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ABSTRACT

T .
he present work is concerned with methods of finding

th

equati vari
q ion for various model potentials in one, two, three and
]

N-di . .
dimensional sSpace. One major theme of this thesisg is th
e

study of divergent Rayleigh-Schrsdinger perturbation series

which are encountered in non-relativistic quantum mechanics
and on the behaviour of the series coefficients E(n) in the
energy expansion E(X)zE(0)+E E(n)A". Several perturbative
techniques are used. Hypervirial and Hellmann-Feynman
theorems with renormalised constants are used to obtain
perturbation series for large numbers of potentials. Padé
approximant methods are applied to various problems and also
an inner product method with a renormalised constant is used
to calculate energy eigenvalues with very high accuracy. The
non-perturbative methods which are used to calculate energy
eigenvalues include finite difference and power series
methods. Expectation values are determined by an approach
based on eigenvalue calculations, without the explicit use of
wave functions. The first chapter provides a glance back into
history and a preview of the problems and ideas to be
investigated. Chapter two deals with one dimensional
problems, including the calculation of the energy eigenvalues
for quasi-bound states for some types of perturbation
(kxzn’1). Chapter three 1is concerned with two, three and
N-dimensional problems. Chapter four deals with
non-polynomial potentials in one and three dimensions. The
final chapter is devoted to a variety of eigenvalue problems.

Most of the energy eigenvalues are computed by more than one
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method with double precision accuracy, and the agreement
between the results serves to illustrate the accuracy of the

methods.
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CHAPTER ONE

Introduction

1.1 Introductory remarks

The aim of this work is to use numerical techniques to
compute the energy eigenvalues for one-particle Schrddinger
equations in one, two, three and (N=1,2,3,4,.....1000)
dimensions, for a large number of potentials with different
forms, as we shall see later. We face convergence
difficulties in dealing with perturbation methods. However,
there are an extensive range of techniques in the
mathematical literature to deal with divergence problem e.g
renormalised series, Padé¢ approximants and the Aitken
procedure. We wish to point out that we overcome the
convergence problem, to ensure that our results are correct.
by using the renormalised constant (K) which is given in the
review of Killingbeck [12,1980;14,1982]). The renormalization
constant (K) plays an important role in the convergence
aspects of the calculations which are investigated in this
work. Also, Padé¢ approximants and the Aitken procedure have
been used to calculate the energy eigenvalues for some
problems. The results are compared with those produced by
different methods which can be used to calculate energies for
the same perturbed potentials.

1.2 Summary of selected previous and present work for chapter

two
Bender and Wu [1,1969] have calculated 75 terms of the
ground state energy perturbation series for the 2Nz=4 case of

the anharmonic oscillator defined by the Hamiltonian



H=P%+ux2+3:x 2"  (2N=z4,6,8,10,10...18,20 ; u=0,1) (1.1)

However, Simon [2,1970] has studied the analytic properties
of the energy series for (2N=z4) and its Padé approximants.
Biswas, et. al. [3,1973] have calculated the ground state and
the excited state energies for power (2N=4,6,8) by using a
non-perturbative method (Hill determinants). Baner jee
[4,1978] calculated energy levels for the (2N=4,6,8) cases,
for high state number (0sns1000). Also J.E. Drummond [5,1981]
used 25 terms of the perturbation series to calculate the
first five energy levels. G.Schiffrer and D. Stanzial
[7,1985] treat the Schrdodinger equation to calculate energy
eigenvalues using a gradient method, for perturbation power
index (2N=6,8,10,12); they give results with high accuracy
(more than 20-digits). Killingbeck (8,9,10,11,12,13,14,15,16]
presented a number of works using many perturbative and
non-perturbative numerical methods which give results of very
high accuracy. In chapter two, the hypervirial theorem and
Hellmann-Feynman theorem are used to obtain energy
eigenvalues and expectation values for the harmonic
oscillator with)\x2N perturbing potential. We have also used
non-perturbative methods, the finite difference method and
the power series method, to calculate the energy eigenvalues
for perturbations with high N values (2N=4,6,8,10....18,20).
Some typical results are listed in tables (2.1,2.2,2.3,2.4).
Also the problem of quasi-bound states is considered for

the Hamiltonians given below:

H=P%4+x%42x’ (1.2)
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H=PZ+x %+rx® (1.3)

H=P%#+x %ax (1.4)

J.E. Drummond [5,1981;6,1982] used 11 to 20 terms of the
perturbation series to calculate the first six energy levels
for (1.2) and (1.4). The energy eigenvalues have been
calculated here by renormalised series for (1.2) and (1.4),
and Padé approximants for (1.3). Our results are in good
agreement with those given in ref [5,1981]; our results are
reported in tables (2.5,2.6,2.7).

R.Balsa, et. al [17,1983] used a non-perturbative method
which involves matrices to calculate the energy eigenvalues
for a double well Potential. R.M. Quick and H.G.Miller
[18,1984] also computed the energy eigenvalues for a double
well potential by a matrix method . In our case we

investigate their double well potential with the Hamiltonian
H=P%-2°x%+x?"  (2N=4,6,8,10,12..26,28,30....) (1.5)

but for a wider range of the potential parameters and state
numbers. The renormalised series work well in computing the
eigenvalues even for high values of (Zz +2N) and state
number' n. We also use power series and finite difference
methods, and show how the accuracy in the calculated energy
depends on the choice of the strip width h in the
finite-difference method. It is shown how to get a projected
energy eigenvalue by means of an extrapolation process in the

quantity hZ. Many of our results are not reported previously

in the literature, so we made many checks. The results are
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shown in tables (2.8 to 2.13).

1.3 Summary of selected previous and present work for chapter

three
Perturbation problems in two and three dimensions have
been studied less often than one-dimensional problems. Hioe,

et. al [19,1978] have studied the two dimensional problem:

1 62 a° 2, 2 4 2 2 4
Hz- 5| —5 + —3|+#|x"+y"[+r|a x"42a x"y +a_y (1.6)
ox dy

They have calculated the energy eigenvalues by using matrix
diagonalistation for different values of the perturbation

parameters ( »A), and different values of state

8,1°8208,,

numbers (n1=n2=0,1,2,3). Nasit and Metin [20,1985] applied a
characteristic function approach, and used Padé approximant
methods to compute energy eigenvalues for different values of
the potential parameters, comparing their results with those
in ref [19,1878)}, J.Killingbeck and M.N.Jones ([21,1986] used
an inner product method to calculate the accurate energies

for six states E E and three

E
0,0’ 1,1’Eo,z’E2,o’E1,3' 3,1

different values of (a1 +8__). The convergence of the

1’822 12

perturbation series depends upon the choice of the value of a
renormalised constant K. In the present work inner product,
renormalised series and power series methods are applied to
calculate the energy eigenvalues of a two dimension perturbed
oscillator for various values of (a

2,& Z’azl)’ (0-055“

1 2

5000) and state numbers (ni,n2=0,1,2,3).
For three and N dimensional problems Killingbeck
[22,1985] used a Hill determinant method to calculate the

energy eigenvalues for a perturbed oscillator for high
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values of angular momentum £. The Hamiltonian used was

2 2M

H(r)=-92+ur?+£(L+1)r “4rr (2M=4,6,8) (1.7)

Killingbeck also calculated the energy eigenvalues for

a-states (4=0) in (N=1,2,3,24,5,...320) dimensions using the
Hamiltonian
H"(r)z-D2+ur2+ %[[N+2£~3]W+2£—1]]r-2+Xr4 (1.8)

The energy eigenvalues for (1.7) and (1.8) have been computed
by us for power series and renormalised series methods. The
energy eigenvalues for (1.7) and (1.8) obtained by these
methods are in good agreement with each other, and with
available results reported in the literature.

1.4 Summary of selected previous and present work for chapter

four
Mitra [23,1978} calculated the ground states and first

two excited states (2N=2) for the perturbed Hamiltonian:

2N
H=P%+ x?+ —% _  (2N=2,4,6,8,10..18,20) (1.9)

(1+gx7)

He used the Ritz variational method in combination with the
Givens-Householder algorithm for numerical computations.
Galicia and Killingbeck [24,1979] give a simple numerical
finite difference method to calculate the energy eigenvalues
for the three lowest even parity states. Kaushal [25,1979]
has obtained the asymptotic expansions for the eigenenergies
and eigenfunctions of the wave function for the potential
given by (1.9) by expanding the factor 1/(1+gx2) as a power

series in gx’° Bessis and Bessis [26,1980] have studied the
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same problem by taking advantage of a two parameter (A and g)
scale transformation, and Hautot {27,1981] has used a Hill
determinant method for the potential. Lai and Lin [28,1982]
have applied the Hellmann-Feynman theorem and hypervirial
theorem to obtain the perturbation series for the energy
eigenvalues; they have employed the Padé approximant method
to sum the energy series. Their results, however, require the
asymptotic expansion of the factor 1/(1+gx2) as a power
gseries in gxz, which is valid for low values of g<2 only. On
the other hand, V.Fack and Vanden Berghe [29,1985] used a
finite difference method in combination with  matrix
diagonalisation for numerical computation, and transformed
the Schrddinger equation into an algebraic eigenvalue problem
involving special forms of matrix. They calculated the energy
eigenvalues for various values of g and » and strip width h
and compared their results with those of [28,1982]. This
problem has received great attention from us, and we used
perturbative and non-perturbative methods to attack the
problem. We determined the energy eigenvalues for various
values of the state number (n), and over a wide range of
values of A,g and power index (2N=2,4,6,..18,20).

G.Auberson [30,1982], G.Auberson and Boissiere [31,1983]
studied numerically and analytically the energy levels of a

one dimensional oscillator:

He=gP%+ %—xzt _8x (2N=4,6) (1.10)

They used various methods to calculate the ground state
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energy eigenvalues for different values of g and «, for the
case 2Nz4. We calculate in the present work energies for the
ground state and many excited states, for different values of
g and « and for (2N=4,6), using the renormalised series and
finite difference methods. The results are compared in tables
(4.7 to 4.14) On the other hand, it is interesting to point
out that the one dimensional problems (1.9) and (1.10) can be
extended to the three dimensional form

2 2

H=- d—z + rl+l(L+1)r %4 __>_~r___2__ (1.11)
dr (1+4gr”)
1 a8 1 2 £ -2 gr4
H=- —2-——-5-{' -2-1‘ + §(£+1)r i—-—-——-z—— (1.12)
dr (l1+gar™)

The numerical results obtained for (1.11) and (1.12) by
perturbative method agree with those obtained by a
nonperturbative method and the results are listed in tables
(4.15,4.10). Our methods for the non-polynomial potential
allow us to study the numerical behaviour of the energy
levels for (2N=2,4,6...18,20), and many ),g and state number
values, at the same time comparing the results with those for
the ordinary anharmonic oscillator g=0, which has been
studied in chapter two.

1.5 Summary of selected previous and present work for chapter

five
Praddaude [32,1972] calculated the 14 1lowest-energy

levels of hydrogen atoms in a magnetic field, using the

Hamiltonian



1 - 1 1.2
H= zpz—r 1+ 2'7{2 + §1 [x2+y2] (1.13)

assuming an appropriate expansion of the wave function in
terms of Laguerre polynomials and solving the Schrddinger
equation in cylindrical coordinates using a matrix
variational method. The results of Praddaude are in good
agreement with those of our calculation (described 1later)
shown in table (5.2). The calculations of Gallas [34,1984]
involve variational estimates of eigenvalues for first 13
states. Killingbeck ([33,34] investigated the problem of the
hydrogen quadratic Zeeman effect using several techniques
(power series, renormalised series and finite difference
methods) to calculate the energy eigenvalues and the
expectation values ™y N=1,2,3 for different states.
Killingbeck [36,1987] treated the hydrogen atom in a magnetic
field by wusing simple basis functions, such that the
Schrdodinger eigenvalue equation is transformed into a
recurrence relation, which gives accurate energy levels when
solved by a new shooting-relaxation technique. In the present
work we use renormalised series to calculate energy
eigenvalues for 30 states in magnetic field strengths
(0.0055y<0.01), and energies and expectation values <> in
magnetic field strength y=0.1 for 14 states. The renormalised
series gives very good accuracy even for high excited states.
The results are listed in tables (1.5 to 5.5).

In section (5.2) we investigated the problenm of the

Yukawa potential:



Hz - %V2+ %(£+1)r'2+ zr - le (1.14)

M.Grant and C.S.Lai ([37,1979] have applied the hypervirial
relations with the Hellmann-Feynman theorem to study screened
Coulomb potentials. They calculated (K,L,M) shell binding
energies for different values of Z (25Z<50), using power
series in A up to order A°?, Lai [38,1984] studied the
problem of the Yukawa potential by using the hypervirial-Padé
scheme for various eigenstates for Z=1, and found that the
[6,6] and [6,7] Padé approximants to the energy series can
account for various energy eigenvalues to a very high
accuracy. Edward. R. Vrscay [39,1986] developed a simple
power series method to calculate to high order the
Rayleigh-Schrodinger perturbation expansions for energy
levels of a Yukawa-type screened coulomb potential. He
produced results to very high accuracy (20-digits) for 1s,2s
and 2p states. In the present work we attacked this problem
by using renormalised series, and performed our calculation
for many eigenstates. The renormalised series yields energy
eigenvalues with excellent accuracy (more than 15-digits),
the results being listed in tables (5.6,5.7,5.8).

Bessis, et. al [40,1982] have computed the bound state
energies of the Gaussian potential.

d2 2 A 2
Hz - == +&(&+1)r “-Ae” r (1.15)

dr

using a perturbational and variational treatment on a

conveniently chosen basis of transformed Jacobi functions.



-10-~

They have calculated the energy eigenvalues for different
values of the quantum numbers (£,n). C.S.Lai ([41,1983]
calculated the bound state energies of the same potential for
various eigenstates (£,n=0 to 7) by using the
Hypervirial-Padé scheme. Also Chatterjee [42,1985] has
applied the method of 1/N expansion to obtain the bound state
energy levels of a Gaussian potential. The method of 1/N
expansion yields energy values which are in good agreement
with those results which are available in the literature. In
this work, we used the hypervirial method to calculate the
energy eigenvalues for various bound states. We extended our
calculation to high excited states (0s£<12) and (0<n<7), and
our method achieved 20-digit accuracy. Such a high degree of
precision has not been obtained before by any other method.
The results are shown in tables (5.9).

Killingbeck [43,1977] attacked the problem of the
perturbed hydrogen atom with Hamiltonian

q2

294 Ly - p e (1.16)

H= -
dr2

by using non-perturbative methods (finite difference methods)
to calculate the energy eigenvalues. In a subsequent paper
Killingbeck and Galicia [44,1980] used hypervirial relations
together with the Hellmann-Feynman theorem to get the energy
coefficients of the energy perturbation series. Lai and Lin
[45,1981] calculated the energy eigenvalues of various
eigenstates, by applying the hypervirial-Padé framework.
Austin and Killingbeck [46,1982] calculated the energy

eigenvalues with very high accuracy by using renormalised
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series. We calculated the energy eigenvalues for this problem
by using power series, finite difference and renormalised
series methods. The results produced by these methods are in
good agreement with each other. The results are listed in
table (5.10). The ground state of the s-wave Hamiltonian for

a hydrogen atom with a polynomial perturbation

H:%Pz-r-1+21r+212r2 (1.17)

has been studied by Killingbeck [47,1978;48,1980]. He pointed
out that the system possesses an exact solution for the

ground state energy and wavefunction for A > 0 given by

E= -

D=

+ 32 (1.18)

-(r+kr2)

¥Y(r)= e (1.19)

while for A<0 the potential has bound states but their energy
differs from (1.18). R.P.Saxena and V.S.Varma [49,1982
:50,1982] studied the same system and gave the exact
solutions

1

E=-3 +(2n+3)|x| (1.20)

which hold only for special values of the parameter )A. Cohen
and Herman [51,1982] 1listed results for (-0.25\5-20480) by
using a variational modification of Rayleigh-Schrddinger
perturbation theory. We used renormalised series and finite
difference methods to calculate the eigenvalues for the
Hamiltonian given by (1.17). Our results are in good

agreement with those in the references mentionedabove; the
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results are reported in tables (5.11,5.12).
The exponential cosine screened coulomb [ECSC] potential

with Hamiltonian

H= %p2+ %&(&+1)r‘2— r e * Cosa(ir) (1.21)

has been treated by several approximate methods. Aparna and
Pirtam [52,1980] applied the generalized virial theorem and
Hellmann-Feynman theorem to calculate perturbatively the
bound state energy levels without using a perturbed
wavefunction. C.S. Lai [53,1982] has calculated the energy
eigenvalues of (1.21) for various eigenstates within the
framework of the hypervirial-Padé scheme. We used
renormalised series to calculate the energy eigenvalues for
various states and different values of screening parameter.
Our method yields 15-digits accuracy, and the results are
given in table (5.13). C.S.Lai and W.Lin [54,1980] have
applied the Padé approximant technique to perturbation series
obtained through the use of hypervirial and Hellmann-Feynman
theorems. They computed the energies of 2p,3p,4p,4d and 4f
states.

R.Dutt and U.Mukherji [65,1982] proposed a new
approximation scheme to obtain analytic expressions for the
bound-state energies and eigenfunctions for any arbitrary

bound (4,n)-state of the Hulthen potential.

-Ar

1.2 £ -2
H=5P + Z(£&+1)r -x[—IT:TX—FJ (1.22)

They compared their results with those given in ref
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[22,1982]. We used the renormalised series to calculate the
energy eigenvalues for (1.22) for various values of X and for
high excited states (2p to 8h). The renormalised series give
high accuracy (15-digits).

Finally, we calculated the energy eigenvalues for

potentials in (one and three dimension):

-2Xx2
H= P%+ x? - z{———e————} (1.23)
14 a2Mx
2
~2Ap
H= P2+ r?+ £(£+1)r 2 - z[——e——z] (1.24)
1+ 2"

We used Padé approximant and the hypervirial method to
compute the energy eigenvalues for different values of A and
excited states (n=0 to 5). The results are reported in tables

(5.15,5.16).
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CHAPTER TWO
ONE-DIMENSIONAL MODEL PROBLEMS

2.1 Numerical calculation for H=P2+ux2+Xx2N

{2N=4,6,8,10..18,20)

2.1.1 Introduction

The investigation of eigenvalues has long been a
fruitful and active field of research, and a variety of
techniques have been employed to calculate energy
eigenvalues. In many kinds of eigenvalue problem one wishes
to improve the accuracy of results obtained by previous
methods, so we have tried to obtain eigenvalues of high
accuracy. For purpose of clarity, this chapter is divided
into four sections. Section one is concerned with the
eigenvalue problem defined by the Hamiltonian (2.1), section
two is concerned with the eigenvalue problems defined by
(2.42,2.43,2.44), section three is concerned with the double
well potential defined by (2.63) and section four is
concerned with the expectation value calculation. In section
one we would like to discuss the eigenvalue problem of the
general anharmonic oscillator, described in the

one-dimensional case by the Hamiltonian:
Hz=P 4+ 4ax 2" (2N=4,6,8,...18,20) (2.1)

The one-dimensional anharmonic oscillator has been studied
intensively in the past by various authors using several
powerful methods. The most studied system of this kind is the
quartic anharmonic oscillator (2Nz4). Bender and Wu [1,1969]
have calculated 75 terms of the ground state energy series.

Simon [2,1970] has studied the analytic properties of the
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series and its Padé approximants. Biswas et. al [3,1973] have
calculated energies of the ground state and the first seven
excited states for 2N=4 as well as energies of the ground
state and first excited state for N=3,4, for X wvalues
between (0.1=<xs100), using Hill determinants. Baner jee
[4,1978] calculated energy levels for 2N=4,6,8 for
(10 °sxs4x10'). Drummond ([5,1981] used 25 terms of the
perturbation series to calculate the first five energy
levels. G.8chiffrer and D.Stanzial {7,1985] have reported
excellent numerical results of energy calculations for the
ground state and first excited state for 2N=6,8,10,12 and
(10-6515106) by using a gradient method. Killingbeck
(8,9,10,11,12,13,14,15,16] presented several works using many
perturbative and non-perturbative numerical methods which
give results of high accuracy. We extended our calculated
results to higher values of the index N (leN,
2N=14,16,18,20). In spite of the high value of 2N, our
methods (non-perturbation methods) are still capable of
handling this perturbation. We use three methods to calculate

energy eigenvalues for the ax 2" perturbation.

2.1.2 Renormalised series to calculate energy eigenvalues for

2N=4,6,8
In order to find the eigenvalues E of the Schrddinger

equation:

2
[__§_2+px2+1x2"]?(x)=EW(x) M1 (2N=4,6,8) (2.2)
X

we shall use the hypervirial relations in calculating the
perturbation energy series. These relations are given by

Killingbeck [12,1982] as follows, for a potential & V x";
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2E(N+1](x">=z vn(2N+2+n)<x"’“> -

Nl Z

(N2—1)<xu-2> (2.3)

This formula has an obvious use; if the energy E and a
sufficient number of the <x"> are known ({analytically or
numerically) then it allows computation of other <x"> values.
This formula also has the interesting property that it yields
the Rayleigh-Schrodinger series for the eigenvalues and <xN)
values (as we will show later) without using any perturbed
wave function. We should comment here that an application of
the present method to a large variety of more complicated
potentials will be studied in the forthcoming chapters. It is
note worthy that although this approach is very attractive
for the one dimensional problem, its application to a system
of many dimensions has not yet been accomplished. We can

write the potential appearing in equation (2.2) as:
Vix)=px 2 4n " (x2N-kx?) (2N=4,6,8) (2.4)
where
!
p=1+41'K , A= (1=1,2,3,4) (2.5)
If we insert the series expansions given by:
E:Z E(J)r’ (2.6)

and

<x">:Z AM, NN (2.7)

into (2.3) and take into account the potentials coefficients

V,=(p-1'K) (2.8)
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V, A (n=1,2,3) (2.9)

we obtain the recurrence relation
(2N+2]2 E(J)A(N,M-J):(2N+H)[uA(N+2,M)—KA(N+2,M-1)]

+[2N+2n+4]A(N+2n+2,M—I)

- g[Nz-l]A(N—Z,M) (n=1,2,3) (2.10)

We use the series expansions in equation (2.6) and (2.7) to
obtain the relation between the energy series (E) and the

coefficient series A(N,M) as given below.

E=R(0)+E(1)ME(2)2\2+E(3)2+...... (2.11)
(x2>=A(2,0)+A(2,1) +A(2,2)2%+... (2.12)

x2"*%>=zA(2n+2,0)+A(2n+2,1)7A+A(2n+2,2)2\%+.. (n=1,2,3) (2.13)
Applying the Hellmann-Feynman theorem in the form

OE_ oV
575 (2.14)

We obtain a recurrence relation of the form
(ﬁ+1)E(M+1):IA(2n+2,M+1-I)—KA(2,M) (nz=1,2,3) (2.15)

The Hellmann-Feynman theorem and Hypervirial theorem provide
relationships between the energy E and the expectation values
<x">. It is clear now that from relations (2.10) and (2.15),
we obtain the full set of A and E coefficients starting from

the unperturbed energy.

E(0)=(2n+1)4u (n=0,1,2,...) (2.16)

and the initial condition A(0,0)=1, The convergence

properties of the resulting perturbation series are
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controlled by varying K.

The renormalised series work very well for the quartic
perturbation (2N=4,Iz1). The interesting point about this
approach for (2N=6,8) calculations is that the accuracy
varies with the power (I). We use this modified (variable I)
technique to perform more accurate calculations. These
calculations by the renormalised series technique become
progressively more difficult as N increases; thus one must
keep in mind that we can partly overcome this difficulty by
introducing 51. The primary motivation of this idea is to
improve the accuracy of our eigenvalues results, using a very
simple extension of the original renormalised series
technique. It is important to point out that the effect of
varying K , the renormalised constant, is to allow us to
obtain results of high accuracy. The best K values in this
calculation have been obtained by numerical search, so our
calculation reveals the importance of finding the best values
of the renormalised constant. The convergence rate decreases
remarkably when ) and 2N increase. Problems with computer
overflow were avoided by using the definition
A(N,M)—%ZNA(N,M). The renormalised technique has been used by
Killingbeck for many eigenvalues problems, and has provided
an excellent way to overcome divergence problems as well as
to obtain eigenvalues with very high accuracy.

2.1.3 Finite-difference eigenvalue calculations

The finite-difference approach is a nonperturbative
method capable of arbitrarily high accuracy. This method has
been described by Killingbeck in reference [12,1982]. We will

only mention the essential feature here; the reader
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interested in details should consult that reference. The
finite-difference method for calculating energy eigenvalues
of the Schrodinger equation

32

[:1;—2 - V(X)+E]‘l’(x)=0 (2.17)

with the potential
2 2N
Vix)zpux " +ix (2N=4,6,8...,20) (2.18)

produces results with high accuracy for a wide range of A
(10'%Q$5x104). For large ) values it seems that the present
method works quite well, whereas various other methods have
some problems. Although the results displayed are restricted
to even-parity states, the method can be used for odd-parity
states. To treat equation (2.13) or any similar problem, we

define the finite-difference quantity
8%¥(x)=¥(x+h)+¥(x-h)-2¥(x) (2.19)

where h is the strip width for the numerical integration. It
is well known that (2.19) can be expressed as series

expansion of even powers, by using the Taylor expansion
5°¥(x)=h*D?¥(x)+ T=h*D*¥(x)4----- (2.20)

Then we can combine (2.17) and (2.20) to give

h™25%¥(x)=D%¥(x)+ %§h2D4W(x) (2.21)
=[V(x)-n]w(x)+vp (2.22)

where the perturbation Vp has a leading term of order h®. The

most simple procedure is to ignore Vp as the first
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approximation; then the equation (2.22) reduces to the form
2 2
6"¥(x)=h [V(x)-E}V(x) (2.23)

We use two quantities R(x) and F(x) which are defined as

follows

¥(x+h)=z¥(x)R(x) (2.24)
‘P(x+h):‘l’(x)[1+h2F(x)] (2.25)

If we insert equations (2.24) and (2.25) in equation (2.23)

the following equations are obtained

R(x)+m—’1c_—m—=z+h"’[V(x)-E] (2.26)
F(x)-%%-ﬁ—_‘_g—;wu)-x (2.27)

For even states we have

¥Y(-h)=¥Y(h) (2.28)

which leads to the starting conditions

R(O):ﬁ—) (2.29)

F(O):%[V(O)—E] (2.30)

To apply equation (2.26) or (2.27), we need some initial
value for R(x) or F(x) and can then calculate successive R(x)
or F(x) values along the x-axis, with some test energy E. The
wave function ¥(x) is calculated using equation (2.26) or
equation (2.27) for two trial energies E1and E . We suppose
that E2> El, so that (VZ) has its nodes earlier than (W1).

Then the calculation of the projected energy is given as



E =E + — (2.31)
(1-¥,/¥)

Ep is actually a function of x; it is the interpolated energy
which would have given ¥(x)=0. As x increases, however, E

settles down to a limiting value, provided that EZ—E1 is not
too large. This limiting energy corresponds to the boundary
condition V¥(x)=z0. The true energy is related to the

calculated energies for varying strip widths by a formula of

type
E(h) =E_+ h2E2+ h'E +------- (2.32)
E(2h)=E_+ 4h°E,+ 16h'E +---- (2.33)
E(4h)=E0+16h2E2+256h4E4+ ----- (2.34)

From equations (2.32,2.33,2.34), we can obtain the equation
EO:%E[G4E(h)—20E(2h)+E(4h)] (2.35)

Here E(h) is the energy calculated using strip width h and
Eo is the exact energy (for h—0). Now we turn back to
equation (2.22) and ask what the first-order energy shift
would be if a perturbing term th‘/IZ were added to a

Hamiltonian., This shift would be the expectation value.

+®

ni=%§hzj ¥(x)D*¥(x)dx (2.36)

-®

The integral can easily be evaluated by parts to yield
2

This shift E1 could be produced by using the extra term
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s 2
Vp =-}—2-h“[V(x)-E] (2.38)

to simulate the more complicated term haDq/IZ

2.1.4 power series eigenvalue calculations

The power series approach has been used by Killingbeck
for calculations on many types of eigenvalues problem. He has
developed and modified this approach to give very high
accuracy for eigenvalues, comparable to that of the finite
difference method. The success of this approach allows us to
calculate eigenvalues for high value of A (0.15A<50000) and
(2N=4,6..18,20). We used the non-perturbative power series
method as another approach to calculate the energy
eigenvalues for the Schrodinger equation given by (2.17),

which we earlier treated by perturbation theory. We take the

wavefunction in the form
2 N
W(x):exp(-ﬂx )2 A(N)x (2.39)

If we insert equation (2.39) in equation (2.17) we obtain the

following equation:
(N+1) [N+2)T(N+z)= [43N+2B-E]T(N)x2

+ [p-4ﬁ2]'r(n-2)x"+kT(N-2M)x2“’2 (2M=4,6,..18,20) (2.40)

In the above equations we use the notation

zfrm)zz A(N)x" (2.41)

We can take the initial condition T(0)=z1 for even states or

T(1)s0 for odd states, with all lewer T(N) sere., We esan give
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a clear physical picture for this method; we want the bound
state wavefunction Y¥(x,E) to become zero as x approach
infinity (or sometimes for some finite x). We can describe
the calculational method as follows: we pick out some value
for x and take two trial energies Eiand E2=E1+H; we take
sufficient terms of the series (2.41) to get converged values
for W(x,Ei) and W(x,Ez). Then by linear interpolation we

estimate the E value E0 which would have made ¥(x,E) zero. We

then repeat using E1= E E_= EO+H with a small value of H. H

o’ T2

is typically 310'3. After a few repetitions we should get a
close estimate of an eigenvalue, appropriate to the boundary
condition ¥(x)=0. The interpolated value depends on
wavefunction ratio Y(E+H)/Y(E). The number of terms of the
series needed can be reduced by a factor of up to twenty by
using this ratio directly instead of waiting for separate
convergence of the ¥Y(E+H) and Y(E) series. In this approach
we have the convergence factor exp(—sz). The choice of the B
parameter helps to achieve or improve convergence. We

consider the success of this approach as being related to its

physical interpretation. We emphasize that the method gives

us the freedom to work with any value of 2N and X.

2.1.5 Results and discussion

The energy eigenvalues of the generalized anharmonic
oscillator defined by the Hamiltonian (2.1) have been
calculated for various values of A, using three different

methods; the renormalised series, finite difference and power

series methods. Our results as obtained by these methods are
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compared with each other, the agreement between them being
very good. In table (2.1) we list the energy eigenvalue for
{2N=4) arising from the renormalised series and power series
methods. It is clear from the listed results that the power
series method is able to produce more accurate results than
those from the renormalised series at high values of XA. Table
(2.2) gives the values of the energies of the anharmonic
oscillator (2Nz6,8,..20), calculated by power series and
finite difference methods for (0.15A<50000) and (u=z1,0). We
have computed ten eigenvalues in this range. From our results
we observed the order of levels E4<E6<Ee,....E18<E20 for
small values of (A=0.1,1..,5), but for large values of
(»=10,50,5000), we observed the order reversed. The physical
reason behind this is that the eigenvalues are non-analytic
at each crossing points, as discussed by Simon [2,1970] and
C.M.Bender [1,1969] and this has been proved by them. It
seems from our eigenvalue results for EZN(X) that the
crossing occurs approximately at the same value (\x5) for
various levels. As can be seen from these calculations, the
accuracy of our results is around 16 significant digits. The
energies quoted in table (2.2) agree to the number of digits
given with those obtained by other calculations. We wish to
stress that the finite difference method and power series
method work very well for any value of the index
(2N=4,6,..,20 ). These methods have obvious advantages over
the renormalised series method, which can only handle the
values (2N=4,6,8). The results for this approach are shown in

table (2.3) and it is clear that the accuracy is decreased

as 2N increases, although it is still very good in comparison
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with the results of Biswas et.al [3,1973}. In order to
illustrate the effect of the use of the 51 technique on the
convergence rate we have calculated many eigenvalues for
various }‘ (1=1,2,3,4),and the results have been liated 1in
table (2.4). It is clear from our calculations that the
accuracy is poor for 2N=6 at I=1 but at 1=2,3,4, it is
clearly better and we obtain 6 digits accuracy. For 2N:=8 we
find better accuracy at I=4, although we obtain only 4
digits. The confidence in the accuracy of the computed
eigenvalues is derived from the following checks;
1. The agreement between the two computed eigenvalues by the
two techniques which have been used is excellent, as is clear
from our results which list in tables (2.1,2.2,2.3).
2. Two separate computations for (2N=4,6,..20) by using power
series and finite difference methods with an increasing and
decreasing (x,B), yielded eigenvalues agreeing to 16
gsignificant figures.
3. The agreement between some of our results and the results
which have been given by G.Schiffner and Stanzial [7,1985]
and Banerjee [4,1978] for (2N=6,8,10,12), to about 16th
figures.
In conclusion, we remark that the present results are to our
knowledge the best available so far in the literature; for
2N>12 we have not found numerical results in the literature.
The method is able to deal with perturbations that other
methods cannot handle due to numerical difficulties, for
example the cases (2N=14,16,18,20). In the limit 2N——® the
potential becomes a square well potential and our methods
) ‘ﬁ\

should allow this limit to be studied. ¢ Univeisty J

Lisvary
vl
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Table (2.1). Energy elgenvalues of B=Po+x°+ax‘, First 1line
renormalised series calculation, Second 1line; power series
calculation, with digits before the last digit omitted.
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7816767 328822117
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Teble (2.2). Eigenvalues of the anharmonic oscillator

H=P2+ux2+hx2“, First line, power series method; Second
line, finite difference method, with digits before last
digit omitted.

A ( = ] "=1 B ’ Ytz“‘g):“;b .T
h h
430.004 810. 004
T I S SIS To00SS02| 10, 12T 13080200 o 03|10, 12
2]0.004 3]0.004
B [1.012403832222806 |10, 12]1.711876054024485110, 12|
6]0.004 510.004
10 [2. 205 /123260505632 10, 12|2. 0307 T8632140334]15, 12|
2]0.004 410.004
4]0.004 0}]0. 004
0].004 3]0.002
B00 |5, 278370000452701]10, 6|5.413436573224043]|10, ©
1]0.002 2]0.002
1]10.0015 0]§0.001
4]10.001 3]0.001
0000 17. 1303 7500880180 |15, 3|17, 11878054024485 (15, 3
8]0.001 5]0. 0008
A (2N=8), p=1 E,TTM);FF E,R
h h
6]0. 0025 6]0.0025
T.401010805662205110, O©]1.225820113800402(10, B
5]0.002 2]0.002
2 0.002 1§0.002
9]0. 002 810.002
610.002 3]0.002
8]0.002 6]0. 002
3}]0.002 9]10. 002
1000 |4, 949487440032743]20, ©J4.880077771126800]20,
3]0. 002 0]0.0015
TO000 [ 7. T78272214311008|25 , Bl7. 133402038130068130, &
9]0.0015 8]10.0015
B0O000]10. 70318738012488[40, B[10.57138300568737(10, &
8f0.0015 7]0.0015




Table (2.2 continued)

. X

h

=0

8]0.002
710.002

0]0.002

0§0. 002

0]0.002

9]0.002

7]0.002

510. 002

0]0.001

5]0. 001

B, X[(2N=127,

2]0.002

810. 002

6]0. 002

6]0. 002

410.002

3{0.001

6}0.001

030.001

» b=l

(

910. 002
7]0.002

0}J0.002

A

h

TO00 [3. 748204585104304 |50, 5 |3. 60BB57201954226 50, B
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Table (2.2 continued)

E’r[!“ I"- M"u E-!

h

X

h

8]0.001

1§0.001
6§0.001
1}0.001
3]0.001

8]0.001
110.001

=5 n§
8]0.001

4]0.002

8]0.001

8]0.001

710.001

710.001

6]0.001

6]0.001

810.001

8]0.001

410.001

), H=0

1. 2728728243 708B1[70 3]

2. 456809282320218(70 .4

h

B, X

h

4]0.001

0]0.001
0]0. 001

u=1

(2N=14),

8]0. 002

T.54542730166 7530 |45 ,B|1.421438084484285(45 . D]

0}0.001

0§0.001

1J0.001

2§0.001

6]0.001

2§0.001

8J0. 001

310.001

9]0. 001

(2N=16), u=1

8}0.001

T, 5B8542355408502( 70 . 3|

2§0.001
7]0.001
040.001

A

G. 1 |1.358260007208060 |40 , 5| 1. 060028786304 754[40 .5

B |1.023004061080720)42 ,6[1. 138108 785033750 (42 . 0|

10 |2. 065504Bb0003021 |46 ,5[1. Boo510216070127 46 .5

B0 [2.457745301560602 45 ,D[2. 31702534402557 |45 .|

T00 |2.656152748781866 |45 ,5[2. 527715500807106 (45 . 5|

B0 |3- 100353882040352 |0 ,4 (3. 001003111580656 |50 , 4]

TO00 [3. 46746435 7512808 (50 ,4]3. 370762754871078 |50 , 4]

TO000 |4. D6 7664806385073 70 , 4 |4. 404004420600328170 , 4]

G000 5. b6 160251167470)08 , 4 |5. 406567 150600122 |08 , 4]

A

0.1 |1.414362003380628)60 ,B|1. 120391627412878[60 , 5|

B [1.049134116363347(70 ,2|T. 761280249421046(70 . 4|
10 |2.071102060825460[50 , 5|1, 502287886305871 (50 , 5|
B0 [2.416622648346604|70 ,B|2. 274780016137083|70 5|

100 |2. 5e5434506115420]70 . 5|

B00 | 3. 048304407 17628060 , 3[2. 837002530218101160 , 3|

7]§0.001
2]0.001

8]0.001

TO000 (4. 177691814410580 80 , 3|4. 0B8355012684787{30 , 3

0]0.001

4. 857281266904 783110, 3 4. S00BGE0 17048242110, 3

3]0.001

TO00 [3. 2754309884385238 70 , 3[3.

oo



Table (2.2 continued)

. X|

3

h

B0 . 2|

»

h

XJ(2R=18), =0

3{0.001

5]0.001
7]10.001

0}0.001

3]0.001

7]0.001

2. B2 1784778040057 |30 . 2|

710.001

6]10.001

410.001

810.001

), p=0

1]10.001

510.001

0]0.001

5]0.001

9]0.001

6]0.001

2]0.001

410.001
5]0.001

3]0. 0008

B,

h

3]0.001

210.001
1§0.001

4]10.001

3§0. 001

0.001
mo 2

5]10.001

1§0.001

210.001

6]0.001

. X

h

3}0.001

310.001

9J0.001

7]0.001

9]0.001

3]0.001

4]10. 001

3J0.001
6]0. 0008

1J0. 0009

u=1

(eN=18),

1. 727082065295002 |80, 2[1.

1

» =l

(

1.

e

2.862914498435694110, 2]2.745535125812682]110, 2

A

1

BO0  |2. 042019458371235]

A

1

500
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Table (2.3). Energy eigenvalues of B=P?+x?+2'x®", First 1line; power serles

calculation, Second line; renormalised series, with digits before the last

digit omitted.
T T2N=2) 1

=1 ] (2N=8) I=4 N T K] (2R=B) I=2 4
0. 111. 1.1 T.
1j47{20 7 12850 9 70{80
0.211. 1. 17368034512043 T.
4}47]20 3 100]50 0 68]80
5. 511, 1. 2230871 3082240 1.
als1]18 1 g9 [so 3 g2]80
0. 4(1. 1. 1.
glas]14 3 81 [so 2 59180
0.511. 1. 1.
4 43]13 6 75 150 7 58]80
0.611. 1. 33280004337 330 T.
s {a7]12 5 78 |50 7 57|80
0. 711. T.36177250515288 1
o j43}i0 2 66 |s0 3 53)80
0. 811, 1. 1.44
1 ja4]10 5 67 Is0 5 61|90
0.011. 1.11 1.4
4 jas]s 4 78 |60 0 4680
T.011. 1.2 1.2
2 |39is 4 76 60 1 54180
2.0]1. 1. 1.
g8 |az2]7 1 81 |70 1 43|80
3. 011. T1.73280711701614 1.
o Jaz]e 5 71 |75 3 41]so
Z.0)1. 1. 1. 8221708700850
5 a3ls 3 71 |80 2 39]80
5. 012, 1. 1.
6 aojls 5 64 |s0 7 35]s0
5.0]2. T.
9 4315 8 66 |80 3 45]100
T.0(2. 1 1. 0020850 /558301
7 46|15 3 70 |80 2 43]100
.02, 2. 10452500821951 .
2 3414 2 75 j100 7 44]100
B 0le. 3507854078311 . . 1
7 4014 6 113150 7 53]120
10. [2. . .
1 a0jf4 2 70 j100 4 521120
20. |3. . 4 .
5 49]4 4 94 150 1 45}120
%0, 13, ; -
6 38180 8 82 {150 8 511140
0. |3. . .
) 39}100 1 83 J160 4 53]150
50. |4. . .
2 40]120 2 76 ]160 6 55}150
G0, [4. . .
6 29]120 5 84 ]i1so 1 561160
70. 12. . . . 1
2 30]125 4 70 J160 4 49}150
B0. 14. . 1 .
7 34]150 3 65 {160 9 49]150
B0. 4. . L )
6 34]160 1 67 160 6 50}160
T00|4. . :
5 37}170 7 80 ]180 8 a6]150
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Energy of ground state levels, by

using renormalised serlies method at a=1, The
number in the bracket correspond to exact value.

T | 2N=b "N | R | 2N=8 N 1R |
T. 2558 T2 1801 1.5 T;g

51 1.430028 1811770148 | ¢&o0)
™T.450628 152 1400 1.480 1551100
T.45028 1 61601 L.38T 15X T1¢80
T1.2356246) (1.4
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2.2 Numerical calculation for Quasi-bound states.

2.2.1 Introduction

This section is concerned with potentials of the types:

V(x)=x2+rx> (2.42)
Vix)=x+rx® (2.43)
Vi(x)=x2-ax* (2.44)

and the hypervirial recurrence relations have been used to

calculate perturbed energy eigenvalues. There are many

studies of potentials of the form
2 2N
Vix)=px " +xx (2N=4,6,..10,12) (2.45)

whereas for potentials of the form

Vx)=xZ+rt? (2N=2,4) (2.46)

there are few reported results. The energy levels of an
anharmonic oscillator with a perturbation of type rxhave
been calculated by Drummond [5,1981;6,1982]. The potential
functions given by (2.42,2.43,2.44) describe a system which
has no true bound states. For large x, ¥(x) does not tend to
zero and is not admissible as a normalizable wavefunction, so
that the particle is not permanently confined to the
neighbourhood of the centre of force. However, in spite of
there being no true bound states, we can still compute an

average real energy for small values of 2.

2.2.2 Renormalised series method to calculate energy

2N+1
X

eigenvalues for A . (2N=2,4) perturbation

In order to find the eigenvalues E of the Schrdédinger
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equation:
a’ 2 2N+ 1
[- — t X +Ax ]W(x):EW(x) (2N=2,4) (2.47)
dx
We shall use the hypervirial relations (2.3) in calculating
the perturbation energy series. Drummond’s approach is based
on a method due to Bender and Wu [1,1969]. It uses recurrence
relations to <calculate the perturbed energy and wave
function. We should point out that Drummond used extrapolated
values based on the first few terms of the energy series, but
in our approach we calculate many terms of the series. Also
in our approach we tried out Aitken’s transformation in order
to increase the accuracy, but unfortunately it did not seem
to help to improve the accuracy of our results for this
problem. In order to improve the convergence properties of
the perturbation series we used a rearrangement of terms in
the potential (renormalised perturbation series).
To illustrate this technique we can rewrite the

potential (2.46) as follows
V(x):uxzﬂt(xZNH-sz) (2.48)
where
u=1+43K (2.49)

The new perturbation series is still divergent but its
divergence begins for high values of A, so that for low
values of » we findagood energy value. Inserting the series
expansions given by equations (2.6) and (2.7) into (2.3) and

taking into account the potentials coefficients

V-f(-m) (2.50)
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v2N+1=k; (N=1,2) (2.51)

we obtain the recurrence relations

(2N+2)2 E(J)A(N,M-J):(ZN#H)[uA(N+2,M)-KA(N+2,M-1)]

+[2N+2n+3]A(N+2n+1,M-1)- g[Nz-l]A(N—Z,M) (n=1,2) (2.52)

Applying the Hellmann-Feynman theorem as given by equation

(2.14), we obtain a recurrence relation in the form

[M+1)E(M+1):A(2n+1,M)-KA(2,M) (n=1,2) (2.53)

It is clear now that from equations (2.52) and (2.53) we
obtain the full set of A and E coefficients starting from the

unperturbed energy

E(0)=(2n+1)4p (2.54)

2.2.3 Energy levels for negative quartic oscillator

It is interesting to note that the renormalised series
method can even be extended to the case of a negative but
amall value of A. Strictly speaking, no bound states are
present in this case. We can write the potential appearing in
equation (2.44) as

V(x)=px2-x(x‘+kx2) (2.55)
If we use the series given by equations (2.6) and (2.7) and
the potential coefficients which are given by equation (2.56)

as
v2=(-m). v, =2 (2.57)

in the hypervirial relation (2.3) we obtain the recurrence

relation
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(2N+2)2 E(J)A(N,M-J):(ZN#%)[uA(N+2,M)-KA(N+2,M-1)]

-(2N+6}A(N+4,M—1)- g[Nz—l]A(N—Z,M) (2.58)

If we use the same approach as used to obtain equation (2.53)

we get the energy equation
(M+1)E(M+1):-KA(4,M)-KA(Z,M) (2.59)

The above recurrence relation together with relation (2.58)
and (2.59) are sufficient to determine the coefficients E and
A of the perturbation series, starting with initial
conditions for E(0) and A(0,0) as quoted previously. We
calculated the eigenvalues of the (- Xx‘) ogcillator for
ground and excited states for different values of A as shown
in table (2.7). It is worth noticing here that varying the
renormalised constant K improves the convergence our results.
The numerical eigenvalues of (x2-1x4) are in reasonable
agreement with the previous results which have been obtain by
J.E.Drummond [5,1981], who used 25 coefficients of the energy
series to calculate the eigenvalues of energy. Our
calculations were done on an ICL system using double
precision arithmetic.

2.2.4 Results and discussion

The ground state as well as excited energy levels of the
generalized anharmonic oscillator defined by the

Hamiltonians:

2
d
H - S xfea®N? (2N=2,4) (2.60)

dx
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2

Hz- -2 4x2-ax! (2.61)

2

dx
have been calculated for various A values, using the
renormalised series method. Our results for (lxa,-qu)

perturbations have been compared with previous results of
J.E.Drummond [5,4] in order to have an idea about the
accuracy of our approach. In table (2.5) we present the
energy eigenvalues for a (—Xx4) perturbation for the first
five excited states, for different values of A lying
between (0.01=<x50.12). Our results lead to the following
observation:

1. Our perturbation energies series for Ax” converge very
well for small values of A (A<0.12), where our approach has
obtained 20 significant figures. The precision of the
energies seems good even for excited states, but
J.E.Drummonds’ approach achieves only 12 figures; our results
can thus considered as more accurate.

2. The renormalised series approach for (1>0.12) deteriorates
in convergence. This approach has a limited range of
application, and seems not to work for this range of ),
presumably because the quasi-bound states are not well
defined for such large A.

3. The most important difference between the J.E.Drummond
approach and our approach is that the former computed only 20
coefficients while we have computed any number of
coefficients until we obtain the best converged energy.

4. The Padé approximant technique has been used to calculate

the energy eigenvalue of the potential given by equation
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(2.43) for low values of A, because the energy series is more
speedily divergent than that for the potential (2.42). Our
results in table (2.6) exhibit this behaviour. This technique
is reviewed in more detail in chapter 4. In the absence of
other reported results (to the best of our Knowledge), we
have calculated each eigenvalue for two values of [M,N] in

order to estimate the accuracy of our results.
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Table (2.5). Energy eigenvalues of H-P2+xa+xx3, First line;

Renormalised series calculation, Second line; Drummond
calculation, with digits before the last digit omitted.
S N IX 1‘1 )
(OB (LB PR LRI b BE B PRl kst B il iol-xd Bl A
6 1
TS T TR TS T T [ Do S T TR o T T
3 1
(i) LIk oL e ik T RS A R lo kst lo ke ok P N e 13§ Y A Hal
S 8
(R (Reiskiielsieloie e i klse) BLY PR VRl il Vil pA o] s
2 40
(0] (RIsk Ry el L Kelel s Ul bl A PR T ke g B8 il LY
4 6
(R L oL g T oK KLY A PRy okl le b B kely ] keic] P
40
(ORoyA (OIS T A P 0L O T00 I PR A L R ool vd 1] P
3 7
(ORL:) DR P P R UYd P PR Y2 T T PR L 5
8
mmmggmﬁ%gmmwrmwr
0 30
(RS Le) LR P h ol kore] il A P lspeh k[t azlol et B 2 P
1 3
(RS LIl o oie) ke W R (3] 2 R lolz ok le g o) Em
1 2
(O] (M IRE Yy T - e
9 2
52510, 55863 I AT 51 (3
3 5
N R N
2 3
0.01 1412 |6.9976788050043898205§15] 2
(]
(FA L9 BT P Rl il v
8
(k] [ 9 P23 B e R R T v ket i
4
(POLILY 30 B RSt S el srerke] el B
9
i B ferd B (L T ok rdr 58 LY B
1
ORI [ V8 R (e p e PiokT Atk BT visisie] 0] A
g
RYd I8 TSI |5 50030052080 Tes0 [B21 2]
3
(R L Ga] A R g Liatol oh3a0:T 1 )
4
50511 Y P K KT L S I v B
4
5 I01E B G S v e i
6
53| 28 WY (Fis koK) B
0
5181 50 A R =2
8




-40-

" Table (2.5 continued)

E

10, 55425605350 730 16451

7

10.8T70TABE 70755 17248 |

10. B47053860600341616 |
0

SIEEEERER

CEEEE |

R E |

Mo o o o of N o
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Table (2.6). Energy eigenvalues of H=P2+x2+ax®
the result produced by Padé approximants E [M,N]

A Eo I ' 1
5. 005 0. D3082353 | , .
0.989982353] [9,8] }2.99771
0. 99927923 2. 85904 |

0.998927823] [9,8] ]2.9907
0.89678

7 (8,8] J2.996
L EINLNT [ E, |

2 3

0.005[4.98718 | [7.77 [6.95381
4.98719 [8,8) ]6.95387
.57 | 5.6 |

4:94 [8:8] 6:7
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Table (2.7). Energy elgenvalues of H=P2+x2—hx‘, Firgst line

Renormalised series calculation, Second line; Drummond
calculation, with digits before the bracket omitted.

Al B, N IR E1 KN
5. 01]0. 90236 322064601319978 |24 (4 [2.9614019030236117289)30 4
(8) (5)

0.05]0. 95823 18[10[2. 771 21120

(3336) (128)

R ZF N [K Ea N K|
0. 0114, 8083020366280806830 [35]2 |6, 8014327084883407 312 |
(6) (5)

0.05]4. 316 34[B0|5. 54 2150

(58) (4)
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2.3 Energy levels of double-well anharmonic oscillator

2.3.1 Introduction

The aim of this section is to investigate numerically the
eigenvalues of double-well potentials with form given as

below:

2N

Vix)z- 2%x°%+ x (2N=4,6,8,......28, 30) (2.62)

The most studied system of this kind is the quartic
double-well potential (2N=4). The calculation of eigenvalues
for the Schrddinger equation with double-well potential has
received great attention from | us. We extended our
calculations to higher powers (2N=4,6,8.....28,30), since our
methods free our hands to compute the eigenvalues for such
higher values of 2N. The treatment of the double-well
potential (2Nz4) has attracted many authors. For instance,
R.Balsa et. al [17,1983] have computed the energy
eigenvalues for 2N=4,(05225100) and 0s2n<21; their results
produce 12 digits accuracy. R.M.Quick and H.G.Miller
[18,1984] have computed for 2N=4, Zz=50 and (02n<79); they
used a non-perturbative method involving matrix
diagonalization to calculate some energy levels. Our
approaches will use a perturbative method as well as a
non-perturbative method. Our main object is to demonstrate
that both approaches work and are able to produce excellent
accuracy in spite of high values of Za, 2N and state number
n. It is important to point out that some of our results for
this problem are not available in the literature, so the
values which are listed in our tables have been checked at

least by two methods. The agreement in our calculated results
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by both methods gives us faith that the accuracy yielded by
our methods is high. The depth of the double well is
controlled by a parameter A (in equation 2.64 below). In
some cases, particularly for z%21 or Zzslos, one approach
works better than the other. The perturbation approach works
excellently for large values of Z2 because as Zzincreases the
depth of the two wells become deeper and for deep wells the
perturbation series converge quickly.

2.3.2 Renormalised series for Double well potential

To calculate energy eigenvalues for the double well

potential, we consider the Schrddinger equation

2

[ 9—2+E-V(x)]w(x)=o (2.63)
dx
where

vix)=-z2x%+x?"  (2nN=4,8,...26,28,30) (2.64)

The SDWP energy levels are found by simply setting uxz—e-zzxz
in the equation (2.1), and shifting the energy so that the
zero of the energy is at the bottom of the well, with ZZ)O.

The minima of V(x) are located at
x=x (2.65)

where
_[ Zz][zu-z]
xo=| N (2.66)

In this case we expand V(x) about its minimum at X, in

order to estimate the eigenvalues E around X The Taylor

expansion for the potential V(x) about x, is



_ ‘. 1 s 2 1 V) 3

i X, n’ (2N=4,6,8,...26,28,30) (2.67)

If we follow the same procedure as used to obtain relations
(2.10) and (2.15), we obtain hypervirial recurrence relations

corresponding to the double well potential case as follows:

(zmz)z E(J)B(N,M-J)=- %‘[qu]A(N-z,M)

—(2N+4)[uA(N+2,M)+KA(N+2,M-1)]

2 d V""I [2N+2+n]A(N+n,M-1) (2.68)
n=3 x*x
(4]
N n
(M+1)E(M+1)=i —g—vé‘-ﬂ-l%,A(n,M)—KA(Z,M) (2.69)
n=3 dx sz.
s}

The unperturbed energy corresponding to the double well

potential can be expressed as

E:-V(xo)+(2n+1]lu (n=0,1,2,...) (2.70)

and we obtain a hypervirial perturbation formalism for the
problem. We also used a non-perturbative power series method
to calculate the energy levels of the double well potential,
as noted in the introduction and in the beginning of this
gsection. If we use the wavefunction (2.39) in equation (2.63)
and follow the same route that led us to recurrence relation

(2.40), we get the following recurrence relation:
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(N+z)(ﬁ+1)T(N+2)=[45N+2ﬁ-E]T(N)x2-[zz+432]T<N-2)x‘

2M+ 4

+AT(N-4M)x (M=1,2,3,4) (2.71)

which gives the terms in the power series for the
wavefunction. The use of the recurrence relation (2.71) it
gimilar to that of the recurrence relation (2.40). We also
used the finite difference method to compute the energy
eigenvalues, to give another check on the eigenvalues for
this potential.

2.3.3 Results and discussion

Three methods have been used for calculating the

eigenvalues ofthe double well potential:
Vix)=-22x%+x?"  (2N=4,6,8,10,...30) (2.72)

Each method has its own limited range of applicability in
which it gives excellent numerical eigenvalues. The
computations were carried out to double-precision accuracy
(20 decimal places) on a VME system with a Fortran (77)
program. We list some of our results in tables
(2.8,2.9,2.10,2.11). We present the eigenvalues for different
values of Zz, 2N and state number (n). The results shown in
table (2.9) are yielded by power series and finite difference
methods for (2N=4), (15225100) and state number (n= 0,10).
The two methods achieve the same accuracy (18-figure), and
the accuracy of our results is in good agreement with the
accuracy results produced by other methods. The results in
table (2.9) are computed by renormalised series and power

geries methods for 2N=4, (100s2°s200) and (0<n<100). The
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agreement between the two methods is in general good to about
16-figures but at low z%values (22:100) and high state number
(80sn<100), the renormalised series faces difficulties in
producing the eigenvalues, while the power series method is
able to give very high accuracy. In table (2.10) we list
ground state results for (2N=6,8,10,12), and for 2N=6,8;
105225200, and for (2N=10,12); (50s2°<5000). The agreement
between results is very good (20-digits). In the present
work, we consider not only 2N=4, but extend the work to high
powers (2N=6,8, 10...28,30). We list in table (2.11) the
results for (2005225106), (2N=4,8,10,12,...16,18) and
(OSnSlOG). It is clear from our results that the renormalised
series method achieves very high accuracy (20 digits). We
show in table (2.12) the results for (2N=4,6,8...30);
z2=106and n=0,5,10. Our results for the double well potential
have the following consequences:

First the three methods all yielded excellent accuracy for
high values of Zz, 2N=4,6,8,..28,30 and state number n. The
renormalised series produce 20-digits while the power series
and finite different method yield around 18-digits.

Secondly the renormalised series work and converge very well
(even with zero renormalised constant k=0) for high values of
22, but for low values of z® the accuracy depends on the
choice of the constant K. On the other hand, there was seen
in some perturbation series calculations the phenomenon of
bogus convergence of the perturbation series. We can overcome
this situation by running the same series for different

values of the renormalisation constant K, or by using another
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method to compute the eigenvalues.

Thirdly, as 2N increases the order of the series (M) must be
increased to get converged eigenvalues. For instance at
(2N=6, ZZ=106, n=100) the order of series Mz=9 suffices but
for 2N=16 with the same parameters as for 2N=6 the order
M=221 is needed. Therefore, the computation requires more
time to obtain a converged eigenvalue. The numerical
investigations of the double well potential shows the
applicability of the renormalised series method is limited to
small values of Zz; this behaviour is clear from our results
in table (2.9). In conclusion, we remark that a large part of
our results (as noted in beginning of this section) are not

available so far in the literature for any value of 2N and .
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Table (2.8). Energy eigenvalues for H=P2-22x3+7tx‘.
first line by using Power series method, Second line
by using Finite difference method.

PR
Z2 _!o 10 II!I
. . 49809600392
3 )
H 95 820 04 )
8 4}
=1 ) oo o] -
2 3
e e 96. 10 42 0 [
o 5 3
- 5 58007516895162 16
5 2
15 - 5. 1032301549914050 16
6 5
r- ~-422.068788468890653 18
5 3
100 1- -2206. 3979330858386 7110
4 7




Table (2.8). Energy

by using Renormalised series,

difference method.
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eigenvalues for H=P%-2%x%+x ,

S first line

Second 1line by wusing Finite

n | Z%=100 "
R B
10 | kyam
30 | S0 |
40 | T1Z2[15
B0 | 164 |
B0 | 214 14
80 | 280
5598
80 |-263. 34133 277
396322586
T00|-81. 2661
8568086503131

| 2°=200

=8880. 0050028
0F-9581.86
0f-9186. 389286
o) P :ds TIsleWis

-840 0
0]-8019 870
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Table (2.10) Ground-Eigenvalues of H=P?-2%x%+x2V

first line; Power series method, second line; Finite
difference method.

N
N

2N=6 2N=8
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Table (2.10 continued)

189999997




-53-

Table (2.11). Energy eigenvalues for H=P2-22x2+x2’,'
by using renormalised series method.
2M Z2 Fn jEner eigenvalues K IN I
T |200 0 J-5580. 13 |
108 —BB16. 4449512062200544 150 1113 |
128 |-5100. 05003 1880725827450 1142
1 —241041. B0S0S6UBBABDD1 | 23 |
00 |- o100, DOBOoSe0T 10880)50 3T |
TO00000 0 |-240000008585. 18043003 1
—2409009432800. 48208944130 13|
B0 |-240098584372. 97006629130 13 |
TO00  |-240087170161. 65460846130 13|
TO000  |-240071714514. 57458827130 15 |
BO000 | -2409858584 730, 45008914130 17|
[TO0000 |-249717185870. 6246623030 18 |
TO00000 | -247174577488. 01323762130 |8 |
B 1500 J0 |-4258. 06887 78270245144]30 |15 |
5 -3810. BT 1300 |
10 |-3303. 3180268082713776158 1300 |
1000 JO . 18 J20 |
10 76 J20 |
15 75 300 |
[TO00000 JO ;:16—
1 g
1000 18 110 ]
10000 | 71 {10 |
51 15335000
1000 |0 B2 JZ000]
0 252 | 5000 |
16000000 | B 1500 |
T - 22 1500 ]
1000 (T8 500 |
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Table (2.11 continued)

Ener, eigenvalues
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Table (2.12).

H=P%-10%x%+ x2*




the empty spaces mean that the corresponding elgenvalues cannot
ached by the renormisled series method.

Table (2.13). Eigenvalues of double well potential, H=P®-22x2+x*,

be re
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Table (2.13 continued)
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Table (2.13 continued)
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2.4 Expectation value calculations <x2N>

2.4 .1 Introduction

Our aim in this section to find expectation values x M

for the potential
Vix) = x°+ ax* (2.73)

However to find an expectation value such as <x*"> for a
bound state, we need to have the eigenfunction ¥(x) for all

x if we wish to apply the definition
x®% =Jv2(x) x2Mdx (2.74)

To find Y(x) for arbitrary x and for any state number
(n=0,1,2..9,10), is not easy. However Killingbeck [12,1979]
has applied a very simple perturbative numerical algorithm
for the calculation of an expectation value, based on the

formula

N 1 N
x®"> = Lt__, o 37 [ E(H + ex?")- E(H - EXZN)] (2.75)

This algorithm demonstrate that expectation values can be
determined by an approach based on eigenvalue calculations,
without the explicit use of wavefunctions. The way in which
we can calculate is as follows; we do two calculations, to

get two E values, with ¥€x2" included in the potential

2 4 2N
E = x'+ A + €x (2.76)

E = x'+ x'- ex™ (2.77)

where ¢ is a very small number. The value of <x*"> is then



given by
M =L g _ g (2.78)
X < 2¢ + - Lo

The Hellmann-Feynman and the virial theorem also provide
relationships between the energy and the expectations values

<x2>, (x*> which take the form
ZE[N+1]<x">:[zn+4]<x"’2>+[2N+5]x<x"*‘>-g[nz-1]<x"'2> (2.79)

We used the Hellmann-Feynman theorem to «calculate the
expectation values along with the energies for potential

(2.73), and can calculate the coefficients in the series

(x2">=A(2n,0)+A(2n, 1) A(2n,2)2%+A(2n,3)2 +.. (n=1,2) (2.80)

E=E(0)+E(1)x +E(2)AZ4E(3N+E(4)A Y oo, (2.81)

2.4.2 Results and discussion

The energy eigenvalues and expectation values x M

(2N=2,4) of the potential V(x)=x2+lx4 have been calculated
for state number 0<ns10 and for various values of
(»=0.1,1,10,100) using three different methods; the
renormalised series method, the finite difference method and
the power series method. The energy and expectation values as
obtained by these methods are compared with each other, the
agreement between them being very good. To use power series
or finite difference methods to calculate the expectation
values <\l’|x2"|‘l’> (2N=2,4) of the xzu, we s8imply calculate the

. . . 2N
energy twice, once for Hamiltonian H+ex and once for
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H-ex°N. According to the first order energy formula the
difference between them equals 2e<¥|x*"|¥» if ¢ is
gsufficiently small. It is important to point out the effect
of the parameter value ¢ in obtaining high accuracy of <x2¥> .
The best values of € in this calculations have been obtained
by numerical search. An € value £=107° gave 15 digits
accuracy, but larger values such as E>10'8 produced less
accuracy. Our results were checked by noting that the

independently calculated values of E, ¢<x%> and <% obeyed

the virial theorem

B=2¢x>+3x¢x ) (2.83)

In tables (2.15) and (2.16) we list the energy E , E’ and the
expectation values for x?"> (2N=2,4) for state number 0sn<10
and for (A=0.1,1,10,100), with the value €=10"°. This value
seems good for high values of A and gives 10 digits accuracy,
but the accuracy decrease with small values of A. The results
presented in tables (2.15,2.16) are computed by power series
and renormalised series methods. The agreement between them
js very good. In table (2.17) we present the energy
eigenvalues and the expectation values by using renormalisd
gseries and power series, with the smaller value €=10"?2., The
two methods achieve the same accuracy. We wish to mention
that to produce results by using renormalised series with a
high accuracy, we worked hard to achieve that, e.g by
changing the value of the overflow parameter (2", N=1,2,3.. )
and also by increasing the dimension of B(N,M) together with

varying the renormalised constant. We checked some of our
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results which are given in tables (2.16,2.17,2.18) by using
the finite difference method, which gives the same accuracy
as that achieved by the power series. Our results also agree

with those available results reported in the literature.
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Table (2.14) Calculations for energy and

expectation values for potential V(x)-x2+Ax‘.
First 1line; renormalised serlies calculation,
Second line; power series calculations, with
digits before the last digit omitted; by
applying approach

E(H+ex" )-E(H-ex™)

<x">-=1.tc e == , where e=10"°
nx|E, E o> ]
(OB (PR PRy B ML Ll o] (O st ety
I T S T

] (e KL iork Y sty R icrir
T R T SROTE T TSI
BT B R LD 10T IOk
T | TR T TSI,
T ] oo e e ot o]
TR LB AL L] R o] Pl oo
T T TS T T T
R e PGS o] PO d
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Table (2.14 continued)
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Table (2.15) Calculations for energy and

expectation values for potential Vix)=x2+axt,
First 1line; Renormalised series calculation,
Second line; Power series calculations, with
digits before the last digit omitted; by

applying approach
E(H+ex")-E(H-ex")

<x">=1_’g_’o = , where e=10">
n|A !‘ 1l o> ]
O (8 ¥ L focc) WS U0 3 i VMY sy
T TR T [ ST s
T [T T OO AT
T SO TO TR T TS o TR AT

L T oo S ke

o TSI ST T T
T T T T e TR [ TR T
A (R R oo L ] R e
. e L T

O [T § F el R e
b K e ] i) (e P
T TR T ST T ST
TS T T TR T I T
T T T {5 ST E
TR TS s
TR To TR T [T T IO
TR ST T TR I
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Table (2.15 continued)

9
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Table (2.16) Calculations for energy and expectation values
for potential V(x)txz-mx‘. first line by using power sgeries,
second line by using renormalised series method with e=10"%,

nja En <> <> 1
(o (S8 Byt it AN (S Tkt W] (R gcieiorsd el e
8 6 2

il LTSI PIB ] (RSB y g Weoicd (SRS ST o3eiokeng

8 8 7

SUR ERV RN ANk icicie] (L LAt AT B T Y (oM ool oT Y A
7 4 2

8 (4] 0

S5 4 2

TR L RG] (RISt SR BRI p b Uo7 feio]

5 5 5

6 4 7

BLOIO] B Lo e P g oty (o Kl e lo T P Aoy ] (W BT spdoleicnae
2 2 ]

10T T S T T e o0 [ OIa s T oE T IS0 TE
3 0 6

6 8 4

<] <] 0

7 6 5

I (O RS o PR R BT Y BT ke o tsie]
7 7 9

T B Loy garierd i[5 R Oy friord teieloleieoh

5 6 1

39 4 3

BU00) L MLl Bl Lok b Uokcd oMk (oloisisiciztor- 3] (B erie T8
3 8 1
BRSO K KBRSl L k] BT g Rl p i 3R

3 9 1

O R Kk ] Bk kSR LA i A pLoiepisicle]
2 4 8

SR PCioioh g ik ich (L L I iRy B KLl ielsisin]
3 1 0

BUO) (T O Y [l Py g i) (Ao P Aotk
4 3 7

R (O BRI ST T AL Vi ] R feisT STy AT S PRSP T o1
g 4 7

] RO AL P [ GRS

9 2 1

5 {18 T oo0a080 e T |0 e T Ies IS e T Io |1 a5 ST IoSoso0a s
2 9 9

BL00] EER KPR R BT YL Y (AP T A0 el isyoied
1 2 5
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Table (2.16 continued)
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CHAPTER THREE

TWO, THREE AND (N=4,5,6..) DIMENSIONAL PROBLEMS

3.1 Introduction

The aim of this chapter is to investigate numerically
the potentials in two, three and N dimensions which are given

as below

V(x,y):%[x2+y2]+l[a1lx‘+2a12x2y3+a22y4] (3.1)
Vir)=urZ+2(£+1)r Zear?® (2M=4,6,8) (3.2)
v, (r)zur’s -}[[mz&-:a][N+2£-11]r‘2+xr“ (3.3)

We used three methods, the inner product method, the
renormalised series method, and the power series method to
calculate the eigenvalues for the potentials given above. In
two dimensions we computed the eigenvalues for different

values of the potential parameters (a11,a a12) and for many

22!

eigenstates (K nl,n2:0,1,2,3), over a wide range of A

n1l,n2
values. In three dimensions we computed the eigenvalues for
high values of the state number n, for various values of the
angular momentum £, perturbation parameter X, and for
different power indices (2M=4,6,8). We also calculated the
g-state energy eigenvalues for spherically symmetric states
in N dimensions. This chapter is divided into two sections as
follows. Section one is concerned with the two- dimensional
oscillator, and contains all the necessary equations and
recurrence relations to calculate the energy eigenvalues for

different eigenstates. Section two is concerned with three

and N (N=1,2,3,4,5,6----1000) dimensional oscillators and
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with relations which can be used to compute the energy
eigenstates. The abundance of studies of the one-dimensional
anharmonic oscillator eigenvalue problem is not matched in
the case of multidimensional problems; there are few reported
results. We may divide the main methods used in this work to
compute eigenvalues into two groups. Our perturbative methods
(of inner product and hypervirial type) use a renormalisation
parameter K, which is helpful in improving convergence. We
also use a non-perturbative method, the power series method.
These methods have been used effectively to calculate the
energy eigenvalues even for high state numbers and large
values of the perturbation parameters.

3.2 TWO DIMENSIONAL PROBLEM

3.2.1 Review of the two dimension oscillator problem

A review and investigation of the two-dimensional
perturbed oscillator is the main objective of this section.
Many techniques have been used to obtain the energy
eigenvalues for this two-dimensional problem. The work of
Hioe, et. al [19,1978] involved matrix diagonalisation. They
were able to calculate energy eigenvalues for different
values of » and for various quantum numbers. To obtain high
accuracy by their methods involves dealing with large
matrices. Ari and Demiralp [20,1985] computed the eigenvalues
of a two-dimensional oscillator by using perturbation theory
and Padé approximants. J Killingbeck and M.N.Jones ([21,1986]
used the inner product method to calculate accurate energies

for =six states, E ,E1 for

0,0 E ’Ez

E and E
,1' 0,2 ,3? 3

,o0’ 1 1

different values of (a  ,a, ,a ).
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In this section we present some extended numerical
calculations using the inner product technique for a greater
range of values of the perturbation constant 0.05<As$5000, and
for different values of the potential parameters
(311,322,312). The inner product method to <calculate
eigenvalues has been investigated by Killingbeck, et. al
[11,1985] to compute energy eigenvalues for one-dimensional
problems. We also used renormalised series and power series

methods, for the special case a 1 , to calculate the

12~
energy eigenvalues for the perturbed oscillator potential in

two dimensions:
1l 2, 2
V(x,y)zf[x +y ]+k[ai1x4+2312x2yz+azzy4] (3.4)

The potential is non-separable, and the energy perturbation
gseries is expected to be divergent, so we start by
introducing a renormalisation parameter, and write the

potential in the form
2l 2, 2 2 2
Vix,y)=u [x +y ]H[V(X.y)-ﬁ(x +y )] (3.5)

where

u2=1+18 (3.6)

The use of parameter B is helpful in improving convergence
in this techniques and f plays the same role as the
renormalisation constant K used for the one-dimensional
oscillator. The Schriddinger equation for the potential (3.5)

can be written
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1( 8% 3%
[_ §( ;2+ 8—;2)+V(x,y)]'l’(X.y)=E‘l’(X.y) (3.7)

The energy eigenvalues of the unperturbed oscillator is given
by
E:[n1+n2+1]u n

1,n2= 0,1,2,3--...- (3.8)

In each state the energy eigenvalues depend on a pair of
quantum numbers (ni,nz).

3.2.2 The recurrence relation for the Inner product

To find the recurrence relations which allow us to

calculate the eigenvalues we use the function:
P1
¢(x.y)=(x ypz)exp[- —z‘i(xzﬂ'z)] (3.9)

where the P, and p, are parity indices, with values 0 for
even parity and 1 for odd parity. The inner products

2M
A(N,M)=<o|x*My2" v (3.10)

play a key role in this technique. The next step is to work

out the quantity

BA(M,N)=<¥|H x*"y2¥|®> (3.11)
and then to substitute the perturbation expansions

A(M,N)=Z A(M,N,K)2¥ (3.12)

E:Z B(K)2¥ (3.13)

into the A(M,N) recurrence relation. The result is the new

recurrence relation
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Z E(I)A(M,K,K—I):311A(M+2,N,K-1)+a22A(M,N+2,K—1)

+4u[M+N-SI—SZ]A(M,N,K)-ZM[2M+2P1-1]A(M—l,N,K)

—2N[2N+2P2—1]A(M,N—1,K) (3.14)

In writing the relation (3.14) we have moved one term
E(0O)A(M,N,K) from the sum over I to the right of the
equation, and have expressed the unperturbed energy in the

form

E(0)=u[2+2P1+2P2+481+4SZ] (3.15)

The parity indices for x and y are P1 and P2 (0O or 1). The x
and y state numbers S1 and 8, (0,1,2), specify which
particular state is being treated. When P1=P2, we can further
specify an x-y interchange symmetry index P3 (0 or 1) such

that

P
A(N.M,K>=(-] ® A(M,N,K) (3.16)

The initial condition imposed on the A(N,M,K) if P =P, is

P
A(S1,Sz,0)=(—) 3 A(SZ’S‘I'O):]' (3.17)

and the recurrence relation (3.14) is then used as follows.
If the energy sum up to E(Q)lQ is required, then the indices
have the ranges set out below if P =P,, with the convention
315 S2 on the state labels):

K=O,1,2,.0--000.Q’
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(fixed K) N=0,1,2,........,Sz+2Q—2K,
(fixed K, N) M:O,l,......,N-Pa.
The indices are scanned in the order given above and the
relation (3.17) is used to work out A(M,N,K) in term of lower
order elements which are already known. Then we can get
A(N,M,K) from the symmetry relation (3.17). E(K) is found
from the equation for the special case M=S1, N :S2

3.2.3 The recurrence relation for the renormalised series

approach

The renormalised series method was seen to work very
well in previous chapters and produced highly accurate
results for the problems investigated in chapter one. As we
indicated in section (3.1) the renormalised series can be
used to compute the energy eigenvalues for equation (3.7) in

some cases. When the relationship a .=a

=8, a22=1 holds, the

equation (3.7) has a circular symmetry. The energy levels are
then most appropriately characterized by the quantum numbers
(nr,m) rather than (ni, nz). Letting x=rcosf, y=rsin®, such

that r2=x2+ yz, the radial part of the eigenvalue equation

(3.7) is
1( 4° -1 d m’ 2 .
- == - r — ¢+ —S tr +Ar |¥(r)=E¥(r) (3.18)
dr dr r
If we set
1
‘!(r):[ r ] 2 &(r) (3.19)
we get
1 d% 1 ]
- — 4+ =V |®(r)=E®¥(r) 3.20
[ 2 er 2 m ( )



v =[ 2_ %—]r'2+r2+2kr4 (3.21)

,[ 2_ i—]r°2+ (u-m)r2+2xr‘ , U= 142K

If we apply the Hypervirial and Hellmann-Feynman theorems to

the potential given by (3.21), we get the following

recurrence relation after some algebra

(2N+2)2 E(I)B(N,M—I):N[(z-% )- %(Nz-l)]B(N-z,M)

+(N+2)[uA(N+2,M)-KB(N+2,M-1)]+(2N+6)B(N,M-l) (3.22)

(M+1)E(M+1):B(4,M)-KA(2,M) (3.23)

From the recurrence relations (3.22) and (3.23), we can find
the energy coefficients with the help of the E(0) value and
the condition B(0,0)=1. The unperturbed energy is
E(O):[an+|ml+l]rﬁ (3.24)
H=1+2K
2n _+|m|zn
nr=0,1,2,3,.......
m=0,¥1,F¥F2,.......
where nrand m are the orbital quantum number and the magnetic
quantum number. The expression (2nr+|m|+1) show that
ddegeneracy exists between energy levels to the degree that
all allowable combinations of n_ and m consistent with the
game values of the m and n_ yield the same energy levels. For
example E1’1and Eo,z have the same quantum numbers (nr=0,m=2)

and have the same perturbed energy eigenvalues.
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3.2.4 The Power series method

We used the power series method to compute the energy

eigenvalues in two-dimensions for the case (a1 z=a 1).

28,4, 8

22°
We start from the Schrdédinger equation (3.21). The regular
solution to equation (3.21) will behave as rt near the

origin, so we postulate ®(r) to be of the form:

¢(r)=Exp(- %Bra)z A(N)r"wC (3.25)
and use the notation
Y T(N=) Am)c" (3.26)

Inserting these relations (3.25) and (3.26) into equation

(3.20) yields the recurrence relation
(N+2) [N+2£+3]T(N+2 )= [(2N+2£+3) B—E] rzT(N)

+[u-ﬁz]r‘T(N-z)ursT(N-u (3.27)

where
1
C—'|m|—§

The calculation starts at N=0, with T(0)=1, and with all

lower coefficient zero.
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3.2.5 Results and discussion

In this section we investigate and discuss the results
of the numerical calculations for the two-dimensional
systems. It is clear from our 1listed results in tables
(3.1-3.4) that the accuracy can be expected to decrease
rapidly as A increases. Let us now turn to the
renormalisation constant (K) which is the heart of this
calculation for perturbative methods. We can see from the
results that the accuracy depends on the value of the
renormalised constant (K). One continues to change the
renormalised constant until energy eigenvalues of the best
required accuracy are obtained. The values of energy in table
(3.1) are for the case a12=a11=a22=1; we show some energies
for states (ni,n2=0,l,2,3) and for 0.055As5000. The three
approaches work very well for two-dimensional oscillator, and
the results obtained by these methods are in good agreement
with each other. We observe that the three approaches yield a
high number of accurate digits (14) for the eigenvalues at
low values of A. For higher values of the perturbation
constant A the power series method gives more digits than the
inner product method with renormalised series.

One main difference between the two perturbative
techniques lies in the values of the renormalised constant.
For the hypervirial approach the values of (K) increases as
the perturbation constant increase, while for the inner
product method the values of (K) decrease as the perturbation
constant increases. Also the hypervirial method can only work

for the case of a symmetric potential a11=a22:a12:1 in which
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the potential reduces to a one dimensional potential. The
inner product method deals with more general parameter

values, but still requires a__za since the equations used

11- 22!

exploit this symmetry to reduce computation. To get the
energy eigenvalues of Killingbeck and Jones [21,1980] it is
necessary to multiple our values by 2, since they used -v? in
their Hamiltonian. All numerical calculations were done on
the ICL (VME) system using double precision arithmetic. A
good rate of convergence was achieved for all techniques and
was relatively insensitive to the choice of the state number,.
Summarising our results we can say the following:

1. We succeeded in finding the energy eigenvalues for states

E y E y E

2,0 with

1,3’E3,1’
excellent accuracy in two-dimension even for high values of A\
(0.0552<5000) and for different values of the potential

parameters (a =1,-1,0); (a11=a22=1,0). The set of tables

12
(3.1,3.2,3.3,3.4) cover a wide range values of (\).

2. We have found that the three methods work very well to
determine the energy eigenvalues, and give high accuracy. Our
results are in good agreement with other reported results
given by Killingbeck [21,1986]), Hioe, et. al [22,1978], Ari
and Demiralp [(20,1985].

3. We avoid the phenomenon of bogus convergence by computing
the energy eigenvalues for different values of the
renormalisation constant K. We believe that some of our

results may be improved in accuracy with a better choice of

K.
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4 .We calculated the energy eigenvalues for (68) states for

2 4

the symmetric potential V(r):(mz- %)r' +2r by using the
power series method for high quantum numbers (0<m<400) and
(1sns600). This approach produces (20) digits and the results
are presented in table (3.4). We wish to note that the
results yielded by the inner product were improved by using

Aitken extrapolation; it seem that extrapolation improves the

convergence of the perturbation series and gives extra

digits.
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Table (3.1) Energy elgenstates En1 n2 for a11=a22-1 upper
line; power series method, second line; inner product,

lower line renormalised series method, the numbers in the
bracket corresponding to (nr . =]).

A 00'8‘12'-'1'(!’M lm_l! u"w:l'(mmk
0. 0511, 0842085056318 :
1.0842986056346]22 |15 |3.4541660556159]18)14
8l27 20 gl2s]20
o.1 11. .
1.1501881250606 |31 J14  [|3.7723225807160§24]13
slss |25 o]35]20
0.3 11, 2.8179820120228
1. 3396594184964 36 Jio |4.6179820140228)36)12
79 |25 g]74]15
TTTF'T'Z7§623615§§14 B 195313647/518
1. 4760250459814 35 |8 5.195313647751840] 10
152}40 gle2]17
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0 93 {100 3 [Is2]e0
5 12, .
2.674676409703 |44 |4 9.968450187005 |42|s
9 91 ]120 0 [s1{80
1013, .
3.30121057086 |35 |3 12. 396815561409 |46 |4
0 66 J140 0_Js0)100
B5 15, 5117080643004 ; e
5.51179896 31 |2 20.884372171 [|30]2
84 37 |220 2 leslso0
00 5. 0118303381066 .
6.9118993 21 1.2 |26.23623988 27]1.8
3 167 2000 8 82]1000
500 [11. 1 47.716717016874
11.756694 22 lo.75 J4a4.71671702 20lo.8
5 154 |s000 0 70}3000
[TO00 414, 707330112603 ;
14.797338 16 0.5 [s6.303987 15f0.6
9 1358000 76 75|5000
EO00|25. 272022474051 ;
25.2740 15 0.4 [96.21028 15fo0.4

2 51 ]10000 80 38]8000
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Table (3.1 continued)

3.51985378223321238 20 3.4541660556159]19114
2129120 8121116
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(ORI [ 93 Ulspstscitst §U) T ST75820 140228
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1 |68]13 817616
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8 Egi 15 8158}16
5.93888565342 [|35]8 5.6530457466566]139}9
2 |[Is2l18 6 le7)24
6.54656835563 3917.5 ]6.2138150782789[39]8
3 EEL 8 56125
1T 5001580720370 : T
7.99815980720 37 7.5587968359841144 17
01 471 30 4 142130
I 2B R L S
9. 0389864961 3615 B8.5262241756526 144 16
1 42135 5 36135
Y ks d B .
9.8761746038 3534.5 [9.3055741968355146 (15
8 39340 3 33}]40
110, =15 5554501870058
10. 587567685 2914 9. 9684501870056 14315
53 J47]60 0 45160
10 113, 12. 306815561400
13. 190071603 33)13.5 §12.39681556140 j4214
33 60]120 0 521110
L 2 :
22. 2669047 32]2.5 ]20.884372171 30])2
678 313200 19 33220
160 127, :
27.9845626 27]1.5 [26.23623988 27}11.8
614 351350 829 351350
=50 137, X TISTT7015874
47.718724 2210.9 J44.71671702 2010.8
490 3311000 16 2911000
T506]50. :
60. 08928 18]0.6 |56.303967 15]0.6
821 3412000 766 2911800
ESo0 102, CooE T 2ET1s8 :
102. 6888 1110.3 ]96.21028 15}§0.4
873 28 15000 806 2414500
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Table (3.1 Continued)

A 1_,,..12-1.(6'1)'. L Lo !31..‘2-1.(1.1711"!—
0. 0515, 0422350253878 B. 2076280880578
6. 0422359263878 6. 2076280889676 |27 |20
gl2s |20 6l2s]20
0.1 15. 7213120023037 5. 0707601064077
6.721312552363729[18 ]6.8707691664077]30]16
7131120 7137]20
5. 3 18. 2545606603008 B. B8DAb30015811
8.4545696693009]43]16 |8.885463091551 |32]12
gl78]is 11]93}18
5.5 15, 6087617275444 10. 145014853768
g.6087617479444 46|14 |10. 14691485376 |31]10
4]e6{20 68]82}24
0.7 110.514515636083 11. 132038889040
10.514815636683]47]13 |11.13293888304 {32l9
3|ss]22 40]s8]22
11.617010077220 12. 320DAB22 1600
11.61751807722948]12 |12.32954622169 |31]8
glas)as go0}59]26
5 114, 241725280107 15,
14.241725289107 418 15.1675936648 l29)s
7137130 g6 la1]30
S 116, 115242254106 17. 101851764040
16. 118242454196 §43]7 17.1918517640 [30[5.5
6]34]35 03 Ja7]40
17. 18. 815020010322
17.625712314489|37]5.5 |18.8160209193 |[31]s
gl37]as 32 Isz2ls0
5 118, .
18.905701125845[37]5 ]20.194071485 |29)4.5
514460 506 |s9)s80
10 [23. 25. 224541863887
23.583299477205]37]4 |25.224641863 314
5136180 388 l4sl100
B0 135.871024825155 ;
39.8715248261 (30]2.2 |42.713491135 31f2.2
15 |37]250 50 f44a]300
160 |50, 5
50. 124243611 2511.6 |53.71355298 24l1.6
172 §33]350 830 [37]380
560 |55. ;
85. 4988891 19Jo.9 ]91.653169 19]o.9
1404 J29]1000 gos54 {31]1050
1000 107. 11 115. 42830283018
107.670352 18]0.8 }115. 42830 17jo.8
208  [30]2000 0289 33}2000
5000184, 187. 28870356871
184.0150 15]0.5 j197.288 10]10.4
0412 3217000 8703 32 7000
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Table (3.1 Continued)

!m,uud. (0.1) IR Em.- =1, (0, 1IN
0. 051 2. 2388001803541 .51
2. 2388001803841 23 [14 |2.2388001803841]23 |14
128 j20 1§26 J20
0.1 12. ;
2.4143403273687§31 |14 }2.4143403273687]31 |14
7§39 |18 7l39 (18
5.3 12, BaB0048500700 2. 5055045500700
2.8959049500709 43 |13 }2.8959049500709§43 |13
glss |22 glss |22
0.5 13. 2314020999319 .
3. 2314529999319 40 10 }3.2314520898318}40 |10
102}25 1 J102}25
3?7"5'1557155155551 ;
3.4997488466601 ]38 |8  ]3.4997488466601{38 |8
o fss |32 0 los l32
1 . 3. 8303238582066
3.8303238562966 44 |8  |3.8303238562066 |44 |e
6 J107}as 6 Jio7}as
5 14. 6280 Ab 3003087 2. 5286403003087
4.6286453903987]42 |6  ]4.6286453903987]42 |6
9 |84 |ss 9 |84 |s5
3 15, 20D8DA0S2D118 ;
5.2058549925116 |45 |5.5 |5.2058549925116)45 [s.5
1 [J72 Is5 1 J72 Jes
B. 6720139476070 ;
5.6720139476076 46 |5 |5.6720139476076]46 |s
6 |s2 |70 8 lIs2 |70
5 6. . 1
6.0691123694494 |44 4.5 ]|6.0691123694494]44 4.5
4 |s8 |78 4 58 |78
10 |7 .
7.52704337821 |44 |3.8 |7.52704337821 J44 3.8
2 |Is2 ho 2 52 J110
Bo 112, 630325716725 ;
12.639925716 |30 |2 12. 639925716 30 |2
67 |33 |220 87 |33 |220
100 115, 068071472810 15.
15. 86897147 27 §1.5 |15.86897147 27 li.5
726 |31 ]300 726 131 ]300
B0 127. .
27.027427 21 jo.8 ]27.027427 21 Jo.8
7897 |30 860 7897 30 [860
T000 | 34. 026189581976 5
34. 026190 18 |o0.65]34.026190 18 |0.65
39 |2800 01 39 l2s00
!RRET!R?‘T§5§§GZ§ZT§4 - .
58. 13369 14 Jo.3 |s8.13369 14 Jo.3
904 27 Jas500 904 27 |4500
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Energy eigenstates E

L LLELLEEEEEEL BERLLLLEEEL L ELEEEE R R kb _w_a_e_sn LEEEELLER
T, EEEEBRRREEREREEREBRER M BEERERERELERBRE a BERREEEERERER
Jh
L LLLLEEELLEERLEEEEEEEEL ELLLEEEEERERELL _m_errwmwwn_“rwwn
_H BREBERREEBEERRERBRER 4&_” BER 1u_m_m—wﬂvv_wmmrowmw_m_mwumwwmmwn
rmmmwm ...... EBERs[-LIEEE e EERe R P

brackets corresponding to even or odd parity.

by using inner product methoed,

Table (3.2).
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Table (3.2 Continued)
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Teble (3.3). Energy eigenstates EM 02 for a__=a_ =1,

by using; inner product method.

L rwrnrrnnwrnnl L bELEE Lol EE kb _n_wn_vrﬁrnirr
E BERRER R = BEER ERERE BEEREFRERRRE
LR || EEREER T
CEECErEEErEFFREEC LTI TETCELETEITENT
E EERRRBERRREFRBREEE BEBER RE: BERRRRE
HEEERE mmml. PRkl m i e
EEERELLLLLERERER EEEEELLLLLERE BERRELLLLLEE




n=2n_+m+1.

Table (3.4) Values of E for V- (m2- %)r-"efzr‘.

r
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3.3 THREE AND N DIMENSIONAL PROBLEMS

3.3.1 Introduction

J.Killingbeck [22,1985] has used the Hill determinant
method to calculate the energy eigenvalues for a
three-dimensional oscillator and also investigated all
spherically symmetric states in any dimension (N=1,2,3
©+..320). He computed the energy eigenvalues and expectation
values such as <r?> for potentials £ 'r%and N 'r*and gave
results of high accuracy. We extended our numerical
calculations for higher powers of the perturbation index
(2N=4,6,8), and for a wide range of values of angular
momentum, perturbation parameter, and state number. We used
two methods to produce our results for this problem, the
renormalised series method and the power series method. The

radial part of the three-dimensional Schroddinger equation can

be written conventionally in the form

2
[_ é_2+ urls L(L41)r° % 4 xr“]wr)m\v(r) (3.28)
dr
where (£) is the angular momentum, and the energies of

unperturbed levels are
B(0)= [2n+3] {5 (3.29)

where n is the principal quantum number, which can be

expressed as
n=(2nr+£) (3.30)

Here nris called the radial quantum number. The energy values
include zero-point energy 3 corresponding to the three

degrees of freedom. n is seen to be even or odd according as
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(£) is even or odd. The main difference between one and three
dimensional perturbations lies in the presence of the angular
momentum. We have presented two methods to compute energy
eigenvalues. The first approach uses a hypervirial scheme
based on the formulation of recurrence relations, and the
gsecond approach uses a power series, based on relations
derived by using wavefunctions.

3.3.2 Renormalised series to calculate energy eigenvalues for

2N
r

H=P? +ur’+ £(L+1)r 24n (2N=4,6,8)

We used renormalised series to calculate the energy
eigenvalues for the potential

2N

Vir)zurl+8(&+1)r %+ir (2N=4,6,8)

Using recurrence relations derived from the hypervirial and
Hellmann-Feynman theorems  which have been used by

Killingbeck, with the potential terms

V_,=8(£41) (3.31)
V= (4-)K) (3.32)
v =2 (3.33)

4

we obtain the following recurrence relations after some

algebra

(2N+2)2 E(J)A(N,M-J):N[2£(£+1)- %(Nz-l)]A(N-Z,M)
+(2N+4)[uA(N+2,M)—KA(N+2,M-1)]

+[2N+2n+2]A(N+2n,M-1) (3.34)

(ﬁ+1)E(M+1):A(2n,M)-KA(2,M) (2n=4,6,8) (3.35)
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The recurrence relations (3.34) and (3.35) suffice to
compute the coefficients of energy E(M) and A(N,M) and this
procedure allows us to calculate the expectation values of
powers (r") without the explicit use of eigenfunctions. The
input for our calculations are the renormalised constant K,
the angular momentum £ and the state number n. The values of
H=142K, E(O):(4n+2£+3){—, are worked out by the program. The
renormalised series approach seems to give results of
excellent accuracy, whereas at K=0 the perturbation series

diverge and do not give satisfactory numerical results.

3.3.3 The power series approach

We used the power series method to compute the energy
eigenvalues for the three-dimensional perturbed oscillator ,
and this method works very well, producing results of high
accuracy, even for large perturbation parameters. When an
angular spherical harmonic factor Yz has been factored out of
the wavefunction for a three-dimensional problem, the

Schrodinger equation can be expressed as
2 -1 -2 2
[—D - 2r D + £(£&+1)r + r+ V(r)]?(r):EW(r) (3.36)

We take the radial potential V(r) to have the form
V(r)=ir® 2m=4,6 (3.37)

The regular solution to equation (3.37) will behave as r
near the origin., The eigenfunction ¥(r) is then given by the

general form

?(r):Exp[-%ﬁra} 2 A(N)r¥HE (3.38)
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We use the notation
T(N)zA(N)r" (3.39)

Inserting the relations (3.38) and (3.39) into equation

(3.36) yields the recurrence relation

(N+2)[N+2£+3]T(N+2)=[(2N+2£+3)B-E]r2T(n)

+[u—ﬂz]r‘T(N-2)+xT<N-2M)r2"*2 (2M=4,6,8) (3.40)
The calculation starts at N=z0, with T{(0)z1, and all lower
coefficient zero.

3.3.4 N dimensional calculations.

J.Killingbeck has applied the Hill determinant to
N-dimensional anharmonic oscillators. He calculated energy
eigenvalues and expectation values of type ey, Killingbeck
[22,1985] has expressed the Schrddinger equation in N

dimensions as:

Dzw(r)-(ﬁ-l)r"DV(r)+V(r)v(r)=EW(r) (3.41)

where V(r):[u-XK]rz+1r4, H=1+)XK

We used the renormalised series approach to calculate the
energy eigenvalues. If we apply the hypervirial and
Hellmann-Feynman theorem to the potential given by equation

(3.3) we get the following recurrence relations.

[21+z)2 E(J)A(I,M-J)=§[(N+z£-3)(2n+z&-1)-(12-1)]A(1-2,M)

[2I+4)[MA(I+2,M)-KA(I+2,M—1)]
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+(21+6)A(I+4,M—1) (3.42)

(ﬂ+1)E(M+1)=A(4,M)—KA(2,M) (3.43)

Here N is number of dimensiona. The recurrence relations
(3.34) and (3.35) for three dimensions reduce to the
recurrence relations (3.42) and (3.43), if we insert
£=(N+2£-3)/2. We also used the power series method to
calculate energy eigenvalues for the N-dimensional problem.
If we insert 4£=(N+24£-3)/2 in relation (3.27) we obtain the
relation corresponding to N dimensions.

3.3.5 Results and discussion

We have used the techniques described in this section,
the renormalised series and power series methods, to compute
the energy eigenvalues. Our results are given in tables
(3.5,3.6,3.7, 3.8,3.9). Our energy eigenvalues cover a large
range of values of angular momentum, perturbation constant A
and state number n. We have performed various numerical
checks on the obtained energy eigenvalues. For example we did
some calculations at zero value of angular momentum and at (4
=-1). At these values the problem reduces to a one
dimensional problem. Also the power series approach has been
used as another approach to compute the energy eigenvalue,
and the agreement between the results is very good. We list
gsome results in table (3.5) for different values of angular
momentum, and state number. We note particularly that in the
case of high values of angular momentum the renormalised
series approach works well. We notice from table (3.5) that

for (A=100, 4£=100, n=20) the accuracy of this approach
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achieves 12 significant figures. To our knowledge such a high
degree of ©precision for the potentials considered is
unprecedented. We also wish to draw attention to the fact
that the renormalised series approach applies equally well to
any value of (r,£,n). Our calculations in three dimensions
may be regarded as a guide to future numerical calculations.
As far we know, we are the first to investigate numerically
the energy eigenvalues for a wide range of potential
parameters in three dimensions. A sample of energy
eigenvalues for potentials in three dimensions computed by
using renormalised series and power series methods are
displayed in table (3.6) for different values of angular
momentum, and state number n. These methods lead to very
accurate results. We also calculated the energy eigenvalues
for higher power of the perturbation index (2N=6,8). The
renormalised series method was used to compute the energy
eigenvalues for (2N=6), n,£=0,1,2,3,4 and 2=0.1. This method
achieved 6-digits accuracy; the renormalised series method
has limited capability to deal with high powers <r?My (2N=8)
and we can only manage to calculate a few energy eigenvalues
with a low accuracy. In this respect we face the same
situation as for the one-dimensional oscillator in dealing
with high powers of perturbation. However the power series
method works excellently and gives results with 16 digits
accuracy. We also computed the energy eigenvalues for
s-states in (N=1,2,3,..1000) dimensions for potentials

v(r)=Nr4,N'1r4. The renormalised series work very well for

calculating the energy eigenvalues even for higher values of
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N. The energy eigenvalues are compared with corresponding
ones obtain by the power series method and listed in table

(3.8). The agreement of our results with those of Killingbeck

is good.
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Table (3.5). Elgenvalues of H=P2+r2+£(£+1)r'2+kr’,by using
renormalised series method, the two numbers in the bracket
correspond to Quantum number (n) and Angular momentum (2)
respectively.

( ,106)
1041, 437188120085383)
5440 33603327688021
2704 05812020431
3078, 1040410008
3310, 826660040
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Table (3.5 continued)
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Table (3.5 continued)
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Table (3.5 continued)
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Table (3.5 continued)
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Table (3.5 continued)
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Table (3.5 continued)
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Table (3.6). Elgenvalues of H=P2+r2+2(2+1)r 2+art,
First line results ylelded by renormalised series
method; Second line results ylelded by power series
method.

n 1/ Fner
0. 111 1 .
__g
T T e e e e e —
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RS BUSSR BUOIoI LT W e lsteloieielo]e):1:ic 50 BEOI
3
S TIE00 1500 117350 10 TSI ounees T Io00
6
(P BUS]0] BLololo] T bkl W inloielo el g Fiololo]
7
BN L I B A (b ] [
3
T 0 e TR
7
R SR § KR Pk S i ksior] 1l L
0
SO O PR B sl A 1o Ko
22025
BUOT PR B (o iR 5]
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Table (3.7). Elgenvalues of H=P’+ prZ2+g(e+1)r 24are®
at A=0.1. First line results ylelded by power series,
second line results ylelded by renormalised series

method,

(K,N).
eigenvalues cannot

series approach.
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the numbers in the brackets correspond to
The empty spaces mean that the corresponding
be

reached by the renormalised

. 5360369212202
3.596036 (250,76)

. 1
6.43914 (260,70)

10.23787 (240,70)

9.61746 (250,63)

14.11
14.11706 (250,67)

18.80175 (300, 58)
13. 10747 (280,71)

18. 4
18.25352 (260,68)

-

23.51388 (350, 69)

28.92895 (350,68

m

16.
16.88800 (270,67)
8

22.63166 (290,67)

28.43485 (330, 70)

. 1
34.35319 (370,71)

40. 4 4
40.40824 (370,72)

3.939 (100,72
7 S882 74617608057

7.288 (159,129)

12.28 (180, 140)
11.
11.185 (260,215)

17:42 (300, 221)

23.8  (350,212)

15,

15. 589
1

(310,177)
1

30. 623751038636159
(38. 5132563567 70080 )
20. 435332507266008 |
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Table (3.8) Lowest s state energy in N dimensions for

potentials (V=N"'r*, v=Nr'), first line renormalised series,

second line power series method.

N v=N"'p* M Ik v=Nr* M K
1. 06036203043 81 [19 {1.06036203043 8119
4841828 4841828
5 §1.861002068378 |73 [20 2. 33](6.6 |
798400 71559891
3 |2.6345461340588 |72 [22 |D. [36]6.4
8318f | 397092
~39815017602771 |68 |23 |8.56280168740625  |49]6.5 |
76967 5274]
5 4.1 71 [25 | 5617
346 735
0 [7.926 4804 62 [30  |38.70274032175737 {536 |
160 79
5015, 437713304 G L SRR COL TS Lok il SE
55 7
30 V30, 243405 300075500 |42 |50 | 355 060581180 6255 (851300 —
8 5
80 | 1564 G5 |32 J100 [1122.2705588556038142(500 |
529 5
T80 §120. 447070801008 128 (180 101 411000 |
850 2
320 [240. 448728618408 20 [340 [11240.221061775356(37 (2400 |
808 8
200 J300. 4488805712 126 1240 [16310.8746861 7543015713200
23209 0
500 | 23 [550 23651, S0b0B 3566840147 (5200 ]
137532 9
750 | 22 (850 [46470. 420656755093 (42 {8000 |
8031373 3
1000 3T J1100|75044. 824581284135 30 10800
1284135 5
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Table (3.9). Eigenvalues of H=P%+r2+ }(N+2¢-3)(N+2e—1)r'2+Ar‘,

in N dimensions , First line results yielded by power series
method, Second line, results ylelded by renormalised series
method.

A In [ N Ener M K
1 2 . 889929 1
2 106 |30
5 5 IS 5 J169.2 468
7 §137§150
10 |5 [0 [10 | 02 1
7 Hos}200
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CHAPTER FOUR

4. NON-POLYNOMIAL POTENTIALS IN ONE AND THREE DIMENSIONS

4,1 Introduction.

This chapter has been devoted to the computation of the
eigenvalues in one and three-dimensional cases by using
perturbative and nonperturbative methods for the following

perturbed Hamiltonians

d° 2 ax M
H: - —0"‘ xu+ 2 (2N=2’4,600u18,20) (4.1)
dx” (1+gx")
2 2 2N
H= __21_ d_2+ X EX__ (2N=4,6) (4.2)
dx (1+gax”)
2 2 2N
H= __;_ d_o+_2x_-;‘—"———q (2N=4,6) (4.3)
dx” (1+gax”)
4° -2 arc
H= - S+ L(&+1)F°+ =1 — (4.4)
dr” (l+gr”)
2 2 1
H= _% —92+ §(€+l)r-2+ %— + —55—-—0 (4.5)
dr (1+gar”)
2 2 4
H= -% —2°+ §(€+l)r'2+ —% - _8r R (4.6)
dr” (1+gar”)

We drop quantities such as h,m and e from the Hamiltonians in
the equations above, in order to present the equations which
have been used in simple forms. However, it is obvious that
for certain limiting parameter values (e.g A—0, g—0 or

g—» ) the differential equations corresponding to (4.1,4.2,
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4.3,4.4,4.5,4.6) behave like the differential equations of
the harmonic oscillator.

There are a variety of techniques which have been
employed to calculate and to investigate these eigenvalue
problems. Most of the calculations has been devoted to the
Hamiltonian given by (4.1) for (2N=2). However as far as we
know the other potentials have not been so much studied,
except the potentials given by (4.2,4.3) for (2N=4), as we
will see in later sections. We have been unable to find a
reference in the literature dealing with the other types of
potentials. We have used four methods to treat the eigenvalue
problem for even and odd parity for different values of X and
g:

1. The Renormalised series method.

2. The Power series method.

3. The Finite difference method.

4. The Padé approximant method.

Also we tested some of our results by running the code which
was used by V.Fack and Vanden Berghe [29,1985]. The agreement
between our results using a finite difference method and the
results using their code depends on the number of terms which
are taken into account in the expansion of the kinetic energy

operator:

2 2_ (2 5* 8°
h°Dz 8°- 15 + 55 (4.7)

w

The basic idea of the Fack and Vanden Berghe [29,1985] method
is to use a finite difference method with matrix

diagonalisation; this approach is more complicated than our
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finite difference method. Some of our reported results have
not been previously available in the literature, so we used
more than one method in order to check the accuracy of our
results. In the present calculation we have been able to
consider the effect of the extension of the range of values
of the index (2N=2,4,6,8,...20) on our eigenvalue
calculations. It should be useful to have such calculations
to get an idea of the numerical 1limits of applicability of
our methods for investigation of these types of potentials,
and to prepare the way for further study of these potentials
in the future. The perturbation series only converges for
some appropriate ranges of )X and g. Precautions must be taken
not to exceed critical values of X and g. Some of our methods
depend on the ranges which are used for :» and g if they are
to give eigenvalue results of high accuracy.

4.2 Introductory remarks concerning potential XXZN/(1+gx2)

The purpose of this section is to investigate the

Schrédinger equation.

dZ
[—Q-V(x)i-E]‘P(x):O (4.8)
"

with the potential
a2V

> (2N=2,4,6,8,10...18,20) (4.9)
(1+gx )

V(x)=x2+

This potential with 2N=2 , has recently been studied by many
authors using different techniques. Mitra [23,1978]
calculated the ground state and first two excited states
using the Ritz variational method in combination with a
Givens-Householder matrix eigenvalue algorithm. Galicia and

Killingbeck [24,1979] used the finite difference method to
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compute the energy eigenvalues for the three lowest even
parity states. Kaushal [25,1970] has obtained the asymptotic
expansions for the eigenenergies and eigenfunctions for the
potential by expanding the factor l/(1+gx2) as a power series
in gx° Bessis and Bessis [26,1980] have studied the same
problem by taking advantage of a two parameter (A and g)
gcale transformation. Hautot [27,1981] has wused a Hill
determinant method to calculate the energy eigenvalues. Lai
and Lin [28,1982] have applied the Hellmann-Feynman and
hypervirial theorem and used Padé approximants to calculate
the energy eigenvalues from the perturbation series. Fack and
Vanden Berghe [29,1985] used the finite difference method in
combination with matrix diagonalisation for a numerical
computation. The interest in this type of potential arises in
several areas and these have been summarized by Mitra
[23,1978] and Kaushal [25,1970]. In particular, this type of
potential occurs when considering models in laser theory. In
this calculation we have presented four numerical methods for
the determination of energy eigenvalues. However, for large
value of g some difficulties are encountered for some of
these methods, so we restricted our calculation to a rather
emall range of 0.1<g< 0.5 and a large range of (20<A<1000).
In spite of these restrictions on the values of A and g, the
agreement between the power series, hypervirial, and finite
difference methods is excellent. The results can be
considered as an improvement over previous results. Our
results, which have twenty significant figure, are more

accurate than previous results, which do not exceed ten
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gsignificant figures. The finite difference method is =a
powerful method which covers a large range of 0.1sA51000 and
0.15g<1000 and we can use this method to show wup the
drawbacks of other methods mentioned previously. While the
finite difference method appears to be recommendable for a
large range of A and &, the power series and hypervirial
methods should be reserved for a small range of (g) and large
range of ()A). We also used the [6,6] Padé approximants to the
energy series, which was obtained from the Hellmann-Feynman
theorem and the hypervirial theorem.

4.3 Hypervirial relations for the potential x2+sz/(1+gx2)

The Schrodinger equation for this potential can be
written as

d2
[ ——Z-V(X)+E]W(X)=0 (4.10)
dx

where the potential V(x) is given by

kxz

V(X)=X2+ —_—
(1+gx")

(4.11)

The perturbation calculation for the potential [sz/(1+gx2)]
is made by expanding the factor 1/(1+gx2) as A power series
in gxzwhich is valid for gxzs 1. As x varies from (-%sSxs+w),
the function f(x):l/(1+gx2) rung from (0 to 0) through 1 at
x=0, f(x) being always non-negative. In this section, we
apply the hypervirial relation Killingbeck [12,1982]) and the
Hellmann -Feynman theorem to the Schrddinger equation,
atarting from the basic hypervirial relation and the

Hellmann-Feynman theorem which have been given in a previous

chapter (2.3) and (2.14). The potential in equation (4.11)
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can be expressed as

V(x)=(1+k)x2+i gt v x2(ntD) (4.12)
n=1 n
where
n
vn=x(-1) {4.13)

The coefficient given by (4.13) alternate in =sign; the
coefficient take (+ sign) for even n values, and (- sign) for
odd n values. We have expanded the potential as given by
equation (4.12) to the limit at which any term beyond that
1imit makes no difference to our eigenvalues. For our
calculations this limit was reached for nz=20. The series in
equation (4.12) is valid only for gx°s 1. For large £ and
amall A, it is found that our hypervirial method
underestimates the eigenenergies. The unperturbed value of

E(0) is given by

E(O):(2n+1)J(1+k) (4.14)

Now we use the energy E and the expectation values (xN >which
are given by (2.6) and (2.7) and the potential which is
given by (4.12) in the Hypervirial relation and the
Hellmann-Feynman relation. Using the same approach that 1led
ug to the recurrence relations (2.10) and (2.15), we find the

relations

N2

(2N+2)z E(I)B(N,M-I)=- [Nz—l]B(N-Z,M)

+(1+X)(2N+4)B(N+2,M)+S Vn[2N+2(n+2)]B(N+2(n+l)),M-n) (4.15)
1

n=
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(M+1JE(M+1):$ [n+1)VnB(N+2(n+1)),M—n) (4.16)

n'To
The energy coefficients E(M) can be determined from the
relations (4.15) and (4.16) with the aid of E(0) and the
condition B(0,0)=z1. At K=0 the perturbation series converges
and gives satisfactory numerical results for high values of 2
(20sA51000) together with low values of g (0.1<gs0.5).

4.4 Power series method calculation of the energy eigenvalues

The power series method is a non-perturbative approach
which has been used to calculate eigenvalues for many
problems, Killingbeck has applied this approach to perform
many eigenvalue calculations and our confidence in the
accuracy of this method in numerical calculations of the
energies for various problems has been indicated in previous
chapters. From our results this approach can be seen to
provide excellent accuracy, but for the type of potential of
equation (4.11) there is some restriction on the values of A
and g. At large values of g the perturbing potential is
concentrated in a small bump near the origin. The energy
levels of the Schrddinger equation (4.10) with the potential
(x2+ xxz/(1+gx2) can be calculated by applying the power
series approach. The wavefunction in equation (4.10) is

defined as
\r(x)=exp(-ﬂx2)2 A(N)x" (4.1%F)

Substituting the wavefunction as given by equation (4.17)

into equation (4.10) reduces (4.10) to the following equation
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(N+1)(ﬁ+z)T(N+z)=[2ﬁn-gn(N-1)+25(ﬁ+1)-E]x2T(N)

+ [233 (2N—3] —432+1+x-Eg]x‘T(N_z)

+(g—4Bg)x6T(N-4) (4.18)
where

2 T(N)zz A(N)x" (4.19)

and B is an arbitrary parameter on which the eigenvalues
cannot depend. In the previous chapter we have mentioned this
parameter B as being ugsed to improve the rate of convergence
of the resulting computations. The initial conditions for the
recurrence relation (4.18) are T(0)=1 (to get an even
eigenstate) or T(1)= 0 (to get odd states) with all other
coefficients zero for N<O. The calculated eigenvalues
vary with x if we require vix ) = 0. In the power series
approach the results are accurate only when certain relation

between A and g hold. These relations can be given as

£« (4.20)
and
gx°s1 (4.21)

The conditions (4.20) and (4.21) limit the range of values of
0.15gs0.5 and 20sA51000. Within these 1limits, the energy
eigenvalues for this potential as given by the power series

approach are very accurate.
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4.5 Finite-difference eigenvalue calculations

Recent times have seen the development of
non-perturbative methods of computing energy eigenvalues.
Such methods are necessary since the perturbative methods
provide insufficient information about accuracy, and give
convergence difficulties. Recently Killingbeck has applied
finite difference methods to various eigenvalue calculations
and published many papers dealing with this type of method.
He also described modified approaches of high order for
finding Schrodinger equation eigenvalues, which can be

expressed as

2
h28%p(x)=4 [Sinh(%—hD)] W) b0

=4 [Sin(%hn)] zx‘)(x) p%<0
In the present eigenvalues calculations, we used the above
relations instead of using the relations (2.21) and (2.22).
The error of the method used here should be smaller when a
smaller h (step length) is wused. The energy eigenvalues
calculated by finite-difference methods in this section are
subject to further modifications if high-term expansions are
used. It will be our aim in this section to compute energy

eigenvalues of the Schroddinger equation

dz
[———2- V(x)+E}W(x)=O (4.22)
dx
with the potential
2 lxzu
(l+4gx" )

where E denotes the energy eigenvalue. The wavefunction Y¥(x)

can be restricted to the region [0,+%]. Furthermore we shall
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suppose that the wavefunctions are restricted to obey the
Dirichlet boundary condition ¥(x)=0 at some x value (x=R). An
acceptable R value will be guessed numerically. The interval
[0,R] is subdivided into equal parts of length h, with x=zkh
(k=0,1,2,.. n; nh=R). The ground state and the first three
even energy levels were computed by our approach for a large
range of (X) and (g). In this section the finite difference
method for calculating eigenvalues of the Schrodinger
equation (4.22) will be discussed by introducing a finite
difference representation of DZW(x). Chapter two explained
the simple mathematics which forms the basis of our method.
It is worth noting here that the finite difference method
which is under discussion in the present section is different
from that of the V.Fack and Vanden Berghe but it shares with
it the use of finite difference expressions. Those previous
workers used a finite difference method in combination with a
matrix diagonalisation for numerical computations and
transformed the Schrddinger equation into an algebraic
eigenvalue problem, with a special form of matrix. A Finite
difference representation for Dfo) ig introduced such that
the Schrddinger equation is transformed into an algebraic
eigenvalue problem. Our method gives results with high
accuracy for a wide range of 0.1<g<1000 and 0.15251000 for
(2N=2,4,6..18,20). For large g values it seems that the
present method works quite well, whereas the other methods
have some problems. Although the displayed results are
restricted to even-parity states, the method can be used for

odd-parity states. We believe that the extrapolation
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procedure (for h——0) is very accurate if the h values are

chosen in the safe region.

4.6 The Padé approximant calculation of energy eigenvalues

We will now define the Padé approximant, and the Padé¢
table. Definition: Let the ([L,M} Padé approximant to the

series A(x) be denoted by:

PL(X)

QH(X)

[L,M]}=

where PL(x) igs a Polynomial of degree at most L and Q H(x) a
polynomial of degree at most M. We require that the formal
power series for P/Q agrees with the A(x) series up to the
(L+M)th power. The following theorem is due to Frobenius.G.
and Padé, (Theorem of Uniqueness). The [L,M] Padé approximant
to any formal power series A(x), when it exists, is Unique.
(For the proof see ref [56,1975]. This theorem holds whether
the defining equations are non singular or not. If they are

non singular, then they can be solved directly to obtain:

a a . - .
L-M+1 L-M+1 BlLen
] L] . []
a * L] L ]
L L+1 B
J 1 i
a A Z .. a A
1-M J-Me1
=M En-1n %o
[L,M]=
a a L[] L) .
L-M+1 L-Ms+2 Le1
. . £ ] [ ]
a . e .
L L+1 aL+M
M M-1
x k . . . 1

where we define a = 0 if n<0; qj 2 0 if j > M and, if the

lower index on a sum exceeds the upper, the sum is replaced
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by zero. It is customary to arrange the Padeé approximants in
a table as follows:

[0,0] (0,1] [0,2] ([0,3]

[1,0] (1,1] (1,21 [(1,3]

(2,0} [2,1] (2,21 1(2,3]

[3,0] (3,1] (3,21 1[3,3]
The set [N,0] [N,1] [N,2] with N fixed is a row of the table;
likewise the set [N,M] with M fixed is a ’'column’ while the
set [N,N] is the diagonal sequence; we call a set [N,N+j]
with j fixed, a paradiagonal. The top row is composed of the
partial sums of the Taylor series. The Pade approximants are
a particular type of rational fraction approximation to the
value of a function, Padé approximation is a useful technique
when the convergence of the series is unacceptably slow or
even nonexistent. The Padé approximant is in the form of one
polynomial divided by another polynomial. Padé¢ approximants
provide us with a practical method of calculating results
from energy series E(n), since their use frequently
accelerates convergence.The E [M,N] Padé approximants to the
energy series is given by

a +a A + a X2+a 13 cseseB X?
2 3 n

E [N,M]=— —— _ (4.24)

b0+b1k + b +b31 ....bnl.

2 Me+N
sE(O)+E(1)XME(2)A + -cwe-- E(N+M)X + -—- (4.25)
with b defined to be unity. The coefficients (a i=zl,--=-- N)
and (biizo, ————— M)in the numerator and denominator are
calculated from the knowledge of E(1),E(2),-=------ yE(M+N),

which can be computed from the hypervirial relations. The
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energy series for the interaction lle(1+gx2) appears to be
convergent for g>5 and for large value of A. Thus we can
still calculate the energy Enfor g€>5 to very high accuracy.
Our calculated energy values En used the ([6,6] Pade
approximants to the energy series for the ground and the
first three excited states.

4,7 Hypervirial relations for the potential given by

[%xz—gXZN/(1+gax2)](2N=4,6)
In this section, we want to investigate the Schrodinger
equation
1d% , gvin |¥ix=
2 > =Vi(x) |¥(x)=0 (4.26)
dx

with a potential of the type

2 2N
_8x

(1+gax2)

¥

vV =§ ¥ (2N =4,6) (4.27)

The potential described by equation (4.27) for (2N=4) has
recently been studied by G.Auberson [30,1982], who has shown
that the perturbation expansion of eigenvalues E in terms of
g at fixed «, is Borel summable. For the validity of this
results, it is essential that the potential V(x;g) be
positive for all physical values of g and «, where the
physical range of the parameters (g and «) is given as; for
the potential V’(x;g),gzo, x>0, and for V (x;g),g20, o2, (in
order that V (x,g)—®, as x —o),

Also G.Auberson and T.Boissiere [31,1983] calculated ground
state energy levels for a large range of values of « and g,
by using a Padé method, Borel-Padé¢ method, an improved

Borel-Padé method and Borel-mapping method). The potential



~119-

Vzu(x,g) can be written in this form

2
Vf(x;g):[—é— ¥ %]xz:t ——"——-——5— (4.28)
al(l+gox™)
2 2
V:(x;g):[%fl:(—];xz]xzﬂ:x i "2 - (4.29)
go ga“(l+gax”)

We want to study the limit of this potential
Vix;g) | =5x"F ex (2N=4,6) (4.30)

The potential given by equation (4.30) is a pure anharmonic
oscillator The singularity of Vx(x;g) at x°z - 1/ag is
responsible for a singularity of E;(g) and for the divergence
of the potential series expansion. We investigate three
methods to compute the energy eigenvalues, the hypervirial
method, the Padé approximants method and the finite
difference method. The first two methods are excellent for
computing the energy for a small range of values of « and g ,
but the finite difference approach is applied to a wide range
6f values of o and g. In this section, we apply the
hypervirial theorem and the Hellmann-Feynman theorem to

calculate the eigenvalues of the Schrdodinger equation for

this potential. The potential V;(x) can be expanded as

v:(x):%[p-lk]xz ¥ % S vnx"”x’““‘z’ (4.31)

n=0

where the potential coefficient Vn is

Vn:(-l) (4.32)

and
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Azgo (4.33)
The unperturbed energy eigenvalue E(0) is given by

E(O):(n+%)‘u 7 u=14)AK (4.34)

If we insert the energy (E) series and the expectation value
<x"> series in the hypervirial relation, the following

relation is obtained
(2N+2)2 E(I)B(N,M-I):-%[NZ-I]B(N-Z,M)

+ (N+2) [u.B(N+2,M)-KB(N+2,M—1 )]
;i— S vn[2r3+2 (n+3)]B(N+2(n+2),M-n—1) (4.35)
n=0

If we apply the Hellmann-Feynman theorem

3E_ oV

8k’<5K) (4.36)

the following relation is obtained

(un]mmn:-%mz,m% i vn(n+1]B(2<n+z> ,M-n) (4.37)
n=0

We can calculate the energy eigenvalues from equations (4.3%)
and (4.37) by using the unperturbed energy E(0) and the
initial coefficient value B(0,0)=z1. We also used the same
technique with g as the perturbation parameter. The agreement
between the results from the two approaches is excellent,
particularly for low value of «, but at high values of « the
agreement between the two eigenvalues decreases, and this is

very clear from our results in table (4.10 ). The potential
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Vx(x) in equation (4.27) can be expanded in the form
Vz(x)z%[u-kk]xzx v oghtig2ine?) (4.38)

where
n
Vnz(-a) y H=14)k (4.39)

The coefficients given by equation (4.39) alternate in sign,
taking positive and negative values for even and odd powers
respectively. If we follow the same procedure used to get the

relations (4.35) and relation (4.37), we get the following

relations
(zmz)z E(I)B(N,M-I):-%[NZ-I]B(N—Z,M)
+ (N+2) [uB(N+2,M)-KB(N+2,M-1 )]
¥ zovn[zmz (n+3]]B(N+2(n+2),M-n-l) (4.40)
(M+1)E(M+1):—%B(Z,M);nzovn {n+1]B(2(n+2),M-n) (4.41)

The above equation (4.40) and (4.41), together with initial
conditions E(0)= % (2n+1){n (n=0,1,2) and B(0,0)=1 are
gufficient to compute the coefficients E(M) of the
perturbation series for the energy. The method outlined above
can also be used for the potential which is given by equation

(4.29). For high-index (2N=4,6) perturbation calculation by

the hypervirial method, the method seems to work only for
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small value of g. The recurrence relations corresponding to

the case (2Nz=6) are

(2N+2J2 E(I)B(N,M-I)=-§[N2-1]B(N-2,M)

+(N+2)[uB(N+2,M)—KB(n+2,M-l)]

:i—? Vn[N+2[n+4]]B(N+2(n+3),M-n-l) (4.42)

n=0
K 17
M+1|E(M+1)=- 5B(2,M) ¥ = ) V [n+1|B(2(n+3),M-n) (4.43)
n=0
We used the recurrence relations (4.42) and(4.43) but with
A=gx as the perturbation parameter.

4.8 Three dimensional calculation for the potential

lrz/(1+gr2)

It is interesting to note that this model can be
extended to the three dimensional case, and we used more than
one method to calculate the eigenvalues. The numerical
results obtained by the perturbative method agree with those
obtained by the non-perturbative (power series) method. As is
expected, the eigenvalue accuracy decreases steadily with
increasing M and fixed g in accord with our previous
experience In one dimensional problems for this type of
potential, for large g, the perturbing potential is almost
entirely concentrated near rz0. In this section, we want to
jnvestigate the three-dimensional Schrddinger equation, which

can be written conventionally in the form

a2
[ — ¢ E-V(r)]?(r):O (4.44)
dx
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where
Vir)sri+l(4+1)r % —2 (4.45)
(1+gr )
We shall not distinguish between the one and
three-dimensional interpretation of the perturbed

Hamiltonian, and assume that we have either (4£=-1,0 and -»
<r<+») or (£=0,1, and O0<r<+») The potential in equation

(4.45) can be expressed as

Vir)=ri+£(£+1)r %+ i v g p2inty) (4.46)
n=0
where
n
Vnzl(-l) (4.47)

If we insert the energy and expectation value series in the
hypervirial relation, and use the Hellmann-Feynman theorem,

we get the following relations

(2N+2]Z E(I)B(N,M-I):N[ﬂ(l+1)—%(Nz-l)]B(N-Z,M)

+(X+IJ(ZN+4)B(N+2,M)

+§ Vn[2N+2(h+2)]B(N+2(n+1),M-n—l) (4.48)

n=0

(M+1)E(M+l)=i Vn (n+1]B(2(n+1),M—n) (4.49)
n=0

The energy of the nth unperturbed state can be written as

follows
E(O)=(4n+2£+3) (4.50)

The above equations (4.48,4.49,4.50) with coefficient
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B(0,0)=1 allow us to compute the energies for different value
of angular momentum (£=5,10,20). We used the power series
method as another approach to compute the energy eigenvalues,
to check our results., The first step in applying this
approach is to write the Schrodinger equation in the form

d? 2 Ar’ -2
[ d” 4 g - p?- — 2 _ glsl)r ]W(r):o (4.51)

>

dr? (1+gr?)
The wavefunction in equation (4.51) can be expressed as

LaNet

W(r):exp(—Brz}z A(N)r (4.52)

We substitute equation (4.52) in equation (4.51). The result

of this substitution is

[[s+2) fve2s) Jrewar-

+ [g{c (£+ 1)- (N+£} (N+£+ 1)}+4BN+4B£+SB—E]r2T(N)

+ [g (43(N-2) +4B£+63—E) +1—4B2+>.] r'T (N-2)

+g[1-482]r5T(N-4) (4.53)

where
- £+N+1
2 T(N)-z A(N) r (4.54)

The energy eigenvalues calculated by the power series
approach are valid only for ¢r2$1, using the Dirichlet
condition ¥(r)=0. We used the Padé approximant method as
another approach to calculate the energy eigenvalues
corresponding to a range of values g and X for which it is

impossible to calculate results by hypervirial and power
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series methods. We calculated the energy eigenvalues using
the [6,6] approximant for ground and first excited states;
the energy levels were calculated for different values of
angular momentum.

4.9 Three dimensional calculation for the potential

1/2r %gr /7 (1+gor’)

The Schrodinger equation (4.27) for three dimensions

takes the form

32
[ > + E - V(r)]?(r):O (4.55)
dr
where the potential in equation (4.55 ) is given as
¥ r’ 2 -2 gr
Vi(r)=z + 5(&+1)r ¥ (4.56)
2 2 2
(l+4gar”)
The potential (4.56) can be expressed as
¥ rZ ¢ -2 17 n+l 2(n+2)
v(r)=§+-2-(£+1)r F—o)VAar (4.57)
n=0Q
where the potential coefficients V_are
n
Vn:(-) ; Azog (4.58)

The series in equation (4.57) is valid only for garzsl. By
substituting the energy and expectation value series, as
given by equations (2.6,2.7), in the hypervirial relation

(2.3), the following relation is obtained

(zmz]z E(I)B(N,M—I):N[£(£+1) 3 ;}(Nz-l)]n(n-z,m

+(N+2)B(N+2,M)$% i Vn[2N+Z (n+3)]B(N+2(n+2) ) yM=n-1) (4.59)

n=0
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If we apply the Hellmann-Feynman theorem, we obtain the

following relation
1
(M+1)E(M+1): I& i Vn(n+1)B(2(n+2),M-n) (4.60)
n=0

Using the unperturbed value of energy E(O):%[4n+2£+3], with
the initial condition B(0,0)=1, the equations (4.59) and
(4.60) are sufficient to calculate the energy series. Also we
use the same approach with g as perturbation parameter, so

that the potential takes the form

n+1l_2(n+2)
r

2
V(r):% + %(&w\l)r'2 ¥ S Vg (4.61)

n=0

Using the same technique which gave relations (4.59,4.60), we

can get the relation

(zmz)z E(I)B(N,M-I):N[C(-C+1) - %(N‘—"l]]nm-z,m)

+ (N+2)B(n+2,M)=F zovn [2N+2 (n+3)]B(N+2(n+2) ,M-n-1) (4.62)
where
v,z(-)" (6.63)
and also the relation
(M+1)E(M+1):¢S Vn (n+l]B(2(n+2),M—n) (4.64)

nz0

4.10 Results and discussion

Our aim in this section is to investigate and to discuss
the results for the energy eigenvalues of the Hamiltonians

given by equations (4.1-4.6), in one and three dimensions.
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Our aim also is to push the numerical analysis as far as
possible, and in this respect we go further than other people
in our analysis. We study here the three dimensional problem
and high indices 2N of the perturbation. In addition we have
succeeded in finding the energy eigenvalues with excellent
accuracy. This problem received great attention from us , and
we have attacked it by many methods, as we mentioned in a
previous section. In summary, we have analysed numerically
four different methods to determine the energy eigenvalues
for these problems for different values of state number n and
a wide range of values of (A&g) and indices (2N=2,4,..18,20).
The finite difference method has been used for calculations
outside the 1limits applicable to the other three methods
(hypervirial, Padé approximant and power series}),
particularly in respect to the values of parameters (g&X) and
of the index of the perturbation (2N=2,4,6,... 18,20). It is
note worthy that the methods which have been applied to
compute our results are applicable within a limited range of
(2N,A,g), except for the finite difference method, which
geems to present fewer difficulties. We have wused the
hypervirial method to calculate results for various model
problems, such as those given by (4.1,4.2,4.3,4.4,4.5,4.6),
for different values of (2N,\,g,n). The present work is
intended to point out one feature which has not been noted in
previous problems. The hypervirial method can produce a good
accuracy even without use of the renormalisation parameter K,
which usually plays an important role in obtaining convergent

perturbation series, as we have seen in previous chapters. We
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have performed a series of computations for the problems of

this chapter, which revealed the following fact. As the index
(2N) increases the sums of the perturbation series converge
very well for small values of X, and as ) increases the
convergence begin to decrease. If we review briefly our
listed results in tables (4.3,4.7,4.10,4.12 ,4.13), we can
get a clear picture of this behaviour. We can say that the
accuracy of our listed results is very good in comparison
with other results which are available in the literature.
Also the results which are produced by the hypervirial method
are in good agreement with our results which have been
calculated by the power series and finite difference methods.
This agreement provides a check on the accuracy of our
results. We have computed the first four energy eigenvalues
for index (2N=2), with parameter values 505221000,
0.1<¢g<0.50, by using three methods (hypervirial, power series
and finite difference). The accuracy of our results in
general is more than 16 significant digits, as shown in
tables (4.1,4.2). The power series method seems to work very
well and the convergence of this method will be controlled by
the parameter B. We also listed in table (4.4) the four first
energy eigenvalues for (2N=z2) and for values 0.25gs50 and
50053s10°, obtained by using Padé¢ approximants [6,6] and the
hypervirial method. The agreement between the two methods is
very good. Also we have calculated the first five energy
levels by using the hypervirial method for (2Nz4), with case
Vv (x) for 10 ’sgs0.02; 1%0s50. In addition we used Padé

approximants for (0.1sg<2; 2s0<50). We have observed a strong
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gimilarity between the behaviour of the hypervirial method in
one and three dimensional calculations for changing index of
perturbation (2N) and value of (g&)). The series converge
very quickly for large 2 and small g with (2N=2), but with
(2N=4,6) the gituation is not similar;the series converges
for small values of X and larger values of g. Further more it
clearly appeared from our listed results in tables
(4.12,4.14), that the perturbation calculations (Hypervirial
calculations) can yield very high accuracy for large values
of «, if we take ag as perturbation parameter in stead of g.
For small values of «,it does not make any different to the
accuracy whether we take ag or g as perturbation parameter.
Also we have not observed any fundamental difference in
behaviour between the Vand V'cases as we vary the
perturbation parameters (o,g) and index (2N=4,6). We have
calculated the first five energy eigenvalues in three
dimensions for different sets of \,g, index (2N=2,4,6) and
angular momentum. It is note worthy that the Padé approximant
method [M,N] has been applied to this problem for one and
three dimension and is able to handle this problem over a
wide range of 0.15gs50; 0.152510°, and index power
(2N=2,4,6). Some of the present calculations of eigenvalues
have been repeated with two different values of N and M in
order to check the accuracy, since there is an absence of
reported results in the literature. The agreement between the
two eigenvalues is very good. We wish to draw attention to
the fact that the present Padé¢ approximant approach works

very well even for higher values of (g,)), whereas the Pade
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approximant method of Lai and Lin [28,1982] is restricted to
low values of g (g€52). Our results allow us to study the
numerical behaviour of this potential for varying index (2N),
perturbation parameter (g&X), and for a number of excited
atates. For the ordinary anharmonic oscillator (g=0) of
chapter one, we have seen that as the index 2N varies the
order of the ground state levels obeys

E<E®< r®....E'%E?°

for small values of (X=0.1,1,5), while for large values of
(2=560,100), the order is reversed. For the present type of
perturbation the picture is more complicated because there
are two parameters (g&)). Many energy levels have been
calculated, and we mentioned previously that the behaviour of
the eigenvalues is nonanalytic at each crossing point. We
have seen from our results that some energy eigenvalues for
(g=>) decrease or increase with increasing index
(2N=2,4,..20). For example at (g=2=0.1) the energy
eigenvalues increase as 2N increases, as is clear from our
listed results in table (4.4,4.5). The ordering of the

eigenvalues can be expressed as below:
B2 (n)<E*'(n)<B%(n) <B®""%(n) <E®"(n) (2N:=2,4,..20)

Here n is the state number and its values in the present
calculations are n=0,2,4,6. With another set of values of the
perturbation parameters (g=Az10) the order of levels can be

given as:

E%(0,4)>E*(0,4), E%(2,6)<E*(2,6)
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For index values greater than (2N=6) the energy eigenvalues

increase as 2N increases as follows:

E'(n) ¢ B°(m)<E®(n).vvv B (m)<E'%(n)<E®(n)

With other sets of values of (g=2=100,1000) the energy levels
have the same behaviour; the energy levels increase as 2N

increases except the ground levels
£2(0)>E*(0)>E®(0)<E®(0)<R'00),..<E"®(0)<E*°(0)
For states n=2,4,6 the order of levels is
B2 (n)<E°(n)<E°(n)< E'%(n)...E'%(n)<E?%(n)

We computed the energy levels with different values of g&j;

for the values (g=100,2=0.1), the order of levels is:
EZ(0)>E*(0); E®(2,4,6)<E'(2,4,6);

E*(n)<E®(n)<E%(n)......<E'%(n)<E?%(n)
for n=0,2,4,6. With the values g=1 and X=100 the order of

levels is given by
E%(n)>E*(n)>E (n)>E%(n) ... .E'®(n)>E®%(n)  (n=0,2,4)

while for n=6 the order of levels is;

2N-2(6) (EZN (6) (2N=6,8...20)

E?(6)<E
The computation was carried out to double-precision accuracy
by using the ICL and VME system with Fortran (77) programs.
In order to give a clear picture of our results for this
chapter, in tables (I,II,III,VI), we present the ranges of
values of the parameters (g&)), and of the state number n and

angular momentum, together with the table numbers in which

the relevant results were reported for the various methods.
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PARAMETER RANGES

Table (I). H= p’ + x2+ a2/ (14gx?)

- Finite difference
|
- Power geries

' Hyperviria
Padé approximants 50 10° mun
N S C T FRPYITS (YT [ PO

Table (11) H'P2+x2+(£(£+l)r'2+1r2/(1+¢r2)

frperviis I N
Power series
) TS TS N CYEYCN PR
2 2

2
Table (1IV) H:—g + —% + £(£+l)r\2$ zr‘/(1+¢ar2)
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Table (4.1). Eigenvalues of He=p®+x®+Ax®/(1+¢gx®), for ground state
and the first even state, First line; power series method, Second
1ine;: finite difference method; the numbers in the bracket
correspond to (g)&(A).

h
22, 30842503 4IBIBIB2[A0, 3|

P, X

0.0015

3

40, 3[157.221567173042002[50, 3|

1

0.1, 10007 |BA£ b 4

0.0015

0.0015

(0. 2, 1000)

0. 00075

0. 00075

50, 2
0.001

0.001

B0, 1.5
0.0008

0. 0008

0.0007

0.0007

B0, 1.5
0. 00075

0.00075

0.0015

0.0015

50, 1.4
0.0007

0. 0007

za. 5
0.0015

0.0015

0.0015

0.0015

§58818

30, 2
0.001

40, Z]45. 3532110650 102041 |

20, 3
0.0018

0.0015

15 5.T00]
Ll i L

2640

0.001

el PR

0.001
55; 2

5865631

0.001
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Table (4.2). Elgenvalues of H=P*+x®+ax®/(1+gx®), for the
first four energy levels, First line; power series method,
Second line; Hypervirial methods the numbers in the bracket
correspond to g & A.

70. 1, 5007 E; 5.1, 1000) B, X
N
2] 8 8] 7
S TTECSS IO T, 3oL SO TN trrio] O]
5] 9 3] 8
S TSeTT 7300200204 [50, 3|
8] 8 3] 8
8] 8 11 7
0.1, 50) (0.1, 100)
3 12 4 10
10

P

[y
-

R

[
N
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Table (4.3). Eigenvalues of H-p'm'dx'/(hgx’),
for the first four energy levels, First line; Padé
spproximants E[6,8]), Second 1line; Hypervirial
method, the numbers in the bracket correspond to g
& A.
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Table (4.4). Eigenvalues of Heptex®eax®/(1+gx®)

for the first five energy lewvels,
from the Padé approximants E [6,8]3 the numbers

in the brackst correspond to ( g ) & (A).

3. 1200818644
5. 1810947875
7. 2310099806

23. 7433280421
34. 2577412431
41, 4928240348

3. 3638015565
5.4632114183
7. 5278886000

3.5073979060
5. 5898335474
7.6490688893

Bl e i

56. 8614598560
85. 8349684543
108. 5270735407

4a1.
120. 1518287267
187.6111222784
{245. 2134888879
2

BT, 2701342848
146. 8062318991
228. 9052478261
298. 7357244491

[ WE)

— (5,8000)
73. 60837131803 |

3. 0329572730
§.0345518112
7.0377588528

51. 1818569177
72. 1400383450
85. 1765680378

28. 7059656288
41. 4410897462
53. 8390828601

71.8385859542
110. 4934667581
142. 1540209781

T TESTEE0

41.5492530483

m"

15. 4975387596
21.3878955934
25.0184059096 |

39.5754384018
48.1038613184
52.4381828133

19. 6850376488
31.2380422733

38.9925190308
61.7775336881
82. 0052851252

105. 8057200506
166.3941150102
219. 5885782022

175. 44479894176
279. 36402149849
372. 7726752273

214.5189371947
341.2492805607

I )
o RTINS
253.8340871248
409. 7309985677
554.6676122546
-sréssm!
266.5867728404
427.8041852813

454.879814338607

575. 5603962093

caloulated
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Table (4.5) Eigenvalues of Hep #x®+ax®*/(1+p®), for
the first four even energy levels calculated from
finite difference methodsthe numbers in the bracket

correspond to g & A.
gqrﬁgrrn‘—. . n

TSI

5. 181084785884
9. 272816870035
13. 338380726873

1.
5.5745223229848
10. 456102208292
15. 527085931694

6. 400322742109
13. 438095185462
21. 798915062902

7.383294498903
16. 841331851282
29. 198386385942
=T, 215878534348

8.343517967069
20. 170797539421
36. 026256433818
1. 250152850803

9. 197921053984
22.993264654376
42. 007180092887

1.

9. 955132586841
25. 438823035348
47. 182045758317

10. 626048883982
27. 565806963300
51.694783070945
1. 450867110050

11. 223051083941
29. 429388500059
55. 628346093512

11.757261716042
31.075486317130
59. 089626726601

5 832787532485
13. 9805251334974

17. 918885935944
[ 1.950774B62157

6.880545314896
12.641826177581

18. 295827777899
1. 305050748128

8.546584784823
17.880113503822
28.617080307170

9. 848002405294
22. 6888854088384

38. 726642405555
1. 476108778767

10. 877002260298
26. 485085595570

47.001366822781
[ 1.533170008202

11.707675148976
28. 505481413627

53. 856055492948
- 1.586121222193

12.397847402773
31.98351683276650

59. 063768230162
[ 1.633450145224

12.884420658732
33. 840882508003
63. 5287962926168

13. 491825483811
35.631030232473

B7. 275793858806
~1.718325475058

13.936891803671
37.080020447702
70.467858867117

18. 375244956867
28. 812808980223
39.018341108677
47.352859541727

54. 040415893047
[ 1.506737868007

5. 82832857154l
9. 9491809628089
13. 959285222388
[ 1. 206005452883

7.081801755091
12. 718510053100

8.643580184793
18. 040135250889

8. 854237354521
22. 887204444789

10. 881472033116
26. 717641645810

11.808190624164
29. 737587537625

12.493517331184
32. 168244360628
59. 463513300016

13. 075207911050
34. 170496409418
63. 832880434225

13. 577998382110
35. 854600782728
67. 677675952840

14. 018803426232
37.286532262040
70. 863367896662
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Table (4.8) Eigenvalues of B=p®+ x'ﬂx"/(l*gxa). for
the first four even energy levels calculated from
finite difference methods numbers in the bracket
correspond to g & A.

T ettt

—100,1.0)

; 10.1,100)

RN TSR k)

r

5.9873871284468
8.880844496690

13. 884309011922
1. 213277370827

7.070098533826
12. 728944524023

18. 383794662647
1. 382080730081

8. 653895433124
18. 055807418817
28. 833077682717

9:965376749087
22.9807873768005
39. 048538250890

10. 892504406862
26. 740857548661

47. 389313237020
1. BAB123212747 |

11.818784253499
29.761753514174
54.080343451799

1.
12. 503583878929
32. 192539968280

59. 505092854508
1. 545511450010

13:084748387255
34. 1944832102086
63. 875063699382

13. 587042575353
35. 877971924946
67. 719551758007

14. 027395631208
37. 319168240829
70. 904604121144

41.441089751484
84. 187440895006
79. 911771037615

30. 032354991385
61. 606494425808
85. 540315090111

25. 553317440935
58. 842538708101
99, 359790265248

23.352777855213
57.343601284529

101. 091557364302
~ 2.887600701824

22. 122616368764
56. 3318035570892

102. 113154388781
[~ 2.550508787748

21.379015891983
55. 671617557702

102. 815736737674
-~ 2.481072823458

20. 906733711552
55. 236609028178

103. 350952041603
- 2. 432550256677

20. 597388905582
54.852691225111

103. 789938684360
2. 4000B3B40870|

20. 391273776539
54. 773396474927
104. 170088964780

20. 253376984017
54. 668139736770
104. 512350040639

5. 000827544679
9. 000848590765
13. 000958871383
1. 00001264348

5.002480100021
8. 004488389761
13. 008488787180
1. 000743784230,

5.008687082013
9.030504963328
13. 063099296382

5.044707772528
9.218311641801
13. 582656194818
1. 00B830047517|

5. 180868793727
10. 044315726458
15. 834302784052
1.017304112745|

5.538312461608
11.654214351368
19. 634358792624
1. 030468018489,

56.045814670986
13. 833559470727
23.878716235410

6.626819240530
15. 685083305035
28.3471495684928

7.224680702921
17. 677889685561
32. 526472722653
1. 150857847852

7.810470001495
19.561158228393

36.441449502621
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Table (4.7). Eigenvalues of H's 1/2P%+1/2xsgx%/(1+gax®), for
the ground-state energy levels calculated from finite
difference method.

E Ref 31 E Ref 31

- : x Y oo

a

50|

TR
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Table (4.8). Eigenvalues of H=1/2P%+1/2x +gx*/(1+gnx®), for
the first five energy levels calculated from Hypervirial
methodsthe numbers in the bracket correspond to (g) & («).

0. 00 0.8 r
0.50074b47074764384145 r .
1.50372318292878982720 |10} 0}1.503668853194445068778 14
2.5096515415617772691 [11] 0]2.50945179849408721685 |16
3.51850014293877716848 |12] 0}]3.51800388316423416807 J20
4.5302383407624826113 |13] 0]4.5202372284608061748 20
D . 00 » 10 r R r
5. D007 2827070700422 1D . kid
1.5036080772489412314 J21] 0]1.503482319497928084 |38
2.5082408909632772410 [24] 0}2.50885011540498976 4
3.5174860974896648367 [28] 0]3.5165431520351894 42
4.5282057666965039694 }31] 0]4.528360808570728 43
D . 00 50 r . ) lr
. 5006678370 18 . 14
1.503197920 14110]1.502818 13
2.50787383 12]10]2. 50688 11
3.5142766 10110]3.511 7
4.522095 11]J10)4.517 7
D.005,1) r .
0. 50364 04 3 /468 !ﬂ? R
1.5179671613901822218 32| 0]1.516888308272 16
2.54594982503971 241 0]2.5423246614 30
3.5868079952874 291 0]3.5782079186 28
4.6398468050 221 0]4.8075 - 12
D . 00 0) r .
5. DO 3304668 13 . 14
1.51574764 18110]1.514770 10
2.538594 9 J10]2.53355 6
3.56969 7 11013.5629 7
4.6075 12110}4.595 5
0. 00 D) N | . .1) N
5 B05010 TT{1010. T3
1.51392 10]10}1.53553868515 17
2.5329 8 |10}2.59046858 17
3.557 5 J10)3.670194 15
4.58 4 J10)4.773861 13
0.01,0.5) .01,1)
5. 50717348508 17| .
1.535099404 18] 0]1.534570408 13
2. 5889936 19] 0]Z. 58722278 15
3.66669 18] 0]3.662515 12
4.766 6 ] 0)4.7583 11
[(0.01,2) . )] —IN |
(. 5069395834 1411 . 14
1.533567343 10J10]1.53263064 16
2.5839027 117110)2. 580846 13
3.65478 8 110)3.64777 11
4.7437 8 110})4.730 5
5.02,1.5) N .02, 2)
0. > §_ .
1.56288 8 J10]1.56130 8
2.654 6 J10]2.648 4
3.77 5 110]3.76 3
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Elgenvalues of He1/2P%+1/2x%egx*/(1+gax®),
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for

the first five energy levels calculated from the Padé
approximants E [N,N): the numbers in the bracket correspond

to (g) & (a).

MJ-IJLIWIJLI

D . SUSYS 75080 505 T. 0. 5036 *
1.5274483072] 717 l 52256880‘8 7 7 1. 5150007532
2.5646974761] 6]6 }2.5508500867] 6]6 §2.5310182764
3.6124950756] 6]6 ]3.5841841843] 816 }3.5482870805
5. BoB23338 §. 54530003 m
1.7642326385] 4]4 ]1.6945334318] 8]6 ]11.8378822422
3.1228901590] 44 ]2.9278904156] 616 J2.7837371250
4.58047989549] A4 14.2037147105] 6)6 [3.9412533225
0.1,1C NIN (0.1, 20 "NIN JU0.1,800 |
5. B2An2OT. D. 51082050991 Bl m
1.5932661578] 717 }1.5568866871] 717 [1.5263350805
2.6809753605] 6]6 |1.6048590962] 717 ]2.54683132887
3.7701773830] 616 ]3.6517785538] 616 ]3.5655210362
D. \ NIN D. 20 | NIN (0. 5(
D. 53155484497 : U. 544 7380 Ji: D. 0BS54
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Table

(4.10). Eigenvalues of He1/2P%+1/2x®-gx*/(1+gax®), for the
first five Energy levels calculated from Hypervirial
numbers in the bracket correspond to
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Table (4.11). Eigenvalues of B=1/2PY+1/2x%-gx*/(1+4gax®), for
the first five energy levels calculated from Hypervirial
method: the numbers in the bracket corresponds to (g) & (a)
First line corrspond to (ga) as perturbation constant;
Second line to (g) as perturbation constant.
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Table (4.12). Eigenvalues of He1/2P +1/2x®-gx*/(14g®)
for the first four energy levels calculated froa the
Padé approximants E[N,N]:the nmumbers in the bracket
correspond to (g) & (a).
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Table (4.13). Eigenvalues of H = 1/2P%+ 1/2x®-gx®/(1+gex®), For the first
five energy levels calculated froa Hypervirial methodg§the numbers in the
bracket correspond to (g)&(«),First line corrspond to (ga) as perturbation
constant;Second line to (g) as perturbation constant.
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Table (4.14). Elgenvalues of He1/2P*+1/2x%+px®/(1+gax®), for
the first five energy levels calculated from Hypervirial
methodithe numbers in the bracket corresponds to (g) & (a),
First line corrspond to (ga) as perturbation constant;Second
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line to (g) as perturbation constant.
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Table (4.1S). Eigenvalues of HePer®+ar®/(14gr®), for the

first four energy levels, First line; power series
method, Second line; Hypervirial methodf the numbers in
the bracket correspond to (g) & (A) and [2 ).
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Table (4.18). Eigenvalues of HeP +r®ear®/(1+gr®), for
the first five energy levels, calculated from the Padé
approximants E [B8,6] 3 the numbers in the bracket

correspond to (g), (A) and [¢ ).
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Teble (4.17) Elgenvalues of H=1/2P%+1/2rf+gr®/(1+gar®), for

the first five energy levels calculated froam Hypervirial
methode The numbers in the bracket correspond to (g) & (a)
and <¢ >,
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Teble (4.18). Eigenvalues of H=1/2P%+1/2r%+gr®/(1+gar®), for the

ground state energy level calculated from Padé approximants E[N,M]g
numbers in the bracket correspond to (g) & (a) and <b.
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Table (4.18). Eigenvalues of He1/2P%+1/2r®-gr'/(1+gar?), for

the first five energy levels calculated from Hypervirial
method. The numbers in the bracket correspond to (g) & («)

and <.
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Table (4.20) Eigenvalues of He1/2P +1/2rP-gr'/(1+gar®), for
the first five energy levels calculated from Hypervirial
method. The numbers in the bracket correspond to (g) & («).
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CHAPTER FIVE
SOME DIFFERENT PROBLEMS

5.1 Introduction

Chapter five is devoted to investigating numerically
various eigenvalue problems in one and three dimensions,
using perturbative and nonperturbative methods for the

following perturbative Hamiltonians:

2
- L T | Y l.2,. 2
1. H-QP r + szz t 3 [x +y ]
2. H:%P2+ %£(£+1)r_2— Zr-ie-xr
2

3. H=P%+ £(£+1)r'2-Ae'lr

4. H:%P2+ %{(£+1)r-2— r 4ap

5. H:%Pz— P 2ar + 22%p°
6. H:%p2+ %£(£+1)r-z—r-1e-erOS(Xr)

-1
7. H=1P2+ %£(£+1)r-2- xe'lr[l—e'lr]

-zxxz[ -2)u<2:|'1

8. H=P%+x’-2e l+e

1+e

2
9. H:P2+r2+C(£+1)r'2—2e'zxr [

-zkrz‘]-‘l

The energy eigenvalues as computed by more than one method
agree with each other and with those reported in the
literature. Beside the methods described in the various

gections of chapter five, we should note that all the
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traditional methods of accelerating convergence of a series
can be used in perturbation theory (e.g renormalised series

and Padé approximants).

5.2 Quadratic Zeeman effect

§.2.1 Introduction

The problem of the quadratic Zeeman effect for the
hydrogen atom has attracted much attention because of its
applications in astrophysics and solid state physics. The
problem of the Zeeman effect has been studied by many authors
using a number of approximate methods. The literature
provides an exhaustive range of numerical results for
different range of field strength H.Praddaude [32,1972]
calculated the 14 lowest-energy levels, assuming an
appropriate expansion of the wave function in terms of
Laguerre polynomials, Gallas [([34,1984] gave variational
estimates of the energies for the first 13 states. Also an
investigation of this problem was given by Killingbeck
[33,1981; 35,1985; 36,1985] using several techniques (power
series, renormalised series and finite difference methods).
The hamiltonian for a hydrogen atom in the presence of a
constant magnetic field is

1 2 2
H:Em [P+—3A] -
e|l— c—

L N1

(5.1)

1 .
where (A= igxg) is the vector potential. Assuming the

magnetic field B to be along the Z direction (B=0,0,B), and
choosing atomic units such that hzez=m =1, the magnitude of
L]

the vector potential is
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A:%|§x3|=%BrSin9 (5.2)
so that
é.B:B(xPy-ny):BCz {6.3)
E:iPx-l-ij-O-sz {(6.4)
1 . .
ézéB -iy+jx (6.5)

Here r makes angle 8 with the Z axis. £z is the operator for
the 2Z component of the orbital angular momentum. Using

equations (6.2,5.3,5.4), then the equation (5.1) takes the

form
i,2 -1 1 1.2 2, 2
H=5P®-r '+ Eﬂ&z + g¥'r’sin 6 (5.6)
with y::Bc, in S.I.units. B represents the magnetic field
e
strength and e, m the electronic charge and 1mass

respectively. In the units used the parameter 7y is equal to
the cyclotron frequency. It measures the magnetic field

atrength in units of 2.35x109 G; equivalently 2.35x10s T

corresponds to the value 7¥=1. By wusing the spherical
coordinates
x=r8inbCosd (56.7)
y=rSinfSin¢ (6.8)
zzrCos@ (6.9)
Then
x2+y2%zr®sin’e (5.10)

Therefore the hamiltonian can be written ag
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1.2 -1, 1 l .2} 2 2
H=- —2—D-r +§'Y£z+§1 [x +y] (5.11)

In these units the ground state energy is -1/2 at y=0, and

7=0.1 corresponds to a magnetic field of (2.35x10'T). The

term in equation (5.6) %VerSinZG has the expectation value

11%<ntn | r’sin%0 |ntm>=37<n | r?|Ln> <tn |Sin%0| m> (5.12)

Where
|n€m>=R_,Y5(8,¢) (5.13)

In order to evaluate the quantity (5.12) it is convenient to

write down the recurrence relations

(ZC+1)COSGP2=(C+m)P2_1+(£—m+l)P2+1 (5.14)
op™ = (£+m) P™ 4 (£-m+1 p® 5. 15
CosbP, = 17| e-1t [(28+1) |Ften (5.15)

(2241)(£-m)! m imd
An(L+m) ! (-)e

Yz (8,¢)= Pz Cos6 (5.16)

From equations (5.15,5.16), it is easy to obtain the relation

CosGY2(6,¢)=
(£+m) (£-m) Y (6,9)+ (L4m+1) (£-m+1) ™ (6.0 5 17
(2£+1)(2(,—1) £-1'7? (2.C+1)(2£+3) 4C+‘l( ' ®) (5. )
<Cm|Sin26|£m>= 1—(@'00829'»&10 (5.18)

=1-Jyzf(e,¢)c°sze Y2(9,¢) dQ (5.19)
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_ (£+m) (£-m) (£+m+1) (£-m+1)
‘1’[(2£-1)<zz+1) Yo et (6.20)
_1[2(L+1)+m2-1
'Z[(zz+3)<2c-1)] (5.21)
Also the %yﬂz term contribution is given by
1 -imdp, O imp_ 1
<n£m|§7£z|n£m>:%<e " |;§$|e " >=5ym (5.22)

Therefore to lowest order equation (5.6) can be replaced by a

spherically aymmetric Hamiltonian

1.2 1.9 1[£(£+1)+m2-1 ] 2 2

HzgP - r + om + 11O (21|17 ¥ (5.23)

This use of a lowest order effective Hamiltonian is described
in detail below. The quantum states of energy E0 for a
particle in a spherically symmetric field are characterised by

wave function of the form

%&...:an(r)vz(e,m (5.24)

The direction of the Z-axis is arbitrary and can be chosen
along the direction of the magnetic field B. The operator &:
commutes with the Hamiltonian H for all values of the
magnetic field and m is thus a good quantum number, i.e the
Hamiltonian describes a system invariant to rotation about
the Z-axis. The operators H and £z must have simultaneous
eigenfunctions. The functions Yz contain the angle ¢ only in
the factor eim¢, and the commutation relation [H,4£z1=0,

expresses the fact that the Z-component of £ is a constant of

the motion for any spherically symmetric potential. The
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hamiltonian contains a linear and a quadratic term in the
magnetic field strength. The ground state (S-state) of the
hydrogen atom has zero angular momentum, which means that the
magnetic quantum number must be m=0. For such a state the
linear term vanishes; therefore the full Hamiltonian (5.11)

reduces to the form

H=- %Dz— r s %yz[yzﬂtz] {6.25)
The perturbing potential due to the magnetic field is not of
a single tensor type but is a sum of tensor operator of rank
0 (with £=0) and of rank 2 (with £=z2). which may be referred
to as the s and 4 parts of the perturbation. By using tensor
operators of definite £ we can express the perturbation as an

£z0 term plus an £=2 term as follows

31° [x2+y‘2]=A1x2r2+V2 (5.26)
where
A=1s (5.27)
and
Vaz—ézyz[ra—3zz] (5.28)

Therefore the equation (5.25) takes the form

1.2 -1, 1 2 2 1 2 2
H=- ED -r '+ 1—7 r + ﬂ[r -3z ] (5.29)

where the s part is given by %Eyzraand the d part by

The Hamiltonian for the different states can be written as



-159-

follows, with

1_2 -1
HO - - 'Z—D - T
1 HzH + L9%r% 14%[r3-322 5
1 22 1 _2 2 2
Zpo s H=H0+ -2—67 r + T0-1 3r -5z (56.31)
- 1 22 1 1 _2f 2 2
2p_1, H-H0+ Tﬁ’ r + 21m+ Zay (r -5z ) {(5.32)
1 22 1 1 .2 2 2
3d_1, H:Ho+ —1—17 r + —2-7111 + g'éﬂ (31‘ -7z ) (6.33)
- 3 2.2 1 1 2f 2 . 2
3d_2, H-HO+ §§1 r+ zym + 557 (r 1z ) {h.34)

Each V2 term has zero expectation value for the states

concerned

[1s, 2s, ZPO ’ 2p-‘l ’ 2p¢1 y 3d 1 ! 3d_2] i.e

E, =<¢ |V _|8,>=0 (5.35)

The spherically symmetric Hamiltonian H—V2 can be treated
accurately by various methods. To obtain the full perturbed
energy (E) it will then be necessary to include the second
order and third order energy shift which is produced by
adding the V2 part of the potential function. As we pointed
out above, the addition of the V2 potential term to the
Hamiltonian does not alter the energy eigenvalue in first
order. We can estimate the second-order energy shift caused
by the residual perturbation VZ. E2 and E, can actually be

closely estimated starting from the Hylleraas functional,
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which takes the following form
F(w):2<w|V|¢o>—<w|(HO—EO)|w> : (5.36)

where 9 is a trial function estimate for the first order
perturbed wavefunction. By wusing the renormalised series
method, it is easy to find E_, <r> and to get higher <r">. To
find the E2 produced by V2 we start from the eigenfunction of
the perturbed radial problem as the unperturbed function.
Calling this function ¢0 and taking the trial function 9 in
the form w:f¢o, with f some function of the coordinates, the
gecond term in (S5.36) then takes the following form after

using the relation

H ¢,=E ¢, (5.37)
<o |£(H -B )f|o3=<o |f[H ,£]]|o> (5.38)

If the Hamiltonian HO:-aD2+U, with U any function of
position, then relation (5.38) after tedious algebra and use

of the identity
92 (fg)=FfV°g+gV°f+2grad(f) .grad(g) (6.39)
takes the form
<o, |£TH £ ]8> =< [grad(f).grad(f) e (5.40)
Then the Hylleraas functional takes the form (with f:sz)
£(p)=2k<d |V5 |8 >-ak?< |grad V,.grad V,|o> (5.41)

The whole set of terms involve only expectation values over

¢,, and standard angular integrals over (8). The radial
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expectation values can be obtained from the renormalised
series approach. In order to work out the angular terms in

the functional we can use the relation

2
(Fu)>=58 F;“”’ (5.42)
uyy
<u™>=(n+1) " (5.43)
where
p=Cosé (5.44)

We also have
2 2 2
_{38va ava V2
grade.gradvz-(-a—x-)+(ay)+(az ) (5.45)
E3 can be estimated from the formula

E =<p |V [v)> (5.46)

2 3
=k <o |V, |e,> (5.47)

To calculate Ez’ we need the minimum of a function of form
F(k)=2Ak -BK (5.48)

The minimum is A’ 1. Taking A and B from the above results
we can estimate the total second-order E, effect due to v, .
We performed the calculation at y=0.1 for the states in the
table below. We found the expectation values <r"> (n=2,4,6)
by using the renormalised series approach. For example the

total second-order effect for 2P_1 is given as

z-27.302x10"°  (at ¥=0.1)

2 712,,4,2
40

—0.1632653[1—
2
{r~>
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and also the total third-order effect for the same state 2P .

is given as

2 3
[%6 ] [Zkz(—%%)<r6>]=—4.78852x10'5 (at y=0.1)

where the value of k it can be determined from the
gecond-order calculation and equals k=AB~'. The perturbation
coefficient in the above calculation is (72/40), which is
actually (A) (see (5.32)). The (H-Vz) energy eigenvalue for
gtate 2p_1is -0.1505220 as found by the renormalisd series
approach, which also gives expectation values <r2>=21.1594,
<r*>=752.424,<r°>=38967.179. The second and third order
ghifts due to V2 are estimated to be (-0.000302,
-0.0000478852) respectively. The second-order correction to
the energy is six times the third-order correction, Ez and E3
together give a corrected energy (-0.1508429). This energy is
in good agreement with Praddaude; using a large scale matrix
calculation he obtained (-0.150845). The second and third
order corrections thus bring our results closer to the
results of Praddaude and indicate that it is sufficient to
take the second and third order corrections to obtain a good
energy. The unperturbed 2p_, energy is -1/8, so the V, part of
the perturbation has given an energy shift (-0.025522), while
V2 has given a second order shift (-0.00027302) and a third
order shift (-0.0000478852). The calculation described above
can be carried out for various other states, as shown in

table (5.2), which gives the required expressions for each

state.
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tate| 2O VIO | oo 115217 0> | Ko |V20,>
a 2k 2-<r'> 2 k% <r® 2k*(-32 1<r®>
2p, | 2k F<r> > kZaur® 2k’[ 2= 1<r®>
2P | %k x> 2 k*16¢r® 2k *[-52 14r®>
:;d_‘l 2k §—<r‘> % kZ48¢r® 2k2[-%§]<r6>
ad_, | 2k 5<r™> 2 k%24er®> 2k*[-221<r®>
We also used the more complicated wavefunctions,

W1=kvz(1+“”¢o as a trial function and followed the same
method above to calculate Ez' We obtained the following
relation corresponding to this trial wavefunctions for the 1s

state

tx

u
>

N =

where

_12 2 A s e
A1= -0.64[24} [(r >+alr >]
A2:4[(r2+za<r3>+a2<r4>]+o.4[4a<r3>+saa<r4>]

The above approach does not improve the correction since it

gave a best correction at «=0.
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5.2.2 The renormalised series method to compute the initial

energy eigenvalues

To find the energy of a state in the spherically

symmetric potential
Vir)z-r '+A(£,m)y%r? (5.49)

We write the radial Schrddinger equation in this form
1.2 -1 1 -2 2
-§D ¢(r)—[r - E{(£(+1)r -Ar ]W(r)zEW(r) {5.50)

Using the renormalised series approach we rewrite the

potential given in equation (5.50) as

V(r):—(u+kk]r-1+ %&(£+1)r'z+sz (5.51)
where
_1[e(£+1)+m>-1
A‘C'm"1[<2£+3)(2c-1)]' H=1-2k (5.52)
and

AzA(L,m) 72 (5.53)

For the potential given by equation (5.51) the hypervirial
relation (2.3) gives the following relation between the
various expectation values for states of angular momentum £

takes the form

2(N+1)2 E(I)A(N,M—I):N[£(£+1) - %(NZ-IJ]A(N-Z,M)

—(2N+1)[uA(N—l,M)+kA(N—1,M-1)]

+(2N+4)A(N+2,M-1) (5.54)

By wusing the Hellmann-Feynman theorem we obtain the
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recurrence relation

(ﬁ+1)E(M+1):A(Z,M)-kA(—l,M) (5.55)

We can determine the energy coefficients E(M+1) and the
geries coefficients A(N,M), by using equations (5.54,5.55),
with the aid of the unperturbed energy E(O):—ua/znz—%ym, and
the initial coefficient A(0,0) =1. We also tried another
renormalised series approach to compute the energy

eigenvalues. The renormalised potential corresponding to this

approach takes the form

V(r)z-upr'1+%~6(-€+1)r-2+}[r2-Kr'1] (5.56)
A=A? (5.57)
up= 141k (6.58)

ij.e the perturbation involves A2 rather than A. The purpose
of using this modified renormalised technique was to seek an
improvement in the accuracy of the results. Thias approach
gseemed helpful for higher excited states at low values of
magnetic field. The recurrence relations corresponding to the

modified renormalised series approach are

(2N+2)2 E(I)A(N,M-I):N[&(&l) - %(Nz—l)]A(N—Z,M)
—(2N+1) [upA(N—l,MHkA(N-l,M-l)]
+(2N+4)A(N+2,M—2) (5.89)

(M+1)E(M+1)=2A(2,M-1)~KA(—1,M) (5.60)

The difference between the two approaches can be seen from
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equations (5.54,5.55.5.59,5.60), in the third term and first
term of the right hand sides of the equations. The sane
technique was used for anharmonic oscillators in chapter 2
and helped to compute energy eigenvalues for <xx6,xx9)
perturbations which were an improvement over those given by
the usual approach.

5.2.3 Results and discussion

We have calculated energy levels for all thirty states
which have principal quantum number n=1,2,3,4, for magnetic
field strengths in the range 0.0055y<0.01. Also we calculated
thirteen states with (n=1,2,3) at 7y =0.1. We computed the
results using the renormalised series approach. Our results
are converged to (14-figures) at field values corresponding
to y=0.005 and 7y =0.01. This accuracy decreases for higher
states. While the ordinary renormalised series (11,1:1) does
not work at y=0.01 and n=4, the other approach (xf I=2) works
gatisfactorily. Our results at y=0.005 are in good agreement
with the results of Gallas([34,1984], which are converged only
to four significant figures. Two considerations govern our
calculation at low magnetic fields; first, to show that the
two perturbation approaches work very well and, second, to
compute the energy eigenvalues for higher states.In table
(6.3), it ig clear that the renormalised series method for
H..v2 gives a very good upper bound to the total energies,
while using the second and third order corrections to the
energy bring our results very close to the results obtained
by Praddaude; this is clear from table (5.2). Killingbeck

(14,1981} estimated second-order corrections, so our work is
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an extension of this work. Table 5.1 shows the expectation
value for <r">, table 5.2 shows the energy and the second and
third order corrections to the energy. Table (5.4) shows that
the agreement between the results of the two perturbation
approaches are very satisfactory at (y=0.1) for states with
nz=1,2. The number of coefficients required to get a converged
energy eigenvalue from the renormalised series is less with
the kz approach; this is clear from our results as shown in
the tables (5.4,5.5). We believe our results demonstrate that
the renormalised series method work excellently for low
range values of magnetic field (where the series converge
quickly) but does not work for high values of magnetic field.
The energy eigenvalue associated with the 2p(+1) gtate can
easily be calculate from the results for the 2P(-1) state.
The term %1m gives the linear Zeeman term in equation
(5.30-5.31); for the 2p(-1) state we have m=-1 and for the
2p(+1) state we have m=1, therefore they differ in energy by
amount (7),which means that to get the energy eigenvalue for
the 2p(+1) state it will only be necessary to add this amount
to the resulting energy for the 2p(-1) state. In a similar
way we can compute the energy eigenvalues for the other
astates: therefore states with m>0 cannot treated separately,

gince E(£,m)-E(£,-m) has the fixed value my.
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Table (5.1) some <r°"> values at 7=0.1.

state

<>

1.28815
5. 18455

1.51631.
1. 25628
1. 25620
5. 06121

BedcLl)

5. 49885 |

Table (5.2) Energles with second and third correction to
the energy at ¥=0.1% the figure between the bracket is
the power of (10) multiplyling the number.

E

state 2 2 3
is -0.4975216]-4.3446 (-6)]-4.03701(-8) ]-0. 4975259
R T T T TR T O
e R I CA R TR C ] TR ] DR
E CaR) ER ] R e ] BN T Y BNl P
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Table (5.3). comparison of our energy eigenvalues, which
are calculated by using renormalised serlies approach with
those of Jason (1984) and Praddaude (1972) at (¥=0.1).

State |JASON Praddaude] E (A, 1=1) N K
L T S S T RS T T
O T B Bl AT e R o
Zplo) I- 0. 11241 [-0.11175251 T3] -500)
Nl EeR Tt oL RSy T8 =205
T R R ieE T
D B o ket E L BN IOAERL TT{-Te0!
T e T eI TE-TTes
s C R R B )
35'(‘67"- =0, 01218 [-0.0108 11]-1700
a(=17]-0. 05165 |-0.05781 |-0.0b43 T1)-1200]
KEICE ROl R ]
T oA MR TE-TIos]
Gl BTV Ll RS R MR S1-TI00]

Table (5.4). comparison between the calculations of the two
approaches of the renormalised series for 1s, 2s, 2p(0), 2p(+1),

2p(-1) at #=0.1

State | E (AI.I=2) N |-Kf E (iT I=1) Nl-k
= =3 £ ] SO PR e e g b O
T TN L L SO KAt
PGl Rl T7|Z0}-0-T505220 500
ST O o3 ol RO Vet
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Table (5.5) comparison of the energy eilgenvalues, upper
lines, renormalised series calculations from equation (5.80)
lower line,renormalised series calculations from equation
(5.55). The empty spaces mean that the corresponding
eigenvalues cannot be reached through that approach.

state 55‘6‘55 r_g_ E-nl '¥'5' !—
1 gle Lol - ol 1-e0
=0, 122012503087 38| -8 [-0.12265101532002 -
y 8 é_-%g 2 %; -40
o ols i olr 140
0. 1240625164738 =8 1-0. 122880252542521111-
e ol |10 zls Luo
1) 1-0. 12242506573170 -8 1-0.11070104287480] =
P 0 %;}gi 0 .gg_ -40
Be . 1-0.00D12714835713] ~101-0. 053875226272 1201-20
~1)1-0. 05 760000221492 =10]1-0. 0588081670186 | -
. s i Y
=0, OB 33140157540 | ~10]-0. 0546503485128 | -
+1)1-0.052603059221402 ] -101-0.0dBB0BIG 018 | -
s alr Lis N Y
=) 1-0. 060220 71023303 =10]-0. 0BR225025208 | =
g %5'-11% 5 é% -60
Ba(-1)[-0.0b783174507568) —10]-0. 05057 5000eas e
817 -lg 8 é% -80
230 I- 12]-10]-0. 0b38182681 7181 95 |
6%_—11% 8 %%-60
a(+1)|-0. 0283174507568 =10]1-0. 0286735608820 126150
8 %;}% 8 !1% -80
SIT+27 -0, 08022071033300]181-101-0. 022245025208 10108 |
4 -0. - -0. -
y 8 g9 §-20
Pl-1)]-0. 03230520 (16]-12]-0. 030038, 1251-T35
0 8 |-20
LGV GO U R U] SV BNl v e vt B i)
8 101-20
p(+1)[-0. 02730520 16]-12]-0.020035 28]-120
0 8 |-20
e 4 g’;:g_ ' &
2d(=1) -6.6555‘75573141 g? =0. 0329654 261-120]
-20
Ea(0) 1-0.03001687437  |21]-121-0.0284717"8 200-120]
7 11]-20
13(+1)]-0.02/87397314 | . ngrzm- - .1 261-120|
12§-20
WW ??m 25 1-220]
-20
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(5.5 continued)

4f(-3)

EEEEE

-0.037785672

21
13

10
10
11
10

10

18|-12]-0. 038518 |
TS-12[-0. 0340302
23]-12]-0.0202040 |
18]|-12|-0.0240302 |
18]-12]-0.018518 |
21|-12]-0.012683 |

13

-123-0.042683
-20

=20
-20
=20
~-20

-20

26

=20

CEEREIE IE I
3
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5.3 Hydrogen atom with a Yukawa potential

The general screened Coulomb potential for hydrogen like

atoms may be written in the form
V(r):-Zr'ii V_(ar)" (6.61)

n=0

where Z is the nuclear charge and A represents the screening
constant. Screened Coulomb potentials have received a great
deal of attention , not only in the field of nuclear physics
but also in other fields such as atomic, solid state and
plasma physics. The problem of the Yukawa potential has been
gtudied by many authors, employing different approaches.
C.S.Lai [38,1984] obtained, using Padé approximants [6,6] and
[6,7], the energy eigenvalues for different values of X and
for various eigenstates. Edward R. Vracay [39,1985] developed
a power series method to calculate to large order the
Rayleigh-Schrdodinger perturbation expansions for energy
levels of a hydrogen atom with a Yukawa type screened Coulomb
potential, treating the 1s,2s and 2p levels. We employ the
Hellmann-Feynman theorem and the hypervirial theorem to
calculate the energy eigenvalues of various energy
eigenvalues to high accuracy. In our work we wish to show
that the renormalised series method can be used to calculate
the bound-state energies of a screened Coulomb potential to
very high accuracy. The present section treats the Yukawa
potential. This study was motivated by the work of Lai
[38,1984], who observed that [N-1,N] and [N,N] Padé
approximants to the energy series provide accurate estimates

of eigenvalues. The method which he used raises the question
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of whether or not the renormalised series method can gives
accurate estimates of the eigenvalues. The two approaches
({his and ours) which have been employed to study the
potential use the Hellmann-Feynman and hypervirial theorems
but our approach uses no Padé approximants. The renormalised
series method for this problem is complicated by the presence
of the renormalising constant K. A proper treatment would
necessarily involve the choice of an ideal value for the
renormalising constant K. The Hamiltonian for the Yukawa

potential can be written as

Hz - 2D°+ 20(4+1)r % zr™te M (5.62)
= - 20% %C(C-tl)r'z-Z(ﬂ-nK)r'1-Zr'1§ V_(ar)"

ns 1

where

u=1-1K

where £ is the orbital angular momentum quantum number. Here
we are using atomic wunits, hszezm=1. By employing the
Hellmann-Feynman theorem and the hypervirial theorem as in

previous sections the following two relations are obtained

(zmz)z E(J)A(N,M-J)=N[£(£+1) - %(Nz-l)]am-z,m

-(2N+1)[uB(N—l,M)+KB(N-l,M-1)]

-S Vn(2N+n+2)B(N+n,M-n-l) (6.63)

ns0
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(M+1)E(M+1)=—KB(—1,M)—§ Vn[n-rl)B(n,M—n) (5.64)

n=0
The coefficients Vn in (5.63) and (5.61) can be written as

n+1
\" :——-——(-1)
" (n+1)!

(5.65)
for the case of the Yukawa potential., The coefficients Vn in
general alternate in sign and decrease with increasing n.
Where the energy of the unperturbed nth state E(O):-uz/zn” is
known, the equations (5.63,5.64) suffice to calculate the
full set of E and B coefficients, with the aid of equation
(5.65) and the starting term B(0,0) which is obtained from
the condition of normalization <r°>=<1>=1. Our numerical
results, presented in table (5.6), reveal that at low values
of A for states (1s8,23,2p) we have excellent agreement with
the values of Edward R.Vrscay [39,1885). Our approach
provides extremely accurate eigenvalues at low A. These
values are accurate to all the digits shown and agree to over
(19) digits with those of Vrscay. The power of this
renormalised series techniques at low values of A has thus
been demonstrated. However, at larger values of 1\, the
accuracy decreases as expected from our previous renormalised

aeries calculations, although the accuracy is better than

that of Lai [38,1984].
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Table (5.6). The energy eigenvalues of

by using renormalisd serles.

B ;;:24 %l(t-rl)r'z-r"e'ar
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5.4 The K-and L-shell binding energies of atom:

In the preceding section we have calculated the
bound-state energy eigenvalues for a Yukawa potential with
Z=1. In this section we will extend our discussion of the

Yukawa potential of the form
V(r)=-2Zr 'exp(-ir) (5.66)

to the case Z>1, where the screening parameter A is given by

1
- 3
x-xo[z] (5.67)

corresponding to the Z dependence of the reciprocal of the
Thomas-Fermi radius of the atom. Grant and Lai [37,1979] have
recently evaluated the energy levels for atoms with (4<2<84)
using Padé approximantg ([6,6] and [6,7], for K-and L-shell
electrons with (xo=0.98). The potential given by equation

(5.66) can be expanded as

1
vuq:-z:-"i v“[xoz3 ] (5.68)
n= 0
1
-1 1 a3 1"
-—Z(P+kx)r -Zr vn[xoz ] yH=1-2K
n=1

By employing the Hellmann-Feynman theorem and the hypervirial

theorem, the following two relations are obtained

(zmz)z R(BONM-T=N[202e1) - (v1) [Bn-2,m)
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—Z(2N+1][uB(N-l,M)+KB(N—l,M-1)]

-zS‘Vn(2N+n+2)B(N+n,M—n-1) (56.69)
ns0
(ﬁ+1)E(M+1):-ZKB(-I,M)-ZS'Vn6n+1)B(n,M—n) (6.70)
n=0

where the energy of the unperturbed nth state is
22,2

E(0)=-
2n2

(6.71)

Here we use atomic units hsezm =1, so that distances are
measured in units of the Bohr radius a and energies in units
of 2Ry=27.212ev. The coefficients Vn can be written

1

for Az x_2 3 as

0
_)noi
vn=(n+1)! (5.72)
and for x:xo as
% n+t -1
vn=[-Z ] [{n+1)!] (6.73)

The two coefficients (5.72,5.73) in general alternate in sign
and the coefficients (5.72) decrease with increasing n, but
the coefficients (5.73) decrease less quickly than the
coefficients (5.72). For the case 2>1, in table (5.7) we list
the energy of states (18,28,2p,3s) for different values of xo
and different values of 2 (25Z<65) . Our results are
gummarized in table (6.8), ranging from (452<84) at

jntervals of 5, in order to cover the range of low to high
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atomic number. For a given shell the results improve with
increasing Z, but the accuracy of the results decreases as
we go to higher shells. The renormalised series approach as
introduced by Killingbeck is a very elegant and powerful
approach to compute the energies eigenvalues with high
accuracy. The approach achieved an accuracy of fifteen
gignificant figuresa for higher values of atomic number Z; to
our knowledge such a high degree of accuracy for the
eigenvalues of the Yukawa potential has never been obtained
by any other method. As a next comment we wish to draw
attention to the fact that the renormalised series work

1/3 a8 perturbation parameter;

equally well for x:xo and x:xoz
we used the two values of A in order to verify the accuracy
of the renormalised series for this calculation. Using two
different value of screening parameter provides alternative
approaches for computing energy eigenvalues. The calculated
energy eigenvalues diverge at low atomic number Z, for the

K-shell, whereas the series will work for zero values of the

renormalising constant for Z>29.
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Table (5.7). Bound-state energies (in ev) for Yukawa
potential for some values of (Z2) for states
(1s,28,2p,3S); First line calculation with (7\-% ) as

1/72

screening peraneter; Second line (A-Aoz ) a8 screeing

parameter.
Ts (A _=0.85) R[Z | 28 (A _=0.70) -X]
0 0
R GLY VR T{TS=250 354500 471‘7
0 33).8 4 47}.4
~31-27. 436517 3] 1120]-073. 2007883 a7 1
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Table (5.8). Bound-state energies (in kev) for Yukawa potential for
some values of (2) with (Ao= 0.98) for states (1s,2s,2p); First

line calculation with (A=A°) as screening parameter; Second line

1/3

(A=A°Z ) as screening parameter.
71T BT YT X 5 X
~0. 08903238 T
8 55§ 1
B =0, 677683760028 [oo| 1]-0.0148 1
8 56(.5 8 3101.5
=T.87027755850428 | 1[-0. 110653 231 1]-0.07322 5|
8|71].5 3 42).4 5 3s|.3
To1=%. 6884 1500842173 T[-0.3151332 48[ 1[-0. 2514278 B2( 1
3J71).5 2 51).4 80 48).3
BL]-6. 14280507596427 | 1]- T(-0.5724722 T
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5.5 The energy eigenvalues for the Gaussian potential

The solution of the Schrddinger equation with an
attractive radial Gaussian potential of the form
v(r)=_Aexp(—Xr2) is of importance in nuclear physics.It has
been used as a potential model in the theory of
nucleon-nucleon scattering. Bessis, et. al [40,1982] have
determined its bound state energies fairly accurately using a
perturbational and variational treatment on a conveniently
chosen basis of transformed Jacobi functions. The results of
Lai [41,1983] have been obtained by using the
hypervirial-Padé scheme for various eigenstates. Chatterjee
[42,1985] applied the method of 1/N expansion to obtain the
bound state energy levels. The SchroOdinger equation for the

radial part of the attractive Gaussian potential is given by

2 g;[rzggiEl]+[C(£+1)r'z-Aexp(-xrz)]W(r):Ev(r) (5.74)

where the units 2m=h=1 are used, and the function in equation

(5.74) can be expressed as
-1
¥(r)=r ¢(r) (5.75)
The potential Aexp(-lrz) can be expanded as

Aexp(-1r2]= ? v“k"rz"’2 (5.76)

nas0

with the potential coefficients Vn given by

vnzA(-)“[(ml)e]'1 (5.77)

Then the equation (5.74) takes this form

[_DZ+£(£+1)r'2+S vnx“ra“*z]w(r)=zl¢(r) (6.78)

n=0
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with E =E+A. The function ®(r) must vanish at r=0. Now,
applying the hypervirial theorem, the Hellmann-Feynman
theorem and using equation (5.77), the relation between the
coefficients B(N,M) and the energy coefficienta E(M) can be

expressed as

(2N+2)2 E(I)B(N,M—I):N[2£(£+1) - %(Nz-l)]s(n_z,m)

+§ Vn [2N+2(ﬁ+2)]B(N+2(n+1)),M—n—l) (5.79)

n=0

(M+1)E(M+1)= SVR(IH'IJB(Z(XH-I),M-D) (5.80)
n=z0

The unperturbed value of E is given by

E(O):[(4n+zc+3)ﬁ]-A (5.81)

where n is the principal quantum number, £ the angular
momentum and we set A=400 to agree with previous authors. The
recurrence relations (5.79,5.80) with equation (5.81) and
initial condition A(0,0)=1 can be used to evaluate the energy
coefficients E(M).The success and power of the method may
strongly depend on the state and the angular momentum. The
convergence rate decreases noticeably as ({f&n) increase, as
gshown in table (5.9). This situation occurs in all problems
involving eigenvalues in perturbation theory. The
calculations show that the present procedure converges more
quickly and accurately at low values of (£&n). Our results
are very accurate in this low range. The degree of agreement
between our results and those arising from other methods is

very good, both for ground and excited states. For £>7 we
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have not found numerical results in the literature, but our
results show the eigenvalues for these states. Our main goal
is to show that the energy eigenvalues of the attractive
radial Gaussian potential calculated from the hypervirial
method are in good agreement with other numerical results. We
notice from table (5.9) that for the ground state and some of
the first few excited states at low value of angular momentum
we find the energy values with an accuracy of 20 significant
figures. Such a high degree of precision has not been

obtained before by any other approach.
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Table (5.8). The eigenvalues, (-E) for Gaussian potential, as
calculated by Hypervirial method, for different values of angular
momentum, The empty spaces means that the corresponding eigenvalues
cannot be reached by the Hypervirial method.
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5.6 Eigenvalues of the hydrogen atom

The problem of the perturbed hydrogen atom has received
great attention in the last few years and has been attacked
by various approaches. Killingbeck [43,1977] attacked the
problem by using a non-perturbative finite difference method.
In a subsequent work Killingbeck and Galicia [44,1980] used
hypervirial relations together with the Hellmann-Feynman
theorem to get the energy coefficients of the energy
perturbation series. Lai and Lin [45,1981] applied the
Hypervirial-Padé framework to calculate the energy
eigenvalues of various eigenatates, Austin and Killingbeck
[46,1982] have used a renormalised series approach to compute
the energy levels of a perturbed hydrogen atom.

5.6.1 Power series approach

The power series approach to be discussed in this
section allows us to compute the energy eigenvalues for the
perturbed hydrogen atom. The power series approach is one of
the simplest and most accurate methods for calculating
eigenvalues. The Schrddinger equation for a system in which
the potential depends upon the diatance r (spherically

symmetric potential ) is taken in our calculation to have the

form
[Dz+2(E—V(r>)]Wr)=o (5.82)
where
Y(r)=9(r)Yy(6,9) (5.83)
In (5.83) ¢(r) is the radial wavefunction, which is

independent of the angles, and Y2(6,¢) is a spherical
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harmonic, which is independent of r. If we insert equation
(5.83) into equation (5.82) and rearrange, we obtain the

radial equation

r'zn[rzn¢(r)]+[Z(E—V(r)—€(£+1)r'2}¢(r)=0 (5.84)

where (£) is the angular momentum and ¢(r)=r'1R(r). We can

express equation (5.84) with a new wavefunction R(r) as
DZR(r)+[2(E-V(r))-t(c+1)r‘z}n(r)=o (5.85)

where

R(r):rc+1¢(r) {5.86)

If we insert equation (5.86) into equation (5.85) we get

Dz¢(r)+z(£+1)r'1n¢(r)+z[E-V(r)]¢(r)=o (5.87)
The wavefunction ¢(r) can be expressed as

¢(r)=exp(—8r)§ A(n)r" (5.88)
For a perturbed hydrogen atom we take the potential V(r) as

Vir)z-r +ir (5.89)

If we substitute equations (5.88,5.89) in equation (5.87) we

obtain this recurrence relation after some algebra

[n+1][n+2£+2]8(n+1)=2[(&+1+n)8—1]r8(n)

-[23+32]r23(n-1)+2erS(n-z) (5.90)
where

F(r)zz S(n):z A(n)r" (5.91)

To use equation (6.80), S(0) is set equal to 1 to find
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eigenvalues appropriate to the Dirichlet boundary conditions
¥(~)=0. For a given (B) and two trial energies E, and E,, the
power series approach works out each S(n) and the sum of the
S(n) at a specific r value, satarting with S(0)=1 and
S(-1)=8(-2)=8(-3)=0. Although it takes a little while to find
an appropriate B value, there is usually quite a wide range
of B over which good results can be obtained. If B is chosen
reasonably the series quickly converge and lead to two values
F(r,E1) and F(r,Ez), from which an interpolated energy can be
found which would have given F(r,E)=z0. After a few
repetitions the eigenvalue corresponding to the boundary
condition Y¥(r)=0 is determined very accurately. For this
radial problem we cannot |use the even parity of the
potential, because the coordinate range is from 0srsec,

5.6.2 Renormalised series approach

It has been shown by Killingbeck ([14,1982] that the
hypervirial relations yield the perturbation series for the
energy E and for the expectation values <r"> for a hydrogen
atom with perturbation (Ar), without the calculation of a
perturbed wave function. We also use the renormalised series
hypervirial approach for the perturbed hydrogen atom. The
radial Schrddinger equation for this perturbed problem can be

written as

%DZ-R(r)—[r'1—7tr - —%&(tﬂ)r‘z]n(r):m(r) (5.92)

We write the potential given in equation (5.92) as
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V(r):—Ur'1+X[r—Kr'1) (5.93)
where

We substitute the series expansions given by equations
(2.6,2.7) into the hypervirial relation (2.3) with V =

<

%&({+1), V_I:(u+lK), V1= L. Collecting terms, we find

(2N+2)2 E(J)A(N,M-J):N[&(£+1) - %(NZ—IJ]A(N-Z,M-I)

—(2N+1J[uA(N-l,M)+KA(N—1,M—1)]+(2N+3)A(N+1,M-1) (5.95)

The relation between the energy series and the A(N,M) series

igs given as follows (from the Hellmann-Feynman theorem)

(M+1)B(M+1)=A(1,M)-KA(-1,M>. (5.96)
The unperturbed eigenvalue is E(0) = -u2/2n2for this case,
where n is the principal quantum number (1,2,3...). The

equations (5.95,5.96) suffice to calculate the full gset of E
and A coefficients. We only need the value of E(0) given
above and the starting term A(0,0) =1.

5.6.3 Finite difference approach

We use the finite difference method as a third method to
calculate the eigenvalues for the perturbed hydrogen atom.
The equation (5.87), after multiplying both side by r, takes

the form
-%rDz¢(r)-(£+1)D¢(r)=[E-V(r)]r¢(r) (5.97)

To use the finite-difference method for this equation we make
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the substitutions

2hD¢(r)=¢(r+h)-¢(r-h) (56.98)

h2D2¢(r)=é(r+h)+d(r-h)-2¢(r) (5.99)

The equation (5.97) reduces to the form
[r+(£+1)h]¢(r+h)+[r-(£+l)h]«b(r-h):

2r¢(r)+2rh2[V(r)-E]¢(r) (5.100)
The next step is the introduction of a ratio variable R(r),
defined by the equation

¢(r+h)=R(r)¢(r)

:[1+h2F(r)]R(r) (5.101)
where
R(r)=1+h°F(r) (5.102)

With the substitution (5.101,5.102), the equation (5.100) is

converted to a recursive equation
- F(r-h
[r+H]F(r)-[r—H]§%;:H% + Z[V(r)-E]r (6.103)

Here H=(£+1)h is the only quantity which explicitly involves
the angular momentum. If we start at r=H, then the first term
on the right vanishes, so we can arbitrarily set RzFz¥=z=1 at
r=H-h without disturbing the rest of the calculation. The
rest of the paraphernalia (use of two E values etc) is as

before. By setting £z=0 we get the s-state solution, which is



-190-

appropriate to an odd solution for a one-dimensional problem.
By setting {=-1, with F(O):%(V(O)—E], and starting at r=h we
get results appropriate to an even solution in one dimension.
The eigenvalue associated with strip width h is related to

the true eigenvalue by a perturbation-type expansion in h
2 4
E(h)=zE+h E_+h E -------- (5.104)

To get E we do the calculation using several different strip
widths, (h,2h,4h). The eigenvalues obtained are in error by a
leading term of order hz. We have applied a Richardson
extrapolation process to convert them to very accurate
results. To correct for the h? and h* error terms we use an

extrapolation formula given in the form

E:%—S—[SUE(M—ZOE(2h)+E(4h)] (5.105)

5.6.4 Results and discussion

The calculations reported here are for positive X , so
that well defined bound states exist, although quasi-bound
gtates exist when (A) is small and negative. We have used
three approaches to compute the energies eigenvalues for
various states and different values of perturbation parameter
A. Our main goal is to obtain accurate eigenvalues for this
problem and to compare the accuracy of the results as
obtained from the three approaches. The results are shown in
the table (5.10) and from these results it is clear that the
renormalised series method works excellently at low values of
the perturbation parameter, where the series converges very
quickly and certainly leads to accurate eigenvalues

calculations. At A=0.1 the accuracy is to 20 significant
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digits, and in fact the accuracy of this technique is
crucially restricted by the choice to the value of the
renormalising constant k . The rate of convergence is
gensitive to the value of k . The finite difference and
power series methods work very well to compute the
eigenvalues, and their agreement is in general excellent. Our
confidence in the accuracy of the power series approach comes
from the following check; the computed eigenvalues are stable
with respect to changes in B. We believe that the present
results which have been calculated by the three approaches
are very good compared to those of other methods which have
been available for computing the eigenvalues for this

problem. We have used double precision arithmetic of 20

digits.
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Table (5.10). Eigenvalues of HsP -r '+f(&1)r 2+Ar, First
line; power serles calculation; Second line, renormalised
series calculation; Third 1line, finite difference
calculation.
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5.7 Polynomial perturbation of a hydrogen atom

5.7.1 Introduction

The s-wave Hamiltonian for a hydrogen atom with the

perturbation term (21r+212r2) can be written as

H:-%Dz—r'1+21r+212r2 (5.106)

and has been studied by Killingbeck [47,1978;48,1980]. This
Hamiltonian possesses the exact ground state energy and

wavefunction given respectively by

1
Ej=- 3 + 3% (5.107)

¥ =exp(-r-xr2] (5.108)

Wo correctly describes a bound ground-state only if A>0,
whereas for A<0 the wavefunction is not normalisable. On the
other hand ¥(-%) is an eigenfunction of H(-1), not of H(X).
Killingbeck [47,1978] calculated the first two terms for the
ground state energy series E:Eﬁ(n)kn, yielding E:—%+3k, and
showing that the coefficients E(2) and E(3) are zero.
Killingbeck [48,1980] has computed numerically the results
that all coefficients E(n) for 3<n<16 vanish. Saxena and
Varma [49,1982] have treated the case (A<0) , by means of a

I_ilz. This allows a

perturbation expansion in powers of |
unified treatment of both positive A>0 and negative i<0,
Their results cover a large range of values of
{(-0.025As-20480). Saxena and Varma [50,1882] have treated the
same problem, and they have obtained an infinite number of

exact solutions for the excited s states for certain specific

values of (X)), corresponding to both positive and negative \



-194-

values. Cohen and Herman ([51,1982] have calculated the ground
state energy by means of variational modification of
Rayleigh-Schrodinger perturbation theory. They computed the
energy eigenvalue over a wide range of A (-0.025A5-320) ; in
gspite of the large negative value of (M ), the results show

satisfactory convergence for all values of (}).

5.7.2 Renormalised series

We treat this problem by using renormalised perturbation

gseries. The potential can be written as follow
v(r)=-pr“+[21r+ 2x2r2-xr"] (5.109)

where

pu=1-KAx (5.110)
The first step is to insert the series expansion for E and
<¢y>, as given in previous sections, into the hypervirial
relation, with V_1=(u-Kl), V1=2k. and V2=2X2. The following

relations is obtained

(2N+2)2 E(I)A(N,M-I)= - %(Nz-l)A(N-Z,M)

-(2N+l)[MA(N-I,M)+KA(N-1,M—1)]

+(4N+6JA(N+1,M—1)+(4N+8)A(N+2,M-2) (5.111)

Using the Hellmann-Feynman theorem in order to get the
relation between the energy series E(M) coefficients and the

series coefficients A(N,M), we obtain

(M+1)E(M+1)=—KA(—1,M)+2A(1,M)+4A(2,M) (5.112)
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From the recurrence relations (5.111,5.112) together with the

unperturbed energy E(0)=-#°/2n° and the initial coefficient
A(0,0)=1, we can calculate the perturbation series for the
energy. The potential given by equation (5.109) can be

expressed in the form
V(r)=z-pr '-2ar+22%rZ-kar ! (5.113)

Therefore the equations (5.111&5.112) take the form

(2N+2)2 E(I)A(N,M-I):-%[Nz-l]A(N-z,M)

-(2N+1)[uA(N-l,M)+KA(N—1,M—1)]
-(4N+6)A(N+1,M-1)+(4N+8}A(N+2,M-2) (5.114)

(ﬂ+1JE(M+1)=-KA(-1,M)—ZA(I,M)+4A(2,M)' (5.115)

We use a modified renormalised technique where (i) takes the
form

u=1-1°K (5.116)
where

A={x" (5.117)

and the equations (5.111&5.112 ) take the form

-z

(2N+2]2 E(I)A(N,M-T)=- [NZ-I]A(N-Z,M)

-(2N+1)[MA(N-I,M)+KA(N—1,M-1)]
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-(4N+6)A(N+1,M—2)+(4N+8)A(N+2,M-4) (56.118)
@H+1)E(M+1):-KA(—I,M)-4A(1,M—1)+8A(2,M—3) (6.119)

5.7.3 Results and discussion

We have used three renormalised series approaches to
compute the energy eigenvalue for this problem, and the
results are shown in table (5.10) for the ground state. and
for a range of perturbation parameter from (-0.01sAs-0.1).
The accuracy of these approaches decrease as (\) increases.
The agreement between the results of these three approaches
is very good. While no one of the three approaches offers
particular advantages to improve the accuracy or increase the
range of (), the agreement of the three gives us confidence
that our results are correct. We believe that the results
which are found from these approaches are good in comparison
with these of other methods have been used to compute the
eigenvalues for this problem. The renormalised series
approach works well for small values of X, the perturbation
series convergence being satisfactory for these values. For
larger values of ()), this approach does not work because the
perturbation series does not converge. Thus the renormalised
geries approach is limited to low ranges of the perturbation
parameter \. Also we have been used a finite difference
approach to compute the eigenvalues for this problem and the
results produced are in good agreement with those results
obtained by Saxena and V.S.Varma by using Hill determinants.

In table (5.11) we list the energies eigenvalues for the
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range (-0.01sAs<-24080) and compare them with numerical
computations of the ground state energy which were obtained

by Saxena.
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1

Table (5.11). The energy result of ;Pz

-r"Y+2ar+22%r2, perturbat ion by
using renormalised series method, Ea calculation from equations (5.104 &
5.105); Eb calculation from equations (5.107 & 5.108); Ec calculation
from equations (5.111 & 5.112)

~ta " K[-Eb N 1-R|-Ec N I-
mmﬂﬁMHﬁ . LY.\
5. 02]0. Bbo00000 2212210, 50000000 T o|0 eanaooaE I
5. 03]0. bBooo5s ZBI16]0. oaooos 13513010, oot
5. 0510, 640106 21115]0. 6401068 13511610, 848108 (108
oo el m;m.eeer - 1ieleio.sreet 104
5. 0710. 7024 —135]1210. 7022 21 0.7028 1
I oelo T 137115]0. 7258 25112]0. 7258 B0 |
Coole] [ Z <3 DR [-4=] B) (LS 45]11410. 748 B0
B 1010, 768 TS0, 760 ZZ[1210. 758 BE

Table (5.12). The energy result of (% P2-r Lszar+22?r?)
perturbation by using finite difference method.

" | E h r Al11l determlnant




-199-

5.8 The exponential cosine screened coulomb (ECSC) potential

The radial Schrddinger equation for the exponential
cosine screened Coulomb (ECSC) potential is not solvable

analytically and can be expressed as

DZW(r)+2[E+V(r) - %£(£+1)r'2]W(r)=0 (5.120)

where
V(r):—r-iexp(-kr}cos(lr) (5.121)

This potential is of importance in solid-state physics. It is
used in describing the potential between an ionized impurity
and an electron in a metal or a semiconductor . It has also
been used to represent the effective interaction between an
electron and a positronium atom in a solid. The (ECSC)
potential has been treated by several approximation methods.
Aparna and Pirtamp [52,1980] applied the generalized virial
theorem and Hellmann-Feynman theorem to calculate
perturbatively the bound state energy levels without using
perturbed wavefunction. C.S.Lai [563,1982] has treated this
potential by using the hypervirial relations and the Padé¢
approximant E [10,10] and E [10,11] for different
eigenstates. In this section we set out to calculate the
bound-state energies of the ECSC potential for different
eigenstates, by applying the hypervirial and Hellmann-Feynman
theorems to calculate perturbatively the bound-state energy
levels without using perturbed wave functions. The ECSC
potential can be expanded in a power series of the screening

parameter by the Taylor expansion
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’ 2 Ayl n
F(x)=F(0)+xF (0)+§,F (0)+....§TF“(0) (5.122)

Also V(r) can be expanded as

V(r):—r-lexp(-lr)Cos(ir]:-r-ig Vn(Xr)n (5.123)

n=0

==V DHAK]r'i—r'ii V (ar)"
o n

nw1

Comparing (5.122 & 5.123), we obtain the coefficients

- - =2 -4 4 _ 1024

V0=1’ Vi--l, Vz"'o’ V3-3!’ v4- 4!’ vs-s!p DR vao—--z-o—!-—,
1024
V217211

The coefficients Vnin equation (5.123) also can be expressed

as
n n/z nnil
Vn=(—1) (2] COS(Z—);T' {b.124)

Here, we use atomic units. The hypervirial relation for the

(ECSC) potential is given as

(2N+Z)Z E(I)B(N,M-I)=N[%(Nz—l)—£(£+1)]B(N-Z,M)

+V0(2N+1)[uB(N-l,M)+kB(N-1,M-1)]

+ ? Vn (2N+1+n)B(N+n-1,M-n) (6.125)

n=0

The Hellmann-Feynman theorem

OE_ oV
5T=<5T> (5.126)

gives
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(M+1)E(M+1)=KV0 B(-1,M)+ ? nVnB (n-1,M+1-n) (56.127)

nz1

The recurrence relations (5.125 & 5.127)can be wused to
calculate the energy coefficients from =a knowledge of
B(0,0)=1 and E(O):-uz/an. The energy eigenvalues can be
evaluated by using equations (6.125,5.127) using the
appropriate values of renormalised constant k; results for
this calculation are given in table (5.13). Our calculated
values of the energy levels are excellent as compared with
the results obtained from the hypervirial -Padé approximant
scheme of Lai. From our results it can be seen that the
Hypervirial method with a renormalised constant k is
sufficient to calculate the energy eigenvalue without using
Padé approximants. Although the renormalised series method
has calculational elegance, it suffers from two major
drawbacks. First, the accuracy of the numerical results for
bound states falls off very rapidly with increasing value of
the screening parameter \A. Second the calculations become
progressively more difficult as the state number n
increases. The ECSC potential differs from exp(—)\r)r'1 by a
cosine factor (Cosir), which leads +to an oscillatory
behaviour. It is of obvious interest to compare the result
for the ECSC potential with those for S§CP. Generally
speaking the binding of the electron is weaker in the ESCS

potential than in the SSCP potential.
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Table (5.13). The energy eigenvalues of V(r)s-r &xp(-Ar)cos(Ar),

Nl
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144

=t st
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 A294949 994048 ARAAA A0 44559 a 0 A 455 A e

renorml] ised series
4d

i

as function of screening parameter for various eigenstates, by
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5.9 Hulthen potential

The radial Schrodinger equation for the Hulthen potential

can be written in atom units as
D2W(r)+2[E+V“(r) - %£(£+1)r'2]W(r)=0 (5.128)
where

-1
VH(r)z—lexp[-Xr)[l-exp(—kr}] (5.129)

where (\A) is a screening parameter. The Hulthen potential at
small values of r behaves like a Coulomb potential, whereas
for large values of r it decreases exponentially, so that its
"capacity" for bound states is smaller than that of the
Coulomb potential. The energy levels always lie lower in the
Coulomb case than in the Hulthen case. The Hulthen potential,
apart from its initial interest in a number of areas of
physics ranging from nuclear physics (as a possible form of
nuclear interaction) to scattering theory to atomic physics,
has recently been shown to be a judicious choice of starting
point for the perturbation theoretic treatment of screened
Coulomb potentials. The Hulthen potential has been treated
numerically by Lai and Lin [54,1980)], who applied the Pade
approximant technique to the analytic perturbation series
obtained through the use of hypervirial and Hellmann-Feynman
theorems. Also Dutt and Mukherji [55,1980]) proposed a new
approximation scheme to obtain analytic expressions for the
bound-state energies and eigenfunctions for any arbitrary

bound (£,n) state of the Hulthen potential. The purpose of
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this section is to study the bound-state energies of the
Hulthen potential for 4£#0. The Hulthen potential vV, (r) in eq

(5.129) can be rewritten in the form

Vy(r)=-hexp ('h') [l'e"p (”")] Ve ("”) [“""p(m-l]-1

=_r"S V_(ar)" (5.130)
n=0
where
Bn
Ve (5.131)
_ 1 11 11 861 58421 76005 1
Vo=1, Vy=-31 V=5 21+V47"30 10 V30~ 14322 307

and Bn are the Bernoulli numbers. The Hulthen potential VH(r)

in equation (5.130) can be rewritten in another form

ke_kr
V"(r)= - [l—e'lr]
- -%[ ::z::te;:;:: -1] z —%X[Coth(%EJ-l] (5.132)
where
Coth(z) = 1 + % - Iéa + 53%?.+ g::Bana““ (5.133)

n
where |Z|<5

Furthermore, we use the hypervirial relation as used in
previous sections, assuming that the energy and the

expectation values <r™> can be expanded as

E:Z B(I)r} (5.134)

<r">=z B(M,N)A" (6.135)
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Then the hypervirial relation for the Hulthen potential can

be expressed as

(zmz)z B(1)B(N,M-1)=N [ [N°-1)-£(e41) [B(N-2,m)
—V0 (2N+l)[FB(N-I,M)+KB(N-1,M—1)]

+S v (2N+n+1)B(N+n-1,M-n) (5.136)

n=1

Applying the Hellmann-Feynman theorem

dE_ dv

5{3(5I> (5.137)

with the use of (5.134,5.135) and (5.130) equation (5.137)

leads to

(ﬁ+1)E(M+1)=-KVOB(-1,M)+ S B{(n-1,M+1-n) (6.138)

n=1

With unperturbed energy E(O):-uZ/Zn2 and initial condition
B(0,0)=1, we use the recurrence relations (5.136) and (5.138)
to compute the energy coefficient E(I). Energies of many
eigenstates of the Hulthen poteatial are 1listed in table
(5.14). It is apparent from table (5.14) that the energy
geries is a converging very quickly at low values of the
ascreening parameter (A). We wish here to make a few comments
summarising the advantage of using the renormalised series
approach. It is important, however to remember that our
results has been calculated directly from the hypervirial
approach with a2 renormalised constant (k), without use of

Padé approximants, which were used by Lai to improve a
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convergent series. It is necessary to point out that the
agreement of our calculated energy eigenvalues with the
results of Lai is good. The renormalised series approach
works very well even for higher excited states with higher
value of angular momentum. We believe that the accuracy of
our results may be improved even further with a better choice
of renormalised constant k, the approach gives well converged

eigenvalues for the best values of the renormalised constant

k.
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5.10 Eigenvalue calculations for some potentials

5.10.1 Hypervirial method to calculate energy eigenvalues for

-;zkxz]'1

2 2 2kx2
H=P “+x“-2e [ 1+e

The Schrodinger equation in atomic unit for the

potential which is given as:

Vix)=-2e 1+e

2
-2hx [ (5.139)

-2)0(‘?]'1
takes the form
2 2 -2ax? P
~-D¥(x)+x ¥(x)~-2e [1+e ]?(x):EW(x) (5.140)

The potential given in equation (5.139) can be expressed as

sz -lxa
V(x)z |——5——— -1|=Tanh(xx")~1 (5.141)
elx -Ax

+ e

We let
2
Ax =y (5.142)

The perturbation calculation by using Hypervirial relations
for the interaction given by (5.139) is made by expanding
tanh(lxz) in a power series in (lxz) which is valid for

sz(g. Then tanh(y) can be express as

3 s 2n 2n-1 2n-1
tanh(y): y_§+31’—+ ----- 2 12 1)y g (5.143)

2n! 2n

As x varies from (-®<x<+®) the potential runs from (0sV(x)s0)
through (-1) at x=0. We can use the Hypervirial relation as

we have used it in previous problem. The Hypervirial relation

for petential (6.138) leads te the recurrence relation
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(2N+2)2 E(I)A(N,M-I):-%[NZ-I]B(N—Z,M)

+(1+X)[2N+4]B(N+2,M)

+ i ' [2N+2+2(2n+1)]B(N+2(2n+1),M—Zn—l) (5.144)
n=0
If we apply the Hellmann-Feynman theorem using the energy and
the expectation value <x"> series as given by equations

(5.134) and (5.135) we obtain the following recurrence

relation

(ﬁ+1)E(M+1):S [2n+1]VnB(2(2n+1),M—2n) (5.145)

n=1

where

2n 2n=-1 2n-~1
2 (2 -1)y g (5.146)

Vn— 2n! 2n

Here B2n is the nth Bernoulli number. The unperturbed energy

E(0)

E(O):(2n+l)l(1+k) -1 (5.147)

allows us to use the recurrence relations to compute the

energy coefficient E(M),with initial condition B(0,0)=1.

5.10.2 Hypervirial method to calculate energy eigenvalues for

2 27 -1
H=P2+r2+£(£+1)f-2—2e'2)‘r l-l+e'2)‘r-|

In this subsection we extend the numerical calculation
from one dimension to three dimensions. The main difference

between one and three dimensional potential lies in the
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angular momentum term. We have applied the same two methods
which were used to compute energies for one- dimensional
potentials. Using Hypervirial and Hellmann-Feynman theorems
as used for one dimensional problems, and we following the
same route leads to recurrence relations (5.144) and (5.145)
with an additional potential term due to the angular
momentum. With V_2=£(£+1), V2=(1+k) we obtain the following

recurrence relation after some algebra

N Z

(Nz-l)]a(n-z,M)

(2N+2)2 E(I)A(N,M—I):N[2£(£+1) -
+(1+1)(2N+4)B(N+2,M)
+ S Vn [2N+2+2(2n+1)]B(N+2(2n+1),M—Zn-l) (5.148)
n=1

(E+I)E(M+1)=+S [2n+1:’Vn B(2(2n+1),M-2n) (5.149)

n=1

5.10.3 Results and discussion

Tables (4.15) and (5.16) show the eigenvalues for potentials

xS o

Ax _ -Ax >

V(x)=z|-% € — -1|=zTanh(Ax")~1

X
. e + e

lrz —lrz

v (r):[ e -e —1]=Tanh(lr2)~1
e

2 2
Ar + e-kr
It is clear from our results that the energy series
convergence very quickly at low wvalues of A, but the
convergence decreases as A increase. It is important to point

out that the accuracy of results for this problem which have

been obtained without use of renormalised constant k, also we
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used the Padé approximants as second method to compute the
energy eigenvalue. The agreement between the two methods are
very good for low values of A, but for high values of A the
Padé approximants give more accurate eigenvalues. We have
computed many energy eigenvalues of the potential given by
equation (5.141), for different values of (0.01<X<0.1) and
for the ground and first four excited state. We list our
results for this calculation in table (5.15) for one
dimension and in table (5.16) for three dimensions, for
different values of (0.015xs0.05), different values of

(£=0,2,5,10) and state number n.
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Teble (5.15). Eigenvalues of H=P2+x®-2exp(-2ax®)[1+exp(-2ax?)]]?
upper lines Hypervirial calculatjon, lower lines, Padé approximents

E [M,M] calculation

L T I L L » o
° e ul y M, N
817 7 117 7 117 7
5§17 , 7 200017 7 5|8, 8
(oKl PRk Kk ] B — T TIOSEe TS 10|
217 7 48 8 g8 , 8
8§18 , 8 5]10,10 61]15, 15
6]8 8 4 16, 16 8 15, 15
631116, 16 6 16, 16 72 15,15
9 16, 16 49 15,15 3731 15,15
o1 & L2350 = 5
651 15, 15 003 15,15 0602 15,185
2879 15,15 9666 14,14 8146 15,15
510 T 5 —
027 15,15 079852 14,14 63117 15,15

i N ¢ Eel N 0 N
3 , Mp ¢ , M Ml

0. 01| 11
ojs , 8 58 , 8 518 , 8
4]8 , 8 g8 , 8 218 , 8
4114,14 0}12,12 5112, 12
6 14,14 8 14,14 82 13,13
S OE S 310524008878 1 28 |10.4205563102 47 |12.553000888. 1 18
6 14,14 278 14, 14 714 13,13

5. 06]5. 41212150 a1 |10.524313 | B (1z.658T 1
6089 14,14 4022 12,12 8024 12,12
507 37 | 15 13
7801 14,14 87633 12,12 871940 12,12

5. 08| 7T 11 112.82

22126 14, 14 5215 12,12 21117 12,12

5. 03| T 3 |12. 11
8146 15,15 22611 12,12 910084 12,12

5. 1015, 5 [10.82 11 ; 11
67133 13,13 836988 12,12112.99570 12,12




2
Table (5.16). Eigenvalues of H=P2+r2+£(2+1)r 2-2¢ 2 /(148227
for many eigenstates,

upper lines Hypervirial calculation,
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lower lines Padé approximant E ([M,M] calculation,

numbers in brackets correspond to state number and angular

momentum respectively.

A ] (0,0) N | (0,10) N
M, M M, M
1ls , 8 4fs , 8
2000§8 8 8{11, 11

6. 03] I L Wi el ol d
als , 8 32 12,12
0. 0414, 11070783800644] 24 [24.8822708 1 36 |
512, 12 890 12,12
5 o5 L TaSTT 1500507 36 25,080 5|
a8 13,13 02636 12,12

(1,8) ,10) N
M, M M, M
0. 0118, 1606087300804 11 15
48 , 8 gj8 , 8
502118, 3360301030818 13 [28. 52003 n35ne48] 28 |
811,11 8 11,11

O 0318 4000004100148] 34 |28. 7780040527608 41
56§11, 11 3 11,11

B 04118, 682290708 | 45 |29.01021

116 11,11 490 11,11

G osl18. 80776 | 34 |23, 4
7669 11,11} 2258304 11,11
- N1 (3 .
M, M M, M
B 0T122. 2001000030038 13 128, 2485711008362 18
5ls , 8 2[10, 10
5 02122, 2137308412082 24 |26.4801257776520| 20 |
3f12,12 44§11,11
B 03122, 6099600784326 43 |26. 7100038483 | 48
8027 [12,12 gs9  f11,11
0. 04 48 |25, 9266 <}
8766 12,12 7165 11,11

0. 05| 15 [26.1 4
00558 12,12| 121485 11,11
P (4,5) N (5,2) N |
M, M M, M
5. 0130, 2877167810008 1B [28. 2680213586170] 1B |
8l10, 10 gl10, 10
0. 0230, 5620312860120 33 |28, b2b 1440306000 31 |
55 [11,11 708 {11, 11
OO BT T 3% (B
207 11,11 50 11,11
3. 04| 31. 08 11 38 |
50788 11,11 3691 11, 11
0.05[31. 10 120.1 9 |
31.26357 11,11 18448 11,11
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CONCLUSION

In the preceding chapters of this work we have seen,
without being concerned with any specific application, how
perturbation and non-perturbation methods can be used for
solving the eigenvalue problem. The numerical methods
presented in this work have been tested for Schrodinger
equation involving several perturbed and  unperturbed
potentials. These methods have been shown to be very
effective and to be more simple and accurate than the widely
used matrix calculations. We would like to emphasize the
following aspects of the present eigenvalue calculations:.
1.The methods which have been used all yielded highly
accurate results. These results showed good agreement with
each other or with those (when available) in the literature.
Our methods proved to be very effective in dealing with one,
two, three and N dimensional radial problems.
2.It is interesting to note that the renormalised series
method can be extended to compute the energy eigenvalues for

quasi-bound states of potentials such as

I.  Vix)=xZ+ixS

II. V(x)=x2+kxs

The renormalised series converge well for sufficiently small

values of A.

3.We studied a double well potential V(x)=—22x2+x2N, for

various values of 2N, z? and state number n, by using
perturbative and non-perturbative methods. All methods

yielded highly accurate results except that the renormali
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series gave poor accuracy at low values of Zz, although it
works very well for high values of z°2.
4.It has been shown, (section 2.4), that expectation values

N
such as <x*"> can be calculated without storing explicit

values of the wavefunction V¥. The relevant difference
equation
x?" =Lt —;—E[E(H+ex2")—E(H-ex2")]
£E—0
involves the use of energy calculations, which can be

performed by many methods (e.g renormalised series, finite
difference and power series). In numerical work one or more
finite values of € are used to estimate the value of the
limit. For double precision calculations, we found that
€210 2 gives reasonably accurate results.

5.In the case of perturbation methods (both hypervirial and
inner product) we have shown how one may avoid divergence
problem, by using the renormalising constant k and (when
necessary) Padé approximants and the Aitken procedure.

6.In the present work, we have compared various methods, with
respect to their accuracy and divergence properties and
changing behaviour with respect to variation of
I.perturbation parameters (e.g \,g,a).

II1.state number n.

II1I.power index (xZN) of a perturbing potential.

It is worth pointing out that perturbation methods are

sensitive to points (I,II,III), but nonperturbation method:-

in #eneral are less sensitive (except that the aimple pow
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series method in the case V:lx2/(1+¢xz) requires zx2<1).

7.0ur results allow us to study the numerical behaviour of

energy levels for the potentials

I. we’+rx®™, p=0,1; 2N=4,6,8....18,20

lxzu

l+gx

II. V(x)=zx’+ :2N=4,6,8....18,20

for different index 2N, perturbation parameters A&g and state
number n. We have seen how the order of the energy levels
varies with these parameters. We determined the value of A at
which a crossing point occurs for potential (I) (i.e \x5),

8.In chapter four we investigated the eigenvalue problem

2N

I. Vt(x)=% xzt 55————5 ;2N=4,6
1+ gox
+ 1 2. gr®
iI. vE(x)zt r’s B
2 2
1+ gox

We have not observed any fundamental difference in behaviour
between the V  and V' cases as we vary the perturbation
parameters (a«,g) and index (2N). We used (gx) and (g) as
perturbation parameters.

9.We have discovered that the renormalised series method does

not work so well for the perturbed potential
I.Vapx®4x(x%"-Ex?); p=142K; 2N=6,8

and gives reduced accuracy. However, we partly overcame this

difficulty by introducing higher powers of A
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11.vapx o2 (x®-Kx?); p=142'K; a=a';2N:=6,8

We illustrated the effect of use of the il technique on the
convergence rate in tables (2.3) and (2.4).
We use this modified technique with other eigenvalue problems

for instance

V(r)=r2+£(1+£)r'2+lrzu ; 2N=6,8

V(r):-r'1+-§(1+£)r'2+A(£,m)12r2

10.It should also be mentioned that a large part of our
results are not available in the literature. Accordingly, we
used more than one method to compute the energy eigenvalues
as an internal check on the accuracy and to make sure our
results are correct.

11.In the case of the renormalised series approach, we
achieved results with very high accuracy as a result of a
lengthy study of the effects of changing the value of the
overflow parameter (2", N=1,2,3,..), of increasing the
dimension of B(N,M) and of varying the value of the
renormalising constant K....etc. We also obtained much
experience at dealing with other eigenvalue methods which
involve optimum choice of parameters e.g Padé approximant,
finite difference, inner product and power series methods.
The present work gives us good grounds for believing that in
future work the methods tested can be used to study other
more complicated eigenvalue problems. The many numerical
results which are reported in this work enrich considerably

the stock of information available in the literature.
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