THE UNIVERSITY OF HULL

PERTURBATION AND NON-PERTURBATION NUMERICAL

CALCULATIONS TO COMPUTE ENERGY EIGENVALUES

FOR THE SCHRÖDINGER EQUATION WITH

VARIOUS TYPES OF POTENTIAL

BEING A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE UNIVERSITY OF HULL

BY

MOHAMMED.R.M.WITWIT, B.SC., AL-MUSTANSIRIYAH, BAGHDAD-IRAQ

NOVMBER, 1989

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my supervisor Dr J.P.Killingbeck for his ideas, comments, advice and helpful conversations during the accomplishment of this work.

I would like to thank the Iraq Government (Ministry of Higher Education and Scientific Research) for the award of a scholarship.

ABSTRACT

The present work is concerned with methods of finding energy eigenvalues of the one-particle Schrödinger the equation for various model potentials in one, two, three and N-dimensional space. One major theme of this thesis is the study of divergent Rayleigh-Schrödinger perturbation series which are encountered in non-relativistic quantum mechanics and on the behaviour of the series coefficients E(n) in the energy expansion $E(\lambda)=E(0)+\sum E(n)\lambda^n$. Several perturbative techniques are used. Hypervirial and Hellmann-Feynman theorems with renormalised constants are used to obtain perturbation series for large numbers of potentials. Padé approximant methods are applied to various problems and also an inner product method with a renormalised constant is used to calculate energy eigenvalues with very high accuracy. The non-perturbative methods which are used to calculate energy eigenvalues include finite difference and power series methods. Expectation values are determined by an approach based on eigenvalue calculations, without the explicit use of wave functions. The first chapter provides a glance back into history and a preview of the problems and ideas to be investigated. Chapter two deals with one dimensional problems, including the calculation of the energy eigenvalues for quasi-bound states for some types of perturbation (λx^{2n+1}) . Chapter three is concerned with two, three and N-dimensional problems. Chapter four deals with non-polynomial potentials in one and three dimensions. The final chapter is devoted to a variety of eigenvalue problems. Most of the energy eigenvalues are computed by more than one

method with double precision accuracy, and the agreement between the results serves to illustrate the accuracy of the methods.

-iv-

CONTENTS

CHAPTER ONE

Page

1.INTE	RODUCTION	
1.1	Introductory remarks	1
1.2	Summary of selected previous and present work for	1
	chapter two	
1.3	Summary of selected previous and present work for	4
	chapter three	
1.4	Summary of selected previous and present work for	5
	chapter four	
1.5	Summary of selected previous and present work for	7
	chapter five	
	CHAPTER TWO	
2.ONE-	-DIMENSIONAL MODEL PROBLEMS	
2.1	Numerical calculation for Hamiltonian $H=P^2+\mu x^2+\lambda x^{2N}$	14
	(2N=4,6,820)	
2.1.1	Introduction	14
2.1.2	Renormalised series to calculate energy	15
	eigenvalues for (2N=4,6,8)	
2.1.3	Finite-difference eigenvalue calculations	18
2.1.4	Power series eigenvalue calculations	2 2
2.1.5	Results and discussion	23
2.2	Numerical calculation for Quasi-bound states	3 3
2.2.1	Introduction	3 3
2.2.2	Renormalised series method to calculate energy	33
	eigenvalues for λx^{2N+1} (2N=2,4) perturbation	

2.2.3	Energy levels for negative quartic oscillators	35
2.2.4	Results and discussion	36
2.3	Energy levels of double-Well anharmonic oscillators	43
2.3.1	Introduction	43
2.3.2	Renormalised series for double well potentials	44
2.3.3	Results and discussion	46
2.4	Expectation value calculations $\langle x^{2N} \rangle$	59
2.4.1	Introduction	59
2.4.2	Results and discussion	6 0
	CHAPTER THREE	
3. <u>TWO</u>	, THREE AND (N=4,5,6) DIMENSIONAL PROBLEMS	69
3.1	Introduction	69
3.2	Two dimensional problems	70
3.2.1	Review of the two dimensional oscillator problem	70
3.2.2	The recurrence relation for the inner product	72
3.2.3	The recurrence relation for the renormalised	74
	series approach	
3.2.4	The power series method	76
3.2.5	Results and discussion	77
3.3	Three and N dimensional problems	88
3.3.1	Introduction	8 8
3.3.2	Renormalised series to calculate energy	89
	eigenvalues for $H=P^{2}+\mu r^{2}+\ell(\ell+1)r^{-2}+\lambda r^{2N}$ (2N=4,6,8)	
3.3.3	The power series approach	90
3.3.4	N dimensional calculations	91
3.3.5	Results and discussion	92

Page

CHAPTER FOUR

Page

4. NON-POLYNOMIAL POTENTIALS IN ONE AND THREE DIMENSIONS

4.1	Introduction	106
4.2	Introductory remarks concerning the potential	108
	$x^2 + \lambda x^{2N} / (1 + g x^2)$	
4.3	Hypervirial relations for the potential	110
	$x^2 + \lambda x^2 / (1 + g x^2)$	
4.4	Power series method calculation of the energy	112
	eigenvalues $x^2 + \lambda x^2 / (1 + g x^2)$	
4.5	Finite difference eigenvalue calculations	114
4.6	The Padé approximant calculation of energy	116
	eigenvalues	
4.7	Hypervirial relations for the potential given by	118
	$\frac{1}{2}x^2 \neq gx^{2M}/(1+g\alpha x^2) (2M=,4,6)$	
4.8	Three dimensional calculation for the potential	122
	$r^2 + \lambda r^2 / (1 + gr^2)$	
4.9	Three dimensional calculation for the potential	125
	$\frac{1}{2}r^2 \mp gr^4 / (1 + g\alpha r^2)$	
4.10	Results and discussion	126
	CHAPTER FIVE	
5. <u>soi</u>	ME DIFFERENT PROBLEMS	
5.1	Introduction	153
5.2	Quadratic Zeeman effect	154
5.2.1	Introduction	154
5.2.2	The renormalised series method to compute the	164
	initial energy eigenvalues	
5.2.3	Results and discussion	166
5.3	Hydrogen atom with a Yukawa potential	172

		Page
5.4	The K-and L-shell binding energies of atoms	176
5.5	The energy eigenvalues for the Gaussian potential	181
5.6	Eigenvalues of the hydrogen atom	185
5.6.1	Power series approach	185
5.6.2	Renormalised series approach	187
5.6.3	Finite difference approach	188
5.6.4	Results and discussion	190
5.7	Polynomial perturbation of a hydrogen atom	193
5.7.1	Introduction	193
5.7.2	The renormalised series approach	194
5.7.3	Results and discussion	196
5.8	The exponential cosine screened Coulomd ECSC	199
	potential	
5.9	Hulthen potential	203

- 5.10 Bigenvalue calculations for some potentials 209
- 5.10.1 Hypervirial method to calculate energy eigenvalues 209 1

for
$$H=P^2+x^2-2Exp\left(-2\lambda x^2\right)\left[1+Exp\left(-2\lambda x^2\right)\right]^2$$

5.10.2 Hypervirial method to calculate energy eigenvalues 210

for
$$H=P^2+r^2+\ell(\ell+1)r^{-2}-2Exp\left(-2\lambda r^2\right)\left[1+Exp\left(-2\lambda r^2\right)\right]^{-1}$$

5.10.3	Results and discussion	211
	Conclusion	215
	References	219

-vii-

-viii-

LIST OF TABLES

TABL	<u>E</u> <u>CONTENT</u>	PAGE
2.1	Eigenvalues of $H=P^2+x^2+\lambda x^4$, by using renormalised	26
	series and power series methods	
2.2	Eigenvalues of $H=P^2+\mu x^2+\lambda x^{2N}$ (2N=6,8,18,20; $\mu=0,1$),	27
	by using finite difference and power series methods	
2.3	Eigenvalues of $H=P^2+x^2+\lambda x^{2N}$ (2N=4,6,8), by using	31
	renormalised series and power series methods	
2.4	Eigenvalues of $H=P^2+x^2+\lambda x^{2N}$, (2N=6,8) by using	32
	renormalised series method	
2.5	Eigenvalues of $H=P^2+x^2+\lambda x^3$, by using renormalised	39
	series method	
2.6	Eigenvalues of $H=P^2+x^2+\lambda x^5$, by using Padé	41
	approximants method	
2.7	Eigenvalues of $H=P^2+x^2-\lambda x^4$, by using renormalised	42
	series method	
2.8	Eigenvalues of $H=P^2-Z^2x^2+x^4$, by using finite	49
	difference and power series methods	
2.9	Eigenvalues of $H=P^2-Z^2x^2+x^4$, by using renormalised	50
	series and finite difference methods	
2.10	Eigenvalues of $H=P^2-Z^2x^2+x^{2N}$, (2N=6,8,10,12) by	51
	using finite difference and power series methods	
2.11	Eigenvaluesof $H=P^2-Z^2x^2+x^{2N}$, (2N=4,8,.16,18), by	53
	using renormalised series method	
2.12	Eigenvalues of $H=P^2-10^6x^2+x^{2N}$, (2N=4,8,28,30),	55
	by using renormalised series method	
2.13	Eigenvalues of $H=P^2-Zx^2+x^4$, by using renormalised	56
	series method	

CONTENT

-x-

- 2.14 Calculation for energy ($E_{A} = E_{A}$) and expectation 63 value $\langle x^2 \rangle$ for potential V(x)=x²+ λx^4 , by using renormalised series and power series methods
- 2.15 Calculation for energy $(E_k E)$ and expectation 65 value $\langle x^4 \rangle$ for the potential $V(x) = x^2 + \lambda x^4$, by using renormalised series and power series methods
- 2.16 Calculation for energy and expectation values for 67 potential $V(x)=x^2+\lambda x^4$, by using renormalised series and power series methods
- 3.1 **Eigenvalues** of $H = \frac{1}{2} \left[p_x^2 + p_y^2 \right] + \frac{1}{2} \left[x^2 + y^2 \right]$ 80 $+\lambda \left[a_{11}x^4+2a_{12}x^2y^2+a_{22}y^4\right]$, by using renormalised series, power series and inner product methods
- Eigenvalues of $H = \frac{1}{2} \left[p_x^2 + p_y^2 \right] + \frac{1}{2} \left[x^2 + y^2 \right] + \lambda x^2 y^2$, by using 84 3.2 inner product method
- 3.3 **Bigenvalues** of $H = \frac{1}{2} \left[p_x^2 + p_y^2 \right] + \frac{1}{2} \left[x^2 + y^2 \right]$ 86 $+\lambda \left[a_{11}x^4+2a_{12}x^2y^2+a_{22}y^4\right]$, by using inner product method
- Eigenvalues for $V(r) = \left[m^2 \frac{1}{4}\right]r^{-2} 2r^4$, by using 3.4 87 renormalised series and power series methods
- Eigenvalues of $H=P^2+r^2+\ell(\ell+1)r^{-2}+\lambda r^4$, by using 3.5 95 renormalised series method
- 3.6 Bigenvalues of $H=P^2+r^2+\ell(\ell+1)r^{-2}+\lambda r^4$, by using 102 renormalised series and power series methods

TABLE

PAGE

TABLE

CONTENT

- 3.7 Eigenvalues of $H=P^2+r^2+\ell(\ell+1)r^{-2}+\lambda r^{2N}$ (2N=6,8) 103 at $\lambda=0.1$ by using renormalised series and power series methods
- 3.8 Eigenvalues of $V(r)=N^{-1}r^4$ and $V(r)=Nr^4$, by using 104 renormalised series and power series methods
- 3.9 Eigenvalues of $H=P^2+r^2+\frac{1}{4}\left(N+2\ell-3\right)\left(N+2\ell-1\right)r^{-2}+\lambda r^4$, 105 by using renormalised series and power series methods
- 4.1 Eigenvalues of $H=P^2+x^2+\lambda x^2/(1+gx^2)$, by using finite 133 difference and power series methods
- 4.2 Eigenvalues of $H=P^2+x^2+\lambda x^2/(1+gx^2)$, by using 134 Hypervirial and power series methods
- 4.3 Eigenvalues of $H=P^2+x^2+\lambda x^2/(1+gx^2)$, by using 135 Hypervirial and Padé approximants methods
- 4.4 Eigenvalues of $H=P^2+x^2+\lambda x^2/(1+gx^2)$, by using Padé 136 approximants method
- 4.5 Eigenvalues of $H=P^2+x^2+\lambda x^{2N}/(1+gx^2)$ (2N=2,4,6... 137 18,20) by using finite difference method
- 4.6 Eigenvalues of $H=P^2+x^2+\lambda x^{2N}/(1+gx^2)$ (2N=2,4,6... 138 18,20) by using finite difference method
- 4.7 Eigenvalues of $H = \frac{1}{2}P^2 + \frac{1}{2}x^2 \pm gx^4 / (1 + g\alpha x^2)$, by using 139 finite difference method
- 4.8 Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}x^2+gx^4/(1+g\alpha x^2)$, by using 140 Hypervirial method
- 4.9 Eigenvalues of $H = \frac{1}{2}P^2 + \frac{1}{2}x^2 + gx^4 / (1 + g\alpha x^2)$, by using 141 Padé approximants method
- 4.10 Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}x^2-gx^4/(1+g\alpha x^2)$, by using 142 Hypervirial method

PAGE

Table	CONTENT	PAGE
4.11	Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}x^2-gx^4/(1+g\alpha x^2)$, by using	143
	Hypervirial method	
4.12	Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}x^2-gx^4/(1+g\alpha x^2)$, by using Padé	144
	approximants method	
4.13	Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}x^2-gx^6/(1+g\alpha x^2)$, by using	145
	Hypervirial method	
4.14	Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}x^2+gx^6/(1+g\alpha x^2)$, by using	146
	Hypervirial method	
4.15	Eigenvalues of $H=P^2+r^2+\lambda r^2/(1+gr^2)$, by using	147
	Hypervirial method and power series method	
4.16	Eigenvalues of $H=P^2+r^2+\lambda r^2/(1+gr^2)$, by using Padé	148
	approximants method	
4.17	Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}r^2+gr^4/(1+g\alpha r^2)$, by using	149
	Hypervirial method	
4.18	Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}r^2+gr^4/(1+g\alpha r^2)$, by using	150
	Padé approximants method	
4.19	Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}r^2-gr^4/(1+g\alpha r^2)$, by using	151
	Hypervirial method	
4.20	Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}r^2-gr^4/(1+g\alpha r^2)$ by using	152
	Hypervirial method	
5.1	Some values of $\langle r^N \rangle$ N=1,2,3,4,5 at $\gamma=0.1$	168
5.2	Eigenvalues of $H = \frac{1}{2}P^2 - r^{-1} + \frac{1}{2}\gamma \ell_z + \frac{\gamma}{8} \left[x^2 + y^2\right]$ at $\gamma = 0.1$	168
	by using renormalised series method	
5.3	Eigenvalues of $H = \frac{1}{2}P^2 - r^{-1} + \frac{1}{2}\gamma\ell_z + \frac{\gamma}{\theta}^2 \left[x^2 + y^2\right]$	169
	at $\gamma=0.1$, by using renormalised series method	
5.4	Eigenvalues of $H = \frac{1}{2}P^2 - r^{-1} + \frac{1}{2}\gamma \ell_z + \frac{\gamma}{\theta}^2 \left[x^2 + y^2\right]$	169
	at $\gamma=0.1$, by using renormalised series method	

-xii-

-xiii-

Table

CONTENT

- 5.5 Eigenvalues of $H=\frac{1}{2}P^2-r^{-1}+\frac{1}{2}\gamma\ell_z+\frac{\gamma}{8}\left[x^2+y^2\right]$ at 170 0.005< γ <0.0.01 by using renormalised series method
- 5.6 Eigenvalues of $H=\frac{1}{2}P^2-\frac{1}{2}\ell(\ell+1)r^{-2}-r^{-1}e^{-\lambda r}$, by using 175 renormalised series method
- 5.7 Eigenvalues of $H=\frac{1}{2}P^2 \frac{1}{2}\ell(\ell+1)r^{-2} 2r^{-1}e^{-\lambda r}$, by using 179 renormalised series method
- 5.8 Eigenvalues of $H=\frac{1}{2}P^2 \frac{1}{2}\ell(\ell+1)r^{-2} Zr^{-1}e^{-\lambda r}$, by using 180 renormalised series method
- 5.9 Eigenvalues of $H=P^2-\ell(\ell+1)r^{-2}-Ae^{-\lambda r^2}$, by using 184 renormalised series method
- 5.10 Eigenvalues of $H=\frac{1}{2}P^2-r^{-1}+\frac{1}{2}\ell(\ell+1)r^{-2}+\lambda r$, by using 192 renormalised series, power series and finite difference methods
- 5.11 Eigenvalues of $H=\frac{1}{2}P^2-r^{-1}+2\lambda r+2\lambda^2 r^2$, by using 198 renormalised series method
- 5.12 Eigenvalues of $H=\frac{1}{2}P^2-r^{-1}+2\lambda r+2\lambda^2 r^2$, by using 198 finite difference method
- 5.13 Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}\ell(\ell+1)r^{-2}-r^{-1}e^{-\lambda r} \cos(\lambda r)$, 202 by using renormalised series method
- 5.14 Eigenvalues of $H = \frac{1}{2}P^2 + \frac{1}{2}\ell(\ell+1)r^{-2} \lambda e^{-\lambda r} \left[1 e^{-\lambda r}\right]^{-1}$ 207 by using renormalised series method
- 5.15 Eigenvalues of $H=P^2+x^2-2e^{-2\lambda r^2}\left[1+e^{2\lambda r^2}\right]^{-1}$, by using 213

renormalised series and Padé approximants methods

5.16 Eigenvalues of
$$H=P^2+r^2+\ell(\ell+1)r^{-2}-2e^{-2\lambda r^2}\left[1+e^{-2\lambda r^2}\right]^{-1}$$
 214

by using renormalised series and Padé approximants methods

CHAPTER ONE Introduction

1.1 Introductory remarks

The aim of this work is to use numerical techniques to compute the energy eigenvalues for one-particle Schrödinger equations in one, two, three and $(N=1,2,3,4,\ldots,1000)$ dimensions, for a large number of potentials with different shall later. We see face we convergence forms. 88 difficulties in dealing with perturbation methods. However, there are an extensive range of techniques in the mathematical literature to deal with divergence problem e.g renormalised series, Padé approximants and the Aitken procedure. We wish to point out that we overcome the convergence problem, to ensure that our results are correct. by using the renormalised constant (K) which is given in the review of Killingbeck [12,1980;14,1982]. The renormalization constant (K) plays an important role in the convergence aspects of the calculations which are investigated in this work. Also, Padé approximants and the Aitken procedure have been used to calculate the energy eigenvalues for some problems. The results are compared with those produced by different methods which can be used to calculate energies for the same perturbed potentials.

1.2 <u>Summary of selected previous and present work for chapter</u> two

Bender and Wu [1,1969] have calculated 75 terms of the ground state energy perturbation series for the 2N=4 case of the anharmonic oscillator defined by the Hamiltonian

$$H=P^{2}+\mu x^{2}+\lambda x^{2N} \qquad (2N=4,6,8,10,10...18,20 ; \mu=0,1) \qquad (1.1)$$

However, Simon [2,1970] has studied the analytic properties of the energy series for (2N=4) and its Padé approximants. Biswas, et. al. [3,1973] have calculated the ground state and the excited state energies for power (2N=4,6,8) by using a non-perturbative method (Hill determinants). Banerjee [4,1978] calculated energy levels for the (2N=4,6,8) cases, for high state number (0≤n≤1000). Also J.E. Drummond [5,1981] used 25 terms of the perturbation series to calculate the first five energy levels. G.Schiffrer and D. Stanzial [7,1985] treat the Schrödinger equation to calculate energy eigenvalues using a gradient method, for perturbation power index (2N=6,8,10,12); they give results with high accuracy (more than 20-digits). Killingbeck [8,9,10,11,12,13,14,15,16] presented a number of works using many perturbative and non-perturbative numerical methods which give results of very high accuracy. In chapter two, the hypervirial theorem and Hellmann-Feynman theorem are used to obtain energy eigenvalues and expectation values for the harmonic oscillator with λx^{2N} perturbing potential. We have also used non-perturbative methods, the finite difference method and the power series method, to calculate the energy eigenvalues for perturbations with high N values (2N=4,6,8,10....18,20). Some typical results are listed in tables (2.1,2.2,2.3,2.4).

Also the problem of quasi-bound states is considered for the Hamiltonians given below:

$$H=P^{2}+x^{2}+\lambda x^{3}$$
(1.2)

$$H=P^{2}+x^{2}+\lambda x^{5}$$
(1.3)

$$H=P^{2}+x^{2}-\lambda x^{4}$$
(1.4)

J.E. Drummond [5,1981;6,1982] used 11 to 20 terms of the perturbation series to calculate the first six energy levels for (1.2) and (1.4). The energy eigenvalues have been calculated here by renormalised series for (1.2) and (1.4), and Padé approximants for (1.3). Our results are in good agreement with those given in ref [5,1981]; our results are reported in tables (2.5,2.6,2.7).

R.Balsa, et. al [17,1983] used a non-perturbative method which involves matrices to calculate the energy eigenvalues for a double well Potential. R.M. Quick and H.G.Miller [18,1984] also computed the energy eigenvalues for a double well potential by a matrix method . In our case we investigate their double well potential with the Hamiltonian

$$H=P^{2}-Z^{2}x^{2}+x^{2N} \qquad (2N=4,6,8,10,12...26,28,30....) \qquad (1.5)$$

but for a wider range of the potential parameters and state numbers. The renormalised series work well in computing the eigenvalues even for high values of $(Z^2, 2N)$ and state number n. We also use power series and finite difference methods, and show how the accuracy in the calculated energy depends on the choice of the strip width h in the finite-difference method. It is shown how to get a projected energy eigenvalue by means of an extrapolation process in the quantity h^2 . Many of our results are not reported previously in the literature, so we made many checks. The results are shown in tables (2.8 to 2.13).

1.3 <u>Summary of selected previous and present work for chapter</u> three

Perturbation problems in two and three dimensions have been studied less often than one-dimensional problems. Hioe, et. al [19,1978] have studied the two dimensional problem:

$$H = -\frac{1}{2} \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right] + \mu \left[x^2 + y^2 \right] + \lambda \left[a_{11} x^4 + 2a_{12} x^2 y^2 + a_{22} y^4 \right]$$
(1.6)

They have calculated the energy eigenvalues by using matrix diagonalistation for different values of the perturbation parameters $(a_{11}^{}, a_{22}^{}, a_{12}^{}, \lambda)$, and different values of state numbers $(n_1=n_2=0,1,2,3)$. Nasit and Metin [20,1985] applied a characteristic function approach, and used Padé approximant methods to compute energy eigenvalues for different values of the potential parameters, comparing their results with those in ref [19,1978], J.Killingbeck and M.N.Jones [21,1986] used an inner product method to calculate the accurate energies six states $E_{0,0}, E_{1,1}, E_{0,2}, E_{2,0}, E_{1,3}, E_{3,1}$ and for three different values of (a_{11}, a_{22}, a_{12}) . The convergence of the perturbation series depends upon the choice of the value of a renormalised constant K. In the present work inner product, renormalised series and power series methods are applied to calculate the energy eigenvalues of a two dimension perturbed oscillator for various values of (a_{12}, a_{22}, a_{12}) , $(0.05 \le \lambda \le$ 5000) and state numbers $(n_1, n_2=0, 1, 2, 3)$.

For three and N dimensional problems Killingbeck [22,1985] used a Hill determinant method to calculate the energy eigenvalues for a perturbed oscillator for high values of angular momentum ℓ . The Hamiltonian used was

$$H(r) = -\nabla^{2} + \mu r^{2} + \ell(\ell+1) r^{-2} + \lambda r^{2M} \qquad (2M=4,6,8) \qquad (1.7)$$

Killingbeck also calculated the energy eigenvalues for s-states (ℓ =0) in (N=1,2,3,24,5,...320) dimensions using the Hamiltonian

$$H_{N}(\mathbf{r}) = -D^{2} + \mu \mathbf{r}^{2} + \frac{1}{4} \left[[N + 2\ell - 3] N + 2\ell - 1] \right] \mathbf{r}^{-2} + \lambda \mathbf{r}^{4}$$
(1.8)

The energy eigenvalues for (1.7) and (1.8) have been computed by us for power series and renormalised series methods. The energy eigenvalues for (1.7) and (1.8) obtained by these methods are in good agreement with each other, and with available results reported in the literature.

1.4 <u>Summary of selected previous and present work for chapter</u> four

Mitra [23,1978] calculated the ground states and first two excited states (2N=2) for the perturbed Hamiltonian:

$$H=P^{2}+x^{2}+\frac{\lambda x^{2N}}{(1+gx^{2})} \qquad (2N=2,4,6,8,10..18,20) \qquad (1.9)$$

He used the Ritz variational method in combination with the Givens-Householder algorithm for numerical computations. Galicia and Killingbeck [24,1979] give a simple numerical finite difference method to calculate the energy eigenvalues for the three lowest even parity states. Kaushal [25,1979] has obtained the asymptotic expansions for the eigenenergies and eigenfunctions of the wave function for the potential given by (1.9) by expanding the factor $1/(1+gx^2)$ as a power series in gx^2 . Bessis and Bessis [26,1980] have studied the

same problem by taking advantage of a two parameter (λ and g) scale transformation, and Hautot [27,1981] has used a Hill determinant method for the potential. Lai and Lin [28,1982] have applied the Hellmann-Feynman theorem and hypervirial theorem to obtain the perturbation series for the energy eigenvalues; they have employed the Padé approximant method to sum the energy series. Their results, however, require the asymptotic expansion of the factor $1/(1+gx^2)$ as a power series in gx^2 , which is valid for low values of $g \le 2$ only. On the other hand, V.Fack and Vanden Berghe [29,1985] used a difference method in finite combination with matrix diagonalisation for numerical computation, and transformed the Schrödinger equation into an algebraic eigenvalue problem involving special forms of matrix. They calculated the energy eigenvalues for various values of g and λ and strip width h and compared their results with those of [28,1982]. This problem has received great attention from us, and we used perturbative and non-perturbative methods to attack the problem. We determined the energy eigenvalues for various values of the state number (n), and over a wide range of values of λ , g and power index (2N=2,4,6,...18,20).

G.Auberson [30,1982], G.Auberson and Boissiere [31,1983] studied numerically and analytically the energy levels of a one dimensional oscillator:

$$H = \frac{1}{2}P^{2} + \frac{1}{2}x^{2} \pm \frac{gx^{2N}}{(1+g\alpha x^{2})}$$
 (2N=4,6) (1.10)

They used various methods to calculate the ground state

energy eigenvalues for different values of g and α , for the case 2N=4. We calculate in the present work energies for the ground state and many excited states, for different values of g and α and for (2N=4,6), using the renormalised series and finite difference methods. The results are compared in tables (4.7 to 4.14) On the other hand, it is interesting to point out that the one dimensional problems (1.9) and (1.10) can be extended to the three dimensional form

$$H = -\frac{d^{2}}{dr^{2}} + r^{2} + \ell(\ell+1)r^{-2} + \frac{\lambda r^{2}}{(1+gr^{2})}$$
(1.11)

$$H = -\frac{1}{2} \frac{d^2}{dr^2} + \frac{1}{2}r^2 + \frac{\ell}{2}(\ell+1)r^{-2} \pm \frac{gr^4}{(1+g\alpha r^2)}$$
(1.12)

The numerical results obtained for (1.11) and (1.12) by perturbative method agree with those obtained by a nonperturbative method and the results are listed in tables $(4.15, 4.2\circ)$. Our methods for the non-polynomial potential allow us to study the numerical behaviour of the energy levels for (2N=2, 4, 6...18, 20), and many λ , g and state number values, at the same time comparing the results with those for the ordinary anharmonic oscillator g=0, which has been studied in chapter two.

1.5 <u>Summary of selected previous and present work for chapter</u> five

Praddaude [32,1972] calculated the 14 lowest-energy levels of hydrogen atoms in a magnetic field, using the Hamiltonian

$$H = \frac{1}{2}P^{2} - r^{-1} + \frac{1}{2}\gamma \ell_{z} + \frac{1}{8}\gamma^{2} \left[x^{2} + y^{2}\right] \qquad (1.13)$$

assuming an appropriate expansion of the wave function in terms of Laguerre polynomials and solving the Schrödinger cylindrical coordinates in using a matrix equation variational method. The results of Praddaude are in good agreement with those of our calculation (described later) shown in table (5.2). The calculations of Gallas [34,1984] involve variational estimates of eigenvalues for first 13 states. Killingbeck [33,34] investigated the problem of the hydrogen quadratic Zeeman effect using several techniques (power series, renormalised series and finite difference methods) to calculate the energy eigenvalues and the expectation values $\langle r^N \rangle$ N=1,2,3 for different states. Killingbeck [36,1987] treated the hydrogen atom in a magnetic field by using simple basis functions, such that the Schrödinger eigenvalue equation is transformed into a recurrence relation, which gives accurate energy levels when solved by a new shooting-relaxation technique. In the present renormalised work we use series to calculate energy eigenvalues for 30 states in magnetic field strengths (0.005 $\leq \gamma \leq 0.01$), and energies and expectation values $\langle r^{N} \rangle$ in magnetic field strength $\gamma=0.1$ for 14 states. The renormalised series gives very good accuracy even for high excited states. The results are listed in tables (1.5 to 5.5).

In section (5.2) we investigated the problem of the Yukawa potential:

-8-

$$H = -\frac{1}{2}\nabla^{2} + \frac{\ell}{2}(\ell+1)r^{-2} + Zr^{-1}e^{-\lambda r}$$
(1.14)

M.Grant and C.S.Lai [37,1979] have applied the hypervirial relations with the Hellmann-Feynman theorem to study screened Coulomb potentials. They calculated (K,L,M) shell binding energies for different values of Z (2≤Z≤50), using power series in λ up to order λ^{20} , Lai [38,1984] studied the problem of the Yukawa potential by using the hypervirial-Padé scheme for various eigenstates for Z=1, and found that the [6,6] and [6,7] Padé approximants to the energy series can account for various energy eigenvalues to a very high accuracy. Edward. R. Vrscay [39,1986] developed a simple method to calculate to power series high order the energy Rayleigh-Schrödinger perturbation expansions for levels of a Yukawa-type screened coulomb potential. He produced results to very high accuracy (20-digits) for 1s,2s and 2p states. In the present work we attacked this problem by using renormalised series, and performed our calculation for many eigenstates. The renormalised series yields energy eigenvalues with excellent accuracy (more than 15-digits), the results being listed in tables (5.6,5.7,5.8).

Bessis, et. al [40,1982] have computed the bound state energies of the Gaussian potential.

$$H = -\frac{d^{2}}{dr^{2}} + \ell(\ell+1)r^{-2} - Ae^{-\lambda r^{2}}$$
(1.15)

using a perturbational and variational treatment on a conveniently chosen basis of transformed Jacobi functions.

They have calculated the energy eigenvalues for different values of the quantum numbers (ℓ, n) . C.S.Lai [41, 1983]calculated the bound state energies of the same potential for $(\ell, n=0)$ various eigenstates to 7) by using the Hypervirial-Padé scheme. Also Chatterjee [42,1985] has applied the method of 1/N expansion to obtain the bound state energy levels of a Gaussian potential. The method of 1/N expansion yields energy values which are in good agreement with those results which are available in the literature. In this work, we used the hypervirial method to calculate the energy eigenvalues for various bound states. We extended our calculation to high excited states $(0 \le l \le 12)$ and $(0 \le n \le 7)$, and our method achieved 20-digit accuracy. Such a high degree of precision has not been obtained before by any other method. The results are shown in tables (5.9).

Killingbeck [43,1977] attacked the problem of the perturbed hydrogen atom with Hamiltonian

$$H = -\frac{1}{2} \frac{d^2}{dr^2} + \frac{1}{2} \ell(\ell+1) r^{-2} - r^{-1} + \lambda r \qquad (1.16)$$

by using non-perturbative methods (finite difference methods) to calculate the energy eigenvalues. In a subsequent paper Killingbeck and Galicia [44,1980] used hypervirial relations together with the Hellmann-Feynman theorem to get the energy coefficients of the energy perturbation series. Lai and Lin [45,1981] calculated the energy eigenvalues of various eigenstates, by applying the hypervirial-Padé framework. Austin and Killingbeck [46,1982] calculated the energy eigenvalues with very high accuracy by using renormalised series. We calculated the energy eigenvalues for this problem by using power series, finite difference and renormalised series methods. The results produced by these methods are in good agreement with each other. The results are listed in table (5.10). The ground state of the s-wave Hamiltonian for a hydrogen atom with a polynomial perturbation

$$H = \frac{1}{2}P^{2} - r^{-1} + 2\lambda r + 2\lambda^{2}r^{2} \qquad (1.17)$$

has been studied by Killingbeck [47,1978;48,1980]. He pointed out that the system possesses an exact solution for the ground state energy and wavefunction for $\lambda > 0$ given by

$$E = -\frac{1}{2} + 3\lambda$$
 (1.18)

$$\Psi(\mathbf{r}) = e^{-(\mathbf{r}+\lambda \mathbf{r}^2)}$$
(1.19)

while for $\lambda < 0$ the potential has bound states but their energy differs from (1.18). R.P.Saxena and V.S.Varma [49,1982 ;50,1982] studied the same system and gave the exact solutions

$$B_{n} = -\frac{1}{2} + (2n+3) |\lambda| \qquad (1.20)$$

which hold only for special values of the parameter λ . Cohen and Herman [51,1982] listed results for (-0.2 $\leq\lambda\leq$ -20480) by using a variational modification of Rayleigh-Schrödinger perturbation theory. We used renormalised series and finite difference methods to calculate the eigenvalues for the Hamiltonian given by (1.17). Our results are in good agreement with those in the references mentioned above; the results are reported in tables (5.11,5.12).

The exponential cosine screened coulomb [ECSC] potential with Hamiltonian

$$H = \frac{1}{2}P^{2} + \frac{1}{2}\ell(\ell+1)r^{-2} - r^{-1}e^{-\lambda r} \cos(\lambda r) \qquad (1.21)$$

has been treated by several approximate methods. Aparna and Pirtam [52,1980] applied the generalized virial theorem and Hellmann-Feynman theorem to calculate perturbatively the levels without using a state energy perturbed bound wavefunction. C.S. Lai [53,1982] has calculated the energy eigenvalues of (1.21) for various eigenstates within the the hypervirial-Padé framework of scheme. We used renormalised series to calculate the energy eigenvalues for various states and different values of screening parameter. Our method yields 15-digits accuracy, and the results are given in table (5.13). C.S.Lai and W.Lin [54,1980] have applied the Padé approximant technique to perturbation series obtained through the use of hypervirial and Hellmann-Feynman theorems. They computed the energies of 2p, 3p, 4p, 4d and 4f states.

R.Dutt and U.Mukherji [55,1982] proposed a new approximation scheme to obtain analytic expressions for the bound-state energies and eigenfunctions for any arbitrary bound (ℓ,n) -state of the Hulthen potential.

$$H = \frac{1}{2}P^{2} + \frac{\ell}{2}(\ell+1)r^{-2} - \lambda \left[\frac{e^{-\lambda r}}{1 - e^{-\lambda r}}\right]$$
(1.22)

They compared their results with those given in ref

[22,1982]. We used the renormalised series to calculate the energy eigenvalues for (1.22) for various values of λ and for high excited states (2p to 8h). The renormalised series give high accuracy (15-digits).

Finally, we calculated the energy eigenvalues for potentials in (one and three dimension):

$$H = P^{2} + x^{2} - 2 \left[\frac{e^{-2\lambda x^{2}}}{1 + \tilde{e}^{2\lambda x^{2}}} \right]$$
(1.23)

H= P²+ r²+
$$\ell(\ell+1)r^{-2} - 2\left[\frac{e^{-2\lambda r^2}}{1+e^{2\lambda r^2}}\right]$$
 (1.24)

We used Padé approximant and the hypervirial method to compute the energy eigenvalues for different values of λ and excited states (n=0 to 5). The results are reported in tables (5.15,5.16).

CHAPTER TWO

ONE-DIMENSIONAL MODEL PROBLEMS

2.1 Numerical calculation for $H=P^2+\mu x^2+\lambda x^{2N}$

(2N=4,6,8,10..18,20)

2.1.1 Introduction

investigation of eigenvalues The has long been я fruitful and active field of research, and a variety of techniques have been employed to calculate energy eigenvalues. In many kinds of eigenvalue problem one wishes to improve the accuracy of results obtained by previous methods, so we have tried to obtain eigenvalues of high accuracy. For purpose of clarity, this chapter is divided sections. Section one is concerned with the into four eigenvalue problem defined by the Hamiltonian (2.1), section two is concerned with the eigenvalue problems defined by (2.42,2.43,2.44), section three is concerned with the double defined by (2.63) and section four is well potential concerned with the expectation value calculation. In section one we would like to discuss the eigenvalue problem of the general anharmonic oscillator, described in the one-dimensional case by the Hamiltonian:

$$H=P^{2}+\mu x^{2}+\lambda x^{2N} \qquad (2N=4,6,8,\ldots 18,20) \qquad (2.1)$$

The one-dimensional anharmonic oscillator has been studied intensively in the past by various authors using several powerful methods. The most studied system of this kind is the quartic anharmonic oscillator (2N=4). Bender and Wu [1,1969] have calculated 75 terms of the ground state energy series. Simon [2,1970] has studied the analytic properties of the

-14-

series and its Padé approximants. Biswas et. al [3,1973] have calculated energies of the ground state and the first seven excited states for 2N=4 as well as energies of the ground state and first excited state for N=3,4, for λ values between $(0.1 \le \lambda \le 100)$, using Hill determinants. Banerjee [4,1978] calculated energy levels for 2N=4,6,8 for $(10^{-5} \le \lambda \le 4 \times 10^4)$. Drummond [5,1981] used 25 terms of the perturbation series to calculate the first five energy levels. G.Schiffrer and D.Stanzial [7,1985] have reported excellent numerical results of energy calculations for the ground state and first excited state for 2N=6,8,10,12 and $(10^{-6} \le \lambda \le 10^{6})$ by using a gradient method. Killingbeck [8,9,10,11,12,13,14,15,16] presented several works using many perturbative and non-perturbative numerical methods which give results of high accuracy. We extended our calculated (λx^{2N}) . results to higher values of the index N 2N=14,16,18,20). In spite of the high value of 2N, our methods (non-perturbation methods) are still capable of handling this perturbation. We use three methods to calculate energy eigenvalues for the λx^{2N} perturbation.

2.1.2 <u>Renormalised series to calculate energy eigenvalues for</u> 2N=4,6,8

In order to find the eigenvalues E of the Schrödinger equation:

$$\left[-\frac{d^{2}}{dx^{2}}+\mu x^{2}+\lambda x^{2N}\right]\Psi(x)=E\Psi(x) \qquad JI:1 \quad (2N=4,6,8) \quad (2.2)$$

we shall use the hypervirial relations in calculating the perturbation energy series. These relations are given by Killingbeck [12,1982] as follows, for a potential ΣV_{x}^{n} ;

$$2E\left(N+1\right)\langle x^{N}\rangle = \sum V_{n}\left(2N+2+n\right)\langle x^{N+n}\rangle - \frac{N}{2}\left(N^{2}-1\right)\langle x^{N-2}\rangle \qquad (2.3)$$

This formula has an obvious use; if the energy E and a sufficient number of the $\langle x^N \rangle$ are known (analytically or numerically) then it allows computation of other $\langle x^N \rangle$ values. This formula also has the interesting property that it yields the Rayleigh-Schrödinger series for the eigenvalues and $\langle x^N \rangle$ values (as we will show later) without using any perturbed wave function. We should comment here that an application of the present method to a large variety of more complicated potentials will be studied in the forthcoming chapters. It is note worthy that although this approach is very attractive for the one dimensional problem, its application to a system of many dimensions has not yet been accomplished. We can write the potential appearing in equation (2.2) as:

$$V(x) = \mu x^{2} + \underline{\lambda}^{I} (x^{2N} - Kx^{2}) \qquad (2N=4, 6, 8) \qquad (2.4)$$

where

$$\mu = 1 + \underline{\lambda}^{\mathrm{I}} \mathrm{K} , \ \underline{\lambda} = \lambda^{\frac{1}{\mathrm{I}}} \qquad (\mathrm{I} = 1, 2, 3, 4) \qquad (2.5)$$

If we insert the series expansions given by:

$$\mathbf{E} = \sum_{\mathbf{J}} \mathbf{E}(\mathbf{J}) \lambda^{\mathbf{J}}$$
(2.6)

and

$$\langle \mathbf{x}^{\mathsf{M}} \rangle = \sum_{\mathsf{N}} \mathsf{A}(\mathsf{M},\mathsf{N})\lambda^{\mathsf{N}}$$
 (2.7)

into (2.3) and take into account the potentials coefficients

$$V_{2} = (\mu - \underline{\lambda}^{1} K)$$
 (2.8)

$$V_{2n+2} = \frac{\lambda^{I}}{2n+2}$$
 (n=1,2,3) (2.9)

we obtain the recurrence relation

$$\left(2N+2\right) \sum_{U}^{M} E(J)A(N,M-J) = \left(2N+44\right) \left[\mu A(N+2,M) - KA(N+2,M-1)\right] + \left[2N+2n+4\right]A(N+2n+2,M-1) - \frac{N}{2} \left[N^{2}-1\right]A(N-2,M) \quad (n=1,2,3) \quad (2.10)$$

We use the series expansions in equation (2.6) and (2.7) to obtain the relation between the energy series (E) and the coefficient series A(N,M) as given below.

$$E=E(0)+E(1)\lambda+E(2)\lambda^{2}+E(3)\lambda^{3}+..... (2.11)$$

$$\langle x^2 \rangle = A(2,0) + A(2,1) \lambda + A(2,2) \lambda^2 + \dots$$
 (2.12)

$$\langle x^{2n+2} \rangle = A(2n+2,0) + A(2n+2,1) \lambda + A(2n+2,2) \lambda^{2} + ... (n=1,2,3) (2.13)$$

Applying the Hellmann-Feynman theorem in the form

$$\frac{\partial \mathbf{E}}{\partial \lambda} = \langle \frac{\partial \mathbf{V}}{\partial \lambda} \rangle \qquad (2.14)$$

We obtain a recurrence relation of the form

$$(M+1)$$
 E (M+1) = IA (2n+2, M+1-I) - KA (2, M) (n=1, 2, 3) (2.15)

The Hellmann-Feynman theorem and Hypervirial theorem provide relationships between the energy E and the expectation values $\langle x^N \rangle$. It is clear now that from relations (2.10) and (2.15), we obtain the full set of A and E coefficients starting from the unperturbed energy.

$$E(0) = (2n+1) \sqrt{\mu} \qquad (n=0, 1, 2, ...) \qquad (2.16)$$

and the initial condition A(0,0)=1. The convergence properties of the resulting perturbation series are controlled by varying K.

The renormalised series work very well for the quartic perturbation (2N=4,I=1). The interesting point about this approach for (2N=6,8) calculations is that the accuracy varies with the power (I). We use this modified (variable I) technique to perform more accurate calculations. These calculations by the renormalised series technique become progressively more difficult as N increases; thus one must keep in mind that we can partly overcome this difficulty by introducing λ^{1} . The primary motivation of this idea is to improve the accuracy of our eigenvalues results, using a very extension of the original renormalised series simple technique. It is important to point out that the effect of varying K , the renormalised constant, is to allow us to obtain results of high accuracy. The best K values in this calculation have been obtained by numerical search, so our calculation reveals the importance of finding the best values of the renormalised constant. The convergence rate decreases remarkably when λ and 2N increase. Problems with computer overflow were avoided definition by using the $A(N.M) \rightarrow 2^{N}A(N,M)$. The renormalised technique has been used by Killingbeck for many eigenvalues problems, and has provided an excellent way to overcome divergence problems as well as to obtain eigenvalues with very high accuracy.

2.1.3 Finite-difference eigenvalue calculations

The finite-difference approach is a nonperturbative method capable of arbitrarily high accuracy. This method has been described by Killingbeck in reference [12,1982]. We will only mention the essential feature here; the reader

-18-

interested in details should consult that reference. The finite-difference method for calculating energy eigenvalues of the Schrödinger equation

$$\left[\frac{d^{2}}{dx^{2}} - V(x) + E\right] \Psi(x) = 0$$
 (2.17)

with the potential

$$V(x) = \mu x^2 + \lambda x^{2N}$$
 (2N=4,6,8...,20) (2.18)

produces results with high accuracy for a wide range of λ $(10^{-1} \le \lambda \le 5 \times 10^4)$. For large λ values it seems that the present method works quite well, whereas various other methods have some problems. Although the results displayed are restricted to even-parity states, the method can be used for odd-parity states. To treat equation (2.13) or any similar problem, we define the finite-difference quantity

$$\delta^{2} \Psi(\mathbf{x}) = \Psi(\mathbf{x} + \mathbf{h}) + \Psi(\mathbf{x} - \mathbf{h}) - 2\Psi(\mathbf{x})$$
 (2.19)

where h is the strip width for the numerical integration. It is well known that (2.19) can be expressed as series expansion of even powers, by using the Taylor expansion

$$\delta^{2}\Psi(\mathbf{x}) = h^{2}D^{2}\Psi(\mathbf{x}) + \frac{1}{12}h^{4}D^{4}\Psi(\mathbf{x}) + \dots$$
 (2.20)

Then we can combine (2.17) and (2.20) to give

$$h^{-2}\delta^{2}\Psi(x) = D^{2}\Psi(x) + \frac{1}{12}h^{2}D^{4}\Psi(x) \qquad (2.21)$$

$$= \left[\mathbf{V}(\mathbf{x}) - \mathbf{E} \right] \Psi(\mathbf{x}) + \mathbf{V}_{\mathbf{P}}$$
 (2.22)

where the perturbation V_P has a leading term of order h^2 . The most simple procedure is to ignore V_P as the first

approximation; then the equation (2.22) reduces to the form

 $\delta^{2}\Psi(\mathbf{x}) = \mathbf{h}^{2} \left[\mathbf{V}(\mathbf{x}) - \mathbf{E} \right] \Psi(\mathbf{x})$ (2.23)

We use two quantities R(x) and F(x) which are defined as follows

$$\Psi(\mathbf{x}+\mathbf{h}) = \Psi(\mathbf{x}) \mathbf{R}(\mathbf{x}) \tag{2.24}$$

$$\Psi(x+h) = \Psi(x) \left[1+h^2 F(x) \right]$$
 (2.25)

If we insert equations (2.24) and (2.25) in equation (2.23) the following equations are obtained

$$R(x) + \frac{1}{R(x-h)} = 2 + h^{2} \left[V(x) - E \right]$$
 (2.26)

$$F(x) - \frac{F(x-h)}{R(x-h)} = V(x) - E$$
 (2.27)

For even states we have

$$\Psi(-h) = \Psi(h)$$
 (2.28)

which leads to the starting conditions

$$R(0) = \frac{1}{R(-h)}$$
 (2.29)

$$\mathbf{F}(0) = \frac{1}{2} \left[\mathbf{V}(0) - \mathbf{E} \right]$$
 (2.30)

To apply equation (2.26) or (2.27), we need some initial value for R(x) or F(x) and can then calculate successive R(x) or F(x) values along the x-axis, with some test energy E. The wave function $\Psi(x)$ is calculated using equation (2.26) or equation (2.27) for two trial energies E_1 and E_2 . We suppose that $E_2 > E_1$, so that (Ψ_2) has its nodes earlier than (Ψ_1) . Then the calculation of the projected energy is given as

$$E_{p} = E_{1} + \frac{E_{2} - E_{1}}{(1 - \Psi_{2} / \Psi_{1})}$$
(2.31)

 E_p is actually a function of x; it is the interpolated energy which would have given $\Psi(x)=0$. As x increases, however, E_p settles down to a limiting value, provided that E_2-E_1 is not too large. This limiting energy corresponds to the boundary condition $\Psi(\infty)=0$. The true energy is related to the calculated energies for varying strip widths by a formula of type

$$E(h) = E_0 + h^2 E_2 + h^4 E_4 + \dots$$
 (2.32)

$$E(2h) = E_0 + 4h^2 E_2 + 16h^4 E_4 + - - - -$$
 (2.33)

$$E(4h) = E_0 + 16h^2 E_2 + 256h^4 E_4 + -----$$
 (2.34)

From equations (2.32,2.33,2.34), we can obtain the equation

$$E_{0} = \frac{1}{45} \left[64E(h) - 20E(2h) + E(4h) \right]$$
 (2.35)

Here E(h) is the energy calculated using strip width h and E_0 is the exact energy (for $h\rightarrow 0$). Now we turn back to equation (2.22) and ask what the first-order energy shift would be if a perturbing term $h^2D^4/12$ were added to a Hamiltonian. This shift would be the expectation value.

$$B_{1} = \frac{1}{12}h^{2} \int_{-\infty}^{+\infty} \Psi(x) D^{4} \Psi(x) dx \qquad (2.36)$$

The integral can easily be evaluated by parts to yield

$$E_1 = \frac{1}{12} h^2 \langle (E-V)^2 \rangle$$
 (2.37)

This shift E_1 could be produced by using the extra term

$$V_{P} = \frac{1}{12}h^{2} \left[V(x) - E \right]^{2}$$
 (2.38)

to simulate the more complicated term $h^2D^4/12$ 2.1.4 power series eigenvalue calculations

The power series approach has been used by Killingbeck for calculations on many types of eigenvalues problem. He has developed and modified this approach to give very high accuracy for eigenvalues, comparable to that of the finite difference method. The success of this approach allows us to calculate eigenvalues for high value of λ (0.1 $\leq\lambda\leq$ 50000) and (2N=4,6..18,20). We used the non-perturbative power series method another approach to calculate 88 the energy eigenvalues for the Schrödinger equation given by (2.17), which we earlier treated by perturbation theory. We take the wavefunction in the form

$$\Psi(\mathbf{x}) = \exp\left(-\beta \mathbf{x}^{2}\right) \sum_{0}^{\infty} \mathbf{A}(\mathbf{N}) \mathbf{x}^{\mathbf{N}}$$
(2.39)

If we insert equation (2.39) in equation (2.17) we obtain the following equation:

$$\left(N+1\right)\left(N+2\right)T(N+2) = \left[4\beta N+2\beta-E\right]T(N)x^{2} + \left[\mu-4\beta^{2}\right]T(N-2)x^{4}+\lambda T(N-2M)x^{2M+2} \quad (2M=4,6,..18,20) \quad (2.40)$$

In the above equations we use the notation

$$\sum_{0}^{\infty} T(N) = \sum_{0}^{\infty} A(N) x^{N}$$
 (2.41)

We can take the initial condition T(0)=1 for even states or T(1)=0 for odd states, with all lower T(N) sero. We can give

-22-

a clear physical picture for this method; we want the bound state wavefunction $\Psi(x, E)$ to become zero as x approach infinity (or sometimes for some finite x). We can describe the calculational method as follows: we pick out some value for x and take two trial energies E_1 and $E_2 = E_1 + H$; we take sufficient terms of the series (2.41) to get converged values for $\Psi(x, E_1)$ and $\Psi(x, E_2)$. Then by linear interpolation we estimate the E value E, which would have made $\Psi(x,E)$ zero. We then repeat using $E_1 = E_0$, $E_2 = E_0 + H$ with a small value of H. H is typically $\simeq 10^{-3}$. After a few repetitions we should get a close estimate of an eigenvalue, appropriate to the boundary condition $\Psi(x)=0$. The interpolated value depends on wavefunction ratio $\Psi(E+H)/\Psi(E)$. The number of terms of the series needed can be reduced by a factor of up to twenty by using this ratio directly instead of waiting for separate convergence of the $\Psi(E+H)$ and $\Psi(E)$ series. In this approach we have the convergence factor $exp(-\beta x^2)$. The choice of the β parameter helps to achieve or improve convergence. We consider the success of this approach as being related to its physical interpretation. We emphasize that the method gives us the freedom to work with any value of 2N and λ .

2.1.5 Results and discussion

The energy eigenvalues of the generalized anharmonic oscillator defined by the Hamiltonian (2.1) have been calculated for various values of λ , using three different methods; the renormalised series, finite difference and power series methods. Our results as obtained by these methods are compared with each other, the agreement between them being very good. In table (2.1) we list the energy eigenvalue for (2N=4) arising from the renormalised series and power series methods. It is clear from the listed results that the power series method is able to produce more accurate results than those from the renormalised series at high values of λ . Table (2.2) gives the values of the energies of the anharmonic oscillator (2N=6,8,..20), calculated by power series and finite difference methods for $(0.1 \le \lambda \le 50000)$ and $(\mu = 1, 0)$. We have computed ten eigenvalues in this range. From our results we observed the order of levels $E^4 \langle E^6 \langle E^8, \dots, E^{18} \langle E^{20} \rangle$ for small values of $(\lambda=0.1,1...,5)$, but for large values of $(\lambda = 10, 50, 5000)$, we observed the order reversed. The physical reason behind this is that the eigenvalues are non-analytic at each crossing points, as discussed by Simon [2,1970] and C.M.Bender [1,1969] and this has been proved by them. It seems from our eigenvalue results for $E^{2N}(\lambda)$ that the crossing occurs approximately at the same value ($\lambda \cong 5$) for various levels. As can be seen from these calculations, the accuracy of our results is around 16 significant digits. The energies quoted in table (2.2) agree to the number of digits given with those obtained by other calculations. We wish to stress that the finite difference method and power series very well method work for any value of the index (2N=4,6,..,20). These methods have obvious advantages over the renormalised series method, which can only handle the values (2N=4,6,8). The results for this approach are shown in table (2.3) and it is clear that the accuracy is decreased as 2N increases, although it is still very good in comparison with the results of Biswas et.al [3,1973]. In order to illustrate the effect of the use of the $\underline{\lambda}^{I}$ technique on the convergence rate we have calculated many eigenvalues for various $\underline{\lambda}^{I}$ (I=1,2,3,4), and the results have been listed in table (2.4). It is clear from our calculations that the accuracy is poor for 2N=6 at I=1 but at I=2,3,4, it is clearly better and we obtain 6 digits accuracy. For 2N=8 we find better accuracy at I=4, although we obtain only 4 digits. The confidence in the accuracy of the computed eigenvalues is derived from the following checks;

1. The agreement between the two computed eigenvalues by the two techniques which have been used is excellent, as is clear from our results which list in tables (2.1,2.2,2.3).

2. Two separate computations for (2N=4,6,..20) by using power series and finite difference methods with an increasing and decreasing (x,β) , yielded eigenvalues agreeing to 16 significant figures.

3. The agreement between some of our results and the results which have been given by G.Schiffner and Stanzial [7,1985], and Banerjee [4,1978] for (2N=6,8,10,12), to about 16th figures.

In conclusion, we remark that the present results are to our knowledge the best available so far in the literature; for 2N>12 we have not found numerical results in the literature. The method is able to deal with perturbations that other methods cannot handle due to numerical difficulties, for example the cases (2N=14,16,18,20). In the limit $2N\longrightarrow\infty$ the potential becomes a square well potential and our methods should allow this limit to be studied.

Library

Table (2.1). Energy eigenvalues of $H=P^2+x^2+\lambda x^4$, First line renormalised series calculation, Second line; power series calculation, with digits before the last digit omitted.

λ	E	N	K	E ₁	N	K
0.1	1.0652855095437176888 8	47	20	3.3068720131529135070 1	42	20
1.0	1.3923516415302 2918557	39		4.64881270421207 775364		9
10.	2.44917407211 183869183	40	4	8.59900345480 077726028	47	
100	4.999417545 51375878293	37	170	17.8301927159 952522387		200
λ	E ₂	N	K	E 3	N	K
0.1	5.74795926883356330 4 5 7	42	18	8.3526778257857547116 22	42	20
1.0	8.655049957759 93096881	5	10	13.15680389805 4 9875079	42	
10.	16.635921492 2413757783	50		25.806276215 5055640450	28	
100	34.873984262 1994777546	36	200	54.385291571 1603103269	34	200
ر ۲	E ₄	N	K	E 5	N	K
0.1	11.098595622633043011 1	38	20	13.969926197742799300 0	44	25
1.0	18.057557436303 3252895	49		23.29744145122 23189085	49	16
10.	35.885171222 2253873712	58		46.729080900 0817113006	59	10
100	75.8770040286 669724181		220	99.0328373 315407491228	22	200
Γλ	Е 6	רא	K	E ₇	N	K
0.1	16.954794686144151336 6	41	2 5	20.043863604188461232 4	42	25
1.0	28.83533845950 04248840	12	18	34.64084832 111 11332543	54	20
10.	58.241298739 9753240285	57	18	70.3510519392 234653309	57	10
100	123.64069762667 7816767	38	250	149.545657443 328822117	31	280

Table (2.2). Eigenvalues of the anharmonic oscillator $H=P^2+\mu x^2+\lambda x^{2N}$, First line, power series method; Second line, finite difference method, with digits before last digit omitted.

	(2N=6), μ=1		(2N=6),μ=0	β, Χ
^	(2N=0), μ=1	h h	(2μ=0), μ=0	h î
0.1	1.109087078465584	10, 12	0.643769728949398	10, 12
		0.004	8	0.004
1			1.144802453797053	
	2	0.004	3	0.004
5			1.711878954024485	-
	6	0.004		0.004
10			2.035778632149334	
50		0.004	4 3.044199096420710	0.004
50		0.004		15, 12 0.004
100			3.620183224948363	
100		.004		0.002
500			5.413436573224043	
		0.002		0.002
1000			6.437697289493980	
	1	0.0015	0	0.001
10000	11.47879804226454	15, 3	11.44802453797053	15, 3
		0.001		0.001
50000			17.11878954024485	
		0.001		0.0009
λ	(2N=8), μ=1		(2N=8) μ=0	β, Χ
<u> </u>		h	0.773440203813966	h
0.1		8, 5 0.0025		8,6 0.0025
1	1 /01010805662205	10 6	1.225820113800492	
1		0.002		0.002
5			1.691300370626301	
Ŭ	2	0.002		0.002
10			1.942793953544308	
		0.002		0.002
50		A		-
	2.806065089316286	15, 6	2.680530443812583	15, 6
	6	0.002	3	0.002
100	6 3.188654346492268	0.002 15, 6		0.002
100	6 3.188654346492268 8	0.002 15, 6 0.002	3 3.079120911326986 6	0.002 20,6 0.002
	6 3.188654346492268 8 4.328012380250563	0.002 15, 6 0.002 24, 6	3 3.079120911326986	0.002 20,6 0.002 20,6
100 500	6 3.188654346492268 8 4.328012380250563 3	0.002 15, 6 0.002 24, 6 0.002	3 3.079120911326986 6 4.248354452583329 9	0.002 20,6 0.002 20,6 0.002
100	6 3.188654346492268 8 4.328012380250563 3 4.949487440032743	0.002 15, 6 0.002 24, 6 0.002 20, 6	3 3.079120911326986 6 4.248354452583329 9 4.880077771126800	0.002 20, 6 0.002 20, 6 0.002 20, 6
100 500 1000	6 3.188654346492268 8 4.328012380250563 3 4.949487440032743 3	0.002 15, 6 0.002 24, 6 0.002 20, 6 0.002	3 3.079120911326986 6 4.248354452583329 9 4.880077771126800 0	0.002 20, 6 0.002 20, 6 0.002 20, 6 0.0015
100 500 1000	6 3.188654346492268 8 4.328012380250563 3 4.949487440032743 3 7.778272214311099	0.002 15, 6 0.002 24, 6 0.002 20, 6 0.002 25, 6	3 3.079120911326986 6 4.248354452583329 9 4.880077771126800 0 7.734402038139668	0.002 20,6 0.002 20,6 0.002 20,6 0.0015 30,6
100 500 1000 10000	6 3.188654346492268 8 4.328012380250563 3 4.949487440032743 3 7.778272214311099 9	0.002 15, 6 0.002 24, 6 0.002 20, 6 0.002 25, 6 0.0015	3 3.079120911326986 6 4.248354452583329 9 4.880077771126800 0 7.734402038139668 8	0.002 20,6 0.002 20,6 0.002 20,6 0.0015 30,6 0.0015
100 500 1000 10000	6 3.188654346492268 8 4.328012380250563 3 4.949487440032743 3 7.778272214311099 9 10.70319738012488	0.002 15, 6 0.002 24, 6 0.002 20, 6 0.002 25, 6 0.0015	3 3.079120911326986 6 4.248354452583329 9 4.880077771126800 0 7.734402038139668 8 10.67138390568737	0.002 20,6 0.002 20,6 0.002 20,6 0.0015 30,6 0.0015

Table (2.2 continued)

	(2N=10), μ=1	β,Χ	(2N=10), µ=0	β,Χ
		h		h
0.1			0.884891912218169	
		0.002		0.002
1			1.298843700678521	
5		0.002	1 1.698446584882680	0.002
5		20, 8		20, 8 0.002
10			1.906441832611472	
10		0.002		0.002
50			2.492978653386003	
		0.002		0.002
100	2.916442269358709	20, 6	2.798273925671195	20, 6
		0.002		0.002
500			3.659192241637428	-
		0.002		0.002
1000	-		4.107304418706113	
		0.002		0.002
10000		50, 6 0.001	6.028698417677723	
50000			3 7.883490702879206	0.001
50000		0.001		0.001
$\overline{\lambda}$	$(2N=12), \mu=1$		$(2N=12), \mu=0$	B . X
	·	h, "	(2η-12), μ=υ	р, л h
0.1	1.297825599507269	h 40, 6	0.981479602247295	h
0.1	1.297825599507269 9	h 40, 6 0.002	0.981479602247295 6	h 40,6 0.002
	1.297825599507269 9 1.597990499275997	h 40, 6 0.002 45, 6	0.981479602247295 6 1.363761485141757	h 40,6 0.002 45,6
0. 1 1	1.297825599507269 9 1.597990499275997 7	h 40, 6 0.002 45, 6 0.002	0.981479602247295 6 1.363761485141757 7	h 40, 6 0.002 45, 6 0.002
0.1	1.297825599507269 9 1.597990499275997 7 1.904581416085660	h 40, 6 0.002 45, 6 0.002 40, 5	0.981479602247295 6 1.363761485141757 7 1.716292397976640	h 40, 6 0.002 45, 6 0.002 40, 5
0. 1 1 5	1.297825599507269 9 1.597990499275997 7 1.904581416085660 0	h 40, 6 0.002 45, 6 0.002 40, 5 0.002	0.981479602247295 6 1.363761485141757 7 1.716292397976640 0	h 40, 6 0.002 45, 6 0.002 40, 5 0.002
0. 1 1	1.297825599507269 9 1.597990499275997 7 1.904581416085660 0 2.066095016976872	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5	0.981479602247295 6 1.363761485141757 7 1.716292397976640 0 1.894940439004090	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5
0.1 1 5 10	1.297825599507269 9 1.597990499275997 7 1.904581416085660 0 2.066095016976872 2	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002	0.981479602247295 6 1.363761485141757 7 1.716292397976640 0 1.894940439004090 0	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002
0. 1 1 5	1.297825599507269 9 1.597990499275997 7 1.904581416085660 0 2.066095016976872 2 2.521614348137108	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5	$\begin{array}{c} 0.981479602247295\\ & 6\\ 1.363761485141757\\ & 7\\ 1.716292397976640\\ & 0\\ 1.894940439004090\\ & 0\\ 2.384780554015410 \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5
0.1 1 5 10 50	1.297825599507269 9 1.597990499275997 7 1.904581416085660 0 2.066095016976872 2 2.521614348137108 8	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002	0.981479602247295 6 1.363761485141757 7 1.716292397976640 0 1.894940439004090 0 2.384780554015410 0	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002
0.1 1 5 10	1.297825599507269 9 1.597990499275997 7 1.904581416085660 0 2.066095016976872 2 2.521614348137108 8 2.757179800598476	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002	$\begin{array}{c} 0.981479602247295\\ 6\\ 1.363761485141757\\ 7\\ 1.716292397976640\\ 0\\ 1.894940439004090\\ 0\\ 2.384780554015410\\ 0\\ 2.633011202101639 \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5
0.1 1 5 10 50	1.297825599507269 9 1.597990499275997 7 1.904581416085660 0 2.066095016976872 2 2.521614348137108 8 2.757179800598476 6	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002	$\begin{array}{c} 0.981479602247295\\ 6\\ 1.363761485141757\\ 7\\ 1.716292397976640\\ 0\\ 1.894940439004090\\ 0\\ 2.384780554015410\\ 0\\ 2.633011202101639 \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002
0.1 1 5 10 50 100	$\begin{array}{c} 1.297825599507269\\ 9\\ 1.597990499275997\\ 7\\ 1.904581416085660\\ 0\\ 2.066095016976872\\ 2\\ 2\\ 2.521614348137108\\ 8\\ 2.757179800598476\\ 6\\ 3.412622122439136\\ 6\end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002	$\begin{array}{c} 0.981479602247295\\ & 6\\ 1.363761485141757\\ & 7\\ 1.716292397976640\\ & 0\\ 1.894940439004090\\ & 0\\ 2.384780554015410\\ & 0\\ 2.633011202101639\\ & 9\\ 3.313641834873087\\ & 7\end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 40, 5 0.002 40, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002
0.1 1 5 10 50 100	$\begin{array}{c} 1.297825599507269\\ 9\\ 1.597990499275997\\ 7\\ 1.904581416085660\\ 0\\ 2.066095016976872\\ 2\\ 2.521614348137108\\ 8\\ 2.757179800598476\\ 6\\ 3.412622122439136\\ 6\\ 3.748294589104394 \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002	$\begin{array}{c} 0.981479602247295\\ & 6\\ 1.363761485141757\\ & 7\\ 1.716292397976640\\ & 0\\ 1.894940439004090\\ & 0\\ 2.384780554015410\\ & 0\\ 2.633011202101639\\ & 9\\ 3.313641834873087\\ & 7\\ 3.658557201954226 \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 40, 5 0.002 40, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002
0.1 1 5 10 50 100 500 1000	$\begin{array}{c} 1.297825599507269\\ 9\\ 1.597990499275997\\ 7\\ 1.904581416085660\\ 0\\ 2.066095016976872\\ 2\\ 2.521614348137108\\ 8\\ 2.757179800598476\\ 6\\ 3.412622122439136\\ 6\\ 3.748294589104394\\ 4\end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002	$\begin{array}{c} 0.981479602247295\\ & 6\\ 1.363761485141757\\ & 7\\ 1.716292397976640\\ & 0\\ 1.894940439004090\\ & 0\\ 2.384780554015410\\ & 0\\ 2.633011202101639\\ & 9\\ 3.313641834873087\\ & 7\\ 3.658557201954226\\ & 5\end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002
0.1 1 5 10 50 100 500 1000	$\begin{array}{c} 1.297825599507269\\ 9\\ 1.597990499275997\\ 7\\ 1.904581416085660\\ 0\\ 2.066095016976872\\ 2\\ 2.521614348137108\\ 8\\ 2.757179800598476\\ 6\\ 3.412622122439136\\ 6\\ 3.748294589104394\\ 4\\ 5.148272347405043 \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002	$\begin{array}{c} 0.981479602247295\\ & 6\\ 1.363761485141757\\ & 7\\ 1.716292397976640\\ & 0\\ 1.894940439004090\\ & 0\\ 2.384780554015410\\ & 0\\ 2.633011202101639\\ & 9\\ 3.313641834873087\\ & 7\\ 3.658557201954226\\ & 5\\ 5.083548748021790 \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002
0.1 1 5 10 500 1000 10000	$\begin{array}{c} 1.297825599507269\\ 9\\ 1.597990499275997\\ & 7\\ 1.904581416085660\\ 0\\ 2.066095016976872\\ 2\\ 2\\ 2.521614348137108\\ & 8\\ 2.757179800598476\\ & 6\\ 3.412622122439136\\ & 6\\ 3.748294589104394\\ & 4\\ 5.148272347405043\\ & 3\\ \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002	$\begin{array}{c} 0.981479602247295\\ & 6\\ 1.363761485141757\\ & 7\\ 1.716292397976640\\ & 0\\ 1.894940439004090\\ & 0\\ 2.384780554015410\\ & 0\\ 2.633011202101639\\ & 9\\ 3.313641834873087\\ & 7\\ 3.658557201954226\\ & 5\\ 5.083548748021790\\ & 0\\ \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002
0.1 1 5 10 500 1000 10000	$\begin{array}{c} 1.297825599507269\\ 9\\ 1.597990499275997\\ 7\\ 1.904581416085660\\ 0\\ 2.066095016976872\\ 2\\ 2\\ 2.521614348137108\\ 8\\ 2.757179800598476\\ 6\\ 3.412622122439136\\ 6\\ 3.748294589104394\\ 4\\ 5.148272347405043\\ 3\\ 6\\ 3\\ 3\\ 6.449114472836206 \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002	$\begin{array}{c} 0.981479602247295\\ & 6\\ 1.363761485141757\\ & 7\\ 1.716292397976640\\ & 0\\ 1.894940439004090\\ & 0\\ 2.384780554015410\\ & 0\\ 2.633011202101639\\ & 9\\ 3.313641834873087\\ & 7\\ 3.658557201954226\\ & 5\\ 5.083548748021790\\ & 0\\ 6.397640764921995 \end{array}$	h 40, 6 0.002 45, 6 0.002 40, 5 0.002 45, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002 50, 5 0.002

Table (2.2 continued)

λ	$(2N=14), \mu=1$	R V	$(2N=14), \mu=0$	8 . X
		h		h
0.1		40,5 0.002	1.065928788394754	40,5 0.002
1			1.421438884484289	
	0	0.001	9	0.001
5			1.738198785933759	
10		0.001	9	0.001
10	1	0.001	7	0.001
50			2.317925334402937	
100		0.001	7 2.527715500907106	
100		0.001		0.001
500			3.091003111580656	
		0.001		0.001
1000		50,4 0.001	3.370762794871078	50,4 0.001
10000	4.567664896385973			
	3	0.001	8	0.001
50000	5.556160251167479			-
	9	0.001	4	0.001
	(2N=16) u=1			
λ		β, X h	(2N=16), μ=0	β,X h
λ 0.1	1.414362993380629	β, X h 60,5	(2N=16) , μ=0 1.140391627412878	β,Χ h 60,5
	1.414362993380629 9	β, X h 60,5 0.001	(2N=16) , μ=0 1.140391627412878	β,X h 60,5 0.001
0.1 1	1.414362993380629 9 1.688644355408802 2	β, X h 60,5 0.001 70,3 0.001	(2N=16), μ=0 1.140391627412878 8 1.472872424370881 1	β ,X h 60 ,5 0.001 70 ,3 0.001
0.1	1.414362993380629 9 1.688644355408802 2 1.943134116363347	β, X h 60,5 0.001 70,3 0.001 70,4	<pre>(2N=16), μ=0 1.140391627412878 8 1.472872424370881 1.761280249421046</pre>	β,X h 60,5 0.001 70,3 0.001 70,4
0.1 1	1.414362993380629 9 1.688644355408802 2 1.943134116363347 7	β, X h 60,5 0.001 70,3 0.001 70,4 0.001	<pre>(2N=16), μ=0 1.140391627412878 8 1.472872424370881 1.761280249421046</pre>	β,X h 60,5 0.001 70,3 0.001 70,4 0.001
0.1 1 5 10	1.414362993380629 9 1.688644355408802 2 1.943134116363347 7 2.071102069825460 0	β, X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001	<pre>(2N=16), μ=0 1.140391627412878 8 1.472872424370881 1 1.761280249421046 6 1.902287886305871 1</pre>	β,X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001
0.1 1 5	1.414362993380629 9 1.688644355408802 2 1.943134116363347 7 2.071102069825460 0 2.416622648346604	β, X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001 70,5	<pre>(2N=16), μ=0 1.140391627412878 8 1.472872424370881 1.472872424370881 1.761280249421046 6 1.902287886305871 1 2.274780916137083</pre>	β,X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001 70,5
0.1 1 5 10 50	1.414362993380629 9 1.688644355408802 2 1.943134116363347 7 2.071102069825460 0 2.416622648346604 4	β, X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001 70,5 0.001	<pre>(2N=16), μ=0 1.140391627412878 8 1.472872424370881 1.761280249421046 6 1.902287886305871 1 2.274780916137083 3</pre>	β ,X h 60 ,5 0.001 70 ,3 0.001 70 ,4 0.001 50 ,5 0.001 70 ,5 0.001
0.1 1 5 10	1.414362993380629 9 1.688644355408802 2 1.943134116363347 7 2.071102069825460 0 2.416622648346604 4	β, X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001 70,5 0.001	<pre>(2N=16), μ=0 1.140391627412878 8 1.472872424370881 1 1.761280249421046 6 1.902287886305871 1 2.274780916137083 3 2.456899282320219</pre>	β ,X h 60 ,5 0.001 70 ,3 0.001 70 ,4 0.001 50 ,5 0.001 70 ,5 0.001
0.1 1 5 10 50	$\begin{array}{c} 1.414362993380629\\ 9\\ 1.688644355408802\\ 2\\ 1.943134116363347\\ 7\\ 2.071102069825460\\ 0\\ 2.416622648346604\\ 4\\ 2.588434696119420\\ 0\\ 3.048304497176280\\ \end{array}$	β, X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001 70,5 0.001 70,5 0.001 60,3	<pre>(2N=16), μ=0 1.140391627412878 8 1.472872424370881 1.761280249421046 6 1.902287886305871 1 2.274780916137083 3 2.456899282320219 9 2.937992530219101</pre>	β ,X h 60 ,5 0.001 70 ,3 0.001 70 ,4 0.001 70 ,5 0.001 70 ,4 0.001 60 ,3
0.1 1 5 10 50 100 500	$\begin{array}{c} 1.414362993380629\\ 9\\ 1.688644355408802\\ 2\\ 1.943134116363347\\ 7\\ 2.071102069825460\\ 0\\ 2.416622648346604\\ 4\\ 2.588434696119420\\ 0\\ 3.048304497176280\\ 0\\ \end{array}$	β, X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001 70,5 0.001 70,5 0.001 60,3 0.001	$\begin{array}{c} \textbf{(2N=16), } \mu=0 \\ 1.140391627412878 \\ 8 \\ 1.472872424370881 \\ 1 \\ 1.761280249421046 \\ 6 \\ 1.902287886305871 \\ 1 \\ 2.274780916137083 \\ 3 \\ 2.456899282320219 \\ 9 \\ 2.937992530219101 \\ 1 \end{array}$	β ,X h 60 ,5 0.001 70 ,3 0.001 70 ,4 0.001 50 ,5 0.001 70 ,5 0.001 70 ,4 0.001 60 ,3 0.001
0.1 1 5 10 50 100	$\begin{array}{c} 1.\ 414362993380629\\ 9\\ 1.\ 688644355408802\\ 2\\ 1.\ 943134116363347\\ 7\\ 2.\ 071102069825460\\ 0\\ 2.\ 416622648346604\\ 4\\ 2.\ 588434696119420\\ 0\\ 3.\ 048304497176280\\ 0\\ 3.\ 275439884385238 \end{array}$	β , X h 60 ,5 0.001 70 ,3 70 ,001 70 ,4 0.001 50 ,5 0.001 70 ,5 0.001 70 ,5 0.001 70 ,5 0.001 70 ,5 0.001 70 ,5 0.001 70 ,3 0.001 70 ,3 0.001 70 ,3	$\begin{array}{c} \textbf{(2N=16), } \mu=0 \\ 1.140391627412878 \\ 8 \\ 1.472872424370881 \\ 1 \\ 1.761280249421046 \\ 6 \\ 1.902287886305871 \\ 1 \\ 2.274780916137083 \\ 3 \\ 2.456899282320219 \\ 9 \\ 2.937992530219101 \\ 1 \\ 3.173207445055988 \end{array}$	β ,X h 60,5 0.001 70,3 70,01 70,4 50,5 0.001 70,5 0.001 70,5 0.001 70,5 0.001 70,5 0.001 70,3 0.001 70,3 0.001
0.1 1 5 10 50 100 500	$\begin{array}{c} 1.\ 414362993380629\\ 9\\ 1.\ 688644355408802\\ 2\\ 1.\ 943134116363347\\ 7\\ 2.\ 071102069825460\\ 0\\ 2.\ 416622648346604\\ 4\\ 2.\ 588434696119420\\ 0\\ 3.\ 048304497176280\\ 0\\ 3.\ 275439884385238\\ 8\end{array}$	β, X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001 70,5 0.001 70,5 0.001 60,3 0.001 70,3 0.001	$\begin{array}{c} \textbf{(2N=16), } \mu=0 \\ 1.140391627412878 \\ 8 \\ 1.472872424370881 \\ 1 \\ 1.761280249421046 \\ 6 \\ 1.902287886305871 \\ 1 \\ 2.274780916137083 \\ 3 \\ 2.456899282320219 \\ 9 \\ 2.937992530219101 \\ 1 \\ 3.173207445055988 \end{array}$	β ,X h 60,5 0.001 70,3 70,01 70,4 70,5 0.001 70,5 0.001 70,5 0.001 70,5 0.001 70,3 0.001 70,3 0.001 70,3 0.001
0.1 1 5 10 500 1000 1000	$\begin{array}{c} 1.414362993380629\\ 9\\ 1.688644355408802\\ 2\\ 1.943134116363347\\ 7\\ 2.071102069825460\\ 0\\ 2.416622648346604\\ 4\\ 2.588434696119420\\ 0\\ 3.048304497176280\\ 0\\ 3.275439884385238\\ 8\\ 4.177691914410590\\ 0\\ \end{array}$	β, X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001 70,5 0.001 60,3 0.001 70,3 0.001 90,3 0.001	$\begin{array}{c} (2N=16), \ \ \mu=0 \\ 1.140391627412878 \\ 8 \\ 1.472872424370881 \\ 1 \\ 1.761280249421046 \\ 6 \\ 1.902287886305871 \\ 1 \\ 2.274780916137083 \\ 3 \\ 2.456899282320219 \\ 9 \\ 2.937992530219101 \\ 1 \\ 3.173207445055988 \\ 8 \\ 4.098355012684797 \\ 7 \end{array}$	β ,X h 60,5 0.001 70,3 70,01 70,4 70,01 70,5 0.001 70,5 0.001 70,5 0.001 70,4 70,01 70,5 70,01 70,3 0.001 90,3 0.001 90,3
0.1 1 5 10 500 1000 1000	$\begin{array}{c} 1.414362993380629\\ 9\\ 1.688644355408802\\ 2\\ 1.943134116363347\\ 7\\ 2.071102069825460\\ 0\\ 2.416622648346604\\ 4\\ 2.588434696119420\\ 0\\ 3.048304497176280\\ 0\\ 3.275439884385238\\ 8\\ 4.177691914410590\\ 0\\ 4.967281266904783\end{array}$	β, X h 60,5 0.001 70,3 0.001 70,4 0.001 50,5 0.001 70,5 0.001 70,5 0.001 60,3 0.001 70,3 0.001 90,3 0.001	$\begin{array}{c} \textbf{(2N=16), } \mu=0 \\ 1.140391627412878 \\ & 8 \\ 1.472872424370881 \\ & 1 \\ 1.761280249421046 \\ & 6 \\ 1.902287886305871 \\ & 1 \\ 2.274780916137083 \\ & 3 \\ 2.456899282320219 \\ & 9 \\ 2.937992530219101 \\ & 1 \\ 3.173207445055988 \\ & 8 \\ 4.098355012684797 \\ & 7 \\ 4.900866917948242 \end{array}$	β ,X h 60,5 0.001 70,3 70,01 70,4 70,01 70,5 0.001 70,5 0.001 70,5 0.001 70,4 70,01 70,5 70,01 70,3 0.001 90,3 0.001 90,3

Table (2.2 continued)

λ	$(2N=18), \mu=1$	β, Χ	(2N=18), μ=0	β, Χ
		h		h
0.1		-	1.206561190366403	80,2
		0. 0 01		0. 0 01
1			1.518970543436885	
		0.001		0.001
5			1.784211574313667	
		0.001		0.001
10			1.912270616899490	
		0.001		0.001
50	2.389407087844083	-	2.246189290920753	
100	2.541227162797541	0.001	3 2.407406073842077	0.001
100		0.001		0.001
500	2.942019458371235		2.827784778040057	
500		0.001		90,2 0. 0 01
1000			3.030744682867415	
1000		0.001		0.001
10000			3.815481497921844	
10000		0.001		0.001
50000			4.481736844460848	
30000		0.001		0.001
λ			(2N=20), μ=0	β, Χ
	(h		р, р
0.1	1.513551983259983	90, 2	1.265776428650721	95, 2
		0.001		0.001
1				
			1.560508342924665	
	3	0. 0 01	5	0.001
5	3 1.983057870600219	0.001 90, 2	5 1.806378778736560	0.001 92, 2
	3 1.983057870600219 9	0.001 90, 2 0.001	5 1.806378778736560 0	0.001 92, 2 0.001
5 10	3 1.983057870600219 9 2.090092595021987	0.001 90, 2 0.001 90, 2	5 1.806378778736560 0 1.923867622446815	0.001 92, 2 0.001 92, 2
10	3 1.983057870600219 9 2.090092595021987 7	0.001 90, 2 0.001 90, 2 0.001	5 1.806378778736560 0 1.923867622446815 5	0.001 92, 2 0.001 92, 2 0.001
	3 1.983057870600219 9 2.090092595021987 7 2.371139171663949	0.001 90, 2 0.001 90, 2 0.001 90, 2	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709	0.001 92, 2 0.001 92, 2 0.001 95, 3
10 50	3 1.983057870600219 9 2.090092595021987 7 2.371139171663949 9	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001
10	3 1.983057870600219 9 2.090092595021987 7 2.371139171663949 9 2.507363140468163	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001 67, 2	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9 2.371833925451716	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001 95, 3
10 50 100	3 1.983057870600219 9 2.090092595021987 7 2.371139171663949 9 2.507363140468163 3	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001 67, 2 0.001	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9 2.371833925451716 6	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001 95, 3 0.001
10 50	3 1.983057870600219 9 2.090092595021987 7 2.371139171663949 9 2.507363140468163 3 2.862914498435694	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001 67, 2 0.001 110, 2	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9 2.371833925451716 6 2.745535125812682	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001 95, 3 0.001 110, 2
10 50 100 500	3 1.983057870600219 9 2.090092595021987 7 2.371139171663949 9 2.507363140468163 3 2.862914498435694 4	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001 67, 2 0.001 110, 2 0.001	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9 2.371833925451716 6 2.745535125812682 2	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001 95, 3 0.001 110, 2 0.001
10 50 100	$\begin{array}{c} 3\\ 1.983057870600219\\ 9\\ 2.090092595021987\\ 7\\ 2.371139171663949\\ 9\\ 2.507363140468163\\ 3\\ 2.862914498435694\\ 4\\ 3.034416484690723\end{array}$	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001 67, 2 0.001 110, 2 0.001 120, 2	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9 2.371833925451716 6 2.745535125812682 2 2.924107721491224	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001 95, 3 0.001 110, 2 0.001 120,2
10 50 100 500 1000	$\begin{array}{r} 3\\1.983057870600219\\9\\2.090092595021987\\7\\2.371139171663949\\9\\2.507363140468163\\3\\2.862914498435694\\4\\3.034416484690723\\3\end{array}$	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001 67, 2 0.001 110, 2 0.001 120, 2 0.001	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9 2.371833925451716 6 2.745535125812682 2 2.924107721491224 4	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001 95, 3 0.001 110, 2 0.001 120,2 0.001
10 50 100 500 1000	$\begin{array}{c} 3\\ 1.983057870600219\\ 9\\ 2.090092595021987\\ 7\\ 2.371139171663949\\ 9\\ 2.507363140468163\\ 3\\ 2.862914498435694\\ 4\\ 3.034416484690723\\ 3\\ 3\\ 3.694653961275296\end{array}$	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001 67, 2 0.001 110, 2 0.001 120, 2 0.001 140, 2	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9 2.371833925451716 6 2.745535125812682 2 2.924107721491224 4 3.604976670217825	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001 95, 3 0.001 110, 2 0.001 120, 2 0.001 140, 2
10 50 100 500 1000	$\begin{array}{r} 3\\1.983057870600219\\9\\2.090092595021987\\7\\2.371139171663949\\9\\2.507363140468163\\3\\2.862914498435694\\4\\3.034416484690723\\3\\3.694653961275296\\6\end{array}$	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001 67, 2 0.001 110, 2 0.001 120, 2 0.001 140, 2 0.009	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9 2.371833925451716 6 2.745535125812682 2 2.924107721491224 4 3.604976670217825 5	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001 95, 3 0.001 110, 2 0.001 120, 2 0.001 140, 2 0.001
10 50 100 500 1000	$\begin{array}{c} 3\\ 1.983057870600219\\ 9\\ 2.090092595021987\\ 7\\ 2.371139171663949\\ 9\\ 2.507363140468163\\ 3\\ 2.862914498435694\\ 4\\ 3.034416484690723\\ 3\\ 3.694653961275296\\ 6\\ 4.250526051587301\end{array}$	0.001 90, 2 0.001 90, 2 0.001 90, 2 0.001 67, 2 0.001 110, 2 0.001 120, 2 0.001 140, 2 0.009	5 1.806378778736560 0 1.923867622446815 5 2.226988187562709 9 2.371833925451716 6 2.745535125812682 2 2.924107721491224 4 3.604976670217825 5 4.172969266359273	0.001 92, 2 0.001 92, 2 0.001 95, 3 0.001 95, 3 0.001 110, 2 0.001 120, 2 0.001 140, 2 0.001

Table (2.3). Energy eigenvalues of $H=P^2+x^2+\lambda^T x^{2N}$, First line; power series calculation, Second line; renormalised series, with digits before the last digit omitted.

ligit			T						
λ	(2N=4) I=1				N	<u> </u>	(2N=8) I=4	N	
0.1	1.06528550954371			1.10908707846558			1.16897045324598	70	00
	and the second	47	20		128	50	9	70	80
0.2	1.11829265436704			1.17388934512543			1.24102790505586		
		47	20	3	100	50	0	68	80
0.3	1.16404715735384			1.22368713082245			1.29235601011702		
· I	4	51	18	1	89	50	3	62	80
0.4	1.20481032737249			1.26509938921472			1.33326839519428	\square	
	9	48	14	3	81	50	2	59	80
0.5	1.24185405965149			1.30098697190627			1.36772100954772		
	4	43	13	6	75	50	7	58	80
0.6	1.27598356634255			1.33289594337339			1.39770876202691		
0.0	5	47	12	5	78	50	7	57	80
67	1.30774865112003	_		1.36177259515288			1.42439586248017	_	
0.7	1.30774003112000	43	10	2	66	50	3	53	80
	1.33754520814817		10	1.38824494503033	00	<u> </u>	1.44852785641937	00	<u> </u>
U. 8	1.33/5452061461/		10		67	50		61	90
		44	10	5	0/	50_	5	10	90
0.9	1.36566982578443			1.41275436082138			1.47061414630140		
	4	43	9	4	78	60	0	46	80
1.0	1.39235164153029			1.43562461900339			1.49101989566220		
	2	39	8	4	76	60	1	54	80
2.0	1.60754130246854			1.60993195202308			1.64137035713246		
	8	42	7	1	81	70	1	43	80
3.0	1.76958884428039			1.73285711751614			1.74320451094779	<u>i</u> —	
	0	42	6	5	71	75	3	41	80
4.0	1.90313694545900			1.83043734375010			1.82217987008594		i
-	5	43	6	3	71	80	2	39	80
	2.01834064936531		—	1.91245383222285	· -	<u> </u>	1.88748714303206	Ĭ	<u> </u>
5.0	2.01034004000001	40	5	5	64	80	7	25	80
	2.12053292939427		—	1.98378052759545	0.3		1.94357976099209		
6.U	2.12003292939421	43	E .	0	66	80	1.34337370033203	45	100
	3	40	<u>о</u>	2.04723907601261	00	00		45	100
7.0	2.21291421117415			2.04/2390/001201			1.99298567568301		
	1	46	5	3	70	90	2	43	100
8.0	2.29757782825207			2.10462590821951			2.03729023148001	I	
	2	34	4	2	75	100			100
9.0	2.37597854978311			2.15716300414840			2.07755877362301		
	7	40	4	6		150	7	53	120
10.	2.44917407211838			2.20572326959563	ĺ		2.11454462194212	Ì	i T
	1	40	4	2	70	100	4	52	120
20.	3.00994481555778			2.56464464550004		í —	2.38184367142942		Î
	5.00004101000110	49	4	4	94	150	1		120
30.	3.41016853263682			2.80938113102966			2.55894138891585		┟╴┈╴
30.	3.41010655265082 6		80	8	82	150	8		140
	3.73139160205310	50	00	3.00031532076312		130	2.69468105951785		140
40.	_	20	100	3.00031552070512		100	2.09406105951785		150
	0	the second second	100		83	160			150
50.	4.00399276827762			3.15902120105965		1	2.80606508931628		
	2		120	2	76	160			150
60.	4.24308144642364			3.29595194934978			2.90119763491835		
L	6		120	5	84	180			160
70.	4.45740819230319			3.41704571758164			2.98462697679431		
	2		125	4	70	160		and the second division of the second divisio	150
80.	4.65255184730633			3.52603057224061			3.05918117713722	T	
1	7		150	3	65	160	9	49	150
90.	4.83231440623305	Ì		3.62541489540524	Î –	i –	3.12674784921351		Ύ
Ĩ.	6		160	-	67	160			160
100	4.99941754513758			3.71697472920862			3.18865434649226		ᢤ
100	4.99941794919700		170		80	180			150
L				L/	100	1100	8	140	1100

Table (2.4). Energy of ground state levels, by using renormalised series method at $\lambda=1$. The number in the bracket correspond to exact value.

I	2N=6	N	K	2N=8	N	K
1	1.4355	72	80	1.5	24	120
2	1.435624	81	70	1.49	51	150
3	1.435624	54	40	1.490	5 5	100
4	1.435624	76	60	1.491	54	80
	(1.4356246)	Î	ĺ	(1.49102)	Î	i

.

.

2.2 Numerical calculation for Quasi-bound states.

2.2.1 Introduction

This section is concerned with potentials of the types:

$$V(x) = x^{2} + \lambda x^{3}$$
 (2.42)

$$V(x) = x^{2} + \lambda x^{5}$$
 (2.43)

$$V(x) = x^2 - \lambda x^4$$
 (2.44)

and the hypervirial recurrence relations have been used to calculate perturbed energy eigenvalues. There are many studies of potentials of the form

$$V(x) = \mu x^{2} + \lambda x^{2N} \qquad (2N = 4, 6, ... 10, 12) \qquad (2.45)$$

whereas for potentials of the form

$$V(x) = x^2 + \lambda x^{2N+1}$$
 (2N=2,4) (2.46)

there are few reported results. The energy levels of an anharmonic oscillator with a perturbation of type λx^3 have been calculated by Drummond [5,1981;6,1982]. The potential functions given by (2.42,2.43,2.44) describe a system which has no true bound states. For large x, $\Psi(x)$ does not tend to zero and is not admissible as a normalizable wavefunction, so that the particle is not permanently confined to the neighbourhood of the centre of force. However, in spite of there being no true bound states, we can still compute an average real energy for small values of λ .

2.2.2 Renormalised series method to calculate energy

eigenvalues for λx^{2N+1} . (2N=2,4) perturbation

In order to find the eigenvalues E of the Schrödinger

equation:

$$\left[-\frac{d^2}{dx^2} + x^2 + \lambda x^{2N+1}\right] \Psi(x) = E\Psi(x) \qquad (2N=2,4) \qquad (2.47)$$

We shall use the hypervirial relations (2.3) in calculating the perturbation energy series. Drummond's approach is based on a method due to Bender and Wu [1,1969]. It uses recurrence relations to calculate the perturbed energy and wave function. We should point out that Drummond used extrapolated values based on the first few terms of the energy series, but in our approach we calculate many terms of the series. Also in our approach we tried out Aitken's transformation in order to increase the accuracy, but unfortunately it did not seem to help to improve the accuracy of our results for this problem. In order to improve the convergence properties of the perturbation series we used a rearrangement of terms in the potential (renormalised perturbation series).

To illustrate this technique we can rewrite the potential (2.46) as follows

$$V(x) = \mu x^{2} + \lambda \left(x^{2N+1} - K x^{2} \right)$$
 (2.48)

where

$$\mu = 1 + \lambda K \tag{2.49}$$

The new perturbation series is still divergent but its divergence begins for high values of λ , so that for low values of λ we findagood energy value. Inserting the series expansions given by equations (2.6) and (2.7) into (2.3) and taking into account the potentials coefficients

$$\mathbf{V}_{2} = \left(\mu - \lambda \mathbf{K}\right) \tag{2.50}$$

$$V_{2N+1} = \lambda;$$
 (N=1,2) (2.51)

we obtain the recurrence relations

$$\left(2N+2\right) \sum_{0}^{M} E(J)A(N, M-J) = \left(2N+4\right) \left[\mu A(N+2, M) - KA(N+2, M-1)\right]$$

+ $\left[2N+2n+3\right]A(N+2n+1, M-1) - \frac{N}{2}\left[N^{2}-1\right]A(N-2, M) \quad (n=1,2) \quad (2.52)$

Applying the Hellmann-Feynman theorem as given by equation (2.14), we obtain a recurrence relation in the form

$$(M+1)$$
 E (M+1) = A (2n+1, M) - KA (2, M) (n=1, 2) (2.53)

It is clear now that from equations (2.52) and (2.53) we obtain the full set of A and E coefficients starting from the unperturbed energy

$$\mathbf{E}(\mathbf{0}) = \left(2\mathbf{n}+1\right)\sqrt{\mu} \qquad (2.54)$$

2.2.3 Energy levels for negative quartic oscillator

It is interesting to note that the renormalised series method can even be extended to the case of a negative but small value of λ . Strictly speaking, no bound states are present in this case. We can write the potential appearing in equation (2.44) as

$$V(x) = \mu x^2 - \lambda \left(x^4 + k x^2 \right)$$
 (2.55)

If we use the series given by equations (2.6) and (2.7) and the potential coefficients which are given by equation (2.56)as

$$V_2 = \left(\mu - \lambda K\right), \quad V_4 = -\lambda$$
 (2.57)

in the hypervirial relation (2.3) we obtain the recurrence relation

$$(2N+2)\sum_{0}^{M} E(J)A(N, M-J) = (2N+4) [\mu A(N+2, M) - KA(N+2, M-1)]$$

$$-(2N+6)A(N+4,M-1) - \frac{N}{2}[N^2-1]A(N-2,M)$$
 (2.58)

If we use the same approach as used to obtain equation (2.53) we get the energy equation

$$(M+1)E(M+1) = -KA(4, M) - KA(2, M)$$
 (2.59)

The above recurrence relation together with relation (2.58) and (2.59) are sufficient to determine the coefficients E and of the perturbation series, starting with initial Α conditions for E(0) and A(0,0) as quoted previously. We calculated the eigenvalues of the $(-\lambda x^4)$ oscillator for ground and excited states for different values of λ as shown in table (2.7). It is worth noticing here that varying the renormalised constant K improves the convergence our results. The numerical eigenvalues of $(x^2 - \lambda x^4)$ are in reasonable agreement with the previous results which have been obtain by J.E.Drummond [5,1981], who used 25 coefficients of the energy calculate the eigenvalues of energy. to series Our calculations were done on ICL system an using double precision arithmetic.

2.2.4 Results and discussion

The ground state as well as excited energy levels of the generalized anharmonic oscillator defined by the Hamiltonians:

$$H_{M} = -\frac{d^{2}}{dx^{2}} + x^{2} + \lambda x^{2N+1} \qquad (2N=2,4) \qquad (2.60)$$

$$H = -\frac{d}{dx^{2}} + x^{2} - \lambda x^{4}$$
 (2.61)

have been calculated for various λ values, using the renormalised series method. Our results for $(\lambda_x^3, -\lambda_x^4)$ perturbations have been compared with previous results of J.E.Drummond [5,4] in order to have an idea about the accuracy of our approach. In table (2.5) we present the energy eigenvalues for a $(-\lambda x^4)$ perturbation for the first five excited states, for different values of λ lying between $(0.01 \leq \lambda \leq 0.12)$. Our results lead to the following observation:

1. Our perturbation energies series for λx^3 converge very well for small values of λ (λ <0.12), where our approach has 20 significant figures. The precision obtained of the seems good even for excited states, energies but J.E.Drummonds' approach achieves only 12 figures; our results can thus considered as more accurate.

2. The renormalised series approach for $(\lambda>0.12)$ deteriorates in convergence. This approach has a limited range of application, and seems not to work for this range of λ , presumably because the quasi-bound states are not well defined for such large λ .

3. The most important difference between the J.E.Drummond approach and our approach is that the former computed only 20 coefficients while we have computed any number of coefficients until we obtain the best converged energy.

4. The Padé approximant technique has been used to calculate the energy eigenvalue of the potential given by equation (2.43) for low values of λ , because the energy series is more speedily divergent than that for the potential (2.42). Our results in table (2.6) exhibit this behaviour. This technique is reviewed in more detail in chapter 4. In the absence of other reported results (to the best of our Knowledge), we have calculated each eigenvalue for two values of [M,N] in order to estimate the accuracy of our results.

Table (2.5).	Energy	eigenvalues of	$H=P^2+x^2+$	λx ³ , Fir	st line;
Renormalised	series	calculation,	Second	line;	Drummond
calculation,	with digi	its before the la	ast digit	omitted.	

X	E	N	K	E ₁	N	דק
0.01	0.99993123182623556912 6	12	2	2.9995560300711536057 1	13	2
	0.99972470875265969188 3			2.9982214713809320871 1		
	0.99937977159498842338 5			2.9959883032176996116 8		
0.04	0.99889530980223136279 2	24	2	2.9928429058397717080 40	26	2
0.05	0.99826974304395106074 4	29	2	2.9887656636459711189 6	34	2
0.06	0.99750099428744908392 8	34	2	2.9837303688393113876 4 0	38	2
0.07	0.99658645309226050407 3	40	2	2.9777033776119970087 7	48	2
0.08	0.99552292727908772567 80	47	2	2.970642444800281916 9	51	2
0.09	0.99430658035499637812 0	57	2	2.96249512297422822 30	58	2
0.10	0.99293285097631609853 1	75	2	2.9531965472043759 3	74	2
0.12	0.98969072098313 1	83	2	2.930803974978 2	80	2
0.15	0.98347687 9	93	2	2.88557423 2	92	2
0.20	0.96863 3	77	8	2.7564 5	48	6
λ	E ₂	N	K	E ₃	N	K
0.01	4.9988053317405753541 4	14	2	6.9976788050043899205 0	15	2
0.02	4.9952102465829434515 9	19	2	6.9906856587857592698 8	21	2
0.03	4.9891810363434278186 5			6.9789301813199445386 <u>4</u>		
0.04	30	31	2	6.6922558458118062523 9	33	2
	4.9695624320799928932 1	37	2	6.9404302370588397541 1	41	2
0.06	4.9557734480182652681 0	44	2	6.9131293458398142655 9	50	2
0.07	4.9391411788801258984 9	56	2	6.87991308220897580 3	64	2
0.08	4.9194684602435089298 3	68	2	6.84018686405584 4	68	2
0.09	4.8964998050337740 1	71	2	6.7931394446125 4	72	2
0.10	4.8699017069532 7	75	12	6.73763664172 6	76	2
0.12	4.80388361 4	74	2	6.593703 0	81	2
0.15	4.658 8	51	12	6.208 8	54	2
L.						

λ	E.	М	K	E B	ГИ	кЛ
0.01	8.9961761173487156566 5	15	2	10.994296935573676451 7	15	2
0.02	8.9846422875696648735 7	24	4	10.977074667075517246 8	22	2
0.03	8.9652074160245770166 3	33	4	10.947983869600341616 0	30	2
0.04	8.9375370298634206406 9	42	4	0.906406445404851232 4	36	2
0.05	8.9011261574996245951 5	52	4	10.851392942843778582 9	50	2
0.06	8.8552538665971917 6	62	4	10.781553284057087952 1	60	2
0.07	8.7989083803815217 77	63	2	10.69486591006105 0	63	5
0.08	8.7306604986699 68	68	2	10.58832751378 5	68	2
0.09	8.64843683617 7	71	2	10. 4 57247103 7	70	2
0.10	8.549072943 3	74	2	10.293577 8	74	2
0.12	8.2723 3	72	2	9.76 6	62	2

Table (2.5 continued)

λ	E 0	E [M, N]	E ₁	E [M, N]
0.005	0.99982353 0.99982353	[7,7] [9,9]	2.99771 2.99771	[7,7] [8,8]
0.01	0.99927923 0.99927923		2.9904 2.9907	[7,7] [8,8]
0.02	0.99679 7	[7,7] [8,8]	2.906 2.996	[8,8] [8,9]
λ	E ₂	E [M, N]	E ₃	E TM, NJ
0.005	4.98719 4.98719	[8,8]	6.95381 6.95387	[7,7] [8,8]
0.01	4.94 4.94	[7,7] [8,8]	6.6 6.7	[7,7] [8,8]

Table (2.6). Energy eigenvalues of $H=P^2+x^2+\lambda x^8$ the result produced by Padé approximants E [M,N]

Table (2.7).	Energy	eigenvalues of	$H=P^{2}+x^{2}-\lambda x^{4}$, First line
Renormalised	series	calculation,	Second 11	ine; Drummond
calculation,	with dig	gits before the	bracket omitt	ed.

λ	Eo	N	K	E ₁	K	N
0.01	0.99236322064691319978 (6)			2.9614019035236117289 (5)	30	4
0.05	0.95823 (3336)	18	10	2.771 (126)	21	20
	E2	N	K	E3	Ν	K
	4.8983020366289806839 (6)	35	4	6.8014327584883497 (5)	31	2
0.05	4.316 (5)	34	50	5.54 (4)	21	50

2.3 Energy levels of double-well anharmonic oscillator

2.3.1 Introduction

The aim of this section is to investigate numerically the eigenvalues of double-well potentials with form given as below:

$$V(x) = -Z^2 x^2 + x^{2N}$$
 (2N=4,6,8,.....28, 30) (2.62)

The most studied system of this kind is the quartic double-well potential (2N=4). The calculation of eigenvalues for the Schrödinger equation with double-well potential has received great attention from us. We extended our calculations to higher powers (2N=4,6,8....28,30), since our methods free our hands to compute the eigenvalues for such higher values of 2N. The treatment of the double-well potential (2N=4) has attracted many authors. For instance, R.Balsa et. al [17,1983] have computed the energy eigenvalues for 2N=4, $(0 \le Z^2 \le 100)$ and $0 \le n \le 21$; their results produce 12 digits accuracy. R.M.Quick and H.G.Miller [18,1984] have computed for 2N=4, $Z^2=50$ and $(0 \le n \le 79)$; they a non-perturbative method involving matrix used diagonalization to calculate some energy levels. Our approaches will use a perturbative method as well as a non-perturbative method. Our main object is to demonstrate that both approaches work and are able to produce excellent accuracy in spite of high values of Z^2 , 2N and state number n. It is important to point out that some of our results for this problem are not available in the literature, so the values which are listed in our tables have been checked at least by two methods. The agreement in our calculated results

by both methods gives us faith that the accuracy yielded by our methods is high. The depth of the double well is controlled by a parameter Z^2 (in equation 2.64 below). In some cases, particularly for $Z^2 \ge 1$ or $Z^2 \le 10^6$, one approach works better than the other. The perturbation approach works excellently for large values of Z^2 because as Z^2 increases the depth of the two wells become deeper and for deep wells the perturbation series converge quickly.

2.3.2 Renormalised series for Double well potential

To calculate energy eigenvalues for the double well potential, we consider the Schrödinger equation

$$\left[\frac{d^2}{dx} + E - V(x)\right] \Psi(x) = 0 \qquad (2.63)$$

where

$$V(x) = -Z^2 x^2 + x^{2N}$$
 (2N=4,6,...26,28,30) (2.64)

The SDWP energy levels are found by simply setting $\mu x^2 \rightarrow Z^2 x^2$ in the equation (2.1), and shifting the energy so that the zero of the energy is at the bottom of the well, with $Z^2 > 0$. The minima of V(x) are located at

where

$$x_{0} = \left[\frac{Z^{2}}{N}\right]^{\left[\frac{1}{2N-2}\right]}$$
(2.66)

In this case we expand V(x) about its minimum at x_0 in order to estimate the eigenvalues E around x_0 . The Taylor expansion for the potential V(x) about x_0 is

$$V(x) = V(x_0) + V(x_0)x + \frac{1}{2}V'(x_0)x^2 + \frac{1}{6}V'(x_0)x^3 \dots$$

$$+\sum_{n=4}^{2^{N}} V^{n}(x_{0}) \frac{x^{n}}{n!} \qquad (2N=4,6,8,\ldots,26,28,30) \qquad (2.67)$$

If we follow the same procedure as used to obtain relations (2.10) and (2.15), we obtain hypervirial recurrence relations corresponding to the double well potential case as follows:

$$\left(2N+2\right) \sum_{0}^{M} E(J)B(N, M-J) = -\frac{N}{2} \left[N^{2}-1\right] A(N-2, M)$$

$$-\left(2N+4\right) \left[\mu A(N+2, M) + KA(N+2, M-1)\right]$$

$$\sum_{n=3}^{2N} \frac{d^{n}V(x)}{dx^{n}} \left| \frac{1}{x} \sum_{n=1}^{n} \frac{1}{n!} \left(2N+2+n\right) \tilde{A}(N+n, M-1) \right]$$

$$(2.68)$$

$$\left(M+1 \right) E(M+1) = \sum_{n=3}^{2N} \frac{d^{n}V(x)}{dx^{n}} \left| \frac{1}{n!} A(n,M) - KA(2,M) \right|$$
(2.69)

The unperturbed energy corresponding to the double well potential can be expressed as

$$E = -V(x_0) + (2n+1) / \mu \quad (n=0,1,2,...) \quad (2.70)$$

and we obtain a hypervirial perturbation formalism for the problem. We also used a non-perturbative power series method to calculate the energy levels of the double well potential, as noted in the introduction and in the beginning of this section. If we use the wavefunction (2.39) in equation (2.63) and follow the same route that led us to recurrence relation (2.40), we get the following recurrence relation:

$$\left(N+2\right)\left(N+1\right)T(N+2) = \left[4\beta N+2\beta-E\right]T(N)x^{2} - \left[Z^{2}+4\beta^{2}\right]T(N-2)x^{4} +\lambda T(N-4M)x^{2M+4} \qquad (M=1,2,3,4)$$

$$(2.71)$$

(M=1,2,3,4)

(2.71)

which gives the terms in the power series for the wavefunction. The use of the recurrence relation (2.71) it similar to that of the recurrence relation (2.40). We also used the finite difference method to compute the energy eigenvalues, to give another check on the eigenvalues for this potential.

2.3.3 Results and discussion

Three methods have been used for calculating the eigenvalues of the double well potential:

$$V(x) = -Z^{2}x^{2} + x^{2N} \qquad (2N = 4, 6, 8, 10, \dots 30) \qquad (2.72)$$

Rach method has its own limited range of applicability in which it gives excellent numerical eigenvalues. The computations were carried out to double-precision accuracy (20 decimal places) on a VME system with a Fortran (77) of our results list some in tables We program. (2.8,2.9,2.10,2.11). We present the eigenvalues for different values of Z^2 , 2N and state number (n). The results shown in table (2.9) are yielded by power series and finite difference methods for (2N=4), $(1 \le 2^2 \le 100)$ and state number (n= 0,10). The two methods achieve the same accuracy (18-figure), and the accuracy of our results is in good agreement with the accuracy results produced by other methods. The results in table (2.9) are computed by renormalised series and power series methods for 2N=4, $(100 \le Z^2 \le 200)$ and $(0 \le n \le 100)$. The

agreement between the two methods is in general good to about 16-figures but at low Z^2 values (Z^2 =100) and high state number $(80 \le n \le 100)$, the renormalised series faces difficulties in producing the eigenvalues, while the power series method is able to give very high accuracy. In table (2.10) we list ground state results for (2N=6,8,10,12), and for 2N=6,8; $10 \le \mathbb{Z}^2 \le 200$, and for (2N=10,12); (50 \le \mathbb{Z}^2 \le 5000). The agreement between results is very good (20-digits). In the present work, we consider not only 2N=4, but extend the work to high powers (2N=6,8, 10...28,30). We list in table (2.11) the results for $(200 \le Z^2 \le 10^6)$, $(2N=4,8,10,12,\ldots 16,18)$ and $(0 \le n \le 10^6)$. It is clear from our results that the renormalised series method achieves very high accuracy (20 digits). We show in table (2.12) the results for $(2N=4,6,8\ldots30)$; 7^{2} =10⁶ and n=0.5.10. Our results for the double well potential have the following consequences:

First the three methods all yielded excellent accuracy for high values of Z^2 , 2N=4,6,8,...28,30 and state number n. The renormalised series produce 20-digits while the power series and finite different method yield around 18-digits.

Secondly the renormalised series work and converge very well (even with zero renormalised constant k=0) for high values of Z^2 , but for low values of Z^2 the accuracy depends on the choice of the constant K. On the other hand, there was seen in some perturbation series calculations the phenomenon of bogus convergence of the perturbation series. We can overcome this situation by running the same series for different values of the renormalisation constant K, or by using another

method to compute the eigenvalues.

Thirdly, as 2N increases the order of the series (M) must be increased to get converged eigenvalues. For instance at $(2N=6, Z^2=10^6, n=100)$ the order of series M=9 suffices but for 2N=16 with the same parameters as for 2N=6 the order M=221 is needed. Therefore, the computation requires more time to obtain a converged eigenvalue. The numerical investigations of the double well potential shows the applicability of the renormalised series method is limited to small values of Z^2 ; this behaviour is clear from our results in table (2.9). In conclusion, we remark that a large part of our results (as noted in beginning of this section) are not available so far in the literature for any value of 2N and λ . Table (2.8). Energy eigenvalues for $H=P^2-Z^2x^2+\lambda x^4$, first line by using Power series method, Second line by using Finite difference method.

z ²	E	X	E	K I
1	0.657653005180715123	8	117.498096009414125 5	5
2	0.137785848188222508	8	112.296111820223304 4	5
4	-1.710350450132639012	8	101.599114965229323 3	5
5	-3.410142761239829475 5	9	96.1017378427230333 3	6
10	-20.63357670294779915 5	9	67.1368007616895162 2	6
15	-50.84138728438195436 6	9	36.1032401549914955 5	8
50	-615.0200909027578165 _5	8	-422.068788468890653 3	8
100	-2485.867880342075294 4	9	-2206.39793308583867 7	10

Table (2.9). Energy eigenvalues for $H=P^2-Z^2x^2+x^4$, first line by using Renormalised series, Second line by using Finite difference method.

n	Z ² =100	N	K	Z ² =200	N	K
0	-2485.867880342075294 4		4	-9980.005002815982695 5		10
10	-2206.397933085838670 0	37		-9581.667513417091650 1		10
20	-1933.346914656864991 1	55	10	-9186.399286294146024 9	30	10
30	-1667.186570446339405 8	90	10	-8794.269970126812022 37	35	10
40	-1408.490911220260490 5			7		10
50	-1157.977638546861798 5			8		10
60	-916.5770313629964609 5	214	40	-7637.478513238368133 2	63	10
70	-685.55684328917519 2	277	50	-7258.693415282352855 3	76	10
80	-466.7787859914 5598			-6883.469101614010341 5	100	10
90	-263.34133 396322586	277	80	-6511.908805493704025 3	120	10
100	-81.96 8568086503131	266	90	-6144.123904678133375 8	50	10

Table (2.10) Ground-Eigenvalues of $H=P^2-Z^2x^2+x^3$, first line; Power series method, second line; Finite difference method.

z²	2N=6	2 N= 8
10	-6.4992677532272037385 5	-3.8989421417276617529 9
20	-25.873341933134963221 1	-15.627815917394133097 7
30	-52.605929385341577824 4	-31.425427564099010519 9
40	-84.994723617999936575 5	-49.865701141857378133 3
50	-122.18207663325821604 4	-70.381264359788745992 2
60	-163.61339155967104506 6	-92.637881674226069367 7
70	-208.89144940573581971	-116.40920258886600541 1
80	-257.71347607128204661 1	-141.53001914553649406 6
90	-309.83870807596104881 1	-167.87356568705615233 3
100	-365.06971153870182453 3	-195.33899037173939921 1
200	-1060. 4973065988400747 7	-518.38616407723543045 5

Table (2.10 continued)					
z ²	2N=10	2N= 12			
50	-52.365473488933425275 5	-43.192869909602545797 7			
100	-141.94244577414856444	-116.33051998821458340 0			
150	-247.15072171575057049 9	-200.78317001845418303 3			
200	-363.26478559281811198 8	-292.82173518577718049 9			
300	-619.77069582251334703 3	-493.27921126175001974 4			
400	-901.20264660210148517	-710.12951383438231113			

-1202.3735210678165784

-2919.6363006336419018

-22294.052765625471015

-939.67627933180354305

-2219. 4897208181326835

-15771.018253812413033

2M	z ²	n	Energy eigenvalues	K	N
4	200	0	-9980.0050028159826954	4	13
		109	-5816.4449312862250544	50	113
		129	-5100.0590318897258274	50	144
	1000	0	-249955.27964050032130	80	10
		100	-241041.50309696648561	80	24
		200	-232188.90692320119850	80	31
	1000000		-2499999998585.78643863	30	1
		200	-249999432900.48208944	30	3
		500	-249998584372.97556629	30	3
		1000	-249997170161.66469846	30	3
		10000	-249971714614.57498827	30	5
		50000	-249858584730.45059914	30	7
		100000	-249717185879.62466239	30	9
		1000000	-247174577498.01323762	30	9
6	500	0	-4258.6688774276245144	30	15
		5	-3819.2954146189564726	61	300
		10	-3393.3180268582713776	98	300
	1000	0	-12108.420121823300736	18	20
		10	-10863.823057843175515	76	20
		15	-10255.624888140762639	75	300
	1000000	0	-384898179.46143444907	7	10
		100	-384498237.78001669689	9	10
		500	-382899626.49112269457	14	10
		1000	-380903964.87520528163	18	10
		10000	-345481878.91352133277	71	10
8	500	0	-1820.5389205617856685	155	5000
		5	-1308.16607088513062	333	5000
	1000	0	-4647.4912270594430333	54	2000
		10	-3201.2486360212548444	262	5000
	1000000	0	-47244589.906007874090	6	500
		100	-46755627.489189453771	22	500
		500	-44818331.790043854243	53	500
		1000	-42438588.627165190403	159	500

Table (2.11). Energy eigenvalues for $H=P^2-Z^2x^2+x^2$, by using renormalised series method.

2M	z ²	n	Energy eigenvalues	N	K
	500	0	-1202.37352106781		20000
	1000	0	-2919.6363006336419018		10000
	1000000	0	-16915111.894318432037	7	5000
		100	-16353718.777944851718		10000
		200	-15800800.650501761684	163	30000
		400	-14720236.325035974160	138	
		500	-14192510.169525537853	·	in the second
		1000	-11677743.500966862589		
12	1000	0	-2219.4897208181		50000
	5000	0	-15771.018263812413102		30000
	1000000	0	-9226557.5252702159236		5000
		50	-8913272.8692413813494	60	50000
		100	-8605713.0285369980016	81	1000000
		200	-8007487.6090856718034	144	6000000
		400	-6876576.6381132161111	273	8000000
		500	-6342697.57289155199	336	11000000
14	5000	0	-12569.894878042290449	154	100000
	1000000	0	-6193850.9596831714354	12	100000
		100	-5524739.6392872711763	153	9000000
		200	-4900537.3935722085611	327	5000000
16	5000	0	-10712.019695833569	308	280000
l í	1000000	0	-4675097.7776189004440	14	100000
		100	-3967520.7561902368199	221	12000000
		200	-3333753.123067	326	24000000
18	5000	0	-9512.740331150	326	500000
	1000000	0	-3794108.1595137526644	17	400000
		50	-3410435.5868953036452	151	9000000
		100	-3056514.452061896070	333	20000000

Table (2.11 continued)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
4 -249999998585.78643863 1306 -382901623.60062969913 3108 -47244589.906007874090 650010 -16915111.894318432037 7500012 -9226557.5252702159236 11500014 -6193850.9596831714354 1210000016 -4675097.7776189004440 1410000018 -3794108.1595137526644 1740000020 -3231448.2137844684225 5220000021 -2844228.9042498099145 3830000024 -2564211.6965375207819 4840000026 -2353439.4381257253101 7740000027 -2499691.1294772728892 12740000028 -2189691.1294772728892 12740000029 -2057317.5404059334392 6940000021 -249999984443.65090490 29006 -384878179.63464054929 660008 -47220097.786578726274 91000010 -16886840.389585966567 115000012 -9194969.4946575680202 173000014 -6159281.7823838970287 2120000016 -4637807.1533750004834 2680000020 -3203487.4823806587166 3035000000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10 -16915111.894318432037 7500012 -9226557.5252702159236 11500014 -6193850.9596831714354 1210000016 -4675097.7776189004440 1410000018 -3794108.1595137526644 1740000020 -3231448.2137844684225 5220000022 -2844228.9042498099145 3830000024 -2564211.6965375207819 4840000026 -2353439.4381257253101 7740000028 -2189691.1294772728892 12740000030 -2057317.5404059334392 694000002MENK4 -2499999984443.65090490 29006 -384878179.63464054929 660008 -47220097.786578726274 91000010 -16886840.389585966567 115000012 -9194969.4946575680202 173000014 -6159281.7823838970287 2120000016 -4637807.1533750004834 2680000018 -3754306.3381539108434 2980000020 -3203487.4823806587166 3035000000
12 -9226557.5252702159236 11500014 -6193850.9596831714354 1210000016 -4675097.7776189004440 1410000018 -3794108.1595137526644 1740000020 -3231448.2137844684225 5220000022 -2844228.9042498099145 3830000024 -2564211.6965375207819 4840000026 -2353439.4381257253101 7740000028 -2189691.1294772728892 12740000030 -2057317.5404059334392 694000002MENK4 -249999984443.65090490 29006 -384878179.63464054929 660008 -47220097.786578726274 91000010 -16886840.389585966567 115000012 -9194969.4946575680202 173000014 -6159281.7823838970287 2120000016 -4637807.1533750004834 2680000020 -3203487.4823806587166 3035000000
14 -6193850.9596831714354 1210000016 -4675097.7776189004440 1410000018 -3794108.1595137526644 1740000020 -3231448.2137844684225 5220000022 -2844228.9042498099145 3830000024 -2564211.6965375207819 4840000026 -2353439.4381257253101 7740000028 -2189691.1294772728892 12740000030 -2057317.5404059334392 694000002M E_5 NK4 -2499999984443.65090490 29006 -384878179.63464054929 660008 -47220097.786578726274 91000010 -16886840.389585966567 115000012 -9194969.4946575680202 173000014 -6159281.7823838970287 2120000016 -4637807.1533750004834 2680000020 -3203487.4823806587166 303500000
16 -4675097.7776189004440 1410000018 -3794108.1595137526644 1740000020 -3231448.2137844684225 5220000022 -2844228.9042498099145 3830000024 -2564211.6965375207819 4840000026 -2353439.4381257253101 7740000028 -2189691.1294772728892 12740000030 -2057317.5404059334392 694000002MENK4 -2499999984443.65090490 29006 -384878179.63464054929 660008 -47220097.786578726274 91000010 -16886840.389585966567 115000012 -9194969.4946575680202 173000014 -6159281.7823838970287 2120000016 -4637807.1533750004834 2680000020 -3203487.4823806587166 3035000000
18 -3794108.1595137526644 1740000020 -3231448.2137844684225 5220000022 -2844228.9042498099145 3830000024 -2564211.6965375207819 4840000026 -2353439.4381257253101 7740000028 -2189691.1294772728892 12740000030 -2057317.5404059334392 694000002MENK4 -2499999984443.65090490 29006 -384878179.63464054929 660008 -47220097.786578726274 91000010 -16886840.389585966567 115000012 -9194969.4946575680202 173000014 -6159281.7823838970287 2120000016 -4637807.1533750004834 2680000020 -3203487.4823806587166 3035000000
20 -3231448.2137844684225 52 20000 22 -2844228.9042498099145 38 300000 24 -2564211.6965375207819 48 400000 26 -2353439.4381257253101 77 400000 28 -2189691.1294772728892 127 400000 30 -2057317.5404059334392 69 400000 20 -2057317.5404059334392 69 400000 21 E N K 4 -2499999984443.65090490 2 900 6 -384878179.63464054929 6 6000 8 -47220097.786578726274 9 10000 10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
22 -2844228.9042498099145 38 300000 24 -2564211.6965375207819 48 400000 26 -2353439.4381257253101 77 400000 28 -2189691.1294772728892 127 400000 30 -2057317.5404059334392 69 400000 30 -2057317.5404059334392 69 400000 2M E N K 4 -249999984443.65090490 2 900 6 -384878179.63464054929 6 6000 8 -47220097.786578726274 9 10000 10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
26 -2353439.4381257253101 77 400000 28 -2189691.1294772728892 127 400000 30 -2057317.5404059334392 69 400000 2M E N K 4 -2499999984443.65090490 2 900 6 -384878179.63464054929 6 6000 8 -47220097.786578726274 9 10000 10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 20 -3203487.4823806587166 303 5000000
28 -2189691.1294772728892 127 400000 30 -2057317.5404059334392 69 400000 2M E N K 4 -2499999984443.65090490 2 900 6 -384878179.63464054929 6 6000 8 -47220097.786578726274 9 10000 10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
30 -2057317.5404059334392 69 400000 2M E N K 4 -2499999984443.65090490 2 900 6 -384878179.63464054929 6 6000 8 -47220097.786578726274 9 10000 10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
2M E N K 4 -2499999984443.65090490 2 900 6 -384878179.63464054929 6 6000 8 -47220097.786578726274 9 10000 10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
1 5 1 4 -2499999984443.65090490 2 900 6 -384878179.63464054929 6 6000 8 -47220097.786578726274 9 10000 10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
6 -384878179.63464054929 6 6000 8 -47220097.786578726274 9 10000 10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
8 -47220097.786578726274 9 10000 10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
10 -16886840.389585966567 11 50000 12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
12 -9194969.4946575680202 17 30000 14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
14 -6159281.7823838970287 21 200000 16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
16 -4637807.1533750004834 26 800000 18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
18 -3754306.3381539108434 29 800000 20 -3203487.4823806587166 303 5000000
20 -3203487.4823806587166 303 5000000
22 -2811292, 2855402582908 130 1200000
24 -2528588.1864523074806 54 5000000
26 -2315303.1307335050271 67 9000000
28 -2149192.4833116563563 69 1000000
30 -1995935.6018646606083 62 1200000
2M E ₁₀ N K
4 -249999970301.51552117 3 900
6 -384858180.09652682594 6 2000
8 -47195610.297303128682 11 4000
10 -16858590.159141109283 15 5000
12 -9163439.3251966807468 21 50000
14 -6124832.0681987239915 30 60000
16 -4600725.5125355944917 43 60000
18 -3714832.3451350217949 65 80000
22 -2811292.2855402582908 130 1200000
24 -2492902.3316859334126 84 1200000
26 -2315303. 1307335050270 67 1200000
28 -2108695.3955166933663 118 2000000

Table (2.12). Energy eigenvalue E_n of $H=P^2-10^8x^2+x^{2M}$

	be re	eached by the renormisle	· · · · · · · · · · · · · · · · · · ·				
	Z^2	E	N	K	E 10	N	K
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-615.02009090275781659	25	4	-422.06878846889065343	91	16
	60	-889.06227300486193004	25	10	-675.74835854298220857	67	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70	-1213. 1821651898549119	20	4	-981.43650963590381001	62	20
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	80	-1587.3634172895388897	20	10	-1338.6355945195635901	47	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	90	-2011.5947240357247713	17	4	-1747.0286463771624767	44	12
	100	-2485.8678803420752944	16	4	-2206.3979330858386704	41	16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110	-3010. 1767065098313495	16	4			12
	120	-3584.5164100613252041	16	10	-3277.4733922495277308	43	40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	130		15	4	-3888.9685692722225034	34	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	140		15	4	-4550.9979232479539362	31	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	150		14	4	-5263.5018928297392613	33	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	160		14	4		28	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	170	-7206.5667976672927759	14	4	-6839.7450548666047199	32	30
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	180	-8081.0318932598986501	13	4	-7703.4082296071414350	36	32
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	190			4			12
	200		13	4	-9581.6675134170916509	30	40
	-72	E	N	K	E	N	K
			120	16		120	201
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						The second second	ليستعدا
			the second se				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-			The second second	Concession of the local division of the loca
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	The second se					_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							ليستعدها
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-	لتسعا
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							لتستعا
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							ليستحصا
Z^2 E_{39} NK E_{49} NK5023.65564060606060-134.38641383070-369.9234537514032-187.63501404080-667.68014201691314030-457.8825271405090-1023.08673718401159914032-791.0525217044814040100-1434.005490617174474911730-1182.63634977017858413730110-1899.18881631712162329830-1630.40566358599584212132120-2417.82019909082399088424-2133.023464046737138510730130-2989.32537025210917277016-2689.59894015438412858920140-3613.27976493135150717030-3299.49741960836401167920150-4289.35770970954713246116-3962.24496513449506787624160-5017.30218102184285575720-4677.47508035583157656820170-5796.90568331243741655316-5444.89656797828608656320180-6627.99757260075693255116-6264.27298865361703446132190-7510.43532682318726794816-7135.40892254489236365724						K	l'anne anne anne anne anne anne anne anne
2 38 49 50 23.65 56 40 60 -134.3864 138 30 70 -369.92345375 140 32 -187.6350 140 40 80 -667.680142016913 140 30 -457.882527 140 50 90 -1023.086737184011599 140 32 -791.05252170448 140 40 100 -1434.0054906171744749 117 30 -1182.636349770178584 137 30 110 -1899.1888163171216232 98 30 -1630.405663585995842 121 32 120 -2417.8201990908239908 84 24 -2133.0234640467371385 107 30 130 -2989.3253702521091727 70 16 -2689.5989401543841285 89 20 140 -3613.2797649313515071 70 30 -3299.4974196083640116 79 20 150 -4289.3577097095471324 61 16 -3962.2449651344950678 76 24 160 -5017.3021810218428557 57 20 -4677.4750803558315765<				_		Contraction of the local division of the loc	
60 -134.3864 138 30 140 32 70 -369.92345375 140 32 -187.6350 140 40 80 -667.680142016913 140 30 -457.882527 140 50 90 -1023.086737184011599 140 32 -791.05252170448 140 40 100 -1434.0054906171744749 117 30 -1182.636349770178584 137 30 110 -1899.1888163171216232 98 30 -1630.405663585995842 121 32 120 -2417.8201990908239908 84 24 -2133.0234640467371385 107 30 130 -2989.3253702521091727 70 16 -2689.5989401543841285 89 20 140 -3613.2797649313515071 70 30 -3299.4974196083640116 79 20 150 -4289.3577097095471324 61 16 -3962.2449651344950678 76 24 160 -5017.3021810218428557 57 20 -4677.4750803558315765 68 20 170 -5796.9056833124374165 53		39			49		
70 -369.92345375 140 32 -187.6350 140 40 80 -667.680142016913 140 30 -457.882527 140 50 90 -1023.086737184011599 140 32 -791.05252170448 140 40 100 -1434.0054906171744749 117 30 -1182.636349770178584 137 30 110 -1899.1888163171216232 98 30 -1630.405663585995842 121 32 120 -2417.8201990908239908 84 24 -2133.0234640467371385 107 30 130 -2989.3253702521091727 70 16 -2689.5989401543841285 89 20 140 -3613.2797649313515071 70 30 -3299.4974196083640116 79 20 150 -4289.3577097095471324 61 16 -3962.2449651344950678 76 24 160 -5017.3021810218428557 57 20 -4677.4750803558315765 68 20 170 -5796.9056833124374165 53 16 -5444.8965679782860865 63 20 180							
80 -667.680142016913 140 30 -457.882527 140 50 90 -1023.086737184011599 140 32 -791.05252170448 140 40 100 -1434.0054906171744749 117 30 -1182.636349770178584 137 30 110 -1899.1888163171216232 98 30 -1630.405663585995842 121 32 120 -2417.8201990908239908 84 24 -2133.0234640467371385 107 30 130 -2989.3253702521091727 70 16 -2689.5989401543841285 89 20 140 -3613.2797649313515071 70 30 -3299.4974196083640116 79 20 150 -4289.3577097095471324 61 16 -3962.2449651344950678 76 24 160 -5017.3021810218428557 57 20 -4677.4750803558315765 68 20 170 -5796.9056833124374165 53 16 -5444.8965679782860865 63 20 180 -6627.9975726007569325 51 16 -6264.2729886536170344 61 32 <tr< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></tr<>			-				
90 -1023.086737184011599 140 32 -791.05252170448 140 40 100 -1434.0054906171744749 117 30 -1182.636349770178584 137 30 110 -1899.1888163171216232 98 30 -1630.405663585995842 121 32 120 -2417.8201990908239908 84 24 -2133.0234640467371385 107 30 130 -2989.3253702521091727 70 16 -2689.5989401543841285 89 20 140 -3613.2797649313515071 70 30 -3299.4974196083640116 79 20 150 -4289.3577097095471324 61 16 -3962.2449651344950678 76 24 160 -5017.3021810218428557 57 20 -4677.4750803558315765 68 20 170 -5796.9056833124374165 53 16 -5444.8965679782860865 63 20 180 -6627.9975726007569325 51 16 -6264.2729886536170344 61 32 190 -7510.4353268231872679 48 16 -7135.4089225448923636 57 24	70					Reasonable in the second	
100 -1434.0054906171744749 117 30 -1182.636349770178584 137 30 110 -1899.1888163171216232 98 30 -1630.405663585995842 121 32 120 -2417.8201990908239908 84 24 -2133.0234640467371385 107 30 130 -2989.3253702521091727 70 16 -2689.5989401543841285 89 20 140 -3613.2797649313515071 70 30 -3299.4974196083640116 79 20 150 -4289.3577097095471324 61 16 -3962.2449651344950678 76 24 160 -5017.3021810218428557 57 20 -4677.4750803558315765 68 20 170 -5796.9056833124374165 53 16 -5444.8965679782860865 63 20 180 -6627.9975726007569325 51 16 -6264.2729886536170344 61 32 190 -7510.4353268231872679 48 16 -7135.4089225448923636 57 24				-			
110-1899.18881631712162329830-1630.40566358599584212132120-2417.82019909082399088424-2133.023464046737138510730130-2989.32537025210917277016-2689.59894015438412858920140-3613.27976493135150717030-3299.49741960836401167920150-4289.35770970954713246116-3962.24496513449506787624160-5017.30218102184285575720-4677.47508035583157656820170-5796.90568331243741655316-5444.89656797828608656320180-6627.99757260075693255116-6264.27298865361703446132190-7510.43532682318726794816-7135.40892254489236365724	90						
120 -2417.8201990908239908 84 24 -2133.0234640467371385 107 30 130 -2989.3253702521091727 70 16 -2689.5989401543841285 89 20 140 -3613.2797649313515071 70 30 -3299.4974196083640116 79 20 150 -4289.3577097095471324 61 16 -3962.2449651344950678 76 24 160 -5017.3021810218428557 57 20 -4677.4750803558315765 68 20 170 -5796.9056833124374165 53 16 -5444.8965679782860865 63 20 180 -6627.9975726007569325 51 16 -6264.2729886536170344 61 32 190 -7510.4353268231872679 48 16 -7135.4089225448923636 57 24				-		the second se	
130 -2989.3253702521091727 70 16 -2689.5989401543841285 89 20 140 -3613.2797649313515071 70 30 -3299.4974196083640116 79 20 150 -4289.3577097095471324 61 16 -3962.2449651344950678 76 24 160 -5017.3021810218428557 57 20 -4677.4750803558315765 68 20 170 -5796.9056833124374165 53 16 -5444.8965679782860865 63 20 180 -6627.9975726007569325 51 16 -6264.2729886536170344 61 32 190 -7510.4353268231872679 48 16 -7135.4089225448923636 57 24				30			
140-3613.27976493135150717030-3299.49741960836401167920150-4289.35770970954713246116-3962.24496513449506787624160-5017.30218102184285575720-4677.47508035583157656820170-5796.90568331243741655316-5444.89656797828608656320180-6627.99757260075693255116-6264.27298865361703446132190-7510.43532682318726794816-7135.40892254489236365724				24			l'anne an
150-4289.35770970954713246116-3962.24496513449506787624160-5017.30218102184285575720-4677.47508035583157656820170-5796.90568331243741655316-5444.89656797828608656320180-6627.99757260075693255116-6264.27298865361703446132190-7510.43532682318726794816-7135.40892254489236365724							20
160 -5017.3021810218428557 57 20 -4677.4750803558315765 68 20 170 -5796.9056833124374165 53 16 -5444.8965679782860865 63 20 180 -6627.9975726007569325 51 16 -6264.2729886536170344 61 32 190 -7510.4353268231872679 48 16 -7135.4089225448923636 57 24							20
170 -5796.9056833124374165 53 16 -5444.8965679782860865 63 20 180 -6627.9975726007569325 51 16 -6264.2729886536170344 61 32 190 -7510.4353268231872679 48 16 -7135.4089225448923636 57 24							24
180 -6627.9975726007569325 51 16 -6264.2729886536170344 61 32 190 -7510.4353268231872679 48 16 -7135.4089225448923636 57 24							20
190 -7510. 4353268231872679 48 16 -7135. 4089225448923636 57 24							20
190 -7510.4353268231872679 48 16 -7135.4089225448923636 57 24 200 -8444.0983426739195579 48 24 -8058.1404367453636516 55 2							32
200 -8444.0983426739195579 48 24 -8058.1404367453636516 55 2	190	-7510.4353268231872679	48				24
	200	-8444.0983426739195579	48	24	-8058.1404367453636516	55	2

Table (2.13). Eigenvalues of double well potential, $H=P^2-Z^2x^2+x^4$, the empty spaces mean that the corresponding eigenvalues cannot be reached by the renormisled series method.

Z^2	Е 59	N	K	E 69	N	K
<u>م</u> 50						
60						
70	-31.3	170	50		`	`
80	-263.121	140	40	-89.47	140	56
90	-570.1662364	140	50	-362.7145	140	
100	-940.2743771491	140	36	-708. 1452123	140	
110	-1369.239504119219	139	40	-1116.457064712	133	50
120	-1854.8549208896795879	136	40	-1583.8398505019	95	36
130	-2395.7557500210651164	116	40	-2108.177379194777166	139	46
140	-2991.0138268741596687	103	40	-2688.1181443495960919	128	50
150	-3639.9584608428570838	86	24	-3322.7244062434622529	109	40
160	-4342.0833137029717077	80	30	-4011.3083110492964484	96	36
170	-5096.9933963064054984	73	24	-4753.3446350647740583	85	30
180	-5904.3726007046359721	68	32	-5548.4199298315017611	80	32
190	-6763.9626916746914429	67	30	-6396.2008403338927144	73	30
200	-7675.5491116678069292	62	24	-7296.4133277748366471	71	32
Z ²	E	N	K	E	N	K
	79	<u> </u>	}	89	<u> </u>	}
50			<u> </u>		ļ	
60			Į		ļ	<u> </u>
70					<u> </u>	
80	170 04	140	60	-11.2	170	64
90	-172.84 -488.032402	138	42	-282.855	140	
100	-488.032402	158	42	-640.4631818	140 159	
110	-1320,627466309276	155	40 30	-1066.0461733		
120	-1320.827488309278	169	40	-1553.7247034176151	135	Contractory of the local division of the loc
130		145	40		171	40
140		145 195	40		161	40
150	-3010.7987700769314178 -3685.3521178273382944	126	36	-2704.4741529950278715 -3364.4414582393011809	14/	40
160		and the second second	50 60		133	la seconda de la constante de
170	-4414.1135420543346174	_		-4079.4806988304248378		A
	-5196.5494174466278255	_	32	-4848.9080726802675185		استعتباه
	-6032.2358317382823444		40	-5672.1894960584758516		40
	-6920.8284161009304491		40			40
Z^2	E 99	N	K	E	N	Γ Χ
50						
60					;	î –
70			Î		<u> </u>	ŕ
80		·			;	;
90			Î		î	^
	-98.5	140	60		;	
	-420.7599	151		-217.65	170	64
	-821.199853			-587.6543	170	
	-1288.0840886	136			170	
	-1816.603509440355	162		-1540.07063786699	167	a summer of the local division of the local
	-2404.0890583259665518	the second se		-2110.0407404457227	166	
				-2738.8202482064881885		
170	-3749.6471827168237798	136	50	-3424.8385989487090213	149	150
180	-4505.6574830881116335	125	64	-4166.9762973144787464	138	60
190	-5316.1943569464700038	110	50	-4964.3952316470177006	121	50
200	-6180.7291424458160399	103	60	-5816.4449312862256552	112	60
180 190	-4505.6574830881116335 -5316.1943569464700038	125 110	64 50	-4166.9762973144787464 -4964.3952316470177006	138 121	Î

Table	(2.13	continued)

Z ²	E 119	N	K	E 129	N	K
150	-1822.8035987948	162	50	-1542.2956578997	167	50
160	-2434.7429901443612	162	50	-2137.00019932509	163	50
170	-3105.3102938846409295				160	50
180				-3504.1415060634419202		
190	-4616.9511808588504792	136	58	-4274.0379119004966888	148	50
200	-5456.1742418345963221	124	60	-5100.0590318897258282	132	50

.

2.4 Expectation value calculations $\langle x^{2N} \rangle$

2.4 .1 Introduction

Our aim in this section to find expectation values $\langle x^{2N} \rangle$ for the potential

$$V(x) = x^2 + \lambda x^4$$
 (2.73)

However to find an expectation value such as $\langle x^{2N} \rangle$ for a bound state, we need to have the eigenfunction $\Psi(x)$ for all x if we wish to apply the definition

$$\langle \mathbf{x}^{2N} \rangle = \int \Psi^2(\mathbf{x}) \ \mathbf{x}^{2N} d\mathbf{x}$$
 (2.74)

To find $\Psi(x)$ for arbitrary x and for any state number (n=0,1,2...9,10), is not easy. However Killingbeck [12,1979] has applied a very simple perturbative numerical algorithm for the calculation of an expectation value, based on the formula

$$\langle \mathbf{x}^{2N} \rangle = \mathrm{Lt}_{\varepsilon \longrightarrow 0} \frac{1}{2\varepsilon} \left[\mathrm{E}(\mathrm{H} + \varepsilon \mathbf{x}^{2N}) - \mathrm{E}(\mathrm{H} - \varepsilon \mathbf{x}^{2N}) \right]$$
 (2.75)

This algorithm demonstrate that expectation values can be determined by an approach based on eigenvalue calculations, without the explicit use of wavefunctions. The way in which we can calculate is as follows; we do two calculations, to get two E values, with $\mp \epsilon x^{2N}$ included in the potential

$$\mathbf{E}_{+} = \mathbf{x}^{2} + \lambda \mathbf{x}^{4} + \varepsilon \mathbf{x}^{2N} \qquad (2.76)$$

$$\mathbf{E} = \mathbf{x}^2 + \lambda \mathbf{x}^4 - \varepsilon \mathbf{x}^{2N} \qquad (2.77)$$

where ε is a very small number. The value of $\langle x^{2N} \rangle$ is then

given by

$$\langle \mathbf{x}^{2N} \rangle = \frac{1}{2\epsilon} \left[\mathbf{E}_{+} - \mathbf{E}_{-} \right]$$
 (2.78)

The Hellmann-Feynman and the virial theorem also provide relationships between the energy and the expectations values $\langle x^2 \rangle$, $\langle x^4 \rangle$ which take the form

$$2E\left[N+1\right]\langle x^{N}\rangle = \left[2N+4\right]\langle x^{N+2}\rangle + \left[2N+6\right]\lambda\langle x^{N+4}\rangle - \frac{N}{2}\left[N^{2}-1\right]\langle x^{N-2}\rangle \quad (2.79)$$

We used the Hellmann-Feynman theorem to calculate the expectation values along with the energies for potential (2.73), and can calculate the coefficients in the series

$$\langle x^{2n} \rangle = A(2n,0) + A(2n,1) \lambda + A(2n,2) \lambda^{2} + A(2n,3) \lambda^{3} + \dots (n=1,2) (2.80)$$

2.4.2 Results and discussion

The energy eigenvalues and expectation values $\langle x^{2N} \rangle$ (2N=2,4) of the potential $V(x)=x^2+\lambda x^4$ have been calculated $0 \le n \le 10$ and for various values number for state of $(\lambda = 0.1, 1, 10, 100)$ using three different methods; the renormalised series method, the finite difference method and the power series method. The energy and expectation values as obtained by these methods are compared with each other, the agreement between them being very good. To use power series or finite difference methods to calculate the expectation values $\langle \Psi | x^{2N} | \Psi \rangle$ (2N=2,4) of the x^{2N} , we simply calculate the energy twice, once for Hamiltonian $H+\varepsilon x^{2N}$ and once for H- εx^{2N} . According to the first order energy formula the difference between them equals $2\varepsilon \langle \Psi | x^{2N} | \Psi \rangle$ if ε is sufficiently small. It is important to point out the effect of the parameter value ε in obtaining high accuracy of $\langle x^{2N} \rangle$. The best values of ε in this calculations have been obtained by numerical search. An ε value $\varepsilon = 10^{-8}$ gave 15 digits accuracy, but larger values such as $\varepsilon > 10^{-8}$ produced less accuracy. Our results were checked by noting that the independently calculated values of E, $\langle x^2 \rangle$ and $\langle x^4 \rangle$ obeyed the virial theorem

$$\mathbf{E}=2\langle \mathbf{x}^2 \rangle + 3\lambda \langle \mathbf{x}^4 \rangle \tag{2.83}$$

In tables (2.15) and (2.16) we list the energy E, E and the expectation values for $\langle x^{2N} \rangle$ (2N=2,4) for state number $0 \leq n \leq 10$ and for $(\lambda=0.1,1,10,100)$, with the value $\varepsilon=10^{-3}$. This value seems good for high values of λ and gives 10 digits accuracy, but the accuracy decrease with small values of λ . The results presented in tables (2.15,2.16) are computed by power series and renormalised series methods. The agreement between them is very good. In table (2.17) we present the energy eigenvalues and the expectation values by using renormalisd series and power series, with the smaller value $\varepsilon = 10^{-8}$. The two methods achieve the same accuracy. We wish to mention that to produce results by using renormalised series with a high accuracy, we worked hard to achieve that, e.g by changing the value of the overflow parameter $(2^N, N=1,2,3..)$ and also by increasing the dimension of B(N,M) together with varying the renormalised constant. We checked some of our

results which are given in tables (2.16,2.17,2.18) by using the finite difference method, which gives the same accuracy as that achieved by the power series. Our results also agree with those available results reported in the literature. Table (2.14) Calculations for energy and expectation values for potential $V(x)=x^2+\lambda x^4$, First line; renormalised series calculation, Second line; power series calculations, with digits before the last digit omitted; by applying approach

~PP`	$\langle x^{N} \rangle = Lt \xrightarrow{\epsilon \longrightarrow 0} \frac{E(H + \epsilon x^{N}) - E(H - \epsilon x^{N})}{2\epsilon}$, where $\epsilon = 10^{-3}$					
		ε	2ε	,		
n	λ	E,	E_	<x<sup>2></x<sup>		
0	0.1	1.0657312508	1.0648396060			
		1 3926574323	1.3920458050	4		
		3	0	7		
	10	2.4493355238	2.4490126139	0.0161454961		
	100	8 4.9994948571	9993402324	1		
		1	4	4		
1	0.1	3.3081357074	3.3056079231	1.2638921729		
	1	4	1 4.6480114098	9		
		4.0490139110	*.0400114098 8	3		
	10	8.5994107868	8.5985961196	0.4073374364		
		8	6	4		
	100	17.830385818	17.829999612	0.1931030445		
2	0 1	5.7499260520	2 5,7459919765	5 1,9670377164		
	0.1	0	5	4		
	1	8.6562053559	8.6538944749	1.1554405209		
	10	9 16.636489980	9	9		
	10	10.030489980	10.030302994	0.0084930030		
	100	34.874251496	34.873717026	0.2672348645		
		6	6	5		
3	0.1	8.3552785070 0	8.3500765658 8	2.6009706620		
	1	13.158271378	13.155336331	1.4675232168		
		8	1	8		
	10	25.806989984	25.805562436	0.7137739458		
	100	4 54.385626271	54 394956970	8		
	100	54. 300020271 1	0/00024130070	8		
4	0.1	11.101781814	11.095408804	3.1865048938		
		4	4	8		
	1	18.059308332 2	18.055806453	1.7509395029		
	10	<u>2</u> 35.886016698	35.884325736	0.8454807074		
		8	6	4		
	100		75.876608202	0.3958257267		
		3	2	7		

Table	(2.14	continued)
Tante (Concinaca)

			,	
5	0.1	13.973661365 5	13.966190368 8	3.7354986998 8
	1	23.299455474	23.295427339	2.0140677462
		4	9 46.728113149	2
ł	10	40.730048042	40.720113149	0.30/7400408
	100	99.033289890	99.032384739	0.4525750726
Ļ		0 16.959049865	9	6
6	0.1	10. 353043805	7	4.2000208000
	1	28.837600119	28.833076711	2.2617039597
	10	9	1 58.240215941	7
	10	38.242381328	1	1.0827934202
	100	123.64120360	123.64019165	0.5059746788
 _		0 20.048615033	5	8
7	0.1	20.048615033	20.039111463	4.7517850555
	1	34.643345233	34.638351319	2.4969570822
		3	9	2
	10	70.352244006	70.349859862 2	1.1920723094
	100	149.54621414	149.54510074	0.5566976000
		4	4	0
8	0.1	23.234779867	23.224323763	5.2280519894
	h	40.693108022	40.687664052	2.7219848517
		2	2	7
	10	83.005163623	83.002570442	1.2965901214
	100	176.62926116	176.62805074	0.6052108228
		6	4	8
9	0.1	26.511241545	26.499867217	5.6871639989
	-	5 46,967947822	46.962071098	2,9383621094
ł		2	8	4
	10	96.157660058	96.154865895	1.3970815052
I	100	8 204.79542636	5 204 79412265	2
ĺ	100	204.73342030	5	2
10	0.1	29.872656183	29.860393530	6. 1313261689
I		3	0 53.445954812	9
	1	53.4522493/7 7	53.445954812 2	3.14/2826901
	10	109.77406496	109.77107675	1.4941031665
		6	5	5
	100	233.96692276		-
		6	8	2

-65-

Table (2.15) Calculations for energy and expectation values for potential $V(x)=x^2+\lambda x^4$, First line; Renormalised series calculation, Second line; Power series calculations, with digits before the last digit omitted; by applying approach

		20 20		
n	λ	E •	E_	<x<sup>4></x<sup>
0	0.1	1.0658637339 9	1.0647061263 3	0.5788037991 1
	1	1.3926118200	1.3920913371	0.2602414736
	10	0	$1 \\ 2.4484650975$	0.0708754831
		2	5	1
	100	5.0010319464	4.9978020840	0.1614931223
		<u>4</u> 3.3094655735	0	3 5050577059
1	0.1	3.3094055735	5.3042/103/9 9	2.0505077508
	1	4.6498278726	4.6477969980	1.0154372948
	10	8.6015974093	0	8
		3	1	2
	100	17.836005462	17.824376135	0.0581466326
-		2 5.7539959659	5 7419022409	6
2	0.1	5.753955655 9	5.7415033455 9	5.0403079955
	1	8.6571640856	8.6529346391	2.1147232607
		6		7
	10	16.641086144 4	16.630753518 8	U. 5166312684 4
	100	34.885426983	34.862533969	0.1144650693
		3	9	3
3	0.1	8.3631613706	8.3421563357	10.502517462
	1	13, 160210159	13.153395653	2 3.4072529821
		9	3	1
	10	25.814399827	25.798147339	0.8126244202
	100	54, 403190940	9 54 367380340	2 0 1790529989
	100	54. 1 03130340 0	0	9
4	0.1		11.082812529	15.752062771
	┝──┤	5	9 18.052704100	1
	1	10.002407007	0	4.0010000404
	10	35.896565586	35.873769442	1.1398071955
		6	2	5
	100	75.902024185 5	75.851967274 4	0.2502845544 4

 $<_{x}^{N}>=Lt \xrightarrow{\epsilon \longrightarrow \infty} \frac{E(H+\epsilon x^{N})-E(H-\epsilon x^{N})}{2\epsilon}$, where $\epsilon=10^{-3}$

Table (2.15 continued)

-				
5	0.1	13.991544047 7	13.948217515 5	21.663265930 0
1		23 303862617	23.291016411	6.4231029783
		7	1	3
	10	46.744007227	46.714144830	1.4931198529
		7	0	9
	100	99.065535697	99.000117227	0.3270923506
		7	7	4
6	0.1	16.982878902	16.926586773	28.146064525
		2	3	5
	1	28.843439957	28.827232011	8.1039781226
	10	8	158.222600720	6
	10	58.259984534	58.222600720	1.8091901310
	100	4	123.59980780	0 1007625602
1	100	123.08150031	123. 33360760	0.400/020093
			20.008648861	35 134634931
'	0.1	20.078518130	20.000040001	35. 154054251
		24 650727597	34.630962971	4 0 00221205/0
	1	7	1	3.0023123048 R
	10	70.373700157	70.328388877	2,2655639839
		7	7	9
	100	149.59511844	149.49616358	0.4947742984
		4	8	4
8	0.1	23.272030734	23.186873585	42.578574083
8	0.1	4	5	3
8	0.1 1	4	23.186873585 5 40.678633641	3
8		4 40.702131255 5	5 40.678633641 1	3 11.748807359 9
8		4 40.702131255 5	5	3 11.748807359 9
8	1 10	4 40.702131255 5 83.030661812 2	5 40.678633641 1 82.977054678 8	3 11.748807359 9 2.6803567087 7
8	1 10	4 40.702131255 5 83.030661812 2	5 40.678633641 1 82.977054678	3 11.748807359 9 2.6803567087 7
	1 10 100	4 40.702131255 5 83.030661812 2 176.68710928 8	5 40.678633641 1 82.977054678 8 176.57016377 7	3 11.748807359 9 2.6803567087 7 0.5847275551 1
8	1 10 100	4 40.702131255 5 83.030661812 2 176.68710928 8	5 40.678633641 1 82.977054678 8	3 11.748807359 9 2.6803567087 7 0.5847275551 1
	1 10 100 0.1	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5	5 40.678633641 1 82.977054678 8 176.57016377 7 26.454995374 4	3 11.748807359 9 2.6803567087 7 0.5847275551 1 50.437935400 0
	1 10 100	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5	5 40.678633641 1 82.977054678 8 176.57016377 7	3 11.748807359 9 2.6803567087 7 0.5847275551 1 50.437935400 0
	1 10 100 0.1 1	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5 46.978701344 4	5 40.678633641 1 82.977054678 8 176.57016377 7 26.454995374 4 46.951309149 9	3 11.748807359 9 2.6803567087 7 0.5847275551 1 50.437935400 0 13.696097332 2
	1 10 100 0.1	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5 46.978701344 4	5 40.678633641 1 82.977054678 8 176.57016377 7 26.454995374 4	3 11.748807359 9 2.6803567087 7 0.5847275551 1 50.437935400 0 13.696097332 2
	1 100 0.1 1	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5 46.978701344 4 96.187373466 6	5 40.678633641 1 82.977054678 8 176.57016377 7 26.454995374 4 46.951309149 9 96.125132055 5	$\begin{array}{r} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\end{array}$
	1 10 100 0.1 1	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5 46.978701344 4 96.187373466 6	5 40.678633641 1 82.977054678 8 176.57016377 7 26.454995374 4 46.951309149 9	$\begin{array}{r} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\end{array}$
9	1 100 0.1 1 100	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5 46.978701344 4 96.187373466 6 204.86258234 4	$5 \\ 40.678633641 \\ 1 \\ 82.977054678 \\ 8 \\ 176.57016377 \\ 7 \\ 26.454995374 \\ 4 \\ 46.951309149 \\ 9 \\ 96.125132055 \\ 5 \\ 204.72692160 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{r} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\\0.6783036714\\4\end{array}$
9	1 100 0.1 1	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5 46.978701344 4 96.187373466 6 204.86258234 4	5 40.678633641 1 82.977054678 8 176.57016377 7 26.454995374 4 46.951309149 9 96.125132055 5	$\begin{array}{c} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\\0.6783036714\\4\\58.680196698\end{array}$
9	1 100 0.1 1 100 0.1	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5 46.978701344 4 96.187373466 6 204.86258234 4 29.925061173 3	5 40.678633641 1 82.977054678 8 176.57016377 7 26.454995374 4 46.951309149 9 96.125132055 5 204.72692160 0 29.807700780 0	$\begin{array}{r} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\\0.6783036714\\4\\58.680196698\\8\end{array}$
9	1 100 0.1 1 100	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5 46.978701344 4 96.187373466 6 204.86258234 4	$5 \\ 40.678633641 \\ 1 \\ 82.977054678 \\ 8 \\ 176.57016377 \\ 7 \\ 26.454995374 \\ 4 \\ 46.951309149 \\ 9 \\ 96.125132055 \\ 5 \\ 204.72692160 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{r} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\\0.6783036714\\4\\58.680196698\\8\end{array}$
9	1 100 0.1 1 100 0.1 1	$\begin{array}{r} & 4\\ 40.702131255\\ & 5\\ 83.030661812\\ & 2\\ 176.68710928\\ & 8\\ 26.555871245\\ & 5\\ 46.978701344\\ & 4\\ 96.187373466\\ & 6\\ 204.86258234\\ & 4\\ 29.925061173\\ & 3\\ 53.464815411\\ & 1\end{array}$	$5 \\ 40.678633641 \\ 1 \\ 82.977054678 \\ 8 \\ 176.57016377 \\ 7 \\ 26.454995374 \\ 4 \\ 46.951309149 \\ 9 \\ 96.125132055 \\ 5 \\ 204.72692160 \\ 0 \\ 29.807700780 \\ 0 \\ 53.433379048 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\$	$\begin{array}{r} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\\0.6783036714\\4\\58.680196698\\8\\15.718181507\\7\end{array}$
9	1 100 0.1 1 100 0.1	4 40.702131255 5 83.030661812 2 176.68710928 8 26.555871245 5 46.978701344 4 96.187373466 6 204.86258234 4 29.925061173 3	$5 \\ 40.678633641 \\ 1 \\ 82.977054678 \\ 8 \\ 176.57016377 \\ 7 \\ 26.454995374 \\ 4 \\ 46.951309149 \\ 9 \\ 96.125132055 \\ 5 \\ 204.72692160 \\ 0 \\ 29.807700780 \\ 0 \\ 53.433379048 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\$	$\begin{array}{r} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\\0.6783036714\\4\\58.680196698\\8\\15.718181507\\7\\3.5594794605\end{array}$
9	1 100 0.1 1 100 0.1 1 10	$\begin{array}{r} & 4\\ 40.702131255\\ & 5\\ 83.030661812\\ & 2\\ 176.68710928\\ & 8\\ 26.555871245\\ & 5\\ 46.978701344\\ & 4\\ 96.187373466\\ & 6\\ 204.86258234\\ & 4\\ 29.925061173\\ & 3\\ 53.464815411\\ & 1\\ 109.80815395\\ & 5\end{array}$	$5 \\ 40.678633641 \\ 1 \\ 82.977054678 \\ 8 \\ 176.57016377 \\ 7 \\ 26.454995374 \\ 4 \\ 46.951309149 \\ 9 \\ 96.125132055 \\ 5 \\ 204.72692160 \\ 0 \\ 29.807700780 \\ 0 \\ 53.433379048 \\ 8 \\ 109.73696436 \\ 6 \\ 6 \\ 109.73696436 \\ 6 \\ 6 \\ 0 \\ 109.73696436 \\ 6 \\ 0 \\ 109.73696436 \\ 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{r} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\\0.6783036714\\4\\58.680196698\\8\\15.718181507\\7\\7\\3.5594794605\\5\end{array}$
9	1 100 0.1 1 100 0.1 1	$\begin{array}{r} & 4\\ 40.702131255\\ & 5\\ 83.030661812\\ & 2\\ 176.68710928\\ & 8\\ 26.555871245\\ & 5\\ 46.978701344\\ & 4\\ 96.187373466\\ & 6\\ 204.86258234\\ & 4\\ 29.925061173\\ & 3\\ 53.464815411\\ & 1\\ 109.80815395\\ & 5\end{array}$	$5 \\ 40.678633641 \\ 1 \\ 82.977054678 \\ 8 \\ 176.57016377 \\ 7 \\ 26.454995374 \\ 4 \\ 46.951309149 \\ 9 \\ 96.125132055 \\ 5 \\ 204.72692160 \\ 0 \\ 29.807700780 \\ 0 \\ 53.433379048 \\ 8 \\ 109.73696436 \\ 8 \\ 109.73696436 \\ 0 \\ 109.73696436 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{r} 3\\11.748807359\\9\\2.6803567087\\7\\0.5847275551\\1\\50.437935400\\0\\13.696097332\\2\\3.1120705600\\0\\0.6783036714\\4\\58.680196698\\8\\15.718181507\\7\\7\\3.5594794605\\5\end{array}$

Table (2.16) Calculations for energy and expectation values for potential $V(x)=x^2+\lambda x^4$, first line by using power series, second line by using renormalised series method with $\varepsilon=10^{-8}$.

n	λ	E	<x<sup>2></x<sup>	<x<sup>4></x<sup>
0	0.1	1.0652855095437176	0.44582235824066	0.57880264354132
	1	1.3923516415302918	0.30581365071758	2 0.26024144669837
	10	8 2.4491740721183869	8 0.16145496089184	7 0,07087547167782
		7	4	2
	100	4.9994175451375878 8	0.07731237343730 0	0.0161 4 930932750 0
1	0.1	3.3068720131529135	1.26389211766864	2.59695925938542
	1	5 4.6488127042120775	0.80125059554115	ے 1.01543717104325
	10	5 8.5990034548077726	5	5
		6	4	7
	100	17.830192715952522	0.19310304450722	0.05814662208979
2	0.1	5.7479592688335633	1.96703766221280	6.04627981469316
	1	3 8,6550499577593096	0	6 2.11472297312004
		6	8	4
	10	16.635921492413757 5	0.56849306360089 9	0.51663117884040 0
	100	34.873984261994777	0.26723486462936	0.11446504844245
3	0.1	8.3526778257857547	2.60097061177047	5 10.5024553408159
	1	7 13.156803898049875	7	9
	-	5	6	1
	10	25.806276215055640 39	0.71377394584474 4	0.81262427744553 3
	100	54.385291571603103	0.33470086388409	0.17905296614611
4	0.1	3 11.098595622633043	9 3.18650484762779	1 15.7519530912581
		3	9	1
	1	18.057557436303252 2	1.75093950176114	4.85189281092698 8
	10	35.885171222253873	0.84548070739381	1.13980699358220
	100	75.877004028669724	0.39582572678423	0.25028450858367
-	0 1	4 13.969926197742799	3 73549865728394	7
5	0.1	9	4	7
	1	23.297441451223189 9	2.01406774527822 2	6. 423 10198688891
	10	46.729080900817113	0.96774664678119	1.49311958690849
	100	2 99.032837315407491	9 0.45257507264502	9
		1	2	5

-67-

Table (2.16 continu	ued)
---------------------	------

6	0.1	16.954794686144151 1	4.25552379593961 1	28.1458236475497 7
	1	28.835338459504248 8	2.26170395885470 0	8.10397684726494 4
	10	58.241298739753240 0	1.08279342025741 1	1.86919039664128
	100	123.64069762667816	0.50597467881920	0.40876249423013
7	0.1	20.043863604188461	4.75178501889781	35.1343118879761
		34.640848321111332	2.49695708143743	9.88231138607882
	10	2 70.351051939234653	3 1.19207230947230	2 2.26556357734300
	100	3 149.54565744328822	0 0.55669760006523	0 0.49477420747719
8	0.1	2 23.229552179939289	3 5.22805195520688	9 42.5781608984183
		9 40.690386082106444	8 2.72198485098651	3 11.7488054600444
	10	4 83.003867037585290	1.29659012138593	4 2,68035622649378
	100	0 176.62865595771435	3	8
9		5 26.505554752536617	8	1
9		7	2	9
		46.965009505675527 7	3	1
	10	96.156262981197759 9	2	3.11206999902275 5
	100	204.79547745129447 7	0.65185526725474 4	0.67830354659478 8
10	0.1	29.866525234671278 8	6.13132613856471 1	58.6795765251395 5
	1	53.449102139665264 4	3.14728268954319 9	15.7181789201929 9
	10	109.77257084332974 4	1.49410316653190	3.55947881770897 7
	100	233.96692258762359 9	0.69889213426304	0.77524149149794
	L	<u> </u>		

CHAPTER THREE

TWO, THREE AND (N=4,5,6..) DIMENSIONAL PROBLEMS

3.1 Introduction

The aim of this chapter is to investigate numerically the potentials in two, three and N dimensions which are given as below

$$V(x,y) = \frac{1}{2} \left[x^{2} + y^{2} \right] + \lambda \left[a_{11} x^{4} + 2a_{12} x^{2} y^{2} + a_{22} y^{4} \right]$$
(3.1)

$$V(\mathbf{r}) = \mu \mathbf{r}^{2} + \ell(\ell+1) \mathbf{r}^{-2} + \lambda \mathbf{r}^{2M} \qquad (2M=4,6,8) \qquad (3.2)$$

$$V_{N}(r) = \mu r^{2} + \frac{1}{4} \left[[N + 2\ell - 3] [N + 2\ell - 1] \right] r^{-2} + \lambda r^{4}$$
(3.3)

We used three methods, the inner product method, the renormalised series method, and the power series method to calculate the eigenvalues for the potentials given above. In two dimensions we computed the eigenvalues for different values of the potential parameters $(a_{11}^{}, a_{22}^{}, a_{12}^{})$ and for many eigenstates ($E_{n1,n2}$, $n_1, n_2=0, 1, 2, 3$), over a wide range of λ values. In three dimensions we computed the eigenvalues for high values of the state number n, for various values of the angular momentum ℓ , perturbation parameter λ , and for different power indices (2M=4,6,8). We also calculated the s-state energy eigenvalues for spherically symmetric states in N dimensions. This chapter is divided into two sections as follows. Section one is concerned with the two- dimensional oscillator, and contains all the necessary equations and recurrence relations to calculate the energy eigenvalues for different eigenstates. Section two is concerned with three and N (N=1,2,3,4,5,6----1000) dimensional oscillators and with relations which can be used to compute the energy eigenstates. The abundance of studies of the one-dimensional anharmonic oscillator eigenvalue problem is not matched in the case of multidimensional problems; there are few reported results. We may divide the main methods used in this work to compute eigenvalues into two groups. Our perturbative methods (of inner product and hypervirial type) use a renormalisation parameter K, which is helpful in improving convergence. We also use a non-perturbative method, the power series method. These methods have been used effectively to calculate the energy eigenvalues even for high state numbers and large values of the perturbation parameters.

3.2 TWO DIMENSIONAL PROBLEM

3.2.1 Review of the two dimension oscillator problem

review and investigation of the two-dimensional Α perturbed oscillator is the main objective of this section. Many techniques have been used to obtain the energy eigenvalues for this two-dimensional problem. The work of Hioe, et. al [19,1978] involved matrix diagonalisation. They were able to calculate energy eigenvalues for different values of λ and for various quantum numbers. To obtain high accuracy by their methods involves dealing with large matrices. Ari and Demiralp [20,1985] computed the eigenvalues of a two-dimensional oscillator by using perturbation theory and Padé approximants. J Killingbeck and M.N.Jones [21,1986] used the inner product method to calculate accurate energies states, $E_{0,0}, E_{1,1}, E_{0,2}, E_{2,0}, E_{1,3}, and E_{3,1},$ for six for different values of (a_{11}, a_{22}, a_{12}) .

In this section we present some extended numerical calculations using the inner product technique for a greater range of values of the perturbation constant $0.05 \le \lambda \le 5000$, and for different values of the potential parameters (a_{11}, a_{22}, a_{12}) . The inner product method to calculate eigenvalues has been investigated by Killingbeck, et. al [11,1985] to compute energy eigenvalues for one-dimensional problems. We also used renormalised series and power series methods, for the special case $a_{12}=1$, to calculate the energy eigenvalues for the perturbed oscillator potential in two dimensions:

$$V(x,y) = \frac{1}{2} \left[x^{2} + y^{2} \right] + \lambda \left[a_{11} x^{4} + 2a_{12} x^{2} y^{2} + a_{22} y^{4} \right]$$
(3.4)

The potential is non-separable, and the energy perturbation series is expected to be divergent, so we start by introducing a renormalisation parameter, and write the potential in the form

$$V(x, y) = \mu^{2} \left[x^{2} + y^{2} \right] + \lambda \left[V(x, y) - \beta (x^{2} + y^{2}) \right]$$
(3.5)

where

$$\mu^2 = 1 + \lambda \beta \tag{3.6}$$

The use of parameter β is helpful in improving convergence in this techniques and β plays the same role as the renormalisation constant K used for the one-dimensional oscillator. The Schrödinger equation for the potential (3.5) can be written

$$\left[-\frac{1}{2}\left(\frac{\partial^2}{\partial x}_2 + \frac{\partial^2}{\partial y}_2\right) + V(x, y)\right] \Psi(x, y) = E\Psi(x, y) \qquad (3.7)$$

The energy eigenvalues of the unperturbed oscillator is given by

$$\mathbf{E} = \begin{bmatrix} \mathbf{n}_{1} + \mathbf{n}_{2} + 1 \end{bmatrix} \mu \qquad \mathbf{n}_{1}, \mathbf{n}_{2} = 0, 1, 2, 3....$$
(3.8)

In each state the energy eigenvalues depend on a pair of quantum numbers (n_1, n_2) .

3.2.2 The recurrence relation for the Inner product

To find the recurrence relations which allow us to calculate the eigenvalues we use the function:

$$\Phi(\mathbf{x},\mathbf{y}) = \left(\mathbf{x}^{\mathbf{P}1}\mathbf{y}^{\mathbf{P}2}\right) \exp\left[-\frac{\mu}{2}\left(\mathbf{x}^{2}+\mathbf{y}^{2}\right)\right]$$
(3.9)

where the p_1 and p_2 are parity indices, with values 0 for even parity and 1 for odd parity. The inner products

$$A(N,M) = \langle \Phi | \mathbf{x}^{2M} \mathbf{y}^{2N} | \Psi \rangle \qquad (3.10)$$

play a key role in this technique. The next step is to work out the quantity

$$\mathbf{EA}(\mathbf{M},\mathbf{N}) = \langle \Psi | \mathbf{H} | \mathbf{x}^{2\mathbf{M}} \mathbf{y}^{2\mathbf{N}} | \Phi \rangle \qquad (3.11)$$

and then to substitute the perturbation expansions

$$A(M,N) = \sum_{K} A(M,N,K)\lambda^{K}$$
 (3.12)

$$\mathbf{E} = \sum_{\mathbf{k}} \mathbf{E}(\mathbf{K}) \lambda^{\mathbf{K}}$$
(3.13)

into the A(M,N) recurrence relation. The result is the new recurrence relation

$$\sum_{I}^{L} E(I)A(M,K,K-I) = a_{11}A(M+2,N,K-1) + a_{22}A(M,N+2,K-1)$$

$$+a_{12}A(M+1,N+1,K-1) - \beta A(M+1,N,K-1)$$

$$+4\mu \left[M+N-S_{1}-S_{2}\right]A(M,N,K) - 2M \left[2M+2P_{1}-1\right]A(M-1,N,K)$$

$$-2N \left[2N+2P_{2}-1\right]A(M,N-1,K) \qquad (3.14)$$

In writing the relation (3.14) we have moved one term B(0)A(M,N,K) from the sum over I to the right of the equation, and have expressed the unperturbed energy in the form

$$E(0) = \mu \left[2 + 2P_1 + 2P_2 + 4S_1 + 4S_2 \right]$$
(3.15)

The parity indices for x and y are P_1 and P_2 (0 or 1). The x and y state numbers S_1 and S_2 (0,1,2), specify which particular state is being treated. When $P_1=P_2$, we can further specify an x-y interchange symmetry index P_3 (0 or 1) such that

$$A(N,M,K) = \left(-\right)^{P_3} A(M,N,K)$$
 (3.16)

The initial condition imposed on the A(N,M,K) if $P_1=P_2$ is

$$A(S_1, S_2, 0) = (-)^{P_3} A(S_2, S_1, 0) = 1$$
 (3.17)

and the recurrence relation (3.14) is then used as follows. If the energy sum up to $E(Q)\lambda^Q$ is required, then the indices have the ranges set out below if $P_1=P_2$, with the convention $S_1 \leq S_2$ on the state labels):

K=0,1,2,....Q,

(fixed K) N=0,1,2,...,
$$S_2+2Q-2K$$
,

(fixed K, N) $M=0,1,\ldots,N-P_3$.

The indices are scanned in the order given above and the relation (3.17) is used to work out A(M,N,K) in term of lower order elements which are already known. Then we can get A(N,M,K) from the symmetry relation (3.17). E(K) is found from the equation for the special case M=S₁, N =S₂

3.2.3 The recurrence relation for the renormalised series

approach

The renormalised series method was seen to work very well in previous chapters and produced highly accurate results for the problems investigated in chapter one. As we indicated in section (3.1) the renormalised series can be used to compute the energy eigenvalues for equation (3.7) in some cases. When the relationship $a_{12}=a_{11}=a_{22}=1$ holds, the equation (3.7) has a circular symmetry. The energy levels are then most appropriately characterized by the quantum numbers (n_r,m) rather than (n_1, n_2) . Letting $x=r\cos\theta$, $y=r\sin\theta$, such that $r^2=x^2+y^2$, the radial part of the eigenvalue equation (3.7) is

$$\left[\frac{1}{2}\left(-\frac{d^{2}}{dr^{2}}-r^{-1}\frac{d}{dr}+\frac{m^{2}}{r^{2}}+r^{2}\right)+\lambda r^{4}\right]\Psi(r)=E\Psi(r) \qquad (3.18)$$

If we set

$$\Psi(\mathbf{r}) = \left[\mathbf{r} \right]^{-\frac{1}{2}} \Phi(\mathbf{r}) \tag{3.19}$$

we get

$$\left[-\frac{1}{2}\frac{d^{2}}{dr^{2}}+\frac{1}{2}V_{m}\right]\Phi(r)=E\Phi(r)$$
(3.20)

$$V_{m} = \left[m^{2} - \frac{1}{4}\right]r^{-2} + r^{2} + 2\lambda r^{4} \qquad (3.21)$$
$$= \left[m^{2} - \frac{1}{4}\right]r^{-2} + \left(\mu - \lambda K\right)r^{2} + 2\lambda r^{4}, \mu = 1 + \lambda K$$

If we apply the Hypervirial and Hellmann-Feynman theorems to the potential given by (3.21), we get the following recurrence relation after some algebra

$$\left(2N+2\right) \sum_{U}^{H} E(I)B(N, M-I) = N\left[\left(m^{2}-\frac{1}{4}\right) - \frac{1}{4}\left(N^{2}-1\right)\right]B(N-2, M)$$

$$+ \left(N+2\right)\left[\mu A(N+2, M) - KB(N+2, M-1)\right] + \left(2N+6\right)B(N, M-1) \qquad (3.22)$$

$$\left(M+1\right)E(M+1) = B(4, M) - KA(2, M) \qquad (3.23)$$

From the recurrence relations (3.22) and (3.23), we can find the energy coefficients with the help of the E(0) value and the condition B(0,0)=1. The unperturbed energy is

$$E(0) = \left[2n_{r} + |\mathbf{m}| + 1\right] \sqrt{\mu} \qquad (3.24)$$

$$\mu = 1 + \lambda K$$

$$2n_{r} + |\mathbf{m}| = n$$

$$n_{r} = 0, 1, 2, 3, \dots$$

$$\mathbf{m} = 0, \pm 1, \pm 2, \dots$$

where n_r and m are the orbital quantum number and the magnetic quantum number. The expression $(2n_r + |m| + 1)$ show that degeneracy exists between energy levels to the degree that all allowable combinations of n_r and m consistent with the same values of the m and n_r yield the same energy levels. For example $E_{1,1}$ and $E_{0,2}$ have the same quantum numbers $(n_r=0,m=2)$ and have the same perturbed energy eigenvalues.

3.2.4 The Power series method

We used the power series method to compute the energy eigenvalues in two-dimensions for the case $(a_{12}=a_{11}=a_{22}=1)$. We start from the Schrödinger equation (3.21). The regular solution to equation (3.21) will behave as r^{ℓ} near the origin, so we postulate $\Phi(r)$ to be of the form:

$$\Phi(\mathbf{r}) = \mathbb{E} \mathbf{x} \mathbf{p} \left(- \frac{1}{2} \beta \mathbf{r}^2 \right) \sum_{\mathbf{0}}^{\infty} \mathbf{A}(\mathbf{N}) \mathbf{r}^{\mathbf{N} + \ell}$$
(3.25)

and use the notation

$$\sum \mathbf{T}(\mathbf{N}) = \sum \mathbf{A}(\mathbf{N}) \mathbf{r}^{\mathbf{N}}$$
(3.26)

Inserting these relations (3.25) and (3.26) into equation (3.20) yields the recurrence relation

$$\left(N+2\right)\left[N+2\ell+3\right]T(N+2) = \left[\left(2N+2\ell+3\right)\beta - E\right]r^{2}T(N)$$

$$+ \left[\mu-\beta^{2}\right]r^{4}T(N-2) + \lambda r^{6}T(N-4)$$

$$(3.27)$$

where

 $\ell = |\mathbf{m}| - \frac{1}{2}$

The calculation starts at N=0, with T(0)=1, and with all lower coefficient zero.

3.2.5 Results and discussion

In this section we investigate and discuss the results numerical calculations for the two-dimensional of the systems. It is clear from our listed results in tables (3.1-3.4) that the accuracy can be expected to decrease Let rapidly as λ increases. us now turn to the renormalisation constant (K) which is the heart of this calculation for perturbative methods. We can see from the results that the accuracy depends on the value of the renormalised constant (K). One continues to change the renormalised constant until energy eigenvalues of the best required accuracy are obtained. The values of energy in table (3.1) are for the case $a_{12}=a_{11}=a_{22}=1$; we show some energies for states $(n_1, n_2=0, 1, 2, 3)$ and for $0.05 \le \lambda \le 5000$. The three approaches work very well for two-dimensional oscillator, and the results obtained by these methods are in good agreement with each other. We observe that the three approaches yield a high number of accurate digits (14) for the eigenvalues at low values of λ . For higher values of the perturbation constant λ the power series method gives more digits than the inner product method with renormalised series.

One main difference between the two perturbative techniques lies in the values of the renormalised constant. For the hypervirial approach the values of (K) increases as the perturbation constant increase, while for the inner product method the values of (K) decrease as the perturbation constant increases. Also the hypervirial method can only work for the case of a symmetric potential $a_{11}=a_{22}=a_{12}=1$ in which

-77-

the potential reduces to a one dimensional potential. The inner product method deals with more general parameter values, but still requires $a_{11}=a_{22}$, since the equations used exploit this symmetry to reduce computation. To get the energy eigenvalues of Killingbeck and Jones [21,1980] it is necessary to multiple our values by 2, since they used $-\nabla^2$ in their Hamiltonian. All numerical calculations were done on the ICL (VME) system using double precision arithmetic. A good rate of convergence was achieved for all techniques and was relatively insensitive to the choice of the state number. Summarising our results we can say the following:

1. We succeeded in finding the energy eigenvalues for states $E_{0,0}$, $E_{1,0}$, $E_{0,1}$, $E_{1,1}$, $E_{0,2}$, $E_{2,0}$, $E_{1,3}$, $E_{3,1}$, with excellent accuracy in two-dimension even for high values of λ (0.05 $\leq\lambda\leq$ 5000) and for different values of the potential parameters ($a_{12}=1,-1,0$); ($a_{11}=a_{22}=1,0$). The set of tables (3.1,3.2,3.3,3.4) cover a wide range values of (λ).

2. We have found that the three methods work very well to determine the energy eigenvalues, and give high accuracy. Our results are in good agreement with other reported results given by Killingbeck [21,1986], Hioe, et. al [22,1978], Ari and Demiralp [20,1985].

3. We avoid the phenomenon of bogus convergence by computing the energy eigenvalues for different values of the renormalisation constant K. We believe that some of our results may be improved in accuracy with a better choice of K. 4.We calculated the energy eigenvalues for (68) states for the symmetric potential $V(r)=(m^2-\frac{1}{4})r^{-2}+2r^4$ by using the power series method for high quantum numbers ($0 \le m \le 400$) and ($1 \le n \le 600$). This approach produces (20) digits and the results are presented in table (3.4). We wish to note that the results yielded by the inner product were improved by using Aitken extrapolation; it seem that extrapolation improves the convergence of the perturbation series and gives extra digits.

Table (3.1) Energy eigenstates $E_{n1,n2}$ for $a_{11} = a_{22} = 1$ upper line; power series method, second line; inner product, lower line renormalised series method, the numbers in the bracket corresponding to $(n_r, |\mathbf{n}|)$.

X	$E_{00}, a_{12} = 1, (0, 0)$	N	K	$E_{11}, a_{12}=1, (0, 2)$	N	K
0.05	1.0842986056346			3.4541660556159		
	1.0842986056346	22	15	3.4541660556159	19	14
	6	27	20	9	26	20
0.1	1.1501881250606			3.7723225907160		
	1.1501881250606	31	14	3.7723225907160	24	13
j j	6	55	25	0	35	20
0.3	1.3396594184964			4.6179820140228		
	1.3396594184964	36	10	4.6179820140228	36	12
	6	79	25	8	74	15
0.5	1.4760250459814			5.1953136477518		·
	1.4760250459814	35	8	5.1953136477518	40	10
	8	152	40	8		17
0.7	1.5866048866704			5.6530457466566		
	1.5866048866704	45	8	5.6530457466566	39	9
	7	169	40	5	74	
1	1.7241840692602			6.2138150782789		
[1.7241840692602	50	8	6.2138150782789	39	8
	2	177	30	9		-
2	2.0603939148148			7.5587968359841		<u> </u>
6	2.0603939148148	49	6	7.5587968359841	44	7
	2.0000000140140	89	60	8	55	-
3	2.3057043582553	<u> </u>	00	8.5262241756526	55	40
3	2.305704358255	44	5	8.5262241756526	44	e
i 1	2.303704336233	90	80		54	6 50
4	2.5046993203828	30	00	5 9.3055741968355	54	50
4	2.504699320382	50	5	9.3055741968355	40	
		93	5 100		48	
	0	33	100	3	52	60
5	2.6746764097032			9.9684501870056		
	2.674676409703	44	4	9.968450187005	42	5
	9	91	120	0	61	80
10	3.3012105709687			12.396815561409		
	3.30121057096	35	3	12.396815561409	46	4
	0	66	140	0	50	100
50	5.5117989643904			20.884372171987		
	5.51179896	31	2	20.884372171	30	~
ليبيها	64	37	220	2	66	500
100	6.9118993381066			26.236239882895		
	6.9118993	21	1.2	26.23623988	27	
	3	167	2000	8	82	1000
500	11.756694591564			44.716717016874		
	11.756694	22	0.75	44.71671702	20	0.8
	5	154	6000	0	70	3000
1000	14.797339112653			56.303967659458		
	14.797338	16	0.5	56.303967	15	0.6
Į	9	135	8000	76		5000
5000	25.274022474051			96.210280600953		
	25.2740	15	0.4	96.21028	15	0.4
	2	51	10000	80		8000
ليسبعهما						

Table (3.1 continued)

	$E_{02}^{,a_{12}=1,(1,0)}$	Ň	K	$E_{20}, a_{12}=1, (0, 2)$	N	K
0.05				3.4541660556159		
	3.5198537922332	29	20	3.4541660556159	19	14
	2		20		21	16
0.1	3.8766416198911			3.7723225907160		
	3.8766416198911	38	17	3.7723225907160	24	13
	1	39	18	0	32	18
0.3	4.8105255385415			4.6179820140228		
	4.810525538541	37	12	4.6179820140228	36	12
	1	68	13	8	76	16
0.5	5.4412177884099			5. 1953136477518		
	5.441217788409	37	9	5. 1953136477518	40	10
	8	56	15	8	58	16
0.7	5.9388856534267			5.6530457466566		
	5.93888565342	35		5.6530457466566		9
	2	52	18	6	67	24
1	6.5465683556350			6.2138150782789		
	6.54656835563	39		6.2138150782789		8
	3	50	20	8	56	25
2	7.9981590720375			7.5587968359841		
	7.9981590720	37	6	7.5587968359841	44	7
	01	47	30	4	42	30
3	9.0389864961385	~	_	8.5262241756526		
	9.0389864961	36		8.5262241756526	44	-
		42	35	5 9.3055741968355	36	35
4	9.8761746038637	35	4.5	9.3055741968355	46	5
	9.87617 4 6038 8	39 39	4.5 40	9.3000741908300	40 33	-
5	。 10.587567685461	33		3.9684501870056	33	40
э	10.587567685	29	4	9.9684501870056	43	5
	10. 567567685	47	-	3.3004301870030 0		60
10	53 13.190071603429		00	12.396815561409	-23	00
10	13. 190071603425	33	3.5	12.396815561403	42	4
	33	60	120	12.33081330140		110
50	22.266904679055	50	120	20.884372171987	36	110
	22.266904075055	32	2.5	20.884372171387	30	2
	678		200	19		220
100	27.984562615242	Ť		26.236239882895	Ĩ	220
100	27.9845626	27	1.5	26.23623988	27	1.8
	614		350	829	35	
500	47.718724902029	Ē		44.716717016874	Ĩ	
	47.718724	22	0.9	44.71671702	20	0.8
	490	33		16	29	
1000	60.089282034393			56.303967659458	Ĩ	1000
1000	60.08928	18	0.6	56.303967	15	0.6
	821	34		766	29	
5000	102.68887287128			96.210280600953	Ē	
	102.6888	11	0.3	96.21028	15	0.4
	873	28	5000	806	24	

Table	(3.1	Continued)	
-------	------	------------	--

	$E_{13}, a_{12}=1, (0, 4)$	N	K	$E_{31}, a_{12}=1, (1, 2)$	N	K
0.05				6.2076280889676		
	6.0422359263878			6.2076280889676	27	20
	8	25	20	6	25	20
0.1	6.7213125523637			6.9707691664077	·	
	6.7213125523637	29	18	6.9707691664077	30	16
	7	31	20	7	37	20
0.3	8.4545696693009			8.8854630915511		
	8.4545696693009	43	16	8.885463091551	32	12
	9	78	18	11	93	18
0.5	9.6087617479444			10.146914853768		
	9.6087617479444	46	14	10.14691485376	31	10
	4	66	20	68	82	24
0.7	10.514815636683			11.132938889040		
	10.514815636683	47	13	11.13293888904	32	9
		56	22	40	58	22
1	11.617519077229			12.329546221690		
	11.617519077229	48	12	12.32954622169	31	8
	9	49	25	90	59	26
2	14.241725289107			15.167593664968		
-	14.241725289107	41	8	15.1675936649	29	6
	7	37	30	96	41	30
3	16.118242454196			17.191851764040		
Ĩ	16.118242454196	43	7	17.1918517640	30	5. 5
	6	34	35	03	47	40
4	17.625712314489			18.816020919322	_	
-	17.625712314489	37	5.5	18.8160209193	31	5
	9	37	45	32	52	
5	18.905701125845			20.194071485057		
ľ l	18.905701125845	37	5	20.194071485	29	4.5
	5	44	60	506	59	80
10	23.583299477205		·	25.224641863887	-	
l	23.583299477205	37	4	25.224641863	31	4
	5	36	-	388		100
50	39.871524826155	<u> </u>	_	42.713491135003	Ť	
	39.8715248261	30	2.2	42.713491135	31	2.2
			250	50		300
100	50.124243611725	<u> </u>		53.713552989007		
	50.124243611	25	1.6	53.71355298	24	1.6
	172	33		890	37	380
500	85.498889140468	Ť		91.653169053892	<u> </u>	300
	85.4988891	19	0.9	91.653169	10	0.9
	1404	29		9054	31	
1000	107.67035206511		1000	115.42830289918		1000
1000	107.67035200511	12	0.8	115. 4283 0285518	17	0.8
	206	30		0289	33	
5000	184.01504122412	50	2000	197.28870356871	33	2000
5000	184.01504122412	15	0.5	197.288	10	0.4
	0412	32	7000	8703	32	0.4 7000
	V110	52	1,000	6703	36	1000

	E .a =1.(0,1)	1.	K	E .a =1.(0.1)		K
^	01 12		A	10 12		~
0.05	2.2388001803841			2.2388001803841		
	2.2388001803841	23	14	2.2388001803841	23	14
	1	26	20	1	26	20
0.1	2.4143403273687			2.4143403273687		
	2.4143403273687	31	14	2.4143403273687	31	14
	7	39	18	7	39	18
0.3	2.8959049500709			2.8959049500709		
	2.8959049500709	43	13	2.8959049500709	43	13
	9	68	22	9	68	22
0.5	3.2314529999319			3.2314529999319		
	3.2314529999319	40	10	3.2314529999319	40	10
	1	102	25	1	102	25
0.7	3.4997488466601			3.4997488466601		
	3.4997488466601	38	8	3.4997488466601	38	8
	0	96	32	0	96	32
1	3.8303238562966			3.8303238562966		
	3.8303238562966	44	8	3.8303238562966	44	8
	6	107	4 5	6	107	45
2	4.6286453903987		_	4.6286453903987		
	4.6286453903987	42	6	4.6286453903987	42	6
	9	84	55	9	84	55
3	5.2058549925116			5.2058549925116		
	5.2058549925116	45	5.5	5.2058549925116	45	5.5
	1	72	65	1	72	6 5
4	5.6720139476076		_	5.6720139476076		
	5.6720139476076	46	5	5.6720139476076	46	5
	6	62	70	6	62	70
5	6.0691123694494			6.0691123694494		
	6.0691123694494	44	4.5	6.0691123694494	44	4.5
	4	58	78	4	58	78
10	7.5270433782113			7.5270433782113		
	7.52704337821	44	3.8	7.52704337821	44	3.8
	2	52	110	2	52	110
50	12.639925716725			12.639925716725		
	12.639925716	30	2	12.639925716	30	2
	67	33	220	67	33	220
100	15.868971472615]	15.868971472615		
	15.86897147	27	1.5	15.86897147	27	1.5
	726	31	300	726	31	300
500	27.027427897759			27.027427897759		
	27.027427	21	0.8	27.027427	21	0.8
	7897	30	860	7897	30	860
1000				34.026189981976		
	34.026190	18	0.65	34.026190	18	0.65
	01	39	2600	01	39	2600
5000	58.133690484124			58.133690484124		
	58.13369	14	0.3	58.13369	14	0.3
	904	27	4500	904	27	4500

Table (3.1 Continued)

Table (3.2). Energy eigenstates $E_{n1,n2}$ for $a_{11} = a_{22} = 0$, by using inner product method, the letters in the brackets corresponding to even or odd parity.

λ	E ₀₀ , a =1,(e)	N	K	E ₁₁ , a ₁₂ =1,(e)	N	K
0.1	2.0241383214157		8	6.2082907985657		8
0.2	2.0467957188325			6.3912911417583		
0.3	2.0682421306988			6.5564773059808	_	
0.4	2.0886676590731	35		6.7081422885770	41	Ă I
0.5			3.5	6.8490530489122		3.5
0.6	2.1269899290285	48	3.2	6.981128077230		3.5
0.7	2.145083242883	50	3.2	7.105767237544	_	3.5
0.8	2.16256468586	47	3	7.224031480660	_	3.4
0.9	2.1794931149	45	_	7.33674892366		3.3
1.0	2.1959180852		2.8	7.44458136157	_	3.2
2.0	2.3395662	43	2.5	8.339449323	50	المحمد
	2.458377		2.2	9.03485424		2.5
4.0	2.561626	50	2	9.61758777		2.3
5.0	2.653910		1.8	10, 1256931		2.2
6.0	2.73792	38	1.6	10.5798578	46	
8.0 7.0	2.81540	39	1.5	10.0992791	42	
8.0	2.88755	35 44		11.372950	42 45	
9.0	2.95526	46	1.5 1.5	11.726290	48	2
	3.01918	- <u>+</u> 0 50	1.5 1.5	12.057188	45	2 1.8
10.0	3.2968	45	1.3 1.4	13.469681	49 49	1.0 1.5
15.0 20.0		48 48	1.4 1.4	14.616918	<u>50</u>	the second se
20.0 λ		40 N	<u>г. 4</u> К	$E_{a}, a = 1, (o)$	N	1.4 K
^	E ₀₂ , a =1,(e)		r	20' 12 ^{-1,(0)}	n	<u> </u>
0.1	6.1592857507523	37	10	6.0716400174184	36	10
0.2	6.2953249520699	45	7	6.1377408133565	47	7
0.3	6.4155065471639	48	5	6.1995318631918	46	4.5
0.4	6.5239694436917	48	4	6.2578183515335	49	4
0.5	6.62332398024	45	3.5	6.313168654731	47	3.6
0.6	6.7153450867	46	3.5	6.36600479493	50	3.5
0.7	6.8013050520	49	3.5	6.4166518870	48	3.4
0.8	6.882152491	50	3.4	6.465367562	48	3.4
0.9	6.95861670	47	3.4	6.512360604	48	3.2
1.0	7.03127234	47	3.2	6.557803327	51	3.2
2.0	7.620032	47	2.5	6.950634	45	2.5
3.0	8.06620	48	2.4	7.27168	49	2.4
4.0	8.4360	45	2.2	7.54917	50	2.2
	8.7568	49	2	7.7964	49	2
λ	E ₁₃ , a =1,(o)	N	K	$E_{31}, a_{12}=1, (e)$	N	K
0.1	10.343899981402	30	10	10.588281727226	21	10
	10.642274833394			11.062705074846		
0.2	10.909687297357	45	6	11.468592204749		
	11.154084419444	46	5	11.827386430149		
0.4 0.5	11.380431070714	12	<u> </u>	12.15131154316		4.5
	11.592096589142			12.4481243454	44	
	11.79150094595		4.2 3.8	12.7231097106		4 3.8
0.8	11.9804560656		3.5	12.980056955		3.6 3.6
0.9	12.1603626387		3.4	13.221790115		3.5
1.0	12.3323312711		3.4	13.45047872		3.3 3.4
20	13,7564464	46	3	13.2/80804		
	13.7564464 14.861855	46 45		15.2786864	51 39	
3.0	14.861855	45	2.6	16.64511	39	3
		45 49			39 47	

λ	E ₀₁ , a =1, (e)	N	K	E, ,a =1,(e) 10 12	N	K
0.1	4.0708639128944	39	12	4.0708639128944	39	12
0.2	4.1350822342067	47	8	4.1350822342067	47	8
0.3	4.1942935736199	46	5	4.1942935736199	46	5
0.4	4.2495313630102	51	4	4.2495313630102	51	4
0.5	4.301504505315	45	3.6	4.301504505315	45	3.6
0.6	4.35072736225	49	3.4	4.35072736225	49	3.4
0.7	4.3975886228	47	3.4	4.3975886228	47	3.4
0.8	4.4423912545	50	3.2	4.4423912545	50	3.2
0.9	4.485377268	46	3	4.485377268	46	3
1.0	4.526743874	49	3	4.526743874	49	3
2.0	4.8777096	48	2.4	4.8777096	48	2.4
3.0	5. 157977	48	2.2	5.157977	48	2.2
4.0	5.39680	49	2	5.39680	49	2
5.0	5.60757	45	1.8	5.60757	45	1.8

Table (3.2 Continued)

X	$E_{00}, a_{12} = -1$	N	K	E, ,a =-1	N	K
0.05	1.044333829536575	44	10	3.128909175766778	46	12
0.1	1.0812823429327	44	9.5	3.232683781270		10
0.3	1.194693708	50	7	3.542778	48	9
0.5	1.2808133	42	6	3.774578	52	
0.7	1.3525907	49	5.5	3.96682	46	6
1	1.443775	46	5	4.2105	39	5
2	1.67296	47	4.5	4.8231	48	4.5
3	1.84417	46	3.5	5.281	48	3.8
4	1.98480	48	3.2	5.659	48	3.5
5	2.1058	49	3	5.985	44	3
10	2.5577	46	2.5	7.207	46	2.5
50	4.185	31	1.4	11.6	28	1.5
100	5.22	30	1.3	14.5	22	1
500	8.85	22	0.65			
1000	11.12	21	0.4		1	
5000	18.9	16	0.2		Î	
λ	E_{02} , $a_{12} = -1$	N	K	E,a_=-1	N	K
0.05	3.201984/21849849		12	3.354071144288548	40	12
0.1	3.44107624580		10	3.6120157403298	42	11
0.3	3.9052148	34		4.3174414428	47	9
0.5	4.21799	33		4.80879388	32	8
0.7	4.4660		6.5	5.2018647	27	7
1	4.7711	33		5.6864749	30	6
2	5.512	34		6.858039	30	5
3	6.055	32		7.706011	39	
4	6.498	35		8.391257		3.5
5	6.878		3.5	8.975224	29	3.5
10	8.29	_	3.2	11.12060	27	3
50	13.4	20	2	18.65251	30	2
λ	E, a =-1	N	K	E, , a =-1 31 , 12	Ń	K
	5.577042209722313		14	5.313459809272	38	12
0.1	5.990228032831	47	12	5.51652835	38	10
0.3	7.113043	33	14	6.04410	31	
0.5	7.894161	33		6.40938	28	
0.7	8.519471	43		6.705	17	6
1	9.291179			7.075	21	5.5
2 3 4	11.16038	41		7.996	31	
3	12.5159	30		8.686	30	4.6
4	13.6127	28	4.5	9.25	28	4.4
5	14.5481	29	4	9.74	30	
10	17.9891	28	3	11.6	17	
50	30.097	24		18.4	-	2

Table (3.3). Energy eigenstates $E_{n1,n2}$ for $a_{11} = a_{22} = 1$, by using; inner product method.

n	m	E n, m	n	m	E n, m
1	0	1.4771497535779945721	2	1	3.3981501760276967464
3	0	6.0033860833082771514	3	2	5.6243393493913396531
4	1	8.7004538139555255613	4	3	8.0906677703608193746
5	0	11.802433595134781574	5	2	11.534749463408076728
6	1	14.977808372321000000	6	3	14.508675257695970504
7	0	18.458818704077168861	7	2	18.245419047079048918
8	1	21.999601034420900742	8	3	21.611340607414397172
9	0	25.791792378517220594	9	5	25.611488488280248047
10	1	29.634879556288082362	10	3	29.299902799490796558
11	0	33.694279876607792998	11	2	33.536632154175749853
12	1	37.798347753896714409	12	3	37.501528172629380043
13	0	42.093807710826166293	13	2	41.952815503257419596
5	4	10.758265165443797408	6	5	13.600878059158590077
7	4	17.616153535989094860	7	6	16.599393814776394337
8	5	20.849518216129607466	8	7	19.739173054344587276
9	4	25.076185950170202224	9	6	24.201285335452976530
10	5	28.638196688780136641	10	7	27.664612666846010149
11	4	33.066977461811458538	11	6	32.294610862541875823
1	5	36.913007746802281817	12	7	36.042296443612372112
13	4	41.531946454275438213	13	6	40.837258834021116975
9	8	23.008582870458735348	10	9	26.398118422669436590
11	8	31.233371375757594792	11	10	29.899842302768836228
	9	34.902099507843364602	12	11	33.507008578384495977
13	8	39.878053076615649884	13	10	38.665924463870911206
15	12	46.461859815974355445	13	12	37.213800511625613223
25	10	98.374602981775359967	50	25	244.70647279713012760
80	61	436.55737473447115869	80	79	411.92626609958683169
100	51	615.72015957476693747	100	81	581.45987058782485898
150	101	1028.2632957809553818	150	121	999.19230724062377362
300	201	2592.7329574173396208	300	221	2557.7535843371696925
401	300	3756.7756669860561374	401	350	3647.3034038845666264
501	350	5108.0404929172998556	601	400	6553.4105446949506296

Table (3.4) Values of E for $V_{\rm m} = (m^2 - \frac{1}{4})r^{-2} + 2r^4$, $n = 2n_r + m + 1$.

3.3 THREE AND N DIMENSIONAL PROBLEMS

3.3.1 Introduction

J.Killingbeck [22,1985] has used the Hill determinant method to calculate the energy eigenvalues for a three-dimensional oscillator and also investigated all spherically symmetric states in any dimension (N=1,2,3 320). He computed the energy eigenvalues and expectation values such as $\langle r^2 \rangle$ for potentials $\ell^{-1}r^4$ and $N^{-1}r^4$ and gave results of high accuracy. We extended our numerical calculations for higher powers of the perturbation index (2N=4,6,8), and for a wide range of values of angular momentum, perturbation parameter, and state number. We used two methods to produce our results for this problem, the renormalised series method and the power series method. The radial part of the three-dimensional Schrödinger equation can be written conventionally in the form

$$\left[-\frac{d^{2}}{dr^{2}}+\mu r^{2}+\ell(\ell+1)r^{-2}+\lambda r^{2N}\right]\Psi(r)=E\Psi(r) \qquad (3.28)$$

where (ℓ) is the angular momentum, and the energies of unperturbed levels are

$$\mathbf{E}(\mathbf{0}) = \begin{bmatrix} 2\mathbf{n} + 3 \end{bmatrix} \sqrt{\mu} \tag{3.29}$$

where n is the principal quantum number, which can be expressed as

$$\mathbf{n} = \left(2\mathbf{n}_{r} + \ell\right) \tag{3.30}$$

Here n is called the radial quantum number. The energy values include zero-point energy 3 corresponding to the three degrees of freedom. n is seen to be even or odd according as (ℓ) is even or odd. The main difference between one and three dimensional perturbations lies in the presence of the angular momentum. We have presented two methods to compute energy eigenvalues. The first approach uses a hypervirial scheme based on the formulation of recurrence relations, and the second approach uses a power series, based on relations derived by using wavefunctions.

3.3.2 Renormalised series to calculate energy eigenvalues for

$$\underline{H=P^{2} + \mu r^{2} + \ell(\ell+1)r^{-2} + \lambda r^{2N} (2N=4,6,8)}$$

We used renormalised series to calculate the energy eigenvalues for the potential

$$V(r) = \mu r^2 + \ell(\ell+1) r^{-2} + \lambda r^{2N}$$
 (2N=4,6,8)

Using recurrence relations derived from the hypervirial and Hellmann-Feynman theorems which have been used by Killingbeck, with the potential terms

$$V_{2} = \ell(\ell+1)$$
 (3.31)

$$V_{2} = (\mu - \lambda K) \qquad (3.32)$$

 $V_4 = \lambda$ (3.33)

we obtain the following recurrence relations after some algebra

$$\left(2N+2\right) \sum_{0}^{H} E(J)A(N, M-J) = N \left[2\ell(\ell+1) - \frac{1}{2}\left(N^{2}-1\right)\right]A(N-2, M) + \left(2N+4\right) \left[\mu A(N+2, M) - KA(N+2, M-1)\right] + \left[2N+2n+2\right]A(N+2n, M-1)$$
(3.34)

$$(M+1)E(M+1)=A(2n,M)-KA(2,M)$$
 (2n=4,6,8) (3.35)

The recurrence relations (3.34) and (3.35) suffice to compute the coefficients of energy E(M) and A(N,M) and this procedure allows us to calculate the expectation values of powers (r^N) without the explicit use of eigenfunctions. The input for our calculations are the renormalised constant K, the angular momentum ℓ and the state number n. The values of $\mu=1+\lambda K$, $E(0)=(4n+2\ell+3)\sqrt{\mu}$, are worked out by the program. The renormalised series approach seems to give results of excellent accuracy, whereas at K=0 the perturbation series diverge and do not give satisfactory numerical results.

3.3.3 The power series approach

We used the power series method to compute the energy eigenvalues for the three-dimensional perturbed oscillator, and this method works very well, producing results of high accuracy, even for large perturbation parameters. When an angular spherical harmonic factor $Y_{\mathcal{L}}^m$ has been factored out of the wavefunction for a three-dimensional problem, the Schrödinger equation can be expressed as

$$\left[-D^{2} - 2r^{-1}D + \ell(\ell+1)r^{-2} + r^{2} + V(r)\right]\Psi(r) = E\Psi(r) \qquad (3.36)$$

We take the radial potential V(r) to have the form

$$V(r) = \lambda r^{2m}$$
 2m = 4,6 (3.37)

The regular solution to equation (3.37) will behave as r^{ℓ} near the origin. The eigenfunction $\Psi(\mathbf{r})$ is then given by the general form

$$\Psi(\mathbf{r}) = \mathbb{E} \mathbf{x} \mathbf{p} \left[-\frac{1}{2} \beta \mathbf{r}^2 \right] \sum_{\mathbf{0}}^{\infty} \mathbf{A}(\mathbf{N}) \mathbf{r}^{\mathbf{N} + \ell}$$
(3.38)

We use the notation

$$\mathbf{T}(\mathbf{N}) = \mathbf{A}(\mathbf{N}) \mathbf{r}^{\mathbf{N}} \tag{3.39}$$

Inserting the relations (3.38) and (3.39) into equation (3.36) yields the recurrence relation

$$\left(N+2\right)\left[N+2\ell+3\right]T(N+2) = \left[\left(2N+2\ell+3\right)\beta - E\right]r^{2}T(n)$$

+
$$\left[\mu - \beta^2\right] \mathbf{r}^4 \mathbf{T} (N-2) + \lambda \mathbf{T} (N-2M) \mathbf{r}^{2M+2}$$
 (2M=4,6,8) (3.40)

The calculation starts at N=0, with T(0)=1, and all lower coefficient zero.

3.3.4 N dimensional calculations.

J.Killingbeck has applied the Hill determinant to N-dimensional anharmonic oscillators. He calculated energy eigenvalues and expectation values of type $\langle r^N \rangle$. Killingbeck [22,1985] has expressed the Schrödinger equation in N dimensions as:

$$D^{2}\Psi(\mathbf{r}) - \left(N-1\right)\mathbf{r}^{-1}D\Psi(\mathbf{r}) + V(\mathbf{r})\Psi(\mathbf{r}) = E\Psi(\mathbf{r}) \qquad (3.41)$$
$$V(\mathbf{r}) = \left[\mu - \lambda K\right]\mathbf{r}^{2} + \lambda \mathbf{r}^{4}, \quad \mu = 1 + \lambda K$$

where

We used the renormalised series approach to calculate the energy eigenvalues. If we apply the hypervirial and Hellmann-Feynman theorem to the potential given by equation (3.3) we get the following recurrence relations.

$$\left(2I+2\right) \sum_{U}^{M} E(J)A(I, M-J) = \frac{I}{2} \left[\left(N+2\ell-3\right) \left(2N+2\ell-1\right) - \left(I^{2}-1\right) \right] A(I-2, M)$$
$$\left(2I+4\right) \left[\mu A(I+2, M) - KA(I+2, M-1) \right]$$

+
$$(21+6)$$
 A (1+4, M-1) (3.42)

$$(M+1)E(M+1)=A(4,M)-KA(2,M)$$
 (3.43)

Here N is number of dimensions. The recurrence relations (3.34) and (3.35) for three dimensions reduce to the recurrence relations (3.42) and (3.43), if we insert $\ell = (N+2\ell-3)/2$. We also used the power series method to calculate energy eigenvalues for the N-dimensional problem. If we insert $\ell = (N+2\ell-3)/2$ in relation (3.27) we obtain the relation corresponding to N dimensions.

3.3.5 Results and discussion

We have used the techniques described in this section, the renormalised series and power series methods, to compute the energy eigenvalues. Our results are given in tables (3.5,3.6,3.7, 3.8,3.9). Our energy eigenvalues cover a large range of values of angular momentum, perturbation constant λ and state number n. We have performed various numerical checks on the obtained energy eigenvalues. For example we did some calculations at zero value of angular momentum and at (ℓ these values the problem reduces =-1). At to а one dimensional problem. Also the power series approach has been used as another approach to compute the energy eigenvalue, and the agreement between the results is very good. We list some results in table (3.5) for different values of angular momentum, and state number. We note particularly that in the case of high values of angular momentum the renormalised series approach works well. We notice from table (3.5) that $(\lambda=100, \ell=100, n=20)$ the accuracy of this approach for

achieves 12 significant figures. To our knowledge such a high degree of precision for the potentials considered is unprecedented. We also wish to draw attention to the fact that the renormalised series approach applies equally well to any value of (λ, ℓ, n) . Our calculations in three dimensions may be regarded as a guide to future numerical calculations. As far we know, we are the first to investigate numerically the energy eigenvalues for a wide range of potential three dimensions. in Α sample of energy parameters eigenvalues for potentials in three dimensions computed by using renormalised series and power series methods are displayed in table (3.6) for different values of angular momentum, and state number n. These methods lead to very accurate results. We also calculated the energy eigenvalues for higher power of the perturbation index (2N=6,8). The renormalised series method was used to compute the energy eigenvalues for (2N=6), n, $\ell=0,1,2,3,4$ and $\lambda=0.1$. This method achieved 6-digits accuracy; the renormalised series method has limited capability to deal with high powers $\langle r^{2N} \rangle$ (2N=8) and we can only manage to calculate a few energy eigenvalues with a low accuracy. In this respect we face the same situation as for the one-dimensional oscillator in dealing with high powers of perturbation. However the power series method works excellently and gives results with 16 digits accuracy. We also computed the energy eigenvalues for in (N=1,2,3,..1000) dimensions for potentials s-states $V(r)=Nr^4$, $N^{-1}r^4$. The renormalised series work very well for calculating the energy eigenvalues even for higher values of N. The energy eigenvalues are compared with corresponding ones obtain by the power series method and listed in table (3.8). The agreement of our results with those of Killingbeck is good.

Table (3.5). Eigenvalues of $H=P^2+r^2+\ell(\ell+1)r^{-2}+\lambda r^4$, by using renormalised series method, the two numbers in the bracket correspond to Quantum number (n) and Angular momentum (ℓ) respectively.

	(0,100)	N		(1,100)	N	K
λ 10	1941.43718812085389				49	
	2442.33603327688921			2520.65181680286960	43 42	
20	2794.05812020431			2883.69331314046	42 38	
30	3074.1949418234			3172.8425759472		
40				3417.08551270	34 33	
50	3310.826669040	and the second second				
60	3517.710003191	33		3630.62225010	33	
70	3702.734756023	34		3821.59680389	31	_
80	3870.896104981	29		3995.16524219	28	
90	4025.580334828	28		4154.82289345 4303.06145372	29	
	4169.201422351	31			29	
λ	(2,100)			(3,100)		K
10	2066.09518504967081	_			43	
20	2599.334455047768	42	_	2678.3822347300208	42	
30	2973.74840103652	38	15		33	
40	3271.95233392781	36	13	3371.5220644981	34	
50	3523.8421427834	33	12	3631.0942437592	34	
60	3744.063457751	33	12	3858.031166943	[33]	the second value of the se
70	3941.015689849	31		4060.988826166	34	No. of Concession, Name
80	4120.016551825	30		4245.447329285	29	
90	4284.670926787	29		4415.12162272	33	
100	4437.54859426	27		4572.65993200	29	10
λ	(4,100)	N	K	(5,100)	N	K
λ 10	(4,100) 2191.91271486181399	N 43	K 20	(5,100) 2255.252817482268746	N 45	K 20
λ 10	(4,100) [2191.91271486181399 [2757.793412902427	N 43 40	K 20 20	(5,100) 2255.252817482268746 2837.56622080886168	N 45 37	K 20 15
λ 10	(4,100) [2191.91271486181399 [2757.793412902427 [3155.110399690855	► 43 40 37	K 20 20 14	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831	N 45 37 36	K 20 15 14
λ 10 20 30 40	(4,100) [2191.91271486181399 [2757.793412902427 [3155.110399690855 [3471.54957861064]	► 43 40 37 38	K 20 20 14	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166	N 45 37 36 34	K 20 15 14
λ 10 20 30 40	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109	► 43 40 37 38 33	K 20 14 14 13	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792	N 45 37 36 34 34	k 15 14 14
λ 10 20 30 40	(4,100) [2191.91271486181399 [2757.793412902427 [3155.110399690855 [3471.54957861064]	► 43 40 37 38 33	K 20 14 14 13	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166	N 45 37 36 34 34	K 20 15 14 14
λ 10 20 30 40 50	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109	N 43 37 38 33 34	¥ 20 14 14 13 12	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792	N 37 36 34 34 31	k 20 15 14 14
λ 10 20 30 40 50 60 70	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505	N 43 40 37 38 33 34 31	¥ 20 14 13 12 12	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603	N 37 36 34 34 31 34	× 20 15 14 13 12
λ 10 20 30 40 50 60 70 80	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299	№ 43 40 37 38 33 34 31 29	k 20 14 14 13 12 12	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857	N 36 34 34 31 34 28	× 20 15 14 13 12 12
λ 10 20 30 40 50 60 70 80 90	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287	№ 43 40 37 38 33 34 31 29	k 20 14 14 13 12 12 10	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874	N 37 36 34 34 31 34 28 29	k 20 15 14 13 12 12 12
λ 10 20 30 40 50 60 70 80 90 100	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294	N 40 37 38 33 34 31 29 31 27	K 20 14 14 13 12 12 10 10	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941	N 37 36 34 34 31 34 28 29	k 15 14 14 13 12 12 10 10
λ 10 20 30 40 50 60 70 80 90 100 λ	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100)	N 43 37 38 33 34 31 29 31 27 N	K 20 14 14 13 12 12 10 10 9 K	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100)	N 45 36 34 34 31 34 29 29 29 N	× 20 15 14 13 12 10 10 10
λ 10 20 30 40 50 60 70 80 90 100 λ 10	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100) 2318.87858078395864	N 43 40 37 38 33 34 31 29 31 27 N 44	k 20 14 13 12 12 10 10 9 k 20	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100) 2382.788562408605161	N 45 37 36 34 34 31 34 29 29 29 29 29 N 43	× 20 15 14 13 12 12 10 10 10 × 20
λ 10 20 30 40 50 60 70 80 90 100 λ 10 20	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100) 2318.87858078395864 2917.698867453038	N 43 40 37 38 33 34 31 31 29 31 27 N 44 44	k 20 20 14 14 13 12 10 9 k 20 20 20 20 20 20 20 20 20 20 20 20 20	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100) 2382.788562408605161 2998.189542897865	N 45 36 34 34 31 34 29 29 29 29 8 43 45	k 2015 14 14 13 12 10 10 10 k 20 20
λ 10 20 30 40 50 60 70 80 90 100 λ 10 20 30	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100) 2318.87858078395864 2917.698867453038 3338.12807642583	N 43 40 37 38 33 34 31 29 31 27 N 44 38 31 27 N 44 38 33 34 31 31 31 31 31 31 31 31 31 31	k 20 20 14 13 12 12 10 10 9 k 20 20 15	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100) 2382.788562408605161 2998.189542897865 3430.252665351057	N 45 37 36 34 34 31 34 29 29 29 29 29 29 29 29 29 29 29 29 29	k 20 15 14 13 12 12 10 10 k 20 20 4
λ 10 20 30 40 50 60 70 80 100 λ 10 20 30 40	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100) 2318.87858078395864 2917.698867453038 3338.12807642583 3672.96904128309	N 43 40 37 38 33 34 31 29 31 27 N 44 44 38 36	k 20 14 13 12 12 10 10 9 k 20 20 15 14	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100) 2382.788562408605161 2998.189542897865 3430.252665351057 3774.3564649682	N 45 37 36 34 34 34 29 29 29 29 29 43 45 37 31	
λ 10 20 30 40 50 60 70 80 90 100 λ 10 20 30 40 50	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100) 2318.87858078395864 2917.698867453038 3338.12807642583 3672.96904128309 3955.7996360364	► 43 40 37 38 33 34 31 29 31 27 ► 44 44 38 36 32	k 20 14 13 12 10 10 9 k 20 20 14 13 12 10 10 9 k 20 20 15 14 13	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100) 2382.788562408605161 2998.189542897865 3430.252665351057 3774.3564649682 4065.0097259891	N 45 37 36 34 34 34 29 29 N 43 45 37 31 31 31 34	k 20 15 14 14 13 12 10 10 10 k 20 20 4 14 13 13 12 10 10 10 k 20 20 4 14 13 13
λ 10 20 30 40 50 60 70 80 90 100 λ 10 20 30 50 50 50 60	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100) 2318.87858078395864 2917.698867453038 3338.12807642583 3672.96904128309 3955.7996360364 4203.0680934731	▶ 43 40 37 38 33 34 31 29 31 27 ▶ 44 44 38 36 32 35	K 20 14 14 13 12 10 10 9 K 20 20 15 14 13 14	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100) 2382.788562408605161 2998.189542897865 3430.252665351057 3774.3564649682 4065.0097259891 4319.1164296606	N 45 37 36 34 34 29 29 N 43 45 37 31 34 33	k 20 15 14 13 12 10 10 10 k 20 20 14 14 13 12
λ 10 20 30 40 50 60 70 80 90 100 λ 10 20 30 60 70 80 90 100 20 30 40 50 60 70	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100) 2318.87858078395864 2917.698867453038 3338.12807642583 3672.96904128309 3955.7996360364 4203.0680934731 4424.2072079790	N 43 40 37 38 33 34 31 29 31 27 8 44 44 38 36 32 35 31	K 20 14 14 13 12 10 10 10 9 K 20 20 15 14 13 14 12	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100) 2382.788562408605161 2998.189542897865 3430.252665351057 3774.3564649682 4065.0097259891 4319.1164296606 4546.3706384184	N 45 37 36 34 34 34 28 29 29 29 29 29 29 29 29 29 37 37 31 34 33 33 30	k 20 5 14 14 13 12 12 10 10 10 k 20 24 14 13 12 12 12 12 12 12 12 12 12 12 12 12 12
$\begin{array}{c} \lambda \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 100 \\ 100 \\ 20 \\ 100 \\ 100 \\ 50 \\ 60 \\ 70 \\ 80 \\ 80 \\ \end{array}$	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100) 2318.87858078395864 2917.698867453038 3338.12807642583 3672.96904128309 3955.7996360364 4203.0680934731 4424.2072079790 4625.1887404104	N 43 40 37 38 33 34 31 29 31 27 N 44 44 38 36 32 35 31 31 31	K 20 14 13 12 12 10 10 10 20 15 14 13 14 13 14 12 10	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100) 2382.788562408605161 2998.189542897865 3430.252665351057 3774.3564649682 4065.0097259891 4319.1164296606 4546.3706384184 4752.9094745678	N 45 37 36 34 34 34 34 28 29 29 29 29 29 29 29 29 29 29	k 20 15 14 13 12 10 10 10 10 10 10 12 12 12 12 12 10
λ 10 20 30 40 50 60 70 80 90 100 20 30 40 50 60 30 40 50 60 70 80 90 90	(4,100) 2191.91271486181399 2757.793412902427 3155.110399690855 3471.54957861064 3738.8394593109 3972.5228750505 4181.513579299 4371.454822058 4546.172119287 4708.392503294 (6,100) 2318.87858078395864 2917.698867453038 3338.12807642583 3672.96904128309 3955.7996360364 4203.0680934731 4424.2072079790	▶ 43 37 38 33 34 31 29 31 27 ▶ 44 44 38 36 32 35 31 31 31 31 31 31 31	k 20 14 13 12 12 10 10 9 k 20 15 14 13 14 13 14 10 10	(5,100) 2255.252817482268746 2837.56622080886168 3246.413298382831 3572.0326543166 3847.0753975792 4087.536041603 4302.587275857 4498.036235874 4677.819510998 4844.74329941 (7,100) 2382.788562408605161 2998.189542897865 3430.252665351057 3774.3564649682 4065.0097259891 4319.1164296606 4546.3706384184	N 37 36 34 34 34 34 29 29 29 29 29 29 29 29 29 29	K 201514141312120000 K 2021414131212

λ	(8,100)			(9,100)	N	K
10	2446.98130770891136	44	20	2511.45535196346692	41	20
20	3079.0364213129957	46	20	3160.237663787287	41	20
30	3522.7849783066610	40	15	3615.722913287366	43	20
40	3876. 19263047968	36	14	3978.47522613514	38	14
50	4174.7031967392	33	13	4284.87755942354	32	12
60	4435.6784257188	33		4552.7514378387	32	12
70	4669.0748051960	31		4792.3169259014	31	12
80	4881.1955513491	29		5010.0440623559	29	10
90	5076.313471937	27	10	5210.318718830	29	10
100		29	10	5396.267312586	27	10
λ	(10,100)	N	K	(20,100)	N	K
10	2576.20922241841174	45	22	3238.81196569573192	45	25
20	3241.7914209219405	46	20	4076.30718561972	44	25
30	3709.064356112464	39	15	4664.202776599	33	20
40	4081.20192674615	35		5132.378895292	34	16
50	4395.53031055566	33		5527.813775535	30	
60	4670.3328066151			5873.516071757	130	14
70	4916.094201661	30		6182.679475874	30	_
80	5139.452081943	34		6463.656086087	29	· · · · · · · · ·
90	5344.905874255			6722.107336324	_	12
	5535.662930529		_	6962.06877997		12
λ	(0,50)			(1,50)	N	
5	629.16532829185147			668.647665496408	the second se	20
10	789.730556441783	-	A DECK CONTRACTOR	839.426750777384		20
15	902.64397422707			959.509601105681		15
20	992.6387313402			1055.2136538311	44	15
25	1068.689129338	40	15	1136.086207736	42	15
30	1135.197711392	41	14	1206.810431464	39	13
35	1194.691648051	31	10	1270.074407705	40	13
40	1248.771929449	25	8	1327.580987666	35	10
45	1298.524395323	35		1380.485055975	_	10
50	1344.723395085	25	·	1429.610177565	30	
λ	(2,50)	ÎN	K	(3,50)	IN	K
5	708.4935268594213	40			143	
10	889.580679098124			940.1878757319985		15
15	1016.89907154239	ير الم		1074.807297275903	_	15
20	1118.36505886080			1182.08736077491		15
25	1204.1042251075			1272.737174868		15
30	1279.082953494			1352.008902418	42	_
35	1346.151723198			1422.916889612		12
35 40	1407.116186019	25		1487.370519579	25	_
	1463.200908251	27		1546.664671100	28	Concession of the local division of the loca
45	1515.279124223			1601.722697508	28	· · · · · · · · · · · · · · · · · · ·
50	1212.512154552	28	Ō	1001.12203/308	20	Ľ

λ	(4,50)	N	K	(5,50)	N	K
5	789.2614098875849	45	20	830.176065294112	61	30
10	991.243777094699	45	18	1042.7437514735	52	25
15	1133.22907540585			1192.1591227496		15
20	1246.37484615	23	10	1311.221711797	47	20
25	1341.97891168		the second second	1411.823192504		15
30	1425.58175488	24	10	1499.794882915	39	15
35	1500.36304520	25	9	1578.48321763	38	
40	1568.33681893	24	10	1650.00779840	33	12
45	1630.86889192	25	8	1715.80599679	23	8
50	1688.93318179	23		1776.90273540	34	
λ	(0,1)	N		(0,2)	N	ĸ
	6.1650668551133289	47		8.964493907927813081		
	6.9017850347770		_	10.15048703243291		18
	7.47664934944			11.063537072093		16
	7.95920408956		And in case of the local division of the loc	11.82449582386	54	_
1.0	8.3803425300	47	16	12.48555605099	60	_
	8.7569760328	38	12	13.07483391163	64	
	9.0995351570	33	10	13.60948572185		20
	9.4149786743	35	10	14.1008680499		14
	9.7082163463	37	10	14.5569453429		10
	9.9828610540	38	10	14.9835501066	35	10
	12.107915541	46	10	18.271035707		10
8.0	14.87549356	40		22.530961046	52	10
	18.43724415	42	6	27.9952905	45	
20.	19.78325190	42	6	30.0571990	47	8
	(0,3)	N	K	(0,4)	N	K
	11.915467413289146178	44	18	15.00199301040248031	46	20
0.4	13.6112847202701596	42	15	17.25899374373014841	43	15
0.6	14.90402836035570	46	15	18.96654863720368	42	15
	15.9759085220218	47	15	20.37686233369806	43	15
	16.9040367035113	50	15		45	12
	17.7294839852236	44	12	22.67657939480145	37	10
the second s	18.4771234244251	47		23.65491350281611	42	
	19.1633297680839	42	10	24.55195567083628	42	10
	19.7995386098443	44	10		43	10
	20.3940964325156	43	10	26.15904542728026	45	10
	24.963006350820	43		32.110495991136	49	
	30.86283763085	51		39.775885005345	49	8
16.	38.413674887	50		49.57009862581	52	7
20.	41.259988282	43	and the second sec	53.2592845086	44	6

Table (3.5 continued)

Table	(3.5	continue	d)
-------	------	----------	----

	(0,5)	IN T	K	(0,6)	N	
	18.211755462004171175					
	21.074809613665338			25.044062605126524		15
	23.227833563434205			27.669907540554367		20
	25.0006114600427			29.82660338720456	40	
	26.5289175581239			31.682981512799	57	
1.2				33.327135080818	40	
1.4	29.1084996939278			34.811696239964	31	· · · · · · · · · · · · · · · · · · ·
1.6				36.170976971602	37	
1.8	31.2690430441013		10		34	
	32.2385361700628	39	10	38.602304177711	35	
4.0	39.6611949276483	43	8	47.575599405435	47	10
8.0	49.202495044920	44	7	59.091780144589	47	8
16.	61.37800743234	52	8	73.77239137440	48	7
20.	65.96150003067	48	6	79.2963766707	42	6
λ	(0,7)	N	K	(0,8)	ÎN	K
	24.963450521912494731	42	20	28.49057521034573453	36	20
0.4	29.1549318155875613	39	16	33.397651540446745	43	20
	32.2783906427811582	44	15	37.0414061017115	46	20
0.8	34.838464422125062	44	15	40.0228778000281	48	20
	37.03919765481263	44	15	42.582832667399	50	20
1.2	38.9865846699327	44	15	44.846447027866	53	20
1.4	40.7437685851541	49	15	46.887819701773	54	20
1.6	42.3518274368493	49	15	48.755129513699	60	20
1.8	43.8391893432362	36	10	50.481673892473	35	20
2.0	45.2264537604095	37	10	52.09155494175	56	20
	55.8226359351935	46	10	64.37712292803	29	8
	69.40381848329	51	10	80.1063093642	36	8
	86.7023288396	50	8	100.126668507	43	8
20.	93.2089020399	39	_	107.654314292	37	6
λ	(0,9)			(0,10)	N	K
	32.11054936137011260	34		35.818401307982826	29	20
	37.7639928600849362	42	the second se	42.24690950911906	26	16
0.6	41.949239731676567	40		46.99324638908133	33	15
	45.368357482504512	42		50.86562617229216	37	15
	48.30158155212828			54.18498461045444	42	15
1.2	50.89347528567889	the second se	Contraction of the local division of the loc	57.11642024607385		15
1.4	53.22976729225708			59.75766162354566	46	15
1.6	55.36604659360524	44	13	62.17199622658863	44	12
1.8	57.34068787512017			64.40306979793429	44	12
	59.18144308568			66.4824213570910	31	10
	73.21815644059		the second s	82.32806025866	37	10
	91.17248633208	37	8	102.5797423723	41	10
	114.0113421757	43	8	128.327598116	37	8
		34	6	138.004302608	131	

Teble	(2 5	continued)
TarDie	(3.5	continuea)

λ	(1,15)	N	K	(1,20)	N	K
1	101.91678684638399	46	20	138.04987367414238	42	20
2	125.977653245378	47	18	171.0495927508109	49	20
3	143.078976236345	51	16	194.4641817161947	51	18
4	156.777542032226	49	15	2132046935105180	50	16
5	168.388641932864	53	15	229.081655174241	51	16
6	178.563920818335	54	15	242.990634729459	51	15
7	187.679825186614	49	12	255.448445574032	50	
8	195.975921885432	52		266.783777322107	46	
9	203.615252035510	45	10	277.220148770836	40	13
10	210.714402318751	47	10	286.917354016062	41	10
15	240.540526129253	49	8	327.648559692898	38	8
20	264.335696314341	35	6	360.134624942840	41	8
25	284.455637107849	38	6	387.598465804466	34	6
30	302.05819459135	32	5	411.623282456859	37	6
35	317.80881320795	35	5	433.118658419101	38	6
40	332.12942621539	35	5	452.66118035179	31	5
50	357.5440225623	35	5	487.34049691812	35	5
60	379.7715900750	28	4	517.668757889	28	5
λ	(2,15)	N	K	(2,20)		K
1	118.49387948531204	44	20	155.955430901458956	42	20
2	146.73582098958453	42	15	193.4934419287675	47	20
3	166.7826427958949	46	15	220.1029137473840	49	18
4	182.8307170484548	48	14	241.391033626497	43	15
5	196.428210007448	50	15	259.421457342401	47	15
6	208.341202350853	54	15	275.214058838910	49	15
7	219.011899042153	46	12	289.357061837706	52	15
8	228.721556342141	49	12	302.224378194105	44	
9	237.661505931336	47	10	314.070259030449	34	10
10	245.968518111394	44	10	325.076388374757	40	10
15	280.862566787661	41	8	371.299029187458	36	8
20	308.694922294554	46	8	408.159192262949	40	8
25	332.225439810830	37	6	439.317996377129	43	8
30	352.810024996765	38	6	466.573354333842	35	6
35	371.227740718914	39	6	490.958004699244	37	6
40	387.97246577136	32	5	513.12651103713	36	6
50	417.6874430307	35	5	552.46420523621	32	5
60	443.674664860	24	4	586.86499343	25	5

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5183877 44 59015 41 87794 45 13244 43 44687 50	18 15
2 168.042762436886417 44 15 216.40313276 3 191.1145148505109 46 15 246.27462946 4 209.5753083927461 47 15 270.16404358 5 225.212564414063 48 15 290.39315221 6 238.909917637434 52 15 308.10890634 7 251.177117469138 55 15 323.97244121 8 262.338239325261 45 12 338.40387774 9 272.613670838482 39 12 351.68881680	5183877 44 59015 41 87794 45 13244 43 44687 50	18 15
3 191. 1145148505109 46 15 246. 27462948 4 209. 5753083927461 47 15 270. 16404358 5 225. 212564414063 48 15 290. 39315221 6 238. 909917637434 52 15 308. 10890634 7 251. 177117469138 55 15 323. 97244122 8 262. 338239325261 45 12 338. 40387772 9 272. 613670838482 39 12 351. 68881680	87794 45 13244 43 44687 50	15
4 209.5753083927461 47 15 270.16404358 5 225.212564414063 48 15 290.39315221 6 238.909917637434 52 15 308.10890634 7 251.177117469138 55 15 323.97244121 8 262.338239325261 45 12 338.40387773 9 272.613670838482 39 12 351.68881680	13244 43 44687 50	15
5 225.212564414063 48 15 290.39315221 6 238.909917637434 52 15 308.10890634 7 251.177117469138 55 15 323.97244123 8 262.338239325261 45 12 338.40387773 9 272.613670838482 39 12 351.68881680	44687 50	
6 238.909917637434 52 15 308.10890634 7 251.177117469138 55 15 323.97244123 8 262.338239325261 45 12 338.40387773 9 272.613670838482 39 12 351.68881680		15
7 251. 177117469138 55 15 323. 97244121 8 262. 338239325261 45 12 338. 40387771 9 272. 613670838482 39 12 351. 68881680		15
8 262.338239325261 45 12 338.4038777 9 272.613670838482 39 12 351.68881680	13952 50	115
9 272.613670838482 39 12 351.68881680		13
		10
15 322.258605749117 37 8 415.86042712		8
20 354.236193561922 37 7 457.18628314		_
25 381.268529981204 35 6 492.11740292		
30 404.914899741898 36 6 522.67091961		
35 426.07103309008 34 6 550.00531075	the second s	
40 445.30468386464 36 6 574.85475214		
10 14.3.3040530404 30 0 374.83473214 50 479.43500361690 35 5 618.94829292		
50 479.43500301030 33 518.94023232 60 509.28237048 24 5 657.50680977		5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 <u>35</u> N	K S
0.2 12.352276634042668 44 20 15.558029308		20
0.4 14.2409592995497 51 20 18.048168570		18
0.6 15.667863465357 52 20 19.916961103		
		15
		12
1.2 18.76383244512 42 12 23.951458625 1.12 12 12 12 12 1458625		Contraction of the
1.4 19.57950453935 46 12 25.011382598 1.4 19.57950453935 10 12 13 14 14 15 14 14 14 14 14 14 15 14		
1.6 20.32719024211 39 10 25.982168939 1.6 20.32719024211 39 10 25.982168939		
1.8 21.01967538972 33 8 26.880694482 1.8 21.01967538972 33 8 26.880694482		10
2.0 21.66626381870 34 8 27.719214458		
4.0 26.62156995574 44 8 34.134826773		
6.0 30.15915998432 41 6 38.707300537		
8.0 32.99875808622 44 6 42.374712130		
10. 35. 40867481235 46 6 45. 485702124		
15. 40.29871749436 46 5 51.795254392		_
20. 44.20927997315 41 4 56.838828346		
λ (1,3) N K (1,4)		K
0.2 18.87003947992126263 45 20 22.282944039		
0.4 21.9981807456203860 45 15 26.083640449		16
0.6 24.3339207559629 42 15 28.910044634		15
0.8 26.2501809502373 37 12 31.224192931		12
1.0 27.898417760082 40 12 33.212194662		12
1.2 29.357484748402 39 12 34.970520165		12
1.4 30.674423256764 42 12 36.556556565		11
1.6 31.879866636593 39 10 38.007598340		10
1.8 32.995030498365 41 10 39.349434426		10
2.0 34.03529693500 38 10 40.600739898		9
4.0 41.98456068903 48 10 50.153097539	946 38	8
6.0 47.6429427220 40 8 56.945698427	738 43	8
8.0 52.1786232972 46 8 62.387952580		8
10. 56.0247638183 51 8 67.001509730	042 41	6
15 63.8224421451 45 6 76.352285363	354 45	
20 70.0535245305 31 4 83.822479376	66 45	6

Table	(3.5	continued)

	(1,5)			(5,1)	N	K
	25.79159711822616016	43	20	43.02003446494085997	45	20
0.4	30.297277422588188	45	20	51.4659307154537972	43	20
	33.636606912870932	43	15	57.62645844234190	44	20
	36.366150892962			62.62245894913870	44	18
1.0	38.708583610736	38	12	66.88902102510251	45	16
	40.77891330265	24	10	70.64723195457507	41	14
1.4	42.64539463739	28	10	74.02691099153794	41	13
	44.35231032458			77.11163959617097	42	13
	45.93024267891	38	10	79.95880357528195	44	13
	47.40131557735	38		82.6097245106638	44	14
4.0	58.62201030259	35		102.749763632043	47	12
6.0	66.59423360866	36	8	117.001698046682	42	10
8.0	72.97906736539	47	8	128.394195246495	41	8
	78.39037455221	36	6	138.038515046643	38	7
	89.35533477808	43	6	157.55784505046	42	7
20	98.1131645379	45	6	173.1318447503	35	6
	(5,2)	N	K	(5,3)	N	K
		42		51.53412329767382839	42	
	56.63568444847436669				42	_
0.6	63.469078865339469	46	18	69.3854985004110643	44	18
	69.00636570305774	42	18	75.471606729801238	46	16
	73.73290256864148	43	16	80.664464371131188	40	15
	91.13639236712172	44	14	99.7736803801925	45	14
	113.4162108558533	40	10	124.222111815616	44	12
6.0	129.1763735904936	42	9	141.510711453496	42	10
	141.7722610934256	41	8	155.326072409934	46	
	152.4341697808606	45	8	167.019149524716	41	8
	(5,4)	N	K	(5,5)	N	K
	55.86736976530330601	40	25	60.2516271560787083	36	25
	67.1690029351599099	45	22	72.5339030253549529		22
	75.377057085102206	45	20	81.44434455280887	40	
	82.019819752492763	44	Sector Sector	88.65176007466746		18
	87.685591263303033	43		94.79717504992373		16
	108.52433697323802	44		117.3897269823141		14
	135.1712477730185	45	and the second second			12
	154.0091928350215	45	10			10
	169.0606575535068	48	10			10
	181.798393314306	42		196.776376883182	37	
10.	101.10000014000		Ľ	100.1.00.000105	<u> </u>	<u> </u>

Table (3.6). Eigenvalues of $H=P^2+r^2+l(l+1)r^{-2}+\lambda r^4$, First line results yielded by renormalised series method; Second line results yielded by power series method.

λ	n	1	Energy	N	K
0.1	1	1	11.0408865100354568	59	30
			8		
0.1	10	10	113.662716935388468 8	60	70
0.1	20	20	265.031450903582765 5	48	100
0.1	50	50	848.085118779838032 2	48	120
0.1	100	100	2084.77363033069863 3	41	180
0.1	500	500	17360. 1072422886667 6	77	1000
0.1	1000	1000	43534.7208367373736 7	74	2000
10	5	5	196.776376883182763 3	49	8
10	10	10	464.226738227323737 7	55	13
20	10	10	583.402636115283650 0	43	8
50	20	20	1926.5512309852 22025	35	10
100	20	100	6962.068779976 634781	29	12

Table (3.7). Eigenvalues of $H=P^2+r^2+\ell(\ell+1)r^{-2}+\lambda r^{2N}$, at $\lambda=0.1$. First line results yielded by power series, second line results yielded by renormalised series method, the numbers in the brackets correspond to (K,N). The empty spaces mean that the corresponding eigenvalues cannot be reached by the renormalised series approach.

n	1	2N=6, I=1	2N=8,	
0	0	3.596036921220455		
		3.596036 (250,76)	3.939	(100,72)
0	1	6.439143322321712	7.2884	74617608067
		6.43914 (260,70)		
1	0	10.237873721423873		
				(180,140)
0	2	9.617462285290456		
	ļ	9.61746 (250,63)		
1	1	14.117061485224455		
		14.11706 (250,67)		
2	0	18.801758333358159		
		18.80175 (300,58)		
0	3	13.107473752755803		
		13.10747 (280,71)		
1	2	18.253525389313848	23.0167	81600186331
		18.25352 (260,68)		
2	1	23.513885011366269	30.6237	51038636159
		23.51388 (350,69)		
3	0	28.928957081664627	38.5192	26926770986
		28.92895 (350,68 16.888004695310679		0000000000
0	4		20.4953	32597266005
		16.88800 (270,67) 22.631658348338379	20 0202	00500720000
1	3		23.0281	99290779936
	<u> </u>	22.63166 (290,67) 28.434856717360885	27 6060	00001000040000
2	2		31.0208	00216924090
L	ļ	28.43485 (330,70) 34.353199367450016		00040400204
3	1		40.4423	133043138/64
	<u> </u>	34.35319 (370,71) 40.408244096093465		70750070045
4	0		55. 522L	13128010015
		40.40824 (370,72)		

Table (3.8) Lowest s state energy in N dimensions for potentials ($V=N^{-1}r^4$, $V=Nr^4$), first line renormalised series, second line power series method.

N	V=N ⁻¹ r ⁴	M	K	V=Nr ⁴	м	к
1	1.06036209043	81	19	1.06036209043	81	19
	4841828			4841828		
2	1.861092068378	73	20	2.9542995071	33	6.6
	799400 2.6345461340588	77		71559891 5,48007679453		
3		74	22		36	6.4
4	8318 3.39815017602771	83	23	397092 8,5628018749625		6.5
4	3 . 39813017802771 76967	00	23	6. 5020018749025 5274	49	0.5
5	4 . 15704336756073	71	25	12.1552685452677	56	└ <u>─</u> ────
5	4. 10704330730073 346	' ' '	25	735	50	ſ I
10	7.9267575480441159	62	30	36.79274932175737	53	6
10	160			79		
20	15.437713304665885	45	38	113.74604416273757	73	180
	55			7		
40	30.443495308478298	42	60	356.06928118076285	63	300
	8			5		
80	60.4464655899995	32	100	1122.2705588556035	42	500
	529			5		
160	120.447970891098	28	180	3549.8729468101802	41	1000
	850 240, 448728618409	29	340	2 11249.221561775356		
320	240.448728618409 908	29	340	11249.221301775356 6	31	2400
400	300, 4488805712	26	440	16310.874686175430	27	2200
400	23209	20	110	0010.074000175450	57	3200
500	375,449002231	23	550	23651.805053666849	47	5200
	137532			9		
750	562.94916458	22	850	46470.429656755093	42	8000
	8031373			3		
1000	750.44924581	21	1100	75044.924581284135	39	10800
	1284135			5		

Table (3.9). Eigenvalues of $H=P^2+r^2+\frac{1}{4}(N+2\ell-3)(N+2\ell-1)r^{-2}+\lambda r^4$, in N dimensions, First line results yielded by power series method, Second line, results yielded by renormalised series method.

λ	n	12	N	Energy	M	K
1	2	2	5	39.889929660067122409 2	106	30
5	5	5	5	169.23267264688386673 7	137	150
10	5	10	10	331.96802914613821370 7	105	200
20	10	10	10	666.58161064046128305 0	143	550
50	20	20	20	2269.6613514391479641 1	70	700
25	25	25	25		95	700
50	50	50	50		48	700
10	5	5		1119.8072760171193100 0	119	400
10	10	10	500		61	450
20	10	10	500	96136.438392881033910 0	61	700
100	10	10	10	1136.7515005235265249 4	56	600
200	20	20	20	3599.7811079988223162 6	54	1500
10	20	20	750	13804.301412790782416 1	54	600
20	10	10	750	15620.885254339495668 8	46	700

CHAPTER FOUR

4. <u>NON-POLYNOMIAL POTENTIALS IN ONE AND THREE DIMENSIONS</u> 4.1 Introduction.

This chapter has been devoted to the computation of the eigenvalues in one and three-dimensional cases by using perturbative and nonperturbative methods for the following perturbed Hamiltonians

$$H = -\frac{d^2}{dx^2} + x^2 + \frac{\lambda x^{2N}}{(1+gx^2)} \qquad (2N=2,4,6...18,20) \qquad (4.1)$$

$$H = -\frac{1}{2} \frac{d^2}{dx^2} + \frac{x^2}{2} + \frac{gx^{2N}}{(1+g\alpha x^2)} \qquad (2N=4,6) \qquad (4.2)$$

$$H = -\frac{1}{2} \frac{d^2}{dx^2} + \frac{x^2}{2} - \frac{gx^{2N}}{(1+g\alpha x^2)} \qquad (2N=4,6) \qquad (4.3)$$

$$H = -\frac{d^{2}}{dr^{2}} + \ell(\ell+1)\bar{r}^{2} + \frac{\lambda r^{2}}{(1+gr^{2})}$$
(4.4)

$$H = -\frac{1}{2} \frac{d^{2}}{dr^{2}} + \frac{\ell}{2} (\ell+1) r^{-2} + \frac{r^{2}}{2} + \frac{gr^{4}}{(1+g\alpha r^{2})}$$
(4.5)

$$H = -\frac{1}{2} \frac{d^{2}}{dr^{2}} + \frac{\ell}{2} (\ell+1) r^{-2} + \frac{r^{2}}{2} - \frac{gr^{4}}{(1+g\alpha r^{2})}$$
(4.6)

We drop quantities such as h,m and e from the Hamiltonians in the equations above, in order to present the equations which have been used in simple forms. However, it is obvious that for certain limiting parameter values (e.g $\lambda \longrightarrow 0$, $g \longrightarrow 0$ or $g \longrightarrow \infty$) the differential equations corresponding to (4.1,4.2, 4.3,4.4,4.5,4.6) behave like the differential equations of the harmonic oscillator.

There are a variety of techniques which have been employed to calculate and to investigate these eigenvalue problems. Most of the calculations has been devoted to the Hamiltonian given by (4.1) for (2N=2). However as far as we know the other potentials have not been so much studied, except the potentials given by (4.2,4.3) for (2N=4), as we will see in later sections. We have been unable to find a reference in the literature dealing with the other types of potentials. We have used four methods to treat the eigenvalue problem for even and odd parity for different values of λ and g:

1. The Renormalised series method.

2. The Power series method.

3. The Finite difference method.

4. The Padé approximant method.

Also we tested some of our results by running the code which was used by V.Fack and Vanden Berghe [29,1985]. The agreement between our results using a finite difference method and the results using their code depends on the number of terms which are taken into account in the expansion of the kinetic energy operator:

$$h^{2}D^{2} = \delta^{2} - \frac{\delta^{4}}{12} + \frac{\delta^{6}}{90}$$
 (4.7)

The basic idea of the Fack and Vanden Berghe [29,1985] method is to use a finite difference method with matrix diagonalisation; this approach is more complicated than our

finite difference method. Some of our reported results have not been previously available in the literature, so we used more than one method in order to check the accuracy of our results. In the present calculation we have been able to consider the effect of the extension of the range of values the index $(2N=2,4,6,8,\ldots,20)$ on of our eigenvalue calculations. It should be useful to have such calculations to get an idea of the numerical limits of applicability of our methods for investigation of these types of potentials, and to prepare the way for further study of these potentials in the future. The perturbation series only converges for some appropriate ranges of λ and g. Precautions must be taken not to exceed critical values of λ and g. Some of our methods depend on the ranges which are used for λ and g if they are to give eigenvalue results of high accuracy.

4.2 Introductory remarks concerning potential $\lambda x^{2N}/(1+gx^2)$

The purpose of this section is to investigate the Schrödinger equation.

$$\left[\frac{d^2}{dx^2} - V(x) + E\right] \Psi(x) = 0 \qquad (4.8)$$

with the potential

$$V(x) = x^{2} + \frac{\lambda x^{2N}}{(1+gx^{2})} \qquad (2N=2,4,6,8,10...18,20) \qquad (4.9)$$

This potential with 2N=2, has recently been studied by many authors using different techniques. Mitra [23,1978] calculated the ground state and first two excited states using the Ritz variational method in combination with a Givens-Householder matrix eigenvalue algorithm. Galicia and Killingbeck [24,1979] used the finite difference method to

compute the energy eigenvalues for the three lowest even parity states. Kaushal [25,1970] has obtained the asymptotic expansions for the eigenenergies and eigenfunctions for the potential by expanding the factor $1/(1+gx^2)$ as a power series in gx², Bessis and Bessis [26,1980] have studied the same problem by taking advantage of a two parameter (λ and g) scale transformation. Hautot [27,1981] has used a Hill determinant method to calculate the energy eigenvalues. Lai and Lin [28,1982] have applied the Hellmann-Feynman and hypervirial theorem and used Padé approximants to calculate the energy eigenvalues from the perturbation series. Fack and Vanden Berghe [29,1985] used the finite difference method in combination with matrix diagonalisation for a numerical computation. The interest in this type of potential arises in several areas and these have been summarized by Mitra [23,1978] and Kaushal [25,1970]. In particular, this type of potential occurs when considering models in laser theory. In this calculation we have presented four numerical methods for the determination of energy eigenvalues. However, for large value of g some difficulties are encountered for some of these methods, so we restricted our calculation to a rather small range of $0.1 \le g \le 0.5$ and a large range of $(20 \le \lambda \le 1000)$. In spite of these restrictions on the values of λ and g, the agreement between the power series, hypervirial, and finite difference methods is excellent. The results can be considered as an improvement over previous results. Our results, which have twenty significant figure, are more accurate than previous results, which do not exceed ten

significant figures. The finite difference method is a powerful method which covers a large range of $0.1 \le \lambda \le 1000$ and $0.1 \le g \le 1000$ and we can use this method to show up the drawbacks of other methods mentioned previously. While the finite difference method appears to be recommendable for a large range of λ and g, the power series and hypervirial methods should be reserved for a small range of (g) and large range of (λ). We also used the [6,6] Padé approximants to the energy series, which was obtained from the Hellmann-Feynman theorem and the hypervirial theorem.

4.3 Hypervirial relations for the potential $x^2 + \lambda x^2 / (1 + gx^2)$

The Schrödinger equation for this potential can be written as

$$\left[\frac{d^2}{dx^2} - V(x) + E\right] \Psi(x) = 0 \qquad (4.10)$$

where the potential V(x) is given by

$$V(x) = x^{2} + \frac{\lambda x^{2}}{(1 + gx^{2})}$$
(4.11)

The perturbation calculation for the potential $[\lambda x^2/(1+gx^2)]$ is made by expanding the factor $1/(1+gx^2)$ as a power series in gx^2 which is valid for $gx^2 \le 1$. As x varies from $(-\infty \le x \le +\infty)$, the function $f(x)=1/(1+gx^2)$ runs from (0 to 0) through 1 at x=0, f(x) being always non-negative. In this section, we apply the hypervirial relation Killingbeck [12,1982] and the Hellmann -Feynman theorem to the Schrödinger equation, from the basic hypervirial relation and the starting Hellmann-Feynman theorem which have been given in a previous chapter (2.3) and (2.14). The potential in equation (4.11)

can be expressed as

$$V(x) = (1+\lambda) x^{2} + \sum_{n=1}^{\infty} g^{n} V_{n} x^{2(n+1)}$$
(4.12)

where

$$V_{n} = \lambda \left(-1\right)^{n} \qquad (4.13)$$

The coefficient given by (4.13) alternate in sign; the coefficient take (+ sign) for even n values, and (- sign) for odd n values. We have expanded the potential as given by equation (4.12) to the limit at which any term beyond that limit makes no difference to our eigenvalues. For our calculations this limit was reached for n=20. The series in equation (4.12) is valid only for $gx^2 \leq 1$. For large g and small λ , it is found that our hypervirial method underestimates the eigenenergies. The unperturbed value of E(0) is given by

$$\mathbf{E}(\mathbf{0}) = \left(2\mathbf{n}+1\right)\sqrt{(1+\lambda)} \tag{4.14}$$

Now we use the energy E and the expectation values $\langle x^N \rangle$ which are given by (2.6) and (2.7) and the potential which is given by (4.12) in the Hypervirial relation and the Hellmann-Feynman relation. Using the same approach that led us to the recurrence relations (2.10) and (2.15), we find the relations

$$\left(2N+2\right) \sum_{0}^{M} E(I)B(N, M-I) = -\frac{N}{2} \left[N^{2}-1\right]B(N-2, M)$$

+ $\left(1+\lambda\right) \left(2N+4\right)B(N+2, M) + \sum_{n=1}^{\infty} V_{n} \left[2N+2\left(n+2\right)\right]B(N+2(n+1)), M-n) \quad (4.15)$

$$(M+1) E(M+1) = \sum_{n=0}^{\infty} (n+1) V_n B(N+2(n+1)), M-n)$$
 (4.16)

The energy coefficients E(M) can be determined from the relations (4.15) and (4.16) with the aid of E(0) and the condition B(0,0)=1. At K=0 the perturbation series converges and gives satisfactory numerical results for high values of λ (20 $\leq\lambda\leq1000$) together with low values of g (0.1 \leq g \leq 0.5).

4.4 Power series method calculation of the energy eigenvalues

The power series method is a non-perturbative approach been used to calculate eigenvalues for many which has problems. Killingbeck has applied this approach to perform many eigenvalue calculations and our confidence in the accuracy of this method in numerical calculations of the energies for various problems has been indicated in previous chapters. From our results this approach can be seen to provide excellent accuracy, but for the type of potential of equation (4.11) there is some restriction on the values of λ and g. At large values of g the perturbing potential is concentrated in a small bump near the origin. The energy levels of the Schrödinger equation (4.10) with the potential $(x^{2} + \lambda x^{2}/(1+gx^{2}))$ can be calculated by applying the power series approach. The wavefunction in equation (4.10) is defined as

$$\Psi(\mathbf{x}) = \exp\left(-\beta \mathbf{x}^{2}\right) \sum_{\mathbf{0}}^{\infty} \mathbf{A}(\mathbf{N}) \mathbf{x}^{\mathbf{N}}$$
(4.17)

Substituting the wavefunction as given by equation (4.17) into equation (4.10) reduces (4.10) to the following equation

$$\begin{pmatrix} N+1 \end{pmatrix} \begin{pmatrix} N+2 \end{pmatrix} T (N+2) = \left[2\beta N - gN \left(N - 1 \right) + 2\beta \left(N + 1 \right) - E \right] x^{2} T (N)$$

$$+ \left[2\beta g \left(2N - 3 \right) - 4\beta^{2} + 1 + \lambda - Eg \right] x^{4} T (N-2)$$

$$+ \left(g - 4\beta g \right) x^{6} T (N-4)$$

$$(4.18)$$

where

$$\sum_{\mathbf{U}}^{\infty} \mathbf{T}(\mathbf{N}) = \sum_{\mathbf{U}}^{\infty} \mathbf{A}(\mathbf{N}) \mathbf{x}^{\mathbf{N}}$$
(4.19)

and β is an arbitrary parameter on which the eigenvalues cannot depend. In the previous chapter we have mentioned this parameter β as being used to improve the rate of convergence of the resulting computations. The initial conditions for the recurrence relation (4.18) are T(0)=1 (to get an even eigenstate) or T(1)=0 (to get odd states) with all other coefficients zero for N<0. The calculated eigenvalues vary with x_0 , if we require $\psi(x_0) = 0$. In the power series approach the results are accurate only when certain relation between λ and g hold. These relations can be given as

$$\frac{g}{\lambda} \ll 1 \qquad (4.20)$$

and

$$\mathbf{gx}^2 \leq \mathbf{1} \tag{4.21}$$

The conditions (4.20) and (4.21) limit the range of values of $0.1 \le g \le 0.5$ and $20 \le \lambda \le 1000$. Within these limits, the energy eigenvalues for this potential as given by the power series approach are very accurate.

-114-

4.5 Finite-difference eigenvalue calculations

times have seen the development of Recent non-perturbative methods of computing energy eigenvalues. Such methods are necessary since the perturbative methods provide insufficient information about accuracy, and give convergence difficulties. Recently Killingbeck has applied finite difference methods to various eigenvalue calculations and published many papers dealing with this type of method. He also described modified approaches of high order for finding Schrödinger equation eigenvalues, which can be expressed as

$$h^{2}\delta^{2}\psi(\mathbf{x}) = 4\left[\sinh\left(\frac{1}{2}hD\right)\right]^{2}\Psi(\mathbf{x}) \quad D^{2}>0$$
$$= 4\left[\sin\left(\frac{1}{2}hD\right)\right]^{2}\Psi(\mathbf{x}) \quad D^{2}<0$$

In the present eigenvalues calculations, we used the above relations instead of using the relations (2.21) and (2.22). The error of the method used here should be smaller when a smaller h (step length) is used. The energy eigenvalues calculated by finite-difference methods in this section are subject to further modifications if high-term expansions are used. It will be our aim in this section to compute energy eigenvalues of the Schrödinger equation

$$\left[\frac{d^2}{dx^2} - V(x) + E\right] \Psi(x) = 0 \qquad (4.22)$$

with the potential

$$V(x) = x^{2} + \frac{\lambda x^{2N}}{(1 + gx^{2})} \qquad (2N = 2, 4, 6, \dots 18, 20) \qquad (4.23)$$

where E denotes the energy eigenvalue. The wavefunction $\Psi(x)$ can be restricted to the region $[0, +\infty]$. Furthermore we shall

suppose that the wavefunctions are restricted to obey the Dirichlet boundary condition $\Psi(x)=0$ at some x value (x=R). An acceptable R value will be guessed numerically. The interval [0,R] is subdivided into equal parts of length h, with x=kh $(k=0,1,2,\ldots,n; nh=R)$. The ground state and the first three even energy levels were computed by our approach for a large range of (λ) and (g). In this section the finite difference method for calculating eigenvalues of the Schrödinger equation (4.22) will be discussed by introducing a finite difference representation of $D^{2\Psi}(x)$. Chapter two explained the simple mathematics which forms the basis of our method. It is worth noting here that the finite difference method which is under discussion in the present section is different from that of the V.Fack and Vanden Berghe but it shares with it the use of finite difference expressions. Those previous workers used a finite difference method in combination with a for numerical computations diagonalisation and matrix transformed the Schrödinger equation into an algebraic eigenvalue problem, with a special form of matrix. A Finite difference representation for $D\Psi(x)$ is introduced such that the Schrödinger equation is transformed into an algebraic eigenvalue problem. Our method gives results with high accuracy for a wide range of $0.1 \le g \le 1000$ and $0.1 \le \lambda \le 1000$ for (2N=2,4,6..18,20). For large g values it seems that the present method works quite well, whereas the other methods have some problems. Although the displayed results are restricted to even-parity states, the method can be used for odd-parity states. We believe that the extrapolation procedure (for $h \rightarrow 0$) is very accurate if the h values are chosen in the safe region.

4.6 The Padé approximant calculation of energy eigenvalues

We will now define the Padé approximant, and the Padé table. Definition: Let the [L,M] Padé approximant to the series A(x) be denoted by:

$$[L,M] = \frac{P_L(x)}{Q_M(x)}$$

where $P_L(x)$ is a Polynomial of degree at most L and Q _M(x) a polynomial of degree at most M. We require that the formal power series for P/Q agrees with the A(x) series up to the (L+M)th power. The following theorem is due to Frobenius.G. and Padé, (Theorem of Uniqueness). The [L,M] Padé approximant to any formal power series A(x), when it exists, is Unique. (For the proof see ref [56,1975]. This theorem holds whether the defining equations are non singular or not. If they are non singular, then they can be solved directly to obtain:

$$[L,M] = \begin{bmatrix} a_{L-M+1} & a_{L-M+1} & \cdots & a_{L+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{L} & a_{L+1} & \cdots & a_{L+M} \\ \\ \int_{J=M}^{L} a_{J-M} \lambda^{J} & \int_{J=M-1}^{L} a_{J-M+1} \lambda^{J} & \cdots & \int_{J=0}^{L} a_{J} \lambda^{J} \\ \\ a_{L-M+1} & a_{L-M+2} & \cdots & a_{L+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{L} & a_{L+1} & \cdots & a_{L+M} \\ \lambda^{M} & \lambda^{M-1} & \cdots & 1 \end{bmatrix}$$

where we define $a \equiv 0$ if n < 0; $q_j \equiv 0$ if j > M and, if the lower index on a sum exceeds the upper, the sum is replaced

by zero. It is customary to arrange the Padé approximants in a table as follows:

[0,0]	[0,1]	[0,2]	[0,3]
[1,0]	[1,1]	[1,2]	[1,3]
[2,0]	[2,1]	[2,2]	[2,3]
[3,0]	[3,1]	[3,2]	[3,3]

The set [N,0] [N,1] [N,2] with N fixed is a row of the table; likewise the set [N,M] with M fixed is a 'column' while the set [N,N] is the diagonal sequence; we call a set [N,N+j] with j fixed, a paradiagonal. The top row is composed of the partial sums of the Taylor series. The Padé approximants are a particular type of rational fraction approximation to the value of a function, Padé approximation is a useful technique when the convergence of the series is unacceptably slow or even nonexistent. The Padé approximant is in the form of one polynomial divided by another polynomial. Padé approximants provide us with a practical method of calculating results energy series E(n), since their use frequently from accelerates convergence. The E [M,N] Padé approximants to the energy series is given by

$$\mathbb{E} [\mathbf{N},\mathbf{M}] = \frac{\mathbf{a}_0 + \mathbf{a}_1^{\lambda} + \mathbf{a}_2^{\lambda^2} + \mathbf{a}_3^{\lambda^3} \dots \mathbf{a}_n^{\lambda}}{\mathbf{b}_0 + \mathbf{b}_1^{\lambda} + \mathbf{b}_2^{\lambda^2} + \mathbf{b}_3^{\lambda^3} \dots \mathbf{b}_m^{\lambda}}$$
(4.24)

$$= E(0) + E(1)\lambda + E(2)\lambda^{2} + - - - - E(N+M)\lambda^{M+N} + - - - (4.25)$$

with b_0 defined to be unity. The coefficients $(a_i = 1, ----N)$ and $(b_i = 0, ----M)$ in the numerator and denominator are calculated from the knowledge of E(1), E(2), -----, E(M+N), which can be computed from the hypervirial relations. The energy series for the interaction $\lambda x^2/(1+gx^2)$ appears to be convergent for g>5 and for large value of λ . Thus we can still calculate the energy E_n for g>5 to very high accuracy. Our calculated energy values E_n used the [6,6] Padé approximants to the energy series for the ground and the first three excited states.

4.7 Hypervirial relations for the potential given by

$$\left[\frac{1}{2}x^{2}-gx^{2N}/(1+g\alpha x^{2})\right](2N=4,6)$$

In this section, we want to investigate the Schrödinger equation

$$\left[\frac{1}{2} \frac{d^2}{dx^2} + E - V(x)\right] \Psi(x) = 0$$
 (4.26)

with a potential of the type

$$V^{\mp} = \frac{x^{2}}{2}^{2} \mp \frac{gx^{2N}}{(1+g\alpha x^{2})} \qquad (2N = 4, 6) \qquad (4.27)$$

The potential described by equation (4.27) for (2N=4) has recently been studied by G.Auberson [30,1982], who has shown that the perturbation expansion of eigenvalues E in terms of g at fixed α , is Borel summable. For the validity of this results, it is essential that the potential V(x;g) be positive for all physical values of g and α , where the physical range of the parameters (g and α) is given as; for the potential V⁺(x;g),g≥0, α >0, and for V⁻(x;g),g≥0, α >2, (in order that V⁻(x,g)---∞, as x^2 ---∞).

Also G.Auberson and T.Boissiere [31,1983] calculated ground state energy levels for a large range of values of α and g, by using a Padé method, Borel-Padé method, an improved Borel-Padé method and Borel-mapping method). The potential $V_{2N}^{\mp}(x,g)$ can be written in this form

$$V_{4}^{\mp}(x;g) = \left[\frac{1}{2} \mp \frac{1}{\alpha}\right] x^{2} \pm \frac{x^{2}}{\alpha(1+g\alpha x^{2})}$$
(4.28)

$$V_{6}^{\mp}(x;g) = \left[\frac{1}{2} \mp \frac{1}{\alpha}x^{2}\right]x^{2} \pm \frac{x^{2}}{g\alpha^{2}} \mp \frac{x^{2}}{g\alpha^{2}(1+g\alpha x^{2})}$$
(4.29)

We want to study the limit of this potential

$$V^{\mp}(x;g) = \frac{1}{2}x^{2} \mp gx^{2M}$$
 (2N=4,6) (4.30)

The potential given by equation (4.30) is a pure anharmonic oscillator The singularity of $V^{\mp}(x;g)$ at $x^2 = -1/\alpha g$ is responsible for a singularity of $E_{r}(g)$ and for the divergence of the potential series expansion. We investigate three methods to compute the energy eigenvalues, the hypervirial Padé approximants method and the finite method, the difference method. The first two methods are excellent for computing the energy for a small range of values of α and g , but the finite difference approach is applied to a wide range of values of α and g. In this section, we apply the hypervirial theorem and the Hellmann-Feynman theorem to calculate the eigenvalues of the Schrödinger equation for this potential. The potential $V^{\mp}(x)$ can be expanded as

$$V^{\mp}(x) = \frac{1}{2} \left[\mu - \lambda k \right] x^{2} \mp \frac{1}{\alpha} \sum_{n=0}^{\infty} V_{n} \lambda^{n+1} x^{2(n+2)}$$
(4.31)

where the potential coefficient V is

$$V_{n} = \left(-1\right)^{n} \qquad (4.32)$$

and

The unperturbed energy eigenvalue E(0) is given by

$$\mathbf{E}(\mathbf{0}) = \left(\mathbf{n} + \frac{1}{2}\right) \left(\mu \right) ; \quad \mu = 1 + \lambda \mathbf{K}$$
 (4.34)

If we insert the energy (E) series and the expectation value $\langle x^N \rangle$ series in the hypervirial relation, the following relation is obtained

$$\left(2N+2\right) \sum_{0}^{M} E(I)B(N, M-I) = -\frac{N}{4} \left[N^{2}-1\right]B(N-2, M)$$

$$+ \left(N+2\right) \left[\mu B(N+2, M) - KB(N+2, M-1)\right]$$

$$\mp \frac{1}{\alpha} \sum_{n=0}^{\infty} V_{n} \left[2N+2\left(n+3\right)\right]B(N+2(n+2), M-n-1)$$

$$(4.35)$$

If we apply the Hellmann-Feynman theorem

$$\frac{\partial \mathbf{E}}{\partial \lambda} = \langle \frac{\partial \mathbf{V}}{\partial \lambda} \rangle \qquad (4.36)$$

the following relation is obtained

$$\left(M+1 \right) E(M+1) = -\frac{K}{2} B(2,M) \mp \frac{1}{\alpha} \sum_{n=0}^{\infty} V_n \left(n+1 \right) B(2(n+2),M-n)$$
 (4.37)

We can calculate the energy eigenvalues from equations (4.3ζ) and (4.37) by using the unperturbed energy E(0) and the initial coefficient value B(0,0)=1. We also used the same technique with g as the perturbation parameter. The agreement between the results from the two approaches is excellent, particularly for low value of α , but at high values of α the agreement between the two eigenvalues decreases, and this is very clear from our results in table (4.10). The potential $V^{\mp}(x)$ in equation (4.27) can be expanded in the form

$$V^{\mp}(x) = \frac{1}{2} \left[\mu - \lambda k \right] x^{2} \mp \sum_{n=0}^{\infty} V_{n} g^{n+1} x^{2(n+2)}$$
(4.38)

where

$$V_{n} = \left(-\alpha\right)^{n}, \quad \mu = 1 + \lambda k \tag{4.39}$$

The coefficients given by equation (4.39) alternate in sign, taking positive and negative values for even and odd powers respectively. If we follow the same procedure used to get the relations (4.35) and relation (4.37), we get the following relations

$$\left(2N+2\right) \sum_{0}^{M} E(I)B(N, M-I) = -\frac{N}{4} \left[N^{2}-1\right]B(N-2, M)$$

$$+ \left(N+2\right) \left[\mu B(N+2, M) - KB(N+2, M-1)\right]$$

$$\mp \sum_{n=0}^{\infty} V_{n} \left[2N+2\left(n+3\right)\right]B(N+2(n+2), M-n-1)$$

$$(4.40)$$

$$\left(M+1 \right) E(M+1) = -\frac{K}{2} B(2,M) \mp \sum_{n=0}^{\infty} V_n \left(n+1 \right) B(2(n+2),M-n)$$
 (4.41)

The above equation (4.40) and (4.41), together with initial conditions $E(0) = \frac{1}{2} [2n+1]\sqrt{\mu}$ (n=0,1,2) and B(0,0)=1 are sufficient to compute the coefficients E(M) of the perturbation series for the energy. The method outlined above can also be used for the potential which is given by equation (4.29). For high-index (2N=4,6) perturbation calculation by the hypervirial method, the method seems to work only for small value of g. The recurrence relations corresponding to the case (2N=6) are

$$\left(2N+2\right) \sum_{0}^{M} E(I)B(N, M-I) = -\frac{N}{4} \left[N^{2}-1\right]B(N-2, M)$$

$$+ \left(N+2\right) \left[\mu B(N+2, M) - KB(n+2, M-1)\right]$$

$$\mp \frac{1}{\alpha} - \sum_{n=0}^{\infty} V_{n} \left[N+2\left(n+4\right)\right]B(N+2(n+3), M-n-1)$$

$$(4.42)$$

$$\left(M+1 \right) E(M+1) = -\frac{K}{2} B(2,M) \neq \frac{1}{\alpha} \sum_{n=0}^{\infty} V_n \left(n+1 \right) B(2(n+3),M-n)$$
 (4.43)

We used the recurrence relations (4.42) and (4.43) but with $\lambda = g\alpha$ as the perturbation parameter.

4.8 Three dimensional calculation for the potential

 $\lambda r^2 / (1 + gr^2)$

It is interesting to note that this model can he extended to the three dimensional case, and we used more than method to calculate the eigenvalues. The numerical one results obtained by the perturbative method agree with those obtained by the non-perturbative (power series) method. As is expected, the eigenvalue accuracy decreases steadily with increasing λ and fixed g in accord with our previous experience In one dimensional problems for this type of potential, for large g, the perturbing potential is almost entirely concentrated near r=0. In this section, we want to investigate the three-dimensional Schrödinger equation, which can be written conventionally in the form

$$\left[\frac{d^2}{dx^2} + E - V(r)\right] \Psi(r) = 0 \qquad (4.44)$$

where

$$V(\mathbf{r}) = \mathbf{r}^{2} + \ell(\ell+1)\mathbf{r}^{-2} + \frac{\lambda \mathbf{r}^{2}}{(1+g\mathbf{r}^{2})}$$
(4.45)

We shall not distinguish between the one and three-dimensional interpretation of the perturbed Hamiltonian, and assume that we have either (ℓ =-1,0 and - ∞ $\langle r \langle +\infty \rangle$) or (ℓ =0,1, and 0 $\langle r \langle +\infty \rangle$) The potential in equation (4.45) can be expressed as

$$V(\mathbf{r}) = \mathbf{r}^{2} + \ell(\ell+1)\mathbf{r}^{-2} + \sum_{n=0}^{\infty} V_{n} \mathbf{g}^{n} \mathbf{r}^{2(n+1)}$$
(4.46)

where

$$V_{n} = \lambda \left(-1\right)^{n} \tag{4.47}$$

If we insert the energy and expectation value series in the hypervirial relation, and use the Hellmann-Feynman theorem, we get the following relations

$$\left(2N+2\right) \sum_{0}^{M} E(I)B(N, M-I) = N \left[\ell(\ell+1) - \frac{1}{2} \left(N^{2} - 1\right)\right] B(N-2, M)$$

$$+ \left(\lambda+1\right) \left(2N+4\right) B(N+2, M)$$

$$+ \sum_{n=0}^{\infty} V_{n} \left[2N+2\left(n+2\right)\right] B(N+2(n+1), M-n-1)$$

$$(4.48)$$

$$\left(M+1\right) E(M+1) = \sum_{n=0}^{\infty} V_{n} (n+1) B(2(n+1), M-n)$$

$$(4.49)$$

The energy of the nth unperturbed state can be written as follows

$$E(0) = (4n+2\ell+3)$$
 (4.50)

The above equations (4.48,4.49,4.50) with coefficient

B(0,0)=1 allow us to compute the energies for different value of angular momentum ($\ell=5,10,20$). We used the power series method as another approach to compute the energy eigenvalues, to check our results. The first step in applying this approach is to write the Schrödinger equation in the form

$$\left[\frac{d^{2}}{dr^{2}} + E - r^{2} - \frac{\lambda r^{2}}{(1+gr^{2})} - \ell(\ell+1)r^{-2}\right]\Psi(r) = 0 \qquad (4.51)$$

The wavefunction in equation (4.51) can be expressed as

$$\Psi(\mathbf{r}) = \exp\left(-\beta \mathbf{r}^{2}\right) \sum_{0}^{\infty} A(\mathbf{N}) \mathbf{r}^{\ell+N+1}$$
(4.52)

We substitute equation (4.52) in equation (4.51). The result of this substitution is

$$\left[\left(N+2\right)\left(N+2\ell+3\right)\right]T(N+2) =$$

$$+\left[g\left\{\ell\left(\ell+1\right)-\left(N+\ell\right)\left(N+\ell+1\right)\right\}+4\beta N+4\beta\ell+6\beta-E\right]r^{2}T(N)\right\}$$

$$+\left[g\left(4\beta\left(N-2\right)+4B\ell+6\beta-E\right)+1-4\beta^{2}+\lambda\right]r^{4}T(N-2)\right)$$

$$+g\left[1-4\beta^{2}\right]r^{6}T(N-4)$$

$$(4.53)$$

where

$$\sum_{0}^{\infty} T(N) = \sum_{0}^{\infty} A(N) r^{\ell + N + 1}$$
(4.54)

The energy eigenvalues calculated by the power series approach are valid only for $gr^2 \leq 1$, using the Dirichlet condition $\psi(r)=0$. We used the Padé approximant method as another approach to calculate the energy eigenvalues corresponding to a range of values g and λ for which it is impossible to calculate results by hypervirial and power series methods. We calculated the energy eigenvalues using the [6,6] approximant for ground and first excited states; the energy levels were calculated for different values of angular momentum.

4.9 <u>Three dimensional calculation for the potential</u> $1/2r^{2} \mp gr^{4}/(1+g\alpha r^{2})$

The Schrödinger equation (4.27) for three dimensions takes the form

$$\left[\frac{\mathbf{d}^{2}}{\mathbf{dr}^{2}} + \mathbf{E} - \mathbf{V}(\mathbf{r})\right] \Psi(\mathbf{r}) = 0 \qquad (4.55)$$

where the potential in equation (4.55) is given as

$$V^{\mp}(\mathbf{r}) = \frac{\mathbf{r}^{2}}{2} + \frac{\ell}{2}(\ell+1)\mathbf{r}^{-2} \mp \frac{\mathbf{gr}^{4}}{(1+\mathbf{gar}^{2})}$$
(4.56)

The potential (4.56) can be expressed as

$$V^{\mp}(\mathbf{r}) = \frac{\mathbf{r}^{2}}{2} + \frac{\ell}{2}(\ell+1)\mathbf{r}^{-2} \mp -\frac{1}{\alpha} \sum_{n=0}^{\infty} V_{n} \lambda^{n+1} \mathbf{r}^{2(n+2)}$$
(4.57)

where the potential coefficients V are

$$V_{n} = \left(-\right)^{n}; \quad \lambda = \alpha g \qquad (4.58)$$

The series in equation (4.57) is valid only for $g\alpha r^2 \le 1$. By substituting the energy and expectation value series, as given by equations (2.6,2.7), in the hypervirial relation (2.3), the following relation is obtained

$$\left(2N+2\right) \sum_{0}^{M} E(I)B(N,M-I) = N \left[\ell(\ell+1) - \frac{1}{4}\left(N^{2}-1\right)\right] B(N-2,M)$$

+ $\left(N+2\right)B(N+2,M) \mp \frac{1}{\alpha} \sum_{n=0}^{\infty} V_{n} \left[2N+2\left(n+3\right)\right] B(N+2(n+2)), M-n-1)$ (4.59)

If we apply the Hellmann-Feynman theorem, we obtain the following relation

$$\left(M+1 \right) E(M+1) = \mp \frac{1}{\alpha} \sum_{n=0}^{\infty} V_n \left(n+1 \right) B(2(n+2), M-n)$$
 (4.60)

Using the unperturbed value of energy $E(0) = \frac{1}{2}[4n+2\ell+3]$, with the initial condition B(0,0)=1, the equations (4.59) and (4.60) are sufficient to calculate the energy series. Also we use the same approach with g as perturbation parameter, so that the potential takes the form

$$V(\mathbf{r}) = \frac{\mathbf{r}^{2}}{2} + \frac{\ell}{2}(\ell+1)\mathbf{r}^{-2} \neq \sum_{n=0}^{\infty} V_{n} \mathbf{g}^{n+1} \mathbf{r}^{2(n+2)}$$
(4.61)

Using the same technique which gave relations (4.59, 4.60), we can get the relation

$$\left(2N+2\right) \sum_{0}^{M} E(I)B(N,M-I) = N \left[\ell(\ell+1) - \frac{1}{4}\left(N^{2}-1\right)\right]B(N-2,M)$$

+ $\left(N+2\right)B(n+2,M) \mp \sum_{n=0}^{\infty} V_{n} \left[2N+2\left(n+3\right)\right]B(N+2(n+2),M-n-1)$ (4.62)

where

$$V_{n} = \left(-\alpha\right)^{n} \tag{6.63}$$

and also the relation

$$(M+1) E(M+1) = \mp \sum_{n=0}^{\infty} V_n (n+1) B(2(n+2), M-n)$$
 (4.64)

4.10 Results and discussion

Our aim in this section is to investigate and to discuss the results for the energy eigenvalues of the Hamiltonians given by equations (4.1-4.6), in one and three dimensions. Our aim also is to push the numerical analysis as far as possible, and in this respect we go further than other people in our analysis. We study here the three dimensional problem and high indices 2N of the perturbation. In addition we have succeeded in finding the energy eigenvalues with excellent accuracy. This problem received great attention from us , and we have attacked it by many methods, as we mentioned in a previous section. In summary, we have analysed numerically four different methods to determine the energy eigenvalues for these problems for different values of state number n and a wide range of values of $(\lambda \& g)$ and indices (2N=2,4,...18,20). The finite difference method has been used for calculations outside the limits applicable to the other three methods Padé approximant (hypervirial, and power series), particularly in respect to the values of parameters $(g\&\lambda)$ and of the index of the perturbation (2N=2,4,6,... 18,20). It is note worthy that the methods which have been applied to compute our results are applicable within a limited range of $(2N,\lambda,g)$, except for the finite difference method, which seems to present fewer difficulties. We have used the hypervirial method to calculate results for various model problems, such as those given by (4.1, 4.2, 4.3, 4.4, 4.5, 4.6), for different values of $(2N,\lambda,g,n)$. The present work is intended to point out one feature which has not been noted in previous problems. The hypervirial method can produce a good accuracy even without use of the renormalisation parameter K, which usually plays an important role in obtaining convergent perturbation series, as we have seen in previous chapters. We

have performed a series of computations for the problems of this chapter, which revealed the following fact. As the index (2N) increases the sums of the perturbation series converge very well for small values of λ , and as λ increases the convergence begin to decrease. If we review briefly our listed results in tables (4.3,4.7,4.10,4.12,4.13), we can get a clear picture of this behaviour. We can say that the accuracy of our listed results is very good in comparison with other results which are available in the literature. Also the results which are produced by the hypervirial method are in good agreement with our results which have been calculated by the power series and finite difference methods. This agreement provides a check on the accuracy of our results. We have computed the first four energy eigenvalues parameter (2N=2). with values for index **50≤λ≤1000**. $0.1 \le 0.50$, by using three methods (hypervirial, power series and finite difference). The accuracy of our results in general is more than 16 significant digits, as shown in tables (4.1,4.2). The power series method seems to work very well and the convergence of this method will be controlled by the parameter β . We also listed in table (4.4) the four first energy eigenvalues for (2N=2) and for values $0.2 \le g \le 50$ and $500 \le 10^{\circ}$, obtained by using Padé approximants [6,6] and the hypervirial method. The agreement between the two methods is very good. Also we have calculated the first five energy levels by using the hypervirial method for (2N=4), with case V(x) for $10^{-3} \le g \le 0.02$; $1 \le \alpha \le 50$. In addition we used Padé approximants for $(0.1 \le g \le 2; 2 \le \alpha \le 50)$. We have observed a strong

similarity between the behaviour of the hypervirial method in one and three dimensional calculations for changing index of perturbation (2N) and value of $(g\&\lambda)$. The series converge very quickly for large λ and small g with (2N=2), but with (2N=4,6) the situation is not similar; the series converges for small values of λ and larger values of g. Further more it clearly appeared from our listed results in tables (4.12,4.14), that the perturbation calculations (Hypervirial calculations) can yield very high accuracy for large values of α , if we take αg as perturbation parameter in stead of g. For small values of α , it does not make any different to the accuracy whether we take ag or g as perturbation parameter. Also we have not observed any fundamental difference in the Vand V⁺cases behaviour between 88 we vary the perturbation parameters (α, g) and index (2N=4,6). We have first five energy eigenvalues in three calculated the dimensions for different sets of λ , g, index (2N=2,4,6) and angular momentum. It is note worthy that the Padé approximant method [M,N] has been applied to this problem for one and three dimension and is able to handle this problem over a range of $0.1 \le g \le 50$; $0.1 \le \lambda \le 10^6$, and index power wide (2N=2,4,6). Some of the present calculations of eigenvalues have been repeated with two different values of N and M in order to check the accuracy, since there is an absence of reported results in the literature. The agreement between the two eigenvalues is very good. We wish to draw attention to the fact that the present Padé approximant approach works very well even for higher values of (g, λ) , whereas the Padé approximant method of Lai and Lin [28,1982] is restricted to low values of g (g≤2). Our results allow us to study the numerical behaviour of this potential for varying index (2N), perturbation parameter ($g^{\&\lambda}$), and for a number of excited states. For the ordinary anharmonic oscillator (g=0) of chapter one, we have seen that as the index 2N varies the order of the ground state levels obeys

$$\mathbf{E}^{4} \langle \mathbf{E}^{6} \langle \mathbf{E}^{8}, \ldots, \mathbf{E}^{10} \rangle \langle \mathbf{E}^{20} \rangle$$

for small values of $(\lambda=0.1,1,5)$, while for large values of $(\lambda=50,100)$, the order is reversed. For the present type of perturbation the picture is more complicated because there Many energy levels have been are two parameters $(g\&\lambda)$. calculated, and we mentioned previously that the behaviour of the eigenvalues is nonanalytic at each crossing point. We have seen from our results that some energy eigenvalues for increase with increasing decrease or index $(g=\lambda)$ For example at $(g=\lambda=0.1)$ the (2N=2,4,..20). energy eigenvalues increase as 2N increases, as is clear from our listed results in table (4.4,4.5). The ordering of the eigenvalues can be expressed as below:

$$E^{2}(n) \leq E^{4}(n) \leq E^{6}(n) \leq E^{2N-2}(n) \leq E^{2N}(n)$$
 (2N=2,4,..20)

Here n is the state number and its values in the present calculations are n=0,2,4,6. With another set of values of the perturbation parameters ($g=\lambda=10$) the order of levels can be given as:

$$E^{2}(0,4)>E^{4}(0,4), E^{2}(2,6)$$

For index values greater than (2N=6) the energy eigenvalues increase as 2N increases as follows:

$$E^{4}(n) < E^{6}(n) < E^{8}(n) \dots < E^{16}(n) < E^{18}(n) < E^{20}(n)$$

With other sets of values of $(g=\lambda=100,1000)$ the energy levels have the same behaviour; the energy levels increase as 2N increases except the ground levels

$$\mathbf{E}^{2}(0) > \mathbf{E}^{4}(0) > \mathbf{E}^{6}(0) < \mathbf{E}^{8}(0) < \mathbf{E}^{1}(0) , \ldots < \mathbf{E}^{18}(0) < \mathbf{E}^{20}(0)$$

For states n=2,4,6 the order of levels is :

$$E^{2}(n) \langle E^{6}(n) \rangle \langle E^{8}(n) \rangle \langle E^{10}(n) \dots E^{18}(n) \rangle \langle E^{20}(n) \rangle$$

We computed the energy levels with different values of $g\&\lambda$; for the values (g=100, λ =0.1), the order of levels is:

$$E^{2}(0)>E^{4}(0); E^{2}(2,4,6)
 $E^{4}(n)$$$

for n=0,2,4,6. With the values g=1 and λ =100 the order of levels is given by

$$E^{2}(n) > E^{4}(n) > E^{6}(n) > E^{8}(n) \dots E^{18}(n) > E^{20}(n)$$
 (n=0,2,4)

while for n=6 the order of levels is;

 $\mathbf{E}^{2}(6) < \mathbf{E}^{2N-2}(6) < \mathbf{E}^{2N}$ (6) (2N=6,8...20)

The computation was carried out to double-precision accuracy by using the ICL and VME system with Fortran (77) programs. In order to give a clear picture of our results for this chapter, in tables (I,II,III,VI), we present the ranges of values of the parameters ($g\&\lambda$), and of the state number n and angular momentum, together with the table numbers in which the relevant results were reported for the various methods.

PARAMETER RANGES

ZN	methods	λ		n	table
2	Power series Finite difference	20-10 ³	0.1-0.5	2	4.1
2	Hypervirial Power series	50-10 ³	0.1-0.5	4	4.2
2	Hypervirial Padé approximants	50-10 ⁶	2-50	4	4.3
2	Padé approximants	$0.1 - 9 \times 10^3$	0.10-10	4	4.4
2-20	Finite difference	$0.1 - 10^3$	$0.1 - 10^3$	4	4.5-6

Table (I). H= $p^2 + x^2 + \lambda x^{2N} / (1+gx^2)$

Table (II). $H=P^2+x^2+(\ell(\ell+1)r^{-2}+\lambda r^2/(1+gr^2))$

2N	method	λ	1	n	7	table
	Hypervirial Power series	200-10 ⁴	0.1-0.5	4	5,10,20	4.14
2				4	1,2,3	4.15

Table (III)
$$H = \frac{P^2}{2} + \frac{x^2}{2} \mp gx^{2N} / (1 + g\alpha x^2) 2N = 4,6$$

ZN	method	8	α	V _∓	n	table
4	Hypervirial	0.001-0.02	0.5 - 100	+	5	4.7
4	Padé approximants	0.01-10	0.1 - 50	+	4	4.8
	Hypervirial	0.001-0.02	1-100	-	5	4.9 - 10
4	Padé approximants		2-50	-	4	4.11
6	Hypervirial	0.0001-0.0005		+	5	4.12
6	Hypervirial	0.0001-0.0006	3-100	-	5	4.13

Table (IV) $H = \frac{P^2}{2} + \frac{r^2}{2} + \frac{\ell}{2}(\ell+1)r^{\frac{1}{2}} \mp gr^4/(1+g\alpha r^2)$

2N	method	v _∓	gx1000	α	n	ł	table
4	Hypervirial	+	1-5	0.25 - 10	5	1,2,5,10	4.16
4	Padé approximants	+	10-200	2-50	1	1,2,3,4	4.17
4	Hypervirial	-	1-5	1-10	5	1,2,5,10	4.18 - 19
4	Padé approximants	-	10-400	1-100	4	1,2,3,4,5	4.20

Table (4.1). Eigenvalues of $H=p^2+x^2+\lambda x^2/(1+gx^2)$, for ground state and the first even state, First line; power series method, Second line; finite difference method; the numbers in the bracket correspond to $(g)\&(\lambda)$.

(0.1,500)	β , Χ	(0.1,1000)	B. X
(0.2,000)	ГЬ П		ь. Ъ
22.3084299344549152	40, 3	31.5638354764658397	50. 3
	0.0015		0.0015
110.945882245555980	40, 3	157.221567173042002	50, 3
	0.0015	1	0.0015
(0.2,500)		(0.2,1000)	
22.2343284271184003		31.4894419012919067	
	0.001	6	0.001
109.984171638130532		156.255546817940730	• •
	0.001		0.001
(0.3,500)		(0.3,1000)	
		31.4153972942404612	
	0.0008		0.0008
		155.294839617208825	
	0.0008		0.0008
(0.4,500)		(0.4,1000)	
	40, 1.5 0.00075	31.3416996832707526	
		154.339426496525955	0.00075
	40, 1.5 0.00075		0.00075
(0.5,500)		(0.5,1000)	0.00075
		31.2683461423778721	50 1 4
	0.0007		0.0007
107.143989202987778		153.389288802194178	
	0.0007		0.0007
(0.1,200)		(0.1,50)	
14.1032168280042326	40, 3	7.06869647230012401	20. 3
	0.0015		0.0015
69.9231255346965235	40, 3	34.7638296937724921	
	0.0015		0.0015
(0.1,100)		(0.1,20)	
9.97618008772302105		4.51242099189001387	20, 3
	0.0015		0.0015
49.2926905046268608		22.0055699335623527	20, 3
	0.0015	558818	0.0015
(0.2,200)		(0.2,100)	
14.0297703826567919	40, 2	9,90358853045873147	30, 2
	0.001	2640	0.001
68.9710369895451130		48.3532119666102041	
0	0.001	5865631	0.001

Table (4.2). Eigenvalues of $H=P^2+x^2+\lambda x^2/(1+gx^2)$, for the first four energy levels, First line; power series method, Second line; Hypervirial method; the numbers in the bracket correspond to $g \notin \lambda$.

(0.1,500)	β. Χ	(0.1, 1000)	B . X
(0.1,500)	P, A	(0.1,1000)	
			N
22.308429934454915232	40, 3	31.563836476465839774	50, 3
2	8	8	7
66.776095400961728774	40, 3	94.542015961555579220	50, 3
5	9	3	8
110.94588224555598088	40, 3	157.22156717304200294	50. 3
110. 34368224555555566666	8	101. 22100111004200234	
		3	8
154.81881275031786407		219.60320838095589711	50, 3
6	8	1	7
(0.1,50)		(0.1,100)	
7.068696472300124022	20, 3	9.976180087723021051	40. 3
3	12	4	10
21.06073826470989193		29.78119111077657447	40, 3
21.00073620470363133		23.70113111077037447	
3	12	8	10
34.76382969377249218	20, 3	49.29269050462686081	40, 3
7	13	1	11
48, 18149819277161473	40. 3	68.51306223451113464	40, 3
38	13	3	11
(0.2,500)		(0.2,1000)	
22.23432842711840038		31.489441901291906786	50. 2
	· •	31.403441301231300/00	
9	9	7	9
66.40560457784595927	40, 2	94.170049943247633720	50, 2
9	10	4	9
109.9841716381305324	40, 2	156.25554681794073024	50, 2
4	9	3	9
152.9741494204659187		217.74882074596630393	50, 2
152.3/4143420405510/		211.74002074030030303	
	11	2	10
(0.3,500)		(0.3,1000)	
22.16071878572099150	40,1.6	31.41539729424046121	50,1.6
0	11	1	9
66.03759113850463211	40.1.6	93.79984176433795290	50, 1.6
2	11	1	10
109.0299767966689515		155.2948396172088259	50.1.6
	40,1.0	100.23403301/2088239	
494	11	9	11
151.1472139358823507	40,1.6	215.9069232558826858	50,1.6
2535	12	7	10
(0.4,1000)		(0.5,1000)	
31.34169968327075263	50, 1, 5	31.268346142377872	50,1.4
31. 34103308327073203	11		10
		2 93.064650716496147	
93.43137932476231470	• - • - •		50, 1.4
1	12	7	11
154.3394264965259550	50,1.5	153.38928880219417	50,1.4
0	11	7	10
214.0775143358101809	50, 1.5	212.26059288733955	50, 1.4
9	11		12
		2	16

Table (4.3). Eigenvalues of $H=p^2+x^2+\lambda x^2/(1+gx^2)$, for the first four energy levels, First line; Padé approximants E[6,6], Second line; Hypervirial method, the numbers in the bracket correspond to g & λ .

(2,500)	(2,1000)	(3,1000)
20.9793853161	30.2074696503	29.5385893988
5	6	9
60.1392564150	87.7642116155	84.4284577789
6	6	5
93.9269144470	139.7586931046	131.3026334252
1	3	3
122.8043486438	186.5053066071	170.8958329278
4	6	8
(2,10000)	(5,10000)	(10,10000)
98.5272494340	96.3899452770	93.0223623058
3	7	3
292.6266296841	281.9453701041	265.1442062295
8	0	2
480.8619132637	453.3505908064	410.6813658326
2	0	1
663.3260941431	611.2130190804	532.2133179828
4	9	3
	(10,100000)	
312.5232226960	308.9023429341	305.3632607161
9	9	0
930.1579978317	912.0575568601	894.3726387992
3	8	3
1533.0601272580	1486.2835519312	1440.7950550314
2	1	5
2121.4121264812	2032.3283407535	1946.3522929991
4	0	9
	(25,1000000)	
988.8753661364	981.5942714810	963.8461236953
1	4	2
2944.3773870170	2907.9774809773	2819.2850260431
0	8	2
4855.6398420920	4761.4749945992	4533.2030348177
0	9	0
6723.1814910755	6543.5504361985	6111.6710565087
1	3	1

¥

•

Table (4.4). Eigenvalues of $H^{-p}^{2} + x^{2} + \lambda x^{2} / (1 + g x^{2})$ for the first five energy levels, calculated from the Padé approximants E [6,6]; the numbers in the bracket correspond to (g) & (λ).

(0.1, 0.1)	(2,0.1)	(2,50)
1.0431737181		
3.1200818644	3.0329572730	15. 4975387596
5. 1810947875	5.0345519112	21.3878955934
7.2310099806	7.0377588528	25.0164059096
(2,100)	(5,500)	(10,500)
8.7582786322	19.1685333012	16.7327514335
23.7433260421	51.1818569177	39.5754394019
34.2577412431	72.1400383450	48.1038613194
41.4928240348	85.1765680378	52. 4391828133
(0.5, 0.5)	(0.5,5)	(0.5, 50)
1.1515634020	2.1921184695	6.7927895303
3.3638015565	6.1210592341	19.6850376488
5.4632114193	9.3207606655	31.2380422733
7.5278886000	12.0923480220	41.5492530493
(1,1)	(1,100)	(1,200)
1.2323535261	9.3594180264	13.4687482263
3.5073979060	26.7059656288	38.9925190308
5.5898335474	41.4410997462	61.7775336881
7.6490689893	53.8390929601	82.0052851252
(3,500)	(3,750)	(3,1500)
20.3403609835	25.3260708824	36.6165571250
56.9614598560	71.8385859542	105.6057200506
85.9949684543	110.4934667581	166.3941150102
108.5270735407	142.1540209781	219.5685782022
(4,2000)	(4,4000)	(4,8000)
41.9205051279	60.3888919111	86.5454114322
120.1518287267	175. 4447994 176	253.8340971246
187.6111222784	279.3640214949	409.7309965677
245.2134888879	372.7726752273	554.6676122546
(5, 3000)	(5,6000)	(5,9000)
51.2701342846	73.8883731803	91.2655428397
146.8062318991	214.5189371947	266.5867728404
228.9052478261	341.2492805607	427.8041652813
298.7357244491	454.8791439607	575.5603962093

	respond to $g \in \lambda$.		
ZN		(10,10)	(100, 100)
2	1.043173713044	1.580022327391	1.836335833448
	5.181094785884	5.832767532465	5.828328571544
	9.272816970035	13.905251334974	9.949160962809
	13.339390726973	17.918865935944	13.959285222388
4	1.055297707257	1.359774662157	1.406065452883
	5.574522322948	6.990545314996	7.061901755091
	10.456102206292	12.641626177581	12.718510053100
	15.527085931694	18.295827777899	18.375244956667
6	1.094134891239	1.366850746128	1.389372026300
	6.400322742109	8.546584784823	8.643580194793
	13.438095185462	17.890113503822	18.040135250589
	21.798915062902	28.617080307170	28.812809980223
8	1.151514504374	1.417528105627	1.433638679938
	7.393294498903	9.849002405294	9.954237354521
	16.941331851282	22.688954068384	22.887204444799
	29.198386385942	38.726642405555	39.018341106677
10	1.215878634348	1.476109774767	1.489420177825
	8.343517967069	10.877002260298	10.981472033116
	20.170797539421	26.495085595570	26.717641645910
	36.026256433816	47.001366822781	47.352859541727
12	1.280182859803	1.533170988252	1.544873619363
	9.197921053984	11.707675148976	11.808190624164
	22.993264654376	29.505481413627	29.737527537625
	42.007180092887	53.856055492948	54.040415893047
14	1.341354528636	1.586121222133	1.596737866007
	9.955132586841	12.397847402773	12.493517331184
	25.438823035348	31.935163276650	32.168244360628
	47.192045758317	59.063768230162	59.463513300016
16	1.398313628112	1.634469145224	1.644275007573
	10.626048883982	12.984420658732	13.075207911050
	27.565806963300	33.940982509003	34.170496409418
	51.694783070945	63.528796292616	63.932980434225
18	1.450867110050	1.678410054248	1.687570756347
	11.223051083941	13.491825483911	13.577996382110
	29.429398500059	35.631030232473	35.854600782728
	55.628346093512	67.275793958806	67.677875952840
20	1.499195895316	1.718348479054	1.726973707590
	11.757261716042	13.936891803671	14.018803426232
	31.075486317130	37.080020447702	37.296532262040
	59.089626726601	70.467858967117	
لسبي			

Table (4.6) Eigenvalues of $H=P^2 + x^2 + \lambda x^{2H} / (1+gx^2)$, for the first four even energy levels calculated from finite difference method; numbers in the bracket correspond to g & λ .

2N	(1000, 1000)	(100,1.0)	(0.1,100)
2	1.945115962246	9.359418026324	1.000841102403
	5.973871294466	41.441099751484	5.000927544679
	9.980844496690	64.187440995096	9.000948590765
	13.984309011922	79.911771037615	13.000958871383
4	1.413277479827	4.551943690436	1.000491464345
	7.070098533826	30.032354991385	5.002490100021
	12.728944524023	61.606494425908	9.004489389761
	18.383794662647	95.540315090111	13.006488787180
6	1.392046738681	3.379530522796	1.000743784230
	8.653895433124	25.553317440935	5.009687062013
	18.055807419917	58.942539708101	9.030504963328
	28.833077682717	99.359790269248	13.063099296382
8	1.435423858640	2.916439495691	1.001841471859
	9.965376749087	23.352777555213	5.044707772528
1	22.907873768005	57.343691294529	9.218311541801
	39.048539250890	101.091557364302	13.592656194818
10	1.490858685346	2.687699701924	1.005840947517
	10.992504406862	22.122616368764	5.190668793727
	26.740857548661	56.331803557092	10.044315726459
	47.389313237020	102.113154388781	15.834302784052
12	1.546123212747	2.559566787748	1.017304112745
	11.818784253499	21.379015891983	5.538312461608
	29.761753514174	55.671617557702	11.654214351369
	54.080343451799	102.815736737674	19.634358792624
14		2.481972823456	1.039468918489
	12.503583878929	20.906733711552	56.045814670986
	32.192539969290	55.236609028179	13.633559470727
	59.505092854508	103.350952041603	23.979716235410
16		2.432559266677	1.071175971148
	13.084748387255	20.597368905582	6.626819240530
	34.194483210206	54.952691225111	15.685083305035
	63.975063699382	103.789938694360	28.347149684929
18	1.688536455215	2.400063940870	1.109227794604
	13.587042575353	20.391273776539	7.224690702921
1	35.877971924946	54.773396474927	17.677889685561
	67.719551758007	104.170086964780	32.526472722653
20	1.727881280722	2.378295762785	1.150657947532
	14.027395631206	20.253376994017	7.810470001495
	37.319168240829	54.668139736770	19.561158228393
	70.904604121144	104.512350040639	36.441449502621

•

Table (4.7). Eigenvalues of $H^{\pm} = 1/2P^2 + 1/2x^2 \pm gx^4/(1+g\alpha x^2)$, for the ground-state energy levels calculated from finite difference method.

α	8	E _0^+	Ref 31	E	Ref 31
50	0.01	0.503676241304	0.50367624	0.496256025810	0.4962560
	0.10	0.507955018588	0.5079549	0.491869010232	0.491869
	0.20	0.508718597784	0.508718	0.491025393716	0.491093
	0.50	0.509333177139	0.509332	0.490470329585	0.49047
	1	0.509588747931	0.50958	0.490212618236	0.49021
		0.509734009232		0.490066458426	0.49007
	5	0.509830390245	0.50982	0.489969665448	0.48997
		0.509864996405		0.489934960900	0.48994
		0.509876957373		0.489922974358	0.48993
		0.509883043737		0.489916877069	
	1000	0.509901554538	0.50990195	0.489898345433	0.48989795

Table (4.8). Eigenvalue	BO		=1/2P ⁺ +1/2x ⁺ +gx ⁻ /(1+gax ⁻	-),	for
the first five energy method; the numbers in the	16V 16V		calculated from Hyper	rv11	•1 a l
			(0.001,5)		
0.001,0.0)			0.50073828777355665815		K
1 5037231920297892720	10	Ň	1 503666319444506779	14	0
2 E006515415817772601	11		1.5036665319444506778 2.5094517984940872165 3.5180038831642341607	18	0
2 5185001429387771848	12	ŏ	3 5180038831842341807	20	ŏ
4.5302383407624926113	13	ŏ	4.5292372284608061748	20	ŏ
(0.001, 10)	N		(0.001,20)	N	K
			0.50071269224348549425		Ō
			1.503492319497928984	36	
2.5092408909632772410	24	Ō	2.50885011540496976	44	
3.5174860974896648367	28	Ō	3.5165431520351994	42	
4.5282057666965039694			4.526360808570728		ō
(0.001,50)	Ň		(0.001,100)	N	Ť
0.5006679376	TE	10	0 5008072		10
1 503197920	14	10	1.502818 2.50668		10
2 50787393	12	10	2. 50668	11	
1.503197920 2.50787393 3.5142766	10	10	3.511	7	10
4. 522095			4.517	7	10
(0.005,1)	N		(0.005,5)	Ň	K
0.50364328312043147469			0.5034819805166		10
1.5179671613901822218			1.51689308272		10
2.54594982503971	24	ň	2.5423246614		10
3.5868079952874	29	ň	3.578207916		10
A 6209469050	22	ň	4.6075		10
4.6398468050 (0.005,10)	N	Ť	(0.005,15)	N	K
0.5033046682		10	0.50314886		10
1.51574764	19	10	1.514770	10	10
2. 538594	9	10	1.514770 2.53355	6	10
3.56969	7	10	3.5629	7	10
4.6075			4.595	5	10
(0.005,20)	N		(0.01,0.1)	Ň	K
0.503010			0.50723945969	13	
1.51392	10			17	ŏ
2.5329	8	10	1.5355368515 2.59046858	17	ŏ
3.557		10	3.670194		0
4.58	4		4.77361		0
(0.01,0.5)	N		(0.01,1)	N	
0.50717349508	17		0.507093239851		10
• · · · ·	18		1.534570408		10
1.535099404			2.58722278		
2.5889936					10
3.66669			3.662515		10
4.766	6		4.7583		10
(0.01,2)	N		(0.01,3)	N	
0.50693958345			0.506794314	9	
1.533567343	10		1.53263064		10
2.5839027			2.580846		10
3.65478	8		3.64777		10
4.7437	8		4.730	5	10
0.02,1.5)	N		(0.02,2)	N	K
0.5132395	8		0.5129848	7	10
1.56288	8		1.56130	8	10
2.654	6 5		2.649	4	10
3.77	Э	10	3.76	3	10

Table (4.8). Eigenvalues of $H=1/2p^2+1/2x^2+gx^4/(1+gcx^2)$, for

Table (4.9). Eigenvalues of $H=1/2P^{2}+1/2x^{2}+gx^{4}/(1+g\alpha x^{2})$, for the first five energy levels calculated from the Padé approximants E [N,N]; the numbers in the bracket correspond to (g) & (α).

(0.01,10)			(0.01,20)		N	(0.01, 50)	N	N
0.5059575080	7		0.5051139884	8		0.5036757394	6	6
1.5274463072	7	7	1.5225668046	7	7	1.5150007532	6	6
2.5646974761	6	-	2.5506500867	6	-	2.5310182764	6	6
3.6124950756	6	-	3.5841841943	8		3.5482670605	6	6
(0.1, 0.1)	N	N	(0.1,2)	N	N	(0.1,5)	N	N
0.5582333913	5	5	0.5453999375	7	7	0.5341718973	7	[7]
1.7642326395	4	4	1.6945334318	6	6	1.6378922422	7	7
3.1228901590	4	4	2.9279904156	6	-	2.783737125 0	6	6
4.5947999549		4	4.2037147105	6	6	3.9412533225	6	-
(0.1, 10)	N		(0.1,20)	N		(0.1, 50)		N
0.5245297214	7	7	0.5159205999	8	-	0.5078744867		8
1.5932661578	7	7	1.5568866871	7	7	1.5263350805	7	7
2.6809753605	_	6	1.6048590962	7	7	2.5463132887	7	7
3.7701773930	6	-	3.6517785538	6	6	3.5655210362	6	-
(0.2,10)		Ň	(0.2,20)	N		(0.2,50)		N
0.5315549492	8	7	0.5186447390		8	0.5085485285	8	
1.6107937612	7	7	1.5632400714	7	7	1.5276758156	7	7
2.7077561342	7	6	2.6123469423	7	7	2.5477261709	7	7
3.8008563585	7	6	3.6595690660	6		3.5669336660	6	6
(0.5, 1)	N		(0.5,10)	N		(0.5, 20)	N	N
0.6367842514	8	-	0.5403867827	8	-	0.5209789505	-	8
2.0506190597	_	7	1.6357182641	7	8	1.5775333602	7	8
3.5707739173		5	2.7306590810	7	8	2.6175082283	7	7
5.1611009800	5		3.8330786791	6	7	3.6806084300	6	
(1,10)	N	N	(1, 20)	N		(1,50)	N	N
0.5404218004	7	7	0.5219457808	8	-	0.5092104985	8	8
1.6323985776	7	7	1.5698405566	7	7	1.5288868018	7	7
2.7288343227	6	6	2.6193625994	7	7	1.5489359130	7	7
3.8214696406	6		3.6665464775	7	7	3.5681200249	7	7
(2,10)	N	N	(2,20)		N	(2,50)	N	N
0.5421754838	7	7	0.5224763153	8	8	0.5093037479	_	8
1.6359113182	7	7	1.5707971290	7	7	1.5290482467	7	7
2.7324352014	-	6	2.6203175163	7	7	2.5490925352	7	7
3.8250366890	6		3.6674723743	6	6	3.5682720688	6	6
	N	N	(10,10)	N	N	(10,50)	N	N
(5,50)				_				
(5,50) 0.5093609603	8		0.5437277814	7	7	0.5093802478	8	8 I
	8	8 8	0.5437277814 2.0510177453	7	7 8	0.5093802478 1.7753765226	8 7	8
0.5093609603	8 7				•			

Table (4.10). Eigenvalues of $H=1/2P^2+1/2x^2-gx^4/(1+g\alpha x^2)$, for the first five Energy levels calculated from Hypervirial method; the numbers in the bracket correspond to (g) & (α).

0.49924924509082103087 8 0 0.499285887857656985263 1 1.4962424317659615658 8 0 1.4963569769681264690 1 2.4902196292455903232 9 0 2.4906259959688469599 1 3.4811699825024634359 10 0 3.4821857773654487833 2 4.4890824528709260691 11 0 4.4711439430890412558 2 (0.001,20) N K (0.001,60) N 0.49928283815577382018 30 10 0.4993284415 1 1.4964743488656095074 33 10 1.4967767403 1 2.491033392031268146 32 10 2.492043943 1 3.483179154792483 16 10 3.48554286 1 4.47310733766121 17 10 4.4775843 1 0.49939900 14 10 0.49623061843859388133 1 1.497164 14 10 1.4810535774523086622 1 2.49326 12 10 2.4504506307929553916 1 3.4882 8 10 3.4041090393018610892 2 </th <th>.4 .4 .1 .1 .5 .6 .6 .2 .4 .4 .6 .9</th> <th>0 0 K 10 10 10 10 10</th>	.4 .4 .1 .1 .5 .6 .6 .2 .4 .4 .6 .9	0 0 K 10 10 10 10 10
1. 4962424317659615658 8 0 1. 4963569769681264690 1 2. 4902196292455903232 9 0 2. 4906259959688469599 1 3. 4811699825024834359 10 0 3. 4821857773654487833 2 4. 4690824528709260691 11 0 4. 4711439430890412558 2 (0.001, 20) N K (0.001, 50) N 0. 49928283815577382018 30 10 0. 4993284415 1 1. 4964743488656095074 33 10 1. 4967767403 1 2. 491033392031268146 32 10 2. 492043943 1 3. 483179154792483 16 10 3. 48554266 1 4. 47310733766121 17 10 4. 4775843 1 0. 4993900 14 10 0. 49623061843859388133 1 1. 497164 14 10 1. 4810535774523086622 1 2. 49326 12 10 2. 4504506307929553916 1 3. 4882 8 10 3. 4041090393018610892 2 4. 482 6 10 4. 3416858782640029960	.4 .4 .1 .1 .5 .6 .6 .2 .4 .4 .6 .9	0 0 0 K 10 10 10 10 10
4. 4890824528709260691 11 0 4. 4711439430890412558 2 (0.001,20) N K (0.001,60) N 0. 49928283815577382018 30 10 0. 4993284415 1 1. 4964743488656095074 33 10 1. 4967767403 1 2. 491033392031288146 32 10 2. 492043943 1 3. 483179154792483 16 10 3. 48554266 1 4. 47310733766121 17 10 4. 4775843 1 (0.001,100) N K (0.005,1) N 0. 4993800 14 10 0. 49623061843859388133 1 1. 497164 14 10 1. 4810535774523086622 1 2. 49326 12 10 2. 4504506307929553916 1 3. 4882 8 10 3. 4041090393018610892 2 4. 482 6 10 4. 3416858782640029960 2	.4 21 21 .5 .6 .6 .6 .2 .4 .4 .6 .9	0 0 K 10 10 10 10 10
4. 4890824528709260691 11 0 4. 4711439430890412558 2 (0.001,20) N K (0.001,60) N 0. 49928283815577382018 30 10 0. 4993284415 1 1. 4964743488656095074 33 10 1. 4967767403 1 2. 491033392031288146 32 10 2. 492043943 1 3. 483179154792483 16 10 3. 48554266 1 4. 47310733766121 17 10 4. 4775843 1 (0.001,100) N K (0.005,1) N 0. 4993800 14 10 0. 49623061843859388133 1 1. 497164 14 10 1. 4810535774523086622 1 2. 49326 12 10 2. 4504506307929553916 1 3. 4882 8 10 3. 4041090393018610892 2 4. 482 6 10 4. 3416858782640029960 2	21 21 5 6 6 2 4 4 4 .6 .9	0 0 10 10 10 10
4. 4890824528709260691 11 0 4. 4711439430890412558 2 (0.001,20) N K (0.001,60) N 0. 49928283815577382018 30 10 0. 4993284415 1 1. 4964743488656095074 33 10 1. 4967767403 1 2. 491033392031288146 32 10 2. 492043943 1 3. 483179154792483 16 10 3. 48554266 1 4. 47310733766121 17 10 4. 4775843 1 (0.001,100) N K (0.005,1) N 0. 4993900 14 10 0. 49623061843859388133 1 1. 497164 14 10 1. 4810535774523086622 1 2. 49326 12 10 2. 4504506307929553916 1 3. 4882 8 10 3. 4041090393018610892 2 4. 482 6 10 4. 3416858782640029960 2	1 5 6 2 4 4 6 .9	0 K 10 10 10 10
4. 4890824528709260691 11 0 4. 4711439430890412558 2 (0.001,20) N K (0.001,60) N 0. 49928283815577382018 30 10 0. 4993284415 1 1. 4964743488656095074 33 10 1. 4967767403 1 2. 491033392031288146 32 10 2. 492043943 1 3. 483179154792483 16 10 3. 48554266 1 4. 47310733766121 17 10 4. 4775843 1 (0.001,100) N K (0.005,1) N 0. 4993900 14 10 0. 49623061843859388133 1 1. 497164 14 10 1. 4810535774523086622 1 2. 49326 12 10 2. 4504506307929553916 1 3. 4882 8 10 3. 4041090393018610892 2 4. 482 6 10 4. 3416858782640029960 2	5 6 2 4 4 9	K 10 10 10 10 10
0.49928283815577382018 30 10 0.4993284415 1 1.4964743488656095074 33 10 1.4967767403 1 2.491033392031268146 32 10 2.492043943 1 3.483179154792483 16 10 3.48554266 1 4.47310733766121 17 10 4.4775843 1 (0.001,100) N K (0.005,1) N 0.4993900 14 10 0.49623061843859388133 1 1.497164 14 10 1.4810535774523086622 1 2.49326 12 10 2.4504506307929553916 1 3.4882 8 10 3.4041090393018610892 2 4.482 6 10 4.3416858782640029960 2	5 6 2 4 4 9	10 10 10 10 10
1.4964743488656095074 33 10 1.4967767403 1 2.491033392031268146 32 10 2.492043943 1 3.483179154792483 16 10 3.48554266 1 4.47310733766121 17 10 4.4775843 1 (0.001,100) N K (0.005,1) N 0.4993900 14 10 0.49623061843859388133 1 1.497164 14 10 1.4810535774523086622 1 2.49326 12 10 2.4504506307929553916 1 3.4882 8 10 3.4041090393018610892 2 4.482 6 10 4.3416858782640029960 2	.6 .2 .4 .4 .6 .9	10 10 10 10
2. 491033392031268146 32 10 2. 492043943 1 3. 483179154792483 16 10 3. 48554266 1 4. 47310733766121 17 10 4. 4775843 1 (0.001,100) N K (0.005,1) N 0. 4993900 14 10 0. 49623061843859388133 1 1. 497164 14 10 1. 4810535774523086622 1 2. 49326 12 10 2. 4504506307929553916 1 3. 4882 8 10 3. 4041090393018610892 2 4. 482 6 10 4. 3416858782640029960 2	.6 .2 .4 .4 .6 .9	10 10 10 K
3. 483179154792483 16 10 3. 48554266 1 4. 47310733766121 17 10 4. 4775843 1 (0.001,100) N K (0.005,1) N 0. 4993900 14 10 0. 49623061843859388133 1 1. 497164 14 10 1. 4810535774523086622 1 2. 49326 12 10 2. 4504506307929553916 1 3. 4882 8 10 3. 4041090393018610892 2 4. 482 6 10 4. 3416858782640029960 2	.2 .4 .4 .6 .9	10 10 K
3. 483179154792483 16 10 3. 48554266 1 4. 47310733766121 17 10 4. 4775843 1 (0.001,100) N K (0.005,1) N 0. 4993900 14 10 0. 49623061843859388133 1 1. 497164 14 10 1. 4810535774523086622 1 2. 49326 12 10 2. 4504506307929553916 1 3. 4882 8 10 3. 4041090393018610892 2 4. 482 6 10 4. 3416858782640029960 2	.4 .4 .6 .9	10 K
N K (0.005,1) N 0.4993900 14 10 0.49623061843859388133 1 1.497164 14 10 1.4810535774523086622 1 2.49326 12 10 2.4504506307929553916 1 3.4882 8 10 3.4041090393018610892 2 4.482 6 10 4.3416858782640029960 2	4 .6 .9	K
0.4993900 14 10 0.49623061843859388133 1 1.497164 14 10 1.4810535774523086622 1 2.49326 12 10 2.4504506307929553916 1 3.4882 8 10 3.4041090393018610892 2 4.482 6 10 4.3416858782640029960 2	4 6 9	
0.4993900 14 10 0.49623061843859388133 1 1.497164 14 10 1.4810535774523086622 1 2.49326 12 10 2.4504506307929553916 1 3.4882 8 10 3.4041090393018610892 2 4.482 6 10 4.3416858782640029960 2	.6 .9	
2.4932612102.450450630792955391613.48828103.404109039301861089224.4826104.34168587826400299602	9	0
3.4882 8 10 3.4041090393018610892 2 4.482 6 10 4.3416858782640029960 2		0
3.4882 8 10 3.4041090393018610892 2 4.482 6 10 4.3416858782640029960 2		0
4. 482 6 10 4. 3416858782640029960 2	22	0
	26	0
0.495410220945958321 17 010.4956047151 11	_	TX
		10
	-	10
		10
		10
(0.01,2) N K (0.01,2.5) N	_	K
0.49261048842431841116 15 0 0.49270083568284728418 1		Ö
	8	
	5	
	5	ō
	6	ō
4.200308583473177051 17 0 4.212362512008046 1 (0.01,3) N K (0.01,4) N	-	K
	5	Ô
	6	ŏ
	6	o
	4	0
	7	0
		_
		K
		10
		10
		10
3.36650 12 10 3.3771 9	_	10
4.29644 12 10 4.3152 8		10
		K
		10
		10
		10
		10
		10
		K
		10
	6	10
	5	10
	- e	أحما
	6	10

Table (4.11). Eigenvalues of $H=1/2P^2+1/2x^2-gx^4/(1+g\alpha x^2)$, for the first five energy levels calculated from Hypervirial method; the numbers in the bracket corresponds to (g) & (α) First line correspond to (g α) as perturbation constant; Second line to (g) as perturbation constant.

(0.001,10)	N		(0.001,20)	N	K
0.49926568785765696263	16	0	0.49928283815577382018	30	10
3	14	0	7	10	10
1.4963569769681264690	14	0	1.4964743488656095074	33	10
0	14	0	6	13	10
2.4906259959688469599	14	0	2.491033392031268146	32	10
9	14	0	2	14	10
3.4821857773654487833	21	0	3.483179154792483	16	10
3	20	0	4	16	10
4.4711439430890412558	21	0	4.47310733766121	17	10
8	21	0	2	17	10
(0.001,50)	N	K	(0.005,1)	N	K
0.4993284415	15	10	0.49623061843859388133	14	0
2	12	10	3	14	0
1.4967767403	16	10	1.4810535774523086622	16	0
7	12	10	2	16	0
2.492043943	16	10	2.4504506307929553916	19	0
0	13	10	6	19	0
3.48554266		10	3.4041090393018610892	22	0
5	15	10	2	22	0
4.4775843	14	10	4.3416858782640029960	26	0
7	14	10	• 0	26	0
(0.005,5)	N		(0.01,2)	N	K
0.496410220946958321	17		0.49261048842431841116	15	0
11	17	0	6	15	0
1.4823111693092516	17	0	1.4630542754167881338	15	0
6	17	0	8	15	0
2.454927624666918	16	0	2.4041742821521898813	16	0
8	16	0	3	16	0
3.41532551991532	16	0	3.3164352655255853622	17	0
2	16	0	2	17	0
4.36448638412074	17	0	4.200308983473177091	17	0
4	17	0	1	17	0
(0.01,5)	N		(0.02,2)	N	K
0.493110419714	16	0	0.4854342883	19	10
4	16	0	26	17	10
1.4665158856	14		1 , 4 2718578		10
66	14	0	82		10
2.416275286	13		2.3116477		10
6	13	0			10
3.346040309	17		3.14073		10
9	17	0	354		10
4.258866543	17 17		3.91642 15		10 10
3		0			

Table (4.12). Eigenvalues of $H=1/2P^2+1/2x^2-gx^4/(1+gcc^2)$ for the first four energy levels calculated from the Padé approximants E[N,N]; the numbers in the bracket correspond to (g) & (α).

(0.1, 2)	N	N	(0.1, 2.8)	L		(0.1, 3)		N
0.4345832964		8				0.4452758525	9	9
1.1744233671	8	8	1.2252581949	8	8	1.2575765719	8	9
1.6831031070	8	8	1.8617228194			1.9566367048	8	8
2.0151554685	8	8	2.4251800025			2.6097159514	9	9
(0.1, 5)	N	N				(0.1,15)	N	N
0.4587898978	9	9				0.4792532747	8	-
1.3280416331	9	9	1.3953728384	8	8	1.4236849697	8	8
2.1411909221		8				2.3567717433	8	-
2.9408181736		9	3.1971246268		7		_	_
(0.2, 2)	N	N	(0.2,2.5)			(0.2,3)	N	
0.3836567073		7				0.4159779485		
0.9281407509		7	1.0788453405		8		8	8
1.1455258520		7	1.6037923857	- 1		1.7744403191	8	- 1
1.2206580711		7						-
(0.2, 5)	N	N	(0.2,10)			(0.2,15)	Ň	
0.4417394844	8	8	0.4652409492		-		8	
1.2748491752		8	1.7354519173	-	8	1.4129171006	8	8
2.0625474492		8	2.2712345226				8	- 1
2.8484836356		8	3.1686818077		8		8	8
(0.5, 2)	N	N	(0.5, 2.5)			(0.5,3)	N	
0.2810581365		8	0.3440407085			0.3718192169		
0.4951438653		7	0.8971718533	-	7	1.0212534971	9	9
0.5557256829		9	1.3359424602		7			
1.1283491890		7	1.7971751960		7		-	_
(0.5,5)	N	N	(0.5,10)			(0.5,15)	N	
0.4206661507		9	0.4575899416		7	0.4707208408		
1.2210327895		8	1.3582779746	7	7	1.4043002434		
1.9960067456		8	2.2520265292			2.3348082096		7
2.7744683184		8	3.1479537392		7			7
[[[1]]]						(1,15)	1.1	
(1,3)	N		(1,5)					
0.3431570119	10	10	0.4086902923	8	8	0.4688843439	8	_
0.3431570119 0.9562204783	10 10	10 10	0.4086902923 1.1954308829	8 8	8 8	0.4688843439 1.4008787418	8 8	8
0.3431570119 0.9562204783 1.5317717035	10 10 10	10 10 10	0.4086902923 1.1954308829 1.9688573248	8 8 8	8 8 8	0.4688843439 1.4008787418 2.3314809029	8 8 8	8 8
0.3431570119 0.9562204783 1.5317717035 2.1186156264	10 10 10 10	10 10 10 10	0.4086902923 1.1954308829 1.9688573248 2.7466352484	8 8 8 8 8	8 8 8 8	0.4688843439 1.4008787418 2.3314809029 3.2629190879	8 8 8 8	8 8 8
0.3431570119 0.9562204783 1.5317717035 2.1186156264 (1,50)	10 10 10 10	10 10 10 10 N	0.4086902923 1.1954308829 1.9688573248 2.7466352484 (2,5)	8 8 8 8 8	8 8 8 8 8 8 8	0.4688843439 1.4008787418 2.3314809029 3.2629190879 (2,50)	8 8 8 8 X	8 8 8 N
0.3431570119 0.9562204783 1.5317717035 2.1186156264 (1,50) 0.4905390334	10 10 10 10 N 8	10 10 10 10	0.4086902923 1.1954308829 1.9688573248 2.7466352484 (2,5) 0.4002714352	8 8 8 8 8 9	88888	0.4688843439 1.4008787418 2.3314809029 3.2629190879 (2,50) 0.4904410593	8 8 8 8 X	8 8 8 N
0.3431570119 0.9562204783 1.5317717035 2.1186156264 (1,50) 0.4905390334 1.4704215488	10 10 10 10 N 8 7	10 10 10 10 N 8 7	0.4086902923 1.1954308829 1.9688573248 2.7466352484 (2,5) 0.4002714352 1.1802036273	88888999	88888899	0.4688843439 1.4008787418 2.3314809029 3.2629190879 (2,50) 0.4904410593 1.4702554737	8 8 8 8 X	8 8 8 N 8 7
0.3431570119 0.9562204783 1.5317717035 2.1186156264 (1,50) 0.4905390334	10 10 10 10 N 8 7	10 10 10 10 N	0.4086902923 1.1954308829 1.9688573248 2.7466352484 (2,5) 0.4002714352 1.1802036273 1.9540673614	888889998	88882098	0.4688843439 1.4008787418 2.3314809029 3.2629190879 (2,50) 0.4904410593	8888888777	8 8 8 N

Table (4.13). Eigenvalues of $H = 1/2P^2 + 1/2x^2 - gx^8/(1+gcx^2)$, For the first five energy levels calculated from Hypervirial method\$the numbers in the bracket correspond to (g)&(α), First line correspond to (g α) as perturbation constant; Second line to (g) as perturbation constant.

(0.0001,5)	N	(0.0001,10)		(0.0001,20)	
0 4998122796268819559	12	0.4998126087759979487	11		
9	12	7	12	094	13
1.4986830203391436274	16	1.4986860018377311175		1.4988919153374103074	
4	16	5	13	087	9
2.4952790842668085520		2.4952928059703008330	17	2.4953199695038252729	16
0	18	0	17	36	11
		3.4880813288034949205			19
	17			29	13
4.475318709124738	17	4.4754299637285439	19	4.4756491365545428671	24
8	17	4 (0.0002,10)	16	0 (0.0002,20)	16 N
				0.4996280355457631462	
0.4998182907837595591	22	0. 4000204204478404345 A	19	0.400200333437031402 A	8
1.4987369875120074141		1.49736884834399597	21	1.49739253775022120	25
1. 300/ 000/ 01200/ 3181	23	1.40/3000403430000/	19	2	7
2.4955247809883051070				2.4906539011114878	26
0	25	2	16	55	18
3.4888122166482404402			23	3.47628883899059	24
2	28	3	17	6	18
4.4772578321247956935	29	4.450008702	16	4.45092601795	23
5	29	2	16	9	18
(0.0003,3)	N	(0.0003,5)		(0.0004,10)	N
0.49943426656917	15		23	0.499251670691	16
7	15	0	19	1	16
1.49600980232	12 12		21 18	1.4947240220	14
2	12	<u>8</u> 2.485621375		2.48090744	14 11
2.485568969 9	12	5	16	Δ	11
3,4629279	10	3.4631022		3.450829	9
3.4023273 9	10	2	10	9	9
4.421949	10	4. 422419		4.3958	5
4. 421040 9	10	9	13	8	5
(0.005,2)	N	(0.0005,5)	N	(0.0006, 8)	N
0.4990516248	10	0.4990567271	9	0.498869022	6
8	10	1	9	2	6
1.49327002	10	1.49331788	9	1.4919725	7
2	10		9		7
2.475398		2.475632		2.47060	5
8	9		7		5
3.4356		3. 43646		3.4226	8
6	4		7		8
4.359		4.362		4.329	
9	8	2	5	9	7

Table (4.14). Eigenvalues of $H=1/2P^2+1/2x^2+gx^8/(1+g\alpha x^2)$, for the first five energy levels calculated from Hypervirial method; the numbers in the bracket corresponds to (g) & (α), First line correspond to (g α) as perturbation constant; Second line to (g) as perturbation constant.

(0.0001,10)	N	(0.0001,100)	N
0.50018631161181683179	14	0.50018073361783520248	26
1.5012994656220532667	16	1.5012501347085829434	30
2.5046164517930357688	20	2.50439675301365722	33
3.5115511831936673	21	3.510878803521578	34
4.523443927058427	20	4.521823800663	32
(0.0002,4)	N	(0.0002,20)	N
0.50037182660944569		0.500367791177453172	27
1.502587266898668		1.50255163333155	20
2.5091581159278		2.50900000754	21
3.5228005302	12	3.522319551	12
		4.5448345	9
(0.0003,5)		(0.0004,4)	N
0.50055485771084	18	0.50073753505	8
1.50384885187	11	1.50510337	8
2.51356329	7	2.5179195	8
3.5335744	9	3.544150	9
4.56725		4.5879	5
(0.0004,6)	N	(0.0005,5)	N
0.50073555629	8	0.5009166570	9
1.50508602	9	1.5063232	6
2.5178438	9	2.522108	7
3.54392	5	3.5541	5
4.5874	6	4.607	4

Table (4.15).	Eigenvalues of	H=P ² +r ² +λr ² /(1+gr	²), for the
first four e	nergy levels,	First line; p	ower series
method, Secon	d line; Hypervi	irial method; the	numbers in
the bracket of	prrespond to (g)	\pounds (λ) and [ℓ].	

1

NN286. 1307649052747358350, 3408. 4431319290257048350, 9371. 2204290741178836250, 3528. 5360761160119989950, 799999455. 1474833206898311950, 3649. 4547569735891687450, 99411998537. 9203322362315088850, 3769. 2050328634557703950, 9941168(0.1, 500)120)(0.1, 1000)120)914. 3663106943951810650, 31132. 251674809389117650, 9939. 8066215210037569250, 311425. 568001638685568050, 713150120121065. 148303393827822950, 311537. 790459039524431850, 211515(0.1, 200)10113179. 4831132189550476850, 3311. 8608808927604237050, 3179. 4831132189550476850, 3361. 3087886245920003950, 412714282. 9663262939303250, 3456. 90932312687538391450, 12922415333. 0153943806599903250, 3456. 9093231268753830850, 3111653. 575464089751667150, 1.42591. 730583013077284750, 12991112025. 561901791174237750, 1.42543. 256672479269637150, 1197111071112391. 790037522141928850, 1.43301. 138048089259757550, 1	(0.1,500) [5]	2	(0.1,1000) [10]	8
288.13078490527473583 50, 3 408.44313192902570483 50, 9 9 371.22042907411788362 50, 3 528.53607611601199895 50, 7 9 9 455.14748332068983118 50, 3 549.45475697358918874 50, 9 9 8 537.82033223623150986 50, 3 769.20503288345577039 50, 6 8 60.1,5001 120 6 8 13 8 537.8203322362518106 50, 3 1425.5880016386855890 50, 120 9 13 590.80662152100375882 50, 3 11537.7904590395244318 50, 214 6 13 1140.400194281548116 50, 3 311.8074590395244318 50, 3 113 1649.8711228851733986 50, 3 179.4831132189504768 50, 3 311.80880880276042370 50, 4 12 7 14 221.79347770320596205 50, 3 361.30878862459200395 50, 3 14 12 7 1 233.015394380855939032 50, 1.4 228.5184345249449665 50, 1 12 7 1 <th></th> <th></th> <th></th> <th>β, N</th>				β, N
9 9 9 9 9 7 9 7 9 371.22042907411788362 50, 3 328.53607611601199899 50, 7 9 7 9 455.14748332068983119 50, 3 3649.45475897358916874 50, 26 9 11 9 8 537.82033223623150988 50, 3 1312.25167489033891176 50, 50, 3 1312.25167489033891176 50, 50, 13 1312.25167489033891176 50, 50, 13 1312.25167489033891176 50, 50, 50, 50, 50, 50, 50, 50, 50, 50,				
371.22042907411788382 50, 3 528.53607611601199899 50, 7 9 455.14748332068983119 50, 3 649.45475697358916874 50, 2 11 9 8 537.92033223623150988 50, 3 769.20503286345577039 50, 2 11 6 8 60.1,600 [20] (0.1,1000) [20] 9 8 9 13 690.6662152100375682 50, 3 1312.2516749093891176 50, 2 12 1065.1483033938276229 50, 3 1537.7904590385244318 50, 12 1065.1483033938276229 50, 3 11537.7904590385244318 50, 12 6 13 1140.4001942815468116 50, 3 311.86088089276042370 50, 2 14 6 13 1179.48311321895504768 50, 3 311.86088089276042370 50, 7 14 10 8 14 231.79347770320596206 50, 3 3161.30878862459200039 50, 7 14 12 7 14 282.96632629393405987 50, 1 4 12 7 14 15 13 16 15 10 11 15 16	280.130/048032/4/5505	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-
	3/1.2204230/411/80302		520.55007011001188688	,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_	849 45475897258918974	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
94 11 6 8 (0.1,600) [20] (0.1,1000) [20] 914.36631099435518106 50, 3 1312.2516748093891176 50, 12 990.80662152100375682 50, 3 1425.5886016386855680 50, 12 1066.1483033938276229 50, 3 1537.7904590395244318 50, 12 1066.1483033938276229 50, 3 1537.7904590395244318 50, 12 1140.4001942815468116 50, 3 11648.8711228851733986 50, 3 (0.1,200) [5] (0.1,200) [10] 8 1140.4001942815468116 50, 3 311.86088089276042370 50, 7 119.48311321895504768 50, 3 311.86088089276042370 50, 7 10 8 14 231.79347770320596550 50, 3 409.85356499755533914 50, 7 12 712 24 15 7 14 282.96632629393425003 50, 3 456.90932312687538308 50, 1 1275.7639677457011592 50, 1.4 228.5184345249449665 50, 1 11653.5754640897516671 <t< td=""><td></td><td>50 3</td><td>789 20508286845577089</td><td>50</td></t<>		50 3	789 20508286845577089	50
		11	6	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				50.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				- ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				— —
7410814231.7934777032059620650, 3361.3087886245920003950, 412714282.9663262939340598750, 3409.6535649976535391450, 3333.0153943808599903250, 3456.9093231268753830850, 35333.0153943808599903250, 3456.9093231268753830850, 353512616 $(0.5,10000)$ (51) $(0.5,10000)$ (10) 1275.783967745701159250, 1.42228.518434524944966550, 1294111653.575464089751667150, 1.42591.730583013077264750, 1197112025.561901791174237750, 1.42591.730583013077264750, 1791112391.790037522141932850, 1.43301.138048089259757550, 18107111280.625522494424783150, 1.42242.794175885625909750, 1197101662.819392064383141350, 1.42242.794175885625909750, 12040.337737982318647450, 1.42979.117911998585030650, 14106112413.210267162825461550, 1.43340.408059097673552350, 14106112100813519.3084471080560285450, 2811.025062535263171150, 2100813534.7103811771725346250, 22000813 <t< td=""><td></td><td></td><td></td><td>50</td></t<>				50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4			
97122415333.0153943808599903250, 3456.9093231268753830850, 3512616(0.5,10000)[5](0.5,10000)[10]1275.783967745701159250, 1.42228.518434524944966550, 1294111653.575464089751667150, 1.42591.730583013077264750, 1197112025.561901791174237750, 1.42949.254575011444089250, 179112391.790037522141992850, 1.43301.138048089259757550, 1810711(0.4,10000)[10]71280.625522494424783150, 1.42613.256672479269637150, 192101662.819392064383141350, 1.42613.256672479269637150, 192106112040.337737982318647450, 1.42979.117911998585030650, 14106112413.210267162826461550, 1.43340.408059097673552350, 1411311519.3084471080560285450, 2811.0260625352631371150, 210013519.3084471080560285450, 2920.7080103541773803750, 22100813534.7103811771725346250, 2920.7080103541773803750, 22100813747.8378201610218334850, 21028.176013499331015650, 2				
333.01539438085999032 50, 3 456.90932312687538308 50, 36 36 12 6 16 (0.5,10000) [5] (0.5,10000) [10] 1275.7839677457011592 50,1.4 2228.51843452494496655 50,1 2 9 4 11 1653.5754540897516671 50,1.4 2291.7305830130772647 50,1 1 9 7 11 2025.5619017911742377 50,1.4 2949.2545750114440892 50,1 12391.7900375221419928 50,1.4 3301.1380480892597575 50,1 8 10 7 11 (0.4,10000) [5] (0.4,10000) [10] 1280.6255224944247831 50,1.4 22042.7941758856259097 50,1 3 9 2 10 6 2040.33777379823186474 50,1.4 2979.1179119985850306 50,1 4 10 6 11 3 11 (0.2,1000) [5] (0.2,1000) [10] 13 2040.3377379823186474 50,1.4 2979.1179119985850306 50,1 11		•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		and the second se		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				50 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12/5.7655077457011002	_	LLLO: 0104040240445000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	2591 7005980180772647	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1055.5754040857510071		2001.1000000100172047	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	29/19 25/15/26011////0202	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2023. 301901/311/423/7	-	2040.2040/00114440052	
8 10 7 11 (0.4,10000) [5] (0.4,10000) [10] 1280.6255224944247831 50,1.4 2242.7941758856259097 50,1 1 9 7 10 1662.8193920643831413 50,1.4 2613.2566724792696371 50,1 3 9 2 10 6 11 2040.3377379823186474 50,1.4 2979.1179119985850306 50,1 1 2040.3377379823186474 50,1.4 2979.1179119985850306 50,1 1 210 6 11 3 11 2413.2102671628254615 50,1.4 3340.4080590976735523 50,1 4 11 3 11 3 11 3 11 3 9 10 13 11 4 11 3 11 3 4 11 3 11 3 11 4 10 6 10 13 11 519.30844710805602854 50,2 2 811.02606253526313711 50,2 10 <	2201 7000276221A19228			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q		7	
1280.6255224944247831 50, 1.4 2242.7941758856259097 50, 1 19 7 10 1662.8193920643831413 50, 1.4 2613.2566724792696371 50, 1 39 2 10 2040.3377379823186474 50, 1.4 2979.1179119985850306 50, 1 4 10 6 11 2413.2102671628264615 50, 1.4 3340.4080590976735523 50, 1 4 10 6 11 3 11 3 11 (0.2,1000) 15] (0.2,1000) 100 401.60803348855637720 50, 2 699.10562257451248607 50, 2 519.30844710805602854 50, 2 811.02606253526313711 50, 2 519.30844710805602854 50, 2 920.70801035417738037 50, 2 2 10 08 13 634.71038117717253462 50, 2 920.70801035417738037 50, 2 2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50, 13			(0.4.10000) [10]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				50 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200.020022301227001	•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1252 0102020242021412	_		
2040.3377379823186474 50,1.4 2979.1179119985850306 50,1 4 10 6 11 2413.2102671628264615 50,1.4 3340.4080590976735523 50,1 4 11 3 11 (0.2,1000) [5] (0.2,1000) [10] 401.60803348855637720 50,2 699.10562257451248607 50,2 2 10 10 13 519.30844710805602854 50,2 811.02606253526313711 50,2 534.71038117717253462 50,2 920.70801035417738037 50,2 2 12 40 13 747.83782016102183348 50,2 1028.1760134993310156 50,				
4 10 6 11 2413.2102671628264615 50, 1.4 3340.4080590976735523 50, 1 4 11 3 11 (0.2,1000) [5] (0.2,1000) [10] 401.60803348855637720 50, 2 699.10562257451248607 50, 2 2 10 10 13 519.30844710805602854 50, 2 811.02606253526313711 50, 2 2 10 08 13 634.71038117717253462 50, 2 920.70801035417738037 50, 2 2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50, 13				
2413.2102671628254615 50,1.4 3340.4080590976735523 50,1 4 11 3 11 (0.2,1000) [5] (0.2,1000) [10] 401.60803348855637720 50,2 699.10562257451248607 50,2 2 10 10 13 519.30844710805602854 50,2 811.02606253526313711 50,2 2 10 08 13 634.71038117717253462 50,2 920.70801035417738037 50,2 2 12 40 13 747.83782016102183348 50,2 1028.1760134993310156 50,	20*0.3311313023100*1* A	-		
4 11 3 11 (0.2,1000) [5] (0.2,1000) [10] 401.60803348855637720 50, 2 699.10562257451248607 50, 2 2 10 10 13 519.30844710805602854 50, 2 811.02606253526313711 50, 2 2 10 08 13 634.71038117717253462 50, 2 920.70801035417738037 50, 2 2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50, 12	2412 2102671628264616			
(0.2,1000) [5] (0.2,1000) [10] 401.60803348855637720 50, 2 699.10562257451248607 50, 2 2 10 10 13 519.30844710805602854 50, 2 811.02606253526313711 50, 2 2 10 08 13 534.71038117717253462 50, 2 920.70801035417738037 50, 2 2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50, 1	2413.21020/1020204013			• ·
401.60803348855637720 50, 2 699.10562257451248607 50, 2 2 10 10 13 519.30844710805602854 50, 2 811.02606253526313711 50, 2 2 10 08 13 534.71038117717253462 50, 2 920.70801035417738037 50, 2 2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50, 1				
2 10 10 13 519.30844710805602854 50, 2 811.02606253526313711 50, 2 2 10 08 13 634.71038117717253462 50, 2 920.70801035417738037 50, 2 2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50, 30				50
519.30844710805602854 50, 2 811.02606253526313711 50, 2 2 10 08 13 634.71038117717253462 50, 2 920.70801035417738037 50, 2 2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50, 50, 30				
2 10 08 13 534.71038117717253462 50, 2 920.70801035417738037 50, 2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50,		_		
634.71038117717253462 50, 2 920.70801035417738037 50, 2 2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50, 50, 30				. .
2 12 40 13 747.83782016102183348 50, 2 1028.1760134993310156 50,				
747.83782016102183348 50, 2 1028.1760134993310156 50,				
/ 12 7 14	747.83782010102183348			
	7	16	l7	14

Table (4.16). Eigenvalues of $H=P^2+r^2+\lambda r^2/(1+gr^2)$, for the first five energy levels, calculated from the Padé approximants E [6,6]; the numbers in the bracket correspond to (g), (λ) and [ℓ].

(0.1, 0.1)[1]		
5.1863730031	7.2439618411	9.2943591118
9.2765419870	11.3179977490	13.3557272953
13.3421984324	15.3738528950	17.4034522812
17.3927308919	19.4179144888	21.4419338622
(0.1, 5)[1]	(0.1, 5)[2]	(0.1, 5)[3]
11.5587455831	15.9170986413	20.1306138402
19.7987423849	23.7658049064	27.6128545825
27.3160524161	30.9539439974	34.4954980980
34.2309589246	37.5974669447	40.8891097666
(0.5, 0.5)[1]	(0.5, 0.5)[2]	(0.5, 0.5)[3]
5.4998837608	7.5917869769	9.6568791274
9.5919229690	11.6466627410	13.8910540038
13.6438990724	15.6885686213	17.7222565012
17.6875754104	19.7163820232	21.7440321550
(0.5, 50)[1]	(0.5, 50)[2]	(0.5, 50)[3]
31,6592687604	42.7250391678	52.8947367975
51.0837491364	59.8601905694	67.9020149596
66.3789651981	73.3071780289	79.6769793648
78.4172864626	83.9412018964	89.0795821529
(1,50)[1]	(1,50)[2]	(1, 50)[3]
28,0789946886	36.4030821775	43.2227912191
40.8728593723	46.1845533815	50.7798984436
49.1901626340	53.0463643460	56.7135011768
55.2382048224	58.1092055687	60.8014575383
(1,100)[1]	(1,100)[2]	(1,100)[3]
42.2375607416	55.9778041155	67.9608076904
64.8194034146	74.4373894408	82.7693357495
80.3937290506	87.1066457238	93.0193049200
91.2485998040	96.1350495173	100.5576277803
(2,500)[1]	(2,500)[2]	(2, 500)[3]
95, 5803706134	127.3216094886	155.3869965188
148.6098717171	171.3920797463	191.2127639316
185.8851576987	201.7065198328	215.3169441763
211.2839677147	222.0671507250	231.3670836370
(5,1000)[1]	(5,1000)[2]	(5,1000)[3]
119.3154421104		175.8756903428
165.2034322656		193.2683695238
187.3168908208		202.4102794043
198.5135699380		
190.0100000000	204.100000000	211.2001//3100

Table (4.17) Eigenvalues of $H=1/2p^2+1/2r^2+gr^4/(1+gar^2)$, for

the first five energy levels calculated from Hypervirial methods The numbers in the bracket correspond to (g) & (α) and <l >.

[(0.001,2)<1>	N	(0.001,10)<1>	N
2.5086092925084448022	13	2.5083202242185217689	24
4.5289412362445608226	16		30
6.5603505790868401431	18	6.5557621744605236698	37
8.6024681561332499412	21	8.59268950843783	34
10.654947388501173618			32
(0.001,2)<5>	N	(0.001,10)<5>	N
	17	6.5443876107859155020	37
8.5896062539413339822	21	8.58194431159574531	37
10.642323666264598321	22	10.6271771957659	36
12.705067193300432272	25	12.67942473622	35
14.7775300888412425	24	14.73810754	28
(0.001,2)<10>	N	(0.001,10)<10>	N
11.636752190015929766			32
13.705031891469307294			30
15.7828596702109861	24	15.744273	20
17.869955315101557		17.812843	26
19.966053454454	21	19.88658	31
(0.002,5)<2>		(0.002,5)<5>	N
3.529381979370159554		6.58768081339508	33
5.576571189484475		8.66123416650	37
7.641023223462		10.749453164	35
9.721019279		12.851005 🛶	33
11.8150998		14.9647	22
(0.003,2)<2>		(0.004,2)<2>	N
3.544594052253502709		3.55840576203442	32
5.61704994895376		5.6518583832	27
7.71699916310		7.7792316	25
9.84221323		9.9371	15
11.990773		12.12	8
(0.005,1)<1>		(0.005,0.5)<1>	N
2.541366559899216		2.5417914913193910	25
4.63554346741		4.637819301005	26
6.775981		6.782318632	23
8.95840		8.971570	21
11.179		11.2024	16
(0.005,0.25)<1>	N	(0.005, 0.25)<2>	N
2.542007801743604		3.57486773054679	22
4.638987472277		5.69751271419	24
6.785597954		7.86797093	20
8.978434		10.08311	15
11.214	7	12.3402	.21

Table	(4.18).	Eigenvalues	of	H=1/2 P ²	'+1/2r	² +gr ⁴	/(1+gar ²),	for	the
		nergy level bracket corre						:s E[N, M] ;

			154			N N 1				
								(0.01,25)<2>		
2.559403684	"	3.576614			2.542745			3.56875		B
2.559403698		3.576613			2.542745	7	-	3. 5 6875		6
					(0.01,50)<3>				N	
2.529452	77				4.5829			5.5808	- 1	6
2.529459	76				4.5629			5.5808		5
					(0.03,6)<2>			(0.03,8)<2>		Ľ
2.6852918		3.764767			3.72925			3.7022		6
2.6852914		3.764762			3.72924	6	6	3.7022	6	6
								(0.04,8)<4>	N	M
2.72763		3.81229			4.8754			5.91962		В
2.72763		3.81227		-	4.8754			5.91999		5
(0.05,5)<1>	NM	(0.05,10)<2>	N	H	(0.05,20)<1>	N	M	(0.05,20)<2>	N	Н
2.69907	76	3.7189	7	6	2.5896	7	7	3.6347	7	6
2.69903	66	3.7187	6	6	2.5899	7	6	3.6343	6	6
(0.08,,2<2>	NM	(0.06,4)<2>	N	Ľ	(0.06,6)<2>	N	M	(0.06,8)<2>	N	М
3.9891	66	3.8830	6	6	3.8143	6	6	3.766	6	6
3.9893	65	3.8833	6	5	3.8148	6	5	3.767	6	5
(0.08, 4) < 4 >		(0.08,4)<2>	N	Н	(0.08,6)<2>	N	M	(0.08,8)<2>	'N	M
2.7747	76	3.934			3.848	6	6	3.791	6	6
2.7744	66	3.935	6	5	3.849	8	5	3.792	6	5
(0.1,2)<1>		(0.1,2)<2>			(0.1,4)<1>	N	M	(0.1, 4) < 2 >	N	Ш
2.899	76	4.142	6	6	2.8027	7	6	3.973	7	6
2.899	66	4. 143	6	5	2.8022 🖚	6	6	3.973	6	6
(0.15,2)<2>	NM	(0.15,3)<2>	N	H	(0.15,4)<2>			(0.15,5)<2>	N	M
4.27		4.137			4.04	6	6	3.97	6	6
		4. 134			4.04	6	5	3.97		5
(0.2,2)<1>			N	M	(0.2,6)<1>	N	Ш	(0.2,8)<1>	N	Ш
3.05	76	2.88	_	-	2.79			2.74	6	6
3.05	66	2.89	6	5	2.80	6	6	2.75	6	5

Table (4.19). Eigenvalues of $H=1/2p^2+1/2r^2-gr^4/(1+g\alpha r^2)$, for the first five energy levels calculated from Hypervirial method. The numbers in the bracket correspond to (g) & (α) and < D.

(0.001,2)<1>	N	(0.001,10)<1>	N
2.4912631097356900475		2.4915654185981646077	14
4.4703209096266264601	7	4.4720384032432318316	17
6. 4374599847414786137		6.4425130642421144292	
8.3927166630793602145	7		
10.336127390802639802	8	10.356446671250888	
(0.001,2)<5>	N	(0.001,10)<5>	N
6.4513231377501644703	7	8.4544310511385735820	17
8.4065375048857602018		8.41512488949682234	17
10.349905840171106936	7	10.3673114224817555	17
12.281464708012676318	-	12.31161616038458	17
14.201250789780285442	the second second	14.248607780243	16
(0.001,2)<10>		(0.001,10)<10>	N
11.356466025517407830		11.37060280542148	15
13.282012436129986100			17
15.195804217767798362			16
17.097878228073353224		17.16803472738	16
18.988271440081638932			16
		(0.004,5)<2>	N
3.4551947842483942627		3.4412851586791196	16
5.38241530522555255		5.34756301634048	17
7.282281166135826		7.220562915774	17
9. 157402007571		9.0644256779 🖚	
11.01012535683		10.88273141	16
(0.005, 0.5)<1>		(0.005,0.5)<2>	N
2.4550159896717549118		3.4183365040822728954	28
4.3435674261949896		5.272789543280191	26 27
6.1616111838663		7.053619142957	
7.9022786583		8.752887897	
9.55618173		10.359380	
(0.005,1)<1>		(0.005,1)<2>	N
2.4555518264273460439		3.4195468600070907884	22
4.3468793496272357119		5.2785363111551442055	30
6. 172341788422471186		7.0700105275410615	28
7.9283885503556		8.7900057998161	30
9.61054340321		10.43344590542	30
			N
2.4547417623982326966			21
4.34184523090877		4.34184523090877	23
6.1559135127			23
7.88803158	21	8.73231	13
9.525380	21	10.3164	13

Table (4.20) Eigenvalues of $H=1/2P^2+1/2r^2-gr^4/(1+gar^2)$, for the first five energy levels calculated from Hypervirial method. The numbers in the bracket correspond to (g) & (α).

(0.001,2)<1>	N	(0.001,10)<1>	N
2.4912631097356900475	7	2.4915654185981646077	14
5	7	7	14
4.4703209096266264601	7	4.4720384032432318318	17
1	7	6	17
6.4374599847414786137	7	6.4425130642421144292	18
7	7	2	18
8.3927166630793602145	7	8.4037518404895297	18
5	7	7	18
10.336127390802639802	8	10.356446671250888	17
	8	8	17
		(0.001,10)<10>	N
11.356466025517407830	8	11.37060280542148	15
0	8	8	15
13.282012436129986100	8	13.30988181125121	17
0	8	1	17
15.195804217767798362	8	15.242196895642	16
2	8	2	16
17.097878228073353224	9	17.16803472738	16
4	9	8	16
18.988271440081638932		19.08780204	16
2		4	16
(0.003,5)<2>		(0.004,5)<2>	N
3.4551947842483942627			16
	17	6	16
5.382415305225552555 5	17	5.34756301634048	17
5 7.282281166135826		8 7.220562915774	17 17
6	17		17
9, 157402007571		<u>4</u> 9.0644256779	_
9.13/40200/3/1	16	0.0044200//9 0	16 16
11.01012535683		<u> </u>	10 16
11.0101203003	16	10.002/0141	16
(0.005,1)<1>	10 N	(0.005,1)<2>	10 N
2,4555518264273460439	-	3.4195468600070907884	N 22
2. *00001020*2/0400433	19	A 19940000010901090	22 22
7 2460702406272257110		5.2785363111551442055	
4.3408/934902/233/119		5.2705303111551 <u>442</u> 055	30
6.172341788422471186		7.0700105275410615	30 28
6.1/2341/004224/1100 6	31	7.0700105275410615 5	28 28
7,9283885503556		5 8.7900057998161	30
6	26	8. 7900057998101 1	30
9.61054340321			30
9.01004340321	28	2	30
_	20	۵	30

CHAPTER FIVE

SOME DIFFERENT PROBLEMS

5.1 Introduction

Chapter five is devoted to investigating numerically various eigenvalue problems in one and three dimensions, using perturbative and nonperturbative methods for the following perturbative Hamiltonians:

- 1. $H = \frac{1}{2}P^2 r^{-1} + \frac{1}{2}\gamma \ell_z + \frac{\gamma^2}{8} \left[x^2 + y^2 \right]$
- 2. $H = \frac{1}{2}P^{2} + \frac{1}{2}\ell(\ell+1)r^{-2} Zr^{-1}e^{-\lambda r}$
- 3. $H=P^2 + \ell(\ell+1)r^{-2} Ae^{-\lambda r^2}$
- 4. $H = \frac{1}{2}P^{2} + \frac{1}{2}\ell(\ell+1)r^{-2} r^{-1} + \lambda r$
- 5. $H = \frac{1}{2}P^2 r^{-1} + 2\lambda r + 2\lambda^2 r^2$
- 6. $H = \frac{1}{2}P^{2} + \frac{1}{2}\ell(\ell+1)r^{-2} r^{-1}e^{-\lambda r}Cos(\lambda r)$
- 7. $H = \frac{1}{2}P^{2} + \frac{1}{2}\ell(\ell+1)r^{-2} \lambda e^{-\lambda r} \left[1 e^{-\lambda r}\right]^{-1}$
- 8. $H=P^{2}+x^{2}-2e^{-2\lambda x^{2}}\left[1+e^{-2\lambda x^{2}}\right]^{-1}$

9.
$$H=P^{2}+r^{2}+\ell(\ell+1)r^{-2}-2e^{-2\lambda r^{2}}\left[1+e^{-2\lambda r^{2}}\right]^{-1}$$

The energy eigenvalues as computed by more than one method agree with each other and with those reported in the literature. Beside the methods described in the various sections of chapter five, we should note that all the traditional methods of accelerating convergence of a series can be used in perturbation theory (e.g renormalised series and Padé approximants).

5.2 Quadratic Zeeman effect

5.2.1 Introduction

The problem of the quadratic Zeeman effect for the hydrogen atom has attracted much attention because of its applications in astrophysics and solid state physics. The problem of the Zeeman effect has been studied by many authors using a number of approximate methods. The literature provides an exhaustive range of numerical results for different range of field strength H.Praddaude [32,1972] the 14 lowest-energy levels, assuming calculated an appropriate expansion of the wave function in terms of Laguerre polynomials, Gallas [34,1984] gave variational estimates of the energies for the first 13 states. Also an investigation of this problem was given by Killingbeck [33,1981; 35,1985; 36,1985] using several techniques (power series, renormalised series and finite difference methods). The hamiltonian for a hydrogen atom in the presence of a constant magnetic field is

$$H = \frac{1}{2}m_{\bullet} \left[\underline{P} + \frac{\mathbf{e}}{\mathbf{c}} \underline{A} \right]^{2} - \frac{\mathbf{e}^{2}}{\mathbf{r}}$$
(5.1)

where $(\underline{A} = \frac{1}{2}\underline{B}\underline{x}\underline{r})$ is the vector potential. Assuming the magnetic field B to be along the Z direction $(\underline{B}=0,0,B)$, and choosing atomic units such that $\hbar=e=m_{e}=1$, the magnitude of the vector potential is

$$A = \frac{1}{2} \left| \underline{B} \mathbf{x} \underline{\mathbf{r}} \right| = \frac{1}{2} B \mathbf{r} S i \mathbf{n} \theta \tag{5.2}$$

so that

$$\underline{\mathbf{A}} \cdot \underline{\mathbf{P}} = \mathbf{B} \left(\mathbf{x} \mathbf{P} \mathbf{y} - \mathbf{y} \mathbf{P} \mathbf{x} \right) = \mathbf{B} \boldsymbol{\ell} \mathbf{z}$$
(5.3)

$$\underline{\mathbf{P}}=\mathbf{i}\mathbf{P}\mathbf{x}+\mathbf{j}\mathbf{P}\mathbf{y}+\mathbf{k}\mathbf{P}\mathbf{z} \tag{5.4}$$

$$\underline{\mathbf{A}} = \frac{1}{2} \mathbf{B} \left[-\mathbf{i} \mathbf{y} + \mathbf{j} \mathbf{x} \right]$$
(5.5)

Here r makes angle θ with the Z axis. ℓ_z is the operator for the Z component of the orbital angular momentum. Using equations (5.2,5.3,5.4), then the equation (5.1) takes the form

$$H = \frac{1}{2}P^{2} - r^{-1} + \frac{1}{2}\gamma \ell_{z} + \frac{1}{8}\gamma^{2}r^{2}Sin^{2}\theta \qquad (5.6)$$

with $\gamma = \frac{eB}{m_e c}$, in S.I.units. B represents the magnetic field strength and e, m_e the electronic charge and mass respectively. In the units used the parameter γ is equal to the cyclotron frequency. It measures the magnetic field strength in units of 2.35×10^9 G; equivalently 2.35×10^5 T corresponds to the value $\gamma = 1$. By using the spherical coordinates

$$x=rSin\theta Cos\phi$$
 (5.7)

$$y=rSin\theta Sin\phi$$
 (5.8)

$$z=r\cos\theta$$
 (5.9)

Then

$$x^2 + y^2 = r^2 \sin^2 \theta \qquad (5.10)$$

Therefore the hamiltonian can be written as

$$H = -\frac{1}{2}D^{2} - r^{-1} + \frac{1}{2}\gamma\ell_{z} + \frac{1}{8}\gamma^{2} \left[x^{2} + y^{2}\right]$$
(5.11)

In these units the ground state energy is -1/2 at $\gamma=0$, and $\gamma=0.1$ corresponds to a magnetic field of $(2.35 \times 10^{4} \text{T})$. The term in equation (5.6) $\frac{1}{8}\gamma^{2}r^{2}\text{Sin}^{2}\theta$ has the expectation value

$$\frac{1}{8}\gamma^{2}\langle n\ell m | r^{2} \sin^{2}\theta | n\ell m \rangle = \frac{1}{8}\gamma^{2}\langle \ell n | r^{2} | \ell n \rangle \langle \ell m | \sin^{2}\theta | \ell m \rangle$$
(5.12)

Where

$$|\mathbf{n} \ell \mathbf{m} \rangle = \mathbf{R}_{\mathbf{n}} \ell \mathbf{Y}_{\ell}^{\mathbf{m}}(\boldsymbol{\theta}, \boldsymbol{\phi})$$
(5.13)

In order to evaluate the quantity (5.12) it is convenient to write down the recurrence relations

$$(2\ell+1) \cos \theta \mathbf{P}_{\ell}^{\mathbf{m}} = (\ell+m) \mathbf{P}_{\ell-1}^{\mathbf{m}} + (\ell-m+1) \mathbf{P}_{\ell+1}^{\mathbf{m}}$$
(5.14)

$$\cos\theta \mathbf{P}_{\ell}^{\mathbf{m}} = \left[\frac{(\ell+\mathbf{m})}{(2\ell+1)}\right] \mathbf{P}_{\ell-1}^{\mathbf{m}} + \left[\frac{(\ell-\mathbf{m}+1)}{(2\ell+1)}\right] \mathbf{P}_{\ell+1}^{\mathbf{m}}$$
(5.15)

$$Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{(2\ell+1)(\ell-m)!}{4\pi(\ell+m)!}} (-)^{m} e^{im\phi} P_{\ell}^{m} \cos\theta \qquad (5.16)$$

From equations (5.15,5.16), it is easy to obtain the relation

$$Cos\theta Y_{\ell}^{m}(\theta,\phi) = \frac{(\ell+m)(\ell-m)}{(2\ell+1)(2\ell-1)} Y_{\ell-1}^{m}(\theta,\phi) + \left[\frac{(\ell+m+1)(\ell-m+1)}{(2\ell+1)(2\ell+3)} \right] Y_{\ell+1}^{m}(\theta,\phi) \quad (5.17)$$

$$\langle \ell m | \sin^2 \theta | \ell m \rangle = 1 - \langle \ell m | \cos^2 \theta | \ell m \rangle$$
(5.18)

$$=1-\int Y_{\ell}^{\star m}(\theta,\phi) \cos^2\theta Y_{\ell}^{m}(\theta,\phi) d\Omega \qquad (5.19)$$

$$=1-\left[\frac{(\ell+m)(\ell-m)}{(2\ell-1)(2\ell+1)} + \frac{(\ell+m+1)(\ell-m+1)}{(2\ell+1)(2\ell+3)}\right]$$
(5.20)

$$=\frac{1}{4} \left[\frac{\ell(\ell+1) + m^2 - 1}{(2\ell+3)(2\ell-1)} \right]$$
(5.21)

Also the $\frac{1}{2}\gamma \ell_z$ term contribution is given by

$$\langle n\ell m | \frac{1}{2}\gamma\ell z | n\ell m \rangle = \frac{\gamma}{2} \langle \bar{e}^{im\phi} | \frac{\partial}{i\partial\phi} | e^{im\phi} \rangle = \frac{1}{2}\gamma m$$
 (5.22)

Therefore to lowest order equation (5.6) can be replaced by a spherically symmetric Hamiltonian

$$H = \frac{1}{2}P^{2} - r^{-1} + \frac{\gamma}{2}m + \frac{1}{4} \left[\frac{\ell(\ell+1) + m^{2} - 1}{(2\ell+3)(2\ell-1)} \right] \gamma^{2} r^{2}$$
(5.23)

This use of a lowest order effective Hamiltonian is described in detail below. The quantum states of energy E_0 for a particle in a spherically symmetric field are characterised by wave function of the form

$$\Psi_{\mathbf{n}} \ell_{\mathbf{m}} = \mathbf{R}_{\mathbf{n}} \ell(\mathbf{r}) \Psi_{\ell}^{\mathbf{m}}(\boldsymbol{\theta}, \boldsymbol{\phi})$$
 (5.24)

The direction of the Z-axis is arbitrary and can be chosen along the direction of the magnetic field B. The operator ℓ_z commutes with the Hamiltonian H for all values of the magnetic field and m is thus a good quantum number, i.e the Hamiltonian describes a system invariant to rotation about the Z-axis. The operators H and ℓ_z must have simultaneous eigenfunctions. The functions Y_{ℓ}^{m} contain the angle ϕ only in the factor $e^{im\phi}$, and the commutation relation $[H, \ell_z]=0$, expresses the fact that the Z-component of ℓ is a constant of the motion for any spherically symmetric potential. The hamiltonian contains a linear and a quadratic term in the magnetic field strength. The ground state (S-state) of the hydrogen atom has zero angular momentum, which means that the magnetic quantum number must be m=0. For such a state the linear term vanishes; therefore the full Hamiltonian (5.11) reduces to the form

$$H = -\frac{1}{2}D^{2} - r^{-1} + \frac{1}{8}\gamma^{2} \left[y^{2} + x^{2} \right]$$
 (5.25)

The perturbing potential due to the magnetic field is not of a single tensor type but is a sum of tensor operator of rank 0 (with $\ell=0$) and of rank 2 (with $\ell=2$). which may be referred to as the s and d parts of the perturbation. By using tensor operators of definite ℓ we can express the perturbation as an $\ell=0$ term plus an $\ell=2$ term as follows

$$\frac{1}{8}\gamma^{2}\left[x^{2}+y^{2}\right] = A_{1}\gamma^{2}r^{2}+V_{2} \qquad (5.26)$$

where

$$A_1 = \frac{1}{12}$$
 (5.27)

and

$$V_{2} = \frac{1}{24} \gamma^{2} \left[r^{2} - 3z^{2} \right]$$
 (5.28)

Therefore the equation (5.25) takes the form

$$H = -\frac{1}{2}D^{2} - r^{-1} + \frac{1}{12}\gamma^{2}r^{2} + \frac{1}{24}\left[r^{2} - 3z^{2}\right]$$
(5.29)

where the s part is given by $\frac{1}{12}\gamma^2 r^2 a$ nd the d part by

 $\frac{1}{24}\gamma^2 \left[3z^2 - r^2 \right]$

The Hamiltonian for the different states can be written as

follows, with

$$H_{0} = -\frac{1}{2}D^{2} - r^{-1}$$
1s , $H = H_{0} + \frac{1}{12}\gamma^{2}r^{2} + \frac{1}{24}\gamma^{2}(r^{2} - 3z^{2})$ (5.30)

$$2p_0$$
, $H=H_0 + \frac{1}{20}\gamma^2 r^2 + \frac{1}{40}\gamma^2 \left(3r^2 - 5z^2\right)$ (5.31)

$$2\mathbf{p}_{-1}, \quad \mathbf{H} = \mathbf{H}_{0} + \frac{1}{10}\gamma^{2}\mathbf{r}^{2} + \frac{1}{2}\gamma\mathbf{m} + \frac{1}{40}\gamma^{2}\left(\mathbf{r}^{2} - 5\mathbf{z}^{2}\right)$$
(5.32)

$$3d_{-1}, \quad H=H_0 + \frac{1}{14}\gamma^2 r^2 + \frac{1}{2}\gamma m + \frac{1}{56}\gamma^2 \left(3r^2 - 7z^2\right)$$
(5.33)

$$3d_{-2}$$
, $H=H_0 + \frac{3}{28}\gamma^2 r^2 + \frac{1}{2}\gamma m + \frac{1}{56}\gamma^2 (r^2 - 7z^2)$ (5.34)

Each V_2 term has zero expectation value for the states concerned

[1s, 2s,
$$2p_0$$
, $2p_{-1}$, $2p_{+1}$, $3d_{-1}$, $3d_{-2}$] i.e
 $E_1 = \langle \phi_0 | V_2 | \phi_0 \rangle = 0$ (5.35)

The spherically symmetric Hamiltonian $H-V_2$ can be treated accurately by various methods. To obtain the <u>full</u> perturbed energy (E) it will then be necessary to include the second order and third order energy shift which is produced by adding the V_2 part of the potential function. As we pointed out above, the addition of the V_2 potential term to the Hamiltonian does not alter the energy eigenvalue in <u>first</u> order. We can estimate the second-order energy shift caused by the residual perturbation V_2 . E_2 and E_3 can actually be closely estimated starting from the Hylleraas functional, which takes the following form

$$\mathbf{F}(\boldsymbol{\psi}) = 2 \langle \boldsymbol{\psi} | \boldsymbol{V} | \boldsymbol{\phi}_{0} \rangle - \langle \boldsymbol{\psi} | (\mathbf{H}_{0} - \mathbf{E}_{0}) | \boldsymbol{\psi} \rangle \qquad (5.36)$$

where ψ is a trial function estimate for the first order perturbed wavefunction. By using the renormalised series method, it is easy to find E_0 , $\langle r \rangle$ and to get higher $\langle r^n \rangle$. To find the E_2 produced by V_2 we start from the eigenfunction of the perturbed radial problem as the unperturbed function. Calling this function ϕ_0 and taking the trial function ψ in the form $\psi = f \phi_0$, with f some function of the coordinates, the second term in (J.36) then takes the following form after using the relation

$$\mathbf{H}_{0}\boldsymbol{\phi}_{0}=\mathbf{E}_{0}\boldsymbol{\phi}_{0} \tag{5.37}$$

$$\langle \phi_0 | f(H_0 - B_0) f | \phi_0 = \langle \phi_0 | f[H_0, f] | \phi_0 \rangle$$
 (5.38)

If the Hamiltonian $H_0^{=-\alpha D^2+U}$, with U any function of position, then relation (5.38) after tedious algebra and use of the identity

$$\nabla^{2}(\mathbf{fg}) = \mathbf{f}\nabla^{2}\mathbf{g} + \mathbf{g}\nabla^{2}\mathbf{f} + 2\mathbf{grad}(\mathbf{f}) \cdot \mathbf{grad}(\mathbf{g})$$
 (5.39)

takes the form

$$\langle \phi_0 | f[H_0, f] | \phi_0 \rangle = \alpha \langle \phi_0 | grad(f) \cdot grad(f) | \phi_0 \rangle$$
 (5.40)

Then the Hylleraas functional takes the form (with $f=kV_2$)

$$\mathbf{f}(\boldsymbol{\psi}) = 2\mathbf{k} \langle \boldsymbol{\phi}_0 | \boldsymbol{V}_2^2 | \boldsymbol{\phi}_0 \rangle - \alpha \mathbf{k}^2 \langle \boldsymbol{\phi}_0 | \text{grad } \boldsymbol{V}_2, \text{grad } \boldsymbol{V}_2 | \boldsymbol{\phi}_0 \rangle$$
(5.41)

The whole set of terms involve only expectation values over ϕ_{α} , and standard angular integrals over (θ). The radial

expectation values can be obtained from the renormalised series approach. In order to work out the angular terms in the functional we can use the relation

$$\langle \mathbf{F}(\mu) \rangle = \frac{\langle \langle \mu^{2} \mathbf{F}(\mu) \rangle \rangle}{\langle \langle \mu^{2} \rangle \rangle}$$
(5.42)

$$\langle \langle \mu^{n} \rangle \rangle = (n+1)^{-1} \tag{5.43}$$

where

$$\mu = \cos \theta \qquad (5.44)$$

We also have

$$\operatorname{gradV}_{2}$$
, $\operatorname{gradV}_{2} = \left(\frac{\partial V^{2}}{\partial x}\right)^{2} + \left(\frac{\partial V^{2}}{\partial y}\right)^{2} + \left(\frac{\partial V^{2}}{\partial z}\right)^{2}$ (5.45)

E₂ can be estimated from the formula

$$\mathbf{E}_{3} = \langle \boldsymbol{\psi}_{1} | \boldsymbol{\nabla}_{2} | \boldsymbol{\psi}_{1} \rangle \tag{5.46}$$

$$=\mathbf{k}^{2}\langle \boldsymbol{\phi}_{0} | \boldsymbol{V}_{2}^{3} | \boldsymbol{\phi}_{0} \rangle \qquad (5.47)$$

To calculate E_2 , we need the minimum of a function of form

$$F(k) = 2Ak^{2} - Bk^{2}$$
 (5.48)

The minimum is A^2B^{-1} . Taking A and B from the above results we can estimate the total second-order E_2 effect due to V_2 . We performed the calculation at $\gamma=0.1$ for the states in the table below. We found the expectation values $\langle r^n \rangle$ (n=2,4,6) by using the renormalised series approach. For example the total second-order effect for $2P_{-1}$ is given as

$$-0.1632653 \left[\frac{\gamma^2}{40}\right]^2 \frac{\langle \mathbf{r}^4 \rangle^2}{\langle \mathbf{r}^2 \rangle} = -27.302 \times 10^{-5} \quad (\text{at } \gamma = 0.1)$$

and also the total third-order effect for the same state $2P_{-1}$ is given as

$$\left[\frac{\gamma^2}{40}\right]^3 \left[2k^2(-\frac{32}{31}) < r^6 \right] = -4.78852 \times 10^{-5} \quad (\text{at } \gamma = 0.1)$$

the value of k it can be determined from the where second-order calculation and equals k=AB⁻¹. The perturbation coefficient in the above calculation is $(\gamma^2/40)$, which is actually (λ) (see (5.32)). The (H-V₂) energy eigenvalue for state 2p_is -0.1505220 as found by the renormalisd series approach, which also gives expectation values $\langle r^2 \rangle = 21.1594$, $\langle \mathbf{r}^4 \rangle = 752.424, \langle \mathbf{r}^6 \rangle = 38967.179$. The second and third order due to V_2 are estimated to be (-0.000302, shifts -0.0000478852) respectively. The second-order correction to the energy is six times the third-order correction, E, and E, together give a corrected energy (-0.1508429). This energy is in good agreement with Praddaude; using a large scale matrix calculation he obtained (-0.150845). The second and third order corrections thus bring our results closer to the results of Praddaude and indicate that it is sufficient to take the second and third order corrections to obtain a good energy. The unperturbed 2p energy is -1/8, so the V, part of the perturbation has given an energy shift (-0.025522), while V_2 has given a second order shift (-0.00027302) and a third order shift (-0.0000478852). The calculation described above can be carried out for various other states, as shown in table (5.2), which gives the required expressions for each state.

state	$2\mathbf{k}\langle\phi_0 V_2^2 \phi_0\rangle$	$\alpha k^{2} \langle \phi_{0} [\frac{\partial V^{2}}{\partial r}]^{2} \phi_{0} \rangle$	$\mathbf{k}^{2}\langle\phi_{0} V_{2}^{3} \phi_{0}\rangle$
8	$2k \frac{4}{5} \langle r^4 \rangle$	$\frac{1}{2} \mathbf{k}^2 \mathbf{\vartheta} \langle \mathbf{r}^2 \rangle$	$2k^{2}\left[-\frac{16}{35}\right]\langle r^{6}\rangle$
2p0	$2\mathbf{k} \frac{12}{7} \langle \mathbf{r}^4 \rangle$	$\frac{1}{2} \mathbf{k}^2 24 \langle \mathbf{r}^2 \rangle$	$2\mathbf{k}^{2}\left[\frac{16}{21}\right]\langle \mathbf{r}^{6}\rangle$
2P - 1	$2\mathbf{k} \frac{\theta}{7} \langle \mathbf{r}^4 \rangle$	$\frac{1}{2} \mathbf{k}^2 16 \langle \mathbf{r}^2 \rangle$	$2\mathbf{k}^{2}\left[-\frac{32}{21}\right]\langle \mathbf{r}^{6}\rangle$
эd _{- 1}	$2\mathbf{k} \frac{\mathbf{B}}{3} \langle \mathbf{r}^4 \rangle$	$\frac{1}{2} \mathbf{k}^2 48 \langle \mathbf{r}^2 \rangle$	$2\mathbf{k}^{2}\left[-\frac{32}{33}\right]\langle \mathbf{r}^{6}\rangle$
3 d _2	$2\mathbf{k} \frac{4}{3} \langle \mathbf{r}^4 \rangle$	$\frac{1}{2} \mathbf{k}^2 24 \langle \mathbf{r}^2 \rangle$	$2\mathbf{k}^{2}[-\frac{3\theta}{33}]\langle \mathbf{r}^{6}\rangle$

We also used the more complicated wavefunctions, $\psi_1 = kV_2(1+\alpha r)\phi_0$ as a trial function and followed the same method above to calculate B_2 . We obtained the following relation corresponding to this trial wavefunctions for the 1s state

$$\mathbf{E}_2 = \frac{\mathbf{A}}{\mathbf{A}_2}$$

where

$$A_{1} = -0.64 \left[\frac{\gamma^{2}}{24}\right]^{2} \left[\langle \mathbf{r}^{4} \rangle + \alpha \langle \mathbf{r}^{5} \rangle\right]^{2}$$
$$A_{2} = 4 \left[\langle \mathbf{r}^{2} + 2\alpha \langle \mathbf{r}^{3} \rangle + \alpha^{2} \langle \mathbf{r}^{4} \rangle\right] + 0.4 \left[4\alpha \langle \mathbf{r}^{3} \rangle + 5\alpha^{2} \langle \mathbf{r}^{4} \rangle\right]$$

The above approach does not improve the correction since it gave a best correction at $\alpha=0$.

energy eigenvalues

To find the energy of a state in the spherically symmetric potential

$$V(r) = -r^{-1} + A(\ell, m) \gamma^2 r^2$$
 (5.49)

We write the radial Schrödinger equation in this form

$$-\frac{1}{2}D^{2}\Psi(\mathbf{r}) - \left[\mathbf{r}^{-1} - \frac{1}{2}\ell(\ell(+1)\mathbf{r}^{-2} - \lambda \mathbf{r}^{2}\right]\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$
(5.50)

Using the renormalised series approach we rewrite the potential given in equation (5.50) as

$$V(\mathbf{r}) = -\left(\mu + k\lambda\right) \mathbf{r}^{-1} + \frac{1}{2} \ell(\ell + 1) \mathbf{r}^{-2} + \lambda \mathbf{r}^{2}$$
(5.51)

where

$$A(\ell, m) = \frac{1}{4} \left[\frac{\ell(\ell+1) + m^2 - 1}{(2\ell+3)(2\ell-1)} \right], \quad \mu = 1 - \lambda k$$
 (5.52)

and

$$\lambda = A(\ell, m) \gamma^2 \qquad (5.53)$$

For the potential given by equation (5.51) the hypervirial relation (2.3) gives the following relation between the various expectation values for states of angular momentum ℓ takes the form

$$2 \left(N+1 \right) \sum_{0}^{M} E(I) A(N, M-I) = N \left[\ell(\ell+1) - \frac{1}{4} \left(N^{2}-1 \right) \right] A(N-2, M) - \left(2N+1 \right) \left[\mu A(N-1, M) + k A(N-1, M-1) \right] + \left(2N+4 \right) A(N+2, M-1)$$
(5.54)

By using the Hellmann-Feynman theorem we obtain the

recurrence relation

$$(M+1)E(M+1) = A(2, M) - kA(-1, M)$$
 (5.55)

We can determine the energy coefficients E(M+1) and the series coefficients A(N,M), by using equations (5.54,5.55), with the aid of the unperturbed energy $E(0)=-\mu^2/2n^2-\frac{1}{2}\gamma m$, and the initial coefficient A(0,0) = 1. We also tried another renormalised series approach to compute the energy eigenvalues. The renormalised potential corresponding to this approach takes the form

$$V(\mathbf{r}) = -\mu_{P}\mathbf{r}^{-1} + \frac{1}{2}\ell(\ell+1)\mathbf{r}^{-2} + \underline{\lambda} \left[\mathbf{r}^{2} - \mathbf{K}\mathbf{r}^{-1}\right]$$
(5.56)

$$\underline{\lambda} = \lambda^2 \tag{5.57}$$

$$\mu_{\rm P}=1+\lambda k \qquad (5.58)$$

i.e the perturbation involves λ^2 rather than λ . The purpose of using this modified renormalised technique was to seek an improvement in the accuracy of the results. This approach seemed helpful for higher excited states at low values of magnetic field. The recurrence relations corresponding to the modified renormalised series approach are

$$\left(2N+2\right) \sum_{0}^{M} E(I)A(N, M-I) = N \left[\ell(\ell+1) - \frac{1}{4} \left(N^{2}-1\right) \right] A(N-2, M) - \left(2N+1\right) \left[\mu_{P}A(N-1, M) + kA(N-1, M-1) \right] + \left(2N+4\right) A(N+2, M-2)$$
(5.59)

$$(M+1)E(M+1)=2A(2, M-1)-KA(-1, M)$$
 (5.60)

The difference between the two approaches can be seen from

equations (5.54,5.55.5.59,5.60), in the third term and first term of the right hand sides of the equations. The same technique was used for anharmonic oscillators in chapter 2 and helped to compute energy eigenvalues for $(\lambda x^6, \lambda x^8)$ perturbations which were an improvement over those given by the usual approach.

5.2.3 Results and discussion

We have calculated energy levels for all thirty states which have principal quantum number n=1,2,3,4, for magnetic field strengths in the range $0.005 \le \gamma \le 0.01$. Also we calculated thirteen states with (n=1,2,3) at $\gamma = 0.1$. We computed the results using the renormalised series approach. Our results are converged to (14-figures) at field values corresponding to $\gamma=0.005$ and $\gamma=0.01$. This accuracy decreases for higher states. While the ordinary renormalised series $(\lambda^{I}, I=1)$ does not work at $\gamma=0.01$ and n=4, the other approach (λ_{i}^{I} I=2) works satisfactorily. Our results at $\gamma=0.005$ are in good agreement with the results of Gallas[34,1984], which are converged only to four significant figures. Two considerations govern our calculation at low magnetic fields; first, to show that the two perturbation approaches work very well and, second, to compute the energy eigenvalues for higher states. In table (5.3), it is clear that the renormalised series method for H-V, gives a very good upper bound to the total energies, while using the second and third order corrections to the energy bring our results very close to the results obtained by Praddaude; this is clear from table (5.2). Killingbeck [14,1981] estimated second-order corrections, so our work is an extension of this work. Table 5.1 shows the expectation value for $\langle r^n \rangle$, table 5.2 shows the energy and the second and third order corrections to the energy. Table (5.4) shows that the agreement between the results of the two perturbation approaches are very satisfactory at $(\gamma=0.1)$ for states with n=1,2. The number of coefficients required to get a converged energy eigenvalue from the renormalised series is less with the λ^2 approach; this is clear from our results as shown in the tables (5.4,5.5). We believe our results demonstrate that the renormalised series method work excellently for low range values of magnetic field (where the series converge quickly) but does not work for high values of magnetic field. The energy eigenvalue associated with the 2p(+1) state can easily be calculate from the results for the 2P(-1) state. The term $\frac{1}{2}\gamma m$ gives the linear Zeeman term in equation (5.30-5.31); for the 2p(-1) state we have m=-1 and for the 2p(+1) state we have m=1, therefore they differ in energy by amount (γ) , which means that to get the energy eigenvalue for the 2p(+1) state it will only be necessary to add this amount to the resulting energy for the 2p(-1) state. In a similar way we can compute the energy eigenvalues for the other states; therefore states with m>0 cannot treated separately, since $E(\ell,m)-E(\ell,-m)$ has the fixed value $m\gamma$.

Table (5.1) some $\langle r^n \rangle$ values at $\gamma=0.1$.

						<r<sup>8></r<sup>
1s	1.48919	2.94887	7.27689	21.47604	73.674802	287.71007
25	5.18465	30.9783	203.25814	1446.64	11090.159	91024.32
2p(0)	4.51631	24.0078	146.0403	995.987	7498.307	61562.655
2p(+1)	4.25626	21.1594	119.538	752.424	5198.383	38967.179
2p(-1)	4.25626	21.1594	119.538	752.424	5198.383	38967.179
				4011.81	38516.423	392244.29
3d(-2)	6.49885	46.4433	360.24112	3002.45	26675.328	251009.29

Table (5.2) Energies with second and third correction to the energy at $\gamma=0.1^{\circ}_{\bullet}$ the figure between the bracket is the power of (10) multiplying the number.

state	E	E ₂	Е ₃	E+E_+E_3
15	-0.4975216	-4.3446 (-6)	-4.03701(-8)	-0.4975259
2S	-0.0956530	-18.7655(-4)	-5.25135(-4)	-0.0980546
2P(0)	-0.1117526	-63. (-5)	5.14842(-5)	-0.1123312
2p(+1)	-0.0505220	-27.302 (-5)	-4.78852(-5)	-0.0508429
2p(-1)	-0.1505220	-27.302 (-5)	-4.78852(-5)	-0.1508429
3d(-1)	-0.0543089	-2.84589(-3)	-3.0146 (-4)	-0.0574562
3d(-2)	-0.0865749	-9.16956(-4)	-3.57562(-4)	-0.0878494

State	JASON	Praddaude	$E(\lambda^{I}, I=1)$	N	K
1s	-0.497512	-0.497525	-0.49752165289784317	12	-80
2s	-0.0958		-0.0956530	7	-800
2p(0)	-0.11135	-0.11241	-0.11175251	13	-900
2p(-1)	-0.1495	-0.150845	-0.1505220	19	-800
2p(+1)	-0.0495	-0.050845	-0.0505220	17	-710
3s	0.031235	-0.02493	0.0374	14	-1500
3p(-1)	-0.01609	-0.03118	-0.0147	18	-1700
3p(+1)	-0.0839	-0.068815	-0.0859	8	-1450
3d(0)	-0.008635	-0.01216	-0.0108	11	-1700
3d(-1)	-0.05165	-0.05781	-0.0543	11	-1400
3d(+1)	0.04832	0.042185	0.0457	4	-1000
3d(-2)	0.0828	-0.087835	0.0864	19	-1400
3d(+2)	0.11715	0.11216	0.1135	19	-1400

Table (5.3). comparison of our energy eigenvalues, which are calculated by using renormalised series approach with those of Jason (1984) and Praddaude (1972) at (γ =0.1).

Table (5.4). comparison between the calculations of the two approaches of the renormalised series for 1s, 2s, 2p(0), 2p(+1), 2p(-1) at $\gamma=0.1$

State	$E(\lambda^{I}, I=2)$	N	-K	$E(\lambda^{I}, I=1)$	N	-к
1s	-0.49752165289784317225	46	8	-0.49752165289784317	12	80
2s	-0.0956530	49	40	-0.0956530	7	800
2p(0)	-0.11175251	42	40	-0.11175251	13	900
2p(-1)	-0.150523	47	40	-0.1505220	19	800
2p(+1)	-0.050523	42	35	-0.0505220	17	710

Table (5.5) comparison of the energy eigenvalues, upper lines, renormalised series calculations from equation (5.60) lower line, renormalised series calculations from equation (5.55). The empty spaces mean that the corresponding eigenvalues cannot be reached through that approach.

state	γ =0.005	N	K	γ= 0.01	N	K
1s	-0.49999375013996	6	-8	-0.49997500223880	10	-12
	6	2	-10	0	3	-40
2s	-0. 12491256398736		-8	-0.12465101534992	14	-12
	6	4	-10	2		-40
2p(-1)	-0.12742506579170		-8	-0.12970104287480	15	-12
0-701		5	-10	0	7	-40
2p(0)	-0.12496251647389	3 3	-8 -10	-0. 12485026234232	11	-12
2p(+1)	9 -0.12242506579170		-10	-0.11970104287480	5 15	- <u>4</u> 0 -12
2p(+1)	0.12242506579170	5	-10	-0.11970104287480	15 6	-12 - 4 0
3s	-0.05512714835713		-	-0.053873226274	29	-40
55	3	7	-15		14	-50
3p(-1)	-0.05760909221494	19	-	-0.058808167016	29	-95
	4	7	-15	6	8	-60
3p(0)	-0.05533145157546	17		-0.0546693455128		
	6	7	-15	8	12	-60
3p(+1)	-0.05260909221494	19	-10	-0.048808167016	29	-95
	4	7	-15	6	8	-60
3d(-2)	-0.06022071043309	18		-0.064245045208	28	-95
	9	8	-15	5	13	-60
3 a(-1)	-0.05783174597558	_		-0.0596736605849	26	
	8	7	-15	8	10	-60
39(0)				-0.05481826517181		
3d(+1)	6 -0.05283174597558		-15	8	13	-60
30(+1)	-0.05283174597558	15 7	-15	-0.0496/36605849	26 10	-95 -60
24(+2)	-0.05022071043309				28	-95
50(12)	9	8	-15	5	13	-60
4s	-0.029942181			-0.0263782	28	and the second second
	8	9	-20			
4p(-1)	-0.03230520	16	-12	-0.030935	29	-120
	0	8	-20			
4p(0)	-0.03501460768	19	-12	-0.02845022	25	-120
	8	10	-20			
4p(+1)	-0.02730520	16	-12	-0.020935	29	-120
			-20			
4d(-2)	-0.034951942	23		-0.036491	25	-220
	4	9	-20			
4d(-1)	-0.03287397814	23		-0.0329654	26	-120
	4	12	-20	0.0001000		
4d(0)	-0.03051687437	21		-0.0284775	20	-120
	7 -0.02787397814	11 23	-20	-0.0229654	00	
4a(+1)	-0.02/8/39/814	23 12	-20	-0.0223034	26	-120
44(+2)	-0.024951942	23		-0.016491	25	-220
*u(+2)	-0,024331342 4	9	-20	0.010431	20	-220
		Ľ	20			

4f(-3)	-0.037785672 2	21 -1 13 -2	2 -0.042693	26	-280
4 f(-2)	-0.0355206188 8	19 -1 10 -2	2 -0.038518 0	20	-280
4f(-1)	-0.03316342280 0	19 -1 10 -2	2 -0.0340302 0	21	-280
4f(0)	-0.030711344593 3	23 -1 11 -2	2 -0.0292040 20	20	-280
4f(+1)	-0.02816342280 0	19 -1 10 -2	2 -0.0240302 20	21	-280
	-0.0255206188 8	19 -1 10 -2	2 -0.018518 20	20	-280
4f(+3)	-0.022785672 2	21 -1 13 -2	2 -0.012693 20	26	-280

Table (5.5 continued)

5.3 Hydrogen atom with a Yukawa potential

The general screened Coulomb potential for hydrogen like atoms may be written in the form

$$V(r) = -Zr^{-1} \sum_{n=0}^{\infty} V_{n}(\lambda r)^{n}$$
 (5.61)

where Z is the nuclear charge and λ represents the screening constant. Screened Coulomb potentials have received a great deal of attention , not only in the field of nuclear physics but also in other fields such as atomic, solid state and plasma physics. The problem of the Yukawa potential has been studied by many authors, employing different approaches. C.S.Lai [38,1984] obtained, using Padé approximants [6,6] and [6.7], the energy eigenvalues for different values of λ and for various eigenstates. Edward R. Vrscay [39,1985] developed a power series method to calculate to large order the Rayleigh-Schrödinger perturbation expansions for energy levels of a hydrogen atom with a Yukawa type screened Coulomb potential, treating the 1s,2s and 2p levels. We employ the Hellmann-Feynman theorem and the hypervirial theorem to energy eigenvalues of various energy calculate the eigenvalues to high accuracy. In our work we wish to show that the renormalised series method can be used to calculate the bound-state energies of a screened Coulomb potential to very high accuracy. The present section treats the Yukawa This study was motivated by the work of Lai potential. [38,1984], who observed that [N-1,N]and [N,N]Padé approximants to the energy series provide accurate estimates of eigenvalues. The method which he used raises the question of whether or not the renormalised series method can gives accurate estimates of the eigenvalues. The two approaches (his and ours) which have been employed to study the potential use the Hellmann-Feynman and hypervirial theorems but our approach uses no Padé approximants. The renormalised series method for this problem is complicated by the presence of the renormalising constant K. A proper treatment would necessarily involve the choice of an ideal value for the renormalising constant K. The Hamiltonian for the Yukawa potential can be written as

$$H = -\frac{1}{2}D^{2} + \frac{1}{2}\ell(\ell+1)r^{-2} - Zr^{-1}e^{-\lambda r}$$

$$= -\frac{1}{2}D^{2} + \frac{1}{2}\ell(\ell+1)r^{-2} - Z\left(\mu+\lambda K\right)r^{-1} - Zr^{-1}\sum_{n=1}^{\infty}V_{n}(\lambda r)^{n}$$
(5.62)

where

 $\mu = 1 - \lambda K$

where ℓ is the orbital angular momentum quantum number. Here we are using atomic units, $\hbar=e=m=1$. By employing the Hellmann-Feynman theorem and the hypervirial theorem as in previous sections the following two relations are obtained

$$\left(2N+2\right)\sum_{0}^{M} E(J)A(N, M-J) = N\left[\ell(\ell+1) - \frac{1}{4}\left(N^{2}-1\right)\right]B(N-2, M)$$

$$-\left(2N+1\right)\left[\mu B(N-1,M)+KB(N-1,M-1)\right]$$

$$-\sum_{n=0}^{\infty}V_{n}\left(2N+n+2\right)B(N+n,M-n-1)$$
 (5.63)

$$(M+1) E(M+1) = -KB(-1, M) - \sum_{n=0}^{\infty} V_n(n+1) B(n, M-n)$$
 (5.64)

The coefficients V_{in} (5.63) and (5.61) can be written as

$$V_{n} = \frac{(-1)^{n+1}}{(n+1)!}$$
(5.65)

for the case of the Yukawa potential. The coefficients V in general alternate in sign and decrease with increasing n. Where the energy of the unperturbed nth state $E(0) = -\mu^2/2n^2$ is known, the equations (5.63, 5.64) suffice to calculate the full set of E and B coefficients, with the aid of equation (5.65) and the starting term B(0,0) which is obtained from the condition of normalization $\langle r^0 \rangle = \langle 1 \rangle = 1$. Our numerical results, presented in table (5.6), reveal that at low values of λ for states (1s,2s,2p) we have excellent agreement with the values of Edward R.Vrscay [39,1985]. Our approach provides extremely accurate eigenvalues at low λ . These values are accurate to all the digits shown and agree to over (19) digits with those of Vrscay. The power of this renormalised series techniques at low values of λ has thus been demonstrated. However, at larger values of λ , the accuracy decreases as expected from our previous renormalised series calculations, although the accuracy is better than that of Lai [38,1984].

λ	State	Energy	NK
0.1	15	-0.40705803061340315676	32 -2
0.2	15	-0.32680851136919338490	61 -2.5
0.25	15	-0.290919587521274335	75 -2.5
0.3	15	-0.25763858630305	77 -3
0.4	15	-0.19837608334	69 -2.5
0.5	15	-0.1481170	63 -2.65
0.6	15	-0.106134	67 -3
0.7	15	-0.07181	59 -3
0.8	15	-0.0445	53 -3
0.9	15	-0.024	49 -2
0.01	25	-0.11529328516799425622	14 -2
0.02	25	-0.10614832024469550325	22 -2
0.02	25	-0.097531786134660862775	34 -2
0.04	25	-0.089414634185159188418	40 -3.5
0.04	25	-0.081771195795253124176	58 -3.5
0.06	23	-0.074578534412709709700	53 -5
0.08	ద 25	-0.067815959981462181221	65 -6
0.07	ය 2 <u>ි</u>	-0.061464656212300385	68 -6.2
0.08	23 25	-0.0555073885532907	67 -5.8
0.05	25	-0.049928271331918	70 -6
0.20	25	-0.0121075	72 -6
0.25	25	-0.00337	82 -7
0.23	23 2P	-0.11524522409056418590	15 -4
0.01	2F 2P	-0.10596339817993990476	22 -4
0.02	2F 2P	-0.097131366795691310675	29 -4
0.03	2F 2P	-0.088729373582879526291	35 -4
0.050	2P 2P	-0.080740387037784609716	
0.060	2P	-0.073149619385860625029	57 -5
0.070	2P	-0.0659441769961565733	59 -5
0.080	ZP 2P	-0.05911280478703123	68 -6
0.090	2P	-0.05264570133158	62 -6
0.090	2P 2P	-0.046534390486	and the second se
	2P 3S	-0.03432950991154377	
0.025	35 3P	-0.03407891042893813	35 -10
0.025	= =	-0.03407891042893813	35 -8
0.025		-0.019352554814	34 -8
0.050	35	-0.019352554814	37 -8
0.050	3P		46 -10
0.050	<u>3d</u>	-0.0169155705	41 -10
0.080	35	-0.0077758	56 -14
0.080	3P	-0.0063299	62 -13
0.080		-0.00324	44 -15
0.025		-0.01250323831800	39 -12
0.025	4P	-0.0122943204363	39 -12
0.025		-0.0118704489361	38 -12
0.025	4 f	-0.011218210790	35 -10
0.050	4 S	-0.0030915	42 -15
0.050	4 P	-0.0025978	44 -15
0.050		-0.001580	48 -15
0.060	4 S	-0.001235	47 -14
0.060	4P	-0.00072	36 -13

Table (5.6). The energy eigenvalues of $H=\frac{1}{2}P^2 + \frac{1}{2}\ell(\ell+1)r^{-2}-r^{-1}e^{-\lambda r}$ by using renormalisd series.

-176-

5.4 The K-and L-shell binding energies of atom:

In the preceding section we have calculated the bound-state energy eigenvalues for a Yukawa potential with Z=1. In this section we will extend our discussion of the Yukawa potential of the form

$$V(\mathbf{r}) = -Z\mathbf{r}^{-1}\exp(-\lambda \mathbf{r})$$
 (5.66)

to the case Z>1, where the screening parameter λ is given by

$$\lambda = \lambda_0 \left[Z \right]^{\frac{1}{3}}$$
 (5.67)

corresponding to the Z dependence of the reciprocal of the Thomas-Fermi radius of the atom. Grant and Lai [37,1979] have recently evaluated the energy levels for atoms with (4≤Z≤84) using Padé approximants [6,6] and [6,7], for K-and L-shell electrons with (λ_0 =0.98). The potential given by equation (5.66) can be expanded as

$$V(r) = -Zr^{-1} \sum_{n=0}^{\infty} V_n \left[\lambda_0 Z^{\frac{1}{3}} \right]^n$$
 (5.68)

$$= -Z\left(\mu + \lambda K\right)r^{-1} - Zr^{-1}\sum_{n=1}^{\infty} V_n\left[\lambda_0 Z^{\frac{1}{3}}\right]^n, \mu = 1 - \lambda K$$

By employing the Hellmann-Feynman theorem and the hypervirial theorem, the following two relations are obtained

$$\left(2N+2\right)\sum_{0}^{M} E(J)B(N,M-J)=N\left[\ell(\ell+1) - \frac{1}{4}\left(N^{2}-1\right)\right]B(N-2,M)$$

$$-Z\left(2N+1\right)\left[\mu B(N-1,M)+KB(N-1,M-1)\right]$$

$$-Z\sum_{n=0}^{\infty}V_{n}\left(2N+n+2\right)B(N+n,M-n-1)$$
(5.69)

$$(M+1)E(M+1) = -ZKB(-1,M) - Z\sum_{n=0}^{\infty} V_n(n+1)B(n,M-n)$$
 (5.70)

where the energy of the unperturbed nth state is

$$\mathbf{E}(0) = -\frac{\mathbf{Z}^2 \mu^2}{2n^2}$$
(5.71)

Here we use atomic units $\hbar = e = m_e = 1$, so that distances are measured in units of the Bohr radius a_0 and energies in units of 2Ry=27.212ev. The coefficients V_n can be written for $\lambda = \lambda_0^2 Z^{\frac{1}{3}}$ as

$$V_{n} = \frac{(-)^{n+1}}{(n+1)!}$$
 (5.72)

and for $\lambda = \lambda_0$ as

$$V_{n} = \left[-Z^{\frac{1}{3}}\right]^{n+1} \left[(n+1)!\right]^{-1}$$
(5.73)

The two coefficients (5.72,5.73) in general alternate in sign and the coefficients (5.72) decrease with increasing n, but the coefficients (5.73) decrease less quickly than the coefficients (5.72). For the case Z>1, in table (5.7) we list the energy of states (1s,2s,2p,3s) for different values of λ_0 and different values of Z (2≤Z≤65). Our results are summarized in table (5.8), ranging from (4≤Z≤84) at intervals of 5, in order to cover the range of low to high

atomic number. For a given shell the results improve with increasing Z, but the accuracy of the results decreases as we go to higher shells. The renormalised series approach as introduced by Killingbeck is a very elegant and powerful approach to compute the energies eigenvalues with high accuracy. The approach achieved an accuracy of fifteen significant figures for higher values of atomic number Z; to our knowledge such a high degree of accuracy for the eigenvalues of the Yukawa potential has never been obtained by any other method. As a next comment we wish to draw attention to the fact that the renormalised series work equally well for $\lambda = \lambda_0$ and $\lambda = \lambda_0 Z^{1/3}$ as perturbation parameter; we used the two values of λ in order to verify the accuracy of the renormalised series for this calculation. Using two different value of screening parameter provides alternative approaches for computing energy eigenvalues. The calculated energy eigenvalues diverge at low atomic number Z, for the K-shell, whereas the series will work for zero values of the renormalising constant for Z>29.

Table (5.7). Bound-state energies (in ev) for Yukawa potential for some values of (Z) for states (1s,2s,2p,3S); First line calculation with $(\lambda = \lambda_0)$ as screening parameter; Second line $(\lambda = \lambda_0 Z^{1/2})$ as screening parameter.

2	1s $(\lambda_0 = 0.85)$	N	-K	Z	2s (λ=0.70)	N	-KJ
2	-14.4020	33	1	15	-258.334894	47	
	0	33	. 8		4	47	.4
3	-47.436517	44	1	20	-573.2907843	47	Π
	7	48	. 8		3	50	.4
4	-102.0621841	45	1	25	-1025.88681730	48	
	1	39	.5		0	53	.4
5	-179.35463887	55	1	30	-1621.0197521955	59	1
	7	47	.5		5	66	.4
6	-279.994172284	55		35	-2362.10295347674	62 25	
		51 56	. 5	40	-3251.67227497973	35 57	-3
1	-404.4559589484	55	.5	40	-3201.01221481913	57	
8	-553.0935770096	55 54	. 5	45	-4291.69716256988	55	ĿΨ
°	-553.0535770056	54	.5		Q	45	
g	-726, 181984925474	58	Ť	50	-5483.75814279113	56	÷-
Ĭ	4	62	.5		3	46	.2
14	-1964.94154227908	53	Ī	55	-6829.15603985114	56	T
	8	60	.5		4	45	.2
20	-4288.08295949372	50	1	60	-8328.98314095929	59	1
	2	62	. 5		8	44	.2
Ζ	$2p (\lambda_0 = 0.700)$	N	-K	Z	3s (λ _o =0.50)	N	-K
20	-539.26816245	55	1	130	-452.6503474	42	1
	6						
	5	58	. 4		5	46	.3
25		54	.4 1	35		48	I
25	-984.29879038 8	54 59	.4 1 .4		-700.34870869 9	48 48	.3 1 .3
25 30	-984.29879038	54	1	35 40	-700.34870869 9	48	I
30	-984.29879038 8 -1572.31482521041 4	54 59 65 71	1	40	-700.34870869 9 -1007.598317730 0	48 48 49 40	I
30	-984.29879038 8	54 59	1 .4 1		-700.34870869 9 -1007.598317730 0	48 48 49 40 52	I
30 35	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2	54 59 65 71 64 50	1 .4 1	40 45	-700.34870869 9 -1007.598317730 0 -1375.8897374470 1	48 49 40 52 48	I
30 35	-984.29879038 8 -1572.31482521041 4	54 59 65 71 64 50 59	1 .4 1	40	-700.34870869 9 -1007.598317730 0	48 49 40 52 48 54	I
30 35 40	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2 -3189.73523047685 5	54 59 65 71 64 50 59 45	1 .4 1	40 45 50	-700.34870869 9 -1007.598317730 0 -1375.8897374470 1 -1806.41732433816 6	48 49 40 52 48 54 47	I
30 35 40	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2	54 59 65 71 64 50 59 45 60	1 .4 1 .2 1 .2	40 45 50	-700.34870869 9 -1007.598317730 0 -1375.8897374470 1	48 49 40 52 48 54	I
30 35 40 45	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2 -3189.73523047685 5 -4223.53651026927 7	54 59 65 71 64 50 59 45 60 50	1 .4 1	40 45 50 55	-700.34870869 9 -1007.598317730 0 -1375.8897374470 1 -1806.41732433816 6 -2300.16259649132 1	48 49 40 52 48 54 47 54 45	I
30 35 40 45	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2 -3189.73523047685 5 -4223.53651026927 7 -5409.58629364986	54 59 65 71 64 50 59 45 60 50 56	1 .4 1 .2 1 .2 1 .2	40 45 50 55 60	-700.34870869 9 -1007.598317730 0 -1375.8897374470 1 -1806.41732433816 6 -2300.16259649132 1 -2857.94853566594	48 49 40 52 48 54 47 54 45 52	1 .3 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2
30 35 40 45 50	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2 -3189.73523047685 5 -4223.53651026927 7 -5409.58629364986 6	54 59 65 71 64 50 59 45 60 50 50 56 46	$ \begin{array}{c} 1 \\ .4 \\ 1 \\ .2 \\ 1 \\ .2 \\ 1 \\ .2 \\ 1 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2$	40 45 50 55 60	-700.34870869 9 -1007.598317730 0 -1375.8897374470 1 -1806.41732433816 6 -2300.16259649132 1 -2857.94853566594 4	48 49 40 52 48 54 47 54 45 52 47	1 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
30 35 40 45 50	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2 -3189.73523047685 5 -4223.53651026927 7 -5409.58629364986 6 -6749.15887789022	54 59 65 71 64 50 59 45 60 50 50 56 46 59	1 .4 1 .2 1 .2 1 .2 1 .2	40 45 50 55 60	-700.34870869 9 -1007.598317730 0 -1375.8897374470 1 -1806.41732433816 6 -2300.16259649132 1 -2857.94853566594 4 -3480.47657972057	48 49 40 52 48 54 47 54 45 52 47 55	
30 35 40 45 50 55	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2 -3189.73523047685 5 -4223.53651026927 7 -5409.58629364986 6 -6749.15887789022 2	54 59 65 71 64 50 59 45 60 50 50 56 46 59 47	$ \begin{array}{c} 1 \\ .4 \\ 1 \\ .2 \\ 1 \\ .2 \\ 1 \\ .2 \\ 1 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2 \\ .2$	40 45 50 55 60 65	$\begin{array}{r} -700.34870869\\9\\-1007.598317730\\0\\-1375.8897374470\\1\\-1806.41732433816\\6\\-2300.16259649132\\1\\-2857.94853566594\\4\\-3480.47657972057\\7\end{array}$	48 49 40 52 48 54 47 54 47 55 55 50	
30 35 40 45 50 55	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2 -3189.73523047685 5 -4223.53651026927 7 -5409.58629364986 6 -6749.15887789022	54 59 65 71 64 50 59 45 50 50 50 50 50 50 50 50 50 50 50 50 50	1 .4 1 .2 1 .2 1 .2 1 .2 1 .2 1	40 45 50 55 60	$\begin{array}{r} -700.34870869\\ 9\\ -1007.598317730\\ 0\\ -1375.8897374470\\ 1\\ -1806.41732433816\\ 6\\ -2300.16259649132\\ 1\\ -2857.94853566594\\ 4\\ -3480.47657972057\\ 7\\ -4168.35275218268\end{array}$	48 49 40 52 48 54 47 54 45 52 47 55 50 50	
30 35 40 55 55 60	-984.29879038 8 -1572.31482521041 4 -2306.63603659792 2 -3189.73523047685 5 -4223.53651026927 7 -5409.58629364986 6 -6749.15887789022 2 -8243.32537933348	54 59 65 71 64 50 59 45 60 56 46 59 45 56 46 59 45 52 45	1 .4 .1 .2 .2 .2 .2 .2	40 45 50 55 60 65	$\begin{array}{r} -700.34870869\\ 9\\ -1007.598317730\\ 0\\ -1375.8897374470\\ 1\\ -1806.41732433816\\ 6\\ -2300.16259649132\\ 1\\ -2857.94853566594\\ 4\\ -3480.47657972057\\ 7\\ -4168.35275218268\\ 8\end{array}$	48 49 40 52 48 54 47 54 45 52 47 55 50 50 47	

Table (5.8). Bound-state energies (in kev) for Yukawa potential for some values of (Z) with ($\lambda_0 = 0.98$) for states (1s,2s,2p); First line calculation with ($\lambda = \lambda_0$) as screening parameter; Second line ($\lambda = \lambda_0 Z^{1/3}$) as screening parameter.

Z	1s	N	-K	2s	N	K	2p	N	-K
4	-0.08903238	39	1						
	8	55	1						
9	-0.677683760928	55	1	-0.0148	30	1			
	8	56	.5	8	31	.5			
14	-1.87027785858428	62	Π	-0.110653	43		-0.07324	41	
	8	71	.5	3	42	.4	5	38	.3
19	0.000110000120.00	58		-0.3151332	48		-0.2614478	52	Γ
		71			51			48	.3
24	-6.14288507596427	57	- 1	-0.64100125	50		-0.5724722	49	[1]
	7	77	0	5		.4		35	
29	-9.24036646667202			-1.09602481	52	1	-1.013599191	59	
	2	42	0	1	49	.3	1	43	.2
34	-12.9854756984877	27	0	-1.685525378	52	1	-1.589918464	57	
	7	27	0	8	51	.3	4	43	.2
39	-17.3816267173904	24	0	-2.4134097691	59	1	-2.3051975508	64	
	4	24	0	1	31	. 1	8	98	للتستيا
44	-22.4314647781598			-3.28268546803	62	1	-3.16234928891	69	1
		22	<u> </u>	3	93		1	97	ليتحسبنا
49	-28.1371103672585			-4.295749400340	66		-4. 163701632626	86	
		21	<u> </u>	0	36		6	92	.2
54	-34.5003079669106		- 1	-5.454563261700	68		-5.3111636380018	77	1
		19	0		84	.2	8	89	.2
59							-6.60633330766000		1
		18	0		89				.2
64	-49.2050041784047	18					-8.05057082149505		1
	7	18	0		83			80	.2
69	-57.5488356173131	17			1		-9.64505009838571	80	
	1	17	0		76		1	90	.3
74	-66.5549642473470	17		-11.5767289854157			-11.3907962117476	70	1
	0	17	<u> </u>		65			82	.3
79	-76.2242277931756			-13.4846904210749			-13.2887132390265		1
		16	0		59	_			.3
84	-86.5573731825538			-15.5454300034009			-15.3396054458527		1
	8	16	0	9	59	.2	7	81	3

The solution of the Schrödinger equation with an radial Gaussian potential of the attractive form $V(r) = -Aexp(-\lambda r^2)$ is of importance in nuclear physics. It has potential model in the as a theory of been used nucleon-nucleon scattering. Bessis, et. al [40,1982] have determined its bound state energies fairly accurately using a perturbational and variational treatment on a conveniently chosen basis of transformed Jacobi functions. The results of have been obtained using [41,1983] by Lai the hypervirial-Padé scheme for various eigenstates. Chatterjee [42,1985] applied the method of 1/N expansion to obtain the bound state energy levels. The Schrödinger equation for the radial part of the attractive Gaussian potential is given by

$$-\mathbf{r}^{-2} \frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} \left[\mathbf{r}^{2} \frac{\mathrm{d}\Psi(\mathbf{r})}{\mathrm{d}\mathbf{r}} \right] + \left[\ell(\ell+1) \mathbf{r}^{-2} - \operatorname{Aexp}(-\lambda \mathbf{r}^{2}) \right] \Psi(\mathbf{r}) = \mathbf{E}\Psi(\mathbf{r}) \qquad (5.74)$$

where the units $2m=\hbar=1$ are used, and the function in equation (5.74) can be expressed as

$$\Psi(\mathbf{r}) = \mathbf{r}^{-1} \Phi(\mathbf{r})$$
 (5.75)

The potential $Aexp(-\lambda r^2)$ can be expanded as

$$\operatorname{Aexp}\left(-\lambda \mathbf{r}^{2}\right) = \sum_{n=0}^{\infty} V_{n} \lambda^{n} \mathbf{r}^{2n+2}$$
(5.76)

with the potential coefficients V given by

$$V_n = A(-)^n [(n+1)!]^{-1}$$
 (5.77)

Then the equation (5.74) takes this form

$$\left[-D^{2} + \ell(\ell+1)r^{-2} + \sum_{n=0}^{\infty} V_{n}\lambda^{n}r^{2n+2}\right]\Phi(r) = E^{\prime}\Phi(r)$$
 (5.78)

with E =E+A. The function $\Phi(\mathbf{r})$ must vanish at r=0. Now, applying the hypervirial theorem, the Hellmann-Feynman theorem and using equation (5.77), the relation between the coefficients B(N,M) and the energy coefficients E(M) can be expressed as

$$(2N+2)\sum_{0}^{M} E(I)B(N,M-I)=N\left[2\ell(\ell+1) - \frac{1}{2}(N^{2}-1)\right]B(N-2,M)$$

$$+\sum_{n=0}^{\infty} V_{n} \left[2N+2(n+2) \right] B(N+2(n+1)), M-n-1)$$
 (5.79)

$$(M+1) E(M+1) = \sum_{n=0}^{\infty} V_n (n+1) B(2(n+1), M-n)$$
 (5.80)

The unperturbed value of E is given by

$$\mathbf{E}(\mathbf{0}) = \left[\left(4\mathbf{n} + 2\boldsymbol{\ell} + 3 \right) \mathbf{\overline{A}} \right] - \mathbf{A}$$
 (5.81)

where n is the principal quantum number, ℓ the angular momentum and we set A=400 to agree with previous authors. The recurrence relations (5.79,5.80) with equation (5.81) and initial condition A(0,0)=1 can be used to evaluate the energy coefficients E(M). The success and power of the method may strongly depend on the state and the angular momentum. The convergence rate decreases noticeably as (lan) increase, as shown in table (5.9). This situation occurs in all problems eigenvalues in perturbation theory. The involving calculations show that the present procedure converges more quickly and accurately at low values of (Lan). Our results are very accurate in this low range. The degree of agreement between our results and those arising from other methods is very good, both for ground and excited states. For $\ell > 7$ we have not found numerical results in the literature, but our results show the eigenvalues for these states. Our main goal is to show that the energy eigenvalues of the attractive radial Gaussian potential calculated from the hypervirial method are in good agreement with other numerical results. We notice from table (5.9) that for the ground state and some of the first few excited states at low value of angular momentum we find the energy values with an accuracy of 20 significant figures. Such a high degree of precision has not been obtained before by any other approach. Table (5.9). The eigenvalues, (-E) for Gaussian potential, as calculated by Hypervirial method, for different values of angular momentum, The empty spaces means that the corresponding eigenvalues cannot be reached by the Hypervirial method.

Eo	N	<u>r</u>	E ₁	N	l
341.89521456123831126	17	0	269.64445939601828764	22	0
304.46283851873931049	20	1			
268.11073527472029733	24			38	2
232.87530061640701581	30	3		36	
198.79827015569832589				39	4
165.92819924393096815		5		43	5 6
134.3225978459883659	49	6	83.3059559058	53	6
104.05115303117978	57	7	57.196331150	53	7
75.20088810228	59	8	32.8344324	60	8
47.8851109927	67	9	10.48331	62	9
22.2608608		10	-9.356	63	10
-14.2981		$\begin{bmatrix} 11 \end{bmatrix}$			
-22.711	69	12			
E ₂	N	2	Е	N	2
203.98352879728788993		0	145.377898018770840	36	0
173.2443204775910195	37	1	118.383981222813	39	1
143.80914416451130	38	2	92.87806966475	42	2
115.754199322183	41	3	68.983554206	46	3
89.1749558925	43	[4]	46.86811448	53	4
64.195876773	52	5	26.777851	53	5
40.98872929	54	6	9.1257	56	6
19.812753	56	7	-5.14	57	7
1.1308	64	8			
E	N	l	E ₅	N	S
94.457747566152	40	0	52.143586555	45	0
71.62355134691	44	1	34. 1299347	48	1
50.567681606	49	2	18.440406	53	2
31.521072	49	3	5.6720	57	3
14.85145	56	4			
1.2909	63	5			
E ₆	N	S	E ₇	N	ł
19.96628	43	0	1.3384	54	0
8.0830	51	1			
0.151	57	2			

5.6 Eigenvalues of the hydrogen atom

The problem of the perturbed hydrogen atom has received great attention in the last few years and has been attacked by various approaches. Killingbeck [43,1977] attacked the problem by using a non-perturbative finite difference method. In a subsequent work Killingbeck and Galicia [44,1980] used hypervirial relations together with the Hellmann-Feynman to get the energy coefficients of the energy theorem perturbation series. Lai and Lin [45,1981] applied the Hypervirial-Padé framework to calculate the energy eigenvalues of various eigenstates, Austin and Killingbeck [46,1982] have used a renormalised series approach to compute the energy levels of a perturbed hydrogen atom.

5.6.1 Power series approach

The power series approach to be discussed in this section allows us to compute the energy eigenvalues for the perturbed hydrogen atom. The power series approach is one of the simplest and most accurate methods for calculating eigenvalues. The Schrödinger equation for a system in which the potential depends upon the distance r (spherically symmetric potential) is taken in our calculation to have the form

$$\left[D^{2}+2\left(\mathbf{E}-\mathbf{V}\left(\mathbf{r}\right)\right)\right]\Psi(\mathbf{r})=0$$
(5.82)

where

$$\Psi(\mathbf{r}) = \phi(\mathbf{r}) Y_{\rho}^{m}(\theta, \phi) \tag{5.83}$$

In (5.83) $\phi(\mathbf{r})$ is the radial wavefunction, which is independent of the angles, and $Y^{m}_{\ell}(\theta,\phi)$ is a spherical

harmonic, which is independent of r. If we insert equation (5.83) into equation (5.82) and rearrange, we obtain the radial equation

$$\mathbf{r}^{-2}\mathbf{D}\left[\mathbf{r}^{2}\mathbf{D}\boldsymbol{\phi}(\mathbf{r})\right] + \left[2\left(\mathbf{E}-\mathbf{V}(\mathbf{r})-\boldsymbol{\ell}(\boldsymbol{\ell}+1)\mathbf{r}^{-2}\right]\boldsymbol{\phi}(\mathbf{r})=0 \quad (5.84)$$

where (ℓ) is the angular momentum and $\phi(r) = r^{-1}R(r)$. We can express equation (5.84) with a new wavefunction R(r) as

$$D^{2}R(r) + \left[2\left(E-V(r)\right) - \ell(\ell+1)r^{-2}\right]R(r) = 0 \qquad (5.85)$$

where

$$\mathbf{R}(\mathbf{r}) = \mathbf{r}^{\ell+1} \boldsymbol{\phi}(\mathbf{r}) \tag{5.86}$$

If we insert equation (5.86) into equation (5.85) we get

$$D^{2}\phi(\mathbf{r}) + 2(\ell+1)\mathbf{r}^{-1}D\phi(\mathbf{r}) + 2\left[\mathbf{E} - V(\mathbf{r})\right]\phi(\mathbf{r}) = 0$$
 (5.87)

The wavefunction $\phi(\mathbf{r})$ can be expressed as

$$\phi(\mathbf{r}) = \exp\left(-\beta \mathbf{r}\right) \sum_{0}^{\infty} A(n) \mathbf{r}^{n} \qquad (5.88)$$

For a perturbed hydrogen atom we take the potential V(r) as

$$V(\mathbf{r}) = -\mathbf{r}^{-1} + \lambda \mathbf{r} \tag{5.89}$$

If we substitute equations (5.88, 5.89) in equation (5.87) we obtain this recurrence relation after some algebra

$$[n+1] \left[n+2\ell+2\right] S(n+1) = 2 \left[\left(\ell+1+n\right)\beta-1 \right] r S(n)$$
$$- \left[2E+\beta^2 \right] r^2 S(n-1) + 2\lambda r^2 S(n-2)$$
(5.90)

where

$$\mathbf{F}(\mathbf{r}) = \sum \mathbf{S}(\mathbf{n}) = \sum \mathbf{A}(\mathbf{n}) \mathbf{r}^{\mathbf{n}}$$
 (5.91)

To use equation (5.90), S(0) is set equal to 1 to find

eigenvalues appropriate to the Dirichlet boundary conditions $\Psi(\infty)=0$. For a given (β) and two trial energies E₁ and E₂, the power series approach works out each S(n) and the sum of the S(n) at a specific r value, starting with S(0)=1 and S(-1)=S(-2)=S(-3)=0. Although it takes a little while to find an appropriate β value, there is usually quite a wide range of β over which good results can be obtained. If β is chosen reasonably the series quickly converge and lead to two values $F(r,E_1)$ and $F(r,E_2)$, from which an interpolated energy can be found which would have given F(r,E)=0. After a few repetitions the eigenvalue corresponding to the boundary condition $\Psi(r)=0$ is determined very accurately. For this radial problem we cannot use the even parity of the potential, because the coordinate range is from $0 \le r \le \infty$.

5.6.2 Renormalised series approach

It has been shown by Killingbeck [14,1982] that the hypervirial relations yield the perturbation series for the energy E and for the expectation values $\langle r^n \rangle$ for a hydrogen atom with perturbation (λr), without the calculation of a perturbed wave function. We also use the renormalised series hypervirial approach for the perturbed hydrogen atom. The radial Schrödinger equation for this perturbed problem can be written as

$$\frac{1}{2}D^{2}R(r) - \left[r^{-1} - \lambda r - \frac{1}{2}\ell(\ell+1)r^{-2}\right]R(r) = ER(r)$$
(5.92)

We write the potential given in equation (5.92) as

$$V(\mathbf{r}) = -\mu \mathbf{r}^{-1} + \lambda \left(\mathbf{r} - \mathbf{K} \mathbf{r}^{-1} \right)$$
 (5.93)

where

$$\mu = 1 - \lambda K \tag{5.94}$$

We substitute the series expansions given by equations (2.6,2.7) into the hypervirial relation (2.3) with $V_{-2} = \frac{1}{2}\ell(\ell+1)$, $V_{-1} = (\mu+\lambda K)$, $V_{1} = \lambda$. Collecting terms, we find

$$\left(2N+2\right) \sum_{0}^{M} E(J)A(N, M-J) = N \left[\ell(\ell+1) - \frac{1}{4} \left(N^{2}-1\right)\right] A(N-2, M-1)$$
$$- \left(2N+1\right) \left[\mu A(N-1, M) + KA(N-1, M-1)\right] + \left(2N+3\right) A(N+1, M-1)$$
(5.95)

The relation between the energy series and the A(N,M) series is given as follows (from the Hellmann-Feynman theorem)

$$(M+1)$$
E(M+1)=A(1,M)-KA(-1,M) (5.96)

The unperturbed eigenvalue is $E(0) = -\mu^2/2n^2$ for this case, where n is the principal quantum number (1,2,3...). The equations (5.95,5.96) suffice to calculate the full set of E and A coefficients. We only need the value of E(0) given above and the starting term A(0,0) = 1.

5.6.3 Finite difference approach

We use the finite difference method as a third method to calculate the eigenvalues for the perturbed hydrogen atom. The equation (5.87), after multiplying both side by r, takes the form

$$-\frac{1}{2}\mathbf{r}D^{2}\phi(\mathbf{r}) - (\ell+1)D\phi(\mathbf{r}) = \left[\mathbf{E}-V(\mathbf{r})\right]\mathbf{r}\phi(\mathbf{r}) \qquad (5.97)$$

To use the finite-difference method for this equation we make

-189-

the substitutions

$$2hD\phi(r)=\phi(r+h)-\phi(r-h) \qquad (5.98)$$

$$h^{2}D^{2}\phi(r) = \phi(r+h) + \phi(r-h) - 2\phi(r)$$
 (5.99)

The equation (5.97) reduces to the form

$$\begin{bmatrix} \mathbf{r} + (\ell+1)\mathbf{h} \end{bmatrix} \phi(\mathbf{r}+\mathbf{h}) + \begin{bmatrix} \mathbf{r} - (\ell+1)\mathbf{h} \end{bmatrix} \phi(\mathbf{r}-\mathbf{h}) = \\ 2\mathbf{r}\phi(\mathbf{r}) + 2\mathbf{r}\mathbf{h}^{2} \begin{bmatrix} V(\mathbf{r}) - \mathbf{E} \end{bmatrix} \phi(\mathbf{r}) \qquad (5.100)$$

The next step is the introduction of a ratio variable R(r), defined by the equation

$$\phi(\mathbf{r}+\mathbf{h}) = \mathbf{R}(\mathbf{r})\phi(\mathbf{r})$$
$$= \left[1 + \mathbf{h}^{2}\mathbf{F}(\mathbf{r})\right]\mathbf{R}(\mathbf{r}) \qquad (5.101)$$

where

$$R(r)=1+h^2F(r)$$
 (5.102)

With the substitution (5.101, 5.102), the equation (5.100) is converted to a recursive equation

$$\begin{bmatrix} \mathbf{r} + \mathbf{H} \end{bmatrix} \mathbf{F}(\mathbf{r}) = \begin{bmatrix} \mathbf{r} - \mathbf{H} \end{bmatrix} \frac{\mathbf{F}(\mathbf{r} - \mathbf{h})}{\mathbf{R}(\mathbf{r} - \mathbf{h})} + 2\begin{bmatrix} \mathbf{V}(\mathbf{r}) - \mathbf{E} \end{bmatrix} \mathbf{r}$$
(5.103)

Here $H=(\ell+1)h$ is the only quantity which explicitly involves the angular momentum. If we start at r=H, then the first term on the right vanishes, so we can arbitrarily set R=F=Y=1 at r=H-h without disturbing the rest of the calculation. The rest of the paraphernalia (use of two E values etc) is as before. By setting $\ell=0$ we get the s-state solution, which is appropriate to an odd solution for a one-dimensional problem. By setting ℓ =-1, with F(0)= $\frac{1}{2}$ [V(0)-E], and starting at r=h we get results appropriate to an even solution in one dimension. The eigenvalue associated with strip width h is related to the true eigenvalue by a perturbation-type expansion in h

To get E we do the calculation using several different strip widths, (h, 2h, 4h). The eigenvalues obtained are in error by a leading term of order h^2 . We have applied a Richardson extrapolation process to convert them to very accurate results. To correct for the h^2 and h^4 error terms we use an extrapolation formula given in the form

$$E = \frac{1}{45} \left[64E(h) - 20E(2h) + E(4h) \right]$$
 (5.105)

5.6.4 Results and discussion

The calculations reported here are for positive λ , so that well defined bound states exist, although quasi-bound states exist when (λ) is small and negative. We have used three approaches to compute the energies eigenvalues for various states and different values of perturbation parameter λ . Our main goal is to obtain accurate eigenvalues for this problem and to compare the accuracy of the results as obtained from the three approaches. The results are shown in the table (5.10) and from these results it is clear that the renormalised series method works excellently at low values of the perturbation parameter, where the series converges very certainly leads to and accurate eigenvalues quickly calculations. At λ=0.1 the accuracy is to 20 significant

digits, and in fact the accuracy of this technique is crucially restricted by the choice to the value of the k. The rate of convergence renormalising constant ់ទេ sensitive to the value of k . The finite difference and series methods work very well to compute the power eigenvalues, and their agreement is in general excellent. Our confidence in the accuracy of the power series approach comes from the following check; the computed eigenvalues are stable with respect to changes in β . We believe that the present results which have been calculated by the three approaches are very good compared to those of other methods which have available for computing the eigenvalues for this been problem. We have used double precision arithmetic of 20 digits.

Table (5.10). Eigenvalues of $H=P^2-r^{-1}+\ell(\ell+1)r^{-2}+\lambda r$, First line; power series calculation; Second line, renormalised series calculation; Third line, finite difference calculation.

State	λ	E	R	β	IN	- K	h
1s	0.10	-0.360900077045685004	15	9	1	î	
		-0.360900077045685004	ì	Î	36	6	(
		-0.3609000770456			Î	î	0.005
1s	0.20	-0.235647404658515122	15	8	Î	Î	i
		-0.2356474046585	i –	Ì	55	6	
		-0.235647404658		Î	Î	1	0.003
15	0.3	-0.118922615969358834	15	8	1	1	
		-0.11892261596		Î	56	5	
		-0.1189226159693	ì		1	i	0.0045
1s,	0.40	-0.008353654713870934	15	9	Î.		
		-0.008353654			31	2.6	
		-0.0083536547137870			1		0.005
1s (0.50	0.097420543923206564	16	8	1	Ì	
		0.09742054	1	Ì	51	4	
		0.097420543932		Í.	l -	1	0.005
ls	0.60	0.199284206146506018	12	8	1	i	
		0.19928420			46	3	
		0.199284206146			Î T		0.0045
1s	0.70	0.297857503274531191	12	9			
		0.29785750			47	2.6	
		0.2978575032744			1	j	0.0045
1s	0.80	0.393598890009116130	15	9	1		
		0.39359889			41	2	
		0.393598890009			1		0.0045
1s	0.90	0.486860594263223949	14	8	ĺ		
		0.4868605			49	2.6	
		0.486860594263			Î –		0.004
1s	1.00	0.577921351961593598	15	9	1		
		0.5779213			45	1.85	
		0.5779213519615			î		0.004
2s	0.15	0.466659082903941026	16	9	1)
		0.466659			40	13	
		0.466659082904			1		0.005
3s	0.02	0.137084407881617	19	8	Î		
		0.13708440			39	70	·
		0.137084407881614			î		0.015
2p	0.10	0.222075886766612	15	9	î		
		0.2220758			52	20	i
		0.2220758867					0.005
2p	0.15	0.358296694477485	15	8			
		0.35829			52	18	
		0.3582966944775			1		0.005
3d	0.02	0.092606732944116	20	8	1	,	
~~		0.09260673			37	70	
		0.092606732944			ł –		0.012
	المتفسيد فيستعجمها						0.012

5.7 Polynomial perturbation of a hydrogen atom

5.7.1 Introduction

The s-wave Hamiltonian for a hydrogen atom with the perturbation term $(2\lambda r+2\lambda^2 r^2)$ can be written as

$$H = -\frac{1}{2}D^{2} - r^{-1} + 2\lambda r + 2\lambda^{2}r^{2}$$
 (5.106)

and has been studied by Killingbeck [47,1978;48,1980]. This Hamiltonian possesses the exact ground state energy and wavefunction given respectively by

$$E_0 = -\frac{1}{2} + 3\lambda$$
 (5.107)

$$\Psi_{0} = \exp\left(-\mathbf{r} - \lambda \mathbf{r}^{2}\right) \qquad (5.108)$$

 Ψ_{0} correctly describes a bound ground-state only if $\lambda > 0$, whereas for $\lambda < 0$ the wavefunction is not normalisable. On the other hand $\Psi(-\lambda)$ is an eigenfunction of $H(-\lambda)$, not of $H(\lambda)$. Killingbeck [47,1978] calculated the first two terms for the ground state energy series $E = \sum E(n)\lambda^n$, yielding $E = -\frac{1}{2} + 3\lambda$, and showing that the coefficients E(2) and E(3) are zero. Killingbeck [48,1980] has computed numerically the results that all coefficients E(n) for 3 < n < 16 vanish. Saxena and Varma [49,1982] have treated the case $(\lambda < 0)$, by means of a perturbation expansion in powers of $|\lambda|^{-1/2}$. This allows a unified treatment of both positive $\lambda > 0$ and negative $\lambda < 0$. results cover a range of values Their large of $(-0.02 \le \lambda \le -20480)$. Saxena and Varma [50,1982] have treated the same problem, and they have obtained an infinite number of exact solutions for the excited s states for certain specific values of (λ), corresponding to both positive and negative λ values. Cohen and Herman [51,1982] have calculated the ground state energy by means of variational modification of Rayleigh-Schrödinger perturbation theory. They computed the energy eigenvalue over a wide range of λ (-0.02 $\leq\lambda\leq$ -320) ; in spite of the large negative value of (λ), the results show satisfactory convergence for all values of (λ).

5.7.2 Renormalised series

We treat this problem by using renormalised perturbation series. The potential can be written as follow

$$V(\mathbf{r}) = -\mu \mathbf{r}^{-1} + \left[2\lambda \mathbf{r} + 2\lambda^2 \mathbf{r}^2 - \mathbf{K} \mathbf{r}^{-1} \right]$$
(5.109)

where

$$\mu=1-K\lambda \tag{5.110}$$

The first step is to insert the series expansion for E and $\langle \mathbf{r}^n \rangle$, as given in previous sections, into the hypervirial relation, with $V_{-1} = (\mu - K\lambda)$, $V_1 = 2\lambda$ and $V_2 = 2\lambda^2$. The following relations is obtained

$$\left(2N+2\right) \sum_{0}^{M} E(I)A(N, M-I) = -\frac{N}{4} \left(N^{2}-1\right)A(N-2, M)$$

$$-\left(2N+1\right) \left[\mu A(N-1, M) + KA(N-1, M-1)\right]$$

$$+\left(4N+6\right)A(N+1, M-1) + \left(4N+8\right)A(N+2, M-2)$$

$$(5.111)$$

Using the Hellmann-Feynman theorem in order to get the relation between the energy series E(M) coefficients and the series coefficients A(N,M), we obtain

$$(M+1)E(M+1) = -KA(-1,M) + 2A(1,M) + 4A(2,M)$$
 (5.112)

From the recurrence relations (5.111, 5.112) together with the unperturbed energy $E(0)=-\mu^2/2n^2$ and the initial coefficient A(0,0)=1, we can calculate the perturbation series for the energy. The potential given by equation (5.109) can be expressed in the form

$$V(r) = -\mu r^{-1} - 2\lambda r + 2\lambda^2 r^2 - K\lambda r^{-1}$$
 (5.113)

Therefore the equations (5.111&5.112) take the form

$$\left(2N+2\right) \sum_{0}^{M} B(I)A(N, M-I) = -\frac{N}{4} \left[N^{2}-1\right]A(N-2, M)$$
$$-\left(2N+1\right) \left[\mu A(N-1, M) + KA(N-1, M-1)\right]$$
$$-\left(4N+6\right)A(N+1, M-1) + \left(4N+8\right)A(N+2, M-2)$$
(5.114)

$$(M+1)E(M+1) = -KA(-1,M) - 2A(1,M) + 4A(2,M)$$
 (5.115)

We use a modified renormalised technique where (μ) takes the form

$$\mu = 1 - \lambda^2 K \qquad (5.116)$$

where

$$\frac{\lambda}{\lambda} = \lambda$$
 (5.117)

and the equations (5.111&5.112) take the form

$$\left(2N+2 \right) \sum_{0}^{M} E(I)A(N, M-I) = -\frac{N}{4} \left[N^{2} - 1 \right] A(N-2, M)$$
$$- \left(2N+1 \right) \left[\mu A(N-1, M) + KA(N-1, M-1) \right]$$

$$-(4N+6)A(N+1, M-2)+(4N+8)A(N+2, M-4)$$
 (5.118)

$$(M+1)E(M+1) = -KA(-1,M) - 4A(1,M-1) + 8A(2,M-3)$$
 (5.119)

5.7.3 Results and discussion

We have used three renormalised series approaches to compute the energy eigenvalue for this problem, and the results are shown in table (5.10) for the ground state. and for a range of perturbation parameter from $(-0.01 \le \lambda \le -0.1)$. The accuracy of these approaches decrease as (λ) increases. The agreement between the results of these three approaches is very good. While no one of the three approaches offers particular advantages to improve the accuracy or increase the range of (λ) , the agreement of the three gives us confidence that our results are correct. We believe that the results which are found from these approaches are good in comparison with these of other methods have been used to compute the eigenvalues for problem. this The renormalised series approach works well for small values of λ , the perturbation series convergence being satisfactory for these values. For larger values of (λ) , this approach does not work because the perturbation series does not converge. Thus the renormalised series approach is limited to low ranges of the perturbation Also we have been used a finite difference parameter λ . approach to compute the eigenvalues for this problem and the results produced are in good agreement with those results obtained by Saxena and V.S.Varma by using Hill determinants. In table (5.11) we list the energies eigenvalues for the range $(-0.01 \le \lambda \le -24080)$ and compare them with numerical computations of the ground state energy which were obtained by Saxena.

λ	-Ea	N	K	-26	N	-K	-EC	N	-K
0.01	0.529999999999999	34	24	0.52999999999999	31	20	0.52999999999999	44	2
0.02	0.55999999	44	22	0.55999999	39	20	0.5599999983	87	2
0.03	0.5899966	46	16	0.589996	45	20	0.5899966	96	6
0.04	0.6198821	46	16	0.6198820	46	18	0.6198820	98	8
0.05	0.649106	41	15	0.649106	45	16	0.649106	105	8
0.06	0.67681	43	15	0.67681	46	16	0.67681	104	9
0.07	0.7024	39	14	0.7024	41	15	0.7024	73	9
0.08	0.7258	47	15	0.7258	45	14	0.7258	90	15
0.09	0.7468	49	15		45	14	0.746	80	15
0.10	0.765	47	15	0.765	44	14	0.765	85	18

Table (5.12). The energy result of $(\frac{1}{2}P^2 - r^{-1} + 2\lambda r + 2\lambda^2 r^2)$ perturbation by using finite difference method.

	E	h	r	Hill determinant
0.01	-0.529999999981	0.0075	22.5	
0.02	-0.559999995328	0.0075	22.5	-0.559999983
0.03	-0.589996652925	0.007	21.0	
0.04	-0.619881802714	0.008	24.0	
0.05	-0.649106898032			-0.64910689805
0.06	-0.676826124753	0.0075	22.5	
0.07	-0.702453360505	0.0075	22.5	
C.08	-0.725787829886	0.005	15.0	
0.09	-0.746865801124		15.0	
0.10	-0.765826903961	0.005	15.0	-0.76582690396
1	-0.226772769861	0.003	9.00	-0.22677276986
2	1.452916838112	0.0025	7.50	1.45291683811
5	7.831279461467	0.002	6.00	7.831279614
40	99.78407751379	0.0008	2.40	99.784077513
320	902.8776177169	0.0001	0.30	902.877617716
2560	7518.489264286	0.00005	0.15	7.518489264276
20480	60983.23402645	0.00004	0.12	60983.234026772

The radial Schrödinger equation for the exponential cosine screened Coulomb (ECSC) potential is not solvable analytically and can be expressed as

$$D^{2}\Psi(\mathbf{r}) + 2\left[E + V(\mathbf{r}) - \frac{1}{2}\ell(\ell+1)\mathbf{r}^{-2}\right]\Psi(\mathbf{r}) = 0 \qquad (5.120)$$

where

$$V(\mathbf{r}) = -\mathbf{r}^{-1} \exp\left(-\lambda \mathbf{r}\right) \cos\left(\lambda \mathbf{r}\right)$$
(5.121)

This potential is of importance in solid-state physics. It is used in describing the potential between an ionized impurity and an electron in a metal or a semiconductor . It has also been used to represent the effective interaction between an electron and a positronium atom in a solid. The (ECSC) potential has been treated by several approximation methods. Aparna and Pirtamp [52,1980] applied the generalized virial Hellmann-Feynman theorem to and calculate theorem perturbatively the bound state energy levels without using perturbed wavefunction. C.S.Lai [53,1982] has treated this potential by using the hypervirial relations and the Padé [10,10] and E [10, 11]for different approximant Ε eigenstates. In this section we set out to calculate the bound-state energies of the ECSC potential for different eigenstates, by applying the hypervirial and Hellmann-Feynman theorems to calculate perturbatively the bound-state energy levels without using perturbed wave functions. The ECSC potential can be expanded in a power series of the screening parameter by the Taylor expansion

$$F(x) = F(0) + xF'(0) + \frac{x^2}{2!}F'(0) + \dots + \frac{x^n}{n!}F^n(0)$$
 (5.122)

Also V(r) can be expanded as

$$V(\mathbf{r}) = -\mathbf{r}^{-1} \exp\left(-\lambda \mathbf{r}\right) \cos\left(\lambda \mathbf{r}\right) = -\mathbf{r}^{-1} \sum_{n=0}^{\infty} V_n(\lambda \mathbf{r})^n \qquad (5.123)$$

$$= -V_0 \left[\mu + \lambda K \right] r^{-1} - r^{-1} \sum_{n=1}^{\infty} V_n (\lambda r)^n$$

Comparing (5.122 & 5.123), we obtain the coefficients

$$V_0 = 1$$
, $V_1 = -1$, $V_2 = 0$, $V_3 = \frac{2}{3!}$, $V_4 = -\frac{4}{4!}$, $V_5 = \frac{4}{5!}$, ..., $V_{20} = -\frac{1024}{20!}$,
 $V_{21} = \frac{1024}{21!}$

The coefficients V_n in equation (5.123) also can be expressed as

$$V_{n} = (-1)^{n} \left(2\right)^{n/2} \cos\left(\frac{\pi_{n}}{4}\right) \frac{1}{n!}$$
 (5.124)

Here, we use atomic units. The hypervirial relation for the (ECSC) potential is given as

$$\left(2N+2\right) \sum_{0}^{M} E(I)B(N, M-I) = N \left[\frac{1}{4} \left(N^{2}-1\right) - \ell(\ell+1)\right] B(N-2, M)$$

+ $V_{0} \left(2N+1\right) \left[\mu B(N-1, M) + kB(N-1, M-1)\right]$
+ $\sum_{n=0}^{M} V_{n} \left(2N+1+n\right) B(N+n-1, M-n)$ (5.125)

The Hellmann-Feynman theorem

$$\frac{\partial E}{\partial \lambda} = \langle \frac{\partial V}{\partial \lambda} \rangle \qquad (5.126)$$

gives

$$(M+1)E(M+1)=KV_0 B(-1,M) + \sum_{n=1}^{\infty} nV_n B(n-1,M+1-n)$$
 (5.127)

The recurrence relations (5.125 & 5.127) can be used to calculate the energy coefficients from a knowledge of B(0,0)=1 and $E(0)=-\mu^2/2n^2$. The energy eigenvalues can be evaluated by using equations (5.125,5.127) using the appropriate values of renormalised constant k; results for this calculation are given in table (5.13). Our calculated values of the energy levels are excellent as compared with the results obtained from the hypervirial -Pade approximant scheme of Lai. From our results it can be seen that the Hypervirial method with a renormalised constant k is sufficient to calculate the energy eigenvalue without using Padé approximants. Although the renormalised series method calculational elegance, it suffers from two major has drawbacks. First, the accuracy of the numerical results for bound states falls off very rapidly with increasing value of the screening parameter λ . Second the calculations become more difficult as the state number progressively n increases. The ECSC potential differs from $\exp(-\lambda r)r^{-1}$ by a cosine factor (Coslr), which leads to an oscillatory behaviour. It is of obvious interest to compare the result for the ECSC potential with those for SSCP. Generally speaking the binding of the electron is weaker in the ESCS potential than in the SSCP potential.

Table (5.13). The energy eigenvalues of $V(r) = -r^{-1} \exp(-\lambda r) \cos(\lambda r)$, as function of screening parameter for various eigenstates, by using renormalised series

λ	state	Energy					
0.05	1S	-0.4501174664206873	16	-2			
0.10	15	-0.4008847746394779	27				
0.20	15	-0.3063344884577977	62	-3			
0.25	15	-0.2617680856978	66	-3			
0.20	15 15	-0.21941569190	64	-3			
		-0.14243903	62	-3			
0.40	15	-0.077663					
0.05	15		72				
0.02	2S	-0.1051035876922210	16	-3			
0.04	2S	-0.0857689988968006	30	-3			
0.06	2S	-0.0674211051489110	49	-6			
0.08	2S	-0.0503865619256	67	-8			
0.1	2S	-0.03494131191	76	-8			
0.15	2S	-0.005264	89	-10			
0.02	2P	-0.1050746383061889	1171	-4			
0.02	2P	-0.0855591372187105	28	-4			
0.04	2P	-0.0667775205247901	50	-6			
0.08	2F 2P	-0.0489972478082	68	-8			
0.08	2P	-0.032468804	69	-10			
0.10		-0.0360251051130600	32				
0.02	35	-0.01882306333		-6			
0.04	35		45	-10			
0.05	35	-0.011575563	49	-10			
0.06	35	-0.0054619	57	-12			
0.02	3P	-0.0359676034335847	30	-5			
0.04	ЗP	-0.018453352988	49	-10			
0.05	3P	-0.01092932	44	-12			
0.06	Î 3P	-0.004471	49	-16			
0.02	3d	-0.0358506623108868	27	-6			
0.04	3d	-0.01768206425	50	-12			
0.05	30	-0,00955487	47	-12			
0.06	30	-0.002309	54	-16			
0.00	45	-0.0214374651555588	27	-6			
0.01	4S	-0.01257177731	30				
	4 <u>5</u> 45	-0.00527039	39				
0.03		-0.0214243745995200	28	-10			
0.01	4 P	-0.012485752309	and the second se				
0.02	4P		41	-10			
0.03	4 P	-0.00503284	42	-16			
0.01	4d	-0.0213979776324376	27	-6			
0.02	4 d	-0.0123102664765	38	-12			
0.03	4d	-0.0045392	32	-16			
0.01	4 f	-0.0213578402687837	23	-8			
0.02	4f	-0.0120381878144	42	-12			
0.03	41	-0.0037481	38	-18			
0.01	55	-0.01042417006702	33	-12			
0.01	5P	-0.010405877713648	35	-12			
0.01	51 5d	-0.010368961255624	35	-12			
0.01	50 5f	-0.010312749318579	35	-12			
0.01		-0.010236214244166	30	-12			
	5g						
0.01	6S	-0.0046993015	32	-16			
0.01	6P	-0.0046763149	32	-16			
0.01	6d	-0.0046298602	32	-16			
0.01	6f	-0.0045589530	28	-16			
0.01	6g	-0.0044620593	26	-16			
0.01	6h	-0.00433701680	28	-16			
			A DESCRIPTION OF TAXABLE PARTY.				

5.9 Hulthen potential

The radial Schrödinger equation for the Hulthen potential can be written in atom units as

$$D^{2}\Psi(\mathbf{r}) + 2\left[E + V_{H}(\mathbf{r}) - \frac{1}{2}\ell(\ell+1)\mathbf{r}^{-2}\right]\Psi(\mathbf{r}) = 0 \qquad (5.128)$$

where

$$V_{H}(\mathbf{r}) = -\lambda \exp\left(-\lambda \mathbf{r}\right) \left[1 - \exp\left(-\lambda \mathbf{r}\right)\right]^{-1} \qquad (5.129)$$

where (λ) is a screening parameter. The Hulthen potential at small values of r behaves like a Coulomb potential, whereas for large values of r it decreases exponentially, so that its "capacity" for bound states is smaller than that of the Coulomb potential. The energy levels always lie lower in the Coulomb case than in the Hulthen case. The Hulthen potential, apart from its initial interest in a number of areas of physics ranging from nuclear physics (as a possible form of nuclear interaction) to scattering theory to atomic physics, has recently been shown to be a judicious choice of starting point for the perturbation theoretic treatment of screened Coulomb potentials. The Hulthen potential has been treated numerically by Lai and Lin [54,1980], who applied the Pade approximant technique to the analytic perturbation series obtained through the use of hypervirial and Hellmann-Feynman theorems. Also Dutt and Mukherji [55,1980] proposed a new approximation scheme to obtain analytic expressions for the bound-state energies and eigenfunctions for any arbitrary bound (l,n) state of the Hulthen potential. The purpose of

this section is to study the bound-state energies of the Hulthen potential for $\ell \neq 0$. The Hulthen potential V_H(r) in eq (5.129) can be rewritten in the form

$$V_{H}(\mathbf{r}) = -\lambda \exp\left(-\lambda \mathbf{r}\right) \left[1 - \exp\left(-\lambda \mathbf{r}\right)\right]^{-1} = -\mathbf{r}^{-1} \left(\lambda \mathbf{r}\right) \left[\exp\left(\lambda \mathbf{r}\right) - 1\right]^{-1}$$
$$= -\mathbf{r}^{-1} \sum_{n=0}^{\infty} V_{n} \left(\lambda \mathbf{r}\right)^{n} \qquad (5.130)$$

where

$$V_{n} = \frac{B_{n}}{n!}$$
(5.131)

$$v_0 = 1$$
, $v_1 = -\frac{1}{2}$, $v_2 = \frac{1}{6} \frac{1}{2}$, $v_4 = -\frac{1}{30} \frac{1}{4}$, ... $v_{30} = \frac{861 \ 58421 \ 76005 \ 1}{14322} \frac{1}{30!}$

and B_n are the Bernoulli numbers. The Hulthen potential $V_{H}(r)$ in equation (5.130) can be rewritten in another form

$$V_{H}(r) = - \frac{\lambda e^{-\lambda r}}{[1 - e^{-\lambda r}]}$$

$$= -\frac{\lambda}{2} \left[\frac{e^{\lambda r/2} + e^{-\lambda r/2}}{e^{\lambda r/2} - e^{\lambda r/2}} - 1 \right] = -\frac{1}{2} \lambda \left[\operatorname{Coth} \left(\frac{\lambda r}{2} \right) - 1 \right]$$
(5.132)

where

$$Coth(Z) = \frac{1}{Z} + \frac{Z}{3} - \frac{Z^3}{45} + \frac{2Z^5}{945} + \frac{2^{2n}}{2n!} B_{2n} Z^{2n-1}$$
(5.133)

where $|Z| < \frac{\pi}{2}$

Furthermore, we use the hypervirial relation as used in previous sections, assuming that the energy and the expectation values $\langle r^{M} \rangle$ can be expanded as

$$\mathbf{E} = \sum \mathbf{E} (\mathbf{I}) \lambda^{\mathbf{I}}$$
 (5.134)

$$\langle \mathbf{r}^{\mathsf{N}} \rangle = \sum \mathbf{B}(\mathsf{M},\mathsf{N})\lambda^{\mathsf{N}}$$
 (5.135)

Then the hypervirial relation for the Hulthen potential can be expressed as

$$\left(2N+2\right) \sum_{V}^{M} E(I)B(N, M-I) = N \left[\left(N^{2}-1\right) - \ell(\ell+1) \right] B(N-2, M)$$

-V₀ (2N+1) [µB(N-1, M) + KB(N-1, M-1)]
+
$$\sum_{n=1}^{\infty} V_{n} \left(2N+n+1\right) B(N+n-1, M-n)$$
 (5.136)

Applying the Hellmann-Feynman theorem

$$\frac{\partial \mathbf{E}}{\partial \lambda} = \langle \frac{\partial \mathbf{V}}{\partial \lambda} \rangle \qquad (5.137)$$

with the use of (5.134, 5.135) and (5.130) equation (5.137) leads to

$$(M+1)$$
 $\mathbb{E}(M+1) = -KV_0 \mathbb{E}(-1, M) + \sum_{n=1}^{\infty} \mathbb{E}(n-1, M+1-n)$ (5.138)

With unperturbed energy $E(0) = -\mu^2/2n^2$ and initial condition B(0,0)=1, we use the recurrence relations (5.136) and (5.138) to compute the energy coefficient E(I). Energies of many eigenstates of the Hulthen potential are listed in table (5.14). It is apparent from table (5.14) that the energy series is a converging very quickly at low values of the screening parameter (λ) . We wish here to make a few comments summarising the advantage of using the renormalised series approach. It is important, however to remember that our results has been calculated directly from the hypervirial approach with a renormalised constant (k), without use of Padé approximants, which were used by Lai to improve a

convergent series. It is necessary to point out that the agreement of our calculated energy eigenvalues with the results of Lai is good. The renormalised series approach works very well even for higher excited states with higher value of angular momentum. We believe that the accuracy of our results may be improved even further with a better choice of renormalised constant k, the approach gives well converged eigenvalues for the best values of the renormalised constant k.

Table (5.14). Eigenvalues of $H=\frac{1}{2}P^2+\frac{1}{2}(\ell+1)r^{-2}-\lambda \exp(-\lambda r)[1-\exp(-\lambda r)]^{-1}$ by using renormalised series, where $\lambda 0=\lambda \times 10^{-3}$

	1 - K
20 2P -0.1151666866883576 9 1 20 5F -0.011054635886584 11 30 2P -0.105666887752976 12 140 5F -0.007386928302296 3 40 2P -0.105666887752976 12 140 5F -0.00178354 2 50 2P -0.101042452072357 14 150 5F -0.00178354 2 50 2P -0.041885049217 26 0.1 20 5g -0.001922364141886 2 200 2P -0.041885049217 26 0.1 20 5g -0.001922365117793 3 300 2P -0.037899 24 0.1 40 5g -0.009330688020377 1 20 3P -0.045972342587020 12 1 20 6P -0.009330688020377 1 20 3P -0.041493657234830 14 1 30 6F -0.002875554754 2 30 3P -0.033164501183867 21 1 10 6d -0.002747059427 2 <th>T</th>	T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
402P-0.105666987752976121405f-0.004282179702502P-0.101042452072357141505f-0.0017835421002P-0.079179439105145292105g-0.011522951337927112002P-0.041886049217260.1305g-0.001092765581779333002P-0.0137899240.1405g-0.00792765581779333002P-0.0137899240.1405g-0.00377001650333502P-0.003777190.1505g-0.00115822103P-0.045972342587020121206P-0.002876554754223003P-0.041493667236800141306P-0.00287555475422403P-0.033164501183867211106d-0.00287555475422303P-0.044652230.2306d-0.00287555029146250221503P-0.0364307132305081406d-0.0028955008057411303d-0.044682230.2306f-0.002549269422203d-0.032753184225127211406f-0.002549269422303d-0.01438322688261072211191306g-0.002549269422303d-0.025441691717959	n T
S02P -0.101042452072357 1415051 -0.00178354 221002P -0.079179439105145 292105g -0.001522951337927 112002P -0.026611051 270.1305g -0.001722364141886 22502P -0.026611051 270.1305g -0.00377001650 333002P -0.026611051 270.1405g -0.00377001650 333502P -0.003777 190.11505g -0.00377001650 333002P -0.005659729727901 91106P -0.00330688020377 11203P -0.045972342587020 121206P -0.005857737604454 223003P -0.0445972342587020 121206P -0.005857737604454 223003P -0.03164501183867 211106P -0.002875554754 22403P -0.03164501183867 211106d -0.0028755029146250 22503P -0.03164501183867 211106d -0.0028755029146250 22503P -0.005643071323050 81406d -0.0028747059427 2103d -0.05643071323050 81406d -0.0028492694 22203d -0.04459258661072211 191 <td< td=""><td>0.1</td></td<>	0.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
200 2P -0.041886049217 26 0.1 20 5g -0.010922364141886 2 250 2P -0.026611051 27 0.1 30 5g -0.007092765581779 33 300 2P -0.0137899 24 0.1 40 5g -0.00377001650 33 350 2P -0.00377 19 0.1 50 5g -0.0010158 2 10 3P -0.050659728727901 9 1 10 6P -0.00330688020377 1 20 3P -0.041493657236800 12 1 20 6P -0.003930688020377 1 20 3P -0.037224165523463 17 1 40 6P -0.00996120 2 20 3P -0.033164501183867 21 1 10 6d -0.009314259653815 1 100 3P -0.0044662 23 0.2 30 6d -0.002747059427 2 10 3d -0.04369058661072211 1 10 6f -0.0026499922860413 <t< td=""><td></td></t<>	
250 2P -0.026611051 27 0.1 30 5g -0.007092765581779 3 300 2P -0.0137899 24 0.1 40 5g -0.00377001650 33 350 2P -0.03777 19 0.1 50 5g -0.0010158 2 10 3P -0.05065972872972901 9 1 10 6P -0.0093306880203777 1 20 3P -0.041493667236800 14 1 30 6P -0.002875554754 2 40 3P -0.03164501183867 21 1 10 6P -0.00996120 2 50 3P -0.016053726638 26 0.25 20 6d -0.00996120 2 100 3P -0.016053726638 26 0.25 20 6d -0.00287505029146250 2 150 3P -0.0044652 23 0.2 30 6d -0.00289505080874 1 30 3d -0.04134434233043 16 1 20 6f -0.005499922860413 <td>T</td>	T
300 $2P$ -0.0137899 24 0.1 40 $5g$ -0.00377001650 33 350 $2P$ -0.00377 19 0.1 50 $5g$ -0.0010158 22 10 $3P$ -0.050659723727901 9 1 10 $6P$ -0.009330688020377 11 20 $3P$ -0.045972342587020 12 1 20 $6P$ -0.005657737604454 22 30 $3P$ -0.041433667236800 14 1 30 $6P$ -0.002875554754 22 40 $3P$ -0.037224165923463 17 1 40 $6P$ -0.002875554754 22 50 $3P$ -0.031645501183867 21 1 10 $6d$ -0.009314259653815 11 100 $3P$ -0.016053726638 26 0.25 20 $6d$ -0.002747059427 22 10 $3d$ -0.05643071323050 8 14 40 $6d$ -0.002549269427 22 10 $3d$ -0.041344344233043 16 1 20 $6f$ -0.002549269427 22 20 $3d$ -0.032753184225127 21 1 40 $6f$ -0.00254926944 22 100 $3d$ -0.01394 27 0.1 20 $6g$ -0.0025492694 22 100 $3d$ -0.01394 27 0.1 20 $6g$ -0.0025492694 23 100 $3d$ -0.01394 27 <	
350 $2P$ -0.00377 19 0.1 50 $5g$ -0.0010158 22 10 $3P$ -0.050659729727901 9 1 10 $6P$ -0.009330688020377 12 20 $3P$ -0.045972342587020 12 1 20 $6P$ -0.005657737604454 22 30 $3P$ -0.041493667236800 14 1 30 $6P$ -0.002875554754 22 40 $3P$ -0.037224165923463 17 1 40 $6P$ -0.00996120 22 50 $3P$ -0.033164501183867 21 1 10 $6d$ -0.00996120 22 50 $3P$ -0.033164501183867 21 1 10 $6d$ -0.00996120 22 50 $3P$ -0.016053726638 26 0.25 20 $6d$ -0.00996120 22 50 $3P$ -0.0044652 23 0.2 30 $6d$ -0.00996120 22 10 $3d$ -0.050643071323050 8 1 40 $6d$ -0.002747059427 22 10 $3d$ -0.045905808680866 11 1 10 $6f$ -0.002747059427 22 10 $3d$ -0.045905808680866 11 1 10 $6f$ -0.002747059427 22 10 $3d$ -0.04590580661072211 19 1 30 $6f$ -0.0025492596477595909 12 10 $3d$ -0.032753184225127 <	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
203P $= 0.045972342587020$ 121206P $= 0.005657737604454$ 22303P $= 0.041493657236800$ 141306P $= 0.002875554754$ 22403P $= 0.037224165923463$ 171406P $= 0.002875554754$ 22503P $= 0.033164501183867$ 211106d $= 0.009314259653815$ 111003P $= 0.016053726638$ 26 0.25 206d $= 0.002747059427$ 27103d $= 0.05643071323050$ 81406d $= 0.002747059427$ 27103d $= 0.05643071323050$ 81406d $= 0.002747059427$ 27103d $= 0.044662$ 23 0.2 306f $= 0.002747059427$ 27103d $= 0.0443662$ 23 0.2 306f $= 0.002747059427$ 27103d $= 0.0443662$ 23 0.2 306f $= 0.002747059427$ 27103d $= 0.041344344233043$ 161206f $= 0.0025492694$ 28203d $= 0.032753184225127$ 211406f $= 0.00256477595909$ 131003d $= 0.0148842268$ 23 0.2 106g $= 0.00227574087$ 34204P $= 0.022017069984944$ 151406g $= 0.00227574087$ 34204P $= 0.01797763497853$	
303P -0.041493667236800 141306P -0.002875554754 22403P -0.037224165923463 171406P -0.000996120 22503P -0.033164501183867 211106d -0.009314259653815 111003P -0.016053726638 26 0.25 206d -0.005595029146250 221503P -0.0044662 23 0.2 306d -0.002747059427 2103d -0.055643071323050 81406d -0.002747059427 2203d -0.04459058086808866 111106f -0.00289550080574 15303d -0.041344344233043 161206f -0.0025492694 22403d -0.032753184225127 211406f -0.0025492694 22503d -0.032753184225127 211406f -0.0005112 271003d -0.0144842268 23 0.2 106g -0.00257470873364005 331004P -0.022017069984944 151406g -0.00227574087 34204P -0.014323288816487 251206h -0.002214931077266 16404P -0.0145219264 28 0.2 406h $+0.000493$ 33304P -0.011058170219449 27 0.1 <	1 T
40 $3P$ -0.037224165923463 17 1 40 $6P$ -0.000996120 22 50 $3P$ -0.033164501183867 21 1 10 $6d$ -0.009314259653815 11 100 $3P$ -0.016053726638 26 0.25 20 $6d$ -0.005595029146250 22 150 $3P$ -0.0044652 23 0.2 30 $6d$ -0.002747059427 27 10 $3d$ -0.050643071323050 8 1 40 $6d$ -0.002747059427 27 20 $3d$ -0.045905808680886 11 1 10 $6f$ -0.009289550080574 18 30 40 $3d$ -0.045905808680886 11 1 10 $6f$ -0.005499922860413 28 40 $3d$ -0.045905808680886 11 1 10 $6f$ -0.005499922860413 28 40 $3d$ -0.032753184225127 21 1 40 $6f$ -0.005112 27 10 $3d$ -0.014842268 23 0.2 10 $6g$ -0.005371080584005 33 10 $4P$ -0.026441691717959 10 1 30 $6g$ -0.002774087 34 20 $4P$ -0.017977063497853 19 1 10 $6g$ -0.0025206558419113 33 30 $4P$ -0.014323288816487 25 1 20 $6h$ -0.005206558419113 33 30 <	0.1
503P -0.033164501183867 211106d -0.009314259653815 111003P -0.016053726638 26 0.25 206d -0.005595029146250 221503P -0.0044652 23 0.2 306d -0.002747059427 27103d -0.050643071323050 81406d -0.002747059427 27203d -0.045905808680886 111106f -0.009289550080574 18303d -0.045905808680886 111106f -0.005499922860413 28403d -0.045905808680886 111106f -0.005499922860413 28403d -0.038959651072211 191306f -0.0025492694 28503d -0.032753184225127 211406f -0.005371080584005 30103d -0.0148482268 23 0.2 106g -0.005371080584005 30104P -0.025441691717959 101306g -0.002774087 34204P -0.025441691717959 101306g -0.00274087 34204P -0.025441691717959 101306g -0.002774087 34204P -0.017977063497853 191106h -0.002214931077266 16304P -0.0145219264 28 0	
100 3P -0.016053726638 26 0.25 20 6d -0.005595029146250 24 150 3P -0.0044662 23 0.2 30 6d -0.002747059427 27 10 3d -0.050643071323050 8 140 6d -0.00080663 27 20 3d -0.045905808680886 11 10 6f -0.009289550080574 18 30 3d -0.04134434423043 16 1 20 6f -0.005499922860413 28 40 3d -0.036959661072211 19 1 30 6f -0.0025492694 28 50 3d -0.032753184225127 21 1 40 6f -0.0005112 27 100 3d -0.0144842268 23 0.2 10 6g -0.005371080584005 30 10 4P -0.026441691717959 10 1 30 6g -0.00227574087 34 20 4P -0.022017069984944 15 1 40 6g -0.0000918 33	
150 3P -0.0044662 23 0.2 30 6d -0.002747059427 2 10 3d -0.050643071323050 8 1 40 6d -0.00080663 2 20 3d -0.045905808680886 11 1 10 6f -0.009289550080574 18 30 3d -0.041344344233043 16 1 20 6f -0.005499922860413 2 40 3d -0.036959661072211 19 1 30 6f -0.0025492694 2 50 3d -0.032753184225127 21 1 40 6f -0.0005112 2 100 3d -0.0144842268 23 0.2 10 6g -0.009256477595909 1 150 3d -0.001394 27 0.1 20 6g -0.00227574087 3 20 4P -0.02201706984944 15 1 40 6g -0.0000918 3 30 4P -0.017977063497853 19 1 10 6h -0.005206558419113	
10 3d -0.050643071323050 8 1 40 6d -0.00080663 21 20 3d -0.045905808680886 11 1 10 6f -0.009289550080574 15 30 3d -0.041344344233043 16 1 20 6f -0.005499922860413 26 40 3d -0.036959661072211 19 1 30 6f -0.0025492694 26 50 3d -0.032753184225127 21 1 40 6f -0.0005112 27 100 3d -0.0144842268 23 0.2 10 6g -0.005371080584005 36 10 4P -0.026441691717959 10 1 30 6g -0.000214931077266 36 30 4P -0.017977063497853 19 1 10 6h -0.009214931077266 36 40 4P -0.014323288816487 25 1 20 6h -0.00191444888 36 30 4P -0.011058170219449 27 0.1 30 6h	
20 3d -0.045905808680886 11 1 10 6f -0.009289550080574 18 30 3d -0.041344344233043 16 1 20 6f -0.005499922860413 26 40 3d -0.036959661072211 19 1 30 6f -0.0025492694 26 50 3d -0.032753184225127 21 1 40 6f -0.0005112 27 100 3d -0.0144842268 23 0.2 10 6g -0.009256477595909 18 150 3d -0.001394 27 0.1 20 6g -0.0025774087 36 10 4P -0.026441691717959 10 1 30 6g -0.00227574087 36 30 4P -0.017977063497853 19 1 10 6h -0.009214931077266 16 40 4P -0.014323288816487 25 1 20 6h -0.00191444888 42 50 4P -0.011058170219449 27 0.1 30 6h <t< td=""><td>The subscription of the su</td></t<>	The subscription of the su
20 3d -0.041344344233043 16 1 20 6f -0.005499922860413 24 40 3d -0.036959661072211 19 1 30 6f -0.0025492694 25 50 3d -0.032753184225127 21 1 40 6f -0.0025492694 25 100 3d -0.0144842268 23 0.2 10 6g -0.009256477595909 13 150 3d -0.0144842268 23 0.2 10 6g -0.009256477595909 13 150 3d -0.01394 27 0.1 20 6g -0.005371080584005 33 10 4P -0.026441691717959 10 1 30 6g -0.00227574087 34 20 4P -0.014323288816487 25 1 20 6h -0.005206558419113 30 30 4P -0.014323288816487 25 1 20 6h -0.00191444888 42	
40 3d -0.036959661072211 19 1 30 6f -0.0025492694 25 50 3d -0.032753184225127 21 1 40 6f -0.0005112 27 100 3d -0.0144842268 23 0.2 10 6g -0.009256477595909 13 150 3d -0.001394 27 0.1 20 6g -0.00227574087 34 10 4P -0.026441691717959 10 1 30 6g -0.00227574087 34 20 4P -0.022017069984944 15 1 40 6g -0.0000918 35 30 4P -0.017977063497853 19 1 10 6h -0.009214931077266 18 40 4P -0.014323288816487 25 1 20 6h -0.00191444888 44 75 4P -0.0045219264 28 0.2 40 6h +0.000493 33 100 4P -0.000754 23 0.2 10 7p -0.0025808497437053	
50 3d -0.032753184225127 21 1 40 6f -0.0005112 21 100 3d -0.0144842268 23 0.2 10 6g -0.009256477595909 13 150 3d -0.001394 27 0.1 20 6g -0.005371080584005 33 10 4P -0.026441691717959 10 1 30 6g -0.00227574087 34 20 4P -0.022017069984944 15 1 40 6g -0.0000918 33 30 4P -0.017977063497853 19 1 10 6h -0.009214931077266 10 40 4P -0.014323288816487 25 1 20 6h -0.00191444888 44 50 4P -0.011058170219449 27 0.1 30 6h +0.00191444888 44 75 4P -0.0046219264 28 0.2 40 6h +0.000493 33 <td< td=""><td></td></td<>	
100 3d -0.0144842268 23 0.2 10 6g -0.009256477595909 11 150 3d -0.001394 27 0.1 20 6g -0.005371080584005 30 10 4P -0.026441691717959 10 1 30 6g -0.00227574087 30 20 4P -0.026017069984944 15 1 40 6g -0.0000918 33 30 4P -0.017977063497853 19 1 10 6h -0.009214931077266 16 40 4P -0.014323288816487 25 1 20 6h -0.005206558419113 30 50 4P -0.011058170219449 27 0.1 30 6h -0.00191444888 44 75 4P -0.0046219264 28 0.2 40 6h +0.000493 33 100 4P -0.0026425063173532 10 1 20 7p -0.002624962332237 34 10 4d -0.021951019249727 14 1 30 7P <t< td=""><td></td></t<>	
150 3d -0.001394 27 0.1 20 6g -0.005371080584005 3d 10 4P -0.026441691717959 10 1 30 6g -0.00227574087 3d 20 4P -0.022017069984944 15 1 40 6g -0.0000918 3d 30 4P -0.017977063497853 19 1 10 6h -0.009214931077266 1d 40 4P -0.014323288816487 25 1 20 6h -0.005206558419113 3d 50 4P -0.011058170219449 27 0.1 30 6h -0.00191444888 4d 75 4P -0.0046219264 28 0.2 40 6h +0.000493 3d 100 4P -0.0026425063173532 10 1 20 7p -0.002624962332237 3d 20 4d -0.021951019249727 14 1 30 7P -0.002624962332237 3d 20 4d -0.017830233991680 19 1 10 7d	
10 4P -0.026441691717959 10 1 30 6g -0.00227574087 34 20 4P -0.022017069984944 15 1 40 6g -0.0000918 35 30 4P -0.017977063497853 19 1 10 6h -0.009214931077266 16 40 4P -0.014323288816487 25 1 20 6h -0.005206558419113 30 50 4P -0.011058170219449 27 0.1 30 6h -0.00191444888 42 75 4P -0.0046219264 28 0.2 40 6h +0.000493 33 100 4P -0.0026425063173532 10 1 20 7p -0.005808497437053 16 10 4d -0.021951019249727 14 1 30 7P -0.002624962332237 32 20 4d -0.017830233991680 19 1 10 7d -0.005792293327495 1 30 4d -0.014066888018391 28 1 20 7d	
20 4P -0.022017069984944 15 1 40 6g -0.0000918 33 30 4P -0.017977063497853 19 1 10 6h -0.009214931077266 10 40 4P -0.014323288816487 25 1 20 6h -0.005206558419113 30 50 4P -0.011058170219449 27 0.1 30 6h -0.00191444888 42 75 4P -0.0046219264 28 0.2 40 6h +0.000493 33 100 4P -0.0026425063173532 10 1 20 7p -0.005808497437053 10 10 4d -0.026425063173532 10 1 20 7p -0.002624962332237 33 20 4d -0.021951019249727 14 1 30 7P -0.00665641 2 30 4d -0.017830233991680 19 1 10 7d -0.00256621456504 3 40 4d -0.014066888018391 28 1 20 7d	
30 4P -0.017977063497853 19 1 10 6h -0.009214931077266 18 40 4P -0.014323288816487 25 1 20 6h -0.005206558419113 30 50 4P -0.011058170219449 27 0.1 30 6h -0.00191444888 44 75 4P -0.0046219264 28 0.2 40 6h +0.000493 33 100 4P -0.000754 23 0.2 10 7p -0.005808497437053 16 10 4d -0.026425063173532 10 1 20 7p -0.002624962332237 32 20 4d -0.021951019249727 14 1 30 7P -0.00665641 2 30 4d -0.017830233991680 19 1 10 7d -0.00256621456504 3 40 4d -0.014066888018391 28 1 20 7d -0.00256621456504 3	_
40 4P -0.0143232888816487 25 1 20 6h -0.005206558419113 30 50 4P -0.011058170219449 27 0.1 30 6h -0.00191444888 44 75 4P -0.0046219264 28 0.2 40 6h +0.000493 33 100 4P -0.000754 23 0.2 10 7p -0.005808497437053 10 10 4d -0.026425063173532 10 1 20 7p -0.002624962332237 33 20 4d -0.021951019249727 14 1 30 7P -0.00665641 22 30 4d -0.017830233991680 19 1 10 7d -0.005792293327495 1 40 4d -0.0140668888018391 28 1 20 7d -0.00256621456504 3	
50 4P -0.011058170219449 27 0.1 30 6h -0.00191444888 42 75 4P -0.0046219264 28 0.2 40 6h +0.000493 33 100 4P -0.000754 23 0.2 10 7p -0.005808497437053 10 10 4d -0.026425063173532 10 1 20 7p -0.002624962332237 33 20 4d -0.021951019249727 14 1 30 7P -0.00665641 22 30 4d -0.017830233991680 19 1 10 7d -0.005792293327495 12 40 4d -0.014066888018391 28 1 20 7d -0.00256621456504 33	_
75 4P -0.0046219264 28 0.2 40 6h +0.000493 33 100 4P -0.000754 23 0.2 10 7p -0.005808497437053 10 10 4d -0.026425063173532 10 1 20 7p -0.002624962332237 33 20 4d -0.021951019249727 14 1 30 7P -0.00665641 2 30 4d -0.017830233991680 19 1 10 7d -0.005792293327495 1 40 4d -0.014066888018391 28 1 20 7d -0.00256621456504 3	-
100 4P -0.000754 23 0.2 10 7p -0.005808497437053 16 10 4d -0.026425063173532 10 1 20 7p -0.002624962332237 32 20 4d -0.021951019249727 14 1 30 7P -0.00665641 2 30 4d -0.017830233991680 19 1 10 7d -0.005792293327495 1 40 4d -0.014066888018391 28 1 20 7d -0.00256621456504 3	
10 4d -0.026425063173532 10 1 20 7p -0.002624962332237 32 20 4d -0.021951019249727 14 1 30 7P -0.00665641 2 30 4d -0.017830233991680 19 1 10 7d -0.005792293327495 1 40 4d -0.014066888018391 28 1 20 7d -0.00256621456504 3	
20 4d -0.021951019249727 14 1 30 7P -0.00665641 2 30 4d -0.017830233991680 19 1 10 7d -0.005792293327495 1 40 4d -0.014066888018391 28 1 20 7d -0.00256621456504 3	
30 4d -0.017830233991680 19 1 10 7d -0.005792293327495 1 40 4d -0.014066888018391 28 1 20 7d -0.00256621456504 33	
40 4d -0.014066888018391 28 1 20 7d -0.00256621456504 3	
10 10 000000000000000000000000000000000	
	0.05
	0.05
75 4d -0.003834532 28 0.1 10 7f -0.005767897038536 10	
	0.05
	0.05
	0.05
	0.05
	0.05
50 4f -0.0100619645509 33 0.1 10 7h -0.005694044936944 1	
75 4f -0.00255629 33 0.1 20 7h -0.0021979059566 3	0.05

-208-

Table (5.14 continued)

10	5P	-0.015304229456613	11	1	30	7h	+0.000115	29	0.05
20	5P	-0.011217685705423	17	1	10	71	-0.005644241524433	19	0.05
30	5P	-0.007742789398949	27	1	20	71	-0.00200195002	29	0.05
40	5P	-0.0048840333379	27	0.1	30	71	+0.00051	23	0.05
50	5P	-0.0026490107	25	0.1	10	8P	-0.003604598802576	19	0.05
10	5d	-0.015287669725778	12				-0.00098683270		0.05
20	5d			1	10	8d	-0.003588750898457	19	0.05
30	5d	-0.007601938776343	28	1			-0.0009349530	25	0.05
40	5d	-0.004647881641	31	0.1			-0.003564863870506	20	0.05
50	5d	-0.002313111	26				-0.0008556948	27	0.05
10	81	-0.003443266962011	23				-0.003532795494148	21	0.05
20	8i	-0.00042742	27				-0.000747090	25	0.05
10	8k	الجريبي ويجرب والقال باشري والمتلا المستخل والمستخد والمستحد والمستخد والمستخد والمستحد والمستحد والمستحد	the second s				-0.003492349118332	23	0.05
20	8k	-0.0002027	27	0.05	20	8h	-0.00060601	27	0.05

5.10 Eigenvalue calculations for some potentials

5.10.1 Hypervirial method to calculate energy eigenvalues for

$$H=P^{2}+x^{2}-2e^{-2\lambda x^{2}}\left[1+e^{2\lambda x^{2}}\right]^{-1}$$

The Schrödinger equation in atomic unit for the potential which is given as:

$$V(x) = -2e^{-2\lambda x^{2}} \left[1 + e^{-2\lambda x^{2}} \right]^{-1}$$
 (5.139)

takes the form

$$-D^{2}\Psi(x) + x^{2}\Psi(x) - 2\bar{e}^{2\lambda x^{2}} \left[1 + \bar{e}^{2\lambda x^{2}}\right]^{-1}\Psi(x) = E\Psi(x)$$
(5.140)

The potential given in equation (5.139) can be expressed as

$$V(\mathbf{x}) = \begin{bmatrix} \frac{e^{\lambda \mathbf{x}^2} - e^{-\lambda \mathbf{x}^2}}{e^{\lambda \mathbf{x}^2} + e^{-\lambda \mathbf{x}^2}} - 1 \end{bmatrix} = \operatorname{Tanh}(\lambda \mathbf{x}^2) - 1$$
 (5.141)

We let

$$\lambda x^2 = y \qquad (5.142)$$

The perturbation calculation by using Hypervirial relations for the interaction given by (5.139) is made by expanding $\tanh(\lambda x^2)$ in a power series in (λx^2) which is valid for $\lambda x^2 < \frac{\pi}{2}$. Then $\tanh(y)$ can be express as

$$\tanh\left(\mathbf{y}\right) = \mathbf{y} - \frac{\mathbf{y}^{3}}{3} + \frac{2\mathbf{y}^{5}}{15} + \dots - \frac{2^{2n}\left[2^{2n-1}-1\right]\mathbf{y}^{2n-1}}{2n!}B_{2n} \qquad (5.143)$$

As x varies from $(-\infty \le x \le +\infty)$ the potential runs from $(0 \le V(x) \le 0)$ through (-1) at x=0. We can use the Hypervirial relation as we have used it in previous problem. The Hypervirial relation for potential (5.139) leads to the recurrence relation

$$\left(2N+2\right) \sum_{0}^{M} E(I)A(N, M-I) = -\frac{N}{2} \left[N^{2}-1\right] B(N-2, M)$$
$$+ \left(1+\lambda\right) \left[2N+4\right] B(N+2, M)$$

+
$$\sum_{n=0}^{\infty} V_n \left[2N+2+2(2n+1) \right] B(N+2(2n+1), M-2n-1)$$
 (5.144)

If we apply the Hellmann-Feynman theorem using the energy and the expectation value $\langle x^{M} \rangle$ series as given by equations (5.134) and (5.135) we obtain the following recurrence relation

$$\left(M+1 \right) E(M+1) = \sum_{n=1}^{\infty} \left[2n+1 \right] V_n B(2(2n+1), M-2n)$$
 (5.145)

where

$$V_{n} = \frac{2^{2n} (2^{2n-1} - 1) y^{2n-1}}{2n!} B_{2n}$$
 (5.146)

Here B_{2n} is the nth Bernoulli number. The unperturbed energy E(0)

$$\mathbf{E}(0) = \left(2\mathbf{n}+1\right) \overline{\left(1+\lambda\right)} -1 \qquad (5.147)$$

allows us to use the recurrence relations to compute the energy coefficient E(M), with initial condition B(0,0)=1.

5.10.2 Hypervirial method to calculate energy eigenvalues for

$$\frac{H=P^{2}+r^{2}+\ell(\ell+1)\bar{r}^{2}-2e^{-2\lambda r^{2}}\left[1+e^{-2\lambda r^{2}}\right]^{-1}}{2}$$

In this subsection we extend the numerical calculation from one dimension to three dimensions. The main difference between one and three dimensional potential lies in the angular momentum term. We have applied the same two methods

which were used to compute energies for one- dimensional potentials. Using Hypervirial and Hellmann-Feynman theorems as used for one dimensional problems, and we following the same route leads to recurrence relations (5.144) and (5.145) with an additional potential term due to the angular momentum. With $V_{-2} = \ell(\ell+1)$, $V_2 = (1+\lambda)$ we obtain the following recurrence relation after some algebra

$$\left(2N+2\right)\sum_{0}^{M} E(I)A(N,M-I) = N\left[2\ell(\ell+1) - \frac{N}{2}\left(N^{2}-1\right)\right]B(N-2,M)$$

$$+ \left(1+\lambda\right)\left(2N+4\right)B(N+2,M)$$

+
$$\sum_{n=1}^{\infty} V_n \left[2N+2+2(2n+1) \right] B(N+2(2n+1), M-2n-1)$$
 (5.148)

$$(M+1)E(M+1) = +\sum_{n=1}^{\infty} [2n+1]V_n B(2(2n+1), M-2n)$$
 (5.149)

5.10.3 Results and discussion

Tables (4.15) and (5.16) show the eigenvalues for potentials

$$V(x) = \begin{bmatrix} \frac{e^{\lambda x^2} - e^{-\lambda x^2}}{e^{\lambda x^2} + e^{-\lambda x^2}} & -1 \end{bmatrix} = \operatorname{Tanh}(\lambda x^2) - 1$$

V (r) =
$$\begin{bmatrix} \frac{e^{\lambda r^2} - e^{-\lambda r^2}}{e^{\lambda r^2} + e^{-\lambda r^2}} & -1 \end{bmatrix} = \operatorname{Tanh}(\lambda r^2) - 1$$

It is clear from our results that the energy series convergence very quickly at low values of λ , but the convergence decreases as λ increase. It is important to point out that the accuracy of results for this problem which have been obtained without use of renormalised constant k, also we used the Padé approximants as second method to compute the energy eigenvalue. The agreement between the two methods are very good for low values of λ , but for high values of λ the Padé approximants give more accurate eigenvalues. We have computed many energy eigenvalues of the potential given by equation (5.141), for different values of $(0.01 \le \lambda \le 0.1)$ and for the ground and first four excited state. We list our results for this calculation in table (5.15) for one dimension and in table (5.16) for three dimensions, for different values of $(0.01 \le \lambda \le 0.05)$, different values of $(\ell=0,2,5,10)$ and state number n.

Table (5.15). Eigenvalues of $H=P^2+x^2-2exp(-2\lambda x^2)[1+exp(-2\lambda x^2)]^{-1}$ upper lines Hypervirial calculation, lower lines, Padé approximants E [M,M] calculation

	E+2		E+2	N,	E+2.	N
Ĩ.	0	M, M	1	м, м	2	м, м
0.01	2.00999938054028		4.02999564470961	977	6.04998442433791	9 7 . 7
0.02	8 2.01999509362435	7,7	4.05996537741999	13	6.09987614412735	7,7
0.02	5	7,7	2000	7,7	5	
0.03	2.02998362238362	13	4.08988408082744	15	6.14958560182659	19
	2	7,7	4	8,8	9	
0.04	2.03996164005009 9	19 8 , 8	4.11972783885644 5	24 10,10	6.19902856159832 61	31 15, 15
0.05	2.04992603057096	27	4.14947421386347		6.2481276287439	38
		8,8	4	16, 16	8	15, 15
0.06	2.05987390105514		4.179102426517		6.296813169	32
	and the second	16,16 29	<u> </u>	16,16 27	72 6.345023	15,15 24
0.07	2.0698025869 9	29 16, 16	4.20859344 49	15,15	3731	24 15, 15
0.08	2.0797096	9	4.237930	15	6.39270	13
	651	15, 15	003	15, 15	0602	15, 15
0.09	2.089592	9	4.26709	9	6.4398	7
	2879	15, 15 11	9666 4.2960	14,14 5	8146 6.486	15,15
0.10	2.099450 027	15, 15	4.2300		· · · • · · ·	, 15, 15
				,		10, 10
ו גו	E + Z i		E +1		E +2	N .
λ	E +1 3	м, м	4	М , М	E +2. 5	N , M
	з 8.06996075033870	<u>м, м</u> 10	4 10.0899196844155	м, м 9	6 12.1098563311365	11
0.01	3 8.06996075033870 0	M, M 10 8, 8	4 10.0899196844155 5	M, M 9 8, 8	5 12.1098563311365 5	11 8,8
0.01	з 8.06996075033870	M, M 10 8, 8 15	4 10.0899196844155 5 10.1793639200018	M, M 9 8, 8 15	6 12.1098563311365	11 8,8 15
0.01 0.02	3 8.06996075033870 0 8.13968835575794 4	M, M 10 8, 8	4 10.0899196844155 5	M, M 9 8, 8	5 12.1098563311365 5	11 8,8
0.01 0.02 0.03	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4	M, M 10 8, 8 15 8, 8 23 14, 14	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0	M, M 9 8, 8 15 8, 8 24 12, 12	5 12.1098563311365 5 12.2188660401912 2 12.3262532243041 5	11 8,8 15 8,8 27 12,12
0.01 0.02 0.03	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313	M, M 10 8, 8 15 8, 8 23 14, 14 36	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281	M, M 9 8, 8 15 8, 8 24 12, 12 36	6 12.1098563311365 5 12.2188660401912 2 12.3262532243041 5 12.4313636124165	11 8,8 15 8,8 27 12,12 43
0.01 0.02 0.03 0.04	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6	M, M 10 8, 8 15 8, 8 23 14, 14 36 14, 14	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6	M, M 9 8, 8 15 8, 8 24 12, 12 36 14, 14	6 12.1098563311365 5 12.2188660401912 2 12.3262532243041 5 12.4313636124165 82	11 8,8 15 8,8 27 12,12 43 13,13
0.01 0.02 0.03 0.04	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6 8.345344055874	M, M 10 8, 8 15 8, 8 23 14, 14 36 14, 14 46	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6 10.4406563192	M, M 9 8, 8 15 8, 8 24 12, 12 36 14, 14 44	6 12.1098563311365 5 12.2188660401912 2 12.3262532243041 5 12.4313636124165 82 12.533690623	11 8,8 15 8,8 27 12,12 43 13,13 46
0.01 0.02 0.03 0.04 0.05	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6	M, M 10 8, 8 15 8, 8 23 14, 14 36 14, 14	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6	M, M 9 8, 8 15 8, 8 24 12, 12 36 14, 14	6 12.1098563311365 5 12.2188660401912 2 12.3262532243041 5 12.4313636124165 82	11 8,8 15 8,8 27 12,12 43 13,13
0.01 0.02 0.03 0.04 0.05	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6 8.345344055874 6	$\begin{array}{c} M & , M \\ 10 \\ 8 & , 8 \\ 15 \\ 8 & , 8 \\ 23 \\ 14 & , 14 \\ 36 \\ 14 & , 14 \\ 46 \\ 14 & , 14 \\ 44 \\ 14 & , 14 \end{array}$	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6 10.4406563192 278 10.524313 4022	M, M 9 8, 8 15 8, 8 24 12, 12 36 14, 14 14, 14	5 12.1098563311365 5 12.2188660401912 2 12.3262532243041 5 12.4313636124165 82 12.533690623 714 12.63287 8024	11 8,8 15 8,8 27 12,12 43 13,13 46 13,13
0.01 0.02 0.03 0.04 0.05 0.06	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6 8.345344055874 6 8.41212155 6089 8.47777	$\begin{array}{c} M \ , \ M \\ 10 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 23 \\ 14 \ , 14 \\ 36 \\ 14 \ , 14 \\ 46 \\ 14 \ , 14 \\ 14 \ , 14 \\ 34 \end{array}$	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6 10.4406563192 278 10.524313 4022 10.6059	M, M 9 8, 8 15 8, 8 24 12, 12 36 14, 14 14, 14 14, 14 14, 14 12, 12 15	5 12. 1098563311365 5 12. 2188660401912 2 12. 3262532243041 5 12. 4313636124165 82 12. 533690623 714 12. 63287 8024 12. 728	11 8,8 15 8,8 27 12,12 43 13,13 46 13,13 46 12,12 13
0.01 0.02 0.03 0.04 0.05 0.06 0.07	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6 8.345344055874 6 8.41212155 6089 8.47777 7801	$\begin{array}{c} M \ , \ M \\ 10 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 23 \\ 14 \ , 14 \\ 36 \\ 14 \ , 14 \\ 46 \\ 14 \ , 14 \\ 44 \\ 14 \ , 14 \\ 14 \ , 14 \\ 14 \ , 14 \end{array}$	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6 10.4406563192 278 10.524313 4022 10.6059 87633	M, M 9 8, 8 15 8, 8 24 12, 12 36 14, 14 14, 14 14, 14 12, 12 15 12, 12	5 12. 1098563311365 5 12. 2188660401912 2 12. 3262532243041 5 12. 4313636124165 82 12. 533690623 714 12. 63287 8024 12. 728 871940	11 8,8 15 8,8 27 12,12 43 13,13 46 13,13 46 12,12 13 12,12
0.01 0.02 0.03 0.04 0.05 0.06 0.07	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6 8.345344055874 6 8.41212155 6089 8.41777 7801 8.542	$\begin{array}{c} M \ , \ M \\ 10 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 23 \\ 14 \ , 14 \\ 36 \\ 14 \ , 14 \\ 46 \\ 14 \ , 14 \\ 44 \\ 14 \ , 14 \\ 14 \ , 14 \\ 7 \end{array}$	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6 10.4406563192 278 10.524313 4022 10.6059 87633 10.685	$\begin{array}{c} M \ , \ M \\ 9 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 24 \\ 12, 12 \\ 36 \\ 14, 14 \\ 44 \\ 14, 14 \\ 36 \\ 12, 12 \\ 15 \\ 12, 12 \\ 11 \\ \end{array}$	6 12. 1098563311365 5 12. 2188660401912 2 12. 3262532243041 5 12. 4313636124165 82 12. 533690623 714 12. 63287 8024 12. 728 871940 12. 82	11 8,8 15 8,8 27 12,12 43 13,13 46 13,13 46 12,12 13 12,12 7
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6 8.345344055874 6 8.41212155 6089 8.41777 7801 8.542 22126	$\begin{array}{c} M \ , \ M \\ 10 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 23 \\ 14 \ , 14 \\ 36 \\ 14 \ , 14 \\ 46 \\ 14 \ , 14 \\ 44 \\ 14 \ , 14 \\ 14 \ , 14 \\ 14 \ , 14 \end{array}$	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6 10.4406563192 278 10.524313 4022 10.6059 87633 10.685	$\begin{array}{c} M \ , \ M \\ 9 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 24 \\ 12, 12 \\ 36 \\ 14, 14 \\ 44 \\ 14, 14 \\ 36 \\ 12, 12 \\ 15 \\ 12, 12 \\ 11 \\ 12, 12 \end{array}$	5 12. 1098563311365 5 12. 2188660401912 2 12. 3262532243041 5 12. 4313636124165 82 12. 533690623 714 12. 63287 8024 12. 728 871940 12. 82	11 8,8 15 8,8 27 12,12 43 13,13 46 13,13 46 12,12 13 12,12
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6 8.345344055874 6 8.41212155 6089 8.47777 7801 8.542 22126 8.605 8146	$\begin{array}{c} M \ , \ M \\ 10 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 23 \\ 14 \ , 14 \\ 36 \\ 14 \ , 14 \\ 46 \\ 14 \ , 14 \\ 14 \ , 14 \\ 14 \ , 14 \\ 7 \\ 14 \ , 14 \\ 14 \ , 14 \end{array}$	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6 10.4406563192 278 10.524313 4022 10.6059 87633 10.685 5215 10.760	$\begin{array}{c} M \ , \ M \\ 9 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 24 \\ 12, 12 \\ 36 \\ 14, 14 \\ 44 \\ 14, 14 \\ 36 \\ 12, 12 \\ 15 \\ 12, 12 \\ 11 \\ 12, 12 \end{array}$	6 12. 1098563311365 5 12. 2188660401912 2 12. 3262532243041 5 12. 4313636124165 82 12. 533690623 714 12. 63287 8024 12. 728 871940 12. 82 21117 12. 9	11 8,8 15 8,8 27 12,12 43 13,13 46 13,13 46 12,12 13 12,12 7 12,12
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09	3 8.06996075033870 0 8.13968835575794 4 8.20896023323394 4 8.27757226957313 6 8.345344055874 6 8.41212155 6089 8.47777 7801 8.542 22126 8.605	$\begin{array}{c} M \ , \ M \\ 10 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 23 \\ 14 \ , 14 \\ 36 \\ 14 \ , 14 \\ 46 \\ 14 \ , 14 \\ 44 \\ 14 \ , 14 \\ 14 \ , 14 \\ 7 \\ 14 \ , 14 \\ 7 \\ 14 \ , 14 \\ 7 \end{array}$	4 10.0899196844155 5 10.1793639200018 8 10.2678868075600 0 10.3550940822281 6 10.4406563192 278 10.524313 4022 10.6059 87633 10.685 5215 10.760 22611 10.84	$\begin{array}{c} M \ , \ M \\ 9 \\ 8 \ , \ 8 \\ 15 \\ 8 \ , \ 8 \\ 24 \\ 12, 12 \\ 36 \\ 14, 14 \\ 44 \\ 14, 14 \\ 14, 14 \\ 14, 14 \\ 12, 12 \\ 15 \\ 12, 12 \\ 11 \\ 12, 12 \\ 13 \\ 12, 12 \\ 11 \\ \end{array}$	6 12. 1098563311365 5 12. 2188660401912 2 12. 3262532243041 5 12. 4313636124165 82 12. 533690623 714 12. 63287 8024 12. 728 871940 12. 82 21117 12. 9	11 8,8 15 8,8 27 12,12 43 13,13 46 13,13 46 12,12 13 12,12 7 12,12 11

Table (5.16). Eigenvalues of $H=P^2+r^2+\ell(\ell+1)r^{-2}-2e^{-2\lambda r^2}/(1+e^{-2\lambda r^2})$

for many eigenstates, upper lines Hypervirial calculation, lower lines Padé approximant E [M,M] calculation, The two numbers in brackets correspond to state number and angular momentum respectively.

	(0,0)	1	N	(0,10)	1	N
n n	(0,0)	м	м . М		м	м . М
0 01	4.02999564470961		9	24.2293527633224		<u>, n</u> 3
0.01		8	. 8	1	8	. 8
0.02	4.05996537741999			24.4549077417207		24
	2000	8	, 8	8	11	, 11
0.03	4.08988408082744	1	15	24.6733540527698	í -	41
	4	8	, 8	32	12	, 12
0.04	4.11972783885644		24	24.8822703		36
			, 12			, 12
0.05	4.14947421386347	9	36	25.080	R	5
	48		, 13		i haran an a	, 12
λ	(1,5)	1	N	(1,10)	A	N
		M	<u>, M</u>		M	<u>, M</u>
0.01	18.1696087390894	ű –	11	28.2686914441029		15
		8	8		8	, 8
0.02	18.3369301930818		19	28.5299326355848		28
			,11		The state of the s	,11
0.03	18.4999694159148	n –	34	28.7780940527698		41
		The rest of the local division of the local	11		and in case of the local division of the loc	,11
0.04	18.652290705		15	29.01021		48
	116	$\frac{11}{3}$	11	<u>490</u> 29.2		<u>, 11</u>
0.05	18.80776 7669	M .	* , 11			4
	(2,5)	and the owner of the local division of the l		(3,5)	11 10 41 11	.11 N
Ιλ	[[2,0]					
		M	M		11	
0.01		M			M	, M
0.01	22.2091905530535		13	26.2485711955362	M	, м 15
	22.2091905530535 5	8	l3 8	26.2485711955362 2	м 10	, M 15 ,10
	22.2091905530535 5 22.4137398414062	8	13 8 24	26.2485711955362 2 26.4891257776520	M 10	, M 15 , 10 29
0.02	22.2091905530535 5 22.4137398414062 3	8 12	l3 8	26.2485711955362 2 26.4891257776520 44	M 10 11	, M 15 ,10
0.02	22.2091905530535 5 22.4137398414062 3 22.6099690784326	8 12	13 24 12 13	26.2485711955362 2 26.4891257776520 44 26.7159935463	M 10 11	, M 15 ,10 29 ,11 45
0.02 0.03	22.2091905530535 5 22.4137398414062 3 22.6099690784326	8 12 12	13 8 24 12	26.2485711955362 2 26.4891257776520 44 26.7159935463	M 10 11	, M 15 ,10 29 ,11
0.02 0.03	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646	8	3 24 12 13 12	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266	M 10 11	, M 15 ,10 29 ,11 45 ,11
0.02 0.03 0.04	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646	8 12 12	3 24 12 13 12 15 12	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266	M 10 11	, M 15 ,10 29 ,11 45 ,11 31
0.02 0.03 0.04	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766	8 12 12	3 24 12 13 12 15 12	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266 7165	M 10 11 11	, M 15 ,10 29 ,11 45 ,11 31
0.02 0.03 0.04	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558	8 12 12 12	3 8 12 13 12 15 12 15 12	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266 7165 26.1	M 10 11 11	, M 15 ,10 29 ,11 45 ,11 31 ,11 4
0.02 0.03 0.04 0.05	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970	8 12 12 12	3 8 12 13 12 15 12 15 12	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266 7165 26.1 121485 (5,2)	M 10 11 11	, M 15 ,10 29 ,11 45 ,11 31 ,11 4 ,11
0.02 0.03 0.04 0.05 λ	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558 (4,5) 30.2877167815098	8 12 12 12 12	3 8 12 13 12 15 12 15 12 15 12 5 12	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266 7165 26.1 121485	M 10 11 11 11 M	, M 15 ,10 29 ,11 45 ,11 31 ,11 4 ,11 N
$ \begin{array}{c} 0.02 \\ 0.03 \\ 0.04 \\ \hline 0.05 \\ \hline \lambda \\ 0.01 \\ \end{array} $	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558 (4,5) 30.2877167815098 8	8 12, 12, 12, 12, 12, 10,	3 8 24 12 13 12 15 12 15 12 15 12 15 12 15 12	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266 7165 26.1 121485 (5,2) 28.2680213586179 9	M 10 11 11 11 11 11	, M 15 ,10 29 ,11 45 ,11 31 ,11 4 ,11 N , M 15 ,10
$ \begin{array}{c} 0.02 \\ 0.03 \\ 0.04 \\ \hline 0.05 \\ \hline \lambda \\ 0.01 \\ \end{array} $	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558 (4,5) 30.2877167815098	8 12 12 12 12 12	3 8 24 12 13 12 15 12 15 12 15 12 15 12 15 12 13 14 15 12 15 12 13 14 15 10 33	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266 7165 26.1 121485 (5,2) 28.2680213586179	M 10 11 11 11 11 11	, M 15 ,10 29 ,11 45 ,11 31 ,11 4 ,11 N , M 15
$ \begin{array}{c} 0.02 \\ 0.03 \\ 0.04 \\ \hline 0.05 \\ \hline \lambda \\ 0.01 \\ 0.02 \\ \end{array} $	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558 (4,5) 30.2877167815098 8 30.5629312865129 55	8 12, 12, 12, 12, 10, 10,	3 8 24 12 13 12 15 12 15 12 15 12 15 12 13 14	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266 7165 26.1 121485 $(5,2)$ 28.2680213586179 9 28.5251440396900 708	M 10 11 11 11 10 10	, M 15 ,10 29 ,11 45 ,11 ,11 ,11 N M 15 ,10 31 ,11
$ \begin{array}{c} 0.02 \\ 0.03 \\ 0.04 \\ \hline 0.05 \\ \hline \lambda \\ 0.01 \\ 0.02 \\ \end{array} $	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558 (4,5) 30.2877167815098 8 30.5629312865129 55 30.817919	8 12 12 12 12 12 10	3 8 24 12 13 12 15 12 15 12 15 12 13 14 15 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 14 15 10 11 28	26.2485711955362 2 26.4891257776520 44 26.7159935463 959 26.9266 7165 26.1 121485 $(5,2)$ 28.2680213586179 9 28.5251440396900 708 28.76438912	M 10 11 11 11 10 10	, M 15 ,10 29 ,11 45 ,11 ,11 4 ,11 N M 15 ,10 31 ,11 4 ,11 4 31 ,11 4 31 ,11 4 31 ,11 4 31 ,11 4 5 ,11 4 5 ,11 4 5 ,11 4 5 ,11 4 5 ,11 4 5 ,11 4 5 ,11 4 5 ,11 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 1 4 5 1 4 5 1 4 5 1 4 5 1 4 5 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1
$ \begin{array}{c} 0.02 \\ 0.03 \\ 0.04 \\ 0.05 \\ \lambda \\ 0.01 \\ 0.02 \\ 0.03 \\ \end{array} $	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558 (4,5) 30.2877167815098 8 30.5629312865129 55 30.817919 207	8 12 12 12 12 12 11	3 8 24 12 12 12 15 12 15 12 15 12 10 33 11 28 11 28	$26.2485711955362 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 6.4891257776520 \\ 44 \\ 2 \\ 6.7159935463 \\ 9 \\ 5 \\ 9 \\ 2 \\ 6.9266 \\ 7165 \\ 2 \\ 6.1 \\ 121485 \\ (5,2) \\ 2 \\ 8.2680213586179 \\ 9 \\ 2 \\ 8.2680213586179 \\ 9 \\ 2 \\ 8.5251440396900 \\ 708 \\ 2 \\ 8.76438912 \\ 5 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 5 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	M 10 11 11 11 11 10 11	, M 15 ,10 29 ,11 45 ,11 ,11 4 ,11 15 ,10 31 ,11 43 ,11
$ \begin{array}{c} 0.02 \\ 0.03 \\ 0.04 \\ 0.05 \\ \lambda \\ 0.01 \\ 0.02 \\ 0.03 \\ \end{array} $	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558 (4,5) 30.2877167815098 8 30.5629312865129 55 30.817919 207 31.05	8 12 12 12 12 12 11	3 8 24 12 13 12 15 12 15 12 15 12 13 12 13 12 13 12 13 14 15 10 33 11 28 11	$26.2485711955362 \\ 2 \\ 26.4891257776520 \\ 44 \\ 26.7159935463 \\ 959 \\ 26.9266 \\ 7165 \\ 26.1 \\ 121485 \\ (5,2) \\ 28.2680213586179 \\ 9 \\ 28.5251440396900 \\ 708 \\ 28.76438912 \\ 50 \\ 28.983 \\ $	M 10 11 11 11 11 10 11	, M 15 ,10 29 ,11 45 ,11 45 ,11 45 ,11 45 ,11 45 ,11 43 ,11 43 ,11 43 ,11 31 ,11 5 ,10 45 ,10 5 ,10 5 5 5 5 5 5 5 5 5 5 5 5 5
$ \begin{array}{c} 0.02 \\ 0.03 \\ 0.04 \\ 0.05 \\ \hline \lambda \\ 0.01 \\ 0.02 \\ 0.03 \\ 0.04 \\ \end{array} $	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558 (4,5) 30.2877167815098 8 30.5629312865129 55 30.817919 207 31.05 50788	8 12, 12, 12, 12, 12, 11, 11, 11,	3 8 24 12 13 12 13 12 13 12 15 12 15 10 13 11 12 11 11	$26.2485711955362 \\ 2 \\ 26.4891257776520 \\ 44 \\ 26.7159935463 \\ 959 \\ 26.9266 \\ 7165 \\ 26.1 \\ 121485 \\ (5,2) \\ 28.2680213586179 \\ 9 \\ 28.5251440396900 \\ 708 \\ 28.76438912 \\ 50 \\ 28.983 \\ 3691 \\ 3691 \\ 3691 \\ 50 \\ 28.983 \\ 3691 \\ 50 \\ 28.983 \\ 3691 \\ 50 \\ 28.983 \\ 3691 \\ 50 \\ 50 \\ 28.983 \\ 3691 \\ 50 \\ 50 \\ 28.983 \\ 3691 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 5$	M 10 11 11 11 11 10 11 11	, M 15 ,10 29 ,11 45 ,11 43 31 ,11 43 31 ,11 43 36 ,11 15 ,11 43 36 ,11 15 ,11 43 36 ,11 15 ,11 43 36 ,11 15 15 15 15 15 15 15 15 15
$ \begin{array}{c} 0.02 \\ 0.03 \\ 0.04 \\ 0.05 \\ \hline \lambda \\ 0.01 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.05 \\ \end{array} $	22.2091905530535 5 22.4137398414062 3 22.6099690784326 8027 22.7956646 6766 22.970 00558 (4,5) 30.2877167815098 8 30.5629312865129 55 30.817919 207 31.05 50788	8 12, 12, 12, 12, 12, 11, 11, 11,	3 8 24 12 13 12 12 12 15 12 15 12 15 12 15 12 12 12 12 12 12 12 12 12 12 11 11 10	$26.2485711955362 \\ 2 \\ 26.4891257776520 \\ 44 \\ 26.7159935463 \\ 959 \\ 26.9266 \\ 7165 \\ 26.1 \\ 121485 \\ (5,2) \\ 28.2680213586179 \\ 9 \\ 28.5251440396900 \\ 708 \\ 28.76438912 \\ 50 \\ 28.983 \\ $	M 10 11 11 11 10 11 11	, M 15 ,10 29 ,11 45 ,11 45 ,11 45 ,11 45 ,11 45 ,11 43 ,11 43 ,11 43 ,11 31 ,11 5 ,10 45 ,10 5 ,10 5 5 5 5 5 5 5 5 5 5 5 5 5

CONCLUSION

In the preceding chapters of this work we have seen, without being concerned with any specific application, how perturbation and non-perturbation methods can be used for solving the eigenvalue problem. The numerical methods presented in this work have been tested for Schrödinger equation involving several perturbed and unperturbed potentials. These methods have been shown to be very effective and to be more simple and accurate than the widely used matrix calculations. We would like to emphasize the following aspects of the present eigenvalue calculations:

1. The methods which have been used all yielded highly accurate results. These results showed good agreement with each other or with those (when available) in the literature. Our methods proved to be very effective in dealing with one, two, three and N dimensional radial problems.

2.It is interesting to note that the renormalised series method can be extended to compute the energy eigenvalues for quasi-bound states of potentials such as

I.
$$V(x) = x^2 + \lambda x^3$$

II. $V(x) = x^2 + \lambda x^5$

The renormalised series converge well for sufficiently small values of λ .

3.We studied a double well potential $V(x) = -Z^2 x^2 + x^{2N}$, for various values of 2N, Z^2 and state number n, by using perturbative and non-perturbative methods. All methods yielded highly accurate results except that the renormali series gave poor accuracy at low values of Z^2 , although it works very well for high values of Z^2 .

4.It has been shown, (section 2.4), that expectation values such as $\langle x^{2N} \rangle$ can be calculated without storing explicit values of the wavefunction Ψ . The relevant difference equation

$$\langle x^{2N} \rangle = Lt \underset{\varepsilon \longrightarrow 0}{=} \frac{1}{2\varepsilon} \left[E(H + \varepsilon x^{2N}) - E(H - \varepsilon x^{2N}) \right]$$

involves the use of energy calculations, which can be performed by many methods (e.g renormalised series, finite difference and power series). In numerical work one or more finite values of ϵ are used to estimate the value of the limit. For double precision calculations, we found that $\epsilon=10^{-8}$ gives reasonably accurate results.

5.In the case of perturbation methods (both hypervirial and inner product) we have shown how one may avoid divergence problem, by using the renormalising constant k and (when necessary) Padé approximants and the Aitken procedure.

6. In the present work, we have compared various methods, with respect to their accuracy and divergence properties and changing behaviour with respect to variation of

I.perturbation parameters (e.g λ ,g, α).

II.state number n.

III.power index (x^{2N}) of a perturbing potential. It is worth pointing out that perturbation methods are sensitive to points (I,II,III), but nonperturbation method: in general are less sensitive (except that the simple pow series method in the case $V=\lambda x^2/(1+gx^2)$ requires $gx^2 < 1$). 7.Our results allow us to study the numerical behaviour of energy levels for the potentials

I.
$$\mu x^{2} + \lambda x^{2N}$$
, $\mu = 0, 1$; 2N=4,6,8....18,20

II.
$$V(x)=x^2 + \frac{\lambda x^{2N}}{1+gx^2}$$
; 2N=4,6,8....18,20

for different index 2N, perturbation parameters $\lambda \& g$ and state number n. We have seen how the order of the energy levels varies with these parameters. We determined the value of λ at which a crossing point occurs for potential (I) (i.e $\lambda \cong 5$). 8. In chapter four we investigated the eigenvalue problem

I.
$$V^{\pm}(x) = \frac{1}{2} x^2 \pm \frac{g x^{2N}}{1 + g \alpha x^2}$$
; 2N=4,6

II.
$$V^{\pm}(x) = \frac{1}{2} r^{2} \pm \frac{gr^{6}}{1 + gcx^{2}}$$

We have not observed any fundamental difference in behaviour between the V⁻ and V⁺ cases as we vary the perturbation parameters (α ,g) and index (2N). We used ($g\alpha$) and (g) as perturbation parameters.

9.We have discovered that the renormalised series method does not work so well for the perturbed potential

I.V=
$$\mu x^{2} + \lambda (x^{2N} - Kx^{2}); \mu = 1 + \lambda K; 2N = 6,8$$

and gives reduced accuracy. However, we partly overcame this difficulty by introducing higher powers of λ

II.
$$V = \mu x^2 + \underline{\lambda}^{I} (x^{2N} - Kx^2); \quad \mu = 1 + \underline{\lambda}^{I} K; \quad \underline{\lambda} = \lambda^{\overline{I}}; 2N = 6, 8$$

We illustrated the effect of use of the $\underline{\lambda}^{I}$ technique on the convergence rate in tables (2.3) and (2.4). We use this modified technique with other eigenvalue problems

for instance

$$V(\mathbf{r}) = \mathbf{r}^{2} + \ell (1+\ell) \mathbf{r}^{-2} + \lambda \mathbf{r}^{2N} ; 2N=6,8$$
$$V(\mathbf{r}) = -\mathbf{r}^{-1} + \frac{\ell}{2} (1+\ell) \mathbf{r}^{-2} + A(\ell,m) \gamma^{2} \mathbf{r}^{2}$$

10.It should also be mentioned that a large part of our results are not available in the literature. Accordingly, we used more than one method to compute the energy eigenvalues as an internal check on the accuracy and to make sure our results are correct.

11. In the case of the renormalised series approach, we achieved results with very high accuracy as a result of a lengthy study of the effects of changing the value of the overflow parameter $(2^N, N=1,2,3,..)$, of increasing the dimension of B(N,M) and of varying the value of the renormalising constant K....etc. We also obtained much experience at dealing with other eigenvalue methods which involve optimum choice of parameters e.g Padé approximant, finite difference, inner product and power series methods. The present work gives us good grounds for believing that in future work the methods tested can be used to study other more complicated eigenvalue problems. The many numerical results which are reported in this work enrich considerably the stock of information available in the literature.

-219-

REFERENCES

1. C.M. Bender and T.T. Wu, Phys. Rev. 184(1968)1231.
2. B. Simon, Ann. Phys. 58(1970)76.
3. S.N. Biswas, et. al, J. Math. Phys. 14(1973)1190.
4. K. Banerjee, Proc. Roy. Sco. A364(1978)265.
5. J.E. Drummond, J. Phys. A: Math. Gen. 14(1981)1651.
6. J.E. Drummond, J. Phys. A: Math. Gen. 15(1982)2321.
7. G. Schiffner and D. Stanzial, Nuovo Cimento. 90B(1985)74.
8. J.P. Killingbeck, Phys. Lett. 65A(1977)87.
9. J.P. Killingbeck, J. Phys. A: Math. Gen. 13(1980)L35.
10. J.P. Killingbeck, J. Phys. A: Math. Gen. 13(1980)49.
11. J.P. Killingbeck, J. Phys. A: Math.Gen 14(1980)1005.
12. J.P. Killingbeck, Microcomputer Quantum Mechanics (1982).
13. J.P. Killingbeck, et. al, J. Phys. A: Math. Gen. 18(1980)793.
14. J.P. Killingbeck, Rep. Prog. Phys. 48(1985)53.
15. J.P. Killingbeck, J. Phys. A: Math. Gen. 20(1987)601.
16. J.P. Killingbeck, J. Phys. A: Math. Gen. 20(1987)1411.
17. R. Balsa, et. al, Phys. Rev. D28(1983)1945.
18. R.M. Quick and H.G. Miller, Comment (1984).
19. F.T Hioe, et. al, Phys. Rep. 43(1978)305.
20. Nasit. Ari and Metin. Demiralp, J. Math. Phys. 26(1985)1179.
21. J.P. Killingbeck and M.N. Jone, J. Phys. A: Math. Gen 19(1986)705.
22. J.P. Killingbeck , J. Phys. A: Math. Gen. 18(1985)L1025.
23. A.K. Mitra, J. Math. Phys. 19(1978)2018.
24. S. Galicia and J. Killingbeck, J. Phys. Lett. A71(1979)17.
25. R.S. Kaushal, J. Phys. A: Math. Gen. 12(1979)L253.
26. N. Bessis and G. Bessis, J. Math. Phys. 21(1980)2780.
27. A. Hautot, J. Comp. Phys. 39(1981)72.
28. C.S. Lai and H.E. Lin, J. Phys. A: Math. Gen. 15(1982)1495.

- 29. V.Fack and G.V.Berghe, J. Phys. A: Math. Gen. 18(1985)3355.
 30. G. Auberson, Commun. Math. Phys. 84(1982)531.
- 31. G. Auberson and T. Boissiere, Nuovo.Cimento. 75B(1983)105.
- 32. H.C. Praddaude, Phys. Rev. A6(1972)1321.
- 33. J.P. Killingbeck, J. Phys. B: At. Mol. Phys. 14(1981)L461.
- 34. J.A.C. Gallas, Phys. Rev. A29(1984)132.
- 35. J.P Killingbeck , J. Phys. A: Math. Gen. 18(1985)245.
- 36. J.P. Killingbeck, J. Phys. B: At. Mol. Phys. 20(1987)5387.
- 37. M.Grant and C.S. Lai, Phys. Rev. A20(1979)718.
- 38. C.S. Lai, Phys. Rev. A23(1981)455.
- 39. E.R. Vrscay, Phys. Rev. A33(1986)1433.
- 40. N. Bessis, et. al, J. Phys. A: Math. Gen. 15(1982)3679.
- 41. C.S. Lai, J. Phys. A: Math. Gen. 16(1983)L181.
- 42. A. Chatterjee, J. Phys. A: Math. Gen. 18(1985)2403.
- 43. J.P. Killingbeck, J. Phys. A: Math. Gen. 10(1977)L99.
- 44. J.P. Killingbeck and S. Galicia, J. Phys. A: Math. Gen. 13(1980)3419.
- 45. C.S. Lai and W.C. Lin, Can. J. Phys. 59(1981)733.
- 46. E.J. Austin and J.P. Killingbeck, J. Phys. A: Math. Gen. 18(1982)L443.
- 47. J.P. Killingbeck, Phys. Lett. 67A(1978)13.
- 48. J.P. Killingbeck, J. Phys. A: Math. Gen. 13(1980)L393.
- 49. R.P. Saxena and V.S. Varma, J. Phys. A: Math. Gen. 15(1982)L221.
- 50. R.P. Saxena and V.S. Varma, J. Phys. A: Math. Gen. 15(1982)L149.
- 51. M. Cohen and G. Herman, J. Phys. A: Math. Gen. 16(1983)4025.
- 52. Aparna. Ray and Pirtam.P. Ray, Phys. Lett. 83A(1981)383.
- 53. C. S. Lai, Phys. Rev. A26(1982)2245.

54. C.S. Lai and W.C. Lin, Phys. Lett. 78A(1980)335.
55. R. Dutt and U. Mukherji, Phys. Lett. 90A(1982)395.
56. G.A.Jr. Baker, Essentials of Padé approximants, Academic press (1975).