7 62 69.3 62.3 68 53.6 64.8 44 

Alive 78.8 79.6 76.8 83.8 76.5 81.6 73 83.2 69.3 84.1 

SVM 

Cross-validation 
Dead 74.8 66.3 73 64.2 72.6 64.5 70.8 61.1 70.3 46.8 

Alive 79.2 85.1 78 84.2 78 83.8 76.3 83.3 71.1 86.8 

Training set 
Dead 76.6 67.5 74.5 65.3 73.3 64.9 72.3 63.1 70.8 47.8 

Alive 80 86.3 78.7 85.1 78.3 84.2 77.4 84 71.5 86.9 

DT 

Cross-validation 
Dead 70 69.9 58.5 58.7 61.2 58.6 59.6 57.9 61.8 54.6 

Alive 80 80.1 72.5 72.4 73.2 75.3 72.5 73.9 72 77.5 

Training set 
Dead 97.8 98.2 94.1 83.5 85.2 91.3 86.7 91.9 83.9 64.3 

Alive 98.8 98.6 89.8 96.5 94 89.4 94.4 90.6 79.5 91.8 

RF 

Cross-validation 
Dead 77.6 79.8 65.8 68.6 56.6 57.3 61.8 65.9 65.2 69 

Alive 86.3 84.6 78.5 76.3 71.4 70.7 76.3 72.9 78.5 75.5 

Training set 
Dead 100 99.9 99.9 100 100 100 99.4 100 100 99.8 

Alive 99.9 100 100 99.9 100 100 100 99.6 99.9 100 
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For clinical data, the key is the retention of the variable labels. Feature 

extraction provides reduced dimensionality but does not retain the labels and 

hence is often not of much use in the development or design of diagnostic or 

prognostic tools. Feature selection, on the other hand, retains the labels and is 

preferred to extraction for this reason, in spite of a reduction in information 

content. (See chapter 4 for more details). All the feature selection methods 

selected use ranking of features based on one of the following measures: ‘t-Test’, 

‘Entropy’, ‘Bhattacharyya’, ‘RO ’, and ‘Wilcoxon’. Features obtained from these 

ranking schemes are then compared and evaluated along with the proposed new 

feature selection algorithm (FS-PPC). These results are shown in Tables 7.11   

7.13. These tables show the performance of these selection methods under 

different conditions. For all results the data had missing values imputed using 

SVM. The tables show how the feature selection works under three different 

conditions namely: (a) original set of classes (b) under-sampled and (c) over 

sampled. These results would further reinforce the framework procedure outlined 

earlier. 

It can be seen from Table 7.11 shows that the results of 20 selected 

features on the unbalanced dataset, almost all the feature selection algorithms give 

a similar set of poor results as compared to the full dataset. Indeed in some cases 

the performance drops; this is more pronounced with the dead class and also with 

the recall for both classes. Both Tables 7.12 and 7.13 illustrate the importance of 

balancing the data. However, it should be noted that the Random Forest 

Classification algorithm outperformed all algorithms under the different 

conditions. The results illustrate what is possible with the different classification 
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algorithms. The overall performance is greatly improved for all selection 

algorithms and a choice between under-sampling or over-sampling cannot be 

made from these results. However, under-sampling may discard potentially 

important cases from the majority class of the sample and can lead to overfitting 

of similar instances (Crone and Finlay, 2012). Therefore, under-sampling tends to 

overestimate the probability of cases belonging to the minority class, while over-

sampling tends to underestimate the likelihood observations belonging to the 

minority class (Weiss, 2004). As both sampling methods can potentially reduce 

accuracy in generalising for unseen data, authors have presented viewpoints on 

the gains in accuracy derived over-sampling versus under-sampling (Drummond 

and Holte, 2003; Maloof, 2003; Chawla et al., 2004; Prati et al., 2004; Crone and 

Finlay, 2012), indicating that the results are not universal and depend on the 

dataset properties and the application domain.  
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Table 7. 11: The classification accuracy of different feature selection methods on imbalanced data  

  

Test option Class 

Feature Selection 

t-Test Entropy Bhattacharyya ROC Wilcoxon 

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n
 

MLP 

Cross-

validation 

Dead 50.5 41.2 56.6 46 49 40.8 52.1 37.5 53.6 38.4 

Alive 81.6 86.6 83.1 88.3 81.4 85.9 81 88.6 81.3 89 

Training set 
Dead 76.8 60.6 79.9 45.8 78.4 55.3 76.5 61.9 79 53.6 

Alive 87.8 93.9 84.2 96.2 86.5 94.9 88.1 93.7 86.1 95.3 

RBFN 

Cross-

validation 

Dead 62.9 31.8 61.8 31.8 59.8 30.1 63.4 27.8 63.4 27.8 

Alive 80.5 93.8 80.5 93.5 80.1 93.3 79.8 94.7 79.8 94.7 

Training set 
Dead 64 33.4 63.6 29.9 64.4 29.1 64.5 28 64.5 28 

Alive 80.9 93.8 80.2 94.3 80.1 94.7 79.9 94.9 79.9 94.9 

SVM 

Cross-

validation 

Dead 67.3 22.1 65.6 20.4 69.5 15.1 66.3 21.9 66.3 21.9 

Alive 78.8 96.4 78.5 96.4 77.6 97.8 78.8 96.3 78.8 96.3 

Training set 
Dead 68.9 23.3 69 22.5 71.1 17.7 67.1 22.3 66.7 21.9 

Alive 79.1 96.5 78.9 96.6 78.1 97.6 78.9 96.4 78.8 96.4 

DT 

Cross-

validation 

Dead 55 49.7 54.9 47.4 50.1 44.7 58 50.9 58.1 50.9 

Alive 83.8 86.5 83.3 87 82.3 85.2 84.3 87.7 84.3 87.8 

Training set 
Dead 95.3 75.3 89.9 76.7 91.4 80.6 96.9 77.7 96.9 77.7 

Alive 92.3 98.8 92.6 97.1 93.8 97.5 93.1 99.2 93.1 99.2 

RF 

Cross-

validation 

Dead 63.8 56.7 66.8 57.3 54.5 44.5 64.5 57.7 61.1 55.1 

Alive 86.1 89.3 86.5 90.5 82.6 87.7 86.4 89.4 85.5 88.3 

Training set 
Dead 99.8 99.8 99.8 99.8 99.8 99.8 99.6 99.6 99.6 99.8 

Alive 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

              Remarks: SVM imputation 
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Table 7. 12: The classification accuracy of different feature selection methods on imbalanced data by over-sampling 

  

Test option Class 

Feature Selection 

t-Test Entropy Bhattacharyya ROC Wilcoxon 

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n
 

MLP 

Cross-

validation 

Dead 65.8 66.8 66.5 66.9 63.9 62.6 65.7 63.9 64.8 63.3 

Alive 77.7 76.9 77.9 77.6 75.5 76.5 76.4 77.9 76 77.2 

Training set 
Dead 69.8 86.6 70.6 85.4 73.1 80.3 73.8 75.6 69.8 82.9 

Alive 89.4 75.1 88.7 76.4 86 80.3 83.5 82.2 87 76.1 

RBFN 

Cross-

validation 

Dead 66 55.6 66.7 61.9 65.3 56.8 66 57.3 65.9 54.9 

Alive 73.3 80.9 75.8 79.5 73.6 79.9 73.9 80.4 73 81.1 

Training set 
Dead 67 56.9 67.4 62.2 66.9 58.1 66.9 57.7 66.3 55.9 

Alive 74 81.4 76.1 80 74.4 80.9 74.2 81 73.4 81.2 

SVM 

Cross-

validation 

Dead 70 62.5 70.2 60.1 69.1 58.5 69 59.7 69.1 60.2 

Alive 76.7 82.2 75.8 83.1 75 82.7 75.4 82.2 75.6 82.1 

Training set 
Dead 70.6 63.1 70.5 60.6 70.2 60.1 70.2 60.9 70.3 61.3 

Alive 77.1 82.5 76.1 83.1 75.8 83 76.1 82.8 76.3 82.8 

Decision 

Tree 

Cross-

validation 

Dead 68.5 66.7 69.2 70.3 67.6 65.1 66.6 66.8 66.1 66.5 

Alive 78.2 79.6 80 79.2 77.3 79.2 77.9 77.7 77.6 77.3 

Training set 
Dead 88.6 95.5 88.9 94.5 91.9 92.7 89.5 91.8 95.4 96.2 

Alive 96.8 91.8 96.2 92.2 95.1 94.6 94.4 92.9 97.5 96.9 

Random 

Forest 

Cross-

validation 

Dead 72.2 76.7 75 79.6 71.3 76.2 75 77.3 73.3 78.1 

Alive 83.8 80.4 85.9 82.4 83.4 79.6 84.6 82.9 84.8 81.1 

Training set 
Dead 99.7 99.8 99.7 99.8 99.8 99.9 99.7 100 99.8 100 

Alive 99.9 99.8 99.9 99.8 99.9 99.9 100 99.9 100 99.9 

              Remarks: SVM imputation 
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Table 7. 13: The classification accuracy of different feature selection methods on imbalanced data by under-sampling 

  

Test option Class 

Feature Selection 

t-Test Entropy Bhattacharyya ROC Wilcoxon 

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n
 

MLP 

Cross-

validation 

Dead 67.3 66.4 70.3 67.2 67.7 58.4 66.7 68.3 69.3 67.7 

Alive 64.2 65.2 66.1 69.3 60.9 69.9 64.8 63.1 66 67.6 

Training set 
Dead 89.1 82.6 87.9 83 82.8 88.4 82.5 84.7 88 78.6 

Alive 82.6 89.1 82.7 87.6 86.4 80.2 83 80.6 79.3 88.5 

RBFN 

Cross-

validation 

Dead 67.6 67.2 72.5 69.1 70.7 58.4 68.4 68.1 67.3 66.8 

Alive 64.8 65.2 68.2 71.8 62.2 73.8 65.7 66 64.4 64.9 

Training set 
Dead 70 68.7 73.3 70.2 70.4 63.5 69.2 69.8 68.5 67.6 

Alive 66.9 68.2 69.2 72.4 64.4 71.1 67.1 66.4 65.4 66.4 

SVM 

Cross-

validation 

Dead 72.5 68.3 73.2 68.3 72.3 68.3 70.9 69.7 71.1 67.9 

Alive 67.8 72 68.1 73 67.7 71.8 67.8 69.1 66.9 70.1 

Training set 
Dead 73.8 68.7 74.2 69.3 73.3 69.3 72.1 71.9 72.7 68.7 

Alive 68.5 73.6 69 74 68.7 72.8 69.8 69.9 68.1 72.2 

Decision 

Tree 

Cross-

validation 

Dead 71.5 70.2 75.2 66.4 64.9 66.6 72.6 75.8 71.7 72.9 

Alive 68.4 69.7 67.8 76.3 62.8 61 72.5 69.1 70.2 68.9 

Training set 
Dead 94.8 94.8 96.6 87.8 96.8 92.7 93.3 92.6 95.6 95.6 

Alive 94.4 94.4 88 96.7 92.5 96.7 92 92.8 95.3 95.3 

Random 

Forest 

Cross-

validation 

Dead 72.9 79.4 76.6 81.1 68 76.1 74.5 80.2 73.5 77.3 

Alive 75.3 68 78.2 73.2 70.4 61.2 76.6 70.3 74 69.9 

Training set 
Dead 100 100 100 100 100 99.8 99.8 100 99.6 99.8 

Alive 100 100 100 100 99.8 100 100 99.8 99.8 99.6 

              Remarks: SVM imputation 
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Feature extraction is a useful method for reduction of dimensions; 

however, it is not useful for applications that need to use meaningful (and perhaps 

the original) labels of the features. It has a distinct advantage in that accuracy in 

classification performance is high. On the other hand, feature selection is a 

process of selecting a subset of original features based on a desired criterion. It 

reduces the number of features, removes variables that are irrelevant and 

redundant, and also the computational complexity is lower than that of feature 

extraction. Both these methods for reducing dimensions are extensively used, and 

the choice is dependent on the application and the problem to be solved. The 

proposed methodology combines the two, feature extraction and selection. In this 

new methodology, the advantages of feature extraction and feature selection are 

retained and combined. FS-PPC selects an optimal subset of features by projecting 

a principal component from feature extraction and removing redundant features. 

Table 7.14 shows the performance of classification of different classifiers on 

imbalanced and balanced data by using the FS-PPC method; these results are a 

little lower than for ‘Original’ data, correspondingly with other feature selection 

methods. For example, RF showed the results on the ‘Dead’ class with cross-

validation; the precision was 68.5% and recall was 71.8% on balanced data by 

using over-sampling, and also the precision was 62.5% and recall was 72.5% on 

balanced data by using under-sampling.  Fig. 7.3 (a-b) and Fig. 7.4 (a-b) show the 

effect of selecting features on the performance of the classification. It can be seen 

from Tables 7.10 and 7.11 that feature extraction provides better performance 

compared to feature selection. However, it was argued in Chapter 6 that a 

combination of feature extraction and selection would do two things: (a) improve 
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on the accuracy of feature selection and (b) retain the labels of the variables. 

Indeed, it can be seen from Table 7.14 that improved performance is obtained 

using the new feature selection algorithm. However, this does not mean that the 

performance is at the same level as when all the features are used (Fig. 7.5 (a-b) 

and Fig. 7.6 (a-b)).  
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Table 7. 14: The classification accuracy of FS-PPC on LIFELAB dataset 

  

Test option Class 

PPC 

  
Sampling Method 

Over-sampling Under-sampling 

Precision Recall Precision Recall Precision Recall 

C
la

ss
if

ic
at

io
n
 

MLP 

Cross-

validation 

Dead 47.3 38.6 65.3 59.5 63.8 64.1 

Alive 80.8 85.7 74.6 79 61 60.6 

Training set 
Dead 74.9 54.2 66.1 81.6 76.9 84.7 

Alive 86.1 94 85.5 72.1 81.5 72.6 

RBFN 

Cross-

validation 

Dead 54.8 31.5 62.5 54 63.2 70.6 

Alive 80.1 91.4 72 78.5 63.7 55.7 

Training set 
Dead 59.8 34.6 64.5 57.4 65.4 71.2 

Alive 80.9 92.3 73.6 79 65.6 59.4 

SVM 

Cross-

validation 

Dead 58.6 3.5 67 51.5 66.8 72.5 

Alive 75.6 99.2 72.1 83.1 67.3 61 

Training set 
Dead 66.8 4.5 68.7 52.4 68.7 74.2 

Alive 75.8 99.3 72.7 84.2 69.5 63.5 

DT 

Cross-

validation 

Dead 46.8 36.5 66.1 68.2 65.8 60.9 

Alive 80.3 86.2 78.4 76.7 60.9 65.8 

Training set 
Dead 90.2 55.1 86 91.9 91.4 89.3 

Alive 86.8 98 94.3 90.1 88.7 90.9 

RF 

Cross-

validation 

Dead 56.4 43.7 68.5 71.8 62.5 72.5 

Alive 82.6 88.8 80.6 78.1 64.1 53 

Training set 
Dead 99.6 99.8 99.7 99.9 99.4 99.8 

Alive 99.9 99.9 99.9 99.8 99.8 99.4 

Remarks: SVM imputation 
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Fig. 7.5 (a-b) and Fig. 7.6 (a-b) summarise the classification performance 

under the following conditions: missing imputation (SVMI), data sampling (over- 

and under-sampling), and feature selection (FS-PPC). It can be concluded as: 

 With imputation of Missing values there is an improved classification 

performance. 

 With Data sampling the recall (sensitivity) of minority class is improved 

at a better rate 
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Figure 7. 5 (a-b): The classification accuracy on data mining process for over-

sampling 

Original Imputed Balanced PPC
40

45

50

55

60

65

70

75

80

85

P
re

c
is

io
n

 (
%

)

Dataset

 MLP

 RBFN

 SVM

 DT

 RF

(a) Precision  

Original Imputed Balanced PPC

20

30

40

50

60

70

80

90
R

e
c
a

ll 
(%

)

Dataset

 MLP

 RBFN

 SVM

 DT

 RF

(b) Recall   

Figure 7. 6 (a-b): The classification accuracy on data mining process for under-

sampling 
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 With Feature selection the performance of classification is nearly 

retained at the same level as before. 

It has been mentioned before that all dimensionality reduction techniques 

use a ranking scheme. The number of dimensions retained is dependent on the 

threshold being used. If this is varied, then the number of dimensions is also 

varied. It should also be recalled that for modelling, the variables should be 

independent of each other. This is done in an automatic manner with feature 

extraction; however with feature selection what is needed is a test of redundancy, 

i.e. relevant and non-redundant features (Yu and Liu, 2004) for effective selection 

with an optimal set of features. 

 

Table 7. 15: The redundancy rate of feature extraction 

methods 

Feature 

Extraction 

Redundancy Rate 

Over-sampling Under-sampling 

PCA 1.15E-16 1.03E-16 

NLPCA 0.1133 0.1117 

   

   



Chapter 7: Results and discussions 

168 

 

 

Table 7. 16: The redundancy rate of different selection methods on 

different data 

Feature 

Selection 

Redundancy Rate 

Imbalanced 

classes 

Balancing Methods 

Over-sampling Under-sampling 

t-Test 0.1005 0.1029 0.1190 

Entropy 0.0857 0.0872 0.0964 

Bhattacharyya 0.0737 0.0750 0.0739 

ROC 0.0961 0.0991 0.1016 

Wilcoxon 0.0961 0.1022 0.1050 

PPC 0.0651 0.0621 0.062 
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Figure 7. 7: The redundancy rate of different selection methods on different data 
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Tables 7.15   7.16 show the redundancy rate (see Eq. (7.1)); Table 7.16 and 

Fig. 7.7 show the redundancy rates with different feature selection methods, and 

with both sampling techniques. It can be seen that of the five, the Bhattacharyya 

distance method has the lowest redundancy rate. However, the new feature 

selection technique (FS-PPC) has an even lower redundancy rate. The reason for 

this is that the new method has a feature extraction process coupled with a 

selection algorithm which utilizes mutual information and this reduces the 

redundancy within the selected features. Hence, the features are more suitable for 

the purposes of classification. 

To evaluate the FS-PPC further, three datasets drawn from the UCI 

repository of Machine Learning (Breast cancer, Parkinson’s and Heart disease) are 

used in this thesis. These datasets were chosen because of the prevalence of 

variables (features) which are continuous and are representative of clinical 

datasets. Table 7.2 shows the key characteristics of the selected datasets from the 

UCI repository. The performance of a particular dimension reduction technique is 

judged by how well the new set of dimensions are able to retain the key properties 

of the dataset, and the relationship with the outcomes. In the case of the above 

datasets the problem is one of classification. It was decided to select the most 

popular method of classification, the decision tree (DT), as this was found to 

provide a good uniform set of results, when compared to a range of other 

algorithms. 
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Table 7. 17: The classification accuracy on UCI balanced dataset 

Dataset Class 

t-Test Entropy Bhattacharyya 

No. of 

features 
Precision Recall 

No. of 

features 
Precision Recall 

No. of 

features 
Precision Recall 

Breast Cancer 
Malignant 

10 
91.7 88.2 

10 
91.7 89.2 

10 
91.7 89.2 

Benign 93.2 95.2 93.7 95.2 93.7 95.2 

Parkinson’s 
Parkinson’s 

10 
87.4 89.8 

10 
87.1 96.6 

10 
89.9 90.5 

Healthy 65.9 60.4 84.4 56.3 70.2 68.8 

Heart Disease 
Presence 

7 
79.1 75.8 

7 
80.7 73.3 

7 
80.7 73.3 

Absence 81.3 84 80.1 86 80.1 86 

Dataset Class 

ROC Wilcoxon PPC 

No. of 

features 
Precision Recall 

No. of 

features 
Precision Recall 

No. of 

features 
Precision Recall 

Breast Cancer 
Malignant 

10 
90.3 88.2 

10 
89.5 88.7 

10 
91.3 88.7 

Benign 93.1 94.4 93.3 93.8 93.4 95 

Parkinson’s 
Parkinson’s 

10 
85.7 89.8 

10 
92.3 89.1 

10 
90.5 90.5 

Healthy 63.4 54.2 69.8 77.1 70.8 70.8 

Heart Disease 
Presence 

7 
79.1 75.8 

7 
78.8 74.2 

7 
80.2 70.8 

Absence 81.3 84 80.3 84 78.7 86 
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Table 7.18 shows the redundancy rates of the optimal subset of features. It can 

be seen that the redundancy rate for FS-PPC is good. In particular, it performed well 

with the Heart Disease dataset, where its RED was 0.0940. However, although it 

reduced the rate with the Parkinson’s dataset (0.1695), it was not the case with the 

Breast Cancer dataset. In the Breast Cancer dataset, Wilcoxon (0.1760) had its 

redundancy rate lower than others (FS-PPC was 0.2162) but considering the 

accuracies in Table 7.17, was also lower than others.  

7.4 Summary 

According to the HCDF framework, process flexibility depends on the 

problems and datasets that need to be solved. In this thesis, the LIFELAB was used 

and the experiments were set-up correspondingly this framework. Hence, we suggest 

the data mining procedure as follows: 

Table 7. 18: The redundancy rate of different selection methods on different 

data 

Feature 

Selection 

Redundancy Rate 

Breast Cancer Heart Disease Parkinson’s 

t-Test 0.4094 0.1415 0.3698 

Entropy 0.4030 0.1197 0.4142 

Bhattacharyya 0.4030 0.1197 0.2332 

ROC 0.4163 0.1415 0.3651 

Wilcoxon 0.1760 0.1067 0.2109 

PPC 0.2161 0.0940 0.1696 
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1. Analysis of the characteristics of dataset to identify the data problems that 

needs to be solved. 

2. For datasets with missing values; imputation techniques are applied to 

impute the missing values. 

3. For imbalanced classes, over-sampling and under-sampling are applied to 

treat the imbalanced classes. 

4. Feature selection is applied to reduce dimensionality.  

5. A classifier is built to evaluate the performance of classification. 

To evaluate the data mining techniques, accuracy and redundancy rate are 

measured. 

The results shown in this chapter used data primarily from LIFELAB, and in 

the case of FS-PCC were further validated with the help of three additional clinical 

datasets  Breast cancer, Parkinson’s and Heart disease . In these experiments the 

interest was to identify general properties and differences in the methods employed in 

classification to evaluate the handling of complexity – including missing values, class 

imbalance and dimensionality – of clinical data. The framework helped in this and 

also showed that an improvement in accuracy and confidence of disease diagnosis 

and prognosis can be achieved. The removal of irrelevant – or even misleading, and 

also selected features (predictors/variables) was crucial in the application of any 

classifier available in literature and in this study. In Chapter 6, it was proposed to 

combine the best of both feature extraction and feature selection approaches, and the 

resultant method was evaluated. The new method of feature selection was based on a 
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recursive feature elimination process using the MI and SU together with principal 

component(s) from feature extraction. Here, because the principal component was 

projected on the set of features, it resulted in a better classification performance. It 

outperformed the direct application of the random forest classifier, or the direct 

application of the regularised classifiers on the full set of features. 

In theory, a larger number of features should give a better classification 

performance (Janecek et al., 2008). However, it was found that in practice, fewer 

features are required to retain or improve the performance. The results show that even 

though the FS-PPC selects fewer features it can maintain the performance of 

classification (precision and recall). In addition, FS-PPC produces a lower the 

redundancy rate of features is lower than other methods. Thus, this method is suitable 

to use for selecting an “optimal” feature set. FS-PPC allows for accuracy in the data 

mining process to maintain or reduce the redundancy rate, while at the same time also 

keeping the computational overheads low. 

 

 

. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Introduction 

Data mining techniques can solve the problems of extraction of information 

from data but, like any statistical technique, they also have the power to reveal results 

that do not occur naturally.  Specifically, this thesis has investigated issues with 

clinical datasets, such as missing values, class imbalance and high dimensionality. 

The research in this thesis was motivated by these challenges to minimise the 

problems whilst, at the same time, maximising classification performance of data. As 

such, this led to the proposal of a data mining framework and feature selection 

method. The proposed framework has a simple algorithmic framework and makes use 

of a modified form of existing frameworks to address a variety of different data 

issues. This framework, called the Handling Clinical Data Framework (HCDF) that 

was discussed in section 2.3.3 from Chapter 2. Next, the proposed feature selection 

method, was introduced; it involves projecting onto principal component method (FS-

PPC) and draws on ideas from both feature extraction and feature selection to select a 

significant subset of features from the data. This method selects features that have 

high correlation with the principal component by applying SU. However, irrelevant 

and redundant features are removed by using MI (see the details in Chapter 6). This 
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method provides confidence in the selected subset of features that will yield realistic 

results with less time and effort. Since principal component from feature extraction 

reflects non-redundant features, while feature selection selects meaningful features. 

FS-PPC integrates both methods, so that the optimal subset of features from this 

method is able to retain classification performance and meaningful features while 

consisting of non-redundant features. The optimal subset of features from this method 

reduces misclassification because the final set of features will avoid redundant 

features. The assessment of data mining techniques reveals that missing values 

imputation and resampling data for class balancing can  increase the performance of 

classification and the proposed feature selection method produces acceptable 

performance and a confident subset of selected features for classification of clinical 

datasets. This chapter concludes the thesis with a summary of the main contributions 

of the thesis and gives a summary and some suggestions for future research. 

8.2 Contributions of the research 

Chapter 1 introduced the problem issues of data mining in clinical datasets 

and indicated a list of key issues that are of concern in this field.  From this, a list of 

motivation and research problems was formulated (section 1.2) to outline specific 

goals of the research (section 1.3). To assess and support this, the research aim and 

objectives were defined. In the following discussion, we revisit these objectives and 

summarise how, and to what extent, they have been achieved. This section will 

discuss the research findings in light of these problems, referring to each objective by 

its corresponding problems. 



Chapter 8: Conclusions and future work 

176 

 

Objective 1: To develop a data mining framework for classification based on the 

underlying statistical properties of the datasets and the existing frameworks 

A data mining framework for clinical datasets was proposed, and explained in 

section 2.3.3 from Chapter 2. This framework is called Handling Clinical Data 

Framework (HCDF). It was developed by modifying by existing frameworks e.g. 

CRIPS (Wirth and Hipp, 2000) and SEMMA (SAS Institute Inc.). This approach is 

used to address data mining problems, specifically the classification problem in 

clinical datasets. HCDF is expected to be efficient for clinical datasets (Chapter 1, 

section 1.1) and it is used for assessment of data mining techniques in Chapter 7. This 

framework consists of six main processes: (1) data analysis (2) missing values 

imputation (3) dimension reduction using feature selection techniques (4) data 

sampling (5) classification and (6) evaluation. This framework is effective for 

handling complexities in the dataset and also demonstrated its importance as a 

flexible procedure for coping with different issues in datasets. The main focus of the 

framework is to reduce problem of data mining and increase the performance and the 

reliability of classification in clinical data. 

Objective 2: To investigate the relationship between the methods for imputation and 

the statistical properties of the datasets 

The characteristics of the clinical dataset were investigated and data mining 

issues were revealed. Chapter 1 discussed the issues in clinical data sets. Chapter 2 

presented a data mining framework which can cope with the issues of missing values, 

imbalanced class, high dimensionality, and classification. The performance of 
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classification can be used to evaluate the performance of the predictive model. In our 

study, we found that missing values handling and class balancing were able to 

improve the classification performance. In Chapter 3, missing values imputation 

techniques were demonstrated for imputing missing values for a relatively complex 

data structure such as a clinical dataset when the data contain missing values. The 

several types of imputations generalise values of variables being imputed. However, 

the data need to be adjusted to take into account imputed values. After imputation 

was applied, the statistics values and data distribution were changed (section 3.7) 

whilst, at the same time, the results showed that the classification performance was 

improved (section 7.3.1).  

Objective 3:  

(a) To discover the effect of class imbalance on performance of classification and 

propose the sampling data method for balancing data 

(b) To investigate feature selection techniques in clinical datasets 

High dimensionality and class imbalance are essentially challenges present in 

all real-life clinical datasets. High dimensionality was presented in Chapter 1 and to 

cope with the issue, dimensionality reduction techniques were demonstrated in 

Chapter 4, including both feature extraction and feature selection techniques. Feature 

extraction can reduce the dimensions of the dataset but, like feature selection, it 

generates new features without an associated meaning. PCA (section 4.2.1) is a 

popular technique for feature extraction, and the NLPCA (section 4.2.2) is an 

extended form of this; these two examples of feature extraction were presented. 

Feature selection selects the features from the original data. This technique, including 
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wrapper and filter models, was demonstrated to reduce the dimensionality of data 

(section 4.3). Obtaining meaningful selected features was a key concern of this 

research, so feature selection was focused on as a method for reducing the dimensions 

of dataset because the subset of features from feature selection will be useful for 

developing decision support systems. The class imbalance issue was also posed in 

Chapter 1, section 1.1.4; resampling techniques were used to solve this problem 

(section 5.3). Over-sampling and under-sampling were applied in this thesis to assess 

the performance of classification. The distance-based random under-sampling that 

used in this thesis is proposed in section 5.3.2.2. In Chapter 7, the results showed that 

after balancing the dataset, performance increased; especially recall (sensitivity) 

values. The performance of these was validated on clinical datasets by comparison of 

different classifiers. 

Objective 4: To develop a new method for selecting the significant variables by 

integrating two techniques of dimensionality reduction, namely, feature extraction 

and feature selection. 

The common way to locate significant original features is based on loadings 

(principal component (PC)) in PCA. For any factor, high loadings (PC) in absolute 

value indicate that the corresponding variables contribute more than other variables 

(Guo et al., 2002). A method was proposed to select a subset of features by building-

up from this idea; the first PC is selected that preserves as much of the information 

present in the complete data as possible. The optimal subset of features is obtained by 

applying symmetrical uncertainty (SU) to select the original variables having high 
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association with the PC. In order to avoid classification bias from redundancy, mutual 

information (MI) is applied to optimise the optimal subset of features by removing 

the redundant features. 

The proposed method (FS-PPC) was evaluated on a real heart failure dataset 

(LIFELAB) that was discussed in Chapter 1, and also was assessed on clinical 

datasets from the UCI that were presented in Table 7.17 from Chapter 7. The results 

showed that the proposed feature selection method successfully identified an optimal 

subset of features. The subset from FS-PPC led to a subset of features with less 

redundancy than other studied feature selection methods. Hence, it can be claimed 

that FS-PPC selects a reliable subset for classification by reducing the bias from 

redundant features. 

8.3 Summary and future research 

Having discussed the contributions this research has made to the current state-

of-the-art in data mining in clinical datasets, we would like to look at the limitations 

of the work, and promising avenues for future research. This thesis has examined the 

requirements and problem of data mining in clinical dataset, and explored how to 

produce a suitable feature selection process to select significant variables in a clinical 

dataset. 

The work in this thesis builds on the basic idea of uniting concepts from 

feature extraction and feature selection to reduce the numbers of dimensions of 

datasets (Foldiak, 1989; Kramer, 1991; Yu and Liu, 2004; Sa et al., 2007). The main 

focuses of the research were increasing the performance and the reliability of 
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classification in the clinical data. The optimal set of features that results will be useful 

for decision support systems.  In light of the findings presented in this thesis and the 

conclusions drawn in section 8.2, specific contributions to the area of handling 

complexities of clinical data by applying data mining techniques are as follows: 

(1) The definition of a dataset issue to minimise the problem. 

(2) The adaptation of a data mining framework to quantify the data issues. 

(3) The implementation of data mining techniques to solve the problem of 

data, e.g. missing values, imbalanced classes and high dimensionality. 

(4) The definition of an accuracy measure to quantify the target class. 

(5) Assessment of the performance of data mining techniques by 

classification.  

(6) Selection of an optimal set of features that can be used for decision support 

systems. 

In the wider context of feature selection, the proposed method has to deal with 

a large number of features (variables) and redundancies among the features. This 

makes it more difficult to reveal the optimal features in clinical datasets. In this 

thesis, we develop methods that allow us to better understand the structure of a large 

set of clinical data. Principal component (Kramer, 1991; Tabachnick and Fidell, 

1996; Jolliffe, 2005; Zabiri et al., 2009) has been used as a part of this method 

because it uses all the original features to generate the new features and discards 

redundant features. Thus, feature extraction is an approach to visualization that 

extracts important regions or objects of interest algorithmically from a large dataset 
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(Reinders et al., 1998) but cannot explicitly eliminate irrelevant features (Menze et 

al., 2009). The reduced dimensionality of the data set is essentially one that yields 

new (and fewer) dimensions than before. These new dimensions do not necessarily 

carry any meaning, nor can they be directly associated with the variables of the 

dataset. On the other hand, feature selection also reduces the dimensions, but retains 

the labels associated with the variables, so in a sense the new set of features is a 

subset of the original set of features. Both the categories of techniques are used 

frequently; for example in image processing feature extraction is a popular technique, 

while, where it is important that labels are retained for the features (e.g. clinical 

systems) feature selection is a dominant technique for reduction of dimensions. For 

interpretation purposes or future investigations, feature selection can be achieved by 

choosing informative features (variables). This method, feature selection by 

projecting onto principal component (FS-PPC) is presented that applies a PC with SU 

to find the subset of features with high association and then eliminates redundant 

features by applying MI, an algorithm listed in Chapter 6, section 6.3.4. 

Although the research in this thesis contributes ideas and techniques to the 

field of data analysis, like any research, it provides scope for further work. In Chapter 

1, it was noted that the exploratory and investigative nature of clinical data naturally 

poses issues. The idea of using feature selection in a clinical dataset was proposed in 

Chapter 6. The performance accuracy of this method, were evaluated by 

classification, was slightly decreased, as with other feature selection methods. Hence, 

future work will attempt to improve the performance of classification and to work 

more effectively on different domains of data and multi-classes. Herein we have 
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concluded that feature selection is one of the most useful tools for developing the 

prediction model because decision support systems require meaningful and 

significant features to make a decision in order to create an effective model. The 

implemented algorithms for feature selection will be used as a predictor in a 

prognosis model for a decision support system. The most important path is to design 

and create the appropriate predictive model and it is essential to think of what 

features should be selected and their precision and accuracy. Therefore, the challenge 

of uncertainty in clinical data will arise, to be handled by a probabilistic approach. 
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