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ABSTRACT 

The present work is concerned . 
w~ th methods of finding 

the energy eigenvalues of the one-particle Schrodinger 
equation for various model potentials in one, two, three and 
N-dimensional space. 0 . 

ne maJor theme of this thesis is the 
st.udy of di ver,ent Rayleigh-Schrf.>din,er perturbation series 
which are encountered in non-relativistic quantum mechanics 

and on the behaviour of the series coefficients E(n) in the 

energy expansion E(X):E(O)+L E(n)X n
• Several perturbative 

techniques are used. Hypervirial and Hellmann-Feynman 

theorems with renormalised constants are used to obtain 

perturbation series for large numbers of potentials. Pade 

approximant methods are applied to various problems and also 

an inner product method with a renormalised constant is used 

to calculate energy eigenvalues with very high accuracy. The 

non-perturbative methods which are used to calculate energy 

eigenvalues include finite difference and power series 

methods. Expectation values are determined by an approach 

based on ei,envalue calculations, without the explicit use of 

wave functions. The first chapter provides a glance back into 

history and a preview of the problems and ideas to be 

investigated. Chapter two deals with one dimensional 

problems, including the calculation of the ener,y eigenvalues 

for quasi-bound states for some types of perturbation 

(Xx 2n
+

1
). Chapter three is concerned with two, three and 

N-dimensional problems. Chapter four deals with 

non-polynomial potentials in one and three diaensions. The 

final chapter is devoted to a variety of eigenvalue problems. 

Most of the energy ei'envalues are computed by aore than one 
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method with double precision accuracy, and the agreement 

between the results serves to illustrate the accuracy of the 

methods. 
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CHAPTER ONE 

Introduction 

The aim of this work is to use numerical techniques to 

compute the energy eigenvalues for one-particle Schrbdinger 

equations in one, two, three and (N=1,2,3,4, ..... 1000) 

dimensions, for a large number of potentials with different 

forms, as we shall see later. We face convergence 

di fficul ties in dealing wi th perturbation methods. However, 

there are an extensive range of techniques in the 

mathematical literature to deal with divergence problem e.g 

renormalised series, Pade approximants and the Aitken 

procedure. We wish to point out that we overcome the 

convergence problem, to ensure that our results are correct. 

by using the renormalised constant (K) which is given in the 

review of Killingbeck [12,1980;14,1982]. The renormalization 

constant (K) plays an important role in the convergence 

aspects of the calculations which are investigated in this 

work. Also, Pade approximants and the Aitken procedure have 

been used to calculate the energy eigenvalues for some 

problems. The resul ts are compared wi th those produced by 

different methods which can be used to calculate energies for 

the same perturbed potentials. 

1.2 Summary of selected previous and present work for chapter 

two 

Bender and Wu [1,1969] have calculated 75 terms of the 

ground state energy perturbation series for the 2N=4 case of 

the anharmonic oscillator defined by the Hamiltonian 
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(2N=4,6,8,10,10 ... 18,20 11= 0, 1 ) ( 1. 1 ) 

However, Simon [2,1970] has studied the analytic properties 

of the energy series for (2N=4) and its Pade approximants. 

Biswas, et. al. [3,1973] have calculated the ground state and 

the excited state energies for power (2N=4,6,8) by using a 

non-perturbative method (Hill determinants). Banerjee 

[4,1978] calculated energy levels for the (2N=4,6,8) cases, 

for high state number (O~n~1000). Also J.B. Drummond [5,1981] 

used 25 terms of the perturbation series to calculate the 

first five energy levels. G.Schiffrer and D. Stanzial 

[7,1985] treat the Schrodinger equation to calculate energy 

eigenvalues using a gradient method, for perturbation power 

index (2N=6,8, 10, 12); they give results with high accuracy 

(more than 20-digits). Killingbeck [8,9,10,11,12,13,14,15,16] 

presented a number of works using many perturbative and 

non-perturbative numerical methods which give results of very 

high accuracy. In chapter two, the hypervirial theorem and 

Hellmann-Feynman theorem are used to obtain energy 

eigenvalues and expectation values for the harmonic 

oscillator wi th).x
2N 

perturbing potential. We have also used 

non-perturbative methods, the finite difference method and 

the power series method, to calculate the energy eigenvalues 

for perturbations with high N values (2N=4,6,8,10 •••• 18,20). 

Some typical results are listed in tables (2.1,2.2,2.3,2.4). 

Also the problem of quasi-bound states is considered for 

the Hamiltonians given below: 

223 H=P +x +>"x ( 1. 2) 
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2 2 5 
H=P +x +>..x ( 1. 3) 

2 2 4 
H=P +x ->..x ( 1. 4) 

J.E. Drummond [5,1981;6,1982] used 11 to 20 terms of the 

perturbation series to calculate the first six energy levels 

for (1.2) and (1.4). The energy eigenvalues have been 

calculated here by renormalised series for (1.2) and (1.4), 

and Pade approximants for (1.3). Our resul ts are in good 

agreement with those given in ref [5,1981]; our results are 

reported in tables (2.5,2.6,2.7). 

R.Balsa, et. al [17,1983] used a non-perturbative method 

which involves matrices to calculate the energy eigenvalues 

for a double well Potential. R.M. Quick and H.G.Miller 

[18,1984] also computed the energy eigenvalues for a double 

well potential by a matrix method In our case we 

investigate their double well potential with the Hamiltonian 

H P
2 z2 2 2N = - x +x (2N=4,6,8,10,12 •. 26,28,30 .••• ) ( 1. 5 ) 

but for a wider range of the potential parameters and state 

numbers. The renormalised series work well in computing the 

eigenvalues even for high values of (Z2 ,2N) and state 

number'~' We also use power series and finite difference 

methods, and show how the accuracy in the calculated energy 

depends on the choice of the strip width h in the 

finite-difference method. It is shown how to get a projected 

energy eigenvalue by means of an extrapolation process in the 

quantity h 2
• Many of our results are not reported previously 

in the 1 i tera ture, so we made many checks. The resul ts are 
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shown in tables (2.8 to 2.13). 

1.3 Summary of selected previous and present work for chapter 

three 

Perturbation problems in two and three dimensions have 

been studied less often than one-dimensional problems. Hioe, 

et. al [19,1978] have studied the two dimensional problem: 

1 [a 2 02J [2 2J [4 2 2 4J H=- x -- + -- +IJ x +y +>.. a x +2a x y +a y 
~ ax2 oy2 11 12 22 

( 1. 6) 

They have calculated the ener&y eigenvalues by usin& matrix 

diagonalistation for different values of the perturbation 

parameters (a11,a22,a12 ,>..), and different values of state 

numbers (n 1=n z=0,1,2,3). Nasit and Metin [20,1985) applied a 

characteristic function approach, and used Pad~ approximant 

methods to compute energy eigenvalues for different values of 

the potential parameters, comparing their results with those 

in ref [19,1978], J.Killingbeck and M.N.Jones [21,1986] used 

an inner product method to calculate the accurate energies 

for six states E ,E ,E ,E ,E ,E 
0,0 1,1 0,2 20 1,3 3,1 and three 

different values of (a 11 ,a 22 ,a 12 ). The convergence of the 

perturbation series depends upon the choice of the value of a 

renormalised constant K. In the present work inner product, 

renormalised series and power series methods are applied to 

calculate the energy eigenvalues of a two dimension perturbed 

oscillator for various values of (0. 05~~ 

5000) and state numbers (n 1 ,n 2=0,1,2,3). 

For three and N dimens i onal problems Killingbeck 

[22,1985] used a Hill determinant method to calculate the 

energy eigenvalues for a perturbed oscillator for high 
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values of angular momentum ~. The Hamiltonian used was 

2 2 -2 2M H(r)=-V +~r +~(~+l)r +Ar (2M:4,6,8) ( 1. 7) 

Killingbeck also calculated the energy eigenvalues for 

s-states (~O) in (N=1,2,3,24,5, ... 320) dimensions using the 

Hamiltonian 

( 1 .8) 

The energy eigenvalues for (1.7) and (1.8) have been computed 

by us for power series and renormalised series methods. The 

energy eigenvalues for (1.7) and (1.8) obtained by these 

methods are in good agreement with each other, and wi th 

available results reported in the literature. 

1.4 Summary of selected previous and present work for chapter 

four 

Mitra [23,1978) calculated the ground states and first 

two excited states (2N=2) for the perturbed Hamiltonian: 

(2N=2,4,6,8,10 .. 18,20) (1. 9) 

He used the Ritz variational method in combination with the 

Givens-Householder algorithm for numerical computations. 

Galicia and Killingbeck [24,1979] give a simple numerical 

finite difference method to calculate the energy eigenvalues 

for the three lowest even parity states. Kaushal [25,1979] 

has obtained the asymptotic expansions for the eigenenergies 

and eigenfunctions of the wave function for the potential 

2 given by (1.9) by expanding the factor l/(l+gx ) as a power 

2 
aeriea in gx. Bessis and Bessis [26,1980] have studied the 
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same problem by taking advantage of a two parameter (A and g) 

scale transformation, and Hautot [27,1981] has used a Hill 

determinant method for the potential. Lai and Lin [28,1982] 

have applied the Hellmann-Feynman theorem and hypervirial 

theorem to obtain the perturbation series for the energy 

eigenvalues; they have employed the PadA approximant method 

to sum the energy series. Their results, however, require the 

asymptotic expansion of the factor 1/(1+gx 2
) as a power 

series in gX 2
, which is valid for low values of g~2 only. On 

the other hand, V. Fack and Vanden Berghe [29,1985] used a 

finite difference method in combination with matrix 

diagonalisation for numerical computation, and transformed 

the Schrodinger equation into an algebraic eigenvalue problem 

involving special forms of matrix. They calculated the energy 

eigenvalues for various values of g and A and strip width h 

and compared their results wi th those of [28,1982]. This 

problem has received great attention from us, and we used 

perturbative and non-perturbative methods to attack the 

problem. We determined the energy eigenvalues for various 

values of the state number (n), and over a wide range of 

values of A,g and power index (2N:2,4,6, •. 18,20). 

G.Auberson [30,1982], G.Auberson and Boissiere [31,1983] 

studied numerically and analytically the energy levels of a 

one dimensional oscillator: 

(2N:4,6) (1.10) 

They used various methods to calculate the ground state 
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energy eigenvalues for different values of g and a, for the 

case 2N=4. We calculate in the present work energies for the 

ground state and many excited states, for different values of 

g and a and for (2N:4,6), using the renormalised series and 

finite difference methods. The results are compared in tables 

(4.7 to 4.14) On the other hand, it is interesting to point 

out that the one dimensional problems (1.9) and (1.10) can be 

extended to the three dimensional form 

(1.11) 

1 d
2 

lr2+.t p -2 gr
4 

H:- 2" dr 2 + 2 2"(~+l)r ± 2 
(1+gar ) 

(1.12) 

The numerical results obtained for (1.11) and (1.12) by 

perturbative method agree with those obtained by a 

nonperturbative method and the results are listed in tables 

(4.15,4.10). Our methods for the non-polynomial potential 

allow us to study the numerical behaviour of the energy 

levels for (2N:2,4,6 .•. 18,20), and many A,g and state number 

values, at the same time comparing the results with those for 

the ordinary anharmonic oscillator g:O, which has been 

studied in chapter two. 

1.5 Summary of selected previous and present work for chapter 

five 

Praddaude [32,1972] calculated the 14 lowest-energy 

levels of hydrogen atoms in a magnetic field, using the 

Hamiltonian 
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1 2 -1 1 1 2 [2 2] H= 2P -r + 21~Z + 81 x +y (1.13) 

assuming an appropriate expansion of the wave function in 

terms of Laguerre polynomials and solving the Schrodinger 

equation 

variational 

in cylindrical coordinates using 

method. The resul ts of Praddaude 

a 

are 

matrix 

in good 

agreement with those of our calculation (described later) 

shown in table (5.2). The calculations of Gallas [34,1984] 

involve variational estimates of eigenvalues for first 13 

states. Killingbeck [33,34] investigated the problem of the 

hydrogen quadratic Zeeman effect using several techniques 

(power 

methods) 

series, renormalised series and finite difference 

to calculate the energy eigenvalues and the 

expectation values <rH) N=1,2,3 for different states. 

Killingbeck [36,1987] treated the hydrogen atom in a magnetic 

field by using simple basis functions, such that the 

Schrbdinger eigenvalue equation is transformed into a 

recurrence relation, which gives accurate energy levels when 

solved by a new shooting-relaxation technique. In the present 

work we use renormalised series to calculate eneriY 

eigenvalues for 30 states in magnetic field strengths 

(0.005~1~O.01), and energies and expectation values <rH) in 

magnetic field strength 1=0.1 for 14 states. The renormalised 

series gives very good accuracy even for high excited states. 

The results are listed in tables (1.5 to 5.5). 

In section (5.2) we investigated the problem of the 

Yukawa potential: 
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1 2 .t p - 2 - 1 - Ar 
H= - 2V + 2(~+1)r + Zr e (1. 14) 

M.Grant and C.S.Lai [37,1979] have applied the hypervirial 

relations with the Hellmann-Feynman theorem to study screened 

Coulomb potentials. They calculated (K,L,M) shell binding 

energies for different values of Z (2~Z~50), using power 

series in A up to order A20, Lai [38,1984] studied the 

problem of the Yukawa potential by using the hypervirial-Pade 

scheme for various eigenstates for Z=l, and found that the 

[6,6] and [6,7] Pade approximants to the energy series can 

account for various energy eigenvalues to a very high 

accuracy. Edward. R. Vrscay [39,1986] developed a simple 

power series method to calculate to high order the 

Rayleigh-Schrbdinger perturbation expansions for energy 

levels of a Yukawa-type screened coulomb potential. He 

produced results to very high accuracy (20-digits) for ls,2s 

and 2p states. In the present work we attacked this problem 

by using renormalised series, and performed our calculation 

for many eigenstates. The renormalised series yields energy 

eigenvalues with excellent accuracy (more than 15-digi ts) , 

the results being listed in tables (5.6,5.7,5.8). 

Bessis, et. al [40,1982] have computed the bound state 

energies of the Gaussian potential. 

2 2 
d g p - 2 - Ar H= - -- +~(~+l)r -Ae 
dr 2 (1.15) 

using a perturbational and variational treatment on a 

conveniently chosen basis of transformed Jacobi functions. 
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They have calculated the energy eigenvalues for different 

values of the quantum numbers (t,n). C.S.Lai [41,1983] 

calculated the bound state energies of the same potential for 

various eigenstates (t,n:O to 7) by using the 

Hypervirial-Pade scheme. Also Chatterjee [42,1985] has 

applied the method of 1/N expansion to obtain the bound state 

energy levels of a Gaussian potential. The method of 1 IN 

expansion yields energy values which are in good agreement 

with those results which are available in the literature. In 

this work, we used the hypervirial method to calculate the 

energy eigenvalues for various bound states. We extended our 

calculation to high excited states (O~12) and (0~n~7), and 

our method achieved 20-digit accuracy. Such a high degree of 

precision has not been obtained before by any other method. 

The results are shown in tables (5.9). 

Killingbeck [43,1977] attacked the problem of the 

perturbed hydrogen atom with Hamiltonian 

1 d 2 1 
... "" -2 -1 H= - 2 dr 2 + ~(~+l)r - r +Ar ( 1. 16 ) 

by using non-perturbative methods (finite difference methods) 

to calculate the energy eigenvalues. In a subsequent paper 

Killingbeck and Galicia [44,1980] used hypervirial relations 

together with the Hellmann-Feynman theorem to get the energy 

coefficients of the energy perturbation series. Lai and Lin 

[45,1981] calculated the energy eigenvalues of various 

eigenstates, by applying the hypervirial-Pade framework. 

Austin and Killingbeck [46,1982] calculated the energy 

eigenvalues wi th very high accuracy by using renormalised 
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series. We calculated the energy eigenvalues for this problem 

by using power series, finite difference and renormal ised 

series methods. The results produced by these methods are in 

good agreement with each other. The results are listed in 

table (5.10). The ground state of the s-wave Hamiltonian for 

a hydrogen atom with a polynomial perturbation 

(1.17) 

has been studied by Killingbeck [47,1978;48,1980]. He pointed 

out that the system possesses an exact solution for the 

ground state energy and wavefunction for A > 0 given by 

B= - 1 + 3X 
2 

'I'(r)= 
2 - (r+Xr ) e 

(1.18) 

(1.19) 

while for X<O the potential has bound states but their energy 

differs from (1.18). R.P.Saxena and V.S.Varma [49,1982 

;50,1982] studied the same system and gave the exact 

solutions 

( 1. 20) 

which hold only for special values of the parameter X. Cohen 

and Herman [51,1982] listed results for (-0.2~X~-20480) by 

using a variational modification of Rayleigh-Schrbdinger 

perturbation theory. We used renormalised series and finite 

difference methods to calculate the eigenvalues for the 

Hamiltonian given by (1.17). Our results are in lood 

agreement with those in the references ment iolW:l above ; the 
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results are reported in tables (5.11,5.12). 

The exponential cosine screened coulomb [ECSC] potential 

with Hamiltonian 

1 2 1" - 2 - 1 - Ar H= 2P + ~(~+1)r - r e Cos(Ar) (1.21) 

has been treated by several approximate methods. Aparna and 

Pirtam [52,1980] applied the generalized virial theorem and 

Hellmann-Feynman theorem to calculate perturbatively the 

bound state energy levels without using a perturbed 

wavefunction. C.S. Lai [53,1982] has calculated the energy 

eigenvalues of (1.21) for various eigenstates within the 

framework of the hypervirial-Pade scheme. We used 

renormalised series to calculate the energy eigenvalues for 

various states and different values of screening parameter. 

Our method yields 15-digits accuracy, and the results are 

given in table (5.13). C.S.Lai and W.Lin [54,1980] have 

applied the Pade approximant technique to perturbation series 

obtained through the use of hypervirial and Hellmann-Feynman 

theorems. They computed the energies of 2p,3p,4p,4d and 4f 

states. 

R.Dutt and U.Mukherji [55,1982] proposed a new 

approximation scheme to obtain analytic expressions for the 

bound-state energies and eigenfunctions for any arbitrary 

bound (-t,n)-state of the Hulthen potential. 

( 1. 22) 

They compared their results with those given in ref 
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[22,1982]. We used the renormalised series to calculate the 

energy eigenvalues for (1.22) for various values of A and for 

high excited states (2p to Bh). The renormalised series give 

high accuracy (15-digits). 

Finally, we calculated the energy 

potentials in (one and three dimension): 

H= p2+ 2 
x 

2 2 ~ g -2 H= P + r + ~(~+I)r -

eigenvalues for 

(1. 23) 

( 1. 24 ) 

We used Pade approximant and the hypervirial method to 

compute the energy eigenvalues for different values of A and 

excited states (n=O to 5). The results are reported in tables 

(5.15,5.16). 
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CHAPTER TWO 

ONE-DIMENSIONAL MODEL PROBLEMS 

2.1 Numerical calculation for H:p2+px2+Ax2N 

(2N:4,6,8,10 •. 18,20) 

2.1.1 Introduction 

The investigation of eigenvalues has long been a 

fruitful and active field of research, and a variety of 

techniques have been employed to calculate energy 

eigenvalues. In many kinds of eigenvalue problem one wishes 

to improve the accuracy of results obtained by previous 

methods, so we have tried to obtain eigenvalues of high 

accuracy. For purpose of clari ty, this chapter is divided 

into four sections. Section one is concerned with the 

eigenvalue problem defined by the Hamiltonian (2.1), section 

two is concerned wi th the eigenvalue problems defined by 

(2.42,2.43,2.44), section three is concerned with the double 

well potential defined by (2.63) and section four is 

concerned with the expectation value calculation. In section 

one we would like to discuss the eigenvalue problem of the 

general anharmonic oscillator, described in the 

one-dimensional case by the Hamiltonian: 

(2N:4,6,8, •.. 18,20) ( 2 • 1 ) 

The one-dimensional anharmonic oscillator has been studied 

intensively in the past by various authors using several 

powerful methods. The most studied system of this kind is the 

quartic anharmonic oscillator (2N:4). Bender and Wu [1,1969] 

have calculated 75 terms of the ground state energy series. 

Simon [2,1970] has studied the analytic properties of the 
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series and its Pade approximants. Biswas et. al [3,1973] have 

calculated energies of the ground state and the first seven 

exci ted states for 2N=4 as well as energies of the ground 

state and first excited state for N=3,4, for ~ values 

between (0.1~~100), using Hill determinants. Banerjee 

[4,1978] calculated energy levels for 2N=4,6,8 for 

(10-5~~4xl04). Drummond [5,1981] used 25 terms of the 

perturbation series to calculate the first five energy 

levels. G.lchiffrer and D.Stanzial [7,1985] have reported 

excellent numerical results of energy calculations for the 

ground state and first excited state for 2N=6, 8,10,12 and 

by using a gradient method. Killingbeck 

[8,9,10,11,12,13,14,15,16] presented several works using many 

perturbative and non-perturbative numerical methods which 

give results of high accuracy. We extended our calculated 

results to higher values of the index N 

2N=14,16,18,20). In spite of the high value of 2N, our 

methods (non-perturbation methods) are still capable of 

handling this perturbation. We use three methods to calculate 

energy eigenvalues for the ~X2N perturbation. 

2.1.2 Renormalised series to calculate energy eigenvalues for 

2N=4,6,8 

In order to find the eigenvalues B of the Schr6dinger 

equation: 

)J:1 (2N=4,6,8) ( 2 • 2 ) 

we shall use the hypervirial relations in calculating the 

perturbation energy series. These relations are given by 

Killingbeck [12,1982] as follows, for a potential E V xn; 
n 
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( 2 .3) 

This formula has an obvious use; if the energy E and a 

sufficient number of the <x M) are known (analytically or 

numerically) then it allows computation of other <x M) values. 

This formula also has the interesting property that it yields 

the Rayleigh-Schrodinger series for the eigenvalues and <xM) 

values (as we will show later) without using any perturbed 

wave function. We should comment here that an application of 

the present method to a large variety of more complicated 

potentials will be studied in the forthcoming chapters. It is 

note worthy that although this approach is very attractive 

for the one dimensional problem, its application to a system 

of many dimensions has not yet been accomplished. We can 

write the potential appearing in equation (2.2) as: 

2 I 2N 2 
V(x)=gK +~ (x -Kx) (2N=4,6,8) ( 2 . 4 ) 

where 

1 

I I 
1-/= 1 + ~ K , "'= '" (1=1,2,3,4) ( 2 . 5 ) 

If we insert the series expansions given by: 

(2.6) 

and 

M \' N <x >={r A(M,N)'" ( 2 • 7 ) 

into (2.3) and take into account the potentials coefficients 

I 
V = (1-1- '" K) 

2 -
(2.8) 
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(n=I,2,3) 

we obtain the recurrence relation 

( 2 N + 2 ) ~ E ( J ) A ( N , M - J ) : (2 N + ... ) [/-LA ( N + 2 , M ) - KA ( N + 2 , M-I ) ] 

+ [2N+2n+4]A(N+2n+2,M-I) 

- ~[N2-1]A(N-2,M) (n=1,2,3) 

( 2 .9) 

(2.10) 

We use the series expansions in equation (2.6) and (2.7) to 

obtain the relation between the energy series (E) and the 

coefficient series A(N,M) as given below. 

2 3 
E:E(0)+E(I)"'+E(2)'" +E(3)'" + ••.•.. (2.11) 

2 2 <x >=A(2,0)+A(2,1)"'+A(2,2)'" + ••• (2.12) 

2n+2 0 (2 2 <x >=A(2n+2, )+A n+2,1)"'+A(2n+2,2)'" + •• (n:1,2,3) (2.13) 

Applying the Hellmann-Feynman theorem in the form 

(2.14) 

We obtain a recurrence relation of the form 

(M+l)E(M+l):IA(2n+2,M+I-I)-KA(2,M) (n:l,2,3) (2.15) 

The Hellmann-Feynman theorem and Hypervirial theorem provide 

relationships between the energy E and the expectation values 

<x M>. It is clear now that from relations (2.10) and (2.15), 

we obtain the full set of A and E coefficients starting from 

the unperturbed energy. 

(n:O, 1,2, •.• ) (2.16) 

and the initial condition A(O,0)=1. The convergence 

properties of the resulting perturbation series are 
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controlled by varying K. 

The renormalised series work very well for the quartic 

perturbation (2N:4,I:1). The interesting point about this 

approach for (2N:6,8) calculations is that the accuracy 

varies with the power (I). We use this modified (variable I) 

technique to perform more accurate calculations. These 

calculations by the renormalised series technique become 

progressively more difficul t as N increases; thus one must 

keep in mind that we can partly overcome this difficulty by 

introducin" A I. The primary motivation of this idea is to 

improve the accuracy of our eigenvalues results, using a very 

simple extension of the original renormalised series 

technique. It is important to point out that the effect of 

varying K the renormalised constant, is to allow us to 

obtain results of high accuracy. The best K values in this 

calculation have been obtained by numerical search, so our 

calculation reveals the importance of finding the best values 

of the renormalised constant. The convergence rate decreases 

remarkably when X and 2N increase. Problems with computer 

overflow were avoided by using the definition 

N 
A(N,M)~2 A(N,M). The renormalised technique has been used by 

Killingbeck for many eigenvalues problems, and has provided 

an excellent way to overcome divergence problems as well as 

to obtain eigenvalues with very high accuracy. 

2.1.3 Finite-difference eigenvalue calculations 

The finite-difference approach is a nonperturbative 

method capable of arbitrarily high accuracy. This method has 

been described by Killingbeck in reference [12,1982]. We will 

only mention the essential feature here; the reader 
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interested in details should consult that reference. The 

fini te-difference method for calculating energy eigenvalues 

of the Schrodinger equation 

r~X22 ] ltt - V(x)+E 'I'(x)=O ( 2 . 17) 

with the potential 

2 2N 
V(x)=1JX +).x (2N=4,6,8 .•• ,20) (2.18) 

produces results wi th high accuracy for a wide range of A. 

(10-1~.s;5x1004). For large A. values it seems that the present 

method works quite well, whereas various other methods have 

some problems. Although the results displayed are restricted 

to even-parity states, the method can be used for odd-parity 

states. To treat equation (2.13) or any similar problem, we 

define the finite-difference quantity 

(2.19) 

where h is the strip width for the numerical integration. It 

is well known that (2.19) can be expressed as series 

expansion of even powers, by using the Taylor expansion 

222 144 
6 'I'(x)=h D 'I'(x)+ 12h D ,(x)+----- (2.20) 

Then we can combine (2.17) and (2.20) to give 

-2 2 2 1 2 4 
h 6 '(x)=D '(x)+ f2b D '(x) (2.21) 

= [V(X)-E ]'I'(X)+VP (2.22) 

where the perturbation VP has a leading term of order h 2
• The 

most simple procedure is to ignore Vp as the first 
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approximation; then the equation (2.22) reduces to the form 

(2.23) 

We use two quantities R(x) and F(x) which are defined as 

follows 

'(x+h)='(x)R(x) (2.24) 

(2.25) 

If we insert equations (2.24) and (2.25) in equation (2.23) 

the following equations are obtained 

F(x-h) 
F(x)-R(x_h)=V(x)-E 

For even states we have 

'I'(-h)='I'(h) 

which leads to the starting conditions 

1 
R(O)=R(_h) 

F (0) =l [V (0) -EJ 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

To apply equation (2.26) or (2.27), we need some initial 

value for R(x) or F(x) and can then calculate successive R(x) 

or F(x) values along the x-axis, with some test energy E. The 

wave function 'I'(x) is calculated using equation (2.26) or 

equation (2.27) for two trial energies E and E • We suppose 
1 2 

that E
2
> E 1 , so that ('1'2) has its nodes earlier than ('1)' 

Then the calculation of the projected energy is given as 
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E -E 
2 1 

(1-'1' 1" ) 
2 1 

( 2 • 31) 

E is actually a function of x; it is the interpolated energy 
p 

which would have given '1'( x) =0. As x increases, however, E 
p 

settles down to a limiting value, provided that E -E is not 
2 t 

too large. This limiting energy corresponds to the boundary 

condition '(00)=0. The true energy is related to the 

calculated energies for varying strip widths by a formula of 

type 

4 
h E +-------4 

2 4 
E(4h)=E +16h E +256h E + -----

024 

(2.32) 

(2.33) 

(2.34) 

From equations (2.32,2.33,2.34), we can obtain the equation 

(2.35) 

Here E(h) is the energy calculated using strip width hand 

Eo is the exact energy (for h~). Now we turn back to 

equation (2.22) and ask what the first-order energy shift 

would be if a perturbing were added to a 

Hamiltonian. This shift would be the expectation value. 

1 2J+00 4 
E t =f2b 'l'(x)D 'l'(x)dx 

-00 

(2.36) 

The integral can easily be evaluated by parts to yield 

(2.37) 

This shift Et could be produced by using the extra term 
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(2.38) 

to simulate the more complicated term h2D4/12 

2.1.4 power series eigenvalue calculations 

The power series approach has been used by Killingbeck 

for calculations on many types of eigenvalues problem. He has 

developed and modified this approach to give very high 

accuracy for eigenvalues, comparable to that of the fini te 

difference method. The success of this approach allows us to 

calculate eigenvalues for high value of '" (0. 1~~50000) and 

(2N=4,6 •• 18,20). We used the non-perturbative power series 

method as another approach to calculate the energy 

eigenvalues for the Schrodinger equation given by (2.17), 

which we earlier treated by perturbation theory. We take the 

wavefunction in the form 

(2.39) 

If we insert equation (2.39) in equation (2.17) we obtain the 

following equation: 

[ 
2] 4 2M+2 + ~-4P T(N-2)x +AT(N-2M)x (2M:4,6, •• 18,20) (2.40) 

In the above equations we use the notation 

~ T(N):~ A(N)x" ( 2 . 41) 

We can take the initial condition T(0)=1 for even states or 
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a clear physical picture for this method; we want the bound 

state wavefunction ~(x,E) to become zero as x approach 

infinity (or sometimes for some finite x). We can describe 

the calculational method as follows: we pick out some value 

for x and take two trial energies E1and E
2

;;E 1+Hj we take 

sufficient terms of the series (2.41) to get converged values 

for ~(x,E1) and 'I'(x,E
2
). Then by linear interpolation we 

estimate the E value Eo which would have made ~(x,E) zero. We 

then repeat using E1;; Eo' E
2

;; Eo+H with a small value of H. H 

is typically ~10-3. After a few repetitions we should get a 

close estimate of an eigenvalue, appropriate to the boundary 

condition 'I'(x);;O. The interpolated value depends on 

wavefunction ratio 1P(E+H)/'I'(E). The number of terms of the 

series needed can be reduced by a factor of up to twenty by 

using this ratio directly instead of wai ting for separate 

converaence of the 'I'(E+H) and 'I'(E) series. In this approach 

we have the converaence factor exp(-~x2). The choice of the ~ 

parameter helps to achieve or improve convergence. We 

consider the success of this approach as being related to its 

physical interpretation. We emphasize that the method gives 

us the freedom to work with any value of 2N and X. 

2.1.5 Results and discussion 

The energy eigenvalues of the generalized anharmonic 

oscillator defined by the Hamiltonian (2.1) have been 

calculated for various values of ~, using three different 

methods; the renormalised series, finite difference and power 

.erie. method •• Our re.ult. a. obtained by the •• m.thod. are 
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compared wi th each other, the agreement between them being 

very good. In table (2.1) we list the energy eigenvalue for 

(2N=4) arising from the renormalised series and power series 

methods. It is clear from the listed results that the power 

series method is able to produce more accurate results than 

those from the renormalised series at high values of X. Table 

(2.2) gives the values of the energies of the anharmonic 

oscillator (2N=6,8, •• 20), calculated by power series and 

fini te difference methods for (0. 1~X~50000) and (#.1= 1,0). We 

have computed ten eigenvalues in this range. From our results 

we observed the order of levels R~<R6<Re, ••.. R1e<R2o for 

small values of (X=0.1,1 •• ,5), but for large values of 

(X=10,50,5000), we observed the order reversed. The physical 

reason behind this is that the eigenvalues are non-analytic 

at each crossing points, as discussed by Simon [2,1970] and 

C.M.Bender [1,1969] and this has been proved by them. It 

seems from our eigenvalue results for E2N(X) that the 

crossing occurs approximately at the same value (XIiII5) for 

various levels. As can be seen from these calculations, the 

accuracy of our results is around 16 significant digits. The 

energies quoted in table (2.2) agree to the number of digits 

given with those obtained by other calculations. We wish to 

stress that the fini te difference method and power series 

method work very well for any value of the index 

(2N=4,6, •• ,20 ). These methods have obvious advantages over 

the renormalised series method, which can only handle the 

values (2N=4,6,8). The results for this approach are shown in 

table (2.3) and it is clear that the accuracy is decreased 

as 2N increases, although it is still very good in comparison 
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with the results of Biswas et.al [3,1973). In order to 

illustrate the effect of the use of the Xl technique on the 

convergence rate we have calculated many eigenvalues for 

. , I var10US I\. (I=l,2,3,4),and the results have been listed in 

table (2.4). It is clear from our calculations that the 

accuracy is poor for 2N=6 at 1=1 but at 1=2,3,4, it is 

clearly better and we obtain 6 digits accuracy. For 2N=8 we 

find better accuracy at 1=4, although we obtain only 4 

digits. The confidence in the accuracy of the computed 

eigenvalues is derived from the following checks; 

1. The agreement between the two computed eigenvalues by the 

two techniques which have been used is excellent, as is clear 

from our results which list in tables (2.1,2.2,2.3). 

2. Two separate computations for (2N=4,6, •. 20) by using power 

series and finite difference methods with an increasing and 

decreasing (x,I3), yielded eigenvalues agreeing to 16 

significant figures. 

3. The agreement between some of our results and the results 

which have been given by G. Schi ffner and Stanzial [7, 1985] , 

and Banerjee [4,1978] for (2N:6,8,10,12), to about 16th 

figures. 

In conclusion, we remark that the present results are to our 

knowledge the best available so far in the li terature; for 

2N>12 we have not found numerical results in the literature. 

The method is able to deal wi th perturbations that other 

methods cannot handle due to numerical difficulties, for 

example the cases (2N=14,16,18,20). In the limit 2N~ the 

potential becomes a square well potential and our methods 

should allow this limit to be studied. 
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Table (2.1). Energy elgenvalues of H-p2+x2+~'. First line 
renormallsed series calculation. Second line; power series 
calculation. with digits before the last digit omitted. 

A- Eo It ~ 1;1 lit & 

0.1 [l. ~7176888 ;47 20 13 • .NOD 1,\J1315Z8135070 IIlZ ZO 
8 1 

1.0 11. ;1641530Z i3S its 14. 64881Z-(01lZIZU1 IIlZ 8 
2918557 775364 

.10. IZ.44817407Z11 140 ,4 18 • "<I4S4RO 4-( ,0 
183869183 071126028 

1100 14. 888411:;)4:;) 137 1170 17. 83019Z7159 36 !ZOO 
51315818293 952522387 

A- E2 IN 1& 1:3 It 1& 

10 . 1 I:;). -(4P~' 14!'> 142 18 8 . .sO.GO I ns.Go I DO I 0".7116 42 IZO 
7 22 

11. 0 8.55504990-'-(:;)8 5 110 13. I! 142 1Z 
93096881 49815079 

110. 16.o.s0:sG1492 50 6 ,25. Duo~ID~15 IZ8 14 
2413157183 5055640450 

100 34. 8T~!oIW4?~? 36 200 54. 11:;)-(1 134 ZOO 
1994177546 1603103269 

A- !;, N K E5 lit K 

0.1 11. ~~ 14-~qll ,38 ZO 113• i1877~1 44 25 
1 0 

1.0 18. 05-/001 l~~~n~ 149 :14 IZ;j. Z8-(4414tilZZ 48 
1

16 
3252895 23189085 

10. 135.885171222 158 18 146 • I 158 10 
2253873112 0817113006 

:100 75. Df I 14n?R~ 137 IZZO 99. : f;j IZZ 12uU 
669124181 315401491228 

A- Ea lit 1& 1;7 lit IK 

10.1 16.8:;)4-, ;144151336 41 Z5 zo.n4 ,188461232 42 25 
6 4 

11.0 12ts . H 12 18 134. ~4nR4R~~111 54 120 
04248840 11332543 

110 . 58.241~~D/.:J~ !:ff 18 IU.3510518382 157 10 
9153240285 234653309 

1100 123. ts41. '/O~OOI 38 250 1149. ;1443 131 1280 
7816767 328822111 
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Table (2.2). Elgenvalues of the anharmonlc osclllator 

H=p2+f.tX2+>.x
2N

, First llne, power serles method; Second 
llne, finl te dlfference method, wl th digits before last 
dlgl t oml t ted. 

, , 
8 0.0015 7 0.0015 
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Table (2.2 continued) 

• • 
6 0.001 5 0.001 
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Table (2.2 continued) 

• • 
3 0.001 2 0.001 
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Table (2.2 continued) 

• 
1 0.0009 3 0.0009 
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Table (2.3). Energy elgenvalues of" H-p2+x
2

+AI x2K • First Une; power .erles 
calculation. Second Une; renor.aUsed .erl... wl th digits before the last 

1 ltt d dig t om e . 
lA (2H=4J I-I IN I: (2N=6) 1-4 IN le: \2H==---sJ ,at IN & 

10 . 1 1. :ll~71 11. lUWtS/UI 11.lt)tstH LJ:;":I7.11.J:;QA 

1 47 20 7 128 50 9 70 80 

10.2 1. 11R~! i104 11. 1'1 1.as;'j12543 11. 241u"l 
4 47 20 3 100 50 0 68 80 

[0.3 1. 164047101 1.11. 11. ~..sotS (1 L"::;: It. 11011702 
4 51 18 1 89 50 3 62 80 

10.4 , 1. Z0481 u;"c; ,;,,/249 ,1. :147Z 11. 1.,19428 
9 48 14 3 81 50 2 59 80 

10 • 5 11. Z41 Rool4 i149 11. l(l~o"l 11. 30T,21 00954772 
4 43 13 6 75 50 7 58 80 

10 . 6 11.C;1 Ill7"::;:"::;: 11. '/~tI rt. ;j'dffU"df fl 
5 47 12 5 78 50 7 57 80 

10 • 7 11.30-,-'4865112003 11. 36 nf"::I'd::i 15Z88 rr.~ .... 8'117 
0 43 10 2 66 50 3 53 80 

10 . 8 11. 3375ll ... ..,()~I4817 11. "lRR7J1 A CA· [l.n :1~5Dn937 

1 44 10 5 67 50 5 61 90 

10.9 11. 30! i78443 11. 4127".11. ~138 rr. 4706I4~I40 
4 43 9 4 78 60 0 46 80 

11. 0 1. :i~"":i!i164153029 11. .II.~HR~4F;l!-lnr :'c:-I!-I 1.49101 
2 39 8 4 76 60 1 54 80 

12.0 1. 60154 , ~r I~.II.RRH.II. 11. 11: !l.l)U3-'U;j::;~ 

8 42 7 1 81 70 1 43 80 
3.0 1. -'O'd! 1. I;"c;t50/11751614 [l.~S:;1094779· 

0 42 6 5 71 75 3 41 80 
4.0 I.S031 LH~nn 1. R"lnll'I;j4;jf::;UIO 1. 8221'7Slff 

5 43 6 3 71 80 2 39 80 
0.0 2.01834004 :1 .1. S' 7ll' .... : 1. 8874871.11.'";1n'";17nR 

6 40 5 5 64 80 7 35 80 
6.0 Z. ..,n ... ~~~~~~~4~7 11. 'd"d;j I "dUO" I T.~('d-" 7nQ 

9 43 5 8 66 80 3 45 100 

7.0 Z.Z129142I1174I5 12.04·Ic;;j'duloU1261 1. QQ7QRI 1-,::;ti~3ul 

7 46 5 3 70 90 2 43 100 

18.0 12. C;tI ( 0 ( ( I1 12. 1n.a ~1951 [G. U3f nABOOl 
2 34 4 2 75 100 7 44 100 

19 . 0 I Z . ;j lO'd (8549783 11 12. 157tR":Inn414840 12. U.,-,::;t:i~.,r~~7~111 
7 40 4 6 113 150 7 53 120 

110. 12. 44~17407211838 12. "uo I rz.TI4H.II..II.R~194212 

1 40 4 2 70 100 4 52 120 
[ZO. 13. nn~~44~1t:it:it:i.,.(~ 12. nn04 12.38184367142942 

5 49 4 4 94 150 1 45 120 

~O. 13.4IOIRW \R~ IZ. 1113In7~RR 12. 5~38S9l5BS 
6 38 80 8 82 150 8 51 140 

140. i3. -'~139' 110 13. 000315320'/o~12 12. R~.II.R~105951785 
0 39 100 1 83 160 4 53 150 

150. :4. 1?"ID"d" I lOC; 13. 15902120' 12. 1'dJI828 

2 40 120 2 76 160 6 55 150 

~O. i 4. 243()~ Ill11Rll~R4 13. .1~4~~4R78 [Z.mrIT97S:J(9I835 
6 29 120 5 84 180 1 56 160 

[70. 14. 4574UI:P~Zi I:HS 13 .41704571758164 12. ~A.II.R"''''!of(019431 
2 30 125 4 70 160 4 49 150 

[BD. 14. RH7HtiI84·pCIJ ... :u 13. H7Rf 1/ '4n~1 13.05918117713722 
7 34 150 3 65 160 9 49 150 

[90. 14. 83Z3 44·,Jt'i .... :·uu~ 13.62541 1~?4 13.1207U84921351 
6 34 160 1 67 160 6 SO 160 

100 14.99941754513758 13. 716S747.~C ·.mRR~ 13~":I1r~.II.Q?7R . ... ............ 
5 37 170 7 80 180 8 46 150 
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Table (2.4). Energy of ground state levels, by 
using renormal1sed series method at A-1, The 
number in the bracket correspond to exact value. 
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2.2 Numerical calculation for Quasi-bound states. 

2.2.1 Introduction 

This section is concerned with potentials of the types: 

2 3 V(x)=x +Xx 

2 5 
V(x) =x +Xx 

2 4 V(x)=x -Xx 

(2.42) 

(2.43) 

(2.44) 

and the hypervirial recurrence relations have been used to 

calculate perturbed ener~y eigenvalues. There are many 

studies of potentials of the form 

(2N=4,6, •. 10,12) (2.45) 

whereas for potentials of the form 

(2N=2,4) (2.46) 

there are few reported results. The energy levels of an 

anharmonic oscillator wi th a perturbation of type 
3 Xx have 

been calculated by Drummond [5,1981 ;6, 1982]. The potential 

functions ~iven by (2.42,2.43,2.44) describe a system which 

has no true bound states. For large x, If/( x) does not tend to 

zero and is not admissible as a normalizable wavefunction, so 

that the particle is not permanently confined to the 

neighbourhood of the centre of force. However, in spi te of 

there bein~ no true bound states, we can still compute an 

average real energy for small values of X. 

2.2.2 Renormalised series method to calculate energy 

ei~envalues for Ax2N+l. (2N=2,4) perturbation 

In order to find the eigenvalues E of the Schrodinger 
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equation: 

[ 
d2 2 2H+1] - + x +Xx '(x)=E'(x) 
dx 2 

(2N=2,4) (2.47 ) 

We shall use the hypervirial relations (2.3) in calculating 

the perturbation energy series. Drummond's approach is based 

on a method due to Bender and Wu [1,19691. It uses recurrence 

relations to calculate the perturbed energy and wave 

function. We should point out that Drummond used extrapolated 

values based on the first few terms of the energy series, but 

in our approach we calculate many terms of the series. Also 

in our approach we tried out Aitken's transformation in order 

to increase the accuracy, but unfortunately it did not seem 

to help to improve the accuracy of our resul ts for this 

problem. In order to improve the convergence properties of 

the perturbation series we used a rearrangement of terms in 

the potential (renormalised perturbation series). 

To illustrate this technique we can rewrite the 

potential (2.46) as follows 

V(X)=~2+A(X2H+1_KX2) 

where 

J.l= l+XK 

(2.48) 

(2.49) 

The new perturbation series is still divergent but its 

di vergence begins for hiath values of A, so that for low 

values of X we findagood energy value. Inserting the series 

expansions given by equations (2.6) and (2.7) into (2.3) and 

taking into account the potentials coefficients 

(2.50) 
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V =A.. 
2N+1 t 

(N= 1,2 ) ( 2 • 51) 

we obtain the recurrence relations 

(2N+2)~ E(J)A(N,M-J): (2N .. Lt) [I1A(N+2,M)-KA(N+2,M-l)] 

+ [2N+2n+3]A(N+2n+1,M-1)- ~[N2-1]A(N-2,M) (n=1,2) (2.52) 

Applying the Hellmann-Feynman theorem as given by equation 

(2.14), we obtain a recurrence relation in the form 

(M+l)E(M+l):A(2n+l,M)-KA(2,M) (n=1,2) (2.53) 

It is clear now that from equations (2.52) and (2.53) we 

obtain the full set of A and E coefficients starting from the 

unperturbed energy 

E(O)= (2n+1)~11 (2.54) 

2.2.3 Energy levels for negative quartic oscillator 

It is interesting to note that the renormalised series 

method can even be extended to the case of a negative but 

small value of A.. Strictly speaking, no bound states are 

present in this case. We can write the potential appearing in 

equation (2.44) as 

2 (.. 2) V(x)=11X -A. x +kx (2.55) 

If we use the series given by equations (2.6) and (2.7) and 

the potential coefficients which are given by equation (2.56) 

as 

(2.57) 

in the hypervirial relation (2.3) we obtain the recurrence 

relation 
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( 2 N + 2 ) ~ E ( J ) A ( N , M - J ) = (2 N t4- 4) [/lA ( N + 2 , M ) - KA ( N + 2 , M - 1 ) ] 

(2.58) 

If we use the same approach as used to obtain equation (2.53) 

we get the energy equation 

(M+1)E(M+1)=-KA(4,M)-KA(2,M) (2.59) 

The above recurrence relation together with relation (2.58) 

and (2.59) are sufficient to determine the coefficients E and 

A of the perturbation series, startin& with initial 

conditions for E(O) and A(O,O) as quoted previously. We 

calculated the ei.cenvalues of the (- AX 4) oscillator for 

ground and excited states for different values of A as shown 

in table (2.7). It is worth noticing here that varying the 

renormalised constant K improves the convergence our results. 

The numerical eigenvalues of (x2_"-x4) are in reasonable 

agreement with the previous results which have been obtain by 

J.E.Drummond [5,1981], who used 25 coefficients of the energy 

series to calculate the eigenvalues of energy. Our 

calculations were done on an leL system using double 

precision arithmetic. 

2.2.4 Results and discussion 

The ground state as well as excited energy levels of the 

generalized anharmonic oscillator defined by the 

Hamiltonians: 

(2N=2,4) (2.60) 
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d 2 2 4 
H=- - +X -XX 

dx
2 

( 2 .61 ) 

have been calculated for various X values, using the 

renormalised series method. Our results for 3 4 (XX ,-Xx) 

perturbations have been compared with previous results of 

J.E.Drummond [5,4] in order to have an idea about the 

accuracy of our approach. In table (2.5) we present the 

energy eigenva1ues for a 
4 (-Xx ) perturbation for the 

five excited states, for different values of 

first 

lying 

between (0.01sXsO.12). Our results lead to the following 

observation: 

1. Our perturbation energies series for converge very 

well for small values of >.. (>"(0.12), where our approach has 

obtained 20 significant figures. The precision of the 

energies seems good even for excited states, but 

J.E.Drummonds' approach achieves only 12 figures; our results 

can thus considered as more accurate. 

2. The renormalised series approach for (X>0.12) deteriorates 

in convergence. This approach has a limited range of 

application, and seems not to work for this range of X, 

presumably because the quasi-bound states are not well 

defined for such large X. 

3. The most important difference between the J.E.Drummond 

approach and our approach is that the former computed only 20 

coefficients while we have computed any number of 

coefficients until we obtain the best converged energy. 

4. The Pade approximant technique has been used to calculate 

the energy eigenvalue of the potential given by equation 
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(2.43) for low values of X, because the energy series is more 

speedily divergent than that for the potential (2.42). Our 

results in table (2.6) exhibit this behaviour. This technique 

is reviewed in more detail in chapter 4. In the absence of 

other reported results (to the best of our Knowledge), we 

have calculated each eigenvalue for two values of [M,N) in 

order to estimate the accuracy of our results. 
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Table (2.5). EnerlY elgenvalues of H-p2+X
I

+).x3. First llne; 
Renormallsed series calculation. Second line; Drummond 
calculation. with digits before the last digit omitted. 

A Eo N IK E1 I IN I lIe I 
0.01 o. r1231R7~' IlZ 11Z 2 IZ. 1f11~~~ 1r;,7 T3- --z 

6 1 
0.02 O. t:Jl:n:H ,(UtS( 1188 116 ~ I~. HHH"';"!1471 111 i17 12 

3 1 
0.03 O. t:J~~~f~111! 'A-7~~R !21 Z IZ • : l'rotjl::III::) 116 '22 2 . _-

5 8 
-0.04 O. 1136279 124 Z Z.QQ?R4 I( (17080 126 ,2 

2 40 
,0.05 O. I [~rl4~Q"106074 129 Z Z.tlOOI "11189 ~ rz 

4 6 
'0.06 0.t:J~1 ·?~7!1/l1 134 2 2. 98:S1 1113876 138 [2-

8 40 

10.07 10. ,J7 140 IZ IZ. 'd"fU~~TftH 199'(UUtH ~ rz 
3 7 

[0.08 10. :u. (908772567 147 IZ IZ. 97n~1l 11916 [Sl rz 
80 9 

10.09 Iu.ac ftH2 157 12 2. C~~I/l 11:;j122974 [58 [2 
0 30 

10.10 '0.QQ7! "l~'T63 I ~na~53 75 IZ Z.9531965472043759 74 12 
1 3 

10.12 10. tl "lCW"U3 183 IZ 2. 114978 180 12 
1 2 

10.15 10. 98347687 ~3 12 12. 88!:>tf{423 gz rz 
9 2 

10.ZO 10. T{ 18 12. 'T564 48 6 
3 5 

A E2 N ~ E3 N X 

0.01 4.9988053317405753541 14 2 6.9976788050043899205 15 2 
4 0 

[0.02 14. 995Z' 1~1I.~RR~Q4~4RI5 
i 19 Z 16. ~~UbtsoootS 1 tSO IRQ7~QR 121 12 

9 8 
10.03 14. 989181 'l~'l/l'l/l~781B6 1~4 ~ 16. 97B93018131CCIIl/l~"lD~ 126 2 

5 4 
[0.04 14. r1528 ,1Z 131 2 16 . 1/l~'ll1 [33 2 

30 9 
[0.05 14. ['l~rr{ccc:)RQ' :7 :37 Z 16.Q414 ,I 1/541 141 2 

1 1 

10.06 14. 955TrM4R(l1R7~R7~ql 144 2 16 • 9131 ?Q~4RR~Qq14~~RR ISO 2 
0 9 

10.07 14. 939141ntststsU' .............. 106 Z 16.87991:41 11580 164 2 
9 3 

10.08 14.91: Rr174~' , ... ~98 i68 ~ It). 8401~ __ ... __ J5584 68 2 
3 4 

10.09 14. :-,{40 n ~ 16. "{931 ;125 72 2 
1 4 

0.10 14.869901'1 75 Z 6.1..s10..sbb417Z 76 --z 
7 6 

0.12 4. RI ~RR16-1 74 2 6.093703 81 2 
4 0 

0.15 4.658 151 2 6.Z08 ~ --z 
8 8 
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Table (2.5 continued) 

3 6 
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Table (2.5). Energy elgenvalues of H_p2+x2+AXS 

the result produced by Pade approxlmants E [H,N] 

, , 
4.94 [8,8) 6.7 [8,8) 
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Table (2.7). Energy eigenvalues of H=p2+x2_~x~, First line 
Renormalised series calculation, Second linej Drummond 
calculation, with digits before the bracket omitted. 

(3336) 

(5) (4) 
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2.3 Energy levels of double-well anharmonic oscillator 

2.3.1 Introduction 

The aim of this section is to investigate numerically the 

eigenvalues of double-well potentials with form given as 

below: 

Z2 X 2 + x2" V(x)=- (2N=4,6,8, ...... 28, 30) (2.62) 

The most studied system of this kind is the quartic 

double-well potential (2N=4). The calculation of eigenvalues 

for the Schrodinger equation wi th double-well potential has 

received great attention from us. We extended our 

calculations to higher powers (2N=4,6,8 ..... 28,30), since our 

methods free our hands to compute the eiatenvalues for such 

hiather values of 2N. The treatment of the double-well 

potential (2N=4) has attracted many authors. For instance, 

R.Balsa et. al [17,1983] have computed the energy 

eigenvalues for 2N=4,(OSZ2~100) and 0~n~21; their results 

produce 12 digits accuracy. R.M.Quick and H.G.Miller 

[18,1984] have computed for 2N=4, Z2=50 and (0~n~79); they 

used a non-perturbative method involving matrix 

diagonalization to calculate some energy levels. Our 

approaches will use a perturbative method as well as a 

non-perturbative method. Our main object is to demonstrate 

that both approaches work and are able to produce excellent 

2 
accuracy in spite of high values of Z , 2N and state number 

n. It is important to point out that some of our results for 

this problem are not available in the literature, so the 

values which are listed in our tables have been checked at 

least by two methods. The aatreement in our calculated results 
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by both methods gives us faith that the accuracy yielded by 

our methods is high. The depth of the double well is 

2 
controlled by a parameter Z (in equation 2.64 below). In 

some cases, particularly for Z2~1 2 6 or Z ~1 0 , one approach 

works better than the other. The perturbation approach works 

excellently for large values of Z2 because as Z2increases the 

depth of the two wells become deeper and for deep wells the 

perturbation series converge quickly. 

2.3.2 Renormalised series for Double well potential 

To calculate energy eigenvalues for the double well 

potential, we consider the Schrodinger equation 

where 

2 2 2N 
V(x):-Z x +x (2N:4,6, ••• 26,28,30) 

(2.63) 

(2.64) 

The SDWP energy levels are found by simply setting ~x2~_Z2x2 

in the equation (2.1), and shifting the energy so that the 

zero of the energy is at the bottom of the well, with Z2>O. 

The minima of V(x) are located at 

(2.65) 

where 

(2.66) 

In this case we expand V(x) about its minimum at Xo in 

order to estimate the eigenvalues B around x . The Taylor o 
expansion for the potential V(x) about x is o 
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!
N n 

n X 
+ V (XO)nr 
n=4 

(2N:4,6,8, ••• 26,28,30) (2.67 ) 

If we follow the same procedure as used to obtain relations 

(2.10) and (2.15), we obtain hypervirial recurrence relations 

corresponding to the double well potential case as follows: 

- (2N+4) [1lA(N+2 ,M) +KA(N+2 ,M-l)] 

~N dnV(X)I!, (2N+2+n)A(N+n,M-l) L d n n. 
n=3 X x-x o 

(2.68) 

(2.69) 

The unperturbed energy corresponding to the double well 

potential can be expressed as 

B=-V(x o )+ (2n+1 )~J.l ( n= 0, 1 , 2 , ••• ) (2.70) 

and we obtain a hypervirial perturbation formalism for the 

problem. We also used a non-perturbative power series method 

to calculate the energy levels of the double well potential, 

as noted in the introduction and in the beginning of this 

section. If we use the wavefunction (2.39) in equation (2.63) 

and follow the same route that led us to recurrence relation 

(2.40), we get the following recurrence relation: 
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+AT(N_4M)x 2M
+

4 (M=1,2,3,4) ( 2 . 71) 

which gives the terms in the power series for the 

wavefunction. The use of the recurrence relation (2.71) it 

similar to that of the recurrence relation (2.40). We also 

used the finite difference method to compute the eneriY 

eiaenvalues, to ai ve another check on the eiaenvalues for 

this potential. 

2.3.3 Results and discussion 

Three methods have been used for calculatina the 

eiaenvalues of the double well potential: 

2 2 2N 
V(x)=-Z X +x (2N=4,6,8,10, ..• 30) (2.72) 

Bach method has its own limited ranae of applicability in 

which it gives excellent numerical eigenvalues. The 

computations were carried out to double-precision accuracy 

(20 decimal places) on a VME system with a Fortran (77) 

proaram . We list some of our results in tables 

(2.8,2.9,2.10,2.11). We present the eiaenvalues for different 

2 values of Z , 2N and state number (n). The results shown in 

table (2.9) are yielded by power series and finite difference 

methods for (2N=4), (1~2~100) and state number (n= 0,10). 

The two methods achieve the saBle accuracy (18-fiaure), and 

the accuracy of our results is in aood al(reement with the 

accuracy results produced by other methods. The resul ts in 

table (2.9) are cOBlputed by renormalised series and power 

series methods for 2N=4, (100~Z2~200) and (O~n~100). The 
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agreement between the two methods is in general good to about 

16-figures but at low Z2values (Z2=100) and high state number 

(BO~n~100), the renormalised series faces difficulties in 

producing the eigenvalues, while the power series method is 

able to give very high accuracy. In table (2.10) we list 

ground state results for (2N=6,8,10,12), and for 2N=6,B; 

10~2~200, and for (2N=10, 12); (50~Z2~5000). The agreement 

between results is very good (20-digi ts). In the present 

work, we consider not only 2N=4, but extend the work to high 

powers (2N=6,8, 10 •.• 28,30). We list in table (2.11) the 

results for (2N=4,8,10,12, •.. 16,1B) and 

(0~~106). It is clear from our results that the renormalised 

series method achieves very hiah accuracy (20 diai ts). We 

show in table (2.12) the results for (2N=4,6,8 ... 30); 

z2=10 6and n=0,5,10. Our results for the double well potential 

have the following consequences: 

First the three methods all yielded excellent accuracy for 

hiah values of Z2, 2N=4,6,B, •• 28,30 and state number n. The 

renormalised series produce 20-diaits while the power series 

and finite different method yield around 1B-digits. 

Secondly the renormalised series work and converge very well 

(even with zero renormalised constant k=O) for high values of 

Z 2, but for low values of Z 2 the accuracy depends on the 

choice of the constant K. On the other hand, there was seen 

in some perturbation series calculations the phenomenon of 

boaus convergence of the perturbation series. We can overcome 

this situation by running the same series for different 

values of the renormalisation constant K, or by using another 
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method to compute the eigenvalues. 

Thirdly, as 2N increases the order of the series (M) must be 

increased to get converged eigenvalues. For instance at 

(2N=6, Z2= 10 6, n=100) the order of series M=9 suffices but 

for 2N=16 with the same parameters as for 2N=6 the order 

M=221 is needed. Therefore, the computation requires more 

time to obtain a converged eigenvalue. The numerical 

investigations of the double well potential shows the 

applicability of the renormalised series method is limited to 

small values of Z2; this behaviour is clear from our results 

in table (2.9). In conclusion, we remark that a large part of 

our results (as noted in beginning of this section) are not 

available so far in the literature for any value of 2N and A. 
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222 , Table (2.8). Energy elgenvalues for H-P -Z x +~x , 
first line by uslng Power serles .et bod , Second llne 
by using Finite difference .et hod. 

4 7 



-~-

Table (2.9). Energy eigenvalues for H=p2_Z2x2+x'. first line 
by using Renormalised series, Second line by using Finite 
difference method. 

8568086503131 8 
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Table (2.10) Cround-Eigenvalues of H=p2_Z2x2+x2~ 
first line; Power series method, second line; Finite 
difference method. 

7 5 
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Table (2.10 continued) 

5 3 
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Table (2.11). Energy eigenvalues for H.p2_Z2x2+x2~ 
by using renormalised ser1es method. 
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Table (2.11 continued) 
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Table (2.12). Energy elgenvalue En of 

H=p2_t08x2+ X2K 



-$-

Table (2.13). Eigenvalues of double well potential. H_p2_Z2X2+X'. 
the empty spaces mean that the corresponding elgenvalues cannot 
be reached b the renormlsled serIes method. 
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Table (2.13 continued) 
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Table (2.13 continued) 
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2.4 Expectation value calculations <x 2N ) 

2.4 .1 Introduction 

Our aim in this section to find expectation values <x 2N
) 

for the potential 

(2.73) 

However to find an expectation value such as <x 2N
) for a 

bound state, we need to have the ei.enfunction ~(x) for all 

x if we wish to apply the definition 

(2.74) 

To find ~(x) for arbitrary x and for any state number 

(n:O,1,2 .• 9,lO), is not easy. However Killin.beck [12,1979] 

has applied a very simple perturbative numerical algori thm 

for the calculation of an expectation value, based on the 

formula 

1 = Lte----+ 0 2£ [ 
2N 2N ] E(H + EX )- E(H - EX ) (2.75) 

This al.orithm demonstrate that expectation values can be 

determined by an approach based on ei.envalue calculations, 

without the explicit use of wavefunctions. The way in which 

we can calculate is as follows; we do two calculations, to 

.et two B values, with ~£X2N included in the potential 

2N 
£x 

(2.76) 

(2.77) 

where £ is a very s.all number. The value of <X
2N

) is then 
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given by 

(2.78) 

The Hellmann-Feynman and the virial theorem also provide 

relationships between the energy and the expectations values 

<x 2 >, <x4> which take the form 

[ ] 
H [ ] H+2 [ ] H+4 N[ 2 ] N-2 2E N+l <x >: 2N+4 <x >+ 2N+6 A<X >-2 N -1 <x > ( 2 . 79 ) 

We used the Hellmann-Feynman theorem to calculate the 

expectation values along with the energies for potential 

(2.73), and can calculate the coefficients in the series 

'> n 2 3 
<x~ >:A(2n,0)+A(2n,1)A+A(2n,2)A +A(2n,3)A + .. (n:l,2) (2.80) 

234 
E:E(O)+E(l)A +E(2)A +E(3)A +E(4)A......... (2.81) 

2.4.2 Results and discussion 

The energy eigenvalues and expectation values <XZN> 

(2N:2,4) of the potential V(X):X
2

+AX
4 

have been calculated 

for state number 0~~10 and for various values of 

(A:0.l,1,10,lOO) using three different methods; the 

renormalised series method, the finite difference method and 

the power series method. The energy and expectation values as 

obtained by these methods are compared with each other, the 

agreement between them being very good. To use power series 

or f ini te di fference methods to calculate the expectation 

values <~IX2NI'> (2N:2,4) of the x2", we simply calculate the 

energy twice, once for Hamiltonian H+CX
2N 

and once for 
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2" h H-£x • According to t e first order energy formula the 

difference between them equals if is 

sufficiently small. It is important to point out the effect 

of the parameter value £ in obtaining high accuracy of <x 2 ">. 
The best values of £ in this calculations have been obtained 

by numerical search. An £ value -8 £=10 atave 15 digits 

accuracy, but larger values such as £) 10 - 8 produced less 

accuracy. Our results were checked by noting that the 

independently calculated values of B, 
2 .. <x ) and <x > obeyed 

the virial theorem 

2 .. B=2<x >+31<x > (2.83) 

In tables (2.15) and (2.16) we list the energy E , E and the 
- + 

expectation values for <x 2
") (2N=2,4) for state number 0~n~10 

and for 
-3 

p.=0.1,1,10,100), with the value £=10 . This value 

seems good for high values of 1 and gives 10 digits accuracy, 

but the accuracy decrease with small values of X. The results 

presented in tables (2.15,2.16) are computed by power series 

and renormalised series methods. The agreement between them 

is very good. In table (2.17) we present the energy 

eigenvalues and the expectation values by using renormalisd 

series and power series, 
-8 with the smaller value £=10 . The 

two methods achieve the sa.e accuracy. We wish to mention 

that to produce results by usinat renormalised series with a 

high accuracy, we worked hard to achieve that, e.g by 

changing the value of the overflow parameter (2", N=I,2,3 .. ) 

and also by increasing the dimension of B(N,M) together with 

varying the renormalised constant. We checked some of our 
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results which are given in tables (2.16,2.17,2.18) by using 

the finite difference method, which gives the same accuracy 

as that achieved by the power series. Our results also agree 

with those available results reported in the literature. 
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Table (2.14) Calculations for energy and 

expectation values for potential V(X).x2+~x'. 
First line; renormalised series calculation. 
Second line; power series calculations. with 
digits before the last digit omitted; by 
applying approach 

N E(H+cxN)-E(H-cxN) 3 
<x-~=Lt • where c-10-

c~ 2c 

3 2 7 
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Table (2.14 continued) 

6 8 2 
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Table C2.15) Calculations for energy and 

expectation values for potential V(x)=x2
+).x', 

First linei Renormalised series calculatlon. 
Second llne; Power series calculatlons, with 
digits before the last digit oaittedi by 
applying approach 

ECH+&x")-ECH-£x·) -3 
2& ' where £1:10 

5 4 4 
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Table (2.15 contlnued) 

7 4 2 
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Table (2.16) Calculations for energy and expectation values 
2 , 

for potential V(x)-x +i\x • first Une by using power series, 

second line by using renormalised series .etbod with e_1C-B. 

1 2 5 
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Table (2.16 continued) 

9 4 4 
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CHAPTER THREE 

TWO, THREE AND (N=4,5,6 •. ) DIMENSIONAL PROBLEMS 

3.1 Introduction 

The aim of this chapter is to investigate numerically 

the potentials in two, three and N dimensions which are given 

as below 

( 3 • 1 ) 

2 -2 2M V(r)=pr +t(t+l)r +Ar (2M=4,6,8) ( 3 .2) 

( 3 • 3 ) 

We used three methods, the inner product method, the 

renormalised series method, and the power series method to 

calculate the eigenvalues for the potentials given above. In 

two dimensions we computed the eigenvalues for different 

values of the potential parameters (a11,a22,a12) and for many 

eigenstates (E n1 ,n2 n 1 ,n 2=O,1,2,3), over a wide range of A 

values. In three dimensions we computed the eigenvalues for 

high values of the state number n, for various values of the 

angular momentum t, perturbation parameter A, and for 

di fferent power indices (2M=4, 6,8). We also calculated the 

s-state energy eigenvalues for spherically symmetric states 

in N dimensions. This chapter is divided into two sections as 

follows. Section one is concerned with the two- dimensional 

oscillator, and contains all the necessary equations and 

recurrence relations to calculate the energy eigenvalues for 

different eigenstates. Section two is concerned wi th three 

and N (N=1,2,3,4,5,6----1000) dimensional oscillators and 
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with relations which can be used to compute the energy 

eigenstates. The abundance of studies of the one-dimensional 

anharmonic oscillator eigenvalue problem is not matched in 

the case of multidimensional problems; there are few reported 

results. We may divide the main methods used in this work to 

compute eigenvalues into two groups. Our perturbative methods 

(of inner product and hypervirial type) use a renormalisation 

parameter K, which is helpful in improving convergence. We 

also use a non-perturbative method, the power series method. 

These methods have been used effectively to calculate the 

energy eigenvalues even for high state numbers and large 

values of the perturbation parameters. 

3.2 TWO DIMENSIONAL PROBLEM 

3.2.1 Review of the two dimension oscillator problem 

A review and investigation of the two-dimensional 

perturbed oscillator is the main objective of this section. 

Many techniques have been used to obtain the energy 

eigenvalues for this two-dimensional problem. The work of 

Hioe, et. al [19,1978J involved matrix diagonalisation. They 

were able to calculate energy eigenvalues for different 

values of A and for various quantum numbers. To obtain high 

accuracy by their methods involves dealing with large 

matrices. Ari and Demiralp [20,1985] computed the eigenvalues 

of a two-dimensional oscillator by using perturbation theory 

and Pade approximants. J Killingbeck and M.N.Jones [21,1986] 

used the inner product method to calculate accurate energies 

for six states, E o ,O,E 1 ,1,E O,2,E 2 ,O' E 1 ,and 
,3 

for 
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In this section we present some extended numerical 

calculations using the inner product technique for a greater 

range of values of the perturbation constant O.05~A~5000, and 

for different values of the potential parameters 

The inner product method to calculate 

eigenvalues has been investigated by Killingbeck, et. al 

[11,1985] to compute energy eigenvalues for one-dimensional 

problems. We also used renormalised series and power series 

methods, for the special case to calculate the 

energy eigenvalues for the perturbed oscillator potential in 

two dimensions: 

( 3 • 4 ) 

The potential is non-separable, and the energy perturbation 

series is expected to be divergent, so we start by 

introducing a renormalisation parameter, and write the 

potential in the form 

2 [2 2] [ 2 2] V(x,y)=~ x +y +X V(x,y)-~(x +y ) ( 3 .5) 

where 

(3.6) 

The use of parameter ~ is helpful in improving convergence 

in this techniques and ~ plays the same role as the 

renormalisation constant K used for the one-dimensional 

oscillator. The Schrodinger equation for the potential (3.5) 

can be written 
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(3.7) 

The energy eigenvalues of the unperturbed oscillator is given 

by 

(3.8) 

In each state the energy eigenvalues depend on a pair of 

quantum numbers (n
1

,n
2

). 

3.2.2 The recurrence relation for the Inner product 

To find the recurrence relations which allow us to 

calculate the eigenvalues we use the function: 

(3.9) 

where the P1 and Pz are parity indices, with values 0 for 

even parity and 1 for odd parity. The inner products 

play a key role in this technique. The next step is to work 

out the quantity 

(3.11) 

and then to substitute the perturbation expansions 

A(M,N)=~ A(M,N,K)X
K 

(3.12) 

E=? E(K)X
K 

(3.13) 

into the A(M,N) recurrence relation. The result is the new 

recurrence relation 
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~ E(I)A(M,K,K-I)=a A(M+2,N,K-l)+a A(M,N+2,K-l) 
~ 11 22 

+a A(M+l,N+l,K-1)-~A(M+1,N,K-l) 
12 

(3.14) 

In writing the relation (3.14) we have moved one term 

B(O)A(MrN,K) from the sum over I to the right of the 

equation, and have expressed the unperturbed energy in the 

form 

(3.15) 

The parity indices for x and y are P1 and P
2 

(0 or 1). The x 

and y state numbers S, and S2 (0,1,2), specify which 

Particular state is being treated. When P =P , we can further 
1 2 

specify an x-y interchange symaetry index P3 (0 or 1) such 

that 

A(N,M,K)=(-)P 3 A(M,N,K) (3.16) 

The initial condition imposed on the A(N,M,K) if P =P is 
1 2 

(3.17) 

and the recurrence relation (3.14) is then used as follows. 

If the energy sum up to E(Q)AQ 
is required, then the indices 

have the ranges set out below if P
1
=P

2
, with the convention 

S1~ S2 on the state labels): 

K=O, 1 t 2 t •••••••• Q, 
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(fixed K) N=0,1,2, ........ ,8 +2Q-2K, 
2 

(fixed K, N) M=O,l, .•.••. ,N-P3' 

The indices are scanned in the order given above and the 

relation (3.17) is used to work out A(M,N,K) in term of lower 

order elements which are already known. Then we can get 

A(N,M,K) from the symmetry relation (3.17). E(K) is found 

from the equation for the special case M=8 , N =8 
1 2 

3.2.3 The recurrence relation for the renormalised series 

approach 

The renormalised series method was seen to work very 

well in previous chapters and produced hiahly accurate 

results for the problems investigated in chapter one. As we 

indicated in section (3.1) the renormalised series can be 

used to compute the energy eigenvalues for equation (3.7) in 

some cases. When the relationship a =a = a
22

=1 holds, the 
12 11 

equation (3.7) has a circular symmetry. The energy levels are 

then most appropriately characterized by the quantum numbers 

(nr,m) rather than (n
" 

n 2 ). Letting x=rcos8, y=rsin8, such 

2 2 2 that r =x + y , the radial part of the eigenvalue equation 

(3.7) is 

[!(-

If we set 

we get 

- 1 r 

1 

If(r)=[ r ]-2 "'(r) 

(3.18) 

(3.19) 

(3.20) 
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[ 
2 1] -2 2 4 V

m
= m - 4 r +r +2Ar ( 3 . 21) 

[ 
2 1] -2 ( ) 2 4 • m - 4 r + p-AK r +2Ar ,p=1+AK 

If we apply the Hypervirial and Hellmann-Feynman theorems to 

the potential given by (3.21), we get the following 

recurrence relation after some algebra 

+ (N + 2) [#lA ( N + 2 , M ) - KB ( N + 2 , M -1 ) ] + (2 N + 6 ) B ( N , M -1 ) (3.22) 

(M+1)E(M+l)=B(4,M)-KA(2,M) (3.23) 

From the recurrence relations (3.22) and (3.23), we can find 

the energy coefficients with the help of the E(O) value and 

the condition B(0,0)=1. The unperturbed energy is 

E (0) = [2n r + I m I + 1] fii 
p=1+AK 

2n +Im\=n 
r 

n =0, 1 ,2, 3 , ••••••• 
r 

m = 0,~1,~2, .•••.•• 

(3.24) 

where n and m are the orbital quantum number and the magnetic 
r 

quantum number. The expression (2n +lml+1) 
r 

show that 

ddegeneracy exists between energy levels to the degree that 

all allowable combinations of n and m consistent wi th the 
r 

same values of the m and n yield the same energy levels. For 
r 

example E 1and Eo 2 have the same quantum numbers (n =0,m=2) 
1, , r 

and have the same perturbed energy eigenvalues. 
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3.2.4 The Power series method 

We used the power series method to compute the energy 

eigenvalues in two-dimensions for the case (a =a = a~ =1). 
12 11 ,,2 

We start from the Schrodinger equation (3.21). The regular 

solution to equation ( 3 . 21) will behave as 
,f, 

r near the 

origin, so we postUlate ~(r) to be of the form: 

(3.25) 

and use the notation 

J. T(N)=J. A(N)r" (3.26) 

Inserting these relations (3.25) and (3.26) into equation 

(3.20) yields the recurrence relation 

[ 2] 4 6 + ~-p r T(N-2)+Xr T(N-4) (3.27) 

where 

The calculation starts at N:O, with T(0):1, and with all 

lower coefficient zero. 
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3.2.5 Results and discussion 

In this section we investigate and discuss the results 

of the numerical calculations for the two-dimensional 

systems. It is clear from our listed results in tables 

(3.1-3.4) that the accuracy can be expected to decrease 

rapidly as increases. Let us now turn to the 

renormalisation constant (K) which is the heart of this 

calculation for perturbative methods. We can see from the 

results that the accuracy depends on the value of the 

renormalised constant (K) • One continues to chanae the 

renormalised constant until energy eiaenvalues of the best 

required accuracy are obtained. The values of energy in table 

(3.1) are for the case a12=a11=a22=1; we show some energies 

for states (n ,n =0,1,2,3) and for 0.05SXS5000. The three 
1 2 

approaches work very well for two-dimensional oscillator, and 

the results obtained by these methods are in good agreement 

with each other. We observe that the three approaches yield a 

high number of accurate digits (14) for the eigenvalues at 

low values of X. For higher values of the perturbation 

constant A the power series method gives more digits than the 

inner product method with renormalised series. 

One main di fference between the two perturbative 

techniques lies in the values of the renormalised constant. 

For the hypervirial approach the values of (K) increases as 

the perturbation constant increase, while for the inner 

product method the values of (K) decrease as the perturbation 

constant increases. Also the hypervirial method can only work 

for the case of a symmetric potential a =a =a =1 in which 
11 22 12 
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the potential reduces to a one dimensional potential. The 

inner product method deals with more general parameter 

values, but still requires a =a 
11 22' 

since the equations used 

exploit this symmetry to reduce computation. To get the 

energy eigenvalues of Killingbeck and Jones [21,1980] it is 
? 

necessary to multiple our values by 2, since they used -v~ in 

their Hamiltonian. All numerical calculations were done on 

the leL (VME) system using double precision ari thmetic. A 

good rate of convergence was achieved for all techniques and 

was relatively insensitive to the choice of the state number. 

Summarising our results we can say the following: 

1. We succeeded in finding the energy eigenvalues for states 

B 
0,2 

B 
2,0 

with 

excellent accuracy in two-dimension even for high values of A 

(O.05~~5000) and for different values of the potential 

parameters (a =1,-1,0); 
12 

The set of tables 

(3.1,3.2,3.3,3.4) cover a wide range values of (A). 

2. We have found that the three methods work very well to 

determine the energy eigenvalues, and give high accuracy. Our 

resul ts are in good agreement with other reported resul ts 

given by Killingbeck [21,1986], Hioe, et. al [22,1978], Ari 

and Demiralp [20,1985]. 

3. We avoid the phenomenon of bogus convergence by computing 

the energy eigenvalues for different values of the 

renormalisation constant K. We believe that some of our 

results .ay be improved in accuracy with a better choice of 

K. 
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4. We calculated the energy eigenvalues for (68) states for 

the symmetric potential 2 
V(r)=(m - by using the 

power series method for high quantum numbers (O~~400) and 

(1~n~600). This approach produces (20) digits and the results 

are presented in table (3.4). We wish to note that the 

results yielded by the inner product were improved by using 

Aitken extrapolation; it seem that extrapolation improves the 

convergence of the perturbation series and gives extra 

digits. 
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Table (3.1) Energy elgenstates E for a aa -I upper 
n1.na 11 22 

line; power serles _thod. second Une; lnner product. 
lower llne renormallsed serles _thod. the numbers In the 
bracket corresponding to (n • I-P. 

r 

,\ IEoo' a12=I.l0. 0) IN lit iE
11

• a
1a

=l. lOt ZJ IN lit 
10.05 IIJ 14 ... I~. 'l!:)'llSS055S159 

1.0842986056346 22 15 3.4541660556159 19 14 
6 27 20 9 26 20 

10.1 11. 150 It:U:~ 13 • 11 , fltiU 
1. 1501881250606 31 14 3.7723225907160 24 13 

6 55 25 0 35 20 
10 . 3 11. L' 14. 611::Jcsc;u14U~~K 

1. 3396594184964 36 10 4.6179820140228 36 12 
6 79 25 8 74 15 

10.5 11. 41'" ;..> ... rl4!'iQ~14 15. 1953136477518 
1.4760250459814 35 8 5.1953136477518 40 10 

8 152 40 8 62 17 
10.7 Il. ~ __ . .JfU4 15 . s!'S:m4!'i74 

1.5866048866704 45 8 5.6530457466566 39 9 
7 169 40 5 74 25 

1 11. 7241R4 16. 21~t:nou, 0""'0;:;0 

1. 7241840692602 50 8 6.2138150782789 39 8 
2 177 30 9 71 30 

12 12. llti' [(!of~~14B148 1'7. O:>I:S f!oltiH:i!'.l!ol~41 

2.0603939148148 49 6 7.5587968359841 44 7 
8 89 60 8 55 40 

13 12 . .:sUO I 18 . 'D,1'f!jD5~D 

2.305704358255 44 5 8.5262241756526 44 6 
2 90 80 5 54 50 

14 12 .!'in4 19 . .:suoo741 
2.504699320382 50 5 9.3055741968355 48 5.5 

0 93 100 3 52 60 
15 12. 674676409 f u.:sc; 19 . rJltHUO!:)o 

2.674676409703 44 4 9.968450187005 42 5 
9 91 120 0 61 80 

10 ~. 3012105'fU~l:)tSf .12. 3S6B155614U~ 
3.30121051096 35 3 12.396815561409 46 4 

0 66 140 0 50 100 
50 5.5U', L":lQn4 !2U. HH4~'{2n18B'{ 

5.51179896 31 2 20. 884372171 30 2 
64 37 220 2 66 500 

100 0.~11 11066 20. "-:-'rl"-:-': 

6.9118993 21 1.2 26.23623988 27 1.8 
3 167 2000 8 82 1000 

500 11. I 1564 :44.7167170168'(4 
11.756694 22 0.75 44.71671702 20 0.8 

5 154 6000 0 70 3000 
[1000 14. f~f~~~:H 120!:)3 156. I I rl: i~4!jH 

14.797338 16 0.5 56.303967 15 0.6 
9 135 8000 76 75 5000 

15000 12!:). 2141 :;';?~74051 190. 2102BI 
25.2740 15 0.4 96.21028 15 0.4 

2 51 10000 80 38 8000 
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Table (3.1 continued) 

A :1;02' -12-1 ,.,1.0J • ~ Eao '-12-1 ,(0.2J • I&. 

10.05 ;3. ::S1tfts~~:H 3.454: i101l 
3.5198537922332 29 20 3.4541660556159 19 14 

2 29 20 9 21 16 
10 . 1 .~. 87664ltn~1l 3. " IfltsU 

3.8766416198911 38 17 3.7723225907160 24 13 
139 18 0 32 18 

10.3 4.8: ~1::; 4.61"ltftsot;U14n77N 
4.810525538541 37 12 4.6179820140228 36 12 

1 68 13 8 76 16 
10 . 5 ::;.441Z1'11 .5. 1953136477518 

5.44121n88409 37 9 5. 19531364n518 40 10 
8 66 15 8 58 16 

10.7 5. Ill~ 5.R..~R7· 

5.93888565342 35 8 5.6530457466566 39 9 
2 52 18 6 67 24 

11 6. :6. Z1;381::;0·ftsot; ftstf 
6.54656835563 39 7.5 6.2138150782789 39 8 

3 50 20 8 56 25 
12 7. 9981btfUlot;u",:> ., • ::l:)ts f II 

7.9981590720 37 6 7.5587968359841 '" 7 
01 47 30 4 42 30 

1;3 ~. i1380 8. ~741. , ____ 

9.0389864961 36 5 8.5262241756526 '" 6 
1 42 35 5 36 35 

!4 ~. 8761-{4 If B.~/41 

9.8761746038 35 4.5 9.3055741968355 46 5 
8 39 40 3 33 40 

5 10.~tsf~D' il 9. ~4 ... rllb,uu:>o 
10.587567685 29 4 9.9684501870056 43 5 

53 47 60 0 45 60 
10 113. I~UUl'RfI~4~ 11Z.396815561409 

13.190071603 33 3.5 12.39681556140 42 4 
33 60 120 0 52 110 

50 IZZ. ,.titi~1141'HtfU~ ZO.884;37Z171987 
22.2669047 32 2.5 20.884372171 30 2 

678 31 200 19 33 220 
100 I·:n· i15Z4Z 1Z6· 

27.9845626 27 1.5 26.23623988 ?:l 1.8 
614 35 350 829 35 350 

500 147. 7187?4: 144.716717016874 
47.718724 22 0.9 44.71671702 20 0.8 

490 33 1000 16 29 1000 
1000 16U. 14~<1 156. , 

60.08928 18 O.B 66.303967 15 0.6 
821 34 2000 766 29 1800 

5000 110Z. OtststH c:ts 1128 IBB.Zll 
102.6888 11 0.3 96.21028 15 0.4 

873 28 5000 806 24 4500 
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Table (3.1 Continued) 

A 1!;13· a lZ-1• l0,4) IN IK 1t:
31

,a12-1. (1,2) IN K 

10.05 15 . 14' IIa 15.~UI 110 

6.0422359263878 6.2076280889676 ZT 20 
8 25 20 6 25 20 

10.1 15. ~'Z13 ' I 16. l:HU lo~ltiti40T' 
6.7213125523637 29 18 6.8707691664077 30 16 

7 31 20 7 37 20 
10 . 3 IB.4!"i 18. 110::»11 

8.4545696693009 43 16 8.885463091551 32 12 
9 78 18 11 93 18 

10.5 :9.6087617479444 110. 145814B53"bts 
9.6087617479444 46 14 10.14691485376 31 10 

4 66 20 68 82 24 
10.7 ,10.51481 Ill. 1:<1 141 

10.514815636683 47 13 11.13293888904 32 9 
3 56 22 40 58 22 

11 11. ti175190', fi!.I!.'d 112. :.J7C1~M;:~ ~1680 
11.617519077229 48 12 12.32954622189 31 8 

9 49 25 90 59 26 
,2 14.24172528910" 115. 15', 

14.241725289107 41 8 15.1675936648 29 6 
7 37 30 96 41 30 

3 It:;. 1 'R7474R~18D In. ISU:lo17H404I 
16.118242454196 43 7 17.1918517640 30 5.5 

6 34 35 03 47 40 
4 17. 5257123144B'd I1B.Bll Il8322 

17.625712314489 37 5.5 18.8160209193 31 5 
9 37 45 32 52 60 

5 IB.~u;:),1J1.25S40 120.1940714 ___ -" 
18.905701125845 37 5 20.194071485 29 4.5 

5 44 60 506 59 80 
10 23. ~R";f7QQ, : ( ( .::u;:) 125. 774R41 , 

23.583299477205 37 4 25.224641863 31 4 
5 36 80 388 48 100 

50 39. B'(1~~4B26155 142.7134911 
39.8715248261 30 2.2 42.713491135 31 2.2 

15 37 250 50 44 300 
100 150. 1 ?4?4~R 11725 153. 71: 1 I 

50.124243611 25 1.6 53.71355298 24 1.6 
172 33 350 890 37 380 

500 IS::». 4n4RR 91.6531 
85.4988891 19 0.9 91.653169 19 0.9 

1404 29 1000 9054 31 1050 
1000 1101. 0 ( "'~11 115. H~~18 

107.670352 18 0.8 115.42830 17 0.8 
206 30 2000 0289 33 2000 

15000 1184.01504122412 : 197 . .::aa I u,,;:)oa (1 
184.0150 15 0.5 197.288 10 0.4 

0412 32 7000 8703 32 7000 
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Table (3.1 Continued) 

A I£Ol,a12-I,IU,1J IN 11: £10,a12-1,IU.1J I" 1& 
[0.05 I~· 11Rn~41 -- ~. _____ JIRfI:<lR~l 

2.2388001803841 23 14 2.2388001803841 23 14 
1 26 20 1 26 20 

10.1 1~·414~ ;f~OI I~. 41434[ ;, "CO, 

2.4143403273687 31 14 2.4143403273687 31 14 
7 39 18 7 39 18 

10.3 I~· "v;:, I~· - "v::. 
2.8959049500709 43 13 2.8959049500709 43 13 

9 68 22 9 68 22 
10.5 13.Z314 119 13.2314 118 

3.2314529999319 40 10 3.2314529999319 40 10 
1 102 25 1 102 25 

10.7 13.499"1 11 13 . 48874 01 
3. 49974S8468601 38 8 3.4997488466601 38 8 

0 96 32 0 96 32 
1 13 . ~ 13 . 

3. 8303238562966 44 8 3.8303238562966 44 8 
6 107 45 6 107 45 

12 14. R if 14 . R7.~R4 if 
4.6286453903987 42 6 4.6286453903987 42 6 

9 84 55 9 84 55 
[3 15. :oI'!i116 1::1· .25115 

5.2058549925116 45 5.5 5.2058549925116 45 5.5 
1 72 65 1 72 65 

14 15.5-/ZOl394'fDUfD 15. 57~01384'fDVfD 
5.6720139476076 46 5 5.6720139476076 46 5 

6 62 70 6 62 70 
15 15.05S11~UA4 14 Its. 05S112:;1R~144C4 

6.0691123694494 44 4.5 6.0691123694494 44 4.5 
4 58 78 4 58 78 

-lO 7. 52704~ns~113 7. 5270433'f cs~ 113 

7.52704331821 44 3.8 7.52704337821 44 3.8 
2 52 110 2 52 110 

50 11~. 1/167~ 11~. 11t:H~o 

12.639925716 30 2 12.639925716 30 2 
67 33 220 67 33 220 

flOO 115. 868S714-/~15 115. CSDCS::' fl4-'~ts It; 
15.86897147 27 1.5 15.86897147 27 1.5 

726 31 300 726 31 300 
[SOO 127. 0~74Zf~f to::. 127. U~(4~'fCS::'f fO~ 

27.027427 21 0.8 27.027427 21 0.8 
7897 30 860 7897 30 860 

1000 134.02518SS8UH5 134. 0~518SS8U:fft) 
34.026190 18 0.65 34.026190 18 0.65 

01 39 2600 01 39 2600 
15000 IOH.1 LJ(~1~4 158. 1 L~~l~'1 

58.13369 14 0.3 58.13369 14 0.3 
904 27 4500 904 27 4500 
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Table (3.2). Energy elgenstates E ~or a -a -0. 
D1.D2 11 22 

by using inner product ethod. the letters In the 
brackets corresponding to even or odd parity. 
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Table (3.2 Continued) 
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Table (3.3). Energy elgenstates E 1 2 for a -a -1, 
D ,D 11 22 

by uslngj hmer product aetbod. 

A Eoo a =-1 
• 12 

IN 11: El1 a 11:-1 
• al N K 

"0.05 1.n4 !;,~ 144 10 3. , 11'1:;' IDD I la 46 12 
0.1 1. 08 7R7-.r1l7Q-'(~" l'!'! 9.5 13. IIo1Z70 i49 10 
0.3 1. U:J4t)93'fua 150 7 13.542''-'8 148 9 
0.5 I.Z8U8133 14Z 6 :3. 77,!578 10Z 6.5 
"0.7 1. 'I 149 5.5 3. 146 6 
1 1.443775 146 l~ 4.?.!Q5 39 5 
2 1. D It:tlD 147 14.5 4.8231 4l! 4.0 
3 1. 84417 l46 3.0 o.ZBl 48 3.8 
4 1. ~w4Rr 148 3.2 5.659 ~8 3.5 
5 2.1()~ 149 3 '5.985 44 13 
10 2.5577 14t.i Z.5 ;", ZO" 46 Z.5 
50 4.185 131 1.4 il1.6 28 1.5 
100 5.Z2 ~. 1.3 114.5 ,22 1 
500 8.80 IZZ 0.65 
1000 11.12 l?l. 0.4 
5UUU IB.9 116 U.2 

i\ E02 a =-1 , 12 IN I: 1:
20 

a =-1 
• 12 

N K 

0.U5 3.z6198472
' 146 12 13. 3540711 llll i40 12 

0.1 3.441076?4~Rn lilt) 10 13. 61Z015741 :4;.;o~H 142 111 
0.3_ 13.905Z148 134 B i4.3H4414428 47 9 
10.5 14.ZHSS 33 7 ~·avan:t~ 3Z 8 
rO.7 14.4t)~ Z4 16.5 5.Z01864'f 2J "I 

1 4. Till 133 6 0.~!49 30 6 
2 5.51Z 134 5 16. ~ P 
3 6.055 ~. 4 "I. '/06011 39 4 
4 6.498 135 4 18.39125"1 ,43 :3.5 
5 6.878 @! 3.5 18. tl/:;'U;~ :2S 13.5 
10 8.29 134 13._? 111·12060 Z"I :3 

150 113.4 jZO IZ :18.65251 3U 2 
i\ 1:13 a =-1 

• 12 
N 11: 1:31 a =-1 

• 12 
N K 

10.UO 15. 57~ .4?~IJ~f"J13 46 114 5.3' "l.ll""QRrlQ~7Z 3~ 12 
U.l 15. tI: ?R~1 14" 11Z 15.51 l"!o!\;.;oH:4!\ 3~ 10 
0,3 7.113043 133 14 16.0441U .31 i9.5 
0.5 7.894161 ~ 10 16. 4mnR IZB 7 

10·Z 18.5194"'1 ~ 7 16.705 1'1 16 
i 1 19. ZSll'~ 39 15.5 7.075 ZI 15.5 

12 11. 16038 41 15 7.996 31 5 
13 lZ.51bS ,30 15 8.686 3U 4.6 

14 113.6127 '2H 14.5 9.?~ 28 4.4 

15 11~. 5481 .~ [4 9.7,! 3U 4 

110 117. stnn ~ 13 11.6 11 3 
150 130. mu 124 12 J,8.4 25 2 
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2 1 -2 , 
Table (3.4) Values of E for V.- (m - i)r +2r. n-2nr +m+1. 
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3.3 THREE AND N DIMENSIONAL PROBLEMS 

3.3.1 Introduction 

J.Killingbeck [22,1985] has used the Hill determinant 

method to calculate the energy eigenvalues for a 

three-dimensional oscillator and also investigated all 

spherically symmetric states in any dimension (N:1,2,3 

•••• 320). He computed the energy eigenvalues and expectation 

2 . 1 .-1 4 d -1 4 values such as <r > for potent1a s -\. r an N r and gave 

resul ts of high accuracy. We extended our numerical 

calculations for higher powers of the perturbation index 

(2N:4,6,8), and for a wide range of values of angular 

momentum, perturbation parameter, and state number. We used 

two methods to produce our results for this problem, the 

renormalised series method and the power series method. The 

radial part of the three-dimensional Schr6dinger equation can 

be written conventionally in the form 

(3.28) 

where (t) is the angular momentum, and the energies of 

unperturbed levels are 

(3.29) 

where n is the principal quantum number, which can be 

expressed as 

(3.30) 

Here n is called the radial quantum number. The energy values 
r 

include zero-point energy 3 corresponding to the three 

degrees of freedom. n is seen to be even or odd according as 
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(t) is even or odd. The main difference between one and three 

dimensional perturbations lies in the presence of the angular 

momentum. We have presented two methods to compute energy 

eigenvalues. The first approach uses a hypervirial scheme 

based on the formulation of recurrence relations t and the 

second approach uses a power series, based on relations 

derived by using wavefunctions. 

3.3.2 Renormalised series to calculate energy eigenvalues for 

2 2 -2 2N H:P +~r + t(t+l)r +Ar (2N:4,6,8) 

We used renormalised series to calculate the energy 

eigenvalues for the potential 

2 -2 2N 
V(r):~ +t(t+l)r +Ar (2N:4,6,8) 

Using recurrence relations derived from the hypervirial and 

Hellmann-Feynman theorems which have been used by 

Killingbeck, with the potential terms 

v :t(t+l) 
-2 

V :A 
4 

( 3 . 31) 

(3.32) 

(3.33) 

we obtain the following recurrence relations after some 

algebra 

(2N+2)~ E(J)A(N,M-J):N[2l.(l.+1)- ~(N2-1)JA(N-2'M) 

+ ( 2 N + 4) [1lA ( N + 2 , M ) - KA ( N + 2 , M - 1 ) ] 

+ [2N+2n+2]A(N+2n,M-l) 

(M+l)E(M+l):A(2n,M)-KA(2,M) (2n:4,6,8) 

(3.34) 

(3.35) 
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The recurrence relations (3.34) and (3.35) suffice to 

compute the coefficients of energy E(M) and A(N,M) and this 

procedure allows us to calculate the expectation values of 

powers (rH) without the explicit use of eigenfunctions. The 

input for our calculations are the renormalised constant K, 

the angular momentum ~ and the state number n. The values of 

~=l+AK, E(O)=(4n+2~+3)~, are worked out by the program. The 

renormalised series approach seems to give results of 

excellent accuracy, whereas at K=O the perturbation series 

diverge and do not give satisfactory numerical results. 

3.3.3 The power series approach 

We used the power series method to compute the energy 

eigenvalues for the three-dimensional perturbed oscillator , 

and this method works very well, producing resul ts of high 

accuracy, even for large perturbation parameters. When an 

angular spherical harmonic factor Yt has been factored out of 

the wavefunction for a three-dimensional problem, the 

Schrodinger equation can be expressed as 

-D - 2r D + ~(~+l)r + r + V(r) '(r)=E'(r) 
[ 

2 -1 g g -2 2 ] 

We take the radial potential V(r) to have the form 

2m V(r)=:A.r 2m=4,6 

The regular solution to equation (3.37) will behave 

(3.36) 

(3.37) 

~ 
as r 

near the origin. The eigenfunction '(r) is then given by the 

general form 

[ 
1 21 ~ H+~ 

'(r)=Exp -;iJr J ~ A(N)r (3.38) 
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We use the notation 

T(N)=A(N)r" (3.39) 

Inserting the relations (3.38) and (3.39) into equation 

(3.36) yields the recurrence relation 

+ p-~ r T(N-2)+AT(N-2M)r [ 2] 4 2" + 2 (2M=4,6,8) (3.40) 

The calculation starts at N=O, wi th T( 0) = 1, and all lower 

coefficient zero. 

3.3.4 N dimensional calculations. 

J.Killingbeck has applied the Hill determinant to 

N-dimensional anharmonic oscillators. He calculated energy 

eigenvalues and expectation values of type <rH>. Killingbeck 

[22,1985] has expressed the Schrodinger equation in N 

dimensions as: 

( 3 .41 ) 

where 

We used the renormalised series approach to calculate the 

energy eigenvalues. If we apply the hypervirial and 

Hellmann-Feynman theorem to the potential given by equation 

(3.3) we get the following recurrence relations. 

( 2 I + 2 ) ~ E ( J ) A ( I , M- J ) = i [ (N + 2,(,-3 ) (2 N + 2,(,- 1 ) - (I 2 - 1) ] A ( 1-2 , M ) 

( 2 I + 4) [#lA ( 1+2 , M ) - KA ( I + 2 , M - 1 ) ] 
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+ (21+6 )A( 1+4 ,M-1) (3.42 ) 

(M+1)E(M+1)=A(4,M)-KA(2,M) ( 3 . 43 ) 

Here N is number of dimensions. The recurrence relations 

(3.34) and (3.35) for three dimensions reduce to the 

recurrence relations (3.42) and (3.43), if we insert 

~=(N+2~-3)/2. We also used the power series method to 

calculate energy eigenvalues for the N-dimensional problem. 

If we insert ,f,:(N+2.t-3)/2 in relation (3.27) we obtain the 

relation corresponding to N dimensions. 

3.3.5 Results and discussion 

We have used the techniques described in this section, 

the renormalised series and power series methods, to compute 

the energy eigenvalues. Our results are given in tables 

(3.5,3.6,3.7, 3.8,3.9). Our energy eigenvalues cover a large 

range of values of angular momentum, perturbation constant A 

and state number n. We have performed various numerical 

checks on the obtained energy eigenvalues. For example we did 

some calculations at zero value of angular momentum and at ({ 

=-1). At these values the problem reduces to a one 

dimensional problem. Also the power series approach has been 

used as another approach to compute the energy eigenvalue, 

and the agreement between the results is very good. We list 

some results in table (3.5) for different values of angular 

momentum, and state number. We note particularly that in the 

case of hiJth values of angular momentum the renormalised 

series approach works well. We notice from table (3.5) that 

for (X=100, .f..::l00, n=20) the accuracy of this approach 
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achieves 12 significant figures. To our knowledge such a high 

degree of precision for the potentials considered is 

unprecedented. We also wish to draw attention to the fact 

that the renormalised series approach applies equally well to 

any value of (X, t, n). Our calculations in three dimens ions 

may be regarded as a guide to future numerical calculations. 

As far we know, we are the first to investigate numerically 

the energy eigenvalues for a wide range of potential 

parameters in three dimensions. A sample of energy 

eigenvalues for potentials in three dimensions computed by 

using renormalised series and power series methods are 

displayed in table (3.6) for different values of angular 

momentum, and state number n. These methods lead to very 

accurate results. We also calculated the energy eigenvalues 

for higher power of the perturbation index (2N=6, 8). The 

renormalised series method was used to compute the energy 

eigenvalues for (2N=6), n,t:0,1,2,3,4 and X=0.1. This method 

achieved 6-digits accuracy; the renormalised series method 

has limited capability to deal with high powers <r 2N
) (2N=8) 

and we can only manage to calculate a few energy eigenvalues 

with a low accuracy. In this respect we face the same 

si tuation as for the one-dimensional oscillator in deal ing 

wi th high powers of perturbation. However the power series 

method works excellently and gives resul ts wi th 16 digi ts 

accuracy. We also computed the energy eigenvalues for 

s-states in (N:1, 2,3, •• 1000) dimensions for potentials 

4 -1 4 V(r)=Nr,N r. The renormalised series work very well for 

calculating the energy eigenvalues even for higher values of 
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N. The energy eigenvalues are com pared wi th corresponding 

ones obtain by the power series method and listed in table 

(3.8). The agreement of our results with those of Killingbeck 

is good. 
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2 2 -2 4 Table (3.5). Eigenvalues of H=P +r +t(t+l)r +Ar ,by using 

renormalised series method, the two numbers in the bracket 
correspond to Quantum number (n) and Angular momentum (t) 
respectively. 
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Table (3.5 continued) 
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Table (3.5 continued) 
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Table (3.5 continued) 
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Table (3.5 continued) 
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Table (3.5 continued) 
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Table (3.5 continued) 
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Table (3.6). Ei ge nva 1 ues of H-p2+r 2+t (t+l)r-2+Ar'. 
First line results yielded by renormalised series 
method; Second line resul ta yielded by power series 
method. 

634781 
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Table (3.7). Eigenvalues of H=p2+ r 2 +t(t+l)r -2+~r2N, 
at ~-o.I. First line results yielded by power series, 
second line results yielded by renormalised series 
method, the numbers in the brackets correspond to 
(K, N). The empty spaces mean that the corresponding 
eigenvalues cannot be reached by the renormalised 
series approach. 
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Table (3.8) Lowest s state energy in N dimensions for 
-1 , , 

potentials (V=N r, V=Nr >, first line renormalised series, 
second line power series method. 

1284135 5 
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2 2 1 -2 " Table (3.9). Eigenvalues of H=P +r + -(N+2l-3)(N+2l-1)r +Ar • 

" in N dimensions. First line results yielded by power series 
method, Second line, results yielded by renormalised series 
method. 

700 

700 

700 

450 

700 

600 

1500 

600 

B 46 700 
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CHAPTER FOUR 

4. NON-POLYNOMIAL POTENTIALS IN ONE AND THREE DIMENSIONS 

4.1 Introduction. 

This chapter has been devoted to the computation of the 

eigenvalues in one and three-dimensional cases by using 

perturbative and nonperturbative methods for the following 

perturbed Hamiltonians 

H= - (2N=2,4,6 ••. 18,20) 

1 d 2 2 
H= -- - + ~ + 

2 dx2 2 

2" gx 
2 (l+gax ) 

(2N=4,6) 

? 2 2N 
H= 

1 d W x gx 
(2N=4,6) -- - + 2- ., 

2 dx2 ( l+gax"') 

.., 2 

H= 
d'" t(.t+ 1) r 2 + Ar 

- -+ 
2 2 

dr (l+gr ) 

1 d 2 
t t -2 

2 4 
E-+ gr 

H= -"2 -+ 2( +1)r + 
2 2 .., 

dr (t+gar W

, 

.., 2 4 
1 d'" t -2 r gr 

H= --2 -.., + i( t+ 1) r + -2 - 2 

dr w (l+gar ) 

( 4 • 1 ) 

( 4 • 2 ) 

( 4 . 3 ) 

( 4 .4) 

( 4 . 5 ) 

( 4 .6) 

We drop quantities such as h,m and e from the Hamiltonians in 

the equations above, in order to present the equations which 

have been used in simple forms. However, it is obvious that 

for certain limi ting parameter values (e. g A~O, g~ or 

g~ ) the differential equations corresponding to (4.1,4.2, 



-107-

4.3,4.4,4.5,4.6) behave like the differential equations of 

the harmonic oscillator. 

There are a variety of techniques which have been 

employed to calculate and to investigate these eigenvalue 

problems. Most of the calculations has been devoted to the 

Hamiltonian given by (4.1) for (2N=2). However as far as we 

know the other potentials have not been so much studied, 

except the potentials given by (4.2,4.3) for (2N=4), as we 

will see in later sections. We have been unable to find a 

reference in the literature dealing with the other types of 

potentials. We have used four methods to treat the eigenvalue 

problem for even and odd parity for different values of ~ and 

g: 

1 • The Renormalised series method. 

2. The Power series method. 

3. The Finite difference method. 

4. The Pade approximant method. 

Also we tested some of our results by running the code which 

was used by V.Fack and Vanden Berghe [29,1985]. The agreement 

between our results using a finite difference method and the 

results using their code depends on the number of terms which 

are taken into account in the expansion of the kinetic energy 

operator: 

( 4 . 7 ) 

The basic idea of the Fack and Vanden Berghe [29,1985] method 

is to use a finite difference method with matrix 

diagonalisation; this approach is more complicated than our 
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finite difference method. Some of our reported results have 

not been previously available in the literature, so we used 

more than one method in order to check the accuracy of our 

resul ts. In the present calculation we have been able to 

consider the effect of the extension of the range of values 

of the index (2N=2,4,6,8, ... 20) on our eigenvalue 

calculations. It should be useful to have such calculations 

to get an idea of the numerical limits of applicability of 

our methods for investigation of these types of potentials, 

and to prepare the way for further study of these potentials 

in the future. The perturbation series only converj(es for 

some appropriate ranges of A and g. Precautions must be taken 

not to exceed critical values of X and g. Some of our methods 

depend on the ranges which are used for A and g if they are 

to give eigenvalue results of high accuracy. 

2N 2 4.2 Introductory remarks concerning potential Xx l(l+gx) 

The purpose of this section is to investigate the 

Schrodinger equation. 

with the potential 

2 
V(x)=x + 

AX2N 

2 
(l+gx ) 

( 4 .8) 

(2N=2,4,6,8,10 ••• 18,20) ( 4 .9) 

This potential with 2N=2, has recently been studied by many 

authors usinj( different techniques. Mitra [23,1978] 

calculated the ground state and first two exci ted states 

using the Ritz variational method in combination with a 

Oi vens-Householder matrix eigenvalue algori thm. Oalicia and 

Killingbeck [24,1979] used the finite difference method to 
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compute the energy eigenvalues for the three lowest even 

parity states. Kaushal [25,1970] has obtained the asymptotic 

expansions for the eigenenergies and eigenfunctions for the 
? 

potential by expanding the factor 1/(1+gx~) as a power series 

in 
2 gx. Bessis and Bessis [26,1980] have studied the same 

problem by taking advantage of a two parameter (A and g) 

scale transformation. Hautot [27,1981] has used a Hill 

determinant method to calculate the energy eigenvalues. Lai 

and Lin [28,1982] have applied the Hellmann-Feynman and 

hypervirial theorem and used Pade approximants to calculate 

the energy eigenvalues from the perturbation series. Fack and 

Vanden Berghe [29,1985] used the finite difference method in 

combination with matrix diagonalisation for a numerical 

computation. The interest in this type of potential arises in 

several areas and these have been summarized by Mitra 

[23,1978] and Kaushal [25,1970]. In particular, this type of 

potential occurs when considering models in laser theory. In 

this calculation we have presented four numerical methods for 

the determination of energy eigenvalues. However, for large 

value of i some difficulties are encountered for some of 

these methods, so we restricted our calculation to a rather 

small range of O. 1:s:g:s: 0.5 and a large range of (20:S:A:s:l 000) . 

In spite of these restrictions on the values of A and i, the 

agreement between the power series, hypervirial, and finite 

difference methods is excellent. The results can be 

considered as an improvement over previous results. Our 

results, which have twenty significant figure, are more 

accurate than previoua reaulta, which do not exceed ten 



-110-

significant figures. The finite difference method is a 

powerful method which covers a large range of 0.1~~~1000 and 

O.1~g~1000 and we can use this method to show up the 

drawbacks of other methods mentioned previously. Whi le the 

fini te difference method appears to be recommendable for a 

large range of A and g, the power ser ies and hypervi r ial 

methods should be reserved for a small range of (g) and large 

range of (A). We also used the [6,6] Pade approximants to the 

energy series, which was obtained from the Hellmann-Feynman 

theorem and the hypervirial theorem. 
') 2 2 

4.3 Hypervirial relations for the potential X~+AX /(1+gx ) 

The Schrodinger equation for this potential can be 

written as 

where the potential V(x) is given by 

2 V(x) =x + 

(4.10) 

(4.11) 

') .~ 

The perturbation calculation for the potential [Ax~/(1+gx~)] 

2 
is made by expanding the factor 1/(1+gx ) as a power series 

in gx 2 which is valid for gX2~ 1. As x varies from (-':o~x~+<l», 

the function f(x)=1/(1+gx
2

) runs from (0 to 0) through 1 at 

x=O, f(x) being always non-negative. In this section, we 

apply the hypervirial relation Killingbeck [12,1982] and the 

Hellmann -Feynman theorem to the Schrodinger equation, 

starting from the basic hypervirial relation and the 

Hellmann-Feynman theorem which have been given in a previous 

chapter (2.3) and (2.14). The potential in equation (4.11) 
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can be expressed as 

( 4 .12 ) 

where 

(4.13) 

The coefficient given by (4.13) alternate in sign; the 

coefficient take (+ sign) for even n values, and (- sign) for 

odd t1 values. We have expanded the potential as given by 

equation (4.12) to the limi t at which any term beyond that 

limit makes no difference to our eigenvalues. For our 

calculations this limit was reached for n=20. The series in 

equation (4.12) 
z is valid only for gx ~ 1. For large g and 

small A, it is found that our hypervirial method 

underestimates the eigenenergies. The unperturbed value of 

B(O) is given by 

(4.14) 

H Now we use the energy E and the expectation values <x >which 

are given by (2 • 6 ) and (2 • 7 ) and the potential which is 

given by (4.12) in the Hypervirial relation and the 

Hellmann-Feynman relation. Using the same approach that led 

us to the recurrence relations (2.10) and (2.15), we find the 

relations 
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(4.16) 

The energy coefficients E(M) can be determined from the 

relations (4.15) and (4.16) with the aid of E(O) and the 

condition B(O,O)=1. At K=O the perturbation series converges 

and gives satisfactory numerical results for high values of A 

(20s~1000) together with low values of g (0.lsgs0.5). 

4.4 Power series method calculation of the energy eigenvalues 

The power series method is a non-perturbative approach 

which has been used to calculate eigenvalues for many 

problems, Killingbeck has applied this approach to perform 

many eigenvalue calculations and our confidence in the 

accuracy of this method in numerical calculations of the 

energies for various problems has been indicated in previous 

chapters. From our resul ts this approach can be seen to 

provide excellent accuracy, but for the type of potential of 

equation (4.11) there is some restriction on the values of A 

and g. At large values of g the perturbing potential is 

concentrated in a small bump near the origin. The energy 

levels of the Schr6dinger equation (4.10) 

(x 2 + >..x 2 /(1+gx 2
) can be calculated by 

with the potential 

applying the power 

series approach. The wavefunction in equation (4.10) is 

defined as 

( 4 • 1 '1-) 

Substi tuting the wavefunction as given by equation (4.17) 

into equation (4.10) reduces (4.10) to the following equation 
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(4.18) 

where 

~ T(N)=~ A(N)x" (4.19) 

and fJ is an arbitrary parameter on which the eigenvalues 

cannot depend. In the previous chapter we have mentioned this 

parameter fJ as being used to improve the rate of convergence 

of the resulting computations. The initial conditions for the 

recurrence relation (4.18) are T(O)=1 (to get an even 

eigenstate) or T(1): 0 (to get odd states) with all other 

coefficients zero for N<O. The calculated eigenvalues 

vary with Xo ' if we require ~(xo) = O. In the power series 

approach the results are accurate only when certain relation 

between A and g hold. These relations can be given as 

and 

~<1 ). 

2 gx :!O1 

(4.20 ) 

(4.21) 

The conditions (4.20) and (4.21) limit the range of values of 

O.I~g~0.5 and 20:!OA~1000. Within these limits, the energy 

eigenvalues for this potential as given by the power series 

approach are very accurate. 
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4.5 Finite-difference eigenvalue calculations 

Recent times have seen the development of 

non-perturbative methods of computing energy eigenvalues. 

Such methods are necessary since the perturbative methods 

provide insufficient information about accuracy, and give 

convergence difficulties. Recently Killingbeck has applied 

finite difference methods to various eigenvalue calculations 

and published many papers dealing with this type of method. 

He also described modified approaches of high order for 

finding Schrodinger equation eigenvalues, 

expressed as 

h2021j1(X)=4[Sinh(ihD)]2'¥lX) D2)O 

=4 [Sin (~hD) ] 2"" (1t) D2 <0 

which can be 

In the present eigenvalues calculations, we used the above 

relations instead of using the relations (2.21) and (2.22). 

The error of the method used here should be smaller when a 

smaller h (step length) is used. The energy eigenvalues 

calculated by fini te-difference methods in this section are 

subject to further modifications if high-term expansions are 

used. It will be our aim in this section to compute energy 

eigenvalues of the Schrodinger equation 

[_d
2 

- ] V(x)+E 1{I(x)=0 
dx

2 
( 4 • 22 ) 

with the potential 

'\ 2N 
2 ",x 

V(x)=x + (1+ax 2 
(2N=2,4,6, .• 18,20) (4.23 ) 

where E denotes the energy eigenvalue. The wavefunction ~(x) 

can be restricted to the region [O,+~]. Furthermore we shall 
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suppose that the wavefunctions are restricted to obey the 

Dirichlet boundary condition ~(x)=O at some x value (x=R). An 

acceptable R value will be guessed numerically. The interval 

[O,R] is subdivided into equal parts of length h, with x=kh 

(k=O,1,2, .• n; nh=R). The ground state and the first three 

even energy levels were computed by our approach for a large 

range of (A) and (g). In this section the finite difference 

method for calculating eigenvalues of the Schrbdinger 

equation (4.22) will be discussed by introducing a fini te 

difference representation of n2
1J1(x). Chapter two explained 

the simple mathematics which forms the basis of our method. 

It is worth noting here that the finite difference method 

which is under discussion in the present section is different 

from that of the V.Fack and Vanden Berghe but it shares with 

it the use of fini te di fference expressions. Those previous 

workers used a finite difference method in combination with a 

matrix diagonalisation for numerical computations and 

transformed the Schrbdinger equation into an algebraic 

eigenvalue problem, with a special form of matrix. A Finite 

difference representation for DlJltx) is introduced such that 

the Schrbdinger equation is transformed into an algebraic 

eigenvalue problem. Our method gives results with high 

accuracy for a wide range of 0 .1~g~lOOO and O. l:!>A:!>lOOO for 

(2N=2,4,6 •• 18,20). For large g values it seems that the 

present method works qui te well, whereas the other methods 

have some problems. Although the displayed results are 

restricted to even-parity states, the method can be used for 

odd-parity states. We believe that the extrapolation 
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procedure (for h~) is very accurate if the h values are 

chosen in the safe region. 

4.6 The Pade approximant calculation of energy eigenvalues 

We will now define the Pade approximant, and the Pade 

table. Definition: Let the [L,M] Pade approximant to the 

series A(x) be denoted by: 

P L (x) 
[L,M]=--

QM(X) 

where PL(x) is a Polynomial of degree at most Land Q M(X) a 

polynomial of degree at most M. We require that the formal 

power series for P/Q agrees with the A(x) series up to the 

(L+M)th power. The following theorem is due to Frobenius.G. 

and Pade, (Theorem of Uniqueness). The [L,M] Pade approximant 

to any formal power series A(x), when it exists, is Unique. 

(For the proof see ref [56,1975]. This theorem holds whether 

the defining equations are non singular or not. If they are 

non singular, then they can be solved directly to obtain: 

a L -M+1 a L -M+ 1 a L + 1 

a L a L+1 . . . a L +M 

! XJ ! X J J~oaJ XJ 
a J-M a J -M+ 1 . . . 

IsM ;=M-1 
[L,M]= 

a a a L-M+1 L-M+2 L+1 

at a L+1 a L+M 

XM X"-1 1 

where we define a n
B 0 if n<O; qj 5 0 if j > M and, if the 

lower index on a sum exceeds the upper, the sum is replaced 
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by zero. It is customary to arrange the Pade approximants in 

a table as follows: 

[0,0] 

[ 1 ,0) 

[2,0} 

[3,0] 

[0, 1 ] 

[1, l] 

[2, 1 ] 

[ 3 , 1 ] 

[0,2] 

[l ,2] 

[2,2] 

[ 3 , 2 ] 

[0,3) 

[ 1 ,3) 

[2,3] 

[3,3] 

The set [N,O] [N,l] [N,2] with N fixed is a row of the table; 

likewise the set [N,M] with M fixed is a 'column' while the 

set [N,N] is the diagonal sequence; we call a set [N,N+j) 

with j fixed, a paradiagonal. The top row is composed of the 

partial sums of the Taylor series. The Pade approximants are 

a particular type of rational fraction approximation to the 

value of a function, Pade approximation is a useful technique 

when the convergence of the series is unacceptably slow or 

even nonexistent. The Pade approximant is in the form of one 

polynomial divided by another polynomial. Pade approximants 

provide us wi th a practical method of calculating resul ts 

from energy series E (n) , since their use frequently 

accelerates convergence. The E [M,N] Pade approximants to the 

energy series is given by 

a +a A + a A2+a A3 
••••• a A~ E [N,M]: __ a ___ 1 _______ 2 ____ ~3 __________ ~n~ __ 

b +b A + b A2+b A3 
•••• b A~ o 1 2 3 M 

(4.24) 

2 H+N 
sE(0)+E(l)1+E(2)1 + ------E(N+M)l + --- (4.25) 

with b
a 

defined to be unity. The coefficients (a
i 

i:l,-----N) 

and (b,i:O,-----M)in the numerator and denominator are 
I 

calculated from the knowledge of E( 1) ,E(2) ,-------,E(M+N), 

which can be computed from the hypervirial relations. The 
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? ? 

energy series for the interaction Ax~/(1+gx~) appears to be 

convergent for g> 5 and for large value of A. Thus we can 

still calculate the energy E for g>5 to very high accuracy. 
n 

Our calculated energy values E used the 
n 

[6,6] Pade 

approximants to the energy series for the ground and the 

first three excited states. 

4.7 Hypervirial relations for the potential given by 

[
1 2 2N 2 ] 2x -gx /(l+gax) (2N=4,6) 

In this section, we want to investigate 

equation 

[i ::2 + E-V(X)]~(X)=O 
with a potential of the type 

2 2" 
V~=~ ~ --~g~X----2 

(1+gax ) 
(2N =4,6) 

the Schrodinger 

(4.26) 

(4.27 ) 

The potential described by equation (4.27) for (2N=4) has 

recently been studied by G.Auberson (30,1982], who has shown 

that the perturbation expansion of eigenvalues E in terms of 

g at fixed a, is Borel summable. For the validi ty of this 

results, it is essential that the potential V(x;g) be 

positive for all physical values of g and a, where the 

physical range of the parameters (g and a) is given as; for 

the potential V+(x;g),g~O, a)O, and for V-(x;g),g~O, a>2, (in 

2 order that V-(x,g)~, as x ~). 

Also G.Auberson and T.Boissiere [31,1983] calculated ground 

state energy levels for a large range of values of a and g, 

by using a Pade method, Borel-Pade method, an improved 

Borel-Pade method and Borel-mapping method). The potential 
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V~ (x,g) can be written in this form 
2N 

We want to study the limit of this potential 

~ I 1 2 2M V (x;i) =2X + iX 
IX .. 0 

(2N=4,6) 

(4.28) 

(4.29) 

(4.30) 

The potential given by equation (4.30) is a pure anharmonic 

oscillator The singularity of V+(x;g) at 2 
x = is 

responsible for a singularity of E+(g) and for the divergence 

of the potential series expansion. We investigate three 

methods to compute the energy eigenvalues, the hypervirial 

method, the Pade approximants method and the finite 

difference method. The first two methods are excellent for 

computing the energy for a small range of values of IX and g , 

but the finite difference approach is applied to a wide range 

of values of IX and g. In this section, we apply the 

hypervirial theorem and the Hellmann-Feynman theorem to 

calculate the eigenvalues of the Schrodinger equation for 

this potential. The potential V+(x) can be expanded as 

where the potential coefficient V is 
n 

and 

( 4 .31 ) 
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A=gex (4.33) 

The unperturbed energy eigenvalue E(O) is given by 

11= 1 +AK (4.34 ) 

If we insert the energy (E) series and the expectation value 

<x N ) series in the hypervirial relation, the following 

relation is obtained 

(2N+2)! E(I)B(N,M-I)=-~[NZ-1]B(N-2,M) 

+ (N + 2) [1lB ( N + 2 , M ) - KB ( N + 2 , M - 1 ) ] 

If we apply the Hellmann-Feynman theorem 

the following relation is obtained 

(4.35) 

(4.36) 

(4.37) 

We can calculate the energy eigenvalues from equations (4.3S) 

and (4.37) by using the unperturbed energy E (0) and the 

ini tial coefficient value B (0,0) = 1. We also used the same 

technique with g as the perturbation parameter. The agreement 

between the re suI ts from the two approaches is excellent, 

particularly for low value of ex, but at high values of ex the 

agreement between the two eigenvalues decreases, and this is 

very clear from our results in table (4.10 ). The potential 
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V+(x) in equation (4.27) can be expanded in the form 

(4.38) 

where 

V n = (-ex) n, 11= 1 + Ak (4.39) 

The coefficients given by equation (4.39) alternate in sign, 

taking positive and negative values for even and odd powers 

respectively. If we follow the same procedure used to get the 

relations (4. 3S) and relation (4.37), we get the following 

relations 

+ (N + 2 ) [IJB ( N + 2 , M ) - KB ( N + 2 , M - 1 ) ] 

(4.40) 

(4.41) 

The above equation (4.40) and (4.41), together with initial 

conditions E(O)= 

sufficient to 

1 
2 [2n+1].fji 

compute the 

(n=0,1,2) and B(0,0)=1 are 

coefficients E(M) of the 

perturbation series for the energy. The method outlined above 

can also be used for the potential which is given by equation 

(4.29). For high-index (2N=4, 6 ) perturbation calculation by 

the hypervirial method, the method seems to work only for 
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small value of g. The recurrence relations corresponding to 

the case (2N=6) are 

(2N+2)~ E(I)B(N,M-I)=-~[N2_1JB(N-2,M) 

+ (N + 2) [1lB ( N + 2 , M ) - KB ( n + 2 , M - 1 ) ] 

(4.42) 

(4.43) 

We used the recurrence relations (4.42) and( 4.43) but wi th 

X=ga as the perturbation parameter. 

4.8 Three dimensional calculation for the potential 
2 . ., 

).r /(l+gr~) 

It is interesting to note that this model can be 

extended to the three dimensional case, and we used more than 

one method to calculate the eigenvalues. The numerical 

results obtained by the perturbative method agree with those 

obtained by the non-perturbative (power series) method. As is 

expected, the eigenvalue accuracy decreases steadily with 

increasing ~ and fixed g in accord with our previous 

experience In one dimensional problems for this type of 

potential, for large g, the perturbing potential is almost 

entirely concentrated near r=O. In this section, we want to 

investigate the three-dimensional Schrodinger equation, which 

can be written conventionally in the form 

(4.44) 
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where 

2 g g -2 V(r):r +~(~+1)r + (4.45) 

We shall not distinguish the one and 

three-dimensional interpretation of the perturbed 

Hamil tonian, and assume that we have either (t:-1, 0 and _.\) 

<r<+~) or (.(.:0,1, and O<r<+~) The potential in equation 

(4.45) can be expressed as 

V(r):r 2 +'('(.(.+1)r- 2 + 2 Vn in 
n .. O 

where 

2(n+1) 
r (4.46 ) 

(4.47 ) 

If we insert the energy and expectation value series in the 

hypervirial relation, and use the Hellmann-Feynman theorem, 

we get the following relations 

(2 N + 2 ) ~ E ( I ) B ( N , M-I ) : N [ t ( i+ 1 ) -~ ( N 2 - 1 ) ] B ( N - 2 , M ) 

+~ Vn [2N+2(n+2)]B(N+2(n+1),M-n-l) 
n=O 

(4.48) 

(4.49) 

The energy of the nth unperturbed state can be written as 

follows 

E ( 0 ) : ( 4 n + 2 i+ 3 ) (4.50) 

The above equations (4.48,4.49,4.50) with coefficient 
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B(0,0)=1 allow us to compute the energies for different value 

of angular momentum (t=5, 10,20). We used the power ser ies 

method as another approach to compute the energy eigenvalues, 

to check our results. The first step in applying this 

approach is to write the Schrodinger equation in the form 

+ E -
2 

r - ( 4 . 51) 

The wavefunction in equation (4.51) can be expressed as 

(4.52) 

We substitute equation (4.52) in equation (4.51). The result 

of this substitution is 

+ [g (4fJ (N-2) +4Bt+6fJ-E) + 1-4fJ
2 +".J r 4T (N-2) 

(4.53) 

where 

~ T(N)=~ A(N) (4.54) 

The energy eigenvalues calculated by the power series 

approach are valid only for 2 gr ~1, using the Dirichlet 

condi tion 1P( r) =0. We used the Pade approximant method as 

another approach to calculate the energy eigenvalues 

corresponding to a range of values g and A for which it is 

impossible to calculate results by hypervirial and power 
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series methods. We calculated the energy eigenvalues using 

the [6,6] approximant for ground and first excited states; 

the energy levels were calculated for different values of 

angular momentum. 

4.9 Three dimensional calculation for the potential 

.., 4 2 
1/2r~~gr /(1+gar ) 

The Schrodinger equation (4.27) for three dimensions 

takes the form 

where the potential in equation (4.55 ) is given as 

2 4 + r .t ~ - 2 gr 
V (r)=2 + 2(~+1)r ~ 2 

(1+gexr ) 

The potential (4.56) can be expressed as 

+ ) r2 t( ~ 1) -2 or _1 ~ V ,\n+1 r 2(n+2) 
V (r =2 + 2 '\..+ r or ex L n A 

n=O 

where the potential coefficients V are 
n 

V n = (_ ) n; A:exg 

(4.55) 

(4.56 ) 

(4.57) 

(4.58) 

The series in equation (4.57) 2 is valid only for gexr ::;1. By 

substituting the energy and expectation value series, as 

given by equations (2.6,2.7), in the hypervirial relation 

(2.3), the following relation is obtained 

(4.59) 
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If we apply the Hellmann-Feynman theorem, we obtain the 

following relation 

1 Using the unperturbed value of energy E (0) =2"[ 4n+2{+3], wi th 

the initial condition B(0,0)=1, the equations (4.59) and 

(4.60) are sufficient to calculate the energy series. Also we 

use the same approach wi th g as perturbation parameter, so 

that the potential takes the form 

v (r) =~ \ ~(.t+ 1) r - 2 + ~ V ng n+ 1r 2 (n+ 2) 

n=O 
(4.61) 

Using the same technique which gave relations (4.59,4.60), we 

can get the relation 

(4.62) 

where 

(6.63) 

and also the relation 

(4.64) 

4.10 Results and discussion 

Our aim in this section is to investigate and to discuss 

the results for the energy eigenvalues of the Hamiltonians 

given by equations (4.1-4.6), in one and three dimensions. 
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Our aim also is to push the numerical analysis as far as 

possible, and in this respect we go further than other people 

in our analysis. We study here the three dimensional problem 

and high indices 2N of the perturbation. In addition we have 

succeeded in finding the energy eigenvalues wi th excellent 

accuracy. This problem received great attention from us , and 

we have attacked it by many methods, as we mentioned in a 

previous section. In summary, we have analysed numerically 

four different methods to determine the energy eiatenvalues 

for these problems for different values of state number nand 

a wide range of values of (A&g) and indices (2N:2,4, •. 18,20). 

The finite difference method has been used for calculations 

outside the limits applicable to the other three methods 

(hypervirial, Pade approximant and power series), 

particularly in respect to the values of parameters (g&A) and 

of the index of the perturbation (2N:2,4,6, .•. 18,20). It is 

note worthy that the methods which have been applied to 

compute our results are applicable within a limited range of 

(2N,A,g), except for the finite difference method, which 

seems to present fewer difficulties. We have used the 

hypervirial method to calculate results for various model 

problems, such as those given by (4.1,4.2,4.3,4.4,4.5,4.6), 

for different values of (2N,A,g,n). The present work is 

intended to point out one feature which has not been noted in 

previous problems. The hypervirial method can produce a good 

accuracy even without use of the renormalisation parameter K, 

which usually plays an important role in obtaining convergent 

perturbation series, as we have seen in previous chapters. We 
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have performed a series of computations for the problems of 

this chapter, which revealed the following fact. As the index 

(2N) increases the sums of the perturbation series converge 

very well for small values of A, and as A increases the 

convergence begin to decrease. If we review briefly our 

listed results in tables (4.3,4.7,4.10,4.12 ,4.13), we can 

get a clear picture of this behaviour. We can say that the 

accuracy of our listed results is very good in comparison 

wi th other resul ts which are available in the literature. 

Also the results which are produced by the hypervirial method 

are in good agreement with our results which have been 

calculated by the power series and finite difference methods. 

This agreement provides a check on the accuracy of our 

results. We have computed the first four energy eigenvalues 

for index (2N=2), with parameter values 5 O!S.A!S. 1 000 , 

0.1!S.g!S.0.50, by using three methods (hypervirial, power series 

and finite difference). The accuracy of our results in 

general is more than 16 significant digits, as shown in 

tables (4.1,4.2). The power series method seems to work very 

well and the convergence of this method will be controlled by 

the parameter ~. We also listed in table (4.4) the four first 

energy eigenvalues for (2N=2) and for values O. 2!;g!S.50 and 

500~~106, obtained by using Pade approximants [6,6] and the 

hypervirial method. The agreement between the two methods is 

very good. Also we have calculated the first five energy 

levels by using the hypervirial method for (2N=4), with case 

V-(x) for 10-3!S.g~0.02; 1~!S.50. In addition we used Pade 

approximants for (O.1!S.g~2; 2~!S.50). We have observed a strong 
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similarity between the behaviour of the hypervirial method in 

one and three dimensional calculations for changing index of 

perturbation (2N) and value of (g&A). The series converge 

very quickly for large A and small g with (2N=2), but with 

(2N:4,6) the si tuation is not similar; the series converges 

for small values of A and larger values of g. Further more it 

clearly appeared from our listed results in tables 

(4.12,4.14), that the perturbation calculations (Hypervirial 

calculations) can yield very high accuracy for large values 

of a, if we take ag as perturbation parameter in stead of g. 

For small values of a,it does not make any different to the 

accuracy whether we take ag or g as perturbation parameter. 

Also we have not observed any fundamental difference in 

behaviour between the V-and V·cases as we vary the 

perturbation parameters (a,g) and index (2N=4,6). We have 

calculated the first five energy eigenvalues in three 

dimensions for di fferent sets of A, g, index (2N=2, 4,6) and 

angular momentum. It is note worthy that the Pade approximant 

method [M, N] has been applied to this problem for one and 

three dimension and is able to handle this problem over a 

wide range of O. 1~g~50 j 
6 O. 1~A~10 , and index power 

(2N:2,4,6). Some of the present calculations of eigenvalues 

have been repeated with two different values of N and M in 

order to check the accuracy, since there is an absence of 

reported results in the literature. The agreement between the 

two eigenvalues is very good. We wish to draw attention to 

the fact that the present Pade approximant approach works 

very well even for higher values of (g,A), whereas the Pade 
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approximant method of Lai and Lin [28,1982] is restricted to 

low values of g (g~2). Our results allow us to study the 

numerical behaviour of this potential for varying index (2N), 

perturbation parameter (g&).), and for a number of exci ted 

states. For the ordinary anharmonic oscillator (g=O) of 

chapter one, we have seen that as the index 2N varies the 

order of the ground state levels obeys 

E
4

<E
6

< E? ••• E
16

<E
20 

for small values of (A=0.1, 1,5), while for large values of 

().=50, 100), the order is reversed. For the present type of 

perturbation the picture is more complicated because there 

are two parameters (g&X). Many energy levels have been 

calculated, and we mentioned previously that the behaviour of 

the eigenvalues is nonanalytic at each crossing point. We 

have seen from our results that some energy eigenvalues for 

( g=).) decrease or increase with increasing index 

(2N=2,4, •• 20). For example at ( g= A=O . 1 ) the energy 

eigenvalues increase as 2N increases, as is clear from our 

listed results in table (4.4,4.5). The ordering of the 

eigenvalues can be expressed as below: 

(2N=2,4, .• 20) 

Here n is the state number and its values in the present 

calculations are n=O,2,4,6. With another set of values of the 

perturbation parameters (g=X=10) the order of levels can be 

given as: 



-131-

For index values greater than (2N:6) the energy eigenvalues 

increase as 2N increases as follows: 

With other sets of values of (g:A:IOO,lOOO) the energy levels 

have the same behaviour; the energy levels increase as 2N 

increases except the ground levels 

For states n:2,4,6 the order of levels is : 

We computed the energy levels with different values of g&A; 

for the values (g:100,A:0.1), the order of levels is: 

2 4 
E (2,4,6)<E (2,4,6); 

4 6 8 18 20 
E (n)<& (n)<E (n) •••••• <E (n)<& •. (n) 

for n=0,2,4,6. With the values g=1 and A=100 the order of 

levels is given by 

2 4 6 8 18 20 
E (npE (npE (npE (n) •••• E (n»E (n) (n:0,2,4) 

while for n=6 the order of levels is; 

E 2 (6)<E
2N

-
2

(6) <E
2N 

(6) (2N=6,8 .•• 20) 

The computation was carried out to double-precision accuracy 

by using the ICL and VME system with Fortran (77) programs. 

In order to give a clear picture of our results for thi s 

chapter, in tables (I,II,III,VI), we present the ranges of 

values of the parameters (g&A), and of the state number nand 

angular momentum, together wi th the table numbers in which 

the relevant results were reported for the various methods. 



-132-

PARAHBTBR RANGBS 

iZN aethoCls 1-

----
n l!-ab~e 

12 IPower aerl.es 20-10 3 0.1-0.5 2 4.1 Finite difference 
~. IHypervl.rl.al 60-10 3 0.1-0.6 4 4.2 Power aeries 
12 IHypervl.rl.al 50-106 2-50 4 4.3 Pade approxiaants 
12 [Pade apprOXl.mants 0.1-9xl0 3 0.10-10 4 4.4 
IZ-~O IF l.nl. te Cll.l't-erence 0.1-10 3 0.1-10 3 4 4.5-6 

Table (11). 
2 2 -2 2 2 H=P +X +(~(~+l)r +lr 1(1+,r ) 

IZN method ~ • n <. Ita~e 

12 IHypervl.rl.aJ. 
200-10 4 

Power aeriea 0.1-0.6 4 6 J lO...l.20 4.14 
12 IPaCle apprOX1aanta 0.1-10 3 0.1-6 4 1, 2.3 4.15 

Table (Ill) 
P

2 x2 211 2 
H = ~ + ~ ~.X l(l+.ax) 211 a.,6 

12N aethod I a IV~ n IT.aDle 

14 HyperVl.r1al 10.Ot I!-J!.~Z jJ. fi- lOO + I'.~ 

Pade aooroX1aants 0.0 -10 Q.~-- )0 + I •• IS 
iYDerv1r1al O. }llJI-O.OZ 1- ~O - • -J,JL 

14 PaCl e aJ)P.rox 1.man ts O. 1-~ :l- - L' • 
If IYDerV1r1.aJ. O. ()Olli -..Q.. 0005_ 4- IU + L' • 

It IYDerv1r1al O. ()Q(U -0.0006 3- IU - J:t ~. 

12N aethoCl V~ IrxIUUO a n -t. T.aD~e 

IHyperv1r1al + -5 IL. -.ID ) t t ...l.. J!. ~.1..6 
IPade aoorOx1mants + lO-:lOO - ~ • t ·ll 
IHYDerV1r1al - -5 - ) _f • .U .11S-il 

rl· IPade aDPrOx1mants - .Q-.400 - ~o . .1 • J .5 • :lJ!. 
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Table ('.1). ElaeDYalue. of ~·+X·+Ax·/(l+IX·), tor around .tate 
anc:l the tlrllt ev.n .tate, Flrllt 11 .. ; power .erle. _thod, Second 
line: tlnlte dlfterenoe .. tbod; the nuabers In the bracket 
oorreapond to (I)&(A). 

, , 
o 0.001 5865631 0.001 
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Table (4.2). Elaenvalun ot S-pl+XI+AxI/(1+pl), for the 
tiNt tour "raY level., FINt line; power .erles _thod, 
Second. llnei Jbfpervlrlal .tbodJ the nuabera In the bracket 
correspond. to • & A. 
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Table (t.3). El.envalue8 of s-p8+X8+Ax8/U +p l). 
for the tlr.t tour enarlY levela, Flr.t Una; Pad, 
approxl-.nta E(8,8), Second 11ne; Jbrpervlrlal 
_tbod, the nuabers in the bracket correspond to I 
& A. 

1 3 1 
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Table (4.4). El....-1-- or a-p1+xl+lxl"(1+pl) 
tor the I'lrst 1'1". eDer8Y 1.".1.. calculated 
troa tbI ..... .,..-oxl.ant. E [8.8h the nwabera 
In the llracbt corN8pODd to ( • ) & (A). 

3.363801S58S 
5.4632114193 
7. 5278886000 

3. 50739'79060 
5. 5898335t74 
7. 8490689893 

. 

39. S7St394019 
48.1038613194 
52.&391828133 

146.8062318991 214.5189371947 266.5867728404 
228.9052478281 341.2G280S607 427.8041852813 
298.73572«491 454.8791439807 575.5603982093 
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Table (4.6) Elpnvalue. ot a-p·+X·+Ax··/U+p·). tor 
the tl,..t tour even enerD' level. calculatttd troll 
flnlte dlfference _tbod:tbe nuaber. in the bracket 
corres Dd to & A. 

11.757261716042 13.9368918~671 14.018803426232 
31.075486317130 37.08002044'702 37.296532262040 
59.089626726601 70.467858967111 70.863367896662 
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Table (4.8) Ei.envalues of B-pa+ xa+Axs ·/(I+axa ). tor 
the tirat tour even enerD' levels calculated troll 
tlnite difference _thod, nuabera in the bracket 
correspond to • & A. 

. 

25.553317440935 
58.942539708101 
99.359790289248 

14.027395631206 20.253378 4017 7.810470001495 
37.319188240829 54.868139736710 19.561158228393 
70.904604121144 104.512350040639 36.441449502621 
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Table (&.7). Elaenvalues ot at. 1I2Pa+1I2xatIX1 /(1+aaxa), tor 
the around-.tate ener8)' level. calculated fro. tinl te 
dlfference _thod. 
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Table C4. 8). Eipnvalues of 1fa1l2pa+1I2xa+p'IC l+.cxxa ), for 
the fiM1t five enerlY level. calculated fro. Jb'pervirial -tbod the wabe 1 the b k t C ) 11 n re n rac e COrretlJ)OM to Ca) & It. 
1(0.001.0.I:IJ IN ~ I(O.OOl.aJ 'N 11: 
10. t)UU1..v.IUI·IIII ~145 18 0 10. awl.JtSaJ111 fR 113 --u 
1.5037231829287892720 10 0 1.503888S319U4S06778 14 0 
2.5096515415817772891 11 0 2.6084517984940872185 18 0 
3.5185001429387771848 12 0 3.5180038831842341807 20 0 
4.5302383407624926113 13 0 4.5292372284608061748 20 0 
[(0.001,10) IN It 1(0.001.20) IR -.: 
10. DUuf~'(I:HtH :11 118 0 10. :;007' 137 0 
1.5036060772489412314 21 0 1.503492319497928984 36 0 
2.5092408909632772410 24 0 2.50885011540498976 " 0 
3.5174860974896648367 28 0 3.5165431520351994 42 0 
4.5282057666965039694 31 0 4.526360808570728 43 0 
(0.001.aoJ IN ~ (0.001.100) IN -.: 
o. i-,t:I~-'1:) 115 ,10 o. ,.H~ 115 

1
10 

1. 503197920 14 10 1.602818 13 10 
2.50787393 12 10 2.50668 11 10 
3.5142766 10 10 3.511 7 10 
4.522095 11 10 4.517 7 10 
(0.0Uti.11 IN ~ (0.005.6) IN I: 
0.~~R1L~7R~lZ043147469 13Z 0 .0.-.:;n~19805166 115 110 
1.5179671613901822218 32 0 1.51689308272 16 10 
2.54594982503971 24 0 2.5423246614 30 10 
3.5968079952874 29 0 3.578207918 28 10 
4.6398468050 22 0 4.6075 12 10 
{0.OO5.10) IN I: (O.OO5.UU IN I: 
O. 113 10 0.50314886 114 110-
1.51574764 19 10 1.514770 10 10 
2.538594 9 10 2.53355 6 10 
3.56969 7 10 3.5829 7 10 
4.6075 12 10 4.595 5 10 
(0.OO~20) IN I: (0.01.0.1) IN -X 
0.:lU~U10 111 10 O.DUI C [I3 1r 
1.51392 10 10 1.5355388515 17 0 
2.5329 8 10 2.59046858 17 0 
3.657 5 10 3.670194 15 0 
4.58 4 10 4.77361 13 0 
1(0.01,0.5) IN It 1(0.01.1) III IC 
10. 50717~4Q ... nR 117 0 10.oU-( i1 121 110 
1.535099404 18 0 1.534570408 13 10 
2.5889936 19 0 ~.58722278 15 10 
3.66669 18 0 3.66?S15 12 10 
4.766 6 0 4.7593 11 10 
1(0.01, Z) IN It 1(0.01,3) IN -.: 
10. t4R 114 110 10. :wol94314 18 i10 
1.533567343 10 10 1.53263064 16 10 
2.5839027 11 10 2.580846 13 10 
3.65478 8 10 3.64777 11 10 
4.7437 8 10 4.730 5 10 
rO. OZ,I.5) IN It ,(0. OZ, Z) IN IC 
10. 51 18 110 ,0.5'?QR~ 17 10 
1.56288 8 10 1.56130 8 10 
2.654 6 10 2.649 4 10 
3.77 5 10 3.76 3 10 
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table ('.8). El~ues of B-112P1+112x1 +1X1/(1+.axl ), for 
the tlrst tl.. eaer8V le .. l. calculated fro. the Pad, 
approxlaant. E lR,Rl: the nu.bera In the bracket COrN_pond 
to (a) & (a). 

1(0.01,101 • - IlO.Ul,iSUl 11 III IlQ.Ol,6OJ 11 N 
10. I/:K.RSU 7 7 IU.50511~ II III IU. ou.JO,;,'3tfIJ. 6 6 
1. 627.&463072 7 7 1. 522S8680t8 7 7 1. 6160007632 8 6 
2.684697'781 6 6 2. 5S08SOO887 6 8 2.5310182784 6 6 
3.6124950756 6 6 3.5841841943 6 6 3.6482670605 6 6 
IlO.l,V.1) .. .. 1(0.1.2J R IR IlV.l,5J N N 
10. 113 5 5 IU.-.J .,;, 7 7 10. 5341'flS~:rr3 "f "f 

1. 7642326395 4 4 1. 8945334318 6 6 1.6378922422 7 7 
3.1228901590 4 4 2. 92'79904156 8 8 2.7837371260 6 6 
4.5947999549 4 4 4.2037147105 6 8 3.9412533225 8 8 
!(0.1,-~ R I. IlV.l, iSUJ 11 I. IlO.l,80J • IN 
IU. ".:: 14 7 17 10.51 8 18 10. ;JUla,_OI 8 IB 
1.5932661578 7 7 1. SS68888871 7 7 1.6263350805 7 7 
2.6809753605 6 6 1.6048590962 7 7 2.5483132887 7 7 
3.7701773930 6 6 3.6517785538 6 6 3.6656210362 6 6 
{0.2.10J -I· l~.~,iSUJ .11 I- IlO.2,6OJ .. IN 
0.5;31 II 17 0.51 ,r.sIJU II III IU. I'M i:i'!"h 8 18 
1.6107937612 7 7 1.5832400714 7 7 1. 5276758156 7 7 
2. 7077661342 7 6 2.6123489423 7 7 2.5477261709 7 7 
3.8008663585 7 6 3.6595690660 8 6 3.5669336660 6 6 
(0.5,1) -I- lV.5,lVJ N IN IlO.5,~OJ 11 IN 
0.D.JO,~14 B IS U. 110£1 B IS lu.o~wl 8 18 
2. 0S06190S97 6 7 1.8357182641 7 8 1. 679'6333602 7 8 
3.5707739173 5 5 2.7306590810 7 8 2.8175082283 7 7 
5. 1611009800 5 5 3.8330786791 6 7 3.6806084300 6 7 
(1.10J N iN lJ..~J 11 III Ill,5OJ _N IN 
O. IiUIJ 1.&7, It1UU4 7 :7 O. 5Z 1845"ftsUtS 8 18 IU. f;U8~: I.4.QR'" 8 18 
1.6323985776 7 7 1.5698405566 7 7 1.5288968018 7 7 
2. 7288343227 6 6 2.6193625994 7 7 1.6489359130 7 7 
3.8214696406 6 6 3.66854M77S 7 7 3.5681200249 7 7 
(2,10J 11 11 (2.2OJ 11 IN 1(2,60) N IN 
IO.~H: 7 7 0.5ZZ4763153 8 18 10. il,,"rS 8 18 
1.6359113182 7 7 1.5707971290 7 7 1.5290482467 7 7 
2. 73243S2014 6 6 2.6203175163 7 7 2.5490925352 7 7 
3.8250366890 6 6 3.6674723743 6 6 3.5682720688 6 6 
I(S,50} 11 11 (10,10) 11 III IllO,5OJ I! LN 
10. B B U. 54J'I~1 ,a14 ., I-r 10. 1~47B 8 IB 
1. 6422446166 7 8 2.0510177483 7 8 1.7753765226 7 8 
2.6091210151 7 8 3. 0025250343 7 8 2.6726023094 7 8 
3.6899213557 7 8 4.3120162909 ~ 6 3.8210832897 7 8 
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Table (C. 10). Elpnvaluea of a-112P1 +112x1-p·/( l+.crxl ). for the 
flnt flve Enerl)' level. calculated tro. Jb'pervlrla1 _tbocl: the 
nuaben in the bracket corretl)ODd to (a) & (a). 
IlU.UU1,l) I. ~ I(U.OU1.1U) I. --.: 
10 . :lU"'-'D1 18 0 10. "DOl 116 0 
1. G62424317859816868 8 0 1. G83589789881284890 14 0 
2. 49021982924S5903232 9 0 2.4908259989888489599 14 0 
3. 4811899826024834359 10 0 3.4821857773854481833 21 0 
4.4880824528709280891 11 0 4.4111438430890412568 21 0 
1t0.OU1,20) lit --.: ItO.l)Ol. tiOJ IN It 
10. 1155',,;saiIW18 130 110 10. k.L5 115 110 
1.49641434888B809S014 33 10 1.G87181403 18 10 
2.491033392031288146 32 10 2 • .&92043943 18 10 
3.483119154192483 18 10 3.48554286 12 10 
4.47310133788121 11 10 4.4715843 14 10 
1t0.OU1.l00) I. ~ 1(0.005.1J IN It 
10. 114 :10 '0 . .11 ..' fI33 i14 11 
1. 491184 14 10 1.4810636714523086622 16 0 
2.48328 12 10 2.4S04506301929553918 19 0 
3.4882 8 10 3.4041090393018810892 22 0 
4.482 6 10 4.3418868182840029980 26 0 
1(0.005.5) IN .~ rrO.1J05.10) rH ~ 

10.49641 !1 117 0 :0 • .IItlRRIlA,1151 [17 11U 
1.4823111693092516 11 0 1.483611896 16 10 
2.454921624666918 16 0 2.~345776 17 10 
3.41532551991532 18 0 3.426761188 16 10 
4.38448838412014 11 0 4.38443886 14 10 
(0.01.2J lit It (0.01.2.6) N It 
o. ~t)1(\AOOA~A'n841115 115 1) O.48~·1 728418 18 0 
1.4830542154161881338 15 0 1.4636958224910252902 18 0 
2.4041142821621898813 16 0 2.4064888346915272 15 0 
3.3184352855256863622 17 0 3.322306851418587 15 0 
4.200308983473171091 17 0 4.212382312008048 16 0 
(0.01.3) IN I: (0.01.4) IN ~ 
O. 48~'fts~13~5'11:)~149 117 0 ,0 . .IIa~a~A 115 0-
1.4643087072318182 17 0 1.4854S145S8058 16 0 
2.408687785195180 17 0 2.412672075247 18 0 
3.3277381346791 14 0 3.33749385818 14 0 
4.223332041512 14 0 4.2425198812 17 0 
1(0.01.8) IN I: 1(0.01.10) IN --.c: 
10 . .4 118 115 110 10. 'ltf;:srfal.19 118 110 
1.4692593 18 10 1.410806 18 10 
2.4252850 16 10 2.43013 12 10 
3.38850 12 10 3!3711 9 10 
4.29644 12 10 4.3152 8 10 
[(0.02.1) IN K 1(0.02.2) IN It 
10. .~n.4"'R 128 110 10 • .ilDRA 119 !10 
1.42129904 25 10 1.42718678 19 10 
2.288670 22 10 2.3118477 18 10 
3.0157 24 10 3.14073 16 10 
3.759 19 10 3.91842 18 10 
1(0.02.4) IN K 1(0.02.5) IN I( 

10. 48tflU4' I 116 0 10. 48'f~;:Si.n 117 110 
1. 438017 15 10 1.439495 18 10 
2.342453 17 10 2.35372 15 10 
3.21546 15 10 3.24065 18 10 
4.06237 16 10 4.1076 12 10 
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Table (4.11). Elaenvaluea ot a-112P1+112x1-ax'/(1+laxl ), tor 
the tlNt tl ve enerlY level. calculated froll !lyperv1rlal 
_tbod: the nuabera 1n the bracket correapoDda to (I) & (c) 
Flrat l1ne corrapond to (led ... perturbation constant; 
Second H08 to (g) ... perturbation constant. 

I ( O. ool---!YJ III ~ IlO. 001, IlOJ .11 lA. 
[0. ,'o~, IUS 0 10 • 11::i::i", ' ____ ,J,8 ;"0 110 

3 14 0 7 10 10 
11. 1101:ft)O. n 114 0 11.486474 , III 0j0j IIU 

0 14 0 6 13 10 
12. 4 114 0 2.4811 112B814b ;"2 110 

9 14 0 2 14 10 
13. 4821~Of f f i 1 cs.,., 121 U OJ.4tS0j11t11b41''':..!4H;j Ib lU 

3 20 0 4 16 10 
14.47114394 ,1~~~H I~l U ,4. 4'(;"IU'IOj"fDOI~1 1"1 110 

8 21 0 2 17 10 
I(O.ool,::iOJ III ~ 1(0.005.1J III lit 
10. ldiUt; 11::i 110 10. 1.1. 11~~ 114 0 

2 12 10 3 14 0 
[1.496"'0(403 116 110 11• UIUo.,o, (4. i lb U 

7 12 10 2 18 0 
12. 4Q7r IA~ 116 110 12 • 4!'i04 , , 116 118 0 

0 13 10 8 19 0 
13. :A?RR 112 110 1;".4041 118610882 IZZ 0 

5 15 10 2 22 0 
~.4775843 114 11U I'" ~41D~:l~, .- I~b U 

7 14 10 - 0 28 0 
f(0.005,5J III lit 1(0.01,2J l!! ~ 
10.48641 "_ 3~1 IH 0 10 .48261 'U841115 115 0 

1 17 0 8 15 0 
11. 48Z;"nl 1~~15 In 0 11.4 ;,o"15"f~tnOjOj~ 110 U 

6 17 0 8 15 0 
[2.4!ii ; I 118 116 U I~. 4U411~~~lb~1~tltstslOj Ilb U 

8 16 0 3 16 0 

13.4' '18815~~ 115 0 13 • 31R4 1!'i3fi~~ IH 0 
2 16 0 2 17 0 

4. ~(H4,1~U14 
i H 0 4. 7;"n IUtll H 0 

4 17 0 1 17 0 
lO.01,5J ill & ~.~ ]I! ~ 
0.49311041871" 115 0 10. _" .- 118 10 

4 18 0 26 17 10 
1. 46651 114 0 [If 42718578 118 110 

6 14 0 82 16 10 
2.415Z·fO.::tsD 113 0 IZ. ;"116477 118 110 

6 13 0 63 17 10 
"3 ~4fin41 3n~ 
.-~ in U I~. 14013 116 110 

9 17 0 354 16 10 
4. 117 0 13.91642 lib IIU 

3 17 0 15 16 10 
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Table (4.12). El.DValUMI or B-ll2Pa+ll2xa_p'/U..-xa) 
tor the tiNt tour --I'D' levels calculated troa the 
Pad6 approxl.anta E[I,N): the m_bera lD the bracket 
corrnpoDd to (I) la (c). 

1(0.1,2) III III IlU.l.2.B) III III IlO.l.3) I. III 
10. 18 18 10. KIZ, 18 18 10.USZ, rs re 
1.1744233671 8 8 1. 2282981948 8 8 1.2576785719 8 8 
1.8831031070 8 8 1.8817228194 88 1.9588387048 8 8 
2. o 1515S1885 8 8 2.4251800025 8 8 2.8087158514 8 8 
IlU._~.DJ III III IlO.l,10) III III 1l0.l.16) III III 
10. 458'I~Ia 18 19 10. ~7V319810 18 18 10. 4"w .... !'C .. ~·/47 18 18 
1.3280418331 8 8 1. 3953728384 8 8 1. 4238849687 8 8 
2.1411809221 8 8 2.2868388450 8 8 2.3567717433 8 8 
2.8408181736 9 9 3.1871248288 7 7 3. 1788822622 8 8 
1l0. 2, 2) III III 1l0.2.2.6) III III 1(0.2.3) III I. 
10 . .,U'.J 17 17 10.4037167892 18 18 10.41S9',nJ485 jIJ f8 
0.9281407S09 7 7 1.07884S3405 8 8 1.1481938772 8 8 
1. 14S5258520 7 7 1.6037923857 8 8 1.7744403191 8 8 
1.2206580711 7 7 2.0974228055 8 8 2. 3839422086 8 8 
1(0.2.5) III IN :(0.2.10) IN IN 1(0.2.15) • IIf 
10 •0141', '8 18 iO. 18 18 10. ~74839'132T 8 la-
1. 2748491752 8 8 1.7354519173 8 8 1. 4129171006 8 8 
2. 062S47M92 8 8 2.2712345228 8 8 2.3439153813 8 8 
2.8484836356 8 8 3.1886818077 8 8 3.2783114084 8 8 
1(0.5,2) ,ft ft (0.6,2.5) •• I. IlO. 6.:U N IN 
10. zsl0581365 8 8 0.~~7085 7 17 10.3718192169 9 9 
0.4851438653 7 7 0.8971718533 7 7 1. 0212a34971 9 9 
O. 5557268829 9 9 1.3359424802 7 7 1.8040289426 9 9 
1.1283491890 7 7 1.7971751960 7 7 2.1947562151 9 9 
1(0.5,5) ft • (0.6.10) 11 IN !(0.5.16) N • 
:0. ,1507 9 9 O.<ag, ,16 7 17 10.4'fUf no 8 8 
1.2210327895 8 8 1.3582778746 7 7 1.4043002434 8 8 
1.9960067~ 8 8 2.2520265292 8 8 2.3348082096 7 7 
2.7744683184 8 8 3. 1479537392 7 7 3.2885125789 7 7 
U,3) 11 11 IU.S) 11 ;11 n.15) 11: •• 
0.3431570119 110 110 10. r: .. a ,a ,U. fA "X 8 8 
0.9562204783 10 10 1. 1954308829 8 8 1.4008787418 8 8 
1. 5317717035 10 10 1.8688573248 8 8 2. 3314809029 8 8 
2.1186156264 10 10 2. 7466352484 8 8 3. 2629190879 8 8 
IU.~) IN III 1(2,5) III I. 1(2.SO) IN IN 
10 • AWl 18 18 10.4002714352 19 19 10. 4Q0441,O~~ 18 re-
1,4704215488 7 7 1.1802036~ 9 9 1.4702554737 7 7 
2. 4500288406 7 7 1.9540673614 8 8 2.4498709083 7 7 
3.4301396212 7 7 2. 7258489369 8 8 3.3299775368 7 7 
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Table (4.13). ElpnvalUH of B • 112P8
+ 112x8 _p l/(1+px8), For the t1rat 

t1 Ye enerl)' level. calculated fro. ~rvlrlal _tboclltbe nuabere In the 
bracket correspond to (,)&(a),Flret 11_ corrapond to (1«) .. perturbatlon 
constant; Second 11118 to (,) .. perturbatlon constant. 

I\O.UUU1,D) III 110.0001.10) III 1(0.0001,20) 111 
10. 48881~', 119558 112 IO.&YYH'''''-KL "'~''''''' III IO.4BB8' ~ll 110 

9 12 7 12 094 13 

11- :'I:oI~1~2°1. 116 11. 0,.,11175 113 11. 1191533'1.103074 rn 
4 18 5 13 087 9 

12. ,,",O~I 118 12 • 11 117 12.~ :lii'tI 116 
0 18 0 17 36 11 

13.4: IIo121 ;.1! 117 13.~' 123 13.48818'187 116991 119 
..• : ' iI S \1 ... '1. \l 29 13 

14 •4'{OJ187W1247;J8 117 14.47 r( 118 14.4756491 tD'i71 ,24 
8 17 4 16 0 16 

\0.0001,100) III 110.0002,10) IIf 1(0.0002.20] 1J 
0.488818ZI:AHts.:JI 1.1. IZZ 10. ~7gllf14 "014. ... IZZ 10. :4~7631462 25 

122 4 19 4 8 
[I. 4~tsf.JODOI~.L20074141 z;J 11 ... , I1 21 11.49'( :T(tiOZZ120 :25 

1 23 9 19 2 7 

12. " il07U 25 12."~.4l" ;23 12. 111114879 128 
0 25 2 16 55 18 

13. 48881ZZ1 :1U;Z74, 1lUll' '7 Z~ 13 •• , I..tI. 23 13.41 124 .......... 
2 28 3 17 6 18 

14. 4{ l~olo.:J~124', 28 14." IIUC; :16 14. 11795 [23 
6 29 2 18 9 18 

\O.UUU~3J 
,. (0.0003,8) .... (0.0004.IOJ 11 

O. 117 15 0 • .aoaJl~10480180 23 O. 4QQ7~16'rutjSl 116 
7 15 0 19 1 16 

11- 12 1. rr 121 1 •• ~., IR 
2 12 8 18 0 14 

12. 4: 12 2.-~~13'15 116 2.~ ' ... 1144 111 
9 12 5 16 4 11 

3. 46282'n:l 10 3.4631022 110 3 • .4~nR7Q lr 
9 10 2 10 9 9 

14.4Z1848 110 14. 422.4' a 113 4.~ 5 
9 10 9 13 8 5 

1(0.005,2) IIf 110.0005,5) IIf 1(0.0006,6) [If 

10.4SMII!'l16248 110 10. "~{1 8 10. 177 6 
8 10 1 9 2 6 

11. 483Z IUU~ 110 11. 48331788 8 11.4918725 7 
2 10 8.., 9 5 7 

12.4'{O.:J:::Its 8 12 •• 'OO.:J.t: 7 12.47060 '0 
8 9 2 7 0 5 

13. 430t) 4 13 • .4~~ 7 13.4226 --a 
6 4 6 7 6 8 

14.358 18 14 .362 5 14.328 7 
9 8 2 5 9 7 
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Table (&.1&). Elgenvalun ot a-ll2Pa+ll2xa+pe/(1+ICXX·>' tor 
the tlrst tl Ye ener., leve18 calculated tro. Jb'pervlrlal 
_thod:the nuabera in the bracket corre8pond8 to (I) & (.). 
First 11ne corraponci to (I.) - perturbation corwtant. Second 
llne to {Il _ perturbation coD8tant. 

1.50508602 
2.5178438 
3.54392 
4.5874 

9 1.5063232 
9 2.522108 
5 3.5541 
6 4.607 

6 
7 
5 
4 
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Table (&.US). Elaenvalun ot a-pl+rl+ArI/U+VI ), tor the 
tlr.t tour ~ level., Flrat HDaI power •• ri •• 

11M; Jb'pervlrlal _tbodl the nuabers In 
to t . 

r 
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Table (4.18). Elpnvalues or S-pl+rl+ArI/U+arl ). tor 
the fh-at fl ve tlDltrm' levela. calculated tro. the PadIt 
approxl-.nt. E [B. B): the nuabera In the bracket 
correspond to (,). (A) and [l J • 

. 
165.2034322656 181.6192066874 93.2683695238 
187.3168908208 195.5744071826 202.4102794043 
198.5135699380 204.1633890606 211:2001773100 
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Table (4.17) Elsenva1u.. ot H-II2P1+II2rI +cr'/(t+.crl ), tor 

the first tl Ye energy level. calculated fro. ~rvlrl .. 1 
.. thod. The nUJIbera In the bracket corre.pond to (.) & (Cl) 
and <t >. 

4.638987472277 
6.785597954 
8.978434 
11.214 

22 5.69751271419 
22 7.86797093 
16 10.08311 
7 12.3402 
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Table (4.18). Elaenval.. ot B-112P1 +1I2rl +II"'/C1+I«rI
). tor the 

around .tate enerlY level calculated trom Pad6 approxlant. E[H. MJ, 
nuaber. in the bracket oorre.poDd to (,) & (.) and <b. 

3.05 6 6 2.89 6 5 2.80 662.75 6 5 
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Table ('.18). E1aenvaluea ot B-lI2P8 +112r8 -art /(1+lcr8
). tor 

the t1M1t t1 ye enerl)' leYel. calcul .. ted. tro. Jb'perv1rlal 
.UlOd. The nuabers In the bracket corre.pond to (I) & (.) 
and <t>. 

4.34184523090877 
6.1559135127 
7.88803158 
9.525380 

23 4.34184523090877 
20 7.044817879 
21 8.73231 
21 10.3164 

23 
23 
13 
13 
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Table (4.20) E1genval .. ot B-112P1+112r1-.... ' /U+aca-I ). tor 
the f1rst f1 Ye enerD' leftl. calcula.ted fro. !b'Perv1rlal 
_tt~d. The nuabera in tbe bNcket oorrnpoDd to (.) • (.). 

1 28 2 30 
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CHAPTER FIVE 

SOME DIFFERENT PROBLEMS 

5.1 Introduction 

Chapter five is devoted to investigating numericall y 

various eigenvalue problems in one and three dimensions, 

using perturbative and nonperturbative methods for the 

following perturbative Hamiltonians: 

1. 

2. 
1 2 1 2 - 1 -Xr 

H = -2 P + -i ( i+ 1 ) r - - Z r e 2 . 

3. 
2 

2 -2 -Xr 
H=P + t(t+1)r -Ae 

4. 

5. 

6. 
1 2 1 - 2 -1 -Ar 

H=iP + 2i(-t+l)r -r e Cos(Ar) 

7 • 
1 2 1 - 2 - Ar [ • Ar] - 1 

H=iP + 2 i (t+1)r - Ae l-e 

8. 
2 2 -2AX -2AX 2[ 2].1 

H=P +X -2e l+e 

9. 
2 2 - 2 .2Xr .2Ar 2 [ 2]-1 

H=P +r +-t(t+l)r -2e l+e 

The energy eigenvalues as computed by more than one method 

agree with each other and with those reported in the 

literature. Beside the methods described in the various 

sections of chapter five, we should note that all the 
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traditional methods of accelerating convergence of a series 

can be used in perturbation theory (e.g renormalised series 

and Pade approximants). 

5.2 Quadratic Zeeman effect 

5.2.1 Introduction 

The problem of the quadratic Zeeman effect for the 

hydrogen atom has attracted much attention because of its 

applications in astrophysics and solid state physics. The 

problem of the Zeeman effect has been studied by many authors 

usina a number of approximate methods. The literature 

provides an exhaustive range of numerical results for 

different range of field strength H.Praddaude [32,1972] 

calculated the 14 lowest-energy levels, assuminar an 

appropriate expansion of the wave function in terms of 

Laguerre polynomials, Gallas [34,1984] arave variational 

estimates of the energies for the first 13 states. Also an 

investigation of this problem was given by Killingbeck 

[33,1981; 35,1985; 36,1985] using several techniques (power 

series, renormalised series and fini te di fference methods). 

The hamiltonian for a hydrogen atom in the presence of a 

constant magnetic field is 

2 
e H= -21 

m [P+~A] 2 _ 
e - c- r ( 5. 1 ) 

where (~= is the vector potential. Assuming the 

magnetic field B to be along the Z direction (~=O,O,B), and 

choosing atomic uni ts such 

the vector potential is 

that h=e=m=l, 
" 

the magni tude of 
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( 5 .2) 

so that 

(5.3) 

!:=iPx+jPy+kPz (5.4) 

~=~B [-iy+jX] ( 5 . 5 ) 

Here r makes angle 9 with the Z axis. tz is the operator for 

the Z component of the orbital angular momentum. Using 

equations (5.2,5.3,5.4), then the equation (5.1) takes the 

form 

(5.6) 

with in S. 1. uni ts. B represents the lIagnetic field 

strength and e, m 
e 

the electronic charge and mass 

respectively. In the units used the parameter 1 is equal to 

the cyclotron frequency. It measures the magnetic field 

strength in uni ts of 
9 

2.35x10 G; equivalently 5 2.35x10 T 

corresponds to the value J=l. By using the spherical 

coordinates 

Then 

x=rSin8CostP 

y=rSin8SintP 

z=rCos9 

2 2 2. 2 x +y =r SIn 8 

Therefore the hamiltonian can be written as 

(5.7) 

( 5.8) 

( 5 • 9 ) 

(5.10 ) 
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( 5 . 11 ) 

In these units the ground state energy is -1/2 at ),=0, and 

l'=O.l corresponds to a magnetic field of (2. 35x 1 0 4T ). The 

. (5 6) 1 2 2S' 20 h h . term in equation . i} r In u as t e expectatlon value 

1 2 I 2 . 2 I ,1_ 1 2 11 I 21'1 I' 2 I g} <n.fin r Sin 8 n~>=gl' <~n r ~n><.fin SIn 8 .fin) (5.12) 

Where 

( 5. 13 ) 

In order to evaluate the quantity (5.12) it is convenient to 

write down the recurrence relations 

m [( t+m) ] m 
Cos8P t = (21+ 1) p .(.-1 + [

( t-m+ 1 )] m 
(2:t+1) p .(.+1 

(5.14 ) 

( 5 . 15 ) 

( 5 . 16 ) 

From equations (5.15,5.16), it is easy to obtain the relation 

( 5. 17 ) 

(5.18) 

( 5. 19 ) 
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_ [(t+m)(t-m) (t+m+l)(t-Il+1)] 
-1- (2l-1)(2l+1) + (2l+1)(2l+3) 

(5,20) 

(5,21 ) 

h I 11 t 'b t' . , b Also t e 21~z term con r1 u 10n 1S g1ven y 

(5.22) 

Therefore to lowest order equation (5.6) can be replaced by a 

spherically symmetric Hamiltonian 

1 2 -1 J 1 ,f,(,f,+l)+m -1 2 2 [ 2] 
H=2P - r + rn + 4" (2l+3)( 2l-1) J r (5.23) 

This use of a lowest order effective Hamiltonian is described 

in detail below. The quantum states of energy E o for a 

particle in a spherically symmetric field are characterised by 

wave function of the form 

(5.24 ) 

The direction of the Z-axis is arbi trary and can be chosen 

along the direction of the magnetic field B. The operator tz 

commutes with the Hamiltonian H for all values of the 

magnetic field and m is thus a good quantum number, l.e the 

Hamil tonian describes a system invariant to rotation about 

the Z-axis. The operators Hand ,f,z must have simul taneous 

eigenfunctions. The functions Yt contain the angle ~ only in 

the factor 
imtl> 

e and the commutation relation [H, tz 1 =0, 

expresses the fact that the Z-component of L is a constant of 

the motion for any spherically symmetric potential. The 
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hamiltonian contains a linear and a quadratic term in the 

magnetic field strength. The ground state (S-state) of the 

hydrogen atom has zero angular momentum, which means that the 

magnetic quantum number must be m=O. For such a !'ltate thf~ 

linear term vanishes; therefore the full Hami 1 tonian (5.11) 

reduces to the form 

(5.25) 

The perturbing potential due to the magnetic field is not of 

a single tensor type but is a sum of tensor operator of rank 

o (with ~=O) and of rank 2 (with {=2). which may be referred 

to as the sand d parts of the perturbation. By using tensor 

operators of definite ~ we can express the perturbation as an 

~=O term plus an t=2 term as follows 

where 

and 

1 
A 1=12 

Therefore the equation (5.25) takes the form 

t " " b 1 22 d where the spar 1S g1ven y 121 r an the d part by 

1 2[ 22] '241 3z-r 

(5.26) 

( 5.27) 

( 5 • 28 ) 

(5.29) 

The Hamiltonian for the different states can be written as 
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follows, with 

Ho 
1 2 -1 

= - "2D - r 

Is H=H + 
0 

122 
ill' r + 1 2( 2 2) '241 r -3z ( 5.30) 

2po ' H=H + 
0 

122 
20l' r + 1 2( 2 2) 40" 3r -5z (5.31) 

122 1 1 Z (2 2) 
2p -1' H=H + IOlr + -}a+ 40" r -5z 0 2 

(5.32 ) 

H=H + 
122 1 1 2( 2 2) 

3d -1' IT1 r + -lm + 56 1 3r -7z 
0 2 (6.33 ) 

H=H + 
3 2 Z 1 1 2( 2 2) 

3d -2' 28 1 r + -lm + 56 1 r -7z 
0 2 

( 5 • 34 ) 

Each V
2 

term has zero expectation value for the statps 

concerned 

The spherically symmetric Hami 1 tonian H-V 
2 

can be treated 

accurately by various methods. To obtain the full perturbed 

energy (E) it will then be necessary to include the second 

order and third order energy shift which is produced by 

adding the V
2 

part of the potential function. As we pointed 

out above, the addi tion of the V 2 potent ia1 term to the 

Hamil tonian does not al ter the energy eigenvalue in f1 rst 

order. We can estimate the second-order energy shift caused 

by the residual perturbation V
2

, E z and E3 can actually be 

closely estimated starting from the Hylleraas functional, 
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which takes the following form 

(5.36) 

where tp is a trial function estimate for the fi rat order 

perturbed wavefunction. By using the renormalised series 

method, it is easy to find Eo' <r> and to get higher (ro>. To 

find the E2 produced by V
2 

we start from the eigenfunction of 

the perturbed radial problem as the unperturbed function. 

Calling this function 4>0 and taking the trial function '" in 

the form ",=f4>o' with f some function of the coordinates, the 

second term in <S. 36) then takes the followin~ form after 

using the relation 

If the Hamiltonian 

H ..t. -E ..t. 
0"'0- 0"'0 

2 
Ho=-aD +U, 

(5.37 ) 

(5.3B) 

with U any function of 

position, then relation (5.38) after tedious algebra and use 

of the identity 

2 2 2 V (fg)=fV g+gV f+2grad(f) .grad(g) (6.39) 

takes the form 

(5.40) 

Then the Hylleraas functional takes the form (with f=kV
2

) 

(5.41) 

The whole set of terms involve only expectation values over 

.0' and standard angular integrals over (8). The radial 
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expectation values can be obtained from the renormaliserl 

series approach. In order to work out the angul ar terms in 

the functional we can use the relation 

(5.42 ) 

«lJn»=(n+l) -1 (5.4~) 

where 

lJ=Cos8 (5.44) 

We also have 

(5.45) 

E3 can be estimated from the formula 

( 5.46) 

(5.47) 

To calculate E
2

, we need the minimum of a function of form 

F(k)=2AkO -B~ (5.48 ) 

The minimum is A2
B-

1
• Taking A and B from the above results 

we can estimate the total second-order E2 effect due to V
2 

We performed the calculation at 1=0.1 for the states in the 

table below. We found the expectation values <rn> (n=2,4,6) 

by using the renormalised series approach. For example the 

total second-order effect for 2P is given as 
- 1 

( at 1=0. 1 ) 
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and also the total third-order effect for the same slate 2P 
- 1 

is given as 

[L2 J3[ 2 32 6 ] -5 40 2k (-3T)<r > =-4.78852x10 (at 1=0.1) 

where the value of k it can be determined from the 

- 1 second-order calculation and equals k=AB . The perturbation 

coefficient in the above calculat i on is (.,2/ 40 ), wh ich i ~ 

actually (A) (see (5.32». The (H-V
2

) energy eigenvalue for 

state 2p is -0.1505220 as found by the renormalisd series 
- 1 

approach, which also gives expectation values 2 <r >=21.1594, 

.. 6 <r >=752.424,<r >=38967.179. The second and third order 

shifts due to are estimated to be (-0.000302, 

-0.0000478852) respectively. The second-order correct ion to 

the energy is six times the third-order correction, Ez and E3 

together give a corrected energy (-0.1508429). This energy is 

in good agreement with Praddaude; using a large scale matrix 

calculation he obtained (-0.150845). The second and thi I'd 

order corrections thus bring our results closer to the 

resul ts of Praddaude and indicate that it is sufficient to 

take the second and third order corrections to obtain a 1000 

energy. The unperturbed 2p_1energy is -1/8, so the V
1 

part of 

the perturbation has given an energy shift (-0.025522), while 

V has given a second order shift (-0.00027302) and a third 
2 

order shift (-0.0000478852). The calculation described above 

can be carried out for various other states, as shown in 

table (5.2), which gives the required express ions for each 

state. 
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state 2k<4»oIV~I4>o> cxk 2 <4» I [avZ]214» > 
o or 0 k2<4» IV

3
14» > 020 

2k ~<r4) 
1 k 2s <r2) k2[ 16 1<r6) s - 2 --

5 2 35 

2k g<r4> 1 2 2 2k2 [ 16 J<r6) apo - k 24(r ) -
7 2 21 

ak !!-<r4) 1 k 216<r2) k2 [ 32 1<r
6

) 2P 2 2 --
- 1 7 21 

2k !!-<r4) 1 2 2 2k 2[_E]<r 6 ) 3d - k 4s<r ) 
- 1 3 2 33 

2k ~<r4) 
1 2 2 2 38 6 

3d - k 24<r ) 2k [--l<r ) 
-2 3 2 33 

We also used the more complicated wavefunctions, 

a trial function and followed the same 

method above to calculate B2 • We obtained the followina 

relation corresponding to this trial wavefunctions for the 1s 

state 

where 

The above approach does not improve the correction since it 

gave a best correction at «=0. 
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5.2.2 The renormalised series method to compute the initial 

energy eigenvalues 

To find the energy of a state in the spherically 

symmetric potential 

-1 11 2 2 V(r)=-r +A(-\"m)l r ( 5 • 49 ) 

We write the radial Schrodinger equation in this form 

(5.50) 

Using the renormalised series approach we rewrite the 

potential given in equation (5.50) as 

where 

and 

( ) 
-1 1 11 -2 2 

V(r)=- p+kX r + ~(-\'+1)r +Ar 

2 A=A(,(.,m)l 

(5.51) 

( 5.52 ) 

(5.53) 

For the potential aiven by equation (5.51) the hypervirial 

relation (2.3) gives the following relation between the 

various expectation values for states of angular mOllentull t 

takes the form 

2 (N + 1 ) i E ( I ) A ( N , M - I ) = N [ t ( .t+ 1) - t ( N 2 - 1) ] A ( N - 2 , M ) 

- (2N+1) [1JA(N-l,M)+kA(N-l ,M-1 >] 

+ (2N+4)A(N+2 ,M-l) (5.54) 

By using the Hellmann-Feynman theorem we obtain the 
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recurrence relation 

(M+l)E(M+1):A(2,M)-kA(-1,M) ( 5 • 55 ) 

We can determine the energy coefficients E(M+l) and the 

series coefficients A(N,M), by using equations (5.54,5.55), 

221 with the aid of the unperturbed energy E(O)=-p /2n -2¥m, and 

the ini tial coefficient A (0,0) : 1. We also tried another 

renormalised series approach to compute the energy 

eigenvalues. The renormalised potential corresponding to this 

approach takes the form 

-1 1. 1# - 2 [2 -1] V(r)=-ppr +~(~+l)r +~ r -Kr ( 5 • 56 ) 

(5.57 ) 

(6.58) 

2 
i.e the perturbation involves X rather than X. The purpose 

of using this modified renormalised technique was to seek an 

improvement in the accuracy of the resul ts. Th is approach 

seemed helpful for higher excited states at low values of 

magnetic field. The recurrence relations corresponding to the 

modified renormalised series approach are 

( 2 N + 2 ) t E ( I ) A ( N , M - I ) = N [ t ( .f.+ 1) - t ( N 
2 

- 1 ) ] A ( N - 2 , M ) 

- (2N + 1) [IJPA ( N - 1 , M) + kA ( N - 1 , M - 1 ) ] 

+ (2N+4)A(N+2,M-2) 

~+1)E(M+l):2A(2,M-l)-KA(-1'M) 

( 5 . 69 ) 

(5.60) 

The difference between the two approaches can be seen from 
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equations (5.54,5.55.5.59,5.60), in the third term and first 

term of the right hand sides of the equations. The same 

technique was used for anharmonic oscillators in chapter 2 

and helped to compute energy eigenvalues for 
6 8 

(~x ,~x ) 

perturbations which were an improvement over those given by 

the usual approach. 

5.2.3 Results and discussion 

We have calculated energy levels for all thirty states 

which have principal quantum number n=1,2,3,4, for magnetic 

field strengths in the range 0.005s 1s0.01. Also we calculated 

thirteen states with (n=1,2,3) at 1 =0.1. We computed the 

results using the renormalised series approach. Our results 

are converged to (14-figures) at field values corresponding 

to 1=0.005 and 1 =0.01. This accuracy decreases for higher 

states. While the ordinary renormalised series (~I,I=l) does 

I 
not work at 1=0.01 and n=4, the other approach (X, 1=2) works 

satisfactorily. Our results at 1=0.005 are in good agreement 

with the results of Gallas[34,1984], which are converled only 

to four significant filures. Two considerations govern our 

calculation at low magnetic fields; first, to show that the 

two perturbation approaches work very well and, second, to 

compute the energy eigenvalues for higher states. In table 

(5.3), it is clear that the renormalised series method for 

H-V gives a very good upper bound to the total energies, 
2 

while using the second and third order correct ions to the 

energy bring our results very close to the results obtained 

by Praddaude; this is clear from table (5.2). Killingheck 

[14,1981] estimated second-order corrections, so our work is 
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an extension of this work. Table 5.1 shows the expectation 

value for (r n
), table 5.2 shows the energy and the second and 

third order corrections to the energy. Table (5.4) shows that 

the agreement between the results of the two perturba t ion 

approaches are very satisfactory at (1=0.1) for states with 

n=1,2. The number of coefficients required to get a converged 

energy eigenvalue from the renormalised series is less with 

the X2 approach; this is clear from our results as shown in 

the tables (5.4,5.5). We believe our results demonstrate that 

the renormalised series method work excellently for low 

range values of magnetic field (where the series converge 

quickly) but does not work for high values of magnetic field. 

The energy eigenvalue associated with the 2p(+1) state can 

easily be calculate from the results for the 2P(-1) state. 

The term the linear Zeeman term 1n equat.ion 

(5.30-5.31); for the 2p(-1) state we have m=-1 and for the 

2p{+1) state we have m=1, therefore they differ in energy by 

amount (I),which means that to get the energy eigenvalue for 

the 2p(+1) state it will only be necessary to add this amount 

to the resulting energy for the 2p(-1) state. In a similar 

way we can compute the ener,y eigenvalues for the other 

states; therefore states with m)O canno~ treated separately, 

since B(t,m)-E(t,-m) has the fixed value ml. 
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Table (5.1) some <rD) values at 7-0.1. 

Table (5.2) Energies with second and third correction to 
the energy at 7=0.1: the figure between the bracket ls 
the power of (10) multiplying the number. 
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Table (5.3). comparison of our energy eigenvalues, which 
are calculated by using renormalised series approach with 
those of Jason (1984) and Praddaude (1912) at (~=O.l). 

Table (5.4). comparison between the calculations of 
approaches of the renormalised series for ls, 2s, 2p(O), 
2p(-1) at ~=O.l 

the two 
2p(+1), 
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Table (5.5) comparison of the enerlY eigenvalues. upper 
lines. renormalised series calculations from equation (6.80) 
lower line. renormalised series calculations from equation 
(5.65). The eapt)' apaces _an that the correspondina 
eigenvalues cannot be reached through that approach. 

9 -20 



-171-

Table (5.5 contlnued) 

4f(-3) -0.031185612 26 -280 
2 

2 13 -20 



-172-

5.3 Hydrogen atom with a Yukawa potential 

The general screened Coulomb potential for hydrogen like 

atoms may be written in the form 

-1~ n 
V(r)=-Zr L Vn(Xr) 

n.O 
(5.61) 

where Z is the nuclear charge and X represents the screening 

constant. Screened Coulomb potentials have received a great 

deal of attention , not only in the field of nuclear physics 

but also in other fields such as atomic, solid state and 

plasma physics. The problem of the Yukawa potential has been 

studied by many authors, employing different approaches. 

C.S.Lai [38,1984] obtained, using Pade approximants [6,6] and 

[6,7], the energy eigenvalues for different values of X and 

for various eigenstates. Rdward R. Vrscay [39,1985] developed 

a power series method to calculate to large order the 

Rayleigh-SchrOdinger perturbation expansions for energy 

levels of a hydrogen atom with a Yukawa type screened Coulomb 

potential, treating the 1s, 2s and 2p levels. We employ the 

Hellmann-Feynman theorem and the hypervirial theorem to 

calculate the energy eigenvalues of various energy 

eigenvalues to high accuracy. In our work we wish to show 

that the renormalised series method can be used to calculate 

the bound-state energies of a screened Coulomb potential to 

very high accuracy. The present section treats the Yukawa 

potential. This study was motivated by the work of Lai 

[38,1984], who observed that [N-1,N] and [N,N] 

approximants to the energy series provide accurate estimates 

of eigenvalues. The method which he used raises the question 
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of whether or not the renormal ised series method can gi ves 

accurate estimates of the eigenvalues. The two approaches 

(his and ours) which have been employed to study the 

potential use the Hellmann-Feynman and hypervirial theorems 

but our approach uses no Pade approximants. The renormalised 

series method for this problem is complicated by the presence 

of the renormalisin, constant K. A proper treatment would 

necessarily involve the choice of an ideal value for the 

renormalising constant K. The Hamiltonian for the Yukawa 

potential can be written as 

1 2 1" -2 Z -1 -~r H= - 2D + ~(~+1)r - r e (5.62) 

• _ ~2+ tt(.f.+l)r- 2 -Z(J./+MC)r- 1 -zr- 1! Vn(~r)n 
na 1 

where 

J./=1-UC 

where t is the orbital an,ular momentum quantum number. Here 

we are usin, atomic units, h=e=m=1. By employing the 

Hellmann-Feynman theorem and the hypervirial theorem as in 

previous sections the followin, two relations are obtained 

- (2N+l) [J.IB(N-l ,M)+KB(N-l ,M-I)] 

-2 vn (2N+n+2)B(N+n,M-n-l) 
naO 

(5.63) 
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(5.64 ) 

The coefficients V in (5.63) and (5.61) can be written as 
n 

V =(_1)n+l 

n (n+1)! 
(5.65) 

for the case of the Yukawa potential. The coefficients V 1n 
n 

aeneral alternate in sian and decrease with increasing n. 
2 '" 

Where the eneray of the unperturbed nth state E(O)=-~ /2n'· is 

known, the equations (5.63,5.64) suffice to calculate the 

full set of E and B coefficients, with the aid of equation 

(5.65) and the startina term B(O,O) which is obtained from 

the condition of normalization 
o 

<r >=<1>=1. Our numerical 

results, presented in table (5.6), reveal that at low values 

of ~ for states (ls,2s,2p) we have excellent aareement with 

the values of Edward R.Vrscay [39,1985]. Our approach 

provides extremely accurate eiJenvalues at low A. These 

values are accurate to all the diJits shown and agree to over 

(19) diJits with those of Vrscay. The power of this 

renormalised series techniques at low values of A has thus 

been demonstrated. However, at larJer values of A, the 

accuracy decreases as expected from our previous renormalised 

series calculations, al thouah the accuracy is better than 

that of Lai [38,1984]. 
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Table (5.6). The energy eiaenvalues of s-iP2 + itCt+1 )r -2_r -le -).r 
by using renor.allsd series. 
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5.4 The K-and L-shell bindine enereies of atom: 

In the precedine section we have calculated the 

bound-state energy eieenvalues for a Yukawa potential wi th 

Z=l. In this section we will extend our discussion of the 

Yukawa potential of the form 

- t V(r)=-Zr exp(-lr) (5.66) 

to the case Z>l, where the screening parameter 1 is given by 

(5.67) 

correspondine to the Z dependence of the reciprocal of the 

Thomas-Fermi radius of the atom. Grant and Lai [37,1979] have 

recently evaluated the energy levels for atoms with (4~Z~84) 

using Pade approximants [6,6] and [6,7], for K-and L-shell 

electrons with (1
0
=0.98). The potential given by equation 

(6.66) can be expanded as 

(5.68) 

By eaploying the Hellmann-Feynman theorem and the hypervirial 

theorem, the following two relations are obtained 
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-z (2N+l) [~(N-l ,M)+KB(N-l ,M-l)] 

where the energy of the unperturbed nth state is 

2 2 

R(O)=-~ 
2n2 

(5.69) 

(5.70) 

( 5 . 71) 

Here we use atomic units h:e:m :1, 
e 

so that distances are 

measured in units of the Bohr radius a o and energies in units 

of 2Ry:27.212ev. The coefficients V can be written 
n 

for 

and for ~=~ as o 

3 -1 [ .!]n+1 
V n: -Z [ (n+ 1) ! ] 

(5.72) 

(5.73) 

The two coefficients (5.72,5.73) in general alternate in sign 

and the coefficients (5.72) decrease with increasing n, but 

the coefficients (5.73) decrease less quickly than the 

coefficients (5.72). For the case Z)l, in table (5.7) we list 

the energy of states (1s,2s,2p,3s) for different values of ~ 
o 

and different values of Z (2~Z~65). Our results are 

summarized in table (5.8), ranging from (4~Z~84) at 

intervals of 5, in order to cover the range of low to high 
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atomic number. For a given shell the resul ta improve with 

increasing Z, but the accuracy of the results decreases as 

we go to higher shells. The renormalised series approach as 

introduced by Killingbeck is a very elegant and powerful 

approach to compute the energies eigenvalues with high 

accuracy. The approach achieved an accuracy of fifteen 

significant figures for higher values of atomic number Z; to 

our knowledge such a high degree of accuracy for the 

eigenvalues of the Yukawa potential has never been obtained 

by any other method. As a next comment we wish to draw 

attention to the fact that the renormalised series work 

1/3 
equally well for ~=~o and A=~OZ as perturbation parameter; 

we used the two values of ~ in order to verify the accuracy 

of the renormaliaed series for this calculation. Using two 

different value of screening parameter provides alternative 

approaches for computing energy eigenvalues. The calculated 

energy eigenvalues diverge at low atomic number Z, for the 

K-shell, whereas the series will work for zero values of the 

renormalising constant for Z>29. 
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Table (5.7). Bound-state energies (in ev) for Yulcawa 
potential for some values of (Z) for states 
(ls, 2s, 2p, 35); First line calculation wl th (~-~ ) as 

8creening parameter; Second line (A-~OZl/2) as acreelng 

parameter. 

4 45 .2 1 50 .2 
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Table (5.8). Bound-state energies (in kev) for Yukawa potential for 
some values of (Z) with (Ao= 0.98) for states (ls,2s,2p); First 

line calculation with (A=Ao) as screening parameter; Second line 

(A=A Zl/3) as screening parameter. 
o 

IZ ls IN -It 2s N -K 2p 
[4 -0. IH!-Il ~1/'~11 139 1 

8 55 1 
'9 -0. 01 loo.;iIOu~c:;a ltiti 1 -0.0148 30 1 

8 56 .5 8 31 .5 
:14 -1. 'd/Uet-11 le~ 1 -0.110653 43 1 -u. U"~~4 

8 71 .5 3 42 .4 5 
19 -3.68841556B4zn~ ItiH 1 -0.3151332 4B 1 -0. ZtH44;fB 

3 71 .5 2 51 .4 80 

124 -e. 1 4:;...oHHhlll ilJ.~" 57 1 -U.e41001~ti 50 1 -u. t:HZ4"1ZZ 
7 77 0 5 55 .4 2 

[29 -9. 74r "C:;UC:; 4~ 0 -1. sn 5~ 1 -1. 01~o99191 
2 42 0 1 49 .3 1 

1
34 -12.tI'dot,l,l 77 ~'( ° -1. 11'd 52 1 -1. 58991H404 

7 27 0 8 51 .3 4 

[39 -17.3HI6Zt:ff173904 ~4 0 -2. 41;;'4U~H6~1 ti~ 1 -Z.~051975508 
4 24 0 1 31 .1 8 

44 -~~.4314047781598 2~ U -3. :~ 62 1 -3. I HZ~IJ.' ~I1I1H 1 
8 22 0 3 93 .1 1 

49 -ZB.13711U~t)IGo;Joo;J 21 ° -4. ~~ti'f 1J.~lJ.nr-~lJ.r 166 1 -4. 10~HUlr'i~1.Oo':h"'-h 
5 21 0 0 36 .1 6 

54 -~4. tiUl.~1U Itloo~106 118 U -ti.IJ.~, '1-'00 16B 1 -ti.311lfi [118 
6 19 0 0 84 .2 8 

[59 -41. ~:;.I:;.I~7Z~QIJ.~~·~( 118 0 -e. {t)U 1660 IIl::IZ~l::Il 78 1 -6. II 

0 18 0 1 89 .2 0 

164 -4~. :;.IlIhLJl ,1784047 lIB 0 -8.2157531116Z~~0 74 1 -8. UOUO/UH~lIJ.QR' IR 
7 18 0 4 83 .2 5 

1
69 -57. ~nQQ~"'~l'(~l~l 117 U -~. Het-Ut LIJ. 172 1 -9. R4 I~"fl 

1 17 0 8 76 .2 1 

74 -66. :JJ: 473470 '17 0 -11. 010/ i4,157 169 1 -11. 390', tfo.G 11 'r 4"16 

0 17 0 7 65 .2 6 
79 -·(e. 774:;.1.:;.I,lll::IJI756 le U -13. 4R4H!-I( IIJ.:;.I ,0749 66 1 -1~. ~BB'fl:~7:u~n7R!'i 

6 16 0 9 59 .2 5 

84 -Hti. tiOI~I.:sli 10 ° -15.!'i4!'i4~nnn~4nn~ 65 1 -15. i41J. IOc:;{ 

8 16 0 9 59 .2 7 

N -It 

41 1 
38 .3 

15Z 1 
48 .3 

149 1 
35 .2 
159 1 
43 .2 
lti·, 1 
43 .2 
164 1 
98 .1 

169 1 
97 .2 
~B6 1 
92 .2 
77 1 
89 .2 
~U 1 
86 .2 
,BO 1 
80 .2 
IBU 1 
90 .3 
1U 1 
82 .3 
167 1 
80 .3 
16'1 1 
81 3 
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5.5 The energy eigenvalues for the Gaussian potential 

The solution of the Schrodinger equation with an 

attractive radial Gaussian potential of the form 

'" V(r)=-Aexp(-Xr~) is of importance in nuclear physics.It has 

been used as a potential model in the theory of 

nucleon-nucleon scattering. Bessis, et. al [40,1982] have 

determined its bound state energies fairly accurately using a 

perturbational and variational treatment on a conveniently 

chosen basis of transformed Jacobi functions. The results of 

Lai [41,1983] have been obtained by using the 

bypervirial-Pade scheme for various eigenstates. Chatterjee 

[42,1985] applied the method of 1/N expansion to obtain the 

bound state energy levels. The Schrodinger equation for the 

radial part of the attractive Gaussian potential is given by 

(5.74) 

where the units 2m=b=1 are used, and the function in equation 

(5.74) can be expressed as 

- 1 V(r)=r 41(r) 

2 
The potential Aexp(-Xr ) can be expanded as 

with the potential coefficients V given by 
n 

V =A(_)n[(n+1)!]-1 
n 

Then the equation (5.74) takes this form 

[ 2 p p - 2 ~ n 2 n + 2] I 

-D +~(~+l)r +L VnX r 41(r):B ~(r) 
n.O 

(5.75) 

(5.76 ) 

(5.77) 

(5.78) 
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with E =E+A. The function ~(r) must vanish at r=O. Now, 

applying the hypervirial theorem, the Hellmann-Feynman 

theorem and using equation (5.77), the relation between the 

coefficients B(N,M) and the energy coefficients E(M) can be 

expressed as 

+2 Vn [2N+2(n+2)]B(N+2(n+l»,M-n-l) 
n.O 

(5.79) 

(5.80) 

The unperturbed value of B is given by 

B(O)= [(4n+2.t+3 }fAJ-A (5.81) 

where n is the principal quantum number, -t the angular 

momentum and we set A=400 to agree with previous authors. The 

recurrence relations (5.79,5.80) with equation (5.81) and 

initial condition A(O,O)=l can be used to evaluate the energy 

coefficients E (M) • The success and power of the method may 

strongly depend on the state and the angular momentum. The 

convergence rate decreases noticeably as (.t&n) increase, as 

shown in table (5.9). This situation occurs in all problems 

involving eigenvalues in perturbation theory. The 

calculations show that the present procedure converges more 

quickly and accurately at low values of (-t&n). Our resul ts 

are very accurate in this low range. The degree of agreement 

between our results and those arising from other methods is 

very good, both for ground and exci ted states. For -f..> 7 we 
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have not found numerical results in the literature, but our 

results show the eigenvalues for these states. Our main goal 

is to show that the energy eigenvalues of the attract i ve 

radial Gaussian potential calculated from the hypervirial 

method are in good agreement with other numerical results. We 

notice from table (5.9) that for the ground state and some of 

the first few excited states at low value of angular momentum 

we find the energy values with an accuracy of 20 significant 

figures. Such a high degree of precision has not been 

obtained before by any other approach. 
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Table (5.9). The eigenvalues, (-E) for Gaussian potential, as 
calculated by Hypervirial method, for different values of angular 
momentum, The empty spaces means that the corresponding eigenvalues 
cannot be reached by the Hypervirial method. 

EO IN It E1 IN ~ 

341.89521456123831126 17 0 269.64445939601828764 22 0 
304. 4t;.....:H~iH~18·(J~~i049 20 1 235. 4~(If -1{H4~, IGf J. 
268.11.07~~74·(~U~~f(~~ 24 _2 2U2. 431257341:<l4~4~ ~ _2 
232. 875~OOfiI640"(OI~81 ;:IU ~ nl!.~;:Il;:1", l54B4H~5 I~O ~ 

198. (~ts~I\Jl 13"[ ~ L40·1351:-1~:-C~H4~~ ~ ~ 
165.928IQ~~4 115 145 5 110. ~~. 14~2 [113 0 
134.~~~Si-f7 149 ts J:f!.-==---......... D58 )~ ~ 
104.05115303117978 I~·( "r ~.(. 196331150 10;:1 ".L 
75. 11U228 159 8 32. R~44:4;'(4 ~ 8 
47.88:)11~~J ItH _9 l.Q.483~1 [!i2 9 
22. 269860J! 162 110 -9.356 l!);:I 10 

-14.2981 163 111 
-22.711 169 12 

E2 IN It E3 IN It 

203.98352879728788993 33 0 145.377898018770840 36 0 
173. ~44~~04,T(591UI9~ 137 1 118.~lGGG81;:l ~ 1 
143.809144IH4~ .J3Q 138 2 92.tsl i475 142 -~ 
115.7541RR~~~183 141 ;:I ~. !lH ~ti ~ 
89. 17.l1J 143 4 46.~~~ [!)~ 4 

-64. 1958'(tst13 152 -~ 2D. ((Itsol ~ ~ 

40.988fG~G~ 154 6 9.12~1 Ltj6 ~ 
19. 812·(~~ 10D J -0.14 l°.i ·f 

1. 1308 164 8 

Et IN It Ea IN It 

94.457747566152 40 0 52.143586555 45 0 
71. 1134691 144 1 34.1~~~47 148 1 
5O.ot)(01:l1606 149 ~ ~.44ruulH ~3 _2 
31. 521072_ 149 _3 J~._672Q ~"' _3 
14.RH14S 156 11 
1. 2909 63 5 

Ee N t E7 IN t 

19.96628 43 0 1.3384 54 0 
8.08;:1U 51 1 
0.151 ~"f _2 
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5.6 Eigenvalues of the hydrogen atom 

The problem of the perturbed hydrogen atom has received 

great attention in the last few years and has been attacked 

by various approaches. Killingbeck [43,1977J attacked the 

problem by using a non-perturbative finite difference method. 

In a subsequent work Killingbeck and Galicia [44,1980J used 

bypervirial relations together with the Hellmann-Feynman 

theorem to get the energy coefficients of the energy 

perturbation series. Lai and Lin [45,1981] applied the 

Hypervirial-Pade framework to calculate the energy 

eiaenvalues of various eiaenstates, Austin and Killingbeck 

[46,1982] have used a renormalised series approach to compute 

the energy levels of a perturbed hydroaen atom. 

5.6.1 Power series approach 

The power series approach to be discussed in this 

section allows us to compute the energy eigenvalues for the 

perturbed hydrogen atom. The power series approach is one of 

the simplest and most accurate methods for calculating 

ei,envalues. The Schrodinger equation for a system in which 

the potential depends upon the distance r (spherically 

symmetric potential ) is taken in our calculation to have the 

form 

( 5 • 82 ) 

where 

(5.83 ) 

In (5.83) ~(r) is the radial wavefunction, which is 

independent of the angles, and y{(e,~) is a spherical 
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harmonic, which is independent of r. If we insert equation 

(5.83) into equation (5.82) and rearrange, we obtain the 

radial equation 

(5.84 ) 

where (t) is the angular momentum and <p( r) =r - 1R ( r). We can 

express equation (5.84) with a new wavefunction R(r) as 

(5.85) 

where 

t+1 
R(r)=r ~(r) (5.86) 

If we insert equation (5.86) into equation (5.85) we get 

The wavefunction ~(r) can be expressed as 

(5.88 ) 

For a perturbed hydrogen atom we take the potential VIr) as 

- 1 V(r}=-r +).r (5.89) 

If we substitute equations (5.88,5.89) in equation (5.87) we 

obtain this recurrence relation after some algebra 

[ n + 1 ) [n + 2 t+ 2 ] S ( n + 1 ) = 2 [ ( .t+ 1 + n ) 13- 1 ] r S ( n ) 

[ 2J 2 2 - 2B+f3 r S(n-l)+2).r S(n-2) (5.90) 

where 

(5.91) 

To uae equation (5.90), S(O) i •• et equal to 1 tt') (hut 
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eigenvalues appropriate to the Dirichlet boundary conditions 

'(~)=O. For a given (~) and two trial energies E1 and E
2

, the 

power series approach works out each 8(n) and the sum of the 

8(n) at a specific r value, starting with S(0)=1 and 

8(-1)=8(-2)=8(-3)=0. Although it takes a little while to find 

an appropriate ~ value, there is usually quite a wide range 

of ~ over which ,ood results can be obtained. If ~ is chosen 

reasonably the series quickly conver,e and lead to two values 

F(r,E
1

) and F(r,E z )' from which an interpolated energy can be 

found which would have ,iven F(r,E)=O. After a few 

repetitions the ei,envalue corresponding to the boundary 

condition '(r)=O is determined very accurately. For this 

radial problem we cannot use the even parity of the 

potential, because the coordinate range is from O~r~~. 

5.6.2 Renormalised series approach 

It has been shown by Killin,beck [14,1982) that the 

hypervirial relations yield the perturbation series for the 

ener,y E and for the expectation values <rn> for a hydrogen 

atom with perturbation p.r), without the calculation of a 

perturbed wave function. We also use the renormalised series 

hypervirial approach for the perturbed hydrogen atom. The 

radial 8chrodinger equation for this perturbed problem can be 

written as 

1 2 [ -1 1 2] "2DR(r)- r -~r - ~(.e.+l)r- R(r)=ER(r) (5.92 ) 

We write the potential ,iven in equation (5.92) as 
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-1 ( -1) V(r)=-Mr +A r-Kr (5.93 ) 

where 

J.l= 1-AK (5.94) 

We substitute the series expansions given by equations 

(2.6,2.7) into the hypervirial relation (2.3) with 

It(~+1), V =(M+AK), V
1

= A. Collecting terms, we find 
2 - 1 

v = - 2 

- (2 N + 1) [J.lA ( N -1 , M ) + KA ( N -1 , M - 1 ) ] + (2 N + 3 ) A ( N + 1 , M - 1 ) ( 5 • 95 ) 

The relation between the energy series and the A(N,M) series 

is given as follows (from the Hellmann-Feynman theorem) 

(M+ 1) B (M+ 1) =A ( 1, M) -KA ( -1, M) , (5.96) 

The unperturbed eigenvalue is E(O) = -M
2
/2n

2
for this case, 

where n is the principal quantum number (1,2,3 .•. ). The 

equations (5.95,5.96) suffice to calculate the full set of E 

and A coefficients. We only need the value of E (0) gi ven 

above and the starting term A(O,O) =1. 

5.6.3 Finite difference approach 

We use the finite difference method as a third method to 

calculate the eigenvalues for the perturbed hydrogen atom. 

The equation (5.87), after multiplying both side by r, takes 

the form 

(5.97) 

To use the finite-difference method for this equation we make 
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the substitutions 

2hD~(r)=~(r+h)-~(r-h) ( 5 . 98 ) 

2 2 h D ~(r)=~(r+h)+~(r-h)-2~(r) ( 5 .99 ) 

The equation (5.97) reduces to the form 

[r+ (t+1)h ]~( r+h) + [r- (t+1 )hJ ~(r-h) = 

2r~( r) +2rh 2 [V( r) -E] ~(r) (5.100 ) 

The next step is the introduction of a ratio variable R(r), 

defined by the equation 

where 

~(r+h)=R(r)CP(r) 

2 R(r)=l+h F(r) 

(5.101) 

(5.102) 

With the substitution (5.101,5.102), the equation (5.100) is 

converted to a recursive equation 

[] [ ]
F(r-h) 

r+H F(r)= r-H R(r-h) + 2 [V (r) -EJ r (5.103) 

Here H:(t+l)h is the only quantity which explicitly involves 

the anaular momentum. If we start at r:H, then the first term 

on the right vanishes, so we can arbitrarily set R=F=~:1 at 

r:H-h without disturbing the rest of the calculation. The 

rest of the paraphernalia (use of two E values etc) is as 

before. By setting {:o we get the s-state solution, which is 
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appropriate to an odd solution for a one-dimensional problem. 

By setting t=-l, with F(O)=~[V(O)-E], and starting at r=h we 

get results appropriate to an even solution in one dimension. 

The eigenvalue associated wi th strip width h is related to 

the true eigenvalue by a perturbation-type expansion in h 

2 4 
E(h)=E+h E +h E --------2 .. 

(5.104) 

To get E we do the calculation using several different strip 

widths, (h,2h,4h). The eigenvalues obtained are in error by a 

f d h 2. leading term 0 or er We have applied a Richardson 

extrapolation process to convert them to very accurate 

2 4 
results. To correct for the hand h error terms we use an 

extrapolation formula given in the form 

E=!5[64E(h)-20E(2h)+E(4h)] (5.105) 

5.6.4 Results and discussion 

The calculations reported here are for positive A, so 

that well defined bound states exist, although quasi-bound 

states exist when (A) is small and negative. We have used 

three approaches to compute the energies eigenvalues for 

various states and different values of perturbation parameter 

A. Our main goal is to obtain accurate eigenvalues for this 

problem and to compare the accuracy of the results as 

obtained from the three approaches. The results are shown in 

the table (5.10) and from these results it is clear that the 

renormalised'series method works excellently at low values of 

the perturbation parameter, where the series converges very 

quickly and certainly leads to accurate eigenvalues 

calculations. At A=O .1 the accuracy is to 20 signi ficant 
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digits, and in fact the accuracy of this technique is 

crucially restricted by the choice to the value of the 

renormalising constant k The rate of convergence is 

sensitive to the value of k The finite difference and 

power series methods work very well to compute the 

eigenvalues, and their agreement is in general excellent. Our 

confidence in the accuracy of the power series approach comes 

from the following check; the computed eigenvalues are stable 

wi th respect to changes in f3. We believe that the present 

resul ts which have been calculated by the three approaches 

are very good compared to those of other methods which have 

been available for computing the eigenvalues for this 

problem. We have used double precision arithmetic of 20 

digits. 
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Table (5.10). Eigenvalues of H-p2_r -l+t (t+l)r-2+Ar, First 
Une; power series calculation; Second Une, renormaUsed 
series calculation; Third line, finite difference 
calculat ion. 

IStatel A t; IR 113 IN -~ n 
rts 10.10 -0. '11 14 11::> ItI 

-0. I I I Ill~RR"'O[l4 ~~ I~ 
-0. " (0456 10.005 

rts 10.20 -0. 2356474C i151~~ ~ ~ 
-0. 23504'(1l ~ ~ 
-0.2356474fl4,",~)( 10.00J 

rts 10.3 -0.1' 11 115 H 
-0.1' .1596 [;)0 I::> 
-0.1IB9~~6159693 10.0045 

11S, 10.40 -0. i471.:nSl0934 115 IS 
-0. (JIIK~'1!\~'1"'S4 @! ~.~ 
-O.l ,7137870 10._005 

11s 10.5U 0.OS'(1l ... n!'l4 116 IH 
O. m:r(47n"4 1::11 14 
O. m:l14~n"4:.c,",:.c;.l 10.005 

11s 10.60 O. 1QQ;.IH1l7n~1~ ,18 112 18 
O. 1~~7.B4 .... () 146 13 
0. IQ!oI .... H4;.1n'i146 IU.UU40 

11s 10.70 O. "~/aof~~~~oJlltl~ Il~ I~ 
_0. "~fao(50 l!I 12.6 
O.4:::tllts~IOU~"'44 10.0045 

11s 10.80 O. 'lltH3U 110 ItI 
_0. ~, ~! ~ 
O. 10.0045 

11s IU.90 O. 114 Its 
O. os 1Il~ 12.6 
O. '~ 

10·oo!! 
11s 11.00 0.577~1351961 ll~ ~ 

0.5T~!:3 lI,l::; 11. Ho 
O. 5T(m~5196~5 IU.UU~ 

12s 10.15 O.ll 'l I~ I~ ~ 
0.46~ 40 1J 
O. III ~.~ 

13s 10.02 O. 1J'(nR441 '1HHloH 11t1 ,H 
0.13'(nR44r _3t1 '(0 

0.1J1U~440788!614 10.Ul0 
[2p 10.10 O.~4:::"UfOtstsOfOObl~ 115 9 

0.2220758 5~ ~u 

O.~uf_~aof U.Uuo 
2p I O.Jo 0.~"'R7! ,77485 ,15 8 

O. 102 18 
O. ""(5 10.000 

[3d 10.02 O.U~"OUOf L.4,116 I?J! ~ 
0.n~~'"'()ti13 137 10 
O. 1 I III IU.Ul~ 
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5.7 Polynomial perturbation of a hydrogen atom 

5.7.1 Introduction 

The s-wave Hamiltonian for a hydrogen atom wi th the 

perturbation term (2Ar+2A2r2) can be written as 

1 2 -1 2 2 
H=-2D -r +2Ar+2A r (5.106) 

and has been studied by Killinabeck [47,1978;48,1980]. This 

Hamiltonian possesses the exact ground state energy and 

wavefunction given respectively by 

1 
E =- - + 3A o 2 

IV o=exp (-r-Ar 2) 

(5.107) 

(5.108 ) 

IV correctly describes a bound ground-state only if A>O, 
o 

whereas for A<O the wavefunction is not normalisable. On the 

other hand IV( -A) is an eigenfunction of H (- A), not of H ( A) . 

Killingbeck [47,1978] calculated the first two terms for the 

ground state energy series E=LE(n)An, yielding E=-~+3A, and 

showing that the coefficients E(2) and E(3) are zero. 

Killingbeck [48,1980] has computed numerically the resul ts 

that all coefficients E(n) for 3<n<16 vanish. Saxena and 

Varma [49,1982] have treated the case (A<O) , by means of a 

t b t ' " f 1"1- 1/2
• Thl'S allows a per ur a 10n expans10n 1.n powers 0 fI. 

unified treatment of both positive A>O and negative A<O. 

Their results cover a large range of values of 

(-0.02~A~-20480). Saxena and Varma [50,1982] have treated the 

same problem, and they have obtained an infini te number of 

exact solutions for the excited s states for certain specific 

values of (A), corresponding to both positive and negative A 
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values. Cohen and Herman [51,1982] have calculated the ground 

state energy by means of variational modification of 

Rayleigh-Schrodinger perturbation theory. They computed the 

energy eigenvalue over a wide range of A (-0. 02~>"~-320) ; in 

spite of the large negative value of (>.. ), the results show 

satisfactory convergence for all values of (A). 

5.7.2 Renormalised series 

We treat this problem by using renormalised perturbation 

series. The potential can be written as follow 

-1 [ 2 2 -1J V(r)=-~r + 2>..r+ 2A r -Kr (5.109) 

where 

~=1-KA (5.110) 

The first step is to insert the series expansion for E and 

< r n >, as given in previous sections, into the hypervirial 

relation, wi th V _ 1 = (~-KA) , 2 
V = 2 A and V = 2 A • 

1 2 
The following 

relations is obtained 

(2N+2)~ E(I)A(N,M-I)= - ~(N2_1)A(N-2,M) 

- ( 2 N + 1) [#AA ( N -1 , M ) + KA ( N -1 , M - 1 ) ] 

+ (4N+6 )A(N+1 ,M-1)+ (4N+8 )A(N+2 ,M-2) (5.111) 

Using the Hellmann-Feynman theorem in order to get the 

relation between the energy series E(M) coefficients and the 

series coefficients A(N,M), we obtain 

(M+1)E(M+1)=-KA(-1,M)+2A(1,M)+4A(2,M) (5.112) 
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From the recurrence relations (5.111,5.112) together with the 

2 2 
unperturbed energy E (0) =-11 /2n and the ini tial coefficient 

A(O,O)=l, we can calculate the perturbation series for the 

energy. The potential given by equation (5.109) can be 

expressed in the form 

-1 22-1 V(r)=-l1r -2Ar+2A r -KAr (5.113) 

Therefore the equations (5.111&5.112) take the form 

- (2N+ 1) [1lA (N-l , M) +KA (N-1 , M-I) ] 

- (4N+6 )A(N+l ,M-1)+ (4N+8 )A(N+2 ,M-2) (5.114) 

(M+l)E(M+l)=-KA(-I,M)-2A(I,M)+4A(2,M)' (5.115) 

We use a modified renormalised technique where (11) takes the 

form 

where 

2 
11= I-A K 

and the equations (5.111&5.112 ) take the form 

- ( 2 N + 1) [I1A ( N - 1 , M ) + KA ( N - 1 , M - 1 ) ] 

(5.116) 

(5.117) 
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(5.118) 

(M+1)E(M+1)=-KA(-1,M)-4A(1,M-1)+8A(2,M-3) (5.119) 

5.7.3 Results and discussion 

We have used three renormalised series approaches to 

compute the energy eigenvalue for this problem, and the 

results are shown in table (5.10) for the ground state. and 

for a range of perturbation parameter from (-0.01$>"$-0.1). 

The accuracy of these approaches decrease as (>..) increases. 

The agreement between the results of these three approaches 

is very good. Whi le no one of the three approaches offers 

particular advantages to improve the accuracy or increase the 

range of (>..), the agreement of the three gives us confidence 

that our resul ts are correct. We believe that the resul ts 

which are found from these approaches are good in comparison 

wi th these of other methods have been used to compute the 

eigenvalues for this problem. The renormalised series 

approach works well for small values of A, the perturbation 

series convergence being satisfactory for these values. For 

larger values of (A), this approach does not work because the 

perturbation series does not converge. Thus the renormalised 

series approach is limited to low ranges of the perturbation 

parameter A. Also we have been used a fini te difference 

approach to compute the eigenvalues for this problem and the 

resul ts produced are in good agreement wi th those resul ts 

obtained by Saxena and V.S.Varma by using Hill determinants. 

In table (5.11) we list the energies eigenvalues for the 
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range ( - 0 • 0 1 ~A~- 2 4 080 ) and compare them with numerical 

computations of the ground state energy which were obtained 

by Saxena. 
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1 2 -1 2 2 Table (5.11). The energy result of ~ -r +2>'r+n r .perturbation by 

using renor.allsed series .ethod. Ea calculation from equations (5.104 & 
5.105); Eb calculatlon from equations (5.107 & 5. lOB); Ec calculation 
from equations (5.111 & 5.112) 

1 2 -1 2 2 Table (5.12). The energy result of (- P -r +2Ar+2>' r ) 
2 

perturbation by using finite difference method. 
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5.8 The exponential cosine screened coulomb (ECSC) potential 

The radial Schr6dinger equation for the exponential 

cosine screened Coulomb (ECSC) potential is not solvable 

analytically and can be expressed as 

2 [ 1" - 2J D ~(r)+2 E+V(r) - ~(i+1)r ~(r)=O (5.120) 

where 

(5.121) 

This potential is of importance in solid-state physics. It is 

used in describing the potential between an ionized impurity 

and an electron in a metal or a semiconductor . It has also 

been used to represent the effective interaction between an 

electron and a positronium atom in a solid. The (ECSC) 

potential has been treated by several approximation methods. 

Aparna and Pirtamp [52,1980] applied the generalized virial 

theorem and Hellmann-Feynman theorem to calculate 

perturbatively the bound state energy levels wi thout using 

perturbed wavefunction. C.S.Lai [53,1982] has treated this 

potential by using the hypervirial relations and the Pad(~ 

approximant E [10,10] and E [10,11] for different 

eigenstates. In this section we set out to calculate the 

bound-state energies of the ECSC potential for different 

eigenstates, by applying the hypervirial and Hellmann-Feynman 

theorems to calculate perturbatively the bound-state energy 

levels without using perturbed wave functions. The ECSC 

potential can be expanded in a power series of the screening 

parameter by the Taylor expansion 
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I 2 I' n 
X X n 

F(x)=F(O)+xF (0)+2!F (O)+ .... nTF (0) (5.122) 

Also V(r) can be expanded as 

V ( r ) = - r -1 exp (-Xr ) Cos (Ar) = - r - 1! V n ( Xr ) n 

n-O 
(5.123) 

Comparing (5.122 & 5.123), we obtain the coefficients 

V =1, o V =-1, 
1 

v =0, 
2 

1024 
.•.. V20=-~' 

The coefficients V in equation (5.123) also can be expressed 
n 

as 

V n = ( -1 ) n (2 ) n I 2 Cos (:n) ! ! (5.124) 

Here, we use atomic units. The hypervirial relation for the 

(ECSC) potential is given as 

+V o(2N+1) [1lB(N-t ,M)+kB(N-1 ,M-1) ] 

+ 2 Vn (2N+1+n)B(N+n-1,M-n) 
n.O 

(5.125) 

The Hellmann-Feynman theorem 

(5.126) 

gives 
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(M+1)E(M+1)=KV O B(-l,M)+ ~ nVnB (n-1,M+l-n) 
n,,1 

(5.127) 

The recurrence relations (5.125 & 5.127)can be used lo 

calculate the energy coefficients from a knowledge of 

B(O,O):l and 

evaluated by 

2 2 E(O)=-IJ /2n • The 

using equations 

energy eigenvalues can be 

(5.125,5.127) using the 

appropriate values of renormalised constant k; resul ts for 

this calculation are given in table (5.13). Our calculated 

values of the energy levels are excellent as compared wi th 

the results obtained from the hypervirial -Pade approximant 

scheme of Lai. From our resul ts it can be seen that the 

Hypervirial method with a renormalised constant k is 

sufficient to calculate the energy eigenvalue without using 

Pade approximants. Al though the renormalised series method 

has calculational elegance, it suffers from two major 

drawbacks. First, the accuracy of the numerical results for 

bound states falls off very rapidly with increasing value of 

the screening parameter X-. Second the calculations become 

progressively more difficult as the state number n 

- 1 increases. The ECSC potential differs from exp( -X-r) r by a 

cosine factor (CosX-r) , which leads to an oscillatory 

behaviour. It is of obvious interest to compare the resul t 

for the ECSC potential with those for SSCP. Generally 

speaking the binding of the electron is weaker in the ESCS 

potential than in the SSCP potential. 
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Table (6.13). The eDeraY eigenvalues of V(r)--r-ixp(-Ar)C08(Ar). 
as function of acreenlna para.eter for various elgenstates. by 
usi reno .... lised. series 
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5.9 Hulthen potential 

The radial Schrbdinger equation for the Hulthen potential 

can be written in atom units as 

(5.128) 

where 

V H (r) :-Xexp (-xr ) [l-exp (-xr )] -1 (5.129) 

where (X) is a screening parameter. The Hulthen potential at 

small values of r behaves like a Coulomb potential, whereas 

for large values of r it decreases exponentially, so that its 

"capaci ty" for bound states is smaller than that of the 

Coulomb potential. The energy levels always lie lower in the 

Coulomb case than in the Hulthen case. The Hulthen potential, 

apart from its ini tial interest in a number of areas of 

physics ranging from nuclear physics (as a possible form of 

nuclear interaction) to scattering theory to atomic physics, 

has recently been shown to be a judicious choice of starting 

point for the perturbation theoretic treatment of screened 

Coulomb potentials. The Hulthen potential has been treated 

numerically by Lai and Lin [54,1980], who appl ied the Pade 

approximant technique to the analytic perturbation series 

obtained through the use of hypervirial and Hellmann-Feynman 

theorems. Also Dutt and Mukherji [55,1980] proposed a new 

approximation scheme to obtain analytic expressions for the 

bound-state energies and eigenfunctions for any arbitrary 

bound (l,n) state of the Hulthen potential. The purpose of 
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this section is to study the bound-state eneraies of the 

Hulthen potential for ~O. The Hulthen potential VH(r) in eq 

(5.129) can be rewritten in the form 

-tf' n 
=-r L V n (lr) 

n.O 
(5.130) 

where 
B 

V = __ n_ 
n n! (5.131) 

and Bn are the Bernoulli numbers. The Hulthen potential VH(r) 

in equation (5.130) can be rewritten in another form 

where 

V (r)= -
H 

->..r Xe 

lr/2+ -lr/2 
= _ 2X [.....;;;;e-=--__ e_-=--_ 

Xr/2 -Xr/2 
e - e 

Coth(Z) 1 Z Z3 2Z5 2 2n 
= + --B Z2n-1 Z 3 - 45 + 945··+ 2n! 2n 

where IZ/<i 

(5.132) 

(5.133) 

Furthermore, we use the hypervirial relation as used in 

previous sections, assuming that the eneraY' and the 

M expectation values <r > can be expanded as 

(5.134) 

<r">=L B(M,N)l" (5.135) 
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Then the hypervirial relation for the Hulthen potential can 

be expressed as 

-v 0 (2N+1) [1JB(N-1 ,M) +KB( N-1 ,M-1 )] 

(5.136) 

Applyin~ the Hellmann-Feynman theorem 

(5.137) 

with the use of (5.134,5.135) and (5.130) equation (5.137) 

leads to 

(M+1)B(M+l)=-KV
O
B(-1,M)+ 2 B(n-l,M+l-n) 

~ n-1 

(5.138) 

With unperturbed ener~y &(0)=_,.,2/ 2n 2 and initial condition 

B(0,0)=1, we use the recurrence relations (5.136) and (5.138) 

to compute the energy coefficient E( I). Eneraies of many 

eiaenstates of the Hulthen pote£"'ltial are listed in table 

(5.14). It is apparent from table (5.14) that the eneray 

series is a convergina very quickly at low values of the 

screenina parameter (A). We wish here to make a few comments 

summarisinar the advanta~e of using the renormalised series 

approach. It is important, however to remember that our 

results has been calculated directly from the hypervirial 

approach with a renormalised constant (k), wi thout use of 

Pade approximants, which were used by Lai to improve a 
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convergent series. It is necessary to point out that the 

agreement of our 

results of Lai is 

calculated 

good. The 

energy eigenvalues 

renormalised series 

with the 

approach 

works very well even for higher excited states with higher 

value of angular momentum. We believe that the accuracy of 

our results may be improved even further with a better choice 

of renoraalised constant k, the approach gives well converged 

eigenvalues for the best values of the renormalised constant 

k. 
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Table (5.14). Elsenvalues of ~2~(t+Ur-2-Aexp(-Ar)(l-exp(-Ar»)-1 
by uslna renor.allsed aerlea. where Ao-Axl0-3 
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Table (5.14 continued) 



-209-

5.10 Eigenvalue calculations for some potentials 

5.10.1 Hypervirial method to calculate energy eigenvalues for 

H=p2+x2_2e - 2AX2 [ 1+e2AX2
]-1 

The Schrbdinger equation in atomic unit for the 

potential which is given as: 

V(x)=_2e- 2AX 1+e- 2AX 2[ 2]-1 
(5.139) 

takes the form 

2 2 - 2AX - lAX 2[ 2]-1 
-D '(x)+x '(x)-2e l+e '(x)=E'(x) (5.140) 

The potential given in equation (5.139) can be expressed as 

(5.141) 

We let 

2 
AX =y (5.142) 

The perturbation calculation by using Hypervirial relations 

for the interaction given by (5.139) is made by expanding 

2 2 
tanh(Xx) in a power series in (AX ) which is valid for 

2 re 
AX <2' Then tanh(y) can be express as 

() 
¥..3+ ~ 22n[22n-1_1]y2n-1B 

tanh y = y - 3 15 + ----- 2n! 2n (5.143) 

As x varies from (-~x~+oo) the potential runs from (O~(x)~O) 

through (-1) at x=O. We can use the Hypervirial relation as 

we have used it in previous problem. The Hypervirial relation 
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+ ~ Vn [2N+2+2(2n+1)]B(N+2(2n+1),M-2n-1) 
n=O 

(5.144) 

If we apply the Hellmann-Feynman theorem using the energy and 

the expectation value <x M) series as given by equations 

(5.134) and (5.135) we obtain the following recurrence 

relation 

(5.145) 

where 

22n(22n-1_1) 2n-1 
V = Y B 

n 2n! 2n 
(5.146) 

Here B is the nth Bernoulli number. The unperturbed energy 
2n 

E(O) 

(5.147) 

allows us to use the recurrence relations to compute the 

energy coefficient E(M),with initial condition B(0,0)=1. 

5.10.2 Hypervirial method to calculate energy eigenvalues for 

In this subsection we extend the numerical calculation 

from one dimension to three dimensions. The main difference 

between one and three dimensional potential lies in the 
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angular momentum term. We have applied the same two methods 

which were used to compute energies for one- dimensional 

potentials. Using Hypervirial and Hellmann-Feynman theorems 

as used for one dimensional problems, and we following the 

same route leads to recurrence relations (5.144) and (5.145) 

with an additional potential term due to the angular 

momentum. With V =.t(.t+1), V =(1+A) 
-2 2 

we obtain the following 

recurrence relation after some algebra 

(5.148) 

(5.149) 

5.10.3 Results and discussion 

Tables (4.15) and (5.16) show the eigenvalues for potentials 

[ 

2 2 
Xx -Xx e -e 

V(x)= ? 2 
Xx~ -Xx 

• e + e 

It is clear from our results that the energy series 

convergence very quickly at low values of X, but the 

convergence decreases as X increase. It is important to point 

out that the accuracy of results for this problem which have 

been obtained without use of renormalised constant k, also we 
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used the Pade approximants as second method to compute the 

energy eigenvalue. The agreement between the two methods are 

very good for low values of A, but for high values of A the 

Pade approximants give more accurate eigenvalues. We have 

computed many energy eigenvalues of the potential given by 

equation (5.141), for different values of (0. 0 1~A~0. 1) and 

for the ground and first four 

results for this calculation 

excited state. We list 

for 

our 

in table (5.15) one 

dimension 

different 

and in 

values 

table (5.16) for 

of (0. 0 l~ASO. 05) , 

(t=O,2,5,lO) and state number n. 

three dimensions, for 

different values of 
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Table (5.15). £lgenvalues of H-p2+xa_2exp(-2Axa)[1+exp(-2Axa)]~1 
upper lines Hypervlrlal calculation, lower lines, Pad, approxlmants 
£ [M,M] calculation 

A 1:,+2- N 1:.+'2. N ~ \+1. 
0 .. , M 1 M , M 

[0.01 ,2. nnQQQ~ "<I~n"'4fl7N 7 4. ,70961 8 ,6,( L74~~791 

8 7 • 7 17, 7 1 
10. 02 !2. 01~ :~!'i 9 4. n"'QQR"'"<I7741999 13 6. Utlll:tts lo1441iff;J::; 

5 7 , 7 2000 7 , 7 5 
10.03 I~· i~ 13 4.n~8RR41 ;(44 15 6.1 Jl 

2 7 , 7 4 8 , 8 9 
10.04 i~· ilR41 1~ 4. 1 U:H4:: 1 ./1 24 6. 1~ il"'Q~·<l7 

9 8 , 8 5 10,10 61 
10. 05 i2.n4' "U~O '2:1 4.1494742' ,-I 3D D. 24B1e:: Ib4::tH439 

6 8 , 8 4 16 16 8 
0.06 ~. U::;~tfl39010titi14 42 4. r/911 747R"il-1 48 16. 28681310~ 

631 16,16 6 16,16 72 
"0.07 2. ~~ 4. 27 16 • ~4Rn7~ 

9 16,16 49 15,15 3731 
O.OB 2.uI~lu~o 9 4 . .G.:sI~.:su 15 6 . .:stll.Glu 

651 15,15 003 15,15 0602 
"0.09 2. 9 4.26709 9 6.4398 

2879 15,15 9666 14,14 8146 
0.10 2. rlQ~4Rr 11 4.~960 5 6.4B6 

027 15,15 07952 14,14 63117 

N 
M , M 

9 
7 , 7 

15 
8 , 8 

18 
8 , 8 

31 
15,15 
3B 

15,15 
3~ 

15,15 
24 

15,15 
13 

15,15 
7 

15,15 
7 

15,15 
A E,+2. It E,+1 I M ,N M 

\u. 
I ~ ,N HI 3 H , H 

, 
0.01 B. ItiU;j;jtsIU lU 10.UB99 m:iti ~ 12.1 111365 11 

0 8 , 8 5 8 , 8 5 8 , 8 
"0.02 B. IIo/tll4 15 10.1'1 IlIB 15 12.21: 14[11912 15 

4 8 , 8 8 8 , 8 2 8 , 8 
0.03 B.7f 23 .10. 4::b 1 ____ -' 100UU 24 . 12. :~~H~~~774~na,1 27 

4 14,14 0 12.12 5 12,12 
0.04 B.4::IIOI IIJ13 3D 110. 11 36 112. 4313D30124165 43 

6 14,14 6 14,14 82 13,13 
0.05 B. '~4R~44I1RRR7 4 46 10.44nRRR~192 44 ,l~. 40 

6 14,14 278 14,14 714 13,13 
0.06 8.41212155 44 10.524313 36 i12.63287 46 

6089 14,14 4022 12,12 8024 12,12 
0.07 8.47777 34 110.6059 15 112. 728 13 

7801 14,14 87633 12,12 871940 12,12 
0.08 B.542 7 110.oB5 11 12.B2 7 

22126 14,14 5215 12,12 21117 12,12 
0.09 B.605 7 110.760 13 12.9 11 

8146 15,15 22611 12,12 910084 12,12 
0.10 18.66 5 110.84 11 113•0 11 

67133 13,13 836988 12,12 12.99570 12,12 
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2 2 
Table (5.16). Eigenvalues of' H=p2+r 2+t (t+1)r -2_2e -2Ar /( 1+e2~r) 

f'or many eigenstates, upper lines Hypervirial calculation, 
lower lines Padl: approximant E [M, M] calculation, The two 
numbers in brackets correspond to state number and angular 
momentum respectively. 

A (0,0) N (0,10) N 
M , M M , M 

10 . 01 14. ,70S61 S 1~4. if !4 13 
18, 8 4 8 , 8 

10.02 14. 1/141888 13 124.45480',,41720', 24 
2000 8 , 8 8 11,11 

10.03 4. ;f44 15 124•cf :/tnns 41 
4 8 , 8 32 12,12 

0.04 14. 1ll::H~1 :il -- 24 i24. tsts~~ IU;j ~o 

5 12,12 890 12,12 
j(Y.-05 14. 1484742' ,7 36 125.0BO 10 

48 13,13 02636 12,12 
A (1,5) N U,lO) N 

M , M M , M 
[0.01 118. , I1 nR~4 11 12B.26B6814441028 10 

4 8 , 8 9 8 , 8 
10.02 IUS. Il830BIB 18. 12B . 2B 

8 11,11 8 11,11 
10.03 118. blo~148 34 128. 778(1~4 ifCl:JO 41 

56 11,11 3 11,11 
[0.-04 lIB. !(Ut) 45 128. UIU21 4B 

116 11,11 490 11,11 
rc·05 118.80776 34 128 . 2 4 

7669 11,11 2259304 11,11 
A (2,5) N l3,5) N 

M , M M , M 
10. 01 122.208 11!'i:i!'i 13 126. 24B571' 15 

5 8 , 8 2 10,10 

10. 02 122.41"'''l:Jo~14062 24 IZ6. 4B81Z5', 1 (OO~U Z8 
3 12,12 44 11,11 

10.03 122 . 11 !.lL";l7R 43 26. 'f Fn 45 
8027 12,12 959 11,11 

10.04 122 • 1 i4ti 45 26.8266 31 
6766 12,12 7165 11,11 

10.05 22. 8~(0 15 26.1 4 
00558 12,12 121485 11,11 

A l4,5) N (5,2) N 
M , M M , M 

1).01 30. 287716'fBloU8B 15 128. 268021~t)Bol'f8 15 
8 10,10 9 10,10 

U.02 130• I1ZB651Z8 33 12B. 02ti 144l '.iHhHLJl ~1 

55 11,11 708 11--,-11 
U.03 130. Bl'f81S 2B 12B. "04:-i~81Z 43 

207 11,11 50 11,11 
10.04 131. 05 11 12B.8B3 36 

50788 11,11 3691 11,11 
10.05 1~1. 10 128 . 1 8 

31.26357 11.11 18448 11.11 
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CONCLUSION 

In the preceding chapters of this work we have seen, 

wi thout being concerned wi th any specific application, how 

perturbation and non-perturbation methods can be used for 

solving the eigenvalue problem. The numerical methods 

presented in this work have been tested for Schrodinger 

equation involving several perturbed and unperturbed 

potentials. These methods have been shown to be very 

effective and to be more simple and accurate than the widely 

used matrix calculations. We would like to emphasize the 

following aspects of the present eigenvalue calculations:. 

1.The methods which have been used all yielded highly 

accurate results. These results showed good agreement wi th 

each other or with those (when available) in the literature. 

Our methods proved to be very effective in dealing with one, 

two, three and N dimensional radial problems. 

2.It is interesting to note that the renormalised series 

method can be extended to compute the energy eigenvalues fol' 

quasi-bound states of potentials such as 

1. 

I!. 

2 3 
V(x)=x +>"x 

2 5 
V(x)=x +>"x 

The renormalised series converge well for sufficiently small 

values of >... 

3.We studied a double well potential Z 2 2N 
V(x)=-Z X +x , for' 

various values of 2N, Z2 and state number n, by using 

perturbative and non-perturbative methods. All methods 

yielded highly accurate results except that the renormali 



-216-

series gave poor accuracy at low values 

works very well for high values of Z2. 

2 of Z , al though it 

4.It has been shown, (section 2.4), that expectation values 

such as <x 2N
) can be calculated without storing explicit 

values of the wavefunction ,. The relevant difference 

equation 

involves the use of energy calculations, which can be 

performed by Jlany methods (e.g renormalised series, finite 

difference and power series). In numerical work one or more 

fini te values of £ are used to estimate the value of the 

limit. For double precision calculations, we found that 

·8 £:10 gives reasonably accurate results. 

5.In the case of perturbation methods (both hypervirial and 

inner product) we have shown how one may avoid divergence 

problem, by using the renormalising constant k and (when 

necessary) Pade approximants and the Aitken procedure. 

6.In the present work, we have compared various methods, with 

respect to their accuracy and divergence properties and 

changing behaviour with respect to variation of 

I.perturbation parameters (e.g A,g,a). 

II.state number n. 

11 . d (x2N) I .power l.n ex of a perturbing potential. 

It is worth pointing out that perturbation methods are 

sensi tive to points (I,ll, Ill), but nonperturbation method:~ 
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222 
series method in the case Y=~x /(1+ax ) requires ax (1). 

7. Our results allow us to study the nUllerical behaviour of 

eneray levels for the potentials 

2 211 
I. #.IX +~ , ,.,=0,1; 2N=4,6,8 •••• 18,20 

2 XX 211 

11. Y(x)=x + 2 ;2N=4,6,8 •••• 18,20 
l+ax 

for different index 2N, perturbation parameters X&a and state 

nuaber n. We have seen how the order of the eneray levels 

varies with these parameters. We determined the value of ~ at 

which a crossina point occurs for potential (I) (i.e ~5). 

8.In chapter four we investiaated the eiaenvalue problem 

211 

I. 
:t 1 2 ax 

Y (x)='2 x :t =--
1+ aa:x 2 

;2N=4,6 

11. 

We have not observed any fundamental difference in behaviour 

between the Y- and y+ cases as we vary the perturbation 

parameters (oc, a ) and index ( 2N ). We used (aoc) and (a) as 

perturbation parameters. 

9.We have discovered that the renorllallsed series method does 

not work so well for the perturbed potential 

2 2N 2 
I.Y=#.IX +X(x -Xx ); lJ=l+XK; 2N=6,8 

and aives reduced accuracy. However, we partly overcame this 

difficulty by introduoina hiaher power. of X 
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1 

2 I 2" 2 I I 
II.V=~ t~ (X -Kx ); ~=lt~ K; ~=A ;2N=6,8 

We illustrated the effect of use of the AI technique on the 

convergence rate in tables (2.3) and (2.4). 

We use this modified technique with other eigenvalue problems 

for instance 

2 -2 2N V(r)=r t~(lt~)r tAr ;2N=6,8 

-1 ~ , -2 9 2 2 
V(r)=-r t"2(lt'\.)r tA(""m)l r 

10. It should also be mentioned that a large part of our 

results are not available in the literature. Accordingly, we 

used more than one method to compute the energy eigenvalues 

as an internal check on the accuracy and to make sure our 

results are correct. 

11.In the case of the renormalised series approach, we 

achieved results with very high accuracy as a result of a 

lengthy study of the effects of changing the value of the 

overflow parameter (2", N=1,2,3, •• ), of increasing the 

dimension of B(N,M) and of varying the value of the 

renormalising constant K •.•• etc. We also obtained much 

experience at dealing with other eigenvalue methods which 

invol ve optimum choice of parameters e. g Pade approximant, 

finite difference, inner product and power series methods. 

The present work gives us good grounds for believing that in 

future work the methods tested can be used to study other 

more complicated eigenvalue problems. The many numerical 

results which are reported in this work enrich considerably 

the stock of information available in the literature. 
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