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SUMMARY 

This thesis addresses the problem of integrating 

sensors and actuators for closed-loop control of a robotic 

assembly cell. In addition to the problems of interfacing 

the physical components of the work-cell, the difficulties 

of representing sensory feedback at a high level within the 

robot control program are investigated. A ne~ level of robot 

programming, called sensor-level programming, is introduced. 

In this, the movements of the actua tors are not gi ven 

explicity, but rather are inferred by the programming system 

to achieve new sensor conditions given by the programmer. 

,Control of each sensor and actuator is distributed 

through a master-slave hierarchy, with each sensor and 

actuator having its own slave controller. A protocol for 

information interchange between each controller and the 

master is defined. If possible, the control of the 

kinematics of a robot arm is achieved through the 

manufacturer's existing control system. Under these 
"\ 

circumstances, the actua~or slave would be acting as an 

interface between the generic command codes issued from the 

central controller, and the syntax of the corresponding 

control instructions required by the commercial system. 

Sensor information is preprocessed in the sensor slaves 

and a set of high-level descriptors, called attributes, are 

sent to the central controller. Closed-loop control is 

achieved on the basis of these attributes. 

The processing of sensor information which is 



corrupted by noise is investigated. Sources of sensor noise 

are identified and new algorithms are developed to quantify 

the noise based on information obtained from the closed-loop 

servoing. Once the relative magnitudes of the system and 

measurement noise have been estimated, a Kalman filter is 

used to weight the sensor information and hence reduce the 

credibility given to noisy sensors; in the limit ignoring 

the information completely. The improvements in system 

performance by processing the sensor information in this way 

are demonstr~ted. 

The sensor-level representation and automatic error 

processing are embedded in a software control system, which 

can be used to interface commercial systems as well as 

purpose-built devices. An'industrial research project 

associated with the lay-up of carbon-fibre provides an 

example of its operation. 

A list of publications resulting from the work in this 

thesis is given in Appendix E. 

\ 
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Pu~e thinking cannot yield u~ any knowledge ot the 
empi~ical wo~ld/ all knowledge ot ~eality ~ta~t~ t~om 
e~pe~ience and end~ in it. P~opo~ition~ a~~ived at gy pu~ely 
logical mean~ a~e completely empty ot ~eality. 

Albert Einstein 
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The ability to modify a robot control program in 

response to error signals from a sensor, has provided the 

seed from which second generation robotics has grown. In a 

paper entitled 'Second Generation Robotics', Pugh [1] argued 

that the development of intelligent control based on 

environmental sensing, the so-called second generation, has 

not been satisfactorily realized, despite over 10 years of 

promise. Over the past 10 years, research in artificial 

intelligence, robot control algorithms, sensors, image 

processing and communications have yielded,impressive 

results, a wealth of publications and a nimiety of 

international conferences. Despite this, however, the 

transfer of this technology to small-batch product assembly 

has been painfully slow. 

Integrating sensors with robots is difficult. Not only 

are the available sensors unsuitable, but the problems of 

interfacing the hardware and software of commercial robots 

with external systems can be non-trivial. If facilities 

exist for sensor-interfacing, they are usually restricted to 

reading signal lines, ;nto which the processed sensor 

information is presented. 

Addressing the problems of robot control using 

environmental sensors, this thesis tackles three principal 

problems, namely, 

1. The information interchange between sensors and 

actuators to achieve closed-loop control in a multi­

sensory environment. 

2. The representation of sensory-feedback at a high­

level. 
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3. Processing sensor information in the face of noise 

and uncertainty from the system, the actuators and 

the sensors. 

The work in this thesis describes a robot programming system 

which allows commercial robots and actuators to be 

interfaced to sensors and provides a general solution to 

each of the above problems. 

Effective automation of small-batch production requires 

the sensing of part positions to minimize expensive tooling 

costs. Although research into 'sensorless' methods of coping 

with uncertainty have been reported, e.g. [2], the 

constraints imposed on the nature of the parts preclude this. 

approach for the majority of .assemblY tasks. Pioneering 

research at The Charles Stark Draper Laboratory produced the 

Remote Centre Compliance, which offers an alternative to 

sensing for many assembly operations [3]. The instrumented 

version of this device [4] provides sensory feedback from 

three positional and three rotational components of error. 

Research into multi-sen$or assemblies has demonstrated the 
\ 
I 

feasibility of integrating many sensors with an industrial 

robot [5],[6]. However, the problem of coordinating the 

interchange of information between the sensors and the robot 

is non-trivial. Distributed processing" has advantages in 

terms of reliability, but then problems of communication and 

synchronization arise. 

Building on an existing robot communication bus, the 

work in this thesis proposes a unification of information 

interchange between the sensors and the actuators. Sensor 
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information is preprocessed in distributed controllers, and 

only high-level information required for closed-loop 

servoing is transmitted to the central controller. 

Considering the general case of many robots and actuators in 

a work-cell, a standard format for actuator commands is 

proposed, such that the semantics of the control 

instructions are independent of the nature of the actuator. 

Each actuator is assumed to have its own controller whose 

role is to translate the generic command code issued from 

the central controller into the control signals required by 

the actuator. The motors of the actuator may be controlled 

directly, or through an existing commercial controller. To 

this end, the control of the robot is achieved through 

whatever commercial system tbe manufacturer supplies. This 

obviates the need to redevelop robot controllers, and allows 

attention to be directed at a higher-level of control. 

Hence, the work in this thesis is not concerned with the 

control of the actuators at the kinematic level. All control 

algorithms are assumed to exist in either a commercial or.a 

purpose-built controlle.r. This approach allows overall 
\ 
I 

control to be centralized and all interactions routed 

through one central node. By looking only at discrete 

sensory feedback, satisfactory control can be achieved using 

a low-cost personal computer as the controller. Since all 

the kinematic control and sensor processing is done 
... 

elsewhere, the central controller is responsible only for 

coordinating and sequencing instructions. 

Within the framework of the distributed system, the 

problem of specifying sensory feedback is considered. This 

-4-



includes the development of a general sensor interface, 

which allows sensors to be defined as modular definition 

files and used by name in a control program. A sensor­

level of indirection is introduced, such that the movement 

of an actuator is to transform the readings of the sensors 

from their current values to a new set. The required 

movements of the actuators are computed automatically to 

achieve the sensor conditions. 

Chapter 2 reviews previous work in the application of 

sensors to industrial robots. The requirements of a robot 

programming language are identified and the short-comings of 

eXisting commercial systems are studied. 
.' 

Chapter 3 describes the nature of the assembly problems 

under investigation and develops a model which is used to 

represent the assembly in terms of a set of states. 

Associated with each state is a confidence and a 

sensitivity. Building on original work by Defazio [7], a 

confidence is used to reflect the certainty with which a 

state is known, by consideration of previous errors under 

sensory feedback. A metfod of calculating numerical values 

of the confidence, based on the information from the 

sensors, is developed. The state sensitivity is a parameter 

used to specify the tolerance at a state, and hence the 

maximum error permissible. Using a combination of the 

confidence and the sensitivity, the velocity of the actuator 

as it approaches a state is automatically computed to 

reflect errors and sensitivity. A sensitive state could, for 

example, be the position of a robot during the insertion of 

a peg into a hole. Since the robot must be positioned 
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accurately, the sensitivity is high and the corresponding . 

velocity of the robot, as it approaches the hoie, is small. 

The advantages of a reduced approach velocity include 

improved dynamics of the robot; location-overshoot, for 

example, is a problem at high speeds. More importantly, 

however, reducing the velocity gives a better chance of 

stopping the robot in an emergency. For example, trying to 

insert a peg into a non-existent hole. 

Chapter 4 describes a new level of robot programming, 

called sensor-level programming. In this, .the required 

movements of the actuator are not given explicitly, but are 

inferred, with the goal of achieving a specific condition in 

the sensors. A.structure for representing sensory feedback 
I 

is developed and the mechanism for computing the correction 

in the actuator, to eliminate an error in a sensor, is 

described. Sensors are classified as either dynamic or 

static, depending on their relationship with the actuator's 

and the world's frames of reference. A dynamic sensor is 

coupled to, and moves with, an actuator; gripper mounted 

cameras and.tactile sen~ors fall into this catagory. Static 

sensors are fixed in the world's frame of reference. 

The problem of moving the robot to achieve a specific 

sensor-condition can be extended to the case' where more than 

one sensor condition must be achieved at the end of an 

actuator movement. If the corrections applied for the 

separate conditions do not interfere with each other, the 

problem is trivial since each sensor condition can be met 

sequentially. If, however, the correction applied for one 

. condition is opposing the correction applied for another 
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condition, the problem is non-trivial. A solution for two 

sensor conditions is described in Chapter 4. 

Chapter 5 considers the effe6ts of noise in the system, 

the actuators and the sensors. Noise in the system, arising 

from ill-positioned parts for example, is expected and can 

be detected with the sensors. However, errors in the sensors 

themselves reduces the effectiveness of the control by 

limiting the accuracy obtainable. The final 'accuracy can be 

no greater than that offered by the sensor. The noise in the 

sensors may arise from interference, quantization, 

transformation errors, changing environmental conditions, 

wear, and in the limit complete sensor failure. The latter 

condition may be relatively easy to identify. However, the 

problem of superimposed electrical interference presents 

more difficult problems. The noise may be intermittent and 

of variable frequency and amplitude. Although electrical 

filtering is one solution, this implies some knowledge of 

the parameters of the noise. If these parameters are subject 

to change, such filtering becomes difficult. 

Algorithms are dev~loped which quantify the noise in 

the measurement process and provide an estimate of the 

parameters of the noise distributions. The noise can be 

modelled as a Normal distribution, which, over the frequency 
. 

range of interest, can be assumed to be white. The problem 

of using the potentially noisy information from the sensors 

is tackled by using a Kalman filter, where the states to be 

estimated are the key locations in the work-cell. Once the 

variance of the system and measurement noise is estimated, 

the Kalman gain acts as a weighting factor, whose magnitude 
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reflects the credibility of the sensor information. In the 

event of the measurement noise being much greater than the 

system noise, the Kalman gain approaches zero and all sensor 

information is ignored. If the sensor information is noise-

free, the information is used with 100% confidence; this is 

the usual way of processing sensor information. If a sensor 

is noisy, significant improvements in accuracy and servoing 

times can be made using the algorithms described. The 

algorithms are demonstrated on an industrial research 

problem which incoporates a noisy forc~ sensor. 

Chapter 6 describes the implementation of a robot 

programming system, SLPS, which incorporates the sensor­

level representation and noise-estimation algorithms 

developed in Chapters 3 to 5 •. This robot programming system 

is a library of functions written in the C programming 

language. Once the sensors and actuators have been defined 

through definition files, they are used as parameters in the 

functions. The format of the command for moving an X-Y 

table, say, is exactly the same as that to move a robot. The 

difference is only in t~e physical addresses of the , 
I 

appropriate controller cards, to which the central 

controller sends the generic instruction codes. These 

physical addresses are taught in the definition file 

associated with the device. In general; each movement 

command gives one or two sensor conditions which must be 

satisfied at the end of the movement. The servo loop to 

achieve these conditions is coordinated by the central 

controller. The information acquired from each movement of 

. the actuator in the servo process is recorded and used to 

-8-



compute estimates to the noise due to the measurement and 

the system, according to the algorithms developed in Chapter 

5. The calculation of the new noise levels and subsequent 

updating of the Kalman filter equations is transparent to 

the programmer. 

Chapter 7 describes the application of the robot 

programming system to an industrial problem. The problem is 

associated with the handling and lay-up of carbon-fibre into 

a satellite antenna dish [8],[9]. The stages in solving the 

assembly problem using the robot programming system are 

described. Also, the effects of applying the noise 

processing algorithms on the information from a noisy force 

sensor are demonstrated. 

In conclusion, Chapter a identifies the achievements of 

the thesis and details additional features which would 

improve the programming system. 

"' \ 
I 
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LITERATURE SURVEY 
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2.1 Introduction 

This literature survey examines published research in 

robot programming and the integration of sensors with 

industrial robots. Firstly, an evaluation of the sensors 

currently used in industrial robotics is given. The 

requirements of the robot control software are then 

discussed and an assessment of current robot programming 

languages is presented. Section 2.4 describes research in 

handling errors and processing the information from 

environmental sensors. The review concludes by looking at 

the hardware structure of robot sensor systems. 

2.2 Sensors 

Although the majority of current .. robot applications are 

performed without significant external sensing, there is 

evidence to show that many small and medium-sized batch 

assemblies could not be cost-effectively automated without 

environmental sensing. The stiff and senseless robots 

evolving out of spray painting and spot welding require 

accurate part presentation and are intolerant to small 
~ 

Positional and rotational inaccuracies. Accurate positioning 

of components is expensive in jigging costs and feeding 

equipment. Sensing provides a means to cope with uncertainty 

and reduces the requirements for compon~nt position 

accuracy. 

Sensors can be divided into two classes, contact and 

non-contact. Contact sensing is based on a signal generated 

by a transducer which is in contact with the part. In non­

contact sensing the transducer and the part are separated. 

Research in non-contact sensing has been centered on vision, 
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although ultrasonics has received some attentio~ [10],[11]. 

For a vision sensor mounted above the work-area, the 

manipulator will obscure the field of view. Thus, 

researchers have recognized that to be effective, the vision 

sensors must be mounted on the robot end-effector [12]-[14]. 

Furthermore, the inherent problems of parallax, resolution 

and transformation errors in overhead cameras are 

alleviated. Al though solid-state sensors have been available 

for some time, the packaging and ruggedness necessary to 

make them suitable for eye-in-hand vision has hot 

materialized. For effective integration with the robot 

gripper, the sensor must be small and the focussing 

arrangement unob~trusive. For gripper-mounted cameras, a 

focussing arrangement may not be necessary. Thermionic tube 

cameras are too large and fragile to be considered for 

gripper-mounting. The dynamic RAM camera [15] has been 

implemented in a number of industrial research projects, e.g 

[6], to provide low-cost, low-resolution vision sensing. 

However, because they produce only a binary image, the use 

of these sensors is I imi·~ed. 

One solution to the problem of finding vision sensors 

of a suitable size is to remove the camera from the end­

effector and replace it with a coherent.fibre-optic bundle 

[16]. The fibre~optics can then transfer the image clear of 

the end~effector and into a camera. Because the camera is 

mounted away from the end-effector, the size and weight are 

no longer problems. A recent commercial development [17] 

obviates the need for a coherent fibre-optic bundle, by 

mounting the vision sensor at the end of an endoscopic tube 
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less than 8mm in diameter. Although fibre-optics are used to 

pipe illumination to the work area, the video information is 

available as an electrical signal directly from the sensor. 

Manufactured for industrial inspection, these systems may be 

an important breakthrough for robotic vision sensors. 

The inherent problems of reducing a 3-D world to a 2-D 

representation have encouraged active research into 3-D 

vision. Although 3-D information can be inferred from a 

normal 2-D image, the so called 'shape from shading' problem 

[19],[20], stereo vision, structured light, and 

triangulation provide a more direct measurement of surface 

features. The Consight vision system [20] was one of the 

first examples of structured light in an industrial 

application. By projecting a known pattern of light onto an 

object, the perceived 2-D image can be processed to compute 

the surface features [21]. Laser-based triangulation sensors 

are promising, but are, at present, not in a suitable form 

for robotics. Both cost and size need to be reduced. 

Furthermore, problems of specular reflections, missing data, 

and slow measurements ne~'d to be addressed [22]. 

Linear-array cameras, having only a single line of 

photosites, are considerably cheaper than area-array 

devices. However, the requirement for re~ative motion 

between the camera and the object has restricted their 

application to parts moving on a conveyor bel t. However, 

there is no reason why a stationary object cannot be scanned 

by moving the camera across it [23]. 

The second class of sensing, contact sensing, includes 

touch, force, position and temperature. Contact sensing 
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finds applications in grasping, bin-picking, inspection, 

part-mating and temperature measurement [24]. As distinct 

from vision sensing, tactile sensing is often associated 

with discrete sensors resulting in a very low resolution 

device. Often, an array of sensing elements is mounted 

between the jaws of the robot gripper, with piezoelectric or 

carbon materials to provide a pressure-sensitive signal. 

Research in VLSI tactile sensors [25] promises to improve 

the effective resolution of these devices. A recent 

development [26] achieves high-resolution by using an area-

array camera to view a rubber membrane, which is deformed by 

the component. This is now being distributed as a commercial 

system. As is theicase for gripper-mounted vision sensing, 

compactness, ruggedness and reliability are important 

factors in a tactile sensor. Force sensing is particularly 

valuable in parts mating, where 3 translational and 3 

rotational components of force can be detected and used to 

construct a strategy to successfully mate the parts 

[27], [28]. 

2.3 Software 

," 
\ 
I 

The performance of a robot control system is largely 

governed by the facilities of the software. This section 

discusses the requirements of the software and how the 

relationships between objects and the robot can be modelled 
,', 

and specified. A discussion of the facilities of a number of 

eXisting robot programming languages is presented. 

2.3.1 Requirements of robot control software 

In addition to the facilities for controlling the 
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kinematics of the robot arm, the robot control software must 

provide an interface, to the programmer, to allow the robot 

control program to be written, executed and debugged. 

Facilities 'for structured programming are important, as they 

are in any computer language, but early robot programming 

languages neglected these. Indeed, it can be argued that the 

first generation robots, requiring only to move between a 

number of pretaught points, did not need the programming 

facilities now demanded to process sensor. information and 

make decisions based on errors. 

From the kinematic viewpoint, the robot control 

software must control the servoing of each joint such that 

the end-effector travels in a desired manner. Often it is 

the end-point of a movement which is critical, although for 

. some applications the path, or trajectory, must be precisely 

defined. Speed control can also be important, especially in 

arc-welding and paint spraying. Planning a trajectory 

between two points can be difficult [29], since constraints 

imposed by the world model must be taken into account. For a 

multiple robot assembly c~ll, the position of other robots 

must be monitored to provide collision-free motions [30]. 

Early manipulator languages such as Wave [31] employed a 

planning phase, during which the program was simulated and 

all necessary computations stored in an execution file. This 

can be satisfactory whenever the sequence of instructions in 

the program is fixed, but branches in the program require 

the simulation of all possibilities. Clearly, for robot 

operations under sensor-control the sequence of operations 

cannot be defined a p~io~i and hence the required movements 
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of the manipulator cannot be planned. Later manipulator 

languages, such as VAL [32] interpret the program on a line­

by-line basis, and compute new joint angles at run-time. The 

significant reduction in the price of computing power "in the 

last few years has been one of the contributory factors to 

this approach. 

Although industrial robots are equiped with position 

sensors in the form of joint encoders, information from 

additional environmental sensors provides the means to cope 

with uncertainty in the world model. In many commercial 

robot controllers, the facilities to input external signals 

do not extend beyond simple binary control lines, which can 

be read or set under software control. Sensor information, 

in its widely varying forms, cannot be easily manipulated by 

eXisting commercial systems. This applies both to the 

hardware interfacing, and the software control. 

2.3.2 On-line versus off-line programming 

Teaching a robot to spray-paint an automobile component 

is often achieved by leadi~g the manipulator through the 
I 

required motions and recording some key locations. Later, 

the robot can be instructed to move between the taught 

locations to spray the subsequent parts as they come down 

the production line. Teaching a robot on-line retains 

popularity today; it is easy to do, and requires little 

appreciation of the robot control system. There are a number 

of disadvantages however [33], which have encouraged the 

development of off-line programming techniques. One of the 

most significant disadvantages of on-line teaching is that 
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the robot itself is required, and hence is unavailable for 

work during the teaching time. Furthermore, the resultant 

program, being simply a list of locations, cannot be easily 

edited or modified to cope with parts of a different shape. 

This arises because the logic of the program and the data 

are closely linked. Ideally, the sequence of instructions to 

the robot should be kept separate from the numerical values 

of the locations. Off-line programming does not require the 

robot for teaching but instead uses a geometric model which 
-

allows positions to be specified in a cartesian frame of 

reference. The geometric model must be an accurate 

representation of the robot, otherwise the off-line 

computation of positions will not be translated into the 

correct physical position of the robot. This gives rise to a 

distinction between repeatability and accuracy. The 

repeatability is the usual parameter quoted by 

manufacturers, and gives the expected error in the robot's 

position after it is instructed to move to a pre-taught 

position. The position is taught as a configuration of the 

robot arm, which may be stored as a transformation between 
\ 
I 

the end-effector and the robot's base, or as a set of 

encoder readings for each joint of the robot. The accuracy 

of the robot is defined as the expected error in the 
. 

posi tion of the robot when the set-point is gi ven as 

numerical coordinates in a cartesian frame of reference. In 

practice, this relies on an accurate world-model, and errors 

of upto 5 degrees ha ve been observed in a 6 degree of 

freedom industrial manipulator. 

Graphical tools for simulating robots and manipulating· 
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objects have been described by a number of authors [34]­

[39]. Such systems provide the programmer with a visual 

indication of how the robot will interact with its 

environment and are valuable development tools. 

One of the major problems with off-line simulation and 

programming is the inability to predict the errors which may 

occur in practice. If components are not positioned to close 

tolerances, the robot will not be able to gra'sp them. The 

relationship between the robot and the real world is often 

imprecise and the accuracy of the manipulator may be poor 

[40],[41]. A combination of these factors means that many 

industrial robots cannot be realiably and accurately 

programmed off-line. One solution to this problem is to 

provide an initial off-line estimation and then a touch-up 

of key locations on-line [42]. Arbter [43] proposes storing 

not only the equations of the trajectories, but also sensor 

patterns which can be used as a reference to produce error 

signals at run time. 

The simulation of sensors in an off-line programming 

system has been tackled with EMULA [44], which is used in 
i 

conjunction with the programming language AML. EMULA allows 

simulations of user-defined sensors, finite resolutions and 

also has a limited capability to cope with uncertainties. It 

cannot, however, simulate the effects of modelling 

tolerances, manipulator wear, noise etc. Symbolic,error 
,', 

analysis has been tackled by Brooks [45] to examine the 

effects of tolerances in the location of parts. Using this 

approach, the final tolerances can be'used to infer the 

initial tolerances of the constituent parts, or the need for 

-18-



sensing to improve accuracy. 

Off-line programming is a vital ingredient in 

establishing an integrated and centralized manufacturing 

system. Sensors can offer information which can be used to 

fine-tune manipulator motions to cope with errors in 

modelling and the position of parts. 

2.3.3 Specifying relationships between the robot and the 
environment 

Although early robot programming languages involved on­

line teaching of key locations, the need to halt production 

to teach the next program has encouraged the development of 

off-line programming languages. When a robot is taught 'by 

doing' it is the joint angles which are recorded. A 

subsequent movement to a pre-taught location involves 

servoing each axis until the recorded joint angles are 

restored. Although it would be quite possible for the 

programmer to specify a set of joint angles a p~io~i, 

computation of the position and orientation of the end-

effector from joint angles can be non-trivial [46],[47]. 

Rather than specifying the-~obot's position by the joint 

angles, it is preferable to specify the position in a 

cartesian frame of reference. From this frame, the joint 

angles can be calculated by solving the inverse kinematics 
. 

of the robot arm; Paul [46] and Elgazzar [48] gi ve a 

thorough treatment of this. This solution must take into 

account the current position of the manipulator, since often 

more than one joint solution is possible for a given 

cartesian position. The formation of a relationship between 

the joint angles and the position and orientation of the end 
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effector in a cartesian frame is simplified by the use of 

homogeneous transformations [46]. The relationship between 

each joint is specified by a 4 x 4 matrix of real numbers. 

which represents the rotational and translational 

differences between the frames of reference. The overall 

relationship between the end-effector and the robot's base 

(the origin of the cartesian frame) is derived by 

multiplying the matrices. Because the elements of the 

matrices vary with joint angles, the computation of the 

final matrix can be demanding. For a 6 degrees of freedom 

manipulator, 384 multiplications are required to compute the 

final position matrix from the 6 joint matrices. This 

excludes square roots, transcendental functions and 

additions. For constrained path motion, for example straight 

line movements, speed of calculation of the relationship is 

important, otherwise smooth path control cannot be achieved. 

Van Aken [47] describes some methods for solving the inverse 

kinematics in real-time. 

Once the relationship between the joint angles and the 

end-effector has been established, the programmer is free to 

specify the position of the end-effector in a cartesian 
I 

frame of.reference. Off-line teaching involves specifying 

the desired configuration of the robot in terms of a set of 

numbers corresponding to position or joint angles. This is 

profoundly different to on-line teaching where the robot 

must be physically moved to the desired location to record 

the posi tion. 

In addition to defining the relationship between links 

of the manipulator, homogeneous transformations can be used 



to define relationships between the manipulator and a 

sensor, for example a vision sensor [49]. This technique 

allows efficient transformations to be made from the 

sensor's frame of reference into the manipulator's frame of 

reference. For a given sensor-error, the corresponding 

world-error can be found by multiplying the error vector by 

the transformation between the world's and the sensor's 

frames of reference. If the sensor is fixed in space, then 

this transformation is also fixed. If, however, the sensor 

is moving (mounted on the robot, for example) then the 

transformation is dynamic and must be recalculated for each 

new position of the sensor. 

2.3.4 Robot programming languages 

A review of current industrial robot programming 

languages [50]-[52], indicates that there are almost as many 

robot programming languages as there as robots. Each robot 

manufacturer has incorporated the specific features of their 

robot within the programming language. In many commercial 

robot controllers there is little scope for interfacing 

external equipment, including sensors and other robots. This 

applies equally to the hardware ~nd the software. Choosing a 

robot to solve an industrial problem requires a study of 

both the performance of the manipulator, and the facilities 

of the software control. Unlike computer system~, it is 

difficult to mix one manufacturer's hardware with another's 

software. One approach is to dispense with the commercial 

controller and rebuild the control algorithms and 

programming environment [53],[54]. 

Rather than writing anew language, some researchers 
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have chosen to adapt existing computer languages to provide 

the necessary robot control features. Hayward [55] describes 
-

a system using the C programming language. In this approach, 

functions written in C provide the programmer with the 

primitives to control the kinematics of the robot, yet the 

standard features and structures of the language are 

retained. The final robot control program is actually a C 

program which can be executed under Unix. Paul [56] 

describes a similar approach using Pascal and Gini [62] 

proposes ADA. The main advantage of modifying an existing. 

computer language is that the basic grammar of the language 

is already defined. This is important both from the language 

designer's point of view, and also from the programmer's 

point of view. Conversely, any general purpose.programming 

language must embody a number of trade-offs which make it 

better suited to some applications than others. 

A number of commercial and experimental robot 

programming languages are now reviewed. 

LM [58] was developed at the University of Grenoble, 

,.France, and provides a Pascal-like language for controlling 

assembly robots. The language permits the user to describe 

manipulation tasks in terms of motions of one or several 

arms and permits processing of sensor information through 

state variables. These state variables are automatically 

maintained by the interpreter and can be used to provide 

access to sensor information. Relationships between objects 

can be specified using frames, and the ATTACH 'and DETACH 

Commands to logically associate one frame of' reference with 
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another. An extension of LM, called LM-GEO [59] provides 

structures for representing geometric descriptions of object 

positions, and relationships between objects. This extension 

arose from work at the University of Edinburgh and 

encompasses the concepts of spatial relationships which 

underlie RAPT [60],[33]. 

AML [61] is a powerful, well-structured manipulation 

language for the IBM series of assembly robots. As well as 

providing commands for movement of the manipulator arm and 

the gripper, AML also provides limited facilities for 

sensory control. A command called MONITOR provides the 

facility to interrogate sensors and halt a movement if a 

specified condition is met. This rather primitive mechanism 

for sensor interaction has been improved with the 

development of AML/V [62], an extension of AML which 

provides facilities for vision. This extensions allows 

images to be manipulated as data objects and the processed 

information used to provide closed-loop control of the 

manipulator. 

AL [63],[64] was written at Stanford Artificial 

,. Intelligence Laboratory and has all ALGOL-like control 

structure. A unique feature of AL is the dimensioning of 

variables, for example, time in seconds, distance in either 

centimetres or inches, and the check for dimensional 

consistency in expressions. Sensing is integrated into AL 

Using foic~ sensors and a verification vision system. 

Keywords of the form FORCE and TORQUE allow required sensor­

condi tions to be met. AL uses a wor 1 d mode 1 and allows the 

programmer to specify actions at the object-level. As an aid 
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to generating the world model, an interactive system called 

POINTY [65] may be used. Using POINTY the programmer 

interacts with the manipulator to construct the world model. 

A version of AL, called Portable AL, has been implemented at 

the University of Karlsruhe, west Germany. It runs on a PDP 

11/34 and a LSI 11/2, and controls a Puma 500 robot. 

RAPT [60],[33] was developed at the University of 

Edinburgh to allow assembly tasks to be programmed by 

specifying effects in terms of the objects which are ' 

handled. Building on the syntax of APT (the NC machine tool 

language), RAPT programs involve specifying spatial 

relationships between objects and movements of objects 

relative to features of other objects. The manipulator 

motions are such to transform the relationships of the 
i 

faces, shafts and holes which compose the object. The output 

of the RAPT compiler is a VAL program which is subsequently 

executed on a Puma robot. 

VAL [32] is a robot language used on Unimation's range 

of industrial robots. VAL is an interpreter which operates 

interactively with the user through a terminal. Its 

.,structure is BASIC-like and as such is quite easy to learn. 
i 

VAL'employs compound transformations to allow the programmer 

to define locations relative to an arbitrary origin and 

permits independent frames of reference to be assigned. 

Interaction with sensors is limited to interrogating signal 

lines, although these can be made to interrupt the main 

program through the REACT command. Significant improvements 

to the language appear in VAL II [66] which is implemented 

on Mark-2 Puma robots and also the Adept One' robot. VAL II 
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has Pascal-like control structures and powerful real-time 

path control features to permit sensor interaction. A high­

speed serial link is used to send sensor-derived corrections 

in a tool-relative or world-relative frame of reference into 

the robot. Real-time trajectory control can be achieved 

using this approach. In VAL, the control loop rate is 

governed by the minimum execution time of small-arm motions, 

generally between 0.2 and 0.3 seconds. Hence the maximum 

ra te at which sensory feedback can be app 1 ied is about 3 - 4 

times per second. In VAL II however, the control loop cycle 

times are about 28 milliseconds, giving typical update 

frequencies of 35 times per second - a significant 

improvement as far as sensory feedback is concerned. 

AUTOPASS [67] is an object-level programming language 
! 

which uses a geometric model of the assembly world to allow 

the relationship of objects with respect to each other to be 

specified. The AUTOPASS language is embedded in PL/I and 

consequently offers the control and data-representation 

facilities of that language. Keywords such as PLACE, INSERT, 

EXTRACT, LIFT, SLIDE and GRASP are used to define how the 

"objects will be manipulated. This"approach allows the user 
\ . 
I 

to specify an automated assembly procedure in a similar 

manner to the manual assembly. The output from the compiler 

is a manipulator-level program which directs the manipulator 

through the necessary motions to execute the assembly 

process. AUTOPASS is primarily concerned with manipulating .. , 
obj ects wi th respect to each other and has a very 1 imi ted 

capability for sensory feedback. 

SRL [68] is a Structured Robot Language 'developed at 
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the University of Karlsruhe, West Germany. It is based on 

experiences with AL and Pascal and uses the frame concept to 

specify the relationship between objects. One of the 

features of the SRL compiler is that the output is a machine 

independent code called IRDATA, a defined standard, which 

can then be executed by any machine with a IRDATA 

interpreter. SRL has several movement commands to provide 

linear interpolated movements, straight line movements, 

circular movements, and user-defined polynomials. 

Multitasking is provided to allow parallel execution of code 

segments. Sensors can be interfaced through digital ports, 

and monitored at regular intervals of time. Blume [68] 

quotes the following example of how a movement is terminated 

when a reading of greater than 50 is received in the tactile 

sensor: 

DO EVERY 100 MS WITH PRIO = 5 
INPUT (tactilesens); 

WHEN tactilesens.xaxis > 50 
DURING 

SMOVE puma TO table 
DO WITH PRIO = 1 

STOP puma; 

The command INPUT(tactilesens) is executed every 100 

,milliseconds and provides the interface to the tactile 
\ 
I 

sensor. When the reading from the sensor exceeds 50 the 

movement of the Puma robot is stopped. 

SRL provides an interface to a world model and uses AL-

style affixment statements of the form AFFIX and UNFIX to 

manipulate objects. 

LAMA-S [69] uses APL as the implementation language, 

and frames to specify robot movements. Although facilities 

for parallel processing are provided, the syntax of APL is 
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not conducive to efficient interactive programming. 

2.3.5 Levels of robot programming 

The object of high-level languages is to provide 

indirection, such that a requirement, rather than a list of 

primitive instructions, is entered. Robot manipulator 

languages have traditionally been divided into three levels 

of complexity. At the lowest level, the manipulation level, 

the program is concerned with sequencing the manipulator 

through a series of move commands. For example 

MOVE A 
MOVE B 
MOVE C 

where A, B, and Care pre taught positions. These positions 

may be recorded as joint angles or as homogeneous 

transformations. Examples/of such programming Systems are 

VAL and AL. These are refered to as manipulator level 

languages because the effect of each action is to transform 

the state of the manipulator. If the locations A, Band C 

happen to correspond with some other physical objects then 

it is possible to transfer the state of an object. But the 

level of direction is towards the manipulator rather than 

the object. For example 

OPEN GRIPPER 
MOVE A 
CLOSE GRIPPER 
MOVE B 
OPEN GRIPPER 

This program could be used to transfer an object at position 

A to a position B. Although the objective of the program was 

to move an object, the specification of the task was done at 

the manipulator level, and the location of the object was 

assumed to coincide with the position A. 
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An alternative representation of this could be 

constructed at the object level, the second level of robot 

programming. The primitive actions are to manipulate objects 

rather than the manipulator, so that the above program could 

be written as 

MOVE OBJECT FROM A TO B 

Although execution of this will require movements of the 

manipulator, these movements are implied by the higher-level 

demand to transfer the objects. To execute this command 

satisfactorily, the manipulator must know, or be able to 

compute, the exact position of the object and the re~uired 

coordinates of its destination. Hence, although object-level 

programming allows a higher-level specification of actions, 

it requires a more complex interpreter to infer the 

positions of the components. RAPT and AUTOPASS are examples 

of object-level programming systems. The transformation from 

the object-level specification to the manipulator-level 

specification is done by a task planner [29]. To do the 

transformation, the planner must have a description of the 

objects being manipulated, the environment, the robot and 
, . ~ 

the desired final state. The output from the planner is a 

manipulator-level program to implement the actions. 

The third level of robot programming, the task level, 

involves specifying complete robot tasks through a single 

statement. Will [70] quotes as an example 'ASSEMBLE 

(Typewriter)'. This level of language assumes that a 

typewriter is a known object and the order of parts-mating 

to assemble the object from a number of components is known. 

Such programming languages are still a research area and it 
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is likely that CAD systems, expert systems and artificial 

intelligence will have strong influences on their 

development. 

There is inevitably a trade-off between the level of 

programming and the complexity of the interpreter to achieve 

that level of programming. Too high a level leads to complex 

problem-solving situations where inter-related sub-goals 

necessitate an iterative solution. Too low a level makes the 

programming tedious and prone to error. 

2.3.6 Assessing the performance of sensor-based robot 
control system 

A European benchmark for the comparison of assembly 

robot programming systems has been described by Collins 

[71]. The time taken to program the assembly of .. a test-piece 

using a number of commercial robot programming languages was 

examined. As we 11 as looking at the time required to teach 

the assembly operations, it is important to consider other 

factors. How easily can the program be changed to cope with 

changes in the size and shapes of parts? Can sensors be 

introduced if errors indicate that they are necessary, and 

~an the type of sensors be dictate~ by the programmer rather 

than the programming language? Another important factor is 

how quickly the program will execute, although this is often 

a function of the mechanics of the manipulator rather than 

the software. 

£.4 Errors and sensing 

The requirement to use sensors in an assembly operation 

reflects the fact that there is some uncertainty in the 
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relationship of the robot to the environment. This 

uncertainty could arise from robot errors, object position 

errors, or perhaps sensor errors. Whitney [72] and DeFazio' 

[73] considered that the assembly operation can be modelled 

as a stochastic process, and show how stochastic control 

theory can be used to provide adaptive modelling of process 

parameters. 

Studies at the Charles Stark Draper Laboratory [40] and 

Marconi Research Laboratories [41] have demonstrated the 

magnitude of the expected errors in the accuracy and 

repeatability of an industrial robot. Depending on the 

accuracy to which components are positioned, there may be 

errors in locations of a part. Using a sensor to detect such 

errors can provide the necessary information to implement 

closed-loop feedback. However, the sensor itself may also be 

a Source of noise. 

Rather than actively sensing the error and applying 

feedback, an alternative approach is to used engineered 

compliance [3]. By providing chamfers on tools and parts, 

the errors can be absorbed by the displacement of the 

compliance. Pioneering research at the Charles Stark Draper 
, I ~ \ 

i 

Laboratory has produced the Instrumented Remote Centre 

Compliance (IRCC) [4],[74]. With this device, both angular 

and lateral errors can be absorbed up to about 1 degree and 

3mm respectively. Hence, a significant speed improvement 

oVer closed-loop sensing can be achieved and at reduced 

cost. Using information from the sensors in the device, 
'. 

errors can be fed-forward into the next cycle. This 

eliminates cummulative errors caused, for example, by an 
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incorrectly taught spacing of a pallet of components. This 

type of feedback, which operates between cycles, is called 

long-term feedback. 

Whitney [75],[76] divided sensory feedback into two 

catorgories, short-term and long-term feedback. Short-term 

feedback is defined as adaptive behavior in which sensory 

input and corrective output occur within a single task 

cycle. In contrast, long-term feedback, operates between 

cycles and uses the total applied corrections of one cycle 

to try and improve the initial estimate for the next cycle. 

Long-term feedback provides a means of processing past: 

errors as well as current errors and is particularly 

valuable when the sensors themselves are a source of error. 

In practice, once a robot program has been correctly taught, 

it is unlikely to run forever without further corrections. 

Over a period of time, tools, jigs, and fixtures may wear or 

shift in position. Wear also affects actuators, which will 

show as a deterioration in the repeatability over time. 

Dimensional variation in different batches of parts are 

inevitable. All these factors can be handled by long-term 

f~edback, which obviates the need fqr reteaching by the 
I 

operator. Work by Simunovic [77] has shown that results in 

optimal control and Kalman filtering can be used to process 

sensor information. Defazio [78] used a Kalman filter to 

model the effects of robot and sensor noise in estimating 

the location of a part which was subj ect to some 

uncertainty. The Kalman filter [79] provides a means of 

estimating a noise-corrupted state, say a robot· location, 

Using a measurement process, the sensor, which is itself 
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subject to some error. In addition to estimating locations, 

similar techniques have been applied to modelling contour 

processes [80]. 

Analysis of trends in errors may provide information to 

indicate a shifting environment or a sensor failure. DeFazio 

[73] suggested that a statistical index of confidence could 

be used to quantify the certainty of, and expected error in, 

a location. As this confidence varied, the speed of motion 

of the manipulator could also be varied. These profound 

ideas form a significant stimulus for the work in this 

thesis. 

Ranging from simple proximity sensors to high-

resolution vision sensors, the range of complexity of sensor 

information is considerable. Languages such as VAL, provide 

input-output lines through which simple sensor conditions 

can be monitored. Although additions to the language can 

provide vision processing [81] there is no truly universal 

interface to process sensor information. Indeed this is true 

of the majority of commercial robot languages. The user is 

restricted to the types of sensor which the language will 

s\lpport rather than the types of sen~or which would best 
I 

sol ve"the problem. 

Brook [82] claimed that the real problem in sensory 

robotics is not so much finding suitable sensors, but rather 

in COping with complex information, and particularly 

information"which may be unreliable. Vision sensors can 

provide a great deal of data, although not necessarily much 

information. The problem arises when this data is processed 

to extract information. For real-time robot control based on 
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visual feedback, high-speed vision processors are required 

to extract pertinent information from the scene and provide 

error signals for the servo loops. Rather than exhaustively 

process the data from a single source, Henderson [83] 

advocates distilling data from a number of sources, and 

proposes a spatial proximity graph as a way of combining the 

data. Providing redundant sensor information not only allows 

sensor-failure to be detected, but also allows a consensus 

of opinions to be taken. No sensor can be perfect, and the 

data must be subject to some random error arising in the 

detection, sampling, digitization and subsequent processing. 

The mechanism by which the sensor information is 

manipulated in the robot control program is often a 

significant shortcoming of commercial robot programming 

languges. Efficient and easily-accessed sensor information 

is highly desirable in a robot programming language. Chern 

[84] proposes a 'sensor variable' which is treated like any 

other program variable, yet whose value is not fixed, but is 

determined by an external source. At compilation time, a 

physical relationship is established between the sensor name 

and" physical ports. Subsequent reference to the sensor 
I 

causes the port to be interrogated automatically. Hence the 

acquisition of sensory data is expressable within the syntax 

of the base language. As an example, if FORCE is a defined 

sensor variable and 'limit' is a normal variable, then the 

command line 

If (FORCE > limit ) abort 

would compare the current value of the force to the value of 

the constant 'li~it' and abort the program if necessary. 
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Henderson [83] proposes a Multi-sensor Kernel System 

(MRS) to provide an efficient and uniform mechanism for 

dealing with data taken from several diverse sensors. A key 

feature of MKS is the logical sensor specification [85]. A 

logical sensor is an information processor whose inputs are 

either physical devices or the output of other logical 

sensors. The output of the logical sensor is a set of 

vectors which characterize the inputs. Hansen quotes, as an 

example, the logical sensor specification of a 'camera', 

comprising the physical camera at the input and an output 

vector representing the X and Y position and the intensity 

of a picture element. The outputs from two such logical 

sensors could be inputs to a third logical sensor, a range­

finder for example, which processes the information to give 

an output vector corresponding to range. Logical sensors 

defined in this way can be combined to form networks. 

Geschke [86] recognised the need to provide effective 

processing of sensor information at the low level servo 

processes. He proposed a Robot Servo System (RSS), such that 

the programmer specifies a servo-loop together with a 

termination criterion. For-example, to\move the robot to a 
I 

pretaugtit point A the command 

wait until Ir$grip - AI; Iss 0.1; 

would be issued. The effect of this would be to suspend 

program execution until the difference between the robot 

gripper and point A was less than O.1cm. Geschke describes a 

'vision' command which allows "the termination condition to 

be calculated from the error in the position of a part. 

Facilities for force and torque sensing are also provided. 
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The problem of automatic error recovery is an active 

research area [87]-[89]. The object is to automatically 

identify the errors and instigate a recovery procedure 

without the programmer needing to explicitly state the 

course of action. Automatic error recovery requires a 

detailed knowledge of the robot's operating environment, 

which will be changing with time. It must also use past 

information to aid the diagnosis of the problem. The cause 

of an error depends not only on the error itself but also on 

the context in which the error occured. It is likely that 

artificial intelligence will have an important role to play 

in the development of an automated error recovery system. 

Gini [87] describes a framework for identifying an 

appropriate recovery procedure using a knowledge base 
,. 

containing information about correction actdvities and 

interpretation of sensor data. Unexpected changes during the 

execution of the program are detected by comparing expected 

outcomes with actual outcomes. Further information may then 

be requested from sensors before error correction is 

attempted • 

• There is a large gap between the~pplication of 
I 

artificial intelligence to reasoning and planning, and the 

structuring of robot programming languages to provide 

efficient control. Automatic error recovery is an 

application of artificial intelligence which may help to 

bridge that gap. 

~.5 Hardware implementations of robot control systems 

The need to integrate a number of sensors and actuators 

has promoted the development of distributed processing 
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facilities. Although centralized control systems are still 

popular among commercial robot systems, there are advantages 

in distributing the processing of data between a number of 

sub-systems. These advantages include greater modularity and 

flexibility together with improved reliability. For multi-

sensor robot assemblies, it is logical to assign one 

processor per sensor, coordinating the processed information 

with a central controller. Such an approach is described by 

Karkkainen [90] and Mitchell [91]. Research at the 

University of Hull [91 ],[92] has produced a master-slave 

architecture in which each sensor and actuator has its own 

controller. The role of the master is to coordinate the 

information flow and to execute the main control program. 

Implementing parall~l processing on such a system is. 

Possible but is not supported by any commercially available 

software. This is a severe drawback to the efficiency with 

which such a system can be programmed and a I imi ta tion on 

the overall performance. Albus [93] describes a three-level 

hierarchical control system, developed at the U.S. National 

Bureau of Standards, to permit multi-level sensor servoing 

. to b~' performed. Di llman [94] describe;i a structured 

multiprocessor system with individual modules for sensor 

control, arithmetic, and trajectory calculations. 

Although advantages are to be gained from the hardware 

point of view, .a multiprocessor system is more difficult to 

program efficientiy. Computer languages designed to permit 

multiprocessor computation are still research issues. 

Research at the University of Hull [95] is investigating the 

Use of Modula-2 for distributed processing in a robotic 
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work-cell. Kerridge [96] described a robot arm controller 

written in Occam and employing parallel control for the 

movements of the arms. The use of the parallel language 

Occam together with the exciting potential offered by the 

transputer [97] may provide an environment for high-speed 

distributed computing in a robot work-cell. The problems in 

programming for multiprocessor systems are twofold. Firstly, 

partitioning the software into appropriate modules, although 

these problems are alleviated if a different processor is 

Used for each function, e.g. vision, robot control, force 

sensing etc. The second problem is synchronizing the 

processing and interchange of information between the 

modules. 

Although parallel processing in multiprocessor .systems 

is difficult, traditional serial processing can be readily 

employed, and some of the advantages of a distributed 

processing system retained. A request can be issued to one 

system for some data, and the requesting system can wait 

until the data has been sent. Although no parallelism is 

Used, the advantages in terms of modularity, flexibility and 
~ 

reliability of the system are retained.' 

~.6 Summary 

Automating an industrial assembly requires the 

integration of commercial and purpose-built equipment.oAt 

-
present, the facilities provided for efficient 

representation and processing of sensor information are a 

short-fall of commercial robot controllers. Although 

Specific packages tailored to vision sensing are often 
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available, the user is constrained to choose the system 

offered by the manufacturer, rather than the one most suited 

to the application. No general-purpose sensor interface 

exists. 

The work described in this thesis considers how sensors 

and actuators can be interconnected, and how sensory 

feedback can be represented. The concept of the master-slave 

architecture for sensor-actuator communication (described in 

[91] and [92]) is developed further. The work of Whitney and 

Defazio is of fundamental importance in modelling assembly 

problems. The idea of defining confidences to reflect errors 

is formalized in this thesis and embedded in a robot 

programming system. This allows expected errors in the 

system, the actuators and the sensors to be quantified, and 

their effects on overall performance minimized. Uncertainty 

arising from noise is often unavoidable in industry and, in 

multi-sensor assemblies or problems of sensor fusion, the 

integrity of the sensors is of singular importance. 
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CHAPTER 3 

MODELLING DISCRETE SENSORY ASSEMBLIES 
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3.1 Introduction 

The work described in Chapter 2 illustrates the 

activity and breadth of the research issues surrounding 

robot programming and sensor interaction. Although many 

robot programming languages have been reported, in practice 

the user of an industrial robot has only two choices; either 

to use the software suppl ied wi th the robot, or else to 

write a new controller. Clearly, most users of industrial 

robots have neither the time nor the expertise to choose the 

second option, and hence must use the supplied software. 

This chapter decribes how commercial systems can be 

integrated and controlled, and how a robotic assembly 

incorporating sensors and actuators can be represented. 

This thesis describes the development of a programming 

tool to act as an interface between commercial robots, 

commercial sensors, and purpose-built hardware. The 

requirement is to have a single central controller which 

communicates to the sensors and actuators through a bus 

system. By defining a standard interface between each sensor 

and actuator, the information flow between the central 
\ 

controller and each of the individual stib-systems becomes 

uniform and structured. Furthermore, by employing the 

commercial robot control software, the computational demands 

imposed on the central controller are relatively small. For 

the robot, the joint computations to provide movement in a 

cartesian frame of refe'rence are done by the commercial 

software. This is interfaced to the central controller by a 

serial channel, through which commands and data are 

Communicated. This serial channel is normally used by the 
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terminal to allow interaction between the programmer and the 

robot controller. It is apparent that to send ASCII 

(American Standard Code for Information Interchange) command 

strings down a serial line for closed-loop control is 

inherently slow. However, for the class of problem under 

consideration, the overheads in sending the command strings 

are not significant. 

The advantage of sending direct commands to the robot, 

rather than writing the program in the robot's controller, 

is that the programmer is no longer constrained by the 

limitations of the robot's software. Early robot 

controllers, such as VAL, provided few high-level language 

constructions and little opportunity for sensor-interfacing. 

More recent developments, VAL II [66] and AML [61] for 

example, have improved on this, but still do not provide 

what might be termed a 'general sensor interface'. By using 

an external controller and sending commands one at a time, 

it is possible to communicate to any number of robots or 

sensors and also to represent the desired actions of the 

robot in an alternative syntax which is conducive to the 
~\ 

specification of sensory feedback. This representation can 
" 

Subsequently be translated prior to sending the command to 

the commercial robot controller. A typical environment is 

shown in Figure 3.1. This comprises a Puma 560 robot with a 

VAL controller, an indexing Xy table, a vision sensor and a 

force sensor. The central controller is an IBM Personal 

Computer, to which each actuator and sensor is interfaced 

through a controller. This architecture forms the hardware 

framework for the software developed later in the thesis. 
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Figure 3.1: A typical hardware configuration. 
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The main control software runs on the IBM and allows the 

programmer to define new sensors and actuators, define and 

execute a control program involving sensors and actuators, 

and cope with noise from the sensors, the actuators or the 

states. 

This framework can be employed with any commercial or 

purpose-built actuators and sensors. For each, a controller 

must be constructed which takes as its input a standard set 

of primitives together with parameters, and as its output it 

either sends command strings to a commercial system or else 

controls the actuator or sensor directly. In the case of the 

robot, the only requirement is that the arm 'can be moved 

using 'direct' commands typed from a terminal. In the case 

of a Puma robot with YAL, this would correspond to typing 

'DO MOVE point', to move to a pre-taught position and 'DO 

MOVE x,y,z' to move the arm by x,y,z in a world frame of 

reference. In practice most robots can be operated in a 

'direct' as well as a 'program' mode, with the only 

difference being the syntax of the command. In the system to 

be described, the role of the robot controller is to 
. ~ 

translate the commands issued from the central controller 

into the syntax required by the commercial system. The 

object of this is to allow the central controller to send a 

generic instruction followed by a set of parameters to any 

actuator. This instruction code will then be decoded and 

sent to the commercial controller to execute the command. In 

this way, the central controller can issue exactly the same 

command to move either the robot or the Xy table, say, by 

1mm in the x direction. The only difference is the physical 
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address of the actuator, which will have been taught to the 

central controller. The detailed definition of the interface 

and command codes is given in Chapter 6. 

This chapter describes the format of the robot assembly 

problems under investigation and defines the parameters used 

to represent position, velocity and also to define 

movements between pre-taught locations. Furthermore, the 

existence of errors in both the position of parts and the 

measurement process is considered. A complete appraisal of 

errors is given in Chapter 5. 

A relationship is developed between the information 

from sensors and the velocity of the actuator at different 

stages in the assembly. The result of this is to force the 

actuator to s low down in the face of uncertainty and'speed 

up when the parameters of the mode I become known and are 

unlikely to change. The model developed in this chapter will 

subsequently be used to process errors and also to allow the 

required servo-loops to be specified through high-level 

. commands. 

3.2 Discrete sensory assemblies 

The work in this thesis is concerned with discrete 

sensory assembly problems. The term 'discrete' indicates 

tha t the sensors are used to enhance the abi I i ty of the, 

-actuator to reach a point. This is to be distinguished from 

continuous sensing, whe~e the sensor would be used to 

maintain a specified trajectory or continuous path. Although 
" 

the continuous path problem is not tackled in this thesis, 

the underlying theoretical work is applicable. The major 
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problems in continuous sensing are the deficiencies in the 

commercial robot controllers in processing real-time sensor 

errors. The technique of sending direct commands to the 

robot cannot be used where servo rates of more than a few 

Hertz are required. 

Many industrial-based research projects concerned with 

robotic assembly use discrete sensing to overcome 

shortcomings in feeding accuracy and manipulator 

performance. This is increasingly true as the potential 

benefits of vision, tactile and force sensing are 

recognized. Continuous path sensing is used extensively in 

welding and seam tracking applications, and is not so 

prevalent in assembly. 

Discrete sensory assembly involves using sensors to 

fine-tune a set of pre-taught locations between which the 

actuator is instructed to move. For example, to assemble a 

product comprising a peg and a block with a hole, will 

require the position of the peg and the hole to be taught. 

The control program will involve moving to the peg, 

grasping it, then moving over the hole and releasing the 

peg. The operation may be completed satisfactorily without 

sensors if the exact position of each component is known. 

With discrete sensing, the tolerances in part positions are 

less critical, since at each stage information from sensors 

·can be used to compensate for errors. For the peg-in-hole 

problem, a tactile sensor on the robot gripper could be used 

to determine the exact position of the peg, and a camera on 

the gripper could be used to detect the centroid of the 
.. 

hole. In this example, the sensors are being used to adjust 

-45-



\ 

a location which is nominally known but which is subject to 

uncertainty. 

3.3 Definition of terms in the assembly process 

A description of the terminology used to describe the 

sensory assembly is presented. The assembly process is 

assumed to employ sensors as well as actuators, and involve 

repetitively performing a task according to a control 

program. This control program will reside in the central 

controller and will communicate with the sensors and 

actuators according to the instructions in the program. 

A 'state' is a location in the actuator's frame of 

reference defined in a three-dimensional cartesian 

Coordinate system. In practice, the states will be defined 

as the key locations ,in the work-cell represe.nting, say, the 

Positions of parts to be handled. If the location is subject 

to some uncertainty then the state represents the best 

estimate of the location and would represent the point 

around which sensory feedback is applied. As well as 

representing a location, a state may also represent an 

offset between locations, for example b~tween objects on a 

pallet. 

In general, a state will have 6 components which 

uniquely specify a position and orientation in space. For an 

actuator with less than 6 degrees of freedom, 1 or more of 

the components will be zero. No distinction is made as to 

how the state should be taught. Since the states will 

represent positions of the manipulator, they could be"taught 

through an on-line, teach-by-showing method. Conversely, for 

off-line programming they may be taught as numerical values. 
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In general 

T Xk = ( x , y , Z , 0 , a , t ) 

where x, y, z are the translational components of the 

position, and 0, a and t are the orientation components 

defined by the Euler angles [46]. These 3 angles describe 

any possible orientation in terms of a rotation about the z 

axis, then a rotation about the new y axis and finally a 

rotation about the new z axis. Once these 6 components have 

been taught, it is possible to construct a 4x4 homogeneous 

transformation matrix to describe the state Xk • This is 

obtained by combininqthe effects of the 3 rotations and the 

translation, giving the state Xk as [46] 

[ 
Co.Ca.Ct - So.st -Co.Ca.Ct - So.Ct 

Xk = So.Ca.Ct + Co.st -So.Ca.St + Co.ct 
-So.ct Sa.Ct 

0 0 

where Co = Cos(o), Ca = Cos(a), ct = Cos(t) 
and So = Sin(o), Sa=Sin(a) st = Sin(t). 

Co.Sa 
So.Ca 

Ca 
0 

It is convenient to represent the states in this manner 

because these matrices can readily be combined to calculate 

new positions based on sensor information. Once the sensor 

information has been formulated into a 4x4 matrix, see 
I 

Section 4.4, the.new actuator position can be derived by 

multiplying the two matrices. The new x, y and z components 

are explicit, but the desired orientation of the state must 

~e calculated by solving equations in sines and cosines to 

get 0, a, and t: this can be non~triviai. 

A number of commercial robot programming languages, for 

example VAL, are based around these 4x4 homogeneous 

transformations. When a location is taught to VAL, it is the 
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4x4 transformation which is calculated and stored, (although 

the programmer does not have access to the specific elements 

of the matrix). With a view to developing a programming 

system to operate in conjunction with an existing robot 

control language, it is sensible to represent.states by such 

matrices. 

The 'assembly process' is a controlled sequence of moves 

between the defined states, using sensory feedback where 

necessary. The sequence and the nature of the movements will 

be defined in the control program. 

The 'system nois_e' is the likely variation in the 

position of a state due to random perturbations in system 

parameters. The ill-positioning of components and the 

performance of the actuator can contribute to the sys,tem 

noise. If parts are being fed from a feeder o'r dispenser, 

the variation in the exact position of the part is a cause 

of system noise. Assume that the noise can be modelled by a 

random variable, Q., having mean r. and variance u .• Hence, 
-~ -~ -~ 

the mean and variance of the errors in each component of X. 
-~ 

is specified by the corresponding component of r i and u i • 

Tae 'measurement noise" is the 1 ike~y variation in the 

measured value of a constant state. It arises from the noise 

in the physical measuring transducer, conversion noise, 

robot noise and the coordinate-frame transformation errors 

between sensors and actuators. Assume that this noise can be 

modelled by a random var~able Rk of mean zero and variance 

vk• Hence, vk represents the variance of the measurement 

noise of the kth sensor. 
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3.4 Confidence of a state 

DeFazio [73] proposed the idea of confidences, with a 

view to varying the robot's speed in accordance with the 

certainty with which a location is known. This section 

develops this concept to provide a parameter to quantify the 

magnitude of previous errors and hence provide a mechanism 

to control the speed of the actuator to reflect these 

errors. In traditional robot control systems, the speed at 

which the actuator moves to a position does not change 

between cycles. (There is of course speed variation within a 

cycle as the actuator. moves between different locations). It 

is, however, intuitively appealing to automatically vary the 

speed to reflect changing conditions; slowing down in the 

face of uncertainty and speeding up as the errors reduce. In 

practical terms, the effect of changing the speed could be 

to reduce the location-overshoot associated with high speeds 

and to improve the effective sensing rate. If the speed of 

the actuator is reduced and the sensing rate remains 

constant, the effect is to increase the resolution of the 

sensing process. To achieve this, however, requires a degree 

of parallelism between moving and sensin~, this may be 

difficult to attain. The overriding advantage of dynamically 

adjusting the actuator's speed arises when there is a fatal 

error, for example trying to insert a peg into a hole w~ich 

does not exist. If the actuator is moving-slowly, then there 

is more chance of stoppipg it, hence preventing a 

catastrophy. If the error in the previous cycle was l~rge, 

it may have been possible to predict that the hole position 

was not accurately known. Using dynamic velocity control, 

-49-



" 

this previous error would have resulted in a reduced 

confidence and hence a reduced velocity. 

The 'confidence' of a state is defined as the certainty 

that the current value of the state is correct. If the state 

represents, for example, the centre of a hole, then the 

confidence of the state is the certainty that the vector 

representing the hole's position is correct. The confidence 

will be a vector, such that the confidence of each component 

of the state is predicted by the corresponding component of 

the confidence vector. If previous iterations to a state 

have necessitated considerable corrections from sensors, 

then the confidence of the state would be small, and in the 

limit approaching O. The confidence will be increased if the 

sensors indicate small or zero errors, in the limit 

approaching 1 as the coordinates of the location become 

known. If the location is subject to random errors from 

system noise, then the confidence can never become equal to 

1 because there will always be some uncertainty in the 

location. Define TI as the confidence of the lth state, and 

I et the components of T I take va I ues between 0 and 1. The 

numerical value of the confidence will d4pend on the 

relative sizes of the system and measurement noise. In 

Chapter 5 it will be shown how a numerical value of TI can 

be computed based on estimates of the system and measurement 

noise. In practice, computation of a state confidence does 

not provide sufficient information from which the velocity 

of the actuator can be computed. In the absence of any 

sensors, the speed of the actuator would always be the same. 

At some stages in the assembly, sensors will not be used, 
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but different actuator velocities will be required in 

performing different types of operation. This problem is 

solved by introducing another parameter. 

3.5 Sensitivity of a state 

In addition to defining the confidence of a state, it 

has been found necessary to introduce another parameter, 

which has been called state-sensitivity. The 'sensitivity' 

of a state is a normalized parameter which is used to 

quantify the required accuracy to which the state must be 

known. Consider the task of inserting a peg in a hole. 

Define the state X to "represent the coordinates of the hole 

centre. If the hole is chamfered then the exact position of 

the peg with respect to the hole is less critical, hence the 

sensitivity is reduced. If, however, the hole,is 

unchamfered, then the peg must be positioned much more 

accurately, hence the sensitivity is high. Unlike 

confidence, the sensitivity need not vary, since it 

represents a physical property of the state. 

The numerical evaluation of state-sensitivity is based 

on the magnitude of the largest tolerabl~ error in the 
\ 
I 

vicinity o~ a state. Define Al as being a 6-component vector 

where each component represents the magnitude of the maximum 

tolerable error of the corresponding component of the state. 

Then, if FI is the sensitivity of the lth state and take"s 

values between o and 1, let FI be calculated from Al using, 

(i=1 •• 6) ( 3 • 1 ) 

In practice, a sensible range of sensitivities are produced 

if Al is expressed in millimetres (mm). Hence, if a position 
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is to be attained to a positional accuracy of .:!:..1 mm in the x-

direction, the value of Al1 would be 1 and hence Fl1 = 0.5. 

If ~l = 0, implying zero tolerance, then F I =1. A set of 

values of Al and the corresponding FI calculated from 

equation 3.1, are tabulated in Figure 3.2. 

Tolerance Sensitivity 
(AI' ) - ~ 

mm (Fli ) mm-I 

0 1 .0 
0.1 0.91 
0.2 0.83 
0.5 0.66 
1 .0 0.5 
2.0 0.33 
5.0 0.17 

10.0 0.09 

Figure 3.2: A set of values of tolerance 
- and sensitivity. 

3.6 Controlling the actuator's speed in response to past errors 

Once the states associated with a specific assembly 

problem have been defined, the program to perform the 

assembly is constructed by defining conditional moves 

between states. The syntax of this construction will be 

discussed ~n Chapter 4. It is proposed that the sensitivity 

of a state and the dynamically changing confidence will be 

used to calculate the velocity of the actuator as it 

approaches and leaves a state. Therefore, within the control 

program there will be no commands to set the actuator's· 

speed directly. Although this technique·could be applied to 

" continuous velocity control, the approach taken in this 

thesis is to restrict attention to discrete control. Hence 

states will be approached and departed at a constant 
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velocity, the magnitude of which is calculated adaptively. 

Consider the action of moving the actuator between two 

states. Within the control software of the manipulator, 

there will probably be existing facilities to control the 

trajectory. In VAL, for example, movements can be made in 

joint-interpolated motion or straight-line motion. Under 

different circumstances both may be desirable. Since the 

velocity of the actuator is calculated in the vicinity of a 

state, there will be two calculated velocities for each 

movement, one for the first state and one for the 
" 

destination state. Using a combination of sensitivity and 

confidence, the components of velocity in the vicinity of a 

state can be calculated. Define Nl as the velocity of the 

actuator as it approaches the lth atate. The~, 

(i=1 •• 6) (3.2) 

Since F 1 i and T 1 i both take on va 1 ues of between 0 and 1 , 

Nli represents a normalized velocity. The velocity vector Nl 

will therefore give the desired velocity for each component 

of the state. The speed is computed by forming the scalar 

produ~t of the velocity with_the vector_{epresenting the 
I 

directionnof approach of the state. This is formalized in 

the next section. It is seen from equation 3.2 that if the 

sensitivity of the state is high then the speed of approach 

is low. Similarly, if the confidence is low then the sp"eed 

is low. 

The next section addresses. the problem of how to move 

the actuator between the two states, such that the velocity 

in the vicinity of the two states is controlled to satisfy 

equation 3.2. 
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3.7 Transferring the actuator between two states 

Since the velocity of the actuator is only constrained 

within the close proximity of a state, let the transfer of 

the actuator between two states be a three-stage process. 

The first stage will be a controlled movement away from the 

initial state, Xl' to a another point Yl , such that 

Yl = Xl + d l ( 3 .3) 

where d l is called the departure vector associated with the 

state Xl' as shown in Figure 3.3. In practice this departure 

vector wi 11 be chosen such that Y 1 is a safe distance from 

!l. The need for a departure vector can be recognized by 

consideration of the peg-in-hole assembly depicted in Figure 

3.4. If Xl represents the position of the manipulator 

corresponding to the peg inserted in the hole, then Yl 

represents the position of the manipulator for the peg clear 

of the hole. Call Yl the intermediate state of Xl. It is 

clear that the path between Xl and Yl is critical and must 

lie in the axis of the hole, otherwise undesirable forces 

will be exerted during withdrawl. The departure vector for 

the state Xl is therefore defined as a vector centered on Xl 

whose magnitude and direction" are chosen~to achieve a safe 

approach and departure path for motion to the state. For the 

peg-in-hole problem, this direction is along the axis of the 

hole, and the magnitude is sufficient to ensure that the peg 

is clear of the hole at Y 1. During the movement of the 

actuator between the Xl and Yl the velocity is to be 
.' 

governed by equation 3.2, and will be constant until the 

actuator reaches Yl • The speed of the actuator, sl' ~s given 

by the magnitude of the scalar product of the velocity and 

-54-



Xl 

y , 
-1 

d ' -1 

X ' -1 

Figure 3.3: Transferring the actuator between two states 
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Figure 3.4: The peg-in-hole assembly problem. 
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the departure vector, that is 

(3.4) 

Now consider the actuator moving to the final state, call it 

xt ' which has departure vector dt and associated position 

Yi ' see Figure 3.3, such that 

The following stages in the transfer between Xl and Xi 

are identified 

stage 1 : 

stage 2 : 

stage 3 : 

Transfer from Xl to Yl 

Transfer from Yl to Yi 

Transfer from yl to Xl 
-1 -1 

(3.5) 

The motion between ~l and Yl has been discussed. The motion 

between yt and xt is similar and is constrained by the path 

di • For this motion, the velocity is calculated from"the 

sensitivity and confidence of the destination state, Xk ' 
using equation 3.2, as 

Ni i = (1 - Fii).Ti i (i=1~.6) (3.6) 

where Fti is the ith component of the sensitivity of the 

destination state and Tti is the ith component of the 

confidence of the state. The speed of approach of the 

destination state is therefore, 
\ 
I 

(3.7) 

Since, in general, both Yi and Yl will be close to Xi and Xl 

~espectively, the magnitudes of the vectors d l and di wiil 

generally be smaller than the distance between Xl and Xi • 

Hence, the largest movement will. be made between the 

intermediate points Yl and xt • This is called the gross 

motion. The initial departure of a state, from Xl to'Y l , and 

the final approach, from Yi to Xi, are the fine motions. For 
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the pa th Y 1 to Y i ' a 1 though the movement distance may be 

large, the constraints on the path are less than those 

imposed in the locality of the states. Therefore, it is 

neither necessary nor practical to control the speed in the 

same way. Hence, in the absence of any other information, 

assume that the speed for the gross motion is constant and 

may be pre-set to a suitable value for each actuator. In 

practice it may be necessary to impose some constraints in 

the gross motion phase to avoid obstacles. The speed, 

however, need not change. This problem is one of planning 
<-

the trajectory subject to the constraints imposed by the 

presence of objects. A simple solution here is to define 

sufficient extra points such that a safe path is described. 

The problem is beyond-the bounds of this thes~s. 

In summary, the motion of the actuator between two states 

wi 11 be as follows: 

1. Calculate the departure velocity for the current 

state based on the current confidence and 

sensitivity of the state. 

2. Move the actuator to the locatio~\Yl along vector d l 
I 

with the velocity calculated in step 1. 

3. Move the actuator between the two intermediate 

points Yl and Yi at a pre-set (constant) velocity. 

4. Calculate the approach velocity for the destination 

state based on the current confidence and 

sensitivity of that state. 

5. Move the actuator to the state Xi along the 

vector -9.i ' -with the velocity calculated in step 4. 
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The definition of the departure vector for each state could 

be done at the same time as the state itself is defined. 

However, since the departure vector is defined relative to 

the state, it would be simple enough to define this vector a 

p~io~i. By representing the departure vector as a 

homogeneous transformation, the position of the intermediate 

points can easily be found by combining the matrices for the 

state and the departure vector. 

3.8 Sensory feedback 

Once the states associated with the system have been 

taught, the control program to instruct the actuators to 

move between the states must be formed. Sensors will be used 

to fine-tune the state position such that a desired sensor 

.' condition is fulfilled. Hence, in general, the object of 

moving the actuator will be to transfer the current sensor 

reading into a new sensor reading. Consider the task of 

moving a gripper-mounted camera to the centre of a hole. The 

nominal position of the hole will be known, but the actual 

position may be subject to uncertainty. The sensor will 

provide error information which will be ~sed to servo the , , 
i 

robot to the desired position. This operation may be 

sUIJ1marized as, 

1. Move to the state representing the nominal position 

of the hole, using the procedure described in 

Section ~3. 7. 

2. Compute the error in position using the vision 

sensor. 

3. Correct for the error by moving the robot. 

4. Repeat steps 2 and 3 until the error is zero. 
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Assume that the movement to a state will be carried out 

repetitively as part of a control program. Define a 

'cycle' to be one complete execution of the program. At a 

particular state, the task of sensing and then.moving the 

actuator, steps 2 and 3 above, is termed an 'iteration'. The 

number of iterations necessary to satisfy the termination 

criterion (see Section 4.5) will depend on the noise and 

transformation errors in the system. If the system and the 

measurement are noise-free, there will be zero iterations 

because the position of the actuator after the gross motion 

and the fine motion will be correct. In general, the system 

error will be non-zero and the sensors will detect an error. 

If the measurement process is noise-free and the 

transformation between the sensor-error and the world-error 

is accurate, then only one iteration will be necessary 

because the perceived error will be immediately corrected. 

Measurement noise will be an additional component to the 

perceived error, the result of which will be that the 

expected number of iterations before the termination 

criterion is met will increase as the vatiance of the 

measurement noise increases. The implications of this are 

discussed fully in Chapter 5. 

The application of sensory feedback begins after the 

fine motion phase, which completes the transfer of the 

actuator to the new state. This final phase is referred to 

as the feedback phase. 

The termination condition for the cycle occurs when the 

desired sensor conditions have been met, (this criterion 
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wi 11 be enhanced in the next chapter) and hence the purpose 

of the operation may be thought of as achiev ing a set of 

specified conditions in the sensors. Given an initial sensor 

reading and a desired final sensor reading, the problem is 

one of how to move the actuator to achieve the goal. Unless 

the initial and final position are close, the sensor 

readings alone will be insufficient to define the final 

position. The sensor will only provide information within a 

fini te domain and hence can only be used to fine-tune 

positions. For example, a camera used to determine the 

position of a hole fOLa peg-insertion will only be useful 

if the hole is within the field of view of the camera. 

Hence, the nominal position of the robot must be given to 

sufficient accuracy so that the sensory servoing can achieve 

a unique end-point. The fine and gross motion phases of the 

cycle represent the movement to the nominal position, prior 

to application of sensory feedback. This' is summarized in 

the timing diagram of Figure 3.5. 

Upon completion of the servoing, the final position of 

the actuator is the new estimate of the desired state. By 
-. 

combining this measurement with the curreht estimate, which 

is the value used in the first iteration, it is possible to 

detect the situation of drift and hence cummulative errors. 

The problem is tackled using long-term feedback. 

3.9 Application of long-term feedback 

The distinction between short-term'and long-term 

feedback was made by Defazio [73] and Whitney [76]. In the 

context of the assembly problem described in this chapter, 

short-term feedback represents the feedback applied in the 
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Figure 3.5: Timing diagram for a cycle of discrete sensory feedback. 
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servoing. Long-term feedback, on the other hand, would be 

applied between cycles, to try and improve the initial 

estimate of the state for the start of the next cycle. The 

need for long-term feedback can be appreciated by 

considering the following example. 

A pallet holds a regular array of parts to be handled. 

The spacing between the parts is known, but is erroneous. On 

each cycle, the robot is to pick up a component for 

subsequent mating, and then compute the position of the next 

part using the offset. In the first few cycles, the spacing 

error is absorbed by the grasping action of the robot, but 

after a while the cummulated error is too large to be 

accommodated and the grasping operation fails. Even if 

sensors were used in the grasping, the situation would not 

be improved without the use of long-term feedback. Although 

the position of the part with respect to the gripper could 

have been deduced, after a few cycles the cummulated error 

would be too large to be measured by the sensor. Using long-

term feedback, the error in each cycle would be used to 

adjust the starting position for the next cycle. This will . \ 
I 

allow drift to be detected and hence avoid cummulative 

errors. 

The application of long-term feedback to discrete 

sensory assemblies requires the total correction applied 

during sensory feedback to be recorded and the mean value of 

the system noise over consecutive cycles computed. This is 
" 

discussed in more detail in Chapter 5, where the algorithm 

for computing the system noise is described. 
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3.10 Summary 

This chapter has described a general framework for 

modelling discrete sensory feedback in robotic assembly. The 

timing diagram shown in Figure 3.5 summarizes the phases of 

the actuator movements and the nature of the interaction 

between the sensors and the actuators. 

The confidence of a state is a vector, where the 

magnitude of each component reflects the certainty that the 

corresponding component of the state is correct. Chapter 5 

wi 11 show how the expected error in the system and the 

measurement can be used to compute a va 1 ue for the 

confidence. In conjunction with the sensitivity of a state, 

the confidence is used to adjust the actuator's velocity in 

the close proximity of a state. 

Since object-level programming describes manipulator 

movements to achieve conditions in objects, the term 

'sensor-level programming' has been adopted to describe the 

specification of manipulator movements to achieve conditions 

in sensors. In the hierarchy of robot programming languages 

(Section 2.3.5), sensor-level programming lies between the 

"'" manipuIator level and the object level. The requirement is 
.. 

not to give the manipulator movements explicitly, but rather 

to infer them, to achieve the stated conditions in one or 

more sensors. Hence the purpose of each actuator movement is 

to transfer the condition of the sensors in the workcell 

from the current set of readings to a new set. The software 

must automatically compute the magnitude and direction of 

the correction to be app 1 ied in order to reduce the error to 

zero. Sensor-level programming is discussed fully in the 
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next chapter. 

"" \ 
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CHAPTER 4 

SENSOR-LEVEL PROGRAMMING 
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4.1 Introduction 

The object of a robot programming language is to 

coordinate the resources of a robot work-cell to manipulate 

objects. Rather than specifying robot movements explicitly, 

the trend of researchers is to provide indirection. In this 

way, the robot movements are inferred to achieve a goal in 

terms of some aspect of the system other than the robot's 

position. Object-level programming, where the level of 

indirection is aimed at specifying effects in objects, is an 

active research area [33],[97],[98]. In object-level 

programming, the required actions are expressed in terms of 

objects and the interpreter must compute exactly how the 

robot is to be moved in order to achieve those actions. If 

the objects are positioned inaccurately, sensors may be 

required to achieve successful mating, although the use of 

such sensory information is transparent to the programmer. 

An assembly problem to move block A onto block B may be 

written in terms of an object-level program as 

MOVE BLOCK A ON BLOCK B 

To execute this, the robot control system must firstly 
""\ 

compute the exact positions of the blocks, and then plan a 

series of movements which can be executed by the robot 

controller. Because grasping of the blocks is involved, 

control of the robot's gripper is also required. The output 

of the object-level programming system for the above example 

may be, 

OPEN GRIPPER 
MOVE TO A 
CLOSE GRIPPER 
MOVE TO B 
OPEN GRIPPER 
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This manipulator-level program gives movement instructions 

to the manipulator in order to achieve the desired object-

level specifications. It is seen that the object-level 

specification is more compact but requires a complex 

interpreter to produce the manipulator-level program. 

Consider the case where the posi tions of blocks A and B 

are imprecisely known. To cope with this, a gripper-mounted 

camera is used to provide feedback information from which 

the exact position can be computed. The object-level 

specification of the task remains unaltered because the same 

effect in the objects is required. However, the manipulator-

level specification must be arnrnended to include information 

from the camera. This can considerably increase the 

complexity of the manipulator-level program. 

The need to integrate sensor information with a 

manipulator-level program, of the form described above, 

almost invariably produces untidy and unstructured code. 

This is the problem which is addressed in this chapter. The 

aim is to enhance a manipulator-level language to provide 

facilities for efficient representation of sensory feedback. 

This will produce a robot programming system whose level of 

direction is sensor rather than object or manipulator. 

4.2 Sensor indirection 

This thesis defines a new level of robot programming, 

which, by analogy with object-level programming, is called 

sensor-level programming. In sensor-level programming the 

" level of indirection is to transfer the current readings of 

the sensors into a new set of readings. As is the caie for 

object-level programming, the movements of the robot are not 
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specified explicitly, but are inferred and hence must be 

computed such that the desired sensor conditions are met. 

Unlike object-level programming, the sensor-level of 

indirection is not sufficient to uniquely specify the 

movement of the manipulator. To transform objects, the start 

and end positions can be calculated and a trajectory 

planned. In sensor-level programming, the desired state of 

the sensors cannot be used to infer the position of the 

manipulator. The sensors will provide relative positional 

errors over a finite region, from which only relative 

movements of the manipulator can be computed. 

In Section 3.8, the stages involved in achieving sensor 

conditions were identified. Since the sensors will provide 

only relative errors,'the required sensor cond~tions must be 

qualified by giving the nominal position of the manipulator 

around which sensory feedback can be applied. Hence, the 

primitive operation in sensor-level programming is 

MOVE actuator TO state ACHIEVING condition IN sensor 

where 'actuator', 'state', 'condition' and 'sensor' are 

parameters which will be provided in the ~eneral movement 

command. Th~s can be regarded as an extension of the 

manipulator level command which is of the form 

MOVE actuator TO state 

In practice, the structure of the primitive sensor-level 

programming operation shown above does not allow some 

important actions in sensor-based robot assembly to be 

represented. Sometimes, the information from the sensor is 

not used in a servoing loop, but instead is fed-forwaord to 

adjust a future location. This is the case if, for example, 
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a camera is used to locate the posi tion of a hole into which 

a peg will later be inserted. Thus, define a second 

primitive, the object of which is to firstly compute the 

difference between the current attribute value and the 

desired attribute value, then to transform this into a world 

frame of reference, and finally to adjust the numerical 

representation of the state. The form of this primitive is 

FEED-FORWARD ERROR BETWEEN attribute OF sensor 
AND condition TO state 

Chapter 6 of this thesis shows how these sensor-level 

instructions can be represented within a programming system. 

This invol ves a set of functions wri tten in the C 

programming language which provides the programmer with the 

means of representing sensor interactions. 

4.3 Specifying sensor requirements 

Sensors vary considerably in complexity, from simple 

binary detectors to high-resolution cameras. To express 

sensor requirements in a uniform way requires the sensor 

data to be preprocessed into a standard form. This is the 

function of the sensor controller which was discussed in 

Section 3.1,. The input to the sensor controller wi 11 be the 

raw data from the sensor. The output will be a processed 

version of this data in the form of a set of 'attributes'. 

~his is similar to the logical sensor specification proposed 

by Henderson [83J and Hansen [85]. Define the attributes to 

be a set of scalar quantities which are a processed version 
" 

of the raw sensor data. The information from the sensor will 

be represented by a set of these attributes. The procedure 

is not reversible~ since the attributes cannot, in general, 
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be processed to reconstruct the sensor data. The nature of 

the attributes will be dependent on the type of sensor, and 

not on the application in which the sensor is being used. 

This is important, because it means that the sensor and its 

controller can be interchanged between different assembly 

applications as a self-contained module. 

For some sensors, the information may be irreducible 

and hence the output from the sensor is equivalent to the 

attribute. A simple proximity sensor falls into this 

catagory, although even here some signal processing may be 

desirable. Other sensors, such as an area-array camera, 

provide significantly more information. The attributes for 

such a sensor may include 

1. The value of the x centre of gravity of the 

component in the field of view. 

2. The value of the y centre of gravity. 

3. The area of the component in the field of view. 

Since the attributes will be used as parameters in closed 

loop control, features such as the number of holes are not 

relevant. 

" For the attributes listed above, the position of the x 

and y centroid have a direct relationship to the movement of 

the sensor in the x and y directions. The perceived area.of 

the component can be related to the distance of the camera 

from the component and hence can give a z direction error. 

The attributes representing the information from the 

sensor will be sent to the central controller to enable 

closed-loop control to be achieved •. The information flow 
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from the raw sensor data to the central controller is 

illustrated in Figure 4.1. The function of the sensor 

controller is three-fold. Firstly, to control the sensor, 

sending the appropriate control signals to enable it to 

function, secondly to process the resultant data to extract 

the attributes and thirdly to send these attributes to the 

central controller using a defined protocol. The format of 

the information interchange between the central controller 

and the sensor controller is discussed in more detail in 

Chapter 6. 

Figure 4.2 shows a list of some common sensors, 

together with a list of possible attributes which 

characterize the sensor-data. 

Using attributes, the primitive sensor-level 

programming structure can be rewritten as 

MOVE actuator TO newstate ACHIEVING condition 
IN attribute OF sensor 

At this stage, assume that the termination criterion is that 

the attribute error is zero. This criterion will be extended 

in Section 4.5. The execution of this instruction is 

summarized in the flowchart of Figure 4.J. 
\ 

As an example, for a sensor 'camera' having attributes 

'x-cofg' and 'y-cofg' (representing the X and Y centre of 

gravity of the component respectively) used in conjunction 

with an actuator called 'robot', the following command could 

be issued. 

MOVE robot TO newpoint ACHIEVING 50 IN x-cofg OF camera 

This command involves moving the named actuator, 'robot', 

from its current state to the new state called 'newpbint', 

using the procedure described in Section 3.7. After this, 
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Figure 4.1: Information flow from the sensor 
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SENSOR 

Area~array camera. 

Proximity sensor. 

Tactile sensor. 

IRCC. 

Linear-array camera. 

ATTRIBUTES 

Position of x-centroid of part. 
Position of y~centroid of part. 
Area of part. 

Range. 

Average contact force. 
Area of contact. 
Orientation of part on the array. 

x, Y, Z, 0, A, Terrors. 

Position of light-to-dark edge. 
Position of dark-to-light edge. 
Area. 

Figure 4.2: A table of attributes for some sensors. 
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Move the actuator from the current 
state to the intermediate point of the 

current state at a speed computed 
using equation 3.4. 

t 
Move the actuator to the intermediate 

state of 'newstate'. 

t 
Move the actuator to 'newstate' at a 

speed computed using equation 3.7. 

Get the attributed sensor data from 
the appropriate sensor slave. 

t 
Compute the attribute error as the 

difference between the actual and the 
desired attribute value. 

+ 
Transform the attribute error into a 
cartesian error in the world's frame 

of reference • 
.r 

Move the actuator by the cartesian 
error. 

Is 
No the 

... termination 
criterion 

met ? 
~" 

~ \ 
I 

.. yes 

Apply long-term feedback • 

.stop 

Figure 4.3: Sequence of operations in the execution of a sensor­
level command. 
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sensory feedback is applied so that the perceived X-centre 

of gravity of the component in view is at position 50. Upon 

completion of the servoing, long-term feedback is applied to 

improve the estimate of the state for the next cycle. The 

application of long-term feedback is discussed in the next 

chapter. 

To control the position of the Y-centre of gravity, a 

second sensor-level command, similar to the above, could be 

issued. However, rather than issuing two separate commands, 

it is desirable that the whole event is expressed in a 

single statement. Hence, the required form of the command is 

MOVE robot TO newpoint ACHIEVING 50 IN x-cofg OF camera 
AND 50 IN y-cofg OF camera 

For this example, because the X and Y axes are 

perpendicular, the vectors representing the correction 

directions are orthogonal. Therefore the form of the command 

shown above is equivalent to doing two consecutive calls, 

each to achieve one sensor condition. This is not the case 

if the correction directions are not orthogonal, when the 

application of sensory feedback to achieve the second sensor 
", 

requirement will affect the feedback applied for the first 

sensor requirement. This problem is considered in detail in 

Section 4.6. 

Implicit in the sensor-level command is the computation 

of the transformation of the sensor-attribute error to the 

necessary correction vector for the robot. The means of 

computing this transformation is now discussed. 

4.4 Transformation of errors: static and dynamic sensors. 

A sensor, used to provide information for closed-loop 
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control, will produce data in sensor units, in the sensor's 

frame of reference. In order to reduce the perceived error, 

the sensor error must be transformed into the world's frame 

of reference, in which the correction will be applied. 

Define the 'correction vector' as an Euler vector, having 6 

components, which represents the error in a world 'frame of 

reference, between the current actuator position and a new 

position which should reduce the perceived error to zero. It 

is assumed that the actuator controller will be able to 

accept movement commands which are specified in a world 

frame of reference. 

In order to compute the transformation between the 

sensor's and the world's frame of reference, the 

relationship between'the sensor and the actuator must be 

known. To this end, two different types of sensor are 

considered. Depending on whether the sensor is physically 

coupled to the actuator, the term 'static' or 'dynamic' is 

used to classify the sensors. Define a static sensor as one 

which is fixed in a wor ld frame and does not move wi th an 

actuatpr. Define a dynamic sensor as one-'rwhich is physically 

coupled to. an actuator and consequently moves with the 

actuator. This class of sensor includes gripper-mounted 

cameras, the instrumented remote centre compliance (IRCC), 

,and gripper mounted tactile sensors. An overhead workstation 

camera is an example of a static sensor. An example of the 

relationship between the the frames of 'reference of a static 

sensor, a dynamic sensor, an actuator and the world is given 

in Figure 4.4. The static sensor is an overhead cam~ra, 

whose frame of reference is fixed with respect to the world 
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Figure 4.4: The frames of reference between the sensors, the 
actuator and the world. 
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Compute the Euler representation of 

the 4x4 matrix. 

t I Euler world error. I 

Figure 4.5: Transforming an error from a static sensor 
into a world-error. 
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frame. The dynamic sensor is a gripper-mounted camera, whose 

frame of reference wi th respect to the world moves as the 

actuator moves. However, the relationship between the 

actuator's and the sensor's frame of reference does not 

change as the robot moves. 

The method of processing the error from the sensor to 

compute the correction for the actuator is different for the 

case of a static and a dynamic sensor. For the static sensor 

the relationship between the world's frame of reference and 

the sensor's frame of reference will be fixed and can'be 

represented by a defined transformation. For the dynamic 

sensor, it is the relationship between the sensor and the 

actuator which is fixed. Consider the case of static and 

dynamic sensors separately. 

4.4.1 Static-sensor to actuator transformation 

An error detected by a static sensor can be transformed 

into a world error by multiplying the matrix-representation 

of the error by the homogeneous matrix representing the 

relationship between the sensor's and the world's frame of 
", 

,reference. The use of homog~neous matri~es to represent 

relationships between frames of reference is described by 

Paul [46]. Assume that the error from the sensor can be 

represented by a 6-component Euler vector. Depending op the 

type of sensor, between 1 and 6 components of this vector 

Will provide error signals. For a simple proximity sensor, 

only one component of error may be provided. However, for an 

instrumented remote centre compliance (IRCC), a full 6 

components of error, corresponding to 3 translational and 3 
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rotational components, will be produced. This Euler vector 

can be transformed into a 4 x 4 matrix using the procedure 

described in Section 3.3. By multiplying this error matrix 

by the transformation between the sensor and the world, the 

resultant matrix is the error expressed in the world frame 

of reference. This can then be expressed as a 6-component 

Euler vector. If the 4 x 4 matrix for the world error is 

[~ 
b 
f 
j 
o 

c 
g 
k 
o ~l 

the Euler representation is (x,y,z,o,a,t)T, where each 

component is calculated as [46], 

x = d, 
y = h, 
z = m, 
0 = atan2(g,b) 
a = atan2( cos(o).c + sin(o) .g ,k) 
t = atan2(-sin(o).n + cos (0) .e , -sin(o) .b + cos(o).f) 

The Euler form of the correction can subsequently be used to 

issue a movement command to the actuator. 

The sequence of operations required to transform an 

error in a static sensor to a world error is summarized in 

Figure 4.5. 
-" \ 

I 

!.4.2 ~ynamic-sensor to actuator transformation 

If the sensor is dynamic, the relationship between the 

sensor's frame of reference and the actuator's frame of 

reference will be fixed. However, the relationship between 

the actuator's frame of reference and the world's frame of 

reference will depend on the position of the actuator. 

Defining the position of the actuator to be the 

transformation between the actuator's position ana the 

origin of the world frame, then the sensor error can be 
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transformed to a world error by 

[
WOrld] 
error 

= [ Act';la~orl. [sensor-actua~orl [sensor) 
pos~t~on transformat~on· error 

As before, the Euler vector representing the sensor error is 

initially transformed into a 4 x 4 matrix. The final world 

error can then be transformed back into an Euler vector and 

the movement executed. 

The sequence of operations required to transform an 

error in a dynamic sensor to a world error is summarized in 

Figure 4.6. 

4.5 Terminating the sensory servoing 

Using either static or dynamic sensors, the final world 

error is the distance to be moved by the actuator. Although 

the basic sensor-level programming directive will require a 

specific sensor condition to be met, it is neither necessary 

nor practicable to demand that the sensory servoing 

terminates only under these circumstances. Chapter 3 defined 

the state sensitivity as a normalized parameter used to 

m represent the accuracy to which ~ state must be known. 

Eq~ation 3.1 gave the relationship between the sensitivity 

and the tolerance at a state. During the application of 

sensory feedback, the perceived sensor error, once 

transformed to an actuator error, may be less than the 

tolerance of the state. Since the tolerance represents the 

desired accuracy of the itate, any correction less than this 

need not be applied. This means that the servoing can 

terminate whenever either the sensor condition is met, or 

the magnitude of the computed correction is less than the 
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Figure 4.6: Transforming an error from a dynamic sensor 
into a world-error. 
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tolerance of the state. Both the correction distance and the 

tolerance will be vectors and hence each component of the 

vectors must be tested to see if the correction needs to be 

applied. If any component of the actuator error is greater 
, 

than the corresponding component of the tolerance than the 

correction must be applied. 

In addition to terminating the servoing on the basis of 

tolerance, it is important to consider the effect of 

actuator resolution. The actuator will have a minimum 

distance of moyement, the resolution, so that any demand 

less than this will give no movement. Therefore another 

condition for stopping the servoing is when the correction 

vector is such that all its components are less than the 

resolution of the actuator. 

To sum up, the i tera ti ve task of mov ing the actua tor 

and computing the sensor error is terminated whenever one of 

the following conditions is met: 

1. The sensory conditions are achieved. 

2. The magnitude of each component in the correction 

is less than the correspo~ding component of the 

tolerance vector for the state. 

3. The magnitude of each component in the correction 

is less than the corresponding component of the 

actuator's resolution. 

In Chapter 5 the problem of errors in sensors, actuators and 

the system will be examined. By considering the magnitude of 

these errors, .the perceived corrections will be pre-

processed by multiplying by ~ scalar gain which is less than 
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1. In this way, if the measurement process is subject to 

error, criteria 2 and 3 above will be met sooner. The effect 

of this is to cause the system to ignore information from 

noisy sensors; this is discussed fully in Chapter 5. 

If a single sensor condition is to be met, the 

iterative task of sampling, computing the error and then 

moving, is straightforward. However, if more than one sensor 

condition is to be met the situation becomes more 

complicated. This is now discussed. 

4.6 Achieving more than one sensor condition 

Since a single sensor condition can only cause 

correction to be applied in one dimension, it is likely that 

additional sensor requirements will need to be. met. The area-

array camera discussed in Section 4.3 provides an example of 

this. In this case, the result of the movement is to achieve 

a specific condition in both the X and the Y centre of 

gravity of the object in view. Because the correction 

vectors for the X and Y vectors are mutually orthogonal, it 

is possible to achieve the desired effect by having two 

,single-condition sensor-level pro~ramming statements. This 

is dhly possible if the correction applied to achieve the 

second sensor condition does not affect the correction 

already applied for the first condition. The orth?gonality 

of the two correction vectors is a necessary and sufficient 

condition for thi~ to be true. 

If the correction vectors for the two sensor conditions 

are not orthogonal, there will, in general, be no single 
.. 

correction vector which can satisfy both conditions. 

However, the use of state sensitivities gives rise to 
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'fuzzy' locations, which can be used to provide a solution. 

Define Xl as the current state, and assume two sensor 

conditions need to be met. If the two conditions were met 

separately, two new states would, in general, result. Call 

these two new states Xl1 and X12' see Figure 4.7. There will 

be a sensitivity vector associated with state Xl' call it 

FIt and assume that this sensitivity can also be used for 

the new states ~11 and X12. From equation 3.1, each 

component of the sensitivity is related to the corresponding 

component of tolerance by 

(i=1..6) ( 4 • 1 ) 

For each of the new states Xl1 and X12' define a 

transformation from the initial state,. Xl' as T1 and T2 

respectively, such that 

( 4 .2) 

and 

(4.3) 

where T1 and T2 are 4 x 4 homogeneous matrices and Xl' X11 , 

Xl2 are the 4 x 4 homogeneous matrix representations of the 

,·Euler vectors Xl' ~11 and Xl2 respectively. Let T1 and T2 be 

the "Euler representations of T1 and T2• Now each of Xl1 and 

Xl2 has an uncertainty bound specified by AI' the tolerance. 

Hence look for a new state, call it Y I , which sat:i..sfies 

(4.4) 

and 

YI = Xl2 + b.AI ( 4 • 5 ) 

where a and b are diagonal matrices, such that 

-1 < aij < 1 i=j (i=1 •• 6, j=1 •• 6) (4.6) 
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and 

= 0 

-1 < b .. < 1 
1J 

b·· = 0 1J 

( 4 • 7 ) 

i=j (4.8) 

( 4 • 9 ) 

The vector a.A 1 defines the 1 imi ts of a region of space 

surrounding X11' representing the tolerance. Likewise, b.Al 

defines the space around X12• From equations 4.4 and 4.5 

(4.10) 

which can be expressed as 

(4.11 ) 

Define a new matrix, c, as 

c = (b-a) (4.12) 

Since c is diagonal, the components of.c are derived from 

4.11 as 

(4.13) 

Now because the components of a and b are bounded by the 

constraints given in equations 4.6 and 4.8, the components 

of c are bounded by 

-2 < c·· < 2 11 (i=1 •• 6) 
'\ 

I 

(4.14) 

Hence the condition for the existence of a state, Yl , which 

satisfies both sensor requirements is that equation 4.14 is 

satisfied for each component of the state. If it is 

satisfied, numerical values for the components of the state 

Yl can be-computed. Since the components of c are known, the 

components of a and b can ,be calculated to satisfy equation 

4.12. In the case of only translational differences between 

Xk , Xk1 and Xk2 , the solution, if it exists, c'orresponds to 

an overlap of rectangles, centered on Xk1 and Xk2 , having 
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dimensions given by the components of the tolerance vector, 

as illustrated in Figure 4.7 

To achieve a unique solution, an extra constraint can 

be added. Let aii = b ii , and therefore aii = cii/ 2 and bii = 
cii/2 are the solutions. Once the components of a and b have 

been calculated, the final numerical value of Yl is obtained 

from either 4.4 or 4.5. This new state represents the final 

position of the actuator which satisfies both sensor 

conditions within the bounds of the tolerance. The complete 

algorithm for achieving two sensor conditions is summarized 

in Figure 4.8. 

The extension of this problem to the case of more than 

two sensors is not trivial. The problem is one of geometry, 

since it requires the detection of overlapping-regions of 

space which represent fuzzy states. Extending the problem in 

the case of orthogonal correction vectors, is trivial since 

each sensor condition can be met independently. 

4.7 Summary 

This chapter has defined a level of robot programming 

'in which the indirection is towarc.is the sensors. In this, 
I 

the" aim of each movement of an actua tor is to transform the 

current reading from one or more sensors into a new set of 

readings. This is sensor-level programming. The format of 

the commands was illustrated in Section 4.3 and the 

mechanisms for p~ocessing and handling sensor information 

were described in Sections 4.4 and 4.5. In Chapter 6 of the 

thesis, an implementation of these command is described. 

By identifying sensors as either dynamic or static, the 

error in a sensor's reading can be transformed into an 
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Move to the Xe state, using gross-motion and 
fine-mo ion in the normal way. 

Use sensory feedback to achieve the first 
sensor condition and record the 

coordinates of the final state as X l1 • 

I-

Return to the initial state. 
~ 

, 

Use sensory feedback to achieve the 
second sensor condition and record the 
coordinates of the final state as X l2• 

Is Equation No Sensor-conditions 
4.14 satisfied ? cannot be met 

(Error) 

It Yes 
I 

Compute Yl from equation 4.4. 

Move to the final position Yl • 

Figure 4.8: Flow-chart illustrating the events in achieving 
two sensor-conditions. 
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alternative frame of reference, the world frame, in which 

the correction can be applied. Expressing the 

transformations between the frames of reference with 

homogeneous matrices allows the errors in one frame to be 

easily transformed into another frame. 

The termination conditions for a sensor-actuator servo-

loop extend beyond simply that of meeting the specified 

sensor conditions. By defining a tolerance for each state, 

the accuracy of the servoing can be made to ref lect the 

physical properties of the state. Unless the measurement 

process is noise-free, reducing the tolerance will speed up 

the servoing. The state tolerance also has a role to play in 

movements to achieve two sensor requirements. By assuming 

each state has a non-zero tolerance, a 'single point can be 

found which satifies two sensor conditions within the bounds 

of the tolerance. If the sensors have orthogonal correction 

vectors, the problem is trivial, because each condition can 

be met sequentially. 

Although one or more of the termination criteria must 

~have been met to terminate a stat~transfer, the overall 
I 

" positional accuracy to which the state was reached is 

directly related to the performance of the measurement 

process. If the measurement was erroneous then the final 

posi tion will ref lect this error •. The next chapter considers 

the effects of errors in discrete sensory feedback, and 

develops algorithms to cope with noisy sensors. 
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CHAPTER 5 

ANALYSIS OF ERRORS IN SENSORS AND ACTUATORS 
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5.1 Introduction 

Although an off-line modelling system can work to a 

high accuracy, the positioning of components and the motion 

of the manipulator are both subject to error. The 

manipulator will have a minimum distance· of movement, the 

resolution, which will govern the maximum attainable 

accuracy. The accuracy is defined as the ability of the 

manipulator to move to a position having been given only the 

numerical coordinates of that position. As well as 

mechanical effects, for example backlash, finite word-length 
~ 

effects of a digital controller can contribute to poor 

performance. For off-line programming, it is the accuracy 

which is the important parameter. For on-line teaching, the 

key parameter is the repeatability, defined as the ability 

of the manipulator to return to a taught point. In practice, 

the observed repeatabilty of the manipulator depends on the 

configuration and position of the manipulator in the work-

space. In the long-term, mechanical wear will increase and 

performance will reduce. 

This chapter addresses the source and cause of errors 
~\ 

I 

which occur in sensory assemblies. These errors are defined 

as the difference between the actual and desired sensor 

readings at a location. Errors introduced by ill-positioned 

parts are the major cause of the total error, but 

manipulator accuracy and repeatabilty also contribute. A 

third source of error, not usually considered, is sensor 

error. Although sensors are introduced to detect and measure 

errors in theqpart position and the manipulator, they may 

themselves be a source of error. 
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Algorithms are developed which quantify the noise 

levels in the sensors, the actuators and the system using 

information from the feedback phase of the actuator 

movements. The noise levels are then used to compute a 

weighting factor which reflects the relative magnitude of 

the measurement noise to the system noise, and can be used 

to minimize the effects of errors from noisy sensors. 

5.2 Sources of errors in sensory assembly 

Three sources of error are considered, these are, 

1. System. errors - caused by ill-positioned 

parts or ill-defined locations. 

2. Actuator errors - arising from finite accuracy 

and resolution. 

3. Sensor errors - arising from stochastic 

variations in sensing and processing of data. 

These are now discussed in further detail. 

5.2.1 System errors 

If, at the manipulator level of programming, the robot 

is instructed to move to a pre-taQght location and close the 
\ 
I 

gripper jaws to grasp an object, the success of the 

operation depends on two factors. Firstly, the object must 

have been present and in the correct position, and secondly, 

the location must have been correctly taught to correspond 

to the intended position of the object. This is tantamount 

to defining the position of the manipulator relative to the 

object, but usually the positions are both defined relative 

to another frame of reference, the world frame. In assembly 

operations, components may be fed from feeders or 
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dispensers. Although the nominal position of the component 

is known, there may be some random variation about this 

point. To some extent, errors can be corrected by the action 

of grasping, although usually only in one dimension. In some 

assembly operations the effect of error~ can be reduced by 

careful design, for example chamfering a hole to improve the 

reliability of a peg-in-hole insertion. The accuracy of 

component presentation can often be increased, but at 

greater expense in jigging costs. Furthermore, if the 

assembly involves flexible materials then it is very 

difficult to predict the exact position of the material with 

respect to the end-effector [8],[6],[99]. 

5.2.2 Actuator errors 

Even if the components to be handled are precisely 

located, there may still be errors in the grasping of the 

part by the manipulator. As an example, consider an 

industrial robot fitted with a parallel jaw gripper used to 

pick a peg from a ho I e and p I ace it in a second ho I e. 

Assuming that the taught locations corresponding to the 

'initial and final positions of the peg are correct, and that 

the"peg is precisely located within the hole, any errors 

introduced must be caused by either the manipulator or the 

gripper. Closing the gripper jaws around the peg will exert 

forces, which, if the peg is not centrally positioned within 

the jaws of the g~ipper, will tend to apply a lateral force 

on the peg. When the peg is withdrawn from the hole by 

moving the manipulator, the effect of this force may result 

in a positional error of the peg on the gripper. Further 

errors may be introduced if the initial position of the 
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manipulator at the grasping point is subject to error due to 

the repeatability. 

The repeatability of a manipulator depends on a number 

of factors, including the 

1. Position of the end-effector in the workspace. 

2. Age of the manipulator. 

3. Temperature. 

4. Load. 

It is likely that the quoted repeatability of an industrial 
~ 

robot represents an average value of a stochastic 

distribution. In an experiment to quantify the variation in 

repeatability, a gripper-mounted area-array camera was used 

to measure the,position of a boundary between a black and a 

white region. Two experiments were performed. In the first, 

the robot was moved between two points and the edge position 

of the boundary in the image was noted when the camera was 

positioned above the edge. The variation in the perceived 

position of the boundary can be related to the positional 

error of the robot. The second experiment was the control, 
-\ 

wit~ the robot being held in a constant position above the 

edge point. The distributions of the perceived errors are 

shown in Figure 5.1 and Figure 5.2. When the robot is 

stationary, the errors arise from quantization of the 
, 

analogue video signal and also vibrations in the servoing of 

the robot arm to maintain a constant position. For the case 

where the robot arm is being moved, the errors arise from 

the finite repeatabilty of the robot. The results shown in 

Figure 5.1' reflect the error in one cartesian component of 
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position and similar errors are to be expected in the other 

components. The error distribution is approximately Norm~l, 

having a mean of 0 and a standard deviation of 0.013 mm2 for 

the x component of repeatability. 

5.2.3 Sensor errors 

Traditionally, sensors are used to detect and 

compensate for errors in the system and the actuators. For 

the peg-in-hole example, either vision or tactile sensing 

could be used to measure the exact posi tion of the peg on 

the gripper. Although it is not usually considered, the 

sensors may themselves be a source of error. The signals 

produced may be subject to a random error, for example shot 

noise in solid state cameras, or thermal effects in 

potentiometric encoders. Perhaps the most common source of 

noise in sensing is from electrical interference. This may 

arise from heavy machinery causing voltage fluctuations on 

the power rails, or from high-speed switching in digital 

signal lines which run close to sensor signals. This source 

of noise is a significant problem in an industrial 

environment, where electrical interference may be 

unavoidable. Although filtering can reduce the noise, there 

is always the possibility of a change in the operating 

conditions of the offending machinery causing a change in 

the character of the noise; A force sensor used in an 

industrial assembly problem (described in Chapter 7) is 

corrupted by noise from digital signal lines controlling a 

camera. A typical signal from this sensor is shown in Figure 

5.3. The component of the signal due to the force sensor is 

a constant voltage level. Added to this is the periodic 
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Figure 5.3: Signal from a force sensor corrupted by noise. 
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component induced from the switching in the digital lines. 

Further noise is added by the successive-approximation 

analogue to digital converter, which is used to sample the 

signal. Using this sensor in a closed-loop feedback system 

causes measurement errors which reduce the efficiency of the 

servoing. An error distribution from 2000 samples taken at 1 

second intervals is shown in Figure 5.4. Although the 

distribution of sensor readings is discrete, it can be 

approximated by a Normal distribution. In practice, this 

noise could easily be removed because it is at a much higher 

frequency than the signal of interest. However, the noise 

may be intermittent, and of variable frequency and 

amplitude. Noise removal under these conditions is much more 

difficult. In Chapter 7, the effects of' using this noisy 

sensor in a closed-loop feedback system are considered. 

Since the signals from the sensors will ultimately be 

used to control the movement of an actuator, it is important 

that the relationship between the actuator's frame of 

reference and the sensor's frame of reference is precisely 

known. A modelling error here will"',reduce the efficiency of 
" i 

closed-loop servoing. If the actuator is being used to 

position the sensor, for example on a gripper-mounted 

camera, then the accuracy of the actuator is important. This 

is discussed in Section 5.3.1. In addition to the noise 

arising from the physical sensor and transformations, 

further noise can be introduced as the signal is processed. 

In digitization, the need to quantize the signal to a finite 

number of signal levels is equivalent to intro~ucing a noise 

of magnitude a 2 /12, wher~ a is the amplitude increment 
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between adjacent levels [100]. This is one of the causes of 

the error shown in Figure 5.2 for the estimate of position 

using the stationary camera. 

Although the sensor may initially be noise-free, there 

could be a low frequency component of noise arising from 

wear. This is especially true for sensors relying on 

resistance changes, such as potentiometric encoders. 

Furthermore, in the event of a total sensor failure it is 

important that the condition is detected as soon as possible 

and an alarm issued. Because of these effects, it is 

desirable that the noise level of the sensor be monitored by 

analysis of errors in the actual assembly. By estimating how 

much of the perceived error is due to the sensor, it should 

be possible to provide an optimal estimate of the sensor 

noise and hence ensure that the correct level of credence is 

assigned to the information from the sensors. The assignment 

of credibility to the sensor reading could be extended to 

the so-called 'sensor-fussion' problem [101 ]-[104], where 

the requirement is to combine information from many sources 

to obtain a best estimate of a stat~. The problem of 

redundant sensor data is beyond the ambit of this thesis. 

The combined effects of the sensor errors will mean 

that from an ensemble of sensor readings there will, in 

general, be a statistical distribution centered ona nominal 

mean. The variance of this distribution will represent a 

measure of the repeatability of the sensor. 

5.3 Processing noisy sensor information 

Consider a manipulator which is instructed to move to a 
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taught location A, which should represent the position of a 

component. Because of some error in the positioning the 

component, there is uncertainty as to the exact location of 

A. Assume that the error can be represented by a random 

variable having a Normal distribution with a mean of zero 

and a variance £. To cope with the uncertainty in the 

position of the part, a sensor is used to determine the 

exact position of the manipulator and to reduce the error to 

zero. Assume that the readings from the sensor have a noise 

component which can be modelled by a Normal distribution 

having a mean of zero and a variance y, this is the 

measurement noise. After the application of feedback, the 

final position of the manipulator, with respect to the part, 

wi 11 be subj ect to some uncertainty, due to the' sensor. From 

the properties of the Normal distribution it is evident that 

there is a 66% probability that the final position of the 

manipulator is within ~/V of the intended position. Call the 

final position B and note that the error in B does not 

depend on u , only on y. If Y is large, say much larger than 

£, then the bound on the final error is also large. Under 
. ~ 

these circumstances it might have been better to move 

directly to A, ignoring the sensor information. Hence, there 

is a trade-off to be made between the credence gi ven to the 

sensor information and the initial estimate. The relative 

noise levels of the measurement noise and the system noise 

will govern the credence given to the sensor readings. If 

the noise from the sensor is high then more emphasis needs 

to be placed on the current estimate of the position. If the 

sensor noise is low, howeveri the reading from the sensor 
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can be used with more confidence. 

In general, 

x = K1 .A + K2 .B (5.1 ) 

where A is the current estimate of the position, 

B is the measured position, 

K1 ,K2 are weighting factors, 

and X is the new estimate of the position. 

The numerical values of K1 and K2 will be derived from a 

knowledge of the variances of the system noise and 

measurement noise respectively. 

5.3.1 Consideration of actuator noise 

For the problem of inserting a peg into a hole, it is 

ev ident that any error due to the posi tioning of the 

manipulator is an additional system error. The total error 

in the part's pos i tion wi 11 be the sum of the manipu 1 a tor 

error and the errors due to the hole posi tion and the 

position of the peg on the gripper. The variance of the 

overall noise can be expressed as the sum of the variances 

of the individual noise components. 
"'I 

As well as contributing to th~ system noise, the 

actuator noise can also contribute to the measurement noise. 

If a vision sensor is mounted on the robot end-effector, the 

overall accuracy is governed by the sensor and the 

positional, accuracy of the robot. Errors in the position of 

the robot wi 11 resu 1 t in an error in the perception of 

object. This applies also to a force sensor used in a robot 

gripper, where the overall accuracy is depende,nt upon both 

the sensor and the gripper. 
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Therefore, in general, both the system noise and the 

measurement noise could be modified by considering the 

actuator noise. Whether the actuator noise contributes to 

the system or the measurement noise, depends on the 

configuration of the actuator and the sensor. For a dynamic 

sensor, the ill-positioning of the actuator will be an 

additional measurement error. If the manipulator is holding 

a component to be sensed by a static sensor, the actuator 

contributes an additional system error. 

Although the added noise from both sensors and 

actuators can be assumed to have a Normal intensity 

distribution, it is also necessary to look at the frequency 

components of the noise. This is the subject of the next 

section. 

5.4 Freguency domain analysis of errors 

Taking an average of sensor readings is equivalent to 

applying a low-pass filter to the noise. If the noise is 

only high-frequency, such averaging may be quite effective. 

However, for low frequency noise, the effect is minimal. The 

~epeatability error for a positiona~ component of the Puma 
I 

560 robot is shown in Figure 5.5 for 3500 samples. The 

frequency transform of this, obtained using the Fourier 

transform, is shown in Figure 5.6 It is observed that there 

are components of noise at each of the discrete frequencies 

within the "time sample. The low frequency components of 

noise represent the slow drift in repeatability over the 

experiment time. To derive these results, the robot was 

moved between two taught locations and the positional error 

at the test point measured using the method described in 
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Section 5.2.2. The time taken to complete one cycle was 

about 8 seconds and hence 3500 cycles represents an 

experiment time of 7 hours 45 minutes. In the frequency 

domain, the higest frequency is therefore 0.125 Hertz and 

the lowest is 3.6 x 10- 5 Hertz. 

The frequency spectrum shown in Figure 5.6 represents 

the noise components of the measured repeatability. Because 

the sampling frequency is very low, however, the actual 

source of the error cou ld be a narrow band of high frequency 

noise, which, due to aliasing effects, appears as a spectrum 

of low frequency components. In practice, it is the 

frequency spectrum of the measured repeatability, as 

depicted in Figure 5.6, which is of interest. 

The measurement error from an area-array camera is 

shown in Figure 5.7. The data were obtained by computing the 

position of the x centre of gravity of an object over 2000 

samples with a sampling period of 3 seconds. The frequency 

analysis of the data is shown in Figure 5.8. 

It is evident from the experimental results that there 

are noise components over the who~e range of frequencies of 
.~ \ 

I 

interest. In practice, higher frequencies will be of 

interest, although these are limited to about 10 Hertz at 

the maximum because of the nature of the problem under 

consideration. It is expected that if the frequency of the 

repeatability measurement was increased, the form of the 

frequency response at the highest frequencies would remain 

the same. In the frequency analysis, the high frequency 

noise arises from stochastic variations in the measurement 

process. At the other end of the spectrum, low frequency 
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drift arises from temperature variations, which will 

particularly affect potentiometric encoders, and also 

lighting variations, which will affect vision sensors. 

Computing a numerical average of an ensemble of sensor 

readings will not necessarily produce a significant 

improvement in accuracy. This is particularly true for a 

gripper-mounted sensor, where an initial positioning error 

due to the robot cannot be eliminated by averaging data from 

the sensor. Although the noise from the sensor itself will 

be reduced, the ill-positioning 'of the robot gives a 

constant additive term, the effect of which could only be 

reduced by mov ing the robot away from the s ta te and then 

back again. Whilst taking multiple sensor readings is 

feasible, repeated movement of the robat arm is not. 

In summary, it can be said that the noises introduced 

from sensors and actuators can never be completely 

eliminated through averaging, because there are components 

of noise at low as well as at high frequencies. It is 

therefore assumed that within the frequency range of 

interest the noises are approximat~ly white. 

n The problem of processing the errors to compute the 

best estimate to the desired state may be tackled using a 

Kalman filter [79]. Although processing sensor information 

with a Kalman filter has been previously reported [78], the 

work described in this chapter shows how the estimates of 

the noises from the system and the measurement can be 
.< 

updated, and hence how intermittent noise can be detected 

and processed." 
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5.5 Application of a Kalman filter in the processing of 
information from sensors 

Assume that a task is repeated indefinitely and let-Xi 

be the state representing the position of the actuator on 

the ith cycle. This state wi,ll be a vector having six 

components, three translational and three rotational, which 

uniquely specifies the position and orientation of the 

actuator in space. The state, which represents the location 

of an object to be handled, is nominally constant but is 

subject to some random error between cycles due to component 

positioning. This situation may arise when a part-feeder 

presents components with a certain error tolerance. The 

system model is trivial since the only change to the state 

is the random perturbation caused by the noise. Hence, the 

change in the state between cycles is given by the system 

model, as 

X. 1 = X. + Q. 
-~+ -~ -~ 

(5.2) 

where Qi is the noise distribution on the ith cycle, and is 

assumed to be white, having mean r i and variance u. It is 

assumed that the noise components of Q. are uncorrelated, 
-~ 

ftnd hence u is a diagonal matrix.~ 
. I 

" Each measurement of X. is subject to error from the 
-~ 

sensors, 

( 5 • 3 ) 

where H is a matrix defining the relationship between the 

component~ of the location X. and the components of the 
-~ 

measurement vector Z .• The error 'in the measurement process 
-~ 

is characterized by the white noise R., which has a mean of 
-~ 

o and a variance v .• 
-~ 

The measurement model, represented by equation 5.3, 
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will involve a number of stages, to transform the error in 

sensor-coordinates to a world vector, which can be directly 

compared with the components of Xi. Consider, for example, a 

gripper-mounted area-array camera which is used to locate 

the centre of a hole in which to insert a peg. The first 

step in the measurement process is to deri ve an error in 

terms of sensor coordinates, in this case pixels. This error 

must then be transformed into world coordinates by dividing 

the perceived error by the number of pixels per millimetre. 

Finally, this error, which is in the sensor's frame of 

reference, must be transformed to the world's frame of 

reference so that the appropriate correction can be applied. 

For the case where the sensor is attached to the actuator, 

this transformation will depend on the'position of the 

actuator. 

Hence, equation 5.3 represents only a partial model of 

the measurement process since Z. is not derived directly 
-l. 

from sensor readings. By ensuring that the process of 

transforming the sensor-error into the world-error also 

inc I udes a stage of a I igning the cpmponents of Xi and ~i' 

the value of H in equation 5.3 is effectively I, the 

identity matrix. Although this would simplify the 

formulation of· the Kalman filter, there is a problem because 

the measurement vector will not, in general, provide an 

estimate of all six components of a location. Indeed for an 

area-array camera, the mea~urement vector will contain only 

two components corresponding to measured values of the x and 

y 'components of the hole position (say). The solution is to 

have a H matrix which is diagonal, where each element is 
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either a 1 or a O. A value of 1 indicates that the sensor 

provides an estimate of that component, whereas a value of 0 

indicates that the sensor provides no estimate. If H were 

assumed to be the identity matrix, then the case of a sensor 

providing no information on a component of a location would 

be indistinguishable from the case of the sensor providing 

an estimate of O. 

The problem can be formulated as one of seeking the 

best updated estimate of X. from the noisy measurement value 
-~ 

!i and the current estimate Xi. The normal Kalman filter 

equations may be written down [79]. 

System model 

Measurement model 

Error covariance 

X. = X. 1 + Q. 1 
-~ -~- -~-

Z. = H.X. + R. 
-~ -~-~ 

where Q. = N ( r . , u· ) 
-~ -~ ~ 

extrapolation : Pi (-) = Pi - 1 (+) + u i _1 (5.4) 

State estimate 
update 

Error covariance 
update 

Kalman gain 
matrix 

· · 
· · 

X.(+) = X.(-)+K .• (Z. - H.X.(-» (5.5) 
-~ -~ ~ -~ -~ . 

P. (+) = (I - K .• H) .P. (-) 
~ ~ ~ 

-1 K. = P.(-).H.[H.P.(-).H + v.] 
~ ~ ~ ~ 

-\ 
I 

(5.6) 

(5.7) 

In t~ese equations P.(-) represents the error covariance 
~ 

(the filter's estimate of the variance of the error) prior 

to being updated on the ith cycle, P.(+) represents the 
~ 

value just after updating and K. represents the Kalman gain 
~ 

on the ith·cycle. Since it is assumed that the components of 

the noise vectors are uncorrelated, the matrices P, K, Q, R, 

u and v will all be diagonal. Hence, 
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= [

Pi (1 ,1 ) 0 I P. (2,2) 

o 1 ••• P
i

(6,6) 

is a diagonal matrix where P.(m,m) is the estimated variance 
1 

of the mth component of the error in the 

H = 
[

H(1'1) 
H(2,2) . . . 

o H:6'6) I 
state, 

is a diagonal matrix where H(m,m) = 1 or 0 to indicate for 

which components of the state the measurement provides 

information, and 

= [

Ki (1,1) 
K

i
(2,2) . . . 

o 

o 

Ki (6,6) 

is a diagonal matrix where K.(m,m) is the Kalman gain for 
1 

the mth component of the state. 

Define the vector K. to be the diagonal elements of the 
-1 

matrix K .• Likewise the vectors P., u. and v. are defined to 
1 -1 -1 -1 

represent the diagonal elements of the matrices P., u., and 
1 1 

v. respectively. 
1 

If numerical values for the m~ise parameters E, u and y. 
I 

can be estimated, then it is possible to optimally combine 

the measurement and the previous estimate to provide the new 

estimate. The elements of K., the Kalman gain, take values 
-1 " 

between 0 and 1 and specify the weighting of the measured 

error comp~red to the current estimate. From equation 5.5, 

it is evident that if K. ="0, then X. (+) = X. (-), hence the 
-1 -1-1 

measured value Z. is not used in calculating the new 
-1 

position. This corresponds to the extreme case when the 

measurement noise is very much larger than the system noise 
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and consequently all sensor information is ignored. 

Conversely, if !i=1 equation 5.5 reduces to Xi (+) = £i' and 

the new position is equal to the measured position. This is 

the usual way of processing sensor data, and assumes that 

the error in the sensor is zero. When using the Kalman 

filter to process information from sensors, the sensor error 

must firstly be transformed into a world error. This error 

is then combined with the existing representation of the 

state using the Kalman gain as a weighting matrix. 

As an example of the operation of the Kalman fil ter in 

optimally estimating the position of a part, consider the 

task of placing a peg in a hole. The position of the hole 

and the position of the peg between the jaws of the gripper 

are both subject to some uncertainty, characterized by a 

random variable having a mean of 0 and a variance of 4 

(considering only one component); this is the system error. 

An overhead vision system is used to find the hole, although 

the sensing and processing is subject to error, which can be 

modelled by a random variable having a mean of 0 and a 

variance of 2. For simplicity, cons,ider only the y 
, . I 

component of the position of the hole. In practice a similar 

approac~ would be applicable for the x, z and rotational 

components. The centre of the hole is nominally at position 

100, although the system error means that the exact position 

is uncertain. Using the vision sensor, the hole position is 

observed to be 115. The problem is to find the best estimate 

. of the hole posi tion knowing that both 100 and 115 are 

subject to error. Assume that the assembly is already a few 

cycles old and that the steady state values of P and K, Ps 

-109-



and Ks say, have been reached. (In practice the rate of 

convergence depends on the initial value of P, Po; it 

usually takes less than 6 iterations to get to within 1 % of 

the final value.) 

Using the values of Q. and R. given, P and K are 1.46 
1 1 s s 

and 0.73 respectively. Therefore, from equation 5.5, the 

best estimate of the centre of the hole is 

Yi+1 = 100 + 0.73.(115-100) = 111 

Therefore the hole is predicted to be at position 111. Note 

that this is only the best estimate of the hole position 

from the given facts, the hole may be at some quite 

different position in practice. 

The Kalman gain computed from equation 5.7 represents 

the optimized form, in a least squares sense, of the 

weighting coefficients in equation 5.1. In essence, the 

magnitude of the Kalman gain gives an indication of the 

credence given to the sensor information. The error 

covariance is an indication of the filter's estimate of the 

error in the state and this can be related to the confidence 

a"s discussed in Section 3.2. This i\5 now quantified. 

5.5.1 state confidence from the Kalman filter 

The concept of a statistical confidence to reflect the 

magnitude of previous errors was introduced in Section 3.4. 

For a state X, which has value X. on cycle i, let the 
- -1 

confidence be T .• The confidence of a state takes values 
-1 . 

between 0 and 1, corresponding to the certainty with which 

the state is known. Since the error covariance~ Pi' 

indicates the filter's estimate of the error in the state, 
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let T. be computed from 
-l. 

-1 
T. = (I + P.) • J 
-l. l. 

T where J = (1, 1 , 1 , 1 , 1 , 1 ) 

and I is the identity matrix. 

(5.8) 

From equation 5.8, it is evident that as the error in 

the estimation of the state increases, so T. decreases to 
-l. 

indicate a reduced confidence. Similarly, as P. approaches 
l. 

0, indicating that the error in the estimate of the state is 

also approaching 0, Ti approaches 1 for maximum confidence. 

The purpose of calculating the state confidence is to 

compute the velocity of the actuators in the vicinity of a 

state. The equations derived in Chapter 3 achieve this, with 

the state confidence being computed from equation 5.8. 

5.6 Derivation of noise variances for the Kalman filter 

To use the Kalman filter for processing the sensor data 

requires estimates of the variances of the noises in the 

system, the actuator and the sensor. Section 5.2.2 showed 

the variation in one component of the posi tion of the Puma 

robot resulting from repeated movements to the same 

location. By approximating the err~r distribution as Normal, 
I 

an error variance can be obtained. Although similar 

experiments could be performed for any actuators of 

interest, an approximation to the noise variance can be 

obtained using the repeatability. 

Assume that the quoted repeatability of an actuator 

represents 1 ~tandard deviation of the magnitude error, 

which is assumed to have a Normal distribution. Therefore 

each component-of the error in x, y and z has a standard 

deviation equal to 1/13 of the quoted repeatability. From 
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the properties of the Normal distribution, this implies that 

66% of the time, the manipulator will be positioned to 

within the quoted repeatability of the desired location, and 

to within twice the repeatability 95% of the time. In view 

of the expected variations in repeatability with position, 

loading and temperature, this is probably quite a reasonable 

estimate. A similar approach can be applied to the 

orientation components of position, where the quoted 

repeatability can be used to estimate the standard deviation 

of the three rotational components. The estimated variance 

of the actuator noise is therefore 

Estimated variance of error = (repeatability)2 / 3 

for both the translational and rotational components of 

position. As an-example, the Cincinnati"T-726 Industrial 

Robot has a quoted repeatability of 0.1 mm. Therefore the 

estimated variance of the positional error is 

( 0.0033 , 0.0033 , 0.0033 , 0 , 0 , 0 ). 

The rotational components are set to zero in the absence of 

any information concerning rotational errors. 

The experiment described in Section 5.2.2 illustrated 
I 

that"the sensor noise can be approximated by a Normal 

distribution." In practice, it would be possible for the 

robot workcell to run through a self-test phase, in which a 

distribution of sensor readings was~collected for each 

sensor, and the co:responding variances calculated. This 

could be done at the development phase, or prior to 

execution of a task, to check the integrity of the sensors. 

Furthermore, it should be possible to initiate this self-

test whenever significant errors are detected within the 
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assembly. 

An assessment of the system noise caused by ill-

positioned parts is more difficult. A generous guess may be 

one solution, although more rigorous approaches which depend 

on considering the nature of the errors, for example the 

work of Brooks [45], should be feasible. 

5.7 Updating noise variances through analysis of past errors 

Although the initial estimates of the system, actuator 

and sensor noises are useful, the capability to update these 

values based on·previous errors would be a particularly 

valuable facility. This would allow automatic assessment of 

the performance of a sensor and hence allow a malfunction to 

be detected at an early stage. 

In general, an error measured during the application of 

sensory feedback will comprise a system error, an actuator 

error and a sensor error. The problem is to decompose this 

perceived error into the three components. If this were 

possible then new estimates of the variance of the state, 

actuator and sensor noises could be derived and hence an 
- ~ . \ 

optimal value of the Kalman gain computed. 

In deriving the algorithms for updating the measurement 

and system noises, the assembly operation is assumed to be 

repeated over a number of cycles. Each cycle comprises a 

series of sensor-directed commands,'which instruct an 

actuator to move to a pre-taught point and then apply 

sensory feedback to achieve some sensor conditions. This was 

illustrated in the timing diagram shown in Fi~ure 3.5. In 

achieving the sensor conditions, the actuator will go 
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through a number of iterations, involving movement and 

sensing. This is discussed in more detail in the next 

section. 

5.7.1 Estimating the measurement and system noises 

Depending on the configuration of the sensor and the 

actuator, the measurement noise will, in general, be a 

combination of the sensor noise and the actuator noise. The 

algorithm described in this section provides a means of 

estimating the measurement noise, which must be further 

processed (Section 5.8) to obtain estimates of the sensor 

noise and the actuator noise individually. In order to 

estimate the measurement noise, it is assumed that a process 

of sensing and then moving the actuator is used until the 

percei ved error in the sensor is zero, br unti 1 the 

magnitude of the correction is less than either the state 

tolerance or the actuator's resolution. Hence the sequence 

of events is as follows. 

1. Move the actuator to the state. 

2. Evaluate the error between the current sensor 

reading and the desired sehsor reading. 
I 

"3. Move the actuator to try and eliminate this error. 

4. Repeat steps 2 and 3 until the distance moved by the 

actuator is less than some threshold. 

The process of sensing and then moving the actuator (steps 2 

and 3) is termed an iteration and.a number of iterations 

(sufficient to satisfy step 4) comprise a cycle.' The number 

of iterations required to achieve any given sensor 

conditions will depend on the extent of the measurement and 
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system noises. If there was no system or measurement noise, 

the number of iterations would be 0, because the movement in 

step 1 would immediately satisfy the sensor conditions. If 

there was system noise but no measurement noise, then one 

iteration would be required because the'error sensed in step 

2 would be immediately corrected for in step 3. If there was 

both system and measurement noise, the expected number of 

iterations would depend on the relative magnitude of the 

noise components. The distance moved by the actuator in step 

3 wi 11 be recorded and used to estimate the extent of the 

measurement noise. The criterion used to terminate the 

servoing was discussed in Section 4.5. 

Consider a state X., at which some specified sensor 
-~ 

conditions are to be met. Assume the system noise, Q, has a 

Normal distribution of mean r and variance £. The components 

of £ represent the variances of the corresponding components 

of the error in the state. Let M, the system error, be a 

sample taken from this distribution. Furthermore, let the 

measurement noise have a Normal distribution with a mean of 

o and a variance y, that is R=N(O,y). The components of v 
. ~ 
represent the variances of the corresponding components of 

the error in the measurement. 

On the first iteration there will be some perceived 

error which is the sum of the system error and the 

measurement error. Denote the specific measurement error on 

iteration j as S.; which is a noise vector taken from the 
-J " 

distribution R. Let E. be the error vector in the J.th 
- -J 

iteration. Initially the perceived error is El , where 

E1 = M + S1 (5.9) 
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To reduce this error to zero, the actuator wi 11 be moved a 

distance specified by the product K.E1, where K is the 

Kalman gain. However, because of the measurement error, the 

error in the final position will be given by M-K(M+S1 ), 

although when this error is measured on the next iteration 

it will be perceived to be 

(5.10) 

where S2 is the measurement error on the second iteration. 

It is useful to look at the distance moved by the 

actuator in order to achieve zero sensor error in each 

iteration. Denoting Dj as the vector specifying the distance 

moved on the jth iteration, gives 

D1 = K. (M + S,) 

D2 = K.(M - K·(M + S,) + £2) 

D3 = K.(M - K.(M + S1) - K.(M - K.(M + S,) + S2) + S3) 

Although expressions for further Dj may be written, they 

become complicated. However, it is possible to express Dj 

recursively in terms of D. " D. 2 •• D1• That is, -J- -J- -

D, = K.(M + S1) 

D2 = K. (M - 121 + £2 

D3 = K. (M - D -1 - D -2 + S;) 

D4 = K. (M - D, - D - D + S4) -2 -3 

As a check, it may be seen that when the measurement noise 

has a mean and variance of 0, such that S. = 0 for all j, 
-J 

then 

D1 = K.M 

D2 = K.(M - K.M) 

Under these cicumstances, since S is small K will be almost 

I. In the limit as ~ + 0, K ~ I and the distance moved by 
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the actuator is M in the first iteration and 0 thereafter. 

In other words the actuator makes only one movement to 

achieve the sensor conditions, and the magnitude of that 

movement is exactly equal to the system noise. 

Returning to the general case, where S is non-zero, Dj 

may be expressed in closed form as 

j -1 

D. = K.(M+S.) --J --J 
2 ~ 1-1 K • ~I-K) .(M+S j _ l ) (5.11) 

1=1 

Since the expected value of S , E[S], is 0, the expected -

va 1 ue of D. may be estimated as 
-J 

j -1 

E[D
j 

J = K.M - K2. ~I_K)1-1 .M 

1=1 

(5.12) 

The summation can be evaluated from the sum of a geometric 

series, as 

hence 

j -1 E[D.] = K.(I-K) .M -J -

.Thus, the distance to be moved by-the actuator on each 
I 

(5.13) 

(5.14) 

ite~ation is the sum of the expected value, computed from 

equation 5.14, and a component arising from the measurement 

noise. This is illustrated in Figure 5.9, which shows the 

expected value of D. with a superimposed uncertainty bound -J _. . 

arising from the measurement noise. The uncertainty bound. 

shown represents 1 variance of the measurement error in D .• -J 

When j =1, the error has variance K2y, where v i~ the 

variance of S.-As j gets large, the variance of the error 

approaches K.y. 
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2 3 ....5..... ..... 6 7 .... .... Iteration (j) ... 

Figure 5.9: Expected value of Dj with uncertainty bound 
for each cycle. 

From equation 5.9, the error in the first iteration, E1, is 

the sum of the system error, M, and the measurement error 

8
1

• Because the expected value of 8 is zero, in the absence 

of any a p~io~i information of the error in M and 8, the 

best approximation of M is E1• However, the relative 

zpagnitude of the noise in M and 8 is reflected by the value 
- - 1 

of K, the Kalman gain. Thus, the best estimate of M after 

the first iteration is 
A· 

(5.15) 

or 

(5.16) 

In each iteration, the ratio of the error from the 

measurement to the error from the system, increases. 

Furthermore, if the uncertainty bound in Figure 5.9 was 
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small, K would be close to I and hence, from equation 5.14, 

the information in iteration 2 to calculate M would be very 

small. Conversely, if K was small, the uncertainty bound 

would be large and the estimate of M would be erroneous. 

Therefore, the additional information available from 

iteration 2 to the end of the cycle is small and is not 

considered. Thus, equation 5.16 represents the best 

approximation to M in the cycle. 

" The computed value of M is an approximation to the 

error due to the system on this particular cycle, and 

represents one -sample from the distribution 2. Clearly, to 

estimate the mean and variance, E and ~, of the distribution 

2 will require more samples derived from prior and 

subsequent cycles. Therefore, for each cycle it is necessary 

" to take the approximation to M and combine this with the MiS 

computed from previous cycles to estimate of the mean and 

variance of the distribution 2. Rather than storing all 

" previous MiS, it is possible to compute an estimate of the 

mean and variance recursively. This is discussed further in 

Section 5.7.4. 
" '"'\ 

Once a val ue of M has been deri ved, the variance of the 

measurement noise can be estimated. This is now described. 

Equation 5.11 can be partitioned into two components, 

one due to the measurement noise and one due to the system 

noise, hence 
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j -1 

Dj = K.S j - r. ~I_K)1-1 
1=1 

j -1 

.S. 1 -J-

+ K.M - K2. ~ I_K)1-1 .M 

1=1 

(5.17) 

If M were known, a numerical value for the system error 

component could be computed. This is not the case, although 

from equation 5.16 an estimate of M can be produced. In the 

first few iterations of the cycle this estimate will be 

inaccurate, but accuracy will improve as j increases. Hence 

for each D., subtracting the estimate of the system error 
-J 

component, and calling this modified vector Dj , gives 

" 

. 1 ... . 
D! = D. - K.(I-K)J- .M 
-J -J 

(5.18) 

where M is the best estimate of M obtained from equation 

5.16. Therefore, 

j -1 

2 ~ 1-1 Dj = K.S j - K • ~I-K) .Sj_l (5.19) 

1=1 
""' The term K2~(I_K)1-1 is always small (assuming lF1), 

because the elements of K are bounded between 0 and 1. 

Hence, equation 5.19 can be approximated by 

2 D! = K. S. - K • S. 1 -J . -J -J - .. (5.20) 

For a set "of numbers {A} having variance b, the variance of 
n 

the set {c.A) is c 2.b. Hence, since the variance of S is v, 

considering a set of D~ in equation 5.20 gives 
-J 

2 4 Var{Qj}= K .y + K .v 
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Hence the estimated variance of the measurement noise is 

(5.22) 

As before, the computation of the variance of {D~} can be -J 

done recursively, obviating the need to store each D~ in the -J 

cycle. 

Hence, the computation of the average correction 

distance, over a number of iterations and a number of 

cycles, gives an approximation to the variance of the 

measurement noise. For each iteration, D. represents the 
-J 

correction applied by the actuator in correcting for the 

perceived error. From this, the estimate of the component 

due to the system error is subtracted giving the vector Dj. 

Following this, the variance of the D~s is estimated, and v 
-J 

computed using equation 5.20. 

5.7.2 Computation of weighted average noises 

It is evident from equation 5.22 that the accuracy of 

the estimate of the measurement noise depends on the number 

of movements made by the actuator in each cycle, i.e. the 

number of iterations per cycle. In practice, there is one 

.sample from a statistical distribution for each movement 
\ 

I 

mads. This means that estimation of the noise is most 

accurate when the effect of the noise is most pronounced. 

For the case of small noises, the estimation of the variance 

and mean of the distribution is inaccurate. 

This·situation can be improved by taking an average of 

the estimated measurement noise over a number of previous 
'. 

cycles. Although a large number of samples is desirable to 

provide a better average, the size must be limited or 

weighted to ensure the algorithm remains sensitive to 
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changes in the characteristics of the noise. If the average 

measurement noise was computed using a recursive average, 

the sensitivity of the algorithm to detect a change of mean 

would decrease with each iteration. This approach would be 

satisfactory if the characteristics of the noise were 

constant, however this cannot be assumed. Therefore, in 

computing the average, more emphasis needs to be given to 

recent samples. This can be solved by defining a weighting 

function, by which each sample is multiplied. A suitable 

form of this weighting function is, 

F(i) = (5.23) 

where A and B are constants. 

Define a particular weighting function, such that 
.. 

F(i)=1 when i=T, the current cycle, and F(i) = 0.5 when i=T-

10. This means that the most recent sample is assigned a 

weight of 1, and a sample 10 cycles ago is assigned a weight 

of 0.5. The form of this weighting function is shown in 

Figure 5.10. 

:\ .0 

F(i) 
Weight 

0.5 ---------- -------------------

T-10 T 
Cycle (i) 

Figure 5.10: The weighting function. 
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Gi ven these condi tions, A and B can be eva 1 ua ted and the' 

weighting function written as, 

F(i) = e-B.T.eB• i 

where B = 0·1.Log(2) = 0.069. 

(5.24) 

If B is increased, proportionaly less credence is given 

to previous samples, and in the limit only the current 

sample is considered. There is a trade-off between the 

ability to react to changing noise characteristics, which 

requires a large B, and the smoothness of the estimate, 

which is enhanced by reducing B. This effect is illustrated 

in Figures 5.11a and 5.11b which shows the results of a 

simulation in which the mean value of a random variable is 

estimated using a normal recursive average and a weighted 

recursive average. For cycles 1 to 50, the mean value is 1 

and the variance is 1. For cycles 51 to 100 the mean is 

increased to 2. In Figure 5.11a the value of B is 0.069 and 

it is observed that the estimation of the mean using the 

weighted average is more responsive than the non-weighted 

,p.verage to the change in the mean-~t cycle 50, but contains 

a larger noise component superimposed on the estimate. The 

effect of increasing B to 0.14, (which corresponds to 

F(i)=0.5 when i=T-5) is shown in Figure 5.11b. It is 

observed that although the response at cycle 50 is more , 

pronounced, the additional noise caused by increasing B is 

undesirable. In practice a choice of B as defined by 

equation 5.24 appears reasonable. 

In addition to the weighting factor used to reflect 

potential time-variation of the noise, it is necessary to 
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introduce a further weighting factor to reflect the fact 

that some estimates of the measurement noise will be 

inherently more accurate than others. The accuracy depends 

on the number of iterations from which v was computed. 

Therefore, define W. to be the number of iterations (equal 
-1 

to the number of actuator movements) on the ith cycle. 

5.7.3 Calculating measurement noise by a weighted-average 

The expected value of y can be expressed as, 

E[yl (5.25) 

where Ll is the weighting value assigned to the lth sample 

and T is the current cycle number. Using the weighting 

function defined by equation 5.24 and the weight WI to 

reflect the number of iterations over which the estimate was 

calculated, the estimated measurement noise variance is 

T 

= ~( -B.T B.l W L e .e • l.vl (5.26) 

. 1=1 

where YT, the cummulative sum of the weighting factors, is 

given by 

T 

= ~-B. (T-l) W 
YT L . ·1 

1=1 

(5.27) 

To avoid having to calculate this summation after each 

cycle, the estimate is expressed in a recursi~e form. 

Replacing T by T+1 in equation 5.26 gives 
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= 

= 

T+1 

1 ~ -B. (T+1) B.j W ) . e .e •.. v. 
- J -J Y 

T+1 . 1 
J= 

T 

~(e-B. (T+1) .eB• j .W .• v.) L J-J 

j =1 

which expressed recursively is 

A -B . A 

vT+1 = l·(e .YT·vT + v T+1 ·wT+1 ) 
YT+1 

(5.28) 

(5.29) 

(5.30) 

This allows new estimates to be calculated on the basis of 

the current variance vT and the newly recorded value, YT+1· 

In a simi lar way, YT can be expressed in a recursi ve 

form. Replacing T by T+1 in equation 5.27 gives 

T+1 

~-B.(T+1-l) W 
YT+1 = ~ . 1 

1=1 

Thus, the recursive form is 

""\ 

Therefore, following each cycle, the value of v 

(5.31 ) 

(5.32) 

obtained from equation 5.22 is used to compute a weighted-

recursive average using equations 5.30 and 5.32. This yields 

a new estimate for the variance of the measurement noise. 

5.7.4 Calculating the system noise by a weighted average 

Each cycle gives a single sample, M, from the system 

noise, Q, which is assumed to be Normal of mean rand 

variance u. By·taking an average of successiv~ M's, an 

approximation to r is obtained. As described in Section 
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5.7.2, the estimate of the mean must be weighted to take 

into account possible time variation of the noise. However 

it is not desirable to weight the M estimates using the 

number of iterations in the cycle. Hence, replacing W by 1 

in equations 5.30 and 5.32 gives a relationship to calculate 

the weighted recursive estimate of the mean value of the 

system noise, r, as 

" r -T+1 (5.33) 

where Y~+1 is given by 

-B , e • YT + 1 (5.34) 

The estimation of the weighted recursive variance of 

the system noise can be achieved using a similar line of 

reasoning. The 'variance of a set of numbers {X} is defined 

as, 
T 

Var{X} = 1. ~Xl - X)2 
(T-1) L 

1=1 

(5.35) 

where X is the mean of the set of numbers. Upon substitution 

of the weighting functions, the estimated variance of the 
"'\ 

system noise is 

T 

" = 1 '-B.T B.l W (M" 
~ Y' ~ .e • 1· -1 

T 1=1 

(5.36) 

where Y~ is defined by equation 5.34, and r by equation 

5.33. This can be ~xpressed in the recursive form. 

Considering uT+1 ' 
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= 1 • { -, 
YT+1 

T+1 

~-B.(T+1) B.l W (M" L .e. l' -1 

1=1 

T 

" )2 - r 1 -T+ 

Le-B.(T+1).eB.l.Wl.(~1 - r
T

+1 )2 

1=1 

making the approximation iT = rT+1 gives, 

" -B" ( ") 2 } = l,.{e .YT·uT + WT+1' MT+1 - rT+1 
YT+i 

" u -T+1 

which is the required recursive form. 

It is therefore possible to estimate the mean and 

variance of the system noise using weighted averages. 

(5.38 ) 

(5.39) 

Equations 5.33 and 5.39 allow the estimation of mean and 

variance respectively, and do not require storage of past 

data because of their recursive formulation. 

5.7.5 Updating noises in the absence of information 

If the system and measurement noise are both 0, there 

will be no error in each cycle and-pence the eslimated u and 
• i 

Y will tend towards O. Under these conditions, the 

computation of the Kalman gain becomes ill-conditioned, 

since both the numerator and the denominator of equation 5.7 

approach O. If the measurement is noise-free, the Kalman 

gain matrix should approach I, irrespective of the value of 

the system noise. This ensures that if the measurement is 

noise-free, any spurious system errors can still be 

detected. 

To achieve this result, the situation of a cycle 
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involving no iterations must be identified and the normal 

update equations suspended. The following update equations 

are then applied 

u = 0.95 x u (5.40) 
and 

v = 0.9 x v (5.41 ) 

The system noise is automatically reduced by multiplying 

each component by 0.95. Similarly, the measurement noise is 

reduced by multiplying each component by 0.9. If the system 

and measurement noises are 0, the estimated value of each 

noise will reduce by a constant factor after each cycle. 

However, since the measurement noise will decrease more 

quickly, the Kalman gain wi 11 tend to I, because in the 

limit the estimated measurement noise will be smaller than 

the estimated system noise. The effect of this is 

illustrated in the numerical example of Section 5.10.2. 

5.8 Updating the actuator noise 

Any error introduced by an actuator could manifest 

itself as either a system or a measurement error. This 

?epends on the configuration of th~ sensor and actuator, as 

discussed earlier. Consider a dynamic sensor. The algorithm 

developed in Section 5.7 provides an estimate of the 

measurement noise. This must be further processed to update 

the sensor and actuator noises independently. 

The e~timated measurement noise, from equation 5.30, is 

v. Let fk denote the current estimate of the variance of the 

noise from the kth sensor, and let e denote the current 
. -g 

th estimate of the variance of the noise from the g actuator. 

Assuming th·at V. was obtained after an interaction between 
-l. 
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the kth sensor and the gth actuator in the feedback process, 

it is evident that only the corresponding noises for that 

sensor and actuator can be updated. Furthermore, the 

relative magnitudes of i k and e g will indicate the likely 

source of the error v, such that the expected fraction of v 
due to the sensor is the ratio of the sensor noise to the 

sum of the sensor noise and the actuator noise. Similarly, 

the expected fraction of i due to the actuator is the ratio 

of the actuator noise to the sum of the sensor noise and the 

actuator noise. Hence, denoting f kx (+) and e gx (+) as the 

updated x component of the sensor noise and actuator noise 

respectively, gives the noise update equations as 

f kx (+) 1 { "- f kx + f kx } (5.42) = vx • 2" 
(fkx+egx ) 

e (+) 1 { "- + e gx } (5.43) = v x· egx gx 2 
(fkx+egx ) 

The other components of the noise are calculated from the 

corresponding components of the vectors. Equation 5.42 sets 

t,he new sensor noi se to be the numefica 1 average of the 
I 

currQnt sensor noise and the expected contribution of the 

sensor noise to v. Likewise, the actuator noise is set to 

the numerical average of the current actuator noise and the 

expected contribution of the actuator noise to v. 
Care must be taken when computing the updated noises 

from equations 5.42 and 5.43. This' is because the vector fk 

represents the sensor noise in the sensor's frame of 

reference. However, e and v will be in the world's frame of -g 

reference. Therefore, implicit in equations 5.42 and 5.43 is 
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the transformation of the errors into the appropriate frame 

of reference. The transformation of an error from the 

sensor's frame of reference into the world's frame of 

reference was discussed in Chapter 4. The inverse 

transformation follows similar lines, but uses the inverses 

of the homogeneous matrices. For a static sensor, 

[
Sensor framel = [ sensor-wor~d ]-1. [world framel 

error J transformat1on error J 

and for a dynamic sensor, 

[
Sensor frame) = [Act':la~orl-\ [sensor-actua~orl-1. [world frame] 

error J pos1t1on transformat1on error 

where the error vectors have been transformed into their 4x4 

homogeneous matrix representations. 

The discussion leading to the derivation of equations 

5.42 and 5.43 was concerned with a dynamic sensor, where the 

actuator noise contributed to the measurement. In the case 

of a static sensor, the actuator noise wi 11 be embedded in 

the computed system noise, til. A similar approach is 

?pplicable, with the sensor noise,\ fk in equation 5.42 and 
! 

5.43 r replaced by the current estimate of the system noise, 

£1' and v replaced by the measured system noise, til. Hence, 

for a static sensor, the updated sensor noise is 

fk (+) = v x x (5.44) 

The updated actuator noise is 

(5.45) 

and the updated system noise is 
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ulx (+) = ~ { ulx • u lx + u lx } 

(egx+ulx ) 

(5.46) 

In general, for an assembly incorporating multiple 

sensors and actuators, one sensor noise, one actuator noise 

and one system noise will be updated upon completion of each 

cycle. If there is more than one sensor associated with an 

actuator, or more than one actuator associated with a 

sensor, it is possible to identify the source of the error 

as being due to a sensor or an actuator. Also, if the 

control program involves more than one state, it is possible 

to identify the cause of an error as either the actuator or 

the system. 

As an example, consider an assembly involving a single 

actuator and two dynamic sensors. The actuator"is a robot, 

and the sensors are a tactile array and a camera. The 

initial noise variances are (considering only one 

component), 

Robot noise = 1.0 mm2 

Camera noise = 2.0 mm2 

Tactile noise = 4.0 mm2 

-\ 
Whilst using the robot with the tactile sensor, a 

mea~'urement noise of 6 mm2 was recorded. Using equations 

5.42 and 5.43, the new noise variances are calculated as, 

New robot noise = 0.5 x (6 x 1 /5 + 1.0) = -1. 1 mm2 

New tactile noise = 0.5 x (6 x 4/5 + 4.0) = 4.4 mm2 

Following this, the robot was used in conjunction with the 

camera, when a measurement noise of 4 mm2 was recorded. The 

new noises are therefore, 

New robot noise = 0.5 x (4 x 1.1/3.1 + 1.0) = 1.2 mm2 
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New camera noise = 0.5 x (4 x 2.1/3.1 + 2.0) = 2.3 mm
2 

Because the robot is common to both cycles, the robot noise 

is increased twice, so that the relative fraction of the 

robot's noise to each of the sensor's noise has increased 

after two cycles. Intuitively, this says that since the 

robot is the common factor between the errors, it is the 

likely source of error. 

5.9 Applying long-term feedback 

The advantages of applying long-term feedback in 

addition to short-term feedback were discussed in Section 

3.9. If the system noise has a non-zero mean, the cummulated 

error over consecutive cycles will eventually be too large 

to be measured by the sensors. To cope with this, the 

estimated mean of the system noise at a state, computed 

using equation 5.33, is used to adjust the state using 

= (5.47) 

where ~l(-) is the estimate of the state at the beginning of 

the cycle, prior to the application of sensory feedback. The 

updated value, Xl (+), is computed upon completion of the 
"'\ 

cycle, after the new mean value of the system noise, £1' has 

been estimated. The effect of applying equation 5.47 is to 

avoid a build-up of error if the system noise has a non-zero 

mean. 

The next section describes two numerical examples of 

noise computatiorr' and shows the advantages to be gained from 

detecting and processing the errors. 

5.10 Numerical examples of measurement noise' update 

Two numerical examples are considered. For both, the 
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noises have been simulated using a Normal random number 

generator. In the first example a constant noise level is 

considered, and in the second example the situation of a 

sensor suddenly becoming noisy is investigated. 

5.10.1 Estimation of a constant noise level. 

Consider a potentiometric encoder used to provide force 

sensing on a robot gripper. The sensor is noisy and the 

error can be represented by a random variable having a 

Normal distribution wi th a mean of zero and a variance of 2 

mm2• The sensor is to be used in a closed-loop feedback 

control scheme, in which the aim is to achieve a force 

reading of 100 by mov ing the robot in response to errors 

detected by the sensor. The operation is to be repeated for 

50 cycles. It is assumed that errors detected by the sensor 

can be transformed into the appropriate actuator errors 

through a transformation. The system noise is zero, 

therefore the initial position of the actuator on each cycle 

is actually the correct position, but because of noise in 

the sensor there will be a perceived error. 

The results of applying the &lgorithm described in 
1 

Sect.ion 5.7 to this system are summarized by the graphs 

shown in Figures 5.12 to 5.17. Considering only one 

component of the state, the Kalman gain is initially 1.0 and 

the actuator makes a number of movements until the perceived 

error requires a correction of less than the resolution of 

the actuator, whereupon the servoing stops. The information 
, 

from the movements is used to estimate the variance of the 

measurement noise, shown in Figure 5.12, whic~ increases 

towards the actual value of 2. The estimated system noise is 
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shown in Figure 5.13 and, although small, never reaches the 

actual value of O. The Kalman gain and error covariance.are 

shown in Figure 5.14. The Kalman gain approaches a value of 

about 0.35. Ideally, because there is no system noise, the 

Kalman gain should also fall to 0, because the noisy 

measurement data should be completely ignored. In practice, 

however, this is not desirable, because such a situation 

would render the system insensitive to a sudden change in 

the system noise. By maintaining a small portion of the 

measurement in each state estimation, the sensors are never 

completely redundant and can thus detect an error introduced 

by the system. Furthermore, if, for some reason, the sensor 

suddenly becomes noise-free, this will be detected and 

correspondingly more weight will be pl~ced on the 

measurement process. In an industrial environment, the error 

may.be intermittent. This would be the case if, for example, 

the noise arose from electrical interference. Thus, the 

characteristics of the noise cannot be assumed to be 

stationary. This is illustrated in the numerical example 

described in Section 5.10.2. 
-\ 

I 

The velocity of the robot in approaching the state is 

computed using equation 3.2, where the sensitivity of the 

state is assumed to be 0.5 and TI is obtained from PI using 

equation 5.8. The velocity, shown in Figure 5.15, soon 

reaches a steady value, which reflects the constant PI from 

cycle 10 onwards. 

One effect of applying the noise-estimation algorithm 

to this problem is to decrease the error in the posi tion of 

the actuator at the end of the cycle. In this example, 
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because there are no system errors, optimum accuracy would 

have been obtained by ignoring all the sensor information, 

(equivalent to K=O) in which case there would have been no 

error on each cycle. If, however, the information from the 

sensors was used with 100% confidence, (equivalent to K=1) 

as would be done in a normal sensory feedback system, the 

effect would have been to give a final error vector having a 

Normal distribution with a mean of 0 and a variance of 2 

mm2• This is illustrated in Figures 5.16 and 5.17, which, 

show the final positional error (in one component) for the 

case K=1, Figure 5.16, and K computed from the Kalman gain 

equations, Figure 5.17. The effect of computing a value of K 

to reflect the noise in the sensor, reduces the expected 

error in each cycle. Using the algorithm developed in this 

chapter, K is automatically adjusted to reflect the estimate 

of the current measurement noise and hence give an error 

distribution having variance between 0 and 2,as depicted by 

the error covariance from the Kalman filter, Figure 5.14. 

The steady-state estimate of the variance of the error is 

"approximately 1. If the measuremei)t noise changes with time, 

this situation is handled automatically. This would not be 

the case if K approached 0 because no information would be 

processed from the sensors, which would effectively be 

redundant. The efficiency of the closed-loop servoing is 

substantially bet,ter than would be the case if the 

measurement noise was assumed to be zero. 

In addition to improving the final accuracy, the 

average time spent servoing,to achieve the desired sensor 

conditions is reduced, since on average fewer actuator 
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movements wi 11 be made on each cyc Ie. Hence there is a time 

saving, which is significant for large measurement noises. 

This is demonstrated by an example in Chapter 7. 

5.10.2 Estimation of a changing noise level 

Consider the case of a sensor which is initially noise-

free, but which develops a fault. Between cycles 1 and 25, 

there is no noise from either the system or the measurement. 

From cyc 1 e 25 to 50 the sensor error can be mode 11 ed by a 

random variable ha ving a mean of 0 and a variance of 2 mm 2 • 

The sensor provides information on only one component of the 

state and hence only this component is considered. The 

results of applying the noise estimation algorithm to this 

problem are shown in Figures 5.18 to 5.22. 

Because there are no iterations on each of the first 25 

cycles, equations 5.40 and 5.41 are used to update the 

initial noise estimates, which therefore show a smooth 

decrease over this period, see Figures 5.18 and 5.19. 

Because the measurement noise decreases faster than the 

system noise, the Kalman gain, Figure 5.20, tends towards 1. 
'\ 

After cycle 25, the estimate of the measurement noise 

increases and there is a corresponding decrease in the 

Kalman gain towards the steady-state value of about 0.2. 

Because the Kalman gain falls, the effect of-the noise 

in the sen.sor is reduced and the expected error at the end 

of each cycle is s'inaller than it would be if the error in 

the sensor was not detected or ignored. This can be observed 

by comparing t?e final error, shown in Figure -5.21, with the 

results shown in Figure 5.16 for the uncorrected (K=1) 
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situation. 

The ve loci ty of the robot in the vicini ty of the sta te, 

Figure 5.22, increases towards a maximum at cycle 25. (The 

sensitivity of the component of the state is assumed to be 
. 

0.5.) After cycle 25, the velocity shows a small decrease, 

reflecting the added uncertainty caused by the measurement 

error. The change in velocity is small because the effect of 

the error is reduced by the low Kalman gain. 

5.11 Summary 

The flow-chart showing the sequence of operations in 

the execution of a sensor-level command, Figure 4.3, can now 

be augmented to include the results of this chapter. This 

new flow-chart is shown in Figure 5.23. 

This chapter has shown how errors- arising from 

actuators, sensors, and ill-positioned components, can be 

identified and the noise distributions quantified. Once the 

relative magnitudes of the noises have been estimated, the 

sensor information is weighted using the Kalman gain. As 

demonstrated in the numerical examples, this weighting 

~reduces the final positional error of the actuator whenever 
, 1 

the. measurement is noisy. This will be demonstrated further 

in Chapter 7, where a noisy sensor is used in an industrial 

problem. 

The simulation described in Section 5.10.1, for a 

constant sensor noise, gave a steady-state Kalman gain of 

about 0.35. Although this' improves the final positional 

accuracy, there still remains room for improvement. The 

estimated system noise is about 0.4 rather th~n the actual 

Value of 0.0. If the estimation of the system error in each 
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I Move the actuator from the current state to the corresponding 
intermediate state at a speed computed using equation 3.4 (Fine-motion). 

t 
lMove the actuator to the intermediate state associated with the final state 1 

(Gross-motion). 

t 
lMove the actuator to the final state at a speed computed using equation 3.7 (Fine-l 

motion) • 

t 

- Ii: .. 1 J 

Get the attributed sensor data from the nominated sensor-slave. 1 
'" l Compute the sensor error and transform it to a world frame and into world 

coordinates .. !i' 

'f -' 
.- I Compute Qi .. It'!i I 

No ~ Yes 
criterion (Section 4.5) 

satisfied ? 

'v Si~ .... 
Yes " No .. ~ve the actuator by 

QiJ and record 0i' I 
Compute the ...... 

~f 

--

'" 

-v new 

i • 1 , let i=Qil 
system and 
measurement 

-v noise variances 

li : .. i+ 1 1 from equations 

variance !, 
5.40 and 5.41. 

I Compute the estimated measurement noise 
from equation 5.22. 

t 
Compute the weighted recursive average of the 

measurement noise from equation 5.30. 

t , 
Compute the weighted recursive average of the mean I 

of the system noise using equation 5.34. 

It 
Compute the weighted recursive average of the 

variance of the system noise using equation 5.39 • 
.. 

Update the noise estimates of the sensor and the 
actuator using either equations 5.42 and 5.43 (for 
a dynamic sensor) or equations 5.45 and 5.46 (for a 

static sensor). 

'" 
., 

Adjust the state by the mean value of the system 
noise using equation 5.44 (Long-term feedback). 

t 
Update the Kalman filter equations (Equations 5.4, 

5.6 and 5.7). 

~igure 5.23: Flow-chart sUmmarizing the noise estimation 
algorithm. 
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cycle, M, could be improved, then there would be a 

corresponding improvement in the filtering of the noisy 

sensor data by deriving a smaller K. The means of improving 

the estimate of M in each cycle is not obvious. The 

estimation of the measurement noise will always be more 

accurate because there is more information available from 

which to estimate it. 

The sudden change in noise characteristics simulated in 

Section 5.10.2 is not atypical of industrial noise induced 
( 

by electrical interference. Coping with ~his form of noise 

is an important practical consideration for industrial 

automation. 

In the next chapter, an implementation of the noise 
.' 

processing algorithms in a robot· programming system is 

described. 

--\ 
I 
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CHAPTER 6 

A PROGRAMMING TOOL FOR SENSORY ASSEMBLIES 
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6.1 Introduction 

This chapter describes the implementation of a robot 

programming system which includes the results developed in 

the previous chapters. The model of a discrete sensory 

assembly presented in Chapter 3 forms the basis of the 

system. The specification of actions through a sensor-level 
/ 

of indirection (Chapter 4) is achieved through a set of C 

functions, which are described in detail in this Chapter. 

Automatic processing of errors to cope with noise (Chapter 

5) is an integral part of the system. The key features of 

the software are as follows: 

1. Efficient specification of sensory feedback. 

2. Dynamic calculation of actuator velocity using 

.. information from previous errors. 

3. On-line processing of errors to provide optimal 

estimates of noise levels. 

4. Optimal filtering of sensor information to reflect 

the computed noise levels. 

5. Interactive interface to allow sensors and actuators 

to be defined. 
~ 

6. Simulation of nois~ in sensors, actuators and the 

system. 

The software system, called SLPS (sensor-level programming 

system), comprises a library of functions written in the C 

programmi~g language [105], which are used by the programmer 

to define the interactions between the sensors and the 

actuators. In addition to this, a suite of BASIC programs 

provides an interface to the programmer to allow the data 

files describing the sensors, actuators and states to be 
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defined. The system can be used to control any commercial or 

purpose-built actuators, using information from any 

commercial or purpose-built sensors. 

6.2 Hardware framework 

A typical configuration of sensors and actuators was 

./ 

described in Section 3.1 and illustrated in Figure 3.1. This 

is generalized in Figure 6.1. The main control program 

resides on the central controller, which communicates to the 

sensors and actuators to achieve the goals specified in the 

program.-A servo-process involving a sensor and an actuator 

is coordinated by the central controller. All information 

interchange takes place through this controller, which can 

be view~d as the master in a master-slave hierarchy. The 

communication channel between the master and the slaves is a 

low bandwidth, parallel bus, called Robus [106]. 

If applicable, the commercial controller associated 

with a sensor or actuator is retained and interfaced to the 

appropriate sensor or actuator controller. In this way, the 

software to control the kinematics of a robot arm, for 
- ~l 

example, does not need to be reproduced in the central 

controller. Furthermore, the processing required to extract 

the attributes from the sensor information is carried out 

within the sensor-slave. Hence, the computational demand 

placed on the master is small because its role is control 

and coordination rather than numerical processing.' In the 

next chapter, an industrial problem is described which uses 

an IBM .. PC as the master controller. 

Each sensor and "actuator-slave has a unique 8-bit 
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address which allows the master to read the attributes from 

the required sensor and send movement instructions to the 

required actuator. The addresses are taught to the master 

within the definition file associated with each slave. 

6.3 Communicating to sensors 

Because the sensor controller sends attrib~tes rather 

than raw sensor data, the form of information interchange 

between the master and any sensor-slave is consistent. 

During the application of sensory. feedback, the master will 

require sensor information from which to compute the error. 

To obtain this sensor information, the following sequence of 

events occurs: 

1. The master sends a request to the sensor-slave for 

information. 

2. The slave procures data from the physical sensor. 

3. The slave processes this data to produce the 

attributes. 

4. The slave sends the number of computed attributes to 

the master. 

5. The slave sends the. numerical value of each 

attribute to the master. 

6. The slave sends a terminator to indicate the 

success or failure of the sensing and processing. 

This is a generic sequence ~f instructions which is the same 

for every sensor. Once the attributes have been received by 

the master, the sensor error can be computed and then 

transfqrmed into the actuator error. 

In step 1, the master sends a command code to the 
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sensor-slave as a data request signal. The command code, of 

which there is one for each sensor, is called the activation 

number of the sensor. Upon receiving the activation number, 

the sensor-slave must collect data from the physical sensor 

and then process this to give the attributes. The number of 

attributes extracted is then sent to the master. Although 

this number is defined a p~io~i within the sens6r's 

definition file, the master can perform a check on the 

synchronization of the handshaking, prior to receiving the 

attributes themselves. The control program is aborted if 

the number of attributes expected by the master does not 

correspond with the number computed by the slave. Because 

the information interchange between the master and the slave 

is polled rather than interrupt-driven, .. a synchronization 

check of this form is necessary to detect a phase error. 

Once the number of attributes has been transmitted, the 

numerical value of each attribute is sent to the master. 

Finally, the sensor-slave sends an acknowledgement code. If 

the sensing and processing was achieved successfully, a 

terminator code of 99 is sent. If either the sensing or the 
." \ 

processing produced an errdr, an error-code is returned. The 

master will only continue execution of the control program 

if the valid terminator is received. 

6.4 Communicating to actuators 

To e:qable the master to control each actuator in a 

uniform way, a standard communication interface is defined 

between the master and each actuator-slave. The master sends 

command codes followed by data. The actuator-slave must then 

translate this code into the syntax required by the 
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commercial actuator, or else control the actuator directly. 

Either-way, the format of the command code and data sent by 

the master wi 11 be the same for each actua tor, and differ 

only in the physical address to which it is written. The 

command codes for the actuator controller are shown in 

Figure 6.2. Depending upon the complexity of the actuator, 
-' 

not all of these control codes will be implemented. From 

Figure 6.2, it is seen that the command code to set the 

speed of an actuator is 1. After sending this code, the 

parameter required is the normalized speed, which is always 

between 0, for lowest speed, and 100 for maximum speed. For 

example, to set the speed of a Puma robot to half maximum 

speed, the data 1,50 would be sent to the address 

corresponding to the Puma's slave controller. Upon receiving 

this command, the Puma's slave would send the ASCII string 

'SPEED 160' to the commercial controller. Since the maximum 

speed of the Puma robot is 320, the value of 160 represents 

the required speed. 

The information interchange between the master and the 

actuator is summarized as follows: , 
I 

1. The master sends a command code followed by 

relevant data to the actuator-slave. 

2. The actuator-slave obeys the command and transmits 

back to the master any desired data. 

3. The actuator-slave sends an acknowledgement or 

an error code back to the master to complete the 

operation. 

If the operation is completed successfully, the 
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Cooe 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1 

12 

13 

Meaning 

set the speed of Movement. 

set the acceleration of movement. 

Move the actuator to a pre-defined 
state. / 

Define the current position of the 
actuator as a named state. 

Move the actuator relative to its 
current position by _x,y,z,o,a,t. 

Move a pre-defined state by an 
amount x,y,z,o,a,t. 

Return the coordinates of the 
actuator's current position. 

Return the coordinates of a 
pre-defined state. 

Move the actuator to a pre-defined 
state. 

Move the actuator to a pre-defined 
state in a straight line. 

Initialize the actuator. (includes 
calibration, reseting etc.) 

Halt the actuator (low priority). 
~\ 

Halt/the actuator (emergency 
stop). 

Figure 6.2: Table of generic command cooes which can be 
sent to the actuator slave. 

-154-



acknowledgement code 99 is sent back to the master. 

Otherwise, an error-code is sent. The control program 

continues only if the acknowledgement code is received. 

6.5 Defining the components of a sensory assembly 

Formulating a solution to a sensory assembly problem 

using SLPS requires the following stages: 

1. Define each sensor. 

2. Define each actuator. 

3. Install the relevant sensors and actuators and 

define the physical relationship between each. 

4. Write the control program in C using the defined 

sensors and actuators as parameters. 

5. Define the parameters associated with the assembly 

problem. 

6. Compile the program and link the library routines. 

7. Execute. 

The relationship between these stages is shown in Figure 

6.3. In stages 1 and 2, the definition of the sensors and 

actuators involves producing a data file containing the 
~ 

physical parameters of the slaves. This data file contains 

information relevant to the sensor or actuator, and is 

independent of the application in which it is being used. 

The data files corresponding to each physical sensor and 

actuator are installed in step 3 to produce the installed 

task file,~which is specific to the application. This file 

also contains information on the interaction between the 

sensors and the actuators, including t~e necessary 

transformation matrices to relate the frames of reference. 
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definition 
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, 
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State 

parameter 

file 

Execute 

Figure 6.3: The stages in producing an executable robot 
control program under SLPS. 
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Another data file, the state parameter file, contains 

information on the states, and is defined in step 5. 

The data files in steps 1,2,3 and 5 are produced using a 

suite of interactive programs written in IBM BASIC. The programs, 

called IRPS (Integrated Robot Programming System), prompt the 

programmer to enter the required parameters, which are 

./ 

subsequently stored in the appropriate file. The contents of each 

data file are discussed in the next three sUb-sections. 

6.5.1 Defining a sensor 

Once the physical hardware associated with a sensor-

slave has been constructed, the presence of the new sensor, 

and the parameters associated with it, must be defined. The 

following information is contained within each sensor's 

definition file: 

1. The name of the sensor. 

2. The physical address of the sensor-slave on the bus. 

3. The activation number of the sensor. 

4. The number of attributes produced by the sensor. 

5. The name of each attribute. 

6. The correction in~he sensor's frame of reference, 

which specifies the directions in which the sensor 

must be moved to correct for an error in each 

attribute. 
. 

7. The noise variance associated with each component of 

the measurement. 

The name of the sensor is a string of ch<;l.racters which wi 11 

be used in the control program to ref~rence the sensor. The 

physical address of the sensor-slave takes values between 0 
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and 255, and allows the central controller to communicate 

wi th the s la vee The acti va tion number of the sensor is the 

command code which the central controller must send to the 

slave controller to request the attributed sensor 

information (Section 6.3). Two sensor slaves can occupy the 

same physical address, and so these are distinguished by 

. -' 
issuing a different activation number to spec1fy the 

required sensor. (In practice, this corresponds to the need 

for a separate hardware module for each unique address. For 

simple sensors, it is sensible to associate more than one 

sensor with a slave controller, this reduces cost and 

complexity.) 

The fourth parameter in the sensor's definition file is 

the number of attributes produced by the. sensor-slave. 

Following this, the name of each attribute is given. These 

names will be used in the control program to identify the 

required attribute. It is important that the order in which 

the names of the attributes are entered in the definition 

file corresponds with the order in which the sensor-slave 

sends the attributed data to the master. 
- -\ 

The next entry in the sensor's definition file is the 

correction to a llow an error in an attribute to be 

corrected. The correction is entered as a translational and 

rotational component, defined relative to .the sensor's 

origin. It is not·stored as'a homogeneous matrix because, 

for rotation, the homogeneous matrix involves sines and 

cosines of the rotation angles. Since the required angle of 

rota tion can only be computed in the c~ntext of the sensor 

error, the numerical components of the matrix cannot, at 
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this stage, be assigned. Therefore, the correction is stored 

in the form 

(x,y,z) , (a,b,c) 

in which (x,y,z) is the translational part and (a,b,c) 

defines an axis of rotation. Assume that the required 

movement of the sensor takes one of three forms, namely, 

-' 1. Movement along the x, y and z axes, or any 

combination of these. 

2. Rotation about a vector (a,b,c), which is centered 

on the origin of the sensor's frame of reference. 

3. Rotation about a vector (a,b,c), which is centered 

on a point (x,y,z). 

Although these three forms of correction do not encompass 

all pos?ibilities, they do allow most sensors to be 

modelled. Many sensors fall into category 1, for example a 

proximity sensor, linear-array camera, area-array camera and 

a 3 degree of freedom IRCC. 

In category 1, (x,y,z) is a unit vector specifying the 

direction in which the sensor must be moved. In category 2 

(a,b,c) is a unit vector specifying the axis of rotation. 
"\ 

For category 3, the vectorl(x,y,z) is an offset, expressed in 

millimetres, between the sensor's origin and the axis of 

rotation, which is given by the unit vector (a,b,c). 

Thus, the correction indicating that .the sensor must be 

moved in the +x direction to increase the value of the 

attribute would be given as 

(1,0,0) , (0,0,0) 

Similarly, the correction indicating that the sensor must be 

rotated about the -y"axis would be represented as 
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(0,0,0) , (0,1,0) 

and finally the correction given by 

(0,1,0) , (10,0,0) 

means that the sensor must be rotated about a line which is 

parallel to the y axis and offset by 10 millimetres in the 

x direction. 

The choice of origin is arbitrary, although/it must 

eventually be related to either the actuator's or the 

world's frame of reference. For the case of an area-array 

camera, a sensible choice of origin is the centre of the 

image. 

The corrections described above only specify the 

direction in which the sensor must be moved, and not the 

size of ,the movement. The size is computed in a separate C 

function, movemag, which returns the size of the correction 

in world coordinates, given the sensor error as a parameter. 

The function is written in C and provides a means of 

modelling non-linear relationships between sensor errors and 

the corrections. The function contains a condition for each 

sensor pertinent to the assembly. The general form is shown 

""" \ 
in Figure 6.4. The expression t(e~~o~) gives the size of the 

correction as a function of the sensor error. For example, 

if the sensor error was in terms of picture elements from a 

camera and there were 10 picture elements per mm, then the 

function would beerror/10, 'giving the error in mm. The 

function could be more complicated, and any of the standard 

mathematical functions are available through the C library 

routines. Although it has not been implemented in the 

current system, it may be desirable to include the attribute 
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as a parameter to the movemag function. This would allow 

each attribute of the sensor to have a different correction 

size. A camera with a non-unity aspect ratio would require 

this facilty. 

float movemag(sensor,error) 
int sensor; /* Number of the sensor */ 

/* Sensor error */ / float error; 
( 

if ( sensor == ~en~o~l ) 
return( t(~o~) ); 

if ( sensor == ~en~o~ ) 
return ( t( ~o~ ); 

... 

Figure 6.4: The function 'movemaq', us.ed to define the 
size of the correetion as a fUnction of the 
sensor error. 

The size of the correction, as returned from movemag, 

is used to modulate the correction vector. Either the 

translation or the rotation is multiplied by the scalar 

size, to give the final correction vector defined in the 

sensor's 
-\ 

frame of reference~ For example, a sensor 

correction stored as (1,0,0), (0,0,0), together with a 

movement size of 10mm, would mean the sensor must be moved 

along the cartesian vector (10,0,0). 

The final entry in the sensor's definition file is the 

sensor noise. This is an initial estimate of the error 

expected in the readings from the sensor. It will be used in 

the Ka~man filter, and will be updated, on-line, using data 

derived from the servoing (Chapter 5). The sensor noise is 
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represented by a vector which gives the estimated variance 

of the error in up to 6 measured components. 

An example of a definition file for a sensor is shown 

in Figure 6.5. This file defines an area-array camera, 

called 'areacam', which resides at address 100. The 

activation number is 20 and the sensor-slave sends back 2 

attributes, which are called 'x-cofg' and 'y-cofg'. These 

correspond to the percei ved posi tions of the x and y centre 

of gravity of the part currently in view. The correction 

indicates that for an error in the attribute 'x-cofg', the 

sensor must be moved in the +x direction. For the attribute 

'y-cofg', the sensor must be moved in the +y direction. 

6.5.2 Defining an actuator 
.. 

The"definition of an actuat.or is similar to that for 

the sensor. The following information is required: 

1. The name of the actuator. 

2. The physica 1 address of the actua tor-s la ve on the 

bus. 

3. The resolution of the actuator. 

4. The repeatability o£ the actuator. 

The resolution of the actuator is given as two components, 

one for translation and the other for rotation. The 

translational component of resolution is the minimum 

distance the actuator can move in a cartesian coordinate 

system. Although this may vary with position and direction, 

it is assumed to represent an average for the actuator over 
\ 

the ope.rating space. The rotational component of resolution 

is an approximation to the minimum angle of movement, 
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areacam, 100 , 20 , 2 
xcofg, ycofg 
(1,0,0) , (O,O,O) 
(0,1,0) , (0,0,0) 
(0.1 , 0.1 , 0.0 , 0.0 , 0.0 , 0.0) 

Figure 6.5: The sensor definition file for an area 
array camera. 

puma, 80 
.2 , .01 
.1 , .005 

Figure 6.6: The actuator definition file for a Puma 
robot. 

," 
! 

START ( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 
( 1 .0 , 1 .0 , 1 .0 , 0.0 , 0.0 , 0.0 ' ) 
( 0.1 , 0.1 , 0.1 , 0.01 , 0.01 , 0.01 ) 

END ( 0.0 , 10.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 

( 1 .0 , 1 .0 , 1 .0 , 0.0 , 0.0 , 0.0 ) 

( 0.1 , 0.1 , 0.1 , 0.01 , 0.01 , 0.0'1 ) 

Figure 6.7: An example of a state parameter file. 
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expressed in degrees. 

The repeatability, which is also represented by a 

translation and rotation component, is used to estimate the 

noise arising from the actuator (Section 5.6). 

The definition file for a Puma robot is shown in Figure 

6.6. The actuator-slave is located at address 80 on the bus. 

The actuator has a resolution of 0.2 mm in position and 

0.01 0 in orientation, the repeatability is + 0.1 mm in 

position and + 0.0050 for orientation. 

Once the physical address of the actuator-slave has been 

taught to the central controller, command codes of the form 

discussed in Section 6.4 can be sent. 

6.5.3 Defining the states 

Unlike the definition of sensors and actuators, the 

definition of the states is specific to the assembly 

problem. The numerical coordinates of the states are defined 

in either the actuator-slave or the commercial controller. 

For a Puma robot, for example, the states may be taught by 

moving the robot to the desired location and typing 'HERE 

state' on the terminal to-associate the named state with the 

current configuration of the robot. Although this approach 

could be replaced by an off-line modelling package, teach by 

showing still retains popularity as a way of setting up an 

assembly problem. 

Once the states have been defined, the central 

controller can request the numerical value of the states 

using command code 8 (Figure 6.2). Furthermore, the central 

controller can change the value of the state's components; 

this is necessary during the application of sensory 
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feedback. 

The state parameter file is defined in the ceptral 

controller and holds additional information associated with 

the states. This comprises 

1. The name of each state. 

2. The departure vector associated with each state. 

3. The system noise for each state. 

4. The tolerance of each state. 

The departure vector (Section 3.7), defines the direction in 

which the state will be approached and departed during a 

movement between states. It is a six-component vector whose 

first three components are the distances expressed in 

millimetres and whose final three components are the Euler 

orientation angles, expressed in degrees. In effect, the 

departure vector specifies a transformation from the state 

to a new point, called the intermediate state. 

The system noise is a vector which defines the expected 

variance of the noise in each component of the state. The 

noise is assumed to have a mean of zero and be Normally 

distributed, such that bet~een cycles each state is given a 
\ 
I 

random perturbation about its nominal value. The variance of 

this "noise is given by the components of the system noise. 

The translational components of the noise are expressed in 

millimetres and the rotational component~ are expressed in 

de"grees. 

The tolerance of the state (Section 3.5) is defined as 

the magnitude of the maximum error in the final position of 

the actuator at the state. The tolerance is a vector, where 

each component gives the tolerance of the corresponding 
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component of the state, being expressed in millimetres and 

degrees. 

An example of a state parameter file is shown in Figure 

6.7. Two states are defined. The first, 'START' has a 

departure vector (0,0,0,0,0,0), which means the state does 

not have a defined approach and departure direction. The 

direction in which this state is approached and departed 

will depend on the relative position of the previous and 

subsequent state respectively. The system noise for the 

first state has a variance of 1mm2 for each of the x, y and 

z components. The tolerance is.±. 0.1 mm and.:!:. 0.01 0
• For the 

second state, 'END', the departure vector is (0,10,0,0,0,0). 

This means that all movements to this state must be preceded 

'" -' 

by mov ing the actua tor to a point 10 mm away from the sta te 

in the +y direction. Similarly, when the actuator is moved 

away from this state, it must be moved by 10 mm in the +y 

direction before the movement to the next state. The motion 

of the actuator in the vicinity of the state would therefore 

be along a well-defined path, usually corresponding to some 

geometrical or-physical f~ture of the state. 
I 

Once the departure vectors for the states have been 

read by the central controller, a new set of states, the 

intermediate states, are automatically defined by adding the 

departure vector to each state. These new' states are defined 

in the actuator-slave using the command code 6 (Figure 6.2), 

and are named by adding the suffix '.INT' to each state 

, ' 
name. For example, the state 'END having departure vector 

(0,10,0,0,0,0) would cause the central' controller to define 

an additional state called 'END.INT', formed by combining 
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the value of 'END' with the departure vector. The definition 

of these intermediate states occurs in an initiali~ation 

phase, prior to execution of the main control program. When 

the actuator is required to move to the state 'END', it 

would first be instructed to move to the intermediate state 

'END.INT', and then to 'END'. Similarly, when leaving the 

state 'END', the actuator would first move to the state 

'END.INT' and then move to the next state. These movements 

between the state and its intermediate state represent the 

fine motion phase in the transfer of the actuator between 

two states (Section 3.7). Within this phase, the speed of 

the actuator is controlled from the confidence and the 

sensitivity of the state. 

6.6 Defining the transformations for the sensor 

Once the data files defining the sensors and actuators 

have been entered, the relationships between the frames of 

reference must be given. This is done in an installation 

program, in which the data files are combined with the 

relationship information to form a new data file, the 
. ~ 

installed task file. It is 'this installed task file which 

will be read by the programming system as the definition of 

the devices associated with the assembly (See Figure 6.3). 

The installation program operates interactively, 

requesting the programmer to enter the names of the sensors 

and actuators to be used, and then loading these definition 

files from disk. For the particular application under , 

development, each sensor must be identified as either static 

or dynamic. Following this, the programmer is requested to 
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enter information relating the frame of reference of each 

sensor to either the actuator's or the world's frame of 

reference, for dynamic and static sensors respectively. In 

the installation program, the options for each sensor­

actuator or sensor-world relationship are as follows: 

1. The frames of reference are equal. 

2. A translational difference between the frames of 

reference. 

3. A rotational difference between the frames of 

reference. 

4. Both a Translational and a rotational difference 

between the frames of reference. 

5. No relationship is applicable. 

These options are summarized in.Figure 6.8 for the frames of 

reference (x,y,z) and (x',y',z'). If the correction in the 

sensor's frame of reference is only translational, option 2, 

then it is not necessary to consider any translational 

differences in the sensor-actuator or sensor-world 

relationships. This is because the sensor will provide an 

error signal rather than an absolute positional measurement, 

the magnitude and direction of which will not be affected by 

a translational difference in the frames of reference. 

Unless the sensor's frame of reference is carefully 

chosen, there will, in general, be a rotational difference 

between the frames. This is entered by specifying the axes 

of the actuator's or world's frame of reference in terms of 

the basis set formed by the axes of the sensor's frame of 

reference. 

The following information is stored in the installed 
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Figure 6.8: The permitted sensor-actuator and sensor­
. world relationships. 

-169-



task file: 

1. The number of sensors to be used. 

2. For each sensor 

a) The sensor's name. 

b) Whether it is static or dynamic. 

c) The address, the activation number and the 

number of attributes. 

d) The name of each attribute. 

e) The correction for each attribute. 

f) The sensor noise. 

3. The number of actuators to be used. 

4. For each actuator 

a) The name and address of the actuator. 

b) The resolution for ~ranslatlonal and rotational 

movements. 

c) The repeatability. 

5. For each sensor 

a) Either the relationship with the world if the 

sensor is static, or, if it is dynamic, the 

relationship~ith each actuator. Each 
\ 
I 

relationship is stored as a homogeneous matrix. 

An example of an installed task file is shown in Figure 

6.9. This incorporates two sensors and on~ actuator. Since 

one sensor is static and one is dynamic, the transformations 

are specified between the world's and the actuator's frame 

of reference respectively. 

-170-



2 
areacam 
static 
100 20 2 
xcofg 
ycofg 
(1 , 0 , 0) , (0 , 0 , 0) 
(0 , 1 , 0) , (0 , 0 , 0) 
(0.1 , 0.1 , 0.0 , 0.0 , 0.0 , 0.0) 

force 
dynamic 
84 10 1 
angle 
(0 , 0 , 0) , (1 , 0 , 0) 
(0.0 , 0.0 , 0.0 , 1.0 , 0.0 , 0.0) 

1 
puma 80 
0.2 0.01 
0.1 0.005 

puma force 
0.000 1.000 
0.000 0.000 

0.000 
1.000 

0.000 
0.000 

1.000 0.000 0.000 0.000 
0.000 0.000 0 .. 000 1.000 

world areacam 

\ 
f 

1.000 0.000 0.000 0.000 
0.000 1.000 0.000 0.000 
0.000 0.000 1.000 0.000 

0.000 0.000 0.000 1.000 

Figure 6.9: An example of an installed task file 
incorporating one actuator and two sensors. 
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6.7 Programming with sensor-level commands 

Chapter 3 described the primitive sensor-level 

programming constructions. These were 

and 

MOVE actuator TO state ACHIEVING condition 
IN attribute OF sensor 

FEED-FORWARD ERROR BETWEEN attribute OF sensor 
AND condition TO state 

The first involves a servo process between the named 

sensor and actuator, which will terminate when one of a 

number of conditions are satisfied (Section 4.5). During the 

feedback~phase of this operation, each measurement from the 

sensor is firstly transformed into the world's frame of 

reference and is then weighted by multiplying by the Kalman 

gain matrix. The new estimate of the state is formed by 

adding this weighted error to the current value of the 

state, as represented by equation 5.5. Because the Kalman 

gain reflects the relative magnitude of the measurement 

noise and the system noise, it is necessary to define a 

Kalman gain matrix for each sensor-state combination. This 

can be represented as K
lk

, to denote the Kalman gain matrix 

th - ~th 
for the I state and the k sensor. If no sensory feedback 

is used at a state, the Kalman gain is Klo and has a value 

I. Following each movement to a state, the Kalman gain, K, 

and the error covariance, P, are updated ~sing equations 

5~4, 5.6 and 5.7. Assuming no sensory feedback is used, the 

estimates 'of the system and measurement noise, u. and v., 
-~ -~ 

will remain unchanged and hence K and P,will approach 

steady~state values which reflect the relative magnitudes of 

u.and v .• If v., is much smaller than u., then K will 
-~ -~ -~ -~ 
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approach I, indicating that the sensor information is 

reliable. Conversely, if u. is much smaller than v., K will 
-~ -~ 

approach 0 and, since K is used to weight the readings from 

the sensors, the sensor information will tend to be ignored. 

The second sensor-level programming construction 

involves no actuator movements, but instead feeds the 

perceived error at the current state forward to adjust a 

future state. The information from the sensors is weighted 

using the Kalman gain matrix to reflect measurement errors. 

Hence, after the perceived error has been transformed into 

the world's frame of reference, it is multiplied by K and 

the new state estimate produced using equation 5.5. Instead 

of moving the actuator to this new estimate, as in move, the 

numerical value of the state is adjusted,to reflect the 

percei ved error. 

The implementation of the above constructions is 

achieved by defining two C functions, called move and 

error-ff, which take as parameters the names of the state, 

actuator, sensor and attribute as defined in the definition 

files. Firstly consider the move function, for which the 

syntax is 

move("actuator", "state", "sensor", "attribute", value) 

This is a command to move the named actuator to the state 

and then use sensory feedback to achieve ~he specified 

numerical value in the designated attribute. Upon execution 

of this function, the central controller will know' the 

physical address of the actuator and sensor. Because the 

information interchange to the sensor-slave and the 

actuator-slave is standardized, the central controller can 
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generate the required movements of the actuator by 

processing the attributed data received from the sensor. To 

this end, the transformations defined in the installed task 

file are used to compute the errors in the actuator's frame 

of reference from the errors in the sensor's frame of 

reference. Thus, the information contained in the above 

definition of move, together with the information contained 

within the definition files, is sufficient to define a 

servo-loop. 

Once the termination criterion for the servoing has 

been met; the information obtained from each iteration is 

processed using the algorithms developed in Chapter 5 to 

provide an estimate of the noise due to the sensor, the 

actuator and the system. This allows the. parameters of the 

Kalman filter to be updated and the noise to be processed. 

The estimated noise levels affect the Kalman gain, which 

will correspondingly adjust the weighting given to the 

sensor readings for the next cycle. In the absence of any 

noise, all sensor information is treated with 100% 

confidence and the Kalman filter and noise estimation 

algorithms are redundant. 
"" \ 

I 

The sequence of events involved in the servoing process 

of the move function is represented in the flowchart of 

Figure 5.23. 

The second sensor-level programming construction is the 

function error-ff. The syntax of this is 

error_ff("sensor", "attribute", value, "state") 

and the affect of the command is to compute the error 

between the reading from the named attribute of the sensor 
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and the desired value, then to feed this error forward to 

adjust the components of the state. The error detected by 

the sensor will be transformed into a world-error before the 

correction is implemented. As before, since the central 

controller knows the address of the sensor and actuator, 

there is sufficient information contained in the function 

and the definition files to allow execution of the command. 

Within the execution of error-ff, there is no movement of 

the actuator. Therefore, it is usual to precede the command 

with an actuator movement to get the sensors into the 

correct position. This movement command may no~ require 

sensory feedback, although it can still be written using the 

form of move previously described. 

In practice, not all movements of the actuator need to 

be qualified by giving a desired sensor reading. The 

parameter 'null' may be used in the move function to 

indicate the absence of sensory feedback. Thus, 

move("actuator", "state", "null", "null", null) 

will have the affect of moving the actuator to the named 

state; this is functionally equivalent to a manipulator­

level command. In practice~i this form of the command can be 

simplified to 

move("actuator", "state") 

although care must be taken to ensure that the particular C 

compiler being used does allow this, and correctly assigns 

the missing arguments to "null" for the string and to 0.0 

for the floating point number. 

Another variant with the 'null' parameter in the move 

command is to omit the state name, giving 
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move("actuator", "null", "sensor", "attribute", value) 

If no state is specified, the sensory servoing is assumed to 

be relative to the current position. Hence, no gross or fine 

motion phases precede the feedback phase. Later in this 

chapter, and in the next chapter,·examples of assembly 

programs will be shown. 

The C programming language does not permit a variable 

number of arguments to be supplied to a function. This means 

that the additional requirements of meeting two, or more, 

sensor conditions cannot be easily represe?ted in the same 

function: For this reason, a function called move2 is 

defined. This allows two sensor conditions to be met using 

the procedure described in Section 4.6. The form of the 

function is, 

move2("actuator" , "state", "sensor1 ","attribute1 ",value1 , 
"sensor2", "attribute2" ,value2) 

If the correction vectors associated with each sensor 

condition are orthogonal, it is possible to achieve any 

number of sensor conditions at a state. This problem can be 

represented by consecutive calls of move or move2. In move2, 

the tolerance of the states is taken into account in 
i 

achieving the two sensor conditions. If the corrections for 
.. 

two sensor conditions are orthogonal, the use of move2 is 

preferable to move because in move2 the two sensor errors 

are combined to give a single actuator movement. Thus, the 

two sensor conditions are effectively met in parallel, 

rather than sequentially; 

6.7.1 Additional sensor-level programming commands 

In addition to move and error-ff, some extra functions 
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are provided to allow manipulation of the states and the 

actuators. These are lower-level commands, although they are 

necessary to model some aspects of sensory assembly. The 

following functions are defined: 

shift_state(state,dx,dy,dz,do,da,dt) 

This function adjusts the named state by the error 

quantities in each of the translational and 

rotational components. 

rnove_by(actuator,dx,dy,dz,do,da,dt) 

This function moves the named actuator by the 

desired amount. 

define_state (actuator, state) 

This function defines the current position of the 

actuator to be the named state. 

speed(actuator,value) 

This function sets the speed of the named actuator. 

rnove_to(actuator,state) 

This function moves the actuator to the pre taught 

state. 

moves_to(actuator,state) 

"'" This function moves the actuator to the pretaught 

state whilst ensuring that the origin of the 

actuator's frame of reference traces a straight 

line. 

index_state(state, index) 

This function applies the transformation specified 

by the state "index" to "state". 

In assembly, a common occurrence is a jig comprising an 

array of components to be handled. The position of the first 
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component and the spacing between adjacent components are 

known. Assume that the state representing the first 

component is called "start" and "spacing" is the state 

representing the transformation between adjacent components. 

Then, with the actuator "robot", the first component may be 

approached using 

move("robot", "start") 

The position of the next component is found by adjusting 

"start" using "spacing" as the index, as 

index_state("start", "spacing") 

Because the operation of fetching and placing components in 

an array is so common, the move and index_state functions 

have been embedded in a single function which automatically 

updates 'a state position upon completion of the movement. 

The form of this command is 

indexed move("actuator", "state", "sensor", attribute", 
- value, "index") 

The actuator is moved to the named state and sensory 

feedback applied, as in move. Following this, the state is 

adjusted using the state "index", which represents the index 

of the array. 
.. \ 

I 

In the implementation of indexed_move, an additional 

state is automatically defined during the first cycle. It is 

this additional state which is updated and then used in the 

movements in subsequent cycles. The reason for doing this is 

to retain the numerical value of the initial state, which 

would otherwise be lost after indexing. This initial value 

may be"needed again, for example in the next jig. A new 

function is necessary to indicate when the indexing must 
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finish and the initial value restored. Hence, 

end_indexed_move("state") 

will terminate the indexing, such that the next use of 

indexed_move with "state" will start from the beginning of 

the array. An example of the use of this function is given 

in Section 6.8. 

6.7.2 Format of the control program 

The functions described in the previous section, in 

addition to move and error-ff, are written in C and at the 

lowest level communicate to the sensor and'actuator slaves 

through the functions slave_read and slave_write. With the 

exception of these low-level primitives, the whole 

programming system is machine independent. 

Before invoking any of the .SLPS furi'ctions, the routine 

ini tia l_s 1 ps must be called. This is the initial izing 

routine, which prompts the user for the name of the state 

parameter file and the installed task file. These are opened 

and the information checked for syntax and then digested. 

Within this initialization routine, a number of switches can 

be set to aid debugging; these include single-step, 
\ 
I 

diagnostic print out, and dry-run mode. A simulation mode 

can be used, in which the affects of noisy sensor signals 

can be investigated. In this mode, a Normal random number 

generator is used to produce error signals which are used in 

lieu of the sensor signals. The characteristics of the noise 

can be pre-set and also varied during execution of the 

program. 

Once the initialization routine has been called, the 

SLPS functions can be used. Substantive error checking 
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procedures ensure that an attempt to use an undefined sensor 

or actuator is detected. Furthermore, the relationship 

between a sensor and an actuator must have been defined in 

the installed task file before a sensor-actuator servo loop 

can be established. If a sensor is static, then the 

relationship between that sensor and the world must be 

defined explicitly. An error is reported if an attempt is 

made to combine a sensor and an actuator when the 

relationship is undefined. A close check is kept on the 

information interchange between the central controller and 

the slave controllers. A failure of a sensor-slave could be 

particularly dangerous if the termination of the robot's 

movement depended upon a valid signal from the sensor. 

The next section cons iders. an examp I e of the use of the 

programming system in a simple assembly problem. 

6.8 Using SLPS in a simple assembly problem 

To illustrate the operation and semantics of the 

programming system, consider a simple assembly problem in 

which an industrial robot is used to transfer five pegs from 

jig 1 to jig 2, as shown i~: Figure 6.10. The proposed 

solution to this problem uses two sensors and two actuators. 

The first sensor is a three degree of freedom instrumented 

remote centre compliance (IRCC), which allows compliant 

insertion of the pegs into the holes and also allows the 

error is the hole's position to be measured. The second 

sensor isa tactile array mounted on the robot's gripper to 

provide force feedback for grasping the pegs. The actuators 

used in the assembly are a Puma 560 industrial robot and a 
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IRCC Gripper with 
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Figure 6.10: A simple assembly operation to transfer 
the pegs from jig 1 to jig 2 using force 
sensing and tactile sensing. 
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proportional electric gripper. A hardware overview showing 

the sensor and actuator controllers is shown in Figure 6.11. 

The definition files for the sensors and actuators are 

shown in Figure 6.12. These files must be installed with the 

appropriate relationships to form the installed task file. 

Both sensors are dynamic, but for each a relationship with 

only one actuator is appropriate. For the tactile sensor, 

the relationship with the robot gripper is required and 

likewise the relationship between the IRCC and the robot's 

frame of reference must be entered. 

The'next stage in the solution is to define the states 

associated with the system. Five states are identified. 

These are as follows: 

1. The position of the robot at whi~h the first peg in 

the jig 1 can be grasped. 

2. The position of the robot at which the first peg can 

be released into the jig 2. 

3. The transformation defining the spacing of pegs in 

jig 1. 

4. The transformation defining the spacing of holes in 

jig 2. 

5. The position of the gripper corresponding to the 

jaws being fully open. 

From a knowledge of the initial peg position and the 

distance between the pegs, the position of each of the five 

pegs can be computed. The states are taught to the 

appropriate controllers by moving the actuator to the 

requii~d configuration and recording both the position and 

the name. This applies to the states specified by an 
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Figure 6.11:·A hardware overview of the sensor and actuator 
controllers used in the peg-transfer problem. 
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ircc, 90 , 20 , 3 
xerror, yerror, zerror 
(1,0,0) , (0,0,0) 
(0,1,0) , (0,0,0) 
(0,0,1) , (0,0,0) 
(0.1 , 0.1 , 0.1 , 0.0 , 0.0 , 0.0) 

Figure 6.12a: The sensor definition file for the IRCC. 

tactile, 95 , 10 , 2 
pressure, angle 
(1,0,0) , (0,0,0) 
(0,0,0) , (1,0,0) 
(0.5 , 0.0 , 0.0 , 1.0 , 0.0 , 0.0) 

Figure 6.12b: The sensor def~nition file for the 
tactile sensor. 

puma, 80 
.2 , .01 
.1 , .005 

Figure 6.12c: The actu;tor definition file for the Puma 
robot. 

gripper, 85 

.5 , ° 

.1 , ° 

Figure 6.12d: The actuator definition file for the gripper. 
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absolute position (states 1,2 and 5), and also to those 

defined as a transformation (states 3 and 4). Following the 

definition of the states themselves, the state parameter 

file must be entered into the central controller. The 

departure vector for those states representing relative 

transformations is not relevant and is recorded as 

(0,0,0,0,0,0). For the states representing the initial peg 

and hole position, the departure vectors are defined as 

(0,0,20,0,0,0). This represents a point 20 mm vertically 

above the states, and defines a safe position from which the 

peg can be approached, withdrawn and inserted. The departure 

vector associated with the 'gripper open' state is set to 

(0,0,0,0,0,0). The system noise and the tolerance are also 

set to O. The state parameter file for this problem is shown 

in Figure 6.13. 

With the two definition files completed, the program to 

transfer a peg is now considered. This is of the form 

move("gripper", "open") 
move("puma_robot", "peg") 
move("gripper", "null", "tactile", "pressure", 50.0) 
move2("puma_robot", "hole", "ircc", "xerror", 0.0, 

." 
) "ircc", "yerror", 0.0 ) 

This four-line program transfers 1 peg from jig 1 into jig 2 

using force feedback in the grasping and positional feedback 

in the insertion. The first line moves th~ gripper to the 

state "open", which is a pre-taught position corresponding 

to the jaws being fully open. The second I ine moves the 

robot to the state corresponding to the position of the 
'. 

first .. peg. In these first two commands, no sensory feedback 

is used. In the third line, the gripper is moved re la ti ve to 
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PEG ( 0.0 , 0.0 , 20.0 , 0.0 , 0.0 , 0.0 ) 
( 1.0 , 1.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
( 0.1 , 0.1 , 0.0 , 0.0 , 0.0 , 0.0 ) 
HOLE ( 0.0 , 0.0 , 20.0 , 0.0 , 0.0 , 0.0 ) 

( 1.0 , 1.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
( 0.1 , 0.1 , 0.0 , 0.0 , 0.0 , 0.0 ) 
PEG_INDEX ( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
HOLE_INDEX ( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
OPEN ( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 
( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
( 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 

Figure 6.13: The state parameter file for the peg­
transfer example. 

/* Control program for the peg-transfer problem */ 
main() 
( 

int i; 
initial_slps(); 
for ( i = 0 ; i < 5 
( 

; i++ ) 
.'\ 

I 

move ( "gripper", "open", "null", "null", null); 
index_move( "puma_robot", "peg", "null", "null", null, peLindex); 
move ( "gripper", "null"', "tactile", "pressure", 50.0); 
indexed_move( "puma_robot", "hole", "null", "null", null, hole_index); 
error_ff( "ircc", "xerror", 0.0, "hole"); 
error_ff( "ircc", "yerror", 0.0, "holen); 

.. } 

} 

Figure 6.14: The control program for the peg­
transfer example. 
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its current position so that the pressure measured by the 

tactile sensor is 50 sensor units. This correspond~ to the 

act ion of grasping the peg. The f ina 1 1 ine is where a 11 the 

robot movement is represented. The complete process of 

withdrawing the peg, moving the robot to the second jig, and 

tnen inserting the peg under sensory feedback is embodied in 

the single function. The robot is instructed to move to the 

state "hole". This invol ves firstly leaving the current 

state using the departure vector, hence the robot is 

initially moved 20 mm in the z direction. Then the robot is 

moved to the point 20 mm above the state "hole", prior to 

moving down to insert the peg into the hole. In the 

withdrawl and insertion actions, the velocity of the 

actuato~ is computed automatically to r~flect previous 

errors and the state sensitivity. After inserting the peg, 

sensory feedback is applied to ensure that the error in the 

x and y components of the IRCC's position is zero. This 

repositioning of the robot to produce zero error in the IRCC 

copes with the situation of the transformation errors in the 

modelling of the hole spa~ing. Although the error would 
) 

initially be absorbed by the IRCC, the cummulative affect of 

these errors would soon be too large for passive 

compensation. 

The processing of the x and y posi tiona 1 errors is 

desirable because it avoids cummulative errors. However, the 

need to move the robot upon completion of the insertion 

reduces the inherent advantages of passive insertion. Since 

the m6vement does not offer any advantages on the current 

cycle, an alternative formulation of the program, which 
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eliminates the final positional servoing, is 

move("gripper", "open") 
move("puma_robot", "peg") 
move("gripper", "null", "tactile", "pressure", 50.0) 
move("puma_robot", "hole" ) 
error_ff("ircc", "xerror", 0.0, "hole") 
error_ff("ircc", "yerror", 0.0, "hole" ) 

This time, the perceived errors from the IRCC are fed 

forward to adjust the state "hole". Although "hole" is the 

current state, the affect of the operation will only become 

evident in the next cycle, where the components of the state· 

wi 11 ha ve been adj usted to ref lect the error. It is 

necessary to use two ca 11 s of the function error_ff, one to 

adjust each component of the error in the IRCC. 

The program developed so far involves moving only the 

first peg into the first hole. The function indexed_move, 

described in Section 6.7.1, allows the automatic indexing of 

the states "peg" and "hole" to the next positions along the 

array. Using this, and embedding the code within a normal C 

control loop, gives the final control program shown in 

Figure 6.14. 

6.9 Summary 

'The robot programming system described in this chapter 

allows sensory assemblies, incorporating a combination of 

commercial and purpose-built components, to be controlled. A 

rationale has been described by which sensors and actuators 

can communicate in a structured way. Overall control is 

centralized; although processing is distributed in 

intelligent controllers. This produces a flexible system 

which can be rapidly reconfigured to include an additional 
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sensor or actuator into the control program. The system is 

modular, both in hardware and software. It is envisaged that 

a 'library' of sensor and actuator controllers will be 

established. This will reduce the time taken to configure a 

sensor-based robotic assembly problem. Furthermore, the 

suitability of a sensor for a given application can be 

rapidly determined without significant investment of effort. 

The SLPS software system is a library of C functions 

which are used by the programmer to construct a program as 

demonstrated in the examples. The sensors; actuators and 

states are defined using IRPS, an interactive suite of 

programs which communicate to the user through a questions 

and answers to generate the data files. Examples of this are 

given i'n the next chapter. The task of writing a control 

program could be further mechanized. For example, it may be 

more logical to write the control program before defining 

the components. This program could be parsed and the 

programmer prompted for the additional information required 

to complete the definition files. Also, a natural-language 

interface would improve th~ legability of the final program. 
\ . 
I 

These extensions are discussed further in Chapter 8. 

The next chapter illustrates how this programming 

system can be used to solve an industrial problem. 
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CHAPTER 7 

AN INDUSTRIAL CASE STUDY 
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7.1 Introduction 

The aim of this chapter is to show how the work 

described in this thesis can be used to solve an industrial 

assembly problem. The chapter begins with a description of 

the problem under investigation. The definition of the 

sensors, the actuators and the states is described and the 

control program to coordinate the sensors and actuators is 

developed. One of the sensors used in the assembly is noisy 

and the effects of the noise estimation algorithms, 

developed in Chapter 5, are illustrated. The improvements in 

terms of-the servoing time and final positional accuracy are 

quantified. 

7.2 The industrial problem under investigation 
" 

The application of an industrial robot to the handling 

and lay-up of carbon-fibre is considered. This research 

project requires pre-cut pieces of flexible carbon-fibre to 

be handled and laid-up onto a mould-tool. Accurate joining 

of adjacent pieces is particularly important. The specific 

problem described in this chapter is the assembly of a 

satellite antenna dish from pie-shaped pieces of resin-

impregnated carbon-fibre, where each piece is about 500 mm 

in length. A special-purpose gripper has been designed 

[8],[9], which handles the material using vacuum cups. The 
. 

gripper has vision sensors to determine the exact position 

of the pr~file, and a force sensor to control the pressure 

with which the carbon-fibre is applied. In the assembly, 24 

pieces of carbon-fibre must be laid to form a circle, and a 

number of such layers staggered to form a complete skin of 

the satellite dish. Adjacent profiles are butt-jointed 
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together, and no more than 1 mm of over lap or gap is 

permissible. A schematic view of the assembly cell, is shown 

in Figure 7.1. 

In the gripper, six rubber suction cups on the 

underside face are connected through rubber tubing to a 

vacuum pump; this provides the means of supporting the 

profiles. Visual sensing is provided to monitor the position 

of the profile on the mould-tool allowing accurate joining 

of the next piece. Also, the camera can be used to provide a 

quantitative check on the final butt-joint, although the 

quality control aspect of the problem is not considered 

here. Two 256-element charge coupled device (CCD) linear-

array cameras are integrated into the end-effector; one 

mounted' at the front of the gripper and" one at the rear. A 

single line of picture elements provides all the necessary 

information to determine the position of the edge of the 

profile on the gripper, and the subsequent position of the 

edge of the profile on the mould-tool. A good visual 

contrast is produced by the black mould-tool and the white 

backing-paper of the carbqn-fibre. 
\ 
I 

The acti ve surface of the gripper is attached to the 

wrist of a Puma560 industrial robot through a compliant 

mounting pod. Force feedback is provided from a 

potentiometric encoder mounted on the pivot, allowing the 

mould-tool's surface to be followed and also a controlled 

force to be applied to join the tacky carbon-fibre onto the 

tool. 

The profiles are pre-stacked, and their position in the 

jig is well-defined. The gripper approaches the stack and 
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Figure 7.1: A.schematic view of the work-cell for 
the carbon-fibre assembly project. 
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separates the top piece by pressing the suction cups onto 

the top backing paper. Once the profile is on the gripper, 

the underside piece of backing paper, which protects the 

carbon-fibre, must be removed. This is currently done 

manually, but in the long-term it will be automated. The 

profile is then offered to the mould-tool and sufficient 

pressure is applied to ensure a bond between one end of the 

profile and the mould-tool. The gripper is then moved along 

the surface of the tool and, because it is fastened at one 

end, th~profile slides across the surfac~ of the gripper 

and adheres to the mould-tool. The rubber roller at the 

front of the gripper assists in the transfer of the profile 

from the gripper to the mould-tool and also helps to 
-. 

eliminate air bubbles. 

After the profile has been applied, the mould-tool is 

rotated by 15° using the indexing table. This means that 

each profile is laid-up using the same basic operation, 

although positioning errors will cause the critical 

locations in the model to be subject to errors. Following 

the indexing, the positioR\of the edge of the most recent 
I 

profile is determined and the model adjusted to reflect any 

error. This ensures that the next profile will be positioned 

accurately along the length of the joint. 

During the movement of the robot down the mould-tool, 

no sensory feedback is used. Although the front vision 

sensor could, in theory, provide information on the joint, 

in practice it is not possible to appli correction during 
.. 

the lay-up. This is a consequence of the nature of the 

carbon-fibre, which would deform if the fibres were not laid 

-194-



straight. 

In experimental work with this assembly probl~m, a 

number of difficulties with the proposed solution have 

become evident. However, it is not the aim of this chapter 

to present a definitive solution to the industrial problem. 

Instead, it is to show how, given the chosen hardware, 

sensors, actuators, jigging etc., the control program can be 

formulated and errors processed. 

7.3 Components of the assembly 

As described in the previous section, the solution to 

the assembly problem requires two actuators and two sensors. 

The actuators are 

1. A Puma 560 industrial robot. 

2. An indexing rotary table. 

and the sensors are 

1. A force sensor on the robot's wrist. 

2. A linear-array camera at the front of the gripper. 

The second linear-array camera, mounted at the rear of 

the end-effector, is not used in the solution described in 

thi s chapter. 

\ 
i 

The main control computer is an IBM PC. An overview of 

the hardware for the system is shown in Figure 7.2. 

The slave controller associated with the Puma robot is 

connected to the serial line of the commercial system. Thus, 

when the generic command codes (Figure 6.2) are issued by 

the central controller, the Puma slave controller sends the 

approp'riate string of characters down ·the serial channel 

into VAL. After executing the command, the slave controller 

-195-



Puma560 

controller 

Puma560 
system with 

VAL language 

; .. 

Central controller 

(IBM PC/XT) 

Indexing­
table 

controller 

'\ 
\ 
I 

I 
I 

• • 

Forc~­

sensor 
controller 

I 

To 
gripper 

Linear-array 
camera 

controller 

Figure 7.2: An overview of the hardware for the 
carbon-fibre assembly project. 
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interprets the prompt, or error, sent from VAL and sends 

back to the central controller either the valid terminator, 

99, or an error code. The error code is a numeric 

representation of the error messages sent from VAL. As far 

as the central controller is concerned, the main control 

program will abort if anything other than a 99 is received 

from the slave. However, the received error code is printed 

out by the central controller to help the programmer trace 

the error. Automatic error recovery based on these error 

codes is a possibility [107] although this remains an area 

for further work. 

The indexing table has only one degree of freedom and 

is controlled directly from the slave. The slave translates 

the generic command from the central controller and executes 

the instruction. Control signals to the electric motor are 

sent directly from the slave. 

The role of the actuator-slave in the case of the robot 

and the indexing table is quite different. For the robot, 

the slave must interface to an existing commercial 

controller and translate the command codes sent from the 

external controller into the syntax required by the 

commercial system. The slave does not, therefore, control 

the actuator directly, but instead acts as an interface 

between two systems. For the indexing table on the other 

hand, the slave controls the motor of the actuator directly. 

Despite this difference,the central controller can 

communicate to both actuator controllers in a similar way, 

and instructions to move the robot are sent in exactly the 

same format as instructions to move the indexing table. 
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The sensors in the system are purpose-built and are 

controlled directly from the appropriate sensor-slave. In 

practice, the controller for both sensors resides in the 

same module, and hence at the same physical address. The 

required sensor is identified by its unique activation 

number (Section 6.5.1). 

The information from the linear-array camera is 

processed in the sensor-slave to produce two attributes. 

These attributes represent the positions of the edges in the 

images. The first attribute is the position (between 0 and 

255) of the white-to-black transition in the thresholded 

grey-scale image. The second attribute is the position of 

the black-to-white transition in the same thresholded image. 

With the profile attached to the gripper, the white-to-black 

transition corresponds to the position of the edge of the 

profile in the field of view. Although it is assumed that 

the profile is accurately positioned on the gripper, the 

information from this attribute of the sensor could be used 

to detect a misalignment of the profile. The extension of 

the solution described in~his chapter to include this 
I 

information introduces additional problems, which are 

discussed in Section 7.6. 

Because the viewed surface of the profile is white, the 

vision sensor produces high contrast images, from which the 

edge posi~ions can easily be computed. Indeed, the image 

processing can be"comfortably handled on the 8-bit 

microprocessor resident in the slave. The black-to-white 

attribute is non-zero when the gripper is being used to 

examine the position of the profile on the mould-tool. 
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Because the mould-tool is black and the upper backing-paper 

is white, the scene will be perceived as a dark region then 

a light region along the array. The position of the edge can 

be easily found after thresholding. 

The force sensor provides a single attribute, which 

corresponds to the angle made by the active surface of the 

gripper with the mounting pod. The sensor reading varies 

between 0 and 60 as the gripper moves through 30 0 • 

7.4 Defining the components of the assembly 

The first step in programming the assembly is to define 

the actuators and sensors. This is done using the suite of 

integrated programs, called IRPS. A complete transcript of 

the dialogue necessary to define the a~tuator 'puma' is 

given in Appendix A. Upon completion of the definition, the 

file 'puma.act' is stored on the disk, ready for 

installation. The contents of this file are shown in Figure 

7.3. 

A similar procedure is followed for the indexing 

table, which is given the name 'table' and hence is stored 

as the file 't~ble.act'. Tl1is file is shown in Figure 7.4 . 

. After completing the definition of the actuator, the 

programmer returns to the main menu and selects the option 

to define the sensors. Appendix B shows t?e steps in 

defining the linear-array Camera, which is called 'camera' 

and is stored in the file 'camera.sen'. This is shown in 

Figure 7.5. Two attributes, called 'btow' and 'wtob' are 
'. 

defined. These attributes represent the positions of the 

black-to-white and white-to-black transitions respectively, 
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puma, 80 
.2 , .01 
.1, .005 

Figure 7.3: The file 'puma.act' defining the robot. 

table, 82 
° , .1 ° , .01 

Figure 7.4: The file 'table.act' defining the 
indexing table. 

camera, 83 , 10 , 2 
btow, wtob 
(1,0,0) , (0,0,0) 
(-1,0,0) , (0,0,0) 
(0.1 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0) . 

Figure 7.5: The file 'camera.sen' defining the 
linear array camera. . 
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computed from a thresholded image. For each attribute, the 

transformation must be defined which relates the error in 

the value of an attribute with the direction in which the 

sensor must be moved to reduce that error. The frames of 

reference of the sensors with respect to the robot are shown 

in Figure 7.6. For attribute 'btow', the correction which 

must be applied is in the -x direction, and hence the 

correction is stored as 

(-1.0, 0.0, 0.0) , (0.0, 0.0, 0.0) 

The attribute 'wtob' requires a correction_in the +x 

direction and is therefore stored as 

(1.0, 0.0, 0.0) , (0.0, 0.0, 0.0) 

The second sensor, 'force' is defined in a similar way 

and the,data file describing this is shown in Figure 7.7. 

For this sensor, the correction is applied as a rotation 

about the x axis. Thus, the correction is stored as 

(0.0, 0.0, 0.0) , (1.0, 0.0, 0.0) 

The size of the correction per unit error in the 

sensor, is not specified in this data structure, which is 

concerned only with direction. The size is computed in the 
.'\ 

routine movemag, in which a function is defined to gi ve the 

size of the correction for each sensor (Section 6.5.1). For 

the sensor 'camera', the size returned is sensor-error/10, 

because there is a resolution of 10 pixel~ per millimetre in 

the camera. For the sensor "force' the size returned is 

sensor-err'or /2, which ref lects the fact that the sensor must 

be rotated 0.5 0 around its x-axis per u~it increase in the 

attribute value. 

The contents of the sensor and actuator definition 
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Force frame 

Robot 
frame 

z 
r 

z 
c 

x 
c 

Camera 
frame 

Figure 7.6: The frames of reference of the robot and 
the sensors on the carbon-fibre gripper. 

force, 83 , 20 , 1 
angle 
(0,0,0) , (1,0,0) 
(0.0 , 0.0 , 0.0 , 0.5 , 0.0 , 0.0) 

Figure 7.7: The file 'force. sen , defining the 
force sensor. 
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files are independent of the configuration in which they are 

used. This information is requested in the next phase of the 
,. 

definitions, the installation phase. Firstly, the sensors 

and actuators pertinent to the assembly must be installed. 

The name of each sensor and actuator is requested and the 

corresponding data files are read. For each sensor, the 

programmer must state whether it is static or dynamic. For 

the problem being addressed in this chapter, each sensor is 

coupled to the robot and is therefore defined as dynamic. 

The relationships between the frames of reference of each 

sensor ahd actuator are then defined. For each dynamic 

sensor, the program requests the relationship between the 

sensor and every actuator. For the indexing table, the 

relationship between it and each sensor,is defined to be 

'not applicable' (Section 6.6). For the linear-array camera, 

because it has only a translational correction component, 

the transformation between the robot's and the sensor's 

frame of reference is only rotational. The reason for 

ignoring the offset between the frames of reference was 

discussed in Section 6.6. The homogeneous transformation 
'''''\ 

between the robot and the linear-array camera is therefore 

given by 

1 0 0 0 
0 -1 0 0 
0 0 -1 0 
0 0 0 1 

For the sensor 'force' , the correction is a rotation 

around its x axis 'and therefore both the rotational and 

translational differences between the robot's frame and the 

sensor's frame must be considered. The homogeneous 

transformation between the robot and the force sensor is 

-203-



represented by 

-1 0 
o 0 
o -1 
o 0 

o 0 
1 0 
o 15 
o 1 

The combination of the definitions of the sensors and 

actuators, and the matrices specifying the interactions, are 

stored in the installed task file, which, for this example, 

is called 'itask'. Appendix C shows the stages in producing 

this file using the suite of programs, IRPS. A listing of 

the file is shown in Figure 7.8. 

The next step is to identify the states defining the 

assembly and then to construct the control program using the 

named states and the sensors and actuat~rs defined in the 

installed task file. To solve this assembly, four states are 

identified. These are, 

1. The location of the robot at which the gripper can 

remove a profile from the stack. Because of a 

compliant bed underneath the stack, the location is 

chosen to be at the height of the bottom piece on 
"\ 

the stack. This state is called 'stack'. 

2. The position of the robot corresponding to the 

gripper at the top of the required lay-up path i.e. 

at the centre of the mould-tool. This state is 

ca lIed 'start'. 

3~ The position of the robot corresponding to the 

gripper at the end of the lay-up path on the mould­

tool, i.e. at the perimeter of the dish. This state 

is called 'end'. 
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2 

camera 
dynamic 
83 10 2 
btow 
wtob 
(1 , 0 , 0) , (0 , 0 ~ 0) 
(-1 , 0 , 0) , (0 , 0 , 0) 
(0.1 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0) 

force 
dynamic 
83 20 1 

" angle 
(0 , 0 , 0) , (1 , 0 , 0) 
(0.0 , 0.0 , 0.0 , 1.0 , 0.0 ,0.0) 

2 
puma 80 
0.2 0.01 
0.1 0.005 

table 82 
o , .1 
o , .01 

puma camera 
1 .000 0.000 
0.000 -1.000 
1 • 000 0.000 
0.000 0.000 

puma force 
-1.000 0.000 
0.000 0.000 
0.000 -1.000 
0.000 0.000 

0.000 0.000 
0.000 0.000 

", 
":;1.000 0.000 
0.000 1.000 

0.000 0.000 
-1.000 0.000 
,.0.000 -15.000 
0.000 1.000 

Figure 7.8: The installed task file,'ITASK', for the 
carbon-fibre assembly project. 

-205-



4. The position of the robot at which the gripper is 

approximately mid-way down the mould-tool and about 

300 mm above it. This location represents a safe 

point, at which the robot is clear of the mould-tool 

whilst it rotates. By including this point in the 

transfer of the robot from state 1 to state 2, the 

trajectory of the robot is more clearly defined and 

a potential collision between the gripper and the 

mould-tool is avoided. 

Th~ construction of the jig which holds the stacked 

profiles is such that the gripper must approach the stack 

from vertically upwards. If the gripper approached from the 

side, there would be a collision with tl1e wall of the jig. 

This constraint is modelled by defining the departure vector 

for the state 'stack' to be (0,0,50,0,0,0), indicating that 

the stack must be approached by first mov ing to a point 50 

mm above it, and then moving down. Likewise, when the 

gripper leaves the stack, it first moves vertically upwards 

by 50 mm and then onto the next state. The approach and 
- ", . \ 

departure path of the othe'r two states is also defined to 

allow safe transfer of the robot between the states. 

At this stage, the departure vectors and the state 

tolerances have not been defined to the system; this is done 

after the control program has been written. The program to 

lay-up a single piece of carbon-fibre is shown in "Figure 

7.9. 

Following the call of the initialization routine, the 

first instruction in the program requires the robot to move 
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maine } 
{ 

} 

/* Program to lay a single carbon-fibre profile */ 
initial slps(}; 
move ( "puma", "stack"}; 
move ( "puma", "safe"}; 
move ( "puma", "start", "force", "angle", 30.0}; 
moves_to ( "puma", "end"}; 
move ( "puma", "null", "force", "angle", 30.0); 
move ( "puma", "safe" ); 
move_by ( "table" , 0.0, 0.0, 0.0, 15.0, 0.0, 0.0); 
move ( "puma", "start"); 
error_ff( "camera", "btow", 128.0, "start"); 
move ( "puma"', "end"}; 
'error_ff( "camera", "btow", 128.0, "end"); 

Figure 7.9: The control program to lay one piece of 
carbon fibre. 

.. 

STACK 
( 0.0 
( 1.0 

0.0 , 0.0 , 50.0 , 0.0 , 0.0 , 0.0 ) 
, 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ) 
,1.0 , 1.0 , 1.0 , 1.0 , 1.0 ) 

SAFE ( O. 0 , O. 0 , .. ,0. 0 , O. 0 , O. 0 , O. 0 
\ 

( 0.0 , 0.0 ,0.0 ,10.0 , 0.0 , 0.0 ) 
( 1.0 ,1.0 , 1.0 , 1.0 ,1.0 ,1.0 ) 

START 
( 1.0 
( 0.1 

0.0 , 0.0 , 20.0 , 0.0 , 0.0 , 0.0 ) 
, 1.0 , 1.0 , 0.0 , 0.0 , 0.0 ) 
, 1. 0 , 1. 0 , 1. 0 , 1. 0 , 1 •. 0 ) 

END ( -5.0 , 0.0 , 10.0 , 0.0 , 0.0 , 0.0 ) 
( '1. 0 , 1. 0 , 1. 0 , O. 0 , O. 0 , O. 0 ) 
( 0.1 ,1.0 ,1.0 ,1.0 , 1.0 ,1.0 ) 

Figure 7.10: The state parameter file for the carbon-
fibre assembly. 
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to the stack. No sensory feedback is required, and hence the 

shortened form of the move function is used. The execution 

of the command follows the steps discussed in Chapter 3. For 

the first movement command in the program, the initial 

position of the actuator is unknOwn. Therefore the initial 

fine motion phase is omitted and the first movement will be 

the gross motion to the intermediate state associated with 

'stack'. Following this, there will be a fine motion phase, 

in which the robot in moved to 'stack'. The speed of the 

robot in this phase will be computed from the sensitivity of 

the state; the absence of sensory feedback means the 

confidence is automatically set to be 1. The second command 

instructs the robot to move to the state 'safe'. This time, 

the first phase of the motion will be to,depart the current 

state, 'stack', along its departure vector, i.e. vertically 

upwards. Following this, the gross motion phase will involve 

a movement to the intermediate state associated with 'safe'. 

There are no constraints associated with this state and 

therefore the intermediate state can be made equal to the 

state, by setting the departure vector to be zero. 
, . "'\ 

The third line in the program instructs the robot to 

move .to the state 'start' and then apply sensory feedback to 

achieve an angle of 30 in the force sensor. The departure 

vector associated with the current state,. 'safe', is zero, 

and therefore the first movement is the gross motion to the 

intermedi~~e state associated with 'start'. Following the 

fine-motion phase to the actual state, sensory feedback is 

applied to achieve the desired sensor condition. At this 

stage, assume that the sensor is noise-free and therefore 
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the actuator makes, at the most, one movement in the 

feedback phase. If there is no system error, no movements 

will be made. In practice, the force sensor used in this 

industrial problem is based on a potentiometer and the 

analogue signal is corrupted by clock feed-through from the 

control lines of the linear-array camera. The nature of the 

noise from this sensor was discussed in Chapter 5. The 

effect of the noise on the performance of the servoing, and 

the subsequent improvements from using the algorithms 

developed in Chapter 5, are discussed fully in Section 7.5. 

Du~ing the movement of the robot from 'start' to 'end', 

the profile is transferred to the mould-tool and thus the 

path between the two states must be a straight-line. For 

this reason, a move function cannot be used. Instead the 

function moves_to (Section 6.7.1), which moves the actuator 

to a pre-defined state in a straight-line, is employed. 

Following this function, the sensor condition of 30 in the 

force sensor is achieved using a null parameter in the move 

function to indicate movement relative to the current 

position. The next move instructs the robot to move to the 
""\ 

state 'safe'. To achieve this, the robot will initially be 

moved to the intermediate state associated with the state 

'end'. The departure vector of 'end' is chosen so that the 

intermediate point is a safe distance fro~ the state, 

ensuring that the profile has completely separated from the 

rubber su~tion cups. Hence, the departure vector for 'end' 

is defined as (-5,0,10,0,0,0), which corresponds to moving 

up anci..away from the profile on the mould-tool. 

After the profile has been applied, the indexing table 
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is moved by 150 using the function move_by. The gripper is 

then moved back to 'start' and the error between tne edge of 

the profile and the required value of 128, is fed forward to 

adjust 'start' for the next cycle. The state 'end' is 

adj usted in a simi lar way, in prepara tion for the lay-up of 

the next-piece. 

After the control program has been entered using the 

normal system editor, a program which parses the file and 

extracts the names of the states, is executed. This program, 

which is part of the IRPS suite, then requests the 

parameters of the state definition file, namely the 

departure vector, the system noise, and the tolerance of 

each state. The system noise for the states 'start' and 

, end' i s' de fin edt 0 be (1, 1 , 1 , 0 ,.0 , 0 ). F oi' the s tat e s 's t a c k ' 

and 'safe', at which no sensory feedback is used, it is 

defined to be (0,0,0,0,0,0). For those states at which 

sensory feedback is used, the system noise will be updated 

using information from the servoing. 

The tolerance of each state is used in the computation 

of the approach velocity a~d the termination criterion for 
\ 
I 

the servoing. For the states 'start' and 'end' the tolerance 

vector is defined to be (0.1,1.0,1.0,1.0,1.0,1.0). The 

tolerance is smaller in the x direction, because the 

position of the edge of the carbon-fibre (~hich lies in the 

x direction) needs to be controlled to a greater accuracy 

than the force applied in the y-z plane. The state 

definition file for this problem is shown in Figure 7.10. 

The final stage in the programming of the assembly is 

to compile the C program and link the SLPS library routines, 
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forming an executable machine-code program. The names of the 

state definition file and the installed task file will be 

requested by the program within the initialization function 

initial_sIps. In the next section, the results of running 

this program are considered and the problems of the noise in 

the force sensor illustrated. 

7.5 Performance of the control system 

The source file containing the SLPS program is called 

'lay.c' and after compilation and linking it is executed by 

typing 'lay' from the operating system's prompt. When the 

routine initial sIps is executed, the programmer is 

requested to enter the names of the data files describing 

the assembly. The dialogue between the programmer and the 

programming system during the execution of an SLPS program 

is shown in Appendix D. 

Upon completion of each movement, the Kalman gain for 

the appropriate state and sensor is updated. For the two 

move commands involving the force sensor, the estimated 

measurement and system noise will also be updated. For those 
"'" \ 

sta tes at which no sensors are used, the Ka lman gain wi 11 

remain equal to I and the error covariance will equal the 

initial estimate of the system noise at the state. The 

initial noise estimate for the sensor 'camera' is 

(0.1,0,0,0,0,0), and the initial noise estimate for the 

state 'st,:!'rt' is (1.0,1.0/1.0,0.0,0.0,0.0). Because there is 

no sensory servoing using this sensor and state, the 

estimates of the noise levels will remain unchanged from 

these initial values. Therefore the steady-state Kalman gain 
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is 0.92 and the steady-state error covariance is 0.092. 

These steady-state values can be predicted before the 

program is executed, since they depend only on the initial 

values of the noise estimates. For the force sensor at the 

states 'start' and 'end', the measurement and system noise 

will be updated after each movement. Therefore it is 

impossible to predict a p~io~i the steady-state values of 

the Kalman gain and the error covariance. In practice, after 

100 cycles, the Kalman gain associated with this state and 

sensor was 0.3,and the error covariance was 1.4. The small 

Kalman gain associated with this state and sensor indicates 

that the sensor is noisy. The level of this noise, and the 

improvements obtained by weighting the sensor information 

using the Kalman gain are now quantified. 

Consider moving between two locations, where the aim 

is to achieve a force of 30 sensor units at one of the 

locations. The program to achieve this, using the locations 

'start' and 'safe', is shown in Figure 7.11. 

maine ) 
( 

int i; 
initial slps(); 
for ( i-= 1 ; i <=100 
( 

"'" \ 
I 

; i++ 

move ( "puma", "safe"); 
move( "puma", "start", "force", "angle", 30.0); 

Figure 7.11: SLPS program to move the robot between 
two states. 
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Let the program opera te for 100 cyc 1 es and in each 

cycle set K=I. This is the usual way of processing sensor 
.. 

information and assumes that it is reliable. The object of 

this is to illustrate the effect, in terms of system 

performance, of using the noisy sensor information. Since 

the SLPS move function would normally detect the noise and 

apply a weighting function, the software is modified for 

this experiment by removing the Kalman filter update 

equations from within the execution of move; hence K=I 

throughout the experiment. In achieving the condition of 30 

in the attribute of the sensor, the robot wi 11 make a series 

of movements under sensory feedback, which will terminate 

only when the sensor condition is met. This is achieved by 

setting,the tolerance vector and the act;uator's resolution 

to be zero. The number of iterations necessary to achieve 

the sensor conditions is shown in Figure 7.12 for each of 

100 cycles. Furthermore, the error in one component of 

position at the end of the movements is plotted in Figure 

7.13. 

Now let the measurement and system noise be updated 

after each cycle using the~linformation from the servoing. 

This corresponds to the programming system operating 

normally. The effects of this in terms of the number of 

iterations per cycle and the final positiQna1 error are 

shown in Figures 7.14 and 7.15 respectively. 

The number of iterations per cycle can be directly 

related to the total time spent servoi~g. In practice, the 

time to sense, compute the error, move the actuator and then 

compute the new noises is about 0.4 seconds. (This time does, 
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of course, depend on the distance moved by the robot). If 

the sensor information is assumed to be reliable, up to 6.4 
., 

seconds are required to achieve the sensor conditions. This 

is substantially reduced to a worst-case of 2.0 seconds when 

the sensor information is weighted. 

The final error in one component of the robot's 

position is significantly reduced after the sensor 

information has been processed to compensate for the noise. 

If the sensor information is assumed to be reliable, the 

positional error is between ~1.8mm; this is reduced to 

between~±0.7mm after processing. 

7.6 Summary 

The control program shown in Figure 7.9 to lay-up a 

piece of carbon-fibre, demonstrates the compact 

representation of sensory feedback, which is a feature of 

the programming system. In the event of a sensor becoming 

noisy, or failing completely, automatic processing of the 

errors improves both the accuracy and the speed of servoing. 

The compact representation of sensory feedback and the 

automatic processing of e~rors, together with the modular 
\ 
I 

and structured communication protocol underlying the 

execution of the program, satisfy the aims set-out at the 

beginning of this thesis. The components and parameters of 

the assembly are defined using IRPS, a suite of interactive 
. 

programs which request the information from the programmer 

and store it in definition files. The modular hardware 

architecture reduces the time spent configuring the system 

and improves reliability and integrity. Adding an extra 

sensor or actuator is as simple as plugging the control card 
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into the bus and installing the appropriate definition file. 

The software system has been designed for discrete 

feedback applications, but the need to move the end-effector 

in a straight-line to lay the carbon-fibre corresponds to 

the application of continuous feedback. Within the control 

program of Figure 7.9, the function moves_to is used to 

achieve a straight-line motion, but without sensory 

feedback. Ideally, the sensory feedback needs to be applied 

during the whole movement between 'start' and 'end'. The 

problems of extending the programming system to cope with 

continuous feedback are discussed in detail in the next 

chapter. One solution is to break the path into a finite 
I 

number of intervals and apply sensory feedback only at the 

nodes. This approach has been described by the author in 

reference [108] and involves generating a set of sub-states, 

which are def ined on a straight 1 ine pa th between two 

states. The continuous feedback is implemented by using move 

commands between the sub-states. The main problem with this 

approach is the discontinuity in the robot's motion, 

associated with the need to stop the robot at each sub-
\ 
I 

state. 

The end-effector used to handle the carbon-fibre is 

equiped with two linear-array cameras. Only one, however, 

features in the final control program. The second is 

intended to provide feedback pertaining to the position of 

the profile on the gripper. Using information from both the 

front and rear sensors, the error in the translational 

positi6n can be deduced. Also, the difference between the 

two sensor readings can be used to compute the orientation 
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error of the profile on the gripper. In practice, this error 

is the most significant. Combining information from two 

separate sensors to compute an error cannot, at present, be 

efficiently modelled with the programming system. It can be 

achieved using low-level functions to extract the attributes 

from the sensor, manipulate them and then adjust a state. 

However, this is not an attractive solution. A more 

structured solution to this problem is proposed in the next 

chapter. 
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CHAPTER 8 

CONCLUSIONS 
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This chapter concludes the thesis by examining the main 

achievements and the opportunities for further work to 

improve the facilities of the software for handling more 

complicated assembly problems. Following a discussion of the 

achievements, the extension of the work is divided into two 

categories. Firstly, short-term improvements to the software 

are considered and secondly longer-term developments which 

reflect the need of second-generation robot systems are 

examined. 

8.1 Achievements of this thesis 

There were three principal aims for the work in this 

. thesis, namely, 

1. To represent sensory feedback at a high-level in the 

control program. 

2. To consider how the sensors and actuators should be 

distributed and controlled. 

3. To investigate how sensor information can be 

processed in the face of noise. 

These three aims have been achieved by developing a 

programming system, SLPS, ·~hich is a library of C functions. 

Used .in conjunction with IRPS, a suite of programs to define 

the components of the assembly, the software allows discrete 

sensory assemblies to be modelled and eacp of the above 

three objectives realized. 

Chapt~r 3 described a framework for representing 

sensory assemblies. The assmbly is defi~ed by a set of 

states which correspond to key actuator positions within the 

wor~-cell. The control program is a controlled sequence of 
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movements between the states, using, in general, sensory 

feedback to fine-tune the value of each state. The movement 
.. 

of the actuator between the states involves a controlled 

approach and departure vector for each state. Furthermore, 

the sensitivity and tolerance of the state are used to 

compute the speed of the actuator within these controlled 

regions. 

The hardware configuration employed is based around a 

master-slave architecture, with all sensing and movement 

commands being directed through the master and executed 

sequentially. Because of this, it is impossible to achieve 

simultaneous sensing and moving with the current system. 

Since the system was designed with discrete feedback in 

mind, this is not a severe problem. However, an extension of 

SLPS to continuous path sensing cannot be effectively 

implemented without the capability to move the actuator and 

sense simulataneously. The solution to this problem extends 

beyond modifying the programming system because it requires 

additional features in the actuator controller. Many 

commercial robots do not have the facilities to respond to 
", 

sensor information during a movement. Although VAL II on the 

Pumarobot is an exeption to this, the development of a 

general actuator interface to include continuous path 

control cannot be effectively achieved wi~hout resorting to 

low-level servo control of the actuators. One solution, 

described"by the author in reference [108], achieves 

continuous path control by partitioning the trajectory into 
\ 

a number of smaller segments and applying discrete sensory 

feedback at each of ·the nodes. Although this is not an ideal 
I 

-221-



solution, it has been used satisfactorily in the case study 

described in Chapter 7 (See reference [108] for more 

details). The problem of extending the programming system to 

cope with continuous path feedback is discussed further in 

Section 8.2.3. 

This thesis has introduced a new level of robot 

programming, called sensor-level programming. By qualifying 

each actuator movement by a set of sensor conditions, the 

obj ect of each movement is to transfer the readings of the 

sensors into a new set. Sensors are defined as either static 

or dynamic and errors are transformed from the sensor's 

frame into the world's frame by defining homogeneous 

matrices between the frames. The problem of achieving two 

sensor conditions, when the corrections. for each condition 

have a common component, was addressed in Chapter 4. A 

solution was described using the tolerances of the states to 

define uncertainty zones. When the corrections for the 

sensor conditions do not have a common component, each 

condition may be met sequentially. 

The work described in Chapter 5 demonstrated how the 

reliability of sensor inf~tmation can be quantified by 

processing the servo information. Algorithms were developed 

to estimate the variance of the measurement noise and the 

system noise. These noise estimates were then used in a 

Kalman filter to-weight the sensor information. Sensor noise 

is not usu'ally considered as a source of error in robotic 

assembly. However, experience has shown,that robot sensors 

are by no means ideal and are subject to, among other 

things, electrical interference of the form illustrated in 
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Chapter 5. Since this may be intermittent and of variable 

characteristics, electrical filtering does not offer a 

reliable solution. 

In addition to the noise from the sensor, Chapter 5 

illustrated that the repeatability of the actuator is a 

source of noise. For a dynamic sensor, the total measurement 

noise is the sum of the noise from the sensor and the noise 

from the actuator. Experiments demonstrated that the noise 

can be modelled as a Normal distribution, which is perceived 

to have an approximately white frequency distribution. 

After the mean val ue of the system noise has been 

estimated, long-term feedback, as proposed by DeFazio and 

Whitney, can be applied. The algorithms developed in Chapter 

5 prov ic:le the estima te of the mean of the system noise and 

therefore allow drift and transformation errors to be 

tolerated. 

The two numerical examples in Chapter 5 demonstrated 

the estimation algorithms for a constant measurement noise 

and a changing measurement noise. These examples, together 

with the industrial case-study of Chapter 7, illustrate the 

advantages to be gained f;~m detecting noisy sensor 

information and pre-processing the measurment information. 

The final positional accuracy is improved and the total time 

spent servoing is reduced. 

The definition of a protocol for information 

interchange between the sensors, the actuators and the 

central controllers, is an important st~p in producing a 

control system conducive to industrial applications. By 

developing self-contained intelligent slave controllers, a 
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hardware solution to a sensory robotic assembly can be 

rapidly configured. Since each sensor and actuator 

communicates using the same format of instructions and data, 

it should be possible to build a 'library' of sensor and 

actuator controllers. As well as hardware modularity, the 

definition of each controller through a parameter file using 

IRPS allows rapid software configuration. Such a modular 

approach has advantages in the final system and offers an 

invaluable tool to assist in the development phase of a 

robotic assembly project. Already, the 'library' of 

controllers includes a force sensor, a linear-array camera, 

a tactile sensor and a Puma robot controller. 

8.2 Further work: short-term objectives 

Several enhancements to the programming system are 

proposed and the problems in achieving them identified. 

8.2.1 A natural language interface 

The generic sensor-level programming primitives 

introduced in Section 4.2 are implemented as C functions 

with the names of the states, the sensors, the actuators and 
. ." 

\ 

the set-point as parameters. For compilation of the control 

program, the information must be in the form of the function 

name followed by the list of parameters. From the 

programming point of view, however, the meaning of the move 

function is not immediately obvious. Furthermore, since the 

order in ~hich the parameters must be specified is· critical, 

an alternative, more readable, syntax i$ desirable. Consider 

the ge~eral form of the move command, .which is 

MOVE ac~uator TO state ACHIEVING condition IN 
attribute OF sensor 
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and the form required in the SLPS control program, which is 

move ( actuator, state, sensor, attribute, set-point); 

The translation between these two forms could be 

mechanized, so that the input is the more readable general 

form and the output is the form required by the C compiler. 

The meaning of those move commands incorporating the "null" 

parameter would be improved using this approach. For 

example, replacing the state name by 'null' in an SLPS move 

command implies moving relative to the current position. In 

the general form, this would appear as 

MOVE actuator ACHIEVING condition IN attribute 
OF sensor 

From which it is clear what is being requested. 

Writing a program to convert the natural-language 

representation of the move command into the format required 

in the SLPS system would not be difficult and would greatly 

improve the legability and structure of the control program. 

This extension to the programming system is seen as the 

highest priority for future work. 

8.2.2 Combining sensor information: simple and compound 
sensors 

One problem arising from the case study of Chapter 7 

concerned the alignment of the carbon-fibre profiles using 

two gripper-mounted linear-array cameras. Although 

individually each sensor gives the translation error at the 

front and the rear. of the. gripper, the error in orientation 

is found from the difference in the edge, positions perceived 

by the_two sensors. At present, the programming system has 

no facilities for efficiently combining sensor information 
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in this way. A proposed solution is to define 'compound 

sensors' whose sensor reading is obtained by combining 

information from two or more physical, or simple, sensors. 

For the problem of detecting the misalignment of carbon-

fibre, the simple sensors would be the linear-array cameras 

and the compound sensor would give a value equal to the 

difference between the two perceived edge positions. 

From the point of view of programming, compound sensors 

would be used in exactly the same way as simple sensors. The 

differences being the way in which they are defined and the 

way the errors are computed. Henderson's work on logical 

sensor specification [83] is applicable to this problem. 

8.2.3 Continuous path sensing 

The problems of extending the programming system to 

cope with continuous sensing were discussed briefly earlier 

in this chapter. Al though it would allow a wider range of 

assembly problems to be tackled, continuous path sensing 

introduces problems which cannot be easily solved with the 

architecture and protocols underlying the work described in 

this thesis. Among some of~the problems are: 
\ 
I 

1. Continuous sensing requires fast servoing rates. 

The need to route all sensor-actuator interactions 

through the central controller is a handicap for 

high-speed information interchanges. Thus, new 

architectures may need to be considered. 

2. The sensing and the movement must be achieved in 

parallel. The SLPS system operates by sending 

.. movement and sensing commands 'in sequence •. Not only 

does parallelism require a more detailed 

-226-



multitasking communication protocol, but the 

actuator must be able to respond to error .' 

information during a movement. Most commercial 

robots do not have this facility. 

3. The processing of sensor information becomes time 

critical and any delay in extracting attributes from 

sensor data needs to be considered when applying the 

correction. If the time between sensing and applying 

the movement is too large, the sensing may be 

ineffective. 

Extending the programming system to cope with continuous 

path sensing is not trivial. It will require a fast sensor­

actuator communication channel, probably not involving the 

central controller. Furthermore, it requires special 

characteristics in the actuator to respond to error signals 

during a movement. Solving assembly problems requiring this 

type of sensing is best achieved using a dedicated robot 

system with real-time path control facilities, such as a 

Puma with VAL II. 

-'I 
8.2.4 Strict checking of sensor information 

The protocol for sensor communication defined in 

Chapter 6, does not provide facilities for strict checking 

of the sensor information. Checking the number of attributes 

sent and the final terminator does detect a phase error in 

the transmission, but the integrity of the attributes 

themselves is not assessed. Consider the linear-array camera 

used in the case study of Chapter 7. If the perceived edge 

position received by the master is 0, this means either that 
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the actual edge position is out of the field of view, or 

that the sensor is not operating correctly. Using the value 

of 0 as the sensor reading may mean the actua tor is moved in 

completely the wrong direction, causing the system to go 

unstable. 

One solution to this problem is to define a range of 

permissible values for each attribute of each sensor. If the 

value of an attribute is outside this range then an error is 

reported. Under these circumstances, it may be possible to 

automatically test the sensor to see if the problem is due 

to incorrect positioning, or to a sensor malfunction. 

Estimates of the noise from the sensor and the system, as 

derived in Chapter 5, may assist in identifying the cause of 

the prob 1 em. 

Incorporating this checking within the programming 

system would not be difficult. Within the definition of the 

sensors in IRPS, the programmer would be asked to specify a 

range of permissible attribute values for the sensor. During 

the application of sensory feedback, each sensor reading 

would be checked to make ~ure it was within this range. 
I 

8.2.5 Coping with transformation errors 

If the transformation error from the sensor error to 

the corresponding actuator error is erroneous, the affect 

will be interpreted as a m~asurement error, even if the 

sensor and actuator are noise-free. In principle, 'it is 

possible to detect a transformation error by defining the 

parameters of the transformation to be additional states in 

the Kalman filter, i.e. extended Kalman filtering [79]. It 
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may be possible to extend this idea to the case where the 

sensor-actuator relationships are defined approximately, if 

at all, and are estimated from the results of sensor-

servoing. Thus the system could learn the relationship 

between the sensor and the actuator and adapt these 

relationships to reflect changing conditions. 

To implement extended Kalman filtering in the noise 

processing algorithms of Chapter 5, would involve estimating 

the components of the H matrix in equation 5.3. At present, 

the diagonal elements of this matrix are assumed to be 1 or 

0, corresponding to whether or not the measurement provides 

an estimate of each component of the state. 

8.2.6 An alarm system for excessive errors 

If the estimated variance of the system or measurement 

noise exceeds a pre-set threshold, it is desirable to 

issue a warning to the operator. The sensor may need 

replacing, or there may be a mechanical fault in the feeding 

equipment. One way of setting the alarm threshold is to use 

the initial noise level entered in the definition file, for 

example, set the threshold at 5 times the initial estimate 
\ 
I 

entered by the programmer. 

'Another application for an alarm system is to hal t the 

actuator whenever the reading from a sensor exceeds a safety 

level. The extension of the programming system to include 

strict checking of sensor information (Section 8.2.4) only 

allows sensor readings to be checked when the actuator is 

stationary. If, during an iteration, the actuator is 

instrubted to move a large distance, auch checking may be 

ineffective. A high-priority check would require sensing 
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during the movement of an actuator, with a message being 

sent from the sensor controller to the central controller if 

the sensor reading exceeds the safety level. The central 

controller could then stop the actuator mid-movement. This 

high priority checking of sensor information could be 

integrated into the programming system by defining some 

additional functions which the programmer could use to start 

and stop the checking. Alternatively, the programmer could 

be prompted for alarm conditions during the installation 

phase of program development. Although they would not appear 

in the control program, the alarm conditions would 

automatically be activated whenever certain actions were 

being performed. For example, one alarm condition may occur 

whenever the reading from a forGe sensor exceeds a 

threshold. The slave controller associated with this sensor 

could be instructed to check this condition continuously, 

pausing only to send sensor data to the central controller 

when required for normal closed-loop feedback. 

8.3 Further work: long-term objectives 

Some of the more generic aspects of the work in this 
\ 
I 

thesis are identified and placed in the context of current 

trends in robotics research. 

8.3.1 Sensor data fusion 

Sensor data fusion is concerned with the processing of 

sensor infOrmation from more than one source to estimate a 

single parameter. This is an exciting area of research which 

appear~ to be attracting an increasing.level of support, 

particularly in the United States. Combining redundant 
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information from more than one source has the following 

advantages: 

1. The relative accuracy of the information from each 

sensor may vary with time. For example, the accuracy 

with which a camera can determine the position of a 

part depends on the effective resolution, which in 

turn depends on the distance of the object from the 

camera. 

2. The effectiveness of each sensor in a multi-sensor 

system may vary with time. 

3: The information from one sensor may be subject to 

stochastic variations. 

It is this final point which can be related to the work in 

this thesis. Instead of weighting a single sensor reading 

against the current estimate of a state, many sensor 

readings can be combined using a similar type of weighting 

factor. Thus, the estimate of the state of interest is a 

weighted average of the current state and the sensor 

readings from each source. It is anticipated that points 1 

and 2 shown above can also, be modelled using a weighting 
I 

factor, whose magnitude reflects the expected accuracy and 

effectiveness of the sensor estimate respectively. 

8.3.2 A graphical interface for off-line programming 

In the programming developed in this thesis, the method 

of defining the states is not stipulated. In the case-study 

of Chapter 7, the states were taught by moving the robot to 

the desired locations and recording t?e positions. However, 

a simple program could be written to send the numerical 
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coordinates of each location to the actuator controller, 

thus defining the states off-line. Experience with a Puma 

robot has shown that off-line programming can only be 

achieved successfully if the robot is first calibrated and 

compensation applied for the errors. Error of upto 5 degrees 

have been observed in the wrist joints of this robot. 

A graphical modelling system to define the states 

offline would improve the efficiency of programming by 

eliminating the teach phase. Many such systems have been 

described in the literature (see Chapter 2) and, in addition 

to defining locations, they can be used to plan the work-

cell, check for collisions and investigate the suitability 

of different manipulators. A modelling system could also be 

used to assist in the definition of th~ relationships 

between the frames of reference, allowing the transformation 

matrices to be produced automatically, given a graphical 

representation of the relationships. 

Using a modelling system in conjunction with the 

simulation mode of SLPS, would provide a useful way of 

investigating how the actuators move in response to error 
." 

signals from sensors. If the sensor-correction is too large, 

the actuator may not be able to attain the desired position. 

Detecting such problems off-line would be a valuable 

facility. 

8.3.3 Error recovery 

Recovering from failures and errors in sensory robotics 

is a challenging problem which is being tackled by a number 

of r~search groups (see Chapter 2 for details). The work 

described in Chapter 5 of this thesis is considered to be 
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applicable to the problem of identifying the source of an 

error. Since estimates of the noise from the sensors, the 

actuators and the system states are available, the most 

likely cause of a failure can be identified. For example, 

consider the problem of inserting a peg into a hole under 

vision guidance. If the position of the hole has been 

subject to error in previous cycles, then failure to find 

the hole on the current cycle can be attributed to an 

excessive error in the hole's position. However, and more 

importantly, if the position of the hole in previous cycles 

was biased towards one direction in the image, then the most 

likely direction in which to find the missing hole can be 

deduced. Using this approach, a search strategy can be 

derived, where the actuator is moved in a direction 

reflecting the trend of previous errors. The problem can be 

formulated mathematically by defining a probability 

distribution for the space surrounding each sensor. Thus, if 

the sensor does not provide a valid reading, it is moved in 

a direction which maximizes the probability of finding the 

state. The probability distribution could then be updated 
. \ 

upon completion of each cycle, using the estimate of the 

system noise derived in Chapter 5. 

-233-



REFERENCES 

[1] A.Pugh, "Second generation robotics", in Robot Vision, 

ed. A.Pugh, pp 3-11, IFS Publications, 1983. 

[2] M.Erdmann and M.T.Mason, "An exploration of sensor less 

manipulation", in Proc. IEEE International Conference on 

Robotics and Automation, pp 1569-1574, 1986. 

[3] S.H.Drake, P.C.Watson and S.N.Simunovic, "High speed 

robot assembly of precision parts using compliance instead 

of seI1sory feedback", in Proc. 7th International Symposium 

on Industrial Robots (ISIR), pp 87-99, Oct. 1977. 

[4] T.L.DeFazio, "Displacement-state monitoring for the 

remote centre compliance - realization and applications", in 

Proc. 10th International Symp.osium on' Industrial Robots, 

1980. 

[5] J.J .Hi 11, D.C.Burgess and A.Pugh, "The vision-guided 

assembly of high-power semiconductor diodes", in Proc. 14th 

International Symposium on Industrial Robots, pp 449-459, 

Oct. 1984. 

[6] P.M.Taylor, G.E.Tayl.9r and I.Gibson, "A multisensory 
. ) 

approach to shoe sole assembly", in Proc. 6th International 

Conference on Robot Vision and Sensory Controls (ROVISEC-6), 

pp 117-127, June 1986. 

[7] T.L.DeFazio, et al., "Feedback in robotics for assembly 

and manufacturing", report number R-1450, Charles Stark 

Draper .Laboratory, Cambridge, Ma., April 1981 •. 

[8] D.G.Johnson and J.J .Hi 11, "A sensory gripper for 

composite handling", in Proc. 4th International Conference 

on Robot Vision and Sensory Controls (ROVISEC-4), Oct. 1984. 

-234-



[9] D.G.Johnson and J .J.Hi 11, "High-level software control 

of a sensor-based industrial robot: an application in 

aerospace manufacturing", in Proc. IEEE Industrial 

Electronics Conference, pp 21-26, Nov. 1985. 

[10] S.C.Pomeroy, et al., "Ultrasonic distance measuring and 

imaging systems for industrial robots", in Proc. 5th 

International Conference on Robot Vision and Sensory 

Controls (ROVISEC-5), Oct. 1985. 

[11] M.K.Brown, "On ultrasonic detection of surface 

features", in Proc. IEEE Conference on Robotics and 

Automation, pp 1785-1790, April 1986. 

[12] R.N.Nagel et al., "Experiments in part acquisition 

using robot vision", SME technical paper No. MS79-784, 1979. 

[13] 'P.M.Taylor et al., "Sensory gripping system: the 

software and hardware aspects", Sensor Review, vol. 1, no. 

4, October 1981. 

[14] C.Loughlin and J.Morris, "Line, edge and contour 

following with eye-in-hand vision system", in Robot Sensors, 

ed. Alan Pugh, pp 95-102, IFS Publications, 1986. 

[15] D.G.Whitehead, I.Mitchell and P.V.Mellor, "A low-
\ . 
I" 1 resolution vision sensor , Journa PhyS.E.Sci.Instrum, Vol. 

17, pp 653-656, 1984. 

[16] A.Agrawal and M.Epstein, "Robot eye-in-hand using fibre 

optics", in Proc. 3rd International Conference on Robot 

... Vision and Sensor Controls (ROVISEC 3), pp 257-262, 1983. 

[17] Technical information on the Welch Allyn VideoProbe 

2000, Welch Allyn, New York. 

[18] B.K.P Horn, "Obtaining shape from shading information", 

-235-



in Psychology of Computer Vision, ed. P.H.Winston, pp 115-

155, Mcgraw-Hill 1975. 

[19] A.Blake, A.Zisserman, and G.Knowles, "Surface 

descriptions from stero and shading", Image and Vision 

Computing", vol. 3, no. 4, pp 183-191, Nov. 1985. 

[20] R.D.Baumann and D.A.Wilmshurst, "Vision system sorts 

castings at General Motors Canada", Sensor Review, July 

1982, pp 145-149. 

[21] M.C.Chiang and J.B.K.Tio, "Robot vision using a 

proj ection method", in Proc. 3rd International Ccmference on 

Robot Vision and Sensory Controls (ROVISEC-3), pp 113-120, 

Nov. 1983. 

[22] D.Ni tzan, R.Bolles and J .Kremers, "3D v ision for 

robotic applications", in Proc. NATO workshop on Knowledge 

Engineering for Robotic AppliGations, (to be published), May 

1986. 

[23] D.G.Johnson, "Linear-array cameras for robot vision", 

Diploma Thesis, Department of Electronic Engineering, 

University of Hull, Hull, 1983. 

[24] L.D.Harmon, "Automated tactile sensing", International 

Journal of Robotics Rese~rch, vol. 1, no. 2, pp 3-22, 1982. 
I 

[25] M.H.Raibert, "An all digital VLSI tactile array 

sensor", in Proc. International Conference on Robotics 

Research, pp 314-319, Mar. 1984 • 

.. {26] D.H.Mott, M.H.Lee and H.R.Nicholls, "An experimental 

very high resolution tactile sensor array", in Proc. 4th 

International Conference on Robot Vision and Sensory 

Contrls (ROVISEC-4), pp 241-250, Oct.'1984. 

[27] H.Van Brussel. and J.Simons, "Adaptive assembly", in 

-236-



Proc. 4th British Robot Association Conference, pp 95-106, 

May 1981. 

[28] J.L.Nevins and D.E.Whitney, "Assembly research", 

Industrial Robot, vol.7, no. 1, pp 27-43, March 1980. 

[29] T.Lozarno-Perez, "Automatic planning of manipulator 

transfer movements", IEEE Transactions on Systems, Man and 

Cybernetics, vol. SMC-11, no. 10, pp 681-698, Oct. 1981. 

[30] S.M.Udupa, "Collision detection and avoidance in 

computer controlled manipulators", in Proc. 6th 

International Joint Conference on Artificial Intelligence, 

pp 7 3 7 ",. 7 4 8 , 1 9 7 7 • 

[31] R.Paul, "WAVE: A model based language for manipulator 

control", Industrial Robot, vol. 4, pp 10-17, Mar. 1977. 

[32] E.T.Hudson, "VAL - A manipulator level language ll , in 

Proc. lEE Colloquium on Languages for Industrial Robots, pp 

3/1-3/8, Feb. 1982. 

[33] A.P.Ambler, "Rapt: An object level robot programming 

language", in Proc. lEE Colloquium on Languages for 

Industrial Robots, pp 4/1-4/5, Feb. 1982. 

[34] S.J.Derby, "Computer"graphics robot simulation 
. \ 

programs: a comparison", in Robotics Research and Advanced 

Applications, ed. W.J.Book, pp 203-211, 1984. 

[35] R.Mahaj an and J .S.Moga 1, IIAn interactive graphics 

robotics instructional program - IGRIP, -a study of robot 

.. motion and workspace constraints", in Proc. Robots 8 

conference, vol. 2, pp 16/41-16/56, June 1984. 

[36] T.Winslow, "Personal computer software for robot 

applications", in Proc Robots 8 Conference, vol. 2, pp 13/1-

13/27, June 1984. 

-237-



[37] K.G. Kempf and A.P.Ambler, "An experimental comparison 

of symbolic and graphic offline robot programming 

techniques", in Proc. UK Robotics Research, pp 17/1-17/8, 

Dec. 1983. 

[38] Y.Hazony et al., "Interactive graphical programming and 

control of robotic systems", in Robotics Research and 

Advanced Applications, ed. W.J.Book, pp 191-211, 1983. 

[39] H.J .Warnecke, R.D.Schraft and U.Scmidt-Streier, 

"Computer graphics planning of industrial robot 

applications", in Proc. 3rd Symposium on the Theory and 

Practice of Robots and Manipulators, pp 521-542, 1978. 

[40] D.E.Whitney, C.A.Lozinski and J.M.Rouke, "Industrial 

robot calibration method and results", report number CSDL-P-

1879, Charles Stark Draper Laboratory, Cambridge, Ma., 1979. 

[41] LL.Powell, "Evaluation report on the Unimation Puma 

manipulator arm", report number 80/64, Marconi Research 

Laboratories, GEC Marconi, Chelmsford, 1980. 

[42] L.C.Wright, "Accurate robot programming for surface 

following using automatic location editing", in Proc. 8th 

British Robot Association Conference, pp 23-30, May 1985. 

[43] K.Arbter, et al., "NJw techniques for teach-in 

acceleration and learning in sensor-controlled robots", in 
The International Federation of Automatic Control, p~ 2393-
2399, July 1984. 

··[.44] J.Meyer, "An emulation system for programmable sensory 

robots", ,.IBM Journal of Research and Development, vol. 25, 

no. 6, pp 955-962, Nov.· 1981. 

[45] .R.A.Brooks, "Symbolic error analysis and robot 

planning", International Journal of Robotics Research, vol. 

-238-



1; no. 4, pp 29-67, 1982. 

[46] R.P.Paul, "Robot manipulators: mathematics",programming 

and control", MIT Press, 1984. 

[47] L.Van Aken and H.Van Brussel, "Software for solving the 

inverse kinematic problem for robot manipulators in real­

time", in Proc. Advanced Software in Robotics, pp 4B1-4B16, 

May 1983. 

[48] S.Elgazzar, "Efficient solution for the'kinematic 

positions for the Puma 560 robot", Report no. NRC 23952, 

National Research Council of Canada, Dec. 1984. 

[49] C.S.G.Lee, "Robot arm kinematics, dynamics and 

control", IEEE Computer, pp 62-79, Dec. 1982. 

[50] S.Bonner and K.G.Shin," A comparative study of robot 

languages", IEEE Computer, pp.82-96, Dec. 1982. 

[51] T .Lozarno-Perez, "Robot programming,", Proceedings of 

the IEEE, vol. 71, no. 7, pp 821-841, July 1983. 

[52] W.A.Gruver et al., "Commercially available robot 

programming languages", in Proc. IEEE International 

Conference on Cybernetics and Society, pp 294-296, 1982. 

"\ 

[53] A.Melidy and A.A.Goldenburg, "Operation of a Puma 560 

without VAL", in Proc. Robots 9 Conference, pp 18/61-18/78, 

June 1985. 

[54] R. Vistnes, "Breaking away from VAL", Stanford 

"University internal report, 1982. 

[55] V.Hayward and R.P.Paul, "Robot manipulator control 

using the C language under Unix", in IEEE Workshop on 

Languages for Automation, pp 3-10, Nov. 1983. 

-239-



[56] R.P.Paul, "Integrating robot manipulator control into 

Pascal", in Proc. IEEE Conference on Decision and Control, 

vol. 1, pp 250-255, 1981. 

[57] G.Gini and M.Gini, "ADA: a language for robot 

programming?", Computers in Industry, vol. 3, no. 4, pp 253-

259, 1982. 

[58] J.C.Latombre and M Emmanuel, "LM: a high-level 

programming language for controlling assembly robots", in 

Proc. 11th International Symposium on Industrial Robots, pp 

683-690, Oct. 1981. 

[59] E .. Mazer, "Geometric programming of assembly robots", in 

Advanced Software in Robotics, ed. A Danthine, North Holland 

1984. 

[60] R.J.Popplestone, A.P.Ambler and I.Bellos, "RAPT: a 

language for describing assemblies", Industrial Robot, vol. 

5, no. 3, pp 131-137,1978. 

[61] R.H.Taylor, P.D.Summers and J.H.Meyer, "AML: a 

manufacturing language", International Journal of Robotics 

Research, vol. 1, no. 3, pp 19-41, 1982. 

[62] M.A.Lavin and L.I.Lieberman, "AML/V: an industrial 

machine vision programming system", International Journal of 
\ 

Robotics Research, vol. 1, no. 3, pp 42-56, 1982. 

[63] R.Finkel and R.Taylor, "An overview of AL, a 
programming system for automation", in Proe. 4th 

International Joint Conference on Artificial Intelligence, 
.. pp 758 - 7 6 5, 1 976 • 

[64] T.Binford, "The AL language for intelligent robots", 

Seminaire Internationale Languags et Methods de 

Prog~ammation des Robots Industriels, pp 73-87, June 1979. 

-240-



[65] G.Gini and M.Gini, "Pointy: a phi losophy in robot 

programming", in Information Control Problems in 

Manufacturing Technology", ed. U.Rembold, pp 173~181, 1979. 

[66] B.E.Shimano, C.C.Geschke and C.H.Spalding, "A robot 

programming system incorporating real-time and supervisory 

control: VAL II", in Proc. Robots 8 Conference, vol. 2, pp 

20/103-20/119, June 1984. 

[67] L.I.Lieberman and M.A.Wes ley, "Autopass: an automatic 

programming system for computer controlled mechanical 

assembly", IBM Journal of Research and Development, vol. 21, 

no. 4, pp 321-333~ July 1977. 

[68] C.Blume, "Implicit robot programming based on a high­

level explicit system", in Proc. 1 st Robotics Europe 

Conference, June 1984. 

"" 

[69] D.Falek and M.Parent, "LAMA-S: an evolutive language 

for an intelligent robot", in Proc. Seminaire International 

Languages et methods de programmation des robots 

industriels", pp 157-168, June 1979. 

[70] D.E.Whitney et al., "Part mating for compliant parts", 

report number R-1407, Charles Stark Draper Laboratory, 

Cambridge, Ma., 1980. 

"" \ 

[71] K.Collins, A.J.Palmei- and K.Rathmill, "Development of a 

European benchmark for the comparison of assembly robot 

programming systems", in Proc. 1st Robotics Eurpoe 

Conference, June 1984 • 

.. [72] D.E.Whitney and E.F .Junkel, "Applying stochastic 

control theory to robot sensing, teaching and long-term 

control", in Proc. 12th International Symposium on 

Industrial Robots, pp 445-455, June 1982. 

[73] T.L.DeFazio et al., "Feedback in robotics for assembly 

-241-



and manufacturing", report number R-1563, Charles Stark 

Draper Laboratory, Cambridge, Ma., 1982. 

[74] D.S.Sel tzer, "Use of sensory information for improved 

robot learning", Society of Mechanical Engineers (SME) 

report no. MS79-799, 1979. 

[75] D.E.Whitney et al., "Short and long-term robot 

feedback", report number CSDL-R-1682, Charles Stark Draper 

Laboratory, Cambridge, Ma., 1984. 

[76] D.E.Whitney et al., "Short and long-term robot 

feedback: multi-axis sensing, control and updating", in 

Proc. 11th Conference on Production Research and Technology, 

pp 147-151, May 1984. 

[77] S.N.Simunovic, "An information approach to parts 

mating", Doctor of Science Thesis, Massachusetts Institute 

of Technology, April 1979. 

[78] T.L.Defazio et ale "Feedback in robotics for assembly 

and manufacturing", report number R-1450, Charles Stark 

Draper Laboratory, Cambridge, Ma., 1981. 

[79] A.Gelb, "Applied Optimal Estimation", Cambridge Press 

(MIT),1974. 

.", 

\ 

[80] D.E.Whi tney and A.C.Edsall, "Modelling robot contour 

processes", report number CSDL-P-1869, Charles Stark Draper 

Laboratory, Cambridge, Ma. 

[81] B.Carlisle and S.Roth, "The Puma/VS-100 robot vision 

.. system", in Proc. 1 st International Conference on Robot 

Vision and Sensory Controls (ROVISEC-1), pp 149-161, April 

1981 • 

[82] R.Brook, "Coping with complexity", Sensor Review, pp 

59, Apri 1 1985. 

-242-



[83] T.C.Henderson and W.S.Fai, "A multi-sensor integration 

and data acquisition system", in Proc. IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, pp 

274-279, 1983. 

[84] M.Y.Chern, M.L.Chern and T.G.Moher, "A language 

extension for sensor-based robotic systems", in Proc. IEEE 

Workshop on Languages for Automation, pp 11-16, Nov. 1983. 

[85] C.Hansen, T.C.Henderson and E.Shilcrat, . "Logical sensor 

specification", in Proc. 3rd International Conference on 

Robot Vision and Sensory Controls (ROVISEC-3), pp 321-326, 

Nov. 1983. 

[86] C.C.Geschke, "A system for programming and control of 

sensor-based robot manipulators", IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. PAMI-5, no. 

1, pp'1-7, Jan. 1983. 

[87] M.Gini, "Recovering from failures: a new challange for 

industrial robots", in Proc. IEEE COMPCON conference, pp 

220-227, Sept. 1983. 

[88] M.H.Lee, D.P.Barnes and N.W.Hardy, "Research into error 

recovery for sensory robots", Sensor Review, vol. 5, no. 4, 

pp 194-197, Oct. 1985. 

[89] K.Selke et al., "A knowledge-based approach to robotic 

assembly", in Proc. 4th Conference on U.K. Research in 

Advanced Manufacturing (To be published), Dec. 1986 • 

.. [90] P.Karkkainen, "A sensor information preprocessing 

system f9r manipulators based on distributed 

microcomputers",· in Advanced Software in Robotics, ed. A 

Danthine, pp 279-287, North Holland, 1984. 

.. . 
[91] I.Mitchell, D.G.Whitehead and A.Pugh, "A multi-

-243-



processor system for sensory robotic assembly", Sensor 

Review, pp 94-96, April 1983. 

[92] P.M.Taylor and C.A.Stubbings, "Software and hardware 

aspects of a flexible workstation for assembly tasks using 

sensory robots", in Proc. 2nd lASTED International Symposium 

on Robotics and Automation, pp 48-51, 1983. 

[93] J.S.Albus, A.J.Barbera and M.L.Fitzgerald, 

"Hierarchical control for sensory interactive robots", in 

Proc 11th International Symposium on Industrial Robots, pp 

497-505, Oct. 1985. 

[94] R .. Di Ilman, "A structured multiprocessor system for 

adaptive sensor-controlled assembly robots", in Proc. 1st 

International Conference on Computer Applications in 

Production and Engineering, pp 691-706, 1983. 

[95] P.V.Mellor, J.M.Dubery and D.G.Whitehead, "Adapting 

Modula-2 for distributed systems", IEEE Journal of Software 
Engineering, 1986 (To be published). 

[96] J.Kerridge and D.Simpson, "Three solutions for a robot 

arm controller using Pascal-plus, occam and Edison", 

Software-Practice and Experience, vol. 14, pp 3-15, 1984. 

[97] G.C.Gini. and M.L.Gin~, "Interactive development of 

obj ect handling programs"', Computer Languages, vol. 7, no. 

1, pp 1 -1 0, 1 982. 

[98] B.Faverjon. "Object level programming of industrial 

robots", in Proc. IEEE International Conference on Robotics 

··and Automation, vol. 3, pp 1406-1411., April 1986. 

[99] R.Vitols, J.Baker and G.Wray, "Detection, Alignment and 

joining of flexible assemblages", in Proc. 2nd Grantees 

Conference, SERC Robotics Initiative, pp 38-39, 1983. 

-244-



[100] F .G.Stremler, "Introduction to Communication Systems", 

Chapter 9, pp 453-455, Addison Wesley, 1977. 

[101] A.Mitchie and J.K.Aggarwal, "Multiple sensor 

integration/fusion through image processing: a review", 

Optical Engineering, vol. 25, no. 3, pp 380-386, March 

1986. 

[102] S.Y.Harmon, G.L.Bianchini and B.E.Pinz, "Sensor data 

fusion through a distributed blackboard", in Proc. IEEE 

International Conference on Robotics and Automation, vol. 3, 

pp 1449-1454, April 1986. 

[103] ,H.F.Durrant-Whyte, "Consistent integration and 

propogation of disparate sensor observations", in Proc. IEEE 

International Conference on Robotics and Automation, vol. 3, 

pp 1464-1469. 

[104] S.Shekhar, O.Khatib and.M ShimoJo, "Sensor fusion and 

object localization", in Proc. IEEE International Conference 

on Robotics and Automation, vol. 3, pp 1623-1628, April 

1986. 

[105] B.W.Kernighan and D.M.Ritchie, "The C programming 

Lnaguage", Prentice-Hall, 1978. 

[ 106] C.A.Stubbings, "A~heap multiprocessor robot and 
\ 

sensor control bus", Internal report, Department of 

Electronic Engineering, University of Hull, May 1983. 

[107] D.J.Barlow, "An expert system for error analysis in 

automated satellite antenna assembly", Diploma Thesis, 

.. Department of Electronic-Engineering, University of Hull, 

1986. 

[108] D.G.Johnson and J.J.Hill, "Sensor-level programming: a 

new software system for improved control of a sensory 

ind~strial robot", in Proc. 5th Int~rnational Conference on 

-245-



Robot Vision and Sensory Controls (ROVISEC-S), pp 383-392, 
Oct. 1985. 

-246-



APPENDIX A 

DEFINING AN ACTUATOR FOR USE IN AN SLPS PROGRAM 
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Each actuator and sensor used in an SLPS program must 

have been defined using IRPS (Integrated Robot Programming 

System). The definition of the actuator 'puma' is 

considered. 

From the operating system prompt, the programmer types 

'IRPS' to invoke the suite of programs. The definition 

module is loaded and the following menu is displayed. 

IRPS DEFINITIONS MODULE 

.;:::::::::~~::::::::::::::::::::::::::::..:::~:I 

SENSOR 

................................... _ ........... -_ ............................. .. .' " 

···•• .. • ..... ·_····· .. ·····_····_· .... ··, .... • .. ·_··:'1 I·· .. ··' ........ '~· .. · .. ' .. ·· .. · ............. · .. ····' .. "' .. ' .. · .... " .... · " 

l ACTUATOR 

......... , ............................................. _ ........................... '. 
,_ ................................... _ ............................................... '1 

.:, ................................................. , ................................... 1
' 

INSTALL 

II::~~::::::::::::::::::::::::::::::::::::::::::::::::~, ,;::::::::::::::::::::::::::::::::::::::::::::::::::~::~ 

TASK FINISHED 
".' ......... _ ................. __ .. _ ................ _ ...................... , ." \ 

! 

.' .............................. _ ............................ __ ............... " 

The letter 'A' is typed to call the actuator-definition 

module. The following question and answer session takes 

place. 
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Type in the naMe of the actuato~ to he defined ? pUMa 

Ente~ the physical add~ess ? 89 

Ente~ the t~anslational and ~otational ~esolutions 
of the actuato~ (in MM. and deg~ees respectively)? 9.2,9.91 

Ente~ the translational and ~otational . 
~epeatahilities of the actuator (in MM and degrees) ? 9.1 ,9.995 
COMpleted the actuator definition. 

The actuato~ 1 PllMa' has heen defined .' 

Press any key to return to the Main Menu. 

ACTUATOR DEFINITION MODULE 

The definition of the actuator is stored in the file 
.'\ 

I 

'puma.act'. A key is pressed and the definition menu shown 

overleaf is restored. 
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DEFINING A SENSOR FOR USE IN AN SLPS PROGRAM 
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The definition of the sensor 'camera' is considered. 

From the operating system prompt, the programmer types 

'IRPS' to load the definition module. The following menu is 

displayed 

IRPS DEFINITIONS MODULE 

I:::::::::::::::~:::::::::::::::::::::::::::::::::::::~~::::':::' .;:::::::::::::::::::::::::::::~:::::::::::::::::~~:I 

SENSOR ACTUATOR 
•••. 1 ............ " ......................... , .......... , ......................... , ........... , ' ... I ...................... , ......... ,· .. • .. • ........ " ..... •• ..... ·, .... ·,', ............ ·, .. , 

[ 

.. :::::::::::::::::::::::=::=:::::::~.::::::.~:::::::::.?I 

INSTALL 

...................... , ......................... __ ..................... _ ....... 1" 

1"":===-==::::=:7 ., ......... '00' ............................... , ...................... , ............... _00:' 
................... _ ............................. , ......... , ............ ,." .......... ' 

I 
TASK 

....... ~ .............. -............................. , .................. I.... "'i 

FINISHED 
.' .............................. _ ..................... _ ............................. ,. 

The letter'S' is typed to call the sensor-definition 

module. The following question and answer session 'takes 

place. 
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Type in the naMe of tIle sensoft to be defined ? CaMefta 

Enteft the physical addftess ? 39 

Enteft the activation nUMbeft ? 19 

How Many attftibutes does the sensoft have ? 2 
Enteft the naMe of attftibute nUMheft 1? btow 
Enteft the naMe of attftihute nUMheft 2? wtoh 

IRPS SENSOR DEFINITION MODULE 

For each attribute the programmer has defined, the 

system now requests the correction vector to be entered. 
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Fo~ att~ibute 'btow' of senso~ 'caMe~a' 
The co~~ection vecto~ can be one of the following. 
I. Pu~e t~anslational 
2. Pu~e ~otational. 
3. Rotation about a shifted o~igin. 
4. No co~~ection vecto~ applicable, 

Ente~ 1 2 3 o~ 4 -------)? 1 
Ente~ the' di~ection in which the senso~ . 
Must be Moved in o~de~ to inc~ease its value, (x,y,z) 
Ente~ X,y,z ------) 1,9,9 

IRPS SENSOR DEFINITION MODULE 

Fo~ att~ibute 'wtoh' of senso~ 'caMe~a' 
The co~~ection ve~to~ can he one of the following. 
1. Pu~e t~anslatlonal 
2, Pu~e ~otational. 
3, Rotation about a shifted o~igin, 
4. No co~~ection vector applicable. 

I 

Ente~ 1 2 3 O~ 4 -------)? 1 
Ente~ the'di~ection in which the senso~ 
Must be Moved in o~de~ to inc~ease its value. (x,y,z) 
Ente~ x,y,z ------) -1,9,9 

IRPS SENSOR DEFINITION MODULE 
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., 

Finally, the measurement noise for the sensor is 

entered. This is given in the sensor's frame of reference 

and in world coordinates. 

Ente~ the Measu~eMent noise ro~ the senso~ 
as a SiX-coMPonent vecto~ (x,y,z,o,a,t) ? 9,1,9,9,9,9,9 

IRPS SENSOR DEFINITION MODULE 

." \ 
I 

The definition of the sensor is stored in the file 

'camera.sen'. 
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INSTALLING SENSORS AND ACTUATORS FOR USE WITH 
AN SLPS PROGRAM 
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Assume that the actuators and sensors to be used in the 

assembly have been defined using the procedures described in 

appendices A and B respectively. After completing the 

definitions, the definitions menu will be displayed as 

IRPS DEFINITIONS MODULE 

I::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~:.:::' I:~:::::::~~:::::::::::::::::::::::~=::::::::~~, 

SENSOR ACTUATOR 
"., ......................................................... , ............................. . ............................ _ ............................ _ .............. _ ....... I' 

[
':::::::::::::::::::::::::::::::::::::::::::::::::::::::"~:'I 

INSTALL 

... ........................................ -........... ,,, ................ _ ...... . 

.' 

[
.~::::::::::::::::::::::::::::~::::::::::::::::::::::::::::::::.~:' [.::::::::::::::~~::::::::::~~::-.::::::::::::.~~I 

TASK FINISHED 

t' " 
...... m .................... •• .. • .. ••• .. •• .... ··~· ...... ••• .... • .. • .. • ' \ .................... _ ...... _ •••••••• _.............. ..' 

! 

The letter 'I' is typed to call the installation 

module. 
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The screen clears and the programmer is prompted for 

a name for the installed task file. The results of 

installing the sensors and actuators will be written to this 

file. 

Enter the naMe for the installed task file? itask 

IRPS INSTALLATION MODULE 

~ 
I 

Upon completion of the installation, the installed task 

file will contain all the information from the individual 

definition files of the sensors and actuators. In addition, 

it will include the relationships between the frames of 

reference. 

-257-



A menu is displayed "of the available options for 

installation. 

IRPS INSTALLATION MODULE 

I::::::::::::::::::::::::::~::::::::::::::::::::~~::::::::::':::1 I::::::::::::::::::::::::::::::::::::::::::::::::::::::::~:::I 

SENSOR 
.' . ' 

ACTUATOR 

.. "00" .. ' ... " .................................. ,,·· ...................... ··,· .... ,·· .. .. ... , .... , .. , ..................................... ,-...... , ....... , ...... , ......... . 

,::::::::::::::::::::::::::::::::::::::::::::::::::::::::~:I 

RELATIONS 
..... -.................................. _ ......... , .............. , ........ , .......... . .. ' 

... 

':::=====::==1'1 
EXECUT I ON II I 

I:~:::::::::..:~~:::::::~~:~::::::::::::::::::::::·:::I 

FINISHED 
...... _ ............ _ .......... -................................ " ........... ,. ,.-' 

The programmer types'S' to install the sensors. (The 

sensors must be installed before the actuators). 
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place 

The screen clears and the following dialogue takes 

How ~any senso~s a~e to be installed? 2 

Ente~ the na~e of the fi~st senso~ ? ~a~e~a . 
Is the senso~ 'ca~e~a' static O~ dynaMic ? dyna~ic 

Ente~ the na~e of the second senso~ ? ro~ce 
Is the senso~ '£o~ce' static o~ dyna~ic ? dynaMic 

." \ 
I 

IRPS INSTALLATION MODULE 

Two sensors have been installed, both dynamic. Control 

is now returned to the installation menu. 
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IRPS INSTALLATION MODULE 

,::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::(" 

SENSOR I 

,'::::::::::::::::::::::::::::::::::::~:::::::::::::::::::::::::::::':::'1 

ACTUATOR , 

1 .............................. _ ......................... · .... · ............ •·· .. · ,.,' ............. , .. , ................... , ................. , ............. , ...... J .... I 
,-, ...................... _ ................................... _ ... , ................. . 

" I' 
I ............... " ....................... , ....................... , ............. , ....... .,· 

RELATIONS I 
............................................................................. " .......... . 

,:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::(' I':::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::'1 

EXECUTION 
............... _ ............ _ ......................................... _ ..... .. .,.' 

," 
\ 
I 

i 

FINISHED 
l.. ........ _ .................... _ ..... , ................ , ...... _ ......... ' 

The programmer now types 'A' to install the actuators. 
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How Many actuators are to be installed? 2 

Enter the naMe of tile first actuator? pUMa 
Enter the naMe of the second actuator? table 

IRPS INSTALLATION MODULE 

-, 
I 

Two actuators are installed. Control is again returned 

to the installation menu. 

-261-



IRPS INSTALLATION MODULE 

..................................... -............... , .......... _ .................... :' 
10 ..................................... , ...... , ......... , ................. , ............ , " I':~:::::::::::::::::::::::::::::::::::::::::::::::::::':::1 

I 

SENSOR 
.,1' ................................................. __ ............. , .......... _ ... .. 

[
':~:::::::::::::::::::::::::~::::::::::::::::.::::::::::::.:::' 

RELATIONS 
.................................................. _'H .......... n ................ ,t" 

ACTUATOR 

I.;:::::::~::::.:::::::::::::::::::::::::::::::::::·~:1 

EXECUTION 

a:::=:::::::::::::::::::~:::::::::::::::::::::::::~~:1 

FINISHED 
............................ _ .... _ .... ___ .. _ ............. _ ....... ,.1' ...... _ ......... _ ..................... _ .................... J ... . 

. " 
I 

With the sensors and actuators installed, the 

relationships can now be specified; the programmer types 'R' 

to select this option. For each sensor-~ctuator pair, the 

.. system will require the relationship between the frames of 

reference. Firstly, the relationship between the actuator 

'puma and the sensor 'camera' is requ~sted. 
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ACTUATOR: pUMa 
SENSOR: CaMel'a 

The l'elationship between the pUMa and CaMel'a Must now be defined. 

The l'elationship between the fl'aMeS 
of l'efel'ence can be one of -
the following. 

I. PUl'e tl'anslational 
2. PUl'e l'otational. 
3. Rotation and tl'anslation. 
4. Fl'aMeS of l'efel'ence al'e equal. 
5. Association not applicable. 

Entel' 1,2,3,4 01' 5. --------) ? 2 

ACTUATOR: pUMa 
SENSOR: caMera 

The relationship between the pUMa and caMera Must now be defined. 

Entel' the cOMPonents,of the actuator's x-axis in the sensors's fraMe. 
Enter x y z -------) i1 9 9 
Entel' t~e'cOMPonents ot the actuator's y-axis in the sensors's fraMe. 
Entel' x y,z ---------) ? 9,-1,9 
Enter t~e COMPonents of the actuator's z-axis in the sensofls's ffiaMe. 
Entel' x,y,z --------) ? 9,9,-1 _ 

--Next, the relationship between -the actuator 'puma' and 

the sensor 'force' is considered. 

-263-



ACTUATOR: pUMa 
SENSOR: fo~ce 

The relationship hetween the pUMa and force Must now he defined. 

The ~elationship hetween the f~aMes 
of rere~ence can he one of 
the following. 

I. Pu~e t~anslational 
2. Pu~e rotational. 
3. Rotation and translation. 
4. F~aMes of reference a~e equal. 
5. Association not applicahle. 

Enter 1,2,3,4 or 5. --------) ? 3 

ACTUATOR: pUMa 
SENSOR: force 

The relationship hetween .. the pUMa and force MUst now he defined. 
\ , 

Ente~ the translation vector frOM the actuators to the senso~s 
fraMe of reference. 
Ente~ x,y,z -------) 9,9/-15 

Enter the COMPonents of the actuator's x-axis in the sensors's fraMe. 
Enter x y Z -------) -1,9 9 . 
Enter t~e'coMPonents of t~e actuator's y-axis in the sensors's fraMe. 
Enter x Y/Z ---------) ? 9/9,-1 . . 
Enter t~e COMponents of the actuator's z-axis in the senso~s's fraMe. 
Ente~ X/y,Z --------) ? 9,-1,9 
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For the actuator 'table', the relationship between its 

frame of reference and the frame of reference of the two 

sensors is defined to be 'not applicable'. 

ACTUATOR: tahle 
SENSOR: ca~e~a 

The ~elationship hetween the tahle and ca~e~a ~ust now be defined. 

The ~elationship between the r~a~es 
of ~ere~ence can be one of 
the following. 

~ 
I 

I. Pu~e t~anslational 
2. Pu~e ~otational. 
3. Rotation and t~anslation. 
4. F~a~es of ~efe~ence a~e equal. 
5. Association not applicable. 

Ente~ 1,2,3,4 o~ 5. --------) ? 5 
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ACTUATOR: table 
SENSOR: force 

The relationship between the table and force Must now be defined. 

The relationship between the fraMes 
of reference can be one of 
the following. 

1.. Pure translational 
2 Pure rotational. 
3. Rotation and translation. 
4. FraMes of reference are equal. 
S. Association not applicable. 

,Enter 1,2,3,4 or 5. --------) ? 5 

Because the frames of reference are not applicable, no 

transformation matrices for the actuator 'table' will be 
) 

stored in the installed task file. Thus, any attempt to use 

this actuator in a servo-loop will result in an error. It 

may, however, still be used for movements not requiring 

sensory feedback. 
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COMPLETED SENSOR-ACTUATOR 
RELATIONSHIP FILE ' 

The installed task file has heen saved as 'itask' 

Press any key to return to the Main Menu. 

The installation is now complete and the installed task 

file has been stored on 'Bhe disk as 'itask' • After pressing 

a key, control is returned to the main-menu. Typing 'F' will 

finish the session and restore control to the operating 

system of the computer. 
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EXECUTING AN SLPS PROGRAM 
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7he execution ot the SLPS p~og~am de~c~iied in Chapte~ 
7 i~ detaiLed ieLow. 7he p~og~am i~ caLLed LAY.C and i~ 
compiLed to give an executaiLe machine-code p~og~am which i~ 
executed iy typing LAY. 

lay 

SLPS robot programming system, version 1.0, June 1986 

Enter the name of the installed task file --> itask 
Enter the name of the state parameter file --> taskrt 
Are diagnostics required ? n 
Execution or simulation required ? e 
Is the robot installed ? y 
Single step on ? n 
Have the states been taught ? y 
Is the slave sUb-system connected ? y 
Dry-run mode ? n 
How many cycles are required? 100 

SLPS system is configured for upto :-
16 states. 
4 sensors. 
5 actuators. 

************************************************************ 
********* S Y S T E M 
SENSORS: (2 defined). 

-''(! 0 NFl G U RAT ION ******* 

Name: 'camera' , Address: 83 , Activate: 10 , Numatt: 2. 
Attributes: 'btow' 'wtob' 
Sensor is dynamic. 
The sensor noise is (0.10 0.00 O~OO 0.00 0.00 0.00) 

Name: 'force' ,Address: 83 , Activate: 20 , Numatt: 1. 
Attributes: 'angle' 
Sensor is dynamic. 
The sensor noise is (0.00 0.00 0.00 0.50 0.00 0.00) 
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ACTUATORS:. (1 def ined ) • 
Name: 'puma' , Address: 80 
Resolution: (0.200 0.200 0.200 0.010 0.010 0.010) 
Repeatability: (0.100 0.100 0.100 0.005 0.005 0.005) 
Noise: (0.103 0.103 0.103 0.005 0.005 0.005 

A total of 3 states have been defined. 

The following states have been defined. 

*************************************************************** 

STATE 
NUMBER 

0 

STATE 
NAME 

STACK 
Departure vector is · (0.00 0.00 50.00 · 
System noise is · (0.000 0.000 0.000 · Sensitivity is · (0.500 0.500 0.500 · 
1 SAFE 
Departure vector is · (0.00 0.00 0.00 · System 'noise is · (0.000 0.000 0.000 · 
Sensitivity is · (0.500 0.500 0.500 · 
2 START 
Departure vector is · (0.00 0.00 20.00 · 
System noise is · (1.000 1 .000 1 .000 · 
Sensitivity is · (0.909 0.500 0.500 · 
3 END 

0.00 
0.000 

0.500 

0.00 
0.000 

0.500 

0.00 
0.000 

0.500 

Departure vector is · (-5.00 0.00 10.00 0.00 · System noise is --· (1 .000 ~1 .000 1.000 0.000 · Sensitivity is · (0.909 0.500 0.500 0.500 · 

0.00 0.00) 
0.000 0.000) 

0.500 0.500) 

0.00 0.00) 
0.000 0.000) 

0.500 0.500) 

0.00 0.00) 
0.000 0.000) 

0.500 0.500) 

0.00 0.00) 
0.000 0.000) 

0.500 0.500) 

*************************************************************** 

Running in execution mode. 
Executing 100 cycles. 

Program completed, returning to operating system. 

c: > 
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