
THE UNIVERSITY OF HULL

'Public Key Cryptosystems

-Theory Application and Implementation

being a Thesis submitted for the degree

Doctor of Philosophy

in the University of Hull

by

Anthony Joseph McAuley, BSc

April 1985

To my Mother and Father,

who given the same opportunity ...

-:.!.

ELECTRONIC ENGINEERING

SUMMARY

Summary of Thesis submitted for PhD degree

by Anthony Joseph MCAuley
./

on

Public Key Cryptosystems

The determination of an individual's right to privacy is

mainly a nontechnical matter, but the pragmatics of providing it

is the central concern of the cryptographer. This thesis has

sought answers to some of the outstanding issues in cryptography.

In particalar, some of the theoretical, application and

implementation problems "associated with a Public Key Cryptosystem"

(PKC) .

The Trapdoor Knapsack (TK) PKC is capable of fast

throughput, but suffers from serious disadvantages. In chapter

~ two a more general approach to the TK-PKC is described, showing

how the public key size can be significantly reduced. To overcome
/

" the security limitations a new trapdoor was described in chapter

three. It is based on transformations between the radix and

residue number systems.

Chapter four considers how cryptography can best be

applied to multi-addressed packets of information. We show how

security or communication network structure can be used to

advantage, then proposing a new broadcast cryptosystem, which is

more generally applicable.

Copyright is traditionally used to protect the publisher

-1-

I
I
!
i
j
1
j

i

/

I
i

I
i

i

SUMMARY

from the pirate. Chapter five shows how to protect information

when in easily copyable digital format.
~-

Chapter six describes the potential and pitfalls of

VLSI, followed in chapter seven by a model for comparing the cost

and performance of VLSI architectures. Chapter eight deals with

novel architectures for all the basic arithmetic operations. I

These architectures provide .a basic vocabulary of low complexity

VLSI arithmetic structures for a wide range of applications.

The design of a VLSI device, the Advanced Cipher
,

Processor (ACP), to implement the RSA algorithm is described in

chapter nine. It's heart is the modular exponential unit, which

is a synthesis of the architectures in chapter eight. The ACP is

capable of a throughput of 50 000 bits per second.

-2-

PREFACE

PREFACE.

Until fairly recently, the science of keeping

information secret remained almost totally unknown outside the

military and diplomatic communities. Even tOday most people only

think of the romantic work of the codebreaker of cryptanalyst,

whose efforts during WWIIprovided such a vital source of

intelligence to the Allies. But in recent years there is

increasing interest in the reciprocal science of the codemaker or

cryptographer. This thesis is concerned with the latter; a

challenging and exciting area of research.

Cryptography unites the diverse fields of electronics,

pure mathematics and computer science. Although this thesis is

written primarily for the electronics engineer, it is necessary

to calIon areas outside their usual knowledge. Therefore,

Chapter 1, as well as introducing the basic cryptographic

techniques, will provide an introduction to Galois fields, number

theory and computational complexity. Those familiar with

cryptography might still find it useful to familiarize themselves

with the notations used in later chapters.

Cryptography has been revolutionized by two developments

in the last ten years. Firstly, the concept of the Public Key

Cryptosystem (PKC), which' greatly enhances the capabilities

offered. Secondly, the pervasive technology of Very Large Scale

Integration (VLSI), which gives substance and'impetus to these

new ideas. The thesis covers' the author's original work in the

-1-

PREFACE

design, application and implementation of cryptography to

business and commercial telecommunication systems. A digest of

these chapters is given below.

CHAPTER 2. Describes a generalization bf the original

Merkle-Hellman trapdoor knapsack PKC. A new scheme is proposed

which allows reduced redundancy and a smaller public key

directory.

CHAPTER 3~ Puts forward a new trapdoor for the general

knapsack PKC. It is based on the transformations between radix

and residue number systems. The security does not rely on

transformations from a superincreasing sequence, which have.

proven vulnerable to cryptanalysis.

CHAPTER 4. Describes how cryptography can efficiently be

applied to information intended for more than one receiver. It

shows how the natural security or communications network

structure can be exploited, together with a ne~ concept: the

broadcast cryptosystem. The latter allows a message to be

deciphered by more than one receiver, if reduc~d, security can be

tolerated.

CHAPTER 5. Describes how cryptography can be applied to

enforce copyright protection on a wide 'range of published

material. The bases of the proposed solutions are the combination

of tamper resistant modules "and a PKC.

CHAPTER 6. Looks it the whole design cycle for a custom

VLSI chip. It draws attention to the particularly important

aspects the author has found in such a design.

CHAPTER 7. Describes a comprehensive model for designing

-2-

PREFACE

VLSI architectures. This model is intended to be adaptable to new

technologies.
~.

CHAPTER 8. Describes some new VLSI architectures for

realizing the basic arithmetic functions used in digital signal

processing. It concentrates on maximizing their

performance and minimizing design complexity.

asymptotic

CHAPTER 9. Describes the implementation of the RSA-PKC in

CMOS. The finished design is a 24-pin DIL package, with Multibus

interface.

CHAPTER 10. Draws conclusions from previous chapters and

makes forecasts for the future.

One important point, which has not changed over the

centuries, , is that security is very diffic.ul t to gauge. The

interpretations drawn should be read with a spark of scepticism.

For in one hundred years, many interpretations may be regarded as

erroneous.

The author wishes to thank all those who directly or

indirectly contributed to this thesis. In particular, I am

grateful to my supervisor, DrR. Goodman, who has been a constant

source of ideas and encouragement. I would also like to extend my'

appreciation to my colleages at Hirst Research Centre for their

guideance on the VLSI apsec~ of my research. Especially to Mike

Rome, Andrew McCabe and Nick Parker.

-3-

CONTENTS

CONTENTS.

1. BASIC TECHNIQUES. 10

1.1 Introduction. 11

1.2 Terminology and mathematical notation. 12

1.3 Mathematical background. 13

1.3.1 Some properties of a ring of integers. 15

1.3.2 Residue arithmetic. 17

1.4 Cryptanalysis and computational complexity. 18

1.4.1 Measure of performance. 19

1.4.2 NP problems. 19

1.4.3 Cryptographically secure. 20

1.5 Cryptographic techniques. 22

1.5.1 Public key cryptosystems. 22

1.6 Practical Public Key Cryptography. 26

1.6.1 DH key distribution scheme. 27

1.6.2 MHtrapdoor knapsack PKC. 28

1.6.3 RSA modular exponential PKC 29

1.7 References. 31

2. A GENERAL KNAPSACK PROBLEM. 36

2.1 Introduction. 37

2.2 Notation. 38

2.3 The general method. 39

'2.4 The effect of parameter selection. 40

-4-

CONTENTS

2.5 Limitations of parameter selection.

2.5.1 Breaking the trapdoor.
. .---'

2.5.2 Breaking the knapsack problem.

2.6 A binary TK-PKC.

2.7 A non binary TK-PKC.

2.8 Conclusion.

2.9 References.

3 . A NEW TRAPDOOR KNAPSACK PKC.

3.1 Introduction.

3.2 Notation.

3.3 The new trapdoor.

3.4 A small example.

3.5 Practical constraints.

3.5.1 Breaking the knapsack problem.

3.5.2 Breaking the trapdoor.

3.6 A secure TK-PKC

3.7 Conclusion.

4. KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

4.1 Inroduction.

4.2 Multidestination addressing.

4.3 Exploiting network structure.

4.4 Exploiting se6urity ~tructure.

4.5 A broadcast cryptosystem.

4.5.1 Use of message redundancy.

4.5.2 A practical broadcast cryptosystem.

-5-

42

43

43

45

45

46

47

49

50

51

52

55

57

57

57

58

59

60

61

61

62

63

64

64

68

5 .

6.

CONTENTS

4.6 Conclusion.

4.7 Reference.

ELECTRONIC PUBLISHING AND COPYRIGHT PROTECTION.

5.1 Introduction.

5.2 Electronic publishing.

5.3 Copyright and cryptography.

5.4 Software protection.

5.4.1 Tamper resistant microcomputer.

5.5 Gener al information security.

5.5.1 Fingerprinting.

5.5.2 Broadcast reception.

5.6 Conclusion.

5.7 References.

LOW COMPLEXITY CUSTOM VLSI DESIGN.

6.1 Introduction.

6.2 Top down design.

6.2.1 Simulation.

6.2.2 Documentation.

6.3 System design.

6.4 Architecture design._

6.5 Circuit design.

6.6 Layout design.

6.6.1 Stick diagram.

6.6.2 Checking.

-6-

70

71

72

73

73

74

75

76

78

78

82

82

83

85

86

87

88

88

89

89

91

95

98

99

6.7 Testing and redesign.

6.8 Conclusion.

6.9 References.

7.GOOD VLSI ARCHITECTURES.

7.1 Introduction.

7.2 VLSI models.

7.3 Performance.

7.4 Design costs.

7.5 Manufacturing costs.

CONTENTS

7.6 Characteristics of VLSI architectures.

7.7 Conclusion.

7.8 References.

8 . ARITHMETIC ARCHITECTURES.

8.1 Introduction.

8.2 Arithmetic on silicon.

8.3 Addition and subtraction.

'8.3.1 Fast carry propagation schemes.

8.3.2 Manchester carry chain.

8.3.4 Carry look-ahead adder.

8.3.5 Conditional sum adder.

8.3.6 Carry bypass adder.

8.3.7 Testing the adder.

8.3.8 Performance comparison: adders.

8.4 Multiplication.

-7-

99

100

·101

104

105

106

106

107

107

108

110

III

112

113

113

114

116

117

121

122

122

122

123

124

CONTENTS

8.4.1 Conventional serial-parallel multiplier. 126

8.4.2 New serial-parallel multiplier. 127

8.4.3 Testing the SPM. 128

8.4.4 Fault tolerance with the SPM. 128

8.4.5 Parallel multiplier. 131

8.4.6 New parallel multiplier. 132

8.4.7 Testing the PM. 132

8.4.8 Performance comparison: multipliers. 133

8.5 Division. 134

8.5.1 Principle of the' serial-parallel divider. 135

8.5.2 A practical SPD. 138

8.5.3 Performance comparison: dividers. 140

8.6 Modular multiplication. 140

8.7 Modular reduction. 144

8.8 Synthesizing the required funtion. 146

8.9 Conclusion. 148

8.10 References. 150

9. DESIGN OF AN ADVANCED CIPHER PROCESSOR. 154

9.1 Introduction. 155

9.2 History. 156

9.3 System design. 157

9.3.1 Modular exponential unit. 162

9.3.2 Interface. 162

9.3.3 Synchronization. 163

9.3.4 Control unit. 165

9.3.5 Stack. 165

-8-

CONTENTS

9.4 Architecture design.

9.4.1 Clock generator and buffer.

9.4.2 Modular exponential unit.

9.4.3 External logic.

9.4.4 Control unit.

9.4.5 Stack.

9.4.6 Waveform generator.

9.4.7 Serial divider and output register.

9.4.8 Other registers.

9.5 Circuit design.

9.5.1 Gated adder and subtractor.

9.5.2 Static and dynamic latches.

9.5.3 Crystal oscillator.

9.5.4 Phase splitter and buffer.

9.5.5 Pads.

9.5.6 Programmable logic arrays.

9.5.7 Random logic.

9.6 Layout.

9.7 Future.

9.8 Conclusion.

9.9 References.

10. SUMMARY AND FORECAST.

PAPERS PRESENTED BY THE AUTHOR.

ABBREVIATIONS.

-9-

167

167

168

174

175

179

180

181

185

185

186

186

186

189

189

193

193

194

207

207

208

211

218

220

-10-

BASIC TECHNIQUES.

1.1 INTRODUCTION.

Many people think they could invent.a perfect cipher.

But a brief look through the history of cryptography (Ref.lOl)

teaches caution. Though many systems have served their purpose

for a brief period of time, the cryptanalyst has always proven

too resourceful. However with the aid of cheap hardware,

increased sophistication and more open discussion, it is now

Possible to talk of a cipher that will remain secure for a very

long time.

This chapter introduces the basic techniques which are

helping to achieve greater confidence in cryptography. It is

aimed at covering the salient features which relate to subsequent

chapters.

No attempt is made to cover the whole spectrum of modern

cryptography. It only scratches the surface of important areas

such as: secret sharing, standards, analogue techniques and

cryptanalytic methods.

The thesis assumes an understanding of the recent

advances in cryptography. Those unfamiliar with these

developments are referred to one of the many excellent digests

available in the literature (Refs.102-111).

-11-

BASIC TECHNIQUES.

1.2 TERMINOLOGY AND MATHEMATICAL NOTATION.
--

The problem of understanding a highly specialized

subject is always hindered by the use of words used only in its

limited field. Hopefully most such words will be explained when

they are used, but the following brief list might be useful.

AUTHENTICITY: Determine the integrity of data and transmitter.

BREAKABLE SYSTEM: A cryptosystem where it is possible to

cryptanalyse the ciphertext.

CIPHERTEXT: Secret form of a message.

CRYPTOLOGY: The. science of transmission security, encompassing

both cryptography and cryptanalysis.

CRYPTOGRAPHY: Science of rendering information intelligible only

to a legitimate receiver.

CRYPTANALYSIS: Science of the techniques used to decipher

ciphertexts, without the secret key.

CRYPTOSYSTEM: Method of hiding information, using a

algorithm and secret key.

ENCIPHER: To convert a message from plaintext to ciphertext.

KEY: Information needed to encipher/decipher

message/ciphertext.

MESSAGE/PLAINTEXT: Information in readable form.

known

a

SECURITY: Computational feaiiblity of deciphering a message,

without the secret key.

-12-

BASIC TECHNIQUES.

A list of abbreviations used in the following chapters

is given at the end the thesis. In addition, a number of

non-standard mathematical shorthands will be used. These are

listed below.

1 (n) = 1 if n =0, else

biggest integer less than or equal to log n

A xor B = A. B" + A".B

A >= B. A is greater than or equal to B.

A <= B. A is les s than or equal to B.

A <> B. A not equal to B.

A » B. A is very much greater than B.

A « B. A is very much less than B.

A = B. A is approximately equal to B.

1.3 MATHEMATICAL BACKGROUND.

A cryptosystem can be thought of as a set of

transformations, from the set of possible messages into the set

of Possible ciphertexts. Each transformation will correspond to

encipherment with a particular key. For cryptographic

applications these transformations must be injective and ideally

bijective. In the PKCs considered here, these transformations are

defined by simple arithmetic functions.

-13-

BASIC TECHNIQUES.

In order to keep the size of the cryptosystem within

bounds, the arithmetic is either done in the Galois fields

GF (2 "n) , GF(p) or the ring R (q) : where p is a prime and q is the

product of primes. This has' the added advantage of making

cryptanalysis more difficult, sin~e it both reduces the amount of

information and introduces an extra element of diffusion. More

information on these algebraic systems can be optained in the

literature (Refs.112-113).

Arithmetic in GF(2"n) is always done mod p(x): where

p(x) is an irreducible polynomial of degree n. Figure l.la gives

an example of how two numbers can be added and' multiplied.

Ari~hmetic in R(n) is done mod nj figure l.lb gives an example of

how the same operations are done here.

1001
+ 1011

0010

ADDITION

1001

- 1011

0010

SUBTRACTION

1001

* 1011

1001
+ 1001
+ '0000
+ 1001

1010011
10001

00000
10001

0110

MULTIPLICATION

-------------------------------•

FIGRE l.la ARITHMETIC IN GF(2"4), WITH IRREDUCIBLE P(X) = 10001.

-14-

1001
+ 1011

10100
- 1111

0101

ADDITION

1001
- 1011

11110
+ 1111

1101

BASIC TECHNIQUES.

1001
* 1011

1001
+ 1001
+ 0000
+ 1001

01100011
- 0000

0000
1111

1111
0000

1001

MULTIPLICATION

SUBTRACTION .

FIGURE l.lb ARITHMETIC IN R(15).

An important difference between the two systems is that

in GF(2
A

n) there are no carries. This allows faster and simpler

implementations, but·· does reduce the desirable element of

confusion. Because of this latter point, systems based on GF(2 A n)

will not be considered here.

1.3.1 Some properties of a ring of integers.
--

In the ring R(n) only integers between a and n-l are

allowed. If the results are larger or smaller than this, then the

answer is found by reducing modulo n.

Division is not strictly a ring operation, since only

-15-

BASIC TECHNIQUES.

integer results are allowed. The equivalent ring operation is

called inversion. For a given number (x), this involves finding
.~.

another number (y) with the property:

x * y = 1 mod n

This operation is not possible if x is a factor of n.

For the ring R(n), a key parameter is the Euler totient

function U(n). This is the number of integers which are

relatively prime to n. Let n be the product of k primes:

k
n = IT p ,then

i=l i

k
U(n) = IT (p - 1)

i=l i

For an integer x, it can be shown that:

U(n)
x mod n = 1, if GCD (x,n) = 1

If x * y = 1 mod n

U(n) - 1
then y = x

1
7 2

10 4

5 8

9 3

11. 6
12

FIGURE 1.2 RING R (13) .

-16-

... 1 .1

••• 1 .2

BASIC TECHNIQUES.

An interesting way of looking at the ring R(13) is shown

in figure 1.2. Each number, going clockwise round the circle, is
- -----

twice (mod 13) the previous number. From this diagram we see:

U(13) = 12, the size of the circle.

3
2 = 8 , at three o'clock.

12 U (13)
2 = 2 = 1 at twelve o'clock (equation 1.1). ,

11 U(13)-1
2 = 2 = 7 where 2 * 7 = 1 (equation 1.2) ,

A more computationally efficient method of finding the

inverse is to use Euclid's extended algorithm (Ref.114). Inverses

always. exist if GCD (x,n) = 1.

1.3.2 Residue arithmetic.

In its residue form a number in R(n) is represented by

its remainders, when divided by the factors of n. For a number x

let:

(i)
x = x mod p

i

Then by the Chinese Remainder Theorem (Ref.llS):

(1) (2) (k)
x <--) x , x ,. •. , x

is a bijective mapping. That is the transformation is one-to-one

for all x's between 1 and n-l.

The ring R(n) can be represented in radix or residue

-17-

BASIC TECHNIQUES.

form: the two forms being homomorphic. The radix form is the

'normal' way of representing a number. However the residue form

has a number of advantages.

In the residue form arithmetic can easily be split up,

allowing greater parallelism. In chapter 3 we shall show how the

residue form of a number can be useful for cryptography. Figure

1.3 shows how the basic arithmetic operations are performed, in

both radix and residue number systems.

mod

15
mod mod

5 3
mod

15
mod mod.

5 3
------------------ --------------------

8 <--) 3 . , 2 8 <--') 3 , 2
+ 11 <--) 1 2 * 11 <--) 1 , 2 ,

------- -------
4 <--) 4 , 1 13 <--) 3. , 1

------- -------

ADDITION MULTIPLICATION

FIGURE 1.3 ARITHMETIC IN RADIX AND RESIDUE FORM.

1.4 CRYPTANALYSIS AND COMPUTATIONAL COMPLEXITY.

Cryptanalysis is concerned with finding an optimum way

of breaking a cipher. This is usually expressed in terms of the

computational complexity of the algorithm used to solve it.

Complexity is measured in terms of time and area: where

area is the number of processors and memory used (Ref. 115).

-18-

BASIC TECHNIQUES~

1.4.1 Measure of performance.

How can we measure the goodness of one algorithm or

architecture against another? A useful shorthand is the 'big 0'

notation. An algorithm f(n) is said to be of order O(g(n)) if

there exists some constant c such that f(n) < c(g(n)). For

example the function:

7
8n

3
+ 3n

7
+ logn , is O(n) and the function

7n.logn + Sn + 9 , is O(n.logn)

An algorithm of higher order of magnitude might have a

smaller constant of proportionality. In which case, the higher

order algorithm might be superior for slower or smaller machines.

However the asymptotic complexity is a good measure, and one that

becomes increasingly important as technology advances.

The use of 'order statistics' allows a designer to

concentrate on the important issues. For example a 32-bit

microprocessor might be very much faster than an 8-bit one, but

an algorithm O(n) for one machine will be O(n) on the other.

1.4.2 NP problems.

Algorithms of O(kAn) have an explosive rate of growth.

There is general agreement that problems requiring' an algorithm

with this exponential growth are intractable (Ref.llS). A problem

of this form is known as a non-deterministic polynomial problem:

-19-

BASIC TECHNIQUES.

denoted by NP.

There are a class of problems which are NP-complete.

That is, if one problem can be solved in polynomial time, they

all can (Ref.IIS). The solution of an NP problem is often the

target which a cryptographer tries to give a cryptanalyst. But it

is important to realize that NP-complete refers to only the

hardest instances of a problem.

1.4.3 Cryptographically secure.

The definition of cryptographic security might be that

it is impossible to cryptanalyse a message. However this is

unnecessarily restrictive; -indeed only the one time pad posseses

this property (Ref.IOI). Consider a computer operating:

1. Using every atom (lOAI OO) in the universe as a Processing

Element.

2. Each Processing Element operating in the time required by

light to traverse a nuclear radius (10A-23 seconds).

3. Been operating since the beginning of the universe (4 * 10Al O

years). -

Using this rather conservative model, the computer could

still not have finished an algorithm requiring 2ASOO steps. For

cryptographic intractablity, a figure of 2
A

128 is sufficient.

-20-

BASIC TECHNIQUES.

0)
r--------- ---I

I
~

Secret I

Key ,
I

'---- -------- - - - - - -- - - ,
K

r-- - - - -
I

M I H
E(M,K) I

I

I ,
~------- _____ ...J

- - - -,
I

I
I

I
D(H ,K}

I
I

I L- ______ _

M
-

I

I
- - - - -I

TRANSMITER ----...... CHANNEL ---4 __ RECEIVER

b)

Public
Key,PKR

..

P r
I

-- -- -_ .. -----\
I

I

M I

E(M, p) I -
1

!

l
I

- - - Shielding

I

H

FIGURE 1.4 ONE AND TWO KEY CRYPTOSYSTEMS.

-21- .

------_._--
I
I
I Secret
I

I Key, SKR
I

I
I S
!
I 1

I
I
I

D(H,S) -
I
I
I
I

.M
-

- ,
I

I

'------ - - -- -- - - -I

BASIC TECHNIQUES.

1.5 CRYPTOGRAPHIC TECHNIQUES.

In modern cryptography, the security of a transmission

lies in keeping the key secure, rather than the whole system.

This not only allows greater confidence in a cryptosystem, but

permits the adoption of stan.dards (Ref. III) .

In a conventional cryptosystem, such as the US Data

Encryption Standard (DES), the keys used for encryption and

decryption are the same (see figure 1.4a). However such a system

leads to a key distribution problem. A network with 2000 users

would require over 2 million keys to allow each user to talk to

every other.

A recent scheme proposed by Diffie and Hellman (R~f.116)

oVercomes the key distribution problem. It does so by using a

different key for encryption and decryption (~ee figur~ 1.4b).

This use of asymmetric keys has become known as a Public Key

Cryptosystem (PKC).

1.5.1 A Public Key Cryptosystem.

The PKC derives its name from the fact that it publishes

the encryption key (Public Key, PK), but keeps the decryption key

hidden (Secret Key, SK). To help understand this principle, an

analogy is useful.

A room is full of English speaking people, none of whom

-22-

BASIC TECHNIQUES.

speak French. The Engish to French half of a language dictionary

is freely available; but someone has destroyed all but one copy

of the French to English half. In this scenario anyone can write

a message in French. However only the person who has the French

to English dictionary could decipher these messages.

In the above analogy the English to French dictionary

represents the encryption function and the-French to English

dictionary the decryption function. It is possible to break the

system by searching the English to French dictionary. But in a

good cryptosystem the analogous

computationally demanding.

operation

Encryption and decryption

mathematically by equations 1.3 and 1.4.

Sender, S: e(Ml,PK) = C
R

Receiver, R: d(Cl,SK) = Ml
R

can

would be too

be expressed

•.• 1 .3

••• 1 .4

Where e(X,K) denotes encryption and d(X,K) decryption of a

message X under a key K. The two functions are not necessarily

different.

A PKC is not only able to offer WRITE ONLY communication

with easy key distribution. The real power of PKC stems froms its

ability to offer READ ONLY communication.

If the sender transforms a message M2 under his own

-23-

BASIC TECHNIQUES.

secret key, anyone can look up the public key to recover M2. But

since only the sender has the secret key,/only he could generate

a message 'deciphered' under it. This operation, which is

equivalent to a written signature, is described,by equations 1.5

and 1.6.

Sender, S: d(M2,SK) = C2
S

Receiver, R: e(C2,PK) = M2
S

It is possible to combine read and write only protection:

Sender, S: e(d(M3,SK) , PK) = C3
S R

Receiver, R: d(e(C3,PK) , SK) = M3
S R

• .• 1 .5

• .. 1 .6

• •• 1 • 7

· .. 1 .8

Using the transformations described above it is possible to

protect against both active and passive eavesdropping.

The position of cryptography in a communication system

is shown in figure '1.5. Source coding must be done before the

cryptosystem, since the cryptosystem hides the structure inherent

in the English language. While error correction coding must be

applied after the cryptosystem, because of the error propagation

effects of good cryptosystem.

-24-

(f)

~
::J
01
H
Z
::r:
u
~
E-i

U
H
(J)

.:x:
o:l

Source
~Coding

\

--

Error H HError HBaseband
• I D . Cryptography C t' E d' 1 1 Modulator! ·1 Transmitter 1-1 ----,

etect Ion or rec Ion nco mg

Channel

ISynchronize

Data I I Baseband
Regeneration'" Decoding I.. 1 Demodulator I- I Receiver

FIGURE 1.S DIGITAL COMMUNICATION CHANNEL.

I
LI1
N
I

BASIC TECHNIQUES.

1.6 PRACTICAL PUBLIC KEY CRYPTOSYSTEMS.

The PKC is more than a nice pedagogical idea. Since its.

inception many practical schemes have been proposed. A summary of

Some of these are given in table 1.2.

Cryptosystem ! Still ! REFERENCES

! Secure?·
===

DH key distribution !
scheme in GF(2~n)

NO ! 117
! sec. 1. 6.1

DH key distribution! YES ! 116
scheme in GF(p)! ! sec. 1.6.1 - __ 1

RSA modular exponen.! NO ! 121-122
scheme in GF(2~n)! ! s~c. 1.6.3 !

---1
RSA modular exponen.!
scheme in R(n) !

YES ! 123
! sec. 1.6.3

Binary knapsack !
(superinc. trapdoor)!

? ! 126
! sec. 1.6.2

General knapsack
(superinc. trapdoor)!

? ! Chapter 2

General knapsack
(residue trapdoor)

? ! Chapter 3

Lu-Lee modular sum
scheme

NO ! 118-120

Shamir knapsack NO! 124
signature scheme

---1
! McE1iece Goppa code !
! scheme

YES ! 125

TABLE 1.2 PRACTICAL PKC'S

-26-

BASIC TECHNIQUES.

Most practical PKC's have proven weak under

cryptanalysis. The security of the McEliece'PKC is difficult to

gauge, because it has received surprisingly little attention.

However, it is still a valid possibilty as no successful

cryptanalysis has been' published. The other three schemes which

have proven resistant are described below.

The notations Rand S will be used in the examples to

represent the receiver and sender respectively.

1.6.1 DH key distribution scheme.

The first and simplest PKC was proposed by Diffie and

Hellman in their original paper (Ref.116). Thi DH key

distribution scheme is based on two reverse transformations:

exponentiation and logarithms. Their original proposal was for

arithmetic in GF(p), but later unwisely extended to GF'(2 An).

Suppose a Sender (S) and Receiver (R) wish to establish

a secret key. First S calculates xAc, sending x and xAc to R. R

then calculates xAd and returns this to S. Both users can now

compute xAcd, which they ca~ use as their key. If x, c and d have

been chosen randomly, a cryptanalyst is faced with a very hard

problem. He must find either 10g(xAc) or log(xAd), since he only

At the present time the best algorithm for finding logs

depends on which field is used. For GF(2
A
n), Coppersmith has

-27-

;1: .

, .

BASIC TECHNIQUES.

shown (Ref.117) how to break the scheme. However the method does

not work in GF(p), where the security is much higher.

Example.

S: 3
A

4 mod 11 = 4

R: 3
A

7 mod 11 = 9

S: 9A4 mod 11 = 5

R: 4
A

7 mod 11 = 5

Giving a session key of 5 •

1.6.2 MH trapdoor knapsack PKC.

Merkle and Hellman (Ref.126) intoduced a PKC based on

the binary knapsack problem. This is a problem of the form: given

a vector of n integers (the weight of each component) and the sum

of a subset of these integers (the total weight), find which

subset was used.

The hardest instances of the knapsack problem are known

to be NP-complete. However for certain vectors (e.g. 1,2,4,8,16)

the solution is trivial. The Merkle-Hellman scheme is based on

using a superincreasing sequence, which has been disguised by

modular multiplication (*W mod Z).

Someone wishing to transmit an n bit message X, would

transmit the sum of those components whose corresponding message

bit were 1. The publisher of A could then use his secret key (W

andz), to transform this back into the easy superincreasing

-28-

BASIC TECHNIQUES.

knapsack problem.

The non-bijective ma~ping not only causes message

expansion, but makes authentication difficult. Also the method

requires a very large public key size. Despite this the scheme

initially proved very popular. The reason was the simplicity of

encoding and decoding, which meant it could run at the same speed

as conventional cryptosystems.

Recently the original Merkle-Hellman scheme has been

broken. Even stronger variants, such as the Graham-Shamir system

(Ref.204) and the iterated knapsack method, have proven

vulnerable. Despite this nobody has yet shown a general method ot

cracking all knapsack problemi. So it is still feasable that a

fast PKC, based on the knapsack problem, can be found.

Example.

R: A' = 8, 4, 2, 1

z = 17, W = 11 --> l/W = 14

A = 3 , 10, 5, 11

S: Message = 1101

Ciphertext = 3 + 10 + 11 = 24

R: 24 * 14 mod 17 = 13 --> 1101

1.6.3 RSA modular exponential PKC.

The most elegant and powerful PKC is that due to Rivest,

-29-

BASIC TECHNIQUES.

Shamir and Adleman (RSA). It uses the exponentiation function for

both 'the encryption and decryption transformations (Ref.123):

with arithmetic done in the ring R(n).

The two exponents e and d are chosen to be inverses

modulo U(n) (see section 1.3.1). This means we can write:

C = M"e mod n

M = C"d mod n

In the RSA-PKC each user publishes a unique e and n, but

keeps their d secret. It is believed that the best way to find d,
,

and hence cryptanalyse a message, is to factor n. However, if n

is chosen to be the product of two latge (say 256 bits) safe

primes (Ref.127), factoring is too computationally demanding.

Therefore the RSA-PKC is still regarded as secure.

Example.

R: n = 5 * 11 = 55

U(n) = (5-1). (11-1) = 40

e = 7 , giving d = 23

S: Message = 1101 = 13

Ciphertext = 13"7 = 7 mod 55

R: Message = 7"23 = 13 mod 55

-30-

BASIC TECHNIQUES.

1.7 REFERENCES.

101 D.KAHN.

The codebreakers, the story of secret writing.

MACMILLAN, 1967.

102 lEE WORKING PARTY.

Privacy and security in civil telecommunications.

lEE, LONDON, SEP.1984.

103 J.A.GORDON.

Recent trends in cryptology.

ELEC. & POWER, VOL.26, NO.2, PP.162-165, FEB.1980.

104 W.DIFFIE & M.E.HELLMAN.

Privacy and authentication: An introduction to cryptography.

PROC. IEEE, VOL.67, PP.397-427, MAR.1979.

105 G.J.SIMMONS.

Cryptography: the mathematics of secure communication.

THE MATH. INTELLIGENCER, VOL.l, PP.233-246, JAN 1979.

106 M.E.HELLMAN.

An overview of public key cryptography.

IEEE COMM. SOC. MAG., VOL.16, PP.24-32, NOV.1978.

-31-

BASIC TECHNIQUES.

107 D.E.DENNING.

Cryptography and data security.

ADDISON WESLEY, 1982.

108 M.WILLETT.

A tutorial on public key cryptography.

COMPUTERS AND SECURITY, VOL.l, PP.72-79, 1982.

109 H.J.BEKER& F.PIPER.

Cipher systems: the protection of communications.

Northwood books, London, 1982.

110 W. P,RICE.

Developments in data security.

NPL TECH. MEMO TTCC 14/83, OCT 1983.

III W.L.PRICE.

Standards for data security, a status report.

ONLINE CONFERENCE "NETWORKS 84", 1984.

112 F.AYRES,JR.

Theory and problems of modern algebra.

MCGRAW-HILL, 1965.

113 G.BRKHOFF & T.C.BARTEE.

Modern applied algebra.

MCGRAW-HILL, 1970.

-32-

BASIC TECHNIQUES.

114 D.E.KNUTH.

The art of computer programming: vol.2, seminumerical

algorithms.

ADDISON-WESLEY, SECOND EDITION, 1981.

115 A.V.AHO, J.E.HOPCROFT, J.D.ULLMAN.

The design and analysis of computer algorithms.

ADDISON-WESLEY, 1974.

116 W. DIFFIE & M. HELLMAN •.

New directions in cryptography.

IEEE TRAN. INFO. THEORY, VOL.22, PP.644-654, NOV.1976.

117 D.COPPERSMITH.

Fast evaluation of logarithms in fields of characteristic

two.

IEEE TRAN. INFO. THEORY, VOL. 30, PP.587-594, JUL.1984.

118 S.C.LU & L.N.LEE.

A simple and effective public key cryptosystem.

COMSAT TECH. REV., VOL.9, NO.1, PP.15-24, 1979.

119 J.M.GOETHALS & C.COUVREUR.

A cryptanalytic attack on the Lu-Lee public key cryptosystem.

PHILLIPS J. RES., VOL.35, PR.301-306, 1980.

-33-

BASIC TECHNIQUES.

120 M.J.KOCHANSKI.

Remarks on Lu and Lee's proposal for a

cryptosystem.

CRYPTOLOGIA, VOL.4, NO.4, PP.204-212, 1980.

121 D.W.KRAVITZ & I.S.REED.

public key .

Extension of the RSA crypto-structure: a Galois approach.

ELECTRONICS LETTERS, VOL.18, NO.6,· PP.255-256, 18-MAR.1982.

122 P.DELSARTE & P.PIRET.

Comment on, extension of the RSA crypto-structure: a Galois

approach.

ELECTRONICS LETTERS, VOL.18, NO.13, PP.582-583, 24-JUN.1982.

123 R.L.RIVEST, A.SHAMIR & L.ADLEMAN.

A method for obtaining digital signatures and public key

Cryptosystems.

COMM. OF ACM, VOL.2l, NO.2, PP.l20-126, FEB.1978.

124 A.M.ODLYZKO.

Cryptanalytic attacks on the multiplicative knapsack

Cryptosystem and on Shamir's fast signature scheme.

IEEE TRAN. INFO. THEORY, VOL.30, PP.594-598, JUL.1984.

125 R.J.MCELIECE.

A public-key cryptosystim based on algebraic coding theory.

JPL DSN PROG. REPORT 42-44, PP.ll4-l16, JAN.-FEB.1978.

-34-

BASIC TECHNIQUES.

126 R.C.MERKLE & M.E.HELLMAN.

Hiding information and signatures in t~apdoor knapsacks.

IEEE TRAN. INFO. THEORY, VOL.24, PP.525-530, SEP.1978.

127 G.R.BLAKLEY & I.BOROSH.

Rivest-Shamir-Adleman public key cryptosystems do not always

conceal messages.

COMPo & MATH. WITH APPLIC., VOL.5, PP.169-l78, 1979.

-35-

-36-

A GENERAL KNAPSACK PROBLEM.

2.1 INTRODUCTION.

One of the most promising PKCs has been the Trapdoor

Knapsack PKC (TK-PKC). The TK-PKC (see section 1.6.2) algorithm

appeared to offer privacy and authentication (Ref.201) at high

data rates (Ref.202). However it was apparent that, when compared

with the RSA scheme (see section 1.6.3), this system had a number

of drawbacks.

The most obvious problem with the TK-PKC is the size of

the public key. At BOK bits per user, this would produce a very

large public directory.

It was suggested in the original Merkle-Hellman paper,

(Ref.126), that a possible means of reducing the key size was to

Use a non-binary knapsack problem. In this paper we shall build a

model for this non binary TK-PKC and try to 'reduce the size of

the public key.

Two other parameters are also considered in the design

of this new system: the data expansion and security. The TK-PKC

expands data by over 100%. This redundancy is unacceptable for

many applications and we shall try to minimize it. More recent

critisism of the TK-PKC has been bn the security (Refs.202-206).

In this chapter we shall just try to achieve a security

equivalent to the original scheme. Improving security is subject

of chapter 3.

-37-

A GENERAL KNAPSACK PROBLEM.

2.2 NOTATION.

a = i'th published knapsack component.
i

a = i'th secret knapsack component.
i

E = ratio of (no. message bits no. ciphertext bits).

g = number of bits on x
i,max

k = number of iterative modular multiplications.

m = i'th modulus in iterative modular multiplications.
i

n = number of knapsack components.

p = number of bits in the public key.

Q = number of bits in the secret key.

S = hard knapsack problem: ciphertext.

S ' = easy knapsack problem.

t = number of bits in transmitted ciphertext.

t' = number of bits in message.

v = number of random bits in the lsbs of each x .
·i

w = i'th multiplier in iterative modular multiplications.
i

x = g-bit message block.
i

y = number of random bits in a'.

z = number of bits in each knapsack component.

-38-

A GENERAL KNAPSACK PROBLEM.

2.3 THE GENERAL METHOD.

A general knapsack problem is one in which you are given

a vector of n integers, together with an integer S equal to their

weighted sum. The problem is to find which weights were used. The

less general binary knapsack problem is one in which the weights

are restricted to 0 or 1. In our case we shall let the weights be

integers within the limits:

g
o <= x < 2

i

Though this general knapsack problem is known to be

NP-compiete (Ref.207) there do exist subsets which are easy to

solve. One such case is when the knapsack components a' are

chosen such that:

a >
i

i-I)
2: a') * x
j=l j) max

• •. 2 .1

Merkle and Hellman described a method of hiding this

super increasing sequence, using k iterations of modular

multiplication. The resulting trapdoor knapsack is hard to solve

without additional information. Each component is given by:

a = ((((
,

*) mod) *) * w) mod m • .• 2.2 a w m . . .
i i I I k k

where GCD w m = I ... 2.3
j j

2 < w < m • •• 2.4
j j

-39-

A GENERAL KNAPSACK PROBLEM.

n
m > 2: a

1 i=l i

g+l(n)+l
m > 2 * m

j j-l

where l(n) = 1 if n = 0, else the smallest integer greater than

or equal to log n.

If all the knapsack components were published, anybne

wishing to transmit a message x could calculate:

S
n

=, L:
i=l

x * a
i i

... 2 .5

The receiver could transform this hard knapsack problem into:

n
S'= L::: x*a

i=l i i

where:
-1 -1

S' = ((((S * w) mod m) * •..) * w) mod m
k k 1 1

which can easily be deciphered (Ref.126).

2.4 EFFECT OF PARAMETER SELECTION.

The superincrea~ing knapsack components are defined

according to the structure shown in figure 2.1. Thus the third

component would have its most significant bit set to 1 followed

by 2g-1 O's and finally y random bits (R3). We know the number of

bits (z) in each component is given by:

-40-

A GENERAL KNAPSACK PROBLEM.

(k-1)(1(n)+g) ng ,~
!<-------------)!<---------------------------)!

l(n)+g! g
!<------)!<-----)!

g g y
!<-----)!<-----)!<----)

--
a'l 00 ...
a'2 00 ..•
a'3 00 .•.

. .. 00 !
• .00!l0 ••• OO!

a'n 00.·.. • .00 100 ••
m1 00... '! •• 00!1!
m2 00. . . 1 !

. !
mk 1 !

RI
RII

Rk

• .00
· .00
· .00

• .00

R1
R2
R3

RN

--

FIGURE 2,.1 COMPONENT SELECTION IN A GENERAL TK-PKC

z = 1(m
k,max

From figure 2.1,

z = Y + g.n + (k-1) . (g +l(n))

From equation 2.5:

z g
S = n * ((2 - 1) . (2 - 1))

max
z+g z g'

= n. (2 - 2 - 2 + 1

log n

• •• 2 • 6

But n = 2 If z » g. then the number of bits transmitted:

t = z + g + l(n)

Substituting for z from equation 4, we obtain:

t = y + g.n + k.(g + l(n)) • •• 2 • 7

But the number of actual message bits transmitted:

t ' = g.n · •• 2.8

-41-

A GENERAL KNAPSACK PROBLEM.

Therefore the ratio of message bits to ciphertext bits is:
/

E = 1 : 1 +k/n + (1/n).g).(y + k.l(nr/)

The number of bits in the secret key is given by:

Q = k.((no. bits in w + (no. bits in m
i i

= 2.k.z

Therefore from equation 2.6:

Q = 2.k.(Y + g.n + k - 1).(g + 1(n)))

The number of bits in the public key:

P = n.z

Therefore from equation 2.6:

P = n.(y + g.n + (k - 1).(g + l(n))

The above results are summarized in table 1.

! ORDER OF MAGNITUDE
!-------------------~---

VAR. n g y k
======!=======================

E ! lin ! 1/g! Y k

------1-----------------------

Q n

2
P n

g y

g y

2
k

k

TABLE 1 EFFECT OF PARAMETERS ON EFFICIENCY AND KEY SIZE.

2.5 LIMITATIONS ON PARAMETER SELECTION.

The choice of parameters is limited by

-42-

••• 2.9

..• 2.10

... 2.11

security

A GENERAL KNAPSACK PROBLEM.

considerations. There are two possible attacks on the general

TK-PKC.

2.5.1 Breaking the trapdoor.

To achieve equivalent security to the Merkle-Hellman

TK-PKC the superincreasing knapsack components must be well

hidden. The two parameters which affect this are k and y. For a

given nand g we set the following limitations:

y * k > 200

k > 1

2.5.2 Breaking the knapsack problem.

•.• 2. 12

... 2.13

By expanding the message into its binary form it is

possible to turn a general knapsack into a binary one. That is

if:

x
i

g-l g-2
= (x * 2) + (x * 2)

i,g-l i,g-2
+ ... + x

i,O

Then we can write a general knapsack problem as:

n g-l
S = L; ~ (a).(x

i=l j=O i,j i,j

where:

j
a = a * 2
i,j i

This is a binary knapsack problem. In order to present a large

equivalent binary knapsack problem we set:

-43-

A GENERAL KNAPSACK PROBLEM.

n * g > 200 ... 2.14

This limit is not sufficient, since not all message bits

are equally well hidden. For example, the least significant bit

(lsb) is only determined by the n lsbs of each message component.

To overcome this weakness the general knapsack must employ a

number of random bits in the lsbs of each message vector. If v is

the number of random bits, then we can approximately compensate

for the effect of a small n (provided n > 2) with the following

limitation:

2
(v+l)

n * ------ > 128
2

.•. 2.15

Let E' be the efficiency with v random bits added to

each message component. Then it can be shown that:

v
E' = E + -

g
••• 2. 16

In the past few years there have b~en rapid advances in

Solving the knapsack problem. Though these attacks have been on

the binary version (g = 1), the techniques can be extended to

cover the general knapsack problem.

The technique (Ref.209) are based on forming a lattice

of rank n appear particularly attractive. If:

-44-

A GENERAL KNAPSACK PROBLEM.

n 1
Density = --------------- < -------

log (max a)
2 j

log n
2

then a binary knapsack problem can be. broken. However for the

general knapsack problem, with the additional restraint of

equation 2.15, finding a suitable lattice is more difficult. In

this case a better measure is to say:

n.(g - v)
Density =

h + 1

2.6 A BINARY TK-PKC.

1
< -------

log n
2

... 2.17

The Merkle-Hellman method is.a general TK-PKC with

parameters:

n = 200 , g = 1 , Y = 200 , k=2.

With these parameters we obtain (equations 8.12-8.15):

E = 2.09, Q =1628 bits, P = 81400 bits.

2.7 A NON BINARY TK-PKC.

Using the assumptions of section 2.6 we can choose an

alternative set of parameters. The additional guides used to .

choose them are:

a) Only the receiver stores Q, so its size is not critical.

b) All users must either store or be transmitted P, so its size

should be minimized.

-45-

A GENERAL KNAPSACK PROBLEM.

c) Data expansion is a waste of resources, therefore minimize E.

~.

Combining these observations with those of table 2.1, an

alternative set of parameters are chosen:

n = 7 , g = 32 , Y = 100 , k = 2.

With this new set of parameters we find:

E =1.76 , Q = 1436 bits, P = 2513 bits.

In order to compensate for the effect on security of the

small n (see section 2.5.2) we must have approximately 5 random

bits (v) in the Isbs of each message (equation 2.15). This

reduces the efficiency (equation 2.16) to:

E' = 1.92

2.B CONCLUSION.

In this chapter we have demonstrated a non-binary TK-PKC

with equivalent security.to the Merkle-Hellman method. It has the

advantage that the resulting public directory would be 35 times

smaller. It also has less message expansion.

Recent improvements in cracking the knapsack problem

(Refs.20B-209) have been dramatic. These polynomial time

solutions·have been successful against the binary TK-PKC. As the

general system is no more secure than the binary problem, this

puts into question the use of this type of knapsack in

cryptography.

-46-

A GENERAL KNAPSACK PROBLEM.

A particular weakness with the TK-PKC is the trapdoor
~/

information. In the next chapter we shall describe a system not

based on superincreasing sequences.

2.9 REFERENCES.

201 P.SCHOBI & J.L.MASSEY.

Fast authentication in a trapdoor-knapsack public key

cryptosystem.

IEEE SYMP. ON INFO. THEORY, LES ARCS, FRANCE, JUN.1982.

202 P.S.HENRY.

Fast decryption algorithm for the knapsack cryptographic

problem.

BELL SYSTEMS TECH. J., VOL.60, PP.767-773, MAY-JUN. 1981.

203 T.HERLESTAM.

Critical remarks on some public key cryptosystems.

BIT, VOL.18, PP.493-496, 1978.

204 A.SHAMIR & R.E.ZIPPEL.

On the security of the Merkle-Hellman cryptographic scheme.

IEEE T. ON INFO THEORY, VOL.26, PP.339-340, MAY 1980.

-47-

A GENERAL KNAPSACK PROBLEM.

205 Y.DESMEDT, J.VANDEWALLE & R.GOVAERTS.

A critical analysis of the security of knapsack public key

cryptosystems.

IEEE T. ON INFO THEORY, VOL.30, PP.60l-6ll, JUL.1984.

206 I.INGEMARSSON.

A new algorithm for the solution of the knapsack problem.

IEEE SYMP. ON INFO. THEORY, LES ARCS, FRANCE, JUN.1982.

207 E.HOROWITZ & S.SAHNI.

Computing partitions with applications to the knapsack

problem.

J. OF ACM, VOL.2l, PP.277-292, APR.1974.

208 A.SHAMIR.

A polynomial-time algorithm for breaking the basic

Merkle-Hellman cryptosystem.

IEEE T. ON INFO THEORY, VOL.30, PP.699-704, SEP.1984.

209 E.F.BRICKELL.

Solving low density knapsacks in polynomial time.

IEEE SYMP. ON INFO. THEORY, ST.JOVITE, CANADA, SEP.1983.

-48-

-49-

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

3.1 INTRODUCTION.

,~

This chapter presents a new trapdoor knapsack public key

cryptosystem (TK-PKC). The encryption equation is based on the

general modular knapsack equation (see chapter 2), but unlike the

Merkle-Hellman scheme the knapsack components are not derived

from a superincreasing sequence.

The trapdoor is based on being able to transform between

the radix and modular representations of the components, vi"a the

Chinese Remainder Theorem (Ref.115). The system bears a

resemblance to the Lu-Lee system (Ref.118), but whereas their

cryptosystem is linear and has been shown to be insecure

(Refs.119-l20), ours is based' on the general modular knapsack

equation, which to date has not been generally broken.

The new TK-PKC has a number of advantages over the

original system other than security. Firstly, the public key size

is reduced from 80K biti to 14K bits. Secondly, the redundancy is

reduced from over 100% to around 25%. Compared with the RSA

scheme (see section 1.6.3) its main advantage is speed.

Typically, knapsack schemes are capable of throughput speeds

which are several orders of magnitude faster than the RSA scheme.

-50-

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

3.2 NOTATION.

a = i~th published knapsack component.
i ---

a = i~th secret knapsack component.
i

A = published knapsack vector = a

A~ = secret knapsack vector
~

= a ,
1

, a , ... , a) .
1 2 n

~ a ~) • a , . . . ,
2 n

E = ratio of (no. message bits: no. ciphertext bits).

g = number of bits on x
i,max

h+l = minimum number of bits in any p .
i

n = number of knapsa.ck components.

P = a.set of n distinct primes = (p
1

p = h+l bit prime number.
i

n
p = 11 p .

i=l i

PK = number of bits in the public key.

r = maximum number of bits in
n
::La
j=l j

S = hard knapsack problem: ciphertext.

S~ = easy knapsack problem.

p ,
2

(i)

. .. ,

) .

p).
n

v = number of random bits in the lsbs of each x •
i

W = a secret modular multiplier; relatively prime to p.

x

x
i

= n * g bit message vector = (x , x
1 2

= g-bit message block.

-51-

, ... , x).
n

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

3.3 THE NEW TRAPDOOR.

n
S = L:

i=l

The general modular knapsack problem is given by:

a . x mod p
i i

.•. 3 .1

When used for cryptography, the a's are the n published

knapsack components, p is a published modulus, and the x's are

the message bits. In the binary knapsack the x's are a or 1, but

in the general knapsack they are g bit numbers. The subset sum S

is the cryptogram, which only the legitimate user is able to

unwind back to the original x's.

. Let (p , p , , p) be a set of primes whose product:
1 2 n

n
p = IT P

i=l i

(i)
If a = a mod p

j j i

is the residue of the j'th knapsack component modulo the i'th .

prime. Then, by the Chinese Remainder Theorem:

(1) (2) (n)
a <----) a ,a ,. .. , a

j j j j

is a bijective mapping. That is, the transformation is one-to-one

for all a's between 1 and p-l. Thus if the factorization of p is

kept secret, then only the legitimate user will be able to

transform the radix representation of the knapsack components

into their modular representation. This forms our secret new

-52-

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

trapdoor. Let us now choose a set of n knapsack components and

express them in both

(1)
a <----> a

1 1

(1)
a <----> a

2 2

A' =

(1)
a <----> a

n n

radix and modular form:

, a
1

, a
2

, a
n

(2)

(2)

(2)

~-,,/

(n)
, ... , a

1

(n)
, ... , a

2

(n)
, ... , a

n

••• 3 • 2

Let us then disguise the trapdoor by forming a new set of

knapsack components, via the modular multiplication:

a = a w mod p ..• 3. 3
j j

where wand p are relatively prime. Under this condition we know

there exists an inverse (see section 1.3.1) transformation:

-1
a = a w mod p

j j

We now publish p, and the modified knapsack components

(A) in radix form. This is the public key. The factorization of p

and the integer ware kept secret, and hence so is the modular

representation of the components (A').

Now let p
i,min

h
> 2

that is, the primes are at least h+l bit numbers.

-53-

••• 3 • 4

Let

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

x
i,max

g
< 2

that is, the message blocks are g bit numbers.

And let n
~ a
j=1 j

(i))
)
)max

r
< 2

that is, the columns of A' sum to an r bit number.

••• 3 .5

•.• 3 .6

In order to ensure that the encryption equation has a

unique decryption, we must ensure that the message to ciphertext

transformation X --) S is injective. To guarantee this we must

have:

h)= r + g •.• 3 • 7

This also ensures that modular multiplication is equivalent to

matrix multiplication:

(1) (n) ((1) (2) (n))
(S ' S ') (x) (a

,
) , . . . , = , . .. , x ,a , . .. , a

1 .n (1 1 1)
()
(·)
(·)
(·)
()
((1) (2) (n))
(a

,
) ,a , . . . , a

(n n n)

i.e S' = X . A'

If the matrix (A') is non-singular, then:

-1
X = S ' • A' .•• 3 .8

The cryptosystem then operates as follows. A user

wishing to send us a message forms the ciphertext:

-54-

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

S = x .a + x .a + . . . + x .a) mod'p
1 1 2 2 n n

From equation 3.1 we compute:
/ .. /

-1
S ' = S . w mod p

Then, through our known factorization of p, we can tranform:

(1) (2) (n)
S' (----> (S' , S' , ... , S')

-1
We then apply X = S' . A' and hence recover the message.

The cryptanalyst must either break the factorization of

p, attack the trapdoor in some other way (see section 3.5), or

solve the general knapsack problem (see section 2.5.2).

3.4 A SMALL EXAMPLE.

In order to help understand the ideas of the last

section, a small example is now presented. The example is of

course too small for security.

Let n=3 and define P=(37,41,43), hence p=65231, and h=5

(equation 3.4) . Choose g=2, that is, the message components are

two bit numbers. This dictates that r=3 via equation 3.7

(h>=3+2). Choose n=3 knapsack components which satisfy eqation

3.6, that is, the columns of A' add to less than eight, and

express in both modular and radix form:

-55-

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

a = 3 , 1 , 1 <----> 125174
1

A' = a = 1 5 3 <----> 151664 // , ,
2·

a = 2 . , 1 , 2) <----> 122509
3

Now choose w=6553 which is relatively prime to p=65231.

Perform the modular multiplication of equation 3.3, and publish

the resulting knapsack components:

a = 50628
1

a = 59907
2

a = 3560
3

and the modulus p = 65231.

-1
Compute the invese w = 6553 (see section 1~3.1), and invert A':

-1
A' = (1/16) +7 -1 , -2

+4 , +4 , -8

-9 , -1 , +14

To transmit a six bit message X=(1,2,3) a user computes

the ciphertext:

S = (1.50628) + (2.59907) + (3.3560)

= 181122

= 50660 mod 65231
-1

Using the secret inverse w the receiver computes:

S' = 50660.2618 mod 65231

= 13257 mod 65231

-56-

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

Using,the secret factors of p, the receiver transforms this into

modular form:

S' = (11 , 14 , 13) <----> 13257

From equation 3.8, the receiver computes:

16.X = (11 , 14 , 13) +7 , -1 -2

+4 , +4 , -8

-9 , -1 , +14

giving X = (1 , 2 , 3) as transmitted.

3.5 PRACTICAL CONSTRAINTS.

The choice of parameters (n, r, g and h) is limited by

security considerations. Their are two possible attacks on

security that we shall consider.

3.5.1 Breaking the general knapsack problem.
--

The general knapsack problem is identical with that of

the last chapter. Therefore we must have the same limits (see

section 2.5.2). If v is the number of random bits in the Isbs of

each x, then:

n * g > 200 • . • 3 • 9

2
n * (v+l) > 256 • • • 3 .10

3.5.2 Breaking the trapdoor.

From equation 3.3 we can write:

-57-

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

a - a
,
.w = 0 mod p · .• 3. 11

j j

a
, - a .w = 0 mod p /"

· •. 3 .12
1 1

We can now calculate (eqn.3.11 and eqn.3.12):

a.a - a.a = 0 mod p
j 1 1 j

writing this in modular form we get:

(i) (i)
a • a - a . a = 0 mod p · .. 3.13

j 1 1 j i

(i)
If the number of combinations of a were too small eqn. 3.13

j

could be used to break the new TK-PKC. Therefore we set a limit:

r >= 63

In order to stop a factorization attack, we must set:

h >= 255

3.6 A SECURE TK-PKC.

The efficiency of the cryptosystem is given by:

h + 1 + v
E = 1

g

if we assume all primes are exactly h + 1 bit numbers.

From equation 3.7 we get:

E = 1
g + r + 1 + v

g

Therefore to minimize E, r and v should be kept small.

The size of the public key (PK) is given by:

-58-

... 3.14

· •. 3.15

•.• 3.16

A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM.

PK = n.(n + l).(h + 1) ... 3.1 7

In order to reduce this, n should be kept small.

From the above arguments and the security restraints of

section 3.5, we end up with the following parameters:

n = 7 , r = 63 , h = 255 , g = 192 , v = 5.

Which from equations 3.16 and 3.17 give:

E = 1 : 1.36 , PK = 14336 bits.

3.7 CONCLUSION.

In this chapter we have presented a new public key

cryptosystem based on the general modular knapsack problem. Its

security is not based on disguising a superincreasing sequence,

but on the difficulty of factoring a number with seven 256 bit

prime factors, and on a knapsack problem with a typical

efficiency of 1:1.36 and block size of 1736 bits.

The knapsack nature of the system ensures that fast
.-

encryption and decryption are possible. In addition the size of

the public key, which is typically 14K bits, is not excessive.

It may be possible to attack the trapdoor information

more directly, but we can see no productive method of doing this.

The only successful attacks on qense trapdoor-knapsacks to date

have been on the security of thesuperincreasing sequence. Our

method does not require this. However, it may turn out that all

injective trapdoor knapsacks are solvable in polynomial time, in

Which case all such schemes are useless for cryptography.

-59-

C H#~~~T E ~~ .

·4

-60-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

4.1 INTRODUCTION.

-----Using a PKC any two users of a network can communicate

securely, without the problem of key distribution (see section

1.4). This overcomes one of the big drawbacks to the use of

cryptography. However, there are many cases where the same

message needs to be sent to a group of users. The application of

cryptography would then severely degrade the network.

In this paper we consider the problem of how to securely

set up a broadcast transmission in an electronic network

environment. Such networks include broadcast satellite and packet

switched digital data services. We assume that any user may take

the role of broadcaster, and that the broadcaster wishes to send

an identical message to any subset of other users.

4.2 MULTIDESTINATION ADDRESSING.

Through his paper in 1978 (Ref.40l), J.McQuillan

intoduced three enhanced addressing modes:

1. Logical addressing, where a permanently assigned address can

denote one or more physical address.

2. Broadcasting, where the message is 'addressed to all

subscribers.

3. Group addressing, in which the message carries a list of

addresses.

These three modes were shown to provide more flexibility, greater

-61-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

reliability and a reduction in network traffic.

~

The application of these enhanced addressing modes to

cryptogaphic networks is far from straight forward. The problem

can be overcome by distributing a session key. But this does not

necessarily reduce the order of magnitude of the problem. It

would be particularly inefficient for a large number of

receivers or a small message.

An alternative solution is to trade complexity in terms

of the number of keys in the system rather than the distribution

time. In this case however there is an explosive growth in the

number of keys required.

For a network with n users, a message intended for a

subset k of these would require either:

a) O(k) transmissions.

b) O(n!) keys per user.

If the application of cryptography is not to severely degrade

system performance, a more efficient solution must be found.

4.3 EXPLOITING NETWORK STRUCTURE.

If the network has the form of a ring, such as in a

local area network, we can consider the following distribution

method. The broadcaster enciphers the session key and a list of

station addresses under the public key of the first receiver, in

-62-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

say -a clockwise direction. This receiver deciphers the

information, and then re-enciphers under the public key of the
-~

next receiver on the list.

The information is thus passed from user to user round

the ring, with only the intended subset of users able to decipher

the session key and addresses. Additionally, each of the intended

receivers can 'sign' the re-enciphered information, using the

signature property of a PKC, before passing the packet on. After

the packet has been round the ring, the broadcaster can check to

_ ensure no user has missed the message: either intentionally or

because of error.

4.4 EXPLOITING SECURITY STRUCTURE.

An alternative method of exploiting structure exists if

the network' of users have a fixed security structure. For

example, if the users form a layered hierarchical structure then

security can be arranged in layers, with a pair of keys for each

level in the hierarchy. Thus the level 1 key would only allow

level 1 users to decipher a message. The level 2 key would allow

both level 2 and level 1 users to decipher, and so forth. Any

particular level therefore possesses the keys to its own level

and those below it.

With the above arrangement the maximum number of keys

would be O(n). If this is too large, a trade-off of the number of

-63-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

keys for the number of transmissions is possible. For example

with O(logn) keys only O(logn) transmissions are needed.
~

4.5 A BROADCAST CRYPTOSYSTEM.

Each user's public key defines a one to one mapping

between a particular message and ciphertext. The secret

decryption key defines the inverse mapping (see section 1.3). It

is possible that two keys might define the same mapping, for a

particular ciphertext. That is, the same ciphertext will produce

the same message under a different key. This would allow the

broadcast of a session key in a single" transmission .

. .

There are, however, a number of reasons why the above

scheme is not practical as it stands. Firstly, no such session

key may exist between a group of users. Secondly, if such a key

exists, there might be too few for security. Finally, there is

the problem of how to find these session keys.

4.5.1 Use of message redundancy.

A given ciphertext does not have to decipher to exactly

the same message for each intended receiver, but rather the

subset of bits that forms the session key does. As an small,

example consider the problem of transmitting a 2-bit session key

to two of three receivers.

-64-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.
oj

PK1 _ PK2 ..
_SK1 SK2 ..

000

001

01 0

o 1 1

1 0 0

1 0 1

11 0

11 1

U1 U2
b)

S Kn ... Secret key of Un I

PKn ... Public II

+R· Add redundancy

-R· Sub. M

r --------------------,
U4 I

PK2 I

I

•
I

I
I
I

E() ;

+R I---
00 001 I () 11

I
1
1

L
_________________ ..1

r -- --------------------,

I
I

I

I
I

I

I
I

I

I

S K 1 U1 :
l

DO 000 -R 00

I
I

r- - - - -------------
U2 I SK2 I

I

~ I
I
I
I

o() DOT -R 1 00
I
I
I
I - - - - - -- -------------

SK3 U

\

o () 110 -R 11

I L.. _ _ _ _ _ _ _ _ _ _ _ _ _ ________ I

FIGURE 4.1 SESSION KEY BROADCAST TO 2 OF 3 RECEVERS.

-65-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

If each receiver mapping (Ul-U3) is as shown in figure

4.1a, then figure 4.1b shows how the session key (00) can be

securely broadcast.

Though it is intuitively reasonable that there are more

session keys, it is important to know approximately how many

there are. This will allow us to gauge the security of the

system. Let:

m = number of bits in message.

c = number of bits in ciphertext.

r = number of redundant bits.

k = number of receivers.

When enciphering an (m-r) bit session key, there will be

2~r different ciphertexts for a given public key. The probability

that one of these ciphertexts would be produced under another

public key is: 2~(r-c). For k users the probability is~

2~(r-c)(k-l). The probability that none of the 2~r ciphertexts

will yield a suitable session key, P(fail), is given by:

r
(r-c).(k-l))2

P(fail) = 1 - 2)
)

As a first order approximation:

r + (r-c).(k-l)
P(fail) = 1 - 2

Therefore the probability of one session key being suitable:

c + k. (r-c)
P(success) = 2

Of the 2~(m-r) possible session keys, let Q be the

-66-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

number that are correctly deciphered by all k receivers. It

follows that:

(m-r)
Q = 2 * P(success)

m + c.(l-k) + r.(k-l)
Q = 2

Let Q = 2 A b, then:

b - m + c. (k-l)
r = -----------------

If we assume a bijective mapping (m = c) then:

b+m.(k-2)
r = -------------

k-l
..• 4 .1

For security it is important to have a sufficiently

large session key and choice of session keys. If we say both must

have a selection.of at least 2
A

v, then:

b = m - r = v ••• 4 .2

Substituting into equation 4.1 we obtain:

(m -v).(k-l) = v + m.(k-2)

Therefore in order to have a practical cryptosystem:

m = v.k ... 4.3

Equation 4.3 tells us that for a given message size (m),

the number of receivers (k) who can obtain a session key in one

broadcast is inversely proportional to the security (v). That is

we have a degradeable cryptosystem, where it is possible to trade

security with the number of receivers.

-67-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

4.5.2 A practical broadcast cryptosystem.

~/

Consider how the ideas of the last section can be

applied to a trapdoor knapsack PKC (see section 1.6.2). Let Cl

and C2 be the ciphertexts formed by two users keys:

m
Cl = ~

j=l

m
C2 = L:

j=l

where x

a
j,l

a
j,2

* x
j , 1

* x
j,2

= bit j of
j, k

message to user k,

a = j'th knapsack component. of
j, k

user k.

We require Cl = C2, and the ~irst (m-r) bits of each

message to be the same. Therefore:

m-r
~
j=l

or

2m-r
L:
j=l

where

and

(a - a }.x
j,l j,2 j,l

a .x = 0
j j

a = a - a
j j,l j,2

= a
j,l

= a
j-r,l

x = x
j j,l

= x
j-r,l

m
+ ~ a

j=m-r+l j,l

for j = 1

for j = m-r+l

for j = m+l

for j = 1

for j = m+l

-68-

.x
j,l

to j

to j

to j

to j

to j

m
+ L: a

j=m-r+l j,2

= m-r

= m

= 2m-r

= m

= 2m-r

.x = 0
j,2

••• 4 .4

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

To find a solution to equation 4.4 does not seem

practical, since it would be even more difficult than breaking

the knapsack cryptosystem. However it is possible to exploit the

fact that there is not just one solution, but approximately 2 A b.

Consider what happens if we combine two vectors. That

is, we force two message components to be the same: either both 1

or both O. When we do this the number of knapsack components is

reduced by one, but the number of probable solutions is reduced

by half. So after f combinations, there will be 2m-r-f components

and approximately 2 A (b/f) solutions.

To help explain the principle, consider a small example.

We wish to distribute a 3-bit key to 2 users whose public keys

consist of 8 knapsack vectors:

a = (123, 92, 233, 61, 11, 188, 103, 134)

b = (132, 210, 177, 70, 201, 107, 88, 54)

We want the first three message bits to be the same. This forces

us to combine the first three components of the two receivers.

Combining an extra five terms we get 8 new knapsack components:

c .- a - b = -09
1 1 1

c = a - b + a = +16
2 2 2 8

c = a - b - b = +02
3 3 3 8

c = a = +61
4 4

-69-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

c = a + a - b = -02
5 5 6 5

c = -b = -88 /./

6 7

c = -b = -50
7 4

c = a - b = -04
8 7 6

It is now possible to find components that satisfy equation 4.4:

61 + 02 -50 -09 -04 = 0

Therefore all terms in new components 1, 3 , 4, 7 , 8 must be 1.

That is:

ax = (1 , 0 , 1 , 1 , 0 , 0 , 1 ,0)

bx = (1,0,1,1,0,1,0,1)

The ciphertext which results when either of these vectors is

enciphered is 520. Both receivers will obtain the session key

(1,0,1).

In a practical system we would choose f=b, giving a 50%

chance of solution. Clearly the algorithm used to select the

combinations should be random. If it is not the process could be

duplicated by a cryptanalyst.

4.6 CONCLUSION.

It has been shown that in a packet switched network,

considerable savings in transmission time, that is , pac'ket hops,

can be achieved using multi-addressed packets. In this chapter we

have considered the problem of secure communication of such a

-70-

KEY EXCHANGE IN A BROADCAST ENVIRONMENT.

broadcast.

Three possible solutions were put forward, which are not

mutually exclusive. Taking advantage of the network structure and

security hierarchy were two of the schemes. However, these can

only be applied in certain cases.

A more general solution to the broadcast problem was

also put forward. It uses redundancy between the messagetext and

ciphertext. The method effectively trades security with

redundancy, number of users, and transmission time.

Finally we present a practical broadcast cryptosysem

based on the knapsack PKC. It is applicable to any knapsack

cryptosystem, including our own given in chapter 3.

4.7 REFERENCE.

401 J.M.MCQUILLAN.

Enhanced message addressing capabilities for computer

networks.

PROC. IEEE, VOL.66, NO.ll, PP.1517-1527, NOV.1978.

-71-

CHJ~ ~)T E~~

5·

-72-

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

5.1 INTRODUCTION.

Books, films, television, records and computer software

can all be stored and distributed in digital form. Electronic

publishing, where information is stored in data banks and

distributed over a convenient communication channel, offers many

advantages over traditional methods of distribution. However if

it is to replace other means of publishing, it is necessary to

provide a means of rewarding the Author, Producer, Musician or

Programmer.

Copyright is traditionally used to protect the publisher

from the pirate. In this chapter methods of enforcing the

copyright law will be considered. In particular the application

of a PKC to the problem.

5.2 ELECTRONIC PUBLISHING.

Writing programs for personal computers is now a big

business, approaching the level' of more traditional published

information: such as books, television and films. In the next ten

years an increasing proportion of this information will be

distributed in digital form. This offers many advantages:

1. Ease of distribution - e.g. over telephone lines.

2. Less redundancy The size of a market for books is often

unpredictable. But since copies can be quickly and cheaply made,

unnecessary copies need not be produced.

-73-

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

3. Fast update - The lag between supply and demand can be broken.

Electronic publishing does have some disadvantages. Some

people might like the feel of vinyl or not like reading from a

screen. But though many of these ergonomic problems can be

overcome, one major problem remains: how to stop people making

illegal copies.

In order to make publishing worthwhile, it must be

possible to reward those responsible for developing the product.

- However information stored i~ digital form is very much easier to

copy, making copying more finaDcially rewarding.

5.3 COPYRIGHT AND CRYPTOGRAPHY.

Copyright is used to give the sole legal right to print,

publish, perform, film or record a literary, artistic or musical

work (Ref.50l). This legal deterrent could easily be extended to

cover the newer forms of information, such as computer ~oftware.

However the ease and cheapness with which electronic information

can be copied, suggest that better methods of circumventing the

pirate are needed. In the field of computer software, some

estimates say as few as 1 in 10 copies may be legally obtained.

Cryptography has been used' for centuries to secure

communications over a public link. But because the receiver

cannot be relied upon to keep the information secure, this

-74-

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

technique cannot be directly applied to copyright protection.

There have· been a number of papers on how cryptography

can be applied to protect software (Refs.502-504). However, these

methods are not generally applicable to the wider field of

copyright protection.

5.4 SOFTWARE PROTECTION.

There are at present a wide variety of ways of

protecting software, none of which offer 100% protection. For

disc based software these include: non-standard formatting,

corrupting the operating system, nibble counting, and using

unique timing charcteristics of discs. However, none of these

methods have proven sufficient deterrent to the skilled pirate.

Though the methods described above do undoubtedly stop

some illegal copying, they have some serious disadvantages. These

include being uneducational, and not allowing modifications to a

program if it does not work. However, the most important drawback

is that the legitimate user is unable to make backup copies.

An improved scheme is bas~d on the use of a dongle. The

dongle is a piece of hardware, varying from a linear feedback

shift register to a dedicated microcomputer (Refs.503-504), that

is repeatedly interrogated by the software. The software is

written so that it will not work if the dongle is not present.

-75-

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

Using Tamper Resistant Module (TRM) technology

(Ref.505), the dongle is not difficult to protect. However, it is

possible to find and delete those parts of the program which

inspect the dongle. Additional disadvantages are the cost of the

dongle and the difficulty of converting a program to read a

dongle.

A recent improvement on the dOngle concept is the Intel

27916 KEPROM (Ref.502). It is designed to prevent the use of a

PROM programmer copying EPROM based software. Before allowing the

contents to be read the KEPROM requires the presence of: a key

stored in write only memory, and another similar chip. These

conditions prevent direct use of a PROM programmer. Though more

sophisticated attacks would succeed, these would be considerably

more difficult.

5.4.1 Tamper resistant microcomputer.

The Tamper Resistant Computer (TRC) proposed here is a

mix of three technologies: a single chip microcomputer, a tamper

resistant chip and a PKC. It is basically an extension of the

KEPROM idea to encompass a whole computer. Figure 5.1 shows the

function of the TRC.

-76-

z
o
H
E-t
U
~
E-t o .p:;
~

~
p:;

~
E-t
~
o
U)

o z
~

t!)
Z
H
::r:
U)

H
H
0:1
~
~

U
H
Z o
p:;
E-t
U
~
H
~

PUBL ISHER
r- - -\~ - - - -

I

PROGRAM

---,

I -JE()

- - j

PK R

RECEIVER .

KEYBOARD

r----

- I D() 1-----t_1 COMPUTER hoe -ICO-PROC.

I
I
I
I
I
I

SK R
L __ _

I Y.D.U. .. I

I
IT.R;C.

.J

FIGURE 5.1 TAMPER RESISTANT COMPUTER.

,
" " ,

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

A trusted manufacturer could produce the TRC with their

built in decryption key. When sold, the associated public key is

released and the secret key is kept safe or even destroyed. The

software publisher could then encipher the program under the

recievers TRC public key. Only the owner of that particular TRC

could then run the encrypted program.

If the output is a complex function of the input, it

would be impossible to attack the security of this system:

assuming the security of the PKC and TRC. Backup copies are also

simple to produce. If the TRC malfunctions, the manufacturer

could verify and replace it.

The main problem with the TRC is that it would be

technologically demanding and expensive. However, in ten years

time it is likely that this scheme would be economic.

5.5 GENERAL INFORMATION SECURITY.

The software security methods described in section 5.4

cannot be applied to books or music. This is because the final

output is all that is desired, making copy prevention impossible.

However, it is possible to help copyright enforcement.

5.5.1 Fingerprinting.

With books, records or video sold today it is almost

impossible to make a perfect copy. This provides a means of

-78-

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

detecting and convicting those that sell the duplicates. The

'problem' with digital information is that~a'perfect copy can be

obtained. However, the equivalent detection capability can be

provided, using the signature property of a PKC.

Figure 5.2 shows a typical 'fingerprinting' system. Each
<

publisher has a secret key SK, which they use to sign any

published information. To do so they take a known hash function

of the program and receiver's name. They can then append this

'deciphered' function as an signature or fingerprint.

If any dispute arose as to whether the information was

legally. obtained, the fingerprint could be used. By 'enciphering"

the signature the hash function can be recovered and compared

with the recalculated hash function. Since it would be impossible

for anyone to produce the 'deciphered' funtion, without the

publisher's secret key, the pirate can be detected.

With the above scenario it is probable that the pirate

will delete the signature: substituting one of his own. However,

this is open to detection. The legitimate pub,1isher could show

the similarity of information, and that his was first published.

A better alternative might be to hide the signature in the

information.

-79-

:z;
o
H
E-i
U
rLI
E-i
o
p::;
p..,

rLI
p::;

~
E-i
~ o
U)

Cl
:z;
~

~
:z;
H
::r::
U)

H
H
(:Q
D
p..,

U
H
:z;
o
p::;
E-i
U
rLI
H
rLI

PUB LISHER

INFORM -
ATION

\

HASH
FUNCTION

r
I
I

I

D()

- - - - -,
I
I

I SIGNATURE

! l SKp
I :

.. l ________ -.l

AUTHENTICATOR

HASH
FUNCTIO

E()

PKp

FIGURE 5.2 FINGERPRINTING PUBLISHED INFORMATION.

OK?

USER
• 1.0.

I
o
co
I

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

. BROADCASTER RECEIVER

PK r, . . . ~ Z l--

PKrn S1 T.V.

SESSION
KEYS r-- MUX. I--

Z
~ S2 T.V.

.MUX. E()
w

t--

Z

INFO. S3
Z

T.V.

S n: DESCRAMBLER WITH KEY SKn

w
D()

SKn I SES. DE- Z
IMUX• KEY MUX.

I

FIGURE 5.3 BROADCAST RECEPTION.

-81-

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

5.5.2. Broadcast reception.

In certain applications, such as Direct Broadcast by

Satellite (Ref.S06), only immediate copying needs to be

prevented. In this case it is possible to use a more conventional

encryption technique, as shown in figure 5.3.

Take as an example the broadcast of a live football

match. Each receiver who has paid a fee receives the session key,

encrypted under their secret key. Then when the match is

broadcast it is enciphered under this session key. Since the

session key is stored in a TRM there is no way of 'cloning' the

session, key.

There are a number of possible problems with this

scheme: preventing retransmission, stopping recording, and the

more practical problem of transmitting a large number of keys.

However these problems are not as bad as they appear:

retransmission is a more active and detectable copyright

infringement; a recording is often of little value after. it is

transmitted; and the time to send the keys can be reduced using

the techniques given in chapter 4.

5.6 CONCLUSION.

In this chapter we have looked at what is probably the

hardest application of cryptography: wher~ the receiver cannot be

-82-

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

trusted. ,Software is one example considered where cryptography

can help provide a solution. The concept of/the tamper resistant

computer was described, and shown to offer an ideal solution. One

drawback is that it will not be practical for a number of years.

This chapter has also looked at the wider field of,

copyright protection, where software techniques cannot be

applied. Though absolute security cannot be given, two aids to

detection were described. These deterrents should help enable the

benefits of electronic publishing to be realized.

5.7 REFERENCES.

501 J.M.HAWKINS.

Oxford Paperback dictionary.

OXFORD UNIVERSITY PRESS, 1979.

502 A.FOLMSBEE, D.HOFF & L.LETHAM.

KEPROM approach locks out software pirates.

NEW ELECTRONICS, PP.78-83, 19-MAR.198S.

503 L.JONES.

The intelligent dongle.

COLL. ON SOFTWARE PROTECTION- THEORY AND PRACTICE, DEC.1984.

-83-

ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION

504 I.SCHAUMUELLER-BICHL & E.PILLER.

A method of software protection based on the use of smart

cards and cryptographic techniques.

EUROCRYPT '84, LA SORBONNE, PARIS, FRANCE, APR.1984.

505 R.G.F.AITCHISON.

A cryptographic approach to software.

ELECTRONIC PRIVACY AND AUTHENTICATION TECHNOLOGY WORKSHOP,

HATFIELD POLYTECHNIC, ENGLAND, JULY 1982.

506 S.M. EDWARDSON.

Scrambling and -encryption for direct

satellite.

broadcasting

INTERNATIONAL BROADCASTING CONVENTION, SEP.1984.

-84-

by

-85-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

6.1 INTRODUCTION.

The evolution' towards increasingly fast and dense

integrated circuits has been well prophesied (Ref.60l). However

changes in design techniques have been more revolutionary. As the

scale of a system is increased by orders of magnitude, different

issues become relevant. The cost of defining one million

transistors using traditional ad hoc methods is prohibitive, for

all but a few applications. This complexity barrier (Ref.902)

provides a more realistic obstruction to system growth than

minimum speed of 1 ight propagation.

Many diverse design methodologies are possible. Today

most semiconductor producers employ some combination of gate

arrays, standard cells and custom design. Gate array methods use

a matrix of predefined transistors whose metal interconnections

define a particular boolean logic function. A rapid turn-around

is possible, since a manufacturer can have the silicon processed

awaiting metalization. Standard cell techniques employ a large

library of cells with known electrical and topological

characteristics. This is usually more efficient than gate arrays;

but slower since all processing steps are needed. Both these

semi-custom app~oache's are excellent as replacements for

breadboarded TTL breadboard systems. However, designs based

entirely on semicustom ideas do not accrue the full potential of

VLSI.

Custom design involves optimizing every transistor

-86-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

within a circuit. Design costs and development time preclude this

approach for most applications. But/if a few key cells can be

made to account for most of the area, then this approach becomes

economical. The remaining random circuitry can then be

inefficiently produced. A figure of merit for this regularity is:

Total number of transistors
E = ---------------------------

Number of drawn transistors

The diversity of possible applications means that it is

not possible to describe a universal design methodology. In this

thesis we are concerned with chips having a-very high value for

E. However before describing their architectures, the overall

process of chip design is described.

6.2 TOP DOWN DESIGN.

A structured design methodology is needed to design a

VLSI integrated circuit. All such techniques use a similar top

down approach. This is a technique of designing a system at a

high level and gradually introducing more detail.

It is not a good idea to stick too rigidly to a top down

approach. A flexible moving up and down is desirable. This allows

consideration of what is efficient at low levels.

Design, simulation and documentation are integral

requirements at each stage in a design.

-87-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

6.2.1 Simulation.

Until the advent of VLSI, gate and transistor simulators

were sufficient to design a chip. Today, however, it is necessary

to have a modelling tool as a companion to a top down design. It

should be capable of describing a digital system at the various

levels of hierarchy.

HILO-2 (Ref.603) is a system description language that

can be used to describe and simulate a chip. It is a capable of

modelling low level primitives, tristate. wires and has vector

notation. But the most important property.of HILO is its ability

to sttaddle the architectural and lower levels of a design.

6.2.2 Documentation.

It is difficult to overstate the importance of

documentation. Though it is now an accepted practice in software

design, it is still often an afterthought in chip design.

Documentaion should allow someone to understand the

design process at each level of hierarchy. To try and comprehend

a chip without it, is equivalent to trying to read a program

without comments.

-88-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

6.3 SYSTEM DESIGN.

The first stage in the design of a chip is to choose its

basic function and interface. To do this job requires not only

careful design, documentation and simulation; but close liaison

with potential users. Concerns at this time include: minimizing

pin count (Ref.604) and· partitioning to reduce communication

across boundaries.

Behavioural simulators, such as ISPS (Ref. 605), are

used to verify alg?rithms. These are Pascal like languag~s, which

can be written quickly. No mapping into hardware is required at

this stage in the design process.

At the end a provisional data sheet can be produced.

This serves the dual purpose of fixing the design and allowing

potential users to better understand the capabilities of the

device.

6.4 ARCHITECTURE DESIGN.

This intermediate stage, between system and primitive

implementation, has no correspondence in a TTL breadboard design.

The reason for this stage is to partition the chip into a network

of blocks with defined interfaces. These may in turn be

subdivided into smaller units: though no more than is sufficient

to describe the function of the chip.

-89-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

At this stage a high level network description language

is required. An example of such a simulator is HILO-2 (see

section 6.2.1). Typical primitives at this stage might be a gated

full adder or Booth's decoder. These would be described in terms

of registers and Pascal like 'case' statements. These primitives

are then combined into macrocells, which are themselves combined

until the whole chip is described. In order to ~ater expand these

primitives, it is important to have all signals that pass the

interface included. For example, 'control' and 'control bar', if

the complement is generated external to the cell.

The high level , description is useful for a number of

reasons. But one perhaps unexpected benefit is as a guide to

hidden complexity. It is tempting to postpone consideration of

bits of random logic in an otherwise regular architecture.

However, it is usually these areas that cause the most. problems.

The need to correctly simulate the chip will make this complexity

explicit. I have found that if something is difficult to describe

at this level of hierarchy, it is a good indication of trouble

later on.

Care should be taken to ensure all nodes are easily

controllable and observable (Ref.606). This would typically

involve a judicious comQination of scanpath latches and other

test structures.

Complementary to the high level description is a floor

-90-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

plan. This is a mapping of the network description into a

physical placement. The diagram should-include all routing, with

particular care being taken over the power supply and clock

distribution.

This is perhaps the critical stage of a custom chip

design, since it is here that the greatest savings in complexity

can be made. Chapter 7 will cover this area in greater depth.

6.5 CIRCUIT DESIGN.

At this point in the design the actual implementation

technology need be considered. This level·· in the hierarchy is

usually called gate level, but this is somewhat deceptive.

Different technologies have a wide variety of properties:

differences in relative size of cells and their ability to drive

loads. This makes the choice of primitive technology dependent.

In order to make a decision on technologies it is

important to consider the application. Past leaders for LSI; NMOS

and Bipolar are now being superceeded by CMOS (Ref.607). I

beleive that a dominant part of digital VLSI devices will be

realized in CMOS because of:

1. Low power consumption.

2. Active switching between the power rails.

3. High noise immunity.

4. Tolerance of power supply variations.

-91-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

5. Provides a designer's paradise.

The last point deserves more explanation. Design in

Bipolar requires detailed knowledge of transistor operation,

while NMOS requires careful consideration of threshold drops in

pass transistors. CMOS by comparison is both simple and

effective.

CMOS is easy to design in (Ref.608), but to fully take

advantage the correct primitives must be employed. Figure 6.1

shows how some useful functions can be implemented more

efficiently without. using standard logic gates. Figure 6.2 shows

an elegant full adder using just 16 transistors, a third less

than a logic gate implementation.

The primitives of the architectural level description

are now to be expanded. The final primitives, called leaf cells,

are normally of eight transistors or less. The circuits shown in

figure 6.1 are typical leaf cells. More accurate timing

simulations are now included, using parameters gained from a

circuit analysis simulator. SPICE (Ref.609·) is the most widely

used simulator for this purpose. However, it is best used as an

educational tool, and only sparingly on critical elements in a

design. Their are a number of reasons for this: the amount of

computing resources required; an experienced designers 'rule of

thumb' is often sufficiently accurate; and most importantly, the

amount of a designer's time needed to overcome numerical

limitations (such as the dreaded 'internal timestep').

-92-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

Q

Q

b &

&
s b s

Q. EXCLUSIVE-NOR . S=A$a

Q

C & Q

& s ~
b

& b

b. MULTIPLEXER S=A.C +B.C .

VDD

Q

b & 0..- :

s - &
s

I.-

~

c
d &- 0--

VSS

c.AND-OR-INVERT S=A.B+C.D

FIGURE 6.1 TRANSISTOR AND GATE LEVEL PRIMITIVES.

-93-

0'1

N-

(J
:s:
o
(J)

1-3
~
~
Z
(J)
H
(J)

1-3
o
~
(J)

LOW COMPLEXITY CUSTOM VLSI DESIGN.

~to~1 ~ w .---t----;::J "0 I--+---~ ED to

-94-

~ o
c::

LOW COMPLEXITY CUSTOM VLSI DESIGN.

6.6 LAYOUT DESIGN.

The interface between the designer and chip manufacturer

is a set of design rules. The degree of understanding of how

these rules are chosen depend on the type of circuit being

designed. In general some understanding is desirable: though for

some elements, such as pids, it is essential. The design rules

used for the ACP (see chapter 9) are C2.5A (Ref.610).

The translation from a· transistor diagram into mask

shapes is potentially very time consuming. For double level met~l

CMOS, thirteen mask levels need to be defined. Each level is put

down,in ascending order, from the active area (level 1) to the

passivation (level 13). An unusual feature of C2.5A is the

coincident vias and contacts, made possible by the use of

polymide insulator. A schematic of a typical inverter is shown in

figure 6.3.

To design a leaf cell a number of design methodologies

are possible. With full custom design all possible topologies are

considered. However the astronomical number of potential

permutations results in very slow designs. A far more efficient

method is to limit the degrees, of freedom. The structured

techniqe I adopted has second level metal running vertically with

the active area running norizontally. This technique allows

packing densities very close to a handcrafted call, while

speeding up design time by several orders of magnitude.

-95-

· :z
(9
H
CJ)

I'Ll
Cl

H
CJ)

H
:>

~
8
CJ)

D
U

>t
8
H
~
I'Ll
H
p..,
::8 o
u
8: o
H

13 polymjde

me tal-2 12

v 1 a --.
\

metal-1

contuct--

.L

l

-11 polymide

10
r- '--

-9 P9l ysi l.
" 6

OXide
1, 7 1,,4 1,7

p+ p+
I

I

n-well I 5

,
I

n-channel

12

11

10
~

9 9
I-' L-

6

1, a 1,3
n+ i

I

,
J p-we II " 2

~

substrate p- channel

FIGURE 6.3 DOUBLE LEVEL METAL BULK CMOS PROCESSING LEVELS.

10
I--

9

1,8
n+

>

~

--

I

"" C"\
I

Ain '-.------N:4" -- --fc.X----- -- -----'-'---. ------i :SUBSTRAr CONTACT

\

\
n)t:;;; -,- -y;: -=;f= -==x

IOV
•

. I
~ -- ------::-:-: .. ~----I- - - --

I ,
I I
I J
I

I.

J '. I
I . I,

I Cout

--'- - ---I X.

I
I
I

-<I

n

I I
I . A --t----- ~--- ---

I' 1-:\
'X Bin ~- -1----0----: "--_.-. -J (in ___ ~

JIf

p)l(X X -- - -*):(X -- --X ® Y. X' I X p

,-- - - -- - - - - - -_ ,-----

I

I

;5V
• • -

I .

~SUBSTRATE CONTACT , "

FIGURE 6.4 FULL ADDER STICK DIAGRAM.

~-- - - - - ---1-- -- -1--- -~ Aout ___________ .~_.O

I
r-
0\
I

LOW COMPLEXITY CUSTOM VLSI DESIGN.

6.6.1 Stick diagram.

In order to simplify the layout process an intermediate

stick diagram is used. This is essentially a skeleton of the

final· layout. The 'fleshing out' can be done quickly on a

graphics machine, such as the Applicon (Ref.611). As an example,

the design of the adder illustated in figure 6.2 is given below.

Figure 6.4 shows a stick diagram of the adder. In order

to simplify the design just the four key levels are used: the

other levels can easily·be added when 'fleshing out'. The second

level metal (long dashes) is the first to be put down. This

contains all the global signals, such as the clock and power

supplies. For the adder, where there are no global signals, it is

also used for interconnections. However, normally it only runs in

vertical stripes.

The transistors are then defined by polysilicon (solid

lines) crossing active area (thick solid horizontal lines). All

p-type transistors are placed on one horizontal line and all

n-types on another. Long interconnections are done in first level

metal (dotted lines). Contacts are shown as crosses and 'vias

(contacts between the two metal layers) as circles.

The stick diagram is a useful aid, but it cannot be done

without knowing what is practical. For example, to 'allow for the

larger p-type transistors, the length of the polysilicon must be

increased. In practice the stick diagram is done with colour

-98-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

pencils.

6.6.2 Checking.

Before maskmaking and fabrication the layout must be

checked. Firstly, to ensure the design rules are obeyed. The

Design Rule Checker (DRC) program finds errors such as metal

separation and overlaps around contacts. Secondly, an Elecrical

Rule Checker (ERC) checks for the electrical connections. It

locates the electrical short and open circuits of a labelled

diagram.

The final check is to verify the extracted layout is the

same- as the one simulated. This is done by converting the

description into one that can be used by a Network Consistency

Checker (NCC). To do this, it is necessary to first describe the

primitives in the language of the NCC. It is then possible to

convert the remaining description automatically.

It is best to do checks at the macro cell level, before

the circuit is put together. This greatly improves the ability to

check errors at the final layout stage. An example of a suite of

such checkers are those provided by NCA (Ref.612).

6.7 TESTING AND REDESIGN.

After pattern generation, maskmaking and fabrication it

is necessary for the designer to check the finished wafer. If the

-99-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

design has been done well this should be a simple and easily

automated. For simple redesigns, it might be possibl~ to change

just the metal and contact masks.

6.8 CONCLUSION.

It is clear that VLSI design will be vital to the next

generation of systems. This chapter has described what, in the

author's opinion, constitutes a typical low complexity design.

Such a design would typically take 6 months for two people

working together. However, to achieve this many pitfalls need to

be avoided.

A CAD system built around the hierarchical design style

would be helpful, but certainly no guarantee of a more cost

efficient design. There should be no split of documentation and

testing from design. The need 'for a powerful but flexible

description language cannot be overemphasized. At the circuit

level the savings from not using logic primitives was shown.

However, the most important concept is how to split the design.

VLSI system design is concerned with all aspects af IC

design. The task of designing a 'chip has been split into levels,

but too great a partition wilJ result in inefficient design. Each

level is influenced by those to follow. System and architectures

can only benefit from understanding and experience of the total

design process~

-100-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

It is impossible to make effective trade-offs against a
~

rigid specification. It is at the architectural level that this

is most apparent.

6.9 REFERENCES.

601 G.E.MOORE.

Progress in digital integrated electronics.

IEEE INT. ELEC. DEV. MEETING, 1975.

602 C.H.SEQUIN.

Managing VLSI complexity: an outlook.

PROC. OF THE IEEE, VOL.7l, NO.1, PP.149-l66, JAN. 1983.

603 R.HARRIS S.DAVIDMAN & G.MUSGRAVE.

HILO-2, a system to build upon.

SILICON DESIGN, PP.6-ll, FEB.1985.

604 J.W.BALDE.

Alternatives in VLSI packaging.

VLSI DESIGN, PP.23-29, DEC.1983.

605 M.R.BARBACCI.

An introduction to ISPS.

DEPT. COMPUTER SCIENCE, CARNEGIE-MELLON UNIV., 1981.

-101-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

606 J.A ABRAHAM.

Design for testabi1i~y.

IEEE SOLID STATE CIRCUITS CONF. CALIF., 1983.

607 J.FIEBIGER.

CMOS - A designer's dream come true.

ELECTRONICS, 5TH APRIL 1984.

608 P.B.COHEN.

An introduction. to CMOS design styles.

VLSI DESIGN, PP.88-96, SEP.1984.

609 A.VLADIMIRESCU,

SPICE version 2G user's guide.

DEPT. ELEC. ENGIN. & COMPo SCIENCE, UNIVERSITY OF CALIFORNIA,

BERKELEY, 1981.

610 THE GENERAL ELECTRICAL COMPANY.

Small geometry process C2.5a~ lambda layout rules.

GEC HIRST RESEARCH CENTRE, ISSUE 1, DEC.1982.

611 APPLICON.

AGS/860 user's guide.

APPLICON INC., 32 SECOND AV., BURLINGTON, MA.01803, USA,

1981.

-102-

LOW COMPLEXITY CUSTOM VLSI DESIGN.

612 NCA.

DRC/ERC/NCC user's guide.

NCA CORPORATION, SANTA CLARA, CA.95054, USA, 1983.

-103-

-104-

GOOD VLSI ARCHITECTURES.

7.1 INTRODUCTION.

IC technology has reached the point where it is

available to all engineers, not just a few circuit designers.

However, VLSI design is an immature discipline. What constitutes

a 'Good VLSI Architecture' (GVA) is still a moot point.

Mead and Conway popularized new VLSI design techniques

in their book 'VLSI System Design' (Ref.701). Some of their

conclusions are controversial, and little used. But one point has

been widely accepted: the need to re-evaluate architectures in

the context of developments in circuit technology.

In the past five years there have 'been many papers on

new architectures. Each new application seems to require a new

scheme. But it is not the diversity of the new architectures that

is striking, but their similarity.

The most promising genre of new architectures is the

systolic array (Ref.702). H.T Kung proposed this class of

architectures as one ideally suited to future signal processing

chips. What makes these architectures better? In this chapter we

shall take a detailed look at a model for future CMOS VLSI

devices. The features of a GVA are derived from my experience of

circuit design and layout.

-105-

GOOD VLSI ARCHITECTURES.

7.2 VLSI MODELS.

Designers base their architectures on the hardware

available to implement them. In the past twenty years this has

resulted in architectures optimized for TTL breadboard

implementations. These designs concentrated on the trade-off

between the number of gates and the speed of execution. This

model is unrealistic for the custom VLSI chips of today.

The TTL designer must learn the 'data book' of logic

structures used in custom design. But more important he must be

able to compare their cost and performance.

7.3 PERFORMANCE.

To measure the performance of a chip it is possible to

take power dissipation, size or reliability. However, for high

performance chips the riormal measure is the worst case delay.

That is, for a given operation, which chip can go fastest.

Standard models of delay stress the importance of the

number of gate stages. In VLSI it is as important to consider

also, the loading of each gate and the distance a signal has to

travel.

All figures will be based on the worst case delay. The

important class of self-timed designs, where it is the average

-106-

GOOD VLSI ARCHITECTURES.

delay that is important, are not discussed.

7.4 DESIGN COSTS.

The most important factor in design cost is labour. This

is expressed by number of man-months design time and is a

function of the chip complexity.

In breadboard design the complexity is proporional to

the number of TTL parts. However, for VLSI regularity is the

pr ime factor.·

To reduce design costs it is important to have

regularity in structure and communi~ation. This means using just

a few simple building blocks, placing them in a regular manner

and have a repetitive routing scheme. In other words, it must be

easy to describe the chip layout.

7.5 MANUFACTURING COSTS.

In TTL breadboards the manufacturing cost· is

proportional to the number of devices used. For chip design, . the

traditional measure for this cost has been area, with three

contributing factors: I/O ports, gates and wires. However, this

is only half the story, a better measure is yield.

For chips with fault tolerance, the yield is no longer

directly connected with area. For regular circuits, it is often

-107-

GOOD VLSI ARCHITECTURES.

possible to add fault tolerance, without adversely affecting

design costs.

Manufacturing costs are also affected by the number of

pins and the ease of testing. If testing is not considered early

in the design, the test cost can dominate. An attractive flip

side of this is to include self~testing. This would allow a chip

to test itself without the aid of external equipment or software

(Ref. 703) •

7.6 CHARACTERISTICS OF VLSI ARCHITECTURES.

Architectures can be evaluated using a variety of

criteria. To give a single function would require technological

dependence. In order to avoid this built in obsolescence, we

shall not give a single cost or performance figure. Rather we

shall use a table with the following ten parameters:

a) NUMBER OF LOGIC CELLS.

The complexity of the logic, measured by the number of

different leaf cells required.

b) NUMBER OF WIRING CELLS.

It might seem strange to use wiring cells. However, for

regular circuits this is often-how wiring is done. The number of

leaf wiring cells can therefore be used as a measure of design

cost.

c) LOGIC AREA.

This figure is equivalent to the traditional cost

-108-

GOOD VLSI ARCHITECTURES.

measure: the number of integrated circuits. The use of area, as

opposed to yield, is intended to simplify notation ..

d) WIRING AREA.

Until recently neglected, this is increasingly becoming

an important measure of manufacturing costs.

e) I/O PORTS.

The number of wires going in and out of the system.

f) TESTING TIME.

The number of input combinations needed to fully test a

design.

g) TESTING AREA.

The area of test logic, such as scanpath latches.

h) GATE DELAY.

The time between presenting the operands and reading the

result. This figure assumes no pipelining, no delay through wires

and no extra time needed to drive larger·loads.

i) WIRING DELAY.

This is a measure of the absolute delay through wires

and accounts for the time needed to drive larger loads.

j) PIPELINE AREA.

By introducing latches ~nto the data path it is possible

to improve the throughput to the delay of a single cell. If

possible, this parameter shows what area is required by the

pipeline latches.

The above parameters will be measured using order

statistics (see section 1.4). The use of order statistics ignores

the important constant factors. For small operands, this might

-109-

~GOOD VLSI ARCHITECTURES.

give inaccurate comparisons. For example, a design with a higher

order of magnitude delay, could in~fact be faster for small

operands. However, it is the asymptotic behaviour that ultimately

determines whether an architecture is suitable. For the larger

arithmetic units of the future this simplification is acceptable.

The importance of different parameters will vary with

technology and requirements. But in general the first two, which

reflect design costs, will be the most important.

7.7 CONCLUSION.

This brief chapter is a vital prerequisite to Chapter 8.

It has modelled the characteristics needed to design GVA. In

order not to be dependant on just "today~s" technology, the model

has included parameters which are not yet considered important.

However like any abstractions, they are only. meant to reduce the

design time. True comparison can only be achieved by practical

realizations.

Speed, complexity and yield were explained in their VLSI

context. Section 7.6 summarizes the characteristics which will be

used in chapter 8.

It is often necessary to sacrifice speed and yield in

order to design efficiently. If the complexity cannot be reduced,

it is probably more cost effective to go for some semi-automatic

-110-

GOOD VLSI ARCHITECTURES.

technique.

7.8 REFERENCES.

701 C.MEAD & L.CONWAY.

Introduction to VLSI systems.

ADDISON-WESLEY, 1980.

702 H.T.KUNG.

Let's design algorithms for VLSI systems.

DEPT. COMPUTER SCIENCE, CARNEGIE-MELLON UNIV., APR.1983.

703 D.KOMONYTSKY.

Synthesis of techniques creates complete system self-test.

ELECTRONICS, PP.llO-119, 10TH MARCH 1983.

-111-

.c Ht~~'T[E ~~ .

~~

-.: - 112 -

ARITHMETIC ARCHITECTURES.

8.1 INTRODUCTION.

High performance Digital Signal Processing (DSP) systems

are required in a wide variety of applications (Ref.80l). These

range from processing signals, image and speech, to control,

telecommunication and "instrumentation. Though the final

applications are varied, th~ nature of the task performed

internally is similar. Indeed all these machines are essentialy

'Big Number Crunchers' (BNC), performing some simple arithmetic

operation.

All arithmetic architect~res can be related to the basic

arithmetic operations. Thi~ chapter will give a comparative

description of architectures for performing them. In particular

those suited to custom CMOS chips.

The overriding desire was to create designs that were of

very low complexity.; Within this limit, the architectures

offering the highest asymptotic performance are described .

Conclusions are be based on the work of the last two chapters.

8.2 ARITHMETIC ON SILICON.

Research into ari~hmetic operations is as old as the

computer. However, the efficiency of arithmetic architectures

cannot be divorced from their implementation technology. As a

result of VLSI many new architectures are coming into favour.

-113-

ARITHMETIC ARCHITECTURES.

Competitive pressures require DSP chips to be both high

performance and cheap. In recent years a number of useful DSP

'building block' ECL chips have been developed. These include the

AM29500 family (Ref.802) and the MCI09XX (Ref.803). However, when

single chip implementation is needed, MOS technology is preferred

(Ref.804).

In the ,future DSP will increasingly use dedicated chips.

When mapping BNC onto silicon, the architecture is the most

important consideration.' To do this efficiently a designer will

require a vocabulary of arithmetic architectures.

In the rest of this chapter designs of the basic

arithmetic'architectures are given. These, together with those of

Kung (Ref.702), give a good basis for synthesising any required

function. Chapter 9 will give an example of how these

architectures can be" combined to perform modular exponentiation.

8.3 ADDITION AND SUBTRACTION.

Many high performance VLSI devices require a fast adder.

The general equation for addition of two conventional radix

numbers is given by:

Sum: Sk = Ak xor Bk xor Ck-l .•• 8 .1

Carry: Ck = (Ak + Bk).Ck-l + Ak.Bk ••• 8 • 2

-114-

ARITHMETIC ARCHITECTURES.

S15 S14 so

Exor.

e (14 e (13
(f)

(in -

(19
...-...:.

Carry • · Propagate · · · (P · (P (P

--

G15 P15 G14 P14 GO PO
~ r- e - ED -

I t t
SiS A15 814 A14 BO AO

FIGURE 8.1 FULL ADDER ARCHITECTURE.

-115-

ARITHMETIC ARCHITECTURES.

Where Ak and Bk are the k'th bits of the addend and augend

respectively. The recursive equation,~-8.2, can be expanded in

terms of a carry generate (Gk) and carry propagate (Pk) terms:

Ck = Gk + Pk.Gk-l + Pk.Pk-l.Gk-2 + .•• + Pk.Pk-l ... Pl.Cin • • 8 . 3

Where Pk = Ak + Bk and Gk = Ak.Bk. Figure 8.1 shows a typical

n-bit adder.

It is possible to have a dedicqted subtractor, with a

small change in logic. But using 2's complement notation,

subtraction can be implemented using an adder. Therefore, it will

not be discussed separately.

The speed of addition is limited, because the most

significant bit of the sum is dependant on every bit of' the

addend and augend. The information between stages is held in the

carry. Thus methods of improving addition times have concentrated

on efforts to improve this carry propagation.

8.3.1 Fast Carry Propagation Schemes.

There have been many schemes to speed the carry

propagation (Refs.80S-807). The best known are:

Manchester Carry Chain (MCC),

Carry Look-ahead Adder (CtA),

Carry Bypass Adder (CBA),_

Conditional Sum Adder (CSA).

The traditional understanding of these schemes is described

below.

-116-

ARITHMETIC ARCHITECTURES.

The MCC and CLA are hardware implementations of

equations 8.2 and 8.3 respectively. The CBA bypasses a group of

consecutive carry propagate stages. This involves 'ANDing'

together the Pk terms of consecutive stages. Finally, the CSA

requires the formation of two conditional carry terms for each

stage: first assuming no carry-in (Gk), then assuming a carry-in

(Pk). Multiplexers are then used to select which carry is chosen,

depending on the carry of previous stages.

The four schemes described above represent the

traditional choices open to a logic designer. However, for VLSI
• 1

these categorizations are better understood in terms of the type

of -tree. Indeed all the fast implementations use the same leaf

cells: only their placement and routing vary.

8.3.2 Manchester Carry Chain.

The simplest method to improve carry propagation (CP) is

to just use the carry as the signal between stag~s, while

optimizing the CP cells of figure 8.1. Figure 8.2 shows the cells

for reducing the worst case delay. Because the transistors

connected to Gk and Pk are precharged, the worst case delay is

equivalent to n inverters.

The use of alternating logic cells is a technique that

is used frequently. It arises because the basic gates in CMOS are

inverting. Their use does make the circuitry slightly more

complex, but this is more than offset by the increase in 'speed.

-117-

ARITHMETIC ARCHITECTURES.

a)
VOD

vss

b) 'VOD

Pk
Gk -Ck

[k+1

Ck

~n

FIGURE 8.2 MANCHESTER CARRY CHAIN CELLS IN CMOS TRANSISTORS.

-118-

ARITHMETIC ARCHITECTURES.

CIS CO

GIS, PIS GO,PO

CIS CO

,

~ Fit F I 1== I I

~ GO GIS,PIS

CIS CO

r\ """
f'\ "-

1\ "" i'- ~ ~
~ f'.

r\ f\ 1\ r\ f\ 1\ 1\
1\ 1\ 1\ 1\ f\ 1\ f\
~ II [~ ~ I

GIS, PIS GO

FIGURE 8.3 FAST CARRY PROPAGATE TREE ARCHITECTURES.

-119-

a)

.
Cf)

~
\ p::;
\ !:l

E-I
u

GI ~
E-I
H
::r:
u
p::;
...::
u
H
E-I

GO ~
~ ::r:
E-I
H
p::;
...::

PI
PO

b)

&

&

P

&

a

G/-----1Cl

GO~bAOI

P/~
. po----J

c

&

AOI

Gi'
GO'

PI'
PO'

FIGURE 8.4 FAST CARRY CELLS IN LOGIC GATES AND CMOS TRANSISTORS.

OAl

vee

G·
I

o
N
....-f
I

'.

ARITHMETIC ARCHITECTURES.

8.3.3 Carry Look-ahead Adder.

CLA is perhaps the most widely used carry
\

acceleration technique. In this scheme the Pk and Gk signals are

combined to produce the Ck output (see equation 8.3) of each

stage. Traditional methods for generating the carries have used

mUlti-input gates. However, the use of k-input gates is not only

irregular, but slow for large ~.

A Good VLSI Architecture (GVA) for the CLA was described

by Brent and Kung (Ref.808). A modified version of their tree

structure is shown in figure 8.3a. The black processing elements

combine two P,G terms from a lower level into a new P,G term. The

logical contents of the black dots are shown in figure 8.4a. In

practice, alternating logic of figure 8.4b would be employed.

This original tree architecture has both less logic area

and less gate delays than the Brent-Kung scheme. The new

architecture is in fact the optimum, in terms of the number of

two input gate delays.

The proof that the final carries agree with equation 8.3

can be done using the Brent-Kung method. A less formal way is.to

follow the G,P terms as they progress up the tree: verifying that
.

the final generate terms (Gk), do indeed equal the carry (Ck)

from equation 8.3.

-121-

ARITHMETIC ARCHITECTURES.

8.3.4 Conditional Sum Adder.

Figure 8.3b shows a GVA for the CSA. The tree structure

is similar to that for the CLA, and makes use of the same

processing elements (see figure 8.4). The CBA is better than the

CLA, in that it has less routing area. However, this is balanced

by the increased delay caused by the loading on the control

lines. These points arise from using the same sisnals for a group

of stages. For example, the top eight cells are all driven by the

same signal.

8.3.5 Carry Bypass Adder.

A structured version of the CBA is shown in figure 8.3c.

This GVA again uses the same processing elements (see figure 8.4)

as the CLA , with a modified tree structure. Like the CSA, it has

eliminated the routing problem. But this time the loading

problem, though worse than the CLA, is not as bad as in the CSA.

8.3.6 Testing an adder.

To test an adder it is normal to put scan-path latches

on the input and output. However, in order to quickly test an

adder it is important to also have control of the' carry-in. This

makes it possible to fully test the adder using just the eight

test inputs. Table 8.1 shows an example of the test sequence (in

hexadecimal)for an eight bit adder.

-122-

ARITHMETIC ARCHITECTURES.

CIN ADDEND AUGEND SUM

,~

0 $00 $00 $00
0 $FF $00 $FF
1 $FF $00 $00
1 $FF $FF $FF
1 $00 $FF $00
0 $00 $FF $FF
0 $55 $55 $AA
1 $AA $AA $55

TABLE 8.1 ADDER TESTS.

8.3.7 Performance Comparison: Addition.

Four types of adder architecture have been discussed.

Table 8.2 compares their performances and costs using the

parameters of section 7.6.

PARAMETER MCC CLA CBA CSA.
---------------- -------------------------------
NO. LOGIC CELLS c c c c

NO. WIRE CELLS c log(n) c c

LOGIC AREA n n*log(n) n*log(n) n*log(n)

2 .
WIRING AREA n n n*log(h) n*log(n)

I/O PORTS n n n n

TESTING TIME c c c c

TESTING AREA n n n n

GATE DELAY n log(n) log(n) log(n)

WIRING DELAY c n n n

LOADING· c c log(n) n

PIPELINE AREA n*log(n) n*log(n) n*log(n)
--

TABLE 8.2 ARCHITECTURE COMPARISON TABLE

-123-

."

ARITHMETIC ARCHITECTURES.

Table 8.2 compares the performance of the various tree . _/"

structures. For area and complexity, the MCC is the clear winner.

However, for applications requiring higher performance there is a

choice of three. The loading problem oftheCSA mean it would

only be useful for small operands. For absolute speed, the CLA is

preferred. But if the area becomes a problem, the CBA offers a

good compromise.

8.4 MULTIPLICATION.

The paper and pencil method of multiplication is to

shift and add. An n bit multiplier (R) and an n bit multiplicand

(S) produce a 2n bit product (p). This requires the formation of

n partial products and their subsequent reduction to a single

2n-bit result. For 3 bit operands, this operation is done as

follows:

's2
r2

sl
rl

sO
rO

rO.s2 rO.sl rO.sO
rl.s2 rl.sl rl.sO

r2.s2 r2.sl r2.s0

p5 p4 p3 p2 pI pO

High performance multiplication is an indispensible

element in modern DSP. Recently the trend has been towards

parallel multipliers. But the serial-parallel method is useful

for larger operands.

-124-

ARITHMETIC ARCHITECTURES .

. a)
01 ..

---+---*--- LO
--...-t----- B I

AI GA AO.

PQ

b)

o I ---.----t-l . -
DO

LD

B 0 -~II-I---I Bl

AI GA. GA =:-0- o. o·

FIGURE 8.5 SERIAL-PARALLEL MULTIPLIERS.

-125-

ARITHMETIC ARCHITECTURES.

8.4.1 Conventional serial-parallel multiplier.
--

The serial-parallel multiplier (SPM) is an old technique

for speeding up multiplication (Refs.809-8l0). Figure 8.Sa shows

the basic architecture of this multiplier. The partial product,

stored in the carry save register (the latches (PQ) on the

outputs of the full adder (FA)), is first initialized to zero.

Then for n clock cycles it accepts S in parallel (01), R in

series (BI), and outputs P in series (AO).

The multiplier bits are ANDed with the multiplicand, and

the result is added to the previous partial product. The latches

(PQ) are clocked in and out on the two phases of the clock, P and

Q respectively. The least significant bit of the partial product"

register is shifted out to become the next least significant bit

of the product.

After n clbck cycles the least significant n bits of the

product will have been shifted out. If desired, the most

significant half of the result, stored in carry save form, can be

shifted out during the next n cycles. This final operation can be

speeded up using a fast adder.

The above scheme could be modified to accept both

operands in series, using a serial to parallel converter. A

recent scheme (Refs.8ll-8l2) shows how both operands can be

simultaneously presented serially. However, one major limitation

of all these schemes is the broadcast nature of the multiplier.

-126-

ARITHMETIC ARCHITECTURES.

For large operands the loading on this line would degrade the

performance. An alternative architecture proposed here has no

broadcast lines and accepts both operands in serial form.

8.4.2 New serial-parallel multiplier.

The New Serial Parallel Multiplier (NSPM) structure of

figure 8.5b employs only a little more hardware than the original

scheme. It uses a simple full adder (FA), and its dual (which

expects the inputs inverted), not the more complicated" (5,3)

counter. The half-latches (P and Q) in the multiplier,

multiplicand, load and partial product lines are the master or

slave of a master-slave latch. They pass data during opposite

halves of the clock cycle.

DI X Sl XXX XXX XXX S2 XXXXXXXXX

BI X Rl X X R2 X

AO XXXXX PI P2

LD

<--------------->
2n clock cycles

FIGURE 8.6 TIMING OF THE NSPM.

Figure 8.6 shows the timing diagram for the NSPM. For

the first n clock cycles S is loaded bit serially into the

-127-

ARITHMETIC ARCHITECTURES.

holding register (01). After n/2 clock cycles the load'line (LD)

is held high for one clock cycle~/ This loads S into the

multiplicand register (X). During this and subse~uent clock

cycles, R is introduced least significant bit first (into BI).

The AI input, normally set to 1, can be used to add a constant.

8.4.3 Testing the SPM.

The lack of control over internal nodes of the SPM

presents problems for testing. However, it is possible to test

all combinations of the full adders, by setting all the bits of S

to 1 and R to:

R = 0 .•• 00011110

To test the AND gates we set S = 0 and R to alII's. The other

registers can be tested by observing' their outputs.

8.4.4 Fault-tolerance with the SPM.

The inclusion of fault-tolerance removes the traditional

link between chip area and yield. However, the adverse effect on

complexity has meant there have been few practical applications.

The simple regular nature of the SPM makes it ideally suited to

fault-tolerance.

A number of schemes for including fault tolerance in a

-
serial pipelines have been proposed (Refs.812-814) ... Only the Hsia

scheme (Ref.8IS) will be considered here. It not only involves

least complexity overhead, but is capable of using all working

cells.

-128-

, t
I

___ l

I , ,
I

I
I

'-

ARITHMETIC ARCHITECTURES.

Latch • comparison ...

mode

Switch

~
.'KJ ..

I
. I

- ... - _ J

F 0 - fault detect ion

FO FD 1----- ...

RR data/contol
RR

r- - ---- -1•... Gated ,

, .
1

C:'
.....)'
.....)'
UJI
Wi

I

I

. I· ,
I

L. ________ .J

adder

r - - -- - - -,
I

~, t
c: , i

---1 I I
--',
UJ

. LJ I
r
I

, I
L--- ___ .J

FIGURE 8.7 FAULT TOLERANT SPM.

-129-

ARITHMETIC ARCHITECTURES.
a) TEST INPUT ..

- PRODUCT

b) TEST INPUT -
.... 't

...... ,....

0 0 0

l t - t I-

t-. ~ - r-f-

0

~.
.....

[/

I- " L-
"

" p- i"" r- r-

0 /

{ "

~
I- .- I- r- I-

/ . I- .

'I- I- /

l- I-

r
. r-- I- ~ f- ..-1-;,../ - - - - - - - ' - - -

0 r- r- ,....

-- l- I- t-

r- r- po- ,....

.

,-
PRODUCT

FIGURE 8.8 PARALLEL MULTIPLIER ARCHITECTURES.

-130-

t
~

; 0

J -~ "
/

" ...-
I--

-

...

/

/

"

-

-
"

,,1
I

ARITHMETIC ARCHITECTURES.

Figure 8.7 shows an architecture for a fault tolerant

SPM. The re-routing network (RR) allows input of test data and
r

can bypass a cell during normal' operation. The fault detecting

network (FD) controls the RR and finds a faulty cell during test

operation.

The number of stages chosen for a cell depend on the

technology and yield figures. For very large networks a

hierarchical scheme is desirable, because a single fault in the

switching will destroy the operation.

8.4.5 Parallel multiplier.

Hardware implementations of the Parallel Multipliers

(PM) have been available for a number of years. They offer either

to increase the speed of .one operation or to allow faster

throughput.

The fastest method of multiplying two numbers is to use

(3,2) counters. These combine the partial products either by row

(Wallace tree) or column (Dadda scheme). However, their irregular

interconnection schemes make them unsuited to VLSI.

The array multiplier; consisting of a diamond of gated

full adders (black square~), is shown in figure 8.8a. Each row

adds either 0 (if the multiplier for' that row is 0) or a shifted

version of the multiplicand .. Though the delay is still O(n), the

same as the SPM, it is much quicker in practice, and can be

-131-

ARITHMETIC ARCHITECTURES.

pipelined (Ref.813).

8.4.6 New parallel multiplier.

For some applications it is not the throughput that

matters but the absolute delay. In this section I propose a New

Parallel Multiplier (NPM) that has a delay O(n
A

l/2).

The principle of this new sC,heme is shown in figure

8.8b. Instead of connecting the output of the gated adder to the

next cell, it is connected'to the cell n
A

l/2 below. To accumulate

the result extra full adders (below dotted line) are used. These

extra cells have connections from their nearest neighbours.

For this small. example, the delay in the NPM is no

better than the original PM. However, for larger operands, the

new scheme has less gate delays. The NPM has more gate delays

than Dadda's and Wallace's, but it is more regular.

8.4.7 Testing the PM.

It has been suggested that the conventional carry-save

array multiplier is not testable with a fixed number of inputs:

that is the number of test inputs is dependent of the size of the

array (Ref.814). However, with control, of the sum and carry

-inputs at the top of the array, n series of inputs can be found.

Table 8.3 shows a series of test inputs for an eight bit

multiplier, which fully exercise each cell (gated full adder).

The sequences are extended for bigger arrays.

-132-

ARITHMETIC ARCHITECTURES.

MULTIPLICAND 1 MULTIPLIER 1 CARRY-IN 1 SUM-IN

FF 00 00 00
FF 00 00 FF
FF FF FF FF
FF FF FF 00
FF AA FF 00
FF 55 00 FF
AA AA FF FF
55 55 00 00

TABLE 8.3 PARALLEL MULTIPLIER TEST INPUT

8.4.8 Performance comparison: Multipliers.

--
PARAMETER 1 SPM NSPM PM NPM

----------------1-----------------------------
NO. LOGIC CELLS c c c c

NO,. WIRE CELLS c c c c

2 2
LOGIC AREA n n n n

2 5/2
WIRING AREA n n n n

I/O PORTS c c n n

TESTING TIME .. c c c c

TESTING AREA c c n n

1/2
GATE DELAY n n n n

1/2
WIRING DELAY c c c n

LOADING (Note 1) c c n n

PIPELINE AREA c c
----------------------------~-----------------

Note 1. For pipe1ined operation the PM loading is O(c) not O(n)'.

TABLE 8.4 ARCHITECTURE COMPARISON TABLE

-133-

ARITHMETIC ARCHITECTURES.

Table 8.4 demonstrates that, for quick and comparitively

cheap multiplication, the NSPM is preferred. For fast throughput
~

the pipelined PM offers optimum performance. However, if absolute

delay is the primary requirement, the NPM is a better

alternative.

8.5 DIVISION.

The division operation involves of finding the quotient

(Q) and remainder (R), of a numerator/dividend (A) and

denomonator/divisor (D). These four parameters satisfy the

equation

A ,;, (Q * D) + R ... 8 . 11

Where R is less thanD and of the same sign as A. For a given 2n

bit A and n bit D, there is a unique n+l bit Q and n bit R.

The paper and pencil method of division is based on a

shift and conditional subtraction technique. For an n of three

this can be represented as shown below:

q3 q2 ql qO

d2 dl dO) as a4 a3 a2 al nO
q3.d2 q3.dl q3.dO

q2.d2 q2.dl q2.dO
ql.d2 ql.dl ql.dO

qO.d2 qO.dl qO.dO
-------------------- r2 rl rO

Division and multiplication are in many repects dual

operations. Division superficially resembles the shift and add

-134-

ARITHMETIC ARCHITECTURES.

method of multiplication. However, division requires each

operation to be completed before the ~~xt begins. This introduces

a sequential ordering into division which is not present in

multiplication.

The inherent serial nature of division, coupled with its

relatively rare occurence in arithmetic operations, has meant

there have been relatively few dedicated dividers. Most hardware

uses some iterative technique (Ref.803), making use of a fast

multiplier. Though this has proved successful, it is not well

suited to VLSI. Not only is the throughput limited, but the

hardware is relatively complex.

Dedicated dividers are usually based on fast adders. The

most popular of these has been the non-restoring and SRT methods

(Ref.803). Both of these methods dispense with the need for

comparison, but do not overcom~ the O(n*logn) worst case delay.

8.5.1 Principle of the serial-parallel divider.

The new Serial Parallel Divider (SPD), though similar to

the conventional SPM, has a more complex operation. Therefore

before describing its operation, the principle will be described

using a 'reverse SPM'. Though.this analogy is useful it does not

directly lead to a practical.realization.

-135-

ARITHMETIC ARCHITECTURES.

Q}

n -bit reg. I-- n-bit reg.

I r · . r II 1/
~
--..-

div. gated adders

n·bit carry save n-bit reg. reg.

mul . .. - div.

b) . mult iplicand d iv isor
•

: ·0 r--- • SID

[. . I

.PIA . PIA .
product dividend

CJ
I

0 I p IQ I--- SID
I

I . . . I

P.P.IP.Rem . P / P.Rem.: 0 . · I . partIal product partial remainder

d) multiplier quo~ ient .
'R /Q #

.
I-- SID

,1 . I
"

0/ Rel]l. 0 · .. remaInder

FIGURE 8.9 PRINCIPLE OF THE SPD.

-136-

Cf)

~

g§
E-!
U
~
E-!
H
::r::
U
P:<
~

U
H
E-!
~ :s
::r::
E-!
H
0:::
~

\

Quotient Carry Save Adder

Front

End

Processor

Yn+1 I Yn

4:1 M

FA

FIGURE 8.10 A PRACTICAL SPD.

Divisors

4:1 MUX,

FA FA

QPIt-----

I
I'
(V)

r-l
I

ARITHMETIC ARCHITECTURES.

Figure 8.9a shows our imaginary
,

SPM' , reverse with its

reversible data f 10\<1. After n clock cycles the state of the /"

conventional SPM is shown in figure 8.9b. If we now reverse the

clock, figure 8.9c shows the position after k clock cycles.

Finally after n clock cycles (see figure 8.9d) we are in the

starting state of the SPM and the final position of the SPD.

Those familiar with division will realize the bug in our

imaginary SPD: how did we know· the value of the quotient /

multiplier. To find this value we need to know whether the

divisor is greater than the contents of the carry save register,

which requires. a time consuming comparison. To get around this

problem the architecture has to be modified.

8.5.2 A practical SPD.

Figure 8.10 shows two new features not present in figure

8.9. Firstly, there is a Front End Processor (FEP) on the carry

save adder. Secondly, there is more than one possible multiple

of the divisor.

Consider first the action of the FEP. It receives a sum

and carry from the most significant stage of the carry' save

register, anq the carry from.the second most significant stage.

The sum of these inputs. (X) can vary between four and zero.

Internally the FEP has a carry save (Y).

The value of X and Yare used to determine the value of

-138-

ARITHMETIC ARCHITECTURES.

the quotient, and the multiple of the divisor that needs to be

subtracted from the partial product register. In order not to

overflow the FEP, it is important to have sufficient combinations

of possible numbers to subtract. Including the zero, four

combinations are needed. For each possible value 6f X and Y table

8.4 shows the resulting action.

INPUTS OUTPUTS

Xn ! Yn ! Yn+l! quotient! 'divisor' !
--------------------------~-------~----
000
000
001
001
010
010
01.1
011
100
100

o
1
a
1
o
1
a
1
o
1,

a
a
1
1
o
o
1
a
a
a

a
Ql
o
Ql
Ql
Q2
Ql
Q2
Q2
Q3

o
Rl
o
Rl
Rl
R2
Rl
R2
R2
R3

TABLE 8.4 FRONT END PROCESSOR TRUTH TABLE.

The operation of the SPD is more complex than the other

schemes discused before: but in operation ,it is not dissimilar to

the SRT algorithm. Again, instead of a full comparison, just a

few bits are used to determine the number to be subtracted.

However, with the SPD only a carry save subtraction is performed.

The values of Qx and Rx are given by:

n+l n+l
Rl = 2 mod D Ql = 1 (2 / D .

n+2 n+2
R2 = 2 mod D , Q2 = 1 (2 / D

n+l n+2 n+l n+2
R3 = (2 + 2,) mod D , Q3 = l((2 + 2)/ D)

-139-

ARITHMETIC ARCHITECTURES.

8.5.8 Performance comparison: Divders.
-------------------------------------~/

PARAMETER SRT SPD

---------------- ------------
NO. LOGIC CELLS c· c

NO. WIRE CELLS c c

LOGIC AREA n n

WIRING AREA n n

I/O PORTS n n

TESTING TIME c c

TESTING AREA c c

GATE DELAY n*logn n

WIRING DELAY c c

LOADING n n

PIPELINE AREA

TABLE 8.5 ARCHITECTURE COMPARISON TABLE

Just two schemes for division are compared. The SRT and

SPD are similar in cost terms, but the SPD introduced here is

faster. One problem which the SPD has not overcome is the loading

problem. This would limit the performance of larger dividers.

8.6 MULTIOPERAND ADDITION.

The technique of conditionally adding n+l, n-bit

numbers is described here. The paper and pencil method of adding

three numbers A, B, and C, if their associated constants (K) are

-140-

ARITHMETIC ARCHITECTURES.

present, is given below:

//

kO.a2 kO.al kO.aO
kl.b2 kl.bl kl.bO
k2.c2 k2.cl k2.cO

s4 s3 s2 sl sO

The number of bits in the sum is given by n + 1 (n) •

The architectures used for multiplication can easily be

modified for multioperand addition (MOA). Figures 8.11 and 8.12

show the timing and architecture for adding n+l numbers. This is

the same as the SPM, except for the reversal in direction of the

partial accumulation line'(AO) and one operand coming from an

external source (BI).

DI X Kl XXXXXXXXXX K2 XXXXXXXXXX

-------- --------,
AI X Ll X X L2 X

-------- -------- -------- ---------

-------- --------
BII X Al X X A2 X

-------- -------- -------- ---------

BI2 X Bl X X. B2 X

AO XXXXXXXXX Sl X X S2 X

LD t

<----------------->
2n

FIGURE 8.11 TIMING FOR THE MOA.

-141-

,I

-

00--+-----1

"AI

ARITHMETIC ARCHITECTURES.

81

'--1------1 P

B12

-

Q

P

. BIn

FIGURE 8.12 MULTIOPERAND ADDITION ARCHITECTURE.

-142-

01

ARITHMETIC ARCHITECTURES.

dO_-_---J

ld--+--~

b i -......-+----.1 Q P -__._--+-_-.l P

ai

00--+-----1

L 0 --+--~-+-I

'AI

GS P

PQ

~I-----I P

~-~--+-I Q

FIGURE 8.13 MODULAR REDUCTION ARCHITECTURE.

-143-

di

bo

ao

Of

ARITHMETIC ARCHITECTURES.

8.7 MODULAR REDUCTION.

The SPD suffers a number of serious drawbacks compared

with the SPM. Not only is there a need for global communication,

but there is additional complexity. In this section a method of

overcoming these limitations will be described, which will work

if the divisor is known in advance. This might see~ a strange

idea, but it is often applica~le in'practical situations.

In order to split a system into parallel segments,

modular arithmetic is often performed. But finding the modulus is

equivalent to finding the remainder of a number (A) with a fixed

divisor (D). If:

2n-l j
A= ~ a*2

j=O j

We can write:
2n-l

A mod D = (a .[2 mod D]

Let R
j

2n-l
2n-2

+ a ~[2 mod D]
2n-2

+ •••

+ a • [2
n

n-l
+ a .2

n-l

mod D

j
= 2 mod D

n
mod D]

n-2
+ a .2 + •.• +

n-2

-144-

o
a .2
o

ARITHMETIC ARCHITECTURES.

n-l n-2 0
and L = a .2 + a .2 + ... + a .2

n-l n-2 0/
~

Therefore we can write:

A mod D = (a .R + . . . + a .R + L)mod D
2n-l 2n-l n n

The above expression contains the variables R, which are

independent of the divisor (A). For a given modulus D, R is

therefore fixed. The expression can thus be simplified to one of

conditionally adding n n-b'it numbers (R) to another n-bit number

(L). This is exactly the architecture discussed in the last

section.

The value of R could be precalculated, but this would

lead to an O(n
A

2) figure for logic area. Two methods of

calculating R, using previously worked out values, are possible:

a) Working up: R = (2.R - u .D
j j-l j

Where R
n-l

n-l
= 2

and the u are precalculated.
j

b) Working down: 2.R =
j

R + v .D
j+l j

Where v = I if R is odd, else a
j j+l

and R is precalculated.
2n-l

.•• 8 . 14

••. 8.15

The values of u and v are the same. But because we are

working backwards in b) we need not precalculate them. However,

-145-

ARITHMETIC ARCHITECTURES.

in the latter scheme we must precalculate the most significant R.

Figure 8.13 shows a hardware implementation of a Modular

Reducer (MR). It uses two carry save adder chains. The top chain

calculates the values of R using method a. The bottom chain

accumulates the sum, which is an n + l(n) bit number. Figure 8.14

shows the overall timing of the MR: assuming the constants (u)

have already been loaded, via Id and di lines. The Amsb and Alsb

refer to the most and least significant n b~ts of the numerator

respectively. S is the reduced n + l(n) bit number.

DI X Amsbl XXXX~XXXXX Amsb2 XXXXXXXXX

AI X Alsbl X X Alsb2'X

bI X Dl X X D2 X

AO XXXXXXXXX Sl x X S2 x

LD

<----------------->
2n

FIGURE 8.14 TIMING FOR THE MR.

8.8 SYNTHESIS OF A REQUIRED FUNCTION.

In the above sections we have described GVAs for basic

-146-

ARITHMETIC ARCHITECTURES.

arithmetic operations. Does this help us to calculate more

complex functions, such as Trigonometric, exponential and
~

logarithmic? The answer to this question is yes.

Complex functions can be synthesized using techniques

such as CORDIC (Refs.820-821). It is not possible to describe

this complicated technique here, but the consequences of this

algorithm are worth meritioning: with just a few cells and

architectures it is possible to build any arithmetic

architecture.

The architectures discussed in' this chapter have all

be.en either:

a) A tree (CLA, CBA, CSA).

b) A chain (MCC, SPM, SPD, MOA, MR).

c) An array (PM, NPM).

The combination of a small number of architectures -with a few

leaf cells, has numerous advantages. But perhaps the most

important is its simplicity.

Design rules change fTequently, requiring a new library

of cells. This means it is not possible to use the same layouts

for more than a few years. But by using just a few leaf cells it

is possible to quickly redesign them. This simplicity allows high

performance arithmetic units to be quickly designed.

To further speed up design, it is desirable to have the

design automated. A simple approach would be to have a library of

-147-

ARITHMETIC ARCHITECTURES.

predefined architectures. But more promising is the possibilty. of

generalizing these architectures O?to a higher level of

abstraction. It would then be possible for 'intelligent' software

to automate the whole process of arithmetic design.

8.9 CONCLUSION.

This chapter has described Jood VLSI Architectures (GVA)

for the basic arithmetic functions. Using techniques such as

CORDIC, more complex functions can be realized.

For each of the basic arithmetic operations a new

architecture has been proposed. All architectures have very low

complexity: in many cases using identical cells or architectures

with minor modifications. By using asymptotic cost and

performance measures, their benefits over 'ad hoc' designs will

improve as technology advances.

A new adder tCLA) was proposed which is faster than any

previously published. By modifying the architecture (CBA) it was

shown how the area could be reduced with a small loss in

performance.

Two new multiplier ~tructures were proposed. The NSPM is

similar to existing schemes but, because it removes any global

communication, it has better asymptotic performance. A NPM was

proposed, which is ideal for very fast calculation.

-148-

ARITHMETIC ARCHITECTURES.

A division architecture with O(n) delay was described.

This is a faster asymptotic performance than any previosly

published. Though requiring more random logic, its asymptotic

complexity is low.

Two other original arithmetic architectures were also

given. Firstly, for adding n+l numbers ·simultaneously: with an

architecture almost identical to the NSPM. Secondly, a scheme for

finding the modulus, based on two serial pipelines. If

applicable, it is preferable to the general divider: since it has

less loading problems.

This use of just a few cells makes it possible to use

full custom architectures cheaply and quickly. It would be

particually attractive if a software 'shell' was wri~ten to

automate the task.

The incorporation of error-correction techniques were

discussed in relation to the SPM. This appears to be an important

technique for breaking the traditional link betwwen yield and

area. However, this topic deserves more detailed investigation,

particually as regards keeping complexity low.

-149-

ARITHMETIC ARCHITECTURES.

B.IO REFERENCES.

801 H.J.HINDIN.

Digital signal processing moves into high gear.

COMPUTER DESIGN, PP.61-77, 15TH OCT. 1984.

B02 ADVANCED MICRO DEVICES.

AM29500 a .new bipolar LSI family for array/signal

processing.

AMD, P.O.BOX 453, SUNNYVALE, CALIFORNIA 94086.

803 C.R.CHAMPLIN & J.E.PRIOSTE.

Array-based logic boosts system performance.

COMPUTER DESIGN, PP.93-100, MAY 1984.

B04 R.E.OWEN.

VLSI architectures for digital signal processing.

VLSI DESIGN, PP.21-28, JUN.1984.

B05 K.HWANG.

Computer arithmetic: principles, architecture, and design.

WILEY, 1979.

806 O.SPANIOL.

Computer arithmetic.

WILEY, 1981.

-150-

ARITHMETIC ARCHITECTURES.

807 J.B.GOSLING.

Design of arithmetic units for digital computers.

MACMILLAN, 1980.

808 R.P.BRENT & H.T.KUNG.

A regular layout for parallel adders.

IEEE T. COMPUTERS, VOL.31, NO.3, PP.260-264, MAR.1982.

809 E.BRAUN.

Digital computer design.

ACADEMIC PRESS, 1963.

810 D.HEMPEL K.E.MCGUIRE& K.J.PROST.

CMOS/SOS serial parallel multiplier.

IEEE J. SOLID STATE CIRCUITS, PP.307-313, 1975.

811 I.N.CHEN & R.WILLONER.

An O(n) parallel multiplier with bit sequential i/o.

IEEE T. COMPUTERS, VOL.28, PP.721-727, OCT.1979.

812 N.R.STRADER & V.T.RHYNE.

A canonical bit-sequential multiplier.

IEEE T. COMPUTERS, VOL.31, PP.791-795, AUG.1982.

813 A.J.KESSLER & J.K.PATEL.

Reconfigurable parallel pipelines for fault tolerance.

IEEE INT. CONF. ON CIRC. & SYST. ICCC'82, NEW YORK,

PP.118-121, SEP-OCT.1982.

-151-

ARITHMETIC ARCHITECTURES.

814 H.T.KUNG & M.S.LAM.

Fault-tolerance and two-level pipelining in VLSI systolic

arrays.

CONFERENCE ON ADVANCED RESEARCH IN VLSI, PP.184-193, 1984.

815 N.R.STRADER & T.J.BROSNAN.

Error detection for serial processing elements in highly

parallel VLSI processing architectures.

CONFERENCE ON ADVANCED RESEARCH IN VLSI, PP.184-193, 1984.

816 M.J.DAY.

Comparison of fault-tolerant architectures for linear

pipelines.

VHPIC MEMO NO.20, GEC HRC, MIDDX. HA9 7PP, ENGLAND, FEB.1983.

817 J.V.MCCANNY & J.G.MCWHIRTER.

Completely iterative, pipelined multiplier array suitable for

VLSI.

lEE PROC., VOL.129, PT.G, NO.2, PP.40-46, APR.1982.

818 D.A.HENLIN, M.T.FERTCH, M.~ffiZIN & E.LEWIS.

A 25MHz 16 bit x 16 bit pipelined multiplier.

RAYTHEON, BEDFORD, MASSACHUSETTS 01730.

-152-

ARITHMETIC ARCHITECTURES.

819 J.IWAMURA, K.SUGANUMA, S.TAGUCHI, M.KIMURA & K.MAEGUCHI.

A 16-bit CMOS/SOS multiplier-accumulator.
_.-/

IEEE INT. CONF. ON CIRC. & SYST. ICCC'82, NEW YORK,

PP.151-154, SEP-OCT.1982.

820 J.E.VOLDER.

The CORDIC trigonometric computing technique.

IEEE TRAN. ELEC. COMP., VOL.9, PP.222-231, SEP.1960.

821 J.S.WALTHER.

A unified algorithm for elementary functions.

SJCC, PP.379~385, 1971.

-153-

.. (C Ht~ ~d)T [E ~~

9

" .

-154-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

9.1 INTRODUCTION.

This chapter will describe the design of the MA743

Advanced Cipher Processor (ACP). The ACP implements a 512 bit RSA

algorithm (see section 1.6.3) with Multibus interface. The design

is in 2.5 micron, double level metal, bulk CMOS. This work was

carried out by the author while at GEC Hirst Research Centre

(Ref.90l).

Public Key Encryption algorithms are based on simple

arithmetic operations. However, all PKCs have one distinguishing

factor compared w~th other DSP operations: the need for very

lar.ge operands. This security restraint on the minimum size of

operands mean that they are very computationally intensive.

The computational intensive PKCs are too slow if

implemented on a microprocessor and too costly ,for a TTL

breadboard. However, VLSI offers an ideal solution. The size of

the operands make the PKCs well suited ·to the arithmetic designs

of chapter 8.

The documentation is not intended to be comprehensive.

Some details of design, such as the microcode, have been omitted.

However, all major sections of the ACP will be covered using the

-hierarchical design style of chapter 6.

-155-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

9.2 HISTORY.

The proposal to build an ACP was first put forward by

the author in 1981. This lead to a more detailed proposal in 1982

(Ref.902). Three alternative cryptosystems were nominated.

Two of the proposed cryptosystems, the MH-knapsack (see

section 1.6.2) and the DH-key distribution scheme (see section

1.6.1) have proven popular, with several companies using them.

However, continued improvements in cryptanalytic techniques have

left their long term security in doubt. The question of security

was also the reason for rejecting our own cryptosystem (see

chapter 3).

To call a cryptosystem secure is relative, since no

absolute guarantee of security has ever been given. However,

probably the best test is to publish the algorithm and wait.

Because our system has not had this cryptanalysis, it would have

been unwise to invest so much in it. Therefore, the RSA scheme

(see section 1.6.3) was chosen.

It was envisaged that the mass market for these chips

would not exist until the late 1980's. For this reason, together

with the contemporary nature of the proposed technology and the

novel architectures used, a test design was undertaken.

This buffer between design and marketing was the reason

for going for a single chip implementation. Although it would

-156-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

have low yield under present technology, when required it could

be economically fabricated. The test design could have all the
~c

features of the final chip, without the additional logic of a

multichip system.

The work was intented, to form the practical part of my

PhD, therefore, I worked alone. This solo approach had mixed

consequences. The major drawback was the lack of someone to check

for errors. However, on the pqsitive side it allowed me to

visualize the whole design cycle, which compensated for any delay

caused by small erro~s.

9.3 SYSTEM DESIGN.

The operation of the ACP is described in ISPS (see

appendix A). This provided an effective way of debugging the

initial design. After the design was proven, a provisional data

sheet (see appendix B) was produced. Figures 9.1-9.4 show

blow-ups of the data sheet diagrams.

Figure 9.1 illustratescthe functional block diagram of

the ACP. The various components of this diagram are described

below.

-157-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

~ CLOCK GENERATOR I /,/

STATUS J I COMMAND
REGISTER REGISTER MODULAR

~ DO
H I

I

G'l • c 07
~

(
'l} { EXPONENTIAL

" {7 UNIT
tI:l

~ Voo' - 64-BYTE
I-'

~ VSS 0
- I/O STACK

'i.1

tl1
I:-i
0
0
:,:;: AI ---+

0
H

AO ~ -..
G'l'

~ HLDA :s: ---+ . -CS -..

DACK R ---tIo

DACK W

lOR

---+ 0:: 0::
L&JI- 0:: L&J 0:: L&J I-I-u L&J I- VI VlL&J I- VI --- I- (31- VI - to:) - L&J L&J - to:) L&J

Z 0: 0 to:) L&J 0:
::> L&J 0:

lOW

TC

---+ 1-1- 0 0: I-
....J zo: I- I-VI I- Z
0 ccL&JL&J -I- - ::> - 0«
0: ZN co::> CO.,J co I-

---+ I- 10 I 0.. I ::> I VI
Z No.. a NI- NO -.:t-z
0 ><z ::> 0 COo
u VI L&J 0« VI 0 VlL VI u

RESET ---
DRQR

..-

DRQ w-

-158~

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

HAND \

Al, AO X R/W ADDRESS 1 X R/W ADDRESS 2

CS \ l ~
lOR \ 1 \
lOW \ 1 \
00 07 (BYTE 1) (BYTE 2

DATA OUT DATA OUT

X 00 07
BYTE 1

X
BYTE 2

DATA IN DATA IN

FIGURE 9.2 DIRECT TRANSFER OF DATA.

-159-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

HAND 1
DRQR/W I
DACKR/W \ I J
lOR \ 1 \
lOW \ 1 \
00 07 (BYTE 1) (BYTE 2

DATA OUT DATA OUT

(00 07 BYTE 1 ~ BYTE 2
DATA IN DATA IN

FIGURE 9.3 TRANSFER OF DATA IN HANDSHAKE MODE.

-160-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

<

-
In
(X)
0
co -
-~ :z
:::>
~
o
CJ')
CJ')
w
U
o
0::
0..

-'
ct
0::
~
:z
w
u
o
~

-

L..l\
r-v'

~ v

r--+

r-o

8212
010 000 , , , , , ,
017 DO 7

052 STS

AEN ADSTB
DC) AD , , , ,
0'7· A'7

8257
CS

TC
--MEMR ORQo
lOR OACK o
ME'MW ORQ,
lOW OACK,

HRQ HLOA
I

ADDRESS BUS

DATA BUS

t-
t-

DO
~

,
I ,

07

~ AO
At ACP
-

t-- - CS

TC
DRQ R
OACK R
ORQw
OACK w

~ iOR
~ lOW HLOA

f

FIGURE 9.4 SYSTEM INTERFACE SCHEMATIC.

-161-

:)
..
~ ..
~

ME

A 15 .
,
I ,
, ,
•

AD
0,7 ,
0'0

lOR
MRI
I
MWI ME

10WI

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

9.3.1 Modular Exponential Unit.

The heart of the ACP is the Modular Exponential Unit

(MEU). It takes the contents of the stack (M) and raises it to

the power of E, where E is the contents of the exponent register.

The result (C) is then reduced mod X, where X is the contents of

the modulus register. C is then left in the output register until

the stack is free. If e(i) is the i'th ,bit of E, the formula used

is:

C = 1;

FOR i = OTO 511

BEGIN

.1 f e (i) = 1 THEN C = C * M mod X;

M = M * M mod X;

END.

Notice that the reduction is performed after each operation. This

stops overflow of the registers holding M and C.

This binary method for evaluating powers is not optimal

in terms of the number of multiplications. The power tree method

is faster for small n, while the factor method is better for

powers with a large number of factors (Ref.114). However, as a

general method the binary method is always close to the optimum,

and for large n the reduced complexity is important.

9.3.2 Interface.

An important part of any design intended for the

-162-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

commercial market is the system interface.

The throughput of the ACP is not input/output limited,

making it possible to use a standard 24-pin Dual In Line (DIL)

package. All data is communicated through an 8-bit bus, either

under control of a DMA or microprocessor. Figures 9.2 and 9.3

show the timing diagrams for transferring data in direct and

handshake modes respectively.

The chip contains all the signals necessary to interface

directly to a Multibus (Intel trademark) system. Figure 9.4 shows

a typical system. interface.

9.3.3 Synchronization.

The MEU has been optimized for high performance, so

there are no global signals or off-chip communication. This

allows the MEU to operate at much faster clocking speeds than the

rest of the system. However, in order to take full advantage of

this potential, it is vital not to have the delay through the

clock drivers. By having an asynchronous internal clock the delay

through the clock drivers is immaterial, since it is not relative

to anything else.

The ACP has two in?ependent processes: the external

process, concerned with conveying data between the internal stack

and off chip devices; and the internal process, which transfers

data between the stack and the MEU. The two operations are

-163-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

asynchronous.

,/'

The asynchronous nature of the external and internal

processes are reflected by the use of the 'process' qualifier in

the ISPS description (see appendix A). Communication between the

two processes is via the status register. The data sheet gives a

fuller description: showing how it is used by external devices to

avoid conflicting use of the stack.

In the timing diagrams (figures 9.2-9.3) there is no

system clock. The internal process is timed by a quartz crystal

controlled oscillator (see section 9.5.3). It 'pops' data off the

stack into the MEU and 'pushes' data onto the stack from the

output register. The external process regulates the reading from

and writing to the ACP. It 'pushes' data onto the stack and

control register and 'pops data off the stack and status

register.

If a signal from one of the processes violates the input

'constraint of the control unit, it can leave the circuit in a

non-stable state. Though there

guaranteeing synchronization

response time itis possible to

control unit allows over ten

are no absolute ways of

(Ref.903), by allowing enough

reduce this danger. The ACP

microseconds before a sampled

signal is allowed to change a state. This reduces the chance. of

failure to virtually zero, without affecting the performance of

the ACP.

-164-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

9.3.4 CONTROL UNIT.

The control unit is responsible for switching data on

the serial internal buses, and parallel external bus. Using its
,

own . internal' state machine, and signals from internal and

external components, it ensures no conflicts exist.

The- decision to go for a simple interface meant greatly

increasing the chip complexity. Though adding only a small amount

to manufacturing costs, approximately half the design costs were

taken up with the control unit, the switching logic and its

associated micro~ode.

9.3.5 Stack.

The name stack is something of a misnomer, since it is

functionally a first in first out (FIFO) buffer. Data is written

at the top of the 64-byte FIFO and read at the bottom. Extenally

data is read· and written least byte first. Internally data is

read and written least significant bit first.

-165-

.
p:;
o
CI.l
CI.l
~
U
o
p:;
At

p:;
~
~
At
H
U

a
~
u z
~ a
~

z
~

~
o
z
~
H
CI.l
~
a

Test 3 _2_

Structures I~ 12 Waveform
Generator

Ext.
LogiC ML EL

/

4:TC
/ /

S:Af
/ / - . v

6:AO - t:>o - v
0 0::: / /
o v- ~

~:CS a,:: ~ c:
_ .Q.. a..' v

/ / 0'- VI c:

8:HLOA .~~ z 0
.Q..

v ~-)0(

/ / VI ~. UJ

9:DACKR

Vj
Clock BUffer (CB) ->< CB

10jDACI<V't I-ff

FIGURE 9.5 ACP FLOORPLAN.

)J

VI
VI
:>

I
-a.. ---0 o v

.... .,,0
)0(0-

Modulus (MG) Serial Control
Generator Divider / Unit

DL IL· OL

- t:>o v v - 0::: - t:>o 0 >.. v
0 - 0:::

a.. 0::: 0
..!. ~ ::E 0 ::;,
0""0 _ .Q.. .Q.. . -- .- E ~ ::;,
v '- v
VlQ " I- 0

~ ~
CB >< CB

12 -{3

~4/ -~/1D7 :22
g /g/~
Command/ V
Status Regs. .

~
SL ~

D6 :21
/ ./

D5 :20
V ./

J 04 ·19
./

03 :18
-:oc V v
0 02 :17

VI ./ ./

01 ,16 .

r- Stack V// VI Clock
DO :15~ 0:::

BUffer 14

/

I
1.0
1.0
r-I
I

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

9.4 ARCHITECTURE DESIGN.

At the time the design was in progress a good simulator,

such as HILO (see section 6.2.1), was not available. This meant

considerable more care had to be taken in the design. Having

since designed a chip with HILO, I would estimate that several

months would have been saved if it had been available for the ACP

design.

Figure 9.S shows the floorplan of the ACP. The blocks

around the periphery with numbers attached represent the 24 pads

(see appendix B). The other blocks are described below.

9.4.1 Clock generator and buffer.

When designing a two-phase clock generator (xtal.

oscillator) and buffer (CB), the most important parameter is

delay. It is normal to worry about delay between the system clock

and the clock after it has been phase split and buffered.

However, because we generate our own internal clock, only clock

skew is a problem. The four outputs of the clock buffer,p, p', Q

and Q' are shown in figure 9.6.

Various multiples o~ the basic clock frequency are used.

But the fundamental multiple ~s 524 clock cycles. The name period

will be uied for this multiple. That is:

524 * (one clock cycle) = one p~riod.

-167-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

P

P'

Q

Q'

FIGURE 9.6 NON OVERLAPPING CLOCK WAVEFORMS.

9.4.2 Modular Exponential Unit.

To perform the binary modular exponentiation algorithm

of section 9.3.1, a multiplier and modular reducer are needed.

Firstly, to square M, and, secondly, to conditionally multiply C

by this result. A GVA for doing this is shown in figures 9.7 and

9.8. Its main components are the 524-bit serial-parallel

multiplier (the NSPM of section 8.4.2) and the 524-bit modular

reducer (the MR of section 8.7). As well as this there is a

522-bit register (Temporary reg.), a multiplexer and two extra

delay registers.

-
In addition to the components described above, there is

a modulus generator (MG). This is responsible for generating the

R (see section 8.7) required by the MR.

-168-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

c1 c2

MUX ,
&

- - -Dr' DO LD Bl AO

524 x

NSPM

I . t
AI
,f,
1

MUX

EO

EI
I~' o

FIGURE 9.7 LEFT HAND HALF OF THE MEU.

-169-

c3

stack
output

-in

-
t---i---I--I 2 xD . ~

-LDI so

524 x

EXP.

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

c1 c2 c3 (4

n 1
di do bi al

MOD. GEN.

-do di ld ao

out
...

MUX B -

in

stack
output

~ 1 10-..... -t--t-<~ M UX A
r----t-----I

r 'Rr I-
~ L------~

~~--~--~~--_~~-.-I~----~~----~~ ~~----~~
di"dodo_12 ld bi ai I DIY DO

I
I

..... -
do'" di

u

I

I

I

I

1

524 x 1

MODULAR REDUCER

. 1

I

I

,
1- _

; DO" 01

u

LD

FIGURE 9.8 RIGHT HAND HALF OF THE MEU.

-170-

AI

AO

TO

522x

TEMP.

REG .

Tl"

Tl TO"
. J , I

-----a{ M U X CJ--l >

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

Before data can be enciphered, the exponent, modulus and

constant register must be loaded. The first step is to load the

command register (CR) with 00010000. Following this, the first

512 bits of the constant register are loaded into the stack.

After loading, the data is directed from the stack, in serial

format, to the modular reducer (di): via mux B~ After 524 clock

cycles (1 period), the output of the modular reducer (do) is

directed back to its input (di). Thus, the first 512 bits of the

constant will circulate round the d-register of ,the modular

reducer.

To load the final 24 bits, bit 4 of the command register

is forced high (CR=OOOOlOOO). The four-bytes of data are then

transferred to the stack. After receiving the signal ~last~ (see

section 9.4.3), the data from the stack is transferred, via mux A

into the·temporary register (TI). For the next 476,clock cycles

the ~rubbish~ at the bottom of the stack is PQshed out. The

subsequent 24 cycles the real data is directed through TI, via

TO+24 and mux B, to the modulus generator (MG) input (di). In

the last 12 cycles of the period (the 512~th-524~th clock cycle),

the output (do) of MG, goes through mux B into the modular

reducer (di). For the first clock cycle of the next period, the

load line (ld=c2) is held high. This loads all 536 bits of the

constant u (see section 8.7) into the MR and MG.

Bit three of the command register is now held high

(CR=OOOOOlOO), and the 512 bit modulus is transferred to the

stack. The stack contents are then conveyed to the modular

-171-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

'reducer, in the same way as the first 512 bits' of the modulus.

This will leave the d register with the modulus circulating once

every period.

The exponent is transferred to the ACP by holding bit

two of the command register high (CR=OOOOOOlO), and loading the

stack with the 64 bytes of data. It is then moved to the exponent

register as described in section 9.4.8.

After the exponent, modulus and constant registers have

been loaded, the ACP is ready to exponentiate. To tell the ACP

that subsequent blocks of data are for exponentiating, bit one of

t~e command register is held high (CR=OOOOOOOl). When a 512-bit

message (M) is loaded, it is padded with twelve zeros and gated

into the multiplicand register (DI) of the NSPM. After 262 clock

cycles (1/2 period) the. load signal goes high for one clock

cycle: loading the multiplicand with M. At the same time the

message, emerging of the multiplicand register, is put into the

multiplier register (BI). The resultant product' (AO) is the

message squared (M * M).

After one period, a 1 (initial state of C) padded with

523 zeros, is loaded serially into the multiplicand register. At

the beginning of the second' period, the last bit of the previous

product (M * M) will be - shifted out. The output of the

multiplicand register (C) is again loaded into the multiplier

register. However, this time the load line is kept inactive. The

new product is the previous multiplicand (M) times the new

-172-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

multiplier ,(C). This new product (C * M) together with the

multiplier (C) is passed to a multiplexer: whose output is the

product if e(O) is 1, otherwise it is the multiplier.

At the same time that this second multiplication is

going on (second and third period), the previous product (M * M)

is being reduced. Assume the previous product was a 1046-bit

number (actually only 1024 bits are generated the first time).

The output; having passed unhindered through the multiplexer, via

the two delay registers, through the D register of the MR, into

the temporary register; arrives at the start of the second period

at the MR (AI).

During the first clock cycle of the second period the MR

load line (LD = c3) is held high. At this time the 522 Isbs (L)

are in the temporary register, while the remaining 524 most

significant bits (msbs) are latched into the MR. The contents of

the temporary register (L) are directed into the MR (AI). The

resulting output (AO) will be a 523-bit number: the sum of 524

512-bit numbers and a 522-bit number (see section 8.7). The least

significant bit of the result will come out of TO, via mux C,

into the input of the NSPM, at the beginning of the third period.

When the second product (C * M) has been shifted out,

and the first product has been reduced (M * M mod X), the. whole

process repeats. At the start of the fifth period, the multiplier

starts to square the result of the MR (M * M mod X); while the MR'

is now free to reduce the second product (C*M or C). The two

-173-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

operations, squaring and multiplication, occur at the same time,

while one is using the NSPM, the other is using the MR. There is
~

no overflow problem, because the NSPM and MR have been carefully

matched in size.

Data flows rhythmically, in a continuous stream. This

means, most of the MEU latches need only store data for one clock

cycle, permitting use of dynamic latches. The use of dynamic

latches has a number of· advantages. Most important they occupy

one third less area (see section 9.5.2), which is very important

for a design with around twenty percent of the total area being

taken by latches. One slight disadvantage is the need for

t~o-phase clocks.

9.4.3 External logic.

In order not to have any external 'glue' chips, a number

of extra control pins were employed. This redundancy is removed

in the external- logic (Ext. Logic), where seven of the control

pins are reduced to three lines. The meaning of these are:

LAST: The last byte of data is being transferred.

WORKING: An external device is transferring data.

STACK: If 1 then then external device is accessing the stack;

else if 0, and working = 1, command or status register being

written or read respectively.

Figure 9.9 shows their logic equations.

-174-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

DACKW --)

DACKR --)

HLDA ---)

CS'_----)

AO -----)

Al -----)

TC -----)

~-

--) WORKING = HAND + DIR

EXTERNAL
--) STACK = HAND + AO.DIR

LOGIC

--) LAST = Al.DIR + TC.HAND

where DIR = (HLDA'.CS') & HAND = HLDA.(DACKR +DACKW)

FIGURE 9.9 EXTERNAL LOGIC.

9~4.4 Control Unit.

As its name suggests, the control unit is responsible

for switching the source and destination of data. The'paths that

are open are determined by the state of the control;unit, and the

part of the period it is currently in. Figure 9.10 shows the

eight possible states (SO-57) of the control unit. Changes in

state are controlled by the output of the three registers shown

in figure 9.11.

-175-

..

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

RESET

v v

S7 111
Waiting for
data to be
written to
ACP.
DRQR = 0
DRQW = 1

• • • > • • • • • • • • • • • • <. . .

v

SO 000
Waiting for
internal
operation to
finish.
DRQR = 0
DRQW = 0

L=O. D=O .•• >... D=O.
v

S6 110
Data being
written to
ACP.

(N=N ~)

L=l.
V

S4 100
Last byte
being
written to
ACP.
DRQW = 0

N=O. N=l ••.. > •••
V

S5 101
data transfer
STACK --> MEU

(d=l)

v

S2 010
Data transfer
OREG --> STACK
and if N = 1
STACK --> MEU
".' (d=l)

V

S3 011
Data available
in stack,
ready to be
read.
DRQR = 1

L=O.
V

Sl 001
Data being
read from ACP.

(N=N ~)
-- -- - - -- -,.-':' - --

D=O.
L=D=l. &.

• • • • < •••••••••• <. . • • • L= 1 ••. >. . .

FIGURE 9.10 CONTROL UNIT STATE DIAGRAM.

-176-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

VOO

ZERO (f,om expo')]
__ D~E T:...;;;E:..=;.C..;....T:.-'-ie {Zo-. --=-------JI P

tNT
STACt< J ---------'1 n

. VSS

VOD
LAST

EXT.
STACK

VSS

RESFT

s

___ ---I n

FIGURE 9.11 N,L AND D REGISTERS.

-177-

trickle
inverter ,

I

I ,
~

o

L

N

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

There are a number of ways of transferring from the

state diagram to a finite state machine. The way I chose was to

use the turn-on (TOx) and stay-on (SOx) conditions. For the

finite state machine shown in figure 9.10, we can write:

S7 = A .B .C

S6 = A. B . C '

SO = A'.B'.C'

TOA = Sl.L.D

TOB = S5 + SO.D' + Sl.L.D

TOC = S 4 . N' + S 2

SOA = S7.D + S6 + S4.N'.D + S5

SOB = S7.D + S6.L' + S2 1- Sl + S3.L

SOC = S7.D.L + S5 + S3 + Sl.(L' + D)

~,

AO = TOA + SOA

BO = TOB + SOB

CO = TOC + SOC

A block diagram of the control unit is shown in figure

9.12.

-178-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

COMBINATIONAL LOGIC

AAAAAA

• • • ABC

.

D N L

V V V
CO BO AO

M <.
E
M < ••••
o
R < •••••••
y

FIGURE 9.12 CONTROL UNIT ARCHITECTURE.

9.4.5 Stack.

The stack is organized as a 64 x 8 wide FIFO register.

It is responsible for storing data when it is being loaded, and

providing a place where processed data can be accessed. The stack

logic (SL see figure 9.5) converts the external byte format

into the serial format required internally.

Figure 9.13 shows the architecture of the stack and SL.

The stack clock can either be derived from external signals or

from a l/8th internal clock (F/8). When external data is being

loaded, the external control logic ensures that the internal

control is switched off. The stack clock is bufferd by the 'stack

clock buffer' (see figure 9.5).

-179-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

9.4.6 Waveform generator.

The main part of the waveform generator is a 524 state

counter. A 5ll-bit sequence can be obtained from a 9-stage shift

register, with exclusive-or feedback from stages 4 and 9. The 524

state design is based on this 511 state pseudo-random binary

sequence (PRBS), with logic to increase the cycle length to the

13 extra states required.

The design is similar to that used for the control unit.

A more detailed diagram is given in figure 9.20. For the waveform

generator we have the equations below: the inputs A-J represent

the outputs of our PRBS (with extra logic in the feedback path),

and X the extra state required to extend our sequence.

FEEDBACK = D' .J + D.J' ;

SO = A'.B'.C'.D'.E'.F'.G'.H'.J';

S505 = A'.B'.C .D'.E'.F'.G'.H • J ";

S5ll = A'.B'.C'.D'.E'.F'.G'.R' .J

S523 = (X.C.D) ;

L = S523';

AO = (FEEDBACK.L) + SO;

BO = A;

CO = B;

DO = C.L;

EO = D.L;

-180-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

FO = Ei

GO = Fi
~

HO = Gi

JO = H.L;

XO = S5ll + X.Li

S = SO;

I = S505;

The two extra outputs, S and I, are used in other parts

of the microcode. The operation of the counter has been simulated

in ISPS (see appendix C).

9.4.7 Serial divider and output register.

The serial divider reduces the final 523-bit result to

one of 512 bits. The design is based on the non-restoring

division algorithm (Ref.805). Figure 9.14 shows the architecture

used.

The output from the MEU is. directed to the 5l2-bit

output register. After 512 clock cycles the lsb is loaded into

the input of the serial divider: which has been initialized to

subtract. The output will then equal:

outputl = input - (modulus * 2
A

ll).

-181-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

r-
I
I
I
I
I
I

I
I

ao I

I

I
I

r-- bi

I
I

I
I

I
I·

I

al

(f)

D

CO t
FULL ADD/

ADDER D ~t ~ SUBTRACT
CONTROL

CI
I

.

f--

'------.j END OF OPERATION
r----t DETECT 0 R t--t-t-_c0-f

n M U X

--
SIt
::l -

L _ _ _ __ __ _ _ _ _ _ _ _ __

.... ::l
"0 ~ 0 .c:: N ,..,
E '- u u u

- - -- - -

'"-----I 512 x D (OUT. REGJ-- MUX r--12 x 0

From MEU

FIGURE 9.14 SERIAL DIVIDER.

-182-

- - --,

I

....
::l
~
::l
0

I-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

If the output is negative, that is the most significant

bit (msb) is a 1, then the operation during the next period will
/".

be an addition. If the output is positive another subtraction is

performed. The lsb of the output will take 525 clock cycles (1

period + 1 cycle) to arrive back at the input: 1 delay in the

serial divider, 12 in the extra register and 512 in the output

register. The result of the next eleven operation will therefore

be:

output2 = outputl +/- (modulus * 2
A

lO)

output3 = output2 +/- (modulus * 2
A

9)

output12 = outputll +/- (modulus * 2
A

O)

On the twelth and subsequent periods the result is

delayed by one less clock cycle, bypassing the internal delay.

Output 12 is a 512 bit number, which could be negative. If it is

negative a final addition is performed: output 13 = output12 +

modulus. Thereafter the input is directed straight to the output.

The three microcode lines cl-c3 control the serial

division operation. Cl and c2 tell the 'End of oeration detector'

when the first and twelth cycle are in progress. It, in turn,

switches the output data from one of its three inputs. At the

beginning of each addition/subtraction, the c3 signal resets the

carry register and tells the 'add/subtract control' when to

sample the data (i.e most significant bit).

-183-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

oBO" oAI LoO EI VSS Zo

. . OBI" DAO LDI EO VSS Zo
EXP -C ELL

ZD EO Lol L.S SACK DATA
(SO)

EI

FIGURE 9.15 EXPONENT REGISTER.

-184-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

9.4.8 Other registers.

The control and status registers are tristate static

registers, connected to the data pads. Whether they are read or

written is determined by the control unit.

The exponent register is a little more complex: its

architecture is shown in figure 9.15. The stack data is loaded

into the D register, where it circulates once every 524 clock

cycles. During the first period of the MEU operation, described

in section 9.4.2, the LDI signal goes high for one clock period.

This loads the exponent into the E register.

Once loaded, the E register is'clocked out serially with

clock W (which changes state at the start of each period). The E

register 'contains a zero detection circuit, so that when all the

significant bits of the exponent have been shifted out, the ZD

signal goes high. The ZD signal is sampled and if active passes

the result of the MR to the output register (see section 9.4.7).

The speed of execution is therefore proportional to the number

of bits in the exponent.

9.5 CIRCUIT DESIGN.

There were a number of design styles used in the ACP

leaf cells. For the main processing element, registers, crystal

oscillator and pads, full custom design was used (see section

-185-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

-6.5). For the interface, serial divider and control unit a

combination of PLA's and standard cells were used. The main

building blocks are described below.

9.5.1 Gated adder and subtractor.

The circuit for the adder has already been described in

the design example of chapter 6. This adder is employed in the

NSPM, MR and serial divider. By inverting the A input we get the

subtractor needed for the MR and serial divider.

9.5.2 Static and dynamic latches.

Two types of latches were used in the ACP: static

latches, which maintain their state by feedback; and dynamic

latches, which use the temporary capacitive charge on gate inputs

(Ref.90S). The static latches (see figure 9.16a) are used

wherever data is not refreshed every clock cycl~. The dynamic

latches (see figure 9.16b) are used only when data is refreshed

every clock cycle, but account for approximately 75% of all

latches on the ACP.

9.5.3 Crystal oscillator.

There is now wides~read use of quartz crystals in high

performance oscillator circuits. The left hand half of figure

9.17 shows the ciruit diagram of the Pierce oscillator used in

the ACP. The simplicity of the circuit belies the complexity of

analysis (Ref.906).

-186-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

a) STATIC

p Q

--L I-L
IN p p OUT

n n

T IT
P Q

. I ------ - - - - -
b) DYNAMIC

VDD

IN OUT

VSS

FIGURE 9.16 STATIC AND DYNAMIC LATCHES.

-187-

.
0:::
o
U)
U)

~
u
o
0:::
A..

0:::
~
:I::
A..
H
U

Q
~
U
Z

~
Q
~

Z
~

~
o
Z
t.?
H
U)

~
Q

PIERCE OSCILLATOR PHASE ' SPLIT T ER

14

&

---l

10p &

-
, I

- 9

11·
vss

L _____ _
- - - ~

EXTERNAL

FIGURE 9.17 PIERCE OSCILLATOR AND PHASE SPLITTER.

p

a.

I
00
00
~

I

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

The crystal oscillator was extensively simulated with

SPICE (see section 6.5). These simulations show the circuit has

high frequency and temperature stability, mainly due to the high

Q of the crystal.

9.5.4 Phase splitter and buffer.

The non-overlapping two phase clock is generated using

cross coupled NAND gates. The circuit used is shown in the right

hand half of figure 9.18. After being buffered, the output of

this circuit feeds the nine clock buffer circuits.

Each of the clock buffers employs a cascade arrangement,

with each inverter driving successively larger inverters (Ref

905). Although a ratio of 2.7:1 is optimal for performance,

slightly larger ratios usually give denser layouts without

significantly affecting performance. Therefore, a ratio of 4-5:1

was used both here and in the output buffers. The distributed

clock buffers have a combined drive capability equivalent to a

single inverter, with 2200 (n) and 5000 (p) micron transistors.

9.5.5 Pads.

Three types of pad are required by the ACP: input,

output and bidirectional. - The output pad uses four cascaded

inverters, with the final transistor of 120 (n) and 270 (p)

microns. Simulations showed the output pad can drive a 25pF load

in IOns.

-189-

VOD

14

1

4
I I

PAD

25

~ ~
.~ I I 1-I n

I
0
0'\
r-i
I

19

~I 1
10

VSS

INPUT DATA OUTPUT

FIGURE 9.18 BIDIRECTIONAL PAD CIRCUIT.

FIGURE 9.19 PLA AND-OR PLANE CONNECTIONS.

· p:::
o
U)
U)

~
u
o
p:::
p..

p:::
~
::c:
p..
H
U

o
~
u
z
~
o
,::t:

z
,::t:

~
o
Z
e"
H
U)

~
o

\

.0 0

HGCFBXJEDA

0 0 0 AND PLANE

HGCFBXjEDA

-

FIGURE 9.20 WAVEFORM GENERATOR.

OR PLANE 0 0 0

XO}OEODOAO

-

S I

r--''--

0 0

,

-

I
N
0"'1
r-l
I

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

The input pad has diodes to short out voltage spikes and

a resistor to dissipate the power. The circuit is the same as the
~'

right hand half of the bidirectional pad (see figure 9.18).

The bidirectional pad is basically the input and output

pads combined. However, the need to tristate the output demands

slightly more complex circuitry. Figure 9.18 shows the final

circuit and transistor sizes. Simulations showed this pad can

drive a 2SpF load in 12ns.

9.5.6 Programmable Logic Arrays.

The PLA generator allows fast turn around for both

sequential and combinatorial circuits (Ref.90S). The input to the

PLA generator are the logical equations. Three PLA's were used in

the ACP: for the external logic, waveform generator and part of

the control unit. The AND and OR plane connections are shown in

figure 9.19.

The circuit for the waveform generator is shown in

figure 9.20. The orderings of the inputs and outputs are chosen

to avoid wire crossovers.

9.5.7 Random Logic.

The random logic circuitry is used extensively in the

gating and control sections at the top of the ACP (see figure

9.5). Particulary in the ML, EL, DL, TL, OL, SL, serial divider,

control unit and crystal oscillator.

-193-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

Using simple building blocks such as inverters,
-~-

multiplexers, NAND and NOR gates; a traditional logic design

approach was taken.

9.6 LAYOUT.

Figures 9.21 to 9.32 show some of the cells and

macrocells used in the ACP. The final layout of the ACP is given

in a pouch connected to the back page. The whole drawing has

passed DRC and ERC (see section 6.6.2). Including scribe channel,

the drawing measures 8.6 x 6.8 mm (3.4 x 2.7 microns).

The ACP contains some 140 000 transistors of which it

was necessary to design:

a) 200 FULL CUSTOM (e.g. SPM and pads)~

b) 100 PLA (e.g. control, external and waveform generation

logic) .

c) 800 SEMI-CUSTOM - CELL DESIGN (e.g. serial divider and data

control logic).

Therefore, the regularity factor (see section 6.1) is

approximately 100.

Layout of pads required some extra knowledge of

processing. To ensure there was no static breakdown, they employ

good substrate contacts, thick power rails and no overlap of the

input line with gate polysilicon.

-194-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

FIGURE 9.21 SIX STAGE SERIAL PARALLEL MULTIPLIER.

-19 5-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

FIGURE 9.22 TWO STAGE SERIAL PARALLEL MULTIPLIER.

-196-

FIGURE 9.23 STATIC LATCHES.

-197-

FIGURE 9.24 DYNAMIC TRANSPARENT LATCHES.

-198-

()l

<
FIGURE 9.25 NAND GATES.

-199-

FIGURE 9.26 EXCLUSIVE-OR GATES.

-200-

FIGURE 9.27 MULTIPLEXERS.

-201-

FIGURE 9.28 DYNAMIC LATCHES.

-202-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

FIGURE 9.29 CONTROL UNIT PLA.

-203-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

FIGURE 9.30 OUTPUT PAD.

~204-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

FIGURE 9.31 INPUT PAD.

-205-

FIGURE 9.32 BIDIRECTIONAL PAD.

-206-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

9.7 FUTURE.

At the time of writing (April 1985) the ACP is still

awaiting fabrication, one year after completion. Problems with

the 2.5 micron double~level metal bulk CMOS line has been partly

responsible, however, the main reason is that· there is not

sufficient financial backing.

There is still interest within GEC system companies for

a finished chip, particualary from the commercial communication

side. However, despite this, I now believe without some major

external influence, the design will remain in its present state

f.or a number of years.

If implemented using 1.5 micron technology, the size of

the ACP would be reduced to an economical Smmx4mm. As technology

allows, there are a number of small additions.that would be

beneficial. These include being able to store more than one key,

having on-board DMA, and on board key generation.

9.8 CONCLUSION.

The ACP contains 140 000 transistors. However, it is not

this that makes it a VLSI chip, but the design techniques used.

The main execution unit, occupying 80% of the area uses just 100

custom designed transistors. The overall regul~rity factor was

reduced to around 100 by 'random' logic, which is still very high

-207-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

for a chip of this type.

Other attempts to design PKCs have met with little

success (Ref 905), with the notable exception of Sandia

Laboratories (Ref 906). The reason being is that, despite in most

cases better technology, they still used LSI design methods. I am

still confident that despite many new ideas, the architecture

used in the ACP has optimum performance. Other designs all use

global data communication, which restrict their performance to

less than half the potential SOK bits per second of the ACP.

9.9 REFERENCES.
-.--------------

901 GEC HIRST RESEASRCH CENTRE.

EAST LANE, WEMBLEY,

MIDDLESEX. HA9 7PP. ENGLAND.

902 A.MCAULEY.

Proposal for an advanced cipher processor.

VHPIC DESIGN LABORATORY, pp.I-3, 2ND DEC.1982.

903 M.J.STUCKI & J.R.COX.

Synchronization strategies.

CALTECH CONFERENCE ON VLqI, PP.37S-386, JAN.1979.

-208-

DESIGN OF AN ADVANCED CIPHER PROCESSOR.

·904 I.R.WILSON & A.M.ADDIMAN.

A practical introduction to Pascal.

MACMILLAN, 1981.

905 J.MAVOR, M.A.JACK & P.B.DENYER.

Introduction to MOS LSI design.

ADDISON-WESLEY, 1983.

906 R.G.MEYER.

MOS crystal oscillator design.

IEEE J. SOLID STATE CIRCUITS, VOL.lS, NO.2, APR.1980.

9p7 R.L.RIVEST.

A description of a single-chip implementation of the RSA

cipher.

LAMBDA (NOW VLSI DESIGN), VOL.l, NO.3, 1980.

908 E.F.BRICKELL.

A fast modular multiplication algorithm with application to

two-key cryptography.

SANDIA LABS. ALBUQUERQUE, NEW MEXICO 87185, 1982.

-209-

SUMMJ~~~Y
t~N~J

. F~~~~EC#~ST

-210-

SUMMARY AND FORECAST

SUMMARY AND FORECAST.

/~

Information is now recognized as an important asset in

commercial and industrial areas. The availabilily of data

communication networks will allow its increased exploitation. But

before the 'information age' arrives a number of important issues

need to be addressed. One of these is the susceptability of

modern telecommunication equipment to inexpensive electronic

interception.

The determination of an individual's right to privacy is

mainly a non-technical matter, but the pragmatics of providing it

is the central concern of the cryptographer. This thesis has

. sought answers to some of the outstanding issues in cryptography.

In particalar some of the theoretical, application and

implementation problems associated with a Public Key Cryptosystem

(PKC) .

The Data Encrytion Standard (DES) answers part of the

need for security. Being a government sponsored scheme, banks and

financial institutions can be confident about its security. But

the availability of DES hardware alone is not sufficient. Without

the capabilities of a PKC, . user authentication and key

distribution will prove major obstacles.

The Trapdoor Knapsack (TK) of Merkle and Hellman is the

only PKC capable of matching ~he speed of the DES chips. However,

the TK-PKC suffers from serious disadvantages. In chapter 2, a

-211-

SUMMARY AND FORECAST

more general approach to the TK-PKC is described. Using the

general knapsack problem, it was shown how the redundancy and

public key size can be significantly ameliorated, while achieving

a security equivalent to the original binary knapsack problem.

The security of the TK-PKC appeared to be based on, a

secure foundation: a NP-complete problem. Nevertheless, as so

often in cryptology, the cryptanalyst proved too resourceful. In

1982 Shamir showed that the original system could be broken in

polynomial time.

The most successful attacks on the secuity of the TK-PKC

were on the trapdoor information. To overcome this, a new TK-PKC

was designed based on transformations between the radix and

residue number systems. After our paper on this was presented, a

number of weaknesses were pointed out. These have been taken into

account for our improved new TK-PKC described in ch?pter 3.

Chapter 1 described how a PKC can be used to securely

exchange messages between two users, in the presence of a third

party who can monitor all their traffic. Unfortunately, this

system is not generalizable to more than two users. A secure

broadcast of a single message to n users would require n separate

cryptographic exchanges, which is clearly inefficient.

It has been shown that considerable saving in

transmission time can be achieved using multi-addressed packets

of information: In chapter 4, we consider how cryptography can

-212-

SUMMARY AND FORECAST

best be applied in this situation. We show how security or

network structure can be used to~dvantage. We then propose a

more general method, in which redundancy between the messagetext

and ciphertext is used to solve the problem of key distributuion.

The method effectively trades security, redundancy, number of

simultaneous receivers and transmission time. An example of the

broadcast cryptosystem, based on the TK-PKC, is presented.

The problems experienced by software publishers in their

battle with the pirate, will frighten publishers of other forms

of information. If they cannot provide security equivalent to

existing published media, then the benifits of the electronic

distribution will be forfeit.

Copyright is traditionally used to protect the publisher

from the pirate. In chapter 5, we show how to protect information

when it is in an easily copyable digital form .. The software

program was shown to be probably the easiest to protect. However,

more general solutions were also put forward.

The future of DSP is certain to be increasingly cross

disiplinary, involving VLSI and computer engineering. It is

unreasonable to expect the DSP man to be an expert in the device

physics of chip design. However, in order to take advantage of

the capabilities of VLSI, some knowledge of its potential and

constraints are needed. In Chapter 6, the author describes what

is involved in a low comple~ity custom design.

-213-

SUMMARY AND FORECAST '

Throughout the whole design it is necessary to be,

flexible, without losing the structure of top-down design. The
-~

importance of this adaptability is true at all levels of design,

but is particually significant at higher levels. Specialization,

while allowing one level to,be optimized, will degrade the whole.

Two other points raised in chapter 6 are also worth

emphasising. Firstly, the importance of simulations, not only for

checking but for finding hidden complexity. Secondly, the

benifits of not using logic gate primitives was shown by examples

of good custom CMOS design.

The key to low complexity VLSI design is a vocabulary of

good structures. However, in order to appreciate the advantages

of a particular architecture, it is necessary to know something

of the characteristics of a good design. This was the aim of

chapter 7.

To design an architecture requires knowledge of the

effect on performance and cost. Chapter 7 put forward a model

which, it is hoped, will be useful for many years. The ten key

parameters will, with an overall view of design, provide a method

of comparing architectures.

It is important to have an 'efficient method for

calculation in the basic arithmetic processes. There are an

increasing number of applications requiring high performance

arithmetic units. These special purpose machines vary widely in

-214-

SUMMARY AND FORECAST

application, but their internal architectures are remarkably

similar. Chapter 8 discussed arithmetic architectures for these

diverse applications.

New architectures, for all the basic arithmetic

operations, were described. Each is characterized by using a few

simple cells repeated many times. These are not specifically for

cryptography, though this is certainly a good application area,

but for any big number cruncher. I believe these architectures

could be used for a wide variety of future DSP applications.

More than providing a vocabulary of new architectures, I

believe the structures described in chapter 8 could provide the

basis for higher order generalizations. Only the surface has been

scratched in the work on VLSI computer arithmetic. There is ample

of opportunity for rewarding and stimulating exploration of more

formal ways of designing architectures.

The design of a VLSI device to implement the RSA

algorithm was the major practical part of this thesis. The design

was unusual, in that all the work was carried out by the author.

Normally, a number of people will participate, from initial

marketers to the final layout draughtsmen. This lead to slow

discovery of errors, and the benefits of specialization were

"
rejected. However, the greater insights into the overall design

more than compensated for this.

The Advanced Cipher Processor (ACP) communicates with a

-215-

SUMMARY AND FORECAST

host microcomputer via an eight-bit bidirectional data bus, and a

number of control pins. DMA transfe~s are supported. Internally,

the device consists of the control unit, modular exponential

unit, registers, oscillator, clock driver, inteface logic and 24

pads. Their design was described in chapter 9.

The heart of the ACP is the modular exponential unit. It

consists of the serial-parallel multiplier and modular reducer

described in chapter 8. Data flows in a regular stream, without

the need for storing. When operating at maximum performance,

every cell in the MEU is working all the time.

Despite careful design, the ACP is limited to speeds

around 50Kbits/second. Technological advances will allow slightly

faster speeds~ but no dramatic improvements are likely in the

next twenty years. This leaves a gap in the cryptosystem market,

since many applications require a PKC operating up to

20Mbits/second. The new TK-PKC of chapter 3 might 'fill this gap,

but continued improvements in breaking the knapsack problem leave

this open to doubt.

The one regret of the past four years, is that the ACP

was not fabricated. There were an number of reasons for this, but

the principle explanation was the belief that commercial
.

cryptographic devices represent a small market. Even today, ten

years after publicity about the vulnerability of computer banks

and communication, secure systems are still a rarity. Yet there

is increasing evidence to show computer crime is becoming a big

-216-

SUMMARY AND FORECAST

. business. The availabilty of RSA chips, would certainly be big

step to helping solve the security problems.
~

In the future I would confidently expect to see

cryptography become a standard feature in telecomunication

equipment. Technology, as so often happens, has found answers to

the problems it has created. Recent results have undermined the

confidence in cryptography, particually the PKC. Nevertheless,

though it may never be possible to quantify their security, I

believe that the PKC will be an important ingredient in the

information revolution.

I now believe that the PKC cannot match the speed of the

conventional cryptosystem, unless based on some non-mathematical

transformation. However, the benefits of a PKC will ensure that

research into a fast PKe will continue.

-217-

PAPERS PRESENTED BY THE AUTHOR.

, .-/"

-1-

R.M.F.GOODMAN & A.J.MCAULEY.

Public key cryptosystems for multi-destination addressing and

broadcast.

INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY; LES ARCS, FRANCE;

JUNE 21-25, 1982.

-2-

~.M.F.GOODMAN & A.J.MCAULEY.

Broadcast public key cryptosystems for multi-destination

addressing.

ELECTRONIC PRIVACY AND AUTHENTICATION TECHNOLOGY WORKSHOP; THE

HATFIELD POLYTECHNIC, ENGLAND; JULY 19-20, 1982.

-3-

R.M.F.GOODMAN & A.J.MCAULEY.

Modifications to the trapdoor-knapsack public key cryptosystem.

IEEE SYMPOSIUM ON INFORMATION THEORY; ST. JOUVITE, CANADA; SEP
, "

26-30, 1983.

-4-

R.M.F.GOODMAN & A.J.MCAULEY.

Key exchange in a broadcast environment via a public key

cryptosystem.

4'th INTERNERNATIONAL CONFERANCE ON DIGITAL PROCESSING OF SIGNALS

IN COMMUNICATIONS; LOUGHBOROUGH; APRIL 1985.

-218-

-5-

R.M.F.GOODMAN & A.J.MCAULEY.

Electronic publishing and copyright protection.

IEEE SYMPOSIUM ON INFORMATION THEORY; BRIGHTON, ENGLAND; JUNE

23-28, 1985.

-6-

R.M.F.GOODMAN & A.J.MCAULEY.

Bit serial integer arithmetic for VLSI public key cryptosystems.

IEEE SYMPOSIUM ON INFORMATION THEORY;

BRIGHTON, ENGLAND; JUNE 23-28, 1985.

-7-

R.M.F.GOODMAN & A.J.MCAULEY.

A new trapdoor knapsack public key cryptosystem.

ACCEPTED BY: lEE PROCEEbINGS-E; COMPUTERS AND DIGITAL TECHNIQUES.

-8-

R.M.F.GOODMAN & A.J.MCAULEY.

Key exchange in a

cryptosystem.

SUBMITTED TO: lEE

TECHNIQUES.

broadcast environment via

PROCEEDINGS-E; COMPUTERS

-219-

a public key

AND DIGITAL

ABBREVIATIONS.

ACP Advanced cipher processor.

BNC Big number cruncher.

CBA Carry bypass adder.

CC Conventional cryptosystem.

CLA Carry look-ahead adder.

CMOS Complementary MOS.

CSA Conditional sum adder.

DES Data encryption standard.

DIL Dual in line chip package.

DSP Digital signal processing.

EPROM Erasible programmable read only memory.

GF Galois field.

GVA Good VLSI Architecture.

KEPROM Key EPROM.

LSB Least significant bit.

MA743 Mask allocation for ACP.

MG Modulus generator.

MOA Multi-operand adder.

MOS Metal oxide silicon technology.

MR Modular reducer.

MSB Most significant bit.

NMOS N-channel MOS.

NPM New parallel multiplier.

NSPM New serial parallel multiplier.

PKC Public key cryptosystem.

-220-

PLA

PM

PROM

Programmable logic array.

Parallel multiplier.

Programmable read only memory.

RSA Rivest-Shamir-Adleman PKC.

SPD Serial-parallel divider.

SPM Serial parallel multiplier

TK-PKC Trapdoor knapsack PKC.

TRC Tamper resistant computer.

TTL

VLSI

Transistor transistor logic.

Very large scale integration.

-221-

· J~ ~:J)~:J)E N ~J ~ X
... J~ ..

G6C
[HRC] MA743 ADVANCED CIPHER PROCESSOR

PRELIMINARY DATA

DISTINCTIVE CHARACTERISTICS

* 50 K bits/s data rate : consistent with use in
X2S wide area network

* Message secrecy

* Message and user authentication

* Simplified key distribution

* Single chip encryption/decryption

* MULTIBUS1 compatibility

DROw DRQR D7 D6 D5 D4 D3 D2 D1 DO RESET 5V

GNO 'TOI! TOll TC AI AD tI HLDA DACKR DACKW C- C·

CONNECTION DIAGRAM

PIN I/O DESCRIPTION

00-07 I/O Bidirectional three state line. Input for keys.

A1,AO I

HLDA I

n I

lm'R'R I

lm'R'w I

1UJr I

TC

RESET I

DRQR 0

DRQW 0

VDD PS

Input/output for plain text/cipher text

Used to select distination of data bus, in
direct mode operation

Selects between direct (low) and handshake
(high) mode of operation

Enables the lOR/lOW, in handshake mode

Enables the lOR, in handshake mode

Enables the lOW, in handshake mode

I/O Read, used to strobe data out

I/O Write, used to strobe data in

End of current block transfer

Initialize

Block of processed data available on stack

Can write block of data on to stack

5 V power supply

VSS PS 0 V power supply

Cex+ External timing crystal/External clock

Cex· External timing crystal

TABLE 1 PIN FUNCTIONS

GENERAL DESCRIPTION

The MA743 Advanced Cipher Processor (ACP) is a special
purpose 24 pin CMOS chip, designed to overcome the
serious deficiencies of traditional encryption methods
such as the US Data Encryption Standard. It is based
on the best of the Pub Ii c Key Cryptosystems, the RSA
algorithm, which has defeated all attacks on its
integrity.

A secure system based on the ACP would operate as
follows. Each user would generate a pair of keys, one
of which would be kept secret, the other would be
published in a directory. Anyone wishing to
communicate with you could then encipher a message
encrypted under your public key. Since only you know
the secret inverse key, you are the only one able to
decipher the message. The problems of secure key
distribution do not then arise. By sending a message
'deciphered' under your secret key, anyone can use your
public key to read your message. However, since only
you could have generated the 'deciphered' message, this
"electronic signature" may be used for authentication.

The ACP will interface easily to MULTIBUS1 and other
microprocessor bus systems, and will facilitate direct
handshake with a DMA controller for both input and
output. With the full S12-bit key. data rates up to SOK
bits/s will be possible. With a reduced encryption
key, encryption speeds will exceed 1M bit/so

Applications include: Electronic Funds transfer,
Computer Network Communications and secure Database
Systems.

0,0
MOOUL"

J7 <;::=:;"";';"'iIi=:.J
U,ONENTIAL

UNIT

AI

AD

v"

HLDA

Cs

Difi,

O~CK.

iOR

iOW

TC

R!sn

14-IYlE

110 STACK

..
'"

FIGURE 1 ACP BLOCK DIAGRAM

IMULTIBUS is a trademark of Intel Corporation

FUNCTIONAL DESCRIPTION

The ACP is a high performance device for performing modular
exponentiation on 512-bit numbers. Its speed of execution
is proportional to the number of bits in the exponent. It
communicates with the host microprocessor system through a
bidirectional eight-bit data bus. and a number of control
pins (see Table 1). Figure 1 shows the Internal layout of
the ACP. all Internal paths are bit serial.

REAOING AND WRITING DATA

a) Direct mode
In the direct mode. the HLDA line must be inactive and the
t! line active. Data can then be read or written on the
rising edge of the 11TIr/TOY pulse (see figure 2). The
destination Is selected using the AoAI address lines (see
Table 2). If data is written into the stack. the final
destination is determined by the contents of the command
register (see Table 4). Before data is written the
contents of the status register (see Table 5) shou1 d be .
checked.
b) Handshake mode
With the HlDA line active. the CS line Is disabled (see
Table 3). Communication Is then throu~e Data Request
(DRQR.DRQw) and Data Acknowledge ~.~) lines. With
Data Acknowledge active. data Is again strobed on the
rising edge of the 11TIr/TOY pulse (see Figure 3). The Data
lines are automatically connected to the stack.

Al.AO DESTINATION/SOURCE

O· 0 Command Register/Status register
X 1 Stack/ Stack
1 1 Last byte (stack)

TABLE 2 : ADDRESS DECODE

HLDA.t! OPERATION

0 1 Ignore system. except for DRQ as necessary
0 0 Reads data and address with.11TIr/TOR pulse
1 X DMA active - data strobed wi th w:cK and

lUlitImi
TABLE 3 : CHIP STATUS DECODE

Ix I X I X I X I KR I MR I EP I MEUI

BIT 1 : MEU • Write to modulation exponential unit
BIT 2 : EP • Write to exponent register
BIT 3 : MR • Write to modulus register
BIT 4 : KR • Write to constant register

TABLE 4 : COMMAND REGISTER DECODE

IDRQw I DRQR I SF I SB I X I MB I OW I OFj

BIT 1 : OF • Output ready
BIT 2 : OW • Output register full
BIT 3 : MB • MEU busy

.BIT 4 : X .
BIT 5 : SB • Stack busy
BIT 6 : SF • Stack full of input
BIT 7 : DRQR • Read request to DMA
BIT 8 : DRQW • Write request to DMA

TABLE 5 : STATUS REGISTER DECODE

~

~ RN ADDRESS \ X R/W ADOIIESS Z

/'

~ I \
lOR \ I \
lOW 0 \
00 01 ~ (lYlE Z

OUA OUT OATA OUl

00 01 X lYlE \ X BYlE Z
DATA IN DATA III

FIGURE 2 : DIRECT TRANSFER OF DATA

~
ORO.,. I
0Aci.,. \ I \
lOR \ I \
iOW LJ \
00 01 BYlE \ IYTE Z

OATA OUT '\ DATA OUT -
~ aYlE \

X
BYTE Z

OAU IN om If

FIGURE 3 : TRANSFER OF DATA IN HANDSHAKE MODE

A:'5

ADORESS IUS

DATA IUS AD
Y- 0.1

0:0

i L 821Z U O!O . D<!0

I'" oil 0<57f-
osz sn

I I g
UN AOSTI

0:0
5

L.J, 0:0 A,of-- ~ ~
~ 07 Alit=:

0"
~ AD " 8257 A\ ACP E

m-- -cs l!i
~

TC
.

TC 0 x
r---- HEHi ~ ORO Ii!
.---iOR mI, :;? OACl.

,.... HEHW ORQI ~ iOW D4Ci, OACl •
..... ~

HRO HLOA mi HLOA

I I
HEHRI
10RI
HEHWI
10WI

FIGURE 4 : SYSTEM INTERFACE SCHEMATIC

For further information please contact VHPIC Design Laboratory. GEC Research Laboratories. Hirst Research Centre. East Lar
Wemb1ey. Middlesex. HA9 7PP.
Tel: No 01-904 1262

J~ ~d)~d)E N~] ~ X

~3

t. ."

I'!A743:=
Beoin (US)

ISPS Description of the MA743 Advanced Cipher Processor CACP)

I Paoe 1: Carriers associated with the ACP chip.
I Paoe 2:
, Page 3:4
I

System carriers, and imple.entation declerations.
System operation. Page 3 simulates the operation of a CPU, by

putting the necessry signals on the acp·s inputs. Page 4
Similarly simulates the operation of a DMA, and chip
select logic.

I
J
J
I
J
J
I
I
I
I

Page 5:9 ACP description. Pages 5&6 describes the control logic of the
ACP associated with exchanging data with the outside world.
Page 7 describes the control logic associated with t~e
internal transfer' of data. Page 8 describes the operation
of the MEU, incalculating the modular exponentiation of the
input data. Finally Page 9 describes the subroutines used
in the description.

Page 10: Program description. Simulates the program of the CPU.

UACP. STATE ..

J ACP registers

SR~7:0),
DF() :=SR(O),
OW() :=SR(1),
MBO :=SR(2),
Sa() :aSR(4),
SFO :=SR(5),
DRQR():"SR(6),
DRQW():"SR<7),

CR(7:0),
ET<15:0),
EP(15:0),
C:R(19:0),
MR(15:0),
KR(IS:0),
SH1:0JO:0),

IModular Expontiatial Unit registers

ZA(39 0),
ZB(19 0),
ZD(19 0),

04<19 0),
DB<15 0),
00(39 0),

'ISTATUS REGISTER
lDUTPUT READY
10UTPUT REG. FULL
IMEU BUSY
tSTACK BUSY
ISTACK FULL OF INPUT
!WRITE REQ. TO DMA
IREAD REQ. TO eMA
ICOMMAND REG.
!EXPONENT REG. (TEMP)
IEXPONENT REG. (PERM)
fOUTPUT REG.
IMODUlUS REG.
!CDNSTANT REG.

'1 STACK

JPROOUCT
IMULTIPLIER

'IMULTIPLICAND

tRESULT
IMODULUS

'IDIVIDEND

.eXTERNAl.STATES.

IMultibus si~nals

0(1:0>,
A(15:0),
IOW<>.
IOR<>,

IControl pins

HLOA<> ,
OACKRO,
OACKWO,
TCO,
RSTO,

RAHC0:15J(7:0>,

.IMPLELENTATION.OEClERATIONS.

P(6:0),
'C(4:0>,

U(3:0>,
A2(3:0>,

RW(>,
OV<T:O>,
AODf<15:0),
40DS(15:0).

'DATA BUS
IADDRESS BUS

ISELECTS HANDSHAKE MODE IN ACP
lACK. BY OHA OF ORQR
tACK. BY DHA OF DRQW
!END OF BLOCK TRANSfER
IRESET

IEXTENAL MEMORY

'1ClOCK
IDELAY VAR.

IREAO DR WRITE FLAG
ICPU·S DATA
lEND ADDRESS (HANDSHAKE MOCE)
ISTART ADORESS (HANDSHAKE MODE)

Page 2

, ,
I

System.operation

~IRECT READING AND ~RITING OF ACP (Remember to cheek SR) Page .3

OIR:-
BEGIN
HLDAaO NEXT
eso NEXT
DeCODe RW a)

BEGIN
0:- BEGIN

IOW=O NEXT
liTO NEXT
IOW:I
END,

1:- BEGIN
IOR=O NEXT
WTO NEXT
lOR-I NEXT
DV=O
END

END NEXT
eS=l
END,

ICA) (---) 0

I DIRECT ""ODE
ICALCULATE CS() FROM AOORESS

IWRITE TO ACP (OIR)

IWAll FOR EXT PReC. TO LATCH 0

IREAD (OIR)

ISTORE DATA BUS INTO (ADOM)

HANDSHAKE READING AND WRITING (REMEMBER TO CHECK SR)

llANO:·
BEGIN
A=AOCS NEXT
REPEH

END,

BEGIN
IF A EQL ADDE => TC=1 NEXT
HLDA"l NEXT
eso NEXT
DECODE RW =>

BEGIN
0:: BEGIN

WAIT (OR~W) NEXT
D=RA~CAl NEXT
DACKW=O NEXT
IOW=O NEXT
WT() NEXT
IOW=1 NEXT
CAeKW=l
END,

1:- BEGIN
WAIT (DRQR) NEXT
CACKR=O NEXT
IOR=O NEXT
WTO NEXT
IOR:l NEXT
OACKR"1 NEXT
RAMCAJ=D
END

END NEXT
TC"O NEXT
A=A+l NEXT
IF (A GTR ADCE) -> LEAVE HAND
eND

!SIMULATE DECODE lOGIC

cs<>:-
BEGIN
DECODE A ... >

BEGIN

END,

"0001 := CS=O,
OTHER~ISE:= CS=1
END

!(STACK) (-) (RA~CAODS •• AOOEJ)

!SIGNAl LAST BYTe
tHANDSHAKE MODE
!(CS IS INEFFECTIVE IiGWEVER)

!WRITE (HAND)
!WAIl FOR ACP READY
!NEXl BYTE OF DATA ON DATA BUS

tREAD (HAND)

!STORE PROCESSED DATA

!INCREMENT DMA ADDRESS
!FINISHEO BLOCK TRANSFER

!SELECl CHIP

Ext.~nal op.~ation

PROC,=SS EXT::
SEGIN
REPEAT

BEGIN
IF RST OR CRCS) a) RESETC)' NEXT
DECODE HLOA =)

BEGIN
0:= BEGIN

IF NOT CS =)
BEGIN
DeCODE lOR i lOW =)

BEGIN

END
END,

'10:-=
BEGIN
OECOOE A(I:0) =)

BEGIN
'00:. CR-O,
'01:= BEGIN

S8=1 NEXT
PUSHO
END,

'11:= 8EGIN
58=1 NEXT
PUSHO NEXT
SF .. 1 ;
DRQW=O
END

END NEXT
WAIT CIOW)
END,

'01: "
8EGIN
DECODE A(1:0) =)

BEGIN
'00:" D-SR,
'01:-= POP(),
'11:= BEGIN

POPO NEXT
SB=O ; SF=O NEXT
DRCR-O
END

END NEXT
WAIT (lOR)
END,

OTHERWISE:: NO.OPC)
END

Page S

IDIRECT /olODE
IIF CHIP SELECTE~

I WRITE

IDECDDE ACD. BUS

ILDAD CR

ITAKE STACK
ILOAO STACK

ITAKE STACK

lEND OF TRANSFER

lSIMULATE LATCH

JREAD

I SIMULATE LATCH

External operation (continuld)

1:- BEGIN

END
END,

IF CACKW OR OACKR =)

.BEGIN
CECODE lOR i lOW =)

BEGIN

END
END

END

·10:= BEGIN
SB=l NEXT
PUSHO NEXT
IF TC =) BEGIN

SF-1 ;
ORQW=O
END NEXT

WAIT (lOW)
END,

·01:= BEGIN
POPO NEXT
IF TC =) BEGIN

SB=O ; SF=O NEXT
DRQRaD
END NEXT

WAIT (lOR)
END,

OTHERWISE:. NO.Ope)
END

IHANOSHAKE MODE.

II/RITE

IREAD

IInternal operation Page 7

PReCESS INT:
BEGIN
R EPE AT

BEGIN
DECODE Me ; SF ; OF ; DRQR .)

BEGIN
·0111:= BEGIN

·'000:·
OTHERWISE:

END
END

END,

DECODE CR =)

BEGIN
·01:= BEGIN

MB=1 NEXT
MEUe>
END,

"02:= (EP=STCOJ.STCIJ),
"04:z (HR=STCOJ;STC1l),
·08:= (KR=STCOliSTC1l),
OTHERWISE:- NO.Ope)
END NEXT

SB=SF=O
END, .
BEGIN
IF NOT SB .)

BEGIN
SB=1 NEXT
CRQW=O NEXT
STeO] ~ ST[lJ ,. ~R NEXT
DW=O;OF=O
DRQR=l
END

END,
CReW'"I,
NO.DPO

ISTACK--)INTERNAl

ISTACK--)MEU
IMEU REACY FOR USE
ISTART EXPONENTIATION

IS TACK-->E REG
IS TACK--> I'R fG
ISTACK--)KREG

IOUT.REG.-->STACK

I STACK FREE

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

PAGE MISSING IN

ORIGINAL

I
**RESET .CYCLEU

R:SET:-,
BEGIN
OACKW a OACKR=CS=IOW=IOR=l
TC=HlDhO NEXT
SR=-SO ;
CR=O NEXT
EXT() ;
INT() NEXT
STOPO
EN 0,

STACK.OPERATIONS

POP::
BEGIN
DRQI/=O NEXT
O=STClJ NEXT
STC1J=SHOJ
END,

PUSH:"
BEGIN
DRQllaO NEXT
ST[lJaSTeOl NEXT
STCOl-D
END,

DELAY.SIMULATION

'liT::
BEGIN
P=l NEXT
REPEAT

END,

WTl: z
BEGIN
Q=1 NEXT
REPEAT

END,

BEGIN
P=P+l NEXT
IF P(6) =) LEAVE liT
ENO

BEGIN
Q=O+1 NEXT
IF Q(4) =) LEAVE IITI
END

Pa!:e 9 .

J RESET COMPLETE

ISTART ACp·S EXTERNAL PROCESS
ISTART INTERNAL PROCESS

fOELAY BY 2A1 OPS.

IDELAY BY 2A1 OPS.

I
UPROGRAMMING**

RUN:=
BEGIN
RAMCSJ iii
RAMCn is)

RAMC9J iii
RAMCl1J iil
OV=D=Z ;
A2=4 ;
RW=O tiEXT
KEYO NEXT
TRANC)
END,

RAMC4J ="OOOZ
RAMC6J ="OOOB
RAMC8J ="OCDA
RAMCI0J""0003

KEY:-
BEGIN
REPEAT

END,

BEGIN
A=1 NEXT
OIRO NEXT
ACDS=AZ ; ADCE=AZ+l NEXT
WAIT (NOT SS) NEXT
HAND() NEXT
A2=A2+Z ; C=DV=CV~Z NEXT
IF 0 EQL 16 =) LEAVE KEY
END

·TRAN:-

ENO,

BEGIN
A-I ;
C=l NEXT
DIRO NEXT
REPEAT

END,

eeGIN
R~'"O NEXT
AC05=10 ; AODE:ll NEXT
"'ANO() NEXT
Rk=l NEXT
HAND()
ErlO

Pa~el0

IEXPCNENT
I~OOULUS
ICONSTANT
10ATA

IKEY DESTINATION
IINIT. VAL.
IWRITE TO ACP
ILOAO KEYS
!TRANSFER DAlA

IWRITE TO ACP'S CR
ILOAC KEY DESTINATION
ISOliRCE (iF KEY
ISTACK FREE?
ILOAD KEY
INEXT KEY SOURCE
IFINISHED ?

J~~J)~J)E ~~JJ X
(C

