
THE UNIVERSITY OF HULL

An Investigation of Interoperability Issues

between Authorisation Systems within Web

Services

being a Thesis submitted for the Degree of

Doctor of Philosophy

in Internet Computing

in the University of Hull

by

Yunxi Zhang

September 2014

 i

Table	
 of	
 Contents	

Acknowledgements	
 ...	
 I	

Abstract	
 ...	
 II	

Chapter	
 1.	
 Introduction	
 ..	
 1	

1.1	
 Background	
 and	
 Motivation	
 ..	
 1	

1.2	
 Problem	
 Statement,	
 Research	
 Aims,	
 Questions	
 and	
 Objectives	
 ..	
 4	

1.2.1	
 Research	
 problems	
 ..	
 4	

1.2.2	
 Research	
 questions	
 ..	
 5	

1.2.3	
 Research	
 aims	
 ..	
 5	

1.2.4	
 Objectives	
 ...	
 5	

1.3	
 Research	
 Methodology	
 and	
 Methods	
 ..	
 6	

1.4	
 Scope	
 and	
 Limitations	
 of	
 the	
 Research	
 Contributions	
 ..	
 8	

1.5	
 Thesis	
 Outline	
 ..	
 9	

1.6	
 Chapter	
 Summary	
 ...	
 11	

Chapter	
 2.	
 Review	
 of	
 Security-­‐Related	
 Standards,	
 Authentication	
 Services,	
 RBAC,	

ABAC	
 Approaches	
 and	
 the	
 Relevant	
 Authorisation	
 Systems	
 Within	
 Web	
 Services	
 12	

2.1	
 Introduction	
 ..	
 12	

2.2	
 Definition	
 of	
 Web	
 Services	
 ..	
 13	

2.3	
 Interoperability	
 Issues	
 and	
 Protocols	
 ..	
 15	

2.4	
 Security-­‐related	
 Standards,	
 Authentication	
 Services	
 Within	
 Web	
 Services	
 	
 19	

2.4.1	
 Official	
 consortiums	
 and	
 protocol	
 standardisation	
 ..	
 19	

2.4.2	
 XML	
 and	
 Schema	
 ..	
 19	

2.4.3	
 SOAP	
 ..	
 20	

2.4.4	
 WSDL	
 ...	
 22	

2.4.5	
 UDDI	
 ..	
 22	

2.4.6	
 XML-­‐Encryption	
 and	
 XML-­‐Signature	
 ..	
 24	

2.4.7	
 WS-­‐Security	
 ..	
 25	

2.4.8	
 WS-­‐Trust	
 ..	
 26	

2.4.9	
 WS-­‐SecureConversation	
 ...	
 27	

2.4.10	
 WS-­‐Policy	
 and	
 WS-­‐SecurityPolicy	
 ...	
 28	

2.4.11	
 SAML	
 and	
 XACML	
 ..	
 29	

2.5	
 Access	
 Control	
 Methods	
 ...	
 31	

2.5.1	
 RBAC	
 ..	
 32	

 ii

2.5.2	
 ABAC	
 ..	
 34	

2.6	
 Existing	
 RBAC/ABAC-­‐based	
 Authorisation	
 Systems	
 ...	
 35	

2.7.	
 Existing	
 Solutions	
 for	
 Providing	
 Interoperability	
 between	
 ABAC-­‐based	

Authorisation	
 Systems	
 within	
 Web	
 Services	
 ...	
 36	

2.7.1	
 SAML	
 Messages	
 ...	
 36	

2.7.2	
 An	
 object-­‐oriented	
 framework	
 for	
 adopting	
 different	
 policy	
 languages	
 	
 39	

2.8	
 Limitation	
 of	
 the	
 Application	
 of	
 ABAC	
 within	
 Web	
 Services	
 ...	
 40	

Chapter	
 3.	
 Trust	
 Negotiation	
 and	
 Interoperability:	
 State	
 of	
 the	
 Art	
 	
 42	

3.1	
 Introduction	
 ..	
 42	

3.2	
 Concept	
 of	
 TN	
 ...	
 43	

3.3	
 Review	
 of	
 TN	
 ...	
 45	

3.3.1	
 Strategy	
 ..	
 46	

3.3.2	
 Credential	
 and	
 policy	
 ...	
 54	

3.3.3	
 Declaration	
 ...	
 56	

3.3.4	
 Existing	
 TN-­‐based	
 authorisation	
 systems	
 ..	
 56	

3.4	
 Interoperability	
 Issues	
 between	
 Authorisation	
 Systems	
 in	
 Web	
 Services	
 	
 61	

3.5	
 An	
 Improved	
 Multi-­‐layered	
 Interoperability	
 Model	
 ..	
 67	

3.6	
 Related	
 Work	
 ..	
 73	

3.7	
 Research	
 Problem	
 ...	
 74	

3.8	
 Discussion	
 of	
 Potential	
 Solutions	
 ...	
 75	

3.9	
 Chapter	
 Summary	
 ...	
 76	

Chapter	
 4.	
 A	
 Protocol-­‐based	
 Approach	
 for	
 Providing	
 Interoperability	
 between	

Authorisation	
 Systems	
 within	
 Web	
 Services	
 ..	
 77	

4.1	
 Introduction	
 ..	
 77	

4.2	
 Overview	
 of	
 A	
 Protocol-­‐based	
 Solution	
 Design	
 ...	
 79	

4.3	
 Protocol	
 Requirements	
 Elicitation	
 ..	
 83	

4.4	
 Overview	
 of	
 An	
 Improved	
 TN	
 Protocol	
 ...	
 90	

4.4.1	
 Scope	
 and	
 limitation	
 of	
 the	
 protocol	
 ...	
 90	

4.4.2	
 An	
 improved	
 TN	
 protocol	
 ..	
 90	

4.5	
 Preparation	
 Stage	
 ...	
 92	

4.5.1	
 Step	
 one	
 –	
 Sends	
 out	
 a	
 <TNPrepareRequest>	
 message	
 ..	
 93	

4.5.2	
 Step	
 Two	
 –	
 Receives	
 an	
 incoming	
 <TNPrepareRequest>	
 and	
 sends	
 out	
 an	

outgoing	
 <TNPrepareResponse>	
 message	
 ..	
 94	

4.6	
 Negotiation	
 Stage	
 ..	
 97	

4.6.1	
 Step	
 one	
 –	
 Receives	
 an	
 incoming	
 <TNPrepareResponse>	
 message	
 and	
 sends	
 out	

an	
 outgoing	
 <AuthzDecisionQuery>	
 message	
 ..	
 97	

 iii

4.6.2	
 Step	
 two	
 –	
 Receives	
 an	
 incoming	
 <AuthzDecisionQuery>	
 message	
 and	
 decides	

to	
 sends	
 a	
 relevant	
 outgoing	
 message	
 ...	
 99	

4.6.3	
 Possible	
 intermediate	
 steps	
 –	
 Receives	
 an	
 incoming	
 <PolicySet>	
 message	
 and	

sends	
 out	
 a	
 relevant	
 outgoing	
 message	
 ..	
 100	

4.6.4	
 Possible	
 intermediate	
 steps	
 –	
 Receives	
 an	
 incoming	
 <CredentialSet>	
 message	

and	
 sends	
 out	
 a	
 relevant	
 outgoing	
 message	
 ..	
 105	

4.6.5	
 Possible	
 second	
 last	
 step	
 –	
 Receives	
 a	
 <Response>	
 message	
 from	
 a	
 Web	
 Service	

Requester	
 and	
 sends	
 out	
 an	
 <AuthzDecisionStatement>	
 message	
 	
 111	

4.6.6	
 Last	
 step	
 –	
 Receives	
 an	
 <AuthzDecisionStatement>	
 message	
 from	
 a	
 Web	
 Service	

Provider	
 ..	
 111	

4.7	
 Chapter	
 Summary	
 ...	
 112	

Chapter	
 5.	
 Protocol	
 Verification	
 ..	
 114	

5.1	
 Introduction	
 ..	
 114	

5.2	
 Discussion	
 of	
 Methods	
 for	
 the	
 Completeness	
 Proof	
 ..	
 116	

5.3	
 Introduction	
 of	
 An	
 Example	
 FSM	
 ...	
 117	

5.4	
 FSM-­‐based	
 Completeness	
 Proof	
 of	
 the	
 Protocol	
 ...	
 120	

5.4.1	
 Overview	
 of	
 the	
 states	
 of	
 the	
 protocol	
 ..	
 120	

5.4.2	
 FSM-­‐based	
 completeness	
 proof	
 of	
 the	
 preparation	
 stage	
 ..	
 124	

5.4.3	
 FSM-­‐based	
 completeness	
 proof	
 of	
 the	
 negotiation	
 stage	
 with	
 the	
 use	
 of	
 a	

parsimonious	
 strategy	
 ..	
 125	

5.4.4	
 FSM-­‐based	
 completeness	
 proof	
 of	
 the	
 negotiation	
 stage	
 with	
 the	
 use	
 of	
 an	
 eager	

strategy	
 ..	
 130	

5.5	
 Identified	
 Innate	
 Vulnerabilities	
 ..	
 133	

5.6	
 Impact	
 of	
 the	
 FSM	
 Approach	
 ..	
 133	

5.7	
 Chapter	
 Summary	
 ...	
 134	

Chapter	
 6.	
 Remembrance	
 of	
 Local	
 Information	
 Status	
 for	
 Enforcing	
 Robustness	
 of	

Policy-­‐Exchanged	
 Strategies	
 for	
 Trust	
 Negotiation	
 ...	
 135	

6.1	
 Introduction	
 ..	
 135	

6.2	
 Innate	
 Vulnerability	
 Issues	
 in	
 TN	
 ..	
 136	

6.3	
 A	
 Proposed	
 Solution	
 Design	
 ...	
 138	

6.3.1	
 Discussion	
 of	
 one	
 potential	
 solution	
 ...	
 138	

6.3.2	
 Conceptual	
 idea	
 of	
 a	
 proposed	
 solution	
 ...	
 139	

6.3.3	
 Realisation	
 technique	
 ..	
 140	

6.4	
 Evaluation	
 Result	
 Analysis	
 ...	
 143	

6.5	
 Impact	
 of	
 the	
 Proposed	
 Solution	
 ..	
 145	

6.6	
 Chapter	
 Summary	
 ...	
 147	

 iv

Chapter	
 7.	
 Protocol	
 Evaluation	
 ..	
 148	

7.1	
 Introduction	
 ..	
 148	

7.2	
 Evaluation	
 Research	
 Method	
 ...	
 148	

7.3	
 Use	
 of	
 Case	
 Studies	
 ...	
 150	

7.3.1	
 A	
 general	
 procedure	
 of	
 conducting	
 case	
 studies	
 ..	
 150	

7.3.2	
 Types	
 of	
 case	
 studies	
 ..	
 151	

7.3.3	
 Construction	
 of	
 case	
 studies	
 ...	
 154	

7.3.4	
 Methods	
 and	
 process	
 for	
 data	
 collection	
 ...	
 156	

7.3.5	
 Model-­‐based	
 testing	
 of	
 protocol	
 application	
 within	
 embedded	
 single-­‐case	
 study	

for	
 data	
 collection	
 ...	
 159	

7.4	
 Discussion	
 on	
 Qualitative	
 Data	
 Analysis	
 ...	
 186	

7.4.1	
 Data	
 analysis	
 strategy	
 and	
 technique	
 ...	
 186	

7.4.2	
 Data	
 analysis	
 results	
 for	
 interoperability	
 between	
 authorisation	
 systems	
 and	

correctness	
 of	
 the	
 protocol	
 ...	
 187	

7.5	
 Limitations	
 of	
 the	
 Protocol	
 or	
 of	
 the	
 Interoperability-­‐Solution	
 Design	
 	
 191	

7.5.1	
 Conceptual	
 interoperability	
 issue	
 ..	
 191	

7.5.2	
 Extra	
 required	
 functionalities	
 ..	
 192	

7.5.3	
 No	
 common	
 strategy	
 or	
 capability	
 between	
 two	
 entities	
 ..	
 192	

7.5.4	
 Performance	
 tests	
 challenge	
 ...	
 193	

7.6	
 Related	
 Work	
 ..	
 193	

7.6.1	
 Differences	
 between	
 the	
 protocol	
 and	
 state-­‐of-­‐the-­‐art	
 TN-­‐based	
 authorisation	

systems	
 ..	
 193	

7.6.2	
 Differences	
 between	
 the	
 protocol	
 and	
 state-­‐of-­‐the-­‐art	
 TN-­‐based	
 authorisation	

systems	
 in	
 Web	
 Services	
 ..	
 195	

7.6.3	
 Differences	
 between	
 the	
 protocol	
 and	
 an	
 existing	
 solution	
 in	
 Web	
 Services	
 	
 196	

7.6.4	
 Differences	
 between	
 the	
 protocol	
 and	
 state-­‐of-­‐the-­‐art	
 ABAC	
 protocols	
 in	
 Web	

Services	
 ...	
 196	

7.7	
 Impact	
 of	
 the	
 Research	
 ...	
 196	

7.8	
 Chapter	
 Summary	
 ...	
 198	

Chapter	
 8.	
 Conclusions	
 and	
 Future	
 Work	
 ...	
 199	

8.1	
 Introduction	
 ..	
 199	

8.2	
 Discussion	
 of	
 the	
 Research	
 ...	
 199	

8.3	
 Research	
 Contributions	
 and	
 Impacts	
 ...	
 210	

8.4	
 Future	
 Work	
 ..	
 212	

8.4.1	
 Exploring	
 factors	
 relevant	
 to	
 conceptual	
 interoperability	
 ..	
 212	

8.4.2	
 Uncommon	
 strategy	
 and	
 capability	
 issue	
 ...	
 213	

8.4.3	
 Performance	
 test	
 challenge	
 ...	
 213	

 v

8.4.4	
 Security	
 consideration	
 ...	
 213	

8.5	
 Chapter	
 Summary	
 ...	
 215	

References	
 ..	
 216	

Appendix	
 A.	
 Protocol	
 Messages	
 ...	
 244	

Appendix	
 B.	
 Case	
 Study	
 Evaluation	
 in	
 Chapter	
 6	
 ...	
 254	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 vi

List	
 of	
 Figures

Figure	
 2.1.	
 AAI	
 solutions	
 and	
 functionalities	
 (Schlager	
 et	
 al.,	
 2006)	
 ..	
 37	

Figure	
 2.2.	
 Attribute-­‐based	
 AAI	
 reference	
 model	
 (Schlager	
 et	
 al.,	
 2006)	
 	
 38	

Figure	
 3.1.	
 Illustration	
 of	
 an	
 interoperability	
 issue	
 in	
 relation	
 to	
 capability	
 in	
 a	
 first	

circumstance	
 ..	
 63	

Figure	
 3.2.	
 Illustration	
 of	
 the	
 interoperability	
 issue	
 in	
 relation	
 to	
 capability	
 in	
 a	
 second	

circumstance	
 ..	
 64	

Figure	
 4.1.	
 A	
 protocol	
 design	
 and	
 development	
 methodology	
 –Validation	
 	
 78	

Figure	
 4.2.	
 Overview	
 of	
 an	
 improved	
 TN	
 protocol	
 ..	
 91	

Figure	
 4.3.	
 A	
 Web	
 Service	
 Requester	
 sends	
 out	
 a	
 <TNPrepareRequest>	
 message	
 to	
 a	
 Web	

Service	
 Provider	
 ...	
 94	

Figure	
 4.4.	
 A	
 Web	
 Service	
 Requester	
 processes	
 a	
 <TNPrepareRequest>	
 message	
 	
 96	

Figure	
 4.5.	
 A	
 Web	
 Service	
 Requester	
 processes	
 a	
 <TNPrepareResponse>	
 message	
 	
 98	

Figure	
 4.6.	
 A	
 Web	
 Service	
 Provider	
 processes	
 an	
 <AuthzDecisionQuery>	
 message	
 	
 100	

Figure	
 4.7.	
 A	
 Web	
 Service	
 processes	
 a	
 <PolicySet>	
 message	
 and	
 decides	
 to	
 compare	
 local	

credentials	
 with	
 the	
 received	
 policies	
 ..	
 101	

Figure	
 4.8.	
 A	
 process	
 illustrating	
 how	
 the	
 policy	
 compliance	
 checker	
 makes	
 a	
 decision	
 ..	
 103	

Figure	
 4.9.	
 A	
 process	
 of	
 verifying	
 the	
 authenticity	
 and	
 credential	
 chains	
 of	
 the	
 received	

credentials	
 to	
 decide	
 what	
 to	
 do	
 ...	
 106	

Figure	
 4.10.	
 A	
 process	
 of	
 comparing	
 the	
 received	
 credentials	
 against	
 local	
 policies	
 by	
 using	

the	
 eager	
 strategy	
 ..	
 108	

Figure	
 4.11.	
 A	
 process	
 of	
 comparing	
 the	
 received	
 credentials	
 against	
 local	
 policies	
 by	
 using	

the	
 parsimonious	
 strategy	
 ...	
 110	

Figure	
 4.12.	
 A	
 Web	
 Service	
 Provider	
 processes	
 a	
 <Response>	
 message	
 	
 111	

Figure	
 4.13.	
 A	
 Web	
 Service	
 Requester	
 processes	
 an	
 <AuthzDecisionStatement>	
 message

	
 ...	
 112	

Figure	
 5.1.	
 An	
 example	
 STD	
 ..	
 118	

Figure	
 5.2.	
 Completeness	
 of	
 the	
 example	
 STD	
 ..	
 120	

Figure	
 5.3.	
 The	
 entire	
 STD	
 of	
 the	
 preparation	
 stage	
 of	
 the	
 protocol	
 ...	
 121	

 vii

Figure	
 5.4.	
 The	
 entire	
 STD	
 of	
 the	
 negotiation	
 stage	
 of	
 the	
 protocol,	
 while	
 the	
 parsimonious	

strategy	
 is	
 used	
 ...	
 122	

Figure	
 5.5.	
 The	
 entire	
 STD	
 of	
 the	
 negotiation	
 stage	
 of	
 the	
 protocol,	
 while	
 the	
 eager	
 strategy	

is	
 used	
 ...	
 123	

Figure	
 5.6.	
 All	
 of	
 the	
 paths	
 of	
 STD	
 of	
 the	
 protocol	
 ...	
 123	

Figure	
 5.7.	
 Two	
 transitions	
 from	
 the	
 initial	
 state	
 ..	
 124	

Figure	
 5.8.	
 Transitions	
 from	
 state	
 1,	
 when	
 the	
 parsimonious	
 strategy	
 is	
 used	
 	
 126	

Figure	
 5.9.	
 Four	
 possible	
 transitions	
 from	
 state	
 4	
 ..	
 128	

Figure	
 5.10.	
 Three	
 possible	
 transitions	
 from	
 state	
 5	
 ...	
 129	

Figure	
 5.11.	
 One	
 transition	
 from	
 state	
 6	
 ..	
 130	

Figure	
 5.12.	
 Transitions	
 from	
 state	
 1,	
 when	
 the	
 eager	
 strategy	
 is	
 used	
 	
 131	

Figure	
 5.13.	
 A	
 transition	
 from	
 state	
 8	
 ...	
 131	

Figure	
 5.14.	
 Four	
 transitions	
 from	
 state	
 9	
 ..	
 132	

Figure	
 6.1.	
 The	
 position	
 of	
 the	
 database	
 within	
 the	
 process	
 of	
 TN	
 ..	
 141	

Figure	
 6.2.	
 An	
 algorithm	
 for	
 addressing	
 the	
 two	
 vulnerability	
 issues	
 	
 143	

Figure	
 7.1.	
 A	
 category	
 of	
 case	
 designs	
 (Yin,	
 2013)	
 ..	
 152	

Figure	
 7.2.	
 A	
 general	
 overview	
 of	
 embedded	
 single-­‐case	
 designs	
 ...	
 156	

Figure	
 7.3.	
 Possessed	
 information	
 in	
 circumstance	
 1	
 ...	
 163	

Figure	
 7.4.	
 Message	
 1	
 in	
 the	
 preparation	
 stage	
 in	
 circumstance	
 1	
 ..	
 164	

Figure	
 7.5.	
 Message	
 2	
 in	
 the	
 preparation	
 stage	
 in	
 circumstance	
 1	
 ..	
 165	

Figure	
 7.6.	
 Possessed	
 information	
 in	
 circumstance	
 2	
 ...	
 165	

Figure	
 7.7.	
 Message	
 1	
 in	
 the	
 preparation	
 stage	
 in	
 circumstance	
 2	
 ..	
 166	

Figure	
 7.8.	
 Message	
 2	
 in	
 the	
 preparation	
 stage	
 in	
 circumstance	
 2	
 ..	
 166	

Figure	
 7.9.	
 Possessed	
 information	
 in	
 circumstance	
 3	
 ...	
 167	

Figure	
 7.10.	
 Message	
 2	
 in	
 the	
 preparation	
 stage	
 in	
 circumstance	
 3	
 ...	
 168	

Figure	
 7.11.	
 Message	
 3	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 3	
 ...	
 169	

Figure	
 7.12.	
 Message	
 4	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 3	
 ...	
 169	

Figure	
 7.13.	
 Message	
 5	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 3	
 ...	
 170	

Figure	
 7.14.	
 Message	
 6	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 3	
 ...	
 170	

 viii

Figure	
 7.15.	
 Possessed	
 information	
 in	
 circumstance	
 4	
 ...	
 171	

Figure	
 7.16.	
 Message	
 5	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 4	
 ...	
 172	

Figure	
 7.17.	
 Message	
 6	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 4	
 ...	
 172	

Figure	
 7.18.	
 Possessed	
 information	
 in	
 circumstance	
 5	
 ...	
 173	

Figure	
 7.19.	
 Message	
 4	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 5	
 ...	
 174	

Figure	
 7.20.	
 Message	
 5	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 5	
 ...	
 175	

Figure	
 7.21.	
 Possessed	
 information	
 in	
 circumstance	
 6	
 ...	
 175	

Figure	
 7.22.	
 Message	
 4	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 6	
 ...	
 176	

Figure	
 7.23.	
 Possessed	
 information	
 in	
 circumstance	
 7	
 ...	
 177	

Figure	
 7.24.	
 Message	
 5	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 7	
 ...	
 178	

Figure	
 7.25.	
 Possessed	
 information	
 in	
 circumstance	
 8	
 ...	
 179	

Figure	
 7.26.	
 Message	
 5	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 8	
 ...	
 180	

Figure	
 7.27.	
 Possessed	
 information	
 in	
 circumstance	
 9	
 ...	
 181	

Figure	
 7.28.	
 Message	
 5	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 9	
 ...	
 182	

Figure	
 7.29.	
 Possessed	
 information	
 in	
 circumstance	
 10	
 ..	
 183	

Figure	
 7.30.	
 Message	
 6	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 10	
 ..	
 184	

Figure	
 7.31.	
 Message	
 7	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 10	
 ..	
 185	

Figure	
 7.32.	
 Message	
 8	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 10	
 ..	
 185	

Figure	
 7.33.	
 Message	
 9	
 in	
 the	
 negotiation	
 stage	
 in	
 circumstance	
 10	
 ..	
 185	

	

	

	

	

	

	

	

	

	

	

	

	

 ix

List	
 of	
 Tables	

Table	
 3.1.	
 Interoperability	
 issues	
 between	
 authorisation	
 systems	
 in	
 Web	
 Services	
 	
 66	

Table	
 3.2.	
 An	
 improved	
 multi-­‐layered	
 interoperability	
 model	
 ...	
 70	

Table	
 4.1.	
 A	
 conceptual	
 multi-­‐layered	
 interoperability-­‐solution	
 design	
 	
 81	

Table	
 5.1.	
 An	
 overview	
 of	
 states	
 designed	
 in	
 the	
 protocol	
 ..	
 121	

Table	
 6.1.	
 Conclusion	
 of	
 the	
 effectiveness	
 of	
 the	
 database	
 design	
 for	
 policy-­‐exchanged	

strategies	
 ...	
 144	

Table	
 7.1.	
 An	
 overview	
 of	
 ten	
 circumstances	
 in	
 the	
 case	
 scenario	
 ..	
 162	

Table	
 7.2.	
 Comparison	
 between	
 PERMIS,	
 Akenti	
 and	
 the	
 improved	
 TN	
 protocol	
 	
 164	

Table	
 7.3.	
 Comparison	
 between	
 TrustBuilder2	
 and	
 the	
 improved	
 TN	
 protocol	
 	
 171	

Table	
 7.4.	
 Comparison	
 between	
 Trust-­‐X	
 and	
 the	
 improved	
 TN	
 protocol	
 	
 174	

Table	
 7.5.	
 Comparison	
 between	
 Trust-­‐Serv	
 and	
 the	
 improved	
 TN	
 protocol	
 	
 180	

 I

Acknowledgements

Towards the completion of my PhD degree, I would like to express my appreciation and

thanks to my first supervisor Dr. Tanko Ishaya for his guidance and support throughout the

first two and a half years of my PhD research project. In terms of guidance and support for

the rest of the time of my PhD research project, I would like to express my sincere

appreciation and gratitude to my second supervisor Dr. Darren Mundy. As the most

important supervisor to me, he took over my PhD supervision responsibility after Dr. Tanko

Ishaya left the University. Without Dr. Darren Mundy’s knowledge and his patient, careful

and prudent guidance, this Thesis might never have been completed and presented in this

current version.

Special thanks also goes to the external examiner Dr. Mike Joy and the internal examiner

Dr. Craig Gaskell for pointing out some critical issues within my PhD research and

providing some helpful recommendations for improving the quality of my PhD research and

the Thesis writing up.

Other persons deserving my appreciation include my office mates, who can always provide

me new ideas through group discussions. My friends and family members in the UK and

back home in Shanghai, China also offered me help when I felt frustrated, so thank you so

much.

Taking this opportunity, I must thank my dad and my mum, my dearest friends Chung Kuen

Ian Lau and Meiling Chen as well as their family members. Without their spiritual support,

encouragement and prayers, I might not have been able to persist with my PhD research

until the end.

Finally and most importantly, with respect to my hard work for the whole PhD research

project, this Thesis is indeed a best reward.

 II

Abstract
The existing authorisation systems within the context of Web Services mainly apply two

access control approaches – Role-Based Access Control (RBAC) and Attribute-Based

Access Control (ABAC). The RBAC approach links an authenticated Web Service

Requester to its specific access control permission through roles, but RBAC is not flexible

enough to cater for some cases where extra attribute information is needed in addition to the

identity. By contrast, the ABAC approach has more flexibility, as it allows a Web Service

Requester to submit necessary credentials containing extra attribute information that can

fulfil the policies declared by a Web Service Provider, which aims to protect the sensitive

resources/services.

RBAC and ABAC can only help to establish a unilateral trust relationship between two Web

Services to enable a Web Service Provider to make an access control decision.

Unfortunately, the nature of Web Services presents a high probability that two Web Services

may not know each other. Therefore, successful authorisation may fail, if the Web Service

Requester does not trust the Web Service Provider.

Trust Negotiation (TN) is also an access control approach, which can provide a bilateral

trust relationship between two unknown entities, so it sometimes can enable authorisation

success in situations where success is not possible through RBAC or ABAC approaches.

However, interoperability issues will arise between authorisation systems within Web

Services, where a bilateral trust-based authorisation solution is applied. In addition, a lack of

a unified approach that can address the interoperability issues remains as a research

problem. This research aims to explore possible factors causing the lack of interoperability

first, and then to explore an approach that can address the interoperability issues. The main

contributions of this research are an improved interoperability model illustrating

interoperability issues at different layers of abstraction, and a novel interoperability-solution

design along with an improved TN protocol as an example of utilising this design to provide

interoperability between authorisation systems within Web Services.

 1

Chapter 1. Introduction

1.1 Background and Motivation
Traditional business transactions between companies required the processing of

paperwork by employees. However, as human involvement in processing paperwork

caused a significant business cost and resulted in low economic efficiency (Seacord,

Plakosh and Lewis, 2003), an idea for automated business transactions without human

intervention arose, which eventually gave birth to electronic data interchange. This

technology was later standardised as Electronic Data Interchange (EDI) by the U.S.

National Institute of Standards and Technology in 1996 (NIST, 1996). According to

the formal definition of EDI, electronic messages used for business transactions must

be expressed in a standard format, when they are exchanged between computers of

companies as trading partners of each other. With the popularity of the use of EDI, a

range of different EDI providers appeared. Unfortunately, as each provider defined

their own standard format in their software, an interoperability issue developed

amongst them that the software developed by one EDI provider could not understand

the format used in other software developed by another EDI provider. This

interoperability issue led to EDI-based business transactions becoming more

expensive (Manes, 2003). For instance, if a company intended to run business

transactions with different trading partners, and if the software used by each trading

partner was purchased from different EDI providers, it would require the company to

purchase software from multiple EDI providers. This process caused a substantial

financial cost for EDI-based business transactions.

A preferable solution for addressing this interoperability issue is to enable companies

to reach an agreement on the use of a standard format for communication. In 1998,

such a standard format called Extensible Markup Language (XML) was developed.

The structure of this standard language is flexible enough to be used in different

business-transaction case scenarios. In addition, this language provides the flexibility

to allow users to define their own syntax and structure of messages (Bray, Paoli and

Sperberg-McQueen, 1998). To support the use of this standard language, a new

 2

technology named as Web Services was proposed as a successor of EDI (Locke,

2004).

When Web Services were first developed, Web application technology had been

adopted within different kinds of organisations besides companies. As Web Service

technology can be integrated into existing Web applications, the application of Web

Service technology is not restricted to business companies any more, that is, other

kinds of organisations such as governmental organisations (Alonso et al., 2009) or

educational organisations (Skogsrud et al., 2004c) may also use Web Services.

Therefore, Web Services can not only be used for electronic business (referred to as

E-Business hereafter) between organisations (where EDI is mainly used for E-

Business), but can also be used for providing other kinds of services between different

organisations.

Use of Web Service technology allows an organisation to publish information about

its resources to the Internet. Any other potential organisations supporting the use of

Web Services can request access to the resources (Curbera, Nagy and Weerawarana,

2001). If a requested resource is not openly available, access control (the term “access

control” and the term “authorisation” are treated as interchangeable words throughout

this Thesis) is normally required to help a Web Service Provider decide whether a

requested resource can be accessed. An access control decision is made on whether or

not authorisation is successful. In the context of Web Services, there are two kinds of

authorisation approaches. The first approach called Role-Based Access Control

(RBAC) requires an involvement of successful authentication, and an explicit defined

link between an authenticated identity and its access control permission. However, the

access control decision made based on identity authentication may not be flexible

enough to be used in cases where more information is required e.g. where sensitive

credentials are present etc. (Bhatti et al., 2003; Wonohoesodo and Tari, 2004; Bhatti,

Bertino and Ghafoor, 2004; Liu and Chen, 2004; Xu et al., 2004; Mohammad et al.,

2011).

Apart from the scenarios mentioned above, the occurrence of a circumstance whereby

a Web Service Requester and a Web Service Provider are unknown to each other is

also possible. For example, if the Web Service Requester searches for a specific

 3

resource over the Internet, it may find the Web Service Provider by chance (Bellwood

et al., 2004; Garofalakis et al., 2006). In this circumstance, making an access control

decision requires a second authorisation approach called Attribute-Based Access

Control (ABAC), as the first approach may not be feasible. With the use of this

approach, the Web Service Requester will submit credentials according to the rules

declared in the access control policies relevant to the resources provided by the Web

Service Provider. Due to its flexibility, this authorisation approach is widely used

within the current Web Services contexts (Yuan and Tong, 2005; Shen and Hong,

2006; Schlager et al., 2006; Mewar, Aich and Sural, 2007; Emig et al, 2007; Sabbari

and Alipour, 2011; Paci et al., 2011; Zhang et al., 2014).

The use of the ABAC approach relies on an assumption that the Web Service

Requester is willing to disclose all of the credentials required in the policies declared

by the Web Service Provider. However, this is not always the case. If some of the

required credentials are treated as sensitive, then the Web Service Requester may not

be willing to disclose them to the unknown Web Service Provider, as it does not trust

the Web Service Provider. This is because the trust relationship established by using

the ABAC approach is unilateral. This phenomenon will result in failed authorisation,

where successful authorisation may be possible (Yu, Winslett and Seamons, 2001;

Winslett et al., 2002; Hess et al., 2004; Frikken, Li and Atallah, 2006; Mbanaso et al.,

2006; Winsborough and Li, 2006).

Fortunately, Trust Negotiation (referred to as TN hereafter) as another access control

approach proposed by Winsborough, Seamons and Jones (1999, 2000) can address the

lack of bilateral-trust establishment in authorisation. This TN approach can help two

unknown entities establish a bilateral trust relationship, which can enable the Web

Service Requester to trust the unknown Web Service Provider. Sensitive credentials

possessed by the Web Service Requester that cannot be disclosed at early stages, may

be disclosed at later stages based on an established trust level. This establishment of a

trust level can help to convert authorisation failure into authorisation success in some

circumstances (Winsborough and Li, 2002a; Winsborough and Li, 2002b). Shen and

Hong (2006) identify that TN can be more powerful and flexible than ABAC in terms

of successful authorisation achievements within Web Services.

 4

1.2 Problem Statement, Research Aims, Questions and

Objectives

1.2.1 Research problems
At present, there is a multitude of authorisation systems used in Web Services. These

authorisation systems can support the use of the RBAC or ABAC approaches, but in

each system, the syntax and semantics of languages for expressing credentials and

policies are different (Lang et al., 2006). This phenomenon may cause an

interoperability issue that the Web Service Provider may not be able to understand the

credentials submitted by the Web Service Requester. For instance, if the syntax and

semantics of credentials used by the Web Service Requester are unknown to the Web

Service Provider, the Web Service Provider is not able to compare the credentials

against its local policies.

The TN approach is superior to the RBAC and ABAC approaches due to its unique

benefit of the provision of the establishment of a bilateral trust relationship between

two unknown entities. In addition, a number of TN-based authorisation systems are

also available, but to use these systems within Web Services also produces different

interoperability issues.

In some circumstances, the above specific interoperability issues could have been

addressed between authorisation systems (i.e. ABAC-based and TN-based) within

Web Services, so that potential successful authorisation could have been achieved.

Unfortunately, as there is no existing approach that can be used to resolve

interoperability issues between authorisation systems within Web Services, potential

successful authorisation may eventually fail.

In conclusion, the specific research problems are:

1. Lack of a comprehensive understanding of indeterminable factors causing

interoperability issues may weaken the effectiveness of solutions for addressing

interoperability issues between authorisation systems within Web Services.

 5

2. There is no unified approach that can address interoperability issues in relation to

multiple factors so that potential successful authorisation between authorisation

systems within Web Services may fail.

1.2.2 Research questions
To enable the identification of a solution for addressing the above research problems,

the below research questions are defined for this Thesis:

1.What are the factors that cause interoperability issues between authorisation systems

within Web Services?

2. How can a unified approach address interoperability issues caused by the identified

factors to ensure that potential successful authorisation between authorisation systems

within Web Services will not fail?

1.2.3 Research aims
To address the research problems as stated above, this research aims to:

• Explore the current state-of-the-art access control approaches within Web Services

and the relevant key factors that may cause interoperability issues between

authorisation systems within Web Services;

• Explore a unified approach that can help to deliver potential successful

authorisation, if the interoperability issues caused by the relevant key factors can be

addressed.

1.2.4 Objectives
To accomplish the research aims, the specific objectives of this research are listed as

follows:

• Review the existing RBAC and ABAC approaches used in Web Services, and

analyse their characteristics to understand how they are used within Web Services;

• Review the existing interoperability models to understand the identified

interoperability issues and explore any potential new interoperability issues between

systems;

• Review state-of-the-art TN-based authorisation systems to assess the main

functionalities of their key components;

• Explore a potential approach that can address interoperability issues for

authorisation systems within Web Services;

 6

• Evaluate the potential approach to identify whether it can enable potential

successful authorisation not to fail due to the interoperability issues;

• Conclude the findings through the evaluation and explore whether there are

potential limitations within the solution.

1.3 Research Methodology and Methods
The research aims and objectives have been stated above. Towards accomplishing the

aims and detailed objectives, an appropriate research methodology should be selected

before the conduction of the research. As stated in Kumar (2008), a research

methodology is a systematically planned, organised process that can direct a

researcher to accomplish the specific research goal. A similar point of view is found

in Kothari (2009) that a research methodology can guide a researcher to carry out a

research in a scientific way. A researcher not only needs to understand how to use

different research methods to identify answers for research questions, but also needs

to have a very clear mind on the reasons why the selected research methods are of the

most relevance to the research. This opinion is also supported by Jonker and Pennink

(2010), who treat a research methodology as a kind of “action repertoire”. This

repertoire is designed based on the premises, considerations and practical conditions

strictly relevant to the research. According to this repertoire, a researcher is able to

justify the logic for selecting the most appropriate research methods in each stage

during the research. With the guidance of this strong logic, it is believed that the

research findings are able to answer the research questions, and the potential research

solutions are of the most appropriateness with addressing the research problems.

A wide range of research methodologies are available, however, it is often best to

select a methodology that corresponds most closely with the researcher’s basic

philosophy. Normally, the choice of a methodology is related to the research methods,

and the choice of the most appropriate research methods within a piece of research or

a research project is in turn related to the nature and the way specific research

questions are asked and how a researcher wants to answer them (Jonker and Pennink,

2010). In this research, as the nature of the research questions is related to the

identification of unique characteristics of the research objects and the exploration of a

potential solution, an empirical methodology along with qualitative data analysis is

regarded as the most appropriate research methodology.

 7

To carry out this research, the research methods selected for each stage are listed as

follows.

The state of the art of research in the areas of interest related to this study could be

evaluated through theoretical methods. To enable the researcher to obtain and analyse

the relevant information, literature review, more precisely, the documentation analysis

(Taylor et al., 2006) was treated as one of the most appropriate research methods

suitable to this step for exploring information in relation to the ABAC-based and TN-

based authorisation systems within Web Services and that in relation to existing

interoperability models. In addition, the case study method (Yin, 2013) was used

along with documentation analysis for verifying the existence of discovered

interoperability issues between authorisation systems in practice.

Based on the analysis of the data obtained using the two research methods, an

improved multi-layered interoperability model illustrating multiple layers at different

levels of abstraction of interoperability issues between authorisation systems within

Web Services was constructed. This improved interoperability model can provide an

understanding of the existence of multiple layers of interoperability, but cannot

supply any propositions for potential solutions relevant to each layer. Through a

documentation analysis of the review of protocols, it was identified that a protocol-

based approach might be the most appropriate solution for providing interoperability

for the majority of the layers. Therefore, this improved interoperability model was

extended to a novel conceptual multi-layered interoperability-solution design, which

proposes how to use a protocol-based approach for the provision of interoperability

for each relevant interoperability layer.

Following the guidance of the interoperability-solution design, an improved TN

protocol was then created as an example of utilisation of the interoperability-solution

design. This protocol was designed and developed following a widely used protocol

design and development methodology named validation (Merlin, 1976; Bochmann

and Gecsei, 1977; Merlin, 1979). A formalism called Finite State Machine was used

for verifying the completeness of all possible states designed in the protocol

(Bochmann and Gecsei, 1977; Bochmann, 1978; Sunshine, 1979a; Sunshine et al.,

1982).

 8

After conducting this completeness test, two intrinsic flaws were explored within this

protocol. As there was no complete solution provided by the state-of-the-art TN-based

authorisation systems for addressing them, a conceptual solution design based on the

idea of “remembrance of local information status” was created. The identification of

the key reasons causing the occurrence of the two flaws was through a critical

analysis of the relevant review and typical representative case studies. This solution

was evaluated to be an effective complementary solution for the protocol to some

extent in the case studies for evaluation. With the addition of this solution to the

protocol, its completeness was ensured. Finally, a detailed evaluation of the

effectiveness of the proposed interoperability-solution design including a protocol

correctness test was presented, wherein the case study research method along with a

model-based testing (Utting, and Legeard, 2006; Kull, 2009) were selected as the

most appropriate evaluation methods. The evaluation result could demonstrate the

effectiveness of the proposed solution design as well as the correctness of the

improved TN protocol.

1.4 Scope and Limitations of the Research Contributions
In terms of research contributions, there are four in this Thesis. The first contribution

is an improved multi-layered interoperability model. This model aims to clarify the

existence of multiple layers of interoperability issues between authorisation systems

(i.e. ABAC-based or TN-based) within Web Services. It might also be used to

illustrate interoperability issues between systems in other distributed systems

environments.

The second contribution is a novel conceptual multi-layered interoperability-solution

design, which specifies how to use a protocol-based approach to provide

interoperability for the majority of the interoperability layers identified in the

improved interoperability model as the first contribution. This interoperability-

solution design can provide guidance aiding protocol developers in addressing

interoperability issues, when they design and develop protocols. However, limitations

of this interoperability-solution design still exist, in which an interoperability issue at

the highest layer cannot be completely resolved by the protocol-based approach

recommended by this interoperability-solution design. In the research of this Thesis,

 9

this interoperability-solution design is leveraged for guiding the design of an

improved TN protocol as a concrete example for addressing interoperability issues at

specific layers.

The third contribution is an improved TN protocol, which can enable an ABAC/TN-

based authorisation system to communicate with another ABAC/TN-based

authorisation system without specific interoperability issues (e.g. functional,

capability, strategy) within Web Services. In addition, this protocol can deliver

successful TN-based authorisation, if multiple credential and policy languages

designed within the existing ABAC/TN-based authorisation systems are used in the

context of Web Services. In other words, it can raise the success probability for using

TN in some circumstances. However, there are limitations within this protocol, where

the novel mechanism designed in this protocol can only work, when two Web

Services have a common capability for processing language combinations and have a

common strategy.

The fourth contribution is a solution design to address intrinsic vulnerability issues

within the proposed TN protocol. This solution design can also be utilised to

protocols designed within the state-of-the-art TN-based authorisation systems, when

policy-exchanged strategies (see section 3.3.1.2) are used. In addition, this solution

design might also be applied to resolve variations of Denial of Service (DoS) attacks.

There are limitations within this solution, so that it is not effective for all of the

policy-exchanged strategies designed for TN.

1.5 Thesis Outline
This section outlines the structure of this Thesis to give a reader an initial idea about

the relationship amongst the chapters.

Chapter 2 presents a definition of Web Services. Security-related standards and

authentication services used within Web Services are then introduced, as they are

relevant to the use of authorisation. Following that, this chapter describes the details

of two existing authorisation approaches (i.e. RBAC and ABAC) used within Web

Services along with a conclusion of their merits and limitations. Existing ABAC-

based authorisation systems are then introduced along with the way they are used

 10

within Web Services. In addition, benefits and limitations of the use of ABAC-based

authorisation systems in Web Services are discussed. Within these review,

interoperability issues are identified.

In Chapter 3, the concept of TN is presented associated with its general process. A

detailed review and analysis of TN is then provided for identifying the necessary

components of TN followed by a discussion of state-of-the-art TN-based

authorisation systems. Possible interoperability issues between ABAC/TN-based

authorisation systems are discussed. After the review, an embedded case study is

presented for verifying the aforementioned interoperability issues in the research

context. Existing interoperability models of the most relevance are also reviewed.

Following a critical analysis of the review, an improved conceptual multi-layered

interoperability model is constructed, which aims to address the first research

problem. In addition, work in relation to other existing interoperability models of less

relevance is discussed to distinguish the differences between them and the improved

interoperability model. The second research problem is then presented followed by a

discussion of potential solutions.

Chapter 4 first proposes a conceptual multi-layered interoperability-solution design

aiming to address the second research problem. This interoperability-solution design

provides guidance of how a protocol-based approach can provide interoperability for

the majority of the interoperability layers. A protocol design and development

methodology is then introduced. Following this methodology, elicited protocol

requirements are listed based on a critical assessment of the feasibility of the adoption

of state-of-the-art TN techniques within Web Services. A proposed protocol providing

a TN-based authorisation service is then designed strictly according to the elicited

requirements and the interoperability-solution design. This protocol specifies the

details of the logical processes and the relevant syntax and semantics of

communication messages in order to provide interoperability between authorisation

systems within Web Services.

In Chapter 5, a protocol verification method is introduced for verifying the

completeness of the proposed protocol. An entire verification process is then clarified.

 11

During the process of this verification method, two intrinsic flaws within the protocol

are discovered.

Chapter 6 presents a conceptual solution design based on the idea of “remembrance of

local information status” to address the two intrinsic flaws explored in the protocol

completeness test. The realisation of this solution design through the relational

database technology and the relevant evaluation result analysis are detailed.

Chapter 7 provides a detailed discussion of utilising the case study evaluation method

for evaluating whether the designed proposed protocol following guidance of the

interoperability-solution design can effectively address the second research problem.

Effectiveness and limitations of the protocol are discussed, and differences between

the proposed protocol and related work are clarified.

Finally, Chapter 8 is a conclusion chapter, which presents a discussion on the process

of the entire research including the research problems identified in Chapter 1, review

and case study in Chapter 2 and Chapter 3, the process of the conceptual protocol

design in Chapter 4 and the protocol verification process in Chapter 5, the solution

design in Chapter 6 and the protocol evaluation process in Chapter 7. It also discusses

the contributions along with their impacts followed by potential future work.

1.6 Chapter Summary
This chapter has introduced the background information and motivation for the

research carried out in this Thesis. It has also articulated the research problems,

research questions, aims and specific objectives. A relevant appropriate research

methodology and methods have been justified and linked to the potential achievement

of the research goals. In addition, the scope and limitations of the research

contributions have been outlined. The next chapter presents a detailed review in the

field of Web Services with a particular focus on identifying possible interoperability

issues between ABAC-based authorisation systems within Web Services.

 12

Chapter 2. Review of Security-Related

Standards, Authentication Services, RBAC,

ABAC Approaches and the Relevant

Authorisation Systems Within Web Services

2.1 Introduction
As stated in Chapter 1, this research focuses on exploration of a potential solution for

addressing interoperability issues between authorisation systems within Web

Services. Identification of such a solution initially requires the researcher to have an

overall understanding of the interoperability issues. Chapter 2 and Chapter 3 together

introduce a thorough investigation of the relevant literature. This investigation

critically assesses the state of the art in various fields (Web Services, interoperability,

RBAC, ABAC approaches along with the relevant authorisation systems and TN

(discussed in Chapter 3)). All of the relevant factors along with their characteristics

causing the interoperability issues (highlighted in bold and italic) within the research

context are explored through the analysis of the relevant review.

In the areas of Web Services, interoperability, RBAC, ABAC approaches and TN,

there is already a vast array of pre-existing research. Therefore one of the major

challenges to this Chapter and Chapter 3 is determining the research of most

relevance to the research problems within this Thesis, and presenting this in a logical

order. After thoughtful consideration, the review begins with the clarification of a

definition of Web Services. Based on the discussion of this definition, the key issue

existing within Web Services, that of interoperability is analysed in depth. Through a

review of security-related standards (authorisation is related to security),

authentication services (authentication is closely related to authorisation) within Web

Services, an understanding about what services they can provide is formulated. Based

on the analysis of this understanding, possible interoperability issues and the relevant

solutions within these protocols are identified.

 13

Due to the difference between the RBAC and ABAC approaches and their application

within the relevant authorisation systems, the review in relation to the use of ABAC-

based authorisation systems within Web Services is further explored. This includes a

critical analysis of the authorisation services they can supply and an assessment of

their suitability. In addition, a discussion of the existing solutions providing

interoperability for ABAC-based authorisation systems used within Web Services is

also presented to point out their possible interoperability issues. As there exists a large

amount of research related to TN, a decision is made to present the relevant review in

Chapter 3 for easy discussion and clarification.

2.2 Definition of Web Services
The reason for the initial emergence of Web Services is stated by Christensen et al.

(2001), “Web Services are a natural consequence of the evolution of the Web into an

open medium which facilitates complex business and scientific application

interactions”. In other words, the advent of Web Services is attributed to the demand

for achieving automated E-Business in electronic markets, providing higher efficiency

and increased profits with the help of Web-based application-to-application

interactions (Zhao, 2006; Davis and Vladica, 2007). From the perspective of E-

Business, it is not surprising that the majority of developers initially treated a Web

Service as a resource to be consumed by software rather than by humans (Manes,

2003). There are multiple distinct perspectives on the essence of Web Services, for

example, one is that Web Services should be treated only as messaging technologies

(Vogels, 2003); whilst another suggests that Web Services provide the packaging

strategy for business logic (Shah and Apte, 2004), thus suggesting an emphasis on the

inclusion of business processes. Thankfully, a formal definition of Web Services is

stated in Web Services Architecture (Booth et al., 2004), which presents a general

architecture for the utilisation of Web Services.

 14

A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its

description using SOAP messages, typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards.

As a concise definition, it introduces the general characteristics of Web Services, but

it is not straightforward enough to express various key points underpinning the use of

Web Services. To highlight these key points, there is a need to expand this definition

as described as follows: Web Service technologies allow software systems to be

deployed as Web Services, which are able to interact with one another with the

prerequisite of interoperability. Interaction or communication between two Web

Services normally occurs over a network (e.g. intranet, extranet etc.). In particular, if

they are located in different intranets, their communication has to occur over the

Internet. An interface of a Web Service written in the WSDL, a machine-processable

format, (details of WSDL are discussed in section 2.4.4) operates as an entrance to

retrieve an incoming SOAP message (details of SOAP are discussed in section 2.4.3)

sent from another Web Service. The Web Service should be able to deal with the

content or data contained within the message in accordance with the rules indicated

by the descriptions of the content. The most commonly used delivery method for

transmitting a message over the network from one Web Service to another Web

Service is HTTP (stands for Hypertext Transfer Protocol), which is an application

protocol for distributed systems (Fielding et al., 1999). In addition, other application

protocols such as SMTP (stands for Simple Mail Transfer Protocol) etc. are also

available for transmitting a SOAP message (Howard, 2001; Mitra and Lafon, 2007).

The content of the message contained in the SOAP envelope should conform to other

Web-related standards that are presented in an XML-based structure (details of XML

are discussed in section 2.4.2) for serialisation.

As discussed in the expanded definition above, the most significant feature is that the

communication between Web Services should be interoperable with the help of a

combination of technologies such as machine-processable interfaces, rules indicated

by the descriptions of messages, and support for cross-platform application-layer

 15

protocols etc. From the perspective of interoperability, a Web Service should neither

be treated as only a resource, nor as only messaging technologies or strategies for

business logic. Instead, it is preferable to regard Web Services as a technology-based

framework for the guidance of system designs, ensuring their interoperability in

communication, and ability not only to support e-business, but also to accomplish

large-scale resource sharing (Foster, Kesselman and Tuecke, 2001). This focus on the

technology distinguishes Web Services from another term referred to as Service

Oriented Architecture (SOA), as the focus of SOA is on the architecture (Mances,

2003; Rosen et al., 2008; Papazoglou, 2012), which mainly aims to achieve the

provision of a specific business service (Channabasavaiah, Tuggle and Holley, 2003).

The prospect of using Web Services is appealing, in that a Web Service Requester can

communicate with any other Web Service Provider for accomplishing specific

executions (e.g. resource sharing, business transaction etc.) over a network. However,

it does not mean that Web Service technologies are suitable for all cases. To guide the

appropriate use of Web Services, four cases are suggested by Booth et al. (2004) that

Web Services can be the selected implementation mechanism for applications (shown

as follows):

• “That must operate over the Internet where reliability and speed cannot be

guaranteed;

• Where there is no ability to manage deployment so that all requesters and

providers are upgraded at once;

• Where components of the distributed system run on different platforms and

vendor products;

• Where an existing application needs to be exposed for use over a network,

and can be wrapped as a Web service. ”

Having discussed the definition of Web Services, the next section presents a detailed

clarification of the interoperability issues within Web Services based on an analysis of

the expanded description of the definition.

2.3 Interoperability Issues and Protocols
Observing the first sentence of the expanded explanation of the formal definition, the

key point that needs to be highlighted is the concern in relation to interoperability,

 16

which is the prerequisite to ensure that two Web Services are able to communicate

with each other. Thus, the assurance of interoperability for Web Services always

needs to be taken into consideration.

The IEEE provides four definitions for the term interoperability “(1) the ability of two

or more systems or elements to exchange information and to use the information that

have been exchanged, (2) The capability for units of equipment to work together to do

useful functions, (3) The capability, promoted but not guaranteed by joint

conformance with a given set of standards, that enables heterogeneous equipment

built by various vendors, to work together in a network environment and (4) The

ability of two or more systems or components to exchange information in a

heterogeneous network and use that information.” (IEEE press, 2000).

Through an analysis of the above definition, Diallo (2010) identifies that “the goal of

interoperability is to exchange useful information”. In other words, interoperability is

embodied when exchanged information between communicating systems can be

understood and processed by each other for achieving specific purposes in a certain

context. As this point of view can point out the key feature of interoperability, it is

used as a main criterion for assessing interoperability between systems throughout

this Thesis.

To ensure interoperability between communicating systems, the use of protocols has

been identified as the best solution (Rezaei, Chiew and Lee, 2014). For instance, with

respect to the history of distributed systems, the relationship between protocols and

distributed systems interoperability was first mentioned in Merlin (1979),

“Distributed systems naturally employ protocols because if the interacting entities are

physically remote to each other, message exchange is the only possible way of

coordinating their activities”. This statement points out that the basic interoperability

issue between distributed systems is due to the lack of communication, which can

only be achieved through message exchange as defined within protocols. Foster et al.

(2001) point out the relationship between protocols and interoperability, “A protocol

definition specifies how distributed system elements interact with one another in order

to achieve a specified behaviour, and the structure of the information exchanged

during this interaction”. Since Web Services are one kind of distributed system

 17

(Glass, 2001; Josuttis, 2007), it is a natural result that the interoperability issues also

exist in this context, and the use of standardised protocols is a clear solution. This

opinion is demonstrated in the informal definition of Web Services proposed by

Christensen et al. (2001), “A Web Service is a networked application that is able to

interact using standard application-to-application Web protocols over well defined

interfaces, …”. In addition, the opinion that the use of protocols is the only approach

in enabling any two Web Services to communicate is also emphasised by Ballinger et

al. (2004).

Researchers have written a number of different definitions describing what a protocol

is or delivers. As a result, there also exist different perspectives on what

interoperability issues can be addressed by the use of a protocol (see section 3.5).

West (1978) presents an initial definition of a communication protocol, in that “a

communications protocol may be defined as the set of rules that govern the exchange

of information between processes in a communications system.” This definition is

accepted by researchers such as Gouda and Manning (1976); Danthine and Bremer

(1978). However, arguments have occurred over this definition. The arguments point

out that the definition proposed by West (1978) only focuses on the general rules for

specifying the order of the exchanged messages at an abstract level. Apart from this

level, a detailed level specifying how each message should be processed by systems

was also important, so this detailed level should be included within the concept of a

protocol as well (Sunshine, 1979a; Bochmann and Sunshine, 1980). This opinion has

been treated as the most appropriate perspective taken within this Thesis, since it

supplies a comprehensive level of understanding of the characteristics of a protocol at

both the abstract level and detailed level. Thus, the notion of a protocol adopted

within this Thesis consists of two parts: service specification and protocol

specification. A service specification is a general abstract description of what service

a specific protocol can provide. It can include the general description of an input

message and the relevant output messages. Rules of dealing with the input message

along with the generation of the output message can also be given. Developers are

normally the main readers for whom the service specification of a protocol is

provided. They need to understand what service the specific protocol can provide to

determine whether or not they need to implement the protocol within their systems. A

protocol specification is further twofold: protocol messages and internal structures.

 18

A protocol message includes the definition of the syntax and semantics used within a

message. It also specifies the specific data contained in the message for

communication. The internal structure details the logical process expanding from the

rules that are generally described in the service specification.

With the adoption of the notion of a protocol, it is easier to decompose a protocol into

three sub components for analysis. A simple example is helpful to illustrate the

usefulness of this notion. If there is a protocol allowing a Web Service Requester to

request the weather information from a Web Service Provider (Paolucci and Sycara,

2003), the service specification presents the general information of the protocol at an

abstract level including: (1) the service provided by the protocol is to enable the Web

Service Provider to return the weather information to a Web Service Requester, which

has sent a request message to the Web Service Provider and (2) an output message

containing the weather information should be returned, if the received input message

is an understandable request for the weather information. Otherwise, an error message

should be returned instead. However, the task of how these messages should be

presented (syntax and semantics of the message) is not the responsibility of the

service specification, but is achieved by the protocol messages (as the first part of the

protocol specification). Although the service specification describes the general rules

about which output message should be returned in correspondence with the input

messages, the detailed process of dealing with the input message to generate a

relevant output message is not included within it. Therefore, the clarification of the

detailed process is the responsibility of the internal structure (as the second part of the

protocol specification).

With the construction of a precise understanding of the protocol term, it is useful to

use this understanding in the analysis and assessment of the design of existing

authorisation protocols within Web Services as well as their interoperability.

However, due to the nature of Web Services, understanding the nature of underlying

Web Services protocols along with other standard specifications used can facilitate

the comprehension of existing authorisation protocols. As these standard

specifications and protocols are published by official organisations, the next section

starts with an introduction of the official organisations followed by the review of the

relevant standards.

 19

2.4 Security-related Standards, Authentication Services

Within Web Services

2.4.1 Official consortiums and protocol standardisation
Basically, it is inconvenient to develop a throwaway protocol for two Web Services,

when they need to communicate with each other. This would result in the potential

existence of multiple protocols providing the same or similar services causing

confusion as to which protocol to use between any two Web Services. This in turn

may also mean that developers would need to implement these different protocols

within Web Services. An ideal approach is to standardise a proposed protocol

providing the specific service used by Web Services (Fensel and Bussler, 2002;

Naedele, 2003; Benatallah et al., 2005; Wang et al., 2004; Roman et al., 2005).

To enable a standard protocol to be publicly accessed in the world, two official

consortiums – World Wide Web Consortium (W3C), and the Organisation for the

Advancement of Structured Information Standards (OASIS) – have been established.

They are responsible for the ratification of standards used for Web Services (W3C,

2012; OASIS, 2012; Fensel and Bussler, 2002; Naedele, 2003).

2.4.2 XML and Schema
Through the protocol standardisation approach, interoperability issues in relation to

syntax and semantics of communication messages arise. Two platforms (i.e. J2EE,

.NET) are mainly used for the development of Web applications. Programming

languages used in J2EE may not be recognised by .NET (Mallalieu and Carriere,

2004; Microsoft, 2004). As the prospect of using Web Services is to enable any two

systems available on the Internet to communicate with one another regardless of their

specific platforms, a common language independent of any specific platform is

required. To meet this requirement, a standard language called Extensible Markup

Language (XML) was proposed and published by W3C in 1998 (Bray et al., 1998),

and XML can bring Web Services a platform-independence benefit (Ho and Yen,

2005; Guruge, 2004).

Although XML has been used as the lingua franca within Web Services, and

recognised by multiple platforms, it does not mean that there are no weaknesses

 20

within it. On the contrary, the controversy over whether or not to use XML has never

stopped due to its verbosity and a requirement for intensive parsing. These limitations

largely affect the performance of using XML (Beznosov et al., 2005; Pallis, Stoupa

and Vakali, 2008). Nonetheless, reasons supporting the use of XML are given by

Christensen et al. (2001), “[V]erboseness actually becomes one of its greatest

strengths when enabling communication between diverse sets of systems. XML’s

clear representation of structured data makes it an ideal foundation for the Web

services framework.” Upon the acceptance of the use of XML in Web Services,

research has been undertaken to identify ideal approaches for improving the

effectiveness and efficiency by using XML (Zhang and Engelen, 2008; EI-Bakry and

Mastorakis, 2009; Tere and Jadhav, 2010).

To enable the XML to be able to define the syntax of messages, schema (short for

XML schema) was proposed by W3C (Brown et al., 2001). The presentation of

schema is still an XML-based structure, but the syntax of messages can be defined

easily with the predefined structures within schema. Therefore, with the use of the

XML and schema, the interoperability issue in relation to syntax or structure of

communication messages within Web Services can be addressed. At the same time,

the XML and schema together form the cornerstone of the protocols and

specifications designed within Web Services. XML and schema are capable of

structuring messages in a clear way, but are unable to express meanings of messages.

In other words, incapability of XML and schema enabling a Web Service

automatically to understand the semantics of messages is still a weakness. Current

solutions for making up for this weakness are to present semantics in a natural

language and require an involvement of human developers for understanding natural

language-based semantics (Klein, 2001).

2.4.3 SOAP
Simple Object Access Protocol (SOAP) was the first member of the Web Services

triumvirate (the other two members are WSDL and UDDI, which are discussed in

section 2.4.4 and 2.4.5 respectively), designed and published by W3C (Mitra and

Lafon, 2007). SOAP, as a de facto protocol, provides its specific service specification,

and its protocol specification including the protocol messages (specifying the syntax

and semantics of the general communication messages exchanged between Web

 21

Services), and the internal structure (dealing with the data in correspondence with

their semantics). For instance, by reading the service specification, one can

understand that a SOAP message is designed as an envelope (called SOAP envelope)

including two parts: header and body. The header part can contain the information

such as addressing, which is specified in the WS-Addressing specification (Gudgin,

Hadley and Rogers, 2006). The body part can contain the information that needs to be

processed by the Web Service, which should be the correct SOAP message receiver.

Within a SOAP message, multiple header parts can occur, but only one body part is

allowed to exist. Following the defined syntax and semantics of the protocol messages

within its protocol specification, knowledge including the meaning of the

<Envelope>, <Header> and <Body> messages as well as their structures can be

obtained. The implicit internal structure within the descriptions of each message

explains the process of how a Web Service should deal with them e.g. how an

intermediate Web Service should deal with a SOAP message when reading the

<Header> message (Curbera, Nagy and Weerawarana, 2001; Curbera, et al., 2002).

Through an analysis of the SOAP protocol, it can be identified that this protocol is

designed only to provide communication in the form of a Web Services-related

message. Its use in Web Services is analogous to the use of an envelope and a blank

piece of paper for posting a letter in reality. From this perspective, the SOAP protocol

can only provide interoperability in relation to syntax and semantics of the

information in the header part (e.g. which Web Service initiates this SOAP message

and which Web Service is supposed to receive this SOAP message) and the relevant

functionality for processing the information (e.g. an intermediate Web Service should

transmit this SOAP message to an endpoint Web Service, which is the target

receiver). The reason is straightforward that this protocol is designed to be

independent of any specific services, as providing interoperability in relation to

syntax, semantics and functionality for any other specific-services-related

communication is the responsibility of other protocols, which are designed to provide

the relevant services. These protocols are embedded within the header or body part of

the SOAP protocol analogous to the reality that a person is allowed to write any

contents on blank paper. To ensure the seamless integration of other protocols, the

SOAP protocol provides for extensibility due to the benefit of using XML (Chumbley

et al., 2010).

 22

2.4.4 WSDL
As the use of different protocols along with the SOAP protocol can provide

interoperability in relation to syntax, semantics and functionality for different

specific-services-related communication, it means that two Web Services are able to

communicate for performing specific services as defined in the service specification

of the protocols. This phenomenon implicitly indicates that the Web Service

Requester has ensured that the services (a service can be a specific service or a

specific resource) provided by the Web Service Provider are the correct services it

wants. This assurance is held after the Web Service Requester has read the relevant

service descriptions provided by the Web Service Provider, and before its

communication with the Web Service Provider. In Web Services, such a service

description is expressed by using the standard called Web Services Description

Language (WSDL) published by the W3C (Christensen et al., 2001).

WSDL specifies syntax and semantics of a WSDL file, which allows a Web Service

to describe its services in a machine-processable format. With the use of a WSDL file,

a Web Service can consist of a collection of separate services. Since a separate service

is generated by means of binding an abstract definition to a port type, the change of an

internal structure of a separate service will not affect the change of the relevant

abstract definition. Such a characteristic called loosely coupling becomes another

benefit for Web Services (Woods and Mattern, 2006; Pautasso and Wilde, 2009).

A weakness of using WSDL still exists that human intervention for understanding the

semantics of a WSDL file of a Web Service Provider is needed. The WSDL file

cannot convey the semantics of information and an ontology is not widely used to

help adequately determine the meaning of the WSDL for a Web Service (Lewis and

Wrage, 2006). This problem occurs particularly when developers on the Web Service

Requester side want to ensure that their Web Service Requester can properly

communicate with the Web Service Provider (Paolucci and Sycara, 2003; Nezhad et

al., 2006).

2.4.5 UDDI
With the help of the WSDL file, the Web Service Requester can compare the Web

Service Provider’s service information with its own query to decide on whether they

 23

are the correct services it desires. Currently, there are two existing approaches

available for such comparison as discussed in Garofalakis et al. (2006). The first

approach is the catalogue/keyword-based method. By using this method, the Web

Service Requester compares the keywords within its query to match against the

service descriptions of the Web Services Provider. However, this method may cause a

Web Service Requester to miss the opportunity to find a Web Service Provider that

provides the correct service but has different keywords used in its service

descriptions. To make up for this drawback, an ontology-based approach is proposed

to enable a Web Service Requester to perform semantic-based matching (Ankolekar

et al., 2002).

The conduction of the service comparison of a Web Service Requester is based on an

assumption that the Web Service Requester has discovered such service descriptions

on the Internet. This requires an approach to enable a Web Service Requester to

discover a Web Service Provider, through detailing the services it provides on the

Internet. To fill this gap, the open standard named Universal Description, Discovery

and Integration (UDDI) was proposed and published by OASIS (Bellwood et al.,

2004).

UDDI is designed as a form of yellow pages (directory) to enable a Web Service

Requester to look up the address of a Web Service Provider. With the use of UDDI,

three approaches including: (1) Registries, (2) Index approach and (3) Peer-to-Peer

(P2P) Discovery can be used to allow a Web Service Requester to discover a potential

Web Service Provider that provides the correct services (Booth et al., 2004).

Although the use of UDDI at a theoretical level has been accepted, its real utilisation

is not popular. Nezhad et al. (2006) point out that the majority of platforms can

support UDDI, but UDDI is not widely used. This implies a current situation that the

use of Web Services nowadays is still between two Web Services that are known to

each other. This may be the reason why approaches that can help two unknown Web

Services establish a strong bilateral trust relationship are not widely used in the

context of Web Services. However, it is believed that with the popularity and maturity

of Web Service technologies, especially UDDI (Garofalakis et al., 2006), the

probability of communication between two unknown Web Services will increase in

 24

practice. Therefore, identifying such an approach at an early stage for Web Services is

necessary.

2.4.6 XML-Encryption and XML-Signature
Through the use of various standards including SOAP (along with different

protocols), WSDL and UDDI, Web Services can now communicate with one another.

Unfortunately, these standards cannot provide any security-related protection for

transferred messages, when two Web Services belonging to different security domains

need to communicate over the Internet (Imamura, Dillaway and Simon, 2002; Bartel

et al., 2008). Example security-related protection includes the need for necessary

security requirements such as confidentiality, integrity, non-repudiation,

authentication (the detailed concept is discussed in section 2.4.7) and authorisation

(the detailed concept is discussed in section 2.4.11). Cryptography has been used to

provide for confidentiality and integrity, and the use of digital signatures has been

used for supplying non-repudiation (Schneier, 1995; Adams and Lloyd, 1999;

Boncella, 2004; Rowan, 2005; Mahmoud, 2005; Steel, Nagappan and Lai, 2005).

Interoperability issues in relation to syntax and semantics arise, when applying these

approaches (i.e. cryptography and digital signature) to Web Services. For instance, if

a Web Service Requester sends out a SOAP message, information contained within

this SOAP message will include an encrypted message, the name of the encryption

algorithm, and the relevant key encrypted using the other service’s public key to

another Web Services Provider. To decrypt the encrypted message, a Web Service

Provider must understand three points obtained from the SOAP message including:

(1) The value representing the encrypted message, (2) The value representing the key

and (3) The value representing the name of the cryptography method. The Web

Service Provider is only able to run the correct cryptography method (since a variety

of different cryptography methods do exist) to decrypt the encrypted message with the

key by understanding all of the three points. The only approach to enable the Web

Service Provider to achieve these tasks is that it can obtain these points from the

message by understanding its syntax and semantics. This prerequisite is similar to

situations when there is a need to verify digital signatures. To address the issues,

XML-Encryption and XML-Signature were developed and published by W3C

respectively (Imamura, Dillaway and Simon, 2002; Bartel et al., 2008). XML-

 25

Encryption details the syntax and semantics of the messages that enables a Web

Service to explicitly inform another Web Service which encryption methods (e.g.

symmetric and asymmetric cryptography methods) along with the encrypted key it

has used to encrypt the data. Similarly, XML-Signature specifies the syntax and

semantics of the messages for Web Services to state the specific digital signature

method associated with the digital signature used within a SOAP message.

2.4.7 WS-Security
In addition to the security requirements mentioned in section 2.4.6, authentication is

also treated as one of the most important security requirements (IBM and Microsoft,

2002; Boncella, 2004; Rowan, 2005; Mahmoud, 2005). Authentication is to verify the

identity of either a user or a service requester. To achieve authentication, technologies

such as cryptography and digital signatures are needed, but are not adequate.

Traditionally, a password-based authentication method is regarded as a major

authentication method, but weak password design by users is its main drawback.

Furthermore, it is suitable to be used in a user-system interaction, but not suitable in a

system-system interaction (Smith, 2001; Burnett and Kleiman, 2005). To provide for

a stronger authentication in a system-system interaction, a new mechanism called

Public key Infrastructure (PKI) is accepted as a preferred approach (Adams and

Lloyd, 1999; CGI, 2004).

Generally, PKI is a technical combination of the utilisation of symmetric, asymmetric

cryptography and digital signatures. Additionally, PKI proposes the use of public-key

certificates. The public key within a certificate is used to authenticate the digital

signature signed by the owner’s private key. To ensure interoperability in relation to

syntax and semantics for the use of public-key certificates in PKI in public

communication systems, X.509 certificates designed in the ASN.1 format are

proposed as a standard type of public-key certificates (Housley et al., 2008). The use

of PKI requires the involvement of a Trusted Third Party (referred to as TTP

hereafter), with the prerequisite that both entities must trust the same TTP. A TTP in

this case is responsible for generating public-key certificates for both entities. It has

its own private key and public key. Its public key is stored in a public-key certificate,

which are distributed to both entities at the start. It then signs both entities’ public-key

certificates by using its private key, so both entities can use the obtained TTP’s public

 26

key to verify the authenticity of the public-key certificates of each other (Adams and

Lloyd, 1999; CGI, 2004).

The PKI authentication mechanism is much stronger than the password-based

authentication, and it is also suitable for a system-system interaction. Since Web

Services are mainly designed for automatic communication between systems, this

mechanism is suitable, and it has already been used as well. Due to the existence of

different PKI certificates (certificates are referred to as tokens in the field of Web

Services) such as Kerberos tokens, SAML tokens, extensibility of including different

tokens is needed. Thus, the WS-Security specification was proposed and published by

OASIS, which specifies the combined use of XML-Encryption, XML-Signature along

with the tokens (Lawrence and Kaler, 2004). Its compatibility to the SOAP protocol is

also considered, so it can be used embedded in the header part of a SOAP message

(see section 2.4.3). With the help of the WS-Security specification, both password-

based authentication and PKI authentication methods can be used within Web

Services.

As each kind of a token has its own syntax and semantics, to ensure that they can be

embedded in the WS-Security specification, the interoperability issues in relation to

syntax and semantics of a token are addressed.

2.4.8 WS-Trust
With the use of the WS-Security specification, Web Services can achieve

authentication, when they can understand how to process common kinds of tokens.

However, this is not always the case. An interoperability issue in relation to a Web

Service’s capability of processing different kinds of tokens may occur, if a Web

Service Requester does not hold any kind of tokens that can be understood by a Web

Service Provider. To address this issue, the WS-Trust specification was proposed and

published by OASIS (Lawrence and Kaler, 2009a). WS-Trust allows a Web Service

Requester to send a request to a TTP called a Security Token Service (referred to as

STS hereafter) to obtain the kind of token that can be recognised by the Web Service

Provider. This token will be sent to the Web Service Provider. The Web Service

Provider will then send this token to the STS to confirm its authenticity. Once the

authenticity of the token can be verified, successful authentication is achieved

 27

(Nordbotten, 2009). As indicated by the WS-Trust specification, the concept of trust

establishment is used as a synonym for successful authentication in Web Services. In

other words, a unilateral trust relationship is established once authentication between

two Web Services is successful, and the established trust relationship forms a

foundation for using authorisation to help a Web Service Provider make access

control decisions. In essence, the WS-Trust specification can provide interoperability

in relation to syntax and semantics of messages along with the relevant

aforementioned functionality. In addition, interoperability in relation to capability of

processing different tokens can also be provided by this specification.

2.4.9 WS-SecureConversation
Basically, WS-Security and WS-Trust are developed for authentication between two

Web Services, when communication rounds between them only last for a short term

(i.e. communication messages are transmitted for only one request and one response).

When scenarios require more communication messages to be transmitted between two

Web Services, the performance of the use of the two specifications may not be ideal,

since the same public-key token (e.g. X.509 token) will occur in each message,

thereby verifying the token in each message is a waste of time. WS-

SecureConversation was thus published by OASIS (Lawrence and Kaler, 2009b) to

address this issue.

The concept of a secure context was proposed in the WS-SecureConversation

specification to provide a communication context that is secure enough for lengthy

transactions. It is established before two Web Services start to exchange multiple

messages. Thus, the public-key token is used just once to establish such a secure

communication context. The efficiency of using WS-SecureConversation in

comparison to WS-Security has been demonstrated in the experiments carried out by

Liu, Pallickara and Fox (2005). In terms of the provision of interoperability, the WS-

SecureConversation specification can provide interoperability in relation to syntax

and semantics of its messages along with the functionality for processing the

messages.

 28

2.4.10 WS-Policy and WS-SecurityPolicy
Specifications such as WS-Security, WS-Trust and WS-SecureConversation etc. are

useful and effective. For instance, WS-Trust can successfully provide capability

interoperability overlooked by WS-Security, but it is assumed that the Web Service

Requester can discover this issue before its communication with the Web Service

Provider. Discovery of this issue cannot be achieved by using the WSDL file, due to

the limited obligation of the WSDL, which only takes the responsibility for the

specification of service descriptions (see section 2.4.4). To make a capability

interoperability issue of a Web Service Provider known to other Web Service

Requesters, WS-Policy was published by OASIS (Vedamuthu et al., 2007). WS-

Policy provides a general framework providing interoperability in relation to syntax

and semantics of messages to allow a Web Service Provider to describe its policies

declaring supported information. It also specifies the rules about how Web Services

should tackle different expressions of the same policies. These rules can be regarded

as a provision of interoperability in relation to functionality. Policies expressed in

WS-Policy can be embedded in the WSDL file, so they can be publicly accessed by

other Web Services to let them identify the capability interoperability issue before

their communication.

However, the use of WS-Policy cannot completely provide declarations of security

requirements, since its syntax and semantics do not suffice to specify security-related

policies. This results in interoperability issues in relation to unknown syntax and

semantics of security-related policies caused by the integration of security-related

approaches. Thus, WS-SecurityPolicy was also published by OASIS (Lawrence and

Kaler, 2009c), as a complement to WS-Policy. Interoperability in relation to syntax

and semantics along with the relevant functionality can be provided by WS-

SecurityPolicy to enable a Web Service to express policies declaring the supported

information in relation to security.

In order to determine the tokens that can be supported by any Web Service Provider,

information may be found in a human readable form within the WSDL description.

This creates a problem for a system-to-system interaction, a fact that has been

demonstrated by (Halevey, 2005)

 29

“Resolving schema heterogeneity is inherently a heuristic, human-

assisted process. Unless there are very strong constraints on how the two

schemes you are reconciling are different from each other, one should not

hope for a completely automated solution. ”

This opinion is strongly supported by Nezhad et al. (2006), “It’s unlikely that

applications will be interested in reading and parsing the WSDL file at runtime to, for

example, view which operations are supported and assess whether they’re

semantically and syntactically equivalent or similar enough to the desired operation”.

This human-involved limitation of WSDL matching largely restricts the ideal

automated communication between Web Services.

In addition, confusion of whether to use the two specifications may arise due to the

emergence of SAML and XACML (Nurse, 2010). The details are discussed in the

next section.

2.4.11 SAML and XACML
Authentication is one of the most important security requirements, but it is still used

as a basis for authorisation (Steiner, Neumant and Schiller, 1988). In other words,

authorisation sometimes is more important than authentication, since authorisation

directly controls whether a user or a service requester can access the resources of

particular systems. This point of view is mentioned by Feigenbaum, (1998), and is

strongly supported by Lopez, Oppliger and Pernul, (2004), “A merchant may be more

interested in the authorization of his customers than in their authenticity”.

Traditionally, authorisation is a human-system interaction process that the system

providing the resource needs to make decisions for granting the appropriate access

control for the successful authenticated human user in relation to the resource (IBM

and Microsoft, 2002; Boncella, 2004; Rowan, 2005; Mahmoud, 2005). However, in

the field of Web Services, authorisation is normally a system-to-system interaction.

This normally occurs when a Web Service Provider needs to make an access control

decision for a specific service requested by a Web Service Requester. That is, the

Web Service Provider will assign an appropriate access control level to the Web

 30

Service Requester. The specific access control level restricts to what extent the Web

Service Requester can access the service (e.g. read only, read and write etc.).

Currently, two access control approaches (i.e. RBAC and ABAC, discussed in the

next section) are mainly used in Web Services, both of which share a common

characteristic: the process of making decisions for access control will only be

executed within the Web Service Provider, and will be finished with a decision. The

decision as a result will then be sent back to the Web Service Requester. This

characteristic restricts the trust relationship established by using existing access

control methods to be unilateral, since the only action that the Web Service Requester

performs is the submission of the related tokens or credentials for an access control

decision to be made by the Web Service Provider (details of credentials are discussed

in section 2.5.2). The unilateral characteristic of the existing access control methods

can cause failures in authorisation, where potential successful authorisation is possible

(the details of the issue are discussed in section 2.8).

Observing the process above, if the existing access control methods are applied in

Web Services, potential interoperability issues in relation to syntax, semantics and

functionality can arise. Fortunately, messages defined within the Security Assertion

Markup Language (SAML) specification published by OASIS (Mishra, Philpott and

Maler, 2005) can be used to provide the syntax and semantics of messages for

forming authentication/authorisation between two Web Services, although the SAML

specification is initially designed for achieving Single-Sign-On (referred to as SSO

hereafter) within Web Services.

In Web Services, access control policies can be expressed in either SAML or the

eXtensible Access Control Markup Language (XACML) published by OASIS

(Parducci and Lockhart, 2010). XACML is also designed based on XML, and it is

well suited when cooperating together with SAML messages for achieving access

control in Web Services (Nordbotten, 2009). XACML can provide interoperability in

relation to syntax and semantics of messages along with the relevant functionality for

processing the policy messages. However, complaints against XACML also exist.

Developers may be confused with whether to use SAML, XACML or the

combination of WS-Policy and WS-SecurityPolicy in Web Services, since many

 31

semantic similarities can be identified (Nurse, 2010). For example, Lee and Winslett

(2008c) propose some modifications on the WS-SecurityPolicy to enable it to express

access control policies along with the use of WS-Policy, but this functionality has

been defined within XACML.

In addition, in accordance with the syntax of XACML, the value of each component

of a rule (a policy is consisting of different rules) is atomic. This constraint makes it

unable to contain the policy rules written in other policy languages as a value, since

some policy rules are perhaps compound values similar to tokens. Therefore, existing

systems using other policy languages for expressing authorisation rules cannot be

directly used by XACML, if they are to be deployed as Web Services. This

interoperability issue in relation to capability may result in the rewrite of these

policies in XACML, since the existing algorithms for comparing the policies written

in other policy languages against credentials not written in SAML cannot be directly

used. In addition, it may also require the system to design new algorithms that can

compare the policies written in XACML and the credentials not written in SAML.

Having discussed all the basic protocols and specifications in relation to

authentication/authorisation within Web Services, the next section presents a review

of access control methods (TN is discussed in Chapter 3) for achieving authorisation.

The reason for reviewing them is due to the fact that the SAML messages do not

provide interoperability in relation to functionality. Fortunately, the functional

interoperability can be provided by the internal structure stated in the existing access

control methods and the authorisation systems.

2.5 Access Control Methods
Before the advent of Web Services, several access control methods were designed for

traditional systems. The history of access control methods can be traced back to the

1960s. Originally, the description of access control is very abstract. The first

occurrence of a clear description is possibly about system-level access control for

programs as discussed in Lampson (1969). The main concepts proposed associated

with access control were “subjects” (similar to the concept of “user” in current

systems) and “objects” (similar to the concept of “resources” in current systems),

which were linked to each other by using an “access matrix”. This access control

 32

method was later referred to as Identity-Based Access Control (IBAC). IBAC actually

integrates authorisation with authentication, since a specific access control level is

immediately linked to a user’s identity, after the occurrence of successful

authentication of a user’s identity. A typical use of IBAC is Access Control Lists

(referred to as ACL hereafter), which list the users along with their relevant

permission (e.g. write only, write and read, write only, read and modify) in relation to

the specific resource.

The IBAC method is easy to implement, but there is a significant drawback. This

drawback is stated by Yuan and Tong (2005) as “the number of identifiers in the ACL

will increase and become difficult to maintain as more users request access, making

this approach impossible to scale”. Emig et al. (2007) point out another weakness of

IBAC that it is inflexible to assign access control to identities. It can be understood

why there are few attempts to apply IBAC within Web Services such as the work in

Karp (2006), since the weaknesses within IBAC are addressed in RBAC (discussed in

section 2.5.1) and ABAC (discussed in section 2.5.2), which have been more recently

proposed. Therefore, more works can be found with respect to the suitability of the

two access control methods (i.e. RBAC and ABAC, discussed in section 2.5.1 and

2.5.2 respectively) within Web Services.

2.5.1 RBAC
The Role-Based Access Control (RBAC) approach is initially proposed by Ferraiolo

and Kuhn (1992). Unlike IBAC, it separates a user’s access control from his/her

identity, with access control levels linked directly to the assigned roles. One or more

roles can be assigned to each user, and one or more control levels can be assigned to

each role. Since roles are operating as intermediate players responsible for the

connection of users’ identities and their relevant access control levels, management of

access control becomes more flexible in comparison with IBAC (Sandhu et al., 1996;

Ferraiolo et al., 2001; Bhatti, Bertino and Ghafoor, 2004). In addition, the traditional

application of RBAC in Web applications requires a Web server to predefine a

relationship between users and roles and a relationship between roles and access

control levels in its local databases. Due to the benefit of such a design, a Web server

can have complete control over an access control decision by using RBAC (Barkley et

al., 1997). For instance, whenever a new user intends to access a specific resource of a

 33

Web server, and authentication of the user’s identity has succeeded, the Web server

will determine the user’s access control according to its local RBAC databases,

wherein the user’s identity has been mapped onto a pre-defined role, which has been

linked to a specific access control level. Due to its flexibility, RBAC is accepted as a

ubiquitous access control approach in Web applications providing user-system

interactions.

RBAC’s reliance upon a user’s authenticated identity requires the pre-storage of the

user’s identity, the pre-storage of the relationship between the user’s identity and

assigned roles, and the pre-storage of the relationship between the user’s assigned

roles and assigned access control permission within the system. In Web Services, a

Web Service Provider can automatically create the storage of the identity of an

unknown Web Service Requester, if PKI is used for achieving authentication. The

storage of the link between the identity and the assigned role, and that of the link

between the assigned role and the assigned access control permission can also be

automatically created, if an implicit policy has been declared by the Web Service

Provider. For instance, the identity of an unknown Web Service Requester will be

linked to a specific role, if its public-key token is certified by a certain TTP. However,

this automatic creation of the link cannot work, if the kind of a public-key token

certified by a TTP is unknown to the Web Service Provider, as there exists a

multitude of different TTPs such as Verisign, GlobalSign (Verisign, 2013;

GlobalSign, 2013). In addition, an access control decision made depending on the

restricted number of roles linked to the specific given identity may not be suitable in

all the cases, whereby more information is required besides the identity (Hu et al.,

2013). In addition, the coarsely grained nature of RBAC is another drawback

restricting its usefulness within Web Services (Yuan and Tong, 2005).

The two drawbacks stated in the paragraph above do not imply the unsuitability of

RBAC within Web Services. On the contrary, RBAC is still suitable to be used within

a system, if it works across both Web Services and Web applications. As mentioned

in section 2.2, the last case for the appropriate use of Web Services suggested by

Booth et al. (2004) implicitly indicates that a system can still operate as a Web

application, even though it has been deployed as a Web Service. The suitability of

RBAC within traditional Web applications providing human-system interactions has

 34

been discussed earlier. From this perspective, it is not surprising that there are various

research works investigating the application of RBAC within Web Services (Bhatti et

al., 2003; Wonohoesodo and Tari, 2004; Bhatti, Bertino and Ghafoor, 2004; Liu and

Chen, 2004; Xu et al., 2004; Mohammad et al., 2011).

2.5.2 ABAC
As RBAC is neither powerful nor flexible enough to be used for the Web Service

Provider to make authorisation decisions for the Web Service Requester due to its

intrinsic weaknesses, Yuan and Tong (2005) initially propose an Attribute-Based

Access Control (ABAC) method for authorisation within Web Services. In ABAC,

access control has no relation to the identity of a requester; it is instead decided upon

whether the attribute information submitted by a requester can fulfil the policies

declared by a service provider, as each specific access control level is tightly linked to

the relevant policies. So, if all of the relevant policies can be met by the submitted

attribute information, access control is successful; otherwise, it is failed. In addition to

the independence of the identity of a requester, ABAC can further make up for the

second weakness of RBAC: being coarsely grained. For instance, easy alteration or

modification of the policies enables this approach to be more flexible and fine-grained

(Yuan and Tong, 2005; Shen and Hong, 2006; Mewar, Aich and Sural, 2007; Emig et

al., 2007; Sabbari and Alipour, 2011; Paci et al., 2011). With the use of ABAC, the

authorisation issues occurring within Web Services mentioned above can be

successfully addressed.

In fact, the notion of ABAC is not unfamiliar. Through observation, it can be

identified that attribute information and policies are the fundamental components

forming the basis of the feasibility of this approach. From the perspective of using

policies to determine the relevant control level, ABAC actually is a kind of policy-

driven access control method as proposed by Johnston et al. (1998), where access

control permission can be granted, once the relevant policies have been fulfilled.

From the perspective of the use of attribute information, they can be presented within

digital credentials.

The concept of credentials (short for digital credentials) is mentioned by Winslett et

al. (1997), who propose it for the use on the Web. A digital credential is a digital

 35

analogue of paper credentials in normal life such as passports, driving licences. It

contains a combination of attribute names along with their values, which can

represent the specific properties (e.g. membership, ownership etc.) belonging to the

owner. More support of the use of credentials for showing the attribute information in

ABAC can be identified in a number of other research papers (Winsoborough,

Seamons and Jones, 1999; Winsborough, Seamons and Jones, 2000; Yu, Winslett and

Seamons, 2001; Winsborough and Li, 2006; Lee, Winslett and Perano, 2009). A

precise concept of a credential is stated in Winsborough, Seamons and Jones, (2000),

“A credential is a digitally signed assertion by the credential issuer about the

credential owner, …, [it] is signed using the issuer’s private key and verified by using

the issuer’s public key”. Authentication or verification of credentials by using digital

signatures can prevent a fake user from stealing and using a user’s own credential.

The motivation to use credentials on the Web is spurred by practical demands of

authorisation. The focus of authorisation is on the properties owned by the users

rather than their identities. For instance, if a university student intends to borrow some

books from the university’s library, a librarian is only interested in knowing whether

s/he is a valid university student rather than his/her identity. So once the student can

submit some attribute information within a valid credential (i.e. a student ID card) to

prove his/her student membership, the access to these books can be granted (i.e. the

student is allowed to borrow the books).

2.6 Existing RBAC/ABAC-based Authorisation Systems
As mentioned above, the typical characteristics of RBAC include the reliance on

authentication of a user’s identity, use of roles stored in a Web server’s local

databases, no use of policies and no use of credentials, whereas the characteristics of

ABAC include no reliance on authentication of a user’s identity, use of policies and

use of credentials. There are several authorisation systems proposed for grid

computing that can be used within Web Services. Interestingly, it is hard to judge

whether the access control methods used within them belong to RBAC or ABAC,

since the characteristics of both RBAC and ABAC can be identified. On the one hand,

their authorisation relies on authentication of a user’s identity and use of roles. On the

other hand, credentials and policies are also used within these authorisation systems.

Roles are not stored in the Web server’s local databases, but are contained in

 36

credentials held by a user. From the perspective of the application of RBAC, the

relationship between a user’s identity and the assigned role are stored in the

credentials rather than stored in the Web server’s local databases. From the

perspective of the application of ABAC, the roles contained in the credentials can be

treated as one kind of attribute. These include PERMIS (Chadwick and Otenko,

2002), Akenti (Thompson, Esiari and Mudumbai, 2003), Shibboleth (Welch et al.,

2005), VOMS (Alfieri, et al., 2004) and CAS (Pearlman and Welch, 2002).

2.7. Existing Solutions for Providing Interoperability

between ABAC-based Authorisation Systems within Web

Services

2.7.1 SAML Messages
Researchers such as Foster (2006) and Garzoglio et al. (2009) state that

interoperability issues in relation to syntax and semantics between existing ABAC-

based authorisation systems (in fact, these authorisation systems are still

RBAC/ABAC-based, but researchers treat them as ABAC-based, as access control

decision-making in these systems are mainly ABAC-based) within Web Services can

be addressed by using SAML messages, which are supported in the fourth version of

Globus, as a middleware toolkit (Foster, 2006).

This use of SAML messages exchanged between two ABAC-based authorisation

systems is also leveraged within an attribute-based Authentication and Authorisation

Infrastructure (AAI) for e-commerce by using Web Service technologies proposed by

Schlager et al. (2006). Existing widespread used authentication services such as

Microsoft .NET Passport (Oppliger, 2003), Liberty Alliance (Aarts et al., 2003) and

authorisation systems (e.g. PERMIS, Akenti) can be integrated into this infrastructure

shown in figure 2.1 below.

 37

Figure 2.1. AAI solutions and functionalities (Schlager et al., 2006)

Within this AAI, level 1 is mainly used for providing authentication functionality

such as SSO. Researchers propose a Point of Access to Providers of Information

(PAPI) for achieving policy enforcement at level 4 of the AAI. At level 2 and level 3,

XACML and SAML are mainly used for achieving authorisation functionality. More

precisely, a data-flow model introduced in XACML enabling a Web Service provider

to make an access control decision is widely leveraged within Web Services. Within

this data-flow model, several points are defined including (1) Policy Administration

Point (PAP) used for creating a policy or policy set, (2) Policy Decision Point (PDP)

used to evaluate applicable policy for making an authorisation decision only based on

the attribute information without knowing the identity of user or the actual requested

resource, (3) Policy Enforcement Point (PEP) used for performing access control

based on the decision made by the PDP and (4) Policy Information Point (PIP) used to

act as a source of attribute values (Parducci and Lockhart, 2010).

Figure 2.2 below depicts a process of conducting authorisation within the AAI by

combining the use of XACML and SAML for authentication and authorisation. This

process occurs from level 1 to level 4 of the AAI. Therefore, it can be concluded that

the use of XACML and SAML is an important feature of authorisation systems within

the context of Web Services. It should be noted that although XACML messages are

used in this process, (e.g. XACML AuthzDecisionQuery message and XACML

 38

AuthzDecisionStatement message), these messages have been integrated into the

latest version of the SAML specification (Mishra, Philpott and Maler, 2005). In other

words, messages such as AuthzDecisionQuery and AuthzDecisionStatement are

currently defined within the SAML specification rather than the XACML

specification.

Figure 2.2. Attribute-based AAI reference model (Schlager et al., 2006)

Observing the use of SAML messages in AAI, it can be identified that the researchers

(Schlager et al., 2006) actually have proposed new authorisation protocols to be added

to the existing ABAC-based authorisation systems (e.g. PERMIS, Akenti). This

finding is drawn on comparing the SAML messages-based protocols used within AAI

(referred to as new authorisation protocols) against the original protocols used within

the ABAC-based authorisation systems (referred to as old authorisation protocols). In

particular, the protocol messages and internal structures designed within the new

protocols and the old protocols are different. The internal structures defined within the

protocols proposed in the AAI can provide interoperability in relation to functionality

for processing the SAML messages for ABAC-based authorisation systems within

Web Services.

AAI requires all of the existing ABAC-based authorisation systems to mandatorily

use SAML messages for communication, including messages for expressing

credentials and policies. In other words, the original languages for expressing

 39

credentials and policies used within each ABAC-based authorisation system cannot

be used. Under this phenomenon, there is a need to convert credentials and policies

used in the existing ABAC-based authorisation systems from their initial languages to

SAML languages. This conversion process may be time-consuming and can be a

waste of resource that the credentials and policies expressed within their initial form

cannot be used.

Moreover, the syntax and semantics of SAML messages for expressing policies are

not rich enough. For instance, the XACML policy language can provide a unique

benefit that multiple policies need to be contained in a policy set or that combined

algorithms (e.g. two rules are contradictory) can be used in policies. Languages

designed in the WS-SecurityPolicy specification and the WS-Policy specification as

suggested by Lawrence and Kaler (2009c) can supply their exclusive features such as

policy assertion, intersection and association etc. for achieving simplicity of policy

expression. SAML messages for expressing policies might be used in scenarios where

simple attribute information needs to be submitted.

As each policy language owns its unique features and some policies may only be

expressed in a specific policy language due to some unique requirements, it is

possible that developers try to enable their Web Services to support different policy

languages in order to provide policy expression flexibility for different circumstances

(Lang et al., 2006). This benefit should also be applied to credential languages in Web

Services.

However, if multiple policy and credential languages are used in the ABAC-based

authorisation systems within Web Services, an interoperability issue in relation to

capability may arise, as some of the languages for expressing credentials and policies

recognised in a Web Service Requester may not be understood by a Web Service

Provider, and vice versa.

2.7.2 An object-oriented framework for adopting different policy

languages
In contrast to AAI, Globus also supports the mandatory use of SAML messages for

expressing credentials, but it allows the use of different policy languages for

 40

expressing policies. To enable an ABAC-based authorisation system to support

multiple policy languages, an object-oriented framework is designed within Globus

(Lang et al., 2006). Unfortunately, this framework can only assure that two

authorisation systems can process policies expressed in different languages, but

without providing a guarantee that two authorisation systems can know whether the

policy languages used for policies submitted by an entity are supported by another

entity. Therefore, using this object-oriented framework cannot provide enough

interoperability in relation to capability.

2.8 Limitation of the Application of ABAC within Web

Services
A conclusion can be drawn from the review of the application of current access

control methods within Web Services that ABAC is well suited for a Web Service

Provider to perform authorisation decisions. With respect to RBAC, it is most

appropriately used to support scenarios where the Web Service still operates as a Web

application providing a human-system interaction for authentication purposes, or in

scenarios where the identity of a Web Service Requester is already stored within the

system of the Web Service Provider. In the particular case that the Web Service

Provider cannot gain the identity of the Web Service Requester for their first-time

communication (see section 2.5.1), ABAC is the only available option to enable the

authorisation. In addition, ABAC can still be available for a Web Service Provider to

make access control decisions for a Web Service Requester, even though they have

known each other. The fine-grained characteristic even boosts the use of ABAC

within Web Services. Unfortunately, limitations still exist within ABAC.

Normally, successful authorisation can be achieved by using ABAC, when a Web

Service Requester can submit all of the credentials required by the policies published

by the Web Service Provider. However, when the credentials possessed by a Web

Service Requester are treated as sensitive (i.e. they cannot be disclosed to an unknown

Web Service Provider), potential successful authorisation may fail (Yu, Wislett and

Seamons, 2001; Winslett et al., 2002; Hess et al., 2004; Frikken et al., 2006; Mbanoso

et al., 2006; Winsborough and Li, 2006). This issue arises due to the fact the trust

 41

establishment by using ABAC is still unilateral as discussed in section 2.4.11. A case

scenario is presented below to point out this limitation:

In the UK, each university has its own local Web application as a platform allowing

students to share resources in an E-Learning environment. Assume that, they intend

to expose their Web applications as Web Services to the Internet so that students of

one university can access resources from students in other universities. Suppose that

Alice is a student of University A, and Bob is a student of University B. Through a

collaboration between the Web Service A (referred to as WSA hereafter) of University

A, and Web Service B (referred to as WSB hereafter) of University B, it allows Alice

to request access to the resource provided by Bob. In this scenario, Bob can declare

his own policies. Alice does hold the credentials that can fulfil Bob’s policies, but

Alice treats some of them as sensitive. So Alice also declares policies for protecting

the disclosure of these sensitive credentials.

By using an existing ABAC solution, potential successful authorisation will fail, since

Alice is reluctant to disclose her credentials, unless all the pertinent policies can be

met. A further issue causing the successful authorisation to fail in this scenario is due

to the existence of sensitive policies (Seamons, Winslett and Yu, 2001; Seamons et

al., 2002a; Holt et al., 2003; Yu and Winslett, 2003a; Bertino, Ferrari and

Squicciarini, 2004b; Li, Li and Winsborough, 2005; Paci et al., 2011).

Fortunately, an access control approach called TN can be borrowed to address this

issue, as it can help two unknown entities to establish a bilateral trust relationship for

achieving access control (Winsborough and Li, 2002a; Winsborough and Li, 2002b;

Shen and Hong, 2006; Skogsrud et al., 2009). However, utilisation of TN within Web

Services will also cause multiple interoperability issues between authorisation

systems within Web Services. Due to the huge amount of literature in the field of TN,

and the demand of a clear discussion in this Thesis, presenting its state of the art in a

new chapter is considered as the most appropriate way. Therefore, the next chapter

introduces a thorough review of TN and the specific issues of its application within

Web Services.

 42

Chapter 3. Trust Negotiation and

Interoperability: State of the Art

3.1 Introduction
Chapter 2 has reviewed the literature in the fields of authorisation protocols within

Web Services and access control methods along with the relevant authorisation

systems. ABAC has been treated as the most appropriate access control method

within Web Services. However, due to the limitation of the unilateral characteristic of

ABAC, potential successful authorisation may fail, when protection of the disclosure

of sensitive credentials or policies is required. The result caused by this limitation is

demonstrated in the case scenario presented in section 2.8. TN is also an access

control approach, which can enable two unknown entities to establish a bilateral trust

relationship (Winsborough and Li, 2002a; Winsborough and Li, 2002b; Shen and

Hong, 2006; Skogsrud et al., 2009). With the application of TN, authorisation failure

can be transformed into authorisation success in some circumstances.

To adopt the state-of-the-art TN approaches within Web Services also presents a

multitude of interoperability issues. To clarify the issues (highlighted in bold and

italic) existing within the state-of-the-art TN, this chapter begins by introducing the

concept of TN (see section 3.2). Following this concept, a detailed review of TN is

then presented (see section 3.3). TN involves many different components, and each of

these components is critically reviewed in order to gain a thorough understanding of

the state of the art.

In addition, several TN-based authorisation systems have been implemented to

support the use of TN. To enable the review of TN to be complete, a review of these

TN-based authorisation systems is also presented. Following this review, critical

analysis is provided to point out the outstanding interoperability issues (highlighted in

bold and italic) between an ABAC-based authorisation system and a TN-based

authorisation system and those between two TN-based authorisation systems

(discussed in section 3.4). To explore the possible factors along with their

 43

characteristics causing the relevant interoperability issues becomes the first goal of

this research.

Based on the critical analysis of the interoperability issues through the review of

ABAC-based authorisation systems within Web Services discussed in Chapter 2, and

the review of the TN-based authorisation systems and the existing interoperability

models of the most relevance in this Chapter, an improved multi-layered

interoperability model is constructed (see section 3.5). This improved interoperability

model concludes the identified interoperability issues existing between the

authorisation systems within Web Services. In addition, it may also be applied in

other distributed systems environments to aid researchers and practitioners in

identifying hidden interoperability issues between systems. Following the clarification

of the improved interoperability model, review of the work in relation to other

interoperability models of less relevance is presented to point out the difference

between the improved interoperability model and other interoperability models (see

section 3.6). Lastly, the improved interoperability model serves as a foundation for

guiding the exploration of possible solutions for addressing the second research

problem (see section 3.7). To explore a potential solution, a discussion of possible

solutions for addressing the issues is provided (see section 3.8).

3.2 Concept of TN
TN is initially proposed by Winsborough, Seamons and Jones (1999). Over the past

decade, it has been acknowledged as another access approach to allow two unknown

entities to establish a bilateral trust relationship by exchanging digital credentials

containing attribute information to help two entities make access control decisions.

While credentials have been the dominant means for transmitting attribute

information between negotiating entities, further information such as policies may

also be exchanged as other requirements for TN. Currently, the concept of TN can be

described as: a selected set of information including credentials, declarations, policies

or other required information exchanged between two unknown entities to establish a

trust relationship in a bilateral, iterative and cumulative process (Winsborough,

Seamons and Jones, 2000; Yu, Ma and Winslett, 2000; Yu, Winslett and Seamons,

2001; Winsborough and Li, 2002b).

 44

The bilateral characteristic indicates that two entities are equal in status, regardless of

which is the service requester or the service provider. In other words, both of them

can supply their own policies to require the counterpart to submit necessary files (e.g.

credentials, declarations) containing the essential attribute information. The iterative

characteristic expresses that the process of the exchange of the information between

two entities can be repeated in multiple steps, until they disclose all of the associated

files. The cumulative characteristic conveys that the trust level can only be escalated

during the process of negotiation. That is, sensitive resources (i.e. sensitive credentials

or policies) that can be divulged at a low level must be revealed at a high level as

well.

Furthermore, a unique characteristic of TN is that each entity involved in TN can

choose to use its own particular strategy to determine how the resources should be

disclosed (i.e. policies, credentials with some of these may contain sensitive

information) to the counterpart. Through the observation of the nature of TN, it is

actually designed as an extension of ABAC.

Additionally, in comparison with ABAC, the TN approach provides several benefits

including the following.

• A service requester owns the ability to question the trustworthiness of a service

provider. This rule not only allows the service requester to submit credentials to fulfil

the policies declared by the service provider, but also requires the service provider to

submit credentials to the service requester in accordance with the policies disclosed

by the service requester. Following this rule, the trust relationship established by

ABAC becomes bilateral rather than unilateral, and both entities are on equal terms

with each other in TN.

• Trust is gradually raised, when each entity’s policies can be fulfilled by each

other’s detailed attribute information within the credentials. Complete trust is only

established when all of both entities’ relevant policies have been fulfilled by each

other’s credentials, and access control is only granted if complete trust has been

established.

• Each entity can choose their own strategy to determine how to disclose their

resources, if some of them are treated as sensitive.

 45

The use of TN can address the problem discussed in the case scenario presented in

section 2.8. For instance, if TN could be adopted within Web Services, WSA would

disclose Alice’s policies to WSB to see whether Bob had the credentials that could

fulfil Alice’s policies. If Bob was in possession of the insensitive credentials

containing the required attribute information, WSB would disclose them to WSA. As

a result, WSA would submit Alice’s sensitive credentials to WSB to reach successful

authorisation, which is failed by using the existing ABAC approach.

However, interoperability issues do exist when adopting state-of-the-art TN within

Web Services. To understand where these issues come from, a detailed review of TN

from different aspects (as necessary components of TN) is presented in the following

sections.

3.3 Review of TN
In accordance with the concept of TN, the main components of TN as covered in a

variety of literature have included strategy (Winsborough, Seamons and Jones, 1999;

2000), digital credential (Seamons, Winslett and Yu, 2001), declaration (Bertino,

Ferrari and Squicciarini, 2003b; 2005), and access control, disclosure policy (Bertino,

Ferrari and Squicciarini, 2003a; Smith, Seamons and Jones, 2004; Koshutanski and

Massacci, 2005). Before presenting the review of each component, their concepts are

described first shown as follows.

• Strategy: is to help two entities determine when and what necessary information

should be requested and disclosed in TN (Winsborough, Seamons and Jones, 1999;

2000).

• Credential (short for digital credential): is a representation of the combination of

attributes of the owner, which can be signed using the issuer’s private key and be

verified by the issuer’s public key (Seamons, Winslett and Yu, 2001).

• Declaration: contains extra information not included in the credentials to aid the

process of TN. Unlike a credential, a declaration is not certified, but stated by the

owner per se (Bertino Ferrari and Squicciarini, 2003b; 2005).

• Policy: there are two notions of policy: access control policy and disclosure policy

(Bertino, Ferrari and Squicciarini, 2003a; Smith, Seamons and Jones, 2004). An

access control policy claims the rules to grant the permission to access the requested

 46

resource. A disclosure policy states the rules for disclosing sensitive credential(s) to

the counterpart (Koshutanski and Massacci, 2005).

As TN has been developing for more than a decade, there is no surprise that a variety

of frameworks and implementations of TN have existed. To enable the review of TN

to be complete, a discussion of the existing TN-based authorisation systems is also

presented.

3.3.1 Strategy
Strategies designed for TN can be classified into two categories: non-policy-

exchanged strategies and policy-exchanged strategies. Strategies within the non-

policy-exchanged strategies category only allow two entities to exchange

authorisation credentials, whereas strategies within the policy-exchanged strategies

category enable two entities to exchange authorisation policies and credentials. The

non-policy-exchanged strategies only include the eager strategy (Winsborough,

Seamons and Jones, 1999; 2000). The policy-exchanged strategies include:

parsimonious strategy (Winsborough, Seamons and Jones, 1999; 2000), Prudent

Negotiation Strategy (Yu, Ma and Winslett, 2000), Disclosure Tree Strategy; Binding

Tree Strategy (Yu, Winslett and Seamons, 2003), Deterministic Finite Automaton

Negotiation Strategy (Lu and Liu, 2009), adaptive strategy (Guo and Jiang, 2010) and

Semantically Relevant Negotiation Strategy (Liu et al., 2013).

3.3.1.1 Non-Policy-Exchanged Strategies

The eager strategy (Winsborough, Seamons and Jones, 1999; 2000) is currently the

only strategy within the non-policy-exchanged strategies category. It should be noted

that it is possible that any new potential strategies that also own the characteristics of

the non-policy-exchanged strategies may come up in the future. Thus, a plural form

for the non-policy-exchanged strategies is used throughout this Thesis. The eager

strategy allows two participating entities to exchange as many credentials as possible

with each other. Each of the two participating entities’ sensitive credentials unlocked

by credentials sent from the counterpart will be treated as those that can be disclosed.

The aim of this strategy is to exchange credentials that can be disclosed to unlock

more sensitive credentials protected by the counterparts’ security policies (unlock of

sensitive credentials is achieved, if the received credentials can fulfil the local policies

 47

of an entity). This aim applies to the two entities, when both of them are using this

strategy in TN.

One unique characteristic of using the eager strategy is that credentials sent in a

previous step from an entity will also be sent in the next step with new unlocked

sensitive credentials. The conditions for making a decision to terminate negotiation

are different in the two participating entities. From the perspective of the service

provider, at each round, it will check whether or not the received credentials from the

service requester have fulfilled the policies protecting the requested resource. If the

policies can be met, it will terminate negotiation with the service requester with a

successful ending. If the policies cannot be met, and it has discovered that the

received set of credentials is exactly the same as the set received in the prior step, or

that they cannot unlock more local sensitive credentials, it will terminate negotiation

with the service requester with a failed ending. From the perspective of the service

requester, it will terminate negotiation in success, when it receives a message

informing successful negotiation from the service provider. Alternatively, it will

terminate negotiation in failure, if it has discovered that the received set of credentials

is exactly the same as the set received in the prior stage, or that they cannot unlock

more local sensitive credentials. Another unique characteristic of using the eager

strategy is that there is no exchange of any policies, when both entities are using the

eager strategy to run TN, since the core rule of this strategy is that the received

credentials are used to unlock more local sensitive credentials. The third characteristic

is that the service provider will disclose its insensitive credentials, after receiving the

initial request from the service requester.

3.3.1.2 Policy-Exchanged Strategies

The parsimonious strategy (Winsborough, Seamons and Jones, 1999; 2000) allows

entities to explicitly disclose the policies protecting the relevant sensitive credentials.

Disclosure of local sensitive credentials is only available when the credentials sent

from the counterpart have fulfilled the relevant local policies. In other words, when

both entities are using the parsimonious strategy, the received credentials should aim

to fulfil the specific policies disclosed in the previous steps. Therefore, the behaviour

to process the received credentials with the use of the parsimonious strategy is

different from that used in the eager strategy.

 48

Yu, Ma and Winslett (2000) argue that TN may fail by using the two strategies, when

potential successful TN is possible, but no detailed proof is provided. To improve this

stated issue, they develop a new strategy named Prudent Negotiation Strategy

(PRUNES) to guarantee that all potential successful TN can succeed. When two

entities use this strategy, they initially need to exchange their policies (referred to as

the policy-exchange phase) protecting sensitive resources (sensitive credentials are

also treated as sensitive resources), to produce a negotiation search tree before

exchanging their credentials (referred to as the credential-exchange phase). During the

time of the policy-exchange phase, in each round, only one part of a rule requesting

one required credential is sent out in a policy message. According to the XACML

policy language designed by Parducci and Lockhart (2010), a policy message has a

policy set, which can contain multiple policies. Each policy can have multiple rules,

and each rule can require different combinations of multiple credentials by using logic

symbols such as AND/OR. In addition, within the policy-exchange phase, the entities

will only convey information that there are local credentials that can fulfil the remote

policies, but without providing any real credentials.

The use of PRUNES is based on an assumption that the strategy implemented by both

entities must completely conform to the process discussed above. This is also based

on the assumption that both systems are not maliciously designed. However, this

assumption is not appropriate in terms of the TN context. TN is used in the context

that two entities are unknown to each other. In other words, before their

communication, there is no trust relationship between them. Without trust, there is no

point that they are willing to believe the unauthenticated information conveyed by

each other in relation to what local credentials can fulfil the remote policies.

Therefore, it is possible that the sensitive policies of an honest Service

Requester/Service Provider would be disclosed to a malicious Service

Provider/Service Requester, even though the malicious Service Provider/Service

Requester did not possess the credentials that could fulfil these policies. In addition,

the algorithm for implementing this strategy is more complex in comparison with the

eager and parsimonious strategies.

 49

As different strategies are created, strategic interoperability becomes an issue. Yu,

Winslett and Seamons (2001) state, “no two of the strategies proposed so far

[including the eager strategy, parsimonious strategy and PRUNES strategy] will

interoperate”, and they suggest that interoperable strategies can provide for a higher

success rate of TN. Unfortunately, in their paper, they do not give any explanation of

why the three strategies cannot be interoperable with one another. Therefore, the

researcher of this Thesis had to analyse the three strategies to identify the reason

himself. After a critical analysis of the three strategies, the researcher eventually

found out the implicit reason explained as follows.

With the use of the eager strategy, an entity will not expect to receive any other files

(e.g. policies used in the parsimonious strategy and PRUNES strategy) other than

credentials. No idea of how to process the incoming policies enables the eager

strategy to not be interoperable with the other two strategies. With the use of the

parsimonious strategy, an entity will not expect to receive any credentials without

knowing what local policies they aim to fulfil (this phenomenon will occur when the

counterpart uses the eager strategy), since it does not know how to process this kind

of credentials. It also will not expect to receive messages informing what remote

credentials can fulfil the specific local policies (this phenomenon will occur when the

counterpart uses the PRUNES strategy), since it does not know how to process this

kind of message.

To address this issue, the notion of a Disclosure Tree Strategy (DTS) family is

introduced. The operation of a DTS assumes that all of the policies can be exchanged

by two entities regardless of their sensitivity. During TN, strategies can be transferred

to one another, if they come from one DTS family. The Binding Tree Strategy (BTS)

family is proposed by extending the operability of DTS to convey more information

(Yu, Winslett and Seamons, 2003). Although DTS and BTS have been proposed, and

can address the strategic interoperability issue in theory, it is difficult to categorise

any new designed strategy to the existing DTS or BTS in practice. In addition,

Baselice, Bonatti and Faella (2007) point out another weakness, “These works [DTS

and BTS families] are tailored to specific frameworks - so their results cannot be

extended to competing approaches - and introduce assumptions that cannot be always

guaranteed”. Thus, the families are not suitable to be adopted in practice.

 50

So far the most appropriate approach ensuring interoperability between strategies is

the one stated by Yu, Winslett and Seamons (2001), that strategy interoperability

should be addressed at least by using self-compatibility. That is, a strategy can at least

be interoperable with itself, when both entities are using the same strategy, and proof

of strategy interoperability is that TN can be successful when two entities are using

their own strategies. Furthermore, they suggest that a TN protocol be designed to

support simple strategies at a higher priority compared to more intelligent strategies,

which are hard to be implemented in real systems.

Lu and Liu (2009) suggest a strategy named Deterministic Finite Automaton

Negotiation Strategy (DFANS) that can improve the computational efficiency in

comparison with PRUNES, avoid Policy Cyclic Dependencies (referred to PCD

hereafter) to some extent by applying the Oblivious Signature Based Envelope

(OSBE) protocol proposed by Li, Du and Boneh (2003) and protect the disclosure of

sensitive policies (neglected in PRUNES). However, DFANS only allows an entity to

submit or process one received credential or a received request for one credential (as

an atomic part of a rule of a policy) at a time. OSBE is an approach which enables the

protection of the disclosure of the sensitive fact that a trusted authority has signed a

credential, but does not enable protection of the disclosure of the sensitive attribute

information within credentials. PCD happen when entity A declares a policy p1

protecting a credential c1, which will only be disclosed when entity B submits a

credential c2, whilst entity B defines a policy p2 protecting a credential c2, which will

only be disclosed when entity A discloses a credential c1. The result of this problem

can be disastrous, since two entities will keep sending the same policies resulting in

an undesirable infinite communication loop. Therefore, PCD must be addressed by

possible approaches, but OSBE is not suitable for PCD cases, where the protection of

the sensitive attribute information is needed.

Guo and Jiang (2010) propose an adaptive strategy by integrating the notion of

reputation systems. Once an entity can make sure that the counterpart has a high

reputation of trust, sensitive credentials protected by its policies can be disclosed,

even though their relevant policies that request necessary credentials have not yet

been fulfilled. The use of the adaptive strategy is based on the assumption that both

 51

entities have supported the use of reputation systems and that both entities are willing

to believe the counterpart’s reputation. However, limitations can still be discovered

within this method when it is adopted in practice. Firstly, specific approaches for an

entity to retrieve the reputational level of the counterpart are not clarified. In other

words, there is no clear answer for questions such as whether an entity needs to

communicate with the counterpart for obtaining its reputation level or whether the

entity has already obtained the reputation level in advance. Secondly, whenever an

entity receives policies from the counterpart, it not only needs to analyse the received

policies, but also needs to analyse the local policies declaring what credentials can be

disclosed in relation to a certain reputation level of a counterpart. This complex

process eventually increases the computational cost of a system.

Liu et al. (2013) propose a Semantically Relevant Negotiation Strategy (SRNS). Extra

ontology-based information exchanged with policies is used to perform semantics-

based matching, when comparing local credentials against remote policies.

Taking into consideration the eager strategy, parsimonious strategy, PRUNES,

DFANS and SRNS, an interoperability issue in relation to strategy can still occur

between any two of them. Apart from the explanation given above, an additional

explanation of their interoperability issues is given below: (1) when an entity uses the

DFANS, the counterpart using the eager strategy cannot process policies provided by

the entity. If the counterpart uses the parsimonious strategy, this entity cannot process

multiple policies and credentials, as the DFANS only allows an entity to process one

policy and one credential in a time. If the counterpart uses the PRUNES, the entity

cannot process the information used in the PRUNES declaring that the counterpart

does have a credential that can fulfil a rule declared by the entity. (2) When an entity

uses the SRNS, the counterpart using any one of the eager, parsimonious, PRUNES or

DFANS strategies cannot process ontology-based information provided by the entity.

To determine the suitability of the adoption of the strategies mentioned above along

with TN in Web Services, the assessment of their feasibility is needed, except the

DTS and BTS families, as the inappropriateness of their adoption have been discussed

earlier.

 52

Observing the policy-exchanged strategies, there are similarities and differences

amongst them. In terms of the similarity between the parsimonious strategy and the

adaptive strategy, an entity can disclose more than one policy to the counterpart in an

outgoing message. The similarity held by the PRUNES and DFANS is that an entity

will only submit an atomic element of a policy for requesting one credential held by

the counterpart.

The action of submitting credentials by using the DFANS is the same as that of using

the parsimonious strategy, adaptive strategy or SRNS. More precisely, with the use of

any one of the four strategies, an entity submits local non-sensitive credentials to the

counterpart immediately in the next round, after receiving policies from the

counterpart.

In terms of differences, with the use of the DFANS, an entity will disclose a relevant

credential fulfilling the atomic element of a policy disclosed by the counterpart

immediately. By contrast, with the use of the PRUNES, an entity will not

immediately disclose a relevant credential, even if it can fulfil the atomic element of a

policy disclosed by the counterpart. In terms of the SRNS, Liu et al. (2013) do not

explicitly express whether an entity discloses its policies like the way of the

parsimonious strategy or that of the PRUNES.

When using the adaptive strategy, an entity will also only disclose one credential to

the counterpart, but can in addition disclose a policy message containing a request for

multiple credentials.

In conclusion, it can be identified that the use of the PRUNES, DFANS or adaptive

strategy can result in more rounds of negotiation in comparison with the use of the

parsimonious strategy. Without the use of the OSBE protocol, DFANS does not show

any advantage in comparison with the parsimonious strategy except in the protection

of sensitive policies, since it depends on complex algorithms and requires a high

communication cost. Researchers proposing strategies including PRUNES (Yu,

Winslett and Seamons, 2003), DFANS (Lu and Liu, 2009) and SRNS (Liu et al.,

2013) state that the communication cost of their strategies only subsumes the number

of credentials. However, as they also admit that the transfer of policies does exist

 53

within their strategies, then the exchange of policies should also be calculated in their

communication costs. Thus, it can be identified that there is an additional impact on

communication costs.

By contrast, the ease of implementation and need for fewer communications enable

the parsimonious strategy to be superior. As the parsimonious strategy can protect the

disclosure of sensitive credentials, it is not difficult to add the functionality for the

protection of sensitive policies to it. Furthermore, since the OSBE protocol is

independent of any strategies, the parsimonious strategy can also leverage it to

address PCD to some extent. Therefore, concluded from the discussion of the above

benefits, it would be more appropriate to use the parsimonious strategy in practice.

3.3.1.3 Comparison between Non-Policy-Exchanged Strategies and Policy-

Exchanged Strategies

In terms of the non-policy-exchanged strategies, they can protect the disclosure of

sensitive credentials owned by a Service Requester/Service Provider. However, the

third characteristic of the eager strategy (as a typical non-policy-exchanged strategy)

that the Service Provider always discloses its insensitive credentials first implies that

it is not suitable to be used in scenarios where all of the credentials possessed by the

Service Provider are sensitive. Furthermore, this characteristic may enable it not to be

widely accepted, since it may not be reasonable that a Service Provider has to disclose

credentials to an unknown Service Requester first during the process of authorisation,

even though the credentials are insensitive. This unreasonableness can be inferred

from the features of the existing access control approaches such as RBAC or ABAC

(Ferraiolo and Kuhn, 1992; Yuan and Tong, 2005), which always aim to protect the

benefit of the Service Provider at a higher priority. This requirement means that the

use of the non-policy-exchanged strategies can be disadvantageous to a Service

Provider.

In comparison with the non-policy-exchanged strategies, the use of policy-exchanged

strategies may be more acceptable, since they always require the Service Requester to

submit credentials first to unlock the sensitive credentials owned by the Service

Provider, if all of them are treated as sensitive. These credentials are provided as

indicators of trust to encourage the Service Provider to trust the Service Requester at a

 54

basic level, so that the Service Provider is willing to disclose its credentials based on a

basic level of trust. The characteristic allowing the initial disclosure of credentials at

the beginning of the process from a Service Requester means that the use of the

parsimonious strategy can be more advantageous to a Service Provider. Therefore,

from the perspective of providing this benefit, the use of the policy-exchanged

strategies may be more easily accepted than that of the non-policy-exchanged

strategies in terms of their application in practice.

3.3.2 Credential and policy
In the field of TN, there is a variety of credential languages. The first informal

language for expressing credentials used in TN was developed by Winsborough,

Seamons and Jones (2000). It consists of two parts named the Property-based

Authentication Language (PAL) and the Role-based Authorisation Language (RAL).

Winsborough and Li (2002a) state that assumptions about credential languages made

by Winsborough, Seamons and Jones (2000) are so simple that they cannot fulfil

practical demand. Therefore, they introduce RT0, a member of a family of role-based

trust management languages.

An XML-based TN Language (X-TNL) for Web communication was developed and

presented by Bertino, Ferrari and Squicciarini (2003b). In addition, an Attribute-based

TN Language (ATNL), a family of Role-based Trust management languages, which

can specify credentials based on Role-based Trust-management framework (RT) has

been developed by Li, Li and Winsborough (2005). This credential language can

present membership and delegation as well as provide the capability of presenting

values of attributes. One benefit of ATNL is that each attribute can be linked to

different credentials. Attributes can even be assigned a sensitive or non-sensitive

value depending on the sensitivity degree as determined by the entity.

As there are numerous credential languages in the field of TN, there is no surprise that

various policy languages have also been designed relevant to these credential

languages. To prevent (non) possession-sensitive credentials from being inferred by

the counterpart mentioned by Seamons et al. (2002b), a notion of Attribute

acknowledgement policies (Ack policies) is recommended by Winsborough and Li

(2002a). X-TNL can represent a policy language cooperating with X-TNL certificates

 55

for expressing credentials and declarations (Bertino, Ferrari and Squicciarini, 2003b).

Olmedilla et al. (2004) present the use of a PeerTrust language for TN. The use of

ATNL mentioned above to specify policies is described by Li, Li and Winsborough

(2005). An extension of WS-SecurityPolicy has been suggested to enable their

specification of TN policies in Web Services (Lee and Winslett, 2008c). By extending

WS-SecurityPolicy with the use of WS-Policy, the syntax and semantics allows

entities to state specific constraints on the values of attributes in a credential for TN

between Web Services.

Once decisions over the expression of credentials and policies have been solved, the

next task is to equip an entity with an ability to compare them to reach a decision.

This ability is required in scenarios where an entity receives credentials submitted by

the counterpart. The entity needs to compare them against the local policies to make a

decision on whether policies can be fulfilled by credentials. This ability is also

required in scenarios where policies sent from the counterpart have been received by

the entity. The combination of the two functionalities demands more abilities of a

policy compliance checker (Seamons et al., 2002a; Smith, Seamons and Jones, 2004).

The policy compliance checker is able to match remote credentials with local policies

to determine whether or not certain credentials can fulfil policies, or vice versa. In

addition, whenever an entity discloses its credentials, the credentials need to contain

relevant information (name or type of credential, which policies the credentials can

fulfil etc.) for fulfilling the disclosure requirement with the communicating

counterpart (Yu, Winslett and Seamons, 2003). This can aid the policy compliance

checker of the counterpart in processing these credentials more efficiently. This

requirement is particularly necessary when both entities are using the parsimonious

strategies, since they may have disclosed several messages containing policies before

receiving any credentials from the counterpart. Likewise, when an entity discloses

policies, relevant information (sample type of credentials, owner of policies etc.)

should also be contained within them.

Through the observation of the credential and policy languages designed for TN, each

of them has its own syntax and semantics. It is feasible that they can be used directly

in Web Services, as multiple token languages have been used in Web Services

without any problems. However, a capability interoperability issue may occur, as

 56

some credential and policy languages recognised by the policy compliance checker of

one communicating system may not be understood by the policy compliance checker

designed within another communicating system.

3.3.3 Declaration
A notion of declaration is presented in the XML-based X-TNL declaration (Bertino,

Ferrari and Squicciarini, 2003b). Similar to credentials, it can store personal attribute

information to help establish a trust relationship for entities more effectively (Bertino,

Ferrari and Squicciarini, 2005). However, its outstanding drawback of not being

certified by a TTP will bring potential danger to Web Services, due to the existence of

malicious Web Services as stated in other works (Geer, 2003; Curphey, 2005). The

intrinsic nature of the use of declarations allows an entity to create arbitrary

declarations containing attributes, and to use its own private key and public key for

issuing and verifying declarations without any involvement of a TTP, so the

authenticity of declarations cannot be guaranteed. This weakness could be utilised by

a malicious Web Service Requester to issue its own fake declarations to enable itself

to access sensitive resources, if a Web Service Provider allowed the use of

declarations, and the fake declarations could fulfil the relevant access control policies.

This result should have been avoided, as the Web Service Provider would not have

granted access to the malicious Web Service Requester, if it had discovered that the

submitted declarations were not trustworthy enough. However, the Web Service

Provider has no capability of judging the trustworthiness of declarations due to the

nature of declarations. Therefore, the researcher of this Thesis does not support the

use of declarations in the context of using TN.

3.3.4 Existing TN-based authorisation systems
Existing RBAC/ABAC-based authorisation systems are discussed in section 2.6. This

current section discusses the existing TN-based authorisation systems. There are

similarities that can be found between the RBAC/ABAC-based authorisation systems

discussed in section 2.6 and the systems discussed in this section, but there are also

outstanding differences. Similarities such as the use of an object-oriented design for

system architectures can be found in Globus (a framework containing the existing

authorisation systems) and TrustBuilder2 (one representative of the typical TN-based

authorisation systems, discussed later). In addition, systems in this section have a

 57

similar ultimate purpose of use in making access control decisions for a service or

resource.

In terms of differences, the communication messages between the existing

RBAC/ABAC-based authorisation systems may be restricted to one request message

containing a token (e.g. PERMIS), or restricted to one request and one response

message, where a token is contained in the request message and an access control

decision can be found in the response message (e.g. Akenti). Although systems such

as Shibboleth or CAS support more than a single round communication process, the

transfer of credentials is still only sent from a service requester to a service provider.

The one-way direction of credential transfer causes the trust relationship established

by using the RBAC/ABAC-based authorisation systems to be unilateral.

Unlike these RBAC/ABAC-based authorisation systems, the TN-based authorisation

systems discussed in this section are all designed and developed to support the use of

TN. That is, typical components required by TN mentioned in the above sections are

designed and developed in these systems (in particular, the design of strategies is

required), whereas these components do not exist in the existing RBAC/ABAC-based

authorisation systems. In addition, multiple rounds of communication for determining

access control and the exchange of policies may occur between these systems, whilst

they do not occur between the RBAC/ABAC-based authorisation systems.

Furthermore, with the use of SAML messages, the existing RBAC/ABAC

authorisation systems can be integrated into Web Services seamlessly through Globus

or AAI (see section 2.7.1). However, the adoption of their protocols is not sufficient

enough to help the existing TN-based authorisation systems to be seamlessly

integrated into Web Services, as the syntactic, semantic and functional

interoperability issues in relation to TN-related communication cannot be provided by

their protocols. To clarify the characteristics of these TN-based authorisation systems,

the following begins with an introduction of the first TN-based authorisation system.

TrustBuilder is the first implemented module-based system for using TN in open

distributed systems such as for Web-based transactions (Barlow et al., 2001; Winslett

et al., 2002; Seamons et al., 2003; Basney et al., 2004). There are three modules

(credential verification module, negotiation strategy module and policy compliance

 58

checker) designed within this system. Two different compliance checkers have been

implemented in TrustBuilder. One can compare X.509v3 tokens (used as the

credentials) with policies written in an XML-based language. The other is able to

compare RT credentials with the relevant policies. Two communication protocols

including HTTPS and TLS are used in this system. It is accepted that TrustBuilder is

the most influential TN-based authorisation system, even though there are weaknesses

within this system (Bertino, Ferrari and Squicciarini, 2004a).

For instance, Hess et al. (2004) identify that disclosure of sensitive credentials cannot

be protected by using this system. They then propose a general access control model

that can be implemented in TrustBuilder. This model is able to check the sensitivity of

credentials relevant to local policies. Ryutov et al. (2005) use TrustBuilder along with

Generic Authorisation and Access-Control API to aid in defending against DoS

Attacks. TrustBuilder is even used as a third-party system to help two entities achieve

authorisation to relieve the performance pressure (Olson et al., 2006; Lee et al., 2006).

As TrustBuilder supports the use of the PRUNES - a tree-based model (discussed in

section 3.3.1.2), a simple protocol is designed within this system, and its protocol

messages can support the disclosure tree model (Yu, Winslett and Seamons, 2001).

This model is extended in the TN service called HiTrust (Li, Li and Meng, 2010).

However, the inflexibility of the addition of new credential, policy languages and

strategies and the in-built coarsely grained policy languages are the intrinsic

limitations of TrustBuilder (Lee, Winslett and Perano, 2009; Zhang et al., 2009).

Trust-X is developed as an XML-based framework for using TN in a peer-to-peer

environment (Bertino, Ferrari and Squicciarini, 2004a). As the comparison of

credentials against policies is one of the required functionalities within TN, there is no

surprise that the policy compliance checker is a core module designed within this

framework. Apart from this module, a sequence prediction module is introduced. This

module provides a service to “keep track [of] the sequence of certificates more often

changed, instead of recalculating them for each negotiation” (Bertino, Ferrari and

Squicciarini, 2004a), if different counterparts request to access the same resource.

Trust tickets are developed as a new feature to TN. Once TN is successful, each entity

will generate an issued trust ticket and send it to the counterpart.

 59

The functionality of a trust ticket is similar to that of a cookie stored in a Web

browser to avoid repeated authorisation in a certain period. In other words, with the

use of trust tickets, two entities can avoid using TN to achieve authorisation during

the valid period of the tickets. Further functionalities such as support for multiple

credential languages and the use of P3P policies to protect the disclosure of sensitive

credentials are added in this system (Squicciarini et al., 2007). Another functionality

supporting multisession operation allowing two entities to pause TN and then to

resume TN in the same session is also added to the system. This functionality allows

an entity to delegate its right to a third entity to continue TN with the counterpart

(Squicciarini et al., 2012). However, the only recognition of the X-TNL language

(expressing credentials, policies, trust tickets) is its main limitation, so that it cannot

be interoperable with other TN-based authorisation systems as stated by Lee, Winslett

and Perano (2009).

Both TrustBuilder and Trust-X can only support a limited number of policy

compliance checkers and strategies, and their architectures are not flexible enough to

support new languages (expressing credentials and policies) and strategies. In

addition, there is a need to redesign the architecture of a TN-based authorisation

system to address this issue as stated by Lee, Winslett and Perano (2009). They thus

propose TrustBuilder2, a reconfigurable architecture adopting plug-in modules. In

such a design, new languages and strategies can be added as new plug-ins to the

relevant modules such as the policy compliance checker module and the strategy

module etc. As the architecture of TrustBuilder2 is a redesign of TrustBuilder, the

functionalities supported in TrustBuilder can also be used in it. TrustBuider2 can even

serve TN among multiple entities (Orkphol and Li, 2012).

Trust-Serv is a framework proposed by Skogsrud, Benatallah and Casati (2003,

2004a, 2004c) and Skogsrud et al. (2004b. 2009). Its specific benefit is to provide

lifecycle management of policies and dynamic policy migration. To achieve the

dynamic policy migration, three migration strategies are introduced. The first strategy

“lets negotiations in progress be completed according to the old policy, but requires

all new negotiations to follow the new policy” (Skogsrud, Benatallah and Casati,

2003). The second strategy requires the existing TN to migrate to the new policy

instead of the old one, if there are common rules required in the negotiation, and the

 60

common rules can be found in both the new policy and the old policy. The last

strategy is the worst-case strategy that demands all of the negotiation in progress to

terminate. Trust-Serv has been implemented in Web Services by using SAML

messages for expressing credentials, and WS-SecurityPolicy for expressing policies.

However, the only support for SAML credentials and WS-SecurityPolicy policies

may restrict its capability interoperability with other TN-based authorisation systems

used within Web Services.

Apart from the TN-based authorisation systems mentioned above, there are other

models, frameworks and systems designed for TN, but the motivations for these

system developments are not strong enough through the assessment of their

rationales. For instance, the work presented in Andro (2010) is only a review of the

existing TN models with no critique. Chen and Jiang (2011) introduce their own

policy and credential languages with no critical assessments of the existing languages.

Yu et al. (2011) propose their TN mechanism to improve the efficiency of using TN

according to the history, but its idea is the same as the sequence prediction module

used in Trust-X.

There are other research works in relation to TN-based authorisation systems. In these

works, system designs are presented only to show how they can process their own

specific policy languages with detailed syntax and semantics. For instance, several

TN-based authorisation systems used in (Gavriloaie et al., 2004; Olmedilla et al.,

2004; Nejdl, Olmedilla and Winslett, 2004) are specifically designed to process

policies written in the PeerTrust language, which is based on Definite Horn clauses

used for logic programs. Chen and Jiang (2011) develop a TN-based authorisation

system to mainly serve a policy language called AATN-Jess. The TN-based

authorisation system called PROTUNE developed by Bonatti et al. (2010) mainly

uses its own language, which is based on normal logic program rules.

In terms of the use of these TN-based authorisation systems within Web Services, it is

feasible to adopt these systems in the context of Web Services to provide TN as an

optional access control approach for different Web Services. Due to the

heterogeneous nature of Web Services, there is a high probability that two Web

Services may use different authorisation systems to communicate with each other.

 61

Under this phenomenon, unfortunately, several interoperability issues may arise. With

respect to provision of interoperability for communication between two different TN-

based authorisation systems within Web Services, TN-based authorisation systems

such as TrustBuilder2, Trust-X cannot provide interoperability in relation to syntax

and semantics, as their messages are not designed in an XML-based structure. In

addition, provision of interoperability in relation to capability and strategy is not

taken into consideration in these TN-based authorisation systems either. Trust-Serv is

a TN-based authorisation system implemented in Web Services, so it can provide

interoperability in relation to syntax and semantics, but it fails to provide

interoperability in relation to capability and strategy. In addition, for all of these TN-

based authorisation systems, interoperability in relation to functionality cannot be

guaranteed either, as some unique features designed in one system (e.g. trust ticket

designed in Trust-X) cannot be supported by other systems (e.g. TrustBuilder2). In

addition, with the adoption of TN-based authorisation systems to Web Services,

communication between a TN-based authorisation system and an ABAC-based

authorisation system is also possible in Web Services. Unfortunately, interoperability

issues in relation to syntax, semantics, functionality, capability and strategy may

arise between them. To demonstrate these interoperability issues, the next section

presents different circumstances of a case scenario described in section 2.8.

3.4 Interoperability Issues between Authorisation Systems in

Web Services
To illustrate the above-mentioned interoperability issues, the background information

of the case scenario described in section 2.8 is used here. Four circumstances of this

case scenario are presented to explain the existence of the relevant interoperability

issues. In particular, circumstance 1 demonstrates interoperability issues between an

ABAC-based authorisation system and a TN-based authorisation system.

Circumstances 2, 3 and 4 demonstrate interoperability issues between two TN-based

authorisation systems.

Circumstance 1

 62

WSA uses an ABAC-based authorisation system, and WSB uses a TN-based

authorisation system. As there are different strategies used in TN, WSB randomly

chooses the eager strategy. The communication process is shown below:

Step 1: WSA sends a request message to WSB informing WSB that Alice wants to

access Bob’s resource.

Step 2: As WSB uses a TN-based authorisation system, and the eager strategy has

been randomly chosen, it then sends back Bob’s non-sensitive credentials to WSA.

As the internal structure designed within the ABAC-based authorisation system used

by WSA is supposed to receive policies at this step, it does not know how to process

the received credentials. The reason that WSA cannot process the credentials is due to

the fact that it lacks knowledge of syntax and semantics of the credentials and those

of their protocol messages along with the relevant functionality. More precisely,

lacking knowledge of the existence of different strategies causes the lack of the above

knowledge. Thus, interoperability issues occur at this step, and the communication

stops here.

This circumstance can demonstrate that the interoperability issues in relation to

syntax, semantics, functionality and strategy may occur between an ABAC-based

authorisation system and a TN-based authorisation system.

Circumstance 2

WSA uses a TrustBuilder2 system, and WSB uses a TrustServ system. Assume that

the TrustBuilder2 and the TrustServ systems could understand the syntax and

semantics of the protocol messages of each other, and they both use the parsimonious

strategy to run TN. The policy compliance checker of TrustBuilder2 could (1)

compare credentials written in the X-TNL language against policies written in the

PeerTrust language (see section 3.3.2) and (2) compare credentials written in the RT0

language (see section 3.3.2) against policies written in the Ack policy language (see

section 3.3.2) for expressing policies, whereas the policy compliance checker of

TrustServ could only compare credentials written in the X-TNL language against

policies written in the PeerTrust language.

 63

When TrustBuilder2 sends a credential written in the RT0 language (see figure 3.1) or

a policy written in the Ack policy language to TrustServ, an interoperability issue in

relation to capability will occur. This is because the policy compliance checker

designed in TrustServ could only recognise credentials written in the X-TNL

language and policies written in the PeerTrust language. However, observing the

conditions held by two systems, a potential TN without this interoperability issue

could have occurred, if TrustBuilder2 had sent such a credential written in the X-TNL

language or a policy written in the PeerTrust language.

Figure 3.1. Illustration of an interoperability issue in relation to capability in a first circumstance

This circumstance can demonstrate that the capability interoperability issue may

occur between two TN-based authorisation systems. In fact, there is another

circumstance that the capability interoperability issue will also occur. This

circumstance is demonstrated in circumstance 3.

Circumstance 3

WSA uses a TrustBuilder2 system, and WSB uses a TrustServ system. Assume that

the TrustBuilder2 and the TrustServ systems could understand the syntax and

semantics of the protocol messages of each other, and they both use the parsimonious

strategy to run TN. The policy compliance checker of TrustBuilder2 could (1)

compare credentials written in the X-TNL language against policies written in the

PeerTrust language and (2) compare credentials written in RT0 against policies

written in the Ack policy language, whereas the policy compliance checker of

TrustServ could (1) compare credentials written in the X-TNL language against

 A message containing RT0 credentials

Unknown message

support

WSA

TrustServ:
Policy compliance Checker
1. can compare X-TNL credentials
with PeerTrust policies

support

TrustBuilder2:
Policy compliance Checker
1. can compare X-TNL
credentials with PeerTrust
policies
2. can compare RT0
credentials with Ack policies

WSB
Cannot recognise

RT0 credentials

 64

policies written in the Ack policy language, (2) compare credentials written in RT0

against policies written in PeerTrust and (3) compare credentials written in X-TNL

against policies written in PeerTrust.

After TrustBuilder2 sends a credential CA1 only written in the X-TNL language (see

figure 3.2) to TrustServ, WSB will decide whether it is going to compare CA1 against

a policy written in the Ack or in the PeerTrust language. WSB randomly chooses the

policy PB1 written in the Ack language. After it compares CA1 against PB1, it

decides to send PB1 to TrustBuilder2. Upon receiving PB1, as TrustBuilder2 cannot

compare PB1 against CA1, as there is no CA1 written in the RT0 language, a

capability interoperability issue occurs resulting in failed communication.

Figure 3.2. Illustration of the interoperability issue in relation to capability in a second circumstance

Observing the conditions held by two systems, a potential TN without the capability

interoperability issue could have occurred if WSB had sent such a policy written in

the PeerTrust language. The current solution used in the existing authorisation

systems is to use the plug-in modules recommended in the TrustBuilder2 system (see

section 3.3.4) for supporting different languages for credentials and policies. This

solution can aid a Web Service in understanding as much policy languages as possible

to increase its probability of successfully processing policies, if they are written in

different policy languages. However, this solution cannot provide enough capability

interoperability, since its benefit and limitation are the same as those of the object-

Cannot
compare
the Ack
Policy with
the X-TNL
credential support

WSB Compare the
X-TNL
credential with
the local Ack
Policy

TrustServ:
Policy compliance Checker
(1) can compare X-TNL
credentials with Ack policies
(2) can compare RT0 credentials
with PeerTrust policies
(3) can compare X-TNL
credentials with PeerTrust
policies

support

WSA

TrustBuilder2:
Policy compliance Checker
(1) can compare X-TNL
credentials with PeerTrust
policies
(2) can compare RT0
credentials with Ack Policies

A message containing a X-TNL credential

Unknown message

A message containing an Ack policy

 65

oriented framework for adopting multiple policies used in the existing ABAC-based

authorisation systems (see section 2.7.2).

Circumstance 4

WSA uses a TrustBuilder2 system, and WSB uses a TrustServ system. TrustBuilder2

could use the eager and parsimonious strategies, whereas TrustServ could only use the

eager strategy. WSA randomly chooses to use the parsimonious strategy to conduct

TN with WSB, which can only use the eager strategy. WSA owns a credential CA1,

and treats this credential as sensitive, thereby declaring a policy PA1 protecting this

credential. The policy PA1 requires a credential CB1. WSA wants to access a

resource RB1 provided by WSB. WSB owns the insensitive credential CB1, and

declares a policy PB1 protecting the resource RB1. The policy PB1 requires a

requester to submit a credential CA1 to unlock this policy.

The process of communication for achieving authorisation between WSA and WSB

are as follows:

Step 1: WSA initially sends a message to WSB for requesting an access to the

resource RB1.

Step 2: WSB processes this message and returns a message containing the credential

CB1 to WSA.

Step 3: WSA is expecting to receive a message containing policies at this particular

time, as it is using the parsimonious strategy. In other words, even though WSA does

possess the functionality for processing a message containing credentials, according

to the used strategy, it is preparing to process a message containing policies at this

time point. In other words, WSA has no idea of how to process the received

credentials at this time point; it therefore has to treat this message as an unknown

message.

However, observing the conditions held by two systems, a potential successful

communication without the occurrence of this interoperability issue could have

happened, if WSA had decided to use the eager strategy to conduct TN with WSB.

This circumstance can demonstrate the occurrence of a strategic interoperability

issue.

 66

Concluded by the four circumstances, the interoperability issues between different

authorisation systems within Web Services are listed in table 3.1 below, if TN-based

authorisation systems are used into Web Services.
Reason causing the interoperability

issue between different authorisation

systems (i.e. ABAC, TN)

Existing Solutions used

in different authorisation

systems (i.e. ABAC, TN)

Weakness of the existing

solutions used in different

authorisation systems (i.e.

ABAC, TN)

A received message cannot be

processed at a specific time point

according to a specific strategy, even a

system has the relevant functionality

for processing such a message

Nil Nil

Not enough capability of the policy

compliance checkers

Use an object-oriented

framework or plug-in

modules for supporting

different languages of

credentials and policies

There is a probability of

missing interoperability

Functionality for processing the

exchanged message is different in a

ABAC-based authorisation system and

an TN-based authorisation system, so

credentials are not recognised by the a

ABAC-based authorisation system as a

message sender

Nil Nil

Unknown semantics of messages Use the SAML messages Semantics supporting TN

does not exist

Unknown syntax and of messages Use the SAML messages Syntax supporting TN does

not exist

Table 3.1. Interoperability issues between authorisation systems in Web Services

Within table 3.1, to provide interoperability between different authorisation systems

(i.e. ABAC-based, TN-based) used in Web Services, the use of SAML messages in

the AAI for ABAC-based authorisation systems, and the use of SAML messages and

SecurityPolicy messages in Trust-Serv for TN-based authorisation systems are the

existing solutions for providing syntactic and semantic interoperability. The plug-in

approach designed in TrustBuilder2 for TN-based authorisation systems and the

object-oriented framework leveraged in the Globus for ABAC-based authorisation

systems for adopting multiple policies are the current approaches for providing

 67

capability interoperability. Unfortunately, these existing solutions cannot provide

enough interoperability. In addition, functional and strategic interoperability issues

also exist between different authorisation systems without a solution. Therefore, there

is a strong need to explore a new solution that can make up for the weaknesses within

the current approaches for supplying multiple interoperability between different

authorisation systems in Web Services, if TN-based authorisation systems are to be

used within Web Services.

3.5 An Improved Multi-layered Interoperability Model
Through an analysis of the critical review of the interoperability issues between

authorisation systems (i.e. ABAC and TN) within Web Services in Chapter 2 and this

Chapter, a variety of data has been collected demonstrating that the interoperability

issues between authorisation systems is multiple rather than one. An overall

understanding of the factors along with their characteristics causing the

interoperability issues is helpful to aid in exploring a potential solution for addressing

the second research problem. This section reviews the existing conceptual

interoperability models of the most relevance, and proposes an improved multi-

layered interoperability model (based on the data collected through the review in

Chapter 2 and this Chapter).

The majority of the factors presented in the improved interoperability model can

cover more characteristics causing the relevant interoperability issues that cannot be

expressed by the factors presented in the existing interoperability models. In addition,

one novel factor – strategic interoperability is also presented in the improved

interoperability model, whereas it is neglected in the existing models. Although the

improved interoperability model is constructed based on the data analysis in the

context of Web Service authorisation systems, it may also be applied in other

distributed systems environments to help researchers in academia and practitioners in

the industry identify hidden interoperability issues between their systems. From this

perspective, the improved interoperability model can be treated as a contribution as an

extension of state of the art.

 68

Existence of multi-layered interoperability has been illustrated in a conceptual model

called Levels of Conceptual Interoperability Model (LCIM) proposed by Tolk and

Muguira (2003). In this model, five layers of interoperability are presented including

• Layer 0: system specific data

• Layer 1: documented data

• Layer 2: aligned static data

• Layer 3: aligned dynamic data

• Layer 4: harmonized data

This five-layered model is further extended in the work conducted by Turnitsa (2005),

in which seven layers of interoperability are presented. The seven layers are

• Layer 0: no interoperability

• Layer 1: technical interoperability - requires an information exchange between

systems

• Layer 2: syntactic interoperability - requires a common format of the exchanged

information between systems

• Layer 3: semantic interoperability - requires the meaning of the exchanged

information between systems

• Layer 4: pragmatic interoperability - requires methods and procedures of systems

to obtain the data from the exchanged information through the correct

understanding of their semantics

• Layer 5: dynamic interoperability - requires the systems to understand the effect

of the exchanged information, even though data used in the exchanged

information are dynamically changed

• Layer 6: conceptual interoperability - requires a meaningful abstraction of

communication in reality

Observing the two models, it can be identified that layer 0 in the two models indicates

no interoperability; thereby excluding this layer from the model would not affect the

provision of interoperability. Layer 1 in the two models suggests that the use of

protocol messages is a proper solution for providing interoperability at this layer.

Note that, in both models, they originally suggest that the use of a protocol is the

solution for providing technical interoperability. However, after comparing the notion

 69

of the protocol they mention against the accepted notion of the protocol identified in

section 2.3, it is identified that protocol messages is what they mean. In addition,

other solutions are required to provide interoperability for other higher layers. For

instance, Ontology can be used as an approach for providing interoperability at layer

2 in the first model, and at layer 3 in the second model respectively. Other approaches

such as Unified Modelling Language (UML) or XML (discussion of XML is in

section 2.4.2) are also suggested as solutions for ensuring interoperability at the

dynamic layer and the syntactic layer in the second model respectively.

Unfortunately, when adopting the conceptual model proposed by Turnitsa (2005)

within Web Services, the layers presented in this model cannot precisely cover all

identified factors along with the characteristics causing the interoperability issues

between authorisation systems within Web Services. For instance, as demonstrated in

the case scenario (see section 3.4), the strategic interoperability issue is demonstrated

in circumstances 1 and 4, but this factor is not presented in Turnitsa’s model. In

circumstances 2 and 3, to enable a system to deal with the comparison of its local

credentials against remote policies, it requires its policy compliance checker to own

the capability of not only recognising both the credential and policy languages, but

also equipping the functionality for comparing the credentials written in the

recognised language against the policies written in the recognised language. This

capability factor along with its characteristic cannot be covered by the dynamic factor

presented in Turnitsa’s model either.

Table 3.2 presents an improved multi-layered interoperability model for illustrating

multi-layered interoperability. This model (the right column of the table) is

established based on the improvement of Turnitsa’s model (2005).

 70

Layered Interoperability in

Turnitsa’s model (2005)

Layered Interoperability between

authorisation systems within Web Services

6 – Conceptual Interoperability Layer 7 – Conceptual Interoperability

Nil Layer 6 – Strategic Interoperability

5 – Dynamic Interoperability Layer 5 – Capability Interoperability

4 – Pragmatic Interoperability Layer 4 – Functional Interoperability

3 – Semantic Interoperability Layer 3 – Semantic Interoperability

2 – Syntactic Interoperability Layer 2 – Syntactic Interoperability

1 – Technical Interoperability Layer 1– Connected Interoperability

0 – No Interoperability Nil

Table 3.2. An improved multi-layered interoperability model

Layer 1: This layer of the model concentrates on ensuring that a connection shall be

established between systems. This connection is not dependent on a particular form of

technical architecture, as multiple different approaches can be provided for

connection to occur. It is assumed that at this layer of the model, if a connection can

be established between two systems, then this is the underlying infrastructure required

for message exchange. Turnista’s model (2005) concentrates on the notion of

technical interoperability; however, just having the technology in place does not

necessarily mean that two systems can connect to each other. Therefore the term

connected is selected as recommend by DoD (1998).

Layer 2: Syntactic interoperability is supplied at this layer, which is the same as layer

2 mentioned in Turnitsa’s model (2005). At this layer, there is a requirement that

messages exchanged between communicating systems should be defined in a

common format, language or structure. For instance, in the context of Web Services,

the mandatory use of XML for forming the structure of the exchanged messages is

indispensable (see section 2.4.2).

Layer 3: Once syntactic interoperability has been achieved, there is a need to ensure

that systems can understand the material exchanged. Therefore taking the same

approach as Turnista’s model (2005), Layer 3 concentrates on semantic

interoperability. The meaning of the exchanged messages is provided through a

precise definition of their semantic meaning. There needs to be an agreement between

 71

the systems on the semantics of the exchanged messages to ensure that they can

process the same exchanged message in the same way. NOTE: This layer of semantic

agreement is focused primarily on messaging infrastructure. Problems may arise at

higher layers of the model with differences in the meaning of data items e.g. different

atomic data or compound data expressing the same meaning (see layer 5).

Layer 4: This layer focuses on ensuring that systems can process data within the

exchanged messages. It also focuses on each system being able to react appropriately

to the exchanged messages such that all input and output is expected. Both

communicating systems therefore need to understand the effect of processing on the

exchanged messages. The functionalities of each system are implemented in the

relevant methods, structures or procedures. In Turnista’s model (2005), the term

pragmatic focuses more on practical interoperability. However, from the analysis

above, at this layer, interoperability is more related to a system’s understanding of the

effect of processing data within the exchanged messages. This understanding as

knowledge of a system is implemented through its internal functionalities. From this

perspective, the term functional is more suitable, as it can convey this meaning more

precisely.

Layer 5: This layer ensures capability interoperability, which is revised from Layer 5

– dynamic interoperability of Turnista’s model (2005). Dynamic interoperability in

Turnista’s model features dynamic changes of data within a system over time. This

interoperability issue caused by dynamically updating data normally occurs when two

similar systems are communicating. For example, two entities may both use the same

system (e.g. PERMIS, Akenti), but there may be differences in their update cycles

such that one system (the message sender) may update data every two hours, whereas

the other system (the message receiver) may update data every twenty-four hours. As

the message sender updates its data more often than the message receiver, new data

used in the message sender cannot be recognised by the message receiver, thereby

causing an interoperability issue.

However, through a further analysis of this example in depth, it can be identified that

dynamic changes of data is just a phenomenon on the surface causing the

interoperability issue between two systems. The underpinning reason is the different

 72

levels of capability for recognising the syntax and semantics of data (can be atomic or

compound data) within the two systems (Tolk, Diallo and Turnitsa, 2007; Lang et al.,

2006). There is a distinction between capability and functionality from the perspective

of a system. The functionality only ensures that two systems can have the same

knowledge about the procedure of processing data, whereas two systems may possess

different levels of capability in relation to the same functionality.

For example, in circumstance 3 (see section 3.4), the existing TN-based authorisation

systems such as TrustBuilder2 or TrustServ can both provide the same functionality

for comparing credentials against policies for reaching an access control decision. In

terms of different levels of capability of recognising the syntax and semantics of the

data (processing compound data requires an understanding of both syntax and

semantics, whereas processing atomic data requires an understanding of semantics

only) in relation to this functionality, TrustBuilder2 has the capability of comparing

credentials against policies written in two languages (both credentials and polices are

compound data), whilst Trust-X might only be able to compare credentials against

policies written in one specific language. In this example, a dynamic change of data in

systems is not the phenomenon that can cause the interoperability issue at this layer.

Instead, the occurrence of the interoperability issue is due to the need that two

different systems with similar functionalities want to communicate. Through the

analysis of the two examples shown above, possessing different levels of capabilities

of two systems for recognising the syntax and semantics of data is the common reason

causing the interoperability issue. The term capability is therefore more appropriate to

reflect the cause for the occurrence of the interoperability issue at this layer in

comparison with the term dynamic.

Layer 6: This layer is a novel layer guaranteeing strategic interoperability. A strategy

of a system controls the system behaviour, this can include how data is processed

within a system and when and what exchanged messages the system should send out

and expect to receive (Winsborough, Seamons and Jones, 1999, 2000). Within the

existing systems, a strategy is embodied in the connected processes of a system (one

process of a system defined in this Thesis is that a system will receive (send out) one

incoming (outgoing) message and send out (receive) one piece of outgoing

(incoming) message if necessary). Currently, observing the process of the existing

 73

RBAC/ABAC-based authorisation approaches, the majority of the communication

between these systems implicitly includes one strategy. In other words, the order for

exchanging messages between systems is fixed, thereby not incurring an

interoperability issue in relation to strategy. However, with the development of

technologies, systems will be becoming more and more intelligent so that they may

have a variety of alternative strategies for achieving the same task. An example of the

existence of multiple strategies supported in one approach is TN (see section 3.3.1). If

two systems have multiple strategies, and if there is no proper solution to help a

system dynamically switch from one strategy to another strategy, an exchanged

message sent from one system may not be expected to be received by the counterpart

in the correct time, even though interoperability at all of the lower layers are

provided. Eventually, the counterpart’s incapability of processing the unexpected

message will cause an interoperability issue at this layer.

Layer 7: Conceptual interoperability is the highest layer between communicating

systems. Interoperability at this layer requires communicating systems to understand

the whole concept of the communication. This concept can include a specific

purpose/objective/goal or context enabling a system especially a service requester to

decide the proper time of using a specific protocol. Other unique characteristics in

relation to specific communication (e.g. strengths and limitations of the

communication) should also be provided in this concept. In particular, conceptual

interoperability is needed, when multiple optional protocols can be used for achieving

a same purpose (e.g. either an ABAC-based or a TN-based approach be help a service

requester make an access control decision). In such an instance, it requires a service

requester to know the difference between the multiple protocols at a conceptual layer

so as to choose the most appropriate protocol.

3.6 Related Work
In addition to the existing interoperability models mentioned in section 3.5, which

aim to present interoperability between two communicating systems, there are other

interoperability models. As they focus on identifying interoperability issues amongst

multiple systems rather than two communicating systems, these other interoperability

models are considered as of less relevance.

 74

For instance, the Levels of Information Systems Interoperability (LISI) model (DoD,

1998) is a widespread model, which has been acknowledged as a foundation model

for assessing interoperability amongst multiple types of systems in different domains

of an enterprise (Rezaei et al., 2014). In addition, a complex matrix called LISI

Capabilities Model for assessing interoperability between systems is also designed.

Observing the LISI Capabilities Model, it covers a large number of aspects such as

security-related policies, software, hardware etc. Therefore, it is suitable to be used in

scenarios where a new enterprise needs to be established requiring interoperability

amongst different types of systems (including hardware, software etc.).

Clark and Jones (1999) identify that the LISI Capabilities Model is insufficient to

assess interoperability amongst Command and Control Support (C2S) systems; they

therefore present an Organisational Interoperability Maturity Model. Hamilton, Rosen

and Summers (2002) identify the complexity and inappropriateness of the utilisation

of the LISI Capabilities Model for measuring interoperability for legacy systems.

They therefore propose a matrix-based metric called Stop Light Model for measuring

the degree of interoperability amongst legacy systems. A Europe Integrated Project

called Advanced Technologies for Interoperability of Heterogeneous Enterprise

Networks and their Applications Integrated (ATHENA IP) introduces an Enterprise

Interoperability Maturity Model for performing assessments on interoperability

maturity for enterprise-level systems (ATHENA, 2005). Mykkanen and Tuomainen

(2008) propose a conceptual framework for evaluating interoperability of standards in

order to help system developers select the appropriate standards based on the

evaluation results. Rezaei, Chiew and Lee (2014) present an interoperability model

for assessing interoperability amongst multiple ultra large-scale systems.

3.7 Research Problem
Although the improved interoperability model can present all the identified key

factors along with their characteristics causing the interoperability issues between

authorisation systems within Web Services, it does not indicate any solution

providing interoperability for each relevant factor presented at each layer. Observing

the four circumstances presented in section 3.4, factors causing interoperability issues

may occur together (e.g. in circumstance 1 and 4, the strategy interoperability issue

causes the occurrence of the interoperability issues at lower layers). The existing

 75

interoperability model – LCIM – suggests some solutions (e.g. XML, protocol

messages, ontology, UML), but each of which can only provide interoperability for a

relevant layer. In other words, the lack of a unified solution integrating these solutions

for providing interoperability for all different factors still remains as a problem.

3.8 Discussion of Potential Solutions
In terms of the potential solutions, the first straightforward solution might be to force

all of the Web Services to implement the same TN-based authorisation system (e.g.

TrustBuilder2). Unfortunately, due to the heterogeneous nature of Web Services, this

assumption is not valid, as each TN-based authorisation system has its own unique

benefits that are not provided in other systems. Another potential solution might be to

integrate the functionalities of all of the TN-based authorisation systems into one

system along with some interpretation mechanisms for translating different languages

to the specific language implemented within the system. This would require a new

framework to integrate all of the TN-based authorisation systems together seamlessly.

However, due to the time and budget issues, this solution is still not ideal enough for

different organisations. A third possible solution might be to design and develop a

system operating as an intermediate system for providing TN/ABAC-related

authorisation service for any two Web Services. However, this solution would require

the design of a communication mechanism amongst three entities (a service requester,

a service provider and a system providing this service). Eventually, the design of such

a communication mechanism would be more complex than the communication

between two systems.

After a thoughtful consideration of the balance between effectiveness and feasibility

of the potential solution in the context of Web Services, the selected solution is to

design a protocol-based approach by integrating necessary functionalities relevant to

TN into authorisation systems within Web Services. There is a distinction between the

use of a system and the use of a protocol. A system is normally used as a whole,

whereas the use of a protocol as a whole is not necessary. In other words, as a

protocol consists of its sub elements such as protocol messages and internal structures

(see section 2.3), system developers can add partial protocol messages and internal

structures to the existing authorisation systems, if the partial protocol messages and

internal structures are not yet supported in the existing authorisation systems. With

 76

the use of this solution, it is not necessary for a Web Service to implement a whole

new protocol.

3.9 Chapter Summary
This chapter has thoroughly reviewed the state-of-the-art TN from different aspects to

the existing TN-based authorisation systems. After analysing each aspect of TN,

relevant interoperability issues have been identified. Through the use of different

circumstances of a case scenario, the occurrence of the identified interoperability

issues between authorisation systems within Web Services has then been

demonstrated. Upon identifying the possible factors along with their characteristics

causing the interoperability issues, an improved multi-layered interoperability model

is proposed. As there is a lack of a unified solution that can provide interoperability

for all of the factors presented in the improved interoperability model, a discussion of

potential solutions is provided. Eventually, a decision was made that a protocol-based

approach might be the most appropriate solution. So, the next chapter introduces a

relevant conceptual multi-layered interoperability-solution design along with an

improved TN protocol that can be used for addressing the research problem.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

 77

Chapter 4. A Protocol-based Approach for

Providing Interoperability between

Authorisation Systems within Web Services

4.1 Introduction
Multiple interoperability issues between authorisation systems (which includes the

use of TN-based authorisation systems) within Web Services have been identified

through an analysis of the review in Chapter 2 and Chapter 3, and also been

demonstrated in a case scenario consisting of four circumstances shown in section

3.4. According to the potential solutions discussed in section 3.8, a protocol-based

approach is considered to be the most effective solution to investigate that may be

able to address the second research problem as outlined in Chapter 1.

The design and development of such a protocol requires a clear mapping between

each factor presented at each relevant layer of the improved interoperability model

(shown in table 3.2) and the proposed solution design. Therefore, this mapping as a

novel solution is presented in a conceptual multi-layered interoperability-solution

design as shown in table 4.1. This mapping provides an overview of how a protocol-

based approach can provide multi-layered interoperability to provide interoperability

for Web Service authorisation models. An improved TN protocol is produced as a

concrete example of utilising the interoperability-solution design.

To ensure the correctness of the improved TN protocol design, this research applies a

protocol design and development methodology called validation (Merlin, 1976;

Bochmann and Gecsei, 1977; Merlin, 1979). This methodology indicates that the

process of the protocol design and development should be iterative. The determined

process (shown in figure 4.1) used in this protocol design and development

methodology includes three steps:

• Step one: Protocol requirements elicitation (Merlin, 1979; Sunshine, 1979a;

Bochmann and Sunshine, 1980; Sunshine et al., 1982; Mitra and Lafon, 2007);

• Step two: Protocol design and development (Merlin 1976);

 78

• Step three: Protocol verification (Bochmann and Gecsei, 1977; Bochmann, 1978;

West, 1978; Sunshine, 1979b; Sunshine et al., 1982).

The process consisting of the above three steps forms a cycle that can be conducted

iteratively. Each iterative cycle enables protocol designers to obtain insight into the

problems that may not be discovered in the previous cycles. This process will finish

when the protocol designers are satisfied that the protocol can provide the specific

service for the communicating entities. With the use of this methodology, a protocol

can always be improved through the repeated process, so the latest version of a

protocol can be different from a previous version to some extent. This iterative

improvement cycle also indicates that a protocol design may never be complete. That

is, as long as the relevant new requirements arise, a protocol needs be modified to

cater for new functionalities.

Figure 4.1. A protocol design and development methodology –Validation

Following step one of this methodology, specific requirements for a protocol design

are presented. These requirements are indispensable, since they are strictly connected

with a specific service, so they provide guidelines for the design and development of a

Protocol	

Requirements	

Elicitation

Protocol	

Verification

Protocol	

Design	
 and	

Development

Iteration	
 1...n

 79

specific protocol (Merlin, 1979; Sunshine, 1979a; Bochmann and Sunshine, 1980;

Sunshine et al., 1982). There is a major difference between the purpose of the

protocol design and development methodology adoption and the requirements of the

protocol design and development. The methodology can be applied to the design and

development of protocols in general, regardless of the specific services they provide,

whereas the requirements relevant to a specific service can only be useful for the

design and development of a specific protocol that will provide this service.

Following the discussion of potential solutions for providing interoperability in the

conceptual multi-layered interoperability-solution design in table 4.1 and the

developed TN service-related requirements, an improved TN protocol is then

presented (discussed in sections 4.4, 4.5, 4.6 and 4.7) according to step two of the

protocol design and development methodology. This protocol is designed to provide

multi-layered interoperability between authorisation systems within Web Services.

4.2 Overview of A Protocol-based Solution Design
Table 4.1 presents a conceptual multi-layered interoperability-solution design by

using a protocol-based approach. The novelty of this design is in developing an

understanding of how a protocol can be used to provide multi-layered interoperability

between two systems at the majority of the layers of the model outlined in table 3.2.

This solution improves upon existing solutions in the existing research such as Tolk

and Muguira (2003), Turnitsa (2005), Wang, Tolk and Wang (2009), as they state that

a protocol can only provide syntactic interoperability (layer 1 in the improved

interoperability model shown in table 3.2). In other words, interoperability at higher

layers cannot be supplied by a protocol, but can be provided by other solutions such

as ontology or UML (see section 3.5).

The researcher of this Thesis agrees that other solutions can provide interoperability

between communicating systems, but they should be used as components of a

protocol rather than as individual solutions in isolation. The different perspectives

over the use of a protocol as a solution between other research and this research are

attributed to the different understanding on the notion of a protocol. Researchers such

as Tolk and Muguira (2003), Turnitsa (2005) and Wang, Tolk and Wang (2009) state

that a protocol only consists of exchanged messages for communication. More

 80

precisely, they understand the notion of a protocol as only protocol messages as a part

of the accepted notion of a protocol (see section 2.3). However, the researcher of this

Thesis supports the accepted notion of a protocol, which may not only include the

protocol specification including protocol messages and internal structures, but also

include the service specification providing abstract service-related information.

To use the protocol-based approach, four steps are required.

• Step 1: design a protocol following the solution design (shown in table 4.1). In

addition, the protocol design should also follow the protocol design methodology

(shown in figure 4.1).

• Step 2: compare this protocol against the protocols used within the existing

authorisation systems to identify the distinctions. It is a prerequisite that this

comparison has been applied to both communicating systems due to the nature of

interoperability. More precisely, interoperability issues occur as long as one system

cannot understand the communication. Therefore, application of a protocol to only

one communicating system is insufficient to supply enough interoperability.

• Step 3: find the differences between two protocols. Elements (i.e. protocol

messages and internal structures along with functionality components) of this protocol

should then be added to the existing authorisation systems, if the elements cannot be

identified within the protocol of the existing authorisation systems. In other words, if

the relevant elements have been supported within the existing authorisation systems,

there is no need to add the elements designed within this protocol to the existing

authorisation systems.

• Step 4: let the two systems communicate by running the designed protocol.

According to the solutions listed in table 4.1, only five of the layers indicated in the

improved interoperability model (from layers 2 to 6) can be ensured with the use of a

protocol. Currently wired or wireless technologies are the main approaches for

ensuring interoperability at layer 1 - connected interoperability (DoD, 1998). In terms

of interoperability at layer 7, potential solutions are generally more related to how to

enable communicating systems to understand the entire concept of the

communication. It is identified that relevant conceptual information can be provided

in the service specification of a protocol, readers of which are currently mainly

 81

protocol developers. Upon understanding the conceptual information of different

protocols providing similar services, developers may implement all of them within a

system. When a system needs to communicate with a counterpart with several

optional protocols, it requires this system to select the most appropriate protocol

based on the understanding of each protocol conceptually. Unfortunately, this

conceptual understanding may not be achieved with the use of this solution design, so

other solutions may be required along with the protocol to provide conceptual

interoperability for the communicating systems. Therefore, a protocol on its own

cannot be sufficient enough to provide interoperability at layer 7.

Interoperability Solutions in a Protocol

Layer 7: Conceptual Interoperability Provide the purpose and contextual information

in which a specific protocol should be used, but a

system’s understanding of the correct usage of

the protocol requires other potential solutions

(e.g. ontology)

Layer 6: Strategic Interoperability Awareness of the interoperable strategies

(realised through internal structures and protocol

messages)

Layer 5: Capability Interoperability Awareness of the common capabilities (realised

through internal structures and protocol

messages)

Layer 4: Functional Interoperability Common functionalities designed in the internal

structures

Layer 3: Semantic Interoperability Common semantics defined in the protocol

messages

Layer 2: Syntactic Interoperability Common syntax defined in the protocol

messages

Layer 1: Connected Interoperability Nil

Table 4.1. A conceptual multi-layered interoperability-solution design

Interoperability at layer 2 – syntactic interoperability and layer 3 – semantic

interoperability can be assured through the definition of common protocol messages

as the first part of the protocol specification (see section 2.3). Within Web Services,

the mandatory use of XML is the cornerstone for providing syntax or structure of any

 82

protocol messages (Bray et al., 1998; Klein, 2001). In terms of semantics of protocol

messages, the involvement of human developers is still required for understanding the

meaning of messages (Paolucci and Sycara, 2003; Nezhad et al., 2006). Therefore,

presenting the meaning of messages in a natural language is the common mechanism

used in current WS-related standards such as WS-Security, WS-Trust etc. (Lawrence

and Kaler, 2004; Lawrence and Kaler, 2009a).

Interoperability at layer 4 – common functional interoperability – can be guaranteed

through the use of internal structures as the second part of the protocol specification

(see section 2.3). Within the internal structures, different techniques such as

ontologies (Hitzler et al, 2012), Object-Oriented Models (as Lang et al., 2006), plug-

in approaches (Lee, Winslett and Perano, 2009) or UML (Wang, Tolk and Wang,

2009) can be used for not only supplying the functionalities but also different levels

of capabilities in relation to the relevant functions. The purpose of the use of the

internal structures is to ensure that each protocol message will be linked to its relevant

internal structure. In other words, the effect and functionality for processing each

protocol message is explicitly defined in the internal structures.

To use a protocol for providing interoperability at layer 5 – capability interoperability

– and layer 6 – strategic interoperability – awareness of common capabilities in

relation to the same functionality and that of interoperable strategies between two

systems is required. This requirement is very important in Web Services. As

discussed in section 2.4.5, there is a high probability that two unknown Web Services

may communicate with each other (Garofalakis et al., 2006). In such a circumstance,

without the knowledge of the common capabilities and interoperable strategies,

communication between two Web Services may fail, even though successful

communication between them is possible (demonstrations are given in the case study,

see section 3.4). To enable awareness between two systems, a communication

process is needed. This process allows two unknown systems to consult with each

other to ensure that the interoperability issues at layers 5 and 6 will not impede

potential successful communication. To achieve the purpose of this process, it

requires the combined use of the design of protocol messages and internal structures

(i.e. protocol specification).

 83

Interoperability at layer 7 – conceptual interoperability requires a system to

understand which protocol should be used for achieving a certain task, when several

optional protocols providing similar services are available. At this layer, the service

specification of a protocol can only provide the information in relation to what service

a protocol can provide and in what circumstance a protocol should be used. A

system’s understanding of this information for selecting the use of the most

appropriate protocol may require other potential solutions (e.g. an ontology).

Following step one of the protocol design and development methodology, the next

section presents the protocol requirements.

4.3 Protocol Requirements Elicitation
Protocol designers in both academic and industrial communities are agreed on the

significance of the requirements for protocol design. As the requirements in relation

to a specific protocol are representatives of different characteristics of the service the

protocol can provide, the requirements are always produced first to guide the design

and development of the specific protocol (Merlin, 1979; Sunshine, 1979a; Bochmann

and Sunshine, 1980; Sunshine et al., 1982; Mitra and Lafon, 2007). In the research

presented within this Thesis, the researcher also followed this process: presented the

requirements, and then designed the protocol according to these requirements. It

should be noted that these requirements were not identified together at the first time

of designing the protocol. Instead, they were identified within different cycles of the

protocol design and development process following application of the validation

methodology.

Observing the interoperability issues between the authorisation systems within Web

Services as discovered in table 3.2, including those additionally caused by the

adoption of TN-based authorisation systems within Web Services, a series of

requirements was developed. In addition to proposing solutions which remove

interoperability concerns, a number of requirements are outlined, which provide

additional TN functionalities within the conceptual protocol design. Therefore, the

requirements elicited below mainly focus on the necessary and the most

representative functionalities needed by a TN system.

 84

Through the critical review of TN-related strategies presented in section 3.1,

strategies designed for TN can be classified into two categories: non-policy-

exchanged strategies and policy-exchanged strategies. As obtained from the critical

analysis of pros and cons of these strategies, the eager strategy and the parsimonious

strategy are identified as the typical representatives of each category. This produces

the first set of requirements for protocol design and functionality design as shown

below.

Protocol Design Requirement 1: The two categories of strategies need to be

supported by TN.

Functionality Design Requirement 1: Web Services should be able to support the

use of the eager strategy and the parsimonious strategy as the representatives of two

strategy categories respectively.

As stated in table 4.1, to ensure interoperability at layer 6, strategic interoperability

should be considered to enable two Web Services to identify an interoperable strategy.

As stated in section 3.2, in terms of strategies designed for TN, some strategies may

not be interoperable with one another, but at least each strategy is self-compatible (Yu,

Winslett and Seamons, 2001). This produces the second set of requirements for

protocol design and functionality design respectively as shown below.

Protocol Design Requirement 2: If two Web Services are going to use TN, the

protocol should allow them to reach an agreement on the use of a common strategy to

ensure that the strategy interoperability issue will not affect the commencement of TN.

Functionality Design Requirement 2: Web Services should be able to discover

whether there is a common strategy for TN between them.

In order to allow two Web Services to agree on the use of interoperable strategies, all

supported strategy names must be explicitly unveiled between two Web Services. The

circumstance that a strategy may have different names should also be taken into

consideration. For example, the eager strategy sometimes is referred to as the naïve

strategy (Yu, Winslett and Seamons, 2001; Seamons et al., 2002b; Yu, Winslett and

Seamons, 2003). This produces the third set of requirements for protocol design and

functionality design respectively as shown below.

Protocol Design Requirement 3: The protocol should be designed to allow a Web

Service to explicitly inform the counterpart what strategies it can support.

 85

Functionality Design Requirement 3: A Web Service should be able to discover a

common strategy not only based on keyword matching, but also based on semantic

matching.

As identified in section 3.3.1, any one of the existing strategies differs from another

strategy, since the conditions for using each strategy is different (e.g. the eager

strategy cannot be used, when all of the sensitive credentials owned by a service

requester are sensitive). This produces the fourth set of requirements for protocol

design and functionality design respectively as shown below.

Protocol Design Requirement 4: The protocol should allow a Web Service

Requester to inform a Web Service Provider about the specific owner and resource it

wants to request to enable a Web Service Provider to check what strategies can be

used based on the conditions of the owner.

Functionality Design Requirement 4: A Web Service Provider should be able to

obtain the conditions of any resource owner (can be either a human user or an

organisation), whom it will be on behalf of, to determine the use of the most

appropriate strategy.

After strategic interoperability is ensured, interoperability at layer 5 – capability

interoperability – should also be taken into consideration. This interoperability strictly

relates to the abilities of the policy compliance checkers of both Web Services. As

mentioned in the case study (see section 3.4), two circumstances (circumstances 3 and

4) can cause the capability interoperability issue at this layer, and capability

interoperability in both circumstances, to develop in relation to the functionality of

comparing credentials against policies. To provide interoperability in both

circumstances, the solution designed in the protocol should not only enable two Web

Services to identify the common languages for expressing credentials and policies,

but also enable two Web Services to identify the common language combinations that

can be processed by their policy compliance checkers. This produces the fifth set of

requirements for protocol design and functionality design respectively as shown

below.

Protocol Design Requirement 5: The protocol should be designed to allow a Web

Service to explicitly inform the counterpart what language combinations it can

support.

 86

Functionality Design Requirement 5: If there exist common language combinations

within the list, a Web Service should be able to discover them. If more than one

language combination can be supported, a Web Service should be able to choose the

most appropriate language combination that can be processed by the policy

compliance checkers more efficiently.

To provide interoperability at layer 4 between authorisation systems in Web Services,

a potential protocol requires two Web Services to have common functionalities.

However, taking into consideration that the ABAC approach used in the current

SAML authorisation protocol does not have enough functionalities (e.g. compare

received credentials against local policies) as those used in TN, so the functionality

interoperability issue will occur (see case study – circumstance 1 shown in section

3.4). This produces the sixth set of requirements for protocol design and functionality

design respectively shown below.

Protocol Design Requirement 6: The communication protocol should be designed to

support the major representative functionalities (e.g. strategy component, policy

compliance checker, verification of credential authenticity and credential chain)

required by TN.

Functionality Design Requirement 6: Whenever a Web Service is designed to

support this protocol, it should implement all of the major representative

functionalities.

As interoperability at layers 2 – syntactic interoperability – and 3 – sematic

interoperability – are closely related to interoperability at layer 4 – functionality

interoperability. The requirements for protocol message design and for functionality

design are still shown together for ease of understanding.

As discussed in section 3.3.2, there exists a variety of credential and policy languages,

and each of them possesses its own syntax and semantics. This requires the protocol

messages to support the use of different credential and policy languages. This

produces the seventh set of requirements for protocol design and functionality design

respectively as shown below.

 87

Protocol Design Requirement 7: The syntax and semantics of the protocol messages

should be flexible enough to support different language combinations (expressing

credentials and policies) for TN rather than supporting only one specific credential

language.

Functionality Design Requirement 7: The policy compliance checkers of a Web

Service should at least support one language combination (expressing credentials and

policies) for TN. It is ideal that a Web Service can support more than one language

combination for TN to raise the probability that it can use TN with other Web

Services.

The discussion of strategies (see section 3.3.1) indicates that an uncertain number of

credentials and policies may be disclosed in an outgoing message. For instance, with

the use of the eager strategy, a service provider may disclose one insensitive

credential at first, and then disclose multiple credentials at later steps. By contrast,

with the use of the parsimonious strategy, an entity may disclose one or more policies

in an outgoing message in different steps. This produces the eighth set of

requirements for protocol design and functionality design as shown below.

Protocol Design Requirement 8: The syntax and semantics of the protocol messages

should support the disclosure of both single and multiple credentials as well as

policies.

Functionality Design Requirement 8: Web Services should strictly follow the

chosen strategy to disclose credential(s) or policy(ies), when they need to send local

credentials containing the required attribute information or to send local policies

containing the required attribute information to the counterpart.

As stated in section 3.3.2, whenever an entity discloses its credential(s) or policy(ies),

they should contain relevant information to inform the communicating counterpart

(Yu, Winslett and Seamons, 2003). This produces the ninth set of requirements for

protocol design and functionality design as shown below.

Protocol Design Requirement 9: The syntax and semantics of the protocol messages

for sending credentials should contain the information such as the name or type of

each credential, the owner of each credential, and which policy(ies) the disclosed

credential(s) can fulfil, if it is needed (e.g. the use of the parsimonious strategy

 88

requires this information). Likewise, the syntax and semantics of the protocol

messages designed for sending policy(ies) should also contain the necessary

information.

Functionality Design Requirement 9: Both Web Services involved in TN should

understand the protocol messages expressing credentials and policies.

Within a TrustBuilder system (see section 3.3.4), status information about policy

satisfaction (whether the received credentials from the counterpart can fulfil its local

policies) of each entity is supported. In other words, whenever an entity identifies

whether the counterpart’s credentials can fulfil its local policies, it will store this

status locally, and will inform the counterpart. However, it can be argued from the

perspective of the process of TN that the design of the policy compliance checker is

more important than the design of the status information. When the policy compliance

checkers of both Web Services are designed correctly, there will be no argument

about the policy satisfaction status after each step, if both of them hold their own

policy satisfaction status. Thus, the status information of whether or not a policy has

been satisfied should not be designed within the communication protocol, but each

Web Service should possess its own copy of the policy satisfaction status used by the

policy compliance checker in its system. This produces the tenth set of requirements

for protocol design and functionality design as shown below.

Protocol Design Requirement 10: The protocol messages do not need to include the

status information of the policy satisfaction of both Web Services.

Functionality Design Requirement 10: Each Web Service should possess a local

copy of policy satisfaction status used by the policy compliance checkers in their

system.

In terms of the requirements of protocol messages in relation to the TN service (e.g.

TrustBuilder), two messages are different from other messages (i.e. messages

containing policies, credentials). The first message is the initial message sent from the

Web Service Requester to explicitly inform the Web Service Provider which resource

it intends to access. The second message is the last message sent from a Web Service

Provider to a Web Service Requester to explicitly inform of the result of TN.

Although the protocol in TrustBuilder is composed of the initial message and last

message with other messages together, this design is not suitable for Web Services,

 89

since each of the two messages are used only once, whereas policy or credential

messages can be used many times in TN. To take into account the simplicity of the

schema definition of each interface within a WSDL file (discussion of a WSDL file is

shown in section 2.4.4), it is proper to separate the design of the initial message and

last message from policy messages, and credential messages. This produces the

eleventh and twelfth requirements for protocol design and functionality design as

shown below.

Protocol Design Requirement 11: The syntax and semantics of the protocol

messages should design a specific initial message sent from a Web Service Requester

to inform a Web Service Provider about the detailed information of the requested

resource such as the specific resource name or the owner’s name of the resource.

Functionality Design Requirement 11: When two Web Services are attempting to

use TN, and when a Web Service operates as a Web Service Requester, it should send

the initial message to the Web Service Provider to include the detailed information

about the requested resource. The Web Service Provider should understand this

information and check whether the resource can be found through the local Web

Service.

Protocol Design Requirement 12: The syntax and semantics of the protocol

messages should include a last message to enable a Web Service to explicitly inform

the counterpart of the result. In particular, if TN has succeeded, this message must be

sent from a Web Service Provider to a Web Service Requester. If TN has failed, a

message containing a fault reason should be sent from a Web Service (can be either a

Web Service Requester or a Web Service Provider) to inform the counterpart why TN

has failed.

Functionality Design Requirement 12: Whenever the Web Service Provider makes a

final decision of whether TN has succeeded or not, it should always explicitly inform

the Web Service Requester of the result.

As the necessary requirements for a protocol have been presented above, the next

section introduces a proposed improved TN protocol that can provide interoperability

between authorisation systems within Web Services. The presentation begins with an

overview of this protocol.

 90

4.4 Overview of An Improved TN Protocol

4.4.1 Scope and limitation of the protocol
As stated above, a protocol design may never be complete, since it will be modified to

cater for new functionalities, as long as relevant new requirements arise. Thus, it is a

natural result that existing protocols in Web Services are still in development, and

will still be developing in the future (Nurse, 2010).

Similar to the existing protocols, the protocol designed in this chapter should not be

treated as a final version. In other words, not all of the unique features of different

TN-based authorisation systems are supported in this protocol. Instead, it can only

support the most representative functionalities required by TN, along with the

communication messages inherently required in such processes. The reason that this

protocol can only support the necessary internal structures (i.e. functionalities) and

protocol messages (i.e. communication messages) is rather straightforward: it may

take many years for protocol designers to develop a protocol that can not only provide

all of the relevant functionalities, but also be implemented in practice. In addition,

many protocols are developed by large collaborative teams, but in this instance, the

number of individuals contributing to the design and review of the protocol is

relatively limited. In addition, attributes or elements for expressing the generation

time or issuer etc. required in each protocol message are not considered in the

protocol specification, since they can be adopted from existing standard protocols or

specifications (see section 2.4).

4.4.2 An improved TN protocol
Following the conceptual multi-layered interoperability-solution design shown in

table 4.1 and requirements developed in section 4.3, the proposed protocol borrows

some messages defined within the SAML specification and the XACML

specification. Two stages are designed within this protocol. Stage one is called the

preparation stage, which is a novel stage, and stage two is called the negotiation stage.

The negotiation stage is a stage allowing two Web Services to use TN for achieving

authorisation. The general process of the protocol is shown in figure 4.2.

 91

Figure 4.2. Overview of an improved TN protocol

Stage I: Preparation Stage
Step one: <TNPrepareRequest>

Step two: <TNPrepareResponse>

[Message received]

[TN cannot be
triggered]

No more
messages
exchanged

[TN can be
triggered]

Stage II: Negotiation Stage

Intermediat
e step(s):
<Credentia
lSet> used
in the non-
policy-
exchanged
strategy

[Sensitive
resource
can/cannot be
unlocked]

[Received
credentials
can unlock
more local
sensitive
credentials]

Second last step:
<Response>

Last step: <AuthzDecision
Statement>

[A service
requester
claims that TN
has failed]

Intermediate
step(s):
<CredentialSet>
used in the policy-
exchanged
strategy

[Received
credentials
cannot fulfil
local policies]

[No local
sensitive
credentials
can be
unlocked

Step one: <AuthzDecisionQuery>

[Requested
resource
is insensitive,
a service
provider
claims
successful
authorisation]

[Requested
resource
is sensitive, and
the non-policy-
exchanged
strategy is used]

[Requested resource
is sensitive and the

policy-exchanged

strategy is used]

[No local credentials
can fulfil received
policies, a service
provider claims failed
authorisation]

[More local
sensitive
policies can
be sent out]

[More local
sensitive
credentials
can be
unlocked]

[Local insensitive
credentials can
fulfil remote
policies]

Intermediate
step(s):
<PolicySet> used
in the policy-
exchanged
strategy

[Requested
local
credentials
are sensitive]

[Local sensitive
credentials cannot
be unlocked, and
all the local
insensitive
credentials have
been sent out]

 92

This preparation stage is designed according to requirements 1 to 6. As stated in

(Zartman and Berman, 1982) a preparation stage can help to achieve a higher

probability of successful negotiation. With the addition of this preparation stage

within the protocol, the real commencement of TN in this protocol belongs to the

second stage, namely, the negotiation stage.

The preparation stage allows two Web Services that are not maliciously designed (e.g.

they are not designed to attack other Web Services) to consult with each other to

reach an agreement on the use of a common strategy (interoperability at layer 6) and a

common language combination (interoperability at layer 5). The agreement on a

common strategy and a common language combination can help the TN approach

avoid failure caused by the strategic interoperability issue (layer 6) or the capability

interoperability issue (layer 5). The relevant protocol messages and internal structures

achieving the communication at this step can provide syntactic (layer 2), semantic

(layer 3) and functionality (layer 4) interoperability.

The negotiation stage is designed according to requirements 7 to 12. It provides

syntactic (layer 2), semantic (layer 3) and functionality (layer 4) in relation to TN. In

other words, it can enable two authorisation systems within Web Services to conduct

TN by using the credentials and policies written in the agreed language combination

and the agreed strategy. The processes within the negotiation stage by using the two

types of strategies are different. With the use of the eager strategy (a typical

representative of non-policy-exchanged strategies), only credentials will be

exchanged between two Web Services, whereas message exchange will include both

policies and credentials, when the parsimonious strategy (a typical representative of

policy-exchanged strategies) is used.

4.5 Preparation Stage
Service specification: The design of the preparation stage is based on Protocol

Design Requirements 1-6 and Functionality Design Requirements 1-6. The main

purpose of the preparation stage is to allow two unknown Web Services to

communicate with each other about consulting the capability interoperability (layer 5)

and the strategic interoperability (layer 6). More specifically, it allows the two Web

Services to consult with each other to identify whether there exists at least one

 93

common strategy and one common language combination (for expressing policies and

credentials). Within this protocol, inbuilt language interpretation functionality along

with a policy compliance checker based on an object-oriented design for comparing

local policies(credentials) against received remote credentials(policies) are treated as

the capability owned by each entity. If there is more than one common strategy and

one common language combination, a Web Service Provider will then determine to

opt for one ideal language combination for expressing policies and credentials before

TN commences. In order for the Web Service Provider to decide on whether a

common strategy or a common language combination can be found, the keyword-

based approach and the semantic-based approach (e.g. by using approaches such as

Resource Description Framework (Klyne and Carroll, 2004), Web Ontology

Language (Hitzler et al, 2012) and SPARQL (Prud and Seaborne, 2008) etc.) used in

Web Services discovery (Garofalakis et al., 2006) can be applied to this protocol.

Two steps are included in this stage. They are designed for a Web Service Provider to

determine a possible common strategy and a possible common language combination.

To aid clarity, the description of the preparation stage is divided into separate steps.

At each step, the internal structure of the step is described first; this outlines which

messages can be sent or received at which time points. An UML activity diagram is

then presented to exemplify the relevant processes of the internal structure. Following

the clarification of the internal structure, the relevant protocol message is simply

described. Detailed syntax and semantics of the protocol message is presented in

Appendix A.

4.5.1 Step one – Sends out a <TNPrepareRequest> message
Internal Structure: Whenever a user of a Web Service Requester decides to access a

resource located on a Web Service Provider, the message communication will be

triggered. The Web Service Requester then initiates a request by sending a

<TNPrepareRequest> message (described later) to inform a Web Service Provider

that it is intending to access a targeted resource or service (the process of the internal

structure is shown in figure 4.3).

 94

Figure 4.3. A Web Service Requester sends out a <TNPrepareRequest> message to a Web Service

Provider

Protocol message description: a <TNPrepareRequest> message includes a list of all

of the supported access control methods enabling a Web Service Provider to match

one of them to their accepted method list.

The detailed syntax and semantics of a <TNPrepareRequest> message is presented in

section A.1 in Appendix A.

4.5.2 Step Two – Receives an incoming <TNPrepareRequest> and

sends out an outgoing <TNPrepareResponse> message
Internal Structure: When the Web Service Provider receives a

<TNPrepareRequest> message from the Web Service Requester at step one, it will

determine the information in each list to discover whether there are common

strategies. If there are common strategies, the Web Service Provider should check the

conditions of the local user, which possesses the requested resource to determine

whether the common strategies can be used according to the local user’s condition.

For instance, the eager strategy cannot be used, when all of the credentials owned by

the local user are treated as sensitive.

If none of the common strategies is suitable to the conditions of the local user, the

Web Service Provider will respond with a <TNPrepareResponse> message (described

later) providing information that TN cannot be used along with the fault reason that

the strategy interoperability issue has been discovered. If there is more than one

common strategy that is suitable to the conditions of the local user, the Web Service

Provider should choose an ideal one according to a locally determined preference

order. After ensuring there is no strategy interoperability issue, the Web Service

A user of a Web Service Requester
decides to access a resource located on
a Web Service Provider

The Web Service Requester sends out a
<TNPrepareRequest> message to a
Web Service Provider

 95

Provider will discover whether there is any common language combination

(expressing credentials and policies) within the list. If no common language

combination can be found, the Web Service will respond with a

<TNPrepareResponse> message providing information that TN cannot be used along

with the fault reason that a language interoperability issue has been discovered. If

there is more than one common language combination, the Web Service Provider will

check whether or not the credentials owned by the user or the organisation are written

in the language belonging to the common language combination to finally decide on

whether a language combination can be used. Credential language checking is

required, since credential languages may be out of the control of the Web Service

Provider, whereas the policy languages used in the Web Service are normally under

the control of the Web Service Provider, so there is no need to check the policy

language. If a common language combination can be discovered, but the credentials

owned by the user are not written in a credential language that can be understood, the

Web Service Provider will send out a <TNPrepareResponse> message informing that

TN cannot be used along with the fault reason that a language interoperability issue

has been discovered. Finally, if both a common strategy and a common language

combination can be discovered, the Web Service Provider will respond with a

<TNPrepareResponse> message providing information that the negotiation stage can

be triggered. In addition, the common strategy name and common language

combination name along with the method name should be stored in a database for use

in the negotiation stage (The process of the internal structure is shown in figure 4.4).

 96

Figure 4.4. A Web Service Requester processes a <TNPrepareRequest> message

Check the conditions of
the local user to
determine whether a
common strategy can be
used

Send out a
<TNPrepareRespon
se> message
informing that TN
has failed along with
the fault reason:
strategy
interoperability issue

Interface: ReceiveTNPrepareRequest

Discover whether there are common strategies

[Yes] [No]

Discover and determine whether
a common language
combination that can be
processed by the policy
compliance checker exists

Send out a
<TNPrepareRespon
se> message
informing that TN
has failed along with
the fault reason:
strategic
interoperability
issue

[Yes] [No]

Send out a
<TNPrepareRespon
se> message
informing that TN
has failed along with
the fault reason:
language
interoperability issue

Check the credentials of the
local user to see whether the
credentials are written in a
language that belongs to a
common language combination

[Yes] [No]

Send out a <TNPrepareResponse> message informing
that the negotiation stage can be triggered

Send out a
<TNPrepareRespon
se> message
informing that TN
has failed along with
the fault reason:
language
interoperability issue

Store the names of chosen
language combination along
with that of the chosen
strategy to the database

[Yes] [No]

 97

Protocol message description: A <TNPrepareResponse> message contains

information about whether or not the negotiation stage can be triggered. If the

negotiation stage can be triggered, information about the common strategy and

language combination supported by the Web Service Provider is contained; otherwise,

the fault information explaining the reason is contained in this message informing that

the negotiation stage cannot be triggered.

The detailed syntax and semantics of a <TNPrepareResponse> message is presented

in section A.2 in Appendix A.

4.6 Negotiation Stage
Service specification: The design of the preparation stage is based on Protocol

Design Requirements 7-12 and Functionality Design Requirements 7-12.

If two Web Services have agreed to use a common strategy and a common language

combination (for expressing policies and credentials) by using TN to establish a trust

relationship in the preparation stage, the negotiation stage is then triggered to perform

real TN. In theory, the protocol design aims to support the use of different strategies.

However, some policy-exchanged strategies such as PRUNES and DFANS are not

available within this protocol, as they are not as superior as claimed by their designers

(see assessments in section 3.3.1). By contrast, as the eager strategy and parsimonious

strategy have been identified as the most representative strategies of the non-policy-

exchanged strategies and policy-exchanged strategies respectively through the

assessment of their feasibility in Web Services as stated in section 3.3.1, they are

incorporated in this protocol at a higher priority. In addition, the architecture design

within TrustBuilder2 is borrowed for serving this protocol, since the components

designed within TrustBuilder2 can support different strategies and different policy

compliance checkers for processing different language combinations (see section

3.3.4). This design can help two Web Services raise the possibility of interoperable

communication for TN.

4.6.1 Step one – Receives an incoming <TNPrepareResponse>

message and sends out an outgoing <AuthzDecisionQuery> message
Internal Structure: When the Web Service Requester receives a

<TNPrepareResponse> message, it will check whether the negotiation stage can be

 98

triggered. If the negotiation can be triggered, the relevant information such as a

common strategy and a common language combination will be stored in a database. It

will then send an <AuthzDecisionQuery> message (described later) to the Web

Service Provider; otherwise, the commencement of the negotiation stage cannot be

triggered due to a specific interoperability issue (the logical process of the internal

structure is shown in figure 4.5).

Figure 4.5. A Web Service Requester processes a <TNPrepareResponse> message

The existing SAML specification defines the syntax and semantics of messages for

authorisation between two Web Services. As some of their syntax and semantics are

suitable to be used to fulfil the protocol requirements for TN, they are applied to this

protocol to enable this protocol to be compatible with the existing Web Service

specifications.

Protocol message description: an <AuthzDecisionQuery> message contains

information about the user of the Web Service Requester, the Web Service Requester

itself and the requested information located on the Web Service Provider.

Discover the fault message, then
cease communication, since TN
cannot be used due to a specific
interoperability issue

Interface:
ReceiveTNPrepareResponse

Discover whether a list of the
names of the chosen strategy
and the chosen language
combination can be found

[Yes] [No]

Send out a SOAP message
containing an
<AuthzDecisionQuery>
message to trigger TN

Store the name of the
chosen strategy and that of
the chosen language
combination to the database

 99

The detailed syntax and semantics of an <AuthzDecisionQuery> message is presented

in section A.3 in Appendix A.

4.6.2 Step two – Receives an incoming <AuthzDecisionQuery>

message and decides to sends a relevant outgoing message
Internal Structure: If a Web Service has received an <AuthzDecisionQuery>

message, it must be a Web Service Provider. It will obtain the values of the relevant

attributes and store them in the database. In order to know what message should be

sent out, the Web Service Provider will check the database to obtain the chosen

strategy decided in the preparation stage. Information on the chosen strategy will be

sent to a component called the “Negotiation Strategy Repository Component” (as a

plugin component in TrustBuilder2, which can contain different implemented

strategies) to trigger the real strategy. As mentioned earlier, since this protocol can

only support the use of the eager strategy and parsimonious strategy, the discussed

scenarios are only relevant to the use of the two strategies. If the Web Service

Provider uses the eager strategy, it will send out a <CredentialSet> message

(described in section 4.6.4) containing local insensitive credentials. There should exist

local insensitive credentials, since the existence of the available insensitive credentials

has been ensured at step 2 in the preparation stage (see section 4.5.2). If the Web

Service Provider uses the parsimonious strategy, it should check whether there are

relevant policies protecting the resources. If there are, then the policies are placed into

a <PolicySet> message (described in section 4.6.3) to be sent out. If there is no

relevant policy protecting the resources, a particular <AuthzDecisionStatement>

message (described in section 4.6.6) will be sent out. Although this case may rarely

occur in TN, it is still taken into consideration for ensuring the completeness of the

protocol (The logical process of the internal structure is shown in figure 4.6).

 100

Figure 4.6. A Web Service Provider processes an <AuthzDecisionQuery> message

4.6.3 Possible intermediate steps – Receives an incoming <PolicySet>

message and sends out a relevant outgoing message
Internal Structure: Whenever a Web Service (can be either a Web Service

Requester or a Web Service Provider) receives a <PolicySet> message (the syntax

and semantics is described later), a Web Service needs to read the attribute

information within the <PolicySet> message and store this information in the

database. This functionality ensures that the Web Service is able to send an

appropriate outgoing message in response to the correct counterpart. In fact, this

functionality is even required within the existing Web Services, which receive the

 Interface:
ReceiveAuthzDecisionQuery

Obtain the relevant attribute information from
the message and store it in the database

Trigger the “Negotiation Strategy Repository
Component” with the chosen strategy

Send a request to the database for
obtaining the chosen strategy

Send out a <CredentialSet>
message containing local
insensitive credentials

[parsimonious strategy] [eager strategy]

Discover whether there
are policies protecting the
resources

Send out the resource with an
<AuthzDecisionStatement>
message informing that TN has
succeeded

[policies available] [no policies]

Send out a <PolicySet>
message containing the
relevant policies

 101

request and send the relevant response information. Following this functionality, the

Web Service will read the name of the chosen strategy and language combination

from the database to trigger the chosen strategy within the “Negotiation Strategy

Repository Component” and the chosen policy compliance checker within a

component called “Policy Compliance Checker Component”. Similar to the

“Negotiation Strategy Repository Component”, a “Policy Compliance Checker

Component” can contain an implementation of different policy compliance checkers,

where each of them can process the specific language combination (the logical

process of the aforementioned internal structure is shown in figure 4.7).

Figure 4.7. A Web Service processes a <PolicySet> message and decides to compare local credentials

with the received policies

With the cooperation of the chosen strategy and chosen policy compliance checker, a

Web Service is able to compare local credentials with the received policies. As the

TN approach is actually an extension of ABAC, the purpose of the policy compliance

checker is to identify whether the attributes within local credentials can fulfil the

policies. Credential types or names mentioned in the policies are only used as

examples. In other words, the policy compliance checker should not be designed to

Interface: ReceivePolicySet

Store the attribution information of a
<PolicySet> message to the database

Trigger the
“Negotiation
Strategy Repository
Component” with the
chosen strategy

Trigger the “Policy
Compliance Checker
Component” with the
chosen language
combination names

Send a request to
the database to
obtain the chosen
strategy name

Send a request to the
database to obtain the
chosen language
combination names

Compare local credentials with the received Policies

 102

search a credential repository relevant to a user or organisation (can be either a

requester or a provider) for whether there are specific local credentials along with the

attribute information mentioned in the policies. To achieve this purpose, an ontology

based approach as proposed in Squicciarini et al. (2006), should be integrated in each

policy compliance checker. This method can ensure that the received policies are

indeed fulfilled by the correct attribute information of credentials rather than a

specific credential type or name.

Once the policy compliance checker has determined whether the local credentials can

fulfil all of the rules of the received policies, it will decide what message should be

sent out. The result can be divided into four cases. The logical process of the internal

structure is shown in figure 4.8

 103

Figure 4.8. A process illustrating how the policy compliance checker makes a decision

Case 1: The received policies are not written in the policy language of the chosen

language combination, so comparison of them against local credentials is impossible.

This may occur, when the counterpart is a malicious Web Service. As a result, the

Web Service will send out a <Response> message (as a Web Service Requester,

syntax and semantics are described in section 4.6.5) or an <AuthzDecisionStatement>

message (as a Web Service Provider) informing the counterpart that TN has failed

along with the reason that an unknown policy language has been discovered.

Case 2: If the received policies are written in the recognised policy language, after

comparison with the local credentials, and it is determined that no local credentials

can fulfil all of the received policies, then a <Response> message (as a Web Service

Send out a
<Response> or
<AutzhDecisionState
ment>message
informing that TN
has failed with the
fault reason: wrong
policy language

Compare local credentials against the received policies

[Policies are not
written in the
chosen policy
language]

[Policies are
written in the
chosen policy
language]

Check whether local credentials
can fulfil the received policies

[No] [Yes]

Check whether the local
credentials are sensitive

[Yes] [No]

Send out a <PolicySet>
message containing the
policies protecting the
sensitive credentials

Send out a <CredentialSet>
message containing the
local insensitive credentials

Send out a
<Response> or
<AuthzDecisionStatem
ent> message
informing that TN has
failed with the fault
reason: no local
credentials can fulfil
received policies

 104

Requester) or an <AuthzDecisionStatement> message (as a Web Service Provider)

will be sent out with the fault reason that no local credentials can fulfil the received

policies. This message informs the counterpart that TN has failed.

Case 3: In cases that the received policies are written in the recognised policy

language, after comparing them against local sensitive credentials, if local sensitive

credentials can fulfil them, and local sensitive credentials have not been unlocked

(there are local policies protecting their disclosure), the Web Service should send out

these local policies in a <PolicySet> message first.

Case 4: In cases that the received policies are written in the recognised policy

language, after comparing them against local insensitive/sensitive credentials, if local

insensitive credentials or sensitive credentials (the relevant policies have been

fulfilled) can fulfil them, the Web Service should send out these local

insensitive/sensitive credentials in a <CredentialSet> message (discussed in section

4.6.4).

The existing XACML specification has provided a well-designed language, which can

specify one or more policies for the access control between Web Services. As they

can meet the protocol design requirements mentioned above, their syntax and

semantics are applied to this protocol.

Protocol message Description: a <PolicySet> message can contain one or more

policies. Unlike the original syntax and semantics defined in the XACML

specification that can only contain policies written in XACML, the modified

semantics of this message, in this protocol, is flexible enough to contain policies

written in any other existing policy language(s). If the existing policy language(s)

such as the Ack policy language (Winsborough and Li, 2002a) has defined its own

syntax and semantics to support the use of multiple policies, they can be contained

directly in this message. If policy languages such as the X-TNL policy language

(Bertino, Ferrari and Squicciarini, 2003b) do not provide such functionality in the

message, this protocol can provide optional syntax and semantics to support multiple

policy provision. If needed, the policies written in other policy languages contained

within this message can be encoded in a BASE64 format, which is one of the popular

 105

encoding schemes used to store or transfer data within SOAP messages in the context

of Web Services (Josefsson, 2006).

The detailed syntax and semantics of a <PolicySet> message is presented in section

A.4 in Appendix A.

4.6.4 Possible intermediate steps – Receives an incoming

<CredentialSet> message and sends out a relevant outgoing message
Internal Structure: When a Web Service (can be either a Web Service Requester or

a Web Service Provider) receives a <CredentialSet> message (described later), the

Web Service must verify the authenticity of the credential chains, before it is ready to

compare them with the local policies. In order to verify the credentials, the Web

Service will search the database to know the credential language within the chosen

language combination. If the received credential cannot pass the verification (e.g. the

credentials are not written in the credential language of the chosen language

combination or other issues etc.), a <Response> message (as a Web Service

Requester) or an <AuthzDecisionStatement> message (as a Web Service Provider)

will be sent out informing that TN has failed along with the fault reason that the

wrong credentials were received. If the received credential can pass the verification, a

query sent from the database will trigger the chosen strategy and the chosen policy

compliance checker to compare the received credentials with local policies. The

process of the partial internal structure is shown in figure 4.9 below.

 106

Figure 4.9. A process of verifying the authenticity and credential chains of the received credentials to

decide what to do

As the process of comparing the received credentials and local policies through the

use of the eager strategy is different from that of using the parsimonious strategy, the

Store the attribute information of a
<CredentialSet> message to the database

Interface:
ReceiveCredentialSet

Verify the authenticity and credential
chains of the received credential

[verification fail] [verification

succeed]

Send out a
<Response>
message or an
<AuthzDecisionStat
ement> message
informing that TN
has failed along with
the fault reason:
wrong credentials

Trigger the “Policy

Compliance Checker

Component” with the

chosen language

combination

Compare the
received credentials
with local policies

Send a request

to the database

to obtain the

chosen strategy

name

Send a request to

the database to

obtain the chosen

language

combination names

Trigger the

“Negotiation

Strategy

Repository

Component” with

the chosen

strategy

 107

following describes the process by using the eager strategy first. If the Web Service is

the Web Service Provider, it will check whether or not the received credentials can

fulfil the policies that protect the requested resource. If they can, the Web Service

Provider will send the resource and an <AuthzDecisionStatement> message

informing that TN has succeeded. If the received credentials cannot fulfil the policies,

it will check whether the received credentials can unlock any local sensitive

credentials that have not been sent by comparing them with local policies (from this

step, the process is the same for the Web Service Requester). If there are no further

local sensitive credentials that can be unlocked, it will check whether there are any

local insensitive credentials that have not been disclosed. If there are, these insensitive

credentials need to be sent out in a <CredentialSet> message; otherwise, the Web

Service will send a <Response> message (as a Web Service Requester) or an

<AuthzDecisionStatement> message (as a Web Service Provider) informing the

counterpart that TN has failed along with the fault reason that no local credentials can

be unlocked. If there are other local sensitive credentials that can be unlocked, the

new set of credentials will be sent out in a <CredentialSet> message. The logical

process of the internal structure in the case of using the eager strategy is shown in

figure 4.10 below.

 108

Figure 4.10. A process of comparing the received credentials against local policies by using the eager

strategy

The following describes the process of comparing the received credentials and local

policies, when the parsimonious strategy is used. If the received credentials cannot

Compare the received credentials against local policies

[eager strategy] [parsimonious strategy]

See the process

shown in figure 4.11

Check whether the Web

Service is a service provider

[Yes] [No]

Check whether the received
set of credentials can fulfil
the policies protecting the
requested resource

Send out the resource
with an
<AuthzDecisionStateme
nt> message informing
that TN has succeeded

Check whether the received
credentials can unlock any further
sensitive credentials through
comparing with the local policies

[No]

[Yes]

Send out a <Response> or
an
<AuthzDecisionStatement>
message informing that TN
has failed along with the
fault reason: no local
credentials can be unlocked

[Yes]

[No]

Send out a
<CredentialSet>
message containing the
new set of credentials

Check whether there are
any local insensitive
credentials that have not
been disclosed

Send out a
<CredentialSet>
message containing the
insensitive credentials

[Yes] [No]

 109

fulfil the specific local policies, the Web Service will send out a <Response> message

(as a Web Service Requester) or an <AuthzDecisionStatement> message (as a Web

Service Provider) informing that TN has failed along with the reason that the wrong

credentials have been received. If the credentials can fulfil the specific policies, it will

check whether there are any further local policies that need to be sent out. If there are,

these policies will be sent out in a <PolicySet> message. This circumstance may

occur, when the received credentials have fulfilled the policies protecting other

sensitive policies. As the sensitive policies have been unlocked, they can be sent out

to the counterpart.

If the Web Service has discovered that there are no further policies that need to be

sent out, the next action to be performed by the two Web Services is different. If the

Web Service is the Web Service Provider, it will check whether there are any local

sensitive credentials that have been unlocked. If there are, these unlocked sensitive

credentials will be sent out in a <CredentialSet> message. If there are not, it will send

the resource and an <AuthzDecisionStatement> message informing that TN has

succeeded, since all of the policies relevant to the requested resource have been

fulfilled. If the Web Service is a Web Service Requester, it will send out unlocked

sensitive credentials in a <CredentialSet> message to the counterpart. The relevant

process of the internal process by using the parsimonious strategy is shown in figure

4.11 below.

 110

Figure 4.11. A process of comparing the received credentials against local policies by using the

parsimonious strategy

Protocol message description: a <CredentialSet> message contains one or more

credentials disclosed by a Web Service. The structure of this message is similar to that

in a <PolicySet> message, which is designed as a container to include credentials

written in different credential languages.

Compare the received credentials against local policies

[parsimonious strategy] [eager strategy]

See the process

shown in figure 4.10

Judge whether credentials

can fulfil local policies?

[No] [Yes]

Send out a <Response> or
an
<AuthzDecisionStatement>
message: TN has failed
along with the fault reason:
wrong credentials

Check whether there are any further local
sensitive policies that need to be sent out

Send out a
<PolicySet>
message
containing
new policies

[Yes] [No]

Send out a <CredentialSet>
message containing credentials
that have not been sent out

[Yes] [No]

Check whether any sensitive local
credentials can be unlocked

Send out the resource with an
<AuthzDecisionStatement>
message: TN has succeeded

[Yes] [No]

Send out a <CredentialSet>
message containing credentials
that have not been sent out

Check whether the Web Service

is a service provider?

 111

The detailed syntax and semantics of a <CredentialSet> message is presented in

section A.5 in Appendix A.

4.6.5 Possible second last step – Receives a <Response> message from

a Web Service Requester and sends out an

<AuthzDecisionStatement> message
Internal Structure: If a Web Service Provider receives this message, it means that

the TN has failed due to some reasons. It then just checks the fault reason and sends

out an <AuthzDecisionStatement> message (see section 4.6.6). The logical process of

the internal structure is shown in figure 4.12.

Figure 4.12. A Web Service Provider processes a <Response> message

A <Response> message has been defined within the SAML specification. As it can

meet the protocol design requirements as mentioned in section 4.3, it is applied to this

protocol.

Protocol message description: a <Response> message contains a failed result, and

this message can only generated by a Web Service Requester.

The detailed syntax and semantics of a <Response> message is presented in section

A.6 in Appendix A.

4.6.6 Last step – Receives an <AuthzDecisionStatement> message

from a Web Service Provider
Internal Structure: whenever a Web Service Requester receives this message, it

should stop the communication with the counterpart (the logical process of the

internal structure is shown in figure 4.13).

Interface: ReceiveResponse

Check the fault reason and send
out an
<AuthzDecisionStatement>
message

 112

Figure 4.13. A Web Service Requester processes an <AuthzDecisionStatement> message

An <AuthzDecisionStatement> message has been defined within the SAML

specification. As it can meet the protocol design requirements as mentioned in section

4.3, it is applied to this protocol.

Protocol message description: an <AuthzDecisionStatement> message contains the

result information about TN. If TN has failed, a fault reason is also contained in this

message.

The detailed syntax and semantics of an <AuthzDecisionStatement> message is

presented in section A.7 in Appendix A.

4.7 Chapter Summary
This chapter initially presents a novel conceptual multi-layered interoperability-

solution design for illustrating the use of a protocol-based approach providing

interoperability for authorisation systems within Web Services taking into

consideration interoperability at multiple layers (i.e. layers 2 to 6). A proposed

protocol for addressing interoperability between authorisation systems within Web

Services is provided as an example of utilising the interoperability-solution design. To

ensure the correctness of the protocol, the process of design and development of this

protocol strictly follows the interoperability-solution design and the process of the

protocol design methodology as stated in section 4.1. In particular, the process

includes step one and step two. According to step one of the methodology, the

relevant protocol requirements are elicited based on a critical assessment of the

literature review stated (Chapter 2 and Chapter 3) and the solution proposed in an

interoperability-solution design as shown in table 4.1.

Interface:

ReceiveAuthzDecisionStatement

Check the result

Process the message

 113

Following the elicited requirements, a novel stage “the preparation stage” is added to

the proposed protocol. This stage can effectively aid two Web Services in reaching an

agreement on a common strategy and a common language combination for the

preparation of conducting a TN approach in the second stage. This agreement can

guarantee that the second stage will not fail due to the strategic interoperability issue

(interoperability at layer 6) or the capability interoperability issue (interoperability at

layer 5). In addition, the protocol is designed to take into consideration its

compatibility with the SAML specification and the XACML specification for

achieving authorisation.

Within the second stage as called “the negotiation stage”, TN-related functionalities

can be used for two unknown Web Services. In particular, the Web Service Provider

can make an access control decision based on the TN process, whereas the Web

Service Requester can also stop the authorisation process, if it discovers that it cannot

submit any credentials to fulfil the policies disclosed by the Web Service Provider.

Additionally, in both stages, the service specification and protocol specification are

presented. More specifically, the protocol specification constituting the relevant

protocol messages (syntax and semantics of each communication messages) and

internal structures (logical functionalities) are specified to provide syntactic (layer 2),

semantic (layer 3) and functional (layer 4) interoperability for the two stages designed

in the protocol.

Following step three of the protocol design and development methodology, protocol

verification is needed. The next chapter discusses the reason for the need for a

protocol verification test and provides a difference between the purpose of conducting

protocol verification and that of proposed interoperability-solution evaluation. In

addition, a discussion of selecting the most appropriate protocol verification method

is also presented.

	

 114

Chapter 5. Protocol Verification

5.1 Introduction
Chapter 4 has presented a conceptual multi-layered interoperability-solution design

(presented in table 4.1) illustrating how to use a protocol to provide interoperability

from layers 2 to 6 between two communicating systems. Following the guidance of

this design, an improved TN protocol for addressing interoperability issues between

authorisation systems within Web Services is then proposed. The protocol design

includes the service specification and protocol specification (internal structures and

protocol messages).

As the protocol design and development strictly followed the guidance of the

interoperability-solution design, if the effectiveness of the protocol can be proved, the

usefulness of the design will in turn be proved as well. The proof of the effectiveness

of the protocol is through evaluation of the protocol (presented in the chapter 7).

Before presenting the protocol evaluation, protocol verification is indispensable

according to step three of the protocol design and development methodology

identified in section 4.1. In essence, protocol verification forms a foundation for

protocol evaluation, as the effectiveness of a protocol can only be proved, if the

protocol has been properly verified (Matsuo et al., 2010).

There might be confusion between protocol verification and protocol validation. An

official IEEE guide (2011) explicitly points out a distinct difference between

verification and validation. Validation is used to test whether a product, service etc.

can meet the needs of customers or stakeholders (an external process), whereas

verification is mainly used to test whether a product, service etc. can conform to the

predefined requirements, regulations and so on (an internal process). As the improved

TN protocol proposed in Chapter 4 is not designed following the requirements of

specific customers or stakeholders, protocol validation is not suitable to be used in

this research.

Protocol verification normally includes a completeness test (Sunshine et al., 1982;

Chevalier and Vigneron, 2002) and a correctness test (Bhargavan, Obradovic and

 115

Gunter, 2002; Yolum, 2004). A completeness test is used to verify whether a protocol

has any design flaws, as any design flaws may affect the correctness of a protocol

(Martin, Hill and Wood, 2003). In terms of the definition of protocol correctness, a

variety of its definitions have been identified through a review of related work. For

instance, Fabrega and Herzog (1998) state that protocol correctness can only be

ensured, if communicating entities have agreed on the required information for the

protocol. Rein and Fokkinga (1999) regard the definition of protocol correctness as

interoperability. In other words, if each entity can successfully process a received

message according to the protocol, protocol correctness can hold. Researchers such as

Huang and Hsu (1994) and Yolum (2004) treat the definition of the protocol

correctness as the same as the definition of protocol completeness. Chkliaev, Hooman

and Stok (2000) take serializability as protocol correctness.

Although there are differences in the definition of protocol correctness listed above, a

widely accepted definition of protocol correctness does exist. Debbabi (2004)

recommends that protocol correctness can be proved, if the relevant properties can be

supported, where the relevant properties are designed to achieve the goal of designing

a protocol. Bella (2008) states, “A security protocol is correct if it lives up to the goals

that its designer stated against specific threats”. There are other researchers who also

support this definition of protocol correctness (e.g. Pironti, Pozza and Sisto, 2011;

Jamroga and Melissen, 2014).

Reflecting on the purpose of proposing the improved TN protocol, it is designed

following step one of the proposed interoperability-solution design to address the

raised second research problem (see sections 1.2.1 and 3.7). Therefore, following the

accepted definition of protocol correctness, correctness of the proposed protocol can

hold, as long as successful or failed authorisation can occur according to the specific

conditions pre-set to the two unknown entities. Each authorisation result by using this

TN protocol should follow the rules of TN (i.e. the general concept of TN presented

in section 3.2). Following this purpose, it can be identified that the purpose of the

protocol correctness test in this research is a sub part included in the protocol

evaluation in this research, which aims to verify whether the second research problem

can be addressed. This chapter only details the protocol completeness test, with the

 116

interoperability-solution evaluation including the protocol correctness test presented

in Chapter 7.

It should be noted that although a performance test (Linn and JR., 1989) is sometimes

required in protocol verification, it is not delivered in this research. This decision was

made taking into consideration that a performance test result cannot answer the

second research question (see section 1.2.2).

To prove the completeness of the protocol specification, a discussion of selecting an

appropriate method is presented first followed by an example for the illustration of the

use of the selected method. An overview of the completeness proof of the protocol

specification is then presented before a more detailed description of the proof is

provided.

5.2 Discussion of Methods for the Completeness Proof
To demonstrate the completeness of the logical design of the protocol specifications,

there are different optional formal methods that can be selected to use. To make a

decision to select the most appropriate method, there is a need to analyse their

benefits and limitations. Hidden Markov model (Baum and Petrie. 1966) is a method

that can be used to discover hidden states in a system; this is often used to obtain the

probability of each hidden state. However, in terms of the completeness proof in this

research, the researcher of this Thesis only wanted to prove that all of the hidden

states in this protocol could be identified, but had no interest in knowing the

probability of reaching these states. From this perspective, this method was not

appropriate to be used for proving completeness.

Another formal method is called the Finite State Machine (referred to as FSM

hereafter). This enables a check to be completed on the reachability of different states

(Bochmann and Gecsei, 1977; Bochmann, 1978; Sunshine, 1979; Sunshine et al.,

1982). Reachability can be checked with the use of a reachability tree diagram

(Peterson, 1977) called a State Transition Diagram (referred to as STD hereafter)

(Danthine, 1980); A STD contains all of the possible states generated from the

protocol specifications. The purpose of using this formalism is to check whether such

a diagram is complete.

 117

By using FSM, the discovery of potential deadlocks, assessment of the liveness of a

state, and the identification of loops is feasible. Drawbacks exist to this method, and

must be avoided to ensure the completeness (Merlin, 1976; Bochmann, 1978; Merlin,

1979; Palmer and Sabnani, 1986). A deadlock means that no further transition can

occur from the current state. Liveness of a state requires that all of the possible states

can be reached from the initial state. Loops, sometimes are necessarily required by the

logical design of the protocol specifications, but may result in an infinite iteration.

Different solutions are required to avoid unexpected infinite iterations.

There also exist other formal methods that can be used to test the completeness of a

protocol. Example methods include: enumeration of finite shapes (Doghmi, Guttman

and Thayer, 2007) and constraint satisfaction procedure (Millen and Shmatikov,

2001) etc. After an analysis of their features, they provide similar effects as supplied

by FSM in terms of a protocol completeness test, as their conceptual ideas are quite

similar to the idea used in FSM, where terms used in these methods are different. In

other words, they can be treated as variations of FSM. Therefore, given the limited

differences between methods at a conceptual level, this Thesis uses FSM as the

method to provide a completeness test.

After a discussion of the selected method for the completeness proof, the next section

presents an introduction of an example FSM to illustrate how this method is used in

this research.

5.3 Introduction of An Example FSM
As mentioned earlier, the formalism called FSM has been selected to demonstrate the

completeness of the protocol. However, before the demonstration, a clear definition of

the completeness should be given. To define the completeness of the diagram, an

example STD (shown in figure 5.1) is used to help clarify the definitions given below:

 118

Figure 5.1. An example STD

Definition 1: Transition: is a link from a current state to the next state.

Definition 2: One-way transition: is a transition from a current state to the next

state, where a reverse transition is not possible. The symbol → expresses a one-way

transition. An example one-way transition in figure 5.1 is the first transition starting

from the initial state pointing to state 1. This example is denoted as: initial state →

state 1.

Definition 3: Two-way transition: is a transition from a current state to the next

state, where a reverse transition is possible. The symbol ↔ expresses a two-way

transition. An example two-way transition in figure 5.1 is the transition from state 1 to

state 3 and from state 3 back to state 1. This example is denoted as: state 1↔ state 3.

Definition 4: Self-Transition: is a transition from a current state to itself directly.

The symbol ↵ST expresses a self-transition. An example self-transition in figure 5.1 is

the transition from state 3 to itself directly. This example is denoted as: state 3↵ST.

Definition 5: Transition Chain: is a set of continuous transitions. An example

transition chain in figure 5.1 is that the first transition starts from the initial state

pointing to state 1, from which a second continuous transition pointing to state 3. This

example is denoted as: initial state → state 1 → state 3.

Definition 6: Initial State: is the first state triggered in a STD.

Definition 7: Final State: is the last state, where no more transitions will occur. For

instance, in figure 5.1, states 2, 4 and 5 are all final states.

Initial State

State 1 State 2 (Final State)

State 3 State 4 (Final State)

State 5 (Final State)

 119

Definition 8: Intermediate State: is a state at which a transition can arrive from a

previous state, and from which a path can reach the next state. For instance, in figure

5.1, states 1 and 3 are intermediate states.

Definition 9: Sibling States: are the optional states, through which a transition can

arrive from the same previous state. In the STD, a sibling state can be either an

intermediate state or a final state. The decision to reach which sibling state depends

on the specific context variables. For instance, states 1 and 2 are sibling states to each

other, and states 3 and 4 are also sibling states to each other.

Definition 10: Self-Transition State: is a state on which a self-transition occurs.

State 3 in figure 5.1 is an example self-transition state.

Definition 11: Path: is a transition chain starting from the initial state reaching a final

state or a duplicate state. Within the transition chain, the number of the transitions is

equivalent to or greater than one. In particular, when the number equals to one, only

one transition exists in the set of transitions. It links from the initial state directly to

the final state. When the number is greater than one, the transitions in the transition

chain must be linked to or from at least one intermediate state. For instance, in figure

5.1, an example path can be a path either starting from the initial state directly

pointing to state 2, or from the initial state pointing to state 1 and in turn pointing to

state 4. This example is denoted as: Initial state → state 2 or Initial State → State 1→

State 4.

Definition 12: Infinite Transitions: are transitions from two or more repeated states

to form infinite loops, so a transition to a final state is impossible. For instance, the

third path above may cause infinite transitions, if there is no approach that can enable

the transition from state 3 to itself or state 5 other than state 1. Thus, if there exist

infinite transitions in a STD, and no pertinent approach can break them, the

completeness of the STD cannot hold.

Definition 13: Diagram Completeness: Starting from the initial state, whenever

traversing through an intermediate state, a final state can always be reached to

guarantee the existence of a path. If all of the different paths can be found, when all of

the sibling states are involved according to the service specification, and if there

exists infinite transitions that can be broken by relevant approaches, the diagram

completeness will hold.

 120

Researchers such as Merlin (1976), Peterson (1977) and Merlin (1979) recommend

one formal method called Petri Nets, which can be used for presenting all of the

different paths of a protocol. However, after an analysis of this method, a conclusion

was drawn that, unfortunately, this method was insufficient to support the

presentation such as two-way transition or self-transition, it is therefore not used in

this chapter. Instead, all of the different paths of the example STD shown in figure 5.1

are expressed by using the chosen symbols illustrated in the examples above. Figure

5.2 lists all of the paths of the example STD by using the chosen symbols.

1. Initial State → State 2.

2. Initial State → State 1→ State 4.

3. Initial State → State 1↔ State 3↵ST → State 5.
Figure 5.2. Completeness of the example STD

The completeness of the example STD as shown in figure 5.2 can only be proved, if

there is at least one approach that can break the infinite transitions between states 1

and 3 and between the self-transition of state 3. Otherwise, the diagram completeness

cannot be proved. After the introduction of an example STD along with the definition

of diagram completeness, the completeness of the STD of the protocol is illustrated in

the next section.

5.4 FSM-based Completeness Proof of the Protocol

5.4.1 Overview of the states of the protocol
An overview of the states of the protocol is presented in table 5.1. According to the

protocol specification presented in Chapter 4, there are two stages designed in this

protocol. Stage one is called “the preparation stage”, and stage two is called “the

negotiation stage”. In each stage, there are several protocol messages defined within

it. Within the completeness test by using the FSM, a state is represented as the time

when a protocol message is completely processed according to its relevant internal

structure and a decision has to be made whether to send out a message or not.

 121

Preparation Stage

After processing a <TNPrepareRequest> message and sending out a

<TNPrepareResponse> message (state 1 and state 2)

Negotiation Stage (Optional 2)

After processing an <AuthzDecisionQuery> message and sending out an

<AuthzDecisionStatement> message (state 3) or a <PolicySet> message (state 4)

After processing a <PolicySet> message (state 4) and sending out a possible message

After processing a <CredentialSet> message (state 5, state 6, state 8 and state 9) and

sending out a possible message

After processing a <Response> message (state 7 and state 10) and sending out an

<AuthzDecisionStatement> message

After processing an <AuthzDecisionStatement> message (state 7, state 10 and state

11)
Table 5.1. An overview of states designed in the protocol

An overview of the preparation stage using the FSM is presented in figure 5.3. As the

process of the negotiation stage will differ, when the parsimonious strategy and the

eager strategy are used, an overview of the negotiation stage of the two optional

strategies is presented in figures 5.4 and 5.5. Figures 5.3, 5.4 and 5.5 relate directly to

figure 4.2 primarily through the condition statements displayed on each of the links.

For instance, in figure 5.3, a <TNPrepareRequest> message and a

<TNPrepareResponse> message shown in the condition between the initial state and

state 1 or state 2 can also be found in step one and step two of stage 1 of the protocol

as shown in figure 4.2.

Figure 5.3. The entire STD of the preparation stage of the protocol

[Transmit a <TNPrepareRequest>
message and a
<TNPrepareResponse> message,
and there is no interoperability
issue]

State 1: TN can be used State 2 (Final State): TN cannot be
used (This state can only be triggered by
a Web Service Requester)

Initial State: Start the preparation stage

[Transmit a <TNPrepareRequest>
message and a <TNPrepareResponse>
message, and there exists an
interoperability issue]

 122

Figure 5.4. The entire STD of the negotiation stage of the protocol, while the parsimonious strategy is

used

[Case 1. Unknown language
Case 2. No local credentials
Case 3. PCD
An <AuthzDecisionStatement>
message or a <Response>
message will be transmitted]

[Wrong remote
credentials, so an
<AuthzDecisionStatement
> message or a
<Response> message will
be transmitted]

[Credentials can fulfil
received policies in
the former rounds,
so a <CredentialSet>
message will be
transmitted

State 7 (Final state):
TN has failed, so that
access control is not
granted.

[Credentials cannot fulfil the
policies (when the counterpart
is a malicious Web Service), so
a <CredentialSet> message
may be transmitted]
 State 6: Wrong Credentials

[Credentials
can fulfil the
policies, and a
<CredentialSet
> message will
be transmitted]

[More Policies can
be discovered, so a
<PolicySet>
message will be
transmitted]

State 5: Correct Credentials

State 4: Policies

[Trigger the negotiation stage, and an <AuthzDecisionQuery> message will be transmitted]

State 1: No Internal interoperability
issue, TN can be used

[There exist no policies protecting the
disclosure of the resources, so an
<AuthzDecisionStatement> message will
be transmitted]

State 3 (Final state):
TN has succeeded, so
access control is
granted (This state can
only be triggered by a
Web Service Provider)

[There exist policies protecting the disclosure of the
resources, so a <PolicySet> message will be
transmitted]

[There exist policies protecting the
disclosure of the resources
(Potential PCD), so a <PolicySet>
message will be transmitted]

[No policies
protecting the
disclosure of the
resources, so an
<AuthzDecisionState
ment> message will
be transmitted]

[Credentials cannot
fulfil the policies, and
a <CredentialSet>
message may be
transmitted]

 123

Figure 5.5. The entire STD of the negotiation stage of the protocol, while the eager strategy is used

Combining the FSM in figures 5.3, 5.4 and 5.5 together, all of the paths generated

from the protocol are presented in figure 5.6.

Initial State → state 2 (final state).

Initial State → state 1 → state 3 (final state).

Initial State → state 1 → state 4↵ST → state 7 (final state).

Initial State → state 1 → state 4↵ST ↔ state 5↵ST → state 3 (final state).

Initial State → state 1 → state 4↵ST → state 6 → state 7 (final state).

Initial State → state 1 → state 4↵ST ↔ state 5↵ST → state 6 → state 7 (final state).

Initial State → state 1 → state 8 → state 10 (final state).

Initial State → state 1 → state 9↵ST → state 8 → state 10 (final state).

Initial State → state 1 → state 9↵ST → state 10 (final state).

Initial State → state 1 → state 9↵ST → state 11 (final state).

Figure 5.6. All of the paths of STD of the protocol

It can be observed from figure 5.6 that each path is finished at a state as a final state.

According to definition 13 above, this is the first condition required by the diagram

State 1: No Internal interoperability
issue, TN can be used

State 8: Fake
Credentials

[As a malicious Web Service
Provider, a <CredentialSet>
message may be transmitted]

[A normal Web Service
Provider will transmit a
<Credential> message]

State 9:
Real
Credentials

State 10 (Final
state): TN has failed

[The counterpart is a malicious
Web Service, and a
<Response> message or an
<AuthzDecisionStatement>
message may be transmitted]

State 11 (Final State): TN
has succeeded (This state
can only be triggered by a
Web Service Provider)

[Received credentials can fulfil the
policies protecting the resources, so
an <AuthzDecisionStatement>
message will be transmitted]

[No more local sensitive credentials
can be unlocked by the received
credentials, so a <Response>
message or an
<AuthzDecisionStatement> will be
transmitted]

[Received credentials can
unlock local sensitive
credentials, so a
<CredentialSet> message
will be transmitted]

[As a malicious Web Service, a
<CredentialSet> message may be
transmitted]

 124

completeness. As the second condition, to verify the diagram completeness, a proof

that all of the potential infinite transition points can be broken has to be provided.

Clarification of the second condition and the correctness of the construction of the

FSM of the protocol presented in figures 5.3, 5.4 and 5.5 is discussed in detail in the

following sections.

5.4.2 FSM-based completeness proof of the preparation stage
According to the proposed protocol, the preparation stage is triggered first to allow

two Web Services to reach an agreement about whether TN can be used. The initial

state is triggered, when a Web Service Requester sends a <TNPrepareRequest>

message to let the Web Service Provider check whether or not there is an

interoperability issue at layers 5 or 6 (i.e. strategic or capability layer). Once the Web

Service Provider has made a decision based on the information provided in the

<TNPrepareRequest> message, it will inform the Web Service Requester of the result

in a <TNPrepareResponse> message. This result includes two possibilities: (1) TN

cannot be used due to an identified interoperability issue (e.g. strategy or language

interoperability issue) and (2) TN can be used without any interoperability issues.

Thus, starting from the initial state, two sibling states can be reached. The first

possible state (referred to as state 1) is that TN can be used, since no interoperability

issue has been discovered. State 1 is an intermediate state, since it will trigger the

negotiation stage. The second possible state (referred to as state 2) is that TN cannot

be used due to the existence of an identified interoperability issue. State 2 is a final

state, since the negotiation stage will not be triggered. The construction of this partial

STD presenting the possible transitions from the initial state is shown in figure 5.7

below.

Figure 5.7. Two transitions from the initial state

[Transmit a <TNPrepareRequest> message
and a <TNPrepareResponse> message, and
there is no interoperability issue]

State 1: TN can be used State 2 (Final state): TN cannot be used
(This state can only be triggered by a Web
Service Requester)

Initial State: Start the preparation stage

[Transmit a <TNPrepareRequest> message
and a <TNPrepareResponse> message, and
there exists an interoperability issue]

 125

Starting from state 1, the second stage called “the negotiation stage” will be triggered,

once the Web Service Requester sends an <AuthzDecisionQuery> message detailing

information about the requested resource to the Web Service Provider. According to

the internal structures of the negotiation stage of the protocol, internal structures for

processing various incoming messages are different, when different strategies (i.e. a

eager strategy and a parsimonious strategy) are used. This phenomenon requires a

discussion of state transitions in the eager strategy to be separated from that in the

parsimonious strategy. The scenario of using a parsimonious strategy is discussed first

in the next section.

5.4.3 FSM-based completeness proof of the negotiation stage with the

use of a parsimonious strategy
With the use of the parsimonious strategy, two transitions are possible. If the

requested resource is not protected by any policies, a possible state (referred to as

state 3) is that the resource can be disclosed with the last message (the

<AuthzDecisionStatement> message). In other words, TN has succeeded, since the

resource is set as a non-sensitive resource that is publicly accessible. Thus, state 3 is a

final state. If the requested resource is protected by its policies, a state (referred to as

state 4) that will be reached is an intermediate state, in which the entity will disclose

the policies protecting the resources. The construction of this partial STD presenting

the possible transitions from state 1 with the use of the parsimonious strategy, is

shown in figure 5.8 below:

 126

Figure 5.8. Transitions from state 1, when the parsimonious strategy is used

As discussed in section 4.6.3, according to the internal structures of the negotiation

stage with the use of the parsimonious strategy, once a Web Service receives remote

policies requiring local credentials, four cases will occur. Case 1: The local

credentials that can fulfil the remote policies are sensitive. They are protected by

other policies, so the entity will disclose policies in a <PolicySet> message. Case 2:

The local credentials that can fulfil remote policies are not sensitive, so the entity will

disclose credentials in a <CredentialSet> message. Case 3: No local required

credentials can be found, so the entity will send a <Response> message (sent by a

Web Service Requester) or an <AuthzDecisionStatement> message (sent by a Web

Service Provider) containing a fault reason. Case 4: PCD may be found, so the entity

will send a <Response> message or an <AuthzDecisionStatement> message

containing a fault reason (see figure 6.1 shown in section 6.3.3). However, as

mentioned in section 3.3.3, a malicious Web Service may be involved. Thus, another

two cases may occur. Case 5: If a Web Service does not hold any local credentials

that can fulfil the remote policies, but it still sends some unrelated credentials to an

entity. The entity will send a <Response> message (as a Web Service Requester) or

an <AuthzDecisionStatement>message containing (as a Web Service Provider) a fault

reason. Case 6: The received remote policies are written in unknown languages, so the

[Trigger the negotiation stage, and an
<AuthzDecisionQuery> message will be transmitted]

[There exist no policies protecting
the disclosure of the resources, so
an <AuthzDecisionStatement>
message will be transmitted]

[There exist policies protecting
the disclosure of the resources,
so a <PolicySet> message will
be transmitted]
 State 3 (Final state): TN

has succeeded, so
access control is granted
(This state can only be
triggered by a Web
Service Provider)

State 4:

Policies

State 1: No Internal interoperability issue,
TN can be used

 127

entity will send a <Response> message or an <AuthzDecisionStatement>message

containing a fault reason.

As some of the cases mentioned above can be represented as a single state, the six

cases form four sibling states from state 4. The first possible state is a self-transition

state of state 6 that the entity will send policies. This self-transition of state 6 may

cause infinite transitions. In particular, if iteration exists in this process, the two

entities may keep sending the same policies to each other. This means that the

transition from the current state (disclosing policies) to the next state (disclosing

policies) will cause PCD (see section 3.3.1.2) between two entities. Such PCD

occurring in the improved TN protocol are typical infinite transitions, which can

break the completeness of the improved TN protocol. Unfortunately, there is no

relevant solution designed within the protocol to enable an entity to automatically

detect the occurrence of PCD. Therefore, it requires a novel solution that can be

embedded into the protocol to resolve this issue; otherwise, the completeness of the

protocol cannot hold.

The second state (referred to as state 5) is an intermediate state that the entity will

send correct credentials in a <CredentialSet> message that can fulfil remote policies.

The third state (referred to as state 6) is an intermediate state that the entity will send

wrong credentials in a <CredentialSet> message, if this entity is a malicious Web

Service, or the logical design of its policy compliance checker is wrong. The fourth

state (referred to as state 7) is a final state that TN has failed. Three reasons can lead

to the transition from state 6 to reach this state. Reason 1: remote policies are written

in an unknown language (see reason two contained in a <Fault> element of an

<AuthzDecisionStatement> message in section A.7). Reason 2: there is no local

credential that can fulfil remote policies (see reason three contained in a <Fault>

element of an <AuthzDecisionStatement> message in section A.7). Reason 3:

potential PCD may be identified (see reason four contained in a <Fault> element of an

<AuthzDecisionStatement> message in section A.7). The construction of this partial

STD presenting possible transitions from state 4 is shown in figure 5.9 below:

 128

Figure 5.9. Four possible transitions from state 4

State 5 indicates the circumstance that an entity has received the correct remote

credentials. From this state, there are four states that can be reached (see figure 4.11).

The first possible state is state 4 that remote credentials have fulfilled local policies

that have been sent to the counterpart, at which point the entity may send further local

sensitive policies in a <PolicySet> message. The transition from state 5 back to state 4

indicates that the transition between the two states is a two-way transition, which

explores a potential infinite iteration that has never been identified in the state-of-the-

art TN-based authorisation systems. For instance, if one Web Service is maliciously

designed, it may send out infinite different policies requesting the same credentials

from the counterpart. Unfortunately, there is no solution designed within the protocol

that can enable an honest Web Service to automatically detect such an attack. The

identification of this weakness breaks the completeness of the protocol for a second

time (no automatic detection for PCD identified above is the first time breaking the

completeness of the protocol).

The second possible state is itself - a self-transition state that remote credentials have

fulfilled local policies that have been sent to the counterpart, so the entity may send

credentials that are required by the remote policies in a recent round in a

<CredentialSet> message. It seems that another infinite transition may occur between

[There exist policies protecting the
disclosure of the resources
(Potential PCD), so a <PolicySet>
message will be transmitted]

[Credentials can(not) fulfil the
policies, and a <CredentialSet>
message will(may) be
transmitted]

[Credentials cannot fulfil the policies
(when the counterpart is a malicious
Web Service), so a <CredentialSet>
message may be transmitted]

[Case 1. Unknown language
Case 2. No local credentials
Case 3. PCD
An <AuthzDecisionStatement> message or a
<Response> message will be transmitted]

State 7 (Final
state): TN has
failed, so access
control is not
granted.

State 5: Correct
Credentials

State 6: Wrong
Credentials

State 4:

Policies

 129

the self-transition state 5 and itself, but this infinite transition will not occur in the

process of the negotiation stage, if at least one of the Web Service is honestly

designed (the circumstance that two Web Services are both maliciously designed is

outside consideration, as TN is mainly used to help two unknown entities to establish

a bilateral trust relationship rather than to enable two maliciously designed Web

Services to attack each other). The reason is illustrated as follows.

The transition from state 5 to itself can occur, only if the received credentials can

fulfil local policies. If the two Web Services are both honestly designed, infinite

exchange of policies should not occur, which will in turn result in a finite exchange of

credentials in this first instance. If one Web Service is maliciously designed and the

other one is honestly designed, at least the number of credentials sent by the honestly

designed Web Service is finite. Therefore, in this second instance, infinite exchange

of credentials should not occur either.

The third possible state is state 6 that wrong credentials may be sent out in a

<CredentialSet> message. The fourth possible state is state 3 as a final state that

remote credentials cannot fulfil local policies, so the entity will send a <Response>

message (as a Web Service Requester) or an <AuthzDecisionStatement> message

(as a Web Service Provider) containing a fault reason. The construction of this partial

STD presenting the possible transitions from state 5 is shown in figure 5.10 below.

Figure 5.10. Three possible transitions from state 5

State 4: Policies

[More Policies can be
discovered, so a
<PolicySet> message will
be transmitted]

State 5: Correct

Credentials

[Credentials can fulfil
received policies in the
former rounds, so a
<CredentialSet> message
will be transmitted]

State 6: Wrong Credentials

State 3 (Final State)
[No policies protecting the disclosure of the resources, so an
<AuthzDecisionStatement> message will be transmitted]

[Credentials cannot fulfil
received policies in the former
rounds, so a <CredentialSet>
message may be transmitted]

 130

In figure 5.10, from state 6, there exists only one transition to the next state that TN is

not successful, since the received credentials cannot fulfil local policies (see reason

one contained in a <Fault> element in an <AuthzDecisionStatement> message in

section A.7). Thus, the reached state is state 7 as a final state. The construction of this

partial STD presenting the possible transitions from state 6 is shown in figure 5.11

below.

Figure 5.11. One transition from state 6

As the state transitions with the use of the parsimonious strategy have been discussed

above, the next section discusses the state transitions with the use of an eager strategy.

5.4.4 FSM-based completeness proof of the negotiation stage with the

use of an eager strategy
When the eager strategy is used (see figures 4.6, 4.9 and 4.10), two transitions will be

produced from state 1 (as the first state in the negotiation stage, see figure 5.3 and

5.7). The first possible state (referred to as state 8) is that fake credentials (cannot pass

the credential authenticity checking as mentioned in section 4.6.4, see figure 4.12)

may be disclosed in a <CredentialSet> message. This state may occur, when the Web

Service Provider is maliciously designed, or the internal structure is wrongly

designed. The second possible state (referred to as state 9) is that real credentials will

be disclosed in a <CredentialSet> message. The construction of this partial STD

presenting the possible transitions from state 1 with the use of the eager strategy is

shown in figure 5.12 below.

State 7 (Final State)

[Wrong remote credentials, so
an <AuthzDecisionStatement>
message or a <Response>
message will be transmitted]

State 6: Wrong
Credentials

 131

Figure 5.12. Transitions from state 1, when the eager strategy is used

When state 8 has been reached, a final state (referred to as state 10) is the only state

that can be transitioned from state 8. The fake credentials can be detected by using the

“Credential Verification Component” in section 4.6.4 (see figure 4.9). The Web

Service Requester/Provider must terminate TN by sending a <Response>

/<AuthzDecisionStatement> message containing a fault reason (see reason one

contained in a <Fault> element of a <Response>/<AuthzDecisionStatement> message

in section A.6/A.7). The construction of this partial STD presenting the possible

transitions from state 8 is shown in figure 5.13 below.

Figure 5.13. A transition from state 8

If real credentials have been received as indicated in state 9, there are four possible

transitions generating different states. The first possible state is state 8, where fake

credentials contained in a <CredentialSet> message may be sent out. The condition of

the occurrence of the two cases is the same as that mentioned in state 8, in which the

counterpart is a maliciously designed Web Service or the policy compliance checkers

State 1: No Internal interoperability

issue, TN can be used

State 8:

Fake

Credentials

[A malicious Web Service
Provider, and a
<Credential> message
may be transmitted]

[A normal Web Service
Provider, so a
<CredentialSet> message
will be transmitted]

State 9: Real

Credentials

State 8:

Fake Credentials

State 10 (Final state): TN has failed,
since the received credentials cannot
pass the authentication check

[The counterpart is a malicious Web Service,
and a <Response> message or an
<AuthzDecisionStatement> message will be
transmitted]

 132

are wrongly designed; otherwise, this state cannot be reached, if both Web Services

are correctly designed following the guidance of the eager strategy. The second

possible state is itself as a self-transition state. It seems that there is another infinite

iteration occurring on the self-transition state 9, but this infinite iteration will be

avoided due to the intrinsic nature of the eager strategy. For instance, if one of the

Web Services discloses credentials strictly following the eager strategy, it will

eventually terminate TN, when it discovers that no more local sensitive credentials

can be unlocked. This result will not be changed regardless of whether the counterpart

is maliciously designed or not. The third possible state (referred to as state 11) is a

final state indicating that TN has succeeded. This state can only be triggered by a

Web Service Provider, which has discovered that the received credentials have

fulfilled all of the policies protecting the requested resource. The fourth possible state

is state 10 as a final state. At this state, a Web Service, as a Service Requester will

send a <Response> message, or as a Service Provider, will send an

<AuthzDecisionStatement> message containing a fault reason (see reason one

contained in a <Fault> element of a <Response>/<AuthzDecisionStatement> message

in section A.6/A.7.) informing that TN has failed. This state will be reached, if a Web

Service (can be either a Web Service Requester and a Web Service Provider)

discovers that no more local sensitive credentials can be unlocked by the received

credentials. The construction of this partial STD presenting the possible transitions

from state 9 is shown in figure 5.14 below.

Figure 5.14. Four transitions from state 9

 [As a malicious Web Service, a
<CredentialSet> message may
be transmitted]

State 8
Fake
Credentials

[No more local sensitive credentials can
be unlocked by the received credentials,
so a <Response> message or an
<AuthzDecisionStatement> message will
be transmitted]

State 10 (Final
State): TN has
failed

[Received credentials can fulfil the
policies protecting the resources, so
an <AuthzDecisionStatement>
message will be transmitted]

State 11 (Final State): TN has succeeded (This state can
only be triggered by a Web Service Provider)

State 9: Real

Credentials

[Received credentials can
unlock local sensitive
credentials, so a
<CredentialSet> message will
be transmitted]

 133

5.5 Identified Innate Vulnerabilities
Through the detailed process of the protocol completeness verification, it has been

identified that the improved TN protocol is not complete, since two types of infinite

iteration may exist during the conduction of TN. As the current functionalities

designed within the protocol cannot break the infinite iteration, the second condition

of the protocol completeness cannot be fulfilled. The two types of infinite iteration as

innate vulnerabilities have been explored within figure 5.10. The first vulnerability is

that no functionality is designed within this protocol to enable two Web Services to

automatically detect the occurrence of potential PCD. The second vulnerability is that

no functionality is supported by this protocol to enable a honestly designed Web

Service to defend against attacks, if its counterpart keeps sending different policies

requesting the same local credentials.

5.6 Impact of the FSM Approach
The FSM as a formalism was initially used to verify the completeness of a protocol.

When the protocol was being verified through the process, the initial context of the

protocol was that the two Web Services were honest Web Services. In other words, if

developers implemented this protocol strictly following the protocol specification,

none of the potential infinite iteration discovered in the verification results would

occur. For instance, the occurrence of PCD may occur between the honest Web

Services in practice, but the occurrence of the attacks as the above-identified second

vulnerability issue should not occur in practice. However, discovery of unexpected

infinite iteration through the use of the FSM on the protocol completeness test gave

rise to consideration other possible protocol application contexts (i.e. TN

communication may not only occur between two honest Web Services, but also occur

between one malicious Web Service and one honest Web Service). In other words,

FSM can not only be utilised to effectively identify potential infinite iteration, but can

also be leveraged to enable protocol developers to explore implicit vulnerability

issues existing within a protocol. Therefore, the effect of applying FSM on a protocol

to explore these potential vulnerability issues might be widely used in other

communication protocol designs.

 134

5.7 Chapter Summary
This chapter presents protocol verification for demonstration of the protocol

completeness according to step three of the protocol design and development

methodology. After an analysis of the available approaches, FSM has been selected as

the most appropriate approach for the demonstration of the protocol completeness. An

overview and detailed completeness proof are presented and discussed. The

completeness proof is necessary, as it forms a foundation for the correctness test or

the protocol evaluation, which aims to prove whether or not the proposed protocol can

provide interoperability at the relevant layers as announced in the interoperability-

solution design presented in table 4.1. Unfortunately, through the completeness

verification process, two innate vulnerabilities have been identified within the

protocol. Without relevant solutions, the protocol cannot be proved to be complete.

Exploration of a potential solution for resolving the two vulnerabilities is discussed in

the next chapter.

 135

Chapter 6. Remembrance of Local Information

Status for Enforcing Robustness of Policy-

Exchanged Strategies for Trust Negotiation

6.1 Introduction
Detailed protocol verification has been presented in Chapter 5. As identified in the

verification results, two innate vulnerability issues still exist within the improved TN

protocol as well as state-of-the-art TN-based authorisation systems. The first

vulnerability issue is that there is no approach at present for the automatic detection of

PCD (detailed in section 6.2). Li et al. (2003) have proposed an approach called

OSBE (see section 3.3.1.2), which partially resolves this problem, but the approach

works on the basis that PCD has been identified. There is however no current

approach to enable two entities to automatically detect the occurrence of PCD. The

second vulnerability is that there is no approach at present, which enables an honest

Service Requester/Service Provider to defend against Repetitive Credential Request

Attacks (detailed in section 6.2 and referred to as RCRA hereafter) potentially causing

a DoS impact on the Web Service. If an honest Service Requester/Service Provider is

communicating with a malicious unknown Service Provider/Service Requester, the

malicious entity may continue sending requests, which impact on the other entity’s

resources.

As reviewed in Chapter 3, TN is an alternative to ABAC-based authorisation

approach for two unknown systems to make access control decisions, so any flaws

existing within TN may cause it to be less useful to provide security. Therefore, it is

important to explore relevant solutions for addressing the two innate vulnerability

issues to improve TN as soon as possible.

This chapter aims to identify possible solutions for the two identified vulnerability

issues within TN. To enable a reader to have an insight into the two vulnerability

issues with ease, two new case scenarios are presented to illustrate how the two

vulnerability issues may occur within the TN process.

 136

A conceptual solution design is proposed along with detailed clarification of its

realisation by means of a specific technique in practice. After the description of the

solution, relevant evaluation is discussed for demonstrating the effectiveness of this

proposed solution. The next section starts with the description of the two case

scenarios.

6.2 Innate Vulnerability Issues in TN
Two case scenarios in the context of Web Services are presented in this section. Case

scenario 1 aims to illustrate how PCD may occur within a TN process between two

honest unknown entities, and where the relevant vulnerability issue remains. Case

scenario 2 aims to illustrate how an honest Service Provider/Service Requester may

suffer RCRA from an unknown malicious Service Requester/Service Provider, which

keeps repeatedly requesting the same credentials an undetermined number of times.

As both vulnerability issues exist only in policy-exchanged strategies and the

parsimonious strategy has been assessed as the most typical representation of this

category (see section 3.3.1.2), the case studies below will use this strategy.

Without loss of generality, it is assumed that each resource, credential, policy set and

policy will be assigned a unique id during the process. Symbols are used to represent

the detailed information exchanged between them. More specifically, the meaning of

symbols are explained as follows:

• A Resource is denoted as R.

• A Credential is denoted as C, and Ci is different from Cj, 0<i<j<n, where n is a

finite natural number.

• A credential may contain a number of attributes. Each attribute name is denoted as

AttNamei, and each attribute value is denoted as AttValuei, 0<i<n, where n is a finite

natural number.

• According to the XACML policy language designed by Parducci and Locakhart

(2010), a policy message can contain a policy set (denoted as PSi, 0<i<n, where n is a

finite natural number), which in turn can contain multiple policies, which in turn can

contain multiple rules. Each policy is denoted as P, and Pi is different from Pj,

0<i<j<n, where n is a finite natural number.

 137

For clarity, all of the identifications assigned to policies and credentials used in WSA

on behalf of Alice are odd numbers (e.g. P1, P3, C1, C3), whereas all of the

identifications assigned to policies and credentials used in WSB on behalf of Bob are

even numbers (e.g. P2, P4, C2, C4).

Description of Case Scenario 1: There are two Web Services A and B, which are

unknown to each other (referred to WSA and WSB respectively). Alice is a user of

WSA, and Bob is a user of WSB. Alice intends to access a resource R from Bob. As

Bob treats R as a sensitive resource, he declares a policy P2 protecting R. P2 has a rule

requiring a credential C1 containing AttName1=AttValue1 to unlock it. Alice has the

credential C1, but she also treats C1 as sensitive. Therefore, she declares a policy P1

protecting its disclosure. P1 requires a credential C2 containing AttName2=AttValue2.

Bob has the credential C2, but he also treats this credential as sensitive. Therefore, he

also sets P2 to protect the disclosure of C2.

When Alice uses WSA sending a request to WSB for accessing Bob’s resource R, the

communication process of TN is shown as follows:

Step one: WSA sends a request to WSB to inform that Alice wants to access Bob’s

resource R.

Step two: WSB discovers that Bob has declared the policy P2 for protecting the

disclosure of R, so it sets P2 in PS2 and sends the PS2 to WSA.

Step three: After WSA analyses P2 in PS2, it knows that Alice’s C1 can fulfil P2.

However, as Alice has declared the policy P1 for protecting the disclosure of C1, it

then sends PS1 containing the P1 to WSB.

Step four: Upon analysing P1 in PS1, WSB identifies that Bob’s C2 can meet the P1.

Unfortunately, as C2 is also protected by P2, C2 cannot be disclosed. Therefore, P2

should be contained in a PS4, which will be sent out to WSA again. This phenomenon

is called PCD as identified by Li et al. (2003).

At step four, it can be identified that PCD has occurred and WSB should use some

approaches (e.g. OSBE) to stop resending PS4 containing P2 to WSA. Unfortunately,

as there are no existing approaches that can help WSB automatically identify the

occurrence of PCD, WSB may continue sending P2 contained in PS4 to WSA again.

 138

Description of Case Scenario 2: There are two Web Services A and B, which are

unknown to each other (referred to WSA and WSB respectively). WSA is an honest

Web Service and WSB is a malicious Web Service. Alice is a user of WSA, who

wants to access a resource R located in WSB held by a malicious owner Bob. Bob

declares different policies Pi, i>=1, protecting this resource R, but all of these policies

require a different set of attribute information within a credential C1 containing m

attribute information, 1<m<n, where n is a finite natural number. Alice possesses C1.

When Alice uses WSA sending a request to access Bob’s resource R, the

communication process of TN is shown as follows:

Step one: WSA sends a request to WSB to inform that Alice wants to access Bob’s

resource R.

Step two: WSB sends WSA PS1 containing P1 requesting C1 containing

AttName1=AttValue1.

Step three: After WSA analyses P1, it submits Alice’s C1, as C1 is not sensitive.

Step four: WSB sends WSA PS2 containing P2 requesting C1 containing

AttName2=AttValue2.

According to P2 in PS2 at step four, it can be identified that step five will be the same

as step three, where WSA will send C1 to WSB again. This kind of attack is explored

in the protocol verification presented in Chapter 5. In other words, it has never been

identified in state-of-the-art TN-based authorisation systems. So a term is given in this

Thesis to refer to this kind of attacks as Repetitive Credential Request Attacks

(RCRA). If WSB keeps sending its policies Pi requesting different attribute

information contained in C1, i>2, where i is a natural number, WSA will keep sending

C1 to WSB, which eventually forms long-term or infinite communication.

6.3 A Proposed Solution Design

6.3.1 Discussion of one potential solution
In case scenario 2, the reason that WSA will suffer RCRA is due to the fact that there

is no existing approach enabling WSA to detect that all Pi requests aim to obtain the

same local credential(s). A potential solution might be to enable WSA to remember

the content of each Pi disclosed by WSB so that it could stop communication, if the

 139

same content within the remote policy had been identified again. This solution could

avoid infinite communication, but could not avoid long-term communication attack.

For instance, a P3 may be designed to request C1 containing AttName1=AttValue1 and

AttName2=AttValue2 and a P4 may be designed to request the C1 containing

AttName1=AttValue1 and AttName3=AttValue3. According to the rule of combination,

there can be 2m-1 kinds of policies requesting the same C1, where m is the number of

the attribute information within the C1. Furthermore, in case scenario 2, it is assumed

that each entity only possesses one credential. However, in reality, there can be a

multitude of credentials owned by one entity. Thus, it is possible that longer-term-

based RCRA may occur. From this perspective, this solution is not ideal.

6.3.2 Conceptual idea of a proposed solution
In order to address the two vulnerability issues, the core conceptual idea of the

proposed solution is to enable an honest entity to remember the local information

status in relation to policies that have been sent out and that of the requested local

credentials. In terms of the context of the first vulnerability issue, it normally occurs

between two honest unknown entities. To address the first vulnerability issue, as long

as an entity detects that there exists one local policy that needs to be sent out to the

counterpart during TN for the second time, a decision will be made that the

occurrence of PCD has been detected. With respect to the context of the second

vulnerability issue, it normally occurs between an honest entity and a malicious

entity. To resolve the second vulnerability issue, as long as an entity detects that there

exists one local credential that the number of times for requesting the credential is

greater than a maximum value predefined in the local database, a decision will be

made that the occurrence of RCRA has been detected.

The main benefit of this conceptual solution is that clues used by the honest entity to

detect the occurrence of either two vulnerability issues are completely collected from

the information stored in its local database; therefore, the reliability and veracity of

the clues can be ensured. In other words, detection of the occurrence of either one of

the two vulnerability issues does not rely on the information provided by the

counterpart at all. Therefore, this solution is useful regardless of whether the

counterpart is maliciously designed or not.

 140

6.3.3 Realisation technique
To enable the realisation of the proposed conceptual solution, technically, more than

one method can be used, as long as the methods can support the addition,

modification and removal of data. Within this research, the selected specific technique

to deliver the functionality is through relational database technology. The reason for

selecting this technique is due to the power of Structured Query Language (SQL) used

within the relational database technology.

Following the core idea of the conceptual solution – remembrance of local

information status, this database is designed to automatically detect the occurrence of

the first vulnerability issue by enabling an entity to check whether information in

relation to each local policy has been stored in a local table. For detecting the

occurrence of the second vulnerability issue, it allows an honest entity to remember

the number of times that local credentials have been requested rather than to

remember the content of each remote policy.

This database is designed by taking into consideration an easy integration into the

improved protocol and the majority of existing TN-based authorisation systems such

as TrustBuilder2 (Lee, Winslett and Perano, 2009). As a TN-based authorisation

system should have its own policy compliance checker as a core component

(Seamons et al., 2002a) for comparing local/remote credentials against remote/local

policies in order to make a decision on whether or not any local policies or local

credentials should be sent out. Before sending out local policies or local credentials, a

request should be sent to this database for checking the local copy of the hitherto

conducted process of TN including what policies and credentials have been sent out.

A decision will be made only after the entity has checked out the local information

within the database (see figure 6.1).

 141

Figure 6.1. The position of the database within the process of TN

Within this database design, there are only two tables named “Local Policy” and

“Local Credential” respectively, which are not relevant to each other. The “Local

Policy” table is used to enable an honest Web Service to detect the occurrence of the

first vulnerability issue, whereas the “Local Credential” table is used to aid an honest

Web Service in detecting the occurrence of the second vulnerability issue. It is

assumed that each local policy and local credential stored in a Web Service will be

assigned a unique id. This assumption should be valid following the current WS

specifications such as XACML (Parducci and Lockhart, 2010), WS-Policy

(Vedamuthu et al., 2007), WS-SecurityPolicy (Lawrence and Kaler, 2009c) and

SAML (Philpott et al., 2009).

Regarding the use of both tables, at the start of TN, both of them should be empty.

Relevant data will be only added to this table when TN is in the process. Whenever

TN finishes, each of the two tables should be emptied again regardless of the TN

result (i.e. successful or failed). It should be noted that the two tables are not designed

by taking into consideration other functionalities (e.g. logging). For scenarios where

repeated malicious requests may be sent from the same malicious entity, a back up of

A decision has been made about the disclosure of local policies

or credentials after running the local policy compliance checker

Send a request to the local database to check whether the local

policies or credentials have been sent out in the current TN

[Local policies have
been sent out or the
number of times of
the requested local
credentials is greater
than the predefined
maximum number]

[Local policies have not been
sent out or the number of
times of the requested local
credentials is less than or
equals to the predefined
maximum number]

Send out a message
containing a policy set or
local requested credentials

Detect the
occurrence of PCD
or RCRA

 142

both tables may be needed, where the stored information can be used as logging so

that an honest entity is able to defend against such attacks.

The detailed description of each table are clarified as follows:

Table 1: In the “Local Credential” table, the attribute LCID is used as an identifier

and is the primary key of this table. There are two other attributes called as

NumberOfTimesOfBeingRequested (NOTOBR) and

PredefinedMaximumNumberOfTimesOfBeingRequested (PMNOTOBR). The

NOTOBR attribute is to count the number of times that a specific local credential has

been requested by the counterpart in TN. Whenever a local credential is to be sent out

upon being requested, the value of this attribute should be updated by adding one to

its current value. The PMNOTOBR attribute is a predefined maximum number of

times that a specific local credential has been requested. Its value is a fixed number,

which cannot be changed. The value of this attribute is used to compare against the

value of the NOTOBR attribute to help an entity decide whether a specific local

credential should be disclosed.

Table 2: In the “Local Policy” table, the attribute LPID is used as an identifier of each

local policy and is the primary key of this table.

After presenting the database design, pseudo code of an algorithm is presented in

figure 6.2 below to illustrate how an honest entity can use the two tables to detect the

two vulnerability issues.
1. PCD.detected=false; //judge whether PCD has been detected
2. RCRA.detected=false; //judge whether RCRA has been detected
3. if (a decision of the policy compliance checker is made to send
4. out policies (Pi) within a policy set (PSj)) {
5. for each Pi{
6. if(Select data from Table “Local Policy” where LPID=“Pi” can
7. be found){
8. PCD.detected=true;// if Pi has been stored in Table “Local
9. //Policy”, it means that Pi has been sent out
10. break;
11. }else{
12. add data in table “Local Policy” where LPID=“Pi”;
13. }
14. }
15. if(PCD.detected.equals(false)){
16. send out a PSi containing the Pi;
17. else{
18. detect the occurrence of PCD;

 143

19. Use any possible solution (e.g. OSBE);
20. }
21. }else if(a decision of the policy compliance checker is made to
22. send out local credentials (Ci) within a credential Set
23. (CSj)) {
24. if(Select data from Table “Local Credential”
25. where LCID=“Ci” can be found){
26. for each Ci {
27. if(Ci.NOTOBR<Ci.PMNOTOBR){
28. update Ci.NOTOBR by increasing 1;
29. }else{
30. RCRA.detected=true;
31. break;
32. }
33. }else{
34. add data in table “Local Credential” where LPID=“Ci”,
35. NOTOBR=“1”, PMNOTOBR=“a predefined value”;
36. }
37. if (RCRA.detected.equals(false)){
38. send out the Ci in a CSj;
39. }else{
40. detect the occurrence of RCRA;
41. send out a last message and stop TN; empty Tables;
42. }
43. }

Figure 6.2. An algorithm for addressing the two vulnerability issues

One point that needs to be highlighted is that the functionality of emptying the two

tables is not presented in the algorithm, when PCD is detected. As OSBE might be

used after PCD is detected, TN could continue rather than stop. Nevertheless, the two

tables still need to be emptied when TN finishes.

Upon clarifying the proposed solution design, the next section presents detailed

description of evaluation result analysis of the solution design.

6.4 Evaluation Result Analysis
The case studies can be used to evaluate the effectiveness of the conceptual solution

design through the realisation of the relational database design as well as the

algorithm presented in figure 6.2. As evaluation of two case studies was carried out

strictly following the process of the algorithm, a description of the evaluation process

is not stated. If a reader is interested in the evaluation process, detailed information is

referred to Appendix B. This section directly presents an evaluation result analysis.

Through the evaluation result analysis, the effectiveness of this proposed solution for

the reviewed policy-exchanged strategies (see section 3.3.1.2) are concluded in table

6.1. The two vulnerability issues are used as row titles, and the names of the five

 144

policy-exchanged strategies are used as column titles in this table. The “tick” symbol

means effective, whereas the “cross” symbol means ineffective.
 Parsimonious PRUNES DFANS Adaptive SRNS

Issue 1 ✔ ✖ ✖ ✔ Uncertain

Issue 2 ✔ ✖ ✔ ✔ ✔

Table 6.1. Conclusion of the effectiveness of the database design for policy-exchanged strategies

The solution is effective for addressing the two vulnerability issues, when either the

parsimonious strategy or the adaptive strategy is used. The reason for its effectiveness

in resolving the first vulnerability issue – automatic detection of the occurrence of

PCD for the two strategies – is due to the similar characteristic owned by these

strategies. The similar characteristic is: whenever a local sensitive resource is

requested, each local relevant policy protecting the sensitive resource will be sent out

in an outgoing policy message immediately in the next round. Therefore, with the use

of this proposed solution, it is convenient for an entity to check whether any local

policies have been transmitted.

In terms of the assessment of the proposed solution for addressing the second

vulnerability issue – defending against RCRA, it is very effective when any one of the

policy-exchanged strategies is used except the PRUNES. The reason for its

effectiveness is that these policy-exchanged strategies share one characteristic:

whenever a local non-sensitive credential is requested, the honest entity will transmit

it to the counterpart. The proposed solution is designed to enable an honest entity to

record and analyse the local status of the requested credentials. Discovery of the

occurrence of potential RCRA is therefore based on the local record rather than based

on the memory of the same remote policies being disclosed by the counterpart. As

long as the system of the honest entity is correctly designed (developers with no

malicious intent can ensure this design), the occurrence of RCRA can always be

detected regardless of whether the counterpart is maliciously designed or not.

In terms of the effectiveness of the proposed solution for the DFANS, it is an

ineffective solution for addressing the first vulnerability issue – detection of the

occurrence of PCD. The reason for its ineffectiveness is due to the nature of this

strategy. With the use of this strategy, whenever there is a disclosure of a policy

 145

message, an entity will only disclose a request for one required credential (as

mentioned earlier and in section 3.3.1.2, a policy can have multiple rules, and each

rule can require different combinations of multiple credentials by using the logic

symbols such as AND/OR) rather than the whole policy. As the proposed solution

uses a “Local Policy” table to store the data for a whole policy rather than each

atomic element (requesting one credential, see section 3.3.1.2) of the policy, the entity

treats the action of sending out different atomic elements of the policy in different

rounds as the action of sending out the same policy multiple times. Therefore, when

applying this solution to the DFANS, detecting potential PCD is not correct. What is

even worse is that potential successful TN without the occurrence of PCD will be

misjudged as an occurrence of PCD.

When applying the database design for the PRUNES, it is completely ineffective for

PCD and RCRA. Regarding PCD, the reason for its ineffectiveness is due to the fact

that the characteristic of its disclosure of a policy message is the same as that of using

the DFANS. Regarding RCRA, PRUNES is not designed to disclose each local

credential shortly after discovering that the local credential can fulfil the received

policy. The credential-exchange phase (see section 3.3.1.2) designed in the PRUNES

will only occur, when the WSB as a service provider discloses the information that

the resource R has been unlocked at the end of the policy-exchange phase.

Unfortunately, in scenario 2, WSB is a malicious Web Service, so it does not provide

such information to WSA during the policy-exchange phase. The proposed solution is

designed as an addition to the result of a compliance checker, which decides to send

out local credentials. Without performing the action of sending out a local credential,

the proposed solution cannot even be triggered. In SRNS (Liu et al., 2013), policy

disclosure is not that clearly specified; therefore “uncertain” is stipulated in the table.

Upon clarifying the benefits and limitations of the solution design, the next section

discusses the impact of the proposed solution.

6.5 Impact of the Proposed Solution
Through protocol verification tests in Chapter 5, the proposed improved TN protocol

has been verified to be incomplete, as two vulnerability issues – PCD and RCRA –

 146

still exist within policy-exchanged strategies without any solutions. There is therefore

a need to address them as soon as possible.

This chapter proposes a conceptual solution design based on the idea of

“remembrance of local information status” through the realisation of relational

database technology aiming to address the two vulnerability issues, thereby filling the

gaps within the relevant field. Through the evaluation tests, the database design has

been demonstrated to be effective to address the two vulnerability issues for the

parsimonious strategy, adaptive strategy, and to resolve the second vulnerability issue

for DFANS and SRNS. Its ineffectiveness for PRUNES and partial ineffectiveness for

the DFANS is due to the unique nature of the two strategies, wherein the way an

entity sends out policies and credentials by using PRUNES and DFANS is different

from that of the other three strategies. Nevertheless, as the reason for the

ineffectiveness of the solution design in these scenarios has been identified, it should

be useful as guidance for exploring potential solutions. In addition, through the

critical review of the TN strategies in section 3.3.1, the analysis of the inappropriate

use of PRUNES for TN is clarified. This analysis implies that PRUNES is not suitable

enough to be used within the context of TN. DFANS is also not superior in

comparison with the parsimonious strategy. Therefore, taking into consideration the

widespread use of the parsimonious strategy in practice, the solution design proposed

in this chapter should be helpful for developers, who are intending to implement TN

along with the parsimonious strategy within their systems.

This Thesis strongly recommends the use of the parsimonious strategy in the

improved TN protocol, and the proposed solution in this chapter can effectively

address the two vulnerability issues, when the parsimonious strategy is used within

the protocol. Therefore, this solution can be treated as a complementary approach to

ensure that the completeness of the protocol as tested in Chapter 5 can hold, as the

infinite iterations caused by the two vulnerability issues can be broken with the use of

this solution.

In addition, with respect to the nature of RCRA that an honest entity always replies to

seemingly different normal requests without checking whether each request in

essence is the same, RCRA can be considered as a variation of Denial of Services

 147

(DoS) attacks. As the proposed solution is effective to the majority of the policy-

exchanged strategies, it might also be applied to defend against other variations of

DoS attacks.

6.6 Chapter Summary
In this Chapter, a conceptual solution design is proposed to address the vulnerability

issues identified in the protocol completeness test shown in Chapter 5, and its

effectiveness has been evaluated in case studies. This solution can be added to the

improved TN protocol, so the completeness of the protocol can be proved. The next

chapter details a protocol evaluation for evaluating the effectiveness of the

interoperability-solution design, which in turn can prove the protocol correctness.

 148

Chapter 7. Protocol Evaluation

7.1 Introduction
Chapter 5 has detailed the protocol verification for the completeness of the improved

TN protocol. Through the verification process, two innate vulnerability issues have

been identified in the proposed protocol, wherein the completeness cannot be ensured.

To address the two vulnerability issues, Chapter 6 has proposed a conceptual solution

design based on the idea of “remembrance of local information status” through the

realisation of the relational database technology. This solution can complement the

proof of the completeness of the proposed TN protocol (see section 4.4). This chapter

aims to evaluate the proposed interoperability-solution design (see table 4.1) to assess

its effectiveness for addressing the second research problem. In addition, a protocol

correctness test is also included within this evaluation as a sub part.

To evaluate the effectiveness of the proposed interoperability-solution design and the

correctness of the protocol, an appropriate research method should be selected to

carry out the evaluation. Therefore, the rationale for selecting the most appropriate

research method is clarified. In particular, a discussion of the benefits and limitations

of the selected research method is presented. In addition, a discussion around the

inappropriateness of other potential usable research methods is also given. Once the

evaluation research method has been decided, a discussion is provided regarding the

evaluation method procedure. Following this discussion, a data collection method is

used for collecting the relevant data for conducting data analysis. Based on the data

analysis results, the answers for the effectiveness of the protocol are described in

detail, which in turn answers the effectiveness of the interoperability-solution design.

In addition, a further discussion of the impact of the improved TN protocol is also

provided.

7.2 Evaluation Research Method
The research method selected within this Thesis to enable evaluation of the degree of

interoperability provided by the proposed solution is one of experimental case study.

The use of case study evaluation is commonly used in different fields such as the

social sciences (Neale, Thapa and Boyce, 2006; Baxter and Jack, 2008). Robson

 149

(2002) states “The flexibility in design and execution of the case study, together with

the fact that most evaluations are concerned with the effectiveness and

appropriateness of an innovation or programme in a specific setting …, make the case

study strategy appropriate for many evaluations”. Yin (2013) suggests that a case

study is usually used when (1) there is a need to answer “how” and “why” questions,

(2) the investigated target is “a contemporary set of events” and (3) a researcher has

little or no control over the investigated phenomenon. Yin (2013) also states that other

research methods (e.g. surveys, interviews, documents) can be used within case

studies for achieving data collection. Qualitative and quantitative methods can also be

used within case studies for accomplishing data analysis. These features enable case

studies to be a comprehensive research method. Another unique feature of using case

studies is that researchers can develop a deeper insight into the investigated

phenomenon, whereas other research methods struggle to achieve this goal (Thapa

and Boyce, 2006).

In the field of Information Systems (referred to IS hereafter), a case study approach

has been accepted as a main research method used by researchers (Benbasat,

Goldstein and Mead, 1987; Lee, 1989, Klein and Myers, 1999; Runeson and Host,

2009). For instance, Benbasat, Goldstein and Mead (1987) provide a reason for using

the case study as a reasonable research method, “a case approach is an appropriate

way to research an area in which few previous studies have been carried out”. They

also argue that two categories of case study namely “application descriptions” and

“action research” respectively used in the field of IS should be excluded from case

study. They give the reasons as follows.

• With the use of the “application descriptions” method, researchers mainly focus on

the implementation of a specific system rather than on conducting research. Reasons

for the inappropriateness of implementation used within this evaluation are detailed in

section 7.3.4.

• Following the process of “action research”, researchers are proposed to become

participants rather than observers.

Referring back to the second research question (see section 1.2.2), it is raised in the

way of “how”. By observing the context of the second research problem (see section

 150

1.2.1), integrating different authorisation systems into one Web Service for achieving

authorisation is a ubiquitous phenomenon.

Limitations of using a case study approach exist, for example as stated by Neale,

Thapa and Boyce (2006) (1) they can be lengthy (presenting the case in a narrative

form), (2) lacking rigor and (3) can also not be generalizable (limiting scope). These

limitations cause the case study method to fall in the category of qualitative research,

which cannot provide definitive scientific results due to the lack of systematic data

collection. In addition, criteria can be hard to set for assessing and measuring the

evaluation results from the data analysis with the use of case study. However, as

mentioned earlier, Yin (2013) argues that a case study can include quantitative

methods for data collection and data analysis; therefore, a case study can include a

mixed methodological response and as such should not simply be categorised into

qualitative research. In addition, Yin (2013) also argues that features such as case

studies lacking rigor and being non-generalizable can also occur in other research

methods such as experiments.

Given the analysis above, it can be identified that the majority of the features of this

research (e.g. the way the second research question asked, it is a contemporary

phenomenon) can match the rationale for using case studies mentioned earlier. In

addition, taking into consideration the benefits and limitations of case studies, a

decision was made that the use of case studies should be the most appropriate

research method for conducting evaluation.

7.3 Use of Case Studies

7.3.1 A general procedure of conducting case studies
Yin (2013) introduces a concept of “case study protocol”, which aims to help

researchers to design a general procedure before conducting case study research so as

to increase the reliability of the research. Following this concept, Runeson and Host

(2009) propose a simplified procedure of conducting case studies, which is similar to

that introduced by Kitchenham et al. (2002) as follows:

“(1) Case study design: objectives are defined and the case study is planned.

 151

(2) Preparation for data collection: procedures and protocols for data collection are

defined.

(3) Collecting evidence: execution with data collection on the studied case.

(4) Analysis of collected data

(5) Reporting.”

All of the above researchers suggest that conducting case study-based research should

follow the path of a predefined procedure so that a researcher is able to identify the

proper answers for the original raised research questions. Therefore, this procedure is

used in this evaluation as general guidance.

7.3.2 Types of case studies
In terms of the types of case studies, different researchers provide their recommended

types from different perspectives. Amongst them, types introduced by Yin (2013) and

Stake (1995) are widely accepted by researchers nowadays (Baxter and Jack, 2008;

Runeson and Host, 2009). Yin (2013) introduces three types: explanatory, exploratory

and descriptive. Explanatory case studies are mainly used to identify the causal links

between causes and effects. Use of exploratory case studies can be used to seek to

define research questions, as stated by Stake (1995) “ [Exploratory designs] are often

a prelude to additional research efforts and involve fieldwork and information

collection prior to the definition of a research question”. Descriptive case studies are

used to describe contemporary phenomenon. Apart from the three categories above,

Yin (2013) also recommends the use of single-case designs and multiple-case designs,

and points out their specific advantages and disadvantages. Taking into consideration

the probability of the impact of detailed units of case studies, both single-case study

and multiple-case studies can then be classified into embedded case studies and

holistic case studies. Categories of case studies are presented in a matrix as shown in

figure 7.1. With the application of this matrix, any one of the explanatory, exploratory

or descriptive case studies can be used in any one of the four types as shown in the

matrix.

 152

Figure 7.1. A category of case designs (Yin, 2013)

In contrast to Yin’s types, Stake (1995) also introduces three categories of case

studies, which are intrinsic, instrumental or collective. Intrinsic case studies are

selected, if researchers concentrate more on the details of the case studies rather than

the general context. Instrumental case studies are used, if researchers aim to gain an

insight into the issues occurring in the general context of case studies for

understanding or refining a theory. The notion of collective case studies is similar to

that of multiple case studies as described by Yin (2013), in which a multitude of case

studies are used.

Observing the characteristics of the types provided by Yin (2013) and Stake (1995), it

can be identified that there are similarities between them as listed below.

• Holistic single case studies (Yin, 2013) are similar to instrumental case studies

(Stake, 1995);

 153

• Embedded single case studies (Yin, 2013) are similar to intrinsic case studies

(Stake, 1995);

• Holistic multiple-case studies (Yin, 2013) are similar to collective case studies

(Stake, 1995).

According to the nature of each type of case study mentioned above, it can be

identified that the case scenario consisting of different circumstances as presented in

section 3.4 for illustrating the first research problem belong to the category of being

an embedded explorative single case study as mentioned by Yin (2013). As these

explorative circumstances are only used to help the researcher seek research

questions, they are not properly designed for evaluation. Following the guidance of

the case study design mentioned above, case studies should be designed closely

related to the raised research questions (see step 1 of the case study protocol shown in

section 7.3.1).

Before conducting the case study design within the research, Yin (2013) states that a

researcher should have decided to use a single-case design or a multiple-case design.

To help a researcher make such a decision, Yin (2013) also provides propositional

rationales for conducting single-case designs and multiple-case designs. In short, a

decision of using a single-case study should be made, when a case is (1) critical, (2)

extreme, (3) common, (4) revelatory and (5) longitudinal. However, critiques arise for

using the single-case study, if other potential important conditions are overlooked;

therefore, a theory concluded from single-case designs may not be able to provide

generality. In such a circumstance, multiple-case designs should be used instead to

enforce the robustness of a generalised theory.

In terms of the use of multiple-case designs, questions may also occur such as how

many case studies should be used or what case studies should be used? To help

researchers make decisions, researchers such as Yin (2013), Stake (1995) and Baxter

and Jack (2008) propose a guideline that the use of multiple-case studies should be

able to demonstrate the literal replication (similar results) or theoretical replication

(contrast results). The decision of choosing the appropriate case studies requires a

 154

researcher to predict possible results before the multiple-case designs. The

researcher’s prediction is based on obtained knowledge through the literature review.

7.3.3 Construction of case studies
Observing the second research question in section 1.2.2, “authorisation systems” and

“Web Services” are identified as two keywords for the construction of case studies.

Through the literature review shown in Chapter 2 and Chapter 3, authorisation

systems used within the current context of Web Services mainly include ABAC-based

authorisation systems such as PERMIS, Akenti (see section 2.6). By integrating the

improved TN protocol into authorisation systems within Web Services,

communication between authorisation systems can be classified into three categories:

(1) exchange between one ABAC-based authorisation system and one ABAC-based

authorisation system (e.g. communication between PERMIS and Akenti), (2)

exchange between one ABAC-based authorisation system and one TN-based

authorisation system (e.g. communication between PERMIS and TrustBuilder2) and

(3) exchange between one TN-based authorisation system and another TN-based

authorisation system (e.g. communication between TrustBuilder2 and TrustServ).

The above features are only obtained from authorisation systems, not from Web

Services as a general context for investigation. Therefore, there is a need to identify

the necessary features of Web Services. As reviewed in Chapter 2, Schlager et al.

(2006) propose an AAI for e-commerce by using Web Services technologies, which

are widely used in further research (e.g. Erber, Schlager and Pernul, 2007; Schlager et

al., 2007). Globus proposed by Foster (2006) is another widely accepted framework,

which is a toolkit normally used for embedding authorisation systems within the

context of Web Services. Within the AAI and Globus, SAML messages are utilised as

protocol messages for achieving authorisation. Therefore, the use of SAML messages

is one feature of authorisation systems in Web Services. The process for making an

access control decision is defined within the XACML specification. This process has

been widely acknowledged within Web Services, so the use of this process is another

feature of authorisation systems in Web Services.

In order to help developers design real Web Services with ease, Daigneau and

Robinson (2011) introduce three common API styles called “Remote Procedure Call

 155

(RPC) API”, “Message API” and “Resource API” respectively. Amongst them, the

“Resource API” style is especially utilised, when a service requester needs to access a

requested resource provided by a service provider. So the “Resource API” is the most

appropriate API style to be used in scenarios where requests to access specific

resources occur. Thus, the “Resource API” style is also treated as a feature within the

context of Web Service authorisation systems.

A basic and common design pattern for communication between Web Services is

called “Request/Response”. As this design pattern is easy to be implemented, it is

treated as the default pattern used within existing Web Services (Daigneau and

Robinson, 2011).

As mentioned in Chapter 2, whenever a requested resource has been treated as

sensitive, authorisation has to be involved to enable a service provider to make an

access control decision on it. Therefore, to enable the authorisation to be used within

the “Resource API” style, Daigneau and Robinson (2011) suggest the use of the

“Request/Response” design pattern and that of the “Resource API” style together as a

basic technique. Therefore, the use of them is also treated as a feature within the

context of Web Service authorisation systems.

It should be noted that other features such as communication breakage, broker

services might occur in all types of communication between two commutating

systems in distributed systems environments. As they cannot be treated as the unique

features existing in the communication between authorisation systems, these features

are not included in the context of the case study design.

Taking into account the “common” characteristic (see reason 3 of the rationales for

the single-case design) of the context of the research, the use of single-case designs is

appropriate within this research. According to figure 7.1 as suggested by Yin (2013),

the single-case designs category is twofold: holistic and embedded. Through the

critical analysis as shown in Chapter 2 and Chapter 3, embedded units are discovered

within authorisation systems including (1) multiple authorisation system types, (2)

multiple strategy types, (3) multiple policy languages, (4) multiple credential

languages, (5) predefined sensitivity of policies and (6) predefined sensitivity of

 156

credentials. Any change of each embedded unit may cause a case study to produce a

different result. Hence, a decision was made to use embedded single-case designs for

evaluation based on the above features.

Combining the features of authorisation systems and the relevant Web Service API

style and design pattern, a general overview of embedded single-case designs is

shown in figure 7.2 below.

Figure 7.2. A general overview of embedded single-case designs

7.3.4 Methods and process for data collection
In terms of the approach for the protocol application, a model-based testing of the

protocol (Utting, and Legeard, 2006; Kull, 2009) is preferred to the implementation of

the protocol along with real experiments. Model-based testing requires no need to

perform a real experiment, and allows researchers to conduct an experiment through a

mental experimental process for exploring the consequences of theory application.

The use of model-based testing as an evaluation method has been applied in research

such as Lu and Liu (2009). The reasons for using the model-based testing of the

protocol are explained as follows.

• As protocol implementation should strictly follow the designed process of the

theory of the protocol, a protocol process within a model-based testing environment

and a real experiment should be the same, if the conditions set in both methods are the

same.

• With the use of model-based testing, if any unpredicted logical design error occurs,

it will be straightforward for the researcher to locate the error position within the

Context: Web Services
Features: (1) use of the “Request/Response” design pattern along with the
“Resource API” style, (2) use of the data-follow model for making an access control
decision within the authorisation process in the XACML specification and (3) use of
the SAML messages for expressing protocol messages in authorisation

Case: Communication between different authorisation systems

Units of Analysis:
(1) Multiple authorisation system types
(2) Multiple strategy types
(3) Multiple policy languages
(4) Multiple credential languages
(5) Predefined sensitivity of credentials
(6) Predefined sensitivity of policies

 157

protocol. By contrast, this benefit might not be easily achieved through a practical

experiment. For example, if there existed any unpredicted logical design error in a

prototype system, the system might suddenly pause and print out technical error

information (e.g. there are many in-built technical error information predefined in

programming languages such as Java). In other words, the system could not explicitly

indicate which part of the protocol the error comes from. This would cause the

researcher to re-examine the theoretical process of the protocol to identify the error

position.

• In contrast to a real experiment, with the use of model-based testing, technical

obstacles in relation to implementation will not occur. It is straightforward for the

researcher to apply the proposed protocol to each embedded case study to collect the

relevant data from the descriptive process. Potential technical obstacles of the

protocol implementation might not be discovered through this approach, which is one

potential weakness of using model-based testing. Nevertheless, as these issues are not

the major concerns within the evaluation of this research, they should not severely

affect the evaluation result.

• In terms of a unique benefit of using a real experiment, it could prove the

feasibility of the protocol implementation. However, as the majority of the

components (e.g. compliance checkers, strategy components) designed within the

proposed protocol had been implemented in the state-of-the-art TN-based

authorisation systems, their feasibility was not an issue. The major difference between

the protocol and the TN-based authorisation systems is the preparation stage, which is

designed within the protocol, but is not supported by the TN-based authorisation

systems. By observing the functionality designed in the preparation stage, there

should be no technical issue for enabling two entities to agree on a common capability

and a common strategy, as the keyword-based and semantic-based approaches (e.g.

OWL language) are readily available in Web Services. From this perspective, the use

of a real experiment may not show any superiority to the use of model-based testing

in this evaluation.

As a decision has been made that model-based testing will be used within the

embedded single-case study, model-based testing should also be the most appropriate

approach used for data collection. In case study evaluation, triangulation is a

 158

commonly used term meaning “taking different angles towards the studied object and

thus providing a broader picture” (Runeson and Host, 2009). The researcher did

realise that the use of multiple sources of evidence was often used within the data

collection phase of a research to avoid potential bias on a generalised theory based on

the collected data. However, due to the unique characteristic of the selected approach

used for the case study within this research, other methods for data collection such as

surveys, implementation-based experiments or historical analysis were considered to

be not appropriate. Reasons for the inappropriateness of implementation-based

experiments have been given above. Questionnaire-based surveys and interviews

were also not appropriate to be used, as the main participants within this research are

the authorisation systems rather than human beings. Historical analysis, as another

data collection method, normally aims to establish data from previous data subsets.

The investigated phenomenon in this research is communication between

authorisation systems within Web Services, which is a relatively new phenomenon

since the year around 2000; thus, the historical analysis method was also not

appropriate to be used.

Having explained the reasons for selecting the case study method along with the use

of model-based testing as the evaluation research methods and data collection

methods respectively, the data collection process after applying the protocol within

the case study for collecting the target data within the case study is presented as

follows (see step 2 of the case study protocol shown in section 7.3.1).

Step one: Compare the improved TN protocol against the current protocols used in

the two authorisation systems as a service requester and a service provider

respectively in each embedded sub case. Differences between the improved TN

protocol and the compared protocol used in each existing authorisation system (e.g.

ABAC-based authorisation systems such as PERMIS, Akenti or TN-based

authorisation systems such as TrustBuilder2, Trust-X) as participating systems will be

generated. More precisely, any elements (e.g. protocol messages, components

providing specific functionalities) that are defined within the improved TN protocol,

but cannot be found in the current protocol used in the two participating authorisation

systems will be listed (see tables 7.2 to 7.5). These elements are to be embedded in

the protocols used in the two participating authorisation systems within each

 159

embedded sub case. Then the differences generated from the comparison between the

improved TN protocol and the protocol used in the two participating authorisation

systems is treated as the first data source.

Step two: Let two authorisation systems use the improved TN protocol. The detailed

authorisation process will depend on the conditions pre-set in each embedded sub

case. The detailed descriptive process of authorisation in each embedded sub case is

treated as the second data source.

Step three: Whenever authorisation in each embedded sub case finishes without any

interoperability issues (see the criterion for interoperability identified in section 2.3),

that is, the reason causing authorisation communication to cease is not due to an

inability to process received messages. Such an authorisation result is treated as the

third data source regardless of its result type (i.e. success or failure).

7.3.5 Model-based testing of protocol application within embedded

single-case study for data collection
In the case study design, several embedded sub cases are used, wherein each of the

units of analysis are different. In order to differentiate each embedded sub case, the

term “circumstance” is used to substitute the term “embedded sub case” for

simplicity.

Without the loss of generality, it is assumed that each resource, credential, policy set

and policy will be assigned a unique id during the process. Each credential and policy

language should have its unique name. In other words, given a language name for

credentials or policies, the syntax and semantics of this language should be unique.

Symbols are used to represent the detailed information exchanged between them.

More specifically, the meaning of symbols are explained as follows:

• A Resource is denoted as R.

• A Credential is denoted as C, and Ci is different from Cj, 0<i<j<n, where n is a

finite natural number.

• A Credential Language is denoted as CL, and CLi is different from CLj, 0<i<j<n,

where n is a finite natural number.

• A policy is denoted as P, and Pi is different from Pj, 0<i<j<n, where n is a finite

natural number.

 160

• A Policy Language is denoted as PL, and PLi is different from PLj, 0<i<j<n, where

n is a finite natural number.

For clarity, all of the identifiers assigned to policies and credentials used in WSA on

behalf of Alice are odd numbers (e.g. P1, P3, C1, C3), whereas all of the identifiers

assigned to policies and credentials set in WSB on behalf of Bob are even numbers

(e.g. P2, P4, C2, C4).

To clarify the expression of the possessed information of each entity in each

circumstance, specific symbols used in Yu, Ma and Winslett (2000) are presented in

figures. The semantics of these symbols are explained as follows:

• A symbol “R” denotes a sensitive resource possessed by the WSB as a Web

Service Provider.

• A symbol “Ci” denotes a credentials possessed by a Web Service, where Ci is

different from Ci, 0<i<j<n, where n is a finite natural number.

• A symbol “Pi” denotes a policy possessed by a Web Service, where Pi is different

from Pj, 0<i<j<n, where n is a finite natural number.

• To detail the content of a specific policy, a symbol “←” means a requirement. The

left parts of this symbol are the protected sensitive resources (e.g. a sensitive

requested resource R, sensitive credentials Ci, sensitive policies Pi). If more than one

sensitive resource is set in the left part of this symbol, a parenThesis symbol “()”

along with a comma symbol “,” dividing each sensitive resource is used. The right

parts of this symbol are required credentials. In addition, a symbol “∧” denotes the

logical conjunction of required credentials, and a symbol “∨”	
 denotes the logical

disjunction of required credentials. For instance, a policy P1 represented as “P1: (C4,

C5)←(C1∧C2)∨C3” means that to request a sensitive credential C4 and a sensitive

credential C5 held by one Web Service, a counterpart needs to submit a combination

of a credential C1 and a credential C2 or a credential C3.

There are ten circumstances designed in this case study for data collection (see step 3

of the case study protocol shown in section 7.3.1). An overview of basic information

of each circumstance is presented in table 7.1.

 161

Circumstances Circumstance 1: Circumstance 2:

Communicating

Systems:

ABAC-ABAC ABAC-ABAC

Conditions: • No common language combinations

can be supported by both entities.

• Both entities use the parsimonious

strategy.

• Both entities can compare policies

written in PL1 against credentials

written in CL1.

• WSA can only support the

parsimonious strategy, whereas WSB

can only support the eager strategy.

Result: Finishes in stage 1, as the capability

interoperability issue has been

identified.

Finishes in stage 1, as the strategic

interoperability issue has been

identified.

Circumstances Circumstance 3: Circumstance 4:

Communicating

Systems:

ABAC-ABAC ABAC-TN

Conditions: • Both entities can compare policies

written in PL1 against credentials

written in CL1.

• Both entities use the parsimonious

strategy.

• WSA holds a non-sensitive C1.

• Both entities can compare policies

written in PL1 against credentials

written in CL1.

• Both entities use the parsimonious

strategy.

• WSA holds a sensitive C1.

Result: A successful authorisation result

finishes in stage 2

A failed authorisation result finishes in

stage 2, as required credentials cannot

be submitted

Circumstances Circumstance 5: Circumstance 6:

Communicating

Systems:

ABAC-TN ABAC-TN

Conditions: • Both entities can compare policies

written in PL1 against credentials

written in CL1.

• Both entities use the eager strategy.

• WSA holds a sensitive C1, and

WSB does not hold any credentials to

unlock C1.

• Both entities can compare policies

written in PL1 against credentials

written in CL1.

• Both entities use the parsimonious

strategy.

• WSA holds a sensitive C1 and a

non-sensitive C3, and WSB holds a

non-sensitive C2 that can unlock C1.

• WSB declares a sensitive P2.

Result: Authorisation failure finishes in stage

2, as required credentials cannot be

Authorisation success finishes in stage

2.

 162

submitted.

Circumstances Circumstance 7: Circumstance 8:

Communicating

Systems:

ABAC-TN TN-TN

Conditions: • Both entities can compare policies

written in PL1 against credentials

written in CL1.

• Both entities use the eager strategy.

• WSA holds non-sensitive C1 and

C3, and WSB holds a non-sensitive C2.

• WSB declares a sensitive P2.

• Both entities can compare policies

written in PL1 against credentials

written in CL1.

• Both entities use the eager strategy.

• WSA holds a sensitive C1 and non-

sensitive C3, and WSB holds a non-

sensitive C2.

• WSB declares a sensitive P2.

Result: Authorisation success finishes in stage

2.

Authorisation success finishes in stage

2.

Circumstances Circumstance 9: Circumstance 10:

Communicating

Systems:

TN-TN TN-TN

Strategy: • Both entities can compare policies

written in PL1 against credentials

written in CL1.

• Both entities use the parsimonious

strategy.

• WSA holds sensitive C1 and C3,

WSB holds a non-sensitive C2.

• WSB declares a sensitive P2.

• Both entities can compare policies

written in PL1 against credentials

written in CL1.

• Both entities use the parsimonious

strategy.

WSA holds sensitive C1 and C3, and a

non-sensitive C7 and C9, and WSB

holds a non-sensitive C2, and a

sensitive C4.

WSB declares a sensitive P2.

Result: Authorisation failure finishes in stage

2, as required credentials cannot be

submitted.

Authorisation success finishes in stage

2.

Table 7.1. An overview of ten circumstances in the case scenario

For simplicity, the general background information of the case study is the same as

the case scenario described in section 2.8. It should be noted that as there are

similarities among the ten circumstances, so the same detailed process is only

described in its first occurrence in the relevant circumstance.

Circumstance 1:

 163

Alice wants to access Bob’s resource R. Bob declares a P2 requiring attribution

information in a C1 to protect R. Alice has a C1.

The possessed information presented in symbols is shown in figure 7.3 below.

Figure 7.3. Possessed information in circumstance 1

Units of Analysis:

• Authorisation system types: both WSA and WSB use ABAC-based authorisation

systems (PERMIS and Akenti for instance)

• Strategy types: both WSA and WSB support the use of the parsimonious strategy

• Policy/Credential language: WSA can compare policies written in PL1 against

credentials written in CL1. WSB can compare policies written in PL2 against

credentials written in CL2.

• Sensitivity of credentials: nil

• Sensitivity of policies: nil

Before applying the proposed protocol to this circumstance, a comparison between

PERMIS, Akenti and the improved TN protocol is needed. The detailed comparison is

shown in table 7.2. There are four columns within this table. The first column presents

the interoperability layers from 2 to 6 defined within the interoperability models (see

tables 3.2 and 4.1). The second, third and fourth columns present the relevant content

identified within the proposed TN protocol, the protocol of PERMIS and that of

Akenti used in Web Services respectively as used in the AAI (see section 2.7.1).
Interoperability

Layer

Improved TN Protocol PERMIS in Web

Services

Akenti in Web

Services

Strategy (1) Preparation stage and (2)

Negotiation Strategy Repository

Component

Nil Nil

Capability (1) Preparation stage and (2)

Multiple languages for expressing

credentials and Policies

SAML messages

only

SAML messages

only

Functionality Policy Compliance Checker Following the

XACML data-flow

Following the

XACML data-

WSA (Alice)
Credentials: C1
Policies: nil

WSB (Bob):
Resource: R
Credentials: nil
Policies: P2:R←C1

 164

diagram flow diagram

Syntax and

Semantics

XML-based languages, SAML

languages and XACML languages

SAML messages

only

SAML messages

only

Table 7.2. Comparison between PERMIS, Akenti and the improved TN protocol

Observing table 7.2, it can be identified that except the policy compliance checker

(the XACML data-flow diagram used in PERMIS and Akenti provides the

functionality of a policy compliance checker) as a common functionality owned by

three protocols, other interoperability layers supported in the improved TN protocol

cannot be supported in PERMIS and Akenti. So assuming that these parts of the

improved TN protocol are to be implemented within the two systems.

By applying the proposed protocol to circumstance 1, the communication process is

shown as follows.

Step 1: WSA sends a <TNPrepareRequest> message to WSB for requesting an access

to Bob’s resource R, and a list of supported strategies and language combinations

contained within the message to WSB. The message is shown in figure 7.4 below.
<TNPrepareRequest Resource=”http://WSB/Bob/Resource/R”

RemoteResourceOwner=”http://WSB/Bob”>

<StrategyList Number=”1”>

<Strategy ID=”1”>parsimonious</Strategy>

</StrategyList>

<LanguageCombinations Number=”1”>

<LanguageCombination ID=”1”>

<PolicyLanguage>PL1</PolicyLanguage>

<CredentialLanguage>CL1</CredentialLanguage>

</LanguageCombination>

</LanguageCombinations>

</TNPrepareRequest>
Figure 7.4. Message 1 in the preparation stage in circumstance 1

Step 2: Following the process of dealing with the <TNPrepareRequest> message as

shown in figure 4.4, WSB first tries to find out whether the strategy name contained

within this message is also supported in its own system. As the received strategy

name is “parsimonious” and this name is also supported by its own system, it then

tries to discover whether the language combinations contained within this message are

also supported in its own system. Within the received message, only one language

 165

combination “PL1 and CL1” has been found. As WSB can only compare policies

written in PL2 against credentials written in CL2, it cannot discover a common

language combination. So it responds with a <TNPrepareResponse> message that TN

cannot be used due to an internal interoperability issue of TN. The message is shown

in figure 7.5 below.
<TNPrepareResponse TNCanBeUsed=”no”>

<Fault>Language interoperability issue</Fault>

</TNPrepareResponse>

Figure 7.5. Message 2 in the preparation stage in circumstance 1

As the <TNPrepareResponse> message contains a fault message, according to the

process dealing with this response message (see figure 4.5), WSA will cease the

following communication with WSB.

Circumstance 2:

Alice wants to access Bob’s resource R. Bob declares a P2 requiring attribute

information in a C1 to protect R. Alice has a C1.

The possessed information presented in symbols is shown in figure 7.6 below.

Figure 7.6. Possessed information in circumstance 2

Units of Analysis:

• Authorisation system types: both WSA and WSB use ABAC-based authorisation

systems (CAS and VOMS for instance)

• Strategy types: WSA only supports the parsimonious strategy and WSB only

supports the eager strategy

• Policy/Credential language: both WSA and WSB can compare policies written in

PL1 against credentials written in CL1. WSA can also compare policies written in PL2

against credentials written in CL2.

• Sensitivity of credentials: nil

• Sensitivity of policies: nil

WSA (Alice)
Credentials: C1
Policies: nil

WSB (Bob):
Resource: R
Credentials: nil
Policies: P2:R←C1

 166

As the protocols of CAS and VOMS used in Web Services are the same as that used

in PERMIS and Akenti (see the AAI shown in figure 2.7.1), the comparison is not

detailed here.

By applying the proposed protocol to circumstance 2, the communication process is

shown as follows.

Step 1: WSA sends its list of supported language combinations in a

<TNPrepareRequest> message to WSB. The message is shown in figure 7.7 below.
<TNPrepareRequest Resource=”http://WSB/Bob/Resource/R”

RemoteResourceOwner=”http://WSB/Bob”>

<StrategyList Number=”1”>

<Strategy ID=”1”>parsimonious</Strategy>

</StrategyList>

<LanguageCombinations Number=”2”>

<LanguageCombination ID=”1”>

<PolicyLanguage>PL1</PolicyLanguage>

<CredentialLanguage>CL1</CredentialLanguage>

</LanguageCombination>

<LanguageCombination ID=”2”>

<PolicyLanguage>PL2</PolicyLanguage>

<CredentialLanguage>CL2</CredentialLanguage>

</LanguageCombination>

</LanguageCombinations>

</TNPrepareRequest>

Figure 7.7. Message 1 in the preparation stage in circumstance 2

Step 2: Following the process dealing with the <TNPrepareRequest> message (see

figure 4.4), WSB discovers that the strategy supported by the counterpart is the

parsimonious strategy. It then checks available information about Bob’s resource R,

where the eager strategy is the only option. As WSB cannot discover a common

strategy, it responds with a <TNPrepareResponse> message that TN cannot be used

due to an internal interoperability issue of TN. The message is shown in figure 7.8

below.
<TNPrepareResponse TNCanBeUsed=”no”>

<Fault>Strategic interoperability issue</Fault>

</TNPrepareResponse>

Figure 7.8. Message 2 in the preparation stage in circumstance 2

 167

As the <TNPrepareResponse> message contains a fault message, according to the

process dealing with this response message (see figure 4.5), WSA will cease the

following communication with WSB.

Circumstance 3:

Alice wants to access Bob’s resource R. Bob declares a P2 requiring attribute

information in a C1 to protect R. Alice has a C1.

The possessed information presented in symbols is shown in figure 7.9 below.

 Figure 7.9. Possessed information in circumstance 3

Units of Analysis:

• Authorisation system types: both WSA and WSB use ABAC-based authorisation

systems (PERMIS and Akenti for instance)

• Strategy types: both WSA and WSB support the parsimonious strategy

• Policy/Credential language: both WSA and WSB can compare policies written in

PL1 against credentials written in CL1. WSA can also compare policies written in PL2

against credentials written in CL2.

• Sensitivity of credentials: nil

• Sensitivity of policies: nil

As the comparison between the improved TN protocol and the protocols of PERMIS

and Akenti used in Web Services have been presented in table 7.2, it is omitted here.

By applying the proposed protocol to circumstance 3, the communication process is

shown as follows.

As step 1 is the same as that shown in circumstance 2, it is omitted here.

Step 2: Following the process dealing with the <TNPrepareRequest> message (see

figure 4.4), WSB discovers that the strategy supported by the counterpart is the

parsimonious strategy. It then checks available information about Bob’s resource R,

where the parsimonious strategy is also available. As there is a common strategy,

WSA (Alice)
Credentials: C1
Policies: nil

WSB (Bob):
Resource: R
Credentials: nil
Policies: P2:R←C1

 168

WSB then discovers that the language combinations supported by the counterpart are

“PL1 and CL1” and “PL2 and CL2”. After this discovery, it searches the information

about the policy languages used within its own system and knows that “PL1” is

supported. It also checks the language information about Bob’s credentials to discover

that “CL1” is the language used for expressing Bob’s credentials. It also checks the

capability of its local policy compliance checker and discovers that it can compare

policies written in PL1 against credentials written in CL1. Therefore, “PL1 and CL1”

have been identified as the common language combination. Since WSB can discover

a common strategy and a common language combination, it stores the information

about the strategy name and language combination for expressing credentials and

policies into its local database. After this, it agrees to use TN with WSA to trigger the

negotiation stage by sending a <TNPrepareResponse> message. The message is

shown in figure 7.10 below.
<TNPrepareResponse TNCanBeUsed=”yes”>

 <ChosenStrategy>Parsimonious</ChosenStrategy>

<ChosenLanguageCombination>

<PolicyLanguage>PL1</PolicyLanguage>

<CredentialLanguage>CL1</CredentialLanguage>

</ChosenLanguageCombination>

</TNPrepareResponse>

Figure 7.10. Message 2 in the preparation stage in circumstance 3

Applying the “Resource API” design pattern that a request should be composed of

standardised server methods (i.e. GET, PUT, POST, DELETE) and a URI.

Step 3: When WSA receives the <TNPrepareReponse> message, following the

process of dealing with this message (see figure 4.5), it can discover a list of names of

the chosen strategy and the chosen language combination. It knows that the

negotiation stage can be triggered. It then stores the chosen strategy name and the

chosen language combination name into its local database. After that, WSA sends an

<AuthzDecisionQuery> message as an authorisation request to WSB. The message is

shown in figure 7.11 below.
<AuthzDecisionQuery ID=”1”

Destination=”http://WSB” Resource=”http://WSB/Bob/Resource/R”

RemoteResourceOwner=”http://WSB/Bob”

LocalRequesterName=”http://WSA/Alice”>

<Subject>

 169

<SubjectConfirmation Method=”TN”>

</Subject>

<Action>Access</Action> //Access equals to the GET method

</AuthzDecisionQuery>

Figure 7.11. Message 3 in the negotiation stage in circumstance 3

Step 4: After WSB receives the <AuthzDecisionQuery> message, following the

process dealing with this message (see figure 4.6), it obtains the relevant attribute

information and stores this in the database. WSB then requests the local database to

obtain the stored chosen strategy name – parsimonious strategy, and uses this strategy

name to activate the relevant strategy in the “negotiation strategy repository

component”. It then checks the information about Bob’s resource R and discovers that

R has been protected by a P2 requiring a C1. As the parsimonious strategy has been

chosen, it sets this policy in a <PolicySet> message to WSA. The message is shown

in figure 7.12 below.
<PolicySet ID=”bps1” LocalPolicyFileName=”http://WSB/Bob/Policy/P2”

RemoteResourceOwner=”http://WSA/Alice”

LocalPolicyOwnerName=”http://WSB/Bob”

ProtectedLocalResource=”http://WSB/Bob/Resource/R”

PolicyTotalNumber=”1”>

 <Policy ID=”bp1”>

A P2 written in the PL1 language requiring attribute

information in a C1 written in the CL1 language

</Policy>

</PolicySet>

Figure 7.12. Message 4 in the negotiation stage in circumstance 3

Step 5: When WSA receives the <PolicySet> message, following the process of

dealing with this message (see figures 4.7 and 4.8), it stores the attribute information

into its local database. It then requests its local database for retrieving the chosen

language combination “PL1 and CL1”. When this information is provided from the

local database, it then activates the specific functionality of its policy compliance

checker for comparing credentials in CL1 against policies in PL1. By using this

functionality, it compares Alice’s C1 against Bob’s P2 contained within this message.

As Alice’s C1 is not sensitive, WSA decides to send the C1 in a <CredentialSet>

message to WSB. The message is shown in figure 7.13 below.
<CredentialSet ID=”acs1” CredentialTotalNumber=”1”

 170

MeetRemotePolicy=”http://WSB/Bob/Policy/P2”

MeetRemotePolicyOwner=”http://WSB/Bob”

LocalCredentialOwner=”http://WSA/Alice”>

<Credential ID=”ac1” CredentialType=”C1”>

Detailed attribute information within the C1 written in the CL1

language

</Credential>

</CredentialSet>

Figure 7.13. Message 5 in the negotiation stage in circumstance 3

Step 6: WSB receives the <CredentialSet> message, according to the process of

dealing with the message (see figures 4.9 and 4.11); it stores the attribute information

in the database. It then sends a request to the credential verification component for

choosing the relevant functionality for verifying the authenticity of credentials written

in CL1 for the C1. Once the authenticity of the C1 has been verified, it requests the

local database for the chosen strategy and the chosen language combination, and

sends them to the negotiation strategy repository and policy compliance checker. As

the parsimonious strategy has been chosen, it then compare the C1 against the P2 to

identify that the C1 can fulfil the P2. After the comparison, WSB discovers that there

are no further local sensitive credentials that can be disclosed. So, it sends an

<AuthzDecisionStatement> message containing the successful result along with the

resource back to WSA. The message is shown in figure 7.14 below.
<AuthzDecisionStatement ID=”n” InResponseTo=”1”

Resource=”http://WSB/Bob/Resource/R”

ResourceOwner=”http://WSB/Bob” Decision=”Permit”>

<Action>read only</Action>

</AuthzDecisionStatement>

Figure 7.14. Message 6 in the negotiation stage in circumstance 3

When WSA receives the <AuthzDecisionStatement> message, according to the

process of dealing with this message (see figure 4.13), it checks the result and knows

that TN has succeeded, which means that Bob’s resource R can be accessed.

Circumstance 4:

Alice wants to access Bob’s resource R. Bob declares a P2 requiring attribute

information in a C1 or that in a C3 to protect R. Alice has a sensitive C1 protected by a

P1 requiring attribute information in a C2.

 171

The possessed information presented in symbols is shown in figure 7.15 below.

 Figure 7.15. Possessed information in circumstance 4

Units of Analysis:

• Authorisation system types: WSA uses ABAC-based authorisation systems, and

WSB uses TN-based authorisation systems (PERMIS and TrustBuilder2 for instance)

• Strategy types: both WSA and WSB support the use of the parsimonious strategy

• Policy/Credential language: Both WSA and WSB can compare policies written in

PL1 against credentials written in CL1.

• Sensitivity of credentials: C1

• Sensitivity of policies: nil

Before applying the proposed protocol to this circumstance, a comparison between

the protocol of TrustBuilder2 (Lee, Winslett and Perano, 2009) and the improved TN

protocol (see figure 4.2) is needed. As the comparison between the improved TN

protocol and the protocol of PERMIS used in Web Services is shown in table 7.2

above, it is omitted here. The detailed comparison is shown in table 7.3.
Interoperability

Layer

Improved TN Protocol TrustBuilder2 protocol

Strategy (1) Preparation stage and (2)

Negotiation Strategy Repository

Component

Negotiation Strategy Repository

Component

Capability (1) Preparation stage and (2) Multiple

languages for expressing credentials

and Policies

Multiple languages for expressing

credentials and Policies

Functionality Policy Compliance Checker Policy Compliance Checker

Syntax and Semantics XML-based languages, SAML

languages and XACML languages

Non-XML-based messages

Table 7.3. Comparison between TrustBuilder2 and the improved TN protocol

WSA (Alice)
Credentials: C1
Policies: P1:C1← C2

WSB (Bob):
Resource: R
Credentials: nil
Policies: P2:R←C1∨C3

 172

Observing table 7.3, it can be identified that protocol messages and the preparation

stage are not supported in TrustBuilder2. Assuming that they are to be implemented

within TrustBuilder2, then the following steps will occur.

By applying the proposed protocol to circumstance 4, the communication process is

shown as follows.

Steps 1 to 4 are the same as those shown in above circumstances, so they are omitted

here.

Step 5: After WSA analyses this <PolicySet> message (see figures 4.7 and 4.8), it

finds out that Alice does have a C1 that can fulfil the P2. Unfortunately, as Alice has

treated the C1 as sensitive and has declared a P1 protecting its disclosure, it cannot

send the C1 directly to WSB. As a result, it sets the P1 in a <PolicySet> message to be

sent to WSB. The message is shown in figure 7.16 below.
<PolicySet ID=”aps1” LocalPolicyFileName=”http://WSA/Alice/Policy/P1”

RemoteResourceOwner=”http://WSB/Bob”

LocalPolicyOwnerName=”http://WSA/Alice”

ProtectedLocalResource=”http://WSA/Alice/Credential/C1”

PolicyTotalNumber=”1”>

 <Policy ID=”ap1”>

A P1 written in the PL1 language requiring the attribute

information in a C2 written in the CL1 language

</Policy>

</PolicySet>

Figure 7.16. Message 5 in the negotiation stage in circumstance 4

Step 6: When WSB receives this <PolicySet> message (see figures 4.7 and 4.8), it

finds out that Bob does not have a C2. Therefore, it sends out an

<AuthzDecisionStatement> message as the last message to inform that TN has failed.

The message is shown in figure 7.17 below, where the fault reason is highlighted in

bold.
<AuthzDecisionStatement ID=”n” InResponseTo=”1”

Resource=”http://WSB/Bob/Resource/R”

ResourceOwner=”http://WSB/Bob” Decision=”Denied”>

<Fault>No Local Credentials</Fault>

</AuthzDecisionStatement>

Figure 7.17. Message 6 in the negotiation stage in circumstance 4

 173

When WSA receives this <AuthzDecisionStatement>, it finds out a <Fault> message

is contained within this message, which means that authorisation has failed.

Circumstance 5:

Alice wants to access Bob’s resource R. Bob declares a P2 requiring attribute

information in a C1 to protect R. Alice has a sensitive C1 protected by a P1 requiring

attribute information in a C2. She also has a C3. Bob possess a C4.

The possessed information presented in symbols is shown in figure 7.18 below.

 Figure 7.18. Possessed information in circumstance 5

Units of Analysis:

• Authorisation system types: WSA uses ABAC-based authorisation systems, and

WSB uses TN-based systems (PERMIS and Trust-X for instance)

• Strategy types: Both WSA and WSB supports the use of the eager strategy

• Policy/Credential language: Both WSA and WSB can compare policies written in

PL1 against credentials written in CL1.

• Sensitivity of credentials: C1

• Sensitivity of policies: nil

Before applying the proposed protocol to this circumstance, a comparison between

the protocol of Trust-X (Squicciarini et al., 2007; Squicciarini et al., 2012) and the

improved TN protocol (see figure 4.2) is needed. As the comparison between the

improved TN protocol and the protocol of PERMIS used in Web Services is shown in

table 7.2 above, it is omitted here. The detailed comparison is shown in table 7.4.
Interoperability

Layer

Improved TN Protocol Trust-X protocol

Strategy (1) Preparation stage and (2)

Negotiation Strategy Repository

Component

Strategy manager

Capability (1) Preparation stage and (2) Multiple

languages for expressing credentials

X-TNL language only

WSA (Alice)
Credentials: C1, C3
Policies: P1:C1←C2

WSB (Bob):
Resource: R
Credentials: C4
Policies: P2:R←C1

 174

and Policies

Functionality Policy Compliance Checker (1) Policy Compliance Checker,

(2) suspension and resume of TN

and (3) trust tickets

Syntax and Semantics XML-based languages, SAML

languages and XACML languages

X-TNL language only

Table 7.4. Comparison between Trust-X and the improved TN protocol

After comparing the protocols used in Trust-X against the proposed improved TN

protocol (see figure 4.2), it can be identified that the preparation stage and protocol

messages are not supported in Trust-X. Assuming they are to be implemented in

Trust-X, then the following steps will occur.

By applying the proposed protocol to circumstance 5, the communication process is

shown as follows.

The steps 1 to 3 are nearly the same as those shown in circumstance 3. The only

difference is that the “eager” value is set in the <Strategy> message contained in a

<TNPrepareRequest> message and in the <ChosenStrategy> message contained in a

<TNPrepareResponse> message. Therefore, they are omitted here.

Step 4: After receiving the <AuthzDecisionQuery message>, following the logic

shown in figure 4.6, WSB discovers that R has been protected by a P2 requiring a C1.

As the eager strategy has been chosen, it then sets Bob’s C4 in a <CredentialSet>

message and sends this message to WSA. The message is shown in figure 7.19 below.
<CredentialSet ID=”acs1” CredentialTotalNumber=”1”

LocalCredentialOwner=”http://WSB/Bob”>

<Credential ID=”bc1” CredentialType=”C4”>

Detailed attribute information within the C4 written in the CL1

language

</Credential>

</CredentialSet>

Figure 7.19. Message 4 in the negotiation stage in circumstance 5

Step 5: When WSA receives this <CredentialSet> message from WSB, following the

logic shown in figures 4.9 and 4.10, it tries to use the contained C4 to unlock Alice’s

sensitive credentials. As the C4 cannot unlock the C1, and as the eager strategy has

 175

been chosen, it then sets Alice’s C3 in a <CredentialSet> message and sends this

message to WSB. The message is shown in figure 7.20 below.
<CredentialSet ID=”acs1” CredentialTotalNumber=”1”

LocalCredentialOwner=”http://WSA/Alice”>

<Credential ID=”ac1” CredentialType=”C3”>

Detailed attribute information within the C3 written in the CL1

language

</Credential>

</CredentialSet>

Figure 7.20. Message 5 in the negotiation stage in circumstance 5

Step 6: Likewise, when WSB receives this <CredentialSet> message, following the

logic shown in figures 4.9 and 4.10, it looks to see whether the C3 can be used to

unlock Bob’s resource R. After a comparison, it finds out that the C3 cannot fulfil the

P2; therefore it tries to use the C3 to unlock Bob’s sensitive credentials. As Bob does

not have any other sensitive credentials, WSB identifies that resending the C4 within a

<CredentialSet> message would be useless. Therefore, it sends out an

<AuthzDecisionStatement> to WSA. The message is the same as the one shown in

figure 7.17, so it is omitted here.

WSA finds out that a <Fault> message is contained within the received

<AuthzDecisionStatement> message, so it knows that authorisation has failed.

Circumstance 6:

Alice wants to access Bob’s resource R. Bob declares a P2 requiring attribute

information in a C1 to protect R. As Bob treats the P2 as sensitive, it then declares a P4

requiring attribute information in a C3 or that in a C5 to protect the disclosure of the P2.

Alice has a sensitive C1 protected by a P1 requiring attribute information in a C2. She

also has a C3. Bob has a C2.

The possessed information presented in symbols is shown in figure 7.21 below.

 Figure 7.21. Possessed information in circumstance 6

WSA (Alice)
Credentials: C1, C3
Policies: P1:C1←C2

WSB (Bob):
Resource: R
Credentials: C2
Policies:
P2:R←C1

P4:P2←C3∨C5

 176

Units of Analysis:

• Authorisation system types: WSA uses ABAC-based authorisation systems, and

WSB uses TN-based systems (PERMIS and Trust-X for instance)

• Strategy types: both WSA and WSB supports the use of the parsimonious strategy

• Policy/Credential language: Both WSA and WSB can compare policies written in

PL1 against credentials written in CL1.

• Sensitivity of credentials: C1

• Sensitivity of policies: P2

As the comparison between the improved TN protocol and the protocol of PERMIS as

well as the Trust-X protocol have been presented in table 7.2 and table 7.4

respectively, it is omitted here.

By applying the proposed protocol to circumstance 6, the communication process is

shown as follows.

The steps 1 to 3 are the same as those shown in circumstance 3, so they are omitted

here.

Step 4: After receiving the <AuthzDecisionQuery> message, following the logic

shown in figure 4.6, WSB finds out that R is protected by a P2, which is in turn

protected by a P4. Therefore, it sets the P4 in a <PolicySet> message to be sent to

WSA first. The message is shown in figure 7.22 below.
<PolicySet ID=”bps1” LocalPolicyFileName=”http://WSB/Bob/Policy/P4”

RemoteResourceOwner=”http://WSA/Alice”

LocalPolicyOwnerName=”http://WSB/Bob”

ProtectedLocalResource=”http://WSB/Bob/Policy/P2”

PolicyTotalNumber=”1”>

 <Policy ID=”bp1”>

A P4 written in the PL1 language requiring attribute

information in a C3 or in a C5 written in the CL1 language

</Policy>

</PolicySet>

Figure 7.22. Message 4 in the negotiation stage in circumstance 6

Step 5: WSA analyses this <PolicySet> message following the logic shown in figures

4.7 and 4.8, and understands that a C3 is required. It then checks whether Alice has a

C3. After it checks that Alice has a C3 that can fulfil the P2, and that the C3 is not

 177

treated as sensitive, it then sets the C3 in a <CredentialSet> message and sends this

message to WSB. As the message is the same as shown in figure 7.20 above, it is

omitted here.

Step 6: WSB compares the C3 contained within the received <CredentialSet>

message against the P4 following the logic shown in figures 4.9 and 4.11, it then

makes sure that the P4 has been unlocked. Therefore, it knows that the P2 can be set in

a new <PolicySet> message to be sent to WSA. The message is the same as shown in

figure 7.12 above, so it is omitted here.

Steps 7 and 8 are the same as steps 5 and 6 as shown in circumstance 3, so the

detailed descriptions are omitted here.

Circumstance 7:

Alice wants to access Bob’s resource R. Bob declares a sensitive P2 requiring attribute

information in a C1 to protect R, and declares a P4 requiring attribute information in a

C3 to protect P2. Alice has a C1 and a C3. Bob has a C2.

The possessed information presented in symbols is shown in figure 7.23 below.

 Figure 7.23. Possessed information in circumstance 7

Units of Analysis:

• Authorisation system types: WSA uses ABAC-based authorisation systems, and

WSB uses TN-based systems (PERMIS and Trust-X for instance)

• Strategy types: both WSA and WSB only support the use of the eager strategy

• Policy/Credential language: Both WSA and WSB can compare policies written in

PL1 against credentials written in CL1.

• Sensitivity of credentials: nil

• Sensitivity of policies: P2

WSA (Alice)
Credentials: C1, C3
Policies: nil

WSB (Bob):
Resource: R
Credentials: C2
Policies:
P2:R←C1

P4:P2←C3

 178

As the comparisons between the improved TN protocol and the protocol of PERMIS

as well as the Trust-X protocol have been presented in table 7.2 and table 7.4

respectively, they are omitted here.

By applying the proposed protocol to circumstance 7, the communication process is

shown as follows.

Steps 1 to 3 are the same as those shown in circumstance 5. Step 4 in this

circumstance is almost similar to step 4 in circumstance 5, where C2 is used in this

circumstance instead of C4. So they are omitted here.

Step 5: After receiving the <CredentialSet> message, following the logic shown in

figures 4.9 and 4.10, as the eager strategy has been used, WSA tries to use the C2

contained within the received <CredentialSet> message to unlock local sensitive

credentials. As Alice does not have any sensitive credentials, no more of Alice’s

sensitive credentials can be unlocked by the C2. WSA finds out that the C1 and the C3

are not treated as sensitive, so it then sets the C1 and the C3 in a <CredentialSet>

message and sends this message to WSB. The message is shown in figure 7.24 below.
<CredentialSet ID=”acs1” CredentialTotalNumber=”2”

LocalCredentialOwner=”http://WSA/Alice”>

<Credential ID=”ac1” CredentialType=”C1”>

Detailed attribute information within the C1 written in the CL1

language

</Credential>

<Credential ID=”ac2” CredentialType=”C3”>

Detailed attribute information within the C3 written in the CL1

language

</Credential>

</CredentialSet>

Figure 7.24. Message 5 in the negotiation stage in circumstance 7

Step 6: Following the logic shown in figures 4.9 and 4.10, WSB compares the

received credentials C1 and C3 contained within the <CredentialSet> message against

the P2 protecting Bob’s resource R respectively. It finds out that the C1 can

successfully meet the P2, so it sends an <AuthzDecisoinStatement> message to inform

WSA that TN has succeeded. The message is the same as the one shown in figure

7.14, so it is omitted here.

 179

Circumstance 8:

Alice wants to access Bob’s resource R. Bob declares a sensitive P2 requiring attribute

information in a C1 to protect R, and declares a P4 requiring attribute information in a

C3 to protect the P2. Alice has a C1 and a C3, which contain similar attribute

information. As Alice treats the C1 as sensitive, she declares a P1 requiring attribute

information in a C4 to unlock the disclosure of the C1. Bob has a C2.

The possessed information presented in symbols is shown in figure 7.25 below.

 Figure 7.25. Possessed information in circumstance 8

Units of Analysis:

• Authorisation system types: both WSA and WSB use TN-based systems

(TrustBuilder2 and Trust-Serv for instance)

• Strategy types: both WSA and WSB only support the use of the eager strategy

• Policy/Credential language: Both WSA and WSB can compare policies written in

PL1 against credentials written in CL1.

• Sensitivity of credentials: C1

• Sensitivity of policies: P2

Before applying the proposed protocol to this circumstance, a comparison between

Trust-Serv (Skogsrud et al., 2009) and the improved TN protocol (see figure 4.2) is

needed. As the comparison between the improved TN protocol and the protocol of

TrustBuilder2 used in Web Services is shown in table 7.3 above, it is omitted here.

The detailed comparison is shown in table 7.5.
Interoperability

Layer

Improved TN Protocol Trust-Serv protocol

Strategy (1) Preparation stage and (2)

Negotiation Strategy Repository

Component

Negotiation Controller

Capability (1) Preparation stage and (2) Multiple

languages for expressing credentials

SAML messages for expressing

credentials and WS-

WSA (Alice)
Credentials: C1, C3
Policies: P1:C1←C4

WSB (Bob):
Resource: R
Credentials: C2
Policies:
P2:R←C1

P4:P2←C3

 180

and Policies SecurityPolicy messages for

expressing policies

Functionality Policy Compliance Checker (1) Policy Compliance Checker

and (2) Policy migration

Syntax and Semantics XML-based languages, SAML

languages and XACML languages

SAML and WS-SecurityPolicy

messages

Table 7.5. Comparison between Trust-Serv and the improved TN protocol

Observing table 7.5, it can be identified that the inability of using multiple languages

for expressing credentials and policies, the preparation stage, and the use of XACML

messages as containers for containing policies expressed in different policy languages

are not supported in Trust-Serv. Assuming that they are to be implemented within

Trust-Serv, the following steps will occur.

By applying the proposed protocol to circumstance 8, the communication process is

shown as follows.

Steps 1 to 3 are the same as those shown in circumstance 5. Step 4 in this

circumstance is almost similar to step 4 in circumstance 5, where C2 is used in this

circumstance instead of C4. So they are omitted here.

Step 5: After receiving the <CredentialSet> message, following the logic shown in

figures 4.9 and 4.10, as the eager strategy has been used, WSA tries to use the C2

contained within the received <CredentialSet> message to unlock local sensitive

credentials. Alice does possess a credential C1, but the relevant P1 declared by Alice

requires a C4 to unlock the disclosure of the C1. As C2 cannot meet the P1, so the

disclosure of the C1 cannot be unlocked. WSA finds out that only the C3 is not treated

as sensitive, so it then sets the C3 in a <CredentialSet> message and sends this

message to WSB. The message is shown in figure 7.26 below.
<CredentialSet ID=”acs1” CredentialTotalNumber=”1”

LocalCredentialOwner=”http://WSA/Alice”>

<Credential ID=”ac1” CredentialType=”C3”>

Detailed attribute information within the C3 written in the CL1

language

</Credential>

</CredentialSet>

Figure 7.26. Message 5 in the negotiation stage in circumstance 8

 181

Step 6: Following the logic shown in figures 4.9 and 4.10, WSB compares the

received credential C3 contained within the <CredentialSet> message against the P2

protecting Bob’s resource R. It finds out that the attribute information in the C3 can

successfully meet the P1, so it sends an <AuthzDecisoinStatement> message to inform

WSA that TN has succeeded. The message is the same as the one shown in figure

7.14, so it is omitted here.

Circumstance 9:

Alice wants to access Bob’s resource R. Bob declares a sensitive P2 requiring attribute

information in a C1 to protect R, and declares a P4 requiring attribute information in a

C3 to protect the P2. Alice has a C1 and a C3, which contain similar attribute

information. As Alice treats both the C1 and the C3 as sensitive, she declares a P1

requiring attribute information in a C4 to unlock the disclosure of the C1 and the C3.

Bob has a C2.

The possessed information presented in symbols is shown in figure 7.27 below.

 Figure 7.27. Possessed information in circumstance 9

Units of Analysis:

• Authorisation system types: both WSA and WSB use TN-based systems

(TrustBuilder2 and Trust-Serv for instance)

• Strategy types: both WSA and WSB only support the use of the parsimonious

strategy

• Policy/Credential language: Both WSA and WSB can compare policies written in

PL1 against credentials written in CL1.

• Sensitivity of credentials: C1, C3

• Sensitivity of policies: P2

WSA (Alice)
Credentials: C1, C3
Policies:
P1: (C1, C3)←C4

WSB (Bob):
Resource: R
Credentials: C2
Policies:
P2:R←C1

P4:P2←C3

 182

As the comparison between the improved TN protocol and the TrustBuilder2 protocol

and Trust-Serv protocol have been presented in table 7.3 and table 7.5 respectively, it

is omitted here.

By applying the proposed protocol to circumstance 9, the communication process is

shown as follows.

Steps 1 to 3 are the same as those shown in circumstance 3. Step 4 in this

circumstance is almost similar to step 4 in circumstance 3, where P4 is used instead of

P2. So they are omitted here.

Step 5: After receiving the <PolicySet> message, following the logic shown in

figures 4.7 and 4.8, as the parsimonious strategy has been used, WSA tries to compare

the C1 and the C3 against the P4 and discovers that attribute information in either the

C1 or the C3 can fulfil the P4. Unfortunately, as disclosure of the C1 and the C3 are

protected by the P1, so WSA sets the P1 in a <PolicySet> message to be sent to WSB.

The message is shown in figure 7.28 below.
<PolicySet ID=”aps1” LocalPolicyFileName=”http://WSA/Alice/Policy/P1”

RemoteResourceOwner=”http://WSB/Bob”

LocalPolicyOwnerName=”http://WSA/Alice”

ProtectedLocalResource=”http://WSA/Alice/Credential/C1&C2”

PolicyTotalNumber=”1”>

 <Policy ID=”ap1”>

A P1 written in PL1 language requiring attribute information in

a C4 written in the CL1 language

</Policy>

</PolicySet>

Figure 7.28. Message 5 in the negotiation stage in circumstance 9

Step 6: Following the logic shown in figures 4.7 and 4.8, WSB tries to compare the

P1 contained within the received <PolicySet> message against Bob’s C2. As the

attribute information in the C2 cannot fulfil the P1, and WSB finds out that Bob does

not possess any other credentials except the C2, so it sends an

<AuthzDecisionStatement> message containing a <Fault> message to WSA. The

message is the same as the one shown in figure 7.17, so it is omitted here.

When WSA receives this <AuthzDecisionStatement> message and detects a <Fault>

message, it knows that authorisation has failed.

 183

Circumstance 10:

Alice wants to access Bob’s resource R. Bob declares a sensitive P2 requiring attribute

information in a C1 to protect R, and declares a P4 requiring attribute information in a

C3 to protect the P2. Alice has a C1 and a C3, which contain similar attribute

information. As Alice treats both the C1 and the C3 as sensitive, she declares a P1

requiring attribute information in a C4 to unlock the disclosure of the C1 and the C3. In

addition, Alice also has a C7 and a C9. Bob has a C2 and a C4. As Bob treats the C4 as

sensitive, he declares a P6 requiring attribute information in a C5 or a combination of a

C7 and a C9 to unlock the disclosure of the C4.

The possessed information presented in symbols is shown in figure 7.29 below.

 Figure 7.29. Possessed information in circumstance 10

Units of Analysis:

• Authorisation system types: both WSA and WSB use TN-based systems

(TrustBuilder2 and Trust-Serv for instance)

• Strategy types: both WSA and WSB only support the use of the parsimonious

strategy

• Policy/Credential language: Both WSA and WSB can compare policies written in

PL1 against credentials written in CL1.

• Sensitivity of credentials: C1, C3, C4

• Sensitivity of policies: P2

As the comparison between the improved TN protocol and the TrustBuilder2 protocol

and Trust-Serv protocol have been presented in table 7.3 and table 7.5 respectively, it

is omitted here.

WSA (Alice)
Credentials: C1, C3, C7, C9
Policies:
P1: (C1, C3)←C4

WSB (Bob):
Resource: R
Credentials: C2, C4
Policies:
P2:R←C1

P4:P2←C3
P6:C4←C5∨(C7∧C9)

 184

By applying the proposed protocol to circumstance 10, the communication process is

shown as follows.

Steps 1 to 5 are the same as those shown in circumstance 9, so they are omitted here.

Step 6: After receiving the <PolicySet> message, following the logic shown in

figures 4.7 and 4.8, as the parsimonious strategy has been used, WSB tries to compare

the P1 contained within the received <PolicySet> message against Bob’s C4 and

discovers that the attribute information in the C4 can fulfil the P1. However, as

disclosure of the C4 is protected by the P6, so WSB sets the P6 in a <PolicySet>

message to be sent to WSA. The message is shown in figure 7.30 below.
<PolicySet ID=”bps2” LocalPolicyFileName=”http://WSB/Bob/Policy/P6”

RemoteResourceOwner=”http://WSA/Alice”

LocalPolicyOwnerName=”http://WSB/Bob”

ProtectedLocalResource=”http://WSB/Bob/Credential/C4”

PolicyTotalNumber=”1”>

 <Policy ID=”bp2”>

A P6 written in the PL1 language requiring attribute

information in a C5 or in a combination of C7 and C9

written in the CL1 language

</Policy>

</PolicySet>

Figure 7.30. Message 6 in the negotiation stage in circumstance 10

Step 7: Following the logic shown in figures 4.7 and 4.8, as WSA cannot find the C5

possessed by Alice, it then compares the combination of Alice’s C7 and C9 against the

P6, and finds out that the attribute information in insensitive C7 and C9 can meet the

P6, so it sets the C7 and the C9 in a <CredentialSet> message to be sent to WSB. The

message is shown in figure 7.31 below.
<CredentialSet ID=”acs2” CredentialTotalNumber=”2”

MeetRemotePolicy=”http://WSB/Bob/Policy/P6”

MeetRemotePolicyOwner=”http://WSB/Bob”

LocalCredentialOwner=”http://WSA/Alice”>

<Credential ID=”ac1” CredentialType=”C7”>

Detailed attribute information within the C7 written in the CL1

language

</Credential>

<Credential ID=”ac2” CredentialType=”C9”>

Detailed attribute information within the C9 written in the CL1

language

 185

</Credential>

</CredentialSet>

Figure 7.31. Message 7 in the negotiation stage in circumstance 10

Step 8: Following the logic shown in figures 4.9 and 4.11, WSB compares the

attribute information in the C7 and C9 against the P6, and agrees that the C7 and the C9

can fulfil the P6. As P6 does not protect any local sensitive policies, so it sets the C4 in

a <CredentialSet> message to be sent to WSA. The message is shown in figure 7.32

below.
<CredentialSet ID=”acs1” CredentialTotalNumber=”1”

MeetRemotePolicy=”http://WSA/Alice/Policy/P1”

MeetRemotePolicyOwner=”http://WSA/Alice”

LocalCredentialOwner=”http://WSB/Bob”>

<Credential ID=”bc1” CredentialType=”C4”>

Detailed attribute information within the C4 written in the CL1

language

</Credential>

</CredentialSet>

Figure 7.32. Message 8 in the negotiation stage in circumstance 10

Step 9: Following the logic shown in figures 4.9 and 4.11, WSA compares the

attribute information in the C4 against the P1, and discovers that the C4 can meet the

P1. So it then sets the C3 in a <CredentialSet> message to be sent to WSB. The

message is shown in figure 7.33 below.
<CredentialSet ID=”acs3” CredentialTotalNumber=”1”

MeetRemotePolicy=”http://WSB/Bob/Policy/P4”

MeetRemotePolicyOwner=”http://WSB/Bob”

LocalCredentialOwner=”http://WSA/Alice”>

<Credential ID=”ac3” CredentialType=”C3”>

Detailed attribute information within the C3 written in the CL1

language

</Credential>

</CredentialSet>

Figure 7.33. Message 9 in the negotiation stage in circumstance 10

Step 10: Following the logic shown in figures 4.9 and 4.11, WSB compares the

attribute information in the C3 against the P4, and agrees that the attribute information

in the C3 can fulfil the P4; so it sets the P2 in a <PolicySet> message to be sent to

WSA. The message is the same as the one shown in figure 7.12, so it is omitted here.

 186

Step 11 and step 12 are the same as step 5 and step 6 shown in circumstance 3

respectively, so they are omitted here.

The case study consisting of ten circumstances is presented above, the next section

discusses data analysis based on the data collected from the ten circumstances.

7.4 Discussion on Qualitative Data Analysis

7.4.1 Data analysis strategy and technique
Following step 4 of the case study protocol shown in section 7.3.1, this section

presents the relevant qualitative data analysis results. Yin (2013) recommends four

strategies and five techniques to be used for case study data analysis.

The four strategies are (1) Relying on theoretical propositions (used when there exists

a proposition within a piece of research), (2) Working your data from the “ground up”

(used when there is no clear proposition within a piece of research), (3) Developing a

case description (used when the first and the second strategies are not available) and

(4) Examining plausible rival explanations (used when there exists rival explanations

within the propositions within a piece of research). A conceptual multi-layered

interoperability-solution design presented in Table 4.1 illustrating the mapping

between each interoperability layer and each protocol element is a proposition without

containing any rival explanation. This table proposes guidance for the design and

development of the improved TN protocol. Therefore, the first strategy should be

suitable to be used as the most appropriate data analysis strategy in the data analysis

phase.

The five techniques are (1) Pattern Matching (used when a comparison between the

findings from the data collection is the same as the predicted results before data

collection is possible), (2) Explanation Building (used when the goal of the case study

is to establish an explanation), (3) Time-Series Analysis (used when the case study

may last for a long time, where data collected in different period may be different),

(4) Logic Models (used when studying relationships between causes and effects) and

(5) Cross-Case SynThesis (used when conducting multiple case studies). According to

 187

the second research aim, the research is not going to identify explanations for certain

phenomena or to study relationships between causes and effects, but to explore

potential solutions. As mentioned earlier, the selected type of the case study is an

embedded single-case study design, and the data collection will not be affected by the

time. As indicated by the proposed interoperability-solution design in table 4.1, a

protocol designed following this design may address the second research problem

(referred to as predicted results). The goal of this protocol evaluation is to verify

whether the proposed protocol following the guidance of the design in table 4.1 can

address the second research problem (referred to as evaluation results). Therefore, a

comparison between the evaluation results against the predicted results is the purpose

of conducting this evaluation. Following this purpose, the selection of the “pattern

matching” technique as the best data analysis technique should be appropriate.

In conclusion, the strategy of reliance on “theoretical propositions” strategy and the

“pattern matching” technique are selected for evaluation result data analysis.

7.4.2 Data analysis results for interoperability between authorisation

systems and correctness of the protocol
The data analysis of this evaluation mainly aims at assessing whether the proposed

improved TN protocol as a concrete example of utilising the interoperability-solution

design can address the second research problem raised in section 1.2.1.

Within circumstance 1 of the case scenario as shown in section 3.4, it can be

identified that the initial reason for causing the interoperability issues between two

systems is attributed to the asymmetric strategic interoperability. In other words, the

eager strategy is used within the TN-based authorisation system as a service provider,

whereas it is not supported in the ABAC-based authorisation system as a service

requester. Due to the unsupported strategy used in the ABAC-based authorisation

system, the initial reason for causing interoperability issues is implicitly converted to

the second reason, namely, asymmetric functionality interoperability. More precisely,

using the functionality of comparing received credentials against local policies at this

particular time point is not expected by the ABAC-based authorisation system. In

other words, receiving credentials at this step does not fit the original logic designed

within the internal structures of the ABAC-based authorisation system. In addition,

 188

the syntax and semantics of the message containing credentials and the syntax and

semantics of the credentials used in the TN-based authorisation system may not be

recognised by the ABAC-based authorisation system. The unknown syntax and

semantics of the message and that of the credentials cause the syntactic and semantic

interoperability issues and capability interoperability issue respectively. Therefore,

the simultaneous occurrence of these different layered interoperability issues causes

the interoperability issue as a final outcome between two systems.

Upon understanding the reasons underpinning this phenomenon, how these issues can

be addressed with the use of the improved TN protocol through the data analysis is

discussed as follows.

Observing circumstances 5 and 7 in section 7.3.4, it can be identified that the

communication is also between an ABAC-based authorisation system and a TN-based

authorisation system in both cases, where the eager strategy is also used within the

TN-based authorisation system. Unlike circumstance 1 described in Chapter 3, there

is no unexpected communication problem between two systems. Although the

authorisation results in the two circumstances are different (authorisation failure in

circumstance 5 and authorisation success in circumstance 7), at least communication

finishes with an expected result (e.g. authorisation success or authorisation failure).

After the data analysis, it can be identified that the necessary components (e.g. the

preparation stage and the eager strategy along with the relevant internal structures and

the protocol messages) have been added to the ABAC/TN-based authorisation system,

after making an explicit comparison between the improved TN protocol and the

original protocol used in the ABAC/TN-based authorisation systems (see table 7.2).

This comparison forms a necessary foundation, which can aid developers in

identifying the difference between each part of a protocol used within the ABAC/TN-

based authorisation systems and those within the improved TN protocol. Based on the

understanding of the difference, developers can add the relevant elements to the

ABAC-based and TN-based authorisation systems to avoid the occurrence of

interoperability issues from layers 2 to 6.

As successful TN-based authorisation occurs in circumstance 7 shown in section

7.3.4, whereas it fails in circumstance 1 as described in section 3.4, it means that

 189

potential successful authorisation that would have failed in certain circumstances has

been enabled with the use of the improved TN protocol.

Observing the three circumstances 2 to 4 described in section 3.4, the reasons for the

occurrence of multiple interoperability issues in circumstance 4 are similar to those

occurring in circumstance 1 as shown in section 3.4. The difference is that both the

TN-based systems can support different strategies, but different strategies are not

interoperable with one another. Again, the strategic interoperability issue causes the

occurrence of the functionality interoperability issue, and meanwhile syntactic,

semantic and capability interoperability issues may occur together. The simultaneous

occurrence of all of these issues from layers 2 to 6 cause the communication between

two entities to cease without reaching an expected authorisation result.

In terms of circumstances 2 and 3 described in section 3.4, the main reason for

causing the occurrence of the interoperability issue in relation to capability is due to

the fact that two unknown entities do not know what capabilities are owned by each

other. More precisely, potential successful authorisation may fail, when two unknown

entities do not realise that they actually have a common capability for comparing

received remote credentials/policies against local policies/credentials.

Upon understanding this reason, a discussion of how the improved TN protocol can

be used to address this interoperability issue is presented as follows.

Observing circumstances 1, 2, 3, 8, 9 10 shown in section 7.3.4, in circumstances 1, 2

and 3, communication occurs between two ABAC-based authorisation systems,

whereas in circumstances 8, 9 and 10, communication occurs between two TN-based

authorisation systems. Although communication in circumstances 1, 2 and 3 is not

between two TN-based authorisation systems, the solutions for providing

interoperability in relation to strategy and capability are the same as those used in

circumstance 8, 9 and 10. Therefore, circumstances 1, 2 and 3 can be used together

with circumstances 8, 9 and 10 to conduct the data analysis.

In circumstances 1 and 2, interoperability issues in relation to capability (i.e. language

combination is used) and strategy can be identified in the preparation stage designed

within the improved TN protocol. In circumstances 3, 8, 9 and 10, communication

 190

finishes with an expected authorisation result (i.e. authorisation success or

authorisation failure). The conditions in the six circumstances shown in section 7.3.4

are quite similar to those in circumstances 2, 3 and 4 shown in section 3.4, but none of

the communication processes within the six circumstances stops due to occurrence of

interoperability issues.

The reason that the occurrence of the interoperability issues can be avoided is due to

the fact that a comparison between each part designed within the improved TN

protocol against those designed within the protocols used within the existing

ABAC/TN-based authorisation systems has been made. Based on the identified

differences, the preparation stage and the negotiation stage along with their relevant

internal structures and the protocol messages (e.g. <CredentialSet> and <PolicySet>

messages) have been added to the existing ABAC/TN-based authorisation systems.

With the help of the preparation stage, both ABAC/TN-based authorisation systems

have identified a common strategy and a common language combination. The use of

the common strategy and the common language combination for expressing

credentials and policies used in the negotiation stage can ensure strategic

interoperability and capability interoperability respectively. In addition, in the

negotiation stage, the syntax and semantics of the <CredentialSet> and <PolicySet>

messages designed as a message container along with their relevant internal structures

have been proposed by taking into consideration the use of multiple languages for

expressing credentials and policies.

As successful TN-based authorisation occurs in circumstances 3, 8, and 10 shown in

section 7.3.4, whereas it fails in circumstances 2, 3 and 4 as described in section 3.4,

it means that potential successful authorisation that would have failed in certain

circumstances has been enabled with the use of the improved TN protocol.

In terms of the correctness of the TN protocol, it can be verified through

circumstances 3 to 10 shown in section 7.3.4, as successful or failed authorisation can

occur following the specific conditions according to the rule of TN (see the general

concept of TN presented in section 3.2). In addition, conditions in circumstances 6

and 9 shown in section 7.3.4 are similar to the case scenario shown in section 2.8.

However, unlike the case shown in section 2.8, where authorisation fails by using the

 191

RBAC/ABAC approach, authorisation can succeed by using the proposed improved

TN protocol. Based on the analysis above, the correctness of the TN protocol can

hold.

7.5 Limitations of the Protocol or of the Interoperability-

Solution Design

7.5.1 Conceptual interoperability issue
Observing the ten circumstances described in section 7.3.4, there are ABAC-based

authorisation systems involved within the authorisation communication. Once they

use the improved TN protocol, ABAC-based authorisation systems are also equipped

with TN features. These features enable ABAC-based authorisation systems to use

either ABAC or TN approaches when authorisation is needed.

With the addition of these TN features, ABAC-based authorisation systems such as

PERMIS or Akenti, actually are implemented with at least three protocols. The first

protocol is the original protocol designed for each system (Chadwick and Otenko,

2002; Thompson, Esiari and Mudumbai, 2003). The second protocol is the ABAC-

based protocol designed for these authorisation systems when they are integrated

together within the context of Web Services (Schlager et al., 2006). The third protocol

is the improved TN protocol proposed in this research. As the existing authorisation

systems may have different protocols, conceptual interoperability at layer 7 of the

proposed interoperability model may need to be taken into consideration. Otherwise,

protocol confusion may occur, especially when the protocol messages used in

different protocols are the same. For instance, SAML messages are used in both the

ABAC protocol and the proposed TN protocol.

Taking into account conceptual interoperability, questions such as how to enable an

authorisation system to know which authorisation protocol is the most appropriate to

be used in a specific situation may arise. For instance, demonstration of higher

authorisation success probability with the use of TN than that with the use of ABAC

has been proved in the existing research (see Chapter 2 and Chapter 3). It is

encouraged that TN should be preferred, when sensitive credentials and policies are

 192

held by two entities. This requires a system especially a service requester to know that

the TN protocol should be used in such a situation.

The service specification of a protocol as suggested in the interoperability-solution

design can provide such information (in what situation, the TN protocol should be

used as appropriate) for developers to understand when to use a specific protocol.

However, enabling systems to understand this information when making a decision

about the use of a proper protocol may become an issue in the future.

7.5.2 Extra required functionalities
The improved TN protocol can only provide interoperability in relation to currently

defined protocol messages along with the relevant internal structures from layers 2 to

6. That is, if extra functionalities are defined within the internal structures of other

TN-based authorisation systems, which are not defined within this protocol, this

protocol will fail to deliver the relevant interoperability. For instance, observing the

comparison between the improved TN protocols and the protocols used within the

existing TN-based authorisation systems in tables 7.3 and 7.4, it can be identified that

several unique functionalities are not designed within the improved TN protocol, such

as: enabling the resumption of TN (e.g. when interrupted); trust tickets as designed

within the Trust-X system; policy migration as designed within the Trust-Serv

system. Without the design of these functionalities, the relevant protocol messages are

also not supported within the improved TN protocol. This will cause potential

interoperability issues again. For instance, when communication breakage occurs

between a Trust-X system and an authorisation system using the improved TN

protocol, and if the Trust-X system tries to use the TN resumption functionality by

sending the relevant protocol messages, the authorisation system using the improved

TN protocol will not be able to process such a message.

7.5.3 No common strategy or capability between two entities
Observed from the ten sub cases, this protocol along with the interoperability-solution

design can only ensure that two entities will not miss the possibility that they have the

common strategy or capability to compare credentials against policies. In other words,

this protocol fails to provide interoperability if two entities have no common strategy

or capability of comparing credentials against policies. This requires a further solution

 193

that can make up for this limitation of the protocol and the interoperability-solution

design.

7.5.4 Performance tests challenge
Within ten circumstances, although some conditions are common in several

circumstances, the real process of each circumstance differs from each other, once

one or two conditions are changed. This means that a TN process can be very

complicated in comparison with an ABAC process. More precisely, after the data

analysis, the complexity of each TN process is due to several conditions: (1) strategy

used in TN, (2) number of credentials and policies held by two entities and (3)

sensitivity of credentials and policies. Any change of a condition may cause the TN

process to change a lot. This finding indicates that performance tests of a TN protocol

based on one circumstance in some research (Lee, Winslett and Perano, 2009) cannot

reflect the real nature of TN. Therefore, performance tests may become a further

challenge, which requires future research to identify a proper way for reflecting real

performance of a TN protocol.

7.6 Related Work

7.6.1 Differences between the protocol and state-of-the-art TN-based

authorisation systems
In terms of the types of distributed systems environment, the state-of-the-art TN-

based authorisation systems can be classified into two categories: Web Services-based

and non-Web Services-based. A representative TN-based authorisation system for

Web Services is Trust-Serv, and representatives of TN-based authorisation systems

for non-Web Services are TrustBuilder2, Trust-X etc.

Within Trust-Serv, SAML messages are utilised as the only one language for

expressing credentials and the language defined in the WS-SecurityPolicy

specification is leveraged as the only one language for expressing policies. The

phenomenon of using one language for expressing credentials and policies

respectively also exists in TN-based authorisation systems for non-Web Services such

as Trust-X. However, the assumption of using only one language for expressing

credentials and policies between two communicating systems is not true in reality

 194

(Saikou, 2010). Lee, Winslett and Perano (2009) proposing TrustBuilder2 strongly

recommend that the use of multiple languages for expressing credentials and policies

should be treated as one of the important features or characteristics supported by TN,

even though TrustBuilder2 is a TN-based authorisation system for non-Web Services.

This point of view is accepted within this research, as it is identified that specific

features used in one language may not be supported in other languages through the

review (see section 2.7.1). More precisely, this finding is achieved through the

analysis of the existing policy languages leveraged in the context of Web Services.

Due to the fact that each policy language owns its unique features, it is possible that

developers try to enable their Web Services to support different policy languages

(Lang et al., 2006). As some policies may only be expressed in a specific policy

language due to some unique requirements, the support of multiple policy languages

within a Web Service can provide policy expression flexibility for different

circumstances. This benefit should also be applied to credential languages in Web

Services.

However, given the phenomenon of using multiple languages for expressing

credentials and policies within Web Services, the state-of-the-art TN-based

authorisation systems cannot ensure interoperability from layers 2 to 6. This TN

protocol is initially designed by combining the necessary features/functionalities of

the state-of-the-art TN-based authorisation systems designed for both categories as

mentioned above. It then converts the features/functionalities of these TN-based

authorisation systems to elements of a protocol as identified in Chapter 2 in order to

fulfil interoperability at layers 2 to 4. As the state-of-the-art TN-based authorisation

systems cannot provide interoperability at layers 5 and 6, a novel preparation stage is

designed to enable the TN protocol to be equipped with two higher-layered

interoperability (i.e. capability and strategic interoperability). Therefore, this core idea

of the preparation stage can be treated as an extension of the state-of-the-art TN-based

authorisation systems.

 195

7.6.2 Differences between the protocol and state-of-the-art TN-based

authorisation systems in Web Services
Through the review of state-of-the-art TN-based authorisation systems within Web

Services, the most related work to the improved TN protocol proposed in this Thesis

are TrustServ (Skogsrud et al., 2009) and the SRNS (Liu et al., 2013). However,

similarities and differences can still be identified amongst them. In terms of the

similarity, all of the work aims to bring TN into Web Services to provide the

establishment of a bilateral trust relationship between two unknown Web Services for

achieving authorisation.

In terms of the difference, TrustServ mainly focuses on addressing the problems of

policy life cycle management and policy migration of TN. As these problems are

closely related to innate natures of TN rather than a specific environment of TN,

TrustServ is not designed to address problems for TN used in Web Services. In other

words, the reason for its relevance to this research is that its solution is implemented

as Web Services.

SRNS is a strategy, which allows two TN entities to exchange extra ontology

information for clarifying the semantics of the vocabularies used within policies.

However, the assumption that two entities can understand the semantics of policies by

using the exchanged ontology information is weak. As stated in section 3.3.1.2, TN is

primarily used in a context that two entities are unknown to each other. If they do not

know each other, there is no guarantee that they have a common capability of

understanding the same ontology information. Fortunately, the preparation stage

designed within the improved TN protocol can be added to the SRNS to complement

this weakness, so that two unknown entities can at least consult with each other to

make sure whether they have a common capability of understanding the same

ontology information. Similar to TrustServ, the SRNS is not specifically designed for

TN in Web Services either, but it is just implemented in Web Services.

By contrast, the research problems in this research are raised by taking into

consideration adopting TN within the specific Web Services context, that is, the

occurrence of the problems are uniquely attributed to the nature of Web Services.

 196

More precisely, the problems that need to be addressed are in relation to

interoperability issues brought by using TN within Web Services. Therefore, the

proposed TN protocol mainly focuses on resolving multi-layered interoperability

issues, when TN is used in Web Services. Observing the differences, it can be

identified that the focus of this research is completely different from that of TrustServ

and of SRNS.

7.6.3 Differences between the protocol and an existing solution in

Web Services
The existing WS-Agreement specification (Andrieux et al., 2007) strongly

recommends a pre-stage between two Web Services to consult on capability

interoperability. By contrast, the improved TN protocol recommends a pre-stage

between two Web Services to consult both capability and strategic interoperability.

Therefore, this core idea of the preparation stage can be treated as an extension of the

state-of-the-art WS-Agreement specification.

7.6.4 Differences between the protocol and state-of-the-art ABAC

protocols in Web Services
The state-of-the-art ABAC protocols are mainly designed in the AAI and Globus.

Those protocols aim to help two Web Services establish a unilateral trust relationship

for authorisation. More precisely, the protocols only enable a Web Service Provider to

trust a Web Service Requester. The improved TN protocol instead can enable two

Web Services to establish a bilateral trust relationship for authorisation. Some failed

authorisation by using the ABAC protocols due to the existence of sensitive

information (e.g. sensitive policies or credentials) can be transformed into successful

authorisation. As the ABAC protocols can be directly used in the Globus toolkit, the

improved TN protocol should also be used in the Globus toolkit with ease.

7.7 Impact of the Research
In terms of the research, its impact not only comes from the contributions, but also

comes from the evaluation process. As the impact of the process of the protocol

completeness test in Chapters 5 and a contribution in Chapter 6 have been stated, they

are not stated again.

 197

First of all, a conceptual multi-layered interoperability model has been improved on

the basis of the existing LCIM suggested by Turnitsa (2005). As a first contribution of

this research, this improved interoperability model redefines the concept of some

interoperability layers presented in the LCIM for illustrating interoperability issues

between authorisation systems in Web Services. In particular, one novel

interoperability layer named strategic interoperability is explored as an extension of

the state-of-the-art LCIM. By bearing this model in mind, it can help researchers in

academia and practitioners in industry identify the interoperability issues between

communicating systems in other fields.

Based on this model and a review of the notions of protocols, a conceptual multi-

layered interoperability-solution design presenting the mapping between

interoperability at each layer and elements of a protocol is then constructed as a

second contribution (see table 4.1). In this interoperability-solution design, how to use

a protocol-based approach to provide interoperability at the relevant layer is

presented. Following the guidance of this interoperability-solution design, an

improved TN protocol is proposed as a concrete example of utilisation of the

interoperability-solution design. Through the evaluation test, the protocol has been

proved to be effective in some certain circumstances. As this protocol was designed

following the guidance of the interoperability-solution design, the effectiveness of the

solution design can also be proved. The impact of this interoperability-solution design

is its potential application to other distributed systems environments for providing

interoperability. In other words, to use a protocol to provide interoperability between

communicating systems, a whole protocol does not necessarily have to be

implemented in the communicating systems. Instead, only the novel parts (i.e.

protocol messages and internal structures) designed in the protocol need to be added

to the communicating systems to provide interoperability at the relevant layer as

presented in the interoperability-solution design.

In terms of the impact of the improved TN protocol as a third contribution, it may not

be directly used in other distributed systems environments, but the novel idea of the

preparation stage may be applied to other protocols, which can also help two

unknown entities communicate. Hence, the impact of this protocol is mainly

embodied in the preparation stage.

 198

The evaluation process presented in this chapter has demonstrated the usefulness of

applying the model-based testing within an embedded case study design. Following

guidance of a case study protocol, the researcher was able to obtain the relevant data

for conducting data analysis. Based on data analysis, the effectiveness of the protocol

can be successfully assessed. In terms of the impact of this evaluation, new issues

coming from the interoperability-solution design and the protocol have been explored,

which can drive the researcher to carry out further research. Future work is discussed

in the next Chapter.

7.8 Chapter Summary
This chapter provides an evaluation of the proposed interoperability-solution design

to evaluate its effectiveness along with an evaluation of the correctness of the

improved TN protocol. More precisely, the TN protocol can provide interoperability

for two authorisation systems within Web Services following the interoperability-

solution design, thereby raising the success probability of TN-based authorisation in

some certain circumstances. The correctness of the TN protocol is verified through a

multitude of circumstances, which can demonstrate that authorisation can succeed or

fail according to different conditions pre-set to the two entities. In addition, failed

authorisation by using the RBAC/ABAC approaches can succeed by using this TN

protocol in some circumstances. Apart from those, the impact of the research is also

discussed. The next chapter discusses and concludes the Thesis and presents some

future work.

 199

Chapter 8. Conclusions and Future Work

8.1 Introduction
Research investigating a solution for providing interoperability between authorisation

systems within Web Services has been presented in previous chapters. This last

chapter discusses the whole research process. Research contributions and their

impacts are then highlighted followed by discussion of future work.

8.2 Discussion of the Research
An appropriate starting point enabling a discussion of the research is to verify whether

the defined research problems have been addressed. As a novice researcher

commencing this research, research problems or issues were in the first instance

difficult to elicit and to ensure that the research issues remained current. Through a

detailed literature review, the research problems began to become apparent and to

track through to recent identified research solutions to identify that the issues still

remained. However, the process of converting identified research issues in the field to

appropriate research questions was not straightforward. It did take the researcher a

long time to realise the significance of the appropriate expression of the research

questions. This is because a proper expression of a research question implicitly

provides a general direction for a researcher to decide which research methodology

and research methods are of most appropriateness for the whole research (Yin, 2013).

The identified research problems coalesced around existing Web Service concerns

regarding interoperability, particularly interoperability as it related to access control.

As expressed in Chapter 1, two research problems in relation to interoperability issues

were identified within this area of interest. To verify whether the two research

problems have been resolved, an appropriate method is to discuss whether the

relevant research questions can be answered by the relevant proposed solutions.

The first research problem was ascribed to the lack of a comprehensive understanding

of factors (some known and some unknown) causing interoperability issues between

authorisation systems within Web Services. This research problem was converted to a

“what” research question – What are the factors that cause interoperability issues

 200

between authorisation systems within Web Services? In fact, this question may also

be asked in a way of “how many?”. Raised in either way, the documentary analysis

method as a survey or archival-based method was favoured to enable the researcher to

explore the relevant factors along with their characteristics causing the issues (Yin,

2013).

The second research problem was attributed to the lack of a unified approach that can

address interoperability issues caused by the relevant factors. The second research

problem was converted to a “how” research question – How can a unified approach

address interoperability issues caused by the identified factors to ensure that potential

successful authorisation between authorisation systems within Web Services will not

fail? The reasons to ask the second research question in the way of “how” rather than

“what” or “why” were: (1) a “what” question would provide vague guidance of

selecting a specific research method for evaluating the effectiveness of a proposed

solution, and (2) a “why” question is normally used when a researcher intends to

explain the reasons underpinning some specific phenomena (Yin, 2013). By contrast,

a “how” question could provide the researcher with clear guidance in selecting a

specific research method for evaluation in order to verify whether a solution could

provide its proposed effectiveness.

For the first research question, seven identified factors presented within an improved

multi-layered interoperability model (see table 3.2 in Chapter 3) were proposed as one

possible answer. Identification of these factors could help the researcher gain an

overall understanding about characteristics of the factors causing interoperability

issues. Construction of this interoperability model was through qualitative data

analysis. The data was collected from documentation analysis (Taylor et al., 2006)

along with case studies (Yin, 2013). The review included ABAC-based authorisation

systems in Web Services (see Chapter 2), TN-based authorisation systems within

Web Services and conceptual interoperability models (see Chapter 3). The case

studies focused on verification of possible interoperability issues between

authorisation systems within Web Services (see Chapter 3).

The documentation analysis research method could enable the researcher to discover

the significant interoperability issues between these authorisation systems within Web

 201

Services, but it was not strong enough to help the researcher verify whether these

issues did exist in practice, or indeed whether these issues were the only issues

presented in Web Service communication scenarios.

To make up for the weakness of using documentation analysis, an approach using an

embedded single case study design was used (see section 3.4). This design helped to

verify factors identified in the documentation analysis and to provide confidence that

no other factors influencing interoperability could be identified. In addition, through

the analysis of the factors presented in the LCIM (see Chapter 3), several factors used

in the LCIM (i.e. technical, pragmatic, dynamic) were renamed (i.e. connected,

functional, capability), as it was discovered that they could not clearly indicate the

key characteristics. For instance, characteristics of the “capability” factor could

account for the interoperability issue caused by the “dynamic” factor, but not vice

versa. Eventually, construction of the interoperability model was completed through

modification and extension of the LCIM to take into account an additional factor (i.e.

strategic) identified during the analysis process.

Whilst the verification process at this stage identified no other factors (either

conceptual or connected) influencing interoperability, the researcher does not

completely exclude other undetermined factors. Similar to the original authors of the

LCIM, the researcher understands that models can promote further research in the

future, which extend them to other contexts or highlight changes in the identified

context, which can have an impact on the model. It is highlighted therefore that any

remaining undetermined factors may weaken the effectiveness of the proposed

interoperability model, and are unlikely to be covered by the current interoperability-

solution design (see table 4.1 presented in Chapter 4).

The LCIM is a published model that went through a peer review process through

publication (Tolk and Muguira, 2003; Turnista, 2005). Therefore to strengthen the

findings made within the context of this Thesis of the modification and extension to

the LCIM, a plan is in place to formulate the proposed improved interoperability

model in a conference or journal paper for review and future publication.

 202

Regarding the second research question, the use of a protocol-based approach

presented in a conceptual multi-layered interoperability-solution design (see table 4.1

in Chapter 4) was proposed as one possible answer. In particular, the interoperability-

solution design proposed that each individual element of a protocol (i.e. protocol

messages and internal structures, discussed below) could provide interoperability at

lower layers 2 to 4 (i.e. syntactic, semantic and functional layers). Interoperability at

higher layers 5 and 6 could be provided by enabling two systems to reach a common

awareness of capability and strategy through the realisation of the use of the protocol

specification (combined use of internal structure and protocol messages). In terms of

the highest layer – layer 7 (conceptual layer) – interoperability could only be partially

supplied by using the service specification.

The concept of using a protocol-based approach was derived from reviewing existing

understanding of how solutions could be constructed for similar research problems.

To resolve interoperability challenges, approaches exist such as: selection of a

singular set of mechanisms to be used in all instances (e.g. selection of only one

authorisation mechanism); support of multiple languages used in different

authorisation systems (e.g. an object-oriented framework used in Globus or plug-in

modules used in TrustBuilder2 for supporting different policy and credentials

languages); and identification of a protocol which can better facilitate interoperability

(e.g. the ABAC-based authorisation protocol designed within the AAI).

From a review of the definition of the meaning of a protocol (see section 2.3), it was

identified that researchers were agreed that a protocol was more than a combination of

communication messages. More specifically, a protocol should comprise both a

service specification (abstract information of a protocol) and a protocol specification

(detailed information of a protocol). The protocol specification in turn should consist

of protocol messages (communication messages) and internal structures

(functionalities). This agreed comprehensive notion of a protocol became a

contradiction to the concept of a protocol recognised in the LCIM, whereas a protocol

could only provide syntactic interoperability. This is because the concept of the

protocol understood in the design of the LCIM was only a combination of

communication messages, which should be expressed as protocol messages as one

component of the comprehensive notion of a protocol.

 203

An improved TN protocol (see Chapter 4) was also presented in addition to the

interoperability-solution design. The proposition of this TN protocol was that

following step one of the interoperability-solution design, as a concrete protocol, it

might provide interoperability at different layers between authorisation systems

within Web Services. The main benefits of this protocol included that potential

interoperability issues at layers 5 and 6 (capability and strategy) could be avoided

through the novel design of the preparation stage, which could ensure that potential

successful authorisation would not fail in some circumstances. In addition,

interoperability at layers 2 to 4 (i.e. syntax, semantics and functionality) provided by

this protocol was also taken into consideration.

The reason for the creation of this TN protocol was that without any specific

utilisation of the interoperability-solution design, evaluation of its effectiveness might

not be easily achievable. Relatively speaking, through solution development, an

evaluation of the effectiveness of a specific protocol would be achievable with more

ease. The TN protocol was therefore created as a specific example of the utilisation of

the interoperability-solution design. In other words, the effectiveness of this specific

protocol could demonstrate the effectiveness of the interoperability-solution design.

Evaluation of the effectiveness of the interoperability-solution design along with the

protocol included (1) a protocol completeness test as one task of protocol verification,

which identified that the protocol was not complete due to two intrinsic vulnerability

issues (see Chapter 5), (2) a solution design aiming to address the vulnerability issues

to complement the protocol completeness (see Chapter 6) and (3) an interoperability-

solution evaluation including a protocol correctness test as another task of protocol

verification (see Chapter 7).

According to step three of the protocol design and development methodology (see

section 4.1), protocol verification needed to be conducted. There was a distinction

between the purpose of protocol verification and that of protocol evaluation (see

section 5.1). Through a review of the related work about protocol verification, a

completeness test and a correctness test mainly needed to be conducted for achieving

protocol verification. As there were various definitions of protocol correctness, a

 204

further review of related work was conducted. Eventually, a finding of the review

indicated that the purpose of the protocol correctness test was to demonstrate whether

it could achieve the pre-set goal (see section 5.1).

FSM (see section 5.2) was used for conducting the protocol completeness test. In fact,

other methods as variations of FSM could have also been used as alternatives for this

step, as their effects were quite similar to that of FSM. Due to this reason, the results

achieved through the completeness testing might be the same, if any one of the other

optional formal methods was used. In other words, there might be nuances between

the results by using different formal methods for testing the completeness of the

protocol.

Two potential vulnerability issues were explored in the protocol completeness test by

using FSM. The first vulnerability issue was identified before the protocol design, but

the second vulnerability issue was not identified until the conduction of the

completeness test. In order to address the two issues, there was a need to understand

the key reasons causing the occurrence of the vulnerability issues. The case study

method was selected to help the researcher identify the core reasons underpinning the

occurrence of the vulnerability issues. The reason for leveraging this method is

explained in section 6.4.

Before designing a solution for the vulnerability issues, a detailed understanding of

the policy-exchanged strategies involved in TN was developed (presented in section

3.3.1). Based on knowledge of the features of policy-exchanged strategies and the

reasons for these resulting in an occurrence of the vulnerability issues, a solution

design was proposed through the use of a relational database. Once the solution

design was created, its effectiveness was evaluated through its application to the extra

designed case studies, wherein the vulnerability issues might occur. The reason for

using the case study evaluation was straightforward in that the effectiveness of the

proposed solution could be directly demonstrated, if the vulnerability issues would

not occur in the case studies with the use of the solution. The evaluation result

showed that this solution design was effective, when the parsimonious strategy is

used, which has been assessed as the most representative strategy of the policy-

exchanged strategies category (see section 3.3.1).

 205

The main weakness of the solution design was its inability to address the vulnerability

issues of the protocol, when typical policy-exchanged strategies (i.e. PRUNES and

DFANS) were used. As the unsuitability of the use of the PRUNES for TN and the

deficiencies of the DFANS were critically assessed through the analysis of the

relevant review in section 3.3.1, these issues are not resolved.

Reflecting on the process of evaluation of the solution design for the vulnerability

issues, other research methods such as interviews and/or surveys based on

questionnaires would not be as useful as the case study method. The reason was: as

the occurrence of the RCRA had never been noticed, it would require the researcher

to find a way to clarify what this issue was and in what circumstances this issue

would occur. To explain its occurrence, the case study method would be the most

effective way for the clarification of the issues and for the demonstration of the

effectiveness of the solution design. Eventually, the case study method could be

demonstrated as the most appropriate method used for this step than any other

research methods.

Since the proposed solution design could address the vulnerability issues of the

protocol, the protocol completeness proof was complemented. As stated in Chapter 5,

the purpose of the protocol correctness test in this research was the same as the

purpose of the protocol evaluation, which aimed to evaluate the effectiveness of the

protocol (see section 5.1). In other words, the evaluation test aimed at proving

whether the proposed protocol would be effective, which could in turn demonstrate

whether the interoperability-solution design would be effective. With respect to the

most appropriate research method for performing evaluation, the case study method

was eventually selected (reasons are given in section 7.2).

With the use of a case study evaluation, a “case study protocol” (see section 7.3.1)

was important to provide general guidance. In addition, a specific category of case

studies should be selected. Eventually, an embedded single case design was selected

(reasons are given in 7.3.2).

 206

Within the embedded single case design, model-based testing was selected as a sub

research method for conducting each embedded case study. The main reason for using

this research method was ease of data collection (other reasons are explained in

section 7.3.3). After conducting all of the sub case study, relevant data were collected

for qualitative data analysis.

To ensure the validity of using the qualitative data analysis method, the researcher

needed to follow a formal way. Fortunately, Yin (2013) provides four strategies and

five techniques for conducting data analysis in the case study method. Each strategy

and each technique is suitable to either a qualitative data analysis method or a

quantitative data analysis method. After comparing the features of the research

against them, the “relying on theoretical propositions” strategy and the “pattern

matching” technique were eventually selected, as the situations for using them best

matched the features of the research. Following the selected strategy and technique,

the data analysis results proved that the protocol could ensure that potential successful

authorisation would not fail in some circumstances. This in turn did demonstrate the

effectiveness of the interoperability-solution design.

Reflecting on the process of the protocol evaluation process, the inappropriateness of

using other research methods for performing the evaluation had been taken into

consideration. For instance, questionnaires-based research methods such as interview

or survey mainly required human participants, but the research object – authorisation

systems, the research context – Web Services, and the proposed solution – protocol,

did not require any human participants. Therefore, questionnaire-based research

methods could not directly prove the effectiveness of the protocol, as human

participants might not know what purpose the protocol could achieve. Without this

knowledge, neither could the human participants assess the effectiveness of the

protocol.

In terms of the sub research method used in the case study method, a real experiment

along with implementation might be the best alternative method for the model-based

testing, but the reason for not using it has been clarified in section 7.3.3.

 207

In the preparation stage of the improved TN protocol, both keyword-based and

semantic-based approaches are designed enabling two entities to agree on a common

capability and a common strategy. Although, the use of a semantics-based approach

can increase the matching accuracy, it is not always superior to the keyword-based

approach, as its performance is slower than the keyword-based approach (Al-Safadi,

Al-Dawood and Al-Abdullatif, 2010). The semantics-based approach is superior,

when the information that needs to be matched may be referred to as different

semantics, whereas the keyword-based approach is more suitable, if the information

will have only one meaning through standardisation. For instance, X.509 certificates

have been standardised, so Web Services that use this certificates shall have no

ambiguous knowledge on its syntax and semantics. In such an instance, the keyword-

based approach should be preferred, if the target name that needs to be matched is

‘X.509’. In addition, as stated in Chapter 2, all of the protocols used in the context of

Web Services should be standardised. Therefore, this standardisation should also

apply to the proposed improved TN protocol as well as the terms of strategy names

and names of credential languages and policy languages used in TN. From this

perspective, the keyword-based approach used in the preparation stage should be

powerful enough.

Analysed from the interoperability-solution evaluation result and the protocol

correctness test, there were several limitations within either this protocol or the

interoperability-solution design (see section 7.5). Firstly, within the protocol

evaluation, all of the sub cases were assumed that the two participating Web Services

would use the proposed TN protocol to communicate with each other. This

assumption excluded two systems’ ability to recognise the highest interoperability

layer within the interoperability-solution design – layer 7 (conceptual

interoperability). Unfortunately, this assumption may not be valid in practice, as it

may not be always the case that two unknown systems will use the TN protocol to

achieve authorisation, if they also support other authorisation protocols such as the

existing ABAC-based authorisation protocol used in the AAI (Schlager et al., 2006).

To enable two systems to use this TN protocol requires two systems to intelligently

understand the relevant factors suitable to the use of this protocol so as to make a

decision of whether this protocol should be used. This intelligence closely relates to a

 208

conceptual understanding of a protocol. Within the current interoperability-solution

design, interoperability at layer 7 can only be provided by the service specification of

protocols, readers of which are mainly developers. In addition, it is assumed in this

interoperability-solution design that ontology might be a potential solution for

systems to have such intelligence. However, these propositions are not enough, as the

interoperability-solution design does not identify the relevant factors for systems to

make a decision of using a specific protocol. In addition, whether the use of ontology

can enable systems to be conceptually intelligent is also a question to be answered.

Therefore, assurance of the effectiveness of the propositions requires further research

in exploring the relevant answers.

Secondly, extra functionalities have to be added as internal structures to the TN

protocol (e.g. trust ticket, resumption of TN) to ensure that functionality

interoperability can be provided by this protocol. As syntactic and semantic

interoperability are closely related to functionality interoperability, relevant protocol

messages will also be designed according to these internal structures. This limitation

indicates that this TN protocol has to be updated periodically so as to keep its pace

with state-of-the-art TN-based authorisation systems.

Thirdly, the preparation stage designed within the improved TN protocol could only

ensure successful authorisation in some circumstances where two entities have a

common strategy and capability of comparing credentials against policies. However,

when two entities have no common strategy or capability, this protocol fails to deliver

such interoperability for them. Eventually, potential successful authorisation has to

fail due to this reason. This requires a potential solution (e.g. a third-party providing a

language translation mechanism), which could be able to provide this strategy or

capability interoperability for two entities. It would be ideal that such a potential

solution could be integrated into this protocol and the interoperability-solution design.

Nevertheless, there is a benefit of the preparation stage in comparison to the potential

third-party solution. Taking capability interoperability for example, if the potential

third-party solution could only provide a language translation mechanism for

providing capability interoperability, the communication cost of a three-entities

communication might be much more than that of a two-entities communication by

 209

using the improved TN protocol. For instance, the exchange of credentials and

policies between each entity and the third party for achieving translation would

increase the potential communication cost of a three-entities involved TN

authorisation communication. In the case that two entities have the common

capability for achieving successful authorisation, the lower communication cost of a

two-entity communications should always be preferred. However, if the potential

third-party solution could provide extra functionalities (e.g. TN might only occur

within the process of the third-party) besides the language translation functionality,

where two entities only needed to submit all of the relevant credentials and policies

once to the third party involved in TN, the communication cost might be decreased to

an acceptable value. However, such a potential solution would require the third-party

to possess far more capabilities than the two participating entities to ensure that the

third-party would have the right capability that could translate the languages of the

credentials and policies used by one entity to those used by the counterpart;

otherwise, without this prerequisite, this third-party solution could not help to address

the uncommon capability interoperability issue remained in this improved TN

protocol. In addition, this potential solution might not be suitable to scenarios where

privacy of sensitive credentials or policies are required, if owners are reluctant to

upload them to this untrusted third party.

Fourthly, a proper performance test of this protocol becomes a further challenge due

to complexity of TN. More precisely, as characteristics of each strategy are different,

a fixed TN process cannot be anticipated in advance. In addition, any changes in a

condition (see section 7.5.5) will even complicate the behaviours of each entity.

Hence, exploring a performance test result that can represent TN behaviours may be a

challenge.

Overall, the solutions proposed by this research do have their own limitations, but

their main advantages were evaluated to be effective for addressing the research

problems to some extent, although not completely. In addition, application of the

solutions to other fields may embody their potential impacts, which are discussed in

the next section.

 210

8.3 Research Contributions and Impacts
In terms of the research contributions in this Thesis, as mentioned in the previous

section, there are four of them.

The first contribution is an improved multi-layered interoperability model based on

the LCIM. This model aims to clarify the existence of multiple layers of

interoperability issues between authorisation systems (e.g. ABAC or TN) within Web

Services. In particular, one novel interoperability layer in relation to strategy is

identified in this model. Taking into account the similarities between interoperability

issues within a distributed systems environment, it might help both researchers in

academia and practitioners in the industry in the discovery of the interoperability

issues between two communicating systems.

The second contribution is a conceptual multi-layered interoperability-solution

design, which proposes how to use a protocol-based approach to provide

interoperability for the majority of the interoperability layers. Existing approaches

(e.g. ontologies, UML) for addressing specific interoperability issues are treated as

elements of a protocol (e.g. internal structures). This model can provide guidance

aiding protocol developers in addressing interoperability issues, if the relevant

interoperability issues between communicating systems have been identified by using

the above interoperability model.

The third contribution is an improved TN protocol, which is used as a detailed

example of utilising the interoperability-solution design guiding the design of this

protocol. This protocol can aid in communication between authorisation systems

without specific interoperability issues (e.g. functionality, strategy) within Web

Services. In addition, it can enable potentially successful TN-based authorisation to

avoid failure, if initially designed multiple languages for expressing credentials and

policies of different authorisation systems are used in the context of Web Services. In

other words, it can raise the success probability for using TN in some circumstances.

These benefits mainly ascribe to the design of the novel preparation stage of the

protocol. This preparation stage could be used in other potential new protocols or

 211

other TN protocols used in non-Web Services contexts, wherein two unknown entities

need to establish a bilateral trust relationship.

With respect to the circumstances of the application of this protocol, its utilisation is

most suitable to the circumstances where two Web Services are unknown to each

other. In addition, each of the two Web Services owns sensitive information that

cannot be disclosed, unless a certain level of trust has been established. In other

words, the identity of each other is not stored in their local databases. In this instance,

PKI may be used to make up for this weakness, but the existence of multiple TTPs

cannot ensure token interoperability. In the particular instance where token

interoperability cannot be ensured, an RBAC approach may not be available. In

addition, RBAC is not powerful enough, when an access control decision needs to be

made based on additional attribute information. Due to the existence of local sensitive

information, direct use of an ABAC approach may miss the opportunity of reaching

successful authorisation. In such an instance, the TN protocol proposed in this Thesis

should be the most appropriate method used by two unknown Web Services.

One notable point of harnessing this protocol is that both Web Services should be

designed to allow their human users to design their own policies. However, observing

how existing Web Services are used in practice such as Hotmail, granting such

permission to human users is still not available. Instead, different options of policies

are predefined in Web Services, and human users have no right to design their own

policies, so that human users can only choose to use one of the policies predefined in

the Web Services. To utilise the TN protocol, Web Services need to support the

functionality that human users can design their own policies. A good starting point to

try the human-users-defined policies approach is perhaps to design and develop Web

Services for an E-Learning environment across different universities as illustrated in

the case scenario presented in Chapter 2.

Observing the purpose of the TN protocol presented in Chapter 4, this protocol

mainly serves the bilateral trust establishment between two unknown Web Services in

their first-time communication, but there is no discussion about its application to

scenarios where two Web Services need to achieve authorisation in their n-time

communication (n is greater than 1 and n is a natural number). Through the literature

 212

review in Chapter 2, it can be identified that the existing authorisation approaches (i.e.

RBAC or ABAC) can be used instead, if the two Web Services are known to each

other by using the TN protocol during their first-time communication. Following the

internal structure of the preparation stage, the common language combination has

been stored in the local database of both entities. Therefore, capability interoperability

(i.e. language combination) will not be an issue after their first-time communication.

In conclusion, the combination of the use of this TN protocol and the existing

authorisation approaches together should be suitable to n-time communication

instances.

The fourth contribution is a solution design aiming to address intrinsic vulnerability

issues within the proposed TN protocol. It can also be utilised to protocols designed

within state-of-the-art TN-based authorisation systems, when some policy-exchanged

strategies are used. In addition, this solution might also be applied to resolve

variations of DoS attacks.

Upon discussing the contributions along with their impacts of the research, the next

section discusses potential future work derived from the limitations of the proposed

solutions.

8.4 Future Work
One interesting thing of carrying out a research is that a researcher may explore new

challenges from the evaluation process of the current research contributions. These

challenges cannot be predicted by the researcher at the starting point of the research,

but can be discovered from the evaluation result of the research. The following sub

sections discuss the most relevant future work.

8.4.1 Exploring factors relevant to conceptual interoperability
To enable systems to communicate without any conceptual interoperability issues,

there is a need to explore possible key factors aiding systems in making a decision of

using a specific protocol. If they can be explored, identification of relevant solutions

will also be needed to enable systems to intelligently utilise these factors. In addition,

integrating these key factors into the current interoperability-solution design may be

 213

another issue, as achieving this purpose may require the expansion of the current

interoperability-solution design with proper modifications.

8.4.2 Uncommon strategy and capability issue
Two communicating systems without a common strategy or capability for comparing

credentials against policies will miss an opportunity of reaching successful

authorisation by using the proposed TN protocol. Within this protocol, taking

capability interoperability as an example, language interpretation functionality and a

policy compliance checker designed based on an object-oriented design for

comparing local policies (credentials) against received remote credentials (policies)

inbuilt in the two systems are treated as the capability owned by the systems (see

section 4.5). That is, scenarios where no common capability is between two systems

imply that there is no way to address the capability interoperability issue through

direct communication between two systems. Therefore, a third-party providing a

language interpretation mechanism might the best solution for these scenarios. To

verify whether this proposition is useful requires further research.

8.4.3 Performance test challenge
A performance test that can represent general TN performance is much more

challengeable through the data analysis of the protocol evaluation result. It has been

identified that multiple conditions as factors are relevant to a TN process, and any

change of these conditions may change the length of a TN process. This flexibility

indicates that exploration of a representative TN performance test result might require

a number of experiments. Exploration of these experiments designs requires further

research.

8.4.4 Security consideration
In terms of the security consideration of the protocol, one of the most notable

vulnerabilities was discovered after reflection on the protocol completeness tests

process. The two innate vulnerability issues were discovered within this process. In

particular, the second vulnerability - RCRA was discovered, when the researcher

realised that the context of using the protocol could be broadened, where malicious

Web Services could exist. RCRA existed, if a malicious Web Service utilised a

certain design flaw within the protocol.

 214

As RCRA was identified as a variation of DoS attacks, by extending the feature of

RCRA, a new vulnerability issue could also be identified in the protocol. In fact, this

vulnerability issue exists in general protocols. The attacks in relation to this

vulnerability issue is called Deviation from protocol message sequence, as one

category of DoS attacks, stated in Gruschka, Jensen and Luttenberger, (2007), ‘attacks

use message with correct message structure but sent in a sequence deviating from the

protocol definition’. This attack will lead the internal structures of the protocol used

by a Web Service Requester into unknown states. The reason that this phenomenon

may occur is straightforward. The order of message exchanges defined in this

protocol is fixed, and the information created in former steps will be used in later

steps. For instance, when a <TNPrepareRequest> message has been processed, the

common strategy name and the common language combination names will be stored

in the database. The information will be used again, when an <AuthzDecisionQuery>

message is being processed (see the preparation stage in section 4.5).

To enable a Web Service to defend against the attacks, Gruschka, Jensen and

Luttenberger (2007) suggested that protocols defining the fixed order of message

exchanges should be able to detect this kind of attacks, and deny processing the

messages. They proposed a model called Successor Set Automaton (SSA) with the

use of the Business Process Execution Language (referred to as BPEL, a Web Service

standard for business processing modelling) in a firewall to enforce the message

sequence exchange of a protocol. In their solution, a local Web Service will have a list

of local states. Each local state is related to a specific protocol message of a protocol,

and is used as a switch declaring whether or not a specific incoming message can be

processed. The change of each state is decided based on the last received incoming

message. However, this solution is not strong enough, as there is no concern about the

relationship between the local states and outgoing messages. The lack of this

relationship presents limitations when this solution is applied on the protocol

proposed in this Thesis. For example, in the negotiation stage, after a Web Service

Provider sends out an <AuthzDecisionStatement> message to the counterpart, it will

not expect to receive any further messages from the counterpart. As the

<AuthzDecisionStatement> message implicitly indicates that this is the last message

used in the protocol, so no further incoming messages should be received from the

perspective of the Web Service Provider. This example can demonstrate that the

 215

relationship between local states and local outgoing messages should also be taken in

to consideration in a potential solution, which can effectively defend against deviation

from protocol message sequence attacks. Exploration of an approach implementing

this hypoThesis is treated as future work.

8.5 Chapter Summary
This Chapter has discussed the process of the whole research. Four research

contributions along with their impacts are also presented. Through the identification

of limitations of solutions, potential future work is also listed, which can guide the

researcher in conducting further research.

 216

References

A:
Aarts, R. Beatty, J. Cahill, C. Serret, X. & Whitehead, G., 2003. Liberty ID-FF

Protocols and Schema Specification, Available at:

http://www.projectliberty.org/liberty/content/download/2197/14625/file/draft-liberty-

idff-protocols-schema-1.2-errata-v3.0.pdf. [Accessed 3rd April 2012].

Adams, C. & Lloyd, S., 1999. Understanding the Public-key Infrastructures:

Concepts, Standards, Deployment Considerations. Available at:

http://technet.microsoft.com/en-us/library/cc700808.aspx. [Accessed 21st March

2010].

Alfieri, R. Cecchini, R. Ciaschini, V. dell’Agnello, L. Frohner, Á. Gianoli, A.

Lõrentey, K. & Spataro, F., 2004. VOMS, an Authorization System for Virtual

Organizations. Grid Computing Lecture Notes in Computer Science, 2970, pp.33-40.

Al-Safadi, L. A. Al-Dawood, A. A. & Al-Abdullatif, N., 2010. Lexeme: An

Ontology-Based Semantic Advertising Networks. Journal of Computing, 2(10),

pp.71-75.

Alonso, J. M. Ambur, O. Amutio, M. A. Azanon, O. Bennett, D. Flagg, R. McAllister,

D. Novak, K. Rush, S. & Sheridan, J., 2009. Improving Access to Government

through Better Use of the Web. Available at: http://www.w3.org/TR/egov-improving.

[Accessed 10th February 2010].

Andrieux, A. Czajkowski, K. Dan, A. Keahey, K. Ludwig, H. Nakata, T. Pruyne, J.

Rofrano, J. Tuecke, S. & Xu, M., 2007. Web Services Agreement Specification (WS-

Agreement), Available at: http://www.ogf.org/documents/GFD.107.pdf. [Accessed 15

March 2010].

Andro, G., 2010. Automated Trust Negotiation Models. In 2010 Proceedings of the

33rd International Convention. Opatija, Croatia. pp.1197-1202.

 217

Ankolekar, A. Burstein, M. Hobbs, O. Martin, D. McDermott, D. Mcllraith, S. A.

Narayanan, S. Paolucci, M. Payne, T. & Sycara, K., 2002. DAML-S: Web Service

Description for the Semantic Web. In Proceedings of the First International Semantic

Web Conference on the Semantic Web (ISWC ’02). Sardinia, Italia. pp.348-363.

ATHENA, 2005. Enterprise Interoperability Maturity Model (EIMM). pp.1-11.

Available at: http://athena.modelbased.net/methodology/eimm.pdf. [Accessed 18

March 2013].

B:
Ballinger, K. Ehnebuske, D. Gudgin, M. Nottingham, M. & Yendluri, P., 2004. WS-I

Basic Profile Version 1.0. Available at: http://www.ws-i.org/profiles/BasicProfile-1.0-

2004-04-16.html. [Accessed 27 August 2010].

Barkley, J. F. Cincotta, A. V. Ferraiolo, D. F. Gavrilla, S. & Kuhn, D.R., 1997. Role

Based Access Control for the World Wide Web. In 20th National Information System

Security Conference. Baltimore, Maryland. pp.1-11.

Barlow, T. Hess, A. & Seamons, K.E., 2001. Trust Negotiation in Electronic Markets.

In Proceedings of the Eighth Research Symposium on Emerging Electronic Markets.

Masstricht, The Netherlands. pp.1-13.

Bartel, M. Boyer, J. Fox, B. LaMacchia, B. & Simon, E., 2008. XML Signature

Syntax and Processing. (Second Edition). Available at:

http://www.w3.org/TR/xmldsig-core. [Accessed 19th March 2010].

Baselice, S. Bonatti, P. A. & Faella, M., 2007. On Interoperable Trust Negotiation

Strategies. In Eighth IEEE International Workshop on Policies for Distributed

Systems and Networks. Bologna, Italy. pp.39-50.

 218

Basney, J. Nejdl, W. Olmedilla, D. Welch, V. & Winslett, M., 2005. Negotiating

Trust on the Grid. Available at: http://drops.dagstuhl.de/opus/volltexte/2005/387.

[Accessed 6th May 2010].

Baum, L. E. & Petrie, T., 1966. Statistical Inference for Probabilistic Functions of

Finite State Markov Chains. The Annals of Mathematical Statistics, 37(6), pp.1554-

1563.

Baxter, P. & Jack, S., 2008. Qualitative Case Study Methodology  : Study Design and

Implementation for Novice Researchers. The Qualitative Report, 13(4), pp.544-559.

Bellwood, T. Capell, S. Clement, L. Colgrave, J. Dovey, M. J. Feygin, D. Hately, A.

Kochman, R. Macias, P. Novotny, M. Paolucci, M. Riegen C. Rogers, T. Sycara, K.

Wenzel, P. & Wu, Z., 2004. UDDI Version 3.0.2. Available at:

http://uddi.org/pubs/uddi_v3.htm. [Accessed 5th May 2010].

Benatallah, B. Casati, F. Grigori, D. Nezhad, H. & Toumani, F., 2005. Developing

Adapters for Web Services Integration. In Proceedings of the 17th International

Conference on Advanced Information Systems Engineering (CAiSE’05). Porto,

Portugal. pp.415-429.

Benbasat, I. Goldstein, D. & Mead, M., 1987. The Case Research Strategy in Studies

of Information Systems. Journal of Mis Quarterly, 11(3), pp.369-386.

Bertino, E. Ferrari, E. & Squicciarini, A.C., 2003a. On Specifying Security Policies

for Web Documents with An XML-based Language. In Proceedings of the Sixth ACM

Symposium on Access Control Models and Technologies. Chantilly, VA, USA. pp.57-

65.

Bertino, E. Ferrari, E. & Squicciarini, A. C., 2003b. X-TNL: An XML-based

Language for Trust Negotiations. In Proceedings of the 4th IEEE International

Workshop on Policies for Distributed Systems and Networks (POLICY'03). Lake

Como, Italy. pp.81-84.

 219

Bertino, E. Ferrari, E. and Squicciarini, A. C., 2004a. Trust-X: A Peer-to-Peer

Framework for Trust Establishment. IEEE Transactions on Knowledge and Data

Engineering. 16(7) pp.827-842.

Bertino, E. Ferrari, E. & Squicciarini, A.C., 2004b. Trust Negotiations: Concepts,

Systems, and Languages. Computing in Science and Engineering, 6(4), pp.27-34.

Bertino, E. Ferrari, E. & Squicciarini, A.C., 2005. Privacy-Preserving Trust

Negotiations. Lecture Notes In Computer Science, 3424(2005), pp.283-301.

Beznosov, K. Flinn, D. J. Kawamoto, S. & Hartman, B., 2005. Introduction to Web

Services and their Security. Information Security Tech. Report, 10(1), pp.2-14.

Bhargavan, K. Obradovic, D. & Gunter, C., 2002. Formal Verification of Standards

for Distance Vector Routing Protocols. Journal of the ACM, 49(4), pp.538-576.

Bhatti, R. Joshi, J. B. D. Bertino, E. Ghafoor, A., 2003. Access Control in Dynamic

XML-based Web-Services with X-RBAC. In International Conference on Web

Services (ICWS ’03). Las Vegas, Nevada, USA. pp.243-249.

Bhatti, R. Bertino, E. & Ghafoor, A., 2004. A Trust-based Context-Aware Access

Control Model for Web-Services. In Proceedings of the IEEE International

Conference on Web Services (ICWS ’04). San Diego, California, USA. pp.184-191.

Bochmann, G. V. & Gecsei, J., 1977. A Unified Method for the Specification and

Verification of Protocols. In Proc. IFIP Congress. North Holland. pp.229–234.

Bochmann, G. V., 1978. Finite State Descriptions of Communication Protocols.

Computer Networks, 2, pp.361-372.

Bochmann, G. & Sunshine, C., 1980. Formal Methods in Communication Protocol

Design. IEEE Transactions on Communications, 28(4), pp.624-631.

 220

Bonatti, P. A. Coi, J. L. Olmedilla, D. & Sauro, L., 2010. A Rule-based Trust

Negotiation System. IEEE Transactions on Knowledge and Data Engineering,

22(11), pp.1507-1520.

Boncella, R.J., 2004. Web Services and Web Services Security. Communications of

Association for Information Systems, 14, pp.344-363.

Booth, D. Haas, H. McCabe, F. Newcomer, E. Champion, M. Ferris, C. Orchard, D.,

2004. Web Services Architecture. Available at: http://www.w3.org/TR/ws-arch.

[Accessed 11th May 2010].

Bray, T. Paoli, J. & Sperberg-McQueen, C.M., 1998. Extensible Markup Language

(XML) 1.0. Available at: http://www.w3.org/TR/1998/REC-xml-19980210. [Accessed

9 February 2010].

Burnett, M. A. and Kleiman, D., 2005. Perfect Password: Selection, Protection,

Authentication, MA: Syngress Publishing, Inc.

C:
CGI, 2004. Public Key Encryption and Digital Signature: How Do They Work?

Available at: http://www.cgi.com/files/white-papers/cgi_whpr_35_pki_e.pdf.

[Accessed 21st June 2010].

Chadwick, D. W. & Otenko, A., 2002. The PERMIS X.509 Role Based Privilege

Management Infrastructure. In Proceedings of the Seventh ACM Symposium on

Access Control Models and Technologies (SACMAT ’02). Monterey, CA, USA.

pp.135-140.

Channabasavaiah, K. Tuggle, E. & Holley, K., 2003. Migrating to A Service-Oriented

Architecture, Part 1. Available at: ftp://ftp.software.ibm.com/software/info/.../G224-

7298-00_Final.pdf. [Accessed 26th June 2011].

 221

Chen, W. & Jiang, W., 2011. Analysis and Design of An Adaptive Automated Trust

Negotiation System. In 2011 International Conference on Mechatronic Science,

Electric Engineering and Computer (MEC). Jilin, China. pp.2320-2325.

Chevalier, Y. & Vigneron, L., 2002. Automated Unbounded Verification of Security

Protocols. In Proceedings of 14th International Conference on Computer Aided

Verification (CAV ’02). Copenhagen, Denmark. pp.324-337.

Chkliaev, D. Hooman, J. & Stok, P., 2000. Serializability Preserving Extensions of

Concurrency Control Protocols. In Proceedings of Third International Andrei Ershov

Memorial Conference. Akademgorodok, Novosibirsk, Russia. pp.180-193.

Christensen, E. Curbera, F. Meredith, G. & Weerawarana, S., 2001. Web Services

Description Language (WSDL) 1.1. Available at: http://www.w3.org/TR/wsdl.

[Accessed 3rd June 2011].

Chumbley, R. Durand, J. Pilz, G. & Rutt, T. (eds.), 2010. WSI Basic Profile Version

2.0. Available at: http://ws-i.org/profiles/basicprofile-2.0-2010-11-09.html. [Accessed

10 July 2010].

Clark, T. & Jones, R., 1999. Organisational Interoperability Maturity Model for C2.

Available at: www.sei.cmu.edu/library/assets/orginteroper.pdf. [Accessed 5th May

2012].

Curbera, F. Duftler, M. & Khalaf, R. & Nagy, W., 2002. Unravelling the

Communication: SOAP. IEEE Internet Computing, 6(2), pp.86-93.

Curbera, F. Nagy, W. A. & Weerawarana, S., 2001. Web Services: Why and How.

Available at:

http://lsdis.cs.uga.edu/courses/8351Spring2006/papers2Read/wsWhyandHow.pdf.

[Accessed 10 February 2010].

Curphey, M., 2005. Web Services: Developers Dream or Hackers Heaven?

Information Security Technical Report, 10(4), pp.228-235.

 222

D:
Daigneau, R. & Robinson, I., 2011. Service Design Patterns: Fundamental Design

Solutions for SOAP/WSDL and RESTful Web Services, New Jersey: Addison-Wesley

Professional.

Danthine, A., 1980. Protocol Representation with Finite-State Models. IEEE

Transactions on Communications, 28(4), pp.632-643.

Danthine, A. & Bremer, J., 1978. Modelling and Verification of End-to-End

Transport Protocols. Computer Networks, 2(4-5), pp.381-395.

Davis, C. H. & Vladica, F., 2007. E-Commerce and V-Business: Digital Enterprise in

the Twenty-First Century (2nd edi.). Oxford: Butterworth-Heinemann.

Diallo, S.Y., 2010. Towards A Formal Theory of Interoperability. Old Dominion

University. Norfolk, Virginia, USA. pp.1-81.

Debbabi, M., 2004. Towards the Correctness of Security Protocols. Electronic Notes

in Theoretical Computer Science, 83, pp.1-46.

DoD, 1998. Levels of Information Systems Interoperability (LISI). Available at:
www.eng.auburn.edu/~hamilton/security/DODAF/LISI.pdf. [Accessed 2nd March

2012].

Doghmi, S. Guttman, J. & Thayer, F., 2007. Searching for Shapes in Cryptographic

Protocols. In Proceedings of 13th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS ’07). Braga, Portugal. pp.523-

537.

E
EI-Bakry, H. M. & Mastorakis, N., 2009. Studying the Efficiency of XML Web

Services for Real-time Applications. In Proceedings of the 2nd WSEAS International

Conference on Sensors, and Signals and Visualization, Imaging and Simulation and

 223

Materials Science (SENSIG’09/VIS'09/MATERIALS'09). Stevens Point, Wisconsin,

USA. pp.209-219.

Emig, C. Brandt, F. Abeck, S. Biermann, J. & Klarl, H., 2007. An Access Control

Metamodel for Web Service-Oriented Architecture. In Proceedings of the

International Conference on Software Engineering Advances (ICSEA ’07). Cap

Esterel, French Riviera, France. pp.57.

Erber, R. Schläger, C. & Pernul, G., 2007. Patterns for Authentication and

Authorisation Infrastructures. In 18th International Workshop on Database and

Expert Systems Applications (DEXA ’07). Valencia, Spain. pp.755-759.

F:
Fabrega, F. J. T. Herzog, J.C.& & Guttman, J.D., 1998. Strand Spaces: Why Is A

Security Protocol Correct? In Proceedings of 1998 IEEE Symposium on Security and

Privacy. Oakland, Califoria, USA. pp.60-171.

Fielding, R. Gettys, J. Mogul, J. Frystyk, H. Masinter, L. Leach, P. & Berners-Lee, T.,

1999. Hypertext Transfer Protocol – HTTP/1.1. Available at:

http://www.ietf.org/rfc/rfc2616.txt. [Accessed 15th July 2010].

Feigenbaum, J., 1998. Towards An Infrastructure for Authorization. Available at:

https://www.usenix.org/event/ec98/pki/feigenbaum.pdf. [Accessed 13th June 2013].

Fensel, D. & Bussler, C., 2002. The Web Service Modeling Framework WSMF.

Electronic Commerce Research and Applications, 1(2), pp.113-137.

Ferraiolo, D. & Kuhn, R., 1992. Role-Based Access Controls. In 15th National

Computer Security Conference. Baltimore, Maryland. pp.554-563.

Ferraiolo R. Sandhu, R. Gavrila, S. Kuhn D. R. & Chandramouli, R., 2001. Proposed

NIST Standard for Role-based Access Control. ACM Transactions on Information

and System Security (TISSEC), 4(3), pp.224-274.

 224

Foster, I. Kesselman, C. & Tuecke, S., 2001. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance

Computing Applications, 15(3), pp.200-222.

Foster, I., 2006. Globus toolkit version 4: Software for Service-oriented Systems.

Journal of Computer Science and Technology, 21(4), pp.513-520.

Frikken, K. B. Li, J. & Atallah, M.J., 2006. Trust Negotiation with Hidden

Credentials, Hidden Policies, and Policy Cycles. In Proceedings of the 13th Annual

Network and Distributed System Security Symposium (NDSS). San Diego, California,

USA. pp.157-172.

G:
Garzoglio, G. Alderman, I. Altunay, M. Ananthakrishnan, R. Bester, J. Chadwick, K.

Ciaschini, V. Demchenko, Y. Ferraro, A. Forti, A. Groep, D. Hesselroth, T. Hover, J.

Koeroo, O. Joie, C. Levshina, T. Miller, Z. Packard, J. Sagehaug, H. Sergeev, V.

Sfiligoi, I. Sharma, N. Siebenlist, F. Venturi, V. & Weigand, J., 2009. Definition and

Implementation of a SAML-XACML Profile for Authorization Interoperability

Across Grid Middleware in OSG and EGEE. Journal of grid computing, 7(3), pp.297-

307.

Gavriloaie, R. Nejdl, W. Olmedilla, D. Seamons, K. E. & Winslett, M., 2004. No

Registration Needed: How to Use Declarative Policies and Negotiation to Access

Sensitive Resources on the Semantic Web. In Proceedings of the 1st European

Semantic Web Symposium. Heraklion, Crete, Greece. pp.342-356.

Glass, G., 2001. Web Services: Building Blocks for Distributed Systems, Delhi:

Prentice Hall Ptr.

Globalsign, 2013. About GlobalSign. Available at:

https://www.globalsign.com/company/. [Accessed 15th February 2014].

 225

Garofalakis, J. Panagis, Y. Sakkopoulos, E. & Tsakalidis, A., 2006. Web Service

Discovery Mechanisms: Looking for a Needle in a Haystack? Available at:

http://mmlab.ceid.upatras.gr/people/sakkopoulou/conf/ht04.pdf. [Accessed 1st July

2010].

Geer, D., 2003. Taking Steps to Secure Web Services. Computer, 36(10), pp.14-16.

Gouda, M. G. & Manning, E.G., 1976. On the Modelling, Analysis and Design of

Protocols - A Special Class of Software Structures. In Proceedings of the 2nd

International Conference on Software Engineering (ICSE’76). Los Alamitos, CA.

pp.256-262.

Gruschka, N. Jensen, M. & Luttenberger, N., 2007. A Stateful Web Service Firewall

for BPEL. In IEEE International Conference on Web Services (ICWS 2007). Salt

Lake City, UT. pp.142-149.

Gudgin, M. Hadley, M. Rogers, T. (eds.), 2006. Web Services Addressing 1.0 - Core.

Available at: http://www.w3.org/TR/ws-addr-core/. [Accessed 15th June 2010].

Guo, S. & Jiang, W., 2010. An Adaptive Automated Trust Negotiation Model and

Algorithm. In 2010 International Conference on Communications and Intelligence

Information Security (ICCIIS). Nanning, China. pp.130-134.

Guruge, A., 2004. Web Services: Theory and Practice, Oxford: Digital Press.

H:
Halevey, A., 2005. Why Your Data Won’t Mix. Queue - Semi-structured Data, 3(8),

pp.50-58.

Hamilton, J. A. Rosen, C. & Summers, M., 2002. An Interoperability Road Map for

C4ISR Legacy Systems, Available at: www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA487874. [Accessed 5th August 2010].

 226

Hess, A. Holt, J. Jacobson, J. & Seamons, K.E., 2004. Content-Triggered Trust

Negotiation. ACM Transactions on Information and System Security (TISSEC), 7(3),

pp.428-456.

Hitzler, P. Krotzsch, M. Parsia, B. Patel-Schneider, P. F. & Rudolph, S. (eds.), 2012.

OWL 2 Web Ontology Language Primer (Second Edition). Available at:

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/. [Accessed 8 March

2011].

Ho, R. & Yen, Y., 2005. Design and Evaluation of An XML-based Platform-

independent Computerized Adaptive Testing System. IEEE Transactions on

Education, 48(2), pp.230-237.

Holt, J. E. Bradshaw, R. W. Seamons, K. E. & Orman, H., 2003. Hidden Credentials.

In Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society.

Scottsdale, Arizona, USA. pp.9-20.

Housley, R., Polk, W. Ford, W. & Solo, D., 2008. Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile. Available at:

http://tools.ietf.org/html/rfc5280. [Accessed 25th May 2010].

Howard, R., 2001. Encrypting SOAP Messages. Available at:

http://msdn.microsoft.com/en-us/library/ms972410.aspx. [Accessed 5th April 2010].

Huang, C. & Hsu, J., 1994. An Incremental Protocol Verification Method. The

Computer Journal, 37(8), pp.698-710.

I:
IBM & Microsoft 2002. Security in A Web Services World: A Proposed Architecture

and Roadmap. Available at: http://msdn.microsoft.com/en-us/library/ms977312.aspx.

[Accessed 4th April 2010].

 227

IEEE, 2011. IEEE Guide — Adoption of the Project Management Institute (PMI ®)

Standard A Guide to the Project Management Body of Knowledge (PMBOK ® Guide)

— Fourth Edition IEEE Computer Society. Available at:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6086685. [Accessed 9th

July 2011].

IEEE Press, 2000. IEEE 100 The Authoritative Dictionary of IEEE Standards Terms

(7th edition), Institute of Electrical and Electronics Engineers (IEEE). Available at:

http://ieeexplore.ieee.org/servlet/opac?punumber=4116785. [Accessed 10th June

2011].

Imamura, T. Dillaway, B. & Simon, E., 2002. XML Encryption Syntax and

Processing. Available at: http://www.w3.org/TR/xmlenc-core/. [Accessed 19th

August 2010].

J:
Jamroga, W. Melissen, M. & Schnoor, H., 2014. On Defendability of Security

Properties. In Proceedings 2nd International Workshop on Strategic Reasoning.

Grenoble, France. pp.17-25.

Jonker, J. & Pennink, B., 2010. The Essence of Research Methodology, London:

Springer-Verlag Berlin Heidelberg.

Johnston, W. Mudumbai, S. & Thompson, M., 1998. Authorization and Attribute

Certificates for Widely Distributed Access Control. In Proceedings of the 7th

Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE ’98). Stanford, California, USA. pp.340-345.

Josefsson, S., 2006. The Base16, Base32, and Base64 Data Encodings. Available at:

http://tools.ietf.org/html/rfc4648. [Accessed 21st May 2011].

Josuttis, N. M., 2007. SOA in Practice: The Art of Distributed System Design (Theory

in Practice), CA: O’Reilly Media Inc.

 228

K
Karp, A.H., 2006. Authorization-Based Access Control for the Services Oriented

Architecture. In the Fourth International Conference on Creating, Connecting and

Collaborating through Computing, (C5 ’06). Berkeley, California, USA. pp.160-167.

Kitchenham, B. Pfleeger, S. Pickard, L. Jones, P. Hoaglin, D. El, E. & Rosenberg, J.,

2002. Preliminary Guidelines for Empirical Research in Software Engineering. IEEE

Transactions on Software Engineering, 28(2), pp.721-734.

Klein, M., 2001. XML, RDF and Relatives. IEEE Intelligent Systems, 16(2), pp.26-

28.

Klein, H. K. & Myers, M. D., 1999. A Set of Principles for Conducting and

Evaluating Interpretive Field Studies in Information Systems. MIS Quarterly - Special

Issue on Intensive Research in Information Systems, 23(1), pp.67-93.

Klyne, G. & Carroll, J.J., 2004. Resource Description Framework (RDF): Concepts

and Abstract Syntax. Available at: http://www.w3.org/TR/rdf-concepts/. [Accessed

15th May 2012].

Koshutanski, H. & Massacci, F., 2005. Interactive Credential Negotiation for Stateful

Business Processes. Lecture Notes In Computer Science, 3477(2005), pp.256-272.

Kull, A., 2009. Model-Based Testing of Reactive Systems. Tallinn University of

Technology. Tallinn, Estonia.

Kumar, C. R., 2008. Research Methodology, New Delhi: APH Publishing

Corporation.

Kothari, C. R., 2009. Research Methodology Methods and Techniques, New Delhi:

New Age International (P) Ltd.

 229

L:
Lampson, B.W., 1969. Dynamic Protection Structures. In Proceedings of the Fall

Joint Computer Conference (AFIPS ’69 Fall). Las Vegas, Nevada, USA. pp.27-38.

Lang, B. Foster, I. Siebenlist, F. Ananthakrishnan, R. & Freeman, T., 2006. A

Multipolicy Authorization Framework for Grid Security. In the Fifth IEEE

International Symposium on Network Computing and Applications. Cambridge,

Massachusetts, USA. pp.267-272.

Lawrence, K. & Kaler, C., 2004. Web Services Security: SOAP Message Security 1.1.

Available at: http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf. [Accessed 17th February 2010].

Lawrence, K. & Kaler, C., 2009a. WS-Trust 1.4. Available at: http://docs.oasis-

open.org/ws-sx/ws-trust/v1.4/cd/ws-trust-1.4-spec-cs-01.html. [Accessed 20th March

2010].

Lawrence, K. & Kaler, C., 2009b. WS-SecureConversation 1.4. Available at:

http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/cd/ws-

secureconversation-1.4-spec-cs-01.html. [Accessed 21st March 2010].

Lawrence, K. & Kaler, C., 2009c. WS-SecurityPolicy 1.3. Available at:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/os/ws-securitypolicy-1.3-

spec-os.html. [Accessed 18th March 2010].

Lee, A.S., 1989. A Scientific Methodology for MIS Case Studies. MIS Quarterly,

13(1), p.33.

Lee, A. J. Winslett, M. Basney, J. & Welch, V., 2006. Traust: A Trust Negotiation-

Based Authorization Service for Open Systems. In Proceedings of the Eleventh ACM

Symposium on Access. Lake Tahoe, California, USA. pp.39-48.

 230

Lee, A. J. & Winslett, M., 2008c. Towards Standards-Compliant Trust Negotiation

for Web Services. IFIP International Federation for Information Processing, 263,

pp.311-326.

Lee, A. J. Winslett, M. & Perano, K.J., 2009. TrustBuilder2: A Reconfigurable

Framework for Trust Negotiation. IFIP Advances in Information and Communication

Technology, 300, pp.176-195.

Lewis, G. & Wrage, L., 2006. Model Problems in Technologies for Interoperability  :

Web Services, Available at:

http://resources.sei.cmu.edu/asset_files/TechnicalNote/2006_004_001_14705.pdf.

[Accessed 3rd October 2010].

Li, N. Du, W. & Boneh, D., 2003. Oblivious Signature-based Envelope. Distributed

Computing, 17(4), pp.293-302.

Li, J. Li, b. & Meng, L., 2010. HiTrust: A Hybrid Tree Based Trust Negotiation

Service. In IEEE 24th International Conference on Advanced Information Networking

and Applications Workshops (WAINA 2010). Perth, Australia. pp.854-859.

Li, J. Li, N. & Winsborough, W.H., 2005. Automated Trust Negotiation Using

Cryptographic Credentials. In Proceedings of the 12th ACM Conference on Computer

and Communications Security (CCS’05). Alexandria, VA, USA. pp.46-57.

Linn, R. J. & JR., 1989. Conformance Evaluation Methodology and Protocol Testing.

IEEE Journal on Selected Areas in Communications, 7(7), pp.1143-1158.

Liu, P. & Chen, Z., 2004. An Access Control Model for Web Services in Business

Process. In Proceedings of the 2004 IEEE/WIC/ACM International Conference on

Web Intelligence (WI ’04). Beijing, China. pp.292-298.

Liu, H. Pallickara, S. & Fox, G., Performance of Web Services Security, Indiana,

USA. Indiana University.

 231

Liu, X. Tang, S. Huang, Q. & Yu, Z., 2013. An Ontology-based Approach to

Automated Trust Negotiation. Computer Standards & Interfaces, 36(1), pp.219-230.

Lu, h. & Liu, B., 2009. DFANS: A Highly Efficient Strategy for Automated Trust

Negotiation. Computers & Security, 28(7), pp.557-565.

Locke, J., 2004. Open Source Solutions for Small Business Problems, Hingham,

Massachusetts: Charles River Media.

Lopez, J. Oppliger, R. & Pernul, G., 2004. Authentication and Authorization

Infrastructures (AAIs): A Comparative Survey. Computers & Security, 23(7), pp.578-

590.

M:
Mahmoud, Q. H., 2005. Securing Web Services and the Java WSDP 1.5 XWS-Security

Framework. Available at: http://www.oracle.com/technetwork/articles/java/security-

140160.html. [Accessed 10th May 2010].

Mallalieu, T. & Carriere, J., 2004. Enterprise Interoperability: .NET and J2EE.

Available at: http://msdn.microsoft.com/en-us/library/ms954598.aspx. [Accessed 24

August 2010].

Manes, A.T., 2003. Web Services: A Manager’s Guide, Boston, MA: Addison Wesley

Professional.

Matsuo, S. Miyazaki, K. Otsuka, A. & Basin, D., 2010. How to Evaluate the Security

of Real-life Cryptographic Protocols  ? Financial Cryptography and Data Security,

6054, pp.182-194.

Mbanaso, U. M. Cooper, G. S. Chadwich, D. W. & Proctor, S., 2006. Privacy

Preserving Trust Authorization Framework Using XACML. In Proceedings of the

2006 International Symposium on World of Wireless, Mobile and Multimedia

Networks. Buffalo-Niagara Falls, New York. pp.673-678.

 232

Merlin, P.M., 1976. A Methodology for the Design and Implementation of

Communication Protocols. IEEE Transactions on Communications, 24(6), pp.614-

621.

Merlin, P., 1979. Specification and Validation of Protocols. IEEE Transactions on

Communications, 27(11), pp.1671-1680.

Mewar, V. S. Aich, S. & Sural, S., 2007. Access Control Model for Web Services

with Attribute Disclosure Restriction. In Proceedings of the Second International

Conference on Availability, Reliability and Security (ARES ’07). Vienna, Austria.

pp.524-531.

Microsoft, 2004. Application Interoperability: Microsoft® .NET and J2EE, O’Reilly

Media, Inc.

Millen, J. & Shmatikov, V., 2001. Constraint Solving for Bounded-Process

Cryptographic Protocol Analysis. In Proceedings of the 8th ACM Conference on

Computer and Communications Security (CCS ’01). Philadelphia, Pennsylvania,

USA. pp.166-175.

Mishra, P. Philpott, R. & Maler, E. (eds.), 2005. Assertions and Protocol for the

OASIS Security Assertion Markup Language (SAML) V2.0. Available at:

http://docs.oasis-open.org/security/saml/v2.0/. [Accessed 1st July 2010].

Mitra, N. & Lafon, Y., 2007. SOAP Version 1.2. Available at:

http://www.w3.org/TR/soap/. [Accessed 1st February 2010].

Mykkänen, J. & Tuomainen, M., 2008. An Evaluation and Selection Framework for

Interoperability Standards. Information and Software Technology, 50(3), pp.176-197.

Mohammad, A. Kanaan, G. Kanaan, R. Khdour, T. Bani-Ahmad, S. Alarabeyyat, A.,

2011. Toward Access Control Model for Web Services Applications. International

Journal of Research and Reviews in Computer Science (IJRRCS), 2(2), p.253.

 233

N:
Naedele, M., 2003. Standards for XML and Web Services Security. Computer, 36(4),

pp.96-98.

Neale, P. Thapa, S. & Boyce, C., 2006. PREPARING A CASE STUDY  : A Guide for

Designing and Conducting a Case Study for Evaluation Input, Available at:

www2.pathfinder.org/site/DocServer/m_e_tool_series_case_study.pdf. [Accessed 3rd

February 2010].

Nezhad, H. R. M. Benatallah, B. Casati, F. & Toumani, F., 2006. Web Services

Interoperability Specifications. Computer Practices, 39(5), pp.24-32.

NIST, 1996. Electronic Data Interchange. Available at:

http://www.itl.nist.gov/fipspubs/fip161-2.htm. [Accessed 7th February 2010].

Nordbotten, N. A., 2009. XML and Web Services Security Standards.

Communications Surveys & Tutorials, 11(3), pp.4-21.

Nurse, J. R. C., 2010. A Business-Oriented Framework for Enhancing Web Services

Security for E-Business. The University of Warwick. Coventry, UK.

O:
OASIS, 2012. About Us. Available at: https://www.oasis-open.org/org. [Accessed 15

September 2013].

Olmedilla, D. Lara, R. Polleres, A. & Lausen, H., 2004. Trust Negotiation for

Semantic Web Services. In 1st International Workshop on Semantic Web Services

and Web Process Composition in Conjunction with the 2004 IEEE International

Conference on Web Services. San Diego, CA, USA. pp.81-95.

Olson, L. Winslett, M. Toni, G. Seeley, N. Uszok, A. & Bradshaw, J., 2006. Trust

Negotiation as An Authorization Service for Web Services. In 22nd International

Conference on Data Engineering Workshops. Atlanta, GA, USA. pp.21.

 234

Oppliger, R., 2003. Microsoft .NET Passport: A Security Analysis. Computer, 36(7),

pp.29-35.

Orkphol, K. & Li, J., 2012. Multi-negotiation Targets in Automated Trust Negotiation

over TrustBuilder2 Framework. In 8th International Conference on Computing

Technology and Information Management (ICCM). Seoul, Korea. pp.101-105.

P:
Paci, F. Mecella, M. Ouzzani, M. Bertino, E., 2011. ACConv – An Access Control

Model for Conversational Web Services. ACM Transactions on the Web (TWEB),

5(3). no.13.

Pallis, G. Stoupa, K. & Vakali, A., 2008. Storage and Access Control Issues for XML

Documents. In Information Security and Ethics: Concepts, Methodologies, Tools, and

Applications. London, UK. Idea Group Inc., pp.2616-2621.

Palmer, J. W. & Sabnani, K., 1986. A Survey of Protocol Verification Techniques. In

Military Communications Conference – Communications-Computers: Teamed for the

90’s, 1986 (MILCOM 1986). Monterey, CA, USA. pp.1.5.1-1.5.5.

Paolucci, M. & Sycara, K., 2003. Autonomous Semantic Web Services. IEEE Internet

Computing, 7(5), pp.34-41.

Papazoglou, M., 2012. Web Services and SOA: Principles and Technology (2nd

edition), Canada: Pearson.

Parducci, B. & Lockhart, H., 2010. eXtensible Access Control Markup Language

(XACML) Version 3.0. Available at: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-

core-spec-en.html. [Accessed 18th March 2010].

 235

Pautasso, C. & Wilde, E., 2009. Why Is the Web Loosely Coupled  ? A Multi-Faceted

Metric for Service Design. In Proceedings of the 18th International Conference on

World Wide Web (WWW ’09). Madrid, Spain. pp.911-920.

Pearlman, L. Welch, V. Foster, I. Kesselman, C. & Tuecke, S., 2002. A Community

Authorization Service for Group Collaboration. In Proceedings of the 3rd

International Workshop on Policies for Distributed Systems and Networks

(POLICY’02). Monterey, CA, USA. pp.50-59.

Peterson, J.L., 1977. Petri Nets. ACM Computing Surveys (CSUR), 9(3), pp.223-252.

Pironti, A. Pozza, D. & Sisto, R., 2011. Automated Formal Methods for Security

Protocol Engineering. In Cyber Security Standards, Practices and Industrial

Applications: Systems and Methodologies. pp.138-166.

Prud, E. & Seaborne, A., 2008. SPARQL Query Language for RDF. Available at:

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/. [Accessed 13th April

2011].

R:
Rein, R. & Fokkinga, M., 1999. Protocol Assuring Universal Language. In Third

International Conference on Formal Methods for Open Object-Based Distributed

Systems (FMOODS). Florence, Italy. pp.241-258.

Rezaei, R. Chiew, T. K. Lee, S.P. & Aliee, Z. S., 2014. Interoperability Evaluation

Models: A Systematic Review. Computers in Industry, 65(1), pp.1-23.

Rezaei, R., Chiew, T. K. & Lee, S.P., 2014. 2014.An Interoperability Model for Ultra

Large Scale Systems. Advances in Engineering Software, 67, pp.22-46.

Roman, D. Keller, U. Lausen, H. Bruijn, J. & Lara, R. Stollberg, M. Polleres, A.

Feier, C. Bussler, C. & Fensel, D., 2005. Web Service Modelling Ontology. Applied

Ontology, 1, pp.77-106.

 236

Rosen, M. Lublinsky, B. Smith, K. T. & Balcer, M.J., 2008. Applied SOA: Service-

Oriented Architecture and Design Strategies, Indianapolis, Indiana: Wiley Publishing,

Inc.

Rowan, L., 2005. Security in a Web Services World. Network Security, 2005(6), pp.7-

10.

Runeson, P. & Höst, M., 2009. Guidelines for Conducting and Reporting Case Study

Research in Software Engineering. Empirical Software Engineering, 14(2), pp.131-

164.

Ryutov, T. Zhou, L. Neuman, C. Leithead, T. & Seamons, K.E., 2005. Adaptive Trust

Negotiation and Access Control. In Proceedings of the Tenth ACM Symposium on

Access Control Models and Technologies. Stockholm, Sweden. pp.139-146.

S:
Sabbari, M & Alipour, H.S., 2011. Improving Attribute Based Access Control Model

for Web Services. In 2011 World Congress on Information and Communication

Technologies (WICT). Mumbai, India. pp.1223-1228.

Sandhu, R. S. Coyne, E. J. Feinstein, H. L. & Youman, C.E., 1996. Role-based

Access Control Models. Computer, 29(2), pp.38-47.

Schlager, C. Sojer, M. Muschall, B & Pernul, G., 2006. Attribute-based

Authentication and Authorisation Infrastructures for E-Commerce Providers. In

Proceedings of 7th International Conference on Electronic Commerce and Web

Technologies (EC-Web 2006). Krakow, Poland. pp.132-141.

Schneier, B., 1995. Applied Cryptography: Protocols, Algorithms and Source Code in

C (2nd edition), New York: John Wiley & Sons.

 237

Seamons, K. E. Chan, T. Child, E. Halcrow, M. Hess, A. Holt, J., Jacobson, J. Jarvis,

R. Patty, A. Smith, B. Sundelin, T. & Yu, L., 2003. TrustBuilder: Negotiating Trust in

Dynamic Coalitions. DARPA Information Survivability Conference and Exposition.

pp.49-51.

Seamons, K. E. Winslett, M. & Yu, T., 2001. Limiting the Disclosure of Access

Control Policies during Automated Trust Negotiation. In New York and Distributed

System Security Symposium. San Diego, CA, USA. pp.1-11.

Seamons, K. E. Winslett, M. Yu, T. Smith, B. Child, E. Jacobson, J. Mills, H. & Yu,

L., 2002a. Requirements for Policy Languages for Trust Negotiation. In Proceedings

of the 3rd International Workshop on Policies for Distributed Systems and Networks.

Monterey, CA, USA. pp.68-79.

Seamons, K. E. Winslett, M. Yu, T. Yu, L. & Jarvis, R., 2002b. Protecting Privacy

during On-line Trust Negotiation. In Proceedings of the 2nd International Conference

on Privacy Enhancing Technologies. San Francisco, CA, USA, pp.129-143.

Shah, R. & Apte, N., 2004. Web Services: A Business Module Packaing Strategy.

Available at: http://www.informit.com/articles/article.aspx?p=170421. [Accessed 4th

July 2010].

Shen, H. and Hong, F., 2006. An Attribute-Based Access Control Model for Web

Services. In Proceedings of the Seventh International Conference on Parallel and

Distributed Computing, Applications and Technologies (PDCAT ’06). Taipei,

Taiwan. pp.74-79.

Skogsrud, H. Benatallah, B. and Casati, F. 2003. Model-Driven Trust Negotiation for

Web Services. IEEE Internet Computing. 7(6) pp.45-52.

Skogsrud, H. Benatallah, B. and Casati, F. 2004a. Trust-Serv:Model-Driven Lifecycle

Management of Trust Negotiation Policies for Web Services. In Proceedings of the

13th International Conference on World Wide Web. New York, USA. pp.53-62.

 238

Skogsrud, H. Benatallah, B. Casati, F. & Dinh, M.Q. 2004b. Trust-Serv: A

Lightweight Trust Negotiation Service. In Proceedings of the 30th VLDB Conference.

Toronto, Canada. pp.1329-1332.

Skogsrud, H., Benatallah, B. and Casati, F. 2004c. A Trust Negotiation System for

Digital Library Web Services. International Journal on Digital Libraries. 4(3)

pp.185-207.

Skogsrud, H. Motahari-Nezhad, H. R. Benatallah, B. & Casati, F., 2009. Modeling

Trust Negotiation for Web Services. Computer, 42(2), pp.54-61.

Smith, B. Seamons, K. E. & Jones, M.D., 2004. Responding to Policies at Runtime in

TrustBuilder. In Fifth IEEE International Workshop on Policies for Distributed

Systems and Networks. New York, USA. pp.149-158.

Smith, R. E., 2001. Authentication: From Passwords to Public Keys, Boston: Addison

Wesley.

Squicciarini, A. C. Bertino, E. Trombetta, A. & Braghin, S., 2012. A Flexible

Approach to Multi-Session Trust Negotiations. IEEE Transactions on Dependable

and Secure Computing, 9(1), pp.2-15.

Stake, R.E., 1995. The Art of Case Study Research, CA: Thousand Oaks.

Steel, C. Nagappan, R. and Lai, R., 2006. Core Security Patterns Best Practices and

Strategies for J2EE, TM Web Services, and Identity Management, Pearson Education,

Inc.

Steiner, J. G. Neumant, C. & Schiller, J.I., 1988. Kerberos: An Authentication Service

for Open Network Systems. In Proceedings of the Winter 1988 Usenix Conference.

Dallas, Texas, USA. pp.191-202.

Sunshine, C., 1979a. Formal Techniques for Protocol Specification and Verification.

Computer, 12(9), pp.20-27.

 239

Sunshine, C., 1979b. Formal Methods for Communication Protocol Specification and

Verification, Indiana: RAND Corporation.

Sunshine, C. A. Thompson, D .H. Erickson, R. W. Gerhart, S.L. & Schwabe, D.,

1982. Specification and Verification of Communication Protocols in AFFIRM Using

State Transition Models. IEEE Transactions on Software Engineering, SE-8(5),

pp.460-489.

T:
Taylor, B. Sinha, G. & Ghoshal, T., 2006. Research Methodology: A Guide For

Researchers In Management And Social Sciences, New Delhi: Prentic-Hall of India

Pvt.Ltd.

Tere, G. M. & Jadhav, B.T., 2010. How to Improve XML Web Services

Performance? In Proceedings of the International Conference and Workshop on

Emerging Trends in Technology (ICWET ’10). Mumbai, Maharashtra, India. pp.257-

260.

Thompson, M. R. Esiari, A. & Mudumbai, S., 2003. Certificate-based Authorization

Policy in A PKI Environment. ACM Transactions on Information and System Security

(TISSEC), 6(4), pp.566-588.

Tolk, A. Diallo, S. & Turnitsa, C., 2007. Applying the Levels of Conceptual

Interoperability Model in Support of Integratability, Interoperability, and

Composability for System-of-Systems Engineering. International Journal Systemics,

Cybernetics and Informatics, 5(5), pp.65-74.

Tolk, A. and Muguira, J. A., 2003. The Levels of Conceptual Interoperability Model.

In Proceedings of the IEEE Fall Simulation Interoperability Workshop. Orlando,

Florida, USA. pp.14-19.

 240

Turnitsa, C.D., 2005. Extending the Levels of Conceptual Interoperability Model.

Available at: http://en.wikipedia.org/wiki/Conceptual_interoperability. [Accessed

16th May 2011].

U:
Utting, M. & Legeard, B., 2006. Practical Model-Based Testing: A Tools Approach,

San Francisco, CA, USA: Morgan Kaufmann Publishers.

V:
Vedamuthu, A. Orchard, D. Hirsch, F. Hondo, M. Yendluri, P. Boubez, T. &

Yalcinalp, U., 2007. Web Services Policy 1.5-Framework. Available at:

http://www.w3.org/TR/ws-policy. [Accessed 18th February 2010].

Verisign, 2013. About Verisign. Available at:

http://www.verisigninc.com/en_US/company-information/about-

verisign/index.xhtml. [Accessed 4th July 2013].

Vogels, W., 2003. Web Services are not Distributed Objects. IEEE Internet

Computing, 7(6), pp.59-66.

W:
Wang, H. Huang, J. Z. Qu, Y. & Xie, J., 2004. Web Services: Problems and Future

Directions. Web Semantics: Science, Services and Agents on the World Wide Web,

1(3), pp.309-320.

Wang, W. Tolk, A. & Wang, W., 2009. The Levels of Conceptual Interoperability

Model  : Applying Systems Engineering Principles to M & S. In Proceedings of the

2009 Spring Simulation Multiconference (SpringSim ’09). San Diego, CA, USA.

pp.128.

Welch, V. Barton, T. Keahey, K. & Siebenlist, F., 2005. Attributes, Anonymity, and

Access: Shibboleth and Globus Integration to Facilitate Grid Collaboration.

 241

Available at: http://grid.ncsa.illinois.edu/papers/gridshib-pki05-final.pdf. [Accessed

2nd March 2011].

West, C. H., 1978. General Technique for Communications Protocol Validation. IBM

Journal of Research and Development, 22(4), pp.393-404.

Winsborough, W. H. & Li, N., 2002a. Towards Practical Automated Trust

Negotiation. In IEEE 3rd International Workshop on Policies for Distributed Systems

and Networks. Monterey, CA. USA. pp.92-103.

Winsborough, W. H. & Li, N., 2002b. Protecting Sensitive Attributes in Automated

Trust Negotiation. In Proceedings of the 2002 ACM Workshop on Privacy in the

Electronic Society. Washington, DC. USA. pp.41-51.

Winsborough, W. N. & Li, N., 2006. Safety in Automated Trust Negotiation. ACM

Transactions on Information and System Security (TISSEC), 9(3), pp.352-390.

Winsborough, W. H. Seamons, K. E. & Jones, V.E., 1999. Negotiating Disclosure of

Sensitive Credentials. In Second Conference on Security in Communication Networks.

Amalfi, Italy. pp.1-13.

Winsborough, W. H. Seamons, K. E. & Jones, V., 2000. Automated Trust

Negotiation. In DAPRA Information Survivability Conference and Exposition. South

Carolina, USA. pp.88-102.

Winslett, M. Ching, N. Jones, V. & Slepchin, I., 1997. Using Digital Credentials on

the World Wide Web. Journal of Computer Security - Special Issue on Security in the

World Wide Web, 5(3), pp.255-267.

Winslett, M. Yu, T. Seamons, K. E. Hess, A., Jacobson, J. Jarvis, R. Smith, B. & Yu,

L., 2002. Negotiating Trust on the Web. IEEE Internet Computing, 6(6), pp.30-37.

 242

Wonohoesodo, R. & Tari, Z., 2004. A Role Based Access Control for Web Services.

In Proceedings of the 2004 IEEE International Conference on Services Computing

(SCC ’04). Shanghai, China. pp.49-56.

Woods, D. & Mattern, T., 2006. Enterprise SOA: Designing IT for Business

Innovation, CA: O’Reilly Media, Inc.

W3C, 2012. About W3C. Available at: http://www.w3.org/Consortium/. [Accessed

6th May 2012].

X:
Xu, F. Lin, G. Huang, H. & Xie, L., 2004. Role-based Access Control System for

Web Services. In The Fourth International Conference on Computer and Information

Technology (CIT ’04). Wuhan, China. pp.357-362.

Y:
Yin, R. K., 2013. Case Study Research Design and Methods (5th edition), London:

SAGE Publications Inc.

Yolum, P., 2004. Correctness Requirements for Multiagent Commitment Protocols. In

Proceedings of 19th International Symposium on Computer and Information Sciences

(ISCIS ’04). Kemer-Antalya, Turkey. pp.955-965.

Yu, D. Tan, C. Wang, H. & Yang, J., 2011. An Express Trust Negotiation Mechanism

Based on Negotiation History. Journal of Information & Computational Science, 8(4),

pp.609-617.

Yu, T. Winslett, M. & Seamons, K. E., 2001. Interoperable Strategies in Automated

Trust Negotiation. In Proceedings of the 8th ACM conference on Computer and

Communications Security. Philadelphia, PA, USA. pp.146-155.

 243

Yu, T. & Winslett, M., 2003a. A Unified Scheme for Resource Protection in

Automated Trust Negotiation. In Proceedings of the 2003 IEEE Symposium on

Security and Privacy. Oakland, California, USA. pp.110-122.

Yu, T. Winslett, M. & Seamons, K. E., 2003. Supporting Structured Credentials and

Sensitive Policies through Interoperable Strategies for Automated Trust Negotiation.

ACM Transactions on Information and System Security (TISSEC), 6(1), pp.1-42.

Yuan, E. & Tong, J., 2005. Attributed Based Access Control (ABAC) for Web

Services. In Proceedings of the IEEE International Conference on Web Services

(ICWS ’05). Orlando, Florida, USA. pp.561-569.

Z:
Zartman, W. I. and Berman, M.R., 1982. The Practical Negotiator, New Haven, CT,

USA. Yale University Press.

Zhang, W. & Engelen, R., 2008. An Adaptive XML Parser for Developing High-

Performance Web Services. In Proceedings of the 2008 Fourth IEEE International

Conference on eScience (ESCIENCE ’08). Indianapolis, Indiana, USA. pp.672-679.

Zhang, Y. Wu, M. Wu, L. & Li, Y., 2014. Attribute-Based Access Control Security

Model in Service-Oriented Computing. Lecture Notes in Electrical Engineering, 163,

pp.1473-1479.

Zhao, F., 2006. Maximize Business Profits Through E-partnerships, London: IRM

Press.

Zhang, S. Guan, S. Mei, Y. & Pan, L., 2009. NAGUAL: A Novel Automated Trust

Negotiation Model Based on Attribute Constraint. In 2009 International Conference

on Networking and Digital Society. Guiyang, Guizhou, China. pp.63-68.

 244

Appendix A. Protocol Messages

A.1 a <TNPrepareRequest> message
Table A.1 describes the attributes and elements used in a <TNPrepareRequest>

message within the protocol.

/TNPrepareRequest

A unique header message for a Web Service Requester to

trigger the preparation stage of TN.

/TNPrepareRequest

/ID

This required attribute indicates the unique identifier of a

<TNPrepareRequest> message.

/TNPrepareRequest

/@RemoteResourceOwner

This required attribute uniquely specifies a resource owner

within the Web Service Provider. The value of this attribute is

an identifier to indicate a resource owner.

/TNPrepareRequest

/@Resource

This required attribute specifies the target resource name

owned by the resource owner. A combination of this attribute

with the attribute “RemoteResourceOwner” uniquely indicates

the target resource.

/TNPrepareRequest

/StrategyList

A sub element embedded in the <TNPrepareRequest> element,

which contains all the information about the supported

strategies.

/TNPrepareRequest

/StrategyList

/@Number

A required attribute used to indicate the number of the

<StrategyList> sub elements. The motivation of designing this

attribute is that a Web Service Provider can efficiently deal

with the sub elements <Strategy> by knowing the total number

of these elements.

/TNPrepareRequest

/StrategyList

/Strategy

A multitude of this sub <Strategy> element can be embedded in

the <StrategyList> element. The value of this element is a name

of a specific strategy.

/TNPrepareRequest

/StrategyList

/Strategy

/@ID

This required attribute indicates the unique identifier of the

name of a strategy.

/TNPrepareRequest

/LanguageCombinations

/@Number

A required attribute used to indicate the number of the

<LanguageCombination> sub elements.

/TNPrepareRequest A sub element embedded in the <LanguageCombinations>

 245

/LanguageCombinations

/LanguageCombination

element to store a specific combination of a policy language,

and a credential language. In each <LanguageCombination>

element, only one policy language and one credential language

can be set. A multitude of this element can be embedded in the

<LanguageCombinations> element.

/TNPrepareRequest

/LanguageCombinations

/LanguageCombination

/PolicyLanguage

This is an element indicating a specific policy language that is

supported in combination with a specific credential language,

where the policy compliance checker can support this. The

value of this element is a name of a specific policy language.

/TNPrepareRequest

/LanguageCombinations

/LanguageCombination

/CredentialLanguage

An element indicating a specific credential language that can be

supported in combination with a specific policy language where

the policy compliance checker can support this. The value of

this element is a name of a specific credential language.

/TNPrepareRequest

/{any} and

/TNPrepareRequest

/@{any}

These mechanisms provide extensibility to allow Web Services

to define new elements or information to provide extensibility.

Such mechanisms are also presented in all other steps but are

not restated.

Table A.1. Syntax and Semantics of a <TNPrepareRequest> message

A.2 A <TNPrepareResponse> message
Table A.2 describes the attributes and elements used in a <TNPrepareResponse>

message within the protocol.

/TNPrepareResponse A unique header message used in response to the message

in the <TNPrepareRequest> element at step three. It allows

the Web Service Provider to establish all the available

options for a common strategy language combination to be

chosen.

/TNPrepareResponse

/ID

This required attribute indicates the unique identifier of an

authorisation request message.

/TNPrepareResponse

/InResponseTo

This optional attribute indicates which unique

<TNPrepareRequest> message determined by its ID will

be sent in response. The value of this attribute should be a

specific ID obtained from the <TNPrepareRequest>

message sent from the current counterpart.

/TNPrepareResponse

/@TNCanBeUsed

An attribute to explicitly inform a Web Service Requester

whether TN can be used with respect to the

 246

interoperability issue. The value of the attribute can only

be “yes” or “no”. If the value is “yes”, it means that a

common strategy and language combination have been

found so the interoperability issue will not affect TN. If the

value is “no”, it means that TN cannot be used due to the

interoperability issue.

/TNPrepareResponse

/Strategy

A sub element embedded in the <TNPrepareResponse>

element to indicate the specific strategy the Web Service

Provider can support. The value of this element is the

name of a specific chosen strategy. Note that only one

strategy can be set under the <TNPrepareResponse>

element. The notion of the ideal strategy should be defined

at a system level. If one or more interoperable strategy can

be found, the Web Service Provider should consider which

strategy should be chosen according to a predefined

preference order within the system.

/TNPrepareResponse

/ChosenLanguageCombination

This is a sub element embedded in the

<TNPrepareResponse> element to indicate which

combination in the previous <TNPrepareRequest>

message has been chosen.

/PrepareResponse

/ChosenLanguageCombination

/PolicyLanguage

A sub element indicates that a policy language has been

chosen by the Web Service Provider for the specific

combination. The value of this element is the name of a

specific policy language.

/TNPrepareResponse

/ChosenLanguageCombination

/CredentialLanguage

A sub element indicates that a specific credential language

has been chosen by the Web Service Provider for the

specific combination. The value of this element is the

name of a specific credential language.

/TNPrepareResponse

/Fault:

This is an optional element used when the value of the

attribute “TNCanBeUsed” is “no” to explicitly inform the

Web Service Requester that TN cannot be used. The

reasons are “Strategic interoperability issue” or “Language

interoperability issue”.

Table A.2. Syntax and semantics of a <TNPrepareResponse> message

 247

A.3 A <AuthzDecisionQuery> message
Table A.3 describes the attributes and elements used in an <AuthzDecisionQuery>

message within the protocol. Existing SAML syntax and semantics are not

highlighted in bold. This is in order to distinguish the new or modified elements and

attributes added into the <AuthzDecisionQuery> message from the existing elements

and attributes of this message as defined in the SAML specification.

/AuthzDecisonQuery

/@ID

This required attribute indicates the unique identifier of an

authorisation request message.

/AuthzDecisionQuery

/@Resource

This required attribute specifies the name of the resource that a

Web Service Requester is intended to access.

/AuthzDecisionQuery

/InResponseTo

This optional attribute indicates which unique

<TNPrepareResponse> message determined by its ID, is going

to be contained in this response. The value of this attribute

should be a specific ID obtained from the

<TNPrepareResponse> message sent from the current

counterpart.

/AuthzDecisionQuery

/@RemoteResourceOwner

This required attribute indicates a unique owner’s name of the

remote resource, because different resources belonging to

different owners may have the same name. To enable the Web

Service Provider to understand which specific resource is

requested by the Web Service Requester, the owner’s name

should be provided to allow the Web Service Provider to locate

the unique resource. A Web Service Provider involved in TN is

actually a system on behalf of a human user or an organisation

to negotiate with a Web Service Requester, which is on behalf

of another human user or an organisation. Thus, the owner’s

name needs to be known by a Web Service Provider (or a Web

Service Requester) to look for the relevant policies and

credentials in its local system. This attribute and the attribute

“Resource” predefined in the <AuthzDecisionQuery> uniquely

specify an owner’s resource.

/AuthzDecisionQuery

/@LocalRequesterName

This required attribute denotes a unique local requester’s name.

/AuthzDecisionQuery

/Issuer

This optional attribute uniquely specifies the identity of the

issuer.

 248

/@SPProvidedID

/AuthzDecisionQuery

/Subject

/SubjectConfirmation

/@Method

This attribute has been defined in the SAML specification, but

to use it in the protocol defined in this research, a new value

“TN” is added to this attribute to infer the use of TN.

/AuthzDecisionQuery

/Action

This sub element allows a Web Service Requester to assert

what actions it wishes to perform with respect to the target

resource.

Table A.3. Syntax and semantics of an <AuthzDecisionQuery> message

A.4 A <PolicySet> message
Table A.4 describes the attributes and elements used in a <PolicySet> message. The

existing syntax and semantics defined in the XACML specification are not

highlighted in bold, in order to distinguish them from the new and modified syntax

and semantics as defined in this protocol.

/PolicySet A unique header message used to contain the content of a

temporary policy file, where a temporary policy file can

include one or more policies.

/PolicySet

/@PolicySetId

This required attribute indicates the unique identifier of a

message expressing policies.

/PolicySet

/@RemoteResourceOwner

This required attribute specifies the owner’s name of the

remote resource. Therefore, an identifier indicating each

counterpart’s identity can help a Web Service distinguish

one from the other.

/PolicySet

/@LocalPolicyOwner

This required attribute indicates the local policy owner’s

name. It is used as an identifier to enable a Web Service

that provides the policy to remember each local user’s

identity it is on behalf of. This attribute is designed by

taking into consideration the case that a Web Service

may use TN with different counterparts at the same time,

and in each session of TN, it is on behalf of a different

local user to negotiate with a different counterpart.

Hence, this attribute providing an identifier of each local

user can aid a Web Service in distinguishing one from

the other.

/PolicySet This required attribute denotes which local resource the

 249

/@ProtectedLocalResource entire policy file is protecting. This attribute is designed

to guarantee that the policy disclosed by a Web Service

is the correct one, in correspondence with the protection

of the local resource requested by the counterpart.

/PolicySet

/@LocalPolicyFileName

This required attribute records the name of the policy

file.

/PolicySet

/@IndividualPolicyTotalNumber

This required attribute records the total number of the

<IndividualPolicy> sub elements.

/PolicySet

/Policy

This is the existing element defined in the XACML

specification, but its semantics are modified in this

protocol. In order to help those policy languages that

cannot express multiple policies, a change is made to

enable support for such functionality. A policy that is not

expressed in an XML language can be set as a value

under this message. The value can be encoded in a

BASE64 format, if necessary.

/PolicySet

/Policy

/@PolicyId

This is an existing attribute defined in the XACML

specification. It is a required attribute used as a unique

identifier to indicate an individual policy, when the

<Policy> element is used.

Table A.4. Syntax and semantics of a <PolicySet> message

A.5 A <CredentialSet> message
Table A.5 describes the attributes and elements used in a <CredentialSet> message.

/CredentialSet A unique header message used to contain multiple

combinations of different credential files.

/CredentialSet

/@ID

This required attribute indicates the unique identifier of a

message expressing credentials.

/CredentialSet

/@CredentialTotalNumber

This required attribute indicates the number of submitted

credentials.

/CredentialSet

/@LocalCredentialOwner

This required attribute shows the local credential owner’s

name within the <CredentialSet> element. It is used as an

identifier to help a Web Service remember the identity of a

user, it is on behalf of.

/CredentialSet

/@MeetRemotePolicy

This optional attribute specifies the name of the remote policy

from the other Web Service within the <CredentialSet>

 250

element, this individual credential can satisfy. This attribute is

only used, when the credentials are submitted to fulfil the

specific policies in a <PolicySet> message.

/CredentialSet

/@MeetRemotePolicyOwner

This optional attribute specifies the remote policy owner’s

name within the <CredentialSet> element. It is designed to be

a complement to the attribute “meetRemotePolicy” to help a

Web Service to quickly understand the identity of the owner

of the policy, whose policy can be satisfied with the

individual credentials. This attribute is only used, when the

credentials are submitted to fulfil the specific policies in a

<PolicySet> message.

/CredentialSet

/Credential

A multitude of this sub element can be embedded in the

<CredentialSet> element. Each <Credential> element is used

to contain an individual credential file including its attributes.

This design is necessary, because more than one credential

may be required to be disclosed in a round.

/CredentialSet

/Credential

/@ID

This required attribute indicates the identifier of each

credential within each <Credential> element, which enables a

Web Service to distinguish a specific credential from the

others.

/CredentialSet

/Credential

/@CredentialType

This required attribute used to denote the type of the local

credential within each <Credential> element.

/CredentialSet

/Credential

/Fault

This optional element is used, when there is no local

credential that can be submitted to satisfy the remote policy

from the other Web Service.

Table A.5. Syntax and semantics of a <CredentialSet> message

A.6 A <Response> message
Table A.6 describes the attributes and elements in a <Response> message. The

existing syntax and semantics of this message defined in the SAML specification are

not highlighted in bold, in order to distinguish them from the new and modified

syntax and semantics defined in this protocol.

/Response

/@InResponseTo

This attribute has been defined within the SAML specification, and its

semantics are changed in this protocol. This optional attribute defined in

SAML is supposed to specify to which request message this response

 251

message should respond with; therefore, the value of this attribute is

supposed to indicate the unique <AuthzDecisionQuery> message.

However, in TN, both the Web Service Requester and Web Service

Provider can generate this response. Thus, only when the Web Service

Provider makes sure that the resource can be accessed (all the pertinent

policies have been fulfilled), the value of this attribute should indicate the

first authorisation message; otherwise, the value of this attribute should

indicate the previous received message from the counterpart, when TN

has failed.

/Response

/Status

/StatusCode

/@Value

This attribute has been defined within the SAML specification, and its

semantics are changed in this protocol. There are a variety of values

defined in SAML, but in TN, only one value is used, which is “fail”.

/Response

/Fault

This is an optional element used to inform the Web Service Provider

about the reason why TN is not successful. Five reasons are defined here,

which are exactly as those defined in the <Fault> message within the

<AuthzDecisionStatement> message (see section A.7).

Table A.6. Syntax and semantics of a <Response> message

A.7 A <AuthzDecisionStatement> message
Table A.7 describes the attributes and elements in an <AuthzDecisionStatement>

message. The existing syntax and semantics of this message defined in the SAML

specification are not highlighted in bold, in order to distinguish them from the new

and modified syntax and semantics defined in this protocol.

/AuthzDecisionStatement

/@InResponseTo

This attribute has been defined within the SAML specification,

and its semantics are changed in this protocol. This optional

attribute defined in SAML is supposed to specify to which

request message this response message should respond with;

therefore, the value of this attribute is supposed to indicate the

unique <AuthzDecisionQuery> message. However, in TN, both

the Web Service Requester and Web Service Provider can

generate this response. Thus, only when the Web Service

Provider makes sure that the resource can be accessed (all the

pertinent policies have been fulfilled), the value of this attribute

should indicate the first authorisation message; otherwise, the

value of this attribute should indicate the previous received

 252

message from the counterpart, when TN has failed.

/AuthzDecisionStatement

/@Resource:

This attribute has been defined within the SAML specification.

The value of this attribute is the target resource name that a Web

Service Requester aims to access.

/AuthzDecisionStatement

/@ResourceOwner:

This attribute indicates the unique name of the resource owner.

/AuthzDecisionStatement

/@Decision:

This attribute has been defined within the SAML specification,

and its semantics are changed in this protocol. There are a variety

of values defined in SAML, but in TN, only two values are used:

“Permit” and “Denied”.

/AuthzDecisionStatement

/Action:

This element has been defined within the SAML specification.

The value of this element should be related to proper access

permission such as “read only”, “read and write” etc.

/AuthzDecisionStatement

/Fault:

This is an optional element used to inform the Web Service

Requester about the reason why TN is not successful. Five

reasons are defined:

• Reason one: Wrong Received Credentials. This normally

occurs when the remote Web Service is a malicious Web

Service, or the internal logic of TN developed in the remote Web

Service is wrong, so the received credentials cannot fulfil local

policies; otherwise, a response message should have been

received to inform that no remote credentials can fulfil local

policies.

• Reason two: Unknown language. This also occurs when the

remote Web Service Requester is a malicious Web Service, or

the internal logic of TN developed in the remote Web Service

Requester is wrong, because the received policies or credentials

are written in an unknown language. Since this result should

have been avoided, if two Web Services are developed according

to the preparation stage.

• Reason three: No Local Credentials. With the use of the

eager strategy, this occurs, if there are no more local credentials

that can be unlocked by the received credentials. With the use of

the parsimonious strategy, this occurs if there are no more local

credentials containing the required attributes that can fulfil the

received policies.

 253

• Reason four: Policy Cyclic Dependencies. This occurs, when

policy cyclic dependencies have been discovered.

• Reason five: Beyond Maximum Threshold. This occurs, if

the number of times of the disclosure of the same credentials is

beyond the maximum threshold.

Table A.7. Syntax and semantics of an <AuthzDecisionStatement> message

 254

Appendix B. Case Study Evaluation in Chapter

6
This appendix presents a detailed case study evaluation of the proposed solution

design in Chapter 6.

B.1 Case Study Evaluation

B.1.1 Construction of case studies
The use of case study for evaluation requires the construction of a proper case study

design. Observing the two case scenarios presented in section 6.2, the context

information for two case scenarios is different. Within case scenario 1, TN occurs

between two honest Web Services, whereas in case scenario 2, TN occurs between an

honest Web Service and a malicious Web Service. The different context information

requires a multiple-case study design. More precisely, the number of the multiple-case

study design is two.

In terms of the detailed case information, they are different for the two contexts. For

the first vulnerability, the case information is that both two entities hold their own

sensitive credentials protected by their own policies. To unlock each other’s policies,

each entity’s sensitive credentials need to be disclosed. Unfortunately, as neither of

the two entities owns the willingness to disclose its sensitive credentials first, PCD

eventually occurs. For the second vulnerability, the case information is that a

malicious entity keeps sending different policies for requesting the same credentials

held by an honest entity, which does not realise the received different policies in

essence are the same in terms of their requirements.

Once the decision of using the two-case study design has been made, the next

decision to be made is whether there is a need for using embedded units of analysis.

Within the two-case study design, as the two vulnerability issues can only occur,

when a policy-exchanged-strategy is used, the first units of analysis should be

different policy-exchanged-strategies. In the first case study, as the way of disclosing

policies (credentials are always relevant to policies) used in different strategies is

different, another two units of analysis are policies declared by entities and credentials

 255

held by entities. However, in the second case study, the conditions of policies and

credentials held by entities for causing the occurrence of RCRA follows a fixed

condition pattern as detailed in the case above, so there is no need to change the

conditions of credentials and policies as sub units of analysis.

As a conclusion, the two case scenarios presented in section 6.2 can be directly used a

two-case study design for evaluation. Combined with the embedded units of analysis,

a decision was made that the embedded two-case study design would be used for

evaluation (see figure B.1).

Figure B.1. A general overview of embedded single-case designs

B.1.2 Application of the proposed solution within case study for data

collection
As reviewed in section 3.3.1, the currently existing policy-exchanged policies are the

parsimonious strategy, PRUNES, DFANS, adaptive strategy and SRNS. Observing

the characteristics of their information-exchanged phase, it can be concluded that the

parsimonious strategy and adaptive strategy are designed to disclose policies as a

whole to the counterpart; therefore they can be treated as one group in the two case

studies. In terms of the information-exchanged phase in PRUNES and DFANS, there

is a similarity and a difference.

The similarity held by two strategies is that with the use of either one strategy, an

entity will only submit an atomic element (i.e. requesting one credential as an element

of conjunction or disjunction in a rule as a part of a policy) of a policy for requesting

Context:
TN communication between two
honest Web Services

Case: both entities expect
the other entity to disclose its
credentials to unlock local
sensitive credentials first,
thereby resulting in PCD
 Units of Analysis:

(1) Policy-exchanged
strategies
(2) Policies
(3) Credentials

Context:
TN communication between an honest Web
Service and a malicious Web Service
 Case: the malicious Web Service

keeps sending different policies for
requesting the same credentials held
by the honest Web service, which
does not realise the same effects of
the received policies, thereby
resulting RCRA

Units of Analysis:
Policy-exchanged strategies

 256

one credential held by the counterpart. As this similarity causes the same behaviour

when they disclose a policy in the first case study, the two strategies are categorised

into one group when evaluated in the first case study.

In terms of their difference, with the use of the DFANS, an entity will disclose a

relevant credential fulfilling the rule as a part of a policy disclosed by the counterpart

immediately. By contrast, with the use of the PRUNES, an entity will not

immediately disclose a relevant credential, even if it can fulfil the rule as a part of a

policy disclosed by the counterpart. The action of submitting credentials by using the

DFANS is the same when any one of the parsimonious strategy, adaptive strategy and

SRNS is used. More precisely, with the use of any one of the four strategies, an entity

submits local non-sensitive credentials to the counterpart immediately in the next

round, after receiving policies from the counterpart. As this similarity held by four

strategies is the same in terms of the actions performed in the second case study, they

can be categorised as one group, whereas the PRUNES is separated as another group.

In terms of the SRNS, Liu et al. (2013) do not explicitly express whether an entity

discloses its policies like the way of the parsimonious strategy or that of the

PRUNES. Due to this reason, the SRNS is not taken into consideration in the

evaluation of the first case study. Nevertheless, the evaluation result of using either

the parsimonious strategy or PRUNES in the first case study should also apply to the

SRNS, once this feature can be confirmed.

In conclusion, there are two case studies used for evaluation, and in each case study

design, embedded cases are used. For simplicity, the term “circumstance” is used to

refer to each embedded case. An overview of basic information of each circumstance

is presented in table B.1.

Case Case 1-circumstance 1 Case 1-circumstance 2 Case 1-circumstance 3

Occurrence PCD PCD Non-PCD

Strategy Parsimonious/Adaptive PRUNES/ DFANS PRUNES/ DFANS

Credential • WSA has a sensitive

C1.

• WSB has a sensitive

C2.

• WSA has a sensitive

C1.

• WSB has a sensitive

C2.

• WSA has a sensitive

C1 and a non-sensitive

C3.

• WSB has a sensitive

 257

C2.

Policy • WSA declares a P1

requesting attribute

information in a C2

for protecting a C1.

• WSB declares a P2

requesting attribute

information in a C1

for protecting

resource R and a C2.

• WSA declares a P1

requesting attribute

information in a C2 or

a C4 protecting a C1.

• WSB declares a P2

requesting attribute

information in a C1 or

a C3 for protecting

resource R and a C2.

• WSA declares a P1

requesting attribute

information in a C2 or

a C4 protecting a C1.

• WSB declares a P2

requesting attribute

information in a C1 or

a C3 for protecting

resource R.

Case Case 2-circumstance 1 Case 2-circumstance 2

Strategy Parsimonious/DFANS/Adaptive/SRNS PRUNES

Occurrence RCRA

PMNOTOBR 1

Credential WSA has a C1

Policy WSB declares multiple policies requesting attribute information in a C1.

Table B.1. An overview of circumstances in the two-case study design

In terms of the context of the first vulnerability issue – PCD, both entities are honest

Web Services. Therefore, application of the proposed solution to either one entity is

the same, as both of them want to detect the occurrence of PCD. According to the

process of case scenario 1 presented in section 6.2, WSB should have detected the

occurrence of PCD earlier than WSA. Therefore, the solution is mainly used in WSB

to assess its effectiveness for the three circumstances in case 1.

Case 1-Circumstance 1

Units of Analysis:

• Strategy: both WSA and WSB use the parsimonious strategy

• Credentials: WSA has a sensitive C1. WSB has a sensitive C2.

• Policies: WSA declares a P1 requesting a C2 for protecting a C1. WSB declares a P2

requesting a C1 for protecting resource R and a C2.

The possessed information presented in symbols is shown in figure B.2 below.

WSA (Alice)
Credentials: C1
Policies: P1:C1←C2

WSB (Bob):
Resource: R
Credentials: C2
Policies: P2: (R, C2)←C1

 258

Figure B.2. Possessed information in case 1-circumstance 1

At step two: WSB discovers that Bob has declared the P1 for protecting the disclosure

of R, so it decides to send out the P1. Following the algorithm presented in section

6.4.3, lines 3-6 activate. As the “Local Policy” table is an empty table, lines 11 and 12

activate, so WSB adds data relevant to the P1 to the “Local Policy” table (shown in

table B.2).
Table: Local Policy

LPID

P1

Table B.2. WSB adds P1 to the “Local Policy” table in case 1-circumstance 1

As PCD has not been detected, lines 15 and 16 activate, so WSB sends the P1 in a PS1

to WSA.

At step four: WSB decides to send out a P1. Following the algorithm presented in

section 6.4.3, lines 3-7 activate. As WSB finds out that the P1 has been stored in the

“Local Policy” table, line 8 activates to change the value of the variable PCD.detected

to true, and line 10 activates, which in turn activates lines 18 and 19. At this point,

WSB detects the occurrence of PCD.

From this circumstance, it can be identified that the proposed solution can

successfully help WSB detect the occurrence of PCD at the correct time, if either the

parsimonious/adaptive strategy is used.

Case 1-Circumstance 2

Units of Analysis:

• Strategy: both WSA and WSB use the PRUNES or DFANS

• Credentials: WSA has a sensitive C1. WSB has a sensitive C2.

• Policies: WSA declares a P1 requesting attribute information in a C2 or a C4

protecting a C1 and a C3. WSB declares a P2 requesting attribute information in a C1

or a C3 for protecting resource R and a C2.

The possessed information presented in symbols is shown in figure B.3 below.

 259

Figure B.3. Possessed information in case 1-circumstance 2

Step two: WSB discovers that Bob has declared a P1 for protecting the disclosure of

R, so it decides to send out the first rule requesting a C1 to WSA. Following the

algorithm presented in section 6.4.3, lines 3-6 activate. As the “Local Policy” table is

an empty table, lines 11 and 12 activate, so WSB adds data relevant to the P1 to the

“Local Policy” table (see table B.2 above).

Step three: WSA finds out that Alice has a sensitive C1 protected by a P1 requesting a

C2 or a C4. With the use of the PRUNES, it sends out the first rule of the P1 requesting

a C2 to WSB.

Step four: WSB discovers that Bob has a C2 that is protected by the P1, so it decides to

send out the second rule of the P1 requesting for a C3 following the PRUNES.

According to the algorithm presented in section 6.4.3, lines 3-6 activate. As WSB

finds out that the P1 has been stored in the “Local Policy” table, line 8 activates to

change the value of the variable PCD.detected to true, and line 10 activates, which in

turn activates lines 18 and 19. At this point, WSB decides that PCD will occur.

From this circumstance, it can be identified that the proposed solution cannot help

WSB detect the occurrence of PCD at the correct time.

Case 1-Circumstance 3

Units of Analysis:

• Strategy: both WSA and WSB use the PRUNES or DFANS

• Credentials: WSA has a sensitive C1 and a non-sensitive C3. WSB has a sensitive

C2.

• Policies: WSA declares a P1 requesting attribute information in a C2 or a C4

protecting a C1 and a C3. WSB declares a P2 requesting attribute information in a C1

or a C3 for protecting resource R and a C2.

WSA (Alice)
Credentials: C1
Policies: P1:C1←C2∨C4

WSB (Bob):
Resource: R
Credentials: C2
Policies: P2: (R, C2)←C1∨C3

 260

The possessed information presented in symbols is shown in figure B.4 below.

Figure B.4. Possessed information in case 1-circumstance 3

All the steps in this circumstance are the same as those shown in case 1-circumstance

2. The reason to use this case circumstance is to demonstrate the weakness of the

proposed solution. By observing the conditions held in this circumstance, potential

successful TN is possible, if WSB had sent the second rule of the P2 requesting

attribute information in a C3 at step 4, WSA could have sent a C3 to WSA at step 5.

Unfortunately, due to the design of the proposed solution, circumstances without PCD

will be wrongly determined to circumstances with PCD, when the PRUNES or

DFANS is used, as long as a policy has to be separated by rules to be sent out.

The evaluation processes of the three circumstances of case 1 have been presented in

detail. The following presents the evaluation process of two circumstances in case 2.

In terms of the context of the second vulnerability issue – RCRA, the honest Web

Service is the victim suffering the attacks from the malicious Web Service by utilising

this vulnerability of TN. So, application of the proposed solution is mainly used to

help the honest Web Service detect the occurrence of RCRA so as to defend against

it. According to the process of case scenario 2 presented in section 6.2, WSA is the

honest Web Service. Therefore, the solution is mainly used in WSA to assess its

effectiveness for the two circumstances in case 2.

Case 2-Circumstance 1

Units of Analysis:

Strategy: WSA and WSB use any one of the parsimonious strategy, adaptive strategy,

PRUNES and SRNS

The possessed information presented in symbols is shown in figure B.5 below.

WSA (Alice)
Credentials: C1, C3
Policies: P1:C1←C2∨C4

WSB (Bob):
Resource: R
Credentials: C2
Policies: P2: (R, C2)←C1∨C3

 261

Figure B.5. Possessed information in case 2-circumstance 1

Steps 1 and 2 are the same as those shown in case scenario 2 as presented in section

6.2, so they are omitted here.

Step 3: After WSA analyses a P1, it decides to submit Alice’s C1. Following the

algorithm presented in section 6.4.3, lines 21 to 25 activate. As the “Local Credential”

table is an empty table, lines 33 to 35 activate, so that WSA adds new data into this

table (shown in table B.3).
Table: Local Credential

LCID NOTOBR PMNOTOBR

C1 1 1

Table B.3. WSA adds C1 to the “Local Credential” table in case 2-circumstance 1

As RCRA has not been detected, lines 37 and 38 activate, so WSA sends a C1 in a

CS1 to WSB.

Step 5: Upon analysing a P2, WSA decides to submit Alice’s C1. Following the

algorithm, lines 21 to 25 activate. At this time, WSA can find out data relevant to the

C1 in the “Local Credential” table. As the value of NOTOBR is “1”, which is not less

than “1” as the value of PMNOTOBR, so lines 30 and 31 activate setting the value of

the variable RCRA.detected to true. This statement causes line 37 and lines 39 to 41

to activate, so that WSA detects the occurrence of RCRA. In order to defend against

this attack, WSA decides to send out a last message to WSB and stops TN

communication with it.

From this circumstance, it can be identified that the proposed solution can

successfully help WSB detect the occurrence of RCRA and defend against this attack

at the correct time, when any of the parsimonious strategy, adaptive strategy,

PRUNES and SRNS is used.

WSA (Alice)
Credentials: C1

WSB (Bob):
Resource: R
Policies: Pi: R←C1 (i belongs to
natural numbers)

 262

Case 2-Circumstance 2

Units of Analysis:

Strategy: WSA and WSB use the PRUNES

The possessed information presented in symbols is the same shown in figure B.5

above.

Steps 1 and 2 are the same as those shown in case scenario 2 as presented in section

6.2, and step 3 is the same as the one shown in case 2-cirucmstance 1, so they are

omitted here.

Step 5: Upon analysing the P2, WSA knows Alice’s C1 can fulfil the P2. According to

the PRUNES, it sends a grant message to WSB informing that it has a C1 that can

fulfil the P2. However, the real action of sending the C1 has not been triggered.

Step 6: WSB sends another P3 requesting other attribute information in the C1.

Step i (i>=7, and i is an odd number) is the same as step 5.

With the use of the PRUNES, the credential-exchange phase (see section 3.3.1.2) will

only occur, when the WSB as a service provider discloses the grant information that

the resource R has been unlocked. However, as WSB is a malicious Web Service, it

does not provide such information to WSA. As WSA only keeps sending grant

information to WSB without deciding to perform real actions of sending out

credentials, the proposed solution cannot be triggered to help WSA defend against

RCRA. As a result, the proposed solution is not effective, when the PRUNES is used

for TN.

