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Abstract

This study derives an inverted pendulum model for quiet stance in hu-

mans around the ankle joints with 4×9-element mass-spring-damper

(MSD) units as the musculoskeletal connections between the shank

and foot bilaterally. The model focuses on the role played by both

the stiffness and the damping parameters of muscles, tendons and

ligaments about the ankle complex. This model partitions muscles,

tendons and ligaments functionally. This novel model is used to study

the behaviour of individual components in relation to quiet stand-

ing. The Lagrange d’ Alembert principle has been used to derive the

equations of motion of the system and resulted in eighteen 2nd order

differential equations with nine constraints. Four MSD units connects

with the shank (tibia and fibula) and foot bilaterally. The units func-

tion passively and are representative of the mechanical functionality

of muscles, tendons, and ligaments about the ankle complex. The

dynamics of the MSD units are considered linear in nature and their

stiffness and damping parameters are calculated by finding the slope

of the force vs. deformation length curve and force vs. velocity curve

reported in the literature.

The simulation results revealed that the torques generated by the

internal constraints through the MSD units are significantly greater

than the gravitational torque. A case study has been conducted for

eyes open vs. eyes closed conditions. It was found that the angu-

lar displacement of the shank varied but the overall range of motion

of the ankle joint remained constant at 0.6◦. This was expected as

there was no external perturbation applied to facilitate any amount of

plantarflexion or dorsiflexion at the point of articulation of the ankle

joint.



In conclusion, the model derived and analysed in this study explains

that the human body was able to maintain its upright posture me-

chanically during unperturbed quiet standing without the use of an

active control system emphasising the importance of damping and its

influence on postural balance. Furthermore, this sophisticated model

is not limited to only considering the muscle-tendon unit and liga-

ments play an important role in maintaining balance during quiet

stance and are therefore included in the model. This model is phys-

iologically more realistic than previously developed postural models

thus providing a deeper insight towards the passive mechanism of pos-

tural balance and providing a new approach towards future postural

models.
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D diagonal matrix of ȳr,i
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Chapter 1

Introduction

1.1 Introduction

Postural balance is maintained when all body segments function synergistically.

Nashner and McCollum (1985) described the controlled ankle and hip movements

as two postural strategies which help to maintain a balanced posture during

external perturbations. In the ankle strategy, substantial sway of the centre

of mass (CoM) with respect to the ankle complex occurs. However, the hip

strategy involves a combination of the hip and ankle movements, where the hip

plays a more dominant role in maintaining balance. Postural balance essentially

means that the point of equilibrium of the body is constantly adjusted to prevent

the body from a fall, which results in anterior-posterior and medio-lateral sways

(Nashner, 1970). Sway is initiated during free stance as a result of inherent

unstable properties of the body together with internal and external perturbations

(Karlsson and Persson, 1997).

One aspect of postural balance investigations is the study of quiet stance which

is usually modelled as an inverted pendulum (Aramaki et al., 2001; Casadio et al.,

2005b; Fitzpatrick et al., 1994; Gatev et al., 1999; Karlsson and Persson, 1997;

Winter et al., 1996). Among various models of the inverted pendulum, intrinsic

stiffness models (Casadio et al., 2005b; Fitzpatrick et al., 1992; Humphrey and

Hemami, 2010; Thomas Edwards, 2007) are often used to understand the mechan-

ical contributions of the musculoskelatal system towards postural balance. These

1



1.Introduction

models mainly focus on the mechanical properties of the musculoskelatal system

which affect the equilibrium process of the system. However, these postural mod-

els have typically considered only a single muscle-tendon acting as a single unit

into account, apart from Humphrey and Hemami (2010) which so far remains as

the only study that has included ligament for a postural model. The models so

far proposed have demonstrated that stiffness properties alone are insufficient to

maintain an upright stance in a person subjected to external perturbations.

The aim of this thesis is to consider intrinsic soft tissue mechanical parameters

such as stiffness and damping, and their effects during quiet stance. The model

has taken into account the muscles, tendons and ligaments, grouping them based

on their biomechanical functionality and essentially mapping the outcome of the

individual components. This study will show that intrinsic inverted pendulum

modelling can maintain the equilibrium position of the body during quiet stance

without the involvement of a control system. This thesis hypothesises that during

quiet stance, the intrinsic mechanical properties (such as stiffness and damping)

of muscles, tendons and ligaments passively affect anterior-posterior sway with

respect to the ankle complex. To understand the mechanical attributes of muscles,

tendons and ligaments, an inverted pendulum model is proposed which takes into

account both the stiffness and damping properties of the soft tissues. It also

compares the effects on postural balance when quiet stance is modelled using

only muscle-tendon unit versus muscle-tendon-ligament unit.

The following sections set the background of various theories put forward

towards understanding postural balance.

1.1.1 Theories proposed to explain quiet stance

The assumption that there is no movement of body segments during quiet stance,

and thus is of no tangible consequence showed the lack of research towards pos-

tural balance. However, the research in recent years, proved the assumption to

be erroneous (Casadio et al., 2005b; Loram and Lakie, 2002; Loram et al., 2005;

Morasso et al., 1999a; Thomas Edwards, 2007). Postural stability is extremely

important in activities of daily living and is one of the first skills to degenerate due

to ageing (Coogler, 1992). A principal requirement to prevent falls and avoiding

2



1.Introduction

bone fractures is the ability of the human body to have stability (Coogler, 1992;

Morasso et al., 1998).

Standing, an initial state also acts as a precursor to walking or running, is

considered a relatively simple task but in reality, it is not the case as the body

needs constant stabilisation which may lead to fatigue (Morasso et al., 1999a). It

is interesting to note that people can voluntarily change their centre of pressure

(CoP) in order to maintain upright stance which can be defined as a vertical force

and the trajectory of the line of action of the same force, intersecting at a point on

the base of support (Latash et al., 2003). The human body in its upright posture,

has a high CoM maintained over a relatively small base of support which means

that the body has a high potential energy and therefore, requires maintaining

equilibrium control during quiet stance (Gatev et al., 1999).

1.2 Motivation

This thesis recognises the biomechanical issues that contribute towards main-

taining upright stance and investigates the intrinsic mechanical properties of the

ankle strategy. This study emphasises the need for detailed modelling of the an-

kle complex to understand postural balance. In order to justify the orientation

and positioning of soft tissues (such as muscles, tendons and ligaments), it is also

necessary to study radiograph images of the bones of the human ankle complex

before discussing the various mechanical and architectural parameters.

To have a clear understanding of the role played by the ankle in postural

stability, it is imperative to formulate a mathematical model to illustrate and

explain postural balance with respect to the ankle complex. In this thesis, it

has been assumed that the central nervous system is already triggered and hence

the muscles are signalled to engage accordingly. This implies that the muscles,

tendons, and ligaments facilitate the movement of posture passively.

The mathematical model developed in this thesis is considerably different from

the classical single inverted pendulum model. The models so far reported are sim-

plistic with regard to the inherent mechanical properties of the muscles, tendons

and ligaments which perform a vital role during quiet stance. Parameterisation

of these soft tissues in terms of their mass, stiffness and damping co-efficients has

3



1.Introduction

been taken into account as they affect postural control.

1.3 Thesis overview

The section provides a brief overview of the thesis, highlighting the main points

of interest and previous key literature.

1.3.1 Literature review

The focus of this literature review is on the development of the inverted pendu-

lum theory (Fitzpatrick et al., 1994; Karlsson and Persson, 1997; Winter et al.,

1996) which has brought about widespread research discussion for several decades

(Aramaki et al., 2001; Casadio et al., 2005b; Fitzpatrick et al., 1994; Horak and

Nashner, 1986; Humphrey and Hemami, 2010; Latash et al., 2003; Loram et al.,

2005; Nashner, 1970; Smith, 1957; Winter et al., 1996). This chapter first intro-

duces the concept of the inverted pendulum with regards to postural balance, and

then explores the type of modelling undertaken to explain quiet stance in the ab-

sence of external perturbations. Not only does this chapter highlight areas where

a consensus is still lacking but it also critically discusses certain discoveries which

have proven detrimental to the advancement of postural assessment. The use

of experimental practices and protocols are also discussed at length. These are

instrumental in evaluation, validation and formation of new conceptual theories

to address postural balance.

1.3.2 Mathematical modelling of the ankle complex

An entire chapter has been dedicated to the conceptualisation, formulation and

derivation of the mathematical model during quiet stance using the Lagrange

D’Alembert principle for dynamic systems. In this case, mass-spring-damper

(MSD) units are used as musculoskeletal models to explore the inverted pen-

dulum theory and their role played in postural balance in the anterior-posterior

direction. In terms of dimensional parameters (length of MSD units and their an-

gular precision) which were required to derive constrained dynamic equations, the

functional geometry of the MSD units plays an important role. The underlying

4



1.Introduction

geometrical changes involved during anterior-posterior sway have been calculated

using the basic trigonometry of the shank and ankle setup.

1.3.3 Parameterisation of the proposed model

As the model is largely based on the intrinsic mechanical properties of the muscles,

tendons and ligaments (namely stiffness and damping parameters), this chapter

investigates these datasets from the published literature. This chapter discusses

at length the methods used to calculate these parameters and why they were

considered suitable for the proposed postural sway model. These unknown di-

mensional parameters were calculated from the published data of anatomical

literature making extensive use of radiograph images.

1.3.4 Initial simulation of the mass-spring-damper model

and testing of model parameters

After the model parameters were determined, this chapter evaluates the said

parameters with initial inputs from experimental data from published research.

The system’s responses under six different types of mechanical conditions namely:

1) damping with 100% stiffness; 2) damping with 75% stiffness; 3) damping

with 50% stiffness; 4) damping with 25% stiffness; 5) stiffness only; 6) minimal

damping with 100% stiffness.

The object of the simulation study was to determine if the shank would be

able to return to its upright equilibrium position which is inherently unstable

without any control mechanism. From the simulation, it was inferred that the

inverted pendulum model with MSD units would indeed passively retract to its

initial biased upright position thus providing an insight into the dominance of

the triceps surae muscle group during quiet stance.

The model was linearized in order to see which six conditions would be an ideal

combination of parameters for a stable system. Nyquist and Bode diagrams are

standard tools which were used to determine stability of the inverted pendulum

model described in this thesis.

5
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1.3.5 A preliminary case study for model evaluation

A single healthy subject has been tested in eyes open and eyes closed conditions

during upright quiet stance with synchronised EMG and motion capture equip-

ment to measure muscle co-activation of the triceps surae muscle group (gas-

trocnemius lateralis, gastrocnemius medialis, soleus) and tibialis anterior during

quiet standing. The EMG was then compared with maximal voluntary isometric

contraction(MVIC) to assess muscle co-activation levels during anterior-posterior

sway. Although the MSD model of the inverted pendulum could not distinguish

the eyes open from the eyes closed condition, the difference between ankle angular

displacement during unperturbed quiet stance was negligible with and without

visual input. This ankle angular displacement has then been used as input in

subsequent simulations to further evaluate the model simulation.

1.3.6 Mass-spring-damper model simulations with inter-

nal perturbation

This chapter evaluates the MSD model further using the participant anthropo-

metrics recorded in the case study. This chapter examines the postural response

of the MSD system in the presence internal perturbations. The simulation results

show that the internal perturbation applied to the inverted pendulum model did

not destabilise the system which further evaluates that the model under damp-

ing with 100% stiffness is the most plausible candidate to mimic quiet stance in

humans.

1.3.7 Conclusion, limit of the study and future work

In Chapter 8, the main results of this investigation are discussed with reference

to the novelty of the research and by highlighting the crucial points of interest to

further our understanding of human postural sway with regards to the inverted

pendulum theory. The conclusions drawn stress the importance of modelling

by using intrinsic mechanical models that focus on the passive torque generated

about the ankles. The findings also highlight certain limitations which the model

has been subjected to and further ideas that would prove detrimental during

6



1.Introduction

future investigations.
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Chapter 2

Postural balance models

2.1 Introduction

The study of postural control encompasses a variety of complex systems within

the human body which include the musculoskeletal, somatosensory, vestibular,

visual and central nervous systems (Horak and Macpherson, 1996). In order to

simplify the problem, studies have focused on one or two systems at a time. To

test various hypotheses to explain quiet stance, relatively simple computational

and mathematical models were derived (Peterka, 2002; Winter et al., 1998, 2001).

These models represented the lower limbs body using single inverted pendulums.

The lower limbs, especially the ankle complex have been over-simplified using

massless links or triangular wedges (Karlsson and Persson, 1997; Morasso et al.,

1999b; Qua et al., 2007). However, in recent years a number of studies (Casadio

et al., 2005a; Humphrey and Hemami, 2010; Loram and Lakie, 2002; Morasso

and Sanguineti, 2002) investigated the ankle joint as one of the important factors

responsible for postural control. Substantial effort has been made to understand

the biomechanics of this joint especially its geometrical orientation by developing

mathematical and computational models. Such models are mathematically and

computationally demanding but on the other hand very suitable for simulating

its dynamic behaviour required for postural control.
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2. Postural balance models

2.2 Single segment inverted pendulum models

To investigate the adequacy of the single segment inverted pendulum model and

the role played by the joints above the ankles to maintain a quiet stance, only

two studies have investigated the effect of joint immobilisation above the ankles

(Aramaki et al., 2001; Fitzpatrick et al., 1994). Fitzpatrick et al. (1994) measured

the amount of postural sway in the anterior−posterior (AP) direction after joint

immobilisation, whereas the effect of joint immobilisation on mediallateral(ML)

direction was not assessed. They observed that when a rigid splint prevented the

movement of all joints above the ankles, the magnitude of angular sway about

the ankle increased significantly.

The results of the study by Paulo et al. (2009) revealed that after immobili-

sation of the knees, hips and trunk, a small but significant increase in postural

sway in the AP direction was identified. These results contradict the hypothe-

sis that postural stability in the AP direction can be achieved through minimal

joint motion above the ankles and argue against the idea that the single inverted

pendulum model can adequately describe quiet stance. These results agreed with

Fitzpatrick et al. (1994) who reported a 52% increase in ankle joint sway during

joint immoblisation versus sway during unrestricted body segments. These stud-

ies (Fitzpatrick et al., 1994; Paulo et al., 2009) argued that during unrestricted

body segments, body stability increases by minimising the dependency on the

ankle joints for stability during quiet stance.
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2. Postural balance models
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Figure 2.1: Typical single-segment inverted pendulum models. Figure (a) illus-

trates an inverted pendulum model proposed by Karlsson and Persson (1997) in

the saggital plane. The straight line represents a rigid body rotating about the

ankle joints. The triangular wedge represents the foot, where h is the distance

from the ground to the ankle joint centre in the vertical direction, L is the dis-

tance from the ankle joint to the CoM and M is the moment of the force at the

ankle joint. Figure (b) illustrates an inverted pendulum model for quiet stance

proposed by Morasso et al. (1999b). The triangle here also represents the foot

with h as the distance from the ground to the ankle joint centre. δ and u are the

vertical and horizontal displacements of the CoP with respect to the ankle joint.

Finally, y is the horizontal displacement of the CoM of the system. Figure (c)

illustrates a single-segment inverted pendulum model for sway mechanism during

quiet stance proposed by Qua et al. (2007). The triangle again is representative

of the foot, where h is the height from the ankle joint centre to the CoM of the

body, T is the torque generated at the ankle and θ is the sway angle.
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2. Postural balance models

In Figure 2.1, model A developed by Karlsson and Persson (1997) is an in-

verted pendulum model of the human body in the sagittal plane. The straight

line represents the rigid body rotating about the ankle joints, where (XCM , YCM)

are the coordinates of the CoM. The foot is modelled as a triangle, where h repre-

sents the distance from the floor to the ankle joint centre in the vertical direction,

L is the distance from the ankle joint to the CoM and ax as the distance from

the CoP to the ankle joint in the horizontal direction. Lastly, F represents the

resultant ground reaction force vector. The CoM estimated by both the marker

as well as model based method result in a few differences. Firstly, because of the

construction of the human ankle joint and the surrounding soft tissues, the human

body would not function as a perfect inverted pendulum. The model parameters

has contrarieties and positioning of reflective markers is not exactly at the same

level as the true CoM. The measures reported in this study are considered im-

portant with regard to the extent of the ankle strategy used for postural balance.

The model would be applicable only when the system behaves like an inverted

pendulum, which is in the sagittal plane when the ankle strategy is adopted.

Model B in Figure 2.1, proposed by Morasso et al. (1999b) considers only

AP oscillations. However, the model and the algorithm could be applied to

ML oscillations as well. This model shows an inverted pendulum in which the

resultant ground reaction force f = (fH , fV ) has been singled out, where fH

is the resultant horizontal displacement vector and fV is the resultant vertical

displacement vector. The force due to gravity has been given by mg, and the

ankle torque τankle is generated by the muscles. For the foot, an equilibrium

equation is formed: fHδ + fV u+ τankle = 0, where δ and u represent the vertical

and horizontal displacements of the CoP with respect to the ankle. The sway

equation obtained for the inverted pendulum, ÿ = g/he(y− u) indicates that the

CoM-CoP difference is proportional to the horizontal component of the ground

reaction force, where he = ksh + δ, with h being the distance of the CoM from

the ankle and ks = 1, a shape factor dependent on the distribution of mass in the

body and g is the acceleration due to gravity.

Model C in Figure 2.1, proposed by Qua et al. (2007) describes yet another sin-

gle segment inverted pendulum model. The postural control system is modelled as

a feedback control system. The closed loop of the postural control system model

11



2. Postural balance models

consists of human body dynamics, the sensory system and a neural controller.

Sway is restricted to the sagittal plane only and anthropometric parameters are

those of an “average” adult male. This model proposes a method for optimis-

ing standard sway parameters. Modelling the neural controller as an optimal

controller was considered appropriate while incorporating physical quantities rel-

evant to sway into the performance index defined in the optimal controller. The

information of body dynamics and sensory systems is passed on to the neural

controller to generate the optimal control signal. It was proposed that muscle

spindles would sense the joint angular displacement and velocity and concur-

rently analyse balance strategies for different subject groups(young versus old)

by comparing their model parameters (weight, disturbance gain and sensory de-

lay). However, the authors acknowledged various limitations of the model, such

as, only few physical quantities that might affect spontaneous sway could be used

in the model. The neural controller may not use an optimal control strategy to

generate the motor behaviour that induces spontaneous sway. But based on the

simulation results, a control strategy might partly explain the neural controller.

This model can only be applicable for small amplitudes of AP sway since only

ankle torques have been considered contributing factors towards quiet stance.

This model is dependent on experimental data to determine the parameters and

the same anthropometry has been assumed for both younger and older adults,

an indicative limitation in implementation. The genetic algorithm, a heuristic

approach and unsuitable for local searching, does not guarantee that the used set

of model parameters lead to the global optimum. The real sensory systems are

much more complex than those represented in the model, as the time delay is

required to be integrated and fed back to the neural controller to maintain quiet

stance. However, it has been acknowledged that modelling sensory systems as a

time delay has been simplified as the goal was to study the working of sensory

systems during quiet stance. Hence, this requires a more complex control system.

In Figure 2.1, insufficient attention has been given to the importance of the

mechanical properties of the muscles, tendons and ligaments. However, these

models addressed the question of postural response during very small oscilla-

tions of the body CoM with respect to the ankle strategy. At small angular

displacement the role played by the muscles, ligaments and tendons is known to

12



2. Postural Control Models

be significant and is discussed in the subsequent sections.

The focal interest of this study was to derive a mathematical model based

on the single inverted pendulum. The premise of the single inverted pendulum

model is that the body behaves as a rigid structure above the ankles. The single

inverted pendulum is an unstable system because of the gravitational torque

around the ankles, which increases with the angular displacement of the shank

and thus requires a restoring force (Bottaro et al., 2005).

2.3 Mechanical characteristics affecting postu-

ral control

An important part of the research investigating quiet stance is based on a one-

segment inverted pendulum model (Jeka et al., 2004; Loram and Lakie, 2002;

Loram et al., 2005; Morasso and Sanguineti, 2002; Peterka, 2002; Winter et al.,

1998, 2001). In this model, the human body is represented as a rigid segment with

the body CoM located at 50-55% of body height and slightly anterior to the ankle.

This model is based on the assumption that postural control is performed about

the ankle and that other joints are immobilised. The advantage of this model is

that it reduces the system to a single degree-of-freedom system while focusing on

the joint for which the destabilising effect of gravity is largest. This destabilising

effect of gravity is commonly expressed as the destabilising gravitational stiffness

of the ankle (Pietro and Schieppati, 1999). In the context of this model, a pre-

requisite for local stability at the equilibrium is that the net joint stiffness at the

ankle, which arises from both intrinsic muscle properties and neural feedback, is

larger than the destabilising gravitational stiffness (Pietro and Schieppati, 1999).

During quiet stance the body has often been modeled as a single inverted pendu-

lum, pivoting about the ankle joints. The use of this model to represent balance

maintenance during quiet stance has been supported by kinematics, kinetic data

(Gage et al., 2004; Karlsson and Persson, 1997), and EMG (Gatev et al., 1999)

measures in both the sagittal and frontal plane (Winter et al., 1996).

The stiffness and the damping parameters of the model proposed by Winter

et al. (1998) were used to predict the sway patterns of balance control. The
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2. Postural Control Models

change in stiffness was thought to be indicative of dynamic changes in muscle

stiffness induced by the central nervous system (CNS). These changes were clas-

sified as time invariant (stationary) or time variant (non-stationary) (Ferdjallah

et al., 1999). It was suggested that the spring and damping properties of the mus-

cles are controlled by activation of fast and slow muscle fibres. The passive (wide

frequency and low average signal power achieved by joint or skeletal structure)

and active control (muscle activation) phases proposed in the study Ferdjallah

et al. (1999), suggested that these control phases are time varying due to ran-

dom internal disturbances in sway. Although the triggering mechanism remains

unclear, it has been hypothesised that the switch from passive to active phase is

causal to exaggerated sway requiring dynamic control.

In recent years, measuring the range of net ankle joint stiffness during quiet

stance and its regulation have received much needed attention (Casadio et al.,

2005a; Lakie et al., 2003; Loram and Lakie, 2002; Loram et al., 2005; Morasso and

Sanguineti, 2002; van der Kooij et al., 2005; van Soest et al., 2003; Winter et al.,

2001). It has been shown that the stiffness of the Achilles tendon during standing

is lower than the gravitational stiffness (Loram and Lakie, 2002; van Soest and

Rozendaal, 2008). This finding led Loram and Lakie (2002) to conclude that

quiet stance was intrinsically unstable under purely muscle stiffness considera-

tions. For a single-segment inverted pendulum, Loram et al. (2005) postulated

that an anticipatory control mechanism was likely used. However, it has been

argued by Loram et al. (2005) that the local stiffness at the ankle joint, required

for stability is much lower than the gravitational stiffness for a multi-segment

model as assumed by van Soest and Rozendaal (2008). In other words, mod-

elling assumptions have room for extensive studies (modelling and experimental)

to understand control strategies used during quiet stance.

2.3.1 Ankle stiffness and its effect on postural balance

During quiet stance the triceps surae musculature generates an intrinsic mechan-

ical stiffness across the ankle joint. Such stiffness provides an instantaneous

torque response changing the ankle angle without any appreciable CNS involve-

ment (Grillner, 1972; Horak and Macpherson, 1996; Winter et al., 1998). If the
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2. Postural Control Models

ankle stiffness is less than the gravitational torque per unit angle, then the body

CoM is mechanically unstable facilitating the need for neural modulation to sta-

bilise the system (Morasso et al., 1999a; Pietro and Schieppati, 1999).

Morasso and Sanguineti (2002) further investigated the concept of the sta-

bilisation of human posture with regard to the muscle stiffness about the ankle

joint. They argued that 8.8% of ankle stiffness (Winter et al., 2001) is not a suf-

ficient margin to explain the natural frequency of sway. In a spring-mass model,

the following relation links the natural frequency ωn, the moment of inertia I,

and the total stiffness of the system: ω2
n = Ktotal/I. In the case of quiet stance,

Ktotal = Ka−mgh (mg is the body weight vector and h is height of the CoM from

the ground) if the natural frequency is 0.5 Hz and moment of inertia is 80 kg.m2,

8.8% margin of Ka i.e ankle stiffness with respect to the stiffness value of ankle

required for stabilisation would be insufficient, thereby making the measurement

technique for ankle stiffness flawed (Winter et al., 2001). Although, it is true that

the stiffness of a given body is the slope of the stress-strain characteristic curve,

but the related measurements would be only valid if the following conditions were

met.

1) during measurement, the system must operate under open-loop conditions,

making it the only source of energy transmitted through the system, also known

as test disturbance;

2) stress and strain have to be measured under static or quasi-static conditions

or time-dependent forces are selectively taken into consideration;

Morasso and Sanguineti (2002) argued that during quiet stance, both above

mentioned conditions, can be ignored for the following reasons:

1) the assumption that the level of activation of the motor-neurons should

remain constant throughout the measurement time. Although, the activation

levels are not short they include a number of postural oscillations. These changes

in active muscle torques are not accounted for locally while calculating the net

torque.

2) the recorded total ankle torque is not exclusive of viscous and inertial

components which depend not only on the velocity but also on the acceleration

of angular sway. These components are not explicitly accounted leaving room for

ambiguous interpretation.
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2. Postural Control Models

A study by Thomas Edwards (2007), used Lagrangian equations of motion

to explain multi-segment models and described the inherent characteristics of

standing stability. This was achieved by assigning segment mass, damping and

stiffness parameters and the interaction of such a system was observed under

external load conditions. The study calculated the limits of stability for a range

of lower extremity joint stiffnesses by varying the body mass values. The damping

matrix in the Lagrangian equation was considered to be zero however the author

Thomas Edwards (2007) acknowledged the fact that damping or torques that

were proportional to the angular velocity of joints were necessary for stability.

2.3.2 Postural response with regards to damping

The effect of damping on human postural balance has not been given sufficient

recognition in the recent past. Winter et al. (1998) developed an inverted pen-

dulum model with damping parameters, but damping effects were not clarified

fully. Nevertheless, more recently damping effects are being researched in order

to fully understand postural balance in humans. Bonnet et al. (2011) used La-

grange’s equations to calculate the inverse dynamics of the human body system.

The passive damping and stiffness parameters were taken into consideration as

they facilitated in restoring the double inverted pendulum model into the upright

position. Although, their model was not based solely on the ankle joint, it was

one of the few investigations that have used the Lagrangian dynamics and have

taken into account the importance of damping parameters. The model however,

is overly-simplistic and does not capture the full essence of the role played by the

antagonistic musculature of the shank.

In a study by Suzuki et al. (2012), an intermittent control model (“off-off

model”) of a double inverted pendulum was developed that simulated movements

of the ankle and hip joints during human upright stance. In particular, small

passive viscoelasticity at the ankle and hip joints was assumed, which made the

upright equilibrium unstable without neural control. In this particular model,

although quite detailed in nature, could not consider the viscoelastic values of

the ankle and the hip to be realistic. However, the authors have acknowledged

that higher damping values are required to stabilise the model.
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Figure 2.2: An inverted pendulum saggital model consisting of 5 rigid links pro-

posed by Humphrey and Hemami (2010). Link 1 represents the head, arms

and torso; link 2 represents the calcaneus; link 3, the metatarsals, navicular,

cuneiforms, and cuboid; link 4, the proximal and intermediate phalanges of all

the toes; and link 5 the distal phalanges of toes. All connections are assumed to

be bilaterally symmetrical. Ki is the distance from the end of link i to the center

of mass as illustrated.

Humphrey and Hemami (2010) developed a computational model (Figure 2.2)

which was quite different from the typical single segment inverted pendulum

model. This model uses one rigid link to represent the body above the ankle,

similar to an inverted pendulum model. The point at which links 1, 2, and 3 are

connected can be considered roughly the talus or ankle joint. The foot makes

contact on the ground at the bottom of the calcaneus or heel, the head of the

metatarsals or forefoot, and the head of the distal phalanges of the toes. Simple

muscle models operated the movements of this inverted pendulum by producing

net torque on the segments at their attachment points. These muscle models were

viscoelastic circular springs that generated torque. Passive effects due to friction

at the joints and stretching of ligaments were not taken into consideration in

this particular model. However, this model is the only model so far that has
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considered the effects of ligaments while modelling an inverted pendulum with

regard to postural balance. The equations of motion describing the dynamics of

the model have been described using Euler-Lagrange equations (Humphrey and

Hemami, 2010). The damping effects of the soft tissues have been acknowledged

as well (Humphrey and Hemami, 2010). However, the parametric values may not

be realistic enough. Links 4 and 5 of the model representing the metatarsals and

the phalanges of the foot were also not realistic as the longitudinal arch appeared

to be over-emphasized. The effects of Achilles tendon as well as the gastrocnemius

muscle have been over-looked as the model focused mainly on the soleus. The

model is however, very different from others reported so far. The model does show

the need for consideration of the viscoelastic as well as the stiffness parameters

while explaining postural balance during quiet stance.

Imagawa et al. (2013) used the electromyogram-weighted averaging method

(EWA) method to investigate the contribution of individual muscles to postural

control in each direction(AP and ML). The study indicated that the gluteus

medius muscle would have acted in the anterior direction with tibialis anterior

acting as controller in the posterior direction during quiet stance. This implied

that postural control in the experiment performed was implemented using an

ankle strategy. Moreover, the small contribution of gluteus medius during quiet

stance in the anterior direction could not have been estimated from EMG activity

alone. This finding is contradictory to the results obtained by Kutch et al. (2010)

where the gluteus medius was estimated to be the controller for maintaining

quiet stance in the anterior direction. The study revealed that muscle synergy

played an invaluable part during quiet stance. Therefore, in motor tasks in which

many muscles are involved, there would also be insufficient to investigate muscle

coordination solely by using the EWA method. Furthermore, postural balance

was suggested to occur, not by gluteus medius, but through co-activation of

tibialis anterior, soleus, and gastrocnemius muscles.

It is evident that muscle co-activation affects postural balance, hence, the

2×4 9-element MSD model developed in this thesis as described in the subse-

quent chapters incorporates such muscle functioning while defining the four units

attached to the shank.
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Chapter 3

Mathematical modelling of the

ankle complex

3.1 Introduction

The ankle joint is a complex joint hence modelling it with all its physiological as-

pects and functionality increases the mathematical complexity beyond the scope

of this study. However, this investigation takes into account the role played by

the ankle joints in postural balance during quiet standing, specifically in anterio-

posterior sway. Postural balance with respect to the ankle joint is modelled by

using the Lagrange d’Alembert Principle (Udwadia, 2000). The model is basi-

cally an inverted pendulum where the shank of either lower extremities act as

pendulums articulated at the base which is the foot. This pendulum has four

mass-spring-damper (MSD) units attached symmetrically to one another. The

functioning of the MSD units is passive which is representative to the mechanical

functionality of muscles, tendons and ligaments which is discussed later in subse-

quent sections. This chapter discusses the formulation of the mathematical model

detailing out the functional geometry of the ankle during forward and backward

sway. The modelling has been carried out while keeping in mind the musculo-

skeletal structure of the ankle joint and the mechanical movements associated

with it.
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3. Mathematical modelling of the ankle complex

3.2 Functional anatomy explaining mechanical

construction of mass-spring-damper units

Figure 3.1: Schematic drawing of a dorsal view over the foot illustrates: the

hindfoot made up of the calcaneus (1) and the talus (2); the midfoot composed

of the cuboid (3), the navicular (4), and the lateral (5L), middle (5I), and medial

(5M) cuneiforms (5); and the forefoot, made up of the metatarsals (M) and

phalanges (proximal, PP; middle, MP; distal, DP). The hindfoot is separated

from the midfoot by the transverse tarsal joint (TTj), the midfoot from the

forefoot by the tarsometatarsal joint (TMj). This figure has been reproduced

from (Bianchi and Martinoli, 2007).

The ankle is a functional and enduring joint. Ankle anatomy is comprised of the

tibia, talus, and fibula. The three bones articulate at the ankle joint stabilised

by a number of ligaments and an interosseous syndesmosis. The tibia and fibula

form a mortise in which the talus resides. The tibia is the dominant weight-

bearing bone in the lower leg. The medial malleolus is essentially an extension
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of the tibia and provides medial support for the ankle mortise. The talus, wider

anteriorly, provides a more inherent stability with the ankle during dorsiflexion

as opposed to plantarflexion. Ankle joint movement is primarily plantarflexion

and dorsiflexion. The deltoid ligament makes up the medial ankle ligamentous

support. It consists of a deep layer, which runs from the medial malleolus to the

talus, and a superficial layer, which originates on the medial malleolus attaching

to the medial aspect of the calcaneus. Anterior fibres attach to the talus and

navicular while posterior fibres attach predominantly to the talus.

The lateral ligament complex is comprised of the anterior talofibular liga-

ment (ATFL), calcaneofibular ligament (CFL), and posterior talofibular ligament

(PTFL). The ATFL originates at the anterior aspect of the lateral malleolus and

runs nearly parallel to the axis of the foot. It attaches to the talus anteriorly and

is the primary ligamentous restraint to inversion stress at the ankle. It becomes

taut with the ankle in slight plantarflexion. The ATFL is the most commonly

injured ligament in the body. The CFL is stronger than the ATFL and spans the

tip of the lateral malleolus to the lateral surface of the calcaneus. The PTFL orig-

inates on the posterior tip of the lateral malleolus and attaches to the posterior

talus.

The high ligaments consist of the anterior inferior tibiofibular ligament, poste-

rior inferior tibiofibular ligament, and interosseous syndesmosis. The bones of the

foot are divided into the hindfoot, midfoot, and forefoot. The talus and calcaneus

make up the bones of the hindfoot. The calcaneus is the largest and strongest

bone in the foot. It serves as the attachment for the Achilles tendon and as the

origin of the plantar fascia. The talus and calcaneus have three articulations. This

subtalar or talocalcaneal joint permits inversion and eversion of the foot. The

bones of the midfoot include the cuboid, navicular, and three cuneiforms. The

navicular is on the medial aspect of the foot and serves as the attachment for the

posterior tibialis tendon. The forefoot is comprised of the metatarsals and their

corresponding five phalanges. The great toe has a proximal and distal phalanx.

The other four toes have proximal, middle, and distal phalanges. The sesamoids

are two pea-sized bones in the substance of the flexor hallucis brevis tendons.

Their positioning on the plantar aspect of the first metatarsalphalangeal (MTP)

joint help function to increase the mechanical advantage of the flexor tendons, as
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well as to disperse forces with gait and stance.

4

1

3

2

Figure 3.2: Osteoarticular dissection. Relationship of the calcaneofibular liga-

ment with the lateral talocalcaneal ligament. 1 Calcaneofibular ligament; 2 lat-

eral talocalcaneal ligament; 3 anterior talofibular ligament; 4 peroneal tubercle.

This figure has been reproduced from (Golano et al., 2010).

Muscles of the foot and ankle can be principally divided into three com-

partments: the anterior, lateral,and posterior. The interosseous membrane and

anterior crest of the tibia form the boundaries between these compartments. The

extensor hallucis longus, extensor digitorum longus, and anterior tibialis make up

the anterior compartment and primarily dorsiflex the ankle. The anterior tibialis

attaches to the first cuneiform and metatarsal and inverts the foot. The lateral

compartment comprises of the peroneus longus and brevis. The peroneal brevis

attaches to the base of the fifth metatarsal. The longus crosses the sole of the foot

to attach on the first cuneiform and base of the first metatarsal. The peroneals

evert the foot. The posterior compartment has superficial and deep groups. The

triceps surae is the superficial group and includes the gastrocnemius, soleus, and

plantaris. The deep compartment includes the flexor hallucis longus, flexor dig-

itorum longus, and tibialis posterior muscles. These muscles function to plantar

flex the ankle, flex the toes, and invert the foot. There are many intrinsic muscles

of the foot analogous to the intrinsic muscles of the hand. The plantar fascia runs

from the inferior aspect of the calcaneus to the forefoot. It has a role in support
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of the longitudinal arch of the foot.

3.2.1 Ankle movements

The muscles considered for postural control have very specific movements which

can be divided into two types of movements planterflexion and dorsiflexion which

is typical in backward and forwards sway mechanism as portrayed in Table 3.1.

Table 3.1: Actions of the muscles of the foot and ankle complex (Pierrynowski,
1995)

Extrinsic Muscles Action Involved
Tibialis anterior Prime mover of dorsiflexion and inversion
Extensor digitorium longus Prime mover of dorsiflexion and eversion
Extensor hallucis longus Assisting in dorsiflexion and inversion
Gastrocnemius Prime mover of plantarflexion
Plantaris Assisting in plantarflexion
Soleus Prime mover of plantarflexion
Peroneus longus Assisting in plantarflexion

and prime mover of eversion
Flexor digitorum longus Assisting in plantarflexion and inversion
Flexor hallucis longus Assisting in plantarflexion and inversion
Tibialis posterior Assisting in plantarflexion

and prime mover of inversion
Peroneus brevis Assisting in plantarflexion

and prime Mover of eversion

3.2.2 Model derivation

In order to model the ankle joints for postural balance it is of paramount impor-

tance to first explain the construction and representation of soft tissue connections

to the joints keeping in mind that the tendons connect muscle to bone and liga-

ments connect bone to bone. AB, CD, EF, and GH are four units connecting the

shank (tibia and fibula) to the phalanges of the foot, posterior of the calcaneus,

lateral side of the calcaneus and to the medial side of the calcaneus respectively

as shown in Table 3.2.
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Table 3.2: Muscle, Tendon and Ligament representation of units AB, CD, EF

and GH
Units Muscles Tendons Ligaments

AB tibialis anterior peroneus brevis anterior fibulotalar (AFTL)

CD tricep surae Achilles Tendon

tibialis posterior plantaris

EF flex.dig.long flex.hal.long calcaneofibular (FCL)

tibiocalcaneal (TCL)

GH ext.dig.long peroneus longus anterior tibitalar (ATTL)

posterior tibiotalar (PTTL)

tibionavicular (TNL)

The musculoskeletal system plays an equally important role in postural control

along with the nervous system. Both these systems are dependent on each other.

This study focuses on the musculoskeletal system and its contribution towards

postural stability. Four mass-spring-damper units are associated with one ankle,

each representing a group of muscles, tendons, and ligaments as shown in Figure

3.3.
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3. Mathematical modelling of the ankle complex

Lateral view Medial view

Heel Toe
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Figure 3.3: A sagittal model for anterior-posterior sway where αr is the angular

displacement of the right shank and O is the point of articulation of the shank

and foot acting as the fulcrum. The model shows the orientation of AB, CD, EF

and GH units.

3.2.3 Sway referenced geometrical illustration of the ankle

Figure 3.4 illustrates the geometrical alignment of the four units, namely AB,

CD, EF and GH connecting the shank to the foot. However, the figure is not

drawn to scale but gives a clear indication of the orientation of the units at its

natural position and after the onset of sway resulting in the change of geometrical

parameters. Unit AB forms a crucial angle, α1 forms when the talar declination

angle intersects perpendicular lines from the axis of the collum tali, which bisects

the head and neck of the talus, the plane of support is same as the horizontal angle

of the talus as described by Vanderwilde et al. (1988), and which quantifies the

anterior tibiotalar impingement. Unit CD forms an angle α2, called the tibiotalar

angle formed by the axis of the tibia and the axis of the talus. EF and GH units

forms α3 and α4 in the lateral and medial side respectively, which are the posterior
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3. Mathematical modelling of the ankle complex

facet inclination angles (Sarrafian, 1993), the angle formed by two intersecting

lines along the surface of the posterior facet and along the upper surface of the

calcaneal tuberosity. Both these angles are equal. The model presented in Figure

3.4 does not take into any deformation of the foot during quiet stance and all the

units function passively. The model takes a three dimensional to two dimensional

representation where the two ankles are parallel to each other.

A

B

B′

O

α1

αr

C

O

D

F

E
G

H ′

α3 α4

α2

D′

αrαr

O

F ′

O
H

αr

r1

d1

d2

r2

r3

d3

r4

d4

Figure 3.4: Geometries of length changes of units AB, CD, EF, and GH

In case of unit AB, let r1and d1 be the lengths of BO and AO respectively,

and α1 the angle between BO and AO. During postural forward and backward

sways, when the shank moves around the point O by an angle αr, B moves to a

point, B’. Note that OB = OB′ = r1 and OA = d1 remain unchanged before and

after shank’s movement.

The unit length changes from AB to AB’. Using law of cosines, the length of

the unit represented as:

ȳ2r,1 = d21 + r21 − 2d1r1 cos(αr − α1) . (3.1)

Clearly, when αr = 0, (3.1) gives the natural length of the unit, denoted

by y0r,1. Later when dealing with dynamics of the unit, the length difference

yr,1 = ȳr,1 − y0r,1 will be used as well.

Enumerate unit AB, CD, EF and GH as unit 1, 2, 3 and 4. In a similar

way, the lengths of the other three units, denoted by yr,i for i = 2, 3, 4, can be

determined as
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3. Mathematical modelling of the ankle complex

ȳ2r,i = d2i + r2i − 2diri cos(αr + αi) . (3.2)

The natural lengths, denoted by y0r,i, of units CD, EF and GH can be obtained

from (3.2) for αr = 0 and respectively i = 2, 3, 4.

Table 3.3 lists the ranges of constant geometric parameters, namely ri, di and

αi of the units AB, CD, EF, and GH. These geometric parameters are constant

for any given subject. In the case of unit CD, averaging the dimensional values

of muscles and tendons is involved in the length calculation performed, while

ligaments are ignored, as they do not play as vital a role as in units EF and GH.

In (3.1) and (3.2) r1 represents the difference between the absolute foot height

and the calcaneal facet height, r2 represents the tibial length to the articulation

point with the calcaneus, r3 and r4 are the distance between the point O (the

articulation point of the shank to the foot) F and H (the superior attachment

point of EF and GH) respectively, d3 and d4 represent the facet height laterally

as well as medially.

Table 3.3: Geometrical dimensions of units AB, CD, EF and GH (Devanshu
and David, 2006; Gentili et al., 1996; James et al., 2006; Schepers et al., 2007;
Vanderwilde et al., 1988)
Length of MSD unit (mm) Length from origin (mm) Angular precision (◦)
d1=110-128.47 r1=21.20-34.90 α1=26.88-54.66
d2=36.10-74.47 r2=332-467 α2=102-152
d3=71.61-79.76 r3=19.10-32.50 α3=55-75
d4=47.23-58.37 r4=19.10-32.50 α4=55-75

3.2.4 Mass-spring-damper dynamics

Each of the four MSD units represents some particular groups of the combined

muscles, tendons and ligaments. These three types of tissues have different me-

chanical properties, forming the three mass-spring-damper sub-units. Two of the

three sub-units in series connection, and the third in parallel as shown in Figure

3.5, based purely on the functional anatomy of the muscles, tendons, and liga-
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3. Mathematical modelling of the ankle complex

ments as explained in section 3.2.3. The first sub-unit counts for tendons, second

for muscles and third for ligaments, denoted by (md, cd, kd) for d=a, b, c.

fe

ma

ka

ca

y

mb

kb

cb

mc

kc

cc

x

z

Figure 3.5: 9-element model

This study investigates the anterior and posterior sway with the absence of

the bending of the knee. In unit AB, although the 9-element MSD model is

applicable it is necessary to clarify the effect of ligaments shown in Figure 3.5,

where the actions of the ligaments are in parallel to the series connection of the

muscle-tendon unit.

Assuming that the external force fe = 0 and as y = z, and following the

Lagrange-d’Alembert principle (Udwadia, 2000), equations governing the move-

ment of the units are as follows

maẍ = −caẋ− kax+ cb(ẏ − ẋ) + kb(y − x) ,

mbÿ = −cb(ẏ − ẋ)− kb(y − x) + λc ,

mcz̈ = −ccż − kcz − λc ,

where λc is the Lagrange multiplier with respect to constraint y − z = 0.

After eliminating λc, substituting z by y and rearranging the above equations,

x and y equations are reduced to

maẍ+ (ca + cb)ẋ+ (ka + kb)x− cbẏ − kby = 0 , (3.3)

(mb +mc)ÿ + (cb + cc)ẏ + (kb + kc)y − cbẋ− kbx = 0 . (3.4)
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3. Mathematical modelling of the ankle complex

It is clear that the unit length is yr = y+ y0, where y0 is the natural length of

the unit. Applying formulae (3.3) and (3.4) to units AB, CD, EF and GH results

in the unit dynamics, for i = 1, 2, 3, 4,

ma,iẍr,i + (ca,i + cb,i)ẋr,i + (ka,i + kb,i)xr,i − cb,iẏr,i − kb,iyr,i = 0 , (3.5)

(mb,i +mc,i)ÿr,i + (cb,i + cc,i)ẏr,i + (kb,i + kc,i)yr,i − cb,iẋr,i − kb,ixr,i = 0, (3.6)

where, for the CD unit,

mc,2 = 0 , cc,2 = 0 , kc,2 = 0 . (3.7)

It is noticed that unit CD does not have extensive use of ligaments as compared

to AB, EF and GH as it is attached directly from the calcaneus to the tip of the

tibia where the main soft tissues are the Achilles tendon and the triceps surae

which play a more dominant role.

Recall that the unit lengths ȳr,i = yr,i + y0r,i for i = 1, 2, 3, 4. So far the right

ankle has been considered. The modelling directly applies to the left ankle as

well.

If both the shanks are devoid of all kinds of connections, they will indepen-

dently influence the angular sway, αl and αr, pivoted at their respective ankle

joints. This would result in unrestricted anterior and posterior sway of the CoM

of the body, governed by

Ī α̈r − ḡ sinαr = 0 , Īα̈l − ḡ sinαl = 0 , (3.8)

where Ī = 1
2
[(h−fh)

2m+Izz] and ḡ = 1
2
mgh, h is the vertical distance between the

CoM of the upper body and ankles, fh is the height of the foot from the ground,

m the total mass of the body, Izz the (3,3) element of the whole body moments of

the inertia Ia around the mass centre of the body rotating in the sagittal plane,

and g the gravity acceleration. It is evident that if merely the ankle movements

are permitted, only forward and backward sways are possible, and the left and
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3. Mathematical modelling of the ankle complex

right ankle angles must be equal to each other, namely αl = αr, where the angles

are defined naturally according to the shank movements as shown in Figure 3.3.

3.3 Constrained dynamics

Again, following the Lagrange-d’Alembert principle (Udwadia, 2000), the individ-

ual dynamic equations and the associated constraint equations can be combined

to form a complete mathematical model of the open stance. In this particular

case, the vector consisting of all variables of interest is defined as:

q =













αl

ql

αr

qr













, qv =
[

xv,1 yv,1 xv,2 yv,2 xv,3 yv,3 xv,4 yv,4

]′
(3.9)

where, v = l, r corresponding to the left or right side ankle joint.

In a standard form, the general equations with constraints are given by

Mq̈ + Cq̇ +G(q) = F ′λ , (3.10)

f(q) = 0 . (3.11)

Here, M represents the inertia matrix (which is symmetric positive definite), Cq̇

is the centrifugal and Coriolis torques, G(q) represents the gravitational torques,

F = ∂f(q)
∂q

, and λ is the Lagrange multiplier. Term F ′λ represents the generalised

torque induced by the constraints.

The relevant matrices and vectors have the following specifications under the

assumption of body’s symmetry.

M = diag (Ī ,M0, Ī ,M0),
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3. Mathematical modelling of the ankle complex

M0 = diag (ma,1, mb,1 +mc,1, · · · , ma,4, mb,4 +mc,4),

C = diag (0, C0, 0, C0), C0 = diag (C1, C2, C3, C4),

Ci =

[

ca,i + cb,i −cb,i

−cb,i cb,i + cc,i

]

, (i = 1, · · · , 4)

G = diag (0, K0, 0, K0)q +
[

g′l g′r

]′
,

gv =
[

−ḡ sinαv 0 · · · 0
]′
, (v = l, r),

K0 = diag (K1, K2, K3, K4),

Ki =

[

ka,i + kb,i −kb,i

−kb,i kb,i + kc,i

]

, (i = 1, · · · , 4),

f =







αl − αr

fl

fr






,

fv =













(yv,1 + y0v,1)
2 − d21 − r21 + 2d1r1 cos(αv − α1)

(yv,2 + y0v,2)
2 − d22 − r22 + 2d2r2 cos(αv + α2)

(yv,3 + y0v,3)
2 − d23 − r23 + 2d3r3 cos(αv + α3)

(yv,4 + y0v,4)
2 − d24 − r24 + 2d4r4 cos(αv + α4)













, (v = l, r).

With fr = 0, fl = 0 is equivalent to fl − fr = 0 which corresponds to (yl,i +

y0l,i)
2 = (yr,i+y0r,i)

2 for i = 1, · · · , 4 due to αl = αr, and further yl,i+y0l,i = yr,i+y0r,i

because unit lengths are always positive. This means that the constraint vector

in (3.11) can be reduced to

f =







αl − αr

fl,r

fr






with fl,r =













yl,1 + y0l,1 − yr,1 − y0r,1

yl,2 + y0l,2 − yr,2 − y0r,2

yl,3 + y0l,3 − yr,3 − y0r,3

yl,4 + y0l,4 − yr,4 − y0r,4













, (3.12)
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and fr being defined before. Accordingly, F in (3.10) should be determined from

f defined in (3.12).

3.4 Free dynamics

In total there are 18 2nd-order differential equations with 9 constraints in (3.10)

and (3.11). It is desirable to derive free dynamics by eliminating constraints. This

shall facilitate numerical simulations of the derived mathematical model of the

posture because most numerical solvers provided in the majority of software tools

are for simulating dynamic systems described by ordinary differential equations

without constraints.

Define a coordinate transformation as p =

[

p1

p2

]

with p2 = f , where f is

defined in (3.12),

p1 =







αl

p1,l

p1,r






, p1,v =

[

xv,1 xv,2 xv,3 xv,4

]′
, (v = l, r) . (3.13)

The inverse of the transformation can be easily determined as given in Appendix

C and denoted by q = p−1(p) from which

q̇ = Q(p)ṗ , q̈ = Q̇(p)ṗ+Q(p)p̈ , (3.14)

where Q =
(

∂p

∂q

)−1

. Substituting these relations into (3.10), left multiply (3.10)

by Q′, and note that p2 = 0 and FQ =
[

0 I
]

. In the p-coordinates, the system

of (3.10) and (3.11) becomes

M1(p1)p̈1 + C1(p1, ṗ1)ṗ1 +G1(p1) = 0 , (3.15)

C2(p1, ṗ1)ṗ1 +G2(p1) = λ , (3.16)

p2 = 0 , (3.17)
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where

M1 = Q′
1MQ1 , C1 = Q′

1(CQ1 +MQ̇1) , G1 = Q′
1G ,

C2 = Q′
2(I −MQ1M

−1
1 Q′

1)MQ̇1 +Q′
2CQ1 −Q′

2MQ1M
−1
1 C1 ,

G2 = Q′
2(I −MQ1M

−1
1 Q′

1)G

with Q =
[

Q1 Q2

]

and Q1 and Q2 containing nine columns each. The compo-

nent expressions of these coefficient matrices and vectors are given in Appendix

A. The free dynamics of the system are described by the nine 2nd-order differ-

ential equations in (3.15). The free dynamics can be numerically simulated by

some standard solvers of ordinary differential equations. The Lagrange multiplier

can then be calculated from (3.16). Finally, from the inverse of the coordinate

transformation p = p(q), the variables in q can be obtained.

3.5 Linearisation of the model

The model developed so far is a nonlinear system. Stability analysis of a non-

linear system normally requires Lyapunov stability theory, which could be very

involved and there is no general constructive procedure for carrying out the anal-

ysis. Linearisation of the nonlinear system can lead to effective evaluation of

the stability of the system under various conditions due to changing values of

the overall stiffness and damping parameters. Since the ankle angles and tendon

length variations of the open stance during swings are very small, linearisation

of the nonlinear model around zero value of these variables will give rise to a

very good approximation of the original system. Stability of the system will be

assessed by examining the Nyquist and Bode plots of the linearised model, which

are shown in detail in Chapter 5. This section deals with linearisation of the

nonlinear model and clarification of the Nyquist stability criterion applied to the

linearised model. The clarification is needed because as a result from complex

variable theory known as the Cauchy’s argument principle (Franklin et al., 2010),

the Nyquist stability criterion is normally stated for closed-loop systems, namely

systems having a feedback control that associates system’s output to its input.

The nonlinear model developed in this thesis is a passive system because the
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mass-spring-damper units as internal feedback controls are already included in

the system’s model. The nonlinear system is an open-loop system and so does

its linearised counterpart.

In order to perform stability analysis using frequency response methods de-

veloped by Nyquist and Bode, a transfer function needs to be derived for the

linearised model of the system. First of all, an input and output of the system

need to be defined. It is well known from control theory that selections on sys-

tem’s input and output with respect to a particular transfer function have no

effects on system’s stability. The left ankle angle αl is chosen as the output, de-

noted by y, of the system, and a disturbance torque, denoted by u, acting about

the left ankle as the input.

In this case, by linearising the terms on the left-side of dynamic equation

(3.15) around p1 = 0 and ṗ1 = 0, adding B̄u to its right, and introducing y = αl,

the following linear system’s equations are obtained

M̄1p̈1 + C̄1ṗ1 + Ḡ1p1 = B̄u , (3.18)

y = C̄q1 . (3.19)

where,

M̄1 is linearised mass matrix

C̄1 is linearised stiffness matrix

Ḡ1 is linearsied torque matrix

B̄ is an input matrix, and

C̄ is an output matrix

3.5.1 Transfer function realisations and stability analysis

The derivation of the above equations and specifications of these coefficient matri-

ces are given in Appendix C. Routine operations of taking Laplace transform with

zero initial conditions and algebraic manipulations lead to the required transfer

function

T (s) = C̄(s2M̄1 + sC̄1 + Ḡ1)
−1B̄ =

N(s)

D(s)
, (3.20)
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where N(s) and D(s) are two polynomials in s. This transfer function presents a

18th-order system with a single input and single output. After parameterisation

of the system’s model, this transfer function is explicitly given by equation (5.4)

in Chapter 5.

It is well known that an open-loop linear system is stable if and only if all

its poles, namely solutions of the characteristic equation D(s) = 0, have negative

real parts. Without calculating the poles, the stability of the system can be

determined from the Nyquist plot of the transfer function of the system, and the

Nyquist plot also indicates relative stability in terms of gain and phase margins.

Precisely, the stability analysis is for the closed-loop system formed by using the

unity negative output feedback control, which is not directly applicable here. To

remedy this, rewrite D(s) = 0 as 1 + D̄(s) = 0 with

D̄(s) =
d(s)

D(s)− d(s)
, (3.21)

where d(s) is an arbitrary polynomial of an order less than 18 and it should

be so chosen that D(jω) 6= d(jω) for all real number ω. This selection of d(s)

ensures that D̄(j∞) 6= −1 and D̄(s) has no poles on the imaginary axis of the

complex plane. Now, D̄(s) can be considered as the transfer function of a pseudo

open-loop system and 1 + D̄(s) = 0 as the characteristic equation of the cor-

responding closed-loop system. Applied to this particular system, the Nyquist

stability criterion is: the point (−1 + j0) will be encircled clockwise for nz − np

times, where nz and np are respectively the number of poles of T (s) and D̄(s)

inside the right-hand of the complex plane.

If the selection of d(s) ensures additionally that D̄(s) has no poles inside the

right-hand of the complex plane, which is again always possible, the Nyquist

stability criterion is simply: The linearised system described by (3.18)-(3.19) or

equivalently by (3.20) is stable if the Nyquist plot of D̄(s) does not encircle point

(−1+ j0). This will also facilitate relative stability analysis in terms of gain and

phase margins.

One particular selection of d(s) is given here, which satisfies all the require-

ments mentioned above. Let, without loss of generality, D(s) = s18 + d̄(s) with

d̄(s) = Σ18
i=1ai−1s

i−1. The particular selection of d(s) is d(s) = d̄(s)−Σ18
i=1bi−1s

i−1
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with bis being the coefficients determined from
∏18

i=1(s + pi), where pis are arbi-

trary stable real or complex conjugate numbers.

It is worth noting that, although selections of d(s) have no effects on conclu-

sions on stability of the system (3.20), since D̄(s) is dependent on d(s), relative

stability of the system in terms of gain and phase margins of the Nyquist plot of

D̄(s) is bound to be influenced by d(s). It is however hypothesised that different

selections of d(s) will not alter the trends and orders of changes in terms of gain

and phase margins in relative stability analysis of the system (3.20). This aspect

will be explored through simulation studies shown in Chapter 5. A theoretical

proof of this hypothesis is nevertheless beyond the scope of the research presented

in this thesis.

3.5.2 Model reduction

Model reduction of the initial 18 order linear system has been carried out based

on the method detailed in (Moore, 1981). Model reduction approximations are

necessary to evaluate “weakness” of any variables on the system dynamics. This

means that the change in the dynamics of a system minimal or negligible. This

has been carried out through the realisation of stable poles of the original system.

For stable systems it is a close approximation of conrollability and observability

of Gramians are equal and diagonal forming Hankel singular values. This con-

cept was implemented in MATLAB as detailed in Chapter 5 where non-linear,

linearised 18 order system and reduced order systems have been compared.
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Chapter 4

Parameterisation of the proposed

model

4.1 Introduction

In order to justify the orientation and position of soft tissues (muscles, tendons

and ligaments), radiographic analysis of the bones of the human ankle complex is

necessary. This chapter subsequently proceeds to explain the mechanical proper-

ties of the soft tissues, from various published papers which report collection and

analysis of data necessary for model parameterisation. The viscoelastic proper-

ties of human soft tissues were studied, recorded and inferred by various authors

which involved a number of coefficients and parameters, dependent on the meth-

ods and devices used (Belaya, 1979; Vasyukov, 1967; Zilbergleit et al., 1984) and

it is therefore practically impossible to compare results obtained by different re-

searchers.
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4.2 Anatomical angles created by ankle bones

using radiographic images

D

L

H
F

G

E

Figure 4.1: Anatomical angles of the ankle joint (Schepers et al., 2007).

Certain angles in the human ankle complex are of interest in this study in order

to gain a geometrical insight of the ankle complex with respect to quiet stance.

Fig.4.1 shows the posterior facet inclination (angle L) which is the angle formed

by the intersection of two lines drawn along the surface of the posterior facet and

along the upper surface of the calcaneal tuberosity.

The lateral talocalcaneal angle (angle D), is be formed by the calcaneal axis

and the collum tali axis. The angle decreases when there is varus angulation of

the hindfoot or when the foot is in dorsiflexion. The talocalcaneal angle increases

with valgus or plantar flexion (Vanderwilde et al., 1988). There are two ways of

measuring this angle. Some authors (Buch et al., 1996; Rammelt et al., 2004)

use the centre line of the calcaneus as axis while others use the line formed by

the most inferior part of the calcaneal tuberosity and the most inferior point of

the calcaneocuboid joint (Bryant et al., 2000; Gentili et al., 1996). The latter is

less likely to be affected by inter-observer variability, because of the use of fixed

points.

The tibiotalar angle (angle E) on the radiograph is formed by the axis of the

tibia and the axis of the talus. The tibiocalcaneal angle (angle F) is formed by

the axis of the tibia and the axis of the calcaneus. The angle increases with plan-
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tarflexion and subsequently decreases with dorsal flexion of the foot (Vanderwilde

et al., 1988). The talar declination angle (angle H) is formed by the intersection

of perpendicular lines drawn from the axis of the collum tali, which bisects the

head and neck of the talus, and the plane of support. This line is essentially the

same as the horizontal angle of the talus (angle G), as described by (Vanderwilde

et al., 1988) who quantified the anterior tibiotalar impingement.

HVA

Figure 4.2: The hallux valgus angle (HVA), reproduced from Gentili et al. (1996).

The hallux abductus or hallux valgus angle (HVA) in Figure 4.2 is formed

by the longitudinal axis of the first proximal phalanx and the longitudinal axis

of the first metatarsus (Karasick and Wapner, 1990; Laporta et al., 1974; Mann,

1989) (normal: 5◦-15◦). Hallux abductus valgus would be mild at HVA 16◦-25◦,

moderate at HVA 26◦-35◦, and severe at HVA greater than 35◦ (Karasick and

Wapner, 1990; Laporta et al., 1974; Mann, 1989). In hallux varus or adductus,

the HVA would be less than 0◦ (Karasick and Wapner, 1990; Laporta et al., 1974;

Mann, 1989).
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Talo-calcaneal

Figure 4.3: Measured angles in the lateral view (James et al., 2006).

Talocalcaneal in Figure 4.3 would be the angle formed by a line perpendicular

to a line connecting the anterior-dorsal and anterior-plantar extremes of the talar

head and line from the most anterior-plantar point of the calcaneal tubercle to the

most anterior-plantar point of the calcaneus at the calcanealcuboid joint (James

et al., 2006).

Tibial slope

Figure 4.4: Tibial slope (Devanshu and David, 2006).

Figure 4.4, depicts a schematic representation of the slope measurement method.
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A vertical line is drawn representing the longitudinal axis of the tibia. A horizon-

tal line is drawn perpendicular to the vertical longitudinal. A third line is drawn

along the superior margin of the proximal tibia representing its slope. The angle

formed by the horizontal perpendicular and the proximal tibial margin represents

the slope angle (Devanshu and David, 2006).

4.3 Mechanical parameters

The nine element MSD model is a derivation of the classical Kelvin-Voigt model

(Thomson, 1865; Voigt, 1892) which can be assumed to have an amalgamation

of a dissipative fluid and an elastic solid. This facilitates model development

wherein implicit relationships can be derived for both the dissipative as well as

the elastic response. The classical one-dimensional KelvinVoigt model is basically

a mechanical analog of a spring and dashpot in parallel reflecting the fact that

the Kelvin-Voigt model considers both the linear properties of an elastic solid

and a linear viscous fluid that function with no relative motion between either

the solid and the fluid. Classical linearised elasticity (linearised viscoelasticity)

can be expressed as either the stress or strain in terms of each other, in general,

nonlinear theories of elasticity, the stress is usually expressed as a function of the

nonlinear strain even though implicit relation are not uncommon for viscoelastic

fluids (the Oldroyd-B fluid (Oldroyd, 1950) or Burgers fluid (Burgers, 1996)).

Thus, it would be possible to generalize the classical KelvinVoigt solid as a

mixture of more general elastic solids and viscous fluids. Such a model leads to a

number of interesting observations. Since, stress cannot be substituted in terms

of the strain or the strain rate, implicit constitutive relations come into play.

(Rajagopal, 2009) solved the constitutive relations and the balance equations for

mass and linear momentum, simultaneously which leads to a system of partial

differential equations where the constitutive relations are a part of that very sys-

tem. The model developed in this thesis involves muscles, tendons and ligaments

grouped together as a unit. The mechanical properties of these three soft tissues

should be first considered individually before taking into account their combined

effect in the model.
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4.3.1 Muscles-tendons-ligaments

Research which focuses primarily on specific muscle groups and their mechani-

cal effects, warrants an accurate description of muscle geometry and the joints

involved. The geometry of the musculoskeletal system would define the moment

arms and the length of the muscles. The moment of a muscle can therefore gen-

erate a force at the joint in question. To date, several anatomical studies (Brand

and Crowinshield, 1982; Spoor et al., 1991; Weber, 1851; Wickiewicz et al., 1983)

have been published which contain information for the various musculoskeletal

models for the lower extremity.

However, (Klein et al., 2007) has given calculated details of the muscle param-

eters which had been lacking so far and is a valuable addition to muscle parameter

database, as summarised in Table 4.1. The muscles were dissected and weighed,

after removing the tendon, fat and excessive connective tissue, using a scale with

an accuracy of 0.1g. Muscle belly, tendon and muscle fibre length were measured

with a palpator, by calculating the distance between origin and insertion points.

The length of at least five representative fibres was measured depending on the

size of the muscle. Standard deviation in fiber length within a muscle was found

to be around 0.5cm.

Table 4.1: Optimal fibre length (Lopt), tendon length (Lten) and mass of selected
postural muscles (Klein et al., 2007)

Muscles L(opt)(cm) L(ten) (cm) Mass(g)
Extensor digitorium longus 6.0 30.1 34.1
Flexor digitorium longus 3.8 16.6 26.7
Flexor hallucis longus 2.6 23.4 83.7
Gastrocnemius latralis 5.7 23.4 144.0
Gastrocnemius medialis 6.0 21.2 278.0
Peroneus brevis 2.7 6.4 53.9
Peroneus longus 3.4 15.9 86.0
Peroneus tertius 4.3 10.0 28.0
Plantaris 4.8 35.0 12.0
Popliteus 2.4 1.0 27.0
Soleus (medial) 2.4 8.5 238.5
Soleus (lateral) 2.6 8.5 238.5
Tibialis anterior 4.6 23.5 129.0
Tibialis posterior(medial) 2.4 11.0 55.9
Tibialis posterior (lateral) 2.4 11.0 55.9
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The tendons basically mechanically transfer the force of the muscle to the

bone (Wang, 2006), which in turn induces locomotion and enhances joint sta-

bility. Tendons are living tissues which alter their structural and mechanical

properties when they bear large forces. Several factors affect the mechanical

forces on tendons during normal locomotion and postural control. Firstly, differ-

ent tendons are subjected to different levels of mechanical loads. For example, the

Achilles tendon withstands higher tensile forces than that of the tibialis anterior

(Maganaris, 2002; Paul, 2002). Secondly, both the level of muscle contraction

and the tendons relative size affect the mechanical forces on a tendon. It can

be inferred that the greater the cross-sectional area of a muscle, the higher is

the force produced and the larger is the stress a tendon undergoes (e.g., patel-

lar tendon vs.hamstrings tendons) (Kellis, 1998). Thirdly, a variety of activities

produce different levels of forces, even on the same tendon (Korvick et al., 1996;

Malaviya et al., 1998).

If one studies the tendon, it can be seen that it has a multi-unit hierarchi-

cal structure composed of collagen molecules (see Fig 4.5), fibrils, fiber bundles,

fascicles and tendon units that run parallel to the tendons long axis. Collagens

in the matrix are cross-linked (Bailey and Light, 1985; Eyre et al., 1984). This

cross-linkage increases the Youngs modulus of the tendon and subsequently re-

duces its strain during failure (Thompson and Czernuszka, 1995). Tendons are

subjected to dynamic mechanical forces in vivo which shows that the tendons

have fibre patterns and viscoelastic properties producing their unique mechanical

behavior. A study in (Maganaris and Paul, 1999) estimates the in vivo structural

and mechanical properties of the human tibialis anterior (TA) tendon. It was

determined that the tendon stiffness and Youngs modulus at maximum isometric

load were 161 N/mm and 1200 MPa, respectively. Because of their viscoelastic-

ity, tendons are liable to deform more during lower rates of strain. This suggests

that the tendons absorb more energy, but are less effective in transferring loads.

At higher strain rates, tendons have a higher degree of stiffness and are more

effective in moving large loads (Jozsa and Kannus, 1997).

Recently, (Leardini et al., 1999a,b) and (O’Connor et al., 1998) described mo-

tion path of the ankle joint in the unloaded state and further more have also

analysed ligament shape changes and articular contact throughout the range of
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Figure 4.5: Tendon structure (Wang et al., 1998)

flexion (Corazzaa et al., 2003). These studies show considerable insight into de-

veloping a mathematical model for postural stability at the ankle region where

ligaments are one of the main factors. Ligaments are responsible for providing

physical restraints to unwanted movements at joints which in turn provides sta-

bility. Testing would basically rely on moving the particular joint so much into

the position of instability that maximum tension is placed within the ligament.

This would clearly identify if the ligament in question is absent or damaged, and

naturally the joint becomes unstable when the unwanted position is attained.

These tests would of course depend on a detailed knowledge of anatomy and

joint biomechanics. Similar to the tendon testing, problems arise in joints where

a complex arrangement of ligaments tend to generate multi-directional stability
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so much that a complete assessment of individual ligaments is impossible (David

et al., 2000).

4.3.2 Calculation of model parameters

Table 4.2: Mean mechanical muscle parameters (Babic and Lenarcic, 2004; Datta
et al., 1952; Edith and Scott, 2011; Klein et al., 2007; Kubo et al., 2002; Lichtwark
and Wilson, 2005; Lintz et al., 2011; Pearsall et al., 2003; Robert et al., 2005;
Samuel et al., 2009; Tammy et al., 2002; Wakeling et al., 2003)

Muscles and Tendons Mass Stiffness Damping
(Kg) (105 N/m) (105 Ns/m)

Triceps surae 0.225 4.400 0.299
Achilles tendon 0.067 3.640 0.299
Plantaris 0.012 3.640 0.128
Popliteus 0.027 0.837 33.910
Flexor hallucis longus 0.084 0.433 24.830
Flexor digitorium longus 0.027 0.478 24.830
Tibialis posterior 0.056 3.790 33.910
Tibialis anterior 0.129 4.600 34.120
Peroneus brevis 0.054 0.436 24.830
Peroneus longus 0.086 3.460 24.830

Assumptions have been made as to the selection of tendons because of lack

of availability of data. Muscles have tendonous parts attached at their ends and

these skeletal muscles also tend to differ in their masses because of the amount of

tendonous material attached together with the number of pennations. Muscles

which have a greater tendonous part have been selected as tendons for example

plantaris. In most experiments, the mass of muscle-tendon unit is measured

rather than the muscle belly which adds to the change in mass. It is quite

difficult to obtain data which gives the mass, stiffness and damping co-efficients

separating the muscle belly and the tendonous tissue.

The structural and material properties specifically the stiffness constant of

tibialis anterior and posterior have been determined from a plot of load versus

elongation. Both the specimens were equivalently elongated and the slope of

the elongation at 50% and 70% of failure load determined by basic regression

technique (Tammy et al., 2002). (Pearsall et al., 2003) investigated the material

45



4. Parameterisation of the proposed model

properties of tibialis anterior, tibialis posterior and peroneus longus using the

double loop fashion. The specimens were prepared and average initial measuremt

was recorded. They were subjected to maximum failure load with a loading rate

of 1mm/s. The slope of this graph gave the damping values of the soft tissues in

question. The change in the length of the peroneus longus under maximal failure

load gave the stiffness constant resulted the stiffness co-efficient as mentioned in

Table 4.2.

Testing of the popliteus complex structures was performed by first testing the

popliteofibular ligament (Robert et al., 2005), while the popliteus tendon and

its attachments were wrapped in a moist, saline-soaked gauze. Once testing was

completed on the popliteofibular ligament, testing on the popliteus tendon was

performed. Before tensile testing was performed, several preconditioning cycles

were performed by slowly cycling the specimens from an unloaded state to the lin-

ear portion of their load deformation curve and back to zero load. Each specimen

was then rapidly loaded to failure at more than 100%/s to obtain the ultimate

tensile strength. Force displacement graphs were recorded, and mechanical prop-

ertieswere calculated.

The procedure for measuring the viscoelastic properties of the triceps surae

MTC consisted of two parts (Babic and Lenarcic, 2004). Soleus and Achilles

tendon stiffness and viscosity were determined in the first part (Flexion trial)

while the gastrocnemius stiffness and viscosity were determined in the second

part (Extension trial). In both parts of the measurement procedure, subjects

inserted their foot in a movable stirrup. The foot was fixed in the stirrup with

a strap. The stirrup was attached by steel wire to a weight and force sensor

(JR3, model 45E15A) via a pulley system. The MTC viscoelastic properties for

different MTC loads were determined by varying the load from 0 to 50 kg. The

measurement device and procedure were designed to minimise the movement of

human body segments during the measurement. (Lichtwark and Wilson, 2005)

measured the damping co-efficients of Achilles tendon and the Triceps surae using

a motion capture system at 25 frames/second subjected to an average maximal

force.

All specimens of plantaris were first preconditioned by being stretched once

up to approximately 5% strain at a rate of 6mm/min, once up to 10% strain at a
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rate of 12mm/min (to detect any slipping in the clamps) before being stretched

to failure at 36mm/min for an avarage failure load of 7.7N (Lintz et al., 2011) and

lastly the mechanical properties of flex.Hal.Long, flex.Dig.Long, peroneus brevis

and longus have been deemed to be similar (Hoy et al., 1990). The stiffness

and damping parameters have been calculated using the slope of the load versus

deformation length and load versus velocity graphs respectively from the papers

cited Table 4.2.

Table 4.3: Mean mechanical parameters of ligaments (Bandak et al., 2001; Mkan-
dawire et al., 2005; Siegler et al., 1998; Wei et al., 2011)

Ligaments Volume Density Mass Stiffness Damping
(m3) (kg/m3) (Kg) (105 N/m) (105 Ns/m)

AFTL 0.0023 1.9376 0.0044 1.418 43.585
ATTL 0.0105 1.9376 0.0203 0.700 8.811
FCL 0.0027 1.9376 0.0052 1.266 5.759
PFTL 0.0045 1.9376 0.0088 1.643 7.842
TCL 0.0162 1.9376 0.0313 0.700 8.811
PTTL 0.0054 1.9376 0.0104 2.343 8.811
TNL 0.0030 1.9376 0.0057 0.391 2.251

The AFTL, FCL and PFTL form the lateral collateral ligaments while the

ATTL, TCL, PTTL and TNL form the medial collateral or the deltoid ligaments.

A tensile test at low stretch rate of 0.32cm/min was performed on collateral ankle

ligaments to study their elastic response on different loading conditions (Siegler

et al., 1998). The ATTL and the TCL damping co-efficients were difficult to

obtain. The value of PTTL was used keeping in mind that all three are of the

same type and the ATTL and TCL have the same stiffness co-efficients (Wei

et al., 2011).

The deformation of the specimens (muscle, tendon and ligament) from their

initial length under same loading conditions determines the stiffness properties of

the collateral ligaments. The mechanical property values are very much depen-

dent on factors like age, preparation, sample used, stretching rate and loading

conditions, which therefore makes it increasingly difficult to gauge the range of

mechanical properties of these soft tissues. The stiffness and the damping co-

efficients also change depending upon the type of physical activity performed. In
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this study the stiffness and damping dynamics have been considered to be linear

in nature, but in order to gain a further understanding of the functioning of these

soft-tissues a non-linear model would be more suitable.

m

k
c

x

Figure 4.6: Simple mass-spring-damper model

The damping is called viscous because it models the effects of an object within

a fluid. The proportionality constant c is called the damping coefficient and has

units of force over velocity (N s/m).

Dynamics of the MSD unit in Figure 4.6 are described by the following ordi-

nary differential equation:

mẍ+ cẋ+ kx = 0. (4.1)

The type of solutions to this equation depends on the amount of damping. To

characterise the amount of damping in a system a ratio called the damping ratio

(also known as damping factor or percentage critical damping) is used. This

damping ratio given by ξ = 1
2

c√
km

, is just a ratio of the actual damping over

the amount of damping required to reach critical damping, whereas the angular

frequency of the system is given by ωd = 2πfd with fd = ωn

√

1− ξ2 being the

frequency (Hz) of the system’s response, and ωn =
√

k/m, the natural frequency

of the system. If the damping is small (ξ < 1) the system’s response vibrates,

but eventually, over time, will approach zero. This case is called under-damping.

If the damping increases just to the point where the system no longer oscillates

the point of critical damping (ξ = 1). When the damping is increased past the

critical damping the system is said to be over-damped, (ξ > 1). The critical

damping occurs in the mass spring damper model when c = 2
√
km.
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During the calculation of the damping co-efficient where the frequency value

fd is imperative and certain assumptions had to be made. Finding data for

individual muscles, tendons and ligaments was proven difficult because not much

data was available. The frequency for muscles ranged between 28.62 ±1.22Hz

for the force acting in the direction of the normal in case of the tibialis anterior

muscle and the frequency ranged from 44.89 ±2.10Hz in case of the triceps surae

muscle group. However in the axial or the medio-lateral direction the frequencies

values appear to be same. It was found upon calculation that there was not much

change in the damping ratio ξ. The same set of frequency values were used in

case of the other muscle groups which is assumed to have similar damping ratios

(Wakeling et al., 2003).

In case of ligaments one frequency, 5Hz (Bonifasi-Lista et al., 2005) from the

range of 0.01-15Hz was used. Here, the ligaments were oscillated at different

frequency values so as to test it dynamic stiffness response. The results showed

that the long-time relaxation behavior and the short-time dynamic energy dis-

sipation of ligament can be controlled by various types of different viscoelastic

mechanisms but yet these mechanisms may affect tissue viscoelasticity similarly

under different loading conditions (Rasch and Burke., 1965).

m1

k1 c1

x
m2

k2
c2

mn

kn cn

Figure 4.7: Multiple MSD units representing equivalence of muscles, tendons and
ligaments

Since each of the mass-spring-damper unit represents one particular soft tissue

namely muscle, tendon or ligament which is basically a collection of individual

soft tissues grouped together in Figure 4.7 as AB, CD, EF and GH. So, the

equivalent mass, stiffness and damping co-efficients can be represented as
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(m1 +m2 + ...+mn)ẍ+ (c1 + c2 + ...+ cn)ẋ+ (k1 + k2 + ...+ kn)x = 0 (4.2)

where n is the number of muscles, tendons or ligaments in each of the groups.

Figure 4.7 shows the representation of each muscle, tendon or ligament group.

The equivalent equation determines the mass, stiffness and damping co-efficients

for each MSD sub-unit in AB, CD, EF and GH units. These parameters are

summarised in Table 4.4. They have been determined following the discussions

in this section. It is quite clear that it follows the structure presented in Fig 4.7

and the calculation of mechanical properties of the soft tissues have been followed

in accordance with (4.2).

Table 4.4: Mechanical unit parameters

Parameters AB CD EF GH

ma (kg) 0.054 0.079 0.084 0.086

mb (kg) 0.129 0.281 0.034 0.026

mc (kg) 0.004 0 0.036 0.035

ka (N/m) 43300 369710 43300 43600

kb (N/m) 460000 819000 43300 43300

kc (N/m) 142000 0 197000 109100

ca (Ns/m) 48.35 164.45 60.31 61.23

cb (Ns/m) 243.60 460.32 38.37 33.55

cc (Ns/m) 23.83 0 71.78 99.76

Since many different sources were used to collect this data a range was ex-

pected, but because different types of experiments were used with different sub-

jects both living and cadavers data has been selectively chosen. The next chapter

which discusses the simulation of the MSD model will further elucidate the pa-

rameter selection and its effects on postural balance.
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Chapter 5

Initial simulation of the

mass-spring-damper model and

testing of model parameters

5.1 Introduction

In this study, the inverted pendulum model derived in Chpater 3 has been used

to explain the anterior and posterior sway of the human body with respect to the

ankle under a static condition, in other words no external perturbation has been

applied to generate exaggerated sway patterns. The unit connections are made

bilaterally between the shanks and feet by four of mass-spring-damper (MSD)

units. This would be instrumental in analysis and numerically simulate anterior-

posterior sway in open stance (feet apart at a natural stance) during quiet stand-

ing, where the ankle acts as a fulcrum. There are four units connecting the shank

(tibia and fibula) to the phalanges of the foot, the posterior aspect of the calca-

neus and the lateral and medial sides of the calcaneus, respectively. Each unit

represents a group of muscles, tendons and ligaments which are represented by a

9-element MSD model. The series connection represents the muscle-tendon unit

and the parallel unit represents the ligaments. The anterior-posterior sway results

in geometrical changing of length from the initial orientation of the four units. As

detailed Chapter 3, the Lagrange d’ Alembert principle has been used to derive
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eighteen ordinary differential equations, along with nine algebraic equations to

describe the human body dynamics of anterior-posterior sway with respect to the

ankle complex. As detailed in Chapter 4, the model has been parameterised with

respect to the length changes, mass, stiffness and damping co-efficient of every

muscle, tendon and ligament groups responsible for maintaining quiet stance with

respect to the movements about the ankle joints. The numerical simulations are

based on the free dynamics of the system described by equation (3.15) associated

with the original dynamics described by equations (3.10) and (3.11).

This chapter discusses the response of the system during quiet stance. MAT-

LAB function blocks were used in SIMULINK to incorporate the mathematical

equations derived in Chapter 3. A variable-step solver was chosen as it dynam-

ically adjusts the time step size, causing it to increase when a variable changes

slowly and to decrease when the variable change is rapid. This behavior causes

the solver to take many small steps in the vicinity of a discontinuity because

rapid variable change in this region. This tends to improve accuracy of the simu-

lation whilst the simulation is sped up even during slow change of the variables.

Numerical solver ordinary differential equation-15s (error tolerance of 1e−9) was

used to run the simulations as it is a variable-order solver for stiff problems. It is

based on the numerical differentiation formulae (NDFs). The NDFs are generally

more efficient than the closely related family of backward differentiation formulas

(BDFs), also known as Gear’s methods.
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model parameters

consists of two parts namely, global parameter assignment and variable solving

linkage. The code for simulation is given in Appendix D.

5.2.1 Global parameter assignment

A MATLAB script file was created where the anthropometric, mass, stiffness and

damping parameters are listed. Initial condition of α is also given. The initial

geometrical conditions are calculated in this file. This file would be then called

from various MATLAB embedded function blocks in SIMULINK.

5.2.2 Variable solving linkage

From the block diagram in Figure 5.1 the linkage of different blocks is based on

identification of variables which would serve as input, output and global parame-

ters. The global parameters are called in these blocks to facilitate the calculation

of constrained dynamics described in Chapter 3. The inverse mapping shown in

Appendix B is calculated in Embedded MATLAB function block q, where the

output q, a vector of size 18, consists of constraint variables of both the left and

the right leg.

The vector q is then linked to Embedded MATLAB function block C, Em-

bedded MATLAB function block G, Embedded MATLAB function block Q, Em-

bedded MATLAB function block F and Embedded MATLAB function block

F ′lambda. The Embedded MATLAB function block C calculates the component

matrices of C1 and C2 which are used in the calculations of the free dynamics and

Lagrange multiplier of the dynamic equations. The Embedded MATLAB function

block G, calculates the induced gravitational torque values for anterior-posterior

sway. The Embedded MATLAB function block Q, calculates the Jacobian ma-

trix associated with the coordinate change from q to p forming an 18×18 matrix.

The free dynamics of the system are described by the nine 2nd-order differential

equations in (3.15) and the Lagrange multiplier could then be calculated accord-

ing to equation (3.16) in Embedded MATLAB function block F and Embedded

MATLAB function block F ′lambda which is the internal torque generated by the

constraints. The output of the function blocks are then fed into the workspace

with respect to time.
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5.3 Response of the system with an initial small

angle of the inverted pendulum

In the case of quiet stance, the intended equilibrium position is a slight forward

tilt of the body and the instability is gravity-driven. The rate of growth of the

toppling torque (i.e. the toppling torque per unit angle) is indicative of the

amount of stiffness required to avoid the need for neural intervention. Below

the level of critical stiffness, an active stabilisation mechanism is necessary for

compensating the inadequate stiffness and restricting the residual oscillations to

a small region surrounding the unstable equilibrium position. However, the 2×4

9-element MSD model developed in this study shows that stiffness alone cannot

stabilise the posture but the damping parameters play a crucial role to maintain

an upright stance of the human body.

5.3.1 System equilibrium calculation

Mechanical perturbation can be caused due to external forces or generated in-

ternally, but both displace the body segments which in turn displaces the total

system CoM and the human body attempts to regain its upright position. This

position is the equilibrium position.

From equation (3.15) representing the free dynamics obtained by eliminating

the constraint equations, the equilibrium of the system can be derived. When

G1 = 0, from g1,l = 0 and g1,r = 0, the relationship between yv,i and xv,i is

obtained as kb,iyv,i = (ka,i + kb,i)xv,i, for v = l, r and i = 1, 2, 3, 4. Here, g1,l,

g1,r and g1 given below along with other constants and variables are specified in

Appendix A

Finally, A sinα + B cosα = 0 can be derived from g1 = 0, where

A = β1 cosα1 + β2 cosα2 + β3 cosα3 + β4 cosα4 − 2ḡ ,

B = −β1 sinα1 + β2 sinα2 + β3 sinα3 + β4 sinα4
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with, for i = 1, 2, 3, 4,

βi =
diri
ȳr,i

[(kb,i + kc,i)(yl,i + yr,i)− kb,i(xl,i + xr,i)] .

Since βis are functions of α, the latter cannot simply be obtained as α = − tan−1 B
A
.

For simplicity, assume, with a minor loss of generality, yl,i = yr,i which im-

plies xl,i = xr,i as muscle, tendon and ligament attachment to bone have been

considered symmetrical for left and right ankle joint to reduce complexity of the

mathematical formulation. Under this assumption, βi is reduced to

βi = 2
diri
ȳl,i

[(kb,i + kc,i)yl,i − kb,ixl,i]

= 2diri
ka,ikb,i + ka,ikc,i + kb,ikc,i

ka,i + kb,i
(1−

y0l,i
ȳl,i

)

with

ȳl,1 =
√

d21 + r21 − 2d1r1 cos(α− α1) , ȳl,i =
√

d2i + r2i − 2diri cos(α + αi) ,

for i = 2, 3, 4. Now, it can be seen that A sinα + B cosα = 0 becomes an

equation with the single variable α and all other quantities are known constant

parameters. In general, an analytical solution to this equation does not seem

possible, but the equation can be solved numerically. Once α is obtained, ȳl,i and

further yl,i can be calculated using the equations given above, and finally xl,i as

xl,i =
kb,i

ka,i+kb,i
yl,i for i = 1, 2, 3, 4. The calculation of equilibria is completed by

recalling the assumption yl,i = yr,i and hence xl,i = xr,i.

5.4 Simulation results

The damping parameters play a critical role in the stabilisation of the human

body. Since, in this particular model the individual muscles, tendons and liga-

ments have been considered, their mechanical properties have to be taken into

account in order to explain balance of the quiet human stance. The model devel-
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oped can be used to analyse the mechanical influence of these soft tissues on the

behaviour of the postural sway. Hence, the force-velocity and the force-length

changes of individual components of units AB, CD, EF and GH affect the sway

pattern of the body about the angle region. The system was simulated with an

initial angle of α(0) = 0.01 rad (Loram et al., 2005) for 100s.
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Figure 5.2: Angular displacement of the system with initial angular position

α(0) = 0.01 rad. This figure depicts the response of the system with damping

and stiffness values as listed in Table 4.4.

Figure 5.4, depicts the angular displacement of the shank for 100s. It can

be observed that the angular sway of the shank initially starts at α(0) = 0.01

rad and then converges slowly towards α(0) = 0 rad. The maximum anterior

sway was 0.01 rad and the maximum posterior sway was -0.01 rad. The magni-

fier in the Figure 5.4 shows that for 8-10s there are three posterior oscillations

of the inverted pendulum which portrays a realistic sway response of the human

anterior-posterior sway during quiet stance. The frequency of number of oscilla-

tions occurring are rapid but slowly converge to α = 0 rad. This type of response

is consistent with Figures 5.3, 5.4, 5.5 and 5.6
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Figure 5.3: Gravitational and internal torque comparative graphs illustrating the

onset of anterior and posterior sway when α(0) = 0.01 rad.

The simulation results shown in Figure 5.3 draw a comparison between the

internal and gravitational torque for α(0) = 0.01 rad. During anterior-posterior

sway of the system the maximum internal torque measured was 15.55 N.m whereas

the maximum gravitational torque measured was 3.17 N.m. The mean internal

and gravitational torques measured were -0.12 N.m and -0.03 N.m respectively.

The minimum internal and gravitational torques generated were -15.57 N.m and

-3.20 N.m respectively. The values are summarised in Table 5.1.

Table 5.1: Comparison of internal and gravitational torques during anterior-

posterior sway for α(0) = 0.01 rad.

Internal torque (N.m) Gravitational torque (N.m)

Maximum 15.55 3.17

Minimum -15.57 -3.20

Mean -0.12 -0.03

5.4.1 System response without ligaments

So far, it is clear that the model used in this thesis is an intrinsic parametric model

of an inverted pendulum. Ligaments were also considered in units AB, EF and
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GH. But, ligaments in unit CD were discounted because it was believed that the

triceps surae muscle group along with the Achilles tendon play a dominant role

during plantarflexion, thus overriding the passive action of the ligaments induced

by anterior-posterior sway during quiet standing. The following results draw a

comparison between muscle-tendon-ligament and muscle-tendon only behaving

passively as a single unit.
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Figure 5.4: Torque of unit AB with (A) and without ligaments (B) at α(0) = 0.01

rad.

In the case of unit AB as shown in Figure 5.4, in the absence of ligaments i.e

the AFTL is discounted in this particular simulation leaving only the muscle ten-

don unit of peroneus brevis and tibialis anterior and the maximum and minimum

torque produced was 0.05 N.m and -0.04 N.m, respectively. However, maximum

and minimum torques produced in unit AB were found to be 78.20% and 78.23%

less than the torques produced in the same unit while considering muscle, tendon

and ligaments for anterior-posterior sway respectively.
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Figure 5.5: Torque of unit EF with (A) and without ligaments (B) at α(0) = 0.01

rad.

Figure 5.5, where unit EF consists of only the muscle-tendon unit of flexor

digitorium longus and flexor hallucis longus, showed that the maximum and min-

imum torques produced was 0.22 N.m and -0.22 N.m, respectively. The absence

of ligaments in unit EF showed that the maximum and minimum torques were

90.10% and 90.11% less than the torques produced when ligaments were consid-

ered in the same unit.
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Figure 5.6: Torque of unit GH with (A) and without ligaments (B) at α(0) =

0.01rad.

Finally, Figure 5.6, where unit GH consisting of only the muscle-tendon unit,

extensor digitorium longus and peroneus longus showed the maximum and mini-

mum torques measured were 0.23 N.m and -0.23 N.m, respectively. However, the

measured maximum and minimum torques were 83.40% and 83.41% less than the

torques produced when ligaments were considered in the same unit.

5.5 Effects of friction at the ankle joints

So far, in the rigid body dynamics of the inverted pendulum, friction has been

ignored. Friction, in this case is considered at the articulating point of the shank

and the foot. As the shank moves anteriorly and posteriorly there is a definite

sliding friction over the talus of the ankle joint. Now, the ankle joint is classed

as a synovial joint which allows relative sliding of surfaces with low friction and

negligible wear, while load is transferred with minimal damage to peripheral

structural components (Medley, 1981). Based on this argument, during quiet

stance, which elicits small anterior-posterior sway which would allow the shank

to slide on its pivot generating an opposing frictional torque τf .
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τf = kfv (5.1)

where,

v = l cosαsα̇s (5.2)

kf = 0.01 is the co-efficient of friction, which is frictional torque generated at

a point during translatory motion of the synovial joint normalised to the total

torque generated for a given motion (Medley, 1981). l is the absolute distance

from the CoM to the ground and αs is the angular position of the shank attached

to the ankle joint.

So, when introducing the torque generated by friction to equation (3.10) it is

now represented as

Mq̈ + Cq̇ +G(q) = F ′λ− τf (5.3)
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5.5.1 Simulation of system dynamics with friction

0 2 4 6 8 10
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Time (s)

C
ha

ng
e 

in
 a

ng
ul

ar
 s

w
ay

 (
%

)

 

 

Figure 5.7: Percentage change in angular sway for α(0) = 0.01 rad.

Figure 5.7 shows the percentage difference between a frictionless and a system

incorporating friction for angular sway for quiet stance. The ankle joint, a syn-

ovial joint having a very low co-efficient of friction, it has been expected that the

change in angular sway would be very small. The maximum angular change in

the anterior direction was 0.02% and the maximum posterior angular change was

0.023% in the negative direction. The mean angular sway change was 0.001%.

5.6 Model linearisation

Chapter 3 discussed the non-linear modelling of the inverted pendulum about

the ankle joints. In this section, the model is being linearised to assess the

stability of the system using the Nyquist stability criterion. To sketch the Nyquist

plot deriving the transfer function is required which has been calculated using

MATLAB, using equations from Chapter 3.

The transfer function is obtained as:

T (s) =
N(s)

D(s)
(5.4)
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with

N(s) = 0.01705s16 + 531.6s15 + 7.58e06s14 + 6.566e10s13+

3.872e14s12 + 1.651e18s11 + 5.284e21s10 + 1.301e25s9+

2.509e28s8 + 3.832e31s7 + 4.66e34s6 + 4.503e37s5+

3.42e40s4 + 1.994e43s3 + 8.522e45s2 + 2.428e48s+ 3.639e50

D(s) = s18 + 3.118e04s17 + 4.447e08s16 + 3.852e12s15+

2.271e16s14 + 9.686e19s13 + 3.1e23s12+

7.632e26s11 + 1.472e30s10 + 2.248e33s9 + 2.734e36s8+

2.642e39s7 + 2.007e42s6 + 1.17e45s5 + 5e47s4+

1.424e50s3 + 2.136e52s2 + 4.814e51s+ 6.544e53

5.6.1 MATLAB code snippets to explore Nyquist plotting

for stability analysis

This section describes in detail how to manipulate Nyquist plot in MATLAB to

give a meaningful result and assess stability conditions for the inverted pendulum

system described in this thesis.

The following code snippets and figures give a step by step account of how

Nyquist plot has been used to analyse the open-loop inverted pendulum system

for quiet stance about the ankle joints.

% MATLAB code snippet for Nyquist plot generation (complete coding in

Appendix C) %

≫ nyquist(T) % Gives the full Nyquist plot%
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Figure 5.8: Initial Nyquist plot for the transfer function generated from equation

5.4.

≫ [re,im,w]=nyquist(T); % Mapping only positive imaginary axis%

≫ [Gm,Pm, Wg,Wp]=margin(T) % Simple analysis of Nyquist plot of the

system%

where,

Gm = Inf

Pm = Inf

Wg = Inf

Wp = NaN

Gm= Gain margin, Pm= Phase margin, Wg= frequency of gain margin and

Wp= frequency of phase margin. In this case Gm, Pm and Wg are infinite which

means that the open loop inverted pendulum system is inherently stable.
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5.7 Model reduction and system stability anal-

ysis for different stiffness and damping con-

ditions

Model reduction concept has been briefly described in Chapter 3 based on the

method detailed in (Moore, 1981). Model reduction usually incorporates a com-

position between model order and the degree to which the characteristics of the

system are projected by the model. Since, the relative importance of various

system variables is dependent on its application there cannot be an universal

algorithm. The main principle of model reduction is to remove variables which

do not significantly change the dynamics of the original system. The model is

reduced from the original system described in equation (5.4) which is given by

the subsequent transfer function.

T̃ (s) =
Ñ(s)

D̃(s)
=

2.046e− 14s2 + 3.534e− 12s+ 0.01705

s2 + 0.02718s+ 63.42
(5.5)

An inbuilt MATLAB function was used which computes a reduced order ap-

proximation of a linear time invariant system.

% MATLAB code snippet for model reduction %

≫ rsys = balred(T,2); % MATLAB function used for model order reduction%

≫ [num1,den1] = tfdata(rsys,’v’);

The MATLAB code snippet above gives the equation (5.5).
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Figure 5.9: Plot of Hankel singular values of 18 order linearised system in com-

parison with 2nd order minimal realisation system.

Figure 5.9 shows the comparison between the Hankel singular values of the

original 18 order system which clear shows which are the dominant poles. The

remaining 16 state values are approximately zero, hence have negligible contri-

bution to the system dynamics. This shows the choice of the 2nd order system

whose state values exactly match with the original 18 order system.
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Figure 5.10: Linearised system responses

Figure 5.10A shows the response of the 18 order linearised system as defined in

equation (5.4). The response of the system is exactly the same when the 18 order

system was reduced to a 2nd order system as shown in figure 5.10B. However,

figure 5.10C shows negligible difference between linear and non-linear system.
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Figure 5.11: Nyquist plot for different stiffness and damping conditions

The original system defined by equation (5.4) has been reduced to a 2nd

order system as described in equation (3.21). Figure 5.11B shows the magnified

Nyquist plots around (-1,0) of figure 5.11A showing the full view of the Nyquist

plots. It can be seen that in figure 5.11 none of the mechanical conditions of Ko

(overall stiffness of the system) encircle the (-1,0) point ascertaining stability of

the system. The mechanical conditions and their respective transfer functions

are listed in Table 5.2.

Table 5.2: Reduced order transfer functions for mechanical conditions as shown

in Figure 5.11

Conditions Transfer function Colour

100% of Ko
−1.973s+62.42

s2+2+1
cyan

75% of Ko
−1.973s+49.29

s2+2+1
green

50% of Ko
−1.973s+36.17

s2+2+1
red

25% Ko
−1.973s+23.04

s2+2+1
blue
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Table 5.3: A list of gain margin(Gm), phase margin (Pm), gain margin frequency

(Wg) and phase margin frequency (Wp) for a 2nd order reduced linear system

listed in Table 5.2
Conditions Gm (db) Pm (deg) Wg (rad/s) Wp (rad/s) Remarks

100% of Ko 1.01 0.19 8.02 7.96 stable

75% of Ko 1.01 0.22 7.14 7.08 stable

50% of Ko 1.01 0.26 6.14 6.09 stable

25% Ko 1.01 0.33 4.93 4.89 stable

From table 5.2 it is observed that that the changes of Ko will not affect the

first order term of D̃(s) and the gain margin has remained constant at 1.01 db

for the listed conditions of Ko. One explanation could be that the minimal reali-

sation theory of higher order transfer functions are not exact but approximations

which in theory removes variables whose effects are negligible to the system as a

whole. This is tested when the input and output of the system operate during

rest, at equilibrium points. The question then arises to find existing lower order

models of the same system which will simulate exactly the characteristics of the

whole system. The signals need to be small in order for the minial realisation

theory to work. In this particular case, during passive bipedal quiet stance the

angular sway of the shank is relatively small α=0 rad. A second order model was

the best approximation of the initial 18 order linearised system. However, this

raises two very important questions:

(1) In what way does the lower order model relate to the original model ?

This question can be answered by injecting a signal into the original system

and simulate the dynamics of the original as well as the reduced model. The orig-

inal system was found to gave to two “dominant poles” which basically means

that the response matrix formulated (state-space realisation of a 2nd order sys-

tem) was similar to the original 18 order system. If the similar realisation cannot

be formulated the minial realisation theory would not be possible and erroneous

conclusions could be drawn.

(2) Will the lower order system fully explain the dynamics of the system ?
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To answer this question, the definition of dominance has to be clearly under-

stood which was proposed by (Moore, 1981). However, it is very easy to confuse

between internal dominance of a subsystem and actual dominance of the origi-

nal system. In this particular case, an 2nd order system, which is nothing but

an approximation of the 18 order system will not be able to justify the physical

meaning of variables used in an 18 order system. In this case only the angular

sway parameter was analysed which was a close match between the linear and

non linear system however, the missing torque variables show that 2nd order sys-

tem is not well suited to explain the relationship between internal torque and

gravitational torque of the original model.

5.8 Discussion

In intrinsic parametric models (Casadio et al., 2005b; Clifford and Holder-Powell,

2010; Gatev et al., 1999; Gurfinkel et al., 1974; Jeka et al., 2004; Morasso and

Sanguineti, 2002; Winter et al., 2001), only muscle-tendon units were considered

and ligaments were left out as it might not play a major role in explaining postural

balance. The cases of muscle-tendon units only and those combined with liga-

ments have been considered and compared in this study. In Unit CD, ligaments

were not considered on the grounds that the plantarflexors were strong enough to

mask the effects of the posterior ligaments joining the shank with the calcaneus.

Unit AB only had one ligament that functionally helped in ankle dorsiflexion and

inversion. Units EF and GH had the highest concentration of ligaments in the

lateral and medial directions, respectively. Based on the simulation results, it was

found that the muscle-tendon-ligament unit produced significantly greater torque

at the unit level compared to a muscle-tendon unit alone during quiet stance.

In the context of ligaments’ role as bone connectors and tendons’ as muscle to

bone connectors, the work by Hicks (1953, 1955); Ker et al. (1987); Wright et al.

(2012) showed that muscles, tendons and ligaments together formed a functional

unit for a static foot where the body weight was distributed about the ankle

joint. Supporting the body weight in an erect posture not only involved balanc-

ing against the gravitational torque, but also maintaining equilibrium and thus
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emphasising its inherent dynamic properties. They found that postural control

theories should not be limited suprapedally involving only a muscle-tendon unit.

Having thus established the importance of a biomechanically functional unit

of muscle, tendon and ligament, the next objective of this study was to determine

the effects of stiffness and damping parameters of such an unit on the postural

dynamics. The data collected from the literature reported mainly long range

stiffness values (Babic and Lenarcic, 2004; Hoy et al., 1990; Lichtwark and Wilson,

2005; Lintz et al., 2011; Pearsall et al., 2003; Robert et al., 2005; Tammy et al.,

2002) where the concept and range of long range stiffness values was defined by

Lakie et al. (2003). The current study showed that higher intrinsic stiffness values

exhibited a more rapid response for anterior-posterior sway. This demonstrated

better maintenance of the angular position of the shank, which is in agreement

with previous experimental studies of Alexandrov et al. (2005); Johansson et al.

(1988). The overall stiffness values of muscles, tendons and ligaments used in

the current study were within the range of stiffness values reported in an in-vivo

study (O’Brien et al., 2010).

In the current model the effect of friction was also tested. The velocity induced

friction introduced into the system, has been known to have a damping effect on

postural dynamics (van Soest and Rozendaal, 2008). However, simulation results

show Figure 5.7 that during quiet stance velocity induced friction had negligible

effect on postural dynamics. This is so far the only work which has considered

frictional effects during quiet stance. Nevertheless, it is possible that velocity

induced friction may affect sway during exaggerated anterior-posterior excursions

of the CoM.

To control quiet stance, the alignment of the vertical projection of the COM

with respect to the base of support has been investigated previously (Winter

et al., 1998). This implies that, not only is the body’s geometry represented in

the postural scheme, but the distribution of body mass must be considered. The

main rationale for this control is to adjust the equilibrium constraints. These

require that, under static conditions, the COM vertical projection should remain

within the base of support. Various studies indeed argue in favour of this hy-

pothesis (Horak and Nashner, 1986; Massion, 1998). In the case of quiet stance,

the intended equilibrium position of the body is tilted slightly forward and the
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instability is gravity-driven. The rate of growth of the gravitational torque (i.e.

the gravitational torque per unit angle) is indicative of the amount of stiffness

required to avoid the need for neural intervention. The calculations of the sys-

tem equilibrium were based solely on the stiffness parameters of the model with

only one equilibrium point, (α = 0 rad) as shown in Section 5.3.1. The model

developed in the current study can be used to analyse the mechanical influence

of these soft tissues on the behaviour of postural sway. Hence, the force-velocity

and the force-length changes of individual components that make up units AB,

CD, EF and GH affect the sway pattern of the body about the ankle joint angle.

The model presented in this study showed that when the body was tilted

anteriorly, the torque generated was posterior, which leads to the suggestion that

unit CD, consisting of the triceps surae and the Achilles tendon, was instrumental

in preventing the body from falling. This was in agreement with the study by

Loram et al. (2007). Hence, at any angular position the reflex mechanism of

the musculoskeletal system pulls the body about the line of its COM preventing

the body from toppling over. Since the muscles responsible for upright stance of

the human body function in an antagonistic manner, unit AB was responsible for

preventing the body from falling in the posterior direction which was in agreement

with the conclusions drawn by Day et al. (2013). When the sway mechanism was

initiated, primarily in the anterior direction, the internal torque was maximum on

the posterior side as shown in Figure 5.3(A). As a result, the distance between the

calcaneus to the fulcrum of the ankle joint was smaller than the distance from the

latter to the toe. This suggests an even smaller base of support for stability and

that the stiffness co-efficients were higher in unit CD as compared with units AB,

EF and GH, respectively. Moreover, the higher internal torque values for unit CD

reported in the current study also confirmed these findings. The model in this

study not only demonstrated the functional importance of the calf musculature,

represented by unit CD, but also suggested that the mediolateral side of the

ankle played an equally important role during the stabilisation of quiet stance as

a considerable amount of torque was generated by units EF and GH.

Linearisation of the original model was undertaken, where the mathematical

realisation has been detailed in Chapter 3. The main goal for model linearisa-

tion was to assess stability of the system under various mechanical conditions.
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Linearised model original produced an 18 order system and calculation Hankel

singular values yielded that there can be a reduced order model by eliminating

state variables which offer negligible change in overall system dynamics which is

clearly shown in Figure 5.9. It was found that a second order system would indeed

show a similar response as am 18 order linear system as shown in Figure 5.10.

However, question arises that whether a second order reduced model can capture

the changes in parameters of the system thus altering its dynamic response since

Table 5.2 and Figure 5.11 shows little change in system dynamics when overall

stiffness parameters were changed.
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Chapter 6

A preliminary case study for

model evaluation

6.1 Introduction

The primary goal of the experiment is to determine the ranges of gravitational

torque values and the angular rotation of the shank at the ankle region during

quiet stance. It was hypothesised that the experiment would show predominance

of triceps surae muscle group over tibialis anterior during quiet stance where

angular rotation of the shank would be small. The experiment recorded angular

rotation of the shank for quiet stance and simultaneously measured EMG activity

of gastrocnemius lateralis, gastrocnemius medialis, soleus and tibialis anterior.

The EMG activity of the said muscles were then compared against the maximal

voluntary isometric contraction (MVIC) of the same muscles in a static position.

It is common practice that the measures of static balance are extrapolated

during quiet stance, where the accelerations of the body segments and their cor-

responding inertial forces and torques are deemed to be negligible (Panzer et al.,

1995; Prieto et al., 1996). Under such circumstances, muscle forces act antagonis-

tically to counteract the destabilising effects of the gravitational forces, thereby

facilitating stability in stance by aligning the horizontal locations of CoM.
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6.2 Methodology

6.2.1 Participant

One male subject (age 27; height 173cm; and mass 84kg), gave written informed

consent to participate in this study. The participant filled in and signed a

pre-excercise medical questionnaire and was deemed healthy and free from any

musculo-skeletal injuries. Ethical approval for this study was sought through the

Department of Sport, Health and Exercise Science at University of Hull. The

participant was barefoot and wore tight fitting clothing to reduce movement of

markers attached onto the body.

6.2.2 Equipment

In order to measure muscle activity during quiet stance the TeleMyo 2400 EMG

system (Noraxon, Scottsdale, Arizona, USA) was synchronised via a 64-channel

AD board with the motion capture system (Qualisys system, Gothenburg, Swe-

den). Two (one for each lower limb) 400x600 mm Kistler plates 9286AA (Win-

terthur, Switzerland) were used measure the kinetic data. The calibration of the

motion capture system was carried out by using a 750mm calibration wand and

L-frame reference object for 100s which was instrumental in identifying the origin

of the laboratory where the experiment was conducted. The three dimensional

tracking parameters had a prediction error of 30 mm, maximum residual of 10

mm, acceleration factor of 50,000 mm/s2 and noise factor of 10 mm. The cali-

bration results are shown in Table 6.1 and reliability tests have been carried out

to ascertain the accuracy of equipment used which is detailed in Appendix D.
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Table 6.1: Calibration results for the motion capture system where X,Y and Z

represents the position of the trajectory in the current frame. The coordinates

use the coordinate system of the motion capture system set up during calibration.

The average residual (the residual of an observed value is the difference between

the observed value and the estimated function value) can be defined as the mean of

different residuals of the 3D point. This is a quality check of the points measured

position (Qualisys User Manual 2011, Gothenburg, Sweden).

Cameras X (mm) Y (mm) Z (mm) Average Residual (mm)

01 -2879.48 8237.98 3843.52 0.39757

02 580.96 8177.05 3342.09 0.44031

03 4072.65 8129.05 3802.09 0.56613

04 4927.45 2722.54 2092.04 0.33378

05 5153.45 -3563.56 2205.35 0.38378

06 3423.34 -6780.78 3284.22 0.64616

07 402.80 -6806.70 2812.14 0.45712

08 -2527.83 -6796.25 3308.00 0.37735

09 -4296.39 -2877.96 2209.17 0.47538

10 -3809.72 3898.39 1874.80 0.36868

Motion signals were sampled at 100 Hz, and force signals were sampled at

2000 Hz. Twenty one reflective markers (14 mm) were attached bilaterally onto

the bony landmarks of the participant’s body according to the six degrees of

freedom (6 DOF) marker set (Buczek et al., 2010; Cappozzo et al., 1995) as listed

in Table 6.2.
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Table 6.2: Reflective marker positions on bony landmarks

Segment Marker positions (Bilateral)

Pelvis lateral and medial anterior

superior iliac spine (ASIS)

lateral and medial posterior

superior iliac spine (LPSIS and MPSIS)

Greater trochanter (GT)

Iliac crests

Thigh Thigh clusters (4 markers)

Femoral lateral epicondyle (LKNEE)

Femoral medial epicondyle (MKNEE)

Shank Shank clusters (4 markers)

Foot Fibula apex of lateral malleolus (LANK)

Tibia apex of medial malleolus (MANK)

1st, 2nd and 5th metatarsal heads

(1st MTH, 2nd MTH, 5th MTH)

Isokinetic Dynamometer Biodex System 3 (Shirley, New York, USA) was used

to measure MVICs of tibialis anterior, soleus, gastrocnemius lateralis and gastroc-

nemius medialis.

6.2.3 Protocol

Before commencing the experiment, limb dominance was determined by asking

the participant to kick a football. The participant’s dominant leg (left) mus-

cles were palpitated, namely, tibialis anterior, soleus, gastrocnemius lateralis and

gastrocnemius medialis in order to locate appropriate sites to fix surface EMG

electrodes. For accuracy of placement of EMG electrodes, guidelines described

by Rainoldi et al. (2004) were followed as represented in Table 6.3.
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Table 6.3: Reference lines, anatomical landmarks, and IZ locations (Rainoldi

et al., 2004)

Muscles Reference lines and anatomical land-

marks

IZ locations

Gastrocnemius

medialis

The percentage distance from the medial

side of the popliteus cavity to the me-

dial side of the Achilles tendon insertion,

starting from the Achilles tendon

50.3±5.7%

Gastrocnemius

lateralis

The percentage distance from the lateral

side of the popliteus cavity to the lat-

eral side of the Achilles tendon insertion,

starting from the Achilles tendon

61.2±5.1%

Tibialis anterior The percentage distance from the

tuberosity of tibia to the inter-malleoli

line, starting from the tuberosity of tibia

15.5±4.2%

Soleus The percentage distance from the

tuberosity of tibia to the medial side of

the Achilles tendon insertion, starting

from the Achilles tendon

76.3±3.7%

The guidelines mentioned in Table 6.3 were used because Rainoldi et al. (2004)

described the importance of innervation zone (IZ, which is the location where

nerve terminations and muscle fibers are connected) and placement of the elec-

trodes on the IZ would result in data variability and ambiguous EMG values.

According to Rainoldi et al. (2004), the optimum site for electrode placement

would be areas between IZ and tendon terminations.

6.2.4 Recording, processing and normalisation of surface

EMG

Having marked the appropriate sites, the skin was prepared by lightly shaving the

marked region and wiping it with 70% alcohol wipes. Circular surface electrodes

in a bipolar configuration (Ag/AgCl, 10 mm diameter, 20 mm interelectrode dis-
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tance) were firmly affixed to the dominant leg of the participant. The participant

was then seated in a Isokinetic Dynamometer Biodex System 3 (Shirley, New

York, USA) with his upper body firmly braced. For familiarisation, a warm-up,

specific to the MVIC movements (plantarflexion and dorsiflexion at 0 ±15◦ ankle

angular positions) and at least one practice contraction was completed (Ruther-

ford et al., 2011). When the participant reported satisfactory familiarisation,

three five-second maximal isometric contractions were completed for each exer-

cise. His dominant foot was on the foot rest and was asked to perform MVICs

by plantarflexing and dorsiflexing at 0±15◦ ankle angular positions (Rutherford

et al., 2011). Verbal encouragement was given to the participant to fascilitate

maximal effort during each recording with a five-second rest between each trial.

An eight-channel TeleMyo 2400 EMG system (Noraxon, Scottsdale, Arizona,

USA) was used to record surface EMGs from the triceps surae muscle group and

tibialis anterior during MVICs and quiet stance (eyes open and eyes closed con-

ditions). The surface EMG signal was amplified with a gain of 1000. Common

mode rejection rate and input impedance were 100 dB and 1 MΩ, respectively.

The raw EMG signals were band-pass filtered online using a fourth-order, But-

terworth filter, with cut-off frequencies of 1 and 500 Hz.

EMG signals were corrected for bias, full wave rectified and low-pass filtered

(Butterworth, 4th order, cut off frequency, 1 Hz). A 100 ms moving-average

window, advancing one sample at a time identified the maximal EMG amplitude

for each muscle in all trials of three MVIC exercises (Hubley-Kozey et al., 2006).

The peak amplitude regardless of the exercise was considered the MVIC used to

normalize the EMG data from the standing trials.

6.2.5 Lower extremity three dimensional (3D) modelling

and signal processing

After the MVIC test the participant was prepared for the motion capture exper-

iment. Before the the experiment was performed two 400x600 mm Kistler plates

9286AA (Winterthur, Switzerland) were placed adjacent to each other on a flat

level surface in focus of 10 infrared camera systems (Qualisys system, Gothen-

burg, Sweden). The participant was then instructed to stand on the Kistler force
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plates (one leg on each plate with a distance of 0.16m from right medial malleolus

to the left medial malleolus) for 100s in their natural stance and to stand as still

as possible with eyes open and arms at their sides.
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Figure 6.1: Static trial vertical ground reaction force (GRF) for (A) right leg and

(B) left leg during quiet stance for 10s.

A static trial for 10s with the participant’s eyes open was undertaken to

ascertain the participant maintained approximately equal loading on each leg

as shown in Figure 6.1.

Standardised positioning between trials was ensured by marking the outline

of the participants feet on the force platform. Three trials alternating between

eyes open and eyes closed were recorded with 2 min breaks for every second trial.

After acquiring the raw data from Qualisys Track Manager (QTM v2.8) it

was exported to Visual 3D v5 (C-Motion, Rockville,US) in .C3D format for 3D

model building and signal processing. This section gives an insight towards signal

processing, 3D model building and the outputs generated from this software.

The modelling procedure involved identification and monitoring the trajectory

of segmental movement in the X,Y,Z plane of the laboratory. This was achieved

by making use of rigid clusters which defined the segments in the static trail.

The markers not only identified proximal and distal aspects of the segments but

also the lateral and medial aspects of each joint. The data gathered from marker

positions was used to compute individual segmental parameters as listed in Table
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6.4

Table 6.4: Segmental parameters, definition and orientation used in modelling

quiet stance in Visual 3D.

Parameters Segment

Pelvis Thigh Shank Foot

Proximal Lateral LPSIS GT LKNEE LANK

Joint n/a Hip Joint n/a

Medial MPSIS n/a MKNEE MANK

Distal Lateral GT LKNEE LANK 5th MTH

Joint n/a

Medial GT MKNEE MANK 1st MTH

Segmental Cylinder Cone Cone Cone

geometry

Segmental mass

(proportion to 0.142 0.1 0.0465 0.0145

total patient

mass)

For ease of modelling it was assumed that each segment was a rigid structure.

Segment definition based on marker-based information allowed modification for

various aspects of each segment. Estimation of segmental mass was done by

calculating the percentage of the total subject mass using regression equations

developed by Dempster (1955). Segment geometry assessment with their inertial

values were selected from previous anthropometric reports (de Leva, 1996). Once

each segment had been defined, a skeletal model was generated for the static file.

The model acted as a template when assigned to the eyes open and eyes closed

dynamic files.

After the skeletal model was built which processed some of the raw data sig-

nals, marker trajectories were interpolated via a cubic spline algorithm with a

maximum frame gap of ten. The raw kinetic data and the marker trajectories

were rigorously filtered to remove high frequency noise using a low pass But-

terworth filter with a cut-off frequency of 1.5 Hz (Gage et al., 2004). Relative
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orientation of the local coordinate systems of two segments making up a joint and

an X,Y,Z cardan sequence was used to define kinematic measures in Visual 3D.

Joint moment was calculated based on the dynamics of the mathematical model

described in Chapter 3.

6.3 Results

This section presents the outcome of the experiment carried during quiet stance.

The experimental results show that during quiet stance the ankle range of motion

remains unchanged bilaterally for eyes open and eyes closed condition. Angular

sway of the shank (α) described in Chapter 3 was used as initial starting point for

model simulation in Chapter 5 has been measured and presented in this section.

The gravitational torque was also calculated together with the amount muscle

activity during quiet stance. Although, a relationship between force generated

and EMG has not been established in this study, the EMG values during quiet

stance were compared against MVICs values to gauge the percentage activity of

triceps suare muscle group and tibialis anterior which are the dominant muscles

of units CD and AB, respectively in the MSD model described in Chapter 3.
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Figure 6.2: Mean ankle joint trajectory for three trials during quiet stance mea-

sured bilaterally. Figure A illustrates eyes open mean right ankle joint trajectory

with a standard deviation of 0.1; Figure B illustrates eyes closed mean right ankle

joint trajectory with a standard deviation of 0.2; Figure C illustrates eyes open

mean left ankle joint trajectory with a standard deviation of 0.1 and Figure D

illustrates eyes closed mean left ankle joint trajectory with a standard deviation

of 0.1.

Figure 6.3 shows the angular trajectory of the ankle joint during quiet stance

for conditions eyes open and eyes closed. During eyes open condition as shown

in Figure 6.3A, the maximum and minimum ankle angular displacement of the

right ankle is 75.82◦ and 75.50◦ respectively. For eyes closed condition as shown

in 6.3B, the maximum right ankle angular displacement is 76.10◦, however, the

minimum right ankle angular displacement remains unchanged at 75.50◦. Simi-

larly in figure 6.3C, maximum and minimum left ankle angular displacement for

eyes open condition are 72.51◦ and 71.95◦ respectively. But for the eyes closed

condition as shown in figure 6.3D, the maximum and minimum left ankle angular
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displacement recorded 72.73◦ and 72.13◦, respectively. The ankle range of motion

(bilateral) for eyes open and eyes closed condition was 0.6◦.

0 50 100
2.3

2.4

2.5

2.6

2.9

Time (s)

E
ye

s 
op

en
rig

ht
 le

g
gr

av
ita

tio
na

l
to

rq
ue

 (
N

.m
)

0 50 100
2.6

2.65

2.7

2.75

2.8

3

Time (s)

E
ye

s 
cl

os
ed

 
le

ft 
le

g
gr

av
ita

tio
na

l 
to

rq
ue

 (
N

.m
)

0 50 100
2

2.2

2.4

2.6

2.8

3

Time (s)

E
ye

s 
op

en
le

ft 
le

g
gr

av
ita

tio
na

l
 to

rq
ue

 (
N

.m
)

0 50 100

2.5

2.6

2.7

2.8

2.9

Time (s)

E
ye

s 
cl

os
ed

rig
ht

 le
g

gr
av

ita
tio

na
l 

to
rq

ue
 (

N
.m

)

DC

A B

Figure 6.3: Torque induced by gravity during quiet standing for eyes open and

closed conditions for the angle range of motion of 0.6◦.

Figure 6.3 shows the gravitational torque produced during quiet stance for eyes

open and eyes closed condition of both the right and left lower extremities. For

eyes open condition, the right foot recorded a maximum posterior gravitational

torque of 2.64 N.m as shown in Figure 6.3A and a maximum anterior gravitational

torque of 2.35 N.m. The right foot, as shown in Figure 6.3B for eyes closed

condition, measured a maximum posterior gravitational torque of 2.87 N.m and

a maximum anterior torque of 2.42 N.m. Similarly, for the left foot as shown

in Figure 6.3C, for eyes open condition, the maximum posterior and anterior

gravitational torque of 2.83 N.m and 2.52 N.m, respectively; whereas for eyes

closed condition as shown in Figure 6.3D the maximum posterior and anterior

gravitational torques were 2.97 N.m and 2.64 N.m, respectively.
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Table 6.5: Gravitational toppling torque bilateral comparison during quiet stand-

ing for eyes open and closed conditions.

Sway Right foot Left foot Right foot Left foot

eyes open eyes open eyes closed eyes closed

(N.m) (N.m) (N.m) (N.m)

Maximum 2.64 2.83 2.87 2.97

Anterior

Maximum 2.35 2.52 2.42 2.64

Posterior

% difference 12.34 12.30 18.60 12.50

>maximum anterior

Mean torque 2.44 2.77 2.48 2.85

Table 6.5 summarises the gravitational torque values of anterior-posterior

sway during eyes open and eyes closed conditions. It was observed that dur-

ing eyes open condition, the posterior torque was 12.34% and 12.30% less than

the torque generated anteriorly in the right and left foot, respectively. Similarly,

for eyes closed condition the posterior torque was 18.60% and 12.50% less than

the anterior torque for right and left foot, repsectively. The overall mean torque

(3 trials) in the right foot for eyes closed condition was 1.64% greater than the

mean torque generated during eyes open condition. Similarly, for the left foot

eyes closed condition, the overall mean torque (3 trials) was 2.88% greater than

eyes open condition.
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Figure 6.4: Bilateral angular sway of the shank during quiet stance for eyes open

and eyes closed conditions.

Figure 6.4 shows the angular sway (anterior-posterior) of the body during

quiet stance for eyes open and eyes closed conditions. As there was no application

of external perturbation, the maximum anterior and posterior sway angles were

relatively small at 0.002◦ and 0.001◦, respectively. The calculation of angular

of angular sway can be represented as difference between the initial and final

position of the rotation of the ankle joint with respect to the shank segment.

The angular sway angle should not be confused with the range of motion of the

ankle joint during quiet stance which is the difference between the maximum and

minimum ankle joint angles.
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Left shank, eyes closed condition

A

Right shank, eyes open condition

Left shank, eyes open condition

Right shank, eyes closed condition

dorsiflexion

dorsiflexion

plantarflexion

D

plantarflexion

dorsiflexion

plantarflexion

dorsiflexion

plantarflexion

Figure 6.5: Amount of plantarflexion and dorsiflexion during anterior-posterior

sway of the shank for eyes open and eyes closed conditions during quiet stance.

Figures 6.5A and B show a sway pattern of the right shank during the eyes

open and eyes closed conditions having an unchanged ankle range of motion of

0.6◦. The maximum plantarflexion for eyes open condition was 0.4% and dorsi-

flexion peaked at 0.48% of the ankle range of motion. Similarly, for eyes closed

condition, the maximum dorsiflexion was 0.29% and the maximum plantarflexion

peaked at 0.28% of the ankle range of motion.

Figure 6.5C illustrates the sway pattern of the left shank for the eyes open con-

dition during quiet stance where the maximum dorsiflexion achieved was 0.34%

and maximum plantarflexion was measured at 0.32% of 0.6◦ range of motion of

the ankle joint.

Similarly, Figure 6.5D illustrates the sway pattern of the left shank for eyes

closed condition during quiet stance within the range of motion of the ankle joint.

The response starts with shank moving in the posterior direction which evokes a

plantarflexion response of the ankle joint. Once it has reached its peak, the shank
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proceeds to complete the second half of the postural response by dorsiflexing,

causing the shank to move in the anterior direction. The maximum amount of

dorsiflexion of the ankle joint is 0.36% of the ankle joint range of motion (0.6◦)

during postrior sway of the shank. The maximum plantarflexion achieved in the

same context was 0.27% of the ankle range of motion.

EMG measurements were recorded, synchronised with the motion capture

time for eyes open and eyes closed conditions during quiet stance. The EMG

measurements (filtered and processed, refer to Section 6.2.4) were then compared

with the maximal voluntary isometric contractions for tibialis anterior, gastroc-

nemius latralis, gastrocnemius medialis and soleus muscles, comparisons of which

is given in Table 6.6.

Table 6.6: Filtered electormygraphical activity during quiet stance compared

with maximal isometric voluntary contraction (MVIC). The data presented in

this table is the overall average of 3 trials. The standard deviation (S.D.) is

presented alongside the mean values.
Muscles Peak Peak Mean(S.D.) Peak Mean(S.D.)

MVIC Eyes Eyes Eyes Eyes

(µV) Open (µV) Open (µV) Closed (µV) Closed (µV)

Gastrocnemius

latralis 237.73 6 3.52(0.63) 6 3.46(0.51)

Gastrocnemius

medialis 194.62 12 2.77(0.45) 11 2.87(0.48)

Soleus 285.47 8 5.13(0.10) 12 5.58(0.82)

The tibialis anterior muscle was found to be “silent” during both eyes open

and eyes closed condition, but the triceps surae group consisting of (gastroc-

nemius lateralis, gastrocnemius medialis and soleus) exhibited a fair amount of

activity with maximum values of 6, 12 and 8µV, respectively for eyes open con-

dition and 6, 11 and 12µV, respectively for eyes closed condition during 100s

of quiet stance. The overall mean EMG activity during the duration of the ex-

periment for gastrocnemius lateralis, gastrocnemius medialis and soleus was 3.52,

2.77 and 5.13µV, respectively for eyes open condition whereas for eyes closed con-

dition the overall mean EMG activity for the same were 3.46, 2.87 and 5.58µV.

The gastrocnemius lateralis activity showed 2.10%, while gastrocnemius medialis
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and soleus evoked 2.05% and 3.15% in relation to MVICs during eyes open condi-

tion. A similar comparison was conducted for eyes closed condition which showed

the gastrocnemius lateralis, gastrocnemius medialis and soleus 2.52%, 5.65% and

4.20% activity of MVICs.

6.4 Discussion

During quiet stance in the experiments, for eyes open and eyes closed condi-

tions, the ankle range of motion remained constant at 0.6◦ which was expected

as there was no external perturbation applied to generate any planterflexion or

dorsiflexion. However, the amount of sway during quiet stance was assessed by

normalising angular sway of the shank to the range of motion of the ankle joint.

This investigation looked closely into quiet stance and the movements recorded

are very subtle. It was found that the bilateral angular sway of the shank was

greater during dorsiflexion than plantarflexion of the ankle joint in both eyes

open and eyes closed conditions. It can be inferred that ankle dorsiflexion oc-

curred during anterior sway which is in accordance with the conclusions drawn

by Gage et al. (2004).

In postural balance, considerable importance has been attached to torques

generated at the ankle joint which can be both active and passive (Vette et al.,

2010). Passive torque components are the result of tension/stiffness produced by

muscles tones and by the stiffness of the surrounding tissue, such as ligaments

and tendons (Masani et al., 2003). However, the stabilisation of quiet stance

by passive torque alone is a very challenging task, and an active component is

required to maintain stability (Pietro and Schieppati, 1999). The active torque

component is controlled by the CNS, which controls muscle contractions based

on the overall body kinematics and dynamics of spontaneous body sway that are

influenced by external disturbances (Pietro and Schieppati, 1999; Winter, 1990;

Winter et al., 1996). However, the torque generated during quiet stance, where

there is absence of an externally applied force, can be considered passive in nature.

During anterior sway, the torque generated is greater than that of posterior sway.

In order to have a clear understanding of anterior posterior sway during quiet

standing EMG activity was measured for tibialis anterior, gastrocnemius lateralis,
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gastrocnemius medialis and soleus muscles. There have been extensive studies on

muscle activity during perturbed quiet stance (see reviews in Horak and Macpher-

son (1996); Scott Kelso and Kenneth (1981)) but only a few during unperturbed

quiet stance (Gatev et al., 1999; Joseph, 1960; Joseph and Nightingale, 1952;

Masani et al., 2003). These studies of muscle activity during unperturbed quiet

stance have underlined the importance of tibialis anterior, gastrocnemius lateralis,

gastrocnemius medialis and soleus muscles, congruous with the hypothesis that a

single segment inverted pendulum would be an appropriate conjecture for quiet

upright stance (Saffer et al., 2008) which is in accordance with the hypothesis

presented in this thesis.

The tibialis anterior muscles was found to be “silent” on both eyes open and

eyes closed conditions which is in accordance with previous literature Borg et al.

(2007); Joseph (1960) contrary to the study by Giulio et al. (2009). However, the

gastrocnemius lateralis, gastrocnemius medialis and soleus muscles showed some

amount of activity. The experiment conducted shows that muscle activity in the

triceps surae group is slightly greater during anterior sway than posterior sway

which is accordance to the study conducted by Borg et al. (2007). As previously

demonstrated, anterior sway evokes dorsiflexion at the ankle joint which could

be an explanation as to the reason for marked EMG activity at the triceps surae

muscle group which corroborates with the studies by Joseph (1960); Joseph and

Nightingale (1952). The percentage of EMG activity of the triceps surae during

quiet stance vs MVIC were found to be within the range Nagai et al. (2011);

Panzer et al. (1995).

This preliminary case study evaluates the intrinsic model described in Chap-

ter 3 as the model calculations were incorporated in the 3D model described

in Section 6.2.5. However, the mechanical parameters such as the stiffness and

damping of individual muscles, tendons and ligaments could not be measured

with this experimental setup and is challenging as to obtain accurate measure-

ments in-vivo studies need to be performed. The EMG values reported for the

triceps surae muscle group are greater than tibialis anterior which was found to

be silent. In the model simulations reported in Chapter 5, unit CD (consists of

triceps surae) showed a significantly greater internal values as compared to unit

AB (consists of tibialis anterior). Hence, it can be inferred that triceps surae plays
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a dominant role in maintaining upright stance. In the experiments described in

this chapter, internal perturbation could not be ruled out hence the destabilis-

ing gravitational torque generated have been compared with the simulation with

internal perturbation in subsequent chapter to further evaluate the model.

This study is not without its limitations. During the motion capture exper-

iments, there was minimal movement of the knee joint while the the inverted

pendulum has considered the knee joint to be immobilised. There have been

reports where knee joint movement have been considered to be a factor in main-

taining quiet upright stance (Kimura and Kouzaki, 2013; Runge et al., 1999). The

motion capture data would give anterior-posterior as well as medio-lateral sway

data, however, medio-lateral sway is out of the scope in the present study as the

inverted pendulum model is restricted to only anterior-posterior sway. In order

for the inverted pendulum model to be validated more rigorous experiments need

to be carried out with a large number of subjects with a robust statistical analy-

sis. However, the basic experimental protocol and inclusion of the mathematical

model into a 3D lower extremity model has been reported in this chapter which

would serve as guidelines for future work. Model extension and its implications

have been described in more detail in Chapter 8.
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Chapter 7

Mass-spring-damper model

simulations with internal

perturbation

7.1 Introduction

This chapter evaluates the model further by using data obtained from the case

study from Chapter 6. The simulation results in Chapter 5 show that the inverted

pendulum model developed in this thesis is affected by the change in mechanical

conditions of the system. It has been found that when the overall stiffness of the

inverted pendulum was kept at 100% along with damping it was by far the most

stable and plausible mechanical condition for quiet stance about the ankle joints.

In this chapter the response of the same system will be further studied under

internal perturbation to ascertain the conclusions drawn in Chapter 5.

As the human body is composed of multi-link segments any movement will

cause involuntary perturbation of the equilibrium position. Internal perturbations

are difficult to quantify experimentally (Nomura et al., 2013; Suzuki et al., 2012),

hence random noise of low frequency was introduced into the mass-spring-damper

system. In the past, various theoretical studies (Asai et al., 2009; Bottaro et al.,

2008; Conforto et al., 2001; Schmid et al., 2004) have been undertaken to mimic

internal perturbation and its effect on sway size, however, the effects of internal
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perturbation on an intrinsic inverted pendulum modelling quiet stance has not

been investigated. In this chapter, the applied internal perturbation will further

determine which mechanical condition would be a plausible candidate for keeping

the human body upright during quiet stance. In Chapter 5, it has been concluded

that damping with 100% stiffness shows the best response for anterior-posterior

sway during quiet stance. However, it has been known that internal perturbation

will increase sway size (Asai et al., 2009; Bottaro et al., 2008) which would in

turn increase the amount of destabilising gravitational torque.

In this current study, it is hypothesised that the internal perturbations will

increase sway size and increase the gravitational torque attempting to destabilise

the system, however, the internal torque generated would be still greater to main-

tain the system at its equilibrium position. The mechanical condition, damping

with 100% stiffness, would be the plausible candidate for intrinsic inverted pen-

dulum models for unperturbed quiet stance.

7.2 System response with internal perturbation

condition

Postural equilibrium is the condition in which all the forces acting on the body

are balanced such that the CoM is controlled relative to the base of support,

either in a particular position or during movements. Control of balance, or equi-

librium, can be reactive, that is, in response to external forces displacing the

CoM, or proactive, as occurs in anticipation of internally generated, destabilising

forces imposed by the body’s own movements. Both external forces (includ-

ing gravity and forces related to interaction with the environment) and internal

forces (which are generated during all body movements, even respiration) ulti-

mately act to destabilise the body by moving its CoM. The role of the nervous

system is to detect and predict instability and produce the appropriate muscle

forces that will complement and coordinate with all the other forces acting on the

body so that the CoM is well controlled and balance is maintained. So far, the

simulation was not comprised of any internal perturbations. In the subsequent

sections of this chapter the responses of the mass-spring-damper system will de-
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pict sway in the presence of an internal perturbation by adding random noise of

v = 0.01 sin(2πfgt+w), where the frequency fg= 0.3 Hz and w is an independent

random Gaussian variable having zero mean with variance of 0.5.
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Figure 7.1: Angular displacement of the shank when α(0) = 0.0002 rad during

internal perturbation. Figure (A) shows the response of the system in the presence

of damping and 100 % stiffness parameters of muscles, tendons and ligaments.

Figure (B) shows the response of the system for stiffness only condition.

Figure 7.1 depicts the angular displacement response of the mass-spring-

damper system for three different mechanical conditions. In Figure 7.1A, the

maximum anterior sway was at 0.0002 rad and the maximum posterior sway was

-0.0002 rad. There is a definite convergence towards the zero. However, in case

of Figure 7.1B, the maximum anterior and maximum posterior sway peaked at

0.00024 rad and -0.0002 rad, respectively and slowly diverges away from the zero

position.

Quiet stance is characterised by the anterior position of the centre of mass

relative to the ankle. Accordingly, tonic postural activity is predominant in the

posterior leg and trunk muscles. Such posture is probably a result of physical

constraints imposed on maximal torques exerted differently by the ankle flexors

and extensors. The length of the anterior portion of the foot (relative to the ankle
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joint axis) is greater than that of the posterior portion. The anterior position of

the centre of mass partially compensates for this asymmetry.
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Figure 7.2: Torque generated due to gravity when α(0) = 0.0002 rad during

internal perturbation. Figure (A) shows the response of the system in the presence

of damping and 100 % stiffness parameters of muscles, tendons and ligaments.

Figure (b) shows the response of the system for the stiffness only condition.

Figure 7.2 depicts the gravitational torque generated during anterior-posterior

sway of the mass-spring-damper system of the inverted pendulum during quiet

standing. The negative torque here suggests an anterior position as the system

started anteriorly when α(0) = 0.0002 rad; conversely the generation of positive

torque would be due to posterior sway of the mass-spring-damper system. This

is true for both conditions. In the first instance shown in Figure 7.2(A), the

maximum posterior torque generated was 0.06 N.m while the maximum anterior

torque was -0.06 N.m. In the second instance shown in Figure 7.2(B), the gravita-

tional torque acting on the system, the maximum posterior torque and maximum

anterior torque values were 0.063 N.m and -0.07 N.m, respectively.
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Figure 7.3: Total internal torque generated by the system when α(0) = 0.0002

rad during internal perturbation. Figure (A) shows the response of the system in

the presence of damping and 100 % stiffness parameters of muscles, tendons and

ligaments. Figure (B) shows the response of the system under the stiffness only

condition.

Figure 7.3 shows the response of the internal torque generated during anterior-

posterior sway of the mass-spring-damper inverted pendulum model for quiet

stance. Under the condition of damping with increased stiffness, Figure 7.3A

recorded a maximum torque of -0.30 N.m for anterior sway and maximum internal

torque of 0.30 N.m for posterior sway. In the second instance, for the stiffness

only condition, Figure 7.3B shows a maximum torque of -0.33 N.m during anterior

sway and 0.32 N.m for posterior sway.
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Figure 7.4: Internal torque generated at units AB, CD, EF and GH when α(0) =

0.0002 rad during internal perturbation.

Figure 7.4 shows the internal torque response of unit AB under damping with

100% stiffness condition. Unit AB, positioned anteriorly to the shank, consists

of tibialis anterior which is the dominant muscle of this unit. In Figure 7.4A, the

maximum torque recorded (anterior sway) was -0.0004 N.m and the maximum

torque for posterior sway was 0.0003 N.m. In Figure 7.4B, the maximum torques

for anterior and posterior sway were -0.24 N.m and 0.22 N.m, respectively. In

Figure 7.4C, the maximum anterior and posterior torques were recorded at -0.04

N.m and 0.04 N.m, respectively. Lastly, in Figure 7.4D the maximum anterior

and posterior sway torques were -0.03 N.m and 0.03 N.m, respectively.
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7.3 Discussion

When all the forces acting on the body are balanced for a set position or move-

ment, i.e. the CoM of the body relative to its small base of support, the foot,

it is deemed that postural equilibrium is attained (Horak et al., 1997). This

equilibrium can be controlled either by reacting to externally applied forces such

as gravity and forces generated because of environmental factors or proactive

control, which regulates the position of the CoM of the whole body. Moreover,

internal forces are generated during all body movements (including respiration)

and ultimately act to destabilise the body (Horak et al., 1997). This thesis how-

ever is concerned with maintaining equilibrium during quiet stance without the

application of external perturbations.

Quiet stance can be considered as the precursor to locomotion. The simula-

tions conducted in this chapter demonstrated the influence of mechanical proper-

ties of muscles, tendons and ligaments during quiet stance. The model developed

in this thesis is further evaluated by the results obtained through a preliminary

case study described in Chapter 6. In the case of quiet stance, the intended equi-

librium position was slightly anterior, α(0)=0.0002 rad and the instability was

gravity driven.

Most inverted pendulum models for quiet stance (Collins and De Luca, 1993;

Flis and Peplowski, 2000; Gatev et al., 1999; Kiemel et al., 2002; Masani et al.,

2003; Webber et al., 2004; Winter et al., 1998) do not report angular displacement

and of anterior-posterior sway. When stiffness only condition was simulated the

anterior angular displacement of the shank started to increase from the initial

condition of α(0)=0.0002 rad suggesting divergence from its precision point Figure

7.1, rendering the inverted pendulum system unstable. It has already shown in

Chapter 5 that damping with 75% to 100% stiffness is better suited to simulate

human bipedal quiet stance about the ankle joints. The simulation results with

internal perturbation shows equivalency in results and does not destabilise the

system. In the absence of damping shows that the system would oscillate away

from its intial starting position and would eventually lead to a fall. However the

presence of damping would suggest rigidity of the body. These conclusions drawn

from this study are in accordance with the stiffness and damping study on an
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inverted pendulum conducted by (Johansson et al., 1988).

Inverted pendulum models concerned with parametric estimation have earlier

been modelled by Haldo (1979) and Ishida and Miyazaki (1987) where sponta-

neous sway was studied. There are, however, systematic statistical difficulties

with analyses of spontaneous motion in closed loop control systems (Ljung, 1986;

Soderstrom, 1984). These problems were overcome by developing an intrinsic

inverted pendulum model in this thesis.

Considering only the ankle strategy for quiet stance, anticipatory postural

adjustment was ignored because the movements are very subtle and furthermore

in the absence of internal perturbation, the shank pivoted at the ankle joint con-

nected by soft tissues (muscles, tendons and ligaments) constrained to act like

a mass-spring unit (Scott Kelso and Kenneth, 1998). However, the addition of

damping further brings out the viscoelastic properties of the soft tissues. The

study by Asatryan and Feldman (1965) showed that variations of mass-spring

account of limb localization minimises many problems confronted by theorists

in movement control. One of the main reasons could be that it is intrinsically

self-equilibrating; once set in motion the spring will always return to the same

resting length for any particular load value. Neither an increase in initial de-

flection of the spring from its resting length nor temporary perturbations will

prevent the achievement of equilibrium point, a property known as equifinality

(von Bertalanffy, 1973).

It seems clear that when viscoelastic properties of muscles, tendons and liga-

ments are considered it is not the kinematic features, but the dynamic parameters

of mass, stiffness and damping that take precedence for the regulation of move-

ment. It is the specification of the dynamic parameters that determine kinematic

details. Variability in these parameters will affect the equilibration process only in

terms of the observed kinematics but not in terms of achievement of equilibrium

position.

The figure 7.1 shows that under the mechanical condition, damping with 100

% stiffness, the shank angular displacement response is more plausible than the

stiffness only condition. This is instrumental when comparing simulated (internal

perturbation) gravitational torque values with experimental values calculate in

Chapter 6. The model described in Chapter 3 of this thesis does not differentiate
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between eyes open or eyes closed condition and it is assumed that ankle angle

of the left leg and right leg were equal for anterior-posterior sway of the shank

during quiet stance. The preliminary case study conducted in Chapter 6 revealed

that average ankle angular displacement for 100s was α=0.0002 rad for both legs

which became the initial starting point for the simulations. The simulations in

this chapter revealed that the internal torque values of the system were consid-

erably greater than the the gravitational torque which balances the shank at the

equilibrium position.

Several models have proposed introducing noise as internal perturbation in

order to mimic physiologically realistic conditions such as haemodynamics (No-

mura et al., 2013) or a collective measure of internal perturbations (Suzuki et al.,

2012; van der Kooij et al., 2005). The internal perturbation induced in the cur-

rent model is much lower than those in Nomura et al. (2013); Suzuki et al. (2012);

van der Kooij et al. (2005) in order to replicate plausible sway patterns during

quiet stance (i.e. no exaggerated sways). The internal perturbation introduced

in the current MSD model developed in this thesis further demonstrates that

the damping with 100% stiffness is a more plausible mechanical condition that

explains the biomechanical functionality of quiet stance. Most unperturbed quiet

stance models (Kiemel et al., 2011; Masani et al., 2003; Maurer and Peterka, 2005;

Van Der Kooij and De Vlugt, 2007; Vette et al., 2010) show that the involvement

of the nervous system is bare minimum, hence the gravitational torque produced

during anterior-posterior sway would be relatively small when compared against

perturbed quiet stance. The EMG results reported in Chapter 6 also show very

low muscle activity when compared with MVICs. This suggests that passive

intrinsic inverted pendulum model developed in this thesis adheres to the biome-

chanical functionality of quiet stance at the ankle joints.

These findings suggest that the MSD inverted pendulum model serves to con-

trol joint torque rather than to control length of the muscle. This perspective

meshes well with a dynamic analysis of movement at a limb segment level and

suggests a characterisation of posture in terms of torque (Nashner, 1970). This

torque implies two forces, compressive thrust and tension, with non-coincident

lines of action so that they can act together as a ”couple” (Nashner and Mc-

Collum, 1985). The tibia thrusts downward on the ankle joint and the Achilles
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tendon pulls upward on the heel to develop torque across the ankle joint. The

foot in turn thrusts down against the ground but there is no tension force between

the foot and the ground. The ankle torque shifts the point of application of the

thrust against the ground forward towards the ball of the foot. The centre of

mass remains throughout in equilibrium over the support and no further correct-

ing activity is called for, provided the forward thrust is countered by the internal

torque generated by the body as shown repeatedly in the simulation results in

this chapter. The hypothesis that internal torque has to be greater that the grav-

itational torque produced during quiet stance in order for the body to remain

in upright position is in accordance with the conclusions drawn by Nashner and

McCollum (1985). It is important to point out that the role played by internal

torque for maintaining balance so far has been ignored in subsequent intrinsic

models proposed till date.

7.3.1 Significance of AB, CD, EF and GH units in quiet

stance

Tibialis anterior is the dominant muscle of unit AB and plays a functional role

in maintaining balance (Day et al., 2013). However, during quiet stance, surface

EMG recording revealed this muscles to be “silent” which was in accordance with

Basmajian and DeLuca (1985); Borg et al. (2007); Joseph (1960). Simulations

on the other hand demonstrated that the tibialis anterior did indeed generate

internal torque and was less than the gravitational torque as shown in Figure 7.4.

However, it is possible that surface EMG would yield a certain amount of muscle

activity in tibialis anterior during quiet stance (Giulio et al., 2009). It shows that

tibialis anterior muscle is does not play a major role in stablising upright posture

during quiet stance.

Unit CD consists of the dominant triceps suare muscle group which consist of

gastrocnemius lateralis, gastrocnemius medialis and soleus. Surface EMG mea-

surements showed a certain amount of activity in these muscles during quiet

stance as reported in Chapter 6. Simulations have showed that the internal

torque generated by unit CD was the highest compared to AB, EF and GH as

illustrated in Figure 7.4. This suggested that unit CD consisting of triceps surae
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muscles and the Achilles tendon, played a crucial role in maintaining the equi-

librium position of the shank during quiet stance (Gurfinkel et al., 1974; Loram

and Lakie, 2002; Morasso and Sanguineti, 2002; Winter et al., 2001). One ex-

planation could be that, as the person was in quiet stance, the line of gravity

then lay anterior to the knee and ankle joints, therefore, the position of the CoM

of the body would be in the anterior to the ankle joint. This would effectuate

passive torque around the ankles, which would in turn facilitate activation of the

triceps surae muscles and initiate a passive pull on the Achilles tendon, pulling

the shank towards the equilibrium position initiating posterior sway. Mechan-

ically, it would seem that the position of the shank, and in turn the centre of

mass was being corrected continuously to counter the destabilising effects of the

gravitational torque, hence making the shank oscillate at its equilibrium position

The remaining units EF and GH having a heavier concentration of ligaments

than units AB (1 ligament) and CD (no ligaments) showed marked internal torque

values as shown in Figures 7.4 and 7.4, which could be because they played more

of a supporting role during anterior-posterior sway rather than being the primary

controllers of plantarflexion and dorsiflexion of the ankle joint. These units play

a passive role in guiding joint mobility during anterior-posterior sway contrary

to ligaments originating from the extremities of the ankle joint which resist joint

motion (Leardini et al., 1999a,b). The model developed in this thesis is concerned

with only anterior-posterior sway, however, when the model is extended to medio-

lateral sway units EF and GH would be expected to produce higher torque values.

The 9-element instrinsic inverted pendulum model developed in this thesis

investigates the anterior-posterior sway mechanism of unperturbed quiet stance.

It was hypothesised that the human body can maintain its upright stance pas-

sively once the muscles in units AB, CD, EF and GH are activated. In order

for the body to maintain its CoM at the equilibrium position the internal torque

generated during anterior-posterior sway needs to be greater than the destabil-

ising gravitational torque. The model in the current study, explored the effects

of anterior-posterior sway during quiet stance by considering the intrinsic linear

mechanical properties (stiffness and damping) of muscles, ligaments and tendons.

This study demonstrates that the damping with 100% stiffness condition is a plau-

sible mechanical condition that explains the biomechanics of anterior-posterior
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sway during unperturbed quiet stance. The model was tested by applying an

internal perturbation in the form of a Gaussian noise to replicate conditions such

as respiration and haemodynamics. The intrinsic inverted pendulum developed

in this thesis was able to maintain its equilibrium position passively without the

need of an active control mechanism.

The current model is not without its limitations. This intrinsic model is re-

stricted to anterior-posterior sway during quiet stance. In mass-spring-damper

models, change in stiffness and damping parameters will significantly affect pos-

tural sway and hence care has to be taken while “tuning” spring and damper

mechanical properties. The stiffness and damping dynamics were considered lin-

ear in this current model and there is a large difference in parametric values of

muscles, tendons and ligaments in the literature. This model has considered only

the ankle strategy with the assumption that the knee joints are immobilised.

However, the model can be extended to take into account large sway excursions

which would involve introducing a feedback control to maintain upright stance.

Future model derivation would involve adding the hip strategy and the consider-

ation of medio-lateral sways. Although, the current model does not differentiate

between eyes open and eyes closed conditions during quiet stance, future work

would involve introducing a sensory feedback to replicate eyes open and eyes

closed conditions. A more detailed outlook on model limitations and future work

is discussed in the next chapter.
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Chapter 8

Conclusion, limit of the study

and future work

8.1 Conclusion

Human bipedal stance, an inherently unstable system is made up of multiple

flexible segments and maintains an erect posture with its CoM located high above

a relatively small base of support, the ankle joint. The complexity of this system

and its ability to maintain equilibrium, despite various perturbations (internal

and/or external), have attracted the attention of many researchers in the field

and have inspired various theories (Asatryan and Feldman, 1965; Clifford and

Holder-Powell, 2010; Goswami, 1999; Imagawa et al., 2013; Kuo, 2007; Loram

et al., 2007; Murnaghan et al., 2009; Nashner, 1970) that try to explain the

control mechanism of bipedal quiet stance. However, the true nature of this

control mechanism is still an object of discussion and controversy till date.

The model developed in this work is more biomechanically detailed than those

in the existing literature (Jeka et al., 2004; Morasso and Sanguineti, 2002; Peterka,

2002; Winter et al., 1998, 2001). These previous models have only considered the

effect of muscle stiffness with respect to postural balance and have attributed little

or no importance to the role played by the damping nature of the muscle-tendon

unit. The 2×4 9-element multiple-MSDmodel takes into account a variety of mus-

cles, tendons and ligaments together with their damping co-efficients rendering
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a more realistic approach towards the mechanical behaviour of postural balance

with respect to the ankle joint. Moreover, this model can be used to estimate the

amount of torque produced at various musculoskeletal groups about the ankle

joint. This is useful when identifying muscle weakness groups and thus appro-

priate and timely biomechanical interventions could be prescribed; for strength

conditioning exercises may be recommended to improve muscle performance in

an aging population that is prone to falls and exhibits restricted mobility.

This study emphasises the need for detailed modelling of the ankle complex

to understand postural control. In this model the connections have been made

bilaterally between the shanks and feet by a number of MSD units. This would

be instrumental in analysing and numerically simulating anterior-posterior sway

during quiet stance, where the ankle acts as the fulcrum. The four units connect

the shank (tibia and fibula) to the phalanges of the foot, and the posterior,

lateral and to the medial aspects of the calcaneus. Each unit represented a

group of muscles, tendons and ligaments which are represented by a 9-element

MSD model. The series connection represented the muscle-tendon unit and the

parallel MSD unit represented the ligaments. The anterior-posterior sway results

in the geometrical change of length from the initial orientation of the four units.

The Lagrange d’ Alembert principle was used to derive 18 ordinary differential

equations, along with 9 algebraic equations to describe the human body dynamics

of anterior-posterior sway with respect to the ankle complex. The model was

parameterised with respect to the length changes, mass, stiffness and damping co-

efficient of every identified muscles, tendons and ligaments responsible for postural

control with respect to the movements about the ankle joints.

The ankle joint torque needed for the body to maintain its position at the

equilibrium point during quiet stance can elicit either an active or passive re-

sponse. Passive torque components can be thought as a product of the intrinsic

mechanical property, i.e. stiffness and/or viscosity, produced by muscles and

surrounding tissues, such as ligaments and tendons. It can be concluded that ad-

ditional torque acts as an active torque, which may be generated by active muscle

contraction. Since the CoM is located anterior to the ankle joint, plantar flexing

torque acts perpetually to prevent the body from falling forward (Smith, 1957).

However, the passive torque by itself is insufficient to ensure this required plantar
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flexing torque. Therefore, an additional active torque, regulated by the central

nervous system (CNS) and produced by the plantar flexors, is needed (Masani

et al., 2006).

In this study, it has been shown that anterior-posterior sway during quiet

stance can be modelled using intrinsic mechanical properties such stiffness and

damping properties of muscles, tendons and ligaments. A novel approach has

been taken by using Lagrange d’ Alembert principle, to resolve that the humans

acting as a classic inverted pendulum, can be balanced at its equilibrium point

by internal torques produced during anterior-posterior motion. The use of a

conventional control system has been avoided by assuming that the muscles are

already engaged during anterior-posterior sway as the quiet stance involves an

anterior tilt of the CoM, thus facilitates a passive contraction of the triceps surae

muscle group.

Considering the theoretical aspect of inverted pendulum modelling, it has

been observed that some models have considered non-symmetrical stiffness ma-

trix (Rozendaal and van Soest, 2007; Thomas Edwards, 2007) which required

low stiffness values of the segments and also they assumed the involvement of

externally applied torques. Contrary to their assumption, the intrinsic inverted

pendulum model consists of symmetrical stiffness matrix and no external active

torque has been considered. This lead to the consideration of high stiffness values

of muscles, tendons and ligaments which has been shown in the linear analysis in

Chapter 5. The damping with 100% stiffness mechanical condition was shown to

be the plausible candidate even under small internal perturbations as reported in

Chapter 7.

This current model also considered the effect of friction as a dissipative func-

tion which so far no other single inverted pendulum model has taken into account.

However, a study by van Soest and Rozendaal (2008) mentioned the role of fric-

tion as a possibility that could affect sway size. Based on the simulation results

conducted in Chapter 5 of this thesis, it was found that friction had negligible

effect on sway size on unperturbed quiet stance. Negligible effects of joint friction

could be because of several reasons:-

(1) the joint is surrounded by ligaments to hold it in place reducing bone to

bone contact;
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(2) during quiet stance, there is not enough translation and rotation between

the bone surfaces to increase frictional force;

(3) the high stiffness stiffness and damping values could perhaps mask the

effect of friction in the system.

The simulations undertaken in this study reports the differences in sway size

of the shank with respect to change in intrinsic muscle, tendon and ligament stiff-

ness and damping properties. The model has taken into account specific muscles,

tendons and ligaments and illustrates the effects it has on postural response based

on their individual functionality, bringing about significant geometrical issues so

far understudied to facilitate a more robust theoretical approach to the study

of postural balance. The model demonstrates the dominant functionality of the

calf muscles with respect to the mechanical aspect of postural balance during

anterior-posterior sway. This model however, shows the difference between the

unit CD (dominant muscle is triceps surae) and unit AB (dominant muscle tibialis

anterior) by comparing their individual unit internal torque and the destabilising

gravitational torque. These are quantifiable comparisons. However, other models

like Jeka et al. (2004); Morasso and Sanguineti (2002); Winter et al. (1998, 2001)

have only considered the effect of triceps surae muscle group based on low or

negligible EMG activity of tibialis anterior. However, even though the tibialis

anterior is a comparatively weaker muscle because of its smaller dimensions re-

sulting in smaller moment arms (van Soest and Rozendaal, 2008) the stiffness of

the model would be underestimated when ignoring tibialis anterior for modelling

unperturbed quiet stance.

The current study puts forth a novel intrinsic model for unperturbed quiet

stance with the focus on the ankle complex. This model has been tested for

different mechanical conditions as mentioned in detail in Chapter 5.

Numerical simulations conducted show that damping with 100% stiffness is

the more favourable mechanical condition for the human body to maintain up-

right posture during unperturbed quiet stance. The simulations were also per-

formed under low frequency Gaussian noise that would mimic internal pertur-

bation during quiet stance. These simulations showed that the sway size of the

shank increased which in turn produced greater destabilising gravitational torque.

However, the model was able to maintain its equilibrium position as the internal
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torque generated was significantly greater than the gravitational torque induced

at the ankle joint. The indirect measurements of internal torques of not only

the ankle joints as a whole but also that of individual units helped to determine

which muscle groups and the extent to which they were responsible for maintain-

ing balance during unperturbed quiet stance.

A 3D model was built on the basis of the equations used in Chapter 3 using

Visual 3D v5 (C-Motion, Rockville,US) where the using motion capture data for

a preliminary case study. This helped in generating empirical values for bilateral

ankle range of motion, gravitational torque and anterior-posterior sway size of

the shank with reference to the ankle joint. The EMG data collected for triceps

surae muscle group and tibialis anterior resulted in assessing which unit in the

mathematical model played a dominant role in maintaining balance. This study

lays the foundation for developing a 3D model based on intrinsic mechanical

properties exhibited by muscles, tendons and ligaments. The model however has

not been validated in this study. Model limitations and future work are discussed

in the subsequent sections.

8.2 Modelling and experimental limitations of

the study

The study has been limited to anterior-posterior sway during unperturbed quiet

stance. The model derived is focused on the ankle strategy as during unper-

turbed quiet stance the sway size of the shank is quite small and the ankle strat-

egy is enough to maintain upright posture (Alexandrov et al., 2005; Horak and

Nashner, 1986; Horak et al., 1997). The stiffness and the damping parameters

considered for muscles, tendons and ligaments were based on the concept of short-

range stiffness (Loram et al., 2007; Rack and Westbury, 1974). However, there

is apparent dearth in the current literature which required “tuning” of the mass-

spring-damper parameters of the model within a physiological range determined

from O’Brien et al. (2010). The model has not considered exact insertion and

origin points of every muscle, tendon and ligament as they were grouped together
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based on their biomechanical functionality.

The model developed in this study has not been validated, however, a prelim-

inary case study was conducted to lay the ground work for future studies to be

conducted and validate it. The experiments conducted was limited to the measur-

able parameters of the model. The motion capture experiment conducted could

measure the gravitational torque, the ankle range of motion and the sway size of

the shank relative to the ankle joints. The measurements were done bilaterally

under the eyes open and eyes closed condition. However, the model developed

does not differentiate between eyes open and eyes closed conditions as sensory

feedback was not incorporated in the mathematical model. EMG recording were

also undertaken however, they gave a measurable outcome of the percentage of

muscle activity of tricpes surae and tibialis anterior and not the amount of force

generated during anterior-posterior sway. However, the EMG recordings were

useful in understanding that the trcipes surae muscle group generated compar-

atively more muscle activity than the tibialis anterior which was silent during

unperturbed quiet stance. The surface EMG was able to detect clear muscle ac-

tivity of only the above said muscles, however, it was difficult to detect reliable

muscle activity in deep seated muscles specially during unperturbed quiet stance.

The EMG and the motion capture experiments were not able to determine the

stiffness and damping parameters of of individual muscles, tendons and ligaments.

Since, the experiments would include internal perturbations as a result of

respiration and haemodynamics, the experimental data when compared to the

mathematical model a low frequency internal perturbation was introduced. It is

not possible to quantify the influence of internal perturbation on postural balance,

however, based on the studies by Conforto et al. (2001); Schmid et al. (2004) a

random Gaussian noise deemed fit to mimic anterior-posterior sway. The choice

of noise as internal perturbation would account for the small difference in exper-

imental and theoretical values.
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8.3 Future work involving model extension and

experimental validation

The model derived in this thesis lays the foundation upon which substantial stud-

ies (theoretical and experimental) on quiet stance can be undertaken to further

validate the 9-element MSD model. Intrinsic postural models rely on the stiffness

and damping parameters since they mimic the viscoelastic properties of muscles,

tendons and ligaments. The models proposed by Jeka et al. (2004); Morasso and

Sanguineti (2002); Winter et al. (1998, 2001) have not been able to clearly explain

in their models the role played by the dorsiflexors and the plantarflexors during

quiet stance. One of the main reasons for not having a robust postural models

is because parameter values (stiffness and damping) have been understudied for

unperturbed quiet stance. A study by Loram et al. (2007) classified that there

are two types of stiffness, long-range stiffness which caters towards large postural

sways and short-range stiffness, attributed to small postural sways. In order to

obtain accuracy in stiffness and damping parameters for muscles, tendons and

ligaments, it would be necessary to record in-vivo data during unperturbed quiet

stance. It was been found that there is at least 2%-4% elongation of muscle fibres

for small movements (Rack and Westbury, 1974), hence it can be expected that

during quiet stance such small differences can be quantified and incorporated in

intrinsic postural models.

The model can be extended to include various conditions which can be mod-

elled in Visual 3D:-

(1) inclusion of the hip strategy;

(2) including medio-lateral sway;

(3) non-linear stiffness and damping models of muscles, tendons and ligaments.

The inclusion of the hip strategy will help in extending the understanding

of postural balance during large sways, which would involve mixed strategies of

ankle and hip. The large postural sways would see significant differences in the

stiffness and damping parameters of muscles, tendons and ligaments. Exagger-

ated excursions of the sway path would then involve the CNS which would require

the intrinsic inverted pendulum model to have a control system to stabilise the
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system (Peterka, 2002). This modelling technique can then be applied to Visual

3D to create a 3D model to generate kinetic and kinematic data. The foundation

for 3D model building has been described in detail in Chapter 6. The model can

be used to determine the force generated during anterior-posterior and medio-

lateral sways. This can be achieved by using the Lagrange-d’Alembert principle

(Udwadia, 2000). The equations (3.10) and (3.11) will become:

Mq̈ + Cq̇ +G(q) = τ + F ′λ , (8.1)

f(q) = 0 , (8.2)

where vector q includes all joint variables, τ is the control torque vector, F =
∂f(q)
∂q

, and λ is the Lagrange multiplier. F ′λ represents the internal torque vector

induced by the constraints.

Based on equations (8.1) and (8.2) the muscle, tendon and ligament model

as shown in Figure 3.5 can be used determine the active and passive forces gen-

erated while maintaining upright stance. This would be useful when comparing

perturbed and unperturbed quiet stance, exaggerated sways both in the eyes open

and eyes closed conditions.

The extension of the intrinsic inverted pendulum model developed in this

study and the experimental validation using motion capture synchronised with

the EMG system will give further insight towards postural balance in terms of

the following outcomes:-

(1) effects of non-linear stiffness and damping models on muscles, tendons and

ligaments in terms of sway size;

(2) kinematic and kinetic measures during upright stance;

(3) control systems used while maintaining balance, and

(4) accuracy of active and passive forces generated at units AB, CD, EF and

GH.
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Appendix A: Coefficient matrices

in (3.10) and (3.11)

From the definition of p, direct calculations yield

∂p

∂q
=























1 0 0 0

0 E 0 0

0 0 0 E

1 0 −1 0

0 Ē 0 −Ē

0 0 −e Ẽ























,

(

∂p

∂q

)−1

=













1 0 0 0 0 0

Ē ′D̄e E ′ 0 −Ē ′D̄e Ē ′ Ē ′D̄

1 0 0 −1 0 0

Ē ′D̄e 0 E ′ −Ē ′D̄e 0 Ē ′D̄













,

where

E = diag (e1, e1, e1, e1) , e1 =
[

1 0
]

,

Ē = diag (ē1, ē1, ē1, ē1) , ē1 =
[

0 1
]

,

Ẽ = DĒ , D̄ = D−1 , D = 2diag (ȳr,1, ȳr,2, ȳr,3, ȳr,4) ,

e = 2
[

d1r1s1 d2r2s2 d3r3s3 d4r4s4

]′
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with ȳr,i = yr,i + y0r,i for i = 1, 2, 3, 4, s1 = sin(αr − α1) and si = sin(αr + αi) for

i = 2, 3, 4. It is useful to note that EE ′ = ĒĒ ′ = I, EĒ ′ = 0 and E ′E+Ē ′Ē = I.

Using the notation of block matrices and noting that Q1 contains the first

three block columns of
(

∂p

∂q

)−1

and that EM0Ē
′ = 0, direct calculations give

M1 = diag(M11,M22,M33) with

M11 = 2(Ī + e′D̄′ĒM0Ē
′D̄e)

M22 = EM0E
′

Matrix C1 is given by

C1 =







C11 C ′
12 C ′

12

C12 C22 0

C12 0 C22






+







C̄11 0 0

C̄12 0 0

C̄12 0 0







with

C11 = 2e′D̄′ĒC0Ē
′D̄e = 2

4
∑

i=1

t2i (cb,i + cc,i) , ti =
dirisi
ȳr,i

,

C12 = EC0Ē
′D̄e =

[

t1cb,1 −t2cb,2 −t3cb,3 −t4cb,4

]′
,

C22 = EC0E
′ = diag (ca,1 + cb,1, · · · , ca,4 + cb,4) ,

and

C̄11 = 2e′D̄′ĒM0Ē
′D̄ė , C̄12 = EM0ĒD̄ė .

Vector G1 is given by G1 =
[

g1 g1,l g1,r

]′
with

g1 = e′D̄′ĒK0(ql + qr)− ḡ(sinαl + sinαr)

=
4

∑

i=1

dirisi
ȳr,i

[(kb,i + kc,i)(yl,i + yr,i)− kb,i(xl,i + xr,i)]− 2ḡ sinα ,
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where α = αl = αr, and

g1,l = EK0ql = diag(e1K1, e1K2, e1K3, e1K4)ql =
[

gl1 gl2 gl3 gl4

]′
,

g1,r = EK0qr =
[

gr1 gr2 gr3 gr4

]′

with gvi = (ka,i + kb,i)xv,i − kb,iyv,i for v = l, r and i = 1, 2, 3, 4.
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Appendix B: Inverse mapping of

q = p−1(p)

Recall that p =

[

p1

p2

]

with p2 = 0, and denote p1 =
[

p1,1 · · · p1,9

]′
. Direct

calculations give rise to

αl = αr = p1,1 , xl,i = p1,1+i , xr,i = p1,5+i

and

yr,1 =
√

d21 + r21 − 2d1r1 cos(α− α1)− y0r,1 , yl,1 = yr,1 + y0r,1 − y0l,1

yr,i =
√

d2i + r2i − 2diri cos(α + αi)− y0r,i , yl,i = yr,i + y0r,i − y0l,i

for i = 2, 3, 4.
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Appendix C: Coefficients of

linearised model

Linearisation of a nonlinear function f(x) about x0 means to express f(x) =

f(x0) +
df

dx
|x=x0

(x− x0) as an approximation. Applying this essential idea to the

q1-equation (3.15) implies linearisation of each of the three terms around p1 = 0

and ṗ1 = 0.

Linearisation ofM1(p1)p̈1 around p1 = 0 gives M̄1p̈1 with M̄1 = Q′
1(0)MQ1(0).

Around p1 = 0 and ṗ1 = 0, linearisation of C1(p1, ṗ1)ṗ1 generates C̄1ṗ1 with

C̄1 = Q′
1(0)CQ1(0). Since G1 = Q′

1(p1)G(p1) and G(0) = 0, linearisation of G1

around p1 = 0 gives Q′
1(0)G̃(p1), where G̃(p1) is the linearisation of G(p1) around

p1 = 0. This leads to linearisation of G1 as Ḡ1p1 with

Ḡ1 = Q′
1(0)













g̃

K0Q̃

g̃

K0Q̃













, g̃ =
[

ḡ 0 · · · 0
]

(3)
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and

Q̃ =



































0 1 0 0 0 0 0 0 0
r̄1
y0
l,1

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

− r̄2
y0
l,2

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

− r̄3
y0
l,3

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

− r̄4
y0
l,4

0 0 0 0 0 0 0 0



































, (4)

where r̄i = diri sinαi for i = 1, · · · , 4.
Finally, with the nature of the defined input and output in (3.18) and (3.19),

it is clear that C̄ = B̄′ =
[

1 0 · · · 0
]

.
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Appedix D: MATLAB code for

SIMULINK model

%Global parameter script file

alpha = 0.01;

m = 75; % m = mass of total body

h = 0.87; % e = 0.036, height of foot from ground

g = 9.81; % acceleration due to gravity

gg = 0.5 ∗m ∗ g ∗ h;
Izz = 1.89; % (3,3) element of total body moment of inertia

Ia = 0.5 ∗ (h2 ∗m+ Izz);

%Dimensions of units AB, CD, EF and GH

d1 = 128.47 ∗ 10−3;
d2 = 74.47 ∗ 10−3;
d3 = 79.76 ∗ 10−3;
d4 = 58.37 ∗ 10−3;

r1 = 21.2 ∗ 10−3;
r2 = 332 ∗ 10−3;
r3 = 32.5 ∗ 10−3;
r4 = 32.5 ∗ 10−3;

alpha1 = 26.88 ∗ pi/180;
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alpha2 = 102 ∗ pi/180;
alpha3 = 55 ∗ pi/180;
alpha4 = 55 ∗ pi/180;

%Parameters of mechanical properties of tendon=a, muscle=b, ligament=c

%Unit AB–1st unit

ma1 = 0.054;

mb1 = 0.129;

mc1 = 0.004;

ka1 = 43300;

kb1 = 460000;

kc1 = 142000;

ca1 = 48.35;

cb1 = 243.60;

cc1 = 23.83;

%Unit CD–2nd unit

% Tendons:- Achilles tendon + Plantaris

% Muscles:- Triceps surae + Tibialis posterior

% Ligaments:- None

ma2 = 0.067+0.012;

mb2 = 0.225+0.056;

mc2 = 0;

ka2 = 364000+5710;

kb2 = 440000+379000;

kc2 = 0;

ca2 = 156.17+8.28;
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cb2 = 314.64+145.68;

cc2 = 0;

%Unit EF–3rd unit

% Tendon:-Flexor hallucis longus

% Muscle:-Flexor digitorium longus

% Ligaments:- Calcaneofibular (CFL) + Tibiocalcaneal (TCL)

ma3 = 0.084;

mb3 = 0.034;

mc3 = 0.005+0.031;

ka3 = 43300;

kb3 = 43300;

kc3 = 127000+70000;

ca3 = 60.31;

cb3 = 38.37;

cc3 = 25.20+46.58;

%Unit GH–4th unit

% Tendon:- Peroneus longus

% Muscle:- Extensor digitorium longus

% Ligaments:- Anterior tibiotalar (ATTL) + Posterior tibiotalar (PTTL) +

Tibionavicular (TNL)

ma4 = 0.086;

mb4 = 0.026;

mc4 = 0.02+0.01+0.005;

ka4 = 43600;

kb4 = 43300;

kc4 = 70000+39100;
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ca4 = 61.23;

cb4 = 33.55;

cc4 = 37.41+48.37+13.98;

%Constrained Dynamics

Mo = blkdiag(ma1,mb1 + mc1,ma2,mb2 + mc2,ma3,mb3 + mc3,ma4,mb4 +

mc4);

M = blkdiag(Ia,Mo, Ia,Mo);

Cd1 = [ca1 + cb1− cb1;

− cb1cb1 + cc1];

Cd2 = [ca2 + cb2− cb2;

− cb2cb2 + cc2];

Cd3 = [ca3 + cb3− cb3;

− cb3cb3 + cc3];

Cd4 = [ca4 + cb4− cb4;

− cb4cb4 + cc4];

Cb = 1 ∗ eye(8);
Co = Cb ∗ blkdiag(Cd1, Cd2, Cd3, Cd4);

C = blkdiag(0, Co, 0, Co);

K1 = [ka1 + kb1− kb1;

− kb1kb1 + kc1];

K2 = [ka2 + kb2− kb2;

− kb2kb2 + kc2];
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K3 = [ka3 + kb3− kb3;

− kb3kb3 + kc3];

K4 = [ka4 + kb4− kb4;

− kb4kb4 + kc4];

Ko = 1 ∗ blkdiag(K1, K2, K3, K4);

%Calculating natural length when alphal = alphar = 0

% Right leg

yro1 = sqrt(d12 + r12 − 2 ∗ d1 ∗ r1 ∗ cos(alpha1));
yro2 = sqrt(d22 + r22 − 2 ∗ d2 ∗ r2 ∗ cos(alpha2));
yro3 = sqrt(d32 + r32 − 2 ∗ d3 ∗ r3 ∗ cos(alpha3));
yro4 = sqrt(d42 + r42 − 2 ∗ d4 ∗ r4 ∗ cos(alpha4));

% Left leg

ylo1 = yro1;

ylo2 = yro2;

ylo3 = yro3;

ylo4 = yro4;

ybl1 = sqrt(d12 + r12 − 2 ∗ d1 ∗ r1 ∗ cos(alpha− alpha1));

ybl2 = sqrt(d22 + r22 − 2 ∗ d2 ∗ r2 ∗ cos(alpha+ alpha2));

ybl3 = sqrt(d32 + r32 − 2 ∗ d3 ∗ r3 ∗ cos(alpha+ alpha3))

ybl4 = sqrt(d42 + r42 − 2 ∗ d4 ∗ r4 ∗ cos(alpha+ alpha4));

ybr1 = sqrt(d12 + r12 − 2 ∗ d1 ∗ r1 ∗ cos(alpha− alpha1));

ybr2 = sqrt(d22 + r22 − 2 ∗ d2 ∗ r2 ∗ cos(alpha+ alpha2));

ybr3 = sqrt(d32 + r32 − 2 ∗ d3 ∗ r3 ∗ cos(alpha+ alpha3));

ybr4 = sqrt(d42 + r42 − 2 ∗ d4 ∗ r4 ∗ cos(alpha+ alpha4));
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yr1 = ybr1− yro1;

yr2 = ybr2− yro2;

yr3 = ybr3− yro3;

yr4 = ybr4− yro4;

yl1 = ybl1− ylo1;

yl2 = ybl2− ylo2;

yl3 = ybl3− ylo3;

yl4 = ybl4− ylo4;

xl1 = (kb1/(ka1 + kb1)) ∗ yl1;
xl2 = (kb2/(ka2 + kb2)) ∗ yl2;
xl3 = (kb3/(ka3 + kb3)) ∗ yl3;
xl4 = (kb4/(ka4 + kb4)) ∗ yl4;

xr1 = xl1;

xr2 = xl2;

xr3 = xl3;

xr4 = xl4;

%Assigning ’pp’ to call later in the function blocks

pp(1) = m;

pp(2) = h;

pp(3) = g;

pp(4) = gg;

pp(5) = d1;

pp(6) = d2;

pp(7) = d3;

pp(8) = d4;

pp(9) = r1;

pp(10) = r2;

pp(11) = r3;
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pp(12) = r4;

pp(13) = alpha1;

pp(14) = alpha2;

pp(15) = alpha3;

pp(16) = alpha4;

pp(17) = ma1;

pp(18) = mb1;

pp(19) = mc1;

pp(20) = ka1;

pp(21) = kb1;

pp(22) = kc1;

pp(23) = ca1;

pp(24) = cb1;

pp(25) = cc1;

pp(26) = ma2;

pp(27) = mb2;

pp(28) = mc2;

pp(29) = ka2;

pp(30) = kb2;

pp(31) = kc2;

pp(32) = ca2;

pp(33) = cb2;

pp(34) = cc2;

pp(35) = ma3;

pp(36) = mb3;

pp(37) = mc3;

pp(38) = ka3;

pp(39) = kb3;

pp(40) = kc3;

pp(41) = ca3;

pp(42) = cb3;

pp(43) = cc3;

pp(44) = ma4;
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pp(45) = mb4;

pp(46) = mc4;

pp(47) = ka4;

pp(48) = kb4;

pp(49) = kc4;

pp(50) = ca4;

pp(51) = cb4;

pp(52) = cc4;

pp(53) = yro1;

pp(54) = yro2;

pp(55) = yro3;

pp(56) = yro4;

pp(57) = ylo1;

pp(58) = ylo2;

pp(59) = ylo3;

pp(60) = ylo4;

pp(61) = Ia;

pp(62) = gg;

%SIMULINK embedded math function block code

%Embedded MATLAB function ’q’

function q = fcn2(p1, pp)

alpha1 = pp(13);

alpha2 = pp(14);

alpha3 = pp(15);

alpha4 = pp(16);

d1 = pp(5);

d2 = pp(6);

d3 = pp(7);
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d4 = pp(8);

r1 = pp(9);

r2 = pp(10);

r3 = pp(11);

r4 = pp(12);

yro1 = pp(53);

yro2 = pp(54);

yro3 = pp(55);

yro4 = pp(56);

ylo1 = pp(57);

ylo2 = pp(58);

ylo3 = pp(59);

ylo4 = pp(60);

q = zeros(18, 1);

q(1) = p1(1);

q(2) = p1(2);

q(4) = p1(3);

q(6) = p1(4);

q(8) = p1(5);

q(10) = p1(1);

q(11) = p1(6);

q(13) = p1(7);

q(15) = p1(8);

q(17) = p1(9);

q(12) = sqrt(d12 + r12 − 2 ∗ d1 ∗ r1 ∗ cos(q(10)− alpha1))− yro1;

q(3) = q(12) + yro1− ylo1;

q(14) = sqrt(d22 + r22 − 2 ∗ d2 ∗ r2 ∗ cos(q(10) + alpha2))− yro2;
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q(5) = q(14) + yro2− ylo2;

q(16) = sqrt(d32 + r32 − 2 ∗ d3 ∗ r3 ∗ cos(q(10) + alpha3))− yro3;

q(7) = q(16) + yro3− ylo3;

q(18) = sqrt(d42 + r42 − 2 ∗ d4 ∗ r3 ∗ cos(q(10) + alpha4))− yro4;

q(9) = q(18) + yro4− ylo4;

%Embedded MATLAB function ’dq’

function dq = fcn8(Q, dp1)

Q1 = Q(1 : 18, 1 : 9);

dq = Q1 ∗ dp1

%Embedded MATLAB function ’C’

function [C2, C1, z] = fcn3(dq,M,C,Q, pp, q)

eml.extrinsic(’blkdiag’);

alpha1 = pp(13);

alpha2 = pp(14);

alpha3 = pp(15);

alpha4 = pp(16);

alphar = q(10);

d1 = pp(5);

d2 = pp(6);

d3 = pp(7);

d4 = pp(8);

r1 = pp(9);

r2 = pp(10);
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r3 = pp(11);

r4 = pp(12);

yro1 = pp(53);

yro2 = pp(54);

yro3 = pp(55);

yro4 = pp(56);

ybr1 = q(12) + yro1;

ybr2 = q(14) + yro2;

ybr3 = q(16) + yro3;

ybr4 = q(18) + yro4;

s1 = sin(alphar − alpha1);

s2 = sin(alphar + alpha2);

s3 = sin(alphar + alpha3);

s4 = sin(alphar + alpha4);

ed1 = [01];

Ed = zeros(4, 8);

Ed = blkdiag(ed1, ed1, ed1, ed1);

Q1 = Q(1 : 18, 1 : 9);

Q2 = Q(1 : 18, 10 : 18);

c1 = cos(alphar − alpha1);

c2 = cos(alphar + alpha2);

c3 = cos(alphar + alpha3);

c4 = cos(alphar + alpha4);

z1 = (d1 ∗ r1/ybr12) ∗ (c1 ∗ ybr1− d1 ∗ r1 ∗ s1/ybr1) ∗ dq(10);
z2 = (d2 ∗ r2/ybr22) ∗ (c2 ∗ ybr2− d2 ∗ r2 ∗ s2/ybr2) ∗ dq(10);
z3 = (d3 ∗ r3/ybr32) ∗ (c3 ∗ ybr3− d3 ∗ r3 ∗ s3/ybr3) ∗ dq(10);
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z4 = (d4 ∗ r4/ybr42) ∗ (c4 ∗ ybr4− d4 ∗ r4 ∗ s4/ybr4) ∗ dq(10);

z = [z1; z2; z3; z4];

dQ11 = [zeros(1, 9);Ed′ ∗ z zeros(8, 8)];

dQ1 = [dQ11; dQ11];

M1 = Q1′ ∗M ∗Q1;

iM1 = inv(M1);

C1 = Q1′ ∗ (C ∗Q1 +M ∗ dQ1);

C2 = Q2′ ∗ (eye(18)−M ∗Q1 ∗ iM1 ∗Q1′) ∗M ∗ dQ1+Q2′ ∗C ∗Q1−Q2′ ∗M ∗
Q1 ∗ iM1 ∗ C1;

%Embedded MATLAB function ’G’

function [G1, G2, G] = fcn4(Q, pp, q,Ko,M)

eml.extrinsic(’blkdiag’);

gg = pp(4);

GG11 = zeros(18, 18);

GG11 = blkdiag(0, Ko, 0, Ko);

gl = zeros(9, 1);

gl(1) = −gg ∗ sin(q(1));
gr = zeros(9, 1);

gr(1) = −gg ∗ sin(q(10));
gv = [gl; gr];

G = GG11 ∗ q + gv;
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Q1 = Q(1 : 18, 1 : 9);

Q2 = Q(1 : 18, 10 : 18);

G1 = Q1′ ∗G;

M1 = Q1′ ∗M ∗Q1;

G2 = Q2′ ∗ (eye(18)−M ∗Q1 ∗ inv(M1) ∗Q1′) ∗G;

%Embedded MATLAB function ’lambda’

function lambda = fcn9(C2, G2, dp1)

lambda = C2 ∗ dp1 +G2;

%Embedded MATLAB function ’ddp1’

function ddp1 = fcn9(M,C1, G1, Q, dp1)

Q1 = Q(1 : 18, 1 : 9);

M1 = Q1′ ∗M ∗Q1;

%Embedded MATLAB function ’F’

function F = fcn9(pp, q)

alpha1 = pp(13);

alpha2 = pp(14);

alpha3 = pp(15);

alpha4 = pp(16);

alphar = q(10);
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d1 = pp(5);

d2 = pp(6);

d3 = pp(7);

d4 = pp(8);

r1 = pp(9);

r2 = pp(10);

r3 = pp(11);

r4 = pp(12);

yro1 = pp(53);

yro2 = pp(54);

yro3 = pp(55);

yro4 = pp(56);

yr1 = pp(63);

yr2 = pp(64);

yr3 = pp(65);

yr4 = pp(66);

s1 = sin(alphar − alpha1);

s2 = sin(alphar + alpha2);

s3 = sin(alphar + alpha3);

s4 = sin(alphar + alpha4);

F =





































1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0;

0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0;

0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 0;

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0;

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1;

0 0 0 0 0 0 0 0 0 −2 ∗ d1 ∗ r1 ∗ s1 0 2 ∗ (yr1 + yro1) 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 −2 ∗ d2 ∗ r2 ∗ s2 0 0 0 2 ∗ (yr2 + yro2) 0 0 0 0;

0 0 0 0 0 0 0 0 0 −2 ∗ d3 ∗ r3 ∗ s3 0 0 0 0 0 2 ∗ (yr3 + yro3) 0 0;

0 0 0 0 0 0 0 0 0 −2 ∗ d4 ∗ r4 ∗ s4 0 0 0 0 0 0 0 2 ∗ (yr4 + yro4);




































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%Embedded MATLAB function ’F’lambda’

function [z, zunits] = fcn9(F, lambda, q, pp)

alpha1 = pp(13);

alpha2 = pp(14);

alpha3 = pp(15);

alpha4 = pp(16);

alphar = q(10);

d1 = pp(5);

d2 = pp(6);

d3 = pp(7);

d4 = pp(8);

r1 = pp(9);

r2 = pp(10);

r3 = pp(11);

r4 = pp(12);

s1 = sin(alphar − alpha1);

s2 = sin(alphar + alpha2);

s3 = sin(alphar + alpha3);

s4 = sin(alphar + alpha4);

z = F ′ ∗ lambda;

z6 = −d1 ∗ r1 ∗ s1 ∗ lambda(6);

z7 = −d2 ∗ r2 ∗ s2 ∗ lambda(7);

z8 = −d3 ∗ r3 ∗ s3 ∗ lambda(8);

z9 = −d4 ∗ r4 ∗ s4 ∗ lambda(9);
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zunits =[z6z7z8z9]′;

% Linearisation and model reduction of original system

lalpha0 = 0;

% Initial Conditions %

p1 = zeros(9, 1);

p10 = lalpha0;

p11 = xl1;

p12 = xl2;

p13 = xl3;

p14 = xl4;

p15 = xr1;

p16 = xr2;

p17 = xr3;

p18 = xr4;

% Inverse mapping %

q = zeros(18, 1);

q1 = p10;

q2 = p11;

q4 = p12;

q6 = p13;

q8 = p14;

q10 = p10;

q11 = p15;

q13 = p16;

q15 = p17;

q17 = p18;

q12 = sqrt(d12 + r12 − 2 ∗ d1 ∗ r1 ∗ cos(q10− alpha1))− yro1;
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q3 = q12 + yro1− ylo1;

q14 = sqrt(d22 + r22 − 2 ∗ d2 ∗ r2 ∗ cos(q10 + alpha2))− yro2;

q5 = q14 + yro2− ylo2;

q16 = sqrt(d32 + r32 − 2 ∗ d3 ∗ r3 ∗ cos(q10 + alpha3))− yro3;

q7 = q16 + yro3− ylo3;

q18= sqrt(d42 + r42 − 2 ∗ d4 ∗ r3 ∗ cos(q10 + alpha4))− yro4;

q9 = q18+yro4-ylo4;

s1 = sin(lalpha0− alpha1);

s2 = sin(lalpha0 + alpha2);

s3 = sin(lalpha0 + alpha3);

s4 = sin(lalpha0 + alpha4);

% Coefficient matrices %

e = 2 ∗ [d1 ∗ r1 ∗ s1d2 ∗ r2 ∗ s2d3 ∗ r3 ∗ s3d4 ∗ r4 ∗ s4]′;
D = 2 ∗ blkdiag(ybr1, ybr2, ybr3, ybr4);
Db = inv(D);

e1 = [1 0];

ed1 = [0 1];

E = blkdiag(e1, e1, e1, e1);

Ed = blkdiag(ed1, ed1, ed1, ed1);

id = 0.5 ∗ diag([1/ybr1, 1/ybr2, 1/ybr3, 1/ybr4]);
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Q1 = [1 zeros(1, 8);

Ed′ ∗ id ∗ e E ′ zeros(8, 4);

1 zeros(1, 8);

Ed′ ∗ id ∗ e zeros(8, 4) E ′];

% Mass and inertia matrix and centrifugal and Coriolis torques %

Mb = Q1′ ∗M ∗Q1;

Cb = Q1′ ∗ C ∗Q1;

lyr1 = d1 ∗ r1 ∗ sin(alpha1)/yro1;
lyr2 = d2 ∗ r2 ∗ sin(alpha2)/yro2;
lyr3 = d3 ∗ r3 ∗ sin(alpha3)/yro3;
lyr4 = d4 ∗ r4 ∗ sin(alpha4)/yro4;

QL = [0 1 0 0 0 0 0 0 0

lyr1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

lyr2 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

lyr3 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

lyr4 0 0 0 0 0 0 0 0];

QR = [0 0 0 0 0 1 0 0 0

lyr1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

lyr2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

lyr3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

lyr4 0 0 0 0 0 0 0 0];

153



GG = [0 0 0 0 0 0 0 0 0

Ko ∗QL

0 0 0 0 0 0 0 0 0

Ko ∗QR];

Gg = [gg 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

gg 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0];

Gb = Q1′ ∗ (GG+Gg);

% Transfer function %

b = [1

zeros(8, 1)];

A = [zeros(9, 9) eye(9)

− inv(Mb) ∗Gb − inv(Mb) ∗ Cb];
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B = [zeros(9, 1)

inv(Mb) ∗ b];

CC = [b′ zeros(1, 9)];

D = 0;

[num, den] = ss2tf(A,B,CC,D);

T = tf(num, den);

[z, p, k] = tf2zp(num, den);

% Model Reduction %

rsys = balred(T, 2);

[num1, den1] = tfdata(rsys,′ v′);

n = 2;

zz = −2 ∗ ones(1, n);

c = zeros(n+ 1, 1); c(1) = 1;

forj = 1 : n

c(2 : j + 1) = c(2 : j + 1)-zz(j) ∗ c(1 : j);

end

numb = den1(2 : n+ 1)− c(2 : n+ 1)′;
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denb = [1c(2 : n+ 1)′];

Tb = tf(numb, denb);
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Appendix E: Determination of

accuracy and reliability of

biomechanical equipment used in

postural balance assessment

To determine the accuracy and reliability of the Qualysis motion capture system

a set of distance and angular tests were conducted. Ten cameras captured raw

kinematic data at 100 Hz. The system was calibrated as normal. The signals

were then processed in Qualysis using Moving average algorithm per 11 frames.

For the distance trials, a wand of a known length was moved throughout the

measurement volume 10 times for 10 seconds each. The distance between two

markers (14mm diameter) was calculated. The known distance between markers

on the wand was 498.7mm. The measurements of the wand, Table 1, the mean

(± SD) difference between the known length and measured length was 0.44 ±
0.33 mm and the RMS was 0.54. The coefficient of variation was 0.75. However,

if the coefficient of variation was calculated for the absolute mean difference, it

was 0.68.
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Table 1: Measurement of wand length using Qualysis

Trial Wand length (mm) Difference (mm) Absolute difference (mm)

01 498.43 0.27 0.27

02 497.62 1.08 1.08

03 498.34 0.36 0.36

04 497.91 0.79 0.79

05 498.42 0.28 0.28

06 498.77 -0.07 0.07

07 498.49 0.21 0.21

08 498.16 0.54 0.54

09 498.42 0.28 0.28

10 498.04 0.66 0.66

Mean 498.26 0.44 0.45

S.D. 0.33 0.33 0.31

For the angular trials, three reflective markers (14 mm diameter) were placed

onto a plastic goniometer. One marker was placed at the apex of each of the

two arms of the goniometer and one marker at the vertex. The goniometer was

adjusted at the following known angles: 45, 90 and 180 and was moved throughout

the measurement volume 10 times for 10 seconds each.
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Table 2: Angle (45 ◦)measured using Qualysis.

Trial Angle ◦ Difference ◦ Absolute difference ◦

01 45.08 -0.08 0.08

02 44.97 0.03 0.03

03 45.00 0.00 0.00

04 44.90 0.10 0.10

05 44.90 0.10 0.10

06 45.10 -0.10 0.10

07 45.10 -0.10 0.10

08 45.06 -0.06 0.06

09 45.06 -0.06 0.06

10 45.06 -0.06 0.06

Mean 45.023 -0.02 0.07

S.D. 0.08 0.08 0.03

For the 45◦ angle, Table 2, the mean (± SD) difference between the known

and measured angles was 0.02 ± 0.08◦ and the coefficient of variation was 0.50.

Table 3: Angle (90 ◦)measured using Qualysis.

Trial Angle ◦ Difference ◦ Absolute difference ◦

01 89.89 0.11 0.11

02 89.89 0.11 0.11

03 89.89 0.11 0.11

04 89.91 0.09 0.09

05 89.91 0.09 0.09

06 89.99 0.01 0.01

07 89.89 0.11 0.11

08 89.91 0.09 0.09

09 89.91 0.09 0.09

10 89.91 0.09 0.09

Mean 89.91 0.09 0.03

S.D. 0.00 0.30 0.30
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For the 90◦ angle, Table 3, the mean (± SD) difference between the known

and measured angles was 0.09 ± 0.03◦ and the coefficient of variation was 0.33.

Table 4: Angle (180 ◦)measured using Qualysis.

Trial Angle ◦ Difference ◦ Absolute difference ◦

01 178.90 1.10 1.10

02 178.80 1.20 1.20

03 178.80 1.20 1.20

04 178.90 1.10 1.10

05 178.70 1.30 1.30

06 178.70 1.30 1.30

07 178.90 1.10 1.10

08 178.90 1.10 1.10

09 178.90 1.10 1.10

10 178.80 1.20 1.20

Mean 178.83 1.17 1.17

S.D. 0.08 0.08 0.08

For the 180◦ angle, Table 4, the mean (± SD) difference between the known

and measured angles was 1.17 ± 0.08◦ and the coefficient of variation was 0.07.

In order to determine the accuracy of the Kistler force plates, static weights

were placed onto the respective force plates and the vertical force was recorded.

The following known weights were used: (5 kg), (10 kg), (25 kg), (50 kg), (70 kg).

The force for each weight was calculated 10 times for 10 seconds each. The mean

and standard deviation (S.D.) have been summarized in Table 5. The coefficient

of variation between the two plates was found to be zero for all cases.
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Table 5: Measurement of known loads through Qualysis.

Applied load 5 (kg) 10 (kg) 25 (kg) 50 (kg) 70 (kg)

Mean measured

Kistler (plate 1) 46.55 99.47 245.28 490.48 686.74

S.D. 0.19 0.29 0.24 0.26 0.23

Mean measured

Kistler (plate 2) 46.62 99.52 245.04 490.33 686.38

S.D. 0.19 0.27 0.26 0.27 0.21
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