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Preface 

This thesis is divided into two parts. The common denominator connecting these two 
parts is that they both involve computational modelling approximating real systems. 
However, these two chapters investigate two very different types of systems: the first is 
a liquid crystal cell and the second is a simple monatomic liquid droplet. Parts of this 
thesis have been published in Liquid Crystals, Vol. 30, No.9, September 2003, 1115-
1122, N. T. Kirkman, T. Stirner and W. E. Hagston, "Continuum modelling of hybrid­
aligned nematic liquid crystal cells: optical response and f/exoelectricity-induced voltage 
shift" and presented at the XI Workshop on Computational Materials Science, 
Cagliarilltaly, September 17-23, 2001, N. T. Kirkman, "A new method for investigating 
the surface tension from molecular dynamics simulations applied to liquid droplets" 
which has since lead to its publication: N. T. Kirkman, T. Stirner and W. E. Hagston, A 
new method for investigating the surface tension from molecular dynamics simulations 
applied to liquid droplets, Compo Mater. Sci., Vol. 30,126 (2004) 



Abstract 
1. Continuum Modelling of Hybrid Aligned Nematic Liquid Crystal Cells 

Hybrid Aligned Nematic (HAN) cells provide an interesting tool to investigate liquid 
crystalline properties, such as flexoelectricity. They are Liquid Crystal Devices (LCDs) 
that employ two different alignment layers to produce distortions in the director profile 
across the cell. As a result of their geometry, they exhibit some unusual properties. 
These can be examined experimentally by investigating the transmittance of light 
through these cells as a function of voltage. 

There are two main foci of this work, the first is to perform a theoretical study of how the 
different physical and optical parameters affect the behaviour of the cells. In the 
process, we also hope to gain an understanding of why these parameters exert such 
influences. The second motivation for this study is to see if this model can reproduce 
the experimental transmittance curves and if these curve fits can be gained using 
meaningful input parameters. From this we would be able to obtain values for the 
flexoelectric coefficient e ( = e11 + e33). Previous to this study there have been 
numerous attempts to find the flexoelectric coefficient. However, we doubt the validity of 
many of these findings: a preliminary investigation revealed that this was a rich area of 
study and without further investigation previous results might not only be superficial but 
also erroneous. 

These input parameters are employed in a continuum model of the system, using the 
finite difference method (performed using C on a UNIX workstation). Having initially 
employed a self consistent method (adhering to Takahashi et al. [Jpn. J. Appl. Phys. 37, 
1865 (1998)] ) to find solutions to the partial differential equations used to describe this 
system we found that it resulted in non-physical solutions. To overcome this problem we 
propose, and then use, a new method in which the variables remain coupled 
throughout. In the course of our investigations the new method was examined 
extensively and, as a result, we have confidence in the physicality / validity of the 
solution curves resulting from our simulations. 

Having divided the results section of this chapter into two, firstly, we shall look at the 
major findings of the theory section. In this section there are three major findings. The 
first is unsurprising, finding that increasing birefringence or cell thickness increases the 
phase difference accumulated across the cell. The second pertains to the elastic 
constants, finding that the one-constant approximation is ill-advised, unless the choice 
of K is closer to the bend elastic coefficient, 1<33, and only then if one is restricting the 
examination to the magnitude of the flexoelectric voltage shift. The third and final finding 
relates to the interaction between the parameters dielectric anisotropy, /le, flexoelectric 

. coefficient, e, and homeotropic anchoring energy, AdJ. While, when the homeotropic 
anchoring energy is large the flexoelectric voltage shift is proportional to the size of the 
flexoelectric coefficient (where the constant of proportionality is largely governed by the 
sign and magnitude of /le), when the homeotropic anchoring energy is reduced other 
(non-linear) trends are observed. Reducing the homeotropic anchoring energy 

. 
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(for e ¢ 0 C m-1) introduces asymmetries into the transmittance curves; the nature of 
these asymmetries is dictated by the sign of Ae. As a result of the asymmetries, the 
flexoelectric voltage shifts can cease to be a guide to both the magnitude and (more 
alarmingly) the sign of the flexoelectric coefficient, in particular when Ae is negative. 

The major findings from curve fitting experimental results are that we are generally able 
to reproduce the experimental curves using this model and that these curve fits provide 
reasonable values for the input parameters. The fitting parameters for the E7 systems 
[K. Bartle, PhD Thesis, Hull University, Hull, 2003] are shown below. 

Curve fitting parameters used for the E7 systems, where the 
JHW materials are dopant materials dissolved (10% by weight) in E7. 

D As Aft) e 
J.Ul1 x10-6 Jm,2 X10-11 em-1 

E7 27.5 ± 0.5 13.8 9.0 o.o± 0.5 
3.0 < A6O< 9.0 

JHW29 16.9 ± 0.5 15.8 ±O.S 5.0 -1.0 ± 1.0 
3.0 < A6O< 10.0 

JHW33 18.0 ± 0.5 13.8 ± 0.5 5.0 -0.5 ±1.0 
3.0 < A6O< 10.0 

JHW131 17.4 ± 0.5 8.8 ± 0.5 5.0 -0.5 ± 0.5 
3.0 < A 60< 10.0 

JHW172 26.6 ± 0.5 7.8±0.5 5.0 O.O± 0.5 
3.0 < A6O< 10.0 

We find that, for all these systems, the flexoelectric coefficients and the homeotropic 
anchoring energies are small. While we are unable to obtain a meaningful curve fit for 
Takahashi's MBBA data we believe the same is true of this system, i.e. e and AtJJ are 
small. 

Our studies examine systems with positive and negative dielectric anisotropies. Along 
with varying other input parameters, this provides a comprehensive, near to exhaustive, 
study of the behaviour of these systems. Many of the properties of these systems can 
be (and are ) explained using this model. 

2. Calculating the Surface Tension of Sub-Microscopic Liquid Droplets for 
Lennard-Jones Fluids. . 

Surface tension is an interesting macroscopic phenomenon with microscopic origins. Its 
technological applications are wide ranging, from aerosols, through waterproofing, to 
producing good electrical contacts. 

Being able to model and interpret the surface regions of liquids can have many 
!heoretical, practical and potential technical applications. Surface tension is such an 
ImPOrtant phenomenon technologically that being able to predict its value for new 
systems can avoid the expenses of producing unfruitful systems. Having the capability 
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to predict how the size of droplets can affect a material's properties (e.g. surface 
tension, rates of evaporation, density), can provide an important tool for designing such 
systems as aerosols. Also, being able to define the surface region opens a direct route 
via which contact angles, important in describing wetting phenomena, can be 
calculated. . 

Having found numerous limitations to previous methods we propose a new model here. 
Our method treats a liquid as a potential well, finding a meaningful definition of the 
sUrface region; then the energy required to remove a particle from the surface to infinity 
(as a function of surface area) is calculated. This provides a measur~ of surface 
tension. 

This is the general version of our theory; from this it can be seen that this theory is 
easily adaptable to a wide range of different systems. For several reasons we choose to 
apply this theory to small, spherical Lennard-Jones 12-6 droplets. The reasons for 
choosing small (of radii circa 4 nm) droplets are twofold. Firstly, it is interesting from the 
aspect of examining how surface tension varies for aerosol sized droplets and, 
secondly, smaller systems are less time consuming than larger systems 
computationally. The choice to examine spherical systems was their prevalence and 
their technological importance: free of external forces or constraints, liquids tend to 
coalesce to form spheres; consequently, this geometry is relevant to a wide range of 
systems, including aerosols. And finally, the reasons for choosing to use a 
Lennard-Jones pair potential are that firstly it is simple, therefore computationally 
undemanding, and secondly that, in addition to providing an accurate approximation to 
the Van der Waals interactions of noble gases, it is necessary to compare the results 
from our method with those of other researchers, of which there are numerous available 
in the literature for this pair potential, in order to test the validity of our new method. 

Molecular Dynamics is employed to create and equilibrate the spherical droplets. The 
Positional data is then used to calculate the forces and energies on the particles. 

While this method needs honing, principally by averaging over a greater number of data 
sets and over longer periods of time, in order to reduce statistical fluctuations, this 
method produces results that are consistent with the predictions of thermodynamical 
and statistical dynamical models. For example, the model predicts there was a 
reduction in surface tension for both decreasing radius of a droplet and increasing 
temperature. We are also able to infer a phase transition between 30 and 40 K, in 
agreement with the molecular dynamic simulations of Rusanov and Brodskaya [J. 
Colloids Interf. Sci. 62, 543 (1977)]. . 
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Chapter 1 

Continuum Modelling of 

Hybrid Aligned Nematic 

Liquid Crystal Cells 

1.1 Introduction 

This chapter will investigate hybrid aligned nematic liquid crystal cells 

(HAN cells) using a continuum method. HAN cells are interesting liquid 

crystal devices as, among their traits, they utilise a linear electro-optic 

effect [1, 2]. There are two main objectives of modelling this system 

(performed using a UNIX workstation). The first of these is to investigate 

whether the effects (theoretically) of varying input parameters alters the 

optical behaviour of such cells, in order to gain understanding of the effects 

of each parameter. The second purpose is to see if it possible to produce 

simulations that emulate experimental data obtained from existing HAN 

cells. The results section is divided into two subsections to reflect these two 

objectives. 

1 



Previous work in this area has focused on the effects of changing the 

flexoelectric coefficient, e (= ell + e33) and was employed to isolate the 

flexoelectric effect from elastic and dielectric effects. We challenge this 

viewpoint and suggest an alternative procedure to evaluate the flexoelectric 

effect. We also discuss how the findings of continuum modelling can be 

employed to design new liquid crystal devices with specific properties. 

Continuum modelling is a well-established mathematical modelling method 

used to describe such systems. In this work a new method of finding 

numerical solutions to partial differential equations (PDEs) for HAN cells 

is proposed. 

Before revealing this new method, it is important to have a general 

grounding in this subject area. Describing what liquid crystals are, 

expounding on some of their applications (e.g. devices), and discussing 

their physical properties (such as birefringence and flexoelectricity), will 

therefore be presented prior to describing the mathematical and 

computational tools necessary to find numerical solutions to the PDEs that 

will be used to model this system. 
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1.2 What are Liquid Crystals? 

The term 'liquid crystal' (LC) is used to describe several states of matter, 

and the materials that exhibit one or more of them. They are similar to 

other liquids in that the molecules are relatively free to move, and so the 

materials possess the ability to flow. However, they are also unlike liquids 

because they exhibit anisotropy in their optical and electro-magnetic 

characteristics, much like a conventional crystal [3]. LCs are usually 

organic steric rod- or disk-shaped molecules [4]; the anisotropy / ordering 

of the molecules 1 within liquid crystal phases is thought to be due to the 

packing constraints of the molecules as well as induced dipole interactions 

(Onsager and Maier-Saupe theory)[3]. 

There are two main types of liquid crystals, lyotropic and thermotropic 

LCs. If transitions between the phases are governed by temperature the 

material is thermotropic. If, in mixtures of two or more different 

components, the phase transitions are governed by the concentration of an 

isotropic mixture component then the liquid crystals are called lyotropic 

[4]. 

Lyotropic liquid crystals are 'mixtures' of two or more semi-immiscible 

materials. The materials separate to form structures (with both short range 

and long range order) that allow them to coexist within a volume. They are 

prevalent in biological organisms as they can be utilized to form selectively 

permeable membranes, such as those found in cell walls. Examples of how 

the structures are formed in two and three-component lyotropic mixtures 

(for example in an ordered cubic phase) are shown below, in figure (1.1) (a 

and b respectively). 

I 
For example the average direction of the long axes of rod-shaped molecules may align 

parallel with one another. 

3 



WHAT ARE LIQUID CRYSTALS? CHAPTER I 

.. A ., .. -- .. A ., .. --II 
A t- ~\~I ~ A t- ~1~ 1 ~ .. 

-,. £,<'" < ., 
.. r.N ~ t<\*,.. "'" ., .. I'IIII ~ ......... 
~ ::.>~ N\.e o~'- .. :. y I~\"te :- .. :. ' ::.\,.. :-

Y I I \. "A .. A A .. 
A ~ ., V A A~., .. .... ~ .. .. .... ~ .. V 

a. A two component Lyotropic mixture; b. A three component Lyotropic mixture; 
concentration such that micelle formation is concentration such that micelle formation is 
favoured, e.g. soap and water. favoured, e.g. soap, oil and water. 

KEY: t Soap Molecule I· 

c:::::: 

A Water Molecule 

Oil Molecule 

Figure 1.1: Different concentrations result in different structures to be favoured. Examples of 
these can be found in The lyotropic state of matter: molecular physics and living matter 
physics. [5]. 

The structures shown in figure (1.1) are called micelles; different 

concentrations of the constituent parts would result in different structure 

formations (e.g. lamina). 

Thermotropic LCs however exhibit 'truer' liquid crystal mesophases, 

where the phase transitions are temperature dependent, occurring at 

temperatures intrinsic to a given material. Thermotropic LC phases may 

occur in pure substances or in mixtures of miscible ones. It is thermotropic 

liquid crystals that are employed in liquid crystal devices (LCDs), e.g. 

HAN cells. 

4 



WHAT ARE LIQUID CRYSTALS? CHAPTER I 

There are several different liquid crystal mesophases exhibited by 

thermotropics; the main two are nematics and smectics2
• These basic 

phases (in relation to crystalline and liquid phases) are shown below in 

figure (1.2). 

rature 

Crystal: Smectlc: Nematic: Liquid: 

• 3D Lattice • 1 or 20 Lattice • No Lattice • No Lattice 
• Orientation • Orientation • Orientation • No Orientation 

• Solid • Fluid • Fluid • Fluid 

.. Anisotropic .. Anisotropic .. Anisotropic .. Isotropic 

Figure 1.2: Shows the basic phase transitions that may occur between crystal and liquid. N.B. Not 
all materials exhibit liquid crystalline phases and not all LCs exhibit all the liquid crystalline 
mesophases either. 

Nematic liquid crystals acquired their name from the Greek VEJ..LOcr 

meanmg thread, due to the thread-like textures3 observed under a 

polarizing microscope [4]. An example of a typical nematic texture can be 

seen in figure (1.3) below: 

Figure 1.3: Example of nematic Schlieren texture: 
often observed when viewing nematics through cross 
polarisers. The thread-like structures are not actually 
present in the material, but are artefacts due to defects 
and viewing the sample through cross polarisers. 
Despite the absence of real threads, these thread-like 
artefacts gave rise to the name 'nematics', from the 
Greek meaning "thread". [6 - 8] 

2 These are further divided into numerous subcategories, e.g. smectic A and smectic C 

~8]. 
Due to defects in the liquid crystalline structure, see Schlieren defects [8, 9]. 
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WHAT ARE LIQUID CRYSTALS? CHAPTER. 

In nematics there is no ordering of the molecular centres of mass but there 

is a general ordering of their orientation. The molecules of nematic LCs 

tend to have a long axis (for example they may be rod-shaped molecules) 

and these long axes tend to line up in a particular direction. The unit vector 

in this direction is known as the director. In practice, the orientation of 

individual molecules differs significantly from this director4
, and so it is 

more accurately defined as the symmetry axis of the orientational 

distribution. In nematics the distribution function is rotationally symmetric 

around the director, i.e. they are uniaxial [4]. 

The smectic phases (from Greek 0'J.l6YJ.lU = soap) are characterized by 

additional degrees of positional order: the molecules arrange in layers that 

can be considered as one-dimensional density waves5
• The thickness of 

these layers tends to depend on factors such as molecular length, 

temperature of the medium, etc. [10]. Because liquid crystal displays made 

with Chiral Smectic C materials exhibit better viewing angle 

characteristics, contrast ratios and can operate at high speed, they have 

potential advantages over nematics [3]. 

4 This has led to the need to have a quantitative description of how ordered a nematic 
liquid crystal is; the equation that has allowed us to do this is called the 'Order 
Parameter' , S. One of the forms it takes is this: 

S = t ((3 cos2 B-1)) 

Where e is the angle a molecule's long axis makes with the director, and () denotes the 
aVerage found for all the molecules. If all the molecules are aligned S = I, if the medium 
~s isotropic S = O. 

"This positional ordering may be described in terms of the density of the centres of 
mass of the molecules using the following equation: 

p{z) = Po (I + I!J COS{27lZ/ d)) 
Where z is the coordinate parallel to the layer normal, the average density of the fluid is 
Po, d is the distance between layers and If'is the order parameter. When 1'1/1=0 there is no 
layering and the material is nematic but if 1'1/1>0 then some amount of sinusoidal 
layering exists and the material is smectic." [3] 

6 



WHAT ARE LIQUID CRYSTALS? CHAPTER I 

The hybrid aligned nematic liquid crystal cell, as the name implies, utilizes 

thermotropic liquid crystals in their nematic mesophase temperature range. 

For this reason this thesis will limit its examination to thermotropic liquid 

crystals. Before liquid crystal devices are examined in detail (in particular 

HAN cells), an appreciation of some of their physical and optical properties 

is desirable. These properties are dealt with in sections 1.3 and 1.4. 

7 



IJQUID CRYSTALS PROPERTIES CHAPTER I 

1.3 Liquid Crystal Properties 

In this section, we detail some of the interesting properties of liquid 

crystalline materials that make them appropriate for electro-optic devices. 

We introduce: steric effects, including chirality, elastic properties, 

dielectric properties, flexoelectricity and finally, birefringence. Then, in 

section 1.5 (after a brief examination of wave plates in section 1.4), we 

provide examples of liquid crystal devices showing how they utilise these 

properties in various ways to produce effective electro-optic devices. 

1.3.1 Steric Effects 

Molecules have physical shape; in the case of liquid crystal molecules, this 

physical shape tends to be roughly rod or disc-like. It is believed that these 

shapes result in packing constraints [11] which gives rise to the various 

liquid crystalline phases being possible; these are known as 'steric effects'. 

However, it should be noted that not all rod and disc-shaped molecules 

exhibit liquid crystalline phases, so steric effects are not the only 

contributing factor determining the presence of such LC mesophases. 

Steric effects can also contribute to such phenomena as chirality and 

flexoelectricity (see below). 

Chirality 

Chirality is a handedness quality possessed by some molecules. If there is 

an atom that is able to bond with four6 other atoms/groups of atoms, 

chirality may occur. However, chirality only occurs when these four 

atoms/groups of atoms are different from one another. Such an atom is 

6 Mathematically any number greater than three would result in permutations allowing 
'handed' molecules; the number four is specified here because group IV elements, such 
as carbon, are of interest here and not transition metal complexes. 

8 



STERle CHAPTER I 

called a chiral centre (we identify this by a star, *) and an example of left 

and right-handed permutations about a chiral centre is shown below in 

figure (1.4). 

..\\\' H 

* " OR 
H3C 

(S)-2-octanol 

H'I'I .. 
.", * 

HO 
CH3 

(R)-2-octanol 

Figure 1.4: Chiral centres are identified by a star *, as are chiral molecules [9] 

Chiral molecules are conventionally identifiable by a star beside their 

name. 

While chirality results in interesting optical properties even in isotropic 

fluids, it is of particular interest in liquid crystals as it results not only in an 

optical handedness but also (obviously) in a physical handedness. This has 

steric implications: it becomes energetically more favourable for these 

molecules to line up at some angle to their neighbouring molecules, instead 

of parallel to them. As this angle is in one direction, rather than both 

directions, helical 'structures' are formed. 

In the case of nematic liquid crystals this helical structure occurs at right 

angles to the molecules' long axis, see fig (1.5) below 

9 



STERle CHAPTER I 

• • • • 
' .. ~ , 

pitch length 

Figure 1.5: Shows a simplified representation of the helical structure formed by chiral nematic 
(N*) liquid crystals. 

where the pitch length is the length corresponding to the length of the 

repeat unit of the helix. Chiral nematics are also called cholesterics. 

In chiral smectic phases, e.g. chiral smectic C, (Sm C*), the helical 

structure is oriented along the axis normal to the smectic layers, as shown 

in figure (1.6), 

I ... ~ I 

pitch length 

Figure 1.6: Shows a schematic representation of a single pitch length of a chiral smectic helix. 

where the blue cones represent the angles of easy axis of the molecules 

with respect to the smectic planes, depicted by the grey parallelograms. The 

red arrows show the statistical average director orientation for a given 

smectic plane. 
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STERle CHAPTER I 

The helices above do not only demonstrate different chiral liquid crystal 

types they also demonstrate the two types of handedness: the nematic helix 

is right handed and the smectic helix is left handed in these two figures. 

These different types can be distinguished by thinking in terms of left and 

right-handed corkscrews (see figure (1.7)) 

Figure 1.7: Shows right and left-handed corkscrews respectively. 

In both chiral smectic and chiral nematic liquid crystals, the pitch length 

shows a temperature dependency [12]. 

It should be noted that if a material that does not exhibit chirality is 

required, then either a material with no chiral centres must be used or a 

50:50 mixture of right-handed and left-handed species of a given molecule 

(known as racemic) must be used. 

Chiral nematics are called cholesterics, so when we are referring to 

nematics, the reader may assume that we are referring to either achiral or 

racemic nematic liquid crystals. The importance of this distinction becomes 

apparent in the section about elastic properties of nematic LCs. 
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ELASTICITY CHAPTER I 

1.3.2 Elasticity 

In nematic liquid crystals the director orientations nand -n are 

indistinguishable. If a molecule shape can be approximated by a cylinder, 

for example due to complete rotational freedom around its long molecular 

axis, the phase is uniaxial. Thus, left is indistinguishable from right. As a 

consequence of this symmetry the energy required to induce a distortion is 

equal to the energy required to produce its mirror distortion. The 

equilibrium configuration favours no long-range disorder of the director 

profile. 

The different elastic distortions that can be produced are shown below. In 

figure (1.8) we see for example how steric properties, e.g. the pear-drop 

shape, of the molecules may lend themselves to splay distortions. 

Figure 1.8: Splay deformation 

Below, in figure (1.9), it can be seen that the molecules' steric properties, 

e.g. their banana shape, lend themselves to bend distortions. 

Figure 1.9: Bend deformation 

And finally, this dumb-bell shaped molecule (see figure (1.10)) 

demonstrates how it is possible to have molecules that can be packed in 

both left and right-handed helices. Under normal circumstances helices 

would not form in a nematic material. However, by using alignment layers 

12 
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and rotating them with respect to each other (with a nematic phase between 

them), it is possible to induce twists up to 90°. In contrast with cholesterics, 

the pitch length of these helices is not material or temperature dependent 

but is instead dictated by the choice of alignment layers. 

Figure 1.10: Twist deformation 

It is also possible to obtain bend-splay deformations but, as this is not a 

bulk distortion, it is of no consequence here. 

For all three cases shown above, it is known that an equilibrate system 

exhibits no net distortions; from this it is possible to deduce that the elastic 

constant associated with these distortions is positive [8]. Furthermore, from 

the knowledge that inducing distortions is equally easy in both directions 

(e.g. bending up is equally easy as bending down), it can be stated that the 

elastic terms are even functions. In continuum modelling, the elastic energy 

terms can be expressed by the following formula [13] 

FFrank = t K11 (V . ii) 2 + t K22 (ii . V x ii)2 + ; K 33 (ii x V x ii)2 
(A.lf 

where the three terms represent the splay, twist and bend deformation of 

the director field ii respectively (and where we have ignored the saddle 

splay elastic deformation for the reason given above). This is known as the 

Frank expression for the elastic energy density of a deformed nematic LC 

(see Appendix A). 

7 If the one constant approximation is used, i.e. (K\\ = K22 = K33 = K) , then equation 
(A.l) becomes Fd = +K[cV.ii) 2 +(VXii)2]. 
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1.3.3 Dielectric Properties 

Dielectric anisotropy is a measure of the ease with which a molecule can be 

-reoriented by an electric field E . Its origins are the molecular polarity, i.e. 

the permanent dipole moment, and polarisability of a molecule. 

Due to their geometry, nematic liquid crystals are uniaxial mediums, i.e . 

. their dielectric anisotropy can be described in terms of two components: 

one parallel to the molecular long axis and the other perpendicular to it, 6 11 

and 6.1 respectively. The dielectric anisotropy is the difference between 

these components and is given as: 

which, in tum, leads to the dielectric component of the energy term via the 

electric displacement jj 

- , - " -D = 6 1. . E + (6 II - & 1.) . (ii · E) · ii 

This gives the dielectric free energy density in the form [1, 8] 

1 - -Fdie1 = -2"D · E 

= - ~ [s: . E2 + (Sl~ - s:) · (ii. £)2] 
= - ~ [s~ .E2 + ~s'· E2 . cos2 (ii· £)] 
= - ~ 80 (8.1 + ~8' sin2 

(}). E2 

where fdiel (0) = eo (e.1 +!l.e· sin 2 0), E = 8¢ 0 is the polar angle and t/J is 
OZ 

the electrical potential. 
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1.3.4 Flexoelectricity 

In a single crystal domain of an achiral liquid crystal the molecules will 

naturally tend to orient parallel to a common director as this is energetically 

and statistically the most favourable configuration. However, if some 

external force is applied to such a domain, e.g. as could be provided by two 

different alignment layers or if there are some asymmetries in the molecule, 

it may become energetically more favourable for the director to orient one 

way rather than another (see figures from (1.8) to (1.10)). If these 

molecules also possess dipoles, this reorientation will result in a net 

polarization of the domain (see figure (1.11 ) below). This polarization of 

the liquid crystal is called the flexoelectric polarization. 

As the ongm of the flexoelectric distortions is external stress it was 

originally called 'piezoelectric effect in liquids' [15]. However this was 

misleading as pressure cannot result in these distortions in the director 

profile [14] 

I ~ .... -
a. Bend deformation b. Splay c. Twist 

Figure 1.11: Shows how elastic deformations can result in net polarizations of a flexoelectric 
material. 

In the case of twist deformation (due to some external twisting stress being 

placed on the system) a helical deformation could be induced (left-handed 

and right-handed helices can be induced with equal ease). This would result 

in a periodicity in the polarisation of the medium, i.e. no net flexoelectric 

polarization. 
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For similar arguments to those presented for elastic deformations (as there 

is no net flexoelectric polarisation when the system is in its equilibrium 

state), we can again assume that a flexoelectric function will "be zero when 

the medium is not distorted. Similarly, it will be as easy to induce one 

distortion as it will be to produce one of equal magnitude but in the 

opposite direction (i.e. with the dipoles pointing down instead of up); 

consequently, this distortion will result in the opposite" sign of the 

flexoelectric polarisation of the medium. For this reason we know that the 

function that will represent the flexoe1ectric properties of a nematic must 

necessarily be an odd function, rather than the even one used to represent 

elasticity. In continuum modelling the following expression is used to 

describe the flexoelectric contribution to the energy term (see Appendix 

B.3) [16], 
........ 

Fflex =-P~E 

where the flexoelectric polarisation P = ell (V . ii). ii + e33 (V xii) xii. In this 

form, the equation results in the sign convention preferred by Rudquist et 

(

COS BJ (OJ al. [17]. For this particular system, the substitutions ii = ,0 and E = ° 
smB E 

can be made. In so doing, the following simplifications can be achieved: 

. 06 - ( 2 06" 06 ,,)-Fflex = ell cosO-ii· E + e33 - sin O-i + sinOcosO-k E 
oz oz oz 

BO - BO -= ell cosO-E sinO+ e 33 sinOcosO-E 
Bz Bz 

( ) 
. BO -= ell + e 33 slnOcosO-E 

oz 

=/ (O)BOBfjJ 
flex Bz Bz 
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where fjlex (6) = (ell + e33 )sin 6 cos 6 and the following has been used 

E=8¢ 
8z 

where E is the electrical potential and 8¢ /8z is the rate of change in the 

electric field potential, t/J, with changes in distance, z. 

Summary 

Collecting the contribution from all the terms together (Le. elasticity, 

dielectric and flexoelectric effects) provides an expression for the total free 

energy density, as a function of z, in the form: 

thus, providing a description of a HAN cell in the form of a partial 

differential equation (PDE). 

Having examined the physical properties of liquid crystals and applying 

this specifically to a HAN cell configuration, it is now appropriate to 

examine the optical properties of liquid crystals prior to discussing how 

solutions are found for this PDE. This is addressed in the next section, 

where birefringence is examined. 
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1.3.5 Birefringence 

The name birefringence means 'two refractive indices'. Also, biaxial 

materials are birefingent, but have three principle refractive indices. 

Therefore, in birefringent materials, different polarisations of the electric 

field component of the light experience different refractive indices. This is 

shown in figure (1.12) below where un-polarised light is incident upon two 

different materials, the first is isotropic (no birefringence) and the second is 

a birefringent material (such as calcite or a liquid crystal). 

Isotropic Medium 

Incident light 

Figure 1.12: Shows the difference between passing un-polarised light through isotropic and 
birefringent materials. 

As can be seen in the above diagram, the birefringent material splits the 

incident light into two beams, resulting in a double image emerging from 

the medium [18]. 

The reason why birefringence is present in liquid crystals is the presence of 

certain electronic structures (e.g. benzene rings) which make it easier to 

polarise the molecules in certain directions [19]. When this is coupled with 

the statistical alignment of the molecules, the different components of the 
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incident electromagnetic radiation will propagate with differing ease 

through the medium, according to their polarisations. However, above the 

clearing temperature, Tc, the statistical alignment of the molecules is lost 

(Le. the order parameter, S = 0) and the material becomes isotropic, both in 

its physical and optical properties, thus the material loses its birefringence 

[20]. 
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1.4 Wave Plates 

In the previous section birefringence was discussed. Here, however, we 

shall discuss one of the applications of birefringent materials: they can be 

used to make a device called a 'wave plate'. We shall explain what a wave 

plate is and how a variable wave plate can be used to produce a variable 

intensity device. Then, in the next section, we shall examine some specific 

examples of liquid crystal devices, showing how some of the properties of 

liquid crystals are exploited to achieve such variable intensity devices. 

Firstly, we examine how a birefringent material behaves if we have a 

uniform polarized wave front incident upon it. We observe that the 

polarisation of the light changes as it passes through the material (shown 

below in figure (1.13)), rather than seeing a double image as had been the 

case in figure (1.12). 

Ordinary 

A Monochromatic, 
Uniform Plane of Polarised 
Incident Light 

Different 
Polarisation 
from Incident 
Light (see figure1.14 below) 

Extraordinary 
Birefringent 
Medium 

Figure 1.13: Shows what happens to a uniform, monochromatic, polarised wave-front incident on 
a sample of a birefringent material 

N.B. the different arrow lengths in figure (1.13) denote the different 

apparent speeds of the two polarisations of light through the medium. The 
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resulting polarisation of the emergent light can be altered by changing the 

thickness of the sample. This ability to change light's polarisation earns 

this device the name 'wave plate'. The name denotes a phase difference, 

measured in radians, between emergent ordinary and extraordinary rays. 

Some wave plates are given special names to denote that they are 

considered significant, due to producing a specific type o'f polarisation 

(specific to a given wavelength of light). Below is a diagram (figure (1.14)) 

from Feynman [21] showing different polarisations of light. If ordinary and 

extraordinary rays are in phase with each other we have linearly polarised 

light (top left and bottom right); wave plates that produce these 

polarisations are considered 'trivial' as they appear to have no effect on the 

incident light, if they are to have a name it is 'zero wave plate'. However, if 

the emergent radiations are half a wavelength out of phase with each other 

we get linearly polarised light at right angles to the incident radiation (top 

right, figure (1.14)); a wave plate that results in this polarisation is called a 

'half-plate'. If the wave plate produces circularly polarised light then one 

of the rays lags a quarter of a wavelength behind the other; a plate that 

produces left handed circularly (LHC) polarised light is called a 'quarter 

wave plate' and a plate that results in right handed circularly (RHC) 

polarised light is called a 'three-quarter wave plate' . 
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/0 
Ex = cos rot; 1 
Ey = cos rot; 1 

Ex= 
E = y 

cos rot; 1 
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cos rot; 1 
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cos rot; 1 cos rot; 1 
cos(rot+3!T/4); ei3i

r/4 -cos rot; -1 

0/ 
cos rot; 1 cos rot; 1 
-cos(Wt+3"/4); _ei3 m'4 cos rot; I 

Figure 1.14: Shows polarization due to differing phase differences between two components of 

incident rays [21] (direction of propagation is out of the page). 

It should be noted that wave plates that produce phase differences of a one 

quarter wavelength are optically indistinguishable from wave plates that 

produce phase differences of l~, 2~, 3~, ... n~, so when naming wave 

plates the integer number of wavelengths is ignored; all these wave plates 

are called 'quarter wave plates'. However, the integer number becomes 

important in the experimental subsection of the results when simulations 

are being performed. 

Liquid crystals are birefringent; a device that consists of a certain thickness 

of liquid crystalline material is therefore a wave plate. By using either the 

molecules' electric or magnetic dipole (and applying an electric/magnetic 

field), it is possible to reorient the molecules. In so doing, it is possible to 

vary the effective birefringence of a given thickness of liquid crystalline 

material, i.e. this device becomes a variable wave plate. By placing such a 
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device between two polarisers, typically crossed polarisers, a variable 

intensity device is formed. 

Crossed polarisers are two parallel sheets of polarising material, but one is 

rotated by an angle of 90° with respect to the other around the normal to the 

plane. In the absence of an intervening material, or a zero wave plate, 

crossed polarisers transmit no light. In contrast, placing a half wave plate 

between crossed polarisers results in a maximum in transmittance. All other 

wave plates result in values between 0 and 100% transmittance. In fact, the 

phase difference, ~<I>, occurring between ordinary and extraordinary light, 

of wavelength A, is expressed as 

and can be thought of as an 'effective' birefringence of the cell, where R is 
i, 

n2 2 

R; E ~ no . Due to the crossed polarisers the emergent light intensity from 
nE 

the cell is expressed in terms of the ratio: 

T= l-cosd<P 
2 

Hence, these variable wave plates are converted into variable intensity 

devices. These equations will be revisited at the end of the computer 

modelling section. The purpose of this will be to take the director profiles 

and convert them into light transmittance for each voltage across a given 

cell. However, prior to this, some different ways of achieving variable 

Wave plates will be examined. 
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1.5 Liquid Crystal Devices 

At present, liquid crystal displays (LCDs) represent the dominant flat panel 

device technology [22]. The three main reasons why liquid crystal devices 

are so important are that they are compact, light and low-voltage devices. 

Thus they are in marked contrast with cathode ray tubes in the field of 

display technology. The devices below demonstrate a range of different 

methods employed to exploit the different properties of liquid crystal 

materials in order to re-orientate the molecules (obtaining variable wave 

.. plate devices), resulting in variable intensity devices when combined with 

crossed polarisers. 

Firstly, it IS important to introduce 'alignment layers' as they are 

paramount in determining the properties of liquid crystal cells. An 

alignment layer is a layer that makes it energetically more favourable for 

liquid crystal molecules adjacent to it to align ina particular direction, in 

the absence of any other factors. The alignment layers also provide some 

constraints to the orientation of the liquid crystal molecules throughout the 

cell, including acting to restore them to a desired configuration in the 

absence of any other external forces, such as a potential difference across 

the cell. 

While this is an enormous research area in its own right, here we shall 

concentrate on only the very basics. The two particular types of alignment 

layers that are important in this work -are called 'homeotropic' and 

'homogeneous planar': the first of these acts to keep the liquid crystal 

molecules nearby approximately perpendicular to the cell wall; whereas the 

seCond acts to keep the LC molecules nearby approximately parallel to the 

cell wall. By using these two alignment layers it is possible to produce LC 

cells with macroscopic distortions in their director profiles. 
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Not only do we need to know about the anchoring angle that these 

alignment layers induce but we also need to know how effectively they 

anchor the liquid crystal molecules at these angles. Their effectiveness (in 

aligning molecules) is described in terms of an 'anchoring energy', Ae: high 

anchoring energies mean that the molecules are held quite rigidly in a 

particular direction, and weak anchoring energies mean the molecules can 

easily be re-orientated by other factors (e.g. applying a voltage, or having a 

narrow cell with a different alignment at the other surface). 

Anchoring energies are further subdivided into two types, azimuthal and 

zenithal. The first describes the ease with which the molecules can be 

rotated around the normal to the cell plane, and the second describes the 

ease with which the angle to the cell normal can be changed [23, 24, 25, 

26]. For the main subject of this work, i.e. HAN cells, it will be the 

zenithal anchoring energy that will be relevant and so we shall not consider 

the azimuthal anchoring energy further. 

Now we will examine some of the different configurations of LC molecules 

produced by these alignment layers in LCDs, and an effort will be made to 

demonstrate how versatile liquid crystals are. Firstly we will look at the 

twisted nematic, TN: one of the original LCDs, produced by Fergusson, 

Schadt and Helfrich in the late 1960s. Then we will look at the super 

twisted nematic, STN, which provides better viewing angles and is capable 

of faster switching than a TN. We will go on to look at a ferroelectric LCD, 

which uses a chiral smectic C phase, 8m C*, and discuss in brief its 

advantages. Finally we will describe the HAN cell, the topic of this chapter, 

and explain some of the reasons why it is of interest. 

UoiverJity 
UbmtY 
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1.5.1 Twisted Nematic, TN . 

••••••••••• •• 

(a) Twisted Nematic Cell: (b) Twisted Nematic Cell: 
Off State On State 

Figure 1.15: Shows a schematic depiction of a twisted nematic liquid crystal cell in (a) an off­
state, and (b) an on-state (if placed between crossed polarisers). N.B. Twisted nematics use 
materials with positive dielectric anisotropies. 

This configuration, (a) of figure (1.15), is of great practical interest. It is 

created by sandwiching a liquid crystal material between two homogenous 

alignment layers; a twist is then imposed upon the system by rotating one 

of the alignment layers in its own plane [27]. Switching can then be 

achieved by placing the cell in a magnetic field parallel to the twist axis8
. A 

magnetic field above a critical value, He, will result in the cell switching to 

the on-state, (b) of figure (1.15) [27]. 

1.5.2 Super Twisted Nematics, STN. 

(a) STN Cell: 
Off State 

(b) STN Cell : 
On State 

8 Or by applying an electric field parallel to the cell normal. 

Figure 1.16: 
Shows a schematic 
depiction of a super 
twisted nematic liquid 
crystal cell in (a) an off­
state, and (b) an on­
state. Again, super 
twisted nematics use 
materials with positive 
dielectric anisotropies. 
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Clearly, both from figure (1.16) and this cell's name, the super twisted 

nematic LC cell is similar to its predecessor the twisted nematic LC cell. 

However, instead of the liquid crystal material only being twisted by 90°, it 

is twisted by some other multiple, e.g. 180° or 270°. This cell configuration 

is achieved by using chiral nematics, or by choosing chiral dopant 

molecules in order to change the LCs' pitch length to fit a particular cell 

thickness. The benefits of this technology are examined in detail in the 

literature [27]. However, the main benefit can be summarised by stating 

that most nematic LC devices achieve high contrast by resorting to 

significant reorientation of the director profile, whereas STNs do not [28]. 

This quality makes STNs excellent switching devices, operating on low 

voltages [29]. 

1.5.3 Ferroelectric LC Cells 

These liquid crystal cell devices, which employ chiral smectic (Sm C*) 

LCs, are of particular interest because they are bistable. Below, in figure 

(1.17a), numerous features of a Sm C* phase are shown. A chiral smectic 

phase has a layered structure (indicated by the periodicity of the cones). 

Within these layers the molecules are tilted by some angle (described by 

the cone surfaces). In tum, in the absence of external forces, the directors 

(represented by the arrows) from each layer follow a helical path. In 

contrast with a nematic phase, here, the molecular dipoles (at some angle to 

the director) are no longer randomly oriented; instead, each layer is 

polarised. However, due to the helical structure, a net polarisation does not 

anse. 

Figure 1.17a: 
Represents a 
chiral smectic, Sm 
C*, phase in the 
absence of 
external forces. 
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One of the switched states The other switched state 
e.g. maximum light transmittance e.g. minimum light transmittance 

CHAPTER I 

Figure 1.17b: 
Shows a ferro-electric 
liquid crystal device. 
Alignment layers are used 
to suppress the helical 
structure seen in figure 
1.17 a by ensuring that 
only two director 
orientations are 
energetically stable. 
Thus, the device achieves 
bistability. 

In Ferroelectric LC devices this helical characteristic is suppressed by 

specialised anchoring layers, resulting in a spontaneous polarisation. The 

resulting configuration can be seen in figure (1.17b) where the director in 

each smectic layer is parallel to the director in its neighbouring layers; this 

is referred to as a surface stabilised SmC*. 

Due to the spontaneous polarisation of the domain, applying an electric 

field (depending on its sign) can reorient the directors when it reorients the 

molecular dipoles; when the device is switching, the molecular directors 

(denoted by the arrows) follow the arc of the cone. The specialised 

alignment layers ensure that none of these intermediate director 

orientations is energetically stable. Consequently, when the applied voltage 

is removed the molecules do not find it energetically favourable to go 

through any of these intermediate states in order to revert to their previous 

state. As a result the device is bistable, making it an excellent switching 

device, especially as it exhibits 'memory' . 

Once again, the optical properties of these devices depend upon the 

birefringence of their liquid crystal material and on being placed between 

cross polarisers. 
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1.5.4 Hybrid Aligned Nematic, HAN, Cells. 

,.------------- Crossed polarisers 

t"*~~~~;;~~~::" :::"'~" :::"'~" t'~ -- Homogeneous alignment layer (B Il:S 0°) --~ B- Potential difference 

{,~ LC molecules 

:===-:;:::~~;----- Homeotropic alignment layer (BIl:S 90°) 

Figure 1.18: Schematic of a HAN cell. The potential difference (red) is applied in the z-direction. 
The homeotropic (blue) and homogeneous (green) alignment layers impose a distortion in the 
director profile, which is depicted here as a change in the angle, 0, of the molecules (turquoise). 

As previously stated, the hybrid aligned nematic LC cell gets its name from 

the fact that it is a nematic liquid crystal material sandwiched between two 

different alignment layers. While it should be noted that there are many 

different confidgurations possible, resulting in a range of alternative 

director profiles (see Ref. [39]), the HAN cell under investigation in this 

thesis is shown, schematically, in figure (1.18), where 0 denotes the angle 

between the director and the x-y plane. The cell of LC material, constrained 

by two alignment layers, is placed between crossed polarisers. A potential 

difference is applied along the cell normal (z direction). One alignment 

layer gives rise to homeotropic alignment (i.e. Or::::, 90° to the x and y axes) 

whilst the other gives rise to homogeneous alignment (i.e. 0 r::::, 0°, that is, 

the director is nearly parallel to the plate). Because small changes in 

applied voltage result in small changes in the director profile9
, this device 

can be used to achieve gradations in light transmittance, i.e. HAN cells are 

one type of grey-scaling device [39]. 

9 Director profile shows how the orientation of the molecules varies through the cell. 
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1.6 Experimental Set-Up 

Having provided an outline to this subject area, and as HAN cells are the 

main topic of this chapter, the discussion will now focus on HAN cell 

devices. The discussion will initially examine the experimental set-up 

adopted by Takahashi et al. [1] and Bartle [30], whose experimental data is 

examined in the second part of the results section. Details of the sample 

preparation and the experimental procedures can be found in Takahashi et 

al. [1] and Bartle [30]. Other works in this area that may be of interest to 

the reader include Refs. [31, 32, 33, 34, 35]. After the description of the 

experimental set-ups, sections 1.7 and 1.8 will detail how theoretical 

models and computational simulations can be used to describe HAN cells. 

1.6.1 Takahashi's Experimental Set-Up 

With reference to the experimental set-up, over and above the information 
, 

provided in figure (1.18), most of the information given by Takahashi et al. 

[1] pertains to the production of the HAN cell. Briefly, as regards the 

sample in Takahashi et al.' s work, one of the substrates was coated with a 

polyimide film and treated by rubbing to introduce homogeneous 

alignment. The other substrate was coated with another type of polyimide 

film to introduce homeotropic alignment. These substrates induced 

alignments of approximately 90° and 2° at the .. homeotropic and 

homogeneous alignment layers respectively when the HAN cell, of 

thickness D = 28.5 f.lm, was filled with MBBA. 

N-( 4-methoxybenzylidene )-4' -n-butylaniline (MBBA) is a commercially 

available nematic liquid crystal; its properties are detailed in the results 

section. The measurements were carried out at a temperature of 30°C and 

the wavelength of the laser light used was 550 nm. 
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1.6.2 K. Bartle's Experimental Set-Up 

In contrast to Takahashi et al. [1], Bartle provides rather more information 

about his experimental set-up [30]. In addition to elaborating on how the 

cell was produced, he also provides information on how the experiments 

where performed, including steps taken to minimise problems caused by 

ion impurities and material viscosities. 

Commencing with the similarities between the Takahashi and Bartle cells 

we see that Bartle's cells also had one of the substrates coated with a 

polyimide film and treated by rubbing (to introduce homogeneous 

alignment) and the other substrate coated with another type of polyimide 

film (to introduce homeotropic alignment). Furthermore, these alignment 

layers also produced alignments of approximately 2° and 90° at their 

respective surfaces, as had been the case for the Takahashi cell. 

The experimental set-up used by Bartle can be seen in figure (1.19). 

cell in hotstage 

He-Ne laser G lan-Thompson 
polarisers 

Figure 1.19: Schematic experimental set-up used by Bartle [30] 

photodiode 

PC 

The polarisers are oriented such that they are at + and - 45° to the rubbing 

direction of the polymer of the homogeneous alignment layer. 
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At this stage the main discernible difference between Bartle's set-up and 

that used by Takahashi et al. [1] is Bartle's use of a He-Ne laser, which has 

a wavelength of 633 nm. Furthermore, the hot-stage allowed the ambient 

temperature to be controlled. As a result temperature dependent readings 

could be taken. To aid comparison between data sets, all the measurements 

were carried out at 90% of the mixtures' clearing temperatures lO
, Tc [36]. 

A computer program was used to control the voltage across the cell and, 

simultaneously, to record the light intensity incident on a photodiode. The 

form of the input voltage was chosen to minimise the problems due to ion 

impurities and to erase any memory effect the cell may experience [30], 

which may be caused by factors such as viscosity. 

In addition to these deviations from the experiments performed by 

Takahashi et al. [1], Bartle had a number of different samples; their 

thicknesses ranged between D = 24.9 and 35.4 flm, and the cells were filled 

with either E7 or 10% solutions of other dopant liquid crystal materials in 

E7. Like MBBA, E7 is a commercially available nematic LC material, 

Whose properties are well documented in the literature [30, 37]; they are 

also outlined in the results section. The dopants, dissolved in E7 to make 

10% solutions (by weight), were synthesized in the author's laboratory. 

Their names and molecular structures are shown below in table (1.4.6). 

10 The clearing temperature, Tc, of a liquid crystal is the temperature above which it 
becomes isotropic (details can be found in reference [30]). , 
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Table 1.4.6: Shows molecular structures of the molecules placed in 10% 
(by weight) solutions in E7 

Sample Code Molecular Structure 

JHW33 

JHW29 

JHW128 

JHW131 

CSH 11 
JHW172 

CHAPTER. 
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1. 7 Continuum Modelling 

Continuum modelling is a technique in which some properties of a physical 

system are represented mathematically. It can be particularly appropriate 

when properties vary gradually and continuously through the system to 

model these properties using partial differential equations (PDEs). On first 

inspection, the properties and behaviour of any liquid crystal device are 

complex (appearing between order and disorder), and so the prospect of 

modelling them is fraught with difficulties. However, the continuum 

modelling method allows us to take a mesoscopic approach to this problem, 

smoothing out the microscopic noise inherent to the system. The director 

profile of the liquid crystal molecules and the electrical potential through 

the HAN cell are appropriate properties to be modelled by the continuum 

method, thus allowing us to gain a greater understanding of the system 

without becoming distracted by the minutia, as would often be the case 

with molecular dynamic simulations of liquid crystal systems. 

The PDE used to represent the system is a Laplacian, where the free energy 

density of the system is given by equation (1.1) [1, 31] (see Appendix B), 

f, = ~f'I.,(e)C:)' -~fdl'l(e{:J + f fl<x(e{~~)(:) (1.1 ). 

Here, the variable () is the angle of the director to the x-y plane and if> is the 

electrical potential, both are functions of z. The lelalB) term gives the 

elastic free energy contribution, i.e. 

felas(O) = Kll cos 2 (O)+K33 sin2(O), (1.2) 

Where KII (K33) is the splay (bend) elastic constant. The/dielfJ) term gives 

the dielectric contribution, i.e. 

(1.3) 
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where the dielectric anisotropy is 

Thefflex(e) tenn provides the flexoelectric free energy contribution, i.e. 

fjlex (0) = (ell + e33 )cos(O )sin(O), (1.5) 

where ell (e33) is the flexoelectric coefficient for splay (bend). 

The physical system will seek to minimise its free energy. By minimising 

equation (1.1) with respect to (w.r.t.) 0 and ¢ we can find the minimum 

energy configurations. Minimizing equation (1.1) w.r.t. () gives (see 

Appendix C): 

I (80)2 (8
2
0) I (8¢)2 (82¢)_ 

fe/as (0) 8z + 2fe/as (0) 8z2. + f diet (0) 8z + 2ff/ex (0) 8z2 - 0 (1.6) 

Similarly, minimizing equation (1.1) with respect to ¢ gives (see 

Appendix C): 

, (80)(8¢) (82¢), (80)2 (8
2
0] Idiet (0) 8z 8z + Idiet (0) 8z 2 - If/ex (0) 8z - If/ex (0) 8z 2 = O. (1.7) 

Equation (1.7) can be rewritten as: 

! [fd",(O{ ~)- ffl"(O{ ~:)J = 0, (1.8) 

therefore we know that: 

(1.9) 

The properties of the cell are largely governed by the boundary conditions. 

Initially fixed angles were used (()o = 900 and ()D = 20 at z = 0 and z = D 

respectively) as the boundary conditions. However, in the real system, such 

rigidity would not occur, therefore finite anchoring energies are employed. 
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These angles were instead adopted (00 = 90° and OD = 2° at z = 0 and z = D 

respectively) as the 'angles of easy axis' at each surface, Le. the preferred 

direction of orientation (OOeasy = 90° and OD easy = 2° respectively), and 

incorporated into a surface anchoring energy term. Thus the surface 

anchoring energies can be described by equations (1.10) and (1.11) below 

[1 ], 

(1.10) 

and 

(1.11) 

Equations (1.10) and (1.11) approximate the energy contributions to the 

system from the homeotropic and homogeneous alignment layers 

respectively (Le. at z = 0 and z = D) with a Hook's Law (Le. the 

Rapini-Papoular approximation [1, 22]). OOeasy and ODeasy are the angles of 

the easy axis at z = 0 and z = D respectively, whereas 00 and OD are the 

actual angles that the directors make with the homeotropic and 

homogeneous alignment layers respectively. Aoo and AOD are the Hook's 

constants used to describe the anchoring strengths [2]. 

Finally, our boundary conditions are found by minimising the energies at 

the surfaces (z = 0 and z == D): 

and 

respectively (see Appendix D for derivation [37]). 
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All the above equations are currently in a form where changes in z are 

infinitesimally small. In order to implement and solve these equations by 

computer it will be necessary to convert them into a form involving small 

but finite changes in z. To achieve this we employ a finite difference 

method, described in the following section. 
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1.8 Computer Simulation - Finite Difference Method 

In the previous section we outlined the mathematical formalism needed to 

describe the coupled partial differential equations, used to express the 

director and potential profiles (i.e. equations (1.6) and (1.7)). In this 

section, it is necessary to rewrite the equations, manipulating them in order 

to implement them on computer. To do this we employ a finite difference 

method, which uses the fact that: 

and 

dy = lim Yi+l - Yi 

dx .1x-+O X;+l - Xi 

If Lit (where Lit = Xi+l-Xi) is chosen to be sufficiently small, but finite, these 

equations can be used to approximate a continuous function. 

Once we have found a numerical solution to the PDEs, we need to use the B 

curve to calculate the phase difference that accrues between the ordinary 

and extraordinary components of light as it passes through the HAN cell 

(this can be found from equation (1.31) below); the accompanying ¢ curve 

enables us to calculate the corresponding voltage. By finding numerous 

pairs of Band ¢ curves that are numerical solutions to our PDEs 

(i.e. satisfying given boundary conditions), we are able to calculate relative 

intensities of light transmitted (see equation (1.33)) against potential 

difference. This enables us to compare theoretical results with those 

obtained experimentally. 

Firstly, we need a method by which we can integrate across the cell, i.e. a 

method by which, if 8;, 8;+ I, ¢i and ¢i+ 1 are known, 8;+2 and ¢i+2 can be 
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calculated. This will allow us to integrate the PDEs across the cell and so 

find numerical solutions. The two methods we shall discuss are a self 

consistent method (in § 1.8.1) as proposed by Takahashi et al. [1], and our 

new method (in § 1.8.2) which allows us to calculate both curves 

simul taneously. 

1.8.1 Takahashi's Method 

Takahashi et al. [1] employ a self-consistent method. This method requires 

one function (e.g. tilt angle) to be calculated and then that function is used 

to calculate the other (e.g. electrical potential); after that, the second 

function is used to recalculate the first function. This process is repeated 

until there are no significant changes in each function between successive 

iterations, i.e. it is self-consistent. To enter into this cycle of iterations, an 

approximation for one of the functions (e.g. electrical potential) must 

initially be provided for the computer program. 

Specifically, when applied to the HAN cell problem, Takahashi's method 

involves integrating one of the curves across the cell, say the ~z) curve, 

and then he uses this curve to help integrate the other function (i.e. r/i.,z)) 

across the cell. This r/i.,z) curve is then used to recalculate the ~z) curve. 

The process is repeated until the ~z) and the r/i.,z) curves are 

indistinguishable from those obtained during the previous iteration. His 

initial approximation is that the potential across the cell is uniform, that is 

to say r/i.,z) = Const·z (i.e. r/i.,z) = ° when z = 0, and r/i.,z) = V 

whenz=D). 

We initially tried this method, while assuming infinite anchoring energies, 

but it did not result in physical solutions. We were initially alerted to this 
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due to our transmittance curves showing the 'wrong kind' of asymmetry. 

On further investigation we found that the director profiles across the cell 

typically exhibited unphysical oscillations as depicted below: 

~z) 

Director 

(,) .- -Cos:: 
o C1> 
'::'E 
o s:: 
C1>en 
E= 0« 
~ oscillations! 

en ::J _ 

o s:: 
s:: C1> 
C1> E 
ens:: 
Oen 
E= 0« 
~ 

_---'A ...... --_ 1 1.--------1 

Distance z 

Figure 1.20: Shows a typical shape of the director profile across a cell as produced by the self­
consistent method employed by Takahashi et al [1]. As acceptability of solutions was determined 
solely by the end points, we conclude that the number of oscillations is arbitrary and therefore 
that such solutions are non physical. 

Subsequently, we found from our new method that the initial assumption 

made by Takahashi et al. [1] (i.e. of a constant electric field across the cell) 

was very close to what was observed (see section 1.9 below). 

Consequently, it appears that the self-consistent method itself is 

inappropriate for finding solutions to this particular system. 
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1.8.2 Our New Method 

In this section the mathematics used to integrate the PDEs across the cell 

are demonstrated; a flow diagram has been included to show how this was 

implemented by computer. This method is a new way of finding numerical 

solutions to these PDEs and does not appear to succumb to the same pitfalls 

as the self-consistent method used by Takahashi et al. [1]. That is, the 

solution o.curves found by Takahashi's method did not appear to represent 

physical solutions, whereas the solution curves found by our new method 

appear more plausible. Consequently, we have greater confidence in this 

new method and its ensuing results. 

The aim of this section is to convert the relevant equations into finite 

difference notation. Recall that, to calculate ~+2 and ¢i+2, we must know ~, 

~+}, ¢i and ¢i+l. If we are to start at z = 0, with the intention of integrating 

across the cell (to z = D), eo, eJ, ¢o and ¢1 must be known. Note that where 

we choose our zero electrical potential is arbitrary, so for simplicity we 

choose it to be at z = 0, i.e. ¢o = 0. Due to the finite anchoring energies, ~ 

and e1 are unknown, and because the way in which the potential difference 

varies across the cell is also unknown, we have no value for ¢1. There are 

then, too many unknowns. This is where our new method begins in earnest. 

We assume that for an initial /l¢ (i.e. ¢1 - ¢o) there is only one solution to 

the Laplacian; we choose a value of /l¢ for which we wish to find a 

solution. We have an equation for the anchoring energies at both surfaces 

and an equation that relates eo, eJ, ¢o and ¢1 to a constant across the cell. If 

we choose eo to be a deliberately incorrect value, the homeotropic 

anchoring energy term allows us to calculate e1• While this then results in 

an incorrect value of Const in equation 1.9, it allows us to do an initial 
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integration across the cell. We can then see if this value of eo will result in 

a value of eD that is too big or too small. Once this is known we are able to 

vary eo up or down, until we obtain a meaningful value of Const leading to 

a meaningful value of eD, satisfying the homogeneous anchoring energy 

term. A range of initial t1t/Js will result in a range of potential differences 

across the cell and their accompanying director profiles. Thus we are able 

to calculate light transmittance against potential difference. 

Having established the framework used, it now remains to show how this 

was achieved. Recalling equations (1.6) and (1.9): 

I (oe)2 (02B] I (O¢)2 (02¢]_ 
f elas (B) GZ + 2 felas (B) GZ2 + f diel (B) GZ + 2 ffleX< B) GZ2 - 0 

(l.14) 

!diel (B)(B¢) - !jlex (B)(BB) = Const 
Bz Bz ' 

(l.15) 

equation (l.15) can be rewritten as: 

o¢ Const fflex (B) (OB) 
oz = fdiel (B) + fdiel (B) GZ • 

(l.16) 

Rearranging equation (1.14) results in: 

02B _ -1 [, (0¢)2 (02¢) , (OB)2] 
OZ2 - 2felas(B) ! diet (B) OZ + 2!flex(B) OZ2 + f elas (B) OZ . (l.17) 

Using finite difference notation this becomes: 
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and the finite difference version of rpi+2 (from equation 1.16) becomes: 

- Const· & /flex (B) (e e) 
¢i+2 - J:. (t9) + 1'. (t9) i+2 - i+l + ¢i+l • 

dlei J dlei 

(1.19) 

We can substitute equation (1.18) into (1.19) to obtain: 

(1.20) 

All that is required now is to rearrange equation (1.20) so that all rpi+2S 

appear on the left-hand side, i.e. 

1 If/ex (0) _ If/ex (0) -1 '0 _ 2 e Const· Az 
[ 

2] [ [I' elas (0)(0
1
+

1 
- OJ2] 1 

+ J:. (O)/. (0) ¢1+2 - J: (0) 2/. (e.) + f dlel( )(¢i+l ¢J +~+1 - j +¢I+l + J:. (0) 
dlel elas. dlel elas I + 2 fjlex (O)(¢j _ 2¢,+J dlel 

(1.21) 

This is then refined to: 

(1.22) 

It may be noted that in the above equations, thus far, no decision has been 

made as to where to evaluate the functions of t9, e.g.!flel(9),!diet{t9), etc. By 

choosing sufficiently small step sizes, it becomes less critical where we 

evaluate these functions of t9, whether be it at i, i+ 1, i+2 or some average. 

We chose to evaluate these functions at i, and ~ (=D/N) was found to be 

sufficiently small for N = 200 points. 
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1.8.2.1 Flexoelectric Voltage and the Flexoelectric Voltage Shift 

We will also need to lay down the criterion by which solutions are accepted 

or rejected, i.e. a systematic procedure to find numerical solutions that 

satisfy our boundary conditions. We start by setting ¢o = 0 (because the 

electrical potential can be chosen to be zero arbitrarily; for simplicity, we 

have chosen the zero to be located at z = 0). Then we choose a value for 

~¢o, assuming that for each ~¢o there will only be one possible solution for 

the system, resulting in a specific value of the nominal voltage across the 

cell. The nominal voltage is written as 

D 8¢ 
Vnom = j-dz. 

o 8z 
(1.23) 

It should be noted that there are two components of the nominal voltage 

across a HAN cell. The first is the applied voltage, which is provided by an 

external power source. The second component is the flexoelectric voltage, 

which arises from the net polarisation of the cell due to the flexoelectric 

effect. The voltage calculated by equation (1.23) includes both of these. 

The flexoelectric voltage can be expressed as [31, 37] 

(1.24) 

To find the applied voltage we need to subtract the flexoelectric part 

(equation (1.24)) from equation (1.23), giving: 

(1.25) 

It is important to note the difference between the flexoelectric voltage and 

the flexoelectric voltage shift. The flexoelectric voltage is the potential 
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difference across the cell due to the flexoelectric polarization of the cell. 

Whereas, the flexoelectric voltage shift is the voltage at which the central 

feature occurs (see figure (1.21)). 

Transmittance 
Central Feature 

\. !he Flexoelectric 
~oltag; Shift V,,,,,, 

Voltage 

Figure 1.21: Shows the definition of both the central feature and of the flexoelectric voltage shift. 
The central feature is the approximate centre of reflection symmetry of the transmittance curve 
and the flexoelectric voltage shift is the voltage at which it occurs. 

While the flexoelectric voltage is used in the calculations of the 

transmittance curves (and therefore the flexoelectric voltage shift), it is the 

flexoelectric voltage shift that is of explicit interest in the results section of 

this chapter. 
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1.8.2.2 Boundary Conditions 

We then need to choose values of Bo and ilBo that will satisfy the boundary 

conditions. Having chosen ¢o = 0 and ¢1 = variational parameter, we 

initially chose Bo = 90°; turning to equation (1.12) we were able to obtain 

B} by rewriting the equation in finite difference notation and then 

rearranging it, to obtain the following relationship 

and hence 

fjlex (0) ·11¢0 

fe/as (00 ) 

flz . Ae sin[ 2(00 - 00 ) ] 1ft (0)·/1 "'0 0
1 

= 0 easy _ ex 'r +0
0 

21elas (B 0 ) lelas (00 ) • 

(1.26) 

(1.27) 

This satisfies our boundary condition at the homeotropic alignment layer. 

Now enough information is known to enable us to calculate the value of 

Const}} in equation (1.15); i.e. 

(1.28) 

By using this value for Const, it becomes possible to integrate 0 and ¢ 

across the cell. In so doing we are able to ascertain whether the initial 

choice of Bo (at z = 0) was appropriate to satisfy the boundary conditions at 

z = D. To do this we assign equation (1.13) (which should equal zero) to be 

equal to a new value, B. 

11 Only when both boundary conditions are satisfied will the correct value of Const have 
been found. . 
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Thus equation (1.13) becomes: 

f. ({) ){)N -{)N-l f (() )rPN -rPN-l 1. ())] B 
etas N + flex N +-Ao sm[2({)N - D =. 

/).z /).z 2 D etuy 

(1.29) 

We systematically12 changed our initial conditions (Le. the value of Bo, 

recalling that t/Jo, rPl are fixed and ()l is defined in terms of Bo) ~nti~ B fell 

within an arbitrarily small range of -oB ~ B ~ +oB, where oB was small 

(oB = 1 x 10-6). 

12 We deliberately start with ~ too large (Le. ~ = 90°) to satisfy equation (1.29). As a 
consequence, the resulting BD is very much greater than 2°. At the same time we 
initialise some token T = +1. We then integrate across the cell. Once a 'solution' has 
been obtained we tested it to establish that ~ was indeed too large to satisfy equation 
(1.29), and then we reset T = + 1. After this it is then possible to reduce the initial value 
of ~ by some value .69 (e.g . .68 ~ 1°). This process was repeated and, for as long as 
the reSUlting 'solution' is too large, we continue to reduce ~ by .69. Eventually this 
results in a 'solution' that tells us that ~ is too small to satisfy equation (1.29); when 
this happens we reset T = -1. When T > 0 we subtract .69 from ~. However, .69 is 
added to ~ when T < O. Every time there is a change in sign of T, between iterations, 
the size of .68 is halved. When equation (1.29) is satisfied we accept this solution and 
the process is stopped. This is shown schematically in figure (1.22). 
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1.8.3 Flow Diagram describing how the program is executed. 

The computer program was executed on a UNIX workstation using ANSI 

C code written by the author. The details of the program may be found in 

Appendix J, however, the main features are shown in the flow chart below. 

set initial conditions & input 6t = 90 (deliberately too large), 
T= +1 parameters e.g. ¢o = 0, k = 0 rpRA NGdkmw., X = 1 

no . 

< 

J 

t 
yes 

I 
is B < O? 

no , 

yes 

J 
I 

is 

T. T"<I\ > O? 

+ 
_ I -
T"e,' = -1 

t 
yes 

I 
.. no- is B> O? 

.-----I~ calculate ¢ i4- 1 (equation (1.22)) 
calculate 0,+1 (equation (1.18)) 

I 
i = i + 1 , 

yes 

. ? 
I < I1POIIllS ' 

no 

.. I use equation(1 .29) 
--.-----;\ to find B 

calculate <D from equation (1.31) 
-----... ·~I and Tfrom equation (1 .33) 1----'-< 

~k+1 

yes 

Figure 1.22: Shows the main features of the program used to solve the PDEs of § 1.7. 
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1.8.4 Phase Difference and Transmittance 

Once we had obtained solutions for a range of applied voltages, we needed 

to convert this information into a transmittance versus applied voltage 

curve, as this was the form that the experimental data took. We achieved 

this by initially converting () and ¢ data into phase differences, ~<I>, for 

each applied voltage [31, 38], i.e. 

27mo(Z=JD 1 dz - nJ 
~<1>= z=0~1-R(Sin2(1-e(z))) , (l.30) 

A 
in finite difference notation this becomes: 

(1.31) 

where A is the wavelength of light and 

2 2 
R=nE-nO 

n2 
E 

(1.32) 

with the ordinary refractive index no and the extraordinary refractive index 

nE. Converting the phase difference, ~<I>, into the light intensity 

transmi tted 13, T: 

T = l-cos~<I> 
2 

(1.33) 

which is expressed as a ratio of the light incident on the cell to the light that 

is transmitted (varying between zero and one), given that the cell is placed 

between crossed polarisers. As a consequence of the crossed polarisers: an 

13 Also called the 'normal-incident transmission retardation measurement' [30] 
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even number of J( phase differences results in darkness (T = 0), while an 

odd number of J( phase differences results in maximum in light 

transmittance (T= 1). It is advantageous to plot the phase difference data as 

well as the transmittance curves. This is because the phase difference data 

is easier to analyse than the transmittance data, as very similar phase 

difference curves can result in seemingly totally different transmittance 

curves. The location of the turning point of the phase difference curves 

changes the shape of the central region of the transmittance curves. 

There were two main motivating forces behind this work. The first was to 

see how individual continuum-model parameters could change the 

properties of the system and the second was to establish if this method 

could be used to reproduce experimental results. These are both dealt with 

in sections l.9.1 and l.9.2 respectively, of the Results and Discussion 

section. 
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1.9 Results and Discussion 

This section is subdivided into two further sections, numbered § 1.9.1 and § 

1.9.2. The first subsection is a theoretical examination of the system, 

involving varying input parameters to see what influence they exert upon 

the system. The second section then uses this information and 

understanding to assist in the simulating of experimental data. In the first 

section, by examining these effects, we can gain an understanding of how 

and why the parameters affect the system as they do. This knowledge can 

then be used to aid the design of future HAN cells, and enable recognition, 

in existing HAN cells, of the fingerprints of individual parameters. This 

assists in the modelling of real HAN cells in § 1.9.2, i.e. allowing 'educated 

guesses' to be made for the input parameters. 

Section 1.9.1 starts by introducing the general input parameters, and 

specifies which are to be examined. Following this is an introduction to the 

different types of graph used in this section. The main body is then devoted 

to a systematic examination of numerous scenarios, with a running 

discussion alongside. The major findings are summarised in a table and 

there is a brief discussion at the end of the section. 

Section 1.9.2, as previously stated, is an examination of experimental data 

with the express purpose of simulation. There are two purposes for this: it 

provides an opportunity to validate the model by seeing if it is possible to 

emulate the real systems; and the parameters used to achieve these 

simulations will reveal a great deal about those real systems. The 

experimental data used came from two sources: Takahashi et al. [1] and 

Bartle [30]. 
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There are two main nematic liquid crystals that are of interest in this thesis. 

These are E7 and MBBA. Bartle [30] concentrated on the LC mixture E7 

and 10% solutions of dopant molecules in E7, whereas Takahashi et al. [1] 

worked with MBBA. It is particularly interesting to look at both these 

systems as they have opposing signs of !l.8 to one another. Generally, 

section 1.9.1 is preoccupied with examining MBBA systems. However, 

where it is deemed relevant and interesting, E7 systems (or MBBA with the 

sign of its !l.8changed) are also examined. Section 1.9.2 not only deals with 

the simulations but also demonstrates how sensitive these systems are to 

variations in input parameters. 
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1.9.1 Theory and Trends 

In this, the first half of the results section, the effects of varying different 

continuum-model parameters are examined in order to obtain lmowledge of 

how each affects the system. For MBBA systems the list of general input 

parameters used can be found in table (1.9.1), that is to say that, unless 

otherwise stipulated, these are the values used in the simulations performed 

throughout § 1.9.1. When E7 systems are examined, the default parameters 

contained in table (1.9.2) are used. 

The parameters and scenarios investigated in this part are varying: 

• Cell thiclmess, D 

• Dielectric anisotropy, (Lls = Sp-Sn) 

• Elastic constants, KII and K33 

• Angles of easy axes, at z = 0 and D, i.e. Boeasy and ~easy respectively 

• Flexoelectric constant, e = ell + e33 

• Homeotropic anchoring energy, Aro 

• Birefringence, Lln = nE-nO 

Some of the parameters could be combined to produce some interesting 

properties; they therefore warranted further investigation. These included 

varying elastic constants when the flexoelectric coefficient, e, is either 

large or small. Various combinations of varying flexoelectric coefficient 

and homeotropic anchoring energy area rich area of interest. The effects of 

changing the sign and magnitude of dS are further complicated by changing 

e andlor Aro, and so these are examined towards the end of this subsection. 

There, E7 is examined in similar detail to MBBA, thereby providing a 

comprehensive overview of RAN cell behaviour. 
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The effects of changing homogeneous anchoring energies are not shown 

here. The reason for this is that preliminary examination revealed that the 

computer program would only 'work' for relatively large values of AoD, and 

within this range the effects of varying homogeneous anchoring energy 

were negligible. 

Table 1.9.1: Shows the general input parameters used in § 1.9.1. Unless otherwise stipulated, the 
parameters and material constants used in the calculations, corresponding to MBBA, are shown 
below. 

Angle of easy axis (at z = 0) tbeasv = 90° [1 ] 
Angle of easy axis (at z = D) 61Deesv = 2° [1 ] 

Cell thickness D = 28.5 ~m [1 ] 
Elastic constant splay K11 = 6.4)(10-12 N [23] 
Elastic constant bend K33 = 8.2)(10-12 N [23] 

Anchoring energy (at z = 0) AIiO = 1.2><10-5 J.m-2 moderate14 

Anchoring energy (at z = D) A60 = 5.0)(10-2 J.m-2 arbitrarily high 
Relative permittivity normal Cn = 5.4 [31] 

Relative permittivity perpendicular C" = 4.7 [31] 
Dielectric anisotropy Ilc = -0.7 [31] 
Wavelength. of light A = 550 nm [1 ] 

Flexoelectric coefficient E = -5.0><10-11 C.m-1 arbitrary 
Refractive index ordinary no = 1.57 [31] 

Refractive index extraordinary nE = 1.8 [31} 
Birefrin~ence Iln = 0.23 (31J -

-
14 This is a moderate anchoring energy, and is of the same order of magnitude as is 
tyPical for polyimide homeotropic alignment layers. 
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Table 1.9.2: Shown below, unless otherwise stipulated, are the parameters and material 
constants used in the calculations for systems containing E7. 

Angle of easy axis (at z = 0) ~easv = 90 0 [30] 
Angle of easy axis (at z = D) BDeasv = 20 [30] 

Cell thickness D = 28.51lm [1 ] 
Elastic constant splay K11 = 11.1)(10-12 N [37] 
Elastic constant bend K33 = 17.1)(10-12 N [37] 

Anchoring energy (at z = 0) A60 = 1.2)( 1 0-5 J.m-2 moderate 
Anchoring energy (at z = D) AID = 5.0)(10-2 J.m-2 arbitrarily high 
Relative permittivity normal Cn = 5.2 .. [37] 

Relative permittivity perpendicular Cp = 19 [37] 
Dielectric anisotropy I::.c = +13.8 [37] 
Wavelength of light A, = 633 nm [31] 

Flexoelectric coefficient E = -5.0)(10-11 C.m-1 arbitrary 
Refractive index ordinary no = 1.51821 [37] 

Refractive index extraordinary ne = 1.73283 [37] 
Birefringence I::.n = 0.21462 P7J 

Before these different parameters are examined, it is necessary to introduce 

the various graphical forms in which the results are presented and the 

meaning of particular features within them. In experimental scenarios only 

transmittance data is available. However, here much more information is 

available due to the nature of the continuum modelling. It is important to 

know how this information can be used to aid understanding of a system's 

behaviour. 
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INTRODUCTION To FIGURE TYPES 

1.9.1.1 Introduction to figure types 
These next two pages serve as an introduction to the five 
different figure types in which different graphs are used to 
demonstrate specific features of HAN cells. There are seven 
different graph types contained within five figure types, these 
figure types are: 
Type 1 shows phase difference ~<I> (left) and transmittance 
(right) against voltage, where the key applies to both; 
Type 2 shows the derivative (with respect to voltage) of the 
phase difference curve, i.e. d(~<I»/dV , versus voltage; 

r 
! 11.011 .. 
j 10." 

G.. &.0. 

6.0. I I J , I 
- !l.O - 2.5 0.0 2.5 ~O 

,t,ppied Voloqe M 

~D · ~ 
0 - 2211"'1 
O· 2'""" - D· ' .... - D· ' .... 
~ 

~: V\Z\e =- zvn 
1.0 C -,---.--;r-]j".lt , -.- \ /' ' 

D.O --L I I \1 

1.0~- I ' ~ 

0.0~~~2J 

I~:r\J\7\: J\l\NN 
j'0fV}TI'\ I / i Wil.~ 
;; ,/./ \! \ i \1 I' 

j ~i flli!\~ M~ 
- 5..0 - 2.5 0.0 2.5 5..0 

CHAPTER I 

4.0 r i i • ~ ' !FOO . 2(bIO"~ I 

'.0 

25 ~o 

~p5ed Voltoqe (V) 

-- o· 22.IO"1"'f'I 

0- 24.10 .... 1"'" 

- o· 26.IO"'W" 

-- o . 28,lo-4Jo1m 

(H) O • JO.IO-tUf'!'l 

Type 3 shows how the director, (), and the potential, tP, vary 
across the cell , i.e. with z, for three of the lines shown in figure 
types 1 and 2. 
Type 4 shows how ~e voHage ~ ~e ~entr~ ~~ure' shms ~~~~~~~~~~~~~~~~'~~~_~_M~~~~~~~~~~~~~~~~~~~~~~~ 
with varying parameter. Type 1 Shows: on the right, the transmittance as a function of Type 2 Shows the gradient of the phase difference curves left 
Type 5 shows how the phase difference of the 'central feature' voltage, this information is available experimentally; and, on hand side of Type 1. This can be used to obtain a b~tter 
shifts with varying parameter. the left, the phase difference against voltage. The appreciation of the asymmetry of the phase and transmittance 
N.B. The definition of the central feature is defined on the next transmittance curves are the phase difference curves acted on curves. 
page. by equation (1 .33), i.e. T = (1- cos ~<P )/2 
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Type 3 Shows what is happening inside the cells, both in 
terms of tP and (), and can therefore lead to an understanding 
of why the observed trends occur. 

0.'8 

0.., 

> 
>' 0." 

0.., 

I 
o.·Jo n .• 24.0 " .. 28.0 311.O 

Cd Thicw" (pm) 

Type 4 Shows the voltage shifr, also called the flexoelectric 
voltage shift, of the central feature as a function of the variable 
parameter. In so doing these graphs demonstrate that there 
are other oarameters that can influence this voltaae shift. 
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Type 5 Shows the phase shift of the central feature as a 
function of the variable parameter. Thus showing how varying 
a parameter changes the effective birefringence of the cell at 
the central feature. 
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On this page, how the details of individual graphs and figures 
are inter-related is shown more clearly. Th is is shown by 
arrows pointing from one feature of a particular graph and how 
it is then transferred/depicted on another graph. (Note that the 
figures are no longer in the same order as on the previous 
page) 
Type 1 is related to the amount that ~<l> of the central feature 
changes from one curve to the next (see key on type 1 to get x 
axis on type 5). Type 3 is related to the lines with circles on 
them, in types 1 and 2: the red lines of types 1 and 2 map to 
set (a), green to set (b), and cerise to (c). The individual circles 
in types 1 and 2 pertain to individual lines in type 3; these can 
be found by reading the voltage off the x axis in either type 1 
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Type 5 This shows the L\<l> shift of the central feature with 
changes in an input parameter (see black arrow in figure type 
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Type 4 This shows the voltage shift of the central feature with 
changes in an input parameter (see black arrow on figure type 
2) . The voltages for this graph are taken by reading off when 
d(~<l» /dV=O in figure 2. N.B. The central feature is defined by 
the voltage at which d(~<l» /dV=O . 
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Type 2 The most important feature here iSlfielocation of 
d(~<l»/dV=O, as it defines the central feature: it is the voltage 
of the turning point in figure type 1. A second use for this graph 
(equally true for figure type 1); is demonstrated by example: 
the cerise arrow shows how particular circled points on these 
curves are related to an individual line in fiaure tvoe 3. 
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1.9.1.2 Varvin!! cell thickness, D 
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Figure (1.9.1.2.1) Transmittance and phase differences, ~<I>, versus voltage 
for varvina cell thickness, D. 
Note that the trough of the blue ~<I> curve (left), 0 = 26 J..lm, corresponds to an 
even number of n; we see this ~<I> corresponds to a minimum in transmittance 
(right). By contrast, the trough of the purple ~<I> curve (0 = 28 J..lm) occurs at 
approximately an odd number of n, and so the magnitude of its transmittance in 
its central region is close to 1. 
From the phase difference versus voltage curves, it can be seen that increasing 
cell thickness increases the phase difference for all voltages and that all the 
~<I> curves appear to be roughly the same shape (c.f. the red ~<I> curve of 
0= 20 um with that of the cerise ~<I> curve of 0 = 30 um). To find out more 
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Figure (1.9.1.2.2) Rate of change of phase difference ~<I> against voltage 
for varvina cell thickness, D. 
It is seen here that the d(~<I»/dV curves are not identical for all cell thicknesses, 
D. While in the region -1 to +3 V the gradients of the curves are very similar, 
outside of this region varying cell thickness changes the gradient of the curves; 
we find that increasing 0 decreases the gradient of these ~<I> for positive 
voltages and increases it for negative voltages (c.f. red and cerise curves). In 
doing so, it appears that increasing cell thickness increases the rotational 
symmetry of these curves, and therefore the reflection symmetry of the phase 
and transmittance curves of the previous figure (1.9.1.2.1). For an example of 
this, compare the cerise transmittance curve for 0 = 30 J..lm in Fig (1.9.1.2.1), 
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I conclusively if the curves are the same shape, merely shifted by ,1<P, it is D = 20 J.lm. To find an explanation for this trend examine the Band ¢curves 
constructive to examine the gradient of ,1<p curves, with respect to voltage, as if shown in the figure (1.9.1.2.3). 

I all the curves were the same shape d(.1<P)/dV curves would all be identical. 
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The red lines of figures (1.9.1.2.1) and (1.9.1.2.2) correspond to the pair of (a) 
graphs in this figure; similarly green maps to (b) and cerise to (c). The first thing to 
note, which is obvious, is that the curves of set (a) stop at z = 20 Jlm; likewise, (b) 
terminates at z = 24 Jlm; and (c) at z = 30 Jlm, i.e. the Bcurves terminate at z = D . 

The reason for the steepening of the 1l<1> curves for positive voltages, seen in 
figures (1.9.1 .2.1) and (1.9.1.2.2), can be appreciated by comparing the black B 
curves of graph (a) with those in graphs (b) and (c). In the B graph of (c) the angle 
of the director at z = 0 Jlm is fairly well behaved, remaining in the region 80 to 90°; 
however, this is not so for the thinner cells where the black curves (positive 
voltages) stray further from this region. 

By contrast, the shallowing of the 1l<1> curves for negative voltages are explained 
by examining what happens to the red curves (negative voltages) when 0 is 
reduced, then these negative voltage curves are more 'bowed' than their positive 
voltage counterparts; this trend is more marked as 0 is reduced. 

Distance 2 (,.m) Distance 2 (,.m) Both of these trends contribute to the increasing asymmetry of the transmittance 
Figure (1.9.1.2.3) Shows director profile, B, and electrical potential, ¢, curves with decreasing cell thickness. It should also be noted that, while each ¢ 
versus distance, z, for varying cell thickness, D: graph has lines terminating at similar voltages to those in the other ¢ graphs, the 

(a) D = 20 Jlm gradients of the ¢ curves in (a) are greater than those in (c), i.e. the electric field 
(b) D = 24 Jlm strength within a thin cell is greater in the thinner cells than for a thicker cell with 
(c) D = 30 Jlm the same voltage across it. 
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Figure (1.9.1.2.4) Shows voltage shift against cell thickness, D. Figure (1.9.1.2.5) Shows phase difference shift against cell thickness, D. 

The voltage shift of the central feature increases slightly with increasing thickness. In contrast, the change in phase difference is much more marked, being roughly 
This increase is roughly +0.07 V per 10 ~m, which is small. There is a 'kink', at 3%1t/10~m. The explanation of this is simply that increasing the cell thickness 
0= 24 ~m, which may be dismissed as insignificant as the y-axis is very sensitive. increases the effective birefringence of the cell. Thus, by increasing the cell 

thickness, it is possible to cycle up through different wave plate values. 

Summary of varying cell thickness, D 
For the present system the voltage shift of the central feature is roughly +0.07 V per 10 Jlm and the shift in the phase difference of the 
central feature is roughly 3%n per 10 Jlm. More generally, increasing the cell thickness makes the cell's response more symmetrical. 
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Figure (1.9.1.3.1) Shows transmittance and phase difference, ~<I>, against 
voltaae for varvina birefrinaence, ~n 
Here, almost exactly the same trends that where observed for increasing cell 
thickness are seen when the birefringence, ~n, is increased. This equivalence is 
due to a material's innate birefringence can be mimicked by a cell's effective 
birefringence as viewed externally, due to cell thickness: if the cell thickness is 
increased or the innate birefringence of the material is increased, then the 
effective birefringence of the cell will similarly grow. This is better exemplified in 
the following graph. 
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Figure (1.9.1.3.2) Shows the rate of change of phase difference, i.e. 
d(~<I»/dV, against voltage for varying birefringence, ~n 
All these curves are identical in shape, where the only changes are that they are 
scaled according to the size of ~n. This is because increasing ~n increases the 
rate of change of MD. The reason that this can be stated so categorically is the 
same reason why the graphs with the ¢ and () curves for this system have not 
been included, i.e. the value of /).n is not instrumental in finding solutions for the 
PDEs, and therefore the ¢ and () solution curves are unaffected by changes in 
/).n. 
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Figure (1.9.1.3.3) Shows voltage shift of the central feature against Ill,. 

The voltage shift of the central feature found from figure (1 .9.1 .3.2) and 
displayed here in figure (1 .9.1.3.3) is 0.0016 V per 0.1 (change in ~n) , which is 
miniscule. 

Summary of the effects of varying birefringence, dn 
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Figure (1.9.1.3.4) Shows ~<l> shift of the central feature against !!Jl. 

The change in the phase difference, ~<l>, of the central feature is 4Y21t per 0.1 
(~n), which is a significant increase: the effect due to a 0.1 change in ~n is greater 
than the effects seen when cell thickness was increased by 10 Jlm. 

Increasing ~n has similar effects to increasing the cell thickness. However, it does not change the director or electric field profiles and 
therefore is just a shifting and scaling of the ~<l> curves. 
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1.9.1.4 Varying elastic constants, Ku and/or IG3. 
There are two elastic constants relevant to this system. These are the splay and bend coefficients K11 and K33 respectively. Here we look at 
three scenarios. We see how the cell behaves when: K11 is varied while K33 is held constant; K33 is varied while K11 is fixed; and K11 is made 
equal to K33, and they are varied together. In addition, preliminary investigations showed that the responses of the system to these changes 
depended on the magnitude of e, and for that reason we carry out this process twice, i.e. for both large and small e (-5x10-11 C m-1 and -
1 x10-11 C m-1 respectively). Firstly, we examine the behaviour of the system when e is small. 
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1.9.1.4.1 Varying elastic constants, K11 and/or IG3 when nexoelectric coefficient small, e = -lxl0-11 em-I. 
1.9.1.4.1.1 Varvin!! the bend coefficient, K33, while the splay coefficient is held constant, Kll = 7xl0-12 N. 
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Figure (1.9.1.4.1.1.1) Shows transmittance and phase difference, ~<l>, 
aaainst voltaae for varvina K33 (while e is small 
From this phase difference graph (in figure (1 .9.1.4.1.1.1)) two main points can be 
noted. Firstly, note that increasing Ka3 decreases the phase difference curve (for 
all voltage) but that this shift becomes less pronounced as Ka3 continues to 
increase. Secondly, the red curve's (Ka3 = 3x10·12 N) turning point (in the ~C1> 
graph) is sharper than for the other curves. This is borne out by the next graph 
(figure (1.9.1.4.1.1 .2)) 
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Figure (1.9.1.4.1.1.2) Shows the rate of change of phase difference, ~<l>, 
aaainst voltaae for varvina K33 (while e is small) 
Between + and - 2 volts, i.e. in the central region, the red curve 
(K33 = 3x10·12 N) is steeper than the other curves (Ka3 > 3x10·12 N). Outside this 
voltage range, however, this trend in the gradient of ~C1> reverses. This 
combination results in a curious feature in figure (1.9.1.4.1.1.1), i.e. all the phase 
difference curves appear to be parallel to each other, never crossing one another. 
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Figure (1.9.1.4.1 .1.3) Shows how Band ¢ vary with respect to z, for varying K33 

(while e is small): 
(a) K33 = 3x1 0-12 N 
(b) K33 = 7x10-12 N 
c) K33=13x10-12 N 

I Here we are able to see how varying the elastic constant K33 changes 
the director profile across the cell. 

The top two panels (Le. (a)) correspond to Ks3 < K11 and the bottom 
two panels (Le. (c)) show what happens when K33 > K11. In graphs (b), 
where K11 = Ks3, the zero voltage curve (green curve) in the B graph is 
a straight line between 900 and 20 at z = 0 and 0 Jlm respectively. 
However, when Ks3 is smaller than K11, graph (a), the director profile 
follows a path where B is generally smaller than had been the case 
when the Ks had been equal. Whereas, when K11 is smaller than Ks3, 
graph (c), the director profile follows a path for which ~z) is generally 
greater than in graph (b) . 

Examining the B curves near z = 0 Jlm we see that, when Ks3 is small, 
B varies more rapidly with respect to z than when Ks3 is large. The 
converse is also true for z close to 0, although this trend is slightly less 
marked. 
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Figure (1.9.1.4.1.1.4) Shows voltage shift of the central feature against 1<33 
(while e is small) 
It is seen here that the changes in the observed voltage shift are small, only being 
roughly -0.015 V per 1.0x10·11 N. However, it should also be noted that this is not 
a straight-line relationship: the curve becomes gradually steeper as K33 increases. 
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Figure (1.9.1.4.1.1.5) Shows ~<I> shift of the central feature against K33 
while e is small) 

As with figure (1.9.1.4.1.1.4), this relationship is not linear but, in contrast to 
figure (1.9.1.4.1.1.4), this curve starts to level out as K33 increases. Over the 
range examined here, the change seen in ~<D is -1.7n per 1.0 x 10-11 N, which is 
uite sianificant. 
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1.9.1.4.1.2 Varvin1! the svlav coefficient, Ku , while the bend coefficient is held constant, K33 = 7xl0-12 N 
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Figure (1.9.1.4.1.2.1) Shows transmittance and phase difference, .1<1>, 
aaainst voltaae, for varying K11 (while e is small) 
Again, it can be seen that an increase in an elastic coefficient results in a 
shallowing of the phase and transmittance curves. However, unlike when 1<33 is 
increased, increasing K1 1 increases the phase difference of the central feature. 
This combination of trends means that the phase difference curves actually cross 
one another (rather than being parallel, as was the case when 1<33 was varied 
instead). In fact, all this leads to the impression that varying K33 exerts greater 
influence on the system than K 11 . This view is superficially confirmed when figure 
(1.9.1.4.1 .2.2) is compared to figure (1.9.1.4.1 .3.2) because outside of the central 
region of this figure (above) the transmittance curves look more alike (Le. their 
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Figure (1.9.1.4.1.2.2) Shows the rate of change of phase difference, .1<1>, 
aaainst voltage, for varying K11 (while e is small) 
We see in this figure that the observation of 1<33'S apparent dominance in 
dictating the shape of the transmittance curves was an artefact of the location of 
where the phase difference curves cross one another in figure (1.9.1.4.1.2.1). 
However, we see here that changing Kll actually has a more significant effect 
on the rate of change of MI> than 1<33 had. Reducing Kll vastly changes the 
rate of change of l1<1>, especially when this graph is compared with its parallel 
for varying 1<33 (Le. figure (1.9.1.4.1.1.2)). This difference only subsides at 
voltages of larger magnitudes, Le. > 1+1-4 VI. The reason for this can be seen in 
the next set of araohs. 
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I maxima and minima generally occur at similar voltages) than they did in figure I 
(1.9.1.4 .1.1.1) where the curves are markedly different across the whole voltage 
range. 

CHAPTER' 
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Figure (1.9.1.4.1.2.3) Shows () and ¢ against z for varying splay elastic constant, 
K11(while e is small) 

(a) K11 = 3x10-12 N 
(b) K11 = 7x10'12 N 
(c) K11 = 13x10-12 N 

While changing Kll changes the () curve for zero volts (green curve), 
the most pronounced change in the () graphs, between the three sets 
(a) to (c), occurs for larger positive and negative Voltages. It is seen 
that increasing K11 has the effect of making the () curves more tightly 
spaced, which corresponds to the shallowing of the d(d<l»/dV curve in 
figure (1.9.1.4.1.2.2). This can be seen in the (a) graphs 
(for K11 = 3x10·12 N) i.e. the separation between () curves is greater 
than say for the K11 = 13x10·12 N (i.e. the (c) graphs), that is to say that 
the system changes more rapidly when K11 is small. 
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Figure (1.9.1.4.1.2.4) Shows voltage shift of the central feature against K11 

(while e is small) 
Increasing K11 has the effect of decreasing the magnitude of the flexoelectric 
voltage shift. The voltage shift of the central feature is very small, being only 
-0.005 V per 1 x1 0.11 N. The response in this region is nearly a straight line 
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Figure (1.9.1.4.1.2.5) Shows .1<1> shift of central feature against K11 (while e 
is small) 
The relationship between K11 and .1<1> is not a linear one but asymptotes as K11 

increases. It should also be noted that, in contrast to the small changes in the 
voltage shift with varying K11, the .1¢ of the central feature shifts a significant 
2.1n/1x10·11 N. As a result of this approximately 2n phase difference we see, if 
we return to figure (1.9.1.4.1.2.1), that the transmittance curves for 
K11 = 3 and 13 x10-12 N (red and cerise respectively) exhibit the same shape for 
their central features. 
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1.9.1.4.1.3 Varvinf! the splav and bend elastic coefficients such that ~1 = IG3 
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Figure (1.9.1.4.1.3.1) Shows transmittance and phase difference, L\<l>, 
aaainst voltaae for varvinQ K11 and K33(while e is small 
A shallowing of all the phase difference curves is observed when the elastic 
constants are increased, c.f. the red curve of K11 and 
K33 = 3x10·12 N (which is steep), with the cerise curve of K11 and 
K33 = 13x10·12 N (which is comparatively shallow). However, keeping the two 
elastic constants equal appears to have the effect of keeping the phase 
difference of the central feature roughly constant. 
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Figure {1.9.1.4.1.3.2} Shows the rate of change of phase difference L\<l> 
aaainst voltaae for varvina K11 and K33 {while e is small} 
It should be noted that these curves look remarkably similar to those of the Ks3 
constant set (see figure (1.9.1.4.1.2.2)). This is further evidence that K11 is the 
dominant elastic constant parameter in dictating the shape of the phase 
difference curve, whereas K33 appears to be the more dominant of the two 
elastic constants with regards to the location of the curve (re: L\<l». However, 
the influence of Ks3 becomes more apparent when the magnitude of the voltage 
is greater than 3 V: the more pronounced crossing over of curves that had been 
observed in the K11 constant curves (see figure (1.9.1.4.1.2.2)) resurfaces here. 
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~ 
5.0 I I Here it can be seen that the zero voltage Bcurves (solid green lines) 
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Figure (1.9.1.4.1.3.3) Shows Band ¢J against z for varying splay and bend elastic 
constants, K11 = K33 (while e is small) 

(a) Ks = 3x10-12 N 
(b) Ks = 7x1 0-12 N 
(c) Ks = 13x10-12 N 

for al/ three graphs look similar, al/ being roughly straight lines between 
6{O) and 6{O). This explains why there is negligible change in the Ll<l> 
of the central feature when the elastic constants are varied in this 
manner (c.f. the Ll<l>s at the turning points of the red and cerise curves 
from graph (1.9.1.4.1.3.1)). 

However, the B curves for larger magnitude voltages become more 
closely spaced when the elastic constants are increased. This 
explains, once again, the shallowing observed in the phase difference 
curves, with increasing Ks, i.e. increasing the elastic constants 
increases the energy required to deform the system and therefore this 
reduces the effect an electric field will have. 

73 



VARYING ELASTIC CONSTANT WHEN THE FLEXOELECTRIC COEFFICIENT IS SMALL CHAPTER I 

O. lalO 

0.1 070 

0.1060 

?: 
• .:J 

0.1050 

0. 1004 0 

0.1030 
3.0 5.0 7.0 9.0 11.0 13.0 

K's (, 10-11 N) 

Figure (1.9.1.4.1.3.4) Shows voltage shift against elastic constants, K11 = K33 

(while e is small). 
Once again, we see that changing the elastic constants causes only small 
changes in the voltage shift of the turning point of the phase difference curves 
(also referred to as 'the central feature'). The size of th is shift is only -0.005 V per 
1x10-11 N, and again, is a linear relationship. 
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Figure (1.9.1.4.1.3.5) Shows ~<1> shift against elastic constants, K11 = K33 

(while e is small). 
Here we see a small , but non-negligible, shift of 0.34n: per 1x10-11 N in the L1<1> of 
the central feature of the curves. 

Summary of varying elastic constants when flexoelectric coefficient, e, is small. 
When the flexoelectric constant is small the transmittance l ~<I> and therefore the d(~<I»/dV curves all exhibit high degrees of symmetry and 
are relatively steep curves. The d(~<I»/dV curves for K l l = K33 look remarkably similar to those of the K33 constant set (see figure 
(1.9.1.4.1.2.2)). This is evidence that Kll is the dominant elastic constant parameter in dictating the shape of the phase difference curve. It 
can be seen by comparing figures (1.9.1.4.1.1.5), (1.9.1.4.1.2.5) and (1.9.1.4.1.3.5) that Kll and K33 appear to exert roughly equal and 
opposite influences on the location of the central feature of the phase difference curves. Howeverl the contribution from Kll is again slightly 
larger than that from K33. That is to say that this system appears to be more sensitive to splay deformations than it is to bend deformations. 
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1.9.1.4.2 Varying the elastic constants when f1exoelectric coefficient is large, e = -5x10-l1C-m-1 

1.9.1.4.2.1 Varvin~ the splay and bend elastic coefficients such that KJI = K33 
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Figure (1.9.1.4.2.1.1) Shows transmittance and phase difference, ~<l>, against 
voltaae for varvina elastic constants, Ks, for larae e. 
All the transmittance curves have roughly the same shape of the central feature. 
By examining the phase difference curves it is seen that, for zero and positive 
voltages, these curves are nearly indistinguishable. However, increasing the elastic 
constants decreases the phase difference for negative voltages. This can be seen 
in more detail in the figure (1.9.1.4.2.1.2). 
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Figure (1.9.1.4.2.1.2) Shows the rate of change of phase difference, ~<l>, 
aaainst voltaae for varvina elastic constants, K, for larae e. 
Generally, the effects of increasing the elastic constants is to decrease the rate 
of change of ~<l>, for example the red curve of Ks = 3x10-12 N is steeper than 
the cerise curve of Ks = 13x10-12 N. This effect is most marked between -3 and 
o V. This trend starts to reverse when the magnitude of the voltages becomes 
greater than ±4 V, but this effect is not large. 
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The reason for the general (though small) shallowing of the .1<1> with 
increasing Ks in the previous two graphs appears to be that the e 
curves in figure (1.9.1.4.2.1.3) deviate less from their zero voltage e 
curve (green) when the elastic constants are increased. To see this, 
compare the e curves in graph (a) with those of the e curves in graph 
(c) of figure (1.9.1.4.2.1.3) and notice how, for the latter, these curves 
are much more closely spaced than when the elastic constants are 
small. 
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Figure (1.9.1.4.2.1.4) Shows voltage shift against elastic constants, K, for 
large flexoelectric constant, e. 
Increasing K11 and 1<33 has the effect of decreasing the flexoelectric voltage shift. 
This shift is a reduction of 0.14 V over the range 3x10-12 N $ K $ 13x10-12 N. This 
relationship is not linear. 
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Figure (1.9.1.4.2.1.5) Shows ~<l> shift against elastic constants, K, for large 
flexoelectric constant, e. 
Increasing the elastic constants K11 and 1<33 has the effect of increasing the phase 
difference of the central feature by 0.27Sn over the range 
3 x 10-12 N $ K $ 13x1 0-12 N. This is a small effect. 
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1.9.1.4.2.2 Varvint! the splay coefficient, ~h while the bend coefficient is held constant, K33 = 7xl0-12 N 
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Figure (1.9.1.4.2.2.1) Shows transmittance and phase difference Ll<l> against 
voltaae for varvina K11 while e is larae. 
At large voltages all the curves are similar. In the central region, however, 
increasing the splay elastic constant, Kll, increases the phase difference. To see 
this compare the red curve, of K11 = 3x10·12 N, with the cerise curve, of 
K11 = 13x10·12 N, in the central region in the phase difference graph, on the left 
hand side of fiaure (1.9.1.4.2.2.1). 
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Figure (1.9.1.4.2.2.2) Shows the rate of change of phase difference Ll<l> 
aaainst voltaae for varYing K11 while e is larae. 
Increasing Kll decreases the rate of change of ~<l> in the central region, but has 
little effect on it beyond +/- 5 V. However, looking at figure (1.9.1.4.2.2.2.) it is seen 
that the effects of changing Kl1 are significantly reduced from when the 
flexoelectric coefficient was small, see figure (1.9.1.4.1.2.2). 
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CHAPTER I 

It can be seen from the solid black curves (approximately equal to +5 
V) that all three B graphs appear to be the same, as do the -3 V 
curves, red dotted curve (second after the solid red curve). The 
effects of this can be seen in figure (1.9.1.4.2.2.1), where the lines 
coalesce at -3 V and +5 V, whereas, the zero voltage B curve gently 
veers towards smaller values of B with increasing Kll (between the 
two relatively fixed end points), thus resulting in a ~<1> shift in the 
central region. 

At z = 0, however, the distortions are a combination of bend and 
splay; increasing either or both elastic constant will result in a 
'tighter' formation of curves in the region of z = 0, i.e. the system is 
more rigid in this region than before. 
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Figure (1.9.1.4.2.2.4) Shows voltage shift against splay elastic constant K11 

when flexoelectric coefficient, e, is large. 
Increasing Kl1 decreases the flexoelectric voltage shift by 0.025 V over the range 
3x1 0-12 N ~ K ~ 13x1 0-12 N. 
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Figure (1.9.1.4.2.2.5) Shows il<I> shift against splay elastic constant K11 

when flexoelectric coefficient, e, is larae. 
Increasing K11 increases the phase difference of the central feature by 1.2n over 
the range 3x10-12 N ~ K ~ 13x10-12 N. This change is not a linear relationship in 
this range, instead the rate of change decreases with increasing splay elastic 
constant. 
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VARYING ELASTIC CONSTANT WHEN THE FLEXOELECTRIC COEFFICIENT IS LARGE CHAPTER I 
1.9.1.4.2.3 Varvin!! the bend coefficient, K33, while the splay coefficient is held constant, KlJ = 7xlO-12 N. 
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Figure (1 .9.1.4.2.3.1) Shows transmittance and phase difference, ~<I> , against 
voltage for varying bend elastic constant K33 when flexoelectric coefficient, e, 
is larae. 
Especially for the larger values of 1<33, it can be seen that changes in ~ have little 
effect on the shape of the transmittance curves (right hand side). Comparing the 
blue, violet and cerise transmittance curves, (right hand side) where Kl1 = 9, 11 , 
and 13 x1 0-12 N respectively, it can be seen that all these transmittance curves are 
roughly the same. 
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Figure (1.9.1.4.2.3.2) Shows the rate of change of phase difference, ~<I>, 
against voltage for varying bend elastic constant K33 when flexoelectric 
coefficient, e, is larae. 
Between -2 and +3 V all these graphs have roughly the same gradient. Small 
changes from this occur most notably above 1+ and -3 VI. 
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Figure (1.9.1.4.2.3.3) Shows () and ¢ against z for varying bend elastic constant K33 

when flexoelectric coefficient, e, is large. 
(a) K11 = 3x1 0.12 N 
(b) K11 = 7x10-12 N 
(c) K11 = 13x1Q-12 N 

I Here we see that increasing Ks3 reduces the bend deformations at the 
homeotropic alignment layer for positive applied voltages: the finite 
nature of the anchoring energy makes this possible. Notice that the 
value of () at z = 0 for the solid black curve (+4.5 V) falls from 80° in 
(a) to circa 70° in (c). 

Again, we see that at z = 0 the distortions are a combination of bend 
and splay. This can be stated because increasing either or both 
elastic constant results in a 'tighter' formation of curves in the region 
of z = 0, i.e. the system is noticeably more rigid in this region than 
before, when either elastic constant is increased. 
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Figure (1.9.1.4.2.3.4) Shows voltage shift against bend elastic constant K33 

Increasing elastic constants makes the system more rigid, so the voltage shift is 
reduced. However, this is not a particularly large effect, being only -0.105 V over 
the range 3 to 13 x1 0-12 N. 
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Fiaure (1.9.1.4.2.3.5) Shows ~<I> shift aaainst bend elastic constant K33 

There is a change in the phase difference of -0.97t in the central feature over the 
same 1x10-11 N range. Further increases in the elastic constant have ever 
decreasing effects on the system. I.e. this is not a linear relationship but instead 
the curve starts to asymptote towards some value of ~<l> with increasing splay 
elastic constant. 

Summarising the effects of varying the elastic constants, K11 and Ka3, for high and low flexoelectric coefficient, e. 
The first thing to note about all the curves in section 1.9.1.4.2 is how much wider they are than their smaller flexoelectric coefficient 
counterparts (section 1.9.1.4.1). The second thing to note, in addition to their increased voltage shift (from when 
e = -1 to -5 X10-11 C m-1), is the marked reduction in their symmetry. In section 1.9.1.4.1, when e was small, we saw that changing Ks could 
change the phase difference curves profoundly, both in their shape and ~<l> of the central feature, depending upon whether Kll or K33 was 
varied. Here, however, that same trend is not observed, instead the flexoelectric effect dominates. 
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VARYING THE HOMEOTROPIC ANGLE OF EASY AxIS, ~easy CHAPTER' 

1.9.1.5 Varying angles of easy axes. 
1.9.1.5.1 Homeotropic anchorinl! anl!Je of easy axis, at z = 0 
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Figure (1.9.1.5.1.1) Shows transmittance and phase difference, ~<I>, against 
voltaae for varvina ~eas 
While all the phase difference curves are similar, there are two main changes that 
decreasing ~easy has: firstly, there is an increase in ~<I> of the central feature and, 
secondly, the central feature has moved towards negative voltages. 
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Figure (1.9.1.5.1.2) Shows the rate of change of phase difference, ~<I>, 
aaainst voltaae for varvina ~eas 
Note that the gradients are very similar up to circa +2 V. At around 4 V, the 
curves for smaller ~easy reach a peak in their gradient, resulting in a slight 
levelling off in the phase difference graphs of figure (1.9.1 .5.1.1). Note also that 
increases in the homeotropic angle of easy axis increases the level of asymmetry 
of these curves. 

N .B. Because the changes in the e and ¢ curves could be anticipated and considered trivial, figure type 3 (that shows this information) has not been 
included. 
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Figure (1.9.1.5.1.3) Shows voltage shift against homeotropic angle of easy I Figure (1.9.1.5.1.4) Shows ~Cl> shift against homeotropic angle of easy axis, 
axis, ~easy 
Decreasing OJeasy from 900 to 80 0 reduces the flexoelectric voltage shift by 0.14 V. 

~eas 
Decreasing OJeasy from 900 to 800 increases the phase difference of the central 
feature by 1.1n. This is why we see in figure (1.9.1.5.1.1) that, respectively, the 
transmittance curves of 900 and 80 0 have maxima and minima at their central 
features 
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1.9.1.5.2 Homo!!eneous anchorin!! an!!le of easy axis, at z = D 
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Figure (1.9.1.5.2.1) Shows transmittance and phase difference, ~<I>, against I t-'gure (1.~.1.:>.2.2J :snows tne rate Of cnange of phase difference, ~<I>, 
voltaae for varvina homoaeneous anale of easy axis, Boeas 
At large voltages, there are little variations in phase differences between the 
curves. At smaller voltages these differences between curves are greater: 
increasing Boeasy reduces the phase difference of the central region by roughly 
one wavelength: note how the transmittance at the central feature of the cerise I N.B. Again, as differences between the Bcurves did not reveal anything profound 
curve is roughly zero compared to, roughly, one for the red curve (Boeasy = 12° they have been excluded. 
and 2° respectively). 
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Figure (1.9.1.5.2.3) Shows voltage shift against homogeneous anchoring 
angle, Boeasy 

Increasing the angle of easy axis at the homogeneous alignment layer increases 
the voltage shift of the central feature by 0.021 V over the range 2° and 12°, 
which is very small. 
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Figure (1.9.1.5.2.4) Shows ~<I> shift against homogeneous anchoring angle, 
Boeas 

Increasing the homogeneous angle of easy axis, Boeasy, from 2° to 12° decreases 
~<I> of the central feature by 1.2n. It should be noted that if ~& was of an opposite 
sian, the sign with increasing BOeasy of this ~<I> shift, would also be changed. 
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VARYING THE FLExOELECTRIC COEFFICIENT, 11=1111 +Baa CHAPTER' 

1.9.1.6 Varying t1exoelectric coefficient, e (= el1 + e33). 
In this section the influences of changes in the flexoelectric coefficient, e, on HAN cells are investigated. However, the picture can be 
skewed by varying the magnitude of the homeotropic anchoring energy, Am. For this reason three different homeotropic anchoring energies 
are investigated: firstly, large anchoring energy, A6D = 1.2x10-4 J m-2; then, medium anchoring energy, A6D = 1.2x10-5 J m-2; and finally, small 
anchoring energy, A{j) = 1.2x 1 0-6 J m-2. By examining the combination of e and A6D in this order, it is possible to identify the contributions of 
each. 
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VARYING THE FLEXOELECTRIC COEFFICIENT, e, WHEN HOMEOTROPIC ANCHORING ENERGY, AgO, Is HIGH CHAPTER I 

1.9.1.6.1 Varvin~ nexoelectric coefficient, e, when homeotropic anchoring energy is 1aree, AfAJ = 1.2xl0-4 J m-2
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Figure (1.9.1.6.1.1) Shows transmittance and phase difference ~<I> against 
voltaae for varvina e when At» is larae. 
Here we see that the transmittance curves are symmetric. However, there is 
also a voltage shift when e is non-zero. This shift is of the opposite sign to that of 
e, c.f. the cerise curve of e = 0 C m,l with the red curve of e = -5x10,ll C m·1 to 
see all these effects. N.B. it should be noted that changing the sign of e reflects 
these curves about the 0 V axis. 
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Figure (1.9.1.6.1.2) Shows the rate of change of phase difference ~<I> 
aaainst voltaae for varying e when At» is larae. 
Note also that, as the magnitude of e increases, the gradient of the phase 
difference curves decreases, c.f. the cerise curve of e = 0 C m,l with the red 
curve of e = -5x10·11 C m-1 to see all these effects. The e = -5x10-11 C m-1 
transmittance curve in figure (1.9.1.6.1.1) is wider than the 
e = 0 C m-1 transmittance curve. 
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VARYING THE FLEXOELECTRIC COEFFICIENT, e, WHEN HOMEOTROPIC ANCHORING ENERGY, AqO, Is HIGH CHAPTER I 
j The reason for the decreasing gradient of the phase difference curves with 
increasing e can be seen in the () curves of figure (1.9.1.6.1.3). The () curves in 
(a) part of this graph (corresponding to e = -5x10-ll C m-l ) show comparatively 
little change with changing voltages (see (¢) for key), when compared to those 
in the (c) graph (corresponding to e = 0 C m-l ). 
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Figure (1.9.1.6.1.3) Shows Band ¢against z for varying e when A~ is large 
(a) e = -SX1Q-ll Cm-1 

(b) e = -3x1Q-ll Cm-1 

(c) e= OX1Q-ll Cm-1 

It should be possible to examine the turning point of the previous two figures by 
examining the changes in the e curves away from their zero voltage (green) e 
curve. However, it should be noted that the ¢ separation between the curves 
shown here is slightly larger than the size of the flexoelectric voltage shift. This 
is therefore an inappropriate method for evaluating turning pOints on graphs of 
types 1 and 2 . 

90 



VARYING THE FLEXOELECTRIC COEFFICIENT, e, WHEN HOMEOTROPIC ANCHORING ENERGY, Aq01 Is HIGH CHAPTER' 

While we did not include the curves for positive e in figures (1.9.1.6.1.1) to (1.9.1.6.1.3), because they were merely reflections about 0 Vof 
their negative counterparts, here the voltage shift and phase shift data for both signs of e are now included. 
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Figure (1.9.1.6.1.4) Shows voltage shift against flexoelectric coefficient, e, 
when Altl is large. 
It can be seen that when e = 0 C m·1 the flexoelectric voltage shift is zero, whereas 
when e is non-zero the flexoelectric voltage shift is directly proportional to e: 
Vshift = ex (-1.1 x1 0+10) in units of V. 
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Figure (1.9.1.6.1.5) Shows ~<I> shift against flexoelectric coefficient, e, when 
Altl is larae. 
Here we see that the ~<I> of the central region reaches a minimum when 
e = 0 C m-1 and that increasing e's magnitude by 5x10·11 C m-1 increases ~<I> by 
0.151t. The size of the response is dependent on the magnitude and not on the 
sian of e, i.e. the response has reflection symmetry. 
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1.9.1.6.2 Varyint! nexoelectric coefficient, e, when homeotropic anchoring energy is medium, AfA) = 1.2xl0-s J m-2
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Figure (1.9.1.6.2.1) Shows transmittance and phase difference ~<l> against 
voltaae for varvina e when Altl is medium. 
It can be seen clearly from the transmittance curves that increasing the 
flexoelectric coefficient results in a voltage shift of the curve. As before, this shift 
takes the opposite sign to the flexoelectric coefficient. However, unlike before, 
what can also be seen for these curves is that increasing the flexoelectric 
coefficient also introduces an asymmetry that is not present when e = 0 C m-l , or 
when Altl was large (see figure (1 .9.1.6.1.1 )). 
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Figure (1.9.1.6.2.2) Shows the rate of change of phase difference ~<l> against 
voltaae for varvina e when Altl is medium. 
The asymmetry, due to changes in the flexoelectric coefficient, is further visible in 
these curves, where only the cerise curve of e = 0 C m-l has perfect rotational 
symmetry about voltage = 0 V. All the other curves demonstrate increasingly 
asymmetric d(~<l»/dV curves with increasing magnitudes of e. For example, when 
e = -5x10·ll C m-l the curve becomes very steep around +4 V; this is coupled with 
a complementary shallowing of the d(~<l»/dV curve for negative voltages. That is, 
these curves have become asymmetric. 
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I The reason for the asymmetries seen in figures (1 .9.1.6.2.1) and 
(1.9.1.6.2.2) can be seen by comparing the Bgraphs from (a) to (c) in 
this figure. The (a) graphs correspond to e = -5x1O·ll C m·l , whereas 
the (c) graphs correspond to e = 0 C m·l . In (c) we see that both 
positive and negative B curves follow similar director paths (compare 
red and black curves). Whereas, in (a) we see that a small but 
significant change occurs at z = 0 Jlm for the positive (black) voltage 
curves: it appears that decreasing the anchoring energy has meant 
that, under certain circumstances, 6t is able to deviate from 6teasy 
with greater ease than previously (Le. § 1.9.1.6.1). 

As with § 1.9.1.6.1 we again see that increasing the magnitude of e 
decreases the spacing between e curves. For example, notice how 
much closer the e curves are to one another in (a) than they are in 
(c), in general across the cell (notable exception at z = 0 already 
discussed) . 
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These graphs (a/so recall figs. 1.9.1.6.1.4 and 5) extend their examination to include the voltage shifts that occur when the sign of e is 
changed. Again, the reason that this information was not included in the previous three figure types is that a change in sign of e only reflects 
data about the 0 V axes of their graphs. For example, in the case of figure (1.9.1.6.2.3) the ¢ curves would be reflected about the 0 V axis 
thus changing the 'key' to the {}curves, which are otherwise unaltered. 
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Figure (1.9.1.6.2.4) Shows voltage shift against flexoelectric coefficient, e, 
for A/:tl medium. 
The voltage shift across the range e = -5x10-ll C m·l to +5x10-ll C m-l is roughly 
-1 V, which is considerable but slightly smaller than when Am is large. It should 
also be noted that, while this graph still passes through zero when e = 0 C m-l , 

the linearity of the relationship, seen when Am was large, is slightly reduced 
here: the curve is startinQ to shallow for large +/- voltages. 
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Figure (1.9.1.6.2.5) Shows A<l> shift against flexoelectric coefficient, e, for 
A/:tlmedium. 
Again, recalling figure (1.9.1 .6.1.5), we see that there is reflection symmetry 
around the e = 0 C m-l axis and that A<l> of the central feature reaches a 
minimum at that point. A change in e from 0 to ±5x10-ll C m-l produces a 
change in the phase difference of the central feature of O.141t. 
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1.9.1.6.3 Varvin!! t1exoelectric coefficient, e, when homeotropic anchoring energy is small, AfA) = 1.2xlO-6 J m-2• 
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Figure (1.9.1.6.3.1) Shows transmittance and phase difference L\<l> against 
voltaae for varvina e when A~ is low. 
It can be seen clearly from the transmittance curves that increasing the 
flexoelectric coefficient results in a voltage shift of the curve. However, unlike in the 
case when the anchoring energy was higher, this shift takes the same sign as the 
flexoelectric coefficient. The asymmetry that was seen before (see section 
1.9.1.6.2) has now grown massively and is responsible for the differing sign of the 
voltage shift. Again it can be seen that no asymmetry exists when e = 0 C m-1• 

When e is equal to zero the phase difference is considerably narrower than its 
equivalent in the graphs of higher Am. 
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Figure (1.9.1.6.3.2) Shows the rate of change of phase difference L\<l> against 
voltaae for varying e when A~ is low. 
The e = 0 C m-1 curve still possesses rotational symmetry as it has done for the 
previous two anchoring energy scenarios; however, the other curves do not, they 
all have very steep curves above 0 V which then falls again and the systems 
reach saturation for positive voltages of about +3 V. This is demonstrated in the 
next figure. 
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Figure (1.9.1.6.3.3) Shows () and ¢ against z for varying flexoelectric coefficient, e, 
and A~ small. 

(a) e = -5x1o-ll C m·l 
(b) e = -3x1o-ll C m-l 
(c) e= OX10-ll C m-l 

I The reason for the saturation observed of the e ¢ 0 C m-l curves in 
figures (1.9.1.6.3.1 and 2) is made clear here. By examining graphs 
(a), where e = -5x10-ll C m-l , to (b), where e = -3x10-ll C m-l , we 
see that for positive voltages tt is not equal to tteasy. In fact, it is 
generally equal to 00

• 

Also in figure (1.9.1.6.3.1), it can be seen that the e = 0 C m·l curve 
was much narrower than it had been in figures (1.9.1.6.1.1) and 
(1.9.1.6.2.1), where the homeotropic anchoring energy was larger 
than it is here. This, too, can be attributed to the large movement of 
the director tilt angle at the homeotropic alignment layer: see the () 
curves of graph (c) and how, unlike its higher Am counterparts, tt« 

tteasy for all voltages. This allows the () curves to be more widely 
spaced than before and so leads to the greater rate of changes 
observed in figures (1.9.1.6.3.1 and 2) 
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Figure (1.9.1.6.3.4) Shows voltage shift against flexoelectric coefficient, e, 
when Altl is small. 
Comparing with figures (1 .9.1.6.1.4) and (1.9.1.6.2.4) we see that the gradient of 
this figure (above) has experienced a change in its sign with respect to its 
predecessors. This was due to the exaggerated response of Bat z = 0 for the 
voltage range -1 to +6 V. which has overcompensated. acting to move the 
flexoelectric voltage in the opposite direction from what it would usually be. While 
this curve still passes through zero for e = 0 C m·1, the range of flexoelectric 
voltage shifts are slightly larger than when AOl was large (c.f. + 1.3 V over 1 x1 0.10 

C m-1 for AOl = 1.2x10-6 J m-2 with -1.1 V over 1x10-10 C m-1 for 
AOl = 1.2x10-5 J m-2). Also this curve is significantly less linear than its 
redecessors. This trend if further investiaated later in sections 1.9.1.8. 
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Figure (1.9.1.6.3.5) Shows ~<l> shift against flexoelectric coefficient, e, when 
Altl is small. 
Not only is there a change of sign of the gradient of the flexoelectric voltage shift 
there is also a change in the sign of the gradient of this graph with decreasing AOl. 
While we still have symmetry, now, at e = 0 C m-1, there is a maximum instead of 
a minimum. Changing the flexoelectric coefficient from 0 to ± 5x10-11 C m-1 
reduces the phase difference of the central feature by 0.917t. 
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Summarising the effects of varying the flexoelectric coefficient and the homeotropic anchoring energy. 
When the anchoring energy is high the flexoelectric voltage shift is a linear function of the flexoelectric coefficient, e, and the transmittance 
curves are symmetric about their flexoelectric voltage shift. However, when the homeotropic anchoring energy is reduced the transmittance 
curves cease to be symmetric when e # 0 C m-1 and the linear relationship between e and Vshift is lost. In extreme cases, the sign of the 
flexoelectric voltage shift can be changed. However, the nature of the asymmetry (in 11& = negative systems) can be used to reveal the sign 
of e when ABJ is critically low. 
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1.9.1. 7 Varying the homeotropic anchoring energy, AfA) (for constant e) 
As has already been seen, reducing the homeotropic anchoring energy can have profound effects on the shape (among other things) of the 
transmittance curves. Also, examining the director profiles of the systems thus far raises the question what would happen if the sign of /1£ 
were changed? Obviously, an electric field would not distort a positive /1£ system the same way as it would a negative /1£ system. It is also 
clear that the most interesting scenario for examining positive /1£ systems will be for non-zero fiexoelectricity and varying homeotropic 
anchoring energy. For these reasons, comparisons between such systems are of great interest. In this subsection we examine varying AdJ, 
firstly for a negative /1& system (e.g. MBBA) with e = -5x10-11 C m-1, then for the same system but changing the sign of /1&. 

Figure types four and five are not included here. However, figure type four is used to examine MBBA and E7 (Le. opposing /1& systems) 
later on (in section 1.9.1.8.2) examining these systems more extensively, as the detail available at the current juncture does not reveal the 
true richness of this area. 
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1.9.1.7.1 Varvine AaJ for MBBA, with e = -5xl0-11 C m-1 and Li& neeative. 
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Figure (1.9.1.7.1.1) Shows transmittance and phase difference ~<l> against 
voltaae for varvina Am when ~& is neaative. 
It can be seen that decreasing the anchoring energy from 1 x 10-4 J m-2 results in 
asymmetries in the transmittance and phase difference curves, in addition to 
moving the flexoelectric voltage shift of the central feature in the opposite 
direction than the flexoelectric coefficient moves it. For example, a negative 
flexoelectric coefficient produces a positive flexoelectric voltage shift when Am is 
large; however, reducing the homeotropic anchoring angle moves the voltage 
shift in the same direction as the sign of the flexoelectric coefficient. To see this 
compare the red dashed line (large Am) with the cerise dotted line (very low Am) 
and see how the intermediate curves behave. 
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Figure (1.9.1.7.1.2) Shows the rate of change of phase difference ~<l> 

aaainst voltaae for varvina Am when ~& is neaative. 
When the anchoring energy is large, see the red dotted line of Am = 1x10-5 J m-
2, the curve is symmetric (about the Vshift). Whereas, when the anchoring energy 
falls the right hand side of this graph becomes distorted, making these curves 
asymmetric and moving the voltage shift back towards zero and eventually 
beyond zero, when Am < 4x10-6 J m-2 (blue curve). Note that all the curves for 
voltages < -2 V are almost indistinguishable. 
Recall that these curves would be reflected about the 0 V axis if the sign of e 
were changed. 
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Figure (1.9.1.7.1.3) ShowsOand ¢against z for varying A~ when Ilc is negative. 
(a) A~=1x1o-5Jm·2 
(b) A~ = 6x1 Q-6 J m·2 

c) A~ = 1x1Q-6 J m·2 

CHAPTER' 
The reason for the changes in figures (1.9.1.7.1.1 and 2) for positive 
voltages, yet the lack of changes for negative voltages, become 
clearer by examining the graphs in this figure (left). To demonstrate 
the latter of these two points examine the red curves in the 0 graphs. 
For each graph the curves of the negative voltages look almost 
identical: this is why the left hand sides of the graphs in figures 
(1.9.1.7.1.1 and 2) look so similar. 

By contrast, and demonstrating the first pOint, the 0 curves for 
positive voltage (black curves) look very different from graph (a) to 
(c). In (a), when Am is moderate, Oat z = 0 deviates only slightly from 
OJeasy. However, in (c), when Am is small, 0 at z = 0 deviates 
significantly from OJeasy, instead being roughly equal to 0°. 
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1.9.1.7.2 Varvin1!A60 for MBBA, with e=-5x10-11 C m-1 and A£Dositive. 
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Figure (1.9.1.7.2.1) Shows transmittance and phase difference ~<l> against 
voltaae for varvina A~ when ~E is Dositive. 
The first thing to be noted is that the phase difference curves are 'the other way 
up' from when ~& was negative. The other thing to be noted is that decreasing the 
anchoring energy, while initially having next to no effect (compared with when ~& 
was negative), can have devastating effects on the shape of the phase and 
transmittance curves once the anchoring energy has fallen. For example, once the 
anchoring energy falls to 4x10-6 J m-2 then the central turning point, which is 
referred to as the central feature, is lost. New turning points occur, however, these 
are distinctly separate from the central feature. 
N.B. if the f1exoelectric coefficient were smaller, then this picture would look 
different. This is touched UDon in section 1.9.2, when examinina E 
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Figure (1.9.1.7.2.2) Shows the rate of change of phase difference ~<l> 
aaainst voltaae for varvina A~ when ~E is positive. 
Reducing the anchoring energy initially has next to no effect, c.f. the red and 
orange curves of A6V = 1 x1 0-5 J m-2 and A6V = 8x10-6 J m-2 respectively. 
However, when A6V < 4x10-6 J m-2 (blue) the effects of reducing the anchoring 
energy have become alarming. While this system is initially slower to react to 
changing A6V (Le. slower to become noticeably asymmetric) it is interesting to 
note that the region where A6V becomes critical is the same as it had been for 
negative ~& system. Presumably, this is because the size of the contributions 
of the elastic, dielectric and flexoelectric terms remain of the same magnitude 
even if one changes sign 
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Figure (1.9.1.7.2.3) Shows Band ¢ against z while varying Am when IlE is 
positive 

(a) Am = 1 xl o-s J m-2 

(b) Am = 6xl~ J m-2 

(c) Am = lxl~ J m-2 

CHAPTER' 

The reason for the inversion of the phase curve is clear in the B curves of this 
graph. By looking at the director profiles of (a) we see that the curves for 
positive and negative voltages follow paths where 6{z) > 6{z)ov (i.e. the green 
curve). Applying a voltage distorts the B curves upwards instead of 
downwards, as had been the case when IlE was of the opposite sign. 

However, the reason why there are asymmetries observed once again when 
AOl becomes small can be explained by examining the positive voltage B 
curves in graphs (b) and (c) where AOl is 6x10-6 J m-2 and 1x10-6 J m-2 

respectively. There we see that the e curves at z = 0 respond similarly to how 
they did when Il E was negative (see figure (1.9.1.7.1.3}). This leads us to 
conclude that lowering the homeotropic anchoring energy can allow the 
flexoelectric contribution to exceed the dielectric contribution 
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1.9.1.8 Varying dielectric anisotropy, .1& 
This section is subdivided slightly differently from what has generally been the trend. This is because figure type five is not of great interest 
compared with figure type four. Figure type four is of sufficiently great interest that we investigate it for a wider range of ~& than is done in the 
next three figures (§ 1.9.1.8.1). Of particular interest is seeing how ~& influences the flexoelectric voltage shift for MBBA and E7 systems (§ 
1.9.1.8.2). 

1.9.1.8.1 General effects of varvin2 the dielectric anisotropy of a medium. 
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Figure (1.9.1.8.1.1) Shows transmittance and phase difference L\<1> against 
voltaae with varvina L\& 
Here it can be seen that changing the sign of L\& can result in very similar 
transmittance curves, certainly in the central region. An example of this can be 
seen by comparing the central features of the 11& equal to + and -1 curves (cerise 
and red respectively). However, examining the phase difference curves (left) 
reveals that these transmittance curves are clearly the result of quite different 
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Figure (1.9.1.8.1.2) Shows the rate of change of phase difference L\<1> against 
voltaae with varvina L\& 

It can be seen from this graph that the curves belonging to positive 11& have 
rotational symmetry; therefore, these can be considered 'well behaved'. One aspect 
of what 'well behaved' means is that the flexoelectric voltage shift is proportional to 
the flexoelectric coefficient. As when discussing figure (1.9.1.8.1.1), the magnitude 
of the aradient of the 11& curves is reduced when the maanitude of 11& is reduced in 
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I phase difference curves. 
Another major feature to note is that decreasing 11& results in a broadening 
of the curves: this can be seen as a shallowing of the gradient, depicted in 
the next graph. 

CHAPTER' 
the region -3 to +3 V. In this region the positive 11& curves are almost exact 
reflections of their negative counterparts, reflected about the flexoelectric voltage 
shift of +0.5 V or about the d(I1<D)/dV = 0 axis. This accounts for the similarities 
between equal magnitude l1&transmittance curves in figure (1 .9.1.8.1.1) . 
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Here, the reasons for the differences observed in figures (1.9.1.8.1.1 and 2) due to 
both changing the sign of 11& and changing the magnitude of 11& are made clear. 

The change due to changing the sign of 11& was that the phase difference curves 
were (roughly) inverted about 11<1> of the central region. The reason for this is the 
different direction that voltages distort the () curves when the sign is changed, c.f. 
graphs (a) and (c). The distortions are in the opposite direction but are of similar 
magnitudes, hence the differences between the phase difference curves yet the 
similarity between the transmittance curves (respectively) 

The second trend is due to the fact that when 11& is smaller the distortions that the 
same voltage can produce are reduced. To see this, compare graphs (a) and (b), 
where 11& has the same sign but different magnitudes. When 11& is small the () 
curves are more closely spaced than when 11& is large, thus resulting in a decrease 
in the gradient of the 11<1> and transmittance curves in figure (1.9.1.8.1.1). 

W~ile. it is of inte.rest to look at the effects that this range of 11& has on the voltage 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~,rtwascons~effidmoffii~effi~ing~examine~es~aUonfuramuchgre~er 

Figure (1.9.1.8.1.3) Shows () and ¢ against z for varying dielectric range, and to compare this with a similar graph obtained for E7. The results of this 
anisotropy are shown on the next two pages. 
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(a) 11&= -1.0 
(b) 11& = -0.2 
c) 11& = +1.0 
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1.9.1.8.2 The tlexoelectric voltage shift for varying .18 for an otherwise MBBA like material 
.18 and e are among the largest contributing factors to the magnitude of the voltage shift. It is the intention that the following two graphs be 
of some practical purpose: if t...£ is known and Acn is large, these graphs and the flexoelectric voltage shift could be used in order to find the 
flexoelectric coefficient e (= ell+~3). The reader should note that these graphs were calculated for a flexoelectric coefficient of e = -5x10-llC 
m-l and then expressed in units of e = + 1x10-ll C m-l; here the voltage shift is, to a very good approximation, linear in e. 

1.9.1.8.2.1 Varying t...8for MBBA 
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Figure (1.9.1.8.2.1) Shows voltage shift per e against changing dielectric 
anisotropy, L\E, for MBBA. 

(Recall the default parameters for MBBA see table (1.9.1)) 

There are three main features to be noted here: 
1. There is a singularity when fl&= O. 
2. When fl& is large and positive the flexoelectric voltage shift changes 
gradually. 
3. However, when fl& is negative the flexoelectric voltage shift varies more 
rapidly with changes in fl&. 

As MBBA's fl& is negative, and homeotropic anchoring energies tend to be 
small, finding the flexoelectric coefficient e accurately would be more 
problematic than it would be for systems with positive fl&. 
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1.9.1.8.2.2 The nexoelectric voltage shift for varying L1&for an otherwise E7 like material 
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Figure (1.9.1.8.3.1) Shows VShift per e against changing dielectric anisotropy, AE, for 
E7. 

(Recall the default parameters for E7 see table (1.9.2)) 

The same three things that could be noted about the same curve for 
MBBA are also the case for E7. In fact, these curves are almost 
identical. The only difference seems to be an increase in the 
steepness of the curve when 11& is negative. This can be attributed to 
the smaller value of l:N for E7 than for MBBA (5.2 and 5.4 
respectively), therefore the ratio of 11& to GN is smaller for E7 than for 
MBBA. 

As E7's 11& is positive, finding the flexoelectric coefficient e accurately 
will be easier than it would be for systems with negative dielectric 
anisotropy. 

Summary of flexoelectric voltage shift for varying dielectric anisotropy for MBBA and E7 
These curves (§ 1.9.1.8.2) are, in fact, so similar that they tell us that the flexoelectric voltage shift depends strongly on two factors: the size 
of e and the size of !J.&. If the homeotropic anchoring energy is large, it may be possible that the flexoelectric coefficients could be found 
directly from these graphs and the experimental voltage shift. However, if the anchoring energy is not large this would become impractical. It 
will be seen in section 1.9.2 that this casts doubt on how Takahashi et al. [1] obtained their value of e for MBBA. 
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1.9.1.9 Varying homeotropic anchoring energy and nexoelectric coefficients. 
Having previously not concluded our discussion in section 1.9.1.7 about the combined effects of varying homeotropic anchoring energy and 
flexoelectric coefficients on the size of the flexoelectric voltage shift, we propose to amend that now. Also, we have seen that the sign of f1.E 
has profound effects on the behaviour of cells when combined with the two aforementioned parameters. For that reason we examine two 
systems with different f1.cs here, i.e. MBBA and E7. 

1.9.1.9.1 
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When Am is large the flexoelectric voltage shift is a linear function of 
e over the range examined. This can be seen by examining the black 
and maroon curves of Am = 4 and 2 x 1 0-5 J m-2 respectively. 
However, when the anchoring energy is reduced this linearity is lost. 
In fact, for the range Am = 6x 1 0-6 J m-2 to Am = 3x 1 0-6 J m-2 there 
are voltage shift regions for which there are more than one 
flexoelectric coefficient that might be responsible. For example, when 
Am = 4x 1 0-6 J m-2 (yellow curve) a flexoelectric voltage shift of 
+0.04 V could be due to a flexoelectric coefficient of circa -5x10-11 C 
m-1 or -1 x10-11 C m-1_ Alarmingly, extrapolating beyond the range of 
this graph, we see that e could also have been roughly equal to 
+6x10-1 1 C m-1. Thus, when Am is sufficiently small, the sign of the 
flexoelectric voltage shift is no longer an adequate indicator of the 
sign (let alone the magnitude) of e. These badly behavedflexoelectric 
voltage curves are, however, accompanied by an asymmetry of the 
transmittance curves (recall section 1.9.1.7), therefore the sign of e 
can be established: if the positive arm (right hand side) of a 
transmittance curve is badly behaved then e is negative, and vice 
versa. Potentially, examining the extent of the asymmetry of the 
transmittance curves could be used to find which value of e is most 

fl I . It h'ft . f d'ff t I likely to be correct. Figure (1.9.1.9.1) Shows how the exoe ectnc vo age s I vanes or I eren 
homeotroDic anchorina eneraies, AlD, for MBBA. 
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1.9.1.9.2 Varvin!! bomeotropic anchorin!! ener![V and tlexoelectric coefficients for E7 (d&Positive). 
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Figure (1.9.1.9.2) Shows how the flexoelectric voltage shift varies for different 
homeotroDic anchorina eneraies, A81, for E7. 

In comparison to figure (1.9.1.9.1), E7 is well behaved over the same 
Am range. Note for Am = 4x10-5 to 3x10-6 J m-2 (black to light-green) 
the flexoelectric voltage shift curves are nearly the same and, while 
the Am = 8 and 6x10-7 J m-2 curves are not exactly well behaved, 
they still result in the same sign of the flexoelectric voltage shift for a 
given e as when Am was larger. 
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1.9.1.10 Summary of Theoretical Findings and Conclusion 

In table (1.9.3), below, some of the major findings from varying input 

parameters are summarised, including shifts in the voltage and AcI> of the 

central features. This is followed by a brief discussion. However, the 

parameters e, Af)J and As combine to form more complex tre~ds than other 

input parameters, so these are not summarised in this table but are 

discussed in greater detail after the other parameters. 

Table 1.9.3: Summarises some of the main findings of the § 1.9.1. 
PARAMETER Vsh1fl ACIt SHIFT COMMENTS 

Cell thickness, D +0.07 V 110 J.lm +3.75 n 110 J.lm Increasing D slightly increases the 
symmetry and steepness of the 
transmittance curve. 

Birefringence, An +0.0016 VI 0.1 +4.5n 1 0.1 Increasing An slightly increases 
the steepness of the transmittance 
curve. 

Elastic constant When esmall 
KlI =K33 -0.005 V 11x10-11 N +0.34n 11 x10-11 N K33 is more dominant in changing 

d(AIl»/dV. 
VaryingKlI -0.005 V 11x10-11 N +2.1n 11 x10-11 N Increasing elastic constant 

generally decreases d(AIl»/dV. 
VaryingK33 -0.015 V 11x10-11 N -1.7 n 11 x10-11 N Also, these curves are steeper 

than they are when e is large. 
Elastic Constants When e large 

KII =K33 -0.14 V 11x10-11 N -0.275n 11x10-11 N K33 is slightly more dominant in 
changing d(A<l»/dV. 

VaryingKII -0.025 V 11x10-11 N +1.2n 11 x10-11 N Increasing elastic constant 
generally decreases d(A<l»/dV. 

VaryingK33 -0.105 V 11x1Q-11 N -0.9n 11 x10-11 N Also, these curves are shallower 
than they are when e is small. 

Anchoring angle 

Homeotropic ~easy +0.13V/10° -1.1n 1100 Decreasing ~e8sy increases the 
symmetry of All> curves. 

Homogeneous (JDeasy +0.021 V 1100 -1.2n 1100 Varying &easy has little effect on 
the symmetry. 

Flexoelectric constant 
When Ali) high -1.1 V +0.15n Symmetric but shifted. Voltage 

11x10-10 Cm-1 15x10-11 Cm-1 shift is proportional to flexoelectric 
coefficient. 

When Ali) medium -1.0 V +0.14n Slightly asymmetric: 
11x10-10 Cm-1 15x10-11 Cm-1 Distortions occur for voltages of 

opposite sign to the flexoelectric 
coefficient. Voltage shift is roughly 
proportional to flexoelectric 
coefficient. 

When Ali) low +1.35 V -0.91n Very asymmetric: 
11x10-10 Cm-1 15x10-11 Cm-1 Distortions have continued and 

changed the sign of the voltage 
shift. Voltage shift is only 
proportional to flexoelectric 
coefficient when e is small. 
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D and An 

Varying either the cell thickness D, or the birefringence i1n, of a system has 

a comparable effect, i.e. increasing the net birefringence of a device. 

Increasing either of them increases the number of wavelength path 

differences between ordinary and extraordinary rays. 

Elastic constants, Ku and K330 

From the point of view of i1<p of the central feature, the one-constant 

.. approximation is not appropriate irrespective of the size of the flexoelectric 

coefficient. The same is generally true of the flexoelectric voltage shift: 

over the range examined, the elastic constants could produce approximately 

a 10% change in the Vshift. However, we saw that the contributions to the 

flexoelectric ,voltage shift from both Ks were not equal, as K33 appears to 

have a larger influence. Therefore, this leads us to conclude that, if a one­

constant approximation is to be employed, it should be to make both Ks 

roughly equal to K33 rather than the average of KII and K33. 

Angles of easy axis, ~easy and (JDeasy 

Reducing the difference between Boeasy and BDeasy reduces the cumulative 

path difference between ordinary and extraordinary components of the 

incident ray, i.e. the net birefringence of a cell. Reducing the homeotropic 

anchoring energy (Boeasy) reduces the flexoelectric voltage shift 

significantly. Therefore, the importance of accurately knowing the value of 

Boeasy has been demonstrated. 
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Homeotropic anchoring energy, flexoelectric coefficient and dielectric 

anisotropy, A (A), e and Aerespectively. 

These can all combine to contribute to some interesting properties. On their 

own they have the following effects: 

• Reducing the homeotropic anchoring energy below a 

particular value increases the steepness of the transmittance 

curve. 

• Increasing the flexoelectric coefficient Increases the 

flexoelectric voltage shift. 

• Changing the sign of 116 changes the direction that an applied 

electric field distorts the director profile, whereas changing the 

size of 116 changes the sensitivity of the cells to changes in the 

electric field. 

However, some of the interesting properties that these parameters combine 
! 

to produce are as follows, in particular when A B) is small: 

• The flexoelectric coefficient combined with low homeotropic 

anchoring energy produces asymmetries. 

• When ~6 is positive, even when AB) is relatively small, the 

flexoelectric voltage shift of the cell is relatively well behaved, 

i.e. "Vshiji remains approximately proportional to e with roughly 

the same constant of proportionality for all AB)s. Whereas, for 

negative 116, when AB) falls the proportionality of "Vshiji to e is 

quickly lost: some curves do not have a uniquely defined e for 

a given Vshiji; and, for those curves that have a region of 

proportionality, the constant of proportionality may vary 

vastly from one AB) to another. 

113 



SUMMARY OF THEORmCAL FINDINGS AND CoNCLUSION CHAPTER. 

In conclusion, as most homeotropic alignment layers have relatively weak 

anchoring energies, this last point casts doubt on the suitability of 

Takahashi's method for finding the flexoelectric coefficient of LC 

materials [1], especially when tleis negative as it is for MBBA. However if 

we examine the asymmetries of the transmittance curves at tpe same time 

as investigating the flexoelectric voltage shift, it may be possible to 

overcome this obstacle. This is examined in the next section, where the 

knowledge acquired here is applied to experimental systems. 
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1.9.2 

1.9.2.1 

Experimental Results 

Introduction 

CHAPTER I 

The purpose of this section is to take the knowledge gained in the previous 

section and apply it to experimental data. There are two main materials 

under examination here which provide a good cross section of typical 

liquid crystal materials as these two materials have dielectric anisotropies 

il& of opposing sign. This parameter was found to exert the greatest 

influence on a cell's optical behaviour, and how well the cell 'behaves' 

when the homeotropic anchoring energy is low. 

Seven sets of experimental results from HAN cells were obtained: one 

from Takahashi's paper [1], and six from experiments performed by Bartle 

(member of the Organophotonics Group, in conjunction with the Liquid 
, 

Crystal Group at Hull University) [30]. The first of Bartle's systems was a 

HAN cell containing the liquid crystal mixture E7, and the remaining five 

were 10% solutions of different dopant liquid crystals dissolved in E7. 

Takahashi's experiments explored a different LC, i.e. working instead on a 

. cell containing the nematic liquid crystal MBBA [1]. 

This section is further subdivided. Firstly, we introduce the seven different 

cells and explain how and why the experimental data was then normalized 

(with only one exception), before the simulations were undertaken. For this 

simulation process, the experimental results are then divided into three 

main sections. These are E7 (one set), 10% solutions (by weight) (five 

sets), and MBBA (one set). Their continuum-model input parameters are 

then introduced and which of these parameters are malleable is outlined 

(i.e. relatively unknown and therefore subject to large variations). After 

each subsection, these results are analysed and discussed. For Bartle's data 

We start by discussing which parameters are deemed variable as well as the 
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simulation process (in varying detail according to the system and its 

similarity to others). Calculations of the dipolar moments for the five 

dopant materials were also performed. The theoretical values of the dipole 

moments were then examined in the context of changes in the values 

obtained for fls with respect to that of E7. This was done to discover if 

there were any trends in how the dopant molecules cause changes in the 

properties of the systems. 

While the Takahashi data is only one set, compared with the six data sets 

supplied by Bartle, it transpired that it poses greater challenges to the 

simulations than the Bartle data. For this reason a significantly more 

rigorously systematic method for finding a solution, or establishing if there 

is no solution, must be adopted. 

Unlike in the previous section, where we could obtain a large amount of 

data about the cells, in this section the only experimental data available are 

the transmittance versus voltage curves. Each figure has been subdivided 

into a number of separate graphs in order to include the maximum amount 

of information while retaining clarity. For all the following results, the 

experimental data is shown in black and the simulations are coloured. 

Colour-coded keys are provided beneath the graphs. 

E7 is a commercially available liquid-crystal mixture. The dopants were 

synthesised by the Organophotonics Group at the University of Hull [30] 

and their molecular structures are shown below in table (1.9.2.1) .. 
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fitting process (in varying detail according to the system and its similarity 

to others). Calculations of the dipolar moments for the five dopant 

materials were also performed. The theoretical values of the dipole 

moments were then examined in the context of changes in the values 

obtained for fi6 with respect to that of E7. This was done !o discover if 

there were any trends in how the dopant molecules cause changes in the 

properties of the systems. 

While the Takahashi data is only one set, compared with the six data sets 

supplied by Bartle, it transpired that it poses greater challenges to curve 

fitting than the Bartle data. For this reason a significantly more rigorously 

systematic method for finding a solution, or establishing if there is no 

solution, must be adopted. 

Unlike in the previous section, where we could obtain a large amount of 

data about the cells, in this section the only experimental data available are 

the transmittance versus voltage curves. Each figure has been subdivided 

into a number of separate graphs in order to include the maximum amount 

of information while retaining clarity. For all the following results, the 

experimental data is shown in black and the curve fits are coloured. 

Colour-coded keys are provided beneath the graphs. 

The molecular information for the commercial liquid-crystal mixture E7 is 

not freely available. However, the dopants were ,synthesised by the 

Organophotonics Group at the University of Hull [30] and their molecular 

structures are shown below in table (1.9.2.1). 
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Table 1.9.2.1: 
Shows molecular structures of the dopants dissolved (10% by weight) in E7. 

Sample Code Molecular Structure 

JHW33 
o 

~CN 

JHW29 

eN 

JHW128 

JHW131 

J HW172 C5H1 t 
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1.9.2.2 Normalising Experimental Data 

For the results obtained from the experiments, the transmittance T has 

arbitrary units (rather than being in the form of a ratio of transmitted light 

intensity to total light intensity). Therefore, if the intention is to simulate 

these data sets, then it is necessary for them to be normalised since both the 

computer program and the theory only predict transmittances in the form of 

ratios, i.e. between 0 and 1 (or 0 and 100%). With the possible exception of 

the central region of the transmittance-voltage curves, the theory dictates 

that maxima and minima correspond to 100% and 0% transmittances 

respectively, so (when normalising the experimental data curves) it is 

necessary to ensure that the troughs coincide with T = 0, and that the peaks 

coincide with T = 1. In order to achieve this several steps must be taken. 

The first step is to find and note the voltages at which maxima occur and 

the magnitude of the transmittance there, and then repeat the process for the 

minima. The purpose of this is to establish a data set's envelope. Once the 

envelope is found, the data can be normalised: this is done by subtracting 

the minima function (Le. the lower envelope), and then scaling the 

difference between the maxima and minima functions (i.e. upper and lower 

envelopes) to equal one. 

The number of points on the minima and maxima curve (i.e. the envelopes) 

is limited, and is significantly smaller than the number of points within a 

transmittance-voltage curve. Therefore, to perform normalization, these 

curve fits should take the form of algebraic functions of the voltage: once 

an algebraic function is found, normalisation of each data point, and 

therefore the whole curve, is simple. 
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One method of obtaining curve fits in an algebraic form is to perform a 

polynomial regression on the maxima points, and to repeat the process for 

the minima points. In this particular instance, this was performed using a 

graphics package called XMGR, which is UNIX based. XMGR is capable 

of performing numerous different types of regresslO~s, including 

polynomials up to 10th order. 

These regressions are the second step in the curve fitting process. The order 

of regression is found by trial and error; the criterion being used for this 

decision was how well the experimental data, once operated on, fitted 

between 0 and 1 while trying to ensure that (with the possible exception of 

the central feature) the data oscillated between the full range of 0 to 1. The 

way in which these two regressions were used to normalise the curve was 

to subtract initially for each experimental data point the corresponding 

value of the minima regression curve, and then scale it by the difference 

between maxima and minima regression curves, i.e. 

Tnormalized( V;)=(T experimental( V;)-min( V;) )/(max( V;)-min( V;)), 

where Texperimental(V;) is the experimental transmittance, TnormalizeiV;) is the 

normalized data, and the functions min(V;) and max(V;) are the polynomials 

used to curve fit the envelopes of the experimental data. 

For some curves it was obvious that max andlor min curve fit functions 

needed to be composed exclusively of even functions or that they also 

needed some odd functions as well, and this helped in choosing the order of 

the regression polynomial y(x), which took the general form 

y-(a+bx+cx2 +dx3 +ex4 + .. ) 
y = (A-a)+(B-b)x+(C-c)x 2 +(D-d)x3 +(E-e)x4 + .... 

119 



NORMALISING ExPERIMENTAL DATA CHAPTER I 

The experimental curves are shown below in figures (1.9.2.1) to (1.9.2.7). 

The experimental data before the numerical scaling, i.e. against an arbitrary 

transmittance scale, are shown on the left hand side of figures (1.9.2.1) to 

(1.9.2.6), followed by the results of the normalising process in the right 

hand panels. The sample containing JHW128 has been exempted from this 

(see below), just showing the pre-normalised data in figure (1.9.2.7). 

Otherwise, the polynomial fitting parameters used to normalise the 

experimental data can be found in Appendix I. 
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Figure 1.9.2.1 : Shows the experimental data for the MBBA cell of Takahashi et al. [1] . 
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Figure 1.9.2.2: Shows the experimental data for the E7 cell of Bartle [30] . 
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Figure 1.9.2.3: Shows the experimental data for the 10% JHW29 in E7 cell of Bartle [30] . 
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Figure 1.9.2.4: Shows the experimental data for the 10% JHW33 in E7 cell of Bartle [30] . 
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Figure 1.9.2.5: Shows the experimental data for the 10% JHW131 in E7 cell of Bartle [30]. 
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Figure 1.9.2.6: Shows the experimental data for the 10% JHW172 in E7 cell of Bartle [30] . 
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Figure 1.9.2.7: Shows only the experimental data for the 10% JHW128 in E7 cell of Bartle [30]. 

Unlike the other data sets, the one for JHWl28 (figure (1.9.2.7)) was 

neither normalised nor simulated. The reason for this is that the fluctuations 

close to the central feature are unusually small and rapid: from the theory 

We expect the oscillations to toggle between the maximum and minimum 

of an enveloping function, whereas this is clearly not the case here. (Later, 

when examining E7, it will be seen that if this curve actually were to 

oscillate between 0 and 1 then its shape would be indicative of a very low 

anchoring energy for a system where 11& is positive.) Also, when there are 

such a large number of oscillations, it is usually difficult to discern one 

solution from another. Consequently, there is no confidence that a 

meaningful and distinguishable simulation to this data is obtainable. 
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1.9.2.3 Simulations 

In what follows we are using the term "simulation" specifically to mean 

performing computer simulations to find data that is visually comparible 

with experimental data. 

For the remaining six sets of data that shall be simulated here, we start with 

the E7 system and its four normalised 10% solutions systems, before going 

on to examine the MBBA system. For different systems, different input 

parameters are malleable and others are genuinely inflexible. For this 

reason, at the beginning of each of the three subsections (Le. E7, 10% 

solutions in E7 and finally MBBA) a brief discussion about the variability 

of input parameters is given . 

. Aside for all 1:7 Systems: 

With reference to which of the input parameters are malleable, the 

treatment of the two types of Bartle's curves (Le. E7 and the 10% 

solutions) is different. Values of parameters such as tl6 and tln are well 

established for E7, therefore, for E7 these values are fixed. However, while 

the solutions contain 90% E7 (by weight), leading to similar behaviour and 

parameters for these cells being anticipated, the values of tl8 and t1n for the 

mixtures are unknown. Consequently, these parameters are variable. 

Below, we shall discuss why we chose to keep tln constant, and relate the 

values we obtain for tl6 with the dopant molecules' dipolar moments. 

Before starting the simulation process in earnest, and in the light of the 

uncertainty in the value of the cell thickness D, a preliminary examination 

of changing the cell thicknesses is undertaken. This is done in increments 

of 2 /-tm, over the range D = 14 to 32 /-tm. From the number of peaks and 
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the shape of the central region of the transmittance-voltage curves, we were 

able to estimate the actual thicknesses of the HAN cells. These compare 

favourably with the values obtained experimentally, see table (1.9.2.2) 

below, where the experimental values of D are taken from Bartle [30]. 

While the values obtained from the simulations are smaller than the 

experimental values, they appear to follow an approximate ratio of 

Dexperimental = 1.4 x Dtheory' This suggests that either the experimental value is 

overestimated or that the theory has a scaling factor. However, this trend 

certainly is not a cause of major concern, given the uncertainty in both the 

theoretical and particularly the experimental values of the cell thickness. 

Thus, we conclude that there is reasonable agreement between the two sets 

of data, see table (1.9.2.2) below. 

Table 1.9.2.2: 
Shows how the experimentally determined cell thicknesses (in units of J.lm) correspond with the 

values obtained from the simulation process. The average ratio of D(exp)/D (sim) = 1.4. 

LC D(experlmental) D(slm) Ratio EXP/C.F• 

E7 30.2 27.5 1.10 

JHW29 26.8 16.9 1.59 

JHW33 24.9 18.0 1.38 

JHW131 27.8 17.4 1.60 

JHW172 35.4 26.6 1.33 

Recall that, in section (1.9.1) we saw that varying t,.n exhibited equivalence 

to varying D; here, in table (1.9.2.2), we see that the theoretical value of D 

closest to its experimental value belongs to the one system whose t,.n is 

most accurately known, i.e. E7. Whereas all the other cells have effective 

cell thicknesses more significantly reduced from their experimental values. 

This implies that when adding these dopant materials, all have similar 

effects on the effective birefringence of these cells, apparently decreasing 

it. 
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1.9.2.3.1 E7 

E7 is a commercially available liquid crystal material. Most of its physical 

and optical properties are well documented. These properties were already 

summarized in table (1.9.2), section 1.9.1. Here we will limit the number of 

free parameters that are variable in order to focus the discussion on the 

main characteristics of the cell: the reader should note that the grey 

parameters in table (1.9.2.3) are not referred to throughout the remainder of 

this chapter. As mentioned above, there is some uncertainty in the actual 

thicknesses of the cells [30] and so these have been included among the 

variable parameters. For the E7 mixtures, the values used for their cell 

thicknesses . in the simulations, are shown in the D(sim) column of table 

(1.9.2.2) and were found by trial and error. 

Table 1.9.2.3: Shows the default parameters for E7 and MSSA 

Parameter E7 MSSA 
~easy 90 0 900 

8Deasy 20 20 

D 30.2 JIm 28.5 JIm 
K11 11.1x10-12 N 6.4)(10,12 N 
K33 17.1x10-12 N 8.2)(10,12 N 

Aa> 1.2)(10'5 J.m,2 1.2)(10'5 J.m,2 
AID 5.0)(10,2 J.m,2 5.0)(10,2 J.m,2 

En 5.2 5.4 
8p 19.0 15 4.7 
As +13.8 -0.7 
A. 633nm 550nm 
E _5.0)(10,11 C.m,1 _5.0)(10,11 C.m,1 
no 1.51821 1.57 
ne 1.73283 1.8 
An 0.21462 0.23 

For these two materials E7 and MBBA, /).8 and /).n are very well 

established experimentally. However, parameters such as anchoring 

energies, specifically the homeotropic anchoring energy, AfXh and the 

15 While this value is not malleable for the E7 system, it becomes so for the 10% 
solutions of dopant in E7, hence its inclusion here 
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flexoelectric coefficient e are not well known. As has already been 

mentioned above, there is also some uncertainty in the actual thicknesses of 

the cells [30]. Having established that at least three of the input parameters 

are malleable (Le. A(;K), e and D) and that two are not (L\n and Ile), it is now 

possible to start seeking appropriate simulations for these two systems. 

There are two circumstances in which more of the input parameters are 

varied. The elastic constants are among the parameters that are not 

accurately known from experiment [40]. However, as it is desirable to limit 

the number of parameters that are varied, this fact is only employed for the 

MBBA system (where it was considered necessary; further, these results of 

varying Ks and D were found to be interesting); whereas, for the systems 

containing 90% E7, Ilcs are no longer known so we choose to vary eN, thus 
, 

changing Ile in these cases. As a result, while the study of E7 is limited to 

only changing D, e and A oo, for reference only, a graph showing how 

sensitive the system would be to changes in Ile is also included. This 

sensitivity becomes relevant in the next section, where the Ile is unknown, 

let alone fixed, for the 10% solutions. 
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Figure 1.9.2.8: Shows simulations (coloured curves, see key) for E7 cell (black curve) 

D ll.& e A81 
Colour J.U11 X10·11 Cm·1 x10-6 Jm·2 

KEY: Red 27.5 13.8 0.0 9.00 
Violet 27.5 13.8 -0.5 9.00 
Cerise 27.5 13.8 0.5 9.00 
Orange 27.0 13.8 0.0 9.00 
Green 28.0 13.8 0.0 9.00 
Blue 27.5 13.3 0.0 9 .00 
Purple 27.5 14.3 0.0 9.00 

A best fit (red curve) to the experimental data (black curve) for the E7 cell 

is shown in the first panel of figure (1.9.2.8). While it has roughly the 

correct shape and has a central feature of the correct magnitude, only three 

out of the seven peaks coincide with the peaks of the experimental data. The 

theoretical curves in this figure are colour-coded according to the key 

underneath the figure, where altered input parameters are denoted in bold 
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font. The bottom three panels are included to demonstrate the sensitivity of 

the simulations. 

Changing e (the flexoelectric coefficient) does not improve matters overall 

(see second panel): while it may improve matters for two peaks (e.g. near 

0.75 and 1.0 V or -0.75 and -1.0 V), the effects on all the other peaks and 

troughs is to the detriment of the simulations (see the violet and cerise 

curves). The degree of symmetry here suggests that the flexoelectric 

coefficient is very small if not zero. This is significantly smaller than the 

value of (1.5 ± 0.2) x 10-11 C m as determined by Yang et ale [39]. The 

reason for this is currently unclear but may be due to the relatively large 

experimental uncertainties. 

In the next p~nel, with the green and orange curves, we see the effects of 

changing the cell thickness. These changes affect the whole of the curve 

rather than just the central area, which is actually the region of concern. 

From this it is deduced that the value of D = 27.5 flm is appropriate, and 

that varying D from this value will not lead to a better simulation. (N.B. this 

was performed for all the 90% E7 cells to obtain the values shown in table 

(1.9.2.3)). However, that process is not shown here as it was discussed in 

detail for MBBA in section 1.9.1.1 and reiterating it here will add nothing 

beyond the trivial to the current discussion. 

Despite the fact that ~s is well established experimentally, we are curious to 

see how sensitive the system would be to errors in this parameter. This is 

shown in the final panel of figure (1.9.2.8). Decreasing ~s has the effect of 

broadening the curves. This effect is uniform across the curves, so even if 

this parameter were flexible it could not provide the simulation sought. 
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Earlier, the lack of accuracy with which A60 is known was mentioned so this 

parameter was also varied. However, the results were far more interesting 

than those shown in figure (1.9.2.8). Consequently, we pause here to 

examine these effects in greater detail and the results of this are shown 

below in figure (1.9.2.9). 

Voltoge (V) 

Figure 1.9.2.9: Shows the effects of varying A~ for the E7 cell. 

D 11& e Ail) 
Colour JU1l X10·11 Cm·1 x10-6 Jm·2 

KEY: Red 27.5 13.8 0.0 9.00 
Orange 27.5 13.8 0.0 6.00 
Green 27.5 13.8 0.0 4.00 
Blue 27.5 13.8 0.0 3.00 

It is seen here in figure (1.9.2.9), that lowering the homeotropic anchoring 

energy, while having negligible effect on the curve shape for large positive 

and negative voltages, has a profound effect on the central region. For the 

moderate voltages regions (larger than +/-0.5 V) we see that reducing this 

anchoring energy actually improves the quality of the simulation. 
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If ion impurities were present in the cell, they would act to screen the 

electric field across the cell at lower voltages and their effect on the optical 

transmittance would become absent at higher voltages, because they would 

be removed from the system. This could go some way towards explaining 

these experimental observations (black curve) in figure (1.9.2.9). The 

screening due to ion impurities could be acting to reduce the responsiveness 

of the cell at low voltages and would give rise to large errors in the 

anchoring energies determined by the fitting procedure. While the cell 

thickness appears to determine the shape of the transmittance-voltage curve 

at large voltages relatively strictly (see figure (1.9.2.8)), this knowledge of 

how anchoring energies affect the central region could lead to an effective 

method for finding the anchoring energy (as long as the influence of ion 

impurities is small). Admittedly, the issues presented by ion impurities are 

still relevant here and mean that the value obtainable for Aoo could 

potentially include large errors. 
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1.9.2.3.2 Simulations and Discussion for the 10% Solutions 

For the 10% solutions fewer of the input parameters are readily known. 

However, all systems contain 90% E7 (by weight). It is therefore reasonable 

(and desirable) to keep as many of the parameters as possible equal to those 

of E7. Amongst the parameters that we either know or suspect could differ 

from our E7 system are D, e, fl.8 and &I. Later we wish to relate the 

theoretical dipole moments of the dopant molecules with the birefringence 

obtained from our simulations for the 10% solutions; this comparison might 

become more opaque if both fl.8 and fln are altered. For this reason, we 

avoid tampering with fln, concentrating our examination on varying 

fl.8 instead. Thus we are limiting our investigation to varying only three of 

the above parameters ( of which cell thicknesses have already been 

approximated~ see table (1.9.2.3) at the beginning of the simulation section), 

and Aoo (which was not conclusively established for E7). How sensitive the 

optical properties of HAN cells are to variations in these continuum-model 

parameters in the vicinity of their best-fit values shall also be examined. 

Firstly, we examine the two systems that contain the larger-sized dopant 

molecules JHW29 and JHW33. Then we examine the systems containing 

the smaller dopant molecules JHW131 and JHW172 (recalling that the data 

set for JHW128 was not normalised, hence its omission). 
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JHW29: 

Figure 1.9.2.10: Shows simulations obtained for JHW29 

D 11& e Aro 
Colour (~) (X10-11 Cm-1

) (x10-5 Jm-2>-
KEY: Red 16.9 15.8 -1 5.00 

Violet 16.9 15.8 0 5.00 
Cerise 16.9 15.8 -2 5.00 
Orange 16.9 15.8 -1 10.00 
Green 16.9 15.8 -1 3.00 
Blue 16.9 15.3 -1 5.00 

Turquoise 16.9 16.4 -1 5.00 

The red curve of the top panel of figure (1.9.2.10) is the "best fit" 

simulation for JHW29. As can be seen, except for large positive voltages, 

the calculated emulates the experimental observations reasonably well (the 

kinks and straight lines in the calculated curves are artefacts of the 

calculations and should be ignored). However, the curves in the subsequent 

panels show how sensitive the system is to changes in the three variable 

parameters (shown in bold font in the key, beneath figure (1.9.2.10)). Some 

of these curves achieve better fits in certain regions than the red curve. For 

132 



CURVE FrrnNG ExPERIMENTAL DATA, SYsTEMS CoNTAINING E7 CHAPTER I 

example in the second panel the effects of varying e are examined. Here, the 

central region and negative voltages are better described by e = 0 than 

-1 x 10-11 em-I, whereas the cerise curve of e = -2x 10-11 C m-l is better for 

large positive voltages but represents a poor fit for voltages below +1 V. 

In the next panel (with the orange and green curves) we see that changing 

the anchoring energy reduces the quality of the simulation. Note how, 

around the central feature, the location of peaks are adversely affected by 

changes made to the value of the homeotropic anchoring energy away from 

Aoo=5x10-s Jm-2• 

Unlike for the 100% E7 system, we do not have an experimental value for 

L\cfor the 10% solutions. Thus, having found a best-fit curve (red, top 

panel), in the final (bottom) panel we examine how sensitive the system is 

to this parameter's influence. In certain regions (e.g. +0.75 to 1.0 V) 

increasing fl.c improves the simulation (turquoise), whereas in other regions 

(e.g. IVI > 1.5 V) decreasing fl.c has the desired effect. 
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JHW33 
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Figure 1.9.2.11 : Shows simulatons obtained for JHW33 

D l1e e Aro 
Colour hun) (X10·11 Cm·1

) (x10·5 Jm·2) 

KEY: Red 18 13.8 -0.5 5.00 
Violet 18 13.8 -1.5 5.00 
Cerise 18 13.8 0.5 5.00 
Orange 18 13.8 -0.5 10.00 
Green 18 13.8 -0 .5 3.00 
Blue 18 13.3 -0.5 5.00 
Turquoise 18 14.3 -0 .5 5.00 

CHAPTER I 

Again, the red curve in the first (top) panel shows our best simulation. It 

shows a slight discrepancy both for the central region and for voltages of 

magnitude larger than + 1.5 V but, apart from that; it provides an excellent 

fit. 

In the second panel the effects of varying the flexoelectric coefficient are 

shown; subtracting 1x10,ll C m'l from e, thus increasing e's magnitude 
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(violet curve), generally reduces the quality of the simulation, however, in 

the region below -1 V it actually improves it. When 1 x 10-11 C m-I is added 

to e the overall quality of the simulation deteriorates. 

In the next panel of figure (1.9.2.11), we see the influences of changing the 

homeotropic anchoring energy. Once again, we see that varying this 

parameter changes the shape of the central feature to the detriment of the 

simulation. However, it appears to have next to no influence on the shape of 

the simulations for large positive and negative voltages. 

In the final (bottom) panel of figure (1.9.2.11) we see that increasing ~£by 

0.5 (turquoise curve) marginally improves the simualtion for voltages less 

than +1.5 V. Whereas, an improvement in the quality of the simualtion 

above + 1.5 V can be obtained by decreasing ~£ (blue curve), but the rest of 

the curve suffers. 

JHW128 

As discussed above, we were not able to normalise this curve, consequently 

it has not been simulated. However, recalling the trend that was 

demonstrated in figure (1.9.2.9), we found that significantly decreasing the 

anchoring energy had little effect on the transmittance-voltage curve for 

large voltages but, effectively, 'squeezed' more peaks and troughs into the 

intermediate space. If it is assumed here that the peaks and troughs adjacent 

to the central feature should oscillate between 0 and 1, this would suggest 

that the anchoring energy is particularly low for this cell. We can also 

assume that the flexoelectric coefficient is small as, if it were not, we could 

eXpect to see features more akin to those observed in figure (1.9.1.7.2.1) of 

the theory results section. 
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JHW131 

-o e 1.0~~~~~~~~~~~~~~~~-=~~~~ 
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u 
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c 
~O.O~~~~~~~~~~~~~~~~~~~~~ 

- 2.5 - 1.2 0.0 1.2 2.5 
Voltage (V) 

Figure 1.9.2.12: Shows simulations obtained for JHW131 

D I!t.& e 

CHAPTER I 

colour hun) (X10·11 Cm·1) 

Aro 
(x10-5 Jm-2

) 

KEY: red 17.4 8.8 -0.5 5.00 
violet 17.4 8.8 0 5.00 
cerise 17.4 8.8 -1 5.00 
orange 17.4 8.8 -0.5 1.00 
green 17.4 8.8 -0.5 3.00 
blue 17.4 8.3 -0 .5 5.00 
turquoise 17.4 9.3 -0.5 5.00 

The red curve in the top panel of figure (1.9.2.12) is our best fit for the 10% 

solution of JHW131 in E7. It has a slightly negative flexoelectric coefficient 

of e = -0.5 x 10- 11 em-I. The second panel shows the effects of reducing 

(violet) and increasing (cerise) the flexoelectric coefficient. For most 

Voltages the experimental curve lies between these two fitting curves. 

However, when the magnitude of the voltage exceeds l.75 V, all of the 

simualtions start to deviate from the experimental curve. Following the 
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trend seen in the previous graphs, changing the anchoring energy has no 

effect on the quality of the simulation for large voltages. It has also not 

resulted in an improvement in the quality of the simualtion in the central 

region. In the final (bottom) panel of figure (1.9.2.12), we see that 

decreasing dE improves the simualtion's quality for large negative 

voltages. However, this change in dE produces a concurrent worsening of 

the quality of the simualtion for large positive voltages. 
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JHW172 

E:7\Z:\ f\J 
E:7IT:'\l\J 

o E:7\Z::\ T\J 
Fb:l\l: \1\:J 
0- 0·~2. 5 _ 1.2 0 .0 1.2 2.5 

Voltage (V) 

Figure 1.9.2.13: Shows simualtions obtained for JHW172 

D fle e A81 
Colour (~) (X10-11 Cm-1

) (x10-5 Jm-2
) 

KEY: Red 26.6 7.8 0 5.00 
1 Violet 26.6 7.8 -0.5 5.00 

Cerise 26.6 7.8 0.5 5.00 
2 Orange 26.6 7.8 0 1.00 

Green 26.6 7.8 0 3.00 
3 Blue 26.6 7.3 0 5.00 

Turquoise 26.6 8.3 0 5.00 

CHAPTER I 

Turning to our last 10% solution (i.e. JHW172 in E7), our best simulation 

(red, top panel) has e equal to zero. While we see that this is a good quality 

simualtion, it does not reproduce the small asymmetry seen in the 

experimental data. However, in the next panel we see that increasing or 

decreasing e improves the simualtion in different ways. The cerise curve 

with a value of e = -0.5xl0- 11 em-I improves the simulation considerably 

for larger voltages, whereas the violet curve of e = +0.5x 1 0- 11 em-I 

improves the curve fit considerably in the central region. Therefore, there is 

not only ambiguity about the magnitude of e for this particular system but 

also its sign. 
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Once more, in the third panel of figure (l.9.2.13), we see the effects of 

changing the anchoring energy; i.e. changing the shape of the central feature 

while otherwise exerting very little effect. 

Finally, in the fourth (bottom) panel we see that increasing ~8(turquoise) 

reduces the quality of the curve fit. While decreasing ~8 (blue) is generally 

also detrimental to the curve fit, it does, however, improve the curve fit for 

negative voltages. 

In order to gain additional information from these curve fits it is necessary 

to analyse them in conjunction with a molecular modelling of the dopant 

molecules. This is done in the next section. 
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Molecular Modelling 

As was stated earlier, it is desirable to relate the values that we obtained for 

fJ.8 from our curve fits for the various 10% mixtures to the molecular 

dipoles of the dopant molecules. To do this, we now consider the molecular 

structures of the dopants in more detail. This was carried out using 

molecular modelling of the LC molecules JHW33, JHW29, JHWI31, 

JHW172 and JHW128 using the AMI parameter set within the MOPAC 

simulation package [41]. The molecules were first energy-minimised and 

the electric dipole moments, ji, were then calculated. The results of these 

calculations are summarized in table (1.9.2.4). 

Also shown in this table are the values of fJ.8 obtained from the continuum­

model fitting procedure. As can be seen from table (1.9.2.4), there is a good 

correlation between the calculated dipole moments of the molecules and the 

dielectric anisotropies of the liquid crystals. This is in agreement with the 

theoretical predictions of Maier and Meier [42], i.e. large molecular dipole 

moments along the molecular long axis give rise to large dielectric 

anisotropies, whereas, dipole moments across the molecular long axis give 

rise to a reduction in the dielectric anisotropy of the medium. This theory 

[42] goes on to predict that the ratio of fl8 to tl is proportional to the order 

parameter S. We have calculated this ratio and the resulting values are 

shown in the penultimate column of table (1.9.2.4). 
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Table 1.9.2.4: Shows the dipole moments, Ii (in Debye), calculated using a semi-empirical 
Hamiltonian (SEH) [41], the dipole orientation with respect to the molecules (red arrows), the 
solutions' dielectric anisotropy, /).&, found from the continuum model, and the parameter /).8 J.i 
(1/D2), which is related to the order parameter [42]. As the solutions are 10% by weight, molecular 
mass (grams per mole) has also been included. The blank entries correspond to the 10% solution 
for which we were unable to achieve a curve fit (Le. JHW128). /).& = 13.8 for the E7 host. 

JHW3317 

JHW2917 

JHW131 

JHW172 

JHW128 

C",H" O .. 
Ii 
II 

CN 

/).0;-

,u(D) /).& (1102
) mol mass 

10.8 13.8 0.12 757 

10.3 15.8 0.15 833 

3.5 8.8 0.72 362 

3 7.8 0.87 372 

3.6 378.1 

If all liquid crystal solutions had the same molar concentration of dopant 

then we would be able to compare these order parameters directly. Instead, 

however, these solutions are 100/0 by weight. Having said this, lHW33 and 

lHW29 have comparable structures and are of similar weights as are 

lHW131 and lHW172. Therefore, molar concentrations within these pairs 

are comparable. Furthermore, we see that the values of f':..EI;- are also 

17 We note that when these molecules' energy is minimised the ester groups of the two R 
groups (i.e. the groups without the cyano-group) re-orientate so that they counter one 
another. This is why the dipole moment of the molecule is predominantly oriented along 
the long axis of the molecule. 
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similar among these pairs, and that /).&/ Jl is larger for the smaller molecules 

JHW131 and JHW172 (Le. higher molar concentrations) than it is for the 

larger molecules JHW33 and JHW29 (Le. lower molar concentrations). This 

appears to be due to similarities in the molecular structures within these 

pairs (see column two of the table) and therefore gives rise t9 similar values 

of the dipole moments, the dielectric anisotropy and the order parameter. 

However, the order parameter is larger, by a factor of about two, than the 

mass ratios between these two pairs would have led us to expect. This can 

be seen from the last column of table (1.9.2.5) which displays the product of 

/).C/ tl and the molecular mass. From this we conclude that having C2v 

symmetry, as the two molecules JHWl31 and JHWl72 do, gives rise to a 

larger value, of the order parameter compared with molecules that have no 

such symmetry, e.g. JHW33 and JHW29. 

Table 1.9.2.5: Shows the Molecular Mass (grams per mole) multiplied by (tJ.dj.?-) 
in order to compare the order parameters of different molar concentrations. 

Ali Ji Mol Mass Mol Mass.As I Ji 
JHW33 0.12 757 91 

JHW29 0.15 

JHW131 0.72 

JHW172 0.87 

833 

362 

372 

125 

261 

324 

Recalling that the dielectric anisotropy of E7 is 13.8, we see from table 

(1.9.2.5) that the molecules with their dipole moment vector predominantly 

along the long axis of the molecule (i.e. JHW33 and JHW29) act to increase 

the net dielectric anisotropy of the medium, whereas those molecules with 

their dipole moment vector across the molecules (Le. JHW131 and 

JHWI72) act to reduce the net dielectric anisotropy of the medium. While 

this effect was eminently predictable, we also notice that the magnitude of 
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this effect is greater for the smaller molecules. This can be seen from the 

greater size of f1.&! Ji for the smaller molecules in table (1.9.2.5). However, 

this is to be expected as the mixtures are 10% by weight, i.e. the JHW131 

and JHW172 solutions are higher molar concentrations than the JHW29 and 

JHW33 solutions (see Appendix H). It would be interestin~ to !mow how 

these cells would compare if they contained 10% molar concentrations. 

This would make comparisons between cells easier and mean that more 

could be deduced about how each of these dopant materials affects the order 

parameter in the system. Unfortunately, this information is not available at 

this juncture, however, we recommend that this be amended in future works 

in this field. 
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1.9.2.3.3 Parameter Fitting for MBBA and Discussion. 

Having accumulated relevant knowledge about how different parameters 

affect the optical properties of HAN cells in the first half of the results 

section, we need to apply a robustly systematic approach for obtaining a 

curve fit for the MBBA system of Takahashi et al. [1]. This is because there 

are features in the transmittance curves of MBBA data that may be due to 

numerous combinations of the input parameters, much more so than was the 

case for the E7 systems. Firstly, note that the experimental curve for MBBA 

in figure (1.9.2.1), in addition to having an asymmetry, exhibits a voltage 

shift of the central feature. The magnitude of the voltage shift is -0.45 V, 

see Ref. [1]. In addition, the asymmetry of the curve is considerable. The 

fact that the asymmetry is so pronounced would indicate that the 

homeotropic anchoring energy is rather small. There are consequences of 

this low anchoring energy when it comes to choosing e and Aro: recall the 

graph from the theory section, i.e. 

1.0 

0.75 

s:- 0.5 -:: :c 0.25 (I) 
CI) 
C) 

oS 0 '0 
> 
u .;:: 

-0.25 ~ 
Ci) 
0 

-0.5 >< 
CI) 

u:: 
-0.75 

-1.0 
;.0 --4.0 - 2.0 0.0 2.0 -4.0 6.0 

F1exoelectric Coeff icient e (x t O-"Cm-') 

- A'a - -4 .0xtO-· Jm-' 

- A, - 2 .0x tO-~ Jm-' 
a 

- A, - 8.0xtO" Jm-' 
a 

- A, - 6.0xt O" Jm-' 
o 

A, a -4 .0xtO" Jm-' 
a 

- A, - 3.0xt O" Jm-' 
a 

- A, - 2.0xtO" Jm-' 
a 

- A, - t .5xtO" Jm-' 
a 

- A, - t .0xtO" Jm-' 
a 

- A, - 8.0xtO-7 Jm-' 
a 

- A~. - 6.0x t 0-7 Jm -, 

Figure 1.9.2.14: Shows figure (1.9.1.9.1) with a dashed line cutting across at a flexoelectric 
voltage shift of -0.45V. The value of e at which the dashed line cuts a coloured line tells us the 
flexoelectric coefficient for that anchoring energy that will result in a voltage shift of -0.45 V. 
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F or each anchoring energy, the e that would lead to a flexoelectric voltage 

shift of -0.45 V can be found from the intersection of the calculated voltage 

shift versus e curves with the black horizontal dashed line (denoting the 

observed voltage shift of - 0.45 V [1]). Table (l.9.2.6) below shows the 

values for e thus obtained from figure (l.9.2.l4). 

Table 1.9.2.6: Shows the flexoelectric coefficient for each anchoring energy that results in a 
voltage shift of -0.45 V. The final column is included to show that there is a correlation between 
the preceding two columns. The entries in black denote those anchoring energies that would 
result in the right type of asymmetry accompanying the voltage shift, whereas, the grey entry (last 
row) would not. Note that the black and maroon curves have been excluded as such high 
anchoring energies would not result in any asymmetry. 

Aoo e e/(AOO2) 
colour (10-6 J m-2) (10-" C mol) (C m3 J-1 
green 2.00 -5.90 -14.8 

turquoise 1.50 -3.34 -14.8 
Blue 1.00 -1.40 -14.0 
violet 0.80 -0.93 -14.5 
cerise 0.60 -0.62 -17.2 
(red) 4.00 4.03 2.52 

From table (1.9.2.6) we can see that there is an approximate empirical 

relationship (in this region) between A oo and e giving rise to the same 

voltage shift; this relationship is e/Aoo2;:::; constant ;:::; 15. In theory, this could 

be a useful tool with which to pursue a solution. However, we are alerted to 

an additional problem when we tum to the curves that resulted from the 

parameters in table (l.9.2.6), see figure (l.9.2.l5) below. 
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Volto~ (V) 

Figure 1.9.2.15: The top panel shows the experimental data of Takahashi et al. [1] .Then, using 
the Am and e data from table (1.9.2.6), and the theoretical model, we obtain the coloured curves 
(for key see table 1.9.2.6) 

Obviously, the coloured curves in figure (l.9.2.l5) are much narrower than 

Takahashi ' s experimental data (black curve). This narrowness is so 

significant that it is too soon to be overly concerned about the shape of the 

central feature. However, we can still examine these curves. We find that 

they all have the ' right type' of asymmetry, which seems to confirm our 

choice of a negative flexoelectric constant. 

However, if we are companng the asymmetries for different widths of 

transmittance curves, we see that while the green curve 

(e = -5.90x 10-11 em-I and Aoo = 2.00x 1 0-6 J m-2
) is the widest, it is also the 
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most asymmetric. Notice how the green and turquoise curves have reached 

their asymptotes by +1 V, whereas the cerise curve (e = -6.20xl0-12 C m- l 

andAro = 6.00xl0-7 J m-2
) is sufficiently asymmetric, but is too narrow. The 

cerise curve also has the right shape of central feature (compared with the 

central feature of the black experimental curve) but we ar~. currently so far 

away from a solution that no significance should be attributed to this 

coincidence. 

These observations alert us to the fact that these two parameters, Aro and e, 

cannot alone be altered such as to result in a curve fit to this HAN cell. 

From the theoretical results section we know that there are a number of 

alternative parameters that can be used to broaden a curve, the obvious one 

being !In . .Decreasing!ln would certainly broaden the curves; however, !In 

is one of the parameters that.is accurately obtainable from experiments, so it 

would be an inappropriate choice of variable parameter. 

By contrast, the elastic constants are not so well defined; therefore, they 

could be used to broaden the curves. Here, we chose to keep the ratio of K t t 

to K33 constant so that we retain some of the integrity of the experimentally 

obtained parameters. The problem with changing the elastic constants is that 

they do not simply change the width of the curves but also change the shape 

of the central feature. Compensating for this can be achieved by 

simultaneously changing the cell thickness, D. The graphs below, in figure 

(1.9.2.16), show curves that result from simultaneously changing D and 

multiplying the Ks by a constant, so that they can give rise to the same 

shape of central feature. We wish to see if these can be used to obtain the 

desired broadening. 
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Figure 1.9.2.16: Shows numerous examples of curves, with similar central regions, obtained by 
varying 0 and Ks together (see key). Note that we have chosen At)) = 1x10-6 J m-2 and 
e = -1 x 1 0-11 C m-1 because these appear to be in the general vicinity of a likely solution. 

Ks D 
colour Multiplied (~m) 

Key: Red 1.00 17.5 
Orange 1.25 21.0 
Green 1.50 24.5 
Blue 1.75 28.0 
Violet 2.00 31.5 

As had been stated when we were introducing which input parameters were 

malleable, we see here, in figure (l.9.2.l6), that varying Ks and D results in 

an interesting trend in as much as they appear to compensate for one 

another. Most of the peaks and troughs do not move significantly 

considering the sizes of the changes we have implemented in Ks and D. In 

fact the main observations are that increasing D and Ks in this fashion has 
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CHAPTER 

resulted in a marginally narrower transmittance curve and (note in the 

region + 1 to +2 V) that it has also resulted in more peaks and troughs being 

squeezed in, without changing ~cD of the central feature. 

() 

u 
c: 
B 
E 
UI 
c: 
o 

..= 0.0 e--:::...c....---'-_"--....Jo.L..--L._'--'----'-.....lL....I_ ..L----L...----L_..L.-........... ---'-----a 
-4.0 -2.0 0.0 

Voltoge (V) 

2.0 4.0 

Figure 1.9.2.17: Shows the effects of reducing the cell thickness from 0 = 31 .5 ~lm (violet) to 
o = 20.5 ~m (red) in order to broaden the curve and reduce the number of peaks and troughs, 
having previously increased this number by increasing the elastic constants (by twofold) and cell 
thickness (see figure (1.9.2.16)). The violet curve corresponds to the same colour curve from 
figure (1 .9.2.16). The red curve is for a cell of thickness of 0 = 20.5 ~m but is otherwise identical 
to the violet curve. 

p' Igure (1.9.2.17) shows how we can partially "back track" from figure 

(1.9.2.16). In figure (l.9.2.l6) we saw that increasing Ks and D in such a 

way that we were following a path for which the shape of the central feature 

was fixed (i.e. ~cD of the central feature is kept constant). We saw that these 

two parameters almost entirely countered one another and no significant 
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change in the width of the transmittance curve was observed. However, 

what was seen in figure (1.9.2.16) was that increasing Ks and D in this 

fashion resulted in a larger number of peaks and troughs in the 

transmittance curves at larger voltages. As a result we can decrease ~<I> of 

the central feature by multiples of 2n in order to retain the same shaped 

central feature but reduce the number of peaks and troughs at larger 

voltages. In doing so, we increase the width of the transmittance curve. This 

was done and is shown in the red curve of figure (1.9.2.17), where Ks are 

twice their experimental values and the cell thickness has been reduced 

from D = 31.5 /-lm (violet) to D = 20.5 /-lm. 

Clearly, from these graphs, figure (1.9.2.17), we could continue to 

significantly increase the value of the elastic constants and then vary the 

cell thickness D (so that the correct shape of the central feature was 

obtained) and then we could vary the flexoelectric constant and 

homeotropic anchoring energy (until the right voltage shift and asymmetry 

Were obtained). I.e. while there may be a solution that provides a virtually 

perfect curve fit, one has to be careful in ascribing physical significance to 

the fitting parameters obtained. It is, therefore, appropriate to discontinue 

the search at this point. However, it may be worthwhile to briefly discuss 

further what the implications are for the data obtained by Takahashi et al. 

[1 J. 

These observations may be due, once agaIn, to such factors as ion 

Impurities. However, without more detail about Takahashi et al.'s [1] 

experimental procedures and set-up, this is just speculation. Although, on 

the other hand, what can be taken from these simulations is that the 

flexoelectric coefficient, e, is negative. We have also seen that the 

homeotropic anchoring energy is critically small so that the flexoelectric 
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voltage shift is of the opposite sign to what it would be if Aoo were large 

enough. This point is of significant interest and so it is discussed in more 

detail in the conclusion. We have also seen that, when the anchoring energy 

is this small, even very small flexoelectric constants can result in significant 

flexoelectric voltage shifts and deceptively large asymme1:!ies. Therefore, 

we conclude that both e and Aoo are small for this system. 
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1.9.2.4 Conclusion to Experimental Curve Fitting 

Here, we briefly summarize our findings for all the experimental systems. 

Firstly, we examine the most recent one, i.e. the MBBA system, before 

concluding our results for the E7 systems. 

We were able to find vanous curves with the right magnitude of the 

flexoelectric voltage shift for the MBBA data of Takahashi et al. [I]. In 

addition, we have seen that this model is able to reproduce the shape of this 

transmittance curve and so this particular objective of the present work has 

been fulfilled. 

We have also found out information about the significant importance of 

particular parameters. This has included finding that, when the dielectric 

anisotropy is negative and the homeotropic anchoring energy is low (i.e. 

there is some asymmetry in addition to a flexoelectric voltage shift), it is 

particularly beneficial to perform simulations in order to gain a graph like 

figure (l.9.l.9.1) below for the MBBA system, i.e. 

0.8 
A." - ' .0 .1 0 - Jm­

- A,o - 2.0"tO -~ Jm-1 

~ o. ~ 
_ , - A." - 8 .0.10" Jm-' 

-0.8 

-1.0 "'--'---'~---'-~--'-~-::-'-:-~-'---'--'" 
-6.0 -'.0 -2.0 0.0 2.0 ' .0 6.0 

fle)Co~ectric Coefficient e (xIO- H Cm-1
) 

A." - 6.0 . 10" Jm-' 

A." - ' .0.10" Jm-' 
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- A - 6.0111 0 -' Jm-J 

Figure (1.9.1.9.1) Shows the flexoelectric voltage shift as a function of e 
for different homeotropic anchoring energies, for MSSA. 

III order to find the flexoelectric coefficient, e, and the homeotropic 
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anchoring energy for such systems. 

However, when the anchoring energies are high, the flexoelectric voltage 

shift is, roughly, a function of L1& and e: recall figures (1.9.1.8.2.1 and 2) 

~ 
E 
> 

0.00 ~~--r---'--r------'---r--""-----r------.----!iI 

-0.10 

"0 
-;; -0.20 

II ...... 
" >t. 

-0.30 

-0.4~5 ~.o:---'------:o.L...o --'-----=5-'-.o --'---10.L...0--'------:15'-c-.0-...L--~20.0 

At 

Figure (1.9.1.8.2.1) Showing the flexoelectric voltage shift as a function of ~6 for MSSA 
(recalling that the figure for E7 was almost identical) 

We have, however, found that errors in the value of the cell thickness can 

be compensated for by varying the elastic constants 18 (which are also prone 

to experimental errors). Furthermore, we experimented with varying the cell 

thickness and the elastic constants in order to see if these parameters could 

be used to both select the shape and broaden the transmittance curves. We 

found Ks and D approximately compensated one another to the point where 

mUltiplying the Ks by a constant factor (coupled with the corresponding 

increase in D) would have relatively little effect on the width of a 

transmittance curve (though this effect was to reduce rather than increase 

the width of the transmittance curves). So we are able to conclude that this 

18 While maintaining the ratio KII : K33 found experimentally. 
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is not an appropriate method of increasing the width of the central feature 

unless we choose D so as to decrease L\<I> by some multiple of 21t instead. 

We learned that AB), e, D and Ks cannot alone be used to curve fit this 

MBBA data, but that it would also be necessary to vary L\e. As this 

parameter is established accurately this was a cause for concern: the most 

feasible reason why a cell may have an effective L\e smaller than usual (as 

obtained from a continuum model) would be ion impurities being 

responsible for a significant screening of the electric field. 

We saw from the Takahashi curve fit (of MBBA) that we were able to 

recreate the basic shape of the transmittance curves. From this we were able 

to conclude that the homeotropic anchoring energy was very low and that 

the flexoelectric coefficient was probably small but definitely negative. 

For the E7 systems rather more success was had. Curve fitting Bartle's data 

[30], we were able to estimate the cell thickness and the size of the 

homeotropic anchoring energy for the E7 cell and reproduce, reasonably, 

the experimental curves. For the 10% solutions in E7 we were able to find 

values of the dielectric anisotropies, cell thicknesses, homeotropic 

anchoring energies and flexoelectric coefficients. We saw that, for all these 

E7 cells, the flexoe1ectricity was small but the occurrence of asymmetries in 

the transmittance curves confirmed its presence. The table below, (1.9.2.7), 

shows the fitting parameters used, and the estimated accuracies of them are 

included in the form of errors. 
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Table 1.9.2.7: Shows the curve fitting parameters used for the E7 systems. 

D As AaJ e 
J1m x10-6 Jm-2 X10-11 Cm-1 

E7 27.5 ± 0.5 13.8 9.0 0.0 ± 0.5 
3.0 < Aro< 9.0 

JHW29 16.9±0.5 15.8 ± 0.5 5.0 -1.0 ± 1.0 
3.0 < Aro< 10.0 

JHW33 18.0 ± 0.5 13.8 ± 0.5 5.0 -0.5 ±1.0 
3.0 < Aro< 10.0 

JHW131 17.4±0.5 8.8 ± 0.5 5.0 -0.5 ± 0.5 
3.0 <Aro< 10.0 

JHW172 26.6 ± 0.5 7.8 ± 0.5 5.0 0.0±0.5 
3.0 < Aro< 10.0 

In addition, the cell thickness is typically being either experimentally 

overestimated by a factor of about 1.4 from the values used in our 

simulations or underestimated by the theory, see table (1.9.2.2). However, 

we also found that the ratio between experimental cell thickness and 

theoretical thickness was closer for the E7 data than the systems containing 

dopants. The direction of this shift leads us to conclude that these dopants 

act to reduce the system's order parameter. 

This model is able to reproduce the shapes, asymmetries, and voltage shifts 

seen experimentally. However, until more work is performed to increase the 

magnitude of the anchoring energies, using this method (i.e. calculating the 

flexoelectric coefficient from the flexoelectric voltage shift as proposed by 

Takahashi et al. [1]), is fraught with difficulties. We have shown that it is 

Possible to make educated estimat~s for the values of e and Aoo using the 

whole of a transmittance curve, but this was simply not addressed in 

Takahashi's work in which the preference was to concentrate solely on the 

flexoelectric voltage shift. We have also shown that this method is 

particularly inappropriate for finding the flexoelectric coefficient for 

systems with low homeotropic anchoring energy and a negative dielectric 

anisotropy (such as is the case for MBBA). 
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1.10 Conclusion 

Our objectives were to: devise a continuum modelling method that would 

produce physically meaningful solutions to the PDEs (unlike the self 

consistent method); find out how different continuum modelling parameters 

affect the behaviour of HAN cells, thus gaining an understanding of why 

they caused these behaviours; to be able to reproduce experimental curves; 

and, more specifically, obtain meaningful curve fits for experimental data. It 

is our belief that these objectives have been, for the main part, satisfied. 

We started this work with a particular interest in the behaviour of HAN 

cells due to the flexoelectric coefficient; we have reached the end of this 

study with a much richer view of how flexoelectricity interacts with other 

properties of such cells. The contribution due to low homeotropic anchoring 

energy has raised the possibility that values of flexoelectric coefficients 

may be overestimated or even have their sign wrongly diagnosed. This 

certainly goes a long way towards explaining why there are such large 

fluctuations in the values reported in the literature for given material, some 

of which are shown in the table below: 

Table 1.9.2.8: Values of e for MBBA from the literature [1]. 

e11 + 633 (Cm·1) 
-5.4 x 10.11 

-0.33 X 10.11 

-2.48 x 10-11 

-2.31 x 10-11 

+0.99 x 10-11 

+8.8 x 10-11 

Experimentalists 
Takahashi et al [1] 

Dovov et al [43] 
Madhusudana and Durand [44] 

Valenti et aJ [45] 
Blinov et al [46] 
Ponti et al [311 

There are two major theory findings of this work. Firstly, when the 

homeotropic anchoring energy is low the flexoelectric voltage shift is better 

'behaved' if the system has positive dielectric anisotropy than if fle is 

negative. That is, the flexoelectric voltage shift retains a high degree of 

proportionality and the constant of proportionality does not vary vastly with 
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AOJ when L\eis positive. However, this is not so when L\eis negative. 

Secondly, the distortions of the transmittance curves (when AOJ is small) are 

of the opposite sign to that of the flexoelectric coefficient, e. 
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1.11 Further work 

It would be beneficial to adjust the model so that we can investigate the 

effects of varying the homogeneous anchoring energy thoroughly: from the 

trend seen in the work on changing signs of fl.& and the magnitudes of Aro 

for e i- 0 C m- l systems, we predict that some of the aSymp1etries in the 

positive fl.& experimental systems may be due to a lowering of the 
J 

homogeneous anchoring energies instead of the homeotropic anchoring 

energies. 

Due to the new nature of the way in which we find solutions for the PDEs 

that describe this system, we have yet to find a way to incorporate ion 

impurities into the model. It would be of great interest if we could address 

this omission. 

Furthermore, it would be desirable to work on both systems (Le. positive 

and negative dielectric anisotropies) with higher anchoring energies and/or 

(in the case of the systems containing E7) exhibiting greater asymmetries 

and/or voltage shifts than those investigated here. It would also be of great 

interest to examine other MBBA cells to see if the experimental results 

obtained by Takahashi et al. [1] were typical of MBBA systems. 
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Chapter 2 

A New Method for 

Investigating Surface 

Tension of Liquid Droplets 

from Molecular Dynamics 

Simulations. 
2.1 Introduction 

At present, there is considerable interest in the determination of surface 

tension of liquid droplets of sub-microscopic size, with a view to 

controlling their surface properties [1, 2, 3, 4 and 5]. Examining sub­

microscopic droplets provides the opportunity to explore potential 

applications, ranging from ink-jet printers, and aerosols (including 

antiperspirant sprays and insecticides), to metal soldering and gas arc 

Welding, etc. [6]. Increasing our understanding of these sub-microscopic 

droplets increases our ability to understand, design and control such 
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systems. This chapter, for these same reasons, proposes a method that will 

provide a new tool and insight into modelling and examining these 

systems. 

Surface tension is measured in either force/length, hence the name surface 

tension, or energy/area, which has more thermodynamic connotations. 

Recalling that force is energy/length, it can be seen that these are 

equivalent. 

Despite this, defining surface tension is not entirely straightforward: it is a 

macroscopic phenomenon with microscopic origins [7, 8]. The 

macroscopic phenomenon can be observed when a pin, which is denser 

than water, is rested upon the water's surface, appearing to be suspended 

by an invisible film. The microscopic origin of this phenomenon can be 

attributed to the inter-molecular forces, e.g. between water molecules. 

However, at the microscopic level there is no 'film'. Thus, one of the 

problems faced when defining surface tension occurs when relating the 

macroscopic to the microscopic, and vice versa, while obtaining a 

definition that is physically meaningful at both ends of this scale [9]. In the 

present chapter we put forward a method that aims to bridge this gap. 

The microscopic origins of surface tension are the inter-particle forces. In 

the surface region the inter-particle distances are such that a net attraction 

between the particles occurs. In a liquid's bulk, however, the particle 

separations are typically slightly less than the equilibrium separation, 

giving rise to an, on average, repulsive force between particles. The mean 

particle separations are maintained at less than equilibrium distances by an 

inward pressure exerted by the surface region, i.e. the region responsible 

for surface tension. Thus the whole system is kept in equilibrium by these 
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two opposing forces. Figure (2.1) below shows some of these features 

schematically. 

Vapour o . ... D ......... . 
.. ' ..... ....r'\ 

.' V 

Surface 

Liquid 

Figure 2.1: Shows how the different spacings between molecules in the three regions vary. In the 
liquid (yellow) region we see that the particles are on average very closely spaced and 
experience repulsive forces18 (red arrows). The particles in the vapour (blue region) experience 
small attractive forces (blue dotted arrows) as they are widely dispersed. However, in the surface 
(green) region the particles generally experience attractive forces towards each other and the 
molecules in the bulk liquid phase (green arrows). 

If appropriate approximations for given force fields are used, molecular 

dynamic (MD) simulations, performed on computer, can emulate physical 

systems. By performing MD simulations upon a system of particles, at a 

given temperature and allowing the system to evolve through time, the 

general equilibrium distribution of particles will reveal much about the 

system [10]. For instance, Kopolik et al [11] employed MD simulations to 

investigate the coalescence, solidification and evaporation of nanometer­

sized Lennard-lones liquid droplet. Similarly, Huang et al [12] and Kinma 

et al [13] studied the spreading and nucleation behaviour of liquid drops on 

a rough solid surface by means of the MD method. The positional data of 

the particles enables the calculation of local densities, particle energies and 

forces. 

18 N.B. For a spherical droplet the net average repulsive force tends toward zero as 
radius, r, tends towards 00, i.e. for planar surface. 
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The output information from MD simulations is inherently microscopic in 

nature. Having a definition of surface tension in terms of the information 

available would be valuable: particle energies and forces are the origins of 

surface tension. However, there is a distinct lack of any direct, formalized, 

relationship between positional data and surface tension in the literature. 

Consequently, a method by which this information can be used to calculate 

surface tension is proposed here. 

As inter particle forces are the origins of surface tension, so too should they 

facilitate the calculation of surface tension directly. If an adequately 

accurate approximation to inter-particle force fields is employed, 

subsequent molecular dynamic simulations can meaningfully describe real 

systems. Therefore, in equilibrated states, the positional data and inter­

particle force fields will assist the examination of the phenomenon of 

'surface tension' at a molecular level, comparable with surface tension in 

the macroscopic realm. As a consequence, the practical implications of this 

new model/method can be realized. These include examining microscopic 

droplets. 

To do this, initially some spherical droplets, of varying sizes, must be 

created on the computer. Then MD simulations are performed over a range 

of temperatures. Firstly, for reasons of comparison with data in the 

literature, we shall curve fit these droplets' density profiles (as a function of 

radius). Secondly, we shall use the positional data to calculate energy and 

force profiles (again as functions of R). Our new method involves using 

this data to calculate the surface tension; it also allows us to meaningfully 

define and locate the surface region. Due to the statistical fluctuations 

inherent to the MD method, averaging methods have to be employed in 

order to smooth over the noise. 
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This chapter limits its examination of surface tension to spherical droplets 

of monatomic material in which the particles interact in accordance with a 

Lennard-Jones 12-6 pair potential. This pair potential is mathematically 

simple and a fairly accurate approximation to the Van der Waals' 

interaction. However, the theory proposed here is more general and could 

be applied to systems with other geometries, using more intricate force 

fields, describing interactions between several different constituent 

molecules. Before anything so ambitious is undertaken, we should test the 

new method's validity by examining simple systems and then compare our 

results with other work available in the literature. 

Here the Lennard-Jones pair potential is chosen to mimic Argon - Argon 

interactions. This allows comparisons to be made both with other theories 

and simulations [7, 9,14,15,16,17 and 18]. These can then be compared 

with the experimentally obtained macroscopic values of surface tension for 

Argon [19]. Obviously, a direct comparison would be inappropriate as the 

droplets being examined here are on the scale of nanometres; accurately 

obtaining surface tension of such miniscule droplets is currently beyond the 

reach of experimental techniques. Nevertheless, comparisons between the 

surface tensions gained from existing simulations, theories (covering the 

large range of possible systems sizes) or experimental values (for 

macroscopic systems) and our new method are still of interest. 

While it is desirable to be able to make such comparisons between our 

droplets and those obtained by others, not all researchers working on 

Lennard-Jones droplets have parameterised them so that they would 

emulate Argon. However, the variation of a Lennard-Jones droplets' 

density pro~le in the surface region is fairly well behaved; with appropriate 
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scaling, comparisons between different Lennard-Jones droplets can be 

made independent of input parameters. This is achieved by finding the 

parameters that can be used to curve fit these density profiles with a tanh 

function [15]. Before comparing the values for surface tension obtained by 

, our new method with those gained by other methods, we need to establish 

that the droplets created by our simulation are physically similar to those 

studied by others. 

Before the new method is explained, it is important to layout the historical 

background and thus set it into context. By doing so, we hope to 

demonstrate the need for a new method. At the same time we provide 

arguments as to why our method can bridge the gap between microscopic 

simulations and macroscopic observations. 
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2.2 Historical background 

Historically there have been many different approaches to the problem that 

the interface between two phases presents, and subsequently in defining 

surface tension [7]. In order to gain a general overview an examination of 

the works of scientists, such as Laplace, Gibbs and Van der Waals, will be 

presented here. Their methods ranged from molecular mechanical to quasi­

thermodynamic approaches. Some researchers approached this problem by 

trying to rigidly define the surface, typically as an idealised film of zero 

thickness. Others have tried to tackle it by describing the thermodynamic 

properties of the bulk phases on either side of the surface region, and to 

then treat the surface as though it were a third bulk phase. Some theories 

tried to define surface tension in terms of the thermodynamic properties of 

the whole system, without focussing on the exact location of the surface 

region. All of these approaches had a macroscopic angle to them. In 

contrast, statistical mechanics attempts to provide local definitions of 

thermodynamic properties, which is a more microscopic approach. As this 

is also of interest, an exploration of this will follow, providing a brief 

outline of the pressure tensor and direct correlation functions [7 and 20]. 

2.2.1 Thermo-dynamical Theories 

Thermodynamics considers macroscopic ( average) properties of a system. 

Despite the fact that Daniel Bernoulli's theories19 provided a better 

understanding of what was happening in a system, his theories on this 

19 He believed the origin of pressure was collisions between molecules in a fluid and the 
walls of a system [7]. Putting this into a historical context (due to the similarities), it is 
interesting to note that Daniel Bernoulli died 62 years before Boltzmann was born [29] 
as even in Boltzmann's lifetime the opposition to a statistical mechanics approach was 
great. Regrettably, Boltzmann committed suicide shortly before his theories were 
validated and more than a hundred years after Bernoulli had himself' shuffled off this 
mortal coil'. 
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matter were almost universally ignored in favour of the works of Dupre, 

Rayleigh and Laplace. Only Laplace's theory will be examined here. 

Laplace believed that the surface could be idealised as a perfect film, 

assuming that there was a step in the density profile separating liquid and 

vapour phases. He treated the surface as an infinitely thin region between 

two phases [7] and defined the surface tension, a, of a spherical droplet to 

be 

~·r (J" = __ $ 

2 
(2.1) 

where flp is the pressure difference between the two bulk phases (i.e. liquid 

and vapour) and rs is the radius of the surface of tension. 

It must be noted that rs is defined such that Equation (2.1) gives agreement 

with the experimental values for the surface tension. This definition does 

not help in the calculation of the surface tension from MD simulations 

because, as yet, we do not have a definition of rs or local pressure. This 

problem is compounded by our inability to perform experiments on sub­

microscopic droplets. Therefore, the Lapace equation falls short of being 

able to provide sufficient information to help us find surface tension from 

the MD simulations we performed. 

Alternatively, there is the Kelvin equation, i.e. 

P 2u 
-L=exp--
P«J RpNkT 

where PR is the pressure of the vapour in equilibrium with a droplet of 

radius R, P 00 is the conventional pressure of the vapour and PN is the 

number density of the liquid well inside the drop. This equation has been 
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utilised in MD simulations to evaluate the surface tension [15]. However, 

the validity of thermodynamic-type equations, such as the Kelvin equation, 

for very small droplets is highly questionable. This is because these 

equations are derived from macroscopic arguments, specifically for 

macroscopic systems. 

Also, there is the Tolman equation for the variation of the surface tension 

with drop size, i.e. 

(J' 28 
-=1--+ ... 
(J' a:) rs 

where (J'oo is the surface tension for a planar interface and 8 = re - rs, where 

re is the radius for the equimolar surface, which has been employed in MD 

simulations [21 and 22]. In particular, Koga et al. [23] showed that the 

Tolman equation is only applicable for systems containing more than 

approximately 106 particles. Because these equations have their origin in 

thermodynamics, all of them fail for sufficiently small drops. 

2.2.2 Quasi-Thermodynamical Theories 

2.2.2.1 Gibbs' Theory 

In contrast, Gibbs [7] opted for combining bulk thermodynamic properties 

with the concept of an idealized surface film as a third bulk phase. He 

achieved this by initially employing a continuous density profile to 

describe the interface between two phases. The properties of a bulk phase, 

at equilibrium with its surroundings, are well defined by the theory of 

thermodynamics. However, the surface region does not constitute a bulk 

phase and so thermodynamics, in its existing form, is not ideally suited to 

describe this region. 
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The approach Gibbs employed to amend this was to calculate the additional 

energy that a smooth system possesses over that of a stepped system2o
, 

separating the two bulk phases with a hypothetical 'skin membrane'. This 

additional energy is called the surface free energy or the Helmholtz surface 

energy [7]. The Helmholtz surface energy divided by the surface area gives 

the surface tension. 

The problem Gibbs now faced was that he needed a definition that would 

enable him to find the surface area reliably and consistently. He called this 

dividing line the equimolar surface, r e, also called the Gibbs dividing 

surface. At its simplest, the Gibbs dividing surface is defined as the surface 

for which the two areas A and B (see figure (2.2)), encased between the 

step function and the continuous curve, are equal (see Appendix I for the 

thermodynamics underlying the equimolar surface). 

Density Gibbs dividing surface 

1 

,Dvapour 
_______ ~~~ ::l:::-"::I __ A_r_e_a_A __ _ 

,DIiquid 

Radius 

Figure 2.2: Shows the density profile of a liquid to vapour transition, where ,DIiquid is the density in 
the liquid bulk and /Napour is the density in bulk vapour phase. The Gibbs dividing surface is 
defined such that Area A = Area B. 

The way in which Gibbs then used this to define the surface tension was to 

divide the Helmholtz energy, Fs, by the area, A , of the equimolar surface, 

l.e. 

20 As employed by Laplace 
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F 
(J' =_$ 

A 

In the case of a sphere, A can be defined in terms of re, recall figure (2.2). 

2.2.2.2 Van der Waals' Theory 

Similarly, using Van der Waals' theory, it has been shown [7] that the 

surface tension can be calculated from any of the following formulae: 

a = r:\{'(z)dz 

= r: m[p(z)]p'(z)2 dz 

= -2 r:W[p(z)]dz 

= rfJ 

[-2m(p)W(p)]1dp 
'Pet 

(2.2) 

where \{'(z) is the free energy density excess due to the inhomogeneity in 

the interface" region, and m and Ware two functions which depend on the 

density profile {i..z). Equations (2.2) imply that the density profile can be 

utilised to determine the surface tension. However, in the absence of an 

explicit functional form for W(P) and m(p) we are unable to evaluate 

equation (2.2). Although the density profiles are examined21
, the direct link 

between density profiles and surface tension is not transparent. It should 

also be noted that equations (2.2) apply to flat surfaces and would have to 

be modified to be applicable to spherical droplets. 

There were numerous problems facing these original attempts to define 

surface tension. As Laplace did not possess the computational power to 

perform molecular dynamic simulations, how was he to correlate the 

molecular force-fields and the density profiles with the surface tension? 

21 Density profiles, at different points in time, can be employed to establish if a droplet 
. has reached eqUilibrium. They are also of interest because they can show where in the 

droplet certain features (seen in the energy and force profiles) occur. 
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Gibbs, despite employing a quasi-thermodynamical method, experienced 

similar problems. Even Van der Waals, whose method was also quasi­

thermodynamical, faced similar difficulties. For all three models, the direct 

link between inter-particle forces or energies and surface tension appears 

severed; statistical mechanics attempts to provide a solution to this 

dilemma by marrying thermodynamics and molecular dynamics [14] and 

this is described in the following section. 

2.2.3 Statistical Thermodynamics 

In contrast with classical mechanics, which examines individual particles, 

statistical mechanics describes systems in terms of statistical distributions 

of the values of given properties. In so doing, it bridges the intuitive gap 

between systems composed of discrete particles and the thermodynamics of . 
a bulk. This is accomplished, for a given property, by using distribution 

functions to ascribe a probability of a particle having a value in a particular 

range. An example of this is the Boltzmann distribution which describes 

the distribution of molecules' momenta. This approach is particularly 

useful for describing large homogenous systems. However, there have been 

numerous reasonably successful attempts at applying statistical mechanics 

to inhomogeneous systems, such as systems containing two phases. Some 

of these are introduced below. 

The starting point from which this success is built is the statistical 

mechanics approach to the topic of surface tension: it employs some of the 

results from thermodynamics and it aspires to find and locally define the 

thermodynamical properties that would otherwise be unknown. Before 

looking at how statistical mechanics achieves this we should examine the 

thermodynamics it utilises. Thermodynamics relates surface tension to the 
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Helmholtz free energy22, F, or the grand potential, n. The grand potential is 

c 

defined as n = F - Jl' n, where Jl' n is L pjnj , pj is the chemical potential 
;=1 

and nj is the molar concentration of species i. The theory defines surface 

tension, a, to be the Helmholtz free energy or the grand potential 

differentiated with respect to the surface area [7 and 8], i.e. 

0'= (aFjaA)r,v,n or a = (anjaA)r,v,J1 

where T is temperature and V is volume; the fact that nand J.1 are in bold is 

to denote that these are to be held constant. 

Thermodynamics relates pressure and surface tension to the Helmholtz free 

energy, F, 

dF = -p(dVh + O'(dA)r 

p = -(aFjaV)r,A,n and 0' = (aFjaA)r,v,n 

or to the internal energy, U, 

dU = -p(dV)s + O'(dA)s 

p = -(aUjaV)S,A,n and 0' = (aUjaA)s,v,n 

In statistical mechanics, as Bernoulli believed, pressure per) is related to 

density li..r) and particle velocities vCr), i.e. 

V . p(r) = - p(r)Vv(r) 

Further tools in the statistical armoury include correlation functions [8]. 

These are conditional probabilities of pairs of atoms or molecules occurring 

(in large numbers) at specific places. The purpose they serve is to provide 

the probability of a molecule being present in the vicinity of another 

molecule: for example in Monte Carlo simulations it is clear that, if a 

22 This is a canonical ensemble. 
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molecule is present In a particular location, it would influence the 

probability of a second, third etc, molecule also being present. These 

functions are invaluable in helping to describe complex systems. 

With distribution and correlation functions it should be possible to describe 

a system, including the interface between liquid and gas phases. However, 

the correlation functions used to describe liquid and gas phases are 

different, and the form they should take in the surface region is unclear [8]. 

The total correlation function h( rt,rz) IS defined [7] as 

p(2\rl'r2)- p(r1)p(r2) = p(r1)p(r2)h(r1,r2), where p (rl) and p (r2) are the 

single particle density profiles for particles I and 2 respectively, e.g. liquid 

and gas, and p(2)(rl,r2) is the two particle density distribution, i.e. a density 

correlation function. According to theory, p(Z)(rt,rz) is well defined for a 

planar surface. 

Employing the generalized Ornstein - Zernike equation, the surface 

tension, 0', may be written in terms of polar coordinates [8] as 

where g(2)(ZI' 'iJ= h(Z,'i2)+ 1 is the two particle configurational distribution 

function for particle I and 2, and <l>(rI2) is the pair potential between 

particles I and 2. 

Leng et al. [24] utilized a me an-field approximation to investigate the 

surface tension by using this approach and demonstrated an analytical 

equivalence to a similar formalism developed by Lovett et al. [25]. 

Fundamentally, however, any meaningful comparison with experiments not 

only hinges on the applicability of mean-field theory (which is highly 
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questionable for small droplets) but also on an explicit knowledge of the 

density and pair correlation functions. 
\ 

An alternative method, which circumvents many of the above mentioned 

drawbacks, employs the pressure tensor to evaluate the surfa~~ tension, i.e. 

u = f[PN(Z)- Pr(z)}iz 

where PN (Pr) is the normal (transverse) component of the pressure tensor 

[14, 15 and 16]. For pairwise additive potentials, Schofield and Henderson 

[26] demonstrated that the pressure tensor can be written in the form 

where Cij is any contour joining rj and rj, rj is the location of molecule i, 

oap is the Kronecker delta, u{rij) is the intermolecular potential and 0 (r-£) is 

the Dirac delta function. As can be seen from equation (2.3), this formalism 

is readily amenable to computer simulations using, e.g., the molecular 

dynamics method. However, it can also be seen from this equation that 

there is no mechanical route (i.e. via the pressure tensor) to the surface 

tension of a spherical droplet that is invariant to the choice of contour of 

integration (i.e. independent of the choice of integral Cij) [14]. The Irving­

Kirkwood and the Harasima pressure tensor [14] are just two possible 

choices employed in the literature for this purpose. For instance, Rusanov 

and Brodskaya [16] employ the Irving-Kirkwood form in their MD 

simulations (with up to N = 256 Lennard-Jones particles) and obtained a 

decrease in the surface tension with decreasing radius of the surface of 

tension. Similarly, Thompson et al. [14] investigated a liquid droplet 

containing up to N = 2048 Lennard-Jones particles. These authors also 

found a reduction in the surface tension with decreasing drop radius and 

with increasing temperature by utilizing both the Irving-Kirkwood and the 
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Harasima form of the pressure tensor. However, a comparison between the 

two sets of theoretical results is impeded by the large uncertainties in the 

surface tension values arising from the poor statistics of the Harasima 

pressure tensor [14]. Also, an experimental verification of either of these 

choices of contour of integration is difficult because measurements of 

surface tension for sub-micrometer size droplets are fraught with 

difficulties. 

In addition to this inability to unambiguously define the pressure tensor, the 

main problem facing statistical mechanics is that the correlation functions 

are not well defined in regions of phase transitions and therefore they are 

less than adequate to describe the surface region and subsequently the 

surface tension [7]. 

So, instead of defining surface tension in terms of ambiguous and ill 

defined expressions, we will utilize the output of molecular dynamic 

simulations directly. These simulations can provide information about 

molecular distributions throughout the system including the surface region. 

From this it should be possible to define surface tension in terms of this 

distribution. We put forward a theory in the next section that enables such a 

definition. 
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2.3 New Theoretical Method 

In what follows, a new method for the determination of surface tension is 

proposed. We will limit the scope of this study to spherical droplets 

composed entirely of one type of particle. However, it should be noted that 

this method is equally applicable to mUlti-component syst~ms and other 

surface geometries. This method uses a direct route from MD simulation 

results (via intuitive and physical arguments) to surface tension. Thus it 

avoids the problems of the thermodynamical andlor statistical mechanical 

theories described above. 

The method we propose to find surface tension (described in more detail in 

the following section) is briefly summarized as follows: 

• Choose' an appropriate force field to perform MD simulations, e.g. 

Lennard-Jones 12-6 pair potential, etc. 

• Equilibrate the system for a given temperature, 

• Use the positional data of the particles (combined with the force field) 

to calculate the forces exerted on the particles. These will be repulsive 

in the bulk and attractive in the surface region 

• Find where the attraction between the particles is a maximum and define 

this to be the surface of tension. This is needed both because it is used to 

identify the corresponding region in the energy profiles and it enables 

the surface area to be calculated. Both are required to calculate the 

surface tension (see below). 

• Use the force field to calculate the energies of each particle. 

• Viewing the droplet as a potential well, we find the energy required to 

remove a particle from the surface region to infinity. This is achieved by 

finding the average energy of the particles in the region corresponding 

to the surface of tension of the energy profile, as identified by the force 
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curves (shown in more detail in figure (2.5) below). 

• This value is then divided by the surface area to give the average 

potential energy of the particles at the surface divided by the surface 

area. This gives a measure of surface tension and has units of J m-2 or 

N -I m. 

The method for evaluating the surface tension proposed here is a close 

analogy to experimental techniques, such as the du Noiiy ring tensiometer, 

involving the mechanism of 'meniscus breaking' [7]. 

2.4 Computer Simulation Details 

2.4.1 The System. 

We applied the method, described in § 2.3, to spherical droplets containing 

N particles (where N = 500, 1000, 2000 and 4000). Simulations were 

performed for a range of different temperatures. We did this to see how the 
, 

predictions of our model would compare with the predictions made by 

previous theories [7, 15]. The droplets were created and modelled using 

Cerius2
, a molecular modelling and visualisation package written by MSI 

[27]. The reasons for choosing spherical droplets were their practical 

significance and the simplification that their geometry allows. However, it 

should be noted that this model is easily adaptable to other geometries and 

choices of coordinate systems. 
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2.4.2 The Pair Potential. 

For the MD simulations a Lennard-Jones 12-6 pair potential was chosen, 

both because of its simplicity and because it approximates the Van der 

Waals' interaction particularly well. The Lennard-Jones 12-6 pair potential 

employed has the form 

(2.3) 

where r is the inter-particle spacing and £ is the depth of the potential well 

(£/k= 93.16 K) which occurs at r = rm (rm= 0.3868 nm) see figure (2.3). 

The significance of these parameters is that they can be used to 

approximate the Van der Waals' argon-argon interaction [27]. 

u(r) 

radius 

Figure 2.3: Shows the general shape of the potential energy of the Lennard-Jones 12-6 pair 
potential, where rm is the radius at which the maximum depth, &, of the potential well occurs. 

The forces acting on the particles can be calculated by using the derivative 

of equation (2.3) to give equation (2.4), i.e. 

F(r) = 12&[( ;)( ;,': J] (2.4) 
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2.4.2.1 Creating Spherical Droplets. 

Initially it is necessary to produce an appropriate proto-droplet. There are 

two reasons for this. Firstly, having a suitable initial droplet reduces the 

time taken to reach equilibrium and, secondly, an inappropriate choice of 

molecular distributions within a system could preclude any meaningful 

equilibrium from ever being attainable. For these reasons particular care 

was taken when creating the proto-droplets. The spherical droplets were 

created in the Cerius2 visualisation window and this was done by a 

combination of copying and pasting, followed by repeated energy 

minimizations and low-temperature MD simulations23 until droplets 

containing the desired number of particles and having the required shape 

(Le. spherical) were obtained. 

2.4.2.2 Running the Molecular Dynamic Simulations. 

Once an initial droplet (a 'proto-drop') had been obtained, the MD 

simulations began. Certain aspects of these simulations were established 

prior to the MD run, e.g. the temperature was set, the time step was chosen 

to be 0.01 ps, and the simulation type was set to 'constant NVT' (Le. the 

number of particles, volume and temperature were all kept constant). In 

addition, a potential cut-off radius of 1.4 nm (= 3.6 rm) was employed in the 

calculations, in order to reduce CPU time. 

The proto-drop was then equilibrated over several hundred picoseconds 

until fluctuations in the energies and the temperature were deemed 

acceptable (±O.4 K in the case of temperature). For the 4,000 particle 

23 These were perfonned for short periods of time and at sufficiently low temperatures 
so that evaporation would not occur, but also at high enough temperatures, and for long 
enough times, so that some thennal movement could occur. 
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droplets this process typically took between ten and twenty hours. 

Subsequently, the number of steps was set to 1,000 and, for each droplet 

and given temperature, ten consecutive simulations were performed. This 

was done so that time averages could be performed (see below). For the 

4,000 particle droplet the CPU time required to perform a ~housand steps 

was approximately one hour. 

2.4.2.3 Analysing the Droplets. 

Once ten output files (for each temperature and droplet) had been obtained, 

the data generated by Cerius2 could be analysed. It was necessary to have a 

method to process this considerable amount of data. This was provided by 

computer programs, written by the author in the programming language C, 

and utilising the mathematical formalism described below. Further to the 

mathematics used, the program 'DIAtimeslO.c' which was used to perform 

these tasks can be found in Appendix M. 

The start of this process began with an examination of the input data from 

Cerius2 before analysis was undertaken. The output files from Cerius2 were 

in Cartesian co-ordinates. For most of our needs this was ideal, allowing 

particle positions and separations to be calculated easily (using Pythagoras' 

theorem). 

However, for some of our other needs, Cartesian co-ordinates (see below) 

with an arbitrarily located origin, were less than comprehensive. Instead, 

the geometry of the system lends itself to spherical polar co-ordinates with 

the origin coinciding with the centre of the droplet. It is a reasonable 

assumption that for a roughly spherical droplet the centre of mass should 

coincide with the centre of its geometry. The origin was reset by using the 
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following (given in x, y and z directions) 

(

NXj NYj NZ j ] 

(xcm,Ycm,zcm)= ~ N'~ N'~ N 
J=l J=l J=l 

where the system has N particles, subscript em denotes the centre of mass, 

and j is the particle number (an arbitrary name). The centre of mass co­

ordinate was subtracted from each particle's co-ordinate, i.e. 

thus resetting the origin where i is the particle number (same as j but 

allowing us to distinguish between before and after the droplet's origin has 

been reset). 

In a spherically symmetric system, to which these droplets roughly 

correspond, we can reduce the number of co-ordinates against which we 

plot the data from three (X, y and z) to one, r. For each particle ri is given by 

~ 2 2 2 rl = Xi + Y/ + Z/ • 

If spherical symmetry is assumed, or taken as an appropriate 

approximation, then the spherical polar co-ordinates () and ¢ can be 

discarded; however, the newly centred x, y, and z co-ordinates will still be 

required, as will be seen below. 

2.4.2.4 Calculating Density Profiles. 

Depending on the geometry of a system, decisions must be made about 

how to divide a system in order to facilitate its analysis. To calculate 

density, it is necessary to know the number and masses of particles within a 

given volume. With a suitable choice of volume, the geometry of this 

system can be exploited. In this case, by dividing the droplet into radial 

shells and using the radial co-ordinate of each particle, it is possible to find 
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the number of particles, n(rl,r2), that are contained within the shell enclosed 

by the two radii rl and r2 (where rl < r2). Given the particle mass, m, and a 

calculation of the volume of that shell, we were able to calculate each 

droplet's density as a function of the two radii, i.e. 

( ) 
3.n(rl'r2)·m 

P rl' r2 = ( 3 3 J 4.7Z" r2 -rl 

If we used sufficiently small shells we could approximate 

p(rl'r2) = p(rl~r2)~ perl) ~ p(r2). 

However, because we needed to balance the accuracy with which p-"r) and r 

were defined, the approximationp(lj,r2 ) = p('1~r2) was chosen. 

2.4.2.5 . Calculating Forces and Energies 

Next, it was vital to determine how forces and energies of the particles vary 

as a function of distance, r, from the centre of the droplet. From the 

positional data, the potential energies and forces were evaluated for each 

particle using modified versions of equations (2.3) and (2.4). These 

equations now took the forms 

N [( J12 ( J6] () 
1 ~ ~ 

u ri =-& L .J!l.. -2.J!l.. 
2 j=l.j~i rij rij 

(2.5) 

and 

1 N [r. 6 r. 12] F(Ij} = -12& L .J!L_...rry-
2 . 1 .... 7 3 

)= ,)'*1 , ij Ijj 

(2.6) 

for the energy and force, respectively. The factors of Y2 were introduced to 

compensate for double counting. 
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2.4.2.6 Calculating Radial Averages. 

Given that there was a Boltzmann distribution of particle velocities in the 

system, we could expect there to be a distribution of the potential energies 

of the particles. Thus, a technique to smooth over these statistical 

fluctuations was called for. For the density profiles, spatial.averaging had 

already been performed. However, this still needed to be done for the 

energy and force profiles. Again, using the high degree of spherical 

symmetry, we were able to achieve this by dividing the droplet into radial 

shells24 and finding particle averages within individual shells. For the 

energy this reads 

and for the force 

where tEj(r)is the total potential energy of all the particles within the 
'I 

shell between rl and r2, and E(Ij~r2) is the average of this (likewise for F). 

Computationally, problems arose with this definition as some of the shells 

were empty. For these we assigned the value of 'integer 0' to E and F so 

that these could be distinguished from energies and forces equal to 'real 

0.0'. In this way, empty cells could be noted as such and their data not 

written to file; as a result, the spatial average curves are not subject to 

artificial fluctuations ~hat they would otherwise have suffered. This was 

done so that, in addition to not skewing the spatial averages, empty shells 

would not skew the time averages either. Next, using the spatial averages, 

the temporal averages were calculated. 

24 We chose to use a shell thickness of d = 0.1 run 
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2.4.2.7 Calculating Temporal Averages. 

We had ten data sets for each temperature and droplet, evolving over some 

time period, typically 90 pS2S. For the time averaged density profile we 

added the ten p-"r) curves together and divided each element by ten. For the 

energy (and force) time average(s) we added the ten sets of data together 

and then divided each element by the number of non-empty sets at that 

radius. Thus, for each function (F, E and p), we had meaningful temporally 

and spatially averaged curves. By doing this we significantly reduced the 

statistical fluctuations inherent in the data. 

2.4.2.8 Implementation on Computer: The Program 

Initially, several programs were written, each to perform specific tasks, i.e. 

calculating: density; forces and energies; spatial averages; and finally, 

temporal averages. Once these programs had been verified as working, they 

were amalgamated into one program carrying out the whole sequence of 

calculations for each grouping of ten data sets, DIAtimeslO.c (see 

Appendix M). The basic components of the program are shown below in 

figure (2.4): 

calculate density as a function 
of radius, using radial shells 

write to file 

calculate 
temporal 

Figure 2.4: Shows the basic components of the program DIAtimes10.c (see Appendix M) 

25 Snapshots were taken at intervals of lOps. 
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In addition to the basics of the model described above, certain practicalities 

had to be taken into consideration when converting the raw data into 

something meaningful. For this purpose the following procedures were put 

into practice. 

Firstly, it is important to know how many particles are in a system. When 

we are examining a droplet we do so at a particular temperature and at ten 

different points in time. Because all ten of these sets are for the same 

droplet and since particles are unable to leave the system, we know that the 

number of particles N, is the same for all ten data sets. While this is a fairly 

trivial detail to point out, it means that, to obtain this number, it is only 

necessary to count the number of particles in one out of ten sets. Once this 

number has been found, the program can allocate an appropriate amount of 
, 

memory. With this dynamic memory available, the positional data is read 

in. The detail of how to do this is included in Appendix M. 

In the process of reading in all the data, the individual sums of all the x, y 

and z components are obtained for each droplet. From this the centre of 

mass is calculated for each droplet, see § 2.4.2.3. A recurring theme 

throughout the program is to try to perform more than one task in one loop. 

This is because loops are demanding of computational time, so reducing 

the number of loops is a desirable aim. Once the droplets' origins are re­

centred, the geometry of how to process the information becomes simple 

due to the roughly spherical symmetry. Thus the only coordinate with 

which there is any significant interest is the radius, r. Subsequently, steps 

are taken in order that the positional data of all the particles can be 

expressed in terms of x, y, z and r, relative to the centre of mass. 
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Density 

Now the calculation of density is relatively straightforward. A shell 

thickness, dr, is chosen. This should be sufficiently smal~ so that enough 

detail is available in the surface region but not so much that a fairly smooth 

profile is lost: in extreme cases this could be due to ~here being a 

significant number of shells containing no particles. Then the density, p, is 

simply described by: 

( ) n(r" ri+l ).mmolar p ri , ri+1 = -~--'-'-=----"="--
(V(r'+l) - V(rJ).Av 

where nCr;, ri+l) is the number of particles in a shell which extends from rj 

to ri+}, mmolar is the molar mass of that given material, Av is Avogadro's 

number, and Veri) and V(r;+l) are the volumes of the spheres respectively, 
• 4 3 I.e. 31rr • 

Energies and Forces 

Having calculated the energies and forces, using equations (2.4) and (2.5), 

enormous fluctuations are observed, thus it is necessary to calculate both 

spatial and temporal averages. 

Spatial averaging 

By its very nature, density is a spatial average; in their current form the 

same is certainly not true of the energy and force data. Therefore, finding 

spatial averages for the energies and forces is subject to more pitfalls than 

was the case for density. This is because spatial averaging of energies or 

forces does not involve division by volume but by the number of particles 

within that volume. If shells are sufficiently thin, close to the origin or 

outside the droplet, then this number can be zero; as division by zero is 

undefined, appropriate allowances need to be made in order to avoid 

skewing the results. This is relevant to both the spatial and, later on, the 
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temporal averages. 

Initially the molecules are stored in an arbitrary order; sorting the particles 

according to radial position eases the calculation of spatial averages. This 

works as a 'two part' histogram. In each shell there is a spec~fic number of 

particles; this is part one of the histogram. It is easier to find this number 

when the particles are stored in ascending order of radial position. The 

second part of the histogram is to obtain the sum of these particles' 

energies or forces. From these two parts it is then simply a case of dividing 

the total energy or force of the particles in a shell by the number of 

particles in that shell, thus providing a spatial average. 

The only problem with this is that the number of particles within a cell can 

be zero. While zero divided by zero is, in this case, clearly equal to zero, 

computationally it is ambiguous. Also, from the point of view of having a 

physically meaningful graph, it is appropriate to exclude such data points: 

they might mislead the reader into believing that the energy or force curves 

fluctuate more than they do. It would also have implications for temporal 

averaging. 

The solution to this was to employ a method that identified empty cells and 

dealt with them accordingly. This was achieved by defining the entries of 

empty energy- and force- shells to be INTEGER 0; the shells, defined as 

INTEGER 0, were not written to file, thus avoiding misleading zig-zagging 

of the curves. 

However, noting which radial cells are empty is still required in order to 

calculate temporal averages. If, when making this calculation, it was 

assumed that all the radial shells have particles in them, the temporal 
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average would be the sum (of energies or forces) divided by the total 

number of data sets (in this particular case ten) rather than the said sum 

divided by the number of occupied shells. Obviously, if only one out of ten 

of the radial shells contained molecules (from all the ten data sets), then 

dividing that single shell's energy or force by ten (rather. than by one) 

would be nonsensical. To avoid this pitfall, the program counts how many 

shells have entries that are not equal to INTEGER 0; this value is then used 

in the temporal averaging instead. 

Again there is the possibility that all the shells for the ten droplets are 

empty, and so the method of ascribing the value 'Integer 0' is revisited for 

temporal averages. This is so that, when writing to file, these shells can be 

omitted; again, avoiding artificial fluctuations in the resultant curves. The 

program, see Appendix M, performed all these calculations in slightly less 

than five minutes on a 1 GHz Pentium PC for each set of ten droplets when 

containing 4,000 particles; correspondingly, the smaller droplets took less 

time. 

From the output files, we were able to calculate the surface tension. How 

this is done is shown in the next section, with some examples of output 

files. This aspect of calculating the surface tension was performed 

manually. 

2.4.2.9 Calculating Surface Tension. 

In section 2.3 a general definition of how to find surface tension was 

proposed. This model has been applied to monatomic systems with a high 

degree of spherical symmetry. At this point, we use this system to 

demonstrate, by example, how to apply this theory in practice prior to 
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discussing the actual results. This is achieved by examining the output data 

obtained from the calculations above and then proceeding to use them in 

order to calculate surface tension. 

Firstly, let us examine the form of the output data. Figure (2.5) shows an 

example of a force (middle panel) and potential energy profile (bottom 

panel) obtained from performing the program on a set of ten droplets. The 

corresponding density profile of this droplet (top panel) has also been 

included in this figure in order to illustrate where the surface region occurs 

with respect to density. This region is characterised by attractive (negative) 

inter-particle forces, which occur for radii beyond the vertical blue dashed 

line in figure (2.5). The radius rs at which the maximum inter-particle 

attraction occurs is also indicated in figure (2.5) by the vertical (red) dotted 

line. This is the radius at which we extract the surface energy Es. The 

surface tension of the droplet can now be calculated as: 

E a=_s_ 
2 4Jl'f', 

(2.7) 

It is interesting to note that the region responsible for surface tension (i.e. 

the region around the red vertical dotted line, at r = rs) occurs at relatively 

low densities. 
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Figure 2.5: Shows typical examples of density, force, and potential energy profiles as functions of 
radius, r. The features of the force curve allow us to define where the surface region begins (see 
the vertical blue dashed line, which is the radius at which the force curve becomes negative). We 
define the surface to be typified by the maximum attractive force; this occurs at a radius, rs 
(shown by the vertical red dotted line), which allows us to find the surface energy Es (shown by 
the horizontal red dotted line). This example is for the 4000 particle droplet at 60 K. (N.B. the grey 
dots that can be seen on these graphs belong to the contributing ten data sets, for which the 
black lines represent their averages). 

2.4.2.10 Density Profile Fitting (tanh-Fitting) 

It is appropriate here to address the important issue of how our droplets 

compare with those from other researchers ' simulations of Lennard-Jones 

droplets. This must be done before we can compare the resulting surface 

tensions; if the droplets are dissimilar then comparing surface tensions 

would be futile. To do this the density profiles for our droplets are 

examined, with a view towards curve fitting them using a tanh function. 
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This technique will enable a direct comparison between our simulations 

and those performed by others. If our simulations yield similar results, then 

we can confidently commence with making comparisons between our 

results for surface tensions, calculated using our new and different method, 

with those obtained using 'established' methods. 

It is standard in the literature [15] to approximate the density profiles Ar) 

by the following empirical expression: 

p(r) = t (P/iquid + Pvapour) - t (P/iqUid + Pvapour) tanh(2 r;O) (2.8) 

where Pliquid (Aapour) denotes the density of the liquid (vapour), and ro and D 

are two fitting parameters which describe the location and thickness of the 

surface region respectively. We used this curve fit on the droplets 

containing 4000 argon atoms, for each temperature, to investigate the 

density profiles as a function of temperature. One example of such a curve 

fit is shown in figure (2.6) and the tanh-fitting parameters obtained for 

various temperatures are summarized in table (2.1). 

As we can see from table (2.1), the thickness D of the surface increases 

monotonically with increasing temperature. However, the radius ro of the 

droplet increases first with increasing temperature (for T < 60 K) and then 

decreases as the droplet starts to evaporate. We also note that the calculated 

density at the interior of the 4000 particle droplet agrees reasonably well 

with experimental data, i.e. comparing the density of our liquid droplet (at 

40 K) of 1590 kg m"~ with that obtained experimentally for bulk liquid 

argon of 1656 kg m"3 [19]. 
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Figure 2.6: Shows an example of a density profile (for the 4000 particle droplet at 60 K) and the 
tanh-curve fit used to approximate it. 

Table 2.1: Shows the tanh-curve fitting parameters used for the 4000 particle droplet for different 
temperatures (see equation (2.8)). 

Tem /I uld va ur D '0 
20K 1660 kg m,3 o kg m,3 0,23 nm 3.35 nm 
30K 1600 kg m,3 o kg m,3 0,24 nm 3.39 nm 

40K 1590 kg m,3 o kg m,3 0.4 nm 3.41 nm 

50K 1475 kg m,3 o kg m,3 0.45nm 3.48nm 
60K 1420 kg m,3 1 kg m,3 0,5 nm 3,51 nm 

70K 1335 kg m,3 5 kg m,3 0,7 nm 3.48nm 

72,5K 1330 kg m,3 4 kg m,3 0,75 nm 3.45nm 

75K 1300 kg m,3 5 kg m,3 O,9nm 3.41 nm 
77.5K 1270 kg m,3 7 kg m,3 0,85 nm 3.4 nm 
80K 1245 kg m,3 8 kg m,3 0,85 nm 3.38 nm 

82.5K 1245 kg m,3 8 kg m,3 1,15 nm 3.28 nm 

85K 1190 kg m,3 10 kg m,3 1,15 nm 3,3 nm 

87,5K 1190 k m,3 11 k m,3 1,2 nm 3,2 nm 

Having performed the tanh-curve fits (see table (2.1)) for our Lennard­

Jones fluid, we are now able to compare our results with those obtained by 

Powles et al. for a similar Lennard Jones fluid [15]. This is done in a 

parameter independent form, where Dlr m is calculated (recall that D = skin 
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thickness [see equation (2.8)] and r m is the radius of the largest negative 

potential in the Lennard-Jones model, recall equation (2.3)). This is a 

dimensionless quantity; by plotting it against kTI& (recall that & is the 

potential well depth in equation (2.3)) it is possible to compare these 

droplets directly with other MD simulations (also performed on droplets 

comprising of Lennard-Jones particles). 

This comparison is shown in figure (2.7), where the red crosses with error 

bars are our values of Dlr m obtained for the 4000 particle droplet. The solid 

black line is an empirical fit to similar MD calculations performed by 

Powles and co-workers [15] for a range of droplet sizes, containing 

between 260 and 1,300 particles. The sizes of these droplets relative to ours 

should be noted as ours range from 500 to 4,000. We can see that, within 

statistical errors, our data shows good agreement with the data of Powles et 

al. . For the purpose of illustration only, we have extrapolated the empirical 

expression of Powles et al. [15] to lower temperatures (i.e. the dashed line 

in figure (2.7)) in an attempt to bring out the characteristic features of our 

low-temperature results. 

4.0 

3.0 

E 
'" "-Cl 2.0 

1.0 
• • • "'r • • . • !. . . 

l L 

0 .0 D-o-~.......J.......~............J..~~..J........o...~.-....L-~ ............... 
0.00 0.25 0.50 0.75 1.00 1.25 

kT/r 

Figure 2.7: Shows Dlrm against kTI &, and allows us to compare Lennard-Jones droplets directly. 
The black crosses, with error bars, represent the results from our 4000 particle droplet at various 
temperatures. The full black line was taken from Powles et al. [15] obtained by vi rial theorem (the 
dashed line is an extrapolation of the solid line). 
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It can also be seen, from a comparison with the extrapolated curve (the 

dashed line in figure (2.7», that our droplet exhibits a solid-to-liquid phase 

transition at kT/e ~ 0.38. Such a phase transition was also observed in the 

MD simulations performed by Rusanov and Brodskaya [16]. These authors 

obtained a transition point of 0.32 (38 K) for a system of. 256 Lennard­

Jones argon particles and ascribed the lower melting temperature of the 

droplet compared with a macroscopic crystal of argon (of 84 K) to the 

smaller size of the crystallite. It could be argued that a liquid-to-vapour 

phase transition is also visible in figure (2.7) (at kT/e~ 0.87). However, this 

result is inconclusive due to the statistical fluctuations in the MD 

simulation data. 

From figure (2.7) we conclude that our simulations have yielded similar 

droplets to those of Powles et al. [15]. Therefore, we can assume that we 

are applying our theory to droplets similar to those obtained by other 

groups working in this field. Consequently, we are now in a position to 

evaluate the surface tension of the droplets. This is addressed in the section 

that follows. 
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2.5 Results and Discussion 

2.5.1 Surface Tension in Relation to Temperature and N. 

Figure (2.8) shows the values of surface tension obtained from equation 

(2.7) for the various droplets, as a function of temperature. The calculated 

values are represented by the data points with error bars, where the solid 

coloured lines are the result of exponential regression and provided as a 

guide for the eyes. The fitting parameters used to curve fit these data are 

included in Appendix L. The dashed red curve is also an exponential 

regression but certain data points have been excluded; this line is purely a 

guide to the eye and its inclusion is justified only by the intuitive argument 

that some of the points at higher temperatures are questionable. 

0. 100 

E .., 

+ -4000 Porlides 
+ 2000 Porlides 
+ 1000 Porlides 
+ 500 Porlides 

- - Argon (1 ) 
- L-J Fluid (1] 

~ 0.075 
c 

.Q 
UI 
c 
~ ., 
2 0.050 

" Ul 

0.025 

0.000 L--"--'--L........--'--........J---"-.:::::=.-.........L~ ............. --L-'--~:..::L::z:::::=:i::::::.;::::d 
20.0 -40.0 60.0 SO.O 100.0 120.0 1-40.0 

Temperoture (K) 

Figure 2.8: Shows surface tension as a function of temperature for the four different droplet sizes. 
The solid lines coloured: red, orange, green and blue, are exponential regressions (see Appendix 
L) of the data for the droplets containing 4000, 2000, 1000 and 500 particles respectively. Note 
that a dotted red line has also been included as an aid to the eye. (This is also an exponential 
regression for the 4,000 particle droplet, but performed only on the pOints at 20, 30, 40, 50 and 
87.5 K as, purely on an intuitive basis, the other pOints seem incongruous.) Also included are 
experimental surface tension values for argon (black dashed line), and the theoretical results 
obtained for a Lennard-Jones 12-6 planar argon surface (solid black line) [7] 
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The question as to the large fluctuations in the data points for the 4,000 

particle droplet in the temperature region 60 to 87.5 K; may be due to the 

absence of a boundary box (thus leading to evaporation of the droplets at 

larger temperatures) and/or, the increased "slowness" with which the larger 

droplet appears to change with time, thus detrimentally affecting our ability 

to distinguish between pre-equilibrated droplets and those at equilibrium. 

Examining the 500, 1000, and 2000 particle curves in figure (2.8), we see 

that with increasing temperature, the surface tension decreases. This can 

also be seen for the temperature range 20 K < T < 50 K for the 4000 

particle droplet. Over the temperature range 50 K < T < 87.5 K (for the 

4000 particle droplet) the general trend is continued. However, within this 

range the statistical fluctuations are large, which we mainly attribute to the 

difficulty in establishing when equilibrium has been reached, i.e. the 

comparatively small changes in the density profile for this droplet with 

respect to time which, in tum, introduces further uncertainty in the value of 

the obtained surface tension. It is interesting to note that 'pre-equilibrium' 

surface tensions are higher than equilibrium surface tensions. Not 

withstanding, the general conclusion we can make from these results is that 

surface tension decreases with increasing temperature; this is in good 

qualitative agreement with the predictions of thermodynamical theories 

[16]. 

If it is the intention to use these graphs in order to accurately calculate 

surface tension then, currently, the sizes of these error bars are 

prohibitively large. However, at this point the main intention of this work 

was to find trends and to see if this method could provide a new alternative 

to those put forward in section 2.2. To that end, this method fulfils these 

Criteria; reducing the errors can be achieved by increasing the number of 

data sets, which can be done at a later date. 
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For reasons of companson between our results and those of other 

researchers, there are included in figure (2.8) two additional sets of data, 

taken from Rowlinson and Widom [7], corresponding to experimental data 

and Lennard-lones MD simulations of a planar argon surface over a 

temperature range of 85 K to 150 K (the full and dashed black lines). Ifwe 

compare the curves of exponential regressions used to curve fit our data 

with the values of surface tension obtained by Rowlinson and Widom [7] 

(Le. the two black lines; the dashed line is the experimental value of the 

surface tension of a planar argon surface and the solid line is the surface 

tension calculated for a planar Lennard-lones argon surface [7]), we see 

that, while they do not apply to the same temperature range as our 

simulations, they appear to be very acceptable extrapolations to our data. 

In particular, the 4000 particle droplet appears to be already a good 

approximation of a flat surface. This is further evidence of the validity of 

this new method. This also provides anecdotal evidence that our droplets 

are of a sufficiently large size for calculations of surface tension to be 

physically meaningful. Therefore, pursuing further work to reduce 

statistical fluctuation would appear to have merit. 

In addition, on further examination of figure (2.8) we see that, for all 

temperatures, increasing the droplet size has the effect of increasing the 

surface tension. This is demonstrated by comparing the data for the 

smallest droplet containing 500 particles (blue curve) with those of the 

1000 particle (green curve), the 2000 particle (orange curve) and finally the 

4000 particle curve (red); each has slightly larger surface tension values 

than the previous droplet. From this we can conclude that surface tension 

increases with increasing droplet size. This behaviour is in good qualitative· 

agreement with the predictions of thermodynamical theories [14]. 
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2.5.2 Surface Tension in Relation to Temperature and Surface of 

Tension, rs. 

While figure (2.8) shows how surface tension vanes with respect to 

temperature, here we examine how surface tension varies as a function of 

droplet radius. In the previous graph (i.e. figure (2.8)) this was done for 

droplets containing specific numbers of particles, however, here we 

examine the situation for different temperatures. This is shown in figure 

(2.9). 
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Figure 2.9: Shows the surface tension as a function of the radius rs of the droplets at 
temperatures 30, 40, 50 and 60 K. Here the 60K* data point was obtained from the dashed red 
(T-curve in figure (2.8). For each of the curves in this figure (Le. 2.9) the smallest surface tension 
corresponds to the 500 particle droplet, and the largest value of surface tension on each curve 
corresponds to the 4000 particle droplet. The adjoining lines are drawn purely to guide the eye in 
order of increasing particle numbers. 

There are several observations that can be made from this graph, the first of 

these is temperature related. As was seen from figure (2.8), the surface 

tension decreases with increasing temperature, i.e. going from the black 

curve to the blue curve. Second (which was already suspected from figure 
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(2.7)), there is a definite phase change occurring between 30 and 40 K (the 

red and orange curves). It can also be seen that the surface tension 

generally26 increases with decreasing curvature of the droplets and, for the 

liquid droplets (Le. T > 30 K), eventually saturates as it approaches the 

planar limit. This behaviour confirms findings [16], ob~ained from a 

pressure tensor analysis of the MD simulations of Lennard-Jones liquid 

droplets, where it was found that the surface tension decreased with 

decreasing droplet size. The present results are also in good qualitative 

agreement with the thermodynamic formalism developed by Tolman [9] 

and the statistical mechanical approach of Kirkwood and Buff [17, 18], 

which both predict a decrease in surface tension with decreasing droplet 

size. 

The second and more interesting array of things to be noted from figure 2.9 

is concerned with the relationship between the number of particles within a 

droplet and the radii of the droplets. While this relationship differs for 

different temperatures, the way in which it changes is intriguing. For the 

lower temperature droplets (20 and 30 K) we see something fairly 

expected, i.e. that the surface tension increases with increasing radii. 

However, for larger temperatures, while this general trend is continued, 

what is observed for very small droplets is that the surface tension is 

sufficiently small for the droplet to expand significantly, Le. rs becomes 

much larger than it would for a droplet with, say, twice as many particles 

(c.f. rs = 2.75 nm for the 1000 particle droplet at 60 K with 4.15 nm for the 

500 particle droplet at 60 K, coupled with a halving of the surface tension 

from the former to the latter). This appears to support the idea that 

evaporating smaller droplets is much easier than larger droplets. 

26 For very small droplets at temperatures above 40 K we see that the radii tend to be 
larger than the radii of more massive droplets, see the blue curve in figure (2.9). 
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The values of the radii rs and the energies Es for various droplets, obtained 

from the method described in the previous section are summarized in table 

(2.2) together with the calculated values of surface tension, a: 

Table 2.2: Summarizes the values of rs and Es obtained from the 
MD simulations for all the droplets. " 

Dro~let Tem~erature {K} r. (nm} E. (X10"18J} (J (mJm"2} 
500 20 1.85 -2.23 52 

30 1.95 -1.9 40 
40 2.65 -1.3 15 
50 2.65 -1.2 13 
60 4.15 -2.1 10 
70 5.6 -2.41 6 

1000 20 2.35 -3.9 56 
30 2.45 -4.0 53 
40 2.65 -2.7 31 
50 2.6 -2.0 25 
60 2.75 -2.0 21 
70 3.8 -2.35 13 

2000 20 2.95 -8.26 76 
30 2.95 -7.3 67 
40 3.05 -4.8 41 
50 3.15 -4.3 34 
60 3.25 -3.1 23 
70 3.65 -2.8 17 

4000 20 3.54 -17.7 112 
30 3.54 -16.9 107 
40 3.84 -9.3 50 
50 3.9 -7.6 40 
60 3.88 -10.7 57 
70 3.9 -8.2 43 
72.5 3.8 -10.6 58 
75 3.9 -10.2 53 
77.5 4.14 -5.1 24 
80 3.72 -10.1 58 
82.5 4.08 -10 48 
85 4.02 -5.7 28 
87.5 4.2 -3.6 16 
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Comparing Radii for Different Sized Droplets: 

Table 2.3: Shows the ratios of radii for the different droplets at different temperatures, 
where (bfJOO denotes the radius of the 500 particle droplet, etc. 

20K 

rS1000lr5500 1.270 
rS2000lrs1000 1.255 
r 540001 r S2000 1 .2 

30K 
1.256 
1.204 
1.2 

40K 

1 
1.151 
1.302 

50K 
0.981 
1.212 
1.279 

60K 

0.663 
1.182 
1.194 

70K Avera e 

0.679 0.975 
0.961 1.161 
1.069 1.207 

If the droplets were perfectly scaled versions of one another, we would 

expect that doubling the number of particles (and therefore volume) would 

increase the radius of a droplet by a factor of 1.2599 = Vi . Indeed, this is 

the kind of ratio that is seen (see table (2.3)) at lower temperatures. At 

higher temperatures, however, we see that the smaller droplets expand 

more rapidly than the larger droplets (i.e. giving rise to smaller ratios) and 

therefore have lower densities. This is evidence of the greater ease with 

which smaller droplets evaporate. 

Comparing Surface Energies for Different Sized Droplets: 

Table 2.4: Shows the ratios of surface energies for each droplet at different temperatures, where 
EbfJOO denotes the surface energy of the 500 particle droplet, etc. 

20K 

E S1ooo1 E 5500 1.749 
E S2ooo1 E s1000 2.118 
E 540001 E S2000 2.143 

30K 
2.105 
1.825 
2.315 

40K 
2.077 
2.15 
1.938 

50K 
2 
1.433 
1.767 

60K 
0.852 
1.55 
3.452 

70K Avera e 
0.977 1.643 
1.192 1.711 
2.929 2.424 

In table (2.4) we see that there is a general trend of increasing surface 

energy with increasing droplet size (c.f. the average energy ratios in the last 

column), i.e. in terms of the potential-well interpretation of surface tension, 

the droplets become deeper as they become more massive. This makes 

intuitive sense, so this is additionally encouraging that it is substantiated by 

the simulation results. 
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2.6 Conclusions 

Here, we have proposed a new method to calculate surface tension. The 

intention was for this model to overcome many of the drawbacks faced by 

thermodynamical theories [15, 17 and 28] and the non-invariance with 

respect to the choice of the pressure tensor form in the case, of mechanical 

statistical approaches [14]. It is our conclusion that this model is effective 

in this aim as it eliminates these problems by being a microscopic theory 

that considers the liquid droplet as a 'potential well' and simply uses the 

inter-particle forces to characterise the surface region. Having applied this 

method to several Lennard-Jones liquid droplets it was found that the 

surface tension decreases with increasing temperature and that surface 

tension increases with increasing droplet size. These observations are in 

good qualitative agreement with the predictions of thermodynamics [7]. 

2.7 Further Work 

The present method can be applied to numerous different areas. For 

example, it could be applied to multiple components systems, i.e. systems 

with more than one type of atom or molecule present. This would mean 

that we could investigate the properties of systems with impurities, or 

colloidal systems. As this model also allows us to define, at a mesoscopic 

level, the location of the surface region, we could apply this model to 

different geometries, including investigating interactions between solids 

and liquids, e.g. contact angles, wetting and waterproofing. 

By employing appropriate boundary conditions, we could investigate flat 

surfaces and pressure dependent phenomena, such as droplet formation. 

Performing simulations using a MD simulating program with access to the 

Source code would mean that we would have more control over the force 
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fields, so that we could investigate more complex molecules (in particular 

water, and its solutions). This model could be applied to problems such as 

ink jet printers, wetting and waterproofing materials, electrical contacts in 

the case of soldering, gas arc welding, etc. and is therefore a subject for 

future investigations. 

However, work also needs to be done in order to reduce the errors intrinsic 

to this definition of surface tension for it to be of more than merely 

theoretical use. This could be achieved by increasing the number of data 

sets until the standard deviations of the error bars are of acceptable 

magnitudes. For now, we believe that we have shown that this method both 

provides a valid definition of surface tension and that it is capable of 

reproducing trends observed experimentally and predicted by theoretical 

models, such as thermodynamics and statistical mechanics. 
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THE FRANK ENERGY DENSITY ApPENDIX A 

Appendix A: The Frank Energy Density 

Splay Twist Bend 

Figure A.1: Shows different types of deformation possible 

The Frank expression for the elastic energy density of a deformed nematic 

LC can be written as [Barbero]. 

(A.l)27 

where the three terms represent the splay, twist and bend deformation of 

the director field ii respectively. 

Geometry 

[

cose . COS¢] 
in spherical polars ii = cos~. sin ¢ 

sme 

z 

and liil = 1 

x 

Figure A.2: Co-ordinate System 

27 If we use the one-constant approximation (KII = K22 = K33 = K) then equation (A. I ) 
becomes Fd = tKleV' . ii)2 + (V X ii)2 J. 
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In general: 

cosf)cos¢ 

ii = sin¢ 

sinf)cos¢ 

however we can assume ¢ = 0 = cons!· fez) so 

thus 

with 

A.I Splay: 

1 (8BJ2 => FFrank = 2 felas (B) 8z 

i.e. ~ = 0 and ~ = 0 
8x 8y 

cosO 

ii = 0 

sinf) 

()=()(z) 

V.ii = 8u x + au y + 8uz 

8x By 8z 

= au z =.E.. sin f) 
Bz Bz 

, BO 
=cosf)-

8z 

APPENDIX A 

(A.2) 

(A.3) 
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A.2 Twist: 

A.3 
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=]-COSu =-]Slnu-ez ez 

o 
. eee 

- -SIn -ez 
o 

APPENDIX A 

(A.4) 
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THE FRANK ENERGY DENSITY 

we find that the bend term is: 

o cosO 

nx'\1xn= 0 

sinO 

. 0 BO 
x -SIn -

o 

. 2 0 BO 
SIn -

Bz 
o 

. 0 0 BO -SIn COS -
Bz 

Bz 

. 0 0 BO k" . 2 0 BO ~ =-SIn cos - +SIn -I 
Bz Bz 

,ApPENDIX A 

(AA) 

we substitute equations (A.2), (A.3) and (AA) into (A.1) to get 

1 (8BJ2 
FFrank = 2 ietas (B) 8z 

= tK ll(COSB
8B J2 +tK33(-SinBCOSB 8B k+sin2 B

8B 1J2 
8z 8z 8z 

(A.S) 
where 

[Barbero] G. Barbero and L. R. Evangelista, An elementary course on 

the continuum theory for nematic liquid crystals, (World Scientific, 

Singapore, 2001), p. 63 
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DERNAnON OF THE FREE ENERGY DENSITY FOR THE HAN CELL APPENDIXB 

Appendix B: Derivation of the Free Energy Density for the 
HAN Cell 

B.1 Elastic FE term (Felas = F Frank from Appendix A) 

From equation (A.6): 

1 ( 8BJ2 1 (. 8B" . . 2 8B ~J2 
Felas = 2'Kl1 cosB 8z +2' K33 -smBcosB 8z k+sm B 8z l 

= } Kll col e( ~~r + ~ K33 (sin2 ecos2e +sin
2 e sin2 e Z ~~r 

1 2 (8BJ2 1 . 2 (8BJ2 
= 2' KU cos B 8z +2' K33 sm B 8z 

1 (8BJ2 = 2' felas (B) 8z 

where 

B.2 Dielectric FE Term 

jj = e~ . E + (e~ - e~) · (n . E) . n 
[de Gennes & Prost] 

F --1.jj·E diel - 2 

= - i [£~ .E2 + (£~ - £~) . (n. £)2] 
= - i [£~ . E2 + A£' . E2 . COS 2 (n . E) ] 
= - i £0 (£ n + A£ . sin 2 B). E2 

(8¢J2 = - i . fdiel(B)· 8z 

(B.1) 

(B.2) 
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DERIVAnON OF THE FREE ENERGY DENSITY FOR THE HAN CELL 

where 

and where we have used 

B.3 Flexoelectric FE Term 

E=8¢ 
8z 

...... 
Fjlex=-P.E 

P = ell (V · Ii). Ii + e33 (V x Ii) x Ii 

Ii = co~el 
sinO 

and o 
E= 0 

E 

APPENDIXB 

a 0 -+ ( 2 a 0 " ao ")-+ 
Fflex = ell cosO-ii· E + e33 - sin O-i + sinOcosO-k E 

GZ GZ GZ 

ao -+ ao -+ 
= ell cosO-E sinO+e33 sinOcosO-E 

GZ GZ 

( ) . GO -
= ell +e33 smOcosO-E az 
= f (0) ao ar/J 

flex az az 
(B.3) 

213 



DERIVATION OF THE FREE ENERGY DENSITY FOR THE HAN CELL 

where 

and where we have used 

E=8¢ 
8z 

Thus the Free Energy Density is given by 

(from equations (B.1) (B.2) and (B.3)). 

APPENDIX I 

(B.4) 

[de Gennes & Prost] P.G. de Gennes and J. Prost, The Physics of 

Liquid Crystals, 2nd Ed, (Oxford, Clarendon Press, 1993). 
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ENERGY MINIMISING THE LAPLACIAN 

Appendix C: Energy Minimising the Laplacian 

C.I Minimize fz with respect to f) 

C.I.I Elastic Energy Term: 

using variational calculus 

.!.(Olelas (0»)(00)2 + I' (0) oe ~ao 
2 00 oz J elas oz oz 

integrate 2nd term ofRHS by parts 

00 f 0 ( (0) felas (e) - ae - - felas (e) - ae 
oz oz oz 

differentiating 

a ( ao) - az felas (0) az 

resulting in: 

=.!. olelas (0) (OB)2 _ olelas (B) aB _ 1: (0) a2B 
2 oe oz oz OZ elas az2 

= 1. Olelas (e) (oeJ2 _ Olelas (e) (oeJ2 _ r (0) a2B 
2 oe oz oe oz J elas Oz2 

= _1. olelas (B) (aB)2 _ r (B) a2B 
2 oB OZ J elas OZ2 

1 (OB)2 a2B = - 2 I~as (B) az - lelas (B) OZ2 

APPENDIXC 

(C.I) 

This (last line) corresponds to the Euler-Lagrange equation, 

[Barbero] 
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ENERGY MINIMISING THE LAPLACIAN APPENDIXC 

C.l.2 Dielectric Energy Term: 

~(_.!. 1", ({})(8¢J2J = _ 1 81diel ({}) (8¢J2 = _.!. 1"', ({})(8¢J2 
8{) . 2 J dlel 8z 2 8{} 8z 2 J dlel 8z 

C.1.3 Flexoelectric Energy Term: 

using variational calculus 

integrate the second tenn by parts 

f ex (0) 8¢ 00 - f~(f ex (0) 8¢JoO 
fl 8z 8z fl 8z 

differen tiating 

-~(f ex (f}) B¢J 
Bz fl Bz 

resulting in: 

(C.2) 
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ENERGY MINIMISING THE LAPLACIAN 

fz minimized with respect to (J becomes: 

C.2 Minimize fz With Respect to ; 

C.2.1 Dielectric Energy Term 

using variational calculus 

integrate by parts 

a¢ fa ( a¢lA 
- Idlel (B) Bz c5¢ + Bz Id'el (B) Bz r'¢ 

differentiating 

8 ( 8r/J) 8z fdiel (fJ) 8z 

resulting in: 

APPENDIXC 

(CA) 

aldie/(O) ao a¢ + r. (0) a2
fjJ 

ao dz dz J die/ dz 2 (C.5) 
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ENERGY MINIMISING THE LAPLACIAN ApPENDIXC 

C.2.2 Flexoelectric Energy Term 

using variational calculus 

f (B) 8B ~8rfa 
flex 8z 8z 'f/ 

integrate by parts 

differentiate 

-~(f (e) ae] = _ a/flex (e) (ae]2 _ / (e) a
2
e 

az flex az a () az flex aZ 2 

fz Minimized With Respect to ; Becomes: 

From equations (C.S) and (C.6) we get: 

(C.6) 

a/die! (0) a¢ ao + 1'. (B) a2¢ _ a/flex (B) (aOJ2 _ f (0) a2B = 0 
aB az az J diet aZ 2 ao aZ flex aZ 2 

which can be written as 

(C.7) 

[Barbero] G. Barbero and L. R. Evangelista, An elementary course on 

the continuum theory for nematic liquid crystals, (W orId Scientific, 

Singapore, 200 I), p. 4 equation 1.13 

218 



ANCHORING ENERGIES 

Appendix D: Anchoring Energies 

Anchoring Energy Terms 

--Minimizing the Functional (solution B (z) ) 

choose 

D 

F[B(z)] = ff[B(z),B'(z);z]dz 
o 

,...... 

B(z) = B (z) + a.v(z) 

D 

F[B(z)] = Jf[B (z) + a.v(z),B'(z) + a.v'(z); z]dz 
o 

{ :a ff[oooldZ Lo = 0 

~ Drr at ae + at ae] dz = 0 
~Lae aa ae' aa a=O 

~ Drr a~ +!!. a~ ]V(Z)dZ +[ a~ V(Z)]D = 0 
~Lae dz ae' ae' 0 

bulk term surface terms 

Bulk Term 

Euler-Lagrange equation 

APPENDIXD 
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ANCHORING ENERGIES 

8f_~8f=0 
8¢ dz 8¢' 

of -=0 
o¢ 

8f = _ I' (B) o¢ + f (B) oB 
o¢' JdW & ~ & 

ApPENDlxD 

d 8f , 8B O¢ 82 ¢ , (8B)2 82B 
dz O¢' = - fdiel (B) oz oz - fdiel (B) OZ2 + fflex (B) 8z + fflex (B) OZ2 

of _ ~ of = 1" (B) oB o¢ + I' (e) 0
2 

t/J _ I' (e)( oe)2 _ f (e) 02e 
o¢ dz A¢' J diet OZ OZ J diel OZ2 flex OZ flex OZ2 

= ~ [fd/el(B) ~ - ffla(B) :] = 0 

Surface Term 

[ dF] ={~lf[O(Z)P'(Z);Z]dZ+ dfso + df sD } 
da a=O da 0 da da a=O 

""' 

{DJ[of d of] } = ----- v(z)dz 
o 00 dz 00' a=O 

+{[ of, + OfSD ]V(D)} 
00 z-D 00 

- z=D a=O 

{[ af af so
] } + --, +- v(D) 

ao z-O ao 
- z=O a=O 
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ANCHORING ENERGIES ApPENDlxD 

Case 1 f:;' Takahashi [Jpn. J. Appl. Phys. 37, 1865 (1998)] 

_ af + afso = 0 

ao' z=O ao z=O 

hg: 
fs (0) = tAo sin 2 (00 - 00 ) 

o 0 ~ 

ao ar) 
- felas (00 ) az z=O - fjlex (00 ) az z=O + t Aoo sin 2 (00 - OOeasy) = 0 

af + afsD =0 
ao' z=D ao z=D 

ht: 
Is (0) = tAo sin2(OD -OD ) D D easy 

ao ar) 
felas(OD) GZ z=D + fjlex(OD) GZ z=D +tAoD sin2(OD -ODeasy) = 0 
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ANCHORING ENERGIES APPENDIXD 

Case 2 .b~:~:: Theory 

homeotropic surface (ht): 
Bt + BIsD 

Be' z=D Be 
=0 

z=D 

homogeneous surface (hg): 
_ Bt + Biso = 0 

Be' z=o Be z=o 

~ same boundary conditions as Takahashi 

but 

akahashi Theory 

Hg 0 D 

Ht D 0 
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SELF CoNSISTENT METHOD APPENDIXE 

Appendix E: Self Consistent Method 

The self consistent method [T. Takahashi, S. Hashidate, H. Nishijou, M. 

Kimura and T. Akahane, Jpn. J. Appl. Phys. 37, 1865 (1998)] used 

atjJ = fflex (8) a8 _ {r fflex (8) a8 dz _ E}/{fd' 1(8) r 1 dZ} (E. 1 ) 
az fdiel (8) OZ fdiel (8) az Ie fdiel (8). 

During the first iteration the electric field, E, is assumed to be constant 

across the cell. After the first iteration the function o¢/oz can be used in 

place of E. This cycle is repeated until successive Band ¢ curves are the 

same as the Band ¢ curves from the previous iteration. 

In finite difference method equation (E. 1 ) becomes: 

fl'" = fflex(8) fl8 - {~fflex(8) fl8. Az - fl'" . Az}/{ I' (8)~ Az } 
'I' new 1'. (8) L... 1'. (8) 'I' old J diel L... I' (8) 

J dlel :=0 J dlel %=0 J diel 

(E.2) 

Initially the problem that we had with this method was that it was 

appearing to result in the 'wrong kind' of asymmetry of the transmittance 

curves. Because of this we examined the o.curves that had resulted in the 

transmittance and what we observed was that, near the homogeneous 

alignment layer, the o.curves would oscillate before reaching Boeasy. This 

was alarming and cast doubt as to the validity of the solutions that this 

method found. Once we had obtained the relationship: 

(B.6) 

we had a means by which to check if these solutions were valid by whether 

or not their e and ¢ curves adhered to this constraint. We found that they 

did not. Instead we had to employ the method described in sections 1.2 and 

1.3. 
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FINITE ANCHORING ENERGIES CASE APPENDIXF 

Appendix F: Infinite Anchoring Energies Case 

What we also found is that if we use this form of the above equation: 

8¢ 80 
[die/CO) 8z - [jlex(O) 8z = Const 

we are able to say that: 

Recall equation (1.3) 

where 

118 = 8 -8 p n, 

and recalling equation (1.5) 

[flex (0) = (ell + e3Jcos(0 )sin(O) , 

o - 90· o -

if 

then 

therefore 

[flex (00 ) = 0 

[flex (OD) = 0 

[die/(OO) = &O&p 

[die/COD) = &0&" 

(B.6) 

(1.3) 

(1.4) 

(1.5) 
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FINITE ANCHORING ENERGIES CASE APPENDIXF 

OZ z=o & p OZ z=D 

The resulting transmittance curves were symmetric curves with a voltage 

offset due to the flexoelectric effect. The resulting curves were negligibly 

different from what we would see for the high anchoring energies case (e.g. 

see figure (1.4.15)) 



TAKAHASHI'S IN PLAIN DEVICE FORMALISM ApPENDIX G 

Appendix G: Takahashi's In-Plain Device Formalism 

Crossed polarisers 

, / ~-- Homogeneous alignment layer (0 :::: 0°) -, , .... --------
I 

LC r110iecules z 

L t ~ 8 e¢ ~ ~ ~ _-~ ~_-_jSZ5- Potential difference ~,~f 
L.····>!'-___ +r'--=-~ _______ Homeotropic alignment layer (0 "" :00 ) 

Figure F.1: Schematic of an in-plane HAN cell. The potential difference (red) is applied in the y­
direction. The homeotropic (blue) and homogeneous (green) alignment layers impose a distortion 
in the director profile, which is depicted here as a change in the angle, e, of the molecules 
(turquoise ). 

Takahashi et a1. [Jpn. 1. App1. Phys. 37, 1865 (1998)] assumed that the cell 

was invariant in the x-y plane. In their paper the in-plane device had 

applied the voltage perpendicular to the rubbing direction of the 

homogeneous alignment layer (see figure (F.l)). This is only appropriate 

when the molecular dipole moment is perpendicular to the molecular 

director (but in this case the electrical field would have little effect on the 

optical properties of the cell because it would not change the angle of 

orientation in the important z-x plane). 

If, however, the molecular dipole is parallel to the director, then we would 

need to apply the voltage in the same direction as the rubbing direction. As 

most molecular dipole moments are at some other angle to the director, an 

electric field applied either parallel or perpendicular to the direction of the 

rubbed alignment layer would introduce an additional angular distortion (to 

that in the z-x plain), i.e. in the x-y plane. This would make the assumption 

of invariance in the x-y plain void. 
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TAKAHASHI'S IN PLAIN DEVICE FORMALISMApPENDIX G 

Even in the very special cases described above (were we have oriented our 

electrodes parallel to the molecular dipole moments of the LC molecules at 

the homogeneous alignment layer), we would need to use vertical 

electrodes, otherwise our electric field lines would be curved. This would 

also make any assumptions about the systems x and y invari~ce invalid. 
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RElAnONSHIP BElWEEN 

DIPOLE MOMENTS, PERMmMnES AND ORDER PARAMETER APPENDIXH 

Appendix H: Relationship between Dipole Moments, 
Permittivities and Order Parameters 
The order parameter, S, is given by 

where e is the angle of the director. 

1r 21r21r 

t1lNa 3 = 1 

with 

N=NLpIM 
- -

h = 3e f = 2e - 2 1 
2e+1' 2e+1 a3 

e = tee} + 2e2 ), 

F = I , 
I-a! 

a = teal + 2aq ), 

J J J(1 + Jlz· hFEI I kT)Jlz ·W(0)sin(0)d&la'd0 
• 0 0 0 

JlI = 1r 21r21r 

J J J(1 + Jlz· hFE} I kT)W(0)sin(0)d&la'd0 
000 

1r 21r21r f f fCI +,ux· hFE2 / kT),ux ·W(8)sin(8)d&l9'd8 
• 0 0 0 

,u2 = 11' 211'211' 

f f fCI +,ux ·hFE2 / kT)W(8)sin(8)d&l9'd8 
000 

with 

It z * = It * [cos f3 COS e + sin f3 sin () sin e ] 

(8) 

(9) 
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RELAnONSHIP BETWEEN 

DIPOLE MOMENTS, PERMmtYmES AND ORDER PARAMmR APPENDIXH 

and 

Px * = p* [cos fJ sin f)' sin 0 + sin fJ( cos f) cos f)' - sin f) sin f)' cos 0)] 

Jl[ = Jl cos f3 
Jlq = Jl sin f3 

/I * = PI cos2 0 + -q-sin 20 hF2 E - [ 2 p2 ] 

rl kT 2kT 1 (lOc) 

II * =[Jt/ sin 2 E>+ Jt/ {I-.LSin2E»~hF2E 
r2 2kT 2kT ~ 2 J 2 (IIc) 

from (lOb) and (lIb) we get 

J.ll* = ~(1- S) + J.lI S hF2 E _ [ 2 2 ] 

3kT kT (lOd) 

Ji2 * = [Jl
2 

(1 - S) + Jl / S]hF 2 E 
3kT 2kT (lId) 
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RELAnONSHIP BETWEEN 
DIPOLE MOMENTS, PERMmMTIES AND ORDER PARAMETER 

therefore 

(61 -1)/ 41r 

& 

(62 -1)/41r 

I1G r 2 L. 
-= NhFll1a-F ~T(1-3coS2 fJ)p' 
4Jr 

I1G ex: S 

ex: const - J..i 2 

ex: (const - 112)S 

- -
h= 38 ,f=28-241r NL P-,F= 1 , 

28 + 1 28 + 13M 1-af 

8 = t(81 + 282 ),a = t(ar + 2aq ) 

Gis -1 = NhFla - F L] 
41r 3kT 

G} -1 = NhFra -!!LF] 
41r ~ 1 kT 

Gis -1 = NhF[a _!!l.-FJ 
41r q 2kT 

APPENDIXH 

(12) 

(13) 
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IV 
W -
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0.771932812 
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-0.038825521 

-0.006930798 

-0.008580729 
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0.002969457 

0 

0 

0 

0 

0 

0 
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0.110687268 0.24012602 
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0 0 
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ANSI C CODE USED TO SOLVE PDEs APPENDIXJ 

Appendix J: ANSI C Code Used to Solve PDEs 

Commented out details have been included in a grey font, as they may be 

of interest to some. These also include typical input parameters for MBBA 

and E7 systems. 

1* TO COMPILE: 
TO RUN: 

cc -Aa CUTUP.c -0 CUTUP -1m 
CUT .UP 

THIS PROGRAM'S MAIN FUNCTION IS TO CALCULATE THE TRANSMITTANCE vs APPLIED VOLTAGE CURVE 
FOR A GIVEN HAN CELL THIS DATA IS OUTPUTTED IN THE FILE "EandTrans.x" 

HOWEVER, THE TRANSMITTANCE CURVES ARE DIFFICULT TO INTERPRET ON THEIR OWN SO ALSO 
INCLUDED IS THE PHASE DIFFERENCE vs APPLIED VOLTAGE CURVE THIS DATA IS OUTPUTTED IN THE 
FILE "EandPhase.x" 

TO BE SMOOTH CURVES BOTH THESE FILES NEED A LARGE NUMBER OF POINTS TO BE PLOTTED ie 
recommended kmax > 100 

other useful information can be gained from examining the director profiles and potentials across the cell for different 
voltages. this data is outputted in the files "Theta.x" and "Phi. x" respectively The number of sets outputted in each of 
these files is kmax; Xmgr can read a maximum of 30 sets into anyone graph so we recommend that kmax is 
changed so that it is < 30. 

THE VALUES dPhiRange & PhiMin ARE VERY IMPORTANT The program DOES NOT know in advance what the 
applied voltage across the cell is. Iftheir values result in any DPHI falling outside "some range " (roughly +/-1 OV) 
then the program will never finish running. 

intervals that have been tried and have generally worked: 
double dPhiRange=1.5e-01, PhiMin=-J Oe-02; RECOMMENDED FOR MOST USES 
double dPhiRange=0.15e-01 , PhiMin=-0.5e-02; BETTER IF YOU WANT TO FIND CENTRAL MINIMUM 
ACCURATELY 
double dPhiRange= 1 ,3e-01, PhiMin=-3. 5e-02; 
double dPhiRange=O. 5e-01 , PhiMin=-1 .5e-02; 
•• THESE VALUES WILL PROBABL Y NEED TO BE CHANGED IF YOU CHANGE THE VALUE OF npoints ** 

DEFAUL T SETTINGS FOR E7: (KEVIN BARTLE) 

double lambda = 633E-9; WAVELENGTH OF LIGHT in metres 
double epsifonO = 8.854e-12; permitivity of free space 
double kmax = 200; NUMBER OF POINTS 011 the transmittallce 

vs Applied voltage curve 
double 0 = 30.2e-6; CELL THICKNESS in metres 
double ybegin = 90.0; ThetaO (in Degrees) 
double yend = 2.0; ThetaEND (in Degrees) 
double K11 = 11.1E-12;SPLAY ELASTIC CONST 
double K33 = 17.1E-12;BEND ELASTIC CONST 
double A_O = 1e-4; Anchoring energy at z = 0 
double A_d = 5e-2; Anchoring energy at z = 0 
double e44 = -5e-11; flexoelectric constant e 11 + e33 
double nO = 1.51821; ordinary refractive index 
double nE = 1.73283; extraordinary refractive index 
double epsilonN = 5.2; Normal Permittivity 
double epsiionP = 19.0; Parallel Permittivity 

DEFAULT SETTINGS FOR MBBA: (TAKAHASHI) 

double lambda = 550E-9; 
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ANSI C CODE USED TO SOLVE PDEs 

double epsilonO = B.B54e-12; 
double kmax = 200; 
double 0 = 2B.5e-6; 
double ybegin = 90.0; 
double yend = 2.0; 
double K11 = 6.4E-12; 
double K33 = 8.2E-12; 
double A __ O = 1.2e-5; 
double A_d = 5e-2; 
double e44 = -5e-11; 
double nO = 1.57; 
double nE = 1.80, 
double epsilonN = 5.4; 
double epsilonP = 4.7; 

double 0 = 28.5e-6; 
double ybegin = 90.0; 
double yend = 2.0; 
double K11 = 6.4E-12: 
double K33 = B.2E-12: 
double A_O = 1,2e-5; 
double A_d = 5e-2; 
double e44 = -5e-11; 
double nO = 1.57; 
double nE = 1.80; 
double epsilonN = 5A,' 
double epsilonP = 4.7; 
double dPhiRange = 1.15e-01; 
double PhiMin = -2,6e-02; 
double kmax = 300; 

. __ .. _--------_._._--.. _ .. _-_._. __ ._---_._-----_._-------_ .. __ ._--_ .. _-----_._----*' 
#define npoints 200 
#include <math,h> 
#include <stdio,h> 
#include <stdlib,h> 
double lambda 
double epsilonO 
double D 
double ybegin 
double yend 
double K11 
double K33 
double A_O 
double A_d 
double e44 
double nO 
double nE 
double epsilonN = 
double epsiionP = 
double kmax 

double dPhiRange 
double PhiMin 
double fe(double THETA); 
double fd(double THETA); 
double fde(double THETA); 
double fdd(double THETA); 
double ff(double THETA); 
double fdf(double THETA); 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
5,2; 
19,0; 
= 

= 
= 

633E-9; 
8,854e-12; 
30,2e-6; 
90,0; 
2,0; 
11 ,1 E-12; 
17,1E-12; 
1e-4; 
5e-2; 
-5e-11; 
1,51821; 
1.73283; 

198; /*make sure kmax is a multiple of 11 */ 

0,60e-01 ; 
-1.0e-02; 

/*double dPhiRange = 1.20e-01.: 
double PhiMin = -3.0e-02; */ 
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main(void) 
{ 
I*im i, j, $, $new, r, T, Tnew, k, 1= 1, Imax, kmaxint=kmax/30; */ 
int i, j, S, Snew, r, T. Tnew, k, 1=1 , Imax, kmaxint=kmaX/11; 
double x, dx, m, n, p, q, pi = 3.1415927; 
double D2Phi, A, B, C, J, L, M, N, P; 
double Npoints = npoints * 1.0, I; 
double Psi, dThetaO, Dthetad, NablaThetad, BOB_O, BOB_d; 
double DeltaEpsilon = epsilonP-epsiionN, NablaThetaO; 
double V, Dz = D/(Npoints), Dphase, ploppy; 
double R = (nE*nE-nO*nO)/(nE*nE); 
double Phi[npoints+1I, Integrand[npoints+1I, dPhi[npointsl , dtheta[npointsl; 
double ENERGY, FF, FE, FDE, FD, FDD, ThetaO; 1* where FF=Ulex(theta) 

!*double 
double 

dPhiRange= 1.3e-01, PhiMin=-3.5e-02,*/ 
E, DPHI, CONST, con, dE, Erange=0.2; 

typedef struct { 

typedef struct { 

double a, b, c, d, e, f; 
}Output; 

double a, b; 
}output; 

output *theta, *theta_start; 
Output *Trans, *Trans_start; 
FILE *fp, *fp2, *fp1, *fp3, *fp4; 
if ((fp1 = fopen(ITheta.xl, "w"))==NULL) 

{ 
printf("Cannot Create Output File"); 
exit(1); 
} 

if ((fp = fopen(IEandTrans.xl,lw"))==NULL) 
{ 
printf("Cannot Create Output File"); 
exit(1); 
} 

if ((fp2 = fopen("EandPhase.x·, Iw"))==NULL) 
{ 
printf("Cannot Create Output File"); 
exit(1); 
} 

if ((fp3 = fopen("PhLx","w"))==NULL) 
{ 
printf("Cannot Create Output File"); 
exit(1); 
} 

if ((fp4 = fopen("EandDPhase.xl, "w"))==NULL) 
{ 
printf("Cannot Create Output File"); 
exit(1); 
} 

Trans_start = (Output *)calloc(kmax, sizeof(Output)); 
if (!Trans_start) 

{ 
printf ("ALLOCITION ERROR - ABORTING. \n") ; 
exit(1); 
} 

theta_start = (output *)calloc(npoints+1, sizeof(output)); 

FD=,-diel(tl1eta) 
FE='-elas(theta) 
FDD=f _diel(theta) 
FDE=f _elas(tl1eta) */ 
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if (!theta_start) 
{ 
printf ("ALLOCITION ERROR - ABORTING. \n lt ); 
exit(1); 
} 

CONST=O; 
/*LOOP 1*/ for(k=0 ; k< kmax; k++) 

{ 
T=+1; 
ThetaO=ybegin*pi/180; 
dThetaO=pi/180; 
Phi[Oj=O.O; 
DPHI= dPhiRange/(2.0*kmax*1 .0); 
Phi[1j=PhiMin+k*DPHI; 
dtheta[Oj=-ff(ThetaO) *Phi[ 1j/fe(ThetaO); 
Trans=Trans_start; 
theta=theta_start; 

/*LOOP 2"/ while (T!= 0) 

ff(ThetaO)*Phi[1 ])/fe(ThetaO); 

theta[Oj.b))/Dz; 

2*FF*(Phi[ij+dPhi[i-1 ]); 

{ 
theta[Oj.a = O.O*Dz; 
theta[Oj.b = ThetaO; 
theta[1j.a = 1.0*Dz; 
dtheta[Oj=(O.5*Dz* A_O*sin (2*(ThetaO-ybegin*pi/180))-

theta[1j.b = ThetaO+dtheta[Oj; 
CONST = (fd(theta[Oj.b) * (Phi[1j-Phi[O]) - ff(theta[O].b) * (theta[1j.b-

for(i=1 ; i<npoints ; i++) 
{ 
theta[ij.a = i*Dz; 
I" modified version */ 

FF=(ff(theta[i-1j.b)+ff(theta[ij.b))/2; 
FE=(fe(theta[i-1].b )+fe(theta[ij.b) )/2; 
FD=(fd(theta[i-1].b )+fd(theta[ij.b) )/2; 
FDD=(fdd(theta[i-1j.b )+fdd(theta[i].b) )/2; 
FDE=(fde(theta[i-1j.b )+fde(theta[ij .b) )/2; 
dPhi[i-1j = Phi[i] - Phi[i-1j; 
dtheta[i-1j = theta[ij.b - theta[i-1j.b; 
L=CONST*DzlFD; 
M=FF/(2*FE*FD); 
N=FDE*dtheta[i-1j*dtheta[i-1j+FDD*dPhi[i-1j*dPhi[i-1j-

P=FF*dtheta[i-1j/FD; 
Phi[i+ 1j=(L -M*N +P+Ph iIi]) *FE*FD/( FE*FD+ FF*FF); 
D2Phi=Phi[i+1j-2*Phi[ij+Phi[i-1j; 
theta[i+1j.b=-(FDE*dtheta[i-1j*dtheta[i-1j+FDD*dPhi[i-1j*dPhi[i-

1j+2*FF*D2Phi)/(2*FE)+theta[ij.b+dtheta[i-1j; 
} 

dPhi[npoints-1j = Phi[npointsj- Phi[npoints-1]; 
dtheta[npoints-1j = theta[npointsj.b - theta[npoints-1j.b; 
Dthetad=theta[npoints).b-yend*pi/180; 
NablaThetad=0.5*A_d*sin(2*Dthetad); 
dtheta(0)=theta[Oj.b-ybegin*pi/180; 
NablaThetaO=O.5*A_0*sin(2*dtheta[O]); 
BOB_d=fe(theta[npoints j.b )*(theta[npoints j.b-theta[npoints-1j.b )/Dz 
+ff(theta[ n poin ts j. b) *(Ph i[ n pointsj+ Ph i[ n poin ts-1 ])/Dz+Nabla Thetad; 
BOB _ O=fe( theta[Oj. b) *( theta[ 1j. b-theta[Oj. b )/Dz 
+ff(theta[Oj.b )*(Phi[1j+ Phi[O])/Dz-Nabla ThetaO; 
if (theta[npointsj.b*180/pi «yend-60)) Tnew = +1; 
else if (theta[npointsj.b*180/pi > (yend+60)) Tnew = -1; 
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else { 
if (BOB_d<-1e-9) Tnew = +1; 
else if (80B_d>1e-9) Tnew = -1; 
else Tnew = 0; 
} 

if (T*Tnew > 0) dThetaO=dThetaO ; 
else if (T*Tnew < 0) dThetaO = dThetaO/2.0; 
else dThetaO = 0; 
ThetaO =ThetaO + Tnew*dThetaO ; 
T=Tnew; 
} 

I*END LOP 2 HERE*/ 
I*Need to put something in here that means that i only write to file every so often ... so that i end up with 30 sets of 
data for phi and theta (each)*/ 

I*if k = kmaxl30 • 1, 2, 3 ... 30 do the following otherwise skip 
for(k=O; k = kmaxint*n; n++) 

printf( "kmaxint=%dln",kmaxint) : 
printf( "k=%dln",k); 
'! 

*! 

if (k==kmaxint*(1-1)) 
{ 
fprintf(fp1 , "@TYPE xy\n"); 
for (i=O ; i<npoints ; i++) 

{ 
fprintf( fp1, "\t%g \t%g\n", theta[i].a, (theta[i].b*180/pi)); 
} 

fprintf(fp1, "&\n"); 
fprintf(fp3, "@TYPE xy\n"); 
for (i=O ; i<npoints ; i++) 

{ 
fprintf( fp3, "\t%g \t%g\n", theta[ij.a, Phi[i)); 
} 

fprintf(fp3, "&\n"); 
1* 
printf( "/=%dln",1); 
printf( "kmaxint'(/-1)=%dln",k),' 

1++; 
} 

I*CHECK THAT E FIELD IS CONS/STANT WITH APPLIED VOLTAGE'! 
Psi=(e44/(2*OeltaEpsilon*epsilonO))*log(fd(theta[npoints).b)/fd(theta[Oj.b)); 
I*V=Plli[npoinlsj-Psi,"! 
V=Phi[npoints); 

1* how do ire adjust voltages so that they go from -v!2 tp +v!2 instead of 0 to v? 
is it possible to avoid having to do this? .. . i'm thinking no. 
ie can we define the charge densities in term of an absolute rather than a arbitrary value'! 
ploppy=O.O; 
I*CALCULATE TRANSMITTANCE*! 

for (i=O ; i<npoints ; i++) 
{ 
Integrand[ij=( 1/( sqrt( 1.0-R*(sin(pi/2-theta[ij.b )*sin(pi/2-theta[ij. b)))) )-1.0; 
ploppy += Integrand[ij; 
} 

Ophase = (2.0*pi*nO*ploppy*Oz)/lambda; 
I = (1 .0 - cos(Ophase))/2.0; 

Trans[kj.a = V; 
I*Trans[k].b = Psi;*! 
Trans[kj.b = /; 
Trans[kj.c = Ophase; 
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Trans[k].d = ENERGY; 

/"printf("k = %3d, BOBo =%16. 1 Of, BOBd =%16.lOflt", k, BOB_O, BOB_d) ; 
printf("k = %3d, It ", k); 
printf("ThetaO = % 18.13(, Thetad = % 18. 13f, dThe/aO = % 18. 13f, dTlJetad = % 1 B. 13(, dPhiO = 

%4.2e, dPhid = % 18. 13e, Voltage = %fln", (theta[O]. b)*180/pi, (/he/a[npoints]. b) *1 BO/pi, (dtheta[Oj) ' 180/pi, 
(dtheta[npoin/s-1])*1 BO/pi, dPhi[O], dPhi[npoints-1j, Phi[npoints)); */ 

} 
/"END OF LOOP 1*/ 

I*SEPARATED DATA SETS'/ 
fprintf(fp, "@TYPE xy\n"); 
fprintf(fp2, "@TYPE xy\n"); 
fprintf(fp4, "@TYPE xy\n"); 
for(k=O; k<kmax ; k++) fprintf(fp, "%18.13g %18.13g\n", Trans[k].a, Trans[k].b); 
for(k=O; k<kmax ; k++) fprintf(fp2, "%18.13g %18.13g\n", Trans[k].a, Trans[k].c/(pi)); 
for(k=O ; k«kmax-1) ; k++) fprintf(fp4, "%18.13g % 18.13g\n", (Trans[k+1].a+ Trans[k].a)/2, (Trans[k+1].c­
Trans[k].c)/( (Trans[k+1].a-Trans[k].a)*pi)); 
fclose(fp1) ; 
fclose(fp); 
fclose(fp2) ; 
fclose(fp3); 
fclose(fp4); 
free(T rans_start); 
free(theta_start); 
printf("%c",7); 
} 
double fe(double THETA) 

{ 
retu rn K 11 *cos(TH ETA) *cos(TH ETA) +K33* sin (TH ETA) * sin (THETA); 
} 

double fd(double THETA) 
{ 
double DeltaEpsilon, poop; 
DeltaEpsilon = epsiionP-epsilonN; 
poop=epsilonO*(DeltaEpsiion *sin(THETA)*sin(TH ETA)+epsilonN); 
return poop; 
} 

double fde(double THETA) 
{ 
return (K33-K11 )*sin(2*THETA); 
} 

double fdd(double THETA) 
{ 
double DeltaEpsilon; 
DeltaEpsilon = epsiionP-epsilonN; 
return 2*epsilonO*DeltaEpsilon*sin(THETA)*cos(THETA); 
} 

double ff(double THETA) 
{ 
return e44*sin(THETA)*cos(THET A); 
} 

double fdf(double THETA) 
{ 
return e44*cos(2*THETA); 
} 
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Appendix K: The Equimolar Surface 

For an arbitrary choice of dividing surface, the following equation from 

thermodynamics is true: 

dE = TdS + Lliidmi - pa dVa - pP dVP + adA + C}dc} +C2dc2 
i 

where c} and C2 denote the two curvatures describing the surface (reciprocal 

of the radii of curvature) and C1 and C2 are constants. This can be rewritten 

as: 

dE = TdS+ LJlidml-padva -pPdVP +udA+t(CI +C2 )d(c1 +c2H(C1 -C2 )d(cl -c2 ) 

i 

(K.l) 

We choose the dividing surface such that C1 + C2 = 0 and for flat or 

spherical surfaces d(CI-C2) = O. Thus equation (K.1) simplifies to 

dE = TdS + L Jlidmi - pa dVa 
- pP dV P + adA 

i 

This is true for the Gibbs surface [Adamson]. The Gibbs surface is given 

by: 
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What has been found in previous research is that the following function 

(equation (K.2)) shows very high correlation to the shape of the density 

profile obtained from computer simulations [Adamson] 

where PI and Pg are the fluid densities in the liquid and the gas phases 

respectively, Ar) is the fluid's density at a given radius r, ro is an estimate 

for the droplet's radius (typically quite close to the Gibbs surface) and ds is 

a measure of the surface thickness. Given that the curve fit has rotational 

symmetry at ro it is fair to say that this is the equimolar surface. 

[Adamson] A. W. Adamson, Chemistry o/Surfaces 3rd Edition, Wiley 

New York (1976) 
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TEMPERATURE VERSUS SURFACE TENSION GRAPHS ApPENDIX L 

Appendix L: Exponential Regression on Temperature versus 
Surface Tensions Graph 
The regressions in figure 2.8 were performed by XMGR and were used as a 

guide to the eye. These regression data from XMGR for the droplets are 

shown below. 

4,000 droplet 

Regression o f set 0 resu l t s to s et 6 

Number of obs ervat ions 

Mean of independent variable 

Mean of dependent variable 

Standard dev . of ind o variabl e 

Standard dev . of dep . variable 

Correlation coefficient 

Regression coefficient (SLOPE) 

Standard error of coefficient 

t - value for coefficient 

Regression constant (INTERCEPT ) 

Standard error of constant 
t - value for constant 

Analysis of variance 

13 

63 . 84615 

- 3.0 9 8821 

22.141 01 

0.4781439 

-0 . 7108349 

-0.01535076 

0 . 00457975 

-3.351877 

-2 . 118734 

0.3082021 
-6 . 874496 

Source d . f Sum of squares Mean Square 

Regression 1 1. 386232 1. 386232 11.23508 

Residual 11 1.357227 0 . 1233843 

Total 12 2.743459 

F 
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2,000 droplet 

Regress i on of set 1 results t o set 7 

Number of ob servations 6 

Mean of independent variabl e 4 5 

Mean of dependent variable - 3. 2 83744 

Standard dev . of ind o variable 1 8 . 70829 

Standard dev . of dep . variable 0 . 586 2105 

Correlation coefficient - 0 . 992287 

Re gre ssion coefficient (SLOPE) -0.031092 5 9 

Standard error of coefficient 0.001942123 

t - value for coefficient - 16 . 00 9 59 

Regression constant (INTERCEPT) - 1.884578 

Sta ndar d e rror of cons t ant 0 . 09 34 7782 

t - valu e fo r constan t - 2 0. 16 069 

Analysis of variance 

Source d. f Sum of squares Mean Squ a re F 

Regressio n 1 1 . 6918 11 1 . 691 811 25 6.3069 

Residu al 4 0 . 0264 02 9 0.006600 72 5 

Total 5 1.718214 
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1,000 droplet 

Regres s ion of set 2 results to set 8 

Number of observations 6 

Mean of independent variable 45 

Mean of dependent variable -3 . 52831 

Standard dev. of ind o variable 18.70829 

Standard dev. of dep. variable 0 . 5644585 

Corre l at i on coefficient -0.980157 

Regression coefficient (SLOPE) -0.02957288 

Standard error of coefficient 0 .002 99 0348 

t - va l ue for coefficient - 9.889444 

Regression constant (INTERCEPT) -2.1975 31 

Standard error of constant 0 . 1439307 

t - value for constant -15 . 26797 

Analysis of variance 

Source d. f Sum of squares Mean Square F 

Regression 1 1.530472 1.530472 97.8011 

Residual 4 0 . 06259527 0 . 01564882 

Total 5 1 . 593067 
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500 droplet 

Regression of set 3 results to set 9 

Number of observations 6 

Mean of independent variable 45 

Mean of dependent variable -4.060826 

Standard dev. of indo variable 18.70829 

Standard dev. of dep . variable 0.8246918 

Correlation coefficient -0.973 8619 

Regression coefficient (SLOPE) -0.04292942 

Standard error of coefficient 0.005006368 

t - value for coefficient - 8.574963 

Regression constant (INTERCEPT) - 2 . 129002 

Standard error of constant 0.2409653 

t - value for constant -8.835305 

Analysis of variance 

Source d. f Sum of squares Mean Square F 

Regression 1 3.225137 3.225137 73 . 53 

Residual 4 0.175446 0.04386151 

Total 5 3 . 400583 

The data for the 4,000* curve has not been included as its value was 

qualitative rather than quantitive, i.e. it gave a curve fit that was visually 

pleasing but discounted numerous data points without more rigorous 

reasonmg. 
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Appendix M: Ansi C Code Used on Cerius2 Output Data, for 10 Data Sets per Droplet. 

The fonn that a Cerius2 output file takes does not appear to be restricted by concerns of conciseness, but outwardly is 

instead a quagmire of apparently superfluous fonnatting infonnation. This makes it more difficult to extract the relevant 

data. However, as a general understanding of the idiosyncrasies of Cerius2 files and C programming was not strictly relevant 

to the main body of the text, they have been included here instead for those with a specific interest in these areas. N.B. 

commented out details have been included in a lighter grey font as they may still be of interest to some. 

1* 
THIS IS A FURTHER ADDAPTATION TO THE PROGRAMS .. . THE IDEA BEING THIS 
PROGRAM WILL DEAL WITH 10 
INPUT FILES PRODUCE ALL THE OUT FILES AND ALSO CALCULATE THE AVERAGE 
DATA CURVES. 
THE ONLY PROBLEM THAT YOU NEED TO BE AWARE OF WITH THIS VERSIONIS 
THA T YOU NEED TO REEDIT THE 
PROGRAM AND PUT IN THE NAMES OF THE NEW TEN INPUT FILES .... SORT THAT 
ONE OUT NEXT TIME. 
or you can copy the ten files you are looking at to Ar(1to10). msi 
old blurb: 
THIS PROGAM READS THE IMPUT MSI FILE (Ar.msi) CONVERTS INTO DATA IT CAN 
USE, RESETS THE ORIGIN 
AS THE CENTRE OF MASS, CALCULATES THE FORCES AND ENENRGIES OF!ON 
EACH PARTICLE. ORDERS THE DATA 
ACCORDING TO RADIAL DISTANCES FROM THE CENTRE OF MASS, AND THEN 
CALCULATES THE AVERAGE OF THERE 
FOR A GIVEN RADIAL REGION AND THEN OUTPUTS THIS DATA TO FILES 
HisterE.DROP & HisterFDROP 
ps ... this version now excludes 0 outputs in the Hisler 
files so a different version of adding.c will be needed 
(not so for the same program on faraday and humus)'! 

#define NI 60 
#define ni 60.0 
#include <math.h> 
#inciude <stdio.h> 
#inciude <stdlib.h> 
#inciude <string.h> 
double sqr(double y); 
double twothesix(double x) ; 
void main(void) 
{ 

*in1, *in2, *in3, *in4, *inS, *in6, *in7, *inB, *in9, *in10; 
*outE, *avE; 
*outF, *avF; 
c, string[100]; 
i = 0, j = 0, iMax, n = 13, counter, J[10][NI], K[NI]; 
MAXIMUM=6E-9, delta=(MAXIMUM/ni), pi=3.141S927; 

FILE 
FILE 
FILE 
char 
int 
double 
double 
double 
double 
double 
double 
double 

x, y, z, xcm1 = 0, ycm1 = 0, zcm1 = 0, R, RSqrd, Radius, RadiusSqrd; 
xcm2 = 0, ycm2 = 0, zcm2 = 0; 
xcm3 = 0, ycm3 = 0, zcm3 = 0; 
xcm4 = 0, ycm4 = 0, zcm4 = 0; 
xcmS = 0, ycmS = 0, zcmS = 0; 
xcm6 = 0, ycm6 = 0, zcm6 = 0; 
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double 
double 
double 
double 
double 

xcm7 = 0, yem7 = 0, zcm7 = 0; 
xcmB = 0, ycmB = 0, zemB = 0; 
xcm9 = 0, ycm9 = 0, zcm9 = 0; 
xcm10 = 0, ycm10 = 0, zcm10 = 0; 
D, r, rm = 3.B6BOE-10, 
Av=6.022E+23, f1, e1, f2, e2, f3, e3, f4, e4, f5, e5, f6, e6, f7, e7, fB, eB, 

f9, e9, f10, e10, R6, RM6, 
deltaradius, DeltaRadius, 
Rsq, Average; 

double temp1, temp2, temp3, temp4; 
typedef struct { 

double X, Y, Z, R; 

coords 
coords 
coords 
coords 
coords 
coords 
coords 
coords 
coords 
coords 
typedef struct 

}coords; 
*cart1, *cart1_start; 
*cart2, *cart2_start; 
*cart3, *cart3_start; 
*cart4, *cart4_start; 
*cart5, *cart5_start; 
*cart6, *cart6_start; 
*cart7, *cart7 _start; 
*cartB, *cartB_start; 
*cart9, *cart9_start; 
*cart10, *cart10_start; 
{ 
double R, V; 
}DATA; 

DATA *F1, *F1_start, *E1, *E1_start, *F2, *F2_start, *E2, *E2_start, *F3, 
*F3_start, *E3, *E3_start; 
DATA *F4, *F4_start, *E4, *E4_start, *F5, *F5_start, *E5, *E5_start, *F6, 
*F6_start, *E6, *E6_start; 
DATA *F7, *F7 _start, *E7, *E7 _start, *FB, *FB_start, *EB, *EB_start, *F9, 
*F9_start, *E9, *E9_start, *F10, *F10_start, *E10, *E10_start; 
DATA *outDataE1, *outDataE1_start, *outDataF1, *outDataF1_start, *outDataE2, 
*outDataE2_start, *outDataF2, *outDataF2_start; 
DATA *outDataE3, *outDataE3_start, *outDataF3, *outDataF3_start, *outDataE4, 
*outDataE4_start, *outDataF4, *outDataF4_start; 

DATA *outDataE5, *outDataE5_start, *outDataF5, *outDataF5_start, *outDataE6, 
*outDataE6_start, *outDataF6, *outDataF6_start; 
DATA *outDataE7, *outDataE7 _start, *outDataF7, *outDataF7 _start, *outDataEB, 
*outDataEB_start, *outDataFB, *outDataFB_start; 
DATA *outDataE9, *outDataE9_start, *outDataF9, *outDataF9_start, *outDataE10, 
*outDataE 10 _start, *outDataF 1 0, *outDataF 10 _start; 
DATA *AVF, *AVF _start, *AVE, *AVE_start; 
if ((in1 = fopen("Ar1.msi";r"))==NULL) { 

printf("Unable to open input file"); 
exit(1 ); 

} 
if ((in2 = fopen("Ar2.msi";r"))==NULL) { 

printf("Unable to open input file"); 
exit(1); 

} 
if ((in3 = fopen("Ar3.msi";r"))==NULL) { 

printf("Unable to open input file"); 
exit(1 ); 

} 
if ((in4 = fopen("Ar4.msi";r"))==NULL) { 

printf("Unable to open input file"); 
exit(1); 

} 
if ((in5 = fopen("Ar5.msi";r"))==NULL) { 

printf("Unable to open input file"); 
exit(1); 

} 
if ((in6 = fopen("Ar6.msi";r"))==NULL) { 

printf("Unable to open input file"); 
exit(1); 

} 
if ((in? = fopen("Ar?msi";r"))==NULL) { 

printf("Unable to open input file"); 
exit(1); 

} 
if ((inB = fopen("ArB.msi";r"))==NULL) { 
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printf("Unable to open input file"); 
exit(1); 

} 
if ((in9 = fopen("Ar9.msi","r"))==NULL) { 

printf("Unable to open input file"); 
exit(1); 

} 
if ((in10 = fopen("Ar10.msi","r"))==NULL) { 

printf("Unable to open input file"); 
exit(1); 

} 
printf("Output files are called HisterE.DROP & HisterF.DROP and AverageE.DROP and 
AverageF.DROP\n"); 
if (( outE=fopen("HisterE.DROP", Ow') )==NULL) { 

printf("Unable to open output file.\n") ; 
exit(1); 
} 

if ((outF=fopen("HisterF.DROP","w"))==NULL) { 
printf("Unable to open output file.\n'); 
exit(1); 
} 

if ((avE=fopen("AverageE.DROP","w"))==NULL) { 
printf('Unable to open output file.\n"); 
exit(1); 
} 

if ((avF=fopen("AverageF.DROP","w"))==NULL) { 
printf("Unable to open output file.\n"); 
exit(1); 
} 

/*onfy need to do this once because all files should have the same number of particles 
unless something has gone horribly wrong'; 
while (!fgets(string, n, in1 )==0) 

iMax= i; 

{ 
if (strcmp(string, " (A D XYZ (")==0) i++; 
}; 

printf("iMax=%d\n", iMax); 
D = 0.1850*4.186E+3*iMaxlAv; 
cartestart = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart1_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} cart1 =cart1_start; 

cart2_start = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart2_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 

exit(1); 
} cart2=cart2_start; 

cart3_start = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart3_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1); 
} cart3=cart3_start; 

cart4_start = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart4_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} cart4=cart4 _start; 

cart5_start = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart5_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} cart5=cart5_start; 

cart6_start = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart6_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} cart6=cart6_start; 

cart? _start = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart? _start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 

APPEllDIJC M 

246 



ANSI C CODE UsED 011 THE CERIUS2 0UrPur DATA. FOR 10 DATA SEfS PER DROPLEr 

exit(1 ); 
} cart7=cart7 _start; 

cart8_start = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart8_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} cart8=cart8_start; 

cart9_start = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart9_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} cart9=cart9 _start; 

cart10_start = (coords *)calloc(iMax, sizeof(coords)); 
if (!cart10_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n") ; 
exit(1); 
} cart 1 O=cart1 O_start; 

E1_start = (DATA *)calloc(iMax, sizeof(DATA)); 
if (!E1_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} E1=E1_start; 

E2_start = (DATA *)calloc(iMax, sizeof(DATA)); 
if (!E2_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO) ; 
exit(1 ); 
} E2=E2_start; 

E3_start = (DATA *)calloc(iMax, sizeof(DATA)); 
if (!E3_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1); 
} E3=E3_start; 

E4_start = (DATA *)calloc(iMax, sizeof(DATA)); 
if (!E4_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n") ; 
exit(1 ); 

} E4=E4_start; 
E5_start = (DATA *)calloc(iMax, sizeof(DATA)); 
if (!E5_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} E5=E5_start; 

E6_start = (DATA *)calloc(iMax , sizeof(DATA)); 
if (!E6_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} E6=E6_start; 

E7 _start = (DATA *)calloc(iMax, sizeof(DATA)); 
if (!E7 _start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} E7=E7 _start; 

E8_start = (DATA *)calloc(iMax, sizeof(DATA)); 
if (!E8_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} E8=E8_start; 

E9_start = (DATA *)calloc(iMax , sizeof(DATA)); 
if (!E9_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} E9=E9_start; 

E10_start = (DATA *)calloc(iMax , sizeof(DATA)); 
if (!E10_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1); 
} E10=E10_start; 

outDataE1_start = (DATA*)calioc(NI, sizeof(DATA)); 
if (!outDataE 1_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} outDataE 1 =outDataE 1_start; 
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outDataE2_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataE2_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} outDataE2=outDataE2_start; 

outDataE3_start = (DAT A*)calloc(NI, sizeof(DATA)); 
if (!outDataE3_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} outDataE3=outDataE3_start; 

outDataE4_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataE4_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} outDataE4=outDataE4_start; 

outDataE5_start = (DATA*}calloc(NI, sizeof(DATA)); 
if (!outDataE5_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 }; 
} outDataE5=outDataE5_start; 

outDataE6_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataE6_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} outDataE6=outDataE6_start; 

outDataE7 _start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataE7 _start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} outDataE7=outDataE7 _start; 

outDataE8_start = (DATA *)calloc(NI, sizeof(DAT A)) ; 
if (!outDataE8_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 }; 
} outDataE8=outDataE8_start; 

outDataE9_start = (DATA*)calloc(NI, sizeof(DATA)); 

if (!outDataE9_start) { 
printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} outDataE9=outDataE9_start; 

outDataE10_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataE10_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} outDataE1 O=outDataE1 O_start; 

outDataF1_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataF1_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} outDataF1 =outDataFCstart; 

outDataF2_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataF2_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} outDataF2=outDataF2_start; 

outDataF3_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataF3_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} outDataF3=outDataF3_start; 

outDataF4_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataF4_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} outDataF4=outDataF4_start; 

outDataF5_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataF5_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1); 
} outDataF5=outDataF5_start; 

outDataF6_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!outDataF6_start) { 
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printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} outDataF6=outDataF6_start; 

outDataF7 _start = (DATA*)calloc(NI. sizeof(DATA)); 
if (!outDataF7 _start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1); 
} outDataF7=outDataF7 _start; 

outDataF8_start = (DATA*)calloc(NI. sizeof(DATA)); 
if (!outDataF8_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1); 
} outDataF8=outDataF8_start; 

outDataF9_start = (DATA*)calloc(NI. sizeof(DATA)); 
if (!outDataF9_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} outDataF9=outDataF9_start; 

outDataF10_start = (DATA*)calloc(NI. sizeof(DATA)); 
if (!outDataF1 O_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} outDataF1 O=outDataF1 O_start; 

F1_start = (DATA*)calloc(iMax. sizeof(DATA)); 
if (!F1_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO) ; 
exit(1 ); 
} F1=F1_start; 

F2_start = (DATA*)calloc(iMax. sizeof(DATA)); 
if (!F2_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} F2=F2_start; 

F3_start = (DATA*)calloc(iMax. sizeof(DATA)); 
if (!F3_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 

exit(1 ); 
} F3=F3_start; 

F4_start = (DATA*)calloc(iMax. sizeof(DATA)); 
if (!F4_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1); 
} F4=F4_start; 

F5_start = (DATA*)calloc(iMax. sizeof(DATA)); 
if (!F5_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} F5=F5_start; 

F6_start = (DATA*)calloc(iMax. sizeof(DATA)); 
if (!F6_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} F6=F6_start; 

F7 _start = (DATA *)calloc(iMax. sizeof(DAT A)); 
if (!F7 _start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO) ; 
exit(1 ); 
} F7=F7 _start; 

F8_start = (DATA*)calloc(iMax. sizeof(DATA)); 
if (!F8_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1); 
} F8=F8_start; 

F9_start = (DATA*)calloc(iMax. sizeof(DATA)); 
if (!F9_start) { 

printf ("ALLOCATION ERROR - ABORTING. \n"); 
exit(1 ); 
} F9=F9_start; 

F10_start = (DATA*)calloc(iMax. sizeof(DATA)); 
if (!F1 O_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO) ; 
exit(1); 
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} F10=F10_start; 
AVF _start = (DATA*)cal/oc(NI, sizeof(DATA)); 
if (!AVF _start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1 ); 
} AVF=AVF _start; 

AVE_start = (DATA*)calloc(NI, sizeof(DATA)); 
if (!AVE_start) { 

printf ("ALLOCATION ERROR - ABORTING. \nO); 
exit(1); 
} AVE=AVE_start; 

rewind(in1 ); 
i=O; 
while (!fgets(string, n, in1)==0) 

{ 

i=O; 

if (strcmp(string, " (A D XYZ (")==0) 
{ 

fscanf(in1, "%If %If %Ir, &x, &y, &z); 

}; 

/* -10=SJunits/-4=microns: input in Amstrongs OJ 

cart1 [i].x = x*1 e-1 0; 
cart1 [i].Y = y*1e-10; 
cart1[i].Z = z*1e-10; 
xcm1 += cart1 ~].x; 
ycm1 += cart1 [i].Y; 
zcm1 += cart1 ~] .Z ; 
i++' , 
}; 

while (!fgets(string, n, in2)==0) 
{ 
if (strcmp(string, " (A D XYZ (")==0) 

{ 
fscanf(in2, "%If %If %If , &x, &y, &z); 

cart2[i].X = x*1 e-1 0; 
cart2[i].Y = y*1e-10; 

}; 
i=O; 

cart2~] .Z = z*1e-10; 
xcm2 += cart2[i]X 
ycm2 += cart2[i].Y; 
zcm2 += cart2[i].Z; 
i++' , 
}; 

while (!fgets(string, n, in3)==0) 
{ 

i=O; 

if (strcmp(string, " (A D XYZ (")==0) 
{ 

fscanf(in3, "%If %If %Ir, &x, &y, &z); 
cart3[i].X = x*1 e-1 0; 
cart3[i].Y = y*1e-10; 
cart3[i] .Z = z*1e-10; 
xcm3 += cart3[i].X; 
ycm3 += cart3[i].Y; 
zcm3 += cart3[i].l; 
i++' , 
}; 

}; 

while (!fgets(string, n, in4)==0) 
{ 
if (strcmp(string," (A D XYZ (")==0) 

{ 
fscanf(in4, "%If %If %If, &x, &y, &z); 

cart4[i].X = x*1 e-1 0; 
cart4[i].Y = y*1 e-1 0; 
cart4[i].Z = z*1 e-1 0; 
xcm4 += cart4[i].X; 
ycm4 += cart4[i].Y; 
zcm4 += cart4[i].Z; 
i++' , 
}; 
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}; 
i=O; 
while (!fgets(string, n, inS)==O) 

{ 

i=O; 

if (strcmp(string, " (A D XYZ (")==0) 
{ 

fscanf(inS, "%If %If %If, &x, &y, &z); 
cartS[i].X = x*1e-10; 
cartS~]'y = y*1 e-1 0; 
cartS[i].Z = z*1 e-1 0; 
xcmS += cartS[i].X; 
ycmS += cartS[i].Y; 
zcmS += cartS~].z; 
i++; 
}; 

}; 

while (!fgets(string, n, in6)==0) 
{ 

i=O; 

if (strcmp(string, " (A D XYZ (")==0) 
{ 

fscanf(in6, "%If %If %Ir, &x, &y, &z); 
cart6[i].X = x*1 e-1 0; 
cart6[i].Y = y*1e-10; 
cart6[i].Z = z*1 e-1 0; 
xcm6 += cart6[i].X; 
ycm6 += cart6[i].Y; 
zcm6 += cart6~] .Z ; 
i++; 
}; 

}; 

while (!fgets(string, n, in7)==0) 
{ 
if (strcmp(string, " (A D XYZ (")==0) 

{ 

i=O; 

fscanf(in7, "%If %If %Ir, &X, &y, &z); 
cart7[i].X = x*1 e-1 0; 
cart7[i].Y = y*1 e-1 0; 
cart7[i].Z = z*1 e-1 0; 
xcm7 += cart7[i].X; 
ycm7 += cart7[i].Y; 
zcm7 += cart7[i].Z; 
i++; 
}; 

}; 

while (!fgets(string, n, inS)==O) 
{ 

i=O; 

if (strcmp(string, " (A D XYZ (")==0) 
{ 

fscanf(inS, "%If %If %If, &x, &y, &z); 
cartS[i].X = x*1 e-1 0; 
cartS[i].Y = y*1e-10; 
cartS[i].Z = z*1e-10; 
xcmS += cartS[i]X 
ycmS += cartS[i].Y; 
zcmS += cartS[i].Z; 
i++; 
}; 

}; 

while (!fgets(string, n, in9)==0) 
{ 
if (strcmp(string," (A D XYZ (")==0) 

{ 
fscanf(in9, "%If %If %Ir, &x, &y, &z); 

cart9[i].X = x*1 e-1 0; 
cart9[i].Y = y*1e-10; 
cart9[i].Z = z*1 e-1 0; 
xcm9 += cart9[i].X; 
ycm9 += cart9[i].Y; 
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}; 
i=O; 

zcm9 += cart9~].Z; 
i++; 
}; 

while (!fgets(string, n, in10)==0) 
{ 
if (strcmp(string, " (A D XYZ (")==0) 

{ 
fscanf(in10, "%If %If %Ir, &x, &y, &z); 

cart1 O~] .X = x*1 e-1 0; 

}; 
xcm1 = xcm1f1Max; 
ycm1 = ycm1f1Max; 
zcm1 = zcm1f1Max; 
xcm2 = xcm2flMax; 
ycm2 = ycm2flMax; 
zem2 = zcm2flMax; 
xcm3 = xcm3f1Max; 
yem3 = ycm3f1Max; 
zcm3 = zcm3f1Max; 
xcm4 = xcm4f1Max; 
yem4 = ycm4f1Max; 
zcm4 = zcm4f1Max; 
xem5 = xcm5f1Max; 
ycm5 = ycm5f1Max; 
zem5 = zcm5f1Max; 
xem6 = xcm6f1Max; 
ycm6 = ycm6f1Max; 

cart1 OD].Y = y*1 e-1 0; 
cart1 O[i].Z = z*1 e-1 0; 
xcm10 += cart10[i].X; 
ycm10 += cart10[i].Y; 
zcm10 += cart10[i].Z; 
i++' , 
}; 

zcm6 = zcm6f1Max; 
xcm7 = xcm7f1Max; 
yem7 = ycm7f1Max; 
zcm7 = zcm7f1Max; 
xcm8 = xcm8f1Max; 
yem8 = ycm8f1Max; 
zcm8 = zcm8f1Max; 
xem9 = xcm9f1Max; 
ycm9 = ycm9f1Max; 
zcm9 = zcm9f1Max; 
xcm10 = xcm10flMax; 
ycm10 = ycm10flMax; 
zcm10 = zcm10flMax; 
j=O; 
for(i=O; i«iMax); i++) 

{ 
cart1 [i].X=cart1 [i].X-xcm1; 
cart1 [i].Y=cart1 [i].Y-ycm1; 
cart1 [i].Z=cart1 [i].Z-zcm1; 
cart1 [i].R = sqrt(cart1 [i].x * cart1 [i].x + cart1 [i].Y * cart1 [i].Y + cart1 [i].Z * 

cart1 [i].Z); 
cart2[i].X=cart2[i].X-xcm2; 
cart2[i].Y=cart2[i].Y-ycm2; 
cart2[i].Z=cart2[i].Z-zcm2; 
cart2[i].R = sqrt(cart2[i].X * cart2[i].x + cart2[i].Y * cart2[i].Y + cart2[i].Z * 

cart2[i].Z); 
cart3~] . X=cart3[i] .X-xcm3; 
cart3[i].Y=cart3[i].Y-ycm3; 
cart3[i].Z=cart3[i].Z-zcm3; 
cart3[i].R = sqrt(cart3[i].X * cart3[i].X + cart3[i].Y * cart3[i].Y + cart3[i].Z * 

cart3[i].Z); 
cart4~] . X=cart4[i].X-xcm4; 
cart4[i].Y=cart4[i].Y-ycm4; 
cart4~] . Z=cart4[i] . Z-zcm4; 
cart4[i].R = sqrt(cart4[i].X * cart4[i].x + cart4[i].Y * cart4[i].Y + cart4[i].Z * 

cart4[i].Z); 
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cartS[i].X=cartS[i].X-xcmS; 
cartSpj.Y=cartS[ij.Y-ycmS; 
cartS[i].Z=cartS[i].Z-zcmS; 
cartSp].R = sqrt(cartS[ij.X " cartS[i].X + cartS[i].Y .. cartS[i].Y + cartSP],Z .. 

cartS[i].Z); 
cartS[i].X=cartSP]·X-xcmS; 
cartSp].Y=cartS[i].Y-ycmS; 
cartS[i].Z=cartS[i].Z-zcmS; 
cartS[i].R = sqrt(cartSP].X" cartSDJ.X + cartS[i].Y .. cartSP].Y + cartS[i].Z .. 

cartS[i].l); 
cart7[i].x=cart7[i].X-xcm7; 
cart7P]·Y=cart7[i].Y-ycm7; 
cart7[i].l=cart7[i].l -zcm 7; 
cart7P].R = sqrt(cart7P].X" cart7[i].X + cart7p].Y" cart7[i].Y + cart7[i].Z .. 

cart7P]·Z); 
cartS[i].X=cartS[i].X-xcmS; 
cartS[i].Y=cartS[i].Y-ycmS; 
cartS[i].Z=cartS[i].Z-zcmS; 
cartS[i].R = sqrt(cartS[i].X" cartSP].X + cartS[i].Y .. cartS[i]Y + cartS[i].Z .. 

cartSp].Z); 
cart9[i].X=cart9[i].X-xcm9; 
cart9[i].Y=cart9P]·Y-ycm9; 
cart9[i].Z=cart9[i].Z -zcm9; 
cart9[i].R = sqrt(cart9[i].X" cart9[i].X + cart9[i].Y .. cart9[ij.Y + cart9[i] .Z .. 

cart9[i].l); 
cart1 0[i].X=cart1 O[i].X-xcm 1 0; 
cart1 O[i]. Y=cart1 OP].Y-ycm1 0; 
cart10p].Z=cart10[i].Z-zcm10; 
cart10[i].R = sqrt(cart10[i].X" cart10[i].X + cart10P],Y" cart10[i].Y + cart10[i].Z" 

cart10P]·Z); 
} 

for(i=O; i«iMax) ; i++) 
{ 
F1[i].R = cart1[i].R; 
F2p].R = cart2[i].R; 
F3p].R = cart3P].R; 

F4P].R = cart4[i].R; 
FS[i].R = cartS[i].R; 
FSP].R = cartS[i].R; 
F7[i].R = cart7[i].R; 
FS[i].R = cartSDJ.R; 
F9[i].R = cart9P].R; 
F10[i].R = cart10[i].R; 
E1 [i].v=O.O; 
E2[i].v=0.0; 
E3P].v=0.0; 
E4P].v=0.0; 
ESP].v=O.O; 
ES[i].v=O.O; 
E7P].v=0.0; 
ES[i].v=O.O; 
E9P].v=0.0; 
E10P].v=0.0; 
E1p].R = F1[i].R; 
E2[i].R = F2[i].R; 
E3[i].R = F3[i].R; 
E4[i].R = F4[i].R; 
ES[i].R = FS[i].R; 
ES[i].R = FS[i].R; 
E7[i].R = F7[i].R; 
ESP].R = FS[i].R; 
E9P].R = F9[i].R; 
E10P].R = F10P].R; 
F1[i].v=0.0; 
F2[i].V=0.0; 
F3[i].v=0.0; 
F4P].v=0.0; 
FSp].V=O.O; 
FS[i].v=O.O; 
F7P],V=0.0; 
FSP].v=O.O; 
F9P]·V=0.0; 
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F10~J. V=O.O; 
RMS = twothesix(rm}; 

forQ=O; j<iMax; j++} 
{ 
if(i==j} j++; 

r = sqrt((cart1 [i].x - cart1 Ul.x} * (cart1 [i].X - cart1 Ul.x) + (cart1 ~]Y - cart1 Ul.Y) * (cart1 [i].Y -
cart1UlY) + (cart1[i].Z - cart1U],Z) * (cart1[i].Z - cart1Ul.l)); 

RS = twothesix(r}; 
f1 = -12 * 0 * ( RMS/(r * R6) - sqr(RMS/RS}/r}/2; 
e1= 0 * (sqr(RMS/RS}-2*(RMS/RS))/2; 
F1 [iJV += f1; 
E1[i].V += e1 ; 

r = sqrt((cart2[i].x - cart2U]'X) * (cart2[i].X - cart2Ul.x) + (cart2[i].Y - cart2U]'Y) * (cart2[i].Y -
cart2m·Y) + (cart2[i].Z - cart2U]'Z) * (cart2[i].Z - cart2U]'Z)}; 

RS = twothesix(r); 
f2= -12 * 0 * ( RMS/(r * RS) - sqr(RMS/R6}/r}/2; 
e2= 0 * (sqr(RMS/RS}-2*(RMS/RS)}/2; 
F2~]V += f2; 
E2[iJV += e2; 

r = sqrt((cart3[i].X - cart3Ul.x) * (cart3[i].X - cart3Ul.x) + (cart3[i].Y - cart3UlY) * (cart3[i].Y -
cart3Ul.Y) + (cart3[i].Z - cart3Ul.Z) * (cart3[i].l - cart3U],Z)); 

RS = twothesix(r); 
f3= -12 * 0 * ( RMS/(r * RS) - sqr(RMS/RS)/r}/2; 
e3= 0 * (sqr(RMS/RS)-2*(RM6/RS))/2; 
F3[i].V += f3; 
E3[i].V += e3; 

r = sqrt((cart4[i].X - cart4Ul.x) * (cart4[i].X - cart4m.x) + (cart4[i]Y - cart4UlY) * (cart4[i].Y -
cart4UlY) + (cart4[i].Z - cart4Ul.Z) * (cart4[i].Z - cart4Ul.Z)); 

RS = twothesix(r) ; 
f4= -12 * 0 * (RMS/(r * RS) - sqr(RMS/RS)/r}/2; 
e4= 0 * (sqr(RMS/RS}-2*(RMS/R6))/2; 
F4~].V += f4; 
E4[i].V += e4; 

r = sqrt((cart5[i].x - cart5m.x) * (cart5~] .X - cart5m.X) + (cart5[i].Y - cart5m.Y) * (cart5DJ.Y -
cart5m.Y) + (cart5[i].Z - cart5m.Z) * (cart5~].Z - cart5m.l)); 

R6 = twothesix(r) ; 

f5= -12 * 0 * ( RMS/(r * R6) - sqr(RM6/RS)/r)/2; 
e5= 0 * (sqr(RM6/R6)-2*(RM6/R6))/2; 
F5~].V += f5; 
E5[i].V += e5; 

r = sqrt((cart6[i].x - cart6Ul.x) * (cart6[i].X - cart6U],X) + (cart6~].Y - cartSU].Y) * (cart6[i].Y -
cart6U],Y) + (cart6[i].Z - cartSUl.Z) * (cart6[i].Z - cart6Ul.Z)); 

R6 = twothesix(r); 
f6= -12 * 0 * ( RM6/(r * R6) - sqr(RM6/RS)/r)/2; 
e6= 0 * (sqr(RM6/R6)-2*(RM6/R6))/2; 
F6~].V += f6; 
E6[i]V += e6; 

r = sqrt((cart7[i].x - cart7Ul.x) * (cart7~] .X - cart7Ul.X) + (cart7[i].Y - cart7Ul.Y) * (cart7[i].Y -
cart7mY) + (cart7[i].Z - cart7Ul.Z) * (cart7[i].Z - cart7Ul.Z)) ; 

R6 = twothesix(r); 
f7= -12 * 0 * ( RM6/(r * R6) - sqr(RM6/R6)/r)/2; 
e7= 0 * (sqr(RM6/R6)-2*(RM6/R6))/2; 
F7[i]V += f7; 
E7[i].V += e7; 

r = sqrt((cart8[i].X - cart8Ul.x) * (cart8[i].X - cart8Ul.X) + (cart8[i].Y - cart8UlY) * (cart8[i].Y -
cart8UlY) + (cart8[i].Z - cart8U].Z) * (cart8[i].l - cart8U],Z)); 

R6 = twothesix(r); 
f8= -12 * 0 * ( RM6/(r * R6) - sqr(RM6/R6)/r}/2; 
e8= 0 * (sqr(RM6/R6)-2*(RM6/R6))/2; 
F8~JV += f8; 
E8[i]V += e8; 

r = sqrt((cart9~].X - cart9Ul.x) * (cart9[i].X - cart9Ul.x) + (cart9[i].Y - cart9Ul.Y) * (cart9[i].Y -
cart9UlY) + (cart9[i].Z - cart9Ul.Z) * (cart9[i].Z - cart9U],Z)); 

R6 = twothesix(r); 
f9= -12 * 0 * ( RM6/(r * R6) - sqr(RM6/R6)/r)/2; 
e9= 0 * (sqr(RMS/R6)-2*(RM6/RS))/2; 
F9[i].V += f9; 
E9[i].V += e9; 

r = sqrt((cart10[i].X - cart10Ul.x) * (cart10[i].X- cart10Ul.x) + (cart10[i].Y - cart10U],Y) * 
(cart10[i].Y - cart10UlY) + (cart10[i].Z - cart10m.Z) * (cart10[i].Z - cart10U],Z)) ; 

RS = twothesix(r); 
f10= -12 * 0 * ( RM6/(r * R6) - sqr(RMS/RS)/r)/2; 
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} 

e10= 0 * (sqr(RM6/R6)-2*(RM6/R6))/2; 
F10[i].V += f10; 
E10[i] .V += e10; 
}; 

counter-1 ; 
while (counter> 0) 

{ 
counter-O; 
for(i=O; i«iMax-1) ; i++) 

{ 

} 
counter-1 ; 
while (counter> 0) 

{ 

if (F1[i].R > F1[i+1].R) 
{ 
temp1=E1~].R; 

E1[i] .R=E1~+1] .R; 
E1 [i+1].R=temp1; 
temp2=E 1 [i]V; 
E1 [i]V=E1 [i+1 ].V; 
E1[i+1]V=temp2; 
temp3=F1 ~] .R; 
F1 pj.R=F1 [i+1].R; 
F1 [i+1 ].R=temp3; 
temp4=F1 [i]V; 
F1[i].V=F1 [i+1].V; 
F1~+1]V=temp4; 

counter++; 
} 

counter=O; 
for(i=O ; i«iMax-1); i++) 

{ 
if (F2[ij.R > F2~+1].R) 

} 
counter-1; 
while (counter> 0) 

{ 
counter-O; 

{ 
temp1 =E2[i].R; 
E2[i].R=E2[i+1 ].R; 
E2[i+1j.R=temp1 ; 
temp2=E2HV; 
E2[ij. V=E2[i+1]. V; 
E2[i+ 1jV=temp2; 
temp3=F2[i].R; 
F2[i].R=F2[i+1].R; 
F2[i+1].R=temp3; 
temp4=F2[i]. V; 
F2[ijV=F2[i+1jV; 
F2[i+1jV=temp4; 
counter++; 
} 

for(i=O; i«iMax-1); i++) 
{ 
if (F3[ij .R > F3[i+1].R) 

{ 
temp1=E3[i].R; 
E3[ij.R=E3[i+1 ].R; 
E3[i+1j.R=temp1 ; 
temp2=E3[ij. V; 
E3[ijV=E3[i+ 1jV; 
E3[i+1jV=temp2; 
temp3=F3[i].R; 
F3[ij.R=F3[i+1j.R; 
F3[i+1].R=temp3; 
temp4=F3[i]. V; 
F3[i]. V=F3[i+1jV; 
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} 
counter-1 ; 
while (counter> 0) 

{ 

F3~+1].V=temp4; 
counter++; 
} 

counter-O; 
for(i=O; i«iMax-1) ; i++) 

{ 

counter-1 ; 
while (counter> 0) 

{ 

if (F4[i].R > F4[i+1].R) 
{ 
temp1 =E4[i].R; 
E4[i].R=E4[i+1 ].R; 
E4[i+1].R=temp1; 
temp2=E4[i]. V; 
E4[i]. V=E4~+ 1]. V; 
E4[i+1].v=temp2; 
temp3=F4~].R; 
F4[i].R=F4[i+1 ].R; 
F4[i+1].R=temp3; 
temp4=F4~].V; 
F4[i].V=F4[i+1].v; 
F4[i+1].v=temp4; 
counter++; 
} 

counter-O; 
for(i=O; i« iMax-1) ; i++) 

{ 

} 
counter-1 ; 
while (counter> 0) 

{ 

if (F5[i].R > F5[i+1].R) 
{ 
temp1 =E5[i].R; 
E5[i].R=E5[i+1 ].R; 
E5[i+1].R=temp1 ; 
temp2=E5[i].V; 
E5[i]. V=E5[i+1]. V; 
E5[i+1].v=temp2; 
temp3=F5[i].R; 
F5[i].R=F5[i+1].R; 
F5[i+1].R=temp3; 
temp4=F5[i].v; 
F5[i]. V=F5[i+1].v; 
F5[i+1].v=temp4; 
counter++; 
} 

counter-O; 
for(i=O ; i«iMax-1) ; i++) 

{ 
if (F6[i].R > F6[i+1].R) 

{ 
temp1 =E6[i].R; 
E6[i].R=E6[i+1].R; 
E6[i+1].R=temp1 ; 
temp2=E6[i]. V; 
E6[i].V=E6[i+1].v; 
E6[i+1].v=temp2; 
temp3=F6[i].R; 
F6[i].R=F6[i+1].R; 
F6[i+1].R=temp3; 
temp4=F6[i]. V; 
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} 
counter-1 ; 
while (counter> 0) 

{ 

F6[i].V=F6[i+1].V; 
F6[i+ 1jV=temp4; 
counter++; 
} 

counter-O; 
for(i=O ; i«iMax-1) ; i++) 

{ 

} 
counter-1 ; 
while (counter> 0) 

{ 

if (F7[i].R > F7[i+1).R) 
{ 
temp1 =E7[i].R; 
E7[i).R=E7[i+1).R; 
E7[i+1].R=temp1 ; 
temp2=E7[ijV; 
E7[i].V=E7[i+1].V; 
E7~+1jV=temp2; 

temp3=F7~].R; 
F7[ij . R=F7~+1].R; 

F7~+1).R=temp3; 
temp4=F7~jV; 
F7[ij. V=F7[i+1jV; 
F7[i+1jV=temp4; 
counter++; 
} 

counter-O; 
for(i=O; i« iMax-1) ; i++) 

{ 

} 
counter-1 ; 
while (counter> 0) 

{ 

if (F8[ij.R > F8[i+1].R) 
{ 
temp1=E8~j . R; 

E8[ij.R=E8[i+1].R; 
E8[i+1].R=temp1 ; 
temp2=E8[i]. V; 
E8[i].V=E8[i+1].V; 
E8[i+1jV=temp2; 
temp3=F8[i].R; 
F8[i].R=F8[i+1].R; 
F8[i+1 ].R=temp3; 
temp4=F8[i]. V; 
F8[ij. V=F8[i+1]. V; 
F8[i+1jV=temp4; 
counter++; 
} 

counter=O; 
for(i=O ; i«iMax-1) ; i++) 

{ 
if (F9[ij.R > F9[i+1].R) 

{ 
temp1=E9[i].R; 
E9[i].R=E9[i+1).R; 
E9[i+1].R=temp1 ; 
temp2=E9[i]. V; 
E9[ij. V=E9[i+ 1]. V; 
E9[i+1jV=temp2; 
temp3=F9[i).R; 
F9[ij. R=F9[i+ 1j. R; 
F9[i+1j.R=temp3; 
temp4=F9[ijV; 
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} 
counter-1 ; 
while (counter> 0) 

{ 
counter-O; 

F9[i]. V=F9p+ 1 ].v; 
F9P+1].V=temp4; 
counter++; 
} 

for(i=O; i«iMax-1) ; i++) 
{ 
if (F10[i].R > F10[i+1j.R) 

} 
for (i=O ; i«iMax) ; i++) 

{ 
j=O; 
J[OjUl = 0; 

{ 
temp1=E10[i].R; 
E10[ij.R=E10P+1j.R; 
E10[i+1].R=temp1 ; 
temp2=E1 O[i]. V; 
E1 Opj.v=E1 OP+1j.v; 
E 1 O[i+ 1j. V=temp2; 
temp3=F10P]·R; 
F10[ij.R=F10[i+1j.R; 
F1 0[i+1 ].R=temp3; 
temp4=F10[i].v; 
F10[ij.v=F10[i+1j.v; 
F10[i+1].V=temp4; 
counter++; 
} 

for 0=0 ; j«NI) ; j++) 
{ 

} 

outDataF1 U].R = 0+0.5)*delta; 
outDataE1UJ.R = 0+0.5)*delta; 
R=F1[ij.R; 
if ((O*delta) < R) && (R < (0+1 )*delta))) 

{ 
outDataE1U]'V = outDataE1UJ.v +E1[i].V ; 
outDataF 1 U]' V = outDataF 1 U]. V +F 1 Ii]. V ; 
J[OJU]+=1; 
} 

for (i=O ; i«iMax) ; i++) 
{ 
j=O; 
J[1JUj = 0; 
for 0=0 ; j«NI) ; j++) 

{ 

} 

outDataF2U].R = 0+0.5)*delta; 
outDataE2UJ.R = 0+0.5)*delta; 
R=F2[i].R; 
if ((O*delta) < R) && (R < (O+1)*delta))) 

{ 
outDataE2UJ.V = outDataE2UJ.V +E2[ij.V ; 
outDataF2U]'V = outDataF2Ul.V +F2[ij.v ; 
J[1]Ul+=1 ; 
} 

for (i=O ; i«iMax) ; i++) 
{ 
j=O; 
J[2jUl = 0; 
for 0=0 ; j«NI) ; j++) 

{ 
outDataF3U].R = 0+0.5)*delta; 
outDataE3Ul.R = 0+0.5)*delta; 
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} 

R=F3[i].R; 
if ((O"delta) < R) && (R < (O+1)*delta))) 

{ 
outDataE3U]V = outDataE3U]V +E3[i]. V ; 
outDataF3m.V = outDataF3U]V +F3~IV; 
J[2]OJ+=1; 
} 

for (i=O ; i«iMax) ; i++) 
{ 
j=O; 
J[3JOI = 0; 
for 0=0; j«NI) ; j++) 

{ 

} 

outDataF4m.R = 0+0.5)*delta; 
outDataE40].R = 0+0.5)*delta; 
R=F4[il·R; 
if ((O*delta) < R) && (R < (O+1)*delta))) 

{ 
outDataE4m.V = outDataE4m.V +E4[i].V ; 
outDataF4mV = outDataF4m.V +F4[i].V ; 
J[3J01+=1; 
} 

for (i=O ; i«iMax) ; i++) 
{ 
j=O; 
J[4JOI = 0; 
for 0=0 ; j«NI) ; j++) 

{ 
outDataF50].R = 0+0.5)*delta; 
outDataE5Ul.R = 0+0.5)*delta; 
R=F5[i].R; 
if ((O*delta) < R) && (R < (O+1)*delta))) 

} 

{ 
outDataE50]'V = outDataE5mV +E5[i].V; 
outDataF5mV = outDataF5m.V +F5[i].V; 
J[4]m+=1 ; 
} 

for (i=O ; i«iMax) ; i++) 
{ 
j=O; 
J[5JOI = 0; 
for 0=0 ; j«NI) ; j++) 

{ 

} 

outDataF6m.R = 0+0.5)*delta; 
outDataE6m.R = 0+0.5)*delta; 
R=F6[il·R; 
if ((O*delta) < R) && (R < (0+1 )*delta))) 

{ 
outDataE60]'V = outDataE6mV +E6[i].V ; 
outDataF60]'V = outDataF6m.V +F6[i].V ; 
J[5JO]+=1; 
} 

for (i=O ; i«iMax) ; i++) 
{ 
j=O; 
J[61m = 0; 
for 0=0; j«NI) ; j++) 

{ 
outDataF7m.R = 0+0.5)*delta; 
outDataE7m.R = 0+0.5)*delta; 
R=F7[i].R; 
if ((O*delta) < R) && (R < (O+1)*delta))) 

{ 
outDataE7mV = outDataE7m.V +E7[i].V ; 
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} 

outDataF7U]V = outDataF7U].V +F7[i]V ; 
J[6]UJ+=1; 
} 

for (i=O ; i«iMax) ; i++) 
{ 
j=O; 
J[7]U] = 0; 
for 0=0 ; j«NI) ; j++) 

{ 

} 

outDataFSU].R = 0+0.5)*delta; 
outDataESU].R = 0+0.5)*delta; 
R=FS~] . R; 
if ((O*delta) < R) && (R < (O+1)*delta))) 

{ 
outDataESU].V = outDataESU]V +ES[i].V; 
outDataFSU].V = outDataFSU],V +FS[i].V; 
J[7]Ul+=1 ; 
} 

for (i=O ; i«iMax) ; i++) 
{ 
j=O; 
J[SlU] = 0; 
for 0=0; j«NI) ; j++) 

{ 
outDataF9UJ.R = 0+0.5)*delta; 
outDataE9U].R = 0+0.5)*delta; 
R=F9[i].R; 
if ((O*delta) < R) && (R < (O+1)*delta))) 

{ 
outDataE9U].V = outDataE9U],V +E9[i].V ; 
outDataF9U]V = outDataF9U],V +F9~]V ; 
J[SlU]+=1 ; 

} 
for (i=O ; i<(iMax) ; i++) 

{ 
j=O; 
J[9]U] = 0; 
for 0=0; j«NI) ; j++) 

{ 

} 

outDataF10U].R = 0+0.5)*delta; 
outDataE10U].R = 0+0.5)*delta; 
R=F10[i] .R; 
if ((O*delta) < R) && (R < (O+1)*delta))) 

{ 
outDataE10U].V = outDataE10U],V +E10[i]V; 
outDataF10U].V = outDataF10U],V +F10[i]V; 
J[9]U]+=1; 
} 

for 0=0; j«NI) ; j++) 
{ 
if (J[O]U]!=O) { 

outDataE1 U]. V=outDataE1 U].V /(1 .00* J[OlU]); 
outDataF1 U]V=outDataF1 U]' V /(1.00* J[OlU]); 
} 

if (J[1]U]!=0) { 
outDataE2U]. V=outDataE2U], V /( 1.00* J[1lU]); 
outDataF2U]V=outDataF2U].V /(1.00* J[1lU]); 
} 

if (J[2lU]!=0) { 
outDataE3U].V=outDataE3U].V /(1 .00* J[2lU]); 
outDataF3U]V=outDataF3U],V /(1.00* J[2lU]); 
} 

if (J[3lU]!=0) { 
outDataE4U]V=outDataE4U]V /(1.00* J[3lU]); 
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outDataF4U1.v=outDataF4U1.v 1(1.00* J[3lU]); 

} 
if (J[4JUI!=0) { 

outDataE5U1.v=outDataE5UJ, V I( 1. 00* J [4 lUI); 
outDataF 5m.v=outDataF 50], V I( 1. 00* J [4 lUI); 
} 

if (J[5JUI!=0) { 
outDataESm.v=outDataESUJ, V 1(1.00* J[5lUl); 
outDataFSU].v=outDataFSO]' V 1(1 .00* J[5lUl); 
} 

if (J[SJm!=O) { 
outDataE7U1.V=outDataE7UJ, V 1(1.00* J[SIUI); 
outDataF7m.v=outDataF7UJ, V 1(1 .00* J[SJUI); 
} 

if (J[7JUI!=O) { 
outDataESm.v=outDataESm.v 1(1.00* J[7JUI); 
outDataFSm.v=outDataFSm.v 1(1.00* J[7Jm); 
} 

if (J[SJUJ!=O) { 
outDataE9m.v=outDataE9U1.v 1(1.00* J[SJUI); 
outDataF9U].v=outDataF9U1. V 1(1.00* J[SlUl); 
} 

if (J[9JUJ!=0) { 

} 

outDataE1 Om. V=outDataE1 OUl.V 1(1.00' J[9IU]); 
outDataF 1 OUl.v=outDataF 1 OUI. V I( 1. 00* J [910]); 
} 

for 0=0 ; j«NI) ; j++) 
{ 
KUI=O; 
for (i=O ; i<10 ; i++) 

{ 
if (J[iJUJ!=O) KUI++; 
} 

for 0=0; j«NI) ; j++) { 
AVEUI.R = 0+0.5)*delta; 
AVFUJ,R = 0+0.5)*delta; 
if (KUI!=O) { 

AVEUI.v=( outDataE 1 UI. V+outDataE20]' V+outDataE3UJ, V+outDataE40]' V+outDataE5U1. V+ 
outDataESUI· V+outDataE70].V+outDataESO]' V+outDataE9U1. V+outDataE1 OUl· V)/KUI; 
A VFUI. V=( outDataF1 UI. V+outDataF2U1.V+outDataF30]' V+outDataF40]' V+outDataF5U1. V+o 
utDataFSUI.v+outDataF7U1. V+outDataFSO]' V+outDataF90]' V+outDataF1 OUl· V)/KUI; 

} 

} 
else { 
AVEUI·V=O; 
AVFUI·V=O; 
} 

fprintf(outE, "@TYPE xy\n"); 
fprintf(outF, "@TYPE xy\n"); 
for 0=0 ; j«NI) ; j++) 

{ 
if (J[OmJ!=O) { 

fprintf(outE, "%10.Sle %10.Sle\n", outDataE1m.R, outDataE1m.v); 
fprintf(outF, "%10.Sle %10.Sle\n", outDataF1m.R, outDataF1m.v); 
} 

} 
fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 
fprintf(outE, "@TYPE xy\n"); 
fprintf(outF, "@TYPE xy\n") ; 
for 0=0; j«NI) ; j++) 

{ 
if (J[1mJ!=0) { 

fprintf(outE, "%10.Sle %10.Sle\n", outDataE2m.R, outDataE20]'v); 
fprintf(outF, "%10.Sle %10.Sle\n", outDataF2U1.R , outDataF2U1.V); 
} 

} 
fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 
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fprintf(outE, "@TYPE xy\n") ; 
fprintf(outF, "@TYPE xy\n"); 
for 0=0 ; j«NI) ; j++) 

{ 
if (J[21Ul!=0) { 

} 

fprintf(outE, "%10.6Ie %10.6Ie\n", outDataE30].R, outDataE3Ul.v); 
fprintf(outF, "%10.6Ie %10.6Ie\n", outDataF3Ul.R, outDataF30],v); 
} 

fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 
fprintf(outE, "@TYPE xy\n"); 
fprintf(outF, "@TYPE xy\n") ; 
for 0=0 ; j«NI) ; j++) 

{ 
if (J[3JOI!=0) { 

} 

fprintf(outE, "%10.6Ie %10.6Ie\n", outDataE4Ul.R, outDataE40).v); 
fprintf(outF, "%10.6Ie %10.6Ie\n", outDataF40].R, outDataF40).V); 
} 

fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 
fprintf(outE, "@TYPE xy\n") ; 
fprintf(outF, "@TYPE xy\n"); 
for 0=0 ; j«NI) ; j++) 

{ 
if (J[4JOI!=0) { 

} 

fprintf(outE, "%10.6Ie %10.6Ie\n", outDataESO].R , outDataESO]'v); 
fprintf(outF, "%10.6Ie %10.6Ie\n", outDataFSO].R , outDataFSO).V); 
} 

fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 
fprintf(outE, "@TYPE xy\n") ; 
fprintf(outF, "@TYPE xy\n"); 
for 0=0 ; j«NI) ; j++) 

{ 
if (J[SlUl!=O) { 

fprintf(outE, "%10.6Ie %10.6Ie\n", outDataE6Ul.R, outDataE60]'v); 
fprintf(outF, "%10.6Ie %10.6Ie\n", outDataF6Ul.R , outDataF60).V); 
} 

} 
fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 
fprintf(outE, "@TYPE xy\n"); 
fprintf(outF, "@TYPE xy\n"); 
for 0=0 ; j«NI) ; j++) 

{ 
if (J[6J01!=0) { 

fprintf(outE, "%10.6Ie %10.6Ie\n", outDataE70).R, outDataE70).V); 
fprintf(outF, "%10.6Ie %10.6Ie\n", outDataF70).R, outDataF70).V); 
} 

} 
fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 
fprintf(outE, "@TYPE xy\n"); 
fprintf(outF, "@TYPE xy\n"); 
for 0=0; j«NI) ; j++) 

{ 
if (J[7lo)!=O) { 

fprintf(outE, "%10.6Ie %10.6Ie\n", outDataE80].R , outDataE80).v); 
fprintf(outF, "%10.6Ie %10.6Ie\n", outDataF80).R, outDataF80).V); 
} 

} 
fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 
fprintf(outE, "@TYPE xy\n") ; 
fprintf(outF, "@TYPE xy\n"); 
for 0=0; j«NI) ; j++) 

{ 
if (J[8]OJ!=0) { 

fprintf(outE, "% 1 0.61e % 1 0.6Ie\n", outDataE90].R , outDataE9Ul·v); 
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} 

fprintf(outF, "%10.Sle %10.Sle\n", outDataF90l.R , outDataF9U],V); 
} 

fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 
fprintf(outE, "@TYPE xy\n"); 
fprintf(outF, "@TYPE xy\n"); 
for 0=0; j«NI) ; j++) 

{ 
if (J[9lUJ!=0) { 

} 
fprintf(outE, "&\n"); 
fprintf(outF, "&\n"); 

fprintf(outE, "%10.Sle %10.Sle\n", outDataE100l.R, outDataE100l.v); 
fprintf(outF, "%10.Sle %10.Sle\n", outDataF10D].R, outDataF100l.v); 
} 

for 0=0; j«NI) ; j++) { 
if (KOl!=O) { 

} 
fclose(in1); 
fclose(in2); 
fclose(in3); 
fclose(in4) ; 
fclose(in5); 
fclose(inS); 
fclose(in7); 
fclose(inB); 
fclose(in9); 
fclose(in10); 
fclose(outE) ; 
fclose(outF) ; 
fclose(avE); 
fclose(avF); 

fprintf(avE, "%10.Sle %10.Sle\n", AVEOl.R, AVEU].V); 
fprintf(avF, "%10.Sle %10.Sle\n", AVFOl.R, AVFUl.V); 
} 

free(cart1_start); 
free(cart2_start); 
free( cart3_start); 
free(cart4_start); 
free(cart5_start); 
free( cartS_start); 
free(cart7 _start); 
free( cartB _start); 
free(cart9_start); 
free(cart10_start) ; 
free(E1_start); 
free(E2_start); 
free(E3_start); 
free(E4_start); 
free(E5_start); 
free(ES_start); 
free(E7 _start); 
free(EB_start) ; 
free(E9_start); 
free(E10_start); 
free(F 1_start); 
free(F2_start); 
free(F3_start); 
free(F4_start); 
free(F5_start); 
free(FS_start); 
free(F7 _start); 
free(FB_start); 
free(F9_start); 
free(F10_start); 
free ( outDataF 1_start); 
free ( outDataF2_start); 
free( outDataF3 _start); 
free(outDataF4_start) ; 
free( outDataF 5 _start); 
free(outDataFS_start) ; 
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free(outDataF7 _start); 
free(outDataFB_start); 
free( outDataF9 _start); 
free(outDataE10_start); 
free( outDataE 1_start); 
free( outDataE2_start); 
free( outDataE3 _start); 
free(outDataE4_start); 
free ( outDataE5 _start); 
free ( outDataE6_start); 
free(outDataE7 _start); 
free( outDataEB _start); 
free(outDataE9_start); 
free( outDataF1 O_start); 

free(AVE_start); 
free(AVF _start); 
printf("%c" ,7); 
} 
double sqr(double y) 

{ 
y=y*y; 
return(y); 
} 

double twothesix(double x) 
{ 
x=x*x*x*x*x*x; 
return (x); 
} 
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