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ELECTRONIC ENGINEERING 

SUMMARY 

Summary of Thesis submitted for PhD degree 

by Anthony Joseph MCAuley 
./ 

on 

Public Key Cryptosystems 

The determination of an individual's right to privacy is 

mainly a nontechnical matter, but the pragmatics of providing it 

is the central concern of the cryptographer. This thesis has 

sought answers to some of the outstanding issues in cryptography. 

In particalar, some of the theoretical, application and 

implementation problems "associated with a Public Key Cryptosystem" 

(PKC) . 

The Trapdoor Knapsack (TK) PKC is capable of fast 

throughput, but suffers from serious disadvantages. In chapter 

~ two a more general approach to the TK-PKC is described, showing 

how the public key size can be significantly reduced. To overcome 
/ 

" the security limitations a new trapdoor was described in chapter 

three. It is based on transformations between the radix and 

residue number systems. 

Chapter four considers how cryptography can best be 

applied to multi-addressed packets of information. We show how 

security or communication network structure can be used to 

advantage, then proposing a new broadcast cryptosystem, which is 

more generally applicable. 

Copyright is traditionally used to protect the publisher 
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from the pirate. Chapter five shows how to protect information 

when in easily copyable digital format. 
~-

Chapter six describes the potential and pitfalls of 

VLSI, followed in chapter seven by a model for comparing the cost 

and performance of VLSI architectures. Chapter eight deals with 

novel architectures for all the basic arithmetic operations. I 

These architectures provide .a basic vocabulary of low complexity 

VLSI arithmetic structures for a wide range of applications. 

The design of a VLSI device, the Advanced Cipher 
, 

Processor (ACP), to implement the RSA algorithm is described in 

chapter nine. It's heart is the modular exponential unit, which 

is a synthesis of the architectures in chapter eight. The ACP is 

capable of a throughput of 50 000 bits per second. 
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PREFACE 

PREFACE. 

Until fairly recently, the science of keeping 

information secret remained almost totally unknown outside the 

military and diplomatic communities. Even tOday most people only 

think of the romantic work of the codebreaker of cryptanalyst, 

whose efforts during WWIIprovided such a vital source of 

intelligence to the Allies. But in recent years there is 

increasing interest in the reciprocal science of the codemaker or 

cryptographer. This thesis is concerned with the latter; a 

challenging and exciting area of research. 

Cryptography unites the diverse fields of electronics, 

pure mathematics and computer science. Although this thesis is 

written primarily for the electronics engineer, it is necessary 

to calIon areas outside their usual knowledge. Therefore, 

Chapter 1, as well as introducing the basic cryptographic 

techniques, will provide an introduction to Galois fields, number 

theory and computational complexity. Those familiar with 

cryptography might still find it useful to familiarize themselves 

with the notations used in later chapters. 

Cryptography has been revolutionized by two developments 

in the last ten years. Firstly, the concept of the Public Key 

Cryptosystem (PKC), which' greatly enhances the capabilities 

offered. Secondly, the pervasive technology of Very Large Scale 

Integration (VLSI), which gives substance and'impetus to these 

new ideas. The thesis covers' the author's original work in the 
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design, application and implementation of cryptography to 

business and commercial telecommunication systems. A digest of 

these chapters is given below. 

CHAPTER 2. Describes a generalization bf the original 

Merkle-Hellman trapdoor knapsack PKC. A new scheme is proposed 

which allows reduced redundancy and a smaller public key 

directory. 

CHAPTER 3~ Puts forward a new trapdoor for the general 

knapsack PKC. It is based on the transformations between radix 

and residue number systems. The security does not rely on 

transformations from a superincreasing sequence, which have. 

proven vulnerable to cryptanalysis. 

CHAPTER 4. Describes how cryptography can efficiently be 

applied to information intended for more than one receiver. It 

shows how the natural security or communications network 

structure can be exploited, together with a ne~ concept: the 

broadcast cryptosystem. The latter allows a message to be 

deciphered by more than one receiver, if reduc~d, security can be 

tolerated. 

CHAPTER 5. Describes how cryptography can be applied to 

enforce copyright protection on a wide 'range of published 

material. The bases of the proposed solutions are the combination 

of tamper resistant modules "and a PKC. 

CHAPTER 6. Looks it the whole design cycle for a custom 

VLSI chip. It draws attention to the particularly important 

aspects the author has found in such a design. 

CHAPTER 7. Describes a comprehensive model for designing 
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VLSI architectures. This model is intended to be adaptable to new 

technologies. 
~. 

CHAPTER 8. Describes some new VLSI architectures for 

realizing the basic arithmetic functions used in digital signal 

processing. It concentrates on maximizing their 

performance and minimizing design complexity. 

asymptotic 

CHAPTER 9. Describes the implementation of the RSA-PKC in 

CMOS. The finished design is a 24-pin DIL package, with Multibus 

interface. 

CHAPTER 10. Draws conclusions from previous chapters and 

makes forecasts for the future. 

One important point, which has not changed over the 

centuries, , is that security is very diffic.ul t to gauge. The 

interpretations drawn should be read with a spark of scepticism. 

For in one hundred years, many interpretations may be regarded as 

erroneous. 

The author wishes to thank all those who directly or 

indirectly contributed to this thesis. In particular, I am 

grateful to my supervisor, DrR. Goodman, who has been a constant 

source of ideas and encouragement. I would also like to extend my' 

appreciation to my colleages at Hirst Research Centre for their 

guideance on the VLSI apsec~ of my research. Especially to Mike 

Rome, Andrew McCabe and Nick Parker. 
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BASIC TECHNIQUES. 

1.1 INTRODUCTION. 
-----------------

Many people think they could invent.a perfect cipher. 

But a brief look through the history of cryptography (Ref.lOl) 

teaches caution. Though many systems have served their purpose 

for a brief period of time, the cryptanalyst has always proven 

too resourceful. However with the aid of cheap hardware, 

increased sophistication and more open discussion, it is now 

Possible to talk of a cipher that will remain secure for a very 

long time. 

This chapter introduces the basic techniques which are 

helping to achieve greater confidence in cryptography. It is 

aimed at covering the salient features which relate to subsequent 

chapters. 

No attempt is made to cover the whole spectrum of modern 

cryptography. It only scratches the surface of important areas 

such as: secret sharing, standards, analogue techniques and 

cryptanalytic methods. 

The thesis assumes an understanding of the recent 

advances in cryptography. Those unfamiliar with these 

developments are referred to one of the many excellent digests 

available in the literature (Refs.102-111). 
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BASIC TECHNIQUES. 

1.2 TERMINOLOGY AND MATHEMATICAL NOTATION. 
------------------------------------------

The problem of understanding a highly specialized 

subject is always hindered by the use of words used only in its 

limited field. Hopefully most such words will be explained when 

they are used, but the following brief list might be useful. 

AUTHENTICITY: Determine the integrity of data and transmitter. 

BREAKABLE SYSTEM: A cryptosystem where it is possible to 

cryptanalyse the ciphertext. 

CIPHERTEXT: Secret form of a message. 

CRYPTOLOGY: The. science of transmission security, encompassing 

both cryptography and cryptanalysis. 

CRYPTOGRAPHY: Science of rendering information intelligible only 

to a legitimate receiver. 

CRYPTANALYSIS: Science of the techniques used to decipher 

ciphertexts, without the secret key. 

CRYPTOSYSTEM: Method of hiding information, using a 

algorithm and secret key. 

ENCIPHER: To convert a message from plaintext to ciphertext. 

KEY: Information needed to encipher/decipher 

message/ciphertext. 

MESSAGE/PLAINTEXT: Information in readable form. 

known 

a 

SECURITY: Computational feaiiblity of deciphering a message, 

without the secret key. 

-12-



BASIC TECHNIQUES. 

A list of abbreviations used in the following chapters 

is given at the end the thesis. In addition, a number of 

non-standard mathematical shorthands will be used. These are 

listed below. 

1 (n) = 1 if n =0, else 

biggest integer less than or equal to log n 

A xor B = A. B" + A".B 

A >= B. A is greater than or equal to B. 

A <= B. A is les s than or equal to B. 

A <> B. A not equal to B. 

A » B. A is very much greater than B. 

A « B. A is very much less than B. 

A = B. A is approximately equal to B. 

1.3 MATHEMATICAL BACKGROUND. 
----------------------------

A cryptosystem can be thought of as a set of 

transformations, from the set of possible messages into the set 

of Possible ciphertexts. Each transformation will correspond to 

encipherment with a particular key. For cryptographic 

applications these transformations must be injective and ideally 

bijective. In the PKCs considered here, these transformations are 

defined by simple arithmetic functions. 

-13-



BASIC TECHNIQUES. 

In order to keep the size of the cryptosystem within 

bounds, the arithmetic is either done in the Galois fields 
-----

GF ( 2 "n) , GF(p) or the ring R (q) : where p is a prime and q is the 

product of primes. This has' the added advantage of making 

cryptanalysis more difficult, sin~e it both reduces the amount of 

information and introduces an extra element of diffusion. More 

information on these algebraic systems can be optained in the 

literature (Refs.112-113). 

Arithmetic in GF(2"n) is always done mod p(x): where 

p(x) is an irreducible polynomial of degree n. Figure l.la gives 

an example of how two numbers can be added and' multiplied. 

Ari~hmetic in R(n) is done mod nj figure l.lb gives an example of 

how the same operations are done here. 

-------------------------------

1001 
+ 1011 

0010 

ADDITION 

------------
1001 

- 1011 
-----

0010 
-----

SUBTRACTION 

1001 

* 1011 
--------

1001 
+ 1001 
+ '0000 
+ 1001 

--------
1010011 
10001 

00000 
10001 
-----

0110 
-----

MULTIPLICATION 

-------------------------------• 

FIGRE l.la ARITHMETIC IN GF(2"4), WITH IRREDUCIBLE P(X) = 10001. 
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1001 
+ 1011 

10100 
- 1111 

0101 

ADDITION 

1001 
- 1011 

11110 
+ 1111 

1101 

BASIC TECHNIQUES. 

1001 
* 1011 

1001 
+ 1001 
+ 0000 
+ 1001 

01100011 
- 0000 

0000 
1111 

1111 
0000 

1001 

MULTIPLICATION 

SUBTRACTION . 

FIGURE l.lb ARITHMETIC IN R(15). 

An important difference between the two systems is that 

in GF(2
A

n) there are no carries. This allows faster and simpler 

implementations, but·· does reduce the desirable element of 

confusion. Because of this latter point, systems based on GF(2 A n) 

will not be considered here. 

1.3.1 Some properties of a ring of integers. 
--------------------------------------------

In the ring R(n) only integers between a and n-l are 

allowed. If the results are larger or smaller than this, then the 

answer is found by reducing modulo n. 

Division is not strictly a ring operation, since only 
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BASIC TECHNIQUES. 

integer results are allowed. The equivalent ring operation is 

called inversion. For a given number (x), this involves finding 
.~. 

another number (y) with the property: 

x * y = 1 mod n 

This operation is not possible if x is a factor of n. 

For the ring R(n), a key parameter is the Euler totient 

function U(n). This is the number of integers which are 

relatively prime to n. Let n be the product of k primes: 

k 
n = IT p ,then 

i=l i 

k 
U(n) = IT (p - 1) 

i=l i 

For an integer x, it can be shown that: 

U(n) 
x mod n = 1, if GCD (x,n) = 1 

If x * y = 1 mod n 

U(n) - 1 
then y = x 

1 
7 2 

10 4 

5 8 

9 3 

11. 6 
12 

FIGURE 1.2 RING R (13) . 
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BASIC TECHNIQUES. 

An interesting way of looking at the ring R(13) is shown 

in figure 1.2. Each number, going clockwise round the circle, is 
- -----

twice (mod 13) the previous number. From this diagram we see: 

U(13) = 12, the size of the circle. 

3 
2 = 8 , at three o'clock. 

12 U (13) 
2 = 2 = 1 at twelve o'clock (equation 1.1). , 

11 U(13)-1 
2 = 2 = 7 where 2 * 7 = 1 (equation 1.2) , 

A more computationally efficient method of finding the 

inverse is to use Euclid's extended algorithm (Ref.114). Inverses 

always. exist if GCD (x,n) = 1. 

1.3.2 Residue arithmetic. 

In its residue form a number in R(n) is represented by 

its remainders, when divided by the factors of n. For a number x 

let: 

( i ) 
x = x mod p 

i 

Then by the Chinese Remainder Theorem (Ref.llS): 

(1) (2) (k) 
x <--) x , x ,. •. , x 

is a bijective mapping. That is the transformation is one-to-one 

for all x's between 1 and n-l. 

The ring R(n) can be represented in radix or residue 
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BASIC TECHNIQUES. 

form: the two forms being homomorphic. The radix form is the 

'normal' way of representing a number. However the residue form 

has a number of advantages. 

In the residue form arithmetic can easily be split up, 

allowing greater parallelism. In chapter 3 we shall show how the 

residue form of a number can be useful for cryptography. Figure 

1.3 shows how the basic arithmetic operations are performed, in 

both radix and residue number systems. 

---------------------------------------
mod 

15 
mod mod 

5 3 
mod 

15 
mod mod. 

5 3 
------------------ --------------------

8 <--) 3 . , 2 8 <--') 3 , 2 
+ 11 <--) 1 2 * 11 <--) 1 , 2 , 

------- -------
4 <--) 4 , 1 13 <--) 3. , 1 

------- -------

ADDITION MULTIPLICATION 

---------------------------------------

FIGURE 1.3 ARITHMETIC IN RADIX AND RESIDUE FORM. 

1.4 CRYPTANALYSIS AND COMPUTATIONAL COMPLEXITY. 
-----------------------------------------------

Cryptanalysis is concerned with finding an optimum way 

of breaking a cipher. This is usually expressed in terms of the 

computational complexity of the algorithm used to solve it. 

Complexity is measured in terms of time and area: where 

area is the number of processors and memory used (Ref. 115). 
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BASIC TECHNIQUES~ 

1.4.1 Measure of performance. 
-----------------------------

How can we measure the goodness of one algorithm or 

architecture against another? A useful shorthand is the 'big 0' 

notation. An algorithm f(n) is said to be of order O(g(n)) if 

there exists some constant c such that f(n) < c(g(n)). For 

example the function: 

7 
8n 

3 
+ 3n 

7 
+ logn , is O(n ) and the function 

7n.logn + Sn + 9 , is O(n.logn) 

An algorithm of higher order of magnitude might have a 

smaller constant of proportionality. In which case, the higher 

order algorithm might be superior for slower or smaller machines. 

However the asymptotic complexity is a good measure, and one that 

becomes increasingly important as technology advances. 

The use of 'order statistics' allows a designer to 

concentrate on the important issues. For example a 32-bit 

microprocessor might be very much faster than an 8-bit one, but 

an algorithm O(n) for one machine will be O(n) on the other. 

1.4.2 NP problems. 
------------------

Algorithms of O(kAn) have an explosive rate of growth. 

There is general agreement that problems requiring' an algorithm 

with this exponential growth are intractable (Ref.llS). A problem 

of this form is known as a non-deterministic polynomial problem: 

-19-



BASIC TECHNIQUES. 

denoted by NP. 

There are a class of problems which are NP-complete. 

That is, if one problem can be solved in polynomial time, they 

all can (Ref.IIS). The solution of an NP problem is often the 

target which a cryptographer tries to give a cryptanalyst. But it 

is important to realize that NP-complete refers to only the 

hardest instances of a problem. 

1.4.3 Cryptographically secure. 
-------------------------------

The definition of cryptographic security might be that 

it is impossible to cryptanalyse a message. However this is 

unnecessarily restrictive; -indeed only the one time pad posseses 

this property (Ref.IOI). Consider a computer operating: 

1. Using every atom (lOAI OO ) in the universe as a Processing 

Element. 

2. Each Processing Element operating in the time required by 

light to traverse a nuclear radius (10A-23 seconds). 

3. Been operating since the beginning of the universe (4 * 10Al O 

years). -

Using this rather conservative model, the computer could 

still not have finished an algorithm requiring 2ASOO steps. For 

cryptographic intractablity, a figure of 2
A

128 is sufficient. 
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BASIC TECHNIQUES. 

1.5 CRYPTOGRAPHIC TECHNIQUES. 
-----------------------------

In modern cryptography, the security of a transmission 

lies in keeping the key secure, rather than the whole system. 

This not only allows greater confidence in a cryptosystem, but 

permits the adoption of stan.dards (Ref. III ) . 

In a conventional cryptosystem, such as the US Data 

Encryption Standard (DES), the keys used for encryption and 

decryption are the same (see figure 1.4a). However such a system 

leads to a key distribution problem. A network with 2000 users 

would require over 2 million keys to allow each user to talk to 

every other. 

A recent scheme proposed by Diffie and Hellman (R~f.116) 

oVercomes the key distribution problem. It does so by using a 

different key for encryption and decryption (~ee figur~ 1.4b). 

This use of asymmetric keys has become known as a Public Key 

Cryptosystem (PKC). 

1.5.1 A Public Key Cryptosystem. 
--------------------------------

The PKC derives its name from the fact that it publishes 

the encryption key (Public Key, PK), but keeps the decryption key 

hidden (Secret Key, SK). To help understand this principle, an 

analogy is useful. 

A room is full of English speaking people, none of whom 
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speak French. The Engish to French half of a language dictionary 

is freely available; but someone has destroyed all but one copy 

of the French to English half. In this scenario anyone can write 

a message in French. However only the person who has the French 

to English dictionary could decipher these messages. 

In the above analogy the English to French dictionary 

represents the encryption function and the-French to English 

dictionary the decryption function. It is possible to break the 

system by searching the English to French dictionary. But in a 

good cryptosystem the analogous 

computationally demanding. 

operation 

Encryption and decryption 

mathematically by equations 1.3 and 1.4. 

Sender, S: e(Ml,PK) = C 
R 

Receiver, R: d(Cl,SK) = Ml 
R 

can 

would be too 

be expressed 

•.• 1 .3 

••• 1 .4 

Where e(X,K) denotes encryption and d(X,K) decryption of a 

message X under a key K. The two functions are not necessarily 

different. 

A PKC is not only able to offer WRITE ONLY communication 

with easy key distribution. The real power of PKC stems froms its 

ability to offer READ ONLY communication. 

If the sender transforms a message M2 under his own 
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secret key, anyone can look up the public key to recover M2. But 

since only the sender has the secret key,/only he could generate 

a message 'deciphered' under it. This operation, which is 

equivalent to a written signature, is described,by equations 1.5 

and 1.6. 

Sender, S: d(M2,SK ) = C2 
S 

Receiver, R: e(C2,PK ) = M2 
S 

It is possible to combine read and write only protection: 

Sender, S: e(d(M3,SK ) , PK ) = C3 
S R 

Receiver, R: d(e(C3,PK ) , SK ) = M3 
S R 

• .• 1 .5 

• .. 1 .6 

• •• 1 • 7 

· .. 1 .8 

Using the transformations described above it is possible to 

protect against both active and passive eavesdropping. 

The position of cryptography in a communication system 

is shown in figure '1.5. Source coding must be done before the 

cryptosystem, since the cryptosystem hides the structure inherent 

in the English language. While error correction coding must be 

applied after the cryptosystem, because of the error propagation 

effects of good cryptosystem. 
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BASIC TECHNIQUES. 

1.6 PRACTICAL PUBLIC KEY CRYPTOSYSTEMS. 
---------------------------------------

The PKC is more than a nice pedagogical idea. Since its. 

inception many practical schemes have been proposed. A summary of 

Some of these are given in table 1.2. 

-----------------------------------------------
Cryptosystem ! Still ! REFERENCES 

! Secure?· 
============================================= 

DH key distribution ! 
scheme in GF(2~n) 

NO ! 117 
! sec. 1. 6.1 

---------------------------------------------
DH key distribution! YES ! 116 
scheme in GF(p)! ! sec. 1.6.1 - ____________________________________________ 1 

RSA modular exponen.! NO ! 121-122 
scheme in GF(2~n)! ! s~c. 1.6.3 ! 

---------------------------------------------1 
RSA modular exponen.! 
scheme in R(n) ! 

YES ! 123 
! sec. 1.6.3 

---------------------------------------------
Binary knapsack ! 
(superinc. trapdoor)! 

? ! 126 
! sec. 1.6.2 

---------------------------------------------
General knapsack 
(superinc. trapdoor)! 

? ! Chapter 2 

---------------------------------------------
General knapsack 
(residue trapdoor) 

? ! Chapter 3 

---------------------------------------------
Lu-Lee modular sum 
scheme 

NO ! 118-120 

---------------------------------------------
Shamir knapsack NO! 124 
signature scheme 

---------------------------------------------1 
! McE1iece Goppa code ! 
! scheme 

YES ! 125 

-----------------------------------------------

TABLE 1.2 PRACTICAL PKC'S 
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Most practical PKC's have proven weak under 

cryptanalysis. The security of the McEliece'PKC is difficult to 

gauge, because it has received surprisingly little attention. 

However, it is still a valid possibilty as no successful 

cryptanalysis has been' published. The other three schemes which 

have proven resistant are described below. 

The notations Rand S will be used in the examples to 

represent the receiver and sender respectively. 

1.6.1 DH key distribution scheme. 
---------------------------------

The first and simplest PKC was proposed by Diffie and 

Hellman in their original paper (Ref.116). Thi DH key 

distribution scheme is based on two reverse transformations: 

exponentiation and logarithms. Their original proposal was for 

arithmetic in GF(p), but later unwisely extended to GF'(2 An). 

Suppose a Sender (S) and Receiver (R) wish to establish 

a secret key. First S calculates xAc, sending x and xAc to R. R 

then calculates xAd and returns this to S. Both users can now 

compute xAcd, which they ca~ use as their key. If x, c and d have 

been chosen randomly, a cryptanalyst is faced with a very hard 

problem. He must find either 10g(xAc) or log(xAd), since he only 

At the present time the best algorithm for finding logs 

depends on which field is used. For GF(2
A
n), Coppersmith has 
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shown (Ref.117) how to break the scheme. However the method does 

not work in GF(p), where the security is much higher. 

Example. 
--------

S: 3
A

4 mod 11 = 4 

R: 3
A

7 mod 11 = 9 

S: 9A4 mod 11 = 5 

R: 4
A

7 mod 11 = 5 

Giving a session key of 5 • 

1.6.2 MH trapdoor knapsack PKC. 
-------------------------------

Merkle and Hellman (Ref.126) intoduced a PKC based on 

the binary knapsack problem. This is a problem of the form: given 

a vector of n integers (the weight of each component) and the sum 

of a subset of these integers (the total weight), find which 

subset was used. 

The hardest instances of the knapsack problem are known 

to be NP-complete. However for certain vectors (e.g. 1,2,4,8,16) 

the solution is trivial. The Merkle-Hellman scheme is based on 

using a superincreasing sequence, which has been disguised by 

modular multiplication (*W mod Z). 

Someone wishing to transmit an n bit message X, would 

transmit the sum of those components whose corresponding message 

bit were 1. The publisher of A could then use his secret key (W 

andz), to transform this back into the easy superincreasing 
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knapsack problem. 

The non-bijective ma~ping not only causes message 

expansion, but makes authentication difficult. Also the method 

requires a very large public key size. Despite this the scheme 

initially proved very popular. The reason was the simplicity of 

encoding and decoding, which meant it could run at the same speed 

as conventional cryptosystems. 

Recently the original Merkle-Hellman scheme has been 

broken. Even stronger variants, such as the Graham-Shamir system 

(Ref.204) and the iterated knapsack method, have proven 

vulnerable. Despite this nobody has yet shown a general method ot 

cracking all knapsack problemi. So it is still feasable that a 

fast PKC, based on the knapsack problem, can be found. 

Example. 
--------

R: A' = 8, 4, 2, 1 

z = 17, W = 11 --> l/W = 14 

A = 3 , 10, 5, 11 

S: Message = 1101 

Ciphertext = 3 + 10 + 11 = 24 

R: 24 * 14 mod 17 = 13 --> 1101 

1.6.3 RSA modular exponential PKC. 
----------------------------------

The most elegant and powerful PKC is that due to Rivest, 
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Shamir and Adleman (RSA). It uses the exponentiation function for 

both 'the encryption and decryption transformations (Ref.123): 

with arithmetic done in the ring R(n). 

The two exponents e and d are chosen to be inverses 

modulo U(n) (see section 1.3.1). This means we can write: 

C = M"e mod n 

M = C"d mod n 

In the RSA-PKC each user publishes a unique e and n, but 

keeps their d secret. It is believed that the best way to find d, 
, 

and hence cryptanalyse a message, is to factor n. However, if n 

is chosen to be the product of two latge (say 256 bits) safe 

primes (Ref.127), factoring is too computationally demanding. 

Therefore the RSA-PKC is still regarded as secure. 

Example. 
--------

R: n = 5 * 11 = 55 

U(n) = (5-1). (11-1) = 40 

e = 7 , giving d = 23 

S: Message = 1101 = 13 

Ciphertext = 13"7 = 7 mod 55 

R: Message = 7"23 = 13 mod 55 
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A GENERAL KNAPSACK PROBLEM. 

2.1 INTRODUCTION. 
-----------------

One of the most promising PKCs has been the Trapdoor 

Knapsack PKC (TK-PKC). The TK-PKC (see section 1.6.2) algorithm 

appeared to offer privacy and authentication (Ref.201) at high 

data rates (Ref.202). However it was apparent that, when compared 

with the RSA scheme (see section 1.6.3), this system had a number 

of drawbacks. 

The most obvious problem with the TK-PKC is the size of 

the public key. At BOK bits per user, this would produce a very 

large public directory. 

It was suggested in the original Merkle-Hellman paper, 

(Ref.126), that a possible means of reducing the key size was to 

Use a non-binary knapsack problem. In this paper we shall build a 

model for this non binary TK-PKC and try to 'reduce the size of 

the public key. 

Two other parameters are also considered in the design 

of this new system: the data expansion and security. The TK-PKC 

expands data by over 100%. This redundancy is unacceptable for 

many applications and we shall try to minimize it. More recent 

critisism of the TK-PKC has been bn the security (Refs.202-206). 

In this chapter we shall just try to achieve a security 

equivalent to the original scheme. Improving security is subject 

of chapter 3. 
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2.2 NOTATION. 
-------------

a = i'th published knapsack component. 
i 

a = i'th secret knapsack component. 
i 

E = ratio of (no. message bits no. ciphertext bits). 

g = number of bits on x 
i,max 

k = number of iterative modular multiplications. 

m = i'th modulus in iterative modular multiplications. 
i 

n = number of knapsack components. 

p = number of bits in the public key. 

Q = number of bits in the secret key. 

S = hard knapsack problem: ciphertext. 

S ' = easy knapsack problem. 

t = number of bits in transmitted ciphertext. 

t' = number of bits in message. 

v = number of random bits in the lsbs of each x . 
·i 

w = i'th multiplier in iterative modular multiplications. 
i 

x = g-bit message block. 
i 

y = number of random bits in a'. 

z = number of bits in each knapsack component. 
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2.3 THE GENERAL METHOD. 
-----------------------

A general knapsack problem is one in which you are given 

a vector of n integers, together with an integer S equal to their 

weighted sum. The problem is to find which weights were used. The 

less general binary knapsack problem is one in which the weights 

are restricted to 0 or 1. In our case we shall let the weights be 

integers within the limits: 

g 
o <= x < 2 

i 

Though this general knapsack problem is known to be 

NP-compiete (Ref.207) there do exist subsets which are easy to 

solve. One such case is when the knapsack components a' are 

chosen such that: 

a > 
i 

i-I ) 
2: a' ) * x 
j=l j) max 

• •. 2 .1 

Merkle and Hellman described a method of hiding this 

super increasing sequence, using k iterations of modular 

multiplication. The resulting trapdoor knapsack is hard to solve 

without additional information. Each component is given by: 

a = ( ( ( ( 
, 

* ) mod ) * ) * w ) mod m • .• 2.2 a w m . . . 
i i I I k k 

where GCD w m = I ... 2.3 
j j 

2 < w < m • •• 2.4 
j j 
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n 
m > 2: a 

1 i=l i 

g+l(n)+l 
m > 2 * m 

j j-l 

where l(n) = 1 if n = 0, else the smallest integer greater than 

or equal to log n. 

If all the knapsack components were published, anybne 

wishing to transmit a message x could calculate: 

S 
n 

=, L: 
i=l 

x * a 
i i 

... 2 .5 

The receiver could transform this hard knapsack problem into: 

n 
S'= L::: x*a 

i=l i i 

where: 
-1 -1 

S' = (((( S * w ) mod m ) * •.. ) * w ) mod m 
k k 1 1 

which can easily be deciphered (Ref.126). 

2.4 EFFECT OF PARAMETER SELECTION. 
----------------------------------

The superincrea~ing knapsack components are defined 

according to the structure shown in figure 2.1. Thus the third 

component would have its most significant bit set to 1 followed 

by 2g-1 O's and finally y random bits (R3). We know the number of 

bits (z) in each component is given by: 
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(k-1)(1(n)+g) ng ,~ 
!<-------------)!<---------------------------)! 

l(n)+g! g 
!<------)!<-----)! 

g g y 
!<-----)!<-----)!<----) 

----------------------------------------------------
a'l 00 ... 
a'2 00 ..• 
a'3 00 .•. 

. .. 00 ! 
• .00!l0 ••• OO! 

a'n 00.·.. • .00 100 •• 
m1 00... '! •• 00!1! 
m2 00. . . 1 ! 

. ! 
mk 1 ! 

RI 
RII 

Rk 

• .00 
· .00 
· .00 

• .00 

R1 
R2 
R3 

RN 

----------------------------------------------------------

FIGURE 2,.1 COMPONENT SELECTION IN A GENERAL TK-PKC 

z = 1( m 
k,max 

From figure 2.1, 

z = Y + g.n + ( k-1 ) . ( g +l(n) ) 

From equation 2.5: 

z g 
S = n * ( ( 2 - 1 ) . ( 2 - 1 ) ) 

max 
z+g z g' 

= n. ( 2 - 2 - 2 + 1 

log n 

• •• 2 • 6 

But n = 2 If z » g. then the number of bits transmitted: 

t = z + g + l(n) 

Substituting for z from equation 4, we obtain: 

t = y + g.n + k.( g + l(n) ) • •• 2 • 7 

But the number of actual message bits transmitted: 

t ' = g.n · •• 2.8 
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Therefore the ratio of message bits to ciphertext bits is: 
/ 

E = 1 : 1 +k/n + (1/n).g ).( y + k.l(nr/) 

The number of bits in the secret key is given by: 

Q = k.( ( no. bits in w + ( no. bits in m 
i i 

= 2.k.z 

Therefore from equation 2.6: 

Q = 2.k.( Y + g.n + k - 1 ).( g + 1(n) ) ) 

The number of bits in the public key: 

P = n.z 

Therefore from equation 2.6: 

P = n.( y + g.n + ( k - 1 ).( g + l(n) ) 

The above results are summarized in table 1. 

--------------------------------
! ORDER OF MAGNITUDE 
!-------------------~---

VAR. n g y k 
======!======================= 

E ! lin ! 1/g! Y k 

------1-----------------------

Q n 

2 
P n 

g y 

g y 

2 
k 

k 

TABLE 1 EFFECT OF PARAMETERS ON EFFICIENCY AND KEY SIZE. 

2.5 LIMITATIONS ON PARAMETER SELECTION. 
---------------------------------------

The choice of parameters is limited by 
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considerations. There are two possible attacks on the general 

TK-PKC. 

2.5.1 Breaking the trapdoor. 
----------------------------

To achieve equivalent security to the Merkle-Hellman 

TK-PKC the superincreasing knapsack components must be well 

hidden. The two parameters which affect this are k and y. For a 

given nand g we set the following limitations: 

y * k > 200 

k > 1 

2.5.2 Breaking the knapsack problem. 
------------------------------------

•.• 2. 12 

... 2.13 

By expanding the message into its binary form it is 

possible to turn a general knapsack into a binary one. That is 

if: 

x 
i 

g-l g-2 
= (x * 2 ) + (x * 2 ) 

i,g-l i,g-2 
+ ... + x 

i,O 

Then we can write a general knapsack problem as: 

n g-l 
S = L; ~ (a ).( x 

i=l j=O i,j i,j 

where: 

j 
a = a * 2 
i,j i 

This is a binary knapsack problem. In order to present a large 

equivalent binary knapsack problem we set: 
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n * g > 200 ... 2.14 

This limit is not sufficient, since not all message bits 

are equally well hidden. For example, the least significant bit 

(lsb) is only determined by the n lsbs of each message component. 

To overcome this weakness the general knapsack must employ a 

number of random bits in the lsbs of each message vector. If v is 

the number of random bits, then we can approximately compensate 

for the effect of a small n (provided n > 2) with the following 

limitation: 

2 
(v+l) 

n * ------ > 128 
2 

.•. 2.15 

Let E' be the efficiency with v random bits added to 

each message component. Then it can be shown that: 

v 
E' = E + -

g 
••• 2. 16 

In the past few years there have b~en rapid advances in 

Solving the knapsack problem. Though these attacks have been on 

the binary version (g = 1), the techniques can be extended to 

cover the general knapsack problem. 

The technique (Ref.209) are based on forming a lattice 

of rank n appear particularly attractive. If: 
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n 1 
Density = --------------- < -------

log ( max a ) 
2 j 

log n 
2 

then a binary knapsack problem can be. broken. However for the 

general knapsack problem, with the additional restraint of 

equation 2.15, finding a suitable lattice is more difficult. In 

this case a better measure is to say: 

n.(g - v) 
Density = 

h + 1 

2.6 A BINARY TK-PKC. 

1 
< -------

log n 
2 

... 2.17 

The Merkle-Hellman method is.a general TK-PKC with 

parameters: 

n = 200 , g = 1 , Y = 200 , k=2. 

With these parameters we obtain (equations 8.12-8.15): 

E = 2.09, Q =1628 bits, P = 81400 bits. 

2.7 A NON BINARY TK-PKC. 
------------------------

Using the assumptions of section 2.6 we can choose an 

alternative set of parameters. The additional guides used to . 

choose them are: 

a) Only the receiver stores Q, so its size is not critical. 

b) All users must either store or be transmitted P, so its size 

should be minimized. 
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c) Data expansion is a waste of resources, therefore minimize E. 

~. 

Combining these observations with those of table 2.1, an 

alternative set of parameters are chosen: 

n = 7 , g = 32 , Y = 100 , k = 2. 

With this new set of parameters we find: 

E =1.76 , Q = 1436 bits, P = 2513 bits. 

In order to compensate for the effect on security of the 

small n (see section 2.5.2) we must have approximately 5 random 

bits (v) in the Isbs of each message (equation 2.15). This 

reduces the efficiency (equation 2.16) to: 

E' = 1.92 

2.B CONCLUSION. 

In this chapter we have demonstrated a non-binary TK-PKC 

with equivalent security.to the Merkle-Hellman method. It has the 

advantage that the resulting public directory would be 35 times 

smaller. It also has less message expansion. 

Recent improvements in cracking the knapsack problem 

(Refs.20B-209) have been dramatic. These polynomial time 

solutions·have been successful against the binary TK-PKC. As the 

general system is no more secure than the binary problem, this 

puts into question the use of this type of knapsack in 

cryptography. 
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A particular weakness with the TK-PKC is the trapdoor 
~/ 

information. In the next chapter we shall describe a system not 

based on superincreasing sequences. 
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A NEW TRAPDOOR KNAPSACK PUBLIC KEY CRYPTOSYSTEM. 

3.1 INTRODUCTION. 
-----------------

,~ 

This chapter presents a new trapdoor knapsack public key 

cryptosystem (TK-PKC). The encryption equation is based on the 

general modular knapsack equation (see chapter 2), but unlike the 

Merkle-Hellman scheme the knapsack components are not derived 

from a superincreasing sequence. 

The trapdoor is based on being able to transform between 

the radix and modular representations of the components, vi"a the 

Chinese Remainder Theorem (Ref.115). The system bears a 

resemblance to the Lu-Lee system (Ref.118), but whereas their 

cryptosystem is linear and has been shown to be insecure 

(Refs.119-l20), ours is based' on the general modular knapsack 

equation, which to date has not been generally broken. 

The new TK-PKC has a number of advantages over the 

original system other than security. Firstly, the public key size 

is reduced from 80K biti to 14K bits. Secondly, the redundancy is 

reduced from over 100% to around 25%. Compared with the RSA 

scheme (see section 1.6.3) its main advantage is speed. 

Typically, knapsack schemes are capable of throughput speeds 

which are several orders of magnitude faster than the RSA scheme. 
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3.2 NOTATION. 
-------------

a = i~th published knapsack component. 
i ---

a = i~th secret knapsack component. 
i 

A = published knapsack vector = a 

A~ = secret knapsack vector 
~ 

= a , 
1 

, a , ... , a ) . 
1 2 n 

~ a ~ ) • a , . . . , 
2 n 

E = ratio of (no. message bits: no. ciphertext bits). 

g = number of bits on x 
i,max 

h+l = minimum number of bits in any p . 
i 

n = number of knapsa.ck components. 

P = a.set of n distinct primes = (p 
1 

p = h+l bit prime number. 
i 

n 
p = 11 p . 

i=l i 

PK = number of bits in the public key. 

r = maximum number of bits in 
n 
::La 
j=l j 

S = hard knapsack problem: ciphertext. 

S~ = easy knapsack problem. 

p , 
2 

( i ) 

. .. , 

) . 

p ). 
n 

v = number of random bits in the lsbs of each x • 
i 

W = a secret modular multiplier; relatively prime to p. 

x 

x 
i 

= n * g bit message vector = (x , x 
1 2 

= g-bit message block. 
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3.3 THE NEW TRAPDOOR. 
---------------------

n 
S = L: 

i=l 

The general modular knapsack problem is given by: 

a . x mod p 
i i 

.•. 3 .1 

When used for cryptography, the a's are the n published 

knapsack components, p is a published modulus, and the x's are 

the message bits. In the binary knapsack the x's are a or 1, but 

in the general knapsack they are g bit numbers. The subset sum S 

is the cryptogram, which only the legitimate user is able to 

unwind back to the original x's. 

. Let (p , p , , p ) be a set of primes whose product: 
1 2 n 

n 
p = IT P 

i=l i 

( i ) 
If a = a mod p 

j j i 

is the residue of the j'th knapsack component modulo the i'th . 

prime. Then, by the Chinese Remainder Theorem: 

(1) ( 2 ) (n) 
a <----) a ,a ,. .. , a 

j j j j 

is a bijective mapping. That is, the transformation is one-to-one 

for all a's between 1 and p-l. Thus if the factorization of p is 

kept secret, then only the legitimate user will be able to 

transform the radix representation of the knapsack components 

into their modular representation. This forms our secret new 
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trapdoor. Let us now choose a set of n knapsack components and 

express them in both 

( 1 ) 
a <----> a 

1 1 

(1) 
a <----> a 

2 2 

A' = 

(1) 
a <----> a 

n n 

radix and modular form: 

, a 
1 

, a 
2 

, a 
n 

( 2 ) 

( 2 ) 

( 2 ) 

~-,,/ 

(n) 
, ... , a 

1 

(n) 
, ... , a 

2 

(n) 
, ... , a 

n 

••• 3 • 2 

Let us then disguise the trapdoor by forming a new set of 

knapsack components, via the modular multiplication: 

a = a w mod p ..• 3. 3 
j j 

where wand p are relatively prime. Under this condition we know 

there exists an inverse (see section 1.3.1) transformation: 

-1 
a = a w mod p 

j j 

We now publish p, and the modified knapsack components 

(A) in radix form. This is the public key. The factorization of p 

and the integer ware kept secret, and hence so is the modular 

representation of the components (A'). 

Now let p 
i,min 

h 
> 2 

that is, the primes are at least h+l bit numbers. 
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x 
i,max 

g 
< 2 

that is, the message blocks are g bit numbers. 

And let n 
~ a 
j=1 j 

( i) ) 
) 
)max 

r 
< 2 

that is, the columns of A' sum to an r bit number. 

••• 3 .5 

•.• 3 .6 

In order to ensure that the encryption equation has a 

unique decryption, we must ensure that the message to ciphertext 

transformation X --) S is injective. To guarantee this we must 

have: 

h )= r + g •.• 3 • 7 

This also ensures that modular multiplication is equivalent to 

matrix multiplication: 

( 1 ) (n) ( (1) ( 2 ) (n) ) 
(S ' S ' ) (x ) (a 

, 
) , . . . , = , . .. , x ,a , . .. , a 

1 .n ( 1 1 1 ) 
( ) 
( · ) 
( · ) 
( · ) 
( ) 
( (1) ( 2 ) (n) ) 
(a 

, 
) ,a , . . . , a 

( n n n ) 

i.e S' = X . A' 

If the matrix (A' ) is non-singular, then: 

-1 
X = S ' • A' .•• 3 .8 

The cryptosystem then operates as follows. A user 

wishing to send us a message forms the ciphertext: 
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S = x .a + x .a + . . . + x .a ) mod'p 
1 1 2 2 n n 

From equation 3.1 we compute: 
/ .. / 

-1 
S ' = S . w mod p 

Then, through our known factorization of p, we can tranform: 

(1) (2) (n) 
S' (----> (S' , S' , ... , S' ) 

-1 
We then apply X = S' . A' and hence recover the message. 

The cryptanalyst must either break the factorization of 

p, attack the trapdoor in some other way (see section 3.5), or 

solve the general knapsack problem (see section 2.5.2). 

3.4 A SMALL EXAMPLE. 
--------------------

In order to help understand the ideas of the last 

section, a small example is now presented. The example is of 

course too small for security. 

Let n=3 and define P=(37,41,43), hence p=65231, and h=5 

(equation 3.4) . Choose g=2, that is, the message components are 

two bit numbers. This dictates that r=3 via equation 3.7 

(h>=3+2). Choose n=3 knapsack components which satisfy eqation 

3.6, that is, the columns of A' add to less than eight, and 

express in both modular and radix form: 
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a = 3 , 1 , 1 <----> 125174 
1 

A' = a = 1 5 3 <----> 151664 // , , 
2· 

a = 2 . , 1 , 2 ) <----> 122509 
3 

Now choose w=6553 which is relatively prime to p=65231. 

Perform the modular multiplication of equation 3.3, and publish 

the resulting knapsack components: 

a = 50628 
1 

a = 59907 
2 

a = 3560 
3 

and the modulus p = 65231. 

-1 
Compute the invese w = 6553 (see section 1~3.1), and invert A': 

-1 
A' = (1/16) +7 -1 , -2 

+4 , +4 , -8 

-9 , -1 , +14 

To transmit a six bit message X=(1,2,3) a user computes 

the ciphertext: 

S = (1.50628) + (2.59907) + (3.3560) 

= 181122 

= 50660 mod 65231 
-1 

Using the secret inverse w the receiver computes: 

S' = 50660.2618 mod 65231 

= 13257 mod 65231 
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Using,the secret factors of p, the receiver transforms this into 

modular form: 

S' = ( 11 , 14 , 13 ) <----> 13257 

From equation 3.8, the receiver computes: 

16.X = ( 11 , 14 , 13 ) +7 , -1 -2 

+4 , +4 , -8 

-9 , -1 , +14 

giving X = ( 1 , 2 , 3 ) as transmitted. 

3.5 PRACTICAL CONSTRAINTS. 
--------------------------

The choice of parameters (n, r, g and h) is limited by 

security considerations. Their are two possible attacks on 

security that we shall consider. 

3.5.1 Breaking the general knapsack problem. 
------------------------------------------

The general knapsack problem is identical with that of 

the last chapter. Therefore we must have the same limits (see 

section 2.5.2). If v is the number of random bits in the Isbs of 

each x, then: 

n * g > 200 • . • 3 • 9 

2 
n * (v+l) > 256 • • • 3 .10 

3.5.2 Breaking the trapdoor. 
---------------------------

From equation 3.3 we can write: 
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a - a 
, 
.w = 0 mod p · .• 3. 11 

j j 

a 
, - a .w = 0 mod p /" 

· •. 3 .12 
1 1 

We can now calculate (eqn.3.11 and eqn.3.12): 

a.a - a.a = 0 mod p 
j 1 1 j 

writing this in modular form we get: 

( i ) ( i ) 
a • a - a . a = 0 mod p · .. 3.13 

j 1 1 j i 

( i ) 
If the number of combinations of a were too small eqn. 3.13 

j 

could be used to break the new TK-PKC. Therefore we set a limit: 

r >= 63 

In order to stop a factorization attack, we must set: 

h >= 255 

3.6 A SECURE TK-PKC. 
--------------------

The efficiency of the cryptosystem is given by: 

h + 1 + v 
E = 1 

g 

if we assume all primes are exactly h + 1 bit numbers. 

From equation 3.7 we get: 

E = 1 
g + r + 1 + v 

g 

Therefore to minimize E, r and v should be kept small. 

The size of the public key (PK) is given by: 
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PK = n.(n + l).(h + 1) ... 3.1 7 

In order to reduce this, n should be kept small. 

From the above arguments and the security restraints of 

section 3.5, we end up with the following parameters: 

n = 7 , r = 63 , h = 255 , g = 192 , v = 5. 

Which from equations 3.16 and 3.17 give: 

E = 1 : 1.36 , PK = 14336 bits. 

3.7 CONCLUSION. 

In this chapter we have presented a new public key 

cryptosystem based on the general modular knapsack problem. Its 

security is not based on disguising a superincreasing sequence, 

but on the difficulty of factoring a number with seven 256 bit 

prime factors, and on a knapsack problem with a typical 

efficiency of 1:1.36 and block size of 1736 bits. 

The knapsack nature of the system ensures that fast 
.-

encryption and decryption are possible. In addition the size of 

the public key, which is typically 14K bits, is not excessive. 

It may be possible to attack the trapdoor information 

more directly, but we can see no productive method of doing this. 

The only successful attacks on qense trapdoor-knapsacks to date 

have been on the security of thesuperincreasing sequence. Our 

method does not require this. However, it may turn out that all 

injective trapdoor knapsacks are solvable in polynomial time, in 

Which case all such schemes are useless for cryptography. 
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4.1 INTRODUCTION. 

-----Using a PKC any two users of a network can communicate 

securely, without the problem of key distribution (see section 

1.4). This overcomes one of the big drawbacks to the use of 

cryptography. However, there are many cases where the same 

message needs to be sent to a group of users. The application of 

cryptography would then severely degrade the network. 

In this paper we consider the problem of how to securely 

set up a broadcast transmission in an electronic network 

environment. Such networks include broadcast satellite and packet 

switched digital data services. We assume that any user may take 

the role of broadcaster, and that the broadcaster wishes to send 

an identical message to any subset of other users. 

4.2 MULTIDESTINATION ADDRESSING. 
--------------------------------

Through his paper in 1978 (Ref.40l), J.McQuillan 

intoduced three enhanced addressing modes: 

1. Logical addressing, where a permanently assigned address can 

denote one or more physical address. 

2. Broadcasting, where the message is 'addressed to all 

subscribers. 

3. Group addressing, in which the message carries a list of 

addresses. 

These three modes were shown to provide more flexibility, greater 
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reliability and a reduction in network traffic. 

~ 

The application of these enhanced addressing modes to 

cryptogaphic networks is far from straight forward. The problem 

can be overcome by distributing a session key. But this does not 

necessarily reduce the order of magnitude of the problem. It 

would be particularly inefficient for a large number of 

receivers or a small message. 

An alternative solution is to trade complexity in terms 

of the number of keys in the system rather than the distribution 

time. In this case however there is an explosive growth in the 

number of keys required. 

For a network with n users, a message intended for a 

subset k of these would require either: 

a) O(k) transmissions. 

b) O(n!) keys per user. 

If the application of cryptography is not to severely degrade 

system performance, a more efficient solution must be found. 

4.3 EXPLOITING NETWORK STRUCTURE. 
---------------------------------

If the network has the form of a ring, such as in a 

local area network, we can consider the following distribution 

method. The broadcaster enciphers the session key and a list of 

station addresses under the public key of the first receiver, in 
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say -a clockwise direction. This receiver deciphers the 

information, and then re-enciphers under the public key of the 
-~ 

next receiver on the list. 

The information is thus passed from user to user round 

the ring, with only the intended subset of users able to decipher 

the session key and addresses. Additionally, each of the intended 

receivers can 'sign' the re-enciphered information, using the 

signature property of a PKC, before passing the packet on. After 

the packet has been round the ring, the broadcaster can check to 

_ ensure no user has missed the message: either intentionally or 

because of error. 

4.4 EXPLOITING SECURITY STRUCTURE. 

An alternative method of exploiting structure exists if 

the network' of users have a fixed security structure. For 

example, if the users form a layered hierarchical structure then 

security can be arranged in layers, with a pair of keys for each 

level in the hierarchy. Thus the level 1 key would only allow 

level 1 users to decipher a message. The level 2 key would allow 

both level 2 and level 1 users to decipher, and so forth. Any 

particular level therefore possesses the keys to its own level 

and those below it. 

With the above arrangement the maximum number of keys 

would be O(n). If this is too large, a trade-off of the number of 

-63-



KEY EXCHANGE IN A BROADCAST ENVIRONMENT. 

keys for the number of transmissions is possible. For example 

with O(logn) keys only O(logn) transmissions are needed. 
~ 

4.5 A BROADCAST CRYPTOSYSTEM. 

Each user's public key defines a one to one mapping 

between a particular message and ciphertext. The secret 

decryption key defines the inverse mapping (see section 1.3). It 

is possible that two keys might define the same mapping, for a 

particular ciphertext. That is, the same ciphertext will produce 

the same message under a different key. This would allow the 

broadcast of a session key in a single" transmission . 

. . 

There are, however, a number of reasons why the above 

scheme is not practical as it stands. Firstly, no such session 

key may exist between a group of users. Secondly, if such a key 

exists, there might be too few for security. Finally, there is 

the problem of how to find these session keys. 

4.5.1 Use of message redundancy. 

A given ciphertext does not have to decipher to exactly 

the same message for each intended receiver, but rather the 

subset of bits that forms the session key does. As an small, 

example consider the problem of transmitting a 2-bit session key 

to two of three receivers. 
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FIGURE 4.1 SESSION KEY BROADCAST TO 2 OF 3 RECEVERS. 
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If each receiver mapping (Ul-U3) is as shown in figure 

4.1a, then figure 4.1b shows how the session key (00) can be 

securely broadcast. 

Though it is intuitively reasonable that there are more 

session keys, it is important to know approximately how many 

there are. This will allow us to gauge the security of the 

system. Let: 

m = number of bits in message. 

c = number of bits in ciphertext. 

r = number of redundant bits. 

k = number of receivers. 

When enciphering an (m-r) bit session key, there will be 

2~r different ciphertexts for a given public key. The probability 

that one of these ciphertexts would be produced under another 

public key is: 2~(r-c). For k users the probability is~ 

2~(r-c)(k-l). The probability that none of the 2~r ciphertexts 

will yield a suitable session key, P(fail), is given by: 

r 
(r-c).(k-l) )2 

P(fail) = 1 - 2 ) 
) 

As a first order approximation: 

r + (r-c).(k-l) 
P(fail) = 1 - 2 

Therefore the probability of one session key being suitable: 

c + k. (r-c) 
P(success) = 2 

Of the 2~(m-r) possible session keys, let Q be the 
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number that are correctly deciphered by all k receivers. It 

follows that: 

(m-r) 
Q = 2 * P(success) 

m + c.(l-k) + r.(k-l) 
Q = 2 

Let Q = 2 A b, then: 

b - m + c. (k-l ) 
r = -----------------

If we assume a bijective mapping (m = c) then: 

b+m.(k-2) 
r = -------------

k-l 
..• 4 .1 

For security it is important to have a sufficiently 

large session key and choice of session keys. If we say both must 

have a selection.of at least 2
A

v, then: 

b = m - r = v ••• 4 .2 

Substituting into equation 4.1 we obtain: 

(m -v).(k-l) = v + m.(k-2) 

Therefore in order to have a practical cryptosystem: 

m = v.k ... 4.3 

Equation 4.3 tells us that for a given message size (m), 

the number of receivers (k) who can obtain a session key in one 

broadcast is inversely proportional to the security (v). That is 

we have a degradeable cryptosystem, where it is possible to trade 

security with the number of receivers. 
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4.5.2 A practical broadcast cryptosystem. 
-----------------------------------------

~/ 

Consider how the ideas of the last section can be 

applied to a trapdoor knapsack PKC (see section 1.6.2). Let Cl 

and C2 be the ciphertexts formed by two users keys: 

m 
Cl = ~ 

j=l 

m 
C2 = L: 

j=l 

where x 

a 
j,l 

a 
j,2 

* x 
j , 1 

* x 
j,2 

= bit j of 
j, k 

message to user k, 

a = j'th knapsack component. of 
j, k 

user k. 

We require Cl = C2, and the ~irst (m-r) bits of each 

message to be the same. Therefore: 

m-r 
~ 
j=l 

or 

2m-r 
L: 
j=l 

where 

and 

(a - a }.x 
j,l j,2 j,l 

a .x = 0 
j j 

a = a - a 
j j,l j,2 

= a 
j,l 

= a 
j-r,l 

x = x 
j j,l 

= x 
j-r,l 

m 
+ ~ a 

j=m-r+l j,l 

for j = 1 

for j = m-r+l 

for j = m+l 

for j = 1 

for j = m+l 
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j,l 

to j 

to j 

to j 

to j 

to j 

m 
+ L: a 

j=m-r+l j,2 

= m-r 

= m 

= 2m-r 

= m 

= 2m-r 

.x = 0 
j,2 

••• 4 .4 
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To find a solution to equation 4.4 does not seem 

practical, since it would be even more difficult than breaking 

the knapsack cryptosystem. However it is possible to exploit the 

fact that there is not just one solution, but approximately 2 A b. 

Consider what happens if we combine two vectors. That 

is, we force two message components to be the same: either both 1 

or both O. When we do this the number of knapsack components is 

reduced by one, but the number of probable solutions is reduced 

by half. So after f combinations, there will be 2m-r-f components 

and approximately 2 A (b/f) solutions. 

To help explain the principle, consider a small example. 

We wish to distribute a 3-bit key to 2 users whose public keys 

consist of 8 knapsack vectors: 

a = (123, 92, 233, 61, 11, 188, 103, 134) 

b = (132, 210, 177, 70, 201, 107, 88, 54) 

We want the first three message bits to be the same. This forces 

us to combine the first three components of the two receivers. 

Combining an extra five terms we get 8 new knapsack components: 

c .- a - b = -09 
1 1 1 

c = a - b + a = +16 
2 2 2 8 

c = a - b - b = +02 
3 3 3 8 

c = a = +61 
4 4 
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c = a + a - b = -02 
5 5 6 5 

c = -b = -88 /./ 

6 7 

c = -b = -50 
7 4 

c = a - b = -04 
8 7 6 

It is now possible to find components that satisfy equation 4.4: 

61 + 02 -50 -09 -04 = 0 

Therefore all terms in new components 1, 3 , 4, 7 , 8 must be 1. 

That is: 

ax = ( 1 , 0 , 1 , 1 , 0 , 0 , 1 ,0) 

bx = (1,0,1,1,0,1,0,1) 

The ciphertext which results when either of these vectors is 

enciphered is 520. Both receivers will obtain the session key 

(1,0,1). 

In a practical system we would choose f=b, giving a 50% 

chance of solution. Clearly the algorithm used to select the 

combinations should be random. If it is not the process could be 

duplicated by a cryptanalyst. 

4.6 CONCLUSION. 

It has been shown that in a packet switched network, 

considerable savings in transmission time, that is , pac'ket hops, 

can be achieved using multi-addressed packets. In this chapter we 

have considered the problem of secure communication of such a 
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broadcast. 

Three possible solutions were put forward, which are not 

mutually exclusive. Taking advantage of the network structure and 

security hierarchy were two of the schemes. However, these can 

only be applied in certain cases. 

A more general solution to the broadcast problem was 

also put forward. It uses redundancy between the messagetext and 

ciphertext. The method effectively trades security with 

redundancy, number of users, and transmission time. 

Finally we present a practical broadcast cryptosysem 

based on the knapsack PKC. It is applicable to any knapsack 

cryptosystem, including our own given in chapter 3. 
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ELECTRONIC PUBLISHING AND SOFTWARE PROTECTION 

5.1 INTRODUCTION. 

Books, films, television, records and computer software 

can all be stored and distributed in digital form. Electronic 

publishing, where information is stored in data banks and 

distributed over a convenient communication channel, offers many 

advantages over traditional methods of distribution. However if 

it is to replace other means of publishing, it is necessary to 

provide a means of rewarding the Author, Producer, Musician or 

Programmer. 

Copyright is traditionally used to protect the publisher 

from the pirate. In this chapter methods of enforcing the 

copyright law will be considered. In particular the application 

of a PKC to the problem. 

5.2 ELECTRONIC PUBLISHING. 

Writing programs for personal computers is now a big 

business, approaching the level' of more traditional published 

information: such as books, television and films. In the next ten 

years an increasing proportion of this information will be 

distributed in digital form. This offers many advantages: 

1. Ease of distribution - e.g. over telephone lines. 

2. Less redundancy The size of a market for books is often 

unpredictable. But since copies can be quickly and cheaply made, 

unnecessary copies need not be produced. 
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3. Fast update - The lag between supply and demand can be broken. 

Electronic publishing does have some disadvantages. Some 

people might like the feel of vinyl or not like reading from a 

screen. But though many of these ergonomic problems can be 

overcome, one major problem remains: how to stop people making 

illegal copies. 

In order to make publishing worthwhile, it must be 

possible to reward those responsible for developing the product. 

- However information stored i~ digital form is very much easier to 

copy, making copying more finaDcially rewarding. 

5.3 COPYRIGHT AND CRYPTOGRAPHY. 

Copyright is used to give the sole legal right to print, 

publish, perform, film or record a literary, artistic or musical 

work (Ref.50l). This legal deterrent could easily be extended to 

cover the newer forms of information, such as computer ~oftware. 

However the ease and cheapness with which electronic information 

can be copied, suggest that better methods of circumventing the 

pirate are needed. In the field of computer software, some 

estimates say as few as 1 in 10 copies may be legally obtained. 

Cryptography has been used' for centuries to secure 

communications over a public link. But because the receiver 

cannot be relied upon to keep the information secure, this 
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technique cannot be directly applied to copyright protection. 

There have· been a number of papers on how cryptography 

can be applied to protect software (Refs.502-504). However, these 

methods are not generally applicable to the wider field of 

copyright protection. 

5.4 SOFTWARE PROTECTION. 

There are at present a wide variety of ways of 

protecting software, none of which offer 100% protection. For 

disc based software these include: non-standard formatting, 

corrupting the operating system, nibble counting, and using 

unique timing charcteristics of discs. However, none of these 

methods have proven sufficient deterrent to the skilled pirate. 

Though the methods described above do undoubtedly stop 

some illegal copying, they have some serious disadvantages. These 

include being uneducational, and not allowing modifications to a 

program if it does not work. However, the most important drawback 

is that the legitimate user is unable to make backup copies. 

An improved scheme is bas~d on the use of a dongle. The 

dongle is a piece of hardware, varying from a linear feedback 

shift register to a dedicated microcomputer (Refs.503-504), that 

is repeatedly interrogated by the software. The software is 

written so that it will not work if the dongle is not present. 
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Using Tamper Resistant Module (TRM) technology 

(Ref.505), the dongle is not difficult to protect. However, it is 

possible to find and delete those parts of the program which 

inspect the dongle. Additional disadvantages are the cost of the 

dongle and the difficulty of converting a program to read a 

dongle. 

A recent improvement on the dOngle concept is the Intel 

27916 KEPROM (Ref.502). It is designed to prevent the use of a 

PROM programmer copying EPROM based software. Before allowing the 

contents to be read the KEPROM requires the presence of: a key 

stored in write only memory, and another similar chip. These 

conditions prevent direct use of a PROM programmer. Though more 

sophisticated attacks would succeed, these would be considerably 

more difficult. 

5.4.1 Tamper resistant microcomputer. 
------------------------------------

The Tamper Resistant Computer (TRC) proposed here is a 

mix of three technologies: a single chip microcomputer, a tamper 

resistant chip and a PKC. It is basically an extension of the 

KEPROM idea to encompass a whole computer. Figure 5.1 shows the 

function of the TRC. 
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A trusted manufacturer could produce the TRC with their 

built in decryption key. When sold, the associated public key is 

released and the secret key is kept safe or even destroyed. The 

software publisher could then encipher the program under the 

recievers TRC public key. Only the owner of that particular TRC 

could then run the encrypted program. 

If the output is a complex function of the input, it 

would be impossible to attack the security of this system: 

assuming the security of the PKC and TRC. Backup copies are also 

simple to produce. If the TRC malfunctions, the manufacturer 

could verify and replace it. 

The main problem with the TRC is that it would be 

technologically demanding and expensive. However, in ten years 

time it is likely that this scheme would be economic. 

5.5 GENERAL INFORMATION SECURITY. 

The software security methods described in section 5.4 

cannot be applied to books or music. This is because the final 

output is all that is desired, making copy prevention impossible. 

However, it is possible to help copyright enforcement. 

5.5.1 Fingerprinting. 

With books, records or video sold today it is almost 

impossible to make a perfect copy. This provides a means of 
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detecting and convicting those that sell the duplicates. The 

'problem' with digital information is that~a'perfect copy can be 

obtained. However, the equivalent detection capability can be 

provided, using the signature property of a PKC. 

Figure 5.2 shows a typical 'fingerprinting' system. Each 
< 

publisher has a secret key SK, which they use to sign any 

published information. To do so they take a known hash function 

of the program and receiver's name. They can then append this 

'deciphered' function as an signature or fingerprint. 

If any dispute arose as to whether the information was 

legally. obtained, the fingerprint could be used. By 'enciphering" 

the signature the hash function can be recovered and compared 

with the recalculated hash function. Since it would be impossible 

for anyone to produce the 'deciphered' funtion, without the 

publisher's secret key, the pirate can be detected. 

With the above scenario it is probable that the pirate 

will delete the signature: substituting one of his own. However, 

this is open to detection. The legitimate pub,1isher could show 

the similarity of information, and that his was first published. 

A better alternative might be to hide the signature in the 

information. 
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5.5.2. Broadcast reception. 

In certain applications, such as Direct Broadcast by 

Satellite (Ref.S06), only immediate copying needs to be 

prevented. In this case it is possible to use a more conventional 

encryption technique, as shown in figure 5.3. 

Take as an example the broadcast of a live football 

match. Each receiver who has paid a fee receives the session key, 

encrypted under their secret key. Then when the match is 

broadcast it is enciphered under this session key. Since the 

session key is stored in a TRM there is no way of 'cloning' the 

session, key. 

There are a number of possible problems with this 

scheme: preventing retransmission, stopping recording, and the 

more practical problem of transmitting a large number of keys. 

However these problems are not as bad as they appear: 

retransmission is a more active and detectable copyright 

infringement; a recording is often of little value after. it is 

transmitted; and the time to send the keys can be reduced using 

the techniques given in chapter 4. 

5.6 CONCLUSION. 

In this chapter we have looked at what is probably the 

hardest application of cryptography: wher~ the receiver cannot be 
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trusted. ,Software is one example considered where cryptography 

can help provide a solution. The concept of/the tamper resistant 

computer was described, and shown to offer an ideal solution. One 

drawback is that it will not be practical for a number of years. 

This chapter has also looked at the wider field of, 

copyright protection, where software techniques cannot be 

applied. Though absolute security cannot be given, two aids to 

detection were described. These deterrents should help enable the 

benefits of electronic publishing to be realized. 
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LOW COMPLEXITY CUSTOM VLSI DESIGN. 

6.1 INTRODUCTION. 

The evolution' towards increasingly fast and dense 

integrated circuits has been well prophesied (Ref.60l). However 

changes in design techniques have been more revolutionary. As the 

scale of a system is increased by orders of magnitude, different 

issues become relevant. The cost of defining one million 

transistors using traditional ad hoc methods is prohibitive, for 

all but a few applications. This complexity barrier (Ref.902) 

provides a more realistic obstruction to system growth than 

minimum speed of 1 ight propagation. 

Many diverse design methodologies are possible. Today 

most semiconductor producers employ some combination of gate 

arrays, standard cells and custom design. Gate array methods use 

a matrix of predefined transistors whose metal interconnections 

define a particular boolean logic function. A rapid turn-around 

is possible, since a manufacturer can have the silicon processed 

awaiting metalization. Standard cell techniques employ a large 

library of cells with known electrical and topological 

characteristics. This is usually more efficient than gate arrays; 

but slower since all processing steps are needed. Both these 

semi-custom app~oache's are excellent as replacements for 

breadboarded TTL breadboard systems. However, designs based 

entirely on semicustom ideas do not accrue the full potential of 

VLSI. 

Custom design involves optimizing every transistor 
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within a circuit. Design costs and development time preclude this 

approach for most applications. But/if a few key cells can be 

made to account for most of the area, then this approach becomes 

economical. The remaining random circuitry can then be 

inefficiently produced. A figure of merit for this regularity is: 

Total number of transistors 
E = ---------------------------

Number of drawn transistors 

The diversity of possible applications means that it is 

not possible to describe a universal design methodology. In this 

thesis we are concerned with chips having a-very high value for 

E. However before describing their architectures, the overall 

process of chip design is described. 

6.2 TOP DOWN DESIGN. 

A structured design methodology is needed to design a 

VLSI integrated circuit. All such techniques use a similar top 

down approach. This is a technique of designing a system at a 

high level and gradually introducing more detail. 

It is not a good idea to stick too rigidly to a top down 

approach. A flexible moving up and down is desirable. This allows 

consideration of what is efficient at low levels. 

Design, simulation and documentation are integral 

requirements at each stage in a design. 
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6.2.1 Simulation. 

Until the advent of VLSI, gate and transistor simulators 

were sufficient to design a chip. Today, however, it is necessary 

to have a modelling tool as a companion to a top down design. It 

should be capable of describing a digital system at the various 

levels of hierarchy. 

HILO-2 (Ref.603) is a system description language that 

can be used to describe and simulate a chip. It is a capable of 

modelling low level primitives, tristate. wires and has vector 

notation. But the most important property.of HILO is its ability 

to sttaddle the architectural and lower levels of a design. 

6.2.2 Documentation. 

It is difficult to overstate the importance of 

documentation. Though it is now an accepted practice in software 

design, it is still often an afterthought in chip design. 

Documentaion should allow someone to understand the 

design process at each level of hierarchy. To try and comprehend 

a chip without it, is equivalent to trying to read a program 

without comments. 
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6.3 SYSTEM DESIGN. 

The first stage in the design of a chip is to choose its 

basic function and interface. To do this job requires not only 

careful design, documentation and simulation; but close liaison 

with potential users. Concerns at this time include: minimizing 

pin count (Ref.604) and· partitioning to reduce communication 

across boundaries. 

Behavioural simulators, such as ISPS (Ref. 605), are 

used to verify alg?rithms. These are Pascal like languag~s, which 

can be written quickly. No mapping into hardware is required at 

this stage in the design process. 

At the end a provisional data sheet can be produced. 

This serves the dual purpose of fixing the design and allowing 

potential users to better understand the capabilities of the 

device. 

6.4 ARCHITECTURE DESIGN. 

This intermediate stage, between system and primitive 

implementation, has no correspondence in a TTL breadboard design. 

The reason for this stage is to partition the chip into a network 

of blocks with defined interfaces. These may in turn be 

subdivided into smaller units: though no more than is sufficient 

to describe the function of the chip. 

-89-



LOW COMPLEXITY CUSTOM VLSI DESIGN. 

At this stage a high level network description language 

is required. An example of such a simulator is HILO-2 (see 

section 6.2.1). Typical primitives at this stage might be a gated 

full adder or Booth's decoder. These would be described in terms 

of registers and Pascal like 'case' statements. These primitives 

are then combined into macrocells, which are themselves combined 

until the whole chip is described. In order to ~ater expand these 

primitives, it is important to have all signals that pass the 

interface included. For example, 'control' and 'control bar', if 

the complement is generated external to the cell. 

The high level , description is useful for a number of 

reasons. But one perhaps unexpected benefit is as a guide to 

hidden complexity. It is tempting to postpone consideration of 

bits of random logic in an otherwise regular architecture. 

However, it is usually these areas that cause the most. problems. 

The need to correctly simulate the chip will make this complexity 

explicit. I have found that if something is difficult to describe 

at this level of hierarchy, it is a good indication of trouble 

later on. 

Care should be taken to ensure all nodes are easily 

controllable and observable (Ref.606). This would typically 

involve a judicious comQination of scanpath latches and other 

test structures. 

Complementary to the high level description is a floor 
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plan. This is a mapping of the network description into a 

physical placement. The diagram should-include all routing, with 

particular care being taken over the power supply and clock 

distribution. 

This is perhaps the critical stage of a custom chip 

design, since it is here that the greatest savings in complexity 

can be made. Chapter 7 will cover this area in greater depth. 

6.5 CIRCUIT DESIGN. 

At this point in the design the actual implementation 

technology need be considered. This level·· in the hierarchy is 

usually called gate level, but this is somewhat deceptive. 

Different technologies have a wide variety of properties: 

differences in relative size of cells and their ability to drive 

loads. This makes the choice of primitive technology dependent. 

In order to make a decision on technologies it is 

important to consider the application. Past leaders for LSI; NMOS 

and Bipolar are now being superceeded by CMOS (Ref.607). I 

beleive that a dominant part of digital VLSI devices will be 

realized in CMOS because of: 

1. Low power consumption. 

2. Active switching between the power rails. 

3. High noise immunity. 

4. Tolerance of power supply variations. 
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5. Provides a designer's paradise. 

The last point deserves more explanation. Design in 

Bipolar requires detailed knowledge of transistor operation, 

while NMOS requires careful consideration of threshold drops in 

pass transistors. CMOS by comparison is both simple and 

effective. 

CMOS is easy to design in (Ref.608), but to fully take 

advantage the correct primitives must be employed. Figure 6.1 

shows how some useful functions can be implemented more 

efficiently without. using standard logic gates. Figure 6.2 shows 

an elegant full adder using just 16 transistors, a third less 

than a logic gate implementation. 

The primitives of the architectural level description 

are now to be expanded. The final primitives, called leaf cells, 

are normally of eight transistors or less. The circuits shown in 

figure 6.1 are typical leaf cells. More accurate timing 

simulations are now included, using parameters gained from a 

circuit analysis simulator. SPICE (Ref.609·) is the most widely 

used simulator for this purpose. However, it is best used as an 

educational tool, and only sparingly on critical elements in a 

design. Their are a number of reasons for this: the amount of 

computing resources required; an experienced designers 'rule of 

thumb' is often sufficiently accurate; and most importantly, the 

amount of a designer's time needed to overcome numerical 

limitations (such as the dreaded 'internal timestep'). 
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6.6 LAYOUT DESIGN. 

The interface between the designer and chip manufacturer 

is a set of design rules. The degree of understanding of how 

these rules are chosen depend on the type of circuit being 

designed. In general some understanding is desirable: though for 

some elements, such as pids, it is essential. The design rules 

used for the ACP (see chapter 9) are C2.5A (Ref.610). 

The translation from a· transistor diagram into mask 

shapes is potentially very time consuming. For double level met~l 

CMOS, thirteen mask levels need to be defined. Each level is put 

down,in ascending order, from the active area (level 1) to the 

passivation (level 13). An unusual feature of C2.5A is the 

coincident vias and contacts, made possible by the use of 

polymide insulator. A schematic of a typical inverter is shown in 

figure 6.3. 

To design a leaf cell a number of design methodologies 

are possible. With full custom design all possible topologies are 

considered. However the astronomical number of potential 

permutations results in very slow designs. A far more efficient 

method is to limit the degrees, of freedom. The structured 

techniqe I adopted has second level metal running vertically with 

the active area running norizontally. This technique allows 

packing densities very close to a handcrafted call, while 

speeding up design time by several orders of magnitude. 
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6.6.1 Stick diagram. 

In order to simplify the layout process an intermediate 

stick diagram is used. This is essentially a skeleton of the 

final· layout. The 'fleshing out' can be done quickly on a 

graphics machine, such as the Applicon (Ref.611). As an example, 

the design of the adder illustated in figure 6.2 is given below. 

Figure 6.4 shows a stick diagram of the adder. In order 

to simplify the design just the four key levels are used: the 

other levels can easily·be added when 'fleshing out'. The second 

level metal (long dashes) is the first to be put down. This 

contains all the global signals, such as the clock and power 

supplies. For the adder, where there are no global signals, it is 

also used for interconnections. However, normally it only runs in 

vertical stripes. 

The transistors are then defined by polysilicon (solid 

lines) crossing active area (thick solid horizontal lines). All 

p-type transistors are placed on one horizontal line and all 

n-types on another. Long interconnections are done in first level 

metal (dotted lines). Contacts are shown as crosses and 'vias 

(contacts between the two metal layers) as circles. 

The stick diagram is a useful aid, but it cannot be done 

without knowing what is practical. For example, to 'allow for the 

larger p-type transistors, the length of the polysilicon must be 

increased. In practice the stick diagram is done with colour 
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pencils. 

6.6.2 Checking. 

Before maskmaking and fabrication the layout must be 

checked. Firstly, to ensure the design rules are obeyed. The 

Design Rule Checker (DRC) program finds errors such as metal 

separation and overlaps around contacts. Secondly, an Elecrical 

Rule Checker (ERC) checks for the electrical connections. It 

locates the electrical short and open circuits of a labelled 

diagram. 

The final check is to verify the extracted layout is the 

same- as the one simulated. This is done by converting the 

description into one that can be used by a Network Consistency 

Checker (NCC). To do this, it is necessary to first describe the 

primitives in the language of the NCC. It is then possible to 

convert the remaining description automatically. 

It is best to do checks at the macro cell level, before 

the circuit is put together. This greatly improves the ability to 

check errors at the final layout stage. An example of a suite of 

such checkers are those provided by NCA (Ref.612). 

6.7 TESTING AND REDESIGN. 

After pattern generation, maskmaking and fabrication it 

is necessary for the designer to check the finished wafer. If the 
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design has been done well this should be a simple and easily 

automated. For simple redesigns, it might be possibl~ to change 

just the metal and contact masks. 

6.8 CONCLUSION. 

It is clear that VLSI design will be vital to the next 

generation of systems. This chapter has described what, in the 

author's opinion, constitutes a typical low complexity design. 

Such a design would typically take 6 months for two people 

working together. However, to achieve this many pitfalls need to 

be avoided. 

A CAD system built around the hierarchical design style 

would be helpful, but certainly no guarantee of a more cost 

efficient design. There should be no split of documentation and 

testing from design. The need 'for a powerful but flexible 

description language cannot be overemphasized. At the circuit 

level the savings from not using logic primitives was shown. 

However, the most important concept is how to split the design. 

VLSI system design is concerned with all aspects af IC 

design. The task of designing a 'chip has been split into levels, 

but too great a partition wilJ result in inefficient design. Each 

level is influenced by those to follow. System and architectures 

can only benefit from understanding and experience of the total 

design process~ 
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It is impossible to make effective trade-offs against a 
~ 

rigid specification. It is at the architectural level that this 

is most apparent. 
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GOOD VLSI ARCHITECTURES. 

7.1 INTRODUCTION. 

IC technology has reached the point where it is 

available to all engineers, not just a few circuit designers. 

However, VLSI design is an immature discipline. What constitutes 

a 'Good VLSI Architecture' (GVA) is still a moot point. 

Mead and Conway popularized new VLSI design techniques 

in their book 'VLSI System Design' (Ref.701). Some of their 

conclusions are controversial, and little used. But one point has 

been widely accepted: the need to re-evaluate architectures in 

the context of developments in circuit technology. 

In the past five years there have 'been many papers on 

new architectures. Each new application seems to require a new 

scheme. But it is not the diversity of the new architectures that 

is striking, but their similarity. 

The most promising genre of new architectures is the 

systolic array (Ref.702). H.T Kung proposed this class of 

architectures as one ideally suited to future signal processing 

chips. What makes these architectures better? In this chapter we 

shall take a detailed look at a model for future CMOS VLSI 

devices. The features of a GVA are derived from my experience of 

circuit design and layout. 
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7.2 VLSI MODELS. 

Designers base their architectures on the hardware 

available to implement them. In the past twenty years this has 

resulted in architectures optimized for TTL breadboard 

implementations. These designs concentrated on the trade-off 

between the number of gates and the speed of execution. This 

model is unrealistic for the custom VLSI chips of today. 

The TTL designer must learn the 'data book' of logic 

structures used in custom design. But more important he must be 

able to compare their cost and performance. 

7.3 PERFORMANCE. 

To measure the performance of a chip it is possible to 

take power dissipation, size or reliability. However, for high 

performance chips the riormal measure is the worst case delay. 

That is, for a given operation, which chip can go fastest. 

Standard models of delay stress the importance of the 

number of gate stages. In VLSI it is as important to consider 

also, the loading of each gate and the distance a signal has to 

travel. 

All figures will be based on the worst case delay. The 

important class of self-timed designs, where it is the average 
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delay that is important, are not discussed. 

7.4 DESIGN COSTS. 

The most important factor in design cost is labour. This 

is expressed by number of man-months design time and is a 

function of the chip complexity. 

In breadboard design the complexity is proporional to 

the number of TTL parts. However, for VLSI regularity is the 

pr ime factor.· 

To reduce design costs it is important to have 

regularity in structure and communi~ation. This means using just 

a few simple building blocks, placing them in a regular manner 

and have a repetitive routing scheme. In other words, it must be 

easy to describe the chip layout. 

7.5 MANUFACTURING COSTS. 

In TTL breadboards the manufacturing cost· is 

proportional to the number of devices used. For chip design, . the 

traditional measure for this cost has been area, with three 

contributing factors: I/O ports, gates and wires. However, this 

is only half the story, a better measure is yield. 

For chips with fault tolerance, the yield is no longer 

directly connected with area. For regular circuits, it is often 
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possible to add fault tolerance, without adversely affecting 

design costs. 

Manufacturing costs are also affected by the number of 

pins and the ease of testing. If testing is not considered early 

in the design, the test cost can dominate. An attractive flip 

side of this is to include self~testing. This would allow a chip 

to test itself without the aid of external equipment or software 

(Ref. 703) • 

7.6 CHARACTERISTICS OF VLSI ARCHITECTURES. 

Architectures can be evaluated using a variety of 

criteria. To give a single function would require technological 

dependence. In order to avoid this built in obsolescence, we 

shall not give a single cost or performance figure. Rather we 

shall use a table with the following ten parameters: 

a) NUMBER OF LOGIC CELLS. 

The complexity of the logic, measured by the number of 

different leaf cells required. 

b) NUMBER OF WIRING CELLS. 

It might seem strange to use wiring cells. However, for 

regular circuits this is often-how wiring is done. The number of 

leaf wiring cells can therefore be used as a measure of design 

cost. 

c) LOGIC AREA. 

This figure is equivalent to the traditional cost 
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measure: the number of integrated circuits. The use of area, as 

opposed to yield, is intended to simplify notation .. 

d) WIRING AREA. 

Until recently neglected, this is increasingly becoming 

an important measure of manufacturing costs. 

e) I/O PORTS. 

The number of wires going in and out of the system. 

f) TESTING TIME. 

The number of input combinations needed to fully test a 

design. 

g) TESTING AREA. 

The area of test logic, such as scanpath latches. 

h) GATE DELAY. 

The time between presenting the operands and reading the 

result. This figure assumes no pipelining, no delay through wires 

and no extra time needed to drive larger·loads. 

i) WIRING DELAY. 

This is a measure of the absolute delay through wires 

and accounts for the time needed to drive larger loads. 

j) PIPELINE AREA. 

By introducing latches ~nto the data path it is possible 

to improve the throughput to the delay of a single cell. If 

possible, this parameter shows what area is required by the 

pipeline latches. 

The above parameters will be measured using order 

statistics (see section 1.4). The use of order statistics ignores 

the important constant factors. For small operands, this might 
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give inaccurate comparisons. For example, a design with a higher 

order of magnitude delay, could in~fact be faster for small 

operands. However, it is the asymptotic behaviour that ultimately 

determines whether an architecture is suitable. For the larger 

arithmetic units of the future this simplification is acceptable. 

The importance of different parameters will vary with 

technology and requirements. But in general the first two, which 

reflect design costs, will be the most important. 

7.7 CONCLUSION. 

This brief chapter is a vital prerequisite to Chapter 8. 

It has modelled the characteristics needed to design GVA. In 

order not to be dependant on just "today~s" technology, the model 

has included parameters which are not yet considered important. 

However like any abstractions, they are only. meant to reduce the 

design time. True comparison can only be achieved by practical 

realizations. 

Speed, complexity and yield were explained in their VLSI 

context. Section 7.6 summarizes the characteristics which will be 

used in chapter 8. 

It is often necessary to sacrifice speed and yield in 

order to design efficiently. If the complexity cannot be reduced, 

it is probably more cost effective to go for some semi-automatic 
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technique. 
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8.1 INTRODUCTION. 

High performance Digital Signal Processing (DSP) systems 

are required in a wide variety of applications (Ref.80l). These 

range from processing signals, image and speech, to control, 

telecommunication and "instrumentation. Though the final 

applications are varied, th~ nature of the task performed 

internally is similar. Indeed all these machines are essentialy 

'Big Number Crunchers' (BNC), performing some simple arithmetic 

operation. 

All arithmetic architect~res can be related to the basic 

arithmetic operations. Thi~ chapter will give a comparative 

description of architectures for performing them. In particular 

those suited to custom CMOS chips. 

The overriding desire was to create designs that were of 

very low complexity.; Within this limit, the architectures 

offering the highest asymptotic performance are described . 

Conclusions are be based on the work of the last two chapters. 

8.2 ARITHMETIC ON SILICON. 

Research into ari~hmetic operations is as old as the 

computer. However, the efficiency of arithmetic architectures 

cannot be divorced from their implementation technology. As a 

result of VLSI many new architectures are coming into favour. 
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Competitive pressures require DSP chips to be both high 

performance and cheap. In recent years a number of useful DSP 

'building block' ECL chips have been developed. These include the 

AM29500 family (Ref.802) and the MCI09XX (Ref.803). However, when 

single chip implementation is needed, MOS technology is preferred 

(Ref.804). 

In the ,future DSP will increasingly use dedicated chips. 

When mapping BNC onto silicon, the architecture is the most 

important consideration.' To do this efficiently a designer will 

require a vocabulary of arithmetic architectures. 

In the rest of this chapter designs of the basic 

arithmetic'architectures are given. These, together with those of 

Kung (Ref.702), give a good basis for synthesising any required 

function. Chapter 9 will give an example of how these 

architectures can be" combined to perform modular exponentiation. 

8.3 ADDITION AND SUBTRACTION. 

Many high performance VLSI devices require a fast adder. 

The general equation for addition of two conventional radix 

numbers is given by: 

Sum: Sk = Ak xor Bk xor Ck-l .•• 8 .1 

Carry: Ck = (Ak + Bk).Ck-l + Ak.Bk ••• 8 • 2 
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Where Ak and Bk are the k'th bits of the addend and augend 

respectively. The recursive equation,~-8.2, can be expanded in 

terms of a carry generate (Gk) and carry propagate (Pk) terms: 

Ck = Gk + Pk.Gk-l + Pk.Pk-l.Gk-2 + .•• + Pk.Pk-l ... Pl.Cin • • 8 . 3 

Where Pk = Ak + Bk and Gk = Ak.Bk. Figure 8.1 shows a typical 

n-bit adder. 

It is possible to have a dedicqted subtractor, with a 

small change in logic. But using 2's complement notation, 

subtraction can be implemented using an adder. Therefore, it will 

not be discussed separately. 

The speed of addition is limited, because the most 

significant bit of the sum is dependant on every bit of' the 

addend and augend. The information between stages is held in the 

carry. Thus methods of improving addition times have concentrated 

on efforts to improve this carry propagation. 

8.3.1 Fast Carry Propagation Schemes. 

There have been many schemes to speed the carry 

propagation (Refs.80S-807). The best known are: 

Manchester Carry Chain (MCC), 

Carry Look-ahead Adder (CtA), 

Carry Bypass Adder (CBA),_ 

Conditional Sum Adder (CSA). 

The traditional understanding of these schemes is described 

below. 
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The MCC and CLA are hardware implementations of 

equations 8.2 and 8.3 respectively. The CBA bypasses a group of 

consecutive carry propagate stages. This involves 'ANDing' 

together the Pk terms of consecutive stages. Finally, the CSA 

requires the formation of two conditional carry terms for each 

stage: first assuming no carry-in (Gk), then assuming a carry-in 

(Pk). Multiplexers are then used to select which carry is chosen, 

depending on the carry of previous stages. 

The four schemes described above represent the 

traditional choices open to a logic designer. However, for VLSI 
• 1 

these categorizations are better understood in terms of the type 

of -tree. Indeed all the fast implementations use the same leaf 

cells: only their placement and routing vary. 

8.3.2 Manchester Carry Chain. 

The simplest method to improve carry propagation (CP) is 

to just use the carry as the signal between stag~s, while 

optimizing the CP cells of figure 8.1. Figure 8.2 shows the cells 

for reducing the worst case delay. Because the transistors 

connected to Gk and Pk are precharged, the worst case delay is 

equivalent to n inverters. 

The use of alternating logic cells is a technique that 

is used frequently. It arises because the basic gates in CMOS are 

inverting. Their use does make the circuitry slightly more 

complex, but this is more than offset by the increase in 'speed. 
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8.3.3 Carry Look-ahead Adder. 
-----------------------------

CLA is perhaps the most widely used carry 
\ 

acceleration technique. In this scheme the Pk and Gk signals are 

combined to produce the Ck output (see equation 8.3) of each 

stage. Traditional methods for generating the carries have used 

mUlti-input gates. However, the use of k-input gates is not only 

irregular, but slow for large ~. 

A Good VLSI Architecture (GVA) for the CLA was described 

by Brent and Kung (Ref.808). A modified version of their tree 

structure is shown in figure 8.3a. The black processing elements 

combine two P,G terms from a lower level into a new P,G term. The 

logical contents of the black dots are shown in figure 8.4a. In 

practice, alternating logic of figure 8.4b would be employed. 

This original tree architecture has both less logic area 

and less gate delays than the Brent-Kung scheme. The new 

architecture is in fact the optimum, in terms of the number of 

two input gate delays. 

The proof that the final carries agree with equation 8.3 

can be done using the Brent-Kung method. A less formal way is.to 

follow the G,P terms as they progress up the tree: verifying that 
. 

the final generate terms (Gk), do indeed equal the carry (Ck) 

from equation 8.3. 
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8.3.4 Conditional Sum Adder. 

Figure 8.3b shows a GVA for the CSA. The tree structure 

is similar to that for the CLA, and makes use of the same 

processing elements (see figure 8.4). The CBA is better than the 

CLA, in that it has less routing area. However, this is balanced 

by the increased delay caused by the loading on the control 

lines. These points arise from using the same sisnals for a group 

of stages. For example, the top eight cells are all driven by the 

same signal. 

8.3.5 Carry Bypass Adder. 

A structured version of the CBA is shown in figure 8.3c. 

This GVA again uses the same processing elements (see figure 8.4) 

as the CLA , with a modified tree structure. Like the CSA, it has 

eliminated the routing problem. But this time the loading 

problem, though worse than the CLA, is not as bad as in the CSA. 

8.3.6 Testing an adder. 

To test an adder it is normal to put scan-path latches 

on the input and output. However, in order to quickly test an 

adder it is important to also have control of the' carry-in. This 

makes it possible to fully test the adder using just the eight 

test inputs. Table 8.1 shows an example of the test sequence (in 

hexadecimal)for an eight bit adder. 

-122-



ARITHMETIC ARCHITECTURES. 

---------------------
CIN ADDEND AUGEND SUM 
---------------------

,~ 

0 $00 $00 $00 
0 $FF $00 $FF 
1 $FF $00 $00 
1 $FF $FF $FF 
1 $00 $FF $00 
0 $00 $FF $FF 
0 $55 $55 $AA 
1 $AA $AA $55 

TABLE 8.1 ADDER TESTS. 

8.3.7 Performance Comparison: Addition. 

Four types of adder architecture have been discussed. 

Table 8.2 compares their performances and costs using the 

parameters of section 7.6. 

PARAMETER MCC CLA CBA CSA. 
---------------- -------------------------------
NO. LOGIC CELLS c c c c 

NO. WIRE CELLS c log(n) c c 

LOGIC AREA n n*log(n) n*log(n) n*log(n) 

2 . 
WIRING AREA n n n*log(h) n*log(n) 

I/O PORTS n n n n 

TESTING TIME c c c c 

TESTING AREA n n n n 

GATE DELAY n log(n) log(n) log(n) 

WIRING DELAY c n n n 

LOADING· c c log(n) n 

PIPELINE AREA n*log(n) n*log(n) n*log(n) 
------------------------------------------------

TABLE 8.2 ARCHITECTURE COMPARISON TABLE 
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Table 8.2 compares the performance of the various tree . _/" 

structures. For area and complexity, the MCC is the clear winner. 

However, for applications requiring higher performance there is a 

choice of three. The loading problem oftheCSA mean it would 

only be useful for small operands. For absolute speed, the CLA is 

preferred. But if the area becomes a problem, the CBA offers a 

good compromise. 

8.4 MULTIPLICATION. 

The paper and pencil method of multiplication is to 

shift and add. An n bit multiplier (R) and an n bit multiplicand 

(S) produce a 2n bit product (p). This requires the formation of 

n partial products and their subsequent reduction to a single 

2n-bit result. For 3 bit operands, this operation is done as 

follows: 

's2 
r2 

sl 
rl 

sO 
rO 

rO.s2 rO.sl rO.sO 
rl.s2 rl.sl rl.sO 

r2.s2 r2.sl r2.s0 

p5 p4 p3 p2 pI pO 

High performance multiplication is an indispensible 

element in modern DSP. Recently the trend has been towards 

parallel multipliers. But the serial-parallel method is useful 

for larger operands. 
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FIGURE 8.5 SERIAL-PARALLEL MULTIPLIERS. 
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8.4.1 Conventional serial-parallel multiplier. 
----------------------------------------------

The serial-parallel multiplier (SPM) is an old technique 

for speeding up multiplication (Refs.809-8l0). Figure 8.Sa shows 

the basic architecture of this multiplier. The partial product, 

stored in the carry save register (the latches (PQ) on the 

outputs of the full adder (FA)), is first initialized to zero. 

Then for n clock cycles it accepts S in parallel (01), R in 

series (BI), and outputs P in series (AO). 

The multiplier bits are ANDed with the multiplicand, and 

the result is added to the previous partial product. The latches 

(PQ) are clocked in and out on the two phases of the clock, P and 

Q respectively. The least significant bit of the partial product" 

register is shifted out to become the next least significant bit 

of the product. 

After n clbck cycles the least significant n bits of the 

product will have been shifted out. If desired, the most 

significant half of the result, stored in carry save form, can be 

shifted out during the next n cycles. This final operation can be 

speeded up using a fast adder. 

The above scheme could be modified to accept both 

operands in series, using a serial to parallel converter. A 

recent scheme (Refs.8ll-8l2) shows how both operands can be 

simultaneously presented serially. However, one major limitation 

of all these schemes is the broadcast nature of the multiplier. 
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For large operands the loading on this line would degrade the 

performance. An alternative architecture proposed here has no 

broadcast lines and accepts both operands in serial form. 

8.4.2 New serial-parallel multiplier. 

The New Serial Parallel Multiplier (NSPM) structure of 

figure 8.5b employs only a little more hardware than the original 

scheme. It uses a simple full adder (FA), and its dual (which 

expects the inputs inverted), not the more complicated" (5,3) 

counter. The half-latches (P and Q) in the multiplier, 

multiplicand, load and partial product lines are the master or 

slave of a master-slave latch. They pass data during opposite 

halves of the clock cycle. 

DI X Sl XXX XXX XXX S2 XXXXXXXXX 

BI X Rl X X R2 X 

AO XXXXX PI P2 

LD 

<---------------> 
2n clock cycles 

FIGURE 8.6 TIMING OF THE NSPM. 

Figure 8.6 shows the timing diagram for the NSPM. For 

the first n clock cycles S is loaded bit serially into the 
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holding register (01). After n/2 clock cycles the load'line (LD) 

is held high for one clock cycle~/ This loads S into the 

multiplicand register (X). During this and subse~uent clock 

cycles, R is introduced least significant bit first (into BI). 

The AI input, normally set to 1, can be used to add a constant. 

8.4.3 Testing the SPM. 

The lack of control over internal nodes of the SPM 

presents problems for testing. However, it is possible to test 

all combinations of the full adders, by setting all the bits of S 

to 1 and R to: 

R = 0 .•• 00011110 

To test the AND gates we set S = 0 and R to alII's. The other 

registers can be tested by observing' their outputs. 

8.4.4 Fault-tolerance with the SPM. 

The inclusion of fault-tolerance removes the traditional 

link between chip area and yield. However, the adverse effect on 

complexity has meant there have been few practical applications. 

The simple regular nature of the SPM makes it ideally suited to 

fault-tolerance. 

A number of schemes for including fault tolerance in a 

-
serial pipelines have been proposed (Refs.812-814) ... Only the Hsia 

scheme (Ref.8IS) will be considered here. It not only involves 

least complexity overhead, but is capable of using all working 

cells. 
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Figure 8.7 shows an architecture for a fault tolerant 

SPM. The re-routing network (RR) allows input of test data and 
r 

can bypass a cell during normal' operation. The fault detecting 

network (FD) controls the RR and finds a faulty cell during test 

operation. 

The number of stages chosen for a cell depend on the 

technology and yield figures. For very large networks a 

hierarchical scheme is desirable, because a single fault in the 

switching will destroy the operation. 

8.4.5 Parallel multiplier. 

Hardware implementations of the Parallel Multipliers 

(PM) have been available for a number of years. They offer either 

to increase the speed of .one operation or to allow faster 

throughput. 

The fastest method of multiplying two numbers is to use 

(3,2) counters. These combine the partial products either by row 

(Wallace tree) or column (Dadda scheme). However, their irregular 

interconnection schemes make them unsuited to VLSI. 

The array multiplier; consisting of a diamond of gated 

full adders (black square~), is shown in figure 8.8a. Each row 

adds either 0 (if the multiplier for' that row is 0) or a shifted 

version of the multiplicand .. Though the delay is still O(n), the 

same as the SPM, it is much quicker in practice, and can be 
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pipelined (Ref.813). 

8.4.6 New parallel multiplier. 

For some applications it is not the throughput that 

matters but the absolute delay. In this section I propose a New 

Parallel Multiplier (NPM) that has a delay O(n
A

l/2). 

The principle of this new sC,heme is shown in figure 

8.8b. Instead of connecting the output of the gated adder to the 

next cell, it is connected'to the cell n
A

l/2 below. To accumulate 

the result extra full adders (below dotted line) are used. These 

extra cells have connections from their nearest neighbours. 

For this small. example, the delay in the NPM is no 

better than the original PM. However, for larger operands, the 

new scheme has less gate delays. The NPM has more gate delays 

than Dadda's and Wallace's, but it is more regular. 

8.4.7 Testing the PM. 

It has been suggested that the conventional carry-save 

array multiplier is not testable with a fixed number of inputs: 

that is the number of test inputs is dependent of the size of the 

array (Ref.814). However, with control, of the sum and carry 

-inputs at the top of the array, n series of inputs can be found. 

Table 8.3 shows a series of test inputs for an eight bit 

multiplier, which fully exercise each cell (gated full adder). 

The sequences are extended for bigger arrays. 
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MULTIPLICAND 1 MULTIPLIER 1 CARRY-IN 1 SUM-IN 

FF 00 00 00 
FF 00 00 FF 
FF FF FF FF 
FF FF FF 00 
FF AA FF 00 
FF 55 00 FF 
AA AA FF FF 
55 55 00 00 

TABLE 8.3 PARALLEL MULTIPLIER TEST INPUT 

8.4.8 Performance comparison: Multipliers. 
-----------------------------------------

----------------------------------------------
PARAMETER 1 SPM NSPM PM NPM 

----------------1-----------------------------
NO. LOGIC CELLS c c c c 

NO,. WIRE CELLS c c c c 

2 2 
LOGIC AREA n n n n 

2 5/2 
WIRING AREA n n n n 

I/O PORTS c c n n 

TESTING TIME .. c c c c 

TESTING AREA c c n n 

1/2 
GATE DELAY n n n n 

1/2 
WIRING DELAY c c c n 

LOADING (Note 1 ) c c n n 

PIPELINE AREA c c 
----------------------------~-----------------

Note 1. For pipe1ined operation the PM loading is O(c) not O(n)'. 

TABLE 8.4 ARCHITECTURE COMPARISON TABLE 
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Table 8.4 demonstrates that, for quick and comparitively 

cheap multiplication, the NSPM is preferred. For fast throughput 
~ 

the pipelined PM offers optimum performance. However, if absolute 

delay is the primary requirement, the NPM is a better 

alternative. 

8.5 DIVISION. 

The division operation involves of finding the quotient 

(Q) and remainder (R), of a numerator/dividend (A) and 

denomonator/divisor (D). These four parameters satisfy the 

equation 

A ,;, (Q * D) + R ... 8 . 11 

Where R is less thanD and of the same sign as A. For a given 2n 

bit A and n bit D, there is a unique n+l bit Q and n bit R. 

The paper and pencil method of division is based on a 

shift and conditional subtraction technique. For an n of three 

this can be represented as shown below: 

q3 q2 ql qO 

d2 dl dO ) as a4 a3 a2 al nO 
q3.d2 q3.dl q3.dO 

q2.d2 q2.dl q2.dO 
ql.d2 ql.dl ql.dO 

qO.d2 qO.dl qO.dO 
-------------------- r2 rl rO 

Division and multiplication are in many repects dual 

operations. Division superficially resembles the shift and add 
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method of multiplication. However, division requires each 

operation to be completed before the ~~xt begins. This introduces 

a sequential ordering into division which is not present in 

multiplication. 

The inherent serial nature of division, coupled with its 

relatively rare occurence in arithmetic operations, has meant 

there have been relatively few dedicated dividers. Most hardware 

uses some iterative technique (Ref.803), making use of a fast 

multiplier. Though this has proved successful, it is not well 

suited to VLSI. Not only is the throughput limited, but the 

hardware is relatively complex. 

Dedicated dividers are usually based on fast adders. The 

most popular of these has been the non-restoring and SRT methods 

(Ref.803). Both of these methods dispense with the need for 

comparison, but do not overcom~ the O(n*logn) worst case delay. 

8.5.1 Principle of the serial-parallel divider. 

The new Serial Parallel Divider (SPD), though similar to 

the conventional SPM, has a more complex operation. Therefore 

before describing its operation, the principle will be described 

using a 'reverse SPM'. Though.this analogy is useful it does not 

directly lead to a practical.realization. 
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Q} 

n -bit reg. I-- n-bit reg. 

I r . . .. · . r II 1/ 
~ 
--..-

div. gated adders 

n·bit carry save n-bit reg. reg. 

mul . .. - div. 

b) . mult iplicand d iv isor 
• 

: ·0 r--- • SID 

[ . . I 

.PIA . PIA . 
product dividend 

CJ 
I 

0 I p IQ I--- SID 
I 

I . . . I 

P.P.IP.Rem . P / P.Rem.: 0 . · I . partIal product partial remainder 

d) multiplier quo~ ient . 
'R /Q # 

. 
I-- SID 

,1 . I 
" 

0/ Rel]l. 0 · .. remaInder 

FIGURE 8.9 PRINCIPLE OF THE SPD. 

-136-



Cf) 

~ 

g§ 
E-! 
U 
~ 
E-! 
H 
::r:: 
U 
P:< 
~ 

U 
H 
E-! 
~ :s 
::r:: 
E-! 
H 
0::: 
~ 

\ 

Quotient Carry Save Adder 

Front 

End 

Processor 

Yn+1 I Yn 

4:1 M 

FA 

FIGURE 8.10 A PRACTICAL SPD. 

Divisors 

4:1 MUX, 

FA FA 

QPIt-----

I 
I' 
(V) 

r-l 
I 



ARITHMETIC ARCHITECTURES. 

Figure 8.9a shows our imaginary 
, 

SPM' , reverse with its 

reversible data f 10\<1. After n clock cycles the state of the /" 

conventional SPM is shown in figure 8.9b. If we now reverse the 

clock, figure 8.9c shows the position after k clock cycles. 

Finally after n clock cycles (see figure 8.9d) we are in the 

starting state of the SPM and the final position of the SPD. 

Those familiar with division will realize the bug in our 

imaginary SPD: how did we know· the value of the quotient / 

multiplier. To find this value we need to know whether the 

divisor is greater than the contents of the carry save register, 

which requires. a time consuming comparison. To get around this 

problem the architecture has to be modified. 

8.5.2 A practical SPD. 

Figure 8.10 shows two new features not present in figure 

8.9. Firstly, there is a Front End Processor (FEP) on the carry 

save adder. Secondly, there is more than one possible multiple 

of the divisor. 

Consider first the action of the FEP. It receives a sum 

and carry from the most significant stage of the carry' save 

register, anq the carry from.the second most significant stage. 

The sum of these inputs. (X) can vary between four and zero. 

Internally the FEP has a carry save (Y). 

The value of X and Yare used to determine the value of 
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the quotient, and the multiple of the divisor that needs to be 

subtracted from the partial product register. In order not to 

overflow the FEP, it is important to have sufficient combinations 

of possible numbers to subtract. Including the zero, four 

combinations are needed. For each possible value 6f X and Y table 

8.4 shows the resulting action. 

---------------------------------------
INPUTS OUTPUTS 

---------------------------------------
Xn ! Yn ! Yn+l! quotient! 'divisor' ! 
--------------------------~-------~----
000 
000 
001 
001 
010 
010 
01.1 
011 
100 
100 

o 
1 
a 
1 
o 
1 
a 
1 
o 
1, 

a 
a 
1 
1 
o 
o 
1 
a 
a 
a 

a 
Ql 
o 
Ql 
Ql 
Q2 
Ql 
Q2 
Q2 
Q3 

o 
Rl 
o 
Rl 
Rl 
R2 
Rl 
R2 
R2 
R3 

TABLE 8.4 FRONT END PROCESSOR TRUTH TABLE. 

The operation of the SPD is more complex than the other 

schemes discused before: but in operation ,it is not dissimilar to 

the SRT algorithm. Again, instead of a full comparison, just a 

few bits are used to determine the number to be subtracted. 

However, with the SPD only a carry save subtraction is performed. 

The values of Qx and Rx are given by: 

n+l n+l 
Rl = 2 mod D Ql = 1 ( 2 / D . 

n+2 n+2 
R2 = 2 mod D , Q2 = 1 ( 2 / D 

n+l n+2 n+l n+2 
R3 = (2 + 2, ) mod D , Q3 = l( (2 + 2 )/ D ) 
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8.5.8 Performance comparison: Divders. 
-------------------------------------~/ 

-----------------------------
PARAMETER SRT SPD 

---------------- ------------
NO. LOGIC CELLS c· c 

NO. WIRE CELLS c c 

LOGIC AREA n n 

WIRING AREA n n 

I/O PORTS n n 

TESTING TIME c c 

TESTING AREA c c 

GATE DELAY n*logn n 

WIRING DELAY c c 

LOADING n n 

PIPELINE AREA 

TABLE 8.5 ARCHITECTURE COMPARISON TABLE 

Just two schemes for division are compared. The SRT and 

SPD are similar in cost terms, but the SPD introduced here is 

faster. One problem which the SPD has not overcome is the loading 

problem. This would limit the performance of larger dividers. 

8.6 MULTIOPERAND ADDITION. 

The technique of conditionally adding n+l, n-bit 

numbers is described here. The paper and pencil method of adding 

three numbers A, B, and C, if their associated constants (K) are 
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present, is given below: 

// 

kO.a2 kO.al kO.aO 
kl.b2 kl.bl kl.bO 
k2.c2 k2.cl k2.cO 

------------------------------
s4 s3 s2 sl sO 

The number of bits in the sum is given by n + 1 (n) • 

The architectures used for multiplication can easily be 

modified for multioperand addition (MOA). Figures 8.11 and 8.12 

show the timing and architecture for adding n+l numbers. This is 

the same as the SPM, except for the reversal in direction of the 

partial accumulation line'(AO) and one operand coming from an 

external source (BI). 

DI X Kl XXXXXXXXXX K2 XXXXXXXXXX 

-------- --------, 
AI X Ll X X L2 X 

-------- -------- -------- ---------

-------- --------
BII X Al X X A2 X 

-------- -------- -------- ---------

BI2 X Bl X X. B2 X 

AO XXXXXXXXX Sl X X S2 X 

LD t 

<-----------------> 
2n 

FIGURE 8.11 TIMING FOR THE MOA. 
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FIGURE 8.12 MULTIOPERAND ADDITION ARCHITECTURE. 
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dO_-_---J 

ld--+--~ 

b i -......-+----.1 Q P -__._--+-_-.l P 

ai 

00--+-----1 

L 0 --+--~-+-I 

'AI 

GS P 

PQ 

~I-----I P 

~-~--+-I Q 

FIGURE 8.13 MODULAR REDUCTION ARCHITECTURE. 
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8.7 MODULAR REDUCTION. 

The SPD suffers a number of serious drawbacks compared 

with the SPM. Not only is there a need for global communication, 

but there is additional complexity. In this section a method of 

overcoming these limitations will be described, which will work 

if the divisor is known in advance. This might see~ a strange 

idea, but it is often applica~le in'practical situations. 

In order to split a system into parallel segments, 

modular arithmetic is often performed. But finding the modulus is 

equivalent to finding the remainder of a number (A) with a fixed 

divisor (D). If: 

2n-l j 
A= ~ a*2 

j=O j 

We can write: 
2n-l 

A mod D = (a .[ 2 mod D ] 

Let R 
j 

2n-l 
2n-2 

+ a ~[2 mod D ] 
2n-2 

+ ••• 

+ a • [ 2 
n 

n-l 
+ a .2 

n-l 

mod D 

j 
= 2 mod D 

n 
mod D ] 

n-2 
+ a .2 + •.• + 

n-2 
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n-l n-2 0 
and L = a .2 + a .2 + ... + a .2 

n-l n-2 0/ 
~ 

Therefore we can write: 

A mod D = (a .R + . . . + a .R + L )mod D 
2n-l 2n-l n n 

The above expression contains the variables R, which are 

independent of the divisor (A). For a given modulus D, R is 

therefore fixed. The expression can thus be simplified to one of 

conditionally adding n n-b'it numbers (R) to another n-bit number 

(L). This is exactly the architecture discussed in the last 

section. 

The value of R could be precalculated, but this would 

lead to an O(n
A

2) figure for logic area. Two methods of 

calculating R, using previously worked out values, are possible: 

a) Working up: R = ( 2.R - u .D 
j j-l j 

Where R 
n-l 

n-l 
= 2 

and the u are precalculated. 
j 

b) Working down: 2.R = 
j 

R + v .D 
j+l j 

Where v = I if R is odd, else a 
j j+l 

and R is precalculated. 
2n-l 

.•• 8 . 14 

••. 8.15 

The values of u and v are the same. But because we are 

working backwards in b) we need not precalculate them. However, 
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in the latter scheme we must precalculate the most significant R. 

Figure 8.13 shows a hardware implementation of a Modular 

Reducer (MR). It uses two carry save adder chains. The top chain 

calculates the values of R using method a. The bottom chain 

accumulates the sum, which is an n + l(n) bit number. Figure 8.14 

shows the overall timing of the MR: assuming the constants (u) 

have already been loaded, via Id and di lines. The Amsb and Alsb 

refer to the most and least significant n b~ts of the numerator 

respectively. S is the reduced n + l(n) bit number. 

DI X Amsbl XXXX~XXXXX Amsb2 XXXXXXXXX 

AI X Alsbl X X Alsb2'X 

bI X Dl X X D2 X 

AO XXXXXXXXX Sl x X S2 x 

LD 

<-----------------> 
2n 

FIGURE 8.14 TIMING FOR THE MR. 

8.8 SYNTHESIS OF A REQUIRED FUNCTION. 

In the above sections we have described GVAs for basic 
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arithmetic operations. Does this help us to calculate more 

complex functions, such as Trigonometric, exponential and 
~ 

logarithmic? The answer to this question is yes. 

Complex functions can be synthesized using techniques 

such as CORDIC (Refs.820-821). It is not possible to describe 

this complicated technique here, but the consequences of this 

algorithm are worth meritioning: with just a few cells and 

architectures it is possible to build any arithmetic 

architecture. 

The architectures discussed in' this chapter have all 

be.en either: 

a) A tree (CLA, CBA, CSA). 

b) A chain (MCC, SPM, SPD, MOA, MR). 

c) An array (PM, NPM). 

The combination of a small number of architectures -with a few 

leaf cells, has numerous advantages. But perhaps the most 

important is its simplicity. 

Design rules change fTequently, requiring a new library 

of cells. This means it is not possible to use the same layouts 

for more than a few years. But by using just a few leaf cells it 

is possible to quickly redesign them. This simplicity allows high 

performance arithmetic units to be quickly designed. 

To further speed up design, it is desirable to have the 

design automated. A simple approach would be to have a library of 
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predefined architectures. But more promising is the possibilty. of 

generalizing these architectures O?to a higher level of 

abstraction. It would then be possible for 'intelligent' software 

to automate the whole process of arithmetic design. 

8.9 CONCLUSION. 

This chapter has described Jood VLSI Architectures (GVA) 

for the basic arithmetic functions. Using techniques such as 

CORDIC, more complex functions can be realized. 

For each of the basic arithmetic operations a new 

architecture has been proposed. All architectures have very low 

complexity: in many cases using identical cells or architectures 

with minor modifications. By using asymptotic cost and 

performance measures, their benefits over 'ad hoc' designs will 

improve as technology advances. 

A new adder tCLA) was proposed which is faster than any 

previously published. By modifying the architecture (CBA) it was 

shown how the area could be reduced with a small loss in 

performance. 

Two new multiplier ~tructures were proposed. The NSPM is 

similar to existing schemes but, because it removes any global 

communication, it has better asymptotic performance. A NPM was 

proposed, which is ideal for very fast calculation. 
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A division architecture with O(n) delay was described. 

This is a faster asymptotic performance than any previosly 

published. Though requiring more random logic, its asymptotic 

complexity is low. 

Two other original arithmetic architectures were also 

given. Firstly, for adding n+l numbers ·simultaneously: with an 

architecture almost identical to the NSPM. Secondly, a scheme for 

finding the modulus, based on two serial pipelines. If 

applicable, it is preferable to the general divider: since it has 

less loading problems. 

This use of just a few cells makes it possible to use 

full custom architectures cheaply and quickly. It would be 

particually attractive if a software 'shell' was wri~ten to 

automate the task. 

The incorporation of error-correction techniques were 

discussed in relation to the SPM. This appears to be an important 

technique for breaking the traditional link betwwen yield and 

area. However, this topic deserves more detailed investigation, 

particually as regards keeping complexity low. 
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9.1 INTRODUCTION. 

This chapter will describe the design of the MA743 

Advanced Cipher Processor (ACP). The ACP implements a 512 bit RSA 

algorithm (see section 1.6.3) with Multibus interface. The design 

is in 2.5 micron, double level metal, bulk CMOS. This work was 

carried out by the author while at GEC Hirst Research Centre 

(Ref.90l). 

Public Key Encryption algorithms are based on simple 

arithmetic operations. However, all PKCs have one distinguishing 

factor compared w~th other DSP operations: the need for very 

lar.ge operands. This security restraint on the minimum size of 

operands mean that they are very computationally intensive. 

The computational intensive PKCs are too slow if 

implemented on a microprocessor and too costly ,for a TTL 

breadboard. However, VLSI offers an ideal solution. The size of 

the operands make the PKCs well suited ·to the arithmetic designs 

of chapter 8. 

The documentation is not intended to be comprehensive. 

Some details of design, such as the microcode, have been omitted. 

However, all major sections of the ACP will be covered using the 

-hierarchical design style of chapter 6. 
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9.2 HISTORY. 

The proposal to build an ACP was first put forward by 

the author in 1981. This lead to a more detailed proposal in 1982 

(Ref.902). Three alternative cryptosystems were nominated. 

Two of the proposed cryptosystems, the MH-knapsack (see 

section 1.6.2) and the DH-key distribution scheme (see section 

1.6.1) have proven popular, with several companies using them. 

However, continued improvements in cryptanalytic techniques have 

left their long term security in doubt. The question of security 

was also the reason for rejecting our own cryptosystem (see 

chapter 3). 

To call a cryptosystem secure is relative, since no 

absolute guarantee of security has ever been given. However, 

probably the best test is to publish the algorithm and wait. 

Because our system has not had this cryptanalysis, it would have 

been unwise to invest so much in it. Therefore, the RSA scheme 

(see section 1.6.3) was chosen. 

It was envisaged that the mass market for these chips 

would not exist until the late 1980's. For this reason, together 

with the contemporary nature of the proposed technology and the 

novel architectures used, a test design was undertaken. 

This buffer between design and marketing was the reason 

for going for a single chip implementation. Although it would 
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have low yield under present technology, when required it could 

be economically fabricated. The test design could have all the 
~c 

features of the final chip, without the additional logic of a 

multichip system. 

The work was intented, to form the practical part of my 

PhD, therefore, I worked alone. This solo approach had mixed 

consequences. The major drawback was the lack of someone to check 

for errors. However, on the pqsitive side it allowed me to 

visualize the whole design cycle, which compensated for any delay 

caused by small erro~s. 

9.3 SYSTEM DESIGN. 

The operation of the ACP is described in ISPS (see 

appendix A). This provided an effective way of debugging the 

initial design. After the design was proven, a provisional data 

sheet (see appendix B) was produced. Figures 9.1-9.4 show 

blow-ups of the data sheet diagrams. 

Figure 9.1 illustratescthe functional block diagram of 

the ACP. The various components of this diagram are described 

below. 
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HAND \ 

Al, AO X R/W ADDRESS 1 X R/W ADDRESS 2 

CS \ l ~ 
lOR \ 1 \ 
lOW \ 1 \ 
00 ..... 07 ( BYTE 1 ) ( BYTE 2 

DATA OUT DATA OUT 

X 00 ..... 07 
BYTE 1 

X 
BYTE 2 

DATA IN DATA IN 

FIGURE 9.2 DIRECT TRANSFER OF DATA. 
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HAND 1 
DRQR/W I 
DACKR/W \ I J 
lOR \ 1 \ 
lOW \ 1 \ 
00 ..... 07 ( BYTE 1 ) ( BYTE 2 

DATA OUT DATA OUT 

( 00 ..... 07 BYTE 1 ~ BYTE 2 
DATA IN DATA IN 

FIGURE 9.3 TRANSFER OF DATA IN HANDSHAKE MODE. 
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9.3.1 Modular Exponential Unit. 

The heart of the ACP is the Modular Exponential Unit 

(MEU). It takes the contents of the stack (M) and raises it to 

the power of E, where E is the contents of the exponent register. 

The result (C) is then reduced mod X, where X is the contents of 

the modulus register. C is then left in the output register until 

the stack is free. If e(i) is the i'th ,bit of E, the formula used 

is: 

C = 1; 

FOR i = OTO 511 

BEGIN 

.1 f e ( i) = 1 THEN C = C * M mod X; 

M = M * M mod X; 

END. 

Notice that the reduction is performed after each operation. This 

stops overflow of the registers holding M and C. 

This binary method for evaluating powers is not optimal 

in terms of the number of multiplications. The power tree method 

is faster for small n, while the factor method is better for 

powers with a large number of factors (Ref.114). However, as a 

general method the binary method is always close to the optimum, 

and for large n the reduced complexity is important. 

9.3.2 Interface. 

An important part of any design intended for the 
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commercial market is the system interface. 

The throughput of the ACP is not input/output limited, 

making it possible to use a standard 24-pin Dual In Line (DIL) 

package. All data is communicated through an 8-bit bus, either 

under control of a DMA or microprocessor. Figures 9.2 and 9.3 

show the timing diagrams for transferring data in direct and 

handshake modes respectively. 

The chip contains all the signals necessary to interface 

directly to a Multibus (Intel trademark) system. Figure 9.4 shows 

a typical system. interface. 

9.3.3 Synchronization. 

The MEU has been optimized for high performance, so 

there are no global signals or off-chip communication. This 

allows the MEU to operate at much faster clocking speeds than the 

rest of the system. However, in order to take full advantage of 

this potential, it is vital not to have the delay through the 

clock drivers. By having an asynchronous internal clock the delay 

through the clock drivers is immaterial, since it is not relative 

to anything else. 

The ACP has two in?ependent processes: the external 

process, concerned with conveying data between the internal stack 

and off chip devices; and the internal process, which transfers 

data between the stack and the MEU. The two operations are 
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asynchronous. 

,/' 

The asynchronous nature of the external and internal 

processes are reflected by the use of the 'process' qualifier in 

the ISPS description (see appendix A). Communication between the 

two processes is via the status register. The data sheet gives a 

fuller description: showing how it is used by external devices to 

avoid conflicting use of the stack. 

In the timing diagrams (figures 9.2-9.3) there is no 

system clock. The internal process is timed by a quartz crystal 

controlled oscillator (see section 9.5.3). It 'pops' data off the 

stack into the MEU and 'pushes' data onto the stack from the 

output register. The external process regulates the reading from 

and writing to the ACP. It 'pushes' data onto the stack and 

control register and 'pops data off the stack and status 

register. 

If a signal from one of the processes violates the input 

'constraint of the control unit, it can leave the circuit in a 

non-stable state. Though there 

guaranteeing synchronization 

response time itis possible to 

control unit allows over ten 

are no absolute ways of 

(Ref.903), by allowing enough 

reduce this danger. The ACP 

microseconds before a sampled 

signal is allowed to change a state. This reduces the chance. of 

failure to virtually zero, without affecting the performance of 

the ACP. 
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9.3.4 CONTROL UNIT. 

The control unit is responsible for switching data on 

the serial internal buses, and parallel external bus. Using its 
, 

own . internal' state machine, and signals from internal and 

external components, it ensures no conflicts exist. 

The- decision to go for a simple interface meant greatly 

increasing the chip complexity. Though adding only a small amount 

to manufacturing costs, approximately half the design costs were 

taken up with the control unit, the switching logic and its 

associated micro~ode. 

9.3.5 Stack. 

The name stack is something of a misnomer, since it is 

functionally a first in first out (FIFO) buffer. Data is written 

at the top of the 64-byte FIFO and read at the bottom. Extenally 

data is read· and written least byte first. Internally data is 

read and written least significant bit first. 
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9.4 ARCHITECTURE DESIGN. 

At the time the design was in progress a good simulator, 

such as HILO (see section 6.2.1), was not available. This meant 

considerable more care had to be taken in the design. Having 

since designed a chip with HILO, I would estimate that several 

months would have been saved if it had been available for the ACP 

design. 

Figure 9.S shows the floorplan of the ACP. The blocks 

around the periphery with numbers attached represent the 24 pads 

(see appendix B). The other blocks are described below. 

9.4.1 Clock generator and buffer. 

When designing a two-phase clock generator (xtal. 

oscillator) and buffer (CB), the most important parameter is 

delay. It is normal to worry about delay between the system clock 

and the clock after it has been phase split and buffered. 

However, because we generate our own internal clock, only clock 

skew is a problem. The four outputs of the clock buffer,p, p', Q 

and Q' are shown in figure 9.6. 

Various multiples o~ the basic clock frequency are used. 

But the fundamental multiple ~s 524 clock cycles. The name period 

will be uied for this multiple. That is: 

524 * (one clock cycle) = one p~riod. 
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P 

P' 

Q 

Q' 

FIGURE 9.6 NON OVERLAPPING CLOCK WAVEFORMS. 

9.4.2 Modular Exponential Unit. 

To perform the binary modular exponentiation algorithm 

of section 9.3.1, a multiplier and modular reducer are needed. 

Firstly, to square M, and, secondly, to conditionally multiply C 

by this result. A GVA for doing this is shown in figures 9.7 and 

9.8. Its main components are the 524-bit serial-parallel 

multiplier (the NSPM of section 8.4.2) and the 524-bit modular 

reducer (the MR of section 8.7). As well as this there is a 

522-bit register (Temporary reg.), a multiplexer and two extra 

delay registers. 

-
In addition to the components described above, there is 

a modulus generator (MG). This is responsible for generating the 

R (see section 8.7) required by the MR. 
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Before data can be enciphered, the exponent, modulus and 

constant register must be loaded. The first step is to load the 

command register (CR) with 00010000. Following this, the first 

512 bits of the constant register are loaded into the stack. 

After loading, the data is directed from the stack, in serial 

format, to the modular reducer (di): via mux B~ After 524 clock 

cycles (1 period), the output of the modular reducer (do) is 

directed back to its input (di). Thus, the first 512 bits of the 

constant will circulate round the d-register of ,the modular 

reducer. 

To load the final 24 bits, bit 4 of the command register 

is forced high (CR=OOOOlOOO). The four-bytes of data are then 

transferred to the stack. After receiving the signal ~last~ (see 

section 9.4.3), the data from the stack is transferred, via mux A 

into the·temporary register (TI). For the next 476,clock cycles 

the ~rubbish~ at the bottom of the stack is PQshed out. The 

subsequent 24 cycles the real data is directed through TI, via 

TO+24 and mux B, to the modulus generator (MG) input (di). In 

the last 12 cycles of the period (the 512~th-524~th clock cycle), 

the output (do) of MG, goes through mux B into the modular 

reducer (di). For the first clock cycle of the next period, the 

load line (ld=c2) is held high. This loads all 536 bits of the 

constant u (see section 8.7) into the MR and MG. 

Bit three of the command register is now held high 

(CR=OOOOOlOO), and the 512 bit modulus is transferred to the 

stack. The stack contents are then conveyed to the modular 
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'reducer, in the same way as the first 512 bits' of the modulus. 

This will leave the d register with the modulus circulating once 

every period. 

The exponent is transferred to the ACP by holding bit 

two of the command register high (CR=OOOOOOlO), and loading the 

stack with the 64 bytes of data. It is then moved to the exponent 

register as described in section 9.4.8. 

After the exponent, modulus and constant registers have 

been loaded, the ACP is ready to exponentiate. To tell the ACP 

that subsequent blocks of data are for exponentiating, bit one of 

t~e command register is held high (CR=OOOOOOOl). When a 512-bit 

message (M) is loaded, it is padded with twelve zeros and gated 

into the multiplicand register (DI) of the NSPM. After 262 clock 

cycles (1/2 period) the. load signal goes high for one clock 

cycle: loading the multiplicand with M. At the same time the 

message, emerging of the multiplicand register, is put into the 

multiplier register (BI). The resultant product' (AO) is the 

message squared (M * M). 

After one period, a 1 (initial state of C) padded with 

523 zeros, is loaded serially into the multiplicand register. At 

the beginning of the second' period, the last bit of the previous 

product (M * M) will be - shifted out. The output of the 

multiplicand register (C) is again loaded into the multiplier 

register. However, this time the load line is kept inactive. The 

new product is the previous multiplicand (M) times the new 
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multiplier ,(C). This new product (C * M) together with the 

multiplier (C) is passed to a multiplexer: whose output is the 

product if e(O) is 1, otherwise it is the multiplier. 

At the same time that this second multiplication is 

going on (second and third period), the previous product (M * M) 

is being reduced. Assume the previous product was a 1046-bit 

number (actually only 1024 bits are generated the first time). 

The output; having passed unhindered through the multiplexer, via 

the two delay registers, through the D register of the MR, into 

the temporary register; arrives at the start of the second period 

at the MR (AI). 

During the first clock cycle of the second period the MR 

load line (LD = c3) is held high. At this time the 522 Isbs (L) 

are in the temporary register, while the remaining 524 most 

significant bits (msbs) are latched into the MR. The contents of 

the temporary register (L) are directed into the MR (AI). The 

resulting output (AO) will be a 523-bit number: the sum of 524 

512-bit numbers and a 522-bit number (see section 8.7). The least 

significant bit of the result will come out of TO, via mux C, 

into the input of the NSPM, at the beginning of the third period. 

When the second product (C * M) has been shifted out, 

and the first product has been reduced (M * M mod X), the. whole 

process repeats. At the start of the fifth period, the multiplier 

starts to square the result of the MR (M * M mod X); while the MR' 

is now free to reduce the second product (C*M or C). The two 
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operations, squaring and multiplication, occur at the same time, 

while one is using the NSPM, the other is using the MR. There is 
~ 

no overflow problem, because the NSPM and MR have been carefully 

matched in size. 

Data flows rhythmically, in a continuous stream. This 

means, most of the MEU latches need only store data for one clock 

cycle, permitting use of dynamic latches. The use of dynamic 

latches has a number of· advantages. Most important they occupy 

one third less area (see section 9.5.2), which is very important 

for a design with around twenty percent of the total area being 

taken by latches. One slight disadvantage is the need for 

t~o-phase clocks. 

9.4.3 External logic. 

In order not to have any external 'glue' chips, a number 

of extra control pins were employed. This redundancy is removed 

in the external- logic (Ext. Logic), where seven of the control 

pins are reduced to three lines. The meaning of these are: 

LAST: The last byte of data is being transferred. 

WORKING: An external device is transferring data. 

STACK: If 1 then then external device is accessing the stack; 

else if 0, and working = 1, command or status register being 

written or read respectively. 

Figure 9.9 shows their logic equations. 
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FIGURE 9.9 EXTERNAL LOGIC. 

9~4.4 Control Unit. 

As its name suggests, the control unit is responsible 

for switching the source and destination of data. The'paths that 

are open are determined by the state of the control;unit, and the 

part of the period it is currently in. Figure 9.10 shows the 

eight possible states (SO-57) of the control unit. Changes in 

state are controlled by the output of the three registers shown 

in figure 9.11. 
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There are a number of ways of transferring from the 

state diagram to a finite state machine. The way I chose was to 

use the turn-on (TOx) and stay-on (SOx) conditions. For the 

finite state machine shown in figure 9.10, we can write: 

S7 = A .B .C 

S6 = A. B . C ' 

SO = A'.B'.C' 

TOA = Sl.L.D 

TOB = S5 + SO.D' + Sl.L.D 

TOC = S 4 . N' + S 2 

SOA = S7.D + S6 + S4.N'.D + S5 

SOB = S7.D + S6.L' + S2 1- Sl + S3.L 

SOC = S7.D.L + S5 + S3 + Sl.(L' + D) 

~, 

AO = TOA + SOA 

BO = TOB + SOB 

CO = TOC + SOC 

A block diagram of the control unit is shown in figure 

9.12. 
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FIGURE 9.12 CONTROL UNIT ARCHITECTURE. 

9.4.5 Stack. 

The stack is organized as a 64 x 8 wide FIFO register. 

It is responsible for storing data when it is being loaded, and 

providing a place where processed data can be accessed. The stack 

logic (SL see figure 9.5) converts the external byte format 

into the serial format required internally. 

Figure 9.13 shows the architecture of the stack and SL. 

The stack clock can either be derived from external signals or 

from a l/8th internal clock (F/8). When external data is being 

loaded, the external control logic ensures that the internal 

control is switched off. The stack clock is bufferd by the 'stack 

clock buffer' (see figure 9.5). 
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9.4.6 Waveform generator. 

The main part of the waveform generator is a 524 state 

counter. A 5ll-bit sequence can be obtained from a 9-stage shift 

register, with exclusive-or feedback from stages 4 and 9. The 524 

state design is based on this 511 state pseudo-random binary 

sequence (PRBS), with logic to increase the cycle length to the 

13 extra states required. 

The design is similar to that used for the control unit. 

A more detailed diagram is given in figure 9.20. For the waveform 

generator we have the equations below: the inputs A-J represent 

the outputs of our PRBS (with extra logic in the feedback path), 

and X the extra state required to extend our sequence. 

FEEDBACK = D' .J + D.J' ; 

SO = A'.B'.C'.D'.E'.F'.G'.H'.J'; 

S505 = A'.B'.C .D'.E'.F'.G'.H • J "; 

S5ll = A'.B'.C'.D'.E'.F'.G'.R' .J 

S523 = (X.C.D) ; 

L = S523'; 

AO = (FEEDBACK.L) + SO; 

BO = A; 

CO = B; 

DO = C.L; 

EO = D.L; 
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FO = Ei 

GO = Fi 
~ 

HO = Gi 

JO = H.L; 

XO = S5ll + X.Li 

S = SO; 

I = S505; 

The two extra outputs, S and I, are used in other parts 

of the microcode. The operation of the counter has been simulated 

in ISPS (see appendix C). 

9.4.7 Serial divider and output register. 

The serial divider reduces the final 523-bit result to 

one of 512 bits. The design is based on the non-restoring 

division algorithm (Ref.805). Figure 9.14 shows the architecture 

used. 

The output from the MEU is. directed to the 5l2-bit 

output register. After 512 clock cycles the lsb is loaded into 

the input of the serial divider: which has been initialized to 

subtract. The output will then equal: 

outputl = input - (modulus * 2
A

ll). 
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If the output is negative, that is the most significant 

bit (msb) is a 1, then the operation during the next period will 
/". 

be an addition. If the output is positive another subtraction is 

performed. The lsb of the output will take 525 clock cycles (1 

period + 1 cycle) to arrive back at the input: 1 delay in the 

serial divider, 12 in the extra register and 512 in the output 

register. The result of the next eleven operation will therefore 

be: 

output2 = outputl +/- (modulus * 2
A

lO) 

output3 = output2 +/- (modulus * 2
A

9) 

output12 = outputll +/- (modulus * 2
A

O) 

On the twelth and subsequent periods the result is 

delayed by one less clock cycle, bypassing the internal delay. 

Output 12 is a 512 bit number, which could be negative. If it is 

negative a final addition is performed: output 13 = output12 + 

modulus. Thereafter the input is directed straight to the output. 

The three microcode lines cl-c3 control the serial 

division operation. Cl and c2 tell the 'End of oeration detector' 

when the first and twelth cycle are in progress. It, in turn, 

switches the output data from one of its three inputs. At the 

beginning of each addition/subtraction, the c3 signal resets the 

carry register and tells the 'add/subtract control' when to 

sample the data (i.e most significant bit). 
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9.4.8 Other registers. 

The control and status registers are tristate static 

registers, connected to the data pads. Whether they are read or 

written is determined by the control unit. 

The exponent register is a little more complex: its 

architecture is shown in figure 9.15. The stack data is loaded 

into the D register, where it circulates once every 524 clock 

cycles. During the first period of the MEU operation, described 

in section 9.4.2, the LDI signal goes high for one clock period. 

This loads the exponent into the E register. 

Once loaded, the E register is'clocked out serially with 

clock W (which changes state at the start of each period). The E 

register 'contains a zero detection circuit, so that when all the 

significant bits of the exponent have been shifted out, the ZD 

signal goes high. The ZD signal is sampled and if active passes 

the result of the MR to the output register (see section 9.4.7). 

The speed of execution is therefore proportional to the number 

of bits in the exponent. 

9.5 CIRCUIT DESIGN. 

There were a number of design styles used in the ACP 

leaf cells. For the main processing element, registers, crystal 

oscillator and pads, full custom design was used (see section 
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-6.5). For the interface, serial divider and control unit a 

combination of PLA's and standard cells were used. The main 

building blocks are described below. 

9.5.1 Gated adder and subtractor. 

The circuit for the adder has already been described in 

the design example of chapter 6. This adder is employed in the 

NSPM, MR and serial divider. By inverting the A input we get the 

subtractor needed for the MR and serial divider. 

9.5.2 Static and dynamic latches. 

Two types of latches were used in the ACP: static 

latches, which maintain their state by feedback; and dynamic 

latches, which use the temporary capacitive charge on gate inputs 

(Ref.90S). The static latches (see figure 9.16a) are used 

wherever data is not refreshed every clock cycl~. The dynamic 

latches (see figure 9.16b) are used only when data is refreshed 

every clock cycle, but account for approximately 75% of all 

latches on the ACP. 

9.5.3 Crystal oscillator. 

There is now wides~read use of quartz crystals in high 

performance oscillator circuits. The left hand half of figure 

9.17 shows the ciruit diagram of the Pierce oscillator used in 

the ACP. The simplicity of the circuit belies the complexity of 

analysis (Ref.906). 
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FIGURE 9.16 STATIC AND DYNAMIC LATCHES. 
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DESIGN OF AN ADVANCED CIPHER PROCESSOR. 

The crystal oscillator was extensively simulated with 

SPICE (see section 6.5). These simulations show the circuit has 

high frequency and temperature stability, mainly due to the high 

Q of the crystal. 

9.5.4 Phase splitter and buffer. 

The non-overlapping two phase clock is generated using 

cross coupled NAND gates. The circuit used is shown in the right 

hand half of figure 9.18. After being buffered, the output of 

this circuit feeds the nine clock buffer circuits. 

Each of the clock buffers employs a cascade arrangement, 

with each inverter driving successively larger inverters (Ref 

905). Although a ratio of 2.7:1 is optimal for performance, 

slightly larger ratios usually give denser layouts without 

significantly affecting performance. Therefore, a ratio of 4-5:1 

was used both here and in the output buffers. The distributed 

clock buffers have a combined drive capability equivalent to a 

single inverter, with 2200 (n) and 5000 (p) micron transistors. 

9.5.5 Pads. 

Three types of pad are required by the ACP: input, 

output and bidirectional. - The output pad uses four cascaded 

inverters, with the final transistor of 120 (n) and 270 (p) 

microns. Simulations showed the output pad can drive a 25pF load 

in IOns. 
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FIGURE 9.19 PLA AND-OR PLANE CONNECTIONS. 
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DESIGN OF AN ADVANCED CIPHER PROCESSOR. 

The input pad has diodes to short out voltage spikes and 

a resistor to dissipate the power. The circuit is the same as the 
~' 

right hand half of the bidirectional pad (see figure 9.18). 

The bidirectional pad is basically the input and output 

pads combined. However, the need to tristate the output demands 

slightly more complex circuitry. Figure 9.18 shows the final 

circuit and transistor sizes. Simulations showed this pad can 

drive a 2SpF load in 12ns. 

9.5.6 Programmable Logic Arrays. 

The PLA generator allows fast turn around for both 

sequential and combinatorial circuits (Ref.90S). The input to the 

PLA generator are the logical equations. Three PLA's were used in 

the ACP: for the external logic, waveform generator and part of 

the control unit. The AND and OR plane connections are shown in 

figure 9.19. 

The circuit for the waveform generator is shown in 

figure 9.20. The orderings of the inputs and outputs are chosen 

to avoid wire crossovers. 

9.5.7 Random Logic. 

The random logic circuitry is used extensively in the 

gating and control sections at the top of the ACP (see figure 

9.5). Particulary in the ML, EL, DL, TL, OL, SL, serial divider, 

control unit and crystal oscillator. 
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Using simple building blocks such as inverters, 
-~-

multiplexers, NAND and NOR gates; a traditional logic design 

approach was taken. 

9.6 LAYOUT. 

Figures 9.21 to 9.32 show some of the cells and 

macrocells used in the ACP. The final layout of the ACP is given 

in a pouch connected to the back page. The whole drawing has 

passed DRC and ERC (see section 6.6.2). Including scribe channel, 

the drawing measures 8.6 x 6.8 mm (3.4 x 2.7 microns). 

The ACP contains some 140 000 transistors of which it 

was necessary to design: 

a) 200 FULL CUSTOM (e.g. SPM and pads)~ 

b) 100 PLA (e.g. control, external and waveform generation 

logic) . 

c) 800 SEMI-CUSTOM - CELL DESIGN (e.g. serial divider and data 

control logic). 

Therefore, the regularity factor ( see section 6.1) is 

approximately 100. 

Layout of pads required some extra knowledge of 

processing. To ensure there was no static breakdown, they employ 

good substrate contacts, thick power rails and no overlap of the 

input line with gate polysilicon. 
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FIGURE 9.21 SIX STAGE SERIAL PARALLEL MULTIPLIER. 
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DESIGN OF AN ADVANCED CIPHER PROCESSOR. 

FIGURE 9.22 TWO STAGE SERIAL PARALLEL MULTIPLIER. 
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FIGURE 9.23 STATIC LATCHES. 
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FIGURE 9.24 DYNAMIC TRANSPARENT LATCHES. 
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FIGURE 9.25 NAND GATES. 
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FIGURE 9.26 EXCLUSIVE-OR GATES. 
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FIGURE 9.27 MULTIPLEXERS. 
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FIGURE 9.28 DYNAMIC LATCHES. 
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FIGURE 9.29 CONTROL UNIT PLA. 
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FIGURE 9.30 OUTPUT PAD. 
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FIGURE 9.31 INPUT PAD. 
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FIGURE 9.32 BIDIRECTIONAL PAD. 
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9.7 FUTURE. 

At the time of writing (April 1985) the ACP is still 

awaiting fabrication, one year after completion. Problems with 

the 2.5 micron double~level metal bulk CMOS line has been partly 

responsible, however, the main reason is that· there is not 

sufficient financial backing. 

There is still interest within GEC system companies for 

a finished chip, particualary from the commercial communication 

side. However, despite this, I now believe without some major 

external influence, the design will remain in its present state 

f.or a number of years. 

If implemented using 1.5 micron technology, the size of 

the ACP would be reduced to an economical Smmx4mm. As technology 

allows, there are a number of small additions.that would be 

beneficial. These include being able to store more than one key, 

having on-board DMA, and on board key generation. 

9.8 CONCLUSION. 

The ACP contains 140 000 transistors. However, it is not 

this that makes it a VLSI chip, but the design techniques used. 

The main execution unit, occupying 80% of the area uses just 100 

custom designed transistors. The overall regul~rity factor was 

reduced to around 100 by 'random' logic, which is still very high 
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for a chip of this type. 

Other attempts to design PKCs have met with little 

success ( Ref 905), with the notable exception of Sandia 

Laboratories (Ref 906). The reason being is that, despite in most 

cases better technology, they still used LSI design methods. I am 

still confident that despite many new ideas, the architecture 

used in the ACP has optimum performance. Other designs all use 

global data communication, which restrict their performance to 

less than half the potential SOK bits per second of the ACP. 

9.9 REFERENCES. 
-.--------------

901 GEC HIRST RESEASRCH CENTRE. 

EAST LANE, WEMBLEY, 

MIDDLESEX. HA9 7PP. ENGLAND. 

902 A.MCAULEY. 

Proposal for an advanced cipher processor. 

VHPIC DESIGN LABORATORY, pp.I-3, 2ND DEC.1982. 

903 M.J.STUCKI & J.R.COX. 

Synchronization strategies. 

CALTECH CONFERENCE ON VLqI, PP.37S-386, JAN.1979. 

-208-



DESIGN OF AN ADVANCED CIPHER PROCESSOR. 

·904 I.R.WILSON & A.M.ADDIMAN. 

A practical introduction to Pascal. 

MACMILLAN, 1981. 

905 J.MAVOR, M.A.JACK & P.B.DENYER. 

Introduction to MOS LSI design. 

ADDISON-WESLEY, 1983. 

906 R.G.MEYER. 

MOS crystal oscillator design. 

IEEE J. SOLID STATE CIRCUITS, VOL.lS, NO.2, APR.1980. 

9p7 R.L.RIVEST. 

A description of a single-chip implementation of the RSA 

cipher. 

LAMBDA (NOW VLSI DESIGN), VOL.l, NO.3, 1980. 

908 E.F.BRICKELL. 

A fast modular multiplication algorithm with application to 

two-key cryptography. 

SANDIA LABS. ALBUQUERQUE, NEW MEXICO 87185, 1982. 

-209-



SUMMJ~~~Y 
t~N~J 

. F~~~~EC#~ST 

-210-



SUMMARY AND FORECAST 

SUMMARY AND FORECAST. 

/~ 

Information is now recognized as an important asset in 

commercial and industrial areas. The availabilily of data 

communication networks will allow its increased exploitation. But 

before the 'information age' arrives a number of important issues 

need to be addressed. One of these is the susceptability of 

modern telecommunication equipment to inexpensive electronic 

interception. 

The determination of an individual's right to privacy is 

mainly a non-technical matter, but the pragmatics of providing it 

is the central concern of the cryptographer. This thesis has 

. sought answers to some of the outstanding issues in cryptography. 

In particalar some of the theoretical, application and 

implementation problems associated with a Public Key Cryptosystem 

(PKC) . 

The Data Encrytion Standard (DES) answers part of the 

need for security. Being a government sponsored scheme, banks and 

financial institutions can be confident about its security. But 

the availability of DES hardware alone is not sufficient. Without 

the capabilities of a PKC, . user authentication and key 

distribution will prove major obstacles. 

The Trapdoor Knapsack (TK) of Merkle and Hellman is the 

only PKC capable of matching ~he speed of the DES chips. However, 

the TK-PKC suffers from serious disadvantages. In chapter 2, a 
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more general approach to the TK-PKC is described. Using the 

general knapsack problem, it was shown how the redundancy and 

public key size can be significantly ameliorated, while achieving 

a security equivalent to the original binary knapsack problem. 

The security of the TK-PKC appeared to be based on, a 

secure foundation: a NP-complete problem. Nevertheless, as so 

often in cryptology, the cryptanalyst proved too resourceful. In 

1982 Shamir showed that the original system could be broken in 

polynomial time. 

The most successful attacks on the secuity of the TK-PKC 

were on the trapdoor information. To overcome this, a new TK-PKC 

was designed based on transformations between the radix and 

residue number systems. After our paper on this was presented, a 

number of weaknesses were pointed out. These have been taken into 

account for our improved new TK-PKC described in ch?pter 3. 

Chapter 1 described how a PKC can be used to securely 

exchange messages between two users, in the presence of a third 

party who can monitor all their traffic. Unfortunately, this 

system is not generalizable to more than two users. A secure 

broadcast of a single message to n users would require n separate 

cryptographic exchanges, which is clearly inefficient. 

It has been shown that considerable saving in 

transmission time can be achieved using multi-addressed packets 

of information: In chapter 4, we consider how cryptography can 
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best be applied in this situation. We show how security or 

network structure can be used to~dvantage. We then propose a 

more general method, in which redundancy between the messagetext 

and ciphertext is used to solve the problem of key distributuion. 

The method effectively trades security, redundancy, number of 

simultaneous receivers and transmission time. An example of the 

broadcast cryptosystem, based on the TK-PKC, is presented. 

The problems experienced by software publishers in their 

battle with the pirate, will frighten publishers of other forms 

of information. If they cannot provide security equivalent to 

existing published media, then the benifits of the electronic 

distribution will be forfeit. 

Copyright is traditionally used to protect the publisher 

from the pirate. In chapter 5, we show how to protect information 

when it is in an easily copyable digital form .. The software 

program was shown to be probably the easiest to protect. However, 

more general solutions were also put forward. 

The future of DSP is certain to be increasingly cross 

disiplinary, involving VLSI and computer engineering. It is 

unreasonable to expect the DSP man to be an expert in the device 

physics of chip design. However, in order to take advantage of 

the capabilities of VLSI, some knowledge of its potential and 

constraints are needed. In Chapter 6, the author describes what 

is involved in a low comple~ity custom design. 

-213-



SUMMARY AND FORECAST ' 

Throughout the whole design it is necessary to be, 

flexible, without losing the structure of top-down design. The 
-~ 

importance of this adaptability is true at all levels of design, 

but is particually significant at higher levels. Specialization, 

while allowing one level to,be optimized, will degrade the whole. 

Two other points raised in chapter 6 are also worth 

emphasising. Firstly, the importance of simulations, not only for 

checking but for finding hidden complexity. Secondly, the 

benifits of not using logic gate primitives was shown by examples 

of good custom CMOS design. 

The key to low complexity VLSI design is a vocabulary of 

good structures. However, in order to appreciate the advantages 

of a particular architecture, it is necessary to know something 

of the characteristics of a good design. This was the aim of 

chapter 7. 

To design an architecture requires knowledge of the 

effect on performance and cost. Chapter 7 put forward a model 

which, it is hoped, will be useful for many years. The ten key 

parameters will, with an overall view of design, provide a method 

of comparing architectures. 

It is important to have an 'efficient method for 

calculation in the basic arithmetic processes. There are an 

increasing number of applications requiring high performance 

arithmetic units. These special purpose machines vary widely in 
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application, but their internal architectures are remarkably 

similar. Chapter 8 discussed arithmetic architectures for these 

diverse applications. 

New architectures, for all the basic arithmetic 

operations, were described. Each is characterized by using a few 

simple cells repeated many times. These are not specifically for 

cryptography, though this is certainly a good application area, 

but for any big number cruncher. I believe these architectures 

could be used for a wide variety of future DSP applications. 

More than providing a vocabulary of new architectures, I 

believe the structures described in chapter 8 could provide the 

basis for higher order generalizations. Only the surface has been 

scratched in the work on VLSI computer arithmetic. There is ample 

of opportunity for rewarding and stimulating exploration of more 

formal ways of designing architectures. 

The design of a VLSI device to implement the RSA 

algorithm was the major practical part of this thesis. The design 

was unusual, in that all the work was carried out by the author. 

Normally, a number of people will participate, from initial 

marketers to the final layout draughtsmen. This lead to slow 

discovery of errors, and the benefits of specialization were 

" 
rejected. However, the greater insights into the overall design 

more than compensated for this. 

The Advanced Cipher Processor (ACP) communicates with a 
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host microcomputer via an eight-bit bidirectional data bus, and a 

number of control pins. DMA transfe~s are supported. Internally, 

the device consists of the control unit, modular exponential 

unit, registers, oscillator, clock driver, inteface logic and 24 

pads. Their design was described in chapter 9. 

The heart of the ACP is the modular exponential unit. It 

consists of the serial-parallel multiplier and modular reducer 

described in chapter 8. Data flows in a regular stream, without 

the need for storing. When operating at maximum performance, 

every cell in the MEU is working all the time. 

Despite careful design, the ACP is limited to speeds 

around 50Kbits/second. Technological advances will allow slightly 

faster speeds~ but no dramatic improvements are likely in the 

next twenty years. This leaves a gap in the cryptosystem market, 

since many applications require a PKC operating up to 

20Mbits/second. The new TK-PKC of chapter 3 might 'fill this gap, 

but continued improvements in breaking the knapsack problem leave 

this open to doubt. 

The one regret of the past four years, is that the ACP 

was not fabricated. There were an number of reasons for this, but 

the principle explanation was the belief that commercial 
. 

cryptographic devices represent a small market. Even today, ten 

years after publicity about the vulnerability of computer banks 

and communication, secure systems are still a rarity. Yet there 

is increasing evidence to show computer crime is becoming a big 
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. business. The availabilty of RSA chips, would certainly be big 

step to helping solve the security problems. 
~ 

In the future I would confidently expect to see 

cryptography become a standard feature in telecomunication 

equipment. Technology, as so often happens, has found answers to 

the problems it has created. Recent results have undermined the 

confidence in cryptography, particually the PKC. Nevertheless, 

though it may never be possible to quantify their security, I 

believe that the PKC will be an important ingredient in the 

information revolution. 

I now believe that the PKC cannot match the speed of the 

conventional cryptosystem, unless based on some non-mathematical 

transformation. However, the benefits of a PKC will ensure that 

research into a fast PKe will continue. 
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ABBREVIATIONS. 
--------------

ACP Advanced cipher processor. 

BNC Big number cruncher. 

CBA Carry bypass adder. 

CC Conventional cryptosystem. 

CLA Carry look-ahead adder. 

CMOS Complementary MOS. 

CSA Conditional sum adder. 

DES Data encryption standard. 

DIL Dual in line chip package. 

DSP Digital signal processing. 

EPROM Erasible programmable read only memory. 

GF Galois field. 

GVA Good VLSI Architecture. 

KEPROM Key EPROM. 

LSB Least significant bit. 

MA743 Mask allocation for ACP. 

MG Modulus generator. 

MOA Multi-operand adder. 

MOS Metal oxide silicon technology. 

MR Modular reducer. 

MSB Most significant bit. 

NMOS N-channel MOS. 

NPM New parallel multiplier. 

NSPM New serial parallel multiplier. 

PKC Public key cryptosystem. 
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PLA 

PM 

PROM 

Programmable logic array. 

Parallel multiplier. 

Programmable read only memory. 

RSA Rivest-Shamir-Adleman PKC. 

SPD Serial-parallel divider. 

SPM Serial parallel multiplier 

TK-PKC Trapdoor knapsack PKC. 

TRC Tamper resistant computer. 

TTL 

VLSI 

Transistor transistor logic. 

Very large scale integration. 
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G6C 
[HRC] MA743 ADVANCED CIPHER PROCESSOR 

PRELIMINARY DATA 

DISTINCTIVE CHARACTERISTICS 

* 50 K bits/s data rate : consistent with use in 
X2S wide area network 

* Message secrecy 

* Message and user authentication 

* Simplified key distribution 

* Single chip encryption/decryption 

* MULTIBUS1 compatibility 

DROw DRQR D7 D6 D5 D4 D3 D2 D1 DO RESET 5V 

GNO 'TOI! TOll TC AI AD tI HLDA DACKR DACKW C- C· 

CONNECTION DIAGRAM 

PIN I/O DESCRIPTION 

00-07 I/O Bidirectional three state line. Input for keys. 

A1,AO I 

HLDA I 

n I 

lm'R'R I 

lm'R'w I 

1UJr I 

TC 

RESET I 

DRQR 0 

DRQW 0 

VDD PS 

Input/output for plain text/cipher text 

Used to select distination of data bus, in 
direct mode operation 

Selects between direct (low) and handshake 
(high) mode of operation 

Enables the lOR/lOW, in handshake mode 

Enables the lOR, in handshake mode 

Enables the lOW, in handshake mode 

I/O Read, used to strobe data out 

I/O Write, used to strobe data in 

End of current block transfer 

Initialize 

Block of processed data available on stack 

Can write block of data on to stack 

5 V power supply 

VSS PS 0 V power supply 

Cex+ External timing crystal/External clock 

Cex· External timing crystal 

TABLE 1 PIN FUNCTIONS 

GENERAL DESCRIPTION 

The MA743 Advanced Cipher Processor (ACP) is a special 
purpose 24 pin CMOS chip, designed to overcome the 
serious deficiencies of traditional encryption methods 
such as the US Data Encryption Standard. It is based 
on the best of the Pub Ii c Key Cryptosystems, the RSA 
algorithm, which has defeated all attacks on its 
integrity. 

A secure system based on the ACP would operate as 
follows. Each user would generate a pair of keys, one 
of which would be kept secret, the other would be 
published in a directory. Anyone wishing to 
communicate with you could then encipher a message 
encrypted under your public key. Since only you know 
the secret inverse key, you are the only one able to 
decipher the message. The problems of secure key 
distribution do not then arise. By sending a message 
'deciphered' under your secret key, anyone can use your 
public key to read your message. However, since only 
you could have generated the 'deciphered' message, this 
"electronic signature" may be used for authentication. 

The ACP will interface easily to MULTIBUS1 and other 
microprocessor bus systems, and will facilitate direct 
handshake with a DMA controller for both input and 
output. With the full S12-bit key. data rates up to SOK 
bits/s will be possible. With a reduced encryption 
key, encryption speeds will exceed 1M bit/so 

Applications include: Electronic Funds transfer, 
Computer Network Communications and secure Database 
Systems. 
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FIGURE 1 ACP BLOCK DIAGRAM 
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FUNCTIONAL DESCRIPTION 

The ACP is a high performance device for performing modular 
exponentiation on 512-bit numbers. Its speed of execution 
is proportional to the number of bits in the exponent. It 
communicates with the host microprocessor system through a 
bidirectional eight-bit data bus. and a number of control 
pins (see Table 1). Figure 1 shows the Internal layout of 
the ACP. all Internal paths are bit serial. 

REAOING AND WRITING DATA 

a) Direct mode 
In the direct mode. the HLDA line must be inactive and the 
t! line active. Data can then be read or written on the 
rising edge of the 11TIr/TOY pulse (see figure 2). The 
destination Is selected using the AoAI address lines (see 
Table 2). If data is written into the stack. the final 
destination is determined by the contents of the command 
register (see Table 4). Before data is written the 
contents of the status register (see Table 5) shou1 d be . 
checked. 
b) Handshake mode 
With the HlDA line active. the CS line Is disabled (see 
Table 3). Communication Is then throu~e Data Request 
(DRQR.DRQw) and Data Acknowledge ~.~) lines. With 
Data Acknowledge active. data Is again strobed on the 
rising edge of the 11TIr/TOY pulse (see Figure 3). The Data 
lines are automatically connected to the stack. 

Al.AO DESTINATION/SOURCE 

O· 0 Command Register/Status register 
X 1 Stack/ Stack 
1 1 Last byte (stack) 

TABLE 2 : ADDRESS DECODE 

HLDA.t! OPERATION 

0 1 Ignore system. except for DRQ as necessary 
0 0 Reads data and address with.11TIr/TOR pulse 
1 X DMA active - data strobed wi th w:cK and 

lUlitImi 
TABLE 3 : CHIP STATUS DECODE 

Ix I X I X I X I KR I MR I EP I MEUI 

BIT 1 : MEU • Write to modulation exponential unit 
BIT 2 : EP • Write to exponent register 
BIT 3 : MR • Write to modulus register 
BIT 4 : KR • Write to constant register 

TABLE 4 : COMMAND REGISTER DECODE 

IDRQw I DRQR I SF I SB I X I MB I OW I OFj 

BIT 1 : OF • Output ready 
BIT 2 : OW • Output register full 
BIT 3 : MB • MEU busy 

.BIT 4 : X . 
BIT 5 : SB • Stack busy 
BIT 6 : SF • Stack full of input 
BIT 7 : DRQR • Read request to DMA 
BIT 8 : DRQW • Write request to DMA 

TABLE 5 : STATUS REGISTER DECODE 

~ 

~ RN ADDRESS \ X R/W ADOIIESS Z 

/' 

~ I \ 
lOR \ I \ 
lOW 0 \ 
00 ..... 01 ~ ( lYlE Z 
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00 ..... 01 X lYlE \ X BYlE Z 
DATA IN DATA III 

FIGURE 2 : DIRECT TRANSFER OF DATA 

~ 
ORO.,. I 
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FIGURE 3 : TRANSFER OF DATA IN HANDSHAKE MODE 
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FIGURE 4 : SYSTEM INTERFACE SCHEMATIC 

For further information please contact VHPIC Design Laboratory. GEC Research Laboratories. Hirst Research Centre. East Lar 
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I'!A743:= 
Beoin (US) 

ISPS Description of the MA743 Advanced Cipher Processor CACP) 

I Paoe 1: Carriers associated with the ACP chip. 
I Paoe 2: 
, Page 3:4 
I 

System carriers, and imple.entation declerations. 
System operation. Page 3 simulates the operation of a CPU, by 

putting the necessry signals on the acp·s inputs. Page 4 
Similarly simulates the operation of a DMA, and chip 
select logic. 

I 
J 
J 
I 
J 
J 
I 
I 
I 
I 

Page 5:9 ACP description. Pages 5&6 describes the control logic of the 
ACP associated with exchanging data with the outside world. 
Page 7 describes the control logic associated with t~e 
internal transfer' of data. Page 8 describes the operation 
of the MEU, incalculating the modular exponentiation of the 
input data. Finally Page 9 describes the subroutines used 
in the description. 

Page 10: Program description. Simulates the program of the CPU. 

UACP. STATE .. 

J ACP registers 

SR~7:0), 
DF() :=SR(O), 
OW() :=SR(1), 
MBO :=SR(2), 
Sa() :aSR(4), 
SFO :=SR(5), 
DRQR():"SR(6), 
DRQW():"SR<7), 

CR(7:0), 
ET<15:0), 
EP(15:0), 
C:R(19:0), 
MR(15:0), 
KR(IS:0), 
SH1:0JO:0), 

IModular Expontiatial Unit registers 

ZA(39 0), 
ZB(19 0), 
ZD(19 0), 

04<19 0), 
DB<15 0), 
00(39 0), 

'ISTATUS REGISTER 
lDUTPUT READY 
10UTPUT REG. FULL 
IMEU BUSY 
tSTACK BUSY 
ISTACK FULL OF INPUT 
!WRITE REQ. TO DMA 
IREAD REQ. TO eMA 
ICOMMAND REG. 
!EXPONENT REG. (TEMP) 
IEXPONENT REG. (PERM) 
fOUTPUT REG. 
IMODUlUS REG. 
!CDNSTANT REG. 

'1 STACK 

JPROOUCT 
IMULTIPLIER 

'IMULTIPLICAND 

tRESULT 
IMODULUS 

'IDIVIDEND 



*.eXTERNAl.STATES*. 

IMultibus si~nals 

0(1:0>, 
A(15:0), 
IOW<>. 
IOR<>, 

IControl pins 

HLOA<> , 
OACKRO, 
OACKWO, 
TCO, 
RSTO, 

RAHC0:15J(7:0>, 

*.IMPLELENTATION.OEClERATIONS.* 

P(6:0), 
'C(4:0>, 

U(3:0>, 
A2(3:0>, 

RW(>, 
OV<T:O>, 
AODf<15:0), 
40DS(15:0). 

'DATA BUS 
IADDRESS BUS 

ISELECTS HANDSHAKE MODE IN ACP 
lACK. BY OHA OF ORQR 
tACK. BY DHA OF DRQW 
!END OF BLOCK TRANSfER 
IRESET 

IEXTENAL MEMORY 

'1ClOCK 
IDELAY VAR. 

IREAO DR WRITE FLAG 
ICPU·S DATA 
lEND ADDRESS (HANDSHAKE MOCE) 
ISTART ADORESS (HANDSHAKE MODE) 

Page 2 

, , 
I 



**System.operation** 

~IRECT READING AND ~RITING OF ACP (Remember to cheek SR) Page .3 

OIR:-
BEGIN 
HLDAaO NEXT 
eso NEXT 
DeCODe RW a) 

BEGIN 
0:- BEGIN 

IOW=O NEXT 
liTO NEXT 
IOW:I 
END, 

1:- BEGIN 
IOR=O NEXT 
WTO NEXT 
lOR-I NEXT 
DV=O 
END 

END NEXT 
eS=l 
END, 

ICA) (---) 0 

I DIRECT ""ODE 
ICALCULATE CS() FROM AOORESS 

IWRITE TO ACP (OIR) 

IWAll FOR EXT PReC. TO LATCH 0 

IREAD (OIR) 

ISTORE DATA BUS INTO (ADOM) 



HANDSHAKE READING AND WRITING (REMEMBER TO CHECK SR) 

llANO:· 
BEGIN 
A=AOCS NEXT 
REPEH 

END, 

BEGIN 
IF A EQL ADDE => TC=1 NEXT 
HLDA"l NEXT 
eso NEXT 
DECODE RW => 

BEGIN 
0:: BEGIN 

WAIT (OR~W) NEXT 
D=RA~CAl NEXT 
DACKW=O NEXT 
IOW=O NEXT 
WT() NEXT 
IOW=1 NEXT 
CAeKW=l 
END, 

1:- BEGIN 
WAIT (DRQR) NEXT 
CACKR=O NEXT 
IOR=O NEXT 
WTO NEXT 
IOR:l NEXT 
OACKR"1 NEXT 
RAMCAJ=D 
END 

END NEXT 
TC"O NEXT 
A=A+l NEXT 
IF (A GTR ADCE) -> LEAVE HAND 
eND 

!SIMULATE DECODE lOGIC 

cs<>:-
BEGIN 
DECODE A ... > 

BEGIN 

END, 

"0001 := CS=O, 
OTHER~ISE:= CS=1 
END 

!(STACK) (-) (RA~CAODS •• AOOEJ) 

!SIGNAl LAST BYTe 
tHANDSHAKE MODE 
!(CS IS INEFFECTIVE IiGWEVER) 

!WRITE (HAND) 
!WAIl FOR ACP READY 
!NEXl BYTE OF DATA ON DATA BUS 

tREAD (HAND) 

!STORE PROCESSED DATA 

!INCREMENT DMA ADDRESS 
!FINISHEO BLOCK TRANSFER 

!SELECl CHIP 



Ext.~nal op.~ation 

PROC,=SS EXT:: 
SEGIN 
REPEAT 

BEGIN 
IF RST OR CRCS) a) RESETC)' NEXT 
DECODE HLOA =) 

BEGIN 
0:= BEGIN 

IF NOT CS =) 
BEGIN 
DeCODE lOR i lOW =) 

BEGIN 

END 
END, 

'10:-= 
BEGIN 
OECOOE A(I:0) =) 

BEGIN 
'00:. CR-O, 
'01:= BEGIN 

S8=1 NEXT 
PUSHO 
END, 

'11:= 8EGIN 
58=1 NEXT 
PUSHO NEXT 
SF .. 1 ; 
DRQW=O 
END 

END NEXT 
WAIT CIOW) 
END, 

'01: " 
8EGIN 
DECODE A(1:0) =) 

BEGIN 
'00:" D-SR, 
'01:-= POP(), 
'11:= BEGIN 

POPO NEXT 
SB=O ; SF=O NEXT 
DRCR-O 
END 

END NEXT 
WAIT (lOR) 
END, 

OTHERWISE:: NO.OPC) 
END 

Page S 

IDIRECT /olODE 
IIF CHIP SELECTE~ 

I WRITE 

IDECDDE ACD. BUS 

ILDAD CR 

ITAKE STACK 
ILOAO STACK 

ITAKE STACK 

lEND OF TRANSFER 

lSIMULATE LATCH 

JREAD 

I SIMULATE LATCH 



External operation (continuld) 

1:- BEGIN 

END 
END, 

IF CACKW OR OACKR =) 

.BEGIN 
CECODE lOR i lOW =) 

BEGIN 

END 
END 

END 

·10:= BEGIN 
SB=l NEXT 
PUSHO NEXT 
IF TC =) BEGIN 

SF-1 ; 
ORQW=O 
END NEXT 

WAIT (lOW) 
END, 

·01:= BEGIN 
POPO NEXT 
IF TC =) BEGIN 

SB=O ; SF=O NEXT 
DRQRaD 
END NEXT 

WAIT (lOR) 
END, 

OTHERWISE:. NO.Ope) 
END 

IHANOSHAKE MODE. 

II/RITE 

IREAD 



IInternal operation Page 7 

PReCESS INT:
BEGIN 
R EPE AT 

BEGIN 
DECODE Me ; SF ; OF ; DRQR .) 

BEGIN 
·0111:= BEGIN 

·'000:· 
OTHERWISE:

END 
END 

END, 

DECODE CR =) 

BEGIN 
·01:= BEGIN 

MB=1 NEXT 
MEUe> 
END, 

"02:= (EP=STCOJ.STCIJ), 
"04:z (HR=STCOJ;STC1l), 
·08:= (KR=STCOliSTC1l), 
OTHERWISE:- NO.Ope) 
END NEXT 

SB=SF=O 
END, . 
BEGIN 
IF NOT SB .) 

BEGIN 
SB=1 NEXT 
CRQW=O NEXT 
STeO] ~ ST[lJ ,. ~R NEXT 
DW=O;OF=O 
DRQR=l 
END 

END, 
CReW'"I, 
NO.DPO 

ISTACK--)INTERNAl 

ISTACK--)MEU 
IMEU REACY FOR USE 
ISTART EXPONENTIATION 

IS TACK-->E REG 
IS TACK--> I'R fG 
ISTACK--)KREG 

IOUT.REG.-->STACK 

I STACK FREE 



IMAGING SERVICES NORTH 
Boston Spa, Wetherby 

West Yorkshire, LS23 7BQ 

www.bl.uk 

PAGE MISSING IN 

ORIGINAL 



I 
**RESET .CYCLEU 

R:SET:-, 
BEGIN 
OACKW a OACKR=CS=IOW=IOR=l 
TC=HlDhO NEXT 
SR=-SO ; 
CR=O NEXT 
EXT() ; 
INT() NEXT 
STOPO 
EN 0, 

**STACK.OPERATIONS** 

POP:: 
BEGIN 
DRQI/=O NEXT 
O=STClJ NEXT 
STC1J=SHOJ 
END, 

PUSH:" 
BEGIN 
DRQllaO NEXT 
ST[lJaSTeOl NEXT 
STCOl-D 
END, 

**DELAY.SIMULATION** 

'liT:: 
BEGIN 
P=l NEXT 
REPEAT 

END, 

WTl: z 
BEGIN 
Q=1 NEXT 
REPEAT 

END, 

BEGIN 
P=P+l NEXT 
IF P(6) =) LEAVE liT 
ENO 

BEGIN 
Q=O+1 NEXT 
IF Q(4) =) LEAVE IITI 
END 

Pa!:e 9 . 

J RESET COMPLETE 

ISTART ACp·S EXTERNAL PROCESS 
ISTART INTERNAL PROCESS 

fOELAY BY 2A1 OPS. 

IDELAY BY 2A1 OPS. 



I 
UPROGRAMMING** 

RUN:= 
BEGIN 
RAMCSJ iii 
RAMCn is) 

RAMC9J iii 
RAMCl1J iil 
OV=D=Z ; 
A2=4 ; 
RW=O tiEXT 
KEYO NEXT 
TRANC) 
END, 

RAMC4J ="OOOZ 
RAMC6J ="OOOB 
RAMC8J ="OCDA 
RAMCI0J""0003 

KEY:-
BEGIN 
REPEAT 

END, 

BEGIN 
A=1 NEXT 
OIRO NEXT 
ACDS=AZ ; ADCE=AZ+l NEXT 
WAIT (NOT SS) NEXT 
HAND() NEXT 
A2=A2+Z ; C=DV=CV~Z NEXT 
IF 0 EQL 16 =) LEAVE KEY 
END 

·TRAN:-

ENO, 

BEGIN 
A-I ; 
C=l NEXT 
DIRO NEXT 
REPEAT 

END, 

eeGIN 
R~'"O NEXT 
AC05=10 ; AODE:ll NEXT 
"'ANO() NEXT 
Rk=l NEXT 
HAND() 
ErlO 

Pa~el0 

IEXPCNENT 
I~OOULUS 
ICONSTANT 
10ATA 

IKEY DESTINATION 
IINIT. VAL. 
IWRITE TO ACP 
ILOAO KEYS 
!TRANSFER DAlA 

IWRITE TO ACP'S CR 
ILOAC KEY DESTINATION 
ISOliRCE (iF KEY 
ISTACK FREE? 
ILOAD KEY 
INEXT KEY SOURCE 
IFINISHED ? 
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