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Summary of Thesis submitted for PhD degree 

by MAHMUT KOCAK 

on 

COMPACTIFICATIONS OF A UNIFORM SPACE AND THE 

LUC-COMPACTIFICATION OF THE REAL Nm1BERS IN TER!1S OF THE 

CONCEPT OF NEAR ULTRAFILTERS 

Compactifications of topological spaces and semigroup 

compactifications of topological semigroups have been 

studied since 1930 IS. This thesis contributes to the new 

concept of near ultrafilters on a uniform space X, the 

compactification X of X and the cmpactification ~ of 

the real numbers ~ in terms of near ultrafilters. 

The concept of near ultrafilters on a uniform space X 

is introduced, some of their properties are investigated and 

the set of all ncar ultrafilters is made into a topological 

space X. It is shown that this space is a compact Hausdorff 

space containing X as a dense subspace. Furthermore, it is 

proved that any uniformly continuous function from X into a 
'v 

uniform space Y has a continuous extension from X to Y. 

The compactification fR, the set of all near 

ultrafllters on fR with respect to the usual uniformity on fR, 

is constructed and it is shown that the semi group operation 

+ extends to a semigroup operation + on ~ which makes ~ into 
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a compact right topological semigroup (~,+). Many 

topological and algebraic properties of the compactification 

(~,~) including the fact that (~,~) is the maximal semi group 

compactification of ~ among those having the property that 

the mapping (x,y)~p(x)y:~x~ )~ is jointly continuous. 

Therefore, it is the LUC-compactification of ~. 

Non-homogeneity of ~ is proved and the Rudin-Keisler 

and the Rudin-Frolik orders are defined on ~, some of the 

results concerning with them are obtained. 
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1 

CHAPTER I 

INTRODUCTION AND BACKGROUND 

Section 1.1. Introduction. 

A compactification of a topological space X is a 

compact space K that contains a dense homeomorphic image 

of X; and a semigroup compactification of a semigroup X 

which is also a topological space is a compact right 

topological semigroup K that contains a dense continuous 

homomorphic image of X in the topological centre of K. These 

compactifications have long been a major area of study in 

general topology. 

In 1930, Tychonoff [60] discovered that completely 

regular (Hausdorff) spaces are precisely those topological 

spaces which can be embedded in a compact Hausdorff space. 

This was the beginning of the general study of 

compactifications of a topological space, since one can 

obtain a compactification of a completely regular space by 

embedding it in a compact Hausdorff space and taking its 

closure. 

Compactifications of a uniform space can be 

obtained by using the same methods to obtain 

compactifications of a completely regular space because of 
", 

the fact that every uniform space is a completely regular 

space and, as proved by Tychonoff [60], every completely 

regular space is a dense subspace of a compact space. 
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Compactifications of a completely regular space 

can be obtained in a variety of ways. One of the ways is the 

use of * the subset F of C (X) (the 

continuous real-valued functions on X) 

set of all bounded 

which separates 

points. This method was first used by Tychonoff [60] to get 

a Hausdorff compactification of a completely regular space 

* X by using C (X). This technique was studied extensively 

by Cech [11] and much work was done to improve this idea by 

Stone [60], Hewitt [25] and many authors. No~ it is a well 

known fact that every compactification K of a completely 

regular space X can be described completely by the 

* . C -algebras of all continuous real-valued functions on X 

which can be extended over K, and many properties of the 

compactification K can be established more easily with the 

* help of C -algebras. 

Another way of obtaining a compactification of a 

completely regular space X is by the use of filters and 

ultrafilters on a non-empty collection of subsets of X. In 

1939, Wallman [63] constructed a T 1-compactification of a 

T1-space using the lattice of the closed sets. This 

construction was extended by Banaschcwski [1,2], Frink [18], 

Sanin [52,53]. In 1948, for a given uniform space X, Samuel 

[54] defined an equivalence relation on the space of 

ultrafilters and obtained a compactification of X in terms 

of equivalence classes. 

Like compactifications of a completely regular space, 

semigroup compactifications of a topological semi group can 
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be obtained in different ways. One of them is the use of the 

operator theory. This method was used by de Leeuw and 

Glicksberg [22,23] to construct the almost periodic and 

weakly almost periodic compactifications of any semigroup 

with identity. 

The second method is the use of the spectrum of 

* C -algebras of functions to construct compactifications. In 

this method, the compactification of a semi topological 

. f * sem1group X appears as the spectra 0 certain C -algebras of 

functions on X. This method was used by Loomis [43] to 

obtain the almost periodic compactifications of a 

topological group. 

One of the important compactification of a 

semi topological semigroup X is the LUC-compactification 

(cp,XLUC ) which is the spectrum of the C* -algebra 

{fEC(X):x~LXf:X~C(X) is norm continuous} of left 

uniformly continuous functions on X. It is a well known fact 

that (ip,X LUC) has a natural semigroup multiplication 

(x,y)~xy which is continuous in x for fixed y. This 

compactification is maximal among those having the property 

that the mapping (x,Y)~(X)y:xxxLUC~XLUC is jointly 

continuous, where cp is the continuous homomorphism from X 

into XLUC with cp(X) dense in XLUC. 

Addi tional information about the compactifications of 

semi topological semigroups and topological spaces can be 

found in the references. 

This thesis contains five chapters. The first chapter 
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is on general information about various kinds of 

compactifications of completely regular topological spaces 

and compactifications of topological semigroups. 

The second chapter introduces the concept of 

uniform spaces and their compactifications in terms of the 

new concept of near ultrafilters. 

The third chapter is about the compactification ~ of ~ 

with respect to the usual uniformity on ~ and investigates 

its topological properties. 

The fourth chapter is about the extension of a 

semi group operation on a semigroup X which is also a uniform 

space to a semigroup operation on X and the algebraic 

properties of the compactification ~ of ~. 

Chapter five is about the non-homogeneity of ~ and the 

Rudin-Keisler, and the Rudin-Frolik orders on the 

compactification ~ of ~. 

The first chapter contains two sections. In the first 

one, we shall introduce the concept of compactification of a 

completely regular topological space and some of the 

techniques to obtain compactifications of such spaces. In 

the second section, we will give some basic information 

about semigroups, topological semigroups and one of the way 

to produce a compactification of a topological semigroup X 

as a spectrum of some certain subalgebras of C(X). 

Chapter two is divided into three sections. The first 

section is about uniform spaces and some basic properties of 

a uniform space. In the second section, we will introduce 
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the new concept of near ultrafilters on a uniform space and 

investigate their properties.In section three, we will give 

the construction of a compactification X of a uniform space 

X by the use of near ultrafilters on X. 

Chapter three is on the compactification R of ~ with 

respect to the usual uniformity on ~ and we will investigate 

the topological properties of ~. 

Chapter four contains two sections the first one is 

about the extension of a semigroup operation on a uniform 

topological semigroup X to a semigroup operation on X. In 

section two, we will investigate the algebraic properties of 

the semigroup compactification ~ of ~ and show that this 

is the LUC-Compactification of ~. 

Chapter five is divided into two sections, in the first 

section we will prove that R is not homogeneous. The second 

section is about the Rudin-Keisler and the Rudin-Frolik 

orders on lR. 
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Section 1.2 Background 

In this section, we shall first give the general 

construction for the compactification of a completely 

regular space. Then we will introduce the Stone-Cech 

compactification and Wallman's compactification. 

1.2.1. Compactifications-Constructions 

In this thesis all topological spaces are assumed to be 

completely regular Hausdorff spaces, unless specifically 

stated otherwise. 

We mean by a compactification of a topological space X 

is a pair (Y,e) such that Y is a compact Hausdorff space and 

e is an embedding from X into Y with e(X) dense in Y 

Y 

If and be two distinct 
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compactifications of'X and,if there is a continuous function 

f from Yl to Y2 for which f o e I =e2 , then we write YI~Y2.We 

say Y 1 is equivalent to Y 2 if there is a homeomorphism h 

from Yl onto Y2 such that h o e l =e2 and is the identity on X. 

According to proposition g of [48,chap.4] YI is equivalent 

to Y2 if and only if Yl~Y2 and Y2~Yl' 

In future we shall refer to Y itself as a 

compactification of X and simply regard X as embedded in Y 

as a dense subspace. 

General Construction of a Compactification of X 

* Let F be a subset of C (X), the set of all continuous 

real-valued bounded functions on X,and let If be a closed 

interval in ~ containing f(X) for each fEF.Then the mapping 

e F from X into n I defined 
fEF f 

by n oep=f 
f 

is called the 

evaluation mapping determined by F, where nf is the 

projection mapping from n I 
fEF f 

It is obvious from the 

into If' 

definition of e F that e F is 

continuous ,since each fEF is continuous. 

* A subset F of C (X) is said to separate points and 
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closed sets of X if for each XEX and every closed subset F 

of X with x~F there is fEF such that f(x)~C1Rf(F). 

* 1.2.1.1.Theorem [12]. Suppose that 'p-;C (X) separates 

points and closed subsets of X, then the evaluation mapping 

e F is an embedding of X onto e F(X), 

Proof.To see that e F is an embedding, we will show that 

e F is a one to one mapping.Let x,yEX with x~y,then since X 

is a completely regular Hausdorff space {y} is a closed set, 

hence there exists fEF such that f(x)~ClI f({y}) which 
f 

implies that f(x):;tf(y), so n °e F(x):;tn °e F(y). Therefore, 
f f 

Let U be an open set in X and e F( x) be an arbitrary 

point in e F(U) .Since F separates points of X and closed 

sets,there is a function fEF such that f(x)~ClI f(X\U) .Let 
f 

-1 V;:;n [If\Clr f(X\U)].Clear1y,e F(x)EV. We claim that yEU 
f f 

whenever eF(y)EV.TO see this suppose that eF(y)EV but 

y~U, then f(y)Ef(X\U)£C1 1 f(X\U) • However , eF(y)EV which 
f 

implies that f(Y)ET1 oe F(y)Elf\Cl1 f(X\U) ,so f(y)~ClI f(X\U) 
f f f 

which is a contradiction. Thus eF(y)EeF(U) if eF(y)EV. Hence 

we have that VneF(X) is a neighbourhood of eF(x) in 

eF(U).Since eF(x) was an arbitrary point of eF(U),eiU) is 
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X. 
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Cln I eF(X)=XF· Then XF is a compactification of 
~Ff 

1.2.1.2.Theorem [12]. Let Y be a compactification of 

* X. Then there is a subset F of C (X) separating points of X 

and closed sets for which XF is homeomorphic to Y. 

Proof. Let e be the embedding of X into Y with 

* Clye(X)=y, and let F={fEC (X> I there is a continuous map 

fy:y~~ with fyoe=f}. 

To see that F separates points and closed sets, assume 

that F is a closed set in X and x be any point with xEX\F. 

There is a closed set D~y such that Dnx=F. Hence xiD. There 

is a function fy:y~R such that fy(x)iCIRfy(D). Let f=fyoe, 

* then fEC (X) and f(x)iCI~f(F).Hence fEF. By previous theorem 

XF is a compactification of X. 

We define h:y~ n If as follow 
fEF 

[h(y)](f)=fy(Y). 

Then h is continuous ,since n oh=fy and each fy is 
f 

continuous. Also [h(e(x»]=fy(e(x»=f(x). This implies that 

hey) is a compact subset of n If which contains eF(X). Thus 
fEF 

h(Y)=XF. If h(x)=h(y) then (h(x»(f)=f(x)=(h(y»(f)=f(y) for 
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all fEF. Since F separates points, it must follow that 

x=y;i.e, h is one to one.Therefore,h is a homeomorphism from 

X onto XF' since anyone to one continuous mapping from a 

compact space onto a Hausdorff space is homeomorphism. 

* If F=C (X), then X
F 

is called the Stone-Cech 

compactification of X. 

We will give the construction of the Stone-Cech 

compactification,and Wallman's compactification of X in 

terms of the W-ultrafilters on X. 

We first introduce the concept of W-ultrafilters on X. 

Let W be a non- empty collection of subsets of X.Then 

a non-empty subset Tl of W is called a W-filter on X if the 

following conditions hold: 

a) 0 does not belong to D. 

c) For any H in Wand GETl,G£H implies that HETl· 
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A W-filter D is said to be a W-ultrafilter if D is not 

contained in any other W-filter,i.e, if ~ is a W-filter 

with D~~, then D=~. 

If W is the collection Z(X) of all zero-sets in X, then 

a W-ultrafilter is called a z-ultrafilter or zero-set 

ultrafilter. 

The Stone-Cech Compactification: 

Let ~X be the set of all z-ultrafilters on X with the 

topology determined by the subbase 

for the closed sets in ~X. 

For each XEX, the collection {AEZ(X)\XEA} is a 

z-ultrafilter. 

Let e be the mapping from X into ~X defined by the rule 

e(x)={AEZ(X)IXEA}. 
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By Lemma 2.4 of [13], ~X is a compact Hausdorff space 

and e is an embedding of X into ~X with e(X) dense in 

~X and it is the Stone-Cech compactification of X. 

The mapping e is called the canonical embedding of X 

into ~X. 

According to theorem 6.5 of [20] the space ~X is 

characterized by the following three properties: 

i) Each continuous mapping f from X into a 

compact Hausdorff space Y has a unique extension to a 

continuous mapping g:~X~Y such that f=glx. 

ii) If Z is a compactification of X having property 

(i), Z is homeomorphic to ~X. 

iii) ~X is the largest compactification of X in the 

sense that any other compactification of X is a quotient 

space of X. 

The continuous extension of a function f to ~X is called 

the Stone extension of f and denoted by f~. 

Wallman's Compactification. 

A Wallman base is a collection Wof subsets of X with 
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the following properties: 

a) AUBE Wand A(jBE W whenever A, BE W. 

c) W is a closed base for X. 

d) If AEW and xi-A, there is a BEW such that xEB 

and A(jB=0. 

e) If A,BEW are such that A(\B=0 then there are 

C,DEWwith AcX\C, BcX\D and (X\C)n(X\D)=0. 

Let W be a Wallman base and let W(X) be the set of all 

W-ultrafilters on X. Then W(X) is made into a topological 

space by taking the collection 

{ { Z WI ZEl;} , ZE W} 

as a base for the closed sets in W(X) , where 

Z W= ( TIE W( X) I ZETI} • 

Let e be the mapping from X into W(X) defined by the 

rule 

e(x) = {AEwt xEA} . 



14 

By section 9 of [64] , W(X) is a compact Hausdorff 

space and e is an embedding of X into W(X) with e(X) dense 

in W(X). 

A compactification Y is said to be of Wallman type if 

there is a Wallman base W on X which generates Y, that is, 

W(X) =Y. 

Clearly, the Stone-Cech compactification ~X of X is a 

Wallman type compactification,since the set Z(X) of all 

zero-sets of a completely regular space X is a Wallman base 

by theorem h of [48,chap.4] and generates ~X. 

By corollary 2 of [61],for each cardinality ex such 

ex that 2 ~X2' there is a compactification of a discrete space 

of cardinality ex which is not of Wallman type. But if the 
Xo 

continuum hypothesis holds,that is, 2 =X l , then by theorem 

2 of [3] every compactification of every separable 

completely regular Hausdorff space is of Wallman type. 

As a result of the above discussion,if the cotinuum 

hypothesis holds,every compactification of the real line ~ 

is of Wallman type since ~ is a separable completely regular 

space. 
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Section 1.2.2 Semigroups and Compactifications of 

semi topological semigroups 

In this section we will give some basic definitions and 

well-known facts about semigroups,compact right topological 

semi groups and semigroup compactifications. 

We wIll begin this section by giving some definitions. 

A semI group is a non-empty set X together with an 

associative binary operation (x,y)~xy:XxX~X, called 

multiplication. 

X is said to be commutative if xy=yx for each x,yEX. 

If X is a semigroup, then for each XEX, the mappings 

A :X~X, A (y)=xy, x x 

and 

p :X~X,p (y)=yx x x 

are called t respectively, left and right multiplications or 

left translations and right translations by x. 



16 

From now on X denotes a semigroup. 

Let A be a non-empty subset of X, then A is said to be: 

1) A subsemigroup of X if AA£A. 

2) A right ideal of X ifAX£A. 

3) A left ideal of X if XA£A. 

4) A (two-sided) ideal of X if it is both a right 

and left ideal of X. 

If A#X in any of these definitions then A is said to be 

proper. 

A left (respectively,right ideal,ideal) of X said to be 

a minimal left (respectively, right ideal,ideal) of X if it 

properly contains no left ideal (respectively, right ideal, 

ideal) of X. 

X is called left simple (respectively,right simple) if 

it has no proper left (respectively, right) ideals. 

Let eEX, then e is said to be 
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2 5) An idempotent if e =e. 

6) A left identity if ex=x for all xEX. 

7) A right identity if xe=x for all xEX. 

8) An identity if e is both a left and right 

identity. 

9) A left zero if ex=e for all xEX. 

10) A right zero if xe=e for all xEX. 

11) A zero element if e is both a left and right 

zero. 

12) A right (left) zero semigroup is one consisting 

entirely of right (left) zeros. 

Let XEX, then x is said to be 

13) Left cancellative if xz=xy if and only if z=y. 

14) Right cancellative if zx=yx if and only if 

z=y. 

15) Cancellative if x is both left and right 

cancellative. 
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16) If every element of X is left (right) 

cancellative then X is called a left (right) cancellative 

semigroup. X is said to be cancellative if X is both left 

and right cancellative. 

Let X be a semigroup with a Hausdorf topology. Then X is 

called 

a) A right topological semigroup if for each xEX, 

the mapping 

p :X~X, p (y);yx x x 

is continuous. 

b) A left topological semi group if for each xEX, 

the mapping 

A :X~X,A (y)=xy 
x x 

is continuous. 

c) A semitopological semigroup if the both maps 

A :X~X and p :X~X are continuous. 
x x 

d) A topological semigroup if the multiplication 

(x,y)~xy:XxX~X is (jointly) continuous. 



19 

If X is a right topological semigroup, then the set 

A=A(X)={XEXI A :X~X is continuous} x 

topological centre of X. 

is called the 

A homomorphism from a semigroup Xl into a semi group X2 

is a mapping W:Xl~X2 such that 

w(xy)=w(X)w(y) 

for each x,yEXl . W is called an isomorphism if W is one to 

one and onto.If XI ,X2 are also topological spaces and W is a 

homeomorphism then is called a topological 

isomorphism, in this case, Xl and X2 are said to be 

topologically isomorphic. 

1.2.2.1.Proposition [5]. If the semigroup X contains a 

minimal right ideal, then it contains a minimum ideal K=K(X) 

which is the union of all the minimal right ideal of X. 

The set of all idempotents of a compact right 

topological semigroup X is denoted by E(X). 

Now we state some important properties of compact right 

topological semigroups. 
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1.2.2.2.Proposition [5]. Let X be a compact right 

topological semigroup. Then 

i) Every left ideal of X contains a minimal left 

ideal.The minimal left ideals of X are closed. 

ii) X has a smallest two-sided ideal K=K(X). 

iii) K contains idempotents and for an idempotent eEX, 

the following are equivalent: 

a) eEK. 

b) K=XeX. 

c) Xc is a minimal left ideal. 

d) eX is a minimal right ideal. 

e) eXe is a subgroup of X. 

f) Every minimal left ideal is of the form Xe for 

some idempotent eEK; every minimal right ideal is of the 

form eX for some idempotent eEK. 

g) K=U(eXeleEE(K)} 

=U{eXleEE(K)} 

=U{XeleEE(K)}. 
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Note that every minimal right ideal and every minimal 

left ideal is contained in K. 

1. 2 • 2 • 3 • Theorem [5] • Let X be a compact right 

topological semigroup.Then 

i) Every right ideal contains a minimal right 

ideal. 

ii) Every closed right ideal contains a minimal 

closed right ideal. 

1.2.2.4.Proposition [6]. The topological centre 

A(X)={XEX IA :X~X is continuous} x of a compact right 

topological semigroup is void or a subsemigroup of X. If X 

is a group , then A is a subgroup of X. 

Now we will give some definitions before 

we introduce 

compactifications of a semi topological semigroup. 

Let X be a topological space and let F be a conjugate 

closed,norm closed linear subspace of C(X) containing the 

* constant function 1. Then a mean f.1 is a member of F, the 

dual space of F, such that f.1( 1) = 11f.111 =1. The set of all means 
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on F is denoted by M( F). If F is closed under pointwise 

multiplication then a mean /.l is called multiplicative if 

for every f ,gEF. The set of all 

multiplicative means on F is denoted by MM(F) and is called 

the spectrum of F. 

For each xEX, the mean e(x) defined by e(x)(f)=f(x), fEF 

is called the evaluation at x,and the mapping e:X~M(F) is 

called the evaluation mapping. 

* By proposition 2.5 of [5], M(F) is convex and a(F ,F) 

* compact and the evaluation mapping e:X~M(F) is a(F ,F) 

continuous. Furthermore, by proposition 3.9 of [5], MM(F) is 

* * a(F ,F) compact and is the a(F ,F) closure of e(X). 

Let F be a conj ugate closed , norm closed subspace of 

C(X) containing the constant functions. Let fEC(X) and let 

XEX. Then the functions 

L f=f(}A. , R f=fop x x x x 

are called the left and right translates of f by x, 

respectively. 

F is said to be 

i) Left translation invariant if L P';F for each x 
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ii) Right translation invariant if R P';F for each 
x 

iii) Translation invariant if F is both right and 

left translation invariant. 

Let F be left translation invariant and let T~ be the 

mapping from F into C(X) defined by 

(T f) (x)=I1(L f) fEF, xEX, 
~ x 

* for each I1EF • Then F is said to be 

i) Left introverted if TI1~F for each I1EM(F). 

ii) Left m-introverted if TI1~F for each ~EMM(F). 

An admissible subalgebra of C(X) is a norm closed, 

conjugate closed translation invariant, left introverted 

subspace of C(X) containing the constant functions,and an 

m-admissible subalgebra of C(X) is a translation invariant, 

* left m-introverted C -subalgebra of C(X) containing the 

constant functions. 

A semigroup compactification of a semitopological 
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semigroup X is a pair (e,V), where V is a compact Hausdorff 

right topological semigroup and e :X~V is a continuous 

homomorphism such that e(X) is dense in Y and 

e(X}£A(Y}={yEVlthe map x~yx:Y~Y is continuous}. 

Notice that the definition of semi group compactification 

(e, Y) of a semi topological semigroup X differs from the 

definition of a topological compactification in two ways.The 

first difference is that Y is required to be a compact right 

topological semigroup and the second one is that the mapping 

e is not required to be a homeomorphism onto e(X}. 

If (e,V) is a compactification of a semigroup X, then 

by proposition 1.3 of [6,chap.3] the following assertions 

hold: 

i) If ~ is a continuous homomorphism from a 

semi topological semi group Z onto a dense subsemigroup of X, 

(eo~,V) is a compactification of Z. 

ii} If ~:Y~Z is a continuous homomorphism from Y 

onto a compact right topological semigroup Z, then (~oe,Z) 

is a compactification of X. 

An F-compactification of X is a pair (e,Y), where V 

is a compact Hausdorff right topological semigroup and 

e:X~Y is a continuous homomorphism with the following 

properties: 
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i) Cly(e(X»=Y. 

ii) Ae(x):Y~Y is continuous for each xEX. 

* * iii) e C(Y)=F, where e :C(Y)~C(X) is the adjoint 

of e. 

Let P be a set of properties which compactifications 

Ce,Y) of X may possess or may not possess. Then (e,Y) is 

said to be maximal with respect to P if 

Ca) (e,Y) possesses properties P,and 

C b) whenever (e l , Z) possesses properties P then 

there exists a continuous homomorphism ~:Y~Z such that 

the following diagram commutes: 

Now we state an important theorem that shows the 

relation between F-compactifications and the m-admissible 

subalgebras of C(X). 

1.2.2.Theorem [6]. If Ce,Y) is a compactification of 

University 
Libr.uy 
Hull 
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a semi topological semi group x, then * e C(Y) is an 

m-admissible subalgebra of C(X).Conversely,if F is an 

m-admissible subalgebra of C(X), then there exists a unique 

(up to isomorphism) compactification (e,Y) of X such that 

* e C(Y)=F. 

Now we will introduce one of the important 

compactifications of a semi topological semi group X which we 

shall study in the next chapters. 

1.2.2.6. Defini tion. A function fEC (X) is said to be 

left uniformly continuous if the mapping x~L f:X~C(X) 
x 

is norm continuous. The set of all left uniformly continuous 

functions on X is denoted by LUC(X) or simply LUC when there 

is no confusion. 

If G is a topological group then according to 

proposition 1 of [65] fELUC(G) if and only if f is 

uniformly continuous with respect to the right uniformity 

I -1 generated by entourages of the form {(x,y) xy EV}, where V 

is a neighbourhood of the identity of G. 

By the lemma 1 of [45], LUC(X) is a translation 

* invariant left introverted C -subalgebra of C(X) containing 

the constant functions. In particular LUC(X) is 

admissible. Thus by the theorem 1.2.2.5 every 
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semitopological semi group x has a canonical 

LUC-compactification which is denoted by (e,xLUC ). According 

to the theorem 5.5 of [5], the compactification (e,XLUC ) 

is maximal in the following sense: If Y is a compact right 

topological semigroup and ep is a continuous homomorphism 

with the following properties 

a ) C 1 yep ( X ) = Y , 

b) (x,y)~(x)y:XxY~Y is continuous, 

then there exists a continuous homomorphism ¢ from XLUC onto 

X such that rp=¢oe. 

1.2.2.7.Theorem [39]. If X be a locally compact group 

then the topological centre of XLUC is X,that is, A(xLUC)=x. 
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CHAPTER II 

UNIFORM SPACES, NEAR ULTRAFILTERS AND COMPACTIFICATION 

OF UNIFORM SPACES 

In the first section of this chapter, we shall define 

what is meant by a uniformity and by a uniform space. In 

section 2, we will introduce the new concept of "near 

ultrafilters" on a uniform space and investigate their 

properties. In the last section of this chapter We shall 

describe the compactification of a uniform space in terms 

of the "near ultra filters" 

Sectoin 1. Uniform Spaces 

Let X be a non-empty set. By 2 X =XxX, we mean the set 

of all ordered pairs {(x,y): x,yEX}, X2 is the product of 

X by itself. For any subset U of X2 , we define 

-1 2 U ={ (x,y)EX (y,X)E U }. 

If U,V are two subsets of x2, we define UoV as the 

collection of pairs (X,y)EX2 such that (x,Z)EU and (z,y)EV 

for some zEX. We put UoU:U 2; and,if Un has been defined, we 
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A subset U of X2 is said to be symmetric if -1 u=u . 

The set {(X,y)EX2 : x=y} is called the diagonal of X2 

and is sometimes denoted by ~(X) or simply ~. 

Let A be a subset of X and U a subset of x2 .Then we 

define 

U(A)={yEX (X,y)E U for some xEA} 

--1 
U (A) = {yEX (y,X)EU for some xEA} 

={yEX -1 (X,y)EU for some xEA}. 

If A is a singleton {x}, then 

U(X)=U({X})={yEX (x, y)EU} . 

--1 -
U (x)=U( {x} )={yEX (y,X)EU}. 

Thus U=U- 1 if and only if 
- --1 
U(x)=U (x) for each xEX. 

2.1.1. Definition.A non-empty subfamily U of subsets of 

XxX is said to be a uniformity for X or to define a uniform 
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structure on X if the following conditions are satisfied: 

(a) 3 does not belong to U. 

(c) For any Ul in XXX with U2£U
l 

for some U
2 

in U, 

then U1 is also in U. 

(d) Each U in U contains the diagonal A. 

(e) For each U in U, u-lEU. 

(f) For each U in U there exists V in U such that 

VoVcU. 

A member U of U is called a vicinity and the 

uniformity V is called separating if n { V : V E U } = 1::.. 

A subfamily B of a uniformity U is called a base of U, 

if each U in U contains a member B of B. 

2.1.2. Example. The standard uniformity or usual 

uniformity on IR is the uniformity having as base the 

collection of sets U£={ (X,y)EIR 2 : Ix-yl<£ }. 
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2.1.3.Definition.A non-empty set X with a uniformity U 

is called a uniform space and is denoted by (X, U). If U 

satisfies only (a),(b),(c),(d),(f) and then (X,U) is called 

a quasiuniform space. 

Every uniformity generates a topology in a natural 

way, while different uniformities may produce the same 

topology. 

2.1.4.Definition. Let (X,U) be a separated uniform 

space. The topology defined by the uniformity V is the 

collection of all subsets T of X such that . for each xET 

there exists UEV such that U(x)£ T. 

By theorem 1 of [30,chap 5], X is a completely regular 

Hausdorff space with this topology. 

The topology associated with a uniformity U will be 

called the uniform topology ~U generated by U. Whenever 

the topology on a topological space X can be obtained in 

this way from a uniformity , X is called a uniformizable 

topological space. 

It is a well known fact that every compact space X has 

a unique uniformity compatible with the topology of X. 
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2.I.S.Proposition 

uniformizable. 

[30]. Each metric space is 

There is a concept of uniform continuity for mapping 

between uniform spaces, which we now define. 

2.1.6.Definition.Let X and Y be non-empty sets 

provided with the uniformities U,V, respectively. A function 

f:X ) Y is uniformly continuous iff for each V EV, 

there is some UEU such that (x,y)EU 

(f(x),f(y»EV. If f is one to one ,onto and 

implies that 

both f and f- 1 

are uniformly continuous, then f is called a uniform 

isomorphism and X and Yare said to be uniformly isomorphic. 

2.1.1.Theorem [30]. Every continuous function f from 

a compact space X to a uniform space Y is uniformly 

continuous. 

Section 2. Near Ultrafilters 

In this section, we will construct a compactification X 

of a given Hausdorff uniform space (X,U) by means of Hnear 

ultra filters H and we will prove some properties of this 

compactification. 

2.2.I.Definition.Let (X,U) be a uniform Hausdorff space. 
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A family D of subsets of X will be said to have the near 

finite intersection property if, for every finite subset ~ 

of D and every UE U, 

nU (Y);t(2J. 
YEep 

We shall call D a H near ultrafilter H if it is maximal 

with respect to this property. 

2.2.2.Remark. If X is discrete, U can be taken to be the 

family of supersets of the diagonal in X 2 • Then a linear 

ultrafilter H is simply an ultrafilter. 

2.2.3.Definition. Let C be the set of all near 

ultrafilters on X. We define a topology on C by stating 

that sets of the form 

Cy = { TjEC YETJ }, 

where Y is a subset of X, is a base for the closed sets. 

of TI 

2.2.4.Proposition. For any TJEC and any finite subset ~ 

nU(Y)E'1 
YEep 
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for every UEU. 

Proof. Suppose that nU(Y)¢T} for some finite subset qJ 
YEqJ 

of T} and some UEU. Then there is a vicinity W in U and a 

finite subset ')' of T} such that 

[W(nU(Y}}] n [nW(Z)]=0. 
YEqJ ZEy 

There is a vicinity W E U such that W £:UnW. Then 

-I -I 

[nW (Y)] n [n W (Z)]=0. 
YE qJ ZE')' 

But this is a contradiction. 

2.2.5.Proposition. For any T}EC and any subset Y of X, 

Y¢T} implies that 

U(Y) n U(Z) = 0 

for some ZET} and some UEU. 

Proof. Since Y¢T},there is a finite subset qJ of T} and 

WEU such that 

W(Y) n [ n WeT} ] = 0. 
T EqJ 
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We can choose a symmetric vicinity UEU such that UoU~W. Put 

Z = n U(T). Then ZETJ, by proposition 2.2.4, it is easy to 
T Ecp 

see that U(Y) n U(Z)=0; for,if (X,y)EU and (X,Z)EU, with yEY 

and zEZ, we have 

contradiction. 

2.2.6.Proposition.Let TJEC and Y£X. Then, Y ¢ TJ if and 

-
only if U(Y) n Z = 0 for some UEU and some ZETJ. 

Proof. To see this suppose that Y¢TJ, then there exists 

ZETJ and WEU such that W(Z)nW(Y)=0 which implies that 

ZnW(Y)=0. Conversely,if ZnW(Y)=0, then U(Z)nU(Y)=0 for every 

symmetric vicinity UEU such that UoU~W • 

2.2.7.Remark.Let Y £ X.Then YETJ if and only if ClxYETJ 

because,W(y)nZ=0 implies that U(Clxy)nZ=0 for every vicinity 

UEU such that UoU~W and Y£ClxY where ClxY=n{U(Y) :UEU}. 

2.2.8. Proposi tion. For given TfE C and any subsets YI , Y2 

of X, YI 'Y2 ¢ TJ implies that YI U Y2 ¢ TJ. Hence, 

Proof. Since YI ¢ TJ, there exists UEU and ZlETJ such 

that 

(1) 



36 

and since Y2iD, there exists VEVand Z2ED such that 

(2 ) 

But there exists a vicinity WEU such that WcUnV. Hence 

- --
W(Yl Uy2 >n(W(Zl)nW(Z2»=¢' 

It is clear from proposition.2.2.8 that for any 

subset Y of X, c=cyUcy*, where Y*=X\Y. 

Section 3. Compactification of Uniform Spaces 

2.3.1. Proposition. The space C is a compact Hausdorff 

space. 

Proof. Let t;,DECwith t;~D. We shall show that there 

exist closed subsets of C such that t;iCY* and 

qiCY.Since Cy U Cy * = C, it will follow that C is Hausdorff. 

If t;~D, then there exist Zl ED and ZEt; and VEU such 

that 
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We can choose WEU such that WoW£V, and put Y=W(Z}. Then 

W(Zl}nW(Y}=0 

Wi (Z)nW' (Y*)=0 

which implies that Y¢.l1. We also have 

for any symmetric vicinity W satisfying 
12 

W £W. 
-I _I * I I 

For, if XEW(Z) n W(Y ),(x,z}EW and (X,t)EW for some 

ZEZ and some tEY*. But then tEW( Z) =Y. This is a 

contradiction. So y*¢.~. 

For the compactness, suppose that (%.) iEI has the 
1 

finite intersection property Then { U.: iEI } has the near 
1 

finite intersection property. Hence, by Zorn's lemma, 

there is a point I; of C such that lUi: iEI }s 1;. Since 

~ E n c_, it follows that 
iEI -Oi 

n C_;t0 
iEI -U i • 

A 
For each xEX,we denote by x the set of subsets Y of X 

for which XECIXY. Then ~ is an element of C. 

2.3.2. Proposition. The mapping e:X----~)C for which 

e(x)=~ embeds X in C as a dense subspace. 

Proof. clearly 
A 

e is one to one, because if x;ty, {X}EX 

A 
and (x}¢.y. 

Furthermore, e (X) is dense in C. To see this suppose 

that YeX and that e(X)n(C\CY)=0. Then xEX implies that 
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YEe(x), i.e, that xEY. Thus CIxY=X. It follows that CY=C; 

for,if I;EC\Cy, then V(Z)nV(Y)=0 for some ZEI; and some VEU. 

This is impossible, since CIxY£V(Y)=X. 

To show that e is continuous, let xEX and let C\l1J be 

an open neigbourhood of e(x) in C. Then the set X\CIXU is an 

open neigbourhood of x in X, and e(X\CIXU)cC\£U. To see 

this, let f/Ee ( X\ CIxU) ; then there exists zEX\CIxU such 

that e(z)=f/. Since z¢CIxU, U¢e(z)=f/. Hence f/EC\£U. 

To see that e is a closed map,let U be a closed set in 

X. Then we claim that e(U)=e(X)n {I;ECIUEI; }. To see this let 

T/Ee(U), hence there is XEU such that f/Ee(x)=x. Since XEU, 

UEx=e(x)=f/ and so T/E{I;ECIUEI;}ne(X). Therefore, 

For the reverse inclusion let f/lE{I;ECIUEI;}ne(X), then 

there exists yEX such that f/l=e(y), and so UEe(y) since UEy, 

yEClxU and CIxU=U since U is closed and so 

f/=e(y)Ee(U). Therefore, 

Hence the result follows from (1) and (2). 

2.3.3. Proposition. For any Y£X and I;EC, YEI; if and 
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only if l;ECl~(Y). 

Proof. Let Y£X.Then CY={~EC : YE~} is a closed set in 

C and e(y)E{rlEC : YE~} for each yEY, and so 

e(Y) £ {DEC YE~} Thus Cl~(Y) s {~EC YEI/}. 

For the reverse inclusion, let ~ECY and suppose that 

~ ~ Cl~(Y). Then there is an open neigbourhood 

c. = { l;E C Z~l;} 
Z 

of ~ for some Z£X, such that 

e(Y) n {i;EC Z~l; }=¢. 

So 

e(Y) c e(X) n {i;EC ZEi;} = e(ClxZ), 

and hence Y cCIXZ. Since YEI/, CIXZEI/ and so ZE~. However, 
I 

this contradicts the assumption that I/ECZ• 

We denote the set C of all near ultrafilters by X. 

2.3.4. Remark.We shall in future regard X as embedded 

in X, by identifying X with e(X). 

2.3.5.Remark. It is clear that two equivalent 



40 

uniformities define same compactification. 

2.3.6.Theorem. Let (X,U) and (Y,V) be uniform spaces. 

Any uniformly continuous function f:X----~»y has a 

continuous extension f:X )Y. 

Proof. We first show that, for each I;EX, there is a 

unique DEY with the property that f(S)ED whenever SEI;. 

If we establish that (f(S):SEt;} has the near finite 

intersection property. It will follow that there is at least 

one element DEY with the above property. 

Let ~ be a finite subset of 1;, for which 

-
()V ( f (S ) ) =0 

SEep 

for some VEV. Then if, 

U = { ( Xl' X
2

) E XxX 

We have UEU and 

() U(S)=0. 
SEep 

This is a contradiction. Thus ( f(S) 

near finite intersection property. 

SEt; } does have the 
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Suppose now that Dl and D2 are distinct elements of Y 

which both contain {f{S} : SE~ }. There will be sets V1ED1 

and Y2ED2 for which 

for some WEV.Let VEV be a symmetric vicinity for which V2£W 

and let U be defined as in the preceding paragraph. Now 

f-l{V(Yl»E~; for if, 

for some SE~,we have V(Y1 ) n f(S) = 0. This is a 

contradiction to the assumption that Y1EDl and f{S)ED
I

. 

Similarly, f-l(V(Y2»E~. However, 

-1 -
for, if (x,x1 )EU and (x,x2 )EU, where Xl Ef (V(Y I}) and 

-1 -X2Ef (V(Y2 », we have f(x)EW(Y 1 ) n W(Y2 ). This contradicts 

our. assumption that W(Y1 ) n W(Y2 } = 0. Thus the element 

T/EC1",Y which contains {f(S) : SE~ } is unique. 
Y 

We can now define f :X ) Y by stating that 

f(~)=D. As we have just seen, if TED, then f-l{V(T) )Et; for 

every VEV. Conversely, if f- l (V ( T) ) E'; for every VEV, it 

follows that TED. Otherwise, VeT) n V(T} = 0 for some 

T ETI and some VEV. As in the preceding paragraph, we put 
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U = {(x1 ,x2 )EXxX (f(x1 ),f(X2 »EV}, and find that 
- -1 - - -1 - , 
U(f (V(T») n U(f (V(T») = 0. This is a contradiction, 

as both f- 1 (V(T» and f- 1 (V(T'» are in ~. 

Thus we have shown that 

n{ c 1 -
f- (V(T» 

VEV }, 

and hence that f is continuous. It is obvious that f is an 

extension of f. 

We have the following corollary as a consequence of 

above theorem. 

2.3.7.Corollary.Let (X,V) be a uniform space and X be 

the compactification of X and suppose that Z is any 

compactification of X having the property that every 

uniformly continuous function f from X into a uniform space 

(Y, U) has a continuous extension f from Z to Y. Then Z is 

homeomorphic to X. 

Proof. Since Z is a compactification of X there is a 

homeomorphism g from X onto g(X) with g(X) dense in Z .Thus 

we can regard X as a subspace of Z and X. If Id is the 

identi ty map X~XsZ, then by the assumption there is a 

unique continuous map f:X~Z such that f1x=Id. Similarly 
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there is a unique continuous map g:Z~X such that 

'" - 1 '" '" '" glx=Id =Id. Since X is dense in both X and Z, and fog1x=Id 

,..., ,...., -1 ,..., ,..., '" ,...., 
and glxof=Id =Id, fog=IdZ' gof=Id

X
. Therefore, both f and g 

are homeomorphisms. 

2.3.8.Proposition.The continuous real-valued functions 

on X are precisely the extension to X of bounded uniformly 

continuous real-valued functions defined on x. 

Proof.We know from proposition 2.3.6 that every 

bounded uniformly continuous real-valued function defined on 

X has a continuous extension to x. 

The set A of all such extensions forms a uniformly 

closed algebra which contains the constant functions. If we 

'can show that it separates the point of X, it will follow 

from the Stone-Weierstrass theorem that it consist of all 

the continuous real-valued functions defined on X. Suppose 

then that nl and n2 are distinct elements of X.We shall have 

Then there will be a uniformly continuous bounded function 

for which and f(Y2)={1} 

according to [36]. 

It will follow that f(n1)=O and f(n 2 )=1. 

Hence A does separate the points of X • 
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In future, we will denote the extension of a uniformly 

continuous function f from X to X by f. 

2.3.9.Proposition. Let ~EX. For any YE~ and any UEU,the 

set C_ is a neigbourhood of ~, and the sets of this form 
U(Y) 

provide a basis for the neihbourhoods of ~. 

Proof. Since 

neigbourhood of ~ by proposition 2.2.8. 

C_ 
U(Y) 

C_ 
U(Y) 

-

is a 

Now suppose that T£X and that T~~. Then T n V(Y)=0 

for some YE~ and some VEU. Let UEU satisfy U2£V and 

Then C_ £C\CT' because U(Y) n U(T) = 0. 
U(Y) 

-1 U=U . 

This shows that the sets of the form C_ are a base 
U(Y) 

for the neighbourhoods of ~. 
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CHAPTER III. 

COMPACTIFICATION ~ OF THE REAL NUMBERS ~ WITH RESPECT TO 

THE USUAL UNIFORMITY 

Section I. Topological Properties of ~ 

We have seen in chapter 2 that any uniform space ~ 

has a compactification X, whose points are the near ultra 

filters, which has the property that any uniformly 

continuous function f from X to any compact space K can be 

extended to a continuous function f from X to K. Since ~ is 

a uniform space, IR has such a compactification which we 

shall denote by ~. We remind the reader that this is defined 

in the following way: 

Let B(O) denote the set of neigbourhoods of 0 in ~. 

A point ~ of ~ is a family of subsets of ~ which is 

maximal with respect to the property that, for every finite 

subset ~ of ~ and every neigbourhood W of 0, 



form 

46 

n(Y+W);t0. 
YEep 

The topology of R is defined by choosing sets of the 

Y E TJ}, 

where Y£R, as a base for the closed sets. 

We will denote R\R by pRo 

+ 3.1.1.Theorem. Let ~ER \R and suppose that YE~. Then 

for any k>O, there is a sequence (y )£Y such that y l-y >k n n+ n 

for every n, and (Yn)E~. 

Proof. Since ~E~+\R, we may suppose Y£[O,ro). Now 

choose m>k. Then either 

or 

U[nm, (n+l )m]E~ 
nE2IN-I 

U[nm, (n+ I )m]E~. 
nE:2IN 

Let Xl denote the first of these sets which is a 

member of ~. Let Al denote 2IN-l or 2IN.lf 
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or 
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XI = U[nm,(n+l)m], 
nEAl 

I U [ ( n + Z ) m, ( n + I ) m] Et; . 
nEAl 

Let X2 denote the first of these sets which is a member of 

I 
~. Let A2 denote Al or AI+Z·lf 

Then 

or 

U [nm, (n+~ )m]Et; 
n EA2 

Let X3 denote the first of these sets which is a 

member of 1;. 

Proceeding in this way, we can define a sequence of 

sets (X ) with the following properties: n 



i) 

ii) 

X El:· n ... , 
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Each X can be written as n 

a closed interval of length ~ . 
n-l' 2 

<D 

UIn r,where I is 
r=l ' n,r 

iii) For each n, d( I , I , )~m if r~r'; n,r n,r 

iv) For each nand r, I( 1) ~I " n+ ,r n,r 

For each r=1,2,3, ... ,there will be a unique point 

X E {*lr 
r n=ln,r. 

Let X={x : rEIN} • r 

We claim that XEI;. To see this, let ZEe; and let £>0. 

m £ 
Choose n so that 2n- l <2' Since XnEe;, there will be a point 

£ £ 
xEX such that d(x,Z)<-2' If xEI ,then d(xr ,x)<-2" Hence n n,r 

d(xr,Z)<£. Thus (X+(-£,£»nZ~0 and so XE~. 

shall show that { y : rEIN} EI; . r As before, let ZEe; and let 

£ 
£>O.Then V={xr :d(xr 'Y)<2}Ee;; for otherwise we should have 

I £" I 

V ={xr:d(xr'Y)~2}EI;.ThlS is impossible,since d(V ,Y)~~.Since 

{ X 'X EV and l<£}El: we can choose x EV satisfying d(x ,Z)<-2£ r' r r 2 .. , . r r 

and ;<~. We than have d(Yr,Z)<£.Thus {Yr:rEIN}E~, as claimed. 
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A repetition of the preceding argument will show that 

m-k 1 m-k T={x :d(x 'Y)<--2- and -<--2-}E~, and that {y:x ET}E~. We r r r r r 

replace the sequence ( Y ) by the sequence n This 

will clearly have the property that Iy -y ,I>k if rtr' ,since 
r r 

I x -x ,I~m r r _ 

A point ~ of a topological space X is called a remote 

point if it is not in the closure of a discrete subset of X. 

As a consequence of above theorem, fR has no remote 

points. But under the continuum hypothesis /3IR has remote 

* points and the set of remote points of /3IR is dense in IR by 

theorem 2.5 of [16]. 

Now we have a corollary which shows that the 

cardinality of a neigbourhood of a point ~ in pIR is at least 

2c . 

3.1.2.Corollary. Every neighbourhood of every point ~ 

* in pIR contains a copy of ~ . 

Proof. As we have seen in proposition 2.3.9 that a 

base of the neighbourhoods of the element ~ in pIR is 

provided by choosing any closed set Y in ~ and any 

neighbourhood W of 0, and forming the set G of elements ~ in 
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plR for which Y +WETJ. For k=l, from the preceding theorem we 

We may suppose that X=(x ). Then G contains Cl_(X)\X. 
n IR 

Now we define a mapping cp from IN to IR such that 

cp(n)=xn . Clearly, the mapping cp is continuous and it extends 

to a continuous mapping cpf3 of f31N onto Cl_(X). Let t;,TJEf3IN, 
IR 

wi th I;1=TJ. Then there exist UEt; and VETJ such that UnV=0 and 

so 

cpf3 (U ) ntpf3 ( V ) =0 , 

since cp is one to one on IN. Now if we take W=(-l\2, 1\2) 

(cp(U)+W)n(cp(V)+W)=0, 

since for any nEU and mEV, 

And so 

Since ~ECI U, 
f31N 

I cp (n ) -cp (m) I ~ 1 . 

C1 cpf3(U)nC1 tpf3(V)=0. 
IR IR 

cpf3(t;)ECl cp(U) and since TJECl cp(V), 
IR f31N 
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Since a one to one, continuous mapping of a compact 

space onto a Hausdorff space is a homeomorphism, 

homeomorphism between Cl_{X)\X and ~* 
IR • 

cp~ is a 

As a result of the above corollary, we have the result 

that the cardinality of a neighbourhood of l; in pIR is 

2c ,since the cardinality of ~* is 2c according to [61]. 

3.1.3.Proposition. No sequence in IR can converge to a 

point of pIR. 

Proof.Suppose that there is a sequence (x ) in IR which n 

does converge to a point ~ in pIR. The sequence (xn ) cannot 

be bounded otherwise it would have a subsequence (xn ) 
r 

converging to a real number k. It follows that (xn ) will 

have a subsequence (x ), which satisfies 
nr 

(xn ) also converges to ~. 
r 

x -x >1. But 
nr+1 nr 

Now we define a uniformly continuous function from IR 

to IR as follows: 
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0, if r is even 

1, if r is odd; 

and we complete the definition by piecewise linearity. Then 

f(~)=Limf(x2n)=0 and f(~)=Limf(x2n+l)=1. But this is a 

contradiction. 

3.l.4.Proposition. The space ~ is not metrizable. 

Proof . Suppose on the contrary that ~ is metrizable, 

then every point D of ~ has a countable base of 

neighbourhoods.Let DEpR, then since R is dense in ~ there is 

a sequence of points of m which converges to D which 

contradlcts to the proposition 3.1.3. 

As a result of the above proposition ~ has not have a 

countable base. 

3.l.S.Lemma. Let a be an ultrafilter of subsets of m. 

Then, if ~={ Xf;!R 

ultrafllter. 

X+WEa for every WEB(O)~,~ is a near 

Proof. Obviously, ~ has the near finite intersection 

property. To show that ~ is maximal with respect to this 
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property, suppose that Y£IR and Y¢t;. Then Y+W¢a for some 

WEB(O), and so (Y+W)nZ=0 for some ZEa. However, ZEa implies 

that ZEI;. SO t;U{ Y} does not have the near finite 

intersection property. t; is the unique near ultrafilter 

which contains a,since any near ultrafilter which contains a 

must contain 1;, and must therefore be equal to t; • 

3.1.6.Proposition. Every I; in p~ is the limit of 

a convergent sequence of distinct points of P~. 

Proof. It is trivial, since I; is the limit of the 

sequence «l/n)+I;). 

Now we have the following proposition immediately: 

3.1.7.Proposition.Every point I; of p~ is a limit point 

of a countable subset of p~, which does not contain 1;. 

3.l.S.Definition. A set G in a topological space is 

called a Go-set if it is the intersection of at most 

countab1y many open sets and a point of a topological space 

is called a P-point if every Go-set containing the point is 

a neighbourhood of the point. 
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It is a well known fact that the set of P-points of ~* 

* is dense in ~ and its cardinality is 2c under the 

continuum hypothesis according to corollary 4.30 of [62] 

and the set of P-points of (31R is dense * in IR and its 

cardinality is 2c according to theorem 6.2 of [47]~ assuming 

the continuum hypothesis. 

We have a corollary of proposition 3.1. 6 ~ since no 

P-point can be a non-trivial limit of any sequence. 

3.1.9.Coro11ary. plR has no P-point. 

3.1.10. Definition.An F-space is a topological space X 

such that, if f€C(X), the set of continuous functions from X 

to IR, then Pos(f) and Neg(f) are completely separated; that 

is, there exists a function gEC(X) such that g(x)=l if 

xEPos(f) and g(y)=O if xENeg(f). X is called locally 

compact if each point of X has a basis of compact 

neighbourhood and and X is said to be a-compact if it is 

the union of at most countably many compact subspaces. 

It is a well known fact that the spaces {3~\~, {31R\1R and 

+ + {31R \IR ,where denotes the space of nonnegative real 



55 

numbers (O,ro), are F-spaces. In fact, for any locally 

compact, a-compact Hausdorff space X, (3X\X is a compact 

F-space according to theorem 2.7 of [19]. 

Now we have the following corollary as a consequence 

of proposition 3.1.6, since no point of an F-space is the 

limit point of a sequence of distinct points. 

3.1.11.Corollary. pR is not an F-space. 

3.1.12 • Definition. A point of a subset A of a 

topological space X is called an isolated point of A if it 

has a neighbourhood which contains no other pOints of the 

subset A. 

It is a well known fact that ~* is the only 

commpact space with weight c with the property that it has 

no isolated points by corollary 3.11 of [61], and every 

non-empty Go-set has a non-empty interior by corollary 3.27 

of [62]. Hence, we have the following property of pR 

immediately, since pR has no isolated points by the 

preceding proposition. 
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3.1 • 13. Proposi tion. I t is not true tha t every 

non-empty Go-set in pR has non-empty interior. 

3.1.14. Proposition. No point in pR has a countable 

base of neighbourhoods in pRo 

Proof. If ~EpR, there is a subset X of pR such that 

~EX and X is homeomorphic to ~*, since every neighourhood of 

~ contains a copy of ~* to which ~ belongs by corollary 

3.1.2. Hence ~ can not have a countable base of 

neighbourhoods of (Un) in pRj because <nUn>nx cannot be a 

singleton since (nun>nx is homeomorphic to a non-empty 

C f IN* d' IN* G h o-sct 0 t an 1n every non-empty o-set as non-empty 

interior. 

3.1.1S.Corollary. pR is not metrizable. 

Proof. It is obvious, since every point of a 

metrizable space has a countable base of neighbourhoods. 

3.1.16.Corollary. pR has not have a countable base. 

Proof. It is obvious. 



57 

3.l.l7.Examples (l).The space ~,the compactification of 

rational numbers: Since every uniformly continuous function 

on ~ can be extended to a uniformly continuous function on 

~, the space ~ is as same as ~. 

It is always true that, for any dense subspace Y of a 

uniform space X, Y and X are homeomorphic since every 

uniformly continuous function on Y can be extended to a 

uniformly continuous function on X, where Y has the uniform 

structure induced by that of X. 

(2). Let X=(O,l). Then the compactification X of X is 

the closed interval (0,1], since every uniformly continuous 

function on (0,1) can be extended to a uniformly continuous 

function on (0,1]. But [0,1] is not the Stone-Cech 

compactification of (0,1), since the continuous function 

f(x)=sin(!) from (0,1) cannot be extended to a continuous 
x 

function on (0,1]. 

Let X be a topological space then X is separable if it 

contains a countable dense subset.If every real-valued 

continuous function on X is bounded then X is called 

pscudocompact. 
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3.1.18.Coro11ary. The space ~ is separable. 

Proof. It is obvious, since ~ is dense in ~ • 

, 
'We mean by Lg the following function f from ~ to ~ 

such that 

{

O, x<l 
f(x)= 

logx,x~l 

It is easy to see that f is a uniformly continuous function 

from JR to JR. 

v 
3.1.19. Theorem. Let [I,m) be the completion of [I,m) 

with the uniform structure associated with the group 
v 

structure ([I,m),.). Then [O:m) is homeomorphic to [I,m). 

, 
Proof. The Lg function from ( [I,m) , .) to 

([0,00),+) is uniformly continuous and the function f(x)=e x 

from ([0,00),+) to ([1,00),.) is uniformly continuous with 

respect to the uniformities generated by the group 

operations ( . ) , and ( + ) , respectively. Hence ([0,00),+) 

and ([1,00),.) are isomorphic, and so [0:(0 ) is homeomorphic 
v 

to [1,(0). 

A topological space X is called connected if it is not 
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the union of two non-empty disjoint open sets and it is 

called locally connected if it has a basis consisting of 

connected sets. 

By theorem b of [48,chap.6,2] a topological space X is 

connected if and only if ~X is connected. In particular the 

space ~R is connected. 

3.1.20.Proposition. R is connected. 

Proof. Since the image of a connected set under a 

continuous function is connected ~. 

space. 

3.1.21. Theorem. The space pRnC1_[O,ro) is a connected 
R 

Proof. If not, there is a continuous function f from 

this space to ~ that assumes precisely the values 0 and 1. 

Then the function f has an extension to g:[o:ro) ,R 

(since [O:ro) is compact) and g must assume values near 0 and 

1, at arbitrary large xER+. Since ~+ is connected, g must 

assume the value (1\2) on an unbounded set in R+ and hence 

at some point of pRnCl_[O,ro). This contradiction shows that 
IR 
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p~nCI_[O,w) is connected 
~ . 

By proposition e of [48,chap.4,3], a completely 

regular space is locally compact if and only if X is open in 

every compactification of X. Therefore, ~ is open in ~ and 

similarly, + - in CI ~+ and in Cl",~-, where ~ and ~ are open 
'" ~ ~ 

~-=(-w,O), respectively. Hence Cl ~+\~+ and CI ~-\~ are 
~ '" ~ 

compact. Thus p~ is the union of two disjoint, homeomorphic 

connected sets. 
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CHAPTER IV 

EXTENSION OF SEMI GROUP OPERATION ON X TO A SEMI GROUP 

OPERATION ON X AND ALGEBRAIC PROPERTIES OF THE COMPACT 

RIGHT TOPOLOGICAL SEMI GROUP (~,+) 

In the last two chapters, we studied the topological 

properties of the compactification X of a uniform space X. 

In this chapter, we shall investigate whether a semigroup 

operation on X can be extended to a semigroup operation on 

X. We shall then study some algebraic properties of the 

compactification ~ of ~ and p~. 

Section 1. Extension of Semigroup Operation on X to a 

Semigroup Operation on X 

4.1.1.Theorem. Suppose that (X,-) is a uniform 

topological semi group with uniformity V. Then under the 

following assumptions the semigroup operation can be 

extended to a binary operation on X, 

Assumption 1. The function 1 is uniformly continuous 
x 

for each x in X. 

Assumption 2. For each UEV, there is a vicinity VEV 
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Proof. From assumption 1, for each xEX,the mapping A x 

extends to a mapping from X into X. 

We denote the image of D under the extension mapping 

by XTI. So 

XD = Lim xy. 
y~TJ 

For fixed T/EX, we want the mapping XI-I ---+, XTJ from X into 

X to be uniformly continuous. In other words, given a 

continuous real-valued function ~ defined on X we require: 

Civen £>0, there exists a vicinity V in V such that 
I 

(x, x )EV implies that 

I 

1~(xTJ>-~(x TJ>I<£· 

By assumption 2, there will be a vicinity VEV such that 
I 

Irp(xy)-rp(x y) 1 <£/3 for every yEX, if (X ,X )EV. 
I 

(x,x )EV. Since 

and 

~(XTJ) 

I 

= Lim ~(xy), y-+q 

rp(x Tl) = Lim ~(x y), y-+TJ 

Choose 
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there exists yEX such that 

and 

I I 

! rp (x TJ) -rp (x y)! < £ / 3 ( 2) . 

'We also have: 

I 

Irp(x y)-rp(xy)!<£/3 (3). 

From (1),(2) and (3), we have 

I 

Irp(XTJ)-rp(x TJ)!<£. 

Hence, under assumption 1 and assumption 2 the mapping 

XI IXTJ is uniformly continuous for each TJ in X, so extends 

to a continuous mapping from X to X. 

so 

The image of ~ under this mapping is denoted by ~TJ and 

~TJ = Lim~ Lim (xy) 
x--+", Y--+TJ 

It is easy to see that • is also associative. Hence 

(X,.) is a compact right topological semigroup. 
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4.1.2 Remark. If X has a uniform structure invariant 

under left and right translation, the semigroup structure 

extends to X, since assumption 1 and assumption 2 are 

automatically satisfied. In other words, the extension is 

possible if X has a base of vicinities U with the property 

that if, (x,x )EU then (xy,x y)EU and (yx,yx )EU for every 

yEX. This is the case if X has a metric d invariant under 

left and right translations. 

4.1. 3. Remark. For any topological group G, the group 

operation defined on G extends to a semigroup operation on 

G, when G has the right uniformity generated by entourages 

-1 of the form {(x,y):xy EV},where V is a neighbourhood of the 

identity of G. 

4.1. 4. Example. The following example will show that 

the operation of addition can not be extended to a 

semlgroup operation on ~R. 

Suppose that, for each element ~E~R and yER, we define 

y+t;=Lim /! (y+x) . x---+..,. 

We shall show that there are elements of t; of ~R for which 

the mapping y~y+t; is discontinuous. In fact, let t; be any 

element in Cl~R(N)\R. 
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Choose a continuous real valued function f: IR---+[ 0,1] 

with the following properties:f(n)=l if nE~, and f(n+x)=O if 

l/n<x<l-l/n for each nE~.Then for each mEN f«l/m)+n)=O for 

every nEN satisfying n>m. Hence 

However, 

So 

and so 

in ~lR. 

f~(l/m+';)=Lim cf(l/m+n)=O. 
n~s 

f~(';)=Lim cf(n)=l. 
n~s 

';;tLim (l/m+';) m---+<x> 

'. 

on 

4.1.5.Example. The semigroup structure on (IR,+) and 

(lRn ,+) can be extended to ~ and ~n, respectively. 

4.1.6.Theorem.The map yl-I ---+lXY from lR to IR for a 

fixed x in lR extends to a mapping from IR to IR, but this map 

does not extend further. 

Proof. To see this, we shall show that the mapping is 

uniformly continuous. 
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Let E>O,X#O and let o=£/Ixl. If 

then 

Hence the map extends from IR to a mapping from JR to JR. 

We denote the image of ~ in JR under this map by 

xi;=Limcxy. 
y-+." 

Now we will show that for a fixed TIEIR, the map 

x----+xq is not uniformly continuous and hence it does not 

extend to IR. To see this let A denote the set of positive 

integers of the form lx3x5x7x ... (2n+l) for some nEN and let 

nx fJ 
~€Cl_A\IR. Put f(x)=Sin(Z). Hence f (i;)E{-l,l}.For any mEN 

I? 

and any nEA, 

2m 2nm 
f(zm;rn)=Sin(2m+ln )=O 

if n is a multiple of 2m+l. 

lIenee 
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4.1.7.Theorem.The mapping (X,~)I~--~'X+~ is a continuous 

mapping from RxR to R. 

Proof.Let YEx+~ and WEB(O). So ~- is a basic -Y+W 

neighbourhood of x+~, by proposition 2.3.9. 

Choose any VEB(O) for which V+V£W. We shall show that, 

if tEX+V and rlEC_x+Y+V' then t+T]ECy+W' Now -x+Y+VET7 which 

implies that t-x+Y+VEt+TJ and so V+Y+VEtHl,since t-xEV.Hence 

Y+WEt+q as claimed • 

The next theorem shows that ~ is the maximal 

compactification of R which has the continuity property 

described in the preceding theorem. 

4.1.8.Theorem. Suppose that X is a compact right 

topological semi group and that h:R~X is a continuous 

homomorphism for which h(~) is dense in X. Suppose also that 

the mapping (x,~) 1-, --+'h(x)+~ is a continuous mapping from 

~xX into X. Then there is a continuous homomorphism 

-
g:~~X for which the following diagram commutes~ 

R----..,;;e~----+11R 
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Proof. If we can show that h is uniformly continuous,it 

will follow that there is a continuous function g:~~X for 

which ge=h. 

Let ~:X~[O,l] be a continuous function and let £ be 

a positive real number. We must show that, for some 

W=(-6,6)€B(O) (o~O), Ix-yl<o implies that l~h(x)-~h(Y)I<£. 

Now for each .!;€X, there is a neighbourhood N ( 0 of l; 

and a set W(l;)EB(O) such that 1~(h(w)+T/)-~(t;) I <% whenever 

wEW( l;) and TIEN( O.X will be covered by a finite number of 

the neighbourhoods NC/;). Choose t;1't;2't;3' ..... t;n such that 
n n 

X=UNCl;i)' and put W=nW(l;i),and say W=(-o,o). 
1 1 

Suppose that Ix-yl<o. If h(Y)EN(t;i)' we have 

and 

Thus 

as required. 
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This shows that h is uniformly continuous, and hence 

the continuous function g exists. 

We must still show that g is a homomorphism. This can 

be seen as follows: 

For any 1, I1EIR, 

g(l+I1)=g( Lim Lim g(e(l)+e(m») 
e(l)-+l e(m)-+11 

=Lim Lim ge(l+m) 
e(l)-+l e(m)-+11 

=Lim Lim h(l+m) 
e(l)-+'A. e(m)-+11 

=Lim Lim (h(l)+h(m» 
e( l)-+'A. e(m)-+J1 

=Lim Lim (ge{ l)+ge(m» 
e(l)-+'A. e(m)-+J1 

4.1.9. Remark. iR is the maximal compactification of IR 

with respect to this property. 

4.1.10.Remark. The preceding two theorems have been 
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stated for R. It is obvious, however, that they would apply 

to the compactification G of any topological group G. We 

remind the reader that as noted in the introduction the 

LUC-compactification of G is the maximal compactification of 

G with respect to the above property and therefore,G is the 

LUC-compactification of G. 

Section 2. Algebraic Properties of the Compact Right 

Topological Semigroup (~,+) 

In section 1, we have seen that the semi group structure 

of (D'?,+) can be extended to R, which makes IR a right 

topological scmigroup. We shall now study some 

properties of the compact right topological semi group (IR,+). 

Throughout this section we shall use B(O) to denote the set 

of symmetric neighbourhoods of 0 in IR. 

4.2.1. Proposition. Let o=~+ry in IR. Then ZEO if and 

only if,for every W€B(O), there exists XE~ such that -x+Z+WEry 

for every x€X. 

Proof. Suppose that there is a W€B(O) such that 
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x={XEIRI-X+W+ZEq}~.;. Then there is a member V of .; such that 

If VEV, -v+W+Z~q. So * -v+(W+Z) Eq, where 

(W+Z)*=IR\(W+Z). Hence 

* 

* v+qECl_(W+Z) ; it 
IR 

follows that 

';+T1ECl_ (W+Z) • This contradicts the assumption that ZEa. 
IR 

Conversely, suppose that, for every WEB(O) , 

Let and let yE-X+W+Z. So 

x+yEW+Z. We can choose a net of values of y converging to q. 

Then x+qECl_(W+Z). Hence ';+qECl_(W+Z). Therefore W+ZEa for 
IR IR 

every WEB(O), and so ZEa. 

4.2.2.Proposition. Let ';EplRnCl_ (x ), 
IR n 

where (x )clR and 
n 

x I-x ~ as n~. Then'; is right cancellable in (IR,+). 
n+ n 

Proof. Suppose that .; is not right cancellable. Then 

there are q ,C in IR such that q#C and TJ+';=C+';. There is YEq 

and ZEC such that d(Y,Z)=o>O. We may suppose that x I-x >0 n+ n 
1 for all n. If yE¥ and ZEZ with y,z>O and if y,z<z(xr +1-xr ) 

for all r>n, then for any r,s>n, 

I(y+x )-(z+x )I~o. r s 

To see this,we may suppose that s~r+l, since the inequality 

clearly holds if r=s. Then 
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and 50 

(z+X )-(y+X »(x I-X »0. 
5 r r+ r 

For each yEY and each xEZ, let 

and let 

Then 

and 

Xz={Xn :xr +l -xr >2z for every r~n~. 
r 

U (y+X )ETJ+l;, 
yEY. Y 

U (z+X )EC+l;. 
zEZ Z 

However, let x EX and x EX . Then r y s z 

1 x <z+x <-2(x I-x) 5 5 5+ 5 
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and 

1 
x <y+x <2-(x I-x). r r r+ r 

So by the preceding argument, 

Hence 

Contradiction. 

I(z+x )-(y+x )I~O. 
5 r 

d ( U ( x + X ) t U ( Z + X » ~O • 
yEY Y zEZ Z 

4.2.3.Proposition. Let t;,TJEplR and XEIR, then 

and 

x(t;+T})=xt;+XT}. 

Proof.It is obvious since 

X(t;+T})=Lim Lim x(y+z) 
y--+t; Z--+T} 

=Lim Lim(xy+xz) 
y--.!; Z--+TJ 
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X~+xD=Lim Lim (xy+xz) 
y-+~ Z-+D 

4.2.4.Theorem. Let ~EP~ and let xE~. Then 

(a) There is DEP~ such that x+n=~. 

(b) There is rlEp~ such that xD=~ if x;tO. 

Proof. (a) 

(b) 

Put D=-x+~. 

1 
Put D=-~ x • 

4.2.5. Proposi tion. Let TJEplR. Then for x, yE~, x+D=Y+D 

implies that x=y. 

Proof. Suppose that there is an DEp~ such that x+D=Y+D, 

when x;ty. We may suppose that x>y, and let k=x-y. Since 

x+D=y+D, -y+x+D=D, that is k+T7=n. Thus if AET7, AEk+T7 and 

k+AEk+T7. Since k+AEk+T7 and AEk+T7, (k+A+W)n(A+W');t0 for all 

WEB(O) • 

By proposition.3.1.1,we can choose a sequence (x )£IR n 

such that x
n

+1- x n>2k and (Xn )ET7. Let W=(-k/4,k/4). Now we 
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claim that ({x }+W}n«k+{x }}+W}=0. If not there exists t 
n n 

in the intersection such that t=x +wl=k+x' +w2' m1 m2 
where 

x ,x e(x); So x -x =k+w-w m
1 

m
2 

n ml m2 1 2· But this 

implies that Ix -x l~k+(k/2)=3k/2. But this ml m2 . is a 

contradiction since 

intersection is empty, which is not possible since (x }Ek+T/ n 

and (x )+kEk+T}. n 

4.2.6. Proposition. For any uniformly continuous 

function f:m~m with the property that 

If(a+x}-f(x)I----~'O asx~, for each fixed aem, we have 
- - -+ 
f(E+q)=f(q) for all E,qEm . 

Proof. We can choose a net (y ) in m .which converges to 
. 0: 

Tl in m. We want to show that for any uniformly continuous 

function cp: m---+[ 0, l] , 

with the same limit. 

Since 

'(cp(f(a+y )} and (cp(f(y» are nets 
0: 0: 

as y--+ro 
0: 

for a given e>o, there exists 0:(£) such that 

If(a+y )-f(y )1<£ 0: . <X 
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when a>a(£). Hence, by the uniform continuity of~, for a 

given £)0, there exists ~(a) such that 

when a>~(a).Therefore, 

Lim ~(f(a+y »=Lim ~(f(y ). a a. a a 

- -
Therefore, if ~:~~[O,l] denotes the extension of~, then 

~(f(a+1/) )=~(f(1/». Hence f(a H l)=f(1/) for every aE~, and so 

-
f(t;+1/)=f(1/). 

4.2.7. Proposition. Let x,y,zER such that x~O,y,z~l 

and t;Ep~nCl~[O,ro). Then xt;+yt;=zt; implies that y=z. 
~ 

Proof. We may suppose that [l,ro)Et;. By the above 

proposition Lg(l;+1/)=Lg(1/) for T1Ep~nCl_[ltro). If we apply the 
~ 

Lg function to the equation xt;+y~=z~t· we get 

Lg (yO =Lg( zt;) • 

Hence 

Lg(y)+Lg(t;)=Lg(z)+Lg(t;). 



By proposition 4.2.5, 

Therefore, y=z since Lg 
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Lg{y)=Lg{z) . 

is one-to.one on [1,00) • 

4.2.8.Proposition. Let l;EpIRnCl_[O,oo),and let x,yEIR such 
IR 

that x>Oty~l. Then xl;+yl;~(x+y)l;. 

Proof. This follows from proposition 4.2.7, since it 

implies y=x+y if xl;+yl;=(x+y)l;. 

4.2.9.Theorem. Let l;ECl~[O,ro)nIR, and let x,yEIR such 
IR 

that x,y~l. Then, xl;=yl; if and only if x=y. 

Proof. Clearly xl;=yl; if x=y . 

.. Now suppose that xl;=yl;, then 19x1;= 19y1; and so 

19x+lgl;=lgy+lgl;~ By proposition 4.2.5, 19x=lgy and so x=y. 

4.2.10.Proposition. The. semigroup (~N,+) 

embedded in (IR,+). 

can be 
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Proof. Let cp be the mapping from IN to IR such that 

cp(n)=n. Since cp is continuous it extends to a continuous 

mapping cpf3 from f31N into ~. We will show that cpf3 is one to 

one. To see this, take i;, T/E(31N wi th i;~T/. Then there are two 

subsets X and Y of IN such that XEi;, YETI and xnY=0. We define 

a continuous function f:IR~[O,l], stating that 

f(X)={ 1 , if xEcp(X) 
o , if yEcp ( Y ) 

and we extend f to IR by piecewise linearity. Then for any 

two real numbers r,s, 

Jf(r)-f(s)lslr-sl· 

Hence f is uniformly continuous and so extends to a 

- -
mapping f from lR into [0,1]. Since f(x)=l on Cl cp(xt and 1R «<, 

f(x)=O on Cl ~(Y), Cl cp(X)nCl cp(Y)=0. 
1R R R 

Hence cpf3 ( t;) tcpf3 (TJ) , 

since cpf3(t;)ECl cp(X} and cpf3(Tl)ECl cp(Y). 
R R 

Also, 

q.P(E;)+CP(3(Tl):cp(3(i;+Tl); that is, cpf3 is a homomorphism. This can 

. be seen as follows: 

So 

t;+T/=Lim~ Lim (m+n) 
m~.; n--H1 
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=Limc Lim (~(m)+~(n» 
m~s n--H 7 

We have the following corollary immediately, since the 

cardinality of ~~ is 2c by theorem 1.3 of [50]. 

4.2.11.Coro11ary. rn has 2c points. 

' .. 
Now we will prove the following property that will be 

used in future propositions. 

4.2.12. Proposi tion. Let (xn r be a sequence in rn with 

the property that 

Proof. Suppose that where From 

proposition 4.2.1, for every WEB(O), 

, + 
Let W=(-1/4,1/4) and choose two distinct values x,x Ern 

such that 

-x+(x ) +WE/1, 
n 
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-x +(x )+WEll, n 

x -x>l. Now suppose that, if n>nO' x I-x >x+x +1. Then n+ n 

-x+(x ) > +WE~ and -x +(x) +WE~. n n nO n n>nO 

if m,n>nO and m~n, then 

I I 

I(x -xl-ex -x )1~lx -x I-x-x >1. .. m n m n 

If m=n, 

, I 

I (xm-x)-(xn-x >1=lx -xl>l, 

that is, -x+(xn)n>n and -x +(xn>n>n have a distance apart 
o 0 

at least equal to 1. Hence 

But this contradicts the assumption that 

-x+(Xn)n>no+WEfl and -x +(x) +WEfl 
. n n>nO -

4.2.13.Proposition. Let (xn ) be a sequence in ~ and 

let t;EpIR+pIR. If (xn )Et;, then there is a real number bE~ such 
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that Ix I-X I~b infinitely often. n+ n 

Proof. Suppose that t;EplR+plR and {x lEt;, but that for n 

any bEIR 

for all· but a finite number of values of n. Then 

x -x --+<D or .n+l n . 
x -x --+-w' n+l n t 

but this contradicts 

assumption that e is in plR+pIR, by proposition 4.2.12 • • 

the 

4.2.14. Proposition. (IR,+) has 2c disjoint left ideals. 

Proof •. To prove this, we will first show that the 

function Lg assumes 2
c distinct values on ~. 

+ -+ Consider the Lg function from lR into IR. Clearly 
-+ -+ + -+-IR+~LgIR+~lgIR ~IR . since IR is dense in IR • LgIR+ is dense in 

since Lg~+ is compact, Lg~+ 

therefore, the cardinality of Lg~+ 

is 

is 

the 
-+ space IR , 

c .. 
2. since the 

-+ C c 
cardinality of·IR is 2 • Hence the Lg function assumes 2 

distinct values on IR. 

Now let el,e2EIRnCl_(1,w) be such that Lgt;1~Lgt;2.Then 
lR . - .. 

(IR+e
1

>n(IR+e2 >=0. If not, there exists ryl,D2EIR such that 

TJ
1

+e
1

=T7 2+e2 . By proposition 4.2.6, Lgt;1=Lgf!2' which is a 
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contradiction. So the intersection is empty. Since the Lg 

function assumes 2c distinct values on Cl_(l,ro)n~, there are 
~ 

2c distinct points ~1'~2 in ~ with the property that 

19~1~Lg~2.Hence (~,+) has 2
c 

disjoint left ideals. 

In the following theorem,we shall regard Z as embedded 

in ~. We shall use Z* to denote ~Z\Z. Our theorem gives a 

decomposition for ~ which is analogous to the decomposition 

of a real number as. the sum of a fractional part and an 

integer. 

4.2.15. Theorem [16]. Each l;EP~ can be expressed uniquely 

* as ~=x+P for some xE[O,l) and some pEl. 

* This establishes a bijection between pR and [O,l}xZ .The 

* mapping e;......--.(x,l1) from p~ to [O,l)xZ defined in this'"way, 

* is continuous on p~\Z . 

Proof. Let l;Ep~. We may suppose that. l;EC1_ [0, ro). We have 
~ 

seen that there is a sequence (xn ) in ~ for which (Xn)El; and 

x 1-x ~l n+ n 
for every n. The mapping where 

denotes the fractional part of extends to a 

continuous mapping ~:~~~[O,l]. 

. '" 

We have also seen that the mapping n~x extends to a n 
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homeomorphism f from [3IN onto Cl_{x :nEIN}.We choose x to be 
IR n 

-1 
cpf (~). 

Given WEB( 0) , and so 

{x :{x }EX+W} being the image under f of this set,must be in 
n n 

Hence {x :x -XE71.+W} n n 

of course, in 7l. for each n. 

is , 

If XE~, X+W will contain a number x for which x -xE71.+W. n n 

This shows that (X-x)n(71.+W)~0 and hence that 7l.E~-X. So 

* ~-XE71. , as required, and we have ~=x+~ for some xE[O,l] and 

~E71.*. In the case in which x=l, we replace x by 0 and ~ by 

1+~. Hence we can assume that xE[O,l). 

We shall show that this· expression for ~ is unique. 

Suppose that x+~=Y+~, where x, yE[ 0,1) 

O<lx-y\<l. However, for any WEB(O), 

and so 

x-yE'll+W+W. 

* and J1, ~E'll • I f x~y , 

It follows that x-yE'll which is impossible. This 

establishes that x=y and hence that J1=~. 
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It is now clear that the mapping ~~(x,~) from ~ to 

* [O,l)xZ is bijective. 

To show that this is continuous * on ~\Z , 

* 
let t;E~ 

satisfy t;=x+~ for some xE(O,l) and some /1EZ . Let AE/1 and 

WEB(O).Choose VEB(O) satisfying x+V+V~(O,l), V~(-1/4,1/4) 

and V+V~W. Suppose that D is in the neighbourhood C_ of 
V(x+A) 

* ~ and that D=Y+C, where yE [0, l) and CEZ • Since Y+ ZED and 

X+A+VED, 

(y+z+V)n(x+A+V)t0 

Thus Y-XEZ+V+V. Now 

l+x+V+V£( 1 ,ro) . 

and 
-l+x+V+V£(-oo,O). 

So y is not in either of these sets, and so y-XEV+V~W. 

Now, if BEe, where B~Z we have y+BErl and hence 

(y+B+V)n(x+A+V)t0. 

thus 

A()(B+V+V+V+V)t0 
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and so AnB~0. It follows that AEC. Since x+W is a basic 

* neighbourhood of x and {CEZ :AEC} is a basic neighbourhood 

of ~, we have shown that the mapping ~~(x,~) is 

continuous at ~. 

4.2.16.Corollary. All the idempotents of ~ other than 0 

* lie in 7L • 

Proof. Suppose that ~ is an idempotent in ~ and ~~O. 

Then, clearly ~Ep~. By theorem 4.2.15, ~ can be expressed 

* uniquely as x+~, Where xE [0,1) and ~E7L . If x=O then the 

proof is obvious. Suppose that x~O, then 

(x+~)+(x+~>:;x+~ 

which implies that 

, .. 

Since IR is in the center of IR t JJ.+X=X+JJ. for every xEIR, 

therefore, x+JJ.+~=~." Hence 7LEX+~+~ as 'lE~, and so 'l-XEJJ.+~. 

Therefore, by. the definition of addition on. iRJ for every 

WEB(O), there exists TEP such that -t+Z-X+WEp and so 

7L-x+W€~ since Let then 

. {(Z-x)+w+w>n<7L+W)=0 which is is a contradiction. Hence x=O. 
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4.2.17.Corollary.Let ~Ep~ and xE~\{O} and suppose that 

~ is an idempotent. Then (x+~) is not an idempotent. 

Proof. Since ~ is in the centre of ~, for all XE~ and 

~Ep~, x+t;=t;+x. So 

(x+t;)+(x+t;)=x+(t;+x}+t; 

=x+(x+t;)+~ 

=x+x+t;+l; 

=x+x+t;. 

Suppose that (x+t;)is an idempotent. Then x+l;=x+x+l; and 

so by the proposition 4.2.5, x=x+x which is impossible since 

4.2.18.Corollary.Every left (right, two-sided) ideal of 

-~ has the form (~+L) (~+R, ~+I), where L (R,I) is a left 

* (right, two-sided) ideal in Z. 

If M denotes the minimum ideal ·of 

minimum ideal of ~ will be ~+M. 

* 7l t the 

Proof. Let K be a left ideal in ~ .. Then if t;EK, t;=x+TJ1 
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* for some xE[O,l) and D1EZ . Let 

* * L=~ TJEZ : x+J1EK for some xEIR, J1EZ ~ 

* * Then L is a left ideal of Z • To see this let D1 EZ • If TlEL, 

x+T7EK for some xE [0, 1) and so 

* since K is a left ideal and X+DEK. Hence Tl 1 +T7EL so Z + LcL, 

and so K£IR+L (1) 

To see that .IR+L£K. Let x+J1EIR+L, There is x 1EIR such that 

x +J1EK. Since K .is a left ideal, for every yEIR, Y+Xl +J1EK and 
1 . 

so (x-x
1

)+x
l

+J1EK, so x+J1EK. Hence IR+L£K (2). From (1) and 

(2), we obtain IR+L=K. 

, I 

If M is the minimum ideal of IR. Then M =UL ,L is a 

minimal left ideal of IR. But L =IR+L for some left ideal of 

* I Z • Hence M =U(IR+L)=lIhUL=IR+M, where M. is the minimum ideal 

* of Z • 

4.2.19.Theorem. Let M be a left (right) ideal in IR such 

that M=IR+M1' where M1 is a left (right) ideal in * Z .Then M 
,. 

is a minimal left ideal of IR if and only if Ml is a minimal 

* left ideal of Z . ....,' 
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Proof. Suppose that M is a minimal left ideal of ~ and 

suppose on the contrary that Ml is not a minimal left ideal 

* of Z*. Then there is a left ideal Ll in Z such that LICMl · 

then ~+Llc~+Ml=M. Now ~+Ll is a left ideal in ~. To see this 

let 11E~ and fet where 

I I * 
xE[O,l), XlE~ and 11 ,11 l

EZ . Then 

Since Ll is a left ideal * in Z 

11=X+11 , 

I 

x+xI +11 +11
1 
ELI' Hence ~+L1 is a left ideal in ~. This is a 

-
contradiction since M is a minimal left ideal in ~. 

* Now suppose that M1 is a minimal left ideal in Z • Then 
-

it is easy to see that ~+Ml is a left ideal in ~. To see 

that M is minimal in ~, suppose that there is a left ideal L 

-in ~ such that L=~+LlcM=~+Ml' where Ll is a left ideal in 

* Z. Then ~+Ll~~+Ml which implies that Ll~Ml' but this 

contradicts the assumption that MI is a minimal left ideal 

since LI is a left ideal in z*. 

4.2.20.Corollary. Every minimal left (respectively, 

right) ideal of ~ contains 2c idempotents and so ~ contains 

2c minimal left and right ideals. • < 
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Proof. If L is a minimal left (right) ideal in IR and 

L=IR+Ll' by the preceding theorem Ll is a minimal left 

(right) ideal of Z* and since Z* is' an ideal of (~Z,+) by 

lemma 7.2 of [26], Ll is a minimal left (right) ideal of 

~Z. Since any minimal left (right)' ideal of ~Z contains 2
c 

idempotents according to corollary 2.6 in [29], Ll contains 

2c idempotents and since Ll£IR+Ll =L, L contains 2
c 

idempotents. 

Since the intersection of a minimal left and a minimal 

right ideal is a group with only one idempotent according to 

theorem in [5],the conclusion about the number of minimal 

left and minimal right ideals follows • 

4.2.21. Proposi tion. Let M be the minimum ideal of lR. 

Then, for every xEIR,x+M=M+x=M. 

Proof.Since M=IR+Ml' where Ml is a minimal ideal of Z*, 

and since IR is in the center of IR, x+M=M+x so M+x=IR+M =M 1 • 

* 4.2.22.Corollary.lf ~,v are elements of Z which define 

disjoint-principal left (right) i~eals in Z*, then they also 
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define disjoint principal left (right) ideals in ~. 

Thus ~ has 2c disjoint left ideals and 2c disjoint 

right ideals. 

Proof. Suppose that ~ and v define disjoint principal 

* left ideals in Z and suppose that 

Then there exists ~l,~2E~ such that ~l+~=~2+v. 

. * 
Therefore, ~l=xl+~l' ~2=x2+~2' Xl,x2E[0,l)'~l'~2EZ . Hence 

which implies that 

But this is a contradiction since 

* *'. 
(Z + 11 ) n (Z + v ) ;t:0 • 
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4.2.23.Cor01lary.lf two principal left ideals of p~ 

are not disjoint , one is contained in the other. 

, 
Proof. Suppose that (p~+~}n(p~+~)~0 and let ~=x+e , 

, * 
~=Y+~ , where y, xE[ 0, I) ,e , T7 E71. . Then there exists e

1 
,T/I Ep~ 

I I * 
such that ~l+~=T7l+~· Choose x1,y1E[O,1) and ~l'T/lE71. such 

that 

Then 

, 
(xl+x)+~l+~ =(Yl +Y)+T7l +T7 

and so 

But this implies that (x l +x)-(Yl +Y)E71..Say z-(x +x) ( ) 
-. 1 - Yl-Y J 

then 

Let c:::z+e l , . then and 

Therefore, according to corollary in [58] 

* I *' (71. +~ >n (71. +T7 }~0. 
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I . * I * Hence I; E7L +TJ or TJ E7L +1; , and so t;EIR+TJ or T/EIR+t;. 

4.2.24.Corollary. plR+plR is nowhere dense in plR. 

Proof. Suppose that there is a non-empty open subset U 

contained in Cl_(plR+plR). Let t;EU, then U is a neighbourhood 
IR 

of 1;, hence by proposi tiori 2.3.9 there is a subset U of 

IR,UE~ and WEB(O) such that 

U= {T/EplR I U+WET/} 

By theorem 4.2.15 we can wri te ~ uniquely as 

i * x+t;'=I;, where xE[O,l) and t; E7L • Let 

. , 
then U1 is open neighbourhood 'of t; in pJR since ( U - x) Et;c, .. ,,_ 

'" * * Let V=U1n7L , then V is open in 7L and is not empty 
I * * since t; EV. We claim that Vc7L +7L .• To see this let T/ EV and 

'" I * so T/ EU
I 

and T/ E7L • Therefore, (U-x) + WET) and so U+WEx+T/ 

which implies that x+TJ EUcplR+plR. Then there are TJ l ,TJ2EplR 

such that x+T/ =T/1+T/2" By theorem 4.2.15, we can write 

* T7
1

=x1+T/1' T/2=x2+T/2' x1 ,x2E[O,1) and T/1,T/2E7L • Hence 

I . 
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Let t=x
1

+x
2
-x, then TJ =t+TJ1+TJ 2 · There is an infinite 

subset A of 'lL such that AETJ and so AEt+TJ 1 +T12 and so 
I 

A- tETJ l +TJ
2 

which implies that·' A-t£IN. Hence 

I '** '" * * TJ =TJ
1

+TJ
2

E'lL +'lL ,this shows that U1£'lL +'lL • 

* * contradiction since 'lL +'lL is nowhere 

according to theorem 4.2 in [58]. 

I * 
t+TJ1E'lL .Therefore, 

But this is a 

dense in 'lL* 

4.2.25. Corollary. Suppose that I;EplR can be written as 

* l;=x+l1, where xE[O,l} and I1E'lL. Then I; is right (left) 

cancellable inplR if and only if 11 is right (left) 

* cancellable in'll. 

Proof. Suppose that 1;=x+11 is right cancellable in plR 
<: * 

and suppose that 11 is not right cancellable in 'lL. ~here are 

* I1l,112E'lL such that 111+11=112+11, 111-112 " Since X+l1l+112=x+l1l+112 

111 +x+I1=112+x+11 and this implies that 111+1;=112+1;. Since 

11
1

,112E'lL*cPIR, this is a contradiction. 

Conversely suppose that·l;is not right cancellable.in 

plR.Then there exist 1;1'~2EPIR such that 1;1~1;2 and 1;1+1;=1;2+1;. 

Let 1;1=x1+111 and 1;2=x2+112 ,t;=x+l1. So 
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But this implies 

and so 

This contradicts 

and so x
l
-x

2
EZ. Since 0~lxl-x21<l, 

J..l.l+J..l.=J..l.
2

+J..l.. Since /;l¢/;2 and x l = x 2 ' J..l. l ¢/12· 

the assumption that /1 is right cancellable in z*. 

is right 

cancellable in pRo 

Proof. Let Then XE[ 0.1) , 

* . * * * 
J..l.EZ .Since t;EpR\(pR+pR), /1EZ \(Z +Z ). Since the set of 

right cancellable elements of Z* . contains z*\(z* +z*~~''''bY 
[58], /1 is right cancellable and so by the corollary 4.2.25, 

is right cancellable. 

4.2.27.Corollary. Let L (respectively,R,C) denote the 

set of left (respectively,right,cancellable) cancellable 

element of pR, then L=[O,l)+Ll (respectively,R=[O,l)+Rl , 

... 
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C=[O,l)+Ci)' where L1 (respective1y,R1 ,C1 ) is the set of 

* left (respective1y,right,cancel1ative) elements of Z • 

Proof. We will give the proof for the set L of left 

cancellable elements. Let TIEL, then. since T]EplR, T/ can be 

written uniquely 

Therefore, T/ ... is 
1 

as where 

left cancellative 

4.2.25, and so T]E[0,1)+L1 " 

XE[ 0,1) 

'71* in 0.. 

and 

by corollary 

For the reverse containment let T/E[0,1)+L1 then T/=x+T/1 

xE[O,l), T/1EL1" Then by corollary 4.2.25, T/ is left 

cancellable and so TJEL. Hence L=[0,1)+L1• 

4.2.2B.Theorem. The set of left (respective1y,right, 

cance11ative) cance11ative elements L (respectively,R,C)of 

plR is dense in plR. 

Proof. We will give the proof for the set L of left 
, ',-

cancellative elements. Let TJ=x+T/ 1 , where 

* T/1EZ . We will show that if T/IiClplRL,. then 

Suppose on the contrary that 

xE[O,l) and 

T/11iCl *L I · . Z 

T/1ECl *L1 · 
Z 

Then x+T/1Ex+ C1 *L1 .and so 
Z 

x+T/1EX+ClplRL1~ClplR(x+Ll )CClplR ( [0, 1)+L1 ). Hence T/=X+T11EClpIRL.· 

This contradicts the assumption that TlIiCl IRL. Hence if L is p\. 

* not dense in plR, L1 is. not dense in Z but it is a well 
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known fact that the set Ll of left cancellative elements is 

* dense in Z [58]. 
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CHAPTER V. 

NON-HOMOGENEITY OF ~, 

THE RUDIN-KEISLER AND THE RUDIN-FROLIK ORDERS 

In the first section of this chapter, we shall give the 
-

definition of a homogeneous space and we shall show that p~ 

is not homogeneous. In the second section, we shall give the 

definition of the Rudin-Keisler and Rudin-Frolik orders on 

m and study some of their properties. 

Section I. Non-Homogeneity of ~ 

5.1.1.Definition.A . topological space is called 

homogeneous if,for every pair of the points of the space, 

there is an automorphism of the space which exchanges the 

pair of points. 

5.1.2.Lemma. For every uniformly continuous function 

g:m~R, there is a positive real number c such that 

Ig(x)-g{Y)I~clx-YI whenever Ix-YI~l. 

Proof. Since g is uniformly continuous there is a o~O 
. ... 
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such that Ix-YI~o implies that Ig(x)-g(Y)I~l. 

Suppose that y~x+1 and 1etn be the natural number for 

which x+no~y~x+(n+1)o. Then 

n-1 
Ig(x)-g(y)I~L Ig(x+(r+1)o-g(x+ro)I+lg(y)-g(x+no)l~n+1. 

r=l 

Since y-x~no and y-x~l, 

I y;Sx 1 g(y)-g(x) « )+y-x«6+1 )(y-x). 

1 
Hence if we choose c=6+ 1 , the result follows. 

5 • 1 .3. Theorem. There are poin ts ~ , T} in pIR such that 

for any homeomorphism 

h (t; );tTl 

Proof. Suppose that (Xn)Et;, where 

n--+<D. By theorem 3.1.1, we may suppose that 

h(x
n

+
1

)-h(xn »1. Then (h(xn » has the same property as (xn ), 

because the restriction hl~ of h to IR is a homeomorphism of 

IR into itself for which hand h-1 are uniformly continuous. 

By the lemma 5.1.2, we have that 



99 

Hence (h{x
n

» has the same property as (xn ); that is 

h(xn+l)-h(xn)~ and 

Hence if TJEpIR+pIR, 

h(~)ECl_{h(x )}np~. 
~ n 

then (h(xn ) )~TJ , that is T/~Cl_(h(x » . m n 
But 

;ECl_(Xn ) and so 
R 

h(~)ECl_(h(x ». Hence h(;)#T/ 
~ n _ 

x EIR 
n 

5.1.4. 

and 

Proposition. 

x l'-x >1. n+ n 
Let 

Let ';EP~ and choose 

G={T/EpmIU(x -£,x +£)ETJ} 
nElNn ~ 

{x }E; with n 

be the neighbourhood of ; in pm defined by some· £ satis{ying 

O<£<1/4.Then, for each T/EG, there is an ul trafil ter U E~IN 
T/ 

defined by stating that AEUTJ if and only if 

Proof. Clearly, 

then 

U(x -£,x +£)ETJ. 
nEAn n 

INEU and 0~U • 
TJ TJ 

If AEU B£IN and .A£B, 
TJ, 
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Therefore, since 

and so BEUry' Now to show that AnBEUry whenever A,BEUry' we 

need to show that for any A£fN, 

U{x -E,X +q~TJ 
nEAn n 

U (X-E,X +£)~TJ. 
nEIN\A n n 

either 

Let A£IN. Since AnCIN\A)=0 and xn+1-xn >1 and 0<£<1/4, there 

exists W={-1/4,1/4) in B(O) such that 

This implies that 

or 

u (x -£,x +£}~T7. .. 
nEfN\An n < 
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Now let A,BEU
n 

and suppose ·that AnB~Un' Then A\(A()B)EU n 
. . 

and B\(A()B)EU
n

. This is not possible as 

disjoint. 

these two' sets are 

5.1.5. Proposition. The mapping h:n~--~)Un from G into 

~* is continuous. 

Proof. 

in ~*. Then 

Let nEG and let A be a basic neighbourhood 

AEU , since A=~pE~*IAEP~, But this implies 
n 

by proposition 5.1.4.Now let 

B={~EpRI(U(Xn-E,X +E»+(-8,8)E~}, 
nEA n 

of Un 

that 

where 6>0 and E+8<1/4.B is a neighbourhood. of n by 

proposition 2.3.9 and h(BnG)~A. 

5.1.6. Proposition. pR is not homogeneous. 

Proof. We know from theorem 4.2 .15 that each l;EplR can be 
I . I * 

expressed uniquely as t;=x+t; ,where xE[Otl)' and t; E71 .Let U. 

* denote plR\Z . Suppose that l;EU and that *f:plR----+plR is' a 
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homeomorphism for which f(~)EU. We shall first show that ~ 

has a neighbourhoodW in p~ with the property that, for any 

* Let CP:U---+(O,l)x~ be defined by CP(l;)=(x,~ ), where l; 

has the decomposition given above. By theorem 4.2.15 and 

theorem· 4.1.7, cP is a homeomorphism.· It follows that each 

point in U has a basis of neigbourhoods·· of the form 

cp-1«a,b)XV), where (a,b) is an open interval in (0,1) and V 

* is an open subset of ~ . 

We now observe that 

same component of U if 

two points 

and only 

suppose that CP('1):::(P1"1) and 

'1"2 of U belong to the 
I I 

if '1:::'2" To see this, 
, 

that <P('2):::(P2"2)' If 
I I I 

'1 =C
2

, C
1 

and C2 are connected· by the path in U which is 
I 

defined as t---+(1-t)/l1+t /l2+'1,where tE[O,l]. On the other 
I I 

hand, if C1;tC2 , '1 and '2 cannot belong to any connected 

subset C of U. If they did, C would be a connected ~ubset 

of ~ * containing the distinct points '1 and C2 which is 

impossible. 

We . can choose a neigbourhood W of l; which has the form 

q,-l«a,b)xV) and satisfies W£U()f-1 {U). Let C1'2EW • If C1=C;, 

then the path P defined in the preceding paragraph will lie 

in W. It follows that f(C 1 > and f('2> will belong to the 

connected subset f(P) of U, and hence that 
I , 

(f(C1 » =(f('2» • 
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Now choose ~,T)EU with the property that I; is a weak 

* P-point in Z , but T) is not. There will then be a sequence 

(T) ) in U'having T) as a limit point, for which none of the 
n 

points T)n are equal to T) .' Suppose that f:plR~plR is a 

homeomorphism for which f(I;)=T). Let W be a neigbourhood of I; 

with the property defined in the preceding paragraph. Since 

point 

some 

I; is a limit 

(f-1 (T)n»'=1; for 
, , I 

-1 of '(f (T)n»nW, we must 

n for which. f-l(T) )EW. But n 

implies that T) =(f(I;» =T) which is a contradiction 
n -

have 

this 

Ac cording to theorem 4.35 of [62]' if X is 

non-pseudocompact, ~X\X is not homogeneous under the 

continuum hypothesis. Therefore, ~lR\lR is not homogeneous. 

Section II. The Rudin-Keisler and The 

Rudin-Frolik Orders 

Let ~,T)E~X, then ~ and T) are said to be type equivalent 
'-. .... 

if there is a homeomorphism h of ~X onto itself such that 

h(I;)=T), equivalently,there is a one to one continuous 

function n from X onto X for which n- 1 is also continuous 

and n~:~x---+~X has the property that n~(I;)=T]. We write I;AST) 

when ~ and T] are type equivalent. 

It is clear that AS is an equivalence relation on QX tJ , 

and the set of equivalence classes is denoted by T(~X). 

The quotient equivalence function is denoted by 
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t : {3X--{[' ( {3X ) 

and t(~) is called the type of ~,for ~E{3X. 

The Rudin-Keisler pre-order~' on {3X is the binary 

relation given by n5;t; if there is a continuous fEX
X 

such 

that f{3(1;)=T) 0 It is clear that ~ is reflexive and 

transitive. 

The Rudin-Keisler partial order on T({3X) also denoted 

by 5; defined by 

05;1:", if there are T),t;EflX such that t(t;)=o, t(n);:'t and t;Srt~ 

According to [13, chap. 9], this order is well-defined, 

reflexive, transitive.It is also anti-symmetric that is if 

0~5;'t and 't~o then o='t. 

The notation ~<rt means that ~~rt and ~ is not type 

equi valent with T) t and for partial order oS't and oci:'r;. 

A subset D·of {3X is called strongly discrete if there 

is a family {Ad: dED} of open subsets of X such that Ad()Ad' =.0 

for d,d'ED, dci:d' and dEAd for dED. 

The Rudin-Frolik pre-order [ on flX is the binary 

relation given by 
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~Iry if there is f:X~PX such that f(X) is a (strongly) 

discrete subset of PX and f(~)=D. 

The Rudin-Frolik partial order also denoted by I is 

binary relation on T(PX) denoted by 

oIL if there are ~,ryEPX such that t(~)=o,t(D)=L and ~ID. 

According to [13,chap 9,16] [ is well-defined partial 

order on T(PX) and DI~ always implies that ry~~. 

Let ry,~EJR, then we say ry and ~ are equivalent if there 

are uniformly continuous functions f,g:~~~ such that 

f(D)=~ and g(~)=D, and when ~ and ry are equivalent we write 

It is easy to see that = is an equivalent relation on 

JR. 

5.2.1. Definition. The Rudin-Keisler pre-order ~ on ~ 

is the binary relation on p~ given by ~s;D if there is a 

uniformly continuous function f:~~~ for which f(D)=~. It 

is easy to see that ~ is reflexive and transitive. 

In the above definitions, f is the unique extension of 

f to ~. 
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We say ~<ry when ~~ry and ~ and ry are not equivalent, that 

is, there is no uniformly continuous function f: IR--.IR for 

which f{~)=T7. 

S.2.2.Theorem. If (x )£IR 
n 

element t; in Cl_{x }nplR 
IR n 

can 

and xn+l-xn~' 

be equivalent 

Rudin-Keisler order to an element in plR+plR. 

then no 

in the 

Proof. Let t;ECl_{x )npIR,where x l-x~, (x }cIR and 
IR n n+ n n 

suppose that t; is equivalent to an element ry in pIR+plR and 

let X={x :nEN}. By assumption there are uniformly continuous n 

functions f,g:IR--.IR such that f(t;}=ry and g(ry}=t;. Let 

y =f(x ) and Y={y }, by theorem 3.1.1 we may suppose that n n n 

y l-y ~l. For each n, let g(y ) be the point of X closest n+ n n 

to g{y ), if there is more than one such point we choose one n 

withsmal1est n. 

For each £>0, let Y£={Yn:d(g(Yn)'X)<£}, Then 

Y£ET/, because {g{yn):d(g(Yn),X)~£}=g(Y\YE}~t; and hence 

Y\Y£~T7. Also f-l(Y£)E~, because f(X\f-l(y£»~ry and hence 

X\f-l(Y£)~t;. So we can replace X by f- 1
(yE). 

Let h=gf I X· Since we· can identify X· with I3X we can 

extend h to h 13 on I3X and h13 (~) =~. Hence by proposi tion 9.2 

of [13], X ={xEX: h(x)=x}E~. If we replace X by X , we have 

that gf (x ) =x 
n n for all n and so g(y )=x • n n 

Since 
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d(g(y ),g(y »<£ for each n, n n g(y l)-g(y »x +l-x -2£. n+ n n n 

Hence g(Yn+l)-g(Yn)~' By proposition 4.2.13, there is a 

positive number b and infinitely many values of n for which 

Yn+l-Yn<b. This contradicts the lemma 5.1.2. 

* It is a well-known fact that there are points in IN 

which contain a sequence with the property that x -x~ n+l n 

and which are equivalent to some points of IN * * +IN in the 

Rudin-Keisler order. In fact, if t; is * a point in IN which 

contains such a sequence and if TJ is * in IN , then E; is 

equivalent to t;+TJ [28]. 

Let t;,TJE~, then we say t; and TJ are uniform type 

equivalent if there is a uniformly continuous homeomorphism 

h of IR onto itself such that 
-1 

h is 

also uniformly continuous.If TJ and t; are uniform type 

equivalent, we write TJ~t;. 

It is clear that uniform type equivalence is 

reflexive,symmetric and transitive and therefore RS is an 

equivalence relation on ~. We will denote the set of the 

uniform equivalence classes by T(~) .We call an equivalence 

class a uniform type of ~,and we denote the quotient 

equivalent function by 
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and t(~) is called the uniform type of n,for nE~. 

5.2.3.Theorem.Let n,~E~.Then if n contains a sequence 

(xn )£1R such that xn +1 -Xn---+'D as n---+'D and if ~EpllhplR,then n 

and ~ are not uniform type equivalent. 

Proof.Suppose on the contrary that n and ~ are uniform 

type equivalent, then there is a uniformly continuous 

homeomorphism of lR onto itself such that f- 1 is also 

uniformly continuous and f(ry)=~. As in theorem 5.1.3 

f(xn+1 )-f(xn)--+<Xl as n---.oo and 

contradicts to proposition 4.2.12. 

(f(x ) )E~, but this n 

5.2.4. Defini tion. The Rudin-Frolik pre-order i on iR is 

the binary relation on iR given by nr~ if there is a monotone 

uniformly continuous function f:~~lR such that f(~)=n. 

5.2.5.Remark.lt is clear from the definition of ~ and r 
that ryI~ always implies that n~~ for n,~EiR. 

For the Rudin-Frolik pre-order,we use the notation 

n[~ to mean that ryr~ and n and ~ are not uniform type 
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equivalent. 

5 • 2 • 6 • Lemma. If Tl Rff/, I; ~I; 

Tl ,Tl,t; ,t;EIR. 

and TlII;, then Tl II; for 

Proof. Since Tllt;, there is a monotone uniformly 

continuous function f:IR--+1R such that [(1;)=11 and since Tl Rff/ 

and t; ~I; there are uniformly continuous homeomorphisms 

n1,n2:IR~1R such that n- l ,n- 2 are also uniformly continuous 
, 

and n
1

(Tl )=Tl,ll2(1; )=1; 

Let then g is monotone and uniformly 

continuous.Hence g has an extension g on iR such that 

'" '" , -1 -1 =n 1 of(t;)=n 1 (Tl)=Tl • 

Hence, Tl I I; • 

5.2.7.Lemma [13]. Let X be a set with the discrete 

topology and let D be a subset of X. Suppose that f:D~X 

has the property that f~:~D~~X has a fixed point 1. Then 

there is a set AEA such that f(a)=a for every aEA. 
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Proof. We first consider the case in which D=X,and show 

that f must have a fixed point. If f has no fixed point, it 

follows from lemma 9.1 of [13], that X can be expressed as 

the union of three disjoint sets,X
O

,X
1

,XZ,with the property 

that Xinf(Xi)=0 for i=O,l,Z. However, if 

f(X.)Ef(l)~. This is a contradiction. 
1 

X.El, 
1 

then 

If D~X, we again deduce that f must have a fixed point 

by applying the result in the preceding paragraph to the 

extension of f which maps every point in X\D to some chosen 

point of D. 

Finally, let A=~xEDlf(x)=xr. If YE1, we know that fly 

must have a fixed point. Hence AnY~0. Thus AE1. 

5.2.8. Corollary. Let X={x }, where (x ) is a sequence n n 

of real numbers satisfying x I-x >0 for every n and some n+ n 

0>0. Let f: IR---+IR be a uniformly continuous function for 

which f(X)£X and f has a fixed point ~ in X. Then there is a 

subset A of X satisfying AEt;, for which f(x)=x for every 

xEA. 

Proof. We can identify X with ~X and fix with (flx)~ 

The result follows from the lemma. 
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5.2.9. Theorem. The Rudin-Frolik pre-order I on p~ is 

reflexive and transitive.Furthermore if ~ITJ and TjIt;,then t; 

and TJ are uniform type equivalent. 

Proof.Let Id be the identity mapping on ~. Since Id is 

monotone and uniformly continuous, it extends to a mapping 

Id on ~ for which Id(~)=t; for all ~E~. Hence I is reflexive. 

To see that I is transitive, let t;,Tj,yEp~ and t;ITj and TjIy. 

Then there are monotone uniformly continuous functions 

f,g:~:----~)~ such that f(Tj)=t; and g(Y)=Tj. The composite 

function fog is uniformly continuous monotone and 

(fog)(y)=f(Tj)=~.To see that I is anti-symmetric, let t;,TjEp~ 

satisfying t;ITJ and TjIt;. Then there are uniformly continuous 

monotone functions f and g from IR to itself, for which 

We choose sequences (xn ) and (Yn) of real numbers such 

that {Xn}Et;, {Yn}ETj, xn +1-xn >1 and Yn+l-Yn>l for every n. 

Put X={xn } and Y={Yn}. Let p and q denote the 

ul trafil ters on IN defined as follows: AEp if and only if 

{x I nEA}Et;; and BEq if and only if {y InEB}ETJ.Note that, if n n 

AEp, then {f (xn ) I nEA}ETJ. 

Now {nEINld(f(x ),Y)<1/4}Ep. Thus if we replace X by a 
n 

suitable subsequence, we may suppose that d(f(xn ),Y)<l/4 for 

every n. Given n, let m be the integer for which Ym is the 
n n 
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element of Y closest to f(x ). Then, if AEp, {y InEA}ED; for 
n mn 

f(xn ) is at a distance at least 3/4 from Y\{Ym InEA} , for 
n 

each n and so Y\{Ymn1nEA}!iT/. 

Now, consider the function which maps each xn to Ym
n

' 

and which is defined piecewise linearly otherwise. It is 

easy to see that this function is uniformly continuous and 

monotone, and that its extension to ~ maps € to D. So we may 

replace f by this function and suppose that f(X)£Y. 

Similarly, we can now replace g by a suitable function 

and suppose that Y has a subsequence Y satisfying Y ED and 

g(Y )£X. 

Let 
I I 

X =~x If(x )EY ~. n n Then X E€. Since (g of)( € ) =€ , it 

follows from the corollary to the lemma, that there is a 

subset A of X such that AE€ and (gof)(x)=x for all XEA. 

Now define h:~~~ by stating that hex )=f(x ) n n if 

x EA, and that h is piecewise linear otherwise.It is easy to 
n 

check that h is a homeomorphism, that hand h- 1 are 

uniformly continuous and that h(~)=D. 

The followings are clear from the fact that there are 

at most 2c function from ~ to ~ 
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Since there are c continuous function from ~ to 

itself we have 

for every t;EIR. 

We now give an example to show that there are 

some poits in p~ which are equivalent in the Rudin-Keisler 

order but they are not equivalent in the Rudin-Frolik order. 

5.2.10.Example. Define X={2n +r InEW,rEZ and O~r~2n-l}. 

We define f:~~~ by stating that f(2 n+r)=2n +2n - l _r if 

n 2 +rEX, and extending f by piecewise linearity. Note that 

It is easy to check that f is uniformly 

continuous . 

-
Let AEIR\IR be such that {2n }EA, and let t;=A+A. Put 

D=f(t;). Then t; and D are equivalent in the Rudin-Keisler 

,order, because t;=f(D). 

We claim that there is no uniformly continuous 
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homeomorphism h:~~~ for which h-1 is also uniformly 

continuous and h(~)=ry. 

To see this, suppose that, on the contrary, such a 

homeomorphism h exists. 

We know that XE~, because the set of integers of the 

form 2k+2n (k<n) will contain a net converging to ~, since 

we can allow 2n to converge to A and then allow 2k to do so. 

so X=f(X)Ery. 

Proceeding as in the proof of the last theorem, we may 

suppose that h(X)£X, because we can construct another 

homeomorphism which will have this property, as well as the 

other properties assumed for h. 

Now fh( ry) =ry. 

It follows from the corollary 5.2.8 to the lemma 5.2.7 

that there will be a subset Y of X such that YED and fh(y)=y 

for every yEY. However, if VEry, h(Y)E~. So,for some nEIN, 

h(Y) must contain at least two elements from the set 

n I n-1 {2 +r Q;S;r;S;2 }, for otherwise ~ could not be in p~+p~ by 

proposition 4.2.12. Thus Y=f(h(Y» must contain at least two 

elements from this set, and fh cannot therefore be the 

identi ty on Y. This is. because fh is order-reversing on 

this set, this is a contradiction • 
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Let D,~E~.Then we say D and ~ are equivalent if Di~ and 

~iTJ and we write ~~ if ~ and TJ are equivalent.It is easy to 

see that ~ is an equivalence relation on R. We denote the 

set of all equivalence classes on ~ by TI(~) and the 

quotient equivalent function by 

and tl(D) is called the type of TJ, for TJE~. 

5.2.11.Definition.The Rudin-Frolik partial order (we 

also denote it by i) on the set of equivalent classes 

TI(~) is defined by 

ofr if there are TJ, ~E~ such that tl (TJ) =0 and tl (~) ='C 

and TJi~. 

5.2.12.Lemma. Let TJl'TJ2'~I'~2E~ and suppose that 

TJI~~I,TJ2~~2 and ~2iTJI' ~liTJ2 then ~1~~2· 

Proof. It is obvious since i is transitive. 

It is clear that i is ref1exive,transitive, and 

anti-symmetric. 

We write 0['C when oi'C and o#'C. 
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