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Abstract 

 

Bradykinesia is the fundamental motor feature of Parkinson’s disease - 

obligatory for diagnosis and central to monitoring. It is a complex clinical 

sign that describes movements with slow speed, small amplitude, irregular 

rhythm, brief pauses and progressive decrements. Clinical ascertainment of 

the presence and severity of bradykinesia relies on subjective interpretation 

of these components, with considerable variability amongst clinicians, and 

this may contribute to diagnostic error and inaccurate monitoring in 

Parkinson’s disease. The primary aim of this thesis was to assess whether a 

novel non-invasive device could objectively measure bradykinesia and 

predict diagnostic classification of movement data from Parkinson’s disease 

patients and healthy controls. The second aim was to evaluate how objective 

measures of bradykinesia correlate with clinical measures of bradykinesia 

severity. The third aim was to investigate the characteristic kinematic 

features of bradykinesia. Forty-nine patients with Parkinson’s disease and 

41 healthy controls were recruited in Leeds. They performed a repetitive 

finger-tapping task for 30 seconds whilst wearing small electromagnetic 

tracking sensors on their finger and thumb. Movement data was analysed 

using two different methods - statistical measures of the separable 

components of bradykinesia and a computer science technique called 

evolutionary algorithms. Validation data collected independently from 13 

patients and nine healthy controls in San Francisco was used to assess 

whether the results generalised. The evolutionary algorithm technique was 

slightly superior at classifying the movement data into the correct diagnostic 

groups, especially for the mildest clinical grades of bradykinesia, and they 

generalised to the independent group data. The objective measures of finger 

tapping correlated well with clinical grades of bradykinesia severity. 

Detailed analysis of the data suggests that a defining feature of Parkinson’s 

disease bradykinesia called the sequence effect may be a physiological 

rather than a pathological phenomenon. The results inform the development 

of a device that may support clinical diagnosis and monitoring of 

Parkinson’s disease and also be used to investigate bradykinesia. 
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Chapter 1 Introduction 

 

Overview of Parkinson’s disease and aims and objectives of thesis 

 

1.1 What is Parkinson’s disease?  

Parkinson’s disease (PD) is a progressive and incurable neurodegenerative 

condition that manifests as a clinical syndrome characterised by disordered 

movement. The predominant motor features are slowness, stiffness, shaking 

and impaired balance and these are encompassed by the medical terms 

bradykinesia, rigidity, tremor and postural instability respectively.  Distinct 

pathological changes occur in the brain marked by degeneration of 

dopaminergic neurons and Lewy body (LB) deposition. The cause is 

unknown hence PD is interchangeably used with the term ‘idiopathic’ PD 

(IPD).  

 

1.1.1 Historical perspective 

The oldest surviving references to a syndrome consistent with PD are 

probably in Ancient Indian Sanskrit texts dating from around 3000 BC.1 

There are also anecdotal reports in ancient Chinese, Greek and Biblical 

texts2 but the first detailed clinical descriptions were made in 1817 by an 

English surgeon called James Parkinson.  In An Essay of the Shaking Palsy 

he described a series of six people, three of whom he had examined and 

three whom he had simply observed in the streets of London, emphasising 

that excessive “shaking” movements (i.e. tremor) occurred in combination 

with “palsy” or reduced movement (i.e. bradykinesia) (Parkinson, 1817).  

The early neurologists Charcot, Trousseau, Gowers and Erb subsequently 

added to and refined the clinical phenotype but James Parkinson’s 

pioneering contribution was recognised and the eminent French neurologist, 

Jean-Martin Charcot re-named Shaking Palsy to ‘Parkinson’s disease’ in 

1877.  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 In Ayurveda, the Indian system of medicine, there are descriptions of a condition called 
2 Ecclesiastes 12:3 “In the day when the keepers of the house shall tremble…”   
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Over the next century, the pathological basis for PD was gradually 

uncovered. In 1912 a German neurologist called Friedrich Lewy described 

inclusion bodies as the pathological hallmark of PD and in 1919 a Russian 

neuropathologist, Konstantin Tretiakoff described degeneration of 

pigmented substantia nigra cells in the brainstem of encephalitic PD cases. 

In the 1950s Carlsson made the link between loss of dopamine (DA) in the 

basal ganglia (BG) and PD (Carlsson, 1959).  

 

1.1.2 Clinical phenotype 

PD classically presents in people over the age of 60 with the symptoms and 

signs associated with bradykinesia and at least one of the following: tremor, 

rigidity and postural instability3.  Various clinical sub-types of PD have 

been described based on the age of onset or predominant signs (outlined in 

Chapter 2) but a general overview of the clinical syndrome is presented in 

this section.   

 

Bradykinesia is the cardinal motor feature of PD and the only clinical sign 

that is obligatory for diagnosis. ‘Brady - kinesia’ translates literally to ‘slow 

- movement’ but the gold standard definition of bradykinesia is considerably 

more complex and also describes movements that are small, dysrhythmic 

and progressively get slower and smaller with repetition (Gibb and Lees, 

1988). Depending on the body part involved, bradykinesia may result in 

slowed gait with small shuffling steps, poor dexterity, lack of gesticulation, 

reduced blink frequency and facial expression, a quiet soft voice and 

difficulty swallowing. As bradykinesia is a multi-faceted clinical sign it may 

be difficult for clinicians to ascertain whether it is definitely present, 

especially in the early stages of PD and the reliance on subjective 

interpretation of this key motor feature has potentially serious ramifications 

on diagnostic accuracy of PD (Bajaj, Gontu et al., 2010); these issues are 

discussed further in Chapter 2. 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 postural instability describes balance problems particularly with the automatic righting 
reflexes that keep humans standing steady. 
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Tremor describes a regular rhythmic oscillating movement and affects 

approximately 70% of people with PD (PwPD). It usually presents in the 

hands but may also afflict the arms, legs, jaw and tongue.  Typically the 

tremor has a frequency of 4-6 Hz, is most prominent at rest, reduces with 

action and re-emerges after a brief latent period when a posture is held 

(Hoehn and Yahr, 1967). 

 

Rigidity affects 89-99% of PwPD and is probably the major contributor to 

the characteristic flexed posture of PD (Hoehn and Yahr, 1967; Hughes et al. 

1992). Rigidity is felt as a steady resistance when the examiner passively 

moves a patient’s limb or other body part and is likened to the sensation of 

bending a lead pipe.  Interestingly the resistance increases further when the 

patient moves a contralateral limb. A combination of tremor and rigidity in 

the same body part is described as ‘cogwheel rigidity’ as there is a jerky 

rhythmic resistance to passive movement.  

 

The onset of PD is so insidious that the individual may attribute the early 

signs to normal ageing. Motor features typically present solely, or 

predominantly, in one limb and this asymmetry persists throughout the 

disease course with the side initially affected remaining more symptomatic.  

The ipsilateral limb becomes symptomatic within a year and then the 

contralateral limbs approximately two or three years later (Hoehn and Yahr, 

1967). For more than a hundred years PD was classified purely as a 

movement disorder but over the last two decades the non-motor features 

have been increasingly recognised too. These include hyposmia4, depression, 

anxiety, hallucinations, sleep disturbance, autonomic dysfunction, and 

cognitive impairment. Consequently some clinicians now consider PD to be 

a neuro-psychiatric disorder. 

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 hyposmia is a reduced sense of smell and may occur many years before the onset of motor 
signs 
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1.1.3 Pathology 

The two pathological hallmarks of PD are loss of pigmented dopaminergic 

neurons in the brainstem and Lewy Body (LB) deposition (Figure 1). The 

pigmented nuclei include the substantia nigra (SN), locus ceruleus and 

dorsal nucleus of the vagus but SN degeneration is thought to be the 

predominant cause of PD motor features. LBs are inclusions of alpha-

synuclein (α-SN), ubiquitin and neuro-filament proteins contained within 

the cytoplasm of neurons.  The distribution of LBs in PD is specific with 

only the autonomic nervous system and medium to large monoaminergic 

and cholinergic neurons affected. Braak et al. have delineated six stages of 

evolving LB deposition and associated cell death; the first two describe 

pathology in the dorsal motor nucleus of the vagus nerve and anterior 

olfactory structures, stages 3 and 4 encompass spread of pathology to the 

midbrain and BG, and stages 5 and 6 include cortical spread (Braak, Del 

Tredici et al., 2003).  

 

Figure 1 Parkinson's disease pathology	
  

  
(a) Normal   (b) Parkinson’s disease  

   

Legend: Histology of substantia nigra (SN) using haematoxylin and eosin 

stain and x200 magnification. 1(a) shows normal SN pathology and 1(b) 

demonstrates neuronal loss and Lewy body (arrow) deposition in a case of 

PD.  Images provided by Dr Ismail, Consultant Neuro-pathologist at Leeds Teaching 

Hospitals NHS Trust. 

 

The trigger for this degenerative process remains unknown but is probably 

an interaction of environmental and genetic factors causing α-SN to 
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transform into a toxic protein that aggregates inside neurons. It is 

hypothesised that the cell responds by forming LBs around α-SN but 

sometimes this defensive process fails and the neuron dies.  

 

Debate remains as to whether PD is an accelerated form of physiological 

ageing as LBs have been reported in healthy elderly people with no clinical 

evidence of PD. Furthermore the number of SN cells diminishes with 

advancing age in all subjects but in PD the numbers fall faster to 

approximately 30% of age-matched controls (Fearnley and Lees, 1991). 

However it is noteworthy that the pattern of cell loss is different in PwPD to 

healthy controls with the lateral ventral SN more affected in patients and the 

medial ventral and dorsal aspects more affected in non-PD controls 

(Fearnley and Lees, 1991).  

 

More recently it has also been recognised that the clinical manifestations of 

PD are not solely due to a dopaminergic deficit and other neurotransmitters 

such as acetylcholine and serotonin are also important.  

 

Most cases of PD are sporadic, known as IPD, but first degree relatives have 

a two-fold increased relative risk for developing PD (Gasser, 1998). Few 

single-gene mutations that have been identified in familial parkinsonism. It 

is thought that genetic and environmental factors contribute to final 

common mechanisms in PD pathogenesis, namely failure of mitochondria 

and oxidative stress within neurons leading to cell death. It is unclear 

whether this is due to neurotoxins (i.e. environmental) or impaired anti-

oxidant stress systems (i.e. genetic) such as a malfunctioning ubiquitin-

proteasome system that normally clears excess or mis-folded proteins, or 

mitochondrial defects. 

 

1.1.4 Epidemiology 

The prevalence of PD in industrialised countries is estimated to be 

approximately 1-2 per 1000 of the entire population and 1-2 % of the 

population aged over 60 years (Nussbaum and Ellis, 2003). Men are more 

frequently affected than women (de Lau and Breteler, 2006). The incidence 
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increases with advancing age and the mean age of onset is 60 years old but 

5% of cases present before the age of 40. Worldwide all ethnic groups and 

countries are affected although PD seems more common in Caucasians than 

Asians and Africans (de Lau and Breteler, 2006).  

 

A study using NHS General Practice Research Database records5 calculated 

the 2009 UK PD prevalence rate to be 27.4 cases per 10,000 people (30.9 

and 24.1 for men and women respectively).  This equates to 126,893 PD 

cases in the UK6 and is equivalent to approximately 1 in 500 people or 1 in 

100 of those aged over 65 as having PD (Parkinson’s UK, 2011).  With an 

ageing population the UK prevalence is predicted to increase by almost 30% 

by 2020 to 161,165 cases. These figures are based on existing medical 

records and include only those who have sought medical attention. This 

means that the true prevalence could be considerably higher as door-to-door 

community studies have shown that up to 25% of PD cases remain 

undiagnosed (deRijk, Tzourio et al., 1997).  

 

1.1.5 Economics 

PD results in economic costs for the patient, their carers, the NHS and social 

services. Findley, et al. estimated that in the UK just under £600 million was 

spent each year on the direct costs of 100,000 people with PD which 

equated to £5993 per patient (Findley, Aujla et al., 2003). As the study was 

undertaken more than a decade ago and was based on a smaller population 

of patients than current estimates it is likely that present day costs are 

considerably higher than this.   

 

Certain sub-groups of PD patients have significantly higher costs: motor 

fluctuations and dyskinesia double the direct costs (Dodel, Berger et al., 

2001) and co-existent dementia triples them (Vossius, Larsen et al., 2011) 

compared to PD patients without such complications. Advancing age and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 This is the world’s largest database of anonymised longitudinal medical records, 
comprising approximately 3.4 million people’s records  
6 Approximate number of cases per country: 108,000 in England, 10,000 in Scotland, 5,900 
in Wales and 3,000 in Northern Ireland.   
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increasing severity of disease are also associated with rising costs (Dodel, 

Singer et al., 1997, LePen, Wait et al., 1999, Whetten-Goldstein, Sloan et al., 

1997) in part due to the fact that elderly and more disabled PwPD have 

increased risk of falls, dementia, hallucinations and residential home 

admissions (Kempster, O'Sullivan et al., 2010).  

 

There are also indirect costs of PD on the patient, their family and wider 

society consequent to loss of economic productivity through early 

retirement of both the patient and their carer. It is crucial that management 

of PD focuses on reducing functional progression of the disease in order to 

minimise the economic impact on the individual and the national medical 

and social care budgets. 

 

1.2 Management of PD 

 

1.2.1 Diagnosis 

National UK guidelines recommend that people with symptoms suggestive 

of PD should be referred untreated to a specialist for diagnosis (NICE, June 

2006, SIGN, January 2010). Diagnosis is based on clinical interpretation of 

the history and examination findings with a focus on eliciting the key motor 

features, especially bradykinesia, and is described further in Chapter 2.  

 

A number of conditions can mimic PD and it is not always straightforward 

to make a confident diagnosis, especially in the early stages of the disease. 

Even amongst movement disorder experts the diagnostic accuracy for 

differentiating PD from other parkinsonian condition is only about 85% 

(Bajaj, Gontu et al., 2010, Hughes, Daniel et al., 2002). Functional brain 

imaging may aid diagnosis in selected cases but the scans are not specific 

for PD, involve ionising radiation, require an additional visit to another 

hospital department, and are expensive. Thus there remains a need for a 

non-invasive diagnostic tool that could be used in clinics to aid diagnosis.  
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1.2.2 Treatment  

A multidisciplinary team approach, with good communication between 

healthcare professionals and patients, is paramount for effective 

management of PD (Department of Health, 2005).  Usually the neurologist, 

geriatrician or PD nurse specialist will lead the team and coordinate 

additional specialist input when necessary. Other professionals involved 

may include general practitioners (GPs), physiotherapists, occupational 

therapists, psychiatrists, psychologists, speech and language therapists, 

dieticians and palliative care physicians.  

 

Currently all PD treatments are symptomatic and none have clinically 

meaningful neuro-protective effects. The mainstay of PD management is 

pharmacological with the general aim being to improve symptoms in order 

to reduce functional disability and maximise quality of life (QOL). This is 

primarily done through giving drugs to provide maximal time on and 

minimal time off. The term on describes a clinical state when the PwPD has 

few or no PD motor symptoms and off describes a clinical state when motor 

features are noticeable.  

 

The ‘therapeutic window’ refers to the range of drug levels in the blood that 

provide on time for the PwPD (Figure 2). Outside this window the patient 

will be off (sub-therapeutic levels) or on with troublesome adverse effects 

(AEs) (supra-therapeutic levels) and the window becomes progressively 

narrower as the disease advances. Hence physicians do not attempt to 

‘normalise’ patients by eradicating every symptom as higher doses of 

medication are associated with an increased risk of short and long-term 

AEs. 
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Figure 2 Therapeutic window in Parkinson's disease 

 
Legend: Schematic diagram illustrating the therapeutic window becoming 

narrower as PD progresses. In advanced stages of the disease the dose of 

dopaminergic medication may need to be reduced at the cost of losing some 

motor function because AEs are so troublesome.  

 

 

The anatomy of the BG are described in Chapter 2 but, in summary, the 

majority of PD motor impairments are thought to be due to a deficiency of 

DA in the BG secondary to dopaminergic SN neuronal degeneration. Hence 

most of the drugs used to treat PD increase stimulation of the post-synaptic 

dopaminergic receptors although they do this through different mechanisms. 

These include levodopa, dopamine agonists, monoamine oxidase inhibitors 

(MAOI) and catechol-O-methytransferase (COMT) inhibitors and their 

mechanisms of action are outlined in Figure 3. 
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Figure 3 Schematic diagram of dopaminergic synapse 

	
  
 

 

Legend: DA is synthesised from tyrosine and packaged into synaptic 

vesicles.  When the neuron fires the DA is released into the synaptic space 

where it activates post-synaptic DA receptors. DA is principally cleared 

from the synapse by the dopamine active transporter (DaT) and metabolised 

into homovallinic acid (HVA) by monoamine oxidase-B (MAO-B) and 

catechol-O-methyltransferase (COMT).  

 

Each type of drug has a different potency and AE profile and the 

individual’s response to a particular drug is not entirely predictable.  

Consequently there cannot be a ‘one size fits all’ protocol of PD treatment 

and the National Institute for Health and Care Excellence (NICE) guidelines 

remain necessarily ambiguous concluding:  

 

“there is no single drug of choice in the initial pharmacotherapy of early 

PD” and  
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“the choice of drug should take into account clinical and lifestyle 

characteristics of the patients and their preference once they have been 

informed of the short and long-term benefits and drawback of the drug 

classes.”  

(NICE, June 2006)  

 

This emphasises the importance of specialist input throughout the course of 

the disease in order to monitor progression and tailor effective management 

to the individual. 

 

The non-motor symptoms of PD such as disorders of mood, sleep, cognition 

and autonomic function often require separate treatments to the 

dopaminergic drugs outlined above, and are sometimes exacerbated by the 

drugs used to treat the motor deficits. In cases of more advanced PD it may 

be necessary to consider delivering dopaminergic drugs via enteric or 

subcutaneous routes or referring for deep brain stimulation surgery.  

 

1.2.3 Motor complications 

One of the most challenging aspects of managing PD is matching dosing 

regimens and classes of drug to the individual’s symptoms, lifestyle and co-

morbidities. This requires a balance between the need to increase doses in 

order to treat the progressive motor deficits and the need to limit doses in 

order to reduce the risk of AEs. Levodopa is the most effective drug for 

reducing motor disability and nearly all patients will eventually require 

long-term treatment with it. Unfortunately most patients taking this drug 

develop adverse motor complications and some of these are irreversible.  

 

Motor complications may be sub-divided into motor fluctuations and 

dyskinesia. The former describes how motor symptoms respond in an 

unpredictable and undesirable manner to each dose of levodopa so that the 

period on may be delayed, may not occur at all, or may switch suddenly to 

being off again. Dyskinesias, also called 'levodopa induced dyskinesias' 

(LID), are troublesome involuntary writhing movements that may occur in 
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any part of the body and be localised or generalized. Approximately 10% of 

PwPD per year who take levodopa will develop LID (Ahlskog and Muenter, 

2001) and these movements are initially dose dependent but with long-term 

use they occur at progressively lower doses.  They lead to considerable 

disability, reduced QOL and increased costs.  

 

Another important principle of PD management involves the concept of 

continuous dopaminergic stimulation  (CDS). This hypothesis states that 

late stage motor complications develop due to pulsatile high DA levels 

stimulating the depleted neurons, leading to erratic firing and involuntary 

unpredictable movements (Olanow, Obeso et al., 2006). Hence, delivering 

steady dopaminergic stimulation replicates the normal physiological state 

more closely and should prevent motor complications. CDS has become an 

important influence on PD management and is reflected in current practice 

aiming to prolong the action of dopaminergic stimulation or use frequent 

but small doses of drugs in an attempt to limit large fluctuations of 

dopamine in the brain.  Certainly, since the recognition that early treatment 

with high dose levodopa leads to early motor complications, the general 

shift in the UK has been towards more conservative management of PD. 

 

1.2.4 Monitoring 

Regular specialist review is required in order to minimise functional 

disability through optimising management.  The clinician needs to assess, 

treat and monitor an array of motor and non-motor symptoms and signs, and 

carefully balance the management of each.  Frequently the drugs given for 

one symptom exacerbate another; for example DA agonists improve 

bradykinesia but exacerbate hallucinations and levodopa improves tremor 

but exacerbates dyskinesia, so the clinician must carefully weigh up the 

need for each medication and its overall effects on the PwPD.  Monitoring is 

usually conducted through six-monthly outpatient clinic appointments and 

the limitations of this method are discussed in Chapter 2. 
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1.3 Progression of Parkinson’s disease 

A PwPD will progress through several clinical phases that may be described 

as diagnosis, maintenance, complex and palliative or quantified using the 

Hoehn and Yahr (HY) stages (Table 1 and Figure 4). Although the order of 

progression is predictable the period of time spent in each stage varies 

depending on PD clinical sub-type and patient characteristics such as age 

and co-morbidities.  

 

Table 1 Hoehn and Yahr (HY) stages of Parkinson's disease 

HY stage Clinical description 

1 Symptoms on one side of body 

2 Symptoms on both sides of body 

3 Balance impairment and moderate disease 

4 Severe disability but able to stand unassisted 

5 Wheelchair bound unless assisted 

Adapted from Hoehn and Yahr 1967 (Hoehn and Yahr, 1967) 

 

1.3.1 Diagnosis phase 

During this phase the patient recognises symptoms, consults the GP and is 

referred to a specialist. If the clinical signs are subtle there may be a period 

of watchful waiting, investigations, and diagnostic uncertainty before the 

diagnosis of PD is made. A period of denial or other psychological 

adjustment may ensue before the person accepts the diagnosis and decides 

to commence treatment. Typically the diagnosis period lasts six to 24 

months. 

 

1.3.2 Maintenance phase 

The commencement of symptomatic therapy usually improves motor 

symptoms markedly thereby enabling patients to maintain a relatively 

uncompromised QOL for five to ten years. Patients in this phase have not 

developed postural instability yet and thus equate to HY stages 1 and 2.  
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1.3.3 Complex phase 

As PD progresses the patient enters a complex phase characterised by a 

combination of postural instability, dyskinesia, autonomic problems7, 

dysphagia8 and significant psychiatric manifestations. This phase typically 

lasts 3-5 years during which patients spend increasingly longer periods in 

the off or ‘on with LID’ states and hence functional disability progresses 

(HY stages 3 and 4).  Clinicians try to keep the drug effects within the 

therapeutic window and to increase on time (without LID) by splitting drug 

doses into smaller but more frequent aliquots.  Indeed it would not be 

unusual for patients in this phase to be taking 6-10 doses of three or four 

different drugs per day. Some patients in this phase may be referred for 

subcutaneous or intrajejunal infusions of drugs or neurosurgery.  

 

1.3.4 Palliative phase 

Certain clinical events signal the beginning of the palliative stages of PD: 

hallucinations, regular falls, dementia and need for residential care and these 

typically occur within five years of death (Figure 4) (Kempster, O'Sullivan 

et al., 2010). The palliative phase usually lasts one or two years and is 

characterised by the patient’s inability to tolerate adequate dopaminergic 

therapy due to a combination of AEs, advanced co-morbidities and 

dysphagia. Dopaminergic medication may need to be withdrawn due to 

severe psychiatric side effects at the expense of increased motor disability.  

 

After 15 years of diagnosis 70% of patients will have died and of those that 

survive 80% have developed frequent falling, 50% dementia, 50% choking, 

and 40% need residential care (Hely, Morris et al., 2005). The commonest 

cause of death in PD patients is pneumonia (Diem-Zangerl, Seppi et al., 

2009, Hely, Morris et al., 1999, Pennington, Snell et al., 2010) with 

approximately 45% of PD patients dying from this (Pennington, Snell et al., 

2010), presumably related to dysphagia. Cardiovascular disease and 

malignancy are less common causes of death in PD patient compared to 

background population rates (Pennington, Snell et al., 2010). Inconsistent 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 Manifesting as poor control of bladder, bowels and blood pressure  
8 Swallowing problems with consequent increased risk of aspiration pneumonia 



	
  
32	
  

documentation of PD on death certificates9 means that the cause of death in 

PD may be imprecise though (Pennington, Snell et al., 2010).   

 

Figure 4 Clinical phases of Parkinson's disease 

 
 

Adapted from Kempster et al. (Kempster, O'Sullivan et al., 2010)  

Legend: A schematic diagram illustrating how PD progresses through 

diagnosis, maintenance, complex and palliative clinical phases and these are 

approximately aligned with the corresponding HY stage. The time spent in 

each stage depends on age of onset, PD subtype and other co-morbidities.  

* There are four key disability milestones that occur within the last five 

years of life independent of the age of onset.  

 

 

1.3.5 Rate of progression  

Rate of disease progression varies considerably between individuals and is 

difficult to measure during interval clinical assessments due to the 

confounding effects of treatment (Maetzler, Liepelt et al., 2009). Examining 

patients in the placebo arms of drug trials has shown that motor deficits 

progress faster in untreated than treated cases (Fahn, Shoulson et al., 2004, 

Siderowf and Parkinson Study, 2004). The rate of progression is probably 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 Pennington et al found that only 63% of 143 deceased PD patients had PD documented 
anywhere on their death certificate (20). 
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not linear though as more rapid progression of symptoms occurs in the 

earlier stages of disease i.e 5% per year for HY stages 1 to 2.5 and 0.35% 

per year for HY stages 3-5) (Hely, Morris et al., 2005, Schrag, Dodel et al., 

2007) and is consistent with reports of exponential declines in SN counts in 

PD over time (Fearnley and Lees, 1991).  In the Sydney Multicenter Study 

of PD (Hely, Morris et al., 1999) the time to HY stage 4 was approximately 

ten years and similar to pre-levodopa cohorts (Marttila and Rinne, 1977) but 

other post-levodopa era studies suggest much longer latencies, presumably 

reflecting the heterogeneity of PD clinical subtypes (Table 2). 

 

Prior to the introduction of levodopa the mean survival time of PD was 9.4 

years after diagnosis (Hoehn and Yahr, 1967) but in the post-levodopa era 

the survival of PwPD has been roughly similar to the general population for 

the first ten years (Hely, Morris et al., 1999).  Beyond that period the study 

results are conflicting but suggest a rise in mortality of between 1.3 (Bennett, 

Beckett et al., 1996, Diem-Zangerl, Seppi et al., 2009) to 2.5 (Hely, Reid et 

al., 2008) times the background rate after 20 years.  

 

Table 2 Rate of progression of Parkinson's disease 

 HY stage 

Author, year 1 2 3 4 5 

Pre-levodopa era      

Hoehn & Yahr 1967 3 6 7 9 14 

Marttila & Rinne, 1977 - 2.9 5.5 7.5 9.7 

Post-levodopa era      

Hoehn 1983 - 9 12 12 18 

Hely, 1999 - - 3.5 8 10 

Muller, 2000 - 3 5.5 14 15 

Adapted from Poewe et al. (Poewe and Mahlknecht, 2009).  

 

Legend: The average number of years to reach each HY stage is shown for 

several longitudinal studies.  
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1.4 Aims and objectives of thesis 

This chapter has highlighted the need for new tools to aid early diagnosis 

and accurate monitoring of PD.  The incidence of PD is predicted to rise as 

the population ages and early diagnosis enables early treatment, reduced 

functional disability and improved QOL. Accurate monitoring of PD 

facilitates a drug regimen tailored to each individual that maximises 

therapeutic response without exacerbating side effects.   

 

Bradykinesia is the fundamental movement abnormality in PD - it is the 

only motor feature obligatory for diagnosis and is central to monitoring. 

However bradykinesia is a complex clinical sign and ascertainment of its 

presence and severity relies on subjective interpretation and thus may be 

imprecise. It remains an incompletely understood clinical feature as there 

have been few kinematic studies investigating bradykinesia in PD. 

 

The aim of the thesis is: 

 

• to objectively evaluate PD bradykinesia in order to inform the 

development of a device that could potentially aid clinical diagnosis, 

monitoring and investigation of PD. 

 

A study was undertaken in Leeds using a commercial movement sensor 

device to record finger-tapping (FT) movements performed by PD patients 

and healthy controls (HC). The movement data was analysed using standard 

statistical measures and purpose written software at the University of York 

called evolutionary algorithms (EA). The same study was undertaken on a 

small validation sample of PD and HC individuals in San Francisco and this 

enabled assessment of whether the Leeds results generalised to an 

independent group. 

 

The objectives of the thesis are to precisely measure FT movements in 

PwPD and HC in order to: 
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• Find out which individual component measures of bradykinesia best 

discriminate PD patients movements from HC movements.  

 

• Develop composite bradykinesia models using logistic regression to 

classify movement data into the correct diagnostic group 

 

• Develop classifiers using EA to classify movement data into the 

correct diagnostic group 

 

• Compare classification accuracy of individual component measures 

of bradykinesia, composite models of bradykinesia and EA induced 

classifiers 

 

• Correlate objective measurements of bradykinesia with subjective 

clinical grades of bradykinesia severity 

 

• Correlate objective measurements of bradykinesia with clinical 

variables of PD progression  

 

• Investigate the clinically defined characteristic features of PD 

bradykinesia using objective measures 
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Chapter 2 Diagnosis and monitoring of Parkinson’s disease 

 

2.1 Diagnosis 

2.1.1 Introduction 

Eight thousand new cases of PD are diagnosed every year in the UK and 

with an aging population the incidence is predicted to rise (Parkinson’s UK, 

2011). Accurate diagnosis of PD is the cornerstone of effective management. 

For the patient it provides information on prognosis, access to appropriate 

interventions (drugs, physiotherapy) and services (PD clinic, specialist nurse, 

benefit payments) with subsequent improvement in symptoms and QOL.  

For health systems it provides efficiency through targeting the correct 

therapies at appropriate patients and for clinical research it is critical in 

order to better understand the disease. Early diagnosis is preferable but it is 

during the preliminary stages of the disease that diagnostic accuracy is most 

uncertain as the characteristic signs, or any atypical signs, tend not to have 

evolved yet.  This chapter outlines how PD is diagnosed, the differential 

diagnosis, the accuracy of clinical diagnoses, the consequences of mis-

diagnosing PD and the diagnostic tools that may aid clinical assessment.  

 

2.1.2 How is Parkinson’s disease diagnosed?  

2.1.2.1 Overview 

Diagnosis of PD is based on clinical interpretation of symptoms and signs 

elicited through history taking and examination. The focus is on detecting 

progressive asymmetrical parkinsonism without any atypical features.  

Parkinsonism is an umbrella term for a clinical syndrome comprising 

bradykinesia and at least one of the following additional signs: tremor, 

rigidity and postural instability.  Parkinsonism therefore describes the 

clinical phenotype without specifying the cause and several conditions other 

than PD may manifest with parkinsonism, or be described as ‘parkinsonian’ 

as outlined in section 2.1.5. Diagnosing PD can be very straightforward 

when at least two cardinal motor signs are present but may be much more 

difficult in the early stages when the signs are subtle and the various 

parkinsonian syndromes have more clinical overlap.   
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2.1.2.2 Diagnostic criteria 

The UK Parkinson’s Disease Society Brain Bank Clinical Diagnostic 

Criteria (UKBBDC) were first proposed by Gibb and Lees in 1989 after 

they analysed the medical notes and pathological findings from 78 subjects 

considered to have clinical evidence of PD and 191 subjects who had 

clinical evidence of other parkinsonian syndromes (Gibb and Lees, 1989). 

In order to meet the diagnosis of “definite clinical PD” the UKBBDC (Table 

3) specifies that the subject must have parkinsonism, none of the exclusion 

criteria and have three or more of the supportive criteria. Clearly some of 

the supportive criteria cannot be met until several years after initial 

diagnosis, e.g. ‘levodopa response for at least 5 years’ and ‘clinical course 

for at least 10 years’, perhaps reflecting the fact they arose from clinic-

pathological studies and supporting the assertion that diagnostic accuracy 

improves with the passage of time.    

 

The UKBBDC have become the gold standard for clinical diagnosis of PD 

and improve clinicopathological correlation when strictly applied (Hughes, 

Daniel et al., 2001).  However clinicopathological (Hughes, Daniel et al., 

2002, Hughes, Daniel et al., 2001), longitudinal (Bajaj, Gontu et al., 2010) 

and imaging (Marshall, Reininger et al., 2009) studies have shown that 

stringent use of the UKBBDC still does not result in 100% diagnostic 

accuracy though, and these studies are discussed further in section 2.1.7. 

It is not known how carefully or frequently the UKBBDC are used in 

routine clinical practice.  Clinical acumen requires interpretation of the 

individual’s history and examination in order to reach the most likely 

diagnosis so pragmatic management may be commenced rather than 

applying inclusion and exclusion criteria rigidly.  It is conceivable that 

parkinsonian patients could have UKBBDC exclusion criteria but the 

clinician nevertheless diagnoses PD; for example the patient may have 

cerebellar signs but the clinician interprets these as related to a history of 

excessive alcohol, or they may be found to have a cerebral tumour on 

imaging but this is considered incidental to the clinical presentation. 
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Table 3 UK Parkinson's Disease Society Brain Bank Clinical Diagnostic 

Criteria 

Step 1: Diagnosis of a parkinsonian syndrome 

Bradykinesia and ≥ 1 of the following: 

                         Muscular rigidity 

                         4-6 Hz rest tremor 

                         Postural instability  

Step 2: Exclusion criteria for Parkinson’s disease 

  History of strokes with stepwise progression of parkinsonism 

History of repeated head injury or definite encephalitis 

Oculogyric crises 

Neuroleptic treatment at onset of symptoms  

More than one affected relative 

Sustained remission 

Strictly unilateral features after 3 years 

Supranuclear gaze palsy or cerebellar signs 

Early severe autonomic involvement 

Early severe dementia 

Babinski sign 

Cerebral tumour or communicating hydrocephalus on imaging 

Negative response to large doses of levodopa 

MPTP exposure 

Step 3: Supportive prospective positive criteria for PD  

(≥ 3 required for diagnosis of definite PD)  

Unilateral onset 

Rest tremor 

Progressive disorder 

Persistent asymmetry affecting side of onset most 

Excellent response to levodopa 

Levodopa induced chorea 

Levodopa response for ≥ 5 years  

Clinical course of ≥ 10 years 

Adapted from Hughes AJ et al. 1992 (Hughes, Daniel et al., 1992)  
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These sorts of decisions are commonplace in the practice of medicine and 

the ability to weigh up evidence for and against the likely diagnosis is an 

essential skill of the accomplished clinician. Nevertheless expert opinions 

are still subjective and potentially fallible as discussed further in section 

2.1.7. 

 

2.1.3 Consequences of misdiagnosing Parkinson’s disease  

From a patient’s perspective a false negative (missed or delayed) diagnosis 

of PD results in inaccurate prognosis and progressive disability due to a lack 

of treatment, or inappropriate treatment with potential AEs. This will 

become even more important if neuroprotective drugs for PD become 

available. A false positive diagnosis of PD also results in inaccurate 

prognosis and the risks of anti-parkinsonian drugs being given 

inappropriately. The consequences of both over- and under-diagnosing PD 

have a subsequent negative impact on the economics of the health and social 

systems.  In order to minimise misdiagnosis rates, NICE and the Scottish 

Intercollegiate Guidelines Network (SIGN) recommend that people in the 

UK with a possible diagnosis of PD are referred untreated to a specialist in 

movement disorders (NICE, June 2006, SIGN, January 2010). 

 

2.1.4 Clinical subtypes of Parkinson’s disease  

The clinical manifestations of PD vary considerably and this is 

acknowledged by the UKBBDC with no requirements to have all the 

features in steps one and three. The diversity of PD phenotypes is such that 

Marras and Lang have proposed that “Parkinson’s diseases” may be a more 

fitting term to encompass the various clinical entities (Marras and Lang, 

2008).  Several PD subtypes have been described based on motor 

presentation (tremor dominant and akinetic-rigid), age of onset (young and 

late onset), cognitive status (dementia, mild cognitive impairment and 

normal cognition) and rate of progression (rapid and slow).  

 

Two methods have been used to define subtypes – data-driven cluster 

analysis and empirical classification. The former involves using 

mathematical techniques to examine the associations between variables in 
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patient cohorts and then an equation or algorithm developed that groups 

together clusters of strongly associated variables. The algorithm ideally 

should then be validated on an independent sample to predict the same 

clinical subtype.  The second method, empirical classification, involves 

proposing common features of a particular subtype based on clinical 

observations.   

 

Only two data-driven cluster analysis studies have validated the subtype 

algorithm on independent samples.  In 2002 Gasporili et al. defined rapid 

and slow progression groups.  The latter had an older age of onset, 

symmetrical parkinsonism and the predominant presenting signs were 

bradykinesia-rigidity and disturbed gait (Gasparoli, Delibori et al., 2002).  

In 2006 Schrag et al. defined subtypes based on age of onset with the older 

onset patient groups having more rapid progression, less dyskinesia and less 

motor fluctuations (Schrag, Quinn et al., 2006).  

 

The most commonly used subtypes based on empirical classification are 

‘early versus late onset’ using 40 years old as the cut-off, and ‘tremor 

dominant versus non-tremor dominant’ with the latter being labelled 

‘akinetic-rigid’ by some authors and ‘postural instability gait disorder’ 

(PIGD) by others.  Patients may be allocated to motor sub-groups based on 

clinical judgement or using Unified Parkinson’s Disease Rating Scale 

(UPDRS) motor examination scores.  For example Jankovic et al. based the 

tremor dominant (TD) subtype definition on the UPDRS tremor item score 

divided by UPDRS ‘PIGD’ items score (postural instability and gait using 

examination, and walking, freezing and falls by history) with PIGD defined 

by a ratio of <=1.0, TD by a ratio of >1.5 and an ‘indeterminate’ group by a 

ratio of 1.0 -1.5 (Jankovic, McDermott et al., 1990).  

 

But even this may be an oversimplification. It is intriguing that when Lui et 

al. examined how data driven subtypes were related to empirically classified 

motor subtypes that the TD, PIGD, and indeterminate subtypes (as defined 

by Jankovic) did not classify easily into the four data driven clusters of TD, 

non-TD, rapid progression and young onset (Liu, Feng et al., 2011). Whilst 
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the data driven approach may be considered more objective, the traditional 

motor subtyping derived from empirical classification is most frequently 

used as they are simpler to apply, rely on commonly used clinical measures 

and can be easily applied retrospectively to cohorts.  

  

The differential diagnoses of PD differ for the various clinical subtypes as 

discussed in section 2.1.5.  Despite acknowledged clinical heterogeneity of 

PwPD, most studies assessing PD diagnostic accuracy or response to 

treatment have not sub-typed the subjects.  Herein lies a major drawback of 

research into aspects of PD diagnosis: the accuracy of clinical skills, 

UKBBDC or ancillary tests for diagnosing one particular PD subtype may 

be diluted by the mixture of clinical phenotypes within a cohort. 

 

 

2.1.5 Differential diagnosis of Parkinson’s disease  

The conditions most commonly misdiagnosed as PD vary depending on the 

expertise of the clinician: specialists tend to confuse PD with other 

degenerative atypical parkinsonian syndromes (Hughes, Daniel et al., 2002) 

whereas non-specialists tend to mistake PD for Essential Tremor and 

secondary causes of parkinsonism (Meara, Bhowmick et al., 1999). These 

findings may reflect referral bias though and are discussed further in Section 

2.1.7. The conditions frequently included in the differential diagnosis of PD 

are described below and the discriminating clinical features highlighted. 

 

 

2.1.5.1 Degenerative causes of parkinsonism 

There are a number of progressive neurodegenerative conditions that present 

with parkinsonism and may mimic PD.  The commonest of these are 

progressive supranuclear palsy, multiple system atrophy, cortical basal 

degeneration, dementia with Lewy bodies and Alzheimer’s disease. Apart 

from Alzheimer’s disease, they are all rarer than PD but may be clinically 

indistinct in the early stages of disease.  
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The diagnosis typically becomes clearer over time as these conditions 

respond poorly, or only temporarily to dopaminergic drugs, have a more 

rapid rate of clinical deterioration and additional signs that are atypical of 

PD emerge. Clinicopathological series suggest that 60% of cases with the 

final clinical diagnosis of degenerative parkinsonian syndrome had had their 

diagnosis revised, and 60% of the revised cases were initially diagnosed 

with PD (Hughes, Daniel et al., 2002).  This section is not exhaustive and 

there are many other degenerative causes of parkinsonism such as 

Huntington’s disease, Wilson’s disease, fragile X tremor ataxia syndrome, 

neuroacanthocytosis, and spinocerebellar ataxias but these are not included 

as they are much less commonly misdiagnosed as PD, or visa versa. 

 

Progressive supranuclear palsy 

Progressive supranuclear palsy (PSP) is characterised by symmetrical 

parkinsonism, cognitive impairment, vertical supranuclear gaze palsy, early 

falls, and bulbar dysfunction. Two clinical phenotypes are recognised – 

typical PSP (Richardson syndrome), and PSP-parkinsonism, PSP-P. The 

latter closely resembles akinetic-rigid PD especially in the early stages when 

the sole presentation may be asymmetrical parkinsonism that partly 

responds to dopaminergic drugs (Williams, de Silva et al., 2005). Also the 

age of onset is similar to PD with most cases beginning in the seventh 

decade. Two large pathological series showed that early bradykinesia was 

reported in 75% (Williams, de Silva et al., 2005) and 88% (Litvan, Agid et 

al., 1996) of patients with pathologically confirmed PSP, but closer 

inspection of bradykinesia in PSP has shown that it is subtly different to 

bradykinesia in PD as there does not seem to be any decrementing 

amplitude with repeated movements (Ling, Massey et al., 2012). Other 

differentiating features of PSP-P are marked axial rigidity and a broad-based 

gait. Nevertheless these differences may be indistinct in the early stages of 

the disease and clinicopathological and epidemiological studies show that 

PSP is frequently confused with PD (Daniel, Debruin et al., 1995).  
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Multiple system atrophy 

There are two clinical phenotypes of multiple system atrophy (MSA): MSA-

P with early predominant parkinsonism, and MSA-C with early 

predominant cerebellar signs.  Both subtypes have a degree of autonomic 

failure and over time cerebellar and parkinsonian signs progress.  Early 

MSA-P is clinically similar to PD with asymmetric parkinsonism, tremor, a 

positive response to levodopa and LID often present and age of onset is 

typically 55-60 years. However there are several atypical features that 

evolve over time: pyramidal and cerebellar signs, early falls, stridor, 

abnormal respiratory pattern, sleep disturbance and non-sustained levodopa 

response. In contrast to PD it is also unusual for a patient with MSA to 

develop dementia or hallucinations (Edwards, Quinn et al. 2008) 

 

Corticobasal degeneration 

Corticobasal degeneration (CBD) may initially be confused with PD as it 

typically presents with rigidity and parkinsonism of one limb in people aged 

over 60 years, sometimes with a jerky tremor. However as CBD progresses 

atypical features such as early falls, fixed dystonia, myoclonus, the alien-

limb phenomenon and asymmetrical cortical syndromes develop such as 

primary progressive aphasia, apraxia and cortical sensory deficits. There is a 

rapid progression of symptoms and poor response to levodopa (Edwards, 

Quinn et al. 2008). 

 

Dementia with Lewy bodies  

Dementia with Lewy bodies (DLB) is a progressive dementia syndrome 

with prominent attentional and visuospatial deficits, marked cognitive 

fluctuation, visual hallucinations and parkinsonism. PD with dementia 

(PDD) and DLB share clinical and pathological overlap and debate remains 

about whether they are different clinical manifestations on the spectrum of 

LB disease or two separate diseases (Edwards, Quinn et al. 2008). 

According to the Movement Disorders Society Consensus, in DLB the 

dementia must occur before, or within the first year, of the onset of 

parkinsonism (Emre, Aarsland et al., 2007). Therefore good history taking 
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about the temporal relationship of cognitive and motor symptoms should 

discriminate DLB from PDD.   

 

 

Alzheimer’s disease 

Alzheimer’s disease (AD) is the commonest cause of dementia and typically 

presents initially with progressive cognitive deficits in learning, recall and 

language.  Parkinsonism is well reported in AD (Hughes, Daniel et al., 1992, 

Morris, Drazner et al., 1989) and conversely AD pathology is frequently 

found in PD cases.  Indeed some authors argue that AD and PD may be two 

clinical manifestations on a spectrum of neurodegenerative disorders. In AD 

the motor signs usually develop after the onset of dementia so thorough 

history taking should differentiate the condition from PD or PDD.  

Nevertheless atypical forms of AD or the presence of AD and PD as co-

existent conditions could cause diagnostic confusion.  

 

2.1.5.2 Secondary causes of parkinsonism 

 

Drug-induced parkinsonism 

Drug induced parkinsonism (DIP) is probably the second most common 

cause of parkinsonism after PD (Wenning, Kiechl et al., 2005).  DA 

receptor blocking drugs, such as anti-psychotic and anti-emetic drugs are 

the commonest causes, but anti-epileptic and calcium channel blocking 

drugs can also cause DIP (Table 4). Usually there is a symmetrical akinetic 

rigid syndrome, but in 40-50% of cases the presentation is asymmetrical and 

includes rest tremor (Hardie and Lees, 1988, Hassin-Baer, Sirota et al., 

2001). Early orofacial dyskinesia is particularly suggestive of DIP over IPD.  

The symptoms typically improve within a few weeks of withdrawing the 

offending drug but it may take up to six months or more for complete 

resolution.  

 

DIP is frequently misdiagnosed as PD even by specialists (Esper and Factor, 

2008). For example, Esper et al. showed that neurologists diagnosed PD in 
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42% of DIP cases and started dopaminergic drugs in these subjects without 

withdrawing the offending drug (Esper and Factor, 2008).  

 

 

Table 4 Drugs that can cause parkinsonism 

Antipsychotics Anti-emetics Others 

Chlorpromazine Metoclopramide Tetrabenazine 

Haloperidol Prochlorperazine Lithium 

Flupenthixol  Sodium Valproate 

Quetiapine  Diltiazem 

Clozapine  Flunarizine 

Risperidone  Cinnarizine 

Olanzapine   

Amisulpride   

Adapted from Edwards M, Quinn N, Bhatia K. Parkinson’s Disease and 

Other Movement Disorders. Oxford University Press. 2008. p217. 

 

Vascular parkinsonism  

Vascular parkinsonism (VP) is probably the third commonest cause of 

parkinsonism  but the diagnosis remains somewhat controversial because 

BG infarcts are commonly found in elderly people with no evidence of 

parkinsonism. This means that it is difficult to prove the relationship 

between vascular damage and parkinsonism.  Moreover definite diagnosis 

requires exclusion of LBs as well as demonstration of BG vascular damage 

so technically VP is a pathological diagnosis. Nevertheless a syndrome of 

sudden onset of parkinsonism, sometimes with a step-wise progression, with 

gait disproportionately impaired compared to upper limbs, giving rise to the 

name ‘lower half parkinsonism’, is recognised in people with small vessel 

disease and deep subcortical infarcts.  A wide based gait, frequent freezing, 

symmetrical parkinsonism and early cognitive impairment may point 

towards a diagnosis of VP rather than PD (Wenning, Kiechl et al., 2005). 
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Other secondary causes of parkinsonism 

There are other less common causes of parkinsonism such as toxins (e.g. 

carbon monoxide, manganese, solvents), metabolic disorders (e.g. Wilson’s 

disease, hypoparathyroidism and hypoxia), infections (e.g. influenza, HIV 

and Epstein Barr virus) and normal pressure hydrocephalus (NPH) that may 

cause symmetrical parkinsonism. These conditions can usually be 

discriminated from PD by their accompanying neurological or systemic 

symptoms and a history of illness or exposure prior to the onset of 

parkinsonism. Space occupying lesions (SOL) such as tumours and vascular 

malformations of the BG may result in contralateral parkinsonism, often 

with additional pyramidal signs.  

 

2.1.5.3 Tremulous movement disorders 

The classical 4-6 Hz asymmetrical ‘pill-rolling’ tremor of PD occurs at rest, 

re-emerges on posture and disappears on action (Jankovic, Schwartz et al. 

1999). It contrasts sharply with the 8-10Hz fine amplitude symmetrical 

postural tremor of Essential tremor (ET) and the typically jerky large 

amplitude task-specific tremor of dystonia. Therefore one would expect the 

discrimination of PD from ET or dystonia to be straightforward and often it 

is. However the tremors may present with less ‘stereotypical’ 

phenomenology and severe tremor may also interfere with interpretation of 

bradykinesia assessments, making it remarkably difficult to clinically 

separate the disorders especially in the elderly or when mono-symptomatic 

(Jankovic, Schwartz et al. 1999, Bajaj Schneider et al. 2010) 

 

Essential tremor 

ET is a syndrome of bilateral, largely symmetrical tremor of 8-10Hz that 

affects the hands and forearms and is predominantly postural and to a lesser 

extent kinetic.  Sometimes in severe cases it is also present at rest. It is three 

times more common than PD and the average age of onset is in the fifth 

decade (Bain, Findley et al., 1994, Rajput, Offord et al., 1984). The tremor 

usually occurs immediately on outstretching the arms whereas in PD there 

may be latency for tremor occurrence; Jankovic termed this a “re-emergent 

tremor” (Jankovic, Schwartz et al., 1999) and Schwingenschuh found this 
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had 100% specificity (but only 56% sensitivity) for PD compared to other 

tremulous movement disorders (Schwingenschuh, Schneider et al., 2010).  

However clinical discrimination of ET from PD on this basis is contentious 

with Brooks et al. (Brooks, Playford et al., 1992) concluding that the 

postural upper limb tremors of ET and PD were “clinically and 

electrophysiologically indistinguishable”, and Bajaj et al. not finding any 

significant difference in latency of postural tremor between PD and ET 

cases (Bajaj, Gontu et al., 2010). To complicate matters further a resting 

tremor, asymmetry and mild indeterminate parkinsonian features can occur 

in ET (Rajput, Rozdilsky et al., 1993, Chaudhuri, Buxton-Thomas et al., 

2005) and conversely an immediate 6-8 Hz postural tremor may occur in PD.  

 

Hence ET and TD-PD can be difficult to distinguish and one study reported 

that 20% of ET patients were misdiagnosed with PD (Louis, Levy et al., 

2001). Reciprocally, when patients with a previous diagnosis of ET were 

assessed by a specialist, 18% had their diagnosis revised to PD; these 

patients were more likely to have leg tremor or asymmetric arm tremor than 

those whose diagnosis of ET was confirmed (Jain, Lo et al., 2006). Other 

clinical clues in subjects with apparent mono-symptomatic tremor that point 

towards a diagnosis of ET are alcohol sensitivity, an autosomal dominant 

family history and vocal tremor (Bain, Findley et al., 1994). 

 

Dystonic tremor 

Dystonic tremor (DT) is typically an asymmetric jerky postural and kinetic 

tremor that affects one upper limb or the neck muscles and is associated 

with dystonia. However DT may mimic PD as the dystonia may be subtle, 

the tremor may occur at rest and the time to re-emergence on posture is not 

significantly different in DT and PD patients (Bajaj, Gontu et al., 2010).   

 

It may be more difficult to interpret true bradykinesia in PD from slowness 

of movement in DT due to the tremor interrupting the normal flow of 

movement. Furthermore slow and small movements have been reported in 

DT patients, but in contrast to PwPD there is no decrement in size or speed 

of movements (Bhatia, Schneider et al., 2010, Schneider, Edwards et al., 
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2007). Conversely, dystonia can occur in untreated PD patients, particularly 

in young onset autosomal recessive genetic parkinsonism (Khan, Graham et 

al., 2003).   

 

Scans without evidence of dopaminergic deficit (SWEDDs) 

Three large drug trials that used functional dopamine imaging (see sections 

2.1.8) as markers of PD progression found unexpectedly that 4-15% of 

recruited patients with early PD had ‘scans without evidence of 

dopaminergic deficit’ (SWEDDs) (Fahn, Shoulson et al., 2004, Parkinson 

Study Group, 2002, Whone, Watts et al., 2003). Considerable debate ensued 

as to the likely explanation for this – did these subjects have PD but the 

scans had not been able to detect the nigrostriatal degeneration or did they 

have PD without nigrostriatal degeneration or had they been erroneously 

clinically diagnosed with PD and had a different condition altogether? 

These subjects have been followed up longitudinally but in the vast majority 

of cases the scans have remained normal.  

 

Careful examination of the SWEDD subjects has since shown that there is 

considerable clinical overlap with PD. Swingenschuh et al. compared 25 

SWEDDs with asymmetric rest tremor to 25 TD PD patients and the most 

discriminating clinical features were fatiguing of amplitude and velocity 

during repetitive finger and leg tasks: a combination of both resulted in a 

sensitivity/specificity of 0.84/0.96 for PD.  Interestingly, dystonia and other 

components of bradykinesia (reduced speed and amplitude) only had 

moderate diagnostic accuracy (Swingenschuh, Schneider et al., 2010). In 

summary SWEDDs is an umbrella term that is applied to subjects with 

tremulous movement disorders who have overlapping features with PD but 

normal functional dopamine scans and SWEDD cohorts probably comprise 

mostly DT and ET subjects. 

 

2.1.6 How is diagnostic accuracy measured?  

2.1.6.1 True positives and negatives  

The diagnostic accuracy of a test is the ability to discriminate diseased cases 

from normal cases.  It is unusual for a clinical test to perfectly separate 
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subjects with the disease from subjects without the disease as most 

physiological variables have a range in the diseased group that overlaps 

with the range in the healthy group. Additionally there may be imperfect 

discrimination of diseased and healthy cases due to the test having limited 

ability to detect subtle differences between the groups.   

 

The threshold level is a cut-off point that defines a positive versus negative 

test result. Ideally it would perfectly distinguish between healthy and 

diseased groups by allocating a positive test result to all subjects with the 

disease and a negative result to all subjects without the disease. More often 

the following scenario occurs though (Figure 5): some of the subjects with 

the disease will test positive and these are known as true positives (TP), but 

some subjects without the disease also test positive, and these are known as 

false positives (FP). Similarly there will be some subjects without the 

disease who have a negative test, known as true negatives (TN) but also 

some subjects with disease who test negative, known as false negatives (FN).  

Table 5 compares test outcomes with disease states to summarise the main 

aspects of diagnostic accuracy (Altman and Bland, 1994c).  

 

Figure 5 The trade off between sensitivity and specificity 

 
Legend: The threshold of a test determines when a test result is positive i.e. 

signifying disease is present and when it is negative signifying disease is not 

present. Higher thresholds (i.e. moving to the right) results in lower 
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sensitivity (because some true positives are not ‘detected’) but higher 

specificity (because more true negatives are included). The opposite is true 

with lower threshold test cut off points.  

 

Table 5 Comparison of test outcome with disease state 

 

 

 

 

 

Abbreviations: TP, true positive; FP, false positive; FN, false negative; TN, 

true negative 

 

 

2.1.6.2 Sensitivity and specificity  

The diagnostic accuracy of a test is frequently expressed by the sensitivity 

and specificity. Sensitivity is the probability of the test being positive when 

disease is present and can be calculated as: 

 

Sensitivity = TP/ (TP + FN) 

 

A test with perfect sensitivity will detect all diseased subjects and this 

would be described as having 100% sensitivity, or a sensitivity of 1.0.   

Alternatively the probability of the test being negative when disease is not 

present is termed the ‘specificity’ and can be calculated as follows:  

 

Specificity = TN/ (TN + FP) 

 

A test with perfect (100% or 1.0) specificity will detect all healthy subjects, 

allocating a negative test result to them. There is a trade-off between 

sensitivity and specificity depending on the threshold level. In Figure 5 it 

can be seen that a higher threshold (moving the level towards the right) 

  Disease 

  Present  Absent 

Test 
Positive TP FP 

Negative FN TN 
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would result in less TP and FP, and more TN and FN. This would have the 

following effect: 

 

Sensitivity = êTP/(êTP + éFN) = lower 

 

Specificity = éTN/(éTN + êFP) = higher 

 

This may be appropriate if it was important to not erroneously diagnose a 

particular disease in a healthy subject, but the trade off is that some subjects 

with the disease would be ‘missed’ and receive a FN result. The reverse 

pattern would occur if the threshold were moved to the left in Figure 5 i.e. a 

lower level, resulting in more diseased cases testing positive (i.e. higher 

sensitivity) but some healthy cases also testing positive (lower specificity) 

(Altman and Bland, 1994c). 

 

 

2.1.6.3 Receiver operating characteristic (ROC) curves  

Receiver operating characteristic (ROC) curves summarise the sensitivity 

and specificity trade-offs for the complete range of possible threshold levels 

and hence can be a succinct method of presenting comprehensive 

information on diagnostic accuracy.  

 

In a ROC curve the TP rate (sensitivity) is plotted against the FP rate (1 

minus specificity) for different cut-off points (Figure 6). Each point on the 

curve is a sensitivity/specificity pair for a particular cut-off point. This 

means that the diagnostic accuracies of a test can be evaluated at a range of 

thresholds. Additionally the area under the ROC curve (AUC) quantifies 

overall how well the test distinguishes between two groups – it is measured 

between 0.5 to 1.0 with an AUC of 1.0 implying perfect sensitivity and 

specificity and an AUC of 0.5 implying no better than chance (50% 

sensitivity and specificity); this means that direct comparisons may be made 

between multiple diagnostic tests (Altman and Bland, 1994b). 
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Figure 6 Receiver Operating Characteristic curves 

 
 

Adapted from Zou K et al. 2007 (Zou, O'Malley et al., 2007) 

Legend: Curve A represents the perfect test with 100% sensitivity and 

100% specificity and an AUC of 1.0. Curve B is a typical curve for a 

diagnostic test showing the trade off between sensitivity and specificity at a 

range of thresholds, and an AUC of 0.85. Curve C represents a test that has 

50% sensitivity and 50% specificity, and an AUC of 0.5.  

 

 

2.1.6.4 Positive and negative predictive values  

The limitation of using measures of sensitivity and specificity is that they do 

not provide information on how likely a test result gives the correct 

diagnosis. This is critical information for a diagnostic test to be useful and is 

given by positive predictive value (PPV) and negative predictive value 

(NPV). The PPV is the proportion of positive test results that are TP and it 

may be calculated as: 

 

PPV = TP/ (TP + FP) 

 

The NPV is the proportion of subjects with a negative test result that are TN 

and may be calculated as: 

Curve&A&

Curve&B&

Curve&C&

Se
ns
i&
vi
ty
*

0*
0*

1.0*

1.0*0.5*

0.5*

1*minus*specificity*



	
  
53	
  

 

NPV = TN/ (TN + FP) 

 

However PPV and NPV depend on the prevalence of the condition so these 

straightforward calculations can only be applied when TP and FP are 

derived from population-based studies. In other types of studies, the 

prevalence needs to be incorporated into the calculations as follows: 

 

PPV =     (sensitivity)(prevalence) 

 ______________________________________________ 

 (sensitivity)(prevalence) + (1-specificity)(1-prevalence) 

 

 

 

NPV =   (specificity)(1-prevalence)  

 ______________________________________________ 

 (specificity)(1-prevalence) + (1-sensitivity)(prevalence) 

 

 

Thus PPV is directly proportional, and NPV is inversely proportional, to the 

prevalence of the disease.  As PD affects approximately 1% of people aged 

over 60 years the PPV of a test used for screening in the general population 

will tend to be low, and the NPV high, even if the sensitivity and specificity 

are very high. Ideally a test would have high PPV and a high NPV so that 

one would have confidence that a positive result was indicative of a disease 

being present and a negative result indicated that the disease was absent but 

like sensitivity and specificity there tends to be a trade off between PPV and 

NPV depending on the threshold chosen and the prevalence of the disease in 

the population being tested (Altman and Bland, 1994a).   

 

2.1.7 Previous studies of clinical diagnostic accuracy in PD  

Looking at PD specifically there are two main types of diagnostic error 

namely over-diagnosis, due to erroneously diagnosing PD in non-PD cases 

(FP), and under-diagnosis due to not diagnosing PD in cases of PD (FN). 
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The approaches used to study the accuracy of clinical diagnosing PD 

include assessing clinical diagnosis against pathological findings, expert 

clinical assessment, and/or imaging and these studies are discussed further 

in this section. 

 

2.1.7.1 Clinical diagnosis assessed against pathological diagnosis 

The gold standard diagnosis of PD is pathological and depends upon finding 

reduced numbers of pigmented SN neurons and the presence of LBs. Five 

studies comprising 507 patients have assessed the accuracy of the final 

clinical diagnosis given by movement disorders specialists before death 

against the pathological diagnosis (Hughes, Daniel et al., 2002, Hughes, 

Daniel et al., 1992, Hughes, Daniel et al., 2001, Litvan, MacIntyre et al., 

1998, Rajput, Rozdilsky et al., 1991) and two of these, Litvan et al. (Litvan, 

MacIntyre et al., 1998) and Rajput et al. (Rajput, Rozdilsky et al., 1991) 

also compared the initial clinical diagnosis to the PM findings.  

 

In the 1990s Rajput et al. (Rajput, Rozdilsky et al., 1991) and Hughes et al. 

(Hughes, Daniel et al., 1992) both published studies that showed clinical 

diagnosis of PD made by consultant neurologists was confirmed in 76% of 

cases at autopsy. Rajput et al. (Rajput, Rozdilsky et al., 1991) examined the 

brains of 65 subjects diagnosed with parkinsonism in life and confirmed the 

diagnoses pathologically in 31/41 subjects diagnosed with PD. Hughes et al. 

(Hughes, Daniel et al., 1992) compared the pathological findings of 100 

patients diagnosed with PD and confirmed the diagnosis in 76 of these; 24 

cases had other pathological diagnoses such as PSP, MSA, AD, and 

vascular disease.  In a later study Hughes et al. retrospectively applied the 

UKBBDC to the same cases and 11 cases were found not to fulfil the 

diagnostic criteria for PD and 8 of these had non-PD pathological findings 

thereby improving the diagnostic accuracy to 82% (Hughes, Daniel et al., 

2001).  However 16 of the 24 cases with non-PD pathological findings still 

fulfilled the criteria, highlighting the limitations of diagnosing PD clinically, 

even with stringent diagnostic criteria. It also raises the question of whether 

the clinical syndromes of PD may have separable pathologies.  
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The five pathological studies taken together suggest that clinical diagnosis 

in the early stages of PD has good sensitivity (at least 0.90) but poor 

specificity (0.42-0.77) (Hughes, Daniel et al., 2002, Hughes, Daniel et al., 

1992, Hughes, Daniel et al., 2001, Litvan, MacIntyre et al., 1998, Rajput, 

Rozdilsky et al., 1991). Over time, and with progression of the disease the 

diagnostic accuracy improves to a final diagnosis sensitivity of 0.91-0.94 

and specificity of 0.62-0.98.  Whilst pathological diagnosis is considered the 

gold standard reference it is prudent to note that referral bias is a 

confounding factor in clinic-pathological studies as disproportionately high 

numbers of atypical parkinsonian cases and akinetic-rigid syndromes are 

referred. 

 

2.1.7.2 Clinical diagnosis assessed against specialist assessment  

In two community studies, movement disorder specialists clinically assessed 

people previously diagnosed with PD to determine the accuracy of the 

initial diagnosis (Meara, Bhowmick et al., 1999, Schrag, Ben-Shlomo et al., 

2002).  In 1999 Meara et al. (Meara, Bhowmick et al., 1999) examined 402 

people with presumed PD who were identified through North Wales GP 

practice electronic records as recipients of anti-parkinsonian medication. 

Cases of DIP due to neuroleptic drug treatment of mental illness were 

excluded. GPs had made the diagnosis in 59% of cases and a specialist in 

the other 41%. The mean PD duration of all cases was 8 years. The subjects 

were assessed by a specialist in movement disorders and their diagnosis 

based on history, examination, medical records review and application of 

UKBBDC.  

 

A diagnosis of definite PD was confirmed in 53% of cases and 

‘parkinsonism’ in 74% of all cases. Of the parkinsonism cases 71% were 

classified as ‘clinically probable PD’ (but not strictly fulfilling UKBBDC) 

16% as ‘other parkinsonian degenerative conditions’ such as PSP and MSA, 

and 13% as DIP.  Twenty six per cent of subjects had no evidence of 

parkinsonism though and the diagnosis was revised to ET, VP and AD in 

48%, 36% and 16% of these cases respectively. This study highlighted the 
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high misdiagnosis rates of PD and parkinsonism in the community despite 

fairly long disease durations. 

 

In 2002 Schrag et al. (Schrag, Ben-Shlomo et al., 2002) published a similar 

community study. The electronic records from several London GP practices 

were used to find all subjects diagnosed with PD or parkinsonism, all people 

taking anti-parkinsonism medications and all patients with tremor aged over 

50 years. Patients with dementia prior to the onset of parkinsonism or those 

who had received neuroleptic drugs within six months of the onset of 

parkinsonism were excluded. Two hundred and two patients were identified 

with 131 of these diagnosed with PD.  Seventy eight per cent of subjects 

diagnosed with PD had previously seen a specialist.  

 

A movement disorders specialist assessed the subjects using history-taking, 

examination, questionnaires and application of UKBBDC then confirmed 

the diagnosis of PD in 85% of the 131 patients and rejected it in 15%.  The 

most common conditions that had been diagnosed as PD were VP, PSP, 

non-PD tremor, and MSA. Seventy eight per cent of patients with non-PD 

diagnoses had this confirmed by the specialist. This study showed that 

although the majority of patients had previously seen a specialist, other 

parkinsonian disorders and tremulous movement disorders were frequently 

confused with PD.   

 

In both studies there are several limitations.  Firstly, the method of 

ascertainment did not account for undiagnosed subjects (and also untreated 

subjects in Meara’s study) and door-to-door prevalence studies have shown 

that this group may account for 12-60% of all people with PD (deRijk, 

Tzourio et al., 1997, Schoenberg, Anderson et al., 1985). Also the exclusion 

criteria will have resulted in under-representation of AD, DLB and DIP. The 

reference standard was specialist clinical diagnosis rather than pathological 

or other objective assessments such as functional DA imaging. This means 

that the standard against which clinical diagnoses have been assessed is also 

subjective and imperfect: the clinicopathological studies described in 

section 2.1.7.1 demonstrated that even movement disorders specialists 
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strictly applying UKBBDC do not have 100% diagnostic accuracy. Indeed 

in Bajaj et al. a study (Bajaj, Gontu et al., 2010), which is outlined below, 

the inter-rater reliability of two movement disorders specialists was 

remarkably low (kappa coefficient 0.24) even when accounting for the fact 

that the patients were ‘difficult’ clinically indeterminate cases and diagnoses 

were based on videoed examinations.  

 

2.1.7.3 Clinical diagnosis assessed against functional dopamine imaging 

Dopamine active transporter (DaT) scans give a measure of the number of 

presynaptic dopaminergic terminals in the striatum. The uptake of dopamine 

ligands is reduced in PD and other parkinsonian conditions relative to age 

matched controls and are discussed further in section 2.1.8.  

 

In 2009 Marshall et al. published the results of a longitudinal multi-centre 

study that compared clinical diagnosis to DaT scan results. Ninety-nine 

patients who had clinically indeterminate parkinsonism or tremor were 

assessed using a videoed UPDRS motor examination and a DaT scan at 0, 

18, and 36 months after referral (Marshall, Reininger et al., 2009).  The 

reference diagnosis was a consensus opinion of two movement disorders 

specialists (blinded to DaT scan results) made at 36 months using the 

videoed UPDRS examinations and all previous clinical information.  The 

authors compared the initial clinical diagnosis (0 months) made by two 

raters of the videoed assessment (who were blinded to the DaT scan result) 

to this reference diagnosis. They showed that 54% of patients diagnosed as 

non-PD at 3 years were diagnosed with PD initially. The sensitivity/ 

specificity values for initial clinical diagnosis were 0.93/ 0.46 and for initial 

DaT scan imaging were 0.78/ 0.97. So compared to imaging the initial 

clinical assessment had higher sensitivity but lower specificity resulting in 

PD being over-diagnosed. The sensitivity and specificity of the diagnosis 

improved at 18 and further at 36 months confirming that clinical diagnosis 

becomes more accurate over time.  

 

Bajaj et al. examined how accurately two movement disorders specialists 

distinguished TD PD patients from other tremulous movement disorders 
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(Bajaj, Gontu et al., 2010). The specialists (blinded to history and 

investigation results) viewed videos of 38 subjects being examined using the 

motor section of UPDRS and allocated a diagnosis of PD or non-PD with 

the latter diagnostic group sub-divided into ET, DT, mono-symptomatic rest 

tremor and atypical tremor. These diagnoses were compared to the clinical 

diagnosis made by a third movement disorder expert, Bajaj, who had based 

it on history, examination, DaT scan results, long term follow up over three 

years and response to dopaminergic medication.  

 

The sensitivity/ specificity for diagnosing PD was 0.72/ 0.86 and 0.93/ 0.79 

for each specialist respectively and they had lower inter-rater agreement. 

The most common reason for erroneously diagnosing PD, in 8 out of 10 

false positive diagnoses, was mis-interpretation of the bradykinesia items of 

the UPDRS especially in DT cases. It is likely that this study under-

estimated the diagnostic accuracy of specialists though as these cases were 

not representative of routinely seen clinical cases, all being clinically 

indeterminate initially.  Additionally the experts were hindered by the lack 

of ‘hands on’ physical examination which meant they could not examine for 

rigidity or indeed had any details from the history.  

 

2.1.7.4 Diagnostic accuracy assessed with longitudinal follow-up 

It is not surprising that the accuracy of clinical diagnoses improves with the 

passage of time as symptoms and signs increase in severity and frequency.  

SIGN highlights this point explicitly to doctors working in NHS Scotland: 

 

 “Clinicians should be aware of the poor specificity of a clinical diagnosis 

of Parkinson’s disease in the early stages of the disease, and consider this 

uncertainty when giving information to the patient and planning 

management.”  

(SIGN, January 2010) 

 

Therefore another approach to assessing diagnostic accuracy of PD is to 

compare the initial diagnosis to diagnoses made during longitudinal follow 

up. Many of the studies described above have incorporated an element of 



	
  
59	
  

this comparing and often using the later diagnosis as the gold standard.  For 

example, Rajput et al. (Rajput, Rozdilsky et al., 1991) retrospectively 

compared the clinical notes to pathologically confirmed cases of PD and 

found that the clinical diagnosis was correct in 65% of cases when it was 

made within five years of symptom onset but this improved to 76% of cases 

12 years after symptom onset.  In the community studies (Meara, 

Bhowmick et al., 1999, Schrag, Ben-Shlomo et al., 2002) it could also be 

argued that some of the initial diagnoses were revised not solely because of 

the expertise or thoroughness of the specialist assessor but rather because 

they benefitted from evaluating the disease at a more progressed stage.  

 

Clinical trials also facilitate longitudinal clinical information to be extracted 

for large groups of subjects: for example in the Deprenyl and Tocopherol 

Antioxidative Therapies for Parkinson Disease (DATATOP) study 800 

patients with mild early parkinsonism were diagnosed with PD and enrolled 

but 8.9% of these were later reported to have a different diagnosis (Jankovic, 

Rajput et al., 2000). These studies highlight the importance of reviewing the 

diagnosis periodically especially for atypical signs that may take some time 

to evolve.  

 

2.1.7.5. Diagnostic accuracy according to expertise of clinician  

In Schrag’s study 74% of PD diagnoses had been made by a specialist 

(neurologist or geriatrician) and 26% by a GP and she showed that GPs 

overall had lower diagnostic accuracy (sensitivity/specificity of 0.74/0.79) 

than specialists (0.94/0.65) (Schrag, Ben-Shlomo et al., 2002). The GPs 

diagnoses of PD had a lower PPV than specialists (0.74 vs. 0.89) but similar 

NPV (0.77 vs. 0.79). However the authors speculate that the discrepancy in 

diagnostic accuracy between the groups may be even greater than this 

because the specialists were likely to have been referred disproportionately 

more of the difficult cases.  On the other hand the specialists were likely to 

have seen the cases later on and hence have the benefit of the signs being 

more progressed.    
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The importance of expertise was emphasised in Hughes et al.’s 2002 

clinicopathological study (Hughes, Daniel et al., 2002). In this, 143 brains 

of patients who had been diagnosed by ‘super-specialist’ neurologists 

working at a tertiary referral centre were examined and the pathological 

diagnosis compared to the clinical diagnosis.  The diagnostic accuracy was 

much higher than in previous series with the clinical diagnosis of PD 

confirmed in 72/73 cases (sensitivity of 0.91) and there were only seven 

FNs, (specificity of 0.90).  

 

This study is clearly not representative of most hospitals, or even regional 

neuroscience centres, though as approximately half the cases had non-PD 

parkinsonian diagnoses.  The authors succinctly summarise the benefits of 

clinical expertise over diagnostic criteria: 

 

 

“It is interesting that the diagnostic accuracy exceeded that claimed for 

most clinical diagnostic criteria and suggests that neurologists with 

experience in movement disorders are better at correctly eliciting and 

interpreting key clinical features. This study implies that neurologists with 

particular expertise in the field of movement disorders may be using a 

method of pattern recognition for diagnosis which goes beyond that 

inherent in any formal set of diagnostic criteria.”   

(Hughes, Daniel et al., 2002) 

 

 

Furthermore the types of diagnostic errors made by specialists and GPs have 

been shown to be different.  In the community studies GPs tended to 

confuse PD with non-parkinsonian conditions, such as ET, whereas 

specialists tended to confuse PD with other neurodegenerative parkinsonian 

conditions (Meara, Bhowmick et al., 1999, Schrag, Ben-Shlomo et al., 

2002). The former is considered a more serious diagnostic error because the 

conditions respond to different treatments and hence patients would be 

inappropriately treated.  
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2.1.8 Diagnostic tools  

The various parkinsonian conditions and tremulous movement disorders 

have most overlap during the early stages so it may be difficult to make a 

confident diagnosis of PD based solely on clinical assessment. One 

approach is ‘watchful waiting’ for a period of time (often 6 to 12 months) 

until the symptoms have progressed enough to make the diagnosis with 

more certainty. In cases where this method is unacceptable to the patient or 

clinician, or the interval review has not helped, ancillary tests may be 

employed to supplement clinical assessment and aid diagnosis.  

 

In this section the diagnostic tools are discussed in the context of the studies 

that were undertaken to assess them. It is important to note that most tools 

have been tested in subjects with established PD so the diagnostic accuracy 

in early disease may not have been confirmed. Also most subjects involved 

in the studies have not had their clinical diagnoses confirmed at autopsy, 

rather the gold standard diagnosis has been established through longitudinal 

clinical follow up and/or blinded specialist assessment.   

 

For patients in England and Wales NICE guidelines recommend:  

 

“PD should be diagnosed clinically and based on the UK Parkinson's 

Disease Society Brain Bank Criteria”   

 

but advises that the following ancillary tests may be considered:  

 

“123 I-FP-CIT SPECT should be considered for people with tremor where 

essential tremor cannot be clinically differentiated from parkinsonism.” 

“Structural MRI may be considered for the differential diagnosis of 

parkinsonian syndromes.”  

 

 

All other tests outlined below are not recommended in routine clinical 

setting and remain research tools.  
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2.1.8.1 Structural imaging 

CT brain scans are not routinely recommended as they are usually normal in 

PD or reveal incidental BG calcification or age-related changes such as 

generalised atrophy. They may be a helpful investigation if there are other 

neurological signs suggesting NPH or SOL.  Structural MRI brain scans can 

sometimes help to differentiate PD from other degenerative parkinsonian 

conditions such as MSA, PSP and CBD. However characteristic MRI 

changes usually only occur at later stages of the disease, when the clinical 

diagnosis is already apparent from the atypical physical signs. 

 

Diffusion weighted imaging (DWI) MRI has demonstrated abnormalities in 

the water content of the putamen in 90% of MSA and PSP cases but is 

normal in PD (Nicoletti, Lodi et al., 2006). MSA has also been 

discriminated from PSP on DWI by increased signal in the superior and 

middle cerebellar peduncles respectively (Paviour, Thornton et al., 2007). 

These studies suggest that DWI sequences may have potential as a future 

ancillary diagnostic tool.  Other newer MRI techniques have demonstrated 

abnormalities of the SN of PD patients: 7 Tesla MRI revealed changes in 

the morphology (Politis, Oertel et al., 2011), and diffusion tensor imaging 

MRI detected abnormalities of water flow (Vaillancourt, Spraker et al., 

2009) but these methods currently remain research tools only. 

 

Transcranial ultrasound (TUS) imaging has revealed increased signal or 

‘hyperechogenicity’ of the SN in 90% of PD patients compared to 10% of 

HCs (Berg, Siefker et al., 2001); see Figure 7. The test lacks specificity 

though and other degenerative causes of parkinsonism show high rates of 

hyperechogenicity too e.g. 40% PSP (Behnke, Berg et al., 2005) and 88% 

CBD (Walter, Dressler et al., 2004).  Also TUS is a highly operator- 

dependent imaging technique with subjective variation in practice and 

interpretation and approximately 10% of Caucasians have a temporal bone 

that does not allow TUS assessment (Berg, 2011).  
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Figure 7 Transcranial ultrasonography of substantia nigra 

 
Reproduced with permission from Berg D, 2011 (Berg, 2011) 

 

Legend: (b) The midbrain (surrounded by a dotted line) of a HC with 

normal echogenicity of the SN (encircled ipsilaterally with dotted line and 

marked with arrows contralaterally); (c) In a PwPD the area of 

hyperechogenicty at the anatomical site of the SN is enlarged (encircled 

ipsilaterally with dotted line and marked with arrows contralaterally); 

 

 

2.1.8.2 Functional imaging techniques 

Over the last decade, single photon emission computed tomography 

(SPECT) imaging of the striatal DaT activity has played an important role in 

supporting, or refuting, a clinical diagnosis of PD.  The scan, involves 

injecting a radionuclide into the patient’s vein and then 3-6 hours later 

performing a SPECT head scan to image the uptake in the nigrostriatal 

(presynaptic) nerve endings. Two tracers are commonly used – beta-CIT 

and iodine123 labelled ioflupane (FP-CIT).10 The patient must also be given 

potassium bromide two hours before and 24 hours after the radionuclide 

injection to minimise thyroid uptake of radio-iodine and thereby protect 

against iatrogenic hypothyroidism. The radiation dose per scan is equivalent 

to one year’s background radiation exposure or one CT chest scan. Patients 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 A DatSCAN is the trade name for SPECT imaging of FP-CIT 

indicates the true negative rate. With regard to ultrasound,

this means the rate of subjects who do not have PD and do
not have the echo feature SN hyperechogenicity. To rea-

sonably apply sonography in the diagnosis of PD, knowl-

edge of its specificity is of utmost importance. Moreover,
ultrasound features that additionally help in the discrimi-

nation of PD and other disorders associated with SN

hyperechogenicity need to be known.
This article gives an overview on the finding of SN

hyperechogenicity in PD and other disorders.

Assessment of SN echogenicity and pitfalls
for the interpretation of data

The SN is visualized in the mesencephalic brainstem plane
with a high-end (important for a sufficient B-mode reso-

lution) ultrasound machine equipped with a 1–4-MHz

transducer (Fig. 1). For the investigation, the patient is
posed in supine position, and the probe is placed consec-

utively at both temporal bone windows. In the nearly axial

section through the midbrain the butterfly-shaped hypoe-
chogenic midbrain can easily be delineated from the highly

echogenic basal cisterns using a penetration depth of

14–16 cm, a dynamic range of 45–55 dB, and the contour
amplification set to medium or high. At the anatomical site

of the SN, small spots or lines of hyperechogenicity can

usually be delineated in healthy subjects. So far, hyper-
echogenicity cannot be quantified in terms of signal

intensity; instead, the area of hyperechogenicity is encir-

cled manually and thereby measured planimetrically (see
also Berg et al. 2006, 2008; Walter et al. 2007a).

In the many studies published after the first report on SN

hyperechogenicity in PD of (Becker et al. 1995) prevalence
of this echofeature in idiopathic PD varies between 68 and

99% (Vlaar et al. 2009) depending on (1) the definition of

hyperechogenicity, (2) the applied ultrasound machine and
quality of the temporal bone window, and (3) the experi-

ence of the investigator.

Ad (1): Before planimetric measurement of the SN was
established, semiquantitative assessment was used. While

Becker et al. (1995) used a 3-point rating scale to classify
the area of increased signal brightness at the anatomical

region of the SN, others applied a 5-point rating scale

(Ressner et al. 2007; Bártová et al. 2010). To overcome the
limitations of subjectivity and inaccuracy, a method

allowing more accurate comparison was sought, leading to

the establishment of planimetric measurement of the SN
(Berg et al. 1999, 2001a; b). According to consensus

guidelines, a marked SN hyperechogenicity is currently

considered if the planimetrically measured echogenic area
exceeds a pre-defined cut-off value defined by the 90th

percentile of measures in the normal population. A mod-

erate SN hyperechogenicity is considered if the measured
area ranges in between the 75th and 90th percentile of

measures in normal population (Berg et al. 2006, 2008;

Walter et al. 2007a). However, not all reports adhere to this
definition, especially not some of those from before the

consensus guidelines were established (Behnke et al.

2005). Attempts to quantify the signal intensity at the SN,
e.g. measurement of the image brightness of a region of

interest (ROI) in comparison with other parts of the

brainstem, did not lead to the same classification accuracy
for PD as planimetric measurements of areas of increased

Fig. 1 The mesencephalic
brainstem is scanned parallel to
the orbito-meatal line (a). b The
mesencephalic brainstem
(surrounded by dotted line) of
a healthy control with normal
echogenicity of the SN
(encircled ipsilaterally and
marked with arrows
contralaterally). In a patient
with Parkinson’s disease (PD),
the area of hyperechogenicity at
the anatomical site of the SN is
enlarged (c) (encircled
ipsilaterally and marked with
arrows contralaterally)

454 D. Berg

123



	
  
64	
  

are required to stop certain drugs for several days before the scan as they 

may interfere with FP-CIT uptake and each scan costs approximately £1000 

(Bajaj, Hauser et al. 2013, UCL 2013).  

 

The clinical diagnosis of PD is supported if there is reduced specific binding 

of FP-CIT in the contralateral striatum to the parkinsonian limb. The scans 

are sensitive to the early stages of PD as there is typically 40 – 50% loss of 

striatal DaT before the motor symptoms of PD present (Bernheim.H, 

Birkmaye.W et al., 1973, Kaufman and Madras, 1991), (Benamer, Oertel et 

al., 2003)). Furthermore abnormal SPECT scans in subjects with olfactory 

deficit (Ponsen, Stoffers et al., 2004) or rapid eye movement sleep 

behaviour disorder (RBD)11 (Postuma, Gagnon et al., 2009, Stiasny-Kolster, 

Doerr et al., 2005) who later develop PD suggests they are also sensitive in 

the premotor phase.   

 

However they are not specific for PD and may be positive in other 

degenerative parkinsonian conditions and also in VP if there is a striatal 

dopaminergic deficit (Table 6).  Some studies have suggested that FP-CIT 

SPECT scans can differentiate PSP, CBD, MSA and DLB from PD but 

generally the subjects assessed did not have early stage disease and signs 

were well developed (Filippi, Manni et al., 2006, Matsui, Udaka et al., 

2005) so they are not used clinically for differential diagnosis of 

degenerative parkinsonian conditions.  NICE and SIGN recommend that 

FP-CIT SPECT imaging is only used to aid diagnosis if there is clinical 

uncertainty between PD and non-degenerative parkinsonism or non-

parkinsonian tremor.  Studies report that scans distinguish PD from ET with 

sensitivity/specificity in the range of 95-97/93-100 (Benamer, Oertel et al. 

2003, Marshall, Reininger et al. 2009).  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 Approximately 50% of people who are diagnosed with REM-sleep behavior disorder in 
adulthood will develop neurodegenerative parkinsonism with mean latency of 12 years (61)	
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Table 6 Conditions that have an abnormal FP-CIT SPECT scan 

Abnormal scan Normal scan 

PD ET 

PSP Dystonic tremor 

MSA Drug-induced parkinsonism 

CBD Toxin-induced parkinsonism 

DLB Normal pressure hydrocephalus 

VP* Dopa-responsive dystonia 

Huntington’s disease Psychogenic parkinsonism 

Table adapted from Brooks DJ. 2012 (Brooks, 2012).  

*VP may also have a normal scan depending on the position of the infarcts. 

 

The interpretation of the scan is ultimately subjective as they rely on a 

radiologist’s visual inspection and decision regarding whether there is any 

asymmetry in the striatal uptake and if the uptake is abnormally low. 

Although there is not a definite ‘cut off’ point for abnormality the inter-rater 

(kappa 0.82-0.92) and intra-rater (0.92-1.00) agreements are good (Benamer, 

Oertel et al. 2003, Marshall, Reininger et al. 2009) and new quantification 

computer packages have been developed to improved on this further. The 

lack of specificity, ionizing radiation dose, and cost warrant caution though 

when considering who should be imaged. Furthermore, not all clinicians 

have easy access to scans and certainly on a worldwide basis few countries 

have any access at all.  

 

SPECT imaging of iodine -123 labelled meta-iodobenzylguanidine (MIBG) 

binding to cardiac postganglionic sympathetic nerves may be used to 

differentiate MSA and PSP from PD. Several studies have reported reduced 

tracer binding in PD but preservation in MSA and PSP and 

sensitivity/specificity is at least 0.90/0.90 (Yoshita, 1998). 

 

Positron emission tomography (PET) has also been used as a research tool 

in PD but is not recommend by NICE as a diagnostic tool. The most 
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commonly used PET isotope is fluorine-18-labelled-dopa (18F fluorodopa) 

and this has a reduced asymmetric pre-synaptic striatal uptake in PD.  PET 

also has identified pre-clinical nigrostriatal impairment in first degree 

relatives of PwPD, some of whom developed disease on follow up (Piccini, 

Burn et al., 1999).    

 

PET imaging using an isotope called 18-flurodeoxyglucose (FDG) shows 

promise as a diagnostic tool in PD – it is normal in PD but demonstrates 

striatal hypometabolism in 80% of PSP and MSA cases (Antonini, 

Kazumata et al., 1998). Another study showed that PET could differentiate 

PD from MSA, PSP and CBD with sensitivity/specificity of 0.86/0.91, and 

could differentiate MSA, PSP and CBD from each other with 

sensitivity/specificity of approximately 0.75/0.92-0.97 (Hellwig, Amtage et 

al., 2012).  However PET scans are expensive, involve high doses of 

ionizing radiation, and are largely inaccessible to most clinicians. 

 

2.1.8.3 Other tests 

Most cases of PD are though to be sporadic due to interactions of 

environmental stimuli and predisposing genes. However there are an 

increasing number of genetic mutations recognised that lead to familial 

parkinsonism. These tests are expensive and generally only used in research 

except for recessive Parkin gene mutation tests in young onset patients 

(positive in 5% of those younger that 40 years old) and LRRK2 tests in 

those with autosomal dominant pedigrees (positive in 5-6% of these cases) 

(Edwards, Quinn et al. 2008).  

 

Some studies suggest that apomorphine and levodopa challenges may 

differentiate PD from atypical parkinsonian syndromes (Hughes, Lees et al., 

1990, Hughes, Lees et al., 1991). However the diagnostic accuracy of these 

methods is poor with non-PD conditions such as VP, PSP and MSA 

sometimes responding well to dopaminergic stimulation. A sustained good 

response to levodopa is supportive of PD according to UKBBDC but 

negative results of a drug challenge are clinically not useful for diagnosis 
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and NICE guidelines advise against using them for purposes of diagnosis. 

(NICE, June 2006) 

 

Ninety per cent of PwPD have olfactory dysfunction and this is less 

common in other parkinsonian conditions. A systematic review of two 

studies that used two objective smell tests, University of Pennsylvania 

Smell Identification Test (UPSIT) and Sniffin Sticks, concluded that 

olfactory testing had only moderate sensitivity (0.77) and specificity (0.85) 

for differentiating PD from other degenerative causes of parkinsonism 

(McKinnon, Demaerschalk et al., 2007).  

 

Autonomic failure is part of the diagnostic criteria for MSA but as it also 

occurs frequently in PD, tests of orthostatic hypotension, urodynamics or 

other autonomic function tests are not discriminatory. Sphincter 

electromyography (EMG) and heart rate variability may help differentiate 

PD from MSA but generally neurophysiology tests are not specific for PD 

and not routinely used to aid diagnosis (Edwards, Quinn et al. 2008).  

 

2.1.9 Summary of diagnosis of Parkinson’s disease 

There is good evidence that PD is over-diagnosed especially in the early 

stages of the disease. Community studies suggest that at least 15-26% of 

people with a diagnosis of PD are FPs and the most common mimics are 

other degenerative parkinsonian conditions, late onset tremor and VP 

(Meara, Bhowmick et al., 1999, Schrag, Ben-Shlomo et al., 2002).  

Pathological studies (Hughes, Daniel et al., 1992, Hughes, Daniel et al., 

2001, Rajput, Rozdilsky et al., 1991) broadly support these findings with 

10-24% of clinical PD cases not confirmed pathologically and PSP, MSA, 

VP and AD the most common revised diagnoses. Clinical trials suggest that 

even when strict clinical diagnostic criteria are fulfilled, 4-15% of patients 

diagnosed with early PD did not have positive DaT scans. Diagnostic 

accuracy improves with clinician expertise and the passage of time (Hughes, 

Daniel et al., 2002, Meara, Bhowmick et al., 1999).  
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Misdiagnosis may lead to inappropriate management and incorrect 

prognostication. FP-CIT SPECT scans are helpful for providing evidence of 

striatal degeneration to support a diagnosis of PD but they are not specific 

for PD, involve ionising radiation, are expensive and not universally 

available. Few other diagnostic tests aid early diagnosis of PD and there 

remains a need for a quick non-invasive objective test that could be 

administered in a clinical setting to support a clinical working diagnosis of 

PD. 

 

 

2.2 Monitoring of Parkinson’s disease 

2.2.1 Why do Parkinson’s disease patients need monitoring?  

PD is a heterogeneous condition in terms of clinical manifestations and rate 

of progression.  Also, patients vary in terms of how they respond to the 

therapeutic and adverse effects of medications, how other comorbidities 

interact with the disease and its treatment, and how well they can recognise 

and report the signs and symptoms of PD.  In view of such diversity it is 

impossible to devise one uniform ‘optimal PD treatment formula’ for all 

patients – rather the management plan must be tailored to the individual 

based on their concerns, expectations, functional disability, drug response, 

disease stage and co-morbidities.  

 

Clinical monitoring is the process that enables tailored management to be 

achieved - it involves specialist review of the patient with a focus on 

assessing clinical status, checking response to interventions, vigilance for 

side effects and surveillance of disease progression and complications. 

Therefore the first and foremost reason that PwPD are monitored is to 

optimise their clinical management in order to minimise functional 

disability.  

 

The second reason why PD patients are monitored is for research. There is 

no biomarker to determine the severity of PD so monitoring for research 

purposes typically involves serial detailed clinical measurements of 

impairment and disability using formal clinical rating scales (see section 
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2.2.7) in large numbers of PD patients over a period of time. This 

quantification of clinical status enables aspects of PD such as disease 

progression and the response to new drugs or surgical procedures to be 

studied.  There are several devices capable of objectively measuring 

movement characteristics in PD (outlined in section 2.3.7) but these have 

been used in only a few research studies to aid monitoring.   

 

 

2.2.2 How are Parkinson’s disease patients monitored? 

Several methods are used for monitoring PD patients. For clinical purposes 

the most common method is interval assessment in outpatient clinics. For 

research studies clinical rating scales are almost exclusively used. 

 

2.2.3 Clinical assessment in outpatient clinics 

The vast majority of PD monitoring is conducted through clinical 

assessments undertaken in regular outpatient clinics. NICE guidelines 

recommend that PD patients are reviewed by a PD specialist at least every 

6-12 months for “clinical monitoring and medication adjustment.” (NICE, 

June 2006) The ‘specialist’ is usually a consultant (or specialist registrar) in 

neurology or geriatric medicine, or a PD nurse specialist (PDNS).  The 

frequency of review will depend in part on the severity of symptoms and 

disease stage - when new drugs are commenced or the individual has 

progressed to complex phase PD more frequent clinic appointments are 

usually required. The 2011 Parkinson’s UK National Audit suggested that 

most patients meet the NICE recommendations but 12% of neurology 

patients, and 6% of geriatric patients are seen less frequently than this 

(Parkinson's UK, 2011).    

 

Typically each patient is allocated a 15 to 20 minute appointment and 

during this time the specialist will gather information about the severity and 

impact of PD symptoms, response to drugs and any new relevant co-

morbidities. This information is obtained through the clinical skills of 

history taking and examination. The former describes a process of listening 

to the patient’s description of his symptoms and then asking a series of 



	
  
70	
  

questions to obtain clarification and detail. If a family member has 

accompanied the patient they may provide additional details that the patient 

may not have noticed or remembered.  

 

The main examination technique used in consultations is probably 

observation – from the moment the patient walks into the room the 

specialist closely watches and analyses their movements specifically 

looking for slowed gait, resting tremor, impassive face, quiet speech or 

dyskinesia. Therefore most of the examination can usually be done 

concurrently during history-taking but sometimes supplementary techniques 

are used to assess certain motor signs; for example the clinician may 

examine for rigidity by passively moving a limb, or for bradykinesia by 

asking the patient to repeatedly tap their finger and thumb together as 

rapidly as possible.  

 

A skilful clinician can thus gather an enormous amount of clinical 

information during a relatively brief review but this method of monitoring 

does have some limitations. Physical clinical assessments performed at 

intervals can only provide a brief ‘snapshot’ of the patient’s status at that 

particular moment in time and may not accurately reflect their impairment 

on a day-to-day basis. Increasing the frequency or length of consultations 

will increase the likelihood of obtaining a more representative view of the 

patient but still may miss pertinent clinical information. This is because the 

signs and symptoms of PD fluctuate over hours and days, reflecting 

characteristics of the disease, response to medications, and other influences 

such as emotional upset or co-morbidities. This longitudinal view of the 

patient in their typical environment simply cannot be replicated in a clinic. 

Making a management decision based on a brief interaction in clinic may 

have a profound effect on how the patient functions for the next six months 

or so and yet the treating clinician will not often learn of the response until 

the next appointment and then only with the same limitations of a brief 

consultation.  
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History taking may provide some useful longitudinal information about how 

PD impairments change through the course of the day or with certain 

activities. Unfortunately many patients lack insight or objectivity into their 

clinical status though – for example many are not aware of physical signs 

such as LID (Vitale, Pellecchia et al., 2001), others may perceive them as 

disproportionately severe due to low mood, and others may simply not 

remember details due to the passage of time or cognitive impairment. 

Therefore even thorough history taking does not guarantee reliable 

information on which to base important management decisions.    

 

A second drawback is that all assessments within a clinical consultation are 

subjective; the clinician may be a specialist but nevertheless his 

interpretation of symptoms and signs is still subjective. This is not to say 

that subjective assessments are inferior to objective ones, but rather that 

they are vulnerable to variation between individual clinicians and over time. 

Even movement disorders specialists struggle to agree on whether 

movements are bradykinetic or not and the characteristics of tremor (Bajaj, 

Gontu et al., 2010).   

 

Surveillance of disease progression and response to medications over 

months and years is thus imprecise with interval subjective assessments. A 

clinician may document a description of the clinical findings such as ‘mild 

bradykinesia of right arm’ and it is difficult to know at the next review 

whether this sign has deteriorated as there is no objective quantification to 

compare it to. This problem is further compounded if a different clinician 

reviews the patient at their next consultation.  
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2.2.4 Patient symptom diaries 

Patient-completed symptom diaries are sometimes used in order to gather 

more clinical information over the course of hours, days or weeks that can 

supplement the clinic appointment review. They may be useful in a small 

subset of patients who can diligently document pertinent features at regular 

intervals. However generally diaries are considered unhelpful as many 

patients simply find them too onerous to fill out regularly and the data has 

been shown to correlate poorly with clinician assessments  (Golbe and Pae, 

1988), perhaps because many PwPD are unaware of their own clinical signs 

(Amanzio, Monteverdi et al., 2010, Vitale, Pellecchia et al., 2001). 

 

2.2.5 Clinical assessment at home 

The 2011 National PD audit suggested that approximately 78% and 91% of 

patients reviewed in geriatric medicine and neurology clinics respectively 

have access to a PDNS (Parkinson's UK, 2011). Some PDNSs visit patients 

at home to clinically assess them and community geriatricians and matrons 

may provide a similar form of monitoring, especially when patients are in 

the complex or palliative stages of PD. This provides insight into how 

individuals function in their own home environments and usually the 

duration of the monitoring is longer than a clinic appointment. Nevertheless 

this form of monitoring is still a subjective assessment over a brief period of 

time.  

 

2.2.6 Inpatient monitoring  

Sometimes patients are admitted to the hospital for a period of monitoring 

over several days if severe parkinsonism or drug side effects cannot be 

managed through outpatient clinic consultations. Inpatient monitoring 

enables more detailed and longitudinal assessment of the individual patient. 

Commonly ‘on-off’ charts are completed hourly so that the temporal 

relationship of a patient’s clinical state can be correlated with the drug 

regimen. This enables a more informed decision to be made regarding drug 

adjustments in order to increase therapeutic effects and reduce AEs.  
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However this method is very expensive with each day on an NHS ward 

costing several hundred pounds. Secondly the accuracy of the on-off chart 

documentation relies on the experience and training of nursing staff to 

recognise the clinical states accurately and their other roles on a busy ward 

may preclude hourly documentation. Sometimes semi-quantitative 

assessments, such as hourly UPDRS motor examinations (see 2.2.7), Timed 

Get up and Go Tests (TGUGT) or Purdue Pegboard Tests (PPB) are also 

undertaken but these can be quite burdensome to the patient and time-

consuming for staff. Finally the clinical environment may not reflect he 

patient’s usual level of impairment at home.  

 

 

2.2.7 Clinical rating scales 

 

2.2.7.1 Overview 

Since the 1960s a number of clinical rating scales have been devised to 

quantify the severity of PD. Table 7 summarises the scales that assess motor 

features. There are also scales that specifically measure the non-motor 

features of PD such as depression, anxiety, cognition, sleep, apathy and 

psychosis but these are not discussed further in this thesis.   

 

The Movement Disorders Society Sponsored revision of the UPDRS – the 

MDS-UPDRS - is considered the gold standard clinical assessment of PD.  

Apart from HY and previous versions of the UPDRS all of the other clinical 

rating scales in Table 7 are rarely used nowadays.   The rest of section 2.2.7 

will focus on evaluating the MDS-UPDRS and UPDRS. 
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Table 7 Clinical rating scales of Parkinson’s disease motor features 

Disability Impairment Disability & Impairment 

Hoehn and Yahr Webster Scale UPDRS, MDS-UPDRS 

Schwab and England Columbia University 

Rating Scale 

New York University 

Scale  

 PD Impairment Scale Short PD Evaluation Scale 

  University of California 

Los Angeles PD 

Disability Scale 

  

 

 

2.2.7.2 Unified Parkinson’s Disease Rating Scale (UPDRS) 

The UPDRS was published in 1987 as a comprehensive instrument for 

evaluating impairment and disability in PD patients. This landmark 

development ‘unified’ many elements from the array of previously used PD 

scales in order to allow comparison of study outcomes. It became the most 

widely used clinical rating scale for PD and a reference for the development 

of all other measures (Ramaker, Marinus et al., 2002). 

 

In 2008 the UPDRS was revised to the MDS-UPDRS in order to improve 

clarity of the instructions, reduce ambiguities of grades and incorporate non-

motor symptoms (Goetz, Fahn et al., 2007). It is an expansive scale with 

assessments of disability and impairment in a wide range of motor and non-

motor domains and is considered the gold standard clinical assessment of 

PD. The MDS-UPDRS comprises four parts that grade different aspects of 

PD: 
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Part I:      non-motor experiences of daily living 

Part II:    motor experiences of daily living 

Part III:   motor examination, and  

Part IV:   motor complications.   

 

Within each part there are a series of items that are graded on a five-point 

scale of zero to four12 with higher scores indicating more disability or 

impairment. Sixty five items are rated with a distribution of 13, 13, 33 and 6 

items in parts I to IV respectively, giving a maximum total score of 260. 

Some items are rated by the patient through self-administered 

questionnaires or responding to questions administered by the clinician, and 

other items are clinician-rated based on observation and physical 

examination. In other words the scale provides information about PD from 

the patient and clinician perspectives.  

 

The four part MDS-UPDRS scores are the primary outcome measure in 

most clinical trials of PD therapeutics. Sometimes solely part III, the motor 

examination, or individual items within Parts III and IV (such as the 

‘bradykinesia items’) are used as the primary outcome measures. The scale 

is undergoing an extensive translation programme and so far the Spanish, 

Italian and Estonian versions have been validated and published (Antonini 

A, Abbruzzese G et al., 2012, Martinez-Martin, Rodriguez-Blazquez et al., 

2013). 

 

Overall the scale has been shown to have good clinimetric characteristics. 

Goetz et al. assessed 877 PD patients with UPDRS and MDS-UPDRS and 

found the two scales correlated well for total scores (r = 0.96) as well as 

individual parts (range r = 0.76 (part 1) to 0.96 (part III). There was minimal 

floor or ceiling effects and factor analysis confirmed that items on the scale 

clustered in clinically relevant domains (Goetz, Tilley et al., 2008). In 2010 

Goetz et al. demonstrated that for part III three movement disorders experts 

had inter-rater agreement scores (Kendall coefficient of concordance) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12	
  0	
  =	
  normal,	
  1	
  =	
  slight,	
  2	
  =	
  mild,	
  3	
  =	
  moderate,	
  4	
  =	
  severe	
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ranging from 0.72 for facial expression to 0.99 for gait and postural 

instability (Goetz, Stebbins et al., 2010).  In 2013 Martinez-Martin et al. 

demonstrated that the MDS-UPDRS subscales correlated well with disease 

duration and HY disability stage and the motor examination additionally 

correlated well with age (Martinez-Martin, Rodriguez-Blazquez et al., 

2013).   

 

There is no doubt that the UPDRS and MDS-UPDRS have improved the 

quality of trial outcomes and enabled better comparison of results. However 

the scales do have several limitations.   

 

2.2.7.3 Limitations 

Administration time  

The comprehensiveness of the scale necessitates a lengthy administration 

time of approximately 30 minutes for the whole scale and 15 minutes for the 

motor examination (Goetz, Fahn et al., 2007). This makes it unwieldy for 

routine clinical use. Many items will not apply to each individual and the 

consequent item redundancy results in inefficient use of clinician time and 

can provoke anxiety in patients who may worry they are eventually going to 

develop every complication that they have been asked about.  

 

Training 

Training is recommended before administering the MDS-UPDRS in order 

to “enhance consistency of data acquisition and interpretation” (Goetz, 

Stebbins et al., 2010). This is particularly important for research studies 

when serial patient assessments are typically conducted by different 

clinicians. The online training course and assessment takes approximately 

three hours to complete (author’s personal experience) and the grades that 

the trainee allocates to four videoed assessment subjects must be within the 

95% confidence intervals of the grades allocated by three movement 

disorders experts in order to pass and become certified (Goetz, Stebbins et 

al., 2010).  

 



	
  
77	
  

This formal training still does not assure adequate application of the scale 

though. Goetz et al. reported that only 55% of 226 raters (comprising 57% 

professors of neurology, 31% physicians involved with PD and 12% study 

coordinators) passed the training assessment on the first occasion after 

watching the UPDRS13 training video (Goetz and Stebbins, 2004).  

 

Also the video assessment does not include any rigidity items as they 

require physical examination; this means that one cannot ensure uniformity 

of the rigidity item grades which account for 15% of the total motor 

examination score. It is also important to note that there was a significant 

difference between the training video assessment pass rates in North 

American (62%) and European raters (41%) (Goetz and Stebbins, 2004) and 

this hints at heterogeneity of scale application in different countries. 

 

 

Reliability  

The reliability of a test is a measure of how similar the results are when the 

test is repeated either by a different clinician (inter-rater) or by the same 

clinician on a different occasion (intra-rater). Reliability coefficients express 

the degree of reliability with perfect agreement designated 1.0 and 

agreement no better than chance designated as zero.  

 

The bradykinesia-related items of the UPDRS have been shown to have the 

lowest reliability coefficients of all items with finger tapping less than 0.5 

(Camicioli, Grossmann et al., 2001, Henderson, Kennard et al., 1991, 

Martinezmartin, Gilnagel et al., 1994).  When the scores from the 

bradykinesia items are combined14 the inter-rater reliability coefficients 

ranged from 0.0 (Camicioli, Grossmann et al., 2001) to 0.69 (Siderowf, 

McDermott et al., 2002).   

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 There are no published results for the MDS-UPDRS training video assessment 
14 Extracting motor sub-scores is unvalidated practice but commonly done 
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There are likely to be several reasons for this variability. Firstly the 

interpretation of the signs and symptoms are ultimately subjective. Even for 

the motor examination part - which is often erroneously described as 

‘objective’ - the grades allocated rely on the clinician’s subjective 

interpretation of motor performance. This is expressly acknowledged as a 

general point in the MDS-UPDRS instructions for this section: 

 

“The investigator should “rate what you see”. Admittedly, concurrent 

medical problems such as stroke, paralysis, arthritis, contracture, and 

orthopaedic problems ... may interfere with individual items in the motor 

examination.”                                                     (Goetz, Tilley et al., 2008) 

 

So this means that resolution or progression of these concurrent medical 

problems between consecutive assessments may result in improving or 

deteriorating UPDRS scores despite no true change in PD signs. 

Furthermore the definitions of the grades are also open to interpretation.  

This point is demonstrated by item 3.4 of the motor examination that 

assesses bradykinesia using a finger tapping (FT) examination administered 

as follows:  

 

“Instruct the patient to tap the index finger on the thumb 10 times as quickly 

AND as big as possible. Rate each side [hand] separately, evaluating speed, 

amplitude, hesitations halts and decrementing amplitude.”  

(Goetz, Tilley et al., 2008) 

 

The grades are then described as: 

0: Normal:  No problems.  

1: Slight:  Any of the following: a) the regular rhythm is broken with  

  one or two interruptions or hesitations of the tapping  

  movement; b) slight slowing; c) the amplitude decrements  

  near the end of the 10 taps. 
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2: Mild:  Any of the following: a) 3 to 5 interruptions during tapping; 

  b) mild slowing; c) the amplitude decrements midway in the 

  10-tap sequence.  

3: Moderate:  Any of the following: a) more than 5 interruptions during  

  tapping or at least one longer arrest (freeze) in ongoing  

  movement; b) moderate slowing; c) the amplitude   

  decrements starting after the first tap.  

4: Severe:  Cannot or can only barely perform the task because of  

  slowing, interruptions or decrements.  

 

The item acknowledges several components of bradykinesia such as 

reduced amplitude, reduced speed and dysrhythmia but nevertheless 

instructs the rater to combine these components into an overall composite 

score15. This means that differential response of the individual components 

may well be diluted.   

 

Heldman et al. demonstrated that the weight placed on each component 

when allocating an overall bradykinesia item grade varies considerably 

between individuals with most clinicians basing their grade on the degree of 

reduced amplitude, then rhythm and hardly at all on speed, but some 

consistently based it on rhythm or speed (Heldman, Giuffrida et al., 2011). 

This suggests that, for example, if an individual’s FT amplitude decrements 

near the end of ten taps (‘slight’ definition) but has mild slowing (‘mild’ 

definition) most clinicians would allocate a ‘sight’ grade, but some would 

give a ‘mild’ grade. In other words different combinations of components 

could be allocated the same grade, and conversely the same combination of 

components could be allocated different grades by different clinicians.   

 

Furthermore one person’s interpretation of ‘mild’ (2 points) slowing may be 

the same as another’s for ‘slight’ (1 point) slowing and this was confirmed 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 All five of the limb bradykinesia assessments have the same descriptions of 
grades. 
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by Goetz et al. who found that the UPDRS inter-rater reliability was lowest 

for grading patients with parkinsonism at the two ends of the scale’s 

spectrum – i.e. with only slight, or very severe impairment - as many 

clinicians over-rate the severity of slight signs and under-rate the severity of 

severe signs (Goetz and Stebbins, 2004).  Additionally less experienced 

assessors tend to allocate higher grades and have greater inter-rater 

variability than movement disorders specialists (Post, Merkus et al., 2005). 

 

Discontinuous data 

 

The scale results in semi-quantification of PD signs and symptoms rather 

than a continuous measure of impairment and disability for a number of 

reasons. Firstly each item sub-score compresses a wide range of 

performance into a coarse grained scale resulting in just five steps between 

‘normal’ and ‘severe’.  Secondly we do not know if the intervals between 

the steps are the same and hence whether the scale is continuous or ordinal 

i.e. we know that increased grades reflect increased impairment but is the 

degree of impairment the same between ‘slight’ and ‘mild’ grades as 

between ‘moderate’ and ‘severe’? As we do not know how wide the range 

of impairment is within a particular grade, it is difficult to confidently 

compare continuous measures (e.g. drug dose, age, disease duration) to the 

graduated steps of the rating scale.  

Interval assessment 

Any clinical rating scale only gives a measure of the patient’s state at that 

particular moment in time or ‘a snapshot’ of how they might be during their 

daily activities.  A motor assessment, however comprehensive cannot give 

information about motor fluctuations over the course of hours or days or 

weeks. Repeated interval assessments provide more representative 

longitudinal information but this may be cumbersome for the patient, take 

considerable clinician time and still do not provide continuous monitoring 

over time. 
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Costs 

The MDS-UPDRS scale is free for individual clinical use but beyond this 

remit there are several costs incurred: a $1000 charge for use in funded 

research and £20,000 for industry-funded research. The online training 

programme costs $1,000-1,500 for each clinician who wishes to use it in 

clinical trials and $250-500 for non-members of the MDS who wish to 

undertake training for personal use or for non-profit research (Movement 

Disorders Society, 2013). Additional costs in terms of time and money to 

employ clinicians to administer the scale need to be considered also.  

2.2.8 Summary of Parkinson’s disease monitoring 

Most PwPD are monitored through infrequent interval clinical assessments 

undertaken during consultations in outpatient departments. The subjective 

and imprecise nature of these assessments may lead to poorly-informed 

management decisions, sub-optimal functional outcome and inefficient use 

of resources. Clinical rating scales provide detailed semi-quantification of 

PD clinical status that enable more accurate longitudinal follow up and are 

the primary outcome measure in most clinical research studies of PD. 

However they are expensive to use, take considerable time and remain 

vulnerable to inter- and intra-rater reliability issues. There remains a need 

for an accurate objective measure of PD motor signs that is quick to 

administer in order to improve the quality of monitoring for clinical and 

research purposes. 

 

2.3 Bradykinesia  

 

2.3.1 Definitions 

Bradykinesia is the cardinal motor feature of PD. It is obligatory for 

diagnosis, central to monitoring and frequently used as an outcome measure 

in research studies. In clinical practice the term ‘bradykinesia’ is often used 

interchangeably with ‘hypokinesia’ and ‘akinesia’ but the literal meanings 

are slowness of movement (Greek; brady – slow, kinesis- movement), small 
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amplitude of movement (Latin; hypo – deficient) and absence of expected 

movement (Greek; a – without) respectively. The gold standard clinical 

diagnostic criteria, the UKBBDC, encompass the latter terms within the 

official definition of bradykinesia as:  

 

“slowness of initiation with progressive reduction in speed and amplitude of 

repetitive action”     (Gibb and Lees, 1988)  

 

 

Interestingly, the gold standard rating scale for monitoring, the MDS-

UPDRS suggests a slightly different definition as for each bradykinesia 

motor examination item the examiner is instructed to: 

 

“evaluate speed, amplitude, hesitations, halts and decrementing amplitude” 

      (Goetz, Tilley et al., 2008)  

 

 

Few studies have objectively evaluated the clinically defined components of 

bradykinesia in PD but those that have tended to define the core components 

as follows: reduced amplitude, reduced speed, impaired rhythm and the 

sequence effect (SE) (Abdo et al., 2010, Espay et al., 2011, Ling et al., 

2012). The SE describes progressive decrement of the amplitude and/or 

speed of repetitive voluntary movements and is discussed further in Chapter 

6.    

 

Although bradykinesia typically manifests in PwPD as impaired limb 

movements, causing slowed gait and reduced dexterity for example, it is 

important to note that it extends to all motor activities including tongue 

movements (Van Lieshout, Steele et al., 2011) and eye saccades 

(Matsumoto, Terao et al., 2011). 
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2.3.2 Overview of neural basis of voluntary motor control in humans 

The physiology of human motor control is complex but in brief involves 

descending motor pathways that originate in the brain and activate spinal 

cord neurons that connect via nerves to muscle. When the muscles contract 

a movement ensues. Reflex movements are simple stereotyped actions that 

occur in response to specific stimuli whereas voluntary movements are more 

complex and usually initiated as a result of internal cognitive processes 

rather than external stimulation. 

 

Input pathways to the motor cortex 

The motor areas of the cortex generate ‘motor programs’ that direct 

movements. The primary motor cortex (PMC) is in the pre-central gyrus and 

several areas of motor association cortex lie just anterior to the PMC 

including the pre-motor cortex laterally and the supplementary motor areas 

(SMA) medially. These regions are involved in higher order motor planning 

and project to the PMC.  

 

These areas receive input from several sources. The association sensory 

cortex in the parietal lobe transmits sensory information about the position 

of the body to the SMA and premotor areas so that a motor plan can be 

developed e.g. which muscles need to contract and with what force. During 

planning and execution of movements the cerebellum and BG act as motor 

control systems to further refine the motor program. As the movement 

occurs there are also feedback loops from the occipital-parietal visual 

pathways and thalamic ascending somatosensory pathways that monitor the 

action (Edwards, Quinn et al. 2008). 

 

Output pathways from the motor cortex 

The motor plan is implemented through the PMC sending commands to 

descending pathways in the brainstem and spinal cord.  They can be divided 

into lateral and medial motor systems based on location in the spinal cord. 

The two lateral motor systems are the corticospinal tract and rubrospinal 

tract and these control the extremities. The lateral corticospinal tract is 

essential for rapid fine movements at individual joints or digits, such as FT. 
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The four medial motor systems are the anterior corticospinal tract, the 

vestibulospinal tract, reticulospinal tract and tectospinal tract. These control 

the proximal and axial muscles involved in postural tone, balance, 

orientation of the head and neck, and automatic gait related movements. 

 

2.3.3 Pathophysiological models of basal ganglia 

 

Structural anatomy of the basal ganglia 

The BG are a group of grey matter nuclei located deep within the white 

matter of the cerebral hemispheres and comprise the following structures: 

 

caudate nucleus, ‘striatum’ 

putamen,     

internal globus pallidus (GPi),       lentiform nucleus 

external globus pallidus (GPe),   

nucleus accumbens, 

ventrolateral nucleus of the thalamus (VLT), 

subthalamic nucleus (STN), 

substantia nigra pars compacta (SNc), 

and substantia nigra pars reticulate (SNr).  

 

The caudate nucleus is a C-shaped nucleus positioned next to the lateral 

ventricles and the putamen lies inferior and slightly lateral to it. The caudate 

and putamen are joined together by several cellular bridges that appear as 

stripes or striations in histological sections so ‘striatum’ is a term commonly 

used to describe the caudate and putamen together. The anterior portion of 

the putamen fuses with the head of the caudate forming the ventral striatum 

and this is largely made up of the nucleus accumbens. The globus pallidus 

(GP) lies medial to the putamen and has external and internal sections, GPe 

and GPi. The lentiform nucleus is a term used to describe the putamen and 

GP together. The thalamus lies medial to the GP and the small spindle-

shaped STN lies inferior to the thalamus. 
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The anterior limb of the internal capsule passes between the caudate in the 

lentiform nucleus and the posterior limb of the internal capsule (containing 

myelinated corticobulbar and corticospinal tracts) runs between the 

lentiform nucleus and the thalamus.  The SN is the largest nucleus in the 

midbrain and lies dorsal to the cerebral peduncles. It is split into a ventral 

portion, SNr, which contains cells very similar to the GPi, and a dorsal 

portion called the SNc containing pigmented dopaminergic neurons.  

 

Functional anatomy of the basal ganglia 

The BG nuclei are connected to each other via intrinsic circuits and 

connected to other brain structures via extrinsic BG loops. 

 

Extrinsic basal ganglia loops 

The BG receive a large number of input neurons from the cerebral cortex 

and have a relatively small number of output neurons that project back to 

the cortex and brainstem. BG inputs arrive via the striatum and the outputs 

leave via the GPi and SNr.   

 

A major role of the BG are to mediate movement, processing information 

from the cortex before it is passed onto the brainstem and back to the cortex 

in a ‘motor loop’. There are a number of other parallel BG loops that are 

anatomically and physiologically subdivided (Figure 8): the motor, 

oculomotor, associative and limbic territories take information from 

different parts of the cortex and are important for the control of movement, 

eye movements, executive function and emotion, respectively (Obeso, Cruz 

Rodriguez-Oroz et al., 2008). 

 

Focussing on the motor circuits, the main inputs to the striatum comes from 

the motor cortex projections that are mostly glutaminergic (i.e. excitatory). 

There are also dopaminergic (excitatory and inhibitory for different parts of 

the striatum) projections from the SNc, glutaminergic inputs from 

intralaminar thalamic nuclei, and serotinergic inputs from the brainstem 

raphe nuclei.  
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The main BG outputs are from the SNr for the head and neck motor control, 

and GPi for the rest of the body motor control and use the inhibitory 

neurotransmitter, GABA.  The outputs project to the VLT and ventral 

anterior nucleus of the thalamus, and then onto the pre-motor cortex, SMA 

and PMC. There are also BG outputs to the descending reticulospinal and 

tectospinal tracts via the brainstem reticular formation and superior 

colliculus respectively.  

 

 

Figure 8 Functional organisation of the basal ganglia 

 
Legend: The BG are divided into motor (A), associative (B), and limbic (C) 

which have extrinsic loops with the motor cortex, prefrontal cortex nd 

cingulate cortex respectively. Reproduced from Obeso et al. 2008 with 

permission (Obeso, Cruz Rodriguez-Oroz et al., 2008). 

 

 

Intrinsic basal ganglia circuits 

There are intrinsic connections between the various BG structures called 

‘circuits’.  There is still debate about the exact function of the intrinsic 

circuits, and how dysfunction of them may result in various movement 

disorders with several models of BG circuits being proposed. Probably the 

best known model is the classical pathophysiological model of the BG 
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which describes two sets of major circuits called the direct and indirect 

pathways (Obeso, Cruz Rodriguez-Oroz et al., 2008). 

 

The direct pathway is a direct connection between the striatum to the GPi 

and SNr via inhibitory neurons. This pathway inhibits GPi output and hence 

activates the thalamus and cortex (by reducing the inhibitory output from 

the GPi). There is also a direct excitatory connection between the cortex and 

the STN called the ‘hyperdirect pathway’ (Figure 9). The direct and 

hyperdirect pathways result in more movement as they increase activity in 

the thalamus and cortex.  

 

The indirect pathway comprises inhibitory neurons projecting from the 

striatum to the GPe that in turn projects inhibitory neurons to the STN. By 

inhibiting the usual inhibitory output from the GPe, there is an increase in 

the STN output and hence more activity of the GPi. As the output of GPi is 

inhibitory, the net result is a reduction in thalamus and cortex activity and 

hence less movement. In summary, the direct pathway is the ‘go’ pathway 

as the net output is activation of movement and the indirect pathway is the 

‘stop’ pathway as movement is inhibited (Figure 9). 

 

The SNc projects dopaminergic neurons to the striatum and these neurons 

have opposite effects on the direct and indirect pathways.  This is because 

the direct pathway has D1 dopamine (DA) receptors that are activated by 

DA but the indirect pathway had D2 receptors that are inhibited by DA. DA 

activates the direct pathway and inhibits the indirect pathway with both of 

these responses resulting in more movement. 
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Legend: The direct and indirect pathways in healthy and PD states are 

shown with green arrows indicating excitatory activity and red arrows 

inhibitory activity. Adapted from Rodriguez-Oroz et al. (Rodriguez-Oroz, 

Jahanshahi et al., 2009) 

 

Limitations of the classical pathophysiological basal ganglia model 

The classical pathophysiological model of the BG in PD suggests that 

bradykinesia is primarily due to DA deficiency in the SNc cells (secondary 

to degeneration) which leads to increased activation of the indirect pathway, 

and increased inhibition of VLT nucleus and cortex  (Figure 9).  Therefore, 

the theory follows that the greater the deficiency of DA projections from the 

SNc, the greater the BG inhibitory output and the greater the severity of 

bradykinesia. This theory is supported by increased resting GPi firing rates 

in experimental parkinsonian monkey models (Delong, 1990) and also by 

human microelectrode recordings performed during neurosurgery that have 

shown a reduced firing rate of GPi (secondary to apomorphine infusions) 

correlates with less bradykinesia (Merello, Lees et al., 1999).  

 

Figure 9 Classical pathophysiological model of the basal ganglia 
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However lesioning the GPi has minimal effect on bradykinesia and Marsden 

described this as the “paradox of surgery” (Marsden and Obeso, 1994). 

Also neurophysiology studies of patients during deep brain stimulation 

(DBS) of the GPi have shown that stimulation of the ventral GPi abolishes 

the anti-bradykinesia effect of levodopa and stimulation of the dorsal GPi 

results in reduced bradykinesia but could sometimes induce dyskinesia too 

(Krack, Pollak et al., 1998). These studies suggest that the effect of reduced 

GPi output on dyskinesia and bradykinesia can be separated and the 

classical pathophysiological model of BG has some limitations. 

Furthermore it is clear from kinematic studies that not all aspects of 

bradykinesia are responsive to dopaminergic stimulation (Espay, Giuffrida 

et al., 2011). Taken together these studies suggest that the currents models 

are likely to be an oversimplification of parkinsonism.  

 

2.3.4 Pathophysiology of bradykinesia 

Whilst the pathophysiology of bradykinesia remains incompletely 

understood, there is good evidence that impaired motor planning leads to an 

inappropriately small movement being made, followed by a series of extra 

‘catch-up’ movements to compensate. Berardelli succinctly summarises 

these deficits as: 

 

 “an underscaling of internally generated movements.”  

(Berardelli, Rothwell et al., 2001).  

 

This underscaling is primarily thought to be due to a combination of BG 

pathology leading to reduced SMA activity and compensatory mechanisms 

occurring in the lateral pre-motor cortical areas. The next sections outline 

the evidence for this. 

 

Impaired preparation of movements 

A number of studies suggest an impairment of internally generated 

movement commands in PD. Research using functional Magnetic 

Resonance Imaging (fMRI) and PET scans has shown that PD patients 

performing a range of movements using a joystick have reduced activity in 
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midline structures such as the SMA, thalamus and BG and increased activity 

in lateral cortical areas such as the premotor cortex (Jahanshahi, Jenkins et 

al., 1995, Jenkins, Fernandez et al., 1992). These studies are consistent with 

the theory that bradykinesia is primarily due to problems with planning 

movement and/or the selecting correct movement as tests on HCs suggest 

that the SMA and prefrontal cortex activation are involved in planning the 

next movement. Injection of apomorphine (a DA agonist) increases SMA 

and prefrontal cortex activity and this correlates to improvements in clinical 

scores of bradykinesia (Jenkins, Fernandez et al., 1992).  

 

Further evidence of reduced midline, and compensatory increased lateral, 

cortical activity in bradykinesia comes from neurophysiology studies of PD 

patients who have undergone pallidotomy or DBS. These have shown that 

post-operatively there is markedly increased activity in the lateral prefrontal 

cortex and a slight increase in SMA activity. This is associated with an 

improvement in the execution of movement rather than improving 

preparation to move (measured by BSP – see below) and suggests that the 

surgery has preferentially removed the inhibitory GPi output to the lateral 

cortical areas (Grafton, Waters et al., 1995).  

 

Underscaling of movement 

Internally generated movements may be under-scaled due to a problem with 

planning the correct movement, or selecting the correct motor programme.  

Brain activity during movement reflects motor and sensory components so 

many studies have focused on electroencephalogram (EEG) changes prior to 

movement so that sensory input will be minimized.  

 

The Bereitschaftspotential (BSP) is a pre-movement EEG change that may 

be sub-divided into BSP1 that occurs 1-2 seconds before a self-paced 

voluntary movement, and BSP2 that occurs 650 milliseconds before. 

Studies have shown that BSP1 is smaller, and BSP2 larger in PD patients 

than HCs (Dick, Rothwell et al., 1989) and that BSP1 reflects SMA activity 

and BSP2 reflects premotor cortex activity (Ikeda, Luders et al., 1992). The 

BSP normalises in PD patients when they perform a task triggered by an 
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external cue (Jahanshahi, Jenkins et al., 1995). These BSP studies 

supporting the theory that bradykinesia is due to primary problem of under-

scaling movement and there are compensatory mechanisms in lateral 

structures. 

 

In PD there is an abnormality of another EEG movement-related 

phenomenon called ‘event related de-synchronisation’. Normally the power 

in the alpha (10Hz) and beta (20Hz) regions of EEG are attenuated 

approximately one second before a planned movement and stay lower than 

rest levels throughout the movement. It is thought that neurons in parts of 

the cortex that are relatively inactive have idling rhythms that tend to 

synchronise in the 10-20Hz regions and de-synchronisation of these 

rhythms may be considered a marker of cortical activation. Wang et al. 

showed that in PD the period of de-synchronisation occurring prior to 

movement is shorter and the pattern of attenuation abnormal but these 

changes normalise with dopaminergic therapy and correlate to clinical 

improvements in bradykinesia (Wang, Lees et al., 1999). This suggests that 

there may be a failure of the BG to release cortical areas from idling 

rhythms just prior to, and during, a movement occurring, which may 

contribute to a smaller or delayed movement being made.  

 

Impaired sensorimotor integration 

The under-scaling of movements may be partly due to impaired 

sensorimotor processing. On prehension (reach and grasp) tasks PwPD take 

longer to develop peak grip force and grip harder than HCs which suggests 

impaired sensorimotor processing (Fellows, Noth et al., 1998). Experiments 

examining contingent negative variation (CNV) lend further support to this 

theory. The CNV is a negative EEG potential recorded over the 

frontocentral regions that occurs between a warning stimulus (S1) and an 

imperative stimulus (S2) and seems to reflect planning forthcoming 

movements and anticipating S2. The amplitude of the CNV is reduced in 

PD and the degree of impairment is related to the severity of disease (Ikeda, 

Shibasaki et al., 1997). Usually the CNV is more affected in PD than BSP 

possibly because S2 may act as an external cue so the CNV may occur with 
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no input from internally generated movement commands at all if the 

patients fails to prepare a movement internally between S1 and S2, whereas 

BSP occurs with self-paced movements and hence will always have some 

degree of contribution from self generated motor command. In other words 

CNV may represent purely a measure of response to a sensory input, and if 

this theory is correct, the CNV abnormalities provide some evidence for 

deficits in sensorimotor processing in PD (Berardelli, Rothwell et al., 2001). 

  

Related to this is the observation that cueing may improve bradykinesia and 

motor arrest known as ‘freezing’. If internally generated movements depend 

on the BG influence on SMA and premotor areas, external triggering may 

become dominant when this influence is reduced: so cues such as stepping 

over an object, or listening to a metronome, are forms of sensory stimuli 

that may help PwPD initiate or regulate gait because there is a relative 

excess influence of external sensory control over movement when the 

internally driven movement centres are impaired (Berardelli, Rothwell et al., 

2001). 

 

Impaired timing mechanisms 

Clinically and kinematically it has been shown that bradykinetic movements 

in PD lack rhythm (Espay, Giuffrida et al., 2011, Taylor Tavares, Jefferis et 

al., 2005).  This may be due to impaired timing mechanisms as rhythm 

generation and time estimation is abnormal in parkinsonian rodents with 

increased striatal expression of D2 receptors (Drew, Simpson et al., 2007). 

Also neuronal recordings in primate and rodent models of PD have shown 

impaired temporal processing of spatial information (Leblois, Meissner et 

al., 2006).   

 

 

Under-recruitment of muscle contractile force  

Direct stimulation of the PMC has shown that connections between the 

motor cortex and motor neurons are normal in PD; hence bradykinesia is not 

due to a deficit in the final PMC output pathway (Dick, Cowan et al., 1984). 

However, the electromyogram (EMG) patterns in bradykinetic PwPD are 
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abnormal with a loss of the normal tri-phasic EMG pattern during ballistic 

movements: the first agonist muscle burst is smaller than normal with 

subsequent bursts much larger than expected (Hallett and Khoshbin, 1980) 

and this effect is improved, but not normalised by levodopa (Baroni, 

Benvenuti et al., 1984). If the patient anticipates a larger amplitude 

movement the first EMG burst may normalise which suggests there is no 

problem recruiting muscles, but rather the muscle power is underscaled for 

the task (Hallett, Shahani et al. 1975). 

 

Some studies suggest that tremor and rigidity may be minor contributing 

factors to the pathophysiology of bradykinesia too. For example voluntary 

movements performed by PwPD may be entrained to the frequency of any 

action tremor when they attempt to move at frequencies close to that of their 

tremor, particularly if the tremor amplitude is large (Logigian, Hefter et al., 

1991). Rigidity may also be a contributing element as latency stretch 

reflexes are enhanced in PwPD and reflexes elicited in antagonist muscles 

are suppressed less than normal with the degree of abnormality related to 

the amount of clinical bradykinesia (Johnson, Kipnis et al., 1991, Rothwell, 

Obeso et al., 1983).  

 

2.3.5 Methods used to evaluate bradykinesia 

A cheap quick objective measure of bradykinesia that could be used in 

clinics would be very useful to aid the diagnosis and monitoring of PD. 

Such a device could also have a role in screening in epidemiological studies 

and for early treatment if neuro-protective medications become available. 

This section outlines the current methods used to measure bradykinesia, the 

types of devices that can quantify movements, and the previous studies that 

have evaluated bradykinesia through quantifying FT.  

 

Finger tapping test 

Bradykinesia has been measured through a variety of methods including   

quantification of prehension, reaction times, movement times, gait and 

handwriting but probably the most commonly used assessment is the FT 

task.  FT has been used for almost a century to assess motor ability in an 
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array of conditions (Hollingworth, 1914) including PD (Espay, Giuffrida et 

al., 2011, Ling, Massey et al., 2012, Yokoe, Okuno et al., 2009), ataxia 

(Notermans, Vandijk et al., 1994), stroke recovery (Emara, Moustafa et al., 

2010) and pre-manifest HD (Biglan, Ross et al., 2009).   

 

Versions of the FT test include tapping a single finger, or alternate fingers 

against the table and tapping multiple fingers sequentially against the thumb. 

The MDS-UPDRS motor examination FT test requires repeated tapping the 

index finger and thumb together as fast as possible for a sequence of ten 

taps with each hand separately (Goetz, Fahn et al., 2007).    

 

FT is a sensitive test of bradykinesia with PD patients disproportionately 

impaired for FT compared to other UPDRS upper limb bradykinesia tests 

(Agostino, Berardelli et al., 1998, Agostino, Curra et al., 2003). However 

the inter-rater agreement for grading speed and amplitude during FT is low 

(Bajaj, Gontu et al., 2010, Espay, Beaton et al., 2009) and FT is one of the 

least reliable items in the whole UPDRS motor examination (Goetz and 

Stebbins, 2004, Martinezmartin, Gilnagel et al., 1994, Richards, Marder et 

al., 1994).  

 

This may be related to the fact that human visual quantification of 

movement is only approximate and it is difficult to attend to grading speed 

and amplitude simultaneously. It is likely that the five point UPDRS scale is 

too coarse to reflect subtle clinical changes too, particularly as the grade 

allocated is a composite of all the movement components that comprise 

bradykinesia.  So whilst FT is a sensitive clinical test for bradykinesia the 

clinical rating may lack definition to fully evaluate the various movement 

components.  

 

Handwriting  

Visual assessment of handwriting is frequently used as a simple measure of 

bradykinesia in clinical practice.  Micrographia (small handwriting) is 

common in PD so may support diagnosis. Serial documentation provides 
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recordable evidence of movements with reduced amplitude that may aid 

monitoring of bradykinesia.  

 

This method has the advantage of being quick and requires no equipment 

other than pen and paper. However micrographia is not specific for PD and 

also occurs in parietal lobe lesions (Kim, Lee et al., 2005, Scolding and 

Lees, 1994), Huntington’s disease (Iwasaki, Ikeda et al., 1999) and atypical 

parkinsonism (Ling, Massey et al., 2012).  Even looking for ‘decrementing 

micrographia’ is not particularly sensitive for PD as studies suggest that 

only 15% of PD patients exhibit a progressive reduction in size (McLennan, 

Tyler et al., 1972). Some studies have employed EM digitising tablets to 

quantify handwriting in PD more precisely. These have shown that there is 

good test-retest reliability for handwriting tests (Banaskiewicz, Rudzinska et 

al., 2009), tremor does not interfere with quantification of bradykinesia 

(Banaskiewicz, Rudzinska et al., 2009) and both PD and DIP exhibit similar 

slowness but only PD has an abnormal jerky acceleration pattern (Caligiuri, 

Teulings et al., 2006).  

 

Reaction time and movement time 

The long established PPB and the TGUGT are basic measures of movement 

time (MT) defined as the period between the first movement being made 

and the target being reached. The PPB involves placing nine pegs in nine 

holes as fast as possible and the TGUGT requires the subject to stand up, 

walk 10 metres, turn round, walk back and then sit down again. The MT 

measure is simply how many seconds these tasks take to complete and it is 

clear that other non-bradykinesia factors such as musculoskeletal or visual 

problems may alter the results.  Computer generated stimuli and touch pads 

have been used to quantify more precisely the ‘reaction time’ (RT), defined 

as the time lapsed between a ‘go’ signal and MT in PD. These studies have 

shown that RT and MT are prolonged in PD but respond differently to 

interventions: for example changing the target position unexpectedly only 

reduced the RT whereas levodopa administration only improved the MT. 

(Dunnewold, Jacobi et al., 1997). Gait analysis laboratories have been used 

in research studies to quantify separable movement components of 



	
  
96	
  

bradykinesia such as amplitude (stride length), speed and rhythm (variation 

in stride length or speed) (Chee, Murphy et al., 2009, Morris, Iansek et al., 

1996) but these are expensive and not routinely available in clinical practice.  

 

Prehension 

Skill acquisition is impaired in PD but prehension is a naturally developed 

movement that does not require skill acquisition and is a useful paradigm 

for investigating motor control deficits in PD. Measurements of prehension 

have been made using optokinetic systems (Majsak, Kaminski et al., 2008) 

(Jackson, Jackson et al., 1995), resistive bend sensors (Schettino, Rajaraman 

et al., 2004) and pressure sensors (Alberts, Tresilian et al., 1998). These 

studies have shown that HCs execute the components in parallel i.e. pre-

shaping the hand whilst reaching, but in PD there is a tendency to execute 

the reach and grasp components sequentially. The reaching component 

improves considerably more than grasping with visual cues (Majsak, 

Kaminski et al., 1998, Majsak, Kaminski et al., 2008) levodopa (Negrotti, 

Secchi et al., 2005) and STN DBS (Dafotakis, Fink et al., 2008) and these 

physiological assessments have revealed important information about 

sensorimotor integration for motor control. However prehension is not used 

commonly as a clinical test of bradykinesia perhaps because the deficits are 

too subtle to detect clinically. 

  

 

 

2.3.6 The need for an objective assessment of bradykinesia 

Clinical assessment of bradykinesia can be difficult as clinicians need to 

integrate all the movement components during a dynamic test. This is 

particularly difficult if other musculoskeletal co-morbidities or pain are 

present that may reduce the size and speed of movements. Imprecise clinical 

ascertainment of bradykinesia may lead to inaccurate diagnosis and 

monitoring of PD. For example in a study looking at how movement 

disorders specialists discriminated tremulous PD patients from patients with 

other tremulous conditions, the most common reason for erroneously 
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diagnosing PD was misinterpretation of bradykinesia and the authors 

concluded:  

 

“The diagnosis of bradykinesia was particularly challenging”. 

(Bajaj, Gontu et al., 2010) 

 

Regarding monitoring, the gold standard clinical rating scales may not 

accurately reflect changes in bradykinesia either. Espay et al. found that 

clinicians tend to weight their overall UPDRS bradykinesia grade based on 

the degree of reduced amplitude rather than rhythm and speed, and 

succinctly summarised the problems of using a single ‘bradykinesia’ grade:  

 

“By combining multiple movement features into a single score, the UPDRS 

not only dilutes the power of finding true changes but may result in a 

differential response becoming unnoticed when evaluating the overall 

‘‘bradykinesia’’ outcome of clinical trials.”  

(Espay, Giuffrida et al., 2011) 

 

 

2.3.7 How can devices quantify bradykinesia in Parkinson’s disease? 

Over the last two decades, devices such as contact sensors, accelerometers, 

gyroscopes and EM sensors have been used to measure the motor signs of 

PD. Modern technology has facilitated the manufacture of such devices on a 

miniature scale, usually out of silicon, and these instruments typically 

measuring only 1-2 mm are called micro-electromechanical systems 

(MEMS). Movement sensor MEMS are integrated into many everyday 

objects such as smart phones, cameras and cars but few have been used in 

mainstream clinical practice. This section focuses on quantification of FT 

using movement sensor MEMS but many of the same principles can be 

applied to other methods of assessing bradykinesia.  

 

Contact sensors and computer keyboards 

Computer keyboards, metal plates, touch pads and electrical switches all 

work on the same principle of simple contact sensors – when the key is 
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pressed an electrical circuit is connected. The timing of the ‘on-off’ output 

allows several FT measures to be calculated such as frequency, duration, 

interval, rhythm, and accuracy of strike (Figure 10). Computer keyboards 

have the advantage that they are usually already available in clinics but 

these methods are limited by their inability to measure amplitude, speed or 

3D movements. Also other disorders of upper limb function such as tremor 

and arthritis may affect the FT results if the target keys are several 

centimetres apart.  

 

 

Figure 10 Quantifying finger tapping using contact sensors 

 
Legend: Schematic illustration of how contact sensors enable quantification 

of FT movement components such as frequency (number of taps per 

second), duration (period of time that sensor is on), interval (period of time 

between taps) and rhythm (variation in duration or interval). 

 

Musical keyboards 

Musical instrument digital interface (MIDI) was developed 20 years ago to 

facilitate combining different instrument sounds together. When MIDI is 

interfaced with an electric piano keyboard a number of FT parameters can 

be calculated such as speed and duration of key strike, frequency and 

rhythm (Figure 11). 
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Figure 11 Quantifying finger tapping using musical keyboards 

 
Legend: (a) subject performing an alternating (index and middle finger) FT 

task with auditory and visual feedback, (b) example trace of key strike 

velocity data, (c) calculation of FT parameters such as velocity (vel) and 

duration (dur) of keystrikes and the interval (Int) between keystrikes can be 

calculated from the velocity data. Figure reproduced from Taylor-Taveres 

et al. 2005 with permission. 

 

 

The main advantages of using MIDI to quantify FT include: high reliability, 

can be used with or without visual and auditory feedback, does not require 

any wires to be attached directly to the subject, and it has already been ‘tried 

and tested’ in the musical industry. The main drawbacks are that it cannot 

measure FT amplitude or 3D motion, the equipment is rather large and the 

resolution of key strike speed is limited by the range of integers in the MIDI 

volume scale with movement data outside this range not accurately 

quantified (Taylor Tavares, Jefferis et al., 2005). 

  

Accelerometers 

Accelerometers are electromechanical devices that measure static 

acceleration forces, such as the magnitude of gravity on an object thereby 

providing information about the tilt, and dynamic acceleration forces such 

as vibrations. They work on the basic principle of a mass suspended by a 

spring inside a container. When the container is accelerated the mass moves 

once the patients had begun playing (so the delay be-
tween the start instruction and actual playing was not
captured). No external pacing was provided and the trial
was aborted if the patient stopped voluntarily or their
fingers moved to different keys.

Data Capture
The four tests in a standard trial were each captured by

a dedicated PC workstation attached to the Novation
keyboard via a MIDI. Each note played was transmitted
to the PC as two MIDI events, an ON event (key down)
and an OFF event (key up). Each event contained a time
stamp indicating the amount of time elapsed since the
last event, the identity of the key being pressed or re-
leased, and a key-strike velocity (which is only mean-
ingful for the ON event). The time stamp was expressed
in MIDI ticks, which in our experiments corresponded to
either 1/192 or 1/120 of a second, the fundamental tem-
poral resolution of the recording. These MIDI events
were captured on the PC with Cakewalk MIDI software
(Cakewalk, Boston, MA) and subsequently saved as a
binary Standard MIDI File (SMF) consisting of the MIDI
events and meta-information to identify the patient, date,
and nature of the test.

Keyboard Calibration
The key-strike velocity was recorded as an integer in

the range 1 to 127 on a MIDI “loudness” scale. We
carried out a detailed calibration study of the keyboard
comparing the loudness values to metric velocity (cm/
sec). We discovered that there was a truncation at each

end of the MIDI scale, such that all very low velocities
(!6.5 cm/sec) are coded as 1 and all very large velocities
("98.2 cm/sec) are coded as 127. In this study, !0.5%
of events fell in the upper category and up to 8% fell in
the lower category, predominantly when patients were
off therapy (70% of those events). The MIDI loudness
scale is a monotonically increasing function of key-strike
velocity. It is approximately linear over its midrange but
there is no systematic physical relationship between sub-
sequent values of the loudness scale. Although all keys
tested had the same shape of the calibration curve, these
curves could vary by a constant multiplicative factor. In
most trials (176/200 # 88%), including all of the post-
operative data, the two keys to be played were marked
(first with stickers and subsequently with rubber half
O-rings; see Data Capture section). The first 24 trials
were carried out on a different pair of keys.

Data Analysis
The MIDI files were converted to a text representation

using a custom tool written in the Java programming
language making use of the standard javax.sound.midi
package (Sun Microsystems, http://java.sun.com). These
MIDI text files were then imported into the statistical
environment R (http://www.r-project.org), which was
used for all subsequent analysis. Custom routines were
written in R to calculate, from the MIDI text files, five
quantities for each note: Time, Key, Velocity (Vel),
Duration (Dur), and Interval (Int; (Fig. 1c). Each MIDI
file could be used to produce raw data plots for visual
inspection (e.g., Fig. 1b) and to calculate summary sta-

FIG. 1. QDG: repetitive alternating finger-tapping task. a: Demonstration of alternating two-digit finger tapping task on marked keys of a
MIDI-equipped musical keyboard. In this example the subject is playing with their right hand, with visual and auditory feedback (the musical notes
are played through the headphones). b: Example trace from a control subject: Right hand without vision/sound (the eyes are closed and white noise
is delivered through headphones to mask the tapping of the keys). The upper note is depicted on the upper y-axis and the lower note on the lower
y-axis. The y-axis corresponds to the velocity of key strike (which is positive in both directions) and the x-axis to time in seconds (for a 30-second
trace). The start of each key-strike is represented by a dot. c: Two seconds from the above trace (5–7 seconds) demonstrating some of the parameters
that can be studied with this output. Duration (Dur) of individual key strikes corresponds to the width of the bars. Interval (Int) corresponds to the
time between successive key strikes for the same key.
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relative to it and the distance moved is proportional to the output signal 

(Figure 12).  

  	
  

Figure 12 Basic principle of an accelerometer 

 
Legend: (A) the mass remains still when the cylinder is static or moving 

with constant velocity, (B) inertia causes the mass to lag behind when the 

cylinder accelerates. The relative distance moved by the mass, or the force 

of the supporting springs is proportional to the output signal. 

 

 

Different methods convert acceleration to electricity including optical or 

capacitive systems to detect movements of a small mass within a silicon 

sensor, and piezo-electric and piezo-resistive materials that convert the force 

applied by the mass to an electrical charge or resistance respectively.  

Acceleration data may then be integrated to provide velocity and amplitude 

measurements of movement. Their small size means movements are not 

dampened and equipment portable but disadvantages include complex 

processing and calibration and relative expensive.  

 

Electromagnetic tracking sensors  

EM sensor systems work on the principle that when an electrical current is 

passed through a coiled wire a magnetic field is set up around it and the 

magnitude of the field is inversely proportional to the square of the distance 
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from the coil. Most systems use a transmitter and a sensor that both contains 

three coils on orthogonal axes. When an alternating current (AC) passes 

through the transmitter a pulse of a magnetic field is sequentially emitted 

from each coil that oscillates at the same frequency as the AC. The magnetic 

field inducts a voltage in the sensor’s coils and the magnitude of this within 

each orthogonal coil enables the sensor’s distance from the transmitter to be 

accurately measured in 3D space. The derivatives of distance may then be 

calculated to enable velocity and acceleration to be measured too. 

 

For FT measurements the transmitter can be attached to the finger and the 

sensor to the thumb or the transmitter can be placed on a table and two 

sensors attached to the digits. The advantages of EM sensors include the 

fact they are small, lightweight, cheap, easy to calibrate, and enable 3D 

movements to be measured. Disadvantages are that the sensors are not 

wireless, they must remain within a defined range of the transmitter and 

other nearby electrical equipment may interfere with the data.  

 

Gyroscopes 

Gyroscopes measure orientation and rotation. Mechanical gyroscopes are 

based on the principle of a rapidly spinning wheel mounted inside two rings 

that enable the wheel’s axle or ‘spin axis’ to assume any orientation: if the 

gyroscope is tipped the rings try to re-orientate to keep the spin axis in the 

same position and the degree of resistance in the spinning wheel will be 

proportional to the tilt applied. Most modern gyroscopes use a related 

phenomenon: they comprise a tuning fork configuration of two masses 

oscillating and moving in opposite directions and when the device is rotated 

there are opposite forces on each mass and the resultant capacitance change 

is proportional to the angular velocity applied. Gyroscopes may be 

combined with tri-axial accelerometers to measure movements with six 

degrees of freedom  (3 orthogonal and 3 rotational) but their measurements 

can be complicated to understand and they are generally relatively 

expensive compared to other MEMS movement sensors. 
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Optokinetic systems 

Optokinetic systems (OKS) comprise passive markers such as light emitting 

diodes (LEDs) attached to body parts and an infra-red camera to detect the 

positions of the markers (Figure 13). The markers are small and lightweight 

thereby not impeding movement.  Their trajectories can be calculated from 

position-time functions thus enabling 3D amplitude, velocity, acceleration, 

rhythm (and derivatives of these) to be measured.  The main drawbacks of 

OKS are their expense and the need for complex data processing to extract 

3D spatial information from a 2D image.  

 

Figure 13 Optokinetic system equipment 

 
Legend: OKS equipment with reflective markers attached to the fingers and 

a table with metal stripes and bands around the wrists assure the 

reproducible hand-camera arrangement.  Image reproduced from Jobbagy et 

al. 2005 with permission. (Jobbagy, Harcos et al., 2005)  

 

 

2.3.8 Studies that objectively measured finger tapping in PD  

The development of a device that can objectively evaluate bradykinesia in 

PD has been pursued for several decades as motion sensors can objectively 

measure multiple components of a movement simultaneously whereas 

clinical scales are vulnerable to inter- and intra-rater variability. This section 

summarises the medical studies that have measured FT in PD using 

movement sensors. 

Á. Jobbágy et al. / Journal of Neuroscience Methods 141 (2005) 29–39 31

Fig. 1. Retro reflective markers attached to the fingers of a tested subject
and the measurement set-up. Table with metal stripes and bands around
the wrists assure the reproducible hand-camera arrangement.

necessary control circuitry has been developed. The infrared
LEDs aid the separation of marker images from the rest of
the image, and they increase the ambient light suppression.
The 1-ms flashing of the LEDs is synchronized to the ver-
tical synchronous pulse in the video signal of the camera,
and ensures a sharp marker image. Fig. 2 shows two fields
(odd and even) separately and together as one frame taken

Fig. 2. The odd field (top); even field (middle) and the two fields displayed
as one frame (bottom) recorded with PAM during finger-tapping test.

by PAM in the infrared range. The displacement of the
markers between two fields (over a period of 20ms) can be
observed in the frame displaying both odd and even fields.
Each field in the digital video is processed at a sampling
rate of 50/s. Finger-tapping is characterised by the vertical
coordinates of the marker positions, and can be evaluated
from the images recorded with a two dimensional analyzer.

2.3. The necessary sampling rate

The sampling rate necessary for the evaluation of the
finger-tapping movement was determined using PRIMAS.
Marker position data were initially gathered with a sampling
rate of 100/s. The database was reduced in two steps, each
time eliminating every second data. Thus the database after
the first reduction corresponds to a sampling rate of 50/s
and after the second reduction to 25/s. In this way, three
databases describing every tested finger-tapping movement
were produced. Strong agreement has been found between
parameter values computed based on the first (100/s) and
the second (50/s) databases, but they were markedly dif-
ferent from those calculated using the third database (25/s).
These results are in accordance with the frequency domain
analysis of the time functions achieved with a sampling rate
of 100/s, which shows that components above 22Hz are
negligible. This is clearly shown in Fig. 3, which depicts
the Fourier transform of the movement of a marker attached
to the little finger of a young healthy subject. Similar en-
ergy distribution over frequency was detected also for other
healthy subjects, whereas Parkinsonian patients usually had
energy distribution not higher than around 16Hz.

2.4. The finger-tapping movement

The subjects are asked to put their hands on the table in
the prone position, with fingers approximately 1 cm apart
from each other, and 9-mm diameter markers are attached to
the middle phalanxes of their fingers with the elbows on the
table. They then lift their fingers (except thumbs) and then
tap the table in the following order: little, ring, middle, and
index finger. They are asked to perform this movement as fast

Fig. 3. Fourier transform of the movement of the little finger during
tapping test (young healthy subject). Energy density is negligible above
22Hz.
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Probably the first study to objectively assess FT was Shimoyama et al’s in 

1990; they used an electrocardiogram (ECG) machine to quantify FT in 111 

HCs, 14 PwPD, 17 people with cerebellar disorders and 14 with hemiparesis. 

Subjects repeatedly pressed a switch on the ECG machine as rapidly as 

possible for 15 seconds with their index finger. The machine was connected 

to a computer and the tapping frequency, intervals between FT, means, 

standard deviation (SD) and coefficient of variation (SD/mean) were 

calculated.  They found that tap frequency was significantly reduced with 

advancing age, for women, and in the non-dominant hand.  Tap frequency 

distinguished HCs from the patient groups but did not distinguish between 

any of the pathologies (Shimoyama, Ninchoji et al., 1990). 

 

In 1995 Muir et al. used an electronic touchpad with four metal finger plates 

to assess seven PwPD on and ten HCs. Three different tapping experiments 

were performed using single and multiple FT protocols with maximum 

speed tests performed for 10 seconds with and without an 84 gram weight 

attached to finger. In the dominant hand single- and two-finger alternating 

FTs were 10% and 48% slower respectively in PD than HC. Like 

Shimoyama they found that the tap frequency reduced in the non-dominant 

hand and with age but only in the HC group.  Intriguingly the weight 

resulted in PwPD slowing by 19%, and HC speeding up by 9%, relative to 

their initial FT speed (Muir, Jones et al., 1995).     

 

Muir et al. also assessed paced FT using 30 visual and auditory pacing 

stimuli at various frequencies.  FT frequency was plotted against pacing 

frequency and with all frequencies of auditory pacing PD and HC subjects 

exhibited a ‘hastening phenomenon’ - they speeded up to reach a fixed FT 

frequency that was near to maximum tapping frequency, but for visual 

pacing most subjects slowed down. The pacing frequency at which PwPD 

lost synchronisation was lower than HCs and this difference was more 

marked for visual pacing compared to auditory. 
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In 1997 Dunnewold et al. examined how well accelerometers measure 

bradykinesia compared to touch pads and clinical scores, and also how 

tremor affects the bradykinesia measurements (Dunnewold, Jacobi et al., 

1997). 33 PwPD and 29 HCs wore three uni-axial accelerometers on their 

wrists and alternatively pressed two touch pads placed 30 cm apart for 30 

seconds using one hand.  The PD group had significantly lower tap rate and 

longer MT than HC and resting tremor did not influence the assessment of 

bradykinesia. There was good correlation (r >0.90) between the 

accelerometer scores, FT rate and MT but low correlations between the 

UPDRS bradykinesia item scores and the tap rate (r = 0.29), MT and 

accelerometer measurements.  Dunnewold summarises the problem of 

comparing an objective measurement to a clinical score and suggests that 

comparing two objective measures may be a better assessment of validity: 

 

“The UPDRS is a subjective clinical assessment, whereas the other two 

assessments are objective. Where a ‘gold standard’ is not available, weaker 

evidence of the validity of an assessment procedure can be found in its 

tendency to agree with other tests that are used with the same purpose”.              

     (Dunnewold, Jacobi et al., 1997) 

In 1999 Giovannoni et al. described a new Bradykinesia Akinesia 

Incoordination Test (BRAIN TEST©) that involved subjects alternatively 

pressing two computer keys 15 cm apart, for 60 seconds ‘as fast and as 

accurately as possible’ with their dominant index finger (Giovannoni, van 

Schalkwyk et al., 1999). The test was repeated using the non-dominant hand. 

Thirty-five PwPD, 12 patients with cerebellar dysfunction and 27 HCs were 

assessed and four movement variables calculated: a kinesia score (KS), 

analogous to tapping frequency, akinesia time (AT) which was the 

cumulative time that any key was depressed for longer than 17 milliseconds, 

an incoordination score (IS) which measured the variance in time intervals 

between keystrokes (i.e. rhythmicity) and a dysmetria score (DS), which 

was adjusted for speed and reflected the number of incorrectly hit keys.  
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Like Shimoyama and Muir, the authors found that HCs had significantly 

lower tapping frequencies (KS) with advancing age but, in contrast, did not 

find any differences for gender. PwPD had significantly lower tap frequency 

and higher dysrhythmia than HCs when dominant hand scores were 

compared (Figure 14).  Measures of speed, rhythm and akinesia correlated 

significantly with the total UPDRS bradykinesia item motor scores but did 

not predict diagnostic categories as there was such large overlap between 

the group’s ranges.  

 

Figure 14 BRAIN test scores in Parkinson's disease and controls 

 
Figure reproduced from Giovannoni et al. 1999 with permission 

(Giovannoni, van Schalkwyk et al., 1999) 

 

A year later Homann et al. examined whether the BRAIN TEST© could 

discriminate PD and HC subjects and predict the clinical severity of PD 

(Homann, Suppan et al., 2000).  154 PwPD on were assessed and 73 were 

matched for age and sex with HC. All four parameters measures in the MA 

PD hands were significantly correlated with UPDRS parts 2 and 3, HY and 

Schwab & England rating scales (Figure 15). These results suggest a 

possible role in monitoring PD as there is a trend for reduced FT frequency 

There was a non-linear relation between the
KS and incorrectly hit target keystrokes (fig 1 A
and B). This was due to subjects attempting to
perform the test very quickly, which compro-
mises accuracy and results in missed target
keystrokes. The KS of the 10 normal controls

with greater than 15 missed target keystrokes
during the 60 seconds of the test was
significantly higher than 25 normal controls
with less than 15 missed keystrokes (206 (SD
38) keystrokes/minute v 172 (SD 30)
keystrokes/minute, p<0.01). The high inaccu-

Figure 1 Normal physiology. Scatter plots of missed target keys v the kinesia score from multiple tests performed by (A) a
28 year old normal man and (B) 35 normal control subjects showing the relation between the performance speed of the
BRAIN TEST and the number of missed target key strikes. The plot shows that as the performance speed of the test
increases the number of missed target strikes increases. The critical level at which this occurs is referred to for descriptive
purposes as the dysmetria turning point. The dotted lines represent (A) the linear, and (B) polynomial regression derived
from shaded points.
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with clinically more advanced disease, but Figure 15 demonstrates there is a 

wide range of KS for each disease stage or UPDRS score.  

 

 

Figure 15 Correlation of BRAIN test with clinical rating scales 

 
 

Legend: Scatterplots of the correlation between Kinesia score (equivalent to 

tapping frequency) and PD rating scales: (A) UPDRS part III motor 

examination (UPDRS-ME), (B) Hoehn & Yahr scale, (C) UPDRS part II 

activities of daily living (UPDRS-ADL), and (D) Schwab & England Scale.  

Reproduced with permission from Homann et al, 2000 (Homann, Suppan et 

al., 2000) 

 

This study was the first to show that quantification of FT could be used for 

diagnostic classification with 85% of subjects correctly classified when the 

means of each parameter score were used. The main limitations of the study 

trial. How much of a learning effect there would be in
our test in which both hands are used alternately is not
known. We assume that for the contralateral (that is, left)
yet untrained hand this training effect should be less
noticeable. This still remains to be proved. A possible

learning effect should be considered when interpreting
results using the KT.
Akinesia is considered to be another important sign of

basal ganglia dysfunction.18,19 To assess the component
of akinesia in the performance of a voluntary movement

FIG. 2. (A–D) Comparison of the con-
trol (Con) group (A and C) and Parkin-
son’s disease (PD) group (B and D) re-
garding the four test parameters, kinesia
score (bradykinesia: A), dysmetria score
(incoordination: B), akinesia time (akine-
sia: C), and arrhythmia score (arrhyth-
mia: D). The legends within the graphs
present median values (25th and 75th
percentile) of the two groups.

FIG. 1. (A–D) Scatterplots of the corre-
lation between kinesia score and the
Parkinson’s disease rating scales:
UPDRS part III: motor examination
(UPDRS-ME) (A), Hoehn & Yahr scale
(B), UPDRS part II: activities of daily
living (UPDRS-ADL) (C), and Schwab
& England Scale (D).

C. N. HOMANN ET AL.644

Movement Disorders, Vol. 15, No. 4, 2000
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were not addressing other confounding factors such as topographical motor 

deficit, presence of tremor or LID, cognitive function and mood, and using 

only one rater for the clinical scales. 

 

In 2001 Pal et al. correlated quantification of FT with nigrostriatal 

degeneration as assessed by 6-FD PET. Eighty-six PwPD off and 136 HC 

performed FT for 10 seconds with each hand separately on a computerised 

drum machine interfaced with MIDI. PD tapping rates were significantly 

lower than HC and were strongly associated with disease duration, PPB, 

disease severity, and reductions in contralateral 6-FD uptake (but not with 

advanced age). FT frequency measures had sensitivity/ specificity of 0.79/ 

0.70 for discriminating PD from HC. (Pal, Lee et al., 2001).  

 

In 2004 Kandori et al. used index finger and thumb EM sensors to classify 

20 PD and 18 HC FT data sets according to HY stage PD FT had reduced 

speed and amplitude in PwPD compared to controls and these measures 

correlated with HY stages. The authors also reported another curious 

finding in HCs: in young HC the amplitude remained constant but velocity 

reduced over the recording period whereas in older HC the speed remained 

constant and amplitude varied considerably (Kandori, Yokoe et al., 2004). 

The relationship between amplitude and speed will be discussed further in 

Chapter 4.  

 

In 2005 Taylor Tavares et al. used a musical keyboard and MIDI to collect 

rapid alternating FT movement data of the index and middle fingers in 

PwPD before and after dopaminergic medications and/or DBS (Figure 11). 

The authors focussed on new methods of assessing rhythm using SD of 

velocity and coefficient of variance (CV = SD/mean) for interval and 

duration as they proposed that the ‘signature’ of PD was the “temporal 

aspect of repetitive movements” (Taylor Tavares, Jefferis et al., 2005).  

Thirty-three PwPD were assessed pre-operatively whilst on and off 

medication. Seventeen were assessed approximately 10 months after DBS 

and in three states: on meds/on DBS, off meds/on DBS and off meds/off 

DBS. Each hand was tested separately for 30 seconds of rapid tapping.  
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In the pre-surgery off group the two variables that correlated best with 

UPDRS part 3 score were measures of rhythm and velocity. A combination 

of velocity, interval (i.e. inverse of tap frequency) and rhythm best predicted 

total modified UPDRS 3 score (r = 0.7) and also the bradykinesia sub-scores 

(r = 0.63-0.67). When on there was clinical improvement of the UPDRS 

score by 43% but DBS improved it by 72%. Kinematic analysis showed that 

after medication was taken velocity, interval, and some (but not all) rhythm 

measurements significantly improved. DBS improved velocity by a similar 

magnitude to medications but improved rhythm much more. In other words 

medication improved velocity but DBS was better at improving measures of 

velocity and rhythm.  

 

This study was pivotal in demonstrating that objective measurements of 

movement identifies differential improvements in motor control after DBS 

compared to medications and these were not detected by clinical UPDRS 

scores.   

 

In 2005 Jobbagy et al. used an OKS to assess piano playing FT movements 

in 32 HCs and ten PwPD (Jobbagy, Harcos et al., 2005). The subjects 

placed their hand on a table with fingers separated and were asked to tap 

with their little, ring, middle and then index fingers in turn for 30 seconds. 

They found that a composite score of rhythmicity, amplitude and frequency 

was lower in PD than HC and tended to be lower in more advanced HY 

stages. Most subjects performed the task several times on the same day and 

this revealed that their scores generally improved for the first three trials and 

then plateaued, suggesting a learning effect and prompting the authors to 

recommend that only scores obtained after three practice trials should be 

used to improve accuracy.  

 

Espay et al. compared three objective measures of bradykinesia to clinical 

rating scale scores in 24 PwPD and 16 HCs. The MA hand of patients, and 

the dominant hands of HCs were assessed in on and off states performing 

the PPB, tapping two buttons 30 cm apart over 30 seconds, and a 15 second 
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rapid FT task whilst wearing EM tracking sensors (Espay, Beaton et al., 

2009).   

 

In the off state the total UPDRS 3 scores were inversely correlated with 

amplitude, but not speed, and levodopa normalized speed to a greater extent 

than amplitude. The authors hypothesized that speed and amplitude in PD 

may therefore have different pathophysiological processes. This study 

demonstrated that the range of speed and amplitude overlapped 

considerably between patients and HCs (Figure 16) and this makes 

discrimination of diagnostic groups based on linear statistical analysis 

difficult. It is important to note that this study excluded PwPD with 

moderate tremor, perhaps suggesting that the group largely comprised the 

PIGD subtype of PD.  

 

Figure 16 Finger tapping speed and amplitude in patients and controls 

 
Legend: Histograms of amplitude and speed measurements for PD patients 

off (shaded bars) and controls (white bars). Figure reproduced with 

permission from Espay et al.2009 (Espay, Beaton et al., 2009) 

 

 

In 2011 Espay et al. used KinetiSense (Great Lakes Neuro Technologies 

Inc.) movement sensors (Figure 17) to determine whether four components 

of bradykinesia in PD – slowness, reduced amplitude, dysrhythmia and 

fatigue – were associated with differential response to dopaminergic 

medication (Espay, Giuffrida et al., 2011). 
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Figure 17 KinetiSense motion sensors 

 
Legend: Lightweight KinetiSense motion sensors containing three 

accelerometers and three gyroscopes were placed on the subject’s index 

finger and thumb but kinematic data was only extracted from the 

gyroscopes. Image reproduced from Espay et al. 2011 with permission 

(Espay, Giuffrida et al., 2011).  

 

 

Eighty-five PwPD wore the sensors on their MA hand and were assessed on 

and off for 15 seconds whilst performing FT, hand grasping and pronation. 

The assessments were video-recorded and four neurologists clinically rated 

speed, amplitude, rhythm and fatigue using the Modified Bradykinesia 

Rating Scale (MBRS).  The clinical scores were averaged across three tasks 

and four clinicians to minimise variability. 

 

Amplitude impairments were more severe and more prevalent than speed or 

rhythm impairments in all tasks whilst off.  The speed component improved 

in the clinical assessments, and this was the predominant effect by 

quantitative measures also. Rhythm and amplitude slightly improved 

quantitatively but these changes were not detected by the MBRS. These 

findings were largely in line with Taylor-Taveres’ et al.’s findings but with 

the benefit of including information on amplitude too. 

 

In 2012 Ling et al. used an OKS to quantify FT in 15 PwP, 9 PSP and 16 

HCs in order to evaluate whether PSP exhibits the same bradykinesia as PD 

components of movement impairment. For example,
amplitude improves during finger taps postpallidot-
omy, but not speed or rhythm.3 Also, amplitude but
not speed improves during bimanual compared with
unimanual finger tapping.1 An example of the com-
plexities in interpreting studies using the ‘‘bradykine-
sia-related’’ items of the UPDRS-III as an independent
outcome in clinical trials is illustrated by a trial of a
serotonin reuptake inhibitor antidepressant, which
determined that ‘‘citalopram did not affect rigidity
and tremor, but significantly improved bradykinesia
and finger taps.’’4 These findings seem to contradict
clinical experience and several reports of potentially
detrimental effects of SSRIs on motor function in
patients with PD.5–7 Also, although subthalamic deep
brain stimulation has been shown to be efficacious for
ameliorating PD motor symptoms including ‘‘bradyki-
nesia,’’8,9 it is unclear whether specific components of
movement are improved.9–11 A recent pilot study dem-
onstrated that levodopa normalizes bradykinesia to a
greater extent than hypokinesia.12 Therefore, we
sought to evaluate motor function and response to do-
paminergic medication in patients with PD with vari-
ous impairments in speed, amplitude, and rhythm of
movement.

Patients and Methods

We recruited 85 patients with idiopathic Parkinson’s
disease (PD) meeting research diagnostic criteria13

(age, 46–85 years; disease duration, 2–31 years;
Hoehn & Yahr score, 1–4). Exclusion criteria included
tremor severity > 1 by UPDRS-III severity score (to
minimize confounding of bradykinesia assessment),
previous neurosurgical procedures, cognitive impair-
ment (Mini–Mental Score Examination < 27/30),
presence of lower or upper motor neuron signs, and
neurological signs suggesting a parkinsonism other
than PD. All clinical testing was completed at the Uni-
versity of Cincinnati College of Medicine and the Uni-
versity of Toronto Department of Medicine under the
purview of their respective institutional review boards.
All subjects provided informed consent prior to their
participation.

Data Collection

Subjects performed UPDRS-III-based finger-tapping
(item 23), hand-grasping (item 24), and pronation-
supination (item 25) tasks in the OFF state (12–15
hours after dopaminergic drug withdrawal) and the
ON state (approximately 45–60 minutes after intake
of subjects’ routine dopaminergic medications, when
response was expected to be maximal). Subjects wore
wireless 6-degree-of freedom motion sensors (Kineti-
Sense, Great Lakes NeuroTechnologies, Inc., Cleve-
land, OH) on the index finger and thumb during each

task (Fig. 1). Each motion sensor contained 3 orthogo-
nal accelerometers to measure 3-D linear acceleration
and 3 orthogonal gyroscopes to measure 3-D angular
velocity. The units sampled motion at 128 Hz and
wirelessly transmitted the data to a computer via a
2.4-GHz radio. Patients were asked to perform each
of the 3 tasks using the more affected limb for 15 sec-
onds with as large an amplitude and as fast move-
ments as possible. Digital video was recorded of the
limb-performing task for later blinded rating.

Clinical Assessment

The videos were randomized and loaded onto a
secure Web server for independent evaluation by 4
movement disorder neurologists unaware of the sub-
jects’ clinical state. The raters were asked to use the
UPDRS-III and MBRS for scoring each task. The
MBRS was previously developed for scoring speed,
amplitude, and rhythm separately on a 0–4 scale (with
0 ¼ normal and 4 ¼ most severe).1

Data Processing and Analysis

UPDRS-III scores and speed, amplitude, and rhythm
MBRS subscores were compared ON and OFF medi-
cation for each subject. The speed, amplitude, and
rhythm scores were averaged across the 3 tasks and 4
clinicians to minimize variability. The Student t test
was used to determine if the MBRS subscores
improved ON medication. In addition to comparisons
of the PD study population as a whole, subjects were
subdivided into 4 categories based on their primary
impairment(s) OFF medication: strictly hypokinetic,
strictly bradykinetic, both, and neither. Average

FIG. 1. Lightweight sensor units (KinetiSense, Great Lakes Neuro-
Technologies Inc.), each containing 3 orthogonal accelerometers and
3 orthogonal gyroscopes, were placed on each distal phalanx of the
subject’s index finger and thumb.

B R A D Y K I N E S I A I N P D
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(Ling, Massey et al., 2012). Three sets of 15- second recordings were 

performed with each hand and PwPD were tested off and on.  In contrast to 

previous kinematic studies that measured components of movement over the 

whole recording period, in this study the amplitude, duration, and speed of 

each single tap cycle was measured. Using this detailed approach the 

progressive change in performance (slope of linear regression line of 

variable against cycle number) could be calculated in addition to regularity 

(coefficient of variation) and mean performance of each component.  

 

The most significant FT differences between PD off and HC were reduced 

speed and greater variability between tap cycles. Amplitude was 

numerically smaller (p = 0.1) and cycle duration longer (p = 0.062) but with 

borderline significance.  These findings contrast with Espay’s study that 

reported amplitude as the most impaired component of PD (Espay, Beaton 

et al., 2009, Espay, Giuffrida et al., 2011). There are two possible 

explanations for this discrepancy: firstly, amplitude was measured in 

different ways – Espay measured linear separation between digit sensors 

whereas Ling measured degrees of angular separation that may better 

account for different sized hands. Secondly Ling combined the scores of 

both hands together whereas Espay used only the MA hands scores and it is 

possible that Ling’s measurments have become ‘diluted’ by the LA hand’s 

data. Interestingly the authors found that the amplitude of FT movement in 

PSP was roughly half of those in PD and the amplitude did not decrement at 

all with repetitive movements, suggesting that PSP and PD have different 

component profiles of bradykinesia.  

 

Only this study and Yokoe et al. (Yokoe, Okuno et al., 2009) have 

examined peak velocity measures within the tap cycle. This showed that 

when off, PD subjects’ peak opening velocity was less than HC (p = 0.03) 

but there was no difference in peak closing velocity. After levodopa tap 

frequency, mean speed, and rhythm all significantly improved but 

decrement, fatigue and amplitude did not, lending support to Espay et al’s 

findings (Espay, Giuffrida et al., 2011).  Akin to Espay’s findings, the total 

UPDRS part 3 scores in Ling et al.’s study were more strongly correlated 
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with amplitude than rhythm or speed and there was no significant 

correlation with SE measures.  

 

2.3.9 Summary of bradykinesia 

Bradykinesia is a complex clinical phenomenon and the underlying 

pathophysiology remains incompletely understood. Some aspects of 

bradykinesia are not DA responsive suggesting that the current BG 

functional models do not fully explain the underlying pathophysiology. 

However, largely based on such models the current understanding of 

bradykinesia in PD may be summarised as follows: 

 

SN cells degenerate in the midbrain leading to reduced DA input to the BG. 

This results in less activation of the direct pathway and relative increased 

activation of the indirect pathway; the net result is an increase in the 

inhibitory output from the BG, namely the GPi. This results in less 

excitation of the cortex, in particular the midline SMA that is important for 

planning and preparing movements. Consequently there is an underscaling 

of internally generated movement programmes and insufficient recruitment 

of muscle force during initiation of movement. PD patients’ movements 

undershoot the target and this results in reduced amplitude and speed of 

actions. Medial cortical areas are more active during internally generated 

movements whilst lateral areas are associated with externally cued 

movements. The BG preferentially access the medial rather than lateral 

motor cortical areas but this may be overcome if an external stimulus is 

provided. Hence PwPD may recruit additional circuits during movement to 

compensate for the primary BG defect and the clinical presentation of 

bradykinesia is probably a mixture of the primary deficit and these 

compensatory processes. 

 

The gold standard diagnostic and monitoring tools for grading bradykinesia 

rely on subjective interpretation of the multiple movement components 

during dynamic assessments and are vulnerable to inter-rater variability. 

The clinical grades of bradykinesia severity are coarse scales and require a 
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composite assimilation of the separable components that means that 

differential component responses to new therapies may go unnoticed.  

 

Modern technology has facilitated the development of small, lightweight, 

cheap and reliable movement sensors. They have revealed that the 

components of bradykinesia respond differently to pharmacological and 

surgical therapies for PD and clinical rating scales are insensitive to such 

changes. There remains a need for a small portable device that could 

objectively measure bradykinesia in the clinical setting to aid accurate 

diagnosis and monitoring of PD.  
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Chapter 3 Methodology 

 

3.1 Patients and controls  

3.1.1 Recruitment 

The aims and objectives of the FT study have been described in Chapter 1.2. 

Patients with clinically definite PD attending neurology outpatient clinics at 

Leeds Teaching Hospitals NHS Trust (LTHT) were invited to take part in 

the study via a letter and information sheet sent in the post. The patient was 

telephoned one week later and asked if they were agreeable to participate in 

the study. They were also asked if they might be able to bring along their 

spouse or friend to act as a HC for the study but it was stressed that there 

was no obligation to do so.  

 

An appointment was arranged by telephone, and confirmed in writing, for 

the research participant to attend the outpatient department at one of two 

LTHT hospitals - Leeds General Infirmary or Wharfedale Hospital, Otley. 

The appointment was scheduled for a date that was at least a week later in 

order to allow the patient an opportunity to withdraw from the study if they 

changed their mind.  

 

3.1.2 Consent 

Forty-nine PD patients and 41 HC were recruited. All subjects provided 

informed written consent and were assessed between August 2009 and 

October 2010. Approval was obtained from the National Research Ethics 

Service (reference 08/H0903/36) and the Medicines and Healthcare 

Products Regulatory Agency. Medication was not altered for the study and 

all patients were assessed whilst on.  All but three of the patients were 

taking dopaminergic drugs and the mean levodopa equivalent daily dose  

(LEDD) was calculated using standard conversion factors (Tomlinson, 

Stowe et al., 2010). Seven patients had dyskinesia and 29 had resting tremor 

evident on the study day.  None of the HCs were taking dopaminergic or 

anticholinergic drugs. Two HCs had a postural tremor and one had 

generalised epilepsy but the other controls had no history of neurological 

conditions.  



	
  
115	
  

 

3.1.3 Independent validation set  

A validation sample of 13 patients diagnosed with clinically definite PD and 

nine age-matched HCs were recruited from a study on PD at the University 

of California-San Francisco (UCSF). Ethical approval was obtained from 

the UCSF and Veterans Affairs Medical Center Committees on Human 

Research (reference 11-06926) and all subjects provided written consent. 

Subjects were assessed between March 2012 and November 2012. The 

same procedures were followed for the UCSF sample and additionally they 

were assessed whilst in on and off (12 hours without dopaminergic 

medication) states. 

 

3.2 Apparatus 

3.2.1 Polhemus Patriot EM tracking sensor system  

Assessments were performed in a standard hospital clinic room with the 

subject sat in a non-swivel high backed chair facing the long edge of a table. 

A laptop computer and Polhemus Patriot EM tracking sensor system 

(Polhemus, Inc., Vermont USA) were placed on the table and connected 

(Figures 18 and 19).  The researcher sat by the short edge of the table and 

the laptop screen was adjusted so it could only be viewed by the researcher.  

This meant that participants did not receive any visual feedback from the 

movement recording traces displayed on the screen.  

 

Figure 18 Ariel schematic view of the apparatus set up
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Figure 19 Polhemus electromagnetic tracking system 

Legend: (a) Polhemus Patriot systems electronics unit (left) and magnetic 

transmitter (right) (b) Polhemus Patriot EM sensors attached to the thumb 

and index finger with Velcro straps.  

 

The Polhemus device comprises a systems electronic unit (SEU), a 

magnetic transmitter and two EM tracking sensors. The SEU and magnetic 

transmitter were placed on the table and the two tracking sensors were worn 

on the research participant’s hand (Figure 19).  

 

In each sensor and the magnetic transmitter there are three EM coils 

arranged on orthogonal axes and encased in plastic.  When an AC passes 

through the transmitter a pulse of a magnetic field is sequentially emitted 

from each coil in turn. The strength of the magnetic field detected by each 

coil inside the sensor enables its position and orientation relative to the 

transmitter to be accurately measured with six degrees of freedom (three 

positional and three orientation) in 3D space (Figure 20).  

 

The SEU samples the positional and orientation data from each sensor 60 

times per second thereby effectively measuring each sensor’s movement in 

real-time.  The SEU then transfers the movement time series data to the 

laptop for subsequent offline analysis. 

 

 

	
  

  
(a) (b)  
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Figure 20 Sensor movements measured with six degrees of freedom 

 
Legend: Each sensor’s movements are measured in 3D space using three 

positional coordinates (x, y, z) and three orientation coordinates (azimuth, 

roll, elevation). 

 

3.2.2 Electromagnetic tracking sensors 

The EM sensors are ideally suited to collecting FT kinematic data as they 

are small (1cm3) and lightweight (2 grams) so any dampening or distortion 

of movements is minimised.  The small size also makes them easily portable 

and comfortable for subjects to wear. Secondly the EM sensors are very 

sensitive to subtle changes in movement; when they are within a 30 cm 

range from the transmitter they have a sensitivity of 0.01 mm for position 

and 0.004 degrees for orientation (PATRIOTTM). Thirdly they were used to 

quantify PD FT in a previous study (Espay et al., 2009). The Polhemus 

Patriot systems costs approximately £2680 (quote from website in July 2012 

(PATRIOTTM).) and whilst this is more expensive than most accelerometer 

or gyroscope devices it is less than half the cost of OKSs.  

 

The main disadvantage of EM sensors is their vulnerability to interference 

from magnetic and ferrous metal objects and electronic devices. These can 

distort the EM field and reduce accuracy of measurements. This means that 

it is important to keep computers, telephones and large metal objects such as 

filing cabinets at least a metre away from the sensors. The second limitation 

is that the accuracy of the measurements will begin to decay if the sensors 
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are moved too far away from the magnetic transmitter. This distance 

depends on the strength of the magnetic field and for the Polhemus system 

the manufacturer recommends that the sensors are kept within an operating 

distance of 1.5 m from the transmitter (PATRIOTTM).   

 

3.2.3 Positioning of the sensors  

Each subject wore two EM sensors – one each over the nail beds of the 

thumb and index finger  (Figure 19b). By placing the EM sensors distally 

any movements of the digits would be magnified but the effect of hand size 

on the kinematic measures would also be more apparent i.e. subjects with 

longer digits, would have an advantage for producing movement with 

greater amplitude and speed. Calculations to adjust for the effect of hand 

size on FT kinematics are described in section 3.5.1. 

 

Velcro was used to secure the EM sensors in place because it resulted in a 

reliable secure fit and could easily be adjusted for different sized digits. A 

strip of Velcro was used around the digits and wrist (Figure 19b). A similar 

FT study used finger-stalls to attach EM sensors and accelerometers to their 

subjects’ digits (Yokoe, Okuno et al., 2009) but Velcro was chosen as it was 

considered cheaper and equally strong.  

 

The main disadvantage of using Velcro is that the subjects required the 

researcher’s assistance to put the sensors on.  Earlier work by Edgar 

demonstrated that it was feasible to incorporate the EM sensors into a glove 

so participants could put them on themselves (Edgar, 2007). However this 

method was not used as a series of gloves to accommodate different hand 

sizes would probably be required and it is likely that the gloves would 

interfere with normal sensorimotor integration due to the fingertips being 

covered. 

 

3.3 Assessment procedure 

3.3.1 Collection of demographic and clinical details 

The researcher commenced the study assessment for each participant by 

summarising the purpose of the research, checking that they had read the 
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information sheet and offering the opportunity to discuss any queries or 

concerns that may have arisen. The participant was then asked to complete 

the consent form. The following demographic and clinical details were 

collected from each participant: name, age, gender, hand dominance, history 

of neurological condition, co-morbidities and a list of medications. 

Additional clinical details were collected from the patients: disease duration 

(years since diagnosis) and MA side. If the participant was unsure of the 

details for any of these categories the researcher sought written consent to 

consult their medical notes in order to obtain the information.  

 

3.3.2 Physical and cognitive assessment 

A brief physical examination was performed to assess for tremor, rigidity 

and postural instability in order to allocate a HY stage and to confirm the 

patient’s MA side. The participant then completed the Montreal Cognitive 

Assessment (MoCA). 

 

3.3.3 Finger tapping assessment  

The EM sensors were attached and the participant was asked to sit upright 

with their back resting against the chair, then to raise their dominant hand so 

it was approximately at the level of their shoulder and the upper limb was 

unsupported. They were instructed to repeatedly tap their dominant index 

finger and thumb together with movements “as fast and as big as possible 

for 30 seconds until asked to stop”. The researcher demonstrated ten FTs by 

moving her finger and thumb roughly perpendicular to the ground and with 

wide amplitude, fast and rhythmic movements, but these movements were 

not continued during the recording of the participants’ movements. 

  

The participants were not given a practice period and the first attempt at FT 

for each hand was recorded. The assessment was only repeated if a technical 

error occurred such as the movement data not registering on the laptop 

screen, or the sensor slipping off the nail bed. If a motor arrest occurred 

during the recording the researcher verbally reminded the participant that 
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they should continue trying to tap for the full 30 seconds but no ‘trick’16 

techniques were used and the recording was not repeated. The researcher 

was an MDS-UPDRS certified clinician and she graded the FT performance 

on a scale of zero to four immediately after each recording period using 

item 3.4 of the MDS-UPDRS (Goetz, Tilley et al., 2008); see Chapter 2.2.7.  

The sensors were then transferred to the non-dominant hand and the 

assessment repeated.  

 

3.3.3.1 Why was a finger tapping task used to evaluate bradykinesia? 

The FT test is ideally suited for evaluating movements in PD patients and 

controls for several reasons. Firstly it is a familiar and established clinical 

test with a validated clinical grading scale available - item 3.4 on MDS-

UPDRS (Goetz, Tilley et al., 2008). If a device is to be developed that 

objectively measures bradykinesia in clinical practice or research trials it is 

important that test procedures are simple and quick.  By selecting the FT 

test, collection can occur during standard clinical assessments rather than 

additional assessments being required.  Secondly it is more sensitive to PD 

bradykinesia than other MDS-UPDRS upper limb bradykinesia items 

(Agostino, Curra et al., 2003) and thirdly, clinical and kinematic 

assessments of the FT task have been shown to correlate well with other 

measures of bradykinesia (Agostino, Curra et al., 2003, Goetz, Tilley et al., 

2008).  A final advantage of using FT to evaluate PD bradykinesia is that it 

is a compact test requiring only a small room for the assessment and, in 

contrast to gait analysis it can be performed sitting down thereby not 

reducing EM sensor accuracy by moving away from the magnetic 

transmitter, or adding confounding of the effects of balance on the results.  

 

3.3.3.2 Why is it important to assess both hands but separately?  

There are several benefits for assessing the FT task in both hands but 

separately. It has been shown that when PwPD perform FT using both hands 

simultaneously the performance of the MA hand improves and the 

performance of the least affected (LA) hand deteriorates (Kishore, Espay et 
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al., 2007).  It is important to assess both hands though rather than just the 

MA side because the degree of asymmetry of FT performance may in itself 

be a helpful discriminating feature for PD. The LA side data is likely to 

provide a more challenging test for the device too. Finally Haxmaa et al. 

proposed that PwPD and HY stage 1 disease (i.e. unilateral parkinsonism) 

the ‘non- affected’ side’s performance is a useful model for “preclinical” 

PD (Haaxma, Bloem et al., 2010).  

 

3.3.3.3 Choosing the duration of finger tapping assessment 

For purposes of diagnosis, the UKBBDC does not specify how bradykinesia 

should be determined clinically in terms of which clinical tests to use or 

how many repetitions to assess. For monitoring, the MDS-UPDRS instructs 

subjects to perform ten consecutive FTs but concern has been raised that 

this may not be long enough for the SE to manifest (Ling, Massey et al., 

2012).  

 

Previous kinematic studies of PD have used a range of FT durations 

including 5 seconds (Agostino, Curra et al., 2003), 15 seconds (Espay, 

Beaton et al., 2009, Espay, Giuffrida et al., 2011, Heldman, Giuffrida et al., 

2011, Ling, Massey et al., 2012), 30 seconds (Kandori, Yokoe et al., 2004), 

and  60 seconds (Yokoe, Okuno et al., 2009). Thirty seconds was chosen for 

the present FT study protocol as this was felt to be long enough to allow the 

SE to manifest but probably not long enough to result in physiological 

fatigue. It also provided the opportunity for further analysis of shorter 

segments of data. 

 

 

3.4 Pre-processing of movement data 

Only the positional movement data was used in this study. The difference 

between the x, y and z coordinates in one sensor and the corresponding x, y 

and z coordinates in the second sensor gave the separation distance between 

the index finger nail and the thumb nail (Figure 21). 
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For each 1/60th second time point the relative distance between the sensors 

was calculated by subtracting the x, y, z coordinates of the index finger 

sensor from the x, y, z coordinates of the thumb sensor. The Euclidean 

distance D, or overall positional separation, between index finger and thumb 

was then calculated as: 𝐷 = 𝑥! + 𝑦! + 𝑧!  where x, y and z are the 

coordinate distances of the index finger relative to the thumb. 

 

 

Figure 21 Raw positional data in the thumb and index finger sensors 

                   Thumb sensor            Finger sensor 

 
 

Legend: An example of the raw positional data collected from the thumb 

(left column of charts) and index finger (right column of charts) sensors of a 

participant. From top to bottom each sensor’s time series positional data are 

shown for the x-, y- and z -coordinates.  Data series produced by Stuart 

Lacy. 

 

This generated a sequence of digit separations over time (Figure 22).  For 

each subject the separation time series data, D, was differentiated to produce 

the speed time series data (dD/t) and then differentiated again to give the 
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acceleration time series data (dD2/t). In other words the first and second 

derivatives of Euclidean distance (or relative separation in 3D space) were 

calculated in order to produce the speed and acceleration data respectively.  

 

 

Figure 22 Example of finger tapping kinematic data 

 
Legend: Kinematic data from seven FTs are shown. The x-axes denote time, 

measured in seconds, since the assessment recording started. The top chart 

shows the relative distance between the two sensors in mm. The middle 

chart shows the corresponding speed data, in mm/s. The bottom chart shows 

the corresponding acceleration data, in mm/s2.  Data series produced by 

Stuart Lacy. 

 

Two different approaches to analysing the movement data were used in this 

study - separable component measures of bradykinesia and EA induced 

classifiers as outlined below.  

 

The data was pre-processed to remove noise and this process was slightly 

different for each approach to analysis. For the separable component 

analysis the x, y, z coordinate raw data was passed through a Low Pass 5Hz 

Butterworth filter to remove any high frequency noise elements.  For the EA 

analysis noise was first removed by down-sampling the acceleration data by 
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a factor of two. This means that only every other data point was used, 

resulting in 30 data points per second rather than 60. The acceleration data 

was then truncated to one standard deviation around the mean and scaled 

uniformly to the interval 0,1 in order to remove noise and information about 

absolute amplitude (Figure 23).  

 

3.5 Calculation of separable movement components 

For the separable component analyses of the FT movement data the 

separation, speed and acceleration time series data were analysed by 

purpose-written SciPy (Jones, Oliphant et al., 2001) and R (R Development 

Core Team, 2008) scripts. The principles of the calculations used within the 

scripts are outlined in this section and in Figures 24 and 25. In summary two 

types of calculations were made – the first for components within an 

individual tap cycle and the second for measuring the average, the 

variability and the trend of these measurements over a defined duration of 

consecutive FTs.   

 

3.5.1 Measuring components within each finger tap  

 

Defining individual tap cycles 

Each FT cycle comprises an opening phase and a closing phase. The 

opening phase begins once the digits begin to separate from opposition and 

finishes when the digits are maximally separated; the closing phase begins 

once the digits move towards one another after the point of maximal 

separation and finishes when the digits are opposed again (Figure 24).  

 

The cycle of opening and closing movements is repeated successively 

during the assessment period to produce a sequence of FTs.  Each 30-

second recording of sensor separation values was segmented into separate 

tap cycles that were defined by the period between two successive minimal 

separation points i.e. two consecutive oppositions (Figure 24). This allowed 

movement component measurements to be calculated for every individual 

tap cycle performed by each subject. 
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Figure 23 Pre-processing raw movement data to remove noise 

	
   	
   	
   Patient	
  data	
  
(a) Raw data	
  

  
(b) Pre-processed data 

           
   Control data 
(c) Raw data 

 
(d) Pre-processed data 

 
Legend: The raw acceleration data from a patient (a) and a control (c) was 

pre-processed by using alternate data points, truncating these to one SD 

about the mean and then scaling the time series data uniformly between zero 

and one. This resulted in acceleration data with less noise and no 

information on the absolute amplitude (b, d). Figure produced by Mic Lones 
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Fig. 8. Examples of a PD patient and an age-matched control performing finger tapping over a 3s interval, showing (a–b) raw acceleration data, and (c–d)
corresponding acceleration sequences after preprocessing.

3) ROC metrics: Many types of classifier (including those
used in this study) produce continuous-valued outputs, which
must then be mapped to class labels using thresholds. Conse-
quently, different trade-offs between specificity and sensitivity
can be achieved by varying these thresholds. This is captured
by a Receiver Operating Characteristics (ROC) curve, a plot
of true positive rate (sensitivity) versus false positive rate
(1�specificity) for all possible thresholds on the classifier’s
output range.

A number of single-valued summary statistics can be cal-
culated from a ROC curve. The most common of these is the
Area Under Curve (AUC), which is calculated by integrating
the area under the ROC curve, typically using the trapezoid
rule. AUC is equivalent to the probability that a positive data
point will be given a higher output value than a negative data
point [58]. As such, an AUC of 0.5 is equivalent to random
classification. AUC is symmetrical, meaning that a classifier
with an AUC of 1 has the same predictive power as one with
an AUC of 0 (although with an inverted ordering of classes
in its output range). Its relationship to probability means that
the AUC is easy to interpret, making it a popular metric in
medicine [59].

E. Preprocessing

Each sensor’s translational (x,y, z) and rotational (elevation,
azimuth, roll) coordinate data were collected every 1/60th of a
second. For each time index, the Euclidean distance between
the two sensors was calculated, generating a sequence of
sensor separations over time for each subject. These were then
converted into acceleration time series. An initial investigation
suggested that classifiers trained on raw acceleration data were
sensitive to signal noise, and would converge sub-optimally to
the strong absolute amplitude signal. To mitigate this, the data

was preprocessed prior to classifier training. First, to remove
noise, the data was down-sampled by a factor of two and a
moving average filter of size 2 was applied. The acceleration
data was then truncated to one standard deviation around the
mean and scaled uniformly to the interval [0, 1] to remove
information about absolute amplitude. Examples of raw and
preprocessed acceleration time series are shown in Fig. 8.

F. Evolutionary Settings
We used the same evolutionary algorithm for both classifier

architectures: a standard generational evolutionary algorithm
with a population size of 200, a generation limit of 100,
tournament selection (tournament size 4) and elitism (size
1). Child solutions were generated using uniform crossover
and mutation in the ratio 1:4. For IRCGP classifiers, the
mutation rate was 6% for functions and 4% for the elements
of functionality profiles. Window sizes in the range of 10–20
were used, sufficient to cover a single tapping motion (see
Fig. 8). For ABN classifiers, the point mutation rate was 6%,
the number of chemicals is fixed at 10, and the number of
enzymes has a lower bound of 1, with no upper bound.

IV. RESULTS

A. Baseline Measures
Previous studies in the medical literature have also con-

sidered using recordings of finger tapping as a basis for
diagnosing movement disorders. These have generally focused
upon gross features of movement data, such as mean amplitude
and velocity. In [60], for example, the authors note a fairly
strong correlation (⇠0.8) between UPDRS score and both
velocity and spectral power within gyroscopic recordings of
finger tapping from 40 patients and 14 controls. Similarly,
using various gross features, including amplitude fatiguing,
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Fig. 8. Examples of a PD patient and an age-matched control performing finger tapping over a 3s interval, showing (a–b) raw acceleration data, and (c–d)
corresponding acceleration sequences after preprocessing.
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used in this study) produce continuous-valued outputs, which
must then be mapped to class labels using thresholds. Conse-
quently, different trade-offs between specificity and sensitivity
can be achieved by varying these thresholds. This is captured
by a Receiver Operating Characteristics (ROC) curve, a plot
of true positive rate (sensitivity) versus false positive rate
(1�specificity) for all possible thresholds on the classifier’s
output range.

A number of single-valued summary statistics can be cal-
culated from a ROC curve. The most common of these is the
Area Under Curve (AUC), which is calculated by integrating
the area under the ROC curve, typically using the trapezoid
rule. AUC is equivalent to the probability that a positive data
point will be given a higher output value than a negative data
point [58]. As such, an AUC of 0.5 is equivalent to random
classification. AUC is symmetrical, meaning that a classifier
with an AUC of 1 has the same predictive power as one with
an AUC of 0 (although with an inverted ordering of classes
in its output range). Its relationship to probability means that
the AUC is easy to interpret, making it a popular metric in
medicine [59].

E. Preprocessing

Each sensor’s translational (x,y, z) and rotational (elevation,
azimuth, roll) coordinate data were collected every 1/60th of a
second. For each time index, the Euclidean distance between
the two sensors was calculated, generating a sequence of
sensor separations over time for each subject. These were then
converted into acceleration time series. An initial investigation
suggested that classifiers trained on raw acceleration data were
sensitive to signal noise, and would converge sub-optimally to
the strong absolute amplitude signal. To mitigate this, the data

was preprocessed prior to classifier training. First, to remove
noise, the data was down-sampled by a factor of two and a
moving average filter of size 2 was applied. The acceleration
data was then truncated to one standard deviation around the
mean and scaled uniformly to the interval [0, 1] to remove
information about absolute amplitude. Examples of raw and
preprocessed acceleration time series are shown in Fig. 8.

F. Evolutionary Settings
We used the same evolutionary algorithm for both classifier

architectures: a standard generational evolutionary algorithm
with a population size of 200, a generation limit of 100,
tournament selection (tournament size 4) and elitism (size
1). Child solutions were generated using uniform crossover
and mutation in the ratio 1:4. For IRCGP classifiers, the
mutation rate was 6% for functions and 4% for the elements
of functionality profiles. Window sizes in the range of 10–20
were used, sufficient to cover a single tapping motion (see
Fig. 8). For ABN classifiers, the point mutation rate was 6%,
the number of chemicals is fixed at 10, and the number of
enzymes has a lower bound of 1, with no upper bound.

IV. RESULTS

A. Baseline Measures
Previous studies in the medical literature have also con-

sidered using recordings of finger tapping as a basis for
diagnosing movement disorders. These have generally focused
upon gross features of movement data, such as mean amplitude
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strong correlation (⇠0.8) between UPDRS score and both
velocity and spectral power within gyroscopic recordings of
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Fig. 8. Examples of a PD patient and an age-matched control performing finger tapping over a 3s interval, showing (a–b) raw acceleration data, and (c–d)
corresponding acceleration sequences after preprocessing.

3) ROC metrics: Many types of classifier (including those
used in this study) produce continuous-valued outputs, which
must then be mapped to class labels using thresholds. Conse-
quently, different trade-offs between specificity and sensitivity
can be achieved by varying these thresholds. This is captured
by a Receiver Operating Characteristics (ROC) curve, a plot
of true positive rate (sensitivity) versus false positive rate
(1�specificity) for all possible thresholds on the classifier’s
output range.

A number of single-valued summary statistics can be cal-
culated from a ROC curve. The most common of these is the
Area Under Curve (AUC), which is calculated by integrating
the area under the ROC curve, typically using the trapezoid
rule. AUC is equivalent to the probability that a positive data
point will be given a higher output value than a negative data
point [58]. As such, an AUC of 0.5 is equivalent to random
classification. AUC is symmetrical, meaning that a classifier
with an AUC of 1 has the same predictive power as one with
an AUC of 0 (although with an inverted ordering of classes
in its output range). Its relationship to probability means that
the AUC is easy to interpret, making it a popular metric in
medicine [59].

E. Preprocessing

Each sensor’s translational (x,y, z) and rotational (elevation,
azimuth, roll) coordinate data were collected every 1/60th of a
second. For each time index, the Euclidean distance between
the two sensors was calculated, generating a sequence of
sensor separations over time for each subject. These were then
converted into acceleration time series. An initial investigation
suggested that classifiers trained on raw acceleration data were
sensitive to signal noise, and would converge sub-optimally to
the strong absolute amplitude signal. To mitigate this, the data

was preprocessed prior to classifier training. First, to remove
noise, the data was down-sampled by a factor of two and a
moving average filter of size 2 was applied. The acceleration
data was then truncated to one standard deviation around the
mean and scaled uniformly to the interval [0, 1] to remove
information about absolute amplitude. Examples of raw and
preprocessed acceleration time series are shown in Fig. 8.

F. Evolutionary Settings
We used the same evolutionary algorithm for both classifier

architectures: a standard generational evolutionary algorithm
with a population size of 200, a generation limit of 100,
tournament selection (tournament size 4) and elitism (size
1). Child solutions were generated using uniform crossover
and mutation in the ratio 1:4. For IRCGP classifiers, the
mutation rate was 6% for functions and 4% for the elements
of functionality profiles. Window sizes in the range of 10–20
were used, sufficient to cover a single tapping motion (see
Fig. 8). For ABN classifiers, the point mutation rate was 6%,
the number of chemicals is fixed at 10, and the number of
enzymes has a lower bound of 1, with no upper bound.

IV. RESULTS

A. Baseline Measures
Previous studies in the medical literature have also con-

sidered using recordings of finger tapping as a basis for
diagnosing movement disorders. These have generally focused
upon gross features of movement data, such as mean amplitude
and velocity. In [60], for example, the authors note a fairly
strong correlation (⇠0.8) between UPDRS score and both
velocity and spectral power within gyroscopic recordings of
finger tapping from 40 patients and 14 controls. Similarly,
using various gross features, including amplitude fatiguing,
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Fig. 8. Examples of a PD patient and an age-matched control performing finger tapping over a 3s interval, showing (a–b) raw acceleration data, and (c–d)
corresponding acceleration sequences after preprocessing.

3) ROC metrics: Many types of classifier (including those
used in this study) produce continuous-valued outputs, which
must then be mapped to class labels using thresholds. Conse-
quently, different trade-offs between specificity and sensitivity
can be achieved by varying these thresholds. This is captured
by a Receiver Operating Characteristics (ROC) curve, a plot
of true positive rate (sensitivity) versus false positive rate
(1�specificity) for all possible thresholds on the classifier’s
output range.

A number of single-valued summary statistics can be cal-
culated from a ROC curve. The most common of these is the
Area Under Curve (AUC), which is calculated by integrating
the area under the ROC curve, typically using the trapezoid
rule. AUC is equivalent to the probability that a positive data
point will be given a higher output value than a negative data
point [58]. As such, an AUC of 0.5 is equivalent to random
classification. AUC is symmetrical, meaning that a classifier
with an AUC of 1 has the same predictive power as one with
an AUC of 0 (although with an inverted ordering of classes
in its output range). Its relationship to probability means that
the AUC is easy to interpret, making it a popular metric in
medicine [59].

E. Preprocessing

Each sensor’s translational (x,y, z) and rotational (elevation,
azimuth, roll) coordinate data were collected every 1/60th of a
second. For each time index, the Euclidean distance between
the two sensors was calculated, generating a sequence of
sensor separations over time for each subject. These were then
converted into acceleration time series. An initial investigation
suggested that classifiers trained on raw acceleration data were
sensitive to signal noise, and would converge sub-optimally to
the strong absolute amplitude signal. To mitigate this, the data

was preprocessed prior to classifier training. First, to remove
noise, the data was down-sampled by a factor of two and a
moving average filter of size 2 was applied. The acceleration
data was then truncated to one standard deviation around the
mean and scaled uniformly to the interval [0, 1] to remove
information about absolute amplitude. Examples of raw and
preprocessed acceleration time series are shown in Fig. 8.

F. Evolutionary Settings
We used the same evolutionary algorithm for both classifier

architectures: a standard generational evolutionary algorithm
with a population size of 200, a generation limit of 100,
tournament selection (tournament size 4) and elitism (size
1). Child solutions were generated using uniform crossover
and mutation in the ratio 1:4. For IRCGP classifiers, the
mutation rate was 6% for functions and 4% for the elements
of functionality profiles. Window sizes in the range of 10–20
were used, sufficient to cover a single tapping motion (see
Fig. 8). For ABN classifiers, the point mutation rate was 6%,
the number of chemicals is fixed at 10, and the number of
enzymes has a lower bound of 1, with no upper bound.

IV. RESULTS

A. Baseline Measures
Previous studies in the medical literature have also con-

sidered using recordings of finger tapping as a basis for
diagnosing movement disorders. These have generally focused
upon gross features of movement data, such as mean amplitude
and velocity. In [60], for example, the authors note a fairly
strong correlation (⇠0.8) between UPDRS score and both
velocity and spectral power within gyroscopic recordings of
finger tapping from 40 patients and 14 controls. Similarly,
using various gross features, including amplitude fatiguing,
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Figure 24 Finger tapping cycles 

 
Legend: Positional separation data recorded from a control demonstrating 

the opening and closing phases of three consecutive FT cycles. Max sep, 

maximum separation; min sep, minimum separation.  

Illustration adapted from an original produced by Stuart Lacy. 

 

 

Normalisation of data 

In order to minimise the impact of different hand sizes between subjects the 

separation data were normalised.  This was done using two methods. Firstly, 

as the minimal separation of the two EM sensors, when the digits are 

opposed, depends on the antero-posterior dimension or ‘thickness’ of the 

participant’s finger and thumb (as the sensors were positioned over the nail 

bed, or posterior aspect, of each digit) the minimum separation distance 

recorded for each subject was subtracted from all of their other separation 

data points. This gave a series of separation measurements for each 

subject’s hand relative to their minimal separation.  

 

Secondly, as the maximal separation of the digits depends on the length of 

the digits all of the separation data points were divided by the maximum 

separation achieved during the 30 second recording. This resulted in a 

measure of normalised amplitude from zero to one representing the relative 

distance between the index finger and thumb. 
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Amplitude 

The maximum amplitude of each FT cycle was calculated as the largest 

amplitude achieved during each single tap cycle (Figure 25). The mean 

amplitude of each tap cycle was calculated by dividing the sum of all the 

separation data points by the total number of data points. 

 

Speed   

The normalised amplitude data were differentiated to calculate the 

corresponding velocity profile and the absolute values of velocity taken in 

order to obtain the speed data. The following measurements of speed were 

made for each individual tap cycle (Figure 25): 

 

Mean speed  = sum of all speed data points/ number of data points 

Maximum opening speed (OS) = maximum speed during opening phase 

Maximum closing speed (CS) = maximum speed during closing phase 

Maximum speed = whichever is greater of OS and CS 

 

Periodicity 

It was recognised that subjects may exhibit different patterns of tapping that 

may not be captured with measures of amplitude and speed e.g. a subject 

with small and slow FT movements may have the same amplitude score as a 

subjects with small but fast FT movements. To capture the relationship 

between these components a variable called ‘periodicity’ was calculated for 

each tap cycle as follows: 

 

Periodicity = maximum amplitude  x  maximum speed  

 

Duration 

The time period between two consecutive amplitude minima defined the tap 

cycle duration (Dur). Other movement components of the tap cycle could 

then be calculated as follows: 

 

% Dur in opening phase = (time in opening phase/ Dur) x 100 

% Dur in closing phase = (time in closing phase/Dur) x 100 
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Figure 25 Calculating movement components from kinematic data 

 
 

Legend: From top to bottom FT data is shown for distance (separation), 

speed and acceleration time series. The computer program overlays the 

coloured dots and dashes to define tap cycle parameters and enable 

calculation of tap cycle components. Note that two speed maxima occur 

during each tap cycle corresponding to the opening and closing phases.  

Data series produced by Stuart Lacy. 

 

 

Halts 

Halts were measured by calculating the percentage of the tap cycle duration 

spent at ‘zero’ (< 5% of the maximum) speed: 

 

% Dur with ‘zero’ speed = (time < 5% max speed/ Dur) x100 

 

 

Acceleration 

The acceleration series was derived from the amplitude data by taking the 

second derivative. For each tap cycle the following components were 

calculated: 
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Opening acceleration = maximum acceleration point during opening phase 

Opening deceleration = maximum deceleration point during opening phase 

 

Closing acceleration = maximum acceleration point during closing phase 

Closing deceleration = maximum deceleration point during closing phase 

 

A measure of zero acceleration, which may be considered a measure of 

initiation delay, or akinesia, was also calculated as follows: 

 

% Dur with ‘zero’ acceleration = (time <5% mean acceleration/Dur) x 100 

 

 

3.5.2 Measuring movement components over tapping sequences 

A number of descriptive statistics were used to convey the central tendency 

and spread of data of each movement component over multiple FTs: mean 

and median, standard deviation (SD), coefficient of variation (COV), and 

the regression line gradient. This enabled the average, the variability and the 

trend, respectively, of FT movements to be measured over defined periods.   

 

 

Mean  

Taking the mean value of a particular movement component gives an 

average value, or measure of central tendency, for that component over a 

defined duration. Mean values were calculated for the following individual 

tap cycle components: maximum amplitude, mean amplitude, maximum 

speed, mean speed, maximum OV, maximum CV, periodicity and % zero 

speed. For each component the calculation was: 

 

Mean x = sum of x during n tap cycles / n tap cycles,  

 

where x is the movement component and n is the number of FTs during a 

defined period.  
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Median 

The median value of a movement component is the middle point that 

separates the top half of the data from the bottom half of the data. Therefore 

the median also gives an average value of all FTs over a defined duration 

but it is less affected by outlier data that the mean. Median values were 

calculated for the same components as outlined in the mean section above 

using the following calculation: 

 

Median x = middle value of n tap cycles,  

 

where x is the movement component and n is the number of taps during a 

defined period.  

 

 

Standard deviation 

The SD reflects how the data is distributed about the mean value, with 

larger values indicating that the data is more widely distributed. It is 

calculated by: 

 

SD = √(variance), 

   

where variance = (sum of each data point – mean)2 / sample size 

 

 

Coefficient of Variation 

The COV reflects how much a movement component measure varies over a 

defined period. It may be considered a measure of how rhythmic the 

repetitive FT movements are and has been used in this manner in a number 

of kinematic FT studies previously (Espay, Giuffrida et al., 2011, Ling, 

Massey et al., 2012, Taylor Tavares, Jefferis et al., 2005). High COV values 

imply less rhythmic movements than small COV values. COV was 

calculated over defined FT durations as follows:   

 

COV = SD/ mean 
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COV amplitude  = SD max amplitude/ mean amplitude  

COV speed = SD max speed/ mean speed 

COV duration = SD duration/ mean duration 

 

Regression line gradient  

To calculate the trend of speed and amplitude over a series of repetitive 

finger taps the maximum speed and maximum amplitude for each 

consecutive tap cycle was linearly regressed against the number of tap 

cycles according to the model:   

 

Maximum speed (or amplitude) = y axis intercept + β x + error, 

  

where β is the slope of the regression line and x is the tap cycle number.  

 

A negative slope is a measure of the SE as it indicates that the overall trend 

of a particular movement component measure is decrementing and has been 

used in a number of previous studies (Iansek et al., 2006, Chee et al., 2009, 

Ling et al., 2012). A zero or positive slope indicates that the speed (or 

amplitude) is not decrementing and hence not exhibiting the SE (Figure 26). 

 

Figure 26 Calculation of finger tapping decrements 

 (a) Patient P11 
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(b) Control C21 

 
Figure 26: The maximum speed of each FT cycle (y-axis) is plotted against 

the corresponding tap cycle number (x-axis) for (a) a patient, P11 and (b) a 

control, C21. A regression line of best fit is applied to the data points and 

the gradient of the line gives a measure of the trend of speed measurements 

during the first 30 taps. These charts show that P11 exhibits decrementing 

FT speed (negative gradient) but C21 does not (flat/ positive gradient).   

 

3.6 Evolutionary algorithm analysis 

3.6.1 What are evolutionary algorithms?  

The second approach to analysing the movement data was using EAs and 

these are a type of computer program that have been designed to find 

optimal solutions to problems. An ‘algorithm’ is a list of sequential 

instructions traditionally specified by the programmer but EAs differ as they 

are formed through a process based on the Darwinian theory of biological 

evolution17 and involve activities that replicate selection, inheritance, 

reproduction and mutation (Larson, 2009). In short EAs solve problems 

through a repetitive process of producing vast numbers of possible solutions, 

searching through these to select the best ones, and then recombining these 

to get potentially even better solutions. In other words the EAs involve 

repeatedly optimising different solutions to a problem until the best one 

possible is produced. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17	
  states	
  that	
  organisms	
  and	
  species develop through the natural selection of 
small inherited variations that increase the individuals ability to compete, survive 
and reproduce.	
  

β	
  =	
  +	
  0.01	
  

No	
  decrement	
  of	
  
speed	
  

	
  



	
  
133	
  

3.6.2 How does an evolutionary algorithm solve a problem? 

 

Training, validation and test data  

There are different types of EA, and in this study two different types were 

used (see section 3.6.5) but the principles outlined in this section are largely 

common to all.    The main steps of the EA process can be demonstrated by 

considering a simple hypothetical problem that is adapted from Larson 

(Larson, 2009) such as ‘what lists of four numbers will equal 100 when 

summed together?’  

 

In order for the EA to solve this problem the data (e.g. 1,000 sets of random 

four-string numbers) must first be split into training, validation and test 

subsets.  The ‘training’ data (e.g. 600 of the 1000 sets of four-string 

numbers) is used by the EA to develop equations that can potentially solve 

the problem. The ‘answer’ (e.g. the sum of each set of four-string numbers) 

is revealed to the EA alongside the training data so it can ‘learn’ through a 

process of selection, reproduction and evolution (see below) what 

components of equations will best map the data to the correct answer.   

 

The accuracy of these equations are subsequently evaluated on previously 

unseen data (i.e. the other 400 sets of 4-string numbers) known as the ‘non-

training’ data. The non-training data is split into validation and test sets. The 

validation set data (e.g. 200 sets of 4 string numbers with the sum of each 

concealed) is processed through the equations to find out which equations 

give accurate results beyond the training set e.g. how many of the 4-string 

numbers that were predicted to have a sum of 100 actually did.  

 

The high performing equations selected through the validation process are 

then assessed on a ‘test’ set of data (the remaining 200 sets of previously 

unseen 4-string numbers) in the same manner and it is this final step that 

gives a measure of the accuracy of the best solutions, or equations, to the 

problem.   
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Optimisation through selection, reproduction and mutation 

The EA finds the best solutions to solve a particular problem by a process 

called optimisation. This means that elements from the solutions that give 

the best results are selected then recombined in some manner to produce 

new solutions, some of which should give even better results than the 

previous solutions. This process is repeated numerous times and tends to 

result in better and better solutions.  

 

The first step of the EA is to randomly propose possible solutions to the 

problem. So in the hypothetical example of trying to find an equation that 

can predict which four numbers will sum 100 the computer generates a 

random set of potential solutions such as:  

 

solution 1 = [95,0,0,0],  

solution 2 = [90,1,4,0],  

solution 3 = [80,10,0,0],  

solution 4 = [20,20,20,10] etc. 

 

In EAs each solution is called an ‘individual’ and all the proposed 

individuals grouped together are called a ‘population’.  The next step is to 

assess how good each individual is, also known as the ‘fitness’ of the 

individual.  The ‘fitness function’ is the procedure used to evaluate 

individuals so in this case it is a measure of how near to 100 (the optimum) 

the sum of each solution’s string of numbers is.  This can be calculated 

because for the training set data the ‘answer’ is revealed  – i.e. solution 1 

and 2 have more ‘fitness’ (each of their sums is 95) than solution 3 (sum = 

90) which in turn has more fitness than solution 4 (sum = 70). 

 

The next step of the EA process is to select the fittest individuals from the 

population to be the ‘parents’ of the next population of ‘children’ in order to 

‘evolve’ even better individuals.  There are different ways of defining which 

individuals are selected as parents depending on the particular problem 

being solved but, in this hypothetical example, it might be only individuals 

that have a sum within the range of 95-100. 



	
  
135	
  

The first generation parent individuals can undergo ‘crossover’ to 

recombine them in some manner to produce new child individuals in the 

second generation, analogous to breeding and reproduction. In order to keep 

some ‘genetic diversity’ (i.e. enable individuals to evolve that will 

generalise beyond the training data population) a random selection of lesser 

performing individuals are also selected as parents. This means that each 

child individual will be a combination of the parents’ individuals and likely 

to be different to all the other child individuals in that generation.  

 

Usually each child individual is produced by combining 50% of the 

mother’s data with 50% of the father’s data; for example: 

 

Father individual =  solution 1 = [95, 0, 0, 0] 

Mother individual = solution 2 = [90, 1, 4, 0]  

Child individual = 50% father [95, 0] and 50% mother [4, 0] = [90, 5, 4, 0] 

 

In this particular example the child individual is ‘fitter’ than either of the 

parents because it’s sum is nearer to 100.  The parent individuals from the 

first generation are recombined until enough children individuals are 

reproduced so the second generation is the same size as the first generation. 

This means that if the first generation had 100 individuals and 20 of these 

were selected as parents, they would need to produce 80 children 

individuals so that the second generation had a total of 100 individuals. This 

usually means that each parent needs to cross-over with multiple individuals 

(and hence are not monogamous!). The second ‘generation’ would therefore 

be a combination of the 20 fittest parent individuals from the first generation 

and the 80 new children individuals.  The final step of the evolution cycle is 

for a small randomly determined portion of the new population individuals 

to undergo mutation. This increases genetic diversity and hence increases 

the chance of the individual generalising to data beyond the training set.  

 

This process of fitness evaluation, selection and reproduction is repeated 

numerous times. Each repetition of the cycle leads to a generation that 

contains some individuals that are even fitter than the best ones in the 
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previous generation.  In other words the individuals ‘evolve’ to be fitter, or 

better performing, the more times the cycle is repeated. The limits for this 

evolution may be defined based on the number of generations, time limits or 

until a minimum fitness is achieved e.g. in the hypothetical example until 

the sum equals 100.  However as these methods lead to a gradual loss of 

genetic diversity there is also a limit to how long the individuals can 

continue to improve; this is called the ‘convergence’ of an algorithm and in 

simple terms means that the next generation of children individuals are no 

better than the parent individuals from where they derived.  

 

Finally, it is important to note that each time the EA process is run again 

from the beginning there will be different individuals produced because of 

differences in terms of initial random population, parent cross-over patterns, 

random selection of low-fitness parents and random mutations introduced.   

 

3.6.3 Why were evolutionary algorithms used in this study? 

EAs were used in this study to develop, or ‘induce’ equations that could 

predict whether FT movement data was from a PD patient or a control. In 

other words the fittest individual was an equation known as a ‘classifier’ 

that could best match the kinematic data to the correct diagnostic group.  

 

Classifiers are mapping techniques that find the best ‘route’ from a set of 

data (e.g. FT data) to a group label (e.g. PD vs. HC) and this makes them 

particularly helpful for classifying data. Previous studies have demonstrated 

that component measures of FT movements such as speed and amplitude 

have overlapping ranges in PD and controls (Espay, Beaton et al., 2009, 

Ling, Massey et al., 2012) so linear statistical methods are limited in their 

capacity to classify because threshold levels lead to considerable numbers of 

false positive or negative results.  

 

A further advantage of using EAs to generate classifiers is that they have the 

potential to discover novel clinical information.  This is because EAs do not 

use any assumptions about what features of the data are likely to give the 

best solutions and hence they search broadly and can ‘find’ discriminating 
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features without bias or constraints. In contrast standard methods of 

comparing PD and HC movement data involve measuring focussed 

components of the data that have been observed clinically, such as reduced 

amplitude in PD. As there remains an incomplete understanding of the 

pathophysiology of PD bradykinesia, and how it manifests in FT, the former 

approach may be beneficial. The evolved classifier equations can then be 

examined to understand what the most discriminating features of the data 

are. 

 

3.6.4 How did evolutionary algorithms discriminate PD from HC data? 

The acceleration data series were uniformly partitioned into training, 

validation and test sets in a ratio of 4:1:1 (Table 8). Two thirds of the data 

was used for training the EAs to develop classifiers and one third of the data 

was used as non-training data to assess how well the classifiers generalised 

to other unseen data. The non-training data was subdivided into validation 

and test data sets and the validation set was used to identify the best 

performing classifier and the tests set is used to give an unbiased measure of 

its ability to discriminate between PD and HC.  

 

Table 8 Division of finger tapping data sets for EA analysis 

 Training Validation Test 

Patients 66 16 16 

Controls 56 14 12 

 

Legend: Each participant had two acceleration data sets (left and right 

hand) and these were kept together within the same test sets (training vs. 

validation vs. test) but analysed separately. 

 

The training FT data sets were presented with the individual diagnoses 

revealed as PD = +1 and HC = -1. The EA used a repetitive selection, 

reproduction and mutation processes for 100 generations until a classifier 
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was developed that maximised the area under the ROC curve (AUC) for 

discriminating between PD and HC.  

 

The whole EA process was repeated 50 times so 50 different classifiers 

were produced. In order to identify the classifiers with the best diagnostic 

potential (that generalise to subjects beyond the training set) all 50 

classifiers were re-evaluated on the ‘validation’ set - PD and HC data not 

previously seen by the EA and with the diagnosis concealed. The best 

classifiers selected by this process were then evaluated on another subset of 

unseen PD and HC data – the test set. This gives an unbiased estimate of 

their diagnostic ability and is a measure of the classification accuracy. The 

ability of the selected classifiers to generalise beyond the training data set 

was further tested by assessing the ensemble classifier on an independent 

sample of FT data collected from 13 PD patients and nine HC at UCSF.  

 

3.6.5 Two distinct approaches to classifier development 

In this study two different evolutionary approaches to classifier 

development were used. These were based on a novel type of Cartesian 

genetic programming (CGP) (Smith, Leggett et al., 2005) and artificial 

biochemical networks (ABNs) (Smith and Timmis, 2008; Lones, Smith et 

al., 2013). These are both advanced algorithmic paradigms inspired by 

conventional genetics and biochemical pathways respectively.  

 

The CGP method uses a sliding window of 0.6-second duration to assess the 

local patterns of movement in the FT data to induce a classifier. The overall 

output of the classifier represents the mean occurrence of the movement 

patterns over the whole assessment period.  ABNs are a form of classifier 

induction based on the chemical reactions seen in cells – hence enzymatic 

reactions occur and the concentrations of various chemicals varies over time 

in relation to these reactions, and ABNs thus analyse changes over time 

within a data set.  Whilst the two evolutionary approaches to classifier 

development used in this study are quite distinct, the resultant classifiers 

may be considered somewhat complementary as CGP looks at local features 

of the data within a FT cycle and ABNs respond to global features across a 
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number of FTs.  The best classifier produced by CGP was then combined 

with the best classifier produced by ABNs to produce an ‘ensemble 

classifier.’   

 

A similar type of standard generational EA was used to evolve both types of 

classifier: a standard generational EA with an initial population size of 200 

individuals, evolved over 100 generations, with children individuals 

generated from parents using uniform crossover, and a random mutation 

rate of 6%. 

 

3.6.6 Examining the classifiers to reveal discriminating features 

An advantage of using CGP classifiers is that they can be explored 

relatively easily to reveal what features of the data were used to construct 

them. This was done by taking twelve data windows (0.6 seconds each) 

from six PD and six HC that had the strongest CGP classifier results (closest 

to +1 for PD and -1 for HC) and then examining these to find out what 

features best discriminated PD from HC. Specifically, the CGP classifier 

was expressed in order to reveal which acceleration data points from 

training data were used in its formation and these were then overlayed onto 

the corresponding sections of the tap cycle in the strongest scoring windows 

to focus the search for the most distinguishing features.  

 

3.7 Statistical Analysis  

Statistical analyses were performed using IBM Statistical Package for the 

Social Sciences release 19 (Chicago SPSS Inc.), SciPy (Jones et al., 2001) 

and R (R Team, 2013). A p-value ≤ 0.05 denoted statistical significance. 

Demographic and clinical data were compared using independent t-tests and 

applying Levene’s test for equality of variance. The Spearman Rank 

Correlation Coefficient was used to assess the relationship between 

demographic, clinical and kinematic variables. 

 

D’Agostino’s K-squared test, a measure of departure from a normal 

distribution, showed that all movement component measures in the patient 

group, and most in the control group, were positively skewed (D'Agostino, 
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1971, D'Agostino and Pearson, 1973). Transformations with logarithm and 

square of the results did not achieve sufficient normalisation of the data so 

non-parametric tests were used. Movement component measures were 

compared between PD and HC groups using the Mann-Whitney U-test, and 

compared between PD patients on and off using the Wilcoxon Signed Rank 

test. The Friedman non-parametric ANOVA and Wilcoxon Signed-Rank 

post hoc tests were used to assess if the SE results were associated with 

length of tapping sequence; p-values were adjusted using the Bonferroni 

Correction for four repeated measures.  The Kendall Tau-b Rank 

Correlation Coefficient was used to assess the degree of independence 

between HY stages and MDS-UPDRS grades and decrementing amplitude 

and speed values.  

 

Logistic regression was used to form composite variables comprising the 

separable component measures.  The classification accuracy of the separable 

component analysis and the EA induced classifier was measured using AUC 

of ROC curves18 with the null hypothesis denoted by AUC of 0.5.  

  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
18 See Chapter 2 for more details on ROC curves  
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Chapter 4 

 

Analysis of the separable component measures of bradykinesia:  

Results and Discussion 

 

The clinical details of the participants and the kinematic analyses results 

from the FT study are presented in this chapter. Firstly the clinical and 

demographic details of the patient and control groups will be outlined. 

Secondly the issue of corrupt data is discussed and the clinical details of the 

groups presented again for when only the non-corrupt, or approved, data 

sets are included. The kinematic data results will then follow with a specific 

focus on measuring the separable components of bradykinesia (as defined 

by UPDRS and UKBBDC) in the FT kinematic data, namely amplitude, 

speed, rhythm, frequency, halts, decrementing speed and decrementing 

amplitude.  

 

The separable component measures will then be evaluated in two main ways 

– firstly to assess how accurately each component, individually or when 

combined into a ‘bradykinesia composite’ model classifies the data sets into 

the correct diagnostic group and secondly to assess how well the component 

measures correlate with disease progression. These two broad approaches to 

analysis are important for informing the development of a device to aid PD 

diagnosis and monitoring respectively. 

 

4.1 Clinical Results 

4.1.1 Demographic and clinical details of participants 

The demographic and clinical details of the subjects recruited from LTHT 

and UCSF are summarised in Table 9. In the LTHT cohort the patient group 

was significantly older and had a greater proportion of men than in the 

control group. There was no significant difference between the UCSF 

groups in terms of age or gender.  
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Table 9 Demographic and clinical details of participants 

LEEDS Patients N=49 Controls N=41 p 

Gender, M : F  31 : 18 15 : 26 < 0.001 

Age, years 67.2 ± 8.7  63.7 ± 9.6  0.01 

Dominant hand, R : L 41 : 8 32 : 9 0.49 

MoCA1 26.1 ± 2.6 28.3 ± 1.4 < 0.001 

HY stage 2.4 ± 0.7 (1 - 4) NA   - 

PD duration, years 5.9 ± 3.9 (0.5 - 18) NA   - 

LEDD, mg 723 ± 435  

(140 - 2080) 

 

NA   - 

SAN FRANCISCO Patients N=13 Controls N=9 p 

Gender, M : F 9 : 4 4 : 5 0.24 

Age, years 67.2 ± 7.0 

 

70.2 ± 4.3 0.27 

Dominant hand, R : L 13 : 0 8 : 1 0.22 

MoCA 27.6 ± 1.3 27.7 ± 1.3 0.94 

HY stage 1.7 ± 0.7 (1 - 3) NA   - 

PD duration, years 4.5 ± 3.5 (0.5 - 12) NA   - 

LEDD, mg 540 ± 321  

(75 – 1188) 

NA   - 

 

Legend: All values are presented as mean ± one standard deviation (range) 

except for gender and handedness ratios. Abbreviations: M, male; F, female; 

R, right hand; L, left hand, NA, not applicable. 1The first four patients and 

three controls in Leeds did not undertake MoCA as it was introduced into 

the protocol after their assessments had been completed.  

 

Most participants were right-handed with no difference in the proportion of 

left-handedness between the patient and control groups at either site.  The 

LTHT and UCSF patients had similar age and gender distributions (ps > 
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0.1) but the LTHT patient group had longer disease duration (p < 0.05) and 

more advanced disease stage (p < 0.05) than UCSF patients. 

 

4.1.2 Clinical grades of finger tapping assessments 

Each subject received two MDS-UPDRS bradykinesia grades (one for each 

hand) ranging from zero to four for their FT assessments. All controls’ FT 

assessments were graded zero, denoting there was no clinical evidence of 

bradykinesia.  

 

For the LTHT patients the grades were normal in both hands for 8% (n = 4), 

and the rest had a degree of bradykinesia in at least one hand as follows: 

39% (19) slight, 41% (20) mild, 8% (4) moderate and 4% (2) severe. Fifty 

seven percent (28) of the PwPD had symmetrical clinical bradykinesia 

grades. Of this group 14% (4) were graded as normal, 57% (16) slight, 25% 

(7) mild, and 4% (1) moderate bilaterally.  Forty three percent (21) of 

patients had asymmetric clinical bradykinesia grades, with 77% (14) of 

these having one point difference and 33% (7) two points difference 

between hands (Figure 27). 

 

Figure 27 MDS-UPDRS finger tapping grades for Leeds patients 

 
Legend. Distribution and asymmetry of FT clinical grades for LTHT 

patients. The different combinations of grades for each pair of hands is 

shown on x-axis i.e. 0/0 denotes grade zero in both hands and 0/1 denotes 

grade zero in one hand and grade one in the other.  
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The distribution of patient clinical FT grades was skewed with 63% of 

LTHT patients, and 69% of UCSF patients on being allocated grade zero or 

one (Table 10).  In UCSF patients off there was a greater proportion of 

higher clinical grades with 63% of the assessments receiving MDS-UPDRS 

grades two or three.  None of the UCSF patient assessments, and only two 

out of 98 Leeds assessments received a grade four (Figure 28).  In summary 

the majority of the patients on had only slight bradykinesia and the 

distribution of grades was similar in the Leeds and UCSF patient groups. 

 

Table 10 Distribution of patient clinical bradykinesia grades 

 

Patient group 

 

FT assessments, n 

MDS-UPDRS FT grade 

0 1 2 3 4 

Leeds on 98 13 49 29 5 2 

UCSF on 26 6 12 5 3 0 

UCSF off 24 4 5 8 7 0 

Legend: One UCSF patient was not tested in the off state so there are only 

24 UCSF off assessments. 

 

Figure 28 Distribution of clinical grades for LTHT and UCSF patients	
  

 
   MDS-UPDRS FT grade 

Legend: Percentage of FT assessments from Leeds and UCSF allocated 

each MDS-UPDRS clinical grade.  
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4.2 Corrupted kinematic data  

4.2.1 Reasons for corrupted data 

For the majority of assessments the FT movements were reliably recorded 

as continuous kinematic data, with the separation of the two EM sensors 

measured in three translational planes (x, y and z). Unfortunately some of 

assessments contained sections of ‘corrupted’ kinematic data. This means 

that the movement data recorded had EM interference or ‘noise’ within it 

(Figure 29). 

 

The two likely explanations for corrupted kinematic data are interference 

from other electrical equipment (e.g. telephones and computers) nearby and 

misplacement of the EM tracking sensors in relation to the EM transmitter. 

Displacement of the two sensors are calculated based on the EM signals that 

the transmitter box receives from the sensors in a180o arc anterior to the 

front aspect of the box. This means that if the sensors move into the 

hemisphere posterior to the transmitter the EM signals from the sensors are 

recorded as occurring in the opposite direction. Furthermore, as the sensors 

cross the hemisphere boundary there is a momentary loss of reception and 

this artefact results in a break in the data recording and additional corruption.  

 

Various procedures were tried to ‘de-corrupt’ the data such as inverting the 

polarity of the corrupted points, and interpolating between the last known 

accurate data point and the corrupted data points but these methods were 

unsuccessful as there were too many data points to be able to accurately 

interpolate in most cases.  

 

Figure 29 clearly demonstrates that the corrupted data points would lead to 

erroneous results when measuring the separable components of bradykinesia. 

The corrupted data sets were therefore excluded from the separable 

component (Chapter 4) and SE analyses (Chapter 6).    
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Figure 29 Examples of corrupted data recordings 

(a) Control C11 

 
 

 

(b) Control C42 

 
 

 

Legend: Examples of corrupted separation data are shown for control 

subjects (a) C11 and (b) C42.  Approximately 5% of the data in C11’s 

recording is corrupted: after the first 14 seconds there are then seven 

sections of corrupted data, shown by large vertical spikes in the data. 

Approximately 30% of the data in C42’s recording is corrupted with 

corrupted data points from zero to two seconds and then from 

approximately 20 seconds until the end of the recording.  

 

 

For the EA analyses (Chapter 5) all kinematic data sets were included. This 

analytic method searches for patterns of movement that are over–

represented in the patient data compared to control data in order to form 

classifiers that can predict the diagnostic group. As the sections of corrupted 

data were generally only a small section of the whole kinematic data 

collected and as the patient and control group data was affected to roughly 

the same degree, it was hypothesised that the corrupt section of data would 
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have negligible effect on the diagnostic accuracy of this method; this 

hypothesis was tested and shown to be correct (section 5.1.4).  

 

4.2.2 Prevalence of corrupted data 

Eleven percent of the LTHT data sets (21 out of 180 recorded assessments), 

and 10% of the UCSF data sets (7 out of 68) had sections of corrupted data. 

Of the 21 corrupted LTHT data sets, eleven were from patients (4:7 

dominant: non-dominant hand) and ten were from controls (4:6 dominant: 

non-dominant hand). Of the seven UCSF corrupted data sets, two were from 

controls (both non-dominant hands) and five from patients (two off, three on, 

4:1 dominant: non-dominant hand). No participant had both recorded data 

sets corrupted.  

 

4.2.3 Demographic and clinical details when corrupted data excluded 

The revised demographic and clinical details of the approved data sets that 

were used for the separable component measures and SE analyses, with the 

corrupted data sets excluded are outlined in Tables 11 and 12.  

 

Table 11 Demographic and clinical details of approved LTHT data sets 

  Patients 
N = 49 

Controls 
N = 41 

 
p 

Total assessments  N 98 82  

Approved data sets N (%) 87 (89%) 72 (88%)   0.84 

Gender M : F 57 : 30 23 : 49 < 0.001 

Age, years  Mean ± SD 68.4 ± 8.4 63.1± 9.5 < 0.001 

Dominant hand R : L 74 : 13 56 : 16   0.2 

MoCA score  Mean ± SD 25.9 ± 2.7 28.3 ± 1.4 < 0.001 

 

In the LTHT patient group the mean FT grade for the approved data sets 

was 1.32 ± 0.84 distributed as: 11 grade zero, 45 grade one, 25 grade two, 

four grade three and two grade four. The approved LTHT patient and 

control groups was even less closely matched for age; when all data sets 

were included the mean ages (rounded to the nearest integer) from the 
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patient and control groups respectively were 67 and 64 years (p < 0.01) but 

with the corrupt data sets excluded these were 68 and 63 years (p < 0.001).  

Table 12 shows that a similar proportion of data sets from each site was 

corrupted and that the approved patient and control data sets from LTHT 

and UCSF were similar in terms of age, gender, FT grade and PD disease 

duration. This is an important point because it means that the UCSF data is 

a good validation group to assess how well the LTHT results generalise to 

data collected independently from similar subjects.   

 

Table 12 LTHT and UCSF groups when corrupt data excluded  

PATIENTS Leeds N = 49 UCSF N = 13 p 

Approved data, n/total 87/98, 89%  23/26, 88%  0.96 

Gender, M : F 57 : 30  17 : 6 0.45 

Age, years 68.4 ± 8.5 67.3 ± 6.4 0.54 

Dominant hand, R : L 74 : 13 23 : 0 0.07 

MoCA 25.9 ± 2.7  27.6 ± 1.3 <0.001 

H&Y stage 2.4 ± 0.7 1.7 ± 0.7 <0.001 

MDS-UPDRS FT grade 1.32 ± 0.84  1.26 ± 0.96  0.78 

PD duration, years 5.6 ± 3.5  

 

4.4 ± 3.6  

 

0.17 

CONTROLS Leeds N = 41 UCSF N = 9  p 

Approved data, n/total 72/81, 88%  16/18, 89% 0.89 

Gender, M : F 23 : 49 7 : 9 0.37 

Age, years 63.1 ± 9.5 70.5 ± 4.4 0.003 

Dominant hand, R : L 56 : 16 14 : 2 0.51 

MoCA 26.3 ± 2.5 27.6 ± 1.2 0.07 

 

Legend: The clinical and demographic details of the groups comprising 

approved data sets i.e. when corrupted data sets are excluded. Values are 

presented as mean ± one standard deviation except for gender and 

handedness ratios. The UCSF patient data presented is for the assessments 

performed in the on state.  
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4.2.4 Correlation of demographic and clinical variables  

The Spearman correlation coefficient, rs is a non-parametric measure of the 

strength and direction of association between two variables. It was 

calculated for the demographic and clinical variables of the approved LTHT 

data.  Control and patient data was analysed separately and the patient 

results are presented in Table 13. In the control group there was a trend 

towards older age being correlated with lower MoCA scores (rs -0.21, p = 

0.081) but there were no other significant correlations between the variables. 

 

Table 13 Correlogram of clinical and demographic variables in LTHT 
patients 

 

G
en

de
r 

A
ge

 

H
an

de
d 

 

D
om

 h
an

d 

H
Y

 

D
ur

at
io

n 

M
oC

A
 

LE
D

D
 

U
PD

R
S 

Gender  .22* -.10 .03 .05 -.15 -.09 -.17 .006 

Age .22*  -.02 .04 .35* .04 -.13 .26* .06 

Handed -.10 -.03  -.02 .18 .32* -.09 .16 .02 

Dom hand .03 .04 -.02  .002 .05 -.005 -.02 .10 

HY .05 .35* .18 .002  .35* -.24* .33* .20* 

Duration -.15 .04 .32* .05 .35*  -.10 .24* -.03 

MoCA -.09 -.13 -.09 -.005 -.24* -.10  .09 -.05 

LEDD -.17 .26* .16 -.02 .33* .24* .09  .05 

UPDRS  .006 .06 .02 .10 .20* -.03 -.05 .05  

 

Legend: Abbreviations: Handed, side of dominant hand i.e. right vs. left; 

Dom hand, dominant hand vs. non-dominant hand; HY, Hoehn and Yahr 

disease stage; Duration, PD disease duration; MoCA, Montreal Cognitive 

Assessment; LEDD, levodopa equivalent daily dose; UPDRS, Unified 

Parkinson’s Disease Rating Scale finger tapping score; * significant at p < 

0.05. 
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Table 13 shows that several clinical and demographic variables were 

significantly associated in the patient group. Age and gender were correlated 

(rs 0.22, p = 0.04) reflecting that the majority of patients were male and they 

tended to be older than female patients. Age was also correlated to HY stage 

(rs 0.35, p = 0.001) and LEDD (rs 0.26, p = 0.01) suggesting that the older 

patients tended to have more advanced disease and be taking higher doses of 

medications. Handedness was correlated only with disease duration (rs 0.32, 

p = 0.002) presumably reflecting that most patients were right handed and 

that the few left handers in the study tended to have a shorter than average 

disease duration.  

 

HY stage was the variable with the greatest number of significant 

correlations: in this study the patients with a higher HY stage (more 

advanced disease) tended to be older (p = 0.001), have a longer disease 

duration (p = 0.001), a lower cognitive score (p = 0.04), be taking higher 

doses of dopaminergic drugs (p = 0.002), and have greater severity of 

clinical bradykinesia (p = 0.06).  

 

Summary of section 4.1 and 4.2 results 

The results so far have shown that approximately 10% of data sets were 

corrupted. When these were excluded (for the separable component 

measures and the SE analyses) the remaining approved UCSF patient and 

control group data were matched for age and gender. However this was not 

the case for the LTHT subjects with mean age for approved patient and 

control group data being 68 and 63 years old. Importantly the LTHT patient 

and control groups were matched with the respective UCSF groups for age, 

gender, FT grade and disease duration though, which makes the UCSF 

groups particularly useful for validating the Leeds results. 

 

4.3 Classification accuracy of individual separable component measures 

Two different approaches to data analysis were used. The first approach was 

to measure the separable components of clinically defined bradykinesia 

(amplitude, speed, rhythm, halts and decrements) using the normalised FT 

separation data and then assess how well these component measures, 
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individually or as composite models, classified the patient and control data 

into the correct diagnostic group. The diagnostic classification accuracy 

results for individual component measures and for bradykinesia composite 

models are presented in sections 4.3 and 4.4 respectively.  The second 

approach, presented in Chapter 5, examined how well the ensemble 

classifier, developed through EA analysis of the FT normalised acceleration 

data, could discriminate patient and control data.    

 

4.3.1 Classifying Leeds PD and healthy control data  

The results presented are based on measuring the separable components of 

bradykinesia in 87 Leeds patient FT data sets and 72 Leeds HC FT data sets, 

thus using only the approved data. AUC was used to compare diagnostic 

accuracies i.e. how well each component measure of bradykinesia classified 

data into the correct diagnostic group. The sensitivity/specificity of each 

component to discriminate PD from HC data is presented at the threshold of 

equal trade off.   The following separable movement components were 

chosen for analysis as they represent measures of the clinical components of 

bradykinesia described in the UKBBDC and MDS-UPDRS respectively:   

 

§ Tapping frequency 

§ Speed - mean and maximum 

§ Amplitude – mean and maximum 

§ Rhythm – Coefficient of variation (COV) for speed and amplitude 

§ Halts -  % of tap cycle at ‘zero’ speed (<5% maximum speed) 

§ Decrementing speed   

§ Decrementing amplitude   

 

For the speed, amplitude and halts measurements both mean and median 

values were initially calculated and are presented in full in Table 14. 

Subsequently only the mean values are presented in the rest of this chapter 

as they were consistently, albeit marginally, more discriminative than the 

median measurements.  
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The results in Figure 30 and Table 14 demonstrate that the most 

discriminating component measures were maximum amplitude, rhythm 

(both COV speed and COV amplitude), mean amplitude and maximum 

speed with AUCs 0.88, 0.88, 0.86 and 0.84 respectively.  Mean speed and 

halts discriminated the groups moderately well, with AUCs of 0.79 and 0.72, 

but tapping frequency, decrementing amplitude and decrementing speed 

discriminated the subjects poorly. 

 

Figure 30 ROC curves for separable component measures of 
bradykinesia  

 
Legend: The ability of each bradykinesia separable component measure to 

discriminate PD from HC FT data is summarised. For clarity only the best 

scoring measure of each component is presented. Amplitude is the mean of 

the tap cycles’ maximum amplitude, speed is the mean of the tap cycles’ 

maximum speed, frequency is tapping frequency, rhythm is COV amplitude, 

halts is the mean of the tap cycles’ percentage at zero speed, decrement is 

amplitude decrement. The reference line denotes an AUC of 0.5 or a 

discrimination that is no better than chance i.e. 50% sensitivity and 50% 

specificity. 
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Table 14 Diagnostic accuracy of individual separable components 
measures of bradykinesia    

 

Component measure of FT AUC 95% CI  P 

Tapping frequency 0.62 0.54 – 0.71 0.007 

Mean speed                       mean 

                                        median 

0.79 

0.79 

0.72 – 0.86 

0.72 - 0.86 

2.6 x10 -10 

3.7 x10-10 

Maximum speed               mean 

                                        median 

0.84 

0.84 

0.78 – 0.91 

0.78 - 0.90 

1.1 x10-13 

1.9 x10-13 

Mean amplitude               mean 

                                        median 

0.86 

0.86 

0.80 - 0.92 

0.80 – 0.92 

3.8 x10-15 

8.2 x10-15 

Maximum amplitude       mean  

                                        median 

0.88 

0.87 

0.82 - 0.93 

0.81 – 0.93 

4.0 x10-16 

1.3 x10 -15 

Rhythm             COV amplitude 

                                 COV speed 

0.88 

0.88 

0.82 – 0.93 

0.82 – 0.93 

4.8 x10-16 

3.9 x10-16 

Halts            % zero speed mean 

                  % zero speed median      

0.72 

0.70 

0.64 – 0.80 

0.62 – 0.78 

1.6 x10- 6 

1.34 x10-5 

Decrementing amplitude 0.57 0.48 – 0.66 0.14 

Decrementing speed 0.54 0.44-0.63 0.41 

    

Abbreviations: AUC, area under ROC curve; CI, confidence interval; COV, 

coefficient of variation – calculated by the SD/ mean. 

 

4.3.2 Validating classification accuracy on San Francisco data 

In order to test how well these findings generalise to an independent data set, 

the separable components were measured in the UCSF FT data too. The 

mean FT grades ± 1SD in the LTHT and UCSF patient data were 1.32 ± 

0.84 and 1.26 ± 0.96  (p = 0.78) respectively. There were very few UCSF 

controls and this makes AUC a less reliable measure of classification 
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accuracy because each misclassified case will have a disproportionately 

large effect on the overall results. To get around this problem the 

classification accuracy of the separable component measures was assessed 

on the validation set by using the UCSF patient data (n = 23) and a control 

group comprising the UCSF (n = 16) and the LTHT controls (n = 72) 

combined. This method also enabled direct comparison of the AUC results 

for the LTHT and UCSF patients, because they could both be compared to 

the same set of combined control data.  

 

Using this method the component measure results in the UCSF on patient 

data showed a very similar trend of results to the LTHT patient data with 

amplitude, rhythm and speed being the most discriminating components 

(AUCs 0.85, 0.84 and 0.75 respectively); see Figure 31 and Table 15.  In 

contrast to the LTHT patients, tapping frequency (AUC 0.72) and 

decrementing speed (AUC 0.68) classified the UCSF patients better than 

halts (AUC 0.58).  

 

Figure 31 Classification accuracy of separable component measures in 
LTHT and UCSF    

 
Legend: The classification accuracy of each separable component measure 

to discriminate patient data (LTHT, UCSF ON and UCSF OFF) from ‘all 

controls’ (LTHT and UCSF data sets combined) is presented as AUC. 
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The results suggest that all the separable component measure results from 

LTHT patient data (except for the tap frequency) generalise to the UCSF on 

patient data with the same rank order (except for tap frequency) and roughly 

the same magnitude of classification (i.e. similar AUCs) observed. In 

descending order of classification accuracy the separable component 

measures is summarised below:  

 

Leeds on: UCSF on: 

Amplitude Amplitude 

Rhythm Rhythm 

Speed Speed 

Decrementing speed Frequency 

Halts Decrementing speed 

Decrementing amplitude Halts 

Frequency  Decrementing amplitude 

 

 

Regarding different clinical states, Table 15 shows that measures of speed 

and decrementing speed are more discriminatory when the patients are in 

the off state. The most discriminatory component measures, in descending 

order for each clinical state are outlined below: 

 

 

on clinical state:    amplitude  >    rhythm      >      speed  

 

off clinical state:    speed        >    amplitude    >    rhythm 

 

 

This finding is discussed further in section 4.7 but, in brief, is consistent 

with studies that showed dopaminergic drugs (that promote the on state) 

disproportionately improve the speed component of bradykinesia and have 

less effect on improving amplitude and rhythm (Espay, Giuffrida et al., 

2011).  
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Table 15 Classification accuracies of separable component measures in 
LTHT and UCSF  

 LTHT on UCSF on UCSF off 

 

Amplitude 

 

0.81 

  

0.85 

  

0.83 

 

Speed 0.79  0.75  0.85  

Rhythm 0.80  0.84  0.77  

Frequency 0.59  0.72  0.66  

Halts 0.68  0.58  0.64  

Decrement amplitude 0.63  0.52  0.53  

Decrement speed 0.68  0.68  0.73  

 

Legend: Comparisons of AUC were made for approved LTHT patient data 

(n = 87) vs. all controls (approved LTHT and UCSF control data combined; 

n = 88), for UCSF on patient data (n = 23) vs. all control data (n = 88), and 

for UCSF off patient data (n = 22) vs. all control data (n = 88). The most 

discriminatory component AUC in each group is highlighted in bold. 

 

4.3.3 Examining how PD patient movements differ from controls 

In order to better understand what the AUC results signify clinically the 

distribution of the separable component measures within each group and 

between groups was examined.  Histograms of the component data are 

presented for the LTHT PD and HC groups with ROC threshold levels, that 

give maximal sensitivity/specificity with equal trade off, marked as a 

vertical dashed line; see Figures 32 (a-k). 

 

Figure 32 (a-k) Comparing separable component measures of 
bradykinesia in Leeds patients and controls  

 

4.3.3.a Maximum amplitude  

For each data set the mean of the normalised maximum amplitude of each 

tap cycle during the 30 second recording is presented. The histograms show 

that PD subjects tend to have a smaller maximal separation of the finger and 
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thumb than HCs. In other words the finger and thumb do not ‘open up’ as 

much between each tap. This component measure has a 

sensitivity/specificity of 0.81/0.79.  

 

 
 

4.3.3.b Maximum speed 

 

 
The histograms of maximum speed measurements (mean of maximum 

speed for each tap cycle) confirm that PwPD tend to have a slower 

maximum speed than controls. This component has a sensitivity/specificity 
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of 0.79/0.78 for discriminating the groups. There is considerable overlap 

between the groups though and it is noteworthy that some PwPD are tapping 

as fast as the fastest controls. It is possible that these patients have a fast 

speed but small amplitude of movement though and to take this into account 

the product of the mean maximum amplitude x mean maximum speed is 

also presented.  

 

4.3.3.c Maximum speed x maximum amplitude  

By multiplying the maximum speed and maximum amplitude of each tap 

cycle together, to obtain ‘periodicity’ the potential reciprocal relationship of 

each component is taken into account. This gives an interesting distribution 

with each group skewed but in opposite directions. This suggests that 

patients tend to tap with smaller and slower movements than controls. 

However the maximal sensitivity/specificity is not significantly better (at 

0.82/0.79) than each individual component measure as the range of values 

still overlap considerably.  

 

 
 

Rhythm 

There are two measurements for rhythm, namely COV amplitude and COV 

speed, measuring how much variability in the maximum amplitude and 

speed of the tap cycles respectively during each 30-second assessment 
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period. Higher values of COV denote more variation between tap cycles and 

hence less rhythmic FT movements. 

 

4.3.3.d COV maximum amplitude  

The COV maximum amplitude histogram shows that in the control group 

the vast majority of data sets have zero (n = 19) or minimal, 0.1 (n = 27) 

variation from the mean amplitude score, implying that the maximum 

amplitude of each tap stays fairly uniform throughout the 30 second tapping 

sequence. This finding contrasts with the PD group results where nearly all 

the PwPD exhibited a degree of variability in the maximum amplitude of tap 

cycles. Only one PD patient FT assessment had zero, and three had minimal 

(0.1), variation in maximum amplitude.  A threshold value of 0.18 had 

sensitivity/specificity of 0.85/0.78 for discriminating the groups. 

 

 
 

4.3.3.e COV maximum speed  

The COV maximum speed distributions in the PD and HC groups have a 

similar pattern to COV maximum amplitude. In the PD group the vast 

majority of assessments show that the maximum speed per tap cycle varies 

considerably over the 30-second assessment whereas the majority of the 

control assessments showed only minimal variability. At the threshold COV 
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maximum speed of 0.23 this measurement of rhythm has a 

sensitivity/specificity of 0.80/0.78.  

 

 
 

4.3.3.f Halts  

 
Very few of the assessments in either group had any significant halts or 

hesitations. Even in the PD group less than 1% of the duration of the FT 

assessment is spent at such low speeds as to be considered a halt. Fifteen 

perecent  of the PD group had no halts compared to 34% of the controls. 

However halts did not discriminate the groups particularly well and a 
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threshold of equal trade off, at 0.086%, gave a sensitivity/specificity of 

0.69/0.64.   

 

 

4.3.3.g Decrementing amplitude  

  
The solid vertical line on the histograms 4.3vii and 4.3.viii denote a zero 

regression line gradient. This is equivalent to a neutral trend for how the 

maximum amplitude (or maximum speed in 4.3.viii) of each tap cycle varies 

over the 30 second tapping assessment. Scores to the left of the line denote 

decrementing amplitude whereas scores to the right denote incrementing 

amplitude. In both patient and control groups the maximum amplitude of 

each tap cycle tends to decrement during the FT task. Decrementing 

amplitude poorly discriminates the groups with a low sensitivity/specificity 

value of 0.55/0.54. This is a surprising result because decrementing 

amplitude is considered a characteristic feature of PD. 

 

 4.3.3.h Decrementing speed  

The histogram shows that the majority of PwPD and HCs slow down during 

the FT assessment period. As a result decrementing speed poorly 

differentiates the groups, with a sensitivity/specificity of only 0.58/0.56. It is 

noteworthy that a small number of the controls slow down more than 

patients and it is possible that this may be due to a floor effect in the PD 
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group i.e. PwPD start off with slower movements so they have a limited 

range of speeds to further slow down to before they stop altogether. 

Decrementing amplitude and decrementing speed have been analysed in 

further detail in Chapter 6 including adjusting the gradients for mean 

amplitude and mean speed.  

 

 

 
 

4.3.3.i Tapping frequency  

All subjects (except one PD subject who had a tap frequency of 0.8Hz) had 

a FT frequency in the range of 1 to 4.6 Hz. The most common tap frequency 

in both groups was 1.8 Hz.  There was a wide range of results within each 

group but a tendency for controls to tap at a lower frequency than patients – 

65% of controls tapped at a frequency of less than 2.5 Hz whereas 62% of 

patients tapped at a frequency greater than 2.5Hz. At a threshold of 2.4 Hz 

the sensitivity/specificity was 0.64/0.61which suggests it is fairly poor at 

discriminating the groups.   
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Summary of section 4.3.3 results 

These results show that the FT movements of PwPD differ from those of 

HCs primarily in terms of having smaller amplitude, slower speed, and less 

rhythmicity. To a lesser extent they also differ in that they have more brief 

halts and there is a tendency to have a higher tap frequency. Decrementing 

amplitude and decrementing speed did not discriminate the patient and 

control group data well for two reasons – there was a wide range of results 

within the groups, with some decrementing and some incrementing, but also 

there was an overall similar pattern between the groups with the majority of 

PwPD and HCs exhibiting a decrementing during the assessment period. 

 

 

4.3.4 Does classification accuracy improve using data from one hand? 

PwPD typically have asymmetric clinical signs: the side of the body that is 

first symptomatic tends to remain more severely affected throughout the 

course of the disease even when both sides of the body exhibit signs of 

parkinsonism. Hence PwPD have a MA and a LA side.  Also some earlier 

studies have shown that the non-dominant (NonDom) hand of both PD and 

HCs tends to tap more slowly and less rhythmically than the dominant 

(Dom) hand (Dunnewold, Jacobi et al., 1997, Muir, Jones et al., 1995). In 

view of these observations the data was further analysed to see if more 
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discriminative results could be achieved by comparing separable component 

measures from the just the MA PD hand to those in the Dom HC hand. Also 

the results were analysed to look at just the LA hand as this may be 

considered a fairer assessment of the diagnostic abilities of the device – i.e. 

assessing only very subtle PD signs, or even asymptomatic signs (in the 

case HY stage one PD denoting unilateral disease) when the LA side has a 

clinically normal bradykinesia grade.  

 

4.3.4.1 Most affected and least affected PD hand data 

The MA and LA Leeds patient group data had mean FT grades of 1.57 ± 

0.94 and 1.05 ± 0.63 respectively. Figure 33 summarises the AUC scores 

when the separable component measures for the following combinations of 

hand data were compared:  

 

• All PD and all HC,  

• MA PD and all HC, and  

• LA PD and all HC. 

 

Figure 33 shows that the following component measures are highly 

discriminating for PD, regardless of which sub-group of data is compared: 

maximum amplitude, maximum speed and rhythm. These component 

measures generally have AUC’s scores in the range of 0.80 - 0.92, which 

denote very good classification of the data.  

  

A similar pattern of results is seen for the component measures regardless of 

which of the three combinations of hand data is used in the ROC AUC 

analysis:  halts discriminates PD from HC moderately well (AUC 0.66 – 

0.78), tap frequency is less discriminatory (AUC 0.61 - 0.66) and 

decrementing amplitude and decrementing speed discriminate very poorly 

(AUC 0.51 – 0.58).  
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Figure 33 Classification accuracy of component measures of 
bradykinesia when patient data is limited to the most affected hand 

 
 Legend: The ability of each movement component measure (x-axis) to 

classify the PD and HC data is expressed as AUC, area under a ROC curve 

(y-axis). Results are demonstrated for three different sets of data 

discrimination indicated by column shading:  striped = discriminating all PD 

data from all HC data, dark grey  = discriminating MA PD hand data from 

all HC data, light grey = discriminating LA PD hand data from all HC.  

 

 

Secondly Figure 33 shows that the AUC scores are highest when only the 

MA hand PD data is used, rather than data from both hands of the PwPD. 

This is not surprising as by definition bradykinesia, assessed clinically, 

should be more severe in the MA hand of PwPD and hence it would be 

expected that the components of bradykinesia, measured kinematically, 

would also have a greater deviation from normal than when all PD data was 

used. In other words only the ‘easiest’ PD data sets with the most severe 

grades of bradykinesia need to be discriminated from HC and the overall 

result will not be impaired by the clinically more difficult (i.e. LA, or more 

subtle bradykinesia) cases.   

 

Although this may be clinically obvious, these results demonstrate that for 

purposes of developing a device to provide a diagnostic prediction the most 
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discriminative results may be obtained by using just the MA (or in the cases 

of very early PD – the only affected hand) kinematic results rather than 

including data from both hands.    

 

It could be argued that the LA data results are a truer reflection of how the 

system would perform as a diagnostic predictive device though. In the 

Leeds cohort only patients with a clinically definite diagnosis of PD have 

been included i.e. all patients met the gold standard diagnostic criteria, as 

set by UKBBDC. In a ‘real life’ clinical situation the subjects being 

assessed by the device are more likely to be clinically indeterminate and 

have only subtle bradykinesia, or even no bradykinesia at all, on clinical 

assessments though. It is likely that they would have kinematic data that is 

more difficult to discriminate from control data so it is reassuring that the 

LA hand data AUC remains moderately good in the range of 0.78 – 0.85 for 

amplitude, speed and rhythm. Approximately half of the MA data sets were 

the dominant side (23/45 51%) so further analyses including just the 

dominant hand PD data were not undertaken. 

 

 

4.3.4.2 Dominant and non-dominant hand control data 

The effect of just including dominant hand data from controls in the analysis 

was examined. As some previous studies suggest that healthy adults tap 

more slowly and less rhythmically with their non-dominant hand it is 

possible that classification accuracy could be improved by only including 

the ‘best’ performing hand data from controls.  

 

Figure 34 shows that the AUC scores did not significantly differ when just 

the dominant hand (or just the non-dominant hand) HC data was used 

though. Hence better discrimination of the groups is unlikely to be achieved 

by using only a database of dominant hand HC data to compare with the test 

patient data.  
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Figure 34 Classification accuracy of each component measures of 
bradykinesia when control data is limited to only the dominant hand 
data  

 
Legend: The ability of each movement component (x-axis) to discriminate 

the PD and HC subjects is expressed as the AUC, area under a ROC curve 

(y-axis). Results are demonstrated for two different types of data 

discrimination analysis indicated by column shading:  dark grey = 

discriminating MA PD data from dominant HC data; light grey  = 

discriminating MA PD from non dominant HC.  

 

4.3.5. Correlation of the separable components of finger tapping 

The Spearman correlation coefficient, rs was calculated for the FT variables 

in the Leeds PD and HC data separately. Table 16 shows that in controls the 

strongest correlations were for rhythm measurements: COV amplitude and 

COV speed were strongly correlated (r s + 0.78). Both rhythm measurements 

were also strongly and inversely correlated with maximum amplitude, 

suggesting that controls with large FT amplitudes have the least variation in 

rhythm, possibly because large amplitudes are maximum amplitudes for that 

individual so there is a ceiling effect (i.e. the amplitudes cannot further 

increase because they are already maximal) and COV amplitude is minimal, 

and consequently the COV speed also.   Frequency and halts were also 
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strongly correlated (rs - 0.65) suggesting that controls’ FT with less halts 

have higher tap frequencies, as might be intuitively expected. 

 

Table 16 Correlogram of the separable component measures in Leeds 
healthy control finger tapping data 

 

Key: Grey shading and correlation coefficient 

 > 0.9  0.80- 

0.89 

 0.70- 

0.79 

 0.60- 

0.69 

 0.50-

0.59 

 

Legend: Spearman correlation coefficients are presented for eight 

component measures of FT using data obtained from both hands of Leeds 

controls. The coefficients marked with 1 were significantly correlated at the 

p < 0.01 level (2-tailed) and those denoted by 2 were significant at    p < 0.05 

level (2-tailed).  
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 0.451 -0.761 -0.511 0.21 -0.691 0.03 0.06 

Maximum 

speed 

0.451  -0.331 -0.281 -0.14 -0.06 0.09 0.06 

Rhythm COV 

amplitude 

-0.761 -0.331  0.781 0.04 0.461 0.18 -0.13 

Rhythm COV 

speed 

-0.511 -0.281 0.781  0.262 0.21 -0.06 -0.13 

Halts 0.21 -0.14 0.04 0.262  -0.651 -0.14 -0.10 

Frequency -0.691 -0.06 0.461 0.21 -0.651  -0.13 -0.13 

Decrement 

amplitude 

0.03 0.09 0.18 -0.06 -0.14 -0.13  0.451 

Decrement 

speed 

0.06 0.06 -0.13 -0.13 -0.10 -0.13 0.451  
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Table 17 Correlogram of the separable component measures in Leeds 
PD patient finger tapping data  
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 0.871 -0.811 -0.661 -0.631 -0.271 0.311 0.241 

Maximum 

speed 

0.871  -0.771 -0.751 -0.821 -0.15 0.211 0.281 

Rhythm COV 

amplitude 

-0.811 -0.771  0.871 0.691 0.05 -0.252 -0.272 

Rhythm COV 

speed 

-0.661 -0.751 0.871  0.781 -0.20 -0.21 -0.20 

Halts -0.631 -0.821 0.691 0.781  -0.421 -0.09 -0.18 

Frequency -0.272 -0.15 0.05 -0.20 -0.421  -0.242 -0.17 

Decrement 

amplitude 

0.311 0.212 -0.252 -0.21 -0.09 -0.242  0.851 

Decrement 

speed 

0.241 0.281 -0.272 -0.20 -0.18 0.17 0.851  

 

Key: Grey shading and correlation coefficient 

 > 0.9  0.80- 

0.89 

 0.70- 

0.79 

 0.60- 

0.69 

 0.50-

0.59 

 

Legend: Spearman correlation coefficients are presented for eight 

component measures of FT using data obtained from both hands of Leeds 

patients. The coefficients marked with 1 were significantly correlated at the 

p < 0.01 level (2-tailed) and those denoted by 2 were significant at    p < 0.05 

level (2-tailed).  
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It is striking how different the patient and control correlograms are (Tables 

16 and 17) Firstly the patient correlogram contains generally much more 

shading than the control correlogram both in terms of the number of boxes 

and also the depth of shading. This suggests there is a stronger correlation 

between the component measures in patient data, and is consistent with the 

fact that these variables are all separable measures of the same obligatory 

pathological clinical sign, bradykinesia.  

 

The shading is localised to the top left portion of the patient correlogram 

denoting that these components – amplitude, speed, rhythm and halts - are 

all strongly associated with each other. It is noteworthy that measures of 

tapping frequency and the decrementing variables are not strongly 

correlated to any of the other component measures in the patient data though 

(except the decrementing measures with each other, and possibly frequency 

and halts). This raises the question again of whether these components are 

part of the same clinical phenomenon, bradykinesia. On the other hand there 

is a significant correlation between amplitude, and speed, and the 

decrementing variables for the patient data but not for the control data 

suggesting that patients who have bigger or faster movements are more 

likely to exhibit a decrement in amplitude and speed respectively, and 

hinting at a floor effect being present. 

 

There are a number of specific differences for how the FT variables 

correlate in the patient and control data.  For example, amplitude and speed 

are more strongly correlated in the patient data (rs + 0.87 PD vs. + 0.45 HC). 

This suggests that PwPD tend to tap small and slow (or big and fast) 

whereas controls exhibit more variability in how these variables associate so 

other combinations such as small and fast movements, or big and slow 

movements are likely too.  Another difference is that in the PD group halts 

are more strongly correlated with amplitude (rs - 0.63 PD vs. + 0.21 HC), 

speed (rs  - 0.82 PD vs. - 0.14 HC) and rhythm (COV amplitude rs  + 0.69 

PD vs. + 0.04 HC). This suggests that patients who have larger, faster or 

more rhythmic movements (i.e. less impaired) also have less halts (i.e. less 
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impaired) and this supports the premise that these are all component 

measures of the same clinical phenomenon.  

 

Likewise there is a difference between groups in terms of how tapping 

frequency and amplitude are associated: these variables have a much 

stronger association in the control group (rs - 0.69) compared to patients (rs - 

0.27). The control result is fairly intuitive – if a HC has a larger amplitude 

of tap their fingers have to travel further so if the speed is kept constant (and 

it is only moderately correlated to amplitude in the control group) the tap 

frequency will tend to be lower because the fingers have a longer ‘path’ to 

travel during each tap cycle, so less taps are performed over the assessment 

period.  Perhaps this association has been lost in the patient data because 

there are so many other impaired separable components in the patient FT 

movements that interfere with this relationship.  

 

Summary of section 4.3 results 

PD FT movements are characterised by smaller, slower, less rhythmic and 

more interrupted movements than in controls. Of all the component 

measures amplitude, rhythm and speed have the highest classification 

accuracies with AUCs in range of 0.84 - 0.88. The rank order varied 

depending on clinical state with amplitude most discriminatory in the on 

state and speed more discriminatory in the off state. The LTHT on data was 

validated on the UCSF on data. Halts and tapping frequency had moderate 

classification accuracy but the SE measures did not discriminate the data 

any better than chance.  The classification accuracy of all component 

measures was improved to a maximum AUC of 0.92 (for amplitude) by 

using only MA PD data that corresponded to a mean UPDRS FT grade of 

1.57 ± 0.94. There was no improvement in AUC by limiting HC data to the 

dominant hand. When LA PD data was used, corresponding to a UPDRS FT 

grade of 1.05 ± 0.63, the classification accuracy was still good with AUC 

0.84 (for amplitude). The component measures were more strongly 

correlated in the PD data than the control data supporting the premise that 

these are measures of the same clinical phenomenon. 
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4.4. Classification accuracy of bradykinesia composite models 

When a skilled clinician evaluates whether a patient demonstrates 

bradykinesia during the FT task they need to integrate analyses of the 

separable components. Furthermore the clinician is likely to be using other 

demographic information such as the age and gender of the patient, and 

other clinical signs such as altered gait to formulate a clinical diagnosis. 

Therefore, it is important to examine whether the classification accuracy of 

a device that objectively measures bradykinesia can be improved by using a 

composite score of the separable component measures and whether the 

inclusion of basic demographic details may further improve this. 

 

Logistic regression analysis can be used to form an equation that combines 

several individual measures into an equation that predicts a dichotomous 

outcome.   Thus bradykinesia composite models (equations) were produced 

through logistic regression analysis of the separable component measures in 

order to predict whether each data set came from a patient or control. The 

composite model summarises the relative ‘weighting’ or importance of each 

kinematic component measure in combination with a constant to produce 

the best discrimination of the PD and HC data.   

 

4.4.1 Classifying Leeds patient and healthy control data  

 

4.4.1.1 Composite model comprising the four most discriminating 

components 

The first approach was to use just the four most discriminating component 

measures in the regression model – amplitude, speed, COV amplitude and 

COV speed. The strong correlations between each of these measures meant 

there was considerable multicollinearity. This is not a problem when using 

the model to predict diagnostic group but does limit its use for exploring 

how the individual variables affect the outcome. When data from both hands 

of the Leeds subjects was used, the following regression model was 

produced: 
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PD predicted if (4.2 -9.4 amplitude -0.04 speed -9.6 COV amplitude +12.8 

COV speed)  > 0.5 

 

In other words the FT data is predicted to come from a patient if the solution 

to the equation above is greater than 0.5.  This model accounted for 61% of 

the FT data variability (NagelKerke R2) between the groups, with a 

classification accuracy of 0.90 AUC (95% CI 0.85 - 0.95; p = 4.5 x10-18) or 

85% (Table18).  All FT components were significant variables (< 0.05) 

except for maximum speed (p = 0.9).  

 

Table 18 Classification accuracy of amplitude, speed and rhythm 
composite model   

Predicted  

 Control Patient % correct 

Observed Control 59 13 81.9 

Patient 12 75 86.2 

 

 

 

4.4.1.2 Composite comprising all finger tapping component measures 

When all the FT components were included in the logistic regression model 

the classification accuracy improved marginally to an AUC of 0.93 (95% CI 

0.89 – 0.97, p = 2.3 x 10 -20) or 87.7% ; Nagelkerke R2 0.69 (Table 19). The 

regression model was: 

 

PD predicted if (15.4 -2.5 tap frequency -28.3 amplitude +1.2 speed -13.0 

COV amplitude + 15.8 COV speed  -7.5 halts + 0.01 decrementing 

amplitude -0.05 decrementing speed) > 0.5 

 

All variables were significant (p < 0.05) except for decrementing speed (p = 

0.21). When this was removed from the logistic regression analysis there 

was a slight reduction in overall classification accuracy to AUC 0.91 
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(87.0%), with an additional control misclassified as a patient (i.e. a false 

positive). 

 

Table 19 Classification accuracy of composite model comprising all 
separable measures of bradykinesia	
  	
   

Predicted  

 Control Patient % correct 

Observed Control 57 10 85.1 

Patient 9 78 89.7 

 

4.4.1.3 Composite comprising all FT component measures plus age and 

gender 

An automated diagnostic device may combine objective measures of 

movements with demographic information in order to improve diagnostic 

classification. The operator of the device could input the demographic 

details of the subject and this information could be combined with the 

results of the kinematic data analysis in a mathematical model to provide an 

overall diagnostic prediction of whether the test data is likely to be normal 

or indicative of PD. When demographic information on age and gender was 

included in the model the overall classification accuracy improved to an 

AUC 0.94 (95% CI 0.90 - 0.97, p = 3.4 x 10 – 21) or 88.3 % (R2 0.73); see 

Table 20.  Inclusion of hand variable data, left vs. right and dominant vs. 

non-dominant, were not significant predictors (p > 0.1) and did not improve 

the classification accuracy any further.  The combined kinematic and 

demographic regression model was: 

 

PD predicted if (10.5  -2.7 tap frequency -29.2 amplitude +1.4 speed -13.6 

COV amplitude +17.4 COV speed -8.3 halts +0.01 decrementing amplitude 

-0.05 decrementing speed +0.06 age +1.4 gender) > 0.5, 

 

where age is measured in years and male gender is 1 and female gender is 2. 

All variables were significant (p < 0.05) except the decrementing speed (p = 
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0.3). The three different composite model results are summarised in 

Table...21. 

 

Table 20 Classification accuracy of bradykinesia composite model 
comprising all separable component measures plus age and gender	
   

Predicted  

 Control Patient % correct 

Observed Control 58 9 86.6 

Patient 9 78 89.7 

 

 

Table 21 Classification accuracies of bradykinesia composite models   

Composite model Correctly classified Total, n    
(%) 

 
Controls  Patients AUC 

Amplitude, speed, rhythm  59 75 134 (85) 0.90 

All FT variables 57 78 135 (87.7) 

 

0.93 

All FT variables+ age + gender 58 78 136 (88.3) 

 

0.94 

 

4.4.2 Validating classification accuracy on San Francisco data 

It is important to validate predictive models on an independent cohort in 

order to test whether the model generalises to subjects whose data was not 

used to develop the equation.  The classification accuracies of the three 

models were tested on the UCSF PD patient and HC data sets (Table 22) 

and this showed that the overall classification accuracies were inferior in the 

UCSF group. This suggests that the models may not generalise so well to 

independent samples but it is noteworthy that the UCSF cohort is small so 

any misclassified subjects have a large effect on the overall accuracy. The 

optimal model (all variables, age + gender) has acceptable classification 

accuracy in the UCSF group suggesting that this model may generalise 

beyond the Leeds cohort but it is striking that all of the models tend to 

misclassify the controls in particular. It is reassuring that the clinical state 
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(on vs. off) does not seem to significantly impact on the classification 

accuracy though. 

 

Table 22 Classification accuracy of the Leeds bradykinesia composite 
models' when applied to the San Francisco data   

 Classification accuracy  % 

Composite models Leeds  UCSF   UCSF  

HC 

UCSF  

PD on 

UCSF  

PD off 

Amplitude, speed, rhythm 85 73 33  87 93 

All FT components 88 71 33 91 83 

All components, age, gender 88 81 55 91 96 

Legend: The classification accuracy results are rounded to the nearest 

integer. The first two columns of results represent the overall classification 

accuracy at each site.  The last three columns of results gives the individual 

breakdown of the UCSF results for each cohort of data. 

 

4.4.3. Assessing composites in models of newly diagnosed PD 

When developing a device to aid clinical diagnosis of PD it would be ideal 

to test the diagnostic predictions in a clinically indeterminate group of 

patients and follow them up longitudinally to see if the device’s earlier 

predictions were accurate. This is not feasible with the current subjects’ data 

as all the patients had clinically definite PD and the study was cross-

sectional. Nevertheless it is possible to use subsets of the current data to test 

the diagnostic accuracy by examining just those PwPD with clinically 

‘normal’, or ‘slight bradykinesia’ FT grades. Using patient data that is 

graded zero is using data that has clinically undetectable bradykinesia (i.e. 

the unaffected hand in HY stage one (unilateral) disease, or undetectable in 

the on state due to treatment) and this has previously been used as a proxy 

for ‘clinically indeterminate’ patient data (Haaxma, Bloem et al., 2010). 

Alternatively using data from patients who have grade one, or slight 

bradykinesia, may also be considered another way of obtaining 

representative data of early, or possibly clinically indeterminate, PD.  
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Classification accuracy when only grade zero patient data is used 

There were 11 sets of approved Leeds patient data that had been clinically 

graded ‘normal’ or grade zero. When these were combined with the 72 HC 

data sets (all graded zero clinically) the second composite comprising all FT 

variables had an AUC of 0.77 (95% CI 0.60 - 0.94, p = 0.005). This was 

equivalent to 85% (59/72) and 62% (8/11) of HC and PD respectively being 

correctly classified. The results were not significantly altered when the third 

composite comprising ‘all variables plus age and gender’ with an AUC of 

0.77 (95% CI 0.62 – 0.92, p = 0.004). 

 

Classification accuracy when only grade one patient data is used 

Grade one denotes ‘slight bradykinesia’ and 45 sets of approved patient data 

had this clinical grade.   The composite, comprising all FT variables had 

AUC 0.89 (95% CI 83 - 95, p < 0.0001) and this was equivalent to 85% 

(59/72) of HC, and 80% (36/45), of PD being correctly classified. When the 

third composite, comprising all FT component measures plus age and 

gender was used, the AUC improved to 0.94 (95% CI 0.89 - 98, p < 0.0001) 

which was equivalent to 86% (61/72) of HC, and 84% (38/45) being 

correctly classified. 

 

Summary of section 4.4 results 

The composite bradykinesia models had higher classification accuracy than 

the individual component measures. A composite comprising all FT 

variables and the best performing individual component measure, maximum 

amplitude had AUCs of 0.93 and 0.88 respectively. The classification 

accuracy of the composite models were similar for UCSF patients on and off 

but did not generalise well to the whole UCSF sample as there were many 

misclassified controls. The bradykinesia composite had good classification 

accuracy for discriminating slight PD bradykinesia FT data from HC data 

(AUC 0.89) and moderate accuracy for discriminating clinically ‘normal’ 

PD FT data from HC data (AUC 0.77). 
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4.5 Correlation of bradykinesia measures to demographics and PD 

progression  

The results so far have been focussed on using component measures of 

bradykinesia to discriminate PD from HC data as this information may 

inform the development of a diagnostic device. In addition it would be 

useful to know whether such a device could monitor PD progression as this 

would open up the potential for a device to aid epidemiological studies and 

assess the effects of therapeutic interventions.  

 

Ideally a longitudinal study should be performed to address these questions, 

with repeated measures of the same subjects over time. However some 

preliminary data from this cross –sectional study may be obtained by 

correlating the clinical measures of disease progression with the component 

measures of bradykinesia. This was done for the individual measures and 

the composite model (of all FT components) using the Leeds data.    

 

 

4.5.1 Individual component measures of bradykinesia and disease 

progression 

 

In the patient group the UPDRS FT grade correlated significantly with the 

following individual component measures, in descending rank order: COV 

speed (rs + 0.67), speed (rs - 0.66), halts (rs + 0.63), COV amplitude (rs + 

0.63), amplitude (rs - 0.58), all ps < 0.001.   

 

Figures 35-38 show there is a trend between increasing severity of UPDRS 

FT grade and movements that are less rhythmic, smaller, slower and have 

more halts. They also show that grade zero, or ‘normal’ FT movements in 

PwPD are not truly ‘normal’ as there is a tendency for these patients to have 

smaller, slower and less rhythmic movements than HCs. When the group 

means for these kinematic measures were compared between grade zero 

patients and HCs only amplitude showed a significant difference (p = 0.04). 
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Figure 35 Rhythm of finger tapping for each UPDRS grade   

 
 

Legend: Box and Whisker plots for Leeds approved data shows that higher 

UPDRS FT grades are associated with less rhythmic movements, rs + 0.67. 

Rhythm is measured by COV of maximum speed i.e. higher COV values 

denote less rhythmic movements. Values more than 2 or 3 SDs from group 

mean are denoted by circles and crosses respectively. 

 

 

The UPDRS clinical FT grade showed a borderline significant association 

with tap frequency (rs - 0.21, p = 0.047) but none with decrementing speed 

and decrementing amplitude measurements (ps > 0.11). MoCA was only 

correlated with rhythm measurements (rs= - 0.30 COV speed; p = 0.009). 

HY stage, disease duration, and LEDD were not significantly correlated 

with any of the individual component measures. 
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Figure 36 Speed of finger tapping for each UPDRS grade   

 
Legend: Box and Whisker plots for Leeds data show how higher UPDRS 

FT grades are associated with slower movements, rs -0.66. Also mean speed 

for grade zero PD data is slower than HC (all grade zero) data. Values more 

than 2 SDs from mean are denoted by circles. 

 

Figure 37 Halts in finger tapping for each UPDRS grade   

 
Legend: Box and Whisker plot show how higher UPDRS FT grades are 

associated with more halts, rs 0.63. Circles denote values more than 2 SDs 

from mean. 
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Figure 38 Amplitude of finger tapping for each UPDRS grade	
  	
   

 
Legend: Box and Whisker plot show how higher UPDRS grades are 

associated with smaller amplitude of FT; rs -0.58. Also mean amplitude for 

grade zero PD data is smaller than the HCs (all grade zero) data; p = 0.04. 

Circles denote values more than 2 SDs from mean. 

 

 

4.5.2 Composite bradykinesia measures and disease progression 

There was a significant correlation between the bradykinesia composite (of 

all components) model score and UPDRS FT grade (rs + 0.60, p < 0.0001) 

with higher composite scores associated with more severe clinical grades of 

bradykinesia (Figure 39). This suggests that the composite may have the 

ability to not only classify FT data into PD or HC diagnostic groups but also 

to provide information on the degree of clinical bradykinesia present.   

There was a significant difference (p = 0.002) in the composite score for 

patients with UPDRS FT grade zero (0.51 ± 0.33) and all HC data (0.23 ± 

0.26).  Figure 39 also demonstrates that the misclassified PD data sets 

(below the 0.5 reference line) are predominantly those that had grade zero 

FT grades.  
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Figure 39 Bradykinesia composite model scores of Leeds PD patients 
for each UPDRS grade   

 

 
Legend: The bradykinesia composite scores (logistic regression equation 

predicted probability) are presented as box plots for each MDS-UPDRS FT 

grade. The centre line of each box represents the median score, the upper 

and outer limits of the box, the 75% and 25% quartiles and the error lines ± 

2 SD from the mean. The reference line at 0.5 is the cut-off point for the 

bradykinesia composite model predicting whether the data came from a 

patient (score > 0.5) or a control (score < 0.5). Therefore patient data below 

this line were misclassified as controls. The circles are data with composite 

scores > 2 SD from the mean.  

 

When the clinical and objective scores for each Leeds patient data set were 

plotted the following regression line of best fit (least squares) applied:  

 

Bradykinesia composite score = 0.142 x UPDRS grade + 0.635 

 

However because of the wide spread of bradykinesia composite model 

scores for grade zero data, and the small numbers of data sets that were 

allocated grades three and four, the regression line model does not fit the 
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data particularly well (R2 0.27) despite UPDRS FT score being a significant 

predictor of the bradykinesia composite score (p < 0.0001). 

 

The bradykinesia composite score was also inversely correlated with the 

MoCA score (rs - 0.46, p < 0.0001) suggesting that cognitive impairment is 

associated with more severe objective measures of bradykinesia. None of 

the other markers of disease progression such as HY stage (rs + 0.05), PD 

disease duration (rs - 0.09) or LEDD (rs - 0.20) significantly correlated with 

the bradykinesia composite score. 

 

4.5.3 Component measures of bradykinesia and age, gender and 

dominant hand 

Age was not correlated with the bradykinesia composite score in either the 

control group (rs - 0.02) or the patient group (rs 0.09).  Age was also not 

significantly correlated with any of the individual separable component 

measures of bradykinesia in either group.  There was no association 

between gender and any of the component measures in the patient group.  

None of the component measures, in either patient or control group data, 

were significantly correlated to hand dominance.  

 

4.6 Summary of Chapter 4 results  

The results obtained from analysing the separable component measures of 

bradykinesia in the FT data are summarised: 

 

-­‐ FT performed by PwPD was characterised by movements with 

smaller amplitude, slower speed, less rhythm and more halts than in 

controls. The three measures that best discriminated PD and HC 

group data were amplitude, rhythm and speed and these results were 

validated on the independent data collected in UCSF.  

-­‐ The discriminatory value of each of the top three separable 

components varied depending on the clinical state of the patients. In 

the on state, amplitude was the most discriminating component 

followed by rhythm then speed, but in the off state, speed and 

amplitude were most discriminating (speed non significantly greater) 
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followed by rhythm. This suggests that speed improves more than 

either of the other components in response to dopaminergic drugs. 

-­‐ Halts discriminated the groups moderately well as PwPD exhibited 

more halts than controls.  

-­‐ The tapping frequency tends to be higher in PD than controls but the 

range of frequencies varied considerably within the groups so this 

component was a fairly poor discriminator of group data.  

-­‐ The SE measures, decrementing amplitude and decrementing speed, 

did not discriminate the Leeds PwPD from HCs at all. However the 

decrementing speed results were not confirmed in the UCSF data so 

this requires further analysis (see Chapter 6) 

-­‐ The most discriminating results, with AUCs > 0.9 were obtained 

when PD data from just the MA hand (mean FT grade 1.57) was 

used, but discrimination was still moderately good, with AUCs 0.76 

- 0.85, when only the LA PD hand data was used (mean FT grade 

1.05).   

-­‐ Using just dominant hand data from controls did not improve 

diagnostic classification. 

-­‐ The individual component measures were more strongly inter-

correlated in the PD group than controls. Amplitude, speed, rhythm 

and halts were particularly closely correlated. SE measures did not 

correlate well with the other component measures of bradykinesia. 

-­‐ Combining the top four most discriminatory separable components 

together (amplitude, speed and two measures of rhythm) into a 

composite model improved the classification accuracy marginally 

from an AUC of 0.88 (for the best individual component, amplitude) 

to an AUC of 0.90. Combining all the FT components together into a 

composite improved the classification accuracy to AUC 0.93  

-­‐ The bradykinesia composite models developed using Leeds data had 

similar accuracy in the UCSF patient data whether tested in the on or 

off states. However they misclassified many UCSF control data sets 

and it remains unclear whether the composite models generalise well 

to independent data. 
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-­‐ Patients with the same subjective clinical grade as controls in the on 

state (grade zero or ‘no bradykinesia’) had significantly different 

objective measures of amplitude and the bradyinesia composite 

score.  

-­‐ The composite models differentiated grade zero PD data from grade 

zero HC data moderately well with AUC 0.77, and differentiated 

grade one patient data (clinically ‘slight’ bradykinesia) from grade 

zero control data very well with AUC 0.89. 

-­‐ The clinical grade of bradykinesia was significantly correlated with 

measures of rhythm, speed, halts and amplitude and also with the 

bradykinesia composite model. More severe clinical grades of 

bradykinesia were associated with less rhythmic, slower and smaller 

movements with more halts.   

-­‐ Cognitive impairment was correlated to the composite bradykinesia 

score and rhythm but advancing age, HY disease stage, PD disease 

duration and LEDD were not associated with any objective measures 

of bradykinesia. 

 

In summary these results highlight the potential for objective measures of 

bradykinesia using FT data to aid diagnosis and monitoring of PD. The 

objective measures correlate well with the clinical bradykinesia grade and 

this is important for monitoring. Additionally there remains good 

classification accuracy when bradykinesia is clinically ‘slight’, and the 

amplitude measures in controls and PD patients are significantly different 

even when no bradykinesia was clinically apparent; these results suggest 

that the device may be able to provide diagnostic predictions to support 

clinical evaluation. 

 

4.7 Discussion of separable component analyses 

This chapter has focussed on objectively measuring the clinically defined 

components of bradykinesia in PD and HC FT data. Two main types of 

analysis have been undertaken. Firstly, classification accuracy has been 

evaluated by assessing how well each component measure of bradykinesia 

differentiates PD and HC kinematic data. These results have implications 
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for the development of a device to support clinical diagnosis. Secondly, how 

the components of bradykinesia correlate with one another and with the 

subjective clinical grades of bradykinesia has been explored. These results 

are more relevant to how a device that measures bradykinesia could 

potentially monitor the progression of PD and response to intervention.  

  

4.7.1 Discussion in context of developing a diagnostic device 

 

Amplitude, speed and rhythm are the most discriminating components 

PD patients’ FT movements were characterised by smaller amplitude, 

slower speed, less rhythm and more halts than controls. In the on state the 

mean of the maximum amplitude of each FT cycle was the most 

discriminating component, followed by measures of rhythm then speed. In 

the off state the mean of the maximum speed of each FT cycle and the mean 

of the maximum amplitude of each FT cycle were the most discriminating 

component measures (not significantly different), followed by rhythm. 

These objective measures support the inclusion of amplitude, speed, rhythm 

and halts within the gold standard clinical definitions of bradykinesia, as 

defined by UKBBDC and MDS-UPDRS (Gibb and Lees, 1989, Goetz, 

Tilley et al., 2008). However no difference in SE measures was found 

between PD and HC group data. 

 

Only four studies have previously quantified the clinically defined 

components of bradykinesia during the FT task.  Espay at al.’s pilot study in 

2009 (Espay, Beaton et al., 2009) assessed the MA hands of 23 PwPD and 

the dominant hand of 16 HC who each performed FT for 15 seconds. The 

same movement sensors as the present study (Polhemus EM tracking 

system) were used and attached to the index finger and thumb. Patients were 

assessed in a defined off state, 12 hours after their last dose of PD 

medication, and in an on state one hour after their first morning dose of 

levodopa. The kinematic scores of HC were used to define the amplitude 

and speed of PD movements into ‘normal’ (< 1 SD below HC group mean 

score), ‘slow speed’ or ‘low amplitude’ (1 - 3 SDs below HC mean) or ‘very 

slow’, or ‘very low amplitude’ (> 3 SDs below HC mean).  
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The authors found that in PwPD off, amplitude was more impaired than 

speed with most having ‘slow speed’ and either ‘low amplitude’ or ‘very 

low amplitude.’  In the on state speed normalised more than amplitude and 

most patients on had ‘normal speed’ but ‘low amplitude’. Half of PwPD on 

had normal speed but only four had normal amplitude. These results lend 

support to the present study’s finding that amplitude was the most 

discriminating component measure for patients in the on state in both the 

LTHT and UCSF cohorts. However Espay et al.’s results for the off state 

contrast with the present study that found speed was numerically, but not 

significantly, more discriminating than amplitude. Nevertheless in both 

studies the patient numbers assessed off were quite small (n = 23 MA hands 

in Espay, n = 24 both hands in current study) and these may make 

conclusions less robust.  Furthermore the methods used to define speed and 

amplitude in Espay’s study using a three point ordinal scale defined by the 

degree of deviation from the control group mean scores makes it difficult to 

directly compare the results with the present study where a continuous scale 

of objective measurements and AUC was used. 

 

Espay et al. published a second study in 2011 quantifying the separable 

components of bradykinesia using objective and subjective assessments of 

FT (Espay, Giuffrida et al., 2011). The MA hand of 85 PwPD was assessed 

on and off during 15-second periods of FT, hand opening/closing and then 

pronation/supination movements. There was no control group. Four 

clinicians graded each video-recorded assessment using UPDRS and the 

Modified Bradykinesia Rating scale (MBRS). The MBRS requires three 

separate grades, on a scale of zero to four, to be allocated for the speed, the 

amplitude and the rhythm of movements. Each subject wore KinetiSense 

(Figure 17) movement sensors containing accelerometers and gyroscopes on 

their index finger and thumb and the kinematic measures of amplitude, 

speed, rhythm and decrements were compared to the clinical grades.  

 

Clinically, in the off state, the MBRS amplitude grade was more impaired in 

terms of prevalence and severity than either the speed or rhythm grades but 



	
  
188	
  

in the on state only the MBRS speed grades showed significant 

improvement. The quantitative measures, obtained through the movement 

sensors, showed that in the on state speed improved the most, then 

amplitude and rhythm, and SE measures did not improve at all. These 

results highlighted several important points. Firstly the UPDRS 

bradykinesia grade (a composite grade of all the components of 

bradykinesia) is more strongly influenced by the degree of reduced 

amplitude observed clinically than any other component. Perhaps this 

explains why amplitude correlated so strongly to the UPDRS FT grade in 

the current study. Secondly when patients switched into the on state, speed 

was the only MBRS component to improve whereas the movement sensors 

not only detected a large improvement in speed but also significant 

improvements in rhythm and amplitude too. This suggests that any changes 

in rhythm or amplitude may go unnoticed when using either the UPDRS or 

the MBRS and suggests that clinical scales are less sensitive to changes in 

movement characteristics than objective measures. Extrapolating from this 

point it may be that the current gold standard clinical diagnostic criteria are 

also less sensitive to early changes in the components of bradykinesia than 

objective measures. The differential response of the components of 

bradyknesia is an interesting point not only when considering the underlying 

pathophysiology of bradykinesia, but also because it has important practical 

implications for protocols used to collect kinematic data that may aid 

diagnosis prediction or for monitoring progression of disease.  

 

There are several aspects of the Espay et al. 2011 study that need to be 

considered when trying to compare the results to the present study though. 

Firstly the overall UPDRS grade of bradykinesia for the FT task in PwPD is 

not presented in the paper. Instead the authors averaged the amplitude, 

speed and rhythm MBRS grades across the three bradykinesia tasks and the 

four raters into a composite clinical grade and then compared these 

composites to the individual quantitative measures. This may be an 

important methodological flaw as PD patients are known to be 

disproportionately impaired on the FT task compared to the hand opening 

and arm pronation-supination tasks (Agostino, Berardelli et al., 1998) so 
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combining the clinical grades runs the risk of disguising any differential 

clinical response within each task. The lack of a control group means that 

the focus is limited to how PwPD’s movements change in the off and on 

states and we cannot be sure about which component was most impaired 

quantitatively in either state when compared to HC. Also it is noteworthy 

that Espay et al.’s patients were clinically different to those in the present 

study as they excluded all patients with more than grade one or ‘slight’ 

tremor and those with cognition test scores < 27/30. This means they have 

selected a subset of PwPD that may not be representative of the population 

with PD. Furthermore the details of the mean age, HY stage and disease 

duration are not stated.  

 

In 2009 Yokoe et al. quantified 60-second periods of FT in 16 PwPD on and 

32 HC. Each subject wore a movement sensor system comprising tri-axial 

accelerometers and touch sensors attached to the index finger and thumb.  

The authors showed that the biggest difference between PD and HC group 

data were measures of amplitude and speed. Rhythm measurements were 

less discriminating and tapping frequency measures did not discriminate the 

groups at all.  They used principal component analysis to find out which 

component measures accounted for the greatest variability between the PD 

and HC data. The first component accounted for 40% of variability and 

comprised measures of maximum speed, maximum amplitude, total 

amplitude (i.e. cumulative amplitude of all tap cycles over 60 seconds) and 

rhythm. The second component, accounting for 27% of variability, 

comprised tapping frequency and a measure of halts. The authors also used 

logistic regression to see how well each individual measure classified data 

into patient and control groups. They found that the most discriminating 

component was the mean of maximum opening velocity (with a 

misclassification rate of 16%) followed by total amplitude (19%) and 

rhythm (21%).  

 

Yokoe et al.’s finding that speed was more discriminatory than amplitude in 

the on state contrasted with the present study and with Espay’s two studies. 

However it is worth noting that they specifically measured the maximum 
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opening speed rather than the overall speed of FT and this component 

measure is further explored in Chapter 5. Otherwise the results are broadly 

similar to the present study that demonstrated misclassification rates of 20%, 

22% and 23% for amplitude, rhythm and speed respectively.  However 

direct comparisons of results between the present study and Yokoe et al. are 

not entirely straightforward as different methods for calculating each 

component were used, the tapping sequence length was twice as long in 

Yokoe’s study, in neither study were the patient and control groups age 

matched and Yokoe et al. selected a sub-group of PwPD without marked 

action tremor, severe dyskinesia or cognitive impairment. 

 

In 2012 Ling et al. measured FT movements in 15 PwPD, 9 PSP patients 

and 16 HCs using an OKS in order to examine whether the components of 

bradykinesia differed between the groups (Ling, Massey et al., 2012). The 

participants performed three sets of 15-second periods of FT with each hand 

separately and PwPD were assessed on and off. The authors found that in 

comparison to HC the characteristic FT pattern of PwPD off consisted of 

significantly reduced speed and impaired rhythm. However whilst 

amplitude and SE measures were numerically more impaired in PwPD than 

HCs these components did not reach statistical significance. The amplitude 

measurements contrast with the present study but otherwise the results are 

broadly similar. 

 

Ling et al.’s study highlighted that different parkinsonian conditions may 

have different bradykinesia profiles with the components impaired to 

different degrees. For example the PSP patients had significantly smaller 

amplitudes of movements with significantly less decrement compared to 

PwPD and this observation hints at the exciting potential that quantifying 

FT movements may not only predict whether the movements are 

bradykinetic but may also differentiate PD from other parkinsonian 

conditions. If this were the case such a device would have a major 

advantage over DaT scans that cannot reliably differentiate the various 

neurodegenerative parkinsonian conditions such as PD, PSP, CBD and 

MSA.  
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Halts and tapping frequency are moderately discriminatory 

The present study found that halts and tapping frequency discriminated 

patient and control data moderately well. Out of the FT studies described 

above, only Yokoe et al. measured halts and reported classification accuracy 

as approximately 70%. Indirect evidence from keyboard tapping studies 

suggests that objective measures of halts may have the potential to be more 

discriminatory though; for example Homann et al. found that the cumulative 

time over a 60 second assessment period for keeping a key depressed > 

17msec (which corresponds to the keyboard repeat rate) was greater in PD 

and differentiated PD and HC better than objective measurements of rhythm 

(Homann, Suppan et al., 2000).  

 

Regarding tapping frequency the present study found that patients had a 

tendency to have higher frequencies, which may at first seem counter-

intuitive for a condition that is underpinned by slowed movements. 

However as the PD patient movements had very small amplitudes the 

distance moved by the fingers in each tap cycle was less and hence for the 

same speed or even slightly slower speeds a higher tap frequency could still 

be achieved. Yokoe et al. also found tapping frequency to be moderately 

discriminatory with a classification accuracy of 67% but with PwPD having 

a slightly lower frequency than HC (Yokoe, Okuno et al., 2009). Ling et al. 

found that tapping frequency was marginally lower in PwPD off (2.8 Hz) 

than controls (3.3 Hz) and that tap frequency increased in the on state (3.1 

Hz) driven largely by improvements in speed and then rhythm. Tapping 

frequency was highly discriminatory in keyboard tapping studies with a 

tendency for PwPD to have a lower frequency (Dunnewold, Jacobi et al., 

1997, Homann, Suppan et al., 2000, Muir, Jones et al., 1995, Pal, Lee et al., 

2001, Shimoyama, Ninchoji et al., 1990). It is difficult to compare FT 

measurements with keyboard tapping measurements though as it is not 

possible to measure amplitude with the latter and the tapping frequency is 

constrained by distance between the keys, making frequency largely a 

measure of speed. 
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Bradykinesia composite models improve classification accuracy 

This study showed that when the individual component measures of 

bradykinesia were combined into composite models the classification 

accuracy improved from 80% for the best performing individual component 

(amplitude) to 85% for a composite comprising amplitude, speed and 

rhythm components, and to 88% for a composite comprising all FT 

component measures. The improved classification accuracy with composite 

measures has been reported just once before (Taylor Tavares, Jefferis et al., 

2005). Although these composites accurately classified the UCSF patients, 

there were many false positive misclassifications amongst the UCSF 

controls giving overall classification accuracies of 71% for the composites 

comprising all FT components. Reassuringly the composite’s classification 

accuracy was upheld for PwPD in either on or off states. Examining the 

composite equation shows that the most important measures are rhythm, 

amplitude and speed with greater relative weight given to these components.  

 

Classification accuracy in models of clinically indeterminate PD 

When only LA PD hand data was used (mean MDS-UPDRS grade 1.05) the 

AUC remained moderately good ranging between 0.78 – 0.85 for amplitude, 

speed and rhythm. When the grade zero PD data sets (n =11) were 

compared to grade zero control data (n = 72) a significant difference 

between the mean amplitude scores remained and overall classification 

accuracy for the bradykinesia composite comprising all component 

measures was AUC 0.77. This was equivalent to 85% and 62% of HC and 

PD data respectively being correctly classified whereas when all data was 

included, 89% of HC and 85% of PD data sets were correctly classified.  

The bradykinesia composite differentiated grade one, or ‘slight bradykinesia’ 

PD data (n = 45) from HC data (n = 72) with AUC of 0.89.  

 

Section 4.5.2 showed that PD data sets misclassified by the bradykinesia 

composite tended to be either those that had been graded as ‘normal’ or as 

‘slight bradykineisa’ (n = 3) but with kinematic values more than 2 SD 

below the grade one group median value.  In other words misclassified PD 

data sets are either those with no bradykinesia clinically apparent or those 
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with unusually low kinematic results, and the former suggests that further 

assessments in clinically indeterminate cases of PD, or those with very mild 

signs need to be undertaken in order to assess the true diagnostic potential 

of objectively measuring a clinical sign that is not yet clinically apparent, or 

only very mildly so. 

 

Summary of classification accuracy of component measures of 

bradykinesia 

The present study has shown that objective measures of the clinically 

defined components of bradykinesia discriminate PD patient and control 

data with different accuracies but amplitude, speed and rhythm are 

consistently the most discriminating measures. Halts and tapping frequency 

are less discriminatory and SE measurements did not discriminate the 

groups at all. Even when the FT performance had been graded ‘normal’ the 

mean measures of amplitude remained significantly different in the PD data 

compared to controls.  

 

In the Leeds patients on, reduced amplitude is the most discriminating 

individual component of bradykinesia, followed by rhythm and this is 

probably because the speed component has been ‘normalised’ by the 

dopaminergic drugs (Espay, Giuffrida et al., 2011). These results are 

broadly supported by the previous four studies that quantified PD FT with 

speed improving much more than amplitude or rhythm when the patient is 

on. When the UCSF patients were in the off state speed and amplitude were 

roughly equivalent as the most discriminatory components but these results 

require further validation as some previous studies support this (Ling, 

Massey et al., 2012) whilst others suggest that amplitude remains more 

discriminatory in either clinical state (Espay, Beaton et al., 2009, Espay, 

Giuffrida et al., 2011).  
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Clinical and technical implications of diagnostic classification results 

These kinematic measure results may inform clinical practice as they 

suggest that clinicians should focus on the rhythm, amplitude and speed of 

movements when considering whether a new patient may have PD.  

Heldman et al. showed that most clinicians focus on amplitude when 

allocating a UPDRS bradykinesia grade (Heldman, Giuffrida et al., 2011) 

but it is not known if this is also the case when formulating a diagnosis of 

PD. The importance of accurately evaluating bradykinesia was highlighted 

by Bajaj et al. (Bajaj, Gontu et al., 2010) who showed that the most 

common reason for misdiagnosing PD from other tremulous movement 

disorders was clinical misinterpretation of bradykinesia. 

 

From a technical aspect, if one was to develop a device that can predict 

diagnosis of PD based on measuring the separable components of 

bradykinesia, these results suggest that a composite measure of all the 

components of bradykinesia, with particular emphasis on amplitude, speed 

and rhythm, would increase the classification accuracy beyond the level of 

any individual component measure.  It is also encouraging that in the 

models of clinically indeterminate PD (grade zero UPDRS or ‘normal’ FT 

movements) there remained a significant difference between the objective 

measures of amplitude despite no difference in the clinical grade.  

 

From an investigative tool aspect the present study and the four published 

studies quantifying FT suggest dissociation between the components of 

bradykinesia in PD, in both the off state and in response to intervention. It 

has been shown that there is a differential response of the components to 

drugs (Espay, Beaton et al., 2009, Espay, Giuffrida et al., 2011, Ling, 

Massey et al., 2012) and other interventions such as simultaneous 

movements (Kishore, Espay et al., 2007) and neurosurgery (Kimber, Tsai et 

al., 1999). For example Kishore et al. showed that amplitude, but not speed, 

of movements improves when PD patients perform bimanual tasks (Kishore, 

Espay et al., 2007). Kimber at el. showed that after pallidotomy surgery PW 

wPD exhibited an improvements in movement amplitude but not in speed or 

rhythm (Kimber, Tsai et al., 1999). These suggest that there may be 
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different underlying pathological processes for each component and this is 

discussed further in Chapter 5. 

 

4.7.2 Discussion in context of developing a monitoring device 

The study methodology was not specifically designed to evaluate how well 

the device could monitor disease progression but useful information could 

still be gleaned on how the component measures may reflect the degree of 

bradykinesia and other measures of disease progression.  

   

Correlation of kinematic data and subjective clinical grades 

This study found that the MDS-UPDRS FT grade was significantly 

associated, in descending order of correlation, with rhythm, speed, 

amplitude and halts. More severe clinical bradykinesia was associated with 

less rhythmic, smaller, slower and more interrupted movements measured 

kinematically. These findings are similar to Yokoe et al.’s where, in 

descending order of correlation, lower speeds, smaller amplitudes and less 

rhythmicity of FT movements were associated with more severe clinical 

grades of bradykinesia in PwPD on (Yokoe, Okuno et al., 2009).  These 

results suggest a role for objective measurements of bradykinesia 

components to monitor clinical changes.   

 

In contrast to improved classification accuracy with the bradykinesia 

composite models, the strength of correlation was no better for the 

composites compared to when only rhythm or speed were used. There are 

no previous studies comparing bradykinesia composites to clinical grades of 

bradykinesia. 

 

Other measures of disease progression such as HY stage, disease duration 

and LEDD were not associated with any of the individual component 

measures of bradykinesia. Advancing age was also not associated with any 

of the component measures in either patients or controls, suggesting that 

subclinical bradykinesia, or generalised slowing does not occur simply with 

ageing.  
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In Espay’s 2009 study the total UPDRS motor examination score correlated 

with FT amplitude measurements when patients were off but there was no 

correlation with either speed or amplitude measures in the on state (Espay, 

Beaton et al., 2009). This suggests that the objective measures are more 

sensitive that the UPDRS and perhaps this is not surprising as each UPDRS 

bradykinesia assessment had a composite grade comprising all the separate 

components of movement, and all of these composite grades are then 

summed together to obtain the overall motor score. Espay et al. also found 

that HY stages were not correlated with the speed and amplitude kinematic 

measures. This is an important point because it suggests that clinical scales 

of clinical severity or disease stage are too crude to correlate with the 

detailed objective measurements. It could be argued that this is related to the 

fact that clinical scales are rating features other than bradykinesia (i.e. 

overall mobility/ clinical signs of PD) but in the case of UPDRS this is not 

the case and at least some correlation with the kinematic scores would be 

expected. This lack of correlation suggests the UPDRS scale is not sensitive 

enough to reflect the objective changes in the movement components. 

 

The Espay 2011 study suggests that even the MBRS, a detailed clinical 

scale specific for bradykinesia, is not sensitive enough to detect the changes 

in amplitude and rhythm, with the MBRS grades not significantly changing 

between on and off states, despite evidence of improvement on the 

kinematic measures (Espay, Giuffrida et al., 2011). In other words the 

subjective assessments were not as sensitive as the objective assessments.  

 

Adjustment for demographic details of test subjects 

When developing a device that could potentially diagnose or monitor PD it 

would be useful to know whether the accuracy of the device would be 

improved by adjusting the results for the demographic details of the test 

subjects.  This was briefly explored in the present study.  

 

Accuracy not improved by using only healthy control dominant hand 

The results showed that accuracy was not improved by using only the 

dominant hand data from controls, suggesting that there was little difference 
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in the component measures between HC hands. Ling et al. found similarly 

that HC had longer tap cycle durations in the non-dominant hand but no 

other performance parameters differed between hands (Ling, Massey et al., 

2012). Espay and Yokoe did not present the data for the hands separately. 

The results from studies assessing touch pad tapping are mixed: Muir found 

tapping frequency in the non dominant hand of controls was 7% slower than 

dominant hand but the results were not significant (Muir, Jones et al., 1995), 

Dunnewold found both controls and PD patient tapped significantly slower 

with the non dominant hand (Dunnewold, Jacobi et al., 1997) but Kandori 

found no difference at all between the hands (Kandori, Yokoe et al., 2004). 

 

 

4.7.3 Strengths and limitations of the study  

The present study is the largest study in terms of number of participants to 

quantify the clinical FT task in PwPD on and off  and compare the results to 

HCs. Choosing the FT task as an evaluation of bradykinesia has the 

advantage that this test is already used clinically and is familiar to clinicians.  

Testing both hands separately was important as it has been shown that 

bimanual tasks in PD tend to improve the movements of the MA hand but 

degrade the movements of the LA hand (Kishore, Espay et al., 2007).  

 

The findings that amplitude, speed and rhythm are disproportionately more 

impaired in PD than other clinically defined components of bradykinesia are 

broadly supported by previous studies. However it is the first study to 

validate the results on an independent data set. In addition this study 

provides a detailed evaluation of how each component measure varies 

within, and between, the patient and control groups. It is the second study to 

combine the component measures into a bradykinesia composite model and 

this improved the classification accuracy. It is also one of only two studies 

to highlight that there is no significant difference between SE measurements 

in PD and HC groups.  Methodologically a broad spectrum of PwPD have 

been recruited with wide ranging symptoms, signs and stages of the disease 

– this means the test has not been limited to those with intact cognition or 

minimal tremor or dyskinesia.  The predominance of patients with only 
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slight bradykinesia offers credibility to the results on diagnostic 

classification.  

 

Several limitations of the study are acknowledged though and most of these 

are related to the methodology.  Firstly, only one task has been quantified 

and it is not possible to correlate the bradykinesia findings to other 

impairments in PD, or to clinical subtypes of PD, because the whole 

UPDRS motor examination was not assessed. Although Agostino et al. 

showed that FT is a more discriminatory task for PD than hand 

opening/closing or forearm pronation/supination (Agostino, Curra et al., 

2003) and Ling et al. showed that deficits in FT were mirrored by the same 

deficits in handwriting performed by PwPD (Ling, Massey et al., 2012), we 

cannot be absolutely sure that the component measures impairments in FT 

movements reflect bradykinesia generally in PD.  

 

Secondly, the task was only assessed once and it is possible that the 

movements vary considerably within individuals over repeated assessments 

i.e. the test retest reliability was not assessed and this would be an important 

next step when developing the device. Furthermore the protocol required all 

subjects to start the assessments with their dominant side and this may have 

led to a degree of motor learning by the time the non-dominant side was 

assessed and distorted the results according to hand dominance. In support 

of this concern, O’Sullivan showed that there was a significant increase in 

tap frequency on the second trial in ten PD patients who performed three 

trials of tapping with the same hand (O'Sullivan, Said et al., 1998). A further 

potential area of bias was having only one clinician to grade the UPDRS 

severity who was not blinded to the diagnosis.  

 

Thirdly, for a true evaluation of a new diagnostic device, it should be tested 

on a group of clinically indeterminate patients and compared to the current 

gold standards of diagnosis based on clinical assessments with or without 

DaT scan. Using clinically definite PwPD limits any claims about 

diagnostic accuracy. Nevertheless the results are still an important first step 

in proving the principle that separable component analysis of FT data shows 
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potential for diagnostic classification and grading of bradykinesia severity. 

Also, as with all FT studies thus far, the gold standard has been clinical 

diagnosis rather than pathological diagnosis, and it is possible that some of 

the HC group have sub-clinical PD and some of PD group have another 

parkinsonian condition.  Finally, approximately 10% of the collected data 

was corrupted and this not only led to considerable loss of data, but also 

when the corrupted data sets were excluded the groups were far less 

matched for age and gender.   

 

4.7.4 Conclusions 

Objective measures of the separable components of bradykinesia can be 

used to discriminate FT data from PwPD and HCs. PD bradykinesia is 

characterised by movements of reduced amplitude, slower speed, less 

rhythm and more halts. Decrementing amplitude and speed were no 

different between PD and HC groups. The response of each component to 

levodopa is dissociable with reduced amplitude being the most 

discriminative component of bradykinesia in PwPD on but the results are 

less clear for the off state. Even when there is no bradykinesia apparent 

clinically, objective measures of amplitude are significantly different 

between the grade zero PD and HC groups; this suggests potential for using 

such measures as a diagnostic tool. When a bradykinesia composite model 

was formed from all the component measures, classification accuracy 

improved beyond that of any single component. Amplitude, speed, rhythm 

and halts measurements are also associated with the clinical severity of 

bradykinesia and this suggests a role for monitoring PD. In summary 

objective measures of bradykinesia show potential to discriminate PD from 

HC subjects and to monitor the progression of PD and the response to 

interventions. 
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Chapter 5 
 

Evaluating bradykinesia with evolutionary algorithms:  
Results and Discussion 

 

5.0 Introduction 

This chapter will focus on the classification accuracy of the ensemble 

classifier for discriminating FT data from PwPD and HCs. The ensemble 

classifier was developed using EA analyses of the data and the classification 

results are compared to the best performing separable component measures 

of bradykinesia from Chapter 4. The classifier expression is examined in 

order to better understand the behaviour of the classifier and to investigate 

the characteristics of bradykinesia. The discussion section summarises the 

main findings, outlines how these results may inform the development of a 

device to aid clinical diagnosis and monitoring of PD and reviews how the 

results fit in with the current understanding of the pathophysiology of 

bradykinesia. 

 

5.1 Ensemble classifier accuracy 

EA analysis of the FT data led to the production of a number of classifiers 

that discriminated patient from control data very well. FT data from each 30 

second recording was processed by the classifier to produce a solution in the 

range - 1 to +1. A solution greater than zero meant that the classifier 

predicted the data set came from a patient and a solution of less than zero 

meant the classifier predicted that the data came from a control. The 

diagnostic accuracy of the classifiers was assessed using AUC. 

 

Two different types of classifier were developed through EA analysis 

techniques – an Artificial Biochemical Network (ABN) classifier and a 

Cartesian Genetic Programming (CGP) classifier; see Chapter 3. The ABN 

classifier was developed using EAs to examine overall patterns of FT 

movement during the 30 second FT assessment period and using the 

differentiating features of these gross patterns of movement to form the 

equation; the ABN classifier thus evaluates movements on a macroscopic 
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scale. In contrast, the CGP classifier was developed by focussed evaluation 

of 0.6-second windows of FT data and using the subtle differences of 

movement over each individual FT cycle as the defining components of the 

equation; hence the CGP classifier can be considered to evaluate 

movements on a microscopic scale. The classification accuracy of the best 

performing ABN and CGP classifiers are summarised in Figure 40 with 

‘Selection’ (or test) AUC values of 0.893 and 0.911 for ABN and CGP 

classifiers respectively.  

 

Figure 40 Classification accuracy of the most discriminative ABN and 
CGP classifiers  

	
   	
  	
  	
  	
  	
  	
  (a)	
  ABN	
  classifier	
  	
   	
   	
  	
  	
  	
  (b)	
  CGP	
  classifier	
  

 
Legend: ROC curves summarising classification accuracy of best 

performing (a) ABN and (b) CGP classifiers.  

ROC curves produced by Dr Mic Lones 

 

The behaviour of the ABN and CGP classifiers may be considered 

complementary and their outputs were normalised and then averaged in 

order to create an ‘ensemble’ classifier that maximised the ability to 

discriminate PD and HC data based on both ‘microscopic’ and 

‘macroscopic’ evaluation of FT movements. It will be shown that the 

classification accuracy improves when the classifiers are combined into an 

ensemble classifier in this manner. 

 

 

8

(a) Comparison of ABN and IRCGP classifiers, also showing
effect of grid and window (w) size for IRCGP classifiers.

(b) Comparison of ABN classifiers evolved on training data from
(left to right) Dominant, Non-dominant and Both hands.

Fig. 6. Diagnostic power of evolved classifiers on both the training (white) and test (grey) sets. Notched box plots show summary statistics over 50 runs.
Overlapping notches indicate when median values (thick horizontal bars) are not significantly different at the 95% confidence level.
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Fig. 7. ROC curves for the most discriminative ABN and GP classifiers.

discrimination on the selection set. In both cases, the validation
AUC is very high, indicating that these classifiers generalise
well to unseen data. Fig. 6a also shows that, in general, the size
of the IRCGP grid and the length of the matching window has
a relatively small effect upon the ability of the evolutionary
algorithm to find classifiers.

Although most runs led to classifiers with high training
AUCs, the wide test set distributions shown in Fig. 6a show
that a number of evolved classifiers had poor generality. For
the GP classifiers, this was caused by over-learning in a
number of runs, with the test set AUCs peaking early whilst
the training set AUCs continued to increase. This also explains
why the training set AUCs are higher for the GP runs than
for the ABN runs. For the ABN classifiers, poor generality
was caused by an evolutionary trend towards parsimonious
solutions. Below a certain size (about 3 discrete maps), we
found that solutions displayed high fitness but poor generality
(see [40] for a more in-depth discussion of this phenomenon).
In each case, early stopping and solution size limits failed to
improve generality, suggesting that these behaviours are due
to deceptive fitness landscapes.

C. Handedness

PD is typified by asymmetric onset, and a number of recent
studies have suggested that there is a positive correlation
between a patient’s handedness and the side of their body
on which symptoms first present [47], [48]. Our investigation
of gross metrics in Table II tends to support this, showing
that these provide slightly higher discrimination for a subject’s
dominant hand.

To test this relationship further, we separately trained clas-
sifiers using data from the dominant, non-dominant and both
hands. Fig. 6b shows that the evolutionary algorithm found
it significantly easier to find high fitness classifiers for the
dominant hand. This pattern is even more pronounced for test
set discrimination, suggesting that it is much harder to perform
diagnosis when using non-dominant hand data, and providing
strong support for the findings of [47].

Interestingly, classifiers trained on the non-dominant hand
still generalise well to the dominant side. This suggests that the
same pattern is found on both sides, but with greater incidence
or fidelity on the dominant side. It is also notable that the
distribution of classifiers trained on both hands, and tested on
the dominant hand, shows less indication of over-learning than
those trained solely on the dominant hand. We can speculate
that, by making the pattern harder to find, this reduces early
convergence of the population.

D. Behavioural Analysis

Fig. 8 gives examples of two evolved ABN and GP clas-
sifiers. The ABN is relatively simple in terms of description
length, comprising 4 discrete maps and 10 chemicals. How-
ever, due to its dynamical nature, and the non-trivial collective
behaviour that results from coupled discrete maps [49], it
is extremely difficult to infer its functional behaviour from
its static description. The GP expression is also surprisingly
simple, but nevertheless it is still difficult to understand the
pattern of movement it is describing.
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5.1.1 Accuracy improves with dominant hand control data 

In order to assess the ensemble classifier accuracy and compare the results 

to the separable component analysis results, the approved data sets were 

used (see Table 12 in Chapter 4). When all LTHT approved data sets were 

used (87 PD, 72 HC) the ensemble classifier had good classification 

accuracy with an AUC of 0.88 (95% CI 0.83 - 0.94, p < 0.0001). At equal 

trade-off the sensitivity/ specificity was 0.84/0.82 and this corresponded to 

77 out of 87 PD, and 54 out of 72 HC data sets being correctly classified. 

These results are similar to the best performing individual separable 

component measures of bradykinesia, amplitude and rhythm (AUCs 0.88).  

 

Figure 41 demonstrates the ensemble classification accuracy when sub-sets 

of HC hand data are used and compares this to the equivalent results when 

the most discriminating separable components were used to classify subjects.  

 

Figure 41 Comparison of ensemble classifier accuracy when control 
data sets limited to dominant or non-dominant hand	
  

 

Legend: Classification accuracy for the ensemble classifier and the best two 

performing separable components, amplitude and rhythm, are presented. 

The AUCs are shown when all PD data is combined with either all HC data, 

or all PD data is combined to a subset of dominant (Dom) hand HC data, or 

non-dominant (Non Dom) hand HC data.  
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Figure 41 shows that when HC data sets are limited to just the dominant 

hand kinematic data (rather than using both hands data) the accuracy of the 

ensemble classifier improves from an AUC of 0.88 to 0.94 (95% CI 0.90 - 

0.98, p < 0.0001) but there is no corresponding improvement in the 

separable component classification accuracy results with AUCs 0.86 and 

0.87 for amplitude and rhythm respectively. This suggests that the ensemble 

classifier includes a feature of FT movements that is over-represented in 

dominant hand HC data. The fact that the ensemble classifier seems less 

likely to misclassify the dominant hand data sets is an informative point 

when considering how to further develop a diagnostic device using EA 

induced classifiers: it may be that even better results could be obtained if the 

algorithms are trained, and tested, using solely dominant hand control data. 

 

5.1.2 Accuracy improves when most affected hand PD data is used 

Figure 42 shows that when PD data is limited to the MA hand, classification 

accuracies are similar for the ensemble classifier and the separable 

component measures of bradykinesia.   

 

Figure 42 Comparison of ensemble classifier’s classification accuracy 
when patient data limited to the most affected hand   

 
Legend: The classification accuracy of the ensemble classifier and the 

separable component measures improve when only the MA PD hand data is 

used, and deteriorate when only the LA PD hand data is used. 
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5.1.3 Comparison of classifier and separable component accuracy 

The classification accuracies of the ensemble classifier, the individual 

separable component measures, and the bradykinesia composite using 

various combinations of the approved data sets is summarised in Table 23.  

 

Table 23 Comparison of classification accuracy for ensemble classifier 
and separable component measures 

 

Test data 

Ensemble 

classifier 

Individual 

component 

(amplitude) 

Composite of 

all FT 

components 

AUC 

(95% CI) 

AUC 

(95% CI) 

AUC 

(95% CI) 

All PD, all HC 0.88 

(0.83 - 0.94) 

0.88 

(0.82 - 0.93) 

0.93 

(0.90 - 0.97) 

MA PD, all HC 0.95 

(0.91- 0.98) 

0.91 

(0.87 - 0.97) 

0.96 

(0.94 - 0.99) 

All PD, Dom HC 0.94 

(0.90 – 0.98) 

0.86 

(0.79 - 0.93) 

0.93 

(0.88 - 0.98) 

MA PD, Dom HC 0.99 

(0.98 – 1.00) 

0.90 

(0.84 – 0.97) 

0.96 

(0.92 - 0.99) 

Legend: The classification accuracy for three different methods of 

analysing the FT data is presented. MA, most affected hand; Dom, dominant 

hand. 

 

The first row of Table 23 shows that when all data sets are used the 

composite model (comprising all the separate component measures of 

bradykinesia) classifies the data sets more accurately (AUC 0.93) than the 

other two methods (AUCS 0.88). The second row shows that for all 

methods the AUC improves when patient data is limited to the MA hand. 

The third row results (when compared to the first row results) demonstrate 

that only the ensemble classifier has improved classification accuracy when 

the control data is limited to the dominant hand data. Therefore the 

ensemble classifier is better than the other two methods at discriminating 

MA PD data from dominant hand HC data with an AUC of 0.99 (0.98 -1.00, 



	
  
205	
  

p < 0.0001). The best performing individual component, amplitude, had an 

AUC of 0.90 (0.84 - 0.99, p < 0.0001) and this was significantly inferior to 

the ensemble classifier accuracy (p = 0.042). The composite model has an 

AUC of 0.96 (0.92 – 0.99, p < 0.0001) with a trend towards being inferior to 

the ensemble classifier accuracy (p = 0.071).  

 

Only the ensemble classifier showed a significant improvement in 

classification accuracy when the data was limited to MA PD and Dom HC 

compared to using all data sets (0.88 improved to 0.99; p < 0.05) whereas 

the other two methods showed a slight numerical increase in AUC (0.88 

improved to 0.91, and 0.93 improved to 0.96) when the data was limited to 

certain sub-sets of data but this was not a significant improvement from the 

baseline AUC when all data sets are included (p > 0.09).  This suggests that 

the best classification accuracy of the device would be obtained if the 

ensemble classifier was used to predict diagnostic classification and ‘query 

PD’ test data were obtained from just the MA hand and then compared to 

dominant hand control data. 

 

However, it could be argued that assessment of the classification accuracy 

of the composite model is flawed as this model was produced through 

logistic regression analysis to provide dichotomy of all patient vs. all control 

data, and not MA hand PD vs. dominant HC data. The comparison of the 

composite model and the ensemble classifier accuracies may thus be biased 

in favour of the ensemble classifier, especially if the evolutionary 

algorithms preferentially used kinematic features from the HC dominant 

hand to induce the classifier. 

 

In view of this an additional composite model was produced using all the 

separable components of FT as before but limiting the regression analysis to 

dichotomising MA PD data and dominant hand HC data. This new model, 

termed ‘MA PD vs. Dom HC composite’ was expressed as: 
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MA PD data is predicted if (- 26.4 + 4.2 frequency + 45.8 amplitude - 1.8 

speed + 20.1 COV amplitude - 20.0 COV speed +12.2 halts - 0.01 

decrementing amplitude + 0.16 decrementing speed)  > 0.50 

 

Table 24 shows that this model gave an overall classification accuracy of 

91.4% (R2 = 0.79). This corresponds to an AUC of 0.97 (0.94 - 0.99, p < 

0.0001) that was numerically inferior to the classification accuracy of the 

ensemble classifier at AUC 0.99 and showed a statistical trend towards 

being significant (p = 0.081). This suggests that the ensemble classifier 

more accurately classifies MA PD kinematic data from dominant hand HC 

data than either of the composite models comprising separable component 

measures of bradykinesia.  

 

Table 24 Classification accuracy of composite bradykinesia model 
developed to discriminate MA PD data from dominant hand HC data. 

Predicted  

 MA PD Dom HC % correct 

Observed MA PD 43 3 93.5 

Dom HC 4         31 88.6 

 

 

5.1.4 Kinematic data corruption and classifier accuracy 

Any corruption in the kinematic data would cause erroneous separable 

component analysis results because these measures are calculated by taking 

an average, or trend, of the components in each individual tap performed 

over the 30-second recording period. The necessary exclusion of the corrupt 

data sets is a major weakness of the separable component measures 

technique. For this research study the loss of data has not been too 

troublesome as there were still enough remaining approved data sets for 

useful analysis to be undertaken. However, if the device were to be used as 

an objective test of bradykinesia in a clinical setting any corruption within 

the data sets would probably require the patient to undergo a repeat test and 
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it is likely that a test with a 10% repeat test rate would be considered too 

unreliable to be clinically useful.   

 

In contrast, it is hypothesised that the EA induced classifiers may not be 

affected by FT data corruption. This is because EAs ‘search’ for patterns of 

movement data that are over-represented in one group’s data (e.g. patients) 

compared to another group (e.g. controls) and then use these kinematic 

features to form a classifier equation that best ‘splits’ the data predictions 

into the correct diagnostic groups.  If the corrupt data occurs to the same 

extent in the PD and HC data, and especially if it does not occur very 

frequently compared to all other intact FT data points within a recording, it 

is likely that the corrupt data points will not affect the overall classifier 

equation. In other words the EA uses features that discriminate the groups 

from one another and as the corrupt data is a feature of both patient and 

control data it is unlikely to be a key discriminatory feature included within 

the classifier equation.  

 

At the time of the training data being used by the EA to induce classifiers it 

had not been recognised that some of the kinematic data was corrupt. Hence 

the classifiers were inadvertently developed without excluding corrupt data 

from the training and test data sets. This initial oversight allows for 

evaluation of how the EA classifiers perform on all data sets (including 

corrupt data) in addition to how they perform on the approved data.  If there 

is little difference between the classification results when corrupt data sets 

are included this highlights a distinct advantage of the ensemble classifier 

over the separable component analyses approach. 

 

Figure 43 summarises the accuracy of the ensemble classifier for corrupt 

and approved data sets. It shows that nine out of 11 (82%) of the corrupt, 

and 77 out of 87 (89%) of the approved data sets from PwPD were correctly 

classified with no association between correct classification and the 

presence of corruption (X2 = 0.41, p = 0.52). Likewise for HC data six out of 

10 (60%) of the corrupt, and 54 out of 72 (75%) of the approved data sets 

were correctly classified (X2 = 1.0, p = 0.32).  
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When all data sets were included the ensemble classifier correctly classified 

88% (86 / 98) PD sets and 73% (60 / 82) control sets. The classification 

accuracy was not significantly different when the corrupt data sets were 

excluded with 89% (77 / 87) PD approved data sets and 75% (54 / 72) 

control approved data sets correctly classified (p’s > 0.1).  

 

Figure 43: Accuracy of ensemble classifier in corrupt and approved 
data sets 

 
 

 

It is noteworthy that the ensemble classifier was more accurate at 

classifying dominant hand HC data (4/41 data sets misclassified) than non-

dominant hand HC data (18/41 data sets misclassified). In view of this, and 

the fact that the best ensemble classification results were obtained for the 

MA PD and dominant hand HC data, a further analysis was undertaken to 

be absolutely sure that the superior results of the EA classifier were not 

simply because these sub-groups of data lacked any corrupt data sets.  

 

This revealed that three of the 49 MA PD data sets contained corruption and 

one of these was misclassified; this misclassification rate was not 

significantly different to the remaining 44 approved MA PD data sets where 

two sets were misclassified (p = 0.18). Four of the dominant hand HC data 

sets were corrupted but none of these were misclassified and four out of the 

PATIENT'DATA'
'98'

non.corrupt'
87'

corrupt''
11'

✔''77' ✖''10' ✔''9' ✖'''2'

✔  Correctly'classified'
✖''Misclassified'

CONTROL'DATA'
'82'

non.corrupt'
72'

corrupt''
10'

✔''54' ✖''18' ✔''6' ✖'''4'
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37 remaining approved dominant hand HC data sets were misclassified. No 

association between classification accuracy of dominant hand HC data sets 

and the presence of corruption within the data was found (p = 0.67). In 

summary these results show that data sets with corruption are no more likely 

to be misclassified by the EA ensemble classifier than approved data sets.  

 

5.1.5 Validation of classifier on San Francisco data 

 

Using all data 

There were 26 data sets collected in UCSF for PwPD on but one assessment 

did not record. Twenty-three out of 25 UCSF PD data sets were correctly 

classified but only six out of 18 UCSF HC data sets. The classification 

accuracy for patients on was similar for LTHT, 88% (86/98) and UCSF, 

92% (23/25), p = 0.73. However the classification accuracy for control data 

in LTHT, 73% (60/82) and UCSF, 33% (6/18) significantly differed, p < 

0.0001.  

 

Using most affected PD hand and dominant hand control data 

The ensemble classifier correctly classified the MA hand data for all 13 

PwPD and the dominant hand data for six out of nine HCs assessed in 

UCSF. These results show that the ensemble classifier (developed using 

Leeds data) generalises to independently collected data from patients’ MA 

hands with similar classification accuracy results at the two centres (p = 

0.48). There was a trend towards the classifier misclassifying more of the 

dominant HC data from UCSF than LTHT (p = 0.09) but it is difficult to 

draw firm conclusions from this due to the small size of the control 

validation data set.  Whether the inferior classification results in UCSF 

controls is due to the classifier not generalising to other data sets, or whether 

it could be a calibration problem remains to be determined.   

 

Using on and off clinical state data 

Twenty-six data sets from UCSF patients in the off state were collected and 

25 in the on state. In the off state, 96%  (25/26) of data sets were correctly 

classified and in the on state 92% (23/25) of data sets. All 13 patients MA 



	
  
210	
  

hand data sets were correctly classified regardless of whether the patients 

were assessed in an on or off clinical state.  These results suggest that the 

ensemble classifier is able to correctly classify patients regardless of their 

clinical state. This is a very encouraging result when considering how such 

a device could aid clinical diagnosis – it suggests flexibility in test protocol 

is possible allowing subjects with possible early PD to be tested in an off or 

on state. 

 

5.2 Elucidating the behaviour of the classifier 

5.2.1 Examining the classifier expression 

It has been shown that the ensemble classifier discriminates PD and HC data 

more accurately than the separable component measures. This suggests that 

the classifier is using features of the FT data other than solely measures of 

the defined components of bradykinesia. In other words the EAs have 

searched for the most discriminating features of the FT data in an unbiased 

manner and the classifier has not been constrained by the current clinical 

definition of bradykinesia.   Classifiers induced by EA can be examined in 

order to discover what features of the movement data were used in their 

formation. This means that in addition to being used for diagnostic 

classification, the classifier can be used to investigate what are the most 

discriminating features of PD movements. This exciting aspect of classifiers 

potentially enables new features of bradykinetic movements to be found.  

 

Methods of examining classifiers 

The behaviour of the ABN classifier is considered more difficult to 

understand than the CGP classifier so this section focuses on examination of 

the latter. There are different ways to explore a classifier and one fairly 

straightforward method involves examining what differs between the 

kinematic data sets with ‘strong patient’ and ‘strong control’ solutions i.e. 

patient data that was scored very close to +1 and control data that scored 

very close to -1. The differences between the two groups of data are likely 

to be the key discriminating kinematic features used as components in the 

classifier equation.  
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Therefore the top six PD and top six HC windows of data (each of 0.6 

seconds duration) that had the strongest GP classifier results (closest to +1 

for PD and -1 for HC) were visually inspected for the kinematic features 

that best discriminated the PD and HC data.  

 

To focus this inspection the CGP classifier equation was expressed in order 

to reveal which acceleration training data points, or ‘window offsets’, were 

used to construct it (see below for further explanation of window offsets). 

These window offsets were overlaid onto corresponding sections of the tap 

cycle in the strongest scoring PD and HC windows to highlight the 

distinguishing features between the groups. Quantitative evaluation of the 

diagnostic accuracy of the kinematic features highlighted by visual 

inspection could then be undertaken using ROC analysis. 

 

Expression of genetic programming classifier  

The most discriminative CGP classifier is expressed in Figure 44. This is 

called a ‘parse tree representation’ and is read upwards, starting from the 

terminals or ‘leaves’ at the bottom of the tree and reaching the classifier 

solution at the top. 

 

Figure 44 Expression of CGP classifier    

 
Expression produced by Dr Mic Lones  

9

(a) ABN Classifier, comprising two standard maps (STD), one baker’s map
(BAM), one logistic map (TLM), and 10 chemicals.

(b) GP Classifier. Window offsets are in bold, constants
are in italics, and > indicates the max function.

Fig. 8. Examples of evolved ABN and GP classifiers.

Fig. 9. Analysis of an evolved GP classifier, AUCall = 0.919, optimal output threshold ⇠3.5, showing overlay of data windows with (left) the lowest
and (right) the highest matches to the evolved expression. Darker lines indicate lower/higher matches, respectively. The window offsets used as inputs to the
evolved expression are shown by broken vertical lines.

1) Local Patterns: For the GP expression, we can gain
insight into its behaviour by plotting and overlaying the
time series windows which receive either a low or a high
output from the expression, since these correspond to the local
patterns of acceleration which are identified in the PD and
control sequences (or vice versa, depending upon the ordering
of classes in the classifier’s output range). Fig. 9 shows the
resulting plots for the GP classifier in Fig. 8. Although the
fuzziness of the high-matching overlay (corresponding to non-
PD for this classifier) shows that the classifier generates high
output values for a range of patterns, a distinct sinuous pattern
of acceleration does appear to be over-represented in many
of the matching windows. This pattern, which presumably
is indicative of normal acceleration during tapping, is far
less evident in the low-matching overlay. Rather, the clas-
sifier appears to generate low output values (corresponding
to PD) in response to a pattern centred around two closely-
spaced deceleration peaks. This suggests a pattern of multiple
start-stop movements, which resembles one of the known
symptoms of PD—cog-wheel rigidity, in which a patient’s
passive movements have a characteristic jerky quality. It also
agrees with our earlier visual observation [15] of a two-part
acceleration feature present in the movements of PD patients
when carrying out figure copying tasks. Inspection of other

highly-discriminative GP classifiers revealed similar patterns.
2) Global Patterns: We cannot perform this kind of anal-

ysis for ABNs, since they operate at a sequence-level rather
than a window-level. Instead, we can characterise an ABN’s
transfer function by measuring its response to synthetic time
series data with known properties—particularly properties
that are expected to have diagnostic relevance for PD, such
as amplitude, frequency and irregularity. Analysing highly-
discriminative ABN classifiers in this way shows that they
have diverse dynamical responses, suggesting that they recog-
nise a range of different patterns when carrying out diagnosis.
Fig. 10 gives examples of responses for 3 different highly-
discriminative ABNs when perturbed with sine waves of dif-
fering amplitude, frequency and levels of added noise (which
approximate the jittery movements of some PD patients).

The ABN in Fig. 10a has a relatively clear amplitude-
frequency response. In terms of distance from the decision
boundary, it responds most strongly to low amplitudes at low
frequencies and all amplitudes at high frequencies. In the
preprocessed movement data, regions of low amplitude tend
to correspond to fatigue and irregular tapping, which are both
seen in PD patients. The high frequency part of the plot is
well outside a subject’s normal tapping frequency, and the
strong response in this region may reflect the presence of
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At each ‘node’, denoted by a number or a mathematical symbol within a 

circle, the expression is evaluated and then these node sub–results form part 

of the solution at the next node. The numbers in italic are constants and the 

bold numbers (12, 5, 16, 17, 7) denote the ‘window offsets’.  Window 

offsets are the data points in the normalised acceleration data (out of the 20 

data points in each 0.6 second window) that enable the best classification of 

the data when included in the expression. The window offsets are 

demonstrated in relation to the kinematic data in Figure 45.  

 

The dashed line in Figure 44 indicates that the result evaluated at the divide 

sign node is used twice in the classifier expression – once as an input to the 

plus sign node (at the left side of the tree i.e. to be added to 0.531) and once 

as an input to the final multiplication node. 

 

 

Figure 45 Window offsets used in CGP classifier   

 
 Legend:  The classifier uses normalised acceleration data points in the 

expression. For a 0.6 second window there are 20 data points because the 

movement data was recorded 60 times per second (60 Hz) but down-

sampled by a factor of two to remove noise. The offset windows used in the 

expression are marked as vertical grey lines. The normalised acceleration 

data point marked by the first vertical line (at 5 seconds time) is the ‘5’ 

window offset, the second line (at approximately 5.06 seconds time) is the 

‘7’ window offset, the third line (at 5.24 seconds) is the ‘12’ window offset 

and so on. 

 

11

(a) Overlay of data windows which the evolved expression
classifies as (top) normal and (bottom) abnormal. The win-
dow offsets used as inputs to the evolved expression are
shown by broken vertical lines.

(b) Examples of individual data windows classified as (left) highly normal and (right)
highly abnormal. The corresponding patterns in the (top) raw separation and (middle) raw
acceleration data are also shown, with grey regions indicating the parts of the window that
contribute to the active classifier inputs.

Fig. 13. Analysis of an evolved GP classifier, AUCall = 0.919, optimal output threshold ⇠3.5.

This is also surprisingly simple, but nevertheless it is still
difficult to understand the pattern of movement it is describing.

1) Local Patterns: For the GP expression, we can gain
insight into its behaviour by looking at the time series win-
dows which receive either a low or a high output from the
expression, since these correspond to the local patterns of
acceleration which are identified as abnormal or normal in
the PD and control sequences, respectively (or vice versa,
depending upon the ordering of classes in the classifier’s
output range). Fig. 13a shows an overlay of all the time
series windows that are classified as particularly normal or
particularly abnormal by the GP expression in Eq. 9. Although
there is a degree of fuzziness, it can be seen that there is a
distinct over-represented pattern in each case: a sinuous pattern
of acceleration and deceleration for normal matches, and a
pattern centred around two closely-spaced deceleration peaks
for abnormal matches. To clarify the meaning of these patterns,
Fig. 13b shows examples of two windows that are classified
as highly normal and highly abnormal. It can be seen that
the sinuous pattern noted in Fig. 13a appears to correspond
to a smoothly-changing opening and closing movement. In
addition, the closing deceleration is significantly larger than
the opening deceleration, which reflects the inelastic collision
as the two fingers collide at the end of the movement.
The double deceleration pattern in the abnormal match, by
comparison, corresponds to a jerky pattern of motion in which

the final deceleration is of a similar magnitude to the opening
deceleration. Notably, this jerky motion resembles one of the
known symptoms of PD, cog-wheel rigidity. However, perhaps
more interesting is the abnormal relationship between opening
and closing deceleration, which we also observed in other
windows labelled as highly abnormal. This indicates that PD
patients are slowing their fingers prior to the inelastic collision,
which in turn is indicative of a breakdown in sensory feedback,
a feature of PD which has only recently received significant
interest in the medical literature [70].

2) Global Patterns: We cannot perform this kind of anal-
ysis for ABNs, since they operate at a sequence-level rather
than a window-level. Instead, we can characterise an ABN’s
transfer function by measuring its response to synthetic time
series data with known properties—particularly properties
that are expected to have diagnostic relevance for PD, such
as amplitude, frequency and irregularity. Analysing highly-
discriminative ABN classifiers in this way shows that they
have diverse dynamical responses, suggesting that they recog-
nise a range of different patterns when carrying out diagnosis.
Fig. 14 gives examples of responses for 3 different highly-
discriminative ABNs when perturbed with sine waves of dif-
fering amplitude, frequency and levels of added noise (which
approximate the jittery movements of some PD patients).

The ABN in Fig. 14a has a relatively clear amplitude-
frequency response. In terms of distance from the decision
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The steps for calculating the solution to the CGP classifier expression in 

Figure 45 For each 0.6 window of data are as follows:  

 

Step 1: Data point at window offset 7 is multiplied by 0.078 

 

Step 2: Whichever of window offset data points 16 and 17 is greater is then   

 added to the solution from Step 1. 

 

Step 3: Whichever of window offset data points 5 and 12 is greater is then 

 divided by the solution from Step 2.  

 

Step 4: The solution from Step 3 is added to 0.531 

 

Step 5: The solution from Step 4 is multiplied by the solution from Step 3 to 

 obtain the classifier solution for this individual 0.6 seconds window 

 of data. 

 

If the solution is greater than zero (up to a maximum of +1) the window of 

data is classified as PD and if the solution is less than zero (to a minimum of 

-1) the window of data is classified as HC. The overall classification of the 

30-second period of FT was obtained by taking the mean classifier solution 

score for all the 0.6 second windows i.e. 50 x 0.6 second window classifier 

scores divided by 50. 

 

Comparing PD and HC kinematic profiles 

Three PD and three HC data windows with the strongest GP classifier 

results are shown in Figure 46 and the shaded areas mark the window 

offsets in the acceleration data and their corresponding relationship to finger 

separation and speed profiles, when the acceleration data is integrated.  

Visual inspection revealed that the shaded areas were consistently 

positioned over three points of the tap cycle in control acceleration data: the 

opening acceleration and deceleration peaks, the zero acceleration period 

corresponding to maximum digit separation, and the closing acceleration 

and deceleration peaks.  
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Figure 46 Comparison of kinematic profiles of patient and control data 
windows that had the strongest CGP classifier solutions  

 
Legend: Separation, velocity and acceleration data windows (of 0.6 second 

duration) that had the strongest GP classifier solutions are presented for 

three HCs, C37, C43,C48, and three PwPD, P4, P14, P46 are presented. 

Shaded areas highlight the most significant acceleration data points that 

were used in classifier formation.  

 

    
 

 
 

 
 

C37 C43 C48 
 

P4         P14                P46 

Figure 3: Most discriminating features of finger tapping kinematic data 

Figure(s) 3
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Visual inspection of the 12 data windows with the strongest CGP scores 

showed that HC data was characterised by a large sharp peak of acceleration 

then deceleration in the opening phase of the tap, with a similar pattern, of 

an even greater magnitude in the closing phase of the tap. In between these 

peaks at the point of maximum (and also minimum) digit separation there 

was almost zero acceleration. This acceleration profile corresponded to a 

brief sharp peak of speed in the opening and closing phases, with the closing 

phase speed consistently greater, and a smooth separation profile 

characterised by rapid opening, then a pause at maximum aperture followed 

by rapid closing and a further pause at opposition.   

 

In contrast the PD kinematic data was characterised by a jerky acceleration 

profile throughout the tap cycle with the magnitude of the peaks of 

acceleration and deceleration smaller and more dispersed, and no obvious 

difference in the opening and closing phases. The peak opening speed was 

similar to the peak closing speed and both were slower than in HCs.  The 

shape of the speed peaks was more dispersed and the maximum speed 

occurred later in the tap cycle phase i.e. in PD the peak opening speed 

occurred as the fingers approached maximum separation whereas in HCs the 

peak speed occurred earlier when the fingers were approximately 50% 

separated (Figure 47). 

 

These observations of the data, and correlation to the GP parse tree 

expression, prompted further quantification of the maximum acceleration, 

maximum deceleration and maximum speed of the opening and closing 

phases of the tap cycle. The mean values of these variables over the 30 

second FT period was calculated then the classification accuracy assessed 

on MA PD and dominant hand HC LTHT data using AUC.   
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Figure 47 Relationship between peak opening speed and maximum 
separation of finger tapping  

         (i) Control C43          (ii) Patient P14 

 
Legend: The timing of the peak opening speed in relation to the opening 

phase of separation highlighted with dashed vertical lines. (i) In the example 

of control data (C43) the peak opening speed occurs in the first half of the 

opening phase of the tap cycle when the digits are open approximately 50% 

of the maximum separation. (ii) In the example of patient data (P14) the 

peak opening speed occurs in the second half of the opening phase of the tap 

cycle when the digits are almost at their maximum separation. 

 

The most discriminating separable component measures so far have been 

the mean of the maximum amplitude, mean of the maximum speed and 

rhythm with AUCs of 0.90, 0.89 and 0.90 respectively when assessed in 

LTHT MA PD on and dominant hand HC data. Table 25 shows that the 

opening phase speed was numerically more discriminatory (AUC 0.91) than 

the closing phase speed (AUC 0.87) measurements, although there was no 

significant difference statistically between these (p = 0.43) or the overall 

measures of speed, amplitude and rhythm (p = 0.87).  

 

 

 

    
 

 
 

 
 

C37 C43 C48 
 

P4         P14                P46 

Figure 3: Most discriminating features of finger tapping kinematic data 
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Table 25 Classification accuracy of opening and closing phases of finger 
tap cycle   

FT component AUC 95% CI  p 

Opening phase 

Acceleration 0.79 
 
 0.70 - 0.89 1 x 10 -6 

Deceleration 0.78 0.68 - 0.898 1 x 10 -5 

Speed 0.91 0.85 - 0.97 1 x 10 -10 

Closing phase 

Acceleration 0.70 0.59 - 0.81 0.02 

Deceleration 0.81 0.71 - 0.90 2 x 10 -6 

Speed 0.87 0.79 - 0.95 1 x 10 -8 

Abbreviations: AUC, area under ROC curve; CI, confidence interval 

 

The CGP classifier expression (Figure 44) suggests that the relative sizes, or 

ratios, of certain aspects of the tap cycle are important in classifier 

formation i.e. whichever is the greater of window offsets 12 and 5 (that 

possibly correspond to the maximum separation and opening acceleration in 

Figure 47) is divided by whichever is greater of window offsets 16 and 17 

(that seem to correspond to the closing acceleration/deceleration in Figure 

47). In view of this several ratios of opening and closing acceleration and 

deceleration measurements were also calculated.   

 

Table 26 shows that the ratio values are generally no better than the 

individual component measures of the opening and closing phase though. 

Nevertheless, plots of the ratio of closing acceleration to closing 

deceleration showed that PwPD tended to have a closing acceleration that 

was larger than the closing deceleration (ratio > 1) whereas HCs tended to 

have a closing deceleration that was greater than the closing acceleration 

(ratio < 1). Also plots of the ratio of maximum separation acceleration to the 

maximum opening acceleration showed that the ratio was > 1 in patients but 

< 1 in controls. In other words in controls there was more acceleration in the 

opening phase of the cycle than when the fingers were maximally separated 

(and had very little acceleration) but this pattern was lost in PwPD who had 
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bursts of acceleration even when the fingers were stationary in maximum 

separation.  Indeed visual inspection of the high scoring CGP windows of 

PD and HC data showed that patients seem to move from opening to closing 

in a sinusoidal manner whereas controls have defined bursts of acceleration 

and deceleration followed by zero acceleration (at maximum and minimum 

opposition). Possible explanations for these results are discussed in section 

5.6. 

 

Table 26 Classification accuracy of acceleration ratio measurements   

Ratio calculated AUC 95% CI p 

Op accel : Cl accel 0.67 0.52 - 076 0.03 

Op decel : Cl decel 0.65 0.53 - 0.77 0.02 

Op accel : Op decel 0.52 0.35 - 0.61 0.75 

Cl accel : Cl decel 0.77 0.64 - 0.87 < 0.0001 

Max sep accel : Min sep accel 0.57 0.43 – 0.70 0.31 

Max sep accel : Op accel 0.75 0.64 – 0.86 < 0.0001 

Abbreviations: Op, opening phase; Cl, closing phase; accel, maximum 

acceleration; decel, maximum deceleration; max sep, maximum digit 

separation (i.e. fingers open); min sep, minimum separation (i.e. fingers 

opposed). 

 

 

In view of these observations the percentage duration of each tap cycle that 

was spent in the opening phase, the closing phase, in opposition, in 

acceleration, in deceleration and with zero acceleration were calculated 

(Table 27). These results show that percentage opposition was a fairly good 

discriminator with AUC 0.79 (p = 0.001). Further analyses showed that 

PwPD spent a greater part of the FT cycle, (mean % ± SD) 12.1% ± 11.6 

with the fingers opposed than HCs, 6.0% ± 4.1, p = 0.02. The excess 

opposition in patients was not associated with less acceleration though; in 

fact PwPD had a smaller percentage of the tap cycle with zero acceleration 

(41% in patients vs. 45% in controls) and these results are discussed further 

in section 5.6. 
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Table 27 Percentage of each tap cycle spent in opening, closing and 
opposition phase 

FT component AUC 95% CI p 

% opposition 0.79 0.61 – 0.83 0.001 

% opening phase 0.62 0.55 – 0.74 0.06 

% closing phase 0.62 0.50 – 0.74 0.06 

% acceleration 0.66 0.54 – 0.78 0.02 

% deceleration 0.66 0.54 - 0.78 0.02 

% zero acceleration 0.69 0.55 – 0.72 0.01 

 

Visual inspection showed that PwPD had several small accelerations in each 

opening and closing phase but HCs tended to have just one. Thus the 

number of accelerations and number of decelerations in each of the opening 

and closing phases of the tap cycle were calculated but these measures were 

poor discriminators with AUCs in range of 0.51- 0.61 (all ps > 0.09). 

 

These results suggest that in addition to the EA classifier being useful for 

diagnostic prediction it may also have a role in investigating the 

characteristics of bradykinetic movements. When the classifier expression is 

examined the key acceleration data points used in its formation are revealed. 

When these are overlaid on high scoring PD and HC kinematic data further 

exploration of potentially important components of bradykinesia becomes 

more focussed. This method has highlighted the acceleration profiles of PD 

depart further from HCs than the separation and speed profiles. The PD 

separation and speed profiles have smaller amplitude and slower speeds 

than HC but the shape of the kinematic data waveform is fairly similar to 

PD. In contrast when the acceleration profiles are examined they are totally 

different between PD and HC. 
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5.2.2 Examining the misclassified data sets  

Examining the misclassified data sets may also provide useful information 

about what movement features best characterise PD bradykinesia. 

Comparison of the misclassified data sets with the correctly classified data 

sets, for each group of subjects, is another method of evaluating the key 

components of the EA classifier.  

 

The ensemble classifier resulted in one out of 46 MA PD, and four out of 35 

dominant hand HC, LTHT data sets being misclassified. The ‘MA PD vs. 

Dom HC composite’ model led to three out of 46 PD MA data sets and four 

out of 35 dominant hand HC data sets being misclassified. The misclassified 

subjects for each method of analysis are listed below, with the prefixes ‘P’ 

and ‘C’ denoting patient and control data respectively, and the subjects 

misclassified by both methods are highlighted in bold font: 

 

Ensemble classifier analysis:   P17 

     C3  C18  C34  C47 

 

Bradykinesia composite analysis:  P17  P23  P37 

           C3 C18  C9  C30  

 

Misclassified patients 

The MA data set from P17 was the only PD data set to be misclassified by 

the EA classifier. It was also misclassified by the bradykinesia composite.  

This patient was a 59 year old man with HY stage 3 PD who had been 

diagnosed six years earlier. He was treated with Stalevo (levodopa-based 

drug) and an apomorphine pump with LEDD of 756 mg. Both hands’ FT 

performances on were graded zero on MDS-UPDRS and he scored 26/30 on 

MoCA. The data set did not contain any corruption and the patient did not 

have any tremor or dyskinesia.  Two further MA PD data sets were 

misclassified by the bradykinesia composite: P23 and P37.  Table 28 

summarises the details of the three MA PD data sets that were misclassified 

in comparison to the rest of the correctly classified MA PD data sets. 
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Table 28 Comparison of clinical and kinematic details of correctly 
classified and misclassified MA PD data sets  

 Correctly 

classified 

Misclassified MA PD data sets 

 MA PD 

data1 

P17 P23 P37 

EA classifier score2 + 0.39 ± 0.21 - 0.34* + 0.32 + 0.20 

Composite score3 0.13 ± 0.20 0.99* 0.51* 0.77* 

Age, years 68.3 ± 8.4 59 64 75 

Disease duration, yrs 6.01 ± 4.0 6 5 5 

HY stage 2.44 ± 0.69 3 2 3 

FT score 1.59 ± 0.95 0 1 1 

LEDD, mg 695 ± 445 756 1030 1148 

Amplitude  

(raw, mm) 

0.33 ± 0.16  

(43.1 ± 36.5) 

0.85*  

(114.8) 

0.30  

(43.8) 

0.50  

(64.6) 

Speed 

(raw, mm/sec) 

3.45 ± 1.62  

(692 ± 548) 

6.71  

(1366) 

3.29 

(748) 

6.55  

(1057) 

Rhythm (COV speed) 0.41 ± 0.18 0.08* 0.59 0.17 

Halts (%) 0.22 ± 0.23 0.06 0.12 0.04 

Frequency (Hz) 2.77 ± 0.81 1.87 3.4 4.1 

Amplitude decrement - 43.1 ± 98.4 - 72.9 - 103.8 - 98.1 

Speed decrement - 5.21 ± 9.72 - 19.9 - 12.6 - 17.8 

Results are mean ± 1 SD. 1This group comprises all MA PD data sets that 

were correctly classified by EA and component analysis methods. 2EA 

classifier score ranges from -1 to + 1 with scores > zero predicting PD and 

scores < zero predicting control; 3 Bradykinesia composite score ranges 

from zero to one with scores < 0.5 predicting PD; *significantly (p < 0.05) 

different to correctly classified patient data 

 

Regarding the patient data sets misclassified by the bradykinesia composite 

P23 was a 64 year-old man with HY stage 2 PD who had been diagnosed 

five years earlier. His FT performance was graded one on MDS-UPDRS, 

his MoCA score was 29/30, and he was treated with Stalevo, ropinirole and 

selegiline with a LEDD of 1030 mg. There was no tremor or LID clinically 
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and no corruption in the data. P37 was a 75 year old man who had been 

diagnosed with PD 5 years earlier, had HY stage 3 disease, UPDRS FT 

grade one and MoCA score of 30/30. He was treated with co-careldopa, 

entacapone and amantadine, with a LEDD 1148 mg.  Table 28 shows that 

the age, disease duration, FT grade, LEDD and HY stage were not 

significantly different between the correctly classified and misclassified MA 

PD data sets (all p > 0.1). P17 had larger raw amplitudes (p = 0.06), and less 

variation in rhythm (p = 0.07), than the correctly classified MA PD data but 

otherwise had similar component measurements. There was no difference 

between the kinematic measures in P23 and P37 compared to the correctly 

classified PD data. 

 

Misclassified controls 

Dominant hand control data from C3, a 66 year old man, and C18, an 82 

year old woman, were misclassified by the classifier and the composite 

model.  C34, a 35 year old woman, and C47, a 68 year old man, were 

misclassified by the EA classifier but correctly classified by the composite. 

Conversely C9 and C30 were misclassified by the bradykinesia composite 

but not by EA classifier. C9 was from a 69 year old man and C30 a 75 year 

old man. All misclassified HCs were right handed.  The kinematic data of 

the misclassified dominant hand HC data sets were compared to the 

dominant hand HC data sets that were correctly classified by both methods 

in Table 29.  This showed that C3, C9 and C30 had smaller raw amplitudes 

(ps < 0.01) and C3, C47 and C30 had slower raw speeds (p < 0.05). C18, 

C34, C9 and C30 had less rhythmic FT than the rest of the control group (p 

< 0.02) and C18, C9 and C30 had more halts (p < 0.01). C3 and C47 had 

significantly higher tap frequency than rest of control group (p < 0.02). C47 

had a greater degree of amplitude decrement (p = 0.03) but there was no 

difference between speed decrements in the misclassified data and the 

correctly classified data. 
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Table 29 Comparison of correctly classified and misclassified dominant 
hand control data   

 Correctly Misclassified  

 classified 

control 

EA & 

composite 

EA Composite 

 data C3 C18 C34 C47 C9 C30 

EA score1 - 0.4 ± 0.2 + 0.07  + 0.01 + 0.2 + 0.05 - 0.002 - 0.7 

Amplitude 

(raw) 

0.3 ± 0.2 

(92 ± 19) 

0.25 

(26*) 

0.76 

(80.9) 

0.42 

(59.9) 

0.39 

(38.9) 

0.59 

(86.6) 

0.23 

(27.8) 

Speed 

(raw) 

6.0 ± 0.7 

(1546± 400) 

4.0 

(517*) 

5.9 

(882) 

3.9 

(876) 

4.9 

(749*) 

5.2 

(1233) 

3.2 

(483*) 

Rhythm  0.2 ± 0.07 0.26 0.32* 0.33* 0.14 0.32* 0.64* 

Halts 0.09 ± 0.05 0.07 0.23* 0.07 0.05 0.25* 0.21* 

Frequency 2.3 ± 0.7 4.6* 1.4 3.3 4.0* 1.6 3.3 

Ampl Dec.  -82.9 ± 69 - 50.0 +18.1 + 1.5 - 243* - 22.7 - 88.4 

Speed Dec. -6.8 ± 10.3 - 4.9 + 3.1 + 6.8 - 12.3 - 0.98 - 10.8 
1EA classifier score ranges from -1 to + 1 with scores > zero predicting PD 

and < zero predicting HC; *significantly (p < 0.05) different to correctly 

classified HC data; rhythm is COV maximum speed. Dec. is decrement. 

 

Summary of section 5.2.2 results 

In summary closer examination of the misclassified data confirms that 

amplitude, speed, rhythm and halts are the most discriminatory 

measurements of FT used by both methods of classification. Control data 

with smaller amplitude, slower speed, less rhythm or more halts are more 

likely to be misclassified and this is not surprising as these features are 

characteristic of PD movements. On the whole, the decrement 

measurements did not differ between correctly classified and misclassified 

HC data sets.  MA hand data from P23 was borderline for misclassification 

with a composite prediction of 0.51 (score > 0.50 predict control) but it is 

not entirely clear why the bradykinesia composite model misclassified P37 

as there was no significant difference in any of the component measures of 

this data set when compared to the correctly classified data group. It is 

noteworthy that the data sets misclassified by the EA tended to have only 

‘weakly PD’ scores i.e. scores very near to zero (+ 0.01, + 0.05, + 0.07 and 
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+ 0.15) suggesting that the classifier ‘recognised’ that the kinematic profiles 

of these data sets was not entirely typical for patients either. 

 

Non-dominant hand HC data  

Dominant HC data was much more likely to be correctly classified by the 

ensemble classifier than non-dominant hand data. This suggests that there 

are features in the dominant hand data that are over-represented in HCs, 

relative to PwPD, and are used as components of the classifier equation. 

This was explored further by comparing the mean EA and component 

scores for dominant and non-dominant hands of HCs to find out what these 

differentiating components might be. 

 

This showed that in the control group the classifier scores (mean ± 1 SD) of 

dominant and non-dominant hands were - 0.31 ± 0.25 and - 0.01 ± 0.32 

respectively, p = 0.003 (where negative scores predict the data came from a 

control). The patient scores did not significantly differ between dominant 

and non-dominant hands (p = 0.14). When the separable component 

measures of bradykinesia were compared between HC dominant and non-

dominant hands there was no difference for amplitude, speed, halts, rhythm, 

tapping frequency, decrements, opening and closing speed/acceleration or 

any of the other components listed in Tables 25-27. Only raw speed showed 

a trend (p = 0.057) towards being different in the dominant and non-

dominant hands of controls and this was in an unexpected manner with the 

dominant hand having a slower mean speed of FT than the non-dominant 

hand (1423 mm/sec vs. 1650mm/sec). In summary it remains unclear why 

HC dominant hand data is more likely to be correctly classified from this 

analysis. 

 

5.3 Discriminating clinically slight bradykinesia from normal 

movement 

So far it has been shown that the optimal diagnostic accuracies for 

discriminating MA PD (mean UPDRS FT grade 1.57 ± 0.94) from dominant 

HC data (all had UPDRS FT grade zero) were 0.99 and 0.97 for the EA 

ensemble classifier and the bradykinesia composite respectively. However 
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these results are for discriminating a heterogenous group of PwPD from 

controls. Whilst most of the patients had only clinically mild bradykinesia 

(Figure 28) some had more severe grades so the classification results are 

likely to be an over-estimate of how well the device would discriminate 

kinematic data from patients with mild bradykinesia in clinically 

indeterminate cases.  Assessing how well the device differentiates a sub-

group of PD patients with clinically slight bradykinesia (MDS-UPDRS 

grade one) from HCs better reflects how the device might perform as a 

diagnostic device, albeit with the caveats that all the patients still had 

clinically definite PD and were on treatment.  

 

Classification accuracy of ensemble classifier for slight bradykinesia 

Forty-five FT assessments performed by LTHT patients had ‘slight 

bradykinesia’ and the EA ensemble classifier (that was trained on the whole 

data set) was assessed to see how well it could discriminate these patient 

data sets from the dominant hand HC data; see Figure 48.   

 

Figure 48 Accuracy of ensemble classifier for differentiating 'slight' 
bradykinesia from control data  

 
Legend: ROC curve with AUC 0.959 (CI 0.907- 0.997 p < 0.0001) for 

discriminating grade one MDS-UPDRS PD and grade zero HC dominant 

hand data. The reference level of a test with 50% sensitivity and 50% 

specificity is shown as a dashed line. 
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The AUC of 0.959 denotes excellent classification accuracy and is 

equivalent to 41 out of 45 (91%) of grade one PD data sets, and 38 out of 41 

(93%) HC data sets being accurately classified at the threshold point of 

equal trade off. 

 

Validation of slight bradykinesia classification accuracy on UCSF data 

Fourteen out of 16 (88%) grade one PD FT data sets, and five out of nine 

(56%) of control dominant hand data sets from UCSF were correctly 

classified by the ensemble classifier. This suggests that the EA ensemble 

classifier generalises beyond the Leeds cohort to an independent patient data 

set, but not so for control data. However in both groups, but especially the 

control group, there are only small numbers of subjects and further 

validation on larger independent sets is required. 

 

The patient data that was included in the training and test sets for the 

ensemble classifier was from patients in an on state. When the UCSF grade 

one data was split according to clinical state it was encouraging that the 

classifier seems to generalise beyond the on clinical state as nine out of 11 

(82%) UCSF on, and five out of five (100%) UCSF off data sets were 

correctly classified (Table 30).  This suggests that the clinical status of the 

patient probably does not interfere with the diagnostic accuracy of the EA 

classifier. If this were the case it would allow for a more flexible use of the 

test i.e. patients may be tested whether on or off medications.  

  

 

Classification accuracy of bradykinesia composite model for slight 

bradykinesia 

When classifying grade one PD data from dominant hand HC data the 

bradykinesia composite model comprising all the FT variables (and 

developed using all PD data and dominant hand HC data had an AUC of 

0.930 (95% CI 0.87 - 0.98; p < 0.0001) which was numerically slightly less 

accurate than the ensemble classifier (p = 0.7); see Table 31. 
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Table 30 Classification accuracy of ensemble classifier for UCSF 'slight' 
bradykinesia data   

 

UCSF patient code and hand Clinical state 

  ON OFF 

10975  Dominant ✔ - 

 Non-dominant ✖ - 

14713  Dominant ✔ - 

15105  Dominant ✔ - 

 Non-dominant ✖ - 

15180  Non-dominant ✔ ✔ 

15235  Non-dominant ✔ - 

7662  Dominant ✔ ✔ 

8560  Dominant ✔ - 

14312  Dominant - ✔ 

15431  Dominant ✔ - 

15431  Non-dominant - ✔ 

15557  Dominant ✔ ✔ 

 

Legend: All the UCSF PD data sets from FT assessments that were 

clinically graded as slight bradykinesia (grade one MDS-UPDRS) are 

presented with ticks and crosses denoting that the ensemble classifier 

correctly, or incorrectly, classified the data respectively. A dash denotes that 

the corresponding on/off data received a grade other than ‘slight’ and hence 

these are not included in the analysis.  
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Table 31 Accuracy of bradykinesia composite model and ensemble 
classifier for discriminating slight bradykinesia from control data 

 

 AUC Correctly classified data 

 (95% CI) PD HC 

Ensemble classifier 0.959 

(0.92 – 1.0) 

91 % 

41/ 45 

93 % 

38/ 41 

Bradykinesia composite 0.930 

(0.87 – 0.98) 

93 % 

42/ 45 

86 % 

32/ 37 

 

Legend: The PD group comprised all data sets allocated grade one FT 

scores and the HC group comprised all dominant hand data. The 

denominators are different for the HC data because four of the dominant 

hand data sets were corrupted so could not be used for the composite 

analysis. 

 

 

5.4 Comparing kinematic data with demographic and clinical variables 

 

It would be useful to know how the individual component measures of 

bradykinesia, the bradykinesia composite model, and the EA ensemble 

classifier scores vary according to demographic and clinical variables. This 

information may aid the development of a diagnostic device for two main 

reasons; firstly so that in addition to making a prediction about whether the 

data is from a patient or a control, a prediction of disease stage/duration and 

FT grade could also potentially be made, and secondly so that the 

information about the association between the variables and the objective 

measures could be taken into account (i.e. adjust the scores) to further 

improve diagnostic classification if appropriate.  

 

The results for the separable components, and the composite models were 

presented in section 4.5. In summary this showed that HY stage, disease 

duration, and LEDD were not significantly correlated with any of the 
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individual component measures or the composite model. All the individual 

components of bradykinesia except the decrement measurements correlated 

with the UPDRS FT grade but only amplitude showed a significant 

difference between patients and controls with grade zero UPDRS. 

 

Ensemble classifier correlations 

Spearman’s correlation coefficient, rs, was used to examine the association 

between EA ensemble classifier scores (of approved data) and gender, age, 

MoCA, dominant vs. non-dominant hand, and handedness of LTHT patients 

and controls separately. PD disease duration, HY stage, LEDD, and UPDRS 

FT grade were also correlated in the patient data only.   

 

Ensemble classifier score correlations in the control group 

The ensemble classifier score was significantly associated with dominant 

hand (rs - 0.32; p = 0.005) in the control group but not with any of the other 

variables (all ps > 0.25). This suggests that dominant hand data tends to 

receive higher EA scores than the non-dominant hand data and is in line 

with the previous classification results that showed the dominant hand HC 

data is less likely to be misclassified.  

 

Ensemble classifier score correlations in the patient group 

Table 32 shows that for patients, the only variable that significantly 

correlated with the ensemble classifier score was UPDRS FT grade (rs + 

0.43, p < 0.0001) and all other variables had a p value > 0.37. 
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Table 32 Correlogram of ensemble classifier scores and demographic 
and clinical variables in Leeds patients 

 

G
en

de
r 

A
ge

 

H
an

de
dn

es
s  

H
Y

 

D
ur

at
io

n 

M
oC

A
 

LE
D

D
 

U
PD

R
S 

EA
 sc

or
e 

Gender  .22* -.10 .05 -.15 -.09 -.17 .006 .04 

Age .22*  -.02 .35* .04 -.13 .26* .06 -.04 

Handedness -.10 -.03  .18 .32* -.09 .16 .02 -.04 

HY .05 .35* .18  .35* -.24* .33* .20* -.05 

Duration -.15 .04 .32* .35*  -.10 .24* -.03 -.03 

MoCA -.09 -.13 -.09 -

.24* 

-.10  .09 -.05 -.10 

LEDD -.17 .26* .16 .33* .24* .09  .05 -.08 

UPDRS  .006 .06 .02 .20* -.03 -.05 .05  .43* 

EA  .04 -.04 -.04 -.05 -.03 -.10 -.08 .43*  

 

Legend: *significant at <0.05. Abbreviations: Dom hand, dominant hand; 

HY, Hoehn and Yahr stage; Duration, PD duration since diagnosis; MoCA, 

Montreal Cognitive Assessment; LEDD, levodopa equivalent daily dose; 

UPDRS, Unified Parkinson’s Disease Rating Scale finger tapping score; EA, 

evolutionary algorithm induced ensemble classifier score. NB the dominant 

vs. dominant hand variable has been removed from the table as it did not 

correlate significantly with any of the other variables. 
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Figure 49 demonstrates that there is a trend for patients with higher clinical 

grades of bradykinesia to have a higher ensemble classifier scores. This is 

an important point because it suggests that the classifier score not only 

predicts whether data came from a PwPD or HC but also reflects the clinical 

severity of bradykinesia. This is an expected finding when one considers 

how the CGP classifier expression was developed i.e. by searching for 

kinematic features that discriminate PD from HC. Hence patients with more 

severe bradykinesia would intuitively have a greater degree of such 

discriminating features.  

 

 

Figure 49 Ensemble classifier scores for each UPDRS finger tapping 
grade  

 
Legend: All PD and dominant HC data sets are presented. The horizontal 

dashed line at zero marks the decision threshold of the classifier solution. If 

the classifier score is > zero the data will be classified as PD and if the score 

is < zero it will be classified as HC. This figure shows that the majority of 

misclassified patients had a UPDRS FT grades of zero. It also shows that 

classifier solutions for grade zero PwPD are significantly higher than for 

grade zero controls. 
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Mean EA scores for HC dominant hand data were significantly lower at - 

0.31 ± 0.25 than those for patients with UPDRS grade zero at - 0.04 ± 0.35, 

p = 0.007. This was a similar to the difference between the bradykinesia 

composite scores in grade zero PD (0.51± 0.33) and dominant hand HC data 

sets (0.23 ± 0.27), p = 0.002. Amplitude was the only individual component 

to show a significant difference between the PD and HC group data with 

grade zero, p = 0.04.  

 

5.5 Discussion 

5.5.1 Summary of classification accuracy results 

The classification accuracy improved when the ABN and CGP classifiers 

were combined into an ensemble classifier. The likely explanation is that 

both the subtle movement abnormalities over each tap cycle (focused on by 

the CGP) and the overall patterns of movement during the 30 second 

recording (focused on by the ABN) were being evaluated. In contrast to the 

separable component and bradykinesia composite measures, the ensemble 

classifier accuracy improved when HC data was limited to just the dominant 

hand (AUC 0.88 to 0.94). This suggests that movement features specific to 

controls are over-represented in the dominant hand data and are used to 

form the classifier. However the analyses undertaken in sections 5.1-5.3 did 

not reveal what these are.  It may be that further exploration of the ABN 

classifier expression would reveal such features but this is beyond the scope 

of the thesis. The behaviour of the ABN classifier is considered more 

difficult to understand but Lones et al. demonstrated that the ABN classifier 

seems to respond to an association between amplitude and frequency with 

small amplitude and low frequency movements more likely to be classified 

as patient data (Lones, Smith et al. 2013). 

 

Both the ensemble classifier and bradykinesia composite model 

discriminated PD and HC data better when PD data was limited to the MA 

hand. This is expected because the MA PD data group had more severe 

bradykinesia (UPDRS grade 1.57 ± 0.94) than the PD group comprising 

data from both hands (1.32 ± 0.84). The best bradykinesia composite model 

and the ensemble classifier discriminated PD MA and HC dominant hand 
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data with AUCs of 0.97 and 0.99 respectively (p = 0.081). This equates to 

three misclassified patients (out of a total of 46) and four misclassified 

controls (out of a total of 37) with the composite model and one 

misclassified patient and four misclassified controls with the ensemble 

classifier.  

 

Control data sets with smaller amplitude, slower speed, less rhythm or more 

halts were more likely to be misclassified and this is probably because these 

features are characteristic of PD bradykinesia. On the whole the decrement 

measurements did not differ between correctly classified and misclassified 

data sets.   It is noteworthy that control data sets misclassified by the 

ensemble classifier tended to have only ‘weak PD’ scores i.e. scores much 

nearer to zero than one (+0.01, +0.05, +0.07 and + 0.15) suggesting that the 

classifier ‘recognised’ the kinematic profiles of these data sets were not 

entirely typical for PD either. 

 

Section 5.1.4 showed that data corruption does not affect the ensemble 

classifier’s accuracy. The overall prediction of diagnostic group is based on 

a combination of the average score of the taps (CGP classifier) and general 

trends in the data (ABN classifier) over a 30 second period, so even if some 

taps are misclassified due to corruption this will have minimal effect on the 

overall result assuming that the rest of the recording is correctly classified. 

Hence the presence of corruption does not necessitate exclusion of the 

whole data set from analysis and this is a major advantage over the 

separable component analysis technique. 

 

The EA classifier was validated on UCSF MA PD and dominant hand HC 

data; this showed that classification accuracies were similar between the 

centres (p = 0.48 for patients, p = 0.09 for controls). This implies that the 

classifiers developed using LTHT data generalise beyond this population 

and can accurately classify independently collected data too. This result is 

paramount to the development of a device that aims to aid clinical diagnosis 

and these results lend strong support to the use of EA induced classifiers for 

discriminating patient and control kinematic data.  
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Additionally the ensemble classifier correctly classified all UCSF PD MA 

data sets in both on and off states.  When all UCSF PD data sets were 

included 96%  (25 / 26) of PD off, and 92% (23 / 25) of PD on data sets 

were correctly classified. These results are very encouraging and suggest 

that a device employing EA classifiers can predict diagnostic group 

regardless of the patient’s clinical status. This would enable flexibility to the 

investigation protocol as patients could be tested without having to alter 

their medication regimen.  

 

Taken together these results suggest that diagnostic accuracy of the FT 

device would be optimised of patient test data is limited to the MA hand and 

then compared to a database of dominant HC hand data using classifiers 

induced through EA analysis. Specifically evaluating the most subtle 

clinical grade of bradykinsia the ensemble classifier accurately 

discriminated HC FT movements from UPDRS grade one PD FT 

movements with an AUC of 0.959. This was equivalent to four (out of 45) 

PD data sets and three (out of 41) HC data sets being misclassified. These 

results suggest potential for the device to aid early clinical diagnosis as it 

was able to identify PD data even when the clinical signs are very subtle.  

 

5.5.2 Correlation of objective and clinical measures of bradykinesia 

Both approaches to objectively measuring bradykinesia - separable 

component measures of bradykinesia and EA induced classifiers - were 

significantly correlated with the UPDRS FT grade. This shows that the 

objective measures of FT not only classify the data but also reflect the 

clinical severity of bradykinesia. All the individual component measures of 

bradykinesia (except decrement measurements) correlated with the UPDRS 

FT grade. Only amplitude showed a significant difference between HCs and 

PwPD on and UPDRS grade zero though, p = 0.04. The bradykinesia 

composite model scores and the EA classifier scores were correlated with 

the UPDRS FT grades (rs + 0.60 and rs + 0.43 respectively, both p’s < 

0.0001) and there was a significant difference in the scores between grade 

zero patients and controls (p = 0.002 for composite model, p = 0.007 for EA 

classifier).  
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None of the objective measures of bradykinesia were significantly 

correlated with age, HY stage, disease duration or LEDD.  MoCA was 

inversely correlated with the bradykinesia composite score, and the 

individual rhythm measures suggesting that cognitive problems are 

associated with more bradykinesia and less rhythm. There was no 

association between MoCA score and ensemble classifier score and 

arguably this may be considered advantageous because classification based 

on EA analysis may not need to be adjusted according to the cognitive score 

of the test subject. 

 

 

5.5.3 Understanding the pathophysiology of bradykinesia 

There remains an incomplete understanding of the pathophysiology of 

bradykinesia in PD but the present study results are now discussed in the 

context of the medical literature.  The EA classifier was used as a tool to 

investigate the most discriminating features of PD movements.  The 

acceleration profiles were focussed upon as normalised acceleration data 

had been used to induce the ensemble classifier.  Examination of the high 

scoring PD and HC data windows showed that controls had a characteristic 

pattern of a sharp burst of acceleration in the opening phase of the FT cycle 

followed by almost no acceleration when the fingers were maximally 

separated and were momentarily static. This pattern was lost in the PD data 

which had many small bursts of acceleration throughout the FT cycle and 

even when the fingers were stationary at the point of maximum separation.  

This qualitative observation was confirmed by plotting the ratio of 

maximum opening acceleration to maximum separation acceleration and 

finding that controls had a ratio > 1 but patients had a ratio of < 1.  

Examination of the closing phase of the tap cycle showed that controls had a 

sharp peak of acceleration and then deceleration, with the magnitude of the 

acceleration peak being smaller than the deceleration peak (ratio < 1). In 

contrast PwPD had a smaller magnitude and more dispersed pattern of 

acceleration and deceleration in the closing phase with the magnitude of 

each peak fairly similar (ratio of approximately 1). This suggests that after 

the point of maximum separation controls accelerate their finger and thumb 
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rapidly in the closing phase with a subsequent sudden large deceleration as 

the finger ‘crashes into’ or opposes the thumb at high speed. This contrasts 

with the pattern seen in PwPD where there is a gradual ‘drifting’ of the 

digits towards opposition, driven by lots of small acceleration bursts that 

‘nudge’ the digits towards their target.  

 

These characteristic findings on the high scoring kinematic profiles 

identified by the ensemble classifier are consistent with previous EMG 

studies that have demonstrated abnormal muscle activity in PD. In healthy 

subjects there is a characteristic tri-phasic EMG pattern seen with single 

rapid movements such as finger extension: first there is a large agonist 

muscle burst to accelerate the finger to its peak speed, followed by a smaller 

antagonist burst to slow it down as it approaches its target, and this is 

followed by a final smaller second agonist burst to bring the finger to is 

final position without any oscillation (Hallett, Shahani et al., 1975). In PD it 

has been shown that there is gross departure from this normal tri-phasic 

EMG pattern with several small agonist bursts occurring before a lower 

peak speed is reached and then de-synchronisation of the antagonist bursts, 

leading to excessive periods of co-contraction of agonist and antagonist 

muscles and a jerky acceleration profile (Hallett and Khoshbin, 1980). 

Dopaminergic medication only partly normalises the acceleration and speed 

profiles in PD (Vaillancourt, Prodoehl et al., 2004, Vaillancourt, Prodoehl et 

al., 2006) so these features highlighted in the present study may be even 

more discriminatory when patients are tested in the off state; indeed there 

was a suggestion of this in the small UCSF PD off sample. 

 

Further exploration of the CGP classifier’s behaviour showed that the 

percentage duration of each tap cycle spent with the digits opposed 

(minimum separation) discriminated the PD and HC data fairly well (AUC 

0.72, p = 0.001). Patients spent a greater part of the whole tap cycle in 

opposition (12.1 % ± 11.6) than HCs did (6.0 % ± 4.1), p = 0.02. This 

probably reflects of a form of akinesia where there is difficulty switching 

from one task (flexion of the fingers during the closing phase) to another 

task (extension of the fingers during the opening phase). This ‘switching 
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time’ akinesia, or pause between two different movements, was described 

by Homann et al. in a keyboard tapping study to differentiate it from the 

more typical ‘initiation’ akinesia of PD (Homann, Suppan et al., 2000). 

Homann et al. measured how long each key was depressed and concluded 

that the prolonged duration of key depression between alternating key taps 

was due to “an inability to execute automatically learned motor plans.” 

Similarly Beradelli et al. found that when PwPD drew geometric shapes 

they tended to pause for longer periods than controls at the vertices and the 

authors speculated that this was due to PD patients having difficulty running 

two motor programs concurrently (Berardelli, Accornero et al., 1986). 

Sheridan et al’s study using surface EMG recordings in six PwPD showed 

that reaction time has a premotor and motor phase. The premotor phase 

before any EMG activity was recorded was prolonged in PD but the motor 

phase was almost the same in PD as controls (Sheridan, Flowers et al., 

1987).  

 

The increased opposition period demonstrated in the present study was not 

associated with more periods of zero acceleration; in fact patients had a 

smaller percentage of the FT cycle with zero acceleration than controls 

(41% in patients vs. 45% in controls) and even when there was no net 

movement according to the separation profile there were many small bursts 

of acceleration and deceleration being recorded. These results taken together 

in the context of the literature suggest that the ‘wrong’ motor programs are 

being planned or selected for the desired movement and the subsequent 

small acceleration bursts are not adequate to move the fingers out of the 

opposition position so there is increased akinesia.  

 

This study found that PD FT movements are characterised by a sinusoidal 

separation profile of gradual opening and closing movements. These 

‘drifting’ movements of the digits are associated with small and dispersed 

peaks of speed during the opening and closing phases and are driven by 

multiple small bursts of acceleration that persist throughout the FT cycle. 

This contrasts sharply with HC speed and acceleration data profiles where 

there are brief sharp spikes of speed at the beginning of each opening and 
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closing phase with each spike driven by a defined coordinated burst of 

acceleration and deceleration. In between each opening or closing 

movement there is a period with no acceleration when the digits are at 

maximum or minimum separation. This cycle of brief large 

acceleration/deceleration followed by zero acceleration then another brief 

acceleration/deceleration repeats as the FT cycle proceeds resulting in a 

coordinated pattern of quick short opening phase, a brief pause at maximum 

separation then a quick short closing phase followed by another brief pause 

at minimum separation. In other words, whilst the shape of the separation 

data waveform in PD may appear fairly similar to HCs, albeit with smaller 

magnitudes, the speed and especially the acceleration data that are driving 

this separation profile differ markedly between patients and controls.  These 

movement characteristics fit with one particular theory of bradykinesia 

outlined by Mark Hallett in 2011 (Hallett, 2011). He describes how in PD 

there is: 

 

 “a loss of motor energy –  movements are not given the full motor 

command that they require”  

 

and that  

 

“larger movements should be faster, but patients tend to have the same 

velocity for all movements. This requires more time to accomplish the 

movement.”  

        (Hallett, 2011). 

 

The smaller bursts of EMG activity (Hallett and Khoshbin, 1980) result in 

‘underscaled’ acceleration and speed which lead to a reduction in amplitude 

of movement.  It has been shown that PwPD have the ability to make faster 

or bigger movements in response to cueing (Griffin, Greenlaw et al., 2011, 

Oliveira, Gurd et al., 1997), attention (Oliveira, Gurd et al., 1997) or 

emotional excitement (Bonanni, Thomas et al., 2010). However under 

normal circumstances when there is no visual cue or specified target the 

motor program selected by PwPD results in muscle acceleration that is too 



	
  
239	
  

small in magnitude for the task. This means the movements are not only 

slower but also smaller – both due to inadequate first burst of agonist 

muscle contraction. However if there is a target this may be reached by 

adding on several extra small acceleration bursts of muscle activity that 

repeatedly ‘nudge’ the limb along towards the desired position. It is likely 

that the FT task results in a combination of these two patterns of movement 

– there is no set target for the opening phase so the maximum speed and 

amplitude of digit separation are both reduced whereas there is a target in 

the closing phase (i.e. digit opposition) so additional acceleration bursts are 

added on until the digits are fully opposed.  

 

This may partly explain why the opening phase speed was the most 

discriminatory measure of the FT cycle in the present study – as there is no 

target for the opening phase the fingers separate largely dependent on the 

first agonist muscle burst and there is not the ‘benefit’ of the additional 

acceleration bursts that are necessary in the closing phase to bring the digits 

to their target of complete opposition. Only two previous studies have 

measured the opening and closing phases of FT in PD but both found that 

the opening speed was disproportionately slower than the closing speed 

when compared to HCs (Ling, Massey et al., 2012, Yokoe, Okuno et al., 

2009). 

 

Whilst it is clear that PD EMG patterns are abnormal it remains less clear 

why the wrong motor program that produces this EMG pattern is selected in 

the first place. ‘Internally driven’ movements are much more impaired in 

PD than ‘externally driven’ movements; in other words movements that are 

initiated by the individual (internal) are slower and smaller than when the 

movements are made in response to cueing or with conscious attention 

(external) (Oliveira, Gurd et al., 1997). For example Oliveira et al. 

demonstrated that PwPD have much less micrographia if they are reminded 

to write bigger or are given visual targets (Oliveira, Gurd et al., 1997) and 

conversely if their attention is drawn away from the task there is a further 

reduction in amplitude of movements (Oliveira, Gurd et al., 1998). 

Functional imaging studies have shown that in PD there is reduced SMA 
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activity and overactivity in the lateral premotor regions (Ikeda, Luders et al., 

1992, Jahanshahi, Jenkins et al., 1995, Jenkins, Fernandez et al., 1992). The 

SMA is important for automatic movements whereas the premotor cortex is 

particularly responsive to external cueing. This suggests that motor control 

is being moved to the premotor areas to compensate for the underactive 

SMA. The downside of this compensation is that movements become less 

automatic and more reliant on external cues. This theory fits with the 

observation that PD movements are more impaired if the individual has to 

attend to two motor tasks (Benecke, Rothwell et al., 1986), or a motor and a 

cognitive task (Morris, Iansek et al., 1996, Oliveira, Gurd et al., 1998).  The 

exact reason for the deficient SMA activity still remains indeterminate but is 

likely to be due to reduced dopaminergic stimulation leading to relative 

increased excitation of the indirect BG pathways and hence increased 

inhibitory activity from the BG projections via the thalamus to the SMA.   

 

It seems that an increase in beta frequency (10-35 Hz) neuronal oscillations 

(detected by EEG) throughout the BG and cortex are also important in the 

pathophysiology of bradykinesia. These have been detected during human 

DBS surgery and also in animal models (Delong, 1990) but their role in 

bradykinesia remains incompletely understood. It is hypothesised that if 

there is synchronous oscillatory activity in a large population of neurons 

there may be a breakdown in the ability of individual neurons to process and 

relay specific information and thus to effectively control complex 

movements (Wichmann and Dostrovsky, 2011) which may lead to an 

underscaling of the motor program (Hallett, 2011).  

 

5.5.4 Strengths and limitations of the study  

The strengths and limitations of the methodology have been discussed in 

section 4.7.3. In addition there are some specific points to highlight about 

the EA classifier analysis. Firstly this study demonstrated that combining 

classifiers evolved based on different patterns of data enables both 

characteristics of individual tap cycles (akinesia, amplitude etc.) and of 

patterns of movement over time (changes in amplitude and tapping 

frequency etc.) to be assessed and hence the classification accuracy 
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improves.  Few studies have used EA classifiers to analyse movement data 

in PD and these have tended to be have smaller numbers of subjects and 

only test patients on. Smith et al. used two different types of EA based on 

immune system interactions and CGP to classify drawing movements in 12 

PD and ten HCs (Smith, Gaughan et al., 2007, Smith and Timmis, 2008) 

and Tsanas et al. used ‘machine learning algorithms’ to classify 33 PD 

patients and 10 controls using voice recording data (Tsanas, Little et al., 

2012).  In both studies the authors reported 99% accuracy of the classifiers 

induced but the results were not validated on independent data and the small 

sample size makes it difficult to assess how well the classifiers might 

generalise.  The current study has demonstrated the potential benefits of 

using EA classifiers to discriminate PD and HC data and validated the 

results on independently collected patient data assessed in both on and off 

states. There has also been a detailed evaluation of how the classification 

accuracy varies according to dominant hand, corrupt data and severity of 

clinical bradykinesia.  

 

The ‘black box’ behaviour of the CGP classifier could to an extent be 

examined to better understand what features of PD bradykinesia were most 

discriminatory but there still remains limited understanding of the classifier 

functions, especially the ABN. Nevertheless with better understanding of 

classifiers there remains the possibility of finding novel features of 

bradykinesia and these might lead to a more focussed clinical examination 

and even better understanding of the underlying pathophysiology.  
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Chapter 6  

Investigating the sequence effect: Results and Discussion 

 

6.1 Definition of the sequence effect 

The SE describes a phenomenon whereby the amplitude and speed of 

repetitive voluntary movements progressively decrement and this clinical 

feature is included within both the diagnostic and monitoring definitions of 

PD bradykinesia (Gibb and Lees, 1988)(Goetz, Tilley et al., 2008). The gold 

standard definitions for the purposes of diagnosis and monitoring differ 

slightly though: for diagnosis the SE is a defining feature when ascertaining 

whether bradykinesia is present or not, whereas the grade of bradykinesia 

allocated during monitoring is a composite of all the components of 

bradykinesia and it is difficult to gauge how much the SE contributes to this 

grade.  

 

The SE, which has also been called ‘decrementing’ (Bajaj, Gontu et al., 

2010) and ‘fatiguing’ (Espay, Giuffrida et al., 2011), is considered to be a 

specific clinical attribute of PD (Abdo, van de Warrenburg et al., 2010, 

Berardelli, Rothwell et al., 2001, Evarts, Teravainen et al., 1981, Hallett and 

Khoshbin, 1980, Ling, Massey et al., 2012, Marsden, 1984). The SE has 

been shown to occur in PwPD when the same movement is repeated (Chee, 

Murphy et al., 2009, Espay, Giuffrida et al., 2011, Iansek, Huxham et al., 

2006, Ling, Massey et al., 2012), when a series of different movements are 

made sequentially (Agostino, Berardelli et al., 1992a, Agostino, Berardelli 

et al., 1994) and during well-learned movements such as walking (Chee, 

Murphy et al., 2009, Iansek, Huxham et al., 2006), handwriting (Ling, 

Massey et al., 2012), ocular pursuit (Lekwuwa, Barnes et al., 1999) and 

grasping (Bennett, Marchetti et al., 1995). Whether the SE is present in all 

PwPD is less clear though. 

 

The SE has important clinical implications – it is the only component of 

bradykinesia not to improve with levodopa (Espay, Giuffrida et al., 2011, 

Iansek, Huxham et al., 2006, Kang, Wasaka et al., 2010), dopamine agonists 

(Espay, Giuffrida et al., 2011, Iansek, Huxham et al., 2006) or transcranial 
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magnetic stimulation (Kang, Wasaka et al., 2010) and is strongly associated 

with freezing of gait (FOG) (Chee, Murphy et al., 2009, Iansek, Huxham et 

al., 2006) 

 

6.2 Why investigate the sequence effect? 

Despite numerous studies the pathophysiology of the SE remains poorly 

understood and it is unclear whether it is definitely specific to PD. This may 

be in part because the studies examining the SE have tended to be small, 

with most including no more than ten PD subjects (Agostino, Berardelli et 

al., 1994, Benecke, Rothwell et al., 1987, Bennett, Marchetti et al., 1995, 

Connor and Abbs, 1991, Iansek, Huxham et al., 2006, Lekwuwa, Barnes et 

al., 1999, Longstaff, Mahant et al., 2003, Plotnik, Flash et al., 1998), some 

have not had a control group (Espay, Giuffrida et al., 2011, Iansek, Huxham 

et al., 2006, Kang, Wasaka et al., 2010) and some have assessed only the 

dominant hand (Agostino, Berardelli et al., 1998, Agostino, Curra et al., 

2003, Kang, Wasaka et al., 2010). The studies have also differed markedly 

in the length of sequence assessed and Ling et al. highlighted the important 

point that it is still unclear how many repetitive movements are needed for 

the SE to manifest (Ling, Massey et al., 2012).  

 

The studies also used different methods of quantification and varied in 

terms of how the SE was defined with some assessing decrementing speed 

(Agostino, Berardelli et al., 1992b, Agostino, Berardelli et al., 1994, 

Benecke, Rothwell et al., 1987, Bennett, Marchetti et al., 1995, Berardelli, 

Accornero et al., 1986, Kang, Wasaka et al., 2010, Plotnik, Flash et al., 

1998), some decrementing amplitude (Chee, Murphy et al., 2009, Iansek, 

Huxham et al., 2006, Longstaff, Mahant et al., 2003) and others 

decrementing speed and amplitude (Agostino, Curra et al., 2003, Connor 

and Abbs, 1991, Espay, Giuffrida et al., 2011, Lekwuwa, Barnes et al., 1999, 

Ling, Massey et al., 2012)).  Such variability of methodology makes it more 

difficult to compare the results. 

 

The fundamental question of whether the SE is a defining characteristic of 

PD bradykinesia thus remains unanswered and there is considerable 
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evidence to suggest it may not be. Firstly, some studies found that the SE 

did not manifest in people with PD any more than in HCs (Connor and Abbs, 

1991, Longstaff, Mahant et al., 2003). Secondly, several studies showed that 

the SE was limited to only a subset of PwPD (Bennett, Marchetti et al., 

1995, Chee, Murphy et al., 2009, Kang, Wasaka et al., 2010, Wagle Shukla, 

Ounpraseuth et al., 2012). Thirdly there is evidence that the SE occurs in 

other movement disorders too with Michell et al. demonstrating that 

approximately half of Huntington’s disease patients exhibited the SE during 

hand tapping (Michell, Goodman et al., 2008).  

 

Conversely, there is evidence that the SE may be common in healthy adults 

too. Only one study specifically highlighted this observation (Plotnik, Flash 

et al., 1998) but examination of the control group results in some of the 

other studies that focussed on the SE in PD provides further supportive 

evidence (Chee, Murphy et al., 2009, Ling, Massey et al., 2012). For 

example Chee et al. showed that under certain gait conditions the HC group 

had decrementing stride length (amplitude) that was comparable to the PD 

off group without FOG (Chee, Murphy et al., 2009).  Taken together these 

results raise the possibility that the SE may be a physiological phenomenon 

rather than a specific feature of PD bradykinesia.  

 

It is of the utmost importance to clarify whether the SE is a defining 

characteristic of PD bradykinesia. The diagnosis of PD is based on clinical 

ascertainment of gold standard criteria defined bradykinesia and an 

inaccurate definition of bradykinesia may thus lead to mis-diagnosis. The 

aims of this section were to quantitatively evaluate the SE in order to 

examine whether the SE is a feature specific to PD bradykinesia and 

whether it occurs any more frequently or more severely in PD patients than 

in HCs. 
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6.3 Clinical and demographic details of participants 

The methods used for measuring the components of bradykinesia using the 

movement sensor data have been described in section 3.5. All approved data 

sets from the 49 LTHT patients, 13 UCSF patients and nine UCSF controls 

were used in the analysis. In order to match the groups for age only data sets 

from 38 of the 41 LTHT HCs were used. The demographic and clinical 

details of the groups are summarised in Table 33. 

 

 

Table 33 Demographic and clinical details for patient and age-matched 
controls included in sequence effect analysis   

 Approved data sets  

 PD  
N = 62 

Controls 
N = 47 

p 

Age, years 67.8 ± 8.3 65.6 ± 7.6 0.16 

Gender, M : F 41: 21 18 : 29 0.004 

Hand dominance, R : L 54 : 8 38 : 9 0.37 

MoCA 26.4 ± 2.5 28.3 ± 1.4 <0.0001 

HY stage 2.30 ± 0.72 (1 - 4) NA  

PD duration, years 5.51±3.82 (0.5-18) NA  

LEDD, mg 696.6 ± 418.4 NA  

 

Legend: Values stated as mean ±1 SD (range). Abbreviations: M, male; F, 

female; R, right; L, left; MoCA, Montreal Cognitive Assessment (maximum 

score is 30 with lower scores indicating more impairment); HY, Hoehn and 

Yahr stage; LEDD, levodopa equivalent daily dose calculated using 

standard conversion factors (Tomlinson, Stowe et al., 2010); NA, not 

applicable. 

 

The groups were closely matched for age and hand dominance but not for 

gender with significantly more men in the patient group. Some kinematic 

studies have shown that men tend to perform tapping movements more 

quickly than women (Homann, Suppan et al., 2000, Pal, Lee et al., 2001) 
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but others have not found any difference (Giovannoni, van Schalkwyk et al., 

1999). No association between gender and the SE has been previously 

reported. Nevertheless the association of gender and the SE results was 

examined as outlined later.  

 

Two MDS-UPDRS FT grades were allocated for each subject giving a total 

of 124 grades for PwPD and 94 for HC. The grades were distributed in the 

patient groups as follows: 15% (19) grade zero, 51% (63) grade 1, 27% (33) 

grade 2, 6% (7) grade 3 and 1% (2) grade 4. The mean FT grade for the PD 

group was 1.28. The mean FT grade in the LTHT PD group (1.32 ± 0.84) 

was not significantly different to the UCSF patients on (1.26 ± 0.96), p = 

0.78. All controls had a clinical FT grade of zero.   

 

 

6.4 Does the sequence effect manifest over ten finger tap cycles? 

Figures 50 a-e show that in comparison to HCs the PD group’s FT 

performance had significantly smaller amplitude, p < 0.001, slower speed, p 

< 0.001, more variation of amplitude, p < 0.001, more variation of speed, p 

<0.001, and more halts, p = 0.039. In other words the FT movements in the 

PD group were slower, smaller, less rhythmic and interrupted by more halts 

and these findings are consistent with the MDS-UPDRS, and UKBBDC 

definitions of bradykinesia.   

 

However Figures 50 f and 50 g show that there was no significant difference 

in decrementing amplitude, p = 0.20, or decrementing speed, p = 0.78 

between the patient and control groups.  
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Figure 50 Measuring separable components of bradykinesia over first 
ten finger tap cycles  
   

(a)     (b) 

 
 

 

(c)     (d) 
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(e)       

 
 

(f)     (g) 

 
 

Legend: Box and Whisker plots summarising group results for the clinically 

defined component measures of bradykinesia during the first ten FT cycles. 

The centre line is the group median, the upper and lower limits of the box 

are the 75th and 25th percentile respectively and the error lines show the 

range (±2 SD from the mean).  All measurements were significantly 

different between the PD and HC groups (a-e) except for decrementing 

amplitude (f) and decrementing speed (g).  Figures produced by Stuart Lacy 
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6.5 Sequence effect may not be a defining characteristic of bradykinesia 

In the PD and HC groups respectively, the median (± 1 SD) gradients for 

decrementing amplitude were - 5.61 (29.64) and  - 10.29 (57.57), p = 0.203, 

and for decrementing speed were - 0.133 (2.39) and  + 0.041 (4.20), p = 

0.780 (Figures 50 f and g). The distribution of results within each group 

demonstrates that not all patients had a negative gradient (i.e. decrementing 

trend) and conversely that some HCs did have a negative gradient. In fact 

the proportion of each group exhibiting the SE was very similar: 61% and 

52% of the PD FT data, and 59% and 49% of the HC FT data, had negative 

gradients for amplitude and speed respectively (p = 0.9). Further analyses 

were undertaken to explore possible explanations for these findings. 

 

Sub-sets of PD data based on gender, age, hand dominance, MA side, MDS-

UPDRS clinical grade, disease duration and HY stage were compared but 

the regression gradients for amplitude and speed did not significantly differ 

between groups for any of these variables (Table 34). Likewise the 

amplitude and speed gradients did not differ significantly for any of the 

variables when comparisons of the HC data were made based on gender, 

age and hand dominance.  

 

The possibility of the patient group results being due to a floor effect  (i.e. 

the mean amplitude and speed was initially lower in the PD group than in 

HCs so there was a smaller range of values over which they could 

decrement) was evaluated by adjusting the gradients for the mean amplitude 

and speed calculated during each ten tap recording but no significant 

difference between the groups was found. These results suggest that the lack 

of difference in SE measurements between PD and HC groups is unlikely to 

be related to any of these variables. 
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Table 34 Sequence effect measurement in Parkinson's disease group  

	
  
Variable  
 

Amplitude decrement Speed decrement 

 Median± SD p Median ± SD    p 
     

Male - 6.32 ± 23.7 0.83 - 0.44 ± 2.3 0.87 

Female 

 

- 4.40 ± 39.3    0.19 ± 2.7 

Dominant hand - 5.62 ± 24.1 0.89 - 0.08 ± 2.3 0.44 

Non-dominant hand - 5.49 ± 35.5 

 

 - 0.44 ± 2.5 

MA hand - 6.22 ± 33.4 0.39 - 0.44 ± 2.5 0.22 

LA hand 

 

- 1.77 ± 24.7    0.23 ± 2.3 

Right hand - 5.56 ± 24.4 0.68    0.02 ± 2.3 0.23 

Left hand 

 

- 5.65 ± 34.6  - 0.53 ± 2.5 

Age 

 

   0.031 0.76    0.011 0.88 

Disease duration 

 

 - 0.021 0.86   0.111 0.26 

HY stage    0.0461 0.52   0.051 0.50 

MDS-UPDRS grade  - 0.0431 0.56 - 0.091 0.23 

 

Legend: Comparisons of the speed and amplitude gradient coefficients 

were made between sub-sets of the PD data based on demographic and 

clinical variables but none reached statistical significance. All values are 

presented as the mean ± 1 SD except for age, disease duration, HY stage 

and MDS-UPDRS score that are presented as 1Spearman’s correlation 

coefficients. 
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6.6 Effect of dopaminergic drugs on the sequence effect 

Previous studies have shown that the separable components of bradykinesia 

respond differently to dopaminergic drugs: speed improves the most, 

amplitude and rhythm improve by a lesser degree and the SE does not show 

any significant response (Espay, Giuffrida et al., 2011, Iansek, Huxham et 

al., 2006, Kang, Wasaka et al., 2010, Ling, Massey et al., 2012). 

Nevertheless the data from the sub-group of UCSF patients (n = 13) who 

were tested in off and on states was examined more closely to see whether 

the lack of difference in SE measures between the HC and PD groups could 

be due to the patient group being assessed whilst on.  The clinical 

bradykinesia grades for the UCSF patients were 2.1 ± 0.79 off and 1.26 ± 

0.96 on, p = 0.001 but there was no significant difference between the mean 

gradients in the on and off states for amplitude (- 8.31 on vs. - 13.07 off, p = 

0.39) or speed (- 0.51 on vs. - 0.71 off, p = 0.14). Likewise when the 

gradient coefficients for the subgroup of PD patients in the off state were 

compared to the HC group there remained no significant difference for 

decrementing amplitude, p = 0.91, or decrementing speed, p = 0.16.  This 

suggests that the on-off clinical state is unlikely to be an explanation for the 

lack of difference in SE measures between HC and PD groups. 

 

6.7 Measuring the sequence effect over longer tapping sequences  

A sequence length of ten taps was chosen for the primary analysis because 

this replicates the MDS-UPDRS motor examination instructions for 

assessment of FT and all other MDS-UPDRS bradykinesia items. Sequence 

length specified is not specified in the UKBBDC. It is possible that ten taps 

are not enough for decrements to manifest so the association between 

sequence length and decrementing amplitude and speed was investigated by 

comparing gradient coefficients from longer tapping sequences to those 

from the ten taps sequences.  Figure 51 shows that with longer sequence 

lengths the median SE gradients for PD and HC groups tend to be more 

negative. In the patient group each of the longer sequences (20, 30, and 40) 

was associated with greater decrements in speed and amplitude than when 

assessed over just ten taps, all p values < 0.05. Likewise in HCs the longer 

FT sequences were associated with greater decrements in speed and greater 
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decrements in amplitude (with the exception of the 20 taps sequence; p = 

0.27) than the ten tap sequence. As the same association between length of 

sequence and decrement occurred with approximately the same magnitude 

in both groups the net result was no significant net difference between PD 

and HCs for any of the sequence lengths.  There was a trend for sequences 

of 30 taps (p = 0.078) and 40 taps (p= 0.089) to show a difference in 

amplitude decrement between PD and HC groups but this was in an 

unexpected manner with the HC group having a greater median decrement. 

In summary longer sequence lengths are associated with more decrement of 

amplitude and speed but this is no greater in PD patients than age-matched 

controls. 

 

Figure 51 Sequence effect measurements over longer finger tapping 
sequences    
 
             Decrementing amplitude                 Decrementing speed 

 
Legend: The gradient coefficients for HCs (dark grey) and patients (white) 

groups are compared for four different lengths of FT sequence: 10, 20, 30 

and 40 taps. Group data (presented using Box and Whisker plots - see 

Figure 50 for definitions) demonstrate that there is no significant difference 

in SE measurements for PD and HC groups at any of the sequence lengths. 
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6.8 Discussion 

6.8.1 Summary of findings 

The kinematic data from the first ten FTs has been used to measure the 

clinical components of bradykinesia, as described by the UKBBDC and 

MDS-UPDRS in PwPD and age-matched HCs. The results confirm that 

repetitive FTs performed by PwPD are characterised by slower, smaller and 

less rhythmic movements than HCs and these findings are consistent with 

the current clinical definitions of bradykinesia. However the SE 

measurements do not differ significantly between PD and HC groups. Over 

a sequence of ten FTs, approximately 50% of patients exhibited 

decrementing amplitude, and 60% exhibited decrementing speed but the 

proportions were similar in the HC group. Likewise the magnitude of the 

decrements was not significantly different between PwPD and HCs.   

 

These results call into question whether the SE should be included in the 

gold standard clinical definitions of bradykinesia. This is an important 

finding because the diagnosis and monitoring of PD focuses on the clinical 

assessment of bradykinesia and it is essential that the definition of this 

complex clinical sign is precise in order to optimise diagnostic accuracy, 

accurate monitoring and the quality of clinical research.  

 

6.8.2 Previous quantitative sequence effect studies 

The previous studies that have quantified the SE are summarised in Table 

35.  Although the present study results may be considered controversial, 

detailed inspection of some of the previous studies provides evidence to 

support the conclusions regarding the SE reached here.  

 

Several earlier studies demonstrated that not all PwPD exhibit the SE 

(Agostino, Berardelli et al., 1992a, Bajaj, Wang et al., 2012, Chee, Murphy 

et al., 2009, Connor and Abbs, 1991, Iansek, Huxham et al., 2006, Kang, 

Wasaka et al., 2010, Wagle Shukla, Ounpraseuth et al., 2012).  For example 

Wagle Shukla et al. showed that progressive micrographia (i.e. 

decrementing amplitude) was present in only 50% of PwPD (Wagle Shukla, 

Ounpraseuth et al., 2012).  
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Table 35 Summary of previous quantitative sequence effect studies in 
Parkinson's disease  

 

Study  Task  Decrement 

measured 

PD  

n on/off 

HC 

n 

Berardelli 
1986 

Drawing    Speed 12 
 

10 
 

Benecke  
1987 

Hand and arm 
movements 
 

Speed 8 off 
2 on 
 

9 
 

Connor 
1991 

Speaking  Speed  
Amplitude 

6 on 
 

6 
 

Agostino 
1992 

Drawing Speed 14 on 
 
 

13 
9HD 7DT 

Agostino 
1994 

Drawing  Speed 8 off 
 
 

8 
 

Bennett 
1995 

Drinking  Speed 9 on  
 

9  
 

Plotnik 
1998 

Aiming Speed 9 off 
 

7 
 

Lekwuwa 
1999  

Ocular pursuit  Speed  
Amplitude 
 

7 off 7 

Longstaff
2003 
 

Drawing Amplitude 10 off 
 

12 
 

Agostino 
2003 

FT  
Hand opening 

Speed 
Amplitude 
 

11 off 
 
 

 9  
 

Iansek 
2006 
 

Walking Amplitude 10 on off 
 

 0 

Chee 
2009  

Walking Speed Amplitude 
 

26 off  
 

10 
 

Kang 
2010  

PPB  Speed 11 on off 
 

0 
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Espay 
2011 

FT 
Hand opening 

Speed 
Amplitude 

85 on off 
 

0 

Bajaj 
2012 
 

Handwriting Amplitude 27 on 
 

39 
SWEDD 
 

Wagle 
Shukla 
2012 
 

Handwriting Amplitude 68 on 
 

?1 

Ling  
2012   

FT 
Handwriting 
 

Speed  
Amplitude  

15 on off 
 

16 
9 PSP 
 

Abbreviations: SE, sequence effect; PD, Parkinson’s disease; HC, healthy 

controls; n, number; y, years; HD, Huntington’s disease; DT, Dystonia; PPB, 

Purdue Pegboard Test; SWEDD, subjects without evidence of dopaminergic 

deficit; PSP, progressive supranuclear palsy. 1The number of controls is not 

stated in the paper.  

 

 

Additionally many controls in previous studies were manifesting the SE 

(Agostino, Berardelli et al., 1992a, Agostino, Berardelli et al., 1994, Bajaj, 

Wang et al., 2012, Chee, Murphy et al., 2009, D'Agostino, 1971, Ling, 

Massey et al., 2012, Michell, Goodman et al., 2008) and yet, perhaps 

because the focus had been on the results of the PD group, this had rarely 

been commented on. For example in Chee et al.’s study of stride length, the 

amplitude gradient coefficients were negative in the HC group at preferred 

and 100% stride length conditions (with the mean values ± SD reported as   

-0.28 ±0.36 and -0.30 ±0.13 respectively) suggesting that decrementing 

amplitude was occurring in some controls (Chee, Murphy et al., 2009). Also 

Ling et al.’s study demonstrated a clear lack of SE in PSP patients relative 

to PwPD, but it is less clear whether there was a definite relative difference 

in SE measurements between the PD group and HCs.  The mean ±SD values 

for PD and HCs respectively were -0.12 ± 0.12 and -0.2 ± 0.21 for 

decrementing amplitude, and -1.52 ± 0.81 and -1.71 ± 1.59 for 

decrementing speed. These slopes were not significantly different. After 

mean amplitude and speed were included as covariates, the decrementing 
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amplitude reached borderline significance (p = 0.046) and decrementing 

speed showed a trend towards significance (p = 0.070) but these borderline 

results did not clarify whether the SE is more reliably observed in PD than 

in HCs (Ling, Massey et al., 2012).    

 

Previous studies that measured the SE objectively also have a number of 

limitations that should be considered when evaluating the respective 

conclusions. The majority assessed only small numbers of subjects with 13 

of the 17 studies summarised in Table 35 having 15 or fewer PwPD and the 

mean number of HC per study was just 7.5.  The current study is a much 

larger age-matched controlled kinematic study of the SE in PD.  The choice 

of statistical tests also needs to be considered as kinematic studies have 

repeatedly demonstrated that the separable component measurements of 

repetitive voluntary movements tend to be positively skewed or have other 

non-normal distributions (Connor and Abbs, 1991, Giovannoni, van 

Schalkwyk et al., 1999, Homann, Suppan et al., 2000, Michell, Goodman et 

al., 2008, Taylor Tavares, Jefferis et al., 2005). Two of the SE studies have 

explicitly tested for normality and confirmed this finding (Connor and Abbs, 

1991, Michell, Goodman et al., 2008) but the majority of the other studies 

outlined in Table 35 have used parametric tests without any statement about 

the normality of data distribution (Agostino, Berardelli et al., 1992a, 

Agostino, Curra et al., 2003, Benecke, Rothwell et al., 1987, Bennett, 

Marchetti et al., 1995, Berardelli, Accornero et al., 1986, Chee, Murphy et 

al., 2009, Iansek, Huxham et al., 2006, Ling, Massey et al., 2012).  Given 

the non-normality of the movement parameters in our study, we selected 

non-parametric tests to interpret group differences, without assumptions 

about the particular parametric distribution. 

 

It is difficult to compare the results of the previous studies as the definition 

of SE, patients’ clinical state, and the length of sequence used has varied 

considerably. For example only four of the previous studies have measured 

both decrementing amplitude and decrementing speed (Connor and Abbs, 

1991, Espay, Giuffrida et al., 2011, Lekwuwa, Barnes et al., 1999, Ling, 

Massey et al., 2012).  Some patients have been assessed only when on 
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(Bajaj, Wang et al., 2012, Bennett, Marchetti et al., 1995, Wagle Shukla, 

Ounpraseuth et al., 2012), others only when off (Agostino, Curra et al., 2003, 

Lekwuwa, Barnes et al., 1999) and some have been part of a mixed group 

that were assessed when some were on and others were off (Benecke, 

Rothwell et al., 1987). Only two previous studies measured decrementing 

amplitude and decrementing speed in subjects who were assessed in both 

the on and off states (Espay, Giuffrida et al., 2011, Ling, Massey et al., 

2012) and only one of these also included an age-matched control group 

(Ling, Massey et al., 2012). Different sequence lengths have also been 

assessed ranging from five seconds (Agostino, Curra et al., 2003) to 15 

seconds (Espay, Giuffrida et al., 2011, Ling, Massey et al., 2012) for FT. 

Such variation in terms of definition, clinical state and length of sequence 

combined with small numbers of subjects in each study makes it difficult to 

build up a clear consensus about the conclusions.  This study addressed 

these limitations by evaluating all central components of bradykinesia in a 

large sample on medications, including a sample tested off medications, and 

reporting results at sequence lengths of 10, 20, 30 and 40 taps in both PD 

patients and age-matched HCs.  

 

6.8.3 Limitations 

Several limitations of the present study are recognised though.  Only one 

task was used to measure the SE and it would be useful to measure other 

sequential movements such as walking, foot tapping and hand 

opening/closing to see if any of the results generalise to other actions. This 

may be particularly important for over-learned movements such as walking 

where a ‘closed loop’ model of movement control is more likely than in FT 

which it could be argued is a new skill, especially for controls. Only one 

sequence of FT was assessed for each hand and this could be another 

potential weakness as the magnitude of the SE has been shown to vary to a 

certain degree within individuals between trials (Iansek, Huxham et al., 

2006). It is noteworthy that the sub group of patients tested off in addition to 

on was fairly small so these particular results may be less robust. Also it 

could be argued that an overnight washout period for the off state is not long 

enough and there could still be effects of dopaminergic medications on the 
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SE or other component measures of bradykinesia. Ideally one would need to 

test drug naïve PD patients in order to fully evaluate what differentiates PD 

movements from HCs, but this method also has potential limitations in that 

patients with more advanced disease or more severe grades of bradykinesia 

are less likely to be represented in such a group. Finally it is conceivable 

that some of the HC subjects may develop PD and clinical follow up is 

necessary to determine unequivocally whether SE occurs under normal 

conditions.  

 

6.8.4 Conclusions 

This study has demonstrated that decrements of speed and amplitude during 

repetitive FT movements occur as frequently in age-matched HCs as they 

do in PD and the magnitude of the decrements is similar between the groups. 

This result suggests that the SE may not be a defining feature of PD.  The 

explanation for this observation remains speculative.  Plotnik et al. showed 

that healthy elderly adults exhibit delays when switching from one 

movement to another so perhaps the physiological aging process is 

contributing to progressive slowness or decrementing amplitude (Plotnik, 

Flash et al., 1998).  However in the current study, advancing age was not 

significantly correlated with either decrementing amplitude or decrementing 

speed in patients or controls. It is intriguing that the SE has not been 

explicitly reported in controls before. This could simply be because we have 

not looked for it as FT, and other repetitive movement tasks, are tests 

focussed on assessing people with suspected PD or related disorders.  

Furthermore, even if healthy adults were assessed with a FT task the SE 

may still be clinically more apparent in PD because the baseline amplitude 

and speed are already reduced and hence any further reductions are visually 

easy to recognise i.e. a slow movement that becomes even slower is easier 

to detect than a ‘very’ fast movement that slows to ‘quite’ fast. Alternatively 

perhaps there has been so much focus on detailing the complexities of PD 

bradykinesia that it has been overlooked that some of the defined 

components of bradykinesia are also common to normal motor control. 

Similarly when there has been evidence of the SE in controls it may have 

been interpreted as ‘physiological fatigue’ (Ling, Massey et al., 2012). 
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Finally these results provide an explanation for the consistent finding that 

the SE is the only clinical component of bradykinesia not to respond to 

levodopa or transcranial magnetic stimulation (Espay, Giuffrida et al., 2011, 

Kang, Wasaka et al., 2010, Ling, Massey et al., 2012): it is ‘unresponsive’ 

because it is not part of pathological bradykinesia, but rather a physiological 

phenomenon superimposed on pathologically small and slow movements.  

 

The clinical ramifications of inaccurately defining bradykinesia are very 

important. Bradykinesia is the obligatory motor feature of PD and accurate 

clinical interpretation of this sign is critical for diagnosis. It is not difficult 

to see how a healthy subject with generally slow movements, perhaps 

secondary to musculoskeletal problems or pain, who then exhibits 

decrements may be wrongly diagnosed with PD. Could the inclusion of the 

SE as a core feature of bradykinesia be contributing to the considerable 

misdiagnosis rates of PD? These results suggest that removing SE from the 

definition of bradykinesia may improve the accuracy of diagnosis and the 

clinical monitoring of PD patients. 
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Chapter 7  

Summary, conclusions and future research 

 

7.1 Summary of the research and original contributions 

This thesis examines bradykinesia, the obligatory motor sign of PD, through 

detailed quantitative analysis of FT movements. It evaluates how objective 

measurements of FT may be used to predict diagnostic classification, reflect 

the clinical severity of bradykinesia, and investigate the characteristic 

kinematic features of bradykinesia.   The FT movements of 49 PwPD and 

41 HCs in Leeds were recorded using small and lightweight EM tracking 

sensors attached to the finger and thumb. Two different methods were used 

to analyse the movement data: firstly standard statistical methods to 

quantify the clinically defined components of bradykinesia and secondly a 

modern computer science technique called EAs were used to induce 

mathematical expressions called classifiers. An independent validation 

group comprising FT data from 13 PwPD and nine HC in UCSF was used to 

assess how well the results from each method of analysis generalised 

beyond the Leeds sample.   

 

The thesis provides several original contributions to the current literature on 

PD bradykinesia. It is the first study to compare kinematic data analysis 

using EAs with standard statistical measures of bradykinesia in PwPD and 

HCs, and this approach has demonstrated the superior classification 

accuracy of EAs. Three previous studies have quantified PD FT movements 

using statistical measures, but some of the results were conflicting and only 

two of the studies included HCs (Espay, Giuffrida et al., 2011, Ling, 

Massey et al., 2012, Yokoe, Okuno et al., 2009). EAs have been used to 

analyse PD movement and vocal data in just a few studies so far (Smith, 

Gaughan et al., 2007, Smith and Timmis, 2008, Tsanas, Little et al., 2012) 

and the number of participants in each has been very small. This is the 

largest study to use EAs to analyse PD movement data and it is the only one 

to evaluate FT movements. It is the only study using EA analysis of PD data 

to validate the EA induced classifiers on an independent data set. It is also 

the first study to correlate the classifier results with demographic variables 
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and clinical measures of disease progression.   This showed that classifiers 

induced through EAs for predicting group membership also reflect the 

clinical severity of bradykinesia. These results suggest that a device 

employing EA analysis of FT movement data has potential to predict 

diagnosis and also to monitor progression or response of bradykinesia in PD. 

A final significant original contribution is the finding that a component of 

PD bradykinesia, known as the SE, occurred as frequently, and with similar 

magnitude, in age-matched HC as it did in PwPD. This result challenges the 

gold standard diagnostic definition of PD bradykinesia and suggests that the 

SE is a physiological phenomena rather than a defining characteristic of PD 

bradykinesia.  

 

 

7.2 Why was bradykinesia researched?  

PD is characterised by a clinical syndrome comprising several different 

abnormal movements including bradykinesia, tremor, rigidity and postural 

instability. The fundamental motor feature of PD is bradykinesia though and 

this is the only abnormal movement that is obligatory for diagnosis. 

Bradykinesia is also a focus of PD clinical monitoring because it is common 

to all patients, results in functional disability and typically reflects disease 

progression and also the response to intervention. However bradykinesia is 

a complicated clinical sign that comprises several components, or separate 

sub-categories of abnormal movement, and it may be difficult to evaluate all 

of these accurately using visual inspection alone. It has been shown that 

even clinicians expert in movement disorders frequently misinterpret 

whether bradykinesia is present or not (Bajaj, Gontu et al., 2010) and the 

bradykinesia items of the gold standard clinical rating scale, the MDS-

UPDRS, have the lowest inter-rater reliability of all items (Camicioli, 

Grossmann et al., 2001, Henderson, Kennard et al., 1991, Martinezmartin, 

Gilnagel et al., 1994).   

 

Imprecise clinical ascertainment of the presence of bradykinesia has 

important potential ramifications as it may contribute to the mis-diagnosis 

rates of PD, which are as high as 20% amongst consultant neurologists with 
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a specialist interest in movement disorders (Hughes, Daniel et al., 1992, 

Rajput, Rozdilsky et al., 1991). Imprecise clinical interpretation of the 

severity of bradykinesia may lead to inaccurate monitoring of disease 

progression and response to therapeutic interventions.  A method that allows 

objective assessment of bradykinesia could therefore potentially aid clinical 

diagnosis and monitoring of PD. It could also be used as a tool to 

investigate the characteristic features of bradykinesia in PD and other 

movement disorders.  

 

7.3 What aspects of bradykinesia were researched? 

This research has focussed on quantitative evaluation of bradykinesia in PD 

patients and HC using two different data analysis methods: standard 

statistical measures of the clinically defined components of bradykinesia 

and classifiers induced through novel EAs. The accuracy of each method to 

classify FT movement data into the correct diagnostic group was evaluated. 

The movement features that best discriminated PD data from HC data were 

examined in order to define the characteristic components of bradykinesia. 

This research has also explored how objective measurements of 

bradykinesia correlate with clinical grades of bradykinesia severity and 

other clinical markers of disease progression. These two approaches, 

classification and correlation, may inform the development of a non-

invasive device that could potentially aid clinical diagnosis and monitoring 

respectively. Finally the application of using FT movement analysis as an 

investigative tool was explored with a specific focus on how the SE varies 

between PwPD and HC.  

 

7.4 How was bradykinesia researched? 

Bradykinesia was researched by evaluating objective measurements of FT 

movements. EM tracking sensors were attached to the index finger and 

thumb of 49 PwPD and 41 HCs to measure their FT movements over a 30 

second assessment period. FT data was also collected from 13 PwPD and 

nine HC in UCSF so that the LTHT results could be validated on an 

independent sample.  
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The FT test was chosen as the method for evaluating bradykinesia for 

several reasons: it is an established clinical method of examining for 

bradykinesia, it already has a validated rating scale (Goetz, Tilley et al., 

2008), it is quick to perform, correlates well with other bradykinetic 

movements in PD (Agostino, Berardelli et al., 1998, Ling, Massey et al., 

2012), is easy to assess in a standard clinic room and it is not dependent on 

a subject’s mobility or balance. EM sensors were chosen because they are 

small, lightweight, non-invasive, fairly cheap and can precisely measure 

movements in 3D space. Each hand’s FT performance was assessed 

separately because simultaneous hand movements tend to lead to an 

improvement in the performance of the MA PD hand, and a deterioration in 

the LA hand (Kishore, Espay et al., 2007).  

 

PD patients with a range of clinical severity were included in order to assess 

how accurately the device classified data with different degrees of 

bradykinesia. However there was a predominance of patients with only 

slight or mild clinical bradykinesia and this was important for beginning to 

gauge how well the device might perform as a diagnostic device in 

clinically indeterminate cases. The objective measures of FT were also 

correlated to a number of demographic and clinical measures in order to 

assess not only whether the device could detect the presence of bradykinesia 

(used for classification or diagnostic prediction) but also whether the 

measurements could reflect the severity of bradykinesia and other markers 

of disease progression. These assessments are useful when considering how 

the device could be developed into a tool for objectively monitoring PD. 

Finally the FT data measurements obtained from PwPD and HCs were 

compared to investigate what are the defining components of PD 

bradykinesia and whether these kinematic features match the current clinical 

definitions. 

 

7.5 Conclusions  

The conclusions of the research will be summarised under three main sub-

headings in order to highlight how the results from objective measurements 
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of bradykinesia could inform the development of a device that aids 

diagnosis, monitoring and investigation of PD. 

 

7.5.1 Diagnostic classification 

7.5.1.1 Individual component measures of bradykinesia 

The current gold standard definitions of bradykinesia (UKBBDC and MDS-

UPDRS) describes bradykinesia as comprising several clinical components 

that may be summarised as follows: reduced amplitude, slowed speed, 

impaired rhythm, increased halts, and decrementing speed and decrementing 

amplitude. The results in Chapter 4 confirmed that FT movements 

performed by PwPD had smaller amplitude, slower speed, less rhythm and 

more halts than those performed by HCs. The results in Chapters 4 and 6 

showed that measurements of the SE, decrementing speed and amplitude, 

did not significantly differ between the PD and HC groups though. The 

Chapter 5 results, obtained by examining the components of the EA induced 

classifier expression and the composite models combining the separable 

components supported these findings by demonstrating that amplitude, 

speed, rhythm and halts were the most discriminatory measurements of FT 

used by both methods of data classification.   

 

Regarding classification accuracy, Chapter 4 demonstrated that amplitude, 

rhythm and speed were the clinically defined components of bradykinesia 

that best discriminated PD from HC FT data, each with an AUC of 0.88. 

Halts were moderately discriminatory with AUC of 0.72 but the SE 

measurements did not classify PD and HC group data at all well (AUCs 

0.51 and 0.58). These findings based on the LTHT subject data were largely 

validated in the UCSF group. Amplitude was the single most discriminatory 

component in PwPD on whereas speed was the most discriminatory when 

off. These findings are in line with previous studies that demonstrated that 

dopaminergic drugs  (that switch PD patients from an off to an on clinical 

state) improve the speed component of bradykinesia much more than the 

amplitude and rhythm components (Espay, Giuffrida et al., 2011). The best 

classification accuracy for any individual component measure was obtained 

by limiting the PD group data to the MA hand and this resulted in an AUC 
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of 0.91 for amplitude. The MA hand PD group data had a UPDRS FT grade 

of 1.57 ± 0.94. The classification results for the individual component 

measures were not improved by limiting the HC data to the dominant or 

non-dominant hand though.  

 

The separable component measures of bradykinesia had much stronger 

correlations in the patient data than in the control group data and this 

supports the premise that these components are measures of the same 

clinical pathological phenomenon. The exception to this were the SE 

measurements as they did not significantly correlate with any of the other 

component measures of bradykinesia in the patient group, again raising the 

question whether the SE is part of PD bradykinesia and this was further 

explored in Chapter 6 and these results are outlined below in Section 7.5.3. 

 

Only four other studies have quantified all the clinically defined 

components of bradykinesia in PD FT data (Espay, Beaton et al., 2009, 

Espay, Giuffrida et al., 2011, Ling, Massey et al., 2012, Yokoe, Okuno et al., 

2009) and these all used standard statistical measures. The results from 

these earlier studies largely support the present study findings regarding the 

most discriminating components of bradykinesia and have been discussed in 

detail in Chapter 4. The present study has the greatest number of 

participants (n = 90) and whilst Espay et al’s 2011 study had more patients 

(n = 85) there was no control group. Espay et al.’s 2009 study and the 

studies by Ling et al. and Yokoe et al. did include HC groups but their 

numbers of patients were smaller than the current study (n = 23, n = 15 and 

n = 16 respectively).  This is the first quantitative study of PD FT to include 

a validation group. It is the second study, after Ling et al’s to quantify PD 

FT in each hand separately as the other studies either assessed only one 

hand (Espay, Beaton et al., 2009, Espay, Giuffrida et al., 2011) or combined 

the data from both hands together (Yokoe, Okuno et al., 2009).  

 

7.5.1.2 Composite models of bradykinesia 

Chapter 4 demonstrated that when all the individual component measures of 

bradykinesia were combined using logistic regression into a composite 
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model the classification accuracy improved to an AUC of 0.93 for all data 

and to an AUC of 0.96 when PD data was limited to the MA hand. The 

bradykinesia composite model was not validated on the UCSF data though 

as it misclassified two-thirds of control data. There are no previous PD FT 

studies that formed a composite bradykinesia model to compare these 

results to.  

 

7.5.1.3 Evolutionary algorithm induced classifier 

Chapter 5 showed that the EA induced ensemble classifier had an accuracy 

of 0.88 AUC when all data was included, but this improved to 0.97 when 

PD data was limited to the MA hand. Both the ensemble classifier and the 

bradykinesia composite model had better classification accuracy when PD 

data was limited to the MA hand and this is expected because the MA PD 

group data had greater clinical severity of bradykinesia (UPDRS grade 1.57 

± 0.94) than the PD group comprising data from both hands (UPDRS grade 

1.32 ± 0.84).  

 

The ensemble classifier accuracy improved from an AUC of 0.88 to 0.94 

when HC data was limited to just the dominant hand which suggests that 

movement features specific to controls are over-represented in the dominant 

hand. However the detailed analysis undertaken in sections 5.1-5.3 did not 

reveal why this was so.   

 

The EA classifier and the bradykinesia composite model discriminated PD 

MA and HC dominant hand data with AUCs of 0.99 and 0.97 respectively. 

This equates to the EA classifier misclassifying one patient (out of 46 data 

sets) and four controls (out of 37 data sets) whereas the composite model 

misclassified three patients and four controls. There was a trend towards the 

EA classifier being significantly more accurate than the composite model (p 

= 0.081). Furthermore, in contrast to composite model the ensemble 

classifier results for MA hand and HC dominant hand were validated in the 

UCSF data.  
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Control data with smaller amplitude, slower speed, less rhythm or more 

halts were more likely to be misclassified by the EA classifier as these 

features are characteristic of PD movements. In contrast the SE 

measurements did not differ between correctly classified and misclassified 

HC data sets further prompting the question whether the SE is specific to 

PD or not.  

 

These results lend strong support to the use of EA induced classifiers as the 

preferred method of data analysis when developing a device to provide 

objective measurements of bradykinesia. The EA induced classifiers had 

marginally greater classification accuracy than standard statistical measures 

but importantly they also could generalise beyond the population data they 

were developed from to accurately classify independently collected data too. 

In addition the ensemble classifier was validated on the UCSF patient data 

collected in both on and off states, suggesting that it can predict diagnostic 

group membership of data regardless of the patients’ clinical status. This is 

a very encouraging result when considering development of the device to 

aid clinical diagnosis – it suggests that flexibility in the test procedure 

protocol is feasible so that subjects suspected with early PD may be tested 

without having to withhold, or delay the initiation of, dopaminergic 

medications.   

 

7.5.1.4 Models of clinically indeterminate or newly diagnosed PD 

As all of the patients in the study had clinically definite PD it is 

acknowledged that the classification results will over-estimate how the 

device is likely to perform as a diagnostic tool. In order to gain some insight 

into how objective measures of bradykinesia could be used to predict 

diagnosis in clinically indeterminate, or very early stage PD, the data from 

just those patient data sets that had been allocated MDS-UPDRS grade zero 

(i.e. clinically ‘normal’) or grade one (i.e. ‘slight bradykinesia’) were 

analysed separately and the results presented in Chapter 5.3.  

 

Eleven PD FT assessments were allocated MDS-UPDRS grade zero, either 

because of the effects of treatment (as LTHT patients were tested on) or 
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because the assessments were from the non-affected side in HY stage one 

PD patients. Using the sub-set of data from grade zero PD FT data sets (n 

=11) and grade zero dominant hand HC FT data sets (n = 37) the 

bradykinesia composite model and the EA classifier had moderate 

classification accuracy with AUCs of 0.77 and 0.72 respectively. This 

corresponded to eight of the eleven grade zero PD data sets being correctly 

classified by the composite model and seven by the EA. Although the 

numbers are small this remains an encouraging result as it suggests that the 

device is more sensitive than clinical assessments – i.e. none of the 

assessments were clinically considered to be bradykinetic and yet both 

methods of analysis detected enough bradykinesia in the kinematic data in 

the majority of the patient assessments to classify them as PD rather than 

HC. 

 

Forty-five of the PD data sets were clinically graded as slight bradykinesia 

(MDS-UPDRS grade one) and the composite model discriminated these 

very well from HC dominant hand data sets with an AUC of 0.93. This was 

equivalent to 42/45 (93%) of PD, and 32/37 (86%) HC data sets being 

correctly classified.  The EA classifier had excellent classification accuracy 

with AUC of 0.96, corresponding to 41/45 (91%) PD, and 38/41 (93%) HC 

dominant hand data sets being correctly classified. As the 95% CI were 

wide there was no statistically significant difference between these results. 

These figures are for the threshold of equal trade off and clearly the 

threshold could be altered depending on the application of the device i.e. 

whether it was being used for screening in epidemiological studies, when 

sensitivity may be paramount, or for supporting diagnosis when specificity, 

and minimal false positives may be more important.  A longitudinal study of 

truly clinically indeterminate patients is clearly a better method of assessing 

the value of using FT data analysis for diagnostic prediction, but the results 

here are encouraging.  

 

7.5.2 Monitoring 

The objective measures of bradykinesia were correlated to bradykinesia 

clinical severity as measured by the MDS-UPDRS FT grade. The individual 
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component measures of amplitude, speed, rhythm and halts (rs range = 0.58 

to 0.67), the composite bradykinesia model (rs = 0.60) and the EA classifier 

score (rs = 0.43) were all significantly correlated with MDS-UPDRS FT 

grade. These results indicate that methods employing quantification of 

bradykinesia could have a role in objectively monitoring the clinical 

progression of PD, and response to intervention, as they not only reflect the 

presence of bradykinesia but also the degree of clinical severity.  

 

The results also suggest that objective measures of bradykinesia are more 

sensitive than clinical grading of severity. For example the mean EA 

classifier scores for the dominant hand of controls were significantly lower 

(-0.31 ± 0.25) than those from PD hands graded zero on the MDS-UPDRS 

(-0.04 ± 0.35), p = 0.007, despite the fact that bradykinesia was not 

clinically apparent in either group. Similarly the bradykinesia composite 

model scores were significantly different between MDS-UPDRS grade zero 

PD (0.51 ± 0.33) and dominant hand HC data sets (0.23 ± 0.27), p = 0.002. 

One explanation for these findings are that the MDS-UPDRS scale is too 

coarse to detect the subtle differences detected by the objective measures i.e. 

the MDS-UPDRS FT scale has just five grades (zero to four inclusive) of 

bradykinesia severity so it is likely that subjects within each grade 

allocation will have a range of severity.  If this is the case it suggests that 

subtle, or individual component, response to new therapeutic interventions, 

may go unnoticed when assessed in trials relying on clinical grades as an 

outcome measure, but the device could potentially detect such responses. 

This theory could be tested further by examining the relative changes in 

clinical grades and objective measures of bradykinesia before and after 

dopaminergic drugs are given; this will be undertaken in the proposed future 

study entitled ‘Using a non-invasive novel device to analyse bradykinesia 

and tremor in different movement disorders’ that is discussed further in 

section 7.7.2. 

  

The objective measures of bradykinesia were correlated with other 

demographic and clinical variables that reflected disease progression. This 

showed that none of the individual component measures or the bradykinesia 
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composite model or the EA classifier scores correlated with age, HY stage, 

disease duration or LEDD.  The association of cognitive impairment with 

bradykinesia severity requires further exploration. The MoCA score 

inversely correlated strongly with rhythm (rs = -0.30, p = 0.009) and the 

bradykinesia composite model score (rs = - 0.46, p < 0.0001), suggesting 

that cognitive impairment is associated with more impaired rhythm and a 

greater severity of bradykinesia. This is an interesting area of research to 

develop in the future as it raises the possibility that objective measures of 

bradykinesia could have a role in screening for cognitive impairment. The 

neuro-psychology literature on pre-hension (reaching and grasping) 

movements lends some support to this hypothesis and the proposed research 

study entitled  ‘A novel diagnostic device for the objective assessment of 

Parkinson's disease with and without dementia’ aims to explore the 

association between cognitive and motor assessments in more detail and is 

outlined in Section 7.7.4. 

 

7.5.3 Investigation 

The FT data was examined to investigate the kinematic profile of FT in PD 

and whether the SE is a characteristic component of PD bradykinesia. 

 

7.5.3.1 Kinematic features of finger tapping in PD 

EAs search widely for solutions without any prior assumptions. The 

classifiers induced by EAs to distinguish PD from HC movement data thus 

may include novel discriminating features of bradykinesia i.e. their 

formation is not confined to using the components of bradykinesia defined 

clinically by UKBBDC and UPDRS. Furthermore it is possible to ‘open the 

black box’ and examine the classifier expression in order to find out what 

components were used to differentiate patient from control movement data. 

This offers an exciting method of investigating how the movements in PD 

differ from HC without being constrained by the current clinical definitions 

of bradykinesia. Some classifiers are easier to examine than others and in 

this study only the CGP classifier part of the ensemble classifier was 

examined in detail with the results discussed in Chapter 5 (section 5.5).  

 



	
  
271	
  

When the classifier parse tree expression was examined the important 

acceleration data points, or window offsets, used in its formation were 

revealed. Overlaying these data points on PD and HC kinematic profiles that 

received the highest classifier scores (i.e. ‘highly PD’ or ‘highly normal’) 

enabled a more focussed exploration of the potentially important 

components of bradykinesia.  This method has highlighted that opening 

speed is numerically more discriminatory than any of the clinically defined 

components of bradykinesia with an AUC of 0.91. This is the second study 

to find this - opening speed was the most discriminatory feature of PD FT in 

Yokoe et al.’s study (Yokoe, Okuno et al., 2009) but the other three studies 

that quantified FT in PD did not specify the most discriminating movement 

component (Espay, Beaton et al., 2009, Espay, Giuffrida et al., 2011, Ling, 

Massey et al., 2012). 

 

Overlaying the classifier expression offset windows on high scoring 

kinematic profiles also showed that the acceleration profiles of PD depart 

further from those of HC than the separation and speed profiles do. The PD 

separation and speed profiles have smaller amplitude and slower speeds 

than HC but the shape of the kinematic data waveform is fairly similar. In 

contrast when the acceleration profiles are examined they are totally 

different between PD and HC: controls had a characteristic pattern of a 

sharp bursts of acceleration then deceleration in the opening and closing 

phases of the FT cycle with the periods in between, when the fingers were 

either maximally separated or opposed, having almost no acceleration at all. 

This pattern was lost in the PD data with many small bursts of acceleration 

and deceleration occurring throughout the FT cycle, even when the fingers 

were stationary at the point of maximum or minimum separation. These 

profiles are consistent with EMG studies that have demonstrated the normal 

triphasic EMG pattern of single rapid movements is lost in PD and replaced 

by ill-coordinated and inefficient bursts of acceleration (Hallett and 

Khoshbin, 1980).  

 

Examination of the CGP classifier’s expression also pointed towards the 

opposition period of the FT cycle being important in distinguishing PD from 
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HC data and the percentage duration of each tap cycle spent with the digits 

opposed was found to discriminate the PD and HC data fairly well with an 

AUC of 0.72. Patients and controls spent approximately12% and 6% 

respectively of the whole tap cycle with their digits opposed, p = 0.02. 

Counter-intuitively the PD data also had a smaller percentage of the tap 

cycle spent in zero acceleration though – i.e. despite PwPD spending more 

of the FT cycle with the digits stationary (during opposition) there were 

fewer periods without any acceleration. Small acceleration and deceleration 

bursts were recorded in the PD data even when there was no net movement 

of the digits. These results suggest that in PD the ‘wrong’ motor programs 

are being selected for the desired movement and hence the muscle 

acceleration bursts that are too small to move the fingers out of the 

opposition position. This means that additional acceleration bursts are 

required so there is a prolonged pause, or “switching akinesia” (Homann, 

Suppan et al., 2000) between the opening and closing phases as the alternate 

motor programs are executed. Similar conclusions have been reached in 

studies assessing PD movements through drawing (Berardelli, Accornero et 

al., 1986), computer keyboard taps (Homann, Suppan et al., 2000) and EMG 

recordings (Sheridan, Flowers et al., 1987) but this is the first detailed study 

to quantify akinesia between the flexion and extension movements of FT in 

PD. 

  

7.5.3.2 Sequence effect 

It was noted in Chapter 4 that SE component measures did not correlate 

well with the other component measures of bradykinesia. They also did not 

discriminate the diagnostic group data well as PD and HC subjects had a 

tendency to decrement during the 30-second assessment period. 

Furthermore when the bradykinesia composite models in Chapters 4 and 5 

were examined it was clear that the SE measurements made minimal 

contribution to the logistic regression expression. These results prompted 

the question of whether the SE was definitely a specific component of PD 

bradykinesia or whether it may simply be a physiological phenomena.  
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In Chapter 6 the kinematic FT data was examined more carefully in order to 

investigate the SE. Firstly the issue of whether ten taps, as specified by the 

gold standard monitoring scale - MDS-UPDRS, are a long enough sequence 

for all the components of bradykinesia to manifest was explored. This 

showed that nearly all of the clinically defined components of bradykinesia  

– reduced amplitude, slowed speed, less rhythm and more halts - did 

manifest during the first ten taps made by PwPD when compared to the first 

ten taps made by HCs. However there was no net difference in the SE 

measurements between the groups over this period. Possible reasons for this 

were explored further: firstly there was no association between the SE 

results and clinical/demographic variables in the groups. Secondly the SE 

results did not significantly change when patients switched from off to on 

clinical states, despite the clinical UPDRS grades improving from 2.10 ± 

0.79 to 1.26 ± 0.96, p = 0.001. Thirdly longer sequences, of up to 40 taps 

did not lead to a significant net difference in frequency or severity of 

decrement between the PD and HC groups.  

 

In summary no explanation related to the methodology or the demographics 

of the groups for the lack of difference in the SE measurements between the 

PD and HC groups could be found in this cohort, leading to the conclusion 

that the SE may not be a defining component of PD bradykinesia. This 

finding is controversial as it questions the gold standard UKBBDC of 

bradykinesia on which the clinical diagnosis if PD is based upon. A detailed 

literature review is presented in Chapter 6 that provides further evidence 

from previous studies to support the current study conclusions.   

 

7.6 Limitations of thesis  

The limitations of the study methodology have been discussed in detail in 

Chapter 4 and the main limitations are highlighted again here with the 

potential implications of these discussed in the wider context of the thesis.  

 

When considering how the device might be developed into a diagnostic tool, 

the main limitation of the methodology was a cross-sectional study design 

using patients with clinically definite PD.  By definition all the patients will 
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have had bradykinesia that is clinically apparent, at least when they are off 

treatment, so diagnostic prediction results will be an overestimate of how 

the device is likely to perform in clinically indeterminate, or very early PD 

subjects.  Assessing patients who were on may have made the objective 

diagnostic prediction more difficult though as many patients had no obvious 

bradykinesia clinically and there were 11 grade zero MDS-UPDRS FT 

performances in the LTHT PD group. Arguably the current study was a 

proof of concept study, or an essential first step to test the hypothesis that 

diagnostic group classification can be accurately predicted using a new form 

of movement data analysis, before commencing more extensive studies. 

Whilst the results are encouraging the next crucial step would be to perform 

a longitudinal study comprising patients with possible early PD and 

compare the diagnostic predictions based on objective measurements of 

their movements with standard clinical methods of diagnosis over time to 

see whether the device adds any value to the clinical predictions.  

 

Also it would be useful to objectively measure other movements in PD in 

order to clarify whether FT is the best test to use for diagnostic prediction. 

Agostino et al. reported that FT was disproportionately more impaired in PD 

than other tests of upper limb bradykinesia (Agostino, Curra et al., 2003) 

but it would be useful to measure a range of movements such as walking, 

foot tapping, or handwriting to confirm that FT is indeed the most sensitive 

test to use in a diagnostic test protocol. As the whole UPDRS motor 

examination was not performed in this study it was impossible to evaluate 

how FT measurements correlated with clinical bradykinesia assessments 

involving other body parts or with other movement abnormalities in PD. It 

was also not possible to assess whether bradykinesia that is localised 

clinically to just the legs would have a normal FT test or not.    

 

A further limitation was the lack of detailed evaluation to confirm that 

subjects were in the correct diagnostic group. For example very few of the 

PD patients have had I(123)- SPECT scans to confirm dopaminergic neuronal 

degeneration (and these were not used as an inclusion criteria) and many 

were only recently diagnosed with PD. This means that it is possible there 
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were some people with atypical parkinsonism (vascular, MSA etc.) 

inadvertently included in the PD patient group. Conversely the controls did 

not undergo a detailed examination to evaluate whether they had any 

parkinsonism and there may be some controls that had signs of early PD but 

had not been formally diagnosed yet. 

 

Most of the thesis has focussed on the characteristic features of bradykinesia, 

how these can be used to discriminate PD from HC FT movement data, and 

hence how such features could be used to aid diagnosis. The evaluation of 

the movement data to aid development of a monitoring device was much 

more limited. This was largely because the LTHT subjects only underwent 

assessments that were brief and at one point in time, and also because the 

UCSF patient cohort tested in on and off states was small. The simple 

correlations of the EA classifier, and bradykinesia composite scores with the 

clinical grades of bradykinesia lend some support to the usefulness of 

objective measurements of movements as a method of monitoring but 

further studies over a longer period of time, assessing patients in on and off 

states, are needed to better understand this potential application. A study 

assessing PwPD over several hours has begun recruitment and is described 

further in section 7.7.2 below. 

 

Finally a technical limitation of the study was the high prevalence of 

corruption in the movement data.  Approximately 10% of the recordings had 

corrupt sections and these data sets were excluded from the separable 

component, and the SE analyses in Chapters 4 and 6 respectively. It would 

have been useful to have a signal generated from the laptop at the time of 

data collection to alert the researcher that corruption had occurred. This 

would allow for the assessment to be repeated again immediately rather than 

incurring loss of data at the analysis stage. Subsequent assessment of the 

test protocol has revealed that the accuracy of the Polhemus system 

deteriorates if the EM sensors are moved more than 20cm away from the 

magnetic source. Also some of the corruption was occurring because the 

EM sensors were crossing over into the posterior hemisphere of the 

magnetic source field and thus results in the sensor position being 
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erroneously ‘reversed’. A warning signal to alert the researcher that the data 

recorded contains corrupt section has now been incorporated into the 

software for the future studies described below (Section 7.7) that use the 

Polhemus system. Therefore it is likely that with better positioning of the 

equipment and the inclusion of the warning signal the corruption of data 

will be less of an issue with future research studies.  

 

7.7 Future research 

This study has demonstrated that objective evaluation of FT can be used to 

accurately discriminate PD from HC movement data. This opens up several 

areas of research for further development. The proposed studies are 

discussed in detail below but a brief overview is provided herein. Firstly for 

the device to be developed as a diagnostic test it is important to assess the 

classification accuracy in clinically indeterminate subjects, or those with 

possible early PD. The device’s prediction of diagnostic group should be 

compared to the current clinical methods of diagnosis and then the patients 

followed up over time to see how the initial objective and subjective 

diagnoses correlated to the final clinical diagnosis. Secondly, and related to 

this, it would be useful to see how well the device can differentiate 

movement disorders that look similar to PD (eg. other parkinsonian or 

tremulous conditions) and by doing so elucidate what kinematic features 

differentiate these conditions.  This potentially would reveal an advantage 

of movement data analysis over DaTscan imaging that cannot reliably 

discriminate the various neurodegenerative parkinsonian conditions.  

 

Thirdly in order to develop a device to provide objective monitoring of PD 

it would be necessary to assess whether EA classifiers could be induced that 

accurately predict abnormalities of movement over longer periods of time. 

In particular it would be important to assess whether classifiers could 

predict whether PwPD were in an off state, an on state or, an on state with 

dyskinesia present as this would effectively be a step towards developing a 

24 hour PD monitor. Finally there is evidence from the current study, and 

also the prehension literature, that objective measurements of movement 

may be applied to screen for cognitive deficits and this hypothesis will be 
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tested in the fourth proposed study. These four study propositions, and their 

stage of development are discussed in greater detail in sections 7.7.1 to 7.7.4. 

  

7.7.1 Diagnostic tool and pre-clinical screening 

The results of this research support the principle that quantifying FT can be 

used as a tool to discriminate normal from bradykinetic movements, even 

when the severity of bradykinesia is clinically very subtle. However this 

study is only the first step towards developing a non-invasive device that 

could be used to aid diagnosis of PD. All the patients in this study had 

clinically definite PD so, despite attempts at modelling early PD with data 

from just those patients with MDS-UPDRS grade zero or one bradykinesia, 

there has not been a true evaluation of how the device performs as a 

‘diagnostic’ test.  

 

In order to do so the next necessary step would be to perform a longitudinal 

study of patients with possible bradykinesia but an indeterminate diagnosis 

and compare the device’s prediction of the diagnosis with the current 

clinical methods for making a diagnosis. Over several years the clinical 

diagnosis tends to become clearer as more clinical signs develop and the 

response to levodopa is apparent. The final clinical diagnosis (possibly 

supported by I(123)-SPECT imaging) would be considered the gold standard 

to compare the initial objective (device) and subjective (clinical) diagnostic 

predictions to. It would be prudent to also compare the original clinical 

diagnosis to the initial device prediction in order to evaluate whether the 

device was able to add any additional value to the clinical method in 

predicting the final clinical diagnosis i.e. calculating the positive and 

negative likelihood ratios.  

 

This type of study could be extended even further ‘backwards’ to the earlier 

pre-motor stage of PD when the process of neuro-degeneration has already 

begun but the clinical signs of parkinsonism have not fully manifest. It is 

recognised that approximately 50% of dopaminergic neurons have died by 

the time motor signs of parkinsonism develop and this phase of ‘silent’ 

neurodegeneration probably occurs for five years preceding the onset of 
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definite clinical signs (Fearnley and Lees, 1991). It may be particularly 

important to detect patients in the pre-motor stage if a neuro-protective drug 

becomes available that can slow down the rate of further neurodegeneration.   

 

REM sleep behaviour disorder (RBD) patients are an ideal ‘at risk’ group to 

study for incipient parkinsonism because they have a 50% risk of 

developing a neurodegenerative parkinsonian disorder (usually PD, MSA or 

LBD) within 12 years of being diagnosed with RBD (Postuma, Gagnon et 

al., 2009). Postuma et al. conducted a seven-year longitudinal study of 78 

RBD and age-matched controls, assessing them annually using UPDRS and 

a number of quantitative motor tasks. During the study eleven patients 

developed PD and 9 LBD. The clinical and quantitative motor scores were 

plotted over time and then regression analyses used to calculate when the 20 

parkinsonian patients’ scores had begun to significantly deviate from 

normal. This showed that a very simple quantitative test of bradykinesia 

(number of hand taps in 1 minute) had greater sensitivity for detecting early 

signs of parkinsonism than the detailed UPDRS examination - the hand 

tapping task and UPDRS total scores deviated from those of HCs 

approximately 8 years and 4 years, respectively, before clinical diagnosis 

and the AUCs three years before clinical diagnosis were 0.81 for hand 

tapping and 0.76 for the total UPDRS. 

 

The current study has shown that EA induced classifiers tend to be more 

accurate than standard statistical measures for predicting diagnostic 

classification of slight bradykinesia (grade one UPDRS) and this suggests 

that there may be potential to improve diagnostic prediction to an even 

earlier pre-motor stage by combining quantification of bradykinesia with 

EA classifier analysis.  Detailed protocols for these two longitudinal studies 

of clinically indeterminate, or ‘at risk’ patients have not been devised yet.  

 

7.7.2 Differentiating bradykinetic or tremulous movement disorders 

There are several different conditions that manifest clinically with 

bradykinesia including PD, MSA, PSP, CBD, DLB, DIP, VP, AD, HD, and 

SCA (Chapter 2). Some of these conditions, especially MSA, PSP and CBD, 
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can initially be very difficult to discriminate clinically from PD.  The 

various pathological bradykinetic conditions in their early stages may also 

be difficult to differentiate from the movement changes associated with 

normal physiological ageing, particularly if only a few of the components of 

bradykinesia (i.e. just small amplitude or just slowing) are present (Collier 

et al., 2011, Buchman et al. 2012).   

 

Current imaging techniques do not reliably differentiate these conditions as 

the vast majority can have abnormal DaTscans (Brooks, 2012) and, initially 

at least, the structural MRI brain scans tend to be normal or show non-

specific changes.  The phenomenology of bradykinesia in these movement 

disorders remains incompletely understood so careful clinical examination 

of the components of bradykinesia is unlikely to elucidate the diagnosis 

either.  This means that clinicians often rely on a ‘watchful waiting’ 

approach to guide their clinical diagnosis; in other words with the passage 

of time (months or years) additional signs of ‘atypical’ parkinsonism or 

cognitive changes emerge which make the diagnosis clearer.  However this 

method is imperfect and the final clinical diagnoses are often not supported 

by the pathological findings, even when they are made by clinicians expert 

in movement disorders: Hughes et al. for example showed that 

approximately 20% of the cases referred from the National Hospital of 

Neurology and Neurosurgery’s movement disorders clinic in London with 

an ante-mortem clinical diagnosis of a neurodegenerative parkinsonian 

conditions (PD, MSA, PSP etc) had their diagnosis revised at post-mortem 

(Hughes, Daniel et al., 2002).   

 

In view of the limitations of current clinical and imaging methods a non-

invasive method to objectively differentiate the bradykinetic movements 

disorders earlier is required. This is important because the response to 

medications and prognosis vary considerably between the conditions.  A 

future area of research would be to develop the FT study to objectively 

measure clinical tasks performed by patients with a wide range of 

bradykinetic conditions. The discriminating kinematic features could inform 



	
  
280	
  

the development of a diagnostic device capable of differentiating different 

bradykinetic conditions and also the clinical examination of future patients.  

 

There have been very few studies that have objectively measured the 

separable components of bradykinesia across different movement disorders. 

Ling et al. compared the kinematic features of FT in 16 PwPD patients, nine 

PSP patients and 16 HCs and reported that PSP bradykinesia, compared to 

PD bradykinesia, had much smaller amplitudes and no SE (Ling, Massey et 

al., 2012). There are no studies comparing FT in MSA patients and PD 

patients but one abstract (main paper in Russian) reports that the frequency 

of EMG bursts in MSA patients’ limbs (n = 18) were higher than those in 

PD (n = 21). (Levin, Khutorskaya et al., 2003). Also gait analysis in 15 HC, 

15 HD and 15 PD patients has shown that HD bradykinesia is characterised 

by reduced speed and rhythm but largely normal amplitude (Delval, 

Krystkowiak et al., 2006). Taken together these studies suggest potential for 

objective measures of movements to differentiate the various parkinsonian 

conditions if they have characteristic bradykinesia component profiles.  

 

Similarly it may be difficult to discriminate patients with an isolated tremor 

using just clinical assessments. For example a PD tremor will typically have 

an asymmetric distribution and be present at rest but the tremor of MSA 

often mimics this. There are also atypical PD tremors that predominantly 

occur with posture or action and these may resemble ET or DT. It could be 

argued that most non-parkinsonian tremors could be reliably differentiated 

from PD as the DaTscan will remain normal, but this method has several 

drawbacks including expense at £800 per scan, test procedure time 

(approximately 3-5 hours), limited worldwide access and an ionising 

radiation dose. Moreover DaTscans will not differentiate the neuro-

degenerative parkinsonian tremulous disorders such as PD, MSA and CBD.  

 

Therefore a non-invasive simple objective method for differentiating the 

movement disorders characterised by bradykinesia or tremor would be an 

important development in aiding early clinical diagnosis and guiding 

appropriate management.  A research study protocol has been developed 
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between LTHT and University of York in collaboration with Monash 

Medical Centre in Melbourne, Australia entitled ‘Using a non-invasive 

novel device to analyse bradykinesia and tremor in different movement 

disorders’ and ethics approval is currently awaited (National Research 

Ethics Service (NRES). The aims of this study are to gain a better 

understanding of the discriminating features of bradykineia and tremor in a 

number of movement disorders and in normal ageing, and to assess how 

accurately EA classifiers predict diagnosis based on analysis of the 

movement data.  

 

The plan is to recruit 60 PD, 30 ET, 30 HD, 30 DT, 30 PSP, 30 MSA, 30 

DLB and 30 DIP patients and 50 HCs. The subjects will each be assessed 

(in on and off states for those on dopaminergic medications) using the same 

EM tracking equipment as in the present study. The sensors will be attached 

to the finger and thumb of the dominant hand whilst the subject performs 

the following bradykinesia and tremor assessments from the UPDRS: 10 

FTs, 10 hand opening- closing, 10 pronation-supination, 30 seconds of rest 

tremor, 30 seconds of postural tremor and 10 finger-nose repetitions. The 

sensors will then be moved to the non-dominant hand and the assessments 

repeated. The assessments will be video-recorded and each task graded 

(using the MDS-UPDRS) by two clinicians blinded to the current clinical 

working diagnosis. Some patients will have had a DaTscan performed as 

part of their clinical investigation (i.e. not specifically for this study) and the 

kinematic data collected for these patients will also be compared to the 

results of their DaT scans (graded 0-4 where zero is normal and 4 is severe 

striatal neuronal degeneration) (Benamer et al., 2000, Benamer et al., 2000) 

in addition to the diagnoses and grades of clinical severity.    

 

Data will be analysed using EAs and standard statistical measures of the 

separable components of bradykinesia and tremor such as frequency, 

amplitude, speed etc. The EAs will enable development of classifiers to 

discriminate the data from separate diagnostic groups and analysis of these 

classifiers, and the separable component measures will provide information 

on the differentiating features. The strength of using EAs for this study is 
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the potential to learn more about bradykinesia without a priori assumptions 

about the characteristics of bradykinesia and tremor in each diagnostic 

group.  

 

7.7.3 Monitoring dyskinesia in Parkinson’s disease 

A further exciting area of research development is to use movement sensors 

in combination with EA classifiers to monitor the severity of involuntary 

movements, called dyskinesia, or LID in PD patients. LID are a troublesome 

motor complication that commonly occur in PwPD who are treated with 

dopaminergic drugs, with cumulative rates of 40% and 90% in PD patients 

who take levodopa for more than four years and 10 years respectively 

(Ahlskog and Muenter, 2001); see Chapter 1. The presence of LID limits the 

ability to optimise the PD treatment regimen as a fine balance has to be 

made between giving enough dopaminergic drugs to alleviate the symptoms 

of PD  (such as bradykinesia, tremor and rigidity) but not so much that LID 

is worsened. Over time this balance becomes more precarious and 

eventually a compromise has to be made where the dose of medication is 

somewhat sub-therapeutic for the PD symptoms in an attempt to restrict the 

time spent with troublesome LID.   

 

The management of patients with LID typically involves altering the timing 

and doses of dopaminergic drugs in an attempt to provide a more steady 

level of dopaminergic stimulation to the brain. This is typically quite a 

complicated process though as every patient is individual in terms of what 

drug dose triggers LID, at what time of day their LID occurs and the 

topographical distribution of LID. Furthermore patients may also report 

variability of the severity and character of their symptoms from day to day. 

Often PwPD have LID occurring tens of times per day, or almost constantly 

but with varying degrees of severity and this taken together with the fact 

that many take ten or more dopaminergic drug doses over the course of 24 

hours, makes it extremely difficult to decide exactly which doses of 

medication need to be altered.  
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In order to better guide changes the management of LID by altering drug 

regimens various methods of monitoring LID have been tried. The most 

common method is reviewing the patient every few months in the outpatient 

clinic, asking what times they think LID occurs and then reducing the drug 

dose that precedes any episodes of troublesome LID. Other methods for 

monitoring LID have been tried but they all have limitations. For example 

symptom diaries are onerous for patients to complete and generally lack 

accuracy (Golbe and Pae, 1988), questionnaires or scales based on the 

patient’s perspective are prone to bias with the mood and cognition 

impacting on responses, and clinician rated assessment scales tend to be 

time consuming to administer, require training, only provide a snapshot of 

the clinical signs at the point in time that they are completed and may 

necessitate a period of expensive inpatient monitoring if administered over 

more than a few hours.  

 

A device that could accurately record the presence and severity of LID 

would revolutionise the management of PD. It would also benefit the 

pharmaceutical industry that require accurate methods to assess new anti-

dyskinesia drugs as well as testing new anti-parkinsonian drugs for 

dyskinetic AEs. Various devices that objectively measure LID have been 

assessed but none of these have been incorporated into mainstream clinical 

practice yet. One of the main limitations of previous devices was the fact 

that the frequency of voluntary movements (especially walking) overlapped 

considerably with the frequencies of LID so standard statistical methods 

were imprecise at discriminating these movements (Hoff, van den Plas et 

al., 2001, Keijsers, Horstink et al., 2000, Manson, Brown et al., 2000). More 

recently there have been promising results for discriminating different 

grades of LID and tremor during a range of voluntary actions using dynamic 

neural networks that are similar to EAs (Roy, Cole et al., 2013). 

 

A proof of concept study protocol entitled ‘A novel device for the objective 

assessment of levodopa-induced dyskinesia in Parkinson's disease’ has been 

developed to discriminate different clinical severities of LID from normal 

movements in PD patients. Ethical approval was granted (NRES reference: 
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11/NW/0541) and the study was added to the NIHR Clinical Research 

Network portfolio (Portfolio ID 11762). Ten patients have been assessed on 

the neurology day ward for six hours whilst wearing movement sensors that 

comprise three accelerometers and three gyroscopes. The patients were 

continuously video-recorded and sections of the video were subsequently 

graded, or marked up, by two clinicians independently using the Unified 

Dyskinesia Rating Scale and MDS-UPDRS. The movement data linked to 

the marked up sections of the video were then compared to the clinical 

grades of LID to assess the accuracy of the classifiers. The preliminary 

results show that EA classifiers can discriminate moderate and severe 

(grades 3 and 4) LID from normal movements (grade zero) with AUC of 

0.90. However the classification accuracy for discriminating slight or mild 

LID (grades 1 and 2) from normal movements was less with AUCs of 0.68 

and 0.8 respectively. In view of this an amendment has been recently been 

granted (March 2014) to assess 30 more patients over a two-hour period 

each in order to improve the accuracy of the EA classifiers.  

 

7.7.4 Movement analysis and cognition 

A fascinating area of research that builds upon the current FT study findings 

is to examine the association between abnormalities of movement and 

cognition. Although the methods for assessing cognition in the current FT 

study were not particularly detailed (MoCA), there was a signal that 

impaired rhythm was associated with cognitive impairment.  In view of this, 

and also based on a literature review of the sensory-motor integration in PD 

and dementia, a protocol called ‘A novel diagnostic device for the objective 

assessment of Parkinson's disease with and without dementia has been 

devised.  The aim of this study is to find out what movement features are 

associated with PD dementia (PDD) by comparing prehension (reach and 

grasp) movements and detailed cognitive assessments in PwPD, PDD 

patients and in HCs. The results may inform the development of a new test 

that predicts, or at least screens for, cognitive impairment in PD accurately, 

quickly and more cheaply than current methods of imaging and detailed 

cognitive tests. The study data may also enable further understanding of 

bradykinesia, and other motor deficits in PD. 
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The theory that this study’s hypothesis is based upon may be summarised as 

follows: it is well recognised that non-demented PD patients have deficits in 

executive aspects of visuospatial processing and in PDD patients these 

deficits are even more pronounced.  The reaching phase of prehension 

requires information about where the object is positioned in 3D space and 

this depends on the function of the dorsal occipito-parietal, or ‘where’, 

visual stream. The grasping phase of prehension requires visual information 

about the size, shape and orientation of an object to be converted into 

appropriate patterns of finger and wrist movement and this depends on the 

ventral occipito-temporal, or  ‘what’, visual stream.  Prehension is an 

overlearned complex movement that develops in childhood so there is no 

need for new skill acquisition (which is impaired in PD). This means that 

prehension is a useful paradigm to investigate motor control deficits and 

visuospatial processing – both of which are known to be impaired in PD and 

PDD.  

 

Therefore the hypothesis of the study states that analysis of prehension 

movement data will allow prediction about the cognitive state of PD 

patients (demented or non-demented). The control group is included in 

order to compare PD cognitive deficits to age-matched controls and also to 

compare prehension (developmental) and FT (non-developmental) 

movement data for predicting diagnostic group (PD vs. HC). 

 

Ethical approval has been obtained (NRES reference 10/H1308/5) and 

testing began in Leeds in March 2014 with the aim to recruit 30 HCs and 60 

patients with PD (approximately 30 with PDD and 30 without PDD). 

Collaborative study assessments have also begun in UCSF and Dubai. The 

participants will perform a number of motor tasks including prehension, 

drawing and FT whilst wearing special Lycra gloves called Computer Data 

Gloves that contain various movement sensors embedded in them. The 

movement data recorded by the gloves will be analysed by EAs to provide 

classifiers for diagnostic prediction and also separable component analysis 

to examine how the abnormalities of movement in PD correlate with 

cognitive deficits.  The research participants will also undergo standard 
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motor assessments, including UPDRS, cognitive tests including MoCA, 

Benson figure copy and delayed recall test, Benton line of orientation tasks 

and Trails A and B, and the Geriatric depression scale to screen for pseudo-

dementia. In order to make the diagnosis of ‘probable PD dementia’ using 

the Emre 2007 criteria (Emre, Aarsland et al., 2007) an informant interview 

comprising the neuropsychiatric inventory questionnaire and the Clinical 

Dementia Rating Scale Informant interview will also be conducted. 

  

7.8 Final summary 

This thesis has examined PD bradykinesia in detail. Quantification of the FT 

task in PD patients and HCs assessed in Leeds has been used as a method to 

objectively evaluate bradykinesia. A modern computer science technique 

called EAs have been employed to analyse movement data recorded with 

EM tracking sensors and these results compared to standard statistical 

measures of the components of bradykinesia. A small sample of data 

collected independently in UCSF has been used to validate the results. The 

results have been discussed in the context of the current medical literature 

with the potential for developing a device to aid diagnosis, monitoring and 

investigation of PD highlighted. 

 

The FT study results have shown that EA induced classifiers tend to have 

better diagnostic accuracy than methods based on measuring the 

components of bradykinesia. Only the EA classifier results generalised to 

the validation data set. With both methods of analysis, quantification of FT 

using was associated with the clinical severity of bradykinesia. There was 

an association between cognitive impairment and reduced rhythm of FT 

movements but physiological ageing was not associated with any of the 

component measures of bradykinesia. The results have confirmed that PD 

patients have slower, smaller and less rhythmic movements than HC but 

challenge whether the SE should be included within the gold standard 

diagnostic definition of bradykinesia as objective SE measurements of did 

not differ between PwPD and age-matched HCs.  
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A number of research studies are currently underway, or planned, to 

develop the ideas outlined in this thesis and there is the potential that 

objective measurements of movements may be a future method for aiding 

the diagnosis of PD, screening for PD in epidemiological studies, 

discriminating PD from other movement disorders, monitoring motor 

fluctuations over the course of the day and investigating the characteristics 

of PD motor and cognitive deficits.   
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3D Three-dimensional 

 α-SN Alpha-synuclein protein 

ABN Artificial biochemical network 

AC Alternating current 

AD Alzheimer’s disease 

ADL Activity of daily living  

AT Akinesia time 

AUC Area under ROC curve  

BG Basal ganglia 

BRAIN TEST© Bradykinesia Akinesia Incoordination Test 

BSP Bereitschaftspotential 

CBD Corticobasal degeneration 

CDS Continuous dopaminergic stimulation 

CGP Cartesian genetic programming 

CI Confidence intervals 

CNV Contingent negative variation 

COMT Catechol-I-methyltransferase 

COV Coefficient of variance 

CS Closing speed 

CT Computed tomography 

DA Dopamine 

DaT scan Dopamine active transporter scan 

DBS Deep brain stimulation 

DIP Drug induced parkinsonism 

DLB Dementia with Lewy bodies 

DoH Department of Health 

DS Dysmetria score 

DT Dystonic tremor 

DWI Diffusion weighted imaging 

EA Evolutionary algorithm 

ECG Electrocardiogram 
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EM Electromagnetic 

EMG Electromyography 
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18F fluorodopa Fluorine-18-labelled-dopa 

fMRI Functional Magnetic Resonance Imaging 

FN False negative 

FP False positive 

FP-CIT Iodine123 labelled ioflupane 

FT Finger tapping 

GABA Gamma-aminobutyric acid 

GP General practitioner 

GPe Globus pallidus externus 

GPi Globus pallidus interna 

HC Healthy control 

 

HIV Human immunodeficiency virus 

HY Hoehn and Yahr  

Hz Hertz 

IPD Idiopathic Parkinson’s disease 

IS Incoordination score 

KS Kinesia score 

LA Least affected hand 

LB Lewy body 

LED Light emitting diode 

LEDD levodopa equivalent daily dose   

LID Levodopa induced dyskinesia 

LTHT Leeds Teaching Hospitals NHS Trust 

MA Most affected hand 

MAOI Monoamine oxidase inhibitors 

MBRS Modified Bradykinesia Rating Scale 

MDS Movement Disorders Society 

MDS-UPDRS Movement Disorders Society Sponsored revision of 
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the Unified Parkinson’s Disease Rating Scale 
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MIBG Iodine -123 labelled meta-iodobenzylguanidine 

MIDI Musical instrument digital interface 
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MoCA Montreal Cognitive Assessment 

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropridine 

MRI Magnetic resonance imaging 

MSA Multiple System Atrophy 
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MT Movement time 
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NHS National Health System 

NICE National Institute for Health and Clinical Excellence 
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NRES National Research Ethics Service 
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PD Parkinson’s disease 
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PET Positron emission tomography 
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PMC Primary motor cortex 
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PSP Progressive Supranuclear Palsy 
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SD Standard deviation 

SE Sequence effect 

SEU Systems electronic unit 

SIGN Scottish Intercollegiate Guidelines Network 
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SN Substantia nigra 

SNc substantia nigra pars compacta   
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SPECT Single photon emission computed tomography 

SPSS IBM Statistical Package for the Social Sciences 
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TD Tremor dominant 

TGUGT Timed Get up and Go Test  

TMS Transcranial magnetic stimulation 

TN True negative 

TP True positive 

TUS Transcranial ultrasound 

UCSF University of California-San Francisco 

UDysRS Unified Dyskinesia Rating scale 
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UPDRS Unified Parkinson’s Disease Rating Scale 
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