THE UNIVERSITY OF HULL

INTEGRATING SENSORS AND ACTUATORS FOR .ROBOTIC ASSEMBLY

being a Thesis submitted for the Degree of
Doctor of Philosophy

in the University of Hull

by

David Gary Johnson, B.Sc.

September 1986

SUMMARY

Prersinalivrtimsbmimlus

This thesis addresses the problem of integrating
sensors and actuators for closed-loop control of a robotic
assembly cell. In addition to the problems of interfacing
the physical components of the work-cell, the difficulties
of representing sensory feedback at a high level within the
robot control program are investigated. A new level of{robot
programming, called sensor-level programming, is introduced.
In this, the movements of the actuators are not given
explicity, but rather are inferred by the programming system
to achieve new sensor conditions given by the programmer.

Control of each éensor and actuator is distributed
‘through a master-slave hierarchy, with each sensor and
actuator having~its own slave controller. A protocol for
information interchange between each controller and the
master is defined. If possible, the control of the
kinematics of a robot arm is achieved through the
manufacturer's existing control system. Under these
circumStanceé, the actugfor slave would be acting as an
interface between the generic command codes issued from the
central controller, and the syntax of the corresponding
control instructions required by the cqmmercial system.

Sensor information is preprocessed in the sensor slaves
and é,set of high-level descriptors, called attributes, are
sent to the central controller. Closed-loop control is

achieved on the basis of these attributes.

The processing of sensor information which is

corrupted by noise is investigated. Sources of sensor noise
are identified and new algorithms are developed to quantify
the noise based on information obtained from the closed-1loop
servoing. Once the relative magnitudes of the system and
measurement noise have been estimated, a Kalman filter is
used to weight the sensor information and hence reduce the
credibility given to noisy sensors; in the limit ignoring
the information completely. The improvements in system
performance by processing the sensor information in this way
are demonstrated.

The sensor-level representation and automatic error
pProcessing are embedded in a software control system, which
can be used Fo interface commercial systems as well as
purpose-built devices.‘An’industrial research project
associated with the lay-up of carbon-fibre provides an

example of its operation.

A list of publications resulting from the work in this

thesis is givén in Appendix E.

- Pune thinking cannot yield us any knowledge of the
empinical world; all knowledge of neality starts faom
expendience and ends in it., Propositions arnived at Ly purely
Logical means ane completely empity of neality.

Albert Einstein

ACKNOWLEDGEMENTS

I am grateful to the SERC for providing support for
the first eighteen months of the project under a CASE
studentship. The financial assistance of British ‘
Aerospace, Stevenage in providing equipment is
appreciated. ’

I wish to thank my colleagues and friends in the’
Department of Electronic Engineering at the University of
Hull for all their support and help during the last three
years. I am especially grateful to Professor Alan Pugh for
allowing me to devote so much time to completing this
thesis, and to Dr John Hill for invaluable guidance and
assistance in the work. Also, I thank all those people who

have offered criticisms, constructive or otherwise, on the
work.)

Special thanks to my family and close friends for
encouragement and support.

Finally, to the one person who has endured and

contained my doubts and despairs: for Ceri, wherever I may
find her. |

CONTENTS

1. INTRODUCTION
2. LITERATURE SURVEY
| 2.1 Introduction
2.2 Sensors
2.3 Software
2.3.1 Requirements of rdbot control software
’ 2.3.2 On-line versus off-line prégra@ming

2.3.3 Specifying relationships between the
robot and the environment

2.3.4 Robot programming languages
2.3.5 Leéels of robot programming

2. 3 6 Assessing the performance of sensor-
based robot control system

2.4 Errors and sensing

2.5 Hardware 1mp1ementatlons of robot control
systems

2.6 Summary

3. MODELLING DISCRETE SENSORY ASSEMBLIES
’ !
3.1 Introduction
3.2 Discrete sensory assemblies

3.3 Definition of terms in the assembly process

3.4 Confidence of a state
- 3.5 Sensitivity of a state

3.6 Controlling the actuator's speed in response
to past errors

3.7 Transferring the actuator_between two .states

3.8 Sensory feedback

3.9 Application of 1dng-term feedback

10
11
11
14
14

16

19
21

27

29
29

35

37

39
40
44
46
49

51

52
54

58

60

3.10 Summary

4., SENSOR LEVEL PROGRAMMING
4.1 Introduction
4.2 Sensor indirection
4.3 Specifying sensor requirements

4.4 Transformation of errors: static and dynamic
sensors.

4.4.1 Static-sensor to actuator transformation
4.4.2 Dynamic-sensor to actuator_transformation
4.5 Terminating the sensory servoing

4.6 Achieving more than one sensor condition

4,7 Summary

5. ANALYSIS OF ERRORS IN SENSORS AﬁD ACTUATORS

5.1 Introduction

5.2 Sources of eriors in sensory assembly
5.2.1 System errors
5.2.2 Actuator errors

5.2.3 Sensor errors

5.3 Processing noisy sensor information
’ i
5.3.1 Consideration of actuator noise
5.4 Frequency domain analysis of errors

5.5 Application of a Kalman filter in the
processing of information from sensors

5.5.1 State confidence from the Kalman filter

5.6. Derivation of n01se variances for the Kalman
filter

5.7 Updating noise variances through analy51s of
past errors

5.7.1 Estimating the measurement and system
noises

63

65
66
67
69

74
77
78
79
82

85

88
89
90
90
91
94
97
99

100

105

110
111

113

5.7.2 Computation of weighted average noises

5.7.3 Calculating measurement noise by a
weighted average

5.7.4 Calculating the system noise by a
weighted average

5.7.5 Updating noises in the absence of
information

5.8 Updating the actuator noise
5.9 Applying long-term feedback

5.10 Numerical examples of measurement noise
update

5.10.1 Estimation of a constant noise level

5.10.2 Estimation of a changing noise level

5.11 Summary

6.~A PROGRAMMiNG TOOL FOR SENSORY ASSEMBLIES
6.1 Introduction .
6.2 Hardware framework
6.3 Communicating to sensors

6.4 Communicating to actuators

6.5 Defining the components of a sensory assembly'

6.5.1 Defining a sensor
6.5.2‘Defining aﬂ\actuator
6.5.3 Defining the states
6.6 Defining the transformations for the sensor

6.7 Programming with sensor-level commands

6.7.1 Additional sensor-level programming
commands

6.7.2 Format of the control program

6.8 Using SLPS in a simple assembly problem

6.9 Summary

121
125
126

128
129
133

133
134
140

143

147
148
149
151
152
155
157
162
164
167
172

176 .
179
180

188

7. AN INDUSTRIAL CASE STUDY
7.1 Introducﬁion
7.2 The industrial problem under investigation
7.3 Components of the assembly
7.4 Defining the components of_the assembly
7.5 Performance of the control system
7.6 Summary
8. CONCLUSIONS
8.1 Achievements of this thesis
8.2 Further work: short-term objectives
’8.2.1 A natural language interface

8.2.2 Combining sensor information: simple and
compound sensors

8.2.3 Continuous path sensing

8.2.4 Strict checking Af sensor information

8.2.5 Coping with transformation errors

8.2.6 An alarm system for excessive errors
8.3 Further work: long-term objectives

8.3.1 Sensor data fusion

8.3.2 A graphical interface for off-line
programmlng\
!
8.3.3 Error recovery

References

Appendix A - Defining an actuator for use in an
- SLPS program

Appendix B - Defining a sensor for use in an -

SLPS program

Appendix C - Installing sensors and actuators for

use with an SLPS program
Appendix D - Executlng an SLPS program

Appendix E - Published work

190
191
191
195
199
211
216
219
220
224

224

225
226
227
228
229
230

230

231

232

234

247
250

255
268
271

LIST OF SYMBOLS_AND ABBREVIATIONS

Tolerance of the 1th state.
A constant used to define the weighting function.
Departure vector for the 1th state.

Distance moved by the actuator in the jth
iteration.

The variance of the noise from the gth actuator.

Estimate of the variance of the noise from
the gth_actuator.

Perceived error in the jth iteration.

Expeéted value of a vector. Defined as a vector
whose components are the expected value of the
corresponding component of x.

The variance of the noise from the kth sensor.

Estimate of the variance of the noise from the kth
sensor.

Sensitivity of the 1P state.

Subscript usgd to denote the actuator.
Matrix defining the relationship between the
components of the state vector and the
components of the measurement vector.
Subscript used to denote the cycle.

Identity matrix.

Subscript used to denote the iteration.

Subscript used to denote the sensor.

Kalman gain matrix on the ith cycle.

1=

I=>

Pi(+)

Qi

Ia]

[1a7)

{tn

Subscript used to denote the state.

System error taken from the distribution Q
Best estimate of M.

Velocity in the vicinity of the 1th state.
Error covariance matrix on the ith cycle.

Error covariance matrix prior to being updated on
the ith cycle.

Error covariance matrix after update on the ith
cycle.

A Normal noise distribution representing the systém
noise on the ith cycle.

Mean value of the system noise on the ith cycle.

An estimate of fhe mean value of the system noise on
the ith cycle.

Measurement error on the jth iteration of the current
cycle. .

Speed of approach and departure of the 1th state.
The current cycle number.
. ‘\\' .
Confidence of the 1tP state.
Transformation matrices.

Variance of the system noise on the ith cycle.

An estimate of the variance of the system noise on
the ith cycie. :

Variance of the measurment noise on the ith cycle.

An estimate of the variance of the measurment
noise on the ith cycle.

mm

ASCII

CCbD

Number of iterations in the ith cycle.

State X on cycle i.

The value of X; just before being updated on the
ith cycle.

The value of X; just after being updated on the
Cummulative sum of weighting factors.
Destination state in a state-transfer.

Measured value of a state.

Millimetres.

- American Standard Code for Information

Interchange.

Charged coupled device.

CHAPTER 1

INTRODUCTION

The ability to modify a robot control program in
response to error signals from a sensor, has prévided the
seed from which second generation rdbotics has grown. In a
paper entitled 'Second Generation Robotics', Pugh [1] argued
that the development of intelligent control based on
environmental sensing, the so-called second generation, has
not been satisfactorily realized, despite over 10 years of
promise. Over the past 10 years, research ih artificial
intelligence, robot control algorithms, sensors, image-
processing and communications have yielded impressive
results, a wealth of publications and a nimiety of
international conferences. Despite this, however, the
transfer of this technology to small-batch product assembly)
has been painfully slow. .

Integrating sensors.with robots is difficult. Not only
are the available sensors unsuitable,.but the problems of
interfacing the hardware and software of commercial robots
with external systems can be non-trivial. If facilities
exist for sensor-interfacing, they are usually restricted to

reading signal lines, onto which the processed sensor

information is presented.

Addressing the problems of robot control using
environmental sensors, this thesis taqkles three principal
problems, namely,

1. The informatioh interchange between sensors and

actuators to achieve closed-loop control in a multi-

sensory environment,

The representation of sensory-feedback at a high-

level.

3. Processing sensor information in the face of noise
and uncertainty from the system, the actuators and

the sensors.

The work in this thesis describes a robot programming system
which allows commercial robots and actuators to be
interfaced to sensors and provides a general solution to
each of the above problems.

Effective automation of small-batch production requires
the sensing of part positions to minimize expensive tooling
costs; Although research into 'sensorless' hethods of coping
with uncertainty have been reported, e.g. [2], the
constraints imposed on the nature of the parts preclude this.
approach for thé majority of .assembly tasks. Pioneering
research at The Charles Sfark Draper Laboratory. produced the
Remote Centre Compliahce, which offers an alternative to
sensing for many assembly operations [3]. The instrumented
version of this device [4]) provides sensory feedback from
three positional and three rotational components of error.
Research into multi-senﬁor assemblies has demonstrated the
feasibility of integrating many sensors with an industrial
robot [5],[6]. However, the problem of coordinating the
interchange of information between the sensors and the robot
is non-trivial. Distributed processing has advantages in
terms of reliébility, b;t then problems of communication and
synchrgnization arise. |

Building on an existing robot communication bus, the
work in this thesis proposes a unification of information

* interchange between the sensors and the actuators. Sensor

information is preprocessed in distributed controllers, and
only high-level information required for closed-loop
servoing is transmitted to the central controller.
Considering the general case of many robots and actuators in
a work-cell, a standard formatrfor actuator commands is
proposed, such that the semantics of the control
instructions are independent of the nature of the actuator.
Each actuator is assumed to have its own controller whose
réle is to translate the generic command code issued from
the central controller into the control signals required by
the aétuator. The motors of the actuator ma& be controlled
directly, or through an existing commercial controller. To
this end, the control of the robot is achieved through
whatever commefcial system the manufacturer supplies. This
obviates the need to redevélop robot controllers, and allows
attention to be directed at a higher-level of control.
Hence, the work in this thesis is not concerned with the
control of the actuators at the kinematic level. All control
algorithms are assumed to exist in either a commercial or. a
purpose-built controlle;. This approach allows overall
control to be centralizéd and all interactions routed
through one central node. By looking only at discrete
sensory feedback, satisfactory control can be achieved using
a low-cost personal computer as the controller. Siﬁce all
the‘kinematicvcontrol aﬂd sensor prdcessing is done
elsewﬁére, the central controller is responsibie only for
coordinating and sequencing instructions.

Within the framework of the distributed system, the

- Problem of specifying sensory feedback is considered. This

includes the development of a general sensor interface,
which allows sensors to be defined as modular definition
files and used by name in a control program. A sensor-
level of indirection is introduced, such that the movement
of an actuator is to transform the readings of the sensors
from their current values to a new set. The required
movements of the actuators are computed automatically to
achieve the sensor conditions.

Chapter 2 reviews previous work in the application‘of
sensors to industrial robots. The reqﬁirements of a robot
programming language are identified and the short-comings of
existing commercial systems are studied.

Chapter 3 describes the nature of the assembly problems
under investigation and develops a model which is used to
represent the assembly in terms of a set of states.
Associated with each state is a confidence and a
sensitivity. Building on original work by Defazio [7], a
confidence is used to reflect the certainty with which a
state is known, by consideration of previous errors under
sensory feedback. A metpod of calculating numerical values
of the confidence, based on the information from the
sensors, is developed. The state sensitivity is a parameter
used to specify the tolerance at a state, and hence the
maximum erro; permissible. Using a coﬁbination of the
confi?ence and the sensitivity, the velocity of the actuator
as it approaches a state is automatically computed to
reflect errors and sensitivity. A sensitive state could, for
example, be the.position of a robot during the insertion of

a8 peg into a hole. Since the robot must be positioned

accurately, the sensitivity is high and the corresponding
velocity of the robot, as it approaches the hole, is small.
The advantages of a reduced approach velocity include
improved dynamics of the robot; location-overshoot, for
example, is a problem at high speeds. More importantly,
however, reducing the velocity gives a better chance of
stopping the robot in an emergency. For example, trying to
insert a peg into a non-existent hole.

Chapter 4 describes a new level of robot programﬁing,
calied sensor-level programming. In tﬁis, the required
movements of the actuator are not given explicitly, but are:
inferred, with the goal of achieving a specific condition in
the sensors. A structure for representing sensory feedback
is developed and the mechanism for éomputing the correction
in the actuator, to eliminate an error in a sensor, is
described. Sensors aré classified as either dynamic or

static, depending on their relationship with the actuator's

and the world's‘frames of reference. A dynamic sensor is
coupled to, and moves with, an actuator; gripper mounted
cameras and . tactile sen§ors fall into this catagory. Static
sensors are fixed in the world's frame of reference.

The problem of moving the robot to achieve a specific
sensor-condition can be extended fo the case where more than
one sensor condition must be achieved' at the end of an
actuatqr movement. If the corrections applied for the
Separate conditions do not interfere with each other, the
problem is trivial since each sensor condition can be met

sequentially. If, however, the correction applied for one

‘condition is opposing the correction applied for another

condition, the problem is non-trivial. A solution for two
sensor conditions is described in Chapter 4.

Chapter 5 considérs the effects of noise in the system,
the actuators and the sénsors. Noise in the system, arising
from ill-positioned parts for example, is expected and can
be detected with the sensors. However, errors in the sensors
themselves reduces the effectiveness of the control by
limiting the accuracy obtainable. The final "‘accuracy can be
no greater than that offered by the sensor. The noise in the
senso;s may arise from interference, gquantization,
transformation errors, changing environmenﬁal conditions,
wear, and in the limit complete sensor failure. The latter
condition may bg relatively easy to identify. However, the
problem of superimposed e;ectrical iﬁterference presents
more difficult problems. The noise may be intermittent and
of variable frequency and amplitude. Although electrical
filtering is one solution, this implies some knowledge of
the parameters of the noise. If these parameters are subject
to change, such filtering becomes difficult.

Algorithms are developed which quantify the noise in

,
the measurement process and provide an estimate of the
Parameters of the noise distributions. The noise can be
modelled as a Normal distribution, which, over the frequency
range of interest, can be assumed to be white. The problem
of uSiﬁg the potentially noisy information from the sensors
is tackled by using a Kalman filter, where the states to be
estimated are the key locations in the work-cell. Once the
variance of the sYstem and measurement noise is estimated,

the Kalman gain acts as a weighting factor, whose magnitude

reflects the credibility of the sensor information. In the
event of the measurement noise being much greater than the
system noise, the Kalman gain approaches zero and all sensor
information is ignored. If the sensor information is noise-
free, the iﬁformation is used with 100% confidence; this is
the usual way of processing sensor information. If a sensor
is noisy, significanf improvements in accuracy and servoing
times can be made using the algorithms described. The
algorithms are demonstrated on an induétrial research
problem which incoporates a noisy force sensor.

éhapter 6 describes the implementation.of a robot
programming system, SLPS, which incorporates the sensor-
level representgtion and noise-estimation algorithms
developed in Chépters 3 to 5. This robot programming system
is a library of functions written in the C programming
'language. Once the sensors and actuators have been defined
through definition files, they are used as parameters in the
functions. The format of the command for moving an X-Y
table, say, is exactly the same as that to move a robot. The
difference is only in thg physical addresses of the
appropriate controller c;rds, to which the central
controller sends the generic instruction codes. These
Physical addresses are taught in the definition file
associated with the device. In general, each movement
command gives one or two\sensor conditions which must be
Satisf'ied at the end of the movemeﬂnt. The servo loop to
achieve these conditions is coordinated by the central
controller. The information acquired from each movement of

‘the actuator in the servo process is recorded and used to

compute éstimates to thg noise due to the measurement and
the system, according to the algofithms developed in Chapter‘
5. The calculation of the new noise levels and subsequent
updating of the Kalman filter equations is transparent to
the programmer.

Chapter 7 aescribes the application of the robot
programming system to an industrial problem. The problem is
associated with the handling and lay-up of carbon-fibre into-
a satellite antenna dish [8],[9]. The stages in solving the
assembly problem using the robot programming system are
described. Also, the effects of applying thé noise
processing algorithms on.the information from a noisy force
sensor are demonstrated.

In conclusion, Chapter 8 identifies the achievements of
fhe thesis and details additional features which would

improve the programming system.

CHAPTER 2

LITERATURE SURVEY

-10-

2.1 Introduction

This literature survey examines published research in
robot programming‘and the integration of sensors with
industrial robots. Firstly, an evaluation of thevsenscrs
currently used in industrial robotics is given. The
requirements of the robot control software are then
discussed and an assessment of current robot programming
languages is presented. Section 2.4 describes research in
handllng errors and processing the information from
env1ronmental sensors. The review concludes by looking at

the hardware structure of robot sensor systems.

2.2 Sensors

Although the majority of current robot applications are
performed without significant‘external sensing, there is
evidence to show that many small and medium—sized batch
assemblies could not be cost-effectively automated without
environmental sensing. The stiff and senseless robots
evolving out of spray painting and spot welding require
accurate part presentation and are intolerant to small
positional and rotationai inaccuracies. Accﬁrate positioning
of components is expensive in jigging costs and feeding
equipment. Sensing provides a means to cope with uncertainty
and reduces the requirements for component position
accuracy.

‘Sensors canvbe divided into two classes, contact and
non-contact. Contact sensing is based on a signal generated
by a transducer which is in contact with the part. In non-
contact sensing the transducer and the part are separated.

Research in non-contact sensing has been centered on vision,

-11-

although ultrasonics has received seme attention {101,0111.
For a vision sensor mounted above the work-area, the
manipulator will obscure the field of view. Thus,
researchers have recognized that to be effective, the vision
sensors must be mounted on the robot end-effector [(12]1-[14].
Furthermore, the inherent problems of parallax, resolution
and transformation errors in overhead‘cameras are
alleviated. Although solid-state sensors have been available
for some time, the packaging and ruggedness necessary to
make them suitable for eye-in-hand vision has not
materialized. For effective integration with the robot
gripper, the sensor must be small and the focussing
arrangement unobstrusive. For gripper-mounted cameras, a
focussing‘arrangement may not.be necessary. Thermionic tube
Cameras are too large and fragile to be considered for
gripper-mounting. The dynamic RAM camera [15] has been
implemented in a number of industrial research projects, e.g
[6], to provide low-cost, low-resolution vision sensing.
However, because they produce only a binary image, the use
of these sensors is limited.

One solution to the problem of finding vision sensors
~of a suitable size is to remove the camera from the end-
effector and replace it with a coherent fibre-optic bundle
[16]. The fibre-optics can then transfervthe image clear of
the endeeffectqr and into a camera.uBecause the camera is
mounted away froﬁ the end-effector, the size'and weight are
no longer problems. A recent commercial development [17]
qbviates the need for a coherent fibre-optic bundle, by

mou_ntin'g the vision sensor at the end of an endoscopic tube

-12-

less than 8mm in diameter. Although fibre-optics are used to
pipe illumination to the work area, the video information is
available as an electrical signal directly from the sensor.
Manufactured for industrial inspection,'these systems may be
an important breakthrough for robotic vision sensors.

The inherent problems of reducing a 3-Dworld toa 2-D
representation have encouraged active research into 3—D
vision. Although 3-D information can be inferred from a
normal 2-D image, the so called 'shape ﬁrdm shading' problem
[191,[20], stereo vision, structured light, and
triangulation provide a more direct measurement of surface
features. The Consight vision system [20] was one of the
first examples of structured light in an industrial
appliéation. By projecting‘a kﬁown pattern of light onto an
object, the perceived 2-D image can be processed to compute
the surface features [21]. Laser-based triangulation sensors
are promising, but are, at present, not in a suitable form
for robotics. Both cost and size need to be reduced.
Furthermore, problems of specular reflections, missing data,
and slow measurements need to be addressed [22]. |

Linear-array cameras, having only a single line of
photosites, are considerably cheaper ;han area-array
devices. However, the requirement for relative motion
between the camera and the object has reétricted their
application to parts moving on a conveyo? belt. However,
there is no reason why a stationary object cannot be scanned

by moving the camera across it [23].

The second class of sensing, contact sensing, includes

touch, force, position and temperature. Contact sensing

-13-

finds applications in grasping, bin-picking, inspgction,
'part-mating and temperature measqrement [24]. As distinct
from vision sensing, tactile sensing is often associated
with discrete sensors resulting in a very low resolution
device. Often, an array of sensing elements is mounted
between the jaws of the robot gripper, with piezoelectric or
carbon materials to provide a pressure—sensitive signal.
Research in VLSI tactile sensors [25] promises to improve_
the effective resolutioﬁ of these device;, A recent
development [26] achiéves high-resolution by using an area-
array camera to view a rubber membrane, which is deformed by
the component. This is now being distributed as a commercial
system. As is the’case for gripper-mounted vision sensing,
compactness} ruggedness and relﬁability are important
factors in a tactile sensor. Force sensing is particularly
valuable in parts mating, where 3 translational and 3
-rotational components of force can be detected and used to

construct a strategy to successfully mate the parts

[271,128].

2.3 Software

The performance of a robot control system is largely
governed by the facilities of the software. This section
discusses the‘requirements of the software and how the
relationships befween objeéts and the robot can be modelled
and specified. A discussion of the fécilities of a number of

existing robot programming languages is presented.

2.3.1 Requirements of robot control software

_In addition to the faciiities for controlling the .

-14-

kinematics of the robot arm, the robot control software must
provide_an interface, to the programmer, to allow the robot
control program to be written, executed and debugged.
Facilities~fof structured programming are important, as they
are in any computer language, but eatly robot programming
languages neglected these. Indeed, it can be argued that the
first generation robots, requiring only to move between a
number of pretaught points, did not need the programming
facilities now demanded to process senso;\information and
make decisions based on errors.

From the kinematic viewpoint, the robot control
softﬁare must control the servoing of each joint such that
the end—effector travels in a desired manner. Often it is
the end-point of a movement whiéh is critical, although for
.Some applications the path, or trajectory, must be.precisely
defined. Speed control can aléo be important, especially in
arc-welding and paint spraying. Planning a trajectory
between two points can be difficult [29], since constraints
imposed by the world model must be taken into account. For a
multiple robotvassembly céil, theIPOSition of other robots
must be monitored to provide collision-free motions [30].
Early maﬁipulator languages such as Wave [31] employed a
Planning phase, during which the program was simulated and
all necessary computations stored in an execution file. This
can bé'satisfactory whenever the sequencekof instructions in
the program is fiked, but branches in the program require
the simulation of all possibilities. ¢learly; for robot
opgraﬁions under sensor-control the sequence of operations

cannot be defined ¢ priozri and hence the required movements

-15-

of the manipulator cannot be planned. Later manipulator.
languages, such as VAL [32] interpret the program on a line-
by-line basis, and compute new joint angles at run-time. The
significant reduction in the price of computing power in the
last few years has been one of the cdntributory factors to
this approach..

Although industrial robots are equiped with position
sensors in the form of joint encoders, information from
additional environﬁental sensors provides the means to cope
with uncertainty in the world model. In many commercial
robot controilers, the facilities to input external signals
do not extend beyond simple binary control lines, which can
be read or setnunder software control. Sensor information,
in its widely varying forms, cannot be easily manipulated by
existing commercial systems. This applies both to the

hardware interfacing, and the software control.

2.3.2 On-line versus off-line programming

Teaching a robot to spray-paint an automobile component
is often achieved by leadi?g the manipulator through the
fequired motions and recording some key locations. Later,
the robot can be instructed to move between the taught
locations to spray the subsequent parts as they come down
the production line. Teachipg a robot on—iine retains
Popularity today{ it is easy to do, and requires little
appreciation of the robot qontrol syétem. There are a number
of disadvantages however [33], which have encouraged the
development of off-line programming techniques. One of the

most significant disadvantages of on-line teaching is that

-16-

the robot itself is required, and hence is unaVailéble for
work during the teaching time. Furthermore, the resultant
program, being simply a list of locations, cannot be easily
edited or modified to cope with parts of a different shape.
This arises because the logic of the progranlaﬁd the data
are closely linked. Ideally, the sequence of instructions to
the robot should be kept separate from the numerical values
of the locations. Off-line programming_does not require the
robot for teaching but instead uses a geometric model which’
alléws positions to be specified in a cartesian frame of
referenée. The geometric model must be an accurate
representation of the robot, otherwise the off-line
computation of positions will not be translated into the
correct physical position of the robot;’This gives rise to a
distinction between repeatability and accuracy. The
repeatability is the usdal parameter quoted by
manufacturers, and gives the expected error in the robot's
position after it is instructed to move to a pre-taught
position. The position is taught as a configuration of the
robot arm, which may be stgred as a transformation between
the end—effector and the rgbot's base, or as a set of
encoder readings for each joint of the robot. The accuracy
of the robot is defined as the expected error in the
position of th_e robot when the set-point “is given as
numerical coordiﬁates in a\cartesian frame of reference. In
practice,&this relies on an accurate.world-model, and errors
of upto 5 degrees have been observed in a 6 degree of

freedom industrial manipulator;

Graphical tools for simulating robots and manipulating -

-17-

objects have been described by a number of authors [341]-
[39]. Such systems provide the programmer with a visual
indication of how the robot will interact with its
environment and are valuable development tools.

| One 6f the major problems with off-line simulation and
programming is the inability to predict the errors which may
occur in practice. If components are not positioned to close
tolerances, the robot will not be able to grasp them. The
relationship between the robot and the real world is often
imprecise and the accuracy of the manipuiato; may be poor
[40],[4i]. A combination of these factors means that many
industrial robbts cannot be realiably and accurately
programmed off-liPe. One solution to this problem is to
provide an‘initial off-linevestimationvand then a touch-up
of key locations on-line [42]. Arbter [43] proposes storing'
not only the equations of the trajectories, but also sensor
patterns which can be used as a reference to produce error
signals at run time.

The simulation of sensors in an off-line programming

system has been tackled with EMULA [44], which is used in

|
conjunction with the programming language AML. EMULA allows

simulations of user-defined sensors, finite resolutions and

also has a limited capability to cope with uncertainties. It
cénnot, however, simulate the effects of ﬁodelling
tolerances, manibulator weér, noise etc. Symbblic,error
analysis‘ﬂas been tackled by Brooks f45] to examine the
effects of tolerances in the location of parts. Using this
approach, the final tolerances can be used to infér the

initial tolerances of the constituent parts, or the need for

-18-~

sensing to improve accuracy.

Off-line programming is a vital ingredient in
establishing an integrated and centralized manﬁfacturing
system. Sensors can offer information which can be used to
fine-tune manipulator motions to cope with errors in
modelling and the position of parts.

2.3.3 Specifying relationships between the robot and the
environment

Although early robot programming languages involved on-
line teaching of key locations, the need to halt production
- to teacﬁ the next program has encouraged the development of
off-line programming languages. When a robot is taught 'by
doing' it is the joint angles which are recorded. A
subsequent movement to a pre—taught locéfion involves
servoing each axis until the recorded joint angles are
restored. Although it would be quite possible for the
Programmer to specify a set of joint angles a paiond,
computation of the position and orientation of the end-
effector from joint angles can be non-trivial [461,[47].
Rather than specifying the\;obotfs position by the joint
angles, it is preferable toI specify the position in a
cartesian frame of reference. From this frame, the joint
angles can be calculated by solving.the inverse kinematics
of the robot arm; Paul [46] and Elgazzar'f48] give a
thorough treatment of this.‘This solution must take into
account tﬁé current position of the ménipulator, since often
more than one joint solution is possiblevfor a given
cartesian position. The formation of a relationship between

the joint angles and the position and orientation of the end

-19-

effector in a cartesian frame is simplified by the use of
homogeneous transformations [46].'The relationship between
each joint is specified by a 4 x 4 matrix of real numbers.
which represents the rotational and translational
differences between the frames of reference. The overall
relationship between the end-effector and the robot's base
(the origin of the cartesian frame) is derived by
multiplying the matrices. Because the elements of the
matrices vary with joint angles, the computation of the
final matrix can be demanding. For a 6 degrees of freedom
manipulator, 384 multiplications are required to compute the
final position matrix from the 6 joint matrices. Thié
excludes square roots, transcendental functions and
additions. For constrained path motion, for example straight
iine movements, speed of calculation of the relationship is
impértant, otherwise smooth path control cannot be achieved.
Van Aken [47] describes some methods for solving the inverse
kinematics in real-time.

Once the relationship between the joint angles and the
end-effector has been established, the programmer is free to
.. Specify the position of the end—effector in a cartesian
frame of reference. Off-line teacﬂing involves specifying
the desired configuration of the robot in terms of a set of
numbers corresponding to position or joint angles. This is
Profoundly different to on-line teaching where the robot
must be physically movéd to the desired location to record
the position. i |

In addition to defining the relationship between links

of the manipulator, homogeneous transformations can be used

20~

té define relationships between the manipulator and a
sensor, for example a vision sensor [49]. This technique
allows efficient transformations to be made from the
sensor's frame of referencé into the manipulator's frame of
reference. For a given sensor-error, the‘corresponding
world-error can be found by multiplying the error vector by
the transformation between the’world's and the sensor's
frames of reference. If the sensor is fixed in space, then
this transformation is also fixed. If, however, the sensor
is moving (mounted on the robot, for example) then the
transformation is dynamic and must be recalculated for each

new position of the sensor.

2.3.4 Robot programming langquages

A review of current industrial robot programming
languages [50]1-[52), indicates that thére are almost as many
robot programming languages as there as robots. Each robof
manufacturer has incorporated the specific features of their
robot within the programming language. In many commércial
robot controllers there is little scope for interfacing
exXternal equipment, including sensors and other robots. This
‘applies equally to the hardware and the software. Choosing a
robot to solve an industrial problem requires a study of
both the performance of the manipulator,’and the facilities
of the software control. Unlike computer systems, it is
difficult to mix one manufacturer's hardware with another's
software. One‘approach is to dispense with the cbmmercial
controller and rebuild the control algorithms and

Programming environment [53],[54].

Rather than writing a new language, some researchers

-21-~

have chosen to adapt existing computer languages to provide
the necessary robot control features. Hayward [55]'desc:ibes
a system using the C programming language. In this appfoaeh,
functions written in C provide the programﬁer with the
primitives to control the kinemetics of the robot, yet the
standard features and structures of the language are
retained. The final robot control program is actually a C
program which can be executed under Unix. Paul [56]
describes a similar approach using Pascal and Gini [62]
proposes ADA., The main advantage of modifying an existing.
computer language is that the basic grammar of the language
is already defined. This is important both from the language
designer's point of view, and also from the programmer's
point of view.‘Conversely} any general purpose“pregramming
language must embody a number of trade;offs which make it
better suited to some applications than others.

A number of commercial and experimental robot

Programming languages are now reviewed.

LM [58] was developed at the University of Grenoble,

, France, and provides a Pascal—like language for controlling
assembly robots. The language perﬁits the user to describe
Manipulation tasks in terms of motions of one of several
arms and permits processing of sensor information through
state variables. These state variables ere automatically
maintained by the 1nterpreter and can be used to prov1de
access to sensor 1nformat10n. Relationships between objects -

can be specified using frames, and the ATTACH ‘and DETACH

Commands to logically associate one frame of reference with

-22-

aﬁother. An extension of LM, called LM-GEO [59] provides.
structures for representing geometric descriptidns of object
positions, and relationships between objects. This extension
arose from work at thé University of Edinburgh and
encompasses the concepts of spatial relationships which
underlie RAPT [60],[33].

AML [61] is a powerful, well-structured manipulatioh
language for the IBM series of assembly robots. As well as
providing commands for movement of the manipulator arm and
the gripper, AML also provides limited facilities for
sensory control. A command called MONITOR provides the
facility to interrogate sensors and halt a movehent if a
specified condition is met. This rather primitive mechanism
for sensor interaction hag been improved with the
dévelopment of AML/V [62], an extension of AML which
provides facilities for vision. This extensions allows
images to be manipulated as data objects and the processed
information used to provide closed-loop control of the
manipulator.

AL [63],[64]) was written at Stanford Artificial
. Intelligence Labqratory and has an ALGOL—liké control
structure. A unique feature of AL’is the dimensioning of
Varigbles, for example, time in seconds, distance in either
Centimetres or inches, and the check for dimensional
Consistency in expressions. Sensing is integrated into AL
using force sensors and'a verificétion vision system.
Keywords of the gorm FORCE and TORQUE allow required sensor-
conditions to be met. AL uses a world model and allows the

Programmer to specify actions at the object-level. As an aid

-23-

t6 generating the world model, an interactive system called
POINTY [65] may be used. Using POINTY the programmer
interacts with the manipulator to construct the world model.
A version of AL, called Portable AL, has been implemented at
the University of Karlsruhe, West Germany. It runs on a PDP
11/34 and a LSI 11/2, and controls a Pumé 500 robot.

RAfT [60]1,[33] was developed at the University 6f
Edinburgh to allow assembly tasks to be programmed by
specifying effects in terms of the objects which are
handled. Building on the syntax of APT (the NC machine tool
language), RAPT programs involve specifying spatial
relationships bétween objects and movements of objecté
relative to features of other objects. The manipulator
motions are such to trans?orm the relationships of the
féces, shafts and holes which compose the objeét. The output
of the RAPT compiler is a VAL program which is subsequently
eXecuted on a Puma robot.‘

VAL [32] is a robot language used on Unimation's range
of industrial robots. VAL is an interpreter which operates
interactively with the user through a terminal. Its
. Structure is BASIC-like and as sugh is quite easy to learn.
VAL-employs compound transformatishs to allow the programmer
to define locations relative to an arbitrary origin and
Permits independent frames of reference to be assigned.
Interaction with sensors is limited to interrogating signal
lines, although these can be made\to interrupt the main
brogram through ihe REACT command. Significant improvements
to the language appear in VAL II [66] which is implemented

~ On Mark-2 Puma robots and also the Adept One robot. VAL II

-24-

has Pascal-like control structures and powerful real-time
path control features to permit sensor interaction. A high-
speed serial link is used to send sensor-derived corrections
in a tool-relative or world-relative frame of reference into
the robot. Real-time trajectory control can be achieved
using this approach. In VAL, the control’loop rate is
governed by the minimum execution time of small—arm motions,
generally between 0.2 and 0.3 éeconds. Hence the maximum
rate at which sensory feedback can be applied is about 3-4
times per second. In VAL II however, the control loop cycle-
times are about 28 milliseconds, giving typical update
frequencies of 55 times per second - a significant-
improvement as far as sensory feedback is concerned.
AUTOPASS [67] is an object-level programming language
Which uses a geometric model of the assembly world to allow
the'relationship of objects with respect to each other to be
specified. The AUTOPASS languagé is embedded in PL/I and
Consequently offers the control and data-representation
facilities of that language. Keywords such as PLACE, INSERT,
EXTRACT, LIFT, SLIDE and GRASP are used to define how the
,Objects will be manipulated. Thisxgpp;oach allows the user
to specify an automated assembly p;ocedure in a similar
Manner to the manual assembly. The output from the compiler
is a manipulator-level program which directs the manipulator
through the necessary motions to execute the assembly
Process. AUTOPASS is priharily con;erned with manipulating
Objects with res'éect to each other and has a very limited

Capability for sensory feedback.

SRL [68] is a Structured Robot Language ‘developed at

University
Library

~25-
: | % T

the University of Karlsruhe, West Germany. It is based on
experiences with AL and Pascal and uses the frame concept to
specify the relatidnship between objects. One of the
features of the SRL compiler is that the output is a machine
independent code called IRDATA, a defined standard, which
can then be executed by any machine with.a IRDATA
interpreter. SRL has several movement commands to providé
linear interpolated movements, straight line movements,
circular movements, and user-defined polynomials.
Multitasking is provided to allow parallel execution of code
segments. Sensors can be interfaced through digital ports;
and monitored aé regular intervals of time. Blume [68]
quotes the following example of how a movement is terminated
when a reading of greater than 50 is received in the tactile

sensor:

DO EVERY 100 MS WITH PRIO = 5

INPUT (tactilesens);
WHEN tactilesens.xaxis > 50
DURING

SMOVE puma TO table
DO WITH PRIO = 1
STOP puma;
The command INPUT(tactilesens) is executed every 100
,Mmilliseconds and provides the intgrface to the tactile
sensor. When thevreading from thelsensor exceeds 50 the
movement of the Puma rdbot is stopped.

SRL provides an interface to a world model and uses AL-
StYlé affixment statements of the form AFFIX and UNFIX to
manipulate objects. ' \

LAMA-S [69i.uses APL as the implementation language,

and frames to specify robot movements. Although facilities

for paralilel processing are'provided, the syntax of APL is

-26-

not conducive to efficient interactive programming.

2.3.5 Levels of robot prdgramming

The object of high-level languages is to provide
indirection, such that a requirement, rather than a list of
primitive instructions, is entered. Robot manipulator
languages have traditionally been divided into three levels
of complexity. At the lowest level, the manipulation level,
the program is concerned with sequencing the manipulator
through a series of move commands. For example

MOVE A

MOVE B
MOVE C

where A, B, and C are pretaught positions. These positions
may be recorded as joint angles or as homogeneous
transformations. Examples’ of such programming systems are
VAL and AL. These are refered to as‘manipulator level
languages because the effect of each action is to transfofm
the state of the manipulator. If the locations A, B and C
happen to correspond with some other physical objects then
it is possible to transfer the state of an object. But the

level of direction is towards the manipulator rather than
"the object. For example B

OPEN GRIPPER
~ MOVE A

CLOSE GRIPPER
MOVE B

OPEN GRIPPER

This program could be used to transfer an object at position
A to a position B. Although the objective of theiprogram‘was
to move an object, the sﬁecificétion of the tqsk was done at
the manipulator level, and the location of the object was

assumed to coincide with the position A.

-27-

An alternative representation of this could be
constructed at the object 1evel,'the second level of robot
programming. The primitive actions are to manipulate objects
rather than the manipulator, so that the above program could
be written as

MOVE OBJECT FROM A TO B
Although execution of this will require movements of the
manipulator, these movements are implied by the higher-level
demand to transfer the objects. To execute this command
satisfactorily, the manipulator must know, or be able to
compute, the exact position of the object and the required
coordinates of its destination. Hence, although object-level
programming allows a higher-level specification of actions,
it requifes a more complei interpreter.to infer the
positions of the components. RAPT and AUTOPASS are examples
of object-level programming systems. The transformation from
the object-level specification to the manipulator-level
specification is done by a task planner {29]. To do the
transformation, the planner must have a description of the
objects being manipulated, the environment, the robot and
‘the desired final state. The outp&é frém the planner is a
manibulator—level program to implement the actions.

The third level of robot programming, the task level,
involves‘specifying complete robot tasks through a single
statementi Will [70] quotes as an example 'ASSEMBLE
(Typewriter)'. This level of language assumes that a
typewriter is a known object and the order of parts-mating
to assemble the object from a number of components is known.

Such pProgramming languages are still a research area and it

-28-

is likely that CAD systems, expert systems and artificial
intelligence will have stroﬁg influences on their
development.

There is inevitably a trade-off between the level of
programming and the complexity of the interpreter to achieve
that level of programming. Too high a level leads to complex
problem-solving situations where inter-related sub-goals
necessitate an iterative solution. Too low a level makes the

programming tedious and prone to error.

2.3.6 Assessing the performance of sensor-based robot
control system

A European benchmark for the comparison of assembly
robot programming systems has been described by Collins
[71]. The time taken to program the assembly of.a test-piece
using a number of commercial robot progfamming languages was
examined. As well as looking at the time required to teach
the assembly operations, it is important to consider other
factors. How easily can the program be changed to cope with
changes in the size and shapes of parts? Can sensors be
introduced if errors indicate that they are necessary, and
can the type of sensors be dictaté& by the programmer rather
thaﬁ‘the programming language? Another important factor is
how quickly the program will execute, although this is often

a function of the mechanics of the manipulator rather than

the software.

2.4 Errors and sensing

The requirement to use sensors in an assembly operation

reflects the fact that there is_some uncertainty in the

-29-

AN

relationship of the robot to the environment. This
uncertainty could arise from robot errors, object position
errors, or perhaps sensor errors. Whitney [72] and DeFazio
[73] considered that the assembly operation can be model led
as a stochastic process, and show how stochastic control
theory can be used to provide adaptive modelling of process
Parameters.

Studies at the Charles Stark Draper Laboratory [40] and
Marconi Research Laboratories [41] have demonstrated the
magnitude of the expected errors in the accuracy and
repeatability of an industrial robot. Depending on‘they
accuracy to whicﬂ components are positioned, there may be
e€rrors in locations of a part. Using a sensor to detect such
errors can provide the necessary information to implement
cldsed-loop feedback. However, the sensor itself“may also be
a source of noise.

Rather than actively sensing the error and applying
feeaback, an alternative approach is to used engineered
Compliance [3]. By providing chamfers on tools and parts,
the errors can be absorbed by the displacement of the
Compliance. Pioneering research at the Charles.Stark Draper
Laboratory has produced the Instruménted Remote Centre
Compliance (IRCC) [4],[74]. With this device, both angular
and lateral errors can be absoj:bed up to about 1 d.egree and
3mm Tespectively. Hence, a significant speed impro&ement
Over closed-loop sensing éan be achieved and at reduced
Cost. Using inform;£ion from the sensors in the device,
€rrors can be fed-forward into the next cycle. Tﬁis

®liminates cummulative errors caused, for example, by an

-30-

inéorrectly taught spacing of a pallet of components. This
type of feedback, which operates between cycles, is called
long-term feedback.

Whitney [75]1,[76] divided sensory feedback into twb
catorgories, short-term and long-term feedback. Short-term
feedback is defined as adaptive behavior in which sensory
input and corrective output occur within a single task
Cycle. In contrast, long-term feedback, operates between
Cycles and uses the total applied corrections of one cYcle
to try and improve the initial estimate for the next cycle.
Long-term feedback provides a means of processing éast:
errors as well as current errors and is particularly
vValuable when the sensors themselves are a source of error.
In practice, once a robot program has been correctly taught,
it'is unlikely to run forever without further cé?rections.
Over a period of time, tools, jigs, and fixtures may wear or
shift in position. Wear also affects actuators, which will
show as a deterioration in the repeatability over time.
Dimensional variation in different batches of parts are
inevitable. All these factors can be handled by long-term
f?edback, which obviates the need fgr reteachiﬁg by the
ObPerator. Work by Simunovic [77] has shown that results in
Optimal control and Kalman filtering can be used to process
Sensor information. Defazio [78] used a Kalman filter to
Model the effects of robot and sensor noise in estimating
the location of a p.art which was subject to some
uncertainty. The Kalman filter [79] provides a means of
estimating a noise-corrupted state, say a robot-iocation,

USing a measurement process, the sensor, which is itself

-31-

subject to some error. In addition to estimating locations,
similar technigques have been applied to modelling contour
processes [80].

Analysis of trends in errors may provide information to
indicate a shifting environment or a sensor failure. DeFazio
[73] suggested that a statistical index of confidence could
be used to quantify the certainty of, and expected error in,
a location. As this confidence varied, the speed of motion
of the manipulator could also be varied. These profound
ideas form a significant stimulus for the work in this
thesis.

Ranging from simple proximity sensors to high-
resolution vision sensors, the range of complexity of sensor
1nformatlon is cons1derable. Languages such as VAL, provide
lnput -output lines through which simple sensor conditions
can be monitored. Although additions to the language can
Provide vision processing [81] there is no truly universal
interface to process sensor information. Indeed this is true
of the majority of commercial robot languages. The user is
restricted to the types of sensor which the language will
Support rather than‘the types of sensor which ﬁould best
Solve'the problem.

Brook [82] claimed that the real problem in sensory
robotics is not so much finding suitable sensors, but rather
in Coping with complex information, and particularl&
information"which may be unreliable. Vision sensors can
Provide a great déal of data, although not necessarily much
information, The problem arises when this data ig processed

to extract information. For real-time robot conﬁrol based on

-32-

Visuél feedback, high-speed vision processors are required
to extract pertinent information‘from the scene and provide
error signals for the servo loops. Rather than exhaustively
Process the data from a single source, Henderson [83]
advocates distilling data from a number of sources, and
Proposes a spatial proximity graph as a way of combining the
data. Providing redundant sensor information not only allo&s
Sensor-fajilure to be detected, but also allows a consensus
of opinions to be taken. No sensor can be perfect, and the
data must be subject té some random error arising in the
detection, sampling, digitization and subsequent processing.

The mechanism by which the sensor information is
Mmanipulated in the robot control program is often a
Significant shortcoming of commercial robot programming
languges. Efficient and easily-accessed sensor inf;rmation
is highiy desirable in a robot programming language. Chern
[84] proposes a 'sensor variable' which is treated like any
. Other program variable, yet whose value is not fixed, but is
determined by an external source. At compilation time, a
Physical relationship is estabiished between the sensor name
and- physical ports. Subsequent refere?ce to the sensor
Causes the port to be interrogated automatically. Hence the
aCquisition of sensory data is expressable within the syntax
of the base language. As an example, if FORCE is a defined
Sensor variable and 'limit' is a normal variable, thén the
Command lineh

If (FORCE > limit) abort

woulqd coméare the current value of the force to thé value of

the constant 'limit' and abort the program if necessary.

-33-

ﬁenderson [83] proposes a Multi-sensor Kernel System
(MKS) to provide an efficient and uniform mechanism for
dealing with data taken from several diverse sensors. A key
feature of MKS is the logical sensor specification [85]. A
logical sensor is an information processor whose'inputs are
either physical devices or the output of other logical
Sensors. The output of the logical sensor is a set of
Vectors which characterize the inputs. Hansen quotes, as an
eXample, the logical sensor specification of a 'camera',
comprising the physical camera at the input and an output
vVector representing the X and Y position and the intensity
of a picture element. The outputsvfrom two such logical
Sensors could be inputs to a third logical sensor, a range-
finder for example, which processes the informatién to give
an output vector cdfresponding to range. Logical séhsors
defined in this way can be combined to form networks.

Geschke [86] recognised the neéd to provide effective
Processing of sensor information at the low level servo -
Processes., He proposed a Robot Servo System (RSS), such that
the programmer specifies a servé—loop together with a
termination criterion. For'exaﬁple, towmove the robot to a
Pretaught point A the command

wait until |r$grip _ Al; 1ss 0.1;

would be issued. The effect of this would be to suspend
Program execution until the difference\between the rébot
gripper and pbint A was less than 0.1cm. Geschke describes a
'vision' command which allows“fhe termination condition to
be calculated from the error in the position of a ;art.

Facilities for fofce and torque sensing are also brovided.

-34-

A

The problem of automatic error recovery is an active
research area [87]1-[89]). The object is to automatically
identify the errors and instigate a recovery procedure
without the programmer needing to explicitly state the
Cdurse of action. Automatic error recovery regquires a
detailed knowledge of the robot's operating environment,
which will be changing with time. It must also use past
information to aid the diagnosis of the problem. The cause
of an error depends not only on the error itself but also on
the context in which the error occured. It is likely that
artificial intelligence will have an important rdle to play
in the development of an automated error recovery system.
Gini [87] describes a framework for identifying an
appropriate recovery procedure using a knowledge base
Containing information about correction activities and
interpretation of sensér data. Unexpected changes during the
€Xecution of the program are detected by comparing expected
Outcomes with actual outcomes. Further information may then
be requested from sensors befofe error correction is
attempted.

- There is a large gap betwéen theu?pplication of
artificial intelligence to reasoning and planning, and the
Structuring of robot programming laﬁguages to provide
efficient control. Automatic error recovery is an
application of artificial intelligence\which may helﬁ'to

bridge_that gép.

2.5 Hardware implementations of robot control systems

The need to integrate a number of sensors and actuators

has promoted the develbpment of distributed processing

-35-

facilities. Although centralized control systems are still
popular among commercial robot systems, there are advantages
in distributing the processing of data between a number of)
sub-systems. These advantages include greater modularity and
flexibility together with improved reliability. For multi-
Sensor robot assemblies, it is logical to assign one
Processor per sensor, coordinating the processed information
with a central controller. Such an approach is described by
Karkkainen [90) and Mitchell [91]. Research at the
University of Hull [91],[92] has produced a master-slave
architecture in which each sensor and actuator has its own
controller. The rble of the master is to coordinate the
information flow and to execute the main control program.
Implementing parallel processing on such a system is.
POssible but is not supported by any commercially available
software. This is a seﬁere drawback to the efficiency with
which éuch a system can be programmed and a limitation on
the overall performance. Albus [93] describes a three-level
hierarchical control system, developed at the U.S. National
Bureau of Standards,.to permit multi-level sensor servoing
"to be performed. Dillman [94] describeéwa structured
Mmultiprocessor system with individual modules for sensor
Control, arithmetic, and trajectory calculations.

Although advantages are to be gained from the hardware
Point of view, a multiprdcessor system is more difficult to
Program efficientiy; Computer languages designed to permit
multiprocessor computation are'still research issues.
Research at the University of Hull [95] is investigating the

Use of Modula-2 for distributed processing in a robotic

-36-

work-cell. Kerridge [96] described a robot arm controller
written in Occam and employing parallel control for the
movements of the arms. The use of the parallel language
Occam together with the exciting potential offered by the
transputer [97]) may provide an environment for high-speed
distributed computing in a robot work-cell. The problemsAin
Programming for multiprocessor systems are twofold. Firstly,
partitioning the software into appropriate modules, although
_these problems are alleviated if a different processor is
used for each function, e.g. vision, robot control, force
sensing etc. The second problem is synchronizing the
Processing and interchange of information between the
modules.

Although parallel processing in multiprocessor systems
is difficult, traditional serial processing‘can be readily
employed, and some of the advantages of a distributed
Processing system retained. A request can be issued to one
system for some data, and the requesting system can wait
until the data has been sent. Although ho parallelism is
used, the advantages in terms of modularity, flexibility and

"reliability of the system are retained.’

2.6 Summary

~ Automating an industrial assembly requires the
integration of commercial and purpose-bpilt equipment;'At
Present, the fécilitié“s provided for efficient
Tepresentation and proceséing of sensor information are a
short-fall of commerciél robot controllers. Althougﬂ

Specific packages tailored to vision sensing are often

-37-

\

availéble, the user is constrained to choose the system
offered by the manufacturer, rather than the one most suited
to the application. No general-purpose sensor interface
exists.

The work described in this thesis considers how sensofs
and actuators can be interconnected, and how sensory
feedback can be represented. The concept of the master-slave
architecture for sensor-actuator communication (described in
[91] and [92]) is developed further. The work of Whitney and
Defazio is of fundamental importance in modelling assembly
Problems. The idea of defining confidences to reflect errors
is formalized in thi‘s thesis and embedded in a robot
Programming system. This allows expected errors in the
System, the actuators and the sensors to be quantified, and
their éffects oﬁ overall performance minimized. Unce}tainty
arising from noise is often unavoidable in industry and, in
multi-sensor assemblies or problems of sensor fusion, the

integrity of the sensors is of singular importance.

-38-

CHAPTER 3

MODELLING DISCRETE SENSORY ASSEMBLIES

-39-

3.1 Introduction

The work described in Chapter 2 illustrates the
activity and breadth of the research issues surrounding
robot programming and sensor intefaction. Although many
robot programming languages have been reported, in pracfice
the user of an industrial robot has only two choices; eifher
to use the software supplied with the robot, or else to
write a new controller. Clearly, most users of industrial
robots have neither the time nor the expertise to choose the
Second option, and hence must use the supblied software.
This chapter decribes how commercial systems can be
integrated and controlled, and how a robotic assembly
iﬁcorporating sensors and actuators can be represented.

This thesis describes the development of a programming
tool to act as an interface between commercial robots,
commercial sensors, and purpose-built hardware. The
requirement is to have a single central controller which
Communicates to the sensors and actuators through a bus
- System. By defining a standard interface between each senéor
and actuator, the information flow betWeen the central
'COntr;11§; and each of the ihdividual s&b—systems‘becomes
uniform and structured. Furthermore, by employing the
Ccommercial robot control software, the computational demands
imposed on the central controller are relatively small. For
the robot, the joint computations to proQide movement in a
cartesian frame of réféfence are doné by the commercial
software. This is interfaced to the central controller by a
Serial channel, through which commands and data are

communicated. This serial channel is normally used by the

-40-

termiﬁal to allow interaction between the programmer and the
robot controller. It is apparent that to send ASCII
(American Sfandard Code for Information Interchange) command
strings down a serial line for.closed-loop control is
inherently slow. However, for the class of problem under
consideration, the oVerheads in sending the command striﬁgs
are not significant.

The advantage of sending direct commands to the robot,
rather than writing the program in the robot's controller,
is that the programmer is no longer constrained by the
limitations of the robot's software. Early robot
controllers, such as VAL, provided few high-level language
constructions and little opportunity for sehsor-interfacing.
More recent developments, VAL II [66] and AML [61] for
eXample, have improved on this, but still do not provide
what might be termed a 'general sensor interface'. By using
an external controller and sending commands one at a time,
it is possible to communicate to any number of robots or
" Sensors and also to represent the desired actions of the

robot in an alternative syntax which is conducive to the

-
"

‘Specificasion of sensory fee&back. This }epresentetion can
Subsequently be translated prior to sending the comhand to
the commercial robot controller. A typical environment is
shown in Figure 3.1. This comprises a Puma 560 robot with a
VAL controller, an 1ndex1ng XY table, a v151on sensor and a
force sensor. The central controller is an IBM Personal
Computer, to which each actuator and sensor is interfaced
through a controller. This architecture forms the hardware

framework for the software developed later in the thesis.

-41-

Central
controller

Communication bus

N [~A ~
[\ 2 v A4 v
Pums, robot XY table Camera Force
controller controller controller sensor
controller
A $
vV
/ \
Force
sensor
- Puma robot - Camera '
with VAL XY-table
controller

Fiqure 3.1: A typical hardware confiquration.

-42-

The main control software runs on the IBM and allows the
programmer to define new sensors and actuators, define and
exXecute a control program involving sensors and actuators,
and cope with noise from the sensors, the actuators or the
states. |

This framework can be employed with any commercial or
Purpose-built actuators and sensors. For each, a controller
must be constructed which takes as its input a standard set
_Of primitives together with parameters, and as its output it
either sends command strings to a commercial sYstem or else
controls the actuator or sensor directly. In the case of the
robot, the only requirement is that the arm can be moved
using 'direct' commands typed from a terminal. In the case
of a Puma robot with VAL, this would correspond to typing
'DO MOVE point', to move to a pre-taught position and 'DO
MOVE x,y,z' to move the arm by x,y,z in a world frame of
referenée. In practice most robots can be operated in a
'direct' as well as a ‘program' mode, with the only
‘difference being the syntax of the command. In the system to
be described, the r8le of the robot controller is to
transiate the commands issuea from the céntral confroller
into the syntax required by the commercial system. The
Objeqt of this iS to allow the-central controller to send a
generic instruction followed by a set of parameters to any
‘actuator. This instruction code will then be decoded and
sent to the commerciél ¢controller to éxecute the command. In
this way, the central controller can issue exactly the same
Command to move either the robot or the XY table, séy, by

Tmm in the x direction. The only difference is the physical

—43-

address of the actuator, which will have been taught to the
central controller. The detailed definition of the interface
and command codes is given in Chapter 6.

This chapter describes the format of the robot assembly
problems under investigation and defines the‘parameters used
to represent position, velocity and also to define
movements between pre-taught locations. Furthermore, the
existence of errors in both the position of parts and the
measurement process is considered. A complete appraisal of
errors is given in Chapter 5.

A relationship is developed between the informétion
from sensors and the velocity of the actuator at different
stages in the assembly. The result of this is to force the
actuator to slow down in the faée of uncertainty and speed
up when the parameters of the model become known and are
unlikely to change. The modél developed in this chapter will
subsequently be used to process errors and also to allow the
required servo-loops to be specified through high-level

"commands.

3.2 Discrete sensory assemblies 3

The work in this thesis is concerned with discrete
sensory assembly ﬁfoblems. The term 'discrete' indicates
that the sensors are used to enhance the ability of the
-actuator to reach a point. This is to be distinguished from‘
continuous sensing, where the sensor would be used to \
maintain a specified trajectory‘or confinuous path. A}though
the continuous path problem is not tackled in this thesis,

the underlying theoretical work is applicable. The major

—44-

\
probléms in continuous sensing are the deficiencies in the
commercial robot controllers in processing real-time sensor
errors. The technique of sending direct commands to the
robot cannot be used where servo rates of more than a few
Hertz are required.

Many industrial—based research projects concerned with
robotic assembly use discrete sensing to overcome
shortcomings in feeding accuracy and manipulator
performance. This is increasingly true as the potential
benefits of vision, tactile and force sensing are
recognized. Continuous path sensing is used extensively in
welding and seam tracking applications, and is not so
Prevalent in assembly,.

Discrete sensory assembly involves using sensérs to
fine-tune a set of pge—taught locations between which the
actuator is instructéd to move. For example, to assemble a
product comprising a peg and a block with a hole, will
require the position of the peg and the hole to be taught;
MThe control program will involve moving to the peg,
grasping it, then moving over the hole and releasing the
peg. The operatioh may be completed satiSfactorily without
sensors if the exact position of each component is known.
With discrete sensing, the tolerances in part positions are
less.critical, since at each stage information from sensors
“can be used to compensate for errors. For the peg—in-hoie
problem, a taCtile senspr on the robot gripper éould be\used
to determine the exact positionwof the.peg, and a camera on
the gripper could be used to detect the centroid of the

hole. In this example, the sensors are being used to adjust

45—

\
a location which is nominally known but which is subject to

uncertainty.

3.3 Definition of terms in the assembly process

A description of the terminology used to describe the
sensory assembly is presented. The assembly pfocess is
assumed to employ sensors as well as actuators, and involve
repefitively performing a task according to a contrél
pProgram. This control program will reside in the central
controller and will communicate with the sensors and
actuators according to the instructions in the program.

A 'state' is a location in the actuator's frame of
reference defined in a three-dimensional cartesian
cddrdinate system. In practice, the states will be defined
as the key locations in the work-cell representing, éay, the
positions of parts to be handled. If the location is subject
to some uncertainty then the state represents the best
estimate of the location and would represent the point
around which sensory feedback is applied. As well as
representing a location, a state may also represent an
offset between locations, fo; example bqgween objects on a
pallet. | |

In general, a state will have 6 components which
uniquely specify a position and orientation in space. For an
actuator with less than 6 degrees of freedom, 1 or more of
the components will be zero. Nd.distinctisn is made as to
how the state should be ;:aught. Since the states will
represent positions of the manipulator, they could beataught
thfough an on-line, teach-by-showing method. Conversely, for

off-line programming they may be téught as numérical values.

-46-

In general

Kk = (X v Yr 24,0, 2, t)T
where x, y, z are the translational components of the
position, and o, a and t are the orientation components
defined by the Euler angles [46]. These 3 angles describe
any possible orientation in terms of a rotation about‘the z
axis, then a rotation about the new y axis and finally a
rotation about the new z axis. Once these 6 components have
been taught, it is possible to construct a 4x4 homogeneous
transformation matrix to describe the state X, . This is

obtained by combining the effects of the 3 rotations and the

translation, giving the state Xk as [46]

Co.Ca.Ct - So.St -Co.Ca.Ct - So.Ct Co.Sa
Xk = So.Ca.Ct + Co.St -So.Ca.St + Co.Ct So.Ca
: -So.Ct Sa.Ct Ca
0o 0 ' 0
where Co = Cos(o), Ca = Cos(a), Ct = Cos(t)
and So = Sin(o), Sa=Sin(a) St = Sin(t).

It is convenient to represent the states in this manner
because these matrices can readily be combined to calculate
hnew positions based on sénsor inférmation. Once the sensor
information has been formulated into a 4x4 matrix, see
Section 4.4, the new actuator position can be derived by
multiplying the two matrices. The new x, y and z components
are explicit, but the desired orientation of the state must
be calculated by solving equations in sines and cosines to
get o, a, and t; this cép be non-trivial.

A number of commercial robot progrémming languages, for

example VAL, are based around these 4x4 homogeneous

transformations. When a location is taught to VAL, it is the

—47-

— N R

\
4x4 trénsformation’which is calculated'and stored, (although
the programmer does not have access to the specific elements
of the matrix). With a view to developing a programming
system to operate in cohjunction with an existing robot
control language, it is sensible to represent . states by such
matrices.

The 'assembly process' is a controlled sequence of moves
between the defined states, using sensory feedback where
necessary. The sequence and the nature of the movements will
be defined in the control program.

The 'system‘noisg' is the likely variation in the
position of a state due to random perturbations in system
parameters. The ill-positioning of components and the
performance of the actuator can contribute to the system
noise., If parts are Béing fed from a feeder or dispenser,
the variation in the exact position of the part is a cause
of system noise. Assume that the noise can be modelled by a
random variable, Qs having mean r; and variance u;. Hence,
‘the mean and variance of the errors in each component of _)_(_i
is specified by the corresponding‘component of r; and Y.

The 'measurement noise' is the likely variation in the
measured value of a constant state. It arises from the noise
in the physical meééuring transducer, conversion noise,
robot noise and the coordinate-frame transformation errors
between sensors and actuators. Assume that this noise caﬁ be
modelled by a raﬁdom variable Bk,Of mean zero and variaﬁce

Zk‘ Hence, Xk represents the variance of the measurement

noise of the kth sSensor.

-48-

\

3.4 Confidence of a state

DeFazio [73]'proposed the idea of confidences, with a
view to varying the robot's speed in accordance with the
certainty with which a location is known. This section
develops this concept to provide a parameter to quantify the
magnitude of previous errors and hence provide a mechanism
to control the speed of the actuator to reflect these
errors. In traditional robot control systems, the speed at
which the actuator moves to a position does not change
between cycles. (There is of course speed variation within a
cycle as the actuator moves between different locations). It
is, however, intuitively appealing to automatically vary the
speed to reflect changing conditions; slowing down in the
face of uncertainty and speeding up as the errors reduce. In
practical terms, the\éffect of changing the sbeed could be
to reduce the location-overshoot associated with high speeds
and to improve the effective sensing rate. If the speed of
the actuator is reduced and the sensing rate remains
constant, the effect is to increase the resolution of the
Sensing process. To achieve this, however, requires a degree
of parallelism between moving and sensing, this may be
difficult to attain. The overriding advantage of dyﬁamically
adjusting the actuéfor's speed arises when there is a fatal
error; for example trying to insert a peg into a hole which
does not exist. If the actuator is moving-.slowly, then there
is more chance o% stopping it, hence preventing‘a |
catastrophy. If the erfor in the‘previoﬁs cycle was large,
it may have been possible to predict that the hole position

was not accurately kﬁbwn.'Using dynamic velocity control,

-49-

this previous error would have resulted in a reduced
confidence and hence a reduced velocity.

The 'confidence' of a state is defined as the certainty
that the currenF value of the state is correct. If the state
represents, for example, the centre of a hole, then the
confidence of the state is the certainty that the vector‘
representing the hole's position is correct. The confidence
will be a vector, such that the confidence of each component
of the state is predicted by the corresponding component of
the confidence vector. If previous iterations to a state
have necessitated considerable corrections from sensors,
then the confidence of the state would be small, and in the
limit approaching 0. The confidence wiil be increased if the
sensors indicate small or zero errors, in the limit |
approaching 1 as the\eoordinates of the locaéion become
known. If ﬁhe location is subject to random errors from
system noise, then the confidence can never become equal to
1 because there will always be some uncertainty in the |
location. Define 11 as the confidence of the lth state, and
let the components of T, take values between 0 and 1. The
numeric¢al value of the confidence will éepend on the
relative eizes of the system and measurement noise. 1In
Chapter 5’it will be shown how a numerical value of T, can
be cohputed based on estimates of the system and measurement
hoise. In practiee, computation-ef a state confidence does
not provide sufficient information from.which the velocity
of the actuator can be computed..In the absence of any
sensors, the speed of the actuator would always be the same.,

At some stages inAthe assembly, sensors will not be used,

-50-

but different actuator velocities will be reguired in
performing different types of operation. This problem is

solved by introducing another parameter.

3.5 Sensitivity of a state

In addition to defining the confidence of a state, it
has been found necessary to introduce another parameter,
which has been called state-sensitivity. The 'sensitivity'
of a state is a normalized parameter which is used to
quantify the required accuracy to which the state must be
known. Consider the task of inserting a peg in a hole.
Define the state X to represent the coordinates of the hole
centre. If the hole is chamfered then the exact position of
the peg with respect to the hole is less critical, hence the
sensitivity is reduced. If, however, the hole is
unchamfered, then the peg must be positioned much more
accurately, hence the sensitivity is high. Unlike
confidence, the sensitivity need not vary, since it
represents a physical property of the state.

The numerical evaluation of state-sensitivity is based

on the magnitude of the largest tolerable error in the

"

. !
vicinity of a state. Define él as being a 6-component vector

where each component represents the magnitude of the maximum
tolerable error of the corresponding component of the state.

th

Then, if F, is the sensitivity of the 1 state and takes

values between 0 and 1, let Ey be calculated from A, using,

Foo =1/ (1 +A2 (i=1..6) (3.1)

1i 1i)
In practice, a sensible range of sensitivities are produced

if A, is expressed in millimetres (mm). Hence, if a position

-51-

is to Ee attained to a positional accuracy of +1mm in the x-
direction, the value of Al1 would be 1 and hence F11 = 0.5.
If él = 0, implying zero tolerance, then £l=1. A set of
values of A, and the corresponding E, calculated from

equation 3.1, are tabulated in Figure 3.2.

Tolerance |Sensitivity

(B)3) mm | (Ep;) mm”
0 1.0
0.1 0.91
0.2 0.83
0.5 0.66
1.0 0.5
2.0 0.33
5.0 0.17
10.0 0.09

Figure 3.2: A set of values of tolerance
- and sensitivity.

3.6 Controlling the actuator's speed in response to past errors

Once the states associated with a specific assembly
problem have been defined, the program to perform the
assembly is constructed by defining conditional moves
between states. The syntax of this constrgction will be
discussed in Chapter 4. it is proposed th;t the sensitivity
of a state and the dynamically changing confidence will be
used to calculate the velocity of the actuator as it
épproaches and leaves a state. Therefore,‘within the coﬁtrol
program there will be no commanas to set £he actuator's "
speed directly. Although”this technigque could be applied to
continuous velocity control, the approach taken in this

thesis is to restrict~attention to discrete control. Hence

states will be approached and departed at a constant

-52-

Velociﬁy, the magnitude of which is calculated adaptively.
Consider the action of moving the actuator betWeen two
states. Within the control software of the manipulator,
there will probably be existing facilities to control the
trajectory. In VAL, for example, movements can be made in
joint-interpolated motion or straight-line motion. Under
different circumstances both may be desirable. Since the
velocity of the actuator is calculated in the vicinity of a
state, there will be two calculated velocities for each
moVement, one for the first state and one for the
destination state. Using a combination of sensitivity and
confidence, the components of velocity in the vicinity of a

state can be calculated. Define N, as the velocity of the

actuator as it approaches the 1th state. Then,
Since Fli and Tli both take on values of between 0 and 1,
N

11 represents a normalized velocity. The velocity vector Hl
will therefore give the desired velocity for each component
‘of the state. The speed is computed by forming the scalar
produqt of the velocity with the vectorﬂfepresenting the
direction .0of approach of the state. This!is formalized in
the next section. It is seenhfrom equation 3.2 that if the
sensitivity of the state is high then the speed of approach
.is low. similarly, if the confidernce is low then the speed
is low. |

The next section aédresses”the problem of how to move
the actuator between the two states, such that the velocity

in the vicinity of the two states is controlled to satisfy

equation 3.2.

-53-

3.7 Transferring the actuator between two states

Since the velocity of the actuator is only constrained
within the close proximity of a state, let the transfer of
the actuator between tﬁo states be a three-stage process.
The first stage will be a controlled movement away from the
initial state, Kl' to a another point Yy such that

_Y_l = Kl + 911 , (3.3)
where gl is called the departure vector associated with the
state gl, as shown in Figure 3.3. In practice this departure
vector will be chosen such that ¥, is a safe distance from
Kl. The need for a departure vector can be recognized by
consideration of the peg-in-hole assembly depicted in Figure
3.4, If gl represents the position of the manipulator
corresponding to the peg inserted in the hole, then Xl
represents the positién of the manipulator for the peg clear
of the holé. Call Y, the intermediate state of X;,. It is
clear that the path between X, and Y, is critical and must
lie in the axis of the hole, otherwise undesirable forces
will be exerted during withdrawl.’The departure vector for
the state X, is therefore defined as a vector centered on Xy
whose magnitude and direction are chosen to achieve a safe
approach and departure path for motion to the state. For the
peg-in-hole problem} this direction is along the axis of the
hole,.and the magnitude is sufficient to ensure that the peg

is clear of the hole at ¥,. During the movement of the

1
actuator between the X4 and X, the velocity is to be
governed by equation 3.2, and will be constant until the
actuator reaches Xl' The speed of the actuator, Sy is given

by the magnitude of the scalar product of the velocity and

-54-

Unconstrained
path

Fiqgure 3.3: Transferring the actuator between two states

Movement of -
peg ' ’

_
A

Figure 3.4: The peg-in-hole assembly problem.

-55-

the departure vector, that is

5, = Iﬂ]_'Ql‘

Now consider the actuator moving to the final state, call it

(3.4)

Ki , which has departure vector gi and associated position
g_i , see Figure 3.3, such that
Xi = gi + gi ‘ (3.5)
The following stages in the transfer between gl and gi
are identified :
Stage 1 : Transfer from X, to Y,
Stage 2 : Transfer from Y, to ¥;

Stage 3 : Transfer from ¥; to Xj

The motion between X, and ¥, has béen discussed. The motion
bet@een Xi and §i is similar and is constrained by the path
gi . For this motion, the velocity is calculated from the
sensitivity and confidence of the destination state, KL ’

using equation 3.2, as

| B - 1] Y
Njg= (1 Fi;).T154 (i=1..6) (3.6)
where Fii is the ith component of the sensitivity of the
th

destination state and Tii is the i component of the

confidence of the state. The speed of approach of the
- , N ,

:)
destination state is therefore,

[I]]
sy = [Nj.dq] (3.7)

Since, in general, both Y, and Y, will be close to gi and X,

respectively, the magnitudes of the vectors d, and 4! will
- -1 =1

generally be smaller than the distance_between X 1

1 and X

Hence, the largest movement will. be made between the
intermediate points ¥, and ¥j . This is called the gross
motion. The initial departure of a state, from Xy to‘gl, and

the final approach, from Xi toiz', are the fine motions. For

-56-

the path ¥, to Y; , although the movement distance may be

1 =1
large, the constraints on the path are less than those
imposed in the locality of the states. Therefore, it is
neither necessary nor practical to control the speed in the
same way. Hence, in the absence of any other ihformation,V
assume that the speed for the gross motion is constant and
may be pre-set to a suitable value for each actuator. In
practice it may be necessary to impose some constraints in
the gross motion phase to avoid obstacles. The speed,
however, need not change. This problem is one of planning
the trajectory subjectnto the constraints imposed by the
presence of objects. A simple solution here is to define
sufficient extra points such that a safe path is described.
The problem is beyond-the bounds of this thesis. ’
In summary, the motion of the actuator between two states
will be as follows:
1. Calculate the departure Velocity for the current
state based on the current confidence and
sensitivity of the state.
2. Move the actuator to the locatiog\gl along vector gl
with the velocity calculated in s%ep 1.
3. Move the actuator between the two intermediate
points ¥, and Xi at a pre-set (constant) velocity.
4. Calculate the approaqh velocity for the destination
state based on the current confidénce and
sensitivity of that state.

5. Move the actuator to the state X along the

vector -d; , -with the velocity calculated in step 4.

-57-

The definition of the departure vector for each state could
be done at the same time as the state itself is defined.
However, since the departure vector is defined relative to
the state, it would be simple enough to define this vector «
paiond, By representing the departure vector as a
homogeneous transformation, the position of the intermediate
points can easily be found by combining the matrices for the

state and the departure vector.

3.8 Sensory feédback

Once the states associated with the system have been
taught, the control pfbgram to instruct the actuatoré to
move between the states must be formed. Sensors will be used
to’fine—tune the state position such that a desired sensor
condition is fulfilled. Hence, in general, the object of
moving the actuator will be to transfer the current sensor
reading into a new sensor reading. Consider the‘task of
moving a gripper-mounted camera to the centre of a hole. The
nominal position of the hole will be known, but the actual
bosition may be subject to uncertainty. The sensor will
provide error information which will be used to servo the
robot to the désired poéition. This oper;tion may be
su@mafized as,

A 1. Move to the state representing the nominal position
of the holé, using the procedure describéd in
Section '3.7. | |

2. Compute the erra; in position using the vision

sensor.)

3. Correct for the error by moving the robot.

4, Repeat steps 2 and 3 ﬁntil the error is zero.

-58-

Assume that the movement to a state will be carried out
repetitively as part of a control program. Define a
'cycle' to be one complete execution of the program. At a

particular state, the task of sensing and then.moving the

actuator, steps 2 and 3 above, is termed an 'iteration'. The o

number of iterations necessary to satisfy the termination
criterion (see Section 4.5) will depend on the noise and
transformation errors in the system. If the system and the
measurement are noise-free, there will be zero iterations
because the position of the actuator after the gross motion
and the fine motion will be correct. In general, the system
error will be non-zero and the sensors will detect an error.
If the measurement process is noise-free and the
transformation betwee; the sensor-error and the world-error
is accurate, then only one iteration will be necessary
because the perceived error will be immediately corrected.
Measurement noise will be an additional component to the
perceived error, the result of which will be that the
expected number of iterations before the termination
criterion is met will increase as the variance of the
measuremen% noise increases. The implications of this are
discussed fully in“Chapter 5.

The application of sensory feedback begins after the
fine motion phasg, which completes the transfer of the
actuator to the new state. This final phase is referred‘to
as the feedback phase. | .

The termination condition for the cycle occurs yhen the

desired sensor conditions have been met, (this criterion

-59-

will be enhanced in the next chapter) and hence the purpose
of the operation may be thought of as achieving a set of
specified conditions in the sensors. Given an initial sensor
reading and a desired final sensor reading, the problem is
one of how to move the actuator to achieve the goal. Unless
the initial and final position are close, the sensor
readings alone will be insufficient to define the final
position. The sensor will only provide information within a
finite domain and hence can only be used to fine-tune
positions. For example, a camera used to determine the
position of a hole for.a peg-insertion will only be useful
if the hole is within the field of view of the camera.
Hence, the nominal position of the robot must be given to
sufficient accuracy so that the sensory servoing can achieve
a unique end -point. The fine and gross motion phases of the
cycle represent the movement to the nominal position, prior
to applieation of sensory feedback. This is summarized in
the timing diagram of Figure 3.5.

Upon completion of the eervoing, the final position of
the actuator is the new estimate of the desired state. By
combining this measurement with the current estimate, which
is the val:le used in the first iteration, it is possible to
detect the situatioe of drift and hence cummulative errors.

The problem is tackled using long-term feedback.

3.9 Application of long-term feedback

The distinction between short-term and long-term
feedback was made by Defazio [73] and Whitney [76]. In the
context of the assembly problem described in this chapter,

short-term feedback represents‘the feedback applied in the

-60-

Compute Move to Compute
departure inter- approach
velocity mediate velocity
end then state of the

move to of the destin-
inter- destin- ation_
mediate ation state Long-term
state at state. and then _ feedback
this . move at . T
velocity. this Iteration 1 Iteration 2
1 velocity
Move . Move
Compute Compute n
error error
Sense Sense
? time
Fine- Gross- Fine- . .
motion motion motion

phase. * phase. phase.) Feedback phase

Figure 3.5: Timing diagram for a cycle of discrete sensory feedback.

~

-61-

servoing. Long-term feedback, on the other hand, would be
applied between cycles, to try and improve the initial
estimate of the state for the start of the next cycle. The
neéd for long-term feedback can be appreciated by
considering the following example. |

A pallet holds a regular array of parts to be handled.
The spacing between the parts is known, but is erroneous. On
each cycle, the robot is to pick up a component for
subsequent mating, and then compute the position of the next
part using the offset. In the first few cycles, the spacing
error is absorbed by Ehe grasping action of the robot, but
after a while the cummulated error is too large to be
acéémmodated and the grasping operation fails. Even if
sensors were used in the grasping, the situation woulé not
be improved withbut the uée of long-term feedback. Although
the position of the part with respect to the gripper could
have been deduced, after a few cycles the cummulated error -
would be too large to be measured by the sensor. Using long-
ferm feedback, the error in each cYcle would be used td
adjust the starting position for the next\cycle. This will
allow drift to be detectéd and hence avoié cummulative
errors. |

The application of long-term feedback to discrete
sensory assemblies.requires the total correction applied‘
during sensory feedback“to be récorded,and the mean value of
the system noise over cogsecutivé cycles computed. This is
discussed in more detail in Chapter 5, where the algofithm

for computing the system noise is described.

-62-

3.10 Summary

This chapter has described a general framework for
modelling discrete sensofy feedback in robotic assembly. The“
timing diagram shown in Figure 3.5 summarizes the phases of
the actuator movements and the nature of the interaction
between the sensors and the actuators.

The confidence of a state is a vector, where the
magnitude of each component reflects the certainty that the
corresponding component of the state is correct. Chapter 5
will show how the expected error in the system and the
measurement can be used to compute a value for the
confidence. In conjunction with the sensitivity of a state,
the confidence is used to adjust the actuator's velocity in
the close proximity of a state.

Since object-levél programming describes.manipulator
movements fo achieve conditions in objects, the term
'sensor-level programming' has been adopted to describe the
specification of manipulator movements to achieve conditions
in sensors. In the hierarchy of robot programming languages
(Section 2.3.5), sensor-level programming lies between the
manipulator level and the object level. %he requirement is
not to givéithe manipulator movements explicitly, but rather
to infer them, to aéhieve the stated conditions in one or
more sénsors. Hence the purpose of each actuator movement is
to transfer the condition of the sensors in the workcell’
from the current set of readings to a new set. The softwére
must automatically compute the mégnitude and direction of
the correction to be applied in order to reduce the error to

zero. Sensor-level programming is discussed fully in the

-63-

next chapter.

-64-

CHAPTER 4

SENSOR-LEVEL PROGRAMMING

-65-

4.1 Introduction

The object of a robot programming language is to
coordinate the resources of a robot work-cell to manipulate
objects. Rather than specifying fobot movements explicitly,
the trend of researchers is to provide indirection. In this
way, the robot movements are inferred to achieve a goal in
terms of some aspect of the system other than the robot's
position. Object-level programming, where the level of
indirection is aimed at specifying effects in objects, is an
active research area [33],(97],[98]. In object-level
programming, the required actions are expressed in terms of
objects and the interpreter must compute exactly how the
robot is to be moved in order to achieve those actions. If
the objects are positioned inaccurately, sensors may be
required to achieve suécessful mating, althouéh the use of
such sensory information is transparent to the programmer.
An assembly problem to move block A onto block B may be
written in terms of an object-level program as

MOVE BLOCK A ON BLOCK B
To execute this, the robot control system must firstly
compute the exact positions of the block;\', and then plan a
series of ﬁévements which can be executed by the robot
controller. Because”grasping of the blocks is involved,
controi of the robot's gripper is also required. The output
of the object—levgl programming system for the above example
may be, |

OPEN GRIPPER

MOVE TO A

CLOSE GRIPPER

MOVE TO B
OPEN GRIPPER

-66-

This manipulator-level program gives movement instructions
to the manipulator in order to achieve the desired object-
level specifications. It is seen that the object-level
specification is more compact but requires a complex
interpreter to produce the manipulator-level program,

Consider the case where the positions of blocks A ana B
are imprecisely known. To cope with this, a gripper-mounted
camera is used to provide feedback information from which
the exact position can be computed. The object-level
specification of the task remains unaltered because the same
effect in the objects is required. However, the manipulator-
level specification must be ammended to include information
from the camera. This can considerably increase the
complexity of the manipulator-level program.

The need to inteéfate sensor information'with a
manipulatof—level program, of the form described above,
almost ihvariably produces untidy and unstructured code.
This is the problem which is addressed in this chapter. Thev
aim is to enhance a manipulator-level language to provide
facilities for efficient representation of sensory feedback.
This will produce a robot proéramming syé%em whose level of

«

direction is sensor rather than object or manipulator.

4.2 Sensor indirection

This thesis defines a new level of robot programminé,
which, by analogy‘with_object—leQel prograﬁming, is called
sensor-level programming: In sensor-level programming the
level of indirection is to transfer the current readin%s of
the sensors into a new set of readings. As is the case for

object-level programming, the movements of the robot are not

-67-

specified explicitly, but are inferred and hence must be
computed such that the desired sensor conditions are met.

Unlike object-level programming, the sensor-level of
indirection is not sufficient to uniquely specify the
movement of the manipulator. To transform objects, the start
and end positions can be calculated and a trajectory
planned. In sensor-level programming, the desired state of
the sensors cannot be used to infer the position of the
manipulator. The sensors will provide relative positional
errors over a finite region, from which only relative
movements of the maniﬁﬁlator can be computed.

In Section 3.8, the stages involved in achieving sensor
coﬁditions were identified. Since the sensors will provide
only relative errors, “the required sensor conditions Aust be
gualified by giving the nominal position of the manipulator
around which sensory feedback can be applied. Hence, the
primitive operatiQn in sensor-level programming is

MOVE actuator TO state ACHIEVING condition IN sensor
Where'actuator','state','condition'and.'sensor'are
parameters which will be provided in the general movement
command. This can be regarded as an extenéion'of the
manipulator level command which is of the form

MOVE actuator TO state
In practice, the structure of the primitive sensor—levelh'
programming operation shown abové does not allow some
important actions in senggr—based~robot assembly to be
represented. Sometimes, the information from the senso; is
not used in a servoing loop, but instead is fed-forward to

adjust a future location. This is the case if, for example,

-68-

a camera is used to locate the position of a hole into which
a peg will later be inserted. Thus, define a second
primitive, the object of which is to firstly compute the
difference between the current attribute value and the
desired attribute value, then to transform this into a world
frame of reference, and finally to adjust the numerical
representation of the state. The form of this primitive is

FEED-FORWARD ERROR BETWEEN attribute OF sensor
AND condition TO state

Chapter 6 of this thesis shows how these sehsor—level
instructions can be represented within a}programming system,
This involves a set of functions written in the C
programming language which provides the programmer with the

means of representing sensor interactions.

4.3 Specifying sensor requirements

Sensors vary considerably in complexity, from simple
binary detectors to high-resolution cameras. To express
sensor requirements in a uniform way requires the sensor
data to be preprocessed into a standard form. This is the
function of the sensor controller which was discﬁssed in
Section 3Jm‘The input to the sensor contréller will be the
raw data from the sensor. The output will be a processed
version of this data in the fofm of a set of 'atﬁributesh
This is similar to the logical sensor specification propésed
by Henderson [83] and Hansen [85]. Define the attributes to
be a set of séalar quant££ies which are a processed version
of the raw sensor data. The information from the sensor will
be represented by a set of these attributes. The procedure

- is not reversible, since the attributes cannot, in general,

-69-

be processed to reconstruct the sensor data. The nature of
the attributes will be dependent on the type of sensor, and
not on the application in which the sensor is being used.
This is important, because it means that the sensor and its
controller can be interchanged between differeﬁt assembly .
applications as a self-contained module.

For some sensors, the informatidn may be irreducible
and hence the output from the sensor is equivalent to the
attribute. A simple proximity sensor falls into this
catagory, although even here some signal processing may be
desirable. Other senso}s, such as an area-array camera,
provide significantly more information. The attributes for
suéh a sensor may include

1. The value of the x centre of gravity of the

component in the field of view.

2. The value of the y céntre of gravity.

3. The area of the component in the field of view.

Since the attributes will be used as parameters in closed

loop control, features such as the number of holes are not

relevant.)

For the attributes listed above, the position of the x
and y centroid haveré direct relationship to the movement of
the sehsor in the x and y directions. The perceived area.of
the component can be related to the distance of the camera
from the component and hence can give a z direction errof.

The attributes representing fhe information from the
sensor will be sent to the central controller to enable

closed-loop control to be achieved. The information flow

-70-

from the raw sensor data to the central controller is
illustrated in Figure 4.1. The function of the sensor
controller is three-fold. Firstly, to control the sensor,
sending the appropriate control signals to enable it to
function, secondly to process the resultant data to extract
the attributes and thirdly to send these attributes to thé
central controller using a defined prptocol. The format of
the information interchange between the central controller
and the sensor controller is discussed in more detail in
Chapter 6.

Figure 4.2 shows a list of some common sensors,
together with a list of possible attributes which
characterize the sensor-data.

Using attributes, the primitive sensor-level
programming structure can be rewritten as .

MOVE actuator TO newstate ACHIEVING condition
IN attribute OF sensor

At this stage, assume that the termination criterion is that
the attribute error is zero. This criterion will be extended
in Section 4.5. The execution of this instruction is
summariged in the flowchart of Figure 4‘3¢

As an example, for a sensor 'camera"having attributes
'x-cofg' and 'y-cofg' (representing the X and Y centre of
gravity of the component respectively) used in conjunction
with'an actuator called 'robot', the following command céuld
be issued.
MOVE robot TO newpoint AEHIEVING 50 IN x-cofg OF camera
This command involves moVing the named actuator, 'robdt',
from its current state to the new state called 'newpoint’,

using the procedure described in Section 3.7. After this,

~71-

Physical

sensor

[————————— - T - - - - — = 1

Control Raw sensor |
I lines #¢ data |
I >
| |
| Control <> Processor |
| I
| _ SENSOR | lattributes |

CONTROLLER

| - |
| Communications |

To the central
controller

Fiqure 4.1: Information flow from the sensor
to the central controller

SENSOR ATTRIBUTES

Area-array camera. Position of x-centroid of part.
Position of y-centroid of part.
Area of part.

Proximity sensor. Range,
Tactile sensor. Average contact force.

Area of contact. "
Orientation of part on the array.

IRCC. ' . X, ¥, Z, 0O, A, T errors.

Linear-array camera. Position of light-to-dark edge.
Position of dark-to-light edge.
Area.

Figqure 4.2: A table of attributes for some sensdrs.

=72~

Move the actuator from the current
state to the intermediate point of the
current state at a speed computed
using equation 3.4

Y

Move the actuator to the intermediate
state of 'newstate'.

¥

Move the actuator to 'newstate' at a
speed computed using equation 3.7.

R|
)

Get the attributed sensor data from
the appropriate sensor slave.

Y

Compute the attribute error as the
difference between the actual and the
desired attribute value.

Y

Transform the attribute error into a
cartesian error in the world's frame
of reference.

Y

Move the actuator by the cartesian
error.

No

termination
criterion

L 3

yes

Apply long-term feedback.

Stop

Figure 4.3: Sequence of operations in the execution of a sensor-
level command,

~73-

sensory feedback is applied so that the perceived X-centre
of gravity of the component in view is at position 50. Upon
completion of the servoing, long-term feedback is applied to
improve the estimate of the state for the next cycle. The
application of long-term feedback is discussed in the next
chapter.

To control the position of the Y-centre of gravity, a
second sensor-level command, similar to the above, could be
issued. However, rather than issuing two separate commands,
it is desirable that the whole evént is expressed in a
single statement. Hen;e, the required form of the command is

MOVE robot TO newpoint ACHIEVING 50 IN x-cofg OF camera
AND 50 IN y-cofg OF camera

For this example, because the X and Y axes are
perpendicular, the vectors representing the csrrection
directions are orthogonal. Therefore the form of the command
shown above is equivalent to doing two consecutive calls,
each to achieve one sensor condition. This is not the case‘
if the correction directions are not o:thogonal, when the'
application of sensory feedback to achieve the second sensor
requirement will affect the feedbaék apéiied for the first
sensor reqhirement. This problem is considered in detail in
Section 4.6.

Implicit in the sensor-level coﬁmand is the computation
of the transformation of the sensor-attribute error td the
necessary correction vector for the rdbot. The means of

computing this transformation is now discussed.

4.4 Transformation of errors: static and dynamic sensors.

A sensor, used to provide information for closed-loop

-74-

control, will produce data in sensor units, in the sensor's
frame of reference. In order to reduce the perceived error,
the sensor error must be transformed into the world's frame
of reference, in which the cor:ection will be applied.
Define the 'correction vector' as an Euler vector, having 6
oomponents, which represents the error in a world frame of
reference, between the current actuator position and a new
position which should reduce the perceived error to zero. It
is assumed that the actuator controller will be able to
accept movement commands which are specified in a world
frame of reference. m

In order to compute the transformation between the
sénsor's and the world's frame of reference, the
relationship between the sensor and the actuator must be
known. To this end, two different types of sensor are
considered. Depending on whether the sensor is physically
coupled to the actuator, the term 'static' or 'dynamic' is
used to classify the sensors. Define a static sensor as one
'which is fixed in a world frame and does not move with an
actuator. Define a dynamic sensofvas one\which is physically
coupled to an actuator and consequently noves with the
actuator. This class of sensor includes gripper-mounted
cameras, the instrumented remote centre compliance (IRCC),
.and gripper mounted tactile sensors. An overhead workstation
camera is an example of a static sensor. An example of the
relationship between the the frames of reference of a static
sensor, a dynamic sensof, an actuator and tne world i; given
in Figure 4.4. The static sensor is an overhead caméra,

whose frame of reference is fixed with respect to the world

-75-

Static—-sensor

: frame
Actuator
s /
Xr /Y‘
< %
xd
Y4 .
% Dynamlc-sensor
frame
tw World
Vo ?rame
r—— ¥w

Figure 4 4: The frames of reference between the sensors, the
actuator and the world.

Euler sensor error.

1
Transform error from Euler
vector into 4x4 homogeneous matrix.

A 4

Pre-multiply this matrix by the 4x4
matrix representation of the
sensor-world transformation.

L 4

Compute the Euler representation of
the 4x4 matrix,

Y

Euler world error.

Figure 4.5: Transforming an error from a static sensor
into a world-error.

-76-

frame. The dynamic sensor is a gripper-mounted camera, whose
frame of reference with respect to the world moves as the
actuator moves. However, the relationship between the
actuator's and the sensor's frame of reference does not
change as the robot moves. |

The method of processing the error from the sensor to
compute the correétion for the actuator is different for the
case ofna static and a dynamic sensor. For the static sensor
the relationship between the world's frame of reference and
the sensor's frame of reference will be fixed and can be
represented by a defined transformation. For the dynamic
sensor, it is the relationsﬁip between the sensor and the
éctuator which is fixed. Consider the case of static and

dynamic sensors separately.

4.4.1 static-sensor to actuator transformation

An error detected by a static sensor can be transformed
into a world error by multiplying the matrix-representation
- of the error by the homogeneous matrix representing the
relationship between the sensor's and the world's frame of
- reference. The use of homogéneous matrices to represent
relation;hips between frames of reference is described by
Paul [46]. Assume that the error from the sensor can be
represented by a 6-component Euler vector. Depending on the
type of sensor, between 1 and 6 components of this vecfor
Will provide error éignals. For a simple proximity senéor,
only one component of error_ma§ be provided. However, for an
instrumented remote centre compliance (IRCC), a fu;l 6

Components of error, corresponding to 3 translational and 3

-77-~

rotational components, will be produced. This Euler vector
can be transformed into a 4 x 4 matrix using the procedure
described in Section 3.3. By multiplying this.error matrix
by the transformation between the sensor and the world, the
resultanf matrix is tﬁe error expressed in the world frame
of reference. This can then be expressed as a 6-component

Euler vector. If the 4 x 4 matrix for the world error is

oKD
o Hh Y
o ®xQ a0
=35

the Euler representation is (x,y,z,o,a,t)T, where each

component is calculated as [461],

X = d,

y = h,

Z =nmnm,

o = atan2(g,b)

a = atan2(cos(o).c + sin(o).g ,k)

t = atan2(-sin(o).n + cos(o).e , -sin(o).b + cos(o).f)

The Euler form of the correction can subsequently be used to
issue.a movement command to the actuator.

The sequence of operations required to transform an
€rror in a static sensor to a world error is summarized in

Figure 4.5.

~,
\
/

4.4.2 Dynamic-sensor to actuator transformation

If the sensor is dynamic, the relationship between the
sensor's frame of reference and the actuator's frame of
reference will be fixed. However, the relationship between
the actuator's frame of refefence and £he wofld's frame of
Teference will depenéﬁon the position of the actuator.
Defining the position of the actuator to be the
transformation between the actuator's position and the

Origin of the world frame, then the sensor error can be

-78-

transformed to a world error by

World = Actuator Sensor-actuator Sensor
error position|®| transformation|®| error

As before, the Euler vector representing the sensor error is
initially transformed into a 4 x 4 matrix. The final world
error can then be transformed back into an Euler vector and
the movement executed. |

The sequence of operations required to trahsform an
error in a dynamic sensor to a world error is summarized in

Figure 4.6.

4.5 Terminating the sensory servoing

Using either static or dynamic sensors, ?he'final world
‘error is the aistance to be moved by the actuator. Although
the basic sensor-level programming directive will require a
specific sensor condition to be met, it is neither necessary
nor practicable to demand that the sensory servoing
terminates only under these circumstances. Chapter 3 defined
the state sensitivity as a normalized parameter used to
- represent the accuracy to which a state must be known.
Equation 3.1 gave the relationship between the sensitivity
and the tolerance at a state. During the application of
Sensory feedback, the perceived sensor error, once
transformed to an actuator error, may be less than the
tolerance of thenstate; Since the tolerance represents the
desired accuracy of the state, ahy correction less than this
hNeed not be applied. This means that the servoing can
terminate whenever either the sensor conditien is met, or

the magnitude of the computed correction is less than the

-79~

Euler Sensor error.

t

Transform error from Euler vector
into 4x4 homogeneous matrix.

4

Pre-multiply this matrix by the 4x4
matrix representing the sensor-
actuator transformation.

R

Pre-multiply the product by the 4x4
matrix representing the actuator's
current position.

Y

Compute the Euler representation of
) the 4x4 matrix.

T

Euler world error.

Figqure 4.6:“Transforming an error from a dynamic sensor
into a world-error.

Initial state

I"""""'"]:
|

- - ——— - — —— ———— = =l oad

Fiqure 4.7: Derivation of a state satisfying two sensor
- requirements.

-80-

tolerance of the state. Both the correction distance and the
tolerance will be vectors and hence each component of the
véctors must be tested to see if the correction needs to be
applied. If any component of the actuator error is greater
than Ehe corfesponding coméonent of the tolerance than the
correction must be applied. v

In addition to terminating the servoing on the basis of
tolerance, it is important to consider the effect of
actuator.resolution. The actuator will have a minimum
distance of movement, the resolution, so that any demand
less than this will give no movement. Therefore another
condition for stopping the servoing is when the correction
vector is such that all its components are less than the
fesolution of the actuator.

To sum up, the iterative task of moving the actuator'
and computing the sensor error is terminated whenever one of
the following conditions is met:

1. The sensory conditions are achieved.

2. The magnitude of each component in the correction

'is less than the corresponding component of the
! tolerance vector for the state.

3. The ﬁagnitude of each component in the correction

is less than the corresponding component_of the

actuator's resolution.

In Chapter 5 the problem of errors in sensors, actuators and
the system will be examined. By considering the magnitude of
these errors, the perceived corrections will be pre-

processed by multiplying by a scalar gain which is less than

~81-

1« In this way, if the measurement process is subject to
error, criteria 2 and 3 above will be met sooner. The effect
of this is to cause the system to ignore information from
noisy sensors; this is discussed fully in Chapter 5.

If a single sensor'condition is té be met, the
iterative task of sampling, computing the error and then
moving, is straightforward. However, if more than one sensor
condition is to be met the situation becomes more

complicated. This is now discussed.

4.6 Achieving more than one sensor condition

Since a single sensor condition can only cause
correction to be applied in one dimension, it is likely that
additional sensor requirements will need to beﬂmet. The area-
érray camera discussed in Section 4.3 érovides an example of
this. In this case, the result of the movement is to achiéve
a specific condition in both the X and the Y centre of
gravity of the object in view. Because the correction
vectors for the X and Y vectors are mutually orthogonal, it
is possible to achieve the desired effect by having two
single-condition sensor-level programming statements. This
is 6hly possible if the correction applied to achieve the
second sensor condition does not affect the correction
"already applied for the first condition. The orthggonality
of the two correqtion vectors is a necessary and sufficient
conditionmfor this to bé true. |

If the corfeqtion vectors fér the two sensor conditions
are not orthogonal, there will, in general, be no single
correction vector which can satisfy both conditions.

However, the use of state sensitivities gives rise to

-82-~

'fuzzy' locations, which can be used to provide a solution.

Define X; as the current state, and assume two senéor
conditions need to be met. If the two conditions were met
separately, two new states would, in general, result. Call
these kwo new states Xj4 and Xj,, see Figure 4.7. There will
be a sensitivity vector associated with state Xj, call it
F,, and assume that this sensitivity can also be used for
the new states X;q1 and X;,. From equation 3.1, each
component of the sensitivity is related to the corresponding
component of tolerance by

Ajj = (1 - Fy4) / Fy4 (i=1..6) (4.1)
For each of the new states X4 and X1,, define a
transformation from the initial state, X;, as Tq and T;

respectively,‘Such that

Ty .Xq (4.2)

X11
and

X12 = Ty.Xq | (4.3)
where T{ and T, are 4 x 4 homogeneous matrices and X;, Xjq.
X1, are the 4 x 4 homogeneous matrix representations of the
-Euler vectors X;, X;q1 and X, resgectively. Let Tq and T, be
the "Euler representations of Ty and T,. Now each of X;¢ and
X1, has an uhcertainty bound specified by Aj, the tolerance.
" Hence look for a new state, call it Y,, which satisfies

Y; = X349 + a.h; _ : | (4.4)
and “

= 2(_12 + b._A_l . (4-5)

=<
’_J
I

where a and b are diagonal matrices, such that

-1 <agy <1 i=3 (i=1..6, j=1..6) (4.6)

-83-

a:: =0 - i#3 (4.7)

1]

and ‘
-1 < bij < 1 i=j . (408)
bjj = 0 i#3 . (4.9)

The vector a.Aj defines the limits of a reéion of space
surrounding X;4, representing the tolerance. Likewise, b.Aj
defines the space around X;,. From equations 4.4 and 4.5

X311 + a.A; = X35 + b.Ay (4.10)
which can be expressed as ”

X171 - X1z = (b-a).yy (411
Define a new matrix, ¢, as

c = (b-a) (4.12)
Since ¢ is diagonal, the componénts of c are derived from
4,11 as

iy = (X113 - X123) / Ayg (4.13)
Now because the components of a and b are bounded by the
constraints given in equations 4.6 and 4.8, the components
of ¢ are bounded by

-2 < cy4 ¢ 2 ” (i=1..6)\ (4.14)
mHenqe the condition for the existeﬁce of a state, Y;, which
satisfies both sensor requirements is that equation 4.14 is
~satisfied for each component of the state. If it is
satisfied, numerical values for the components of the state
Y, can beﬂcombuted. Siﬁcé the compéﬁents of ¢ are known, the
components of a and b can be calculated to satisfy equation
4.12. In the case of only translational differences between
Xxs Xypq1 and X5, the solution, if it exists, corresponds to

an overlap of rectangles, centered on Xp1q and Xyor having

-84~

dimensions given by the components of the tolerance vector,
as illustrated in Figure 4.7

To achieve a unique solution, an extra constraint cah\
be added. Let aj; = bj;, and therefore ajj = c¢;3/2 and bj, =
c;ji/2 are the solutions. Once the components of a and b have
been calculated, the final numerical value of Y, is obtained
from either 4.4 or 4.5. This new state represents the final
position of the actuator which satisfies both sensor
conditions within the bounds of the tolerance. The complete
algorithm for achieving two sensor cénditions is summarized
in Figure 4.8.

The extension of this problem to the case of more than
two sensors is not trivial. The problem‘is one of geometry,
since it requires the detection of overlapping~re§ions of
space which represent fuzzy states. Extending the problem in
the case of orthogonal correction vectors, is trivial since

each sensor condition can be met independently.

4.7 Summary

This chapter has defined a level of robot programming

"in which the indirection is towards the sensors. In this,

the aim of each movement of an actuator is to transform the
current reading from one or more sensors into a new set of
readings. This is sensor-level programming. The format of
the commands was illustrated in Section 4.3 and fhe
mechanisﬁé for processing and handling sensor information
were described in Sectioﬂs 4.4 and 4.5. In Chapter 6 of the
thesis, an implementation of these}command is*described.

By idenfifying sensors as either dynamié or static, the

error in a sensor's reading can be transformed into an

-85-

Move to the X, state, using gross-motion and
fine-motion in the normal way.

Y

Use sensory feedback to achieve the first
sensor condition and record the
coordinates of the final state as X;4.

Return to the initial state.

Use sensory feedback to achieve the
second sensor condition and record the
coordinates of the final state as X;,.

Sensor-conditions
cannot be met
(Error)

Is Equation
4,14 satisfied ?

Compute Y; from equation 4.4.

. 4

Move to the final position Y.

Figqure 4.8: Flow-chart illustrating the events in achieving
two sensor-conditions.

-86-

alternative frame of reference, the world frame, in which
the correction can be applied. Expressing the
transformations between the frames of reference with
homogeneous matrices allows the errors in one frame to be
easily transformed into another frame.

The termination conditions for a sensor-actuator servo-
loop extend beyond simply that of meeting the specified
sensor conditions. By defining a tolerance for each state,
the accuracy of the servoing can be made to reflect the
physical properties of the state. Unless the meaéﬁre@ent
process is nbise—free, reducing the tolerance will speed up
the servoing. The state tolerahce also has a role toplay in
movements to achieve two sensor requirements. By assuming
each state has“a non-zero tolerance, a'single ;;oint can be
found which satifies two sensor conditions within the bounds
of the tolerance., If the sensors have orthogonal correction
vectors, the problem is trivial, because each condition can
be met sequentially.

Although one or more of the termination criteria must
"have been met to terminate a staté>transfer,.the overall
positional accuracy to which the state was reached is
directly reiated to the performance of the measurement
process. If the measurement was erroneous then the final
position will reflect this error. The next chaptér considers
the effects of errors in discrete sensory feedback, and

develops algorithms to cope with noisy sensors.

-87-

CHAPTER 5

ANALYSIS OF ERRORS IN SENSORS AND ACTUATORS

-88-

5.1 Introduction

Although an off-line modelling system can work to a |
high accﬁracy, the positioning of components and the motion
of the manipulator are both subject to error. The
manipulatof will have a minimum distance of movement, the
resolution, which will govern the maximum attainable
accuracy. The accuracy is defined as the ability of the
manipulator to move to a position having been given only the
numerical coordinates of that position. As well as
mechanical effects, for example backlash, finite word-length
effects of a diéital controller can contribute to poor
performance. For off-line programming, it is the accuracy
which is the important parameter. For on-line teaching, the
kéy parameter is the repeétability, deﬁined as the ability
of the manipulator‘to return to a taught point. In practiqe,
the observed repeatabilty of the manipulator depends on the
configuration and position of the manipulator in the work-
space. In the long-term, mechanical wear will increase and
performance will reduce. |

»

This chapter addrgsses the source and éause of errofs
whi¢h occur in sensory assembliesj These errbrs are defined
as the difference between the actual and desired sensor
readings at a location. Errors introduced by ill-positioned
parts are the major cause of the total error, but
manipulator accuracy and'fepeatabiity'also contribute. A
third source of éfrqr, not usually considered, is sensor '
error. Although sensors are introduced to detect and measure

errors in the. part position and the manipulator, they may

themselves be a source of error.

-89-

Algorithms are developed which quantify the noise
levels in the sensors, the actuators and the system usingu
information from the feedback phase of the actuator
movements. The noise levels are then used to compute a
weighting factor which reflects the relative magnitude of
the measurement noise to the system noise, and can be used

to minimize the effects of errors from noisy sensors.

5.2 Sources of errors in sensory assembly

Three sources of error are considered, these are,
1. System errors - caused by ill-positioned
parts or ill-defined locations.
2. Aétuator errors - arising from finite accuracy
and resolution.
3. Sensor errors - arising from stochastic
variations in sensing and processing of data.

These are now discussed in further detail.

5.2.1 System errors

If, at the manipulator level of programming, the robot
.is instructed to move to a pre—fagght location and close the
gripper jaws to érasp an object, tﬁe success of the
operation depends on two factors. Firstly, the object must
have been present and in the correct position, and secondly,
the location must have been correctly taught to cOrrespond
to the intended p051t10n of the object. Thls is tantamount
to defining the pos1t10n of the manlpulator relative to the
object, but usually the positions are both defined relative
to another frame of reference, the world frame. In assembly.

operations, components may be fed from feeders or

-90-

dispensers. Although the nominal position of the component
is known, there may be some random variation about this
point. To some extent, errors can be corrected by the action
of grasping, although usually only in one dimension. In some
assembly operations the effect of errors can be reduced by
careful design, for example chamfering a hole to imérove the
reliability of a peg-in-hole insertion. The accuracy of
component presentation can often be increased, but at
greater expense in jigging costs. Furthermore, if the
assembly involves flexible materials then it is very
difficult to prédict the exact position of the material with

respect to the end-effector [8],[6],[99].

5.2.2 Actuator errors

"

Even if tﬁe components to be handled are precisely
locéted, there may still be errors in the grasping of the’
part by the manipulator. As an example, consider an
industrial robot fitted with a parallel jaw gripper used to
pick a peg from a hole andvplace it in a second hole. |
Assuming that the taught locations corresponding to the
"initial and final positions of the peg are correct, and that
the"peg is precisely located within the hole, any errors
introducéd mﬁst be caused’by either the manipulator or the
gripper. Closing the gripper jaws around the peg will exert
forces, which, if the peg is not centrally positioned within
the jaws ;>f the gripper, will tend to apply a laterai force
on the peg. When the peg'is witharawn from the hole by
moving the manipuiator, the"effect of this forée may result
in a positioﬁél error of the peg on the gripéer. Further

errors may be introduced if the initial position of the

-9~

manipulator at the grasping point is subject to error due to
the repeatability.

The repeatability of a manipulator depends on a number
of factors, including the

1. Position of the end-effector in the workspace.

2. Age of the manipulator.

3. Temperature.

4. Load.

It is likely that the quoted repeatability of an industrial
"robot representé an average value of a stochastic |
distribution. In an experiment to quantify the variation in
repeatability, a gripper-mounted area-array camera was used
to measure the . position of a boundary between a black and a
white region. Two experiments were performed. In the first,
the robot was moved between two points and the edge position
of the boundary in the image was noted when the camera was
positioned above the edge. The variation in the perceived
‘position of the boundary can be related to the positional
error of the robot. Thg second exgeriment was the controi,
with the robot being held in a con;tant position above the
edge point. The distributions of the perceived érrors are
shown in Figure 5.1 and Figure 5.2. When the robot is
stationary, the errors arise from quantization of the
analogue video‘signal and élso viﬁiations in the servoing of
the robot arm to haintainja constant position. For the caée
where the robot arm is being moved, the errors-arise from
the finite repeatabilty bf the robot. The results shown in

Figure 5.1 reflect the error in one cartesian component of

-92-

=
1
4
Number
of
occurances : -
—— 'JT{- v - - —Tfyﬂ———
-0.08 -0.0k 0.0 0.0L4 0.08

Error (mm.)

ggre 5.12 Repeatability error of the PumaSGO robot in the
x-comgonent of position.

+

Number -
of
oéccurances _ - - | [-

Jr L " . ¥ LA v
-0.01 -0,005 0.0 0.005 0,01
4 Error (mm,)

Figure 5.2: Sensing error with the robot stationar .

-93-

position and similar errors are to be expected in the other

components. The error distribution is approximately Normg;,

2

having a mean of 0 and a standard deviation of 0.013 mm® for

the x component of repeatability.

5.2.3 Sensor errors

Traditionally, sensors are used to detect and
compensate for errors in the system and the actuators. For
the peg-in-hole example, either vision or tactile sensing
could be used to measure the exact position of the peg on
the gripper. Although it is not usually considered, the
sensors may themselves be a source of error. The signals
produced may be subject to a random error, for example shot
noise in solid state cameras, or thermal effec?s in
potentiometricwencoders. Perhaps the most common source of
noise in sensing is from electrical interférence. This may
afise from heavy machinery causing voltage fluctuations on
the power rails, or from high-speed switching in digital
signal lines which run close to sensor signals. This source
of noise is a significant problem in an industrial
"environment, where electrical inférference may be
una;oidable. Although filtering can reduce the noise, there
is always tﬁe possibility of a change in the operating
conditions of the offending machinery causing a ghange in
the charqcter of the noise. A force sensor used in an
industrial ésSembly problem (described in Chapter 7) is
corrupted by ﬁoise from digifal éignal liﬁes controlling a
camera. A typical signal from this sensor is shown in Figure
5.3. The qomp;nent of the signal due to the force sensor is

a constant voltage level. Added to this is the periodic

-94-

0.7
a
5 0.6
(o]
Z
Q
"g O-5
FE)
a
o
g 0.4
-
@
.§ 003 . |
1 !
002 9 | 1
! |
- I
! t
001 | i
| |
| i
0.0 : L —

1 usec.

LA

A 4

time

Fiqure 5.3: Signal from a force sensor corrupted by noise.

Number —
of
occurances
™
t
- S ':J——l\—\——*!
60 65 70 75 80 85 90 95
' . Sensor
reading

F

igure 5.4: Distribution of readings from the nois

-95-

force sensor.

component induced from the switching in the digital lines.
Further noise is added by the successive-approximation
analbgue to digital converter, which is used to samplé the
signal. Using this sensor in a closed—lqop feedback system
causes measurement errors which reduce the efficiency of the
servoing. An error distribution from 2000 samples taken at 1
second intervals is shown in Figure 5.4. Although the
distribution of sensor readings is discrete, it can be
approximated by a Normal distribution. In practice, this
noise could easily be removed because it is at a much higher
frequency than ;he signal of interest. However, the noise
may be intermittent, and of vériable frequency and
amplitude. Noise removal under these conditions is much more
difficult. In Chapter 7, the effects of using tkis noisy
sensor in a closed-loop feedback system are considered.
Since the signals from the sensors will ultimately be
used to control the movement of an actuator, it is important
that the relationship between the actuator's frame of
reference and the sensor's ffame of reference is precisely
gnown. A modelling error hefe willeeduce the efficiency of
closed-loop servoing. If the actuator is being used to
position the sensor, for example on a gripper-mounted
‘camera, then the accuracy of the actuator is important. This
is discussed in Section 5.3.1. In addition to the.noise
arising from the physical‘sensor.and transformations,
further noise can Le introduced as the signal is processed.
In digitization, the need to guantize the signalkto a finite

number of signal levels is equivalent to intro&ucing a noise.

of magnitude a2/12, where a is the amplitude increment

-96-

between adjacent levels [100]. This is one of the causes of
the error shown in Figure 5.2 for the estimate of position
using the stationary camera.

Although the sensor may initially be noise-free, there
could be a low frequency component of noise arising from
wear. This is especially true for sensors relying on
resistance changes, such as potentiometric encoders.
Furthermore, in the event of a total sensor failure it is
important that the condition is detected as soon as possible
and an alarm issued. Because of these effects, it is
desirable that the noise level of the sensor be monitored by
analysis of errors in the actual assembly. By estimating how
much of the perceived error is due to the sensor, it should
be possible to provide an optimal estimate of the sensor
noise and hence ensure that the correct level of credence is
assigned to the information from the sensors. The assignment
of credibility to the sensor reading could be extended to
the so-called 'sensor-fussion' problem [101]-[104], where
the requirement is to combine information from many sources
to obtain a best estimate of a state. The problem of
redundant sensor data is beyond the ambit of this.thesis.

The combined effects of the sensor errors will mean
‘that from an ensemble of sensor readings there will, in
general, be a statisticalvdistribution centered oﬁ'a nominal
mean. The §ariance"of this distribution will repfesentva

measure of the repeatability of the sensor.

5.3 Processing noisy sensor information

Consider a manipulator which is instructed to move to a

-97-

taught location A, which should represent the position of a
component. Because of some error in the positioning the
component, there is uncertainty as to the exact location of
A. Assume that the error can be represented by a random
variable having a Normal distribution with a mean of zero
and a variance u. To cope with the uncertainty in tne
position of the part, a sensor is used to determine the
exact position of the manipulator and to reduce the error to
zero. Assume that the readings from the sensor have a noise
component which can be modelled by a Normal distribution
having a mean of zero and a variance v, this is the
measurement noise. After the application of feedback, the
final position of the manipulator, with respect to the part,
will be subject to some uncertainty, due to the sensor. From
the properties of the Normal distribution it is evident thet
there is a 66% probability that the final position of the
manipulator is within +/v of the intended position. Call the
final position B and note that the error in B does not
depend onu , onlyon v. If v is large, say much larger than
u, then the bound on the final error is also large. Under
Ehese circumstances it’night haveﬂgeen better to move
dire;tly to A, ignoring the sensor information. Hence, there
Ais a trade-off to be made between the credence given to the
sensor information and the initial estimate. The relative
noise levels of the measurement noise and the system noise
will govern the‘credence given to the sensor readings. If
the noise from the sensor is high then more.emphasis needs
to be placed on the current estimate of the poeition. If the

sensor noise is low, however, the reading from the sensor

-98-

can be used with more confidence.
In general,
X = K;.A + K,.B | (5.1)
where A is the current estimate of the position,
B is the measured position, |

1,K2 are weighting factors,

K
and X is the new estimate of the position.

The numerical values of K1 and K, will be derived from a
knowledge of the variances of the system noise and

measurement noise respectively.

5.3.1 Consideration of actuator noise

For the problem of inserting a peg into a hole, it is
evident that any error due to the positioning of the
manipulator is an additional system error. The total error
in the part's positionwill be the sum of the manipulator
error and the errors due to the hole position and the
position of the peg on the gripper. The variance of the
overall noise can be expressed as the sum of the variances
of the individual noise components.

-~

As well as cOntributing to thé system néise, the
actu;tor noise can also contribute to the measurement noise.
va a vision sensor is mounted on the robot end-effector, the
overall accuracy is governed by the sensor and the |
positional accuracy of the robot. Errors in the position of
the robot will fesult in an errdr in the perception of
object. This applies also to é force sensor used in a robot

gripper, where the overall accuracy is dependent upon both

the sensor and the gripper.

-99-

Therefore, in general, both the system noise and the
measurement noise could be modified by considering the
actuator noise. Whether the actuator noise contributes té
the system or the measurement noise, depends on the
configuration of the actuator and the sensor. For a dynamic
sensor, the ill-positioning of the actuator will beban
additional measurement error. If the manipulator is holding
a component to be sensed by a static sensor, the actuator
contributes an additional system error.

Although the added noise from both sensors and
actuators can be assumed to have a Normal intensity
distribution, it is also necessary to look at the frequency
components of the noise. This is the subject of the next

section.

5.4 Frequency domain analysis of errors

Taking an average of sensor readings is equivalent to
applying a low-pass filter to the noise. If the noise is
only high-frequency, such averaging may be quite effective.
However, for low frequency ﬁoise, the effect is minimal. The
;epeatabiliﬁy error for a pééitiona@ component of the Puma

: I

560 robot is shown in Figure 5.5 for 3500 samples. The
frequency transform of this, obtained using the Fourier
transform, is shown in Figure 5.6 It is observed that there
are components of noise at each of Fhe discrete ffequencies
within the time sample. Tﬁe low frequency components of
noise represent thé slow drift in repeatability over the
experiment time. Tb defive these results, the robot was
moved between two taught locaﬁions and the positional error

at the test point measured using the method described in ,

-100-

Distance (mm.)

0.08 -

~0.08 1

500 1000 1500 2000 2500 3000 3500
. Cycle.

Fiqure 5.5: Répeatability error of the Puma560 robot.

1.40

1.05 1

‘Amplitude (mm.)

0,70 1

|

0 0.03 0.06 0.09 0.12
Frequency (Hz.)

Figqure 5.6: Frequency components of the measured repeatability.

-101-

Section 5.2.2. The time taken to complete one cycle was
about 8 seconds and hence 3500 cycles represents an
experiment time of 7 hours 45 minutes. In the frequency
domain, the higest frequency is therefore 0.125 Hertz and
the lowest is 3.6 x 10'.5 Hertz.

The frequency spectrum shown in Figure 5.6 represents ’
the noise components of the measured repeatability. Because
the sampling frequency is very low, however, the actual
source of the error could be a narrow band of high frequency
noise, which, due to aliasing effects, appears as a spectrum
of low frequenc; components. In practice, it is the
frequency spectrum of the measured repeatability, as
depicted in Figure 5.6, which is of interest.

- The measurement error from an area-array éémera is
shown in Figure 5.7. The data were obtained by computing the
position of the x centre of gravity of an object over 2000
samples with a sampling period of 3 seconds. The frequency
analysis of the data is shown in Figure 5.8.

It is evident from the'experimental results that there
are noise components over the whole range of frequencies of
interest. In practice, higher frequ;ncies will be of
interest, although these are limited to about 10 Hertz at
‘the maximum because of the nature of the problem under
consideration. It is expected that }f the frequenéy of the
repeatability meésuremenfvwas inéreased, the form of the
frequency response at the‘highest‘frequencies would remain
the same. In the ffequency analysis, the high ffequency

noise arises from stochastic variations in the measurement

process. At the other end of the spectrum, low frequency

-102-

Distance (mm.)

0.009

0.006

0.003 -

0.0
~0.003 (I TEAYI It i ?f. A 1] 1 Iﬂi

"00006 b

—O 0009 h

-0,012 1

500 1000 1500 2000
‘ Cycle.

‘'Fiqure 5.7: Measurement error from an area—ariax camera.,

005 b

0.37 1

‘Amplitude (mm.)

) 1
——

. : | o M
U
o M" | m\}W"W’;WWMV\}b\%m, WMWH N W{‘V\‘M ﬂh |

0 0.08 0.16 0.2k 0.32
Frequency (Hz.)

Figure 5.8: Frequency components of the measurement error.

-103-

drift arises frombtemperature variations, which will
particularly affect potentiometric encoders, and also
lighting variations, which will affect vision sensors.
Computing a numerical average of an ensemble of sensor
readings will not necessarily produce a.significant
improvement in accuracy. This is particularly true for a
gripper-mounted sensor, where an initial positioning error
due to the robot cannot be eliminated by averaging data from
the sensor. Although the noise from the sensor itself will
be reduced, the ill-positioning of the robot gives a |
constant additi;e term, the effect of which could only be
reduced by moving the robot éway from the state and then
back again. Whilst taking multiple sensor readings is
féasible, repeated movement of the robet arm ié not.

" In summary, it can be said that the noises introduced
from sensors and actuators can never be completely
eliminated through averaging, because there are components
of noise at low aé well as at high frequencies., It is
therefore assumed that within the frequency range of
v;ntérest the noises are approximatgly white.

« The problem of processing the'errors to compute the
best estimate to the desired state may be tackled using a
“Kalman filter [79]. Although processing sensor information
with a Kalman filter has been prev;ously reported [78], the
work described in this cﬁapter shows how the estimétes of
the noises from tge system and the measurement can be
updated, and hencé how intermittent noise can bé detected

and processed.’

-104-

5.5 Application of a Kalman filter in the processing of
information from sensors

Assume that a task is repeated indefinitely and let-gi
be the state representing the position of the actuator on

the ith

cycle. This state will be a vector having six
components, three translational and three rotational, which
uniquely specifies the position and orientation of the |
actuator in space. The state, which represents the location
of an object to be handled, is nominally constant but is
subject to some random error between cycles due to component
positioning. This situation may arise when a part—feeder
presents compon;nts with a certain error tolerance. The
system model is trivial sincé the only change to the state
is the random perturbation caused by the noise. Hence, the
change in the state between cycles is given by '{:he system
model, as

Rigr = %+ (5.2)
where gi is the noise distribution on the ith cycle, and is
assumed to be white, having mean r, and variance u. It is
‘assumed that the noise compdnents of Qi are uncorrelated,
and hence u is a diagonal matrix.w |

« Each measurement of X5 is subject to error from the
sensors,

Z, = HX, + R, (5.3)
where H is a matrix defining the rglationship betﬁeen the
components of the“locatién X and the components of the
measurement vector gi. The error in the measurement process
is characterized by the thte noise Bi' which h;s a mean of

0 and a variance Ve

The measurement model, represented by equation 5.3,

-105-

will involve a number of stages, to transform the error in
sensor-coordinates to a world vector, which can be directly
cohpared with the components of éi’ Consider, for example, a
gripper-mounted area-array camera which'is used to locate
the centre of a hole in which to insert a peg. The first
step in the measurement process is to derive an error in
terms of sensor coordinates, in this case pixels. This error
must then be transformed into world coordinates by dividing
the perceived error by the number of pixels per millimetrg.
Finally, this error, which is in the sensor's frame Qf.
reference, must be transformed to the world's frame of
reference so that the appropriate correction can be applied.
For the case where the sensor is attached to the actuator,
this transformation will depend on the‘positiog of the
actuator.

Hence, equation 5.3 represents only a partial model of
the measurement process since Z; is not derived directly
from sensor readings. By ensuring that the process of
transforming the sensor-errbr into the world-error also
includes a stage of aligning the chponents of g(_i and -Z—i'
the value of H in equation 5.3 is effectively I, the
identity matrix. Although this would simplify the
formulation of the Kalman filter, there is a problem because
the measurement vector w;ll not, in general, provide an
estimate of all s:Ex components of a location. Indeed for an
area-array camera, the meaéurement vector will contain only
two components cofresponding to measured valueshof the x and
y components of the hole position (say). The solution is to

have a H matrix which is diagonal, where each element is

-106-

either a 1 or a 0. A value of 1 indicates that the sensor
provides an estimate of that component, whereas a value of 0
indicates that the sensor provides no estimate. If H were
assumed to be the idéntity matrix, then the case of a sensor
providing no information on a component of a location would
be indistinguishable from the case of the sensor providing
an estimate of 0.

The problem can be formulated as one of seeking the
best updated estimate of X; from the noisy measurement va}ué
Z. and the current estimate X;. The normal Kalman filter

1

equations may be written down [79].

System model POXy =X 0+ Qg where Q. = N(r;,u;)
Measurement model : 2. = H.X; + R; ‘ where R, = N(O,vi)

Error covariance

extrapolation : Pi(-) = Pi_1(+) +uy 4 (5.4)

State estimate

update 2 X (+) = Ki(-)+Ki.(§i - H.gi(—))_ (5.5)

Error covariance

update : Pi(+) = (I - Ki.H).Pi(—) - (5.6)

Kalmgn gain | -1

matrix : K, =P,(-).H.[H.P,(-).H + v,] (5.7)

1
: \
!

In these equations Pi(—) represents the error covariance

(the filter's estimate of the variance of the error) prior

th

‘to being updated on the i cycle, Pi(+) represents the

value just after updating and Ki represents the Kalman gain

on the ith

‘cycle. Since it is assumed that the components of
the noise vectors are uncorrelated, the matrices P, K, Q, R,

uand vwill all be diagonal. Hence,

-107-

P.(1,1) 0
P.(2,2)
Pi = ces
0 P, (6,6)

is a diagonal matrix where Pi(m,m) is the estimated variance

th

of the m component of the error in the state,

H(1,1) 0
H(2,2)
H= e s e
0o H(6,6)
is a diagonal matrix where H(m,m) = 1 or 0 to indicate for

which components of the state the measurement provides

information, and

K;(1,1) 0
K.(2,2)
i
Ki = - o a
0 K;(6,6)
is a diagonal matrix where Ki(m,m) is the Kalman gain for
the mth component of the state.

Define the vector K, to be the diagonal elements of the
matrix K.. Likewise the vectors P;r u; and v, are defined to
represent the diagonal elements of the matrices Pi’ u, ., and
vy respectively. |
. If numerical vvalues fér the nm’ise parameters r, uand v
can be estimated, then it is poésible to optimally combine
the measurement and the previous estimate to provide the new
estimate. The elements of Ki’ the Kalman gain, takg values
between 0 and 1 and specify the weighting'of the measured
error compéred to éhe current estimate. From equation 5.5, .
it is evident that if Ki ='O, then Xi(+) = _}_(_i(-), hence the
measured value Z; is.not used in calculating theinew

position. This corresponds to the extreme case.when the

measurement noise is very much larger than the system noise

-108-

and consequently all sensor information is ignored.
Conyersely, if K;=1 equation 5.5 reduces to §i(+) = Zi and
the‘new position is equal to the measured position. This is
the usual way of processing sensor data,‘and assumes that
the error in the sensor is zero. When using the Kalman
filter to process information from sensors, the sensor error
must firstly be transformed into a world error. This error
is then combined with the existing representation of the
stafe using the Kalman gain as a weighting matrix.

As an example of the operation of the Kalman fil'ter in
optimally estim;ting the position of a part, consider the
task of placing a peg in a hole. The position of the hole
and the position of the peg between the jaws of the gripper
are both subject to some uncertainty, characterized by a
random variable having a mean of 0 and a variance of 4
(considering only one component); this is the system error.
An overhead vision system is used to find the hole, although
the sensing and processing is subject to error, which can be
modelled by a random variable having a mean of 0 and a
variance of 2. For simplicity, cons%der oﬁly the y
component of the position of the hole. In practice a similar
approach would be applicable for the x, z and rotational
~componénts. The centre of the hole is nominally at position
100, although the system error means that the exaét position
is uncertain. U51ng the vision sensor, the hole position is
observed to be 115. The problem is to find the best estimate
of the hole position knowing that both 100 and 115 are
subject to error. Assumé that the assembly is already a few

cycles 0l1ld and that the steady state values of P and K, Ps

-109-

and Ks say, have been reached. (In practice the rate of
convergence depends on the initial value of P, Po; it
usually takes less than 6 iterations to get to within:v1 % of
the final value.)

Using the values of Q; and R; given, P and K are 1.46

S
and 0.73 respectively. Therefore, from equation 5.5, the
best estimate of the centre of the hole is

Yi,q = 100 + 0.73.(115-100) = 111
Therefore the hole is predicted to be at position 111. Note
that this is only the best estimate of the hole position
from the given éacts, the hole may be at some quite
different position in practice.

The Kalman gain computed from equation 5.7 represents
the optimized form, in a least squares sense, o% the
weighting coefficients in equation 5.1. In essence, the
magnitude of the Kalman gain gives an indication of the
credence given to the sensor information. The error
covariance is an indication of the filter's estimate of the
error in the state and this éan.be.related to the confidence

as discussed in Section 3.2. This is now gquantified.
) i

"

5.5.1 State confidenqe from the Kalman filter

The cohcept of a sfatistical confidence to reflect the
magnitude of previous errors was introduced in Section 3.4.
For a s‘tate. X, which has value‘_}egi on cycle i, let the
confidence be Ei; The confi@ence bf a state takes values
between 0 and 1, corresponding to the certainty with which

the state is known. Since the error covariance, P.,

1

indicates the filtef's estimate of the error in the state,

-110-

let I, be computed from

T, = (I + 1>i)‘1 . J | (sig)
where J = (1,1,1,1,1,1)°
and I is the identity matrix.

From equation 5.8, it is evident that as the error in
the estimation of the state increases, so T, decreases to
indicate a reduced confidence. Similarly, as P, approaches
0, indicating that the error in the estimate of the state is
also approaching 0, Ei approaches 1 for maximum confidence.
The purpose of calculatiﬁg the state confidence is to
compute the velocity of the actuators in the vicinity of a

state. The equations derived in Chapter 3 achieve this, with

the state confidence being computed from equation 5.8.

5.6 Derivation of noise variances for the Kalman filter

'To use the Kalman filter for processing the sensor data
requires estimates of the variances of the noises in the
system, the actuator and the sensor. Section 5.2.2 showed
the variation in one comporient of the position of the Puma
robot resulting from repeatéd movements to the same
location. By apprqximating the errgr distribution as Normal,
an error variance can be obtained. Although similar
experiments could be performed for any actuators of
‘interest, an approximation to the noise variance can be
obtained using the repeatgbility. |

Assume that ﬁ?e quoted repeatability of an actuator
represents 1 standard deviétion of the magnitude error,
which is assumed tb have a Normal distribution.LTherefore

each component of the error in x, y and z has a standard

deviation eéual to 1//3 of the quoted repeatability. From

-111-

the properties of the Normal distribution, this implies that
66% of the time, the manipulator will be positioned to
within the quoted repeatability of the desired location, and
to Within twice the repeatability 95% of the time. In view
of the expected variations in repeatability with position,
loading and temperature, this is probably quite a reasonable
estimate. A similar approach can be applied to the
orientation components of position, where the quoted
repeatability can be used to estimate the standard deviation
of the three rotational components. The estimated variance
of the actuator noise is therefore

Estimated variance of error = (repeatability)2 / 3
for both the translational and rotational components of
pesition. As an example, the Cincinnati T-726 Industrial
Robot has a quoted repeatabiiity of 0.1 mm. Therefore the
estimated variance of the positional error is

(0.0033 , 0.0033 , 0,0033 , 0, 0, 0).

The rotational components are set to zero in the absence of
any information concerning rotational errors.

The experiment described in Section 5.2.2 illustrated
that the sensor noise can be a'pproximated by a Normal
distrihution."In practice, it would be possible for the
‘robot workcell to run through a self-test phase, in which a
distribution of sensor readings was collected for each
sensor, and the corresponding variances calculated. This
could be done at the deve lopment phase, or prlor to
execution of a task, to check the integrity of the sensors.
Furthermore, it should be possible to initiate this self- -

test whenever significant errors are detected within the

-112-

assembly.

An assessment of the system noise caused by ill-
positioned parts is more difficult. A generous guess may be
one solution, although more rigorous approaches which depend
on considering the nature of the errors, for example the

work of Brooks [45], should be feasible.

5.7 Updating noise variances through analysis of past errors

Although the initial estimates of the system, actuator
and sensor noises are useful, the caéability to update these
values based on-previous errors would be a particularly
valuable facility. This would allow automatic assessment of
the performance of a sensor and hence allow a malfunction to
be detected at an early stage.

_In general, an error measured duriﬁg the application of
sensory feedback will comprise a‘system error, an actuator
efror and a sensor error. The problem is to decompose this
perceived error into the three components. If this were
possible then new estimates of the variance of the state,
actuator and sensor noises could be derived and hence an
Sptimal value of the_Kélman gain ésmputed.

"In deriying the algorithms for updating the measurement
and system noises, the éssembly operation is assumed to be
repeated over a number of cycles. Each cycle comprises a
series of gensor-directed commands, which instruct an
actuator to move to a pre—taught'point and then apply
sensory feedback to achievé some sensor conditions. This was
illustrated in the timing diagram shown in FiQure 3.5. In

achieving the sensor conditions, the actuator will go

-113-

through a numbef of iterations, involving movement and
sensing. This is discussed in more detail in the next

section,

5.7.1 Estimating the measurement and system noises

Depending on the configuration of the sensor and the
actuator, the measurement noise will, in general, be a
combination of the sensor noise and the actuator noise. The
algorithm described in this section provides a means of
estimating the measurement noise, which must be further
processed (Sect%on 5.8) to obtain estimates of the sensor
noise and the actuator noise individually. In order to
estimate the measurement noise, it is assumed that a process
of sensing and then moving the actuator is used until the
pérceived error in the sensor is zero, or until the
magnitude of the correction is less than either the state
tolerance or the actuator's resolution. Hence the sequence
of events is as follows.

1. Move the actuator to the state.

2. Evaluate thé error Setween the current sensor

reading and the desired segsor reading.

"3. Move the actuator to try and eliminate this error.

4. Repeat steps 2 and 3 until the distance moved by the

actuator is less than some threshold.

The process of sensing and then moving the actuator (steps 2
and 3) is termed an iteration and a number of iterations |

(sufficient to satisfy step 4) comprise a cycle. The number
of iterations required to achieve any given sensor

conditions will depend on the extent of the measurement and

~114-

system noises. If there was no system or measurement noise,
the number of iterations would be 0, because the movement in
step 1 would immediately satisfy the sensor conditions. if
there was system noise but no measurement noise, then one
iteration would be required because the error sensed in step
2 would be immediately corrected for in step 3. If‘there was
both system and measurement noise, the expected number of
iterations would depend on the relative magnitude of the
noise components. The distance moved by the actuator in step
3 will be recorded and used to estimate the extent of the
measurement noise. The criterion used to terminate the
servoing was discussed in Section 4.5.

Consider a state §i, at which some specified sensor
conditions are“to be met. Assume the system noise, Q, has a
Normal distribution of mean r and variénce u. The components
of u represent the variances of the corresponding components
of the error in the state. Let M, the system error, be a
sample taken from this distribution. Furthermore, let the
measurement noise have a Normal distribution with a mean of
0 and a variance v, that is R=N(0,v). The components of v
}epresent the varianceé of the cogéespondingvcomponents of
thelérror in”the measurement.

On the first iteration there will be some perceived
error which is the sum of the system error and the
measurement error. Denote the specific measurement error on
iteration j as §j;‘which ;s a ndise vector taken from the'
distribution R. Let 25 be the error vector in the jth
itefation. Ini?ially the perceivedverror is Ei, where

E, =M+ S (5.9)

=1 1

~115-

To reduce this error to zero, the actuator will be moved a
distance specified by the product K4§1, where K is the
Kalman gain. However, because of the measurement error, éhe
error in the final position will be given by M-K(M+S,),
although when this error is measured on'thé next iteration
it will be perceived to be
E, =M - K.(M + S;) + 8, (5.10)

where S, is the measurement error on the second iteration.

It is useful to look at the distance moved by the
actuator in order to achieve zero sensor error in each
iteration. Denoting Ej as the vector specifying the distance

th

moved on the j iteration, gives

D,

Dy = K.(M - K.(M + S4) + S,)

K.(M + S;)

23 = K-(ﬂ - K.(M + _S_1) - K.(M_ - K.(M + §1) +§2) + §3)

j may be written, they

become complicated. However, it is possible to express ;%

Although expressions for further D

recursively in terms of Di_q¢ Qj—z s Dy That is,

J
D, = K.(M + 8;)
D, = K.(M - D, +8,)
D, = K.(M - D, - D, + 8;)
'\ Dy =K.(M-D -D,-Dy+ 8,

As a check, it may be seen that when the measurement noise
has a mean and variance of 0, such that §j = 0 for all j,
then

'_D—1 - K.-M; =

22 = K. (_M_ - K._M_)

Under these cicumstances, since S is small K will be almost

I. In the limit as § » 0, K » I and the distance moved by

-116~

the actuator is M in the first iteration and 0 thereafter.
In other words the actuator makes only one movement to
achieve the sensof conditions, and the magnitude of that
movement is exactly equal to the system noise.
Returning to the general case, where S is non-zero, Qj
may be expressed in closed form as
j-1
D. = K.(M+S;) - KZ.ZE}I—K)l_1.(M+S.) (5.11)
=3 ==j ==j-1
1=1
Since the expected value of S , E[S], is 0; the expected
value of —D—j may be estimated as
j-1
E[E%] = K.M - K2, ZEZI-K)1-1.M (5.12)
1=1
The summation can be evaluated from the sum of a geometrie

series, as

E(D;] = K.M - K.[I-(1-K)I 7" 1.u (5.13)

hence

K. (1-K)3 "1 .M (5.14)

Thus, the distance to be meVed byﬂFhe actuator on each
iteration is the sum of the expected value, computed from
equation 5.14, and a component arising from the measurement

" noise. This is illustrated in Figure 5.9, which shows the
expected value of Qj wite a superimposed uncertaiety bound
arising from the‘measurement noise. The uncertainty bound .
shown represents 1 variance of the measurement error in Qj‘
When j=1, the errer has varianceiKzg, where v ie'the
variance of S."As j gets large, the variance of the error

approaches K.v.

-117-

Uncertainty bounds from
measurement

e
\V]
w
=
/
U
/
/
Ov
-3

~~._ TIteration (3)

Figure 5.9: Expected value of Dj with uncertainty bound
for each cycle,

From equation 5.9, the error in the first iteration, §1, is
the sum of the system error, M, and the measurement error

S,. Because the expected value of S is zero, in the absence

1‘
of any ¢ prioni information of the error in M and S, the

best approximation of M is 31. However, the relative

magnitude of the noise in M and S is reflected by the value
’ !

of K, the Kalman gain. Thus, the best estimate of M after

the first iteration is

M, K.E (5.15)

1

or

M, =D (5.16)

1 =1

In each iteration, the ratio of the error from the
measurement to the error from the system, increases.

Furthermore, if the uncertainty bound in Figure 5.9 was

-118-

small, K would be close to I and hence, from equation 5.14,
the information in iteration 2 to calcuiate M would be very
small, Conversely, if K was small, the uncertainty bound
would be large and the estimate of M would be erroneous.
Therefore, the additional information available from
iteration 2 to the end of the éycle is small and is not:
considered. Thus, equation 5.16 represents the best
approximation to M in the cycle.

The computed value of ﬁ is an approximation to the
error due to the systemon this particular cycle, and
represents one sample from the distribution Q. Clearly, to
estimate the mean and variance, r and u, of the distribution
Q will require more samples derived from prior and
subsequent cycles. Therefore, for each cycle it is necessary
to take the approximation to M and comgine this with the ﬁ's
computed from previous cycles to estimate of the mean and
variance of the distribution Q. Rather than storing all
previous ﬁfs, it is possible to compute an estimate bf the
mean and variance recursively. This is discussed fufther in
Section 5.7.4.

Once a value of _I\E‘,has been de}ived, the'variance of the
meagﬁrement goise can be estimated. This is now described.

Equation 5.11 can be partitioned into two components,

one due to the measurement noise and one due to the system

noise, hence

-119-

+ K.M - K2, E (1-x) 17 .M (5.17)

1=1
If M were known, a numerical value for the system error
component could be computed. This is not the case, althoughA
from equation 5.16 an estimate of M can be produced. In the
first few iterations of the cycle this estimate will be |
inaccurate, but:. accuracy will improve as j increases. Hence

for each P—j' subtracting the estimate of the system error

component, and calling this modified vector 23 , gives

where M is the best estimate of M obtained from equation
5.16. Therefore,
j-1
2 1-1
D! e = . - .S, 5.1
Di = K.S; - K E(I K) 851 - (5.19)

1=1

The term K2.‘(I-K)l'1 is alway\‘s small (assuming 1#1),

because the elements of K are bounded between 0 and 1.

Hence, equation 5.19 can be approximated by

2 "
D! = K.S. - K°.S. 5.20
=3 TS =3-1. ()
For a set of numbers {A} having variance b, the variance of
the set {c.A) is cz.b. Hence, since the variance of § is v,

considering a set of _D_% in equation 5.20 givesi

Var(n}} = K%.v + K.y (5.21)

~120-

Hence the estimated variance of the measurement noise is

$ = Var{gjt}.(xz + kH (5.22)
AsAbefore, the computation of the variance of {E%} can bé
done recu;sively, obviating the need to store each Qé in the
cycle.

Hence, the computation of the average correction
distance, over a number of iterations and a number of
cycles, gives an approximation to the variancé of thg
measurement noise. For each iteration, Qj represents the
correction applied by the actuator in correctingrfor the
perceived error. From this, the estimate of the component
due to the system error is subtracted giving the vector Q}
Following this, the variance of the Qés is estimated, and v

computed using equation 5.20.

5.7.2 Computation of weighted average noises

It is evident from equation 5.22 that the accuracy of
the estimate of the measurement noise depends on the number
of movements made by the actuator in each cycle, i.e. the
number of iterations per cyéle. In practice, there is one
,sample from a statistical distribution for each movement
made. This means that estimation o% the noise is most
accurate when the effect of the noise is most pronounced.

- For the case of small noises, the estimation of the variance
and mean of the distribution is ingccurate.

This"situation can be improved'by taking an average of
the estimated meagurement'noise over a number of previous
cycles. Although a large number of samples is desirable to

provide a better average, the size must be limited or

weighted to ensure the algorithm remains sensitive to

-121-

changes in the characteristics of the noise. If the average
measurement noise was computed using a recursive average,
the sensitivity of the algorithm to detect a change of mean
would decrease with each iteration. This approach would be
satisfactory if the characteristics of fhe noise were
constant, however this cannoﬁ be assumed. Therefore, in
computing the average, more emphasis needs to be given to
recent samples. This can be solved by defining a weighting
function, by which each sample is multiplied. A suitable
form of this weighting function is,

F(i) = a.eB-i (5.23)
where A and B are constants.‘

Define a particular weighting function, such.that
F(i)=1 when i=T, the current cycle, and F(i) = 0.5 when i=T-
10. This means that the most recent sample is assigned a
weight of 1, and a sample 10 cycles ago is assigned a weight
of 0.5. The form of this weighting function is shown in

Figure 5.10.

1.0 1

F(i)
Weight

0-5 h

[k et R R R LR LR it

T-10 }
Cycle (i)

Figure 5.10: The weighting function.

-122-

Given these conditions, A and B can be evaluated and the-
weighting function written as,

F(i) = e BT ¢B-d (5.24)
where B = 0¢1.Log(2) = 0.069.

If B is increased, proportionaly less credence is éiven
to previous samples, and in the limit only the current
sample is considered. There is a trade-off between the
ability to react to changing noise characteristics, which
requires a large B, and'the smoothness of the estima#e,
which is enhanééd by reducing B. This effect is illustrated
in Figures 5.11a and 5.11b which shows the results of a
simulation in which the mean value of a random variable is
eétimated using a normal recursive average and”a weighted
recursive average. For cycles 1 to 50, the mean value is 1
and the variance is 1. For cycles 51 to 100 the mean is
increased to 2. 1In Figure 5.11a the value of B is 0.069 and
it is observed that the estimation of the mean using the
weighted éverage is more reéponsive than the non-weighted
average to the change in thélneanagt cycle 50, but contains

: '
a larger noise component superimposed on the estimate. The
effect of increasing B to 0.14, (which corresponds to
"F(i)=0.5 when i=T-5) is shown in Figure 5.11b. It is
observed that although the response at cycle 50 is more
pfonounced, the,additionél noise caused by increasing B is
undesirable. In practice a choice of B as defined by
equation 5.24 appéars reésonable.)
In addition to the weighting factor used to reflect

potential time-variation of the noise, it is necessary to

-123-

2.20 Weighted average s ”h

.....
K

1 .76 h :.-'

Estimated mean

1.32

Normal average

0.88

0.44

0.00 M] ¥ T
25 50 75 100
Cycle(i)

Fiqure 5.11a: Estimation of the mean value of "a random variable
using B=0.069 (mean = 1 for i < 50 and mean = 2 for i > 50)

2.20 | S
8 ANAN PRI
8 Weighted average | ¢ f
?) 6 I': A' ,.I ‘.l,'ll‘ Il-
+ 1.7 T , . :. ,\: "
g R
-
FL}
(2]
£
" 1.32
0.88
0.44
0.00 i . ' - ,
25 50 75 100
Cycle(i)

Figure 5,11b: Estimation of the mean value of a random variable
using B=0.14 (mean = 1 for i < 50 and mean = 2 for i > 50)

-124-

introduce a further weighting factor to reflect the fact
that some estimates of the measurement noise will be
inherently more accurate than others. The accuracy debends
on the number of iterations from which v was computed.

Therefore, define W, to be the number of iterations (equal

th

to the number of actuator movements) on the i cycle.

5.7.3 Calculating measurement noise by a weighted-average

The expected value of y can be expressed as,

T
1
E[v] = LT . L1°¥1 (5.25)
1 _
I l=1
where L1 is the weighting value assigned to the lth sample

"

and T is the current cycle number. Using the weighting
function defined by equation 5.24 and the weight Wl to
reflect the number of iterations over which the estimate was

calculated, the estimated measurement noise wvariance is

T , .
. = 1. (e BT Bt w v,) (5.26)
T v ' 1°=1
T . 1=1 ~ v

|

where YT, the cummulative sum of the weighting factors, is

_ E -B.(T-1) -
Yo = e | My (5.27)

To avoid having to calculate this summation after each

given by

cycle, the estimate is expressed in a recursive form.

Replacing T by T+1 in equation 5.26 gives

-125-

T+1

S _ -B.(T+1) B.j
Vo1 = %. (e .e .Wj.zj) (5128)
T+1 A
j=1
T
_ E -B.(T+1) _B.j
YT+1 .
J=1 .
(5.29)
which expressed recursively is
& = 1 (e By O+ v W) (5.30)
—T+1 v TTTT=T 7 —T+1°"T+1 :
YT+1

This allows new estimates to be calculated on the basis of

the current variance iT and the newly recorded value, Vo

+1

Inasimilar way, Y can be expressed in a recursive
form. Replacing T by T+1 in equation 5.27 gives

T+1

_ E -B.(T+1-1)
Yooq = e Wy (5.31)

Y. . =e By +w (5.32)

Therefore, following each cycfe, the value of ¥
obtained from equation 5.22 is used to compute a weighted-
recursive average using equations 5.30 and 5.32. This yields

a new estimate for the variance of the measurement noise.

5.7.4 Calculating the system noise by a weighted average .

Each cycle gives a siﬁgle sample, M, from the system
noise, Q, which is assumed to be Normal of mean‘g and

M's, an

variance u. By ‘taking an average of successive

approximation to r is obtained. As described in Section

-126-

5.7.2, the estimate of the mean must be weighted to take
into account possible time variation of the noise. However
it is not desirable to weight the M estimates using the
number of iterations in the cycle. Hence, replacing W by 1
in equations 5.30 and 5.32 gives a relationship to calculate
the weighted recursive estimate of the mean value of the

system noise, r, as

2 -B A ~
Epgq = %'.(e Yo.Eq + MT+1) (5.33)
T+1
(] .]
where YT+1 is g}ven by
" -B o1
Yp,1= € " Yq + 1 (5.34)

The estimation of the weighted recursive variance of
the system noise can be achieved using a similar line of
reasoning. The variance of a set of numbers {X} is defined

as,
T

Var{x} = 1 .le - %)% (5.35)
(T-1)
. 1=1
where X is the mean of the set of numbers. Upon substitution

of the weighting functions, the estimated variance of the

. ~
system noise is

. T
A E -B.T _B.l . A (2

where Y& is defined by.equation 5.34, and £ by equation

5.33. This can be ‘expressed in the recursive form.

Considering Yn, q o+

-127-

T+1

A -B.(T+1) _B.l - A 2 .
_1_1_T+1 =Y_1‘ L] e < .Wl.(_l‘ﬁl - £T+1) (5.37)
T+1 1=1
T
- E _B'(T+1) B.l ~ A 2
= ;_l o{ e . .2 -ch(_M_l - £T+1)
T+1 1=1
W (Mo = B)2} (5.38)
T+1°'=T+1 =T+1 *
making the approximation £4 = £q,4 9ives,
4., =1 .(e By 6. + W M . - 2.)2) (5.39)
=T+1 = 5" *TT=T T+1° ' =T+1 =T+1 :
T+1

which is the required recursive form.

It is therefore possible to estimate the mean and
variance of the system noise using weighted averages.
Equations 5.33 and 5.39 allow the estimétion of mean and
variance respectively, and do not require storage of past

data because of their recursive formulation.

5.7.5 Updating noises in the absence of information

If the system and measdrement noise are both 0, there
ygili be no error in each cycle and«%’lence the estimated u and
v will tend towards 0. Under these conditions, the
computation of the Kalman gain becomes ill-conditioned,
éince both the numerator and the denominator of equation 5.7
approach 0. If the measurement is nQise-free, the kalman
gain matrix should approaeh I, irrespective of the value of
the system noise. This ensures that if the measurement is
noise-£free, any spﬁrious system errors can stillube

detected.

To achieve this result, the situation of a‘cycle

-128-

involving no iterations must be identified and the normal
update equations suspended. The following update equations
are then applied

= 0,95 x u . (5.40)

[
I

and

= 0.9 x ¥ (5.41)

|<>

The system noise is automatically reduced by multiplying
each component by 0.95. Similarly, the measurement noise is
reduced by multiplying each component by 0.9. If the system
and measurement noises are 0, the estimated value of each
noise will reduce by a constant factor after each cycle.
However, since the measurement noise will decrease more
quickly, the Kalman gainwill tend to I, because in the
limit the estiQated measurement noise will be smaller than
the gstimated system noise. The effect of this is

illustrated in the numerical example of Section 5.10.2.

5.8 Updating the actuator noise

Any error introduced by an actuator could manifest
itself as either a system of a measurement error. This
depends on the configuratién of th? sensor and actuator, as
discussed earlier. Consider a dynamic sensor. The algorithm
developed in 'Section 5.7 provides an estimate of the
'measurement noise. This must be further processed to update
the sensor and actuator noises independently. ‘

The eStimatéd measurement noise, from equation 5.30, is
v. Let gk denote the current estimate of the variance of the

noise from the kth

sensor, and let gg denote the current
estimate of the variance of the noise from thé gth actuator.

Assuming that ﬁi was obtained after an interaction between

-129-

th th

the k actuator in the feedback process,

sensor and the g
it is evident that only the corresponding noises for that
sensor and actuator can be updated. Furthermore, the)

relative magnitudes of ;k and e will indicate the likely

g
source of the error ¥, such that the expected fraction of ¥
due to the sensor is the ratio of the sensor noise to tﬁe
sum of the sensor noise and the actuator noise. Similarly,
the expected fraction of ¥V due to the actuator is the ratio
of the actuator noise to the sum of the sensor noise and the
actuator noise. Hence, denoting ka(+) and egx(+) as the

updated x component of the sensor noise and actuator noise

respectively, gives the noise update equations as

Noj—

ka("'\\) { Gxo ka + ka}‘ - (5.42)
(ka+egx)

egx(+) 15 { Voo egx + egx} (5.43)

(£,)

-+
x*€gx

The other components of the noise are calculated from the
corresponding components of the vectors. Equation 5.42 sets
the new sensor noise to be the numerical average of the
: i

current sensor noise and the expected contribution of the
sensor noise to {. Likewise, the actuator noise is set to
‘the numerical average of the current actuator noise and the
expected contribution of the actuator noise to ﬁ.'

Care must be taken when computing the updated noises
from equations 5.42 and 5.43. This is because the vector gk
represents the senéor noise in the sensor's fraﬁe of

reference. HoweVer,,gg and ¥ will be in the world's frame of

reference. Therefore, implicit in equations 5.42 and 5.43 is

-130-

fhe transformation of the errors into the appropriate frame
of reference. The transformation of an error from the
sensor's frame of reference into the world's frame of
reference was discussed in Chapter 4. The inverse
transformation follows similar lines, but uses the inverses

of the homogeneous matrices. For a static sensor,

World frame]

error

Sensor frame| =| Sensor-world =1
error transformation

and for a dynamic sensor,

[Sensor framé]:[Actuator]'1 [Sensor-actuator]'1[World frame]

error position transformation error
where the error vectors have been transformed into their 4x4
hémogeneous matrix representations. ﬂ

" The discussion leading to the derivation of equations

5.42 and 5.43 was concerned with a dynamic sensor, where the
actuator noise contributed to the measurement. In the case
ofzastaticsensor,theactuatornoisewill.beembeddedin

the computed system noise, ﬁ' A similar approach is

l‘
applicable, with the sensof‘noisep\gk in equation 5.42 and
5.43, replaced by the current estimate of the system noise,
4y, and ¢ replaced by the measured system noise, Ql. Hence,
“for a static sensor, the updated sensor noise is

ka(+) =V, | . (5.44)

The updated actuator noise is

egx(+) =1 {4 + e _} (5.45)

1 Sgx 7 Sgx

(egx+ulx)

and the updated system noise is

-131-

up () = 1 } (5.46)

; { ﬁl?; u12 | +ug,

gx ~1lx

In general, for an assembly incorporating multiple
sensors and actuators, one sensor noise, one actuator noise
and one system noise will be updated upon completion of each
cycle. If there is more than one sensor associated with an
actuator, or more than one actuator associated with a
sensor, it is possible to identify the source of the error
as being due to a sensor or an actuator. Also, if the
control program involves more than 6ne state, it is possible
to identify the cause of an error as either the actuator or
the system.

As an example, consider an assembly involving a single
actuator and tyo dynamic sensors. The actuator-is a robot,
and_the sensors are a tactile array and a camera. The

initial noise variances are (considering only one

component),

Robot noise = 1.0 mm2
Camera noise = 2.0 mm2
Tactile noise = 4.0 mm2

- - \\) .
Whilst using the robot with the tactile sensor, a

"

measurement noise of 6 mm2 was recorded. Using equations

5.42 and 5.43, the new noise variances are calculated as,

New robot noise 2

0.5 x (6 x1/5 + 1.0) = 1.1 mm

New tactile noise = 0.5 x (6 x 4/5 + 4.0) = 4.4 mm?
Following this; the robot was uéed in conjunction with thé
Camera, when a measurement noise of 4 mm2 was recorded. The
new noises arg~therefore;

New robot noise = 0.5 x (4 x 1.1/3.1 + 1.0) = 1.2 mm?

-132-

2
New camera noise = 0.5 x (4 x 2.1/3.1 + 2.0) = 2.3 mm

Because the robot is common to both cycles, the robot noise
is increased twice, so that the relative fraction of the
robot's noise to each of the sensor's npise has increased
after two cycles. Intuitively, this says that since the
robot is the common factor between the errors, it is the

likely source of error.

5.9 Applving long-term feedback

The advantages of applying long-term feedback in
addition to short-term feedback were discussed in Section
3.9. If the system noise has a non-zero mean, the cummulated
error over consecutive cycles will eventually be too large
to be measured by the sensors. To cope with this, the
estimated mean of the system noise at ; state, computed
using equation 5.33, is used to adjust the state using

Kl(+) = X(-) + b} (5.47)
where gl(—) is the estimate of the state at the beginning of
the cycle, prior to the application of sensory feedback. The
updated value, §1(+), is computed upon completion of the

-

chcle, after the newxﬁean value of‘the systen\noise,.gl, has
bee; estimated. The effect of applying equation 5.47 is to
avoid a build-up of error if the system noise has a non-zero
mean.

The next section describes two numerical examples of

noise computation“and shows the advantages to be gained from

detecting and processing the errors.

5.10 Numerical examples of measurement noise update

Two numerical examples are considered. For both, the

-133-

noises have been simulated using a Normal random number
generator. In the first example a constant noise level is
considered, and in the second example the situation of a

sensor suddenly becoming noisy is investigated.

5.10.1 Estimation of a constant noise level

Consider a potentiometric encoder used to provide force
sensing on a robot gripper. The sensor is noisy and the
error can be represented by a random variable having a
Normal distribution with a mean of zero and a variance of 2

mmz. The sensor is to be used in a closed-loop feedback

control schemeg, in which the aim is to achieve a force
reading of 100 by moving the robot in response to errors
detected by the sensor. The operation is to be repeated for
50 cycles. It is assumed that errors detected Sy the sensor
can be transformed into the appropriate actuator errors
through a transformation. The system noise is zero,
therefore the initial position of the actuator on each cycle -
is actﬁally the correct position, but because of noise in
the sensor there will be a'perceived error.
The results of applyihg the a}gorithm described in

: j :
Section 5.7 to this system are summarized by the graphs
shown in Figures 5.12 to 5.17. Considering only one
- component of the state, the Kalman gain is initially 1.0 and
the actuator makes a number of movements until thé perceived
error reguires a éorrection of less than the resolution of
the actuator, whegeupon the servoing stops. The information
from the movements is used to estimate the variance of the
measurement noise, shown in Figure 5.12, which increases

towards the actual value of 2. The estimated system noise is

-134-

Variance (mm?)

Variance (mm?)

. 1'5-

2.5 “) ’d

N
2.0 - /‘ A /./ \v"\v'___.-f’
y

K/*\\ | \/ W
\/ V/; /
1.5 1 fx"’——/ \ // | _\/

1.0 4
0,5
0.0 r v ' —_—
12 25 37 50
Cycle (i)

Figure 5.12: Estimated measurement noise versus cycle

for constant sensor noise.

2.5 h

2.0 1

1.0"

0.5-' e

0.0 : : : : - -
12 25 - 37 50
Cycle (i)

Fiqure 5.13: Estimated system noise versus cycle
for constant sensor noise.

-135-

shown in Figure 5.13 and, although small, never reaches the
actual value of 0. The Kalman gain and error covariance.are
shown in Figure 5.14. The Kalman gain approaches a value of
about 0.35. Ideally, because there is no system noise, the
Kalman gain should also fall to O, becéuse the noisy
measurement data should be completely ignored. In practice,
however, this is not desirable, because such a situation
would render the system insensitive to a sudden change in
the system noise. By maintaining a small portion of the
measurement in each state estimation, the sensors are neQer
completely reahndant and can thus detect an error introduced
by the system. Furthermore, if, for some reason, the sensor
suddenly becomes noise-free, this will be detected and
correspondingly more weight will be placed on the
measurement process. In an industrial environment, the error
may .be intermittent. This would be the case if, for example,
the noise arose from electrical interference. Thus, the
characteristics of the noise cannot be assumed to be
stationary. This is illustrated in the numerical example

described in Section 5.10.2. \
: | ' \,
The velocity of the robot in approaching the state is

computed using equation 3.2, where the sensitivity of the
_ state is assumed to be 0.5 and T, is obtained from] using
equation 5.8. The velocity, shown in Fiéure 5.15,‘soon
reaches a steady valué, which reflécts the constant By from
cycle 10 onwards.

One effect of applying the noise-estimation algorithm
to this problem is to decrease the error in the position of

the actuator at the end of the cycle. In this example,

-136-

Normalized velocity

1.30

1.04

0.78

0.52

0.26

0.0

i Error-
' covariance
(mm?)

..............

.............
nnnnnnnnnnnnnnnnnnn

S\ o

- ﬂ’h\q___sffﬁ\\\ gan
nl \’M-‘—-_—-’- -_—"'-__ -

Y 1

12 25 37 50
Cycle(i)

Fiqure 5.i4: Computed Kalman gain'and error covariance

0.20

0.05

0.00

for one component of the state.

.——,__/- "‘-..._‘_ S e e ' .

I I
H N,
W/

12 25 37 50
: : Cycle(i)

Figure 5.15: Variation of robot velocity with cycle

-137-

because there are no system errors, optimum accuracy would
have been obtained by ignoring all the sensor informatibn,
(equivalent to K=0) in which case there would have been no
error on each cycle. If, however, the information from the
sensors was used with 100% confidence, (equivalent to K=1)
as would be done in a normal sen‘sory feedback system, the
effect would have been to give a final error vector having a
Normal distribution with a mean of 0 and a variance ‘of 2
mmz. This is illustrated in Figures 5.16 and 5.17, which.
show the finalﬂpositional error (in one component) for the
case K=1, Figure 5.16, and K computed from the Kalman gain
equations, Figure 5.17. The effect of computing a value of K
to reflect the noise in the sensor, reduces the expected
érror in eachxéycle. Using the algorithm developed in this
chapter, K is automatically adjusted to reflect the estimate
of the current measurement noise and hence give an error
distribution having variance between 0 and 2, as depicted by
the error covariance from the Kalman filter, Figure 5.14.
The steady-state estimate of the variance of the error is
.approximately 1. If the measuremeﬁt noise changes with time,
this situation is handled automatically. This would not be
the case if K approached 0 because no information would be
- processed from the sensors, which would effectively be
redundant. The efficiency of the closed-1loop servoihg is
substantiélly better than would be the case if thé
measurement noise was assﬁmed to'be Zero.

In addition to improving the final accuracy, the
average time spent seeringlto achieve the deéired sensor

conditions is reduced, since on average fewer actuator

-138-

Distance (mm.)

Distance (mm.)

A
AW

12 25 37 50
Cycle(1)

Figure S.fG Final error in one component of the robot's

position assuming error-free sensor.

1.3 -

12 25 37 50
) Cycle(i)

Fiqure 5.17: Final.error in one component of the robot's
position using Kalman filter to process error.,

-139~

movements will be made on each cycle. Hence there is a time
saving, which is significant for large measurement noises.

This is demonstrated by an example in Chapter 7.

5.10.2 Estimation of a changing noise level

Consider the case of a sensor which is initially noise-
free, but which develops a fault. Between cycles 1 and 25,
there is no noise from either the system or the measurement.
From cycle 25 to 50 the sensor error can be modelled by a
random variable having a mean of 0 and a variance of 2 mm2.
The sensor provides information on only one component of the
state and hence only this component is considered. The
results of applying the noise estimation algorithm to this
problem are shown in Figures 5.18 to 5:22.

~ Because there are no iterations on each of the first 25
cycles, equations 5.40 and 5.41 are used to update the
initial noise estimates, which therefore show a smooth
decrease over this period, see Figures 5.18 and 5.109.
Because the measurement noise decreasés faster than the
system noise, the Kalman gain, Figure 5.20, tends towards 1.

- 5\
After cycle 25, the estimate of the measurement noise

increases and there is a corresponding decrease in the
»Kalman gain towards the steady-state value of about 0.2.
Because‘the kalman gain falls, the effect of the noise
in the sensor is reduced and the efpected error at the end
of each cycle ié smaller ’ghan if would be if the error in |
the sensor was not detectéd or ignored. This can be observed

by comparing the final error, shown in Figure .5.21, with the

results shown in Figure 5.16 for the‘uncorrected (K=1)

-140-

Variance (mm?)

Variance (mm?)

2.0

1.5

1.0

005

0.0

e !

Y —— T '

12 25 37 50
: Cycle(i)

Figqure 5.18 Estimated measurement hoise versus cycle

2.0

1.5

1.0

0.5

0.0

for changing sensor noise.

., -
iy
————____ ______..__._..__.._-—-—-
12 , 25 37 50

Cycle(i)

Figure 5.19: Estimated é stem noise versus cycle

for changing sensor noise.

-141-

Distance (mm.)

1,004 | i
..' ".' ____..——— Kal
s - aglman
/_,:‘-f-‘-‘— g&in
0.75-L
0.50- ﬂh Error
“ covariance
5 (mm?) .
0.25 1 JM \
\ "A N
IIIIIIIIII \““ V¥ \‘,r'\,r','q VA"
0.00 A N
12 25 37 2
Cycle(i)

Figure 5.20: Computed Kalman gain and erfor covariance

2.0 +

[y

.

w
1

o
-3
I

for one component of the state.

SO] _/_/_v_d/

50
Cycle(i)

12 25 3

Figure 5.21: Final error in one component of the robot's

position using Kalman filter to process error.

-142-~

situation.

The velocity of the robot in the vicinity of the state,
Figure 5.22, increases towards a maximum at cycle 25,v(T£e
sensitivity of the component of the state is assumed to be
0.5.) After cycle 25, the veloéity shows a small decrease,
reflecting the added uncertainty caused by the measurement
error. The change in velocity is small because the effect of

the error is reduced by the low Kalman gain.

5.11 Summary

The flow-chart showing the sequence of operations in
the execution of a sensor-level command, Figure 4.3, can now
be augmented to include the>results of this chapter. This
new flow—chart is shown in Figure 5.23.

This chapter has shown how errors-arisingﬂfrom
actuators, sensors, and ill-positioned components, can be
identified and the noise distributions gquantified. Once the
relative magnitudes of the noises have been estimated, the
Sensor information is weighted using the Kalman gain. As
demonstrated in the numeriéal examples, this weighting
. reduces the final positiohal error of the actuator whenever
the. measurement is noisy. This wiil be demonstrated further
in Chapter 7, where a noisy sensor is used in an industrial
problém.

The simulation described in Section 5.10.1,'for a
COnstanf Sensor noise, éave a steady-state Kalman gain of
about 0.35. Although this- improves the final positional
dccuracy, there étill remains room for improvehent. The
€stimated system noise is aBout 0.4 rather than the actual

Value of 0.0. If the estimation of the system error in each

-143-

Normalized velocity

0.5 1 d___.-—"\\

0.3 4

0.2 -

0.0

12

!

25

37 50
Cycle(i)

Fiqure 5.22: Variation of robot velocity with cycle.

-144-

Move the actuator from the current state to the corresponding
intermediate state at a speed computed using equation 3.4 (Fine-motion).

Y

Move the actuator to the intermediate state associated with the final state

(Gross-motion).

Y

Move the actuator to the final state at a speed computed using equation 3.7 (Fine-

motion).

Get the attributed sensor data from the nominated sensor-slave.

Y

Compute the sensor error and transform it to a world frame and into world

coordinates = Ej.

¥ 7
Compute D = K.Ej

Yes

Move the actuator
! and record Dy.

No Is the termination
criterion (Section 4.5)
satisfied ?
WV
by Dy

Vv
E 1, let ﬁ-’Qi 4

¥

1 3= 141

\J

Compute the estimated measurement noise variance 4,
from equation 5.22.

Compute the new
gsystem and
measgurement
noise variances
from equations
5.40 and 5.41,

Y

Compute the weighted recursive average of the
measurement noise from equation 5.30.

Y

Compute the weighted recursive average of the mean
of the system noise using equation 5.34.

¥

Compute the weighted recursive average of the
variance of the system noise using equation 5.39,

¥

Update the noise estimates of the sensor and the
actuator using either equations 5.42 and 5.43 (for
a dynamic sensor) or equations 5.45 and 5.46 (for a

static sensor).

Y

Adjust the state by the mean value of the system
noise using equation 5.44 (Long-term feedback).

Y

Update the Kalman filter equations (Equations 5.4,
5.6 and 5.7).

Fiqure 5.23: Flow-chart summarizing the noise estimation

algorithm.

-145-

A

cycle, M, could be improved, then there would be a
corresponding improvement in the filtering of the noisy
sensor data by deriving a smaller K. The means of improving
the estimate of M in each cycle is not ob\}ious. The
estimation of the measurement noise will always be more
accurate because there is more information available from
which to estimate it.

The sudden change in noise characteristics simulated in
Section 5.10.2 is not atypical of industrial noise induced
by electyical interference. Coping with thi; form of noise
is an important practical consideration for inaustrial
automation.

In the next chapter, an implementation of the noise
processihg algorithms in a robot-programﬁing system is

described.

~-146-

CHAPTER 6

A PROGRAMMING TOOL FOR SENSORY ASSEMBLIES

-147-

6.1 Introduction

This chapter describes the implementation of a robot
programming system which includes the results deveioped in
the previous chapters. The model of a discrete sensory
assembly presented in Chapter 3 forms the basis of the
system. The specification of actions through a sensor-level
of indirection (Chapter 4) is achieved through a set of C
functions, which are described in detail in this Chapter.
Automatic processing of errors to cope with noise (Chapter
5) is an integral part of the system. The key features of
the software are as follows:

1. Efficient specification of sensory feedback.

2. Dynamic calculation of actuator velocity using

“informatioﬁ from previous errors.

3. On-line processing of errors to provide optimal

estimates of noise levels.

4. Optimal filtering of sensor information to reflect

the computed noise levels.

5. Interactive ‘interface to allow sensors and actuators

to be defined.

-~

. N
6. Simulation of noise in sensors, actuators and the

system.

The software system, called SLPS (sensor-level programming
system), comprises a library of functions—written in the C
prggramming language [105], which are used by the programmer
to define the intéfactioné between the sensors and the
actuators. In addition to this, a suite{of BASIC programs
providés an interface to the programmer to allow the data

files describing the sensors, actuators and states to be

~148-

defined. The system can be used to control any commercial or

purpose-built actuators, using information from any

commercial or purpose-built sensors.

6.2 Hardware framework

A typical configuration of sensors and actuators was
described in Section 3.1 and illustrated in Figﬁre 3.1. This
is generalized in Figure 6.1. The main control‘program
resides on the central controller, which communicates to the
sensors and actuators to achieve the goals specified in the
program.” A servo-process involving a sensor and an actuator
is coordinated by the central controller. All information
interchange takes place through this controller, which can
be viewed as the master in a master-slave hierarchy. The
communication channel between the master and the slaves is a
low bandwidth, parallel bus, called Robus [106].

If applicable, the commercial controller associated
with a sensor or actuator is retained and interfaced to the

appropriate sensor or actuator controller. In this way, the

software to control the kinematics of a robot arm, for
exaﬁple, does ﬁot need to ;E reproducéd in the central
controller. Furthermore, the processing required to extract
thé attributes from the sensor information is carried out
within the sensor-slave. Hence, the computational demand
placed on the master is small because its rdle is control
and coofdihation :atherlthan numerical processing. In the
next chapter, an industrial problem is described which uses

an IBM PC as the master controller.

Each sensor and actuator-slave has a unique 8-bit

-149-

Central
Controller

(master)

Bus - ' <i

e e Yottt Gl
AU R — 4 f————- S —
Actuator ! Sensor |
Controller Controller
(slave) (slave)

1

i

i

|

|

|

N / |
4 \(l
i

|

|

|

|

|

l

1

Commercial or Commercial or

purpose-built purpose-built

Actuator Sensor

——— e em e e e = mm e = = e aw e =
e it mm e e ey - s amr s rw some em maw e

Actuators Sensors

Fiqure 6.1: A generic configquration of sensors and actuators.

-150-

address which allows the master to read the attributes from
the required sensor and send movement instructions to the
required actuator. The addresses are taught to the master

within the definition file associated with each slave.

6.3 Communicating to sensors

Because the sensor controller sends attribytes rather
than raw sensor data, the form of information interchange
between the master and any sensor-slave is consistent.
During the application of sensory feedback, the master will
require‘gensor information from which to'éompgte the error.
To obtain this sensor‘information, the following segquence of
events occurs:

1. The master sends a request to the sensor-slave for

"information. U

2. The slave procures data from the physical sensor.

3. The slave processes this data to produce the

attributes.

4. The slave sénds the number of computed attributes to

the master.‘

5. The slave sends‘theinumerical value of each

attribute to the master.

6. The slave sends a terminator to indicate the

success or failure of the sensing and processing.

This is a generic sequence of instructions which is the same
for every sensor. Once the attributes have been received by
the master, the sensor error can be computed and then

transformed into the actuator error.

In step 1, the master sends a command code to the

-151-

sensor-slave as a data request signal. The command code; of
which there is one for each sensor, is called the activation
number of the sensor. Upon receiving the éctivatiéﬁ number,
the sensor-slave must collect data from the physical sensor
and then process this to give the attributes. The number of
attributes extracted is then sent to the master. Although
this number is defined a padiond within the sensor's
definition file, the master can perform a check on the
synchronization of the handshaking, prior to receiving the
attributes themselves. The coﬁtrol program is aborted if
the number of attributes expected by the master does not
correspond with the number computed by the slave. Because
the information interchange between thé master and the slave
ié polled rather than interrupt-driven,.a synchronization
check of this form is necessaryito detect a phase error.
Once the number of attributes has been transmitted, the
numerical value of each attribute is sent to the master.
Finally, the sensor-slave sends an acknowledgement code. If
the sensing and processing was achieved successfully, a

terminator code of 99 is sent. If either the sensing or the

~
5

processing produced an errdr, an error-code is returned. The

master will only continue execution of the control program

if the valid terminator is received.

6.4 Communicating to actuators

To enable the master to control eachactuator in a
uniform way, a stahdard communication interface is defined
between the master and each actuator-slave. The master sends
command codes followed by data. The actuator-slave must then

translate this code into the syntax required by the

-152-

commercial actuator, or else control the actuator directly.
Either-way, the format of the command code and data sent by
the master will be the same for each actuator, and differ
only in the physical address to which it is written. The
command codes for the actuator controller are shown in
Figure 6.2. Depending upon the complexity of thg actuator,
not all of these control codes will be implemented. From
Figure 6.2, it is seen that the command code to set the
speed of an actuator is 1. After sending this code, the
parameter required is the normalized speed, which is always
between 0, for lowest speed, and 100 for maxiﬁum speed. For
example, to set the speed of a Puma robot to half maximum
speed, the data 1,50 would be sent to the address
corresponding to the Puma's slawve controiler. Upon receiving
this command, the Puma's slave would send the ASCII string
'SPEED 160' to the commercial controller. Since the maximum
speed of the Puma robot is 320, the value of 160 represents
the required speed.

The information interchange befween the master and the
actuator is summariéed as f?llows:

1. The master sends a command code followed by

relevant data to the actuator-slave.
2. The actuator-slave obeys the command and transmits
back to the master any desired data.
3.‘Tﬁ§ actuator-slave sends an acknowledgement or

an error code back to the master to complete the

operation.

If the operétion is.completed successfully, the

-153~-

Code

Meaning

10
11

12
13

Set the speed of Movement.
Set the acceleration of movement.

Move the actuator to a pre-defined
state. -

Define the current position of the
actuator as a named state.

Move the actuator relative to its
current position by x,y,z,0,2,t.

Move a pre-defined state by an

amount x,y,z,0.,a,t.

Return the coordinates of the
actuator's current position.

Retufn the coordinatés of a
pre-defined state.

Move the actuator to a pre-defined
state.

Move the actuator to a pre-defined
state in a straight line.

Initialize the actuator. (includes
calibration, reseting etc.)

Halt the actuator (low priority).

Halt 'the actuator (emergency
stop).

Figure 6.2:3 Téble of generic command codes which can be

sent to the actuator slave,

-154-

acknowledgement code 99 is sent back to the master.
Otherwise, an error-code is sent. The control program

continues only if the acknowledgement code is received.

6.5 Defining the components of a sensory assembly

Formulating a solution to a sensory assembly problem
using SLPS requires the following stages: P

1. Define each sensor. |

2. Define each actuator.

3. Install the relevant sensors and actuators and
ﬁefine the physical relationship between each.

4. Write the control program in C using the defined
sensors and actuators as parameters.

5. Define the parameters associated with the assembly
"problem. M

6. Compile the program and link the library routines.

7. Execute.

The relationship between these stages is shown in Figure
6.3. In stages 1 and 2, the definition of the sensors and
actuators involves producing a data file containing the
physical paramefers of theﬁglaves. This data file contains
information relevant to the sensor or actuator, and is
independent of the application in which it is being used.
The data files corresponding to each physical sensor and
actuator are installed in step 3 to produce the installed
task fiie,"which is specific to the applieation. This file
also contains information on the interaction between the
sensors and the actuators, including the necessary

transformation matrices to relate the frames of reference.

-155-

Sensor-

Sensor Actuator
definition actuator definition
relationships
¢
S
Installed tate
task file parameter
file
Control
program
in C. Compile with ,
standard > Link > Execute
C compiler.
'Movemag' ' A
file

N

Library

routines

Figgre 6.3: The stages in groducing an executable robot

control program under SLPS.

-156-

Another data file, the state parameter file, contains
information on the states, and is defined in step 5.

The data files in steps 1,2,3 and 5 are prodﬁced using a
suite of interactive programs written in IBM BASIC. The programs,
called IRPS (Integrated Robot Programming System), prompt the
programmer to enter the required parameters, which are
subsequently stored in the appropriate file. Thé contents of each

data file are discussed in the next three sub-sections.

6.5.1 Defining a sensor

ane the physical hardware associated with a sensor-
slave has been constructed, the presence of the new sensor,
and the parameters aséociated with it, must be defined. The
following information is contained within each sensor's
definition file:

1. The name of the sensor.

2. The physical address of the sensor-slave on the bus.

3. The activation number of the sensor.

4. The number of attributes produced by the sensor.

5. The name of each attribute.

6. The correction in -the sensor's frame of reference,
' i
! which specifies the directions in which the sensor
must be moved to correct for an error in each
attribute.

7. The noise variance associated with each component of

-the measurement.

The name of the sensor is a string of characters whichwill
be used in the control program to reference the sensor. The

physical aadress of the sensor-slave takes values between 0

-157-

and 255, and allows the central controller to communicate
with the slave. The activation number of the sensor is the
command code which the central controller must sené to the
slave controller to request the attributed sensor
information (Section 6.3). Two sensor slaves can occupy the
same physical address, and so these are distinguished by
issuing a different activation number to specify/the
required sensor. (In practice, this corresponds to the need
for a separate hardware module for each unique address. For
simple sensors, it is sensible to associate more than one
sensor with a slave controller, this reduces cost and
complexity.)

The fourth parameter in the sensor's definition file is
the number of attributes produced by thewsehsor—slave.
Following this, the name of eacﬂ attribute is given. These
names will be used in the control program to identify the
required attribute. It is important that the order in which
the names of the attributes are entered in the definition
file corresponds with the order in which the sensor-slave
sends the attributed data to the master.

The next eﬁtry in theﬂéensor's definition file is the
correction toallow an error in an attribute to be
corrected. The correction is entered as a translational and
rotational component, defined relative to .the sensor's
origin. It is not stored as a homogeneous matrix because,
for rotétién, the homogeheous matrix invol§es sines and
cosines of the rotation angles. Since the required angle of
rotation can only be computed in the céntext of the sensor

error, the numerical components of the matrix cannot, at

-158-

this stage, be assigned. Therefore, the correction is stored
in the form

(x,vy,2) , (a,b,c)
in which (x,y,2z) is the translational part and (a,b,c)
defines an axis of rotation. Assume that the required
movement of the sensor takes one of three forms, namely,

1. Movement along the x, y and z axes, or aﬁy

combination of these.

2. Rotation about a vector (a,b,c), which is centered

on the origin of the sensor's frame of reference.

3. Rotation about a vector (a,b,c),.which is centered

on a point (x,y,z).
Although these three forms of correction do not encompass
all possibilities, they do allow most sensors to be
model led. Many sensors fall into category 1, for example a
proximity sensor, linear-array camera, area-array camera and
a 3 degree of freedom IRCC.

In category 1, (x,y,z) is a unit vector specifying the
direction in which the sensor must be moved. In category 2
(a,b,c) is a unit vector specifying the axis of rotation.
For category 3,)the vectogw(x,y,z) is an offset, expressed in
millimetres, between the sensor's origin and the axis of
rotation, which is given by the unit vector (a,b,c).

Thus, the correction indicating that the sensor must be
moved in the +x direction to increase the value of the
attribufe would be given as

(1,0,0) ; (0,0,0)
Similarly, the correction indicating that the sensor must be

rotated about the -y axis would be represented as

-159-

(0,0,0) , (0,1,0)
and finally the correction given by

(0,17,0) , (10,0,0)
means that the sensor must be rotated about a 1line which is
parallel to the y axis and offset by 10 millimetres in the
X direction.

The choice of origin is arbitrary, although/it must
eventually be related to either the actuator'slor the
world's frame of reference. For the case of an area-array
camera, a sensible choice of origin is the centre of the
image.

The corrections described above only specify the
direction in which the sensor must be moved, and not the
size of the movement. The size is computed in a separate C
function, movemag, which returné the size of the correction
in world coordinates, given the sensor error as a parameter.
The function is written in C and provides a means of
modelling non-linear relationships between sensor errors and
the corrections. The function contains a condition for each
sensor pertinent to the assembly. The general form is shown
in Figure 6.4. The expressign Z(ernon) gives the size of the
correction as a function of the sensor error. For example,
if the sensor error was in terms of picture elements from a
camera and there were 10 picture elements per mm, then the
function would be'error/10,\giving the error in mm. The
functioﬁ could be more complicated, and any of the standard
mathematical functions are available through the C library
routines. Although it has not been imp;emented in the

current sysfem, it may be desirable to include the attribute

-160-

as a parameter to the movemag function. This would allow
each attribute of the sensor to have a different correction
size. A camera with a non-unity aspect ratio would require

this facilty.

float movemag(sensor,error)

int sensor; /* Number of the sensor */
float error; /* Sensor error *//
{

if (semsor == sensonl)

return(£(earon));

if (sensor == sensonl)
return(Zferron);

Figure 6.4: The function 'movemagqg', used to dgfine the
size of the correction as a function of the

Sensor error.

The size of the correction, as returned from movemagq,
is used to modulate the correction vector. Either the
translation or the rotation is multiplied by the scalar
size, to give the final correction vector defined in the
sensor's framé Bf reférenc;l For example, a sensor
correction stored as (1,0,0),(0,0,0), together with a
movement size of 10mm, would mean the sensor must be moved
along the cartesian vector (10,0,0).

The final entry in the sensor's definition file is the

sensor noise. This is an initial estimate of the error

expected in the readings from the sensor. It will be used in
the Kalman filter, and will be updated, on-line, using data

derived frém the servoing (Chapter 5).‘The sensor noise is

-161-

represented by a vector which gives the estimated varianée
of the error in up to 6 measured components.

An example of a definition file for a sensor 1s shown
in Figure 6.5. This file defines an area-array camera,
called 'areacam', which resides at address 100. The
activation number is 20 and the sensor-slave sends back 2
attributes, which are called 'x-cofg' and 'y-cofd'. These
correspond to the perceived positions of the x and y centre
of gravity of the part currently in view. The correction
indicates that for an error in the attribute 'x-cofg', the
sensor must be moved in the +x direction. For the attribute

'y-cofg', the sensor must be moved in the +y direction.

6.5.2 Defining an actuator

The definition of an actuator is similar to that for
the sensor. The following information is required:
1. The name of the actuator.
2. The physical address of the actuator-slave on the
bus.
3. Thevresolutién of the actuator.

4. The repeatability of the actuator.

]
The resolution of the actuator is given as two components,
one for translation and the other for rotation. The
tranélational component of resolution is the minimum
distance the actuator can move in a cartesian coordinate
system.IAlthough this may‘vary with position and direction,
it is assumed to répresent an average fo; the actuator over
the operating space. The rotational component of resolution

is an approximation to the minimum angle of movement,

~-162-

areacam, 100 , 20 , 2

xcofg, ycofg

(1,0,0) , (0,0,0)

(0,1,0) , (0,0,0)

(0.1, 0.4 , 0.0, 0.0, 0.0, 0.0)

FPiqure 6.5: The sensor definition file for an area
array camera.

puma, 80
.2, .01
.1, .005

Figure 6.6: The actuator definition file for a Puma
robot.

Fiqure 6.7: An example of a state parameter file.

-163-

expressed in degrees.

The repeatability, which is also represented by a
translation and rotation component, is used to estimate the
noise arising from the actuator (Section 5.6)..

The definition file for a Puma robot is shown in Figure
6.6. The actuator-slave is located at address 80 on the bus.
The actuator has a resolution of 0.2 mm in position and
0.01° in orientation, the repeatability is + 0.1 mm in
position and + 0.005° for orientation. |

Once the physical address of the actuator-slave has been
taught to the central controller, commandvcodes of the form

discussed in Section 6.4 can be sent.

6.5.3 Defining the states

Unlike the definition of sensors and actuators, the
definition of the states is specific to the assembly
problem. The numerical coordinates of the states are defined
in either the actuator-slave or the commercial controller.
For a Puma robot, for example, the states may be taught by
moving the robot to‘the desired location and typing 'HERE
state' on the terminal touéssociate the named state with the
current configuration of tﬁe robot. Although this approach
could be replaced by an off-line modelling package, teach by
showing still retains popularity as a way of setting up an
gssembly problem. \

Oncé"the states have been defined, the central
controller can request the numerical value of the.states
using comhand code 8 (Figure 6.2). Furthermore, the central

controller can change the value of the state's components;

this is necessary during the application of sensory

-164-

feedback.

The state parameter file is defined in the central
controller and holds additional information associated with
the states. This comprises

1. The name of each state.

2. The departure vector associated with each state.

3. The system noise for each state.

4. The tolerance of each state.

The departure vector (Section 3.7), defines the direction in
which the state will be approached and departed during a
movemené between states. It is a six—component vector whose
first three components are the distances expressed in
millimetres and whose final three components are the Euler
orientation angles, expressed in degrees. In effect, the
departure vector specifies a transformation from the state
to a new point, called the intermediate state.

The system noise is a vector which defines the expected
variance of the noise in each component of the state. The
noise is assumed to have a mean of zero and be Normally
distributed, such that betyeen cycles each state is given a
random perturbation about its nominal value. The variance of
this 'noise is given by the components of the system noise.
The translational components of the noise are expressed in
millimetres and the rotatipnal components are expressed in
dégrees.v “ \

The ;olerance of the state (Section 3.5) is defined as
the magnii:ude of the maximum error in the final position of
the actuator at the state. The tolerance is a vector, where

each component gives the tolerance of the corresponding

-165-

component of the state, being expressed in millimetres and
degreés.

An example of a state parameter file is shown in Figure
6.7. Two states are defined. The first, 'START' has a
departure vector (0,0,0,0,0,0), which means the state does
not have a defined approach and departure direction. The
direction in which this state is approached and departed
will depend on the relative position of the previous and
subsequent state respectively. The system noise for the
first stgte has a variance of 1mm2 for each of the x, v and
4 componen;s.The tolerance is + 0.1 mm and 1 0.01°.For the
second state, 'END', the departure vector is (0,10,0,0,0,0).
This means that all movements to this state must be preceded
by moving the actuator to a point 10 mm away from the state
in the +y direction. Similarly, when the actuator is moved
away from this state, it must be moved by 10 mm in the +y
direction before the movement to the next state. The motion
of the actuator in the vicinity of the state would therefore
be along a well—defined path, usually corresponding to some

geometrical or -physical feature of the state.
I

Once the departure vectors for the states have been
readnby the central controller, a new set of states, the
intermediate states, are automatically defined by adding the
departure vector to each state. These new states are defined
iﬂ the ‘actuator-slave using the command code 6 (Figure 6.2),
and are named by adding the suffix '.INT' to each state
name. For»example, the state 'END' having departure vector
(0,10,6,0,0,0) would cause the central controller vto define

an additional state called 'END.INT', formed by combining

-166-

the value of 'END' with the departure vector. The definition
of these intermediate states occurs in an initialization
phase, prior to execution of the main control program. When
the actuator is required to move to the state 'END', it
would first be instructed to move.to the intermediate state
'END.INT', and then to 'END'. Similarly, when leaving the
state 'END', the actuator would first move to the state
'"END.INT' and then move to the next state. These movements
between the state and its intermediate state represent the
fine motion phase in the transfer of the actuator between
two states (Section 3.7). Within this phase, the speed of
the actuator is contrélled from the confidence and the

sensitivity of the state.

6.6 Defining the transformations for the sensor

Once the data files defining the sensors and actuators
havé been entered, the relationships between the frames of
reference must be given. This is done in an installation
program, in which the data files are combined with the
relationship information to form a new data file, the
installed task file. It is this installed task file which
will be read by the programming system as the definition of
thé devices associated with the assembly (See Figure 6.3).

The installation program operates interactively,
requesting the programmer to enter the names of the sensors
and actﬁatbrs to be used, and then 1oading these definition
files from disk. for the particular app}ication under
development, each sensor must be identified as either static

orAdynamic; Following this, the programmer is requested to

-167-

enter information relating the frame of reference of each
sensor to either the actuator's or the world's frame of
reference, for dynamic and static sensors‘respecti%ely. In
the installation program, the options for each sensor-
actuator or sensor-world relationship are as follows:
1. The frames of reference are equal.
2. A translational difference between the frames of
reference.
3. A rotational difference between the frémes of
reference.
4. Both a Translational and a rotational difference
between the frames of reference.

5. No relationship is applicable.

These options are summarized in .Figure 6.8 for the frames of
reference (x,y,z) and (x',y',2'). If the correction in the
sensor's frame of reference is only translational, option 2,
then it is not necessary to consider any translational
differences in the sensor-actuator or sensor-world
relationships. This is because the sensor will provide an
error signal rather than an absolutevpositional measurement,
the magnitude and directiog of which will not be affected by
a translational difference in the frames of reference.
Unless the sensor's frame of reference is carefully

chosen, there will, in general, be a rotational difference

S

between the frames. This is entered by specifying the axes

of the actuator's or world's frame of reference in terms of

the basis set formed by the axes of the sensor's frame of

reference.

The following information is stored in the installed

-168-

z z'

? x x!'
Frames of reference

are equal.

Xl
X

Rotational difference

Translational difference

between the frames.

between the frames.

Translational and rotational

difference between the frames.

Figqure 6.8: The permitted sensor-actuator and sensor-

“world relationships.

task file:

1. The number of sensors to be used.

2. For each sensor
a) The sensor's name.
b) Whether it is staticior dynamic.
c) The address, the activation number and the

number of éttributes.

d) The name of each attribute.
e) The correction for each attribute.
f) The sensor noise.

3. The number of actuators to be used.
4. For each actuétor
a) The name and address of the actuator.
b) The resolution for translational and rotational
movements.
c) The repeatability.

5. For each sensor
a) Either the relationship with the world if the
sensorAis static, or, if it is dynamic, the
relationshipﬁyith each actuator. Each

!
relationship is stored as a homogeneous matrix.

An example of an installed task file is shown in Figure
6.9. This incorporates two sensors and one actuator. Since

one sensor is static and one is dynamic, the transformations

. are specified between the world's and the actuator's frame

of reference respectively.

-170-

2

areacam

static

100 20 2

xcofg

ycofg

“t,0,0 , (0,
0 ,1,0), (0,
(0.1, 0.1 , 0.0 ,

0)
0)
, 0.0 , 0.0)

O O O
.
O = =~

force

dynamic

84 10 1

angle

(0,0, 0), (1

' 0)
(0.0 , 0.0 , 0.0 ,

[4
.0 , 0.0 , 0.0)

- O

1

puma 80
0.2 0.01
0.1 0.005

puma force ,
0.000 1.000 0.000 0.000

0.000 0.000 1,000 0,000
1.000 0.000 0.000 0.000
0.000 0.000 0‘?00 1.000

world areacam

1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000

0.000 0.000 0.000 1.000

Fiqure 6.9: An example of an installed task file
incorporating one actuator and two sensors.

-171-

6.7 Programming with sensor-level commands

Chapter 3 described the primitive sensor-level
programming constructions. These were

MOVE actuator TO state ACHIEVING condition
IN attribute OF sensor

and

FEED-FORWARD ERROR BETWEEN attribute OF sensor
AND condition TO state

The first involves a servo process between the named

sensor and actuator, which will terminate when'one of a
number of conditions are satisfied (Sectiqn 4,5). During the
feedback "phase of this operation, each meésurement from the
sensor is firstly transformed into the world's frame of
reference and is then weighted by multiplying by the Kalman
gain matrix. The new estimate of the state is formed by
adding this weighted error to thé current value of the
state, as represented by equation 5.5. Because the Kalman
gain reflects the relative magnitude of the measurement
noise and the system noise, it is necessary to define a
Kalman gain matrix for each sensor-state combination. This
can be represented as Kigr to denote the Kalman gain matrix
for the lth st;te and the Eth sensor. If no sensory feedback
is used at a state, the Kalman gain is Klo and has a value
I. Following each movement to a state, the Kalman gain, K,
and the error covariance, P, are updated gsing equations
5.4, 5.6 and 5.7. Assuming no sensory feedback is used, the
estimatés'bf the system>and measurement néise, u, and v.,
will remain unchanged and hence K and Phwill approach
steady-state values which reflect the relative magnitudes of

u,and y.. £ v,r is much smaller thanu.,, then K will

-172-

approach I, indicating that the sensor information is
reliable. Conversely, if u, is much smaller than Vi Kwill
approach 0 and, since K is used to weight the readihgs from
the sensors, the sensor information will tend to be ignored.

The second sensor-level programming construction
involves no actuator movements, but instead feeds the
perceived error at the current state forward to adjust a
future state. The information from the sensors is weighted
using the Kalman gain matrix to reflect measurément errors.
Hence, after the perceived error has been Fransformed into
the world's frame of reference, it is multiplied by K and
the new state estimate produced using equation 5.5. Instead
of moving the actuator to this new estimate, as in move, the
numerical value of the state is adjusted to reflect the
perceived error. '

The implementation of the above constructions is
achieved by defining two C functions, called move and
error-ff, which take as parameters the names of the state,
actuator, sensor and attribute as defined in the definition
files. Firstly consider the move function, for which the
syntax is “ : 'w

move("actuator"”, "state", "sensor", "attribute", value)
This is a command to move the named actuator to the state
and then use sensory feedback to achieve the specified
numerical value in the designated attribute. Upon execution
of this.fuhction, the central controller will know the
physical address Qf the actuator and seqsor. Because the
information interchange to the sensor-slave and the

actuator—siave is standardized, the central controller can

-173-

generate the required movements of the actuator by
procéssing the attributed data received from the sensor. To
this end, the transformations defined in the installed task
file are used to compute the errors in the actuétor's frame
of reference from the errors in the sensor's frame of
reference. Thus, the information contained in the above
definition of move, together with the information contained
within the definition files, is sufficient to define a
servo-loop. | |

Once the termination criterion for thg servoing has
been met,; the information obtained from each iteration is
processed uSing the algorithms developed in Chapter 5 to
provide an estimate of the noise due to the sensor, the
actuator and the system. This allows the parameters of the
Kalman filter to be updated and the noise to be processed.
The estimated noise levels affect the Kalman gain, which
will correspondingly adjust the weighting given to the
sensor readings for the next cycle. In the absence of any
noise, all sensor information is treated with 100%
confidence and the Kalman filter and noise estimation

~

algorithms are redundant. i

The sequence of events involved in the servoing process
of‘the move function is represented in the flowchart of
Figufe 5.23.

The second sensor-level programming construction is the
functioﬁ error-f£. The syntax of this is

error_ff("seﬂsor", "attribute", va%ue, "state")
and the affect of the command is to compute the error

between the reading from the named attribute of the sensor

-174-

and the desired value, then to feed this error forward to
adjust the components of the state. The error detected by
the sensor will be transformed into a world-error before the
correction is implemented. As before, since the‘central
controller knows the address of the sensor and actuator,
there is sufficient information contained in the function
and the definition files to allow execution of the command.
Within the execution of error-ff, there is no movement of
the actuator. Therefore, it is usual to precedé the command
with an actuator movement to get the sensors into the
correct position. This movement command méy not require
sensory feedback, although it can still be written using the

form of move previously described.

In practice, not all movements of Fhe actuator need to
be qualified by giving a desired sensor reading. The
parameter 'null' may be used in the move function to
indicate the absence of sensory feedback. Thus,

move("actuator", "state", "null", "null", null)
will have the affect of moving the actuator to the named
state; this is functionally equivalent to a manipulator-
level command;‘In practice} this form of the command can be
simpLified to

move("actuator", "state")
although care must be taken to ehsure tha? the particular C
compiler being used does allow this, and cbrrectly assigns
the miséing arguments to "null" for the string and to 0.0
for the floating éoint nﬁmber.

Another variant with the 'null' pafameter in the move

command is to omit the state name, giving

-175-

move("actuator", "null", "sensor", "attribute", vaiue)
If no state is specified, the sensory servoing is assumed to
be relative to the current position. Hence, no g:oés or fine
motion phases precede the feedback phase. Later in this
chapter, and in the next chapter, examples of assembly
programs will be shown.

The C programming language does not permit a variable:
number of arguments to be supplied to a function. This means
that the additional requirements of meeting two, or more,
sensor conditions cannot be easily represented in the same
function. For this reason, a function called move2 is
defined. This allows two sensor conditions to be met using
the procedure described in Section 4.6. The form of the

function is,

move2("actuator","state","sensor1","attribute1",valuel,
"sensor2","attribute2" ,value2)

If the correction vectors associated with each sensor
condition are orthogonal, it is possible to achieve any
number of sensor conditions at a state. This problem can be
represented by conseéutive calls of move or move2. In move2,

the tolerance of the states is taken into account in
|

achieving the two sensor conditions. If the corrections for
two sensor conditions are orthogonal, the use of move2 is
preferable to move because in move2 the two sensor errors
are combined to give a single actuator movement. Thus, the
tw6 sensor conditions are effectively met in paral;el,

rather than sequentially.

6.7.1 Additional sensor-level programming commands

In addition to move and error-ff, some extra functions

-176-

are provided to allow manipulation of the states and thé
actuators. These are lower-level commands, although they are
necessary to model some aspects of sensory assembl&. The
following functions are defined:
shift_state(state,dx,dy,dz,do,da,dt)
This function adjusts the named state by the error
quantities in each of thé translational and
‘rotational components.
move_by(actuator,dx,dy,dz,do,da,dt)
This function moves the named actuator by the
desired amount.
define_ state(actuator,state)
This function defines the current position of the
actuator to be the named state.
speed(actuator,value)
This function sets the speed of the named actuator.
move_to(actuator,state)
This function moves the actuator to the pretaught
state.
moves_to(actuator,state)
Thislfuhction movég the actuator to the pretaught
state whilst ensuring that the origin of the
actuatdr's frame of reference traces a straight
line.

index_state(state,index)

‘This function applies the transformation specified

by the state "index" to "state"r

In assembly, a common occurrence is a jig comprising an

arfay of components to be handled. The position of the first

-177-

component and the spacing between adjacent components are
known. Assume that the state representing the first
component is called "start" and "spacing”" is the state
representing the trahsformation between adjacent components.
Then, with the actuator "robot", fhe first component may be
approached using
move("robot", "start")
The position of the next component is found by adjusting
"start" using "spacing" as the index, as
index_state("start", "spacing")
Because the operation of fetching and placing éomponents in
an array is so common, the move and index_state functions
have been embedded in a single function which automatically
updates a state position upon completion of the movement.
The form of this command is

indexed move("actuator", "state", "sensor", attribute",
: value, "index")

The actuator is moved to the named state and sensory
feedback applied, as in move. Following this, the state is

adjusted using the state "index", which represents the index

of the array. b

In the implementation of indexed_move, an additional
state is automatically defined during the first cycle. It is
this additional state which is updated an_d then used in the.
movements in subsequent cycles. The reason for doing this is
to retain the numerical value of the initial state, which
would otherwise béAlost after indexing. This initial value
may be needed again, for example in the next jig. A new

function is necessary to indicate when the indexing must

-178-

finish and the initial value restored. Hence,

end indexed_move('"state")

will terminate the indexing, such that the next use of
indexed_move with "state" will start from the beginning of
the array. An example of the use of this function is given

in Section 6.8.

6.7.2 Format of the control program

The functions described in the previous section, in
addition to move and error-ff, are written in C and at the
lowest level communicate to the sensor and actuator slaves
through the functions slave_read and slave__write. With the
exception of these low-level primitives, the whole
programming system is machine independent.

Before invoking any of the.SLPS fudctions, the routine
initial_slps must be called. This is the initializing
routine, which prompts the user for the name of the state
parameter file and the installed task file. These are opened
and the information checked for syntax and then digested.
Within this initialization routine, a number of switches can
be set to aid debugging; thgse include single-step,
diagnostic print oﬁt, and éry-run mode. A simulation mode
can be used, in which the affects of noisy sensor signals
can be investigated. In this mode, a Normal random number
generator is used to producg error signals which are used in
liéu of ﬁ@e sensér signals.‘The characteristics of the noise
can be pre-set andialso varied during execution of-the
program. o

Once the initiaiization routine has been called, the

SLPS functions can be used. Substantive error checking

-179-

procedures ensure that an attempt to use an undefined sensor
or actuator is detected. Furthermore, the relationship
between a sensor and an actuator must have been defined in
the installed task file before a sensor-actuator servo loop
can be established. If a sensor ié static, then the
relationship between that sensor and the world must be
defined explicitly. An error is reported if an attempt is
made to combine a sensor and an actuator when the
relationship is undefined. A close check is kept on the
informat%on interchange between the central controller and
the slave controllers. A failure of a sensor—siave could be
particularly dangerous if the termination of the robot's
movement depended upon a valid signal from the sensor.

The next section considers.an example of the use of the

programming system in a simple assembly problem.

6.8 Using SLPS in a simple assembly problem

To illustrate the operation and semantics of the
programming system, consider a simple assembly problem in
which an industrial robot is used to transfer five pegs from
jig 1 to jig 2,“as shown igiFigure 6.10. The-proposed
solution to this problem uses two sensors and two actuators.
The first sensor is a three degree of freedom instrumented
remote centre compliance (IRCC), which allows compliant
insertion of the pegs into the holes and also allows the
error ié the hole's position to be measuréd. The second
sensor is-a tactiie array mounted on thg robot's gripper to
provide force feedback for grasping the pegs. The actuators

used in thé assembly are a Puma 560 industrial robot and a

-180-

Gripper with
tactile sensor

Puma 560 Jig 1
robot

Figgre 6.10: A simple assemblz ogeration to transfer

the peqs from jig 1 to jig 2 using force
. sensing and tactile sensing.

~-181~

proportional electric gripper. A hardware overview showihg
the sensor and actuator controllers is shown in Figure 6.11.

The definition files for the sensors and actuators are
shown in Figure 6.12. These files must be installed with the
appropriate relationships to form-the installed task file.
Both sensors are dynamic, but for each a relationship with
only one actuator is appropriate. For the tactile sensor,
the relationship with the robot gripper is required and
likewise the relationship between the IRCC and’the robot's
frame of reference must be entered. ,

The“nekt stage in the solution is to aefine the states
associated with the system. Five states are identified.
These are as follows:

1. The position of the robot at which the first peg in

the jig 1 can be graspeé.

2. The position of the robot at which the first peg can

be released into the jig 2.
3. The transformation defining the spacing of pegs in
jig 1.

4., The transformation defining the spacing of holes in

jig 2. 7
5. The position of the gripper corresponding to the

jaws being fully open.

From a knowledge of the initial peg position and the
diétance Qetween.the pegs, the position of each of the five
pegs can be computed. The states are taught to thé
appropriafe controllers by moving the actuator to the
required configuration and recording both the position and

thé name. This applies to the states specified by an

-182-

Central

controller
P
v
Bus
o A N A
Y v Y v
Robot IRCC Electric Tactile
controller controller gripper sensor
- cgntroller controller

Puma

Figqure 6.11: A hardware overview of the sensor énd actuator

controllers used in the peg-transfer problem.

-183-

ircec, 90 , 20 , 3

Xerror, yerror, ZzZerror

(1,0,0) , (0,0,0)

(0,1,0) , (0,0,0)

(0,0,1) , (0,0,0)

(0.1 , 0.1 , 0.1, 0.0, 0,0, 0.0)

Figqure 6.12a: The sensor definition file for the IRCC.

tactile, 95 , 10 , 2

pressure, angle

(1,0,0) , (0,0,0)

(0,0,0) f (11010)

(0. , 0,0, 0.0, 1.0, 0.0, 0,0)

Fiqure 6.12b: The sensor definition file for the
- tactile sensor,

puma, 80
2 , 01
.1, .005

Fiqure 6.126: The actugtor definition file for the Puma
robot.

gripper, 85
.5, 0
.1, 0

kS

Fiqure 6.12d: The actuator definition file for the gripper.

-184-

[

absolute pbsition (states 1,2 and 5), and also to those
defined as a transformation (states 3 and 4). Following the
definition of the states themselves, the sﬁate parameter
file must be entered into the central controller. The
departure vector for those stateé representing relative
transformations is not relevant and is recorded as
(0,0,0,0,0,0). For the states representing the initial peg
and hole position, the departure vectors are defined as
(0,0,20,0,0,0). This represents a point 20 mm vertically
above the sta%es, and defines a safe position from which the
peg can’ge approached, withdrawn and inserted. The departure
vector associated with the 'gripper open' state is set to
(0,0,0,0,0,0). The system noise and the tolerance are also
set to 0. The state parameter file for this problem is shown
in Figure 6.13.

With the two definition files completed, the program to
transfer a peg is now considered. This is of the form

move("gripper", "open")

move("puma_robot", "peg")

move("gripper", "null", "tactile", "pressure", 50.0)
move2("puma_robot", "hole", "ircc", "xerror", 0.0,

~

) "ircc", "yerror", 0.0)

This”fouf—line ﬁrogranltransfers1 peg from jig 1 into jig 2
uéing force feédback in the grasping and positional feedback
in the insertion. The first line moves the gripper to the
state "open", which is a prthaught position corresponding
to the jav’is being ful ly' open. The second line moves the
robét to the state corresponding to thq position of the
first peg. In these first two commands, no sensory feedback

is used. In the third line, the gripper is moved relative to

-185-

PEG (0.0 , 0.0 , 20.0 , 0.0 , 0.0 , 0.0)
(1.0 ,1.0, 0,0, 0.0 , 0.0, 0.0)
(0.1t,0.1, 0.0, 0.0, 0.0, 0,0)

HOLE (0.0 , 0.0 , 20.0 , 0.0 , 0.0 , 0.0)
(1.0 ,1.0, 0.0, 0.0 , 0.0 , 0.0)

(0.1, 0.1, 0.0, 0.0, 0.0, 0,0)

PEG_INDEX (0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)

(0,0, 0,0, 0,0, 0.0, 0.0, 0.0)

(0.0, 0,0, 0,0, 0.0 , 0.0 , 0.0)

HOLE_INDEX (0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)

(0.0, 0,0, 0.0, 0.0, 0.0, 0.0)

(0.0, 0.0, 00,00,00,00)

OPEN (0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)

(0.0, 00, 0.0, 0,0, 0,0, 0.0)

(0.0, 0.0, 0.0, 00,0.0,0.0)

Fiqure 6.13: The state parameter file for the peg-
transfer example.

/* Control program for the peg-transfer problem */

main()
(
int i
initial slps();
for (1 =03;1<5; i++)
{ , " N

move("gripper", "open", dnull", "aull®, null);

index move("puma_robot", "peg", ™wull", "mull", null, peg_index);
move("gripper", "null", "tactile", "pressure”, 50.0);

indexed_move("puma_robot", "hole", "™ull", "null", null, hole_index);
error_ff("ircc", "xerror", 0.0, "hole");

error_ff("iree", "yerror", 0.0, "hole");

Figure 6.14: The control program for the Qeg-
transfer example.

-186-

its current position so that the preesure measured by the’
tactile sensor is 50 sensor units. This cerresponds to the
action' of grasping the peg. The final line is where all the
robot movement is represented. The complete process of
withdrawing the peg, moving the fobot to the second jig, and
then inserting the peg under sensory feedback is embodied in
the single function. Tﬁe robot is instructed to move to the
state "hole". This involves firstly leaving the current
state using the departure vector, hence the robot is
initially moved 20 mm in the z direction. Then the robot is
moved te the point 20 mm above the state "hole", prior to
moving down to insert the peg into the hole. In the
withdrawl and insertion actions, the velocity of the
actuator is computed automatically to reflect previous
errors and the state sensitivity. After inserting the peg,
sensory feedback ;'.s applied to ensure that the error in the
x and y components of the IRCC's position is zero. This
repositioning of the robot to produce zero error in the IRCC
copes with the situation of the transformation errors in the
modelling‘of the hole spac}ng. Althoggh the error‘would
initially be absorbed by tﬂe IRCC, the cummulative affect of
these errors would soon be too large for passive
compensation.

The process:.ng of the x and y positidénal errors is
de51rable because it av01ds cummulative errors. However, the
need to move the robot upon completion of the insertion
reduces the inherent advantages of passive insertion. Since

the movement does not offer any advantages on the current

cyele, an alternative formulation of the program, which

-187-

eliminates the final positional servoing, is

move("gripper", "open")

move ("puma_robot", "peg") , ,
move("gripper", "null", "tactile", "pressure", 50.0)
move("puma_robot", "hole")

error_ff("ircc", "xerror", 0.0, '"hole")
error_ff("ircc", "yerror", 0.0, "hole")

This time, the perceived errors from the IRCC arekfed
forward to adjust the state "hole". Although "hole" is the
current state, the affect of the operation will only become
evident in the next cycle, where the components of the state
will have been adjusted to reflect the er:ror., It is
necessary to use two calls of the functien error_ff, one to
adjust each component of the error in the IRCC.

The program developed so far 1nvolves moving only the
first peg into the first hole. The functlon indexed_move,
described in Section 6.7.1, allows the automatic indexing of
the states "peg" and "hole" to the next positions along the
array. Using this, and embedding the code within a normal C
control loop, gives the final control program shown in

Figure 6.14.

6.9 Summary

"The robot programming system described in this chapter
allows sensory assemblies, incorporating a combination of
commercial and purpose-built components, fo be controlled. a
fationale has been described by which sensors and actuators
can commu;icate in a structured way. Overall control is
centralized, although processing is distributed in
intelligent controllers. This produces a flexible system

which can be rapidl§ reconfigured to include an additional

-188-

sensor or actuator into the control program. The system is
modular, both in hardware and software. It is envisaged that
a 'library' of sensor and actuator controllers will be
established. This will reduce the time taken to configure a
sensor-based robotic assembly préblem. Furthermore, the
suitability of a sensor for a given application can be
rapidly determined without significant investment of effort.

The SLPS software system is a library of C functions
which are used by the programmer to construct a program as
demonstrated in the examples. The sensors, actuators and
states are defined using IRPS, an interactive'suite of
programs which communicate to the user through a questions
and answers to generate the data files. Examples of this are’
given in the next chapter. The task of &riting a control
prégram could be further mechanized. For example, it may be
more logical to write the control program before defining
the components. This program could be parsed and the
programmer prompted for the additional information required
to complete the definition files. Also, a natural-language
interface would improve thg legability of the final program.
These extensions are discuésed further in Chapter 8.

‘The next chapter illustrates how this programming

system can be used to solve an industrial problem.

-189~-

CHAPTER 7

AN INDUSTRIAL CASE STUDY

-190-

7.1 Introduction

The aim of this chapter is.to show how the work
described in this thesis can be used to solve an ihdustrial
assembly problem. The chapter begins with a description of
the problem under investigation. The‘definition of the
sensors, the actuators and the states is described and the
control program to coordinate the sensors and actuators is
developed. One of the sensors used in the assembly is noisy
and the effects of the noise estimation algorithms,
developed in Chapter 5, are illustrated. ?he improvements in‘
terms of the servoing time and final positional accuracy are

quantified.

7.2 The industrial problem under investigation

The application of an industrial robot to the handling
and lay-up of carbon-fibre is considered. This research
project requires pre-cut pieces of flexible carbon-fibre to
be handled and laid-up onto a mould-tool. Accurate joining
of adjacent pieces is particularly important. The specific
problem described ih this chapter is the assembly‘of a
satellite antenna dish froy pie-shaped pieces of resin-
impregnated carbon-fibre, where each piece is about 500 mm
in léngth. A special-purpose gripper has been designed
[8]1,[9], which handles the material using vacuum éups. The
g;ipper has visiqn sensors\to determine the exact position
ofﬂ the profile, and a force sensor to control the pressure
with which the carbon-fibre is applied. In the assembly, 24
pieces oflcarbon-fibre must be laid to form a circle, and a
number of such layeré staggered to form a complete skin of

the satellite dish. Adjacent profiles are butt-jointed

-191-

together, and no more than 1 mm of overlap or gap is
permissible, A schematic view of the assembly cell is shown
in Figure 7.1.

In the gripper, six rubber suction cups on the
underside face are connected thrdugh rubber tubing to a
vacuum pump; this provides the means of supporting the
profiles. Visual sensing is provided to monitor the position
of the profile on the mould-tool allowing accurate joining
of the next piece. Also, the camera can be used.to provide a
quantitative check on the final butt-joint, although the
quality control aspect of the problem is not éonsidered
here. Two 256-element charge coupled deviée (CCD) linear-
array cameras are integrated into the end-effector; one
mounted at the front of the gripper and one at the rear. A
single line of picture elements provides all the necessary
information to determine the position of the edge of the
profile on the gripper, and the subsequent position of the
edge of the profile on the mould-tool. A good visual
contrast is produced by the black mould-tool and the white
backing-paper of the carbqp-fibre.

The active surface of(the gripper is attached to the
wrist of a Puma560 industrial robot through a compliant
mounting pod. Force feedback is provided from a
potentiometric encoder mounted oh the pivot, allowing the
méuld-toq}'s surface to be followed and also a controlled
force to be applied to join the tacky carbon—fibré onto the
tool. |

The profiles are pre-stacked, and their-posigion in the

jié is well-defined. The grippef approaches the stack and

-192-~

Sensor and actuator

slaves
Central controller v "\\\N
(IBM PC/XT) \

[

© o [* ¢ |% o

Jig holding i - ‘///H 0l o

carbon-fibre / T TT/
profiles -~ , :

/
4 CLT—
N "”7;(\\

-_-U'VLJ
=~] Mould tool
and indexing table

—

Puma 560 robot

"Figure 7.1: A schematic view of the work—cell.for
the carbon-fibre assembly proiject.

-193-

separates the top piece by pressing the suction cups onto
the top backing paper. Once the profile is on the gripper,
the underside piece of backing paper, which protects the
carbon-fibre, must be removed. This is currently done
manually, but in the long-term it will be automated. The
profile is then offered to the mould-tool and sufficient
pressure is applied to ensure a bond between one end of the
profile and the mould-tool. The gripper is‘then moved along
the surface of the tool and, because it is fastened at one
end, the profile slides across the surface of the gripper
and adheres to the mould-tool. The rubber rolier at the
front of the gripper assists in the transfer of the profile
from the gripper to the mould-tool and also helps to
eliminate air bubbles. H

After the profile has been applied, the mould-tool is
rotated by 15° using the indexing table. This means fhat
each profile is laid-up using the same basic operation,
although positioning errors will cause the critical
locations in the model to be subject to errors. Following
the indexing, the position of the edge of the most recent
profile is determined and the model adquted to reflect any
errof. This ensures that the next profile will be positioned
accurately along the length of the joint.

During the movement of the fobot down the mould-tool,
ne sensory feedback is used. Although the front vision
sensor could, in theory, provide information on the joint,
in practiee it is not possible to apply correction during
the léy-up. This is a consequence of the nature of the

carbon-fibre, which would deform if the fibres were not laid

-194-

straight.

In experimental work with this assembly problem, a
number of difficulties with the proposed solution have
become evident. However, it is not the aim of this chapter
to present a definitive solution fo the industrial problem.
Instead, it is to show how, given the chosen hardware,
sensors, actuators, jigging etc., the control program can be-

formulated and errors processed.

7.3 Components of the assembly

As described in the previous section; the solution to
the assembly problem requires two actuators and two sensors.
The actuators are

1. A Puma 560 industrial robot.

2. An indexing rotary tablé.
and the sensors are

1. A force sensor on the robot's wrist.

2. A linear-array camera at the front of the gripper.

The second linear-array camera, mounted at the rear of

the end-effector, is not uged in the solution described in

this chapter.

‘The main control computer is an IBM PC. An overview of

the hardware for the system is shown in Figure 7.2.

.

The slave controller associated with the Puma robot is

cdhnected to the serial line of the commercial system. Thus,
when the generic command codes (Figure 6.2) are issued by
the central controller, the Puma slave controller sends the

appropriate string of characters down the serial channel

into VAL. After executing the command, the slave controller

-195-

Central controller

(IBM PC/XT)
A
v _ ’
\} - Bus - *2;
A P 8 AN iy
v v A 4 Y
Pua 560 Indexing- Force- Linear-array
table | - sensor camersa
controller controller controller controller
A ‘
' 74
Puma.560
system with To
VAL language gripper
~
{
N

Fiqure 7.2: An overview of the hardware for the
carbon-fibre assembly project.

-196-

interprets the prompt, or error, sent from VAL and sends
back to the central controller either the‘valid terminator,
99, or an error code. The error code is a numeric
representation of the error messages sent from VAL. As far
as the central controller is concerned, the main control
program will abort if anything other than a 99 is received
from the slave. However, the received error code is printed
out by the central controller to help the programmer trace
the error. Automatic error recovery based on these error
codes i§va possibility [107] although this remains an area
for further work.

The indexing tabie has only one degree of freedom and
is controlled directly from the slave. The slave translates
the geﬁéric command from the central controller and executes
the instruction. Control signals to the electric motor are
sent directly from the slave.

The rdle of the actuator-slave in the case of the robot
and the indexing table is quite different. For the robot,
the slave must interface to an existing commercial
controller and-trahslate tﬁe command codes sent from the
external controller into t%e syntax required by the
commércial‘system. The slave does not, therefore, control
the actuator directly, but instead acts as an interface
between two systems. For the indexing table on the other
hénd, thé}slaveAcontrols the motor of the actuator directly.
Despite this différence,‘the central controller cén
communicéfe to both actuator controllers in a similar way,
and iﬁstructions to move the robot are sent in ex;ctly the

same format as instructions to move the indexing table.

-197-

The sensors in the system are purpose-built and are
controlled airectly from the appropriate sensor-slave. In
practice, the controller for both sensors resides in the
same module, and hence at the same physical address. The
required sensor is identified by.its unique activation
number (Section 6.5.1).

The information from the linear-arfay Camera 1is
processed in the sensor-slave to produce two attributes.
These attributes represent the positions of the edges in the
images. ?he first attribute is the position (betweén 0 and
255) of the white-to-black transition in the Ehresholded
grey-scale image. The‘second attribute is the position of
the black-to-white transition in the same thresholded image.
With the profile attached to the grippef, the white-to-black
transition corresponds to the position of the edge of the
profile in the field of view. Although it is assumed that
the profile is accurately positioned on the gripper, the
information from this attribute of the sensor could be used
to detect a misalignment of the profile. The extension of
the solution described in-this chapter to include this
information introduces additional problems, which are
discussed in Section 7.6.

Because the viewed surface of the profile is white, the
Yision sensor produces high contrast images, from which the
edge positions can easily be computed. Indeed, the image
processing can be comfortably handled on the 8-bit
microprocéssor resident in the slave. The black-to-white
attribute is non-zero when the gripper is being used to

examine the position of the profile on the mould-tool.

-198-

Because the mould-tool is black and the upper backing-paper
is white, the scene will be perce'ived as a dark region then
a light region along the array. The position of the edge can
be easily found after thresholding.

The force sensor provides a-single attribute, which
corresponds to the angle made by the active surface of the
gripper with the mounting pod. The sensor reading varies

between 0 and 60 as the gripper moves through -30°,

7.4 Defining the components of the assembly

The first step in programming the assembly is to define
the actuators and sensors. This is done using the suite of
integrated programs, called IRPS. A complete transcript of
the dialogue necessary to define the actuator 'puma' is
given in Appendix A. Upon complétion of the definition, the
file 'puma.act' is stored on the disk, ready for
installation. The contents of this file are shown in Figure
7.3.

A similar procedure is followed for the indexing
table, which is given the name 'table' and hence is stored
as the file “téble.actﬂ fﬁis file is shown in Figure 7.4.

_After completing the definition of the actuator, the
programmer returns to the main menu and selects the option
to define the sensors. Appendix B shows the steps in
defining the linear-array camera, which is called 'camera'
and is‘stbred in the file 'camera.sen'. This is shown in
Figure 7.5. Two attributes, called 'btgw' and 'wtob' are
defined. These attributes represent the positions of the

black-to-white and white-to-black transitions respectively,

-199~

puma, 80
.2 ’ .01
.1 , .005

Figqure 7.3: The file 'puma.act' defining the robot.

table, 82
0, .1
0, .01

Figure 7.4: The file 'table.act' defining the
indexing table.

camera, 83 , 10 , 2

btow, wtob

(1,0,0) , (0,0,0)

(-1,0,0) , (0,0,0)

(0.7 , 0.0 , 0.0, 0.0, 0.0, 0.0) -

Fiqure 7.5: The file 'camera.sen' defining the
) linear array camera.

-200-

computed from a thresholded image. For each attribute, fhe
transformation must be defined which relates the error in
the value of an attribute with the direction in“which the
sensor must be moved to reduce that error. The frames of
reference of the sensors with respect to the robot are shown
in Figure 7.6. For attribute 'btow', the correction which
must be applied is in the -x direction, and hence the
correction is stored as

(-1.0, 0.0, 0.0) , (0.0, 0.0, 0.0)
The attribute 'wtob' requires a correction:in the +x
direction and is therefore stored as

(1.0, 0.0, 0.0) , (0.0, 0.0, 0.0)

The second sensor, 'force' is defined in a similar way
and the .data file describing this is shown in Figure 7.7.
For this sehsor, the correction‘is applied as a rotation
about the x axis. Thus, the correction is stored as

(0.0, 0.0, 0.0) , (1.0, 0.0, 0.0)

The size of the correction per unit error in the
sensor, 1is not specified in this data structure, which is
concerned only with direction. The size is computed in the
routine mbvema;g, in which»‘; function is defined to give the
size of the correction for each sensor (Section 6.5.1). For
the sensor 'camera', the size returned is sensor-error/10,
because there is a resolution of 10 pixels per millimetre in
the camera. Fof the sensor 'force' the size returned is
sensor-error/2, which reflects the fact that the sensor must

be rotated 0.5° around its x-axis per unit increase in the

attribute value.

The contents of the sensor and actuator definition

-201-

Force frame Camera
c frame

Fiqure 7.6: The frames of reference of the robot and
the sensors on the carbon-fibre gripper.

force, 83 , 20 , 1

angle '

(0,0,0) , (1,0,0)

(0.0 , 0.0 , 0.0 , 0.5 , 0.0 , 0.0)

Figure 7.7: The file 'force.sen' defining the
force sensor,

-202-

files are independent of the configuration in which the§ are
used. This information is requested in the next phase of the
definitions, the installation phase. Firstly, the‘éensors
and actuators pertinent to the assembly must be installed.
The name of each sensor and actuator is requested and the
corresponding data files are read. For each sensor, the
programmer must state whether it is static or dynamic. For
the problem being addressed in this chapter, each sensor is
coupled to the robot and is therefore defined as dynamic.
The relationships between the frames of reference of each
sensor and actuator are then defined. For each dynamic
sensor, the program requests the relationship between the
sensor and every actuator. For the indexing table, the
relationship between it and each sensor is defined to be
'not applicable'}(Section 6.6). for the linear-array camera,
because it has only a translational correction combonent,
the transformation between the robot's and the sensor's
frame of reference is only rotational. The reason for
ignoring the offset between the frames of reference was
discussed in Section 6.6. The homogeneous transformation

between the robot and the iinear—array camera is therefore

given by

O -~0O0
OO0

0
-1

0 -

0

[N e N R4

For the sensor 'force', the correction is a rotation
around its x axis and therefore both the rotationai and
translatiénal differences between the robot's frame and the
sensor's frame must Be considered. The homogeneous

transformation between the robot and the force sensor is

-203-

represented by

SOO—
§

O -2 00
QO -0
-—
oo

The combination of the definitions of the sensors and
actuators, and the matrices specifying the interactions, are
stored in the installed task file, which, for this example ,
is called 'itask'. Appendix C shows the stageslin producing
this file using the suite of programs, IRPS. A listing of‘
the file is shown in Figure 7.8. |

The next step is to identify the states defining the
assembly and then to construct the control program using the
named states and the sensors and actuators defined in the
installed task file. To solve this assembly, four states are
identified. These are,

1. The location of the robot at which the gripper can
remove a profile from the stack. Because of a
compliant bed underneath the stack, the location is
chosen to be at the height of the bottom piece on
the stack. This state is called 'stack'. |

2. The position of the robot corresponding to the
gripper at the top of the required lay-up path i.e.
at the centre of the mould-tool. This state is
called 'start'.

3,'The position of the robot correspbnding to the
gripper ai:_ the end of the lay-up path on the mould-
tool, i.e. at the perimeter of the dish. This state

is called 'end'.

-204-

2
camera
dynamic
83 10 2
btow
wtob
(1,0,0), (0, 0,0)
(‘11010)1(01010)
(0.7 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0)

force
dynamic
83 20 1
"~ angle :
(0 ,0,0) , (1 ,0,0)
(6.0 , 0.0 , 0.0, 1.0 , 0.0, 0.0)

2

. puma 80
0.2 0.01
0.1 0.005
table 82
0o, .1
o, .01

puma camera
1.000 0.000 0.000 0.000
0.000 -1.000 “\0.000 0.000
1.000 0.000 -=1.000 0.000
0.000 0.000 0.000 1.000

puma force
-1.000 0.000 0.000 0.000
0.000 0.000 -1.000- 0.000
-~ 0.000 -1.000 0.000 -15.000
0.000 0.000 0.000 1.000

Fiqure 7.8: The installed task file, 'ITASK', for the
- carbon-fibre assembly project.

-205-

4. The position of the robot at which the gripper is
approximately mid-way down the mould—fool and about
300 mm above it. This location represents a safe
point, at which the robot is clear of the mould-tool
whilst it rotates. By inéluding this point in the
transfer of the robot from state 1 to state 2, the
trajectory of the robot is more clearly defined and
a potential collision between the gripper and the

mould-tool is avoided.

The construction of the jig which holds the stacked

profiles is such that the gripper must approach the stack
from vertically upwards. If the gripper approached from the
side, there would be a collision with the wall of the jigqg.
This constraint is modelled by aefining the departure vector
for the state 'stack' to be (0,0,50,0,0,0), indicafing that
the stack must be approached by first moving to a point 50
mm above it, and then moving down. Likewise, when the
gripper leaves the stack, it first moves vertically upwards
by 50 mm and then onto the next state. The approach and
departure path_ of the oth;\"r two states is also defined to
allow safe transfer of the robot between the states.

At this stage, the departure vectors and the state
tolerances have not been defined to the system; this is done
after the control program has been written. The program to
lay—up.a single piece of carbon-fibre is éhown in Figure
7.9.

Following the call of the initiglization routine, the

first instruction in the program requires the robot to move

-206-

main()

{
/* Program to lay a single carbon-fibre profile */
initial_slps();
move("puma", "stack");
move("puma", "safe");
move("puma", "start", "force", "angle", 30.0);
moves_to("puma", "end");
move("puma", "null", "force", "angle", 30.0);
move("puma'", "safe");
move_by("table" , 0.0, 0.0, 0.0, 15.0, 0.0, 0.0);
move("puma", "start");
error ff("camera , "btow", 128.0, "start")'
move (puma P "end"), :
‘error_ff("camera", "btow", 128. O, "end");

}

The control program to lay one piece of
carbon fibre.,

Figqure 7.9:

STACK (
(0.0,
(1.0,

0 0.0
0. 0.0
1 1.0

o O O

~ - -

SAFE (0.0 , 0.0 ,. 0 0, 0.0 ' 0.0 , 0.0)

(0.0, 0.0 , 0.0 ,/0.0 , 0.0 , 0.0)
(1.0 ,1.0 , 1.0 , 1.0 , 1.0 , 1.0)
START (0.0 , 0.0 , 20.0 , 0.0 , 0.0 , 0.0)
(1.0 , 1.0 , 1.0 , 0.0 , 0.0 , 0.0)
(0.1 ,1.0,1.0,1.0,1.0,1.0)
END (-5.0 , 0.0 , 10.0 , 0.0 , 0.0 , 0.0)
(1.0 , 1.0 , 1.0 , 0.0 , 0.0 , 0.0)
(0.1 ,1.0,1.0,1.0, 1.0, 1.0)

Fiéure»7.10: The state parameter file for the carbon-
' fibre assembly.

-207-

to the stack. No sensory feedback is required, and hencé the
shortened form of the move function is used. The execution
of the command follows the steps discussed in Cha§£er 3. For
the first movement command in the program, the initial
position of the actuator is unknown. Therefore the initial
fine motion phase is omitted and the first movement will be
the gross motion to the intermediate state associated with
'stack'. Following this, there will be a fine motion phase,
in which the robot in moved to 'stack'. The speed of the
robot in this phase will be computed from the sensitivity of
the state; the absence of sensory feedback means the
confidence is automatically set to be 1. The second command
instructs the robot to move to the state 'safe'. This time,
the first phase of ;the motion will be to.depart the current
state, 'stack', along its departure vector, i.e. vertically
upwards. Following this, the gross motion phase wili involve
a movement to the intermediate state associated with 'safe'.
There are no constraints associated with this state and
therefore the intermediate state can be made equal to the
state, by setting the departure vector to be zero.

The third‘iine in theﬁgrogram instructs the robot to
move to the state 'start' and then apply sensory feedback to
achieve an angle of 30 in the force sensor. The departure
vector associated with the current state,. 'safe', is zero,
and therefore the first movement is the gross motion to the
intermediate state associated with 'start'. Following the
fine-motion phase to the actual state, sensory feedback is
applied to achieve the desired sensor condition. At this

stage, assume that the sensor is noise-free and therefore

-208-

the actuator makes, at the most, one movement in the
feedback phase. If there is no system error, no movements
will be made. In practice, the force sensor used ih this
industrial problem is based on a potentiometer and the
analogue signal is corrupted by clock feed-through from the
control lines of the linear-array camera. The nature of the
noise from this sensor was discussed in Chapter 5. The
effect of the noise on the performance of the servoing, and
the subsequent improvements from using the algorithms
developed in Chapter 5, are discussed fully in Section 7.5.

During the.moéement of the robot from 'start' to 'end',
the profile is transferred to the mould-tool and thus the
path between the two states must be a straight-line. For
this reason, a move function cannot be used. Instead the
function moves_to (Section.6.7A), which moves the actuator
to a pre-defined state in a straight-line, is emplbyed.
Following this function, the sensor condition of 30 in the
force sensor is achieved using a null parameter in the move
function to indicate movement relative to the current
position. The next move instructs the robot to move to the
state 'safe'. Té acﬁieve tgﬁs, the robot will initially be
moved to the intermediate state associated with the state
'eﬁdﬂ The departure vector of 'end' is chosen so that the
intefmediate point is a safe distance from the state,
ensuring that the profile has completely separated from the
rubbervsuétion cups. Hence, the departure\vector for 'end'
is defined as (-5,0,10,0,0,0), which corresponds to moving
up and away from the profile on the moiuld-tool.

After the profile has been applied, the indexing table

-209-

is moved by 15° using the function move_by. The gripper is
then moved back to 'start' and the error between the edge of
the profile and the required value of 128, is fed forward to
adjust 'start' for the next cycle. The state 'end' is
adjusted in a similar way, in preparation for the lay-up of
the next-piece.

After the control program has been entered using the
normal system editor, a program which parses the file and
extracts the names of the states, is executed. This program, .
which is part of the IRPS suite, then requests the'
paramete;s of the state definition file, namel& the
departure vector, the system noise, and the tolerance of
each state. The system noise for the states 'start' and
'end' is defined to be (1,1,1,0,0,0). For the states 'stack’
and 'safe', at which no sensory feedback is used, it is
defined to be (0,0,0,0,0,0). For those states at which
sensory feedback is used, the system noise will be updated
using information from the servoing.

The tolerance of each state is used in the computation
of the approach velocity an the termination criterion for
the servoing. For the stat;s 'start' and 'end' the tolerance
vector is defined to be (0.1,1.0,1.0,1.0,1.0,1.0). The
tolerance is smaller in the x direction, because the
position of the edge of the carbon-fibre (which lies in the
xndirection) needé to be controlled to a greater accuracy
than the force applied in the y-z plane. The state
definitioh file for this problem is shown in Figure 7.10.

- The final stage in the programming of the assembly is

toﬂcompile the C program and link the SLPS library routines,

-210-

forming an executable machine-code program. The names of the
state definition file and the installed task file will be
requested by the program within the initialization function
initial_slps. In the next section, the results of running
this program are considered and the problems of the noise in

the force sensor illustrated.

7.5 Performance of the control system

The source file containing the SLPS program is called
'lay.c' and after compilation and linking it is executed by
typing 'lay' from tﬁe operating system's prompt. When the
routine initial_slps is executed, the programmer is
requested to enter the names of the data files describing
the assembly. The dialogue between the progfammer and the
programming system during the e#ecution of an SLPS program -
is shown in Appendix D.

Upon completion of each movement, the Kalman gain for
the appropriate state and sensor is updated. For the two
move commands involving the force sensor, the estimated
measurement and system noise will also be updated. For those
states at Which.no Sensors glre used, the Kalman gainwill
remain equal to I and the error covariance will equal the
initial estimate of the system noise at the state. The
initial noise estimate for the sensor 'camera' is
(0.1,0,0,0,0,0), and the initial noise estimate for the
state 'start' is (1.0,1.0,1.0,0.0,0.0,0.0). Because there is
no sensory servoing using this sensor and state, the
estimates of the noise levels will re@ain unchanged from

these initial values. Therefore the steady-state Kélman gain

-211-

is 0.92 and the steady-state error covariance is 0.092.
These steady-state values can be predicted before the
program is executed, since they depend only on the.initial
values of the noise estimates. For the force sensor at the
states 'start' and 'end', the measurement and system noise
will be updated after each movement. Therefore it is
impossible to predict « paiori the steady-state values of
the Kalman gain and the error covariance. In practice, after
100 cycles, the Kalman gain associated with this state and
sensor was 0.3, and the error éovariance was 1.4. The small
Kalman gain associsted with this state and sensor indicates
that the sensor is noisy. The level of this noise, and the
improvements obtained by weighting the sensor information
using the Kalman gain are now gquantified.

Consider moving between two.locations, where the aim
is to achieve a force of 30 sensor units at one of. the
locations. The program to achieve this, using the locations

'start' and 'safe', is shown in Figure 7.11.

main() - ~

int i;

initial_slps();

for (1 =13 1 <=100 ; i++)

(

move("puma", "safe");

move("puma", "start", "force", "angle", 30.0);

Figure 7.11: SLPS program to move the robot between
‘ two states.

-212-

Let the program operate for 100 cycles andjxleach.
cycle set K=I. This is the usual way of processing sensor
information and assumes that it is reliable. The oEject of
this is to illustrate the effect, in terms of system
performance, of using the noisy sensor information. Since
the SLPS move function would normally detect the noise and
apply a weighting function, the software is modified for
this experiment by removing the Kalman filter update
equations from within the execution of move; hence K=I
throughout the experiment. In achieving the condition of 30
in the attribute of the sensor, the robot will make a series
of movéments under sensory feedback, which will terminate
only when the sensor condition is met. This is achieved by
setting the tolerance vector and the actuator's resolution
to be zero. The number of iterafions necessary to achieve
the sensor conditions is shown in Figure 7.12 for éach of
100 cycles. Furthermore, the error in one component of
position at the end of the movements is plotted in Figure
7.13.

Now let the measurement and system noise be updated
after each cycie using thé}informatidn from the servoing.
This corresponds to the programming system operating
normally. The effects of this in terms of the number of
iterations per cycle and the final positional error are
shown in Figures 7.14 and 7.15 respectiveiy.

Thé number of iterations per cycle cén be directly
related to the total time spent servoiqg. In practice, the
time to sense, compute the error, move the actuator and then

compute thé new noises is about 0.4 seconds, (This time does,

-213-

16 -
0 ‘ \
o
0
o
2
o
5 12 4
2
o
"
o
o
=]
8 4
b -
0 M " . H 1 T ¥
0 25 50 T5 100
Cycle.

- Fiqure 7.12: The number of iterations per cycle
assuming reliable sensor information.

2.0

Error (mm.)
o

—100]

—2.0% . 25 50 75 . 100
Cycle.

‘Figure 7.13: The final error in one component of position
assuming reliable sensor information.

-214-

16 3

/]
o
(o]
o
=
5 12 -
)
o
Gt
Q
o
=
8 -
h 4
N | | _ /
‘ 25 50 T5 100
Cycle.

Figqure 7.14: The number of iterations per cycle
after compensating for the noisy sensor.

2.0-
8
§ 1.01
=5

_1.0‘

0 - 25 - >0 75 160
Cycle.

Fiqure 7.15: The final error in one component of position
after compensating for the noisy sensor.

-215-

of course, depend on the distance moved by the robot)..If
the sensor information is assumed to be reliable, upto 6.4
seconds are required to achieve the sensor conditions. This
is substantially reduced to a worst-case of 2.0 seconds when
the sensor information is weighted.

The final error in one component of the robot's
position is significantly reduced after the sensor
information has been processed to compensate for the noise.
If the sensor information is assumed to be reliable, the
positional error is between +1.8mm; this is reduced to

between " +0.7mm after processing.

7.6 Summary

The control program shown in Figure 7.9 to lay-up a
piece of carbon-fibre, demonstrates theﬂcompact
representation of sensory feedback, which is a feature of
the programming system. In the event of a sensor becoming
noisy, or failing completely, automatic processing of the
errors improves both the accuracy and the speed of servoing.
The compact represehtation of sensory feedback and the
automatic processing of errors, together with the modular
and structured communicatign protocol underlying the
execution of the program, satisfy the aims set-out at the
beginning of this thesis. The components and parameters of
the assembly are defined using IRPS, a suite of interactive
éfograms yhich réquest the information from the programmer
and store it in definition files. The modular hardware
architectﬁre reduces the time spent configuring the system
and improves reliability and integrity. Adding an extra

sehsor or actuator is as simple as plugging the control card

-216-

into the bus and installing the appropriate definition file.
The software system has been designed for discrete
feedback applications, but the need to move the end-effector
in a straight-line to lay the carbon-fibre corresponds to
the application of continuous feédback. Within the control
program of Figure 7.9, the function moves_to is used to
achieve a straight-line motion, but without sensory
feedback. Ideally, the sensory feedback needs to be applied
during the whole movement between 'start' and 'end'. The -
problems of extending the programming system to cobe with
continuous feedback are discussed in detail iﬁ the next
chapter. One solution'is to break the path into a finite
number of inteévals and apply sensory feedback only at the
nodes. This approach has been described”by the author in
reference [108] and involves generating a set of sub-states,
which are defined on a straight line path between two
states. The continuous feedback is implemented by using move
commands between the sub-states. The main problem with this
approach is the discontinuity in the robot's motion,

associated with the need tg stop the robot at each sub-
{

state.

‘The end-effector used to handle the carbon-fibre is
equiped with two linear-array cameras. Only one, however,
features in the final control program. The second is
iﬂtendedAgo provide feedback pertaining to the position of
the profile on the gripper. Using information from both the
front and.rear sensors, the error in the translational
position can be deduéed. Also, the difference between the

two sensor readings can be used to compute the orientation

-217-

error of the profile on the gripper. In practice, this error
is the most significant. Combining information from two
separate sensors to compute an error cannot, at present, be
effiéiently modelled with the programming system. It can be
achieved using low-level functiéns to extract the attributes
from the sensor, manipulate them and then adjust a state.
However, this is not ah attractive solution. A more
structured solution to this problem is proposed in the next

chapter.

-218-~

CHAPTER 8

CONCLUSIONS

-

-219-

This chapter concludes the thesis by examining the main
achievements and the opportunities for further work to
improve the facilities of the software for handling more
complicated assembly problems. Following a discussion of the
achievements, the extension of tﬁe work is divided into two
categories. Firstly, short-term improvements to the software
are considered and secondly longer-term developments which

reflect the need of second-generation robot systems are

examined.

8.1 Achievements of this thesis

There were three principal aims for the work in this
-thesis, namely,
1. To represeht sensory feedback at a high-level in the
control program. ‘
2. To consider how the sensors and actuators éhould be
distributed and controlled.
3. To investigate how sensor information can be
processed in the face of noise.
These three aims have been achieved by developing a
programming syétem, SLPS,A%hich is a library of C functions.
Used in cohjunction with IRPS, a suite of programs to define
the components of the assembly, the software allows discrete
sensory assemblies to be modelled and each of the above
three objectives realized. "
Chépter 3 described a framework for fepresenting
sensory assemblieé. The assmbly is defined by a set of
states“which correspond to key actuatqr positions within the

work-cell.kThe control program is a controlled sequence of

-220-

movements between the states, using, in general, sensor&
feedback to fine-tune the value of each state. The movement
of the actuator between the states involves a cqnffolled
approach and departure vector for each state. Furthermore,
the sensitivity and tolerance of the state are used to
compute the speed of the actuator within these controlled
regions.

The hardware configuration employed is based around a
master-slave architecture, with all sensing ana movement
commands being directed through the maste; and executed
sequentially. Because of this, it is impossible to achieve
simultaneous sensing and moving with the current system.
Since the system was designed with discrete feedback in
mind, this is not a severe problem. However, an extension of
SLPS to continuous path sensing.cannot be effectively
implemented without the capability to move the actﬁator and
sense simulataneously. The solution to this problem extends
beyond modifying the programming system because it requires
additional features in the actuator controller. Many
commercial robots do not have the facilities to respond to
sensor informafion during.; movement. Although VAL II on the
Puma robot is an exept~ion to this, the development of a
general actuator interface to include continuous path
control cannot be effectively achieved without reéorting to
low-level servo control of the actuators..One solution,
describéd“by the author in reference [1081, achieves
continuous path céntrol by partitioning§the trajectory into
a number of smaller segments and applying discrete sensory

feedpack at each of ‘the nodes. Although this is not an ideal

-221-

s

solution, it hés been used satisfactorily in the case étudy
described in Chapter 7 (See referenée [108] for more
details). The problem of extending the programminé system to
cope with continuous path feedback is discussed further in
Section 8.2.3.

This thesis has introduced a new level of robot
programming, called sensor-level programming. By qualifying
each actuator movement by a set of sensor conditions, the
object of each movement is to transfer the readings of the
sensors into a new set. Sensors are defined as either static
or dynamic and errors are transformed from the sensor's
frame into the world's frame by defining homogeneous
matrices between the frames. The problem of achieving two
sensor gonditions; when the correctionsAfor each condition
have a common component, was,adaressed in Chapter 4. A
solution was described using the tolerances of the.states to
define uncertainty zones. When the corrections for the
sensor conditions do not have a common component, each
condition may be met sequentially.

The work described in Chapter 5 demonstrated how the
reliability of sensor information can be quantified by
processing the servo information. Algorithms were developed
to estimate the variance of the measurement noise and the
system noise. These noise estimates were then used in a
Kalman filter to-weight the sensor information. Sensor noise
is not ﬁsu‘al ly considere@ as a source of érror in robotic
assembly.vHowever;.experience has shownkthat'robot sensors
are by no means ideal and are subject to, among other

things, electrical interference of the form illustrated in

-222-

Chapter 5. Since this may be intermittent and of variabie
characteristics, electrical filtering does not offer a
reliable solution.

In addition to the noise from the sensor, Chapter 5
illustrated that the repeatability of the actuator is a
source of noise. For a dynamic sensor, the total méasurement
noise is the sum of the noise from the sensor and the noise
from the actuator. Experiments demonstrated that the noise
can be modelled as a Normal distribution, which is perceived
to have an approximately white frequency Qistribution.

After the mean value of the system ndise has been
estimated, long-term feedback, as proposed by DeFazio and
Whitney, can be applied. The algorithms developed in Chapter
5 provide the estimate of the mean of the system noise and
therefore allow drift and transformation errors to be
tolerated.

The two numerical examples in Chapter 5 demonstrated
the estimation algorithms for a constant measurement noise
and a changing measurement noise. These examples, together
with the industrial case-study of Chapter 7, illustrate the .
advantages to be gained ff&m detecting noisy sensor
information and pre-processing the measurment information.
The final positional accuracy is improved and the total time
spent servoing is reduced.

The definition of a protocol for information
interchénqe between the sensors, the actuators and the
central controlle?s, is an important stgp in producing a
control system conducive to industrial applications. By

developing'self—contained intelligent slave controllers, a

-223-

hardware solution to a sensory robotic assembly can be
rapidly configured. Since each sensor and actuator
communicates using the same format of instruction; and data,
it should be possible to build a 'library' of sensor and
actuator controllers. As well as hardware modularity, the
definition of each controller through a parameter file using
IRPS allows rapid software configuration. Such a modular
approach has advantages in the final system and offers an
invaluable tool to assist in the development phase of a
robotic assembly project. Alfeady, the 'library' of
controllers includes a force sensor, a linear-array camera,

a tactile sensor and a Puma robot controller.

8.2 Further work: short-term objectives

Several enhancements to the programming system are

proposed and the problems in achieving them identified.

8.2.1 A natural language interface

The generic sensor-level programming primitives
introduced in Section 4.2 are implemented as C functions
with the names of the states, the sensors, the actuators and
the set-point és parametef;. For compilatidn of the control
program, the information must be in the form of the function
name followed by the list of parameters. From the
programming point of view, however, the meaning of the move
function is not immediately obvious. Furthermore, since the
order in which the parameters must be speéified is critical,
an alternative, more readable, syntax is desirable. Consider

the general form of the move command, .which is

MOVE actuator TO state ACHIEVING condition IN
attribute OF sensor

-224-

and the form required in the SLPS control program, which is
move(actuator, state, sensor, attribute, set-point);

The translation between these two forms could be
mechanized, so that the input is the more readable general
form and the output is the form required by the C compiler.
The meaning of those move commands incorporating the "null"
parameter would be improved using this approach. For
example, replacing the state name by 'null' in an SLPS move
command implies moving relative to the current position. In
the general form, this would appear as

MOVE actuator ACHIEVING condition IN attribute
OF sensor

From which it is clear what is being requested.

Writing a proéram to convegt the natural-language
representation of the move command into the format required
in the SLPS system would not be difficult and would greatly
imprdve the legability and structure of the cpntrol progran.
This extension to the programming system is seen as the
highest priority for future work.

8.2.2 Combining sensor information: simple and compound
sensors '

One problem arising from the case studyﬂof Chapter 7
coﬁcerned the alignment of the carbon-fibre profiles using
two gripper-mounted linear-array cameras. Although
individually each sensor gi%es the translation error at the
front and the rear of the. gripper, the error in orientation
is found from the difference in the edge positions perceived
by the two sensors. At present, the programming system has

no facilities for efficiently combining sensor information

-225--

in this way. A proposed solution is to define 'compound—
sensors' whose sensor reading is obtained by combining
information from two or more physical, or simple,‘éensors.
For the problem of detecting the misalignment of carbon-
fibre, the simple sensors would be the linear-array cameras
and the compound sensor would give a value equal to the
difference between the two perceived edge positions.

From the point of view of programming, compound sensors
would be used in exactly the same way as simplé sensors. The
differences being the way in which they are defined and the
way the errors are computed. Henderson's work on logical

sensor specification [83] is applicable to this problem.

8.2.3 Continuous path sensing

The problems of extending the programming system to
cope with continuous sensing were discussed briefly earlier
in this chapter. Although it would allow a wider range of
assembly problems to be tackled, continuous path sensing
introduces problems which cannot be easily solved with the
architecture and protocols underlying the work described in
this thesis. Among some ofﬁrhe problems are:

1. Continuous sensing requires fast servoing rates.

The need to route all sensor-actuator interactions
through the central controller is a handicap for
high~speed information interchanges. Thus, new
‘architectores may noed to be considered.

2. Th; sensing and the movement must be achieved in

parallel. The SLPS system operates by sending

" movement and sensing commands in sequence. Not only

does parallelism require a more detailed

-226-

multitasking communication protocol, but the
actuator must be able to respond to error .
information during a movement. Most commercial
robots do not have this facility.

3. The processing of sensor-information becomes time
critical and any delay in extracting attributes from
sensor data needs to be considered when applying the
correction. If the time between sensing and applying
the movement is too large, the sensing may be

ineffective.

Extending the programming system to cope with continuous
path sensing is not trivial. It will require a fast sensor-
actuatop\communication channel, probably not involving the
central controller. Furthermore; it requires special
characteristics in the actuator to respond to errof sighals
during a movement. Solving assembly problems requiring this
type of sensing is best achieved using a dedicated robot
system with real-time path control facilities, such as a

Puma with VAL II.

~

'8.2.4 Strict checking of sensor information

The protocol for sensor communication defined in
Chapter 6, does not provide facilities for strict checking
of the sensor information. Qhecking the number of attributes
séht and the finai terminator does detect a phase error in
the transmission, but the integrity of the attributes
themselves is not assessed. Consider the linear-array camera
used in the case study of Chapter 7. If the perceived edge

position received by the master is 0, this means either that

-227-

the actual edge position is out of the field of view, or
that the sensor is not Qperating correctly. Using the value
of 0 as the sensor reading may mean the actuator is moved in
éompletely the wrong direction, causing the system to go
unstable.

One solution to this problem is to define é range of
permissible values for each attribute of each sensor. If the
value of an attribute is outside this range then an error is
reported. Under these circumstances, it may be possible to
automatically test the sensor to see if the problém is due
to incorrect positioning, or to a sensor malfunction.
Estimates of the noiée from the sensor and the system, as
derived in Chapter 5, may assist in identifying the cause of
the problem. |

Incorporating this checking within the programming
system would not be difficult. Within the definition of the
sensors in IRPS, the programmer would be asked to specify a
fange of permissible attribute values for the sensor. During
the application of sensory feedback, each sensor reading

would be checked tb makevgure it was within this range.
’ |

8.2.5 Coping with transformation errors

If the transformation error from the sensor error to
the corresponding actuator error is eérroneous, the affect
will be interpreted as a measurement error, even if the
sensor.and actuator are noise—free. In principle,‘it is
possible to detect a transformation error by defining the
parameters of the transformation to bg additional states in

the Kalman filter, i.e. extended Kalman filtering [79]. It

-228-

may be possible to extend this idea to the case where éhe
sensor-actuator relationships are defined approximately, if
at all, and are estimated from the results of sengor—
servoing. Thus the system could learn the relationship
between the sensor and the actuator and adapt these
relationships to reflect changing conditions.

To implement extended Kalman filtering in the noise
processing algorithms of Chapter 5, would involve estimating
the components of the H matrix in equation 5.3. At present,
the diagonal elements of this matrix are assumed to be 1 or
0, corresponding to whether or not the measurement provides

an estimate of each component of the state.

8.2.6 An alarm system for excessive errors

If the estimated variance of the system or measurement
noise exceeds a pre-set threshold, it is desirable to
issue a warning to the operator. The sensor may need
replacing, or there may be a mechanical fault in the feeding
.equipment. One way of setting the alarm threshold is to use
the initial noise level entered in the definition file, for
example, set the threshold at 5 times the initial estimate
entered by the programmer]

‘Another application for an alarm system is to halt the
actuator whenever the reading from a sensor exceeds a safety
level. The extension of the programming s&stem to include
éfrict cﬁécking af sensor information (Section 8.2.4) only
allows sensor readings to be checked when the actuator is
stationary. If, during an iteration, the actuator is
instructed to move a“large distance, such checking may be

ineffective. A high-priority check would require sensing

-229-

during the movement of an actuator, with a message being
sent from the sensor controller to the central controller if
the sensor reading exceeds the safety level. The central
controller»could then stop the actuator mid-movement. This
high priority checking of sensor information could be
integrated into the programming system by definiﬁg some
additional functions which the programmer could use to start
and stop the checking. Alternatively, the programmer could
be prompted for alarm conditions during the installation
phase of program development. Although they would ﬁot appear
in the control program, the alarm conditions Qould
automatically be activated whenever certain actions were
being performed. For example, one alarm condition may occur
whenever the reading from a force sensor exceeds a
threshold. The‘slave controller associated with this sensor
could be instructed to check this condition continuously,
pausing only to send sensor data to the central controller
when required for normal closed-loop feedback.

8.3 Further work: long-term objectives

Some of the more generic aspects of the work in this
_ o
thesis are identified and placed in the context of current

trends in robotics research.

8.3.1 Sensor data fusion

Sensor data fusion is concerned with the processing of
sensor infbrmation from mqre than one source to estimate a
single parameter. This is an exciting area of research which
appears to be attracting an increasing‘level of support,

particularly in the United States. Combining redundant

-230-

information from more than one source has the following.
advantages:
1. The relative accuracy of the information from each
sensor may vary with time. For example, the accuracy
with which a camera can determine the position of a
part depends on the effective resolution, which in
turn depends on the distance of the object from the
camera.
2. The effectiveness of each sensor in a multi-sensor
system may vary with time.
3. The information from one sensor may be subject to

stochastic variations.

It is this final point which can be related to the work in
this thesis. Instead of weighting a siﬂgle sensor reading
against the current estimate of a state, many sensor
readings can be combined using a similar type of weighting
factor. Thus, the estimate of the state of interest is a
weighted average of the current state and the sénsor
readings from each.source. It is anticipated that points 1
and 2 shown above can also}be modelled using a weighting
factor, whose magnitude reflects the expected accuracy and

effectiveness of the sensor estimate respectively.

8.3.2 A graphical interface for off-line programming

In the programming developed in this thesis, the method
of definihg the states is not stipulated. In the éase-study
of Chapter 7, the states were taught by:moving the robot to
the desired locations and recording the positions. Howevef,

a simple program could be written to send the numerical

-231-

coordinates of each location to the actuator controllér,
thus defining the states off-line. Experience with a Puma
robot has shown that off-line programming canﬂoniy be |
achieved successfully if the robot is first calibrated and
compensation applied for the errors. Error of upto 5 degrees
have been observed in the wrist joints of this robot.

A graphical modelling system to define the states
offline would improve the efficiency of programming by
eliminating the teach phase. Many such systems have been
described in the literature (see Chapter 2) and, in addition
to defining locations, they can be used to plan the work-
cell, check for collisions and investigate the suitability
of different manipulators. A modelling system could also be
used to assist in the definition of the rélationships
between the frames of referencé, allowing the transformation
matrices to be produced automatically, given a gréphiéal
representation of the relationships.

Using a modelling system in conjunction with the
simulation mode of SLPS, would provide a useful way of
investigating how the actuators move in response to error
signals from sensors. If.%he sensor-correction is too large,
the“actuator may not be able to attain the desired position.
Detecting such problems off-line would be a valuable

facility.

48;3.3 Error reéovery

Recovering from failures and errors in sensory robotics
is a chailenging problem which is being tackled by a number
of research groups (see Chapter 2 for details). The work

described in Chapter 5 of this thesis is considered to be

-232-

applicable to the problem of identifying the source of an
error. Since estimates of the noise from the sensors, the
actuators and the system states are available, the most
likely cause of a failure can be identified. For example,
consider the problem of inserting a peg into a hole under
vision guidance. If the position of the hole has been
subject to error in pfevious cycles, then failure to find
the hole on the current cycle can be attributed to an
excessive error in the hole's position. However, and more
importantly, if the position of the hole in previous cycles
was bi;sed towards one direction in the imaée, then the most
likely direction in which to find the missing hole can be
deduced. Using this approach, a search strategy can be
derived, where the actuator ig moved in a direction
reflecting the trend of prévious errors. The problem can be
formulated mathematically by defining a probability
distribution for the space surrounding each sensor. Thus, if
the sensor does not provide a valid reading, it is moved in
a direction which maximizes the probability of finding the
state. The probability di§tributionvcould then be updated
upon completion of each c&cle, using the estimate of the

system noise derived in Chapter 5.

-233-

REFERENCES

[1] A.Pugh, "Second generation robotics", in Robot Vision,
ed. A.Pugh, pp 3-11, IFS Publications, 1983.

[2] M.Erdmann and M.T.Mason, "An exploration of sensorless
manipulation", in Proc. IEEE International Conference on
Robotics and Automation, pp 1569-1574, 1986.

[3] S.H.Drake, P.C.Watson and S.N.Simunovic, "High speed
robot assembly of precision parts usingrcompliance instead
of sensory feedback", in Proc. 7th Intefnational Symposium
on Industrial Robots (ISIR), pp 87-99, Oct. 1977.

[4] T.L.DeFazio, "Displacement-state monitoring for the
remote centre compliance - realization and applications", in
Proc.” 10th International Symposium on Industrial Robots,

1980.

(5] J.J.Hill, D.C.Burgess and A.Pugh, "The vision-guided
assembly of high-power semiconductor diodes", in Proc. 14th
International Symposium on Industrial Robots, pp 449-459,

Oct. 1984.

[6] P.M.Taylor, G.E. Taylor and I.Gibson, "a multisensory
approach to shoe sole assembly", in Proc. 6th International
Conference on Robot Vision and Sensory Controls (ROVISEC-6),
pp 117-127, June 1986.

[7] T.L.DeFazio, et al., "Feedback in robotics for assembly
- .and manufacturing”, report number R-1450, Charles Stark
Draper .Laboratory, Cambridge, Ma., April 1981.

[8] D.G.Johnson and J.J.Hill, "A sensory gripper for
P

composite handling", in Proc. 4th International Conference
on Robot Vision and Sensory Controls (ROVISEC-4), Oct. 1984,

-234-

[9] D.G.Johnson and J.J.Hill, "High-level software control
of a sensor-based industrial robot: an application in
aerospace manufacturing", in Proc. IEEE Industrial

Electronics Conference, pp 21-26, Nov. 1985.

[10] S.C.Pomeroy, et al., "Ultrasonic distance measuring and
imaging systems for industrial robots", in Proc. 5th
International Conference on Robot Vision and Sensory
Controls (ROVISEC-5), Oct. 1985.

[11] M.K.Brown, "On ultrasonic detection of surface
features", in Proc. IEEE Conference on Robotics and
Automation, pp 1785-1790, April 1986.

[12] R.N.Nagel et al., "Experiments in part acquisition
using robot vision", SME technical paper No. MS79-784, 1979.

[13] P.M.Taylor et al., "Sensory gripping system: the
software and hardware aspects", Sensor Review, vol. 1, no.

4, October 1981.

[14] C.Loughlin and J.Morris, "Line, edge and contour
following with eye-in-hand vision system", in Robot Sensors,
ed. Alan Pugh, pp 95-102, IFS Publications, 1986,

[15] D.G.whitehead, I.Mitghell and P.V.Mellor, "A low-
resolution vision sensor", Journal Phys.E.Sci.Instrum, Vol.
17, pp 653-656, 1984.

[16] AJAgrawal'and M.Epstein, "Robot eye-in-hand using fibre
optics", in Proc. 3rd International Conference on Robot

- Vision and Sensor Controls (ROVISEC 3), pp 257-262, 1983.

[17] Technical information on the Welch Allyn VideoProbe
2000, Welch Allyn, New York.

[18] B.K.P Horn, "Obtaining shape ffom shading information",

~-235~

in Psychology of Computer Vlslon » ed. Pfiwlnston, pp 115-
155, Mcgraw-Hill 1975.

[19] A.Blake, A.Zisserman, and G.Knowles, "Surface
descriptions from stero and shading”, Image and Vision
Computing", vol. 3, no. 4, pp 183-191, Nov. 1985.

[20] R.D.Baumann and D.A.Wilmshurst, "Vision system sorts
castings at General Motors Canada", Sensor Review, July

1982, pp 145-149.

[21] M.C.Chiang and J.B.K.Tio, "Robot vision using a
projection method", in Proc. 3rd International Conference on
Robot Vision and Sensory Controls (ROVISEC-3), pp 113-120,

Nov. 1983.

[22] D.Nitzan, R.Bolles and J.Kremers, "3D vision for
robotic applications", in Proc. NATO workshop on Knowledge
Englneerlng for Robotic Applications, (to be published), May

1986.

.G. "Linear- .
[23] D.G.Johnson, array cameras for robot vision",
Diploma Thesis, Department of Electronic Engineering,
University of Hull, Hull, 1983,

(24] L.D.Harmon, "Automated tactile sensing", Iﬁternational
Journal of Robotics Research, vol. 1, no. 2, pp 3-22, 1982
l .

[25] M.H.Raibert, "An all digital VLSI tactile array
sensor", in Proc. International Conference on Robotics
Research, pp 314-319, Mar. 1984.

" [26] D.H.Mott, M.H.Lee and H.R.Nicholls, "an experimental

very high resolution tactile sensor array", in Proc. 4th
International Conference on Robot Vision and Sensory
Contrls (ROVISEC-4), pp 241-250, Oct.:1984.

[(27] H.Van Brussel and J.Simons, "Adaptive assembly", in

-236-

Proc. 4th British Robot Association Conference, PP 95;106,
May 1981.

[28] J.L.Nevins and D.E.Whitney, "Assembly research",
Industrial Robot, vol.7, no. 1, pp 27-43, March 1980.

[29] T.Lozarno-Perez, "Automatic planning of manipulator
transfer movements", IEEE Transactions on Systems, Man and
Cybernetics, vol. SMC-11, no. 10, pp 681-698, Oct. 1981.

[30] s.M.Udupa, "Collision detection and avoidance in
computer controlled manipulators", in Proc. 6th

International Joint Conference on Artificial Intelligence,
pp 737-748, 1977. '

[31] R.Paul, "WAVE: A model based language for manipulator
control”, Industrial Robot, vol. 4, pp 10-17, Mar. 1977.

(32] E.T.Hudson, "VAL - A manipulator level language", in
Proc. IEE Colloqguium on Languages for Industrial Robots, pp
3/1-3/8, Feb. 1982.

[33] A.P.Ambler, "Rapt: An object level robot programming
language", in Proc. IEE Colloguium on Languages for
Industrial Robots, pp 4/1-4/5, Feb. 1982,

[34] S.J.Derby, "Computer\graphics robot simulation
programs: a comparison", in Robotics Research and Advanced
Applications, ed. W.J.Book, pp 203-211, 1984,

[35] R.Mahajan and J.S.Mogal, "An interactive graphics
robotics instructional program - IGRIP, -a study of robot
"motion and workspace constraints", in Proc. Robots 8
conference, vol. 2, pp 16/41-16/56, June 1984,

[36] T.Winslow, "Personal computer software for robot

applications", in Proc Robots 8 Conference, vol. 2, pp 13/1-
13/27, June 1984.

-237-

[37] K.G. Kempf and A.P.Ambler, "An experimental comparison
of symbolic and graphic offline robot programming
techniques", in Proc. UK Robotics Research, pp 17/1-17/8,

Dec. 1983.

[38] Y.Hazony et al., "Interactive graphical programming and
control of robotic systems", in Robotics Research and
Advanced Applications, ed. W.J.Book, pp 191-211, 1983.

[39] H.J.Warnecke, R.D.Schraft and U.Scmidt-Streier,
"Computer graphics planning of industrial robot
applications", in Proc. 3rd Symposium on the Theory aﬂd
Practice of Robots and Manipulators, pp 521-542, 1978.

[40] D.E.Whitney, C.A.Lozinski and J.M.Rouke, "Industrial
robot calibration method and results", report number CSDL-P-
1879, Charles Stark Draper Laboratory, Cambridge, Ma., 1979.

[41] I.L.Powell, "Evaluation report on the Unimation Puma
manipulator arm'", report number 80/64, Marconi Research
Laboratories, GEC Marconi, Chelmsford, 1980.

[42] L.C.Wright, "Accurate robot programming for surface
following using automatic location editing", in Proc. 8th

British Robot Association Conference, pp 23-30, May 1985.

. ‘\V
[43] K.Arbter, et al., "New techniques for teach-in
i i i - "o
acceleration and learning in sensor-controlled robots , in

The International Federation of Automatic Control, pp 2393-
2399, July 1984.

“[44] J.Meyer,‘"An emulation system for programmable sensory
robots", .IBM Journal of Research and Development, vol. 25,

no. 6, pp 955-962, Nov. 1981.

[45] R.A.Brooks, "Symbolic error analysis and robot

planning”, International Journal of Robotics Research, vol.

-238-

1, no. 4, pp 29-67, 1982.

[46] R.P.Paul, "Robot manipulators: mathematics,. programming
and control", MIT Press, 1984.

[47] L.Van Aken and H.Van Brussel, "Software for solving the
inverse kinematic problem for robot manipulators in real-
time", in Proc. Advanced Software in Robotics, pp 4B1-4B16,
May 1983.

[48] s.Elgazzar, "Efficient solution for the kinematic
positions for the Puma 560 robot", Report no. NRC 23952,
National Research Council of Canada, Dec. 1984,

[49]) C.S.G.Lee, "Robot arm kinematics, dynamics and
control", IEEE Computer, pp 62-79, Dec. 1982.

[50] S.Bonner and K.G.Shin," A comparative study of robot
languages", IEEE Computer, pp.82-96, Dec. 1982.

[51] T.Lozarno-Perez, "Robot programming,”, Proceedings of
the IEEE, vol. 71, no. 7, pp 821-841, July 1983.

[52] W.A.Gruver et al., "Commercially available robot
programming languages", in Proc. IEEE International
Conference on Cybernetics and Society, pp 294-296, 1982.

' . -
[53] A.Melidy and A.A.Goldenburg, "Operation of a Puma 560
without VAL", in Proc. Robots 9 Conference, pp 18/61-18/78,
June 1985.

[54] R.Vistnes, "Breaking away from VAL", Stanford
“University internal report, 1982.

[55] V.Hayward and R.P.Paul, "Robot manipulator control

using the C language under Unix", in IEEE Workshop on
Languages for Automation, pp 3-10, Nov. 1983. '

-239-

[56] R.P.Paul, "Integrating robot manipulator control into
Pascal", in Proc. IEEE Conference on Decision and Control,
vol. 1, pp 250-255, 1981.

[57] G.Gini and M.Gini, "ADA: a language for robot
programming?", Computers in Industry, vol. 3, no. 4, pp 253-

259, 1982,

[58] J.C.Latombre and M Emmanuel, "LM: a high-level
programming language for controlling assembly robots", in
Proc. 11th International Symposium on Industrial Robots, pp
683-690, Oct. 1981.

[59] E.Mazer, "Geometric programming of éssembly robots", in
Advanced Software in Robotics, ed. A Danthine, North Holland
1984,

[60] R.J.Popplestone, A.P.Ambler and I.Bellos, "RAPT: a
language for describing assemblies", Industrial Robot, vol.
5, no. 3, pp 131-137, 1978.

[61] R.H.Taylor, P.D.Summers and J.M.Meyer, "AML: a
manufacturing language", International Journal of Robotics
Research, vol. 1, no. 3, pp 19-41, 1982.

(62] M.A.Lavin and L.I.Lieberman, "AML/V: an industrial
machine vision programming system", International Journal of

!

Robotics Research, vol. 1, no. 3, pp 42-56, 1982,

[63] R.Finkel and R.Taylor, "An overview of AL, a
programming system for automation", in Proc. 4th

International Joint Conference on Artificial Intelligence,
“pp 758-765, 1976. (

[64] T.Binford, "The AL language for intelligent robots",
Seminaire Internationale Languags et Methods de
Programmation des Robots Industriels, pp 73-87, June 1979,

-240-

[65] G.Gini and M.Gini, "Pointy: a philosophy in robot
programming"”, in Information Control Problems in
Manufacturing Technology", ed. U.Rembold, pp 173-181, 1979.

[66] B.E.Shimano, C.C.Geschke and C.H.Spalding, "A robot
programming system incorporating real-time and supervisory
control: VAL II", in Proc. Robots 8 Conference, vol. 2, PP
20/103-20/119, June 1984.

[67] L.I.Lieberman and M.A.Wesley, "Autopass: an automatic
programming system for computer controlled mechanical
assembly", IBM Journal of Research and Development, vol. 21,
no. 4, pp 321-333, July 1977.

[68] C.Blume, "Implicit robot programming based on a high-
level explicit system", in Proc. 1st Robotics Europe

Conference, June 1984,

[69] D.Falek and M.Parent, "LAMA-S: an”evolutive language
for an intelligent robot", in Proc. Seminaire International
Languages et methods de programmation des robots
industriels"”, pp 157-168, June 1979.

[70] D.E.Wwhitney et al., "Part mating for compliant pérts",
report number R-1407, Charles Stark Draper Laboratory,
Cambridge, Ma., 1980.

[71] K.Collins, AJLPalme; and K.Rathmill, "Development of a
European benchmark for the comparison of assembly robot
programming systems", in Proc. 1st Robotics Eurpoe

Conference, June 1984.

~[72] D.E.Whitney and E.F.Junkel, "Applying stochastic
control theory to robot sensing, teaching and long-term
control", in Proc. 12th International Symposium on

Industrial Robots, pp 445-455, June 1982.

(73] T.L.DeFazio et al., "Feedback in robotics for assembly

-241-

and manufacturing", report number R-1563, Charles Stafk
Draper Laboratory, Cambridge, Ma., 1982.

[74] D.S.Seltzer, "Use of sensory information. for improved
robot learning”, Society of Mechanical Engineers (SME)
report no. MS79-799, 1979,

[75] D.E.Whitney et al., "Short and long-term robot
feedback", report number CSDL-R-1682, Charles Stark Draper
Laboratory, Cambridge, Ma., 1984.

[76]1 D.E.Whitney et al., "Short and long-term robot
feedback: multi-axis sensing, control and updating", in
Proc. 11th Conference on Production Research and Technology,
pp 147-151, May 1984.

[77] s.N.Simunovic, "An information approach to parts
mating", Doctor of Science Thesis, Massachusetts Institute
of Technology, April 1979. ’

[78] T.L.Defazio et al. "Feedback in robotics fof assembly
and manufacturing”, report number R-1450, Charles Stark
Draper Laboratory, Cambridge, Ma., 1981,

[79] A.Gelb, "Applied Optimal Estimation", Cambridge Press
(MIT), 1974.

N
\

[80] D.E.Whitney and A.C.Edsall, "Modelling robot contour
processes", report number CSDL-P-1869, Charles Stark Draper
Laboratory, Cambridge, Ma.

[81] B.Carlisle and S.Roth, "The Puma/VS-100 robot vision
- system", in Proc. 1st International Conference on Robot
Vision and Sensory Controls (ROVISEC-1), pp 149-161, April
1981, i

[82] R.Brook, "Coping with complexity", Sensor Review, pp
59, April 1985. '

-242-

[83] T.C.Henderson and W.S.Fai, "A multi-sensor integration
and data acquisition system”, in Proc. IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, pp

274-279, 1983.

[84] M.Y.Chern, M.L.Chern and T.G.Moher, "A language
extension for sensor-based robotic systems", in Proc. IEEE

Workshop on Languages for Automation, pp 11-16, Nov. 1983.

(85] C.Hansen, T.C.Henderson and E.Shilcrat, "Logical sensor
specification", in Proc. 3rd International Conference on
Robot Vision and Sensory Controls (ROVISEC-3), pp 321-326,'

Nov. 1983.

[86] C.C.Geschke, "A system for programming and control of
sensor-based robot manipulators", IEEE Transactions on
Pattern Analysis, and Machine Intelligence, vol. PAMI-5, no.

1, pp 1-7, Jan. 1983.

[87] M.Gini, "Recovering from failures: a new Challange o
industrial robots", in Proc. IEEE COMPCON conference, pp
220-227, Sept. 1983.

[88] M.H.Lee, D.P.Barnes and N.W.Hardy, "Research into error
recovery for sensory robots", Sensor Review, vol. 5, no. 4,
pp 194-197, Oct. 1985.

N
!

[89] K.Selke et al., "A knowledge-based approach to robotic
assembly", in Proc. 4th Conference on U.XK. Research in
Advanced Manufacturing (To be published), Dec. 1986,

-[90] P.Karkkainen, "A sensor information pPreprocessing
system for manipulators based on distributed
microcomputers", in Advanced Software in Robotics, ed. A

Danthine, pp 279-287, North Holland, 1984,

[91]“I.Mitchell, DJLWhitehead and A;Pugh' "A multi-

-243-

processor system for sensory robotic assembly", Sensor
Review, pp 94-96, April 1983.

[92] P.M.Taylor and C.A.Stubbings, "Software and hardware
aspects of a flexible workstation for assembly tasks using
sensory robots", in Proc. 2nd IASTED International Symposium
on Robotics and Automation, pp 48-51, 1983.

[93] J.S.Albus, A.J.Barbera and M.L.Fitzgerald,
"Hierarchical control for sensory interactive robots", in

Proc 11th International Symposium on Industrial Robots, pp
497-505, Oct. 1985. |

[94] R.Dillman, "A structured multiprocessor system for
adaptive sensor-controlled assembly robots", in Proc. 1st
International Conference on Computer Applications in

Production and Engineering, pp 691-706, 1983,

[95] P.V.Mellor, J.M.Dubery and DJLWHitehead, "Adapting
Modula-2 for distributed systems", IEEE Journal of Software
Engineering, 1986 (To be published).

[96]1 J.Kerridge and D.Simpson, "Three solutions for a robot
arm controller using Pascal-plus, occam and Edison",

Software-Practice and Experience, vol. 14, pp 3-15, 1984.

[97] G.C.Gini and MJLGin%, "Interactive development of
object handling programs", Computer Languages, vol. 7, no.
1, pp 1-10, 1982.

[98] B.Faverjon. "Object level programming of industrial
robots", in Proc. IEEE International Conference on Robotics
“and Automation, vol. 3, pp 1406-1411., April 1986.

[99] R.Vitols, J.Baker and G.Wray, "Detection, Alignment and

joining of flexible assemblages”, in Proc. 2nd Grantees
Conference, SERC Robotics Initiative, pp 38-39, 1983,

-244-

[100] F.G.Stremler, "Introduction to Communication S&stems",
Chapter 9, pp 453-455, Addison Wesley, 1977.

[101] A.Mitchie and J.K.Aggarwal, "Multiple sensor
integration/fusion through image processing: a review",
Optical Engineering, vol. 25, no. 3, pp 380-386, March
1986.

[102] S.Y.Harmon, G.L.Bianchini and B.E.Pinz, "Sensor data
fusion through a distributed blackboard", in Proc. IEEE
International Conference on Robotics and Automation, vol. 3,
pp 1449-1454, April 1986.

[103] H.F.Durrant-Whyte, "Consistent integration and
propogation of disparate sensor observatioﬁs", in Proc. IEEE
International Conference on Robotics and Automation, vol. 3,
pp 1464-1469.

{104] S.Shekhar, O.Khatib and M Shimojo, "Sensor fusion and
object localization", in Proc. IEEE International Conference
on Robotics and Automation, vol. 3, pp 1623—1628) April

1986.

[105] B.W.Kernighan and D.M.Ritchie, "The C programming
Lnaguage", Prentice-Hall, 1978.

[106] C.A.Stubbings, "A‘gheap multiprocessor robot and
sensor control bus", Internal report, Department of

Electronic Engineering, University of Hull, May 1983.

[107] D.J.Barlow, "An expert system for error analysis in
automated satellite antenna assembly", Diploma Thesis,
. Department of Electronic Engineering, University of Hull,

1986.
[108] D.G.Johnson and J.J.Hill, "Sensor-level prdgramming: a

new software system for improved control of a sensory

industrial robot", in Proc. 5th International Conference on

-245-

Robot Vision and Sensory Controls (ROVISEC-5), pp 383-392,
Oct. 1985,

-246-

APPENDIX A

DEFINING AN ACTUATOR FOR USE IN AN SLPS PROGRAM

-247-

Fach actuator and sensor used in an SLPS program must
have been defined using IRPS (Integrated Robot Programming
System). The definition of the actuator 'puma’ is
considered.

From the operating system prompt, the programmer types
'TRPS' to invoke the suite of programs. The definition

module is loaded and the following menu is displayed.

IRPS DEFINITIONS MODULE

SENSOR ACTUATOR

INSTALL

TASK FINISHED

The letter A’ is typed to call the actuator-definition
module. The following question and answer session takes

place.

-248-

Type in the name of the actuator to he defined 7 puma
Enter the physical address 7 80

Enter the translational and rotational resolutions
of the actuator (in mm, and degrees respectively)? @.2,8.81

Enter the translational and rotational ,
pepeatahilities of the actuator (in mw and degrees) 7 0.1,8,805
Completed the actuator definition, -

The actuator 'puma’ has been defined -

Press any key to return to the main menu,

ACTUATOR DEFINITION MODULE

The definition of the actuator is stored in the file
. ' ™ :
'‘puma.act'. A key is presséd and the definition menu shown

overleaf is restored.

-249-

APPENDIX B

DEFINING A SENSOR FOR USE IN AN SLPS PROGRAM

-250-

The definition of the sensor 'camera' is considered.
From the operating system prompt, the programmer types

'"IRPS' to load the definition module. The following menu is

displayed
IRPS DEFINITIONS MODULE
SENSOR | dncrunTon
INSTALL
TASK FINISHED

The letter 'S' is typed to call the sensor-definition
module. The following question and answer session takes

place.

-251-

Type in the name of the sensor to be defined ? camera
Enter the physical address ? 30

Enter the activation number 7 18

How nang attributes does the sensopr have ? 2

Enter the name of attribute number 1 ? hiow
Enter the name of attribute numher 2 7 wtoh

IRPS SENSOR DEFINITION MODULE

For each attribute the programmer has defined, the

system now requests the correction vector to be entered

-252-

For attribute 'btow' of sensor ‘camera’

The corpection vector can be one of the following.
1. Pure franslatignal

2, Pure rotational, _

3, Rotation ahout a shifted origin,

4, No correction vecton applicagle.

Enter 1,2,3 004 ------m) 0]
Enter the direction in which the sensor
nust he moved in order to increase its value. (x,y,2)

Enter x,4,2 =====-) 1,8,8

IRPS SENSOR DEFINITION MODULE

%gr attpib%te ’uto%’ of segsan ’ca?ega’

e correction vector can be one o i

1, Pure translatipnal he following.
2. Puve rotational,

3, Rotation about a shifted origin,
4, No correction ugctov applicaﬁle.

Enter 1,2,3 o0 4 -=----- y?1
Enfer the direction in which the senson
must he moved in order to increase its value, (x,y,7)

Enter x,4,2 ===--- > -1,8,8

IRPS SENSOR DEFINITION MODULE

-253-

Finally, the measurement noise for the sensof is

entered. This is given in the sensor's frame of reference

and in world coordinates.

Enter the measurement noise for the sensop
as a six-component vector (x,4,2,0,a,%) 7 0.1,0,0,8,0,0

IRPS SENSOR DEFINITION MODULE

“The definition of the sensor is stored in the file

'camera.sen'.

-254-

APPENDIX C

INSTALLING SENSORS AND ACTUATORS FOR USE WITH
AN SLPS PROGRAM

-255~

Assume that the actuators and sensors to be used in the
assembly have been defined using the procedures described in

appendices A and B respectively. After completing the

definitions, the definitions menu will be displayed as

IRPS DEFINITIONS MODULE

SENSOR ACTUATOR

INSTALL

TASK : FINISHED

The letter 'I' is typed to call the installation

module.

-256-

The screen clears and the programmer is prompted for
a name for the installed task file. The results of

installing the sensors and actuators will be written to this

file.

Enter the name for the installed task file ? itaskA

IRPS INSTQLLATION MODULE

Upon completion of the installation, the installed task
file will contain all the information from the individual
definition files of the sensors and actuators. In addition,

it will i;clude the relationships between the fraﬁes of

reference.

-257-

A menu is displayed of tlie available options for

installation.
IRPS INSTALLATION MODULE
SENSOR ACTUATOR
RELAT I ONS
EXECUTION FINISHED

N
The programmer types 'S' to install the sensors. (The

sensérs must be installed before the actuators).

-258-

The screen clears and the following dialogue takes

place

How many sensors are to he installed ? 2

' 7
Entep the name of the first sensor 7 camepa ~
I5 the sensor 'camera’ static or dynamic ? dynamic

? fonge
Enter the name of the second sensop ? _
Is the sensor 'force’ static or dynamic 7 dynamic

IRPS INSTALLATION MODULE

=~
N
/

Two sensors have been installed, both dynamic. Control

is now returned to the installation menu.

-259-

IRPS INSTALLATION MODULE

SENSOR | ACTUATOR

RELATIONS ||

EXECUTION FINISHED

=~
\
|

The programmer now types 'A' to install the actuators.

-260-

How many actuators are to he installed ? 2

Enter the name of the first actuatof ? puma
Enter the name of the second actuator ? table

IRPS INSTALLATION MODULE

™
: |
Two actuators are installed. Control is again returned

to”the installation menu.

-261-~

SENSOR

IRPS INSTALLATION MODULE

ACTUATOR

RELATIONS

EXECUTION

FINISHED

N

]

With the sensors and actuators installed, the

relationships can now be specified; the programmer types 'R’
‘to select this option. For each sensor-actuator pair, the
- system will require the relationship between the frames of

referénce. Firstly, the relationship beﬁween the actuator

'puma and the sensor 'camera' is requested.

-262-

ACTUATOR: puma
SENSOR: camera

The relationship hetween the puma and camera must now he defined.

The prelationship hetween the frames
of reference can be one of
the following,

1, Pure translational

2, Pure rotational,

3, Retation and translation,

4, Frames of reference are equal,
5, fissociation not applicable.

Enter 1,2,3,4 o0 3, =--=---- y?2

ACTUATOR: puma
SENSOR: camera

The relationship between the puma and camera nust now be defined.

Enter the conpsnents of the actuator’s x-axis in the sensors’s frame,
Enter x,y,7 ======- y1,8,8
Enter tﬁe conponents of the actuator's y-axis in the sensors’s frame.

e L ments of ths abfuat
nter the components of the actuator's z-
Enter X,4,2 =-=----- ' 88,1 .z axis in the sensors’s frane.

”Next, the relgtionship between the actuator 'puma' and

the sensor 'force' is considered.

-263~

ACTUATOR. puma
SENSOR: force

The relationship hetween the puma and force must now ke defined,

The relationship between the frames
of reference can be one of
the following,

1, Pure translational

2. Pure potational.

3. Rotation and translation,

4, Frames of reference are equal,
5, MAssociation not applicable,

Enter 1,2,3,4 op 3, =-=----- 1?3

ACTUATOR: puma
SENSOR: fonce

The relationship hetween,ghe puma and force must now he defined.

Enter the translation vector fron the actuators to the sensors
fprame of reference,
Enter x,9,2 ---===- 8,8,-13

Enter the conponents of the actuator’'s X-axis in the sensors’s frame,

Enter x,y,2 ===--=- !
Enter tﬁe cunponents ofotﬁe actuator’'s y- axxs in the sensors’s frame,

Enter x,y,2 ====-==-")
Entgr tﬁe conponents of ghelactuatup 5 z-ax1s in the sensors’s fpame,

Enter x,4,2 ====--=-)7) cg

-264-

For the actuator 'table', the relationship between its
frame of reference and the frame of reference of the two

sensors is defined to be 'not applicable'.

ACTUATOR: table
SENSOR:ycanepa

The relationship hetween the tahle and camera must now he defined.

The relationship hetween the frames
of reference can be one of
the following,

1, Pure translational

. Pure potational,

. Rotation and translation,

. Fpanes of reference are equal,
. fssociation not applicahle,

Enter 1,2,3,4 00 3, ===-====) 73

!

CI P Ca2 BN

-265-

ACTUATOR: tahle
SENSOR: force

The pelationship hetween the table and force must now he defined,

The relationship between the frames
of reference can he one of
the following.

%. Pure translational

. Pupe potational,

3. Rotation and translation,

4, Frames of reference are equal,
5, Rssociation not applicable,

Enter 1,2,3,4 00 5, -mm-mm-- > 13

Because the frames of reference are not applicable, no
[4
transformation matrices f?r the actuator 'table' will be
stored in the installed task file. Thus, any attempt to use
this actuator in a servo-loop will result in an error. It
may, however, still be used for movements not requiring

_sensory feedback.

-266-

COMPLETED SENSOR-RCTUATOR
RELATIONSHIP FILE -

The installed task file has been saved as ' itask

Press any key to return to the main menu,

The installation is now complete and the installed task
file has been stored on %he disk as ‘itask'. After pressing
a key,‘éontrol is returned to the main-menu. Typing 'F' will
finish the session and restore control to the operating

system of the computer.

-267-~

APPENDIX D

EXECUTING AN SLPS PROGRAM

-268-

The execution of the SLPS program described in Chapten
7 is detailed Below. The program is called LAY.C and is
compiled to give an executable machine-code program which is
executed by typing LAY,

SLPS robot programming system, version 1.0, June 1986

Enter the name of the installed task file --> itask
Enter the name of the state parameter file --> taskrt
Are diagnostics required ? n

Execution or simulation required ? e

Is the robot installed ? y

Single step on ? n

Have tbe states been taught ? y

Is the slave sub-system connected ? y

Dry-run mode ? n

How many cycles are required ? 100

SLPS system is configured for upto :-
16 states.
4 sensors.
5 actuators.

sk ok ok ok Sk 3k 3 3 e 3 3 3k sk 3 3k o e e e e e ok ok o e e e e s ok ok o 3 e e ke o ok S s e ok e o sk ok ok ok ok ok sk e ek e ek k
kkkkkkkkk S Y S TEM CONFIGURATTION ¥kskkkk
SENSORS: (2 defined).

Name: ‘'camera' , Address: 83 , Activate: 10 , Numatt: 2.

Attributes: 'btow' 'wtob'

Sensor is dynamic.

The sensor noise is (0.10 0.00 0.00 0.00 0.00 0.00)

Name: 'force' , Address: 83 , Activate: 20 , Numatt: 1.
. Attributes: ‘angle'

Sensor is dynamic. .

The sensor noise is (0.00 0.00 0.00 0.50 0.00 0.00)

-269-

ACTUATORS: (1 defined).
Name: 'puma' , Address: 80
Resolution: (0.200 0.200 0.200 0.010 0.010 0.010)
Repeatability: (0.100 0.100 0.100 0.005 0.005 0.005)
Noise: (0.103 0.103 0.103 0.005 0.005 0.005

A total of 3 states have been defined.

The following states have been defined.

3k 3k ok 3k Sk ok s ok sk v sk sk 3k ok ke 3k 2k 2k sk sk vk sk 3k vk 3k sk sk ok sk ok ok ke ke Sk sk sk s sk ok ok 3k 3k ok ok ke 2k ok e ok ok ok sk ok ok ok sk sk ke ke sk skok

STATE STATE
NUMBER NAME

0 STACK

Departure vector is : (0.00 0.00 50.00 0.00 0.00 0.00)
System noise is : (0.000 0.000 0.000 0.000 0.000 0.000)
Sensitivity is : (0.500 0.500 0.500 0.500 0.500 0.500)

1 SAFE o

Departure vector is : (0.00 0.00 0.00 0.00 0.00 0.00)
System noise is : (0.000 0.000 0.000 0.000 0.000 0.000)
Sensitivity is : (0.500 0.500 0.500 0.500 0.500 0.500)

2 START

Departure vector is : (0.00 0.00 20,00 0.00 0.00 0.00)
System noise is : (1.000 1.000 1.000 0.000 0.000 0.000)
Sensitivity is : (0.909 0.500 0.500 0.500 0.500 0.500)

3 END

Departure vector is : (-5.00 0.00 10.00 0.00 0.00 0.00)
System noise is : (1.000 1.000 1.000 0.000 0.000 0.000)
Sensitivity is : (0.909 0.500 0.500 0.500 0.500 0.500)

e e 2k 3k 3k sk 2 ok ok 3 3k sk ok sk 3k e e 3k ok vk ok e e 3k sk vk e sk sk 3k 3k ok ok sk ke sk ok ok ok sk e ok ke e sk ok Sk ok e 3K ke ek ok sk ok ke ok ke ok ok ok ok

Running in execution mode.
Executing 100 cycles.

Program completed, returning to operating system.

c:>

-270-

APPENDIX E

PUBLISHED WORK

-271-

1. D.G.Johnson and J.J.Hill, "A sensory gripper for
composite handling", in Proc. 4th Robot Vision and Sensory
Control Conference (ROVISEC-4), London, Oct. 1984.

2. J.J.Hill, D.G.Johnson and D.C.Burgess, "Vision guidance
in robot assembly", in Proc. International Conference on
Computers, Systems and Signal processing, India, Dec. 1984.

3. D.G.Johnson and J.J.Hill, "High-level software control of
a sensor-based industrial robot: an application in aerospace
manufacturing", in Proc. IEEE Conference on Industrial
Electronics (IECON), San Francisco, pp 21-27, Nov. 1985,

4. D.G.Johnson and J.J.Hill, "Improved control of a sensor-
based industrial robot", in Proc. IEEE International
Conference on Decision and Control, Florida, pp 364-365,
Dec. 1985.

5. D.G.Johnson and J.J.Hill, "Sensor-level programming: a
new software system for improved control of a sensory
industrial robot", in Proc. 5th International Conference on
Robot Vision and Sensory Control (ROVISEC-5), Amsterdam,
Oct. 1985. i g

6. D.G.Johnson and J.J.Hill, "A Kalman filter approach to
sensor-based control", IEEE Transactions on Robotics and
Automation, Vol.1, No.3, pp 159-162, Sept. 1985.

7. D.G.Johnson and J.J.Hill, "Sensory robot assembly of
composites", Institue of Production Engineers seminar on
Unusual assembly techniques for everyday products, Bowater
House, London, Sept. 1985.

8. D.G.Johnson and J.J.Hill, "Flexible manufacture of
composite aerospace structures", I.Mech.E. conference on

Fibre Reinforced Composites, University of Liverpool, pp
113-115, 1986.

-272-

	381890_001
	381890_002
	381890_003
	381890_004
	381890_005
	381890_006
	381890_007
	381890_008
	381890_009
	381890_010
	381890_011
	381890_012
	381890_013
	381890_014
	381890_015
	381890_016
	381890_017
	381890_018
	381890_019
	381890_020
	381890_021
	381890_022
	381890_023
	381890_024
	381890_025
	381890_026
	381890_027
	381890_028
	381890_029
	381890_030
	381890_031
	381890_032
	381890_033
	381890_034
	381890_035
	381890_036
	381890_037
	381890_038
	381890_039
	381890_040
	381890_041
	381890_042
	381890_043
	381890_044
	381890_045
	381890_046
	381890_047
	381890_048
	381890_049
	381890_050
	381890_051
	381890_052
	381890_053
	381890_054
	381890_055
	381890_056
	381890_057
	381890_058
	381890_059
	381890_060
	381890_061
	381890_062
	381890_063
	381890_064
	381890_065
	381890_066
	381890_067
	381890_068
	381890_069
	381890_070
	381890_071
	381890_072
	381890_073
	381890_074
	381890_075
	381890_076
	381890_077
	381890_078
	381890_079
	381890_080
	381890_081
	381890_082
	381890_083
	381890_084
	381890_085
	381890_086
	381890_087
	381890_088
	381890_089
	381890_090
	381890_091
	381890_092
	381890_093
	381890_094
	381890_095
	381890_096
	381890_097
	381890_098
	381890_099
	381890_100
	381890_101
	381890_102
	381890_103
	381890_104
	381890_105
	381890_106
	381890_107
	381890_108
	381890_109
	381890_110
	381890_111
	381890_112
	381890_113
	381890_114
	381890_115
	381890_116
	381890_117
	381890_118
	381890_119
	381890_120
	381890_121
	381890_122
	381890_123
	381890_124
	381890_125
	381890_126
	381890_127
	381890_128
	381890_129
	381890_130
	381890_131
	381890_132
	381890_133
	381890_134
	381890_135
	381890_136
	381890_137
	381890_138
	381890_139
	381890_140
	381890_141
	381890_142
	381890_143
	381890_144
	381890_145
	381890_146
	381890_147
	381890_148
	381890_149
	381890_150
	381890_151
	381890_152
	381890_153
	381890_154
	381890_155
	381890_156
	381890_157
	381890_158
	381890_159
	381890_160
	381890_161
	381890_162
	381890_163
	381890_164
	381890_165
	381890_166
	381890_167
	381890_168
	381890_169
	381890_170
	381890_171
	381890_172
	381890_173
	381890_174
	381890_175
	381890_176
	381890_177
	381890_178
	381890_179
	381890_180
	381890_181
	381890_182
	381890_183
	381890_184
	381890_185
	381890_186
	381890_187
	381890_188
	381890_189
	381890_190
	381890_191
	381890_192
	381890_193
	381890_194
	381890_195
	381890_196
	381890_197
	381890_198
	381890_199
	381890_200
	381890_201
	381890_202
	381890_203
	381890_204
	381890_205
	381890_206
	381890_207
	381890_208
	381890_209
	381890_210
	381890_211
	381890_212
	381890_213
	381890_214
	381890_215
	381890_216
	381890_217
	381890_218
	381890_219
	381890_220
	381890_221
	381890_222
	381890_223
	381890_224
	381890_225
	381890_226
	381890_227
	381890_228
	381890_229
	381890_230
	381890_231
	381890_232
	381890_233
	381890_234
	381890_235
	381890_236
	381890_237
	381890_238
	381890_239
	381890_240
	381890_241
	381890_242
	381890_243
	381890_244
	381890_245
	381890_246
	381890_247
	381890_248
	381890_249
	381890_250
	381890_251
	381890_252
	381890_253
	381890_254
	381890_255
	381890_256
	381890_257
	381890_258
	381890_259
	381890_260
	381890_261
	381890_262
	381890_263
	381890_264
	381890_265
	381890_266
	381890_267
	381890_268
	381890_269
	381890_270
	381890_271
	381890_272
	381890_273
	381890_274
	381890_275
	381890_276
	381890_277
	381890_278
	381890_279
	381890_280
	381890_281
	381890_282
	381890_283
	381890_284

