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Summary of Thesis submitted for PhD degree
by MAHMUT KOCAK

on

COMPACTIFICATICNS OF A UNIFORM SPACE AND THE
LUC-COMPACTIFICATION OF THE REAL NUMBERS IN TERMS OF THE

CONCEPT OF NEAR ULTRAFILTERS

Compactifications of topological spaces and scmigroup
compactifications of topological semigroups have been
studicd since 1930's. This thesis contributes to the ncow

concept of near ultrafilters on a wuniform space X, the

~ e

compactification X of X and the cmpactification R of
the rcal numbers R in terms of near ultrafilters.

The concept of ncar ultrafilters on a uniform space X
is introduced, somec of their properties are investigatced and
the set of all necar ultrafilters is made into a topological
space X. It is shown that this space is a compact Hausdorff
spacc containing X as a dense subspace. Furthermore, it is
proved that any uniformly continuous function from X into a
uniform space Y has a continuous extension from X to Y.

The compactification ﬁ, the set of all near
ultrafilters on R with respect to the usual uniformity on R,

is constructed and it is shown that the semigroup operation

+ cxtends to a scmigroup operation + on R which makes R into



ii

a compact right topological semigroup (ﬁ,+). Many
topological and algebraic properties of the compactification
(w,ﬁ) including the fact that (w,ﬁ) is the maximal scmigroup
compactification of R among those having the property that
the mapping (x,y)——¢(x)y:RxR———R is jointly continuous.
Therefore, it is the LUC-compactification of R.

Non-homogencity of R is proved and the Rudin-Keisler

and the Rudin-Frolik orders are defined on R, some of the

results concerning with them are obtained.
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CHAPTER 1T

(Y,e)

C(X)

*
C(X)

x€F

iv

NOTATION

Meaning

Compactification of a topological

space.

The set of all continuocus
real-valued (complex-valued)

functions on X.

The set of all continuous
real-valued (complex-valued)

bounded functions on X.

A subset of C(X)

The product of family {Xa}ael of

topological spaccs.

The evaluation mapping determined

by F.

Inverse of f.

x is an element of F.



Svmbol

x¢F

Z(X)

BX

*
X =BX\X

3

W(X)

Meanin

X is not an element of F.

Closure of A in X with respect to

the topology on X.

The compactification of X

determined by F.

The set of all zero sets of X.

The Stone-Cech compactification of

X.

The remainder of X.

The Stone extension of f.

The Wallman compactification of X

with respect to Wallman basc W.

Cardinal number of the continuum.

Cardinal number of a countablce

infinite set.
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A=\ (X)

K=K(X)

E(X)

M( F)

MM( F)

¢

*
o(F ,F)

vi

Left translation by x.
Right translation by x.

Topological centre of a compact

right topological semigroup.
Minimal ideal of a semigroup X.
The set of idempotents of a
compact right topological
secmigroup.

The set of all means on F.

The set of all multiplicative

means on F (the spectrum of F).
The adjoint of e.

The dual space of F.

* *
Weak topology on F induced by F.
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Svmbol Meaning
fo The left translates of f by x.
RXf The right translates of f by x.
(c,Y) Semigroup compactification of a

scmitopological semigroup X.

LUC(X)=LUC The sct of 1left continuous

functions on X.

XLUC The LUC-Compactification of X.

Chapter 11

(X,U) Uniform space with uniformity U.

T Topology generated by the

uniformity U.

c The set of all near ultrafilters

on a uniform space X.

Y*=X\Y The complement of Y.

The near ultrafilter {YsX:xeY¥} on

X.

x>
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Symbol Meaning
X The compactification of uniform
space (X,U).
f The extension of a uniformly

continuous function f on X to X.

Chapter IIIL

B(0) The set of (symmetric)

neighbourhoods of 0 in R.

d(x,y) The distance between x and y.

SN

The compactification of R with
respect to the usual uniformity

on R.

pR R\R.

¢ Compactification of a topological
group with respect to the right
uniformity.

Chapter 1V

R n-dimensional Euclidean space
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Symbol Meaning
~n . e . n
R . Compactification of R
Chapter V
s Type equivalent relation on BX

and uniform type equivalence

relation on R.

t(n) Type of 1 on BX and uniform type
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T(BX) The set of type equivalence

classes on BX.

T(ﬁ) The set of uniform type

~

equivalence on R.

= An equivalence relation on K.
& An equivalence relation on ®.
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o<t

nig

5[t

Symbol

Meaning

The set of equivalent classes

with respect to ==.

The Rudin-Keisler pre-order
(partial order) on BX (T(BX))
and the Rudin-Keisler pre-order

on R.

n<€ and n and £ are not type

equivalent on BX.

65t and &#t on T(BX).

The Rudin-Frolik pre-order
(partial order) on BX (T(BX))
and the Rudin-Frolik pre-order

(partial order) on R (Tl(ﬁ)).
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CHAPTER I

INTRODUCTION AND BACKGROUND

Section 1.1. Introduction.

A compactification of a topological space X is a
compact -~ space K that contains a dense homeomorphic image
of X; and a semigroup compactification of a semigroup X
which 1is also a topological space 1is a compact right
topological semigroup K that contains a dense continuous
homomorphic image of X in the topological centre of K. These
compactifications have long been a major area of study in
general topology.

In 1930, Tychonoff [60] discovered that completely
regular (Hausdorff) spaces are precisely those topological
spaces which can be embedded in a compact Hausdorff space.
This was the beginning of = the general study of
compactifications of a topological space, since one can
obtain a compactification 6f a completely regular space by
embedding it in a compact Hausdorff space and taking its
closure.

Compactifications of a uniform space can be
obtained by using the same methods to obtain
compactifications of a completely regular space Qscause of
the fact that every uniform space is a completeiy regular

space and, as proved by Tychonoff [60], every completely

regular space is a dense subspace of a compact space.



Compactifications of a completely regular space
can be obtained in a variety of ways. One of the ways is the
use of the subset F of C*(X) (the set of all bounded
continuous real-valued functions on X) which separates
points. This method was first used by Tychonoff [60] to get
a Hausdorff compactification of a completely regular space
X by using C*(X). This technique was studied extensively
by Cech [11] and much work was done to improve this idea by
Stone [60], Hewitt [25] and many authors. Now it is a well
known fact that every compactification K of a completely
regular space X can be  described completely by the
C*—algebras of all continuous real-valued functions on X
which can be extended over K, and many properties of the
compactification K can be established more easily with the
help of C*-algebras.

Another way of obtaining a compactification of a
completely regular space X is by the use of. filters and
ultrafilters on a non-empty collection of subsets of X. In
1939, Wallman [63] constructed a Tl—compactification of a
Tl—space‘ using the lattice of the closed sets. This
construction was extended by Banaschewski [1,2], Frink [18],
Sanin [52,53]. In 1948, for a given uniform space X, Samuel
[54] defined an equivalence relation on the space of
ultrafilters and obtained a compactification of X in terms
of equivalence classes.

Like compactifications of a completely regular space,

semigroup compactifications of a topological semigroup can



be obtained in different ways. One of them is the use of the
operator theory. This method was used by de Leecuw and
Glicksberg [22,23] to construct the almost periodic and
weakly almost periodic compactifications of any semigroup
with identity.

The second method 1is the use of the spectrum of
C*—algebras of functions to construct compactifications. 1In
this method, the compactification of a semitopological
semigroup X appears as the spectra of certain C*—algebras of
functions on X. This method was used by Loomis [43] to
obtain the almost periodic compactifications of a
topological group.

One of the important compactification of a
semitopological semigroup X is the LUC-compactification
(w,XLUC) which . is the spectrum of the C*—algebra
{f€C(X):x———#fo:X———eC(X) is norm continuous} of 1left
uniformly continuous functions on X. It is a well known fact
that (w,XLUC) "has a natural semigroup multiplication
(x,y)—xy which is continuous in x for fixed y. This
compactification is maximal among those having the property
that the mapping (x,y)———aw(x)y:XxXLUq———ﬁXLUC is jointly
continuous, where ¢ is the continuous homomorphism from X
into XLUC with ¢(X) dense in xLUC,

Additional information about the compactifications of
semitopological semigroups and topological spaces can be
found in the references.

This thesis contains five chapters. The first ~chapter



is on general information about various kinds of
compactifications of completely regular topological spaces
and compactifications of topological semigroups.

The second chapter introduces the concept of
uniform spaces and their compactifications in terms of the
new concept of near ultrafilters.

The third chapter is aboﬁt the compactification R of R
with respect to the usual uniformity on R and investigates
its topological properties.

The fourth chapter is about the extension of ‘a
semigroup operation on a semigroup X which is also a uniform
space to a semigroup operation on X and the algebraic
properties of the compactification R of R.

Chapter five is about the non-homogeneity of R and the
Rudin-Keisler, and the Rudin-Frolik orders on the
compactification R of R.

The first chapter contains two sections. In the first
one, we shall introduce the concept of compactification of a
completely regular topological space and some of the
techhiques to obtain compactifications of such spaces. In
the second section, we will give some basic information
about semigroups, topological semigroups and one of the way
to produce a compactification of a topological semigroup X
as a spectrum of some certain subalgebras of C(X).

Chapter two is divided into three sections. The first
section is about uniform spaces and some basic properties of

a uniform space. In the second section, we will introduce



the new concept of near ultrafilters on a uniform space and
investigate their properties.Inksection three, we will give
the construction of a compactification X of a uniform space
X by the use of near ultrafilters on X.

Chapter three is on the compactification R of R with
respect to the usual uniformity on R and we will investigate
the topological properties of R.

Chapter four contains two sections the first one is
about the extension of a semigroup operation on a uniform
topological semigroup X to a semigroup operation on X. In
section two, we will investigate the algebraic properties of
the semigroup compactification ﬁi of R and show that this
is the LUC-Compactification of R.

Chapter five is divided into two sections, in the first
section we will prove that i is not homogeneous. The second

section is about the Rudin-Keisler and the Rudin-Frolik

orders on R.



Section 1.2 Background

In this section, we shall first give the general
construction for the compactification of a completely
regular space. Then we will introduce the Stone-Cech

compactification and Wallman's compactification.

1.2.1. Compactifications-Constructions

In this thesis all topological spaces are assumed to be
completely regular Hausdorff spaces, unless specifically

stated otherwise.

We mean by a compactification of a topological space X
is a pair (Y,e) such that Y is a compact Hausdorff space and

e is an embedding from X into Y with e(X) dense in Y

Xe—— e (X)

If (Yl’el) and - (Yz,ez) be two distinct



compactifications of X and,if there is a continuous function
f from Y1 to Y2 for which foel=e2, then we write leYZ.We
say Y1 is equivalent to Y2 if there is a homeomorphism h
from Y1 onto Y2 such that h°e1=e2 and is the identity on X.
According to proposition g of [48,chap.4] Y1 is equivalent

to Y, if and only if leY and YzzYl.

2 2

In future we shall refer to Y itself as a
compactification of X and simply regard X as embedded in Y

as a dense subspace.

General Construction of a Compactification of X

Let F be a subset of C (X), the set of all continuous
real-valued bounded functions on X,and let If be a closed
interval in R containing f(X) for each feF.Then the mapping

ep from X into fgp}f defined by ﬂfoeﬁ;f is called the

evaluation mapping determined by F, where Mg is the

projection mapping from T[] I into I..
| fer T £

It is obvious from the definition of en that e is

continuous ,since each f€F is continuous.

*x
A subset F of C (X) is said to separate points and



closed sets of X if for each xe€X and every closed subset F

of X with x#F there is f€F such that f(x)¢C1mf(F).

) *
1.2.1.1.Theorem [12]. Suppose that FeC (X) separates
points and closed subsets of X, then the evaluation mapping

eF.is an embedding of X onto eF(X).

Proof.To see that er is an embedding, we will show that

e is a one to one mapping.Let x,y€X with x#y,then since X

F
is a completely regular Hausdorff space {y} is a closed set,

hence there exists f€F such that f(x)¢ClI f({y}) which
f
implies that f(x)#f(y), so T oef(xj¢ﬂ oei(y).Therefore,
f f

efix)¢efxy).

Let U be an open set in X and eF&x) be an arbitrary
point in eP(U).Since~ F separates points of X and closed

sets,there is a function feF such that f(x)¢ClI F(X\U).Let
f ,
vl lI\C1, F(X\U)].Clearly,e (x)eV. We claim that yeU
f f

whenever efxy)GV.To see this suppose that eF(y)EV' but

y¢U, then f(y)€f(X\U)SCII f(X\U).However, eF(y)ev which
f

implies that f(y)e€] °eF(y)€If\C1I f(X\U),so f(y)eEClI f(X\U)
- f ‘ f ; I
which is a contradiction. Thus eF(y)eeF&U) if eF(y)ev. Hence
we have that VﬂeF(X) is a neighbourhdod of eF(x) in
eFJU).Slnce eﬁix) was an arbitrary point of eFJU),eFJU) is

en
open_
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Let Clﬂ If
feF

eFJX)=XF“ Then XF,is a compactification of

1.2.1.2.Theorem [12]. Let Y be a compactification of
*
X. Then there is a subset F of C (X) separating points of X

and closed sets for which XF.is homeomorphic to Y.

Proof. Let e be the embedding of X into Y with
*
Clye(X)=Y, and let F={feC (X)|there is a continuous map

fY:Y——#R with fY°e=f}.

To see that F separates points and closed sets; assumé
that F is’a closéd set in X and x be any point with x€X\F.
There is a closed set DsY such that DNX=F. Hence x¢D. There
is a function fY:Y——ﬂR such that fY(x)¢Clme(D). Let f=fYoe,
then fec*(X) and f(x)¢ClRf(F).Hence feF. By previous theorem
X, is a compactification of X.

F

We define h:Y— J[ I, as follow
feF ‘

[h(y)1(£)=£,(y).

Then h is continuous,since [] °h=f, and each fy is
f

continuous. Also [h(e(x))]=fY(e(x))=f(x). This implies that

h(Y) is a compact subset of T[] If which contains eFJX). Thus
feF »

h(Y)=X . If h(x)=h(y) then (h(x)) (£f)=f(x)=(h(y)) (£)=f(y) for
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all feF. Since F separates points, it must follow that
x=y3;i.e, h is one to one.Therefore,h is a homeomorphism from

X onto X since any one to one continuous mapping from a

F’
compact space onto a Hausdorff space is homeomorphism-

*
If F=C (X), then XF’ is called the Stone-Cech

compactification of X.

We will give the construction of the Stone-Cech
compactification,and Wallman's compactification of X in

terms of the W-ultrafilters on X.
We first introduce the concept of W-ultrafilters on X.

Let W be a non- empty collection of subsets of X.Then
a non-cmpty subset 1 of W is called a W-filter on X if the

following conditions holad:
a) # does not belong to 0.
b) For F and G in n, FNGen.

¢) For any H in W and Gen,GesH implies that Hen.
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A W-filter n is said to be a W-ultrafilter if n is not
contained in any other W-filter,i.e, if € is a W-filter

with ncg€, then n=g.

If W is the collection Z(X) of all zero-sets in X, then

a W-ultrafilter 1is called a z-ultrafilter or zero-set

ultrafilter.

The Stone-Cech Compactification:

Let BX be the set of all z-ultrafilters on X with the

topology determined by the subbase
B={{neBX | A¢n)A€Z(X)}
for the closed sets in BX.

For each x€X, the collection {Ac€Z(X)|xcA} is a

z-ultrafilter.

Let e be the mapping from X into BX defined by the rule

e(x)={A€Z(X) |x€A}.
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By Lemma 2.4 of [13], BX is a compact Hausdorff space
and e is an embedding of X into BX with e(X) demse in

BX and it is the Stone-Cech compactification of X.

The mapping e is called the canonical embedding of X

into BX.

According to theorem 6.5 of [20] the space BX is

characterized by the following three properties:

i) Each continuous mapping f from X into a
compact Hausdorff space Y has a unique extension to a

continuous mapping g:BX-—Y such that f=g‘ .
X

ii) If Z is a compactification of X having property

(i), Z is homeomorphic to BX.

iii) BX is the largest compactification of X in the
sense that any other compactification of X is a quotient

space of X.

The continuous extension of a function f to BX is called

the Stone extension of f and denoted by fB.

Wallman's Compactification.

A Wallman base is a colléction W of subsets of X with
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the following properties:
a) AUBeW and ANBeW whenever A,BeW.
b) @,XeW.
c) Wis a closed base for X.

d) If A<W and x¢A, there is a BeW such that x€B

and ANB=4.

e) If A,BEW are such that ANB=¢ then there are

C,DeW with AcX\C, BcX\D and (X\C)N(X\D)=8.

Let W be a Wallman base and let W(X) be the set of all
W-ultrafilters on X. Then WX) is made into a topological

space by taking the collection
W,
{{Z"|ZeE} , Ze W)

as a base for the «closed sets in  W(X), where

z2"- (new(x)1zen}.

Let e be the mapping from X into W(X) defined by the

rule

e(x)={AcWix€A}.
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By section 9 of [64] , W(X) is a compact Hausdorff
space and e is an embedding of X into W(X) with e(X) dense

in W(X).

A compactification Y is said to be of Wallman type if

there is a Wallman base W on X which generates Y, that is,

W(X)=Y.

Clearly, the Stone-Cech compactification BX of X is a
Wallman type compactification,since the set Z(X) of all
zero-scts of a completely regular space X is a Wallman base

by thecorem h of [48,chap.4] and generates pBX.

By corollary 2 of [61],for each cardinality o such
that 2a2x2, there is a compactification of a discrete space
of cardinality o« which is not of Wallman type.But if the
continuum hypothesis holds, that is, 2X0=x1, then by theorem

2 of [3] every compactification of every separable

completely regular Hausdorff space is of Wallman type.

As a result of the above discussion,if the cotinuum
hypothesis holds,cvery compactification of the real 1line R

is of Wallman type since R is a separable completely regular

space.
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Section 1.2.2 Semigroups and Compactifications of

semlitopological semigroups

In this section we will give some basic definitions and
well-known facts about semigroups,compact right topological

scemigroups and semigroup compactifications.

We will begin this section by giving some definitions.

A scmigroup is a non-empty set X together with an
associative binary operation (x,y)r—ixy:XxX——X, called
multiplication.

X 1is said to be commutative if xy=yx for each x,y<X.

If X is a semigroup, then for each x€X, the mappings

XX:X——aX, Xx(y)=xy,

and

Py XX, 0 (y)=yx

are called,respectively,left and right multiplications or

left translations and right translations by x.
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From now on X denotes a semigroup.
Let A be a non-empty subset of X, then A is said to be:
1) A subsemigroup of X if AAcA.
2) A right ideal of X if AXcA.
3) A left ideal of X if XAcA.

4) A (two-sided) ideal of X if it is both a right

and left ideal of X.

If A#X in any of these definitions then A is said to be

proper.

A left (respectively,right ideal,ideal) of X said to be
a minimal left (respectively, right ideal,ideal) of X if it

properly contains no left ideal (respectively, right ideal,

ideal) of X.

X is called left simple (respectively,right simple) if

it has no proper left (respectively,right) ideals.

Let e€X, then e is said to be
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5) An idempotent if e2=e.
6) A left identity if ex=x for all xeX.
7) A right identity if xe=x for all xeX.

8) An identity if e is both a 1left and right

identity.
9) A left zero if ex=e for all xe€X.
10) A right zero if xe=e for all xeX.

11) A zero element if e is both a 1left and right

zZero.

12) A right (left) zero semigroup is one consisting

entirely of right (left) zeros.

Let x€X, then x is said to be

13) Left cancellative if xz=xy if and only if =z=y.

14) Right cancellative if zx=yx if and only if

15) Cancellative if x 1is both 1left and right

cancellative.
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"16) 1If every element of X is 1left (right)
cancellative then X is called a left (right) cancellative

semigroup. X is said to be cancellative if X is both left

and right cancellative.

Let X be a semigroup with a Hausdorf topology. Then X is

called

a) A right topological semigroup if for each x€X,

the mapping
Py X—X, p (y)=yx
is continuous.

b) A left topological semigroup if for each x€X,

the mapping
Xx:X——eX,Xx(y)zxy
is continuous.

c) A semitopological semigroup if the both maps

xx:X——AX and px:X——eX are continuous.

d) A topological semigroup if the multiplication

(x,y) —xy:XxX—X is (jointly) continuous.



19

If X is a right topological semigroup, then the set
A=N\(X)={x€X| A :X—X is continuous} is called the

topological centre of X.

A homomorphism from a semigroup X1 into a semigroup X2

is a mapping zp:Xl———>X2 such that
vixy)=yp(x)p(y)

for each x,yexl. v dis called an isomorphism if v is one to
one and onto.lf Xl,X2 are also topological spaces and v is a
homeomorphism then ] is called a topological
isomorphism, in this case, X1 and X2 are said to be

topologically isomorphic.

1.2.2.1.Proposition [5]. If the semigroup X contains a
minimal right ideal,then it contains a minimum ideal K=K(X)

which is the union of all the minimal right ideal of X.

The set of all idempotents of a compact right

topological semigroup X is denoted by E(X).

Now we state some important properties of compact right

topological semigroups.



20

1.2.2.2.Proposition [5]. Let X be a compact right

topological semigroup. Then

i) Every 1left dideal of X contains a minimal left

ideal.The minimal left ideals of X are closed.

ii) X has a smallest two-sided ideal K=K(X).

iii) K contains idempotents and for an idempotent e€X,

the following are equivalent:
a) eeK.
b) K=XeX.
c) Xe is a minimal left ideal.
d) eX is a minimal right ideal.
e) eXe is a subgroup of X.

f) Every minimal left ideal is of the form Xe for
some idempotent e€k; every minimal right ideal is of the

form eX for some idempotent e€K.

g)  K=U{eXe|e<€E(K)}
=U{eX|e€E(K)}

=U{Xe|e€E(K)}.
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Note that every minimal right ideal and every minimal

left ideal is contained in K.

1.2.2.3.Theorem [5]. Let X be a compact right

topological semigroup.Then

i) Every right ideal contains a minimal right

ideal.

ii) Every closed right ideal contains a minimal

closed right ideal.

1.2.2.4.Proposition [6]. The topological centre
A(X)={xeX IXX:X——aX is continuous} of a compact right
topological semigroup is void or a subsemigroup of X. If X

is a group , then A is a subgroup of X.

Now we will give some definitions before

we introduce

compactifications of a semitopological semigroup.

Let X be a topological space and let F be a conjugate

closed,norm closed 1linear subspace of C(X) containing the
*

constant function 1.Then a mean g is a member of F ,the

dual space of F, such that pu(l)=|u[|=1. The set of all means
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on F is denoted by M(F). If F is closed under pointwise
multiplication then a mean u is called multiplicative if
u(fg)=u(flu(g) for - every f,geF. The set of all
multiplicative means on F is denoted by MM(F) and is called

the spectrum of F.

For each x€X, the mean e(x) defined by e(x)(f)=f(x), feF
is called the evaluation at x,and the mapping e:X—M(F) is

called the evaluation mapping.
*
By proposition 2.5 of [5], M(F) is convex and o(F ,F)
compact and the evaluation mapping e:X-—M(F) is <3(F*,F)

continuous. Furthermore, by proposition 3.9 of [5], MM(F) is

* *
o(F ,F) compact and is the o(F ,F) closure of e(X).

Let F be a conjugate closed ,norm closed subspace of
C(X) containing the constant functions. Let feC(X) and let

x€X. Then the functions
L _f=foA_, R_f=fop
X X X X

are called the 1left and right translates of f by x,

respectively.
F is said to be

i) Left translation invariant if LXFEF for each
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xeX.

ii) Right translation invariant if RXFEF for each

x€X.,

iii) Translation invariant if F is both right and

left translation invariant.

Let F be left translation invariant and let Tp be the

mapping from F into C(X) defined by
(Tuf)(x)=u(LXf) feF, xe€X,
for each ueF?. Thén F is said to be
i) Left introverted if TuFEF for each peM(F).

ii) Left m-introverted if TuFEF for each peMM(F).

An admissible subalgebra of C(X) is a norm closed,
conjugate closed translation invariant, 1left introverted
subspace of C(X) containing the constant functions,and an
m-admissible subalgebra of C(X)‘is a translation invariant,

*
left m-introverted C -subalgebra of C(X) containing the

constant functions.

A semigroup compactification of a semitopological
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semigroup X is a pair (e,Y), where Y is a compact Hausdorff
right topological semigroup and e:X—>Y is a continuous
homomorphism such that e(X) is dense in Y and

e(X)eA(Y)={yeY|the map x—yx:Y—Y is continuous}.

Notice that the definition of semigroup compactification
(e,Y) of a semitopological semigroup X differs from the
definition of a topological compactification in two ways.The
first difference is that Y is required to be a compact right
topological semigroup and the second one is that the mapping

e is not required to be a homeomorphism onto e(X).

If (e,Y) is a compactification of a semigroup X, then

by proposition 1.3 of [6,chap.3] the following assertions

hold:

i) If ¢ 1is a continuous homomorphism from a
semitopological semigroup Z onto a dense subsemigroup of X,

(e°p,Y) is a compactification of Z.

ii) If ¢:Y—Z is a continuous homomorphism from Y
onto a compact right topological semigroup Z, then (¢°e,Z)

is a compactification of X.

An F-compactification of X is a pair (e,Y), where Y
is a compact Hausdorff right topological semigroup and

e:X—Y is a continuous homomorphism with the following

properties:
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i) ClY(e(X))zY.
ii) le(x):Y——eY is continuous for each x€X.
. * *
iii) e C(Y)=F, where e :C(Y)—>C(X) is the adjoint

of e.

Let P be a set of properties which compactifications
(e, Y) of X may possess or may not possess. Then (e,Y) is

said to be maximal with respect to P if
(a) (e,Y) possesses properties P,and
(b) whenever (el,Z) possesses properties P - then

there exists a continuous homomorphism ¢:Y——Z such that

the following diagram commutes:

Now we state an important theorem that shows the
relation between F-compactifications and the m-admissible

subalgebras of C(X).

1.2.2.Theorem [6]. If (e,Y) is a compactification of
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a semitopological semigroup X, then e*C(Y) is an
m-admissible subalgebra of C(X).Conversely,if F is an
m-admissible subalgebra of C(X), then there exists a unique
(up to isomorphism) compactification (e,Y) of X such that

*
e C(Y)=F.

Now we will introduce one of the important
compactifications of a semitopological semigroup X which we

shall study in the next chapters.

1.2.2.6.Definition.A function feC(X) is said to be
left uniformly continuous if the mapping x———afo:X———eC(X)
is norm continuous. The set of all left uniformly continuous
functions on X is denoted by LUC(X) or simply LUC when there

is no confusion.

If G 4is a topological group then according to
proposition 1 of [65] feLUC(G) 4if and only if f 1is
uniformly continuous with respect to the right uniformity
generated by entourages of the form {(x,y)| xy"1€V}, where V

is a neighbourhood of the identity of G.

By the lemma 1 of [45], LUC(X) is a translation

*
invariant left introverted C -subalgebra of C(X) containing
the constant functions. In particular LUC(X) is

admissible. - Thus by the theorem 1.2.2.5 every
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semitopological semigroup X has a canonical

UC). According

LUC
)

LUC-compactification which is denoted by (e,XL
to the theorem 5.5 of [5], the compactification (e,X
is maximal in the following sense:If Y is a compact right
topological semigroup and ¢ is a continuous homomorphism

with the following properties :
a) Clyw(X)=Y,

b) (x,y)—p(x)y:XxY——Y is continuous,

then there exists a continuous homomorphism ¢ from XLUC onto

X such that ¢p=¢ce.

1.2.2.7.Theorem [39]. If X be a locally compact group

then the topological centre of XLUC is X,that is, A(XLUC)=X.
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CHAPTER II
UNIFORM SPACES, NEAR ULTRAFILTERS AND COMPACTIFICATION

OF UNIFORM SPACES

In the first section of this chapter, we shall define
what is meant by a uniformity and by a uniform space. In
section 2, we will introduce the new concept of "near
ultrafilters” on a uniform space and investigate their
properties.In the 1last section of this chapter We shall
describe the compactification of a uniform space in terms

of the "near ultra filters"

Sectoin 1. Uniform Spaces

Let X be a non?empty set. By X2=XxX, we mean the set
of all ordered pairs {(x,y): x,y<X}, X2 is the product of

2

X by itself. For any subset U of X ,- we define

-1 2
U “={ (x,y)eX” ' : (y,x)e U }.
If U,V are two subsets of X2, we define UV as the
collection of pairs (x,y)ex2 such that (x,z)eU and (z,y)eVv

for some z€X. We put U°U=U2; and,if U" has been defined, we
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define Un+1 as U-u™.

A subset U of X% is said to be symmetric if u=u~1.

The set {(x,y)EX2 : x=y} is called the diagonal of X2

and is sometimes denoted by A(X) or simply A.

Let A be a subset of X and U a subset of X2 .Then we

define

U(A)={yeX : (x,y)e U for some x€A}

U—l(A)={y€X : {(y,x)eU for some x€A}

={yeX : (x,y)EU_l for some x€A}.

If A is a singleton {x}, then
U(x)=U({x})={yeX : (x,y)eU}.

U (x)=0((x))={yex : (v,x)eU}.

Thus U=U"1 if and only if U(x)=U l(x) for each xeX.

2.1.1. Definition.A non-empty subfamily U of subsets of

XxX is said to be a uniformity for X or to define a uniform
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structure on X if the following conditions are satisfied:
(a) © does not belong to U.

(b} For U1 and U, in U, UanZGU.

2

(c) For any U1 in XxX with U2£U1 for some U2 in U,

then U, is also in U.

1
(d) Each U in U contains the diagonal A.

(e) For each U in U, U_leU.
(£) For each U in U there exists V in U such that

VoVcU.

A member U of U is <called a wvicinity and the

uniformity V is called separating if N { V : Ve U} = A.

A subfamily B of a uniformity U is called a base of U,

if each U in U contains a member B of B.

2.1.2. Example. The standard wuniformity or wusual
uniformity on R is the uniformity =~ having as base the

collection of sets U_={ (x,y)elR2 s |x-yl<e }a
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2.1.3.Definition.A non-empty set X with a uniformity U
is called a uniform space and is denoted by (X,U). If U
satisfies only (a),(b),(c),(d),(f) and then (X,U) is called

a quasiuniform space.

Every uniformity generates a topology in a natural

way, while different uniformities may produce the same

topology.

2.1.4.Definition. Let (X,U) be a separated uniform
space. The topology defined by the uniformity V is the
collection of all subsets T of X such that . for each xe€T

there exists UeV such that U(x)e T.

By theorem 1 of [30,chap 5], X is a completely regular

Hausdorff space with this topology.

The topology associated with a uniformity U will be
called the uniform topology Ty generated by U. Whenever
the topology on a topological space X can be obtained in

this way from a uniformity , X is called a uniformizable

topological space.

It is a well known fact that every compact space X has

a unique uniformity compatible with the topology of X.
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2.1.5.Proposition [30]. Each metric space is

uniformizable.

There is a concept of uniform continuity for mapping

between uniform spaces, which we now define.

2.1.6.Definition.Let X and Y be non-empty sets
provided with the uniformities U,V, respectively. A function
f:X ——— Y is uniformly continuous iff for each V €V,
there 1is some UeU such that (x,y)eU implies that
(f(x),f(y))ev. If f is one to one ,onto and both f and f"1

are uniformly continuous, then f is called a uniform

isomorphism and X and Y are said to be uniformly isomorphic.

2.1.7.Theorem [30]. Every continuous function f from
a compact space X to, a _uniform space Y 1is uniformly

continuous.

Section 2. Near Ultrafilters

In this section, we will construct a compactification X
of a given Hausdorff uniform space (X,U) by means of “near
ultrafilters ” and we will prove some properties of this

compactification.

2.2.1.Definition.Let (X,U) be a uniform Hausdorff space.
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A family n of subsets of X will be said to have the near
finite intersection property if, for every finite subset ¢

of n and every UcU,

AU(Y)#2.
Yeo

”

We shall call n a ” near ultrafilter if it is maximal

with respect to this property.

2.2.2.Remark. If X is discrete, U can be taken to be the

family of supersets of the diagonal in Xz. Then a “near

r

ultrafilter is simply an ultrafilter.

2.2.3.Definition. Let C be the set of all near
ultrafiiters on X. We define a topology on C by stating

that sets of the forﬁ
Cy = { neC : Yen },

where Y is a subset of X, is a base for the closed sets.

2.2.4.Pfoposition. For any n€C and any finite subset ¢

of n

AU(Y)en
Yeop
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for every U€l.

Proof. Suppose that NU(Y)¢n for some finite subset ¢
Yegp

of n and some U€lU. Then there is a vicinity W in U and a

finite subset y of n such that

[W(AU(Y))T N [AW(Z)1=8.
Yeo Zey

There is a vicinity W €U such that W <UNW. Then

(W (V)1 [N W (Z)]1=2.
Y€ ¢ Zex

But this is a contradiction.

2.2.5.Pr6position. For any ne€C and any subset Y of X,

Y¢n implies that
U(Y) | U(Z) = &
for some Zen and some UcU.

Proof. Since Y¢n,there is a finite subset ¢ of n and

wel such that

W) n L nwWT) 1 =2.
T €¢p
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We can choose a symmetric vicinity UeU such that Uo-UsW. Put

Z = U(T). Then Zen, by proposition 2.2.4, it is easy to
T €¢

see that U(Y) N U(Z)=9; for,if (x,y)€U and (x,z)€U, with yeY

and z€Z, we have

zeU(Y) N Z S W(Y) | Z = @,

contradiction-

2.2.6.Proposition.Let n€C and Y<X. Then, Y ¢ n if and

only if ﬁ(Y) N Z =9 for some UcU and some Zen.

Proof. To see this suppose that Y¢n, then there exists
Zen and WeU such that  W(Z)\W(Y)=0 which implies that
zoW(Y)=8. Conversely,if ZNW(Y)=9, then U(Z)\U(Y)=8 for every

symmetric vicinity UeU such that Ueusw,
2.2.7.Remark.Let Y € X.Then Yen if and only if ClgYen
because,W(y)NZ=0 implies that U(CQXY)nZ=B for every vicinity

UeU such that UeUsW and YsCl,Y where CL Y=N\{U(Y):Uel},

2.2.8.Proposition. For given 71n€C and any subsets Yi,Yé

of X, Y¥,,Y, ¢ n implies that Y, U Y, ¢ n. Hence,
o U ‘
% Uy, | 47 G,

Proof. Since Y1¢ n, there exists UeU and Zlen such

that

U(Y,)NU(Z,)=0 (1)
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and since Y2¢n, there exists VeV and Zzen such that
V(Y,)NV(Z,)=¢ (2)
But there exists a vicinity WeU such that WcUNV. Hence
WYL UY, )W (2] )W (2,)) =0,

and so YIUY2¢n.

It is clear from proposition.2.2.8 that for any

subset Y of X, C=CUC, where vi=x\v.

Section 3. Compactification of Uniform Spaces

2.3.1. Proposition. The space C is a compact Hausdorff

space.

Proof. Let £E,n€C with E£#n. We shall show that there

exist closed subsets C&,C&* of C such that §¢CY* and

n¢C,.Since Cy U Cg* = C, it will follow that C is Hausdorff.

If E#n, then there exist Zlen and Z€eE and VeU such

that
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V(Z,) N V(Z)=0.

We can choose WeU such that WoeWeV, and put Y=W(Z). Then
W(Zl)nW(Y)=Q which dimplies that  Yé#n. We also have

-~ ~

W (Z)OW (Y*)=B for any symmetric vicinity W satisfying
12 s ~ 7 ’ !

W <W. For, if xeW(Z) N W(Y"),(x,z)eW and (x,t)eW for some

z€Z and some tGY*. But then teW(Z)=Y. This is a

contradiction. So Y*¢E.

For the compactness, suppose that (C'Ui):.LEI has the
finite intersection property Then { Ui: i€l } has the near
finite dintersection property. Hence, by Zorn's lemma,

there is a point £ of C such that {Ui: i€l }e E. Since

E € , it follows that N #0
ielcbi ielcbi "

For each xe€X,we denote by Q the set of subsets Y of X

for which x€Cl,Y. Then % is an element of C.

2.3.2. Proposition. The mapping e:X———C for which

e(x)=§ embeds X in C as a dense subspace.

' A
Proof. clearly e is one to one, because if x#y, {x}e€x

and {x}¢9.

Furthermore, e(X) is dense in C. To see this suppose

that YcX and that e(X)ﬂ(C\CY)=¢.‘ Then x€X dimplies that
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Yee(x), i.e, that x€Y. Thus Cl,¥=X. It follows that Gy =C;
for,if §€C\GY, then V(Z)NV(Y)=@8 for some ZcE and some Vel.

This is impossible, since C;XYQV(Y)=X.

To show that e is continuous, let x€X and let C\Cb be
an open neigbourhood of e(x) in C. Then the set X\CHXU is an
open neigbourhood of x in X, and e(X\ClXU)cC\CU. To see
this, let n€e(X\C;xU); then there exists zeX\Cle such

that e(z)=n. Since z¢Cle, U¢e(z)=r. Hence n€C\Ch.

To see that e is a closed map,let U be a closed set in
X. Then we claim that e(U)=e(X)n {EcC|UcE }. To see this let
nee(U), hence there is x€U such that nee(x)=x. Since xe€U,
Uex=e(x)=n and so rne{feC|UcE}Ne(X). Therefore,

e(U)s{EeC|UeElNe(X) (1).

For the reverse inclusion let nle{5€C|U€§}ne(X), then

there exists y€X such that n1=e(y), and so Uece(y) since Uey,

yeCIXU and C!XU=U‘since U is closed and so

n=e(y)ee(U). Therefore,
{EeC|UeEINe(X)ce(X) (2).

Hence the result follows from (1) and (2).

2.3.3. Proposition. For any Y<X and £&€C, YeE if and
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only if EeClde(Y).

Proof. Let Y<X.Then CY={n€C : Yen} is a closed set in

C and e(y)e{neC : Yen} for each y€Y, and so
e(Y) € { neC : Yen } ﬂmsc%gY)g{mC:Ym}.

For the reverse inclusion, let nECY and suppose that

n¢ Clce(Y). Then there is an open neigbourhood
C,={ E€C : z¢€ )
of 1 for some ZsX, such that
e(Y) N { &C : ZgE }=0.
So |

e(Y) c e(X) ) { E€C : ZeE } = e(ClyZ),

and hence Y cxuxz. Since Yer, CHXZG7 and so Zen. However,

- this contradicts the assumption that neCi.
We denote the set C of all near ultrafilters by X.
2.3.4., Remark.We shall in future regard X as embedded

in i, by identifying X with e(X).

2.3.5.Remark. It = is - clear that two equivalent
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uniformities define same compactification.

2.3.6.Theorem. Let (X,U) and (Y,V) be uniform spaces.
Any uniformly continuous function f:X——Y has a

continuous extension f :X—Y.

Proof. We first show that, for each £eX, there is a

unique neY with the property that f(S)en whenever S€g.

If we establish that {f(S):5¢£} has the near finite

intersection property. It will follow that there is at least

one element neY with the above property.
'Let ¢ be a finite subset of £, for which

AV(£(S))=0
S€p

for some VeV. Then if,

U= { (xl,xz) € XxX : (f(xi),f(xz)) €V},

We have UeU and

N U(5)=9.
Sep |

This is a contradiction. Thus { £(S) : Seg } does have the

near finite intersection property.
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Suppose now that n, and n, are distinct elements of Y

which both contain { f(S) : S€f }. There will be sets Ylenl

and Y2

€n, for which
W(Y,) ) W(Y,)=0

for some WeV.Let VEV be a symmetric vicinity for which VZSW
and let U be Vdefined as in the preceding paragraph.Now

f‘l(G(Yl))eg; for if,
-1.-
£71(V(Y,))ns=0

for some S€g, we have V(Yl) N £(s) = ¢. This is a

contradiction to the assumption that Ylenl and f(S)enl.

Similarly, f'*(G(Yz))eg. However,
- - - 4 -
o LY O NAUETV(Y,))) =25

for, 1if (x,x,)€U and (x,x,)€U, where xlef‘l(ﬁ(vl)) and
xzef—l(ﬁ(Yz)), we have f(x)€W(Y1) N ﬁ(YZ). This contradicts
our assumption that ﬁ(Yl) N W(Y,) = #. Thus the element

neCl Y which contains {f(S) : S€€ } is unique.
Y B
We can now define f :X~———— Y by stating that
E(E)=n. As we have just seen, if Ten, then f_l(G(T))ee for
every VeV. Conversely, if f_l(V(T))eg for every VeV, it
follows that Ten. Otherwise, V(T) N V(T ) = @ for some

,

T €n and some VEV, As in the preceding paragraph, we put
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U = {(xl,xz)GXxX : (f(xl),f(xz))ev }, and find that
e l(very)) n UeX(V(T ))) = . This is a contradiction,

as both f—l(V(T)) and f—l(G(T )) are in E.
Thus we have shown that

-1

£77(¢) = nlc 4 - vev 3,
£ 7(V(T))
and hence that Evis continuous. It is obvious that % is an

extension of f.

We have the following corollary as a consequence of

above theorem.

2.3.7.Corollary.Let (X,V) be a uniform space and i be’
the compactification of X yand suppose that Z is any
compactification of X having the property that every
uniformly continuous function f from X into a uniform space

(Y,U) has a continuous extension f from Z to Y. Then Z is

homeomorphic to X.

Proof. Since Z is a compactification of X there is a
homeomorphism g from X onto g(X) with g(X) dense in Z .Thus
we can regard X as a subspace ofVZ and X. If Id is the
identity map X-——XcZ, then by the assumption there is a

unique continuous map f:X——2Z such that %I =Jd. Similarly
X
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there dis a "unique continuous map E:Z——ei such that

E| =1a"'=1d. since X is dense in both X and Z, and £og) -1Id
X X

and élxo%=1d‘1=1d, teg=1d,, g-¥=Id_. Therefore, both ¥ and g
%

are homeomorphisms.

2.3.8.Proposition.The continuous real-valued functions
on X are precisely the extension to X of bounded uniformly

continuous real-valued functions defined on X.

Proof.We know from proposition 2.3.6 that every

bounded uniformly continuous real-valued function defined on

X has a continuous extension to X.

The set A of all such extensions forms a uniformly
closed algebra which contains the constant functions. If we
‘can show that it separates the point of i, it will follow
from the Stoné—Weierstrass theorem that it consist of all
the continﬁous real-valued functions defined on i. Suppose
then that Ny and n, are distinct elements of i.We shall have
ﬁ(Yl) N ﬁ(Y2)=¢ for some Ylenl,some Y2€n2 and some Ue€U.
Then there will be a wuniformly continuous bounded function
f:X—R for = which f(Y1)={0} and f(Y2)={1}

according to [36].

It will follow that f(n1)=0 and E(n2)=1.

Hence A does separate the points of X -
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In future, we will denote the extension of a uniformly

continuous function f from X to X by f.

2.3.9.Proposition. Let £¢X. For any Yef and any UeU, the

set C. is a neigbourhood of &£, and the sets of this form
U(y)

provide a basis for the neihbourhoods of €.

Proof. Since a\C . « S C- , C. is a
(U(Y)) Uu(y) U(yY)

neigbourhood of £ by proposition 2.2.8.

- Now suppose that T<X and that T¢€. Then T G(Y)=¢‘

for some YeE and some VeEU. Let UelU satisfy U2§V and U=U_1.
Then C.- SC\C&, because U(Y) N U(T) = 4@.
U(Y) ,
This shows that the sets of the form C. are a base

u(yY)

for the neighbourhoods of 5.
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CHAPTER III.
COMPACTIFICATION R OF THE REAL NUMBERS R WITH RESPECT TO

THE USUAL UNIFORMITY

Section I. Topological Properties of R

We have seen in chapter 2 that any uniform space R
has a compactification i, whose points are the near ultra
filters, which has the property that any uniformly
continuous function f from X to any compact space K can be
extended to a continuous function % from i to K. Since R is
a uniform space, R has such a compactification which we
shall denote by &. We remind the reader that this is defined

in the following way:
Let B(0) denote the set of neigbourhoods of 0 in R.
A point £ of R is a family of subsets of R which is

maximal with respect to the property that, for every finite

subset ¢ of £ and every neigbourhood W ofro,
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N(Y+W)#0.
Yeo

The topology of R is defined by choosing sets of the

form
G={n€R : Y €nj,
where Y<R, as a base for the closed sets.

We will denote R\R by pR.

3.1.1.Theorem. Let §€R+\R and suppose that YeE. Then
for any k>0, there is a sequence (yn)gY such that yn+1—yn>k

for cvery n, and (yn)eg.

Proof. Since E€ﬁ+\m, we may suppose Y<[0,»). Now

choose m>k. Then either

Ulnm, (n+1)m]<E
ne2N-1

or

Ulnm, (n+1)m]eE.
ne2N

Let X, denote the first of these sets which is a

1
member of €. Let Al denote 2N-1 or 2N.If
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X,= Ulnm, (n+1)m],
neA
1
then
U[nm,(n+%)m)e§
neaA
1
or
1
UL(n+5)m, (n+1)m]<E.
neA
1
Let X, denote the first of these sets which is a member of

2
1
E. Let A2 denote A1 or A1+§.If

X,= Ulnm, (n+%)m]€g.

n€A2
Then
U[nm,(n+%)m]€§
neA
2
or

U[(n+%)m,(n+%)m]eg.

n€A2~

Let X3 denote the first of these sets which is a

member of €.

Proceeding in this way, we can define a sequence of

sets (Xn) with the following properties:
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i) xneg;

«©
ii) Each X_ can be written as Ul ,where I is
n o1l T n,r

a closed interval of length o :
2n—l

iii) For each n, d(In I r,)zm if r#r’';

y I’ m,
iv) For each n and r, I(n+1),rg1n,r'

For ecach r=1,2,3,...,there will be a wunique point

X € ﬂl
r n=1n,r.

Let X={xr:r€N}.

We claim that Xe€E. To see this, let Ze€ and let £>0.

Choosc n so that -%:1<§. Since Xn€§, there will be a point
2

€
x€X  such that d(x,Z)<s. If x€I_ _, then d(xr,x)<§. Hence

b4

d(xr,Z)<£. Thus (X+(-€£,e))NZ#2 and so Xe€E.

. 1
Now,for cach r,choose yreY with d(xr,yr)<d(xr,Y)+?. We
shall show that {yr:r€N}€E. As before, 1let ZcE and let
£>0.Then V={xr:d(xr,Y)<§}€§; for otherwise we should have
\Y ={xr:d(xr,Y)Z§}€E.This is impossible,since d(V ,Y)z%,Since

) I > . . [3
{xr:xrev and ?<§}€§, we can choose‘xrev satisfying d(xr,Z)<§

and %<%. We than have d(yr,Z)<s.Thus {yr:rew}eg, as claimed.
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A repetition of the preceding argument will show that

m-k 1

=f{x : . 1.m-k .
T-{xr.d(xr,Y)< 5 and =<5 }€€, and that {yr.xreT}eg. We

replace the sequence (yn) by the sequence (yr)x eT* This
r

will clearly have the property that Iyr—yr,|>k if r#r’,since

|xr-xr,|2m.

A point n of a topological space X is called a remote

point if it is not in the closure of a discrete subset of X.

As a consequence of above theorem, R has no remote

points. But under the continuum hypothesis PR has remote
*

points and the set of remote points of PR is dense in R by

theorem 2.5 of [16].

Now we¢ have a corollary which shows that the
cardinality of a neigbourhood of a point £ in pR is at least

2€,

3.1.2.Corollary. Every neighbourhood of every point &

in pR contains a copy of N*.

Proof. As we have seen in proposition 2.3.9 that a
base of the necighbourhoods of the element £ 1in pR is
provided by choosing any closed set Y in & and any

neighbourhood W of 0, and forming the set G of elements 7 in
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pR for which Y+Wen. For k=1, from the preceding theorem we

have a sequence (xn)SY such that xn+1_xn21 and (xn)eg.

We may suppose that X=(xn). Then G contains Cl.(X)\X.
R

Now we define a mapping ¢ from N to R such that
w(n)=xn. Clcarly, the mapping ¢ is continuous and it extends

to a continuous mapping wB of BN onto Cl.(X). Let E,neBN,
V R

with €#11. Then there exist Ue€f and Ven such that UNV=@ and

s0
e vy,
since ¢ is onc to one on N. Now if we take W=(-1\2, 1\2)
(p(U)+W)N(0(V) +W) =0,
since for any n€U and mevV,
lo(n)-¢(m)|21.

And so
c1 P (uyncr_oP(v)y=o.
R R

Sincec E€Cl U, wB(E)€C1 ¢(U) and since neCl ¢(V),
BN R BN



51

wB(n)e Clﬁw(V). Therefore, @B(§)¢¢B(n). So wB is one to one.

Since a one to one, continuous mapping of a compact
B

space onto a Hausdorff space is a homeomorphism, ¢ is a

homeomorphism between Cl.(X)\X and N*.

As a result of the above corollary, we have the result
that the cardinality of a neighbourhood of & in pR is

*
Zc,since the cardinality of N is 2¢ according to [61].

3.1.3.Proposition. No sequence in R can converge to a

point of pR.

Proof.Suppose that there is a sequence (xn) in R which
does converge to a point £ in pR. The sequence (xn) cannot

be bounded otherwise it would have a subsequence (xn )
‘ r

converging to a real number k. It follows that (xn) will

have a subscquence (xn ), which satisfies X, X >1. But
r r+1 b o

(xn ) also converges to E.
r

Now we define a uniformly continuous function from R

to R as follows:
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0, if r is even

n, 1, if r is odd;

and we complete the definition by piecewise linearity. Then
f(&)zLimf(xzn)zo and f(§)=Limf(x2n+1)=l. But this 1is a

contradiction.

3.1.4.Proposition. The space R is not metrizable.

Proof.Suppqse, on the contrary that R is metrizable,
then every point 1 of R has a countable base of
neighbourhoods.Let ne€pR, then since R is dense in R there is

a scquence of points of R which converges to n which

contradicts to the proposition 3.1.3.

As a result of the above proposition R has not have a

countable basec.

3.1.5.Lemma. Let a be an ultrafilter of subsets of R.
Then, if E={X<R : X+Wea for every WeB(0)},E is a near

ultrafilter.

Proof. Obviously, £ has the near finite intersection

property. To show that £ is maximal with respect to this
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property, suppose that YcR and Y¢#&. Then Y+W¢a for some
WeB(0), and so (Y+W)NZ=@ for some Zecx. However, Zex implies
that ZeE. So ENHKY}) does not have the near finite
intersection property. € 1is the wunique near ultrafilter
which contains a,since any near ultrafilter which contains «

must contain E, and must therefore be equal to E.

3.1.6.Proposition. Every € in pR is the limit of

a convergent sequence of distinct points of pR.

Proof. It is trivial, since £ is the 1limit of the

sequence ((1/n)+E)

Now we have the following proposition immediately:

3.1.7.Proposition.Every point £ of pR is a limit point

of a countable subset of pR, which does not contain £.

3.1.8.Definition. A set G in a topological space is
called a Gé~set if it 1is the intersection of at most
countably many open sets and a point of a topological space
is called a P-point if every Gé—set containing the point is

a neighbourhood of the point.
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It is a well known fact that the set of P-points of N*
is dense in N* and its cardinality is 2€¢ under the
continuum hypothesis according to corollary 4.30 of [62]
and the set of P-points of PR is dense in IR* and its
cardinality is 2€ according to theorem 6.2 of [47], assuming

the continuum hypothesis.

We have a corollary of proposition 3.1.6, since no

P-point can be a non-trivial limit of any sequence.

3.1.9.Corollary. pR has no P-point.

3.1.10. Definition.An F-space is a topological space X
such that, if feC(X), the set of continuous functions from X
to R, then Pos(f) and Neg(f) are completely separated; that
is, there exists a function geC(X) such that g(x)=1 if
x€Pos(f) and g(y)=0 if xeNeg(f). X 1is called 1locally
compact if each point of ;X has a basis of. compact
neighbourhood and and X is said to be o-compact if it is

the wunion of at most countably many compact subspaces.

It is a well known fact that the spaces BN\N, BR\R and

BR+\R+,where R denotes the space of nonnegative real



55

numbers (0,»), are F-spaces. In fact, for any locally
compact, oJ-compact Hausdorff space X, BX\X is a compact

F-space according to theorem 2.7 of [19].

Now we have the following corollary as a consequence
of proposition 3.1.6, since no point of an F-space is the

limit point of a sequence of distinct points.

3.1.11.Corollary. pR is not an F-space.

3.1.12.Definition. A point of a subset A of a
topological space X is called an isolated point of A if it

has a neighbourhood which contains no other points of the

subsct A.

It is a well known fact that N* is the only
commpact space with weight ¢ with the property that it has
no isolated points by corollary 3.11 of [61], and every
non-empty G5~set has a non-empty interior by corollary 3.27
of [62]. Hence, we have the following property of pR

immediately, since pR has no isolated points by the

preceding proposition.



56

3.1.13. Proposition. It is not true that every

non-empty Gé—set in pR has non-empty interior.

3.1.14. Proposition. No point in pR has a countable

base of neighbourhoods in pR.

Proof. 1f EecpR, there is a subset X of pR such that
EeX and X is homeomorphic to N*, since every neighourhood of
£ contains a copy of N* to which & belongs by corollary
3.1.2. Hence E& can not have a countable base of
neighbourhoods of (Un) in pR; because (nUn)ﬂX cannot be a
singleton since (ﬂUn)ﬂx is homeomorphic to a non-empty

Gé—sot of N*, and in N every non-empty Ga-set has non-empty

interior.

3.1.15.Corollary. pR is not metrizable.

Proof. It is obvious, since every point of a

metrizable space has a countable base of neighbourhoods

3.1.16.Corollary. pR has not have a countable base.

Proof. It is obvious.
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3.1.17.Examples (1).The space @,the compactification of
rational numbers: Since every uniformly continuous function
on Q can be extended to a uniformly continuous function on

R, the space Q is as same as R.

It is always true that, for any dense subspace Y of a
uniform space X, Y and X are homeomorphic since every
uniformly continuous function on Y can be extended to a
uniformly continuous function on X, where Y has the uniform

structure induced by that of X.

(2). Let X=(0,1). Then the compactification i of X is
the closed interval [0,1], since every uniformly continuous
function on (0,1) can be extended to a uniformly continuous
function on [0,1]. But [0,1] is not the Stone-Cech
compactification of (0,1), since the continuous function

f(x):sin(%) from (0,1) cannot be extended to a continuous

function on [0,1].

Let X be a topological space then X is separable if it
contains a countable dense subset.If every real-valued

continuous function on X is bounded then X is called

pseudocompact.
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3.1.18.Corollary. The space R is separable.

Proof. It is obvious, since @ is dense in R-

We mean by Lg' the following function f from R to R

such that

0, x<1
f(x)=
logx,xz1 .

It is easy to see that f is a uniformly continuous function

from R to R.

v
3.1.19. Theorem. Let [1,») be the completion of [1,®)

with the uniform structure associated with the group

v
structure ([1,®),.). Then [0,®) is homeomorphic to [1,®).

Proof. The 'Lg' function from ([1l,®),.) to
([0,®),+) is uniformly continuous and the function f(x)=ex
from ([0,»),+) to ([1,®),.) is uniformly continuous with
respect to the uniformities generated by the group
operations (.), and (+), respectively. Hence ([0,®),+)

and ([1,),.) are isomorphic, and so [ij) is homeomorphic
v
to [1,%),

A topological space X is called connected if it is not
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the union of two non-empty disjoint open sets and it is
called locally connected if it has a basis consisting of

connected sets.

By theorem b of [48,chap.6,2] a topological space X is
connected if and only if BX is connected. In particular the

space PR 1is connected.

3.1.20.Proposition. R is connected.

Proof. Since the image of a connected set under a

continuous function is connected R.

3.1.21. Theorem. The space pRNC1l.[0,») is a connected
R

space.

Proof. If not, there is a continuous function f from
this space to R that assumes precisely the values 0 and 1.
Then the function £ has an  extension to g:[o?w)—————em
(since [Otw) is compact) and g must assume values near 0 and
1, at arbitrary large x€R*. Since R' is connected, g must
assume the value (1\2) on an unbounded set in Rt and hence

at somec point of pRNC1.[0,»). This contradiction shows that
R
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pRNC1.[0,w) is connected.
R

By proposition e of [AB,éhap.4,3], a completely
regular space is locally compact if and only if X is open in
every compactification of X. Therefore, R is open in R and

similarly, R* and R™ are open in C1~R+ and in ClNﬁ‘, where

R R
R =(-»,0), respectively. Hence CINR+\R+ and C1_R™\R are
| R i

compact. Thus pR is the union of two disjoint, homeomorphic

connected sets.
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CHAPTER 1V
EXTENSION OF SEMIGROUP OPERATION ON X TO A SEMIGROUP
OPERATION ON X AND ALGEBRAIC PROPERTIES OF THE COMPACT

RIGHT TOPOLOGICAL SEMIGROUP (R,+)

In the last two chapters, we studied the topological
properties of the compactification i of a uniform space X.
In this chapter, we shall investigate whether a semigroup
operation on X can be extended to a semigroup operation on
i. We shall then study some algebraic properties of the

compactification R of R and pR.

Section 1. Extension of Semigroup Operation on X to a

Semigroup Operation on X

4.1.1.Theorem. Suppose that (X,+) is a wuniform

topological semigroup with uniformity V. Then under the
following assumptions the semigroup operation + can be

extended to a binary operation on X,

Assumption 1. The function xx is uniformly continuous

for each x in X.

Assumption 2. For each UcV, there is a vicinity VeV
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such that, for every y<X, (xly,xzy)eU if (xl,xz)ev.

Proof. From assumption 1, for each xeX,the mapping xx

extends to a mapping from X into X.

We denote the image of n under the extension mapping

by xn. So
X = %1m r]xy.

For fixed neX, we want the mapping x+——— xn from X into

X to be uniformly continuous. In other words, given a

continuous real-valued function ¢ defined on X we require:

Civen >0, there exists a vicinity V in V such that

(x,x )eV implies that
lo(xn)-p(x n)]|<e.

By assumption 2, there will be a vicinity VeV such that
lo(xy)-o(x y)]<e/3 for every yeX, if (x,x )eV. Choose

(x,x )eV. Since

o(xn) = Lim o(xy),
and

p(x 1) = Lim o(x y),
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there exists y€X such that

lo(xn)-p(xy)]|<e/3 (1)
and

lo(x m)-p(x y)|<e/3 (2).
We also have:

lo(x y)-o(xy)|<e/3  (3).

From (1),(2) and (3), we have
le(xn)-p(x n)|<e.

Hence, under assumption 1 and assumption 2 the mapping
x—xrn is uniformly continuous for each n in X, so extends
to a continuous mapping from X to X.

The image of £ under this mapping is denoted by En and

SO

It is easy to see that + is also associative. Hence

(i,-) is a compact right topological semigroup.
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4.,1.2 Remark. If X has a uniform structure invariant
under left and right translation, the semigroup structure
extends to i, since assumption 1 and assumption 2 are
automatically satisfied. In other words, the extension is
possible if X has a base of vicinities U with the property
that 1if, (x,x’)eU then (xy,x'y)€U' and (yx,yx,)eU for every
y€X. This is the case if X has a metric d invariant under

left and right translations.

4.1.3.Remark. For any topological group G, the group

operation defined on G extends to a semigroup operation on

G, when G has the right uniformity generated by entourages

of the form {(x,y):xy’1€V},where V is a neighbourhood of the

identity of G.

4,1,4.Example. The following example will show that
the operation of. addition can not be extended to a

semigroup operation on BR.
Suppose that, for each element E€SR and y€R, we define
~y+§=§im E(y+x).

We shall show that there are elements of & of BR for which

the mapping y——y+E is discontinuous. In fact, let £ be any

element in ClBR(N)\R.
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Choose a continuous real valued function f:R——[0,1]
with the following properties:f(n)=1 if nelN, and f(n+x)=0 if
1/n<x<1-1/n for each néN.Then for each meN f((1/m)+n)=0 for

every néN satisfying n>m. Hence

fB(1/m+§)=%igqgf(1/m+n)=0.

However,
Brryors -
f (E)-%lgagf(n)-l.
So
PeyeLim  £8(1/meE)
m—® 4
and  so
E#%im (1/m+E)
in BR.

4,1.5.Example. The semigroup structure on (R,+) and

on (Rn,+) can be extended to R and Rn, respectively.

4,1.6.Theorem.The map y———xy from R to R for a
fixed x in R extends to a mapping from R to R, but this map

does not extend further.

Proof. To see this, we shall show that the mapping is

uniformly continuous.
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Let £>0,x#0 and let &=¢/|x|.

|Y"'yl|<5
then

]xyl-xy2|$|x|Iyl—y2|<|X|(E/lX|)=5-

Hence the map extends from R to a mapping from R to R.

We denote the image of £ in R under this map by
x§=§ig§xy.

Now we will show that for a fixed 1neR, the map
x——x7] is not uniformly continuous and hence it does not
cxtend to R.To see this let A denote the set of positive
integers of the form 1x3x5x7x...(2ntl) for some neN and let

£eC1.A\R. Put f(x)=Sin(%z . Hence fB(E)e{—l,l}.For' any meN

AY

and any n€A,

2nm
2m +1

n)=z Sin( n)=0

f(2m+1

if n Is a multiple of 2m+l.

Hence

fB 2m

(2m+1g) =Li gf(z +1n) =0.

But £P(£)%0.
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4.1.7.Theorem.The mapping (x,£)——x+f is a continuous

mapping from RxR to R.

Proof.Let Yex+& and WeB(0). So C&+W is a Dbasic

neighbourhood of x+&, by proposition 2.3.9.

Choose any VeB{(0) for which V+VeW. We shall show that,
if tex+V and n€CLx+Y+V’ then (HﬂEC&+w. Now -x+Y+Ven which
implies that t-x+Y+Vet+n and so V+Y+Vet+n,since t-xeV.Hence

Y+Wet+n as claimed.

The next theorem shows that R is the maximal
compactification of R which has the continuity property

described in the preceding theorem.

4.1.8.Theorem. Suppose that X is a compact right
topological scmigroup and that h:R——X is a continuous
homomorphism for which h(R) is dense in X; Suppose also that
the mapping (x,E)——h(x)+f is a continuous mapping from
RxX into X. Then there is a continuous homomorphism

g:ﬁ———ax for which the following diagram commutes:
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Proof. If we can show that h is uniformly continuous,it
will follow that there is a continuous function g:R——X for

which ge=h.

Let ¢:X——[0,1] be a continuous function and let € be
a positive real number. We must show that, for some

W=(-5,5)€B(0) (820), |x-y|<56 implies that |ph(x)-ph(y)]<e.
Now for each E€X, there is a neighbourhood N(E) of &

and a set W(E)eB(0) such that |w(h(w)+n)—w(§)|<%- whenever

weW(E) and 1neN(E€).X will be covered by a finite number of

the neighbourhoods N(E). Choose 61,52,53, ..... En such that
n

n
X=UN(§1), and put W=\W(§,;),and say W=(-5,8).
1 1l ;

Suppose that |x-y|<é. If h(y)eN(£;), we have
lo(h(x-y)+h(y))-0(E;) | <5
and
lo(h(y))-o(E;) <5 -

Thus

[e(h(x))-o(h(y))]|<e,

as required.
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This shows that h is uniformly continuous, and hence

the continuous function g exists.

We must still show that g is a homomorphism. This can

be seen as follows:
For any A,ucR,

g(r+p)=g( Lim Lim g(e(1l)+e(m)))
e(l1)—>x e(m)—u

=Lim Lim ge( 1+m)
e(1)—\ e(m)—pu

=Lim Lim h(1+m)
e(l)—xr e(m)—u

=Lim Lim (h(1)+h(m))
e(1)—\ e(m)—ypu

=Lim Lim (ge(1l)+ge(m))
e(1)—\ e(m)—pu ‘

=g(A)+g(1)

4.1.9.Remark. R is the maximal compactification of R

with respect to this property.

4,1.10.Remark. The preceding two theorems have been
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stated for é. It is obvious, however, that they would apply
to the compactification é of any topological group G. We
remind the reader that as noted in the introduction the
LUC-compactification of G is the maximal compactification of
G with respect to the above property and therefore,ﬁ is the

LUC-compactification of G.

Section 2. Algebraic Properties of the Compact Right

Topological Semigroup (R,+)

In section 1, we have seen that the semigroup structure
of (R,+) can be extended to ﬁ, which makes ﬁ a right
topological semigroup. We shall now study some
properties of the compact right topological semigroup (&,+).
Throughout this section we shall use B(0) to denote the set

of symmetric neighbourhoods of 0 in R.

4,2,1. Proposition. Let o=E+4n in &. Then 2Zeoc if and

only if,for every WeB(0), there exists X€f such that -x+Z+Wen

for every x€X,.

Proof. Suppose that there is a WeB(0) such that
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X={xeR|—x+w+Z€n}¢E. Then there is a member V of £ such that
X(\V=0. If  veV,  —v+W+Zgn. So  -v+(W+Z)*en,  where

(W+Z)*=R\(W+Z). Hence v+n€C1-(W+Z)*; it follows that
R

*
E+1€Cl.(W+Z) . This contradicts the assumption that Zeo.
R

Conversely, suppose that, for every wWeB(0),
Xw={x€R|-x+W+Z€n}€E. Let x€X,; and let ye-x+W+Z. So

x+yeEW+Z. We can choose a net of values of y converging to 1.

Then x+4+neCl.(W+Z). Hence E+neCl.(W+Z). Therefore W+Zeo for
R

R

cvery WeB(0), and so Zeo-

4.2.2.Proposition. Let gepmﬂcl_(xn), where (xn)cm and
R

X 41" %X —® as n—», Then £ is right cancellable in (R,+).

Proof.Suppose that £ is not right cancellable. Then

there are n,C in R such that n#{ and n+&=C+£. There is Y€n

and Ze€{ such that d4(Y,Z)=6>0. We may suppose that xn+1—xn>5
. 1

for all n. If y€Y and z€Z with y,z>0 and if y,z<§(xr+1—xr)

for all r>n, then for any r,s>n,
|(y+xr)—(z+xs)|28.

To sce this,we may suppose that szr+l1l, since the inequality

clearly holds if r=s. Then
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1 1
yJ'xr<x1'+2(xr+1-xr)’ z+xs>xr+1+§(xr+1‘xr)

and so
(z+xs)—(y+xr)>(xr+1—xr)>6.
For each y€Y and each x€Z, let

-x >2y for every rzn}

and let
Xz={xnr:xr+l—xr>2z for every r2n}.
Then
U (y+X_)en+E,
yeY. y
and

U (z+XZ)€C+E.
z€Z o

However, let xrexy and xsexz. Then

1
xs<z+xs<§(xs+1-xs)
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and

-x_).

1
xr<Y+xr<§(xr+1 r

So by the preceding argument,
l(z+xs)—(y+xr)|28.

Hence

d(U (x+x_),U (z+X_))=8.
yey V' zez z

Contradiction-

4.2.3.Proposition; Let €,nepR and x€R, then
x(E+n)=xE+x1].

Proof.1t is obvious since

x(€+n)=Lim Lim x(y+z)
y—& z—n '

=zLim Lim(xy+xz)
y—¢E z—n

and
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xE+xn=Lim Lim (xy+xz)
y—& z—Mn

4{254.Theorem.nLe§ geom and‘let XER.Then

2(5) Theré is‘nepm such’thao X}U=EQ

(o) There‘is nepm such that xn=f if x#0.
Proof.,(a)u<?ut n;+#+§r

: (b)‘~Put‘n%%€.orkM

4,2.5.Proposition.r Let r1nepR.: Then “for x,y€R,  xin=y+n

implies that x=y.

froof; SupooSe that théfé is an ﬁepﬁ such that’X+n=y+n,
4.when x#y. We may suppose{thét x>y, and Llet;»kﬁx?y. ‘Since
xfn=j+ﬁ,‘¥y+x+n#n,kthat is k#n;n..Thus, if Aen, Ack+n  and
. kAck+. Since k+Ack+n and Acken, (k+A+W)(A*W)#8 for all

 WeB(0).

By proposition 3. 1 1 we can choose a sequence (x )R

such that xn+i~x >2k and (x )en. Let w_(ak/a k/&) ,Now we‘

e s
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claim that ({xn}+W)n((k+{xn})fW)=ﬁ. If not there exists t
_inﬁthé7intérsection753ch‘that; Ct=x . +w,=k+x  +w,, - where
, > , T omy 1 m, 2 ,

Wy W,EW and  x X e(xn)J So x  -x_ =k+tw -w,. But this

1 ™2 1 M2
implies that |x_ -x_ |sk+(k/2)=3k/2. But this is a
oy ey By b i ~

m

contradlctlon - , | since xn+1~xn>2k. Hence the
intersection is empty, which is not possible since (xn)€k+n

' and'(xﬁ)+kek+n.”‘

4;2Q6.‘ Proposition. Forf‘ényv uniform1y ‘continuous
i function ,;';f:m—f—*mrg;,'With _ the  property  that
|f(a+x)ff(x)|————+0 as x——w, for each fixed acR, wé have

E(E+n)=f(n) for all‘g,nem+,

,Proof. We can_gpoose a net (ya) in R which converges to
1 in R. We want to show that for any uniformly continuous
function ¢:R——I[0,11, (¢(f(a+y,)) ‘and (p(f(y,)) are nets
 with the same limit. Ty | ST
T incar i
o »:Jf(a+y¢)_f(yd)|*f_ﬁo as y—m

for a given €>0, there exists «(€) such that f

;;lf(a+yd)~f(yd)!<s,
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when d)a(é);'Hence, by the uniform continuity of ¢, for a

given é>0, there exists B(a)'sﬁch that
' |¢(f(a*ya)-¢(f(yd)|<s
when a>B‘a).Théréfore,
: L%mlw(f(a+yg))=Lémgw(f(ya).

Therefore, if ¢;R———ﬁ[0,1]_denotes the extension of ¢, then
<tw(§(a+ﬂ))?Wff(n))’ Hence f(a+n);f(n),for every acR, and so

CE(Eem)=E(n),

, 4.2.7.“Proposition. Let ;x,y;zem such that x20,y,z2l

and £€oRNCL_[0,®). Then xE+yE=zE implies that y=z.

N

?rbof;‘ We ‘may suppose that [1,0)eE. By ‘the above
pr0position Lg(&m) Lg(n) for m—mﬂ’nm [1,@). If we apply the
R s .

i “Lg functlon to the equation x§+y& zg, we get
Lg(yE)=Lg(zE).
‘,Hence 

&

Lg(y)+Lg(E)=Lg(z)+Lg(E) .
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By proposition 4.2.5,
Lg(y)=Lg(z).

Therefqré, y=z since Lg is one-to.one on [1,0),

4.2.8.Proposition. Let E€pRNCLl.[0,»),and let x,ycR such
‘ R

that x>0,y21.‘Thén xE+yE#(x+y)E. L
Proof. This follows from proposition 4.2.7, since it

implies y=x+y if XE+yE=(x+y)E. -

4.2.9.Theorem. LetktgeCI;[O,w)nﬁ, and let x,yER' such

that x,yzl. Then, x&=yE€ if and only if x=y.
;Proof.‘01ear1y‘ xE=yE if x=y.

- Now suppose “that7 xg=yg, then lgxéélgyﬁ and  so

1gx+1gE=1gy+1gE. By proposition 4.2.5, lgx=lgy and so x=y,

4.2.10.Proposition. Thék,SQmigroup (BN, +) can be

embedded in (R,+).
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Proof; Let ¢ be the mapping from N to R such that
e(n)=n. Since ¢ is continuous it extends to a continuous
mapping wB from BN into &} We will show that wB’is oné to
one. To see this, take E,n€BN with £#n. Then there are two
subsets X and Y of N such that Xe£, Yen and XAY=08. We define

a continuous function - f:R——>[0,1], stating that

f(x)={ 1, if x€p(X)
L0, if yep(Y)

and we extend f to R"by‘pieCeWiSe 1iﬁéarit&f'Théﬁ for any

two“realvnumbérs‘r,s;f:" ’
[f(r)-f(s)|s|r-5].

Hence f is uniformly‘continuous andFSOiextendS to a

mapping £ from R into [0,1]. Since f(x) 1 on Cl w(X) and
. f(x)=0, on Clﬁw(Y), Clﬁw(x)ﬂ01ﬁ¢(Y)-B Hence (E)#w (n),

VSince | B(E)€C1mw(x) and ¢ (n)GCI w(Y) Also,
B

B(g)+¢Bun_wB(§+n) that is, " is a homomorphlsm. This can

©.-be seen as,follows.

5+n=&i§6 %ign(m+n)
So - .
| o (e = “pin; Jime((men))
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=Lim_ Ligh(w(m)+w(n)).

m~E 1

=P reysP

We have the following corollary immediately, since the
cardinality of BN is 2¢ by theorem 1.3 of [50].
4.2.11.Corollary. R has 2¢ points,' |
; Now we w111 prove the following property that will be
used in future prop051t10ns."
4.2.12,Proposition. Let (xif'be a sequence in R with
the property that X, q-X,——. Then» Aif {x_)eE, E¢pR+pR.

‘Proof. Suppose that E x+u, where  A,ucpR.  From

s proposition 4.2.1, for ‘every th(o),,
{xeR | -‘x+(xn)+w6p}éx .

Lét_W?(41/4,1/4) and'Choose'two'distioot values x,x €R?

such that

PN

Bl U
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’

-X +(xn)+WGu,

P +

and x -x>1. Now suppose that, if n>ng, X q-X >X+xX +1. Then

l

‘-x+(xn)n> ng +Wep and -x +(xn)n>no+WEu.

if m,n>n, and’m#n, then
j(meﬁ)-ﬂxnfxf)|2|xm—xn|ax~x->1.
If m=n,

| (%, -%)- (% -x Y =]x -x|>1,

that is, _X+(Xn)n>n ‘and x (xn)n>n0 have a distance apart

at least equal to 1. Hence

i’

.’(,x+(xn)n>no+W+W)ﬂ(~x (xn)n>n0+W+W)=8.

But this contfadiéts thekassumption that

’

*x+(x ) +Wepy and -x +(xn) +w€u.

n>n >
n I’IO

0

j4;2.13.Proposiﬁion.‘Let (xﬁ)’be'a seQuencé in R and

let EcpR+pR. If'(xﬁ)eg; then there is a real number beR such
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that |xn+1—xn|sb 1nf1n1te1y often.

Proof. Suppose that E€pR+pR and {x_}€E, but that for

any beR

|%,1-%,1>P
for all -but'da finite number of values of n. Then
X ,1-%g—® ©OF Xp,1~Xy— =9 but this contradicts the

assumption that E is in le+plP by prop051t10n 4.2.12,

 4.2.14. Proposition. (R,+) has 2° disjoint left ideals.

Proof.f To proVe' this,‘ we. w111~ first show that the

function Lg assumes 2¢ dlstinct values on K.

o Con51der the Lg functlon fram R into, ﬁ+. Clearly
R chm clgm CR since R* is dense in P Lgﬁ+ isvdense'in

o IR+,

“and since LgR,"is compact, Lgm is the- spade ﬁ+,
'therefore,l;the_ cardlnallty ~of Lgm is 2¢, 51nce‘,the
ardlnality of - R is 2°%. Hence the Lg functlon assumes 2

‘fdistinct values on R. N

Now let gi,gzemnclﬁ(l,m)' be such that LgE #LgEz.Theﬁ
(m+g1)n(m+52 —ﬁ If‘ ﬁot, there exists nl,nzem such that

~,U1+§1~n2+52 By proposition A 2 6 ngl"LgCZ’> Whléh‘~is a
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contradiction. So the intersection is empty. Since the Lg

function assumes 2€ distinct values on Cl.(1,®)\R, there are
. - v b

' 2¢ distinct points E1»E, in R with the property that

1ggl¢ng2,Hence (R,+) has 2¢ disjoint left ideals_

‘In the following theorem,we shall regard Z as embedded
in R. We shall use Z* to denote BZ\Z. Our theorem gives a
decomposition for R which is analogous t6 the’decomposition
of é:real number;aslthe‘sum of a fractioﬁal part and an

integer.

4.2.15.Theorem [16]. Each E€pR can be expressed uniquély

as E=x+u for some xe[o,l)vand'some”uezf;

“ThiS“eStablishes‘a bijection between pR and [0, l)xZ*.The
mapplng gk——a(x,u) from pm to [0 l)xZ defined in this ™way,

is continuous on pP\Z

Proof Let éepR We may suppose that gec1 [o w) We have
R. ;

"geen that there is a sequence (x ) in R for which (x JEE and
+1'xn21 for every nQ"The mapping nh—*e{x }, where
{xn} denotes the fractional part of X extends to a

continuous mapping>w:BN——fﬂ[0}1]g‘

We,héVé also seen that the mapping nﬁi—axn‘extendskto a
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| hogeomqrphism f from BN onto Clé{xn:nem}.w§fchoose X to be
ef T (8).

Given weB(O), v {neN w(n)€x+W}ef (g); : and S0
{ {x, }ex+W} belng the 1mage under f of this set,must be in

E. Hence‘ {xn:xh-x€Z+W} is 1n‘ g, ‘because xn—{xn} is

of course, in Z for each n..

| 1f xeg, X+W w111 contain a nﬁmbérkxn/for whlch xn~x€Z+w.
" This shows that (X—x)ﬂ(Z+W)¢9 and hence that Zeg-x. So
E- er , as required, ‘and. we have C-x+u for some . xe[o 1] and
ueZ*. In the case in wh1ch X= 1 we replacc X by 0 and’ H by

1+p. Hence we can assume that xe[O 1)

We shall show that this expression for £ is‘uniQUé.f
Suppose that x+u=y+C, where X,Y€[0 1) and u, CEZ . If x#y,

'0<|x»y|<1 However, for any WGB(o),

| m;wm(y;z‘m‘;#a‘ .
',yéhd'sQ 
xfj€Z+V+ﬁ.‘:
_‘Iﬁf follows, thai‘.éyéZ”whicﬁ} i$ jiﬁpbssibief.kThisg

—establishes that x y and hence that u c :
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‘It is now clear that the mapping Er—(x,u) from ﬁ to

* .
k[O;l)fo'is;bijective.

To  show that this 1is continuous  on ﬁ\Z*, let geﬁ
satisfy E=x+u for some x€(0,1) and\sbme uez*. Let A€y and
WeB(0) .Choose veB(0) satisfying x+V+Ve(0,1), V§(~1/4,1/§)

and V+VeW. Suppose that n'is in the neighbourhood C. - of
o R S V{x+A)

£ and that n=y+{, where»yG[O,l) and Cez*. Since y+Zen and

x+A+Vern,

 (y;Z+v)n(x+A+v)¢Q &
Thus y-xeB+V+V. Now
"1;i+v4vg(1;w):"
‘and - ~
dmwemo).

So y is not in either of these sets, and 307y~x€V%V§w.
 Now, if BeC, Where BcZ we have y{Bén'and hénéé

(yHBAV) (X +A+V)#B.

thus PO ; .
CA(BIVAVAVAV)EE
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and so AﬂB#@ It follows that A€C Since xtW  is - a- basic
~neighbourhood of b4 and {CGZ *AGC} is a ba51c nelghbourhood ‘

of u, we have shown that the mapplng E—(x, 1) is

continuous at E-

,4.2.16.Cor011ary, All the idempotents of R other than 0

o *
lie in Z .

proof,;SQppose:that § is.an idempbtent,in'& and E#0.

Then, clearly E¢pR. By theorem 4.2.15, & can bé expressed
| S | o e e Cn |
“uniquely as x+y, Where x€[0,1) and peZ . If x=0 then the

;proof,is:bbvioué;vSQpPoSe that x#0, then
o (x+u)+’(‘x+‘u)=x+” i
which imp1ie§vtha£:u
pon,

: Sinco R is in the center ofk R, u+k—x+p for every xeb
\:‘therefore, x+u+u N-J Hence Z€X+M+M as Zeu, and 'so Z~x€p+u_"
_Therefore,iby the definitlon of addition on ﬁ,rfor every: 
‘WGB(O), there exists Teu such that ~t+Z~x+Weu ‘and  so
Y/ x+W€u .aince L v__t+Z Z. Let Do W-(-——-—, 4 ), then

.((Z x)+W+W)ﬂ(Z*W)~¢ which is 1s ‘a contradlctlon Hence x*Ok

T
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4.2.17.Corollary.Let/gepm and XER\{O} and suppose that

E is an idempotent. Then (x+E) is not an idempotent,"

Proof. Since R is in the centre of R, for all x€R and

EGQR,,X+§;§+3. So
(#+&)¥kx+&)%x+(§+x)%e :
" .=x+’(‘X+E)fE |
xaxsERE

 suppose that (x+f) is an idempotent. Then: x+§,x+x+g and

so by the proposition 4 2 5, x—x+x whlch is 1mp0551b1e 51nce

x¢0.

4.2.18. Corollary Every left (right,. two-sided) 1dea1 of
R has the form (P+L) (R+R W+I), where L (R 1) is a left
(rlght, two- 51ded) 1deal in Z ;
~If M. - denotes - the mlnlmum ideal -of Z the

minimum 1dea1 of R w111 be P+M

. Proof. Let K be a left ideal in ﬁ;,Then if geK, 'gzx;nl;i
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. , .
for some x€[0,1) and n1€Z . Let
- L={neZ :x+pek for some,xem,uez*}'f~

Then L. 1s a 1eft ideal of Z To see thlS 1et nlez f;If‘UEL,

© x+mEK for. some xe[o 1) and so ”
S U1+ (x+17) =x+1; +1€K,

since K’is,a”1eft’idealfaﬂd‘Xiﬁ?Kf'ﬁenceini+neL SO‘Z*+L£L,

and so KER+L (1)

: o see that P+LCK Let x*“tm+L There 1s X1€P such that'
1+H€K Since K 1s a. 1eft 1dea1 for every yeR,. y+x1+ueK and
50 (x~x )+x +MtK, so x+ueK Hence P+LCK (2) From ) e
'(2), we obtaln R+L K. ‘ ‘ , ,

o | If M s the minimum 1dea1 of R ThenvM 4JL ; L:wls a
"iminlmal 1Eft ldeal °f m But L —R+L for some 1eft 1deal of'

Lk «
gt Hence M‘—U(P+L) P+UL R+M, where M is the minlmumfldeal

%

pf Z,.;

v 4.2.19.Theorem. Let M7be a'léftj(right),ideal inkﬁ,suéh
that M-R+M1; where M, is:a left (right) ideal in Z* Then MV
is a mlnlmal 1eft 1dea1 of R if and only 1f M s a min1ma1

left ideal of Z ./ﬁ Jq :5 ; , V',"‘ . | :,
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Proof. Suppose that M is a minimal left ideal of R and

suppose on the contrary that M1 is not a minimal ‘left ideal

‘ *
of Z*. Then there is a left ideal L, in Z such that LcM,.

=M. Now lR+L1 is a left ideal in R. To see this

,

then R+L1CR+M1
let 1n€R and.  let n1€R+L1,f where  1n=x+n , n1=x1+ni,

4 !’ *
x€[0,1), xlem and 1 ,nleZ . Then

’

M4 =X 4241,

4 ’

=x+x1+n +ni‘

7 ’

S ’
. 8ince L1 is a left ideal in Z and n EZ*,.;n +n1€L1;vSo

x+x1+ntnd€L1. Hence R+L1 is a left ideal in &. This is a

 contradiction since M is a minimal left ideal in R.

Now suppose that M, is a minimal left ideal in Z'. Then
it is easy to see that’R+M1 is a left ideal in ﬁ. To see

that M ié'minimal in R, suppose that there is a left ideal L

_in R such that L=R+L1cM=R+M1; where Lllis a left ideal in
z*. Then R+L,sR+M, which implies that L,eM;, but this
contradicts the assumption that Ml is a minimal left ideal

since L; is a left ideal in z"

4.2.20.Corollary. Every minimal left (respectively,
right) ideal of R contains 2€ idempotents,énd so & contains

2€ minimal left and right ideals.
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Proof.If L is a minimal left (right),ideal in R and

: L-R+L1, by the precedlng thborem L1 is a mlnlmal 1eft
(right) ideal of z* and since z* is an 1dea1 of (BZ +) bys‘

1emma 7.2 of [26], L1 is a mlnlmal left (right) ideal of
BZ. Slnce any mlnlmal 1eft (rlght) 1dea1 of BZ contalns 2¢
yldempotents according to corollary 2. 6 in [29],~‘1 contains‘

szc ; 1dempotents ~and since L1§R+L1—L L contains ~'2c

- idempotentsf :

Slnce the 1ntersect10n of a minlmal left and a minlmal

' rlght ideal is a group with only one 1dempotent according tok,»f

,theorem 1n [5] the conclusion about the number of m1n1ma1'

3 left and mlnlmal right 1deals follows

4.2.21.Proposition. Let M be the minimum ideal of R.
Thén,‘for every xém,x+M=M+x$M.l ' ‘

w0
e

. Proof,SiﬁcekM=m+Mi;lwhereoM1fis°a‘mihimalnideal'of,Z*,
 x4M=x+R+M,=R+M.=M -

S R

~ and since R is in the center of R, x+M=M+x sofM+x£R+M1=M
Bt vtgs R R e £ e R et “m

‘ 4 2 22 Corollary If u,u are elements of Z Whlch define‘f

dlSJOint pr1nc1pa1 left (rlght) 1deals in Z?,'then they aISO’c
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define disjoint principal left (right) ideals in R.

Thus R has 2€¢ disjoint lleft :ideals “and ZC ’diSjoint

"right ideals.

Proof. Suppose that/u»ahd'u-define,diSjoint priﬁéibal

o R ; v
left ideals in Z and suppose‘that
(Re)(Rev)20.

Then there4exists £y EpeR such that EqtH=E 4.

Therefore,k§1=gl+§13fgzéxzf§2f;xl,%zépqtl),cl,czezf.Hepcg’
"thcﬁ iﬁpiies that .

, 30 x1—32=q,\#h§t is Txiéxz"fr°m (1j‘véhayé_
e

But this is a ¢ontradic£ion,§in¢é,;‘,

| . TR
A2 (T w)#e
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4,2.23,.Corollary.If two principal left ideals of pR

are not disjoint , one is contained in the other.

Proof. Suppose ' that  (pR+E)N(pR+1)#£2 and 1let E=x+E’

o ’ ' *
n=y+n , where y,x€[0,1),E ,n €Z . Then there exists El, €pR

M
V 1
such that §g,+g=n;+n. Choose x,,y,€[0,1) and gl,nlez* such

that
. El=x1+619n1=yl+n1.
Then
(%) +X)+E1+E =(y +y)+n 40

and so

(xl+x)—(¥1+y)+51+§ :nl«H” eZ* .

g
o,

Bgt this implies that (X1+x)—(y1+y)ez.say z=(x1+x)—(y1~y),

-thén

’ ?

Z+E,+E =Ny+n .
Let., CT;+€1fx then  CeZ  and C+E =n,+n .
Therefore, according to cotollary in [58] | -

.

'(Z*+g'jn(z*+n')¢z. ‘
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’ ’

1 ’ *

Hence & €Z +nl or T , and so E€R+n or r;eIR+g.

*
€Z +&

4.2.24.Corollary. pR+pR is nowhere dense in pR.

Prbdf., Sup'p‘ose" that4;there is a non-empty open subset U
‘cvontairne‘d in Cl-(pR+pR). Let g, then U is a néighbourhood
of &, hence by proposition 2.3.9 ‘there is a subset U of

'R,UE and WeB(0) such that
~ U={nepR| U+Wen}

By tkheoreni: 4.2.15 we can write B uuiqﬁel’y“ i

" x+& =E, where x€[0,1) and & €Z . Let
U,={n €pRI (U-x)+Wen )

! 7

in pR since (U-x)eE~..

4 theh ﬁl ié open neighbourh6od£of g

" Let v:;UlQZ y then V is open in Z and is not empty

since £ €V. We claim that VcZ +Z . To see this let n €V and
‘ Y N. ) . : * v ) ’ ) S ] R oy T : . . B : . ;

so 7 eUl ﬂf?d n ez . 'Th}erefo(re,' ;,(U“XHWET’,' and sO0 U+W€x+n

which implies that  x+n eﬁCpIR+plP.~ ‘Then - there  are nl,nZEpIR :
such that x+7 =n\1‘+n‘2; "By theorem :1‘4;'2;15!,‘ we can write

U1=x1+ﬂ1, n2=}{2+n2, xl,xze[o’l)and nl,nzez . Hence

e LTy : PRRATS

o g,
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’ 1

=X ER T

v 7

M =(x1+x2~x)fn1+n2.

Let t—x1+x2~x, then: r7~t+n1+n2 There is an infinite

' subset A of Z 1such that AEn .and - so 'AEt+n1+ﬁ2' and so

¥

' A—ttn1+n2 ‘which 1mplles that - A-teN. Hence t+n1€Z .Therefore,

nl-ﬂ1+U2€Z +Z thlS shows‘ that Ulgl *ez* But - this is »a"

contradictlon since " Z. +Z »fis - nowhere- . denée,. in 7"

| according to theorem 4.2 in [58].

’4;2;25chféliAty;fSﬁpp9$e that &émn caﬁ'béuwfittéﬁ"a;“
E=x+u,“ﬁWhéréka€[0;l)trand‘ per;flThen*-E ‘isr fight  (lefﬁ)'k
ycancellable: in R if and only if u is right (left)
cancellable in 0. R T

'»Probf. SUPPOSe “that E°X+N is rlght cancellable in pR -
‘u..%

[

'kand Suppose that p- is not right cancellable in Z | There are‘
),“1’“261 such that u1+u u2+u, u1¢u2 | Slnce X+M1+#2—X+H1+M2 ‘
u1+x+u-u2+x+y nd ~this 4'1mp11esl» that _ u1+§ u2+§7 - Since

"#1:“2€Z cpm thlS is a contradictlon. V‘ = g |
Converselys”suppose'Kthat~§—is not,right~cancellablekih

pR. Then there ex1st El,gzepw such that E #Ez and - §1+§ 52+g

- Let. El“x +u1 and 52-x2+u2,g X+u So»1,~f~
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x1+p1+x+u=x2+u2+x+uf

VBﬁt this’i"mpvli.‘eé i
g ?‘vl’,',“l“»“‘"’_*z*“‘zl’“ |
3 (xi-§2?+u1}u=u2+u
and so x;-x,e. Since ,6S.|x1“?‘z|é12 x1-%,=0  and so

’u1+u=u2+#- Sin¢e El#gz‘and xl#”xé’:‘ﬁfMZ' This .contradicts

the assumptiop that u‘is right‘cancellablefin,z*-

4.2.26.Corq11ary{ If‘»EEpR\(pR+pm), E O is 1 fightkk‘

~ cancellable in'pR.

Proof. Let &EPR\(PR+9R)Q Then ‘E:X+u, xe[o.i),
pez” .since EepR\(pR+pR), : uer\(me*)-.)  Since the set of
 'right ‘cancellable elements‘/bfi’Zf’ contains ‘Z*\(Z*+Z*?f.by
_‘[58];“p is right cancellable and‘so'byithe‘cbrbllarjf4;2.25,

is right Cancéllable. e

4.2.27.Cpr011aryf,LetI,4(respective1y,R;C)kdénbteithe
set of 1left (respectively,right,cancellable) Cancellablé
- element of PR, then"L?[O;i)+L1 (respéctively,k=[0,1)+Ri,v

*
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C [0 1)+C ) where L (respectlvely, )‘is the set of

’1eft (respectlvely,right cancellative) elements of Z

Proof. We will give‘the proof for the set L of left
‘cahceliabie elements. Let néL,,thenhsince:}ﬁpm,,nhqan be
written uniquely as  X#7y, where x€[0,1) and m,€Z . .
Therefore, ni‘ is left cancellative in Z by corollary

4.2.25, and so m€[0,1)+L;.

| ;For‘the reverse‘eonheinmentilet ”§[°5?’fL1,th¢n* n:xfnl;,
ge[o 1), nleLl 'Thenf*by corollary‘ 4.2.25, 7 hisffleft

"cancellable and 50 n€L Hence L [0 1)+L

' 4 2. 28 Theorem.‘ The set of*1eft‘y‘(reSpect:ive13’.r‘:’L’ght;'1
4;cance11at1ve) cancellatlve elements L (respectlvely,g C) of _g»,

pR is dense 1n’pm..

e,
kg,

o

Preof. We will give the proof for the set L of 1eft

hu;cancellative elements.% Let 7= x+n1,, where ﬂxe[o 1) ‘?ndi;

ﬂ1€Z . We_hV111“$h9W ,th?t"}f ”¢01MRLffuth99 nle!ClZ JL.
 suppose on  the Cbntrary ,'5:that\; . ngeal L1
Pt ey T e
h“Then : ""f"‘:”m : X+U €x+Gl L & ,andh"”~so_.“‘*
= TN 1 Z 1,_ : o

x+n1€x+CHme1-Cl m(x+L )ccl IR([0 1)+L ). Hence n X+U1€CZ RL~€ '

This contradlcts the assumptlon that U¢CI]PL. Hence if L 15. '

1~«> -

,not dense in pm L1 is not dense in 7* buq_‘lt a ;wellffff‘
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known fact that the set L, of left cancellative elements is

“;:dense in i f58]-'
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. CHAPTER V.
'.NON~HOMOGENEITY OF R,
THE RUDIN—KEISLER AND THE RUDIN- FROLIK ORDERS

In the first seetion of this chapter, we Shall;give'thé o
definition of a homogeneous space and we shall show that pﬁ
is not homogeneous. In the second section, we shalligive the

definltlon of the Rudin-Keisler and Rudin- Frolik orders on

R and study some of the;r properties,

Section I. Non-Homogeneity of R

5.1.1. Definition A topological space  is called
hbmogeneous if, for every pa1r of the p01nts of the Space,t

there 1s an automorphlsm of the space wh1ch exchanges the

pair of pqlnts.

5. 1 2 Lemma. For every[,uniformly"continuous  function
g:m——am,' there ,is ‘a ;positiver real number ¢ sucﬁ~ thét.ﬁ

’g(x)*g(Y)|5C|X‘Y|vWhenever |g-y|21,

Proqf.‘since‘g is uniformly continuous thefetis' a 520
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such that |[x-y|sé implies that lg(x)-g(y)lsl.

Suppose that y2x+1 and let n be the natural number for

which x+nésy<x+{(n+1)6. Then

n-1- - / . :
lg(x)-8(y) <L |g(x+(r+1)8-g(x+r8) [+|g(y)-g(x+nd) |<n+1.
r=1 '

Since y—xéné and y-xz21,
g(y)-8(x) | <(EEE) +y-x<(F+1) (y-x) .

"Hence if we choose,c=%+1, the result follows.»

5.1.3. Theorem. There are points &,n in oR such that

for any homeomorphism

“h:R———R,  h(E)#n o
P;oof. Suppose that (xn)eg, Where, Xn;l_xn___qm as
N———>3, By theorem 3.1.1, we may suppose that

h(xn+l)—h(xn)>1. Then (h(xn)) has the same propérty as (%)

because the restriction h of h to R is a homeomorphism of

| IR
R into itself for which h and n! are uniformly continuous.

"By the lemma 5.1.2, we have that
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lxn+1—xn|$c|h(xn+1)~h(xn)|.u

h(xg,;)-h(x,)—® and
B(EIECL (hlxy ) PR

Hence if nepR+pR, then (h(x ))¢n , that is'n¢C1;(h(gﬁ,)*But
i R E R |

geciﬁ(xn) ahd,’so h(£)€CL. (h(x,)) onis h(&)#y_

5.1.4. Proposition. Let &R and choose '{xn}ég vith

xnem and _xn+1—xn>1.v Lgti~

G={nepR|U(xnee,x +e)€n} {
neN ’ 9

be the neighbourhood of & in pR defined by sameis‘satiszing

0<€<1/4.Then,'for»each neG, there ‘is zn;,ultrafilter l%FBN'

defined by stating that AU if and only if

U(x —e,x’+e)en_“
neA® n

Proof. Clearly, Neun and Qéuﬁ' If ,AEUﬁ'BgN and ASB,

then



100

(U(x ~€,X +E) )< (U(x —E,X +s)),
n€A | . n€B

Therefore, since

-

Uézn—s;x -£)en, ch € xpre)en,
n P ne s

and‘so’BEUn.~Now to show that,AﬂBeUn whenever A,BeU , we

need to show that ., for any{;'AsN,, either

U(x -€,X +s)¢n
nGA

or -

U (x~s X }s ¢n.
,new\A n v) W“

Let AdN Slnce Aﬂ(W\A) E and x

exist., w-( 1/4 1/4) in B(O) such that

(U(x -€ x +E)+W U -
neA ?*,)Oéem{i oox +s)+w)_g

<This'implies'that
U(x -€,X +s)¢n A "V'k o

'n€A
or o

u - (x - x'+€)¢ N
neN\A ? R e s

ne1-%,>1 and 0<€<1/4 ‘there
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Now let A BeUn and suppose ‘that AﬂB¢U . Then. A\(AﬂB)eUn
" and B\(AnB)eU . This 15 not p0351b1e aS;fthese_twd*setéTare‘-y;;

dlSJOint

5;1.5,kProbositibn{fThé,mapping,h=ﬁ+;+¥eU53fiom G into

“*.’ = .
N is continuous.

Proof. Let €6 and 1et A be a ba51c nelghbourhood of U .
1]

in m* Then AEU , since A—{pem lAep} But this implies that ~L

- U(xn~e X +5)en
e nEA A

by proposition 5.1.4.Now let

B=(geoR| (Ulxy-e,x,40))+(-8,8)<E), e

Horen,
e

~where 5>0 and:ﬂé+6<1/4.B ~isiiéH;neighbbﬁfhbodﬂfbf, gy

- propositlon 2 3 9 and h(BnG)CA

, 5;1.6.‘Proposition.‘pR_is n6t hdﬁogenébﬁé??

~ Proof.We know from thebrem &4, 2'15kthat'ea¢hféépm tan:be

;expressed unlquely as §~xjg ,where x€[0 1) and E €Z Let U

; denote pR\Z . Suppose that EeU and that f pR ,pm is
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homeomorphism for which f(E)e€U. We~sha11 first shothhatkg

ifhas a neighbourhood W in PR with the property ‘that, for any

IR cz implies that. (f(cln =R,

- 'Let ¢ U———ﬂ(o 1)xZ be defined by ¢(g) (x,& ), where £
has ~the decomp051tion given abOVe By thecrem 4 5. 1J‘and

theoremfh 1.7, ¢ is a homeomorphlsm"lt follows that. each
p01nt in U has a’ basis  of" *neigbourhoods»~of.‘the formr,

((a b)xV), where (a, b) is an open interval in (0 1) and v

' 'is an open subset of Z

We now observe that two points C1=§2 of u belong to the

- game component of 'U 1f and only'yif C1—§2 ' To see this,'

~’suppose‘ that ¢(§1)=(u1,C1) ‘and  that ¢(C‘)=(u2,c2). 1f-

’

»cl gz, Cl ‘and C2 are connected by the path in U which is
defined as t—(1- t)u1+tu2+C1,where t€[0 1]. On the other
hand, if §1¢g2, Cl and‘C2 cannot belong to  any connected

subset C of U. If they did, ¢ would Bé‘a‘connécted*subset :

of z* containing the dlStlnCt points ’51 and’ Cz whioh 7is’ N

impossible.

- We ‘can  choose a"‘neigbo‘ﬁfhrodd’?vw of gwhlch : hnisf" the fo'rm
“1((3 b)xV) ana’satisfies'ggunf—l(uy;«Let o, éw 15 Cl‘CZ’jk
then the path P defined in the preceding paragraph W111 119'
1n W. It follows that f(c ) and f(cz) Will belong ‘o the.
connected t subset E(P) of u, and" hence i
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Now choose E,n€U with the property that & is a weak

P-point in z* , but nl is not. There will then be a sequence

(ny) in U having 7 as a limit point, for which none of the

7 i

points n are equal to n .

homeomorphism for which f(g)=n. Let W be a neigbourhood of &

Suppose that f pm———emn 1s'a

with the property defined in the preceding paragraph. Since
Eriis Ca  limit ,point of (f U]))ﬂw we must have
(f~ (n )) =£ - for some n for which £~ (n )ew,4 But this
1mp11es that 0, _(f(g))-ﬁ7 which is a contradictiong

Ac c ording to theorem 4.35 of [62] if X is
VHOH-PSeﬁdbcombaCt, ’BX\X is not homogeneOUS’;under_ the

continuum hypothesis.Therefore, BR\R is not homogeneous.

Section II. The Rudin- Keisler and The

Rudin—Frolik Orders

 Let €,mEpX, then € and n are said to be type equivalent
if thé:e is arhomeomorphism h of BX Onto itsélf suc;NEhat
7 h(E)—U.- qulvalently,there is a 1oné. to ‘one oootinuoué
" function I from X onto X for Wthh n 1 15 also cootinuous
‘ and Iﬁ BX——ABX has the property that HB(E)—U. We wrlte E~n

when & and n are type equlvalent.

It is clear that ~ is an equivalence relation on BX;

and the set of equivalence classes is denoted by T(BX).

-

" The quotient equivalence function is denoted by
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t: pX—>T(BX) -
and t(E) is called the type of E;for‘gepx.o

The Rudin~Ke151er pre order < on PBX is the binary

relatlon glven by nsg 1f there is 'a contlnuous ftXX Suéh

that fB(E)”n- It is clear that < is 1ref1ex1ve~ﬁand

tran51t1ve .

" The Rudin-Keisler partial order on T(BX) also denoted ::

by < defined by
ss<t, if there are n,E€BX snch‘that‘t(g)ga,'t(n)=t'ahd,€$ﬁ;‘~

Accordlng to [13, 'chap 9], this order iS‘we11¥defined‘}
’reflexive, transitive.It is also anti- symmetrlc ‘that is 1f e
8£st and t<6 then 6=t1. ‘

'“"x\\

The notation §<n ‘means that ESn and E is e type-"

equivalent with 1, and for partlal order 5ST and 5#;,

» ,,A,subset‘D>of Bx‘is’Called‘Stfongly’discretehif there, o
is a family {A4 dED} of open subsets of X such that AdﬂAdf$g¢.~~

for d,d’ eD d#d and dEAd for deD

v The ‘Rudin-Frolik pre-order [ on BX is the binafy;'

relatlon glven by - e e ey,
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E[n if there is [:X—PX such that f(X) is a (strongly)

discrete subset of BX and f(&)=n.

The Rudin-Frolik partial order also denoted by [ is

binary relation on T(BX) denoted by
6[t if there are &,n€PX such that t(£)=56,t(n)=t and E[n.

According to [13,chap 9,16] [ is well-defined partial

order on T(BX) and nLé always implies that n<:t.

'Let‘n,geﬁ,then we say n and £ are equivalent if there
are uniformly continuous functions f,g:R—R  such that

f(n)=€ and é(g):n, and when £ and n are equivalent we write

E=n.

It is easy to see that = is an equivalent relation on

=

5.2.1. Definition. The Rudin-Keisler pre-order < on R
is the binary relation on pR given by &<n if there is a
uniformly continuous function f:R——R for which f(n)=£. It

is easy to see that < is reflexive and transitive.

In the above definitions, f is the unique extension of

f to R.
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We say E<n when €< and £ and n are not equivalent,that

is,there is no uniformly continuous function f:R—-R for

which ¥(&)=n.

—X o, then no

5.2.2.Theorem. 1If (xn)gm and X1

element & in Cl.{x }(PR can be equivalent in the
R

Rudin-Keisler order to an element in pR+pR.

Proof. Let EGCL&(xn)ﬂpR,where I e P (xn)cm and

suppose that € 1is equivalent to an element 71 in pR+pR and
let X={xn:n€N}; By assumption there are uniformly continuous
functions f,g:R—-R such that ¥(E)=n and g(n)=E. Let
yn=f(xn) and Y={yn}, by theorem 3.1.1 we may suppose that
yn+1—ynzl. For each n, let g(yn) be the point of X closest

to g(y_ ), if there is more than one such point we choose one
n

withsmallest n.

For © each £>0, let YE={yn:d(g(yn),X)<s}. Then
Ysen, because {g(yn):d(g(yn),X)26}=g(Y\Y€)¢E and- hence

Y\Y ¢n. Also f‘l(YE)eg, because f(X\f—l(Ye))¢n and hence

X\f—l(Y£)¢&. So we can replace X by f_l(YE).

Let h=§f| . Since we can identify X with BX we can
X .
- extend h to hB on BX and hB(§)=5. Hence by proposition 9.2

,

of [13], X ={x€X: h(x)=x}€f. If we replace X by X , we have

that gf (xn)=xn for all n and so g(yn)=xn. Since
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d(é(yn),g(yn))<6 for each n, 8y, 1) -8y, )>x, 1%, - 2€.
Hence g(yn+1)—g(yn)——am. By proposition 4.2.13, there is a
positive number b and infinitely many values of n for which

y —yn<b. This contradicts the lemma 5.1.2.

n+l

It is a well-known fact that there are points in N*
which contain a sequence with the property that S
and which are equivalent to some points of N*+W* in the
Rudin-Keisler order. In fact, if £ is a point in N which
contains such a sequence and if n is in N* , then £ is

equivalent to &+n [28].

Let &,nek, then we say E and 71 are uniform type
equivalent if there is a uniformly continuous homeomorphism
h of R onto itself with ﬁ(n)=§ such that h"1 is
also uniformly continuous.If 71 and £ are uniform type

equivalent, we write nwE.

It 1is clear that wuniform type equivalence is
reflexive,symmetric and transitive and therefore = is an
equivalence relation on R.We will denote the set of the
uniform equivalence classes by T(R).we call an equivalence

class a uniform type of R,and we denote the quotient

equivalent function by
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t: R—>T ()

and t(n) is called the uniform type of n,for nelk.

5.2.3.Theorem.Let 71,EcR.Then if n contains a sequence

(xn)gm such that x 17Xp—® as n—o and if EepR+pR, then n

n+

and £ are not uniform type equivalent.

Proof.Suppose on the contrary that 1 and € are uniform
type equivalent, then there is a uniformly continuous
homeomorphism of R onto itself such that f"1 is also
uniformly continuous and f(n)=E. As in theorem 5.1.3

f(xn+1)’f("n)'“’_""o as n——» and (f(xn))ea, but this

contradicts to proposition 4.2.12.

5.2.4.Definition.The Rudin-Frolik pre-order [ on R is
the binary relation on i given by n[f if there is a monotone

uniformly continuous function f:R—R such that I(&)=n.

5.2.5.Remark.It is clear from the definition of < and [

that n{€ always implies that nsg for n,&eR.

For the Rudin-Frolik pre-order,we use the notation

nl€ to mean that n[f and n and & are not uniform type
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equivalent.

5.2.6.Lemma.If 1n~n,E~E and n[f, then n [E for

4

n ,n’E~,€€ul\é’ 7

Proof. Since 1[g, there is a monotone uniformly
continuous function f:R——R such that f(£)=n and since 70 a1
and & ~E there are uniformly continuous homeomorphisms

1 -2

nl,nz:m——am such that NI I are also uniformly continuous

and T (n )=n,1,(E )=€

1

Let g=H1 o Foll then g is monotone and uniformly

2,
continuous.Hence g has an extension é on R such that

B( )=njlefell, (g )

=nptere)=nytm=n .

Hence,n LE .

5.2.7.Lemma [13]. Let X be a set with the discrete
topology and let D be a subset of X. Suppose that f:D—X
has the property that fB:BD———eBX has a fixed point . Then

there is a set A€l such that f(a)=a for every ac€A.
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Proof. We first consider the case in which D=X,and show
that f must have a fixed point. If f has no fixed point, it
follows from lemma 9.1 of [13], that X can be expressed as
the union of three disjoint sets,Xo,Xl,Xz,with the property
that X,Nf(X;)=0 for i=0,1,2. However, if ‘Xiel, then

f(Xi)ef(X)B. This is a contradiction.

If D#X, we again deduce that f must have a fixed point
by applying the result in the preceding paragraph to the
extension of f which maps every point in X\D to some chosen

point of D.

Finally, let A={xeD|f(x)=x}. If Yer, we know that f|
Y

must have a fixed point. Hence ANY#J. Thus Aer_

5.2.8. Corollary. Let X={xn};‘where (xn) is a sequence
of real numbers satisfying xn+1-xn>5 for every n and some
5>0. Let f:R——R be a uniformly' cdntinuous  function for
which f(X)sX and £ has a fixed point E in X. Then there is a
subset A of X satisfying A<tE, for which f(x):x'for‘every
N ; .

_ with (f) P,
, X

Proof. We can identify X with BX and fl
X

The result follows from the 1emma.
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©5.2.9. Theorem. The Rudin-Frolik pre-order [ on pR is
reflexive and transitive.Furthermore if E[n and n[&,then §

and 1 are uniform type equivalent.

Proof.Let Id be the identity mapping on R. Since Id is
monotone and uniformly continuous, it extends to a mapping
Id on R for which Id(£)=£ for all ER. Hence [ is reflexive.
To see that [ is transitive, let &,n,y€pR and E[n and nf[y.
Then there are monotone uniformly continuous functions
-f,g:R———>R such that %(n)=5 and é(7)=n. The composite
function fog is uniformly continuous moﬁotone and
(f:g)(y)=%(n)=E.To see that [ is anti-symmetric, let §&,néepR
satisfying &[n and n[f. Then there are uniformly continuous

mondtone functions f and g from R to itself, for which

£(E)=n and g(n)=E.

"*We choose sequences'(xn) and (yn) of real numbers such

that {xn}eg, {yn}en, xn¥1-xn>1 and yn+1—yn>1 for every n.

Put X={xn} and Y={yn}. Let p and q denote the
ultrafilters on N defined as follows: Acp if and only if
{xnl neA}e€; and Beq if and only if {yﬁ|n€B}en.Note that, if

Acp, then {f(xn)lnEA}en.

Now {nemld(f(xn),Y)<1/4}€p. Thus if we replace X by a
suitable subsequence, we may suppose that d(f(x_),Y)<1/4 for

every n. Given n, let m be the integer for which Y is the
n
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element of Y closest to f(x_ ). Then, if Aep, {y, |neA}en; for
n

f(x,) is at a distance at least 3/4 from Y\{y, |neA}, for
n

each n and so Y\{ym |nealen.
n

Now, consider the function which maps each x_ to Yo *

n
n

and which is defined piecewise 1linearly otherwise. It is
easy to see that this function is uniformly continuous and
monotone, and that its extension to R maps £ to 1. So we may

replace f by this function and suppose that f(X)cY.

Similarly, we can now replace g by a suitable  function

and suppose that Y has a subsequence Y satisfying Y €n and

g(Yl)sX.

Let x={xn|f(xn)ey b. Then X €E. Since (gof)(E)=E, it
follows from the '‘corollary to the lemma, that there is a

subset A of X such that A< and (gef)(x)=x for all xeA.

Now define h:R——R by stating that h(xn);f(xh) if
xneA, and that h is piecewise linear otherwise.It is easy to
check that h is a homeomorphism, that h and h~1 are

uniformly continuous and that h(g)=n

The followings are clear from the fact that there are

at most 2C function from R to R
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a) |t(n)|s2€ for nekk.

b) |[{tmeT(R)|t(n)[t(E)|=2C.

Since there are ¢ continuous function from R to

itself we have
o ¢
c) 1{t(n)IneR}|=2%;

d) |{t(meT(R)|t(m[t(&)}]=2°

for every EeR.

We now give an example to show that there are
some poits in pR which are equivalent in the Rudin-Keisler

order but they are not equivalent in the Rudin-Frolik order.

1}.

r if

5.2.10.Example. Define X={2"+r |neN,reZ and 0srs2™”
We define f:R—-R by stating that f(2n+r)=2n+2n_1—
2n+r€X, and extending f by piecewise 1linearity. Note that
-1

fl =(f . It is easy to check that f is wuniformly
X

| )
X
continuous .

Let *eR\R be such that {2n}ex, and let E=ix+A. Put
n=%(5). Then £  and 1 are équivalent in the Rudin-Keisler

~ofder; because E=f(7).

We «claim that there is no uniformly continuous
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1

homeomorphism h:R——>R for which h™ = is also uniformly

continuous and ﬁ(&)=n.

To see this, suppose that, on the contrary, such a

homeomorphism h exists.

We know that X€E, because the set of integers of the
form 2k+2n (k<n) will contain a net converging to &, since

we can allow 2D to converge to 2 and then allow 2k to do so.

so X=f(X)en.

Proceeding as in the proof of the last theorem, we may
suppose that h(X)<X,. because we can construct another
homeomorphism which will have this property, as well as the

other properties assumed for h.
Now fh(n)=n.

It follows from the corolla:y;5.2.8 to the lemma 5.2.7
that there will be a subset Y of X such that Yen and fh(y)=y
for every yeY. However, if Yen, h(Y)€E. So,for some neN,
h(Y) must contain at least two elements from the set
{2n+r|05r52n'1}, for otherwise E could not be in pR+pR by
proposition 4.2.12. Thus Y=f(h(Y)) must contain at least two
elements from this set, and fh cannot therefore be the
identity on Y. This is. because fh is order-reversing Oﬁ

this set, this is a contradiction-
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Let n,EEﬁ.Then we say n and £ are equivalent if n[& and
Eln and we write Exn if E and n are equivalent.It is easy to
see that = is an equivalence relation on &. We denote the
set of all equivalence classes on R by Tl(ﬁ) and the

quotient equivalent function by

t :ﬁ———»Ti(ﬁ)

1

and t (n) is called the type of n, for rnelk.

5.2.11.Definition.The Rudin-Frolik partial “order (we
also denote it by [) oﬁ the set of equivalent classes

Tl(ﬁ) is defined by

6LT if there are n,géﬁ such that tl(n)=6 and t1(5)=t

and n[Eg.

5.2.12.Lemma. Let’ nl,nz,gl,gzeﬁ "and suppose that

M*E1sMyE, and £y, Ey[n, then £,3L,.
Proof. It is obvious since [ is transitivé-'

It is clear that [ is reflexive,transitive, and

anti—symmetrici

We write 8[t when 8[t and &#t.
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