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ABSTRACT 

Building an accurate and reliable model for prediction for different 

application domains, is one of the most significant challenges in 

knowledge discovery and data mining. Sometimes, improved data 

quality is itself the goal of the analysis, usually to improve processes 

in a production database and the designing of decision support. As 

medicine moves forward there is a need for sophisticated decision 

support systems that make use of data mining to support more 

orthodox knowledge engineering and Health Informatics practice. 

However, the real-life medical data rarely complies with the 

requirements of various data mining tools. It is often inconsistent, 

noisy, containing redundant attributes, in an unsuitable format, 

containing missing values and imbalanced with regards to the 

outcome class label.  

Many real-life data sets are incomplete, with missing values. In 

medical data mining the problem with missing values has become a 

challenging issue. In many clinical trials, the medical report pro-

forma allow some attributes to be left blank, because they are 

inappropriate for some class of illness or the person providing the 

information feels that it is not appropriate to record the values for 

some attributes. The research reported in this thesis has explored the 

use of machine learning techniques as missing value imputation 

methods. The thesis also proposed a new way of imputing missing 
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value by supervised learning. A classifier was used to learn the data 

patterns from a complete data sub-set and the model was later used 

to predict the missing values for the full dataset. The proposed 

machine learning based missing value imputation was applied on the 

thesis data and the results are compared with traditional Mean/Mode 

imputation. Experimental results show that all the machine learning 

methods which we explored outperformed the statistical method 

(Mean/Mode).  

The class imbalance problem has been found to hinder the 

performance of learning systems. In fact, most of the medical 

datasets are found to be highly imbalance in their class label. The 

solution to this problem is to reduce the gap between the minority 

class samples and the majority class samples. Over-sampling can be 

applied to increase the number of minority class sample to balance 

the data. The alternative to over-sampling is under-sampling where 

the size of majority class sample is reduced. The thesis proposed one 

cluster based under-sampling technique to reduce the gap between 

the majority and minority samples. Different under-sampling and 

over-sampling techniques were explored as ways to balance the data. 

The experimental results show that for the thesis data the new 

proposed modified cluster based under-sampling technique performed 

better than other class balancing techniques. 
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In further research it is found that the class imbalance problem not 

only affects the classification performance but also has an adverse 

effect on feature selection. The thesis proposed a new framework for 

feature selection for class imbalanced datasets. The research found 

that, using the proposed framework the classifier needs less 

attributes to show high accuracy, and more attributes are needed if 

the data is highly imbalanced. 

The research described in the thesis contains the flowing four novel 

main contributions. 

a) Improved data mining methodology for mining medical data 

b) Machine learning based missing value imputation method 

c) Cluster Based semi-supervised class balancing method 

d) Feature selection framework for class imbalance datasets 

The performance analysis and comparative study show that the use 

of proposed method of missing value imputation, class balancing and 

feature selection framework can provide an effective approach to data 

preparation for building medical decision support. 
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CHAPTER 1 : INTRODUCTION  

1.1 Motivation of the research  

Information retrieval and data mining are two components of the 

same problem, the search for information and extraction of 

knowledge from large amounts of data, very large databases or data 

warehouses. As medicine moves forward there is a need for 

sophisticated decision support systems that make use of data mining 

to support more orthodox knowledge engineering and Health 

Informatics practice. In general data mining and machine learning 

models can be used to discover knowledge or rules from a data set, 

which can then be used to solve different problems, such as 

classification, prediction, clustering and mining association rules etc. 

A suitable data mining methodology can give a better way of solving 

many complex problems.  

Real-life data rarely complies with the requirements of various data 

mining tools. It is often inconsistent, noisy, containing redundant 

attributes, in an unsuitable format, and containing missing values. 

The problem with missing attribute values is a very important issue in 

Data Mining. In general, methods to handle missing values belong 

either to sequential methods or parallel methods (Maimon and 

Rokach 2010). Clinical data often contains many missing values and 

typically the datasets are imbalanced with regard to the class label of 
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interest. A well balanced training dataset is very important in creating 

a good training set for the development of classifiers. Most existing 

classification methods tend not to perform well on minority class 

examples when the dataset is extremely imbalanced, because they 

aim to optimize the overall accuracy without considering the relative 

distribution of each class (Liu et al. 2011). 

The need for a good data preparation methodology for the purpose of 

medical data mining and decision support was the primary motivation 

of the research.  

1.2 Research problem overview  

The adoption of clinical governance in the NHS has mandated the 

development of appropriate and reliable clinical data-sets for use in 

comparative audit (Scally 1998). These data-sets will be useless 

without the ability to interrogate and analyse them in a meaningful 

way. A validated data mining model would allow them to set 

achievable national standards and thereby to improve quality of care 

throughout clinical units in the UK by implementing guidelines and 

allowing comparative audit using local and national data-sets. Most of 

the existing predictive models, usually based on linear statistical 

analysis, have proved disappointing. Statistical methods such as 

statistical regression, Cox proportional-hazards regression, logistic 

regression, inverse variance weighted method; or groups’ comparison 

have been commonly used in different studies (Bellamy et al. 2007, 
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Howard et al. 2006, Ruijter W 2009). However, these methods are 

usually used to explain the data and to model the progression of the 

disease rather than to make predictions for populations or individual 

patients. 

Many researchers have identified several important and challenging 

issues (Sittig et al. 2008, Fox et al. 2010, Bellazzi and Zupan 2008) 

for clinical decision support. In ‘‘Grand challenges for decision 

support” Sittig et. all (2008) set out 10 critical problems for 

‘‘designing, developing, presenting, implementing, evaluating, and 

maintaining all types of clinical decision support capabilities for 

clinicians, patients and consumers”. However Sittig et al.’s 

identification covers little about data pre-processing. Sometimes, 

improved data quality is itself the goal of the analysis, usually to 

improve processes in a production database (Dasu and Johnson 

2003) and the design of decision support. 

Typically, two types of databases are available in medical domains 

(Dasu and Johnson 2003). The first is the dataset acquired by 

medical experts, which are collected for a special research topic 

where data collection is triggered by the hypothesis of a clinical trial. 

The other type is a huge dataset retrieved from hospital information 

systems. These data are stored in a database automatically without 

any specific research purpose. These data records are often used for 

further analysis and building clinical decision support. These types of 
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datasets are often very complex where the numbers of records are 

very huge, with a large number of attributes for each record. This 

data often contains many missing values and typically the datasets 

are imbalanced with regard to the class label of interest.  

Many real-life data sets are incomplete, with missing values. The 

problem with missing attribute values is a very important issue in 

data mining, and has become a challenging issue in medical data 

mining. In many clinical trials, the medical report pro-forma allow 

some attributes to be left blank, because they are inappropriate for 

some class of illness or the person providing the information feels 

that it is not appropriate to record the values for some attributes 

(Almeida et al. 2010). 

Most medical datasets are also not balanced with regard to their class 

labels. Most existing classification methods tend not to perform well 

on minority class examples when the dataset is extremely 

imbalanced. This is because they aim to optimize the overall accuracy 

without considering the relative distribution of each class (Liu et al. 

2011). Therefore, there is a need of a good sampling technique for 

such datasets where the target classes are not balanced and the 

given labels are not always appropriate. Indeed in some cases it has 

been noticed that the given class labels do not accurately represent 

characteristics of the data record and do not accurately reflect the 

nature of a patient. For example, some patients are registered as 
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dead but may have died for some other reason than the target cause 

and some patients are alive by chance or may have died later.  

The aim of this project is to investigate suitable data preparation 

techniques for feature cleaning and reduction and making ready to 

prepare a good decision support model for medical data mining. 

Clinical data from cardiovascular medicine and other domains (Merz 

1996) are available for use in this project. 

1.3 Research questions  

There are a wide range of research issues to be addressed in this 

project. These can be summarised at a high level as the following set 

of over-arching questions: 

a) How can data pre-processing be improved for medical data 

mining? 

b) What forms of techniques (and metrics) are useful for 

determining data cleansing, feature reduction and 

classification? 

These questions are addressed via specific objectives as detailed in 

the following section. 

1.4 Aim and objectives 

The research associated with this project addresses data mining, 

principled methodologies for its application, and the development of 
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new data preparation methodologies. A set of specific aims can be 

defined as: 

a) Investigation of systematic data preparation techniques for data 

cleansing and feature reduction.  

b) Investigation and Development of metrics for underpinning 

missing value imputation. 

c) Investigation and Development of metrics for underpinning 

class imbalance problem. 

d) Investigation and Development of metrics for underpinning 

feature selection for class imbalanced dataset. 

e) Compare the performance of different classifiers and clustering 

algorithms on thesis cardiovascular data.  

1.5 Thesis structure  

The research aims stated above will be dealt within the next eight 

chapters. Chapter two describes decision support, data mining and 

the issues with medical data. Chapter three describes different 

machine learning algorithms for classification and clustering used in 

this research. Chapter four introduces the process of dimension 

reduction and feature selection in data mining. The chapter five is the 

overview of the research case studies. Chapter six, chapter seven and 

chapter eight present the experiments and analysis of the outcome of 

the case studies discussed in chapter five. Chapter 9 unites the work 
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of the previous chapters in a practical setting. The thesis concludes in 

this chapter with an analysis and a discussion of the research outlined 

in the previous chapters. The final chapter ends with conclusions and 

suggestions for future work and possible extensions to the research 

outlined in this thesis.  
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CHAPTER 2 : INFORMATION MANAGEMENT 

AND DECISION SUPPORT IN MEDICINE  

2.1 Introduction  

While evidence-based medicine has increasingly broad-based support 

in health care (Bates et al. 2003), it remains difficult to get physicians 

to actually practice it. Information systems can provide decision 

support to users at the time they make decisions, which results in 

improved quality of care. Clinical decision support systems have been 

coined as active knowledge systems, which use two or more items of 

patient data to generate case-specific advice. This chapter presents a 

background for decision support, clinical decision support, and 

methodologies for data mining. The issues and challenges with 

medical data mining are also discussed in this chapter.  

2.2 Decision support  

The term Decision Support is used often and in a variety of contexts 

related to decision making. Decision Support is utilizing computer-

based systems that facilitate the use of data, models, and structured 

decision processes in decision making. Some key words associated 

with Decision Support are: Decision Theory, Decision Analysis, 

Operations Research, Management Science, and Artificial Intelligence 

(Mladenić 2003). Decision Support is a broad field concerned with 
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supporting people in making decisions. It is a part of Decision 

Sciences, which it shares with normative and descriptive approaches 

to decision making (Bouyssou 2010). Decision Support encompasses 

a number of disciplines, including operations research, decision 

analysis, Decision Support Systems, data warehousing, and group 

decision support. The major future contributions to decision support 

are expected in relation with data warehouses, integration with data 

mining, developments in qualitative modelling and “soft “computing, 

and networking (Mladenić 2003). 

2.3 Clinical decision support  

Clinical decision supports are computer systems designed to impact 

clinician decision making about individual patients at the point in time 

that these decisions are made (Berner 2007). A typical decision 

support system consists of five components: the data management, 

the model management, the knowledge engine, the user interface, 

and the user(s). 

2.4 Data mining 

There are many definitions of data mining. Hand et al (2001) 

produced a general definition as follows:  

"Data mining is the analysis of (often large) observational data sets 

to find unsuspected relationships and to summarize the data in novel 
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ways that are both understandable and useful to the data owner.” 

(Hand et al. 2001) Chapter 1; Page 1) 

Data mining is the way to get information buried in the data, enabling 

the extraction of hidden patterns from large and complex collections 

of data. In medical domains, data mining can be seen as the 

production of a pattern recognition system to predict future patient 

risks from existing patient records. 

2.4.1  Example data mining methodology 

There are two popular existing data mining methodologies for the 

“knowledge discovery from data” process (kdnuggets 2007): 

CRISP_DM (Catley et al. 2009), and SEMMA (Matignon and Institute 

2007).  

 

Figure 2-1: The methodology of CRISP-DM (Inc 2000) 

CRISP-DM is being developed by an industry led consortium as the 

Cross-Industry Standard Process Model for Data Mining (see Figure 
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2.1). It consists of a set of tasks described at four levels from general 

to specific (Inc 2000). At the top level, the data mining process is 

organized into a number of phases where each phase consists of 

several generic tasks at the second level. The second level includes 

generic tasks which can cover all possible data mining situations such 

as the process tasks, possible data mining applications, and 

techniques. In the third level, the specialized task shows detailed 

actions in generic tasks for certain specific situations. For example, if 

the generic task is a “dealing with missing data”, the more detailed 

tasks in the third level will be a category of specialized missing data 

tasks namely “dealing with missing numeric values”; “dealing with 

missing categorical values”; and so on. The fourth level, as the 

process instance, is a record of the actions, decisions, and results of 

an actual data mining engagement.  

An example of the use of CRISP-DM methodology of data mining in 

multidimensional medical data streams can be found in the work of 

Catley (2009). 

SEMMA is a data mining methodology derived from the Statistical 

Analysis Software Institute (Matignon and Institute 2007) consisting 

of the five steps: Sample, Explore, Modify, Model, and Assess 

(SEMMA). All cases from a data set are taken and partitioned into the 

training, validation and test sets in the Sample step. The Explore step 

allows data sets to be visualised statistically and graphically. The 
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Modify step allows the transformation of the data or deals with 

missing values in the data set. The Model step requires the fitting of 

the data mining and machine learning techniques such as Decision 

Tree and Neural Networks. Lastly, the Assess step means using 

alternative partitions of test sets to validate the derived model in 

order to estimate how well the data mining process performs.  

According to (Fayyad 1996), the Knowledge Discovery in Database 

(KDD) process is interactive and iterative, involving numerous steps 

with many decisions made by the user. The process has nine 

interactive and iterative steps presented in figure 2.2. 

 

Figure 2-2: An overview of the steps of KDD process (Fayyad 1996) 

First is developing an understanding of the application domain and 

the relevant prior knowledge and identifying the goal of the KDD 

process from the customer’s viewpoint. 
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Second is creating a target data set: selecting a data set, or focusing 

on a subset of variables or data samples, on which discovery is to be 

performed. 

Third is data cleaning and pre-processing. Basic operations include 

removing noise if appropriate, collecting the necessary information to 

model or account for noise, deciding on strategies for handling 

missing data fields, and accounting for time-sequence information 

and known changes. 

Fourth is data reduction and projection; the finding of useful features 

to represent the data depending on the goal of the task. With 

dimensionality reduction or transformation methods, the effective 

number of variables under consideration can be reduced or in-variant 

representations for the data can be found. 

Fifth is matching the goals of the KDD process (step 1) to a particular 

data-mining method. For example, summarization, classification, 

regression, clustering, and so on. 

Sixth is exploratory analysis and model and hypothesis selection: 

choosing the data-mining algorithm(s) and selecting method(s) to be 

used for searching for data patterns. This process includes deciding 

which models and parameters might be appropriate (for example, 

models of categorical data are different than models of vectors over 

the reals) and matching a particular data-mining method with the 
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overall criteria of the KDD process (for example, the end user might 

be more interested in understanding the model than its predictive 

capabilities). 

Seventh is data mining: searching for patterns of interest in a 

particular representational form or a set of such representations, 

including classification rules or trees, regression, and clustering. The 

users can significantly aid the data mining method by correctly 

performing the preceding steps. 

Eighth is interpreting mined patterns, possibly returning to any of 

steps 1 through 7 for further iteration. This step can also involve 

visualization of the extracted patterns and models or visualization of 

the data given the extracted models. 

Ninth is acting on the discovered knowledge: using the knowledge 

directly, incorporating the knowledge into another system for further 

action, or simply documenting it and reporting it to interested parties. 

This process also includes checking for and resolving potential 

conflicts with previously believed (or extracted) knowledge. 

2.4.2  Thesis data mining methodology 

The data mining methodology adopted for this thesis can be seen in 

Figure 2.2 with little modification in the steps see figure 2.3. This 

methodology is derived from the knowledge discovery in database 
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process of (Fayyad 1996). The following are reasons for using this 

specific methodology: 

The existing methodologies are not suitable for the thesis data. The 

CRISP-DM and SEMMA methodologies are too big and too complicated 

for use with the thesis data domain. For example, CRISP-DM contains 

the “Business Understanding” and “Deployment” phases whereas the 

thesis methodology does not. SEMMA includes the task of 

representing data sets statistically and graphically, again not required 

for the purposes of this thesis. The existing methodologies also do 

not cover the class balancing and which is an important part of 

medical data mining.  

Figure 2-3: data mining methodology 

Data mining 
warehouse  

Missing value Imputation  

Balance class label of 
the data records 

Feature Selection 

Data Transformation  

Classifiers    

Data 
warehouse  

Data  

Classification 
outcome comparison/ 
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Classifiers    Classifiers    
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Thesis Methodology: 

 

Step 1 (Selection): The data set relevant to the experiments will be 

chosen from different data files (Hull Site Data, Dundee Site Data) to 

make the data mining warehouse. 

Step 2 (Data Preparation and feature selection): Data will be 

analyzed by using data mining methods in order to define how the 

data is to be made more meaningful and useable for the classification 

techniques used in later steps. 

Step 2.1: Data will be cleaned by supplying missing values 

with conventional statistical methods and also machine learning 

techniques will be used to predict missing values. 

Step 2.2: Class distributions of the data records of the 

dataset will be balanced. For example, a cluster based under-

sampling technique can be used to under sample the majority 

class to reduce the ratio gap between the classes. 

Step 2.3: Data will be transformed to more appropriate value 

types such as numerical as per the need of the classifier.  

Step 2.4: Different techniques of feature selection technique 

will be used to select relevant features. For experimentation, 

this phase will be done in different ways. Feature selection will 

be done on original data and also data balanced by different 

balancing techniques. 
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Step 3 (Data Mining Techniques): Different classifier and clustering 

algorithms will be applied on the data sets prepared in step 2. The 

outcome will be stored for further analysis. 

Step 4 (Comparison/ Evaluation): The classified results are compared 

or evaluated based on standard measures such as mean square error, 

confusion matrix, sensitivity and specificity rates, the positive 

predictive value, and negative predictive value.  

Step 5 (Building New Models): The data set is then stored in the 

“Data Mining Warehouse” for further prediction and analysis 

processes.  

2.5 Data mining in medicine  

In the past twenty years there has been a transformation in patient 

record management, with medical information being stored 

electronically as Hospital Information System or medical database 

(e.g. see European Institute for EHealth Records (Eurorec 2014)). In 

order to get knowledge out of the data, more intelligent techniques 

such as data mining and classical statistical methods have been used 

(Shusaku 2000). Medical decision support systems are designed to 

support clinicians in their diagnosis by mostly the use of linear 

statistical analysis, which have in the main produced disappointing 

results (Bellamy et al. 2007); (Howard et al. 2006); (Ruijter W 

2009); (Wang et al. 2006).  
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Machine learning is a branch of artificial intelligence, concerns the 

construction and study of systems that can learn from data. The use 

of Machine Learning techniques has increased in the last ten years, to 

overcome the weakness of the classical statistical models. The core of 

machine learning deals with representation and generalization. 

Representation of data instances and functions evaluated on these 

instances are part of all machine learning systems. Generalization is 

the property that the system will perform well on unseen data 

instances; the conditions under which this can be guaranteed are a 

key object of study in the subfield of computational learning theory. 

Most of the cases of the data mining process classifiers are used to 

solve the prediction problem and which is a subset of machine 

learning techniques. Many variations of classical K-mean clustering 

algorithm (discussed in section 3.2.2) are used in the medical domain 

such as KMIX (Davis & Nguyen, 2007), and K-Mean (Thangavel 

2006).  

The design of Artificial Neural Network (Schalkoff 1997) was originally 

motivated by the phenomena of learning and recognition (Bishop 

1995). Neural network techniques can be divided into two alternative 

ways of learning: supervised and unsupervised. Many different types 

of neural network are used in medical domain such as Multilayer 

Perceptrons (Aeinfar et al. 2009), Support Vector Machine (SVM) 
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(Guyon I 2002), and (unsupervised) Self-Organising Maps (Haykin 

2009).  

2.6 Fuzzy logic in data mining  

The term "fuzzy logic" was introduced with the 1965 proposal of fuzzy 

set theory by Lotfi A. Zadeh (Zadeh 1965), is now widely used in data 

mining in different domains. Looking for too strict a relation between 

variables may be impossible because of the variability of descriptions 

in the data, while looking for an imprecise relation between variables 

or to a crisp relation between approximate values of variables may 

lead to a better solution. Fuzzy logic provides means to represent 

approximate knowledge, where other expert systems use knowledge 

base generated from a set of crisp samples. Fuzzy logic has been 

used in medical domains, for example Fuzzy ART based classification 

(Benkaci et al. 2010), fuzzy clustering (Mirkin and Nascimento 2012, 

Tutmez 2012, Wu 2012), Fuzzy-Rough sets (Jensen and Qiang 

2009b, Ren and Qiang 2011, Jensen and Qiang 2009a) and much 

more.  

Tez (2008) proved that Neuro-Fuzzy (Jang et al. 1997) systems can 

incorporate data from many clinical and laboratory variables to 

provide better diagnostic accuracy in the prediction of acute 

appendicitis. The basic idea of combining fuzzy systems and neural 

networks is to design an architecture that uses a fuzzy system to 
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represent knowledge in an interpretable manner and the learning 

ability of a neural network to optimize its parameters. Adaptive 

Neuro-Fuzzy Inference Systems (or ANFIS) (Jang et al, 1997, chapter 

12) have been used for breast cancer detection (Übeyli 2009), the 

diagnosis of Aphasia (Fazeli et al. 2008) and few more applications of 

data mining in the area of medicine (Yardimci 2009, Benkaci et al. 

2010, Kochurani et al. 2007, Ubeyli and Guler 2005).  

2.6.1  Application of fuzzy logic in data mining process 

Fuzzy logic can be applied in different phases of data mining, for 

example: 

Problem understanding phases: In these phases, fuzzy set 

methods can be used to formulate, for example, the background 

domain knowledge in vague manner, which can be used for the 

subsequent modelling phases (Bai et al. 2006). 

Data preparation step: Fuzzy methods can be used to detect 

outliers. Fuzzy clustering can be used to cluster the data and find 

those data points that lay far away from the cluster. Fuzzy rules 

based algorithm can also be used as a missing values imputation 

method (see section 5.2.2).  

Modelling phase:  

As neural networks tend to do badly since the domain knowledge 

cannot be incorporated into the neural networks (Hongjun et al. 
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1996), fuzzy logic based models utilize the domain knowledge in 

coming up with rules of data selection and extraction. Fuzzy data 

analysis approaches can be applied to build classifiers. One kind of 

application is to analyze fuzzy data, which are derived from imprecise 

measurement instruments or from the descriptions of human domain 

experts.  

Evaluation phase: Fuzzy modeling methods are interpretable 

systems. Therefore, they can easily be checked for plausibility against 

the intuition and expectations of human experts (Bai et al. 2006). 

2.7  Issues and challenges with clinical data mining and 

decision support 

The application of data mining, knowledge discovery and machine 

learning techniques to medical and health data is challenging and 

intriguing (Cios & Moore, 2002). The datasets usually are very large, 

complex, heterogeneous, and hierarchical and vary in quality. Data 

pre-processing and transformation are required even before mining 

and discovery can be applied. Sometimes the characteristics of the 

data may not be optimal for mining or analytic processing. The 

challenge here is to pre-process the data into appropriate form before 

any learning or mining can begin (Hosseinkhah et al. 2009). 

 Many researchers have identified several important and challenging 

issues (Sittig et al. 2008, Fox et al. 2010, Bellazzi and Zupan 2008) 
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for clinical decision support. In ‘‘Grand challenges for decision 

support” Sittig et al. (2008) set out 10 critical problems for 

‘‘designing, developing, presenting, implementing, evaluating, and 

maintaining all types of clinical decision support capabilities for 

clinicians, patients and consumers”.  

Sittig et. all (2008) placed the grand challenges into the following 

three large categories: 

A) Improve the effectiveness of CDS interventions 

 Improve the human-computer interface 

 Summarize patient-level information 

 Prioritize and filter recommendations to the user 

 Combine recommendations for patients with co-morbidities 

 Use free-text information to drive clinical decision support 

B) Create new CDS interventions 

 Prioritize CDS content development and implementation 

 Mine large clinical databases to create new CDS 

C) Disseminate existing CDS knowledge and interventions 

 Disseminate best practices in CDS design, development, and 

implementation 

 Create architecture for sharing executable CDS modules and 

services 

 Create internet-accessible clinical decision support repositories 
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However Sittig et al.’s identification covers very little about data pre-

processing. Sometimes, improved data quality is itself the goal of the 

analysis, usually to improve processes in a production database 

(Dasu and Johnson 2003) and designing of decision support. 

Many other researchers also mention several other issues of clinical 

decision support related to clinical data and data pre-processing. The 

ones most relevant to this thesis are as follows. 

High volume of data: 

Due to the high volume of the medical databases, current data 

mining tools may require extraction of a sample from the database 

(Cios and Moore 2002, Maimon and Rokach 2010). Hence good 

sampling techniques are needed to select data records for further 

analysis.  

Update: 

Medical databases are updated constantly by adding new results for 

lab tests and new ECG signals for patients (Hosseinkhah et al. 2009). 

Inconsistent data representation: 

Inconsistencies due to data entry errors are common problems. 

Inconsistencies due to data representation can exist if more than one 

model for expressing a specific meaning exists. Additionally, the data 

type does not always reflect the true data type (Cios and Moore 

2002). If we consider the cardiovascular risk based on dead or alive 
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of previous patient’s records, some patients have smellier properties 

of most of the dead patients but still alive and some patients may 

have died for some other cause.      

Number of variables: 

High-level information is essential to support medical diagnostic and 

decisions for the clinicians. The computational complexity is not linear 

for certain data mining techniques. In such cases, the time required 

may become infeasible as the number of variables grow (Tsang-

Hsiang et al. 2006). 

Missing/Incomplete data: 

Clinical database systems do not often collect all the data required for 

analysis or discovery. In many clinical trials, the medical report pro-

forma allow some attributes to be left blank, because they are 

inappropriate for some class of illness or the person providing the 

information feels that it is not appropriate to record the values for 

some attributes (Almeida et al. 2010). For example the main thesis 

data have 23 attributes and 823 records where 18 attributes have a 

missing value frequency from 1% to 30% and out of 823 records, 

613 records have 4% to 56% missing values in their attributes (See 

appendix A). 
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Noise: 

Medical databases include noise. This can include abbreviations in 

categorical attributes and outlier values in numerical attributes. As an 

example of numerical outlier values in the current research data, the 

attribute "PACK YRS" has a big gap between the maximum value of 

160, and the minimum value of 2. This affects the transformation 

process as it unduly changes the mean of the attribute values. For 

different kind of example, the attribute “CAROTID_DISEASE” includes 

a mixture of abbreviated and fully specified values such as 

“asymptomatic carotid disease”, “Asx”, and so on. In fact, both these 

values have the same meaning (i.e. are homonyms, See appendix A). 

Therefore, data mining techniques should be improved to make them 

less sensitive to noise (Tsumoto 2000, Han and Kamber 2011). 

Class Imbalance: 

Most medical datasets are not balanced in regards to their class 

labels. Most existing classification methods tend not to perform well 

on minority class examples when the dataset is extremely 

imbalanced. This is because they aim to optimize the overall accuracy 

without considering the relative distribution of each class (Liu et al. 

2011). Therefore, there is a need of a good sampling technique for 

such datasets where the target classes are not balanced.  
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Validity of Class Label: 

In some medical datasets it has been noticed that the given class 

labels do not accurately represent characteristics of the data record. 

Indeed in many cases the class labels do not accurately reflect the 

nature of a patient. Some patients may have same properties to be in 

the group of high risk patient but they are labelled as low risk as they 

are alive. On the other hand some patients may have died with other 

non-target cause.  A quantitative preliminary study shows that sets 

acquired from clustering does not match to given outcome. This 

suggests that the given labels are not always appropriate. 

2.8 Summary  

This chapter provides a general background of decision support, data 

mining and data mining methodology. There are two popular existing 

data mining methodologies, CRISP_DM, and SEMMA. But the existing 

methodologies are not suitable for the thesis data. The data mining 

methodology adopted for this thesis is derived from the process of 

knowledge discovery in database (KDD) of Fayyad (1996). 

The application of data mining to medical and health data is very 

challenging. The datasets usually are very large, complex, 

heterogeneous, and hierarchical and vary in quality. Sittig et. all 

(2008) placed the grand challenges of clinical data mining into three 

large categories: Improve the effectiveness of Clinical Decision 
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Support interventions, Create new Clinical Decision Support 

interventions and Disseminate existing Clinical Decision Support 

knowledge and interventions. However Sittig et al.’s identification 

covers very little about data pre-processing.  

Sometimes, improved data quality is itself the goal of the analysis, 

usually to improve processes in a production database and designing 

of decision support. Many other researchers also mention several 

other issues of clinical decision support related to clinical data and 

data pre-processing. The ones most relevant to this thesis are high 

volume of data, data update, inconsistent data representation, 

number of variables, missing/incomplete data, and class imbalance. 

The rest of the thesis will be dealing with some of the above mention 

issues with data pre-processing. Problem with missing value, class 

imbalance and feature selection for imbalance data are discuss in 

details in chapter 5; over view of research case studies.  

The next chapter will introduce some data mining and machine 

learning techniques which are used for most of the experiments in 

subsequent chapters.  
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CHAPTER 3 : CLUSTERING, CLASSIFIERS AND 

ALGORITHMS 

3.1 Introduction 

This chapter presents a background on the use of clustering and 

classification for data mining. Some basic methods of machine 

learning (see section 2.5) are introduced. Alternative evaluation 

metrics for classification performance are introduced in this chapter. 

They are: confusion matrix; accuracy; the rates of sensitivity and 

specificity as well as the positive predictive value and the negative 

predictive value. These rates are used in all thesis experiments in 

later chapters for discussions and comparisons. 

3.2 Clustering  

Clustering and classification are both fundamental tasks in Data 

Mining. Clustering is a form of unsupervised learning whereby a set of 

observations (i.e., data points) is partitioned into natural groupings or 

clusters of patterns in such a way that the measure of similarity 

between any pair of observations assigned to each cluster minimizes 

a specified cost function (Haykin 2009). Clustering groups data 

instances into subsets in such a manner that similar instances are 

grouped together in a cluster. Formally, the clustering structure is 
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representation of a sets 𝐶 = 𝐶1, …… . 𝐶𝑘 of S, such that: 𝑆 = 𝑈𝑖=1
𝐾 𝐶𝑖 and 

𝐶𝑖 ∩ 𝐶𝑗 = ∅ for 𝑖 ≠ 𝑗 (Maimon and Rokach 2010). 

Clustering is essentially the production of a set of such clusters, 

usually containing all objects in the data set. Additionally, it may 

specify the relationship of the clusters to each other, for example a 

hierarchy of clusters embedded in each other. Clustering can be 

roughly distinguished as: Hard clustering (Kanzawa et al. 2011), 

where each object belongs to a cluster or not; and Soft clustering, 

where each object belongs to each cluster to a certain degree (e.g. a 

likelihood of belonging to the cluster). Finer distinctions are possible, 

for example:  

Strict partitioning clustering: here each object belongs to exactly one 

cluster 

Strict partitioning clustering with outliers: an object can belong to no 

cluster, and so be considered an outlier. 

Overlapping clustering (also: alternative clustering, multi-view 

clustering)(Becker et al. 2012): where objects may belong to more 

than one cluster. 

Hierarchical clustering (Iida et al. 2010): any objects that belong to a 

child cluster also belong to the parent cluster. 

Subspace clustering (Chen et al. 2012): where clusters are not 

expected to overlap.  
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3.2.1 Distance matrix 

Many clustering methods use distance measures to determine the 

similarity or dissimilarity between any pair of objects. For the objects 

xi and xj the distance d (xi , xj) can be determined by different 

distance measures. The most commonly used distance measure is 

known as Euclidian Distance (Lele and Richtsmeier 1995). The 

Euclidean distance between point’s xi and xj is the length of the line 

segment connecting them. 

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖 − 𝑥𝑗)2  𝑛
𝑖=1          (3-1) 

Different measures are used for different types of attributes. For 

attributes of type binary, nominal and mixed type attributes the 

distance between points can be defined as follows (Maimon and 

Rokach 2010):  

Distance Measures for Binary Attributes  

𝑑(𝑥𝑖 , 𝑥𝑗) =
𝑟+𝑠

𝑞+𝑟+𝑠+𝑡
                  (3-2) 

Where q is the number of attributes that equal 1 for both objects; t 

is the number of attributes that equal 0 for both objects and s and 

r are the number of attributes that are not equal for both objects.  

Distance Measures for Nominal Attributes 

𝑑(𝑥𝑖 , 𝑥𝑗) =
𝑝−𝑚

𝑝
                         (3-3) 
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Where p is the total number of attributes and m is the number of 

matches.  

Distance Metrics for Mixed-Type Attributes 

Distance of mixed type attributes can be calculated by combining the 

matrixes described above. The dissimilarity 𝑑(𝑥𝑖 , 𝑥𝑗) of two instances, 

containing p attributes of mixed types, can be defined as (Maimon 

and Rokach 2010): 

𝑑(𝑥𝑖 , 𝑥𝑗) =
∑ 𝛿𝑖𝑗

(𝑛)
𝑑𝑖𝑗
(𝑛)𝑝

𝑛=1

∑ 𝛿𝑖𝑗
(𝑛)𝑝

𝑛=1

                     (3-4) 

Where the indicator 𝛿𝑖𝑗
(𝑛) = 0 if one of the values is missing. The 

contribution of attribute n to the distance between the two objects 

𝑑(𝑛)(𝑥𝑖 , 𝑥𝑗) is computed according to its type: 

 If the attribute is binary or categorical 𝑑(𝑛)(𝑥𝑖 , 𝑥𝑗) = 0 if 𝑥𝑖𝑛 = 𝑥𝑗𝑛, 

otherwise 𝑑(𝑛)(𝑥𝑖 , 𝑥𝑗) = 1. 

 If the attribute is continues-valued, 𝑑𝑖𝑗
(𝑛) =

|𝑥𝑖𝑛−𝑥𝑗𝑛|

maxℎ𝑥ℎ𝑛−minℎ𝑥ℎ𝑛
, where 

h runs over all non-missing objects for attribute n. 

More on different distance measures can be found in (Maimon and 

Rokach 2010).  
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3.2.2  K-Means clustering 

K-Means is one of the simplest unsupervised learning algorithms, first 

proposed by Macqueen in 1967. It is used by many researcher to 

solve some well-known clustering problems (Han and Kamber 2001). 

The clustering procedure follows a simple algorithm to classify a given 

data set through a certain number of clusters (assume k clusters). 

The algorithm first randomly initializes the clusters center. 

The next step is to calculate the distance (discussed in the above 

section) between an object and the centroid of each cluster; then 

take each point belonging to a given data set and associate it to the 

nearest centre and recalculate the cluster centres. The process is 

repeated with the aim of minimizing a squared error objective 

function given by:  

             𝐽(𝑣) = ∑ ∑ (||𝑥𝑖𝑗
𝐶𝑖
𝑗=1

𝐾
𝑖=1 − 𝑣𝑗||)

2                   (3-5) 

Where, 

𝑥𝑖𝑗 is the jth point in the cluster 

 vi is the ith cluster  

 ||𝑥𝑖𝑗 − 𝑣𝑗|| is the Euclidean distance between 𝑥𝑖𝑗 and 𝑣𝑗 

 𝐶𝑖 is the number of data points in 𝑖𝑡ℎcluster. 

 K is the number of cluster. 
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Algorithm 3.1: k-means clustering 

Let 𝑥 = {𝑥1, , , , , , , 𝑥𝑛} be the set of data points and 𝑉 =  {𝑣1, , , , , , 𝑣𝑛} be the set of 

centers. 

Step 1: randomly select the cluster centres c1….ck  

Step 2: calculate the distance between each data point and the cluster 

          centres using some distance matrix (commonly Euclidean distance is 

used).  

Step 3: assign the data points to the cluster centre whose distance from the 

cluster centre is minimum of all the cluster centres. 

Step 4: recalculate the new cluster centre using  

 𝑣𝑖 = (
1
𝑐𝑖⁄ )∑ 𝑥𝑖

𝐶𝑖
𝑗=1                                                                    (3-6) 

Step 5: recalculate the distance between each data point and newly 

           obtained cluster centres. 

Step 6: if no data point was reassigned then stop, otherwise repeat from  

           step 3. 

3.3 Classification  

Classification is a supervised learning process (Kononenko and Kukar 

2007) that maps the input space into predefined classes. For 

instance, a classifier can be used to classify a cardiovascular patient 

as high risk patient or low risk patient based on given information. 

There are many alternative classifiers, for example, Decision Tree, k-

nearest neighbour algorithm, artificial neural networks, support 

vector machine etc.  
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3.3.1  Decision Tree  

A decision tree is a classifier expressed as recursive partition of the 

instance space. The decision tree consists of nodes that branch within 

a rooted tree. It starts with a root at the top that has no incoming 

edges. A node with outgoing edges is called an internal node, and all 

the other nodes are called leaves, also known as decision nodes. Each 

leaf is assigned to one class representing the majority target value at 

that node.  

 Figure 3-1: Decision tree presenting the classification of chair and 

table. 

Decision tree inducers are algorithms that automatically construct a 

decision tree from a given dataset. Typically the goal is to find the 

optimal decision tree by minimizing the generalization error (Maimon 

and Rokach 2010) The earliest decision trees were ID3 and 

subsequently C4.5. The algorithms introduced by Quinlan (1985, 

= no 

Backrest 

Arms Chair 

Table Chair 

= no = yes 

= yes 
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1993) have proved to be an effective and popular method for finding 

a decision tree to express information contained implicitly in a data 

set. WEKA (Bouckaert et al. 2010) that was used for thesis 

experiments has the implementation of C4.5 algorithm called J48. A 

brief description of the WEKA is given in the section 3.7. 

Algorithm 3.2 represents a typical algorithm for generating a decision 

tree (Han and Kamber 2001). The algorithm is called with three 

parameters: D, attribute_list, and Attribute_selection_method. D is 

referred to as a data partition. Initially, D is the complete set of 

training tuples and their associated class labels (input training data). 

The parameter attribute_list is a list of attributes describing the 

tuples. Attribute_selection_method specifies a heuristic procedure for 

selecting the attribute that “best” discriminates the given tuples 

according to class. Attribute_selection_method procedure employs an 

attribute selection measure, such as Information Gain (Quinlan 1985) 

or the Gini Index (Park and Kwon 2011). Information gain is an 

impurity based criterion that uses the entropy measure as the 

impurity measure. The expected information gain is the change in 

information entropy H from a prior state to a state that takes some 

information. Let T denote a set of training examples, each of the form 

(X,y) = (x1, x2, x3, ..., xk, y) where xa ∈ vals (a) is the value of the ath 

attribute of example X and y is the corresponding class label. The 
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information gain for an attribute a is defined in terms of entropy H( ) 

as follows: 

𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇) − ∑
|{X ∈  𝑇|𝑥𝑎 = 𝑣}|

|𝑇|
. 𝐻 ({𝑋 ∈  𝑇|𝑥𝑎 = 𝑣})𝑣∈ 𝑣𝑎𝑙𝑠(𝑎)    (3-7) 

Where: 𝐻(𝑇) of discrete random variable T with possible values (t1, 

t2,…tn} and probability mass function 𝑃(𝑇) as: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 𝐻(𝑇) = ∑ 𝑃(𝑡𝑖)𝐼(𝑡𝑖) = −∑ 𝑃(𝑡𝑖𝑖 )log𝑖  𝑃(𝑡𝑖)                    (3-8) 

Algorithm 3.2: Decision Tree Induction  

Input: Data partition, D; Attribute_list: the set of candidate attributes  

Attribute_selection_method: a procedure to determine the splitting criterion 

that “best” partitions the data tuples into individual classes.  

Step 1: Create a node N;  

Step 2: If tuples in D are all of the same class, C then return N as a leaf  

           node labelled with the class C;  

Step 3: If attribute_list is empty then return N as a leaf node labelled with  

           the majority class in D;  

Step 4: Apply attribute_selection_method (D, arrtibute_list) to find the  

           “best” splitting_criterion;  

Step 5: Label node N with splitting_criterion;  

Step 6: If splitting_attribute is discrete-valued and Multi way splits allowed  

           then not to binary trees and remove splitting_attribute.  

Step 8: Partition the tuples and grow sub-tees for each partition  

Step 9: Let Dj be the set of a data tuples in D satisfying outcome j;  

Step 10: If Dj is empty then  

Step 11: Attach a leaf labelled with the majority class in D to node N;  

Step 12: Else attach the node returned by Generate_decision_tree (Dj,  

            attribute list) to node N;  

Step 13: Return N;  
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3.3.2 K Nearest Neighbour algorithm (KNN) 

K Nearest Neighbour Algorithm (KNN) is a method for classifying 

objects based on closest training examples in the feature space. KNN 

is a type of instance-based learning (Aha et al. 1991), or lazy 

learning where the function is only approximated locally and all 

computation is deferred until classification. The K Nearest Neighbour 

algorithm is amongst the simplest of all machine learning algorithms 

where an object is classified by a majority vote of its neighbours, with 

the object being assigned to the class most common amongst its k 

nearest neighbours (k is a positive integer, typically small). If k = 1, 

then the object is simply assigned to the class of its nearest 

neighbour. 

Figure 3-2: KNN Classification  

IBL algorithms introduced by Aha et al. (1991) are the early de 

veloped instance based nearest neighbour algorithms. The IBL 

algorithms assume that similar instances have similar classifications. 
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This leads to their local bias for classifying novel instances according 

to their most similar neighbour’s classification. 

IBL algorithms differ from many other supervised learning methods: 

they do not construct explicit abstractions such as decision trees or 

rules. Most learning algorithms derive generalizations from instances 

when they are presented and use simple matching procedures to 

classify subsequently presented instances. Three versions of IBL 

algorithm IBL1, IBL2, and IBL3 proposed by Aha et al. (1991). 

The IB1 algorithm, described below, is the simplest instance-based 

learning algorithm. The similarity function used here is: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (x, y) = −√∑ 𝑓(𝑥𝑖 , 𝑦𝑖
𝑛
𝑖=1 )          (3-9) 

Where the instance described by n attributes and 𝑓(𝑥𝑖 , 𝑦𝑖) =  (𝑥𝑖 −

𝑦𝑖)
2 for numeric-valued attributes and 𝑓(𝑥𝑖 , 𝑦𝑖) ≠ (𝑥𝑖  ≠ 𝑦𝑖) for 

Boolean and symbolic-valued attributes. 

Algorithm 3.3: The IB1 algorithm 

Step 1: Concept Description (CD)← ∅ 

Step 2: For each 𝑥 𝜖 Training set do  

Step 3:     For each 𝑦 𝜖 CD do 

Step 4:        Sim[y] ← Similarity(x,y) 

Step 5:        ymax ← some 𝑦 𝜖 CD with maximal Sim[y] 

Step 6:        if class(x) = class(ymax) 

Step 7:              then classification ← correct 

Step 8:        else classification ← incorrect 

Step 9:       CD ← CD U {𝑥} 
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Some advance work on k Nearest neighbour algorithm can be found 

in the work of Rasheed et al. (2006), Liao and Li (1997), Meesad and 

Hengpraprohm (2008) and Kissiov and Hadjitodorov (1976). 

3.3.3  Artificial neural network (ANN) 

An Artificial Neural Network (ANN) is an information processing 

paradigm that is a mathematical model inspired by the way biological 

nervous systems work, such as the human brain. In 1943, McCulloch 

and Pitts first introduced the idea of neural networks as computing 

machine and in 1958 Rosenblatt proposed supervised learning 

artificial neural network model by proposing perceptron. 

The perceptron is the simplest form of a neural network used for 

classification of patterns. Basically, it consist of inputs, adjustable 

synaptic weights, bias and activation function (Haykin 2009).  
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Figure 3-3: Single-flow graph of the perceptron 

The synaptic weights of the perceptron are denoted by 𝑤1, 𝑤2, ……𝑤𝑛. 

Correspondingly, the inputs applied to the perceptrons are denoted 
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by 𝑥1, 𝑥2, ……𝑥𝑛. The externally applied bias is denoted by b. The 

decision boundary for a perceptron is given by: 

 𝑦 = 𝑓(∑ 𝑥𝑗𝑤𝑗 + 𝑏
𝑛
𝑗=1 )                 (3-10) 

Single layer perceptron are only capable of learning linearly separable 

patterns; in 1969 a famous book entitled Perceptrons by Marvin 

Minsky and Seymour Papert (Minsky 1969) showed that it was 

impossible for these classes of network to learn an XOR function. It is 

often believed that they also conjectured (incorrectly) that a similar 

result would hold for a multi-layer perceptron network. However, this 

is not true, as both Minsky and Papert already knew that multi-layer 

perceptrons were capable of producing an XOR function.  

A multilayer perceptron is formed through the combination of multiple 

perceptrons in separate layers. There are three main points that 

highlights the basic feature of multilayer perceptron are as follows: 

 The model of each neuron in the network includes a nonlinear 

activation function.  

 The network contains one or more layers that are hidden from 

both the input and output. 

 The network exhibits a high degree of connectivity, the extent 

of which is determined by synaptic weight of the network.  
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Figure 3-4: An example of a multilayer perceptron with two hidden 

layers. 

The back propagation algorithm is one of the well-known learning 

algorithms for multilayer perceptron artificial neural network models. 

In order to understand the algorithm let us take an example of one 

connection initially, between a neuron in the output layer and one in 

the hidden layer shown in Figure 3.4 and the algorithm is presented 

in Algorithm 3.4. 

 

 

 

 

 

 

Figure 3-5: Single connection learning in a Back Propagation network 
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Algorithm 3.4: Back Propagation Algorithm  

Step 1: First apply the inputs to the network and work out the output –  

           where the initial output could be anything, as the initial weights  

           are random numbers. 

Step 2: Next work out the error for neuron B. The error is What we want –    

            What we actually get, in other words: ErrorB = OutputB (1- 

            OutputB)(TargetB – OutputB)  

Step 3: Change the weight. Let W+AB be the new (trained) weight and  

           WAB be the initial weight. W+AB = WAB + (ErrorB x OutputA) 

Step 4: Calculate the Errors for the hidden layer neurons. Back Propagate  

           the error from the output layer.  

Step 5: Having obtained the Error for the hidden layer neurons now proceed  

           as in step 3 to change the hidden layer weights. By repeating this  

          method we can train a network of any number of layers. 

3.3.4  Support vector machine (SVM) 

Support Vector Machines implement complex decision rules by using 

a nonlinear function  to map training points to a high dimensional 

feature space where the labelled points are separable (Haykin 2009). 

A separating hyperplane is found which maximizes the distance 

between itself and the nearest training points - this distance is called 

the margin. Assume that a pattern data set can be described in an m 

dimensional feature space. The idea of a support vector machine is to 

build a hyperplane to separate the positive and the negative patterns 

in a given data set. This hyperplane can be seen as a decision 

surface. The training points that are nearest to this hyperplane can 

be seen as support vectors (see Figure 3.6).  
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Figure 3-6: The description of support vectors 

The key to understanding support vector machines is to see how it 

produces optimal hyperplanes to separate the patterns. According to 

Haykin (2009), two operations to build a support vector machine can 

be summarized as: 

 Map data to higher dimensional space: It is a nonlinear 

mapping based on Cover’s theorem (Haykin 2009). This 

means the following two conditions need to be satisfied: 

o The transformation is nonlinear; 

o And the dimensionality of the feature space is high 

enough. 

 Construct an optimal hyperplane to separate the patterns: 

This construction is based on the use of an inner-product 

kernel to define a linear function separating the vectors in 

feature space. Therefore, the hyperplane can be formed as: 
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∑𝑤𝑗𝜑𝑗(𝑥) + 𝑏 = 0

𝑚

𝑗=1

                                                                                              (3-11) 

Where, x is a vector in input space, 
m

jj x 1)}({ 
is a set of nonlinear 

transformation vectors in feature space, wj are the vector weights, 

and b is the bias. 

More details on how support vector machine works and simple SVM 

algorithm can be find in Vishwanathan et al (2002). 

3.3.5  Ripple-down rule (Ridor) 

The ripple-down rule (Ridor) method is an expert system 

methodology with its origin in the medical expert system GARVAN-

ESI (Horn 1990). The basis of the method is the maintenance and 

retrieval of cases. When a case is incorrectly retrieved, the expert 

identifies how a case stored in a Knowledge Base System (KBS) 

differs from the present case. The ripple-down rule technique creates 

a two way dependency relation between rules such that rule 

activation is investigated only in the context of other rule activation. 

If the premise of a parent rule is true for a particular individual then, 

if has no dependents, its conclusion will be asserted for that 

individual. If, however, it has an ‘if-true’ dependent then that rule, 

and its dependents, will be tested, and the original conclusion will 

only be asserted if the premises of none of them are true for the 

entity. Conversely, if the premise of a parent rule is false for a 
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particular individual, then not only will its conclusion not be asserted 

but also, if it has an ‘if false’ dependent then it, and its dependents, 

will be tested (Brian et al. 1995).  

3.4 Fuzzy logic and fuzzy based classifiers 

3.4.1  Fuzzy logic 

Fuzzy Logic was initiated in 1965, and developed as a completely 

new, elegant approach to vagueness called fuzzy set theory (Zadeh 

1994). In this approach an element belongs to a set to a degree k (0 

 k  1), in contrast to classical set theory where an element must 

definitely belong or not to a set. For example, a classical set “A” is a 

fuzzy set and which is a set without a crisp boundary. The transition 

from “belong to a set” to “not belong to a set” is gradual with fuzzy 

sets, and this smooth transition is characterized by membership 

functions (Jang et al. 1997).  

3.4.2  Fuzzy sets and membership functions 

Let X be a space of objects and x be a generic element of X. By 

defining a characteristic function for each element x in X, a classical 

set A can be represented by a set of ordered pairs (x, 0) or (x, 1), 

which indicates x ∉ A or x ∈ A, respectively. On the other hand the 

fuzzy set (Zadeh 1996) express the degree to which an element 

belongs to a set. Hence the characteristic function of a fuzzy set is 
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allowed to have values between 0 and 1, which denotes the degree of 

membership of an element in a given set. 

If X is a collection of objects denoted generically by x, then a fuzzy 

set A in X is defined as a set of ordered pairs: 

                                                 (3-12) 

Where µA(x) is called the membership function for the fuzzy set A. The 

membership function maps each element of x to a membership grade 

between 0 and 1. Various types of membership functions are used, 

including triangular, trapezoidal, generalized bell shaped, Gaussian 

curves, polynomial curves, and sigmoid functions more details Jang et 

al. (1997).  

3.4.3  Fuzzy set operations  

Fuzzy set operations are similar to crisp set operations. The 

elementary crisp set operations are union, intersection, and 

complement, which in effect correspond to OR, AND, and NOT 

operators, respectively (Rosen 1999).  

Union: 

The union of two fuzzy sets A and B is a fuzzy set C, written as C 

= 𝐴 ∪ 𝐵 or C= 𝐴 OR 𝐵, who’s membership function can be written as:  

 𝜇𝐶(𝑥) = 𝑚𝑎𝑥(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) = 𝜇𝐴(𝑥)𝑉𝜇𝐵(𝑥)                              (3-13) 
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Intersection:  

The intersection of two fuzzy sets A and B is a fuzzy set C, written as 

C = 𝐴 ∩ 𝐵 or C= 𝐴 AND 𝐵, who’s membership function can be written 

as:  

 𝜇𝐶(𝑥) = 𝑚𝑖𝑛(𝜇𝐴(𝑥), 𝜇𝐵(𝑥)) = 𝜇𝐴(𝑥) ʌ 𝜇𝐵(𝑥)                              (3-14) 

Complement: 

The complement of a fuzzy sets A, denoted by Ā and membership 

function can be defined as:  

𝜇Ā(𝑥) = 1 − 𝜇𝐴(𝑥)                                                   (3-15) 

T-norm (triangular norm): 

T-norm (also t-norm or, unabbreviated, triangular norm) is a kind of 

binary operation used in the framework of probabilistic metric spaces 

and in multi-valued logic, specifically in fuzzy logic. A t-norm 

generalizes intersection in a lattice and conjunction in logic. The 

intersection of two fuzzy sets A and B is specified in general by a 

function  

T ∶  [0,1]x [0,1]  → [0,1], which aggregates two membership grade as 

follows (Jang et al. 1997) 

𝜇𝐴∩𝐵(𝑥) = 𝑇 (𝜇𝐴(𝑥), (𝜇𝐵(𝑥) ∗ 𝜇𝐴(𝑥)                                          (3-16) 



CHAPTER 3: CLUSTERING CLASSIFIERS AND ALGORITHMS    

48 

 

3.4.4  Fuzzy logic based classifiers  

A classical fuzzy classifier consists of rules, each one describing one 

of the classes; in some cases each rule can represent more than one 

class with different probabilities (Marsala 2009). More recently, fuzzy 

classifier methods based on if-then rules have been applied to solve 

classification problems by constructing multi-model structures, which 

yield a class label for each vector in the given space. Let X be a 

vector in an n-dimensional real space 𝑅𝑛 (the feature space), and  = 

{𝑤1, …… ,𝑤𝑐1} be a set of class lables. A (crisp) classifier is given by the 

mapping, 

𝐷:𝑅𝑛 →                                                                    (3-17) 

A fuzzy classifier is any classifier which uses fuzzy sets either during 

its operation and will have the label mapping (Kuncheva 2000): 

𝐷𝑃: 𝑅
𝑛 → [0,1]𝑐 − 0                               (3-18) 

Instead of assigning a class label from ,  𝐷𝑝 assigns to 𝑥 ∈  𝑅𝑛 a soft 

class label with degrees of membership in each class.  

There are many fuzzy logic based classifiers proposed by different 

researchers and most of them are fuzzy ruse based classifiers such as 

Fuzzy Decision Tree (Papageorgiou et al. 2008), Fuzzy Unordered 

Rule Induction Algorithm (FURIA) (Lotte et al. 2007), and Fuzzy 

Lattice Reasoning Classifier (FLR) (Kaburlasos et al. 2009). 
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3.4.5  Fuzzy unordered rule induction algorithm (FURIA) 

The fuzzy rule-based classification method called Fuzzy Unordered 

Rule Induction Algorithm (Lotte et al. 2007), or FURIA for short, is a 

modification and extension of the state-of-the-art rule learner RIPPER 

(Brian et al. 1995).  

Representation of fuzzy rules in FURIA: 

A selector constraining a numerical attribute Ai (with domain Di = R) 

in a RIPPER rule can obviously be expressed in the form (Ai ∈ I ), 

where I ⊆ R is an interval: I = (−, v] if the rule contains a selector 

(Ai ≤ v), I = [u,) if it contains a selector (Ai ≥ u), and I = [u, v] if it 

contains both (in the last case, two selectors are combined). 

 

Figure 3-7: A fuzzy interval IF 

Essentially, a fuzzy rule is obtained through replacing intervals by 

fuzzy intervals, namely fuzzy sets with trapezoidal membership 

function. A fuzzy interval of that kind is specified by four parameters 

and will be written: 
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I F = (φs,L, φc,L, φc,U, φs,U ): 

𝐼𝐹(𝑣) ≝

{
 
 

 
 

1

  
𝑣−𝜑𝑠,𝐿

𝜑𝑐,𝐿−𝜑𝑠,𝐿

𝜑𝑠,𝑈−𝑣

𝜑𝑠,𝑈−𝜑𝑐,𝑈

0

 𝜑𝑐,L ≤ 𝑣 ≤ 𝜑𝑐,𝑈

 
 𝜑𝑠,L < 𝑣 < 𝜑𝑐,L

 
 𝜑𝑐,U < 𝑣 < 𝜑𝑠,𝑈

 
𝑒𝑙𝑠𝑒

                                          (3-19) 

φc,L and φc,U are, respectively, the lower and upper bound of the 

core (elements with membership 1) of the fuzzy set; likewise, φs,L 

and φs,U are, respectively, the lower and upper bound of the 

support (elements with membership > 0). 

Note that, as in the non-fuzzy case, a fuzzy interval can be open to 

one side (φs,L = φc,L = − or φc,U = φs,U = ).  

A fuzzy selector (Ai ∈ I F
i ) covers an instance x = (x1 . . . xn) to the 

degree I Fi (xi ). 

A fuzzy rule r F involving k selectors (Ai ∈ I F
i ) i = 1 . . . k, covers x 

to the degree 

𝜇𝑟𝐹(𝑥) = ∏ 𝐼𝑖
𝐹(𝑥𝑖𝑖=1…𝑘 )                                                  (3-20) 

Rule fuzzification: 

To obtain fuzzy rules, the idea is to fuzzify the final rules from the 

modified RIPPER algorithm. More specifically, using the training set 

DT ⊆ D for evaluating candidates, the idea is to search for the best 

fuzzy extension of each rule, where a fuzzy extension is understood 

as a rule of the same structure, but with intervals replaced by fuzzy 
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intervals. Taking the intervals Li of the original rules as the cores 

[φc,Li , φc,Ui] of the sought fuzzy intervals LF , the problem is to find 

optimal bounds for the respective supports, i.e., to determine φs,Li 

and φs,U . 

For the fuzzification of a single antecedent (Ai ∈ Ii ) it is important to 

consider only the relevant training data DiT, i.e., to ignore those 

instances that are excluded by any other antecedent. 

𝐷𝑇
𝑖 {𝑥 = (𝑥1… . . 𝑥𝑘) ∈ 𝐷𝑇 |𝐼𝑗

𝐹(𝑥𝑗)  >  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 ≠ 𝑖}  ⊆  𝐷𝑇                (3-21) 

Di
T is partitioned into the subset of positive instances, Di

T+, and 

negative instances, Di
T −. To measure the quality of a fuzzification, 

the rule purity will be used. 

Rules are fuzzified in a greedy way, as presented in algorithm 3.5. In 

each iteration, a fuzzification is computed for every antecedent, 

namely the best fuzzification. This is done by testing all values. 

Classifier output: 

Suppose that fuzzy rules r ( j )
1 . . . r ( j )

k have been learned for class 

λj . For a new query 

instance x, the support of this class is defined by: 

𝑠𝑗(𝑥) ≝ ∑ 𝜇
𝑟𝑖
(𝑗)𝑖=1…𝑘 (𝑥). 𝐶𝐹(𝑟𝑖

(𝑗)
)                                         (3-22) 

 where CF(r ( j )
i ) is the certainty factor of the rule r ( j )

i . It is 

defined as follows: 
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𝐶𝐹 (𝑟𝑖
(𝑗)
) =

2
|𝐷𝑇
(𝑗)
|

𝐷𝑇
+∑ 𝜇

𝑟
𝑖
(𝑗)(𝑥)

𝑥∈𝐷𝑇
(𝑗)

2+∑ 𝜇
𝑟
𝑖
(𝑗)(𝑥)

𝑥∈𝐷𝑇
(𝑗)

                                       (3-23) 

where D( j )T denotes the subset of training instances with label λj  

The class predicted by FURIA is the one with maximal support. In the 

case where x is not covered by any rule, which means that s j (x) = 0 

for all classes λj , a classification decision is derived in a separate 

way. In the case of a tie, a decision in favor of the class with highest 

frequency is made.  

Algorithm 3.5: The Antecedent Fuzzification Algorithm For A Single Rule r 

Step 1: Let A be the set of numeric antecedents of r 

Step 2: while A = ∅ do 

Step 3: amax ←null [amax denotes the antecedent with the highest  

                                  purity] 

Step 4:  purmax ←0 [purmax is the highest purity value, so far] 

Step 5: for i ← 1 to size(A) do 

Step 6:  compute the best fuzzification of A[i ] in terms of purity 

Step 7:  purA[i ] ←be the purity of this best fuzzification 

Step 8:   if purA[i ] > purmax then 

Step 9:   purmax ← purA[i ] 

Step 10:  amax ← A[i] 

Step 11:  end if 

Step 12: end for 

Step 13: A ← A \ amax 

Step 14: Update r with amax 

Step 15: end while 
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3.5 Training testing and validation  

For classification problems, the performance of a model is measured 

in terms of its error rate: percentage of incorrectly classified 

instances in the data set. A model is built because it can be used for 

classify new data. Hence we are chiefly interested in model 

performance on new (unseen) data. 

A training set (seen data) is used to build the model (determine its 

parameters) and the test set (unseen data) to measure its 

performance (holding the parameters constant). Sometimes, a 

validation set is also needed to tune the model (e.g., for pruning a 

decision tree). The validation set cannot be used for testing (as it is 

not unseen). All three data set have to be representative samples of 

the data that the model will be applied to. 

Cross Validation:  

k-Fold cross validation is used to minimize the bias associated with 

random sampling of training and test data samples in comparing 

predictive accuracy of two or more methods (Olson and Delen 2008). 

Here the whole data set is randomly split into ‘k’ mutually exclusive 

subsets of approximately equal size. Classification model is trained 

and tested k times. Each time it is trained on all but one fold. For 

example, if we use 10-fold cross validation, data will be spited into 10 

mutually exclusive subsets using stratified sampling (Tantan et al. 
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2010). Each of these 10 folds will be used once to test performance 

of the classifier, while other 9 are used for training. Cross validation 

estimate of classifier’s overall accuracy is calculated by simply taking 

the mean of ‘k’ individual accuracy measures. 

3.6 Classifier performance 

This section will describe the classifier performance evaluation criteria 

used in most of the thesis case studies and experiments. They are: 

confusion matrix; accuracy (ACC); sensitivity (Sen); specificity (Spec) 

rates, and the positive predicted value (PPV) and negative predicted 

value (NPV).  

3.6.1  Confusion matrix 

In the field of machine learning (see section 2.5), a confusion matrix 

(Witten and Frank 2011), also known as a contingency table or an error 

matrix (Minsky 1969) , is a specific table layout that allows 

visualization of the performance of an algorithm, typically a 

supervised learning one (in unsupervised learning it is usually called a 

matching matrix). Each column of the matrix represents the instances 

in a predicted class, while each row represents the instances in an 

actual class. The name stems from the fact that it makes it easy to 

see if the system is confusing two classes (i.e. commonly mislabeling 

one as another). 
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Assume that the cardiovascular classifier output set includes two risk 

prediction classes: “High risk”, and “Low risk”. Each pattern xi (i=1, 

2..n) is allocated into one element from the set (P, N) of the risk 

prediction classes.  

 Predicted classes 

Expected/

Actual 

Classes 

 High risk Low risk 

High risk TP FN 

Low risk FP TN 

Figure 3-8: Confusion Matrix. 

Hence, each input pattern are mapped into one of four possible 

outcomes such as true positive- true high risk (TP)- when the 

outcome is correctly predicted as High risk; true negative- true low 

risk (TN)- when the outcome is correctly predicted as Low risk; false 

negative-false Low risk (FN)- when the outcome is incorrectly 

predicted as Low risk, when in fact it is High risk (positive); or false 

positive- false high risk (FP) - when the outcome is incorrectly 

predicted as High risk, when in fact it is Low risk (negative). The set 

of (P, N) and the predicted risk set can be built as a confusion matrix 

(Witten and Frank 2011). 

From the confusion matrix in figure 3.7, the number of correct or 

incorrect (misclassification) patterns can be derived. The numbers 

along the major diagonal (from left to right) represent the correct 
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while the rest represent the errors (confusion between the various 

classes).  

Performance measures: 

Accuracy (ACC), sensitivity (SEN), specificity (SPEC) rates, and the 

positive predictive value (PPV or precision), and the negative 

predictive value (NPV) can all be built from the confusion matrix 

(Witten and Frank 2011). These rates are used to evaluate and discuss 

classification performance.  

The accuracy of a classifier is calculated by the total number of 

correctly predicted “High risk” (true positive- true High risk) and 

correctly predicted “Low risk” (true negative- true Low risk) over the 

total number of classifications. It is given by: 

FNTNFPTP

TNTP
ACC






                                         (3-24) 

The error rate of performance, or misclassification rate, can be 

referred from this accuracy rate as: 1- ACC. 

However, the accuracy does not show how well the classifier can 

predict the positive (“High risk”) and the negative (“Low risk”) for the 

classification process. Therefore, the sensitivity, specificity, positive 

predictive value, and negative predictive value need to be calculated.  
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Figure 3-9: Classification Performance Rates. 

The sensitivity is the rate of number correctly predicted “High risk” 

(true positive- true high risk) over the total number of correctly 

predicted “High risk” and incorrectly predicted “Low risk” (false 

negative- false Low risk). This rate can be seen as the rate of 

correctly predicted “High risk” over the total of expected/actual “High 

risk”. 

FNTP

TP
Sen


                                     (3-25) 

The specificity rate is the rate of correctly predicted “Low risk” over 

the total number of expected/actual “Low risk”. It is given by: 

FPTN

TN
Spec




                                  (3-26) 

The positive predictive value is the proportion of correct “High risk” 

over the total number of predicted “High risk” (including correct “High 

risk” and incorrect “High risk” after classification process). It is given 

by: 

FPTP

TP
PPV




             (3-27) 
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The negative predictive value is the proportion of correct “Low risk” 

over the total number of predicted “Low risk” (including correct “Low 

risk” and incorrect “Low risk” after classification process). It is given 

by: 

FNTN

TN
NPV




             (3-28) 

3.7 WEKA software tool  

WEKA (WEKA 1999) is an open source machine learning workbench 

developed using Java programming that supports many activities of 

machine learning practitioners. WEKA contains implementations of 

algorithms for classification, clustering, and association rule mining, 

along with graphical user interfaces and visualization utilities for data 

exploration and algorithm evaluation. Bouckaert et al. (2010) give an 

overview of the system; more comprehensive sources of information 

are Witten and Frank’s book Data Mining (2011) and the user 

manuals included in the software distribution. Online sources, 

including the WEKA Wiki pages2 and the API, provide the most 

complete coverage. The wekalist mailing list is a forum for discussion 

of WEKA related queries, with nearly 3000 subscribers. 

3.8 Summary  

A general background on different data mining and machine learning 

techniques are given in this chapter. The literature is very useful and 
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will help to understand the case studies described in chapter 5. The 

next chapter will introduce dimension reduction and feature selection.
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CHAPTER 4 : DIMENSION REDUCTION AND 

FEATURE SELECTION  

4.1 Introduction  

Data mining algorithms are computationally intensive and the 

functional cost is correlated with the time required to run the 

algorithm and the size of the data set. Data mining processes bring a 

high computational cost when dealing with large datasets. Reducing 

dimensionality can effectively cut this cost (Maimon and Rokach 

2010). There are two categories of techniques for dimensionality 

reduction: (a) feature extraction and (b) feature selection. Feature 

extraction creates new features from functions of the original 

features, whereas feature selection returns a subset of the original 

features. In this chapter two methods for dimension reduction are 

discussed: an instance base approach to feature selection algorithm 

Relief; and a feature selection method based on information gain. 

Both are used in our case study.  

4.2 Feature extraction 

Feature extraction is a process of finding new features that are 

calculated as a function of the original features. In this context the 

dimensionally reduction is a mapping from a multidimensional space 
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into space of fewer dimensions (Kononenko and Kukar 2007) - see 

figure 4.1. Feature extraction methods can be classified as linear or 

nonlinear (Blum et al. 2013).  
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Figure 4-1: Feature extraction 

where M << N. 

The problem of feature extraction can be stated as: 

Given a feature space 𝑋𝑖𝑅
𝑁 find a mapping 𝑌 = 𝑓(𝑥): 𝑅𝑁 → 𝑅𝑀 with 

M<N such that the transformed feature vector 𝑌𝑖 ∈ 𝑅
𝑀 preserves 

(most of) the information or structure in 𝑅𝑁. 

Principal component analysis (PCA) is the most commonly used 

feature extraction technique. PCA is a linear transformation that 

chooses a new coordinate system for the data such that the greatest 

variance by any projection of the data set lies on the first axis, the 

second greatest variance on the second axis, and so on (Kononenko 

and Kukar 2007). The number of principal components is less than or 

equal to the number of original variables (Jolliffe 2002). There have 

been several other successful methods for feature extraction 

developed and implemented (Preece et al. 2009) such as, 
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independent component analysis (Hyvarinen 2001), factor analysis 

(Schiepers et al. 2002), and nonlinear component analysis (Reddy et 

al. 2012). Other methods can be found in Guyon (2006). 

However, in some situations feature extraction may not be feasible. 

This often happens when the attributes are strongly correlated 

amongst themselves. Moreover feature extraction processes do not 

provide a meaningful result, as it maps a multidimensional space into 

space of fewer dimensions. Furthermore, the results often cannot be 

used for devising a decision support system, and often it is not 

appropriate to reduce the dimension for creating the prediction 

models, where the labels associated with the attributes are just as 

important as the final result. 

4.3 Feature selection  

Feature selection, is a process closely related with dimension 

reduction. The objective of feature selection is to identify features in 

the dataset as important and discard any other feature as irrelevant, 

providing only redundant information.  

Given a specific classification analysis task, the features employed to 

describe each training instance may be relevant or irrelevant to the 

target task. Thus, an important yet challenging issue is the selection 

of an appropriate subset of the available features so that the selected 

subset can adequately model the target task (i.e., relationships 
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between feature values and classes)(Guyon 2006). However, the 

advantages of feature selection techniques come at a certain price, as 

the search for a subset of relevant features introduces an additional 

layer of complexity in the modelling task. Instead of just optimizing 

the parameters of the model for the full feature set, the need is to 

find the optimal model parameters for the optimal feature subset, as 

there is no guarantee that the optimal parameters for the full feature 

set are equally optimal for the optimal feature subset (Daelemans et 

al. 2003).  

Generally, the approaches of feature selection can be divided into 

three types: filters, wrappers and embedded methods. These 

approaches differ in three ways i.e. search strategies, evaluation 

criterion definition (e.g. relevance index or prediction of classifiers), 

evaluation and criterion estimation (statistical test or cross 

validation/performance bounds) (Guyon et al. 2003). 

4.3.1  Filter Method 

Filters independently measure the relevance of feature subsets to 

classifier outcomes where each feature is evaluated with a measure 

such as the distance to outcome classes. All features in the data set 

are then ranked according to these measures. The first m features, 

from the ranked list, can be chosen by the user (Lazar et al. 2012). 

Filters estimate a relevance index for each feature to measure how 

relevant a feature is to the target. Then filters rank features by their 
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relevance indices and perform search according to the ranks or based 

on some statistical criterion e.g. significance level. The most 

distinguishing characteristic of filters is that the relevance index is 

calculated based solely on a single feature without considering the 

values of other features (Lazar et al. 2012). Such implementation 

implies that filters assume orthogonally between features which 

usually is not true in practice. Therefore, filters omit any conditional 

dependence (or independence) that might exist, which is known to be 

one of the weaknesses of filters, since they might miss optimal 

subsets of features. However, filters are efficient and prove to be 

robust to overfitting (Ng 1998). 

There are various heuristics to design relevance indices for filters, 

including correlation based (e.g. Pearson coefficient, signal to noise 

ratio) (Guyon et al. 2003), univariate prediction error rate (i.e. 

evaluate the relevance of a feature as how accurate the prediction is 

using only itself) (Pourahmadi 1993), information theory (mutual 

information, Minimum Description Length (MDL)) (Peng et al. 2005), 

and Relief (Kira and Rendell 1992). Most of the heuristics are derived 

from their relations to the bounds of Bayes errors (Tumer and Ghosh 

1996) of a single feature. On the other hand, they differ in how to 

use data to evaluate the usefulness of a single feature.  

Advantages of filter techniques are that they easily scale to very high 

dimensional datasets, they are computationally simple and fast, and 
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they are independent of the classification algorithm (Saeys et al. 

2007). As a result, feature selection needs to be performed only 

once, and then different classifiers can be evaluated. 

4.3.2  Wrapper Method 

Instead of ranking every single feature, wrappers rank feature 

subsets by the prediction performance of a classifier on the given 

subset. The wrapper method is used as an inductive algorithm to 

estimate the value of a given feature subset (Hernandez et al. 2013). 

The wrapper methodology offers a simple and powerful way to 

address the problem of variable selection, regardless of the chosen 

learning machine. In fact, the learning machine is considered a 

perfect black box and the method lends itself to the use of off-the-

shelf machine learning software packages (Guyon et al. 2003). In its 

most general formulation, the wrapper methodology consists in using 

the prediction performance of a given learning machine to assess the 

relative usefulness of subsets of variables. Wrappers are often 

criticized because they seem to be a “brute force” method requiring 

massive amounts of computation, but in some cases it is not 

necessarily so. Efficient search strategies may be devised to 

overcome the problem (Guyon et al. 2003).  

Feature selection by wrapper methods often achieve better results 

than filter due to the fact that they are tuned to the specific 

interaction between an induction algorithm and its training data. 



CHAPTER 4:  DIMENSION REDUCTION AND FEATURE SELECTION  

66 

 

(Maimon and Rokach 2010) However, they tend to be much slower 

than filters because they must repeatedly call the induction algorithm 

and must be rerun when a different induction algorithm is used. 

4.3.3  Embedded methods 

Embedded methods select features based on criteria that are 

generated during the learning process of a specific classifier. In 

contrast to wrappers, they do not separate the learning from the 

feature selection part, i.e. the selected features are sensitive to the 

structures of the underlying classifiers (Guyon 2006). Embedded 

methods have the advantage that they include the interaction with 

the classification model (Saeys et al. 2007), while at the same time 

being far less computationally intensive than wrapper methods. 

4.4 An Instance Base Approach to Feature selection 

RELIEF 

Kira and Rendell (1992) describe an algorithm called Relief that uses 

instance based learning to assign a relevance weight to each feature. 

Relief is a simple yet efficient procedure to estimate the quality of 

attributes. The key idea of Relief is to estimate the quality of 

attributes according to how well their values distinguish between 

instances that are near to each other. Given a randomly selected 

instance Ri from class L, Relief searches for k of its nearest 

neighbours from the same class called nearest hits H, and also k 
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nearest neighbours from each of the different classes, called nearest 

misses M. It then updates the quality estimation Wi for ith attribute 

based on their values for Ri, H, M. If instance Ri and those in H have 

different values on the ith attribute, then the quality estimation Wi is 

decreased. On the other hand, if instance Ri and those in M have 

different values on the ith attribute, then Wi is increased. ` 

W[A]:= W[A] –diff(A,Ri,H)/m +diff(A,Ri,M)/m                    (4-1) 

where A is the current attribute; W[A] is the weight of the currently 

considered attribute; Ri is the ith sample; H is the “hit”; M is the 

“miss”; diff() is the probability function; and m is number of the 

neighbours.  

The Relief algorithm is limited to classification problems with two 

classes. The RELIEF-F algorithm (Robnik et al. 2003) is an extension 

of the Relief algorithm that can deal with multiclass problems. 

RELIEF-F is a simple yet efficient procedure to estimate the quality of 

attributes in problems with strong dependencies between attributes. 

In practice, RELIEF-F is usually applied in data pre-processing as a 

feature subset selection method. There are many other extensions of 

the Relief and RELIEF-F proposed by many researchers. Details about 

the algorithms and their application can be found in work of Robnik et 

al (2003). 
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Algorithm 4.1: RELIEF-F 

Input: for each training instance a vector of attribute values and the class 

value. 

Output: the vector W of estimations of the qualities of attributes 

Step 1: Set all weights W[A] := 0.0; 

Step 2: for i := 1 to m do begin 

             randomly select an instance Ri;  find k nearest hits Hj; 

Step 3: for each class C 6= class(Ri) do 

             from class C find k nearest misses Mj (C); 

Step 4: for A := 1 to a do 

             W[A] :=W[A] - ∑ 𝑑𝑖𝑓𝑓(𝐴, 𝑅𝑖𝐾
𝑗=1 , 𝐻𝑖)/(𝑚 − 𝑘) + 

              ∑ [ 
𝑃(𝐶)

1−𝑃(𝑐𝑙𝑎𝑠𝑠(𝑅𝑖)
 ∑ 𝑑𝑖𝑓𝑓(𝐴, 𝑅𝑖,𝑀𝑗(𝐶))]/(𝑚 − 𝑘);𝐾

𝑗=1𝑐≠𝑐𝑙𝑎𝑠𝑠(𝑅𝑖)   

Step 5: end; 

4.5 Information theory based feature selection 

The ranking methods based on information theory filter methods 

evaluate single features, neglecting possible interactions. Information 

gain is a simple feature ranking method used by many researchers 

(Lee and Lee 2006). The information gain is the expected reduction in 

the entropy caused by partitioning the examples according to a given 

attribute. Entropy is a measure of the uncertainty associated with a 

discrete random variable. In other words, entropy is a measure of the 

average information content of the missing recipients when the 

system does not know the value. For a set with k different values in 

it, the entropy can be calculated as follows: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑋) = 𝐻(𝑋) =  −∑ 𝑃(𝑥𝑖). log (𝑃(𝑥𝑖))
𝑘
𝑖=1                            (4-2) 
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Where 𝑃(𝑥𝑖) is probabilities of occurrence in a set of possible events 

x (i.e. the transaction in cardiovascular risk prediction), k is 

number of transactions. 

Other entropy calculations can also be used, for example: 

Joint entropy: 

Suppose there are two discrete variables X and Y. H(X,Y) is the joint 

entropy, given by: 

𝐻(𝑋, 𝑌) = −𝑐 ∑ ∑ 𝑝𝑖,𝑗
𝑚
𝑗=1

𝑛
𝑖=1 (𝑥, 𝑦)𝑙𝑜𝑔 𝑝𝑖,𝑗(𝑥, 𝑦)           (4-3) 

Condition entropy: 

The conditional entropy of Y is HX(Y) defined as average of the 

entropy of Y for each value of x, weighted according to the probability 

of that particular x. 

𝐻𝑥(𝑌) = −𝑐 ∑ 𝑝𝑖,𝑗(𝑥, 𝑦) log  𝑝𝑖 (𝑦)
𝑛
𝑖,𝑗=1                                          (4-4) 

𝐻𝑥(𝑋) = −𝑐 ∑ 𝑝𝑖,𝑗(𝑥, 𝑦) log  𝑝𝑗 (𝑥)
𝑛
𝑖,𝑗=1                                          (4-5) 

where pi,j(x,y) is the probability of the joint occurrence of x and y; 

and pi(y) and pj(x) are conditional probabilities of X, and Y. 

Relative Entropy: 

The relative entropy is a measure of the statistical distance between 

two distributions. It is also known as the Kullback Leibler distance; or 

Kullback Leibler divergence (Kullback and Leibler 1951). 

𝐾(𝑝, 𝑞) = ∑ 𝑝(𝑥)log (
𝑝(𝑥)

𝑞(𝑥)𝑥∈𝐴 )                                                   (4-6) 
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where p(x), and q(x) are the distributions in the data set A. 

Mutual information: 

Mutual information is a basic concept in information theory. It is a 

measure of general interdependence between random variables. The 

mutual information between discrete random variables X and Y, 

MI(X,Y), is a measure of the amount of information in X that can be 

predicted when Y is known. For the case where X and Y are discrete 

random variables, MI(X,Y) can be written as: 

𝑀𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) =∑ ∑ 𝑝𝑖,𝑗(𝑥, 𝑦)log [𝑗𝑖 𝑝𝑖,𝑗(𝑥, 𝑦)|𝑝𝑖(𝑥)𝑝𝑗(𝑦)]  (4-7) 

Where H(X) is the entropy of X, H(X|Y) (or HX(Y)) is the conditional 

entropy, which represents the uncertainty in X after knowing Y. 

4.6 Summary  

Feature extraction and feature selection are the two main categories 

of techniques for dimensionality reduction. Feature extraction creates 

new features from functions of the original features, whereas feature 

selection returns a subset of the features.  

Feature selection may not feasible for cases where attributes are 

strongly correlated amongst themselves and with the features. 

Feature extraction processes do not provide a meaningful result if the 

attribute names in the original dataset are of importance. Hence, the 

results often cannot be used for devising a decision support system 

and is not often appropriate to reduce the dimension for creating the 
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predicting models, where the labels associated with the attributes are 

just as important as the final result. However, the aim of this 

research is to investigate a principled methodology for the use of data 

mining in developing a decision support system. Feature selection will 

be suitable for dimension reduction of the thesis data. Advantages of 

filter techniques of feature selection are that they easily scale to very 

high-dimensional datasets, they are computationally simple and fast, 

and they are independent of the classification algorithm. Feature 

selection by wrapper methods often achieve better results than filter 

due to the fact that they are tuned to the specific interaction between 

an induction algorithm and its training data, but method requiring 

massive amounts of computation.  

 The thesis has used two simple feature selection methods Relief and 

Information gain for the case study discussed in the next chapter and 

applied in chapter 8.   
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CHAPTER 5 : OVERVIEW OF RESEARCH CASE 

STUDIES  

5.1 Introduction  

This chapter introduces the case studies used in this thesis, with a 

justification for their use. Three major issues in clinical data mining 

are discussed. The proposed solutions are also presented in this 

chapter. The results obtained and subsequent discussions are given in 

the following chapters. 

Two types of databases are available in medical domain (Dasu and 

Johnson 2003). The first is the dataset acquired by medical experts, 

which are collected for a special research topic where data collection 

is triggered by the hypothesis of a clinical trial. The other type is a 

huge dataset retrieved from hospital information systems. These data 

are stored in a database automatically without any specific research 

purpose. These data records are often used for further analysis and 

building clinical decision support. These types of datasets are often 

very complex where the numbers of records are very huge, with a 

large number of attributes for each record. This data often contains 

many missing values and typically the datasets are imbalanced with 

regard to the class label of interest. The issues with medical data 

mining are discussed in depth in chapter 2. As mentioned in section 
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2.7 there are many issues with medical data mining for the purpose 

of decision support, but for time limitations this thesis will only deal 

with missing values, the class imbalance problem and feature 

selection for class imbalance datasets.  

5.2 Data model  

The research presented in the thesis will mainly make use of two 

cardiovascular datasets, from Hull and Dundee clinical sites. Some of 

the experiments will also use the LifeLab (Appendix A) datasets for 

comparison.  

The Hull site data includes 98 attributes and 498 cases of 

cardiovascular patients and Dundee site data includes 57 attributes, 

and 341 cases from cardiovascular patients. After combining the data 

from both sites, 23 matched attributes are found. The data displays 

redundancy, noise, inconsistency and many missing values for many 

of the attributes. After combining the data and removing redundant 

attributes we found that out of 23 attributes 18 attributes have a 

missing value frequency from 1% to 30% and out of 839 records, 

613 records have 4% to 56% missing values in their attributes. We 

decided to remove 17 records that have missing value more than 

50%. Among all the final 823 records 120 patients are dead and 703 

patients are alive. 
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5.2.1  Data Pre-processing 

Redundant attributes: For example, the attribute 

“ADMISSION_DATE” shows patient’s operation date; or the two 

attributes “Surgeon name1” and “Surgeon name2” represents names 

of operating doctors. Their values might be helpful in a general 

evaluation, but offer little relevance to the specific purposes of this 

thesis. 

Missing values: After combining the two data sites and removing 

the redundant attributes, out of 23 attributes 18 attributes have 1% 

to 30% missing values and out of 823 records 613 records have 4% 

to 56% missing values in their attributes (see details in Appendix A ).  

Noisy and inconsistent data: As an example of numerical outlier 

values, the attribute "PACK YRS" has a big gap between the 

maximum value of 160, and the minimum value of 2. This affects the 

transformation process as it unduly changes the mean of the attribute 

values. These are abbreviations in categorical attributes and outlier 

values in some numerical attributes. For example, the attribute 

“CAROTID_DISEASE” includes a mixture of abbreviated and fully 

specified values such as “asymptomatic carotid disease”, “Asx”, and 

so on. In fact, both these values have the same meaning (i.e. they 

are homonyms). Therefore, these inconsistent entries are harmonised 

as single values (as shown in Appendix A). Finally a combined dataset 
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having 23 attributes with 823 records was prepared. Out of 823 

records 605 records have missing values and 218 records do not 

have any missing values. Among all the records only 120 patients are 

dead and 703 patients are listed as alive.  

5.3 Clinical risk prediction models 

Different risk prediction models have been developed and used by 

previous researchers on the project data (Davis and Nguyen 2008, 

Nguyen 2009). One clinical model (CM) in the study of (Davis and 

Nguyen 2008, Nguyen 2009) heuristic model CM1 (Clinical Model 1) 

uses patient death within 30 days of an operation as the “High Risk” 

outcome, with other patients are labelled as “Low Risk”. A further 

model (CM2) uses patient death or severe cardiovascular event (for 

example Stroke or Myocardial Relapse or Cardio Vascular Arrest) 

within 30 days of an operation as the “High Risk” outcome; other 

patients are labelled as “Low Risk”. Both the CM1 and CM2 models 

use all attributes from the “cleaned” patient records, other than those 

aggregated to form the output labels, as inputs. Further models use 

only a limited set of attributes. CM1 model is used for most of the 

thesis case study experiments. Further details of the models can be 

found in Davis and Nguyen (2008). 
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5.4 Classification outcome of the thesis data using well 

known classifiers 

This experiment was designed to compare classification outcomes and 

establish a baseline classification for the thesis data. For this, 

Decision Tree, Ripple-down rules (Ridor), KNN, FURIA and Neural 

Network classifiers were used. The details of the classifiers are 

presented in chapter 3. As described above the dataset has 23 

attributes with record of 703 low risk patients and 120 high risk 

patients. For this experiment the missing values were replaced using 

a standard Mean/Mode missing imputation technique. No class label 

balancing technique or any other data pre-processing were used. 

The purpose of these experiments was to set a baseline classification 

outcome for the thesis data. The results are presented in the table 

5.1 and later compared with the results from other experiments in 

chapters 6, 7 and 8. 

Table 5.1 presents the classification outcome using the introduced 

classifiers. Most of the classifiers are showing good accuracy (72% to 

80%) but with very poor sensitivity (11% to 23%). Consider the 

sensitivity rate; the classification outcome of the imbalanced data is 

very poor because the classifiers give the same attention to the 

majority class (Low Risk) and the minority class (High Risk). As 

discussed earlier, when the imbalance level is huge, it is hard to build 

a good classifier using conventional learning algorithms. They aim to 
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optimize the overall accuracy without considering the relative 

distribution of each class. For all the classifiers used in this 

experiment the results show that it is hardly possible to achieve an 

acceptable prediction rate for high-risk patients as they are a 

minority set in the case of this data. The highest value of sensitivity 

(23%) is found with the classifier FURIA, which is still very poor.  

Table 5.1: Baseline classification  

Classifiers 

Confusion Matrix In % 

Actual 

Risk ↓ 

Classified 

Risk 
ACC SEN SPEC PPV NPV 

Hig

h 
Low 

Decision Tree 

(J48) 

High  13 107 
80.00 11.00 92.00 19.00 86.00 

Low 56 647 

Ripple-down 

rules (Ridor) 

High 16 104 
78.00 13.00 89.00 18.00 86.00 

Low 74 629 

SVM 
High 18 102 

78.00 15.00 89.00 19.00 86.00 
Low 79 624 

KNN 
High  25 95 

77.00 21.00 87.00 21.00 87.00 
Low 92 611 

FURIA 
High  27 93 

72.00 23.00 80.00 16.00 86.00 
Low 140 563 

Neural Network  
High  20 100 

78.13 16.67 88.62 20.00 86.17 
Low 80 623 

 

The aim is to find a better way of data pre-processing in order to 

achieve an acceptable classification outcome in terms of high 

sensitivity, specificity and accuracy.  
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Decision Tree (J48) and FURIA are chosen as the baseline classifier 

and are used for all purposes in classification experiments. Decision 

Tree is powerful and popular tools for classification and prediction. 

Decision Tree represents rules, which can be understood by humans 

and used in decision support. 

In summary, the given data with little (albeit standard) pre-

processing gives very poor results for all well-known classifiers. It is 

suggested that this is typical of many legacy databases, particularly 

in medicine. An improved treatment in data preparation may boost 

the classification outcome and so help to build a good decision 

support system. The following sections address some of the data 

mining issues introduced in chapter 2.  

5.5 Addressing the problem with missing values  

Many real-life data sets are incomplete. The problem with missing 

attribute values is a very important issue in Data Mining. In medical 

data mining the problem with the missing values has become a 

challenging issue. In many clinical trials, the medical report pro-

forma allow some attributes to be left blank, because they are 

inappropriate for some class of illness or the person providing the 

information feels that it is not appropriate to record the values for 

some attributes (Almeida et al. 2010). Typically there are two types 

of missing data (Little and Rubin 2002) ; one is called Missing 
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Completely at Random (MCAR). Data is MCAR when the response 

indicator variables R are independent of the data variables X and the 

latent variables Z. The MCAR condition can be succinctly expressed 

by the relation PMCAR(R|X, Z,µ) = P(R|µ). The second category of 

missing data is called missing at random or MAR. The MAR condition 

is frequently written as PMAR(R|X, Z, µ) = P(R|Xobs, µ) for all X, Z and 

µ (Marlin 2008, Baraldi and Enders 2010). 

5.5.1  Missing values imputation using machine learning 

methods:  

Machine Learning Methods can be used for missing values 

imputation; for example by using rule induction algorithm in which 

rules are induced from the original data set, with missing attribute 

values considered to be ”do not care” conditions or lost values. The 

Decision Tree can be generate by splitting cases with missing 

attribute values into fractions and adding these fractions to new case 

subsets (Maimon and Rokach 2010). Other methods of handling 

missing attribute values while generating Decision Trees were 

presented in (Bruha 2004). Jerez et al. (2010) presented comparison 

results of missing data imputation using statistical and machine 

learning methods in a real breast cancer problem. They used 

imputation methods based on statistical techniques, e.g., mean, hot-

decking and multiple imputations, and machine learning techniques, 

e.g., multi-layer perceptron (MLP), self-organising maps (SOM) and 
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k-nearest neighbour (KNN) and applied to the cancer data. The 

results were then compared to those obtained from the list wise 

deletion (LD) imputation method (Jerez et al. 2010). SVMI uses an 

SVM (Support Vector Machines) regression-based algorithm to fill in 

missing values. It sets the decision attributes (output or class) as the 

condition attributes (input attributes) and the condition attributes to 

be addressed as the decision attributes, then SVM regression can be 

used to predict the missing condition attribute values (Honghai et al. 

2005). K Nearest neighbour algorithm has been used by many 

researchers for imputing missing value (Gustavo Batista 2013, 

Gajawada and Toshniwal 2012, Batista and Monard 2003, Gustavo 

Batista 2003). Every time a missing value is found in a current 

instance, KNN computes the K nearest neighbours and a value from 

them is imputed. For nominal values, the most common value among 

all neighbours is taken, and for numerical values, the average value 

is used (Batista and Monard 2003). 

Gajawada and Toshniwal (2012) proposed a modified version of 

imputing missing value with KNN. Here, the dataset is divided into 

two sets records with missing value and records without missing 

value. K-Means clustering is applied to the complete instances set to 

obtain clusters of complete instances. This was then used to impute 

the missing values in the incomplete dataset. 
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5.5.2  Proposed machine earning based missing value 

imputation method  

The thesis proposes a new way of imputing missing value using 

machine learning methods. The original data set is first partitioned in 

to groups. The records having missing values in their attributes are in 

one group and the records without any missing values are placed in a 

separate group. The classifier is trained with the complete data sets, 

and later the incomplete data is given to the model for predicting the 

missing attribute values. The process is repeated for the entire set of 

attributes that have missing values. At the end of training, this 

training dataset and missing value imputed datasets are combined to 

make the complete data. The final dataset is then fed to the selected 

classifier for classification on the true outcome. 

Experiments were performed (details are in chapter 6) with five 

classification algorithms; Decision Tree (Marsala 2009); k-Nearest 

Neighbour (KNN) (Latifoǧlu et al. 2008); Support Vector Machine 

(SVM) (Devendran et al. 2008); Fuzzy Unordered Rule Induction 

Algorithm (Hühn and Hüllermeier 2009); and Ripple-down rules 

(Ridor) (Brian et al. 1995). Missing values imputation based on 

Mean/Mode is used as a statistical technique for comparison.  
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Figure 5-1: Block Diagram of the Missing Value Imputation Technique 

5.6 Addressing the class imbalance problem  

A well balanced training dataset is very important in creating a good 

training set for the application of classifiers. Most existing 

classification methods tend not to perform well on minority class 

examples when the dataset is extremely imbalanced, because they 

aim to optimize the overall accuracy without considering the relative 
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distribution of each class (Liu et al. 2011). Typically real world data 

are usually imbalanced and it is one of the main causes for the 

decrease of generalization in machine learning algorithms (Kim 

2007). Conventional learning algorithms do not take into account the 

imbalance of class. They give the same attention to the majority class 

and the minority class. When the imbalance level is huge, it is hard to 

build a good classifier (for the minority class) using conventional 

learning algorithms (Yan-Ping et al. 2010). Conventional classification 

algorithms like Neural Networks, Decision Tree, Native Bayes and K-

Nearest Neighbour assume that all classes have a similar number of 

records in the training data and the cost derived from all the classes 

is equal. Actually, the cost in mispredicting minority classes is higher 

than that of the majority class for many class imbalance datasets. 

Therefore, if a classifier can make correct predictions on the minority 

class efficiently, it will be useful to solving many real applications 

(Yan-Ping et al. 2010). Sampling strategies have been used to 

overcome the class imbalance problem by either eliminating some 

data from the majority class (under-sampling) or adding some 

artificially generated or duplicated data to the minority class (over-

sampling) (Laza et al. 2011).  

5.6.1  Over-sampling  

Over-sampling techniques increase the number of minority class 

members in the training set. The advantage of over-sampling is that 
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no information from the original training set is lost since all members 

from the minority and majority classes are kept. However, the 

disadvantage is that we greatly increase the size of the training set. If 

we do not consider the time taken to resample, under-sampling beats 

over-sampling in terms of time and memory complexity (Liu 2004). 

Random over-sampling is the simplest approach to over-sampling, 

where members from the minority class are chosen at random; these 

randomly chosen members are then duplicated and added to the new 

training set (Zhai et al. 2011). Chawla et al. (2002) proposed an 

over-sampling approach called SMOTE in which the minority class is 

over-sampled by creating “synthetic” examples rather than by over-

sampling with duplication. Depending upon the amount of over-

sampling required, neighbours from the k nearest neighbours of a 

record are randomly chosen. The implementation used in this thesis 

currently uses five nearest neighbours. For instance, if the amount of 

over-sampling needed is 200%, only two neighbours from the five 

nearest neighbours are chosen and one sample is generated in the 

direction of each. Synthetic samples are generated in the following 

way (Chawla et al. 2002) and algorithm is presented in algorithm 5.1.  

 Take the difference between the feature vector (sample) under 

consideration and its nearest neighbour.  

 Multiply this difference by a random number between 0 and 1, 

and add it to the feature vector under consideration.  
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Algorithm 5.1: SMOTE over-sampling 

SMOTE(T, N, k) 

Input: Number of minority class samples T; Amount of SMOTE N%; Number of 

nearest neighbors k; Output: (N/100)* T synthetic minority class samples 

1. (∗ If N is less than 100%, randomize the minority class samples as only a 

random percent of them will be SMOTEd. ∗) 

2. if N <100 

3.   then Randomize the T minority class samples 

4.  T = (N/100) ∗ T 

5.  N = 100 

6. endif 

7. N = (int)(N/100)( ∗ The amount of SMOTE is assumed to be in integral 

multiples of 100. ∗) 

8. k = Number of nearest neighbors 

9. numattrs = Number of attributes 

10. Sample[ ][ ]: array for original minority class samples 

11. newindex: keeps a count of number of synthetic samples generated, 

initialized to 0 

12. Synthetic[ ][ ]: array for synthetic samples  

13. for i ← 1 to T 

14. Compute k nearest neighbors for i, and save the indices in the nnarray 

15.  Populate(N, i, nnarray) 

16. endfor 

17. Populate(N, i, nnarray) (∗ Function to generate the syn-thetic samples. ∗) 

18. while N _= 0 

19.  Choose a random number between 1 and k, call it nn.  

20.  for attr ← 1 to numattrs 

21.         Compute: dif = Sample[nnarray[nn]][attr] –  Sample[i][attr] 

22.         Compute: gap = random number between 0 and 1 

23.                Synthetic[newindex][attr] = Sample[i][attr] + gap ∗ dif 

24.          endfor 

25.  newindex++ 

26.  N = N − 1 

27. endwhile  return (∗ End of Populate. ∗) 
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SMOTE blindly generates synthetic minority class samples without 

considering majority class samples and may cause overgeneralization 

(Yen and Lee 2009). Over-sampling may cause longer training time 

and over-fitting. Drummond and Holte (2003) showed that random 

under-sampling yields better minority prediction than random over-

sampling. 

5.6.2  Under-sampling 

The alternative to over-sampling is under-sampling where the size of 

majority class sample is reduced from the datasets. Since there is 

much more samples of one class than the other class, to solve the 

imbalanced class distribution problem. Under-sampling is a technique 

to reduce the number of samples in the majority class. One simple 

method of under-sampling (random under-sampling) is to select a 

subset of majority class samples randomly and then combine them 

with minority class sample as a training set (Yen and Lee 2009).  

Many researchers have proposed advanced ways of under-sampling 

the majority class data. According to (Chyi 2003) the under-sampling 

approach based on distance uses distinct modes: the nearest, the 

farthest, the average nearest, and the average farthest distances 

between minority and majority classes, as four standards to select 

the representative samples from the majority class. For every 

minority class sample in the dataset, the first method (‘‘nearest”) 

calculates the distances between all majority class samples and the 
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minority class samples, and selects k majority class samples which 

have the smallest distances to the minority class sample. If there are 

n minority class samples in the dataset, the ‘‘nearest” method would 

finally select (k x n) majority class samples (k>1). However, some 

samples within the selected majority class samples might be 

duplicated. The ‘‘farthest” method selects the majority class samples 

which have the farthest distances to each minority class sample. For 

every majority class sample in the dataset, the third method 

(‘‘average nearest”) calculates the average distances between one 

majority class sample and all minority class samples. This method 

selects the majority class samples which have the smallest average 

distances. The last method ‘‘average farthest” is similar to the 

‘‘average nearest” method; it selects the majority class samples 

which have the farthest average distances with all the minority class 

samples. The above under-sampling approaches based on distance in 

Chyi (2003) spend a lot of time selecting the majority class samples 

in the large dataset, and they are not efficient in real applications 

(Yen and Lee 2009).  

Down-sizing the majority class results in a loss of information that 

may result in overly general rules (Zhang and Mani 2003). In order to 

overcome this drawback of the under-sampling approach (Yen and 

Lee 2009) proposed an unsupervised learning technique for 

supervised learning called cluster-based under-sampling. Their 
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approach is to first cluster all the training samples into K clusters 

(they have run the experiment with different K values to observer the 

outcome) then chose appropriate training samples from the derived 

clusters. The main idea is that there are different clusters in a 

dataset, and each cluster seems to have distinct characteristics. If a 

cluster has more majority class samples and less minority class 

samples, it will behave like a majority class sample. On the other 

hand, if a cluster has more minority class samples and less majority 

class samples, it does not hold the characteristics of the majority 

class samples and behaves more like the minority class samples. 

Therefore, their approach selects a suitable number of majority class 

samples from each cluster by considering the ratio of the number of 

majority class samples to the number of minority class samples in the 

derived cluster (Yen and Lee 2009). They first cluster the full data to 

K clusters. A suitable number (M) of majority class samples from 

each cluster are then selected by considering the ratio of the number 

of majority class samples to the number of minority class samples in 

the cluster. The number M is determined by equation 5.1, and they 

randomly choose the M numbers of majority class samples from each 

cluster. In the i th cluster (1≤ i ≥ K) the 𝑆𝑖𝑧𝑒𝑀𝐴
𝑖  will be: 

𝑆𝑖𝑧𝑒𝑀𝐴
𝑖  = (m x 𝑆𝑖𝑧𝑒𝑀𝐼) x 

𝑆𝑖𝑧𝑒𝑀𝐴
𝑖

𝑆𝑖𝑧𝑒𝑀𝐼
𝑖⁄

∑
𝑆𝑖𝑧𝑒𝑀𝐴

𝑖

𝑆𝑖𝑧𝑒𝑀𝐼
𝑖⁄𝐾

𝑖−1

                                   (5-1) 
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(Yen and Lee 2009) also proposed five other approaches for under-

sampling using clustering. First they cluster all samples into K (K>1) 

clusters as well, and determine the number of selected majority class 

samples for each cluster by expression (5.1). For each cluster, the 

representative majority class samples are selected in different ways. 

The first method SBCNM-1 (sampling based on clustering with 

NearMisss-1) selects the majority class samples whose average 

distances to M nearest minority class samples (MP1) in the ith cluster 

are the smallest. In the second method SBCNM-2 (sampling based on 

clustering with NearMisss-2), the majority class samples, whose 

average distances to M farthest minority class samples in the i-th 

cluster are the smallest, will be selected. The third method SBCNM-3 

(sampling based on clustering with NearMisss-3) selects the majority 

class samples whose average distances to the closest minority class 

samples in the i-th cluster are the smallest. In the fourth method 

SBCMD (sampling based on clustering with Most Distance), the 

majority class samples, whose average distances to M closest 

minority class samples in the i-th cluster are the farthest, will be 

selected. The last proposed method, which is called SBCMF (sampling 

based on clustering with most far), selects the majority class samples 

whose average distances to all minority class samples in the cluster 

are the farthest.  
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5.6.3  Proposed Cluster Based Under-Sampling Technique  

The thesis approach to under-sampling is different to the approach of 

Yen and Lee (2009). Where the data first separated into two sets; 

one subset has all the majority class samples and the other subset 

has the entire minority class sample. Then the clustering is applied to 

the majority class samples to K clusters (K > 1), then made K 

subsets of majority class samples, where each cluster is considered to 

be one subset of the majority class. The aim was not to produce a 

majority and minority class ratio of 1:1; but just reduce the gap 

between the numbers of majority class samples to the numbers of 

minority class samples.  

All the subsets of majority class are separately combined with the 

minority class samples to make K different training data sets. All the 

combined datasets are classified with Decision Tree (J48) and Fuzzy 

Unordered Rule Induction Algorithm. The datasets giving the highest 

accuracy with majority of the classifiers were kept for further data 

mining processes. When there are so few members of the minority 

class, researchers are very hesitant to eliminate members of the 

minority class. Instead, the assumption is that each minority class 

member (target class) is very important. This may or may not be the 

case in practice since some minority class members may represent 

noise or extreme outliers. With so few data points, it is also difficult 

to differentiate between noise and minority class members (Liu 
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2004). Some experiments are done in order to evaluate the proposed 

method. The experimental results are presented and discussed in 

chapter 7. 

 

Figure 5-2: Proposed Under-Sampling Process 
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5.7 Feature selection and class imbalance problem 

Feature selection is the process of selecting a subset of relevant 

features for use in model construction. Feature selection is also useful 

as part of the data analysis process. By the help of some feature 

selection methods it can be seen that which features are important 

for prediction, and how these features are related. May researchers 

(Bunkhumpornpat et al. 2009, Chawla et al. 2003, Liu et al. 2011, 

Tong et al. 2009, Yan-Ping et al. 2010) found that most existing 

classification methods tend not to perform well on minority class 

examples when the dataset is extremely imbalanced. 

 As discussed in the previous chapter, both the filter and wrapper 

methods of feature selection use the class label of the dataset to 

select the attribute subset. However, the class imbalance problem 

can also affect the feature selection process. Our research found that 

very few work is done in this area, to find and address the issues of 

class imbalance in feature selection. In the work of Al-Shahib et al. 

(2005), the author used random under-sampling to balance their data 

for SVM classification. The author also used feature selection on 

balanced data. They found that SVM performed well on the balanced 

data. Tian-yu (2009) tried some standard feature selection method 

on some class imbalance data and compare which method of feature 

selection good for their experimental data. Khoshgoftaar et al. (2010) 
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proposed repetitive feature selection method for imbalance data, 

where they used random under-sampling to balance the data. 

But none of the paper provides any analysis of the effect of the class 

imbalance problem in feature subset selection.  

5.7.1  Proposed feature selection framework for 

imbalanced dataset  

A framework of feature selection for imbalanced clinical detests is 

proposed in this research. The framework is based on K-Means 

clustering and instance based feature selection algorithm. 

 

Figure 5-3: Proposed Framework of Feature Selection 
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First the cluster based under-sampling is used to balance the 

datasets; later the RELIEF-F algorithm is used for feature ranking. 

The steps of the feature selection process are given in Figure 5-3.  

Some experiments are done to evaluate the framework. The 

experimental results are presented in chapter 8 section 8.4. 

5.8 Summary  

In summary, the given data with little (albeit standard) pre-

processing gives very poor results for all well-known classifiers. It is 

suggested that this is typical of many legacy databases, particularly 

in medicine. A well treatment in data preparation can give better 

classification outcome. 

 In medical data mining the problem with the missing values has 

become a challenging issue. The proposed machine learning based 

missing value imputation method can be a new and better way of 

imputing missing values.  

Typically real world medical data are usually imbalanced. Most 

existing classification methods tend not to perform well on minority 

class examples when the dataset is extremely imbalanced. The 

proposed cluster based under-sampling technique not only solves the 

problem of the imbalance class but also can address the issue of 

validity of the class label discussed in section 2.7. Most of the feature 

selection methods use the class label of the dataset to select the 
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attribute subset. However, the class imbalance problem can also 

affect the feature selection process. The chapter 8 will present some 

experiments to address the issue of feature selection for imbalanced 

datasets. 

 The following chapters address the issues raised in a series of case 

studies that tackle specific issues individually. The aim is to address 

these and so point to the development of a principled approach to 

medical data management for the purpose of data mining and 

decision support. 
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CHAPTER 6 : EXPERIMENTS ON MISSING 

VALUE IMPUTATION  

6.1 Introduction  

This chapter analyses the results of the case studies on missing value 

imputation discussed in the chapter 5. Experiments are designed on 

missing value imputation and evaluated using the classifiers 

introduced in chapter 3 and chapter 4. The classification results are 

measured and evaluated by using the standard measurements 

indicated in Chapter 3 such as Confusion Matrix, Accuracy (ACC), 

Sensitivity (SEN), Specificity (SPEC), Positive Predictive Value (PPV) 

and Negative Predicative (NPV). 

6.2 Experiments on missing value imputation  

Missing Values Imputation using proposed machine learning 

technique (see section 5.5.2) was used on the thesis data. The 

classifiers like decision tree (J48), KNN, Fuzzy Unordered Rule 

Induction Algorithm (FURIA), SVM and Ripple-down rules (Ridor) 

were used for predicting missing values. Dataset prepared by using 

all the classifiers are later classified using Decision Tree (J48), KNN, 

Fuzzy Unordered Rule Induction Algorithm (FURIA) and K-Mean 

clustering algorithm. As discussed in section 5.2, the thesis dataset 
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have 23 attributes and 18 attributes have a missing value frequency 

from 1% to 30%. Furthermore, out of 832 records, 613 records have 

4% to 56% missing values in their attributes. All the above classifiers 

are used separately to predict missing value and complete the 

incomplete data. Standard Mean/Mode missing imputation is also 

used for comparison. The experimental results are presented in Table 

6.1 to Table 6.6. 

Table 6.1 presents the Decision Tree (J48) classification outcome of 

the datasets prepared by different missing value imputation methods. 

First column of the table is the classifier used for training the model 

with the complete datasets and later used for predicting the missing 

field of the incomplete dataset. Accuracy (ACC), sensitivity (SEN), 

specificity (SPEC), positive predictive value (PPV) and negative 

predicative (NPV) values are calculated from the confusion matrix and 

presented in the last five columns of the table in percentages. The 

last row of the table is the classification outcome of the dataset 

prepared by the standard Mean/Mode missing value imputation 

method.  

From the table 6.1 it can be observed that the Decision Tree (J48) 

classified accuracy of all the datasets of different missing values 

imputation methods are almost closed to each other (78% to 80%) 

and there is a big gap of sensitivity among all the imputation 
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methods. The highest sensitivity (23%) was found with the use of 

Decision Tree (J48) as imputation method, and the lowest was by 

mean-mode (11%). 

Table 6.1: Different Missing Imputation Methods with J48 

Classification  

Missing 

Imputation 

Methods 

Confusion Matrix  In % 

Actual 

Risk ↓ 

Classified Risk 

ACC SEN SPEC PPV NPV 

High Low 

Decision Tree 

(J48) 

High  27 93 

80 23 90 27 87 

Low 72 631 

KNN 

High  20 100 

80 17 90 23 86 

Low 68 635 

FURIA 

High  24 96 

80 20 90 25 87 

Low 72 631 

SVM 

High  18 102 

78 15 89 19 86 

Low 79 624 

Ripple-down 

rules (Ridor) 

High  16 104 

78 13 89 18 86 

Low 74 629 

Mean and 

Mode 

High  13 107 
80 11 92 19 86 

Low 56 647 
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Figure 6-1: The ROC of Sensitivity Versus (1-Specificity) of Decision 

Tree (J48) Classification 

 Figure 6.1 shows the ROC distribution of J48 classification different 

dataset. The statistical method of missing values imputation 

(Mean/Mode) has high specificity (92%) and very low sensitivity 

(11%). Decision Tree (J48) imputation has specificity of 90% but has 

a higher sensitivity (23%) then the statistical method and also any of 

the other machine learning methods.  

Table 6.2 presents the KNN classification outcome of all the datasets 

prepared by different missing value imputation methods. First column 

of the table is the classifier used for training the model with the 
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complete datasets and later used for predicting the missing field of 

the incomplete dataset.  Accuracy, sensitivity, specificity, positive 

predictive value and negative predicative values are calculated from 

the confusion matrix and in percentages. The last row of the table is 

the classification outcome of the dataset prepared by the standard 

Mean/Mode missing value imputation method.   

Table 6.2: Different Missing Imputation Methods with KNN 

Classification 

Missing 

Imputation 

Methods 

Confusion Matrix In % 

Actual Risk 

Classified 

Risk ACC SEN SPEC PPV NPV 

High Low 

Decision Tree 

(J48) 

High 24 96 
71 20 80 15 85 

Low 140 563 

KNN 
High 29 91 

81 24 91 32 88 
Low 63 640 

FURIA 
High 25 95 

79 21 89 24 87 
Low 79 624 

SVM 
High 24 96 

71 20 80 15 85 
Low 140 563 

Ripple-down 

rules (Ridor) 

High 25 95 
80 21 90 26 87 

Low 73 630 

Mean and 

Mode 

High 25 95 
77 21 87 21 87 

Low 92 611 
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Table 6.2 shows the KNN classified accuracy of all the datasets of the 

different missing values imputation methods are from 71% to 81% 

and the highest sensitivity (24%) was found with the use of KNN as 

imputation method, and the lowest was by Decision Tree (J48) 

(20%).  

 

Figure 6-2: The ROC of Sensitivity versus (1-Specificity) of KNN 

Classification  

Figure 6.2 shows the graph of sensitivity versus specificity. The use of 

KNN as missing imputation outperformed all the other methods. KNN 

has the highest sensitivity (24%), specificity (91%) and accuracy 
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(81%) among all the methods. The statistical method of missing 

values imputation (mean-mode) has slightly better sensitivity and 

accuracy then Decision Tree (J48) and SVM as missing imputation 

methods. The next table presents the classification outcome of Fuzzy 

Rule Induction Algorithm Classification of all the datasets prepared by 

the proposed missing value imputation method. 

Table 6.3 presents the FURIA classification outcome of all the 

datasets prepared by different missing value imputation methods. 

First column of the table is the classifier used for training the model 

with the complete datasets and later used for predicting the missing 

field of the incomplete dataset. The last row of the table is the 

classification outcome of the dataset prepared by the standard 

Mean/Mode missing value imputation method.  

Different machine learning algorithm were applied on the dataset to 

predict the missing values and the missing values imputed datasets 

are applied to Fuzzy Rule Induction Algorithm (FURIA) for 

classification. The classification results in table 6.3 shows that the use 

of Decision Tree (J48) has high sensitivity (40%). 
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Table 6.3: Different Missing Imputation Methods with FURIA 

Classification 

Missing 

Imputation 

Methods  

 Confusion Matrix In % 

 Actual Risk 

Classified 

Risk 

ACC SEN SPEC PPV NPV High Low 

Decision tree 

(J48) 

High 48 72 

63 40 67 17 87 

Low 230 473 

KNN 

High 36 84 

67 30 73 16 86 

Low 190 513 

Fuzzy 

Unordered 

Rule Induction 

Algorithm 

High 36 84 

67 30 73 16 86 

Low 190 513 

SVM 

High 22 98 

74 18 83 16 86 

Low 117 586 

Ripple-down 

rules (Ridor) 

High 24 96 

74 20 83 17 86 

Low 117 586 

Mean and 

Mode  

High 27 93 

72 23 80 16 86 

Low 140 563 
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Figure 6-3: The ROC of Fuzzy Rule Induction Algorithm (FURIA) 

Classification  

Figure 6.3 shows the graph of sensitivity versus specificity. The use of 

Decision Tree (J48) as missing imputation outperformed all the other 

methods. Decision Tree (J48) has the highest sensitivity (40%). 

Although SVM has the high specificity (83%), it shows very poor 

sensitivity (18%) compared to all the other imputation methods. 

Fuzzy Unordered Rule Induction Algorithm and KNN have the same 

sensitivity of 30%. For Fuzzy Rule Induction Algorithm (FURIA) the 

Decision Tree (J48) imputation method perform best for predicting 

the high risk patients. The next table presents the classification 
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outcome of K-Means clustering of all the datasets prepared by the 

proposed missing value imputation method. 

Table 6.4 presents the K-Means classification outcome of all the 

datasets prepared by different missing value imputation methods. 

First column of the table is the classifier used for training the model 

with the complete datasets and later used for predicting the missing 

field of the incomplete dataset.  

Table 6.4: Different Missing Imputation Methods with K-Means 

Clustering  

Missing 

Imputation 

Methods 

Confusion Matrix In % 

Actual 

Risk 

Classified 

Risk ACC SEN SPEC PPV NPV 

High Low 

Decision Tree 

(J48) 

High 36 84 
64 30 70 15 85 

Low 212 491 

KNN 
High 51 69 

53 43 54 14 85 
Low 321 382 

FURIA 
High 52 68 

58 43 60 16 86 
Low 281 422 

SVM 
High 36 84 

62 30 67 14 85 
Low 229 474 

Ripple-down rules 

(Ridor) 

High 38 82 
62 32 67 14 85 

Low 230 473 

Mean and Mode 
High 35 85 

63 29 69 14 85 
Low 219 484 
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From table 6.4 we can see that Decision Tree (J48) imputation 

method shows the highest accuracy (64%), but there is a big gap 

between the highest sensitivity (43%) shown by both KNN and Fuzzy 

Unordered Rule Induction Algorithm and the Mean/Mode imputation 

method (29%). Although KNN and Fuzzy Unordered Rule Induction 

Algorithm display the same sensitivity (43%), the accuracy and 

positive predicted rate of Unordered Rule Induction Algorithm is 

higher than the KNN.  

 

Figure 6-4: The ROC of Sensitivity versus (1-Specificity) of K-Mean 

Clustering for the different missing value imputation methods. 
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Figure 6.4 shows the graph of sensitivity versus specificity for K-Mean 

clustering. The use of Fuzzy Unordered Rule Induction Algorithm as 

missing imputation outperformed all the other methods. Although the 

Fuzzy Unordered Rule Induction Algorithm and KNN both have the 

highest sensitivity (43%), the accuracy and specificity of Fuzzy 

Unordered Rule Induction Algorithm is higher than KNN. The ROC 

curve for classification outcome of all combinations of missing value 

imputation methods and classifiers are presented in figure 6.5 and 

table 6.5 presents the highest sensitivity value obtained by different 

classifiers used as the proposed machine learning based missing 

value imputation method. 

Figure 6.5 shows the ROC of different combination of the machine 

learning algorithms used for imputing missing values and classifying 

the final complete data. A random classification line was also drawn 

to see how much better the classification outcomes are over random. 

From the figure it can be seen that apart from the combination B and 

F all the combinations where machine learning algorithm were used, 

the classification performances are better than random classifier. The 

combination A (FURIA-K-Means), where FURIA was used to predict 

and impute the missing values and K-Mean was used to classify the 

final complete data has got the highest sensitivity.  
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Figure 6-5: Sensitivity versus (1-Specificity) for All Imputation 

Methods. The data points A to R can be interpreted via the key with 

lists (Imputation Method-Classifier) pairings. 

If we measure the perpendicular distance of the points from the 

random classification line the combination L and M are found to have 

the highest (best) distance from the random line. Some of the 

classification outcomes of classifiers where Mean/Mode was used to 

impute the missing vale also show better than random results. 

However most of them are very low compared to all the combinations 

where machine learning was used for missing value imputation. Out 
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of the classifications where Mean/Mode was used as missing value 

imputation the combination K (Mean/Mode-KNN) found to be best. 

Table 6.5 presents the highest sensitivity found from the classifiers 

used as missing value imputation. First column of the table is the 

name of the classifier used for missing value imputation and last 

column is the name of the classifier use to classify the final complete 

datasets.  

Table 6.5: The Highest Sensitivity Values of Different Missing 

Imputation Methods 

Missing 

Imputation 

Methods 

Highest 

Sensitivity  

With the 

Accuracy  

The Classifier 

Used 

FURIA 43.3% 58% K-Mean 

KNN 42.5% 51% K-Mean 

Decision Tree 

(J48) 

40% 63% FURIA 

Ripple-down 

rules (Ridor) 

32% 62% K-Mean 

SVM 30% 62% K-Mean 

Mean and Mode 29% 63% K-Mean 

From the table 6.5 we can conclude that if the research aim is to 

achieve high sensitivity for unsupervised learning it is recommended 
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to use FURIA as missing value imputation method and for supervised 

learning decision tree as missing value imputation method.  

Table 6.6 presents a comparison of the classification outcome of the 

previous PhD research (Nguyen Thuy, T. T. 2009, Chapter 7, table 

6.6).  

Table 6.6: Results of K-Mix Clustering and K-mean Clustering with 

FURIA 

Classifier with 

Different Missing 

Imputation Methods 

Confusion Matrix In % 

Actual 

Risk 

Classified 

Risk ACC SEN SPEC PPV NPV 

High Low 

Published Results of 

previous PhD Thesis  

High 48 91 

60 35 65 16 83 

Low 248 452 

K-Mean With FURIA 

missing value 

imputation method 

High 52 68 
58 43 60 16 86 

Low 281 422 

 

The same dataset was used and the results show that the K-Means 

performed better than the k-Mix if we use the proposed missing 

imputation method to address the issue of missing values.  
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6.3 Discussions 

In this chapter the performance of machine learning techniques as 

missing value imputation was examined. The results are compared 

with traditional Mean/Mode imputation. Experimental results show 

that all the machine learning methods used in the experiment 

outperformed the statistical method (Mean/Mode), based on 

sensitivity and some cases accuracy. Figure 6.5 shows the ROC of 

classification outcome for the different classifiers used. Different data 

sets are prepared by the proposed imputation model using J48, KNN, 

FURIA, SVM, and K-Means. The classification outcome of the data 

prepared by the Mean/Mode imputation is also plotted for 

comparison.  

The results show that with the data prepared using mean mode as 

missing value we can get maximum 29% sensitivity with 63% 

accuracy for the K-Means classification. On the other hand we can get 

40%-43% sensitivity if we use machine learning methods to predict 

the missing value.  

It is observed that in most of the cases if the same classifier is used 

for predicting the missing value and final classifier the performances 

are better than the other cases. This is likely because the bias of the 

classifiers in imputing missing values later benefits that classifier on 

the complete data. However, this is always not the case. We can also 
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see some other combination of the imputation-classifier classification-

classifier can produce good results. Some combinations are able to 

produce better sensitivity while some are producing better specificity. 

The appropriate selection of the classifier is an issue for this approach 

to missing value imputation. It is expected that selection will depend 

on the data and interests of the research. Preparing the data using 

Machine Learning algorithm X and achieving best results on that 

prepared data using the same Machine Learning algorithm X is also to 

be expected. 

Using Mean-Mode we are imputing the unique value for the entire 

missing field but it is obvious that missing values cannot be unique. It 

is a big challenge to find the right value for the missing field. The 

proposed method uses pattern recognition technique to predict the 

value for the missing field by learning the pattern from the complete 

dataset. The experiments show that this method is giving an 

improved way of finding the best possible value for the missing fields.  

6.4 Summary  

Missing attribute values are common in real life datasets, which 

causes many problems in pattern recognition and classification. 

Researchers are working towards a suitable missing value imputation 

solution which can show adequate improvement in the classification 

performance. Medical data are usually found to be incomplete as in 
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many cases on medical reports some attributes can be left blank, 

because they are inappropriate for some class of illness or the person 

providing the information feels that it is not appropriate to record the 

values. In this chapter the performance of machine learning 

techniques as missing value imputation was examined. The results 

were compared with traditional Mean/Mode imputation. Experimental 

results show that all the machine learning methods which were 

explored outperformed the statistical method (Mean/Mode), based on 

sensitivity and some cases accuracy. 

The process of missing imputation with the proposed method can be 

computationally expansive for large numbers of records having 

missing values in their attributes. However, we know that data 

cleaning is part of the data pre-processing task for data mining which 

is not a real time task and neither a continuous process. Missing 

value imputation is a one-time task. With this extra effort a good 

quality data can be obtain for better classification and decision 

support. 

The next chapter will present the experiments on the class imbalance 

problem of medical datasets.  
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CHAPTER 7 : EXPERIMENTS ON CLASS 

BALANCING 

7.1 Introduction 

Class imbalance is a common problem with most medical datasets. 

Most existing classification methods tend not to perform well on 

minority class examples when the dataset is extremely imbalanced. 

Some commonly used class balancing methods are discussed in 

chapter 5. An improved cluster based under-sampling was also 

proposed in section 5.6.3. This chapter presents experiments on 

different class balancing techniques. Datasets prepared by different 

class balancing techniques are later classified using Decision Tree 

(J48) and FURIA. The classification results are measured and 

evaluated by using the standard measurements indicated in Chapter 

3 such as confusion matrix, sensitivity, specificity, positive predictive 

value, and negative predictive value. 

7.2 Experiments on Class Balancing  

As discussed in section 5.2 the thesis dataset, with 823 records, has 

22 input attributes and one class attribute. Among all the records 703 

patients are classed as alive and 120 patients as dead. For this 

experiment according to clinical risk prediction model (CM1) (Davis 

and Nguyen 2008), patients with status “Alive” are consider to be 



 CHAPTER 7: EXPERIMENTS ON CLASS BALANCING 

115 

 

“Low Risk” and patients with status “Dead” are consider to be “High 

Risk”. The data record with the label “Alive” are the majority class 

having 703 samples out of 823 and the “Dead” label records are the 

minority class having 120 samples out of 823. The ratio of majority 

and minority class is 6:1. The ratio gap between majority class and 

minority class was reduced using different methods discuss in chapter 

5, section 5.6. Datasets are prepared using SMOTE over-sampling, 

random under-sampling, cluster based under-sampling proposed by 

Yen and Lee (2009) and our proposed under-sampling techniques. 

The details of the sampling techniques have discussed in chapter 5, 

section 5.6 and the descriptions of the balanced datasets are 

presented in table 7.1.  

Besides sampling the majority class data by clustering, the minority 

class is also clustered and under-sampled. The experiment was 

performed to observe the outcome of different combination of data 

subsets of majority and minority class samples. The datasets were 

classified with J48 and FURIA, using. 10-Fold cross validation for 

training and testing sampling. The accuracy, sensitivity and specificity 

derived from confusion matrix (discussed in section 3.6), are used as 

classification performance measure. The results are presented in the 

table 7.2 to 7.6. 
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Table 7.1: Description of the data prepared by different balancing 

methods 

Data 

Majority 

: 

Minority 

Ratio 

Description 

D1 2 : 1 

Data consist of all the minority class samples (“Dead”) 

and one cluster of majority class records out of three 

clusters made by K-Mean. (120 Dead, 213 Alive) 

D2 2.4 : 1 

Data consist of combination of two clusters of the 

minority class samples and one cluster of majority 

class samples. Clusters are made with simple k-mean 

for both of the classes (K=3). (89 Dead, 213 Alive) 

D3 3 : 1 

Data consist of combination of all the minority class 

samples with randomly (random cut 1) selected 

samples from majority class sample. (120 Dead, 350 

Alive) 

D4: 

 
3: 1 

Data consist of combination of all the minority class 

samples with randomly (random cut2) selected 

samples from majority class sample. (120 Dead, 353 

Alive) 

D5 6 :1  Original data with full samples. (120 Dead, 703 Alive) 

D6 1.8 : 1 

Majority samples of the data set D2 are clustered in to 

3 cluster and each clusters are combined with the 

minority samples. (89 Dead & 160 Alive) 

K3M1Yen 1: 1 
Majority and minority ratio 1:1 (M=1) using Yen and 

Lee (2009) 

K3M2Yen 2: 1 
Majority and minority ratio 2:1 (M=2) using Yen and 

Lee (2009) 

SMOTE  1:1 
The data set was prepared using SMOTE over-sampling 

with the Majority and minority ratio 1:1. 
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Data described in the table 7.1 are later classified using Decision Tree 

(j48) and Fuzzy Unordered Rule Induction Algorithm (FURIA). Table 

7.2 presents the FURIA classification outcome of all the datasets 

prepared by different class balancing techniques described in the 

table 7.1. The table 7.3 presents the Decision Tree (J48) classification 

outcome of all the datasets prepared by different class balancing 

techniques described in the table 7.1. First column of the tables is the 

name of the dataset and subsequent columns are the classification 

accuracy (ACC), sensitivity (SEN), specificity (SPEC), positive 

predictive value (PPV) and negative predicative (NPV) values 

calculated from the confusion matrix and presented as percentages.  

Table 7.2: Classification outcome of FURIA (Fuzzy Rules) classification  

  FURIA (Fuzzy Rules) classification (%) 

Data Sets  ACC SEN SPEC PPV NPV 

D1  85.89 64.17 98.12 95.06 82.94 

D2  92.11 79.78 97.21 92.21 92.07 

D3  74.68 11.67 96.29 51.85 76.07 

D4  70.82 15.83 89.52 33.93 75.78 

D5  66.71 30.00 72.97 15.93 85.93 

D6 96.39 91.01 99.38 98.78 95.21 

K3M1Yen 61.48 67.50 55.65 59.56 63.89 

K3M2Yen 60.39 22.50 79.66 36.00 66.90 

SMOTE Over-Sampling  83.00 82.00 83.00 83.00 83.00 
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Table 7.3: Classification outcome of Decision Tree (J48) 

From the table 7.2 and 7.3 it can be seen that the original imbalance 

dataset D5 has accuracy of 66.71% with FURIA classification and 

79.59 % with Decision Tree (J48) classification. For both of the 

classifiers the sensitivity value is very poor (30% and 20%). The 

accuracy is high because the classifier was able to classify the 

majority class (alive) sample well (72.97% and 89.76%) but failed in 

classifying the target minority set. Dataset D1 where data are 

balanced by clustering the majority class samples and combining all 

the minority samples shows better classification outcome than the 

original imbalance data. With the FURIA and Decision Tree (J48) 

classification of the D1 dataset, the sensitivity value is 64.2% with 

the Decision Tree (J48) and 67.5% with the FURIA. The classification 

 J48 (Decision Tree Classification) (%) 

Data Sets ACC SEN SPEC PPV NPV 

D1  84.08 67.50 93.43 85.26 83.61 

D2  92.05 83.15 95.77 89.16 93.15 

D3  67.66 35.83 78.57 36.44 78.13 

D4  66.60 33.33 77.90 33.90 77.46 

D5  79.59 20.00 89.76 25.00 86.80 

D6 97.59 93.26 100.00 100.00 96.39 

K3M1Yen 51.64 52.50 50.81 50.81 52.50 

K3M2Yen 59.55 39.17 69.92 39.83 69.33 

SMOTE Over-Sampling 85.78 84.21 87.34 86.93 84.69 
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outcome of the D2 is 2 to 3 times higher than the original datasets. 

The dataset prepared by the method proposed by Yen and Lee (2009) 

shows some increase in the sensitivity value but the accuracy 

dropped and overall performance was not good. Under-sampling by 

random cut D3 and D4 also disappointed with its poor accuracy and 

sensitivity values. 

The SMOTE over-sampling technique shows a good classification 

outcome for both the classifiers Decision Tree (J48) and FURIA. But 

the performance of under-sampling using the proposed approach is 

better in terms of classification accuracy and training time of the 

classifier. Out of 10 runs the average training time of the dataset 

prepared by SMOTE was 3.84 second and with our approach 0.1 to 

0.31 second. ROC spaces of the two classification outcome of the 

under-sampled datasets are plotted in the figure 7.1 and 7.2.  

If we analyse the ROC space for all datasets classified with Decision 

Tree (J48) plotted in figure 7.1 and FURIA plotted in figure 7.2, we 

will find that overall accuracy of all the datasets are above the 

random line and the datasets D1, D2 and D6 which are prepared by 

our proposed method display the highest accuracy among all the 

datasets. Accuracy of the datasets prepared by the method of Lee 

(2009) is just close to random and far worse than all the datasets 

prepared by the proposed method of under-sampling.  
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Figure 7-1: ROC of Decision Tree Classification of all balanced data by 

under-sampling 
 

 

Figure 7-2: ROC of FURIA Classification of all balanced data by under-

sampling 
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7.2.1  Experimental outcome of the proposed class 

balancing method with LifeLab datasets  

In order to see if the performance of the proposed method of class 

balancing transfers to other datasets, the LifeLab datasets was also 

tested on the method. LifeLab is a prospective cohort study consisting 

of patients who were recruited from a community-based outpatient 

clinical based in England (the University of Hull Medical Centre, UK). 

This dataset presents the incidents, prevalence and persistence of 

heart failure, and the dataset routinely collected clinical data to be 

used for research purposes (appendix A).  

Table 7.4: Data description of datasets made from LifeLab by the 

proposed method  

ID Description  Number 

of Dead 

Records  

Number 

of Alive 

LD1 Original Data  520 1512 

LD2 Alive records are classified into 3 clusters and 

each of the clusters is combined with all the dead 

records. Final dataset is LD2 which has the 

highest outcome using J48. 

520 592 

LD3 Dead records from the original data are clustered 

into 3 clusters and combined with the alive 

records from LD2. Final dataset is LD3 which has 

the highest outcome using J48. 

282 592 
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The LifeLab dataset has 85 attributes and 2032 records where 520 

records are of dead patients and 1512 are from alive patients. The 

data description can be seen in appendix A. Three data sets are 

prepared using the proposed method and described in table 7.4. LD1 

is the original imbalanced datasets. The dataset LD2 a LD3 are 

prepared by proposed class balancing method. Details of the datasets 

are presented in table 7.4. 

Table 7.5: Classification outcome of LifeLab datasets  

All the datasets described in the table 7.4 are classified using the j48 

and FURIA. Results are as presented in the table 7.5. First column of 

Classifier 

and the 

datasets 

Confusion Matrix % 

Actual 

Risk 

Classified 

Risk ACC SEN SPEC PPV NPV 

High Low 

LD1 

J48 
High 182 338 

67.86 35.00 79.17 36.62 77.98 
Low 315 1197 

FURIA 
High 163 357 

70.92 31.35 84.52 41.06 78.17 
Low 234 1278 

LD2 

J48 
High 390 130 

77.25 75.00 79.22 76.02 78.30 
Low 123 469 

FURIA 
High 377 143 

82.73 72.5 91.72 88.50 79.15 
Low 49 543 

LD3 

J48 
High 243 39 

92.91 86.17 96.11 91.35 93.59 
Low 23 569 

FURIA 
High 252 28 

96.11 90.07 98.99 97.69 95.44 
Low 6 586 
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the table is the name of the dataset prepared by proposed class 

balancing technique. The second column is the names of the 

classifiers used to classify the datasets. The subsequent columns are 

the classification outcome present as percentages.  

From table 7.5 it can be seen that the classification outcome of the 

original imbalanced data set LD1 is very poor compared to the other 

datasets prepared by the proposed class balancing technique. As seen 

in the table 7.4 the LD1 has more “low risk” sample than “high risk” 

due to class imbalance problem more “high risk” patients record were 

miss classified as “low risk”. The sensitivity of LD1 data was recoded 

as 30 % to 35 % with Decision Tree (J48) and FURIA classification. 

However the datasets LD2 and LD3 prepared by the proposed class 

balancing technique is showing very high accuracy and sensitivity 

which is more than double of the imbalanced dataset. The highest 

accuracy of 96.11 % and sensitivity of 90.07 % is found with the 

dataset LD3 for FURIA classification. 

7.2.2  Experimental outcome of the proposed class 

balancing method with UCI datasets  

The proposed method of class balancing was applied to the Indian-

Liver data set from the UCI Machine Learning Repository and was 

classified with the Decision Tree (J48). The results are presented in 

the table 7.6.  



 CHAPTER 7: EXPERIMENTS ON CLASS BALANCING 

124 

 

Table 7.6: IndianLiver data balancing by the proposed method and 

classified by J48 

Data  

In % 

ACC SEN SPEC PPV NPV 

IndianLiver (Original data) 68.78 75.66 44.09 82.93 33.53 

IndianLiver (Balanced by the 

proposed method)  
72.1 77.74 59.74 80.86 55.09 

IndianLiver data consist of 10 attributes with 586 records. Where 

there are 167 records are having class label of NonLiver and 419 

records are having class label of Liver. The data set is highly 

imbalanced. It has more records of the target class than the non-

target class. The data was balanced using the proposed method and 

later classified using Decision Tree (j48). The results are presented in 

table 7.6. 

From table 7.6 it can be seen that for the original imbalanced data 

the Decision Tree (J48) classifier was good at classifying the liver 

disease records but failed to correctly classifying the non-liver disease 

patient’s records. When the data was balanced with our proposed 

method the prediction rate of the minority class was much better 

than the original imbalanced data.  
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7.3 Discussion 

From the above experiments on class balancing it can be seen that 

the classification outcome of the balanced data is much better than 

the imbalanced dataset. Some well-known techniques were used for 

balancing the data records and the performance of our proposed 

method of class balancing was compared with them.  

When the imbalance level is huge, it is hard to build a good classifier 

using conventional learning algorithms. They aim to optimize the 

overall accuracy without considering the relative distribution of each 

class, and the classification outcome of the imbalance data was 

always poor.  

The over-sampling technique SMOTE was not found to be as good as 

the under- sampling technique. It is found that the SMOTE blindly 

generates synthetic minority class samples without considering 

majority class samples and may cause overgeneralization. Over-

sampling also takes a longer training time. 

It is also observed from the experiments that the majority and 

minority ratio is not the only issue in building a good prediction 

model. There is also a need for good training samples that display 

data properties consistent with the class label assigned to them. Most 

of the time the records of clinical datasets do not truly reflect data 

properties consistent with the target or outcome label. If we consider 
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the cardiovascular risk based on dead or alive of previous patient’s 

records, it may also happen that some of the patients may have died 

with some other cause than the target and some patients have more 

propriety of a high risk patient but still they are alive. It can be seen 

that the majority and minority ratio of D1 and D2 are very close but 

the classification outcomes are not similar. Although the majority 

minority ratio is almost same, there is a big difference in the 

classification accuracy, sensitivity and specificity of the datasets; as 

can be noticed in the table 7.2 and 7.3. The dataset “K3M1Yen” 

prepared by the method proposed by Yen and Lee (2009) has 1:1 

ratio but still displays poorer classification outcome than the other 

datasets. Two more datasets (Lifelab and Indian Liver) were also 

tested on the proposed method. The data balanced by the proposed 

method for all the datasets was found to perform much better than 

all other methods tested here. For under-sampling the proposed 

method is found to be good in selecting the best samples from the 

minority class.  

Further experiments were done with the aim to observe how good the 

classification models are to deal with the unknown records, when 

they are built with the data balanced by the proposed method. The 

datasets prepared by the proposed class balancing method was used 

as a training set to build a classifier model then the original 
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imbalanced dataset was used as a testing set to test the model. 

Details of the experimental results are present in Appendix B. The 

thesis data and the LifeLab data were used for the experiments. From 

the results it is observed that for Decision Tree (j48) classification 

with 10 fold cross validation, the sensitivity of the imbalanced thesis 

data was 20% with 89.76% specificity. The sensitivity of 84% and 

67.5% specificity was found with one of the dataset balanced by the 

proposed method. Moreover, 79% sensitivity and 40% specificity was 

found when the balanced data was used to train the classifier and the 

full dataset was used as testing set. It is observed that the specificity 

dropped down if the balanced data was used as a training set. The 

experimental results of the Lifelab were also very impressive. For 

Decision Tree (j48) classification with 10 fold cross validation, the 

sensitivity of the imbalanced LifeLab data was 35% and 75% with the 

data balanced by the proposed method. Furthermore, the 96% 

classification sensitivity was found when the balanced data was used 

as training and the full original imbalanced data was used as a testing 

set.  

The classification model built by the data balanced by the proposed 

method was found to be reliable to classify the target class (high risk 

patients) but not good enough to classify the low risk patients. This is 

likely because that the class labels do not truly reflect the property of 
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the patients (see section 2.7). The classification model built by the 

balanced data set was found to be good enough to classify the high 

risk (target class) records from the unknown dataset. Moreover, this 

is also the ultimate goal of a clinical risk prediction model.   

The results show that the proposed method of under-sampling not 

only can balance the data for better classification but also can select 

good training samples for building reliable classification models.     

7.5 Summary  

This chapter presented experiments on the sampling techniques like 

SMOTE and some under-sampling techniques over the cardiovascular 

data and other datasets. The results were compared with the 

proposed cluster based under-sampling technique. It is found that the 

proposed modified cluster based under-sampling method not only can 

balance the data but also can generate good quality training sets for 

building classification models.  

The outcome labels of most of the clinical datasets are not consistent 

with the underlying data. If we consider the principal data set used in 

the thesis, where cardiovascular risk is based on whether previous 

patients records display dead or alive, it appears some of the patients 

may have died due to causes other than cardiovascular risk; 

conversely some high risk cardiovascular patients appear to be alive. 

Both situations confound the class imbalance problem. The 
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conventional over-sampling and under-sampling technique may not 

always be appropriate for such datasets. 

The proposed method is found to be useful for such datasets where 

the class labels are not certain and can also help to overcome the 

class imbalance problem of clinical datasets and also for other data 

domains. The next chapter will present the experimental results on 

feature selection. 
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CHAPTER 8 : EXPERIMENTS ON FEATURE 

SELECTION 

8.1 Introduction    

This chapter will present the experimental results of feature selection 

for imbalanced datasets. As discussed in chapter 4, both the filter and 

wrapper methods of feature selection use the class label of the 

dataset to select the attribute subset. For highly imbalanced data, the 

class imbalance problem not only affects classification but also can 

affect the feature selection process. Our research found that very few 

work is done in this area. Tian-yu (2009) tried some standard feature 

selection method on some class imbalance data and compare which 

method of feature selection good for their experimental data. 

Khoshgoftaar et al. (2010) proposed repetitive feature selection 

method for imbalance data, where they used random under-sampling 

to balance the data. In the work of Al-Shahib et al. (2005), the 

author used random under-sampling to balance their data for SVM 

classification. They found that SVM performed well on the balanced 

data.  

A case study was prepared to examine the effect of the class 

imbalance problem on feature selection. Experiments are done based 

on the feature selection framework proposed in section 5.7.1. 
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RELIEF-F feature selection is used for most of the experiments and 

the detail of the algorithm is described in section 4.4. Information 

Gain based feature ranking is also used for comparisons. The 

purposes of the experiments are not to compare the feature selection 

technique RELIEF-F and Information gain. The main purposes of the 

experiments are to study the effect of class imbalance problem on 

feature selection and evaluate the proposed feature selection 

framework discussed in section 5.7.1. The thesis cardio vascular data 

was used for all the experiments in this chapter. As discussed in 

chapter 5, the thesis data has 22 input attributes and 1 class 

attribute, which is the patient status “alive” or “death”. The original 

data is highly imbalanced with regard to the class label. Out of 823 

records 120 patients are dead and 703 patients are alive.  

8.2 Attribute ranking of thesis data with RELIEF-F and 

Information Gain 

This section demonstrates the attribute ranking of the thesis data. 

RELIEF-F and Information Gain are used to rank the attributes of the 

thesis data described in section 5.2. The details of the feature 

selection techniques are already discussed in chapter 4. Figures 8.1 

presents the rank of attributes of the imbalanced thesis data set 

based on information gain based attribute selection and RELIEF-F 

feature ranking as discussed in section 4.4. 
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From the figure 8.1 it is observed that the RELIEF-F produces much 

higher values for some of the attributes over information gain. For 

example the RELIEF-F ranked the attribute “Carotid_status” as first 

whereas the first ranked by the information gain is the attribute 

“patch”.  

 

Figure 8-1: Attribute ranking of imbalanced data by information gain 

and RELIEF-F 

The attribute subsets ranked by RELIEF-F and information gain were 

later classified using Decision Tree (J48). Different attribute subsets 

were considered; in each case one attribute was removed from the 

bottom of the list and a new subset was prepared for classification. 

The process was repeated and Decision Tree (J48) was run for each 

attribute subset containing 22 attributes down to 1 attribute. The 
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sensitivity value (see section 3.6.1) was calculated and presented in 

figure 8.2.  

 

Figure 8-2: Sensitivity of Decision Tree (J48) classification of different 

attribute subset by RELIEF-F and Information Gain  

Figure 8.2 shows the sensitivity value of different attribute subsets 

classified using J48. The attribute number 22 is the dataset contains 

the top (RELIEF-F ranked) 22 attributes and attribute number 1 is the 

dataset contain only one attribute which the top most attribute 

ranked by RELIEF-F. From the figure 8.2 it can be seen that for both 

of the datasets using all the attributes the sensitivity is 25%. The 

sensitivity value went down when one attribute was removed from 

bottom of the information gain ranked list. On the other hand the 

RELIEF-F ranked attributes goes high with one less attribute. For 

RELIEF-F ranked attribute only 14 attributes were needed to get the 
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expected sensitivity (sensitivity value found using all the attributes), 

compared to 18 attributes needed for information gain ranked 

attributes. The results show that the RELIEF-F is good at ranking the 

attributes compared to information gain. Later experiments are 

designed to see the attribute rank of imbalanced data compared to 

data balanced by some class balancing techniques.   

8.3 Attribute ranking of balanced datasets  

This section details experiments on attribute ranking of the thesis 

data balanced by different class balancing techniques. SMOTE (see 

section 5.6.1) was used to balance the data by over-sampling the 

minority samples. Three other under-sampling techniques, random 

under-sampling, cluster based under-sampling by Lee (2009) and our 

proposed under-sampling techniques were used to under-sample the 

majority class data set. Details of the techniques are described in 

chapter 5, section 5.6 to 5.7. The attributes of the datasets are later 

ranked using RELIEF-F and information gain. The ranking of the 

attributes are given in table 8.1 and table 8.2. Figure 8.3 and figure 

8.4 plot the attributes ranking compared to their average ranking. 

The average ranking of each attribute was calculated by making the 

average ranking of the individual attribute ranking in all the different 

datasets. This is done to see how the ranking values are deviating 

from their average ranking.   
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Table 8.1: RELIEF-F Attribute Ranking Of Different Balanced Data  

Attribute Name Ranking of the attributes   

Origina

l Data 

Propose

d 

Method 

Under-

sampling 

by Lee 

(1:1) 

Random 

Under-

samplin

g 

SMOTE  

Over-

sampli

ng 

(1:1) 

Averag

e 

Rankin

g 

shunt 3 5 1 3 3 3 

carotid_status 1 4 9 1 2 3.4 

patch 2 10 4 2 1 3.8 

smoking 4 3 8 5 6 5.2 

Sex 6 1 5 8 7 5.4 

angina 7 7 2 6 5 5.4 

hypertension 5 6 7 4 11 6.6 

side 8 2 22 7 4 8.6 

Ecg 9 14 3 10 9 9 

respiratory 10 11 6 9 14 10 

Age 12 8 11 13 8 10.4 

diabetes 8 13 14 12 15 12.4 

Asa 13 12 17 11 13 13.2 

myocardial_infarct 11 9 21 17 12 14 

blood_loss 16 21 12 14 10 14.6 

cabg 15 19 13 21 16 16.8 

Ccf 20 15 15 20 20 18 

aspirin 18 22 18 15 17 18 

duration 22 17 10 22 22 18.6 

arrhythmia 21 18 19 16 19 18.6 

renal_failure 19 20 16 19 21 19 

warfarin 21 16 20 18 21 19.2 
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Table 8.2: Information Gain attribute ranking of different balanced 

data 

Attribute Name Ranking of the attributes   

Origina

l Data 

Propose

d 

Method 

Under-

sampli

ng by 

Lee 

(1:1) 

Random 

Under-

samplin

g 

SMOTE  

Over-

samplin

g (1:1) 

Averag

e 

Rankin

g  

patch 1 4 5 1 3 2.8 

carotid_status 3 5 2 3 14 5.4 

smoking 5 3 7 5 8 5.6 

ecg 2 7 1 2 16 5.6 

myocardial_infarct 6 9 8 6 10 7.8 

shunt 11 16 3 8 5 8.6 

angina 8 17 4 12 6 9.4 

blood_loss 4 22 6 4 13 9.8 

diabetes 9 14 9 11 9 10.4 

sex 18 1 17 16 4 11.2 

side 15 2 14 14 11 11.2 

arrhythmia 8 11 11 7 19 11.2 

hypertension 17 8 13 15 7 12 

respiratory 12 10 15 10 15 12.4 

ccf 10 19 10 9 20 13.6 

asa 7 21 21 21 2 14.4 

warfarin 13 15 12 13 21 14.8 

age 21 6 20 20 12 15.8 

cabg 19 12 18 18 17 16.8 

renal_failure 16 13 16 17 22 16.8 

duration 22 20 22 22 1 17.4 

aspirin 20 18 19 19 18 18.8 
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Table 8.1 presents the RELEIEF-F attribute rank of all the datasets 

prepared by different class balancing methods. Table 8.2 presents the 

information gain based ranking of all the datasets. The topmost 

attribute is ranked as “1” and the bottom most attribute is ranked as 

“22”. The first column of the tables is the name of the attributes and 

subsequent columns are the ranking value.  

 

Figure 8-3: Attribute ranking of all the balanced and imbalanced 

datasets by RELIEF-F 

Figure 8.3 presents the attribute rank of all the imbalanced and 

balanced datasets ranked by RELIEF-F. The average ranking of the 

five datasets is also plotted in the figure. From figure 8.3 we can see 

that the average top ranked attribute is “shunt” and average 

bottommost attribute is “Warfarin”. For the original dataset which is 
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highly imbalanced with regard to the class label, some attributes are 

ranked close to the average. However others have a big 

disagreement with the average ranking; for example, the attribute 

“Diabetes”, which is ranked as 8 for the original dataset and the 

average ranking of that attribute for the other datasets is 12.4. When 

the dataset is prepared by the thesis proposed data balancing 

technique RELIEF-F ranked the “Sex” attribute as the top most 

attribute; however the average ranking of that attribute is 5.4. Apart 

from the attribute “Sex”, the rank of attributes “Patch”, “blood_loss” 

and “Side” have big disagreements with attribute ranking from other 

datasets. The average ranking of the attribute “Patch” is 3.4 however 

it is ranked as 10 for the dataset prepared by the proposed class 

balancing method. When RELIEF-F was used on the dataset prepared 

by SMOTE over-sampling, it is found that apart from the attributes 

“Hypertension”, “Side”, “Blood_loss” and “duration” most of the 

attributes ranking was close to the average. Furthermore, the 

attribute ranking of the balanced dataset prepared by the class 

balancing technique proposed by Lee (2009) is very disappointing. 

Most of its attributes ranking are far away from the average rank. For 

example, the attribute “Side” which has an average rank of 8.6 but it 

is ranked as 22 for the dataset prepared by the method of Lee 

(2009). The same is found for other attributes like “carotid_status”, 

“ECG”, “respiratory”, “myocardial_infarct”, “cabg” and “duration”, 
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which have big disagreement with their average ranking made by 

RELIEF-F from other balanced and imbalanced datasets. 

Figure 8.4 presents the attribute rank of all the imbalanced and 

balanced datasets ranked by information gain. The average ranking 

of the five datasets is also plotted in the figure. 

 

Figure 8-4: Attribute ranking of all the balanced and imbalanced 

datasets by information gain  

From the figure 8.4 it can be seen that the average top ranked 

attribute is “patch” and average bottommost attribute is “aspirin”. For 

the original dataset (the highly imbalanced data) only a few attributes 

are close to their average rank made by information gain from other 

datasets. Moreover the figure shows high disagreement of attribute 

ranking made by information gain using all the five datasets prepared 
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by different class balancing techniques. For example, the attribute 

duration which is ranked as 1 for the dataset prepared by SMOTE, 

however the average ranking of that attribute is 17.4. The attribute 

ranking using is information gain is truly disappointing as very less 

agreement found between all different datasets. The funding suggest 

that information gain based feature selection is not suitable for the 

thesis data. 

8.4 Experimental results of the proposed feature 

selection framework for imbalanced data  

This section presents the experimental outcome of the proposed 

feature selection framework. As described in the section 5.7.1 the 

framework first used a cluster based under-sampling method to 

reduce the gap between the majority and minority sample then the 

RELIEF-F algorithm is used to rank the attributes. Based on the 

ranking made by RELIEF-F, a total of 21 data subsets were prepared. 

Datasets are later classified using Decision Tree (J48) with 10 fold 

cross validation. The subsets were prepared by selecting the top (n-

1) attributes, where n is the number of attributes. The Decision Tree 

(J48) was applied to all the data subsets and sensitivity value was 

calculated in each case. The same steps were also performed on the 

balanced data. This is done to compare the outcome of the balanced 
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data with the original imbalanced data. The outcome of the 

experiment is plotted in the figure 8.5.  

 

Figure 8-5: Sensitivity value of attribute subsets of the imbalanced 

data and balanced data ranked by RELIEF-F 

Figure 8.5 presents the sensitivity value of Decision Tree (J48) 

classification of all the attributes ranked by the RELIEF-F. From the 

figure it can be seen that the balanced data by the proposed data 

balancing method is not only producing high sensitivity compared to 

the original imbalanced data but also using less attributes to keep a 

high sensitivity value. For Decision Tree (J48) classification of the 

imbalanced data, a minimum of 14 attributes are needed to get a 

good classification outcome. Only 9 attributes are required for the 
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balanced data (upper line in Figure 8.5). A statistical test (F-Test) 

was made to see if the results are statistically significant different. An 

F-test (Harper 1984) is a statistical test in which the test statistic has 

an F-distribution under the null hypothesis. It is most often used 

when comparing statistical models that have been fitted to a data set, 

in order to identify the model that best fits the population from which 

the data were sampled. Exact "F-tests" mainly arise when the models 

have been fitted to the data using least squares. F-Test of the 

classification outcome of balanced and imbalanced dataset is 

presented in the table 8.3.  

Table 8.3: F-Test of two ranges of sensitivity values 

  Balanced Dataset Imbalanced Dataset  

Mean 0.73033708 0.158333333 
Variance 0.02078862 0.00728836 
Observations 22 22 
df 21 21 

F 2.85230444 
 P(F<=f) one-tail 0.01010094 
 F Critical one-tail 2.08418862   

 

From the table 8.3 it can be seen that the F value is higher than the 

“F Critical one-tail” which shows that the outcome of the two models 

are statistically significantly different.  

A further experiment was done by replacing the RELIEF-F ranking 

with information gain ranking. This is done just to compare different 

feature ranking method for the proposed feature selection framework 
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for imbalanced datasets. The experimental outcome is plotted in the 

figure 8.6, which presents the sensitivity value of Decision Tree (J48) 

classification of all the attributes ranked by the information gain. 

From the figure it can be seen that the balanced data by the 

proposed data balancing method is not only producing high sensitivity 

compared to the original imbalanced data but also using less 

attributes to keep its high sensitivity value. For imbalanced data, 17 

attributes are needed to keep a high sensitivity. However, there is a 

need of only 7 attributes for the balanced data.  

 

Figure 8-6: Sensitivity value of attribute subsets of the imbalanced 

data and balanced data ranked by information gain 
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8.5 Discussion  

In machine learning problems that involve learning a "state-of-

nature" (maybe an infinite distribution) from a finite number of data 

samples in a high-dimensional feature space with each feature having 

a number of possible values, an enormous amount of training data 

are required to ensure that there are several samples with each 

combination of values. With a fixed number of training samples, the 

predictive power reduces as the dimensionality increases, and this is 

known as the Hughes effect or Hughes phenomenon (Oommen et al. 

2008). Feature selection, is a process closely related with dimension 

reduction and addresses the Hughes effect. The objective of feature 

selection is to identify features in the dataset as important and 

discard any other feature as irrelevant, where they provide only 

redundant information. As the feature selection methods use the 

class label of the dataset to select the attribute subset, the class 

imbalance problem is found to be an additional problem, particularly 

while working on dimension reduction for highly imbalanced datasets.  

The experiments of this chapter show that distribution of the class 

label has a big impact on the feature ranking done by an algorithm. 

This is because most of the feature selection methods use the class 

label of the dataset to select the attribute subset. As it can be seen 

from the figure 8.3 and 8.4, attribute ranking made by RELIEF-F and 
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information gain of different dataset with different distribution of the 

class label are not same. The research found that the classifier needs 

less attributes to show high accuracy for balanced data, and 

conversely more attributes are needed if the data is highly 

imbalanced. The F-test of the results also suggest that the outcome 

of the two feature selection frame work (feature selection before class 

balancing and feature selection after class balancing) are statistically 

significantly different. Based on the experiments of this chapter it 

found that for reliable classification the class balancing need to be 

performed before feature selection. 

8.6 Summary  

This chapter presented experiments on feature selection for the thesis 

data. Experiments were made to rank the attributes of the thesis data 

with RELIEF-F and information gain. The chapter also presented 

experiments on feature selection for imbalanced data with the 

proposed feature selection framework discussed in chapter 5. The 

study found that feature rankings are different for the balanced and 

imbalanced datasets and more attributes are required if imbalanced 

data is used. Most of the medical data are found to be imbalanced in 

their class label. Mining imbalanced data for the purpose of clinical 

decision support is a challenging issue. This research finding shows 

that the class imbalance is not only an issue for the classifier but also 
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a big issue for feature selection. The findings show that class 

balancing enables reliable feature selection. The research suggests 

the class balancing needs to be performed before feature selection for 

reliable feature selection and classification of clinical data, and 

perhaps similarly so for other domain data.  
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CHAPTER 9 : CONCLUSION  

9.1 Introduction  

The application of data mining to medical and health data is very 

challenging. The datasets usually are very large, complex, 

heterogeneous, hierarchical and vary in quality. Sittig et. all (2008) 

placed the grand challenges of Clinical Decision Support into three 

large categories: Improve the effectiveness of Clinical Decision 

Support interventions, Create new Clinical Decision Support 

interventions and Disseminate existing Clinical Decision Support 

knowledge and interventions. However Sittig et al.’s identification 

covers little about data pre-processing. Without quality data these 

three aims cannot be realised. 

Sometimes, improved data quality is itself the goal of the analysis, 

usually to improve processes in a production database and the 

designing of decision support. Many other researchers mention 

several other issues of clinical decision support related to clinical data 

and data pre-processing. The ones most relevant to this thesis were 

high volume of data, data update, inconsistent data representation, 

number of variables, missing/incomplete data, and class imbalance. 

As there are a number of issues with medical data mining, this 

research was limited to addressing the issues with missing value, 
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issues with class imbalance and the effect of class imbalance for 

feature selection.  

The aim of the thesis research was to investigate suitable data pre-

processing techniques for medical data mining, in particular the 

following two research questions: 

a) How can data pre-processing be improved for medical data 

mining?  

b) What forms of techniques (and metrics) are useful for 

determining data cleansing, feature reduction and 

classification? 

This chapter presents the conclusions for the research questions 

initially presented in Chapter 1. The thesis successfully addressed the 

above research questions and proposed three novel techniques to 

improve data preprocessing for the purpose of medical data mining. 

The thesis also proposed an improve data mining methodology for 

mining medical data.  

9.2 Thesis Contributions  

The research described in the thesis contains flowing four novel main 

contributions.  
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9.2.1 Contribution 1: Improved data mining methodology 

for mining medical data 

A primary objective for this research was the investigation of 

systematic data preparation techniques for data cleansing and feature 

reduction. Chapter 2 introduced a data mining methodology that was 

used a guideline for the research described in the thesis. On the basis 

of the results obtained, it is perhaps prudent to revisit that 

methodology. The research findings suggest that the data pre-

processing has an important part in the medical data mining 

methodology with proper order of the pre-processing tasks. An 

improved data mining methodology for the medical data mining is 

given section 2.4.4. 

The research suggests that the “class balancing” needs to be 

performed before the feature selection. Through the experiments it is 

found that a subsequent feature selection method can select less 

number of attribute if the data is balanced.  

9.1.2   Contribution 2: Machine learning based missing value 

imputation method  

A machine learning based missing value imputation method has been 

proposed. A quantitative study shows that final classifier performance 

is improved when the machine learning algorithm is used to predict 

missing attribute values. In most cases, the proposed machine 
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learning techniques were found to perform better than when the 

standard means imputation technique was used. The work was 

presented in a high quality conference at Imperial College, London 

and awarded the best paper award 2012 (IAENG 2012). The 

extended version of the work is published as a book chapter by 

Springer (M. M Rahman and D. N. Davis 2013).  

9.2.3   Contribution 2: Cluster Based semi-supervised class 

balancing method  

Most medical datasets are not balanced with regard to their class 

labels. Most existing classification methods tend not to perform well 

on minority class examples when the dataset is extremely 

imbalanced. This is because they aim to optimize the overall accuracy 

without considering the relative distribution of each class. A cluster 

based semi-supervised under-sampling technique was proposed, that 

solves the class imbalance problem for our cardiovascular data and 

also shows significant better performance than the existing methods. 

The work is presented in a conference (M. M. Rahman and D. N. 

Davis 2013b) and also published in a journal (M. M. Rahman and D. 

N. Davis 2013a).  
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9.7.4   Contribution 4: Feature selection framework for class 

imbalance datasets 

An empirical study was made to examine the effect of class imbalance 

problem on the feature selection for the medical datasets. The 

findings show that the class distribution has an impact on the feature 

selection. Most of the feature selection techniques use the class label 

as one of the metrics to select the optimal attribute subset. The class 

imbalance has adverse effect on the feature selection process. The 

thesis proposed a feature selection framework for imbalanced clinical 

datasets. The work is accepted to be published as a book chapter by 

Springer. (See section “Public Output” for the complete reference). 

9.8 Summary and future work  

There are many issues with medical data mining and the data pre-

processing is most challenging issue among them. Sometimes, 

improved data quality is itself the goal of the analysis, usually to 

improve processes in a production database and the designing of 

decision support. This research addressed the issues with missing 

value, class imbalance and feature selection for imbalance datasets. 

For each of the issues, the thesis proposed new methods to deal with 

them.  

Many machine learning algorithms were used in the thesis for data 

cleansing (missing value imputation and class balancing), feature 
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selection and classification of the thesis data. For the classification 

problem several classifiers like Multi-Layer Perceptron, Support 

Vector Machine (SVM), Decision Tree (J48), KNN, Ripple-down rules 

(Ridor) and Fuzzy Unordered Rule Induction Algorithm were used. For 

most of the cases it is found that Decision Tree (J48), Fuzzy 

Unordered Rule Induction Algorithm and KNN performed better than 

the other classifiers on the main thesis data. Decision Tree (J48) and 

Fuzzy Unordered Rule Induction Algorithm performed better when 

they were used as a classifier for the proposed missing value 

imputation technique. It is also found that in most cases the proposed 

machine learning based missing value imputation outperformed the 

standard Mean/Mode imputation.  

SMOTE over-sampling, random over-sampling, random under-

sampling, cluster based under-sampling by Lee (2009) and thesis 

proposed under-sampling were used to balance the imbalanced thesis 

data and two other datasets (Life_Lab and Indian_Liver). The 

experiments found that for the original imbalanced data the highest 

sensitivity was 30% with FURIA classification and 20% with Decisions 

Tree (J48) classification. SMOTE over-sampling was found to produce 

high accuracy (83% accuracy and 82% sensitivity), however taking 

longer to train. The under-sampling by Lee (2009) takes less training 

time and could produce better results than the original imbalanced 
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data by 63% with FURIA classification. The proposed class balancing 

technique outperformed all the other techniques explored in the 

research. The highest sensitivity was found as 93.26% when data 

was balanced by the proposed method and classified using Decision 

Tree (J48). 

For further research the proposed missing value imputation method 

can be tested on the data of other domains. The main limitation of 

the method is there is a need of an adequate number of complete 

records in the dataset for building the prediction model. Further 

research is required to find out a solution for the model to work with 

all the dataset even with unavailability of the complete data. It would 

also be interesting to see if there is any effect on the proposed 

method on the stratified dataset. Where, learning and imputation will 

be made separately on each class of data records.  

Due to the limitation of time the proposed feature selection 

framework was only tried with the RELIEF-F and information gain 

feature selection techniques. Further research can also be made to 

observe the effect of class imbalance problem on the other well-

known dimension reduction techniques with different domain 

datasets.  

Clinical decision support are computer systems designed to impact 

clinician decision making about individual patients at the point in time 
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that these decisions are made (Berner 2007). A typical decision 

support system consists of five major components: the data 

management, the model management, the knowledge engine, the 

user interface, and the user(s). Data management component is the 

base of the clinical decision support system. Knowledge engine is 

built through mining the clinical data. The datasets usually are very 

large, complex, heterogeneous, and hierarchical and vary in quality. 

Data pre-processing and transformation are required even before 

mining and discovery can be applied. The reliable data management 

and data preparation is very important for mining knowledge from 

the clinical datasets. This research addressed the issues with missing 

value, class imbalance and feature selection for class imbalance 

datasets and proposed new methods. The performance analysis and 

comparative study show that the proposed method of missing value 

imputation, class balancing and feature selection framework provide 

an effective approach to data preparation for building medical 

decision support. 
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APPENDIX A: THESIS DATA STRUCTURE 

A.1 Hull site data 

The following table summarises the data from the Hull clinical site. As 

can be seen there are 30 numeric, 3 discrete numeric, 23 categorical, 

38 Boolean, and 4 date/time typed attributes. 

Attribute name 

Attribute 

types Attribute name 

Attribute 

types 

UNIT_NO Categorical JVP Boolean 

THEATRE_SESSION_DATE Date/Time LEG_OEDEMA Boolean 

CONS Discrete PULM_OEDEMA Boolean 

DATE_OF_DEATH Date/Time CARDIAC_FAIL Boolean 

Combined Categorical HAEMOGLOBIN Numeric 

30D MR Boolean WCC Numeric 

30D Ipsi CVA Boolean PLATELETS Numeric 

CAUSE_OF_DEATH Categorical UREA Numeric 

PhysiolScore Numeric CREATININE Numeric 

OpSevScore Numeric SODIUM Numeric 

P-POSS(2) Numeric POTASSIUM Numeric 

P-POSS(1) Numeric GLUCOSE Numeric 

POSS Numeric INR Numeric 

D Boolean PAO2 Numeric 

HD Boolean ECG Categorical 

St Boolean CXR Categorical 

CODE Categorical PULM_CXR Categorical 

CAROTID_DISEASE Categorical URGENCY Categorical 

ARRHYTHMIA Boolean DURATION Numeric 

ANGINA Boolean 

CONSULTANT_PRE

SNT Boolean 

MYOCARDIAL_INFARCT Categorical ASA_GRADE Discrete 
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CCF Boolean 

ANAESTHETIC_TYP

E Boolean 

DIABETES Categorical CRYSTALOID_VOL Numeric 

SEX Boolean COLLOIDS Numeric 

PATIENT_STATUS Boolean TRANSFUSION Numeric 

INDICATION Categorical OTHER_BLOOD Numeric 

PVD Categorical BLOOD_LOSS Numeric 

DATE_HISTORY Date/Time LOWEST_BP Numeric 

AGE Numeric MIN_TEMP Numeric 

HYPERTENSION Boolean INOTROPES Boolean 

RENAL_FAILURE Boolean PRIMARY_OP Boolean 

HYPERCHOLESTEROLAEMIA Boolean OPERATION_DESC Categorical 

ALLERGIES Boolean NO_PROCS Discrete 

SMOKING Categorical OP_SEVERITY Categorical 

PACK_YEARS Numeric PERI_SOILING Boolean 

RESPIRATORY Boolean MALIGNANCY Boolean 

AMBUL_STATUS Categorical LETTER_TEXT Categorical 

CABG_PLASTY Boolean PROCEDURE_RANK Numeric 

THROMBO_EMBOLISM Boolean SHUNT Boolean 

EJECT Numeric PATCH Categorical 

DIURETICS Boolean COMP_GROUP Categorical 

WARFARIN Boolean COMPLICATION Categorical 

DIGOXIN Boolean SEVERITY Categorical 

ANTIHYPERTENSIVES Boolean 

COMPLICATION_D

ATE Date/Time 

STEROIDS Boolean RESP_SYSTEM Categorical 

ANTI_ANGINAL Boolean GCS Numeric 

STATINS Boolean BUILD Boolean 

ASPIRIN Boolean BP Numeric 

ORTHOPNOEA Boolean PULSE Numeric 
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A.2 Dundee site data 

The following table summarises the data from the Dundee clinical 

site. As can be seen there are 6 numeric, 1 discrete numeric, 19 

categorical, 10 Boolean, and 6 date/time typed attributes. 

Attribute Name 

Attribute 

type Attribute Name 

Attribute 

type 

ID# Categorical HYPERTENSION HX Boolean 

ADMISSION.DATE Date/Time RENAL HX Boolean 

 Discharge date Date/Time  SMOKING HX Categorical 

PROCEDURE Categorical PACK YRS Numeric 

DATE Date/Time RESPIRATORY DIS HX Categorical 

OP DURATION Numeric  DIABETES HX Categorical 

Surgeon.name.1 Categorical ARRHYTHMIA Categorical 

surgeon.name.2 Categorical  ANGINA Boolean 

ASA Discrete MYOCARDIAL INFARCT Categorical 

EBL Numeric  CCF Boolean 

SHUNT FOR CEA Boolean  CABG Boolean 

PATCH Categorical Carotid status Categorical 

R1-A SIDE Boolean  ECG Categorical 

R1 GRAFT Categorical  Disposal Categorical 

R1 PAT Categorical 

 LAST FOLLOW-UP 

DATE Date/Time 

R1 LOO Date/Time  DATE OF DEATH Date/Time 

R1 DURATION PATENT Numeric  CAUSE OF DEATH Categorical 

Aspirin Boolean G/S COMPL1 Categorical 

Warfarin Boolean  I/P OP GEN COMPL Categorical 

CROSSCLAMP TIME CEA Numeric DATE GENCOMPL 1 Date/Time 

Tack Boolean Complication Categorical 

AGE Numeric   
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A.3 Combined thesis data from Hull and Dundee  

The following table summarises the combined data from the Dundee 

clinical site and Hull clinical site. 

Attribute Type Range 

 age Numeric Min= 38, Max 93, mean = 68, Std = 

7.94 

 sex Categorical  (f,  m) [f=331, m=492] 

 carotid_status Categorical  ('cva <6/12',  non-hemispheric,  

'asymptomatic carotid disease',  tia,  af,  

asx,  cva,  'cva >6/12',  post-op,  

asympt,  normal,  bruit,  tia/rind,  v-

basilar, rind) 

 angina Categorical  (none,  stable,  controlled,  

uncontrolled) 

 arrhythmia  Categorical ('a-fib < 90/min',none,a-fib<90,other) 

 

myocardial_infarct 

Categorical  (none,  '> 1 yr',  unknown,  '< 1 mth',  

n,  '>1 yr',  '<6 mo',  '< 6 mth',  '< 1 

yr',  '<1 yr',  '<1 mo') 

 ccf Categorical  (none,'> 1/12','< 1/12',n,y) 

 diabetes  Categorical (none,  iddm,  niddm,  n,  'diet rx',  igt,  

'insulin (niddm)',  'insulin (iddm)') 

 duration Numeric Min= 0.7, Max 100, mean = 1.7, Std = 

3.56 

 asa Numeric Min= 1, Max 2, mean = 2.244, Std = 

0.46 (1,2,3,4) 

 blood_loss Numeric Min= 0, Max 2000, mean = 300.157, 

Std = 205.166 

 shunt  Categorical (n,y) 

 patch  Categorical (dacron,  stent,  'arm vein',  'other vein',  

n,  other,  ptfe,  'leg vein',  vein) 
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 aspirin Categorical  (y,n) 

 warfarin  Categorical (n,y) 

 renal_failure Categorical  (n,y,nrmal,abnrmal) 

 hypertension  Categorical (y,n) 

 smoking Categorical  (none,  ex,  <20/day,  stopped,  'active 

<1ppd',  n,  'active >1ppd',  >20/day,  

cigars/pipe,  pipe/cigar) 

 respiratory  Categorical (normal,  'mild coad',  'mod coad',  'sev 

coad') 

 cabg Categorical  (n,y) 

 ecg  Categorical (normal,  'q waves',  'other abnormal 

rhythm',  'afib 60-90',  'st/t wave 

changes',  other,  a-fib<90,  '>= 5 

ectopics/min') 

 cause_of_death Categorical  (unknown,  carcinoma,  'pulmonary 

embolus',  'myocardial infarction'  

,respiratory,  stroke,  'heart failure',  

sepsis,  cva,  myocardial,  'multisytem 

failure',  other,  alive) 

 side  Categorical (r,l) 

 patient  Categorical (dead,alive) 
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A.4 Summary of the homonyms found in the data 

The following table summarises the homonyms found in the data.  

Attribute Homonyms Replaced 

 carotid_status 

 'asymptomatic carotid disease', 

asx,  asympt 

Asx 

tia,  tia/rind,  rind Tia 

 arrhythmia  a-fib < 90/min',a-fib<900  

 myocardial_infarct 

 '> 1 yr',  '>1 yr' >1yr 

 '<6 mo',  '< 6 mth' <6mth 

  '< 1 yr',  '<1 yr' <1yr 

 none, unknown, n N 

< 1 mth',  '<1 mo' <1mth 

 ccf none, n N 

 diabetes  

iddm,  'insulin (iddm)' Iddm 

niddm,  'insulin (niddm)' Niddm 

none,  n N 

 renal_failure 
n,nrmal N 

y,abnrmal Y 

 smoking 

none, n N 

ex,  stopped Stopped 

<20/day, 'active <1ppd' <20/day 

active >1ppd',  >20/day >20/day 

cigars/pipe,  pipe/cigar pipe/cigar 
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A.5 Summary of the records with missing values 

Percentage of Missing  Total 

Patient Status 

Alive Dead 

4    (missing in 1 attribute) 395 342 53 

8    (missing in 2 attributes) 162 139 23 

12  (missing in 3 attributes) 40 34 6 

16  (missing in 4 attributes) 8 7 1 

20  (missing in 5 attributes) 1 1 0 

24  (missing in 6 attributes) 1 1 0 

28  (missing in 7 attributes) 1 1 0 

36  (missing in 9 attributes) 1 1 0 

44 (missing in 11 attributes) 3 3 0 

52 (missing in 13 attributes) 1 1 0 

56 (missing in 14 attributes) 1 1 0 
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A.6 Summary of the attributes with missing values 

 Missing in all Missing in Dead Missing in alive 

Attribute Count % Count 
Out of 

all % 

Out of 

Dead

% 

Count 

Out 

of 

all% 

Out of 

alive

% 

BLOOD_LOSS 
249 29.68 29 3.49 24.17 220 

26.4

4 
30.90 

ASPIRIN 
166 19.79 27 3.25 22.50 139 

16.7

1 
19.52 

ASA 38 4.53 9 1.08 7.50 29 3.49 4.07 

SHUNT 21 2.50 9 1.08 7.50 12 1.44 1.69 

DURATION 70 8.34 8 0.96 6.67 62 7.45 8.71 

SMOKING 50 5.96 7 0.84 5.83 43 5.17 6.04 

ECG 32 3.81 3 0.36 2.50 29 4.07 4.07 

MYOCARDIAL

_INFARCT 
18 2.15 1 0.12 0.83 17 2.04 2.39 

Carotid_statu

s 
2 0.24 0 0.00 0.00 2 0.24 0.28 

ANGINA 11 1.31 0 0.00 0.00 11 1.32 1.54 

ARRHYTHMIA 7 0.83 0 0.00 0.00 7 0.84 0.98 

CCF 8 0.95 0 0.00 0.00 8 0.96 1.12 

DIABETES 1 0.12 0 0.00 0.00 1 0.12 0.14 

WARFARIN 5 0.60 0 0.00 0.00 5 0.60 0.70 

RENAL_FAILU

RE 
6 0.72 0 0.00 0.00 6 0.72 0.84 

HYPERTENSIO

N 
6 0.72 0 0.00 0.00 6 0.72 0.84 

RESPIRATORY 15 1.79 0 0.00 0.00 15 1.80 2.11 

CABG 8 0.95 0 0.00 0.00 8 0.96 1.12 
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A.7 LifeLab data description  

 Attribute Type Range Missing 

2 Link ID'  ID 

  3 Reference Date'  Date 

  4 QoL ID'  
   5 Date QoL'  Date 

  6 DateDiff QoL'  Date 

  7 QoL Visit ID'  ID 
  8 

QoL Visit' 
 

 (Baseline,'6 weeks','8 months','1 
year','4 months','neg Q ED','64 

months','Not in study','16 

months'} 

9 Returned by post?'  

 

(FALSE=2027,TRUE=5} 

 10 

CompletedWho  
 

Min= 1; Max= 5; Mean= 

2.17, Std= 04.68 40% 

11 
CompletedWhere  

 

Min= 1; Max= 5; Mean= 
3.213, Std= 0.987 40% 

12 

CompletedWhen  

 

Min= 1; Max= 4; Mean= 

2.846, Std= 0.987 41% 

13 

LifeEventsPositive  
 

Min= 0; Max= 3; Mean= 

2.246, Std= 0.867 46% 

14 
LifeEventsNegative  

 

Min= 0; Max= 3; Mean= 
2.175, Std= 0.846 46% 

15 Aware Might Have Heart 

Condition'  Nominal (Yes=200,U=3,No=25} 89% 

16 HF Applies'  Nominal (Yes=150,No=47,U=4} 90% 

17 Condition Explained 

Clearly' Nominal  (Yes=155,No=40,U=4} 90% 

18 

'Condition Interferes 

With Daily Actitivities Nominal 

 (Moderately=42,'A 

lot'=73,'A little'=61,'Not 

at all'=27,U=1} 90% 

19 Cause? Food'  

 

(FALSE=2041,TRUE=81} 0% 

20 Cause?Drink  

 

(FALSE=2025,TRUE=7} 0% 

21 Cause?Smoking  
 

(FALSE=1989,TRUE=43} 0% 

22 Cause?Stress  

 

(FALSE=1979,TRUE=53} 0% 

23 Cause?FH  

 

(FALSE=1980,TRUE=52} 0% 

24 Cause?Bad luck'  
 

(FALSE=1998,TRUE=34} 0% 

25 Cause?Something else'  

 

(FALSE=1991,TRUE=41} 0% 

26 

Cause?Dunno 
 

 

(FALSE=2020,TRUE=12} 0% 

27 
NYHA (QoL) ID'  

 

Min= 1; Max= 4; Mean= 
2.142, Std= 1.044 30% 

28 

NYHA (QoL)'  

 

(I= 467,II= 521,IV= 

226, III= 218} 30% 
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29 
QoL - Nocturnal SoB'  

 

Min= 0; Max= 7; Mean= 
0.622, Std= 1.564 21% 

30 

QoL - Angina'  

 

Min= 0; Max= 7; Mean= 

0.768, Std= 1.734 22% 

31 

QoL - LoC'  
 

Min= 0; Max= 7; Mean= 

0.054, Std= 0.455 21% 

32 
QoL - SoA'  

 

Min= 0; Max= 7; Mean= 
2.956, Std= 1.9 6% 

33 

QoL - SoB at rest'  

 

Min= 1; Max= 7; Mean= 

2.568, Std= 1.711 6% 

34 

QoL - SoB at night'  
 

Min= 1; Max= 7; Mean= 

2.568, Std= 1.711 6% 

35 QoL - SoB normal 
activity'  

 

Min= 1; Max= 7; Mean= 
2.568, Std= 1.711 6% 

36 

QoL - Fatigue-rest'  

 

Min= 1; Max= 7; Mean= 

2.976, Std= 1.947 6% 

37 QoL - Fatigue-daily 

activity'  

 

Min= 1; Max= 7; Mean= 

3.497, Std= 1.83 6% 

38 

QoL - Loss of appetite'  
 

Min= 1; Max= 7; Mean= 

2.264, Std= 1.7 6% 

39 
QoL - Anxiety'  

 

Min= 1; Max= 7; Mean= 
2.915, Std= 1.789 6% 

40 

QoL - Depression'  

 

Min= 1; Max= 7; Mean= 

2.393, Std= 1.772 6% 

41 

QoL - Concentration'  
 

Min= 1; Max= 7; Mean= 

2.558, Std= 1.706 6% 

42 
QoL - Stress'  

 

Min= 1; Max= 7; Mean= 
2.732, Std= 1.808 6% 

43 

QoL - Insomnia'  

 

Min= 1; Max= 7; Mean= 

2.913, Std= 1.894 6% 

44 

QoL - Waking'  
 

Min= 1; Max= 7; Mean= 

3.296, Std= 1.795 6% 

45 QoL - Lack of refreshing 
sleep'  

 

Min= 1; Max= 7; Mean= 
3.235, Std= 1.87 6% 

46 QoL - Daily activity 

down'  

 

Min= 1; Max= 7; Mean= 

3.569, Std= 1.919 6% 

47 

QoL - Hobbies down'  

 

Min= 1; Max= 7; Mean= 

3.958, Std= 2.072 6% 

48 

QoL - Friends down'  
 

Min= 1; Max= 7; Mean= 

2.35, Std= 1.795 6% 

49 
QoL - Work down'  

 

Min= 1; Max= 7; Mean= 
4.35, Std= 2.454 6% 

50 

QoL - Side-effects'  

 

Min= 1; Max= 7; Mean= 

3.029, Std= 2.164 6% 

51 

QoL - Sex'  
 

Min= 1; Max= 7; Mean= 

4.447, Std= 2.557 6% 

52 
QoL - Drug cost'  

 

Min= 1; Max= 7; Mean= 
2.478, Std= 2.465 6% 
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53 
QoL - Loss of control'  

 

Min= 1; Max= 7; Mean= 
2.888, Std= 2.052 6% 

54 

QoL - Lonely'  

 

Min= 1; Max= 7; Mean= 

2.423, Std= 1.928 6% 

55 

QoL - Burden'  
 

Min= 1; Max= 7; Mean= 

2.565, Std= 1.95 6% 

56 
QoL - Loss of memory'  

 

Min= 1; Max= 7; Mean= 
2.752, Std= 1.802 6% 

57 

QoL - Chest pain-rest'  

 

Min= 1; Max= 7; Mean= 

2.174, Std= 1.739 6% 

58 QoL - Chest pain-daily 

activity'  
 

Min= 1; Max= 7; Mean= 

2.526, Std= 1.887 6% 

59 
QoL - Dizziness'  

 

Min= 1; Max= 7; Mean= 
2.545, Std= 1.805 6% 

60 

QoL - Falls'  

 

Min= 1; Max= 7; Mean= 

1.719, Std= 1.63 6% 

61 

QoL - Cough'  

 

Min= 1; Max= 7; Mean= 

2.897, Std= 1.871 6% 

62 

QoL - Wheeze'  
 

Min= 1; Max= 7; Mean= 

2.802, Std= 1.879 6% 

63 
QoL - Muscles'  

 

Min= 1; Max= 7; Mean= 
3.638, Std= 1.859 6% 

64 

QoL - Indigestion'  

 

Min= 1; Max= 7; Mean= 

2.498, Std= 1.875 6% 

65 

QoL - Overall health'  
 

Min= 1; Max= 8; Mean= 

4.374, Std= 1.748 6% 

66 
QoL - Overall QoL'  

 

Min= 1; Max= 8; Mean= 
3.954, Std= 1.851 6% 

67 

QoL - Have to rest during the day'  

Min= 1; Max= 8; Mean= 

3.738, Std= 1.892 6% 

68 'QoL - Make you eat less of food 

you like' nu 

Min= 1; Max= 8; Mean= 

2.856, Std= 2.12 6% 

69 'QoL - Going places away from 
home difficult' 

Min= 1; Max= 8; Mean= 
3.085, Std= 2.303 6% 

70 

QoL - Making you stay in hospital'  

Min= 1; Max= 8; Mean= 

2.953, Std= 2.575 6% 

71 

HAD_done 

 

 (FALSE= 1420,TRUE= 

612} 0% 

72 

HADS - Wound up'  

 

Min= 0; Max= 3; 

Mean= 1.028, Std= 
0.836 71% 

73 

HADS - Enjoy what I used to enjoy'  

Min= 0; Max= 3; 

Mean= 1.084, Std= 

0.989 71% 

74 

HADS - Awful feeling'  

 

Min= 0; Max= 3; 
Mean= 0908, Std= 

0.925 71% 

75 HAD - I can laugh'  

 

Min= 0; Max= 3; 70% 
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Mean= 0.43, Std= 
0.703 

76 

HADS - Worrying thoughts'  
 

Min= 0; Max= 3; 

Mean= 0.945, Std= 

0.958 70% 

77 

HADS - I feel cheerful'  

 

Min= 0; Max= 3; 
Mean= 0.486, Std= 

0.661 70% 

78 

HADS - I can sit at ease'  

 

Min= 0; Max= 3; 

Mean= 0.817, Std= 
0.739 70% 

79 

HADS - Slowed down'  
 

Min= 0; Max= 3; 

Mean= 1.894, Std= 

0.962 71% 

80 

HADS - Butterflies'  

 

Min= 0; Max= 3; 
Mean= 0.653, Std= 

0.764 71% 

81 

HADS - Interest in appearance'  
 

Min= 0; Max= 3; 

Mean= 0.529, Std= 

0.784 71% 

82 

HADS - Restless'  

 

Min= 0; Max= 3; 
Mean= 1.059, Std= 

0.914 71% 

83 

HADS - Look forward with 
Enjoyment'  

Min= 0; Max= 3; 

Mean= 0.723, Std= 
0.844 71% 

84 

HADS - Panic'  
 

Min= 0; Max= 3; 

Mean= 0.738, Std= 

0.857 71% 

85 

HADS - Enjoy book/TV'  

 

Min= 0; Max= 3; 
Mean= 0.351, Std= 

0.685 71% 

86 

Patients-Status  

Dead = 520; Alive = 

1512 0% 
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APPENDIX B: FURTHER EXPERIMENTS ON 

CLASS BALANCING  

B.1 Introduction  

A decision support model needs to be built with the aim that the 

system must be stable and be good in predicting the outcome for 

unknown new records. In order to build a decision support there is a 

need for having good training samples that are not only good to train 

the system but also make the system stable in predicting the 

outcome of unknown records.  

In a further experiment, to those presented in Chapter 7, the 

datasets prepared by different under-sampling methods were used as 

training set to build a classification model and the full imbalanced 

dataset was used to test the model. The aim of the experiment was 

to observe how good classification models are in dealing with the 

unknown records. Each dataset (see chapter 7, table 7.1 and table 

7.4) was used to build a classifier model then the original full data 

was used to test the model. Classification outcome of training and 

testing are presented in the table B.1, B.2 and table B.3. Table B.1 

presents the classification outcome of the thesis data.  Different 

datasets were prepared using the proposed under-sampling method 

(see chapter 7 table 7.1). Datasets are later classified by Decision 
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Tree (J48) with 10 fold cross validation and the under-sampled 

datasets were also used as training set. The first column of the table 

presents the name of the datasets and sequent columns are the 

classification outcome as accuracy (ACC), sensitivity (SEN) and 

specificity (SPEC). 

Table B.1 Results of thesis data for training with balanced data and 

testing with full data 

 In % 

Datasets and the classifier ACC SEN SPEC 

D5 (full dataset / imbalanced data) with J48 and 10 

fold Cross Validation 
79.59 20.00 89.76 

D1  with J48 and 10 fold Cross Validation 84.08 67.5 93.43 

D2   with J48 and 10 fold Cross Validation 92.05 83.15 95.77 

D6   with J48 and 10 fold Cross Validation 97.59 93.26 100 

D1 was used to build the model with J48 and D5 was 

used as testing set. 
45.93 79.17 40.26 

D2 was used to build the model with J48 and D5 was 

used as testing set. 
43.13 75.00 37.7 

D6 was used to build the model with J48 and D5 was 

used as testing set. 
35.00 80.00 27.45 
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Table B.2 presents the classification outcome of the LifeLab data.  

Different datasets were prepared using the proposed under-sampling 

method (see chapter 7 table 7.4). Datasets are later classified by 

Decision Tree (J48) with 10 fold cross validation and the under-

sampled datasets were also used as training set. The first column of 

the table presents the name of the datasets and sequent columns are 

the classification outcome as accuracy (ACC), sensitivity (SEN) and 

specificity (SPEC). 

Table B.2:  Results of LifeLab data for training the classifier with the 

balanced datasets and testing with the original data.   

 In %   

Datasets and the classifier ACC SEN SPEC 

LD1 (full dataset / imbalanced data) with 

J48 and 10 fold Cross Validation 
67.86 35.00 79.17 

LD2  with J48 and 10 fold Cross 

Validation 
77.25 75.00 79.22 

LD2 is used as a training set to build the 

Decision Tree (J48) model and LD1 is 

used as testing set. 

61.47 96.15 49.54 
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B.1 Discussion  

The datasets prepared by the proposed class balancing method were 

used as a training set to build a classification model. The original 

imbalanced dataset was used as a testing set to test the model. The 

principal thesis data and the LifeLab data were used for the 

experiments. Details of the datasets are presented in chapter 7, table 

7.1 and table 7.4. From the results presented in table B.1 it is 

observed that for Decision Tree (j48) classification, with 10 fold cross 

validation, the sensitivity of the imbalanced thesis data was 20% with 

89.76% specificity. The sensitivity of 67.5% and 93.43% specificity 

was found with one of the dataset (D1) balanced by the proposed 

method. Moreover, 79% sensitivity and 40% specificity was found 

when the same dataset was used to train the classifier and the full 

dataset was used as testing set. It is observed that the sensitivity 

increased and specificity decreased dramatically. Moreover, the 

experimental results of the Lifelab were also very impressive. The 

Decision Tree (j48) classification, with 10 fold cross validation, 

displays a sensitivity for the imbalanced LifeLab data of 35% and 

75% with the data balanced by the proposed method. Furthermore, 

96% classification sensitivity was found when the balanced data was 
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used as training set and the full original imbalanced data was used as 

a testing set.  

The classification model built by the data balanced by the proposed 

method was found to be reliable in classifying the target class (high 

risk patients) but not good enough to classify the low risk patients. 

This is likely because that the class labels do not truly reflect the 

property of the patients. The “alive” patient records which were 

classified as “high risk”, might have most of the property of a “high 

risk” patient and alive by chance. The classification model built by the 

balanced data set found to be good enough to classify the high risk 

(target class) records from unknown dataset.  Moreover, this is also 

the ultimate goal of a clinical risk prediction model.     

The results show that the proposed method of under-sampling not 

only can balance the data for better classification but can also select 

good training samples for building reliable classification models.         
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