
THE UNIVERSITY OF HULL

INTEGRATING SENSORS AND ACTUATORS FOR ROBOTIC ASSEMBLY

being a Thesis submitted for the Degree of

Doctor of Philosophy

in the University of Hull

by

David Gary Johnson, B.Sc.

September 1986

SUMMARY

This thesis addresses the problem of integrating

sensors and actuators for closed-loop control of a robotic

assembly cell. In addition to the problems of interfacing

the physical components of the work-cell, the difficulties

of representing sensory feedback at a high level within the

robot control program are investigated. A ne~ level of robot

programming, called sensor-level programming, is introduced.

In this, the movements of the actua tors are not gi ven

explicity, but rather are inferred by the programming system

to achieve new sensor conditions given by the programmer.

,Control of each sensor and actuator is distributed

through a master-slave hierarchy, with each sensor and

actuator having its own slave controller. A protocol for

information interchange between each controller and the

master is defined. If possible, the control of the

kinematics of a robot arm is achieved through the

manufacturer's existing control system. Under these
"\

circumstances, the actua~or slave would be acting as an

interface between the generic command codes issued from the

central controller, and the syntax of the corresponding

control instructions required by the commercial system.

Sensor information is preprocessed in the sensor slaves

and a set of high-level descriptors, called attributes, are

sent to the central controller. Closed-loop control is

achieved on the basis of these attributes.

The processing of sensor information which is

corrupted by noise is investigated. Sources of sensor noise

are identified and new algorithms are developed to quantify

the noise based on information obtained from the closed-loop

servoing. Once the relative magnitudes of the system and

measurement noise have been estimated, a Kalman filter is

used to weight the sensor information and hence reduce the

credibility given to noisy sensors; in the limit ignoring

the information completely. The improvements in system

performance by processing the sensor information in this way

are demonstr~ted.

The sensor-level representation and automatic error

processing are embedded in a software control system, which

can be used to interface commercial systems as well as

purpose-built devices. An'industrial research project

associated with the lay-up of carbon-fibre provides an

example of its operation.

A list of publications resulting from the work in this

thesis is given in Appendix E.

\
I

Pu~e thinking cannot yield u~ any knowledge ot the
empi~ical wo~ld/ all knowledge ot ~eality ~ta~t~ t~om
e~pe~ience and end~ in it. P~opo~ition~ a~~ived at gy pu~ely
logical mean~ a~e completely empty ot ~eality.

Albert Einstein

ACKNOWLEDGEMENTS

I am grateful to the SERC for providing support for
the first eighteen months of the project under a CASE
studentship. The financial assistance of British
Aerospace, Stevenage in providing equipment is
appreciated.

I wish to thank my colleagues and friends in the
Department of Electronic Engineering at the University of
Hull for all their support and help during the last three
years. I am especially grateful to Professor Alan Pugh for
allowing me to devote so much time to completing this
thesis, and to Dr John Hill for invaluable guidance and
ass istance in the work. Al so, I thank a 11 those peop 1 e who
have offered criticisms, constructive or otherwise, on the
work.

Special thanks to my family and close friends for
encouragement and support.

Finally, to the one person who has endured and
contained my doubts and despairs: for Ceri, wherever I may
find her.

CONTENTS

1. INTRODUCTION 1

2. LITERATURE SURVEY 10

2.1 Introduction 11

2.2 Sensors 11

2.3 Software 14

2.3.1 Requirements of robot control software 14

2.3.2 On-line versus off-line programming 16

2.3.3 Specifying relationships between the
robot and the environment 19

2.3.4 Robot programming languages 21

2.3.5 Levels of robot programming 27

2.3.6 Assessing the performance of sensor-
based robot control system 29

2.4 Errors and sensing 29

2.5 Hardware implementations of robot control
systems 35

2.6 Summary 37

3. MODELLING DISCRET~ SENSORY ASSEMBLIES 39

3.1 Introduction 40

3.2 Discrete sensory assemblies 44

3.3 Definition of terms in the assembly process 46

3.4 Confidence of a state 49

3.5 Sensitivity of a state 51

3.6 Controlling the actuator's speed in response
to past errors 52

3.7 Transferring the actuator between two states 54

3.8 Sensory feedback 58

3.9 Application of long-term feedback 60

3.10 Summary

4. SENSOR LEVEL PROGRAMMING

4.1 Introduction

4.2 Sensor indirection

4.3 Specifying sensor requirements

4.4 Transformation of errors: static and dynamic

63

65

66

67

69

sensors. 74

4.4.1 Static-sensor to actuator transformation 77

4.4.2 Dynamic-sensor to actuator ,transformation 78

4.5 Terminating the sensory servoing 79

4.6 Achieving more than one sensor condition 82

4.7 Summary 85

5. ANALYSIS OF ERRORS IN SENSORS AND ACTUATORS 88

5.1 Introduction 89

5.2 Sources of errors in sensory assembly 90

5.2.1 System errors 90

5.2.2 Actuator errors 91

5.2.3 Sensor errors 94

5.3 Processing nois~ sensor information 97
I

5.3.1 Consideration of actuator noise 99

5.4 Frequency domain analysis of errors 100

5.5 Application of a Kalman filter in the
processing of information from. sensors 105

5.5.1 State confidence from the Kalman filter 110

5.6 Derivation of noise variances for the Kalman
filter 111

5.7 Updating noise variances through analysis of
past errors 113

5.7.1 Estimating the measurement and system
noises 114

5.7.2 Computation of weighted average noises 121

5.7.3 Calculating measurement noise by a
weighted average 125

5.7.4 Calculating the system noise by a
weighted average 126

5.7.5 Updating noises in the absence of
information 128

5.8 Updating the actuator noise 129

5.9 Applying long-term feedback 133

5.10 Numerical examples of measurement noise
update 133

5.10.1 Estimation of a constant noise level 134

5.10.2 Estimation of a changing noise level 140

5.11 Summary 143

6. A PROGRAMMING TOOL FOR SENSORY ASSEMBLIES 147

6.1 Introduction 148

6.2 Hardware framework 149

6.3 Communicating to sensors 151

6.4 Communicating to actuators 152

6.5 Defining the components of a sensory assembly 155

6.5.1 Defining a sensor 157
."

\

6.5.2 Defining an iactuator 162

6.5.3 Defining the states 164

6.6 Defining the transformations for the sensor 167

6.7 Programming with sensor-level commands 172

6.7.1 Additional sensor-level programming
commands

6.7.2 Format of the control program

6.8 Using SLPS in a simple assembly problem

6.9 Summary

176

179

180

188

7. AN INDUSTRIAL CASE STUDY 190

7.1 Introduction 191

7.2 The industrial problem under investigation 191

7.3 Components of the assembly 195

7.4 Defining the components of the assembly 199

7.5 Performance of the control system 211

7.6 Summary 216

8. CONCLUSIONS 219

8.1 Achievements of this thesis 220

8.2 Further work: short-term objectives 224

8.2.1 A natural language interface 224

8.2.2 Combining sensor information: simple and
compound sensors 225

8.2.3 Continuous path sensing .. 226

8.2.4 Strict checking of sensor information 227

8.2.5 Coping with transformation errors 228

8.2.6 An alarm system for excessive errors 229

8.3 Further work: long-term objectives 230

8.3.1 Sensor data fusion 230

8.3.2 A graphical interface for off-line
programming"

\
I

8.3.3 Error recovery

References

Appendix A - Defining an actuator
.

for use in
SLPS program

Appendix B - Defining a sensor for use in an
SLPS program

an

Appendix C - Installing sensors and actuators for

231

232

234

247

250

use with an SLPS program 255

Appendix D - Executing an SLPS program 268

Appendix E - Published work 271

Al

B

D.
-J

Ej

E[~]

g

H

i

I

j

k

LIST OF SYMBOLS AND ABBREVIATIONS

Tolerance of the lth state.

A constant used to define the weighting function.

Departure vector for the lth state.

Distance moved by the actuator in the jth
iteration.

The variance of the noise from the gth actuator.

Estimate of the variance of the noise from
the gth actuator.

Perceived error in the jth iteration.

Expected value of a vector. Defined as a vector
whose components a're the expected value of the
corresponding component of ~.

The variance of the noise from the kth sensor.

Estimate of the variance of the noise from the kth
sensor.

Sensitivity of the lth state.

Subscript us~d to denote the actuator.

Matrix defining the relationship between the
components of the state vector and the
components of the measurement vector.

Subscript used to denote the cycle.

Identity matrix.

Subscript used to denote the iteration.

Subscript used to denote the sensor.

Kalman gain matrix on the ith cycle.

1

M

" M

p.
~

r·
-~

" r·
-~

S· -)

T

u·
-~

" u·
-~

v·
-~

v·
-~

Subscript used to denote the state.

System error taken from the distribution Q

Best estimate of M.

Velocity in the vicinity of the lth state.

Error covariance matrix on the ith cycle.

Error covariance matrix prior to being updated on
the ith cycle.

Error covariance matrix after update on the ith
cycle.

A Normal noise distribution representing the system
noise on the ith cycle.

Mean value of the system noise on the ith cycle.

An estimate of the mean value of the system noise on
the i th cycle.

Measurement error on the jth iteration of the current
cycle.

Speed of approach and departure of the lthstate.

The current cycle number.

Confidence of the lth state.

Transformation matrices.

Variance of the system nois~ on the ith cycle.

An estimate of the variance of the system noise on
the i th cycle.

Variance of the measurment noise on the ith cycle.

An estimate of the variance of the measurment
noise on the ith cycle.

X·
-~

Xi (+)

z·
-~

mm

ASCII

Number of iterations in the ith cycle~

state ~ on cycle i.

The value of Xi just before being updated on the
ith cycle.

The value of X· just after being updated on the
-~

Cummulative sum of weighting factors.

Destination state in a state-transfer.

Measured value of a state.

Millimetres.

American Standard Code for Information
Interchange.

CCD Charged coupled device.

CHAPTER 1

INTRODUCTION

-1-

The ability to modify a robot control program in

response to error signals from a sensor, has provided the

seed from which second generation robotics has grown. In a

paper entitled 'Second Generation Robotics', Pugh [1] argued

that the development of intelligent control based on

environmental sensing, the so-called second generation, has

not been satisfactorily realized, despite over 10 years of

promise. Over the past 10 years, research in artificial

intelligence, robot control algorithms, sensors, image

processing and communications have yielded,impressive

results, a wealth of publications and a nimiety of

international conferences. Despite this, however, the

transfer of this technology to small-batch product assembly

has been painfully slow.

Integrating sensors with robots is difficult. Not only

are the available sensors unsuitable, but the problems of

interfacing the hardware and software of commercial robots

with external systems can be non-trivial. If facilities

exist for sensor-interfacing, they are usually restricted to

reading signal lines, ;nto which the processed sensor

information is presented.

Addressing the problems of robot control using

environmental sensors, this thesis tackles three principal

problems, namely,

1. The information interchange between sensors and

actuators to achieve closed-loop control in a multi­

sensory environment.

2. The representation of sensory-feedback at a high­

level.

-2-

3. Processing sensor information in the face of noise

and uncertainty from the system, the actuators and

the sensors.

The work in this thesis describes a robot programming system

which allows commercial robots and actuators to be

interfaced to sensors and provides a general solution to

each of the above problems.

Effective automation of small-batch production requires

the sensing of part positions to minimize expensive tooling

costs. Although research into 'sensorless' methods of coping

with uncertainty have been reported, e.g. [2], the

constraints imposed on the nature of the parts preclude this.

approach for the majority of .assemblY tasks. Pioneering

research at The Charles Stark Draper Laboratory produced the

Remote Centre Compliance, which offers an alternative to

sensing for many assembly operations [3]. The instrumented

version of this device [4] provides sensory feedback from

three positional and three rotational components of error.

Research into multi-sen$or assemblies has demonstrated the
\
I

feasibility of integrating many sensors with an industrial

robot [5],[6]. However, the problem of coordinating the

interchange of information between the sensors and the robot

is non-trivial. Distributed processing" has advantages in

terms of reliability, but then problems of communication and

synchronization arise.

Building on an existing robot communication bus, the

work in this thesis proposes a unification of information

interchange between the sensors and the actuators. Sensor

-3-

information is preprocessed in distributed controllers, and

only high-level information required for closed-loop

servoing is transmitted to the central controller.

Considering the general case of many robots and actuators in

a work-cell, a standard format for actuator commands is

proposed, such that the semantics of the control

instructions are independent of the nature of the actuator.

Each actuator is assumed to have its own controller whose

role is to translate the generic command code issued from

the central controller into the control signals required by

the actuator. The motors of the actuator may be controlled

directly, or through an existing commercial controller. To

this end, the control of the robot is achieved through

whatever commercial system tbe manufacturer supplies. This

obviates the need to redevelop robot controllers, and allows

attention to be directed at a higher-level of control.

Hence, the work in this thesis is not concerned with the

control of the actuators at the kinematic level. All control

algorithms are assumed to exist in either a commercial or.a

purpose-built controlle.r. This approach allows overall
\
I

control to be centralized and all interactions routed

through one central node. By looking only at discrete

sensory feedback, satisfactory control can be achieved using

a low-cost personal computer as the controller. Since all

the kinematic control and sensor processing is done
...

elsewhere, the central controller is responsible only for

coordinating and sequencing instructions.

Within the framework of the distributed system, the

problem of specifying sensory feedback is considered. This

-4-

includes the development of a general sensor interface,

which allows sensors to be defined as modular definition

files and used by name in a control program. A sensor­

level of indirection is introduced, such that the movement

of an actuator is to transform the readings of the sensors

from their current values to a new set. The required

movements of the actuators are computed automatically to

achieve the sensor conditions.

Chapter 2 reviews previous work in the application of

sensors to industrial robots. The requirements of a robot

programming language are identified and the short-comings of

eXisting commercial systems are studied.
.'

Chapter 3 describes the nature of the assembly problems

under investigation and develops a model which is used to

represent the assembly in terms of a set of states.

Associated with each state is a confidence and a

sensitivity. Building on original work by Defazio [7], a

confidence is used to reflect the certainty with which a

state is known, by consideration of previous errors under

sensory feedback. A metfod of calculating numerical values

of the confidence, based on the information from the

sensors, is developed. The state sensitivity is a parameter

used to specify the tolerance at a state, and hence the

maximum error permissible. Using a combination of the

confidence and the sensitivity, the velocity of the actuator

as it approaches a state is automatically computed to

reflect errors and sensitivity. A sensitive state could, for

example, be the position of a robot during the insertion of

a peg into a hole. Since the robot must be positioned

-5-

accurately, the sensitivity is high and the corresponding .

velocity of the robot, as it approaches the hoie, is small.

The advantages of a reduced approach velocity include

improved dynamics of the robot; location-overshoot, for

example, is a problem at high speeds. More importantly,

however, reducing the velocity gives a better chance of

stopping the robot in an emergency. For example, trying to

insert a peg into a non-existent hole.

Chapter 4 describes a new level of robot programming,

called sensor-level programming. In this, .the required

movements of the actuator are not given explicitly, but are

inferred, with the goal of achieving a specific condition in

the sensors. A.structure for representing sensory feedback
I

is developed and the mechanism for computing the correction

in the actuator, to eliminate an error in a sensor, is

described. Sensors are classified as either dynamic or

static, depending on their relationship with the actuator's

and the world's frames of reference. A dynamic sensor is

coupled to, and moves with, an actuator; gripper mounted

cameras and.tactile sen~ors fall into this catagory. Static

sensors are fixed in the world's frame of reference.

The problem of moving the robot to achieve a specific

sensor-condition can be extended to the case' where more than

one sensor condition must be achieved at the end of an

actuator movement. If the corrections applied for the

separate conditions do not interfere with each other, the

problem is trivial since each sensor condition can be met

sequentially. If, however, the correction applied for one

. condition is opposing the correction applied for another

-6-

condition, the problem is non-trivial. A solution for two

sensor conditions is described in Chapter 4.

Chapter 5 considers the effe6ts of noise in the system,

the actuators and the sensors. Noise in the system, arising

from ill-positioned parts for example, is expected and can

be detected with the sensors. However, errors in the sensors

themselves reduces the effectiveness of the control by

limiting the accuracy obtainable. The final 'accuracy can be

no greater than that offered by the sensor. The noise in the

sensors may arise from interference, quantization,

transformation errors, changing environmental conditions,

wear, and in the limit complete sensor failure. The latter

condition may be relatively easy to identify. However, the

problem of superimposed electrical interference presents

more difficult problems. The noise may be intermittent and

of variable frequency and amplitude. Although electrical

filtering is one solution, this implies some knowledge of

the parameters of the noise. If these parameters are subject

to change, such filtering becomes difficult.

Algorithms are dev~loped which quantify the noise in

the measurement process and provide an estimate of the

parameters of the noise distributions. The noise can be

modelled as a Normal distribution, which, over the frequency
.

range of interest, can be assumed to be white. The problem

of using the potentially noisy information from the sensors

is tackled by using a Kalman filter, where the states to be

estimated are the key locations in the work-cell. Once the

variance of the system and measurement noise is estimated,

the Kalman gain acts as a weighting factor, whose magnitude

-7-

reflects the credibility of the sensor information. In the

event of the measurement noise being much greater than the

system noise, the Kalman gain approaches zero and all sensor

information is ignored. If the sensor information is noise-

free, the information is used with 100% confidence; this is

the usual way of processing sensor information. If a sensor

is noisy, significant improvements in accuracy and servoing

times can be made using the algorithms described. The

algorithms are demonstrated on an industrial research

problem which incoporates a noisy forc~ sensor.

Chapter 6 describes the implementation of a robot

programming system, SLPS, which incorporates the sensor­

level representation and noise-estimation algorithms

developed in Chapters 3 to 5 •. This robot programming system

is a library of functions written in the C programming

language. Once the sensors and actuators have been defined

through definition files, they are used as parameters in the

functions. The format of the command for moving an X-Y

table, say, is exactly the same as that to move a robot. The

difference is only in t~e physical addresses of the ,
I

appropriate controller cards, to which the central

controller sends the generic instruction codes. These

physical addresses are taught in the definition file

associated with the device. In general; each movement

command gives one or two sensor conditions which must be

satisfied at the end of the movement. The servo loop to

achieve these conditions is coordinated by the central

controller. The information acquired from each movement of

. the actuator in the servo process is recorded and used to

-8-

compute estimates to the noise due to the measurement and

the system, according to the algorithms developed in Chapter

5. The calculation of the new noise levels and subsequent

updating of the Kalman filter equations is transparent to

the programmer.

Chapter 7 describes the application of the robot

programming system to an industrial problem. The problem is

associated with the handling and lay-up of carbon-fibre into

a satellite antenna dish [8],[9]. The stages in solving the

assembly problem using the robot programming system are

described. Also, the effects of applying the noise

processing algorithms on the information from a noisy force

sensor are demonstrated.

In conclusion, Chapter a identifies the achievements of

the thesis and details additional features which would

improve the programming system.

"' \
I

-9-

CHAPTER 2

LITERATURE SURVEY

-10-

2.1 Introduction

This literature survey examines published research in

robot programming and the integration of sensors with

industrial robots. Firstly, an evaluation of the sensors

currently used in industrial robotics is given. The

requirements of the robot control software are then

discussed and an assessment of current robot programming

languages is presented. Section 2.4 describes research in

handling errors and processing the information from

environmental sensors. The review concludes by looking at

the hardware structure of robot sensor systems.

2.2 Sensors

Although the majority of current .. robot applications are

performed without significant external sensing, there is

evidence to show that many small and medium-sized batch

assemblies could not be cost-effectively automated without

environmental sensing. The stiff and senseless robots

evolving out of spray painting and spot welding require

accurate part presentation and are intolerant to small
~

Positional and rotational inaccuracies. Accurate positioning

of components is expensive in jigging costs and feeding

equipment. Sensing provides a means to cope with uncertainty

and reduces the requirements for compon~nt position

accuracy.

Sensors can be divided into two classes, contact and

non-contact. Contact sensing is based on a signal generated

by a transducer which is in contact with the part. In non­

contact sensing the transducer and the part are separated.

Research in non-contact sensing has been centered on vision,

-11-

although ultrasonics has received some attentio~ [10],[11].

For a vision sensor mounted above the work-area, the

manipulator will obscure the field of view. Thus,

researchers have recognized that to be effective, the vision

sensors must be mounted on the robot end-effector [12]-[14].

Furthermore, the inherent problems of parallax, resolution

and transformation errors in overhead cameras are

alleviated. Al though solid-state sensors have been available

for some time, the packaging and ruggedness necessary to

make them suitable for eye-in-hand vision has hot

materialized. For effective integration with the robot

gripper, the sensor must be small and the focussing

arrangement unob~trusive. For gripper-mounted cameras, a

focussing arrangement may not be necessary. Thermionic tube

cameras are too large and fragile to be considered for

gripper-mounting. The dynamic RAM camera [15] has been

implemented in a number of industrial research projects, e.g

[6], to provide low-cost, low-resolution vision sensing.

However, because they produce only a binary image, the use

of these sensors is I imi·~ed.

One solution to the problem of finding vision sensors

of a suitable size is to remove the camera from the end­

effector and replace it with a coherent.fibre-optic bundle

[16]. The fibre~optics can then transfer the image clear of

the end~effector and into a camera. Because the camera is

mounted away from the end-effector, the size and weight are

no longer problems. A recent commercial development [17]

obviates the need for a coherent fibre-optic bundle, by

mounting the vision sensor at the end of an endoscopic tube

-12-

less than 8mm in diameter. Although fibre-optics are used to

pipe illumination to the work area, the video information is

available as an electrical signal directly from the sensor.

Manufactured for industrial inspection, these systems may be

an important breakthrough for robotic vision sensors.

The inherent problems of reducing a 3-D world to a 2-D

representation have encouraged active research into 3-D

vision. Although 3-D information can be inferred from a

normal 2-D image, the so called 'shape from shading' problem

[19],[20], stereo vision, structured light, and

triangulation provide a more direct measurement of surface

features. The Consight vision system [20] was one of the

first examples of structured light in an industrial

application. By projecting a known pattern of light onto an

object, the perceived 2-D image can be processed to compute

the surface features [21]. Laser-based triangulation sensors

are promising, but are, at present, not in a suitable form

for robotics. Both cost and size need to be reduced.

Furthermore, problems of specular reflections, missing data,

and slow measurements ne~'d to be addressed [22].

Linear-array cameras, having only a single line of

photosites, are considerably cheaper than area-array

devices. However, the requirement for re~ative motion

between the camera and the object has restricted their

application to parts moving on a conveyor bel t. However,

there is no reason why a stationary object cannot be scanned

by moving the camera across it [23].

The second class of sensing, contact sensing, includes

touch, force, position and temperature. Contact sensing

-13-

finds applications in grasping, bin-picking, inspection,

part-mating and temperature measurement [24]. As distinct

from vision sensing, tactile sensing is often associated

with discrete sensors resulting in a very low resolution

device. Often, an array of sensing elements is mounted

between the jaws of the robot gripper, with piezoelectric or

carbon materials to provide a pressure-sensitive signal.

Research in VLSI tactile sensors [25] promises to improve

the effective resolution of these devices. A recent

development [26] achieves high-resolution by using an area-

array camera to view a rubber membrane, which is deformed by

the component. This is now being distributed as a commercial

system. As is theicase for gripper-mounted vision sensing,

compactness, ruggedness and reliability are important

factors in a tactile sensor. Force sensing is particularly

valuable in parts mating, where 3 translational and 3

rotational components of force can be detected and used to

construct a strategy to successfully mate the parts

[27], [28].

2.3 Software

,"
\
I

The performance of a robot control system is largely

governed by the facilities of the software. This section

discusses the requirements of the software and how the

relationships between objects and the robot can be modelled
,',

and specified. A discussion of the facilities of a number of

eXisting robot programming languages is presented.

2.3.1 Requirements of robot control software

In addition to the facilities for controlling the

-14-

kinematics of the robot arm, the robot control software must

provide an interface, to the programmer, to allow the robot

control program to be written, executed and debugged.

Facilities 'for structured programming are important, as they

are in any computer language, but early robot programming

languages neglected these. Indeed, it can be argued that the

first generation robots, requiring only to move between a

number of pretaught points, did not need the programming

facilities now demanded to process sensor. information and

make decisions based on errors.

From the kinematic viewpoint, the robot control

software must control the servoing of each joint such that

the end-effector travels in a desired manner. Often it is

the end-point of a movement which is critical, although for

. some applications the path, or trajectory, must be precisely

defined. Speed control can also be important, especially in

arc-welding and paint spraying. Planning a trajectory

between two points can be difficult [29], since constraints

imposed by the world model must be taken into account. For a

multiple robot assembly c~ll, the position of other robots

must be monitored to provide collision-free motions [30].

Early manipulator languages such as Wave [31] employed a

planning phase, during which the program was simulated and

all necessary computations stored in an execution file. This

can be satisfactory whenever the sequence of instructions in

the program is fixed, but branches in the program require

the simulation of all possibilities. Clearly, for robot

operations under sensor-control the sequence of operations

cannot be defined a p~io~i and hence the required movements

-15-

of the manipulator cannot be planned. Later manipulator

languages, such as VAL [32] interpret the program on a line­

by-line basis, and compute new joint angles at run-time. The

significant reduction in the price of computing power "in the

last few years has been one of the contributory factors to

this approach.

Although industrial robots are equiped with position

sensors in the form of joint encoders, information from

additional environmental sensors provides the means to cope

with uncertainty in the world model. In many commercial

robot controllers, the facilities to input external signals

do not extend beyond simple binary control lines, which can

be read or set under software control. Sensor information,

in its widely varying forms, cannot be easily manipulated by

eXisting commercial systems. This applies both to the

hardware interfacing, and the software control.

2.3.2 On-line versus off-line programming

Teaching a robot to spray-paint an automobile component

is often achieved by leadi~g the manipulator through the
I

required motions and recording some key locations. Later,

the robot can be instructed to move between the taught

locations to spray the subsequent parts as they come down

the production line. Teaching a robot on-line retains

popularity today; it is easy to do, and requires little

appreciation of the robot control system. There are a number

of disadvantages however [33], which have encouraged the

development of off-line programming techniques. One of the

most significant disadvantages of on-line teaching is that

-16-

the robot itself is required, and hence is unavailable for

work during the teaching time. Furthermore, the resultant

program, being simply a list of locations, cannot be easily

edited or modified to cope with parts of a different shape.

This arises because the logic of the program and the data

are closely linked. Ideally, the sequence of instructions to

the robot should be kept separate from the numerical values

of the locations. Off-line programming does not require the

robot for teaching but instead uses a geometric model which
-

allows positions to be specified in a cartesian frame of

reference. The geometric model must be an accurate

representation of the robot, otherwise the off-line

computation of positions will not be translated into the

correct physical position of the robot. This gives rise to a

distinction between repeatability and accuracy. The

repeatability is the usual parameter quoted by

manufacturers, and gives the expected error in the robot's

position after it is instructed to move to a pre-taught

position. The position is taught as a configuration of the

robot arm, which may be stored as a transformation between
\
I

the end-effector and the robot's base, or as a set of

encoder readings for each joint of the robot. The accuracy

of the robot is defined as the expected error in the
.

posi tion of the robot when the set-point is gi ven as

numerical coordinates in a cartesian frame of reference. In

practice, this relies on an accurate world-model, and errors

of upto 5 degrees ha ve been observed in a 6 degree of

freedom industrial manipulator.

Graphical tools for simulating robots and manipulating·

:'17-

objects have been described by a number of authors [34]­

[39]. Such systems provide the programmer with a visual

indication of how the robot will interact with its

environment and are valuable development tools.

One of the major problems with off-line simulation and

programming is the inability to predict the errors which may

occur in practice. If components are not positioned to close

tolerances, the robot will not be able to gra'sp them. The

relationship between the robot and the real world is often

imprecise and the accuracy of the manipulator may be poor

[40],[41]. A combination of these factors means that many

industrial robots cannot be realiably and accurately

programmed off-line. One solution to this problem is to

provide an initial off-line estimation and then a touch-up

of key locations on-line [42]. Arbter [43] proposes storing

not only the equations of the trajectories, but also sensor

patterns which can be used as a reference to produce error

signals at run time.

The simulation of sensors in an off-line programming

system has been tackled with EMULA [44], which is used in
i

conjunction with the programming language AML. EMULA allows

simulations of user-defined sensors, finite resolutions and

also has a limited capability to cope with uncertainties. It

cannot, however, simulate the effects of modelling

tolerances, manipulator wear, noise etc. Symbolic,error
,',

analysis has been tackled by Brooks [45] to examine the

effects of tolerances in the location of parts. Using this

approach, the final tolerances can be'used to infer the

initial tolerances of the constituent parts, or the need for

-18-

sensing to improve accuracy.

Off-line programming is a vital ingredient in

establishing an integrated and centralized manufacturing

system. Sensors can offer information which can be used to

fine-tune manipulator motions to cope with errors in

modelling and the position of parts.

2.3.3 Specifying relationships between the robot and the
environment

Although early robot programming languages involved on­

line teaching of key locations, the need to halt production

to teach the next program has encouraged the development of

off-line programming languages. When a robot is taught 'by

doing' it is the joint angles which are recorded. A

subsequent movement to a pre-taught location involves

servoing each axis until the recorded joint angles are

restored. Although it would be quite possible for the

programmer to specify a set of joint angles a p~io~i,

computation of the position and orientation of the end-

effector from joint angles can be non-trivial [46],[47].

Rather than specifying the-~obot's position by the joint

angles, it is preferable to specify the position in a

cartesian frame of reference. From this frame, the joint

angles can be calculated by solving the inverse kinematics
.

of the robot arm; Paul [46] and Elgazzar [48] gi ve a

thorough treatment of this. This solution must take into

account the current position of the manipulator, since often

more than one joint solution is possible for a given

cartesian position. The formation of a relationship between

the joint angles and the position and orientation of the end

-19-

effector in a cartesian frame is simplified by the use of

homogeneous transformations [46]. The relationship between

each joint is specified by a 4 x 4 matrix of real numbers.

which represents the rotational and translational

differences between the frames of reference. The overall

relationship between the end-effector and the robot's base

(the origin of the cartesian frame) is derived by

multiplying the matrices. Because the elements of the

matrices vary with joint angles, the computation of the

final matrix can be demanding. For a 6 degrees of freedom

manipulator, 384 multiplications are required to compute the

final position matrix from the 6 joint matrices. This

excludes square roots, transcendental functions and

additions. For constrained path motion, for example straight

line movements, speed of calculation of the relationship is

important, otherwise smooth path control cannot be achieved.

Van Aken [47] describes some methods for solving the inverse

kinematics in real-time.

Once the relationship between the joint angles and the

end-effector has been established, the programmer is free to

specify the position of the end-effector in a cartesian
I

frame of.reference. Off-line teaching involves specifying

the desired configuration of the robot in terms of a set of

numbers corresponding to position or joint angles. This is

profoundly different to on-line teaching where the robot

must be physically moved to the desired location to record

the posi tion.

In addition to defining the relationship between links

of the manipulator, homogeneous transformations can be used

to define relationships between the manipulator and a

sensor, for example a vision sensor [49]. This technique

allows efficient transformations to be made from the

sensor's frame of reference into the manipulator's frame of

reference. For a given sensor-error, the corresponding

world-error can be found by multiplying the error vector by

the transformation between the world's and the sensor's

frames of reference. If the sensor is fixed in space, then

this transformation is also fixed. If, however, the sensor

is moving (mounted on the robot, for example) then the

transformation is dynamic and must be recalculated for each

new position of the sensor.

2.3.4 Robot programming languages

A review of current industrial robot programming

languages [50]-[52], indicates that there are almost as many

robot programming languages as there as robots. Each robot

manufacturer has incorporated the specific features of their

robot within the programming language. In many commercial

robot controllers there is little scope for interfacing

external equipment, including sensors and other robots. This

applies equally to the hardware ~nd the software. Choosing a

robot to solve an industrial problem requires a study of

both the performance of the manipulator, and the facilities

of the software control. Unlike computer system~, it is

difficult to mix one manufacturer's hardware with another's

software. One approach is to dispense with the commercial

controller and rebuild the control algorithms and

programming environment [53],[54].

Rather than writing anew language, some researchers

-21-

have chosen to adapt existing computer languages to provide

the necessary robot control features. Hayward [55] describes
-

a system using the C programming language. In this approach,

functions written in C provide the programmer with the

primitives to control the kinematics of the robot, yet the

standard features and structures of the language are

retained. The final robot control program is actually a C

program which can be executed under Unix. Paul [56]

describes a similar approach using Pascal and Gini [62]

proposes ADA. The main advantage of modifying an existing.

computer language is that the basic grammar of the language

is already defined. This is important both from the language

designer's point of view, and also from the programmer's

point of view. Conversely, any general purpose.programming

language must embody a number of trade-offs which make it

better suited to some applications than others.

A number of commercial and experimental robot

programming languages are now reviewed.

LM [58] was developed at the University of Grenoble,

,.France, and provides a Pascal-like language for controlling

assembly robots. The language permits the user to describe

manipulation tasks in terms of motions of one or several

arms and permits processing of sensor information through

state variables. These state variables are automatically

maintained by the interpreter and can be used to provide

access to sensor information. Relationships between objects

can be specified using frames, and the ATTACH 'and DETACH

Commands to logically associate one frame of' reference with

-22-

another. An extension of LM, called LM-GEO [59] provides

structures for representing geometric descriptions of object

positions, and relationships between objects. This extension

arose from work at the University of Edinburgh and

encompasses the concepts of spatial relationships which

underlie RAPT [60],[33].

AML [61] is a powerful, well-structured manipulation

language for the IBM series of assembly robots. As well as

providing commands for movement of the manipulator arm and

the gripper, AML also provides limited facilities for

sensory control. A command called MONITOR provides the

facility to interrogate sensors and halt a movement if a

specified condition is met. This rather primitive mechanism

for sensor interaction has been improved with the

development of AML/V [62], an extension of AML which

provides facilities for vision. This extensions allows

images to be manipulated as data objects and the processed

information used to provide closed-loop control of the

manipulator.

AL [63],[64] was written at Stanford Artificial

,. Intelligence Laboratory and has all ALGOL-like control

structure. A unique feature of AL is the dimensioning of

variables, for example, time in seconds, distance in either

centimetres or inches, and the check for dimensional

consistency in expressions. Sensing is integrated into AL

Using foic~ sensors and a verification vision system.

Keywords of the form FORCE and TORQUE allow required sensor­

condi tions to be met. AL uses a wor 1 d mode 1 and allows the

programmer to specify actions at the object-level. As an aid

-23-

to generating the world model, an interactive system called

POINTY [65] may be used. Using POINTY the programmer

interacts with the manipulator to construct the world model.

A version of AL, called Portable AL, has been implemented at

the University of Karlsruhe, west Germany. It runs on a PDP

11/34 and a LSI 11/2, and controls a Puma 500 robot.

RAPT [60],[33] was developed at the University of

Edinburgh to allow assembly tasks to be programmed by

specifying effects in terms of the objects which are '

handled. Building on the syntax of APT (the NC machine tool

language), RAPT programs involve specifying spatial

relationships between objects and movements of objects

relative to features of other objects. The manipulator

motions are such to transform the relationships of the
i

faces, shafts and holes which compose the object. The output

of the RAPT compiler is a VAL program which is subsequently

executed on a Puma robot.

VAL [32] is a robot language used on Unimation's range

of industrial robots. VAL is an interpreter which operates

interactively with the user through a terminal. Its

.,structure is BASIC-like and as such is quite easy to learn.
i

VAL'employs compound transformations to allow the programmer

to define locations relative to an arbitrary origin and

permits independent frames of reference to be assigned.

Interaction with sensors is limited to interrogating signal

lines, although these can be made to interrupt the main

program through the REACT command. Significant improvements

to the language appear in VAL II [66] which is implemented

on Mark-2 Puma robots and also the Adept One' robot. VAL II

-24-

has Pascal-like control structures and powerful real-time

path control features to permit sensor interaction. A high­

speed serial link is used to send sensor-derived corrections

in a tool-relative or world-relative frame of reference into

the robot. Real-time trajectory control can be achieved

using this approach. In VAL, the control loop rate is

governed by the minimum execution time of small-arm motions,

generally between 0.2 and 0.3 seconds. Hence the maximum

ra te at which sensory feedback can be app 1 ied is about 3 - 4

times per second. In VAL II however, the control loop cycle

times are about 28 milliseconds, giving typical update

frequencies of 35 times per second - a significant

improvement as far as sensory feedback is concerned.

AUTOPASS [67] is an object-level programming language
!

which uses a geometric model of the assembly world to allow

the relationship of objects with respect to each other to be

specified. The AUTOPASS language is embedded in PL/I and

consequently offers the control and data-representation

facilities of that language. Keywords such as PLACE, INSERT,

EXTRACT, LIFT, SLIDE and GRASP are used to define how the

"objects will be manipulated. This"approach allows the user
\ .
I

to specify an automated assembly procedure in a similar

manner to the manual assembly. The output from the compiler

is a manipulator-level program which directs the manipulator

through the necessary motions to execute the assembly

process. AUTOPASS is primarily concerned with manipulating .. ,
obj ects wi th respect to each other and has a very 1 imi ted

capability for sensory feedback.

SRL [68] is a Structured Robot Language 'developed at

-25-

the University of Karlsruhe, West Germany. It is based on

experiences with AL and Pascal and uses the frame concept to

specify the relationship between objects. One of the

features of the SRL compiler is that the output is a machine

independent code called IRDATA, a defined standard, which

can then be executed by any machine with a IRDATA

interpreter. SRL has several movement commands to provide

linear interpolated movements, straight line movements,

circular movements, and user-defined polynomials.

Multitasking is provided to allow parallel execution of code

segments. Sensors can be interfaced through digital ports,

and monitored at regular intervals of time. Blume [68]

quotes the following example of how a movement is terminated

when a reading of greater than 50 is received in the tactile

sensor:

DO EVERY 100 MS WITH PRIO = 5
INPUT (tactilesens);

WHEN tactilesens.xaxis > 50
DURING

SMOVE puma TO table
DO WITH PRIO = 1

STOP puma;

The command INPUT(tactilesens) is executed every 100

,milliseconds and provides the interface to the tactile
\
I

sensor. When the reading from the sensor exceeds 50 the

movement of the Puma robot is stopped.

SRL provides an interface to a world model and uses AL-

style affixment statements of the form AFFIX and UNFIX to

manipulate objects.

LAMA-S [69] uses APL as the implementation language,

and frames to specify robot movements. Although facilities

for parallel processing are provided, the syntax of APL is

-26-

not conducive to efficient interactive programming.

2.3.5 Levels of robot programming

The object of high-level languages is to provide

indirection, such that a requirement, rather than a list of

primitive instructions, is entered. Robot manipulator

languages have traditionally been divided into three levels

of complexity. At the lowest level, the manipulation level,

the program is concerned with sequencing the manipulator

through a series of move commands. For example

MOVE A
MOVE B
MOVE C

where A, B, and Care pre taught positions. These positions

may be recorded as joint angles or as homogeneous

transformations. Examples/of such programming Systems are

VAL and AL. These are refered to as manipulator level

languages because the effect of each action is to transform

the state of the manipulator. If the locations A, Band C

happen to correspond with some other physical objects then

it is possible to transfer the state of an object. But the

level of direction is towards the manipulator rather than

the object. For example

OPEN GRIPPER
MOVE A
CLOSE GRIPPER
MOVE B
OPEN GRIPPER

This program could be used to transfer an object at position

A to a position B. Although the objective of the program was

to move an object, the specification of the task was done at

the manipulator level, and the location of the object was

assumed to coincide with the position A.

-27-

An alternative representation of this could be

constructed at the object level, the second level of robot

programming. The primitive actions are to manipulate objects

rather than the manipulator, so that the above program could

be written as

MOVE OBJECT FROM A TO B

Although execution of this will require movements of the

manipulator, these movements are implied by the higher-level

demand to transfer the objects. To execute this command

satisfactorily, the manipulator must know, or be able to

compute, the exact position of the object and the re~uired

coordinates of its destination. Hence, although object-level

programming allows a higher-level specification of actions,

it requires a more complex interpreter to infer the

positions of the components. RAPT and AUTOPASS are examples

of object-level programming systems. The transformation from

the object-level specification to the manipulator-level

specification is done by a task planner [29]. To do the

transformation, the planner must have a description of the

objects being manipulated, the environment, the robot and
, . ~

the desired final state. The output from the planner is a

manipulator-level program to implement the actions.

The third level of robot programming, the task level,

involves specifying complete robot tasks through a single

statement. Will [70] quotes as an example 'ASSEMBLE

(Typewriter)'. This level of language assumes that a

typewriter is a known object and the order of parts-mating

to assemble the object from a number of components is known.

Such programming languages are still a research area and it

-28-

is likely that CAD systems, expert systems and artificial

intelligence will have strong influences on their

development.

There is inevitably a trade-off between the level of

programming and the complexity of the interpreter to achieve

that level of programming. Too high a level leads to complex

problem-solving situations where inter-related sub-goals

necessitate an iterative solution. Too low a level makes the

programming tedious and prone to error.

2.3.6 Assessing the performance of sensor-based robot
control system

A European benchmark for the comparison of assembly

robot programming systems has been described by Collins

[71]. The time taken to program the assembly of .. a test-piece

using a number of commercial robot programming languages was

examined. As we 11 as looking at the time required to teach

the assembly operations, it is important to consider other

factors. How easily can the program be changed to cope with

changes in the size and shapes of parts? Can sensors be

introduced if errors indicate that they are necessary, and

~an the type of sensors be dictate~ by the programmer rather

than the programming language? Another important factor is

how quickly the program will execute, although this is often

a function of the mechanics of the manipulator rather than

the software.

£.4 Errors and sensing

The requirement to use sensors in an assembly operation

reflects the fact that there is some uncertainty in the

-29-

relationship of the robot to the environment. This

uncertainty could arise from robot errors, object position

errors, or perhaps sensor errors. Whitney [72] and DeFazio'

[73] considered that the assembly operation can be modelled

as a stochastic process, and show how stochastic control

theory can be used to provide adaptive modelling of process

parameters.

Studies at the Charles Stark Draper Laboratory [40] and

Marconi Research Laboratories [41] have demonstrated the

magnitude of the expected errors in the accuracy and

repeatability of an industrial robot. Depending on the

accuracy to which components are positioned, there may be

errors in locations of a part. Using a sensor to detect such

errors can provide the necessary information to implement

closed-loop feedback. However, the sensor itself may also be

a Source of noise.

Rather than actively sensing the error and applying

feedback, an alternative approach is to used engineered

compliance [3]. By providing chamfers on tools and parts,

the errors can be absorbed by the displacement of the

compliance. Pioneering research at the Charles Stark Draper
, I ~ \

i

Laboratory has produced the Instrumented Remote Centre

Compliance (IRCC) [4],[74]. With this device, both angular

and lateral errors can be absorbed up to about 1 degree and

3mm respectively. Hence, a significant speed improvement

oVer closed-loop sensing can be achieved and at reduced

cost. Using information from the sensors in the device,
'.

errors can be fed-forward into the next cycle. This

eliminates cummulative errors caused, for example, by an

-30-

incorrectly taught spacing of a pallet of components. This

type of feedback, which operates between cycles, is called

long-term feedback.

Whitney [75],[76] divided sensory feedback into two

catorgories, short-term and long-term feedback. Short-term

feedback is defined as adaptive behavior in which sensory

input and corrective output occur within a single task

cycle. In contrast, long-term feedback, operates between

cycles and uses the total applied corrections of one cycle

to try and improve the initial estimate for the next cycle.

Long-term feedback provides a means of processing past:

errors as well as current errors and is particularly

valuable when the sensors themselves are a source of error.

In practice, once a robot program has been correctly taught,

it is unlikely to run forever without further corrections.

Over a period of time, tools, jigs, and fixtures may wear or

shift in position. Wear also affects actuators, which will

show as a deterioration in the repeatability over time.

Dimensional variation in different batches of parts are

inevitable. All these factors can be handled by long-term

f~edback, which obviates the need fqr reteaching by the
I

operator. Work by Simunovic [77] has shown that results in

optimal control and Kalman filtering can be used to process

sensor information. Defazio [78] used a Kalman filter to

model the effects of robot and sensor noise in estimating

the location of a part which was subj ect to some

uncertainty. The Kalman filter [79] provides a means of

estimating a noise-corrupted state, say a robot· location,

Using a measurement process, the sensor, which is itself

-31-

subject to some error. In addition to estimating locations,

similar techniques have been applied to modelling contour

processes [80].

Analysis of trends in errors may provide information to

indicate a shifting environment or a sensor failure. DeFazio

[73] suggested that a statistical index of confidence could

be used to quantify the certainty of, and expected error in,

a location. As this confidence varied, the speed of motion

of the manipulator could also be varied. These profound

ideas form a significant stimulus for the work in this

thesis.

Ranging from simple proximity sensors to high-

resolution vision sensors, the range of complexity of sensor

information is considerable. Languages such as VAL, provide

input-output lines through which simple sensor conditions

can be monitored. Although additions to the language can

provide vision processing [81] there is no truly universal

interface to process sensor information. Indeed this is true

of the majority of commercial robot languages. The user is

restricted to the types of sensor which the language will

s\lpport rather than the types of sen~or which would best
I

sol ve"the problem.

Brook [82] claimed that the real problem in sensory

robotics is not so much finding suitable sensors, but rather

in COping with complex information, and particularly

information"which may be unreliable. Vision sensors can

provide a great deal of data, although not necessarily much

information. The problem arises when this data is processed

to extract information. For real-time robot control based on

-32-

visual feedback, high-speed vision processors are required

to extract pertinent information from the scene and provide

error signals for the servo loops. Rather than exhaustively

process the data from a single source, Henderson [83]

advocates distilling data from a number of sources, and

proposes a spatial proximity graph as a way of combining the

data. Providing redundant sensor information not only allows

sensor-failure to be detected, but also allows a consensus

of opinions to be taken. No sensor can be perfect, and the

data must be subject to some random error arising in the

detection, sampling, digitization and subsequent processing.

The mechanism by which the sensor information is

manipulated in the robot control program is often a

significant shortcoming of commercial robot programming

languges. Efficient and easily-accessed sensor information

is highly desirable in a robot programming language. Chern

[84] proposes a 'sensor variable' which is treated like any

other program variable, yet whose value is not fixed, but is

determined by an external source. At compilation time, a

physical relationship is established between the sensor name

and" physical ports. Subsequent reference to the sensor
I

causes the port to be interrogated automatically. Hence the

acquisition of sensory data is expressable within the syntax

of the base language. As an example, if FORCE is a defined

sensor variable and 'limit' is a normal variable, then the

command line

If (FORCE > limit) abort

would compare the current value of the force to the value of

the constant 'li~it' and abort the program if necessary.

-33-

Henderson [83] proposes a Multi-sensor Kernel System

(MRS) to provide an efficient and uniform mechanism for

dealing with data taken from several diverse sensors. A key

feature of MKS is the logical sensor specification [85]. A

logical sensor is an information processor whose inputs are

either physical devices or the output of other logical

sensors. The output of the logical sensor is a set of

vectors which characterize the inputs. Hansen quotes, as an

example, the logical sensor specification of a 'camera',

comprising the physical camera at the input and an output

vector representing the X and Y position and the intensity

of a picture element. The outputs from two such logical

sensors could be inputs to a third logical sensor, a range­

finder for example, which processes the information to give

an output vector corresponding to range. Logical sensors

defined in this way can be combined to form networks.

Geschke [86] recognised the need to provide effective

processing of sensor information at the low level servo

processes. He proposed a Robot Servo System (RSS), such that

the programmer specifies a servo-loop together with a

termination criterion. For-example, to\move the robot to a
I

pretaugtit point A the command

wait until Ir$grip - AI; Iss 0.1;

would be issued. The effect of this would be to suspend

program execution until the difference between the robot

gripper and point A was less than O.1cm. Geschke describes a

'vision' command which allows "the termination condition to

be calculated from the error in the position of a part.

Facilities for force and torque sensing are also provided.

-34-

The problem of automatic error recovery is an active

research area [87]-[89]. The object is to automatically

identify the errors and instigate a recovery procedure

without the programmer needing to explicitly state the

course of action. Automatic error recovery requires a

detailed knowledge of the robot's operating environment,

which will be changing with time. It must also use past

information to aid the diagnosis of the problem. The cause

of an error depends not only on the error itself but also on

the context in which the error occured. It is likely that

artificial intelligence will have an important role to play

in the development of an automated error recovery system.

Gini [87] describes a framework for identifying an

appropriate recovery procedure using a knowledge base
,.

containing information about correction actdvities and

interpretation of sensor data. Unexpected changes during the

execution of the program are detected by comparing expected

outcomes with actual outcomes. Further information may then

be requested from sensors before error correction is

attempted •

• There is a large gap between the~pplication of
I

artificial intelligence to reasoning and planning, and the

structuring of robot programming languages to provide

efficient control. Automatic error recovery is an

application of artificial intelligence which may help to

bridge that gap.

~.5 Hardware implementations of robot control systems

The need to integrate a number of sensors and actuators

has promoted the development of distributed processing

-35-

facilities. Although centralized control systems are still

popular among commercial robot systems, there are advantages

in distributing the processing of data between a number of

sub-systems. These advantages include greater modularity and

flexibility together with improved reliability. For multi-

sensor robot assemblies, it is logical to assign one

processor per sensor, coordinating the processed information

with a central controller. Such an approach is described by

Karkkainen [90] and Mitchell [91]. Research at the

University of Hull [91],[92] has produced a master-slave

architecture in which each sensor and actuator has its own

controller. The role of the master is to coordinate the

information flow and to execute the main control program.

Implementing parall~l processing on such a system is.

Possible but is not supported by any commercially available

software. This is a severe drawback to the efficiency with

which such a system can be programmed and a I imi ta tion on

the overall performance. Albus [93] describes a three-level

hierarchical control system, developed at the U.S. National

Bureau of Standards, to permit multi-level sensor servoing

. to b~' performed. Di llman [94] describe;i a structured

multiprocessor system with individual modules for sensor

control, arithmetic, and trajectory calculations.

Although advantages are to be gained from the hardware

point of view, .a multiprocessor system is more difficult to

program efficientiy. Computer languages designed to permit

multiprocessor computation are still research issues.

Research at the University of Hull [95] is investigating the

Use of Modula-2 for distributed processing in a robotic

-36-

\

work-cell. Kerridge [96] described a robot arm controller

written in Occam and employing parallel control for the

movements of the arms. The use of the parallel language

Occam together with the exciting potential offered by the

transputer [97] may provide an environment for high-speed

distributed computing in a robot work-cell. The problems in

programming for multiprocessor systems are twofold. Firstly,

partitioning the software into appropriate modules, although

these problems are alleviated if a different processor is

Used for each function, e.g. vision, robot control, force

sensing etc. The second problem is synchronizing the

processing and interchange of information between the

modules.

Although parallel processing in multiprocessor .systems

is difficult, traditional serial processing can be readily

employed, and some of the advantages of a distributed

processing system retained. A request can be issued to one

system for some data, and the requesting system can wait

until the data has been sent. Although no parallelism is

Used, the advantages in terms of modularity, flexibility and
~

reliability of the system are retained.'

~.6 Summary

Automating an industrial assembly requires the

integration of commercial and purpose-built equipment.oAt

-
present, the facilities provided for efficient

representation and processing of sensor information are a

short-fall of commercial robot controllers. Although

Specific packages tailored to vision sensing are often

-37-

\

available, the user is constrained to choose the system

offered by the manufacturer, rather than the one most suited

to the application. No general-purpose sensor interface

exists.

The work described in this thesis considers how sensors

and actuators can be interconnected, and how sensory

feedback can be represented. The concept of the master-slave

architecture for sensor-actuator communication (described in

[91] and [92]) is developed further. The work of Whitney and

Defazio is of fundamental importance in modelling assembly

problems. The idea of defining confidences to reflect errors

is formalized in this thesis and embedded in a robot

programming system. This allows expected errors in the

system, the actuators and the sensors to be quantified, and

their effects on overall performance minimized. Uncertainty

arising from noise is often unavoidable in industry and, in

multi-sensor assemblies or problems of sensor fusion, the

integrity of the sensors is of singular importance.

-38-

CHAPTER 3

MODELLING DISCRETE SENSORY ASSEMBLIES

-39-

3.1 Introduction

The work described in Chapter 2 illustrates the

activity and breadth of the research issues surrounding

robot programming and sensor interaction. Although many

robot programming languages have been reported, in practice

the user of an industrial robot has only two choices; either

to use the software suppl ied wi th the robot, or else to

write a new controller. Clearly, most users of industrial

robots have neither the time nor the expertise to choose the

second option, and hence must use the supplied software.

This chapter decribes how commercial systems can be

integrated and controlled, and how a robotic assembly

incorporating sensors and actuators can be represented.

This thesis describes the development of a programming

tool to act as an interface between commercial robots,

commercial sensors, and purpose-built hardware. The

requirement is to have a single central controller which

communicates to the sensors and actuators through a bus

system. By defining a standard interface between each sensor

and actuator, the information flow between the central
\

controller and each of the individual stib-systems becomes

uniform and structured. Furthermore, by employing the

commercial robot control software, the computational demands

imposed on the central controller are relatively small. For

the robot, the joint computations to provide movement in a

cartesian frame of refe'rence are done by the commercial

software. This is interfaced to the central controller by a

serial channel, through which commands and data are

Communicated. This serial channel is normally used by the

-40-

terminal to allow interaction between the programmer and the

robot controller. It is apparent that to send ASCII

(American Standard Code for Information Interchange) command

strings down a serial line for closed-loop control is

inherently slow. However, for the class of problem under

consideration, the overheads in sending the command strings

are not significant.

The advantage of sending direct commands to the robot,

rather than writing the program in the robot's controller,

is that the programmer is no longer constrained by the

limitations of the robot's software. Early robot

controllers, such as VAL, provided few high-level language

constructions and little opportunity for sensor-interfacing.

More recent developments, VAL II [66] and AML [61] for

example, have improved on this, but still do not provide

what might be termed a 'general sensor interface'. By using

an external controller and sending commands one at a time,

it is possible to communicate to any number of robots or

sensors and also to represent the desired actions of the

robot in an alternative syntax which is conducive to the
~\

specification of sensory feedback. This representation can
"

Subsequently be translated prior to sending the command to

the commercial robot controller. A typical environment is

shown in Figure 3.1. This comprises a Puma 560 robot with a

VAL controller, an indexing Xy table, a vision sensor and a

force sensor. The central controller is an IBM Personal

Computer, to which each actuator and sensor is interfaced

through a controller. This architecture forms the hardware

framework for the software developed later in the thesis.

-41-

Puma robot
controller

., Puma robot
with VAL

controller

Central
controller

Communication bus

XI table
controller

XI-table

Camera
controller

Camera

Force
sensor

controller

Force
sensor

Figure 3.1: A typical hardware configuration.

-42-

The main control software runs on the IBM and allows the

programmer to define new sensors and actuators, define and

execute a control program involving sensors and actuators,

and cope with noise from the sensors, the actuators or the

states.

This framework can be employed with any commercial or

purpose-built actuators and sensors. For each, a controller

must be constructed which takes as its input a standard set

of primitives together with parameters, and as its output it

either sends command strings to a commercial system or else

controls the actuator or sensor directly. In the case of the

robot, the only requirement is that the arm 'can be moved

using 'direct' commands typed from a terminal. In the case

of a Puma robot with YAL, this would correspond to typing

'DO MOVE point', to move to a pre-taught position and 'DO

MOVE x,y,z' to move the arm by x,y,z in a world frame of

reference. In practice most robots can be operated in a

'direct' as well as a 'program' mode, with the only

difference being the syntax of the command. In the system to

be described, the role of the robot controller is to
. ~

translate the commands issued from the central controller

into the syntax required by the commercial system. The

object of this is to allow the central controller to send a

generic instruction followed by a set of parameters to any

actuator. This instruction code will then be decoded and

sent to the commercial controller to execute the command. In

this way, the central controller can issue exactly the same

command to move either the robot or the Xy table, say, by

1mm in the x direction. The only difference is the physical

-43-

address of the actuator, which will have been taught to the

central controller. The detailed definition of the interface

and command codes is given in Chapter 6.

This chapter describes the format of the robot assembly

problems under investigation and defines the parameters used

to represent position, velocity and also to define

movements between pre-taught locations. Furthermore, the

existence of errors in both the position of parts and the

measurement process is considered. A complete appraisal of

errors is given in Chapter 5.

A relationship is developed between the information

from sensors and the velocity of the actuator at different

stages in the assembly. The result of this is to force the

actuator to s low down in the face of uncertainty and'speed

up when the parameters of the mode I become known and are

unlikely to change. The model developed in this chapter will

subsequently be used to process errors and also to allow the

required servo-loops to be specified through high-level

. commands.

3.2 Discrete sensory assemblies

The work in this thesis is concerned with discrete

sensory assembly problems. The term 'discrete' indicates

tha t the sensors are used to enhance the abi I i ty of the,

-actuator to reach a point. This is to be distinguished from

continuous sensing, whe~e the sensor would be used to

maintain a specified trajectory or continuous path. Although
"

the continuous path problem is not tackled in this thesis,

the underlying theoretical work is applicable. The major

-44-

problems in continuous sensing are the deficiencies in the

commercial robot controllers in processing real-time sensor

errors. The technique of sending direct commands to the

robot cannot be used where servo rates of more than a few

Hertz are required.

Many industrial-based research projects concerned with

robotic assembly use discrete sensing to overcome

shortcomings in feeding accuracy and manipulator

performance. This is increasingly true as the potential

benefits of vision, tactile and force sensing are

recognized. Continuous path sensing is used extensively in

welding and seam tracking applications, and is not so

prevalent in assembly.

Discrete sensory assembly involves using sensors to

fine-tune a set of pre-taught locations between which the

actuator is instructed to move. For example, to assemble a

product comprising a peg and a block with a hole, will

require the position of the peg and the hole to be taught.

The control program will involve moving to the peg,

grasping it, then moving over the hole and releasing the

peg. The operation may be completed satisfactorily without

sensors if the exact position of each component is known.

With discrete sensing, the tolerances in part positions are

less critical, since at each stage information from sensors

·can be used to compensate for errors. For the peg-in-hole

problem, a tactile sensor on the robot gripper could be used

to determine the exact position of the peg, and a camera on

the gripper could be used to detect the centroid of the
..

hole. In this example, the sensors are being used to adjust

-45-

\

a location which is nominally known but which is subject to

uncertainty.

3.3 Definition of terms in the assembly process

A description of the terminology used to describe the

sensory assembly is presented. The assembly process is

assumed to employ sensors as well as actuators, and involve

repetitively performing a task according to a control

program. This control program will reside in the central

controller and will communicate with the sensors and

actuators according to the instructions in the program.

A 'state' is a location in the actuator's frame of

reference defined in a three-dimensional cartesian

Coordinate system. In practice, the states will be defined

as the key locations ,in the work-cell represe.nting, say, the

Positions of parts to be handled. If the location is subject

to some uncertainty then the state represents the best

estimate of the location and would represent the point

around which sensory feedback is applied. As well as

representing a location, a state may also represent an

offset between locations, for example b~tween objects on a

pallet.

In general, a state will have 6 components which

uniquely specify a position and orientation in space. For an

actuator with less than 6 degrees of freedom, 1 or more of

the components will be zero. No distinction is made as to

how the state should be taught. Since the states will

represent positions of the manipulator, they could be"taught

through an on-line, teach-by-showing method. Conversely, for

off-line programming they may be taught as numerical values.

-46-

\

In general

T Xk = (x , y , Z , 0 , a , t)

where x, y, z are the translational components of the

position, and 0, a and t are the orientation components

defined by the Euler angles [46]. These 3 angles describe

any possible orientation in terms of a rotation about the z

axis, then a rotation about the new y axis and finally a

rotation about the new z axis. Once these 6 components have

been taught, it is possible to construct a 4x4 homogeneous

transformation matrix to describe the state Xk • This is

obtained by combininqthe effects of the 3 rotations and the

translation, giving the state Xk as [46]

[
Co.Ca.Ct - So.st -Co.Ca.Ct - So.Ct

Xk = So.Ca.Ct + Co.st -So.Ca.St + Co.ct
-So.ct Sa.Ct

0 0

where Co = Cos(o), Ca = Cos(a), ct = Cos(t)
and So = Sin(o), Sa=Sin(a) st = Sin(t).

Co.Sa
So.Ca

Ca
0

It is convenient to represent the states in this manner

because these matrices can readily be combined to calculate

new positions based on sensor information. Once the sensor

information has been formulated into a 4x4 matrix, see
I

Section 4.4, the.new actuator position can be derived by

multiplying the two matrices. The new x, y and z components

are explicit, but the desired orientation of the state must

~e calculated by solving equations in sines and cosines to

get 0, a, and t: this can be non~triviai.

A number of commercial robot programming languages, for

example VAL, are based around these 4x4 homogeneous

transformations. When a location is taught to VAL, it is the

-47-

x
y
z
1 1

\

4x4 transformation which is calculated and stored, (although

the programmer does not have access to the specific elements

of the matrix). With a view to developing a programming

system to operate in conjunction with an existing robot

control language, it is sensible to represent.states by such

matrices.

The 'assembly process' is a controlled sequence of moves

between the defined states, using sensory feedback where

necessary. The sequence and the nature of the movements will

be defined in the control program.

The 'system nois_e' is the likely variation in the

position of a state due to random perturbations in system

parameters. The ill-positioning of components and the

performance of the actuator can contribute to the sys,tem

noise. If parts are being fed from a feeder o'r dispenser,

the variation in the exact position of the part is a cause

of system noise. Assume that the noise can be modelled by a

random variable, Q., having mean r. and variance u .• Hence,
-~ -~ -~

the mean and variance of the errors in each component of X.
-~

is specified by the corresponding component of r i and u i •

Tae 'measurement noise" is the 1 ike~y variation in the

measured value of a constant state. It arises from the noise

in the physical measuring transducer, conversion noise,

robot noise and the coordinate-frame transformation errors

between sensors and actuators. Assume that this noise can be

modelled by a random var~able Rk of mean zero and variance

vk• Hence, vk represents the variance of the measurement

noise of the kth sensor.

-48-

\

3.4 Confidence of a state

DeFazio [73] proposed the idea of confidences, with a

view to varying the robot's speed in accordance with the

certainty with which a location is known. This section

develops this concept to provide a parameter to quantify the

magnitude of previous errors and hence provide a mechanism

to control the speed of the actuator to reflect these

errors. In traditional robot control systems, the speed at

which the actuator moves to a position does not change

between cycles. (There is of course speed variation within a

cycle as the actuator. moves between different locations). It

is, however, intuitively appealing to automatically vary the

speed to reflect changing conditions; slowing down in the

face of uncertainty and speeding up as the errors reduce. In

practical terms, the effect of changing the speed could be

to reduce the location-overshoot associated with high speeds

and to improve the effective sensing rate. If the speed of

the actuator is reduced and the sensing rate remains

constant, the effect is to increase the resolution of the

sensing process. To achieve this, however, requires a degree

of parallelism between moving and sensin~, this may be

difficult to attain. The overriding advantage of dynamically

adjusting the actuator's speed arises when there is a fatal

error, for example trying to insert a peg into a hole w~ich

does not exist. If the actuator is moving-slowly, then there

is more chance of stoppipg it, hence preventing a

catastrophy. If the error in the previous cycle was l~rge,

it may have been possible to predict that the hole position

was not accurately known. Using dynamic velocity control,

-49-

"

this previous error would have resulted in a reduced

confidence and hence a reduced velocity.

The 'confidence' of a state is defined as the certainty

that the current value of the state is correct. If the state

represents, for example, the centre of a hole, then the

confidence of the state is the certainty that the vector

representing the hole's position is correct. The confidence

will be a vector, such that the confidence of each component

of the state is predicted by the corresponding component of

the confidence vector. If previous iterations to a state

have necessitated considerable corrections from sensors,

then the confidence of the state would be small, and in the

limit approaching O. The confidence will be increased if the

sensors indicate small or zero errors, in the limit

approaching 1 as the coordinates of the location become

known. If the location is subject to random errors from

system noise, then the confidence can never become equal to

1 because there will always be some uncertainty in the

location. Define TI as the confidence of the lth state, and

I et the components of T I take va I ues between 0 and 1. The

numerical value of the confidence will d4pend on the

relative sizes of the system and measurement noise. In

Chapter 5 it will be shown how a numerical value of TI can

be computed based on estimates of the system and measurement

noise. In practice, computation of a state confidence does

not provide sufficient information from which the velocity

of the actuator can be computed. In the absence of any

sensors, the speed of the actuator would always be the same.

At some stages in the assembly, sensors will not be used,

-50-

but different actuator velocities will be required in

performing different types of operation. This problem is

solved by introducing another parameter.

3.5 Sensitivity of a state

In addition to defining the confidence of a state, it

has been found necessary to introduce another parameter,

which has been called state-sensitivity. The 'sensitivity'

of a state is a normalized parameter which is used to

quantify the required accuracy to which the state must be

known. Consider the task of inserting a peg in a hole.

Define the state X to "represent the coordinates of the hole

centre. If the hole is chamfered then the exact position of

the peg with respect to the hole is less critical, hence the

sensitivity is reduced. If, however, the hole,is

unchamfered, then the peg must be positioned much more

accurately, hence the sensitivity is high. Unlike

confidence, the sensitivity need not vary, since it

represents a physical property of the state.

The numerical evaluation of state-sensitivity is based

on the magnitude of the largest tolerabl~ error in the
\
I

vicinity o~ a state. Define Al as being a 6-component vector

where each component represents the magnitude of the maximum

tolerable error of the corresponding component of the state.

Then, if FI is the sensitivity of the lth state and take"s

values between o and 1, let FI be calculated from Al using,

(i=1 •• 6) (3 • 1)

In practice, a sensible range of sensitivities are produced

if Al is expressed in millimetres (mm). Hence, if a position

-51-

is to be attained to a positional accuracy of .:!:..1 mm in the x-

direction, the value of Al1 would be 1 and hence Fl1 = 0.5.

If ~l = 0, implying zero tolerance, then F I =1. A set of

values of Al and the corresponding FI calculated from

equation 3.1, are tabulated in Figure 3.2.

Tolerance Sensitivity
(AI') - ~

mm (Fli) mm-I

0 1 .0
0.1 0.91
0.2 0.83
0.5 0.66
1 .0 0.5
2.0 0.33
5.0 0.17

10.0 0.09

Figure 3.2: A set of values of tolerance
- and sensitivity.

3.6 Controlling the actuator's speed in response to past errors

Once the states associated with a specific assembly

problem have been defined, the program to perform the

assembly is constructed by defining conditional moves

between states. The syntax of this construction will be

discussed ~n Chapter 4. It is proposed that the sensitivity

of a state and the dynamically changing confidence will be

used to calculate the velocity of the actuator as it

approaches and leaves a state. Therefore, within the control

program there will be no commands to set the actuator's·

speed directly. Although this technique·could be applied to

" continuous velocity control, the approach taken in this

thesis is to restrict attention to discrete control. Hence

states will be approached and departed at a constant

-52-

velocity, the magnitude of which is calculated adaptively.

Consider the action of moving the actuator between two

states. Within the control software of the manipulator,

there will probably be existing facilities to control the

trajectory. In VAL, for example, movements can be made in

joint-interpolated motion or straight-line motion. Under

different circumstances both may be desirable. Since the

velocity of the actuator is calculated in the vicinity of a

state, there will be two calculated velocities for each

movement, one for the first state and one for the
"

destination state. Using a combination of sensitivity and

confidence, the components of velocity in the vicinity of a

state can be calculated. Define Nl as the velocity of the

actuator as it approaches the lth atate. The~,

(i=1 •• 6) (3.2)

Since F 1 i and T 1 i both take on va 1 ues of between 0 and 1 ,

Nli represents a normalized velocity. The velocity vector Nl

will therefore give the desired velocity for each component

of the state. The speed is computed by forming the scalar

produ~t of the velocity with_the vector_{epresenting the
I

directionnof approach of the state. This is formalized in

the next section. It is seen from equation 3.2 that if the

sensitivity of the state is high then the speed of approach

is low. Similarly, if the confidence is low then the sp"eed

is low.

The next section addresses. the problem of how to move

the actuator between the two states, such that the velocity

in the vicinity of the two states is controlled to satisfy

equation 3.2.

-53-

3.7 Transferring the actuator between two states

Since the velocity of the actuator is only constrained

within the close proximity of a state, let the transfer of

the actuator between two states be a three-stage process.

The first stage will be a controlled movement away from the

initial state, Xl' to a another point Yl , such that

Yl = Xl + d l (3 .3)

where d l is called the departure vector associated with the

state Xl' as shown in Figure 3.3. In practice this departure

vector wi 11 be chosen such that Y 1 is a safe distance from

!l. The need for a departure vector can be recognized by

consideration of the peg-in-hole assembly depicted in Figure

3.4. If Xl represents the position of the manipulator

corresponding to the peg inserted in the hole, then Yl

represents the position of the manipulator for the peg clear

of the hole. Call Yl the intermediate state of Xl. It is

clear that the path between Xl and Yl is critical and must

lie in the axis of the hole, otherwise undesirable forces

will be exerted during withdrawl. The departure vector for

the state Xl is therefore defined as a vector centered on Xl

whose magnitude and direction" are chosen~to achieve a safe

approach and departure path for motion to the state. For the

peg-in-hole problem, this direction is along the axis of the

hole, and the magnitude is sufficient to ensure that the peg

is clear of the hole at Y 1. During the movement of the

actuator between the Xl and Yl the velocity is to be
.'

governed by equation 3.2, and will be constant until the

actuator reaches Yl • The speed of the actuator, sl' ~s given

by the magnitude of the scalar product of the velocity and

-54-

Xl

y ,
-1

d ' -1

X ' -1

Figure 3.3: Transferring the actuator between two states

Mov~ment of
peg

o

Figure 3.4: The peg-in-hole assembly problem.

-55-

the departure vector, that is

(3.4)

Now consider the actuator moving to the final state, call it

xt ' which has departure vector dt and associated position

Yi ' see Figure 3.3, such that

The following stages in the transfer between Xl and Xi

are identified

stage 1 :

stage 2 :

stage 3 :

Transfer from Xl to Yl

Transfer from Yl to Yi

Transfer from yl to Xl
-1 -1

(3.5)

The motion between ~l and Yl has been discussed. The motion

between yt and xt is similar and is constrained by the path

di • For this motion, the velocity is calculated from"the

sensitivity and confidence of the destination state, Xk '
using equation 3.2, as

Ni i = (1 - Fii).Ti i (i=1~.6) (3.6)

where Fti is the ith component of the sensitivity of the

destination state and Tti is the ith component of the

confidence of the state. The speed of approach of the

destination state is therefore,
\
I

(3.7)

Since, in general, both Yi and Yl will be close to Xi and Xl

~espectively, the magnitudes of the vectors d l and di wiil

generally be smaller than the distance between Xl and Xi •

Hence, the largest movement will. be made between the

intermediate points Yl and xt • This is called the gross

motion. The initial departure of a state, from Xl to'Y l , and

the final approach, from Yi to Xi, are the fine motions. For

-56-

the pa th Y 1 to Y i ' a 1 though the movement distance may be

large, the constraints on the path are less than those

imposed in the locality of the states. Therefore, it is

neither necessary nor practical to control the speed in the

same way. Hence, in the absence of any other information,

assume that the speed for the gross motion is constant and

may be pre-set to a suitable value for each actuator. In

practice it may be necessary to impose some constraints in

the gross motion phase to avoid obstacles. The speed,

however, need not change. This problem is one of planning
<-

the trajectory subject to the constraints imposed by the

presence of objects. A simple solution here is to define

sufficient extra points such that a safe path is described.

The problem is beyond-the bounds of this thes~s.

In summary, the motion of the actuator between two states

wi 11 be as follows:

1. Calculate the departure velocity for the current

state based on the current confidence and

sensitivity of the state.

2. Move the actuator to the locatio~\Yl along vector d l
I

with the velocity calculated in step 1.

3. Move the actuator between the two intermediate

points Yl and Yi at a pre-set (constant) velocity.

4. Calculate the approach velocity for the destination

state based on the current confidence and

sensitivity of that state.

5. Move the actuator to the state Xi along the

vector -9.i ' -with the velocity calculated in step 4.

-57-

The definition of the departure vector for each state could

be done at the same time as the state itself is defined.

However, since the departure vector is defined relative to

the state, it would be simple enough to define this vector a

p~io~i. By representing the departure vector as a

homogeneous transformation, the position of the intermediate

points can easily be found by combining the matrices for the

state and the departure vector.

3.8 Sensory feedback

Once the states associated with the system have been

taught, the control program to instruct the actuators to

move between the states must be formed. Sensors will be used

to fine-tune the state position such that a desired sensor

.' condition is fulfilled. Hence, in general, the object of

moving the actuator will be to transfer the current sensor

reading into a new sensor reading. Consider the task of

moving a gripper-mounted camera to the centre of a hole. The

nominal position of the hole will be known, but the actual

position may be subject to uncertainty. The sensor will

provide error information which will be ~sed to servo the , ,
i

robot to the desired position. This operation may be

sUIJ1marized as,

1. Move to the state representing the nominal position

of the hole, using the procedure described in

Section ~3. 7.

2. Compute the error in position using the vision

sensor.

3. Correct for the error by moving the robot.

4. Repeat steps 2 and 3 until the error is zero.

-58-

Assume that the movement to a state will be carried out

repetitively as part of a control program. Define a

'cycle' to be one complete execution of the program. At a

particular state, the task of sensing and then.moving the

actuator, steps 2 and 3 above, is termed an 'iteration'. The

number of iterations necessary to satisfy the termination

criterion (see Section 4.5) will depend on the noise and

transformation errors in the system. If the system and the

measurement are noise-free, there will be zero iterations

because the position of the actuator after the gross motion

and the fine motion will be correct. In general, the system

error will be non-zero and the sensors will detect an error.

If the measurement process is noise-free and the

transformation between the sensor-error and the world-error

is accurate, then only one iteration will be necessary

because the perceived error will be immediately corrected.

Measurement noise will be an additional component to the

perceived error, the result of which will be that the

expected number of iterations before the termination

criterion is met will increase as the vatiance of the

measurement noise increases. The implications of this are

discussed fully in Chapter 5.

The application of sensory feedback begins after the

fine motion phase, which completes the transfer of the

actuator to the new state. This final phase is referred to

as the feedback phase.

The termination condition for the cycle occurs when the

desired sensor conditions have been met, (this criterion

-59-

wi 11 be enhanced in the next chapter) and hence the purpose

of the operation may be thought of as achiev ing a set of

specified conditions in the sensors. Given an initial sensor

reading and a desired final sensor reading, the problem is

one of how to move the actuator to achieve the goal. Unless

the initial and final position are close, the sensor

readings alone will be insufficient to define the final

position. The sensor will only provide information within a

fini te domain and hence can only be used to fine-tune

positions. For example, a camera used to determine the

position of a hole fOLa peg-insertion will only be useful

if the hole is within the field of view of the camera.

Hence, the nominal position of the robot must be given to

sufficient accuracy so that the sensory servoing can achieve

a unique end-point. The fine and gross motion phases of the

cycle represent the movement to the nominal position, prior

to application of sensory feedback. This' is summarized in

the timing diagram of Figure 3.5.

Upon completion of the servoing, the final position of

the actuator is the new estimate of the desired state. By
-.

combining this measurement with the curreht estimate, which

is the value used in the first iteration, it is possible to

detect the situation of drift and hence cummulative errors.

The problem is tackled using long-term feedback.

3.9 Application of long-term feedback

The distinction between short-term'and long-term

feedback was made by Defazio [73] and Whitney [76]. In the

context of the assembly problem described in this chapter,

short-term feedback represents the feedback applied in the

-60-

Compute
departure
velocity
and then
move to
inter­
mediate
state at
this
velocity.

Fine­
motion
phase ••

Move to
inter­
mediate
state
of the
destin­
ation
state.

Gross­
motion
phase.

Compute
approach
velocity
of the
destin­
ation
state
and then
move at
this
velocity

Fine­
motion
phase.

Iteration 1 Iteration 2

Move Move
Compute Compute
error error

Sense Sense

Feedback-phase

"

Long-term
feedback

time

Figure 3.5: Timing diagram for a cycle of discrete sensory feedback.

-61-

servoing. Long-term feedback, on the other hand, would be

applied between cycles, to try and improve the initial

estimate of the state for the start of the next cycle. The

need for long-term feedback can be appreciated by

considering the following example.

A pallet holds a regular array of parts to be handled.

The spacing between the parts is known, but is erroneous. On

each cycle, the robot is to pick up a component for

subsequent mating, and then compute the position of the next

part using the offset. In the first few cycles, the spacing

error is absorbed by the grasping action of the robot, but

after a while the cummulated error is too large to be

accommodated and the grasping operation fails. Even if

sensors were used in the grasping, the situation would not

be improved without the use of long-term feedback. Although

the position of the part with respect to the gripper could

have been deduced, after a few cycles the cummulated error

would be too large to be measured by the sensor. Using long-

term feedback, the error in each cycle would be used to

adjust the starting position for the next cycle. This will . \
I

allow drift to be detected and hence avoid cummulative

errors.

The application of long-term feedback to discrete

sensory assemblies requires the total correction applied

during sensory feedback to be recorded and the mean value of

the system noise over consecutive cycles computed. This is
"

discussed in more detail in Chapter 5, where the algorithm

for computing the system noise is described.

-62-

3.10 Summary

This chapter has described a general framework for

modelling discrete sensory feedback in robotic assembly. The

timing diagram shown in Figure 3.5 summarizes the phases of

the actuator movements and the nature of the interaction

between the sensors and the actuators.

The confidence of a state is a vector, where the

magnitude of each component reflects the certainty that the

corresponding component of the state is correct. Chapter 5

wi 11 show how the expected error in the system and the

measurement can be used to compute a va 1 ue for the

confidence. In conjunction with the sensitivity of a state,

the confidence is used to adjust the actuator's velocity in

the close proximity of a state.

Since object-level programming describes manipulator

movements to achieve conditions in objects, the term

'sensor-level programming' has been adopted to describe the

specification of manipulator movements to achieve conditions

in sensors. In the hierarchy of robot programming languages

(Section 2.3.5), sensor-level programming lies between the

"'" manipuIator level and the object level. The requirement is
..

not to give the manipulator movements explicitly, but rather

to infer them, to achieve the stated conditions in one or

more sensors. Hence the purpose of each actuator movement is

to transfer the condition of the sensors in the workcell

from the current set of readings to a new set. The software

must automatically compute the magnitude and direction of

the correction to be app 1 ied in order to reduce the error to

zero. Sensor-level programming is discussed fully in the

-63-

next chapter.

"" \
I

-64-

CHAPTER 4

SENSOR-LEVEL PROGRAMMING

-65-

-­" I

4.1 Introduction

The object of a robot programming language is to

coordinate the resources of a robot work-cell to manipulate

objects. Rather than specifying robot movements explicitly,

the trend of researchers is to provide indirection. In this

way, the robot movements are inferred to achieve a goal in

terms of some aspect of the system other than the robot's

position. Object-level programming, where the level of

indirection is aimed at specifying effects in objects, is an

active research area [33],[97],[98]. In object-level

programming, the required actions are expressed in terms of

objects and the interpreter must compute exactly how the

robot is to be moved in order to achieve those actions. If

the objects are positioned inaccurately, sensors may be

required to achieve successful mating, although the use of

such sensory information is transparent to the programmer.

An assembly problem to move block A onto block B may be

written in terms of an object-level program as

MOVE BLOCK A ON BLOCK B

To execute this, the robot control system must firstly
""\

compute the exact positions of the blocks, and then plan a

series of movements which can be executed by the robot

controller. Because grasping of the blocks is involved,

control of the robot's gripper is also required. The output

of the object-level programming system for the above example

may be,

OPEN GRIPPER
MOVE TO A
CLOSE GRIPPER
MOVE TO B
OPEN GRIPPER

-66-

This manipulator-level program gives movement instructions

to the manipulator in order to achieve the desired object-

level specifications. It is seen that the object-level

specification is more compact but requires a complex

interpreter to produce the manipulator-level program.

Consider the case where the posi tions of blocks A and B

are imprecisely known. To cope with this, a gripper-mounted

camera is used to provide feedback information from which

the exact position can be computed. The object-level

specification of the task remains unaltered because the same

effect in the objects is required. However, the manipulator-

level specification must be arnrnended to include information

from the camera. This can considerably increase the

complexity of the manipulator-level program.

The need to integrate sensor information with a

manipulator-level program, of the form described above,

almost invariably produces untidy and unstructured code.

This is the problem which is addressed in this chapter. The

aim is to enhance a manipulator-level language to provide

facilities for efficient representation of sensory feedback.

This will produce a robot programming system whose level of

direction is sensor rather than object or manipulator.

4.2 Sensor indirection

This thesis defines a new level of robot programming,

which, by analogy with object-level programming, is called

sensor-level programming. In sensor-level programming the

" level of indirection is to transfer the current readings of

the sensors into a new set of readings. As is the caie for

object-level programming, the movements of the robot are not

-67-

specified explicitly, but are inferred and hence must be

computed such that the desired sensor conditions are met.

Unlike object-level programming, the sensor-level of

indirection is not sufficient to uniquely specify the

movement of the manipulator. To transform objects, the start

and end positions can be calculated and a trajectory

planned. In sensor-level programming, the desired state of

the sensors cannot be used to infer the position of the

manipulator. The sensors will provide relative positional

errors over a finite region, from which only relative

movements of the manipulator can be computed.

In Section 3.8, the stages involved in achieving sensor

conditions were identified. Since the sensors will provide

only relative errors,'the required sensor cond~tions must be

qualified by giving the nominal position of the manipulator

around which sensory feedback can be applied. Hence, the

primitive operation in sensor-level programming is

MOVE actuator TO state ACHIEVING condition IN sensor

where 'actuator', 'state', 'condition' and 'sensor' are

parameters which will be provided in the ~eneral movement

command. Th~s can be regarded as an extension of the

manipulator level command which is of the form

MOVE actuator TO state

In practice, the structure of the primitive sensor-level

programming operation shown above does not allow some

important actions in sensor-based robot assembly to be

represented. Sometimes, the information from the sensor is

not used in a servoing loop, but instead is fed-forwaord to

adjust a future location. This is the case if, for example,

-68-

a camera is used to locate the posi tion of a hole into which

a peg will later be inserted. Thus, define a second

primitive, the object of which is to firstly compute the

difference between the current attribute value and the

desired attribute value, then to transform this into a world

frame of reference, and finally to adjust the numerical

representation of the state. The form of this primitive is

FEED-FORWARD ERROR BETWEEN attribute OF sensor
AND condition TO state

Chapter 6 of this thesis shows how these sensor-level

instructions can be represented within a programming system.

This invol ves a set of functions wri tten in the C

programming language which provides the programmer with the

means of representing sensor interactions.

4.3 Specifying sensor requirements

Sensors vary considerably in complexity, from simple

binary detectors to high-resolution cameras. To express

sensor requirements in a uniform way requires the sensor

data to be preprocessed into a standard form. This is the

function of the sensor controller which was discussed in

Section 3.1,. The input to the sensor controller wi 11 be the

raw data from the sensor. The output will be a processed

version of this data in the form of a set of 'attributes'.

~his is similar to the logical sensor specification proposed

by Henderson [83J and Hansen [85]. Define the attributes to

be a set of scalar quantities which are a processed version
"

of the raw sensor data. The information from the sensor will

be represented by a set of these attributes. The procedure

is not reversible~ since the attributes cannot, in general,

-69-

be processed to reconstruct the sensor data. The nature of

the attributes will be dependent on the type of sensor, and

not on the application in which the sensor is being used.

This is important, because it means that the sensor and its

controller can be interchanged between different assembly

applications as a self-contained module.

For some sensors, the information may be irreducible

and hence the output from the sensor is equivalent to the

attribute. A simple proximity sensor falls into this

catagory, although even here some signal processing may be

desirable. Other sensors, such as an area-array camera,

provide significantly more information. The attributes for

such a sensor may include

1. The value of the x centre of gravity of the

component in the field of view.

2. The value of the y centre of gravity.

3. The area of the component in the field of view.

Since the attributes will be used as parameters in closed

loop control, features such as the number of holes are not

relevant.

" For the attributes listed above, the position of the x

and y centroid have a direct relationship to the movement of

the sensor in the x and y directions. The perceived area.of

the component can be related to the distance of the camera

from the component and hence can give a z direction error.

The attributes representing the information from the

sensor will be sent to the central controller to enable

closed-loop control to be achieved •. The information flow

-70-

from the raw sensor data to the central controller is

illustrated in Figure 4.1. The function of the sensor

controller is three-fold. Firstly, to control the sensor,

sending the appropriate control signals to enable it to

function, secondly to process the resultant data to extract

the attributes and thirdly to send these attributes to the

central controller using a defined protocol. The format of

the information interchange between the central controller

and the sensor controller is discussed in more detail in

Chapter 6.

Figure 4.2 shows a list of some common sensors,

together with a list of possible attributes which

characterize the sensor-data.

Using attributes, the primitive sensor-level

programming structure can be rewritten as

MOVE actuator TO newstate ACHIEVING condition
IN attribute OF sensor

At this stage, assume that the termination criterion is that

the attribute error is zero. This criterion will be extended

in Section 4.5. The execution of this instruction is

summarized in the flowchart of Figure 4.J.
\

As an example, for a sensor 'camera' having attributes

'x-cofg' and 'y-cofg' (representing the X and Y centre of

gravity of the component respectively) used in conjunction

with an actuator called 'robot', the following command could

be issued.

MOVE robot TO newpoint ACHIEVING 50 IN x-cofg OF camera

This command involves moving the named actuator, 'robot',

from its current state to the new state called 'newpbint',

using the procedure described in Section 3.7. After this,

-71-

Physical
sensor

----=J-+------
Control Raw sensor
lines data

I Control :1----+-+-,--11 Processor t 11...-__ ,.--__ -1

I

I
I
I
I
I

I SENSOR
CONTROLLER

, Attributes I
I~------~ I

I
I

Communications

L_
I

_____ J
To the central

I controller

Figure 4.1: Information flow from the sensor
to the central controller

SENSOR

Area~array camera.

Proximity sensor.

Tactile sensor.

IRCC.

Linear-array camera.

ATTRIBUTES

Position of x-centroid of part.
Position of y~centroid of part.
Area of part.

Range.

Average contact force.
Area of contact.
Orientation of part on the array.

x, Y, Z, 0, A, Terrors.

Position of light-to-dark edge.
Position of dark-to-light edge.
Area.

Figure 4.2: A table of attributes for some sensors.

-72-

Move the actuator from the current
state to the intermediate point of the

current state at a speed computed
using equation 3.4.

t
Move the actuator to the intermediate

state of 'newstate'.

t
Move the actuator to 'newstate' at a

speed computed using equation 3.7.

Get the attributed sensor data from
the appropriate sensor slave.

t
Compute the attribute error as the

difference between the actual and the
desired attribute value.

+
Transform the attribute error into a
cartesian error in the world's frame

of reference •
.r

Move the actuator by the cartesian
error.

Is
No the

... termination
criterion

met ?
~"

~ \
I

.. yes

Apply long-term feedback •

.stop

Figure 4.3: Sequence of operations in the execution of a sensor­
level command.

-73-

sensory feedback is applied so that the perceived X-centre

of gravity of the component in view is at position 50. Upon

completion of the servoing, long-term feedback is applied to

improve the estimate of the state for the next cycle. The

application of long-term feedback is discussed in the next

chapter.

To control the position of the Y-centre of gravity, a

second sensor-level command, similar to the above, could be

issued. However, rather than issuing two separate commands,

it is desirable that the whole event is expressed in a

single statement. Hence, the required form of the command is

MOVE robot TO newpoint ACHIEVING 50 IN x-cofg OF camera
AND 50 IN y-cofg OF camera

For this example, because the X and Y axes are

perpendicular, the vectors representing the correction

directions are orthogonal. Therefore the form of the command

shown above is equivalent to doing two consecutive calls,

each to achieve one sensor condition. This is not the case

if the correction directions are not orthogonal, when the

application of sensory feedback to achieve the second sensor
",

requirement will affect the feedback applied for the first

sensor requirement. This problem is considered in detail in

Section 4.6.

Implicit in the sensor-level command is the computation

of the transformation of the sensor-attribute error to the

necessary correction vector for the robot. The means of

computing this transformation is now discussed.

4.4 Transformation of errors: static and dynamic sensors.

A sensor, used to provide information for closed-loop

-74-

control, will produce data in sensor units, in the sensor's

frame of reference. In order to reduce the perceived error,

the sensor error must be transformed into the world's frame

of reference, in which the correction will be applied.

Define the 'correction vector' as an Euler vector, having 6

components, which represents the error in a world 'frame of

reference, between the current actuator position and a new

position which should reduce the perceived error to zero. It

is assumed that the actuator controller will be able to

accept movement commands which are specified in a world

frame of reference.

In order to compute the transformation between the

sensor's and the world's frame of reference, the

relationship between'the sensor and the actuator must be

known. To this end, two different types of sensor are

considered. Depending on whether the sensor is physically

coupled to the actuator, the term 'static' or 'dynamic' is

used to classify the sensors. Define a static sensor as one

which is fixed in a wor ld frame and does not move wi th an

actuatpr. Define a dynamic sensor as one-'rwhich is physically

coupled to. an actuator and consequently moves with the

actuator. This class of sensor includes gripper-mounted

cameras, the instrumented remote centre compliance (IRCC),

,and gripper mounted tactile sensors. An overhead workstation

camera is an example of a static sensor. An example of the

relationship between the the frames of 'reference of a static

sensor, a dynamic sensor, an actuator and the world is given

in Figure 4.4. The static sensor is an overhead cam~ra,

whose frame of reference is fixed with respect to the world

-75-

Actuator
frame

Static-sensor
frame

Dynamic-sensor
frame

World
1", frame

---I---~"/.",

Figure 4.4: The frames of reference between the sensors, the
actuator and the world.

I Euler sensor error. I
t

Transform error from Euler
vector into 4x4 homogeneous matrix.

t
Pre-multiply this matrix by the 4x4

matrix representation of the
sensor-world transformation.

+
Compute the Euler representation of

the 4x4 matrix.

t I Euler world error. I

Figure 4.5: Transforming an error from a static sensor
into a world-error.

-76-

frame. The dynamic sensor is a gripper-mounted camera, whose

frame of reference wi th respect to the world moves as the

actuator moves. However, the relationship between the

actuator's and the sensor's frame of reference does not

change as the robot moves.

The method of processing the error from the sensor to

compute the correction for the actuator is different for the

case of a static and a dynamic sensor. For the static sensor

the relationship between the world's frame of reference and

the sensor's frame of reference will be fixed and can'be

represented by a defined transformation. For the dynamic

sensor, it is the relationship between the sensor and the

actuator which is fixed. Consider the case of static and

dynamic sensors separately.

4.4.1 Static-sensor to actuator transformation

An error detected by a static sensor can be transformed

into a world error by multiplying the matrix-representation

of the error by the homogeneous matrix representing the

relationship between the sensor's and the world's frame of
",

,reference. The use of homog~neous matri~es to represent

relationships between frames of reference is described by

Paul [46]. Assume that the error from the sensor can be

represented by a 6-component Euler vector. Depending op the

type of sensor, between 1 and 6 components of this vector

Will provide error signals. For a simple proximity sensor,

only one component of error may be provided. However, for an

instrumented remote centre compliance (IRCC), a full 6

components of error, corresponding to 3 translational and 3

-77-

rotational components, will be produced. This Euler vector

can be transformed into a 4 x 4 matrix using the procedure

described in Section 3.3. By multiplying this error matrix

by the transformation between the sensor and the world, the

resultant matrix is the error expressed in the world frame

of reference. This can then be expressed as a 6-component

Euler vector. If the 4 x 4 matrix for the world error is

[~
b
f
j
o

c
g
k
o ~l

the Euler representation is (x,y,z,o,a,t)T, where each

component is calculated as [46],

x = d,
y = h,
z = m,
0 = atan2(g,b)
a = atan2(cos(o).c + sin(o) .g ,k)
t = atan2(-sin(o).n + cos (0) .e , -sin(o) .b + cos(o).f)

The Euler form of the correction can subsequently be used to

issue a movement command to the actuator.

The sequence of operations required to transform an

error in a static sensor to a world error is summarized in

Figure 4.5.
-" \

I

!.4.2 ~ynamic-sensor to actuator transformation

If the sensor is dynamic, the relationship between the

sensor's frame of reference and the actuator's frame of

reference will be fixed. However, the relationship between

the actuator's frame of reference and the world's frame of

reference will depend on the position of the actuator.

Defining the position of the actuator to be the

transformation between the actuator's position ana the

origin of the world frame, then the sensor error can be

-78-

transformed to a world error by

[
WOrld]
error

= [Act';la~orl. [sensor-actua~orl [sensor)
pos~t~on transformat~on· error

As before, the Euler vector representing the sensor error is

initially transformed into a 4 x 4 matrix. The final world

error can then be transformed back into an Euler vector and

the movement executed.

The sequence of operations required to transform an

error in a dynamic sensor to a world error is summarized in

Figure 4.6.

4.5 Terminating the sensory servoing

Using either static or dynamic sensors, the final world

error is the distance to be moved by the actuator. Although

the basic sensor-level programming directive will require a

specific sensor condition to be met, it is neither necessary

nor practicable to demand that the sensory servoing

terminates only under these circumstances. Chapter 3 defined

the state sensitivity as a normalized parameter used to

m represent the accuracy to which ~ state must be known.

Eq~ation 3.1 gave the relationship between the sensitivity

and the tolerance at a state. During the application of

sensory feedback, the perceived sensor error, once

transformed to an actuator error, may be less than the

tolerance of the state. Since the tolerance represents the

desired accuracy of the itate, any correction less than this

need not be applied. This means that the servoing can

terminate whenever either the sensor condition is met, or

the magnitude of the computed correction is less than the

-79-

Euler Sensor error.

t
Transform error from Euler vector

into 4x4 homogeneous matrix.

+
Pre-multiply this matrix by the 4x4

matrix representing the sensor-
actuator transformation.

+
Pre-multiply the product by the 4x4
matrix representing the actuator's

current position.

+
Compute the Euler representation of

~ the 4x4 matrix.

t
Euler world error.

Figure 4.6: Transforming an error from a dynamic sensor
into a world-error.

Initial state

ff r - ------------- -----,
I I I

: Xl1 :/

: i~y;------
~ _____ ______________ L_J

Final
state

L.. ___________ _

X -12·

-
I
I
I
I
I

I - ________ .J

Figure 4.7: Derivation of a state satisfying two sensor
reguirements.

-80-

tolerance of the state. Both the correction distance and the

tolerance will be vectors and hence each component of the

vectors must be tested to see if the correction needs to be

applied. If any component of the actuator error is greater
,

than the corresponding component of the tolerance than the

correction must be applied.

In addition to terminating the servoing on the basis of

tolerance, it is important to consider the effect of

actuator resolution. The actuator will have a minimum

distance of moyement, the resolution, so that any demand

less than this will give no movement. Therefore another

condition for stopping the servoing is when the correction

vector is such that all its components are less than the

resolution of the actuator.

To sum up, the i tera ti ve task of mov ing the actua tor

and computing the sensor error is terminated whenever one of

the following conditions is met:

1. The sensory conditions are achieved.

2. The magnitude of each component in the correction

is less than the correspo~ding component of the

tolerance vector for the state.

3. The magnitude of each component in the correction

is less than the corresponding component of the

actuator's resolution.

In Chapter 5 the problem of errors in sensors, actuators and

the system will be examined. By considering the magnitude of

these errors, .the perceived corrections will be pre-

processed by multiplying by ~ scalar gain which is less than

-81-

1. In this way, if the measurement process is subject to

error, criteria 2 and 3 above will be met sooner. The effect

of this is to cause the system to ignore information from

noisy sensors; this is discussed fully in Chapter 5.

If a single sensor condition is to be met, the

iterative task of sampling, computing the error and then

moving, is straightforward. However, if more than one sensor

condition is to be met the situation becomes more

complicated. This is now discussed.

4.6 Achieving more than one sensor condition

Since a single sensor condition can only cause

correction to be applied in one dimension, it is likely that

additional sensor requirements will need to be. met. The area-

array camera discussed in Section 4.3 provides an example of

this. In this case, the result of the movement is to achieve

a specific condition in both the X and the Y centre of

gravity of the object in view. Because the correction

vectors for the X and Y vectors are mutually orthogonal, it

is possible to achieve the desired effect by having two

,single-condition sensor-level pro~ramming statements. This

is dhly possible if the correction applied to achieve the

second sensor condition does not affect the correction

already applied for the first condition. The orth?gonality

of the two correction vectors is a necessary and sufficient

condition for thi~ to be true.

If the correction vectors for the two sensor conditions

are not orthogonal, there will, in general, be no single
..

correction vector which can satisfy both conditions.

However, the use of state sensitivities gives rise to

-82-

'fuzzy' locations, which can be used to provide a solution.

Define Xl as the current state, and assume two sensor

conditions need to be met. If the two conditions were met

separately, two new states would, in general, result. Call

these two new states Xl1 and X12' see Figure 4.7. There will

be a sensitivity vector associated with state Xl' call it

FIt and assume that this sensitivity can also be used for

the new states ~11 and X12. From equation 3.1, each

component of the sensitivity is related to the corresponding

component of tolerance by

(i=1..6) (4 • 1)

For each of the new states Xl1 and X12' define a

transformation from the initial state,. Xl' as T1 and T2

respectively, such that

(4 .2)

and

(4.3)

where T1 and T2 are 4 x 4 homogeneous matrices and Xl' X11 ,

Xl2 are the 4 x 4 homogeneous matrix representations of the

,·Euler vectors Xl' ~11 and Xl2 respectively. Let T1 and T2 be

the "Euler representations of T1 and T2• Now each of Xl1 and

Xl2 has an uncertainty bound specified by AI' the tolerance.

Hence look for a new state, call it Y I , which sat:i..sfies

(4.4)

and

YI = Xl2 + b.AI (4 • 5)

where a and b are diagonal matrices, such that

-1 < aij < 1 i=j (i=1 •• 6, j=1 •• 6) (4.6)

-83-

and

= 0

-1 < b .. < 1
1J

b·· = 0 1J

(4 • 7)

i=j (4.8)

(4 • 9)

The vector a.A 1 defines the 1 imi ts of a region of space

surrounding X11' representing the tolerance. Likewise, b.Al

defines the space around X12• From equations 4.4 and 4.5

(4.10)

which can be expressed as

(4.11)

Define a new matrix, c, as

c = (b-a) (4.12)

Since c is diagonal, the components of.c are derived from

4.11 as

(4.13)

Now because the components of a and b are bounded by the

constraints given in equations 4.6 and 4.8, the components

of c are bounded by

-2 < c·· < 2 11 (i=1 •• 6)
'\

I

(4.14)

Hence the condition for the existence of a state, Yl , which

satisfies both sensor requirements is that equation 4.14 is

satisfied for each component of the state. If it is

satisfied, numerical values for the components of the state

Yl can be-computed. Since the components of c are known, the

components of a and b can ,be calculated to satisfy equation

4.12. In the case of only translational differences between

Xk , Xk1 and Xk2 , the solution, if it exists, c'orresponds to

an overlap of rectangles, centered on Xk1 and Xk2 , having

-84-

dimensions given by the components of the tolerance vector,

as illustrated in Figure 4.7

To achieve a unique solution, an extra constraint can

be added. Let aii = b ii , and therefore aii = cii/ 2 and bii =
cii/2 are the solutions. Once the components of a and b have

been calculated, the final numerical value of Yl is obtained

from either 4.4 or 4.5. This new state represents the final

position of the actuator which satisfies both sensor

conditions within the bounds of the tolerance. The complete

algorithm for achieving two sensor conditions is summarized

in Figure 4.8.

The extension of this problem to the case of more than

two sensors is not trivial. The problem is one of geometry,

since it requires the detection of overlapping-regions of

space which represent fuzzy states. Extending the problem in

the case of orthogonal correction vectors, is trivial since

each sensor condition can be met independently.

4.7 Summary

This chapter has defined a level of robot programming

'in which the indirection is towarc.is the sensors. In this,
I

the" aim of each movement of an actua tor is to transform the

current reading from one or more sensors into a new set of

readings. This is sensor-level programming. The format of

the commands was illustrated in Section 4.3 and the

mechanisms for p~ocessing and handling sensor information

were described in Sections 4.4 and 4.5. In Chapter 6 of the

thesis, an implementation of these command is described.

By identifying sensors as either dynamic or static, the

error in a sensor's reading can be transformed into an

-85-

Move to the Xe state, using gross-motion and
fine-mo ion in the normal way.

Use sensory feedback to achieve the first
sensor condition and record the

coordinates of the final state as X l1 •

I-

Return to the initial state.
~

,

Use sensory feedback to achieve the
second sensor condition and record the
coordinates of the final state as X l2•

Is Equation No Sensor-conditions
4.14 satisfied ? cannot be met

(Error)

It Yes
I

Compute Yl from equation 4.4.

Move to the final position Yl •

Figure 4.8: Flow-chart illustrating the events in achieving
two sensor-conditions.

-86-

alternative frame of reference, the world frame, in which

the correction can be applied. Expressing the

transformations between the frames of reference with

homogeneous matrices allows the errors in one frame to be

easily transformed into another frame.

The termination conditions for a sensor-actuator servo-

loop extend beyond simply that of meeting the specified

sensor conditions. By defining a tolerance for each state,

the accuracy of the servoing can be made to ref lect the

physical properties of the state. Unless the measurement

process is noise-free, reducing the tolerance will speed up

the servoing. The state tolerance also has a role to play in

movements to achieve two sensor requirements. By assuming

each state has a non-zero tolerance, a 'single point can be

found which satifies two sensor conditions within the bounds

of the tolerance. If the sensors have orthogonal correction

vectors, the problem is trivial, because each condition can

be met sequentially.

Although one or more of the termination criteria must

~have been met to terminate a stat~transfer, the overall
I

" positional accuracy to which the state was reached is

directly related to the performance of the measurement

process. If the measurement was erroneous then the final

posi tion will ref lect this error •. The next chapter considers

the effects of errors in discrete sensory feedback, and

develops algorithms to cope with noisy sensors.

-87-

CHAPTER 5

ANALYSIS OF ERRORS IN SENSORS AND ACTUATORS

-88-

5.1 Introduction

Although an off-line modelling system can work to a

high accuracy, the positioning of components and the motion

of the manipulator are both subject to error. The

manipulator will have a minimum distance· of movement, the

resolution, which will govern the maximum attainable

accuracy. The accuracy is defined as the ability of the

manipulator to move to a position having been given only the

numerical coordinates of that position. As well as

mechanical effects, for example backlash, finite word-length
~

effects of a digital controller can contribute to poor

performance. For off-line programming, it is the accuracy

which is the important parameter. For on-line teaching, the

key parameter is the repeatability, defined as the ability

of the manipulator to return to a taught point. In practice,

the observed repeatabilty of the manipulator depends on the

configuration and position of the manipulator in the work-

space. In the long-term, mechanical wear will increase and

performance will reduce.

This chapter addresses the source and cause of errors
~\

I

which occur in sensory assemblies. These errors are defined

as the difference between the actual and desired sensor

readings at a location. Errors introduced by ill-positioned

parts are the major cause of the total error, but

manipulator accuracy and repeatabilty also contribute. A

third source of error, not usually considered, is sensor

error. Although sensors are introduced to detect and measure

errors in theqpart position and the manipulator, they may

themselves be a source of error.

-89-

Algorithms are developed which quantify the noise

levels in the sensors, the actuators and the system using

information from the feedback phase of the actuator

movements. The noise levels are then used to compute a

weighting factor which reflects the relative magnitude of

the measurement noise to the system noise, and can be used

to minimize the effects of errors from noisy sensors.

5.2 Sources of errors in sensory assembly

Three sources of error are considered, these are,

1. System. errors - caused by ill-positioned

parts or ill-defined locations.

2. Actuator errors - arising from finite accuracy

and resolution.

3. Sensor errors - arising from stochastic

variations in sensing and processing of data.

These are now discussed in further detail.

5.2.1 System errors

If, at the manipulator level of programming, the robot

is instructed to move to a pre-taQght location and close the
\
I

gripper jaws to grasp an object, the success of the

operation depends on two factors. Firstly, the object must

have been present and in the correct position, and secondly,

the location must have been correctly taught to correspond

to the intended position of the object. This is tantamount

to defining the position of the manipulator relative to the

object, but usually the positions are both defined relative

to another frame of reference, the world frame. In assembly

operations, components may be fed from feeders or

-90-

dispensers. Although the nominal position of the component

is known, there may be some random variation about this

point. To some extent, errors can be corrected by the action

of grasping, although usually only in one dimension. In some

assembly operations the effect of error~ can be reduced by

careful design, for example chamfering a hole to improve the

reliability of a peg-in-hole insertion. The accuracy of

component presentation can often be increased, but at

greater expense in jigging costs. Furthermore, if the

assembly involves flexible materials then it is very

difficult to predict the exact position of the material with

respect to the end-effector [8],[6],[99].

5.2.2 Actuator errors

Even if the components to be handled are precisely

located, there may still be errors in the grasping of the

part by the manipulator. As an example, consider an

industrial robot fitted with a parallel jaw gripper used to

pick a peg from a ho I e and p I ace it in a second ho I e.

Assuming that the taught locations corresponding to the

'initial and final positions of the peg are correct, and that

the"peg is precisely located within the hole, any errors

introduced must be caused by either the manipulator or the

gripper. Closing the gripper jaws around the peg will exert

forces, which, if the peg is not centrally positioned within

the jaws of the g~ipper, will tend to apply a lateral force

on the peg. When the peg is withdrawn from the hole by

moving the manipulator, the effect of this force may result

in a positional error of the peg on the gripper. Further

errors may be introduced if the initial position of the

-91-

manipulator at the grasping point is subject to error due to

the repeatability.

The repeatability of a manipulator depends on a number

of factors, including the

1. Position of the end-effector in the workspace.

2. Age of the manipulator.

3. Temperature.

4. Load.

It is likely that the quoted repeatability of an industrial
~

robot represents an average value of a stochastic

distribution. In an experiment to quantify the variation in

repeatability, a gripper-mounted area-array camera was used

to measure the,position of a boundary between a black and a

white region. Two experiments were performed. In the first,

the robot was moved between two points and the edge position

of the boundary in the image was noted when the camera was

positioned above the edge. The variation in the perceived

position of the boundary can be related to the positional

error of the robot. The second experiment was the control,
-\

wit~ the robot being held in a constant position above the

edge point. The distributions of the perceived errors are

shown in Figure 5.1 and Figure 5.2. When the robot is

stationary, the errors arise from quantization of the
,

analogue video signal and also vibrations in the servoing of

the robot arm to maintain a constant position. For the case

where the robot arm is being moved, the errors arise from

the finite repeatabilty of the robot. The results shown in

Figure 5.1' reflect the error in one cartesian component of

-92-

+
Number

of
occurances

--f"r
-0.08

-
~

I-

~

r--
~ro-

r-

ro-

-0.04

-- I--

~

I--
ro-

l-

I--

r-

ro-
ro-

Ifttn
0.0 0.04 0.08

Error (mm.)

Figure 5.1: Repeatability error of the Puma560 robot in the
x-component of position.

+
Number

of
6ccurances

"

~rrfTlT
-0.01

-

I""" -
-

-
I

-0.005

r-
~

r-
r-

\

r-

!""

~

l- I'"

~

- -
l-

I-

~

~ ~

0.0 .0.005 0.01
Error (mm.)

Figure 5.2: Sensing error with the robot stationary.

-93-

-

position and similar errors are to be expected in the other

components. The error distribution is approximately Norm~l,

having a mean of 0 and a standard deviation of 0.013 mm2 for

the x component of repeatability.

5.2.3 Sensor errors

Traditionally, sensors are used to detect and

compensate for errors in the system and the actuators. For

the peg-in-hole example, either vision or tactile sensing

could be used to measure the exact posi tion of the peg on

the gripper. Although it is not usually considered, the

sensors may themselves be a source of error. The signals

produced may be subject to a random error, for example shot

noise in solid state cameras, or thermal effects in

potentiometric encoders. Perhaps the most common source of

noise in sensing is from electrical interference. This may

arise from heavy machinery causing voltage fluctuations on

the power rails, or from high-speed switching in digital

signal lines which run close to sensor signals. This source

of noise is a significant problem in an industrial

environment, where electrical interference may be

unavoidable. Although filtering can reduce the noise, there

is always the possibility of a change in the operating

conditions of the offending machinery causing a change in

the character of the noise; A force sensor used in an

industrial assembly problem (described in Chapter 7) is

corrupted by noise from digital signal lines controlling a

camera. A typical signal from this sensor is shown in Figure

5.3. The component of the signal due to the force sensor is

a constant voltage level. Added to this is the periodic

-94-

Figure 5.3: Signal from a force sensor corrupted by noise.

t
Number

or
Occurances

"

60 65

~ -

~

,....,
70 75

- -

I-'i

- ~

....
80 85

-

90
-

95
Sensor
reading

!igure 5.4: Distribution of readings from the noisy force sensor.

-95-

component induced from the switching in the digital lines.

Further noise is added by the successive-approximation

analogue to digital converter, which is used to sample the

signal. Using this sensor in a closed-loop feedback system

causes measurement errors which reduce the efficiency of the

servoing. An error distribution from 2000 samples taken at 1

second intervals is shown in Figure 5.4. Although the

distribution of sensor readings is discrete, it can be

approximated by a Normal distribution. In practice, this

noise could easily be removed because it is at a much higher

frequency than the signal of interest. However, the noise

may be intermittent, and of variable frequency and

amplitude. Noise removal under these conditions is much more

difficult. In Chapter 7, the effects of' using this noisy

sensor in a closed-loop feedback system are considered.

Since the signals from the sensors will ultimately be

used to control the movement of an actuator, it is important

that the relationship between the actuator's frame of

reference and the sensor's frame of reference is precisely

known. A modelling error here will"',reduce the efficiency of
" i

closed-loop servoing. If the actuator is being used to

position the sensor, for example on a gripper-mounted

camera, then the accuracy of the actuator is important. This

is discussed in Section 5.3.1. In addition to the noise

arising from the physical sensor and transformations,

further noise can be introduced as the signal is processed.

In digitization, the need to quantize the signal to a finite

number of signal levels is equivalent to intro~ucing a noise

of magnitude a 2 /12, wher~ a is the amplitude increment

-96-

between adjacent levels [100]. This is one of the causes of

the error shown in Figure 5.2 for the estimate of position

using the stationary camera.

Although the sensor may initially be noise-free, there

could be a low frequency component of noise arising from

wear. This is especially true for sensors relying on

resistance changes, such as potentiometric encoders.

Furthermore, in the event of a total sensor failure it is

important that the condition is detected as soon as possible

and an alarm issued. Because of these effects, it is

desirable that the noise level of the sensor be monitored by

analysis of errors in the actual assembly. By estimating how

much of the perceived error is due to the sensor, it should

be possible to provide an optimal estimate of the sensor

noise and hence ensure that the correct level of credence is

assigned to the information from the sensors. The assignment

of credibility to the sensor reading could be extended to

the so-called 'sensor-fussion' problem [101]-[104], where

the requirement is to combine information from many sources

to obtain a best estimate of a stat~. The problem of

redundant sensor data is beyond the ambit of this thesis.

The combined effects of the sensor errors will mean

that from an ensemble of sensor readings there will, in

general, be a statistical distribution centered ona nominal

mean. The variance of this distribution will represent a

measure of the repeatability of the sensor.

5.3 Processing noisy sensor information

Consider a manipulator which is instructed to move to a

-97-

taught location A, which should represent the position of a

component. Because of some error in the positioning the

component, there is uncertainty as to the exact location of

A. Assume that the error can be represented by a random

variable having a Normal distribution with a mean of zero

and a variance £. To cope with the uncertainty in the

position of the part, a sensor is used to determine the

exact position of the manipulator and to reduce the error to

zero. Assume that the readings from the sensor have a noise

component which can be modelled by a Normal distribution

having a mean of zero and a variance y, this is the

measurement noise. After the application of feedback, the

final position of the manipulator, with respect to the part,

wi 11 be subj ect to some uncertainty, due to the' sensor. From

the properties of the Normal distribution it is evident that

there is a 66% probability that the final position of the

manipulator is within ~/V of the intended position. Call the

final position B and note that the error in B does not

depend on u , only on y. If Y is large, say much larger than

£, then the bound on the final error is also large. Under
. ~

these circumstances it might have been better to move

directly to A, ignoring the sensor information. Hence, there

is a trade-off to be made between the credence gi ven to the

sensor information and the initial estimate. The relative

noise levels of the measurement noise and the system noise

will govern the credence given to the sensor readings. If

the noise from the sensor is high then more emphasis needs

to be placed on the current estimate of the position. If the

sensor noise is low, howeveri the reading from the sensor

-98-

can be used with more confidence.

In general,

x = K1 .A + K2 .B (5.1)

where A is the current estimate of the position,

B is the measured position,

K1 ,K2 are weighting factors,

and X is the new estimate of the position.

The numerical values of K1 and K2 will be derived from a

knowledge of the variances of the system noise and

measurement noise respectively.

5.3.1 Consideration of actuator noise

For the problem of inserting a peg into a hole, it is

ev ident that any error due to the posi tioning of the

manipulator is an additional system error. The total error

in the part's pos i tion wi 11 be the sum of the manipu 1 a tor

error and the errors due to the hole posi tion and the

position of the peg on the gripper. The variance of the

overall noise can be expressed as the sum of the variances

of the individual noise components.
"'I

As well as contributing to th~ system noise, the

actuator noise can also contribute to the measurement noise.

If a vision sensor is mounted on the robot end-effector, the

overall accuracy is governed by the sensor and the

positional, accuracy of the robot. Errors in the position of

the robot wi 11 resu 1 t in an error in the perception of

object. This applies also to a force sensor used in a robot

gripper, where the overall accuracy is depende,nt upon both

the sensor and the gripper.

-99-

Therefore, in general, both the system noise and the

measurement noise could be modified by considering the

actuator noise. Whether the actuator noise contributes to

the system or the measurement noise, depends on the

configuration of the actuator and the sensor. For a dynamic

sensor, the ill-positioning of the actuator will be an

additional measurement error. If the manipulator is holding

a component to be sensed by a static sensor, the actuator

contributes an additional system error.

Although the added noise from both sensors and

actuators can be assumed to have a Normal intensity

distribution, it is also necessary to look at the frequency

components of the noise. This is the subject of the next

section.

5.4 Freguency domain analysis of errors

Taking an average of sensor readings is equivalent to

applying a low-pass filter to the noise. If the noise is

only high-frequency, such averaging may be quite effective.

However, for low frequency noise, the effect is minimal. The

~epeatability error for a positiona~ component of the Puma
I

560 robot is shown in Figure 5.5 for 3500 samples. The

frequency transform of this, obtained using the Fourier

transform, is shown in Figure 5.6 It is observed that there

are components of noise at each of the discrete frequencies

within the "time sample. The low frequency components of

noise represent the slow drift in repeatability over the

experiment time. To derive these results, the robot was

moved between two taught locations and the positional error

at the test point measured using the method described in

-100-

0.08

.........
•
~
(J) 0.04
C)

~ ...,
CJl

.,-t
A

0.00

-0.04

-0.08

500 1000 1500 2000 2500 3000 3500
Cycle.

Figure 5.5: Repeatability error of the Puma560 robot.

1.40

.........
•
~
(J)
rd 1.05 ;::! ...,
.,-t
r-l

ir
< .

0,.70

0.35

o 0.03 0.06 0.09 0.12
Frequency (Hz.)

Figure 5.6: Frequency components of the measured repeatability.

-101-

Section 5.2.2. The time taken to complete one cycle was

about 8 seconds and hence 3500 cycles represents an

experiment time of 7 hours 45 minutes. In the frequency

domain, the higest frequency is therefore 0.125 Hertz and

the lowest is 3.6 x 10- 5 Hertz.

The frequency spectrum shown in Figure 5.6 represents

the noise components of the measured repeatability. Because

the sampling frequency is very low, however, the actual

source of the error cou ld be a narrow band of high frequency

noise, which, due to aliasing effects, appears as a spectrum

of low frequency components. In practice, it is the

frequency spectrum of the measured repeatability, as

depicted in Figure 5.6, which is of interest.

The measurement error from an area-array camera is

shown in Figure 5.7. The data were obtained by computing the

position of the x centre of gravity of an object over 2000

samples with a sampling period of 3 seconds. The frequency

analysis of the data is shown in Figure 5.8.

It is evident from the experimental results that there

are noise components over the who~e range of frequencies of
.~ \

I

interest. In practice, higher frequencies will be of

interest, although these are limited to about 10 Hertz at

the maximum because of the nature of the problem under

consideration. It is expected that if the frequency of the

repeatability measurement was increased, the form of the

frequency response at the highest frequencies would remain

the same. In the frequency analysis, the high frequency

noise arises from stochastic variations in the measurement

process. At the other end of the spectrum, low frequency

-102-

-.
~
Q)
t)

§
+=>
Ol

OM
c:::l

0.009

0.006

0.003

0.0

-0.003

-0.006

-0.009

-0.012

500 1000 1500 2000
Cycle.

Figure 5.7: Measurement error from an area-array camera.

• 0.5
~

0.25 \

0.12 ~

o 0.08

." \
I

0.16 0.24 0.32
Frequency (Hz.)

Figure 5.8: Freguency components of the measurement error.

-103-

drift arises from temperature variations, which will

particularly affect potentiometric encoders, and also

lighting variations, which will affect vision sensors.

Computing a numerical average of an ensemble of sensor

readings will not necessarily produce a significant

improvement in accuracy. This is particularly true for a

gripper-mounted sensor, where an initial positioning error

due to the robot cannot be eliminated by averaging data from

the sensor. Although the noise from the sensor itself will

be reduced, the ill-positioning 'of the robot gives a

constant additive term, the effect of which could only be

reduced by mov ing the robot away from the s ta te and then

back again. Whilst taking multiple sensor readings is

feasible, repeated movement of the robat arm is not.

In summary, it can be said that the noises introduced

from sensors and actuators can never be completely

eliminated through averaging, because there are components

of noise at low as well as at high frequencies. It is

therefore assumed that within the frequency range of

interest the noises are approximat~ly white.

n The problem of processing the errors to compute the

best estimate to the desired state may be tackled using a

Kalman filter [79]. Although processing sensor information

with a Kalman filter has been previously reported [78], the

work described in this chapter shows how the estimates of

the noises from the system and the measurement can be
.<

updated, and hence how intermittent noise can be detected

and processed."

-104-

5.5 Application of a Kalman filter in the processing of
information from sensors

Assume that a task is repeated indefinitely and let-Xi

be the state representing the position of the actuator on

the ith cycle. This state wi,ll be a vector having six

components, three translational and three rotational, which

uniquely specifies the position and orientation of the

actuator in space. The state, which represents the location

of an object to be handled, is nominally constant but is

subject to some random error between cycles due to component

positioning. This situation may arise when a part-feeder

presents components with a certain error tolerance. The

system model is trivial since the only change to the state

is the random perturbation caused by the noise. Hence, the

change in the state between cycles is given by the system

model, as

X. 1 = X. + Q.
-~+ -~ -~

(5.2)

where Qi is the noise distribution on the ith cycle, and is

assumed to be white, having mean r i and variance u. It is

assumed that the noise components of Q. are uncorrelated,
-~

ftnd hence u is a diagonal matrix.~
. I

" Each measurement of X. is subject to error from the
-~

sensors,

(5 • 3)

where H is a matrix defining the relationship between the

component~ of the location X. and the components of the
-~

measurement vector Z .• The error 'in the measurement process
-~

is characterized by the white noise R., which has a mean of
-~

o and a variance v .•
-~

The measurement model, represented by equation 5.3,

-105-

will involve a number of stages, to transform the error in

sensor-coordinates to a world vector, which can be directly

compared with the components of Xi. Consider, for example, a

gripper-mounted area-array camera which is used to locate

the centre of a hole in which to insert a peg. The first

step in the measurement process is to deri ve an error in

terms of sensor coordinates, in this case pixels. This error

must then be transformed into world coordinates by dividing

the perceived error by the number of pixels per millimetre.

Finally, this error, which is in the sensor's frame of

reference, must be transformed to the world's frame of

reference so that the appropriate correction can be applied.

For the case where the sensor is attached to the actuator,

this transformation will depend on the'position of the

actuator.

Hence, equation 5.3 represents only a partial model of

the measurement process since Z. is not derived directly
-l.

from sensor readings. By ensuring that the process of

transforming the sensor-error into the world-error also

inc I udes a stage of a I igning the cpmponents of Xi and ~i'

the value of H in equation 5.3 is effectively I, the

identity matrix. Although this would simplify the

formulation of· the Kalman filter, there is a problem because

the measurement vector will not, in general, provide an

estimate of all six components of a location. Indeed for an

area-array camera, the mea~urement vector will contain only

two components corresponding to measured values of the x and

y 'components of the hole position (say). The solution is to

have a H matrix which is diagonal, where each element is

-106-

either a 1 or a O. A value of 1 indicates that the sensor

provides an estimate of that component, whereas a value of 0

indicates that the sensor provides no estimate. If H were

assumed to be the identity matrix, then the case of a sensor

providing no information on a component of a location would

be indistinguishable from the case of the sensor providing

an estimate of O.

The problem can be formulated as one of seeking the

best updated estimate of X. from the noisy measurement value
-~

!i and the current estimate Xi. The normal Kalman filter

equations may be written down [79].

System model

Measurement model

Error covariance

X. = X. 1 + Q. 1
-~ -~- -~-

Z. = H.X. + R.
-~ -~-~

where Q. = N (r . , u·)
-~ -~ ~

extrapolation : Pi (-) = Pi - 1 (+) + u i _1 (5.4)

State estimate
update

Error covariance
update

Kalman gain
matrix

· ·
· ·

X.(+) = X.(-)+K .• (Z. - H.X.(-» (5.5)
-~ -~ ~ -~ -~ .

P. (+) = (I - K .• H) .P. (-)
~ ~ ~

-1 K. = P.(-).H.[H.P.(-).H + v.]
~ ~ ~ ~

-\
I

(5.6)

(5.7)

In t~ese equations P.(-) represents the error covariance
~

(the filter's estimate of the variance of the error) prior

to being updated on the ith cycle, P.(+) represents the
~

value just after updating and K. represents the Kalman gain
~

on the ith·cycle. Since it is assumed that the components of

the noise vectors are uncorrelated, the matrices P, K, Q, R,

u and v will all be diagonal. Hence,

-107-

= [

Pi (1 ,1) 0 I P. (2,2)

o 1 ••• P
i

(6,6)

is a diagonal matrix where P.(m,m) is the estimated variance
1

of the mth component of the error in the

H =
[

H(1'1)
H(2,2) . . .

o H:6'6) I
state,

is a diagonal matrix where H(m,m) = 1 or 0 to indicate for

which components of the state the measurement provides

information, and

= [

Ki (1,1)
K

i
(2,2) . . .

o

o

Ki (6,6)

is a diagonal matrix where K.(m,m) is the Kalman gain for
1

the mth component of the state.

Define the vector K. to be the diagonal elements of the
-1

matrix K .• Likewise the vectors P., u. and v. are defined to
1 -1 -1 -1

represent the diagonal elements of the matrices P., u., and
1 1

v. respectively.
1

If numerical values for the m~ise parameters E, u and y.
I

can be estimated, then it is possible to optimally combine

the measurement and the previous estimate to provide the new

estimate. The elements of K., the Kalman gain, take values
-1 "

between 0 and 1 and specify the weighting of the measured

error comp~red to the current estimate. From equation 5.5,

it is evident that if K. ="0, then X. (+) = X. (-), hence the
-1 -1-1

measured value Z. is not used in calculating the new
-1

position. This corresponds to the extreme case when the

measurement noise is very much larger than the system noise

-108-

and consequently all sensor information is ignored.

Conversely, if !i=1 equation 5.5 reduces to Xi (+) = £i' and

the new position is equal to the measured position. This is

the usual way of processing sensor data, and assumes that

the error in the sensor is zero. When using the Kalman

filter to process information from sensors, the sensor error

must firstly be transformed into a world error. This error

is then combined with the existing representation of the

state using the Kalman gain as a weighting matrix.

As an example of the operation of the Kalman fil ter in

optimally estimating the position of a part, consider the

task of placing a peg in a hole. The position of the hole

and the position of the peg between the jaws of the gripper

are both subject to some uncertainty, characterized by a

random variable having a mean of 0 and a variance of 4

(considering only one component); this is the system error.

An overhead vision system is used to find the hole, although

the sensing and processing is subject to error, which can be

modelled by a random variable having a mean of 0 and a

variance of 2. For simplicity, cons,ider only the y
, . I

component of the position of the hole. In practice a similar

approac~ would be applicable for the x, z and rotational

components. The centre of the hole is nominally at position

100, although the system error means that the exact position

is uncertain. Using the vision sensor, the hole position is

observed to be 115. The problem is to find the best estimate

. of the hole posi tion knowing that both 100 and 115 are

subject to error. Assume that the assembly is already a few

cycles old and that the steady state values of P and K, Ps

-109-

and Ks say, have been reached. (In practice the rate of

convergence depends on the initial value of P, Po; it

usually takes less than 6 iterations to get to within 1 % of

the final value.)

Using the values of Q. and R. given, P and K are 1.46
1 1 s s

and 0.73 respectively. Therefore, from equation 5.5, the

best estimate of the centre of the hole is

Yi+1 = 100 + 0.73.(115-100) = 111

Therefore the hole is predicted to be at position 111. Note

that this is only the best estimate of the hole position

from the given facts, the hole may be at some quite

different position in practice.

The Kalman gain computed from equation 5.7 represents

the optimized form, in a least squares sense, of the

weighting coefficients in equation 5.1. In essence, the

magnitude of the Kalman gain gives an indication of the

credence given to the sensor information. The error

covariance is an indication of the filter's estimate of the

error in the state and this can be related to the confidence

a"s discussed in Section 3.2. This i\5 now quantified.

5.5.1 state confidence from the Kalman filter

The concept of a statistical confidence to reflect the

magnitude of previous errors was introduced in Section 3.4.

For a state X, which has value X. on cycle i, let the
- -1

confidence be T .• The confidence of a state takes values
-1 .

between 0 and 1, corresponding to the certainty with which

the state is known. Since the error covariance~ Pi'

indicates the filter's estimate of the error in the state,

-110-

let T. be computed from
-l.

-1
T. = (I + P.) • J
-l. l.

T where J = (1, 1 , 1 , 1 , 1 , 1)

and I is the identity matrix.

(5.8)

From equation 5.8, it is evident that as the error in

the estimation of the state increases, so T. decreases to
-l.

indicate a reduced confidence. Similarly, as P. approaches
l.

0, indicating that the error in the estimate of the state is

also approaching 0, Ti approaches 1 for maximum confidence.

The purpose of calculating the state confidence is to

compute the velocity of the actuators in the vicinity of a

state. The equations derived in Chapter 3 achieve this, with

the state confidence being computed from equation 5.8.

5.6 Derivation of noise variances for the Kalman filter

To use the Kalman filter for processing the sensor data

requires estimates of the variances of the noises in the

system, the actuator and the sensor. Section 5.2.2 showed

the variation in one component of the posi tion of the Puma

robot resulting from repeated movements to the same

location. By approximating the err~r distribution as Normal,
I

an error variance can be obtained. Although similar

experiments could be performed for any actuators of

interest, an approximation to the noise variance can be

obtained using the repeatability.

Assume that the quoted repeatability of an actuator

represents 1 ~tandard deviation of the magnitude error,

which is assumed to have a Normal distribution. Therefore

each component-of the error in x, y and z has a standard

deviation equal to 1/13 of the quoted repeatability. From

-111-

the properties of the Normal distribution, this implies that

66% of the time, the manipulator will be positioned to

within the quoted repeatability of the desired location, and

to within twice the repeatability 95% of the time. In view

of the expected variations in repeatability with position,

loading and temperature, this is probably quite a reasonable

estimate. A similar approach can be applied to the

orientation components of position, where the quoted

repeatability can be used to estimate the standard deviation

of the three rotational components. The estimated variance

of the actuator noise is therefore

Estimated variance of error = (repeatability)2 / 3

for both the translational and rotational components of

position. As an-example, the Cincinnati"T-726 Industrial

Robot has a quoted repeatability of 0.1 mm. Therefore the

estimated variance of the positional error is

(0.0033 , 0.0033 , 0.0033 , 0 , 0 , 0).

The rotational components are set to zero in the absence of

any information concerning rotational errors.

The experiment described in Section 5.2.2 illustrated
I

that"the sensor noise can be approximated by a Normal

distribution." In practice, it would be possible for the

robot workcell to run through a self-test phase, in which a

distribution of sensor readings was~collected for each

sensor, and the co:responding variances calculated. This

could be done at the development phase, or prior to

execution of a task, to check the integrity of the sensors.

Furthermore, it should be possible to initiate this self-

test whenever significant errors are detected within the

-112-

assembly.

An assessment of the system noise caused by ill-

positioned parts is more difficult. A generous guess may be

one solution, although more rigorous approaches which depend

on considering the nature of the errors, for example the

work of Brooks [45], should be feasible.

5.7 Updating noise variances through analysis of past errors

Although the initial estimates of the system, actuator

and sensor noises are useful, the capability to update these

values based on·previous errors would be a particularly

valuable facility. This would allow automatic assessment of

the performance of a sensor and hence allow a malfunction to

be detected at an early stage.

In general, an error measured during the application of

sensory feedback will comprise a system error, an actuator

error and a sensor error. The problem is to decompose this

perceived error into the three components. If this were

possible then new estimates of the variance of the state,

actuator and sensor noises could be derived and hence an
- ~ . \

optimal value of the Kalman gain computed.

In deriving the algorithms for updating the measurement

and system noises, the assembly operation is assumed to be

repeated over a number of cycles. Each cycle comprises a

series of sensor-directed commands,'which instruct an

actuator to move to a pre-taught point and then apply

sensory feedback to achieve some sensor conditions. This was

illustrated in the timing diagram shown in Fi~ure 3.5. In

achieving the sensor conditions, the actuator will go

-113-

through a number of iterations, involving movement and

sensing. This is discussed in more detail in the next

section.

5.7.1 Estimating the measurement and system noises

Depending on the configuration of the sensor and the

actuator, the measurement noise will, in general, be a

combination of the sensor noise and the actuator noise. The

algorithm described in this section provides a means of

estimating the measurement noise, which must be further

processed (Section 5.8) to obtain estimates of the sensor

noise and the actuator noise individually. In order to

estimate the measurement noise, it is assumed that a process

of sensing and then moving the actuator is used until the

percei ved error in the sensor is zero, br unti 1 the

magnitude of the correction is less than either the state

tolerance or the actuator's resolution. Hence the sequence

of events is as follows.

1. Move the actuator to the state.

2. Evaluate the error between the current sensor

reading and the desired sehsor reading.
I

"3. Move the actuator to try and eliminate this error.

4. Repeat steps 2 and 3 until the distance moved by the

actuator is less than some threshold.

The process of sensing and then moving the actuator (steps 2

and 3) is termed an iteration and.a number of iterations

(sufficient to satisfy step 4) comprise a cycle.' The number

of iterations required to achieve any given sensor

conditions will depend on the extent of the measurement and

-114-

system noises. If there was no system or measurement noise,

the number of iterations would be 0, because the movement in

step 1 would immediately satisfy the sensor conditions. If

there was system noise but no measurement noise, then one

iteration would be required because the'error sensed in step

2 would be immediately corrected for in step 3. If there was

both system and measurement noise, the expected number of

iterations would depend on the relative magnitude of the

noise components. The distance moved by the actuator in step

3 wi 11 be recorded and used to estimate the extent of the

measurement noise. The criterion used to terminate the

servoing was discussed in Section 4.5.

Consider a state X., at which some specified sensor
-~

conditions are to be met. Assume the system noise, Q, has a

Normal distribution of mean r and variance £. The components

of £ represent the variances of the corresponding components

of the error in the state. Let M, the system error, be a

sample taken from this distribution. Furthermore, let the

measurement noise have a Normal distribution with a mean of

o and a variance y, that is R=N(O,y). The components of v
. ~
represent the variances of the corresponding components of

the error in the measurement.

On the first iteration there will be some perceived

error which is the sum of the system error and the

measurement error. Denote the specific measurement error on

iteration j as S.; which is a noise vector taken from the
-J "

distribution R. Let E. be the error vector in the J.th
- -J

iteration. Initially the perceived error is El , where

E1 = M + S1 (5.9)

-115-

To reduce this error to zero, the actuator wi 11 be moved a

distance specified by the product K.E1, where K is the

Kalman gain. However, because of the measurement error, the

error in the final position will be given by M-K(M+S1),

although when this error is measured on the next iteration

it will be perceived to be

(5.10)

where S2 is the measurement error on the second iteration.

It is useful to look at the distance moved by the

actuator in order to achieve zero sensor error in each

iteration. Denoting Dj as the vector specifying the distance

moved on the jth iteration, gives

D1 = K. (M + S,)

D2 = K.(M - K·(M + S,) + £2)

D3 = K.(M - K.(M + S1) - K.(M - K.(M + S,) + S2) + S3)

Although expressions for further Dj may be written, they

become complicated. However, it is possible to express Dj

recursively in terms of D. " D. 2 •• D1• That is, -J- -J- -

D, = K.(M + S1)

D2 = K. (M - 121 + £2

D3 = K. (M - D -1 - D -2 + S;)

D4 = K. (M - D, - D - D + S4) -2 -3

As a check, it may be seen that when the measurement noise

has a mean and variance of 0, such that S. = 0 for all j,
-J

then

D1 = K.M

D2 = K.(M - K.M)

Under these cicumstances, since S is small K will be almost

I. In the limit as ~ + 0, K ~ I and the distance moved by

-"6-

the actuator is M in the first iteration and 0 thereafter.

In other words the actuator makes only one movement to

achieve the sensor conditions, and the magnitude of that

movement is exactly equal to the system noise.

Returning to the general case, where S is non-zero, Dj

may be expressed in closed form as

j -1

D. = K.(M+S.) --J --J
2 ~ 1-1 K • ~I-K) .(M+S j _ l) (5.11)

1=1

Since the expected value of S , E[S], is 0, the expected -

va 1 ue of D. may be estimated as
-J

j -1

E[D
j

J = K.M - K2. ~I_K)1-1 .M

1=1

(5.12)

The summation can be evaluated from the sum of a geometric

series, as

hence

j -1 E[D.] = K.(I-K) .M -J -

.Thus, the distance to be moved by-the actuator on each
I

(5.13)

(5.14)

ite~ation is the sum of the expected value, computed from

equation 5.14, and a component arising from the measurement

noise. This is illustrated in Figure 5.9, which shows the

expected value of D. with a superimposed uncertainty bound -J _. .

arising from the measurement noise. The uncertainty bound.

shown represents 1 variance of the measurement error in D .• -J

When j =1, the error has variance K2y, where v i~ the

variance of S.-As j gets large, the variance of the error

approaches K.y.

-117-

D.
-J

t

K.M

LM(I-K)

,
\ , ,

'\
'\

" ~ Uncertainty bounds from
~ measurement

'\ , ---, -----,
" " .. "-

2 35..... 6 7 Iteration (j) ...

Figure 5.9: Expected value of Dj with uncertainty bound
for each cycle.

From equation 5.9, the error in the first iteration, E1, is

the sum of the system error, M, and the measurement error

8
1

• Because the expected value of 8 is zero, in the absence

of any a p~io~i information of the error in M and 8, the

best approximation of M is E1• However, the relative

zpagnitude of the noise in M and 8 is reflected by the value
- - 1

of K, the Kalman gain. Thus, the best estimate of M after

the first iteration is
A·

(5.15)

or

(5.16)

In each iteration, the ratio of the error from the

measurement to the error from the system, increases.

Furthermore, if the uncertainty bound in Figure 5.9 was

-118-

small, K would be close to I and hence, from equation 5.14,

the information in iteration 2 to calculate M would be very

small. Conversely, if K was small, the uncertainty bound

would be large and the estimate of M would be erroneous.

Therefore, the additional information available from

iteration 2 to the end of the cycle is small and is not

considered. Thus, equation 5.16 represents the best

approximation to M in the cycle.

" The computed value of M is an approximation to the

error due to the system on this particular cycle, and

represents one -sample from the distribution 2. Clearly, to

estimate the mean and variance, E and ~, of the distribution

2 will require more samples derived from prior and

subsequent cycles. Therefore, for each cycle it is necessary

" to take the approximation to M and combine this with the MiS

computed from previous cycles to estimate of the mean and

variance of the distribution 2. Rather than storing all

" previous MiS, it is possible to compute an estimate of the

mean and variance recursively. This is discussed further in

Section 5.7.4.
" '"'\

Once a val ue of M has been deri ved, the variance of the

measurement noise can be estimated. This is now described.

Equation 5.11 can be partitioned into two components,

one due to the measurement noise and one due to the system

noise, hence

-119-

j -1

Dj = K.S j - r. ~I_K)1-1
1=1

j -1

.S. 1 -J-

+ K.M - K2. ~ I_K)1-1 .M

1=1

(5.17)

If M were known, a numerical value for the system error

component could be computed. This is not the case, although

from equation 5.16 an estimate of M can be produced. In the

first few iterations of the cycle this estimate will be

inaccurate, but accuracy will improve as j increases. Hence

for each D., subtracting the estimate of the system error
-J

component, and calling this modified vector Dj , gives

"

. 1
D! = D. - K.(I-K)J- .M
-J -J

(5.18)

where M is the best estimate of M obtained from equation

5.16. Therefore,

j -1

2 ~ 1-1 Dj = K.S j - K • ~I-K) .Sj_l (5.19)

1=1
""' The term K2~(I_K)1-1 is always small (assuming lF1),

because the elements of K are bounded between 0 and 1.

Hence, equation 5.19 can be approximated by

2 D! = K. S. - K • S. 1 -J . -J -J - .. (5.20)

For a set "of numbers {A} having variance b, the variance of
n

the set {c.A) is c 2.b. Hence, since the variance of S is v,

considering a set of D~ in equation 5.20 gives
-J

2 4 Var{Qj}= K .y + K .v

-120-

(5.21)

Hence the estimated variance of the measurement noise is

(5.22)

As before, the computation of the variance of {D~} can be -J

done recursively, obviating the need to store each D~ in the -J

cycle.

Hence, the computation of the average correction

distance, over a number of iterations and a number of

cycles, gives an approximation to the variance of the

measurement noise. For each iteration, D. represents the
-J

correction applied by the actuator in correcting for the

perceived error. From this, the estimate of the component

due to the system error is subtracted giving the vector Dj.

Following this, the variance of the D~s is estimated, and v
-J

computed using equation 5.20.

5.7.2 Computation of weighted average noises

It is evident from equation 5.22 that the accuracy of

the estimate of the measurement noise depends on the number

of movements made by the actuator in each cycle, i.e. the

number of iterations per cycle. In practice, there is one

.sample from a statistical distribution for each movement
\

I

mads. This means that estimation of the noise is most

accurate when the effect of the noise is most pronounced.

For the case of small noises, the estimation of the variance

and mean of the distribution is inaccurate.

This·situation can be improved by taking an average of

the estimated measurement noise over a number of previous
'.

cycles. Although a large number of samples is desirable to

provide a better average, the size must be limited or

weighted to ensure the algorithm remains sensitive to

-121-

changes in the characteristics of the noise. If the average

measurement noise was computed using a recursive average,

the sensitivity of the algorithm to detect a change of mean

would decrease with each iteration. This approach would be

satisfactory if the characteristics of the noise were

constant, however this cannot be assumed. Therefore, in

computing the average, more emphasis needs to be given to

recent samples. This can be solved by defining a weighting

function, by which each sample is multiplied. A suitable

form of this weighting function is,

F(i) = (5.23)

where A and B are constants.

Define a particular weighting function, such that
..

F(i)=1 when i=T, the current cycle, and F(i) = 0.5 when i=T-

10. This means that the most recent sample is assigned a

weight of 1, and a sample 10 cycles ago is assigned a weight

of 0.5. The form of this weighting function is shown in

Figure 5.10.

:\ .0

F(i)
Weight

0.5 ---------- -------------------

T-10 T
Cycle (i)

Figure 5.10: The weighting function.

-122-

Gi ven these condi tions, A and B can be eva 1 ua ted and the'

weighting function written as,

F(i) = e-B.T.eB• i

where B = 0·1.Log(2) = 0.069.

(5.24)

If B is increased, proportionaly less credence is given

to previous samples, and in the limit only the current

sample is considered. There is a trade-off between the

ability to react to changing noise characteristics, which

requires a large B, and the smoothness of the estimate,

which is enhanced by reducing B. This effect is illustrated

in Figures 5.11a and 5.11b which shows the results of a

simulation in which the mean value of a random variable is

estimated using a normal recursive average and a weighted

recursive average. For cycles 1 to 50, the mean value is 1

and the variance is 1. For cycles 51 to 100 the mean is

increased to 2. In Figure 5.11a the value of B is 0.069 and

it is observed that the estimation of the mean using the

weighted average is more responsive than the non-weighted

,p.verage to the change in the mean-~t cycle 50, but contains

a larger noise component superimposed on the estimate. The

effect of increasing B to 0.14, (which corresponds to

F(i)=0.5 when i=T-5) is shown in Figure 5.11b. It is

observed that although the response at cycle 50 is more ,

pronounced, the additional noise caused by increasing B is

undesirable. In practice a choice of B as defined by

equation 5.24 appears reasonable.

In addition to the weighting factor used to reflect

potential time-variation of the noise, it is necessary to

-123-

2.20

1.76

1.32

0.88

0.44

0.00

. . '
I ,,11

11

.' J-...I"
... 'till" .-'"

I I 1___

1"lItl,,"lll,l~1...J-

:"'1*.1"01"
~~-. ,

25

Weighted average
_"11·'1,, .. 11,

,.",
.111'" "

,' .. ,,' ",

.~.

," .

50

, ,,'
. . .

I

." t " I,'
" \1,,"','

I" '\ "

,.,1",1'11/
"" I I

,t ', •• '

" '",

/ 'I'

,....-.....-­
----------..-.-I'
Normal average

75 100
Cycle(i)

Figure 5.11a: Estimation of the mean value of a random variable
using B=0.069 (mean = 1 for i < 50 and mean = 2 for i > 50)

I:l
al
Q.J
El
rO
Q.J

~
'M
+'
Ul

r:a

2.20

1.76

1.32

0.88

0.44

0.00

.. . ,
' ~

, ..
,,1111"\ " I :'1,./:,

", .,'1" ."'.... "

Weighted average

. .
II. I

I \.1"

. .

,,,"I,, l'I",: I "'.:
! " " ',I'. " : II I
I \' I', ::
" ·'11",.'

....... '., .--------
", .'. \, •• ,1 .. _"" • ._--

:'\'\ ~

: ~~
: '..,. / Normal average

" , ,:' \ .. /" ~ .". ::/ . / \i.-r---
:"·,.\., .. i1'" ~
," '.;--"

/\,/ .~-....

25 50 100
Cycle(i)

Figure 5.11 b: Estimation of" the mean value of a random variable
using B=0~14 (mean = 1 for i < 50 and mean = 2 for i > 50)

-124-

introduce a further weighting factor to reflect the fact

that some estimates of the measurement noise will be

inherently more accurate than others. The accuracy depends

on the number of iterations from which v was computed.

Therefore, define W. to be the number of iterations (equal
-1

to the number of actuator movements) on the ith cycle.

5.7.3 Calculating measurement noise by a weighted-average

The expected value of y can be expressed as,

E[yl (5.25)

where Ll is the weighting value assigned to the lth sample

and T is the current cycle number. Using the weighting

function defined by equation 5.24 and the weight WI to

reflect the number of iterations over which the estimate was

calculated, the estimated measurement noise variance is

T

= ~(-B.T B.l W L e .e • l.vl (5.26)

. 1=1

where YT, the cummulative sum of the weighting factors, is

given by

T

= ~-B. (T-l) W
YT L . ·1

1=1

(5.27)

To avoid having to calculate this summation after each

cycle, the estimate is expressed in a recursi~e form.

Replacing T by T+1 in equation 5.26 gives

-125-

=

=

T+1

1 ~ -B. (T+1) B.j W) . e .e •.. v.
- J -J Y

T+1 . 1
J=

T

~(e-B. (T+1) .eB• j .W .• v.) L J-J

j =1

which expressed recursively is

A -B . A

vT+1 = l·(e .YT·vT + v T+1 ·wT+1)
YT+1

(5.28)

(5.29)

(5.30)

This allows new estimates to be calculated on the basis of

the current variance vT and the newly recorded value, YT+1·

In a simi lar way, YT can be expressed in a recursi ve

form. Replacing T by T+1 in equation 5.27 gives

T+1

~-B.(T+1-l) W
YT+1 = ~ . 1

1=1

Thus, the recursive form is

""\

Therefore, following each cycle, the value of v

(5.31)

(5.32)

obtained from equation 5.22 is used to compute a weighted-

recursive average using equations 5.30 and 5.32. This yields

a new estimate for the variance of the measurement noise.

5.7.4 Calculating the system noise by a weighted average

Each cycle gives a single sample, M, from the system

noise, Q, which is assumed to be Normal of mean rand

variance u. By·taking an average of successiv~ M's, an

approximation to r is obtained. As described in Section

-126-

5.7.2, the estimate of the mean must be weighted to take

into account possible time variation of the noise. However

it is not desirable to weight the M estimates using the

number of iterations in the cycle. Hence, replacing W by 1

in equations 5.30 and 5.32 gives a relationship to calculate

the weighted recursive estimate of the mean value of the

system noise, r, as

" r -T+1 (5.33)

where Y~+1 is given by

-B , e • YT + 1 (5.34)

The estimation of the weighted recursive variance of

the system noise can be achieved using a similar line of

reasoning. The 'variance of a set of numbers {X} is defined

as,
T

Var{X} = 1. ~Xl - X)2
(T-1) L

1=1

(5.35)

where X is the mean of the set of numbers. Upon substitution

of the weighting functions, the estimated variance of the
"'\

system noise is

T

" = 1 '-B.T B.l W (M"
~ Y' ~ .e • 1· -1

T 1=1

(5.36)

where Y~ is defined by equation 5.34, and r by equation

5.33. This can be ~xpressed in the recursive form.

Considering uT+1 '

-127-

= 1 • { -,
YT+1

T+1

~-B.(T+1) B.l W (M" L .e. l' -1

1=1

T

")2 - r 1 -T+

Le-B.(T+1).eB.l.Wl.(~1 - r
T

+1)2

1=1

making the approximation iT = rT+1 gives,

" -B" (") 2 } = l,.{e .YT·uT + WT+1' MT+1 - rT+1
YT+i

" u -T+1

which is the required recursive form.

It is therefore possible to estimate the mean and

variance of the system noise using weighted averages.

(5.38)

(5.39)

Equations 5.33 and 5.39 allow the estimation of mean and

variance respectively, and do not require storage of past

data because of their recursive formulation.

5.7.5 Updating noises in the absence of information

If the system and measurement noise are both 0, there

will be no error in each cycle and-pence the eslimated u and
• i

Y will tend towards O. Under these conditions, the

computation of the Kalman gain becomes ill-conditioned,

since both the numerator and the denominator of equation 5.7

approach O. If the measurement is noise-free, the Kalman

gain matrix should approach I, irrespective of the value of

the system noise. This ensures that if the measurement is

noise-free, any spurious system errors can still be

detected.

To achieve this result, the situation of a cycle

-128-

involving no iterations must be identified and the normal

update equations suspended. The following update equations

are then applied

u = 0.95 x u (5.40)
and

v = 0.9 x v (5.41)

The system noise is automatically reduced by multiplying

each component by 0.95. Similarly, the measurement noise is

reduced by multiplying each component by 0.9. If the system

and measurement noises are 0, the estimated value of each

noise will reduce by a constant factor after each cycle.

However, since the measurement noise will decrease more

quickly, the Kalman gain wi 11 tend to I, because in the

limit the estimated measurement noise will be smaller than

the estimated system noise. The effect of this is

illustrated in the numerical example of Section 5.10.2.

5.8 Updating the actuator noise

Any error introduced by an actuator could manifest

itself as either a system or a measurement error. This

?epends on the configuration of th~ sensor and actuator, as

discussed earlier. Consider a dynamic sensor. The algorithm

developed in Section 5.7 provides an estimate of the

measurement noise. This must be further processed to update

the sensor and actuator noises independently.

The e~timated measurement noise, from equation 5.30, is

v. Let fk denote the current estimate of the variance of the

noise from the kth sensor, and let e denote the current
. -g

th estimate of the variance of the noise from the g actuator.

Assuming th·at V. was obtained after an interaction between
-l.

-129-

the kth sensor and the gth actuator in the feedback process,

it is evident that only the corresponding noises for that

sensor and actuator can be updated. Furthermore, the

relative magnitudes of i k and e g will indicate the likely

source of the error v, such that the expected fraction of v
due to the sensor is the ratio of the sensor noise to the

sum of the sensor noise and the actuator noise. Similarly,

the expected fraction of i due to the actuator is the ratio

of the actuator noise to the sum of the sensor noise and the

actuator noise. Hence, denoting f kx (+) and e gx (+) as the

updated x component of the sensor noise and actuator noise

respectively, gives the noise update equations as

f kx (+) 1 { "- f kx + f kx } (5.42) = vx • 2"
(fkx+egx)

e (+) 1 { "- + e gx } (5.43) = v x· egx gx 2
(fkx+egx)

The other components of the noise are calculated from the

corresponding components of the vectors. Equation 5.42 sets

t,he new sensor noi se to be the numefica 1 average of the
I

currQnt sensor noise and the expected contribution of the

sensor noise to v. Likewise, the actuator noise is set to

the numerical average of the current actuator noise and the

expected contribution of the actuator noise to v.
Care must be taken when computing the updated noises

from equations 5.42 and 5.43. This' is because the vector fk

represents the sensor noise in the sensor's frame of

reference. However, e and v will be in the world's frame of -g

reference. Therefore, implicit in equations 5.42 and 5.43 is

-130-

the transformation of the errors into the appropriate frame

of reference. The transformation of an error from the

sensor's frame of reference into the world's frame of

reference was discussed in Chapter 4. The inverse

transformation follows similar lines, but uses the inverses

of the homogeneous matrices. For a static sensor,

[
Sensor framel = [sensor-wor~d]-1. [world framel

error J transformat1on error J

and for a dynamic sensor,

[
Sensor frame) = [Act':la~orl-\ [sensor-actua~orl-1. [world frame]

error J pos1t1on transformat1on error

where the error vectors have been transformed into their 4x4

homogeneous matrix representations.

The discussion leading to the derivation of equations

5.42 and 5.43 was concerned with a dynamic sensor, where the

actuator noise contributed to the measurement. In the case

of a static sensor, the actuator noise wi 11 be embedded in

the computed system noise, til. A similar approach is

?pplicable, with the sensor noise,\ fk in equation 5.42 and
!

5.43 r replaced by the current estimate of the system noise,

£1' and v replaced by the measured system noise, til. Hence,

for a static sensor, the updated sensor noise is

fk (+) = v x x (5.44)

The updated actuator noise is

(5.45)

and the updated system noise is

-131-

ulx (+) = ~ { ulx • u lx + u lx }

(egx+ulx)

(5.46)

In general, for an assembly incorporating multiple

sensors and actuators, one sensor noise, one actuator noise

and one system noise will be updated upon completion of each

cycle. If there is more than one sensor associated with an

actuator, or more than one actuator associated with a

sensor, it is possible to identify the source of the error

as being due to a sensor or an actuator. Also, if the

control program involves more than one state, it is possible

to identify the cause of an error as either the actuator or

the system.

As an example, consider an assembly involving a single

actuator and two dynamic sensors. The actuator"is a robot,

and the sensors are a tactile array and a camera. The

initial noise variances are (considering only one

component),

Robot noise = 1.0 mm2

Camera noise = 2.0 mm2

Tactile noise = 4.0 mm2

-\
Whilst using the robot with the tactile sensor, a

mea~'urement noise of 6 mm2 was recorded. Using equations

5.42 and 5.43, the new noise variances are calculated as,

New robot noise = 0.5 x (6 x 1 /5 + 1.0) = -1. 1 mm2

New tactile noise = 0.5 x (6 x 4/5 + 4.0) = 4.4 mm2

Following this, the robot was used in conjunction with the

camera, when a measurement noise of 4 mm2 was recorded. The

new noises are therefore,

New robot noise = 0.5 x (4 x 1.1/3.1 + 1.0) = 1.2 mm2

-132-

New camera noise = 0.5 x (4 x 2.1/3.1 + 2.0) = 2.3 mm
2

Because the robot is common to both cycles, the robot noise

is increased twice, so that the relative fraction of the

robot's noise to each of the sensor's noise has increased

after two cycles. Intuitively, this says that since the

robot is the common factor between the errors, it is the

likely source of error.

5.9 Applying long-term feedback

The advantages of applying long-term feedback in

addition to short-term feedback were discussed in Section

3.9. If the system noise has a non-zero mean, the cummulated

error over consecutive cycles will eventually be too large

to be measured by the sensors. To cope with this, the

estimated mean of the system noise at a state, computed

using equation 5.33, is used to adjust the state using

= (5.47)

where ~l(-) is the estimate of the state at the beginning of

the cycle, prior to the application of sensory feedback. The

updated value, Xl (+), is computed upon completion of the
"'\

cycle, after the new mean value of the system noise, £1' has

been estimated. The effect of applying equation 5.47 is to

avoid a build-up of error if the system noise has a non-zero

mean.

The next section describes two numerical examples of

noise computatiorr' and shows the advantages to be gained from

detecting and processing the errors.

5.10 Numerical examples of measurement noise' update

Two numerical examples are considered. For both, the

-133-

noises have been simulated using a Normal random number

generator. In the first example a constant noise level is

considered, and in the second example the situation of a

sensor suddenly becoming noisy is investigated.

5.10.1 Estimation of a constant noise level.

Consider a potentiometric encoder used to provide force

sensing on a robot gripper. The sensor is noisy and the

error can be represented by a random variable having a

Normal distribution wi th a mean of zero and a variance of 2

mm2• The sensor is to be used in a closed-loop feedback

control scheme, in which the aim is to achieve a force

reading of 100 by mov ing the robot in response to errors

detected by the sensor. The operation is to be repeated for

50 cycles. It is assumed that errors detected by the sensor

can be transformed into the appropriate actuator errors

through a transformation. The system noise is zero,

therefore the initial position of the actuator on each cycle

is actually the correct position, but because of noise in

the sensor there will be a perceived error.

The results of applying the &lgorithm described in
1

Sect.ion 5.7 to this system are summarized by the graphs

shown in Figures 5.12 to 5.17. Considering only one

component of the state, the Kalman gain is initially 1.0 and

the actuator makes a number of movements until the perceived

error requires a correction of less than the resolution of

the actuator, whereupon the servoing stops. The information
,

from the movements is used to estimate the variance of the

measurement noise, shown in Figure 5.12, whic~ increases

towards the actual value of 2. The estimated system noise is

-134-

N~ 2.5

N

~
Q)

tl
!:l
til

.r-!
~

~

1.5

0.5

0.0 ~----------~------------~------------~-------------.
12 25 37

Cycle (i)

Figure 5.12: Estimated measurement noise versus cycle
for constant sensor noise.

2.5

2.0

-\

1.5

1.0

'''-.... .
..... -_._----------------0.5

50

o.o~-----------.------------~------------------------~
12 25 37

Cycle (i)

Figure 5.13: Estimated system noise versus cycle
for constant sensor noise.

-135-

50

shown in Figure 5.13 and, although small, never reaches the

actual value of O. The Kalman gain and error covariance.are

shown in Figure 5.14. The Kalman gain approaches a value of

about 0.35. Ideally, because there is no system noise, the

Kalman gain should also fall to 0, because the noisy

measurement data should be completely ignored. In practice,

however, this is not desirable, because such a situation

would render the system insensitive to a sudden change in

the system noise. By maintaining a small portion of the

measurement in each state estimation, the sensors are never

completely redundant and can thus detect an error introduced

by the system. Furthermore, if, for some reason, the sensor

suddenly becomes noise-free, this will be detected and

correspondingly more weight will be pl~ced on the

measurement process. In an industrial environment, the error

may.be intermittent. This would be the case if, for example,

the noise arose from electrical interference. Thus, the

characteristics of the noise cannot be assumed to be

stationary. This is illustrated in the numerical example

described in Section 5.10.2.
-\

I

The velocity of the robot in approaching the state is

computed using equation 3.2, where the sensitivity of the

state is assumed to be 0.5 and TI is obtained from PI using

equation 5.8. The velocity, shown in Figure 5.15, soon

reaches a steady value, which reflects the constant PI from

cycle 10 onwards.

One effect of applying the noise-estimation algorithm

to this problem is to decrease the error in the posi tion of

the actuator at the end of the cycle. In this example,

-136-

1.30

1.04

0.78

0.52

0.26

0.0

. ..
, , , ,

, \
I ,

Error"
covariance

\00,,,,,,,00,,,,,, ,,'000 (mm 2)
..... "." ",..... .,11"'" • .. • n·...... ""'" "to

12

,

"',",nl",I' \""01,"'''''IIIIIIIU ,. , "'OIII'IIIII "II ftI"I ... I ... IIIIIIII .. "" .. ""

1,\" II/I
"'I,·flit"

25 37

Kalman
ga~n

50
Cycle (1)

Figure 5.14: Computed Kalman gain and error covariance
for one component of the state.

0.25

0.10

0.05

0.00

~"'\' ---. .,------.-/---"-----_.---...
.--___.-- __.- l l r---- ---... ---

_/

12 25 37 50
Cycle (1)

Figure 5.15: Variation of robot velocity with cycle

-137-

because there are no system errors, optimum accuracy would

have been obtained by ignoring all the sensor information,

(equivalent to K=O) in which case there would have been no

error on each cycle. If, however, the information from the

sensors was used with 100% confidence, (equivalent to K=1)

as would be done in a normal sensory feedback system, the

effect would have been to give a final error vector having a

Normal distribution with a mean of 0 and a variance of 2

mm2• This is illustrated in Figures 5.16 and 5.17, which,

show the final positional error (in one component) for the

case K=1, Figure 5.16, and K computed from the Kalman gain

equations, Figure 5.17. The effect of computing a value of K

to reflect the noise in the sensor, reduces the expected

error in each cycle. Using the algorithm developed in this

chapter, K is automatically adjusted to reflect the estimate

of the current measurement noise and hence give an error

distribution having variance between 0 and 2,as depicted by

the error covariance from the Kalman filter, Figure 5.14.

The steady-state estimate of the variance of the error is

"approximately 1. If the measuremei)t noise changes with time,

this situation is handled automatically. This would not be

the case if K approached 0 because no information would be

processed from the sensors, which would effectively be

redundant. The efficiency of the closed-loop servoing is

substantially bet,ter than would be the case if the

measurement noise was assumed to be zero.

In addition to improving the final accuracy, the

average time spent servoing,to achieve the desired sensor

conditions is reduced, since on average fewer actuator

-138-

.
~
(J)
t)

$:l
r.U

+> rn
OM
Q

.
~

2.0

1.3

0.7

0.0

-0.7

-1.3

~
V

\
~.

-2.0

12 25 37 50
Oyo1e(i)

Figure 5.16 Final error in one component of the robot's
position assuming error-free sensor.

2.0

1.3

-1.3

-2.0

\
I (,
I \

L I \

\1 \ ~I I

12 25 37 50
Oyo1e(i)

Figure 5.17: Final error in one component of the robot's
position using Kalman filter to process error.

-139-

movements wi 11 be made on each cyc Ie. Hence there is a time

saving, which is significant for large measurement noises.

This is demonstrated by an example in Chapter 7.

5.10.2 Estimation of a changing noise level

Consider the case of a sensor which is initially noise-

free, but which develops a fault. Between cycles 1 and 25,

there is no noise from either the system or the measurement.

From cyc 1 e 25 to 50 the sensor error can be mode 11 ed by a

random variable ha ving a mean of 0 and a variance of 2 mm 2 •

The sensor provides information on only one component of the

state and hence only this component is considered. The

results of applying the noise estimation algorithm to this

problem are shown in Figures 5.18 to 5.22.

Because there are no iterations on each of the first 25

cycles, equations 5.40 and 5.41 are used to update the

initial noise estimates, which therefore show a smooth

decrease over this period, see Figures 5.18 and 5.19.

Because the measurement noise decreases faster than the

system noise, the Kalman gain, Figure 5.20, tends towards 1.
'\

After cycle 25, the estimate of the measurement noise

increases and there is a corresponding decrease in the

Kalman gain towards the steady-state value of about 0.2.

Because the Kalman gain falls, the effect of-the noise

in the sen.sor is reduced and the expected error at the end

of each cycle is s'inaller than it would be if the error in

the sensor was not detected or ignored. This can be observed

by comparing t?e final error, shown in Figure -5.21, with the

results shown in Figure 5.16 for the uncorrected (K=1)

-140-

N

~
OJ
C)

0
ttl

·n
M

~

N

~
OJ
C)

Q
ttl

·n
M . ~

2.0

1.5

1.0

0.5

..
""--.

0.0 ----
12

fA~ \ ~ \ ('v
\)

25 37

\ mv
~ .

50
Oyo1e(1)

Figure 5.18 Estimated measurement noise versus cycle
for changing sensor noise.

2.0

1.5

"" \
I

"
1.0

0.5

,

~
......

...........
0 ---- . . -------------------0.0

12 25 37

Figure 5.19: Estimated system noise versus cycle
for changing sensor noise.

-141 -

50
Oyo1e(i)

.
~
(\)
tJ

~
~
Ul

'r-!
"0 Q

1.00 t I

." ---V-
0.75

o
\

0.50
\,

'. 'I
"'1,

II"

0.25

" '
",

1
1111

'01,

' .. ' ..
·'I'On

l
."

III.,
"'" ''''',. .

"""",'

Kalman
gain

Error
covariance

1
(mm2

)

!
, / " '

,..... .
/' .Ai'

~ ."\" .,;~;::;x;-~· .. · .. u\tr iVvI'V\/\/~·,,\

O.OO4-________ ~----__ --__ --~------------~----------~

12 25 37 50
Oyo1e(1)

Figure 5.'20: Computed Kalman gain and error covariance
for one component of the state.

2.0

1.3

0.7

O.Q,
"~~';

-0.7

-2.0
12

",
\
1

25

M ~r1AJ /lfL A
l I / \~ \

37 50
Cyole(1)

Figure 5.21: Final error in one component of the robot's
position using Kalman filter to process error.

-142-

situation.

The ve loci ty of the robot in the vicini ty of the sta te,

Figure 5.22, increases towards a maximum at cycle 25. (The

sensitivity of the component of the state is assumed to be
.

0.5.) After cycle 25, the velocity shows a small decrease,

reflecting the added uncertainty caused by the measurement

error. The change in velocity is small because the effect of

the error is reduced by the low Kalman gain.

5.11 Summary

The flow-chart showing the sequence of operations in

the execution of a sensor-level command, Figure 4.3, can now

be augmented to include the results of this chapter. This

new flow-chart is shown in Figure 5.23.

This chapter has shown how errors- arising from

actuators, sensors, and ill-positioned components, can be

identified and the noise distributions quantified. Once the

relative magnitudes of the noises have been estimated, the

sensor information is weighted using the Kalman gain. As

demonstrated in the numerical examples, this weighting

~reduces the final positional error of the actuator whenever
, 1

the. measurement is noisy. This will be demonstrated further

in Chapter 7, where a noisy sensor is used in an industrial

problem.

The simulation described in Section 5.10.1, for a

constant sensor noise, gave a steady-state Kalman gain of

about 0.35. Although this' improves the final positional

accuracy, there still remains room for improvement. The

estimated system noise is about 0.4 rather th~n the actual

Value of 0.0. If the estimation of the system error in each

-143-

»
~
or-!
t)

0
r-I
(])

:>
rt:t
(])
N

or-!
r-I

~
1-1
0

:z:;

0.5

0.4

0.3

0.2

0.1

0.0

12
""\

I

25 37 50
Oyo1e(i)

Figure 5.22: Variation of robot velocity with cycle.

-144-

I Move the actuator from the current state to the corresponding
intermediate state at a speed computed using equation 3.4 (Fine-motion).

t
lMove the actuator to the intermediate state associated with the final state 1

(Gross-motion).

t
lMove the actuator to the final state at a speed computed using equation 3.7 (Fine-l

motion) •

t

- Ii: .. 1 J

Get the attributed sensor data from the nominated sensor-slave. 1
'" l Compute the sensor error and transform it to a world frame and into world

coordinates .. !i'

'f -'
.- I Compute Qi .. It'!i I

No ~ Yes
criterion (Section 4.5)

satisfied ?

'v Si~
Yes " No .. ~ve the actuator by

QiJ and record 0i' I
Compute the

~f

--

'"

-v new

i • 1 , let i=Qil
system and
measurement

-v noise variances

li : .. i+ 1 1 from equations

variance !,
5.40 and 5.41.

I Compute the estimated measurement noise
from equation 5.22.

t
Compute the weighted recursive average of the

measurement noise from equation 5.30.

t ,
Compute the weighted recursive average of the mean I

of the system noise using equation 5.34.

It
Compute the weighted recursive average of the

variance of the system noise using equation 5.39 •
..

Update the noise estimates of the sensor and the
actuator using either equations 5.42 and 5.43 (for
a dynamic sensor) or equations 5.45 and 5.46 (for a

static sensor).

'"
.,

Adjust the state by the mean value of the system
noise using equation 5.44 (Long-term feedback).

t
Update the Kalman filter equations (Equations 5.4,

5.6 and 5.7).

~igure 5.23: Flow-chart sUmmarizing the noise estimation
algorithm.

-145-

cycle, M, could be improved, then there would be a

corresponding improvement in the filtering of the noisy

sensor data by deriving a smaller K. The means of improving

the estimate of M in each cycle is not obvious. The

estimation of the measurement noise will always be more

accurate because there is more information available from

which to estimate it.

The sudden change in noise characteristics simulated in

Section 5.10.2 is not atypical of industrial noise induced
(

by electrical interference. Coping with ~his form of noise

is an important practical consideration for industrial

automation.

In the next chapter, an implementation of the noise
.'

processing algorithms in a robot· programming system is

described.

--\
I

6-

CHAPTER 6

A PROGRAMMING TOOL FOR SENSORY ASSEMBLIES

-147-

6.1 Introduction

This chapter describes the implementation of a robot

programming system which includes the results developed in

the previous chapters. The model of a discrete sensory

assembly presented in Chapter 3 forms the basis of the

system. The specification of actions through a sensor-level
/

of indirection (Chapter 4) is achieved through a set of C

functions, which are described in detail in this Chapter.

Automatic processing of errors to cope with noise (Chapter

5) is an integral part of the system. The key features of

the software are as follows:

1. Efficient specification of sensory feedback.

2. Dynamic calculation of actuator velocity using

.. information from previous errors.

3. On-line processing of errors to provide optimal

estimates of noise levels.

4. Optimal filtering of sensor information to reflect

the computed noise levels.

5. Interactive interface to allow sensors and actuators

to be defined.
~

6. Simulation of nois~ in sensors, actuators and the

system.

The software system, called SLPS (sensor-level programming

system), comprises a library of functions written in the C

programmi~g language [105], which are used by the programmer

to define the interactions between the sensors and the

actuators. In addition to this, a suite of BASIC programs

provides an interface to the programmer to allow the data

files describing the sensors, actuators and states to be

-148-

defined. The system can be used to control any commercial or

purpose-built actuators, using information from any

commercial or purpose-built sensors.

6.2 Hardware framework

A typical configuration of sensors and actuators was

./

described in Section 3.1 and illustrated in Figure 3.1. This

is generalized in Figure 6.1. The main control program

resides on the central controller, which communicates to the

sensors and actuators to achieve the goals specified in the

program.-A servo-process involving a sensor and an actuator

is coordinated by the central controller. All information

interchange takes place through this controller, which can

be view~d as the master in a master-slave hierarchy. The

communication channel between the master and the slaves is a

low bandwidth, parallel bus, called Robus [106].

If applicable, the commercial controller associated

with a sensor or actuator is retained and interfaced to the

appropriate sensor or actuator controller. In this way, the

software to control the kinematics of a robot arm, for
- ~l

example, does not need to be reproduced in the central

controller. Furthermore, the processing required to extract

the attributes from the sensor information is carried out

within the sensor-slave. Hence, the computational demand

placed on the master is small because its role is control

and coordination rather than numerical processing.' In the

next chapter, an industrial problem is described which uses

an IBM .. PC as the master controller.

Each sensor and "actuator-slave has a unique 8-bit

-149-

)
~

r-
,,------ --------"7

~ ,------ - --
I

-- -,
I

I
I
I
I

I ,
I
I

I
I
I

I
I
I
I
I

Actuator

Controller

(slave)

r-
~

Commercial or

purpose-built

Actuator

L _____ ...: ____ _

Actuators

I

I
I

I
I
r ,
I

I

I
I ,
I I
I I

I
I I
':"\ --I

Central

Controller

(master)

./

r-
1I

Bus <
If"

r------ 10<----------::1
(------ - - - --
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I

Sensor

Controller

(slave)

,
,I

Commercial or

purpose-built

Sensor

-" I

I
I

I

I
I
I
I

L ____________ -'-'

Sensors

Figure 6.1: A generic configuration of sensors and actuators.

-150-

address which allows the master to read the attributes from

the required sensor and send movement instructions to the

required actuator. The addresses are taught to the master

within the definition file associated with each slave.

6.3 Communicating to sensors

Because the sensor controller sends attrib~tes rather

than raw sensor data, the form of information interchange

between the master and any sensor-slave is consistent.

During the application of sensory. feedback, the master will

require sensor information from which to compute the error.

To obtain this sensor information, the following sequence of

events occurs:

1. The master sends a request to the sensor-slave for

information.

2. The slave procures data from the physical sensor.

3. The slave processes this data to produce the

attributes.

4. The slave sends the number of computed attributes to

the master.

5. The slave sends the. numerical value of each

attribute to the master.

6. The slave sends a terminator to indicate the

success or failure of the sensing and processing.

This is a generic sequence ~f instructions which is the same

for every sensor. Once the attributes have been received by

the master, the sensor error can be computed and then

transfqrmed into the actuator error.

In step 1, the master sends a command code to the

-151-

sensor-slave as a data request signal. The command code, of

which there is one for each sensor, is called the activation

number of the sensor. Upon receiving the activation number,

the sensor-slave must collect data from the physical sensor

and then process this to give the attributes. The number of

attributes extracted is then sent to the master. Although

this number is defined a p~io~i within the sens6r's

definition file, the master can perform a check on the

synchronization of the handshaking, prior to receiving the

attributes themselves. The control program is aborted if

the number of attributes expected by the master does not

correspond with the number computed by the slave. Because

the information interchange between the master and the slave

is polled rather than interrupt-driven, .. a synchronization

check of this form is necessary to detect a phase error.

Once the number of attributes has been transmitted, the

numerical value of each attribute is sent to the master.

Finally, the sensor-slave sends an acknowledgement code. If

the sensing and processing was achieved successfully, a

terminator code of 99 is sent. If either the sensing or the
." \

processing produced an errdr, an error-code is returned. The

master will only continue execution of the control program

if the valid terminator is received.

6.4 Communicating to actuators

To e:qable the master to control each actuator in a

uniform way, a standard communication interface is defined

between the master and each actuator-slave. The master sends

command codes followed by data. The actuator-slave must then

translate this code into the syntax required by the

-152-

commercial actuator, or else control the actuator directly.

Either-way, the format of the command code and data sent by

the master wi 11 be the same for each actua tor, and differ

only in the physical address to which it is written. The

command codes for the actuator controller are shown in

Figure 6.2. Depending upon the complexity of the actuator,
-'

not all of these control codes will be implemented. From

Figure 6.2, it is seen that the command code to set the

speed of an actuator is 1. After sending this code, the

parameter required is the normalized speed, which is always

between 0, for lowest speed, and 100 for maximum speed. For

example, to set the speed of a Puma robot to half maximum

speed, the data 1,50 would be sent to the address

corresponding to the Puma's slave controller. Upon receiving

this command, the Puma's slave would send the ASCII string

'SPEED 160' to the commercial controller. Since the maximum

speed of the Puma robot is 320, the value of 160 represents

the required speed.

The information interchange between the master and the

actuator is summarized as follows: ,
I

1. The master sends a command code followed by

relevant data to the actuator-slave.

2. The actuator-slave obeys the command and transmits

back to the master any desired data.

3. The actuator-slave sends an acknowledgement or

an error code back to the master to complete the

operation.

If the operation is completed successfully, the

-153-

Cooe

1

2

3

4

5

6

7

8

9

10

1 1

12

13

Meaning

set the speed of Movement.

set the acceleration of movement.

Move the actuator to a pre-defined
state. /

Define the current position of the
actuator as a named state.

Move the actuator relative to its
current position by _x,y,z,o,a,t.

Move a pre-defined state by an
amount x,y,z,o,a,t.

Return the coordinates of the
actuator's current position.

Return the coordinates of a
pre-defined state.

Move the actuator to a pre-defined
state.

Move the actuator to a pre-defined
state in a straight line.

Initialize the actuator. (includes
calibration, reseting etc.)

Halt the actuator (low priority).
~\

Halt/the actuator (emergency
stop).

Figure 6.2: Table of generic command cooes which can be
sent to the actuator slave.

-154-

acknowledgement code 99 is sent back to the master.

Otherwise, an error-code is sent. The control program

continues only if the acknowledgement code is received.

6.5 Defining the components of a sensory assembly

Formulating a solution to a sensory assembly problem

using SLPS requires the following stages:

1. Define each sensor.

2. Define each actuator.

3. Install the relevant sensors and actuators and

define the physical relationship between each.

4. Write the control program in C using the defined

sensors and actuators as parameters.

5. Define the parameters associated with the assembly

problem.

6. Compile the program and link the library routines.

7. Execute.

The relationship between these stages is shown in Figure

6.3. In stages 1 and 2, the definition of the sensors and

actuators involves producing a data file containing the
~

physical parameters of the slaves. This data file contains

information relevant to the sensor or actuator, and is

independent of the application in which it is being used.

The data files corresponding to each physical sensor and

actuator are installed in step 3 to produce the installed

task file,~which is specific to the application. This file

also contains information on the interaction between the

sensors and the actuators, including t~e necessary

transformation matrices to relate the frames of reference.

-155-

Sensor

definition

Control

program

in C.

'Movemag'

file

Sensor­

actuator

relationships

Installed

task file

Compile with

standard r-n
C compiler.

,"

Actuator

definition

Link

\ .
L~brary

routines

,
,

State

parameter

file

Execute

Figure 6.3: The stages in producing an executable robot
control program under SLPS.

-156-

Another data file, the state parameter file, contains

information on the states, and is defined in step 5.

The data files in steps 1,2,3 and 5 are produced using a

suite of interactive programs written in IBM BASIC. The programs,

called IRPS (Integrated Robot Programming System), prompt the

programmer to enter the required parameters, which are

./

subsequently stored in the appropriate file. The contents of each

data file are discussed in the next three sUb-sections.

6.5.1 Defining a sensor

Once the physical hardware associated with a sensor-

slave has been constructed, the presence of the new sensor,

and the parameters associated with it, must be defined. The

following information is contained within each sensor's

definition file:

1. The name of the sensor.

2. The physical address of the sensor-slave on the bus.

3. The activation number of the sensor.

4. The number of attributes produced by the sensor.

5. The name of each attribute.

6. The correction in~he sensor's frame of reference,

which specifies the directions in which the sensor

must be moved to correct for an error in each

attribute.
.

7. The noise variance associated with each component of

the measurement.

The name of the sensor is a string of ch<;l.racters which wi 11

be used in the control program to ref~rence the sensor. The

physical address of the sensor-slave takes values between 0

-157-

and 255, and allows the central controller to communicate

wi th the s la vee The acti va tion number of the sensor is the

command code which the central controller must send to the

slave controller to request the attributed sensor

information (Section 6.3). Two sensor slaves can occupy the

same physical address, and so these are distinguished by

. -'
issuing a different activation number to spec1fy the

required sensor. (In practice, this corresponds to the need

for a separate hardware module for each unique address. For

simple sensors, it is sensible to associate more than one

sensor with a slave controller, this reduces cost and

complexity.)

The fourth parameter in the sensor's definition file is

the number of attributes produced by the. sensor-slave.

Following this, the name of each attribute is given. These

names will be used in the control program to identify the

required attribute. It is important that the order in which

the names of the attributes are entered in the definition

file corresponds with the order in which the sensor-slave

sends the attributed data to the master.
- -\

The next entry in the sensor's definition file is the

correction to a llow an error in an attribute to be

corrected. The correction is entered as a translational and

rotational component, defined relative to .the sensor's

origin. It is not·stored as'a homogeneous matrix because,

for rotation, the homogeneous matrix involves sines and

cosines of the rotation angles. Since the required angle of

rota tion can only be computed in the c~ntext of the sensor

error, the numerical components of the matrix cannot, at

-158-

this stage, be assigned. Therefore, the correction is stored

in the form

(x,y,z) , (a,b,c)

in which (x,y,z) is the translational part and (a,b,c)

defines an axis of rotation. Assume that the required

movement of the sensor takes one of three forms, namely,

-' 1. Movement along the x, y and z axes, or any

combination of these.

2. Rotation about a vector (a,b,c), which is centered

on the origin of the sensor's frame of reference.

3. Rotation about a vector (a,b,c), which is centered

on a point (x,y,z).

Although these three forms of correction do not encompass

all pos?ibilities, they do allow most sensors to be

modelled. Many sensors fall into category 1, for example a

proximity sensor, linear-array camera, area-array camera and

a 3 degree of freedom IRCC.

In category 1, (x,y,z) is a unit vector specifying the

direction in which the sensor must be moved. In category 2

(a,b,c) is a unit vector specifying the axis of rotation.
"\

For category 3, the vectorl(x,y,z) is an offset, expressed in

millimetres, between the sensor's origin and the axis of

rotation, which is given by the unit vector (a,b,c).

Thus, the correction indicating that .the sensor must be

moved in the +x direction to increase the value of the

attribute would be given as

(1,0,0) , (0,0,0)

Similarly, the correction indicating that the sensor must be

rotated about the -y"axis would be represented as

-159-

(0,0,0) , (0,1,0)

and finally the correction given by

(0,1,0) , (10,0,0)

means that the sensor must be rotated about a line which is

parallel to the y axis and offset by 10 millimetres in the

x direction.

The choice of origin is arbitrary, although/it must

eventually be related to either the actuator's or the

world's frame of reference. For the case of an area-array

camera, a sensible choice of origin is the centre of the

image.

The corrections described above only specify the

direction in which the sensor must be moved, and not the

size of ,the movement. The size is computed in a separate C

function, movemag, which returns the size of the correction

in world coordinates, given the sensor error as a parameter.

The function is written in C and provides a means of

modelling non-linear relationships between sensor errors and

the corrections. The function contains a condition for each

sensor pertinent to the assembly. The general form is shown

""" \
in Figure 6.4. The expression t(e~~o~) gives the size of the

correction as a function of the sensor error. For example,

if the sensor error was in terms of picture elements from a

camera and there were 10 picture elements per mm, then the

function would beerror/10, 'giving the error in mm. The

function could be more complicated, and any of the standard

mathematical functions are available through the C library

routines. Although it has not been implemented in the

current system, it may be desirable to include the attribute

-160-

as a parameter to the movemag function. This would allow

each attribute of the sensor to have a different correction

size. A camera with a non-unity aspect ratio would require

this facilty.

float movemag(sensor,error)
int sensor; /* Number of the sensor */

/* Sensor error */ / float error;
(

if (sensor == ~en~o~l)
return(t(~o~));

if (sensor == ~en~o~)
return (t(~o~);

...

Figure 6.4: The function 'movemaq', us.ed to define the
size of the correetion as a fUnction of the
sensor error.

The size of the correction, as returned from movemag,

is used to modulate the correction vector. Either the

translation or the rotation is multiplied by the scalar

size, to give the final correction vector defined in the

sensor's
-\

frame of reference~ For example, a sensor

correction stored as (1,0,0), (0,0,0), together with a

movement size of 10mm, would mean the sensor must be moved

along the cartesian vector (10,0,0).

The final entry in the sensor's definition file is the

sensor noise. This is an initial estimate of the error

expected in the readings from the sensor. It will be used in

the Ka~man filter, and will be updated, on-line, using data

derived from the servoing (Chapter 5). The sensor noise is

-161-

represented by a vector which gives the estimated variance

of the error in up to 6 measured components.

An example of a definition file for a sensor is shown

in Figure 6.5. This file defines an area-array camera,

called 'areacam', which resides at address 100. The

activation number is 20 and the sensor-slave sends back 2

attributes, which are called 'x-cofg' and 'y-cofg'. These

correspond to the percei ved posi tions of the x and y centre

of gravity of the part currently in view. The correction

indicates that for an error in the attribute 'x-cofg', the

sensor must be moved in the +x direction. For the attribute

'y-cofg', the sensor must be moved in the +y direction.

6.5.2 Defining an actuator
..

The"definition of an actuat.or is similar to that for

the sensor. The following information is required:

1. The name of the actuator.

2. The physica 1 address of the actua tor-s la ve on the

bus.

3. The resolution of the actuator.

4. The repeatability o£ the actuator.

The resolution of the actuator is given as two components,

one for translation and the other for rotation. The

translational component of resolution is the minimum

distance the actuator can move in a cartesian coordinate

system. Although this may vary with position and direction,

it is assumed to represent an average for the actuator over
\

the ope.rating space. The rotational component of resolution

is an approximation to the minimum angle of movement,

-162-

areacam, 100 , 20 , 2
xcofg, ycofg
(1,0,0) , (O,O,O)
(0,1,0) , (0,0,0)
(0.1 , 0.1 , 0.0 , 0.0 , 0.0 , 0.0)

Figure 6.5: The sensor definition file for an area
array camera.

puma, 80
.2 , .01
.1 , .005

Figure 6.6: The actuator definition file for a Puma
robot.

,"
!

START (0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0
(1 .0 , 1 .0 , 1 .0 , 0.0 , 0.0 , 0.0 ')
(0.1 , 0.1 , 0.1 , 0.01 , 0.01 , 0.01)

END (0.0 , 10.0 , 0.0 , 0.0 , 0.0 , 0.0)

(1 .0 , 1 .0 , 1 .0 , 0.0 , 0.0 , 0.0)

(0.1 , 0.1 , 0.1 , 0.01 , 0.01 , 0.0'1)

Figure 6.7: An example of a state parameter file.

-163-

expressed in degrees.

The repeatability, which is also represented by a

translation and rotation component, is used to estimate the

noise arising from the actuator (Section 5.6).

The definition file for a Puma robot is shown in Figure

6.6. The actuator-slave is located at address 80 on the bus.

The actuator has a resolution of 0.2 mm in position and

0.01 0 in orientation, the repeatability is + 0.1 mm in

position and + 0.0050 for orientation.

Once the physical address of the actuator-slave has been

taught to the central controller, command codes of the form

discussed in Section 6.4 can be sent.

6.5.3 Defining the states

Unlike the definition of sensors and actuators, the

definition of the states is specific to the assembly

problem. The numerical coordinates of the states are defined

in either the actuator-slave or the commercial controller.

For a Puma robot, for example, the states may be taught by

moving the robot to the desired location and typing 'HERE

state' on the terminal to-associate the named state with the

current configuration of the robot. Although this approach

could be replaced by an off-line modelling package, teach by

showing still retains popularity as a way of setting up an

assembly problem.

Once the states have been defined, the central

controller can request the numerical value of the states

using command code 8 (Figure 6.2). Furthermore, the central

controller can change the value of the state's components;

this is necessary during the application of sensory

-164-

feedback.

The state parameter file is defined in the ceptral

controller and holds additional information associated with

the states. This comprises

1. The name of each state.

2. The departure vector associated with each state.

3. The system noise for each state.

4. The tolerance of each state.

The departure vector (Section 3.7), defines the direction in

which the state will be approached and departed during a

movement between states. It is a six-component vector whose

first three components are the distances expressed in

millimetres and whose final three components are the Euler

orientation angles, expressed in degrees. In effect, the

departure vector specifies a transformation from the state

to a new point, called the intermediate state.

The system noise is a vector which defines the expected

variance of the noise in each component of the state. The

noise is assumed to have a mean of zero and be Normally

distributed, such that bet~een cycles each state is given a
\
I

random perturbation about its nominal value. The variance of

this "noise is given by the components of the system noise.

The translational components of the noise are expressed in

millimetres and the rotational component~ are expressed in

de"grees.

The tolerance of the state (Section 3.5) is defined as

the magnitude of the maximum error in the final position of

the actuator at the state. The tolerance is a vector, where

each component gives the tolerance of the corresponding

-165-

component of the state, being expressed in millimetres and

degrees.

An example of a state parameter file is shown in Figure

6.7. Two states are defined. The first, 'START' has a

departure vector (0,0,0,0,0,0), which means the state does

not have a defined approach and departure direction. The

direction in which this state is approached and departed

will depend on the relative position of the previous and

subsequent state respectively. The system noise for the

first state has a variance of 1mm2 for each of the x, y and

z components. The tolerance is.±. 0.1 mm and.:!:. 0.01 0
• For the

second state, 'END', the departure vector is (0,10,0,0,0,0).

This means that all movements to this state must be preceded

'" -'

by mov ing the actua tor to a point 10 mm away from the sta te

in the +y direction. Similarly, when the actuator is moved

away from this state, it must be moved by 10 mm in the +y

direction before the movement to the next state. The motion

of the actuator in the vicinity of the state would therefore

be along a well-defined path, usually corresponding to some

geometrical or-physical f~ture of the state.
I

Once the departure vectors for the states have been

read by the central controller, a new set of states, the

intermediate states, are automatically defined by adding the

departure vector to each state. These new' states are defined

in the actuator-slave using the command code 6 (Figure 6.2),

and are named by adding the suffix '.INT' to each state

, '
name. For example, the state 'END having departure vector

(0,10,0,0,0,0) would cause the central' controller to define

an additional state called 'END.INT', formed by combining

-166-

the value of 'END' with the departure vector. The definition

of these intermediate states occurs in an initiali~ation

phase, prior to execution of the main control program. When

the actuator is required to move to the state 'END', it

would first be instructed to move to the intermediate state

'END.INT', and then to 'END'. Similarly, when leaving the

state 'END', the actuator would first move to the state

'END.INT' and then move to the next state. These movements

between the state and its intermediate state represent the

fine motion phase in the transfer of the actuator between

two states (Section 3.7). Within this phase, the speed of

the actuator is controlled from the confidence and the

sensitivity of the state.

6.6 Defining the transformations for the sensor

Once the data files defining the sensors and actuators

have been entered, the relationships between the frames of

reference must be given. This is done in an installation

program, in which the data files are combined with the

relationship information to form a new data file, the
. ~

installed task file. It is 'this installed task file which

will be read by the programming system as the definition of

the devices associated with the assembly (See Figure 6.3).

The installation program operates interactively,

requesting the programmer to enter the names of the sensors

and actuators to be used, and then loading these definition

files from disk. For the particular application under ,

development, each sensor must be identified as either static

or dynamic. Following this, the programmer is requested to

-167-

enter information relating the frame of reference of each

sensor to either the actuator's or the world's frame of

reference, for dynamic and static sensors respectively. In

the installation program, the options for each sensor­

actuator or sensor-world relationship are as follows:

1. The frames of reference are equal.

2. A translational difference between the frames of

reference.

3. A rotational difference between the frames of

reference.

4. Both a Translational and a rotational difference

between the frames of reference.

5. No relationship is applicable.

These options are summarized in.Figure 6.8 for the frames of

reference (x,y,z) and (x',y',z'). If the correction in the

sensor's frame of reference is only translational, option 2,

then it is not necessary to consider any translational

differences in the sensor-actuator or sensor-world

relationships. This is because the sensor will provide an

error signal rather than an absolute positional measurement,

the magnitude and direction of which will not be affected by

a translational difference in the frames of reference.

Unless the sensor's frame of reference is carefully

chosen, there will, in general, be a rotational difference

between the frames. This is entered by specifying the axes

of the actuator's or world's frame of reference in terms of

the basis set formed by the axes of the sensor's frame of

reference.

The following information is stored in the installed

-168-

y y'

z z'

x x'

Frames of reference

are equal.

y' y

x'
.... ===:::;;;.. __ ~x

Rotational difference

between the frames.

y'

z'

y , K;.. ____ .-+x

I
I

I
I

I z

..... _____ +x

Translational difference

between the frames.

y

/ z'

z

.... ____ ~x

Translational and rotational

difference between the frames.

Figure 6.8: The permitted sensor-actuator and sensor­
. world relationships.

-169-

task file:

1. The number of sensors to be used.

2. For each sensor

a) The sensor's name.

b) Whether it is static or dynamic.

c) The address, the activation number and the

number of attributes.

d) The name of each attribute.

e) The correction for each attribute.

f) The sensor noise.

3. The number of actuators to be used.

4. For each actuator

a) The name and address of the actuator.

b) The resolution for ~ranslatlonal and rotational

movements.

c) The repeatability.

5. For each sensor

a) Either the relationship with the world if the

sensor is static, or, if it is dynamic, the

relationship~ith each actuator. Each
\
I

relationship is stored as a homogeneous matrix.

An example of an installed task file is shown in Figure

6.9. This incorporates two sensors and on~ actuator. Since

one sensor is static and one is dynamic, the transformations

are specified between the world's and the actuator's frame

of reference respectively.

-170-

2
areacam
static
100 20 2
xcofg
ycofg
(1 , 0 , 0) , (0 , 0 , 0)
(0 , 1 , 0) , (0 , 0 , 0)
(0.1 , 0.1 , 0.0 , 0.0 , 0.0 , 0.0)

force
dynamic
84 10 1
angle
(0 , 0 , 0) , (1 , 0 , 0)
(0.0 , 0.0 , 0.0 , 1.0 , 0.0 , 0.0)

1
puma 80
0.2 0.01
0.1 0.005

puma force
0.000 1.000
0.000 0.000

0.000
1.000

0.000
0.000

1.000 0.000 0.000 0.000
0.000 0.000 0 .. 000 1.000

world areacam

\
f

1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000

0.000 0.000 0.000 1.000

Figure 6.9: An example of an installed task file
incorporating one actuator and two sensors.

-171-

6.7 Programming with sensor-level commands

Chapter 3 described the primitive sensor-level

programming constructions. These were

and

MOVE actuator TO state ACHIEVING condition
IN attribute OF sensor

FEED-FORWARD ERROR BETWEEN attribute OF sensor
AND condition TO state

The first involves a servo process between the named

sensor and actuator, which will terminate when one of a

number of conditions are satisfied (Section 4.5). During the

feedback~phase of this operation, each measurement from the

sensor is firstly transformed into the world's frame of

reference and is then weighted by multiplying by the Kalman

gain matrix. The new estimate of the state is formed by

adding this weighted error to the current value of the

state, as represented by equation 5.5. Because the Kalman

gain reflects the relative magnitude of the measurement

noise and the system noise, it is necessary to define a

Kalman gain matrix for each sensor-state combination. This

can be represented as K
lk

, to denote the Kalman gain matrix

th - ~th
for the I state and the k sensor. If no sensory feedback

is used at a state, the Kalman gain is Klo and has a value

I. Following each movement to a state, the Kalman gain, K,

and the error covariance, P, are updated ~sing equations

5~4, 5.6 and 5.7. Assuming no sensory feedback is used, the

estimates 'of the system and measurement noise, u. and v.,
-~ -~

will remain unchanged and hence K and P,will approach

steady~state values which reflect the relative magnitudes of

u.and v .• If v., is much smaller than u., then K will
-~ -~ -~ -~

-172-

approach I, indicating that the sensor information is

reliable. Conversely, if u. is much smaller than v., K will
-~ -~

approach 0 and, since K is used to weight the readings from

the sensors, the sensor information will tend to be ignored.

The second sensor-level programming construction

involves no actuator movements, but instead feeds the

perceived error at the current state forward to adjust a

future state. The information from the sensors is weighted

using the Kalman gain matrix to reflect measurement errors.

Hence, after the perceived error has been transformed into

the world's frame of reference, it is multiplied by K and

the new state estimate produced using equation 5.5. Instead

of moving the actuator to this new estimate, as in move, the

numerical value of the state is adjusted,to reflect the

percei ved error.

The implementation of the above constructions is

achieved by defining two C functions, called move and

error-ff, which take as parameters the names of the state,

actuator, sensor and attribute as defined in the definition

files. Firstly consider the move function, for which the

syntax is

move("actuator", "state", "sensor", "attribute", value)

This is a command to move the named actuator to the state

and then use sensory feedback to achieve ~he specified

numerical value in the designated attribute. Upon execution

of this function, the central controller will know' the

physical address of the actuator and sensor. Because the

information interchange to the sensor-slave and the

actuator-slave is standardized, the central controller can

-173-

generate the required movements of the actuator by

processing the attributed data received from the sensor. To

this end, the transformations defined in the installed task

file are used to compute the errors in the actuator's frame

of reference from the errors in the sensor's frame of

reference. Thus, the information contained in the above

definition of move, together with the information contained

within the definition files, is sufficient to define a

servo-loop.

Once the termination criterion for the servoing has

been met; the information obtained from each iteration is

processed using the algorithms developed in Chapter 5 to

provide an estimate of the noise due to the sensor, the

actuator and the system. This allows the. parameters of the

Kalman filter to be updated and the noise to be processed.

The estimated noise levels affect the Kalman gain, which

will correspondingly adjust the weighting given to the

sensor readings for the next cycle. In the absence of any

noise, all sensor information is treated with 100%

confidence and the Kalman filter and noise estimation

algorithms are redundant.
"" \

I

The sequence of events involved in the servoing process

of the move function is represented in the flowchart of

Figure 5.23.

The second sensor-level programming construction is the

function error-ff. The syntax of this is

error_ff("sensor", "attribute", value, "state")

and the affect of the command is to compute the error

between the reading from the named attribute of the sensor

-174-

and the desired value, then to feed this error forward to

adjust the components of the state. The error detected by

the sensor will be transformed into a world-error before the

correction is implemented. As before, since the central

controller knows the address of the sensor and actuator,

there is sufficient information contained in the function

and the definition files to allow execution of the command.

Within the execution of error-ff, there is no movement of

the actuator. Therefore, it is usual to precede the command

with an actuator movement to get the sensors into the

correct position. This movement command may no~ require

sensory feedback, although it can still be written using the

form of move previously described.

In practice, not all movements of the actuator need to

be qualified by giving a desired sensor reading. The

parameter 'null' may be used in the move function to

indicate the absence of sensory feedback. Thus,

move("actuator", "state", "null", "null", null)

will have the affect of moving the actuator to the named

state; this is functionally equivalent to a manipulator­

level command. In practice~i this form of the command can be

simplified to

move("actuator", "state")

although care must be taken to ensure that the particular C

compiler being used does allow this, and correctly assigns

the missing arguments to "null" for the string and to 0.0

for the floating point number.

Another variant with the 'null' parameter in the move

command is to omit the state name, giving

-175-

move("actuator", "null", "sensor", "attribute", value)

If no state is specified, the sensory servoing is assumed to

be relative to the current position. Hence, no gross or fine

motion phases precede the feedback phase. Later in this

chapter, and in the next chapter,·examples of assembly

programs will be shown.

The C programming language does not permit a variable

number of arguments to be supplied to a function. This means

that the additional requirements of meeting two, or more,

sensor conditions cannot be easily represe?ted in the same

function: For this reason, a function called move2 is

defined. This allows two sensor conditions to be met using

the procedure described in Section 4.6. The form of the

function is,

move2("actuator" , "state", "sensor1 ","attribute1 ",value1 ,
"sensor2", "attribute2" ,value2)

If the correction vectors associated with each sensor

condition are orthogonal, it is possible to achieve any

number of sensor conditions at a state. This problem can be

represented by consecutive calls of move or move2. In move2,

the tolerance of the states is taken into account in
i

achieving the two sensor conditions. If the corrections for
..

two sensor conditions are orthogonal, the use of move2 is

preferable to move because in move2 the two sensor errors

are combined to give a single actuator movement. Thus, the

two sensor conditions are effectively met in parallel,

rather than sequentially;

6.7.1 Additional sensor-level programming commands

In addition to move and error-ff, some extra functions

-176-

are provided to allow manipulation of the states and the

actuators. These are lower-level commands, although they are

necessary to model some aspects of sensory assembly. The

following functions are defined:

shift_state(state,dx,dy,dz,do,da,dt)

This function adjusts the named state by the error

quantities in each of the translational and

rotational components.

rnove_by(actuator,dx,dy,dz,do,da,dt)

This function moves the named actuator by the

desired amount.

define_state (actuator, state)

This function defines the current position of the

actuator to be the named state.

speed(actuator,value)

This function sets the speed of the named actuator.

rnove_to(actuator,state)

This function moves the actuator to the pre taught

state.

moves_to(actuator,state)

"'" This function moves the actuator to the pretaught

state whilst ensuring that the origin of the

actuator's frame of reference traces a straight

line.

index_state(state, index)

This function applies the transformation specified

by the state "index" to "state".

In assembly, a common occurrence is a jig comprising an

array of components to be handled. The position of the first

-177-

component and the spacing between adjacent components are

known. Assume that the state representing the first

component is called "start" and "spacing" is the state

representing the transformation between adjacent components.

Then, with the actuator "robot", the first component may be

approached using

move("robot", "start")

The position of the next component is found by adjusting

"start" using "spacing" as the index, as

index_state("start", "spacing")

Because the operation of fetching and placing components in

an array is so common, the move and index_state functions

have been embedded in a single function which automatically

updates 'a state position upon completion of the movement.

The form of this command is

indexed move("actuator", "state", "sensor", attribute",
- value, "index")

The actuator is moved to the named state and sensory

feedback applied, as in move. Following this, the state is

adjusted using the state "index", which represents the index

of the array.
.. \

I

In the implementation of indexed_move, an additional

state is automatically defined during the first cycle. It is

this additional state which is updated and then used in the

movements in subsequent cycles. The reason for doing this is

to retain the numerical value of the initial state, which

would otherwise be lost after indexing. This initial value

may be"needed again, for example in the next jig. A new

function is necessary to indicate when the indexing must

-178-

finish and the initial value restored. Hence,

end_indexed_move("state")

will terminate the indexing, such that the next use of

indexed_move with "state" will start from the beginning of

the array. An example of the use of this function is given

in Section 6.8.

6.7.2 Format of the control program

The functions described in the previous section, in

addition to move and error-ff, are written in C and at the

lowest level communicate to the sensor and'actuator slaves

through the functions slave_read and slave_write. With the

exception of these low-level primitives, the whole

programming system is machine independent.

Before invoking any of the .SLPS furi'ctions, the routine

ini tia l_s 1 ps must be called. This is the initial izing

routine, which prompts the user for the name of the state

parameter file and the installed task file. These are opened

and the information checked for syntax and then digested.

Within this initialization routine, a number of switches can

be set to aid debugging; these include single-step,
\
I

diagnostic print out, and dry-run mode. A simulation mode

can be used, in which the affects of noisy sensor signals

can be investigated. In this mode, a Normal random number

generator is used to produce error signals which are used in

lieu of the sensor signals. The characteristics of the noise

can be pre-set and also varied during execution of the

program.

Once the initialization routine has been called, the

SLPS functions can be used. Substantive error checking

-179-

procedures ensure that an attempt to use an undefined sensor

or actuator is detected. Furthermore, the relationship

between a sensor and an actuator must have been defined in

the installed task file before a sensor-actuator servo loop

can be established. If a sensor is static, then the

relationship between that sensor and the world must be

defined explicitly. An error is reported if an attempt is

made to combine a sensor and an actuator when the

relationship is undefined. A close check is kept on the

information interchange between the central controller and

the slave controllers. A failure of a sensor-slave could be

particularly dangerous if the termination of the robot's

movement depended upon a valid signal from the sensor.

The next section cons iders. an examp I e of the use of the

programming system in a simple assembly problem.

6.8 Using SLPS in a simple assembly problem

To illustrate the operation and semantics of the

programming system, consider a simple assembly problem in

which an industrial robot is used to transfer five pegs from

jig 1 to jig 2, as shown i~: Figure 6.10. The proposed

solution to this problem uses two sensors and two actuators.

The first sensor is a three degree of freedom instrumented

remote centre compliance (IRCC), which allows compliant

insertion of the pegs into the holes and also allows the

error is the hole's position to be measured. The second

sensor isa tactile array mounted on the robot's gripper to

provide force feedback for grasping the pegs. The actuators

used in the assembly are a Puma 560 industrial robot and a

-180-

Puma 560
robot

Jig 1

IRCC Gripper with
tactile sensor

Figure 6.10: A simple assembly operation to transfer
the pegs from jig 1 to jig 2 using force
sensing and tactile sensing.

-181-

proportional electric gripper. A hardware overview showing

the sensor and actuator controllers is shown in Figure 6.11.

The definition files for the sensors and actuators are

shown in Figure 6.12. These files must be installed with the

appropriate relationships to form the installed task file.

Both sensors are dynamic, but for each a relationship with

only one actuator is appropriate. For the tactile sensor,

the relationship with the robot gripper is required and

likewise the relationship between the IRCC and the robot's

frame of reference must be entered.

The'next stage in the solution is to define the states

associated with the system. Five states are identified.

These are as follows:

1. The position of the robot at whi~h the first peg in

the jig 1 can be grasped.

2. The position of the robot at which the first peg can

be released into the jig 2.

3. The transformation defining the spacing of pegs in

jig 1.

4. The transformation defining the spacing of holes in

jig 2.

5. The position of the gripper corresponding to the

jaws being fully open.

From a knowledge of the initial peg position and the

distance between the pegs, the position of each of the five

pegs can be computed. The states are taught to the

appropriate controllers by moving the actuator to the

requii~d configuration and recording both the position and

the name. This applies to the states specified by an

-182-

Robot

controller

Puma

Central

controller

rRCC

controller

Bus

Electric

gripper

controller

Tactile

sensor

controller

Figure 6.11:·A hardware overview of the sensor and actuator
controllers used in the peg-transfer problem.

-183-

ircc, 90 , 20 , 3
xerror, yerror, zerror
(1,0,0) , (0,0,0)
(0,1,0) , (0,0,0)
(0,0,1) , (0,0,0)
(0.1 , 0.1 , 0.1 , 0.0 , 0.0 , 0.0)

Figure 6.12a: The sensor definition file for the IRCC.

tactile, 95 , 10 , 2
pressure, angle
(1,0,0) , (0,0,0)
(0,0,0) , (1,0,0)
(0.5 , 0.0 , 0.0 , 1.0 , 0.0 , 0.0)

Figure 6.12b: The sensor def~nition file for the
tactile sensor.

puma, 80
.2 , .01
.1 , .005

Figure 6.12c: The actu;tor definition file for the Puma
robot.

gripper, 85

.5 , °

.1 , °

Figure 6.12d: The actuator definition file for the gripper.

-184-

absolute position (states 1,2 and 5), and also to those

defined as a transformation (states 3 and 4). Following the

definition of the states themselves, the state parameter

file must be entered into the central controller. The

departure vector for those states representing relative

transformations is not relevant and is recorded as

(0,0,0,0,0,0). For the states representing the initial peg

and hole position, the departure vectors are defined as

(0,0,20,0,0,0). This represents a point 20 mm vertically

above the states, and defines a safe position from which the

peg can be approached, withdrawn and inserted. The departure

vector associated with the 'gripper open' state is set to

(0,0,0,0,0,0). The system noise and the tolerance are also

set to O. The state parameter file for this problem is shown

in Figure 6.13.

With the two definition files completed, the program to

transfer a peg is now considered. This is of the form

move("gripper", "open")
move("puma_robot", "peg")
move("gripper", "null", "tactile", "pressure", 50.0)
move2("puma_robot", "hole", "ircc", "xerror", 0.0,

."
) "ircc", "yerror", 0.0)

This four-line program transfers 1 peg from jig 1 into jig 2

using force feedback in the grasping and positional feedback

in the insertion. The first line moves th~ gripper to the

state "open", which is a pre-taught position corresponding

to the jaws being fully open. The second I ine moves the

robot to the state corresponding to the position of the
'.

first .. peg. In these first two commands, no sensory feedback

is used. In the third line, the gripper is moved re la ti ve to

-185-

PEG (0.0 , 0.0 , 20.0 , 0.0 , 0.0 , 0.0)
(1.0 , 1.0 , 0.0 , 0.0 , 0.0 , 0.0)
(0.1 , 0.1 , 0.0 , 0.0 , 0.0 , 0.0)
HOLE (0.0 , 0.0 , 20.0 , 0.0 , 0.0 , 0.0)

(1.0 , 1.0 , 0.0 , 0.0 , 0.0 , 0.0)
(0.1 , 0.1 , 0.0 , 0.0 , 0.0 , 0.0)
PEG_INDEX (0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)
(0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)
(0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)
HOLE_INDEX (0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)
(0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)
(0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)
OPEN (0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0
(0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)
(0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)

Figure 6.13: The state parameter file for the peg­
transfer example.

/* Control program for the peg-transfer problem */
main()
(

int i;
initial_slps();
for (i = 0 ; i < 5
(

; i++)
.'\

I

move ("gripper", "open", "null", "null", null);
index_move("puma_robot", "peg", "null", "null", null, peLindex);
move ("gripper", "null"', "tactile", "pressure", 50.0);
indexed_move("puma_robot", "hole", "null", "null", null, hole_index);
error_ff("ircc", "xerror", 0.0, "hole");
error_ff("ircc", "yerror", 0.0, "holen);

.. }

}

Figure 6.14: The control program for the peg­
transfer example.

-186-

its current position so that the pressure measured by the

tactile sensor is 50 sensor units. This correspond~ to the

act ion of grasping the peg. The f ina 1 1 ine is where a 11 the

robot movement is represented. The complete process of

withdrawing the peg, moving the robot to the second jig, and

tnen inserting the peg under sensory feedback is embodied in

the single function. The robot is instructed to move to the

state "hole". This invol ves firstly leaving the current

state using the departure vector, hence the robot is

initially moved 20 mm in the z direction. Then the robot is

moved to the point 20 mm above the state "hole", prior to

moving down to insert the peg into the hole. In the

withdrawl and insertion actions, the velocity of the

actuato~ is computed automatically to r~flect previous

errors and the state sensitivity. After inserting the peg,

sensory feedback is applied to ensure that the error in the

x and y components of the IRCC's position is zero. This

repositioning of the robot to produce zero error in the IRCC

copes with the situation of the transformation errors in the

modelling of the hole spa~ing. Although the error would
)

initially be absorbed by the IRCC, the cummulative affect of

these errors would soon be too large for passive

compensation.

The processing of the x and y posi tiona 1 errors is

desirable because it avoids cummulative errors. However, the

need to move the robot upon completion of the insertion

reduces the inherent advantages of passive insertion. Since

the m6vement does not offer any advantages on the current

cycle, an alternative formulation of the program, which

-187-

eliminates the final positional servoing, is

move("gripper", "open")
move("puma_robot", "peg")
move("gripper", "null", "tactile", "pressure", 50.0)
move("puma_robot", "hole")
error_ff("ircc", "xerror", 0.0, "hole")
error_ff("ircc", "yerror", 0.0, "hole")

This time, the perceived errors from the IRCC are fed

forward to adjust the state "hole". Although "hole" is the

current state, the affect of the operation will only become

evident in the next cycle, where the components of the state·

wi 11 ha ve been adj usted to ref lect the error. It is

necessary to use two ca 11 s of the function error_ff, one to

adjust each component of the error in the IRCC.

The program developed so far involves moving only the

first peg into the first hole. The function indexed_move,

described in Section 6.7.1, allows the automatic indexing of

the states "peg" and "hole" to the next positions along the

array. Using this, and embedding the code within a normal C

control loop, gives the final control program shown in

Figure 6.14.

6.9 Summary

'The robot programming system described in this chapter

allows sensory assemblies, incorporating a combination of

commercial and purpose-built components, to be controlled. A

rationale has been described by which sensors and actuators

can communicate in a structured way. Overall control is

centralized; although processing is distributed in

intelligent controllers. This produces a flexible system

which can be rapidly reconfigured to include an additional

-188-

sensor or actuator into the control program. The system is

modular, both in hardware and software. It is envisaged that

a 'library' of sensor and actuator controllers will be

established. This will reduce the time taken to configure a

sensor-based robotic assembly problem. Furthermore, the

suitability of a sensor for a given application can be

rapidly determined without significant investment of effort.

The SLPS software system is a library of C functions

which are used by the programmer to construct a program as

demonstrated in the examples. The sensors; actuators and

states are defined using IRPS, an interactive suite of

programs which communicate to the user through a questions

and answers to generate the data files. Examples of this are

given i'n the next chapter. The task of writing a control

program could be further mechanized. For example, it may be

more logical to write the control program before defining

the components. This program could be parsed and the

programmer prompted for the additional information required

to complete the definition files. Also, a natural-language

interface would improve th~ legability of the final program.
\ .
I

These extensions are discussed further in Chapter 8.

The next chapter illustrates how this programming

system can be used to solve an industrial problem.

-189-

CHAPTER 7

AN INDUSTRIAL CASE STUDY

-190-

7.1 Introduction

The aim of this chapter is to show how the work

described in this thesis can be used to solve an industrial

assembly problem. The chapter begins with a description of

the problem under investigation. The definition of the

sensors, the actuators and the states is described and the

control program to coordinate the sensors and actuators is

developed. One of the sensors used in the assembly is noisy

and the effects of the noise estimation algorithms,

developed in Chapter 5, are illustrated. The improvements in

terms of-the servoing time and final positional accuracy are

quantified.

7.2 The industrial problem under investigation
"

The application of an industrial robot to the handling

and lay-up of carbon-fibre is considered. This research

project requires pre-cut pieces of flexible carbon-fibre to

be handled and laid-up onto a mould-tool. Accurate joining

of adjacent pieces is particularly important. The specific

problem described in this chapter is the assembly of a

satellite antenna dish from pie-shaped pieces of resin-

impregnated carbon-fibre, where each piece is about 500 mm

in length. A special-purpose gripper has been designed

[8],[9], which handles the material using vacuum cups. The
.

gripper has vision sensors to determine the exact position

of the pr~file, and a force sensor to control the pressure

with which the carbon-fibre is applied. In the assembly, 24

pieces of carbon-fibre must be laid to form a circle, and a

number of such layers staggered to form a complete skin of

the satellite dish. Adjacent profiles are butt-jointed

-191-

together, and no more than 1 mm of over lap or gap is

permissible. A schematic view of the assembly cell, is shown

in Figure 7.1.

In the gripper, six rubber suction cups on the

underside face are connected through rubber tubing to a

vacuum pump; this provides the means of supporting the

profiles. Visual sensing is provided to monitor the position

of the profile on the mould-tool allowing accurate joining

of the next piece. Also, the camera can be used to provide a

quantitative check on the final butt-joint, although the

quality control aspect of the problem is not considered

here. Two 256-element charge coupled device (CCD) linear-

array cameras are integrated into the end-effector; one

mounted' at the front of the gripper and" one at the rear. A

single line of picture elements provides all the necessary

information to determine the position of the edge of the

profile on the gripper, and the subsequent position of the

edge of the profile on the mould-tool. A good visual

contrast is produced by the black mould-tool and the white

backing-paper of the carbqn-fibre.
\
I

The acti ve surface of the gripper is attached to the

wrist of a Puma560 industrial robot through a compliant

mounting pod. Force feedback is provided from a

potentiometric encoder mounted on the pivot, allowing the

mould-tool's surface to be followed and also a controlled

force to be applied to join the tacky carbon-fibre onto the

tool.

The profiles are pre-stacked, and their position in the

jig is well-defined. The gripper approaches the stack and

-192-

Jig holding
carbon-fibre
profiles

Sensor and actuator
slaves

Central controller
(IBM PC/XT)

~

Mould tool
and indexing table

Puma560 robot

Figure 7.1: A.schematic view of the work-cell for
the carbon-fibre assembly project.

-193-

separates the top piece by pressing the suction cups onto

the top backing paper. Once the profile is on the gripper,

the underside piece of backing paper, which protects the

carbon-fibre, must be removed. This is currently done

manually, but in the long-term it will be automated. The

profile is then offered to the mould-tool and sufficient

pressure is applied to ensure a bond between one end of the

profile and the mould-tool. The gripper is then moved along

the surface of the tool and, because it is fastened at one

end, th~profile slides across the surfac~ of the gripper

and adheres to the mould-tool. The rubber roller at the

front of the gripper assists in the transfer of the profile

from the gripper to the mould-tool and also helps to
-.

eliminate air bubbles.

After the profile has been applied, the mould-tool is

rotated by 15° using the indexing table. This means that

each profile is laid-up using the same basic operation,

although positioning errors will cause the critical

locations in the model to be subject to errors. Following

the indexing, the positioR\of the edge of the most recent
I

profile is determined and the model adjusted to reflect any

error. This ensures that the next profile will be positioned

accurately along the length of the joint.

During the movement of the robot down the mould-tool,

no sensory feedback is used. Although the front vision

sensor could, in theory, provide information on the joint,

in practice it is not possible to appli correction during
..

the lay-up. This is a consequence of the nature of the

carbon-fibre, which would deform if the fibres were not laid

-194-

straight.

In experimental work with this assembly probl~m, a

number of difficulties with the proposed solution have

become evident. However, it is not the aim of this chapter

to present a definitive solution to the industrial problem.

Instead, it is to show how, given the chosen hardware,

sensors, actuators, jigging etc., the control program can be

formulated and errors processed.

7.3 Components of the assembly

As described in the previous section, the solution to

the assembly problem requires two actuators and two sensors.

The actuators are

1. A Puma 560 industrial robot.

2. An indexing rotary table.

and the sensors are

1. A force sensor on the robot's wrist.

2. A linear-array camera at the front of the gripper.

The second linear-array camera, mounted at the rear of

the end-effector, is not used in the solution described in

thi s chapter.

\
i

The main control computer is an IBM PC. An overview of

the hardware for the system is shown in Figure 7.2.

The slave controller associated with the Puma robot is

connected to the serial line of the commercial system. Thus,

when the generic command codes (Figure 6.2) are issued by

the central controller, the Puma slave controller sends the

approp'riate string of characters down ·the serial channel

into VAL. After executing the command, the slave controller

-195-

Puma560

controller

Puma560
system with

VAL language

; ..

Central controller

(IBM PC/XT)

Indexing­
table

controller

'\
\
I

I
I

• •

Forc~­

sensor
controller

I

To
gripper

Linear-array
camera

controller

Figure 7.2: An overview of the hardware for the
carbon-fibre assembly project.

-196-

interprets the prompt, or error, sent from VAL and sends

back to the central controller either the valid terminator,

99, or an error code. The error code is a numeric

representation of the error messages sent from VAL. As far

as the central controller is concerned, the main control

program will abort if anything other than a 99 is received

from the slave. However, the received error code is printed

out by the central controller to help the programmer trace

the error. Automatic error recovery based on these error

codes is a possibility [107] although this remains an area

for further work.

The indexing table has only one degree of freedom and

is controlled directly from the slave. The slave translates

the generic command from the central controller and executes

the instruction. Control signals to the electric motor are

sent directly from the slave.

The role of the actuator-slave in the case of the robot

and the indexing table is quite different. For the robot,

the slave must interface to an existing commercial

controller and translate the command codes sent from the

external controller into the syntax required by the

commercial system. The slave does not, therefore, control

the actuator directly, but instead acts as an interface

between two systems. For the indexing table on the other

hand, the slave controls the motor of the actuator directly.

Despite this difference,the central controller can

communicate to both actuator controllers in a similar way,

and instructions to move the robot are sent in exactly the

same format as instructions to move the indexing table.

-197-

The sensors in the system are purpose-built and are

controlled directly from the appropriate sensor-slave. In

practice, the controller for both sensors resides in the

same module, and hence at the same physical address. The

required sensor is identified by its unique activation

number (Section 6.5.1).

The information from the linear-array camera is

processed in the sensor-slave to produce two attributes.

These attributes represent the positions of the edges in the

images. The first attribute is the position (between 0 and

255) of the white-to-black transition in the thresholded

grey-scale image. The second attribute is the position of

the black-to-white transition in the same thresholded image.

With the profile attached to the gripper, the white-to-black

transition corresponds to the position of the edge of the

profile in the field of view. Although it is assumed that

the profile is accurately positioned on the gripper, the

information from this attribute of the sensor could be used

to detect a misalignment of the profile. The extension of

the solution described in~his chapter to include this
I

information introduces additional problems, which are

discussed in Section 7.6.

Because the viewed surface of the profile is white, the

vision sensor produces high contrast images, from which the

edge posi~ions can easily be computed. Indeed, the image

processing can be"comfortably handled on the 8-bit

microprocessor resident in the slave. The black-to-white

attribute is non-zero when the gripper is being used to

examine the position of the profile on the mould-tool.

-198-

Because the mould-tool is black and the upper backing-paper

is white, the scene will be perceived as a dark region then

a light region along the array. The position of the edge can

be easily found after thresholding.

The force sensor provides a single attribute, which

corresponds to the angle made by the active surface of the

gripper with the mounting pod. The sensor reading varies

between 0 and 60 as the gripper moves through 30 0 •

7.4 Defining the components of the assembly

The first step in programming the assembly is to define

the actuators and sensors. This is done using the suite of

integrated programs, called IRPS. A complete transcript of

the dialogue necessary to define the a~tuator 'puma' is

given in Appendix A. Upon completion of the definition, the

file 'puma.act' is stored on the disk, ready for

installation. The contents of this file are shown in Figure

7.3.

A similar procedure is followed for the indexing

table, which is given the name 'table' and hence is stored

as the file 't~ble.act'. Tl1is file is shown in Figure 7.4 .

. After completing the definition of the actuator, the

programmer returns to the main menu and selects the option

to define the sensors. Appendix B shows t?e steps in

defining the linear-array Camera, which is called 'camera'

and is stored in the file 'camera.sen'. This is shown in

Figure 7.5. Two attributes, called 'btow' and 'wtob' are
'.

defined. These attributes represent the positions of the

black-to-white and white-to-black transitions respectively,

-199-

puma, 80
.2 , .01
.1, .005

Figure 7.3: The file 'puma.act' defining the robot.

table, 82
° , .1 ° , .01

Figure 7.4: The file 'table.act' defining the
indexing table.

camera, 83 , 10 , 2
btow, wtob
(1,0,0) , (0,0,0)
(-1,0,0) , (0,0,0)
(0.1 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0) .

Figure 7.5: The file 'camera.sen' defining the
linear array camera. .

-200-

computed from a thresholded image. For each attribute, the

transformation must be defined which relates the error in

the value of an attribute with the direction in which the

sensor must be moved to reduce that error. The frames of

reference of the sensors with respect to the robot are shown

in Figure 7.6. For attribute 'btow', the correction which

must be applied is in the -x direction, and hence the

correction is stored as

(-1.0, 0.0, 0.0) , (0.0, 0.0, 0.0)

The attribute 'wtob' requires a correction_in the +x

direction and is therefore stored as

(1.0, 0.0, 0.0) , (0.0, 0.0, 0.0)

The second sensor, 'force' is defined in a similar way

and the,data file describing this is shown in Figure 7.7.

For this sensor, the correction is applied as a rotation

about the x axis. Thus, the correction is stored as

(0.0, 0.0, 0.0) , (1.0, 0.0, 0.0)

The size of the correction per unit error in the

sensor, is not specified in this data structure, which is

concerned only with direction. The size is computed in the
.'\

routine movemag, in which a function is defined to gi ve the

size of the correction for each sensor (Section 6.5.1). For

the sensor 'camera', the size returned is sensor-error/10,

because there is a resolution of 10 pixel~ per millimetre in

the camera. For the sensor "force' the size returned is

sensor-err'or /2, which ref lects the fact that the sensor must

be rotated 0.5 0 around its x-axis per u~it increase in the

attribute value.

The contents of the sensor and actuator definition

-201-

Force frame

Robot
frame

z
r

z
c

x
c

Camera
frame

Figure 7.6: The frames of reference of the robot and
the sensors on the carbon-fibre gripper.

force, 83 , 20 , 1
angle
(0,0,0) , (1,0,0)
(0.0 , 0.0 , 0.0 , 0.5 , 0.0 , 0.0)

Figure 7.7: The file 'force. sen , defining the
force sensor.

-202-

files are independent of the configuration in which they are

used. This information is requested in the next phase of the
,.

definitions, the installation phase. Firstly, the sensors

and actuators pertinent to the assembly must be installed.

The name of each sensor and actuator is requested and the

corresponding data files are read. For each sensor, the

programmer must state whether it is static or dynamic. For

the problem being addressed in this chapter, each sensor is

coupled to the robot and is therefore defined as dynamic.

The relationships between the frames of reference of each

sensor ahd actuator are then defined. For each dynamic

sensor, the program requests the relationship between the

sensor and every actuator. For the indexing table, the

relationship between it and each sensor,is defined to be

'not applicable' (Section 6.6). For the linear-array camera,

because it has only a translational correction component,

the transformation between the robot's and the sensor's

frame of reference is only rotational. The reason for

ignoring the offset between the frames of reference was

discussed in Section 6.6. The homogeneous transformation
'''''\

between the robot and the linear-array camera is therefore

given by

1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 1

For the sensor 'force' , the correction is a rotation

around its x axis 'and therefore both the rotational and

translational differences between the robot's frame and the

sensor's frame must be considered. The homogeneous

transformation between the robot and the force sensor is

-203-

represented by

-1 0
o 0
o -1
o 0

o 0
1 0
o 15
o 1

The combination of the definitions of the sensors and

actuators, and the matrices specifying the interactions, are

stored in the installed task file, which, for this example,

is called 'itask'. Appendix C shows the stages in producing

this file using the suite of programs, IRPS. A listing of

the file is shown in Figure 7.8.

The next step is to identify the states defining the

assembly and then to construct the control program using the

named states and the sensors and actuat~rs defined in the

installed task file. To solve this assembly, four states are

identified. These are,

1. The location of the robot at which the gripper can

remove a profile from the stack. Because of a

compliant bed underneath the stack, the location is

chosen to be at the height of the bottom piece on
"\

the stack. This state is called 'stack'.

2. The position of the robot corresponding to the

gripper at the top of the required lay-up path i.e.

at the centre of the mould-tool. This state is

ca lIed 'start'.

3~ The position of the robot corresponding to the

gripper at the end of the lay-up path on the mould­

tool, i.e. at the perimeter of the dish. This state

is called 'end'.

-204-

2

camera
dynamic
83 10 2
btow
wtob
(1 , 0 , 0) , (0 , 0 ~ 0)
(-1 , 0 , 0) , (0 , 0 , 0)
(0.1 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)

force
dynamic
83 20 1

" angle
(0 , 0 , 0) , (1 , 0 , 0)
(0.0 , 0.0 , 0.0 , 1.0 , 0.0 ,0.0)

2
puma 80
0.2 0.01
0.1 0.005

table 82
o , .1
o , .01

puma camera
1 .000 0.000
0.000 -1.000
1 • 000 0.000
0.000 0.000

puma force
-1.000 0.000
0.000 0.000
0.000 -1.000
0.000 0.000

0.000 0.000
0.000 0.000

",
":;1.000 0.000
0.000 1.000

0.000 0.000
-1.000 0.000
,.0.000 -15.000
0.000 1.000

Figure 7.8: The installed task file,'ITASK', for the
carbon-fibre assembly project.

-205-

4. The position of the robot at which the gripper is

approximately mid-way down the mould-tool and about

300 mm above it. This location represents a safe

point, at which the robot is clear of the mould-tool

whilst it rotates. By including this point in the

transfer of the robot from state 1 to state 2, the

trajectory of the robot is more clearly defined and

a potential collision between the gripper and the

mould-tool is avoided.

Th~ construction of the jig which holds the stacked

profiles is such that the gripper must approach the stack

from vertically upwards. If the gripper approached from the

side, there would be a collision with tl1e wall of the jig.

This constraint is modelled by defining the departure vector

for the state 'stack' to be (0,0,50,0,0,0), indicating that

the stack must be approached by first mov ing to a point 50

mm above it, and then moving down. Likewise, when the

gripper leaves the stack, it first moves vertically upwards

by 50 mm and then onto the next state. The approach and
- ", . \

departure path of the othe'r two states is also defined to

allow safe transfer of the robot between the states.

At this stage, the departure vectors and the state

tolerances have not been defined to the system; this is done

after the control program has been written. The program to

lay-up a single piece of carbon-fibre is shown in "Figure

7.9.

Following the call of the initialization routine, the

first instruction in the program requires the robot to move

-206-

maine }
{

}

/* Program to lay a single carbon-fibre profile */
initial slps(};
move ("puma", "stack"};
move ("puma", "safe"};
move ("puma", "start", "force", "angle", 30.0};
moves_to ("puma", "end"};
move ("puma", "null", "force", "angle", 30.0);
move ("puma", "safe");
move_by ("table" , 0.0, 0.0, 0.0, 15.0, 0.0, 0.0);
move ("puma", "start");
error_ff("camera", "btow", 128.0, "start");
move ("puma"', "end"};
'error_ff("camera", "btow", 128.0, "end");

Figure 7.9: The control program to lay one piece of
carbon fibre.

..

STACK
(0.0
(1.0

0.0 , 0.0 , 50.0 , 0.0 , 0.0 , 0.0)
, 0.0 , 0.0 , 0.0 , 0.0 , 0.0)
,1.0 , 1.0 , 1.0 , 1.0 , 1.0)

SAFE (O. 0 , O. 0 , .. ,0. 0 , O. 0 , O. 0 , O. 0
\

(0.0 , 0.0 ,0.0 ,10.0 , 0.0 , 0.0)
(1.0 ,1.0 , 1.0 , 1.0 ,1.0 ,1.0)

START
(1.0
(0.1

0.0 , 0.0 , 20.0 , 0.0 , 0.0 , 0.0)
, 1.0 , 1.0 , 0.0 , 0.0 , 0.0)
, 1. 0 , 1. 0 , 1. 0 , 1. 0 , 1 •. 0)

END (-5.0 , 0.0 , 10.0 , 0.0 , 0.0 , 0.0)
('1. 0 , 1. 0 , 1. 0 , O. 0 , O. 0 , O. 0)
(0.1 ,1.0 ,1.0 ,1.0 , 1.0 ,1.0)

Figure 7.10: The state parameter file for the carbon-
fibre assembly.

-207-

to the stack. No sensory feedback is required, and hence the

shortened form of the move function is used. The execution

of the command follows the steps discussed in Chapter 3. For

the first movement command in the program, the initial

position of the actuator is unknOwn. Therefore the initial

fine motion phase is omitted and the first movement will be

the gross motion to the intermediate state associated with

'stack'. Following this, there will be a fine motion phase,

in which the robot in moved to 'stack'. The speed of the

robot in this phase will be computed from the sensitivity of

the state; the absence of sensory feedback means the

confidence is automatically set to be 1. The second command

instructs the robot to move to the state 'safe'. This time,

the first phase of the motion will be to,depart the current

state, 'stack', along its departure vector, i.e. vertically

upwards. Following this, the gross motion phase will involve

a movement to the intermediate state associated with 'safe'.

There are no constraints associated with this state and

therefore the intermediate state can be made equal to the

state, by setting the departure vector to be zero.
, . "'\

The third line in the program instructs the robot to

move .to the state 'start' and then apply sensory feedback to

achieve an angle of 30 in the force sensor. The departure

vector associated with the current state,. 'safe', is zero,

and therefore the first movement is the gross motion to the

intermedi~~e state associated with 'start'. Following the

fine-motion phase to the actual state, sensory feedback is

applied to achieve the desired sensor condition. At this

stage, assume that the sensor is noise-free and therefore

-208-

the actuator makes, at the most, one movement in the

feedback phase. If there is no system error, no movements

will be made. In practice, the force sensor used in this

industrial problem is based on a potentiometer and the

analogue signal is corrupted by clock feed-through from the

control lines of the linear-array camera. The nature of the

noise from this sensor was discussed in Chapter 5. The

effect of the noise on the performance of the servoing, and

the subsequent improvements from using the algorithms

developed in Chapter 5, are discussed fully in Section 7.5.

Du~ing the movement of the robot from 'start' to 'end',

the profile is transferred to the mould-tool and thus the

path between the two states must be a straight-line. For

this reason, a move function cannot be used. Instead the

function moves_to (Section 6.7.1), which moves the actuator

to a pre-defined state in a straight-line, is employed.

Following this function, the sensor condition of 30 in the

force sensor is achieved using a null parameter in the move

function to indicate movement relative to the current

position. The next move instructs the robot to move to the
""\

state 'safe'. To achieve this, the robot will initially be

moved to the intermediate state associated with the state

'end'. The departure vector of 'end' is chosen so that the

intermediate point is a safe distance fro~ the state,

ensuring that the profile has completely separated from the

rubber su~tion cups. Hence, the departure vector for 'end'

is defined as (-5,0,10,0,0,0), which corresponds to moving

up anci..away from the profile on the mould-tool.

After the profile has been applied, the indexing table

-209-

is moved by 150 using the function move_by. The gripper is

then moved back to 'start' and the error between tne edge of

the profile and the required value of 128, is fed forward to

adjust 'start' for the next cycle. The state 'end' is

adj usted in a simi lar way, in prepara tion for the lay-up of

the next-piece.

After the control program has been entered using the

normal system editor, a program which parses the file and

extracts the names of the states, is executed. This program,

which is part of the IRPS suite, then requests the

parameters of the state definition file, namely the

departure vector, the system noise, and the tolerance of

each state. The system noise for the states 'start' and

, end' i s' de fin edt 0 be (1, 1 , 1 , 0 ,.0 , 0). F oi' the s tat e s 's t a c k '

and 'safe', at which no sensory feedback is used, it is

defined to be (0,0,0,0,0,0). For those states at which

sensory feedback is used, the system noise will be updated

using information from the servoing.

The tolerance of each state is used in the computation

of the approach velocity a~d the termination criterion for
\
I

the servoing. For the states 'start' and 'end' the tolerance

vector is defined to be (0.1,1.0,1.0,1.0,1.0,1.0). The

tolerance is smaller in the x direction, because the

position of the edge of the carbon-fibre (~hich lies in the

x direction) needs to be controlled to a greater accuracy

than the force applied in the y-z plane. The state

definition file for this problem is shown in Figure 7.10.

The final stage in the programming of the assembly is

to compile the C program and link the SLPS library routines,

-210-

forming an executable machine-code program. The names of the

state definition file and the installed task file will be

requested by the program within the initialization function

initial_sIps. In the next section, the results of running

this program are considered and the problems of the noise in

the force sensor illustrated.

7.5 Performance of the control system

The source file containing the SLPS program is called

'lay.c' and after compilation and linking it is executed by

typing 'lay' from the operating system's prompt. When the

routine initial sIps is executed, the programmer is

requested to enter the names of the data files describing

the assembly. The dialogue between the programmer and the

programming system during the execution of an SLPS program

is shown in Appendix D.

Upon completion of each movement, the Kalman gain for

the appropriate state and sensor is updated. For the two

move commands involving the force sensor, the estimated

measurement and system noise will also be updated. For those
"'" \

sta tes at which no sensors are used, the Ka lman gain wi 11

remain equal to I and the error covariance will equal the

initial estimate of the system noise at the state. The

initial noise estimate for the sensor 'camera' is

(0.1,0,0,0,0,0), and the initial noise estimate for the

state 'st,:!'rt' is (1.0,1.0/1.0,0.0,0.0,0.0). Because there is

no sensory servoing using this sensor and state, the

estimates of the noise levels will remain unchanged from

these initial values. Therefore the steady-state Kalman gain

-211-

is 0.92 and the steady-state error covariance is 0.092.

These steady-state values can be predicted before the

program is executed, since they depend only on the initial

values of the noise estimates. For the force sensor at the

states 'start' and 'end', the measurement and system noise

will be updated after each movement. Therefore it is

impossible to predict a p~io~i the steady-state values of

the Kalman gain and the error covariance. In practice, after

100 cycles, the Kalman gain associated with this state and

sensor was 0.3,and the error covariance was 1.4. The small

Kalman gain associated with this state and sensor indicates

that the sensor is noisy. The level of this noise, and the

improvements obtained by weighting the sensor information

using the Kalman gain are now quantified.

Consider moving between two locations, where the aim

is to achieve a force of 30 sensor units at one of the

locations. The program to achieve this, using the locations

'start' and 'safe', is shown in Figure 7.11.

maine)
(

int i;
initial slps();
for (i-= 1 ; i <=100
(

"'" \
I

; i++

move ("puma", "safe");
move("puma", "start", "force", "angle", 30.0);

Figure 7.11: SLPS program to move the robot between
two states.

-212-

Let the program opera te for 100 cyc 1 es and in each

cycle set K=I. This is the usual way of processing sensor
..

information and assumes that it is reliable. The object of

this is to illustrate the effect, in terms of system

performance, of using the noisy sensor information. Since

the SLPS move function would normally detect the noise and

apply a weighting function, the software is modified for

this experiment by removing the Kalman filter update

equations from within the execution of move; hence K=I

throughout the experiment. In achieving the condition of 30

in the attribute of the sensor, the robot wi 11 make a series

of movements under sensory feedback, which will terminate

only when the sensor condition is met. This is achieved by

setting,the tolerance vector and the act;uator's resolution

to be zero. The number of iterations necessary to achieve

the sensor conditions is shown in Figure 7.12 for each of

100 cycles. Furthermore, the error in one component of

position at the end of the movements is plotted in Figure

7.13.

Now let the measurement and system noise be updated

after each cycle using the~linformation from the servoing.

This corresponds to the programming system operating

normally. The effects of this in terms of the number of

iterations per cycle and the final positiQna1 error are

shown in Figures 7.14 and 7.15 respectively.

The number of iterations per cycle can be directly

related to the total time spent servoi~g. In practice, the

time to sense, compute the error, move the actuator and then

compute the new noises is about 0.4 seconds. (This time does,

-213-

16

Ul
~
0

.r!
+'
cd
~ 12 Q)

+'
.r!

!H
0 .
0
~

8

4

O··4-__________ ~----------~----------~----------~
. 0 25 50 75

Figure 7.12: The number of iterations per cycle
assuming re~iable sensor information.

2.0

.
~
~
0

1.0 ~
~

r:.::I

0.0

-1.0

-2.0 50 o 25 75

Cycle.

Cycle.

Fiqure 7.13: The final error in one component of position
assuming reliable sensor information.

-214-

100

100

16

Ul
s::
0

• .-1

"til
~

12 Q)

+l
• .-1

CH
0 .
0
~

8

4

o
Cycle.

Figure 7.14: The number of iterations per cycle
after compensating for the nOisy sensor.

2.0

.
~

0.0

-1.0

-2.0~ ______________________ ~~ ________ ~~ ________ __

o 25 50 75 100
Cycle.

Figure 7.15: The final error in one component of position
after compensating for the noisy sensor.

-215-

of course, depend on the distance moved by the robot). If

the sensor information is assumed to be reliable, up to 6.4
.,

seconds are required to achieve the sensor conditions. This

is substantially reduced to a worst-case of 2.0 seconds when

the sensor information is weighted.

The final error in one component of the robot's

position is significantly reduced after the sensor

information has been processed to compensate for the noise.

If the sensor information is assumed to be reliable, the

positional error is between ~1.8mm; this is reduced to

between~±0.7mm after processing.

7.6 Summary

The control program shown in Figure 7.9 to lay-up a

piece of carbon-fibre, demonstrates the compact

representation of sensory feedback, which is a feature of

the programming system. In the event of a sensor becoming

noisy, or failing completely, automatic processing of the

errors improves both the accuracy and the speed of servoing.

The compact representation of sensory feedback and the

automatic processing of e~rors, together with the modular
\
I

and structured communication protocol underlying the

execution of the program, satisfy the aims set-out at the

beginning of this thesis. The components and parameters of

the assembly are defined using IRPS, a suite of interactive
.

programs which request the information from the programmer

and store it in definition files. The modular hardware

architecture reduces the time spent configuring the system

and improves reliability and integrity. Adding an extra

sensor or actuator is as simple as plugging the control card

-216-

into the bus and installing the appropriate definition file.

The software system has been designed for discrete

feedback applications, but the need to move the end-effector

in a straight-line to lay the carbon-fibre corresponds to

the application of continuous feedback. Within the control

program of Figure 7.9, the function moves_to is used to

achieve a straight-line motion, but without sensory

feedback. Ideally, the sensory feedback needs to be applied

during the whole movement between 'start' and 'end'. The

problems of extending the programming system to cope with

continuous feedback are discussed in detail in the next

chapter. One solution is to break the path into a finite
I

number of intervals and apply sensory feedback only at the

nodes. This approach has been described by the author in

reference [108] and involves generating a set of sub-states,

which are def ined on a straight 1 ine pa th between two

states. The continuous feedback is implemented by using move

commands between the sub-states. The main problem with this

approach is the discontinuity in the robot's motion,

associated with the need to stop the robot at each sub-
\
I

state.

The end-effector used to handle the carbon-fibre is

equiped with two linear-array cameras. Only one, however,

features in the final control program. The second is

intended to provide feedback pertaining to the position of

the profile on the gripper. Using information from both the

front and rear sensors, the error in the translational

positi6n can be deduced. Also, the difference between the

two sensor readings can be used to compute the orientation

-217-

error of the profile on the gripper. In practice, this error

is the most significant. Combining information from two

separate sensors to compute an error cannot, at present, be

efficiently modelled with the programming system. It can be

achieved using low-level functions to extract the attributes

from the sensor, manipulate them and then adjust a state.

However, this is not an attractive solution. A more

structured solution to this problem is proposed in the next

chapter.

-218-

CHAPTER 8

CONCLUSIONS

-219-

This chapter concludes the thesis by examining the main

achievements and the opportunities for further work to

improve the facilities of the software for handling more

complicated assembly problems. Following a discussion of the

achievements, the extension of the work is divided into two

categories. Firstly, short-term improvements to the software

are considered and secondly longer-term developments which

reflect the need of second-generation robot systems are

examined.

8.1 Achievements of this thesis

There were three principal aims for the work in this

. thesis, namely,

1. To represent sensory feedback at a high-level in the

control program.

2. To consider how the sensors and actuators should be

distributed and controlled.

3. To investigate how sensor information can be

processed in the face of noise.

These three aims have been achieved by developing a

programming system, SLPS, ·~hich is a library of C functions.

Used .in conjunction with IRPS, a suite of programs to define

the components of the assembly, the software allows discrete

sensory assemblies to be modelled and eacp of the above

three objectives realized.

Chapt~r 3 described a framework for representing

sensory assemblies. The assmbly is defi~ed by a set of

states which correspond to key actuator positions within the

wor~-cell. The control program is a controlled sequence of

-220-

movements between the states, using, in general, sensory

feedback to fine-tune the value of each state. The movement
..

of the actuator between the states involves a controlled

approach and departure vector for each state. Furthermore,

the sensitivity and tolerance of the state are used to

compute the speed of the actuator within these controlled

regions.

The hardware configuration employed is based around a

master-slave architecture, with all sensing and movement

commands being directed through the master and executed

sequentially. Because of this, it is impossible to achieve

simultaneous sensing and moving with the current system.

Since the system was designed with discrete feedback in

mind, this is not a severe problem. However, an extension of

SLPS to continuous path sensing cannot be effectively

implemented without the capability to move the actuator and

sense simulataneously. The solution to this problem extends

beyond modifying the programming system because it requires

additional features in the actuator controller. Many

commercial robots do not have the facilities to respond to
",

sensor information during a movement. Although VAL II on the

Pumarobot is an exeption to this, the development of a

general actuator interface to include continuous path

control cannot be effectively achieved wi~hout resorting to

low-level servo control of the actuators. One solution,

described"by the author in reference [108], achieves

continuous path control by partitioning the trajectory into
\

a number of smaller segments and applying discrete sensory

feedback at each of ·the nodes. Although this is not an ideal
I

-221-

solution, it has been used satisfactorily in the case study

described in Chapter 7 (See reference [108] for more

details). The problem of extending the programming system to

cope with continuous path feedback is discussed further in

Section 8.2.3.

This thesis has introduced a new level of robot

programming, called sensor-level programming. By qualifying

each actuator movement by a set of sensor conditions, the

obj ect of each movement is to transfer the readings of the

sensors into a new set. Sensors are defined as either static

or dynamic and errors are transformed from the sensor's

frame into the world's frame by defining homogeneous

matrices between the frames. The problem of achieving two

sensor conditions, when the corrections. for each condition

have a common component, was addressed in Chapter 4. A

solution was described using the tolerances of the states to

define uncertainty zones. When the corrections for the

sensor conditions do not have a common component, each

condition may be met sequentially.

The work described in Chapter 5 demonstrated how the

reliability of sensor inf~tmation can be quantified by

processing the servo information. Algorithms were developed

to estimate the variance of the measurement noise and the

system noise. These noise estimates were then used in a

Kalman filter to-weight the sensor information. Sensor noise

is not usu'ally considered as a source of error in robotic

assembly. However, experience has shown,that robot sensors

are by no means ideal and are subject to, among other

things, electrical interference of the form illustrated in

-222-

Chapter 5. Since this may be intermittent and of variable

characteristics, electrical filtering does not offer a

reliable solution.

In addition to the noise from the sensor, Chapter 5

illustrated that the repeatability of the actuator is a

source of noise. For a dynamic sensor, the total measurement

noise is the sum of the noise from the sensor and the noise

from the actuator. Experiments demonstrated that the noise

can be modelled as a Normal distribution, which is perceived

to have an approximately white frequency distribution.

After the mean val ue of the system noise has been

estimated, long-term feedback, as proposed by DeFazio and

Whitney, can be applied. The algorithms developed in Chapter

5 prov ic:le the estima te of the mean of the system noise and

therefore allow drift and transformation errors to be

tolerated.

The two numerical examples in Chapter 5 demonstrated

the estimation algorithms for a constant measurement noise

and a changing measurement noise. These examples, together

with the industrial case-study of Chapter 7, illustrate the

advantages to be gained f;~m detecting noisy sensor

information and pre-processing the measurment information.

The final positional accuracy is improved and the total time

spent servoing is reduced.

The definition of a protocol for information

interchange between the sensors, the actuators and the

central controllers, is an important st~p in producing a

control system conducive to industrial applications. By

developing self-contained intelligent slave controllers, a

-223-

hardware solution to a sensory robotic assembly can be

rapidly configured. Since each sensor and actuator

communicates using the same format of instructions and data,

it should be possible to build a 'library' of sensor and

actuator controllers. As well as hardware modularity, the

definition of each controller through a parameter file using

IRPS allows rapid software configuration. Such a modular

approach has advantages in the final system and offers an

invaluable tool to assist in the development phase of a

robotic assembly project. Already, the 'library' of

controllers includes a force sensor, a linear-array camera,

a tactile sensor and a Puma robot controller.

8.2 Further work: short-term objectives

Several enhancements to the programming system are

proposed and the problems in achieving them identified.

8.2.1 A natural language interface

The generic sensor-level programming primitives

introduced in Section 4.2 are implemented as C functions

with the names of the states, the sensors, the actuators and
. ."

\

the set-point as parameters. For compilation of the control

program, the information must be in the form of the function

name followed by the list of parameters. From the

programming point of view, however, the meaning of the move

function is not immediately obvious. Furthermore, since the

order in ~hich the parameters must be specified is· critical,

an alternative, more readable, syntax i$ desirable. Consider

the ge~eral form of the move command, .which is

MOVE ac~uator TO state ACHIEVING condition IN
attribute OF sensor

-224-

and the form required in the SLPS control program, which is

move (actuator, state, sensor, attribute, set-point);

The translation between these two forms could be

mechanized, so that the input is the more readable general

form and the output is the form required by the C compiler.

The meaning of those move commands incorporating the "null"

parameter would be improved using this approach. For

example, replacing the state name by 'null' in an SLPS move

command implies moving relative to the current position. In

the general form, this would appear as

MOVE actuator ACHIEVING condition IN attribute
OF sensor

From which it is clear what is being requested.

Writing a program to convert the natural-language

representation of the move command into the format required

in the SLPS system would not be difficult and would greatly

improve the legability and structure of the control program.

This extension to the programming system is seen as the

highest priority for future work.

8.2.2 Combining sensor information: simple and compound
sensors

One problem arising from the case study of Chapter 7

concerned the alignment of the carbon-fibre profiles using

two gripper-mounted linear-array cameras. Although

individually each sensor gives the translation error at the

front and the rear. of the. gripper, the error in orientation

is found from the difference in the edge, positions perceived

by the_two sensors. At present, the programming system has

no facilities for efficiently combining sensor information

-225-"

in this way. A proposed solution is to define 'compound

sensors' whose sensor reading is obtained by combining

information from two or more physical, or simple, sensors.

For the problem of detecting the misalignment of carbon-

fibre, the simple sensors would be the linear-array cameras

and the compound sensor would give a value equal to the

difference between the two perceived edge positions.

From the point of view of programming, compound sensors

would be used in exactly the same way as simple sensors. The

differences being the way in which they are defined and the

way the errors are computed. Henderson's work on logical

sensor specification [83] is applicable to this problem.

8.2.3 Continuous path sensing

The problems of extending the programming system to

cope with continuous sensing were discussed briefly earlier

in this chapter. Al though it would allow a wider range of

assembly problems to be tackled, continuous path sensing

introduces problems which cannot be easily solved with the

architecture and protocols underlying the work described in

this thesis. Among some of~the problems are:
\
I

1. Continuous sensing requires fast servoing rates.

The need to route all sensor-actuator interactions

through the central controller is a handicap for

high-speed information interchanges. Thus, new

architectures may need to be considered.

2. The sensing and the movement must be achieved in

parallel. The SLPS system operates by sending

.. movement and sensing commands 'in sequence •. Not only

does parallelism require a more detailed

-226-

multitasking communication protocol, but the

actuator must be able to respond to error .'

information during a movement. Most commercial

robots do not have this facility.

3. The processing of sensor information becomes time

critical and any delay in extracting attributes from

sensor data needs to be considered when applying the

correction. If the time between sensing and applying

the movement is too large, the sensing may be

ineffective.

Extending the programming system to cope with continuous

path sensing is not trivial. It will require a fast sensor­

actuator communication channel, probably not involving the

central controller. Furthermore, it requires special

characteristics in the actuator to respond to error signals

during a movement. Solving assembly problems requiring this

type of sensing is best achieved using a dedicated robot

system with real-time path control facilities, such as a

Puma with VAL II.

-'I
8.2.4 Strict checking of sensor information

The protocol for sensor communication defined in

Chapter 6, does not provide facilities for strict checking

of the sensor information. Checking the number of attributes

sent and the final terminator does detect a phase error in

the transmission, but the integrity of the attributes

themselves is not assessed. Consider the linear-array camera

used in the case study of Chapter 7. If the perceived edge

position received by the master is 0, this means either that

-227-

the actual edge position is out of the field of view, or

that the sensor is not operating correctly. Using the value

of 0 as the sensor reading may mean the actua tor is moved in

completely the wrong direction, causing the system to go

unstable.

One solution to this problem is to define a range of

permissible values for each attribute of each sensor. If the

value of an attribute is outside this range then an error is

reported. Under these circumstances, it may be possible to

automatically test the sensor to see if the problem is due

to incorrect positioning, or to a sensor malfunction.

Estimates of the noise from the sensor and the system, as

derived in Chapter 5, may assist in identifying the cause of

the prob 1 em.

Incorporating this checking within the programming

system would not be difficult. Within the definition of the

sensors in IRPS, the programmer would be asked to specify a

range of permissible attribute values for the sensor. During

the application of sensory feedback, each sensor reading

would be checked to make ~ure it was within this range.
I

8.2.5 Coping with transformation errors

If the transformation error from the sensor error to

the corresponding actuator error is erroneous, the affect

will be interpreted as a m~asurement error, even if the

sensor and actuator are noise-free. In principle, 'it is

possible to detect a transformation error by defining the

parameters of the transformation to be additional states in

the Kalman filter, i.e. extended Kalman filtering [79]. It

-228-

may be possible to extend this idea to the case where the

sensor-actuator relationships are defined approximately, if

at all, and are estimated from the results of sensor-

servoing. Thus the system could learn the relationship

between the sensor and the actuator and adapt these

relationships to reflect changing conditions.

To implement extended Kalman filtering in the noise

processing algorithms of Chapter 5, would involve estimating

the components of the H matrix in equation 5.3. At present,

the diagonal elements of this matrix are assumed to be 1 or

0, corresponding to whether or not the measurement provides

an estimate of each component of the state.

8.2.6 An alarm system for excessive errors

If the estimated variance of the system or measurement

noise exceeds a pre-set threshold, it is desirable to

issue a warning to the operator. The sensor may need

replacing, or there may be a mechanical fault in the feeding

equipment. One way of setting the alarm threshold is to use

the initial noise level entered in the definition file, for

example, set the threshold at 5 times the initial estimate
\
I

entered by the programmer.

'Another application for an alarm system is to hal t the

actuator whenever the reading from a sensor exceeds a safety

level. The extension of the programming system to include

strict checking of sensor information (Section 8.2.4) only

allows sensor readings to be checked when the actuator is

stationary. If, during an iteration, the actuator is

instrubted to move a large distance, auch checking may be

ineffective. A high-priority check would require sensing

-229-

during the movement of an actuator, with a message being

sent from the sensor controller to the central controller if

the sensor reading exceeds the safety level. The central

controller could then stop the actuator mid-movement. This

high priority checking of sensor information could be

integrated into the programming system by defining some

additional functions which the programmer could use to start

and stop the checking. Alternatively, the programmer could

be prompted for alarm conditions during the installation

phase of program development. Although they would not appear

in the control program, the alarm conditions would

automatically be activated whenever certain actions were

being performed. For example, one alarm condition may occur

whenever the reading from a forGe sensor exceeds a

threshold. The slave controller associated with this sensor

could be instructed to check this condition continuously,

pausing only to send sensor data to the central controller

when required for normal closed-loop feedback.

8.3 Further work: long-term objectives

Some of the more generic aspects of the work in this
\
I

thesis are identified and placed in the context of current

trends in robotics research.

8.3.1 Sensor data fusion

Sensor data fusion is concerned with the processing of

sensor infOrmation from more than one source to estimate a

single parameter. This is an exciting area of research which

appear~ to be attracting an increasing.level of support,

particularly in the United States. Combining redundant

-230-

information from more than one source has the following

advantages:

1. The relative accuracy of the information from each

sensor may vary with time. For example, the accuracy

with which a camera can determine the position of a

part depends on the effective resolution, which in

turn depends on the distance of the object from the

camera.

2. The effectiveness of each sensor in a multi-sensor

system may vary with time.

3: The information from one sensor may be subject to

stochastic variations.

It is this final point which can be related to the work in

this thesis. Instead of weighting a single sensor reading

against the current estimate of a state, many sensor

readings can be combined using a similar type of weighting

factor. Thus, the estimate of the state of interest is a

weighted average of the current state and the sensor

readings from each source. It is anticipated that points 1

and 2 shown above can also, be modelled using a weighting
I

factor, whose magnitude reflects the expected accuracy and

effectiveness of the sensor estimate respectively.

8.3.2 A graphical interface for off-line programming

In the programming developed in this thesis, the method

of defining the states is not stipulated. In the case-study

of Chapter 7, the states were taught by moving the robot to

the desired locations and recording t?e positions. However,

a simple program could be written to send the numerical

-231-

coordinates of each location to the actuator controller,

thus defining the states off-line. Experience with a Puma

robot has shown that off-line programming can only be

achieved successfully if the robot is first calibrated and

compensation applied for the errors. Error of upto 5 degrees

have been observed in the wrist joints of this robot.

A graphical modelling system to define the states

offline would improve the efficiency of programming by

eliminating the teach phase. Many such systems have been

described in the literature (see Chapter 2) and, in addition

to defining locations, they can be used to plan the work-

cell, check for collisions and investigate the suitability

of different manipulators. A modelling system could also be

used to assist in the definition of th~ relationships

between the frames of reference, allowing the transformation

matrices to be produced automatically, given a graphical

representation of the relationships.

Using a modelling system in conjunction with the

simulation mode of SLPS, would provide a useful way of

investigating how the actuators move in response to error
."

signals from sensors. If the sensor-correction is too large,

the actuator may not be able to attain the desired position.

Detecting such problems off-line would be a valuable

facility.

8.3.3 Error recovery

Recovering from failures and errors in sensory robotics

is a challenging problem which is being tackled by a number

of r~search groups (see Chapter 2 for details). The work

described in Chapter 5 of this thesis is considered to be

-232-

applicable to the problem of identifying the source of an

error. Since estimates of the noise from the sensors, the

actuators and the system states are available, the most

likely cause of a failure can be identified. For example,

consider the problem of inserting a peg into a hole under

vision guidance. If the position of the hole has been

subject to error in previous cycles, then failure to find

the hole on the current cycle can be attributed to an

excessive error in the hole's position. However, and more

importantly, if the position of the hole in previous cycles

was biased towards one direction in the image, then the most

likely direction in which to find the missing hole can be

deduced. Using this approach, a search strategy can be

derived, where the actuator is moved in a direction

reflecting the trend of previous errors. The problem can be

formulated mathematically by defining a probability

distribution for the space surrounding each sensor. Thus, if

the sensor does not provide a valid reading, it is moved in

a direction which maximizes the probability of finding the

state. The probability distribution could then be updated
. \

upon completion of each cycle, using the estimate of the

system noise derived in Chapter 5.

-233-

REFERENCES

[1] A.Pugh, "Second generation robotics", in Robot Vision,

ed. A.Pugh, pp 3-11, IFS Publications, 1983.

[2] M.Erdmann and M.T.Mason, "An exploration of sensor less

manipulation", in Proc. IEEE International Conference on

Robotics and Automation, pp 1569-1574, 1986.

[3] S.H.Drake, P.C.Watson and S.N.Simunovic, "High speed

robot assembly of precision parts using compliance instead

of seI1sory feedback", in Proc. 7th International Symposium

on Industrial Robots (ISIR), pp 87-99, Oct. 1977.

[4] T.L.DeFazio, "Displacement-state monitoring for the

remote centre compliance - realization and applications", in

Proc. 10th International Symp.osium on' Industrial Robots,

1980.

[5] J.J .Hi 11, D.C.Burgess and A.Pugh, "The vision-guided

assembly of high-power semiconductor diodes", in Proc. 14th

International Symposium on Industrial Robots, pp 449-459,

Oct. 1984.

[6] P.M.Taylor, G.E.Tayl.9r and I.Gibson, "A multisensory
.)

approach to shoe sole assembly", in Proc. 6th International

Conference on Robot Vision and Sensory Controls (ROVISEC-6),

pp 117-127, June 1986.

[7] T.L.DeFazio, et al., "Feedback in robotics for assembly

and manufacturing", report number R-1450, Charles Stark

Draper .Laboratory, Cambridge, Ma., April 1981 •.

[8] D.G.Johnson and J.J .Hi 11, "A sensory gripper for

composite handling", in Proc. 4th International Conference

on Robot Vision and Sensory Controls (ROVISEC-4), Oct. 1984.

-234-

[9] D.G.Johnson and J .J.Hi 11, "High-level software control

of a sensor-based industrial robot: an application in

aerospace manufacturing", in Proc. IEEE Industrial

Electronics Conference, pp 21-26, Nov. 1985.

[10] S.C.Pomeroy, et al., "Ultrasonic distance measuring and

imaging systems for industrial robots", in Proc. 5th

International Conference on Robot Vision and Sensory

Controls (ROVISEC-5), Oct. 1985.

[11] M.K.Brown, "On ultrasonic detection of surface

features", in Proc. IEEE Conference on Robotics and

Automation, pp 1785-1790, April 1986.

[12] R.N.Nagel et al., "Experiments in part acquisition

using robot vision", SME technical paper No. MS79-784, 1979.

[13] 'P.M.Taylor et al., "Sensory gripping system: the

software and hardware aspects", Sensor Review, vol. 1, no.

4, October 1981.

[14] C.Loughlin and J.Morris, "Line, edge and contour

following with eye-in-hand vision system", in Robot Sensors,

ed. Alan Pugh, pp 95-102, IFS Publications, 1986.

[15] D.G.Whitehead, I.Mitchell and P.V.Mellor, "A low-
\ .
I" 1 resolution vision sensor , Journa PhyS.E.Sci.Instrum, Vol.

17, pp 653-656, 1984.

[16] A.Agrawal and M.Epstein, "Robot eye-in-hand using fibre

optics", in Proc. 3rd International Conference on Robot

... Vision and Sensor Controls (ROVISEC 3), pp 257-262, 1983.

[17] Technical information on the Welch Allyn VideoProbe

2000, Welch Allyn, New York.

[18] B.K.P Horn, "Obtaining shape from shading information",

-235-

in Psychology of Computer Vision, ed. P.H.Winston, pp 115-

155, Mcgraw-Hill 1975.

[19] A.Blake, A.Zisserman, and G.Knowles, "Surface

descriptions from stero and shading", Image and Vision

Computing", vol. 3, no. 4, pp 183-191, Nov. 1985.

[20] R.D.Baumann and D.A.Wilmshurst, "Vision system sorts

castings at General Motors Canada", Sensor Review, July

1982, pp 145-149.

[21] M.C.Chiang and J.B.K.Tio, "Robot vision using a

proj ection method", in Proc. 3rd International Ccmference on

Robot Vision and Sensory Controls (ROVISEC-3), pp 113-120,

Nov. 1983.

[22] D.Ni tzan, R.Bolles and J .Kremers, "3D v ision for

robotic applications", in Proc. NATO workshop on Knowledge

Engineering for Robotic AppliGations, (to be published), May

1986.

[23] D.G.Johnson, "Linear-array cameras for robot vision",

Diploma Thesis, Department of Electronic Engineering,

University of Hull, Hull, 1983.

[24] L.D.Harmon, "Automated tactile sensing", International

Journal of Robotics Rese~rch, vol. 1, no. 2, pp 3-22, 1982.
I

[25] M.H.Raibert, "An all digital VLSI tactile array

sensor", in Proc. International Conference on Robotics

Research, pp 314-319, Mar. 1984 •

.. {26] D.H.Mott, M.H.Lee and H.R.Nicholls, "An experimental

very high resolution tactile sensor array", in Proc. 4th

International Conference on Robot Vision and Sensory

Contrls (ROVISEC-4), pp 241-250, Oct.'1984.

[27] H.Van Brussel. and J.Simons, "Adaptive assembly", in

-236-

Proc. 4th British Robot Association Conference, pp 95-106,

May 1981.

[28] J.L.Nevins and D.E.Whitney, "Assembly research",

Industrial Robot, vol.7, no. 1, pp 27-43, March 1980.

[29] T.Lozarno-Perez, "Automatic planning of manipulator

transfer movements", IEEE Transactions on Systems, Man and

Cybernetics, vol. SMC-11, no. 10, pp 681-698, Oct. 1981.

[30] S.M.Udupa, "Collision detection and avoidance in

computer controlled manipulators", in Proc. 6th

International Joint Conference on Artificial Intelligence,

pp 7 3 7 ",. 7 4 8 , 1 9 7 7 •

[31] R.Paul, "WAVE: A model based language for manipulator

control", Industrial Robot, vol. 4, pp 10-17, Mar. 1977.

[32] E.T.Hudson, "VAL - A manipulator level language ll , in

Proc. lEE Colloquium on Languages for Industrial Robots, pp

3/1-3/8, Feb. 1982.

[33] A.P.Ambler, "Rapt: An object level robot programming

language", in Proc. lEE Colloquium on Languages for

Industrial Robots, pp 4/1-4/5, Feb. 1982.

[34] S.J.Derby, "Computer"graphics robot simulation
. \

programs: a comparison", in Robotics Research and Advanced

Applications, ed. W.J.Book, pp 203-211, 1984.

[35] R.Mahaj an and J .S.Moga 1, IIAn interactive graphics

robotics instructional program - IGRIP, -a study of robot

.. motion and workspace constraints", in Proc. Robots 8

conference, vol. 2, pp 16/41-16/56, June 1984.

[36] T.Winslow, "Personal computer software for robot

applications", in Proc Robots 8 Conference, vol. 2, pp 13/1-

13/27, June 1984.

-237-

[37] K.G. Kempf and A.P.Ambler, "An experimental comparison

of symbolic and graphic offline robot programming

techniques", in Proc. UK Robotics Research, pp 17/1-17/8,

Dec. 1983.

[38] Y.Hazony et al., "Interactive graphical programming and

control of robotic systems", in Robotics Research and

Advanced Applications, ed. W.J.Book, pp 191-211, 1983.

[39] H.J .Warnecke, R.D.Schraft and U.Scmidt-Streier,

"Computer graphics planning of industrial robot

applications", in Proc. 3rd Symposium on the Theory and

Practice of Robots and Manipulators, pp 521-542, 1978.

[40] D.E.Whitney, C.A.Lozinski and J.M.Rouke, "Industrial

robot calibration method and results", report number CSDL-P-

1879, Charles Stark Draper Laboratory, Cambridge, Ma., 1979.

[41] LL.Powell, "Evaluation report on the Unimation Puma

manipulator arm", report number 80/64, Marconi Research

Laboratories, GEC Marconi, Chelmsford, 1980.

[42] L.C.Wright, "Accurate robot programming for surface

following using automatic location editing", in Proc. 8th

British Robot Association Conference, pp 23-30, May 1985.

[43] K.Arbter, et al., "NJw techniques for teach-in

acceleration and learning in sensor-controlled robots", in
The International Federation of Automatic Control, p~ 2393-
2399, July 1984.

··[.44] J.Meyer, "An emulation system for programmable sensory

robots", ,.IBM Journal of Research and Development, vol. 25,

no. 6, pp 955-962, Nov.· 1981.

[45] .R.A.Brooks, "Symbolic error analysis and robot

planning", International Journal of Robotics Research, vol.

-238-

1; no. 4, pp 29-67, 1982.

[46] R.P.Paul, "Robot manipulators: mathematics",programming

and control", MIT Press, 1984.

[47] L.Van Aken and H.Van Brussel, "Software for solving the

inverse kinematic problem for robot manipulators in real­

time", in Proc. Advanced Software in Robotics, pp 4B1-4B16,

May 1983.

[48] S.Elgazzar, "Efficient solution for the'kinematic

positions for the Puma 560 robot", Report no. NRC 23952,

National Research Council of Canada, Dec. 1984.

[49] C.S.G.Lee, "Robot arm kinematics, dynamics and

control", IEEE Computer, pp 62-79, Dec. 1982.

[50] S.Bonner and K.G.Shin," A comparative study of robot

languages", IEEE Computer, pp.82-96, Dec. 1982.

[51] T .Lozarno-Perez, "Robot programming,", Proceedings of

the IEEE, vol. 71, no. 7, pp 821-841, July 1983.

[52] W.A.Gruver et al., "Commercially available robot

programming languages", in Proc. IEEE International

Conference on Cybernetics and Society, pp 294-296, 1982.

"\

[53] A.Melidy and A.A.Goldenburg, "Operation of a Puma 560

without VAL", in Proc. Robots 9 Conference, pp 18/61-18/78,

June 1985.

[54] R. Vistnes, "Breaking away from VAL", Stanford

"University internal report, 1982.

[55] V.Hayward and R.P.Paul, "Robot manipulator control

using the C language under Unix", in IEEE Workshop on

Languages for Automation, pp 3-10, Nov. 1983.

-239-

[56] R.P.Paul, "Integrating robot manipulator control into

Pascal", in Proc. IEEE Conference on Decision and Control,

vol. 1, pp 250-255, 1981.

[57] G.Gini and M.Gini, "ADA: a language for robot

programming?", Computers in Industry, vol. 3, no. 4, pp 253-

259, 1982.

[58] J.C.Latombre and M Emmanuel, "LM: a high-level

programming language for controlling assembly robots", in

Proc. 11th International Symposium on Industrial Robots, pp

683-690, Oct. 1981.

[59] E .. Mazer, "Geometric programming of assembly robots", in

Advanced Software in Robotics, ed. A Danthine, North Holland

1984.

[60] R.J.Popplestone, A.P.Ambler and I.Bellos, "RAPT: a

language for describing assemblies", Industrial Robot, vol.

5, no. 3, pp 131-137,1978.

[61] R.H.Taylor, P.D.Summers and J.H.Meyer, "AML: a

manufacturing language", International Journal of Robotics

Research, vol. 1, no. 3, pp 19-41, 1982.

[62] M.A.Lavin and L.I.Lieberman, "AML/V: an industrial

machine vision programming system", International Journal of
\

Robotics Research, vol. 1, no. 3, pp 42-56, 1982.

[63] R.Finkel and R.Taylor, "An overview of AL, a
programming system for automation", in Proe. 4th

International Joint Conference on Artificial Intelligence,
.. pp 758 - 7 6 5, 1 976 •

[64] T.Binford, "The AL language for intelligent robots",

Seminaire Internationale Languags et Methods de

Prog~ammation des Robots Industriels, pp 73-87, June 1979.

-240-

[65] G.Gini and M.Gini, "Pointy: a phi losophy in robot

programming", in Information Control Problems in

Manufacturing Technology", ed. U.Rembold, pp 173~181, 1979.

[66] B.E.Shimano, C.C.Geschke and C.H.Spalding, "A robot

programming system incorporating real-time and supervisory

control: VAL II", in Proc. Robots 8 Conference, vol. 2, pp

20/103-20/119, June 1984.

[67] L.I.Lieberman and M.A.Wes ley, "Autopass: an automatic

programming system for computer controlled mechanical

assembly", IBM Journal of Research and Development, vol. 21,

no. 4, pp 321-333~ July 1977.

[68] C.Blume, "Implicit robot programming based on a high­

level explicit system", in Proc. 1 st Robotics Europe

Conference, June 1984.

""

[69] D.Falek and M.Parent, "LAMA-S: an evolutive language

for an intelligent robot", in Proc. Seminaire International

Languages et methods de programmation des robots

industriels", pp 157-168, June 1979.

[70] D.E.Whitney et al., "Part mating for compliant parts",

report number R-1407, Charles Stark Draper Laboratory,

Cambridge, Ma., 1980.

"" \

[71] K.Collins, A.J.Palmei- and K.Rathmill, "Development of a

European benchmark for the comparison of assembly robot

programming systems", in Proc. 1st Robotics Eurpoe

Conference, June 1984 •

.. [72] D.E.Whitney and E.F .Junkel, "Applying stochastic

control theory to robot sensing, teaching and long-term

control", in Proc. 12th International Symposium on

Industrial Robots, pp 445-455, June 1982.

[73] T.L.DeFazio et al., "Feedback in robotics for assembly

-241-

and manufacturing", report number R-1563, Charles Stark

Draper Laboratory, Cambridge, Ma., 1982.

[74] D.S.Sel tzer, "Use of sensory information for improved

robot learning", Society of Mechanical Engineers (SME)

report no. MS79-799, 1979.

[75] D.E.Whitney et al., "Short and long-term robot

feedback", report number CSDL-R-1682, Charles Stark Draper

Laboratory, Cambridge, Ma., 1984.

[76] D.E.Whitney et al., "Short and long-term robot

feedback: multi-axis sensing, control and updating", in

Proc. 11th Conference on Production Research and Technology,

pp 147-151, May 1984.

[77] S.N.Simunovic, "An information approach to parts

mating", Doctor of Science Thesis, Massachusetts Institute

of Technology, April 1979.

[78] T.L.Defazio et ale "Feedback in robotics for assembly

and manufacturing", report number R-1450, Charles Stark

Draper Laboratory, Cambridge, Ma., 1981.

[79] A.Gelb, "Applied Optimal Estimation", Cambridge Press

(MIT),1974.

.",

\

[80] D.E.Whi tney and A.C.Edsall, "Modelling robot contour

processes", report number CSDL-P-1869, Charles Stark Draper

Laboratory, Cambridge, Ma.

[81] B.Carlisle and S.Roth, "The Puma/VS-100 robot vision

.. system", in Proc. 1 st International Conference on Robot

Vision and Sensory Controls (ROVISEC-1), pp 149-161, April

1981 •

[82] R.Brook, "Coping with complexity", Sensor Review, pp

59, Apri 1 1985.

-242-

[83] T.C.Henderson and W.S.Fai, "A multi-sensor integration

and data acquisition system", in Proc. IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp

274-279, 1983.

[84] M.Y.Chern, M.L.Chern and T.G.Moher, "A language

extension for sensor-based robotic systems", in Proc. IEEE

Workshop on Languages for Automation, pp 11-16, Nov. 1983.

[85] C.Hansen, T.C.Henderson and E.Shilcrat, . "Logical sensor

specification", in Proc. 3rd International Conference on

Robot Vision and Sensory Controls (ROVISEC-3), pp 321-326,

Nov. 1983.

[86] C.C.Geschke, "A system for programming and control of

sensor-based robot manipulators", IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. PAMI-5, no.

1, pp'1-7, Jan. 1983.

[87] M.Gini, "Recovering from failures: a new challange for

industrial robots", in Proc. IEEE COMPCON conference, pp

220-227, Sept. 1983.

[88] M.H.Lee, D.P.Barnes and N.W.Hardy, "Research into error

recovery for sensory robots", Sensor Review, vol. 5, no. 4,

pp 194-197, Oct. 1985.

[89] K.Selke et al., "A knowledge-based approach to robotic

assembly", in Proc. 4th Conference on U.K. Research in

Advanced Manufacturing (To be published), Dec. 1986 •

.. [90] P.Karkkainen, "A sensor information preprocessing

system f9r manipulators based on distributed

microcomputers",· in Advanced Software in Robotics, ed. A

Danthine, pp 279-287, North Holland, 1984.

.. .
[91] I.Mitchell, D.G.Whitehead and A.Pugh, "A multi-

-243-

processor system for sensory robotic assembly", Sensor

Review, pp 94-96, April 1983.

[92] P.M.Taylor and C.A.Stubbings, "Software and hardware

aspects of a flexible workstation for assembly tasks using

sensory robots", in Proc. 2nd lASTED International Symposium

on Robotics and Automation, pp 48-51, 1983.

[93] J.S.Albus, A.J.Barbera and M.L.Fitzgerald,

"Hierarchical control for sensory interactive robots", in

Proc 11th International Symposium on Industrial Robots, pp

497-505, Oct. 1985.

[94] R .. Di Ilman, "A structured multiprocessor system for

adaptive sensor-controlled assembly robots", in Proc. 1st

International Conference on Computer Applications in

Production and Engineering, pp 691-706, 1983.

[95] P.V.Mellor, J.M.Dubery and D.G.Whitehead, "Adapting

Modula-2 for distributed systems", IEEE Journal of Software
Engineering, 1986 (To be published).

[96] J.Kerridge and D.Simpson, "Three solutions for a robot

arm controller using Pascal-plus, occam and Edison",

Software-Practice and Experience, vol. 14, pp 3-15, 1984.

[97] G.C.Gini. and M.L.Gin~, "Interactive development of

obj ect handling programs"', Computer Languages, vol. 7, no.

1, pp 1 -1 0, 1 982.

[98] B.Faverjon. "Object level programming of industrial

robots", in Proc. IEEE International Conference on Robotics

··and Automation, vol. 3, pp 1406-1411., April 1986.

[99] R.Vitols, J.Baker and G.Wray, "Detection, Alignment and

joining of flexible assemblages", in Proc. 2nd Grantees

Conference, SERC Robotics Initiative, pp 38-39, 1983.

-244-

[100] F .G.Stremler, "Introduction to Communication Systems",

Chapter 9, pp 453-455, Addison Wesley, 1977.

[101] A.Mitchie and J.K.Aggarwal, "Multiple sensor

integration/fusion through image processing: a review",

Optical Engineering, vol. 25, no. 3, pp 380-386, March

1986.

[102] S.Y.Harmon, G.L.Bianchini and B.E.Pinz, "Sensor data

fusion through a distributed blackboard", in Proc. IEEE

International Conference on Robotics and Automation, vol. 3,

pp 1449-1454, April 1986.

[103] ,H.F.Durrant-Whyte, "Consistent integration and

propogation of disparate sensor observations", in Proc. IEEE

International Conference on Robotics and Automation, vol. 3,

pp 1464-1469.

[104] S.Shekhar, O.Khatib and.M ShimoJo, "Sensor fusion and

object localization", in Proc. IEEE International Conference

on Robotics and Automation, vol. 3, pp 1623-1628, April

1986.

[105] B.W.Kernighan and D.M.Ritchie, "The C programming

Lnaguage", Prentice-Hall, 1978.

[106] C.A.Stubbings, "A~heap multiprocessor robot and
\

sensor control bus", Internal report, Department of

Electronic Engineering, University of Hull, May 1983.

[107] D.J.Barlow, "An expert system for error analysis in

automated satellite antenna assembly", Diploma Thesis,

.. Department of Electronic-Engineering, University of Hull,

1986.

[108] D.G.Johnson and J.J.Hill, "Sensor-level programming: a

new software system for improved control of a sensory

ind~strial robot", in Proc. 5th Int~rnational Conference on

-245-

Robot Vision and Sensory Controls (ROVISEC-S), pp 383-392,
Oct. 1985.

-246-

APPENDIX A

DEFINING AN ACTUATOR FOR USE IN AN SLPS PROGRAM

-247-

Each actuator and sensor used in an SLPS program must

have been defined using IRPS (Integrated Robot Programming

System). The definition of the actuator 'puma' is

considered.

From the operating system prompt, the programmer types

'IRPS' to invoke the suite of programs. The definition

module is loaded and the following menu is displayed.

IRPS DEFINITIONS MODULE

.;:::::::::~~::::::::::::::::::::::::::::..:::~:I

SENSOR

................................... _ -_' "

···•• .. • ·_····· .. ·····_····_· ··, • .. ·_··:'1 I·· .. ··' '~· .. · .. ' .. ·· .. · · .. ····' .. "' .. ' .. · " · "

l ACTUATOR

......... , ... _ '.
,_ _ ... '1

.:, ... , 1
'

INSTALL

II::~~::~, ,;::~::~

TASK FINISHED
".' _ __ .. _ _ , ." \

!

.' _ __ "

The letter 'A' is typed to call the actuator-definition

module. The following question and answer session takes

place.

-248-

Type in the naMe of the actuato~ to he defined ? pUMa

Ente~ the physical add~ess ? 89

Ente~ the t~anslational and ~otational ~esolutions
of the actuato~ (in MM. and deg~ees respectively)? 9.2,9.91

Ente~ the translational and ~otational .
~epeatahilities of the actuator (in MM and degrees) ? 9.1 ,9.995
COMpleted the actuator definition.

The actuato~ 1 PllMa' has heen defined .'

Press any key to return to the Main Menu.

ACTUATOR DEFINITION MODULE

The definition of the actuator is stored in the file
.'\

I

'puma.act'. A key is pressed and the definition menu shown

overleaf is restored.

-249-

APPENDIX B

DEFINING A SENSOR FOR USE IN AN SLPS PROGRAM

-250-

The definition of the sensor 'camera' is considered.

From the operating system prompt, the programmer types

'IRPS' to load the definition module. The following menu is

displayed

IRPS DEFINITIONS MODULE

I:::::::::::::::~:::::::::::::::::::::::::::::::::::::~~::::':::' .;:::::::::::::::::::::::::::::~:::::::::::::::::~~:I

SENSOR ACTUATOR
•••. 1 " , , , , ' ... I , ,· .. • .. • " •• ·, ·,', ·, .. ,

[

.. :::::::::::::::::::::::=::=:::::::~.::::::.~:::::::::.?I

INSTALL

...................... , __ _ 1"

1"":===-==::::=:7 ., '00' , , _00:'
................... _ , , ,." '

I
TASK

....... ~ -............................. , I.... "'i

FINISHED
.' _ _ ,.

The letter'S' is typed to call the sensor-definition

module. The following question and answer session 'takes

place.

-251-

Type in the naMe of tIle sensoft to be defined ? CaMefta

Enteft the physical addftess ? 39

Enteft the activation nUMbeft ? 19

How Many attftibutes does the sensoft have ? 2
Enteft the naMe of attftibute nUMheft 1? btow
Enteft the naMe of attftihute nUMheft 2? wtoh

IRPS SENSOR DEFINITION MODULE

For each attribute the programmer has defined, the

system now requests the correction vector to be entered.

-252-

Fo~ att~ibute 'btow' of senso~ 'caMe~a'
The co~~ection vecto~ can be one of the following.
I. Pu~e t~anslational
2. Pu~e ~otational.
3. Rotation about a shifted o~igin.
4. No co~~ection vecto~ applicable,

Ente~ 1 2 3 o~ 4 -------)? 1
Ente~ the' di~ection in which the senso~ .
Must be Moved in o~de~ to inc~ease its value, (x,y,z)
Ente~ X,y,z ------) 1,9,9

IRPS SENSOR DEFINITION MODULE

Fo~ att~ibute 'wtoh' of senso~ 'caMe~a'
The co~~ection ve~to~ can he one of the following.
1. Pu~e t~anslatlonal
2, Pu~e ~otational.
3, Rotation about a shifted o~igin,
4. No co~~ection vector applicable.

I

Ente~ 1 2 3 O~ 4 -------)? 1
Ente~ the'di~ection in which the senso~
Must be Moved in o~de~ to inc~ease its value. (x,y,z)
Ente~ x,y,z ------) -1,9,9

IRPS SENSOR DEFINITION MODULE

-253-

.,

Finally, the measurement noise for the sensor is

entered. This is given in the sensor's frame of reference

and in world coordinates.

Ente~ the Measu~eMent noise ro~ the senso~
as a SiX-coMPonent vecto~ (x,y,z,o,a,t) ? 9,1,9,9,9,9,9

IRPS SENSOR DEFINITION MODULE

." \
I

The definition of the sensor is stored in the file

'camera.sen'.

-254-

APPENDIX C

INSTALLING SENSORS AND ACTUATORS FOR USE WITH
AN SLPS PROGRAM

-255-

Assume that the actuators and sensors to be used in the

assembly have been defined using the procedures described in

appendices A and B respectively. After completing the

definitions, the definitions menu will be displayed as

IRPS DEFINITIONS MODULE

I::~:.:::' I:~:::::::~~:::::::::::::::::::::::~=::::::::~~,

SENSOR ACTUATOR
"., ... , _ _ _ I'

[
':::"~:'I

INSTALL

... .. -........... ,,, _

.'

[
.~::::::::::::::::::::::::::::~::::::::::::::::::::::::::::::::.~:' [.::::::::::::::~~::::::::::~~::-.::::::::::::.~~I

TASK FINISHED

t' "
...... m •• .. • .. ••• .. •• ··~· ••• • .. • .. • ' \ _ _ •••••••• _.............. ..'

!

The letter 'I' is typed to call the installation

module.

-256-

The screen clears and the programmer is prompted for

a name for the installed task file. The results of

installing the sensors and actuators will be written to this

file.

Enter the naMe for the installed task file? itask

IRPS INSTALLATION MODULE

~
I

Upon completion of the installation, the installed task

file will contain all the information from the individual

definition files of the sensors and actuators. In addition,

it will include the relationships between the frames of

reference.

-257-

A menu is displayed "of the available options for

installation.

IRPS INSTALLATION MODULE

I::::::::::::::::::::::::::~::::::::::::::::::::~~::::::::::':::1 I::~:::I

SENSOR
.' . '

ACTUATOR

.. "00" .. ' ... " ,,·· ··,· ,·· , , .. , ,-...... , , ,

,::~:I

RELATIONS
..... -.................................. _ , , , '

...

':::=====::==1'1
EXECUT I ON II I

I:~:::::::::..:~~:::::::~~:~::::::::::::::::::::::·:::I

FINISHED
...... _ _ -................................ " ,. ,.-'

The programmer types'S' to install the sensors. (The

sensors must be installed before the actuators).

-258-

place

The screen clears and the following dialogue takes

How ~any senso~s a~e to be installed? 2

Ente~ the na~e of the fi~st senso~ ? ~a~e~a .
Is the senso~ 'ca~e~a' static O~ dynaMic ? dyna~ic

Ente~ the na~e of the second senso~ ? ro~ce
Is the senso~ '£o~ce' static o~ dyna~ic ? dynaMic

." \
I

IRPS INSTALLATION MODULE

Two sensors have been installed, both dynamic. Control

is now returned to the installation menu.

-259-

IRPS INSTALLATION MODULE

,::("

SENSOR I

,'::::::::::::::::::::::::::::::::::::~:::::::::::::::::::::::::::::':::'1

ACTUATOR ,

1 _ · · •·· .. · ,.,' , .. , , , , J I
,-, _ _ ... ,

" I'
I " , , ,,·

RELATIONS I
... "

,:::(' I':::'1

EXECUTION
............... _ _ ... _,.'

,"
\
I

i

FINISHED
l.. _ _ , , _ '

The programmer now types 'A' to install the actuators.

-260-

How Many actuators are to be installed? 2

Enter the naMe of tile first actuator? pUMa
Enter the naMe of the second actuator? table

IRPS INSTALLATION MODULE

-,
I

Two actuators are installed. Control is again returned

to the installation menu.

-261-

IRPS INSTALLATION MODULE

..................................... -............... , _ :'
10 , , , , , " I':~:::':::1

I

SENSOR
.,1' ... __ , _

[
':~:::::::::::::::::::::::::~::::::::::::::::.::::::::::::.:::'

RELATIONS
.. _'H n ,t"

ACTUATOR

I.;:::::::~::::.:::::::::::::::::::::::::::::::::::·~:1

EXECUTION

a:::=:::::::::::::::::::~:::::::::::::::::::::::::~~:1

FINISHED
............................ _ _ ___ .. _ _ ,.1' _ _ _ J

. "
I

With the sensors and actuators installed, the

relationships can now be specified; the programmer types 'R'

to select this option. For each sensor-~ctuator pair, the

.. system will require the relationship between the frames of

reference. Firstly, the relationship between the actuator

'puma and the sensor 'camera' is requ~sted.

-262-

ACTUATOR: pUMa
SENSOR: CaMel'a

The l'elationship between the pUMa and CaMel'a Must now be defined.

The l'elationship between the fl'aMeS
of l'efel'ence can be one of -
the following.

I. PUl'e tl'anslational
2. PUl'e l'otational.
3. Rotation and tl'anslation.
4. Fl'aMeS of l'efel'ence al'e equal.
5. Association not applicable.

Entel' 1,2,3,4 01' 5. --------) ? 2

ACTUATOR: pUMa
SENSOR: caMera

The relationship between the pUMa and caMera Must now be defined.

Entel' the cOMPonents,of the actuator's x-axis in the sensors's fraMe.
Enter x y z -------) i1 9 9
Entel' t~e'cOMPonents ot the actuator's y-axis in the sensors's fraMe.
Entel' x y,z ---------) ? 9,-1,9
Enter t~e COMPonents of the actuator's z-axis in the sensofls's ffiaMe.
Entel' x,y,z --------) ? 9,9,-1 _

--Next, the relationship between -the actuator 'puma' and

the sensor 'force' is considered.

-263-

ACTUATOR: pUMa
SENSOR: fo~ce

The relationship hetween the pUMa and force Must now he defined.

The ~elationship hetween the f~aMes
of rere~ence can he one of
the following.

I. Pu~e t~anslational
2. Pu~e rotational.
3. Rotation and translation.
4. F~aMes of reference a~e equal.
5. Association not applicahle.

Enter 1,2,3,4 or 5. --------) ? 3

ACTUATOR: pUMa
SENSOR: force

The relationship hetween .. the pUMa and force MUst now he defined.
\ ,

Ente~ the translation vector frOM the actuators to the senso~s
fraMe of reference.
Ente~ x,y,z -------) 9,9/-15

Enter the COMPonents of the actuator's x-axis in the sensors's fraMe.
Enter x y Z -------) -1,9 9 .
Enter t~e'coMPonents of t~e actuator's y-axis in the sensors's fraMe.
Enter x Y/Z ---------) ? 9/9,-1 . .
Enter t~e COMponents of the actuator's z-axis in the senso~s's fraMe.
Ente~ X/y,Z --------) ? 9,-1,9

-264-

For the actuator 'table', the relationship between its

frame of reference and the frame of reference of the two

sensors is defined to be 'not applicable'.

ACTUATOR: tahle
SENSOR: ca~e~a

The ~elationship hetween the tahle and ca~e~a ~ust now be defined.

The ~elationship between the r~a~es
of ~ere~ence can be one of
the following.

~
I

I. Pu~e t~anslational
2. Pu~e ~otational.
3. Rotation and t~anslation.
4. F~a~es of ~efe~ence a~e equal.
5. Association not applicable.

Ente~ 1,2,3,4 o~ 5. --------) ? 5

-265-

-.

ACTUATOR: table
SENSOR: force

The relationship between the table and force Must now be defined.

The relationship between the fraMes
of reference can be one of
the following.

1.. Pure translational
2 Pure rotational.
3. Rotation and translation.
4. FraMes of reference are equal.
S. Association not applicable.

,Enter 1,2,3,4 or 5. --------) ? 5

Because the frames of reference are not applicable, no

transformation matrices for the actuator 'table' will be
)

stored in the installed task file. Thus, any attempt to use

this actuator in a servo-loop will result in an error. It

may, however, still be used for movements not requiring

sensory feedback.

-266-

COMPLETED SENSOR-ACTUATOR
RELATIONSHIP FILE '

The installed task file has heen saved as 'itask'

Press any key to return to the Main Menu.

The installation is now complete and the installed task

file has been stored on 'Bhe disk as 'itask' • After pressing

a key, control is returned to the main-menu. Typing 'F' will

finish the session and restore control to the operating

system of the computer.

-267-

APPENDIX D

EXECUTING AN SLPS PROGRAM

-268-

7he execution ot the SLPS p~og~am de~c~iied in Chapte~
7 i~ detaiLed ieLow. 7he p~og~am i~ caLLed LAY.C and i~
compiLed to give an executaiLe machine-code p~og~am which i~
executed iy typing LAY.

lay

SLPS robot programming system, version 1.0, June 1986

Enter the name of the installed task file --> itask
Enter the name of the state parameter file --> taskrt
Are diagnostics required ? n
Execution or simulation required ? e
Is the robot installed ? y
Single step on ? n
Have the states been taught ? y
Is the slave sUb-system connected ? y
Dry-run mode ? n
How many cycles are required? 100

SLPS system is configured for upto :-
16 states.
4 sensors.
5 actuators.

**
********* S Y S T E M
SENSORS: (2 defined).

-''(! 0 NFl G U RAT ION *******

Name: 'camera' , Address: 83 , Activate: 10 , Numatt: 2.
Attributes: 'btow' 'wtob'
Sensor is dynamic.
The sensor noise is (0.10 0.00 O~OO 0.00 0.00 0.00)

Name: 'force' ,Address: 83 , Activate: 20 , Numatt: 1.
Attributes: 'angle'
Sensor is dynamic.
The sensor noise is (0.00 0.00 0.00 0.50 0.00 0.00)

-269-

ACTUATORS:. (1 def ined) •
Name: 'puma' , Address: 80
Resolution: (0.200 0.200 0.200 0.010 0.010 0.010)
Repeatability: (0.100 0.100 0.100 0.005 0.005 0.005)
Noise: (0.103 0.103 0.103 0.005 0.005 0.005

A total of 3 states have been defined.

The following states have been defined.

STATE
NUMBER

0

STATE
NAME

STACK
Departure vector is · (0.00 0.00 50.00 ·
System noise is · (0.000 0.000 0.000 · Sensitivity is · (0.500 0.500 0.500 ·
1 SAFE
Departure vector is · (0.00 0.00 0.00 · System 'noise is · (0.000 0.000 0.000 ·
Sensitivity is · (0.500 0.500 0.500 ·
2 START
Departure vector is · (0.00 0.00 20.00 ·
System noise is · (1.000 1 .000 1 .000 ·
Sensitivity is · (0.909 0.500 0.500 ·
3 END

0.00
0.000

0.500

0.00
0.000

0.500

0.00
0.000

0.500

Departure vector is · (-5.00 0.00 10.00 0.00 · System noise is --· (1 .000 ~1 .000 1.000 0.000 · Sensitivity is · (0.909 0.500 0.500 0.500 ·

0.00 0.00)
0.000 0.000)

0.500 0.500)

0.00 0.00)
0.000 0.000)

0.500 0.500)

0.00 0.00)
0.000 0.000)

0.500 0.500)

0.00 0.00)
0.000 0.000)

0.500 0.500)

Running in execution mode.
Executing 100 cycles.

Program completed, returning to operating system.

c: >

-270-

APPENDIX E

PUBLISHED WORK

-271-

1. D.G.Johnson and J.J .Hi 11, "A sensory gripper for
composite handling", in Proc. 4th Robot Vision and Sensory
Control Conference (ROVISEC-4), London, Oct. 1984.

2. J.J.Hill, D.G.Johnson and D.C.Burgess, "Vision guidance
in robot assembly", in Proc. International Conference on
Computers, Systems and Signal processing, India, Dec. 1984.

3. D.G.Johnson and J .J.Hill, "High-level software control of
a sensor-based industrial robot: an application in aerospace
manufacturing", in Proc. IEEE Conference on Industrial
Electronics (IECON), San Francisco, pp 21-27, Nov. 1985.

4. D.G.Johnson and J.J.Hill, "Improved control of a sensor­
based industrial robot", in Proc. IEEE International
Conference on Decision and Control, Florida, pp 364-365,
Dec. 1985.

5. D.G.Johnson and J.J.Hill, "Sensor-level programming: a
new software system for improved control of a sensory
industrial robot", in Proc. 5th International Conference on
Robot Vision and Sensory Control (ROVISEC-5), Amsterdam,
Oct. 1985.

6. D.G.Johnson and J.J.Hill, "A Kalman filter approach to
sensor-based control", IEEE Transactions on Robotics and
Automation, Vo1.1, No.3, pp 159-162, Sept. 1985.

7. D.G.Johnson and J.J.Hill, "Sensory robot assembly of
composites", Institue of Production Engineers seminar on
Unusual assembly techniques for everyday products, Bowater
House, London, Sept. 1985.

8. D.G.Johnsonand J.J.HiLl, "Flexible manufacture of
composi te aerospace structures", I.Mech.E. conference on
Fibre Reinforced Composites, University of Liverpool, pp
11 3 -11 5, 1 986.

-272-

	381890_001
	381890_002
	381890_003
	381890_004
	381890_005
	381890_006
	381890_007
	381890_008
	381890_009
	381890_010
	381890_011
	381890_012
	381890_013
	381890_014
	381890_015
	381890_016
	381890_017
	381890_018
	381890_019
	381890_020
	381890_021
	381890_022
	381890_023
	381890_024
	381890_025
	381890_026
	381890_027
	381890_028
	381890_029
	381890_030
	381890_031
	381890_032
	381890_033
	381890_034
	381890_035
	381890_036
	381890_037
	381890_038
	381890_039
	381890_040
	381890_041
	381890_042
	381890_043
	381890_044
	381890_045
	381890_046
	381890_047
	381890_048
	381890_049
	381890_050
	381890_051
	381890_052
	381890_053
	381890_054
	381890_055
	381890_056
	381890_057
	381890_058
	381890_059
	381890_060
	381890_061
	381890_062
	381890_063
	381890_064
	381890_065
	381890_066
	381890_067
	381890_068
	381890_069
	381890_070
	381890_071
	381890_072
	381890_073
	381890_074
	381890_075
	381890_076
	381890_077
	381890_078
	381890_079
	381890_080
	381890_081
	381890_082
	381890_083
	381890_084
	381890_085
	381890_086
	381890_087
	381890_088
	381890_089
	381890_090
	381890_091
	381890_092
	381890_093
	381890_094
	381890_095
	381890_096
	381890_097
	381890_098
	381890_099
	381890_100
	381890_101
	381890_102
	381890_103
	381890_104
	381890_105
	381890_106
	381890_107
	381890_108
	381890_109
	381890_110
	381890_111
	381890_112
	381890_113
	381890_114
	381890_115
	381890_116
	381890_117
	381890_118
	381890_119
	381890_120
	381890_121
	381890_122
	381890_123
	381890_124
	381890_125
	381890_126
	381890_127
	381890_128
	381890_129
	381890_130
	381890_131
	381890_132
	381890_133
	381890_134
	381890_135
	381890_136
	381890_137
	381890_138
	381890_139
	381890_140
	381890_141
	381890_142
	381890_143
	381890_144
	381890_145
	381890_146
	381890_147
	381890_148
	381890_149
	381890_150
	381890_151
	381890_152
	381890_153
	381890_154
	381890_155
	381890_156
	381890_157
	381890_158
	381890_159
	381890_160
	381890_161
	381890_162
	381890_163
	381890_164
	381890_165
	381890_166
	381890_167
	381890_168
	381890_169
	381890_170
	381890_171
	381890_172
	381890_173
	381890_174
	381890_175
	381890_176
	381890_177
	381890_178
	381890_179
	381890_180
	381890_181
	381890_182
	381890_183
	381890_184
	381890_185
	381890_186
	381890_187
	381890_188
	381890_189
	381890_190
	381890_191
	381890_192
	381890_193
	381890_194
	381890_195
	381890_196
	381890_197
	381890_198
	381890_199
	381890_200
	381890_201
	381890_202
	381890_203
	381890_204
	381890_205
	381890_206
	381890_207
	381890_208
	381890_209
	381890_210
	381890_211
	381890_212
	381890_213
	381890_214
	381890_215
	381890_216
	381890_217
	381890_218
	381890_219
	381890_220
	381890_221
	381890_222
	381890_223
	381890_224
	381890_225
	381890_226
	381890_227
	381890_228
	381890_229
	381890_230
	381890_231
	381890_232
	381890_233
	381890_234
	381890_235
	381890_236
	381890_237
	381890_238
	381890_239
	381890_240
	381890_241
	381890_242
	381890_243
	381890_244
	381890_245
	381890_246
	381890_247
	381890_248
	381890_249
	381890_250
	381890_251
	381890_252
	381890_253
	381890_254
	381890_255
	381890_256
	381890_257
	381890_258
	381890_259
	381890_260
	381890_261
	381890_262
	381890_263
	381890_264
	381890_265
	381890_266
	381890_267
	381890_268
	381890_269
	381890_270
	381890_271
	381890_272
	381890_273
	381890_274
	381890_275
	381890_276
	381890_277
	381890_278
	381890_279
	381890_280
	381890_281
	381890_282
	381890_283
	381890_284

