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ABSTRACT

The analysis of digital active networks is developed in this
thesis, starting from the definitions of digital amplifiers and
digital amplifier arrays and concluding with the presentation of
general analysis techniques for N-port digital active networks.
The analysis techniques are then tested by comparing the results
of practical experiments with numerical evaluations of the derived
transfer functions using a computer.

The basic techniques necessary for the synthesis of digital
active networks are described with an example, and the thesis is
concluded with a discussion of the advantages of digital active

networks over their analogue equivalents.
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CHAPTER 1

INTRODUCTION

1.1 OVERALL APPROACH

Analogue active networks and their associated mathematics have been
very extensively investigated in recent years and may now be said to be
classical. The same may also be said for digital filters and sampled data
systems in general. The purpose of this thesis is not to explore any
particular and small part of the above topics but to explore the possibi-
lities of combining analogue active and passive networks with sampled data
systems and digital filters to make a new range of circuit realisations
possible. |

One possible approach could have been to investigate the ﬁesign of
conventional digital filters with N input ports fed from voltage sensing
A/b converters and N output ports feeding current generating D/A con-
verters, completed by strapping the equivalent analogue inputs and out-
puts thus making an N-port network. This approach, however, only solves
half the original problem, neatly avoiding the problem of mixing passive
of active analogue components with digital amplifiers. The approach
chosen in this thesis was therefore more general and could easily be
applied to the simpler all-digital matrix realisation.

It was decided to tackle this problem by simulating tbe digital
admittance matrix using digital transadmittance amplifiers mixed with
ordinary passive analogue components, thus marrying digital active net-
works to analogue active and passive networks. A commensurate mathematical
approach was also developed to describe this matrix and any of the other
matrices which may be derived from it, in particular the digital impedance
matrix.

The most significant advantage of simulating digital active net-

works is that the individual digital amplifiers may be made deliberately
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non-linear or parametric and thus functions can be simulated which are
just not feasible in ordinary analogue networks.

1.2 SURVEY OF RELEVANT WORK

The previous work published in the specific field of research
congidered in this thesis is sparse, though Pim and Bullingham [ZL]
[2] have presented a technique for the simulation of digital components
which is different from that presented in Chapter. 2. However Pim and
Bullingham cite no previous research in this field.

The synthesis of active networks from the admittance matrix has
been considered by Yanagisawa and Kanbayashi [3] [4] . In their
first paper they considered synthesis based on the reversing of the
process of nullator-norator a.na.lysis'. In their second paper they base
their synthesis technique on the scattering matrix S which is first
derived for the required network and the admittance matrix Y calculated
from S. Having then obtained Y they use the nullator-norator synthesis
technique of their first paper to produce the required network.

Now it is perfectly possible to apply these synthesis techniques
to digital active networks, and this is discussed in Chapter 10.

As this thesis is concerned with combining analogue and digital
networks it is necessary to consider the definition of the Z-transform
used in the analyses [5] . The work presented here uses the standard
PNt S5 baa g hate ok [6] which is described in Appendix A.
This is because this problem involves analysing circuits containing
ordinary anslogue components in conjunction with digital amplifiers,
rather than trying to emulate the operation of an analogue active or
Pagsive filter by a digital or sampled data filter. Thus the capacitively
loaded 2-port digital gyrator analysed in Chapter 4 will show an impulse
invariant response when compared with an analogue gyrator.

It would not havé been correct to have used the 'bilinear! Z-

transform [7] [8] or the 'matched! Z-transform [9] for the digital
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gyrator analysis because the resulting z-plane polynomials would not have
described what actually occurs if analogue active or passive components
are mixed with digital amplifiers in a'network.

However when digital amplifier afrays thaf include digital filters
are to be used to model an analogue active or passive network, then it
may be better to use the 'bilinear' or 'matched'! Z-transform rather than
the 'standard' Z-transform.

If the bilinear Z-transform had been used then the frequency res-
ponse of the original analogue networks could have been more closely
approximated. The matched Z-transform could have been chosen, and this
would have accurately matched the pole and zero locations of the digital
active network with its analogue equivalent. ‘

The standard Z-transform has been described in many papers and books,
such as [ 6] , [10] ana [11] .

A useful advantage of using the standard Z—transform is that the
modified or advanced Z-transform may then be used to compute the time
domain output of a sampled data machine or digital filter between samp-
ling pulses, as described in [ll] .« -

Another problem that arises in any sampled data system or digital
filter is that of non-ideal sampling, that is when the sample pulse is
of a distinctly finite width. However [12] shows that provided the
sampler is followed by a hold stage this problem does not matter, and
this is so in this case.

The effect of using digital filters with inevitably finite
register lengths introduces either round-off or truncation errors into
the digital filters output, which may in turn be interpreted as a form
of noise. This problem has been extensively discussed in papers such
as [13] [14] [25] [16] ana [17] . However it is shown in
Chapter 3 that the coefficients in digital active networks can be

derived from passive components which do not have their component values
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quantised. Nevertheless there are quantisers associated with every A/b
converter in each digital amplifer and Chapter 3 shows that a signal may
experience repeated amplitude quantisation in a network such as the
digital gyrator thus introducing an effect sgimilar to coefficient
quantisation or round-off error. This in turn may give rise to limit
cycle oscillations, and this was in fact observed in the machine des-
cribed in Chapter 6 when it was connected as a capacitively loaded 2-
port digital gyrator.

1.3 CHAPTER DESCRIPTIONS

Chapter 2 introduces and describes the stages necessary to thé con-
struction of a digital amplifier. The conservation of units under the
sampling process and the transformability of anaiogue transfer functions
are explored in depth. The effect of quantisation noise in a digital
amplifier is then studied, followed by a description of techniques to
enhance the digital amplifier. The digital amplifier is then applied to
the simulation of analogue circuit components and networks.

Chapter 3 introduces and describes digital active arrays. A 2-
port digital active network is analysed and this analysis is then exten-
ded tolan N-port network. In particular the prcblem of finding the Z-
transform of an N-port admittance matrix when the Z-transform of some of
the elements cannot be directly found has beeﬁ solved for the general
case. Matrix stability, limit cycle noise amplitude and element re-
sﬁlution have all béen.conSidered.

Chapter 4 contains an example of the analysis techniques derived
in Chapter 3. The digital admittance and impedance matrices are derived
for a capacitively loaded 2-port digital gyrator. The stability and
limit cycle noise amplitude is then considered for this example.

" Chapter 5 briefly describes the four FORTRAN computer programs
written to analyse the expressionslderived in Chapter 4.

Chapter 6 describes the construction and use of a digital machine

-4 -



built as part of the research work to verify the mathematical analysis
of Chapters 3 and 4 by practical experiment.

Chapter 7 describes the practical results obtained by making
measurements on the digital machine described in Chapter 6 when it was
set up to simulate a capacitively loaded 2-port digital gyrator. The
presence of limit cycle oscillations is noted, and the practical results
are corrected to eliminate the effect of the presence of this noise.

Chapter 8 describes the results obtained from the computer programs
for the case of the capacitively loaded 2-port digital gyrator for all
the elements of the 2-port digital admittance and impedance matrices.

The quantisation voltage trﬁnsfer matrix is also evaluated using the same
parameters as in the digital admittance and impedance matrices.

Chapter 9 compares the experimental and computer results and shows
that the mathematical analysis is correct.

Chapter 10 shows that the analysis of digital active networks
derived in Chapter 3 can be applied to help in the synthesis of these
networks.

Chapter 11 summarises the work presented, and possible future
areas of research are suggested, thus concluding this thesis.

1.4 GENERAL POINTS

In this thesis the term 'digital'! is used to indicate an analogue
to digital (A/D) conversion process which incorporates sampling and
amplitude quantisation in the signal path, and this was in fact used
to make the digital amplifiers. Nevertheless the analysis presented is
effectively true for sample data systems where only sampling is used
without the presence of an A/D converter which would incorporate a
quantisation stage. If sample data amplifiers were to be used then
limit cycle noise would entirely vanisgh.

In the sampling processes described in this‘thésis, all the samp-

ling is assumed to be uniform and synchronous.
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In order to avoid confusion it is also necessary to clarify the
use of the letter z in this thesis. The Z-transform is used extensively
such that h(z) would be an arbitary funcﬁion of z, the Z-transform
variable. However when considering the Z-transform of an impedance
such as z;; (z), then the z's need to be clearly distinguished. By
the general conventions in electronic engineering it was not felt wise
to either redefine the Z-transform variable or the letter used for
impedance. Thus Zqq (z) is the digital input impedance at port 1 of a

network in the z-plane.



CHAPTER 2

DIGITAL AMPLIFTERS

2.1 AMPLIFIER COMPARISON

The conventional analogue amplifier can only perform two operations
in its input, namely scaling and convolution. The scaling factor may or
may not be unitless depending upon which of the four types of amplifier
is involved. The four types of amplifier and their idealised input and
output impedances are listed in Table 2.1.

However there are two other devices which may be added to the signal
path of any of these four amplifiers, a sampler and a‘quantiser. Intro-
ducing a sampler makes the machine operate in discrete time thereby
becoming a sampled data machine and adding a quantiser creates a digital
amplifier. Theoretically a quantiser could be added on its own, but
this would be difficult to realise in practice, and would only decrease
the stability of a network including this amplifier.

When a sampler and a quantiser is included in the signal path to
make a digital amplifier then quantisation is achieved as an integral
part of analogue-to-digital conversion (A/D). (See Appendix A for an
analysis of sampling and Appendix C for an analysis of quantisation.)
After signal processing the signal has to undergo digital-to-analogue
conversion (D/A). Thus the signal processing is achieved using con-
ventional digital logic.

2.2, DIGITAL AMPLIFTER SIGNAL PATH

Fig. 2.1 shows the block diagram of the signal path of a digital
amplifier. The amplifier is really a hybrid of analogue and digital
stages. Although the circuit blocks are described individually it can
occur that in practice two or more stages are merged into one practical

circuit.



Amplifier Comparison

VOLTAGE CURRENT TRANS IMPEDANCE TRANSADMITTANCE
AMPLIFIER AMPLIFIER AMPLTIFIER AMPLIFIER
Theoretical SENSOR 0 0 0 O
. Input impedance
Theoretical GENERATOR 0 o @) 0 QO
Output impedance
TABLE 2.1
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FIG. 2.1 Digital Amplifier Signal Path



2.2.1 Sensor

The sensor is an-analogue amplifier with the correct input impedance
for the type of digital amplifier requi:ed and an output impedance suitable
to drive the sample-and-hold stage following. Table 2.1 summarises the
input impedances for the four types of digital amplifier.

The bandwidth of the sensor amplifier must be very much greater
than the sample rate so that no significant modification of the digital
amplifier transfer function occurs. The sense amplifier may also amplify
the input signal to a level appropriate for the A/D converter.

A voltage sensor will measure the potential difference between
the input node and an external reference (normally ground) and is a
conventional high input impedance amplifier.

A current sensor will measure the current into the input node, or
out of that node to the external reference. In this simple amplifier
these two possible connections are identical, but this is not so in the
Case of digital amplifier arrays. When these two cases do not merge the
latter current sensor is easy to design but the former is much more
difficult due to the floating sensing required. The limitation which this
imposes on the simulation of a digital impedance matrix is discussed in
Section 3.3,

2.2,2 Sample-and-Hold

The sample-and-hold stage is necessary theoretically to make this
& sampled data system, but is also necessary to present a stable input
to the A/D converter for the duration of the conversion time. It is
normal to use series samplers as the holding can then be done in a cap-
acitor; +the dual circuit of this involving a shunt sampler and an
inductor is far from ideal.

2.2.3 Quantisation and Encoding

The quantisation and encoding stage is an A/D converter normally

-8 =



arranged to produce a signed binary output. It is theoretically necessary
to m;ke the digital amplifier. The transfer function is a staircase
which in this case must be linearly weighted because of the succeeding
mathematical operations to be performed. The quantisation process is
discussed in Appendix C. Although it is possible to build an analogue
network with a staircase transfer function, in this case the instantaneous
signal level captured by the sample-and-hold stage is converted to the
equivalent signed binary number representing the interval iﬁ which that
signal level fell.
2.2.4 Scaling Factor
The scaling factor is included for two purposes. All numerical
ratios between the input and output of the stages of the amplifier are
gathered together as a hypothetical multiplier. A real multiplier may
also be added to allow variable scaling of the amplifier or parametric
operation, and would be implemented using digital logic. The types of
miltiplier which could be used are discussed in Sections 6.3.3 and 6.8.4.
2.2.5 Convolver
The convolver may include a digital filter, but must include all
the lumped time delays in the signal path, which in any actﬁal example
are determined by inspection of the circuit arrangement. The digital
filter would be implemented using digital logic.
2.2.6 Decoder
The decoder is a digital to analogue (D/A) convefter. The various.
techniques for D/A conversion are described and discussed in Chapter 6.
2.2.7 Generator
The generator is an analogue amplifier with the correct output
impedance, as summarised in Table 2.1. The generator amplifier band-
width must be very much larger than the sample rate and must also scale
the output signal range of the decoder to the actual dynamic range

Tequired. It is often the case that the decoder and generator can be
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merged.
2.2.é Controller
The controller is necessary to seqﬁence the processing of the data
in the signal path and is driven by a clock signal.

2.3 DIGITAL AMPLIFIER ANALYSIS

The block diagram of a simple sample data system is shown in Fig.
2.2, T, is the sampling period, and H(s) is assumed to be the transfer
function for an active or passive analogue network. The transfer func-
tion will be unitless if the input and output variables (x, y) have the
same units, namely voltage or current. However H(s) will not be unitless
if x and y represent variables with opposite units implying that H(s) will
have units of impedance or admittance.

2.3.1 Conservation of Units
From Appendix A, equation (A.8) the Laplace transform of the input

signal after sampling will be:

o

X%(s) = %- :Eg X(s+Jjrw) (2.1)
° Ir'=—=00

where the asterisk implies that the variable has been sampled, and v is

the angular sampling frequency. It should be noted that the units of

X#(S) have been reduced by dividing by the sampling period Ts'

Thus the Laplace transform of the output variable will be:

*
Y(s) = H(s) X (8) (2.2)
In order to analyse the state of Y(s) at the sampling instants it

is expedient to hypothetically sample Y(s) thus:

Y*(s) = [H(s) x (s)]* (2.3)

and this is conventionally rewritten as:
* * *
Y(s) = H (s) X (s) (2.4)

- 10 -
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However the action of sampling has divided each variable in equation
(2.4) by the sample period T, and thus (2.4) is no longer consistent in

units. It is necessary therefore to rewrite equation (2.4) as:

* * *

Y (s) = T, H (s) X (s) (2.5)
and the justification for this will now be derived. This point is men-
tioned by Blackman ElS] but not derived.

Equation (2.3) may be rewritten as using equation (A.8) thus:

HORNEORMON
L o=

=Ts E [ H (s+jryw_ ) X (s+jr,w )]
I ==00
oo oo

- %s 2 [ H (g+jr1ws) -% 2 X (s+j(zx +r2)w ):l
T =-00 T
(o )

= %—S E H (s+jr w ) 5 2 EX(SH(I' +I'2)W )
T =—0o Y =D Ty B

(2.6)

In the trivial case when H(s) = 1, equation (2.6) becomes:

oo O

[X (s)] -]T; 2 2 X (s+3 (rl + r2)ws) (2.7)

T1="00 I'))==00

*
= X (s) by definition

This result may be applied to equation (2.6) thus:

* = "
Y (s) =% E H (s+jr1ws) T, X (s)
N
= TSH*(S) X *(s) (2.8)
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and equation (2.5) is therefore justified.
2.3.2 Conditions for Transformability
Equation (2.8) may now be rewritten as a pulse transfer function
(PTF) thus:
*
Y (s) *
* =
X (S) TS H (S) (2.9)
*
The Z-transform of this PIF may be taken provided H (s) represents

a convergent series. Now H(s) may be defined as:

H(s) = ::ggg aksk
k=o0

(2.10)
m
k
= n
k=o
After sampling and using equation (A.8) H(s) becomes:
- -
n
. k
*
H(s) = £ ::égg k=0 (2.11)
s
=00 m )
b, (s+jrw_) *
k s
k=0

Equation (2.10) may be divided out thus:

n-m o
H(s) = ::gg; cksk + ::ggg dks-k when n > m (2.12)
=0 k=1
o)
-k
= ¢, 4 ::ggg d, s whenn = m (2.13)
k=1 :
o
w O + ::ggg dks—k when n < m (2.14)
k=1
QUOTIENT + REMAINDER



The order of the remainder polynomial will be finite only if the
denominator polynomial in equation (2.10) is a factor ofithe numerator
Polynomial. |

To find H%(s), the quotient and remainder may be transformed
independently but must first be proved to be transformable. To do
this the transformed expression must be proved to consist of a con-
vergent series.

From equation (2.12), with n > m, the quotient expression is:

2 6 8" (2.15)

k=0

After transforming this becomes:

n-m o

. k
g cp % E (s + J rws)
k=0 S re-oco
which may be rewritten thus:

n-m o) oo
. k . k k

2 Cy % 2’ (s +3 rws) + g (s=j rws) -s

k=0 5 r=0 r=0 (2.16)

If both the terms in the square brackets are convergent, then so
is the whole expression. Hence consider the first term of expression

(2.16):

oo

E (s + 3 rws)k (2.17)

r=0
Now apply the ratio test [19] to expression (2.17) and let the

th

ratio of the (r+1)thand r ~ terms be R where, by definition,

R = IRI (Cos © + j Sin O )

-13 =



R= [s+] (z+l)w . (2.18)
s + J W
| Rl = cy‘z + (w + (r+l)ws)2 k/é (2.19)

2 2
o+ (w+ rws)

S (r+l)ws - Tan W TV (2.20)

© = k| Tan~
(@ c
The limit when r = o0 must now be taken for the real and imag-

inary parts of R separately by finding the limits of ]Rl and O.

t (|r]) =1 (2.21)
s SR
() =o (2.22)
T =00
Hence:
it (R) =1+j0-= Lt (|R|) (2.23)
T = co T = oco

This implies that the imaginary series is absolutely convergent but
leaving the convergence of the real series undefined.
However, from reference [19] , the (:t:+l)Jch is always slightly

greater than the rth term, namely:

2

0—2 + (w+ (r+l)ws) 2 >o “+ (w+ rws)2

As all variables are positive this reduces to:

w? (2rel) + 2w >0 (2.24)

which now must be valid. Hence the real series is divergent.
The second term in the square brackets in expression (2.16) can

now be considered, namely:

oD

E (s-3mw) " (2.25)

r=0
- 14 -



Following the argument developed for expression (2.17):

k
5w (s -3 (r’fl)"’s) (2.26)
s = J W
2 2\ ¥/ 2
o+ (w+ (r+1)ws)
8] = | = 3 (2.27)
o+ (w+ rws)
6k |man~t “[V+ (r+1)wS Tan~l | wHTwy
—t — (2.28)
Now taking limits gives:
Lt ( IR| ) =1 (2.29)
T == 0
It (6 ) =0 ' (2.30)
=00

This is identical with the previous result and hence the real series
diverges and the imaginary series converges. Hence, overall, expression
(2.16) is divergent, and thus the Z-transform of expression (2.15) is
impossible.

From equation (2.12) the remainder expression is:

o
g dks"k (2.31)
k=1

After transforming this becomes:

Sa) ()
=41 =G
]
L
s
k=1 r = -0

which may be rewritten thus:

o0 oo O
4, 1 E (s + gmug) ™ + § (s - grug) s
T
k = l 8 r = O r = O

- 15 =



Again, both terms in the square brackets must be tested for con-

vergence. Consider first:

oD

g (s + ] rws)_k

r=20

Following the same argument developed for expression (2.17):

R= [s+] (x41) w, ==
s + J L
Hence:
lRl: =24 (w + rws)2 & /2

=< + (w + (r+l)ws)2

and the arg. - is:

6=-k | Tant [w+ (z+l)w ~Tan™t

(o

Now taking the limits gives:

]
[

it ( |r| )
T = oo

It (e ) =0
T e 0O

W+IW
S

S

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

Thus the imaginary series is again convergent. However the (r,-l—l)th term

is not now greater than the rth term thus:
o2 4 (w+ I'WS)2 < oC (v (r+1)ws)2

which reduces to:

ws2 (2r+l) + 2vw < 0

(2.39)

As all the variables are positive, by definition, this inequality

is not true and hence the real series is now convergent.

Now consider the second term in the square brackets in expression

(2.32), namely:
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§ (s - 5 o)™ | . (2..40)
r=20 '

Following the same argument as developed for expression (2.25):

(s + 3 (4w ) . (2.41)

pr >
+JI'WS

ko

IRI = o2+ (w+ rwg)2 C (2.42)

2+ (w +(r+l)ws)2

0=k | Tan* w o+ (Tl —Tan~! W+ T (2.43)
—— =
Now taking the limits gives:
It i[ﬁl) - (2.44)
T=>
=0 (2.45)

0

T =00

Again, both the real and imaginary series converge and thus the
remainder expression is unconditionally convergent.

Thus the Z-transform of H*(s) can only be found when n <C m because
H*(s) then represents a convergenf series, that is the numerator poly-
nomial order does not exceed the denominator polynomial order.

It is further possible to séy that [1 /'H(s)] * may be found
Provided that m < n.

2.3.3 Rational Transfer Function Sampling

It is also necessary to investigate the transformability of the
ratio of two transfer functions when the individual transfer functions
themselves may or may not be transformable.

Now let the rational transfer function of H(s) now be:

His) = A(s) / B(s)

- 17 -
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- (2.46)

Rty
= o
k=0

*
For the Z-transform of H (s) to be able to be found, and from

Section 2.3.2:

n, + my = m, + Dy
or
P = nA + mp =1 ' (2-47)
mo+o

Table 2.2 lists the conditions under which the Z-transform of
E#(s) may be found. It should be particularly noted that H(s) is not
Necessarily transformable when A*(s) and B*(s) are individually trans-
formable, A?(s) should be transformable but B*(s) untransformable.

2.4 PRACTICAL DIGITAL AMPLIFIER

A practical and typical digital amplifier as shown in Fig. 2.1 may
now be analysed. The following assumptions will be made:
2.4.1 Input
The input signal will be a voltage, thereby replacing X(s) by
V(s), and requiring the input sensor to have a theoretically infinite

input impedance.
- 18 -



A(s) 3(s) »  (s)

ng << my Undefined Possibly

TRANSFORMABLE
n, > m, ng o my Undefined Possibly
n, > m ng < oy >1 No
<
n, S m, n, > my <1 Yes
n, << m,

TABLE 2.2

Rational Transfer Function Transformability



2.4.2 Scaling Factor
The scaling factor will have units of Siemens (mhos) as the output
signal will be a current, and h will therefore be replaced by a conduct-
ance g. An actual multiplier will also be included with an external
input, via its own A/D converter.
2.4.3 Convolver
The convolver must gather together the transfer function of the
sample-and-hold stage (zero-order hold) and the overall time delay in

the signal path. Hence:

£(s) = (1 -exp (-s T) ) exp (-sk T_ ) (2.48)
S
ZERO-ORDER TIME
HOLD DELAY

where Ts is the uniform samplipg period, and kTS is the fractional time
time delay in the signal path and k = 0.
2.4.4 Generator |
The output current generator has a theoretically infinite output
impedance and Y(s) is therefore replaced by I(s).
2.4.5 Pulse Transfer Function (PIF)
From the results of Section 2.3.2, f*(s) can be found directly.

Hence equation (2.48) becomes:

£(z)=(1z"") (1-z) 2 =2 (2.49)

Hence from equation (2.49) the PTF becomes:

I(z) = ez © = y(z)
V(z)

where z =exp (sTB) and y(z) is a digital transadmittance.

(2.50)

From equation (2.51) it can be seen that the PIF is a function of
8, k and Ts only. The sample-and-hold circuit has no effect in this case

on the PTF and the PIF has a single pole at the origin of the z-plane.

=190



This basic digital amplifier will be used to introduce the digital
admittance matrix in Chapter 3.

2.5 QUANTISATION NOISE

The actions and effects of sampling, that is conversion to dis-
crete time, have been considered. In a practical realisation A/D con-
Version will be necessary if a digital amplifier is to be used rather
than a sampled data amplifier and this process will produce amplitude
Quantisation.

The effect of this quantisation process may be represented by a
hoise signal adding to the input signal [20] . Fig. 2.3 shows this
arrangement.

Thus from Fig. 2.3:
JOREONGAOR OB
Is(s) + Ig (s) (2.51)

where:

|

2
Vy = hv//' Voo / 12 (2.52)
Hypothetically sampling the output current and taking the Z-

transform gives:

I(z) + I(z) = &(z) ( v (2) + T (z)) (2.53)
and:

Iy(a) =g (z) Vy (2)

Hence the total output current contains a quantisation noise

Component ;N(z).

2.6 MODIFIED DIGITAL AMPLIFIERS

There are various modifications which can easily be incorporated in
the signal path of the basic digital amplifier.
2.6.1 Combined Inputs

The output of the A/D converter in the signal path of a digital
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amplifier may be used to feed more than one signal path with no intrinsic
degradation of the amplifiers performance. This technique is exploited
to make the Digital Active Network described in Chapter 6, in order to
rationalise the number of A/D converters, sample-snd-hold circuits and
Sensors required.

2.6.2 Combined Outputs

The outputs of the convolvers of several digital amplifiers may
be added together before the D/A conversion stage when appropriate to
the output variable. This technique is also needed to make the Digital
Active Network described in Chapter 3, and again this rationalises the
humber of D/A converters and generators required.

2.6.3 Parametric Digital Amplifers

By including an actual digital multiplier in the signal path of
the digital amplifer, then parametric effects may be created by feeding
the second input of this amplifer with a time varying signal. An example
of the use of this is discussed in Section 2.10.6 and in the analysis
of a digital gyrator in Chapter 4.

2.6.4 Dual Output Digital Amplifier

In any digital amplifier it is perfectly feasible to have a second
D/A converter in order to be able to view (on, say, an oscilloscope) the
time domain output signal of the amplifier as in Fig. 2.4. The input
8ignal is of course always obtainable. In the case of a Digital Active
Network this technique allows the simultaneous viewing of the current
and voltage at any given node.

As an alternative to the above arrangement, the same D/A converter
may be used for both outputs and a second output generator introduced
ingtead.

2.6.5 Genéralised Digital Amplifier
By extending the techniqge described in Section 2.6.4, a generalised

-
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digital amplifier may be designed, as in Fig. 2.4. Two types of sensor
and generator are included in the signal path, and by adjustments to the
controller any of the four types of digital amplifier may be made, and
the amplifier may even be multiplexed by judicious control of the four
sample-and-hold stages.
2.6.6 Computer Controlled Digital Amplifier

Those sections of the signal path which are. implemented in digital
logic, namely the encoder, scaling factor, convolver and decoder, and
also the sample-and-hold circuits are all easily controlled through a
suitably interfaced digital computer. By this technique all the para-
ﬁeters of the digital amplifier may be made adjustable, through software
Programming, and this becomes very important when a full digital active
network is constructed. With suitable analysis of the output of a
digital active network, the parameters of this nefwork may be optimised.

It is possible for a microprocessor to perform this controlling
action and to be integral with the digital active network. See Section
6.8.7.
2.7 ALIASING

Aliasing is due to the sampling process, and involves the folding
of any part of the incoming frequency spectrum above half the sample
rate into the amplifier passband which lies beneath half the sampling
rate. The incoming signal can be filtered to remove the portion of its
Spectrum which lies above half the sampling rate. However if this
technique is applied to the amplifiefs in an array then the convolving
Properties of the amplifiers in the array will be considerably modified.
The only solution is to filter the network input signals, be they currents
Or voltages.

2.8 IMPROVED DIGITAL AMPLIFIER ARCHITECTURE

The digital amplifier may be significantly improved by using the
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Same D/A converter in the encoder and decoder, as shown in Fig. 2.5.
The disadvantage of needing a more complicated controller and an extra
sample-and-hold circuit are easily outweighed by this improvement.
Because the D/A converter cannot be used for its dual purpose simul-
taneously, a time delay is inherent in this arrangement, but some time
delay is always inherent in a digital amplifier.
There are three principal advantages:
2.8.1 Simplification
The D/A converter not only governs the whole linearity of the
amplifier, but is also likely to be the most costly single component.
Both these properties are very dependent on the number of bits
to be decbded, and rapidly increase with an increase in the number of
bits. Using a single D/A-Converter considerably simplifies the prob-
lem,
2.8.2 Modular Implementation
Fig. 2.6 shows the four modules making up this digital amplifier.
The contents of each module are shown in Fig. 2.5. By changing input
or output modules the type of amplifier can be changed, and by changing
the convolver and scaler module, the whole transfer function can be
changed. When assembling the digital admittance matrix realisation of
8 digital active network, as described in Chapter 6, this approach allows
easy modifications to the convolver and scaler module only.
2.8.3 Floating point Arithmetic
It would be véry advantageous to implement all the digital pro-
Cesses in the amplifier with floating point hardware, as this would
€reatly increase the amplifier's dynamic range, but not the resolution.
However the complexity and cost would also increase greatly.

2.9  AUTO-CALIERATION

By connecting the output signal Y(z) through a suitable scaling
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e

device (H) back to the input (X(z)), then auto-calibration is possible.

This may of course be done with any digital amplifier, but with only one

D/A converter, the setting up is considerably easier. Fig. 2.7 shows the
block diagram of such an arrangement, and E(z) is included as a notional

input to aid analysis.

Considering Fig. 2.7 the pulse transfer function (PTF) may be:

Y(z = h
o (2.54)
E(z 7 ~Hh

and the characteristic equation is:

z¥ - Hn =0 (2.55)
If H and h are both assumed to be real and non-zero but with only
h having either sign, it is clear from equation (2.55) that the PTF has

k poles on the real axis when:

z, = Eh (2.56)

However, for stability, this multiple pole should lie within the
unit circle. Hence:

Eh < 1 (2.57)

The DC stability is of particular interest (as E(z) is only a

notional input) and may be found by substituting z = 1 into equation

(2.54).
X(1 = h
E(1 1-Eh
and h < 1 for stability
1-Eh .

which implies that :

h < .1_13 | (2.58)

This will always be so if the signs of H and h are different. This second
inequality is slightly more stringent than the first.
The initial value theorem [10] may also be applied to equation

(2.54) thus :
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o

Hence the initial value of the PTF is O.
The final value theorem may now be applied to equation (2.54)
thus: |

Lt z -1 h

0 when Hhs£1

z =p1 Z z =Hh

h when Hh = 1 (2.60)
k

[

As E(z) is a notional input, practical calibration of this ampli-
fier implies checking that X(z) is zero under the conditions derived.
The inequality (2.58) allows h to be measured by increasing H until

latch-up occurs at h = assuming H and h to have the same sign.

1
H

2.10 DIGITAL COMPONENT SIMULATION

Techniques have been developed for simulating digital inductors
and capacitors [:l] § [2] by Pim and Bullingham using binary rate
multipliers. These techniques have shown severe bandwidth limitations
and error problems, coupled with very difficult analysis.

An alternative technique applied here is to use a digital
amplifier with input and output strapped and the appropriate transfer
function defined by an internmal digital filter. Such an amplifier is
shown in Fig. 2.8 gnd differs from the basic digital amplifier as Fig.
2.1 in that‘the delay stage has been replaced by a simple digital
filter. As an example the structure of this digital filter may be
chosen to represent the digital eqQuivalent of an inductor or capacitor.

The transfer function of the digital amplifier of Fig. 2.8 may be
written down using equation (2.48):

£(z) = g2 {(1-exp (-s1)) / s} h(z) (2.61)

where h(z) is the internal digital filter transfer function. After taking
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the Z~transform equation (2.61) becomes:
f(z) = g h(z). ' (2.62)
The form of equation (2.62) is valid because the digital filter
will be clocked at the sample rate implying that it cannot change state
between clock pulses. Thus a hypothetical sampler has been added between
the zero-order hold and the digital filter.
2.10.1 Digital Capacitor
The admittance of an ordinary capacitor is:
yc(s) = sC (2.63)

This admittance may not be simply Z-transformed due to the rules
described in section 2.3. However, by the duality of the Thevenin and
Norton equivalent circuits, either the admittance or the impedance of
this capacitor may be simulated. Now considering the impedance of this
capacitor:

zc(s) = 1/sC (2.64)
which may be readily transformed to:

zc(z) = EP E%T )
c

(2.65)
A digital transimpedance amplifier may be readily used to simulate

zc(z).

Again by the duality of the Thevenin and Norton equivalent circuits

the admittance may be simulated thus:
I C =1
v.(z) = fx = 7 (59 (2.66)
8

Thus it is expedient to say:

2{r@] - s [o0] (2.67)

This technique is developed further in succeeding chapters, par-
ticularly for the case of digital amplifier arrays.

Fig. 2.9 shows a realisation of the required digital filter using
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a feed-forward first order digital filter where:

n(z) = () (2.68)
and:
g = % | (2.69)

The frequency response of this digital capacitor only approximately
matches that of a real capacitor. The DC response for yc(z) will be:

v,(1) = o0 (2.70)

which is correct. The response at the Nyquist rate will be:
C
7,(-1) = T ° . (2.71)

whereas that of an ordinary capacitor would be:
v,(£) = 2wc/T (2.72)
Thus the admittance of the digital capacitor has fallen short of
an ordinary capacitor by a factor —r at the sample rate.

2.10.2 Digital Inductor

The admittance of an analogue inductor is:

v(e) = : (2.73)

sL

and this may be simply Z-transformed to:

] |
R (2.74)

Thus the digital inductor may be simply realised as in Fig. 2.10

using a first order recursive digital filter thus:

h(z) - Z (2.75)

2.10.3 Further Digital Networks
The combinations of analogue components that may be simulated are
clearly boundless and it is not the purpose of this thesis to describe

interminable combinations but rather to explore the possibilities of
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interconnecting networks of these digital amplifiers. However, it is
interesting to consider the case of the parallel tuned circuit shunted

by a conductance g3 as in Fig. 2.11.

From equations (2.66) and (2.74) the overall impedance of this

damped parallel tuned circuit will be:

z_(z) = 5 z (z-1) (2.76)
P 2°(g)+8,) - 28,7 + &+&;
where:
& = c/ s
g, = Ts/ L

The complex conjugate poles of zp(z) will be at:

z = 81 4 &8t 883+ 883 (2.77)
g t8 - 8 + &
The poles will lie on the z-plane unit circle when I Z l = 1,

It can be shown that this condition will be true when:

(g)+8,) (g,-85) = 0 (2.78)

The first term comes from having to square the denominator of
equation (2.77). Thus the useful result is that the complex conjugate

Poles will lie on the unit circle when 8 = g3.

The argand of equation (2.77) may be used to calculate the resonant

' frequency from equation (2.78) thus:

1
o [Nee, +ee. ., ee
A(Z) - Tan 1 1°2 gi;-l- 1 3 = w T (2.79)

Thus the natural oscillating frequency will be:

|
2
" 1 g -l ’\/ 28,8, + & -
o T Zwr, ™ & . (2.80)

Hence this novel circuit has achieved oscillation by making the
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dissipative element g3 deliberately non-zero, and this is a notable
contrast to the conventional parallel tuned circuit.

The block diagram shown in Fig. 2.11 may be considerably simplified
by merging the input voltage sensors, A/D converters, D/A converters and
current generators in the three parallel signal paths, and this is shown
in Fig. 2.12.

2.10.4 Floating.Digital Components

If the digital component or network of components is simulated
using a digital transadmittance amplifier then it is simple to design a
floating or differential voltage sensor and a floating or complementary
current generator. Thus with a suitable internal trangfer function the
component or network of floating components may be simulated and this
is shown in Fig. 2.13.

2.10.5 Negative Components

The scaler within a digital amplifier has been assumed to be able
to be éet to either polarity and tyerefore it is possible to simulate
the component or network of components with the sign opposite to that
conventionally used in analogue circuitry. Thus the digital amplifier
is acting in a similar way to a negative impedance converter (NIC).

2.10.6 Parametric Components

Due to the presence of the scaler g in the digital component -
admittance or impedance and that intrinsically g is controllable, it
may be used to vary the simulated component value. In the practical
case g may be controlled externally through an A/D converter and thus
the component value could even become a function of time.

2.11 SUMMARY AND CONCLUSIONS

The concept of a digital amplifier has been introduced, explained
and analysed mathematically. In particular the possibilities of finding

the Z-transform of a transfer function have been thoroughly explored.
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Several pbssible improvements to the design of a digital amplifier have
been stated, including the possibility of auto-calibration of the digital
amplifier.

The Z-transform of a rational transfer function has been shown to
be finite when the numerator order is less than or equal to the denominator
order, and this result is of importance in the next Chapter when con-
sidering the Z-transform of ordinary analogue circuit components.

The concept of digital circuit components has then been introduced
and explained. The transfer functions of the digital filters necessary
to simulate these components have been dérived. As an example, a digital
parallel tuned éircuit has been analysed and the stabi}ity conditions
evaluated.

Digital circuit components with negative and parametric values
have also beenlexplained.

The correction factor to conserve units of time when finding the
Z-transform of analogue circuit components has been shown to be Ts’
the sampling period.

Overall the concept of a digital amplifier has been fully con-

gsidered theoretically and its associated problems analysed.
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CHAPTER 3

DIGITAL AMPLIFIER ARRAYS

3.1 INTRODUCTION

The purpose of the array of digital amplifiers described here is
to simulate the digital equivalent of a generalised active network, that
is a digital active network. It is necessary firstly to consider the
limitations that the mathematics which describe these arrays place upon
the types of amplifier and the types of matrix which can be easily
similated. It is assumed initially that no passive or active analogue
networks are connected to the nodes of the array. Secondly, in order
to analyse mathematically all the possible variations with digital active
ﬁetworks, these networks will be considered in order of complexity.

All sampling in the digital networks that follow is assumed to be
uniform and synchronous, though these parameters could be varied in a
more general case.

3.2 GENERALISED ACTIVE NETWORKS

Any acfive nefwork of N identifiable nodes may be fully described
in N linear independent equations in the Laplace domain. At each node
it is necessary to specify a voltage relative to a common external
reference (often ground) and an input current. Hence the N linear
independent equations describe the relationship between the N voltages
and N currents. The N equations may be structured arbitrarily in the
volt;ées and currents, but a regular structure is of great assistance in
the mathematical analysis and of necessity in the practical realisation

with (N + 1) voltages and/or currents in each equation.

The jth equation may therefore be written:

Ry = 2 25 9 | (3.1)
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where E& and the Q's are voltages or currents (and have been assumed so

far to be mixed) and a,, is a complex rational polynomial in s, the

ij
Laplace variable. Hence the equation (3Ql) may be expanded to a matrix

equation thus:

i B T - ]
I&j a1 B1p ceccececcecees oy Ql
?2 a5y By esescesecescse Bou 92

{-PN- -a'Nl - - T gmd __QN_ (3.2)
or P = A.Q (3.3)

As a second restriction on the formation of this matrix equation,
it is convenient to assume that all the elements of the column vector in
P are of one type, and all elements in the volumn vector Q are of the
other type. If so, then P represents voltages or cuirents, and Q the
opposite.

These two constraints produce the two well known matrices, admittance
and impedance. The practical realisation of these two matrices is now
easily derived.

For an arbitary element aij of a square matrix, the following
equation applies:

Pij 2y Q..j

which is easily simulated by an amplifier with a transfer function aij'

The application of the second restriction implies that all the amplifiers
must be either trans-impedance or trans-admittance.

3.3 DIGITAL IMPEDANCE AMPLIFIER ARRAY

The matrix equations which must be simulated by a digital impedance

amplifier array are:
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where each z off the leading diagonal will be simulated by a digital
transimpedance amplifier. As discussed in Chapter 2, these amplifiers
are very difficult to éonstruct due to the problem of realising a suitable
sensor and generator. If the leading diagonal impedances are also to be
simulated‘by amplifiers as described in Chapter 6, the the problem is even
more complicated. Hence the impedance matrix is not a' convenient choice
for préctical similation. However, the equivalent impedance matrix may
always be‘derived from the admittanée matrix.
3.4 _DIGITAT, ADMITTANCE AMPLIFIER ARRAY

The matrix equations which must be simulated by a digital admittance

amplifier array are:

p— - r o r- =
Il yll Vio ceevccceccescs yiN Vi
].:2 y"zl y22 0ececccssosccone 3?2N Yz
IN le yNz ..'....'."'.'\yl\ﬂ\]' VN (3.5)

where each y off the leading diagonal will be simulated by a digital
transadmittance amplifier. As discussed in Section 2.10.4 these ampli-
fiers are very much easier to construct both in the grounded and floating
forms and the leading diagonal admittances are also easy to simulate.

| It was therefore decided that the admittance matrix would be
simulated, and the impedance matrix derived theoretically where necessary
by conventional matrix inversion.

Due to the choice of an amplifier array as described, the regular
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construction of the array may be exploited. Firstly, each column of the
admittance matrix has the same associated voltage variable, and each
row is summed to produce avcurrent. The array is shown in Fig. 3.1. It
can be seen that each array element is simulated by an array module
containing a scaler (gij)’ a convolver (fij(z)) and an adder. This
structure therefore lends itself to a modular construction, assuming

- that each scaler and convolver are basically the same. The disadvantage
is that for a general purpose machine N2 array modules are needed.

If the N2 array modules are considered separately, then they con-
stitute a milti-input, milti-output digital filter. [ 3 | [4 ]
However once the_overail admittance matrix is simulated, interaction
with passive and active analogue components is easy. Furthermore stan-
dard analogue active networks such as gyrators and circulators may also
" be simulated.

By employing the technique described in section 2.8, an improved
amplifier array may be made, and this is shown in Fig. 2.5. Both the
voltage encoding and cuﬁrent decoding are done in the same encoder/
decoder module. N such modules are required, thereby completing the
modular approach to the simulation of the admittance matrix.

If the required bandwidth of this digital active network is low,
then various components in the digital amplifier array may be multi-
plexed, in particular the A/D and D/A converters, the scalers and the
convolvers. There are many possible combinations, but these will not

be discussed because it is intended that the matrix will be studied in

feneral.
3.5 DIGITAL TRANSATMITTANCE AMPLIFIERS

The transfer function of the digital transadmittance amplifiers

used in this analysis are assumed to be of the form:
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i—?;—:;— = [Sij fij (s) :l *

= T 83 :IE'J._'j *(s) (3.6)

using the results of Section 2.3. The amplifier is shown Fig. 3.2.

Now let fij(s) be defined as:

fij (s) = é a.ksk

k=0 (3.7)

m
k

::EES bks

k=0

~and from the results of Section 2.3 the Z-transform may be found pro-

vided that n =<T m.

The simplest form for fij(s) is shown in equation (2.48), namely:

fij(s) - 1 - exp (-sTS) exp ( ~skT_ )
8 (3.8)
ZERO-ORTER DELAY
HOLD

kTs represents the total time delay.

3.6 2-PORT NETWORK

A 2-port digital active network is shown in Fig. 3.3 with two cross-
coupled digital amplifiers (21) and (12). The two input shunt admittances
gil'fll(s) and g22.f22(s) may be passive or active analogue networks or
digital amplifiers, as described in Section 2.10, and these amplifiers
would then be called (11) and (22) respectively.

Now by Kirchoff's current law:

L(s) = &,-5,(s) Vy(s) + @, £,(s) V, (s) (3.9)

Iz(s) = 8y le(s) Vi*(s) + 8 f22(s) Vz(s) (3.10)
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where s is the complex variable of the Laplace Transform, and * implies
sampling. In the above equations it is important to note that V&(s) is
the independent or input variable, and Ii(s) the dependent or output
variable because it is the admittance matrix which is being simulated.
However there must exist a matrix where Ii(s) is the independent variable
and Vﬁ(s) is the dependent variable.

If the output variables Il(s) and I2(s) are now hypothetically
sampled (see Fig. 3.4) then Vi(s) and'vz(s) are intrinsically hypotheti-
cally sampled. The hypothetical samplers therefore sample Vi(s) into
the network and‘Ii(s) out of the network simultaneously. Hence equations

(3.9) and (3.10) may be rewritten:

Il*(S) = :8‘11 £1,(s) Vl*(s):l o, [812 flz(s)[vg*] *= %
| (3.11)

12*(s) = g21 £,,(s) [v (s)] ] . [322 £, (s) Vz*(s)] *
(3.12)

According to Section 2.3, equation (3.11) and (3.12) may be re-

%
written if £, (s) can be found in every case:

* * * * *
Il (s) = TS Sil fll (s) Vi (S) + TS 3P) f12 (5) V2 (S) (3-13)

Ls) = T, &y £5(8) Ty (8) + T, 8pp £pp () V,5(8)  (3.14)

or in matrlx form:

B * * 7] TN
I (S) gil fll (S) 312 f12 (S) Vi (S)
=TS (3 5)
* * * * ol
12 (s) €01 f21 (s) €oo f22 (3) | Vé (s)

The Z-transform may now be taken:

Il(Z) Sil fll(z) giz f12 (Z) Vi(Z)

=T .16
Ip(2) L & T2 (2) & f20 () Vo(2) :26)
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Where:

¥11(2) = I,(=) =T &, £,(2)

V,(2) | V,(z) =0 (3.17)

and similarly for tﬁe other three elemenfs.

Hence the sampled admittance matrix has been found and this has
elements defined‘in a manner similar to the analogue admittance matrix.

This 2-port network has been fully described by the admittance
matrix which it in turn is simulating. However the network is also des-
cribed by a sampled impedance matrix despite being a simulation of the
admittance matrix. The elements are defined in exactly the same way as

the analogue impedance matrix, namely:

zll(z) - Vl(z)
TITET I(z) = O

and similarly for the other three elements.

As the form of the definition is the same as the analogue case
it follows in general that:

Y(z) Z(z) = U = 2Z(z) Y(z)
where U is the identity matrix.

The properties of these sampled matrices are considered in Chapter

So far it has been assumed that fij*(s) could be found directly,
but this is not necessarily always the case. In the 2-port case, either
the first or second rows or both rows of the admittance may not be able
to be found directly, and these cases are considered after the general

case has been derived.

3.7 TRANSFORMABLE N-PORT NETWORK

The case of the 2-port network with all elements transformable
including the analogue shunt admittances connected to the 2-ports has
been studied in the previous section. Section 2.3.3 derives the ratios

of polynomials which will be either wholly or conditionally transformable.
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The results can now be used to establish which equations are wholly or
conditiénally transformable. An N-port network is shown in Fig. 3.5.
To analyse completely the N-port network it would be necessary to
consider all combinations of transformable and untransformable matrix
elements. However the analyses presented in the 6 cases studied cover
examples of each combination, including digital amplifiers as shunt
circuit components at the ports.
Case 1
‘Conditions: 1) All elements transformable.
| 2) Leading diagonal elements derived from digital shunt
admittances created by digital transadmittance ampli-
fiers with input and output linked.

The matrix equations are:

- 1 T %
I,(s) ¥11(8) ¥yo(8) eeveeennnn. ¥15(8) v, (s)
Iz(s) o1 (8) Too(8) eeeeeeeeen. YZN(S) Vé*(s)
.iN(s)J () Tgp(8) eeevvenans 3o () | | V(o)

These equations are derived from Fig. 3.5:
735(8) = &yyefyy(s) (5.16)
Hence in matrix terms:
I(s) = ¥(s) V(s) (3.29)
As all fij(s) are transformable, simultaneous h&potﬂetical sampling

at each node gives:

I'(s) = T Y (s) 7V (s) (3.20)

The Z-transform may now be taken:

I(z) = T Y(z) V(=) ('3,’21)

There must in general exist a matrix Z(z) where:
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z(z) ¥(z) = U
(unless Y(z) is singular).
Z(z) is the_equi&alent digital impedance matrix.
Case 2
Conditions: 1) All elements transformable
2) Leading diagonal elements derived from analogue shunt
admittances.

The matrix equations are:

Il(s) 0 ylz(s) LSRR yiN(s) Vi*(s)
I,(s) ¥py(s) O —— R N
Ia) 1 | %(8) Boole) sasemnsenss O v, (s)
[~ ] ‘ =
yil(s) 0 sssssasssns O rvi(s)
0 y22(s) s sesEEs B Vy(s)
+ X ‘
L.O 0 TR A yNN(S)A -Vﬁ(s) 1

(3.22)

The amplifier array is similar to Fig. 3.5 but with all the
emplifiers on the leading diagonal removed. Let equation (3.22) be
rewritten:

I(s) =Y(s) V(s) +7Y,(s)V(s) (3.23)
where Yl(s) + Y2(s) = Y(s)

Due to the simultaneous hypothetical sampling which is necessary
to analyse the network, Ij(s) and Vd(s) are both sampled. Hence the

matrix eduation reduces to:

I'(s) = = Y (s) V (s) (3.24)
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and the Z-transform is:

I(z) = T Y(z) V(z) (3.25)

which is identical wifh the previous result (3.21). This implies that
it is iﬁmaterial whether analogue networks of sampled digital admittance
amplifiers are in shunt with each port. Hence these two types may be
arbitarily mixed in any practical array, always assuming that every
element is transformable.
Case 3
Conditions: 1) ' All off diagonal elements are transformable.

2) All leading diagonal elements derived from analogue shunt

admittances which are not transformable.

The matrix equations may be separated as in (3.22), and rewritten
as in (3.23). By the above definition, Yl(s) is transformable, and
.Yz(s) not transformable. Now in this case, instead of directly finding
Y(z), find Z(z) first and then invert to find Y(z). This implies that
the equations must be rearranged to make V(s) the output column vector
instead of I(s).

Now V(s) may be found by multiplying equation (3.23) by Yz-l(s)
which by definition is transformable. Thus:

V(s) = Y, "(s) I(s) - Y, "(s) Ty(s) V (s) (3.26)

where Yz-l(s) is a diagonal matrix thus:

Y. 7}( s O eeverernens O

0 1 000000000 O

Y e) | (3.27)

The inverse of each element of the original matrix is bound to be -

—
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transformable.

Further, Yz-l(s) Yi(s) is also transformable due to its form:

Yz-l(s) Y,(s)=| © ylz(s) o s yiN(s)
711 (8) 711 (8)
yzl(s) 0 ook B ek 10 o yaN(s)
Y22(8) Y228
yﬁi(s) yné(s) S HEEASEUBETY 6
() Tyy(e)

- — (3.28)
As yij(s) is transformable and yii(s) is not traésformable by
definition, then from Section 2.2.3, yij(s) / yii(s) is always trans-
formable.
Hence the matrix output column vector V(s) in equation (3.26)
is now able to be hypothetically sampled, which in turn also samples

the input column vector I(s):
T(s) = T I:Yz-l(s):l **(s) - [Y2‘1 Yl(s):l **(s) (3.29)
Only the first term incorporates the sampling period Ts,because the
matrix product Yz-l(s) Yl(s) is unitless by definition, as every element
is an admittance, and the product yields the ratio of these admittances

as in equation (3.28).

Now equation (3.29) may be rearranged:

V*(s) [U + [Yz—l(s) Yl(s)] *:I = [ Yz-l(s):l *I*(s) .

(where U is the identity matrix), and hence:

V() = T [u +[Y2'1(s) Yl(s)] *_'] -1 [Yz-l(s)] **(s)

Taking the Z-transform, the impedance matrix may be written:

z(z) = T [U + 2 {Yz-l(s) Yl(s)}] 1z {Yz-l(s)} (3.30)
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This matrix may now be inverted to give Y(z):

Y(z) = %s [z {Yz—l(s)}] = [U + z{Yz‘l(s) Yl(s)}:l (3.31)

Case 4
Conditions: 1) All off-diagonal elements transformable.

2) All leading diagonal elements derived from shunt
| admittances, some of which are transformable.
From matrix equation (3.23) and the above definition, Yl(s) is
transformable and ffz('s) non-transformable. Now define a diagonal matrix
A, such that: | '

A I(s) = A Yl(s) V*(s) + A Y2(s) v(s) (3.32)

where A, Yz(s) is transformable. A, is a 'row-selecting'! matrix and

also symmetrical. Define secondly another diagonal matrix A2 such that:

Ly =U-4 (3.33)
giving:
by I(s) = 4y Ty(s) T (s) + 4, Yp(s) V(s (3.34)

where A, Y2(s) is entirely non-transformable.

Matrices Al and A2 have some rows which are all-zero by definition,
and their inverses do not exist. However equation (3.32) can be trans-
formed by definition now:

* * * * *
I:A,l Igs)] =T [A__L Yl(s):’ V(s) +T [A1 Yz(s)] V (s) (3.35)

Although the elements of A1 are not a function of s, it is the

matrix products now formed which are important. However, as I(s) and

Yl(s) are transformable by definition, this equation may be rewritten:
* 5 * * *_*
b T(s) = T 4 ¥y (8) V(s) + T [Al Yz(s)] v (s) (3.36)
Now taking the Z-transform: ‘

4 Uz) =14 1) V) +1, 2{aT,(s)} 7 (a)
SAPEIOIEE PR OO (3.37)
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Now by definition 4, A, and Y2(s) are diagonal matrices, that is:

Y,(8) = Yp(s)
and hence :
A2Y2(s) = Y2(s) A, (3.38)

Hence equation (3.34) may be rearranged thus:

1,1(s) = 4, ¥,(8) T (s) + T,(s) 4, V(s) (3.39)
Now multiplying through by Yz-l(s) and rearranging gives:
& T,7H(s) A,0(s) = A, Yz'l(;) ¥,(8) 7 (s) + 4,7(s) (3.40)
V(s) end I(s) may now be hypothetically sampled:
z I:A2 Y2_1(s):| *Azl*(s) - [Aa Yz-l(s)Yl(s)]*V*.(s)+ A2V*(s) (3.41)
S
Tak;ng the Z-transform and rearranging further:
4y I(z) =T [Z(Az Yz-l(s)):l - [’Z(Az Y, (s) ¥,(s)) + A2] V(z)
(3.42)

Now A, Yz_l(s) and A, Yz-l(s) Yl(s) are both transformable by definition.

Equations (3.37) and (3.42) may now be added to make I(z):

I(z) = A I(z) + A, I(z)

-1 I:Al Y, (z) + 2 {Al Y2(s)} + l:z {AZ Yz-l(s)}] .—1
I:z {Az ¥, (s) Yl(s)} + A%]V(z) (3.43)

and hence:
) =1, [0 1)+ 2 fh @[z {en @] 7

[z {s0.7) (@) + 2] | (3.44)
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Case §

Conditions:

1)

2)

Complete array of digital amplifiers such that all

amplifier transfer functions are transformable.

Shunt admittances at each port, all of which are

transformable.

The matrix equations may be written:

or:

—Il(s)_

,(e)

I(s)

-

Yll(s) ylz(s) NSRS R yIN(s)

yz}(s) y22(s) cesecssssas ?2N<S)

yhi(s) yﬁé(s) . 0w &NN(S)

-

[
y9 (8) 0

@0 000000000 0

/ '
0 y22 (S) 0000000000 O

I(s) = Yy(s) v (s) + ¥,(s) ¥(s)

where YB(S) and Y4(s) are transformable.

R )

o

Hence by hypothetically sampling I(s), the following results:

I (s) = TSYB*(S) T (s) + TSY4(S)*V*(S)

Hence:

and:

Y(z)

Z(z)

Case 6

Conditions:

T [Y3(z) + Y4(z)]

%s [YB(Z) R Y4(z):l -1

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

1) Complete array of digital amplifiers such that all
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amplifier transfer functions are transformable.
2) Shunt admittances at each port, none of which are
transformable.

Referring to equation (3.46), none of the elements of Y4(s) are
trénsformable. Therefore because Y4(s) is a diagonal matrix, Y4_1(s)
is transformable. Note that none of the shunt admittances may be zero

in this case.

Thus rearrange (3.46):

-1 -1 * ‘

Y4 (8) I(s) = Y4 (s) Y3(s) vV (s) + v(s) (3.50)
now making V(s) the output column vector. Now sample hypothetically
V(s), thus also sampling I(s):

- - - *

[:Y4 1(3)] *I'(s) = 1, L(s) Y3(s):| *V*(§)+V<s) (3.51)

Case 6 is now following Case 3 and thus:

¥(z) = T l:z {Y4‘1(s)}: = I:U +7 {Y4—l(s) Ys(s):ﬂ (3.52)
a=) - L [U vz {14'1<s) Y3(s)}:| - Z{Y4'1(s)} (3.53)

The techniques described do not cover every possible combination
of transformable and untransformable network. However the technique of
separating the matrix into transformable and untransformable portions
will allow all patterns to be analysed.

The resulting digital admittance matrix may of course have any
node suppressed by pivotal condensation.

5.8 INTRINSIC REALISABILITY

In Section 3.7 it was shown.that the original equations are always
transformable provided that all the off-diagonal elements are trans-
formable, which in turn may be established by inspection. If each off-
diagonal element has been simulated by a digital amplifier then it is
intrinsically possible to find the transform of the transfer function.

Thus the cases studied in Section 3.7 are those which naturally occur.
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3.9 MATRIX STABILITY

For a digital amplifier array described by an N x N matrix in
general called X(z) to be stable, the poles of every element must lie
witﬁin the z-plane unit circle. _Rather than considering every element
independently, all the elements may be tested simultdaneously by analysiné
the pole positions of the determinant of X(z). This assértion may be

proved as follows by defining X(z) thus:

41, (2) Lo(2) e, ap(2)

Bllzzj ' Blzizs Blszs

4, (2) Boo(@) i, Aoy(2)

: ) , (3.54)
i (2) o(®) e, (@)
By (2) By (2) . By(2)
By multiplying out, the determinant of i(z) may be derived:

| X(z)| = c(z) . (3.55)
N N -
1T ] Bij(zil '
i=1 J=1

and C(z) = £(4;;(2), 4,,(2), «eeery ANN(z), Bll(z), Blz(z), ....BNN(Z))
Thus the denominator of the determinant of X(z) is the product
of the denominators of each eiement of X(z) and thus consists of every
pole of every element of X(z) which must lie within the z~plane unit
circle for stability.
From [le] the accuracy by which the coefficients of the denomina-
tor of the determinant of X(z) can be known also contributes to the
stability of the digital amplifier array. Thus the denominator of

equation (3.55) may be rewritten thus:
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T | TT sy | - = vt (5.5

i=1 "J=1 i=o0
Now let:
bk = M (bo, bl, eeccee bm) (3’57)
m
b = ::g%g b, :
sum . 1 (3.58)
i=o0

To maintain stability, any error A bk in bk due to coefficient

truncation must be less than half a quantisation step, thus:

Ab 0 -
— < oz @") | (5.59)

sum

where n is the number of binary bits in the coefficient word.
Thus:
n>=>log , (A by / bom) *1 (3.60)

However in the case of digital amplifier arrays some or all the coeffi-
cients may be derived from external real components having intrinsically
analogue values, and this last criterion will not apply to these coeffi-
cients and therefore the value for n may be considerably less than
inequality (3.60) would suggest.

However, each digital amplifier contains a quantisation stage and
thus the output variable at a port will contain the results of the quan-
tisation of all the input variables which in turn may depend on other
output variables. Hence a signal may be quantised, filtered, quantised
and so on quite a number of times, thereby introducing a different form
of round-off or truncation error.

3.10 _INITTAL AND FINAL VALUES

The initial and final value theorems [ll:l may be applied to the

matrix of the digital amplifier array by calculating the initial and
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final values of the output vector.
3.,10.1 Initial Value Theorem
The initial value theorem may be used to determine the initial
output state of a digital machine.

The theorem states:

c (0) = It (c (z)) (3.61)
lz|=>co

where c(0) is the time domain initial output state and C (z) is the PIF.
To conserve units in (3.61), it is necessary to include & notional
constant input of unit magnitude with appropriate units.

Equation (3.61) may now be extended to the matrix case thus:

[d(o)] = IzIIIJf—_%»oo {D (z)} S ‘ (3.62)

where [:d(o)] is the initial value of the output rector, D(z) the PIF
matrix and S is a unitary matrix.
Thus the initial value may be calculated by taking the limit for
each element of D and then summing each row of D to make [}1 (Oi] .
3.,10.2 PFinal Value Theorem
The final value theorem may be used to determine the final state
of the output of a digital machine an infinite time after setting up.

The theorem states:

c(oo) =1t  ((1-271) ¢(2)) (3.63)
zZ =1

where ¢ ( 0© ) is the time domain final value and C(z) is the PTF.
Again it is necessary to include a notional constant input of unit
magnitude to conserve units.

Equation (3.63) may now be extended to the matrix case thus:
[d (e )] = It {D(z) } S (3.64)
z=>1

where [ﬁ.( o )] is the final value of the output vector, D (z) is the

PTF matrix and S is a unitary matrix.
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Thus the final value may be calculated by taking the limit for each

element of D and then summing each row of D to make [d (o )] .

3,11 _LIMIT CYCLE NOISE
| The effects of amplitude quantisgtion within a digital amplifier
have been discussed in Section 2.5.

In general, a digital amplifier array will consist of digital
amplifiers simu;ating each matrix élement, and each of these amplifiers
will introduce quantisafion noise.

in the case of a 2-port digital active network represented by a
digital admittance matrix, this quantisation becomes noise voltagés
convolving with the matrix admittances. Hence let Vﬁij be the quanti-

sation noise voltage introduced into the admittance yij producing an
output noise current thus:

vig - = Vi3 Vwig | (3.65)

This noise voltage Vij is intimately associated with the generation
of yij agd hence only convolves with yij' Furthermore the quantisation
noise can only be present when a signal is present as it is created by
that signal crossing quantisation boundaries.

Applying the results from Section 2.5 to equations (3.9) and
(3.10) gives:

I,(s) = &),%5,(8) Vy(s) + & 5% ,5(s) V, ()
+ 8y, H(8)V o(s) (3.66)

I,(8) = 85,80 (8) V" (8) + &y £y (s) Vi (8)
+ 822f22(5) V2(S) (3'67)

Manipulating these equations, rewriting them as matrices and taking the

Z-transform gives:
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- - - Tr -

1@ | ety et ][ ne] [o et | [

1,0) | [ eptan® (e | | T,(2) et 0 | [vygaa)

e - L - L o - -
(3.68)

Equation‘(3.65) may be rewritten as:
I(z) =7Y(z) V(z) + Yi(z) Vﬁ(z) . - (3.69)

where Y(z) is assumed to have been found by whichever technique is

appiicable, and Yl(z) is the Z-transform of Yi(s) as defined in equation

(3.23).
Thus the output current vector I(z) contains a nbise current IN(z):
I(z) = Y,(z) V(=) (3.70)

This is equivalent to regarding the noise aé coming from extermal
current generators in shunt with the ports.
When the output vector is to be the voltage V(z) then equation

(3.69) may be rearranged thus:

V(z) =2(z) I(z) - 2(z) ¥;(z) V(=) (3.71)
The output voltage vector V(z) now contains a noise voltage V(s) where:
Vo(2) = 2(2) ¥, (z) V(=) (3.72)
= A(z) VN(z)
where A(z) = Z(z).Yl(zl)~ - (3.73)

VQ(z) may be considered to have been generated by noise current
generators, in shunt with any port which has a digital amplifier output
connected to it, convolving with the digital impedance matrix.

Now in genefal the number of bits and the dynamic range of each
A/D converter in a digital amplifier array will be the same and hence

the noise voltage vector will become:



VN(Z) = VN i 1 |
i
L.1J | (3.74)

VQ(z) may then be seen to be the sum of each row of A(z) scaled by
Vﬁ in equation (3.72).
Now equation (3.74) may be simplfied using equation (2.52) to:

Vﬁ(z) = VSTEP S . (3.75)

12

where S is a unit column vector. Thus equation (3.72) becomes:
VQ(z) = '/ A(z) . 8 (3.76)

This allows the R.M.S. noise voltage at any given port to be computed.
Furthermore the resulting quantisation noise voltage vector VQ(z)
may have elements large enough to appear as a signal input to the network.

This may be expressed thus:

Vi (2) = Vyy (2) (3.77)

As Vﬁj(z) represents a quantised voltage, equation (3.77) will be
true if':

Toi(2) = @ Tgyle) (3.78)
where: |

Q=2 3y 44 evoe (3.79)

To satisfy equation (3.79) the value of any element of A(z) would
have to be:

253 (z) > 2 (3.80)
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Thus if any element of A(z) has a magnitude which equals or
exceeds 2 at any frequency or range of frequencies then a limit cycle
noise voltage will be present at each port of the digital amplifier array.
However due to the constraint of equation (3.77) it is possible to set
up a digital amplifier array in a quiescent state such that there has not
"been an input signal to start off the process of limit cycle noise
generation. Once any input is fed into the digital amplifier array at
any port such that that input signal exceeds Vﬁ then the limit cycle
noise will start up automatically and be self-sustaining.

Now this limit cycle noise will not build up to cause limiting
within the digital amplifier array because however large the voltage
Vg, (s) is at the 1™ port, the amplitude of Tyy() is wnaffected, being
merely made up of many equal amplitude steps. Thus limiting can only

occur if:

a;y(z) =N (3.81)
where M is the number of qﬁaﬁtisation levels present in the code used in
the digital amplifiers.

When equation (3.80) is true then limit cycle noise will be present.
However even when aij-<: 2, noise will be present whenever a signal is
injected into the digital amplifier array.

| Now the presence of a limit cycle noise voltage VQi at the ith
port will affect the accuracy of any measurements of the transimpedances
to that port. Thus letting the total observed voltage be V; s

/
v

i =V + V.. (3'82)

i Qi
The transimpedance to that port from the jth port can be measured

when I. is known:

.

/

= 75 + Doy (3.83)

cﬁqlp:#
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S

where A Zs is the error in z,, caused by this limit cycle noise.

J ij
Thus the fractional error in zij is:
A z = T
R | .v_Q;; (3.84)
213 i

The fractional error will depend entirely on the relative signal
and limit cycle noise amplitudes. Furthermore the fractional error in
the transimpedance is the inverse of the signal-to-limit cycle noise
ratio at the ith port. ‘

3.12 ELEMENT RESOLUTION

The input voltage vector to the digital admittance matrix in
equation (3.5) inevitably represents voltages which are quantised into M
levels by 'Ehe A/D converters at the input to each digi‘.cal amplifiers.
Thus because the admittance matrix elements offer no quantisation, the
output vector will contain currents quantised into M levels and to
evaluate the digital admittances by measuring input voltages and currents
int:r:oduces an uncertainty.

Hence from equation (3.5):

Yig = I,/ v

Thus after manipulation the fractional error in the digital tms-

admittance will be:

Ay, A1 DV
gl - — = (3.85)
Yij i :
MAX

where A y;4 is the error in the digital edmittance y;; caused by the

quantised voltage (A V). However, by definition:

AV < 3 1sB (3.86)
and thus prbvided the quantised voltage obeys this inequality then:
A1 = o
If the magnitude of the input voltage Vj is adjusted to be maximum

then:
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1
v-;j ¥ (3.87)

and equation (3.73) may be rewritten:

ATy -

3.88
. (3.96)

] L

MAX
which is the quantisation resolution. The measured admittance yij(z)
will vary by D yij(z) as the input voltage varies across one quantisa-
tion level.
This same caiculation may be repeated for the digital impedance

matrix in equation (3.4), giving:

—— - (3.89)
MAX

Thus the matrix elements can be found only to the nearest 100/M
percent. This gives a powerful reasbn for making M as large as bossible
by designing the A/D converter to quantise with as many levels as pos-
sible.

The computed impedances and admittances reported in Chapter 8
will therefore vary over the range of == lOO/M percent and thus any
practical measurement which lies within this range may be regarded as
ﬁalid.

3,13 SUMMARY AND CONCLUSIONS

The digital admittance and impedance matrices have been defined.
Appropriate analysis techniques have been developed for an N-port digital
active network constructed of a mixture of digital amplifiers and analogue
active or passive components. It has been shown that either the digital
impedance or admittance matrices may be directly found and the other
matrix obtained by inversion.

The overall stability of the whole digital admittance or impedance
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matrix has been shown to depend on the denominator of the determinant
of that matrix.

A limit cycl'e signal has been shown to be present at the ports of
a digital network under certain conditions and this will restrict the
use of digital active networks. However the conditions which cause this
problem are easy to derive from the appropriate matrix and therefore

may be determined before a network is constructed.
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CHAPTER 4

2-PORT DIGITAL GYRATOR ANALYSIS

4.1 INTRODUCTION

In order to vérify the mathematics presented in Chapter 3, a
digital amplifier array (as described in Chapter 6) was constructed and
arranged as a 2-port digital gyrator. Both ports. were capacitively
loaded and the network was fed from a current source shunted by a con-
ductance. Fig. 4.1 shows the actual arrangement. The digital trans-
admiftance amplifiers have a block diagram as in Fig. 4.2. The Sample-
and-Hold sfage contributes a Zero-Order-Hold to the transfer function,
and the lumped time delay stage includes all actual time delays.

Thé digital gyrator was fed from a’ current source deliberately
go that the voltages at the ports could be observed. Thus as the input
current was defined, the digital impedance matrix was effectively being
tested.

4.2 GYRATOR ANALYSIS

The transadmittance amplifiers of Fig. 4.2 have the following
transfer functions:

85y +£pp(8) = -g,(1-exp (-sT ). exp (-sk,1) /& (4.1)

& o 1é(s) = gi(l-exp (-sTs)). exp (-sles) /s (4.2)
where (l-exp (-sTs)) / 8 is the transfer function of a zero-order hold
and:

exp (-skTs) represents a time delay of k‘I‘s seconds and Ts is the
sampling period.

From Section 2.3, it can be seen that le(s) and f._(s) are trans-

12(8
formable.

The overall equations describing the gyrator in Fig. 4.1 are:
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I,(s) = (sCy+6) y(s) + & (L-exp (-s1,)) expbai 2 )V, (s)/a

. (4.3)
*
Iz(s) = -gzcl-exp(-sTs))exp (-SkZTs) v (s) /s + sszz(s)
(4.4)
By inspection it can be seen that (sCl + 8) and'sqaare not trans-
formable. Hence the result of Case 3 in Chapter 3 is used to find Y(z)

from equation (3.31) and Z(z) from equation (3.30) thus:

g -1
¥(z) = 3 l: z {y{l (s) } ] I:U + 7 {Yz_l(s)Yl(s)}:l (4.5)

where:

1) =| 0 &Q-em(-sn,)) exp (-skT,)/s -
-gy(1~exp(~sT_)) exp (-sk,T ) /s O (4.6)
and: _ =
Yz(s) - 8C; + & 0
(4.7)
0 302
- -
Hence:
-1
Y2 (8) ) sci+g °
(4.8)
0 L
L-, sC2
Therefore: |
Y, (8)yy(s) =| 0 g (1-exp(-sT,)) exp(-sk;T,)/s(sC,+8)
'—sz(l-em(-sTs))erp(-sszs)/szcz 0 |
B | (4.9)

Hence the Z-transform of matrix (4.8) is:
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Now, letting T = Cl/g, matrix (4.10) becomes:

z / Cl(z-exp(-Ts /1)) v .0

o - o z / Cp(z-1)

Taking the Z-transform of matrix (4.9) gives:

- —
-k

0 gz T (1-exp(-T_/1))/e(z-exp(-T /1))

-k2
i -8, 2 /Cz(z-l) 0

Now substituting into equation (4.5) gives:

-k
Y(z) = %_ cl(z—exp(-Ts/T))/b 0 1 &2 l(l-exp(-TB/T))

g (z-exp(-T/T))

-k

: 2
0 c2(z-1)/b -g,T 2 /bz(z-l)
1. -~ L
Multiplying out and replacing exp (-TS/T) by K gives:

_ . -
: L
¥(z) =1 | ¢ (z=o¢)/z g Cz = (l-e¢)
T ——
8 €

-k2-l

8,7 2 Cy(z=1) /z
b p—

Equation (3.30) may be used to find Z(z):

2(z) = T, [u vz {Yz-l(s) ¥, (s) L T {5}
z 0

= . -k =

-1 |1 gz Y (1-x) T e
-8._' (z_o<) Cl (z-O()
’ 2
fgg é%g;ﬁ E i Eﬁ dﬁ%f)
| 2 _ o o
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- -
2y =n | 2L 2 (1) ez 2 (1 o<)/et,
i ngsz]-Sl+l /6,8, zk1+k2+l(z-o<)/c2 |
M(z) (4.15)
where:
gk, A
M(z) = z (z=1)(z- <) + T (1- < )& 8,/8C, (4.16)

4.3 GYRATOR STABILITY

The overall sfability of the matrices Y(z) and Z(z) may be found
from studying the values of z which cause these matrices to be singular.
The values of z are the poles of the determinants of Y(z) and %(z). If
all these poles 1ie within the unit-circle, then the matrix concerned is
unconditionally stable.

From (4.13):

lY(Z) = C.C, . M(z)
Tsz zk1+k2+2 (4.17)

Y(z)

origin z = 0, and is thus unconditionally stable.

where M(z) is defined in (4.16). has multiple poles only at the

From (4.15):

= 2 k1+k2+2
8 . Z

To, < Wz (4.18)
Y(z)

has poles when M(z) = O

I.Z(z)

which is also the inverse of
lZ(z)

This is the same condition as applies to any of the individual

elements of Z(z). Hence the matrix Z(z) may be unstable, depending upon
the roots of M(z).

Now consider M(z) from equation (4.16):

-5 -



kl+k2 ;
M(z) = z (z=1)(z= ¢ ) + Elfg Gs(l- < )

g C,
The roots of M(z) will be simplified if o{ =3>-1. Hence consider the

limit:

Lt {M(z)} - zkldrkz(z-l)2 (4.19)
oL =1

In this case M(z) has 2 roots at z = 1 and k, + k, roots at the
origin. However the roots at the origin are cancelled by the numerator
of (4.2). Thus when ok =31, this digital impedance matrix becomes
unstable at D.C, that is it will latch up.

However by definition:

o = exp (- /T) = exp (-T_ &/C;)

and therefore of will tend to unity when g or TS tend to zero or Cy
tends to infinity, thereby making the digital impedance matrix unstable.

4.4 INITTAL AND FINAL VALUES

| The initial and final output vector values may be found using the
simple algorithms defined in Section 3.10.
4.4.1 Digital Admittance Matrix
Thé initial output current from the digital admittance matrix
(4.13) will be:
I:i (o)] = Lt IY(z)
Z =00

= C1 / Ts

C, /T (4.20)
and thus the initial output current will be finite and the matrix
initially stable.

The finsl output current from the digital admittance matrix will
be

i(e)| = Lt z =1 Y(z) =|0
| I: ] = = ( ’ ) 0 (4.21)
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and thus the final output current is zero making the matrix uncondition-
ally stable.
4.4.2 Digital Impedance Matrix
The initial output voltage from the digital impedance matrix

(3.15) will be:

o] - {ro) [

Ts / C2

(4.22)

and thus the initial output voltage will be finite and the matrix initially
stable.
The final value of the output voltage vector from the digital

., impedance matrix will be:
[" (”)].= o1 {(z—;l) Z(z)} i Z (4.25)

irrespective of the value of £ .

This result would suggest a more optimistic solution than that
found in practice. Both the computer results of Chapter 8 and the prac-
tical results of Chapter 7 indicate that the output voltage will
oscillate under certain parameter values. Effectively the final value
has only found the mean of the output voltages.

Alternatively the limit taken for the final value should only be
taken when all the poles lie within the unit circle. When they migrate
outside this circle then this test becomes meaningless.

4.5 LIMIT CYCLE NOISE

The actual quantisation noise currents and voltages may be cal-

culated from Section 3.11. However Yl(z) must first be calculated:

0 g, (1-exp(-sT_) )exp(-sk;T_)/s
Yl(s) =
~g,(1-exp(-sT_)) exp(-sk,T )/s 0 (4.24)
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which is directly transformable to:
Yl(z) = 0

(4.25)

Hence from equation (3.70) the noise current vector IN(z) is:

e —

T_(2)

IN(Z) == 0

2 0 (4.26)

From equation (3.70) the noise voltage transfer function A(z) is:

—
k

2+1
A(z) =T | &8,(1 - < )z/eC, gz ° (z-1)/c;

)

+1
/8y 818,7,2/01Co (4.27)

-8,(z -« )z
| &2

M(z)
where M(z) is defined in equation (4.16).
Thg noise voltage at ports 1 and 2 of the digital gyrator may be

calculated using equation (2.52):

2
VQ(z) = |— . A(z) . s (4.28)
12
which may be written:
- k,+2 k. +1 7
~ 2 2
Vo(2) o Vg‘IEP 78,2 ° -T2z © 418 18y(1- <)z
12 ¢y Cy &c,
Miz5
k) +2 k+1
T8z T + T8 2T+ g8T 2 (4.29)
Ca Ca €19

4.6 SUMMARY AND CONCLUSIONS

A two port capacitively loaded digital gyrator has been analysed
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to give both its digital impedance and admittance matrix from the results
of Chapter 3. The stability of these gctual matrices has been derived
and it has been shown that the admittance matrix is unconditionally
stable, whereas the'impedance matrix is only conditionally stable.

The quantisation noise transfer matrix has also been derived

for'this gyrator ready for computer evaluation.
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CHAPTER 5

COMPUTER PROGRAMS

5.1 INTRODUCTION

Four computer programs were written to enable the analysis of the
gyrator to be compared with the practical results described in Chapter 7.
It is not intended to describe each step of each program as these programs
were necessary to verify the analysis, but not inﬁovative.

The programs were written in FORTRAN IV on g mini-computer with
a disk-based operating system. The operating system required that pro-

grams producing executable code in excess of 8K words should be overlaid
in ségments; and fhus various libraries of subroutines‘were also written
as overlay segments.

All the listingé are presented in Appendix D and grouped according
to main program or overlay segment. Where an overlay segment was used
by more than one ﬁain program, the segment is still only listed once.
Each main program has a list near its beginning of all the overlay seg-
ments it uses;' Each main program or overlay segment listed in Appendix
D was written specifically for the work presented in this thesis.

The actual graph plotting was programmed by calling a standard
graph plotting library available on this mini-computer and the FORTRAN
subroutines of this library are listed under PLOTTER.

5.2 GYRATOR DATA PREPARATION PROGRAM (GDF1)

This program was written to evaluate the constituent polynomials
of the digital impedance, admittance and quantisation matrix elements
for a selection of values of each of the parameters (in Table 5.1)
where the meanings of the parameters are defined in Fig. 4.1. GDPl was
intended to calculate only intermediate results for later processing.

The rational polynomial of a matrix element was calculated and

- 64 -



PARAMETER MEANING

VALTS

Sampling frequency

Sampling period

Port 1 shunt capacitor

Port 2 shunt capacitor
Transconductances

Port 1 shunt resistor

Fractional delay

TABLE 5.1

26.6 * KHz

18.75 microseconds
9.6 microfarads
10 microférads

10 millisiemens
50, 100, 200, 300,
400, 500 ohms

1

Digital Gyrator Component Values



‘stored in an unformatted (binary) disk file for use by the remaining
three programs, namely PZFl, FRAL and IZT1.

5.3 POLE-ZERO PLOTTING PROGRAM (PZP1)

This program was written to calculate the poles and zeroes of
rational polynomigls of up to fourth order, the results being listed on
a line-printer and plotted on a graph plotter. First and second order
polynomisls were factorised conventionally while third order polynomials
were factorised by finding a single real root and then reducing the
polynomial to second order by dividing through by this root. Fourth
order polynomials were factorised by Brown's method (see Appendix B)
which involves finding the two quadratic factors of th;s polynomial
and then factorising these quadratic factors.

This program could have been enhanced by implementing Bairstow's
method [?1 ], to enable nth order polynomials to be factorised, the
order being limited then by available time and the computer speed.

The polynomial order must be integral for this program, though it
is clear from matrices (4.13) and (4.15)that the order need not be
integral in practice if the fractional delays kl and k2 are not integral.

The actual polynomial variable is arbitrary but the graph plotting
was designed to accept the Laplace variable s or the Z-transform vari-
able z, a unit circle being plotted on the complex plane for the latter
case.

5.4 FREQUENCY RESPONSE ANALYSIS PROGRAM (FRA1)

This program was written to find the frequency response for a
rational polynomial in the Laplace variable s or the Z-transform vari-
able z between any two given frequencies in logarithmic or linear
frequency increments. FRAL was written to read data from the control
terminal or from one of the disk files made by GDPl. The output data

can be listed on the line printer and drawn by the graph plotter.
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FRAL uses a scratch disk file (on unit 6) to store the results
of the complete analysis as an unformatted (binary) disk file which is
then rewound and read back for the line-printer output, for the Bode
magnitude andphase plots, and for the Nyquist plot, as required.

The algorithm used to calculate the frequency response of a z-
Plane polynomial is explained in Appendix E.

5.5 INVERSE Z-TRANSFORM PROGRAM (IZT1)

This program was written to calculate the inverse Z-transform and
impulse response of a z-plane polynomial PTF. The input data was able to
be read from fhe control terminal or from one of the disk files made by
'GDP1 and the output data was then listed on the line-printer and drawn by
the graph plotter.

The algorithm to find the inverse Z-transform [11] involves
dividing out the rational transfer function ad infinitum and this was
implemented by repeated polynomial long division of the numerator by
the denominator. This algorithm suffers from the disadvantage that
rounding errors slowly accumulate in the remainder thereby sometimes
causing gross errors after several thousand iterations. This is par-
ticularly prevalent in the infinite impulse response filter defined
by the digital gyrator.

By premultiplying the rational PTF with the Z-transform of a unit
stepz/(z-l) and repeating the above algorithm, the ‘SteP response
could be found. By premultiplying with other functions the time domain
output could ha;e been calculated for these functions but this would'
have been of decreasing usefulness.

"The initial and final value theorems [ll] were also implemented
to calculate these values for both the rational polynomial PTF and the
impulse response. This served to confirm that rounding errors were

Sometimes seriously affecting the inversion algorithm. The algorithm
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for the inverse Z-transform could have been modified to use double
precision arithmetic but this was not considered to be necessary in

the cases studied for this thesis.
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CHAPTER 6

EXPERIMENTAL MACHINE

6.1 INTRODUCTION

An experimental machine was constructed to verify the theoretical
analysis described in the previous chapters. The structure of this
machine is shown in Fig. 6.1.

The design and construction of this machiﬁe is described along
with the use of the various printed circuit boards to simulate a 2-port
digital admittance matrix.

Various boards were constructed to test the machine and extermal
equipment built to simplify fhe operation of the matrix.

The descriptions and drawings of the printed circuit boards in
this chapter are not presented with the intention of providing a main-
tenance manual.

6.2 MACHINE ARCHITECTURE

6.2.1 Overall Structure
The machine as constructed consisted of 10 independent multiplexed
channels with 2 voltage sensing A/D converters, 2 current generating D/A
converters and 10 voltage generating D/A converters. Further, any two
adjacent channels could be multiplied together, stored and added to
another product pair provided that both pairs were within one frame.
This could then be used to simulate one row of the 2-port digital admit-
tance matrix. This structure is shown in Fig. 6.2. .
6.2.2 Sample Rate:
The input sampling rate was designed to be 1/60 of the master clock
frequency, which in turn could be set to any one of five frequencies as

ligted in Table 6.1, All sampling was designed to be uniform and syn-

chronous.
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BASIC CLOCK CONVERSION SAMPLING SAMPLING NYQUIST
FREQUENCY TIME / BIT FREQUENCY PERIOD RATE
kHz ns kHz Vs kHz
3200 312,5 53,3° 18.75 26.6°
1600 625 26.6° 37.5 13,3°
800 1250 13.3° 75 6.6°
400 2500 6.6° 150 3,3°
200 5000 3,3° 300 1.6°
TABLE 6.1

Sampling Parameters



The absolute maximum sampling rate was determined ultimately by
the conversion time per bit of the A/D converter which in turn was
governed by the total settling time of the D/A converter and the com-
parator in this converter. For this particular machine the minimum
conversion time per bit was about 250 nanoseconds. Hence the equivalent
single channel non-multiplexed A/D converter sample frequency would have
been 10 times the sampling frequency shown in Table 6.1, due to the
multiplexing of 10 channels.

6.2.3 Data Conversion

The iﬁputh/b conversion was performed on the 10 input chamnels by
a multiplexed successive approximations A/D converter. (See Appendix
C). This convér#er produced a 5-bit serial output consisting of a sign
bit followéd by 4 magﬁitude bits.

6.2.4 Serial Data Structure

Fig. 6.2 shows the serial data output produced by the multiplexed
A/D converter.' The iO channels each consisting of 5 data bits and one
synchronisation bit made 1 frame.

6.2.5 Input Quantisation

The A/b converter was designed to produce a 5-bit code consisting
of a sign bit and 4 bits of magnitude. A two's complement code was not
chosen to represent negative input values, but in retrospect the machine-
would have been a little simpler if this approach had been adopted.

From Appéndix C the parameter values for this converter have been
calculated and are listed in Table 6.2.

6.2.6 Output Quantisation

The output D/A converter was designed to accept a parallel 10-bit
word consisting of a sign bit and 9 bits of magnitude. Table 6.3 shows
the parameter values calculated from Appendix C.

The longer word length was required because the preceding multi-

Plication and addition stages effectively doubled the work length.
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EQUATION | PARAMETER | VALUE | UNITS | MEANING

C.l M 31 - Number of quantisation levels

02 AV 129 mV Quantisation step size

C.3 A 3.23 | % Quantisation accuracy

C.4 R 29.8 dB Dynamic Range

C.6 Sq 31.59 | dB Maximum signal / noise ratio
TABLE 6.2

A/D Input Converter Parameter Values



EQUATION | PARAMETER | VALUE | UNITS | MEANING

c.l M 1023 - Number of quantisation levels

C.2 AT 7.8 mA Maximum Quantisation step size

C.3 A 0.098 | % Quantisation accuracy

C.4 R 60.2 dB Dynamic range

C.6 Sq 62 dB Maximum signal / noise ratio
TABLE 6.3

A/D Output Converter Parameter Values



However the overall parameter values were limited by the input converter
as the state of the 10 bit word feeding this converter could only be
in 1 of 31 possible states at any given instant.

The absolute current generated was directly proportional to the
D/A converter reference voltage and the maximm output current was cal-
culated from equation (6.24) as 399mA.

6.2.7 Delay Time

The delay time in the signal path from the voltage input to the
current output was a minimum of sixth tenths of the sample period. However
this could be increased and was normally set to one complete sample
period, in order to make the mathematics considerably simpler. If the
delay was not an integral number of sample periods then the polynomials
in the matrix elements would have a non-integral order.

6.3 2-PORT MATRIX

The structure for the experimental machine to simulate a 2-port
matrix is shown in Fig. 6.3. In this structure it has been assumed thaf
all the matrix elements are simple digital transadmittance amplifiers
(see Section 2.4), which are fed in through the A/D converters. The 2-
port gyrator analysed in Chapter 4 only requires 815 and 8517 and hence
a simpler structure. In practice the A/D converter, multiplier and
adder were all multiplexed.

6.3.1 Sampling Input Buffer

In order to make digital transadmittance amplifiers it is necessary
to present a very high input impedance. Fig. 6.4 shows the input buffer
and sample-and-hold stage. A second buffer amplifier is included to
Present a low output source impedance.

6.3.2 Encoder
The principle of operation of the enéodér ﬁortion is described in

Appendix C.
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6.3.3 Multiplier

One multiplier is multiplexed to create all the products needed

for the matrix simulation. The multiplier uses the s
to find the product of the magnitudes, with a separat

multiply the signs.

hift-and-add algorithm

e circuit to

The general multiplication algorithm is described below, and in

this case m

Let the two numbers to be multiplied be::

4, and the structure is shown in Fig. 6.5.

m-1
i
N& = Sa E ai 2 (6-1)
’ i=o0
and
m=-1
- J
N, =S, g b,2 (6.2)
j=o
Hence the product may be written:
2(m-1) m-1 | m-1
. R i 3
S E 02 =S5 E a2 2 b2
k=0 i=o0 J=0 ‘
- -
m-1 m-1
- i J
= 5 5y E a2 2 b2 (6.3)
i=o =0
: J .
m-1 m-1
. J J
- 5,5, a, é b2Y  +ay § b2l 2
j=0 .j=°
m-1
J
+ a, 2 bjz. 4
J=0
+ 0 0000000000000
m-1
tapg 2 b 323 i1
J=o

-1 -
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Thus the shift-and-add algorithm sequentially creatgs each term
in the square brackets and adds it to the accumulated total. This process
takes m iterations to complete and creates a word 2m bits long.

6.3.4 Adder _

The adder is multiplexed to add two results from .the multiplexéd
multiplier to c:r:ea.fe a 10-bit word represented by a sign and 9 bits
magnitude fea.d.y for feeding to the output D/A conyerter. The adder
algorithm shown below works by converting each input to an all positive
word, adding the inputs together, then subtracting twice the offset.

Let the two numbers to be added be Nf and Ng where :

and :
n-1
Np =S¢ 2 £,2" (6.5)
- i=0
n-1
i
N, =S, '::EEES g2 (6.6)
i=o0

Add a constant offset to l\If and Ng of XK. Therefore:

Nh=(Nf+K) +(N8+K) - X

- Q +'Q8 = 2K (6.7?
and let: -
Q = Qe + Qg
The manipulations which follow are all based on the small theorem:
THEOREM
p-1 p-1

1 : —s1 P
2 a2 4+ 2 a; 2" =2 -1 (6. 8)
i= (o) i=o ¢

-T2 -



where q - 1l - a;-. This is the 1l's complement of a.i.

PROOF

The LHS may be i'ewritten :

p-1

o) 2 =2

Add an offset K to Nf and Ng:

n-1

n-1
i
Q= S, é g2 + K

and define:

Q l min " % l min = ©°

Therefore ¢

=281
Now consider Qn (from (6.10) and (6.12)):

n-1 n-1

i i
% = S, éfiz + g 2

i=o0 i=o0

Ifsf=+l,

-T3 =

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)



n-1

Qe = § @ +1) 2t (6.14)

i=o0"
and when Sf = =1,
n-1 B el )
Qp = 2 (1+£,) - il g ?;21 (6.15)
i=lO - i=o .

A realisation of this algorithm is shown in Fig. 6.6. Exactly the same
algorithm must be applied to Q‘g.’ and in this machine the circuitry to

offset Q,f and Qg was multiplexed.

Now Qf and Q,g may be added. The maximum value of the sum Q‘h will

be:
n-1
o 2
i=o0
- 2n+2_ 4
. n-1
< g ot (6.16)
i=o
Now:
n-1 n-1
4, = S; g g2 4 5 2 g2t + 2 (2 -1)
i=o i=o
n+1l
. é n 2t (6.17)
i=o
n+1l
as%lm < 2 o
i=o
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rsign




Therefore:
n+ 1
i n
N, - :ZEEEE m, 25 -2 (2% - 1)
i=0
This may be rearranged thus:

n+1

N, = (1+ :zg%; m; 2~ ) - (i)

1l =0
. n+'i"‘
- :EEES xiQ? ~ (2
i=o0

and again from equation (6.16):

n+1l ' n+1
1+2.m121 <Z 2 ot
i=o0 i=o
Hence:
n

i=o
When :
xn+1=-l, Sh= + 1 and:
vln
i
2
Nh=l + gxi
i=o0
When :
n+1=o’ Sh=-1 and:
n
i
Nh= 23{12
i=o

-T5 -
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(6.20)



This may be implemented as shown in Fig. 6.6.
6.3.5 D/A-Convérter Current Genérator

A block diagram of the D/A converter current generator is shown in
Fig. 6.7. The buffer register is necessary to hold the output current
constant‘between.computations.

The‘basic éircuit of a bidirectional current generating D/A converter
is shown i Fig..6.8. By analogy from Appendix F -equation (r.5), I, may
be written as:

=V

I : .
1ozt (6.21)
o

However froﬁ the resistive shunt ladder shown in Fig. 6.9 :

n
i =1 §a‘121
R R
= i=o

and thus equation (6.21) may be rewritten:

' n
. i
L =V, 2 a;2 (6.22)
R )
.1l =0

Thus I1 is controlled by the state of the binary word representing

the magnitude of the output current. Now in Fig. 6.8 the sign bit (S

»
is used to control the direction of the output current Io' Thus the

output current will be:

i
To= Sy Vper + By 2 a,2 (6.23)
B B, i=o0
Therefore the absolute maximum value of I° is:
n
I = Ve B (2% - 1) (6.24)
max —_— =
R‘ . R2

Table 6.4 shows the component values, parameters and maximum output

- T6 =
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Fig. 6.9 Resistive Shunt Ladder




VARIABLE VALUE UNITS COMMENTS
v 5 VOLTS Maximum Reference
ref
Voltage
R 64000 OEMS
R1 T5 OHMS
R2 T.5 OHMS
n 9 - Number of bits
Io 0.399 AMPS Meximum output
MAX
current
TABLE 6.4

Output Transconductance Amplifier Parameters



current.

The sign of the output current is controlled by grounding the line
corresponding to the other sign. The circuitry on boards 12 and 18
(Circuits 6.9 and 6.11) is arranged so that the upper and lower output
stages of the current generator are on simultaneously for the minimum
amount of time. The only effect of simultaneous operation of the upper
and lower output stages is to cause the output current to cease for a
very short time because these output stages are protected by having their
output current controlled.

The output transconductance amplifier is biased into class AB to
overcome crossover distortion caused when the sign bit changes state.
The resistors RB in Fig. 6.8 set the bias current in the output stage

to

Bus = oo L - B (6.25)
2 B+

Table 6.5 shows the component values used in the experimental
machine and hence the bias current.

The settling time of the current generators was controlled by the
type of operational amplifiers and transistors chosen. The slew rate
(0.5v/ ];s) of the operational amplifier (SN72741N) was found to be
adequate. However the transition frequency (fT) of the power transistors
(TR8 and TR10 in Circuit 6.20) which were chosen first was only 3 MHz
and this was found to cause severe settling time'degradation. These
transistors were types TIP 29 and TIP 30 and they were therefore replaced
b& types BD 131 and BD 132 which have 60 MHz transition frequencies
[22] " [23] thus curing the problem. All the other transistors
involved were small signal types having transition frequencies in excess
of 100 MHz.
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VARTABLE VALUE ONTTS COMMENTS
Véc 10 Volts Power Supply
Voltage

By 75 ORMS

R, 7.5 OHMS

Ry 20000 OHMS

Lomas 9.96 Milliamps Bias Current
TABIE 6.5

Output Transconductance Amplifier Bias Current



6.4 MACHINE CONSTRUCTION

The whole experimental machine was constructed in a type 4 U 30-
glot Vero rack designed to accommodate boards 203 mm x 159 mm with 60
pin, 0.1 inch pitch, single-sided edge connectors. An additional rack |
was constructed and attached to the top of the Vero rack to hold all
the input and output sockets, and provision for reversing the sign of
of the data encoded from each channel. As many signals as possible
were bus-wired across the edge-connectors at the back of the Vero-rack;
All the digital logic was implemented with T4 series Transistor-Transistor-
Logic (TTL) [24] .

Table 6.6 shows the power supplies used by the mdchine.

The board numbers used represent the actual socket numbers in the
card frame. Some of thése sockets positions were deliberately not used
either to allow for the addition of new cards or because the present
cards occupied more width than one socket spacing allowed.

6.5 BOARDS FOR DIGITAL ADMITTANCE MATRIX

The boards necessary to organise and operate the machine as a 2-
port digital admittance matrix are described here, including the clock
and control boards.

6.5.1 Master Clock Board

The master clock boards (Board 1 and Fig. 6.10) contains the master
oscillator, the sampling rate selector and the circuitry to generate the
control signals.

The master oscillator is set to run at 6.4 MHz and is crystal con-
trolled. The two digital inverters in ICl are biased into the linear
mode by the feedback through TR, (P346A). The output is taken from
between the two inverters and is buffered before feeding the 4 stage
Synchronous binary counter (IC2). By selecting the clock signal or any

One of the outputs from the four stages the basic operating frequency
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VOLTAGE CURRENT
VOLTS AMPS

+ 15 0.5

+ 10 1.0

+ 5 2.5

- 6 Ool

- 10 1.0

- 15 0.5

TABLE 6.6

Power Supplies
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of the whole machine could be set, thus controlling the sample rate.
The selected output. feeds the master control counter.

The master cénfrol counter (IC3) is a fully synchronous 4 stage
counter arranged to divide the selected input clock rate by 2 to make

and by 12 to make MCZ' MCZ

M is then used to generate the channel

1
control signals.

Thé channel control signals CC1 to CC10 are- generated by a 10-

stage shift register (IC5 and IC6) which is clocked by MC, and thus the

2
maximum frequency for CCi is 53.3 kHz, the maximum sampling rate.

MC., MC and CC, to CC,, are all buffered onto the busses connected

1? 2 1
across the back of the machine by ICB’ IC

9 and IClO'

"Part of IC, and IC, are used to maintain the 1l0-stage shift

4 7
register propagating a solitary zero.

1? MC2 and CC1 to CC10

are shown in Photo 6.1 and MC2 and CCl in Photo 6.2.

6.5.2 Comparator Board (4)

MC are shown in Fig. 6.11. MC, and MC

5 X 2.

The comparator board (Board 4 and Fig. 6.12) is part of the
multiplexed A/D converter and contains 10 comparators, one for each
analogue input. One comparator at a time is selected using the chan-
nelfcontrol signgls, the comparator outputs being internally OR'ed
in pairs and buffered by transistors TR1 to TR5, then collectively
OR'ed.

The ffahsistors are necessary to remove the loading effects of
the inve¥ters (IC6) on the comparator outputs (ICLl to ICS).

6.5.3 Encoder Board (5)

The encoder board (Board 5 and Fig. 6.13) contains the 5-bit
test and storage registers and the encoder's D/A converter. The test
Tegister propagates a single high state and is kept in this mode by

the feedback to its serial input. The input of the storage register

- 719 -
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is indexed by the test register so that if a decision to store a high
state has been made by the comparator (Photo 6.3) then the correct
bit will be set. This output of the storage register is also indexed
by the test register using 5 NAND gates and the result OR'ed to pro-
duce the output serial bit stream. (Photo 6.4 and 6.5). This was
found to be superior to using the direct signal from the comparator
due to the presence of spurious pulses in the latter signal.

Each stage of the test register is also OR'ed with the corres-
ponding stage of the storage register, the outputs driving the D/A
converter. This simple D/A converter consists of an R/2R ladder (Fig.
6.14) and a current source to remove any D.C. offset in the converter
output. The 6utput impedance of an R/2R ladder is 2R provided that
all the switches have negligible series resistance. Hence a current
source sinking current from the ladder output will reduce any output
voltage by Ib. 2R, independent of the state of the switches. The
~ ladder output voltage is then buffered with an emitter follower which
feeds the 10 comparators on board 4. Photo 6.6 shows CCl (uppertrace)
and the output of this R/2R ladder during the conversion of a sinewave
fed into Channel 1. The lower trace shows the successive decision
levels clearly, namely 1, 2,.4, 8 and 16 levels. As the output of the
comparator will be true or false, the final 16 levels give rise to 32
DPossible output states.

6.5.4 Level Shifter Board (6)

The level shifter board (Board 6 and Fig. 6.15) accepts the serial
data stream into ICl and generates the sign of the product of two
Successive serial words ip IC2 and IC4, and simultaneously converts
the data format in this serial word from sign and 4 bits magnitude to
5 bits of magnitude in IC3 and IC4. (See Section 6.3.3). Finally the

Serial magnitude word is transmitted using IC6 and IC7. IC8 and IC9Y
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PHOTO 6.5
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generate the necessary on-board control signals.
6.5.5 Control Signal Generator Board (8)

The control signal generator board (Board 8 and Fig. 6.16) gen-
erates T control signals from the two clock signals MCl and MC2 and the
10 channel control signals.

6.5.6 Multiplier Board (9)

The multiplier board (Board 9 and Fig. 6.17) performs sequential
multiplicatioﬁ on 2 successive serial data words from board 6, which
in turn has removed the sign bit from the serial stream. The first
word is clocked into the multiplier buffer register (ICl) by LOADC.
The second word is used bit by bit to gate (in IC2) tbe’first word
into the multiplier adder (103 and IC4). The adder output is clocked
in parallel into the multiplier main register (IC5, 6, 7) and the
output from every bit of the multiplier main register is connected back
to the next higher input of the adder, thus handwiring the shift
requirement. After 4 iterations the main register contains the pro-
duct of the magnitudes. This is then converted back to sign and mag-
nitude in IC8, 9, 10.

6.5.7 Adder Board (10a)

The adder board (Board 10a and Fig. 6.18) adds together two
Successive products from the multiplier sequentially. 2555 is added
to each product in ICl and 2 before the main addition is performed.
The firsf product after shifting is loaded into tﬁe adder register
(Ic3, 4, 5) through the adder by ACCMC. The output of each stage of
the accumulator register is fed back to the input to the equivalent
Stage of the adder. When the second product is ready, this is off-
8et and then added to the first product and loaded into the adder

Tegister again by ACCMC. The adder register now contains a 10-bit

word,
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6.5.8 Adder Shift Board (1la)

The adder shift board (Board 1la and Fig. 6.19) accepts the 10-
bit all magnitudé‘WOrd from the adder board (10a) and subtracts 2046
from the word to generate an output word of a sign bit and 9-bits of
magnitude.

6.5.9 First. D/A Current Generator Board (12)

The first D/A current generator board (Board 12 and Fig. 6.20)
performs the D/A conversion and current generation. The binary weighted
resistive shunt iadder'is controlled from the 10-bit register on board
14 and determings the magnitude of the current generated, along with
the reference voltage vkl' (See Appendix F). The sign bit is used to
select the output stage to be controlled, thereby setting the direction
of the output current flow.

6.5.10 Buffer Store Board (14a)

The ﬁuffer store board (Board 1l4a and Fig. 6.21) contains a 10—
stage clocked latch (ICl, 2, 3) to accept the parallel output from
the adder boards (10a and 1lla) and hold this steady for one complete
frame, thus holding the output current steady for one frame. ICA4
generates the neéessary control signals.

6.5.11 Second D/A Current Generator Board (16)

The second D/A current generator board (Board 16 and Fig. 6.22)
contains a 10-stage register (ICl, 2,3) to store the parallel output
from the'adder-boards (10a and 1la) and hold this steady for one com-
Plete frame. The biﬁary weighted resistive shunt ladder is included
on this board aloﬁngith the sign selection circuitry. This shunt
ladder is driven from the output of the register via IC4 and IC5 and
the PNP transistor (2w3702) (TR13-22) discrete inverting and level
Bhifting stéges. Thé stages of the shunt are selected by saturating
TR1-9 (BFY51) as appropriate. The sign bit is also level shifted and
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used to saturate TR11 and TR12 (BFY51).
6.5.12 Second Current Generator Board (18)

The second current generator board (Board 18 and Fig. 6.23) is
fed with the resistance set by the shunt resistive ladder and the sign
bit from Board 16. The basic circuit is the same as that used on
Board 12.

6.5.13 Synchronous Sampler Board (22) '

The synchronous sampler board (Board 22 and Fig. 6.24) has 2
sample and hold circuits each with a series MOSFET sampler. According
to the delay required, one of the channel control signals could be
selected to trigger a monostable (ICl) which in turn syitched on the
samplers (TRl and 2) for a predetermined time. This sampling time
could be adjusted by VR1 from 0.5 to 2 microseconds. Photo 6.7 shows
the sample pulse derived from sampling a sinewave at the input to ICS
or 6 without the hold capacitor. Normally the hold capacitors Cl and
C2 were present.

The input voltages were sensed by voltage followers (IC3 and 4)
which in turn changed the hold capacitors when the series sampler was
switched on.

The voltages across the hold capacitors were sensed by voltage
follower (IC5 and 6) which in turn fed the appropriate A/D converteé.

As the maximum input frequency was limited to 26.6° kHz (Table
7.1) the use of operational amplifiers (SN T274IN) with a limited slew
rate and a 1 MHz unity gain-bandwidth did not prove a drawback.

The use of a finite sample pulse width did not cause any problems
because g duty ratio greater than 30:1 could easily be achieved.

6.5.14 Channel Selector Board (28)

The channel selector board (Board 28 and Fig. 6.25) de-

multiplexes the serial 60-bit frame, feeding each word to the register
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in its respective D/A converter on boards 20 and 30. SW1 to SW10 are
used to invert the bits in their equivalent word if required. Because
each word is being transmitted as 5 bits of absolute magnitude, then
inverting the bits will invert the analogue signal, and this is shown
in Photo 6.8.

6.5.15 Channel Decoder Board (29 and 30)

The channel decoder boards (Board 29 and 30 and Fig. 6.26) are
identical and hence interchangeable. Each contains five 5 bit D/A
converters consisting of a storage register (ICl to 5), an R/?R ladder,
& level shifter and an emitter follower buffer amplifier (TRL to TR5).
6.6 TEST BOARDS

The purpose of the following boards was to be able to test the
machine in stages. The multiplier was alwéys assumed to be present but
the adder and the D/A converters could be replaced.

6.6.1 Test Level Shifter Board (10b)

The test level shifter board (Board 10b and Fig. 6.27) in conjunction
with board 11b (Fig. 6.28) is designed to replace the adder on boards
108 and 1la. This board level shifts the 9 bits in ICL and IC2 frem
the multiplier but does not add successive products.

6.6.2 Test Inverter Board (11b)

The test inverter board (Board 11b and Fig. 6.28) is designed to
invert the 10-bit all magnitude word in ICl and IC2 and is used in con-
Junction with Board 10b.

6.6.3 Test Buffer Board (14b)
The test buffer board (Board 14b and Fig. 6.29) is designed to

act as a dummy buffer store board (14a). ICl generates the necessary

control signals, thereby removing the hold stage before the current

generating D/A converters.
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6.6.4 Visible Decoder Board
The Visible Decoder Board (Fig. 6.30) may be inserted in sockets

14 or 16 and replaces one or other of the D/A current sources. The
board contains 1 red and 9 green LEDs (LED 1 - 10) and the appropriate
10 bit buffer register (ICl to IC3) and inverters (IC4 and 5). Thus
for DC inputs to the machine the output word may be read and checked.
This board was used in checking the multiplication and addition
algorithms used, and in fault finding as necessary.

6.6.5 Suybstitute Voltage Decoder Board

| The substitute voltage decoder board (Fig. 6.31) is designed to
subsfitute for boards 13, 14, 15 or 16. A 10-bit register (ICl to 3)
is loaded by the correct channel control signal. The register outputs
are then inverted by IC4 to IC6 (SNT43TN) buffer NAND gates which drive
an R/?R ladder for D/A conversion. Thus the signal path may be tested
without the D/A current source being necessary.

6.6.6 Channel Tester Board (26)

' The channel tester board (Board 26 and circuit 6.32) contains a
5-bit serial register (ICl) which may be selectively loaded with any
one of the 10 words in the serial word frame. The contents of this
register are then inverted in IC2 and displayed by 5 LEDs (LED 1 to.s)
fhus enabling any one channel to be either monitored or tested. IC3
and 4 generate the appropriate control signals.

6.6.7 Ramp Tester Board |
The ramp tester board (Fig. 6.33) consists of a T-stage binary
counter (ICl and 2) with ancillary combinational logic (IC3, 4, 5)
and is designed to produce a waveform, after D/A conversion, as shown
in Fig. 6.34. The converter is clocked by the combination ﬁﬁ; + EEI;.
The 5-bit word from the combinational logic described above is

Simul taneously clocked into two 5-bit registers (ICT and 8). One
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register transmits this word in word 10 of the serial word frame. The
other register drives an R/2R ladder through IC6 and 9 in order to make
this test waveform externally available as an analogue signal.

6.7 EXTERNAL ANCILLARY EQUIPMENT

6.T.1 Parameter Adjustment Box
A simple variable buffered bipolar voltage source (Fig. 6.35)
was made in order to be able to control the parameters of the matrix.
The circuit shown in Fig. 6.35 was repeated 4 times within that box.
The slide switch was included to enable a signal or a DC level to be
_buffered by ICl and fed into the experimental machine.
6.7.2 Binary Attenuator Box
A binary attenuator box (Fig. 6.36) was built to act as a simple
calibrated attenuator with a constant source impedance. The circuit
is in principle the same as Fig. 6.31 with the reference voltage
replaced by a signal input and the semiconductor switches replaced
by slide switches.
6.8 INPUT CURRENT SOURCE

In order to test the digital gyrator by defining the input
current (see Chapter 7) an analogue differential transconductance
amplifier had to be built (Fig. 6.37). The circuit used closely
follows that of the current source D/A converters (Figs. 6.20, 6.22
and 6.23). The ;npui current source frequency response was tested
and the results are given and described in Section T7.4.

From Fig.v6.37 and Appendix F the transconductance of this

amplifier may be derived assuming the following conditions:

By - Fyp - ™ By

R2L = R2R = R2
R3 = R4
Bep, = Bpp = B
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The transconductance will be:

The common mode current (IGM) in the output stage is controlled by

Ib thus:
Ige = b . 2 (6.27)
2 R
5
The maximum output current will therefore be:
I = 21 (6.28)
o - CM

The various component values used in this amplifier are also
shown in Table 7.14 and 7.21.

The characteristics of this amplifier are described further in
Section T.4.
6.9 MACHINE OPERATION

The quality of operation of this machine as a signal sampler,
quantiser, multiplier adder and D/A current and voltage generator is
of importance before use as a 2-port digital active network.

6.9.1 Voltage Transfer Function

The basic voltage transfer function is shown in Photo 6.9 for
a 50 Hz sinewave input. All 32 quantisation levels are visible,
though the slope is not entirely linear. This is due to the use of
NAND buffer gates (SNT437) to drive the R/2R ladders in the D/A
converter in the multiplexed A/D converter, and in particular the
variable high and low state voltages between each gate.

A more sophisticated design of A/b converter, or a complete
module was not used because of the cost.

Photos 6.10 and 6.1l show the voltage transfer functions for
a lkHz sinewave and squarewave respectively. The elliptical shape

is due to the intrinsic time delay through the digital amplifier
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introducing a group delay, that is a frequency dependent phase shift.
This is not visible in Photo 6.9 due to the low input frequency of
50 Hz.

6.9.2 Output Converter Linearity

The output waveforms for a simple channel output through an
R/2R ladder, and the outputs of the two current generating D/A con-
verters are shown in Photos 6.12, 6.13 and 6.14 for a triangular input
waveform. The current generating D/A converters were loaded with
100 L resistors.

6.9.3 Multiplier Transfer Function

The square law transfer function from the outpu13 of the second
D/A current generator loaded by a 100 L1 resistor is shown in Photo
6.15. The square law was obtained by feeding a 50 Hz sinewave into
two inputs simultaneously and arranging the machine to compute the
product.

Photo 6.16 shows the transfer function for a 1 kHz sinewave
input together with the frequency doubled output signal. Again group
delay can be seen due to the delay of one sample period in the machine.

Photo 6.17 shows the input and output waveforms when squaring,
showing in particular the frequency doubling without any significant
D.C. offset. In fact the squaring arrangement was very useful for .
trimming out the A/D converter D.C. offset.

6.10 POSSIBLE IMPROVEMENTS

6.10.1 Word Length
It 'wa.s found by experiment that the most serious shortcoming of
thies machine was the 5-bit word length (see Chapter 7). An increase
in ﬁord. length to a minimum of 8-bits would considerably improve the
dynamic range and signal/noise ratio of this machine (see Table 6.2).

However, this would imply a significant increase in the component cost
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if the present machine architecture were to be kept. Sections 6.10.4
and 6.10.7 suggest improvements to this architecture.
6.10.2 Two's Complement Arithmetic

A certain amount of extra complexity was caused by performing
the arithmetic calculations in this machine by other than 2's com-
plement arithmetic. Both the multiplier and the adder could have been
more easily implemented by using 2's complement grithmetic.

6.10.3 A/D Conversion

For a 2-port digital admittance matrix only 6 A/b converters are
required. With an increased numbef of bits in a word approximately
the same performance would be required from the multiglexed converter.
However, by‘having a separate converter for each input, the sample
period could be reduced to at least one-sixth of the present maximum
rate.

Also, it is now possible to buy successive approximation A/b
converters. [25] . [26:' ¢ [27] « This type of converter would
greatly simplify the construction of the input A/D converters and the
output D/A converters.

6.10.4 Multiplication

The present multiplication scheme uses the shift-and-add
algorithm (séé Section 6.3.3). It would now be more economical and
much simpler to use a combinational multiplier such as described in

[?é] .
6.10.5 Multiplexing

Currently the machine uses a multiplexed A/D converter, multiplier
and adder. For a specific application this could be replaced by
individual stages in each signal path, as in Fig. 6.38 which would of
course increase the maximum speed of the machine. However, in the

general case this arrangement would be totally inflexible.
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6.10.6 Data Transmission

The present multiplexed A/D converter produces a serial output
which is then multi‘.plexed through the rest of the machine. A better
solution wh.icl; could be incorporated with new A/D converters would be
to feed these A/D converter outputs via a tri-state, bi-directional
‘bus. This would then mske multiplexing easier and more sophisticated.

A block diagram of this structure is shown in Fig., 6.39. With this
structure it would then be easy to interface this machine with a digital
computer theréby enabling the computer to control parameters such as
the transconductance of the digital amplifiers.

6.10.7 Microprocessor Control

By developing the concept in the previous section the digital
amplifier array could be constructed using a multiplicity of peripherals
on a microprocessor bus system, thereby giving over the control of the
total structure of the array to the resident program. Fig. 6.40 shows
a typical structure. :

The microproceésor CPU is assumed not to do any arithmetic
calculations for the arrays, merely controlling the passing of data
from one- peripheral to another. Addition could be performed by the
microprocessor and hence this peripheral would be optional.

A‘ significant édvantage of this approach is that the matrix _
element parameters could be stored in the memory instead of having

to be fé;.i in through A/D converters. This of course only applies
to the sixﬁplér amplifier arrays and would not be applicable when
elements are to be rapidly changed or controlled parametrically.

The flow chart for calculating the output current for one
equation or row of the digital admittance matrix is shown in Fig. 6. 4l.

6.10.8 D/A Current Source

An improved D/A current source may be designed by using the
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alternative R/2R ladder to create current sources with a binary weighting.
Circuit 6.42 shows a 10-bit D/A current source. The circuit is designed
so.that all the current sources operaté continuously rather than being
switched on and off. The diodes form current steering switches;

the currents into the current sources are switched so as to flow from

the output node or from a saturated transistor switch.

The input word has to be arranged to be offset binary coded
because the output current is the difference between the fixed current
from the upper current source and the steered current sunk by the binary
weighted current sources.

The reference voltage (Vﬁ) setting the scale factor of the
decoder is converted to a current by transconductance amplifier 1 and
reflected by amplifier 2. Thus the upper current source and the lower
binary weighted current sources both have the same reference voltage.

The first advantage of this improved D/A current generator is
that because the current sources are operating continuously, at
fixed values of current, the limitation on the settling time of this
circuit is the speed that the current steering switches can operate.

The second advantage is that all the current sources are biased
in class A and therefore there will intrinsically be no crossover
distortion between current flowing into and out of the output node.

6.11 SUMMARY AND CONCLUSIONS

A 10-channel digital signal processing machine has been des-
oribed, containing a multiplexed A/D converter, multiplier and adder.
This machine was used to simulate two digital transadmittance amplifiers
each with a bandwidth in excess of 25 kHz. The machine was designed
to similate the 2-port capacitively loaded digital gyrator which was
analysed in Chapter 4.

The major drawbacks in the design of this machine have been
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described and considerable improvements suggested. In particular the

number of bits in each digital word was found to be barely sufficient

and the arithmetic algorithms used were cumbersome.

Nevertheless a working digital admittance matrix has been

designed, constructed and tested, then used as a digital gyrator.

-92 =



CHAPTER T

PRACTICAL RESULTS

T.1 INTRODUCTION

The expefimental machine was set up as described in Chapter 6
to act as a 2-port capacitively loaded digital gyrator. Measurements
were then taken for the magnitude and phase frequency responses for the

digital input impedance (zll) and forward transimpedance (221). These

| two elements were studied because they represented the two basic types
of element as seen in matrix (4.15). Their denominators were theoreti-
cally equal and therefore they effectively represented ‘the practical
outcome of all four digital impedance matrix elements. Furthermore,
the impedance matrix was derived in Chapter 4 from the admittance
matrix, and thus to attempt to verify the digital impedance matrix
would also intrinsically verify the digital admittance matrix.

Thé practical measuremeﬁts weré made with the sampling period
fixed at 18.75 microseconds because the ampiitude of 1limit cycle
oscillations increased in rough proportion to the sample period, as
shown later in Table 8.35.

7.2 MEASUREMENT TECHNIQUE

The frequency responses of digital input impedance Zq and

forward transfer impedance z,, were measured using the standard

21
technique described in Appendix G. The test arrangement is shown
in Fig., 7.1. The amplifier transconductance g was set to l/§5 siemens,
and this is equivalent in magnitude to - 37.5 dB.

The circuit of the digital gyrator is shown in Fig. 7.2 and
the relevant circuit parameters are listed in Table 7.1l.

The apparent advantage of using this magnitude comparison
Dethod is that the absolute signal levels do not have to be known,
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PARAMETER MEANING

VALUE

Sampling frequency

Sampling period

Port 1 shunt capacitor

Port 2 shunt Capacitbr
Transconductances

Port 1 shunt resistor

Fractional delay

TABLE 7.1

26.6 ° KHz

18.75 microseconds
9.6 ﬁicrofarada _
10 microfarads

10 millisiemens
50, 100, 200, 300,
400, 500 ohms

1

Digital Gyrator Component Values



only the gains or losses of each stage in each limb. However, the
Presence of a finite dynamic range, 32 quantisation levels and limit
cycle noise meant that the signal needed tb be kept near the maximum
Possible level.
T.2.1 Magnitude Response
The magnitude response was obtained. using equation (G.4) and
with the terms defined in Fig. 7.1, thus: _
|z2| = ¥/ | (7.1)
However, the attenuator values M and N were measured in

decibels, and hence equation (7.l) may be rewritten:

(Md.'B -N = gd:B) / 20

= 10 (7.2)

Z
where 8yp Was set to - 37.5 dB.
T.2.2 Phase Response
The phase shift & z was calculated directly from equation

(G.10) thus:

A 3z =-2 Ta.n_l (7.3)

Thus in this case both a voltage difference and an absolute
Voltage had to be measured.

7.3 INPUT IMPEDANCE (zll) OF DIGITAL GYRATOR

The frequency response of the input impedance Zqq of the 2-port
Capacitively loaded digital gyrator was measured using the test arrange-
ment shown in Fig. 7.l at port 1 or the digital gyrator. The circuit
of the digital gyrator is shown in Fig. 7.2 and the relevant circuit
Parameters are listed in Table 7.l

Md.‘B’ Nd:B’ l VD I - and l VM were measured and the values

RMS
for I zlll and A_(zll) were calculated using the formulae in Section

7.2 and all are listed in Tables 7.2 to 7.7. Graphs 7.l to 7.6 show the
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EXFERIMENTAL RESULTS

DIGITAL INFUT IMFEDANCE Z11

SAMFLING FERIOD T
CAFACITOR C1
CAFPACITOR C2
TRANSCONDUCTANCE G1
TRANSCONIDIUCTANCE G2
SHUNT RESISTANCE R
GENERATOR INFUT

TRANSCONDIUCTANCE AMF
TRANSCONDUCTANCE AMF
MEASURED

FREQUENCY M N
HZ LR LR
10,00 -30.8 10.0
12060 ‘3003 1000
15.80 -29.5 10.0
20000 ‘2505 1000
25010 —3303 1000
31,60 ~22.2 10.0
39.80 -19.8 10.,0
90410 ~-18.5 10,0
63010 “1605 1000
79.40 ~-15,2 10.0
100000 _1401 1000
103070 "1309 1000
107,60 ~-13.7 10.0
111,60 =-13.6 ~10.0
115.80 =-13.5 10.0
120010 ‘1304 1000
124,60 -13.3 10.0
129,20 ~13.2 10,0
134,10 -13.1 10.0
139,10 ~13.0 10,0
144,30 -~-13,0 '10.0
149,60 ~13.,0 10.0
155020 “1209 1000
160060 “1209 1000
161000 “1209 1000
167,10 =-12.9 10,0
173,30 ~-12.9 10.0
179.80 ~-12.9 10,0
186,50 -12.,9 10.0
193,40 -12,9 10,0
200,60 ~=13,0 10,0
208,10 ~-13,1 10.0
215990 "1302 1000
§23090 _1303 1000
:32030 ~13.4 10.0
*41000 -13.5 10.0

¢ 0.,1875E-04
! 0.9600E-03
¢ 0.1000E-04
¢ 0.1000E-01
! 0.,1000E-01
H 50,0
: 1.5
! 0.,1333E-01
: ‘3705
VALUES
LZ111 Vi1
DR V(IRMS)
16.7 0.049
17.2 0,092
18,0 0.057
22.0 0.090
24,2 0.110
28.3 0.:132
277 04175
29,0 0,203
31.0 0,285
32.3 0.298
33.4 0.338
33.6 0,345
33.8 0.350
33.9 0.356
34,0 0,361
34.1 0.3866
34.2 0.370
34.3 0.375
34,4 0.378
34,5 0.381
34,9 0.380
34.5 0,383
34.6 0.38%
34.6 0,388
34.6 0,387
34,6 0.385
34.6 0,382
34,6 0.386
34.6 0.3895
34,6 0.389
34,5 0.381
34.4 0,379
34,3 0,376
34,2 0,370
34.1 0.367
34,0 0.363

SECONDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS

VOLTS (RMS)
SIEMENS
NES

vni
V(F-F)

0.300
0.200
0.220
0.300
0.360
0.400
0.500
0.600
0.650
0.4600
0.480
0.480
0.450
0.400
0.380
0.330
0.280
0.280
0.240
0.160
0.120
0.100
0.080
0.050
0.050
0.030
0.080
0.100
0.140
0,175
0.240
0.260
0.300
0.330
0.+360
0.400

TARLE 7.2

CALCULATED

MONULUS
OHMS

6.8400
7+2400
7.92400
12,5900
16,2200
18.4100
24.2700
28,1800
35,4800
41.2100
4647700
47 .8600
48.9800
49,5500
50,1200
907000
91.2900
91.8800
92.4800
93,0900
53,0900
9340900
93,7000
33.7000
53,7000
33.7000
93.7000
95347000
9347000
9347000
53.0900
52.4800
91.8800
91.2900
50.7000
90.1200

RESULTS
ARGAND
DEGREES

?0.0000
B85.6697
86,0496
72.2100
70,7000
74,1200
60,6700
63.0000
93,5700
41.7000
29.0800
28.4800
26,2700
22.9100
21.4500
18.3400
15.3800
15.1700
12,8900

8.3100

6.4000

32900

4,2100

246100

2.6200
~2+6300
-4,2400
~9.2500
~7+3700
-2.2200

-12.7900
-13.92300
~-16.2200
-18.,1400
~19.9700
-22.4700



250,00 =-13.6 1040 33.9 0,358 0.430 49.5500 ~24.,5200

316.00 -14.8 10.0 32.7 0.311 0.600 43,1500 -39.8800
398,00 ~164.2 10.0 31.3 0,265 04600 3647300 -47.1900
%01.,00 -17.8 10,0 29.7 0.221 0.600 30,5500 =57.3600
631,00 -19.5 10.0 28,0 0.181 0,550 25,1200 -64.9800
1000,00 -13.3 0.0 24,2 0.370 0.300 16,2200 ~76+7900
1380,00 ~-17.1 0.0 20.4 0,237 0.900 10.4700 -84,3398
2510.00 -20.9 0.0 16.6 0,154 0.600 6.7600 -87.059%
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EXFERIMENTAL RESU

LTS

DIGITAL INFUT IMFEDANCE Z11

SAMFLING FERIOD T
CAFACITOR Ci
CAFACITOR C2

TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTANCE R
GENERATOR INFUT
TRANSCONDUCTANCE AMF
TRANSCONDUCTANCE AMF
MEASURED
FREQUENCY M N
HZ DR (D3]
10,00 -30.6 10.0
12,60 =-29.5 10.0
15080 "2-/08 1000
20,00 -24,7 10.0
23,10 =23.3 10.0
31060 "2105 1000
39.80 -19.4 10.0
50010 "1703 1000
63.10 =-19,1 10.0
79.40 -12.6 10.0
100,00 =-19.5 2040
103070 ‘190\5 :)000
107.60 =-19.1 20.0
111060 “1900 :'.f000
115,80 -18.7 20,0
120,10 -18.4 20.0
124,60 =~17.9 20.0
126,00 -17.5 20.0
129,20 -17.4 20.0
134010 "1609 2000
139,10 =-16.6 20.0
144030 "1604 2000
149,60 -146.3 20.0
155020 "1602 2000
161000 "'16.0 2000
163,00 =-16.0 20,0
167,10 =-16.0 20.0
173,30 -15.8 20.0
179080 "16'1 2000
186,50 -16.4 20.0
193,40 ~-14.5 20.0
200,60 =-17,0 20.0
208,10 -17.3 20.0
215090 "1704 2000
223,90 -17.8 20.0
232,30 -18,0 20.0
241000 "1802 2000
250,00 -18,5 20.0

¢ 0,1875E-04
! 0.9600E-0T
¢ 0.,1000E-04
¢ 0.,1000E-01
¢ 0.1000E-01
: 100.0
: 1.9
¢ 0.,1333E-01
: =375
VALUES
£Z111 Vi1
DR V(RMS)
16,9 0.0350
18.0 0.037
19.7 0.069
22.8 0.098
24,2 0.116
26,0 0,144
28.1 0.183
30,2 0.234
32.4 0.302
34,9 0.402
38.0 0.181
38.2 0.185
38.4 0.188
38.5 0,192
38.8 0.199
39.1 0.205
39.6 0,218
40,0 0,227
40.1 0,230
40.6 0.242
40.9 0.2852
41.1 0,258
41.2 0,260
41.3 0,269
41.5 0.270
41.5 0.271
41.3 0.269
41.5 0,274
41.4 0,269
41.1 0,289
41,0 0.254
40,5 0.241
40.2 0.234
40.1 0,232
39.7 0,219
392.59 0,218
392.3 0.210
39.0 0,203

TARLE 7.3
SECONDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS
VOLTS (RMS)
SIEMENS
DES
CALCULATED
vl MODULUS
Vi{P=P) OHMS
0.350 7+0000
0.400 7.92400
0.300 ?.6600
0.350 13.8000
0.400 16,2200
0.9350 19.9500
0.700 23.4100
0.800 32+3600
1,000 41.6900
1.200 95.+5900
0.450 794300
0.450 81.2800
0.450 83.1800
0.450 84.1400
0.430 87.1000
0.420 20,1600
0.400 ?5.3000
0.400 100.,0000
0.400 101.1599
0.320 107.1500
0.280 110.9200
0,200 113.5000
0.200 114.8200
0.140 116.1400
0.080 118.8500
0,080 118.8499
0.030 118.8500
0.060 118.8500
0.100 117.4900
0.200 113.4999
0.260 112,1999
0.300 105,9300
0.320 102,3300
0.360 101.1599
0,370 Y6+6100
0.400 ?4.4100
0.420 ?2.2600
0.430 89.1300

RESULTS
ARGANID
DEGREES

90,0000
?0.0000
20,0000
78,2999
75.1201
84,9397
85.0897
74,3700
7146600
63.7000
92,1400
50,9300
50.0700
48.9500
44,9100
42,4700
37.8800
3643000
35.8100
27.0400
22,6600
15.7500
15.6300
10,7200
6.0000
3+7400
2.2600
-4,4400
=7+6500
-15.6900
-20.8500
-25.4200
-27.9800
~-31.8400
~34.7%00
-38.2200
-41.4100
-43.9800



SOME PAGES BOUND
INTO/CLOSE TO SPINE.

IMAGING SERVICESNORTH -~ - - -



316,00 -11,8 10,0 357 0,439 1.150 60,9300 -39.1700

398,00 -14,2 10,0 33.3 0.333 1.050 46.2400 -67.7500
- 901,00, ~14,4 10.0 30,9 0,253 0.850 35.0800 =-72.8700

831,00 -18.6 10,0 28,9 0.199 0.720  27.8600 ~79,5200
1 794,00 ~10,9

. 0.0 266 0,490 1,800 21.3800 -80.9899
?000000 -13.0 0.0 24,5 0.382 1.500 16.79200 -87.9193
1380.,00 =174+0 0.0 20,5 0.240 0.950 10.5900 -88.8090
‘FSIOoOO ~20.9 0.0 16,6 0.154 0,600 6.7600 -87.0595
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‘DI

%EXPERIMENTQL RESULTS

i GITAL INFUT IMFEDANCE Z11

gSAMPLING FERIOD T

CAFACITOR Ci
CAPACITOR C2

%TRANSCONDUC
|TRANSCONDUGT ANGE o3
SHUNT RESISTANCE R
GENERATUR INFUT
:;SANSCDNDUCTANCE AMPF
%RANSCUNDUCTQNCE AMF
% MEASURED
fREQUEycv M N
3 HZ DR DE
| 10,00 -
| 1240 203 100
. 15,80 _a7'o 10.
20,00 -27.2 10.0
3010 23,5 1oug
31,60 -1a,9  10.0
39,80 -14.8 10.0
50010 -14.3  10.0
63,10 -11.5 10,0
79,40 -1g.8 10,
100,00 -yg.g 20,0
103,70 "‘18.” :0.0
107.60 ...17“'- :O.o
111,40 —16.1 2010
:115“80 ! o
'1.124.60 “i.do:;l :20.0
125750 -14.2 20,0
139.10 -1:‘;0\.1 2000
€144.30 —i¢00 20,0
}449060 ql.l 20.0
155..’0 "¢000 1000
§161.60 =-9.5 20.0
{163.30 "900 2000
;179080 =90 20.0
‘186.50 =23 20,0
193030 -10.1 200
200060 "1008 2000
215’90 "1208 20.0
223.90 "'1304 20.0
41,90 -15:3  20.0
Bl0lg 1160 2000
Bl4ig0 1649 20,9
v39 .00 .-1007 10.0
13.7 10.0

! 0.1873E-04
¢ 0,9600E-0T
! 0.1000E-04
¢! 0,1000E-01
i 0.1000E-01
: 200
: 1.5
¢ 0,1333E-01
: "3705
VALUES

Lz111 Vi
DB V(RMS)

17.2 0,052

18.7 0.062

20,3 0.074

22,3 0,093

4,5 0.120
26,5 0.151

) 0.192

o7 0.248

33,2 0.328

0 0,452

o7 0,195

3 0.210

40,4 0,237

41,1 0.258

41.5 0.269

2.0 0,286

3 0.334

b6 0,346

45.0 0.406

‘.;05 0.429

+4 0,481

47.5 0.540

+0 0.570

48.5 0,602

b6 04611

o6 0,609

o5 04,602

48.2 0.586

7.4 0.535

o7 0,492

45,7 0.437

o7 0.394

o1 0,365

42,9 0.320

2.2 0,293

oS 0,272

-} 0,245

+8 0,300

+8 0,354

TAELE 7.4
SECONDS
FARADS
FARALS
SIEMENS
SIEMENS
OHMS
YOLTS (RMS)
SIEMENS
IES
CALCULATED
Vo1l MODULUS
V(F-F) OHMS
0,000 742400
0,000 8.6100
0,000 10,3500
0.350 13,0300
0,550 16,7900
0.650 21,1300
0.800 26,9200
1,000 34,2800
1,250 . 45,7100
1,600 63,1000
04650 86,1000
0,700 ?2.,2600
0.750  104.7100
0,800 113,5000
0.840 118,8499
0.900 125.8900
0,950  146.2200
0,950  151.3600
1.000 177 .8300
1,000 188.3599
0,900  234,4199
0.750  237.,1400
0,600  251,1900
0.300 266,0700
0,100 269.1500
0,110 269.1500
0.300  266.0700
0.550  257.0400
0.800  234,4199
0,900  216.2700
1.000 192,7499
1.000 171,7899
1.000 160.3200
0,900 139.6400
0.840  128.8200
0,820 118.8500
0.780 107.1500
1,750 69,1800
1.300 48,9800

RESULTS
ARGAND
NEGREES

90,0000
90,0000
90,0000
90,0000
90,0000
90,0000
90,0000
90,0000
84,7098
77+ 4800
72,2100
72,2100
68,0300
6644800
67,0100
67+ 6000
4043700
58,0700
5146200
48,6700
38,6300
28,4300
21,4500
10,1100

3,5200
3.6600

-10,1100

-19,1000

-30,6600

-37.7300

~47,7200

~53,3200
~57.9400
~59,4300
~60,9000
~64,4100
~68.5000
-76 44500
-80.,9599



901,00 -14,2 10,0 31.3 0.265 1,000 36,7300 -83,6798

631,00 -18,5 10,0 29,0 0.204 0,800 28,1800 -87.7693
- 794,00 -10,7 0.0 26,8 0.497 1,950 21.8800 -87.8293
1 1000,00 -12,9 0.0 24,6 0,387 1.500 16,9800  -86.4995
- 1580,00 -17,0 0,0 20,5 0,242 0.960 10,5900 ~-89,0589
12510,00 -20,8 0.0

16,7 04156 0.620 6.8400 -89.2689
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%XPERIHENTAL RESULTS
UIGITAL INFUT IMFEDANCE Zi1

|
l
|

SAMFLING FERIOD T

CAFACITOR C1
CAPACITOR Co2
TRANSCUNDUCTQNCE G1
SRANSCONDUCTANCE G2
‘GHUNT RESISTANCE R
TENERATUR INFUT
ATgﬁNSCONDUCTﬁNCE AMF
| 'RANSCONDUCTANCE  AMF
| MEASURED
FREQUENCY N
g HZ DR DR
10000 29,2 10.0
12,60 -28,1  10.0
15,80 -24.4 10.0
20,00 -24,9 10.0
25,10 -23,1  10.0
31,60 -20.9  10.0
39480 -18.1  10.0
90010 -14.5 10.0
33‘10 -14,9  10.0
6e2d0 =118 1040
109°%0 -18.8  20.0
105'70 ~17.9 20,0
117760 -16.8  20.0
1280 -16.0 20,0
 15n'80  -15,7 20,0
0010 -34.4  20.0
| 424 S
(o080 . —13.8 20,0
13320 -1214 2000
133010 —1301 30%0
14:'§g ~9.8 20,0
‘ e 4 '_’
::9.60 "Zo; :;g.g
163°20 -14.2  30.0
4 00 o Y
120 5350 3008
R175020 -13:1 3040
115530 <131 30.0
d10,'30 -14.6 30,
115550 _1407  3ecs
120090 ~17.9  30.0
‘?320 +60 ~-10,0 ~ *
,.’ 8.10 __11’ :.000
1223, 1206 20.0
;232,30 =13.3 20,0
243 ~14,7 20,0
Boe 000 i
290,099 T15.3  20.0
34,90 L1605 20,0
~10.4 10,0

! 0.1875E-04
! 0.9600E-05
¢ 0.1000E-04
! 0.1000E-01
¢ 0.1000E-01
: 300
: 1.5
¢! 0.1333E-01
: "'3705
VAL UES
CzZ111 Vi
DB V(RMS)
18.3 0.059
192.4 0.067
20,9 0,079
22,6 0.096
24,4 0.119
26,6 0.154
29.4 0.191
31,0 0,255
32:.6 0.319
35.9 0.451
38.7 0.196
39.6 0.217
40.7 0.246
41.5 0,270
41.8 0.284
43.1 0.325
43.7 0.348
45.1 0,407
46,4 0.475
47.7 0,582
49.6 _ 0.688
50.8 0.790
53.1 0,325
3347 0.347
S4.2 0.370
4.4 0,377
54,4 0.37%
U2.9 0.318
50.8 0.249
49.6 0.218
47.5 0.541
46.1 0.461
44,9 0.402
44,2 0.371
42.8 0,317
42,2 0.295
41.0 0.256
37.1 0.514

TARLE 7.5

SECONDS

FARADS

FARADS

SIEMENS

SIEMENS

OHMS

VOLTS (RMS)

SIEMENS

LBS

CALCULATED
Vol MODULUS

V(P-F) OHMS
0.000 8.2200
0.000 ?.3300
0.000 11,0900
0.000 13.4900
0.000 16,6000
0.700 21.3800
0.800 29.5100
1,050 35.4800
1.300 42,6600
1.700 62,3700
0.720 86.+1000
0.800 ?25.+5000
0.900 108.3900
0.950 118.8%500
1.000 123,0300
1.200 142,8900
1,250 153.1100
1.350 179.8899
1,500 208.9300
1,600 42,6599
1.700 302.,0000
1.700 34647400
0,500 451.8600
0,450 484.,1699
0.220 912.8600
0,040 924.,8099
0.230 524.8101
0.600 441.5700
0.650 346.7400
0.600 302,0000
1.500 237.1400
1.500 201.8400
1.300 175.7900
1,220 162.1800
1.100 138.0399
1.040 128.8200
0.900 112,2000
1.900 71,6100

RESULTS

ARGAND
DEGREES

90.0000
20,0000
90.0000
?20.0000
?0.0000
?0.0000
?0.0000
?0.0000
?0.0000
83.0698
80.9900
81.3399
80.35899
76,9200
769900
81.4899
78.8399
71.8000
67.8700
61,6500
$51.8000
44,7200
31.5600
26,5100
12,0700
=2+13500

-12.,4500
~-38.9700
-54.9600
-%8.2300
~3847000
-70+2300
~69.7300
-71.0900
=75.6700
=77+1000
-76.8500
-81.6099



. 398,00
- 901,00
- 631,00
| 794,00

-
oo
o o
o O
o O
SO

o

0.357
0.265
0.206
0.498

- 0.387

0.241
0.158

49,3500
3647300
28.5100
21.8800
16.9800
10,5900

6.9200

=87.7693
-83.6798
-86.7095
=20.0000
-86.499%
=20.0000
=20.,0000
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EXFPERIMENTAL RESULTS
DIGITAL INPUT IMFEDAN

SAMFLING FERIOD T
CAFACITOR C1
CAFACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE 62
SHUNT RESISTANCE R
GENERATOR INFUT

TRANSCONDUCTANCE AMF
TRANSCONLIUCTANCE AMF
MEASURED

FREQUENCY M N
' HZ DR DE
10.00 =-27.1 10,0
12060 "‘2605 1000
15080 “2507 10.0
20,00 -24,3 10.0
25010 "2208 1000
31,60 -20.6 10,0
39080 "1808 1000
50010 "1605 1000
63010 "'1406 1000
79040 —1104 1000
100.00 -18.7 20,0
103.70 =-17,7 20.0
107060 "‘1608 . 2000
111,60 -16.0 20.0
115080 "1505 2000
120010 "'1402 2000
124060 "1\306 2000
129,20 -12.3 20.0
134010 "'10&8 2000
139010 —808 2000
144030 "608 2000
149060 "'1409 3000
155020 "'1205 3000
161000 "'1000 3000
165,460 -9l 30.0
167,10  -9,0 30.0
173,30 -9.1 30.0
179.80 -12,1  30.0
186050 "1407 30,0
£93.40 -17.1  30.0
200,60  -9,0 20,0
2080 10 "1008 2000
215,90 -12,0 20,0
;23090 ~13.1 20.0
=32,30 -14,5 20.0
£41,00 -15,1 20,0
500000 =16.3 20,0
16,00 -10.4 10.0

CE Z11
¢ 0.,1875E-04
! 0.9600E~03
¢ 0,1000E-04
! 0.,1000E-01
i 0,1000E-01
H " 400
: 1.5
¢ 0,1333E-01
: -37 45
VALUES
CZ11] V1
D V(RMS)
21.0 0,080
21.8 0.088
23.2 0,103
24.7 0.123
26.9 0,158
28,7 0.194
31.0 0,255
32,9 0.318
36+1 0,457
38.8 0.198
39.8 0.223
40.7 0.245
41.5 0.270
42,0 0.286
43.3 0,332
43.9 0.356
45.2 0,414
446.7 0.489
48.7 0.623
50.7 0.779
92.6 0,308
55,0 0.408
979 0,540
98.4 0.600
9B8+8  0.600
98.4 0.359%
99.4 0,425
92.8 0.315
90.4 0.237
48.5 0.604
46,7 0.494
45.35 0.428
44,4 0,380
43,0 0,321
42,4 0.300
41.2 0,263
37.1

0.516

SECONDS
FARADS
FARALS
SIEMENS
SIEMENS
OHMS

TARLE 7.6

VOLTS (RMS)

SIEMENS
[IBS

yni
V(F=F)

0.000
0,000
0,000
0.000
0.000
0.800
0.900
1.100
1.300
1,800
0.760
0.900
1.000
1.050
1,100
1.250
1.350
1,500
1.700
2,000
2,350
0.920
0.850
0.800
0.100
0.100
0.3560
1.000
1.000
0.800
2,000
1.700
1.500
1.400
1,200
1.120
1.000
2,000

CALCULATED

MODULUS
OHMS

10,4700
11,2200
12,3000
14,4500
17.1800
22,1300
27,2300
35,4800
44,1600
63,8300
87,1000
9747200

1083900

118.,8500

125.8900

146.2200

156 .,6800

181.9700

216.2700

272.2700

342,7700

426.5800

562,3400

749.,8899

831.,7600

841.,3999

831.,7600

588,8400

436.5199

331.1300

266,0700

216.,2700

1883600

165.9600

141.2500

131.,8299

114.8200
71,6100

RESULTS

ARGAND
DEGREES

?0.0000
?20.0000
20,0000
?0.0000
?0.0000
?0.0000
?0.0000
?0.0000
?0.0000
88.2592
85.4597
20,0000
?0.0000
86.8595
BH.6697
83.4498
84,1898
79+6600
75.8400
69.1500
64,4500
6347500
43,5600
3043600
3.3800
-3.3800
-19.1500
~49.1600
-68.2800
~73+2700
=71.6600
=74.9400
~76.9700
-81.2799
-82.7298
~-82.5899
-84.,4698
~86.4995



398,00 -13.6 10.0 33.9 0,358 1.400 49.5500 ~87.4694
901,00 ~146.2 10,0 31.3 0.266 1.000 36.7300 -83.2998
631,00 ~-18.4 10,0 29,1 0,205 0.800 2845100 -87.2394

794,00 -10,7 0.0 26.8 0,498 2.000 21.8800 =920.0000
1000,00 -12.,9 0.0 24,6 0,387 1.500 16.9800 -86.4995
1580,00 -17.0 0.0 20,5 0.242 1.000 10,5900 =920.0000
2510.00 -20.6 0.0 16,9 0,159 0.000 7.0000 =20.0000
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EXFERIMENTAL RESULTS
DIGITAL INFUT IMFEDANCE Z11

SAMFLING FERIOD T

e sa0e Gaee o Geet sese Gebe Geee Gem Ges ee See Seu Sems Seme

CAFPACITOR Ci1
CAFACITOR C2
- TRANSCONDIUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTANCE R
GENERATOR INFUT
TRANSCONDUCTANCE AMF
TRANSCONDUCTANCE AMF
MEASURED
FREQUENCY M N
HZ DR IR
25,10 =22.4 10.0
31060 "‘2004 1000
39.80 ~18.7 10.0
90.10 ~16.4 10,0
63,10 =-14.6 10,0
79,40 =-11.3 10.0
100000 "‘1805 2000
107.60 -16.8 20.0
111060 "1600 2000
115080 "'15o4 2000
120,10 -14,3 20.0
124,60 -13.5 20.0
'129020 -12.2 20.0
134010 -10.7 20,0
139,10 -8.4 20,0
144930 "601 2000
149,60 -14,3 30,0
185,20 -11.4 30.0
161,00 -be3 30,0
162,90 -13,9 40,0
167,10 -b6.3 30,0
173,30 =74 30.0
179.80 -10.4 30.0
186050 "14.4 3000
193040 "'1700 3000
200,40 ~-8.8 20,0
208,10 =105 20.0
215,90 ~11,9 20,0
223,90 -13.0  20.0
;32030 ~-14.4 20,0
£41,00 -15,1 .20.,0
£90.00 -14,1 20,0
gis.oo =10.4  10.0
298400 -13,6 10,0
v01,00 -14,2 10,0
631 . ’
+00 -18,4 10,0
79 '
4400 -10,7 0.0

¢ 0.1875E-04
! 0.9600E-00
! 0.,1000E-04
! 0+1000E-01
! 0.,1000E-01
: 300
: 1.5
¢ 0.1333E-01
: =379
VALUES
EZ111] Vi
O V(RMS)
25,1 0,129
27.1 0.162
28.8 0,197
31.1 0,258
32,9 0,319
36,2 04,467
39.9 0,203
40,0 0.227
40.7 0,246
41.5 0,271
42.1 0,290
43.2 0,329
44,0 0,360
45.3 0.418
46.8 0.497
49.1 0.651
51.4 0.843
53.2 0.329
96+.1 0,457
61.2 0.830
63.6 0.346
61.2 0,830
60.1 0.726
97.1 0.519
3.1 0.324
0.9 0,241
48.7 0.622
47.0 0.512
45.6 0.437
44,5 0,381
43.1 0.325
42,4 0,301
41.4 0,269
37.1 0.515
33.9 0.358
31.3 04266
29.1 0,205

26.8

0.498

TARLE 7.7
SECONDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS
VOLTS (RMS)
SIEMENS
RS
CALCULATEL
vl MODULUS
VF-F) OHMS
0.000 17.9900
0.000 22,6500
1.000 27.5400
1.200 35.8900
1.300 44,1600
1.950 64,5700
0.800 89.1300
0,200 100,0000
1.000 108.3900
1,100 118.8%00
1.200 127.3500
1.300 144,5400
1.400 158.4900
1,600 184.0800
1.900 218.7800
2.300 285.1000
2.800 371.5400
1,100 457 .0899
1.500 638.2600
1.000 1148.1500
1,000 1513.5600
0.800 1148.1500
1.500 1011.5800
1,500 716.1400
1.200 451.8601
0,850 334,9700
2.300 272.2700
1.900 223.8700
1.650 190.,5500
1,500 167.8800
1.240 142.8900
1.150 131.8300
1.000 117.4900
2,000 71,6100
1.400 49,5500
1.050 36,7300
0.800 28,5100
2,050 21.8800

RESULTS

ARGAND
NEGREES

20,0000
90,0000
90,0000
?0.0000
?0.0000
?0.0000
88.3192
88,9890
?0.0000
?0.0000
90.0000
88,6191
86.8595
B3.1697
83.0297
77,0300
71,9100
72,4600
70.9300
24,5900
0.,0000
=19.6200
-42.8400
~61.4500
~81.799%
=774+1400
-81.46399
-81.9899
-83.7398
-88.,2092
-84,8297
~84,9697
-82,1469¢9
-86.7095
-87.4694
-88.,4991
-87.2394
=%20.0000



1000,00 -12,9 0.0 24,6 0,387 1.300 16,9800 ~86.4995
1580.00 -14,9 0.0 20,6 0,244 1.000 10,7200 -20.0000
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frequency responses for the magnitude and phase for all 6 values of the
shunt resistance Rs with the sampling period set to 18.75 microseconds.

7.4 FORWARD TRANSIMPEDANCE (z,,) OF DIGITAL GYRATOR

The frequency response of the forward transimpedance Zo1 of
the 2-port capacitively loaded digital gyrator was measured in a manner
identical to Zq77 but at port 2 of the digital gyrator. See Fig. 7.3.

v

MdB’ NdB’ ‘ D V

M were measured and the values

and

RMS

for I Z5y I and¢ﬁ1(z21)were calculated using the above formulae, and
are listed in Tabléé 7.8 to 7.13. Graphs 7.7 to 7.12 show the gain
and phase frequency responses for all 6 values of the shunt resistance
Rs with the sampling period set to 18.75 microseconds..

T.5 INPUT TRANSATMITTANCE AMPLIFIER

The input signal was coupled to the digital gyrator by way of

an analogue transadmittance amplifer in order to measure z,, and Zoy

11
of the digital impedance matrix by injecting a known current. This
amplifier was described in Section 6.8.

Because this amplifier was necessarily in the main signal path,
its gain and phase f;equency responses were also determined to prove
that these had a negligible effect on the measurements taken because
the output current could not be directly monitored.

The circuit of this amplifier is repeated in Fig. 7.4, the
component values used are listed in Table T7.1l4 and the amplifier para-
meters in Table 7.15 for the response measured. The transconductance
may be calculated from equation (6.26).

The frequency response was measured using a digital gain-phase
meter (Solartron type 1170). The results are listed in Table T7.1l6
and shown in Graph T7.1l3. The test arrangement is shown in Fig. 7.5.

Table T7.17 lists the resistor values used when this trans-

admittance amplifier was used to test the 2-port digital gyrator. The

- 95 =
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EXFERIMENTAL RESULTS
NIGITAL FORWARD TRANSFER IMFEDANCE
SAMFLING FPERIOD T ¢ 0.,1873E-04
CAFACITOR C1 ! 0.,9600E-03
CAFACITOR C2 ! 0.1000E-04
TRANSCONDUCTANCE G1 ¢ 0.1000E~-01
TRANSCONDUCTANCE G2 ¢ 0.1000E-01
SHUNT RESISTANCE R : 50
GENERATOR INFUT : 1.5
TRANSCONDUCTANCE AMF ¢ 0.1333E-01
TRANSCONDUCTANCE AMF ¢ w3745
MEASURED VALUES
FREQUENCY M N LZ111 Vi1
HZ IR DR DB V(RMS)
10000 "1805 2000 3900 00201
12:60 +«=18+7 20.0 38.8 0,195
15.80 -18.7 20.0 38.8 0.196
20,00 -18.7 20.0 38.8 0.,199
25.10 =~18.7 20.0 38.8 0.198
31,60 -18.8 20.0 38.7 0.194
39.80 ~18.6 20,0 38.9 0.200
350.10 -18.3 20.0 39.2 0,208
63.10 -18.3 20.0 39.2 0.206
79.40 ~19.3 20.0 38.2 0,185
103.70 =-19.9 20.0 37.6 0.173
107.60 ~-19.8 20.0 37+7 0,175
111,60 -19.7 20.0 37.8 0.177
115.80 ~=19.7 20.0 37.8 0.176
124060 _2000 2000 370\.}” 00170
129.20 -20.3 20.0 37+2 04,168
134,10 =20.4 20,0 37.1 0.162
139,10 -11.6 10,0 35.9 0.447
144,30 ~-11.9 10.0 35,6 04,432
149:.60 <~12.2 10,0 35.3 0.418
155,20 -12.5 10.0 35,0 0.404
167,10 -13.1 10.0 34.4 0.376
173,30 =13.5 10.0 34,0 0.362
179.80 -13.8 10.0 33.7 0,349
186,50 -14.0 10,0 33.3 0.334
193,40 ~-14,3 10.0 33.2 0.326
200,60 ~-14,7 10.0 32.8 0.314
208,10 -15.1 10.0 32.4 0,301
215,90 -15.4 10.0 32,1 0.289
223,90 ~-15.8 10.0 - 31.7 0,276
232,30 ~16.3 10,0 31.2 0,263
241,00 ~-16.7 10.0 30.8 0.252
250,00 -17.1 10,0 30.4 0,239
316,00 ~10.6 0.0 26,9 0.507
398,00 -13.,9 0.0 23.6 0.3446

221

SECONDS
FARADNS
FARADS
SIEMENS
SIEMENS
OHMS

VOLTS (RMS)
SIEMENS

nBs

VI
V(P-F)

0.200
0.200
0.200
0.200
0.200
0.200
0.220
0.300
0.400
0.450
0.500
0.520
0,550
0.560
0.600
0.600
0.620
0,600
0.600
1.700
1.700
1.700
1.600
1.600
1.600
1,380
1.%00
1.500
1.500
1.450
1.400
1.350
1,300
1,300
1.250
1,200
2.700
1.900

TARLE 7.8

CALCULATE
MODULUS
OHMS

89.1300
87.1000
87.1000
87.1000
87.1000
86+.1000
88.1000
?1.2000
?1.2000
81.2800
75.8600
75.8600
76.7400
7746200
7746200
7647400
74,9200
72.4400
71,6100
62,3700
60.2600
38.2100
96.2300
54,3300
92.4800
J0+1200
48,4200
47,3200
45,7100
43,6500
41.6900
40.2700
38.4600
3643100
34,6700
33.1100
2241300
15.1400

I RESULTS
ARGANII
DEGREES

-20.,2600
-20.8%00
~-20.7800
-20.4700
-20,5700
-21.,0000
-22.,4300
-29.5400
~40,1500
-50.9300
-461.8500
-64.1900
-67.5000
-468.,0100
-74.1200
=75.1200
-80.2899
-80.,0099
-81+799%
-84.,4898
-88.,1592
~921.9408
-88.8690
-22.980%
-97.3702
-98.3901
-98.8901
-105.1000
~108.8600
-109.4400
-110.6100
-111.,3300
-112.,7400
-121.8099
-122,5300
~125.1399
-140.,5799
-152,2099



501.00 -17.4 0.0 20.1 0,231 3.250 10,1200 =179.9994
631,00 =21.0 0.0 16.5 04,1533 0,900 6.6800 -179.9991
794,00 -24.9 0.0 12,6 0.097 0.600 4.2700 ~179.9986
1000.00 -28.5 0.0 ?.0 0.064 0.400 2.8200 -179.9980
1580.00 -36.2 0.0 1.3 0.026 0.170 1.1600 =-179.9950
2510.,00 -43.4 0.0 -519 0,012 0.060 0.5100 -179.9887
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EXFERIMENTAL RESULTS

DIGITAL FORWARD

SAMFLING FERIOD
CAFPACITOR

C1

CAFACITOR C2
TRANSCONDIUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTANCE R

GENERATOR INFUT

TRANSCONDUCTANCE AMF
TRANSCONDUCTANCE AMF

FREQUENCY

HZ

10.00

12,60

15.80

20,00

,4.10

31.60

39.80

950.10

63+10

79.40
100.00
103.70
107.60
111.60
115.80
120.10
124,60
129.20
134,10
139,10
144,30
149,60
155.20
161,00
167,10
173.30
179.80
186.50
193,40
200,60
208,10
215,90
223,90
232,30
241,00
250,00
316,00
398,00

TRANSFER IMFEDANCE

0.1875E-04

0% oo oo s4ee e Gew e8s Seee SO GG 0SS PISE Se0e S Sese

MEASURED

M N

OB 'R
"1703 2000
"1703 2000
“174+3 20,0
~-17.3 20.0
wld «:3 20.0
1743 20.0
-17.3 20,0
-=17.0 20.0
"1602 2000
‘1600 2000
”1508 2000
~13.6 20.0
-15.4 20,0
-15.3° 20.0
"1502 2000
-15.1 20,0
=13s1 20.0
1d.h 2000
=153 20.0
-1504 2000
-15.4 20,0
=-19.3 20.0
_1504 2000
-15.5 20.0
o - TS 20.0
~16.3 20.0
-16.8 20.0
-16.8 20,0
_1800 2000
”1808 2000
-9.4 10.0
*1002 1000
-10.8 10,0
“11+3 10.0
“1202 1000
-12.8 10.0
—1703 1000
=31+ 0.0

! 0.9600E-05
¢ 0+.1000E-04
¢ 0+.1000E-01
¢ 0.1000E-01
: 100
: 1.5
¢ 0.1333E-01
: =37+
VALUES
LZ111 Vi1
OE  VIRMS)
40.2 0.230
40.2 0,231
40,2 0.230
40.2 0.229
40.2 0.230
40.2 0,234
40,2 0,232
40,5 0.239
41.3 0,262
41.5 0.271
41.7 0.277
41.9 0.281
42.1 0.289
42,2 0.293
42.3 0.296
42.4 0,299
42,4 0.299
42.3 0.296
42,2 0,292
42,1 0.288
42,1 0.290
42.2 0.292
42,1 0.290
42,0 0.284
41.6 0.274
41.2 0,261
40.7 0.247
40.7 0,245
392.85 0.214
38.7 0.197
38.1 0,579
37.3 0,330
36.7 0.496
362 0,462
353 0,423
34,7 0.391
30.2 0.233

0.434

TABLE 7.9
z21
SECONDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS
VOLTS (RMS)
SIEMENS
DRS
CALCULATE
VI MODULUS
V(F~F) OHMS
0,100  102.3300
0,100 '102,3300
0,100  102.,3300
0,100  102.3300
0,100  102.3300
0,100  102.,3300
0,100 102.3299
0,150  105,9299
0,350 116.1400
0,420  118.8500
0,520  121.,6200
0,600 124,4500
0,630  127.3500
0,700  128.,8200
0,720  130.,3200
0.750  131.,8299
0,820  131.8300
0,900  130.,3200
0,900  128,8200
0,950  127.3500
0.950  127.3499
1,100  128.8200
1,100  127.3500
1,150 125.8900
1,150  120.2300
1,120 114.,8200
1,100  108.3900
1,100  108.3900
1,000 94,4100
1,000 86,1000
2,900 80,3500
2,700 73,2800
2,550 68,3900
2,400 64,5700
2,250 58,2100
. 100 54,3300
1.350 32,3600
2,500 19,0500

I RESULTS
ARGAND
DEGREES

~-8.8200
-8.7800
-8.8200
-8.8500
~-8.8200
-8.6700
-8.7400
-12,7400
~27.3200
-31.,8000
-38.7600
-44,3500
"4J03300
-49,92600
-50.9300
-52.6400
-58.,0000
-65.0300
-66.,0300
-71.3400
‘7501200
-83.5098
-84,2198
-21.,4209
=29+ 7902
~-98.46801
-103.8600
-105.,0600
-111.3900
1276199
-124,6000
-128.4600
-130.6900
-133,34600
-140.1999
-143,4100
-180.0000
-180,0000



901,00 ~-16.1 0.0 21.4 0,269 1.350 11,7500 -180.0000
631,00 -20.3 0.0 17.2 0.166 0.950 7.2400 -180.0000
794,00 -24.2 0.0 13.3 0,105 0.6420 4.6200 -180.,0000
1000.,00 -28.4 0.0 2.1 0,065 0.400 2.8500 -180,0000
1580.00 -36.2 0.0 1.3 0.026 0.170 1.1600 -180.0000
2510.,00 -—-42.,9 0.0 -9.4 0,012 0.070 0.5400 -180.0000
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EXFERIMENTAL RESU
DIGITAL FORWARI

SAMFLING FERIOD T

LTS

G1
G2

o

AMF
AMF

RE

TRANSFER IMFEDANCE

0.1875E~04

CAFACITOR C1
CAFACITOR C2
TRANSCONDUCTANCE
TRANSCONDUCTANCE
SHUNT RESISTANCE
GENERATOR INFUT
TRANSCONIIUCTANCE
TRANSCONDIUCTANCE
MEASU
FREQUENCY M
: HZ DE
10,00 -17.3
12060 —1703
15080 “1701
20,00 -17.1
25010 “1702
31060 “1700
1 39.80 -16.8
50.10 =-16.6
63,10 =-14,3
79,40 -11.5
100,00 -14.,2
103.70 -13.8
107.60 -13.5
111,60 =-13.1
115080 "1209
120,10 -12.3
124,60 -11.,8
129,20 -11.5
134,10 -10.8
139,10 -10.4
144,30 =P 7
149060 —903
155020 ’900
161,00 ~-17.5
167.10 -17.8
173030 “1803
179.80 -10.,2
186,50 -11.,0
193,40 -12.1
200060 “1304
208.10 -14.,9
215.90 -15.7
223090 -17.4
232,30 -18.1
241,00 =-18.,9
250,00 -10.4
316,00 -16,2
398000 —1105

DE

20,0
20.0
20,0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20,0
20.0
20.0
20.0
20.0
20.0
20.0
20,0
20,0
20.0
20.0
20,0
20,0
20.0
20.0
20.0
2040
20.0
2040
20.0
20.0
20.0
20.0
20.0
20.0
10.0
10.0

0.0

¢ 0.9600E-0S
¢ 0.,1000E-04
¢+ 0+1000E-01
¢ 0.1000E-01
: 200
: 1.5
¢ 0.1333E-01
: =375
VALLUES
LZ1i11] Vi
DR V(RMS)
40.2 0,230
40,2 0,231
40.4 0,238
40.4 0.238
40.3 0.236
40.5% 0.241
40.7 0.246
40.9 0,282
4147 0.275
42,0 0,284
43.3 0.333
43.7 0.347
44,0 0.358
44.4 0,377
44,6 0.387
45.2 04413
45.7 0,436
46,0 0.454
46,7 0.490
47.1 0.315
47.8 0,558
48.2 0,582
48.5 0.607
0.0 0,227
49.7 0,220
49.2 0.207
47,3 0.528
46,5 04,475
45.4 0.425
44,1 0.363
42.6 0,307
41.8 0,281
40,1 0.232
39.4 0.212
38.6 0,194
37.1 0.518
31.3 0.266
26,0 0,457

Z21

SECONDS
FARALDS
FARALDS
SIEMENS
SIEMENS
OHMS

TARLE 7.10

VOLTS (RMS)

SIEMENS
DES

Vil
V(P~P)

0.000
0.000
0.000
0.000
0.000
0.000

0,000

0.000
0.200
0.300
0.320
0.350
0.400
0.500
0.500
0.600
0.750
0.810
1.050
1.200
1.500
1.900
2.000
0.900
0.950
1,000
2.500
2,400
2:200
2.000
1.700
1.550
1.300
1,200
1.100
2,900
1.550
2,650

CALCULATED RESULTS
MODULUS ARGANII
OHMS IEGREES
102,3300 0.0000
102.3300 0.0000
*104,7100 0.0000
104,7100 0.0000
103.5100 0.0000
105.9300 0.0000
108.3900 0.0000
110.9200 0.0000
121.6200 -14.,7700
125.8900 -21.5200
146.,2200 -19.5600
153.1100 -20.5400
158.,4900 -22.7800
165.92600 -27.1200
169.8199 -26.4100
181.9699 -29.7600
192.7499 -35.4100
199.5300 -36.7700
216.2700 -44,5200
226.,4600 -48,6500
245.,4700 -%57.0800
257.,0400 -70.4900
266.0700 -71.2500
3162300 -88.9890
305.4900 -99.5201
288.,4000 -117.2999
231.7400 ~-113.6500
211.,3500 ~126,.5500
186.2100 ~-132.4300
160.3200 ~-153.7999
134,92000 -156.,4099
123.0300 -154,3799
101,1600 -164.2399
23,3300 ~-180.0000
85,1100 ~-180.,0000
71,6100 -180,0000
36.7300 ~-180.0000
19,9500 ~-180,0000



501,00
631,00
794,00
1000.00
1580.00
2510.00

.
L e

-15.7
~-19.9
"2401
"'280 1
-3b6.1
-4204

21.8
17.6
13.4
?.4
1.4
"'409

0.279
0.172
0.107
0.067
0.027
0.013

1.600
1.000
0.620
0.400
0.170
0.070

12,3000
7+3900
4.,6800
2.9500
1.1700
0.5700

-180.0000
-180.0000
-180.0000
-180.0000
-180.0000
-180.,0000
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EXFPERIMENTAL RESULTS

DIGITAL FORWARD TRANSFER IMFEDANCE
SAMFLING FERIODN T ¢ 0.,1875E-04
CAFACITOR C1 ¢ 0,9600E-05
CAFACITOR C2 ¢ 0.1000E-04
TRANSCONDUCTANCE 61 ¢ 0.1000E-01
TRANSCONDUCTANCE G2 ¢ 0.1000E-01
SHUNT RESISTANCE R H 300
GENERATOR INFUT : 1.5
TRANSCONDUCTANCE AMF ¢ 0,1333E-01
TRANSCONDIUCTANCE AMF ¢ =37 3
MEASURED VALUES
FREQUENCY M N CzZz111 Vi
HZ DR DR LR V(RMS)
10,00 -17.3 20.0 40,2 0,232
15080 "170\3 2000 4002 00234
20,00 -17.2 20.0 40,3 0,235
25,10 =-17.1 20.0 40.,4 0,239
31.60 -16.9 20.0 40,6 0.242
39.80 =16.7 20.0 40.8 0.248
50,10 -16.4 20.0 41,1 0.258
63.10 -16.1 20,0 41.4 0.266
79.40 =135.3 20,0 42,2 0.293
100,00 -13.9 20,0 43.6 0,343
103.20 =~13.7 20.0 43,8 0,353
107.60 -13.1 20.0 44,4 0.379
111,60 -12.5 20.0 45,0 0,402
115,80 -12.3 20.0 45,2 0.412
120010 —1105 2000 4600 00451
124,60 -11.0 20.0 46,5 0.477
129.20 -10.3 20.0 47 .2 0.521
134,10 -9.4 20.0 48.1 0.578
139,10 ~8.3 20.0 49.2 0.658
144.30 -16.6 30.0 50.9 0,251
149,60 -15.6 30.0 91.9 0.282
155.20 -14.1 30,0 53.4 0.337
161,00 =~13.5 30.0 94.0 0,361
163,60 -13.3 30.0 S4.4 0,376
173.30 ~18.6 30.0 92,5 0.303
179.80 -17.5 30.0 51.9 0.284
186,50 Y- 30.0 950.0 0.226
193,40 -11.8 20.0 47.9 0.565
200,60 -13.95 20.0 45.7 0.439
208.10 -15.0 20,0 44,0 0,361
215,90 -15.9 20.0 42,5 0.,303
223,90 -17.8 20.0 41.6 0.275
232,30 -18.4 20.0 39.7 0.221
241,00 ot L & 20.0 39.1 0.205
250.00 -16.0 10.0 37.6 0.544
316,00 -16.0 10,0 31.5

0.272

TAERLE 7.11
Z21
SECONIDS
FARALDS
FARADS
SIEMENS
SIEMENS
OHMS
VOLTS (RMS)
SIEMENS
nERS
CALCULATED RESULTS
vni MODULUS ARGAND
V(F~F) OHMS LHEGREES
0.000 102.3300 0.0000
0.000 102.,3300 0.0000
0,000 "102,3300 0.0000
0.000 103.,5100 0.0000
0.000 104.7100 0.0000
0.000 107.,1500 0.0000
0,000 109.6500 0.0000
0.000 113.5000 0.0000
0.000 117.4900 0.0000
0.000 128.8200 0.,0000
0.200 151.3600 -11.8300
0,200 154.8800 -11.5000
0.250 165.9600 -13.,3900
0.300 177.,8299 -15.1600
0.350 181.9700 -17.2700
0,420 199.5300 -18.92500
0.500 211.3500 -21.3600
0.600 229.0899 -23+4900
0.800 254.,1000 -28.3300
1.100 288.4000 -34.,3800
0.450 350.7499 =36+92500
0.600 393.5500 ~-44,1900
1.000 4677399 -63.,2800
1,150 901.1899 -68.5500
1.500 524.8102 -89.6987
1,500 912.8599 -21.8808
1,500 421.,7000 -122,1199
1,500 J393.5500 ~138.0300
1.240 316.2300 =-151.8300
3.100 248.3100 -151.,8300
2,500 192.7499 -180.,0000
2,050 158.4899 -180.0000
1.700 133.3499 -180.0000
1,580 120.2300 ~-170.2400
1.300 96.6100 -180.,0000
1.200 20,1600 -180.0000
3.200 75.8600 -180.0000
1.600 37.5800 -180.0000



398,00 -11.4 0.0 2601 0,462 2.700 20,1800 -180.0000
501,00 -15.,7 0.0 21.8 0.281 1.600 12,3000 ~-180,0000
631,00 -19.9 0.0 17.6 0,172 1.000 7.5900 -180,0000
794.00 =-24.1 0.0 13.4 0,107 1.000 4,6800 -180,0000
1000,00 -28,3 0.0 2.2 0,066 0.400 2.8800 -180.0000
1580000 "3601 000

1.4 0.027 0.170 1.1700 -180.0000
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EXFERIMENTAL RESULTS

DIGITAL FORWARD TRANSFER IMFEDANCE
SAMFLING FERIOD T ¢ 0,1875E-04
CAFACITOR C1 ! 0.,92400E-03
CAFACITOR C2 { 0.1000E-04
TRANSCONDUCTANCE G1 ¢ 0.1000E-01
TRANSCONDUCTANCE G2 ¢ 0.1000E-01
SHUNT RESISTANCE R : 400
GENERATOR INFUT : 1.5
TRANSCONDUCTANCE AMF ¢ 0.1333E-01
TRANSCONDUCTANCE AMF 3 w37 49
MEASURED VALUES
FREQUENCY M N LZ111 Vi
HZ LR DR DR V(RMS)
10,00 ~17.2 10.0 40.3 0,238
12,60 -17.1 10,0 40.4 0,238
15+80 =17.1 10.0 40,4 0,236
20000 "1701 1000 4004 00236
25,10 -17.0 10,0 40.5 0.240
31060 ""1609 1000 4006 00243
39.80 -16.7 10.0 40.8 0,246
50010 "‘1603 1000 4102 00261
63010 -1600 1000 4105 00269
79.40 -135.2 10.0 42.3 0.297
100,00 -13.8 20.0 43.7 0.347
103,70 -13.5 20.0 44,0 0.361
107060 "1301 2000 4404 00378
111,60 =-12.6 20.0 44,9 0.399
115,80 ~-12.2 20.0 45,3 0.419
120,10 -11.4 20.0 46,1 0,460
124,60 =-10.9 20.0 46.6 0.487
129.20 -10.0 20,0 47.5 0,540
134,10 ~-8.7 20.0 48.8 0.623
139.10 ~-17.4 30.0 30.1 0.230
144,30 ~16.2 30.0 913 0,263
149.60 ~-13.9 30.0 33.6 0,346
153.20 =-12.1 30.0 9.4 0,425
161,00 st % 30,0 97.6 0.543
163.80 -9.2 30.0 98.3 0.592
167.10 ~9.3 30,0 58.2 0.885
173030 "1007 3000 5608 00497
179.80 -13.,7 30.0 53.8 0,350
186850 ~-15.6 30.0 1.9 0,281
193.40 ~18.95 20.0 49.0 0,202
200,60 -10.8 20.0 46.7 0.492
208.10 -13.2 20.0 44,3 0,375
215,90 -14.4 20,0 43.1 0.328
223,90 -15.8 20,0 41,7 0.279
232,30 ~-17.8 20.0 392.7 0.222
241,00 -18.3 20.0 32.2 0.208
250,00 ~-19.8 20,0 37+7 04176
316,00 -16.0 10.0 1.5 0.272

TARLE 7.12
Z21
SECONDS
FARALDS
FARADS
SIEMENS
SIEMENS
OHMS
VOLTS (RMS)
SIEMENS
nEBS
CALCULATED RESULTS
vl MODULUS ARGAND
V(P-P) OHMS DEGREES
0.000 103.5100 0.0000
0.000 104.7100 0.0000
0,000 " 104.7100 0.0000
0.000 104.7100 0.0000
0.000 105.9300 0.0000
0.000 107.,1500 0.0000
0.000 109.6500 0.0000
0.000 114,8200 0.,0000
0.000 118.8500 0.0000
0.000 130,3200 0.0000
0.150 153.1100 -8.7700
0.000 158.4900 0.,0000
0.000 165.9600 0.0000
0.200 175.7900 ~=10.1700
0,220 184.0800 -10.6%500
0.250 201.8400 -11.0300
0.300 213.8000 -12.5000
0.400 237.1400 -15.0800
0.600 275.4200 -19.6000
0.200 319.8900 =17.6900
0.250 367.2801 -19.3500
0.520 478.6300 -30.8100
0.900 988.8400 -43.,9700
1.700 758.5798 -67.2100
2.300 822.2399 -86.7495
2+300 812.8300 -28.1301
2.500 691.8300 -125.58500
2,000 489 .7799 -180.0000
1.600 393.5499 -180,0000
1.150 281.8399 -180.0000
2.800 216.2699 ~-180.,0000
2,150 164,0599 -180.0000
1.850 142,8899 -180.0000
1.600 121.6199 -180.,0000
1,300 26,6100 ~-180.0000
1,200 91,2000 =-180,0000
1.000 76+7400 ~180.0000
1,600 37.5800 ~-180,0000



398,00 -11.4 . 040 26,3 0,463 2.700 21,1300 -180.0000
901,00 ~13.7 0.0 21.8 0.282 1.4600 12.3000 =-180.0000
631.00 =19.9 0.0 17.6 0.172 1.000 7+5900 ~180.0000
794.00 -24.0 0.0 13.5 0.108 1.000 4,7300 =-180.0000
1000.00 -28.2 0.0 2.3 0.066 0,400 2,9200 =-180.0000
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EXFERIMENTAL. RESULTS

DIGITAL FORWARD TRANSFER IMFEDANCE
SAMFLING FERIOD T ¢+ 0.187SE-04
CAFACITOR C1 ¢ 0.2600E-05
CAFACITOR C2 t¢ 0,1000E-04
TRANSCONDIUCTANCE G1 ¢ 0.,1000E-01
TRANSCONIUCTANCE G2 ¢ ©0.,1000E-01
SHUNT RESISTANCE R : 500
GENERATOR INFUT : 1.5
TRANSCONDUCTANCE AMF ¢ 0.1333E-01
TRANSCONDUCTANCE AMF 3 =373
MEASUREY VALUES
FREQUENCY M N £LZ111 Vi1
HZ DR LR DR V(RMS)
10,00 -16.8 20.0 40.7 0.244
12,60 =-16.8 20.0 40,7 0.246
15.80 -16.8 20,0 40.7 0.247
20,00 -16.8 20.0 40.7 0.247
25,10 -16.7 20,0 40,8 0.249
31,60 =16.6 20.0 40,9 0.253
392.80 =-16.6 20,0 40,9 0,283
50,10 -16.2 20.0 41,3 0.264
63,10 -16.0 20.0 41.5 0.271
79.40 -15,0 20,0 42,85 0,302
100,00 -13.8 20,0 43,7 0,349
103070 "1304 20,0 44,1 0.364
107.60 -13.0 20.0 44,5 0.380
111,60 =12.46 20.0 44,9 0.399
115.80 =-12.0 20.0 45.5 0.426
120,10 ~11.4 20,0 46,1 0.460
124,60 -10.6 20.0 46,9 0.500
129.20 -9.9 20.0 47.6 0,545
134,10 -8.4 20,0 49,1 0,651
139.10 =-17.2 30,0 50.3 0,236
144,30 -15.8 30.0 S1.7 0.277
149.60 -13.,3 30.0 4.2 0,369
155.20 -10.8 30.0 96.7 0,488
161.00 =-16.1 40.0 61.4 0.265
164080 "1300 40.0 640:3 00380
167,10 =-11.6 30.0 64,2 0.3746
173.30 - LY 4 30.0 98.8 0.624
179.80 ~12.7 30.0 54.8 0,399
193,40 -18.3 30.0 49.2 0,207
200460 -10.7 20,0 46.8 0,499
208.10 -12.,6 20.0 44.9 0.400
215.90 -14.2 20.0 43,3 0,333
223.90 =-15.7 20.0 41.8 0,280
232,30 -17.8 20.0 39.7 0.224
250,00 ~-19.9 20,0 38.0 0.181
316,00 -16.0 10.0 31,3 0.272

TARLE 7.13
Z21
SECONDS
FARALDS
FARADS
SIEMENS
SIEMENS
OHMS
VOLTS (RMS)
SIEMENS
DES
CALCULATED RESULTS
Vil MOLULUS ARGAND
V(FP=F) OHMS NEGREES
0.000 108.3900 0.0000
0.000 108.3900 0.0000
0.000 108.3900 0.0000
0.000 108.3900 0.0000
0.000 109.6500 0.0000
0.000 110.9200 0.0000
0.000 110.92200 0.0000
0.000 116.1400 0.0000
0.000 118.8500 0.0000
0.000 133.3500 0.0000
0.000 153.,1100 0.0000
0.000 160.,3200 0.0000
0.000 167.8800 0.0000
0.200 175.7900 =10+1700
0,200 188.3600 -92.5200
0.200 201.8400 -8.8200
0.200 221.3100 -8.1100
0.220 239.8800 -8.1800
0.400 285.1000 -12.,4700
0.120 32743400 -10.3100
0.150 384.,5900 -10.9900
0.400 $512,8600. -22.,1000
0.700 683.9100 -29.3800
0,400 1174.9000 -30.9500
1,600 1678.8000 . -96.200%
3+300 1621.8090 -97.5702
3.300 870.9598 -138.4199
24200 549.5400 -158.2800
1.600 393.5499 -180.,0000
1.200 288.3999 -180.,0000
2,800 218.7799 -165.4400
2,250 175.7899 -167.8300
1.900 146.2199 -180.0000
1.600 123.0299 -180.0000
1.300 96+6100 -180.0000
1.200 91,2000 -180.0000
1.000 79.4300 -180.0000
1,600 37.5800 -180.0000



2641 0,463 2.700 20,1800 -180.0000

398,00 -11.4 0.0

501,00 =-15.6 0.0 21,9 0.283 1.600 12,4500 ~-180.,0000
631,00 =-19.9 0.0 17.6 0,172 1,000 7.9900 -180,0000
794,00 -23.8 0.0 13.7 0.110 1.000 4.,8400 =-180.0000
1000.,00 -28.2 0.0 .3 0,066 0.400 2.9200 -180,0000
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RESISTOR VALUE
(oEMS)

B 100

R, 100

By 100

Ry 100

10

f5
Ry 100
TABLE 7.14

Component values for analogue

transadmittance amplifier



PARAMETER VALUE UNITS
&8 0.l Siemens
I:B 250 mA
vref 2:5 VOLTS
RIl 50 OHMS
TABLE T.1l5

Parameters for analogue transadmittance

amplifier



EXFERIMENTAL RESULTS TARLE 7.16

GAIN OF TRANSCONDUCTANCE AMFLIFIER LOADED RY S50 OHMS
GENERATOR INFUT : 2.6 VOLTS (RMS)

MEASURELD VALUES

FREQUENCY

MODULUS ARGANI

HZ DEGREES

1 5,0699 ~0.,2000

2 - 5.1286 -0,2000"

5 5,12864 ~0.1000

7 5,0699 ~0,1000

10 5,0699 -04,1000

20 5,0699 0.0000

50 5,0699 0.,0000

70 5.,0699 -0.1000
100 5,0699 -0,2000
200 5,0699 ~0,3000
500 55,1286 -0.3000
700 5,1286 -0,2000
1000 5.1286 -0.2000
2000 5.1880 ~0,1000
3000 5, 1880 -0.5000
4000 5.1880 -0,3000
5000 5,1880 -0,5000
6000 5,1880 ~047000
7000 5,1880 ~0,8000
8000 5,2481 -0.8000
9000 5,1880 -1.,0000
10000 5.1880 ~1,2000
12000 5.1286 -1.5000
13000 5,1880 -1.6000
15000 5.1880 ~1,7000
18000 5. 1880 ~1,8000
20000 5.,1286 -2,2000
22000 55,1286 ~2,5000
23000 5,1286 -2,7000
24000 5,1286 ~2,9000
25000 5.1880 -3,1000
26000 5.1880 -3.,2000
27000 5.,1880 -3,2000
28000 5,1880 -3,3000
29000 5.1880 -3,4000
30000 5.1880 -3,4000
31000 5.1880 -3,5000
35000 5,1880 ~4,0000
40000 5.1880 -4,6000
45000 5.1880 -5.3000
50000 5,1880 ~641000
55000 5,1880 -6.8000
40000 5.1880 -7 45000
45000 5,1880 -8,1000
70000 5.1880 -8,8000
75000 5.1880 ~9,4000



80000

85000

20000

?35000
100000
110000
120000
130000
140000
150000
160000
170000
180000
1920000
200000
220000
230000
240000
250000
260000
280000
300000
330000
350000
370000
400000
420000
440000
4560000
480000
500000
920000
540000
560000
580000
600000
620000
640000
6573500
660000
680000
700000
720000
740000
760000
780000
800000
820000
840000
860000
880000
200000
920000
940000
260000
980000

5.1880
941880
$5.1880
J.1880
9.1880
5.1880

5.1880

9.1880
J.1880
9.1880
95.1880
5.1880
9.1880
$.1880
91880
5.1880
9.1880
9.1880

$.1880

9.+1880
J.1880
35.1880
J.1286
J.1286
5.0699
940699
9.0699
5.0119
4,9545
4.9545
4.8978
4.,8978
4.8417
4.8417
4.8417
4.7863
4,7315
4.7315
4.6774
4.6774
4,6238
4.,5709
4.5186
4,5186
4.4668
4.4157
4.,3652
4,3152
4,2658
4.2170
4.,1210
4.,0738
4,0272
3.9811
3.8905
3.8459

-10.,1000
-10.8000
~-11.5000
-12.,1000
-12.8000
~14.,2000
=13.5000
~16.8000
-18.1000
-19.4000
~20.7000
-21.9000°
~-23.2000
-24.9000
=27.0000
-29.6000
~30.8000
-32.2000
~33.5000
~34,9000
=37.6000
-40,1000
-44,3000
-47,0000
-49.92000
~53.9000
~56.+8000
-99.5000
-62+.4000
-65.1000
-68.0000
-70.8000
-73+6000
-76+3000
=791 1999
~-81.8978
-84,6998
~-87.9994
-920.0000
-90.,5013
-923.,4005
-96.3002
-929.1001
-102.1000
~105.1000
~108.0000
-111.0000
~113.8000
=116:799%
-1192.6000
-122,8699%
-125.6000
-128.4000
-131.2000
-134.3000
~137.0999



1000000
1030000
1050000
1100000
1150000
1200000
1250000
1295000
1300000
1350000
1400000
1450000
1500000
1550000
1600000
1650000
1700000
1750000
1800000
1850000
1200000
1950000
2000000
2050000
2100000
2150000
2200000

3.7584
3+6728
3.5481
343497
3.1989
3+0200
2.8840
247227
2.7227
2.9704
2.4266
2.2646
2.1380
1.9953
1.8836
1.7378
1.6406
1.5136
1.4125
11,3333
1.2303
1.1614
1.0839
1.0233
0.9550
0.9016
0.8710

-139,9999
-144,1000
~144,9000
-153,46998
~140,3000
~1664+9000
~173,8000
180,0000
179.3000
173.5000
16744000
161.5000°
155,8000
150,0999
144,8000
139,4000
134.,2000
129.,0000
124,0000
119,0000
114,2000
109.7000
- 10%,0000
100,4000
95,7003
90,0015
90,0000
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RESISTOR VALUE
(omMs)
R:I. 100
32 100
R3 100
R 4 100
R5 T+5
R.B 100
TABLE 7.17

Component Values for analogue
transadmittance amplifier used

in experiments.



transconductance was set to 0.013335 siemens.

7.6 DIGITAL AMPLIFTER CALIBRATION

The digital amplifiers used in the digital gyrator needed
calibrating before the measurements of Sections 7.3 and T.4 could be

taken. Fig. 7.6 shows the block diagram of a digital amplifier. Thus:

g = g, 8 (7.7)
where:
8, < Va
& < Vpmp
To calibrate the amplifiers Vé was set to its maximum value
and vﬁEF adjusted until | g l = 0.01 siemens by measuring V and I.

7.7 LIMIT CYCLE NOISE

The impulse responses shown in Photos 7.14 to 7.21 clearly show
that a limited amplitude oscillation is present all the time provided
that the shunt resistance is greater than 100 ohms. The significance
of this oscillation was not realised during the time of practical
experimentation and thus no accurate quantitative measurements of the
amplitude and frequency of this oscillation were obtained.

Nevertheless the analyses in Sections 3.11 and 4.5 clearly
show that this oscillation is to be expected under certain component
conditions, and that the measurement error that is introduced depends
on the relative limit cycle noise and signal level (equation 3.84)).

A correction factor (kq) to be applied to the measured results

may be calculated from these results. Let the total measured voltage

at port i be Vi and the limit cycle noise voltage be Véi. From
equation (3.84):
; L'
Azlj = _gi (7.8)
Z,
13 Vi ti

= 96 &
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and kq may be defined thus:

(zij + Zﬁ&zij) kq = 24 (7.9)

By rearranging equation (7.9):

kg = Vi~ Vs (7.10)
vy

The limit cycle noise voltages have been measured from Photos
7.16, T.17, T.20 and 7.21 and are listed in Table 7.1l8 for shunt
resistances of 200 and 300 ohms. However for the purposes of deriving
the correction factor kq the computed noise voltages from Tables 8.35
and 8.36 were used.

7.8 ACCURACY OF RESULTS

The accuracy of the measured results depended on two factors,
the test equipment accuracy, and the limit cycle oscillation amplitude.
Thus the test equipment inaccuracy may be applied to the measured
results as shown in Tables T7.1l9 and 7.20.

T.8.1 Tgst Equipment Accuracy

The effects of the inaccuracy of the test equipment may be
derived from equation (G.7) with ieference to the test arrangements
shown in Figs 7.1 and 7.3, Thus for the digital input impedance the
fractional error will be:

Day, Au + Nx + N

M N -y

(7.11)
n

The error Zﬁkg in the transconductance amplifier depended

on the component values used. From equation (6.26):

g = R2/R1R5 (7.12)
and thus:

As - AR? L SA_RA £ _A_Ri ' (7.13)

g R, By By

-97 -



PHOTO SAMPLING SHUNT NOISE PORT
PERIOD RESISTANCE VOLTAGE
s el oV (rms)
T.16 18.75 200 T0.7 :
T.17 18.75 300 141 1
7.20 18.75 200 88 2
T.21 18.75 300 141 2
TABLE 7.18

Quantisation Noise Voltages from Photographic Results



SHUNT MEASURED PEAK COMPUTED MEASURED | CORRECTED PEAK

RESISTANCE | PEAK IMPEDANCE RANGE LIMIT CYCLE | SIGNAL IMPEDANCE RANGE

TMPEDANCE ( + 8.32%) (t8.328)

MIN MAX MIN MAX

n n n 0 v (rms) ov (ms) | O 0
50 53.70 49.23 58.18 0 388 49.23 58.18
100 118.85 108.96 128.74 0 271 108.96 128.74
200 269.15 246.76 291.54 | 113.3 611 201.11 237.61
300 512.86 470.19 555.55 | 180.5 370 240.861 284.52
400 831.76 762.56 900.96 | 257.7 600 "435.42 514.45

500 1513.56 1387.63 1639.49 347.0 346 - -

Table 7.19

Corrected Peak Impedance Ranges for z

11



SHUNT MEASURED MEASURED PEAK | COMPUTED MEASURED CQRBEC'.IED PEAK
RESISTANCE PEAK IMPEDANCE RANGE LIMIT CYCLE | SIGNAL IMPEDANCE RANGE
IMPEDANCE (% 8.32%) ' NOISE (£8.32%)

N o . ¥ 0 nV (rms) mV(rmé ) i i ] 0

50 No peak - - 0 - - -
100 No peak - - 0 - - -
200 316.23 289.92 342.54 90.0 _ 227 175.11 206.89
300 524.81 - 481.15 568.47 154.6 376 283.40 334.83
400 822.24 753.83 890.65 229.8 592 461.34 545.08
500 1678,80 1539.12 1818.48 317.0 380 255.49 301.87

Table T7.20

Corrected Peak Impedance Ranges for z

21



As all the resistors used had a 2% tolerance then:

De - e | (7.14)
g

The minimum attenuator step size was 0.1 decibels, and hence:

AN SEVAN SR (7.15)

N M )
Thué the overall test equipment inaccuracy was 8.32%.
7.8.2 Limit Cycle Noise Error
The correction factor kq for the measured peak impedances
is listed with the corrected impedances in Tables 7.19 and 7.20 for

the digital input impedance z

21

11 and forward transfer impedance z

respectively.

7.9 PHOTOGRAPHIC RESULTS

The qualitative magnitude frequency responses for the
digital gyrator (Fig. 7.2) wefe also obtained using the arrangement
of equipment shown in Fig. 7.7 to 7.9 and with the sample period set
to 18.75 f/S. The sweep generator was set to logarithmically scan
the useful operating frequency range. Provided that the sweep rate
was slow enough, the envelope of the voltage waveform was also the
shape of the amplitude frequency response. The slow sweep rate was
necessary to minimise the sidebands caused by sweeping this oscillator,
thus making the input approximate to a sinusoid of constant frequency.
The input to the transadmittance amplifier was set to 1 volt

peak-peak, and g = 0.0133 siemens making the output current I1 = 13.3mA.

7.9.1 Magnitude Response - Zqq

Fig. 7.7 shows the arrangement of equipment to measure qual-
itatively the voltage at Port 1 of the digital gyrator. The input voltage

to the transadmittance amplifier was measured because the input current

- 98 -
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to the gyrator was directly proportional to this voltage. Photos
7.1 to 7.4 show the voltage on Port 1 (upper trace) against the input
voltage to the transadmittance émplifier for 4 values of RS.

» Photos T.3 and 7.4 show a beating effect between the sweep
8ignal and the limit cycle oscillation present because the shunt
resistance was 200 and 300 ohms respectively.

7.9.2 Magnitude Response - Zyy

Fig. 7.8 shows the arrangement of equipment to measure qual-
itatively the voltage at Port 2. Photos 7.5 to 7.8 show the voltage
at Port 2 (upper trace) against the input voltage to the transadmittance
amplifier for 4 values of Rs.

Photos 7.7 and 7.8 show a beating effect between the sweep
signal and the limit cycle oscillation present.

7.9.3 Relative Magnitude Response

Fig. 7.9 shows the arrangement of equipment to measure qual-

itatively the voltages at both ports. Photos 7.9 to T.l3 show these

Voltages with the voltage at Port 1 as the upper trace for 5 values of

R2.

7.9.4 Impulse Response of 211

The impulse response of z,, was measured qualitatively using

1
the arrangement of equipment in Fig. 7.7. Photos 7.14 to 7.1l7 show
the Voltage at Port 1 (upper trace) in response to a step change in

input current to Port 1 for 4 values of RS.

Photos 7.16 and 7.17 show the presence of a limit cycle
OScillation because the shunt resistance is 200 and 300 ohms respectively.
The rmg 1imit cycle noise voltages from the photos are listed in Table

T.18,

7.9.5 Impulse Response of Zoy

The impulse response of Zyy Was measured qualitatively wusing
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PHOTO 7.1

X - Sweep Voltage
Y, - 0.2V / div

Y, - 1.0V / div

PHOTO 7.2

X - Sweep Voltage

Y, - 0.5V / div

Y, = 1.0V / div
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PHOTO 7.3

X - Sweep Voltage
Y, - 1.0v / div
Y, - 1.0V / div

PHOTO 7.4

X - Sweep Voltage
Y, - 1.0V / div

Y, - 1.0V / div
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Envelope Response at Port 2 with R = 50 ohms
PHOTO 7.6
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Envelope Response at Port 2 with R = 100 ohms



Envelope Response at Port 2 with R = 200 ohms

Envelope Response at Port 2 with R = 300 ohms

PHOTO 7.7

X = Sweep Voltage

Y, - 1.0V / div
Y, - 1.0V / div
PHOTO 7.8

X - Sweep Voltage

Y, - 1.0V / div

1
Y, - 1.0V / div



PHOTO 7.9

X - Sweep Voltage
Y, - 0.5V / div

Y, - 0.5V / div

2

Relative Envelope Response between Ports 1 and 2 with R = 100 chms

PHOTO T7.10

X - Sweep Voltage
Y, - 0.5V / div
Y, - 0.5V / div

Relative Envelope Response between Ports 1 and 2 with R = 200 ohms



PHOTO 7.1l

X - Sweep Voltage

Y, - 1.0v / div

&

Y, - 1.0V / div

2

Relative Envelope Response between Ports 1 and 2 with R = 300 ohms

PHOTO T7.1l2

X - Sweep Voltage

Y, - 1.0V / div

1

Y, - 1.0V / div

2

Relative Envelope Response between Ports 1 and 2 with R = 400 ohms



- PHOTO T7.13

X - Sweep Voltage
Y, - 1.0V / div

Y, - 1.0V / div

2

—— e

PHOTO 7. 14

X - 5ms / div

Y, - 0.5V / div

1
Y2-0.5V/div

\ { Ftie 49
I Wi i -
: fa i L 4
- B A )
- . R e
s .
* o )
3 ' L P .
oy B
'
. A i 88
Ry ———— i
y v

Impulse Response at Port 1 with R = 50 ohms



PHOTO T7.15

X - 5ms / div
Y, - 0.5V / div
Y2-1.ov/div

Impulse Response at Port 1 with R = 100 ohms

iR 0 o 1
X - 20ms / div
Y, - 0.5V / div

Y, - 1.0V / div

Impulse Response at Port 1 with R = 200 ohms



the arrangement of equipment in Fig. 7.8. Photos 7.18 to T7.21 show
the voltage at Port 2 (upper trace) in response to a step change in
input current to Port 1 for 4 values of RS'

Photos T7.20 and 7.21 also show the presence of limit cycle
oscillations because the shunt resistance is 200 and 300 ohms respect-
ively. The rms limit cycle noise voltages are listed in Table 7.18.

T7.10 SUMMARY AND CONCLUSIONS

A capacitively loaded 2-port digital gyrator has been quantita-
tively testeq.by measuring the magnitude and phase responses of the
digital input impedance (zll) and the forward transimpedance (221) with
a constant sampling frequency and 6 values of shunt resistance.

. Photographs have been used to demonstrate the machine perform-
ance and to qualitatively verify the experimental frequency responses
and impulse responses.

The presence of a quantisation oscillation has been verified
and shown photographically and the effects of this on the measured
Tesults calculated. It is clear from these results that this quantisat-
ion oscillation sets an awkward limit on the usefulness of the digital
&Y¥rator. Thus the quantisation matrix must be derived and evaluated
to show whether any form of quantisation oscillation will be present
in a given digital active network. An increase in the number of bits

in the word will not obviate this problem, but merely reduce it.
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PHOTO T7.17

X - 20ms / div
T, - 1.0V / div

Y, - 1.0V / div

2

Impulse Response at Port 1 with R = 300 ohms

PHOTO 7.18

X - 5ms / div
Yl-O.SV'/div
Y, - 0.5V / div

Impulse Response at Port 2 with R = 50 ohms



PHOTO 7.19

; X - 5ms / div
Y, - 0.57 / div

Y, - 1.0V / div

2

Impulse Response at Port 2 with R = 100 ohms

PHOTO 7.20

X - 20ms / div
Yl-O.SV/div
Y2—O.5V/d.iv

Impulse Response at Port 2 with R = 200 ohms



Impulse Response at Port 2 with R = 300 ohms

PHOTO 7.21

X - 20ms / div

Y, - 1.0V / div

1

Y, - 1.0V / div

2
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CHAPTER 8

COMPUTER RESULTS

8.1 INTRODUCTION

The results obtained from the computer programs described in
Chapter 5 are presented in this chapter in the same sequence in which
fhe programs were described.

It should be noted that in the graphical results the linear
axes are marked with scale factors having powers of the opposite sign
to that expected. This is a deliberate property of the graphics
Plotting library PLOTTER package (Appendix D) which is installed on
the mini-computer system. The scale factor as marked should be
interpreted as a factor that has been used to scale the data plotted
againgt that axis rather than as a factor to multiply the scale mark-
ings on that axis.

8.2 GYRATOR DATA PREPARATION PROGRAM (GDP1)

'GDPL was written gpecifically to evaluate the elements of the
2-port digital admittance, impedance and quantisation matrices for the
digital gyrator analysed in Chapter 4, and shown in Fig. 4.1.

The digital admittance and impedance matrices (4.13) and (4.15)

are repeated here for convenient reference:

. ' ¢, (z =et) g 0 (1-)
Y (z) = T, % Kk +1
g Ty 2 (8.1)
""82 — .(.3.2.. (.?"_1)
k2+ & m by
z 8 =
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CHAPTER 8

COMPUTER RESULTS

8.1 INTRODUCTION

The results obtained from the computer programs described in
Chapter 5 are presented in this chapter in the same sequence in which
fhe programs were described.

It should be noted that in the graphical results the linear
axes are marked with scale factors having powers of the opposite sign
to that expected.‘ This is a deliberate property of the graphics
Plotting library PLOTTER package (Appendix D) which is installed on
the mini-coﬁputer system. The scale factor as marked should be
interpreted as a factor that has been used to scale the data plotted
against that axis rather than as a factor to multiply the scale mark-
ings on that axis.

8.2 GYRATOR DATA PREPARATION PROGRAM (GDP1)

'GDPL was written specifically to evaluate the elements of the
2-port digital admittance,‘impedance and quantisation matrices for the
digital gyrator analysed in Chapter 4, and shown in Fig. 4.1.

The digital admittance and impedance matrices (4.13) and (4.15)

are repeated here for convenient reference:

= -
. | ¢, (z -e¢) g 0 (1-)
Y (z) = Ts Z kl + 1 -
g1,z (8.1)
- gé ——e Eg (E_:_l)
k2+ 1 m 7
L 2 8 _J
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- -
k1+k2+l( ) k2+l
T z z -1 -g. T (1 -X) 2
Z2(z) = | _s ) g T (8.2)
5y g C,
+1 +k,+1
&, Tsz zkl T (z =) zkl 8
Gy Y Ca ]
+k,+2 +k+1 +k
zkl & - zkl & (1 +x) + zk1 = +Ts(l-o( )g‘lg2

g C,
where o= exp (-TS/T)

= exp ('TSS'/C]_)

The range of values chosen for study are listea in Table 8.1.
The shunt conductance € was replaced by the equivalent resistance R
where R = l/é. 30 different polynomials were calculated for each
of the 8 matrix elements, giving 240 polynomials in all.

GDPl was written to produce only intermediate results ready
#or analysis by PZPl, FRAL and IZT1 but the actual calculated denominator
Polynomial coefficients for the impedance matrix are listed in Tables
8.2 to 8.31 under the results for PZPl. The remainder of the poly-
Nomial coefficients are not listed because they in themselves convey
little information.

8.3 POLE-ZERO PLOTTING PROGRAM (FZP1)

PZP1l calculated the roots of the polynomials evaluated by
GDPL and then tabulated and plotted these results.

From the admittance matrix (8.1) it can be seen that the poles
and zeroces of ylz(z), yzl(z) and y22(z) and the zero of yll(z) may be
Obtaineq by inspection. The pole of yil(z) may also be obtained by
{nspection by observing that o< is the coefficient of the second term

°f the dencminator of the impedance matrix (8.2) and this is listed
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PARAMETER MEANING

VALTE

Sampling frequency

Sampling period

Port 1 shunt capacitor

Port 2 shunt capacitor

Transconductances

' Port 1 shunt resistor

Fractional delay

TABIE 8.1

26.6 * KHz

18.75 microseconds
9.6 microfarads
10 microfarads

10 millisiemens
50, 100, 200, 300,
400, 500 ohms

1

Digital Gyrator Component Values
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in Tables 8.2 to 8.31.

From the impedance matrix (8.2) the zeros may all be found by
inspection, < being found as described above. However, the denominator
of this matrix is a fourth order polynomial when k; =k, = 1 (Table
8.1) and hence the poles cannot be found by inspection. Thus for brevity
only the poles of the impedance matrix are listed as results.

Tables 8.2 to 8.31 list the parameters, coefficients and roots
of the denominator of the digital impedance matrix (8.2). The roots
are listed in cartesian and polar coordinates, the modulus column being
particularly useful for checking whether the pole lies outside the unit.'
circle and Table 8.32 lists the parameters for the cases when this is
true. Graphs 8.1 to 8.7 show the poles and zeroes.

8.4 FREQUENCY RESPONSE ANALYSIS PROGRAM (FRAL)

FRA1 was written to calculate the frequency response of any
8 or z-plane polynomial, but in particular the polynomials evaluated
by GDPl, and then to list and plot these results. For the sake of
brevity, only the Bodé magnitude and phase plots are presented here.

Each frequency response shown has a logarithmic frequency
axis with values between 5 Hz and 5 kHz, but a linear amplitude axis
in ohms or siemens as appropriate between zero and a convenient maxi-
mam,

FRAl1 evaluated the frequency response of all four elements of
the digital impedance matrix (8.2) for all the parameter values listed
in Table 8.1 and plotted them on Graphs 8.8 to 8.27. Each graph shows
8ix curves for the six values of the shunt resistance R with a consfant
Value of sampling period Ts which is stated on the bottom of each graph.

Each plot for each of the digital impedance matrix elements
Shows (Graphs 8.8 to 8.27) a peak at around 160 Hz, the exact peaks

being shown in Tables 8.33 and 8.34. It should be noted from these graphs

- 103 -



FARAMETERS

SAMFLING FERIOD T = 0,1875E-04
SHUNT CAFACITOR C1 = 0.94600E-05
SHUNT CAPACITOR C2 = 0,1000E-04
TRANSCONDUCTANCE G1 = 0.0100
TRANSCONDUCTANCE G2 = 0.0100
SHUNT RESISTOR R = 50,0000
DENOMINATOR FOLYNOMIAL COEFFICIENT
FOWER - COEFFICIENT

4 0.100000E+01

3 -+196169E+401

2 0.961691E+00

1 0.0

0 0.,359151E-03

DENOMINATOR FOLYNOMIAL ROOTS
REAL IMAGINARY
0.981226E+00 Jx  0.248976E-02
0.981226E+00 Jx =-.248976E-02
~+380158E-03 Jx 0.193096E-01
=+380158E-03 JX =.193096E-01

TABLE 8.

PARAMETERS
SAMPLING PERIOD T
SHUNT CAPACITOR Ci

0.1875E-04
0.9600E~-05

SHUNT CAPACITOR C2 = 0.,1000E-04
TRANSCONDUCTANCE G1 = 0,0100
TRANSCONDUCTANCE G2 = 0,0100
SHUNT RESISTOR R = 100.,0000
EENDMINATOR POLYNOMIAL COEFFICIENT
OWER COEFFICIENT

4 0.100000E+01

3 -.198044E4+01

2 0,980658E+00

1 0.0

0

0.362657E-03

DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY
0.990702E+00 JXx 0,164087E-01
0.990702E400 JX ~-.166087E-01
~+372767E-03 Jx  0.192169E-01
“+372747E-03 JX  =,192149E-01

TABLE 8.

SECONDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS

S

MODULUS

0.981229E+00
0.981229E+00
0.,193134E-01
0.193134E-01

2

SECONIS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS

S

MODULUS

0.990841E+00
0.990841E+00
0.,192206E-01
0.192206E-01

3

ARG(DEG)

0.145382E+00
-.145382E+00
0.911289E+02
-.911289E+02

ARG(LEG)

0.9260452E+00
~+260452E+00
0.911123E+02
-+211123E+02



FARAMETERS

SAMFLING FERIOD T
SHUNT CAFACITOR C1
SHUNT CAFACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTOR N

(T T T

0.1875E-04
0.9600E-05
0.1000E~-04
0.0100
0.0100
200,0000

SECONDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS

DENOMINATOR FOLYNOMIAL COEFFICIENTS

FOWER COEFFICIENT
4 0.100000E+01
3 -+1992028E+01
2 0.990282E+00
1 0.0
0 0.364427E-03
DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY
0.993510E+00 Jx  0.185483E-01

0.995510E+00 JX
~+369072E-03 JX
~+369072E-03 JX

FARAMETERS

SAMFLING FERIOLD T
SHUNT CAFACITOR Ci
SHUNT CAFACITOR C2
TRANSCONDUCTANCE Gl
TRANSCONDUCTANCE G2
SHUNT RESISTOR N

HIN L IO | | I O 1}

-+185483E~-01
0.,191689E~-01
-+191689E~-01

TABLE 8.

0.1875E-04
0,2600E-05
0.,1000E~-04
0.0100
0.0100
300.,0000

MODULUS

0.995683E+00
0.995683E+00
0.,191724E-01
0.191724E-01

4

SECONDS
FARALS
FARADS
SIEMENS
SIEMENS
OHMS

DENOMINATOR FOLYNOMIAL COEFFICIENTS

FOWER

OCHMNWD

COEFFICIENT
0+100000E+01
-+ 199351E+4+01
0.,993511E+00
0.0
0,365022E-03

DENOMINATOR FOLYNOMIAL ROOTS
IMAGINARY

REAL

0.,997123E4+00 JX
0.997123E+00 JX
~+367940E-03 Jx
~+367940E-03 JX

0.188858E~-01
-.188858E-01
0.,1921533E-01
~+191533E-01

TABLE

8.5

MODULUS

0.997302E+00
0.,'997302E+00
0.191569E~-01
0.191569E~-01

ARG (DEG)

0.106741E+401
-+106741E+01
0.911040E+02
-+9211040E+02

ARG (DEG)

0.108507E+01
-+108507E401
0.2110146E+02
~+911016E+402



FARAMETERS

SAMFLING FERIOD T
SHUNT CAFACITOR C1
SHUNT CAFACITOR C2
TRANSCONDUCTANCE Gi
TRANSCONDUCTANCE G2

0.1875E-04
0.92600E-05
0.1000E-04

0.0100
0.0100

SECONDS
FARADS
FARAIIS
SIEMENS
SIEMENS

SHUNT RESISTOR R

L T T O 1 B 1}

400.,0000 OHMS

DENOMINATOR FOLYNOMIAL COEFFICIENTS

FOWER COEFFICIENT
4 0,100000E+01
3 -+199513E+01
2 0.995129E+00
) 0.0
0 0.365317E-03
DENOMINATOR FPOLYNOMIAL ROOTS
REAL IMAGINARY MODULUS ARG (DEG)
0.997932E4+00 Jx 0.189928E-01 0.998113E+00 0.109033E+01
0.997932E+00 Jx  ~,189928E-01 0.998113E+00 ~-+109033E+01
-+ 367343E-03 Jx  0.191456E-01 0.191491E-01 0.211002E+02
-+ 367343E-03 Jx  -.,191456E-01 0.191491E-01 ~+9211002E+02
TABLE 8.6
FARAMETERS
SAMFLING PERIOD T = 0.,1875E-04 SECONIS
SHUNT CAFACITOR C1 = 0.9400E-05 FARADS
SHUNT CAFACITOR C2 = 0.1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS

SHUNT RESISTOR N

00,0000 OHMS

DENOMINATOR FOLYNOMIAL COEFFICIENTS

FOWER

Sl d

COEFFICIENT
0.,100000E+01
~+199610E+01
0.996101E+00
0.0
0.365496E~-03

DENOMINATOR FOLYNOMIAL ROOTS

REAL

0.998418E+00 JX 0.190461E-01
0.998418E+00 Jx  -,190461E-01
=+ 366926E-03 JXx  0.,191409E-01
-+ 366926E-03 Jx  ~-.191409E-01

ARG(DEG)

0.109286E+01
-+109286E+01
0.910993E+02
~+210993E+02

IMAGINARY MODULUS

0.998599E+00
0.998599E+00
0.191444E-01

0.191444E-01
TABLE 8.7



FARAMETERS

SAMFLING FERIOD T
SHUNT CAFACITOR C1
SHUNT CAFACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTOR R

T I I I

0.3750E-04
0.9600E-05
0.1000E~-04
0.0100
0.0100
50.0000

SECONDS
FARALS
FARADS
SIEMENS
SIEMENS
OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0+.100000E+01
3 ~+192485E4+01
2 0.924849E+00
1 0.0
0 0+.140908E-02
DENOMINATOR FOLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.963997E+00 Jx 0,103177E-01 0.964052E4+00
0.9263997E+00 Jx  ~-,103177E~-01 0.964052E+00

-+157261E-02 Jx
~-+157261E~-02 NE

FARAMETERS
SAMPILING PERIOD T
SHUNT CAFACITOR Ci1

0.389062E-01
-.3892062E-01

TABLE 8.

0.3750E-04
0.9600E~-05

0.389379E-01
0.389379E-01

8

SECONDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS

SHUNT CAFPACITOR: C2 = 0.,1000E-04
TRANSCONDUCTANCE G1 = 0.0100
TRANSCONDUCTANCE G2 = 0.0100
SHUNT RESISTOR R = 100.0000
DENOMINATOR POLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT

4 0.100000E+01

3 =+ 196169E+01

2 0.961691E+00

| 0.0

0 0,143660E-02

LDENOMINATOR FOLYNOMIAL ROOTS

REAL

0.,982357E+00 JX
0.982357E+00 Jx
-+151187E-02 Jx
-+151187E-02 Jx

IMAGINARY

0:334517E~-01
=+334517E-01
0,385314E-01
-+ 385314E-01

TABLE 8.

MODULUS

0.982927E+00
0.982927E+00
0.385611E-01
0.385611E-01

9

ARG(LEG)

0.613213E+00
=+613213E+00
0.923153E+02
=+ 923153E4+02

ARG(TIEG)

0.195031E+01
~+195031E+401
0.922477E+02
- P22477E4+02



FARAMETERS

SAMPLING FERIOD T
SHUNT CAFACITOR C1
SHUNT CAFACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTOR R

0.
0.
0.

3750E-04
?600E-05
1000E-04
0.0100
0.0100
200.0000

SECONDS
FARALDS
FARADS
SIEMENS
SIEMENS
OHMS

DENOMINATOR FOLYNOMIAL COEFFICIENTS

FOWER

OrRrMNW DL

COEFFICIENT
0.,100000E+01

=+198066E+01

0.980658E+00
0.0
0.145063E-02

DENOMINATOR POLYNOMIAL ROOTS
IMAGINARY

REAL

0.991812E+00 JX
0.991812E+00 Jx
=+148267E-02 JX
-+148267E-02 Jx

FARAMETERS

SAMFLING FERIOD T
SHUNT CAPACITOR C1
SHUNT CAFACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTOR R

0,
0.
0.

3750E-04
?600E~-05
1000E-04
0.0100
0.0100
300.0000

0.371142E-01
=¢371142E-01
0.383457E-01
-+383457E-01

TABLE 8.

MODULUS

0.992506E+00
0.992506E+00
0.383744E-01
0.383744E-01

1O

SECONDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS

DENOMINATOR FOLYNOMIAL COEFFICIENTS

FOWER

O 3Wd

COEFFICIENT
0.100000E+01
-+198704E+01
0.987064E+00
0.0
0.145535E-02

DENOMINATOR POLYNOMIAL ROOTS
IMAGINARY

REAL

0.,995005E+00 Jx
0.995005E+00 Jx
+=¢147313E-02 Jx
=+147313E-02 JX

0.,377385E-01
-¢377385E-01
0,382846E-01
-+382846E-01

TABLE 8.

MODULUS

0.995720E+00
0.995720E+00
0.383130E-01
0.383130E-01

ARG(DEG)

0.214304E+01
-+214304E+01
0,9222150E+02
=+ 922150E402

ARG (DEG)

0.217207E+01
=+217207E+01
0.922043E+02
-+922043E+402



FARAMETERS

SAMFLING FERIOD T
SHUNT CAFACITOR C1
SHUNT CAFACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTOR R

0.,3750E-04
0.9600E-05
0.1000E-04
0.0100
0.0100
400.,0000

SECONIDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS '

DENOMINATOR FOLYNOMIAL COEFFICIENTS

FOWER

ORI DL

COEFFICIENT
0.100000E+01
-+ 199028E+01
0.990282E+00
0.0

0.145771E-02

DENOMINATOR POLYNOMIAL ROOTS

REAL

0.996609E+00
0.9926609E+00
-=+146836E-02
~+146836E-02

JX
Jx
JX
JX

FARAMETERS

SAMPLING PERIOD T
SHUNT CAFACITOR Cl1
SHUNT CAPACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTOR R

IMAGINARY

0.379480E-01
~+379480E-01
0.,382537E-01
-+382537E-01

TABLE 8.

0.3750E-04
0.9600E-05
0.1000E-04
0.0100
0.0100
500.,0000

MODULUS

0.997332E+00
0.997332E+00
0.,382818E-01
0.382818E-01

12

SECONDS
FARADS
FARADS
SIEMENS
SIEMENS
OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

FOWER

ORI

COEFFICIENT
0.100000E+01
=+ 199222E401
0.992218E+00
0.0

' 0+145914E-02

DENOMINATOR POLYNOMIAL ROOTS

REAL

I

MAGINARY

SRS S

MODULUS

0.,997575E+4+00
0.,99757SE+00
-+1463556E-02
=+146556E-02

Jx
JX
Jx
JX

0.380374E-01
-+380374E-01
0.382359E-01
-.382359E-01

TABLE 8.

0.998300E+00
0.998300E+00
0.382639E-01
0.,382639E-01

13

ARG (DEG)

0.218060E+01
-+218060E+01
0,9221989E+02
-+921989E+02

ARG (DEG)

0.218362E+01
~+218362E+01
0.921957E+02
-+921957E+02



FARAMETERS

SAMFLING FERIOD T = 0.7500E-04 SECONIS
SHUNT CAFPACITOR C1 = 0.9600E-05 FARADS
SHUNT CAFACITOR C2 = 0,1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS
SHUNT RESISTOR R = 50,0000 OHMS
DENOMINATOR FOLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0.100000E+01
3 -+ 18553GE+01
2 0.855345E4+00
1 0.0
0 0.542455E~-02
DENOMINATOR FOLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.934309E+00 J¥x 0.317101E-01 0.,934847E+00
0.9343092E+00 Jx ~=.317101E-01 0.934847E4+00
-+ 663579E-02 Jx  0.785049E-01 0.787848E-01
=+663579E-02 Jk  ~.785049E-01

0.787848E-01

TABLE 8.14
FARAMETERS
SAMPLING PERIOD T = 0,7300E~-04 SECONDS
SHUNT CAFPACITOR C1 = 0.9600E-05 FARADS
SHUNT CAFPACITOR C2 = 0.1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS
SHUNT RESISTOR R = 100.0000 OHMS
DENOMINATOR POLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0.100000E+01
3 ~+192485E401
2 0.924849E4+00
1 0.0
0 0.+563634E-02
DENOMINATOR FPOLYNOMIAL ROOTS
REAL . IMAGINARY MODULUS
0.968568E+00 JX 0.,674350E-01 0.,970913E+00
0.9468568E+00 JX  =.874350E-01  0.970913E+00
~+614339E-02 Jx  0.770803E-01 0.773248E-01
~+614339E-02 JX =-.770803E~-01 0.773248E-01
TABLE 8.I15

ARG (DEG)

0.194385E+01
-+194383E+01
0.948319E+02
~+9248319E4+02

ARG(DEG)
0.,398270E+01
-.398270E+01

0.9245572E4+02

-+ 945572E+02



FARAMETERS
SAMFLING FERIOD T
SHUNT CAFACITOR C1

SHUNT CAFACITOR C2
TRANSCONDUCTANCE G1

TRANSCONDUCTANCE G2
SHUNT RESISTOR R

(1 O T O {1

0.73500E-04
0.9600E-05
0.1000E-04
0.,0100
0.0100
200,0000

SECONDS
FARADS
FARALDS
SIEMENS
SIEMENS
OHMS -~

DENOMINATOR FOLYNOMIAL COEFFICIENTS

16

MODULUS

0.989328E+00
0.989528E+00
0.766073E-01
0.766073E~-01

SECONDS

FARADS
FARADS
SIEMENS
SIEMENS

FOWER COEFFICIENT
4 0+100000E+4+01
3 ~+196169E401
2 0.961691E+00
1 0.0
0 0:574642E-02
DENOMINATOR FOLYNOMIAL ROOTS
REAL IMAGINARY
0.986760E+00 JX  0.739670E-01
0.986760E+00 Jx  =,739670E-01
-+591421E-02 Jx  0.763786E-01
~+591421E-02 JX  -.763786E-01
TABLE 8.
FARAMETERS
SAMFLING FERIOD T = 0.7500E-04
SHUNT CAFACITOR C1 = 0.92800E-05
SHUNT CAPACITOR C2 = 0,1000E-04
TRANSCONDUCTANCE G1 = 0.0100
TRANSCONDUCTANCE G2 = 0.0100
SHUNT RESISTOR R = 300.,0000

OHMS

NENOMINATOR FOLYNOMIAL COEFFICIENTS

FOWER

O JIW D

COEFFICIENT
0+100000E+01
~+197429E+4+01
0.974293E+00
0.0
0.578373E-02

DENOMINATOR FOLYNOMIAL ROOTS
IMAGINARY

REAL

0.992987E+00
0.992987E+00
-+984012E-02
~+984012E-02

JX
JX
JX
Jx

0.750676E-01
=+730676E-01
0.761464E~01
~+761464E-01

TABLE 8.

(7

MODULUS

0.993821E400
0.995821E+4+00
0.763700E-01
0.763700E-01

ARG (DEG)

0.428684E+01
~+428684E+01
0.9244281E+02
~+244281E+02

ARG (DEG)

0.+432321E401
~+432321E+01
0.92438461E4+02
-+943861E+02



FARAMETERS
SAMPLING FERIOD T
SHUNT CAFACITOR C1

0.7500E-04
0.92600E~05

SECONDS
FARAIS
FARADS
SIEMENS

SIEMENS

OHMS

SHUNT CAFACITOR C2 = 0.1000E-04
TRANSCONDIUCTANCE G1 = 0.0100
TRANSCONDIUCTANCE G2 = 0.0100
SHUNT RESISTOR R = 400,0000
DENOMINATOR FOLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT

4 0.100000E+01

3 -+ 198066E+01

2 0.980658E+00

1 0.0

0 0.,580231E-02

DENOMINATOR FOLYNOMIAL ROOTS

REAL

0.9926133E+00 JX
0.996133E+00 NE
=+ 580365E~-02 Jx
=+ 580365E~-02 JX

IMAGINARY

0.754209E-01
=+754209E~-01
0.760305E-01
=+760305E-01

MODULUS

0.998984E+00
0.,998984E+00
0.762517E-01
0.762517E-01

TABLE 8.18
FARAMETERS
SAMFLING FERIOD T = 0.7500E~-04 SECONDS
SHUNT CAFPACITOR C1 = 0.9600E-05 FARADS
SHUNT CAPACITOR C2 = 0.1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS
SHUNT RESISTOR R = 300.0000 O0OHMS
DENOMINATOR FPOLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0.100000E+01
3 -+198450E+01
2 0.984497E+00
1 0.0
0 0.581382E-02
DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.998030E+00 JX  0.7585646E~-01 0.100089E+01
0.998030E+00 JX  ~,755646E-01 0.100089E+01
~+G578177E-02 JX  0.759612E-01 0.741809E-01
~8578177E-02 Jx -.759612E-01 0.761809E-01
TABLE 8.19

ARG (DEG)

0.,432981E+401
~.432981E+01
0.943655E+02
-+ ?434658E4+02

ARG (IIEG)

0.432982E+01
-+432982E+01
0.943530E+02
-+243530E+02



FARAMETERS

SAMPLING FERIOD T = 0.1500E-03 SECONLS
SHUNT CAFACITOR C1 = 0.9600E-05 FARADS
SHUNT CAFACITOR C2 = 0.1000E-04 FARALS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS
SHUNT RESISTOR R = 50,0000 OHMS
DENOMINATOR FOLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0+100000E+01
3 -+173162E+01
2 0+731616E+00
1 0.0
0 0,201288E-01
HENOMINATOR FOLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.893516E+00 Jx  0.853948E-01 0.897588E+00
0.893516E+00 Jx ~.853948E-01 - 0.897588E+00
~+277083E-01 JX  0,158616E+00 0.158064E+00
~+277085E-01 JX -41535616E+00 0.158064E+00
TABLE 8.20
FARAMETERS
SAMFLING FERIOD T = 0.1500E-03 SECONDS
SHUNT CAFACITOR C1 = 0.94600E-05 FARAIDS
SHUNT CAFACITOR C2 = 0.1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS
SHUNT RESISTOR R = 100.0000 O0OHMS

————————

DENOMINATOR _FOLYNOMIAL COEFFICIENTS

FOWER COEFFICIENT
4 0+100000E+01
3 -+185935E+01
2 0.855345E+00
1 0.0
0 0.216982E-01
DENOMINATOR FOLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.95186SE+00 Jx  0.,133890E+00 0.9261236E+00
0.951865E400 | Jx  ~-.,133890E+00 0.961236E+00
-+241924E-01 JX 0.151322E400 0.153243E4+00
—+¢241924E-01 JX o -, 151322E+00 0.153243E+00

TABLE 8.

21

ARG (DEG)

0.545927E+401
-+ 345927E401
0.100096E+03
~+100094E+03

ARG (DEG)

0.800674E+01
~+800674E4+01
0.9920833E+02
~+990833E+02



FARAMETERS

SAMFLING FERIOD
SHUNT CAFACITOR
SHUNT CAFACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2

SHUNT RESISTOR

C1

0.,1500E~03
0.9600E-05
0.1000E-04
0.0100
0.0100
200.,0000

T

LI (I | I I 1

R

SECONDS
FARAIIS
FARAIIS
SIEMENS
SIEMENS
OHMS

NENOMINATOR POLYNOMIAL COEFFICIENTS

FOWER COEFFICIENT
4 0.100000E+01
3 -+ 192485E4+01
2 0.924849E+00
1 0.0
0 0.225454E-01
DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.985030E+00 JX  0.144519E+400 L0.99357SE400
0.985030E+00 JX  ~4144519E400 0.995575E+4+00
-+ 226054E-01 Jx  0.149115E400 0.150818E+00
=+ 226054E-01 J¥  -.149115E4+00 0.150818E+00
TABLE 8.22
FARAMETERS
SAMFLING FPERIOD T = 0.,1500E~-03 SECONIS
SHUNT CAFACITOR C1 = 0.9600E-05 FARADS
SHUNT CAPACITOR C2 = 0.1000E-04 FARADS
TRANSCONDIUCTANCE G1 = 0.0100. SIEMENS
TRANSCONDUCTANCE G2 = 0.,0100 SIEMENS
SHUNT RESISTOR R = 300.0000 OHMS
DENOMINATOR FOLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0.100000E+01
3 -+ 194925E+01
2 0.949250E+4+00
1 0.0
0 0.,228376E-01
DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.996726E+00 Jx  0.146282E+00 0.100740E+01
0.996726E+00 JX  ~-.146282E400 0.100740E+01

~-+221009E-01 JX
~+221009E-01 JX

0.148373E+00
~+148373E+00

TABLE

0.150010E+00
0.150010E+400

8.23

ARG(DEG)

0.834664E+01
-+834664E401
0.984204E+02
-+ 986204E+02

ARG(DEG)

0.834929E+401
~+834929E4+01
0.984723E4+02
-+984723E4+02



FARAMETERS

SAMFLING FERIOD
SHUNT CAFACITOR
SHUNT CAFACITOR
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2

SHUNT RESISTOR R

T = 0.,1500E-03 SECONDS

Cl = 0.9600E-05 FARALS

C2 = 0,1000E-04 FARADS
= 0.0100 SIEMENS
= 0.0100 SIEMENS
= 400,0000 OHMS

DENOMINATOR FOLYNOMIAL COEFFICIENTS

IMAGINARY

FOWER COEFFICIENT
4 0.100000E+01
3 ~+196169E4+01
2 0.961691E+00
1 0.0
0 0.,229857E~-01
DENOMINATOR POLYNOMIAL ROOTS
REAL
0.100270E+01

0.100270E+01
-+ 218535E-01
~+218535E~-01

FARAMETERS

SAMFLING FERIOD
SHUNT CAFACITOR C1
SHUNT CAFACITOR
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE
SHUNT RESISTOR

c2

G2

Jx 0.1446808E+00
JX  ~-.1446808E+00
Jx  0.,148002E+00
J¥x  -.148002E+00

TABLE 8.24

MODULUS

0.101339E+01
0.101339E+01
0+149607E+4+00
0.149607E+00

T = 0.1500E-03 SECONDS
= 0.9600E-05 FARAIS
= 0.,1000E-04 FARADS
= 0.0100 SIEMENS
= 0.0100 SIEMENS

R

DENOMINATOR FOLYNOMIAL COEFFICIENTS

900.0000 OHMS

FOWER COEFFICIENT
4 0.100000E+01
3 -+ 196923E+4+01
2 0.9269233E+00
1 0.0
0 0.,230750E-01

DENOMINATOR FOLYNOMIAL ROOTS

REAL

0.100632E+01
0.100632E+4+01
=+217063E-01
-+217065E-01

IMAGINARY
Jx 0.147008E+00
Jx -.,147008E+00
JX  0.147779E+00
JKk =+ 147779E+00

TABLE 8.25

MODULUS

0.101700E+01
0.101700E+01
0.149365E+00
0+149365E4+00

ARG(DEG)

0.8329465E+01
-+832965E401
0.983993E+02
-+ 983995E+02

ARG (DEG)

0.,831124E+01
-+831124E401
0.983562E+02
-+983562E+02



FARAMETERS

SAMFLING FERIOD T
SHUNT CAFACITOR Ci
SHUNT CAFACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDUCTANCE G2
SHUNT RESISTOR R

EI I 1]

0.3000E~-03
0.92600E-05
0.1000E-04

0.0100
0.0100
90,0000

SECONDS
FARADS
FARALS
SIEMENS
SIEMENS
OHMS

DENOMINATOR FOLYNOMIAL COEFFICIENTS

FOWER COEFFICIENT
4 0.100000E+01
3 -+ 133526E+01
2 0+3535261E4+00
d 0.0
0 0+697108E-01
DENOMINATOR FOLYNOMIAL ROOTS
REAL ‘ IMAGINARY MODULUS
0.865480E+00 Jx  0.,190201E+00 0.886134E+00
0.865480E+00 Jx  ~-.190201E+00 0.886134E+00
-+978498E-01 Jkx  0.281430E+00 0.297955E+00
-+978498E~-01 Jx  -,281430E+00 0.297955E+00
TABLE 8.26
FARAMETERS
SAMFLING PERIOD T = 0.3000E-03 SECONDS
SHUNT CAFACITOR C1 = 0.94600E-05 FARADS
SHUNT CAFACITOR C2 = 0.1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 . SIEMENS
TRANSCONDUCTANCE 62 = 0.0100 SIEMENS
SHUNT RESISTOR R = 100.0000 OHMS
DENOMINATOR FOLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0+100000E+4+01
3 ~+v173162E401
2 0.731616E+00
1 0.0
0 0.805153E-01
DENOMINATOR POLYNOMIAL ROOTS
REAL. IMAGINARY MODULUS
0.948437E+00 J¥x  0.,248604E+00 0.980478E+00
0.948437E+00 Jx  -.248604E+00 0,980478E1+00
~+826295E-01 Jk  0.277353ZE+00 0.28%9402E+00
-+826295E-01 Jx  -.27735TE+00 0.289402E4+00

TABLE

8.27

ARG (DEG)

0.,123945E+02
-+123945E+02
0.109172E+03
-+109172E+03

ARG(NEG)

0.146879E+02
-+146879E4+02
0.1046590E+03
~+106590E+03



FARAMETERS

SAMFLING FERIOD T = 0.3000E~-03 SECONIS
SHUNT CAFACITOR C1 = 0.9600E-05 FARADS
SHUNT CAFACITOR C2 = 0.1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS
SHUNT RESISTOR R = 200,0000 OHMS
DENOMINATOR FOLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0.,100000E+01
3 -+ 185533E+01
2 0.835345E+00
1 0.0
0 0.867928E~-01
DENOMINATOR FOLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.100283E+01 J¥x  0.265516E+00 0.103738E+01
0.100283E+01 CJ% = 265516E4+00 0.103738E+01
-+ 791545E-01 Jx  0.273865E+00 0.,283990E+00
=+731545E-01 Jx = .273865E+00 0.283990E+00
TABLE 8.28
FARAMETERS
SAMFLING FERIOD T = 0.,3000E-03 SECONDS
SHUNT CAPACITOR C1 = 0.9600E-05 FARADS
SHUNT CAFACITOR C2 = 0.1000E-04 FARADS
TRANSCONDUCTANCE Gl = 0.0100 SIEMENS
TRANSCONDUCTANCE G2 = 0.0100 SIEMENS.
SHUNT RESISTOR R = 300.0000 OHMS

DENOMINATOR POLYNOMIAL COEFFICIENTS

FOWER COEFFICIENT
4 0.100000E+01
3 -+190108E+01
2 0.901075E+00
1 0.0
0 0.890324E~-01
DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.102327E+01 Jx  0,268583E+00 0.105793E+01
0.102327E+01 Jx  ~-.268583E+00 0.105793E+01
~727297E-01 JX  0.272506E400 0.,282044E4+00
=+ 727297E-01 JX  =.272506E+00 0.282044E+00

TABLE

8.29

ARG(DEG)

0.148298E+02
-+148298E+02
0.105345E+03
-+105343E+03

ARG(DEG)

0.147070E+02
-+147070E+02
0.104944E+03
-+104944E+03



FARAMETERS

SAMFLING FERIOD  §
SHUNT CAFACITOR C1
SHUNT CAFACITOR C2
TRANSCONDUCTANCE G1
TRANSCONDIUCTANCE G2

SHUNT RESISTOR

N

(LI I I

0.3000E-03 SECONLDS
0.,9600E-05 FARADS
0.1000E-04 FARADS
0.0100 SIEMENS
0.0100 SIEMENS
400.,0000 OHMS

DENOMINATOR FOLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0,100000E+01
3 -+192485E+01
2 0.924849E+00
1 0.0
0 0.901814E-01
DENOMINATOR POLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0,103396E+01 JX . 0.269519E400 0.106831E+4+01
0.103396E+01 JXx  ~.269519E4+00 0.106851E+01
=+715334E-01 Jx  0.271792E400 0.281048E+4+00
=+ 715334E-01 JX  =.271792E+4+00 0.281048E+00
TABLE 8.30
FARAMETERS
SAMFLING PERIOD T = 0,3000E-03 SECONDS
SHUNT CAFACITOR C1 = 0.9600E-05 FARADS
SHUNT CAFACITOR C2 = 0.,1000E-04 FARADS
TRANSCONDUCTANCE G1 = 0.0100 SIEMENS
TRANSCONDIUCTANCE G2 = 0.0100 SIEMENS
SHUNT RESISTOR R = 500.0000 OHMS
DENOMINATOR POLYNOMIAL COEFFICIENTS
FOWER COEFFICIENT
4 0.,100000E+01
3 ~+193941E+01
2 0.,9239413E+00
1 0.0
0 0.,908804E-01
DENOMINATOR FOLYNOMIAL ROOTS
REAL IMAGINARY MODULUS
0.+.104053E+01 JX 0.269874E+00 0.1074946E+01
0.104053E+01 Jx -,269874E+00 0.107496E+01
-+708209E-01 JX  0.271354E+00 0.280443E+00
-+708209E~-01 JXx  =,271354E+00 0.,280443E+00

TABLE 8 .31

ARG (DEG)

0.146100E+02
~+146100E+02
0.104745E+03
-+104745E403

ARG (DEG)

0,145400E+02
~+145400E4+02
0.104627E+03
-+104627E+03



SHUNT RESISTANCE ( L )

SAMPLING PERIOD ( P 8) 50 100 200 300 400 500
18.75 0.98123 0.99084 0.99568 0.99730 0.99811 0.99860
37.5 0.96405 0.98293 0.99251 0.99572 0.99733 0.99830
75.0 | 0.93485 0.97092 0.98953 '_0_.2_9?_82_ _|_0-99898 _Jr—l.—oo_oe_{‘:

150.0 0.89759 0.96124 0.99558 JI 1.00740 1.01339 1.01700 :
300.00 0.88613 0.98048 3_1.03733 " 1.05793 1.06851 1.07496 |
|
|

I UNSTABLE REGION

TABLE 8.32
Peak Pole Magnitude for Digital impedance matrix -
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e

SHUNT RESISTANCE ( SL)

VALUES ,
PERIOD ’ ‘;
(ps) 50 ! 100 200 300 400 500
Peak | 18.75 162.11 162.11 | 162.11 162.11 162.11 162.11 -
Frequency | 37.5 162.11 162.11 | 162.11 162.11 162.11 162.11
(Hz) 75.0 159.74 160.53 | 160.53 160.53 160.53 r 160.53
Fe— = = == |
150.0 - - - I - - -
(No Peak) 300.0 _ _ r——_ 7 ” = - |
IL____ _ _ UNsTABIE REGION | _ _ _ |
Peak 18.75 52.46 107.00 | 226.46 362.08 517.26 697.07
Impedance | 37.5 55.08 114.89 | 260.51 455.40 729.97 1144.60
75.0 60.84 133.94 | 368.73 920.98 3772.65 _lr4318.11 _I
150.0 - - " e - - |
(No Peak) == o o
300.0 - - | - - - -
I
[
I U N N
TABLE 8.33

Peak Frequencies and Impedances for Z4



SHUNT RESISTANCE (L) '

VALUES SAMPLING /
PERTOD
(ps) ! 50 100 200 300 400 500
Peak 18.75 - - 153.2 158.95 160.53 161.32
Frequency 37.5 - - 155.0 159.74 161.32 161.32
(Hz) 75.0 = - 15737 _15?._7_4_ a .169_’53 _Jr ;60.53 |
150.0 - = _ » - - :
(No Pea.k){ - - - A :
300.0 = - B = - _ =
L _ _ | _ _owsmme Regrov | _ _ _ |
Peak 18.75 - - 227.97 358.64 509.79 685.13
Impedance 37.5 - - 261.18 450.60 719.00 1125.76
75.0 - - 369.71 | _ 9i5.91 | 3T741.32 _:_4282 25 _1|
(No Peak){ 120-0 B - ~ s .'l - ) : ) :
300.0 - = I = - - =
L — — | _ _owwmem meerov | _ _ |
TABLE 8.34

Peak Frequencies and Impedances for z



that the resonant frequency is virtually independent of the sample
rate, being principally defined by the extermal component values as
listed in Table 8.1.

By inspection of the digital admittance matrix (8.1) it can
‘be seen that all the polynomials in z are first order and hence none
of these elements will demonstrate any form of resonance. However,
the results for yll(z) are shown in Graphs 8.28 to 8.32 to demonstrate
the form these frequency fésponses take.

The quantisation noise voltage transfer function for Ports 1
and 2 were evaluated using equation (4.35) and are shown in Graphs
8.33 to 8.42 for all the component values listed in Table 8.1l. Tables
8.35 and 8.36 show the peak frequency, gain and noise voltage for the
Quantisation transfer function at both Ports 1 and 2 respectively.
From equation (3.77), any combination of shunt resistance and sampling
Period which gives a peak amplitude which is greater than or equal to 2
will mean that the 2-port capacitively loaded digital gyrator will dis-
Play finite limit cycle oscillations with a frequency equal to the peak
fI‘equency as listed. From Tables 8.35 and 8.36 this will occﬁr when
the shunt resistance is 200 ohms or greater.

8.5 INVERSE Z-TRANSFORM PROGRAM (IZT1)

IZT1 was written to calculate the inverse Z-transform and
impulse response for any Z-plane polynomial, but in particular the
Polynomials evaluated by GDPl, and then to list and plot these results.
For the sake of brevity, only the graphical pl;ts are presented here.

The inverse Z-transforms and impulse responses for the digital
input impedance (z,) ere shown in Graphs 8.43 to 8.47 and in Graphs 8.48
o 8.52 for the digital forward transfer impedance (221).

Each inverse transform response has a horizontal axis marked

in the number of iterations from an arbitrary initial iteration and

- 104 -
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VALUES SAMPLING SHUNT RESISTANCE ( Q) )
PERTOD
( P s) 100 200 300 400 500
18.75 140.5 158.7 160.7 161.7 161.7
Peak 37.5 143.7 158.9 161.1 161.1 161.1
Frequency 75.0 145.8 158.9 161.1 161.1 || 161.1 |
(Hz) 150.0 146.8 154.4 [T 71544 [ T1544 | 15404
300.00 155.3 T T136.3 134.2 132.1 1311 |
y__ __|__ UNSTABRIE REGION_ | _ _ _ _ ]
18.75 1.5209 '[ 3.1389 5.0019 7.1406 9.6166 |
37.5 1.5977 | 5.5489 6.1913 9.9148 15.5050 !
Fesk 75.0 1.7881 || 4.8614 12.0710 | 47.1618 J'—'—é_a._zsfs |
Gain 150.0 :_ "2.3951 | 20.7234 _jr' T12.3024 | T6.8675 5.4111 :
300.0 | 7.3895 }'3‘.'931?3' 2.5742 2.1973 2.0212 l
| OSCTLLTATORY | UNSTABLE REGION |
LoEEeION | _ _ | ____fL___1
Peak 18.75 54.9 113.3 180.5 257.7 347.0
Noise 37.5 57.7 128.1 223.4 357.8 559.5
Voltage 75.0 64.5 175.4 435.6 1701.8 [ 1921.6 1
(uVrms) 150.0 86.4 147.8 || 447.5 | 247.8 195.3 :
(for 36.1 300.0 266.6 ['1—41_.9_ 92.9 79.3 72,9 |
tee tagt) || T mmw
TABIE 8.35 |

Limit cycle Peak Frequencies, gains and noise Voltages for Port 1




VALUES / SAMPLING SHUNT RESISTANCE ( L)
PERTOD -
( P s) 100 200 300 400 500
18.75 162.6 160.7 161.7 161.7 161.7
Peak 37.5 161.8 161.1 161.1 161.1 161.1
Frequency 75.0 160.3 158.9 (1611 | 1611 |1 T161.1 )
(tiz) 150.0 154.0 | 154.4 |1 154.4 154.4 154.4 E
300.0 136.3 || 138.4 138.4 136.3 136.5 !
! UNSTABLE REGION |
18.75 1.0474 ;r— 2.4929 | 4.2852 | 6.3671 | s8.7841 _E
- 37.5 1.1465 1| 2.9246 5.4876 9.1274 |  14.61101
Gain 75.0 _ ;1:_3??5_ i 4.9999 }3-_4&5_9_ _ _45._3.1_'-?]:_ | 53-4437:
150.0 ™™ 21470 ~| 20.8838 J.'_ 15.2456 |  7.5721 6.0857 |
300.0 ' 8.4053 ] 4.8748 | 3.3242 2.8989 2.7028 |
| OSCILLIATORY] UNSTABLE REGION !
|_omeetow |} | | ____ | ]
Peak Noise | 18.75 37.8 90.0 154.6 229.8 317.0
Voltage 37.5 41.4 105.5 198.0 329.4 527.2
(nVrms) 75.0 50.1 180.4 413.0 1671.3 || 1928.7 |
(for 36.1 150.0 77.5 755.6 |7 416.0 [ "213.2 T 219.6 |
wVrms input) | 300.0 303.3 1 175.9 | 120.0 104.6 97.5 1
: UNSTABLE REGION :
| SR '_ __________ A
TABLE 8.36

Limit cycle Peak Frequencies, gains and noise Voltages for Port 2
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this was adjusted for each of the five sample rates according to Table
B.Bi. The iteration size was reduced with increasing sample period in
order to keep the plotting size of the oscillations identical for
different sample periods. The frequency of oscillation observable in
these responses can be calculated as follows:

1 « 1
fosc = ',IT = fs /n (8.3) -

where TB is the sample period and n is the number.of iterations in
one oscillation cycle.

It can be observed from the Graphs 8.43, 8.48, 8,49 and 8.50
that dué to the large number of iterations needed by the algorithm that
- rounding errors have occurred in the impulse response ;ausing the cal-
culated values to drift from the origin. This is particularly notice-
able when RS = 300, 400 and 500 ohms. The reduced number of itera#ions
in the other graphs have masked this effect.

The inverse Z-transform and impulse responses are not shown
"foy the admittance matrix due to the simple form of polynomials making
Tesponse finite.

8.6 ELEMENT RESOLUTION

The matrix element resolution has been shown to be the inverse
of the number of qu@ntisation levels (Section 3.12). With the S-bit.
word gize used in the experimental machine this gave an element resolution
of 3,23¢%, | |

Thus the computed impedances and admittances cannot be measured
Yo an accuracy greater than % 3.23% for the 2-port capacitively loaded
dieital;gyrator.

Tables 8.38 and 8.39 list the computed peak impedances and the
Tange about these peaks caused by thg element resolution. - The practical

reBUIts, after suitable correction, are expected to lie somewhere in
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SAMPLE PERIOD

NO. OF ITERATIONS

T IN INVERSE TRANSFORM
,J 8
18.75 4000
37.5 2000
75.0 1000
150.0 500
300.0 250

TABLE 8.37

Inverse Transform Iteration Size.



SHUNT COMPUTED COMPUTED PEAK
RESISTANCE | PEAK IMPEDANCE RANGE

TMPEDANCE ( :l:'3.23% )

MIN MAX

L O ¢ O
50 52.46 50.77 *54.15
100 107.01 103.55 | 110.56
200  226.51 219.99 | 233.83
300 362.15 350.45 373.85
400 51T.47 500.76 534.18
500 697.30 674.78 | 719.82

TABLE 8.38

Computed Peak Impedance Range for z

11



SHUNT COMPUTED COMPUTED FEAK
RESISTANCE PEAK IMPEDANCE RANGE
IMPEDANCE (£ 3.23% )
MIN MAX
0 Q) n Q)
50 No peak - -
100 No peak - -
200 316.23 220.61 | 235.33
300 524.81 347.00 | 370.16
400 822.24 493.25 | 526.17
500 1678.80 662.90 | 707.16
TABLE 8.39

Computed Peak Impedance Range for z

21



this range.
8.7 SUMMARY AND CONCLUSIONS'

The results presented in this chapter have calculated the
Pole and zero positions for the elements of both the digital impedance
and admittance matrices for a range of test parameters .for the capaci-
tively loaded 2-port digital gyrator, calculating the freqdency response,
inverse Z-transform and impulse-response of these.same elements. More
values of test parameters could have been chosen but this would have
only produced an overwhelming quantity of results giving less and less
extras information.

The quantisation transfer function has been evaluated for this
8yrator and it has been shown that the digital active network should
demonstrate quantisation oscillation when the chosen shunt resistance
is 200 ohms or greater. The value of shunt resistance which just
causes limit cycle oscillation to be sustained will lie between 100

and 200 ohms.
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CHAPTER 9

COMPARISON OF RESULTS

9.1 INTRODUCTION

In this chapter, the results of the practical experiments
with the capacitively loaded 2-port digital gyrator of Chapter 7 are
Compared with the computed results from Chapter 8 .for the same circuit.
The comparison §f results is based entirely on the Zq and Zoy elements
of the digital impedance matrix (8.2), as those were the two elements
investigated practically. Furthermore, only the frequency reséonses
are used for this comparison as it is impossible in practice to
megsure the inverse Z-transform or impulse responses for these elements.

The twé elements from the digital impedance matrix were chosen
for comparison because the digital admittance matrix was derived in
Chapter 4 and the digital impedance matrix then calculated by straight-
forward matrix infersion. As each element of the impedance matrix
depends on all four admittance matrix elements it follows that a com-
Parison through fhe impedance matrix will verify all elements of the
admittance matrix. Further, if all those admittance elements are
Correct then the other two impedance elements will also be correct. .

The results used for comparison were obtained using the six
Values of input shunt resistance listed in Table 8.31, but with only
®he value of sampling period, 18.75 microseconds.

9.2 DIGITAL INPUT IMPEDANCE (27)

The frequency response for the digital input impedance zll(z)
s shown for the practical results in Graphs 7.l to 7.6 and for the
Computed results in Graph 8.8. These both show resonance at nominally
the Ssame frequency, but the impedance magnitude is not equal.

Table 9.1 shows the corrected and computed peak impedance
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e,

| Measured Corxrected Measuredr Computed

S

onu?u Invut Input Impedance Range Input Impedance Range
. Tupedance L - Min. £t Max, £L Min. ) Mex. L1
50 ' 55T 49.2 56.18 50.77 54.15
100 118.85 108.96 1268.74 103.55 110.56
200 . 269.15 : 201,11 237.61 219.99 2%%.83
300 512.86 240.81 284.52 350.45 %73.85
ACO 831.76 - 435.42 514.45 500.75 534.18
500 - | 1513.56 . - - 674.78 719.82

Table S.1 Corrected and Computed Peak Impedances_for Z47



ranges for the six values of shunt resistance with the sampling period
set to 18.75 microseconds.

It can be seen from these results that the corrected impedance
range overlaps the computed impedance range when the shunt resistance
was set to 50, 100, 200 and 400 ohms. Table 9.1 shows discrepancies
between the corrected and expected impedances when the measured signal
Voltage in Table 7.19 was of a similar magnitude to the limit cycle
hoise voltage.

If the true effect of this limit ¢ycle noise had been predicted
before the practical experiment then clearly this problem could have
been drastically reduced by deliberately increasing the input signal
to the digital gyrator to the maximum level that could be linearly
handled.

9+3 DIGITAL FORWARD TRANSIMPEDANCE (z,,)

The frequency response for the digital forward transfer
impedance zzl(z) is shown for the practical results in Graphs 7.7 to
7.12 and for the computed results in Graph 8.18. These both show
& finite response at D.C. and resonance at nominally the same frequency,
but the impedance magnitude is again not equal.

Table 9.2 shows the corrected and computer peak impedance
Tanges for the six values of shunt resistance with the sampling set
to 18.75 microseconds.

It can be seen framthese results that the corrected impedance
Tange overlaps the computed impedance range only when the shunt resist-
Ace was set to 400 ohms. Table 9.2 shows discrepancies between the
Corrected and computed impedance ranges when the measured signal voltage
in Table T.20 was of a similar magnitude to the limit cycle noise
Voltage.

As with the measurement of zil, if the effect of this limit
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Measured

Corrected Measured

Computed Forward

Shunt :
Forward Forward Transimpedance Transimpedance Range
Resistance A
Transimpedance Range
Min. Mex, Min. Max.
L L a ' 0 QL 0
50 No peak - - - -
100 No »peak - - - -
200 316.23 175.11 206.89 220.61 235.35%
300 524.81 283.40 334.83 347.00 370.16
400 822.24 461.34 545.08 493.25 526.1T
500 1678.80 255.49 301.87 €62.90 707.16

Table 9.2 Corrected and Computed Peak Impedances for

174

21




cycle noise had been predicted then the input signal to the digital
gyrator could have been increased to maximise the signal-to-limit
cycle noise ratio.

9.4 LIMIT CYCLE NOISE VOLTAGES

The limit cycle noise voltages measured from photographs are
listed in Table 7.18, and the computed voltages are listed in Tables
8.35 and 8.36 for shunt resistances of 200 and 300 ohms. It is clear
from these results that the predicted noise voltagés are significantly
greater than the measured voltages. .

However, as the basic process of limit cycle noise generation
is a non-linear process, it is very difficult to derivg an accurate
expression to allow the limit cycle noise voltage to be calculated.
However it may be that the phase response of the quantisation voltage
transfer function plays a significant part. At resonance at port 1
this phase shift is independent of the shunt resistance, as can be
Seen in Graph 8.33, with a magnitude of about 4% it port 2 this
shift is about 180°., Thus if this phase shift is involved in the
expression for the limit cycle noise voltage then a different relation-
ship between the photographic results and the computed results would
be expected. From Tables 7.18, 8.35 and 8.36 the results for port 2
are much closer than port 1.

However no definite relationship can be established with
only two results for each port.

9.5 SUMMARY AND CONCLUSIONS

The measured digital input impedance and forward transfer
impedance have been shown to be approximately equal to the equivalent
computed impedances when the measurement errors, limit cycle noise and
element resolution have been taken into account. However the effects

of these three types of errors has so reduced the accuraconf the
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measured results that the practical experiment cannot be said to be
absolutely conclusive with the values obtained.

Clearly fhe experiment could have'been repeated with the machine
as described in Chapter 6, ﬂut a better solution would have been to have
rebuilt the machine with at least 8 bits in the intermal digital word.
This would have immediately increased the signal to limit cycle noise
ratio and the element resolution eight-fold.

Having extensively demonstrated the analysis of digital'active
networks, the way is now open to consider the synthesis of digital

active networks.
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CHAPTER 10

DIGITAL NETWORK SYNTHESIS

10.1 INTRODUCTION

The purpose of this chapter is to show the advantages and limit-
ations of synthesising digital active networks.
10.2 GENERAL SYNTHESIS TECHNIQUES

In order to synthesisedigital active networks it is simplest to
use the techniques available to synthesis analogue active networks
and then convert the resulting network to contain digital amplifiers.
This may be done by taking the Z-transform of the synthesised admittance
Datrix and realising the resulting digital admittance matrix using
digital amplifiers.

One starting point in the synthesis of analogue active networks
ié to specify an external set of properties, such as transfer functions
Or input impedances, and from these to generate a circuit realisation.
An alternative starting point for synthesis which is often used is an
¥ x N admittance matrix describing the external properties at the N
Ports of the network. If the circuit is derived by some other technique
then the admitfance matrix may still be found by conventional analysis
‘techniques.

If the resulting admittance matrix is symmetrical then the network
Can be realised using only passive - components, and as such would not be
Sensible to synthesise with digital amplifiers. However the network
Will be passive in a general sense if there is no net power gain,
Which can be the case with positive or negative impedance converters or
inVerters which do require internmal amplifiers, and are conveniently
Suited to conversion to use digital amplifiers.

The 2-port capacitively loaded digital gyrator analysed in Chapter
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4 would have been passive if the off-diagonal elements in the digital
admittance matrix (4.13) had been equal in magnitude at all frequencies.

The admittance matrix may be divided into a symmetrical (or passive)
matrix and an asymmetrical (or active) matrix thus:

Y(s) = Yp(s) + Y, (s) (10.1)

where by definition:

Y (s) = Yg (s) (10.2)

Various techniques have been proposed to enable an active admit-
tance matrix to be synthesised from the original admittance matrix,
Such as those by Yanagisawa and Kanbayashi [3] [4] a;1d also by
Thielmann [31] i

10.3 DIGITAL ADMITTANCE MATRICES

Before digital admplifiers can be introduced into the synthesis
of digital admittances arrays it is necessary to investigate further
the implications of taking the Z-transform of an admittance matrix.
From the six case studies in Chapter 3 it can be seen that although by
definition:

re) - 2 {r@)} (10.3)

that this does not in general apply at an element level.
Cases 3 and 4 in Chapter 3 show that the rows in the admittance

Datrix with all transformable elements may be transformed directly

thus;
y ij (Z) = Z {y ij (S)} (10'4)

If even one element in a row is untransformable then that row
Mst be manipulated (through matrices) before transforming. If

yij(s) is untransformable then from Chapter 3 yij(z) was shown to be:
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¥y (2) = (10.5)

1
H{am

A1l the other elements in that row are then transformed thus:

1 2 { 75(e) }
T3]

Unfortunately equation (10.6) does not reduce any more and in

(10.6)

¥i5(2)

Particular yij in any form does not cancel unless Vi is not a function
of g, If is at this point that the synthesis in discrete time departs
from the continuous time case.

A general element of the digital admittance matrix may be written
thus:

Ti(2) = 2 {f (751(8)s ¥30(8)s eovnee vy (s))} (10.7)

Now when two analogue admittance networks with matrices Y,(s) and
YQ(S) are connected node for node then by definition:

Y(s) = Yl(s) +Y2(s) (10.8)

The Z~transform of the resulting analogue admittance matrix is

therefore:
Y(z) = 2 { Yl(s) + 1, (s)} (10.9)
If equation (10.4) applies to Yl(s) and Yz(s) completely then
®quation (10.9) may be rewritten:

Y(z) = Yl(z) +Y2(z) (10.10)

However if equation (10.7) has to be applied then Y(z) in equation
(10.9) becomes a complicated function of the transform of the sum of
Yi(s) and Yz(s). This then means that unless equation (10.4) applies
to the elements of the combined admittance matrix, that the elements
in Some of the rows of the admittance matrix will be considerably

Dodified when an external admittance network is comnected. Thus the
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Tange of networks which may be usefully synthesised is restricted to
those networks which are fully transformable.

10.4 SELECTION OF Z-TRANSFORM

In order to apply digital amplifiers to the synthesis of active
networks it is necessary to consider the type of Z-transform of the
8=plane transfer functions which is to be used.

In Chapter 3, six different combinations of transformable and
untransformable admittance matrix elements were considered and it was
'.Shown that the 'standard! Z-transform [E:] could always be taken and
the digital admittance matrix therefore always found. In the case
of synthesis, the 'bilinear'! Z-transform [%:] [é:]or the 'matched!
Z~transform [?] may be used as well, whereas in the analysis case the
'standard' Z-transform had to be used in order to exactly calculate
the digital admittance or impedance matrices ready for a comparison
With the results from the practical experiments.

However with synthesis the choice must be made according to the
Properties of the original analogue transfer function which are to be
Dost closely reproduced.

10.4.1 Sstandard Z-transform

The standard Z-transform is described in Appendix A, and it is
Sufficient to'quote two simple results:

) N (10.11)

8 z=-1
&d in the case of digital active networks it was shown in Chapter 2
that |

5 = -z—;-l- (10.12)

In this transform the impulse response is invariant, whereas

the frequency response and pole and zero locations may differ considerably.
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10.4.2 Bilinear Z-transform
The bilinear Z-transform copies the frequency response of the

S8-plane network much more closely. Here:

§=z2-1 (10.13)
z + 1

This may be compared with equétion (10.12), and it can be seen
that the pole has migrated from z = 0 to z = -1, which corresponds
to the nyquist frequency.

Thus this transform has normalised the transfer function response
at infinite frequency éo‘the nyquist rate.

The impulse response over the transform is now no longer invariant,
and the pole and zero locations do not match. |

10.4.3 Matched Z-transform

The matched Z-transform is intended to match the pole and zero
locations of the discrete time network to that of the original untrans-
formed network.

This may be simply achieved thus:

S => 3 (10.14)

Again, the impulse response is no longer invariant, and the
frequency response will also be different.

Once the Z-transform has been taken then the structure for the
requiréd digital filter can be derived by rearranging the pulse transfer
function as a linear difference equation from which a digital filter
Structure may be readily obtained.

The synthesis of the convolving elements in the digital filters
has noy reached the standard digital filter design techniques such as

Soserived 1n [5], [7], [8], [9] ana [10] .

10.5 APPLICATION OF DIGITAL AMPLIFIERS

Digital amplifiers may be applied in two ways in network synthesis;
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either a direct substitution of a digital amplifer for an analogue
amplifier may be made, or an array of digital admittance amplifiers used
where their arrangement is derived from the asymmetric admittance matrix.

The former use of digital amplifiers does not exploit their
ability to have digital filters included in their signal path whereas
in the latter case the digital amplifier may be designed to conveniently
8imilate a wide variety of complicated transfer functions, and it is
to thisvrole that the digital amplifier is best suited.

One of the main advantages of using digital amplifiers in network
Synthesis is that their intermal digital filters can easily be designed
to have a linear phase response by using a transversal filter with
Symmetrical tapping weights which will give a finite impulse response
(FIR) A

Now the transfer function of a standard digital amplifier was
derived in equation (2.50). Due to the presence of the denominator
factor 's?, it is necessary to introduce the digital amplifier transfer

function before taking the Z-transform because:

-sTS -sk‘l‘s
Z = ( l-e ) e H (s)

5;4 gt H (z) (10.15)
Thus the digital amplifier position has to be defined before

the Z-transform is taken.

10.6 LIMIT CYCIE NOISE

It is necessary to test the digital admittance matrix derived
during digital active network synthesis to check if limit cycle
O8cillations can occur in order to prevent a wasted implementation.
The technique was fully explained in section 3.11. However from

®quation (3.72) the noise vector at the ports of the digital amplifier
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array will be:

7@

Z (z) Yl(z) Vﬁ(z) (10.16)

where Yl(z) is the digital admittance matrix of all the noise generating
elements. If all the elements are simulated using digital amplifiers
which all introduce quantisation noise then:

Y, (z) = Y (2) ' (10.17)
and equation (10.16) reduces by definition to:

Vo(z) = V(=) (10.18)

Thus A (z) in equation (3.73) becomes:

A(z) = T . (10.19)
Where U is the identity matrix.

Now it is very often the case that when equation (10.17) is not
true that the elements of A(z) are considerably greater or equal
to two at certain frequencies. By definition the identity matrix'
hag unity elements and thus a digital active network using digital
amplifiers for every element cannot show limit cycle oscillations,
Derely simple quantisation noise. Thus an all-digital amplifier
Tealisation is very preferable.

However the lack of limit cycle oscillations due to the quantisa-
tion process in an all-digital gmplifier realisation does not mean that
limit cycle oscillations cannot occur due to truncation of word
lengths within each digital amplifier. This effect is described in

Such papers as [13] ’ [14:] ’ [15:] ’ '[16] J [17] ’

10.7 DIGITAL GYRATOR SYNTHESIS

The 2-port capacitively loaded digital gyrator which was studied
for anglysis purposes in‘Chapter 4 may also be studied as a synthesis
®Xample. The circuit is shown in Fig. 4.1 and the analysis was based

o0 equation (3.31) derived in case 3 in Chapter 3.

- 117 -



An analogue 2-port capacitively loaded gyrator (Fig. 10.1) will

—_be described by an admittance matrix thus:

Y(s) = g+sC

1

sC

&

2

The equivalent digital gyrator was formed in Chapter 4 by

(10.20)

replacing the analogue cross-coupled transconductance amplifiers by

digital amplifiers.

After replacing the off-diagonal terms in Y(s) by the transfer

function of digital amplifier, and then taking the Z-transform accord-

ing to case 3 in Chapter 3, Y(z) was found using the standard Z-

transform:
-
¥(z) = ¢y (z
T
s
|

€1%1

-k =1
C, z kl

(1-¢)

—

(10.21)

When using digital amplifiers to simulate the leading diagonal

elements as well as the off-diagonal elements, it is necessary to

include the effects of the zero order hold stage and the amplifier

delay, as in equation (2.48). Thus matrix (10.20) becomes:

¥(s) = (g+sCy) (1-e

s

_-STB
-gé(l'e )
S

L

-8k Ty

e

-STS) e-SkllTS

which may be transformed to:
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- "
¥(z) = |z A g +0Cy (z -1 ) 8,2 “12
T Z '
s
=k -k
21 22
T, z (10.23)

The elements in the above matrix contain only one mention of
each of the original components, g, 811 8y Clvand 02. Thus the
realisation of this matrix will be able to have each component controlled
independently as with the original analogue network.

It should also be noted that compared with matrix (10.21), =<
is no longer present and all the elements are simplified. Furthermore
the capacitance terms in yll(z) and y22(z) can be clearly identified.

In effect matrix (10.23) is showing that the digital components
developed and described in section 2.10 may be combined to form an
all-digital gyrator.

The leading diagonal terms of matrix (10.23) may now be simulated
Using digital amplifiers with input and output strapped and with simple
feed forward digital amplifiers in their signal path. The off-diagonal
terms can be simulated using simple digital amplifiers. The resulting
: digita.l amplifier array is shown in Fig. 10.2. The duplication of
4/D and D/A converters has been removed.

10.8 CONCLUSIONS

It has been shown that it is possible to synthesise digital
aOtive networks using digital amplifiers, and that for two reasons
it ig particularly beneficial to use an all-digital amplifier approach.
Firstly, an all digital approach eliminates the problem of limit cycle

O08cillation caused by quantisation noise. Secondly the practical

- 119 -



- &
Z 1 94
I4
f——.—ﬂ 2-1
[ §
Ciq
Port1 v, Te g
D - S s

-K

21

-92

++ A
-1
1 Z
2

B | e P

M2 Port .

FIG. 10.2

Al1-Digital Gyrator




example showed that the all-digital approach produces realisable
transformed admittance matrix elements which are easily related to
the original analogue componenté, thereby allowing simple control

of each digital component value.
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CHAPTER 11

SUMMARY AND CONCLUSIONS

11.1 INTRODUCTION

The purpose of this thesis has been to investigate the analysis
and synthesis of digital active networks. This has been achieved both
in theory and practice.

11.2 SUMMARY

The term 'digital active network! has been defined to mean an
array consisting either partly or wholly of digital amplifiers, which
in turn have been defined to contain a current or voltaée sensor, an
A/b converter, a scaler, a convolver, a D/A converter and a current
or voltage generator.

It was shown that for practical reasons it is much easier to
design digital transadmittance amplifiers than any other type, and
that digital admittance arrays were therefore the simplest to simulate.

The conservation of units under the sampling process was con-
sidered and it was shown that it was necessary to introduce the sampling
period as a correction factor.

Next the conditions under which a Laplace domain transfer func-
-tion could be Z-transformed were considered and it was shown that it
was valid to use the reciprocal of the Z-transfbrm of the reciprocal
of g transfer function if that transfer function was not transformable.

The concept of a digital circuit component was then introduced
and its construction by coupling the output and input of a digital
transadmittance amplifier described. A few simple digital component
similations were then considered.

| The next important step was to develop techniques to analyse

mixed arrays of digital amplifiers and analogue circuit components.
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Six typical case studies were investigated and equations derived to
allow the digital admittance and impedance matrices to be found for
each case.

From a knowledge of the digital admittance matrix for a digital
active network a quantisation matrix was calculated and it was shown
that the introduction of amplitude quantisation in each A/D converter
would lead to the generation of limit cycle oscillations under certain
conditions, which were in turn derived. It was shown that the amplitude
of these limit cycle oscillations could be obtained by evaluating the
frequency response of the elements of a quantisation matrix, and from
the quantisatioﬁ step size.

A secondary effect of amplitude quantisation, namely element
resolution, was then investigated and shown to be the reciprocal of the
number of quantisation levels used.

The matrix analysis was then applied to a capacitively loaded
2-port digital gyrator, and the digital admittance and impedance matrices
found. From these matrices it was predicted that limit cycle oscilla-
tions would be present using certain analogue component values.

This analysis also formed the basis for the construction of a
capacitively loaded 2-port digital gyrator and for the writing of a
suite of FORTRAN computer programs to evaluate these matrices. Limit
cycle oscillations were shown to exist with certain component values.
Results obtained from the practical machine and the computer results
were compared and after correction for limit cycle oscillations, a
regsonable but not close match was found.

Finally the problems and advantages behind the synthesis of
digital active networks were investigated, and it was shown that
it was preferable to design an all-digital network. This was because

an all-digital network could not show limit cycle oscillation caused
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by amplitude quantisation,and furthermore the elements of the admittance
matrix of an all-digital realisation were simple transforms of the
original component types, whereas the elements of the admittance matrix
~derived from a mixed analogue and digital realisation were not the
simple transform of each elément.

11.3 CONCLUSIONS

From the work presented in this thesis it is clear that analogue
active and passive networks may be combined with sampled data systems
and digitél filters, and that the resulting digital active networks may
be both analysed and synthesised. Thus digital active networks are
feasible.

The advantages of digital active networks really lie in being
able to use digital filters in place of analogue filters, rather than
restricting digital filters to the role of simple signal path processing.

Digital active networks intrinsically contain complicated
circuitry but whereas that presented a problem at the time when the
practical work for this thesis was started, it is no longer as great
a problem with the increase in the number of types of integrated
circuits. However digital active networks will always cost more per

network node than their analogue near equivalents.
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APPENDIX A

BASIC SAMPLING THEORY

A.l THE Z-TRANSFORM

The basic action of sampling is the multiplication in the time
domain of a signal x(t) with a unit impulse train i(t). These signals
can be seen in Fig. A.1l. The unit impulse function has a period of

T, starting at t=0. Hence i(t) may be written:

oQ
i(t) - § S (t-wm) (a.1)
T =0 '
where & (t - :r:'I'S) is a unit impulse occurring when t = rT_. Further
the impulses themselves are assumed to have unit area and infinite
height coupled with infinitesimal duration.
Let x(t) be any arbitrary waveform and x*(t) be defined as the
result of sampling x(t), then:
x(t) = x(t). i(t) (4.2)

From equation (A.l), (A.2) may be rewritten:
o0

() =§ x(2T) S - 1) (4.3)

r=20

This equation may now be Laplace transformed:

[~ =) o -st
g x(zT_) Jg(t - r0 e dt
o2 ~-rsT *
é x(rT)) e ® =X (s) (A.4)
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Equation (A.4) allows the time domain signal x(t) to be written
as a sampled Laplace transform.

However other results can also be obtained. Consider the Complex

Fourier Analysis of i(t) [29]

. 1 jrwst
i(t) = 7 c. e (4.5)
s
r=o0
s
2 =jrw_t
where C, = i(t) e ° at ' (A.6)

1
3
[1)]

jrw_1t
TORE %g o (a.7)

I'==— O

It is important to notice that the term-,% has appeared, giving
s

i(t) the units of Time L Substituting (A.7) in (A.2) gives:

o0

* Jrw_t
x (t) = % é x(t) e B
s

== 0O

and hence the Laplace transform becomes :

i {x ) 2 fx(t e(s+;jrw )t "
O

g X (s + :jrws) (4.8)

I== QO

X (s) =

=1
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Equation (A.8) gives an expression for the sampling of a Laplace
transformed variable x(s).

Now the units of s are radians sec . X(s) will be a poly-
nomial with units which are an integer power of (radians sec-l). The
term~%- will reduce this integer power by one. Hence when applying
(A.B) :o any equation in s, it is important to consider the conser-
vation of units.

From equation (A.8), X*(s) may be replaced by X(z) (where z =
exp (STB)) provided that the series for X?(s) is convergent and this
is called the Z-transform. Table A.l shows some standard s and z plane
transforms with their equivalent time domain functiong.

In the practical case no real sampler can be ideal and in this
case the previous analysis must be repeated. However, as shown in
reference [:18] if .even a non-ideal sampler is followed by a holding

capacitor, then the transfer function is not affected.

A.2 INVERSE Z-TRANSFORM

There are three techniques for tsking the inverse Z-transform,
and these are discussed in the succéeding sub-sections.
A.2.1 Partial Fraction Expansion
The function of z to be inverted must first have its denominator
factorised so that the partial fraction expansion may be found. Each
term in the partial fraction expansion is then compared with a list of
standard transforms such as Table A.l.
The advantage of this method is that the function of z may be
inverted to the s (sampled s) plane or the time domain.
A.2.2 Power Series Expansion

The function of z to be inverted is divided out thus:
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TIME FUNCTION LAPLACE Z-TRANSFORM
TRANSFORM
S (+) 1 1
® (t-nT) B z
1 Z
U (t) s z - 1
- L 2 o
g2 (z - 1)
1 Z
exp (-at) S + a z—exp(-aT)
1 Tz exp(-aT)
t exp(-at) s +a)? (z-exp(-aT) ) 2
Sin a t 5 a ) ZQSin a T
s + a z =2z Cos a T + 1
2
Gos & * 2s ) g-zCosaT
s +a z -2z Cos a T + 1
TABLE A.l

Z - Transforms



n-n o0
i -1
i=o i=l

The coefficients s and di then represent the time domain value
when t = i T because zi is a pure time delay.
Thus the time domain value of the function at éach sampling
instant is available by this method.
A.2.3 The Inversion Integral
The inversion integral may be applied to the function of t to

be inverted to give the time domain equivalent function :

| 1 n-1
£ (nT) =273 F(z) z dz (4.10)
The line integral must be made large enough to include all the

roots of F (z). The unit circle is normally used.

A.3 THE ADVANCED Z~TRANSFORM

For the ordinary Z-transform the results of sampling are only
defined at the sampling instants which are by definition an integral
mltiple of the sampling period. The advanced Z-transform allows the
computation of the results of sampling between the sampling instants.

[+]

The advanced Z-transform has not been applied to any problems

encountered in this thesis although the experimental machine's

intermediate output state could be calculated using this technique.

- 132 -



APPENDIX B

BROWN'S METHOD FOR FACTORISING

FOURTH ORDER POLYNOMIALS

B.1 INTRODUCTION

Brown's Method [?Q] was implemented as a computer algorithm

in Chapter 5 to solve fourth order polynomials. This method requires

the solving of an intermediate and associated third order polynomial

from which the coefficients of a pair of simultaneous quadratic

equations can be found. The roots of these siﬁultaneous quadratic

equations are also the roots of the fourth order polynomial.
B.2 ALGORITHM
Let the fourth order polynomial f(x) be:
3

- 2
£(x) = x7 + a; X + 8, X" +a) X+a

and define an associated third order polyndmia.l f(y) such that:

£(y) = y3 + b2y2 4 bl Y+ b
where: b2 =-a,
b1 = &y ay - 4 a,
b, =&, (4 a, - & § ) - a 2

(8.1)

(B.2)

Let v, be the largest real root of £(y). The coefficients of

the simultaneous quadratic equations may then be defined:

*+(A+C)x+B+D=0

x2+(A-C)x+B-D=O
where A = a3/2
B:sz
D= 32 -a
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C = (AB-al/Z)/ID ifD #0

2 L
or C=,\/A—a,2+yo ifD =0
equations (B.3) and (B.4) can be easily solved thus giving the

four roots of equation (B.1l)
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APPENDIX C

A/D CONVERSION

C.l1 A/D CONVERSION PROCESS

The process of linear A/D con%ersion involves deciding which
one of M quantisation levels is nearest to the signal at an instant
in time (the sampling instant). Hence in a binary A/D converter the
signal is quantised to the level which is within + 4 LSB of the
signal.

For practical operation it is necessary to hold the sampled
signal constant between sampling instants. These twp operations
are combined in a sample-and-hold stage.

The whole A/D conversion process is therefore equivalent to
a sample-and-hold stage followed by a quantiser and is shown in
Fig. C.1. The former stage is described in Appendix A and the
latter stage in Section C.4. The full process of sampling and
Quantisation is shown graphically in Fig. C.2.

C.2 QQANTISATION PROCESS

The process of quantisation is used to decide which level of a
code (normally binary) is nearest to the sampled signal. If the
input can be both positive and negative and the binary code is used
then the optimum choice for M is

M= 2 | (c.1)
where n is the number of bits in the code, including the sign bit.

Hence the size of any decision level will be

Nv = v/ @ -1) (c.2)
where V is the maximum absolute input signal.
From equation (C.2) the accuracy (A) in percent and dynamic

range (R) in decibels of the converter can be found
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A=100/ (2" -1) % (c.3)
R = 20 logy, (2" -1) 4 B (C.4)

C.3 QUANTISATION NOISE

Due to this quantisation process, noise is introduced into
the signal path due to the intrinsic approximation made of the instant-
aneous signal amplitude.

From [18] provided thatAv <KV this noise may be assumed to
be uniformly distributed over any given step. (See Fig. C.3).

From reference [ 18] the total mean square quantising noise

voltage cr'2 or variance is derived as :
c? . (Av? (c.5)
' 12

From this result the maximum quantisation signal/noise ratio
can be derived :

8, = 20 log,, (1.225M) (c.6)

C.4 QUANTISATION ALGORITHM

A convenient and fast method of quantising a signal into
typically a binary code is to use the successive approximation
algorithm . [: 26] This algorithm has the advantage that
it takes only N iterations to quantise a signal into one of 2N -1
levels.

C.4.1 Operation

The block diagram of a successive approximations A/D converter
is shown in Fig. C.4. The output from this converter can be as a
S8erial bit stream or as sequential parallel words.

The algorithm tests the input signal in successive half
ranges and sets the bits in a storage register accordingly.

The N-stage test register is designed as a shift register to
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propagate a solitary high state starting at bN' The direction is
from bN to bl' The parallel output is inclusive OR'ed to the storage
register output and fed to the DAC to test the next interval.

The N-stage storage register has its stages sequentially
indexed by the test register. If the comparator output indicates
that the signal is in the current upper half-range then that stage
is set high.

The D/A converter (DAC) is needed to convert the testing binary
pattern from the test and storage registers to an analogue signal.

The comparator gives a high or low output depending on the

relative polarity of the analogue signal to be converted and the

current binary testing pattern.
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APPENDIX D

COMPUTER PROGRAM LISTINGS

The FORTRAN source text of the 5 main programs- and their
overlay segments are listed here. All the routines were written
solely to verify the analyses presented in this thesis.

Any subprograms that are called in these listings but are
not listed here belonged to the various system libraries. In

particular PLOTTER (Segment 18) is not listed.
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FROGRAM GIF1
GYRATOR DATA FREFARATION FROGRAM.

SUEROUTINES USEID 3
REDATA
DATOUT

oOOoOOoOoGOoaooaon

0 COMMAND STREAM
1 MONITOR STREAM
2 ASR KEYEROARID
3 ASR FRINTER
4 LL/F
S DISK QUTRFUT FILE
INTLG R NTyNCLyNC2yNG1yNGR2yNGyNEL y
1 NCFNyNCFDyIRESySTARYNOy YES
(s
LOGICAL. TERMsFERFH
("
DIMENSION TC(100)yC1C100)yC2¢100)yG1LCLI00) s G2C100)y
1 RSCI00)yITITLECZ2) s PERFH(3) y IFERFH{3) yDATNC(S) yDATIN(S)
(8
DATA YESyNOySTARyIMFyIADM /1HY sy 1HNs I1HXy 1HZ »y LHY/
DATA NCONyNENLD /0s9/
DATA ISFACEs IQUANT /1H ¢1HQ/
(4
C INTRODUCTION $¢-
9 WRITE(3590)
90 FORMAT ( GYRATUI: DATA PREFARATION PROGRAMY/)
IREFLY:=1
(o
C FERII}G .8 3

10 WRITE(3»100)

100 FORMATC(’ L/FyASRyNISK FILE REQUIRED? (Y/N) 1//)
READCZ2y101) IFERFH ’

101 FORMAT(3(AL1))
no 11 I=1+3
FERFH(I)=.FALSE.
IF(IPERFH(I) ZEQ.STAR) GO TO 40
IFCIFERFHCL) o NEWYES+ANDWIFERFHCI) o NEWNO) GO TO 10
IF(IFERFH(I) JEQ.YES) PERFH(I)=.,TRUE,

11 CONTINUE

C GET HEADIER FOR DISK FILE IF REQUIREID
IFC.NOTWFERFH(3)) GO TO S0
WRITE(3y35)

99 FORMAT(’ GIVE HEADING FOR DISK FILE’/)
NCHARS=72
no 38 I=1sNCHARS
ITITLECI)=ISFACE

98 CONTINUE

CALL GETLINC2yITITLE »NCHARS)
C NOW WRITE TO Ii:i. FILE
WRITE(S) NCHARSyITITLLE



0o 200 IT=1sNT
TIMCON=T(IT)
IF(PERFHC(1)) WRITI (4 1500) TIMCON
IF(FERFH(2)) WRITE(3y13500) TIMCON
Do 201 ICi=1yNC1
CAF1=C1(IC1)
IF(PERFH(1)) WRITE(4,1301) CAF1
IF(PERFH(2)) WRITE(3y1501) CAF1
ng 202 1C2=1sNC2
CAF2=C2(ICZ)
IF(PERFH(1)) WRITE(4y1502) CAF2
IF(FERFH(2)) WRITE(3,1502) CAF2
D0 203 IG1=1ysNG1 .
CONU1=G1(IGL)
IF(FERFH(1)) WRITE(4,1303) COND1
IF(FERFH(2)) WRITE(3y»1503) CONDI
00 204 IG2=1yNG2
COND2=G2(IG2)
IF(FLIPHCL)) WRITE(4y1504) COND2
IF(PERFH(2)) WRITE(3y1504) COND2
D0 205 IRS=1sNRS
RSHUNT=RS(IRS)
IF(FPERFH(1)) WRITE(4,13035) RSHUNT
IF(FERFH(2)) WRITE(3y1505) RSHUNT
C
C
1500 FORMATC(Y T
1501 FORMATC(’ C1

vE12.4)
rE12.4)

1502 FORMAT(? (- $/9E12.4)
1503 FORMAT(’ G1 :7sE12.4)
1504 FORMAT(’ G2 :’yE12.4)
1505 FORMAT(? R $7sE12.4/)
c
ALFHA=EXF(~1,0%XTIMCON/CAF1/RSHUN" )
c
GO TO (210,211,212,213+2149215+216,217>
1218,219y220,221,222,223) yISWTCH
C
C Y1l §=

210 NCFN=1
DATN(2)=CAF1/TIMCON
DATN(1)=-1,0XDATN(2)XALFHA
NCFD=1
DATD(2)=1.,0
DATDC(1)=ZEROD
GO TO 228
C
C Yi2 -
211 NCFN=0
DATNCL)=(C(1 . 0-ALFHA) XCONDLIXCAFL/RSHUNT/TIMCON
NCFII=2
DATD(3)=1.,0
DATO(2)=ZEROD
DATIN(1)=ZERO
GO TO 228



cC v21 :-

212 NCFN=0
DATN(L)=-1,0%COND2
NCFIO=2
DATO(3)=1.0
DATL(2)=ZERO
OATOCL ) =ZERO
GO TO 228

22 &=
NCFN=1
DATOC(2)=CAF2/TIMCON
DATN(1)=-1.0%XCAF2/TIMCON
NCFIi=1
DATD(2)=1.0
DATO(1)=ZERO
GO TO 228

300
ol =<

€ 211 =

214 NCFN=4
DATNC(S) =TIMCON/Ci "]
DATN(4)=-1.,0%XTIMCON/CAF1
DATN(3)=ZERO
DATN(2)=ZERO
DATN(1)=ZERD
GO TO 229

C Z12 -
215  NCFN=2
DATN(3)==1,0XkCOND1XTINCONX (1,0-ALI"I:A) S 1R3HUNT/CAF2
DATN(2)=ZERO
DATN(1) =ZERO
GO TO 229

c 221 @~
216 NCFN=2
ODATN G =1 OXCONDZXTIMCONXTIMCON/CAFL/CAF2
DATN(2)=ZERO
DATN(1)=ZEROD
GO TO 229
222 -
17 NCFN=4
DATN(S)=TIMCON/CAF2
DATN(4)=~1,0XDATN(S) XALFHA
DATN(3)=ZERD
DATN(2)=ZERO
DATN(1)=ZERO
GO TO 229

ROO

C Q1L -

218 NCFM=1
DATNC2)=TIMCONXCONDLIXCOND2X (1, 0-ALFHA)XREHUNT/CAFZ
DATN(1)=ZERD
GO TO 229



cC Q12 -~

219  NCFN=3
DATNC4)=CONDLIXT IMCOH - |
DATN(3)=-1.,0%DATN(4)
DATN(2)=ZERO
DATN(1)=ZERO
GO TO 229

C

C Q21 @~

220 NCFN=3
DATN(4)=~1,0XCONU2XTIMCON/CAF2
DATN(J)-TlHCON*COND“*ALFHA/FﬁF”
DATN(2)=ZERO
DATN(1)=ZERO
GO TO 229

221 NCFN=1
DATNC2)=TIMCONXTIMCONXCONDLIXCONDNR2/7CAFL/CAF2
DATNCL ) =ZERO
GO TO 229

c

cC Q1L 3~

222 NCFN=3
DATNC(4)=COND L TMCU/2ARL
DATN(3)==1,0%XUATN(4)
DATN(2)=TIMCONXCOND1XCOND2XRESHUNTX (1.0-ALFHA) /CAR2 -
DATN(1)=ZERO
GO TO 229

c

c Q2 -

223 NCFN=3

DATN(4)=~1,0XkTIMCONXCOND2/CAF2
DATN(3)=TIMCONXCOND2XALFHA/CAF2
DATN(2)=TIMCONXTIMCONXCONDIXCOND2/CAFL1/CAF2
DATN(1)=ZEROD

GO 10 229

DENOMINATOR FOLYNOMIAL -
29  NCFD=4
DATD(S)=1.0
DATD(4)=-1,0-ALFHA
DATD(3)=ALFHA
DATO(2)=ZERD
DATOC1)=CONDIXCOND2XTIMCONK (14 0~ALFHA) X
* RSHUNT/CAP2

OO0

228 CONTINUE

OO.‘JO

QUTFUT STATUS WORD
WRITE(S) NCON

2 OUTFUT FARAMETERS
WRITE(S) TIMCONyCAF1sCAFZyCONDLy CUNDkthHUNT

OUTPUT NUMERATOR COEFFICIENTS



cC
30 IFCIREFLY.EQ.3) GO TO 26
C
C

GET COMPONENT VALUES 3
CALL REDATAC'T “sNT»T(1))
CALL REDATAC’C1/sNC1,C1(1))
CALL REDATACC27s4NC2yC2(1))
CALL REDATAC’GL’yNG1,G1C1))
CALL REDATAC/G27yNG2yG2(1))
CALL REY:i: (/R “9yNRSyRS(1))

c
C NUMBER OF RESULTS @-
26 IRES=NTXNC1XNC2XNG1XNG2XNRS

WRITE(3y116) IRES
116 FORMAT(1H » “NUMBRER OF RESULTS WILL RE
C
C TYFE OF MATRIX &~
30 WRITE (15120)
120 FORMAT (’ IMFEDANCEs ADMITTANCE “‘»
170R QUANTISATION MATRIX'»
27 (Z/7Y/Q) /)
READC2y121) MATRIX
121 FORMAT (A1)
IF(MATRIX.EQ.8TAR) GO T0 40
IF(MATRIX«NE . IADMAND e MATRIX NE + IMF .
IANDWMATRIX NE.IQUANT) GO TO 30
WRITE(3y1200)
1200 FORMAT(" + IVE ELEMENT $4/)
READ(2,2200) NEL
200 FORMAT ()

IF(MATRIX.EQ.IADM) IS1=0
IF(MATRIX.EQ.IMF) 1IS1=4
IF(MATRIX.EQ.IQUANT) IS1=8
IF(NEL.EQ.11) I8S2=1
IF(NELEQ.12) pei 2
IF(NEL.EQ.21) I82=3
IF(NEL.EQ.22) I82=4
IF(NEL.EQ+1) I8S2=35
IF(NELJEQ.2) 187:=64
IFCIS2.LT41.0RIS2.6T6) GO T0 30
ISWTCH=IS1+182

IF(PERFH(3)) WRITECCS) ITKi - ATRIX s NEL
IF(FPERFH(2)) WRITE(Zy151) MATRIX»NEL
IF(PERFH(1)) WRITE(4y150) MATRIXysNEL
150 FORMATC(1H1 2 MATRIX ELEMENT $7+A1,13)
151 FORMAT(’ MATRIX ELEMENT $/yAl1+13)
C
C CLEAR NUMERATOR & DENOMINATOR ARRAYS
o 310 I=1+6
DATNC(I)=ZERO
LDATUCL)=ZERO
10 CONTINUE

00 o

7/
*

v 18)



230

CALL DATOUT(NCFN»IATN: 1sFERFH)

C OUTFUT DENOMINATOR COEFFICIENTS

C NOW

200
c

C

205
204
203
202
201
200
C

40

CALL DATOUTINCFDyDATDy 29y FERFH)

CALCULATE THE MINIMUM NUMERER OF RITS NECESSARY

ODRIT=ZERD

no 320 I=1+6

DRIT=NRITHOATOCL)

CONTINUE
BEIT=AMAX1(DATOCL) s DATIC2) yDATOC(3) s DATH(4) »
1DATRN(S) s DATINGS) )
RIT=ALOGIO(ARS(RIT/2./0RITY)/ALOGLOC2,)
NUMEBIT=IFIX(RIT)+1

IFC(RIT-FLOATC(NUMBRIT)) +GT+0.0) NUMBIT=NUMEIT+1

IF(FERFH(1)) WRITE(45300) NUMEBIT
IF(FERFH(2)) WRITE(3,300) NUMRIT
FORMAT (- NUMEBER OF RITS NECESSARY =7y14/)

CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE

C REWIND DISK FILE IF REQUIRED

IFC.NOTWFERFH(3)) GO TO 45
WRITEC(S) NEND

C LOADZE IS NECESSARY REFORE F1LE REWIND

4%
130

131

300

CalL LOADZE
ENDFILE &
REWIND 3

WRITE(3y130)

FORMAT(’ REFEATy RESTART» “y

1/ CHANGE FERFHS OR END? (1+2+3+4) 17/)
READN(2y131) IREFLY

FORMAT ()

GO TO (30910510,300)y IREFLY

CONTINUE
STOF

END
FINISH

+
+
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FROGRAM

FZi1

FOLE-ZERO FLOTTING FROGRAM

FERIFHERALS USED

2=A8R READ

3=ASR FRINT

4=L/F

S=INFUT DISK FILE
6=0UTFUT DISK FILE

7=GRAFH FLOTTER

SEGMENTS USED
7 - TEKLIE

8
9
10
15
16

FLOTLI
ROOTLI
FOLYLI
FZPLIR
POLENT

INTEGER
LOGICAL
DIMENSI
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

EXTERNA
DATA YE
DATA MZ
DATA NE

MTITLE=

B
B
B

YES

PERFHsNOTFER

ON IPERFH(3)

/PLTINC/ XYINCyXYMAX
/MATELM/ NUMRESyMATRIXyNELEMS
/POLLYNS/ NIPOLY(60) sNFOLYyMPOLYy IFYCNT
/COEFFS/ ARRNUM(3I) y NORNUMy ARRIIEN(S) y NORDIEN
/TEKREC/ IRECRIDN(72)yNRECsMREC

/TITLES/ ITITO(72)yNTITDyITITG(72)yNTITGYMTITLE
/7ANGLES/ PIyDEGRAD

/FLOTYP/ NUMDENsNAUTOs INFDEVyYITYPE
/SCALES/ XORGyYORGyXYSIZEyXYSCALYPTSIZE
/PERFHS/ FERPH(S) s NOTPER(S)

/TER/ IXVALyIYVALLINPAG,LINCNT

/PARAMS/ PAROLLDC(S) yFARNEW(S)

L FOLE»ZERO
SyNO /1HYy1HN/
EROyMFOLE /1+2/
ND 79/

72

CALCULATE BASIC ANGLES

PI=4,0%
DEGRALI=

INITIALISE

MREC=72
NREC=0

ATAN(L1.0)
180.0/F1



c
WRITE(3,1501)
1501 FORMAT(’ POLYNOMIAL ROOT FINDING FROGRAM’/
1/ ALL THE COEFFICIENTS MUST RE REAL ‘s
2 7 & GIVEN IN DESCENDING ORDER.’/)
c
c
C ASK FOR PERIFHERAL DEVICES ¢
10 WRITE(3y1000)
1000 FORMAT(’ OUTPUT PERIFHERALS REQUIRED? (Y/N)‘’/
1/ L/Fy ASRy TEK(DATA)»y PLOTTER OR DISK FILE :!‘/)
READNNC2,2000) IFERPH
2000 FORMAT(5(A1))
o 3000 I=1,35
PERPH(I)=.FALSE.
NOTPER(I)=.TRUE.
IF(IPERPH(I).EQ.NO) GO TO 3000
IFC(IPERPH(I).NE.YES) GO TO 10
FERFH(I)=.TRUE.
NOTFER(I)=.FALSE.
gOOO CONTINUE

C IF TEK. DATA REQUIRED THEN GET STARTING COORDINATES
C IF(PERPH(3)) CALL TKRSTRT

C GET DETAILS OF GRAFH TO RE PLOTTED

éOO IF(PERPH(4)) CALL GPSTRT

C INITIALISATION ¢
200 IERASE=YES .
ANG=45.,0/ATAN(1.0)

C INITIALISE PARAMETER ARRAY
DO 3200 IPAR=1+6
FARNEW(IPAR)=0.0

3200 CONTINUE

C ASK FOR INPUT DEVICE !

C DISK FILE = 1

C KEYROARDI = 2

210 WRITE(3,1200)

1200 FORMAT(’ DISK FILE OR KEYBOARD INPUT? (1/2) t7/)
. READI(2,2010) INFDEV

<010 FORMAT()

o IFCINPDEV.LT+1,0R.INPDEV.GT.2) GO TO 210

220 WRITE(3,1210)

1210 FORMAT(’ NUM.=1y DENOM.=2y BOTH=3 !’/)
READ(2,2010) NUMDEN
IF(NUMDEN.LT.1.0R.NUMDEN.GT.3) GO TO 220

WRITE(3,1220)



1220 FORMAT(’ HOW MANY FOLYNOMIALS ARE TO RE ANALYSED? {7/)
READ(2,2010) NFOLY
c
C INITIALISE DISK INPUT
IF(INPDEV.EQ.1) CALL DISTRT
c
C INITIALISE OUTPUT DEVICES
IF(PERFPH(S)) CALL DOSTRT °
IF(PERFH(1).AND.INFIEV.EQ.1) CALL LPSThT

INITIALISE VDU IF REQUIRED
IF(PERPH(3)) CALL SETVDU

START CALCULATING LOOP
D0 3300 IPOLY=1sNPOLY

NOW SWITCH ACCORDING TO INPUT DEVICE
GO TO (300y310) s INFPDEV

DISC-FILLE INPUT
00 CALL DISCIN(NORNUMyARRNUM(1) sNORDEN,
1ARRDEN(1) yNDFOLY (IFOLY))
IF(PERFPH(1)) CALL LPARMS(FARNEW)
GO TO 320

NN 00 oo a

"
C KEYBOARD INPUT
810 CALL KEYBIN(NORNUMyARRNUM(1)sNORDENyARRIEN(1) »NUMDEN)

C ANALYSE NUMERATOR POLYNOMIAL

320 GO TO (330+340y330) yNUMDEN

330  IF(PERFH(1)) CALL LPCOEF(NORNUMsARRNUM(1)s1)
CALL RTFIND(NORNUMyARRNUM(1)sZEROy1)

340 GO TO (3300s350,350) y NUMDEN

C ANALYSE DENOMINATOR POLYNOMIAL

350  IF(FERPH(1)) CALL LPCOEF(NORDENyARRDEN(1)s2)
CALL RTFIND(NORDENy ARRDEN(1)yPOLE»2)

3300 CONTINUE
g END OF MAIN LOOQP

c

C CLOSE GRAFH FLOTTER

400 IF(PERFH(4)) CALL FLOT(XORGyYORG»1000)
IF(NOTFPER(S)) GO TO 410

C REWIND DISK OUTPUT FILE
CALL LOADZE

ENDFILE 6

REWIND 6

CALL LOADFP

s Gt b e e T s T a—pr—— o -




.

C REWIND DISK INFUT FILE
410 GO TO (4205430)y INFLEV
420 CALL LOADZE

REWIND 3

CALL LOADFP

430 IF(NAUTO.EQ.1.AND.PERFH(3)) CALL COPY
WRITE(3,1400) :

1400 FORMAT(’ REPEAT=1, RESTART=2y END=3 {’/)
READ(2,2010) IREFLY
GO TO (100+10+999)yIREPLY

299 CONTINUE
STOP
END

—
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FROGRAM

FRAL

FROGRAM TO CALCULATE DATA FOR FREQUENCY RESFONSE ANALYSIS.

PERIFHERALS USELD
2=ASR READ
3=ASR WRITE
4=L/F

S=INFUT DISK FILE
6=SCRATCH OUTFUT DISK FILE
7=GRAFH PLOTTER

SEGMENTS USED

7 = TEKLIE
10 - POLYLI
11 - FREQLI
12 - RESFLI
13 - FRALIE
15 - FZFLIR
16 - FOLENT
18 - PLOTTE

INTEGER
COMFLEX

R
R
3]

R

YES»NO
POINT

DIMENSION IARRAY(72)yIFERFH(2)
LOGICAL PLTPTSsFERFPHyNOTFER

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMMON
COMMON

/COORDS/
/MATELM/
/POLYNS/
/LABRELS/
/O0RIGIN/
/PLOTYF/
/COEFFS/
/ANGLES/

FLTFTSsFPTSIZEsFPTANGyIFTTYP
NUMRES y MATRIX y NELEMS

NIOFOLY (40) sy NFOLY yMFOLY y IFYCNT
LOGF(13)yLINF(11)

XORGE s YORGEy XORGF » YORGP y XORGNy YORGN
ISCANy IFBMy IMEMy IFBFy IFDR
ARRHIUM(40) y NORNUMy ARRDIIEN (60) y NORDEN
PIyPI2

/CIL/ IPENXyIFENYsIFSyIFCyIFCNsFACRY
1XMySIZESySIZENYSIZELyTICK»STEF » XSFAC

2IPNABy ITAPEyIByIBCy IRYTEy IBASE y IMMET

/CILUNT/
/SCALES/

1FLTSIZy IPLANE

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/FERFHS/
/PARAMS/
/FRAXIS/
/FQAXEBM/
/FQAXEF/

IPLUNT
XORGyYORGYSIZE »SCALEXySCALEYy

PERFH(2) yNOTFER(2)
FAROLID(&) y FARNEW(6)
FQMINs FAMAXyFQINC
FOQMINEyFQMAXEsFQINCE
FQMINFPyFQMAXFyFQINCP

/MEGAX/ AMPFMIN AMFMAXyAMFINCy IBPLOT

/FHASAX/
/NYQUAX/
/TITLES/

FHAMIN y FHAMAX yPHAINCyIFFLOT
REMAXyRIMAXyRINCXyRINCYy INFLOT
ITITOC(Z2)yNTITDYITITG(72) yNTITGYyMTITLE

EQUIVALENCE (FARNEW(1) s TSAMF)
EXTERNAL ZPOLY»SFOLY yMAGPLTyFHAFLTsNYQFLT



1000
2000

1010
2010

1030

1100
2100

3210

1140
2140

2145

1150
2150

1120
2120

DATA ZERO /0.0/
DATA YES»NO /1HY»1HN/

DATA NENDs IZEROyMAXORDsMAXFLY /910960+60/

MPOLY=60
FI=4,0kATAN(1.,0)
PI2=2,0%FI
FLTPTS=.FALSE.,
FTSIZE=0.2
FTANG=0.0
IPTTYP=-6

WRITE(3,2000)
FORMAT(’ FREQUENCY RESFONSE CALCULATION FROGRAM’/)

WRITE(3y2010)

FORMAT(’ L/F AND PLOTTER REQUIRED? (Y/N)!‘/)
READNC(2y2020) IFERPH

FORMAT(2A1)

DO 1030 I=1,2

FERFH(I)=.FALSE.,

NOTFER(I)=.FALSE.

IFCIPERFPH(I) +NE.YES+AND.IFERPH(I) .NE.NO) GO TO 1010
IF(IPERFH(I)+EQ.YES) PERFH(I)=,TRUE,
IF(IPERFH(I) JEQ.NO) NOTFER(I)=.TRUE.
CONTINUE

WRITE(3,2100)

FORMAT(’ Z OR § FLANE (1/2) ’/)
READ(2y3210) IPLANE

FORMAT ()

IF(IPLANE .LT+1.0R.IFLANE.GT.2) GO TO 1100

WRITE(3,2140)

FORMAT(’ HOW MANY TEST FREQUENCIES? :7/)
READNC2y2145) NFOINT

FORMAT ()

IF(NPOINT.LT.1) GO TO 1140

FOINTS=FLOAT (NFOINT-1)

WRITE(3,2150)

FORMAT(‘ LOG OR LIN FREQUENCY SCAN? (1/2) /)
READ(2,3210) ISCAN
IF(ISCANJLT.1.,0R.ISCAN.GT.2) GO TO 1150
WRITE(3,2120)

FORMAT(’ MINIMUM & MAXIMUM FREQUENCY $’/)
READN(2,2125) FAMINyFQMAX



r3
[y
rJ
a

FORMAT ()

IF(FQMAX.LT.0.,0) GO TO 1120
IF(FAMIN.LT.0.,0) GO TO 1120
IF(FAMAX.GE.FQMIN) GO TO 1200

c

C SWOF OVER 3
TEMP=FQMAX
FOMAX=FQMIN
FAQMIN=TEMF

c

1200 IF(NOTFER(2)) GO TO 1300
CALL PLOTS(?7)
IF(NFOINTJLT.0) CALL AXIS(O.y
10,90490490.,204»IARRAY(1) s NARRAY)

c

C NOW GET GRAFH COMMENT
WRITE(3,1210)

1210 FORMAT(’ GIVE GRAPH COMMENT :°/)
NARRAY=72

CALL GETLINC2yIARRAY (1) sNARRAY)
C NOW CONVERT TO AZ-~FORMAT
CALL AL1A2ST(IARRAY (1) yNARRAYITITG(1)yNTITG)

CALL SETUP

C ASK FOR INFUT DEVICE @

1300 WRITE(3,2300)

2300 FORMAT(’ DISC-FILE OR KEYEBOARD INPUT (1/2) :7/)
READ(2,3210) IDEV
IF(IDEV.LT+1.0R.IDEV.GT.2) GO TO 1300

1310 WRITE(3,2310)

2310 FORMAT(’ HOW MANY FOLYNOMIALS? (<=60) 1’/)
READ(2y3210) NFOLY
IF(NPOLY.LT.1.0R.NFOLY.GT.MAXFLY) GO TO 1310

c
GO TO (1320,1330)yIDEV

c

C READ TITLE & HEADING FROM DISK FILE

1320 CALL DISTRT
GO TO 1400

C

1330 IF(IPLANE.NE.1) GO TO 1400
WRITE(3y2330)

2330 FORMAT(’ GIVE SAMFLING FERIOD $‘/)
READ(2,3210) TSAMF

c

C START FOLNOMIAL ANALYSIS LOOF

1400 DO 3400 IFOLY=1sNFOLY

C DISC-FILE INPUT
IFCIDEV.EQ.1) CALL DISCIN(NORNUM ARRNUMC(1)y

1 NORDENyARRIENC1) yNDFOLYC(IFOLY))



- KEYROARD INFUT
IF(IDEV.EQ.2) CALL KEYRIN(NORNUMsARRNUM(1),
INORDENy ARRDENC(1) ¢3)

—
3

c
C
C CALCULATE FREQUENCY INCREMENTS
1600 GO TO (1610+1620)yISCAN
1610 FQINC=EXP(ALOG(FAMAX/FAQMIN)/FOINTS)
GO TO 1630
1620 FQINC=(FAMAX-FQMIN)/FOINTS
c :
C NOW FIND FREQUENCY RESPONSE
1630 GO TO (1640s1650) 2 IPLANE
C Z-FLANE
1640 CALL FQRESP(ZFOLYsNFOINT)
GO TO 1660
C S-FLANE
1650 CALL FQRESP(SPOLYsyNFOINT)
c
C REWIND TEMPORARY DISK FILES
1660 CALL LOADZE
REWIND é
CALL LOADFF
c
C INITIALISE OUTPUT DEVICES @
c
C LINE PRINTER ¢
1700 IF(NOTFER(1)) GO TO 1800
CALL LPFST(IDEV)
CALL LPFOUT
C REWINDN DISK FILE ¢
CaALL LOADZE
REWIND 6
C CALL LOADFP
C GRAPH PLOTTER OUTPUT
éBOO IF(NOTPER(2)) GO TO 1900

C BODE MAGNITUDE FLOT
IF(IRFPLOT.EQ.NO) GO TO 1830
CALL GRAFLT(MAGPLT»XORGEYORGE)
c
C NOW REWIND THE TEMPORARY DISK FILE
CALL LOADZE
REWIND &
CALL LOADFF

C BODE PHASE FLOT

1830 IF(IPFLOT.EQ.NO) GO TO 18640
CALL GRAPLT(FHAFLTyXORGF»YORGF)

c



C REWIND TEMFORARY DISK FILE
CALL LOADZE &
REWIND &
CAaLL LOADFF
c
C NYQUIST FLOT
1860 IF(INPLOT.EQ.NO) GO TO 1900
CALL GRAFLT(NYQFLT»XORGNsYORGN)
c
C REWIND TEMFORARY DISK FILE
CALL LOADZE
REWIND &
CALL LOADFP
c
1900 GO TO (34005,1990),IDEV
c
C REWIND DATA FILE
1990 IF(IDEV.NC.1) GO TO 3400
CALL LOADZE
REWIND 5
CALL LOADFF
c
c
3400 CONTINUE
c
C FINISH DRAWING GRAPHS
IF(FERFH(2)) CALL FLOT(ZEROs=100.0,9299)
C
1995 UWRITE(3,2990)
2990 FORMAT(’ RE-RUNy RESTARTy CHANGE FERIFHERALS’»
1/ OR END (1+2+3+4)'/)
READ(2¢2995) IEND
2995 FORMAT()
IFCIENDWLT+1.0R+IEND.GT+4) GO TO 1995
GO TO (1300+101051010+1999)yIEND

c

1999 CONTINUE
STOF

c

END



c
c

ooooooooooaooooaond

FROGRAM IZT1
FINIDS INVERSE Z-~-TRANSFORM FROM Z-FLANE TO DISCRETE

TIME DONHC TN, =

FERIFHERALS USED
2=ASR READ

3=ASR WRITE

A=L/F

5=INFUT DISK FILE
é=GRAFH FLOTTER

SEGMENTS USED
7 - TEKRLIR
10 POLYLIR
15 FZPLIB
16 FOLENT
17 IZTLIR

INTEGER YESsNO

DIMENSION IMPTIT(8)sINVTIT(9)s IARRAY(72)

DIMENSION IPERPH(2)

DIMENSION ARRNUM(60) yARRIEN(460)

LOGICAL FERFHyNOTPERAXDRAWyDRAW

COMMON /PRINTS/ FRINTC(10)yIPRINTyMFRINT

COMMON /FLTST/ AXDRAW,IRAW

COMMON /CIL/ IPENXyIPENYsIFSyIFCyIPCNsFACRY
1XMsSIZESySIZENYSIZEL Yy TICKySTEFP » XSFPAC
2IFNABy ITAFE» IRy IRCy IBYTE s I - IMMET

COMMON /CILUNT/ IPLUNT

COMMON /FERFPHS/ FPERFH(2)yNOTPER(2)

COMMON /TIMORG/ XORGTs»YORGTySIZEXySIZEYySCALEXySCALEY )y
IXINCy YINCy» XMAXT » YMAXT

COMMON /FOLYNS/ NLDFOLY(60) s NFOLYsMFPOLY s IFYCNT

COMMON /PARAMS/ FAROLD(&) yFPARNEW(6)

COMMON /TITLES/ ITITD(Z2)yNTITDsITITG(72)yNTITGyMTITLE
COMMON /MATELM/ NUMRESYMATRIXyNELEMS

DATA IMPTIT /72HIMy 2HFUy 2HLSy 2HE y2HRE » 2HSF vy 2HON s 2HSE/
DATA INVTIT /2HINy2HVE»2HRSs2HE s2HTRy

12HAN » 2HSF » 2HOR »y 2HM 7/

DATA IMFNUMy INUNUM /8,97

DATA YESsyNO»MAXFTS S1HY» 111, 1000/

DATA GAF /2.0/

SET UP FRINT BUFFER
IFRINT=0
MFRINT=10

OUTFUT TITLE

1000 WRITE(3,2000)



2000 FORMAT(’ INVERSE Z-TRANSFORM FROGRAM’/)

1010 WRITE(3,2010)
2010 FORMAT(’ L/F & PLOTTER REQUIRED? (Y/N) /)
READ(2y2020) IFERFH
2020 FORMAT(2A1)
D0 3010 I=1,+2
FERFPH(I)=.FALSE.
NOTPERCI)=.FALSE.
IFC(IPERPH(I) JNE.YES.ANDWIFERFHC(I) WNE.NO) GO TO 1010
IFCIPERFH(I) .EQ.YES) FERFPH(I)=.TRUE.
IFC(IPERFH(I).EQ.NO) NOTFER(I)=.TRUE.
3010 CONTINUE
IF(NOTPERC(1) JANDI.NOTFER(2)) GO TO 1010
C
1200 WRITE(3y2200) .
2200 FORMAT(’ DISC-FILE OR KREYROARD INFUT? (1/2) 17/)
READC(2y2210) IDEV
2210 FORMAT()
IF(IDEV.LT.1.0R.IDEV.GT.2) GO TO 1200
c
C ASSIGN GRAPH PLOTTER TO DEVICE 6
IF(FERPH(2)) CALL PLOTS(64)

1210 WRITE(3,2220) _
2220 FORMAT(’ HOW MANY FOLYNOMIALS? (<=60) $7/)
READ(2,2210) NFPOLY
IF(NPOLY.LT+1.0R.NPOLY.GT.40) GO TO 1210
C

C ASCERTAIN HOW MANY POINTS TO FIND
1300 WRITE(3y2300)
2300 FORMAT(’ HOW MANY INVERSE & IMFULSE’»
1/ ITERATIONS? (>=0) !’/)
READNC2,2210) INVCNT )y IMPCNT
IFC(INVCNTWLE.O.OR.IMFCNT.LE.O0) GO TO 1300
1320 IF(NOTFER(2)) GO TO 1350
c
WRITE(3y2320)
2320 FORMAT(’ GIVE MAXIMUM INVERSE &’y
1/ IMPULSE AMFLITULDES :‘/)
READC(2y2710) AMFPINVAMPIMF
IF(AMPINV.LE.O0.0.OR.AMPIMP.LE.0.0) GO TO 1320
1330 WRITE(3,2330)
2330 FORMAT(’ GIVE SCALES OF AXES :1‘/)
READ(2,2210) SCALEXySCALEY
c
C SET UFP VARIABLES
1350 CALL SETIZT
c
C NOW GET COMMENT FOR GRAPH
IF(NOTFERC(2)) GO TO 1400
NARRAY=72



WRITE(3y2350)
2350 FORMAT(’ GIVE GRAFH COMMENT :7/)
CALL GETLIN(2,IARRAY(1)sNARRAY)
C NOW CONVERT ‘IARRAY’ TO A2-FORMAT
CALL AlA2ST(IARRAY(1)syNARRAYsITITG(1)sNTITG)
c
1400 IF(NOTRER(2)) GO TO 1410
CALL TIMPLTC(10.0ySIZEYXSCALEYsFLOATC(INVCNT) »
1AMPINV INVTIT (1) y INUNUM)
c
C NOW ANNOTATE GRAFH
CALL ANNOTE
c
C CALCULATE AXIS SIZES IN MILLIMETRES
INVPTS=IFIX(10.,0%SIZEX¥SCALEX)
IMPPTS=INVFTS
c
C BRANCH IF DISK FILE OR KEYROARD ENTRY
1410 GO TO (1415,1490)IDEV
c
C DISK FILE
C NOW READ HEADER OFF FILE
1415 CALL DISTRY
c
C NOW START CALCULATING LOOP
DO 3400 IFOLY=1yNFOLY
c
C READI DISK RECORD
CALL DISCIN(NORNUMs ARRNUM(1) y NORDENS»
1ARRDENC1) s NDPOLY(IFOLY))
c
C NOW CALCULATE THE INVERSE TRANSFORM
CALL ZTRINV(NORNUMy ARRNUM(1) yNORDENyARRDENC1)»
1INVFPTSy INVCNT)
c
3400 CONTINUE
c .
c
C NOW REWIND THE FILE
REWIND S
"C\———--v., W = —
C NOW RE-READ THE FILE HEADER
CALL DISTRT
c
C NOW DRAW NEW AXES
IF(NOTPER(2)) GO TO 1420
CALL TIMPLT(10.0+2.0%SIZEYXSCALEY+GAFyFLOAT CIMIUNT ¢ -
1AMPIMPy IMPFTIT(1) » IMPNUM)
c
C & RESTART LOOP
1420 10 3410 IFOLY=1,NPOLY



c

C READ DIIISK RECORD
CALL DISCIN(NORNUMy ARRNUMCL1) yNORDENs ARRDENC(1)»
INDFOLY(IFOLY))

C

C NOW CALCULATE THE IMFULSE RESPONSE
CALL ZTRIMF (NORNUMs ARRNUM(1) »NORDENsARRIENC(1)y

1IMFPTSy IMPCNT)
c
3410 CONTINUE
c
GO TO 1800
c

C KEYBOARD ENTRY

1490 IF(NOTPER(2)) GO TO 1494
CALL TIMPLT(10. 07h.O*SIZEY*SCALEY+GAFvFLUAT(IMPCNT)1
1AMPIMPy IMPTIT (1) » IMI'NUM)

c

C START CALCULATING LOOP

1495 DO 3500 IPOLY=1yNPOLY

c
C SET TO INVERSE TRANSFORM FLOT

CALL SETFLT(10.0sSIZEYXSCALEYsF LU aTCINVONT) » AMFINV)
c

C READ KEYEROARD RECORD
CALL KEYRIN(NORNUMyARRNUM(1) yNORDENsyARRIEN(1)+3)

C NOW CALCULATE THE INVERSE TRANSFORM
CALL ZTRINV(NORNUMs ARRNUM(1) yNORDENyARRDEN(1)y
IINVFTS » INVCNT)

C NOW SET TO THE IMPULSE RESFONSE GRAFH ,
CALL SETPLT(10.0+2.0%XSIZEYXSCALEY+GAPsFLOAT(IMFPCNT) »
1AMFIMP)

C NOW CALCULATE THE IMFULSE RESFONSE
CALL ZTRIMP (NORNUM»ARRNUM(1) yNORDENyARRDENC1 )«

1IMFPTSy IMPCNT)
C ,
3500 CONTINUE
c

1800 IF(PERFH(2)) CALL FLOT(XORGTyYORGT»-999) o

1900 WRITE(3,2900)

2900 FORMAT(’ RESTART» REFEAT OR END (1,2 OR 3) !’/)
READ(2,2210) IEND
IF(IEND.LT.1.0R.IEND.GT.3) GO TO 1900
GO TO (1010,130051999)»IEND

1999 STOP
END



C TEKLIB
SEGMENT 7
REPEAT INTRINSICS

SUBROUTINE AR2ALSTULISTLIyNUMINSLIST2y NUMOUT)
C CONVERTS LIST1 (A2-FORMAT) TO LIST2 (AL-FORMAT)
C

DIMENSION LIST1<(1)yLIST2(1)

DATA IRYTE 7256/

NUMOUT=0

[0 10 I=1yNUMIN
NUMOUT=NUMOUT+1
M=LIST1(I)

CALL MASK(My»-2564)
LIST2(NUMOUT)=M+160

NUMOUT=NUMOUT+1

M=LIST1(I)

CALL MASK(M»2355)

M=MXIRYTE

CALL MASK(My—256)

LIST2(NUMOUT)=M+160
10 CONTINUE

RETURN

ENID



SURROUTINE ALAZ2STC(LIST1yNUMINYLISTZ2yNUMOUT)
C CONVERTS LIST1 (A1-FORMAT) TO LIST2 (A2-FORMAT)
C

DIMENSION LIST1(1),LIST2(1)

DATA IBYTE» ISFPACE /256y32/

NUMOUT=0
I=0

10 I=I+1
NUMOUT=NUMOUT+1
M=LIST1(I)
CALL MASK(M»-256)
LIST2(NUMOUT) =M
IF(I.GE.NUMIN) GO TO 30
I=I+1 .
M=LIST1(I)
CALL MASK(M»32512)
M=M/IRYTE
CALL MASK(M»233)
LIST2(NUMOUT)=LIST2(NUMOUT) +M
IF(I.GE.NUMIN) GO TO 20
GO TO 10

20 RETURN

C NOW TEST FOR NUMIN ODD
30 IF(2% (NUMIN/2) sNEJNUMIN) LIST2(NUMOUT)=LIST2(NUMOUT)+ISFACE

RETURN
ENID



C PLOTLIE
SEGMENT 8
REFEAT INTRINSICS
SUBROUTINE FLANE(X»Y»IFLANE)
C FLOTS CARTESIAN COORDINATES ON THE GRAFH FLOTTER WITH THE
C ORIGIN AT (XORG»YORG).
c
INTEGER SFLANEsZFLANE
REAL NINETY
DIMENSION SPLANE(4) s ZFLANE(12) yIMAGIN(S) » IARRAY (36)
DIMENSION IGRAFH(3)
COMMON /FLTINC/ XYINCyXYMAX
COMMON /TITLES/ ITITDC(Z72)yNTITDyITITG(72) yNTITGYyMTITLE
COMMON /SCALES/ XORGyYORGyXYSIZEs»XYSCALPTSIZE

DATA IGRAPH /2HGRyZ2HAFy2HH /

DATA SPLANE /2HS~-y2HFPLy2HANY2HE /

DATA ZFLANE /2HZ-y2HFLy2HANy2HE »y2HANY
12HD y2HUNy2HITy 2H~Cy2HIR»2HCL vy 2HE /
DATA NINETYsCHSIZE /90.0+0.4/

DATA ZEROs»ROUNDyONEFT1 /0.0+360.0s1.1/
DATA IMAGIN /2HIMy2HAGY2HINy2HAR2HY /

XYMAX=1.0
XORG=X
YORG=Y
DRAW AXES
INITIALISE PEN FOSITION
CALL PLOT(XORGyYORGys~-3)

o0 oo

NOW DRAW THE AXES
SIZE=XYSIZEXXYSCAL
XYINC=XYMAX/SIZE
SHIFT=AINT(ONEPT1XSIZE)

DRAW POSITIVE X-AXIS
CALL AXIS(ZEROsZEROsSHIFT»ZEROsZEROsXYINCy ‘REAL’v4)

oo a0

DRAW NEGATIVE X-AXIS
CALL AXIS(~-SHIFT»ZEROySHIFTyZEROy
1-SHIFTXXYINCsXYINCs1H +1)

ao

DRAW FOSITIVE Y-AXIS
CALL AXIS(ZERU!ZERUISHIFTrNINFTYrZERO!XYINC!
1IMAGIN(1)»-10)

C DRAW NEGATIVE Y-AXIS
CALL AXIS(ZEROy-=SHIFTsSHIFTsNINETYy
1-SHIFTXXYINCyXYINCy1H »-1)



C NOwW

an ao

NOW

NOW

a0 o0

NOW

DRAW UNIT CIRCLE IF REQUIRED
IF(IFLANE.EQ+1) CALL CIRCLECZERQOyZEROY
1SIZE y ROUND)

CONVERT THE TITLE ARRAY FROM Al TO A2 FORMAT.

CALL A1A28T(ITITG(1)sNTITGy IARRAY (1) yNCHARS)

ADD THE GRAFH TITLE
YPOSN=SHIFT+2.0 .
CALL SYMBOL(-SHIFTy-YFOSNsCHSIZE»IARRAY(1)syZEROYNTITG)

ADDl ‘GRAFH’
CALL SYMBOL(2.0y-YFOSN-2.0+sCHSIZE y IGRAFH(1) yZEROY &)

ADD THE GRAFH NAME

GO TO (10+20) s IFLANE

CALL SYMBOL(-4.0yYPOSNyCHSIZEsZFLANE(1)yZEROy24)
GO TO 30

CALL SYMBOL (ZEROsYFOSNyCHSIZE ySFLANE(1)yZEROy8)

RESET THE FEN TO THE ORIGIN
CALL PLOT(ZEROs»ZERQO»3)

RETURN
END



SUBROUTINE CIRCLE(XCENTs»YCENTyRALIUS,»STEFS)
C DRAWS CIRCLE ON GRAFH FLOTTER WITH CENTRE (XCENTsYCENT).
c
STEF=8.,0%¥ATAN(1.0)/STEFS
c
CALL PLOT(XCENT+RADIUSyYCENT»3)
c
ISTEP=IFIX(STEFS+0.5)
DO 100 I=0yISTEF
X=XCENT+RADIUSXCOS(STEFXFLOAT(I))
Y=YCENT+RADIUSXSIN(STEFXFLOAT(I))
CALL FLOT(X»Y»2)
100 CONTINUE

RETURN
END



SURROUTINE FOLE(NORLDER,»ROOTS)
C FLOTS A CROSS AT THE FOLE FOSITIONS.
c
COMFLEX ROOTS
DIMENSION ROOTS(1)
COMMON /FPLTINC/ XYINCyXYMAX
COMMON /SCALES/ XORG»YORGyXYSIZEsXYSCALYFTSI1ZE
DATA ROOTZ2 /1.4142316/

o 10 I=1,NORDER
X=REAL(ROOTS(I))/XYINC
Y=AIMAG(ROOTS(I))/XYINC
S=FTSIZE/ROOT2

CALL PLOT(X-SyY-5y3)

CALL FLOT(X+SyY+5,2)

CALL PLOT(X+8sY-5,3)

CALL FPLOT(X-SyY+S5,2)
10 CONTINUE

RETURN
END



SUEBROUTINE ZERO(NORDER»ROOTS)
C PLOTS A CIRCLE AT THE ZERO FOSITIONS.
c

COMFLEX ROOTS

ODIMENSION ROOTS(1)

COMMON /PLTINC/ XYINC»sXYMAX

COMMON /SCALES/ XORGyYORGyXYSIZE»XYSCALPTSIZE

o 10 I=1yNORLER
X=REAL (ROOTS(I))/XYINC
Y=AIMAG(ROOTS(I))/XYINC

- CALL CIRCLE(XsYyPTSIZE»18.0)

CONTINUE

RETURN
END



C ROOTLIE
SEGMENT 9
REFEAT INTRINSICS
SUBROUTINE RTFIND(NORDER»ARRAYyGRAFHsITYFE)
C ANALYSES POLYNOMIAL WHOSE COEFFICIENTS ARE STORED IN ARRAY

LLOGICAL FERFH»NOTFER

COMPLEX ROOTSsCHECK

ODIMENSION AhRAY(1)1R00T9(4);CHFCh(4)
COMMON /PERFHS/ FPERFH(S) yNOTFER(S)

C DIVINE THROUGH RY LEADING COEFFICIENT ¢
NUMELS=NORDER+1
CFLEAD=ARRAY (NUMELS)
N0 10 I=1,yNUMELS
ARRAY (I )=ARRAY(I)/CFLEAD

éO CONTINUE

C SWITCH ACCORDING TO POLYNOMIAL ORDER @
IF(NORDER.LT+1.0R.NORDER.GT+4) RETURN
GO TO (1105120,130y140) yNORDER

c

C FIRST ORDER ¢

110 CALL RT1ST(ARRAY(1)RO0TS(1))
GO TO 200

c

C SECOND ORDER ¢

120 CALL RT2ND(ARRAY(1)sRO0TS(1))
GO TO 200

c

C THIRD ORDER

130 CALL RT3RD(ARRAY(1)yROOTS(1))

B GO TO 200

C FOURTH ORDER
é40 CALLL RTATH(ARRAY (1) yROOTS(1))

C CHECK RESULT
300 CALL POLYCX(NORDERyARRAY(1)syROOTS(1)yCHECK(1))

C NOW OUTFUT TO PERIPHERALS
IF(FERPH(2)) CALL ASROUT(NDRDFR!RDOTS(l)vCHECh(l))

IF(PERPH(S)) CALL DISCOP(NORDERsROOTS(1))

IF(FERFPH(1)) CALL LPROOT(NORDERyROOTS(1)»
1ARRAY (1) »ITYFE)

IF(PERPH(3)) CALL LISTLP(NORDERsyROOTS(1)y
1CHECK (1) yARRAY (1))



IF(FERFH(4)) CALL GRAFH(NORDERsROOTS(1))

RETURN
END



SUBROUTINE RT1ST(ARRAY»ROOT)
C TRIVIAL ROUTINE TO FIND ROOT OF FIRST ORDER FOLYNOMIAL
c

COMFLEX ROOT

DIMENSION ARRAY (1)

ROOT=CMFLX(-1.,0%XARRAY(1)/ARRAY(2)+0.0)
RETURN
END



s ST RTINS

C FIND

SUBROUTINE RT2ND(ARRAYsROOTS)
S ROOTS OF SECOND ORDER FOLYNOMIAL
COMFLEX ROOTS o o o

_ DIMENSION ARRAY(1),RO0TS(1) SIS YCCNE

IF(ARRAY(3).EQ.0,0) GO TO 30

TEMP1=ARRAY (2)XARRAY (2)-4,0XARRAY (3)XARRAY (1)
TEMF2=SQRT(ABS(TEMF1))%X0,.5/ARRAY (3)
TEMP3=~0.,5%ARRAY (2) /ARRAY (3)

IF(TEMP1) 20,10+10
ROOTS(1)=CMPLX(TEMP3+TEMFP2+0.0)
ROOTS(2)=CMPLX(TEMF3-TEMF2+0.0)

RETURN

ROOTS(1)=CHMPLX(TEMF3»TEMF2)
ROOTS (2)=CMPLX(TEMP3»~-1.,0XTEMFP2)

RETURN

ROOTS(1)=CMPLX(~ARRAY(1)/ARRAY(2)+0.0)
ROOTS(2)=(0.0+0.0)

RETURN

END



SUEROUTINE RT3RD(ARRAYyROOTS)
C FINDS ROOTS OF THIRDN ORDER FOLYNOMIALS
C
COMFLEX ROOTS
DNIMENSION ARRAY(1)yCURCFS(4)yRO0TS(3)y
IDIVIDE(2) yQUOTNT (3)
c
C MAKE COPY OF ARRAY
, D0 10 I=1,4
CUBCFS(I)=ARRAY(I)
10 CONTINUE
c
C FIND SINGLE REAL ROOT ¢
CALL RTHUNT(CUBCFS(1)sROOT)
DIVIDE(2)=1.0
DIVIDE(1)=-R0O0OT
C DIVIDE THROUGH BY THIS ROOT ¢

-CALL POLDIV(3yCUBCFS(1)s1,DIVIDE(L) yNORGNTsQUOTNT (1))
C NOW FIND ROOTS OF RESULTING SECOND ORDER POLYNOMIAL

CALL RT2ND(QUOTNT(1)»RO0TS(1))
ROOTS(3)=CMPLX(ROOT»0.0)
RETURN

END



60

70

80

?0
100

DFOUR=0.25%RROOTXEROOT~-ARRAY (1)
IF(DFOUR) 6057070

DFOUR=0.0

GO TO 80

DFOUR=SQRT(ABS(L'FOUR))

IF(DFOUR) 90,80,90
CFOUR=AFOURXAFOUR~ARRAY (3)+RROOT
CFOUR=SQRT(ABS(CFOUR))

GO TO 100
CFOUR=(AFOURXBFOUR-ARRAY (2)%0.5) /DFOUR

G(3)=1.,0
G(2)=AFOUR+CFOUR
G(1)=RFOUR+DFOUR

CALL RT2ND(G(1)sRO0TS(1))

G(2)=AFOUR-CFOUR
G(1)=RBFOUR-DFOUR
CALL RT2ND(G(1)yROO0TS(3))

RETURN
END



SUBROUTINE RTHUNT(CURCFSyROOT)

C FINDS SINGLE REAL ROJT OF THIRD ORDER FOLYNOMIAL

c

14

DIMENSION CUBCFS(i)»" = e

DATA SIZEXFsERROR /1E-8s1E-20/
IF(CUBCFS(4)) 5+16+5

DO 10 I=1+4

CUBCFS (I1)=CUBCFS(I)/CUBCFS(4)
IF(CURCFS(1).NE.0.,0) GO TO 11
ROOT=0,0

RETURN

SCALE=0,0
CFSIGN=SIGN(1.0yCUECFS(1))
VALUE=ARS (CUBCFS (1) +CUBCFS(3))
FOWER=SIZEXP

FOWER=10,0%POWER

IF (VALUE .GE .FOWER) GO TO 12
ORDER=FOWER |
ORDER=0RDER/10,0
CFSIGN=-1,0XCFSIGN
VALUE=SCALE+CFSIGNXORDER

IF(VALUE.EQ.SCALE) GO TO 15
SIZE=( (VALUE+CURBRCFS(3))XVALUE+CUBCFS(2))XVALUE+

1CUBCFS(1)

IF (ARS(SIZE).LT.ERROR) GO TO 15
SCALE=VALUE

IF (CFSIGNXSIZE.GE.0.0) GO TO 13
GO TO 14

ROOT=VALUE

RETURN
ROOT=0.0
RETURN
ENI



c

SUBROUTINE RTA4TH(ARRAYyROOTS)
C SUBROUTINE TO FIND ROOTS OF A FOURTH ORDER FOLYNOMIAL

wveOMPLEX—ROOTS;QUOTRT;XROOT;YROOT
DIMENSION ARRAY(1)sRELARY(4)sFACTOR(2)yQUOTNT(2)
1 G(3)yROOTS(1)»QUOTRT(2)yXROOT(2)yYROOT(3)

oo

FIND COEFFS. OF RELATED 3RD ORDER FOLYN. -
RELARY (4)=1.0 .
RELARY (3)=-ARRAY (3)

RELARY (2)=ARRAY(4)XARRAY(2)-4,0XARRAY (1)
RELARY (1)=ARRAY(1)X(4,0%XARRAY (3)-ARRAY (4)%%2)
1-ARRAY (2) %%2 .
ROOT=0.,0

IF(RELARY (1)) 10+20+10

c

C FIND ROOTS OF RELATED POLYNOMIAL

10 CALL RTHUNT(RELARY(1)yROOT)

c
FACTOR(2)=1.0
FACTOR(1)=~RO0OT
YROOT(1)=CMPLX(R0OOT»0.0)
c

C DIVIDE THROUGH TO REMOVE FACTOR
. CALL POLDRIV(3yRELARY(1)s1sFACTOR(1) yNORQGNTyQUOTNT(1))
C & FIND ROOTS
CALL RT2ND(QUOTNT(1)QUOTRT(1))
c
GO TO 30
c
C CONSTANT COEFFICIENT = 0. HENCE REDUCE FOLYNOMIAL
C TO SECOND ORDER. \
20 YROOT(1)=(0.0+0.0)
DO 3000 I=1,3
RELARY (I)=RELARY(I+1)
8000 CONTINUE
. CALLL RT2ND(RELARY(1)yQUOTRT(1))
30 IFC(AIMAG(QUOTRT(1)).EQ.0.0.AND.
1AIMAG(QUOTRT(2)).EQR.0.0) GO TO 40
BROOT=ROOT
GO TO SO
c
C FIND THE LARGEST REAL ROOT:-
:0 BROOT=AMAX1 (ROOTyREAL (QUOTRT (1)) sREAL(QUOTRT(2)))
<0 AFOUR=0.5XARRAY (4)
BFOUR=EROOTX0.35



?0

100

DIFOUR=0.25%XERRO0OTXEROOT~ARRAY (1)
IF(ODFOUR) 60270270
DFOUR=0.,0

-60-¥0-80—

DFOUR=SQRT(ABS(LFOUR))

IF(DFOUR) ?20+,80,90
CFOUR=AFOURXAFOUR~ARRAY (3) +EROOT
CFOUR=SQRT(ABS(CFOUR))

GO TO 100

CFOUR=(AFOURXBFOUR~-ARRAY (2)%0.5)/DFOUR

G(3)=1.0
G(2)=AFOUR+CFOUR
G(1)=BFOUR+DFOUR

CALL RT2ND(G(1)yROOTS(1))

G(2)=AFOQUR~CFOUR
G(1)=BFOUR-DFOUR
CALL RT2ND(G(1)yROOTS(3))

RETURN
END



ISt e, i

C FOLYLIE
SEGMENT 10
REFEAT INTRINSICS
SUEROUTINE FOLMLT(NA»COEFFAsNEyCOEFFR)

C MULTIFLIES 2 FOLYNOMIALS TOGETHER.
C COEFFA & COEFFER ARE THE INFUT FOLYNOMIAL
C COEFFICIENT ARRAYS.
€ COEFFA ALSO RETURNS THE FROIUCT ARRAY. THUS COEFFA WILL RE-
C SUFERCEIDEL.
c
C NA & NB ARE THE FOLYNOMIAL ORDERS
e
c
DIMENSION COEFFA(1)yCOEFFEB(1)yCOEFFC(256)
c
C CALCULATE OUTFUT ARRAY ORDER
NC=NA+NE
NFOLYA=NA+1
NPOLYEB=NE+1
NFOLYC=NC+1
c

C CLEAR OUTPUT ARRAY
00 3000 I=1syNFOLYC
COEFFC(I)=0.0

3000 CONTINUE

c

C NOW MULTIPLY ARRAYS
o 3010 IA=1yNFOLYA
IREVA=NFOLYA~-IA+1
D0 3020 IE=1yNPOLYR
IREVB=NFOLYE-IE+1
IREVC=IREVA+IREVE~1
COEFFCC(IREVC)=COEFFA(IREVA)XCOEFFR(IREVE)+
1COEFFC (IREVC)

3020 CONTINUE

3010 CONTINUE

c

C COPY COEFFC INTO COEFFA
D0 3100 IC=1sNFOLYC
COEFFACIC)=COEFFCC(IC)

3100 CONTINUE
NA=NC

c
RETURN
END



SUBROUTINE FOLDIV(NORNUM» ARRNUMy NORDEN s ARROEN
INORQGNT » ARRQNT)
C DIVIDES ‘ARRNUM’ BY ‘ARRDEN’
C NOTE - ARRAY ‘ARRNUM’ WILL EBE DESTROYED IN THIS ROUTINE
c
ODIMENSION ARRNUM(1)yARRIEN(1) sARRANT (1)
C
NORQNT=NORNUM-NORDEN
IF(NORGNT) 200510510
10 N=NORGQNT+1

no 20 I=1sN

J=N+1-1

ARRANT (J)=QUOTNT (NORNUM» ARRNUMy NORDEN y ARRDEN)
20 CONTINUE

200 RETURN
END



oo oo o000 OO0

REAL FUNCTION REFDOIV(NORNUMyARRNUMy NORLEN»ARRIEN)
FERFORMS REFEATED DIVISION USING ‘QUOTNT’

LNIMENSION ARRNUM(1)»ARRIENC(1)

THE NUMBER OF NUMERATOR COEFFICIENTS MUST ERE
KEFT CONSTANTy HENCE THE NUMERATOR FOLYNOMIAL
MUST BE SHIFTED UF ONE ELEMENTC AFTER EACH
ITERATION & THE ORDER INCREMENTED.

FIRST FINU THE QUOTIENT @
RESUL.T=QUOTNT (NORNUM» ARRNUM (1) y NORDENs ARRDEN(1))

NEXT INCREMENT THE NUMERATOR ORIDER
NORNUM=NORNUM+1

NOW SHIFT THE ARRAY
D0 10 I=1yNORNUM
J=NORNUM+1-1
ARRNUMCJ+1)=ARRNUM(J)
CONTINUE

ARRNUM(1)=0.0
REFDIV=RESULT
RETURN

END



c
c

c

REAL FUNCTION QUOTNT(NORNUMy ARRNUMy NORDENy ARRDEN)

FERFORMS ONE ITERATION IN FOLYNOMIAL DIVISION
ARRNUM IS RETURNED AS THE QUOTIENT FOLYNOMIAL.

DIMENSION ARRNUMC(1)sARRIENC(L)

NCFNUM=NORNUM+1
NCFDEN=NORDEN+1

C FIRST CALCULATE QUOTIENT

c
c

10

RESULT=ARRNUM (NCFNUM) /ARRDEN (NCFIIEN)
NORNUM=NORNUM~-1
IF (NORNUM+LT.0) NORNUM=0

NOW SUBTRACT RESULTX(DENOMINATOR FOLYNOMIAL) FROM
NUMERATOR FOLYNOMIAL

N=NCFNUM

IF(NCFNUMJ.LE+NCFDEN) N=NCFDEN

D0 10 I=2yN

ICFNUM=NCFNUM+1-1

ICFDEN=NCFDEN+1-1I

J=N+1-1I

VALUEN=0.,0

IF(ICFNUM.GT.0) VALUEN=ARRNUM(ICFNUM)
VALUEDI=0,0

IFC(ICFDEN.GT.0) VALUED=ARRIEN(ICFIDEN)
ARRNUM (J) =VALUEN~RESUL TXVALUED
CONTINUE

ARRNUM(N)=0.0

QUOTNT=RESULT
RETURN
END



SUBROUTINE FOLDIF(NORDERsARRAY)
C DIFFERENTIATES FOLYNOMIAL ARRAY.
c |

DIMENSION ARRAY (1)
c

IF(NORDER) 30+30s10

10 no 20 I=1yNORLER
ARRAY (I)=ARRAY(I+1)XFLOAT(I)
20 CONTINUE

30 NORDER=NORDER~1
IF(NORIER.LT+0) NORDER=0
RETURN
END



SUBRROUTINE FOLYCX(NORDERy»COEFFSsROQTSsCHECK)

C EVALUATES FOLYNOMIAL FROM COEFFS & ROOTS AND RETURNS
C CHECK CONTAINING THE RESULTS.

c

C NORDER - FOLYNOMIAL ORIDER

c

20

10

COMPLEX ROOTyROOTSyCHECK
DIMENSION COEFFS(1)yROOTS(1)yCHECK(1)

NUMELS=NORDER+1

[0 10 I=1yNORDER

ROOT=RO0OTS(I)

RMAG=CABS(ROOT)

THETA=ARCTAN(AIMAG(ROOT) yREAL(ROOT))

00 20 J=1sNUMELS

THETA=THETAXFLOAT(J-1)

ROOT=(1.050.,0)

IF(THETAWNE.0.0) ROOT=CEXP(CMPLX(0.0yTHETA))
R=RMAG

IF(R«NE+0.,0) R=R%%(J-1)
CHECK(I)=CHECK(I)+CMFPLX(COEFFS(J)XR»0,0)XR0O0T
CONTINUE

CONTINUE

RETURN

END



REAL FUNCTION ARCTANCYREALyXREAL)
C FINDS ATAN2 OF ARGUMENTSs COVERING SITUATION
C WHEN BOTH.OF THESE ARGUMENTS ARE ZERO,
c

RESULT=0.0

IF(XREAL.NE.,O0.0.,0R.

f““““w'””TYREKL“NE'O_OT”RESULT ﬁTAN“(YREALrXREAL)"W”
— —ARCTAN=RESULT — . . — e

RETURN
END



SUEBROUTINE CHCRRT(NUMRTSyROOTS»ICHECK)
CHECKS COMFLEX ROOTS TO SEE IF THEY
ARE COMFLEX CONJUGATE. ICHECK CARRIES THE ROOT TYFE THUS @
ICHECK(I) 1 CONJUGATE ROOT NOT TO RE FRINTED
ICHECK(I) 2 NORMAL ROOT
ICHECK(I) 3 CONJUGATE ROOT TO ERE FRINTED

aoooooon

COMFLEX ROOTS
DIMENSION ICHECK(1)yROO0TS(1)

00

CLEAR ICHECK
Do 10 I=1,4
ICHECK(I)=2
10 CONTINUE
c
C NOW CHECK THE ROOTS
M2=NUMRTS~1
DO 20 I=1yM2
Ml=I+1
D0 30 J=M1s,NUMRTS
IF(ICHECK(J) «NE.2) GO TO 30
c IF(ROOTS(I)-CONJG(ROOTS(J))) 30540530
C CONJUGATE ROOTS
40 ICHECK(I)=3
ICHECK(J) =1
30 CONTINUE
20 CONTINUE
RETURN
END

———— SUE— e



C FREQLIE
SEGMENT 11
REPEAT INTRINSICS
SUBROUTINE FQRESF(FOLYsNUMFTS)
C CALCULATES FREQUENCY RESFONSE & STORES RESULTS IN DISK
C FILE ON UNIT 4.
c

COMPLEX TSTANGyVALUEN,VALUED
COMMON /FLOTYF/ ISCANsIFEBMyIMEMy IFEFsIFDR
COMMON /COEFFS/ ARRNUM(60) s NORNUMy ARRIODEN(S0) y NORDEN
COMMON /ANGLES/ FIsFIZ .
COMMON /FQAXIS/ FAMINsFAMAXsFQINC
DATA SIGMA /0.0/
DATA IZEROsNEND /0y9/
c
C START FREQUENCY SCAN LOOP
TESTFQ=FQAMIN
100 00 200 IFREQ=1,NUMFTS
TSTANG=CMFLX(0.0yTESTFQXFIZ2)
c
C EVALUATE NUMERATOR POLYNOMIAL ¢
110 CALL FOLY(NORNUMyARRNUM(1)sTSTANGs»VALUEN)
c
C EVALUATE DENOMINATOR FOLLYNOMIAL ¢
120 CALL FOLY(NORDENsARRIDENC(1) s TSTANG,»VALUED)
c
VALUEN=VALUEN/VALUED
c
C DISK STORAGE !
C FIRST WRITE THE STATUS
WRITE(6) IZERO
C THEN THE DATA
5 WRITE(&) VALUENYTESTFQ
GO TO (180,190)yISCAN
180 TESTFQ=TESTFQXFQINC

GO TO 200
190 TESTFQR=TESTFQ+FQINC
C
gOO CONTINUE

C WRITE END STATUS
WRITE(S) NEND
RETURN
END



SUBROUTINE ZFOLY(NORDERyCOEFFSyTESTFQy»ZVALUE)
ZFOLY TAKES TESTFQ & EVALUATES VALUE OF FOLYNOMIAL» ZVALUE

TSAMF - SAMFLE FERIOD (T)
C COEFFS - COEFFICIENTS OF Z-FLANE FOLYNOMIAL

COMPLEX ANGLEsTESTFQsZVALUE
DIMENSION COEFFS(1)

COMMON /FARAMS/ PAROLD(&) »yFARNEW(6)
EQUIVALENCE (FARNEW(1)sTSAMF)

EVALUATE ANGLE 3
ANGLE=CMFLX(TSAMPs0.0)XTESTFQ

INITIALISE ¢
ZVALUE=CMFLX(COEFFS(1)+0.0)

TEST ORDER
IF(NORDIER) 20+,20+10

NOW EVALUATE ZVALUE ¢

0 DO 100 I=1yNORDER
ZVALUE=ZVALUE+CMFLX(COEFFS(I+1)+0.0)%
1 CEXP(ANGLEXCMFLX(FLOAT(I)»0.0))

100 CONTINUE

20 RETURN

END

=00 an oo a0



SUBROUTINE SFOLY(NORDER»COEFFSyTESTFQ»SVALUE)
SFOLY TAKES TESTFQ & EVALUATES SVALUE.
COEFFS - COEFFICIENTS OF S-FLANE FOLYNOMIAL

aooo

COMPLEX TESTFQ»SVALUE
DIMENSION COEFFS(1)

C INITIALISE ¢
SVALUE=CMFLX(COEFFS(1)+0.0)
ANGLE=ARCTAN(AIMAG(TESTFQ) sREAL(TESTFQ))

TEST ORDER
IF (NORDER) 20+20s10

NOW EVALUATE SVALUE

0 0o 100 I=1yNORDER
SVALUE=SVALUE+CMPLX(COEFFS(I+1)XCABS(TESTFR)%X*XI+s0.0)X
1 CEXFP(CMPLX(0.0yANGLEXFLOAT(I)))

100 CONTINUE

20 RETURN

END

c
C
c
C
1



C RESFLIER
SEGMENT 12
REFEAT INTRINSICSyEXTERNALS
SUBROUTINE ERODEM

C FLOTS & LARELS AXES FOR BODE MAGNITULDE FLOT

c
"COMMON /LARELS/ LOGF(13)sLINF(11)sLOGAMF(11),
1LINAMF(8) sy LFHAD(B) » LFHAR(8)
COMMON /ORIGIN/ XORGB» YORGE» XORGF »'YORGF » XORGN s YORGN
COMMON /FLOTYF/ ISCANyIFEM»y IMEMy IFERFyIFDR
COMMON /SCALES/ XORGsyYORGYSIZEsSCALEXsSCALEY s
IPLTSIZy IFLANE
COMMON /MAGAX/ AMPMINAMFMAXsAMPINC, IBFLOT
COMMON /FQAXEM/ FQMINE,FQMAXBsFQINCE
DATA ZEROSNINETYsNEND /0.09920.0+¢9/

INITIALISE FLOT FOSITION
CALL PLOT(XORGEsYORGEy~-3)
& FLOT SIZE
SIZEX=SCALEXXSIZE

NOW DRAW THE HORIZONTAL AXIS
GO TO (100y200) s IFEM

LOGARITHMIC

00 IF(FQMINR.LE.0.0) FAMINE=1.0
FQINCB=ALOG10(FAQMAXEB/FQMINE) /SIZEX
CALL LOGAX(ZEROyZERO,»SIZEXyFQMINEyFQAMAXEY

1ZEROYLOGF (1) s26)
GO TO 300

=0 00 ] oo

c

C LINEAR

200 FQINCB=(FQMAXEB-FQMINE)/SIZEX
CALL AXIS(ZERO,»ZERO,SIZEXsyZEROsFQMINEBsFQINCEY
1LINF(1)+21)

-C

C DRAW VERTICAL AXIS
300 SIZEY=SCALEYXSIZE
GO TO (400y500) s IMEM
C LOGARITHMIC
400  IF(AMPMINJLE.0.0) AMPMIN=1.,0
AMP INC=ALOG10 (AMPMAX/AMPMIN) /SIZEY
CALL LOGAX(ZERO»ZERD»SIZEY s AMFMINs AMPMAX
ININETY s LOGAMF (1) y=21)
GO TO 400
c
C LINEAR
500  AMPINC=(AMFMAX-AMPMIN) /SIZEY
CALL AXIS(ZEROyZERO»SIZEYsNINETY s AMFMIN
1AMPINC s LINAMF (1) y=16)
C RESET TO ORIGINAL ORIGIN



600 CALL PLOT(-XORGEs-YORGEy-3)
RETURN
END



c
c

= ) a0 0O o0

SUERROUTINE EODEF

FLOTS & LABELS AXES FOR RODE FHASE FLOT

COMMON /LABELS/ LOGF(13)LINF(11)sLOGAMF(11),

1ILINAMF(8) sy LFHAD(8) y LFHAR(8)

COMMON /ORIGIN/ XORGEsYORGEsXORGF»YORGF y XORGNy YORGN
COMMON /FLOTYF/ ISCANs»IFEM» IMEMs IFRF»IFDR
COMMON /SCALES/ XORGsYORGYSIZEy»SCALEXySCALEY

1IFLTSIZy IFLANE

COMMON /FHASAX/ FHAMINsPHAMAXsyFHAINCyIFFLOT
COMMON /FQAXEF/ FQMINFsFQMAXFsFQINCF
DATA ZEROYNINETYsyNEND /70.,0590.0+9/

INITIALISE FPLOT POSITION

CALL PLOT(XORGFyYORGPy~3)

& FLOT SIZE

SIZEX=SCALEXXSIZE

NOW DRAW THE HORIZONTAL AXIS

GO TO (100,200) s IFRF

LOGARITHMIC

IF(FQMINF.LE.0.0) FAMINF=1.0
FQINCF=ALOG10(FAQMAXP/FQMINF)/SIZEX
CALL LOGAX(ZEROsZERO+SIZEXyFQMINPyFQMAXFy

1ZEROsLLOGF (1) +26)

GO TO 300
c
C LINEAR
200 FQINCP=(FQMAXF-FQMINF)/SIZEX
CALL AXIS(ZEROsZERUOsSIZEXsZEROyFQMINFsFQINCFy
f 1ILINF(1)s21)

C DRAW VERTICAL AXIS

300

SIZEY=SCALEYXSIZE
HALFY=SIZEY/2.0
FHAINC=PHAMAX/HALFY
GO TO (310,320)yIFDR

C FHASE IN DEGREES

310

c

37
(8

CALL AXIS(ZEROy~HALFYySIZEYsNINETYs~-FHAMAXy

1FHAINCYLFHAD(L) y~135)

GO TO 600

HASE IN RADIANS

CALL AXIS(ZEROs~HALFY»SIZEYsNINETYs~FHAMAX?Y

IFHAINCyLFHAR(1) y~13)

C RESET TO ORIGINAL ORIGIN

600

CALL PLOT(-XORGP/s-YORGFy~3)
RETURN
END



SUBROUTINE NYQST

C FLOTS & LARELS AXES FOR NYQUIST FLOT

C ‘
DIMENSION IMAGIN(S)
COMMON /LARELS/ LOGF(13)sLINF(11)yLOGAMP(11)y
1ILINAMF(8) s LFHAD(8) yLFHAR(8)
COMMON /ORIGIN/ XORGEyYORGEyXORGFyYORGF »XORGNs YORGN
COMMON /FPLOTYP/ ISCANs IFEMy IMEMy IFEFyIFDR
COMMON /SCALES/ XORGs»YORG,SIZEySCALEXsSCALEY
1FLTSIZy IFLANE
COMMON /NYQUAX/ REMAXsRIMAXsRINCXyRINCYyINFLOT
DATA ZEHOsNINETYsNEND /0.09920.0+9/
DATA IMAGIN /2HIMy2HAGY2HINy2HARY2HY /

aoc

INITIALISE FLOT FOSITION
CALL PLOT(XORGNsYORGNy~-~3)
& FLOT SIZE
SIZEX=SCALEXXSIZE
SIZEY=SCALEYXSIZE
HALFX=8IZEX/2.:0
HALFY=8IZEY/2.0

]

C NOW DIIRAW THE HORIZONTAL AXIS

RINCX=REMAX/HALFX

CALL AXIS(~HALFXsyZEROySIZEXsZEROy~-REMAXyRINCXs1H +1)
C & LAREL THIS AXIS

CALL SYMBOL(HALFXy=1.050.,4y'REAL‘+0.0s4)

C DRAW VERTICAL AXIS
RINCY=RIMAX/HALFY
CALL AXIS(ZEROs~-HALFYySIZEYsNINETYy~RIMAXy
IRINCYs1H »+-1)
C & LABEL THIS AXIS
5 CALL SYMBOL(O.3yHALFYs0.4yIMAGIN(1)+0.,0+10)
C RESET TO ORIGINAL ORIGIN
600 CALL PLOT(-XORGNs-YORGNy~-3)
RETURN
ENI

L}



SURROUTINE LOGAX(XSTRTs»YSTRTyAXLTHsRMINyRMAXY
1THETA» IBCDsN)

DRAWS LOGARITHMIC AXES ON GRAFH FLOTTER

DIMENSION IERCDC(1)

[IATA GRADsRLAREL yDEGRADYFIRBRY2 /0.2v0.5y0.01745328,
11.370795/ .

DATA WIDLET,SHIFT /0.33548387v0.166666664/

INITIALISE
SIDE=FLOAT(ISIGNC(1sN))
NUMFTS=IARS(N)

CALCULATE INITIAL & FINAL DECADES
RINC=ALOG10 (RMAX/RMIN)
ILAST=IFIX(RINC)

CORRECT FOR ROUND-OFF ERROR
IFCRINC.GT.AINT(RINC)) ILAST=ILAST+1
IFIRST=IFIX(ALOG1O(RMIN))
ILAST=IFIRST+ILAST

CALCULATE DECADE SIZE
DECSIZ=AXLTH/RINC

INITIALISE FLOT FOSITION
CALL FLOT(XSTRTyYSTRT»3)
ANGLE=THETAXDEGRAD
COSANG=COS (ANGLE)
SINANG=SIN(ANGLE)
RITANG=ANGLE+SIDEXFPIRYZ2
XSIDE=COS(RITANG)
YSIDE=SIN(RITANG)
XLABEL=XSIDEXRLABEL
YLABEL=YSIDEXRLAREL
XGRAD=XSIDEXGRAD
YGRAD=YSIDEXGRALD

NOW DRAW AXIS
DO 10 I=IFIRSTy»ILAST
DECADE=10.,0%XI

CALCULATE LAEREL SHIFT
DECSFT=SHIFTXFLOAT(I+1)+0.075
XSHIFT=NECSFTXCOSANG
YSHIFT=DECSFTXSINANG

NOW PLOT THE FOINTS IN ONE DECALDE
Do 20 J=1,10
FOINT=LECADEXFLOAT (J)
IF(POINT.LT+RMIN+OR.POINT.GT.1.01%XRMAX) GO TO 20
R=DECSIZX(ALOG1O0(FOINT/RMIN))
X=XSTRT+RXCOSANG
Y=YSTRT+RXSINANG

-



CALL FLOT(X»Y»2)

CALL FLOT(X-XGRADsY-YGRADly2)

CALL FPLOT(XsYs3)

IF(J.GT.1) GO TO 20

CALL NUMBER(X-XLAREL-XSHIFTyY-YLAREL-YSHIFTy
10.2yDECADEy THETA»2)

CALL PLOT(X»Y»3)

20 CONTINUE

10 CONTINUE

C NOW LAREL AXIS
OFFSET=(AXLTH-WIDLETXFLOAT(NUMFTS))/2.0
X=XSTRT+COSANGXOFFSET~-XSIIE
Y=YSTRT+SINANGXOFFSET~YSIDE .
CALL SYMEBOL(XyY»0.4yIBCDy THETAYNUMFTS)

RETURN
END



aoocooon

=00 O 0

0

SURROUTINE GRAFLT(GRAFHsXsY)

READNS DISK FILE & DRAWS GRAFH.
‘GRAFH’ IS THE DUMMY NAME FOR THE REAL FLOT ROUTINE.
MAGFLT
FHAFLT
NYQFLT

COMFLEX FOINT
DATA NEND /9/

CALL PLOT(Xy»Ys=3)

NTYF=3

READ STATUS WORD

READ(S) ISTOF

C & CHECK

c
C NOW

IFCISTOF.EQ.NEND) GO TO 40

READI THE VALUES

READ(S6) FOINTSTESTFQ

CALL GRAPH(FOINT,»TESTFQsNTYF)
NTYF=2

GO TO 10

CALL FLOT(~Xy=Yy=3)
RETURN
END

VIZ:?



SUEBROUTINE MAGFLT(FOINTsTESTFQyN)

C RODE MAGNITUDE PLOT

c
LOGICAL FLTPTS
COMFLEX FOINT
COMMON /COORDS/ PLTPTSsFTSIZEYyFTANGYIFTTYF
COMMON /FQAXEM/ FQMINEBsFOMAXEyFQINCE
COMMON /MAGAX/ AMPMIN»AMFMAX»AMFINC
COMMON /FLOTYP/ ISCANy»IFBMyIMEMs» IFEFsIPDR

C

C CALCULATE MAX & MIN FREQUENCIES
FREQ=AMAXL1(TESTFQsyFQMINE)
FREQ=AMINL(FREQsFQMAXE)

C CALCULATE MAX & MIN AMFLITUDES
RMAG=AMAX1 (CARS(FOINT) s AMPMIN)
RMAG=AMIN1 (RMAGyAMFMAX)

c
GO TO (110y120)yIFENM

C LOGARITHMIC FREQUENCY

110 FREQ=ALOG1O0(FREQ/FQMINR)/FQINCE
GO TO 130

C LINEAR FREQUENCY

120 FREQ=FREQ/FRINCE

130 GO TO (210,220) » IMEM

C LOGARITHMIC AMPLITUDE

210 RMAG=ALOGLO (RMAG/AMFMIN) /AMFINC
GO TO 230

C LINEAR MAGNITULE

220 RMAG=RMAG/AMFINC

230 CALL PLOT(FREQ»RMAGN)

c

C CHECK IF FOINT TO RE MARKED
IF(FLTPTS) CALL SYMEBOL(FREQyRMAGsPTSIZEy1H

c
RETURN
END

yPTANG s IPTTYP)



SUBROUTINE FHAFLT(FOINTYTESTFQsN)
C RBRODE FHASE PLOT
C
COMFLEX POINT
LOGICAL FPLTPTS
COMMON /COORDS/ FPLTFPTSyPTSIZEsFPTANGYIPTTYP
COMMON /ANGLES/ FIYFIZ2
COMMON /FQAXBF/ FAMINFPyFOMAXPyFQINCF
COMMON /FHASAX/ FPHAMINyFHAMAXyFHAINCyIFFLOT
COMMON /FLOTYP/ ISCANyIFEMy IMEMyIFRFy»IFDR
c .
C CALCULATE MAX & MIN FREQUENCIES
FREQ=AMAX1(TESTFQs FQMINF)
FREQ=AMINI1 (FREQyFQMAXF)
Cc
GO TO (110,120)yIFEF
C LOGARITHMIC FREQUENCY
110 FREQ=ALOG10(FREQ/FQMINF)/FQINCP
GO 70,130
C LINEAR FREQUENUY
120 FREQ=FREQ/FQINCF
[
C NOW CALULATE THE FHASE
130 FHASE=ARCTAN(AIMAG(FOINT) yREAL(FOINT))/FHAINC
IF(IPDR.EQ.1) FHASE=FHASEX180.0/FI
CALL FPLOT(FREQyFHASEsyN)
c
C CHECK IF POINT TO EBE MARKED
IF(FILTFTS) CALL SYMROL(FREQsFHASEYFTSIZEy1H »FTANGs1IFTTYF)
c _
RETURN
END



SUERROUTINE NYQPLTC(FOINTsTESTFQsN)
C NYQUIST PLOT
c
LOGICAL FLTFTS
COMFLEX FOINT
COMMON /COORDS/ FLTPTSsPTSIZEsPTANGsIPTTYF
COMMON /NYQUAX/ REMAXsRIMAXyRINCXsyRINCYsINPLOT

X=REAL (POINT)/RINCX

Y=AIMAG(FOINT)/RINCY

CALL PLOT(XsYsN)
C :
C CHECK IF POINT TO BE MARKED

IF(PLTFTS) CALL SYMBOL(XsYsyFPTSIZEs1H sPTANGsIPTTYF)
>

RETURN
END




C FRALIE

SEGMENT 13
REFEAT INTRINSICS
SUBROUTINE SETUF

C GETS FLOTTING FARAMETERS

c

C SET

c

INTEGER YES

DIMENSION IGRAFH(3)

COMMON /TITLES/ ITITOC(Z2)sNTITOyITITG(72)+NTITGyMTITLE
COMMON /SCALES/ XORGyYORGySIZE»SCALEXySCALEY
1FLTSIZy IFLANE

COMMON /LARELS/ LOGF(13)syLINFC(11)yLOGAMF(11)y
1LINAMP(8) s LFHAD(8) y LFHAR(8)

COMMON /ORIGIN/ XORGEsYORGEyXORGFyYORGF » XORGN» YORGN
COMMON /FQAXBM/ FAMINE,FQOMAXEsFQINCE

COMMON /FQAXEP/ FAMINFsFQMAXFyFQINCF

COMMON /MAGAX/ AMFMINy AMFMAXy AMFPINCy IBFLOT

COMMON /FHASAX/ FHAMINsFPHAMAXyFHAINCyIFFLOT

COMMON /NYQUAX/ REMAXsRIMAXsRINCXsRINCYs»INFLOT
COMMON /FLOTYP/ ISCANyIFEMy IMEMyIFEFyIFDR

DATA IGRAPH /2HGR»2HAPy2HH /
DATA YESsNO /1HYs1HN/
DATA GAF /1.5/

OVERALL ORIGIN
XORG=10.,0

YORG=10.0

CALL PLOT(XORG»YORGy-3)

C INITIALISE FARAMETERS

100

C SET

SIZE=10.0

WRITE(3+100)
FORMAT(’ GIVE HORIZONTAL & VERTICAL SCALES :’/)

REAN(2y3210) SCALEXs»SCALEY
SCALEX=ARS(SCALEX)
SCALEY=ABS(SCALEY)

FLTSIZ=0.,2

UFP AXIS LAREL ARRAYS
LOGF(1)='L0O"
LOGF(2)='GA"
LOGF(3)='RI"’
LOGF(4)="TH~’
LOGF(S)="MI"’
LOGF(6)='C ’
LOGF(7)='FR’
LOGF(8)="EQ’
LOGF(9)="UE"



LOGF(10)="NC"
LOGF(11)="'Y *
LOGF(12)="(H’
LOGF(13)="Z)"

LINF(1)="LI"’

LINF(2)=’NE"’
LINF(3)='AR"’
LINF(4)=" F’
LINF(S)='RE’
LINF(6)="QU"’
LINF(7)="EN’
LINF(8)='CY’
LINF(?)=" (’
LINF(10)="HZ"
LINF(11)=') *

LOGAMF(1)="L0"
LOGAMF (2)='0GA’
LOGAMF (3)='RI’
LOGAMF(4)="TH’
LOGAMF (S)="MI"’
LOGAMF (6)="C ‘
LOGAMF(7)="AM"
LOGAMF(8)="FL~’
LOGAMFP(?)="1IT"

LOGAMP (10)="UL"'

LOGAMF(11)="E

LINAMF(1)="LTI"’
LINAMP(2)='NE"
LINAMF(3)='AR"
LINAMP(4)=" A’
LINAMP(S)="MF"’
LINAMP(6)="LI’
LINAMF(7)="TU’
LINAMF(8)='DE"

LPHADNC(1)="FH"
LPHAD(2)='AS"’
LPHAD(3)='E *

 LPHAD(4)=/(D"’

LFHAD(S) = “EG
LFHAD(6)=RE ’
LPHAD( 7)='ES’
LPHALN(B)=*)

LPHAR(1)='PH’
LPHAR(2)='A8"
LPHAR(3)='E “
LPHAR(4)="’ (R’

4



c

LPHAR(S)=’AD"
LFPHAR(6)="1IA"
LFHAR(7)=’NG"
LFHAR(8)="’) “

C CALCULATE AXIS LENGTH

10
200

30
230

SIZEX=SCALEX*SIZE
SIZEY=SCALEYXSIZE

WRITE(3,200)

FORMAT(’ RODE MAGNITUDE FLOT? (Y/N) /)
READ(2y210) IBFLOT

FORMAT(AL)
IF(IBPLOT.NE.YES.AND.IEFLOT.NE.NO) GO 'TO 10
IF(IBFLOT.EQ.NO) GO TO 40

XORGE=0.0

YORGE=SIZ2EY+2.0+GAF

WRITE(3s220)

FORMAT(’ LOG OR LIN FREQUENCY AXIS? (1/2) 1’/)
READ(2,3210) IFEM

FORMAT ()

IF(IFBMsNE+1.AND.IFEM.NE.2) GO TO 20

WRITE(3y240)
READ(2y3210) FAMINE,FQMAXE

WRITE(3,230)

FORMAT (¢’ LOG OR LIN MAGNITUDE AXIST? (1/2) /)
REALNCZ2y3210) IMEM

IF(IMBMJNE.1,AND.IMBM.NE.2) GO TO 30

WRITE(3y240)

FORMAT (/ MINIMUM & MAXIMUM VALUE? :’/)
READ(2y3210) AMFPMINyAMFMAX
IF(IMEM.EQ+1,AND.AMPMIN.EQ,0,0) GO TO 30

WRITE(35y250)

FORMAT(’ BODE PHASE FLOT? (Y/N) /)
READ(2y210) IFPLOT
IFCIPPLOT.NE.YES.AND.IFFLOT.NE.NO) GO TO 40
IFC(IFPPLOT.EQ.NO) GO TO 70

XORGF=0.0

YORGF=0.5%SIZEY+2.0

WRITE(3,220)
READ(2,3210) IFEF
IF(IFEP.NE+1.AND.IFBP.NE.2) GO TO 50

WRITE(3y240)



READ(2,3210) FAMINFyFAMAXF

60 WRITE(3,260)

260 FORMAT(’ FPHASE IN DEGREES OR RADIANS?T (1/2) (/)
REAN(2y3210) IFDR
IF(IPDR.LT+1.0R.IPIR.GT.2) GO TO 60

WRITE(3,270) .
270 FORMAT ¢’ MAXIMUM FHASE ANGLE !‘/)

READ(2,3210) PHAMAX

FHAMAX=ABS (FHAMAX)

PHAMIN=0.0

70 WRITE(3y280)

280 FORMAT (’ NYQUIST PLOT? (Y/N) :7/)
READ(2,210) INFLOT
IFCINFLOT.NE.YES.AND.INFLOT.NE.NO) GO TO 70
IFCINPLOT.EQ.NO) GO TO 80

XORGN=SIZEX
IFC(IPPLOT.EQ.YES.OR.IBFLOT.EQ.YES) XORGN=XORGN+10.0
YORGN=0.,5%XSIZEY
WRITE(3»2%90)
290 FORMAT(’ MAXIMUM REAL & IMAGINARY VALUE /)
READ(2y3210) REMAXsRIMAX
REMAX=ABS (REMAX)
RIMAX=ARS (RIMAX)

80 IFCIBPLOT.EQ.NO.ANDIFFLOT.EQ.NO,
1AND.INPLOT.EQ.NO) GO TO 10

c
IF(IBFLOT.EQ.YES) CALL BRODEM
IF(IPPLOT.EQ.YES) CALL ERODEP
IFCINPLOT.EQ.YES) CALL NYQST
c

C NOW WRITE GRAFH COMMENT
CALL SYMBOL (040914070445 ITITG(1)s0.0sNTITGX2)

C NOW WRITE ‘GRAPH’
CALL SYMBOL(10.0s0.,0+0.4yIGRAFH(1)+0.0+6)
RETURN
END



SUBROUTINE LFFST(IDEV)

C ROUTINE TO WRITE THE L/F HEADINGS

c

1000
1010

1030

1100
10

20

c

30
1120

c
c
1040

9’ SHUNT RESISTANCE R

COMMON /FLOTYF/ ISCANsIFEMy IMEBMyIFBFyIFIR

COMMON /SCALES/ XORGyYORGYSIZEySCALEXySCALEYYFLTSIZy
1IFLANE

COMMON /COEFFS/ ARRNUM(&0) s NORNUMy ARRIEN(40) y NORUEN
COMMON /FARAMS/ FAROLDC(S) yFARNEW(S)

COMMON /TITLES/ ITITI(Z2)sNTITDyITITG(72) yNTITGYMTITLE
EQUIVALENCE (FARNEW(1)syTSAMF)

WRITE(451000)

FORMAT(1H1)

IF(INEV.EQ.1) WRITE(4,1010) ITITD
FORMAT(1H1,72A1/) '
IF(IFLANE+EQ.1.0R.IDEV.EQ.3) WRITE(4,1030) FARNEW
FORMAT (’ SAMPLING FERIOD T ‘yE12.4y’ SECONDS’/

1/ CAPACITOR C1 $YyE12.4y7 FARALNS'/
2’ CAPACITOR. C2 $yE124.4y7 FARADS '/
3’ TRANSCONDANCE G1 $’/sE12.4y’ SIEMENS‘/
4’ TRANSCONDANCE G2 $’/sE12.4y’ SIEMENS’/

yF8.1y7 OHMS’/)
IF(IDEV.EQ.3) GO TO 30

IF(ISCANWEQ.2) WRITE(4,1040)
IF(ISCAN.EQ.1) WRITE(4,10350)
WRITE(4,10460)

[0 10 L=0yNORNUM

L1=NORNUM-L

L2=L1+1

WRITE(4y1100) L1yARRNUMC(L.2)
FORMAT(I4y4X»F12.6)

CONTINUE _ il . S

=0 ————— -

WRITE(4,1110)

DO 20 L=0sNORDEN
L1=NORDEN-L

L2=L1+1

WRITE(4,1100) L1sARRIDEN(LZ)
CONTINUE

WRITE(4+s1120)

FORMAT(’ RESULT FREQUENCY’ 29Xy COMFLEX VALUE‘/
1 1H »6CIH=-) 2y 1XsQC1H=) v29Xs7(1H-) »1XsS(1H-)/

2 1H 92Xy /N0 96X ’HZ 911Xy 'REAL 97Xy

3/ IMAGINARY’ ¢y 7Xy 'MODULUS ' ¢

4 33Xy ARGANDC(RAD) ‘ y3Xy ARGANDC(DEG) * /)

FORMAT (/ LINEAR FREQUENCY SCAN‘/)



1050 FORMAT(’ LOGARITHMIC FREQUENCY SCAN’/)
1060 FORMAT(’ NUMERATOR FPOLYNOMIAL COEFFICIENTS $//)
1110 FORMAT(’ LENOMINATOR POLYNOMIAL COEFFICIENTS $(‘/)

RETURN
END



SUBROUTINE LFFOUT
ROUTINE TO OUTFUT DATA FROM TEMFORARY DISK FILE TO

L/F.

oo

COMPLEX FOINT
COMMON /ANGLES/ FIsFI2

DATA NENDN /9/

IFQ=0

THE TERMINATING CHARACTER IS FOUND
FIRST READ STATUS '
0 READ(S) ISTOP
IF(ISTOP.EQ.NENDI) RETURN
C NOW READ THE DATA
c

C

C

c

C NOW READ' DISK FILE & OUTFUT THE RESULTS UNTIL
c

c

1

READ(6) FOINT,»TESTFQ

C CALCULATE THE REAL & IMAGINARY FARTS
RREAL=REAL (POINT)
RIMAG=AIMAG(FOINT)

RMOD=CAERS(POINT)
RARG=ARCTAN(RIMAGy» RREAL)
ROEG=RARGX180.0/F1I
IFQ=IFQ+1

c

C LINE-FRINTER OUTFUT ¢

1000 WRITE(4,2000) IFQsTESTFQyRREALsRIMAGyRMOIYyRARGyRDEG

2000 FORMAT(1H »ISsy1XsF10.2»5(2XyF12.4))

c
GO TO 10

c
END




C FZFLIR
SEGMENT 15
REFEAT INTRINSICS
c
SUBROUTINE DISTRT
C READS HEADER OFF DISK FILE
C s .
COMMON /FOLYNS/ NDOFOLY(60) s NFOLY»yMFOLY s IFPYCNT

COMMON /MATELM/ NUMRES»MATRIX»NELEMS
COMMON /TITLES/ ITITD(72)yNTITDyITITG(72)syNTITGyMTITLE

MFOLY=60
IFYCNT=0
IF(NFOLY.GT.MPOLY) RETURN
WRITE(3,300)
300 FORMAT(’ GIVE POLYNOMIALS TO EBE ANALYSED !’/)
READ(2y200) ((NDFOLYC(I))yI=1yNFOLY)
200 FORMAT ()
c
C READ TITLES
READCS) NTITDsITITD
C [l
C READ NUMEER OF RESULTSs MATRIX TYPE & ELEMENT
READ(S) NUMRESyMATRIXs»NELEMS
c
RETURN
END



SURROUTINE DISCIN(NORNUM»ARRNUMyNORDENyARRIENy INFOLY)
g READS FOLYNOMIAL COEFFICIENTS FROM DISC FILE
INTEGER ENDFIL

DIMENSION ARRNUMC1)sARRDENC(1)
COMMON /FOLYNS/ NDFOLY(60)sNPOLYyMFOLY sy IFYCNT

COMMON /PARAMS/ PAROLD(6) yFPARNEW(6)
. DATA ENDFIL /9/
C STORE OLD PARAMETERS
10 N0 20 IPAR=1s6
PAROLD(IFAR)=PARNEW(IFAR)

go CONTINUE

C READ STATUS WORD
READ(S) ISTDSK
IF(ISTOSK.NE.ENDFIL) GO TO 30
IPYCNT=~-1

" RETURN

C NOW READ FARAMETERS
30 READ(S) PARNEW S

C NOW READ COEFFICIENTS
READ(S) NORNUMyIFLOTA
READ(S) ((ARRNUM(I+1))yI=0yNORNUM)
READ(S) NORDEN»IFLOTRE
READ(S) ((ARRDEN(I+1))ysI=0yNORDEN)
IPYCNT=IFYCNT+1
IF(IFPYCNT.NE.INPOLY) GO TO 10

RETURN
ENII



SUEROUTINE LFSTRT
C OUTFUTS HEADER TO L/F.
c
COMMON /MATELM/ NUMRES»MATRIX»NELEMS

COMMON /TITLES/ ITITD(72)sNTITOsITITG(72) yNTITGyMTITLE
. C
WRITE(4,100) (CITITDCI))»I=1,NTITD)
100  FORMAT(1H1s72A1)
IF (NUMRES EQ.0) RETURN
WRITE(4,110) NUMRESsMATRIX»NELEMS
110  FORMAT(’ NUMBER OF RESULTS =‘s14/
. 1/ MATRIX ELEMENT ‘sAl1s12/)
RETURN
ENID



SUEROUTINE DISCOF(NUMEBER»ROOTS)
C OUTFUTS DIATA TO RINARY DISK FILE.
c

INTEGER ZERO

COMFLEX ROOTS

DIMENSION ROOTS(1)
COMMON /FARAMS/ PAROLD(8) yFARNEW( &)

DATA ZERO 70/

FIRST WRITE STATUS WORD
WRITE(S) ZERO

NOW WRITE FARAMETERS
WRITE(4) FARNEW

NOW WRITE ROOTS
WRITE(6) (ROOTS(I)sI=1sNUMERER)

0 00 oo ao

RETURN
END



SUBROUTINE ASROUT (NUMBER»ROOTSyCHECK)
C OUTFUTS ROOTS TO ASR

c
COMPLEX ROOTSyCHECK
DIMENSION ROOTS(1)sCHECK(1)
COMMON /ANGLES/ PIyDEGRAD
c

WRITE(35100) .
100 FORMAT(1HOy ‘CARTESIAN ROOTS ! 7/2Xy
1/REAL‘» 16Xy ' IMAGINARY ')
WRITE(3y110) (ROOTS(I)sI=1yNUMBER)
110 FORMAT(1H »E14.674Xy ' JX’»EL14.6)
WRITE(3y120)
120 FORMAT(1HOy "CHECK ! 7)

WRITE(3y110) CHECK

WRITE(3y140)
140 FORMAT(1HOs ‘POLAR ROOTS !’/
1 2Xy “MAGNITUDE’y11Xs 'RADIANS’ y13Xy ‘DEGREES’)

D0 200 I=1,NUMRER
R=CARS(ROOTS(I))
ANGRAI'=ARCTAN(AIMAG(ROOTS(I)) »REAL(ROOTS(I)))
ANGDEG=DEGRADXANGRAD
WRITE(3y150) RsANGRAD'y ANGDEG

150 FORMAT(1IH »3(E14.6+6X))

200 CONTINUE

RETURN
END



SUEBROUTINE LFROOT(NORDIERyROOTSsyARRAY»ITYFE)
C OUTPUTS ROOTS TO L/F

c
COMFLEX ROOTS
DIMENSION ROOTS(1)»ARRAY (1)
COMMON /PARAMS/ PAROLD(é)vPARNEN(é)
COMMON /ANGLES/ FIyLEGRAD
c

IFC(ITYFE.EQ.1) WRITE(4+100)
100 FORMAT(’ NUMERATOR POLYNOMIAL ROOTS’)
IFC(ITYPE.EQ.2) WRITE(4,110)
110 FORMAT(’ DENOMINATOR FOLYNOMIAL ROOTS‘)
WRITE(4+120)
120 FORMAT( REAL’ 916Xy ' IMAGINARY
17Xy “MODULUS’ 99Xy “ARG(DEG) )
- DO 200 I=1,NORDER
R=CABS(ROOTS(I))
X=REAL(ROOQTS(I))
Y=AIMAG(ROOTS(I))
ANGIEG=DEGRADXARCTANC(Y yX)
WRITE(45140) XsYsRsANGDEG
140 FORMAT(1H sE14.694Xy ' JX’ 9s3(EL14,6+2X))
200 CONTINUE

RETURN
END



c

c
100

SUBROUTINE LFARMS(FARAMS)
C ROUTINE TO OUTFUT PARAMETERS FOR DISK

DIMENSION FARAMS(6)

WRITE(45,100) PARAMS

FORMAT(1H1y ‘PARAMETERS '/

1’ SAMFLING PERIOD T
2’ SHUNT CAFPACITOR C1
3/ SHUNT CAPACITOR C2
4’ TRANSCONDUCTANCE G1
9/ TRANSCONDUCTANCE G2
6’ SHUNT RESISTOR R
RETURN

END

W nuu

‘yE10.4492X
‘yE10.4y2X
‘yE10.442X
‘yF10.4,2X
‘9yF10.4y2X
‘yF10.4,2X

FILE INFUT

y ‘SECONDS “ /
r ‘FARADS ' /
v 'FARADS '/
» 'SIEMENS ‘' /
y 'SIEMENS’/
y 'OHMS’ /)



SUBROUTINE LFPCOEF (NORDERsARRAY»ITYFE)
C ROUTINE TO OUTFUT COEFFICIENTS OF ARRAY REING
C ANALYSED.
Cc

LDIMENSION ARRAY (1)
C

IF(ITYPE.EQ.1) WRITE(4,100)
100 FORMAT(’ NUMERATOR POLYNOMIAL COEFFICIENTS’/

1/ POWER’ »6Xy ‘COEFFICIENT’)

IFCITYPEWEQ.2) WRITE(4,110)
110 FORMAT(’ DENOMINATOR FOLYNOMIAL COEFFICIENTS’/

1/ POWER’ »&Xy COEFFICIENT’)
c

[0 10 I=0,NORDER

J=NORIER-I

WRITE(4,120) JyARRAY(J+1)
120 FORMAT (1H »3X,I2y4XsE14.6)
10 CONTINUE

c

WRITE(45130)
130 FORMATC(1H )
c

RETURN

END



SURROUTINE SETVIDU
C SETS VIIU FOR DATA OUTFUT
c

CALL OFPVIU

RETURN

END



C GET
c

10
1010

2010
20

1020

30
1030

1040
40
2040

SUEBROUTINE TKSTRT
STARTING COORDINATES FOR WRITING DATA TO TEK.

INTEGER YESsNO
COMMON /FLOTYF/ NUMLDENsNAUTOs INFDEVsITYFE
COMMON /TEK/ IXVALsIYVALyLINFAGyLINCNT

DATA MAXXsMINXsMAXY s MINY /102310576007
DATA LINMAX 740/
DATA YESyNO /1HYs»1HN/

WRITE(351010)

FORMAT (/ X-COORD =’/)

READ(2,2010) IXVAL

FORMAT () .
IF(IXVAL LT .MINX.OR+IXVAL.GT.MAXX) GO TO 10
WRITE(3,1020)

FORMAT(’ Y-COORD ='/)

READ(2y2010) IYVAL

IFC(IYVAL LT MINY.OR.IYVAL.GT.MAXY) GO TO 20
WRITE(3,1030)

FORMAT(‘ NUMEER OF LINES/PAGE ='/)
READ(2y2010) LINPAG
IF(LINFAG.LE.O.OR.LINFAG.GT.LINMAX) GO TO 30
LINCNT=0

WRITE(3,1040) )
FORMAT(/ AUTO-LISTING REQUIRED? (Y/N) 7/)
READ(2,2040) IAUTO

FORMAT (A1)

IF(IAUTO.NE.YES.AND. IAUTO.NE.NO) GO TO 40
NAUTO=0

IFCIAUTOD.EQ.YES) NAUTO=1

RETURN

END



SURROUTINE VIUOUT(NORDER»ROOTS»CHECKyARRAY)

C OUTFUTS TO TEKTRONIX TERMINAL.
c
INTEGER YESySTARyEOTH
LOGICAL TERM»AUTORF»FERFHsNOTFERsFPARWRT
COMFLEX ROOTS»CHECK
DIMENSION ARRAY(1)sRO0TS(1)s,CHECK(1)
DIMENSION IFRINT(4),MSCALE(4) .
DIMENSION MICRO(3)yMILLI(3)sIFARAD(3)»ISEC(4)ICONC(4)
COMMON /ANGLES/ PIyDEGRAL
COMMON /PLOTYP/ NUMDENsNAUTOy INFDEVyITYFE

COMMON /FERFHS/ PERPH(S) yNOTFER(S)
COMMON /TEK/ IXVALyIYVALsLINPAGyLINCNT

COMMON /FPARAMS/ FAROLD(S) yFARNEW(6)
DATA MICRO /2HMIy2HCRy2HO-/

DATA MILLI /2HMIy2HLLs2HI-/

DATA IFARAD /2HFAy2HRAr2ADS/

DATA ISEC /2HSE»2HCO»2HND2HS /
DATA ICON /2HSIs2HEM»2HENs2HS /
DATA IUNITsIDATPT /16+29/

DATA YESyNO /1HYs1HN/

DATA SMICROySMILLI /1.Eé6s1.E3/
DATA NCONsNEND /0+9/

C CHECK ROOTS
CALL CHCKRT(NORDERsyROOTS(1)sIPRINT(1))

IFAR=0
IROOT=0
FARWRT=,FALSE.,

CHECK IF NEW FAGE NEEDED
IF(LINCNT.LE.O) CALL VDSTRT

SKIF FARAMETER LISTING IF DISNrFILE NOT BREING FROCESSED
IF (INFIIEV.EQ.,2) GO TO 200

SKIF PARAMETER LISTING FOR DENOMINATOR IF BOTH

ARE BEING LISTED.
IF (NUMDEN.EQ.3.AND.IFLOT.EQ.2) GO TO 200

CONPARE FARAMETERS$ IF DIFFERENT THEN FRINT NEW VALUES

00 PARWRT=.FALSE .
IPAR=IFAR+1 .
IF (IFAR.GT+6+.AND. IROOT.GT . NORDER) RETURN

IF(IFAR.GT.6) GO TO 200
IF (PARNEW(IPAR) +EQ.FPAROLD(1FAR)) GO TO 100

PARWRT=.TRUE .

=O00o0noon o0 Oon0n

GO TO (1105120+130,140,1509160)IFAR
110  CALL OUTST(’'TS = ‘15+2)



e LT E

SUEBROUTINE VIUOUT(NORDERyROOTSsCHECKyARRAY)

C OUTFUTS TO TEKTRONIX TERMINAL.,

c

—INTEGER YESsSTARyBOTH -

LOGICAL TERM;AUTORFvPERPHrNOTPER;PARNRT
COMFLEX ROOTSyCHECK

DIMENSION ARRAY(i)rROOTS(i)rCHFCh(i)
DIMENSION IFRINT(4)sMSCALE(4) :
DIMENSION MICRO(3) »MILLIC3)yIFARAD(3)sISEC(4)ICONC4A)
COMMON /ANGLES/ PI»DEGRAD

COMMON /FLOTYF/ NUMDENyNAUTOsINFDEV,ITYPE
COMMON /FERFHS/ FPERPH(S) yNOTFER(S)

COMMON /TEK/ IXVALyIYVALyLLINPAGyLINCNT
COMMON /FARAMS/ FAROLIDN(S) yFPARNEW(S)

DATA MICRO /2HMIy2HCR»2HO-/

DATA MILLI /2HMI»2HLLy2HI-/

DATA IFARAD /2HFAy2HRA»2HDS/

DATA ISEC /2HSEy2HCO»2HNDy2HS /

DATA ICON /2HSIs2HEMy 2HENy2HS /

DATA IUNITyIDATPT /16+29/

DATA YESyNO /1HYs»1HN/

IATA SMICROySMILLI /1.Eé691.E3/

DATA NCONsNEND 7059/

C CHECK ROOTS

aooooaooo 0 a0

100

110

CALL CHCKRT(NORDERsyROOTS(1)yIPRINT(1))
IFPAR=0

IROOT=0

FARWRT=.FALSE.

CHECK IF NEW FAGE NEEDED

IF(LINCNT.LE.O) CALL VDSTRT

SKIF FARAMETER LISTING IF DISK FILE NOT REING FROCESSED

IFC(INFDEV.EQ.2) GO TO 200

SKIF PARAMETER LISTING FOR DENOMINATOR IF BOTH
ARE BEING LISTED.

IF (NUMDEN.EQ.3.AND,IFLOT.EQ.2) GO TO 200

COMFARE FPARAMETERS; IF DIFFERENT THEN FRINT NEW VALUES

FARWRT=,FALSE .
IPAR=IFAR+]
IF(IPAR.GT.6.AND, IROOT GT+NORDER) RETURN

IF(IFAR.GT.6) GO TO 200
IF (PARNEW(IPAR) .EQ.FPAROLD(1FAR)) GO TO 100

PARWRT=.TRUE.

GO TO (1107120;130;14011509160)rIPAR
CALL OQUTSTC(’TS = ‘s3s2)



130

140

150

160

C Now
200

300
310

320

CALL OUTF(FARNEW(1)%SMICRO»2)
CALL TABCIUNIT)

CALL OUTST(MICRO(1)s6+2)

CALL OUTST(ISEC(1)s7+2)

GO TO 200

CALL OUTST(’C1 = ‘95s2)

CALL OUTF(FARNEW(2)%XSMICROs2)
CALL TABCIUNIT)

CALL OUTST(MICROC(1)s6+2)

CALL OUTST(IFARADN(1)s6+2)

GO TO 200

CALL QUTST(’C2 = ’»3+2)

CALL OUTF(PARNEW(3)%SMICROy2)
CALL TABRCIUNIT)

CALL OUTST(MICROC(1)s6+2)

CALL OUTST(IFARAD(1)s6+2)

GO TO 200

CALL OUTST(’Gl = ‘95s+2)

CALL OUTF(PARNEW(4)XSMILLI»2)
CALL TABRCIUNIT)

CALL OUTST(MILLIC(1)+6+2)

CALL OUTST(ICON(1),8+2)

GO TO 200

CALL QUTST(’G2 = ‘»5+2)

CALL OUTF(PARNEW(S)XSMILLI»2)
CALL TAB(IUNIT)

CALL OUTST(MILLIC(1)+6+2)

CALL OUTST(ICON(1),8+2)

GO TO 200

CALL OUTST(’RS = ‘»35»2)

CALL OUTF(PARNEW(6)rs2)

CALL TABRCIUNIT)

CALL OUTST(‘OHMS’»4+2)

OUTPUT ROOTS

IROOT=IRO0OT+1
IF(IROOT.GT.NORIIER . AND.PARWRT) GO TO 320
IF(IROOT.GT.NORDER) GO TO 100
IF(IPRINTC(IROOT).LE.1) GO TO 200

CALL TAER(CIDATPT)

CALL RTOUT(ROOTS(IROOT);IPRINT(IROOT))
CALL NEWLIN(1s1)

LINCNT=LINCNT~-1

GO TO 100

END



SUBROUTINE RTOUT(ROOT»IFAIR)
C OUTFUTS REAL & IMAGINARY FARTS OF ROOT DEFENDING ON THE

C VALUE OF PAIR ¢

C IFAIR = 1 OMIT
C IFAIR = 2 PRINT NORMALLY
C IPAIR = 3 PRINT AS COMPLEX CONJUGATE
c
COMFLEX ROOT
c

GO TO (40+10+10)IFPAIR
10 CALL TAB(32)

CALL OUTF(REAL(ROOT)»4)

GO TO (40530520)sIFAIR

20 CALL TAB(40)
CALL OUTST(’+/-='93+2)

30 CALL TAR(45)
CALL OUTSTC(/JX(’9y3+2)
CALL OUTF(AIMAG(ROOT)»4)
CALL OUTST(’)’»1,52)

40 CONTINUE
RETURN
END



SUBROUTINE VDSTRT

C OUTPUTS VDU FAGE HEADINGS FOR FZF1

c
DIMENSION IFARMS(S)s»IREAL(2)yIMAGINC(S)
COMMON /FLOTYF/ NUMDENsNAUTO» INFDEVyITYFE
COMMON /TEK/ IXVALsIYVALsLINFAGyLINCNT
DATA IPARMS /2HPA»2HRAy 2HME s 2HTE » 2HRS/
[IATA IREAL /2HREs2HAL/ ’
DATA IMAGIN /2HIM»2HAGs2HINs2HAR»2HY /
DATA MALFHA /31/

C SET TO ALFHA MODE
CALL CHOUT(31)
IF (NAUTO.EQ.1) CALL COPY

c

C NOW CLEAR SCREEN
CALL CLEAR
WRITE(4y100)

100 FORMAT(’ DONE’)

c

C INITIALISE WRITING FOINT
CALL TPLOT(Oy»IXVALsIYVAL)

WRITE(4y100)

C NOW RESET TO ALFPHA MODE
CALL CHOUT (MALFHA)
WRITE(4y100)

C NOW OUTPUT HEADINGS
CALL SFACES(4)
CALL. OUTST(IFARMS(1)s10+2)
CALL TAB(30)
CALL OUTST(IREAL(1)s4+2)
CALL SFACES(9)
CALL OUTST(IMAGIN(1)s10s2)
CALL NEWLIN(2s1)
LINCNT=LINFAG

WRITE(45100)
RETURN S S,
END :



SUEROUTINE GFSTRT

C INITIALISES GRAFH FLOTTER.

c

c

COMMON /TITLES/ ITITD(72)sNTITDyITITG(72)syNTITGYMTITLE
COMMON /SCALES/ XORGyYORG»XYSIZEs»XYSCALFTSIZE

C ASSIGN GRAFPH PLOTTER TO ADDRESS 7

110
1100

2010
c
C GET

120
1110

C NOW

1120

CALL FLOTS(7)

WRITE(3+1100)

FORMAT(’ Z OR 8 PLANE? (1 OR 2) :’/)
READN(2y2010) IPLANE

FORMAT ()
IFC(IFLANE.LT+1.,0R.IFLANE.GT.2) GO TO 110

SCALE & POLE/ZERO SIZE

WRITE(3,1110) :
FORMAT(’ SCALE FACTOR & FOLE/ZERO FLOT SIZE:’/)

READC2,2010) XYSCAL,PTSIZE
IF(XYSCAL.LT+0.,0.,0R.PTSIZE.LT+0.,0) GO TO 120

GET GRAFH TITLE
WRITE(3,1120)

FORMAT(’ TITLE!’/)
NTITG=MTITLE

CALL GETLIN(2yITITGYNTITG)
XYSIZE=7.5

CALL PLANE(16.0716.,0¢IPLANE)
RETURN

END



SUBROUTINE LISTLF(NORDERyROOTS,CHECKyARRAY)
C OUTPUTS RESULTS IN COMFRESSED FORM
c

DIMENSION ROOTS(1)yCHECK(1)syARRAY (1)

COMMON /PARAMS/ FAROLD(&)sFARNEW(6)

c
C QUTFUT PARAMETERS
WRITE(45100) FARNEW y
100 FORMAT(’ PARAMETERS’/1H »E10.4y2Xy‘SECONDS’/
11H »E10.492Xy’FARADNS’/1H »E10.4y2Xy'FARADS’/
21H sF10.,4+2Xy 'SIEMENS’ y1H +sF10.4+2Xy’SIEMENS’/
31H sF10.4»2Xy ' OHMS /)
WRITE(4,200)
200 FORMAT(’ NUMERATOR’ 20Xy DENOMINATOR’/
11H »’COEFFICIENTS’s17Xy’COEFFICIENTS’/)
RETURN b o=
END



C FOLENT
SEGMENT 16
REFEAT INTRINSICSyREAIWRITE
c
SUEROUTINE KEYRIN(NORNUMy ARRNUMy NORDENy ARRIIEN s NUMDEN)

C INFUTS RATIONAL FOLYNOMIAL.
c

DIMENSION ARRNUMC1)syARRDEN(L)
c
C SWITCH ACCORDING TO FOLYNOMIAL TYFE
GO TO (10051105100) yNUMIDEN
c
100 WRITE(35300)
300 FORMAT(’ NUMERATOR’/)
CALL FOLGET(NORNUMyARRNUMC(1))
C
GO TO (120,1105110) yNUMDEN
110 WRITE(3,3035)
305 FORMAT(’ DENOMINATOR’/)
CALL POLGET(NORDENsARRDEN(1))

120 RETURN
END



SURROUTINE FOLGET(NORDERsARRAY)
C GETS COMPLETE FOLYNOMIAL WHICH CAN CONSIST OF FACTORS,
c

DIMENSION ARRAY(1)sCOEFFS(40)

DATA NUMCFS /40/

10 WRITE(3,1000)
1000 FORMAT(’ HOW MANY FACTORS? $’/)
READ(2y2000) NFACTS
2000 FORMAT()
IF(NFACTS.GT.NUMCFS) GO TO 10
IF(NFACTS) 10510520
C g
C CLEAR COEFFICIENTS IN ARRAY
20 NORDER=0
ARIKAY (1)=1.0

C NOW GET EACH POLYNOMIAL ARRAY & MULTIFLY WITH THAT ALRE&aDY
C OBTAINED.
C
DO 3010 IFOLY=1,NFACTS
CALL FOLYIN(NyCOEFFS(1))
, CALL POLMLT(NORDERyARRAY(1)sNsCOEFFS(1))
3010 CONTINUE '
C
RETURN
END



SUEROUTINE FOLYIN(NORDIERsARRAY)
C ROUTINE TO ENTER RANDOM FOLYNOMIAL COEFFICIENTS
c
DIMENSION ARRAY (1)
c
10 WRITE(3y1000)
1000 FORMAT(’ GIVE FACTOR ORDER 3’/)
READ(2,27000) NORDER
2000 FORMAT()

c
IF(NORDER) 10+20,20
20 NUMCFS=NORDER+1
c
C FIRST CLEAR ARRAY

DO 3000 I=1sNUMCFS
ARRAY(I)=0.0
3000 CONTINUE
c
C NOW GET POWERS & COEFFICIENTS.
C COEFFICIENTS OF UNSPECIFIED POWERS ARE
C AUTOMATICALLY SET TO ZERO.
C ENTRY MAY BE TERMINATED BY TYFING NEGATIVE FOWER.
DO 3010 I=1,sNUMCFS
WRITE(3,1010)
1010 FORMAT(’ GIVE FOWER & COEFFICIENT :’/)
30 READ(252000) IFOWERyVALUE
IF(IFOWER) S50y40+40
40 IF(IPOWER.GT.NUMCFS) GO TO 30
ARRAY (IFOWER+1)=VALUE
3010 CONTINUE

o0 RETURN
END



C IZTLIER
SEGMENT 17
REFEAT INTRINSICS
SUBROUTINE SETIZT
C SETS UF ALL THE GRAFHICS VARIAERLES FOR IZTLIE
c
COMMON /FRINTS/ FRINTC(10) s IFRINTyMFRINT
COMMON /TIMORG/ XORGTsYORGTySIZEXsySIZEYsSCALEXy Uil HYy
1XINCs YINC s XMAXT » YMAXT
DATA TEN /10.0/

c
IFRINT=0
MFRINT=10
c
C SET GRAFH SIZE
SIZEX=TEN
SIZEY=TEN
c
C SET INITIAL ORIGIN
XORGT=0.0
YORGT=0.0
c
RETURN

END



a0 a0

c
C NOw

c

20
110

c

C NOW
30

C

40
120

S0
130

SURROUTINE ZTRINV(NORNUM» ARRNUMy NORDENy ARRIIENy
1INVFTSy INVCNT)

C CALCULATES INVERSE TRANSFORM

DIMENSION ZLESS1(2)sZALONE(Z)
DIMENSION ARRAYN(60)sARRAYD(40)
DIMENSION ARRNUM(1)syARRIDEN(1)
LOGICAL FERPHsyNOTFER

COMMON /PERPHS/ FERFH(2) yNOTFER(2)

DATA ZLESS1 /-1.0+1.0/
DATA ZALONE /70.091.0/

FIRST MAKE A COFY OF NUMERATOR POLYNOMIAL

CALL ARRSAV (NORNUMsARRNUM(1) sy NORDNyARRAYN(1))

NOW CALCULATE THE INVERSE TRANSFORM

CALL TIMRES(NORINsARRAYN(1) yNORDENsARRDEN(1) s INVFTSy

1INVCNT) y

FIND INITIAL VALUE
VINIT=VSTART (NORNUMs ARRNUM(1) y NORDENs ARRDEN (1) y INTTAL)

IFCPERPH(1)) WRITE(45110) INITALsVINIT
FORMAT(’ INITIAL ORDER =’sI3y2Xs’/VALUE =’yF10.4/)

WRITE(3s110) INITALsVINIT

FIND FINAL VALUE
CALL ARRSAV(NORNUM»ARRNUM(1) s NORDNsARRAYN(1))

CALL ARRSAV(NORDENyARKIIENCT - NORDDyARRAYD(1))

CALL POLMLT(NORDNsARRAYN(1)s1sZLESS1(1))
CALL POLMLT(NORDDsARRAYD(1)s1,ZALONE(1))

VEND=VUF INAL (NORDNy ARRAYN (1) yNORDDy ARRAYD (1) » IFINAL)

GO TO (S50,40)yIFINAL
IF(FERPH(1)) WRITE(4,120)
FUI:MAT(’ INFINITE FINAL VALUE’/)
WRITE(3,120)

RETURN

IF(FERPH(1)) WRITE(4y130) VEND
FORMAT(’ FINAL VALUE ='F10.4/)
WRITE(3,130) VEND

RETURN
END



SUBROUTINE ZTRIMF(NORNUMyARRNUMy NORDENy ARRIEN
1IMPPTS s IMFCNT)

C CALCULATES THE IMFULSE RESFONSE

C NOwW

DIMENSION ZLESS1(2)yZALONE(2)
DIMENSION ARRAYN(&0)sARRAYD(40)
DIMENSION ARRNUM(1)yARRDEN(1)
LOGICAL PERPHyNOTFER

COMMON /FERFHS/ PERFH(2)sNOTFER(2)

DATA ZLESS1 /-1.,0v1.0/
DATA ZALONE /70.091.0/

FIND THE IMPULSE RESFONSE

C FIRST MAKE A COPY OF THE NUMERATOR

C NOW

C NOW

C NOwW

20
110

30

40

129

a0
130

CALL ARRSAV (NORNUM»yARRNUM (1) yNORDNyARRAYN(1))
CALL ARRSAU(NURDEN!ARRDEN(i)rNORDD:ARRAYD(i))

MULTIPLY BY (Z/(Z~-1)) .
CALL POLMLT(NORDNsARRAYN(1)s1yZALONECT )

CALL POLMLT(NORDDyARRAYDI(1)s1yZLESS1(1))

CALCULATE THE INVERSE TRANSFORM
CALL TIMRES(NORDINyARRAYN(1)sNORDDsARRAYD(1) s IMFPTSy

1IMFCNT)

FIND INITIAL IMFPULSE RESPONSE VALUE

CALL ARRSAV (NORNUM» ARRNUM (1) s NORI:' - SRRAYN(1))

CALL ARRSAV(NORDENyARRDEN(1)yNORDDsARRAYD(1))

CALL FOLMLT(NORDNyARRAYN(1)s1yZALONE(1))

CALL FOI HLT(NORDIyARRAYDI(1)s1yZLESS1(1))
VINIT=VUSTART (NORDN»y ARRAYN (1) yNORDD s ARRAYD(1) s INITAL)

IF(PERFH(1)) WRITE(4,110) INITALyVINIT
FORMAT(/ INITIAL ORDER =‘yI3s2Xy’VALUE =’sF10.4/)

WRITE(3y110) INITALsVINIT

CALL FOLMLT (NORDNs ARRAYN(1)y1yZLESGE1(1))
CALL FOLMLT(NORDDyARRAYD(1)s1yZALONE(1))

UEND=UFINQL(NORDN;ARRAYN(1)yNORDﬂrARRAYD(])vIFINAL)
GO TO (50s40)yIFINAL

WRITE(4,120)

FURMaT (4 INFINITE FINAL VALUE?/)

WRITE(3y120)

RETURN

WRITE(4,130) VEND

FORMAT(’ FINAL VALUE =’sF10.4/)

WRITE(3y130) VEND



RETURN
END



e

SUBROUTINE TIMRES (NORNUM»ARRNUM)NORDENy ARRIEN s
INUMPTS s NUMITN)
C COMFPUTES INVL!-3E Z-TRANSFORM & OUTFUTS ON L/F OR G/P.
c
LOGICAL FERFHsNOTFER
DIMENSION ARRNUM(1)sARRIDEN(1)

c
COMMON /CIL/ IPENXsIPENYyIPSyIPCyIFCNyFACR)
1XMySIZESySIZENYSIZELyTICKySTEP » XSFAC»
2IPNARy ITAFEs IRy IRCy IBYTE» IRASEy IMMET
COMMON /PERFHS/ FERFH(2)yNOTFER(2)
5 DATA ZERO /0.0/

C QOUTPUT L/P HEADINGS
IF(PERPH(1)) CALL INVFRT(ZEROsZEROsO)

c

C SET PLOT MODE TO INVISIELE
ISTATE=3

c

C NOW CALCULATE THE INVERSE TRANSFORM
NUMSTP=NUMITN/NUMFTS
IF(NUMSTP.LE.O0) NUMSTP=1
[0 10 I=0syNUMITN

TIME=FLOAT(I)
AMP=REFDIV(NORNUMy ARRNUM(1) y NORDENy ARRDEN (1))

IFCFPERPH(1)) CALL INVFRT(TIMEyAMFry1)
IF(NOTPER(2)) GO TO 10

IF(MODC(IyNUMSTF).EQ.0) CALI INVFLT(TIMEsAMPyISTATE)

C SET FLOT MODE TO VISIELE
ISTATE=2
10 CONTINUE

C NOW FORCE PLOTTING OF THE LAST RESULT
IFC(FERPH(2)) CALL INVPLT(TIME»AMFyISTATE)

c
C NOW RESET PLOT MODE TO INVISIELE AGAIN
" ISTATE=3

C NOW CLOSE L/F OQUTFUT
IF(FERPH(1)) CALL INVFRT(ZEROsZEROr-1)

RETURN
END



SUEBROUTINE INVFRT(TIMEsAMFs»ICNTRL)
PRINTS TIME & AMFLITULDE ON L/P.
HOWEVER» THIS ROUTINE IS INTENDED TO SAVE FAFER
BY SAVING UP THE OUTFUT UNTIL A FULL LINE’S WORTH
IS READY OR THE BUFFER IS TO BE FLUSHED.

ICNTRL < O FLUSH BUFFER
ICNTRL = O (i:i0°UT HEADINGS
ICNTRL > O STORE DATA

aooooonoonn

COMMON /MATELM/ NUMRESyMATRIXsNELEMS
COMMON /PRINTS/ PRINTC(10) s IPRINT o MIic f it}
COMMON /PARAMS/ FAROLD(&)yPARNEW(6)

CHECK IF ICNTRL <O
IF(ICNTRL) 20540510

=0 00

0 IFRINT=IFRINT+2
PRINT(IPRINT-1)=TInE
PRINT ( IFRINT)=AMF

C NOW TEST IPRINT

IFCIPRINT.LT.MPRINT) RETURN
c
C NOW OUTFUT PRINT o -
20 WRITE(45100) (PRINT(I),I=15IPRINT)
100 FORMAT(1H s5(F8.0s2XsF10.,4))

IPRINT=0
c _
30 RETURN
c

C OUTPUT HEADINGS
40 CWRITE(45110) (ITITDC(I)»yI=1,sNTITID
110 FORMAT (1H1,72A1)
WRITEC45120) NUIRESyMARIXyNELEMS
120 FORMAT(’ NUMEBER OF RESULTS =’,I6/
1/ MATRIX ELEMENT ‘»A1,I2/)
WRITE(4+130) PARNEUW
130 FORMAT(’ SAMPLE PERIOD ‘sE13.6/‘ C1’s13XsE13.6/
1/ C2/913XsE13.6/77 G1/y13IXsEL1346/7 G27y13X1E13.6/
2’ SHUNT RESISTOR ‘sE13.6/)
WRITE(4y140)
140 FORMAT (1H r5(4Xr’TIMh’73X9'ArTL11IH!
RETURN
END

COMMON /TITLES/ ITITD(72)sNTITDyITITG(72)syNTITGIMTITLE



SUEROUTINE TIMFLT(XORGsYORGsXMAXsYMAXy ITITLEsNTITLE)
C DRAWS AXES FOR INVERSE Z-~TRANSFORM FLOTS

REAL NINETY
DIMENSION INVTIM(4)syINVAMP(S)yITITLE(1)

COMMON /TIMORG/ XORGTsyYORGTs»SIZEXySIZEYySCALEXySCALEYy
IXINCyYINCY XMAXT» YMAN ‘
DATA ZEROyNINETY»CHSIZE /0.9990.050.4/
DATA INVTIM /2HSAy2HMPy2HLEY2HS /
DATA INVAMF /2HAMy2HI. ¢ 2H] Y y2HUD» 2HE /
C )
C INITIALISE
CALL SETPLT(XORG»YORG»XMAX s YMAX)
c
C DRAW TIME AXIS
XSIZE=AINT(SIZEXXSCALEX)

CALL AXIS(ZEROsZEROyXSIZE»ZEROyZEROY
IXINCyINVTIM(1)+7)

C
C DRAW AMFLITUDE AXIS
YSIZE=AINT(SIZEYX*SCALEY)
HALFY=YSIZE/2.0
CALL AXIS(ZEROy~HALFYsYSIZEyNINETYy-YMAXTy
1YINCy INVAMF(1)9~9)
c

C NOW OUTFPUT THE GRAPH TITLE
CALL. SYMBOL(ZEROy-(HALFY+1.,0)yCHSIZEyITITLE(1),
1ZEROy2XNTITLE)

RETURN
END



SUBROUTINE SETFLT(XORGsYORG»XMAXs YMAX)
C SETS NEW ORIGINS

COMMON /TIMORG/ XORGTyYORGTySIZEX»SIZEYs»SCALEXsSCALEY:
1XINCy YINC» XMAXT » YMAXT

FIRST RESET ORIGIN
CALL FLOT(-XORGTy-YORGTy-3)

a0 oo

NOW STORE NEW VALUES
XORGT=XORG
YORGT=YORG
XMAXT=XMAX
YMAXT=YMAX
XINC=XMAXT/AINT(SIZEXXSCALEX)
YINC=2.,0%XYMAXT/AINT(SIZEYXSCALEY)

C NOW SET NEW ORIGIN
CALL PLOT(XORGTs»YORGT»=3)

RETURN
END



SUBROUTINE ANNOTE
C ANNOTATES GRAFH BY WRITING A COMMENT &
C THE WORD ‘GRAFH’.
c
DIMENSION IGRAFH(3)
COMMON /TITLES/ ITITD(Z2)sNTITDyITIVGC(/)yNTITGyMTITLE
COMMON /TIMORG/ XORGTsYORGTsSIZEXySIZEYs»SCALEXy»SCALEY>
IXINCsYINC» XMAXT » YMAXT
DATA ZFROyCHSIZE /0.050.4/
DATA IGRAFH /2HGRs2HAFs2HH /

C WRITE THE GRAFH COMMENT
HALFY=0 ,5XAINT(SIZEYXSCALEY)
CALL SYMBOL(ZERO»s-(HALFY+2.0)» CHSIZE!
1ITITG(1)yZEROY2XNTITG)

C NOW WRITE ‘GRAPH’
CALL SYMBOL(10.0y-HALFY-3.0yCHSIZEyIGRAPH(1)yZEROé4)

RETURN
END



SUBROUTINE INVPLT(XFOINTs»YFOINTs»ISTATE)

C PLOTS POINTS ON Z-TRANSFORM FLOT

c

COMMON /TIMORG/ XORGTyYORGTsSIZEXs»SIZEY»SCALEXySCALEYy
1XINCy YINC s XMAXT y YMAXT

X=AMIN1 (XPOINT » XMAXT)
Y=SIGN(AMINL1(ARS(YFOINT) s YMAXT) y YPOINT)

CALL PLOT(X/XINCsY/YINCy»ISTATE)

RETURN
END



SUBROUTINE ARRSAV(NORID1yARRAY1 s NORIIZ T

C SAVES ARRAY1l INTO ARRAYZ2.
C ;
DIMENSION ARRAY1(1)sARRAY2(1)
c

NORD2=NORD1

N0 10 I=0yNORD1

ARRAY2(I+1)=ARRAY1(I+1)
10 CONTINUE

RETURN

ENII



REAL FUACTIIN USTART (NORNUM » ARRNUM » NORDIEN » ARRDEN »
1ISTART)
C FINDS INITIAL VALUE OF RATIONAL FOLYNOMTAL IN Z LOMAIN
C BY TAKING LIMIT AS Z TENDS TO INFINITY.

c
c
DIMENSION ARRNUM(1)»AN'RDENC(1)
c
NCFNUM=NORNUM+1
NCFDEN=NORDEN+1
c

C GET FIRST NON-ZERO NUMERATOR COEFFICIENT
DO 10 I=1sNCFNUM
INUM=NCFNUM+1~-1I
VALNUM=ARRNUM (INUM)
IF (VALNUM) 20910520
10 CONTINUE

C NOW GET FIRST NON-ZERO LENOMINATOR COEFFICIENT
20 N0 30 I=1yNCFLEN

IDEN=NCFDEN+1-1I

VALDEN=ARRIENCIDEN)

IF(VALDEN) 4030540
30 CONTINUE

C NOW CALCULATE THE ORDER OF THE INITIAL VALUE
40 ISTART=INUM=-IDEN

C NOW CALCULATE THE INITIAL U LUE ITSELF
USTART=VALNUM/VALIEN

RETURM
END



REAL FUNCTION ARRSUM(NORDERsARRAY)

C SUMS COEFFICIENTS OF ARRAY

c
c

DIMENSION ARRAY (1)

SUM=0.0

N0 10 I=0yNUORDEL
SUM=SUM+ARRAY (I+1)
CONTINUE

ARRSUM=SUM
RETUI
END



REAL FUNCTION VFINAL (NORNUMy» ARRNUM»NORDENy ARRDEN
1IFINAL)
C FINDS FINAL VALUE OF FOLYNOMIAL IN Z DOMAIN.

IFINAL = 1 OKR
IFINAL = 2 INFINITE FINAL VALUE

DIMENSION ARRNUM(1)sARRIEN(1)
START RY EVALU&T G NUMERATOR & DENOMINATOR SEFARATELY ¢ -

0 VALUEN=ARRSUM (NORNUM » ARRNUM (1))
VALUED=ARRSUM (NORDENyARRIOEN(1))

=00 aoo0n

C
C NOW TEST RESULTS
IF (VALUED) 20y30s20

20 VFINAL=VALUEN/VALUED

IFINAL=1
RETURN
c
C DENOMINATOR =0. INFINITE LIMIT IF NUMERATOR<:0
30 IF(VALUEN) 40,350v40
40 UFINAL=0.0
IFINAL=D
RETURN
c

'C NUMERATOR & DENOMINATOR =0.
C DIFFERENTIATE NUMERATOR & DENOMINATOR 3
90 CALL FOLDIF(NORNUMsyARRNUMC(1))
CALL. FOLDIF(NORDENyARRDENC(1))
c
C NOW TRY AGAIN
GO TO 10
END



C FRFLIE

c

SEGMENT 19
REFEAT INTRINSICS

SUBROUTINE FQFLOT(NUMFTS)

C COLLECTS EXFERIMENTAL DATA & STORES IT ON
C DISK FILE ON UNIT &

C

C GET

100
1000

2000

110

1010

c
C NOW

1040
c

C GET

20

1100

2100
c
C NOW
30
1200

INTEGER YES

LOGICAL ANGLEG»AMFLES

COMPLEX VALUE

DATA IABSOLsIDESyIDEGy IRAD /1HAs1HDs 1HDy1HR/
DATA NENDYIZERO /9+0/

DATA YESsNO /1HYs1HN/

DATA FPI /3.1415926/

FACTOR=AL0G(10.0)/20.,0

IATA TYPES

AMFDES=.,FALSE.

WRITE(391000)

FORMAT(’ AMFLITUDE AS ABSOLUTE OR DECIERELS (A/D)$‘’/)
READNNC(2y2000) ITYPE

FORMAT (A1)

IF(ITYPE.NE.IABSOL.AND.ITYFE.NE.IDES) GO TO 100
IF(ITYFE.EQ.IDRBS) AMPDRS=,TRUE.

ANGDEG=.FALSE.

WRITE(351010)

FORMAT(’ PHASE IN DEGREES OR RADIANS (D/R) t7/)
READC25,2000) IANG
IFC(IANG+NE.IDEG.AND.IANG.NE.IRAD) GO TO 110
IF(IANG.EQ.IDEG) ANGDEG=.TRUE.

GET DATA
WRITE(3,1040)
FORMAT(’ GIVE FREQUENCYs AMFLITUDE & FPHASE’/)

DATA

Do 10 I=1yNUMFTS
WRITE(3s1100) I

FORMAT(1H »I6/)

READN(2,2100) TESTFQsAMFyFHASE
FORMAT () v

CHECK IF THESE VALUES ARE REALLY REQUIRED
WRITE(3y1200) TESTFQsAMPyFHASE

FORMAT(’ ARE THESE VALUES CORRECT? !‘/
13(F12.4,2X)/)

READ(2,2200) IANS



2200 FORMAT(AL)
IF(IANS.EQ.NO) GO TO 20
IFC(IANS.NE.YES) GO TO 30

CONVERT FHASE TO RALNIANS
IF (ANGDEG) FPHASE=FHASEXFI/180.0

CONVERT AMPLITUDE TO ARSOLUTE
IF(AMPDBS) AMF=EXP (AMFXFACTOR)

CALCULATE COMPLEX VALUE
VALUE=CMPLX (AMFXCOS (FHASE) y AMFXSIN(FHASE))

NOW WRITE TO DISK
FIRST STATUS
WRITE(S) IZERO

NOW WRITE DATA
WRITE(&) VALUE,TESTFQ

o

CONTINUE

OO0 OO0 0Ooo0o0 00 aon a0

2z
o
b =

WRITE END STATUS
WRITE(6) NEND
RETURN

END



APPENDIX E

FREQUENCY RESPONSE ALGORITHM

E.l FREQUENCY RESPONSE ALGORITHM

The Z- transform variable z is defined as:

z=e (B.1)

where Ts is the uniform sampling period and s is the Laplace variable:
S=oc+Jw (E.2)
To study the frequency response of a digital active network,
a steady sinusoid must be applied, thus making o—= 0 and:

=ejw‘1‘s

Cos wI_ + J Sin wT_ (B.3)
and further by De Moivre's theorem :
z° = Cos r wts + JjSinr w‘I‘s (E.4)

Now consider a rational polynomial in z, A(z):

n
A(z) =§ aizi (E.5)
i=1
m
g bi zi
i=1

Thus A(jw) becomes:

n
A3w) =§ a; [:Cos iWD 4+ Sini wTB:]
.
m
g b, [Cosiw'rs+351niw*rs]
i=1
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n n

- gai Cosiws+j§ai8iniw‘l‘s

i=1 i=1
m m
gbi Cosiws+j§bismiw‘l‘s
i= i=l
= Bll +J 312 (E.6)
Bat 9 By
where:
n
Bll = g a; Cos lWTs
i=1
n
1312 = g ai Sin iw Ts
i=1
m
1321 = g bi Cos iw Ts
i=1l
m
B22 = 2 bi Sin iw Ts
i=1l
The modulus of A(jw) is thus:
l A(j“)l - lBll + 3 Bl2l (E.T)
By +d Bzzl

and the arg. . of A(jw) is thus:

A(3w) = Tan " (By,/B,,) ~Tan ™+ (Byo/By) (2.8)

hence in order to compute | A(,jw)l and <L A(3w), By1s Byor By
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and 322 must be found for each value of w. Further the complex

components of A(jw) may now be calculated:

Q I:A(j W)J = IA (3 w) | Cos ( <L A(F w) ) (E.9)
, g [26w] = |26 W] sm(Lagw) | (@0

This algorithm has been implemented as subroutine ZPOLY.
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APPENDIX F

ANATL.OGUE TRANSCONDUCTANCE AMPLIFTIER

F.l INTRODUCTION

The analogue transconductance amplifier shown in Fig. F.l is
analysed here because of the extensive use made of this circuit in
the experimental machine.

F.2 ANALYSIS

Consider the circuit in Fig. F.l. The operational amplifier
is assumed to be ideal, namely the input impedance tends to infinity
and the output impedance to zero. However, the differential voltage
gain (m) is assumed to be finite initially.

Now, by definition:

V,=m (v1 - vg ) (F.1)

I, = hy i (r.2)
ﬁhere hfe is the transistor current gain, and by observation:

v, = Vﬁe T (F.3)

Vg -é.— (1, + Tp) \ (r4)

where V$e is the base-emitter forward bias voltage drop.
Equations (F.l) to (F.4) may be rearranged to give:

I=g(mVl-V

5 e ) (< L
l+m 1+l75fe
If the voltage gained m > 1 and the transistor small signal
current gain hfe>:>>].then the following limit may be taken :
Lt {12} =87 (F.5)
The two conditions can be easily met by choosing an operational
amplifier with a large open-loop gain (m) and employing a darlington

transistor pair in place of the single transistor shown in Fig. F.l.
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FIG. F.1 Analogue Transconductance Amplifier




_ G.1 INTRODUCTION o

APPENDIX G

MEASUREMENT OF GAIN AND PHASE

The practical measurement of voltage gain and phase oF an

-be set to 1, or removed entirely. If

active or passive, digital or analogue network is given here. The
method was used in Chapter 7 to obtain the practical results.

G.2 VOLTAGE GAIN

The arrangement of equipment to measure the volté.ge gain is

gshown in Fig. G.1 .

From Fig. G.1 the magnitude of VN and VM may be written thus:

V| =¥ h(s) Vo (G.1)
V| = I v (G.2)
If the two attenuators are adjusted so that the voltmeter
reads the same value independent of switch setting then:
[ | = | | ©3)
and hence:
| n(e) | = wav C(Ge4)

may take is limited then

If the range of values which l h(s)
the test arrangement may be simplified. For instance let:

|ne) | ¢ 1 (@)
which will be so in a passive R=C network then the attenuator M may

h(s)

? 1 then the converse

will apply.
G.2.1 Logarithmic Attenuators
In most practical situations the two attenuators will be
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calibrated in decibels. Hence equation (G.4) may be rewritten:
(Md]3 - Nd_.B) / 20
la(s)| =10 (G.6)

G.2.2 Voltage Gain Accuracy
The maximum fractional error in Ih(s)lmay be derived from

- equation (G.4)

10

The expression for the fractional error may also be derived from

- Lw  + ODx (%)
T3 N |

mnax

equation (G.6):
(AjMdB-ANdB ) / 20

lAhésgl ' - 10 ol (G.8)
h(s l
max '

G.> PHASE RESPONSE

The difference voltage Vb from Fig. G.1 is:

VD =VN-VM

The signal source must be sinusoidal for this method to work.

Hence:

Vé = V Cos wt

Let the network introduce a phase shift ﬁﬂ Thus:

VD=N|h(s), V Cos (wt+ F)=-MVecoswt
However from equation (G.4) and after manipulation:

V.| =2 VMlSin (2/2)

D

and therefore:

g = -2 Tan = IVD l | (@.9)

| =[] %)

D

Note thatyl V. | is often measured as peak volts, but I VNI and

V.., as R.M.S. volts.

M

= TA4 -



Thus equation (G.9) can be rewritten thus:

IVD l PP (¢.10)
2 ' 2 i
(32|VM|RMS -lvbl pp )%

ﬁ = =2Tan =%

The derivation of accuracy of }{ from equations (G.9) and (G.10)
cannot be simply found.
G.4 CONCLUSIONS

It has been shown that the gain and phase of a network may be

measured simply. Equations (G.7) and (G.10) are used in Chapter 7.
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