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Abstract 

Most microprocessor chips today use an out-of-order (000) instruction execution 

mechanism. This mechanism allows superscalar processors to extract reasonably high 

levels of instruction level parallelism (lLP). The most significant problem with this 

approach is a large instruction window and the logic to support instruction issue from 

it. This includes generating wake-up signals to waiting instructions and a selection 

mechanism for issuing them. Wide-issue width also requires a large multi-ported 

register file, so that each instruction can read and write its operands simultaneously. 

Neither structure scales well with issue width leading to poor performance relative to 

the gates used. Furthermore, to obtain this ILP, the execution of instructions must 

proceed speculatively. 

An alternative, which avoids this complexity in instruction issue and eliminates 

speculative execution, is the microthreaded model. This model fragments sequential 

code at compile time and executes the fragments 000 while maintaining in-order 

execution within the fragments. The fragments of code are called microthreads and 

they capture ILP and loop concurrency. Fragments can be interleaved on a single 

processor to give tolerance to latency in operands or distributed to many processors 

to achieve speedup. The major advantage of this model is that it provides sufficient 

information to implement a penalty free distributed register file organisation. 

However, the scalability of the microthreaded register file in terms of the number 

of required logical read and write ports is not clear yet. In this thesis, we looked at 

the distribution and frequency of access to the asynchronous (non-pipeline) ports in 

the synchronising memory and provide a detail analysis and evaluation of this issue. 
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It concluded, using an analysis of a range of different code kernel, that a distributed 

shared synchronising memory could be implemented with 5-ports per processor, where 

three ports provided single instruction issue per cycle and the other two asynchronous 

ports were able to manage all other demands on the local register file. 

Also, in the microthreaded CMP a broadcast bus is used for thread creation and 

to replicate the compiler-defined global state to each processor's local register file. 

This is done instead of accessing a centralised register file for global variables. The 

key problem is that, accessing this bus by multiple processors simultaneously caused 

contention and unfair communication between processors. Therefore, to avoid proces­

sor contention and to take the advantages of asynchronous communication, this thesis 

presents a scalable and partitionable asynchronous bus arbiter for use with chip mul­

tiprocessors (eMP) and its corresponding pre-layout simulation results using VHDL. 

It is shown in this thesis that this arbiter can be extended easily to support large 

numbers of processors and can be used for chip multiprocessor arbitration purposes. 

Furthermore, the microthreaded model requires dynamic register allocation and a 

hardware scheduler, which can support hundreds of microthreads per processor and 

their associated microcontexts. The scheduler must support thread creation, context 

switching and thread rescheduling on every machine cycle to fully support this model, 

which is a significant challenge. In this thesis, scalable implementations and evalua­

tion of these support structures are presented and the feasibility of large-scale CMPs 

is investigated by giving detailed area estimate of these structures using O.07-micron 

technology. 
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Chapter 1 

Introduction 

There is an ever increasing demand for high performance microprocessors in a variety 

of application areas including PCs, servers and mobile devices. Most current proces­

sor architectures are reaching fundamental limits in terms of scalability, speed, die 

area and power consumption. It is generally agreed that the way forward for high 

performance processors is to increases the number of cores, and a variety of multi­

processor architectures have been proposed. This thesis concerns chip multiprocessor 

(CMP) based on the microthreaded model. We investigate the feasibility of imple­

menting these processors, with particular emphasis on scalability, by developing and 

analysing high level architecture models. 

Microthreading is a hardware threading technique, where each thread is a very 

small fragment of code. Using a considerable number of parallel threads allows the 

multiprocessor system to exploit more parallelism, which in turn improves the overall 

system performance. Before introducing the microthreaded model and the CMP in 

detail, it is useful to explain how microthreads differ from operating system threads. 

In operating system such as UNIX and Windows thread are viewed as simultane­

ously running multiple tasks and are popular method to improve application software 
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through parallelism. The exact implementation of threads differ from one operating 

system to another, but in general multiple programs can be run at once, such as a 

word processor alongside an audio playback program and each program can be split 

into multiple threads. Each thread has an execution state (running, ready, .... etc.) 

and has an execution stack and some per-thread static storage for local variables. 

The notion of a thread in the context of multithreaded processors differs from 

the notion of software threads in multithreaded operating systems [1]. In the case 

of multithreaded processors a thread is always seen as a hardware-supported thread. 

User-defined or compiler generated threads in microthreading do not require interac­

tion with the operating system and each thread is represented by a program counter, 

registers and a small control block. Hardware multithreading is a general technique 

for hide long memory latencies by automatically switching to a new thread when one 

thread blocked. Thread switching is performed by the processor using a hardware­

based thread-switching policy. More details about the multithreading processors are 

available in [1]. In this work, unless otherwise stated, the term thread is used to 

describe very small code fragments with minimal context. 

As previously indicated many researchers are interested in the idea of achieving 

major increases in the computational power of computers by the use of CMP. Ex­

amples of CMP are the Compaq Piranha [2], Stanford Hydra [3] and Hammond et. 

al. [4]. Several architectures have been proposed and some manufacturers have pro­

duced commercial designs, such as the IBM Power PC [5] Sun Niagara [6] and Intel's 

Montecito [7]. 

Ideally, the performance of such systems should be directly proportional to the 

number of processors used, i.e. they should be scalable. CMPs scale well, with the 
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limit to scalability defined by Moore's law. We calculate that current technology could 

support hundreds of in-order processors and achieve significant speedup over current 

architectures that use implicit concurrency and achieve minimal speedup through 

concurrent instruction issue [8]. One of the major barriers to the use of CMPs is the 

problem of programming them without using explicit concurrency in the user code. 

Ideally they should be programmable using legacy sequential code. 

In theory, there is no limit to the number of processors that can be used in a CMP 

provided that the concurrency derived from the sequential code scales with the prob­

lem size. The problem is how to split the code into a number of independent threads, 

schedule these on many processors and to do this with a low and scalable overhead 

in terms of the control logic and processor efficiency. In fact on general-purpose code 

it will be impossible to eliminate all dependencies between threads and hence syn­

chronisation is also required. The goal of this work therefore is to define a feasible 

architecture for a scalable CMP that is easy to program, that maximises throughput 

for a given technology and that minimises the communication and synchronisation 

overheads between different threads. 

Today Intel's Itanium-2 (Madison) microprocessor features over 410 million tran­

sistor in a 0.13J1,ffi semiconductor process technology operating at a speed of 1.5GHz. 

This is a dual-processor version of the previous Itanium processor (Mckinley), which 

has an issue width of six. Moore's law would indicate that the billion-transistor chip 

will become feasible in 65nm technology within the next three or four years [9]. Intel's 

Montecito is the first Itanium processor to feature duplicate, dual-thread cores on a 

single chip with 1.72 Billion transistors. The questions we must ask are where do 

we go from here and what is the best way to utilise this wealth of transistors, while 
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maximising performance and minimising power dissipation? 

Another problem area in future technology is the scaling of wire delays compared 

with gate delays. As transistor dimensions scale down, the number of gates which are 

reachable within the scaled clock is at best constant, which means that distributed 

rather than monolithic architectures need to be exploited [10]. Superscalar proces­

sors today issue up to eight instructions per clock cycle but instruction issue is not 

scalable [11] and a linear increase in parallelism requires at least a quadratic increase 

in area [12]. The logic required occupies about 30% of the total chip area in a 6-way 

superscalar processor [13]. 

In addition, more and more area is being used for on-chip memory. Typically 

the second level on-chip cache occupies 25-30% of the die area on a modern micro­

processors, and between 50-75% on the recently announced Itanium-2. Moreover, a 

significant delay and power consumption are seen in high-issue-width processors due 

to tag matching, wake-up signals to waiting instructions, and selection mechanisms 

for issuing instructions. These delays increase quadratically for most building blocks 

with the instruction window size [14]. Finally, even with the implementation of a 

large instruction window, it is difficult for processors to find sufficient fine-grain par­

allelism, which has made most chip manufacturers like Compaq, Intel and Sun look at 

simultaneous multithreading (SMT) [15] to expose more ILP through a combination 

of coarse- and fine-grain parallelism. 

Multithreading can expose higher levels of concurrency and can also hide latency 

by switching to a new thread when one thread stalls. SMT appears to be the most 

popular form of multithreading. The main draw back to SMT is that it complicates 

the instruction issue stage, which is central for the multiple threads [1]. Scalability 
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in instruction issue is no easier to achieve because of this and the other scalabil­

ity problems remain unchanged. Thus SMT suffers from the same implementation 

problems [16] as superscalar processors. 

An alternative approach to multithreading that eliminates speculation and does 

provide scalable instruction issue is the micro threaded model. The threads in this 

model are small code fragments with an associated program counter. Little other 

state information is required to manage them. The model is able to expose and 

support much higher levels of concurrency using explicit but dynamic controls. In 

pipelines that execute this model, instructions are issued in-order from any of the 

threads allocated to it but the schedule of instructions executed is non-deterministic, 

being determined by data availability. Threads can be deterministically distributed 

to multiple pipelines based on a simple scheduling algorithm. The allocation of these 

threads is dynamic, being determined by resource availability, as the concurrency 

exposed is parametric and not limited by the hardware resources. The instruction 

issue schedule is also dynamic and requires linear hardware complexity to support 

it. Instructions can be issued from any microthread already allocated and active. If 

such an approach could also give linear performance increase with number of pipelines 

used, then it can provide a solution to both CMP and ILP scalability [17]. However, 

in this model and its CMP architecture, there are still problems which need to be 

resolved. In this thesis we highlight these problems and provide an implementation 

solution with required analysis and evaluation. 

Finally, it is necessary to define the terms used in this thesis heading: 

Microthread: (not hyphenated to distinguish it from other uses of the same combi­

nation of terms), refers specifically to code fragments managed by the model described 
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in this thesis and the previous, related papers. 

Microcontext : refers to the private state associated with a microthread. This 

includes a microthread's program counter and an offset into the register file, which 

locates its private register variables. 

Microgrid : refers to a CMP where all processors have a microthreaded scheduler 

and a synchronising, distributed shared register file. 

1.1 Motivation 

Chip multi-processors (CMPs) are a very promising solution for future high-performa­

nce computing and we anticipate that many new microprocessor designs will be based 

on such an approach. As described previously, several projects have already investi­

gated CMPs, and manufacturers are beginning to produce commercial designs. 

The appeal of CMP architectures comes from factors that limit the scalability 

of multiple instruction issue in conventional processors [18], such as the superscalar 

paradigm, which continue to use more silicon and power for very little improvement 

in ILP. Evidence of this is provided by Intel's cancellation of its 4GHz Pentium4 [19], 

which has effectively reached a limit in both performance and scalability. Scaling 

up concurrency in these processors gives very large circuit structures and this is 

exacerbated by lengthy global communication arising from the increasing problems 

of wire delay in technology scaling. These require excessive chip area and increased 

power consumption respectively. For example, the logic required for 000 issue does 

not scale with issue width [20] and will eventually dominate the chip area and power 

consumption. 

The Semiconductor Industry Association (SIA) roadmap indicates that by 2018 
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the number of transistors on a single chip will reach 4 billion to 25 billion depending 

on the circuit type [21]. How to gain performance from this level of integration within 

acceptable power budgets is a major problem. Performance can not be achieved by 

simply increasing the speed of conventional processors or by squandering a large num­

ber of transistors on unscalable support structures, as used in 000 issue. Instead, 

we have to embrace explicit parallelism, but systematic solutions to parallel program­

ming and parallel architectures have yet to emerge, even with small-scale concurrency. 

In the near future, we will be able to integrate thousands of arithmetic units on a 

single chip [22]. Note that a 32-bit integer ALU occupies less than 0.05mm2 in an 

180nm CMOS process technology and typical chip sizes are between 100 to 400mm2. 

However, before such chips can be utilised, we need programming paradigms for gen­

erating this level of concurrency and support structures for scheduling and managing 

this concurrency, which are fully scalable. 

Today's small-scale CMPs are based on the same complex processor designs that 

preceded them and use high-level or software-based concurrency (e.g. threads). These 

threads may be scheduled in software or hardware and even used to extend the pool 

of instructions to support 000 issue. The latter, in particular, suffers from major 

problems, which limits performance and prevents overall-system scalability. These 

problems are summarised in [23] and systems based on this approach scale badly and 

are unable to exploit Moore's law to the full. 

In general, there are only a few requirements for the design of efficient and pow­

erful general-purpose CMPs, these are: scalability of performance, area and power 

with issue width, and programmability from legacy sequential code. Issue width is 

defined here as the number of instructions issued on chip simultaneously, whether in 
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a single processor or in multiple processors and no distinction is made here. To meet 

these requirements a number of problems must be solved, including the extraction of 

ILP from legacy code, managing locality, minimising global communication, latency 

tolerance, power-efficient instruction execution strategies (Le. avoiding speculation), 

effective power management, workload balancing, and finally, the decoupling of re­

mote and local activity to allow for an asynchronous composition of synchronous 

processors. Most CMPs address only some of these issues as they attempt to reuse 

elements of existing processor designs, ignoring the fact that these are suitable only 

for chips with relatively few cores. 

In this thesis a CMP is evaluated, that is based on microthreading, which addresses 

either directly or indirectly, all of the above issues and, theoretically, provides the 

ability to scale systems to very large number of processors [24]. It will be shown in 

this thesis that such CMPs use hardware scheduling and synchronisation and have 

structures to support this that are distributed, fully scalable and have locality in 

communication wherever possible. This is achieved with distributed schedulers that 

jointly manage large parametric families of threads and a distributed register file 

that provides synchronisation and sharing of data between them. These structures 

provide support for a shared-register, instruction-level model of concurrency in which 

synchronisation occurs between instructions and in the registers. The model requires 

instructions in the ISA to specify and manage this concurrency, but this is achieved 

by adding just a few additional instructions to a conventional ISA. The result, is that 

concurrency can be captured in an abstract and parameterised way in the binary code, 

rather than by calls to an operating system. This is a large advantage in exploiting 

efficient execution of concurrency in CMPs. This concurrency provides both speedup 
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and latency tolerance in a single processor. 

1.2 Research Objectives 

Microthreading is a model of concurrency limited to a single context, which shares 

the registers allocated to that context. The major advantage of this model is that 

it provides sufficient information to implement a penalty free distributed register file 

organisation. Such a proposal is given in [8] where each processor in a CMP has its 

own register file. However, it is not clear what are the requirements on the register 

file in term of the number of required read/write ports. This thesis therefore derived 

and analysed the detailed requirements of the microthreaded distributed register-file 

ports, in terms of the frequency of accesses to each logical port. 

Another advantage of the microthreaded model is allocating and de-allocating 

registers dynamically [25] prior to thread scheduling to supports concurrent threads 

when executing code for multiple iterations of a loop concurrently. However, allocat­

ing registers dynamically requires an efficient hardware scheme to model and allocate 

register usage and this scheme is examined thoroughly in this thesis. 

Another problem in the microthreaded CMP is that the distributed implemen­

tation of a micro threaded CMP includes two forms of asynchronous communication. 

The first is the broadcast bus, used for creating threads and distributing invariants. 

The second is the shared-register ring network which is used to perform communica­

tion between the register files in the producer and consumer threads. Therefore, to 

avoid contention during bus access, and to provide fairness in communication between 

processors, we need some form of arbiter. Also, it is not clear how the bus interface 

between processors can be implemented. In this thesis we discuss these issues and we 
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introduce a novel asynchronous arbiter optimised for this application. 

The major advantage of the microgrid CMP is its scalability in terms of per­

formance, power and area with instruction-issue width. The first two issues are 

demonstrated in [24, 26]. The third issue is demonstrated in this thesis, which shows 

scalable implementations in instruction-issue width of the chip support structures and 

the feasibility of large-scale CMPs. 

1.3 Thesis Contributions 

The high-level contribution of this thesis is to investigate the architectural implemen­

tation of the microgrid CMPs based on a distributed register file organisation and to 

contribute the scalable implementation of the chip support structures. In particular, 

the contributions of this thesis are detailed in the following points: 

• We provide a comprehensive summary and survey of current and alternate mi­

croarchitecture approaches and their challenges. 

• A detailed evaluation and analysis of the requirements of the microthreaded dis­

tributed register file. The results shows that the register file can be distributed 

between the processors and that each register file requires only 5 fixed ports, 

making it compact and scalable. This work has been published in the British 

Computer Journal [26]. 

• A detailed design and implementation of a scalable and partitionable asyn­

chronous arbiter together with required bus interface for the microgrid chip 

multiprocessor. The arbiter was designed to the gate level, and pre-layout sim­

ulation results using VHDL are presented in this thesis. This contribution also 
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has been published in [27, 28] . 

• A detailed design and implementation of a hardware scheme for dynamically 

allocating and de-allocating registers for the microthreaded chip multiprocessor. 

Detailed evaluation and simulation results of this scheme are presented in this 

thesis. Also, to demonstrate the feasibility and scalability of the multiprocessor 

in term of silicon implementation, we perform a detailed area estimate of a 

microgrid core and its support structures using 0.07 micron technology. Scalable 

implementations of such support structures are given in this thesis and the 

feasibility of large-scale CMPs is investigated. We show also that the support 

structures are of a manageable size and moreover are scalable in issue width. 

This work also has been published in the Parallel Programming Journal [29] . 

• A detailed design and implementation of a microthreaded scheduler and the 

first two stages of the microthreaded pipeline. This contribution also has been 

submitted to [30]. 

1.4 Thesis Organisation 

The remaining chapters in this thesis are organised as follows. 

In Chapter 2, we present background information about the existing micro­

architecture approaches, alternative approaches, and recent chip multiprocessor ar­

chitectures. Then we outline some challenges facing these approaches. The chapter 

also presents an overview of distributed memory multiprocessor architectures and 

their design parameters. Finally, techniques for system evaluation that are employed 

in this thesis are presented,. 
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In Chapter 3, we consider a microthreaded microprocessor concurrency model 

highlighting features that support the implementation of a scalable and powerful 

CMP and show the problems that need to be resolved. In particular, we first present 

a microthreaded ISA, and a microthreaded in-order execution pipeline. The chapter 

then presents the concurrency controls used in this model in full detail. Scalability of 

the instruction issue and thread state in microthreaded model are also discused in this 

chapter. The chapter also shows how the microthreaded model provides register file 

partitioning and support a mechanism for dynamically allocating registers. Finally, 

the chapter explains how the model support prefetching mechanism that avoids any 

instruction cache misses. 

In Chapter 4, we first examine modern register files. The chapter then, describes 

the method of sharing registers in microthreaded model. An analysis and evaluation 

of the requirements of the microthreaded register file ports is also given. A compari­

son between centralised and distributed allocation organisation is also presented. In 

addition, we show an alternative allocation scheme that we have already discussed 

during our research. Finally, we present a hardware scheme for dynamically allocating 

and de-allocating registers to families of microthreads with its implementation and 

simulation results using VHDL. 

In Chapter 5, we describes the microgrid chip multiprocessor architecture model, 

its features and also highlight problems that need to be resolve. In particular, we 

first introduce the top-level architecture for the microgrid CMP, and then describe 

the microgrid CMP communication buses. The chapter also discusses the Globally­

Asynchronous Locally-Synchronous (GALS) design approach and its features. A 

method of thread distribution and scheduling in microgrid CMP is also presented. 



13 

Finally, we discuss microgrid scalability. 

In Chapter 6, we present a scalable and partitionable asynchronous arbiter for 

microgrid chip multiprocessors. The chapter first introduces an asynchronous design 

methodology and its communication protocols. Techniques for deriving throughput, 

latency and wavelength for the ring self-time scheme are described. The chapter also 

provides a full detail design, analysis and implementation for the arbiter including a 

pre-layout simulation results using VHDL. 

In Chapter 7, we provide an overview of the chip architecture, and gives an area 

estimate for the microthreaded support structures. We also, provide an estimated area 

for the microthreaded core and show the feasibility of large CMP using an emerging 

technology. Finally, the chapter presents full simulation results for the top-level model 

of the continuation queue and the scheduling system in VHDL in order to verify their 

correct behaviour. 

In Chapter 8, we present our conclusions and suggestions for future research. 

A number of directions for future development of microgrid chip multiprocessors are 

given and areas of research are then outlined. Specification details are presented in 

the appendices. 

1.5 Publications 

The following papers based on the work presented in this thesis, have been published: 
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1.5.1 Journal Papers 

• Bell, LM., Hasasneh, N.M. and Jesshope C.R. (2006) Microgrids and Micro­

contexts: Support Structures for Microthread Scheduling and Synchronisation, 

International Journal of Parallel Programming, Volume. 34, No.4, August 

2006 ,pp. 1-39. 

• Hasasneh N.M., Bell LM., and Jesshope C.R. (2006) Asynchronous arbiter for 

microthreaded Chip multiprocessors, to be published, Journal of Systems Ar­

chitecture (JSA). 

• Bousias, K., Hasasneh N.M. and Jesshope C.R. (2005) Instruction-level paral­

lelism through Microthreading - a scalable Approach to chip multiprocessors, 

BCS, Comput. J. Vol. 49(2), (2006), pp. 211-233. 

1.5.2 Conference and Workshop Papers 

• Hasasneh, N.M. Bell, I.M.,and Jesshope C.R. (2005) High Level Modelling and 

Design For a Microthreaded Scheduler to Support Microgrids, Submitted to 

2007 ACS/IEEE International Conference on Computer Systems and Applica­

tions, AICCSA 2007 May 13-16, 2007, Amman, Jordan, 2007. 

• Hasasneh N.M., Bell, I.M. and Jesshope C.R. (2006) Scalable and Partitionable 

Asynchronous Arbiter for Microthreaded Chip Multiprocessors, Proc. Archi­

tecture of Computing Systems - ARCS 2006, Vol. 3894, ISBN: 3-540-32765-7, 

Germany, March 13-16, Lecture Notes in Computer Science (LNCS), Volume 

3894, ARCS 2006 (Frankfurt/Main, Germany), pp. 252-267. 
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• Hasasneh N.M., Bell I.M., and Jesshope C.R. (2006) Modular Asynchronous 

Arbiter for Microthreaded Chip Multiprocessors, The Institution of Engineering 

and Technology Postgraduate Workshop on Embedded Systems 11 October 

2006, NEC, Birmingham, UK Embedded Systems at ESS 2006. 

• Hasasneh, N.M., Bell, I.M. and Jesshope, C.R. (2005), Asynchronous Arbiter for 

Microthreaded Chip Multiprocessors, UK Design Forum (UKDF), Manchester 

University, April 13-15, 2005. 

• Jesshope, C.R., Bell, I.M., Hasasneh, N.M. (2004), Chip Multiprocessors Us­

ing a Microthreaded Model, Proceeding of the 1st Computer Science Graduate 

Research Conference, The University of Hull, July 2004. 



Chapter 2 

Background and Related Work 

2.1 Current Approaches 

It was shown in the previous chapter that approaches such as 000 execution, VLIW, 

and multithreading suffer from hardware and software problems. In this section, we 

explain these approaches and their challenges in more detail. 

2.1.1 Out-of-Order (000) Execution 

To achieve a higher performance, modern microprocessors use an 000 execution 

mechanism to keep multiple execution units as busy as possible. This is achieved 

by allowing instructions to be issued and completed out of the original program 

sequence as a means of exposing concurrency in a sequential instruction stream. More 

than one instruction can be issued in each cycle, but only independent instructions 

can be executed in parallel, other instructions must be kept waiting or, under some 

circumstances, can proceed speculatively. 

Speculation refers to executing an instruction before it is known whether the re­

sults of the instruction will be used or not, this means that a guess is made as to 

16 
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the outcome of a control or data hazard as a means to continue executing instruc­

tions, rather than stalling the pipeline. Register renaming is also used to eliminate 

the artificial data-dependencies introduced by issuing instructions 000. This also 

enables the extension of the architectural register set of the original ISA, which is 

necessary to support concurrency in instruction execution. Any concurrent execution 

of a sequential program will require some similar mechanism to extend the synchro­

nisation memory available to instructions. Speculative execution and 000 issue are 

used in superscalar processors to expose concurrency from sequential binary code. A 

reorder buffer or future file of check points and repairs is also required to re-order the 

completion of instructions before committing their results to the registers specified in 

the ISA in order to achieve a sequentially consistent state on exceptions. 

Control speculation predicts branch targets based on the prior history for the same 

instruction. Execution continues along this path as if the prediction was correct, so 

that when the actual target is resolved, a comparison with the predicted target will 

either match giving a correctly predicted branch, or not, in which case there was 

a missprediction. A missprediction can require many pipeline cycles to clean up 

and, in a wide-issue pipeline, this can lead to hundreds of instruction slots being 

unused, or to be more precise, if we focus on power, to be used unnecessarily. It can 

therefore be described as a wasteful of chip resources and moreover has unpredictable 

performance characteristics [25]. We will show that it is possible to obtain high 

performance without speculation and, moreover, to save power in doing so. 

As already noted in the previous chapter, as the issue width increases in an 000, 

superscalar architecture, the size of the instruction window and associated logic in­

crease quadratically, which results in a large percentage of the chip being devoted 
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to instruction issue. The 000 execution mechanism therefore prevents concurrency 

from scaling with technology and will ultimately restrict the performance over time. 

The only reason for using this approach is that it provides an implicit mechanism to 

achieve concurrent execution from sequential binary code. 

2.1.2 Very-long Instruction Word (VLIW) 

An alternative and explicit approach to concurrency in instruction issue is VLIW, 

where multiple functional units are used concurrently as specified by a single in­

struction word. This usually contains a fixed number of operations that are fetched, 

decoded, issued and executed concurrently. To avoid control or data hazards, VLIW 

compilers must hoist later independent instructions into the VLIW or if this is not 

possible, must explicitly add no-op instructions instead of relying on hardware to 

stall the instruction issue until the operands are ready. This can cause two problems, 

firstly, a stall in one instruction will stall the entire width of the instruction, secondly, 

adding no-op instructions, increases the program size. In terms of performance, if the 

program size is large compared to the I-cache or Translation Lookaside Buffer (TLB) 

size, it may result in higher miss rates, which in turn degrades the performance of 

the processor [31]. 

It is not possible to identify all possible sources of pipeline stalls and their duration 

at compile time. For example, suppose a memory access causes a cache miss, this leads 

to a longer than expected stall. Therefore, memory reference instructions (loads and 

stores) have a non-deterministic delay within the memory subsystem. The number 

of no-op instructions required is not known and most VLIW compilers will schedule 

load instructions using the cache-hit latency rather than the maximum latency. This 
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means that the processor will stall on every cache miss. The alternative of scheduling 

all loads with the cache miss latency is not feasible for most programs because the 

maximum latency may not be known due to bus contention, or memory port delays, 

and it also requires considerable ILP. This problem with non-determinism in cache 

access limits VLlW architectures to become cacheless unless speculative solutions are 

embraced. This is a significant problem with modern technology, where processor 

speeds are significantly higher than memory speeds [17]. Also pure VLIW architec­

tures are not good for general purpose applications, due to their lack of compatibility 

in binary code [32]. The most significant use of VLIW architectures, therefore is in 

embedded systems, where these constraints are both solved (i.e. single applications 

using small fast memories). A number of projects described below have attempted 

to apply speculation to VLlW in order to solve the scheduling problems and one, 

the Transmeta Crusoe [33], has applied dynamic binary code translation to solve the 

backward compatibility problem. 

The Sun MAJC 5200 [34] is a chip multiprocessor based on four-way issue, VLIW 

pipelines. This architecture provides a set of predicated instructions to support con­

trol speculation. The MAJC architecture attempts to use speculative, thread-level 

parallelism to support the multiple processors. This aggressively executes code in 

parallel that can not be fully parallelised by the compiler [35, 36]. It requires new 

hardware mechanisms to eliminate most squashes (threads are speculatively executed 

in parallel and if a cross-thread dependence is violated at run time, a corrective ac­

tion is triggered to repair the state) due to data dependencies [35]. This method of 

execution is again speculative and can degrade the processor's performance when the 
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speculation fails. MAJC replicates its shared registers in all pipelines to avoid shar­

ing resources. From the implementation point of view, replicating the registers costs 

significant power and area [37] and also restricts the scalability. Furthermore, the 

MAJC compiler must know the instruction's latencies before it can create a schedule. 

As described previously, it is not simple to detect all instructions' latencies due to 

the variety of the hardware communication overheads. 

2.1.3 Explicitly Parallel Instruction Computing (EPIC) 

Intel's explicitly parallel instruction computing (EPIC) architecture is another spec­

ulative evolution of VLIW, which also solves the forward (although not backward) 

code compatibility problem. It does this through the run-time binding of instruction 

words to execution units. The IA-64 [38] architecture supports binary code compati­

bility across a range of processor widths by utilising instructions packets that are not 

determined by issue width. This means a scheduler is required to select instructions 

for execution on the available hardware from the current instruction packet. This 

gives more flexibility as well as supporting binary code compatibility across future 

generations of implementation. The IA-64 also provides architectural support for 

control and data speculation through predicated instruction execution and binding 

pre-fetches of data into cache. In this architecture each operation is guarded by one 

of the predicate registers, each of which stores one bit that determines whether the 

results of the instruction are required or not. Predication is a form of delayed branch 

control and this bit is set based on a comparison operation. In effect, instructions are 

executed speculatively but state update is determined by the predicate bit so an op­

eration is completed only if the value of its guard bit is true, otherwise the processor 
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invalidates the operation. This is a form of speculation that executes both arms of 

some branches concurrently but this action restricts the effective ILP, depending on 

the density and nesting of branches. 

Prefetching is achieved in a number of ways. For example, by an instruction 

identical to a load word instruction that does not perform a load but touches the cache 

and continues, setting in motion any required transactions and cache misses up the 

hierarchy. These instructions are hoisted by the compiler up the instructions stream, 

not just within the same basic block. They can therefore tolerate high latencies in 

memory, providing the correct loads can be predicted. There are many more explicit 

controls on caching in the instruction set to attempt to manage the non-deterministic 

nature of large cache hierarchies. Problems again arise from the speculative nature 

of the solution. If for some reason the prefetch fails, either because of a conflict 

or insufficient delay between the prefetch and genuine load word instruction, then a 

software interrupt is triggered incurring a large delay and overhead. 

EPIC compilers face a major problem in constructing a plan of execution, they 

can not predict all conditional branches and know which execution path is taken [39]. 

To some extent this uncertainty is mitigated by predicated execution but as already 

indicated, this is wasteful of resources and power and like all speculative approaches 

can cause unpredictability in performance. Although object code compatibility has 

been solved to some extent, the forward compatibility is only as good as the compiler's 

ability to generate good schedules in the absence of dynamic information. Also the 

code size problem is still a challenge facing the EPIC architecture [39]. 
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2.1.4 Multithreading 

In order to improve processor performance, modern microprocessors try to exploit 

thread-level parallelism (TLP) through a multithreading approach even at the same 

time as they exploit ILP. Multi-threading is a technique that tolerates delays asso­

ciated with synchronising, including synchronising with remote memory accesses, by 

switching to a new thread, when one thread stalls. Many forms of explicit multi­

threading techniques have been described, such as interleaved multithreading (IMT), 

blocked multithreading (BMT) and simultaneous multithreading (SMT). A good sur­

vey of multithreading is given in [1]. 

A number of supercomputers designed by Burton Smith have successfully ex­

ploited IMT, these include the Delencor HEP, the Horizon and culminated in the 

Tera architecture [40]. This approach is perhaps the closest to that of microthreading 

described in this thesis, although the processor was designed as a component of a large 

multi-computer and not as general purpose chip. The interleaved approach requires 

a large concurrency in order to maintain efficient pipeline utilisation, as it must be 

filled with instructions from independent threads. Unlike the earlier approaches, Tera 

avoids this requirement using something called explicit-dependence lookahead, which 

uses an instruction tag of 3 bits that specifies how many instructions can be issued 

from the same stream before encountering a dependency on it. This minimises the 

number of threads required to keep the pipeline running efficiently, which is about 70 

in the case of memory accesses. It will be seen that microthreading uses a different 

approach that maintains full backward compatibility in the ISA, as well as in the 

pipeline structure. 

Unlike IMT, which usually draws concurrency from ILP and loops, BMT usually 
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exploits regular software threads. There have been many BMT proposals, see [1] and 

even some commercial designs such as the Sun's Niagra processor [6]. However the 

concurrency exposed in BMT architectures is limited, as resources, such as register 

files must be duplicated to avoid excessive context switching times. This limits the 

applicability of BMT to certain classes of applications, such as servers. 

SMT, is probably the most popular and commercial form of multithreading in 

use today. In this approach, multiple instructions from multiple threads provide 

ILP for multiple execution units in an 000 pipeline. Several recent architectures 

have either used or proposed SMT, such as the Hyper-Thread Technology in the 

Intel Xeon processor [41] and the Alpha 21464 [42]. As already described, the main 

problem with an SMT processor is that it suffers from the same scalability issues as 

a superscalar processor, i.e. layout blocks and circuit delays grow faster than linearly 

with issue width. In addition to this, multiple threads share the same level-l I-cache, 

which can cause high cache miss rates, all of which provides limits to its ultimate 

performance [16]. 

2.2 Alternate Approaches 

The complexity and the effectiveness of the instruction issue, long wire delay, and the 

centralised components of those are difficult to scale in existing approaches, requires 

researchers either to extend the concepts of a superscalar processors or to build new 

architectures as an alternative to the superscalar processor. The Multiscalar [43] 

architecture from the university of Wisconsin is an example for extending the con­

cept of superscalar processors. Also, a number of recent projects have attempted to 

build new architectures as an alternative to a superscalar processor; including the 
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Reconfigurable Architecture Workstation (RAW) at MIT [44, 45], the Tera-op, Re­

liable, Intelligently adaptive Processing System (TRIPS) [46, 47] at UT-Austin, and 

Wavescalar [48] at Washington. These projects attempt to minimise communication 

costs and try to exploit locality and improve system scalability. 

However, these architectures change the baseline processor design drastically, and 

use a non-conventional architecture design. In contrast, the microthreaded micro­

processor model is a general purpose architecture and can be applied to any RISC 

or VLIW instruction set. This allows backward compatibility of binary-code with no 

speed-up, and full speed-up from recompiled code that uses additions to base Instruc­

tion Set Architecture (ISA) to support the explicit concurrency controls [49]. The 

following sections explain in more detail some existing and alternative approaches for 

processor architecture. 

2.2.1 Microthreading 

The microthreaded model was first described in [50], and was then extended in [8, 

17, 49, 51] to support systems with multiple processors on-chip. Like the Tera, this 

model combines the advantages of BMT and IMT but does so by explicitly interleav­

ing microthreads on a cycle-by-cycle basis in a conventional pipeline. This is achieved 

using an explicit, context-switch instruction, which is acted upon in the first stage of 

the pipeline. Context switching is performed when the compiler can not guarantee 

that data will be available to the current instruction and is used in conjunction with 

a synchronisation mechanism on the register file that suspends the thread until the 

data becomes available. The context switch control is not strictly necessary, as this 

can be signaled from the synchronisation failure on the register read. However, it 
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significantly increases the efficiency of the pipeline, especially when a large number 

of thread suspensions occur together, when the model resembles that of an IMT ar­

chitecture. Only when the compiler can define a static schedule are instructions from 

the same thread scheduled in BMT mode. Exceptions to this are cache misses, itera­

tive operations and inter-thread communications. There is one other situation where 

the compiler will flag a context switch and that is following any branch instruction. 

This allows execution to proceed non-speculatively, eliminates the branch prediction 

and cleanup logic and fills any control hazard bubbles with instructions from other 

threads, if any are active. 

The model is defined incrementally and can be applied to any RISe or VLIW 

instruction set. The incremental nature of the model allows a minimal backward 

compatibility, where existing binary code can execute unchanged on the conventional 

pipeline, although without any of the benefits of the model being realised. 

Microthreading defines ILP in two ways. Sets of threads can be specified where 

those threads generate MIMD concurrency within a basic block. Each thread is 

defined by a pointer to its first instruction and is terminated by one or more Kill 

instructions depending on whether it branches or not. Sets of threads provide con­

currency on one pipeline and share registers. They provide latency tolerance through 

explicit context switching for data and control hazards. Iterators, on the other hand, 

define SPMD concurrency by exploiting a variety of loop structures, including for and 

while loops. Iterators give parametric concurrency by executing iterations in parallel 

subject to dataflow constraints. Independent loops have no loop-carried dependen­

cies and can execute with minimal overhead on multiple processors. Dependent loops 

can also execute on multiple processors, exploiting instruction level concurrency but 

l 
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during the execution of dependency chains, activity will move from one processor to 

another and speedup will not be linear. Ideally dependency chains should execute 

with minimal latency and parameters for the concurrency instruction provided by the 

model, which allow dependencies to be bypassed on interactions executed on a single 

processor giving the minimal latency possible, i.e. 1 pipeline cycle per link in the 

chain. 

Iterators share code between iterations and use a set of threads to define the 

loop body. This means that some form of context must be provided to differentiate 

multiple iterations executing concurrently. This is achieved by allocating registers to 

iterations dynamically. A family of threads then, is defined by an iterator comprising 

a start, and limit of the loop over a set of threads. Information is also required that 

defines the microcontext associated with an iteration and, as each iteration is created, 

registers for its microcontext are allocated dynamically. To create a family of threads 

a single instruction is executed on one processor, which points to a thread control 

block (TeB) containing the above parameters. Iterations can then be scheduled on 

one or more processors as required to achieve the desired performance. 

Virtual concurrency on a single pipeline defines the latency that can be tolerated 

and is limited by the size of the local register file or continuation queue (CQ) in the 

scheduler. The latter holds the minimal state associated with each thread. Both are 

related by the two characteristics of the code; the number of registers per microcontext 

and the cardinality of the set of threads defining the loop body. In this model, all 

threads are drawn from the same context and the only state manipulated in the 

architecture is a thread's execution state, its PC and some information about the 

location of its microcontext in the local register file. This mechanism removes any 
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need to swap register values on a context switch. 

Theoretically, physical concurrency is limited only by the silicon available to im­

plement a CMP, as all structures supporting this model are scalable and are related to 

the amount of the virtual concurrency required for latency tolerance, i.e. register file, 

CQ and register allocation logic. Practically, physical concurrency will be limited by 

the extent of the loops that the compiler can generate, whether they are independent 

or contain loop-carried dependencies and ultimately, the overheads in distribution 

and synchronisation that frame the SPMD execution. Note that thread creation pro­

ceeds in a two stages. A conceptual schedule is determined algorithmically on each 

processor following the creation of a family of microthreads but the actual thread 

creation, i.e. the creation of entries in the CQ, occurs over a period of time at the 

rate of one thread per cycle, keeping up with the maximum context-switch rate. This 

continues while resources are available. 

The next chapter provides more details about the microthreaded microprocessor 

model and its concurrency controls. The model has multiple features which make it 

a good candidate to future scalable and powerful CMPs. 

2.2.2 Multiscalar 

Another paradigm to extract even more ILP from sequential code is the multiscalar 

architecture. This architecture extends the concepts of superscalar processors by 

splitting one wide processor into multiple superscalar processors. In a superscaler 

architecture, the program code has no explicit information regarding ILP; only the 

hardware can be employed to discover the ILP from the program. In multiscalar, the 

program code is divided into a set of tasks or code fragments, which can be identified 
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statically by a combination of the hardware and software. These tasks are blocks in 

the control flow graph of the program and are identified by the compiler. The purpose 

of this approach is to expose a greater concurrency explicitly by the compiler. 

The global control unit used in this architecture distributes the tasks among mul­

tiple parallel execution units. Each execution unit can fetch and execute only the 

instructions belonging to its assigned task. So, when a task missprediction is de­

tected, all execution units between the incorrect speculation point and the later task 

are squashed [52]. Like superscalar, this can result in many wasted cycles, however 

as the depth of speculation is much greater, the unpredictability in performance is 

correspondingly wider. 

The benefit of this architecture over a superscaler architecture is that it provides 

more scalability. The large instruction window is divided into smaller instruction win­

dows, one per processing unit, and each processing unit searches a smaller instruction 

window for independent instructions. This mitigates the problems of scaling instruc­

tion issue with issue width. The multiple tasks are derived from loops and function 

calls, allowing the effective size of the instruction window to be extremely large. Note 

that not all instructions within this wide range are simultaneously being considered for 

execution [43]. This optimisation of the instruction window is offset by a potentially 

large amount of communication, which may effect the overall system performance. 

Communication arises because of dependencies between tasks; examples are loop­

carried dependencies and function arguments and results. Results stored to register, 

which are required by another task, are routed from one processor to another at run 

time via a unidirectional ring network. Recovery from misspeculation is achieved by 
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additional hardware that maintains two copies of the registers along with a set of reg­

ister masks, in each processing unit [53]. In summary then, although the multiscalar 

approach mitigates against instruction window scaling allowing wider issue width, in 

practice it requires many of the same complex mechanisms as superscalar and being 

speculative is unlikely to be able to perform as consistently as a scalable CMP. 

2.2.3 Intrathreads 

The intrathreads [54] or inthreads represent a context of computation (independent 

threads of control) executing simultaneously on the processor. Thus, the processor 

holds a context and this context contains information necessary for its execution. A 

set of condition registers are used for synchronisation between intrathreads and to 

suspend the inthread's context until a specific condition has been resolved. The ar­

chitecture defines a set of instructions for creation, synchronisation, and termination. 

Generally the intrathread architecture is similar to SMT, where it tries to operate 

on a low level of ILP by using a shared registers for data communication rather than 

shared memory as in SMT. 

Intrathreads adopt the same principle as microthreads but with a different ap­

proach to implementation. The architecture supports a fixed number of intrathreads. 

In fact, the intrathread architecture has many limitations and ends up requiring many 

of the same complex mechanisms as SMT such as: complex issue window, register 

renaming, speculative execution, and recovery mechanisms to handle misspeculation 

of branches which affect instructions in several threads. 

As described in [24], there are many differences between intreathreds and mi­

crothreads. First, intrathreads use bounded concurrency and statically-partitioned 
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resources, while microthreads describe parametric concurrency and the resources are 

managed dynamically through the concept of microcontexts. Secondly, intrathreads 

separate synchronisation and data storage, while a microthreaded processor imple­

ments registers as i-structures to synchronise between code fragments. In addition, 

Inthreads have a limited number of threads, and the implementation targets a wide 

issue pipeline rather than a chip multiprocessor. 

The microthread model requires dynamic register allocation and a hardware sched­

uler, which can support hundreds of microthreads per processor and their associated 

micro contexts. The allocation of these micro threads is dynamic; being determined 

by resource availability, as the concurrency exposed is parametric and not limited by 

the hardware resources. The instruction issue schedule in the microthreaded model 

is also dynamic and requires linear hardware complexity to support it. 

2.2.4 Raw Machine (RAW) 

The RAW processor is a single chip consisting of 16 identical single issue processor 

tiles connected by a mesh interconnection network. Each tile in the mesh contains a 

data and instruction memory, register file and an 8-stage in-order pipeline. 

The RAW architecture and its compiler tries to exploit ILP within basic blocks 

of code. The architecture supports data and ILP by explicitly distributing computa­

tion to different tiles and running them as different threads (independent instruction 

streams). In order to route a value between two tiles a static router is used to set 

up an appropriate path between the source tile and the destination tile on the static 

network. In fact, this architecture exploits TLP rather than ILP by using indepen­

dent instruction streams. Also, the RAW compiler puts all statically predictable 
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communications on the static on-chip network and the ordering never changes [56], 

the problem is how to adapt this method for dynamic code to evaluate ILP with 

considerable data dependencies. 

The RAW architecture not only statically orders communication between the 16 

tiles, but also statically partitions code onto the tiles. One draw back of this ar­

chitecture is the inter-node communication latency, which is extremely sensitive and 

high. The RAW architecture suffers a three cycle penalty in the case of misspre­

diction or inter-tile ALU-to-ALU operand delivery and up to 54 cycles for Ll cache 

miss latency [56]. In contrast, microthreading provides a mechanism to avoid any de­

lays in instruction cache misses and is also fully decoupled from any remote accesses, 

including memory access. 

2.2.5 Explicit Data Graph Execution (EDGE) and TRIPS 

The Explicit Dataflow Graph Execution (EDGE) instruction set architecture is an­

other approach targeting a scalable issue width, which tries to turn thread and data 

level parallelism to ILP, and attempts to minimise global communication delays. The 

TRIPS architecture is an evolution of the EDGE ISA, which uses a dataflow order 

execution and its architecture contains two 000, 16-wide issue processor cores. 

The program graph in TRIPS EDGE architecture is broken explicitly by the 

compiler into a sequence of blocks called hyperblocks [57]. Each block is fetched from 

the memory at run time and is scheduled independently. The compiler is responsible 

for statically placing this block of instructions into the issue window and mapping 

each block into the array of execution nodes. The renaming logic at the register 

file bank is used to forward register values that one block produces directly to be 
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consumed in another block. 

Within a block, the TRIPS ISA supports large graphs of computation mapped to 

hardware components, with instructions in each graph communicating directly with 

other instructions, rather than going through a shared name space. The hyperblocks 

are scheduled sequentially with conventional control-flow semantics, then allocated 

to processors in a cluster statically. Because of this partioning between data flow 

and sequential semantics, the approach does not scale seamlessly [55]. Subsequent 

hyperblocks are selected speculatively, and executed concurrently. Scaling the hard­

ware will require scaling the hyperblocks that provides the data flow concurrency, 

which is a compile-time optimisation and would require frequent recompilation [55]. 

The architecture is similar to wavescalar in that both use of direct communication 

between instructions of the same hyperblock. 

A TRIPS compiler unrolls loops statically to extract higher levels of concurrency 

up to its execution width. It is also focused on statically mapped parallelism, which 

is automatically extracted by the compiler. Conversely, in the microthreaded model, 

parametric concurrency based on loops can be expressed through the ISA, using a 

control block associated with the ere instruction. Therefore, the concurrency is not 

limited by hardware constraints. 

2.2.6 Wavescalar 

Wavescalar [48] is a tagged-token dataflow architecture. Instructions execute in se­

quence and according to the dataflow firing rule. Wavescalar instructions execute 

in-place in the memory system and explicitly send their results to their dependents. 
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Thus, wavescalar instructions are cached in the processing elements. The main moti­

vation of wavescalar architecture was to build a distributed superscalar processor core 

in order to provide a scalable issue window and to avoid a long wire delays problem. 

It also attempts to solve the problems of source language and concurrency expan­

sion. It does this by introducing a wave number across multiple instances of a given 

context such as a loop or function call. This sequentialises execution and provides a 

mechanism for resolving multiple writes to the same variable, something not allowed 

in single assignment languages [55]. 

This architecture relies on the compiler to minimise the communication delays by 

minimising the physical distance between the dependent operands and hence min­

imising the execution time. Execution of instructions occurs in a desired order within 

each wave. Wave number tags are used in identifying each individual instance of 

data used when executing the program. Thus, the Wavescalar architecture uses a 

wave-ordering memory mechanism to order memory operations by statically assigned 

unique sequence numbers for the predecessor and successor operations. Wavescalar 

dynamically groups multiple instructions as a block and assigns this block to a fixed 

number of processing cache elements. The Wavescalar approach however, still suffers 

from inefficiencies in managing control flow and will typically execute more instruc­

tions for a given computation than are executed in a RISe processor [55]. Also, there 

is no flexibility in the execution and this follows from the adaptive ordering which 

reduces the parallelism. 
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2.3 Recent CMPs 

From the above discussion we see that most current techniques for exploiting con­

currency suffer from software and/or hardware difficulties, and the focus of research 

and development activity now seems to be on chip multiprocessors (eMP). These 

designs give a more flexible and scalable approach to instruction issue, freeing them 

to exploit Moore's law though system level concurrency. Some applications can ex­

ploit such concurrency through the use of multithreaded applications. Web and other 

servers are good examples; however, the big problem is how to program CMPs for 

general purpose computation and whether performance can ever be achieved from 

legacy sequential code, either in binary or even source form. 

Several recent projects have investigated CMP designs [2,3,4,58]. Typically, the 

efficiency of a CMP depends on the degree and characteristics of the parallelism. Ex­

ecuting multiple processes or threads in parallel is the most common way to extract a 

high level of parallelism, but this requires concurrency in the source code of an appli­

cation. Previous research has demonstrated that a CMP with four 2-issue processors 

will reach a higher utilisation than an 8-issue superscalar processor [1]. Also, work 

described in [4] shows that a CMP with an eight 2-issue superscalar processor would 

occupy the same area as a conventional 12-issue superscalar. The use CMPs is a 

very powerful technique to obtain more performance in a power efficient manner [59]. 

However, using superscalar processors as a basis for CMPs; with their complex issue 

window, large on chip memory, large multi-ported register file and speculative execu­

tion is not such a good strategy because of the scaling problems already outlined. It 

would be more efficient to use simpler in-order processors and exploit more concur­

rency at the CMP level, provided that this can be utilised by a sufficiently wide range 
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of applications. This is an active area of research in the compiler community and 

until this problem is solved, CMPs based on user-level threads will only be used in 

applications which match this requirement, such as large server applications, where 

multiple service requests are managed by threads. 

2.4 Microarchitecture and Architecture Challenges 

As described above, CMPs architectures must overcome multiple challenges if they 

are to deliver their full potential. In this section, we provide more detail on these 

challenges, and outline some of the existing approaches to solving them. 

2.4.1 Scalability and Performance Improvement 

To keep multiple execution units as busy as possible in the presence of significant 

latency in obtaining operands, modern processors use an aggressive 000 instruction­

execution. This allows instructions to be issued and completed out of the original 

program sequence, thereby exposing concurrency in the legacy, sequential instruction 

stream. 000 execution increases the performance of a superscalar processor by 

reducing the number of stall cycles in the pipeline. Synchronisation is managed by 

the instruction-issue logic, which keeps track of resources required by an instruction 

and any dependencies on the results of other instructions, which may not yet have 

been scheduled or completed. The instruction window maintains the set of decoded 

instructions on the currently predicted execution path that have not yet been issued. 

Its logic triggers those instructions for execution but requires an area that is quadratic 

in issue width, i.e. the number of instructions that can be issued simultansously [12]. 
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Other support for renaming registers and retiring instructions adds to this cost. The 

key problem is that the mechanism for synchronisation is centralised. 

Monolithic processors (Le. wide-issue from a single instruction stream) have other 

structures that do not scale, these are the register file [60] and bypass logic [14], 

which are also centralised. Finally, the concurrency exposed in 000 instruction 

execution is limited due to the inefficient use of the instruction window. In practice 

its size is limited by scalability constraints but its use is required for all instructions, 

independent of whether those instructions can be statically scheduled or not. 

SMT is an attempt to make more efficient use of 000 scheduling by fetching 

instructions into the instruction window from a number of independent threads, thus 

guaranteeing fewer dependencies between the instructions found there and hence al­

lowing more efficient use of the wide instruction issue. However, it does not address 

any of the issues outlined above and suffers from the same scalability problems as 

conventional 000 processor, Le. layout blocks and circuit delays grow faster than 

linearly with issue width, and synchronising memory is used inefficiently. Indeed it in­

troduces other problems, such as multiple threads that share the same level-1 I-cache, 

which can cause high cache miss rates, all of which limit the ultimate performance [16]. 

The latency across a memory hierarchy may require hundred of cycles, which can 

significantly impact performance. The only way to avoid an impact on a processor's 

performance is to provide instruction-level concurrency, in addition to wide instruc­

tion issue, to provide tolerance to this latency. That, by definition, requires hundreds 

of independent instructions per processor. With CMPs comprising thousands of pro­

cessors, this means providing synchronising memories capable of supporting hundreds 

of thousands of synchronisation will be required in future CMPs and they must be 
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designed with this in mind. 

An alternative approach to on-chip concurrency is to exploit user-level threads 

rather than dynamically extracting concurrency from legacy binary code. Sun has 

proposed a commercial, 32-way threaded version of the SPARe architecture in its 

Niagara device. The chip has eight cores, each able to handle the contexts of four 

threads. Each core has it own L1 cache and all cores share a 3MB L2 cache. Key 

problems with the Niagara approach are the significant resource consumption for the 

aggressive speculative techniques used, and the significant time wasted waiting for off­

chip misses to complete, see [61]. Also, the basic implementation of this SPARC chip 

is a superscalar processor and, as already described, the superscalar approach provides 

diminishing returns in performance for increasing issue width. The performance of 

a 6-issue 000 processor will achieve only 1.2 to 2.3 IPC, compared with 0.6 to 1.4 

IPC in a 2-issue processor [13]. 

It should be noted that Niagara is better suited to server rather than general­

purpose workloads, as a profusion of high-level threads are available in server appli­

cations, e.g. where a server's users are each managed by a concurrent thread. How­

ever, for general purpose workloads, typical programs are not so heavily threaded and 

unless an automatic means of generating them can be found, this will severely limit 

the software-thread approach. 

2.4.2 Concurrency and Programmability 

Exposure and management of concurrency are the key issues in supporting CMP de­

sign and implementation. This is the case for distributed systems as well chip-level 



38 

systems, but in the latter situation, the constraints and opportunities dictate a dif­

ferent approach that is able to minimise the overheads of managing that concurrency. 

Concurrency has the ability to increase overall system performance as well as provide 

power savings in obtaining a given performance, by scaling frequency and voltage. 

The use of 000 instruction execution to expose and manage concurrency is ideal 

in one respect and one respect only. That is the ability to obtain concurrency from 

legacy code, without the programmer having to be aware of it. This has great com­

mercial appeal. However, the model has no tacit knowledge of concurrency and 

synchronisation and this must be extracted dynamically in hardware, using complex 

support structures, not all of which scale with issue width. This is wasteful of chip 

resources, does not have predictable performance and is not able to conserve power 

in the execution of instructions. If concurrency were explicitly described in the in­

struction stream, some of these unsealable structures could be avoided. 

User-level concurrency based on threaded applications is one alternative solution 

exemplified by the Niagara described above, but not all codes contain thread-level 

concurrency and therefore tools are required to extract threads from sequential pro­

grams. One example of such tools is the use of speculative, pre-execution threads 

to provide latency tolerance in memory access. This can be performed statically 

by a compiler, dynamically in the hardware, or indeed by a hybrid of the two [62]. 

However, as its name suggests, the model is speculative, which can again result in 

unpredictable performance and, like all speculative methods, is not conservative in 

its use of energy, e.g. when the speculation fails. 

An alternative approach to extracting threads from user-level sequential code is 

described in [63], which compiles legacy applications for a multithreaded architecture. 
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The most important goal of this work is to create a sufficiently large number of threads 

so that there is sufficient parallelism to hide communication latency. A second goal 

is to create threads of a sufficient granularity so that the context switching cost is 

relatively small compared with the cost of the actual computation. These goals are 

contradictory but can be achieved by distributing remote data dependencies between 

different threads and using these dependencies to schedule the thread when data de­

pendencies are resolved, i.e. by using non-blocking threads. The approach described 

here, microthreading, has extremely efficient context switching and consequently does 

not require threads to be non-blocking. 

Most approaches to extracting concurrency use the well-known fact that most 

computation is performed in loops and that loop iterations can often be performed 

concurrently, LLP. Compilation can extract software concurrency, as [63], or provide 

instruction-level concurrency as in the case of microthreading, which has an ISA ex­

tension for the compiler to target; this instruction dynamically creates a whole family 

of threads. Alternatively, in conjunction with control speculation, loops facilitate the 

concurrency exposed in 000 instruction execution by using branch prediction. 

However, not all loops are independent and concurrency is often limited by data 

dependencies, which may arise between different loop iterations when executed con­

currently. The vector computers of the 1970s and 1980s were unable to deal with LLP 

that involved dependencies. 000 instruction execution, on the other hand, manages 

these dependencies, which are often regular, just like any other irregular dependency. 

It has no contextual data to optimise and structure such management. There are 

other explicit approaches to manage loops containing data dependencies [3, 15] but 

in these, loop-carried dependencies are expressed as concurrently executing threads 
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that share memory. This is bad as it induces high latencies in the dependency chains. 

In contrast, microthreads, synchronise in registers rather than in memory but this 

requires large register files as well as large support structures. This can only be 

achieved using distributed structures and in microthreading, unlike monolithic wide­

issue approaches, synchronisation and scheduling are managed by distributed register 

files and schedulers even though the concurrency is specified and managed at the 

instruction level. 

The requirements on these support structures are severe; they must support a 

context switch on every cycle, as the compiler identifies context switch points in 

the code and can flag any instruction to context switch. They must also support 

thread creation on every cycle, as thread creation occurs concurrently with instruction 

execution and must keep pace with the rate at which context switches can occur. 

Finally, they must support thread rescheduling at one thread per cycle, as when all 

threads are created, rescheduling must also keep up with context switch rates. 

2.4.3 Scaling Processor Support Structures 

In superscalar processors, the logic necessary to handle 000 instruction issue typ­

ically occupies 20-30% of the chip area [13] and the issue logic in processors that 

support speculation can be responsible for 46% of the total power [64]. On-chip 

caches are another critical challenge in modern processors, occupying large die areas, 

consuming significant power, and in some cases restricting system performance and 

scalability. Large cache bandwidth requirements and slow global wires will sharply 

diminish the effective performance of processors sharing a large monolithic cache as 

advances in fabrication processes effectively decrease global propagations times. 
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The alternative is to build thousands of processing elements on a die and surround 

each with a small amount of fast storage. Compare this to Intel's Montecito processor 

where cache memory occupies some 70% of the total die area or the equivalent to 

32,000 32-bit integer ALUs (0.18J.Lm technology). Huh et. al. [65] address this issue by 

comparing the architectural trade-offs between in-order and 000 issue processors for 

serial applications. Their study demonstrated that if no L-2 cache area were required, 

then it is possible to integrate 556 2-way in-order processors on a single chip, or 201 

4-way 000 processors with a maximum area of 400mm2 in 35nm technology. 

Clearly, the use of ever larger hierarchical memory systems does not serve scala­

bility and does not guarantee better performance. Instead, as argued above, there is 

a requirement for large, fast and distributed synchronisation memory to support very 

wide instruction issue as well as latency tolerance. Ideally a deterministic distribution 

of instruction execution and data mapping is required in order to explicitly manage 

locality and to eliminate, as far as is possible, slow and power-hungry global commu­

nication. This goal is not served by using a large and monolithic processors connected 

to a large and monolithic on-chip memory. In short, some form of distribution be­

comes essential and without a deterministic distribution of data and computation on 

chip, very wide-issue CMPs are just not feasible. 

Rixner et. al. [22] analysed register file area, delay and power dissipation for 

streaming applications. The analysis showed that for a central register file, area and 

power dissipation grows as N3 and delay grows as N3/2. Examples of the effects of 

this scaling can be found in the proposed Alpha 8-way issue 21464, which used a 

512 location register file requiring 24 ports to serve the wide-issue processor. Even 

with a clustering, the 4Kbytes of register file occupied an area some 5 times larger 
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than that used by the L1 D-cache [66] (64KB plus tags). That is a per-bit, density 

ratio of 100: 1 and graphically illustrates Rbmer's results. Power is also an issue in 

such large structures and in Motorola's M.CORE architecture, the register file energy 

consumption is 16% ofthe total processor power and 42% ofthe data path power [67]. 

These examples, which support only modestly-wide instruction issue, confirm that 

multi-ported register files in modern microprocessors are not the way to proceed in 

future CMPs. 

ILP processors communicate and synchronise using a namespace interpreted at 

the instruction level, i.e. the register specifiers. This is typically limited to 5 or 6 

bits and the question that must be asked is how can a large and distributed syn­

chronisation memory be addressed with such small addresses? 000 processors use 

register renaming for subsequent uses of the same register specifier and thus expand 

the namespace dynamically. (This also removes the artificial dependencies introduced 

by executing instructions out of program sequence). Of course, additional hardware 

is now required to perform this mapping and to re-establish the mapping back to the 

original binary code to give the illusion of sequentially executed instructions. 

Microthreading on the other hand executes loops as concurrent code fragments 

and in order to share code for a loop body, each iteration must have its own registers, 

which are unique. In contrast to renaming, this is achieved by addressing a register 

file relative to some unique offset, so that the same instruction will access a different 

location in the register file for different iterations. Those offsets are a part of the 

microthread's state. This mechanism extends the ISA's namespace so that it is limited 

only by the parametric concurrency expressed in the creation of the microthreads that 

execute the loop. 
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2.4.4 Power Dissipation 

Two challenges in modern processors is power consumption and heat dissipation, 

which are already a serious problems and will only become worse in future [68]. For 

example, Intel's Madison consumes up to 130W, the alpha 21364 EV-7 consumes 

155W and the International Technology Roadmap for Semiconductors expects that 

power consumption in processors will reach close to 300W by 2015 [21]. This 300W 

does not follow the past exponential growth in power dissipated and recognises this 

as a major constraint on processor design. This problem is exacerbated as in future 

process technologies, the leakage power will also become a significant percentage of 

the overall power dissipated [69]. 

Several researchers have considered power reduction in CMPs [68, 69] but these 

techniques can not hope to find significant principle solutions as branch prediction 

and 000 issue do not provide a significant performance improvement relative to the 

area and power consumed and do not execute instructions conservatively with respect 

to power dissipation. Indeed, the only solution is to remove these features to save 

power [70]. Another current trend that highlights this problem is the current practice 

of increasing the number of pipeline stages in order to reduce the clock period and 

hence increase performance. This also can not continue, as it is simply not feasible to 

continue to extract exponentially growing amounts energy from a chip as heat, as the 

result of power dissipated. Indeed, there is a case for the trend to higher and higher 

clock frequencies to be stopped or even reversed and instead to use concurrency as a 

means of providing performance improvements without excessive power consumption. 

Concurrency can also provide power reduction for a given performance. With a 

scalable processor, two processors acting concurrently should give the same overall 
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performance as one at double the speed. The scalability required is performance 

with issue width, logic or area with issue width and power dissipated with instruc­

tions issued per cycle (IPC). Although the above comparison breaks even in power 

dissipated, power can be saved by scaling supply voltage with frequency. As power 

dissipated is proportional to Vvv , this gives a quadratic reduction in power for a 

given performance, over the linear portion of frequency-voltage scaling. 

The use of IPC rather than issue width as a base for power scaling assumes that 

when a processor is inactive it can be powered down. As a result, speculation or eager 

execution must be avoided, as by definition an eager processor can never determine 

when there is nothing to do! 

Microthreading uses simple in-order instruction issue without branch prediction 

and has explicit control of instruction scheduling, it can therefore provide all the 

hooks required to support conservative instruction issue and hence take advantage of 

this power scaling [24]. Processors with no active threads are aware that instructions 

can not be scheduled and can therefore go into standby mode dissipating minimal 

power. This power usage can be scaled with IPe rather than issue width. 

This conservative scheduling also provides an insight into asynchronous partition­

ing of a CMP. By definition, if a processor has all of its threads inactive, then any 

event triggering further computation must either be external to the processor (asyn­

chronous) or the processor must be deadlocked. A microthreaded CMP can therefore 

use a local clocking with asynchronous communication between processors, further 

reducing power requirements. This fact, together with the processor's inherent la­

tency tolerance provides all the hooks required to implement a globally-asynchronous, 

locally-synchronous (GALS) implementation. Additional power savings come from 
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not requiring such powerful drivers in distributing the clocks to the entire chip. 

2.5 Distributed Memory Multiprocessor Architec­

ture 

It is very well known that most current multiprocessor systems organise their proces­

sors and memory using one of the two architecture methods [71], Uniform-Memory 

Access (UMA) and Non-Uniform Memory Access (NUMA). In an UMA architec­

ture, as shown in figure 2.1, mUltiple processors links up to a global memory storage 

through a common system bus. The access times to this memory from each processor 

are the same, hence the name UMA. This memory architecture has the advantage 

of being easy to program as there is no explicit communication between processors 

and all communications are handled through a global memory system. However, this 

architecture does not scale well and has a communication bottleneck when multiple 

processors attempt to access the centralised resource (system bus or global memory) 

at the same time. 

The second alternative memory organisation is NUMA, and it also known as a 

Distributed Shared Memory (DSM) architecture. The general structure of NUMA 

architectures is shown in figure 2.2, which avoids the drawbacks of the UMA architec­

ture and allows the construction of large scalable machines [72, 73]. This architecture 

can be constructed as a clustered or shared local memories as shown in figures 2.2a 

and 2.2b respectively. In a clustered configuration, each cluster is itself an UMA or 

a NUMA multiprocessor, where all processors belong to the same cluster and have a 

uniform access to the memory attached to it within the cluster. The interconnection 



46 

/ 

V I Global Memory 

J ~ 

~ 

, , 
System Bus ¢> 

~j 

/ / / ;1 / ;1 L / 

Processing Processing Processing Processing 
Element V Element ~ Element V Element II 

Figure 2.1: UMA architecture model. 

network is used by each cluster to connect other remote clusters. In shared local 

memories, each processor accesses its local memory which is attached dir ctly to it 

and accesses the high performance interconnection network for the remote data. The 

access time in this memory architecture varies, hence the name on-Uniform Memory 

Access (NUMA). Access to the local memory can occur much faster than the remote 

memory (due to the different physical distances) , and the latter is effected by the way 

the processors are connected. 

As described in [74], the distributed-memory multiprocessor architecture is es-

sential in developing massively parallel machine, however one of the most important 

design issues in such a distributed memory multiprocessor architecture is a latency 

problem, which is caused by remote memory access. This problem forces the pro­

cesses to suspended their execution until the response to remote memory is received. 

Such a design strategy places a greater challenge on the memory system, where on 

average memory operations account for about third of all instructions [75]. The long 

latency across the memory hierarchy in modern processors requires hundred of cycles 
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Figure 2.2: NUMA models system architectures. 

to traversed data, which significantly impacts performance. For example, in l-GHz 

microprocessors accessing main memory can take about 100 cycles and such access 

may stall a pipelined processor for many cycles [23]. Therefore, the memory system 

is an important design issue, which must be considered carefully in designing any 

scalable system on-chip. 

The latency tolerance provided by micro threaded microprocessor model makes the 

design of the memory system somewhat flexible. For example, a large, banked, multi­

ported memory would give a solution that would provide all the buffering required 

for the large number of concurrent requests generated by this model. It is important 

to note that using in-order processors and a block-based memory consistency model, 

memory ordering does not pose the same problem as it does in an 000 processor. The 

following subsections cover some design choices for distributed memory architectures 
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Figure 2.3: The COMA architecture model. 

and chapter 8 introduces two possible memory organisations for further research for 

distributed memory architectures for microthreaded CMP. 

2.5.1 Cache Only Memory Architecture (COMA) 

One possible organisation of memory modules is to use a cache only memory (COMA) 

architecture [76, 77, 78, 79,80, 81J. The COMA model is a distributed shared memory 

and it is a special case of NUMA architecture. COMA attempts to improve memory 

bandwidth by organising the local memory as a large cache, called an attraction 

memory (AM), without traditional main memory. COMA provides the ability to 

automatically copy or migrate data and replicate it to where it is being used by 

the processors [79, 80J. In fact, COMA has multiple advantages [82J for scalable 

distributed shared-memory and the first commercial COMA architecture was the 

KSR-l [83, 84]' which used a hierarchical ring interconnection network. 

Figure 2.3 shows the COMA architecture model, where each processor has a local 

cache and a virtual part of the shared memory and all the caches form a global address 
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space. Distributed cache directories are needed to store the coherence information and 

there are two types of directory organisation: hierarchical and flat [85, 86]. In the 

Hierarchical-COMA configuration, each directory must keep coherence information 

about the rest of the subhierarchy nodes. Thus, a long latency occurs when a request 

traverses up and down through the hierarchy to search for a desired memory block, 

or when replacements are required. 

The Flat-COMA configuration is an alternative directory organisation, which uses 

a non-hierarchical interconnection network to search for a desired memory block. In 

this configuration, the memory block can migrate or replicate to any memory node, 

but the directory entries must remain fixed in their home nodes. Thus, instead 

of traversing a hierarchical interconnection network to find the memory block at a 

miss condition in an AM, an enquiry request goes to the home directory. If the 

home directory does not have a copy from the required memory block, the request is 

forwarded to the next directory home. 

EI Naga et. al. [87] proposed the multithreaded COMA (MCOMA) architecture 

with Flat-COMA, which uses a scalable non-hierarchical interconnection network to 

connect all processing nodes. In this architecture, all the group directories are con­

nected through a dedicated search interconnection network for fast data search, while 

the processors and memory modules communicate through a separate interconnection 

network. In this architecture, each group of processors are connected to its local di­

rectory node, where the directory contains information about the data item physically 

allocated in the node of its cluster group of processors. 
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2.5.2 Multibanking 

Attempts have been made to improve memory performance by using different cache 

implementation techniques [75, 88, 89, 90]. For example cache replication, in which 

multiple copies will allow multiple load instruction to be satisfied simultaneously 

as in Alpha 21164 Microprocessor [91]. However, this technique only improves the 

load instruction, while the store instruction is still a bottleneck. Also, from the 

hardware point-view, replicating multiple copies means more die area and more power 

consumption. Therefore, this technique is costly, and does not scale well. 

Another technique is multi banking, where a cache is divided into multiple cache 

banks, so that multiple banks can be accessed simultaneously. The MIPS 10000 [92] 

is an example of a 2-bank (interleaved) data cache, where a pair of memory ref­

erences can address different banks at the same time. However, one well known 

problem with multibanking is bank conflicts when multiple memory requests goes 

to the same memory bank. An alternative solution to bank conflicts is to use bank 

prediction techniques. Several researchers have proposed bank predictors based on 

branch prediction such as [93, 94]. However, these techniques still suffer from the 

problem of erroneous bank prediction, where a missprediction requires a recovery 

mechanism to steer the missprediction load or store to the proper queue [94, 95]. 

Other proposals [89, 96] described a combined mechanism to avoid bank conflicts, 

where extra hardware is required to detect and combined multiple memory accesses 

to same cache bank. Typically, multibanked memory uses a crossbar switch intercon­

nection network to distribute memory references across cache banks. The crossbar 

switch is cost-effective because its die area increases super-linearly with increasing 

number of cache banks [75]. 
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Table 2.1: Current and upcoming Microprocessors. 
Proc ••• or L1-Cache L2-Cache L3-Cache Proo ••• Tr.ne .• tor Area Size 

Proc ••• or Speed Biz. 81z. 81ze Tect;,r;:IODll Count rn ..... 
GHa Million 

AMD 154KB' 1015.8 183 Athlon154 2.2 1MB None 130 
FX 154KEI 

Intel 1.0 32KB'32KE! 21515KEI 3MB 180 221 421 
McKinleY' 

Intel 1.15 1I5KB'1I5KE! 1512KB 
Madlaon 

8MIS 130 1500 374 

Intel 154KB'154KE! 
1720 

1.87 2MB 24MB 80 (1.2 bit In 1580 
Montecito oeah.) 

Inte' 
Pentlurn4 2.0 8KBI'8KB 812KB None 130 158 148 

(NorthWood > 

Int •• 
Pentlurn4 3.2 8KBI'8KIS 812KB 2MIS 130 180 237 

(NorthWood > 

Alpha 
213154 1.15 154KB'84KE! 1.'78MIS None 130 100 300 
1: ..... '78 

HP .8'78 2.28MIS Non_ Non_ 180 18. 304 PA-8700 

IBM 2.8 32KB'32KE! 1.8MIS 3.MIS 130 2'715 388 PowerS (On-Chip) 

Alpha 1.2-2 154KB'154KE! 1.'71S-3MB None 1'78 280 420 21_4 

Rivers et. al. [75] proposed a multibanking scheme as a cost-effective alternative 

to multi-porting caches. In this scheme, n independent single ported cache banks 

are employed to get an n ported data-cache memory. The cache-line addresses are 

interleaved through the banks and the banks are accessed in parallel. Also, the 

authors proposed a combined technique, to avoid bank conflict when simultaneous 

accesses are going to the same cache line. 
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2.6 Techniques and Evaluation Methodology 

In this section, we will discuss some techniques such as chip area estimation and the 

simulation environment that is employed in our work to evaluate the microthreaded 

CMP support structures. 

2.6.1 Chip Estimate Area Model 

Current technology continues to follow Moore's law and provides a doubling of the 

number of transistors integrated on a single chip every two years. To fulfill Moore's 

law's predictions, silicon chip designers continue to shrink the feature size of the 

silicon chip to increase number of transistors. However, as described earlier, existing 

microarchitecture designs are reaching a limit in performance and it is now very hard 

for these designs to scale properly. 

Generally, the die size of the processor refers to its area size on the wafer, which 

measured in square millimeters (mm2). Table 2.1 shows a summary of selected die 

size of some existing and upcoming microprocessor chips. The table also shows the 

memory hierarchy storage sizes and the transistors count in each processor chip. 

Unfortunately, an efficient analysis of area requires an accurate analytical model 

to predict the costs of the various architecture parameters. Work published by [97] 

described a chip area model for register files and caches. Also, Gupta et. al. [98] 

derived a set of technology-independent area models, by measuring die photographs 

of commercial microprocessors and normalising the results. In addition, Standard Cell 

Datasheets [99] provide an estimate of area for digital combinational logic circuits. 

Moreover, the Cache Access and Cycle Time model (CACTI) [100] includes an 

area model for different cache configurations along with their process technology. The 
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analysis includes the area of decoders, bit cells, input and output circuits and routing 

tracks. Also, a technology-independent area model in [98] identifies and summarised 

the areas and sizes for various instruction and data caches. Our work therefore, uses 

these techniques to provided area estimates of the microthreaded support structures 

and the processor core. 

2.6.2 Simulation Environment 

The validation of the hardware design requires functional simulation, in order to 

assess the overall system performance and to check the correctness of its behaviour. 

One popular approach to simulation for hardware components is to use the hardware 

description language VHDL. This language has become widely accepted, is commonly 

used in industry and can be used to target FPGA-like logic devices. It provides several 

advantages such as good verification for the behaviour of the system components, easy 

code construction, and modification and accurate pre-layout simulation results for the 

system hardware components. 

The base MIPS processor is already modelled using VHDL as a hardware descrip­

tion language and synthesis tool [101]. Thus, our implementation results in this the­

sis are described in VHDL. In particular, we used Symphony EDA VHDL compiler 

and simulator [102] to model and implement the microthreaded eMP components 

described throughout this thesis. This simulator is a leader in HDL simulation tech­

nology and produces verification solutions for the hardware system components. It 

is important to note that our design strategy in writing the VHDL code is that it is 

important first to define the logic design of the mechanism that must be employed, 

and then the corresponding high-level language coding methodology can be described. 
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2.7 Summary 

The chapter reviewed several existent processor architectures, and highlights the com­

plexity and challenges that limits existing approaches from being scalable. We also 

discussed distributed memory architecture organisation. Also, techniques such as the 

chip estimate area model and simulation environment that are employed in our work 

are presented. 

The characteristics of advanced integrated circuits (ICs) will in future require pow­

erful and scalable CMP architectures. However, current techniques like wide-issue, 

superscalar processors suffer from complexity in instruction issue and in the large 

multi-ported register file required. The complexity of these components grows at 

least quadratically with increasing issue width; also, execution of instructions using 

these techniques must proceed speculatively, which does not always result in effi­

cient power consumption. In addition, more on-chip memory is required in order to 

ameliorate the effects of the so called "memory wall" [103]. These obstacles limit 

the processor's performance, by constraining parallelism or through having large and 

slow structures. In short this approach does not provide scalability in a processor's 

performance, on-chip area and power dissipation. 

An alternative solution, which eliminates this complexity in instruction issue and 

the global register file, and also avoids speculation, is presented in this thesis. This 

model supports concurrent threads all drawn from a single context and exploits in­

struction level parallelism across loop bodies using a variety of loop structures, includ­

ing static, for loops and dynamic while loops. The model is based on decomposing 

a sequential program into small fragments of code called microthreads, which are 

scheduled dynamically and which can communicate and synchronise with each other 
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very efficiently. 

The concurrency controls used in this approach provide latency hiding in a micro­

threaded processor pipeline and also support a pre-fetching mechanism that avoids 

any instruction cache misses. An important feature of the model is its support for 

a fully distributed register file where the latency tolerance decouples register access 

from pipeline operation. Microthreaded chip multiprocessors add a means of exploit­

ing legacy code in such systems. Using this model, compilers generate parametric 

concurrency from sequential source code, which can be used to optimise a range of 

operational parameters such as power and performance over many orders of mag­

nitude, given a scalable implementation. The next chapter reviews this model and 

describes its concurrency controls in more detail. It also highlights the problems that 

the work in this thesis resolves. 



Chapter 3 

Microthreaded Microprocessor 
Model 

3.1 Chapter Overview 

In the previous chapter, it was shown that most existing approaches have multiple 

limitations and systems based on these approaches do not scale well. An alternative 

approach that supports a scalable eMP design is the microthreaded microprocessor 

model. In this chapter we consider the microthreaded concurrency model, describe 

its features that support the implementation of a scalable CMP, and highlight the 

problems that will be resolved in chapter 4. 

The chapter is organised as follows. In the next section, an overview of the mi­

crothreaded model is presented. The microthreaded ISA and microthreaded in-order 

execution pipeline are described in sections 3.3 and 3.4 respectively. A detailed de­

scription of the concurrency controls provided by this model is presented in section 3.5. 

Scalability of the instruction issue and thread state are described in section 3.6 and 3.7 

respectively. In section 3.8, microthreaded register file partitioning and distribution 

is documented. The register allocation unit (RAU) and the method of dynamically 

56 
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allocating registers are presented in section 3.9. A prefetching and replacement mech­

anism that avoids any instruction cache misses provided by microthreaded model is 

described in section 3.10. The summary of the chapter is presented in section 3.11. 

3.2 The Microthreaded Model 

Microthreads are small sequences of code (as short as a single, executable instruction) 

that are created dynamically and execute concurrently. Creation is by an instruction 

added to the ISA for that purpose. A family of microthreads can be distributed to 

more than one processor and both the number of processors used and the number of 

microthreads created is parametric and not bound by the resources available on those 

processors. The create instruction specifies a family of related microthreads, which 

are created as resources become available and at the same time as previously created 

microthreads are being executed. All microthreads follow an execution path which 

ends in the execution of an instruction which terminates that thread, at which point 

its state is lost and its resources are released. 

Microthreads describe parametric concurrency where resources are managed dy­

namically through the concept of microcontext. Microcontext refers to the private 

state associated with a microthread. This includes a microthread's program counter 

and an offset into the register file, which locates its private register variables. The 

contents and synchronisation state of the registers are also a part of its microcon­

text. The microcontext is stored in two structures, the local register file and the 

local scheduler ofthe processor on which the microthread is executing. Using a 5-bit 

register specifier, this state is bounded above by 32 register variables and one slot in 

the scheduler's tables. The microthread and its microcontext are identified uniquely 
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by its address in the scheduler's tables and this is called its slot number. It should 

be noted that a family of microthreads will share all memory variables in the scope 

of a given higher-level context and may also share a number of register variables. 

Microthreaded code is not backward compatible. It must be recompiled from 

the original source code, although this can be legacy, sequential source code. The 

parallelisation of the source is primarily, but not exclusively, obtained by translating 

loops into families of microthreads that execute concurrently. Techniques have been 

used to parallelise both for and while loops, as well as loops with and without loop­

carried dependencies. The type of dependency supported is a function of the detailed 

implementation of the processor and network. 

Microthreads created on a processor are queued in its scheduler for execution and 

a micro thread is removed from this queue and passed to the instruction fetch stage 

of the pipeline on a context switch. The active microthread will continue to execute 

until either it completes or is itself context switched, because of a blocking read 

to a register. This may occur on instructions dependent on memory loads or data 

produced by other microthreads. These are recognised by the compiler and flagged as 

context-switch points. These instructions mayor may not suspend on reading their 

operands and the explicit context switch merely enables the scheduler to eliminate 

bubbles in the pipeline in the event that the instruction does block. In this case, the 

slot number of the suspended thread is stored in the empty register until the data 

arrives, at which point that thread is rescheduled and added to the scheduler's active 

queue again. Swapping execution between threads when data is unavailable keeps the 

processor's utilisation high and hides communication or memory-access latency. 

During execution, any data exchange between concurrent microthreads is achieved 
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Figure 3.1: Microthreaded microprocessor pipeline. 

using register variables. Concurrent micro threads may not communicate using shared 

memory, as no guarantee can be made about their order of execution. Memory 

consistency is achieved therefore using bulk synchronisation, either using knowledge 

of the termination of a dependency chain in a dependent family of micro threads or 

by the use of a barrier synchronisation in an independent family of microthreads. 

3.3 The Microthreaded In-order Pipeline 

The microthread model is a generic one, as it can be applied to any ISA, so long 

as its instructions are executed in-order. In addition, the model can be designed to 

maintain full backward compatibility, allowing existing binary code to run without 

speedup [8] on a microthreaded pipeline. Binary compatibility with speedup can also 
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be obtained using binary-to-binary translation to identify loops and dependencies 

and adding instructions to support the concurrent execution of those loops and/or 

the concurrency within the basic blocks. 

Figure 3.1 shows a microthreaded, in-order pipeline with its five stages and the 

communication interfaces required to implement this model in a distributed manner. 

The pipeline stages are: thread control/instruction fetch, instruction decode/register 

read/reschedule, execute, memory (if implemented) and write back. Notice that 

instructions normally complete in order but that in circumstances where the execution 

time is non-deterministic, such as a cache miss, data is written asynchronously to 

the register file on a port dedicated to this purpose. In this situation, instruction 

issue stops in a thread as soon as an instruction attempts to read a register that 

is empty. Note that all registers have synchronisation bits associated with them 

defining their state: full, empty, waiting local, waiting remote. No additional pipeline 

stages are required for instruction issue, retiring instructions, or for routing data 

between different processors' register files. Short pipelines provide low latency for 

global operations but a short pipeline can be super-pipelined if required, to increase 

clock frequency. 

Context switching is determined explicitly by the Swch instruction, which can 

follow /precede any executable instruction and causes control to be transferred to an­

other microthread on the fetching of that instruction. Whether it follows or precedes 

the instruction it flags is an implementation detail. In this thesis we assume it follows 

at no loss of generality. In this case a Swch instruction is fetched concurrently with 

an executing instruction and causes a context switch in the same cycle. 

As well as managing data dependencies, context switching is also used to manage 
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control dependencies in the pipeline, as all transfers of control are also flagged to 

context switch and only rescheduled when the execution path has been determined. 

A context switch is also used as a pre-fetching mechanism in the instruction cache. 

A context switch is forced when the PC increments over a cache-line boundary. This 

makes a potential cache miss become part of the scheduling process rather than the 

instruction-execution process. Indeed, it provides a unified mechanism for cache pre­

fetching as any thread will not be scheduled for execution unless its current PC is 

guaranteed to be in the I-cache. 

Contexts switches or Kills must be planted by the compiler on all branches of 

control and on instructions that might stall on reading data. The latter occurs when 

communicating with other threads, or following a load or long operation. Note that a 

Swch instruction will always update the value of the PC in the thread's state, and this 

update occurs after the register-read stage. This is obvious in the case of a branch 

but not so obvious following a data dependency, where the state of the register will 

determine whether the instruction will be re-executed or not. If a register reads fails, 

the instruction reading the register must be re-issued, when the data is available. On 

the other hand, if the register read succeeds, the next instruction must be executed, 

which may be the next executable instruction or the one at the branch target location, 

thus the action at the register read stage determines the value of the thread's PC for 

all programmed context switches. 

Each register in a microthreaded CMP therefore acts as a synchroniser, which can 

control the issue of instructions from the thread or threads that access it. A reference 

to the thread's slot number is stored in the register on a synchronisation failure and 

that thread is rescheduled only when data is written to the register. This mechanism 
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T bl 31 C a e t I' t t' oncurrency-con ro IllS rue Ions. 
Instruction Instruction Behaviour 
Cre Creates a new family of threads 
Swch Causes a context switch to occur 
Kill Terminates the thread being executed 
Bsync Waits for all other threads to terminate 
Brk Terminates all other threads 

is distributed and scalable, requiring only two additional bits per register together 

with state machines on each of the registers file's ports. This is in stark contrast to 

an 000 processor's instruction window. 

The mechanism of thread suspension and activation provides latency hiding dur­

ing long or non-deterministic delays when obtaining data. The maximum latency 

tolerated is related to the size of the scheduler queue (called the continuation queue 

- CQ, throughout the thesis) or the size of the register file, which can both restrict 

the number of local threads active at any time. Of course, the latency is also related 

to the average number of statically scheduled instructions between context switches. 

Only if a processor has no active threads, will the pipeline stall on attempting to read 

an empty register. 

This means of scheduling instructions is similar in complexity to that of a conven­

tional, single-issue, in-order processor. The only additional overhead is the larger than 

normal register file, the maintenance of the CQ and the RAU, which are investigated 

in detail in this thesis. However, as they are both scalable with local concurrency 

they can both be tuned in size at design time in order to provide a given amount of 

latency tolerance. 
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3.4 Concurrency Controls 

Table 3.1 shows the five instructions required to support this model on an existing 

ISA. The model provides concurrency-control instructions to create families of threads 

(ere), to explicitly context switch between threads (Swch) and to kill a thread (Kill). 

Two global synchronisation instructions are also provided, one is a barrier synchroni­

sation (Bsync), the other is a form of a break instruction (Brk), which forces a break 

from a loop executed concurrently. Note that all of these instructions can be com­

pleted in the first stage of a pipeline as they only control the action of the scheduler. 

Because of this, these additional instructions do not require a pipeline cycle so long as 

they are fetched concurrently with executable instructions. This allows concurrency 

controls in the model to be very efficiently implemented. Each instruction will now 

be described in more detail. 

3.4.1 Thread Creation 

The microthreaded model defines explicit and parametric concurrency using the ere 

instruction. This instruction broadcasts a pointer to the TCB to all processors as­

signed to the current context; see [24] for details of dynamic processor allocation. 

The TeB contains parameters that define a family of threads, e.g. thread pointer 

and the start and limit of the loop. It also defines the dynamic resources required 

by each thread (its microcontext) in terms of local, global and shared registers. For 

loops which carry a dependency, the dependency distance between loop iterations is 

assumed to be constant i.e. = 1. A family of threads can be created without requiring 

a pipeline slot, as the create instruction is executed concurrently with a regular in­

struction in the Instruction fetch (IF) stage of the pipeline. The TCB for our current 
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Table 3.2: Thread control block containing parameters that describe a family of 
microthreads 
Name Description Behaviour Size 

(Byte) 
Main Pointer One pointer per thread for main loop-body code 4 
Start Start of loop index value 4 
Limit Limit of loop index value 4 
Locals Number of local registers dynamically allocated/thread 1 
Globals Number of global registers dynamically allocated/thread 1 
Shareds Number of shared registers dynamically allocated/thread 1 

work on implementation overheads is defined in table 3.2. 

The concurrency described by this instruction is therefore parametric and may 

exceed the resources available in terms of registers and thread slots in the CQ. The 

RAU in each local scheduler maintains the allocation state of all registers in each 

register file and this controls the creation of threads at a rate of one per pipeline cycle. 

Once allocated to a processor a thread runs to completion, i.e. until it encounters 

a Kill instruction and then terminates. A terminated thread releases it resources so 

long as any dependent thread has also terminated. To do so before this may destroy 

data that has not yet been read by the dependent thread. Note that microthreads 

are usually (but not exclusively) very short sequences of instructions without internal 

loops. 

3.4.2 Context-Switching 

The microthreaded context switching mechanism is achieved using the Swch instruc­

tion, which is acted upon in the IF stage of the pipeline, giving cycle-by-cycle inter­

leaving if necessary. When a Swch instruction is executed, the IF stage reads the 

next instruction from another ready thread, whose state is passed to the IF stage as a 
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result of the context switch. As this action only requires the IF stage of the pipeline, 

it can be performed concurrently with an instruction from the base ISA, so long as 

the Swch instruction is prefetched with it. 

The context switching mechanism is used to manage both control and data depen­

dencies. It is used to eliminate control dependencies by context switching following 

every transfer of control, in order to keep the pipeline full without any branch pre­

diction. This has the advantage that no instruction is executed speculatively and 

consequently, power is neither dissipated in making a prediction nor in executing in­

structions on the wrong dynamic path. Context switching also eliminates bubbles in 

the pipeline on data dependencies that have non-deterministic timing, such as loads 

from memory or thread-to-thread communication. Context switching provides an 

arbitrary large tolerance to latency, determined by the size of the local register file. 

3.4.3 Thread Synchronisation 

The only synchronising memory in the microthreaded model is provided by the regis­

ters and this gives an efficient and scalable mechanism for synchronising data depen­

dencies. The synchronisation is performed using two synchronisation bits associate 

with every register, which differentiate between the following states: full, empty, 

waiting-local and waiting-remote. 

Registers are allocated to microcontexts in the empty state and a read to an 

empty register will fail, resulting in a reference to the microthread that issued the 

instruction being stored in that register. This reference passes down the pipeline with 

each instruction executed. Using the CQ in the scheduler, lists of continuations may 

be suspended on a register, which is required when multiple threads are dependent on 
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the value to be stored there. All registers therefore implement i-structures [105] in a 

microthreaded microprocessor. In the full state, registers operate normally, providing 

data upon a register read and, if no synchronisation is required, a register can be 

repeatedly written to without changing its synchronisation state to provide backward 

compatibility. The compiler can easily recognise the potential for a synchronisation 

failure if a schedule for the dependency is not known at compile time. If so, it 

inserts a context switch on the dependent instruction. Examples include instructions 

dependent on a prior load word, produced in another thread, or produced in iterative 

CPU operations. 

The register is set to one of the waiting states when it holds a continuation. 

Two kinds of continuation are distinguished waiting-local, when the register holds the 

head of a list of continuations to local microthreads and waiting-remote, when the 

register holds a remote request for data from another processor. The latter enables 

the microcontext for one iteration to be stored for read-only access on a remote 

processor when managing loop-carried dependencies. This implements a scalable and 

distributed shared-register model between processors without using a single, multi­

ported register file, which is known to be unscalable. 

The use of dataflow synchronisation between threads enables a policy of conserva­

tive instruction execution to be applied. When no microthreads are active because all 

are waiting external events, such as load word requests, the pipeline will stall and, if 

the pipeline is flushed completely, the scheduler will stop clocks and power down the 

processor going into a standby mode, in which it consumes minimal power. This is a 

major advantage of data-driven models. Conservative instruction execution policies 

conserve power in contrast to the eager policies used in 000 issue pipelines, which 
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have no mechanisms to recognise such a conjunction of schedules. This will have a 

major impact on power conservation and efficiency. 

Context switching and successful synchronisation have no overhead in terms of 

additional pipeline cycles. The context switch interleaves threads in the first stage 

of the pipeline, if necessary on a cycle- by-cycle basis. Synchronisation occurs at 

register-read stage and only if it fails will any exceptional action be triggered. On 

a synchronisation failure, control for the instruction is mutated to store a reference 

to the microthread in the register being read. This means that the only overhead in 

supporting these explicit concurrency controls in is the additional cycle required to 

reissue the failed instruction when the suspended thread is reactivated by the arrival 

of the data. Of course there are overheads in hardware but this is true for any model. 

The model also provides a barrier synchronisation (Bsync) instruction, which sus­

pends the issuing thread until all other threads have completed and a Brk instruction, 

which explicitly kills all other threads leaving only the main thread. These instruc­

tions are required to provide bulk synchronisation for memory consistency. There 

is no synchronisation on main memory, only the registers are synchronising. This 

means that two different microthreads in the same family may not read after write 

to the same location in memory because the ordering of those operations can not be 

guaranteed. It also means that any loop-carried dependencies must be compiled to 

use register variables. A partitioning of the microcontext supports this mechanism 

efficiently. 
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3.4.4 Thread Termination 

Thread termination in the microthreaded model is achieved through a Kill instruc­

tion, which of course causes a context switch as well as updating the microthread's 

state to killed. The resources of the killed threads are released at this stage, unless 

there is another thread dependent upon it, in which case its resources will not be 

released until the dependent thread has also been killed. (Note that this is the most 

conservative policy and more efficient policies may be implemented that detect when 

all loop-carried dependencies have been satisfied). 

3.5 Scalable Instruction Issue 

Current microprocessors attempt to extract high levels of ILP by issuing indepen­

dent instructions out of sequence. They do this most successfully by predicting loop 

branches and unrolling multiple iterations of a loop within the instruction window. 

The problem with this approach has already been described; a large instruction win­

dow is required in order to find sufficient independent instructions and the logic 

associated with it grows at least with the square of the issue width. 

If we compare this with what is happening in the micro threaded model, we see 

that almost exactly the same mechanism is being used to extract ILP, with one 

major difference, a microthreaded microprocessor execute fragments of the sequential 

programs 000. These fragments (the microthreads) are identified at compile time 

from loop bodies and conventional ILP and may execute in any order subject only to 

dataflow constraints. Instructions within fragments however, issue and complete in­

order. We have already seen that a context switch suspends a fragment at instructions 
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whose operands have non-deterministic timing. The dependent instruction is issued 

and stores a pointer to its fragment if a register operand is found to be empty. Any 

suspended fragments are rescheduled when data is written to the waiting register. 

Thus only instructions up to the first dependency in each fragment (loop body) are 

issued and only that instruction will be waiting for the dependency to be resolved, 

all subsequent instructions in that pipeline will come from other fragments. In an 

000 issue model the instruction window is filled with all instructions from each loop 

unrolled by branch prediction because it knows nothing prior about the instruction 

schedules. 

Consider a computation that only ever contains one independent instruction per 

loop of 1 instructions, then to get n-way issue n loops must be unrolled and the 

instruction window will contain n *l instructions for each n instructions issued. In 

comparison, the microthreaded model would issue the first n independent instructions 

from n threads (iterations), then it would issue the first dependent instructions from 

the same n threads before context switching. The next n instructions would then 

come from the next n iterations (threads). Synchronisation, instead of taking place 

in a global structure with O(n2) complexity, is distributed to n registers and has linear 

complexity. Each thread waits for the dependency to be resolved before being able 

to issue any new instructions. In effect the instruction window in a microthreaded 

model is distributed to the whole of the architectural register set and only one link 

in the dependency graph for each fragment of code is ever exposed simultaneously. 

Moreover, no speculation is ever required and consequently, if the schedules are such 

that all processors would become inactive, then this state can be recognised and used 

to power-down the processors to conserve energy. 
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Compare this to the execution in an 000 processor, where instructions are ex­

ecuted speculatively regardless of whether they are on the correct execution path. 

Although predictions are generally accurate in determining the execution path in 

loops, if the code within a loop contains unpredictable, data-dependent branches, 

this can result in a lot of energy being consumed for no useful work. Researchers now 

talk about "breaking the dependency barrier" [104] using data in addition to control 

speculation, but what does this mean? Indices can be predicted readily but these 

are not true dependencies and do not constrain the microthreaded model. Addresses, 

based on those indices can also be predicted with a reasonable amount of accuracy 

but again these do not constrain the microthreaded model. This leaves true com­

putational data dependencies, which can only be predicted under very extraordinary 

circumstances. It seems therefore that there is no justification for consuming power 

in attempting data speculation. 

000 issue has no global knowledge of concurrency or synchronisation. Mi­

crothreading, on the other hand, is able to execute conservatively as it does have that 

global knowledge. Real dependencies are flagged by context switching, concurrency 

is exposed by dynamically executing parametric ere instructions and the name-space 

for synchronisation spans an entire loop as registers are allocated dynamically. At 

any instant the physical namespace is determined by the registers that have been 

allocated to threads. 
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3.6 Thread State 

When a thread is assigned resources by the scheduler, it is initially set to the waiting 

state in the local scheduler queue, as it must wait for its code to be loaded into the 1-

cache before it can be considered active. A thread will go into a suspended state when 

it has been context switched until either the register synchronisation has completed 

or the branch target has been defined, when it again goes into the waiting state. The 

scheduler generates a request to the I-cache to pre-fetch the required code for any 

thread that enters the waiting state. If the required code is available, then the I-cache 

acknowledges the scheduler immediately, otherwise not until the required code in the 

cache. The thread's state becomes ready at this stage. A killed state is also required 

to indicate those threads that have completed but whose data may still be in use. 

At any time there is just one thread per processor, which is in the running state, on 

start up this will be the main thread. 

On a context switch or kill, the instruction fetch stage is provided with the state of 

a new thread if any are active, otherwise the pipeline stalls for a few cycles to resolve 

the synchronisation and if it fails, the pipeline simply stops. This action is simple, 

requires no additional flush or clean-up logic and most importantly, is conservative 

in its use of power. Note that by definition, when no local threads are active, the 

synchronisation event has to be asynchronous and hence does not require any local 

clocks. 

The state of a thread also includes its program counter (PC), the base address 

of its microcontext and the base address and location of any microcontexts that it is 

dependent upon. The state also includes an implicit slot number, which is the address 

of the entry in the CQ and which uniquely identifies the thread on a given processor. 
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The last field required is a link field, which holds a slot number for building linked 

lists of threads to identify empty slots, ready queues and an arbitrary number of CQs 

that support multiple continuations on different registers. The slot reference is used 

as a tag to the I-cache and is also passed through the pipeline and stored in the 

relevant operand register if a register read fails, where it forms the head of that CQ. 

Chapters 5 and 7 discuss the implementation of the CQ with its required connections 

in more detail. 

3.7 Register File Partitioning and Distribution 

We have already seen that Rumer et. al. [22] have shown that a distributed register file 

architecture achieved a better performance compared with a global solution and it also 

provides superior scaling properties. Their work was based on streaming applications, 

where register sources and destinations are compiled statically. We will show that 

such a distributed organisation can also be based on extensions to a general-purpose 

ISA with dynamic scheduling. The concept of a dynamic microcontext associated 

with parallelising different iterations has already been introduced and is required 

in order to manage communications between microcontexts in a scalable manner. 

It is necessary for the compiler to partition the microcontext into different windows 

representing different types of communication and for the hardware to recognise these 

windows to emulate a shared register multiprocessor using distributed register files 

and a communication network. 

A microthreaded compiler must recognise and identify four different types of com­

munication patterns. There are a number of ways in which this partitioning can be 

encoded and here, we describe a simple and efficient scheme that supports a fully 
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distributed register file based on a conventional RISe ISA, assuming a 5-bit register 

specifier and hence a 32-register address space per microcontext (although, not the 

same 32 registers for each thread). 

The first register window is the global window (represented by $Gi). These regis­

ters are used to store loop invariants or any other data that is shared by all threads. 

In other models of concurrency these would represent broadcast data, which is written 

by one and read by many processes. Their access patterns have the characteristics 

that they are written to infrequently but read from frequently. The address space 

in a conventional RISe ISA is partitioned so that the lower 16 registers form this 

global window. These are statically allocated for a given context and every thread 

can read and/or write to them. Note that the main thread has 32 statically allocated 

registers, 16 of which are visible to all microthreads as globals and 16 of which are 

visible only to the main thread. Each thread sees 32 registers. The lower 16 of these 

are the globals and these are shared by all threads and the upper half are local to a 

given thread. 

The upper 16 registers are used to address the microcontext of each iteration in a 

family of threads. As each iteration shares common code, the address of each micro­

context in the register file must be unique to that iteration. As we have seen, the base 

address of a thread's micro-context forms a part of its state. This immediately gives 

a means of implementing a distributed, shared-register model. We need to know the 

processor on which a thread is running and the base address of its microcontext in 

order to share its data. However, we can further partition the microcontext into a 

local and shared part to avoid too much additional complexity in implementing the 

pipeline. 
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Three register windows are mapped to the upper or dynamic half of the address 

space for each microcontext. These are the local window ($Li), the shared window 

($Si) and the dependent window ($Di). Thus the sum of the size of these three 

windows must be less than or equal to 16. The local window stores values that are 

local to a given thread. For example they store values from indexed arrays used 

only in a single iteration. Reads and writes to the local window are all local to the 

processor that a thread is running on and no distribution of the L window is therefore 

required. The Sand D register windows provide the means of sharing a part of a 

microcontext between threads. The S-window is written by one thread and is read 

by another thread using its D-window. 

It should be noted that many different models can be supported by this basic 

mechanism. In this thesis, a simple model is described but different models of com­

munication with different constraints and solutions to resource deadlock can be im­

plemented. The mechanism would even support a hierarchy of microcontexts by 

allowing an iteration in one family of threads to create a subordinate family where 

the dynamic part of the address space in the creating family became the static part in 

the subordinate family. This would support nested multi-dimensional loops as well as 

breadth first recursion. There are difficulties however, in resolving resource deadlock 

problems in all but the simplest models and this requires further research to resolve. 

In this thesis we describe a simple model that supports a single level of loop with 

communication between iterations being allowed only between iterations that differ 

by a create-time constant. An example of this type of communication can be found 

in loop-carried dependencies, where one iteration produces a value, which is used by 

another iteration. For example, A[i] := ... A[i-k] ... where k is an invariant of the loop. 
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Such dependencies normally act as a deterrent to loop vectorisation or parallelisation 

but this is not so in this model, as the independent instructions in each loop can 

execute concurrently. This is the same ILP as is extracted from an 000 model. 

Consider now the implementation of this basic model. It is straightforward to 

distribute the global register window and its charactistics suggest a broadcast bus 

as being an appropriate implementation. This requires that all processors executing 

a family of microthreads be defined prior to any loop invariants being written (or 

re-written) to the global window. The hardware then traps any writes to the global 

window and replicates the values using the broadcast bus to the corresponding lo­

cation in all processors' global windows. As multiple threads may read the values 

written to the global register window, registers must support arbitrarily large CQs, 

bounded above only by the number of threads that can be active at any time on one 

processor. 

The write to the global window can be from any processor and thus can be used to 

return a value from an interaction to the global state of a context. The write is also 

asynchronous and independent of pipeline operation, provided there is local buffering 

for the data in the event of a conflict on the bus. Contention for this bus should 

not occur regularly, as writes to globals are generally much less frequent than reads 

(by a factor proportional to the concurrency of the code). This issue is analysed and 

evaluated in the next chapter. 

The distribution of Sand D-windows is a little more complex than the global 

window. Normally, a producer thread writes to its S-window and the consumer reads 

from its D-window, which maps in some sense onto the S-window of the producer; 

we will return to this. However, there is no restriction on a thread reading a register 
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from its S-window so long as data has already been written to it (it would deadlock 

otherwise). There is also no physical restriction on multiple writes to the S-window, 

although this may introduce non-determinism if a synchronisation is pending on it. 

As far as the hardware is concerned therefore, the S-window is identical to the L­

window, as all reads and writes to it are local and are mapped to the dynamic half 

of the register-address space. On the other hand, a thread will never write to its 

D-window, which is strictly read-only. The hardware need only recognise reads to 

the D-window in order to implement sharing between two different threads. In order 

to perform a read from a D-window, a processor needs the location (processor id) 

and base address of the S-window of the producer thread. There are two cases to 

consider in supporting the distribution of register files in the base-level model we have 

described. 

The first and easiest case is when the consumer iteration is scheduled to the same 

processor as the producer. In this case a read to the D-window can be implemented 

as a normal pipeline read by mapping the D-window of the consumer microcontext 

onto the S-window of the producer microcontext. The thread's state must therefore 

contain the base address of its own microcontext for local reads and also the base 

address of any microcontext it is dependent upon. In the base-level model we present, 

only one other microcontext is accessed, at a constant offset in the index space. 

In the second case, the producer and consumer iterations are scheduled to different 

processors. Now, the consumer's read to the D-window will generate a remote request 

to the processor on which the producer iteration is running. Whereas in the first case 

a microcontext's D-window is not physically allocated, in this second case it must be. 

lt is used to cache a local copy of the remote microcontext's S-window. It is also used 



77 

to store the thread continuation locally. The communication is again asynchronous 

and independent of the pipeline operation. The consumer thread is suspended on 

its read to the D-window location until the data arrives from the remote processor. 

For this constant strided communication, iteration schedules exist that require only 

nearest neighbour communication in a ring network to implement the distributed 

shared-register scheme. Note that a request from the consumer thread may find an 

empty register, in which case the request gets suspended in the producer's S-window 

until the required data has been produced. Thus a shared-register transaction may 

involve two continuations, a thread suspended in the D-window of the consumer 

(waiting-local) and a remote request suspended in the S-window of the producer 

(waiting-remote). As these states are mutually exclusive, the compiler must ensure 

that the producer thread does not suspend on one of its own S-window locations. This 

can happen if a load from memory to an S location is also used in the local thread. 

However, as dependencies are passed via register variables, this can only happen in 

the initialisation of a dependency chain. This case can be avoided by loading to a 

location in the L-window when the value is required locally and then copying it to 

the S-window with a deterministic schedule. 

The additional complexity required in this distributed register file implementa­

tion is two bits in each register to encode the four synchronisation states: full, empty, 

waiting-local, waiting-remote; a small amount of additional logic to address the dy­

namically allocated registers using base-displacement addressing; and a simple state 

machine on each register port to implement the required action based on the syn­

chronisation state. 
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Figure 3.2: Microthreaded register-file ports. 

A method now has been described to distribute all classes of communication re-

quired in the base-level model. However, we must ensure that this distribution does 

not require us to implement register files locally that are not scalable. This requires 

the number of local ports in the register file to be constant. Accesses to L, S and local 

D-windows requires at most two read and one write port for a single-issue pipeline. 

The G-window requires an additional write port independent of the pipeline ports. 

Finally reads to a remote D-window require one read port and one write port per pro­

cessor. Contention for this port will depend on the pattern of dependencies, which for 

the model described is regular and hence evenly distributed with appropriate schedul­

ing. Each iteration is allocated a separate microcontext in the dynamic half of the 
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register-address space and the first local register ($LO) is initialised by the scheduler 

to the loop index for that iteration, so this also requires a write port. Finally, a write 

port is required to support decoupled access to the memory on a cache miss in order 

to avoid a bubble in the pipeline, when data becomes available. The next chapter 

provides a full detail analysis to these ports in term of frequency accesses to each 

port. 

Figure 3.2 shows a block diagram of the microthreaded register file illustrating 

its required ports. As shown, it has a maximum of 8 local ports per processor. 

The register file could be implemented with just three ports by stalling the pipeline 

whenever one of the asynchronous reads or writes occurs but this would degrade 

its performance significantly. In fact, the requirements of the register file in terms of 

exact number logical ports is still not clear. Therefore, an analysis to the requirements 

of the microthreaded register file in terms of number of read/write ports is required. 

The next chapter provides a detail analysis and evaluation to this problem. 

3.8 Registers Allocation Unit 

To create a narnespace that includes all iterations of the loop and to create a bind­

ing between variables in two iterations in the case of loop-carried dependencies, 

Jesshope [25] proposed a dynamic allocation of registers to thread before thread 

scheduling. 

As stated previously, the TCB defines information about a family of threads with 

the loop's parameters. It also defines the dynamic resources required by each thread 

in terms of local, global and shared registers. Local registers are allocated from the 

processor's local register file, while global registers can be accessed by all threads. 
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Shared registers can be accessed by two threads, one thread to produce data and 

another to consume it. 

The RAU in each local scheduler maintains the allocation state of all registers in 

each register file. When a thread is killed a release signal is returned to the RAU to 

free that thread's resources. Indeed, dynamically allocating registers prior to thread 

scheduling and releasing them when the thread terminates provides an efficient and 

effective utilisation of registers. Also, it is important to note that, the process of 

dynamically allocating registers to microthreads is fully decoupled from the pipeline 

execution, allowing the pipeline to work at full utilisation without any extra pipeline 

stages for allocating registers. 

However, the mechanism of dynamically allocating registers still requires an ef­

ficient hardware scheme to implement this process. The next chapter provides the 

solution and discusses the design and implementation of an efficient scheme for doing 

this. 

3.9 Cache Prefetching and Data Locality 

As the gap speed between processors and the memories becomes very large, where 

processor speeds are increasing 60% a year compared with memory speeds at only 7% 

a year [106], techniques such as cache locality optimisations and cache line prefetch­

ing are become increasingly important. For example, instruction cache misses stall 

pipelined processors for many cycles and are a major source of performance degra­

dation in modern processors. To overcome this limitation, instruction prefetching 

schemes can be used to minimise instruction cache miss latency. Also, cache locality 

optimisations use compiler or run-time transformations to change the computation 
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order and/or data layout of a program to increase the probability of accessing data 

already in the cache [107]. 

Several papers have already investigated instruction cache prefetching either by 

compiler driven or hardware schemes [108, 109, 110, 111]. Compiler driven schemes 

have been used in some recent commercial machines such as [108, 109], where the 

compiler's analysis of the program code and provides a hint to the hardware through 

a prefetching instructions. Thus, when the explicit prefetch instructions are executed, 

the data is loaded from memory to cache. 

Generally, hardware prefetching schemes can be classified into two main categories; 

sequential and non-sequential instruction cache prefetching schemes. In sequential 

prefetching schemes like [110], a simple mechanism is used, by prefetching the next 

cache line when a cache line fetched (next-line always). Other previous work [111] has 

also described sequential prefetching, which uses a next N-line prefetching scheme to 

prefetch the next N sequential lines following the line currently being fetched by the 

processor. However, increasing the value of N, results in increasing the prefetching 

distance, which causes increased pollution of the cache with useless prefetch [112, 113]. 

The pollution occurs from the useless speculative memory references by moving out 

the correct memory block, while this block may be used by correct-path execution. 

Two main styles have been used in a non-sequential hardware prefetching schemes, 

history-based and execution-based. An example of history-based is found in [110], 

where the authors proposed a target-line prefetching scheme, which uses a history 

prediction table to maintain information about the address of the cache lines most 

recently fetched by the processor. Thus, if the target line address is in the table, 

then that line is candidate for prefetching. While, if there is a miss in the prefetch 
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table, there is no prefetch request. Execution-based [114, 115] schemes uses a branch 

predictor to prefetch the cache lines. For example work done by [115], proposed a 

fetch directed prefetching scheme. This architecture uses a branch predictor and an 

instruction cache, so the branch predictor can run ahead of the instruction cache 

fetch. 

Recently, Spracklen et. al. [113] analysed and summarised the problems in existing 

sequential and non-sequential instruction prefetcher hardware schemes. They also 

showed how the aggressive instruction prefetching in CMPs can cause pollution in the 

shared L2 cache and increase the L2 cache miss rate. Generally, existing instruction 

cache prefetching schemes attempt to reduce cache miss rate rather than eliminate 

this limitation. Also, these schemes still employ heuristic prediction, which may result 

in extra penalties and insufficient use of the prefetching. Generally, the aggressive 

speculation and prefetching techniques used in modern processors cause speculative 

memory references, which result in loading the data into the caches that are not 

needed by correct-path execution [116]. 

The microthreaded microprocessor model supports a pre-fetching and replacement 

mechanism that avoids any instruction cache misses [17]. The mechanism is deter­

ministic and very simple, where each line in the I-cache requires a counter of the 

number of active threads that are using that cache line. As soon as the thread's 

resources are allocated after being created, the scheduler generates a request through 

the thread pointer associated with its slot number to the I-cache to pre-fetch the 

required code for that thread. If the code is available, then the I-cache acknowledges 

the local scheduler immediately, the requested cache line counter is incremented and 

the thread's state becomes active. 
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While, if the thread pointer misses the required code in the I-cache, then the 

required memory block fetches into any line with a count of zero. Until this happens, 

the thread remains in a suspended state. It is important to note that the thread is not 

made active until the I-cache block along the new path of execution has been fetched. 

Also, when a thread is rescheduled after being suspended, the same process is followed. 

Finally, when a thread is killed, its resources are released and the I-cache line counter 

is decremented. Therefore, there is no need to insert special instructions to perform 

prefetching, only the flexible and efficient thread scheduling mechanism provided 

by the microthreaded model detects and predicts what thread will be submitted 

to the execution in the future. This is hidden from the compiler/programmer. It 

is important to note that this mechanism is also fully decoupled from the pipeline 

execution. 

3.10 Summary 

This chapter reviewed the microthreaded microprocessor approach and discussed its 

features that make it a very promising solution for scalable CMP with large num­

bers of processors. The approach allows concurrency to be extracted from sequential 

code, exploiting different types of parallelism. ILP and LLP are both detected by 

the recompilation of legacy, sequential source code or indeed, could be obtained from 

the translation of existing legacy binary code. The approach also supports TLP by 

assigning application threads to groups of processors in the CMP. The concurrency 

controls provided by this approach not only provides a considerable level of concur­

rency, but also optimises the scheduling process and supports scalability. Also, the 



84 

approach supports a pre-fetching and replacement mechanism that avoids any instruc­

tion cache misses. This mechanism is fully decoupled from the processor pipeline and 

avoids any stalls during instruction misses. 

The distributed configuration of instruction issue and a fully scalable register 

file, which implements a distributed, shared-register model of communication and 

synchronisation between multiple processors on a single chip, are two distinct features 

in this model. However, it is not yet clear what the requirements of the microthreaded 

register file are in terms of number of read and write ports to keep it compact and 

scalable. The next chapter provides an evaluation and analysis for this issue in more 

detail. 

The disadvantage of the microthreaded approach is that registers must be allo­

cated dynamically and state, in addition to its PC, must be maintained for each 

microthread. To allocate registers dynamically requires additional logic and with 

many concurrent threads, any additional thread state can lead to significant storage 

in the scheduler. In the next chapter, we proposed a novel design and implementa­

tion of a hardware support for dynamically allocating and de-allocating registers for 

microthreaded CMP. 



Chapter 4 

Microthreaded Distributed 

Register File 

4.1 Chapter Overview 

In the previous chapter, it was shown that the requirement in terms of the number 

of logical read and write ports for a microthreaded register file is not clear. Also, 

because the model supports dynamic register allocation, an efficient hardware scheme 

is required to handle registers allocation. This chapter provides a solution to both 

problems with analysis, implementation and evaluation. 

The outline of this chapter is as follows. The next section summarises selected 

work on modern register files. In section 4.3, a method of sharing registers in the 

microthreaded model is presented. An analysis and evaluation of the requirements 

of the microthreaded register file in terms of the frequency of accesses to each logical 

port is given in section 4.4. Section 4.5 discusses the centralised and distribution 

organisation for the RAU. The section also compares an alternative implementation 
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for register allocation. The design and implementation of a scalable allocation scheme 

for dynamically allocating and de-allocating registers for the microthreaded CMP is 

presented in section 4.6. A summary of the chapter is provided in section 4.7. 

4.2 Modern Register Files 

All systems that implement concurrency require some form of synchronisation mem­

ory. In dataflow architecture, this is the matching store, in an 000 issue processor it 

is the register file, supported by the instruction window, reservation stations and re­

order buffer. To implement more concurrency and higher levels of latency tolerance, 

this synchronising memory must be increased in size. This would not be a problem 

except that in centralised architectures, as issue width increases, the number of ports 

to this synchronising memory must also increase. The problem is that the register 

cell size grows quadratically with the number of ports or issue width. As mentioned 

previously, if N instructions can be issued in one cycle, then a central register file 

requires 2N read ports and N write ports to handle the worst case scenario. This 

means that the register cell size grows quadratically with N. Moreover, as the number 

of registers also increases with the issue width, a typical scaling of register file area 

is as the cube of N. 

Several projects have investigated the register file problem, in terms of reducing the 

number of registers, or minimising the number of read or write ports [60, 22, 117, 118]. 

As described in chapter 2, the register file in the proposed Alpha 8-way issue 21464 

occupied an area of some 5 times the size of the L1 D-cache of 64KB. Also, in the 

Motorola's M. CORE architecture, the register file energy consumption can be 16% of 

the total processor's power and 42% of the data path power [67]. It is clear therefore 
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that multi-ported register files in modern microprocessors consume significant power 

and die area. 

Work done in [117] describes a bypass scheme to reduce the number of register 

file read ports by avoiding unnecessary register file reads for the cases where values 

are bypassed. In this scheme an extra bypass hint bit is added to each operand 

of instructions waiting in the issue window and a wake-up mechanism is issued to 

reduce register file read ports. As described in [119], this technique has two main 

problems. First, the scheme is only a prediction, which can be incorrect, requiring 

several additional repair cycles for recovery on miss-prediction. Secondly, because the 

bypass hint is not reset on every cycle, the hint is optimistic and can be incorrect if the 

source instruction has written back to register file before the dependent instruction 

is issued. Furthermore, an extra pipeline stage is required to determine whether to 

read data operands from the bypass network or from the register file. 

Other approaches include a delayed write back scheme [118], where a memory 

structure is used to delay the write-back results for a few cycles to reduce register 

file ports. The disadvantage of this scheme is that it is necessary to write the results 

both to the register file and the write-back queue concurrently to avoid consistency 

problems during register renaming. The authors propose an extension to this scheme 

to reduce the number of register write ports. However, this extension suffers from an 

IPC penalty and it degrades the pipeline performance. Furthermore, in this model, 

any branch miss-predictions cause a pipeline stall and insufficient use of the delay 

write back queue. In fact most previous schemes for minimising the multi-ported 

register file have required changes in the pipeline design and do not enable full scal­

ability. At best they provide a constant remission in the scalability of the register 
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file. 

Rixner et. al. [22] suggested several partitioning schemes for the register file 

from the perspective of streaming applications, including designs spanning a central 

register file through to a distributed register file organisation. Their results, not sur­

prisingly, show that a centralised register file is costly and scales as O(N3), while in 

the distributed scheme, each AL U has its own port to connect to the local register 

files and another port to access other register files via a fast crossbar switch network. 

This partioning proved to use less area, power and delay compared with the purely 

global scheme and was also shown to provide a scalable solution. The distributed 

configuration also has a smaller access time compared with the centralised organi­

sation. Bunchua et. al. [120] also compared the register file access time for central 

and local register files configuration. In this work, a 128 32-bit register file with 16 

read ports and 8 write ports is used as a central register file and is compared to a 

local register file with 32 32-bit registers, 2 read ports, 1 write port, and 1 read/write 

port. The result from their cache access and cycle time model (CACTI) showed a 

47.8% reduction in access time for the distributed register file organisation across all 

technologies. 

It is not clear from this work, whether the programming model for the distributed 

register file model is sufficiently general for most computations. With a distributed 

register file and explicitly routed network, operations must be scheduled by the com­

piler and routing information must also be generated with code for each processor 

in order to route results from one processor's register file to another. Although it 

may be possible to program streaming applications using such a model, in general, 

concurrency and scheduling can not be defined statically. 
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Other previous work has described a distributed register file configuration [120] 

where a fully distributed register file organisation is used in a superscalar proces­

sor. The architecture exploits a local register mapping table and a dedicated register 

transfer network to implement this configuration. This architecture requires an ex­

tra hardware recopy unit to handle the register file dispatch operations. Also, this 

architecture suffers from a delay penalty as the execution unit of an instruction that 

requires a value from a remote register file must stall until it is available. The authors 

have proposed an eager transfer mechanism to reduce this penalty but this still suffers 

from an IPC penalty and requires both central issue logic and global renaming. 

In our research, it seems that only the microthreaded model provides sufficient 

information to implement a penalty free distributed register file organisation. Such a 

proposal is given in [8] where each processor in a CMP has its own register file in a 

shared register model. Accesses to remote data is described in the binary code and 

does not require speculative execution or routing. The decoupling is provided by a 

synchronisation mechanism on registers and the routing is decoupled from the oper­

ation of the microthreaded pipeline operation, exploiting the same latency tolerance 

mechanisms as used for main memory access. 

4.3 Analysis and Evaluation of Microthreaded Reg­

ister File Ports 

It is shown in the previous chapter that microthreaded register file uses a 32-register 

address space per microcontext. Half of these addresses are shared by all threads by 

replicating writes to all processors using the broadcast bus. This can be considered the 
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top-level context. The remaining 16 addresses refer to unique locations in the register 

file for each value of the loop index and represent the different microcontexts. In 

some ways this is similar to register windowing in the scalable processor architecture 

(SPARe) architecture [121]. However, in a microthreaded processor multiple base 

addresses are maintained in the CQ for each active thread. 

In this section, an analysis of microthreaded register file ports (see figure 3.2 for 

register-file ports analysed) is made in terms of the average number of accesses to each 

port of the register file in every pipeline cycle. This analysis is based on hand com­

pilation of a variety of loop kernels (see appendix A for loop kernels analysed). The 

loops considered included a number of livermore kernels, some that are independent 

and some that contain loop-carried dependencies. It also includes both affine and 

non-affine loops, vector and matrix problems, and a recursive doubling algorithm. 

We have used loop kernels at this stage as we currently have no compiler to com­

pile complete benchmarks. However, as the model only gains speedup via loops, we 

have chosen a broad set of representative loops from scientific and other applications. 

Analysis of complete programs and other standard benchmarks will be undertaken 

when a compiler we are developing is able to generate microthreaded code. 

The results are based on a static analysis of the accesses to various register windows 

and investigate the average traffic on the microthreaded register file ports. The five 

types of register file ports are shown in figure 3.2 and include, pipeline ports (read­

Rand write-W), the initialisation port (I), the shared-dependent ports (Sd), the 

broadcast port (Rr) and the write port that is required in the case of a cache miss 

(Wm ). The goal of this analysis is to guide the implementation parameters of such a 

system. We aim to show that all accesses other than the synchronous pipeline ports 
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Table 4. 1: Average number of accesses to each class of register file port over a range 
of loop kernels, m= problem size. 

Loop Nc R W I Dr Sd 

4m - 3 2m - 1 0.3333 
0 m - I 

iA: Partial Producu 3m 
Ne Ne M'Ne 

Sm-IS 4m-4 0 
m-2 

B :2 -D SOR 5m-2 0 .2 
Ne Ne M*Ne 

Sm+3 4m + l 0 .25 0 
m 

L3 : lnner Produc t 41n + 4 
Ne Ne M*Ne 

2.4m+ 37 .4 3m +22 0 .2 4n I. Sm+ I .S 
IA :Jlanded Linear 3m + 34 ---

Equatio n Ne Ne Ne M·Ne 

LS :Tri - Diagon al 7m 4m 0 .25 0 
m-I 

Sm + ) 
Elimination Ne Ne M*Ne 

1...6 :General Linear .5m+ 6 .5m --5 5 .5m+ 2 .5m ' ''- 5 3m +nV~ 2 0 . 1429 (rW- l ) n O.Sm -O .Sml'" 
Recurrence Ne Ne Ne M*Ne 

C :Po inter Chuing 14m + 5 9m + 3 6m + 2 0 .0714 n m --
Ne Ne Ne M*Ne 

L l :1I )'dro (lrng lllc ill 9m + S 15m Sm + 3 0 . 1111 3n 
0 --

Ne Ne Ne 

L2 , ICCG 11m +2logm -2 1 17m -5 logm -27 10m -5logm - 12 0.0909 (logm - I ) n 0 
Ne Nc: Nc: 

L 7 :E quDti oD of 26m +S 
43m + 3 25m + 3 0 .0385 3n 0 Slate Fragment - -
Ne Ne Ne 

can be implemented by a pair of read and write ports, with arbitration between the 

different sources. In this case a register file with five fixed ports would be sufficient 

for each of the processors in our CMP design. 

The microthreaded pipeline uses three synchronous ports. These ports are used 

to access three classes of register windows i.e. the $L, $8 and $G register windows. 

If we assume that the average number of reads to the pipeline ports in each cycle 

is R and the average number of writes to the pipeline port in each cycle is W , then 

these values are defined by the following equations, where Ne is the total number of 

instructions executed. 

R = Linst. (Read($L) + Read($S) + Read($G)) 
Ne 

(4.3.1) 
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Figure 4. 1: Average accesses per cycle on additional ports, n=4 processors. 

w = 2:inst. (Write($L) + Write($S) + Write($G)) 

Ne 
(4.3.2) 

The initialisation port on other hand is used in register allocation to initialise the 

$LO to the loop index. This port is accessed once when each iteration is allocated 

to a processor and so the average number of accesses to this port is constant and 

equal to the inverse of the number of instructions executed by the thread before it is 

killed, no. Therefore if I is the average number of accesses to the initialisation port 

per cycle, we can say that: 

1 
1 =­

no 
(4.3.3) 

A dependent read to a remote processor uses a read port on th remote processor 

and a write port on the local processor, as well as a read to the synchronous pipeline 
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port on the local processor. The average number of accesses to these ports per cycle 

is dependent on the type of scheduling algorithm used. If we use modulo scheduling, 

where M consecutive iterations are scheduled to one processor, then interprocessor 

communication is minimised. An equation for dependent reads and writes is given 

based on modulo scheduling although we consider only at the worst case scenario. 

The average number of accesses per cycle to the dependent window is given below 

by Sd using the following equation, where M is the number of consecutive threads 

scheduling to one processor and Ne is the total number of instructions executed. It 

is clear that the worst case is where M = 1, i.e. iterations are distributed one per 

processor in a modulo manner. 

S - Linst. Read($D) 
d-

M*Ne 
(4.3.4) 

The global write port is used to store data from the broadcast bus to the global 

window in every processor's local register file. If we assume that the average number 

of accesses per cycle to this port is Br, then Br can be obtained from the following 

equation, where Ne is the total number of instructions executed and n is the number 

of processors in the system. The result is proportional to the number of processors, 

as one write instruction will cause a write to every processor in the system. 

Br = Einst. Write($G) * n 
Ne 

(4.3.5) 

Finally, the frequency of accesses to the port that is required for the deferred 

register write in the case of a cache miss can also be obtained. It is parameterised by 

cache miss rate in this static analysis and again we look at the worst case (100% miss 

rate). The average number of writes per cycle to the cache-miss port is given by Wm, 
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Traffic on additional ports - n=16 processors 
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Figure 4.2: Average accesses per cycle on additional ports, n= 16 processors. 

which is given by the formula below where Lw is the number of load instructions in 

each thread body, no is the number of instructions executed per thread body, and em 

is the cache miss rate. Again the average access to this port is constant for a given 

miss rate. 

(4.3.6) 

Table 4.1 shows the average number of accesses to each class of register file port 

over a range of loop kernels using the above formula. The first seven kernels are de-

pendent loops, where the dependencies are carried between iterations using registers. 

The last three are independent loops, where all iterations of the loop are independent 

of each other. 

As described previously, each of the distributed register files has four sources for 
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Figure 4.3: Average accesses per cycle on additional ports, n=64 processors. 

write accesses in addition to the pipeline ports. These are for $G write, the initiali­

sation write, the $D return data and the write to the port that supports decoupled 

access to memory on a cache miss. Our analysis shows that the average accesses from 

these sources is much less than one access per cycle over all analysed loop kernels. 

This is shown in figures 4.1 to 4.4 where accesses to initialisation (I), broadcast ( Br) 

and the network ports (Sd, shown as SID) are given. The four figures illustrate the 

scalability of the results (from n=4 to n=256 processors). Results are plotted against 

normalised problem size, where m is the size of the problem in terms of the number 

of iterations, although not all iterations are executed concurrently in all codes (for 

example the recursive doubling algorithm has a sequence of concurrent loops varying 

by powers of 2 from 2 to m/2). Normalised problem size is therefore a measure of the 

number of iterations executed per processor. 
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Figure 4.4: Average accesses per cycle on additional ports, n= 256 processors, 

It can be seen that only accesses from the broadcast bus increase with the number 

of processors and even this is only significant where few iterations are mapped to 

each processor. Even in the case of 256 processors, providing we schedule more than 

a few iterations to each processor, the overall number of writes is less than 50%. Note 

that a register file of 512 registers supports at least 32 microcontexts per processor. 

To put this in perspective , this means that on average a single port sharing all I, 

Br and Sd writes would be busy only 50% of the time. There may be peaks in the 

distribution of writes per cycle, however all of these accesses are asynchronous and 

they can be queued without stalling the operation of any of the pipelines. This still 

leaves capacity to include writes from the decoupled-memory accesses. 

The analysis of the decoupled-memory port also shows that the average number 

of accesses per cycle is small. If we assume a cache miss rate of 50%, then the average 



97 

Table 4.2: Average number of accesses to all additional write ports for different 
number of processors, m/n=8. 

Miss Rate A verage Accesses A vcrage Accesses Average Accesses Average Accesses Average Accesses 

( R %) to write miss pon (All Write Ports) (All Write Ports) (All Write Pon s) ( A II Write Pon s) 

(Wm) n - 4 n - 16 n - 64 n - 256 

10% 0.038 0.405 0.453 0.5 17 0.634 

20% 0.076 0.443 0.49 1 0.555 0.672 

30% 
0. 113 0.480 0.528 0.592 0.709 

40% 
0.15 1 0.518 0.566 0.630 0.747 

50% 
o. t89 0.556 0.604 0.668 0.785 

60% 0.227 0.594 0.642 
0.706 0.823 

70% 
0.265 0.632 0.680 0.744 0.86 1 

80% 
0.302 0.669 0.717 0.781 0.898 

90% 
0.340 0.707 0.755 0.81 9 0.936 

100% 0.378 
0.744 0.785 0.857 0.974 

number of accesses is less than 20% over all loop kernels. Thus, a singl write port 

would not be fully ut ilised at this miss rate. For completeness, table 4.2 and shows 

the average number of accesses per cycle to all write ports including th W m port 

with a variable cache miss rate. This table is compiled for a normalis d problem size 

where the m/n=8, which corresponds to fu lly utilising a small register fil (se also 

figure 4.5). 
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Figure 4.5: Average number of accesses to all additional write ports for different 
number of processors, m/n= 8. 

4.4 Registers Allocation 

4.4.1 Background 

Register allocation and instruction scheduling are two important issues for processors 

aiming to extract a high level of ILP. Separate instruction scheduling and register allo­

cation leads to poor register utilisation and degrades the amount of parallelism [122]. 

The complex hardware and mechanisms used in superscalar processors such as regis-

ter renaming to remove artificial data dependencies between d pendent instructions, 

speculative execution to handle control dependencies and recovery from misspredic­

t ion, limit the amount of parallelism that can be readily achieved. These approaches 

also have limited knowledge of when a physical register can be reallocated. In con­

trast, microthreading provides a dynamic scheduling with dynamic register allocation, 
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and there is a full transparent interaction between the thread scheduling and threads 

allocation. 

Several previous projects have investigated register allocation such as [123, 124] 

attempting to exploit more ILP or to allocate more physical registers at runtime. 

In [123] a mechanism for managing multiple register sets in a register file is proposed. 

The mechanism includes both compiler and hardware support to reallocate registers. 

The compiler tries to identify the required number of registers for each thread, and 

generate code using that number. At execution time, a special instruction is executed 

(with hardware support) which tries to dynamically group the register sets from all 

active threads into the register file. This mechanism requires one or more cycles in 

the execution pipeline, affecting the instruction decode stage. Also it constrains the 

context sizes, which must be a power-of-two. 

Other proposals such as [124] use a hardware mechanism together with an en­

hanced compiler to allocate more physical registers (not addressable through the IS A) 

at runtime in order to reduce the spill code problem. The spilling problem is very well 

known, and most existing processors have a mechanism to handle the situation when 

the number of physical registers exceeds the register file size. This allocation scheme 

complicates the hardware design and is not precise in the way registers are allocated 

- allocation information is conveyed to the hardware through offsets of spills [125]. 
I 

In the microthreaded model, the distribution of threads to pipelines is determinis-

tic and is based on a simple scheduling algorithm. It is dynamic as it is determined by 

resource allocation and release (the concurrency exposed is parametric and not lim­

ited by the hardware resources). Register allocation in the microthreaded model is 

performed prior to thread creation, where the RAU in each local scheduler maintains 
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the allocation state of the local and shared registers required by each thread created. 

The registers must be allocated in a contiguous block, and the block is defined for 

a given family of threads. The allocation is based on a base-offset addressing mech­

anism for each thread, where the base address is the first address of the contiguous 

registers. The offset is obtained from the register address in the binary code. Indeed, 

the process of allocating registers before thread creation and releasing these registers 

when the thread completes provides an efficient and flexible solution to this problem. 

It also provides an accurate utilisation of the registers in the register file. 

4.4.2 Comparing Registers Allocation Design Alternative 

In this section, we will discuss in brief one possible implementation choice for allocat­

ing registers in microthreaded CMP, that we have already investigated throughout our 

research. The implementation is based on a set of components, which are required 

to perform the allocation and de-allocation processes. The components comprise 

Free-block table, Allocated-block table, and Slice table. The free block table contains 

information about a contiguous block of registers. Initially, there is one free block 

and it contains all registers in the register file above register 31, note that 0-31 are the 

"architectural registers" , which are addressed by the main thread and which provide 

compatibility with any given instruction set architecture. Also, two registers fstart, 

which is a pointer to the first free block in the free block table and a register ffree, 

which is a pointer to a list of free entries in the table. Note that the philosophy of 

this algorithm is to deal with slices of registers, which is a function of a given family 

of threads, and not individual registers. In particular, the block may contains a set of 

slices, and each slice is equal (in size) to number of local (L) and shared (8) registers 
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per thread i.e. £+28. 

The allocated-block table contains information about the register blocks that have 

been allocated. Initially, there are no allocated blocks. Again these represent contigu­

ous blocks of registers allocated to one family of microthreads. Also, in this table two 

pointers are required. The first is astart, which is a pointer to the first allocated block 

in the allocated-block table. The second pointer is afree, which is a pointer to a list of 

free entries in the table. Finally, there is the slice table, which contains information 

about slices that have been allocated; its main use is to monitor slice reuse. It uses 

a slice counter (breleased) to count the number of released slices (sreleaesed). Thus, 

when the slice counter becomes equal to the size of the allocated block (fs), then the 

allocated block is released and becomes free again. Note that, the slice table index is 

equivalent to the CQ slot number. 

The allocation and release processes work concurrently, and a brief pseudo-code 

algorithm description of each of these processes is shown in figure 4.6. In effect, we 

investigated this implementation and we found that it has multiple limitations such 

as: 

• Three memory structures (tables) with pointers and extra logic are required to 

perform the allocation process. This is costly, and does not scale well. 

• The strategy of allocating blocks and then deallocating these blocks when they 

are released results in fragmentation the register files, and inefficient used for 

the allocation scheme. 

• A merging technique is required to merge two contiguous blocks when this 

becomes possible, but the problem is that the merging process requires extra 



Allocate: Process AlIocation(Thread parameters); 
begIn 
For each thread family: 
Get thread farnily pararneters ; 
Loop: While family not complete do: 

Get next free block parameters; 
Find a free allocated block; 
While block not full: 

Allocate slice; 
Update tree-block pararneters; 
Update allocated -block parameters; 
Update slice parameters; 

End loop; 
end process Allocate; 

Release: Process (Rlease Pararneters); 
bgin 
sreleased - sreleased - nurnber(releases for slice); 
When any slice's sreleased reached zero; 

breleased - slice + breleased; 
When any allocated -block brealeased counter - fs; 

Create neVII free block; 
Merge free blocks if possible; 
Return allocated block to free list; 
Merge free allocated blocks is possible; 

end process Release; 

Figure 4.6: An alternative algorithm for allocation scheme. 

cycles, which in terms increase the allocation overhead. 
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• To perform the allocation process, more than one cycle is required, which is 

necessary to update the required pointers, and parameters. 

Finally, this implementation choice is complex, costly, and has multiple limitations. 

Therefore, in the next section we will discuss an alternative implementation, which 

has multiple advantages. The design is largely in combinational logic and it can 

perform the allocation and de-allocation processes very quickly. It provides a simple 

and scalable solution for dynamically allocating and de-allocating registers. 
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4.5 Dynamic Register Allocation Scheme For Mi­

crothreaded CMPs 

4.5.1 Description of the Allocation Scheme 

In this section, we describe the hardware mechanism for dynamically allocating and 

de-allocating registers to families of microthreads. The hardware uses information 

provided by the compiler through the TCB to define the allocation requirements, and 

a set of I-bit flags to model the allocation state of the registers. The free registers are 

split into a block of the appropriate size and the remaining registers (if any) continue 

to be flagged as free. Initially there is one free block and it contains all registers in 

the register file above register 31. 

It is important to perform the allocation process in a minimum number of cycles. 

Our scheme allocates one microcontext per cycle, which is the fastest rate and corre­

sponds to a single thread per microcontext; the allocation may be amortised over a 

number of threads if there is ILP defined in the TCB. Design tradeoffs can be made 

that allocate in units of a few registers, rather than single registers. The scheme 

has an area proportional to the product of number of allocation units in the register 

file and the number of bits in the register specifier. For a given ISA, or number of 

bits in the register specifier, the allocation has a constant (worse-case) time delay. 

An analysis of 10 Livermore loop kernels, including both independent and dependent 

loops, gave an average number of registers required per microcontext of 6 as shown 

in table 4.3, and a minimum number of 3 (one for the loop index). The area can be 

saved by allocating in units of greater than one, as allocating a unit of n-registers 

reduces the complexity of the allocation scheme by a factor of n. 
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T bl 43 N b f a e .. urn er 0 . d reqUIre 11 registers per a ocatlOn over a range 0 fl oop k erne s. 
Loop Name Number of $L Number of $8 Total $ 
A: Partial Product 2 1 3 
B: 2-D SOR 3 1 4 
L3: inner Product 3 1 4 
L4: Banded Linear Equation 7 2 9 
L5: Tri-Diagonal Elimination 3 1 4 
L6: General Linear Recurrence 7 1 8 
C:Pointer Chasing 3 1 4 
L1: Hydro Fragment 6 0 6 
L2: rcca 12 0 12 
L7: Equation of State Fragment 10 0 10 
Average Registers per thread 6 

Figure 4.7 shows the Top-level design of the RAU and its interaction with the 

thread-create process and hence, the rest of the scheduler. It shows that the RAU 

comprises an iterative array of allocation slices, one slice per n-register block. Infor­

mation on the action required (no op., allocate or release), the required block size 

(for allocation), and the base address (for release) is supplied to each slice from the 

scheduler. Each slice maintains a flag, which indicates whether the corresponding 

section of the register file is free or not. Note that in cycles when no action (allocate 

or release) is being performed, the RAU still calculates the next base address ready 

for allocation, so that it is available before an allocation is actually required. 

In figure 4.7 data ripples through the allocation slices from bottom to top, corre­

sponding to increasing register-file addresses. The output from the final slice identifies 

the base address in the register file of the first free contiguous block that meets the 

current block size requirement for allocation (if one exists). The scheduler uses this 

to determine whether the current allocation round can proceed and to set the base 

address in the CQ of any threads associated with this microcontext. 
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Figure 4. 7: Block diagram of the RAU and its interaction with th thread-creat 
process. 

The ripple inputs to the first slice are not hardwired, but h ld in a r gister to 

facilitate test and adaptability. The base address input of the first slice i held at 

the address of the first register that can be allocated in the register file , whi h in th 

scheme described above would be address 32. This r gister would r main onstant 

using the simple models adopted in our work to dat but ould support recursiv 

micro contexts, where a micro context in one family could b com th global cont xt 

for a subordinate family. This would support concurr nt n st d loop for exampl 

Information propagated from slice to slice includes whether a free block has b en 

found, the base address of the largest free block, the size of th largest free block, 

the base address and size of the current free block. An error flag is also propagated 

which indicates if inappropriate inputs have been applied to the RAU . Th data ma­

nipulated and propagated between slices is listed in full in tabl 4.4 and is illustrated 
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Figure 4.8: Register allocation unit 's combinational logic slice. 

in figure 4.8. As already explained, the number of registers per microcontext is at 

least one and less than or equal to 16, so it is possible to limit the size fields to 4 bits, 

which can significantly reduce the propagation time within a slice and hence the time 

to perform the allocation update process. Note that each slice performs an increment 

on this field. The state of the allocator is held entirely in a set of flags, one per slice, 

which indicates if the associated n-register block is available for allocation or not. 

H the RAU is ready, the scheduler can initiate an allocation immediately, which 

completes in a single cycle, after which the state of the allocator updates. The 

update process, may take longer than one cycle, depending on the size of the register 

file and allocation unit size (n), which defines the RAU's ripple-through time. The 

rate of performing allocations will, on average, be less than one per cycle, as each 

micro context may have many threads associated with it. Also the recovery time is 
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T bl 44 All I' a e .. ocatlOn OglC parameters. 
Abbreviation name Description 
BA Base Address 
SSB Selected Slice Base 
eSB Current Slice Base 
ess Current Slice Size 
SSS Selected Slice Base 
SAS Set Allocate Size 
SA Slice Available 
Error Error Signal 
Flagprev Previous Flag State 
Flagout New Flag state 
Flagin Current Flag State 
SASI Set Allocate Size In 
Reg Register 

less important than the latency of allocation from request to allocation completion. 

When a thread or group of threads associated with a microcontext are killed, then 

the scheduler also causes the allocation model in the RAU to be updated to reflect 

this, by providing the base address of the microcontext being released and its size. 

This information propagates through the slices to determine which flags to reset. The 

algorithm implemented by the RAU is described qualitatively below: 

• Find the start address (base address) and the size of the first and largest free 

chunk in the register file (or determine that no space is available). 

• If space is available and the size of the available block is greater than or equal to 

the required size, identify the portion of the free block required for the allocation 

starting at its base address. 

• Flip the corresponding flags of that chunk in the register-use model. 

• When a release occurs, the base address provides a pointer to the beginning 



For each thread family: 
If (event= allocate and block_size> required_size and space_available) then 

Allocate_thread( ) 
Else if ( event= release) then 

Release_thread( ) 

Figure 4.9: General action of the allocation scheme. 
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of the corresponding chunk to flip the corresponding flags in the register use 

model. 

The corresponding general action of the allocation scheme is shown in figure 4.9. 

The allocation scheme is straightforward and allocating registers in units n pro­

vides both area and propagation-delay reduction in the scheme. If we assume that 

the size of the register file is R, and the number of registers allocated in a unit of 

allocation is n, then the complexity of the allocation scheme is proportional to O( ~). 

4.5.2 Implementation and Simulation Results for the AHo-

cation Scheme 

This section provides the implementation methodology and simulation results for the 

allocation scheme described in the previous section. As described earlier, VHDL simu­

lation is used for initial system component verification. VHDL allows each component 

in the model to be described independently with its required internal behaviour by 

defining how its outputs behaves when certain conditions are applied to its inputs. 
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To verify and test the behaviour of th aHo ation sch m 1 a high r-I v I m d 1 has 

been written for the allocation sch me. 

We have modeled the behaviour of th allocation ch m III VHDL language, 

exploi ting the generate statement provid d by thi language to r a t th allo a tion 

uni t. In particular, the model include th allocation ntity, its ar hit ctur behaviour 

and the test bench as shown in figur s 4. 10 to 4. 12 r sp ctiv ly. 

A set of public and generic definitions ar used as a defaul t value to pas structural 

information to system components that ar d by thi definition . This is 

important to maintaining th modularity of the allocation sch m , wh re th a tual 

parameters can be changed without changing any component of th model. Note that 

in this implementation, we consider that all signals and variabl s hav a orresponding 

value assigned in any branch of the IF statement . 
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B~01n 
Main : pcoc~~~ ( Do_allocat e i Do_~eleaseiBA1n, ~SB1n, CSBin, CSSin, SAS in, SSSin , SASI, SA~n, 

vac1able 1 : natural :- Sliee_id; 
va~~able inieial : boolean :- Tal~e; 

vac1able c uccenebase, SSB , SSS ,C SB , SAS , tico : naeucal 
vac1able ess : natu~al :_0; 
variable Teap : naeural :-1; 
va~1able Teap reQ,Temp reo2 : natural :-0; 
vac1able t ; ~td_loQ1C_~ectoc (S down to 0); 

BeQ1n 
1t (Flaqin - ' 0 ' and Flaqpcev- ' d · and Do_~locate - ' O ' and Do_cele&8e- ' O ' and slice_id-O ) then 

CSSout <- SSSin ; 
SSSout <- SSS1n ; 
SSBout <- SSBin: 
CS80ut <- CSBin; 
S Aout <_ ' I' ; 

else 1t (Tlaq1n . '0 ' and Tlaqprev- ' 0 ' and Do_ allocate . ' O ' and Do_release- ' O ' ) dlen 

CSSout < - SSSin ; 
SSSout < _ uns1qned (SSS1n) + uns1qned (vord); 
SSBout < - SSBin; 
CSBoue <- CSB1n; 
SA-out <- l' ; 

~13~ 1! (rlaqin - '0' and ~1agp~~v- ' 1 ' and Do_allocat~ - '0' and Do_~~lea8~- 'O' ) dh~n 

CSSOUt <- wo~d; 

CSBout < _ conv_~td_loalc_vec to~( 311ce_ld, e ); 
SSSoue <- SSS1n ; 
SSBout <_ SSBln; -- conv_ !l t- d_lv\ll...:;_v~cr::/j C ( s.Ll. \ ""' _J.tJ, 1 l; 

SAoue <- '1' ; 
else 1t (Do alJ. oc a ee - 0 ~d Do_ceJ.eaa~- ' 0' and ~lag1n. · J. and ~lagpcev_ 1 ) then 

csso~e <- X "OO" ; 
CSBout <- X~'OO" ; 

SS30ut <- 3331n; 
SSBout <_ conv_atd_log1c_vectoc( a11ce_1d, e ) ; 
SAout <- SAin; 

eJ.!le 1~ (Do aJ.J.ocate - ' 0 ' and Do_ celease- O· and tlag1n- ' l ' and rlaqpcev- 'O' ) Chen 
CS30ue <- X"OO" ; 
CSBout < - X " OO " ; 
SS30ut < - uo!l1qned (SSSin) + un!l1qned (wocd); 
SSBoue <_ cony ae~ louic veceocl alice ld. e ,; 

Figure 4.11: Allocation scheme architecture behaviour source code. 
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Figure 4.12: Allocation scheme test bench source code. 
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Figure 4. 13: Simulation waveforms for allocation three registers per thread (Register 
file size is 64-registers). 

The VHDL model was simulated using various compile scenarios and with different 

thread allocation size implementations. In effect , a variety of test cases were simulated 

and the output results compared with the required behaviour of the allocation scheme. 

For example; figures 4.13 and 4. 14 shows a snapshot of simulation waveforms for the 

allocation scheme. In figure 4.13 we assume that the given family of microthreads 

required a slice with three registers in each allocation cycle. While figure 4.14 shows 

allocation and de-allocation for a different slice sizes. Also figure 4.15 shows waveforms 

for the allocation logic parameters values. We will also show the behaviour of our 

allocation simulation together with the microthreaded in-order pipeline in chapter 7. 

Note that the allocation scheme VHDL source code and more waveforms simulation 

results are described in appendix B. 

4.6 Summary 

This chapter presented two contributions. The first includes an analysis of t he require-

ments of the micro threaded register file in term of frequency of access to asynchronous 

(non-pipeline) ports in the synchronising memory. The result of analysing a range 
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Figure 4, 14: Simulation waveforms for allocation and de-allocating different slice sizes 
per thread (Register file size is 32-registers), 

of different code kernels shows that a distributed shared register file could be imple-

mented with only 5-ports per processor , where three ports provide single instruction 

issue per cycle and the other two asynchronous ports were able to manage all other 

demands on the local register file, In fact , the decoupled approach to register-file 

design avoids a centralised register file organisation and , as we have shown, requires a 

small, fixed number of ports to each processor's register file, regardless of the number 

of processors in the system, 

The analysis involved different types of dependent and independent loop kernels , 

The analysis illustrates a number of interesting issues, which can be summarised as 

follows: 

• A single write port with arbitration between different sources is sufficient to 

support all non-pipeline writes, This port has an averag access rate of less 

than 100% over normal operating conditions, This is t rue even in the case of a 
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Figure 4.15: Simulation waveforms showing slice parameters values (three registers 
per thread). 

100% cache-miss rate. 

• A second port is required to handle reads to the $D-window. The analysis 

shows that the average access to this port is less than 10% over all analysed 

loop kernels. 

• As a consequence, the distributed register files require only five ports per pro­

cessor and these ports are fixed regardless of the number of processors in the 

system. This provides a scalable and efficient solution for large numbers of 

processors on-chip. 

• Finally, the average accesses to all write ports does not exceed 100% even in the 
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case of n= 256-processor. However, to deal with a large number of processors, 

the performance would degrade gracefully due to the inherent latency tolerance 

of the model. Eventually all threads would be suspended waiting for data and 

in this case the stalled pipeline(s) would free up contention to the non-pipeline 

write port. 

In the second contribution an implementation of a simple allocation scheme to 

dynamically allocate and de-allocate registers for microthreaded CMP has been de­

scribed. The scheme behaviour was verified and tested using VHDL language. The 

scheme employs very simple hardware combinational logic design and the allocation 

process is fully decoupled from the pipeline execution. The allocator can allocate 

registers in fixed blocks, which simplifies the logic and reduces the area significantly. 

Chapter 7 addresses the area scalability of this issue, where an area estimate to the 

allocation scheme compared with the actual register file area is given. 



Chapter 5 

Microgrid Chip Multiprocessor 
Architecture Model 

5.1 Chapter Overview 

The term microgrid refers to a CMP where all processors have a microthreaded sched­

uler and a synchronising, distributed register file. This chapter introduces the micro­

grid CMP architectural model, discusses its components, and highlights the problems 

that will be resolved in chapter 6 and chapter 7. 

The chapter is organised as follows. The next section discuses a top-level architec­

ture model of the microgrid CMP. The chip communication buses and its main uses 

are presented in section 5.3. Microgrid CMP supports Globally Asynchronous Locally 

Synchronous (GALS) communication and this issue and its features are presented in 

section 5.4. Microthread scheduling and thread distribution to support microgrid 

operation is presented in section 5.5. In section 5.6, an overview about microgrid 

input/output routines is presented. Microgrid CMP Scalability is discusses in section 

5.7. Finally, we present the summary of the chapter in section 5.S. 
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Figure 5.1: Microthreaded CMP architecture, showing communication structures and 
clocking domains. 

5.2 Microgrid eMP Top-level Architecture Model 

Microgrid refers to a CMP where all processors have a microthreaded scheduler and a 

synchronising, distributed shared register file. A microgrid will have an interprocessor 

network to support the sharing of microcontexts between micro threads in a family 

of microthreads, mapped to different processors. The network also supports the 

broadcast of shared-register variables and the parameters defining the creation of a 

family of micro threads. A microgrid may also have a systems environment processor 

that manages the allocation of processors to families of threads dynamically and 

configures the network accordingly. A long-term vision is considered in the design and 
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component organisation of the microgrid CMP architecture model. This vision comes 

from the fact that most existing CMP designs suffer from hardware and software 

implementation problems. Thus microgrid CMP avoids global clocking by supporting 

a GALS design approach, where each micro threaded processor has its own local clock 

domain and accesses global resources asynchronous. Microgrids are described further 

in [24]. 

Figure 5.1 gives an overview of such a microgrid, showing the networks required 

and the datapaths between the major components within a processor. These are an 

in-order pipeline, a scheduler, a large register file and a local I-cache. The processor 

may also have a local D-cache but latency tolerant access to data means this is 

not a necessity. In a profile of processors, a subset of the microgrid, any processor 

can create a family of microthreads for execution on that subset. This requires the 

distribution to each processor of the address of a data block in memory. This is the 

previously described TCB, which contains all of the parameters that define the family 

of microthreads. This is the only global communication required in the execution of 

a family of microthreads, apart from those defined by memory accesses in the code. 

Each processor receiving the address of the TCB will execute a deterministic subset 

of that family, based on the parameters in the TeB, the number of processors in the 

profile and its position in the profile. 

A microgrid has two main buses, the Broadcast Bus and the Shared-register Ring 

Network. The broadcast bus allows the register file to be fully distributed between 

multiple processors. The shared-register ring network is used by the processors to 

communicate results along a dependency chain. For the model described, this requires 
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only local connectivity between independently clocked processors. All global commu­

nication systems are decoupled from the operation of the microthreaded pipeline and 

thread scheduling provides latency hiding during remote access. This technique gives 

a microgrid CMP a serious advantage as a long-term solution to silicon scaling. The 

next section describes microgrid buses in more detail. 

5.3 Microgrid eMP Communication Buses 

5.3.1 Broadcast Bus 

The Broadcast bus enables one processor to create a family of identical threads. This 

bus arbitrates between multiple processors and in each cycle one processor can access 

this bus to create a descriptor of a new family of microthreads. The descriptor identi­

fied in the create process is distributed to each scheduler, which uses that information 

to determine the subset of the family of threads it will execute. It will probably also 

be used by the same processor to distribute any loop invariants and finally, if there is 

a scalar result, one processor may write values back to global locations. This situation 

occurs when searching an iteration space, it is the only situation where contention 

might be required, as a number of processors might find a solution simultaneously 

and attempt to write to the bus. In this case a break instruction acquires the bus 

and terminates all other threads allowing the winner to write its result back to the 

global state of the main context. 

The rate of accessing the broadcast bus depends on the behaviour of the create 

instruction. It is inversely proportional to the number of threads and cycles required 

by each thread. If we assume that Nt is the number of threads scheduled to one 
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Tabl 5 1 R 1 t' f e .. e a lve requency 0 f t . t t' crea e IllS ruc Ion over a range 0 f I oop k rnels. e 
Loop Name Create instruction rate 

compared to other instructions 
A: Partial Product 0.3333 
B: 2-D SOR 0.2 
L3: inner Product 0.25 
L4: Banded Linear Equation 0.2 
L5: Tri-Diagonal Elimination 0.25 
L6: General Linear Recurrence 0.1429 
C:Pointer Chasing 0.0714 
Ll: Hydro Fragment 0.1111 
L2: ICCG 0.0909 
L 7: Equation of State Fragment 0.0385 

processor and the number of cycles required by each thread is Ct, then the average 

number of accesses to the create port (Crefreq) per cycle can be given by the following 

formula: 

1 
Cre freq = C N, 

t * t 

(5.3.1) 

The frequency of executing this instruction over a range of loop kernels as shown 

in table 5.1 is very low. The loops considered included a number of livemore kernels, 

some that are independent and some that contain loop carried-dependencies. Fig­

ure 5.2 also shows the frequency of executing create instruction over a range of loop 

kernels against the normalised problem size, where m is the size of the problem in 

terms of the number of iterations, and n is the number of processors. As shown, the 

frequency of executing this instruction is very low, and the percentage of executing 

this instruction is less than 17% over all loop kernels considered in this analysis. It is 

important to note that microthreaded processors are tolerant to latency when they 
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Figure 5.2: Frequency of executing create instruction over a range of loop kernels, 
m= problem size . 

have created threads. 

Even if the access to the broadcast bus is at a low frequency, a form of arbitration 

mechanism is required to avoid contention and to provide fairness in communication 

between processors. Also, it is necessary to investigate the implementation of the mi-

crogrid CMP bus interface with its required signals. The next chapter discusses these 

issues and introduces a novel asynchronous arbiter optimised for this application. 

5 .3 .2 Point -t o-Point Ring Interconnection N etwork 

One of the most important issues in designing a CMP which effects and limits the 

scalability is the interconnection network. The network allows the processors to share 
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Figure 5.3: Point-to-point communication between microthreaded processors. 

data. In fact, low latency, enough bandwidth and scalability are all important re-

quirements in choosing the interconnection network topology. For this reason we use 

a ring interconnection network in the microgrid CMP that it is scalable and , given 

sufficient resources , can adopt a schedule which ensures that any constant-strided, 

loop-carried dependency be mapped to a neighbouring processor. The ring does not 

suffer from bus bottlenecks and provides a point-to-point connection between nearest-

neighbour processors. Moreover , wire complexity in a ring network is low compared 

with other network topologies. Concerning throughput, latency, and area require-

ment , the ring occupies a position somewhere in between the shared bus and the 

switch solution [126] . 

Use of a shared-register ring network in a microgrid CMP allows communications 

between pairs of threads, one of which produces data and the other which consumes 

it. This communication, as shown in figure 5.3, is between the shared and dependent 
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threads and will be performed by the ring network if the threads are allocated to 

different processors. Note that schedules can be defined to minimise inter-processor 

communication, more importantly; this communication is totally decoupled from the 

pipeline's operation through the use of explicit context switching. 

5.4 Globally Asynchronous Locally Synchronous 

(GALS) Design Approach 

Modern synchronous CMP architectures are based on single clock domain with global 

synchronisation and control signals. The control signal distribution must be very 

carefully designed in order to meet the operation rate on each component used and 

the larger the chip, the more is the power that is required to distribute these signals. 

In fact, clock skew, and the large power consumption required to eliminate it, is one 

of the most significant problems in modern synchronous processor design. 

Full asynchronous design is difficult but one promising technique is to use a 

Globally-Asynchronous, Locally- Synchronous (GALS) clocking scheme [127]. This 

approach promises to eliminate the global clocking problem and provides a significant 

power reduction over globally synchronous designs. It divides the system into multi­

ple independent domains, which are independently clocked but which communicate 

in an asynchronous manner. A GALS system not only mitigates against the clock 

distribution problem, the problem of clock skew and the resulting power consump­

tion, it can also simplify the reuse of modules as they have asynchronous interfaces 

that do not require redesign for timing issues when composed [128]. 

In CMP design, global communication is one of the most significant problems in 
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both current and future systems [8], yet not every system can be decomposed into 

asynchronously communicating synchronous blocks easily, there must be a clear de­

coupling of local and remote activity. To achieve this, the local activity should not be 

overly dependent on a remote communication. The model we have described has just 

this property; each processor is independent and when it does need to communicate 

with other processors, that communication occurs independently without limiting 

the local activity. In short, the local processor is tolerant of any latency involved 

in global communication, as in most circumstances it will have many other indepen­

dent instructions it can process and, if this is not the case, it will simply switch off 

its clocks, reduce its voltage levels and wait until it has work to accomplish while 

dissipating minimal power. 

The size of the synchronous block in a microthreaded CMP can be from a single 

processor upwards. The size of this block is a low-level design decision. The issue is 

that as technology continues to scale this block size will scale down with the prob­

lems of signal propagation. Thus the model provides solutions to the end of scaling 

in silicon CMOS. Compare this with the current approach, which seeks to gain per­

formance by clock speed in a single large wide-issue processor where all strategies are 

working against the technology. 
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Figure 5.4: Detail of the local scheduler showing its main components and the data 
paths between it and other stages of the pipeline. 

5.5 Thread Scheduling and Distribution to SUp-

port Microgrid CMP 

5.5.1 The scheduler 

A global scheduling algorithm determines the order in which a group of related threads 

is distributed to the processor array. This algorithm is built into the local schedulers 

and is controlled by the parameters from the TeB and the number of processors 

used to execute the family, which may both be dynamic. Within each processor, the 

local scheduler manages the execution of all microthreads currently allocated to that 

processor. The schedulers in different processors are independent and each manages 

a local model of its resource utilisation for the subset of the family of threads that it 
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must execute. This is based on the global scheduling algorithm and requires minimal 

communication between the processors (each processor must know the number of 

processors used and its location within that set). 

As already described, microthreading exploits LLP by executing the same loop 

body for multiple instances of an index variable. It is also able to capture ILP 

within basic blocks. LLP is specified parametrically using loop bounds, with multiple 

iterations sharing the same code but using different microcontexts; this is SPMD 

concurrency. MIMD concurrency can also be specified using pointers to multiple 

code blocks but is static in extent, as the compiler must make the partition of the 

basic block and generate code fragments accordingly. Both are captured through 

the control instruction ere, which initiates the creation of threads on all processors 

defined in a given profile. Each scheduler will continue to create threads, until its 

distribution of iterations has been exhausted. It may then continue to create threads 

from other families, whose ere instructions may have been queued in the scheduler. 

The process of thread creation requires the following actions (see figure 5.4): 

• A slot number is obtained to address the scheduler's tables (CQ, in figure 5.4) 

from the scheduler's empty queue and the empty queue is updated. 

• The RAU reserves the required number of registers for the microthread's context 

and returns a base address in the register file. 

• The code pointer, the base address of the microcontext, and the base address 

and slot number of the microcontext it is dependent upon are all stored in the 

CQ slot. 

• Finally, the index value associated with the microthread is written into the first 
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local register variable of its microcontext and all other variables are initialised 

to empty. 

• The slot number is then passed to the I-cache to prefetch the first instruction, 

only after it has been prefetched, will the slot number be added to the active 

queue of the scheduler, where it is available for execution. 

Figure 5.4 shows more detail of a local scheduler and its connections with the 1-

cache and the processor pipeline. The RAU within each scheduler models the alloca­

tion of micro-contexts to the local register file and determines when new microthreads 

may be allocated. If registers are available it will allocate a microcontext and then 

create entries in the CQ for each thread associated with that microcontext. When 

all the threads associated with a microcontext have been killed, its registers will be 

relinquished and the RAU will update its allocation model. In this way a scheduler 

can manage concurrency that is parametric and which exceeds the statically available 

resources. 

5.5.2 Thread Distribution 

One algorithm that can be used to distribute an iteration space to the array of 

processors is to use a block-cyclic distribution, which can be defined by the following 

equation, where iteration i, is mapped to processor q, using a profile of P processors 

and a block of b consecutive iterations allocated to each processor: 

q = I~I modP (5.5.1) 

In this schedule, b can be chosen to minimise inter-processor communication and 
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Figure 5,5: Transformation of the for loop to microthreaded assembly code, 

ensure that regular inter-micro context communication can be mapped to a point-to­

point network, more specifically a ring network. 

The process of thread creation and code generation will be illustrated using the 

following dependent loop: 

for Ci=O;i<n;i++) 

The loop has a dependency in the add operation between Q in the current iteration 

and Q' from the previous iteration. The compiler generates code to carry this depen-

dency between iterations using a register shared between two microthreads. This is 

specified by a dependency distance of 1 in the TeB, which is used to link dependent 

threads in the scheduler. The registers in a micro context are divided into a local 
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part $Li, a shared part, $8i, and a dependent part, $Di, where the shared part of one 

microcontext maps to the dependent part of the iteration that is dependent upon it. 

Thus the assembly code shown in figure 5.5 uses $SO/$DO to carry this dependency 

between iterations, where $80 is written by the producer thread and $DO is read by 

the consumer thread. The dependency chain is initialised and terminated in the main 

thread. In the assembly code, three parts can be identified. The first is the TeB, the 

second is the code for the main thread, which creates and synchronises this family, 

and the third part is the code for the loop body. Note that n iterations of this body 

execute concurrently between the mv and sw instructions in the main thread. 

Looking at the concurrency in this code, it can be seen that all loads and mul­

tiplications can proceed concurrently but that the accumulation of Q in $80/$DO is 

constrained to execute in sequence and may be mapped to different processors. Dur­

ing the execution of this dependency chain, only one processor will be active while the 

result is accumulated. This constraint will limit speedup, but during the execution 

of the dependency chain, only the processor currently executing will be active and 

consuming power as all other processors will recognise an empty active queue. 

This situation is easily detected and can be used for power management. When 

executing multiple iterations on one processor, the chain can be executed at one 

addition operation per cycle using the bypass network as a mechanism has been 

developed to reschedule threads in dependency chains predictively, i.e. where we 

know one thread must reschedule the next, e.g. on the add instruction for all threads. 

Information to detect this situation is given by the compiler in parameters to the 

switch and kill instructions. Those parameters signal the number of non-deterministic 

operands and whether to predictively reschedule the next interation in a dependency 
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Figure 5.6: Modulo schedule of one iteration per processor for the example code in 
the text. This illustrates the mapping of a dependency chain to the ring network 
connecting processors in the Microgrid. 

chain. 

Figure 5.6 shows how the body of the loop is mapped to multiple processors 

connected with a ring network. It also shows the dependency chain between mi­

crocontexts mapped to different processors. Note that for simplicity, this particular 

schedule maps only one iteration per processor before moving to the next . Mapping 

multiple iterations per processor would minimise communication and maximise cache 

line locality. 
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5.6 I/O Service Routines 

Input or output (I/O) routines on a microgrid CMP are managed by microthreads 

from a microcontext [24] running on dedicated processors. A collection of micro­

contexts that has low frequency tasks can be scheduled on a single processor, which 

provides a good utilisation of system resources and responds efficiently to external 

I/O events. All I/O routines in a microgrid CMP are directed to the registers, and 

wait there to be served by a microthreaded service routine. A very responsive fast 

and user-programmable on-chip network is also possible using this approach. 

5.7 Microgrid CMP Scalability 

The major advantage of the microgrid CMP is its scalability in terms of performance 

and power dissipation [24, 26]. Indeed, the method of decomposing a sequential 

program into microthreads, scheduling and allocating these microthreads dynamically 

and the efficient communication and synchronisation mechanisms are all factors in 

achieving scalability. The reduction in power comes from the hardware partitioning 

of the chip cores and from the distribution of the workload across a large portion 

of the chip. Processors with no active threads are aware that instructions can not 

be scheduled and can therefore go into standby mode dissipating minimal power. 

This power usage can be scaled with IPC rather than issue width. This conservative 

scheduling also provides an insight into asynchronous partitioning of a CMP. This 

modelled reduction in power dissipation is realistic and is further evidence of the 

scalability of the microgrid CMP. 

However, scalability in terms of silicon area for microthreaded support structures 
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has not been considered before. In addition, it is necessary to model the top-level 

nature of the CQ and scheduling system, in order to verify and test the correctness 

of its behaviour. These issues, are demonstrated in chapter 7 in full detail, which 

shows a scalable implementation of microthreaded support structures, the feasibility 

of large-scale CMPs using emerging technology, and full simulation results for the 

top-level model of the CQ and scheduling system in VHDL. 

5.8 Summary 

The chapter presented the microgrid CMP architecture model and its buses. The dis­

tributed implementation of a microthreaded CMP includes two forms of asynchronous 

communication. The first is the broadcast bus, used for creating threads and dis­

tributing invariants. The second is the shared-register ring network used to perform 

communication between the register files in the producer and consumer threads. It 

is important to note that this action is totally decoupled from the pipeline operation 

through the use of explicit context switching. However, to avoid processor contention 

during bus access time, and to provide fairness in communication between processors, 

we need some form of arbiter. Also, the implementation of the bus interface between 

processors still not clear. In the next chapter, we discuss the implementation of these 

issues and we introduce a novel asynchronous arbiter optimised for this application. 

It is shown that microthreaded CMPs use hardware scheduling and synchronisa­

tion and have structures to support this that are distributed, and have locality in 

communication wherever possible. This is achieved with distributed schedulers that 

jointly manage large parametric families of threads and a distributed register file 

that provides synchronisation and sharing of data between them. These structures 
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provide support for a shared-register, instruction-level model of concurrency in which 

synchronisation occurs between instructions and in the registers. However, the sched­

uler's structure is a most significant challenge, and the scalability of this structure is 

not yet clear and the area-performance has not been considered prior to this work. 

Therefore, chapter 7 provides an implementation and evaluation of microthreaded 

support structures and the feasibility of large-scale CMPs is investigated by giving a 

detailed area estimate of these structures. Moreover, the chapter provides full sim­

ulation results in VHDL of the CQ and scheduling system in order to verify their 

correct behaviour. 



Chapter 6 

Scalable and Partitionable 
Asynchronous Arbiter for 
Microgrid Chip Multiprocessor 

6.1 Chapter Overview 

In the previous chapter, it was shown that, when more than one processor requires 

access to the broadcast bus, an arbiter mechanism is required to determine either the 

order of request arrival or a request priority. In this chapter we discuss the design and 

implementation of a novel asynchronous arbiter optimised for this application. The 

arbiter has the advantage of asynchronous communication and uses a point-to-point 

connection between arbiter modules. A delay-insensitive methodology is used for our 

arbiter, allowing unbounded delays to both wires and logic gates. 

The outline of this chapter is as follows. In the next section, an overview of the 

asynchronous design methodology is given. Section 6.3 presents modern arbitration 

systems. The organisation, operations and design of the arbiter are presented in 

section 6.4. Implementation and simulation results for the proposed arbiter are given 

in section 6.5. Finally, a summary of the chapter is provided in section 6.6. 
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6.2 Asynchronous Design Methodology 

6.2.1 Asynchronous Design Procedures 

Generally, circuit design styles can be classified either as synchronous, where the whole 

system is globally synchronous, or asynchronous with whole system being globally 

asynchronous. Figure 6.1 shows synchronous and asynchronous pipeline implementa­

tions, where the clock in figure 6.1a, is replaced by handshaking signals in figure 6.1b. 

Synchronous circuits may be simply defined under the control of a central clock. 

However, the centralised clock is one of the most significant challenges in modern 

synchronous systems. It restricts the system scalability and consumes a lot of power. 

An asynchronous approach eliminates the use of clock, has the advantage of bet­

ter design modularity and opens the door wide for system scalability and functional 

partitioning, both of which are the requirements for future powerful and scalable de­

signs. The Semiconductor Industry Association (Sf A) Roadmap recognises that by 

2007 asynchronous techniques will be used in many designs [129]. However, in simple 

asynchronous circuits the absence of a clock may result in hazards, for which one 

popular solution is the Muller C-element [130]. 

The design procedures for asynchronous design can be similar to that employed for 

synchronous machines. However, state diagrams for asynchronous circuits differ from 

those for synchronous circuits in that each stable state of the circuit must be include 

by a sling [131]. This means that the transition path originates and terminates at the 

same stable state. When a new input arrives, it changes the current state to the next 

state. The next state now becomes the current state, and a new input can arrive. 

Asynchronous circuit to be synthesised must expressed as a flow table [132], a form 
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Figure 6.1: (a) Synchronous circuit . (b) Asynchronous circuit. 

similar to a truth-table in synchronous design. 

A general design procedure for asynchronous state machines can be summarised 

as follows: 

• Create a state transition diagram or state table for the state machine that 

describes the required functional behaviour. 

• Derive a primitive flow table from the state transition diagram. Note that only 

one stable state occurs in each row. 

• Minimise the flow table reduction by merging rows (Remove any redundant 

states) . 

• Simplify the excitation table and obtain the output expressions using Karnaugh 

maps or other logic minimisation. 
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• Construct and simulate a circuit that implements these expressions. 

Our asynchronous arbiter was synthesised using these design procedures and the 

details are explained later in this chapter. 

6.2.2 Delay-insensitive Circuits 

Delay modelling is one of the most significant elements of validating asynchronous 

design. One popular well-known approach that gives unbounded delays to both wire 

and gate elements is the delay-insensitive design approach. This design style avoids 

the need for the timing analysis, giving designs that operate correctly whatever the 

delay in the interconnecting wires [133]. It also has some benefits over bounded-delay 

methodologies in that the former delay model forces the designs to use conventions 

such as completion signals and transition signaling which are both important for good 

asynchronous circuit structures [134]. Furthermore, the delay-insensitive model allow 

the possibility of exploiting the average case delay rather than the worst case, which 

provides a significant saving with long interconnections [133]. There have been some 

processors that used a delay-insensitive technique such as described in [135, 136]. 

6.3 Modern Arbitration Systems 

It is very well-known that accessing a shared resource with two or more processors 

requires an arbitration mechanism to prevent contentions and to insure that only one 

processor can access the shared resource at a time. Many arbitration schemes have 

been proposed [137, 138, 139, 140, 141] with different characteristics. Arbiters can be 
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centralised, decentralised, daisy chained, tree, round robin with fixed or dynamic pri­

ority, ring structure, etc. In fact, the degree of comparison between these mechanisms 

depends on a set of factors, such as: reusability, modularity, fairness in accessing the 

shared resource, avoiding starvation and minimising both power consumption and 

logic area. That is, most of the arbitration mechanisms are only suitable for some 

cases and none of them is optimal for all cases. 

One popular arbitration priority scheme for distributed arbitration is the daisy 

chain mechanism [142]. In this mechanism all processors share the same bus request 

and bus busy lines, but a grant signal's propagated through all the processors (daisy 

chained). The priority in this mechanism is fixed and depends on the physical position 

of the processors within the chain [143]. Macii and Poncino [143] described a design 

of a scalable bus arbiter for a multiprocessor system using a ring architecture. This 

arbiter is synchronous in design and the priority level of each processor is reduced by 

one at every arbitration cycle to satisfy a rotating priority between the processors. 

Also, two signals (Bus..Busy and Token_Out) must be propagated through the ring 

network to circulate the token. Our arbiter also uses a ring structure but is a fully 

asynchronous design. It exploits the concurrency control instruction (Brk) provided 

by the microthreaded microprocessor model to hide the token circulation time and 

to set a priority processor based on the processor that has succeed in executing this 

instruction. Also one grant signal (Gout) rather than two is propagated to circulate 

the grant token around the ring. 

Valencia et. al. [139] presents a modular asynchronous design for an n-user linear 

array arbiter; see figure 6.2. In this design a centralised control signal (Co) is used to 

drive all the modules (M) in the array. When this control signal is 0, the arbitration 
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Figure 6.2: Organisation and signaling conventions for the arbiter (proposed in [139]). 

process takes place in such a way that this signal is not 1 until the requests (r) have 

been granted (g) in the same order of the module in the array. Also, the priority policy 

in this arbiter is dependent on the relative position of the component modul s. This 

arbitration mechanism is not fair and leads to a starvation situation if a large number 

of modules are used. Our arbiter has the advantage of being partit ion d , where each 

arbiter can decide locally to access the global create bus or to wait. So, there is no 

need to propagate the control through all modules. Also, the priority policy described 

in our arbiter provides fair communication and avoids processor starvation. It also, 

hides the token circulation time by moving the token to the most likely processor 

to issue the create instruction, which enable one processor to create a new family of 

microthreads. 

Moore et. al. [144] proposed an asynchronous-synchronous interface design for 
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point-to-point channel communication with independent clock domains. The authors 

suggested a new scheme by adding an asynchronous FIFO between the producer 

and consumer modules to hide the waiting time during the request and acknowledge 

synchronisation. From a hardware point of view, adding extra components means 

increased complexity. This mechanism requires a complex control scheme, and in 

some cases, if the FIFO is deeper, the performance will be significantly degraded. 

Work done in [141] describes the design of asynchronous arbiters for on-chip com­

munication systems. The authors proposed both fixed and dynamic priority arbiter 

configurations. In the fixed priority design, three blocks are used to handle the arbi­

tration mechanism. These blocks are the loop control block to reactivate the arbiter 

after serving requests, the synchroniser block to sample the input requests and the 

fixed-priority block to determine the priority value based on a hardware coded prior­

ity mechanism. The dynamic priority design also has the same complexity of blocks, 

where n request-analyser blocks and n priority-comparator blocks are required to 

handle n requests. This arbiter has a complex arbitration design with a centralised 

structure which prevents partitioning. Also, many comparisons may be required to 

determine the priority values if the previous comparison failed in determining the 

priority value. 

In contrast, our arbiter has less complexity and provides a simple arbitration 

mechanism for a large number of processors. It also provides a simple mechanism 

to pre-detect the priority through a concurrency control instruction provided by the 

microthreaded microprocessor model to move the token to the most likely processor 

to issue the create instruction. Also, the arbiter we describe has the advantage of a 

partitioned design and this issue will be explained later in this chapter. 
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Figure 6.3: Asynchronous arbiter block diagram. 

Villiger et.al. [126] proposed a mechanism for transferring data between GALS 

modules using a self-timed ring topology. This configuration provides a point-to-

point communication between two adjacent GALS modules and provides a modular 

connectivity, which has full scalability in both bandwidth and area with an increasing 

number of GALS modules. The design we described in this chapter has the advan­

tage of a ring organisation that connects GALS microthreaded processors with the 

broadcast bus in a circular fashion. 



6.4 Asynchronous Arbiter for Microgrid Chip 

Multiprocessor 

6.4.1 Arbiter Organisation and Bus Interface 

141 

As described in the previous chapter, microgrid CMP has two subsystems requiring 

global communication i.e. the broadcast bus, and the arbiter ring network, and both 

use asynchronous signals, creating independent clocking domains for each processor. 

The arbiter exploits the advantage of a concurrency control instruction (Brk) provided 

by the microthreaded microprocessor model to set the priority processor and move the 

circulated arbitration token to the most likely processor to issue the create instruction. 

This mechanism provides a latency hiding of the token circulation time by decoupling 

the microthreaded processor from the ring's timing. 

Figure 6.3 shows the novel arbiter organisation. Each processor has its own local 

control and a separate arbiter module in order to allow processor partitioning. Each 

arbiter module is linked to the next one in a ring arrangement and the processors 

are arranged in a grid layout as shown in figure 6Aa. Thus each arbiter can be 

linked to two physically adjacent ones to reduce propagation delays. Our arbiter 

has the optional capability of being usable in a dynamically partitionable processor 

array, assuming a suitable routing architecture is available. For example, a possible 

reconfiguration of the processors in figure 6.4a onto two independent groups is also 

shown in figure 6Ab. 

Figure 6.5 shows the arbiter input and output signals. As shown, the arbiters are 

linked by four lines comprising the request high (RBi), which is the highest priority 

request, request low (RLi)' which is the lowest priority request, an acknowledgement 
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Figure 6.4: Asynchronous arbiters with different partitioning. a) Grid organisation. 
b) Independent group organisation. 

signal (Acki ) to release the bus, and the grant line (Gi ) to grant requests and move the 

grant token towards the requesting module. The request and grant signals propagate 

in opposite directions around the ring. Also , one output wire (Wouti) is required 

from each arbiter module to give processor Pi permission to access the broadcast bus. 

There are three signals from each processor to its arbiter. The first is to inform the 

arbiter that the current processor has succeeded in executing the Brki instruction, 

the next signal (Di) is used to assert a demand request. The third is the local 

acknowledgement (Ackli ) signal to inform the arbiter that a receiving processor has 

finished reading the data from the bus. ote that within the arbiter the Brki signal 
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Figure 6.5: Asynchronous arbiter with require input and output signals . 

wire is assigned to the RHi signal line with highest priority and the Di signal assigned 

to RLi line with low priority. Note that an initial (init) signal is also required to 

determine the initial location of the token. One arbiter is initialised with the token , 

the others without. 

In order to release the bus a processor must receive an acknowledgement signal. 

To get that, every processor has to signal it has read the data, therefore we can return 

the acknowledgement signal back to the grantee by using the same ring connectivity to 

propagate the acknowledgement back until it reaches the processor that has currently 

reserved the broadcast bus. The required acknowledgment control circuit is shown 

in figure 6.6, where each processor asserts a high signal through its local acknowl-

edgment (ACKl i ) line when that processor has read the data from the bus. A write 

(WR) signal is also required to control the propagation of the acknowledgment signal 
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Figure 6.6: Released control circuit. 

through the arbiter chain. Thus, the acknowledgement signal is propagated from one 

module to another until it reaches the processor that has reserved the broadcast bus. 

When that processor receives an input acknowledgment (Ackini_l) signal from the 

previous arbiter module the processor releases the token and the arbiter responds by 

deasserting Wout. 

6.4.2 The Proposed Arbitration Mechanism 

The arbiter provides a very simple arbitration mechanism, where each module has 

a few wires connecting to the next one and the last is linked to the first module in 

a circular fashion; see figure 6.7. Thus, as soon as the Wout i signal arrives at the 

corresponding processor, the processor sends its data through the broadcast bus and 

waits for the acknowledgement signal. This signal informs that the data is arrived at 
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Figure 6.7: Arbiter modules with required signals connected as a ring configuration. 

the required destination successfully. 

The arbiters operations can be described as follows, where we have N arbiter 

modules and only one processor can succeed in executing the Brk instruction at a 

given time. 

• The arbiter is labelled using modulo arithmetic so for M arbiters Ai +1 is Ao for 

i = M - 1 and Ai - 1 is Arn- 1 for M=l. 

• ote that ini t1 = 1 and init2 to initrn = O. This means that processor 1 would 

have a request acknowledged immediately after system initialisation (reset) but 

other processors must wait for the grant to propagate (A 1toA2 . .. .. . . . toArn ) . 

• If Brki =1 , Ai outputs a high request to the next arbiter via RH outi. The rest 

of the modules can also generate a demand request via RLoutk where k can be 
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any number from l..N except i (k =1= i). If all Brk=O any module can assert 

RLout. 

• If Brki=O and Di=O, Ai propagates RHini to RHouti, RLini to RLauti and 

Gini to Gouti' This propagates RHj, and RLj, from Ai to A i - 1 and Gi from Ai 

to Ai+!' 

• If Brki=l and Ginj,=l, and Ackini=O then ~ asserts lVouti (read), which gives 

the processor permission to access the broadcast bus. 

• When a receiving processor has completed the bus transaction it asserts a local 

acknowledge signal Ackli =l, which is also propagated through the ring until it 

reaches the module that has currently reserved the bus. Thus, when Ackini=1 

and Wauti=1, the token is released and the arbiter responds by deasserting 

Wout. 

• If Brkj,=O, and the input line RHini=l , then forward the grant to the next 

module irrespective of D. If Di=1 assert RLauti=l, else propagate RLini to 

RLouti. 

• If Brki=O, and input line RHini=O, and demand request Di=l and Ackini=O, 

then activate the Wouti, which gives the processor permission to access the 

broadcast bus. 

• If Brki=O, and Gini=1 and RHini=O, and demand request Di=O, and RLini=1, 

then forward the grant to the next module. 

• When there is no request from any processor, then the RHi , RLi , Gi, Acki! and 

Wautj, will all be 0. 
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6.4.3 Priority Policy 

As described above, the arbiter exploits the concurrency control instruction provided 

by the microthreaded microprocessor model to set a priority policy based on the pro­

cessor that it has succeeded in executing the Brk instruction, instead of just assigning 

the priority based on the position of the processor in the chain as described in [139]. 

Note that the microthreaded pipeline executes the Brk instruction before executing 

the Cre instruction, which provides latency hiding during grant token circulation 

time. 

It is important to know the average number of arbiter modules in one ring, that 

will keep the latency of the token movement hidden. To do this, it is useful first to 

know the worst and best case for the number of arbiter modules. If we assume that 

the request time between two adjacent arbiter modules is given by tm , and the time 

interval between executing Brk and Cre instructions is given by tbrk, then the best 

case for the number of arbiter modules in one ring that keeps the latency hidden 

(constant time) during token movement is 2 and the worst case (Nw) is given by the 

following equation. 

N _ tbrk 
w - 2tm (6.4.1) 

If we take the average for the best case and the worst case, then the average 

number of arbiter modules (Nav ) in one ring can be given by the following equation. 

(6.4.2) 
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Figure 6.8: Arbiter state transition diagram. 

The cycle time of our arbiter configuration, Te , is the time required to move the 

token around the ring. This time is linear if tbrk time is greater than or equal to the 

time require to move the token around the ring. Otherwise, the time start increases. 

This issue can be expressed as follows. 

if tbrk ~ 2Navtm, } 

if tbrk < 2Navt m· 

Two levels of priority have been introduced in this design, high and low priority. 

The high priority is given to the processor that has succeeded in executing the Brk 

instruction, while the low priority is assigned to a processor that has activated a 

demand request. Note that with the current microthreaded CMP model; only one 

processor can succeed in executing the Brk instruction at a given time, which means 

there is no need for many levels of priority. However, the mechanism we described 
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Figure 6.9: Asynchronous version from the arbiter state transition diagram showing 
sling on each stable state. 

can be easily extended for many levels of priority and can be used to support any 

CMP arbitration model. 

Thus, as described above the high priority is given first to the module that has 

succeeded in executing the Brk instruction, then the rest of the modules that have 

requested the bus are served based on their position in the ring and in sequence order. 

This mechanism provides fairness and is starvation free. As soon as the processor 

releases the bus the next module will be served directly. 

6.4.4 Arbiter Design Methodology 

The state machine diagram for the arbiter module is shown in figure 6.S. There are 

eight states; however an asynchronous version of this machine can be minimised. Two 
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states, reset and grant priority, can be eliminated by merging states; see appendix C1 

for details. It is important to note that each stable state of the state transition dia­

gram must be represented by a sling i.e. a transition path originating and terminating 

at the same stable state; see figure 6.9. 

The idle state receives the input requests from RH iniOT RLini and if there is no 

input grant Gini = 0, it propagates the input requests to the next arbiter module 

via output request lines RH outiOT RLouk The request must be propagated until it 
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Figure 6.11: Arbiter level gate design (request low output (RLO)) . 
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reaches the module that currently holds the token. The token is stored in the busy 

passive state, from which a high input request from RHi or RLi cause a change to 

the grant state. In the grant state the machine waits for removal of the incoming 

request before returning to the idle state. 

From the idle state an incoming bus demand from the processor (D= l or Brk= l) 

causes a change to the request state. In the request state, if the input grant Gini = 1, 

and Brki= 1, and (Ackini_ l = 0), then the state changes to busy active, which gives 

the processor permission to access the broadcast bus by activating the W outi line. 
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Figure 6,13: Arbiter level gate design (output signal (Wout)) . 

When the input acknowledge Ackini_ l = 1 is received, this means that all processors 

have completed accessing the bus and the state changes to busy passive, If the input 

grant Gini = 1 while Brki = 0 and input request Rhi =1, then the pass priority state 

is used to pass the request, ignoring the lower priority demand from this processor. 

The permeative flow table can be now derived from the state transition diagram 

described above. The total number of inputs in this state machine is 7, and the 

present state requires four bits , Thus, the number of inputs is large, and of course 

this requires both a large flow table and a large K-map. The permeative flow table, 

the flow table reduction by merging rows and the simplified functions for each of the 
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output expressions are described in full in the appendix C1. Note that the circled 

states in each row represent stable states, while dashed lines represent don't care 

state. 

Figures 6.10 to 6.13 shows a gate level design of our arbiter. There are four outputs 

RHO, RLO, Gout, and Wout. As shown, a simple logic gate is required to implement 

the behaviour of the arbiter and the arbiter depends on both the input signals and 

the current state. Thus, an output only fires when its appropriate inputs become 

available. Otherwise its state change occurs. Note that the inputs are triggered 

directly and the signals between adjacent arbiter modules work as a handshaking 

signals. 

6.4.5 Arbiter Partitioning 

A partitionable design methodology will become one of the design requirements that 

ensures low power and high performance in future processors [69, 145, 146]. It is one 

of the most important design issues, which is effective in block design and system 

verification [147]. This feature makes the design more flexible and provides a point­

to-point communication between adjacent modules. Point-to-point communication in 

the GALS design approach provides low power and high performance [144]. It also 

offers a promising approach to fault tolerance problems and provides an independent 

communication between different system blocks. 

As previously described, each arbiter connects to two other arbiters associated 

with adjacent processors to form an arbitration ring as shown in fig 6.4a. This ar­

rangement could be hardwired, however by providing a routing architecture as shown 

in figure 6.14 reconfiguration of processors and their buses can be achieved. So, for 



on 19urB e 

arbitrabon 

si mdrouthl 

R RAck G R 14-+---l 

Asynch . ~ .!:Ii 
Ack Arbiter Ackt-+--I~ il,.I:l e t---+-~ 

G RAck G 

n Igura c 
Brbit'nltion 
sigJml routing 

G ~ 'Ii 1 f--+-~ 

155 

Router Control 

Figure 6.14: Asynchronous arbiter with programmable routing for partitionable pro­
cessor arrays. 

each arbiter and their associated global resources the processors can be partitioned 

into groups, where each group has a separate token. 

6.4.6 A rbiter wit h N-Ievels of Priority 

Figure 6.15 shows a block diagram for a scalable asynchronous arbiter design with n­

levels of priority. As illustrated, three blocks are required to handle n requests, which 

comprise the processor bus access controller block, a request logic block and the state 

machine block. The function of the first block is to control and manipulate different 

levels of priority, where the priority levels can be determined by the compiler. 

The second block determines whether the demand input signal has a high or low 

priority compared with the incoming requests. Thus if the demand line D has low 
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Figure 6.15: A block diagram for a scalable asynchronous arbiter design. 

priority, t hen a high signal is asserted to the state machine through PP wire line. 

Otherwise, if the demand has high priority, then PP= O is asserted . 

The st ate machine uses the input signals from the request logic block to decide 

whether to pass the grant line to the next module via Gout if t he current module has 

a lowest priority; or to activate the Wout line, which allows the processor to access 

the bus. So, if the current module has the high priority, then the pass-high-priority 

(PHP) signal is activated by the state machine to inform the request logic block that 

the bus access is given to the current module. Otherwise PHP= O is asserted. The 

zero request line (ZR) can be used to control all output request RO lines, which block 

the propagation of output requests ROi if ZR= O, or to pass the request to the next 

module if ZR= l. 
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Figure 6.16: Arbiter test bench source code. 

6.5 Implementation and Simulation Results 

We simulated the arbiter using VHDL, exploiting the generate statement to create 

networks of N processors/arbiters in the test bench. A snapshot from the arbiter 

test bench is shown in figure 6.16 and a full VHDL source code for the arbiter com-

ponents are presented in appendix C2 and C3 respectively. The simulations used 

processors with different clock phases and frequencies in order to model their globally 

asynchronous nature. The arbiter modules were linked using arbit rary delay elements 

as shown in figure 6.17 to model interconnect delays . 

The delay insensitive model uses unbounded delays on wires and gate elements 

and is a suitable method for analysation of transition-based signaling. Therefore, no 

mat ter how long the arbiter module waits for input changes when the arbiter sees 
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activation of the input signals , the transition is passed to the next module which will 

eventually know that new input values have arrived. Simulations using this approach 

verified correct operation of the arbiter with up to 64 processors. The processors were 

modelled using a high level description of the CQ and scheduling system, which will 

be reported in chapter 7. In effect, the sequencing of bus requests in these simulations 

were manually controlled by the test bench set up. 

We investigated the performance of our arbiter with respect to the request-to-grant 

delay by replacing the processor model with a simple state machine and generated 

requests at delays determined by a sequence of random numbers. The state machine 

is shown in figure 6.18. 

The state machine first generates a request (local state) through a demand line 

(D) then changes to the wait bus state. When a grant is received the state changes 
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Figure 6.18: Processor state machine. 

to bus in use. When the bus access is complete (C) the state changes to acknowledge 

informing the rest of the processors in the ring that bus is free again. The simulations 

used different numbers of processors i.e. 4, 8, 16, and 32. Figure 6.19 shows a linear 

result for the Request-to-grant delay with rate of requests (per processor per cycle). 

As discussed in the previous chapter, the rate of requests to the arbiter within 

the context of the microthreaded CMP depends on the behaviour of the create in­

struction. The frequency of executing this instruction over a range of loop kernels 

is very low (17%) over all loop kernels considered in this analysis. Thus the bus is 

used infrequently, there is very little or no contention, so the delay in arbitration 

will primarily depend on the ring delay. Furthermore, microthreaded processors are 

tolerant to latency when they have created threads, so it does not matter how long 

it takes to create the next family of microthreads. 
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Figure 6.19: Request-to-grant delay with rate of requests (per processor per cycle). 

Figures 6.20 and 6.21 shows a sample of results from simulating 8 arbiter modules. 

In this sample the following conditions apply: module 0 has initially reserved the 

token, module 7 receives a high input on the Brk signal line and modules 1, 2, 3, 4, 

5, and 6 have high input demand request lines. As illustrated, the request signal RLI 

reaches the token before RH7 , which means that broadcast bus access is given first 

to processor 1 (Wout is asserted). When processor 1 releases the token, the grant 

signals are propagated back to give processor 7 permission to use the broadcast bus 

before other lower priority processors. The rest of the demand requests are granted in 

sequence order and based on their position in the ring configuration. More simulation 

results with different sizes of arbiters and different demands and brks scenarios are 

provided in appendix C4. 
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Figure 6.20: Arbiter simulation waveforms snapshot 1 (8 arbiter modules) . 

6.6 Summary 

In this chapter we have discussed the design and the pre-layout simulation using 

VHDL of our asynchronous arbiter. The arbiter provides a very simple system archi­

tecture, where each module has just a few wires connecting to the next one and the 

last is connected to the first module in a circular fashion. Delay-insensitive method­

ologies with unbounded wire and gate delays were considered in the arbiter simulation 

procedures. The arbiter also has the advantages of GALS communication design and 

has the following features: 

• The ring configuration to arbiter modules and the point-to-point communication 

between two adjacent arbiter modules provide a modular connectivity, which 

has full scalability in both bandwidth and area with increasing numbers of 
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Figure 6.21: Arbiter simulation waveforms snapshot 2 (8 arbiter modules). 

microthreaded processors GALS modules. 

• Each arbiter module has its own control signals and implements a self-timed 

model. Therefore, there is no need to propagate the control signals throughout 

all the arbiter modules. 

• There are four wires connecting every arbiter module in the chain to the next 

one and the last to the first in a circular fashion. The latency of the wire delay 

is very small. Thus the decision is made locally by each arbiter module instead 

of using large wire delay, which gives it a partitioning properties. 

• Each arbiter has a priority policy dependent on a processor successfully execut-

ing the concurrency control instruction Brk. This mechanism provides latency 

hiding by decoupling the microthreaded processor from the token circulation 
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time. It also offers fairness in communication between processors and elimi­

nates processor starvation. 

The broadcast bus, ring network and arbiters are structured to facilitate both 

scalability and partitionability of the processor array. 



Chapter 7 

Implementation and Area 
estimates for Microthreaded Core 
and its Support Structures 

7.1 Chapter Overview 

In chapter 5, it was stated that the scalability of the microthreaded support structures 

in terms of silicon area needs to be evaluated. The chapter also showed that it is 

necessary to model the top-level nature of the CQ and scheduling system in order to 

verify their correct operation. This chapter discusses these issues and gives detailed 

implementations for the microthreaded microgrid support structures using VHDL. 

The outline of this chapter is as follows. In the next section an overview of 

the microthreaded support structures is presented. Area estimates for the support 

structures are given in section 7.3. Implementation and simulation results for local 

scheduler and microthreaded pipeline are discussed in section 7.5 and 7.6 respectively. 

A summary of the chapter is provided in section 7.7. 

164 



165 

Local Scheduler 

1-
CQ RAU Cache 

Ins tru c tion Conte xt S \Nltch In'tal,se 
& Create Asyn c hro nous 

Local Interface 
Register 

File 

1 
In-order pipeline 

Figure 7.1: Block diagram for micro threaded support structures. 

7.2 The Microthreaded Support Structures 

A top level block diagram of the microthreaded support structures is shown in fig­

ure 7.1. The support structures comprise a local scheduler (CQ and RA UJ, and a 

local register fil e. The support structures and the micro threaded in-order pip line fa­

cilitate scalability in support ing high levels of ILP (e.g. thousands of processors and 

thousands of threads per processor). The parallelism of the code into micro threads is 

determined by the compiler and managed during execution by each processor's local 

scheduler. The local scheduler monitors local resourc availabili ty and determines 

when new microthreads may be started. Resource management involves allocating a 

set of registers for each thread created, which is performed by the RAU . The resource 

information also includes a free slot number in the CQ to hold the thread state. The 
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local scheduler determines the subset of related microthreads (thread family) that are 

going to execute and manages a local model of resource utilisation. During execution, 

microthreads may need to exchange data with other microthreads; this is done via a 

bank of shared registers in each processor's local register file. The local register file 

is fully scalable, with the implementation of its windows requiring only 5 fixed ports 

per processor as shown in chapter 4. 

As mentioned earlier, the complexity and scaling of the processor support struc­

tures are the main significant challenges in modern processor designs. A simpler 

and more scalable processor requires efficient and scalable support structures with 

low area, and minimal communication overhead. The microthreaded microprocessor 

model meets these requirements. The next section provides an area estimates for 

microthreaded support structures. 

7.3 Area Estimates for Microthreaded Support Struc­

tures 

In order to demonstrate the scalability of the microthreaded support structures in 

terms of silicon area, this section provides area estimates and comparisons for these 

structures. 

7.3.1 Register File 

It has already been shown that a partitioned register file distributed across multiple 

processors is scalable, uses less area and power and has smaller delay and access 

times compared with global or centralised schemes [22]. Also, chapter 4 shows that a 
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Figure 7.2: Estimated area of one processor's partition of a distributed register file 
comprising 5 ports per processor. The area estimate is for 0.07 J.Lm technology. 

microthreaded register file is scalable and only five ports per processor are required 

in an implementation. Here we will demonstrate the silicon area scalability of the 

microthreaded register file . Using the procedure from [98, 148] we have calculated the 

area of our register file and compared this with the Alpha 21264. Figure 7.2 shows 

the estimated area for a partition of a microthreaded register file for various numbers 

of local registers (note that the size determines latency tolerance) . It can be seen 

that the area of 1024 32-bit registers is less than 0.6mm2 in 0.07 micron technology. 

The Alpha 21264 splits its integer file into two clusters that contain duplicates of 

the 80-entry register file . The two pipelines then access a single register file to form 

a cluster, and the two clusters are combined to support 4-way integer instruction 

execution. The architecture also has two floating-point execution pipelines organised 

in a single cluster with a single 72-entry register file . Figure 7.3 compares the area 
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Figure 7.3: Area comparison between different sizes of a micro threaded register file 
partition and the alpha 21264's register file. The area estimate is for O.07J.Lm tech­
nology. 

of a microthreaded CMP register file and the Alpha register file. The area of our 

register file is less than the area of alpha 21264 for all sizes up to 512 64-bit registers. 

7.3.2 Register Allocation Unit 

This section provides the area of the allocation scheme and compares it with the area 

of the register file. We have already seen that the allocation scheme is straightforward 

and that allocating more registers per block provides both area and propagation-delay 

reduction in the allocation scheme. Figure 7.4 shows a slice of RAU combinational 
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Figure 7.4: Register allocation unit 's combinational logic slice design. 

logic. Each slice includes a set of components: multiplexors, incrementers, compara­

tors and logic gates. We use Standard Cell Datasheets [99] to estimate th are of 

these components. Figure 7.5 shows an area comparison between th r gister alloca­

tion scheme and the register file for 2- and 4-register allocation units. The allocation 

scheme uses less area than the register file in both cases. In addition, an important 

feature that must be considered that the allocation scheme is inversely proportional to 

the granularity of the allocation block, thus allocating blocks with n-registers means 

area and power is reduced by a factor of n. This is important b cause more concur­

rency means a greater reduction in the area and power dissipation. 

A reduction in the complexity of the allocator by the use of allocation units of 

greater than one must be considered against any possible inefficiency in register use 
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Figure 7.5: Area comparison between the register allocation unit and the register file 
for 2- and 4-register per allocation unit and for various sizes of register file . 

caused by the blocked nature of the allocation, which may result in unused regis-

ters. Remember, using a large number of registers is important in maximising local 

concurrency and hence in tolerating latency. Given a known hardware scheme, any 

waste through non-use of allocated registers can be minimised by the compiler and 

this allocation scheme enables the overhead associated with dynamic allocation to 

be fully managed. In the limiting case, the compiler could assume microcontexts of 

a fixed size (16 registers), with the compiler maximising use of the micro context by 

loop unrolling if necessary. The allocator then allocates registers in fixed blocks of 16, 

simplifying the logic and reducing the area shown in figure 7.5 by at least a further 

factor of 4 compared to the case of 4-register units. 
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Table 7.1: Thread entry format in the continuation queue for 256-entry CQ and 512 
entry register file. 

Field name Number of bits 
Program counter 32 
Local base 9 
Dependent base 10 
Producer 8 
Pointer 8 

7.3.3 The Scheduler 

Within the local scheduler, the CQ manages the state of all currently allocated 

threads; the components of this state are shown in table 7.1. This includes the 

program counter (PC), the base address of its microcontext (I-base) and the base ad­

dress of a dependent microcontext if used (d-base), which includes a flag (F) to specify 

whether this is local or on an adjacent processor. Two additional fields are used to 

hold pointers to other slots in the table. The first of these is used to build queues, 

for example, the empty slot queue and the active-thread queue. The other is used to 

identify a thread's producer in the dependency chain. This is required when releasing 

a thread's resources, as in a dependent loop. Physical registers are shared between 

two different microcontexts and the producer's registers can not be released until the 

consumer has read them. This is implemented conservatively by releasing registers 

only when the consumer has been terminated. Thus the Kill instruction must back­

track one place down the dependency chain to release that threads resources. The 

table is initialised into a state where all slots are in the empty queue except for the 

main thread, if it exists on a processor, which occupies slot o. For a 32-bit PC, a 

512-location register file and a 256-entry CQ, each entry in the CQ requires 67 bits. 

The structure of the CQ can be decomposed into three parts, each of which has a 
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Figure 7.6: Block diagram of the interactions within the CQ, which use its link field 
to build: a) a queue for empty slots, b) a queue containing active slots and c) Any 
continuation queues for threads suspended in the register file. 

different number of read and write ports : 

• The first part holds the PC (32 bits) and is written on two ports , one when a 

thread is created and the other when a thread is rescheduled. Both may occur 

at a high frequency, so two ports are required to reschedule and create in the 

same cycle. There are also two read ports, one to access the head of the active 

queue to provide a PC on a context switch, and a second to obtain the PC of 

a suspended thread when it is rescheduled after suspension in a register. This 

must be sent to the I-cache to pre-fetch its code before the thread can be placed 

in the active queue. Again both can occur frequently and two ports are required 

to perform both in the same cycle; 

• The second part (27 bits) holds the micro context state (base addresses etc.) 
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and requires only two ports, one of which is written to when the thread is 

created and the other is used to access the head of the active queue to provide 

the base addresses on a context switch; 

• The last part is used to organise the thread slots into various queues and is the 

link field (8 bits). This is accessed in each cycle to maintain various mutually 

exclusive queues, which are linked using this field. They are discussed in more 

detail below. 

All queues are maintained using the link field to indicate the next slot number in the 

structure and two registers are used to maintain pointers to the head and tail of the 

corresponding queue. This is illustrated in figure 7.6. The head, tail and link fields 

are used to address all of the memories defined above. 

Figure 7.6 also shows the various processes involved in managing the thread state, 

Le. thread creation, pre-fetching the code into the I-cache, building CQs on registers 

and context switching. When a thread is created, a read port is used to update the 

head of the empty queue. The slot number from the old head of this queue is the 

one allocated to the new thread created and this is passed to the I-cache along with 

the thread's PC to initiate a prefetch. When the PC address is known to be in the 

I-cache, the new thread is added to the tail of the active queue, which supplies new 

threads to the pipeline on a context switch. When a context switch or kill occurs 

at the IF stage of the pipeline, a read is required to update the head of the active 

queue. Also, but only on a kill, a write is required to update the tail of the empty 

queue. This requires two ports, as the read and write are to different addresses in 

the CQ. Finally, a process is required to manage the CQs of threads suspended on 

a given register (Ri in figure 7.6). This will either write to the link field to update 



174 

1.2 / I 0 CQ (1,2 and 4 registers/slot) Register File I ~ 
102~ ~' 

1 / l ~. 

- V E 0.8 
~ 

"'" ~ 
V ~r / 'CQ 0 m ~ 0.6 CQ ~ E 512 

E 512 I;, 1024 
RF I---

c: 
0.4 V f~ co 

~ ,.c= ~~ .c:::::::. G.I 
~ CQ CQ CQ -oCt 

O.2 /~2" 
512 

J~ 
256 RF 256 

CQ 256 
/ Q64 128 RF . I 128 7 0 

Figure 7.7: Area of the CQ compared with the register file for 1, 2 and 4-registers 
per slot in the CQ. 

the tail of the Hi queue, when a new thread is added or read the link field to update 

the head of the Ri queue, when rescheduling a thread from it. This requires a single 

read/write port. In total therefore, this part of the CQ requires 5 ports. 

The size of the CQ is related to the size of the register file through two param­

eters. The first is the number of registers required per micro context (Rmc) and the 

second is the number of threads per micro context (Tmc). The more registers per 

micro context the smaller the CQ in comparison to the register file. The more threads 

per microcontext, the larger the CQ in comparison to the register file. We have al­

ready shown that over a sample of the Livermore loop kernels, the average number 

of registers per micro context was 6. The optimal number of threads per context is 

more difficult to ascertain, without significant analysis of simulation results. For this 

reason, figure 7.7 shows an area comparison between the CQ and the register file for 
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Ta e .. lCrogn -bl 72 M' 'd C t' t ore es Ima e area usmg 007 t h 1 '/.Lm ec no ogy. 
Functional Block Size Area in mm:.l %Core 

(0.07/.Lm) 
L1 I-cache 8KB, Direct map 0.178 7% 
L1 D-cache 64KB,2-Way 1.15 47% 
Register file 512 (32-bit each) 0.279 12% 
RAU Allocate block of 2 0.167 7% 
CQ 256-entry (67-bit each) 0.299 12% 
FPU 64-bit 0.356 15% 
Total Core Area (mm:.l) 2.43 100% 

1, 2, and 4 registers per slot in the CQ (Le. Rmc/Tmc = 1, 2 or 4). 

7.4 Estimated Core Area 

In this section an estimate is given of the number of microthreaded processors that 

can be integrated onto a single chip using emerging technology (0.07 micron CMOS). 

We assume that each core in the microgrid CMP is a 32-bit RISC processor with a 

dedicated, 64-bit, floating-point unit (FPU). We consider two possible architectures, 

which correspond to the memory organisations briefly described below, i.e. with and 

without D-caches. To estimate the microgrid-core area, we have used CACTI to 

estimate the area of the L1 caches and we use [98, 149) to estimate the area of the 

other core components. Note that both I-cache and D-cache are single port memory 

structures. 

In the future work we introduce two possible memory organisations for microgrid 

CMPs. The first uses a processor with a single L1 D-cache per processor supported 

by a cache-only memory architecture (COMA). The second possible memory archi­

tecture eliminates the L1 D-cache completely and makes use of latency tolerance in 



176 

able 7.3: Icrogn - ore estimate area WIt out -cac e usmg . 'JLm ec no og 'dC . h L1 D h 007 t h I y. 
Functional Block Size Area in mm'J. %Core 

(0.07JLm) 
L1 I-cache 4KB, Direct map 0.08927 8% 
Register file 512 (32-bit each) 0.279 23% 
RAU Allocate block of 2 0.167 14% 
CQ 256-entry (67-bit each) 0.299 25% 
FPU 64-bit 0.356 30% 
Total Core Area (mm'J.) 1.19 100% 

the processors to access a flat multi-banked memory structure. The choice of memory 

structure for the CMP is a complex one and is likely to be application specific. For 

this reason, in this section, we simply assume that half of the chip area is given over 

to processors and the remaining half to memory structures such as memory banks 

and the network to access them. 

Table 7.2 gives the estimated area of a microthreaded processor core including 

an L1 D-cache. In this table, we assume that the processor has a direct-mapped L1 

I-cache of 8KB and a two-way set-associative L1 D-cache of 64KB. It can be seen that 

the L1 D-cache consumes about 47% of the core area and that the register file of 512 

registers consumes 12%. Based on the work presented in this thesis, we assume that 

the RAU allocates registers in units of 2 and that the size of the CQ is 256-entries. 

This gives support structures for the microthreaded model that consume 7% and 12% 

of the core area respectively, giving a total area for the processor core including the 

FPU of 2.43mm2 • 

Results for the alternative configuration without the L1 D-cache use similar pa­

rameters, with the only difference being that the L1 I-cache is reduced to 4KB. The 

results are shown in table 7.3. In this configuration, the support structures begin to 

dominate the core area, with 23% going on the register file, 25% on the CQ and 14% 
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on the RAU. However, the new estimated core area is now only 1. 19mm2, which is 

less than half the area of the previous configuration. It should be noted that with 512 

registers and 256 microthread slots, we have chosen to characterise a generous con­

figuration that would tolerate hundreds of cycles of latency from a memory system. 

To put these estimates in perspective, using the model without the L1 D-cache, if we 

assume that half of the die area is given to memory structures, a 128-processor chip 

with 64 thousand registers would require 305mm2, which is significantly less than the 

area of Intel's Montecito chip. 

Recently, Kumar et.al. [150] estimated the die area of chip multiprocessor with 

eight cores sharing a 4MB L2 cache. In their work each core is a 4-issue in-order 

processor (Alpha 21164) and has 64KB L1 caches (I/O). The total chip area was 

127.76mm2. Our estimation methodology is similar to their work and we have used 

the same feature size. Using the same die size and the same amount of shared mem­

ory, we could support about 50 microthreaded processors each with an FPU with a 

combined register file size of 25 thousand registers and able to support over 10 thou­

sand active threads. Sharing an FPU, as proposed in that paper, is quite feasible 

in a microthreaded processor design and this would further increase the number of 

processors in the same area. A co-joined dual processor single FPU processor design 

would require approximately 2mm2, allowing 64 processors with 32 thousand registers 

to be integrated in the same die area. 
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Figure 7.8: Detail of the local scheduler showing its main components and the data 
paths between it and other stages of the pipeline. 

7.5 Implementation for a Local Scheduler and a 

Microthreaded Pipeline 

We have already described a detailed design and implementation of the local scheduler 

and its components (RA U and CQ). We also, explained that the area of both the 

allocation scheme and the scheduler queue are less than that of the register file , 

given reasonable assumptions about the size of each. In this section, we combine the 

implementation of the scheduling system together with the first two stages of the 

microthreaded in-order pipeline to verify their correct operation. A block diagram of 

a local scheduler and its connections with the I-cache and the processor pipeline is 

shown in figure 7.8. As shown, the local scheduler has three main components, which 

comprises: the RA U, CQ and thread-create and control block. 



179 

The RAU within each scheduler models the allocation and deallocation of mi­

crocontexts to the local register file and determines when new microthreads may be 

allocated (see chapter 4 for the register allocation and deallocation mechanism). If 

registers are available it will allocate a microcontext and pass the allocation param­

eters to thread-create and control block. The thread-create and control block then 

creates entries in the CQ for each thread associated with that microcontext. The 

entries, as described previously, include the program counter, the base address of its 

microcontext and the base address of a dependent microcontext, flag and thread's 

producer (see section 7.3.3 for more detail about CQ). 

Thread entries are managed by two pointers, empty head and active head. The 

empty head pointer provides the available empty slot in the queue table. Thus, as soon 

as a thread's parameters become available, then the current empty slot is associated 

with that thread's parameters and removed from the empty head register. The next 

available empty slot now becomes the new slot in the empty head register for the 

coming thread (empty head.next = new empty head). Also, as soon as a thread's 

parameters and its slot number becomes available, the thread PC and its slot number 

are used to request the I-cache to prefetch the code before considering that thread 

for execution. If the thread code is available, then the I-cache acknowledges (ACK) 

the thread-create and control block, which results in updating of the tail of the active 

thread pointer. 

Also, when a context switch occurs, the current head of the active queue is removed 

(it is now the thread executed in the next cycle) and the next thread becomes the new 

active thread. This requires updating the head pointer to the new active thread. Also, 

if in that cycle, the instruction is kill (lets assume that the threads are independent), 
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then two actions are required. The first is obtaining the next thread from the CQ 

(active head.next = new active thread), and updating the head of the active queue. 

The second action is to add the killed thread (immediately as it is independent) to 

the tail of the empty queue, by writing the slot number of the killed thread to both 

the next field of the current tail, and to the tail pointer (and releasing its registers). 

Thus the active threads are removed on the context switch and then can be added if 

they are rescheduled. 

The thread-create and control block work as intermediaries between the RAU 

and CQ from one side and the I-cache, and processor pipeline on the other side. As 

shown in figure 7.8, this block receives a pointer to the TCB (create Address) from 

the processor pipeline when a create instruction executed. It also receives a pointer 

from the pipeline register read stage (RR) when a thread is rescheduled. A kill state 

(kill thread) is also required to indicate those threads that have been completed. This 

block, as mentioned above, also generates a request to the I-cache to prefetch the code 

for any thread that enters the waiting state. 

If the code is available, then the I-cache acknowledges the scheduler immediately, 

which changes the thread's state to Active. Active threads must wait their turn in the 

CQ before being selected for execution. The thread and control block also supplies 

the the processor pipeline with the thread state (PC,I-base,d-base and slot number). 

Finally, an initialisation pointer from the scheduler to local register file is used to 

initialise the $LO to the loop index. 

The thread-create and control block has two main processes: fetch TCB and 

allocate thread, both of which work concurrently. The state machine diagram for the 

first process is shown in figure 7.9. As shown, the idle state changes to the fetch 
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Figure 7.9: Fetch thread control block state transition diagram. 

TeB state when it receives a high signal through the done line, which informs it 

that the previous family has been fetched. When the TCB has been fetched, the 

state changes to the calculate parameters state, in order to determine the allocation 

parameters. Finally, the state changes to the data available state, which informs the 

allocation process through the data available (DA) signal that the parameters have 

become available. 

The second process is used to allocate a thread in each machine cycle if the 

required space is available. As shown in figure 7.10, the state machine changes from 

the family waiting state to the allocate thread state when the required parameters 

become available i.e. DA=1. When a thread is allocated, its parameters are stored 

in the CQ. Thus, from the store parameters state the machine returns to the allocate 

another thread if the given family is not completed, otherwise it changes to the family 
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Figure 7.10: Allocate thread state transition diagram. 

allocated state. In the family allocated state, a high signal is asserted on the fetch 

thread control block which indicates that the current family has been allocated. 

Figure 7.11 shows the first two stages of the microthread microprocessor in-order 

pipeline. The instruction fetch (IF) stage fetches two instructions from the instruction 

memory simultaneously. The justification for fetching two instructions is to avoid a 

pipeline stall. The first instruction is fed to the pipeline for execution, while the second 

instruction is tested to see whether it is a normal instruction or a microthreaded 

instruction (predecode of the second instruction). The logic for predecode the second 

instruction (a simple hardwired decode) is entirely in the IF stage of the pipeline and 

there is no overhead in terms of additional pipeline cycles to perform the context 

switch. This is achieved by prefetching all concurrency-control instructions with 

the preceeding executable instruction. Thus, as mentioned earlier, a context switch 
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Figure 7.11: The first two stages of micro threaded in~order pipeline. 
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follows an executable instruction if the compiler identifies that instruction as a non~ 

deterministic event. Another situation where the compiler will flag a context switch 

is following any branch or jump instructions. In this case the thread is reactivated 

upon the computation of the branch or jump target address, in th second stage of 

the pipeline after register read. 

Register addressing uses a simple base + offset mechanism, where the base address 

is a part of a microthread's state and the offset is defined by the register specifier 

in the instruction execution. Notice that instructions normally complete in order 

but that in circumstances where the execution time is non-deterministic, such as a 

D~cache miss, data is written asynchronously to the register file on a port dedicated 

to this purpose. In this situation, instruction issue stops in a thread as soon as an 

instruction attempts to read a register that is empty. 



Local Schedule~ : Schedule~ 

- qen"~1c lIlap ( 

po~t lIlap 
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t_clk,Rst ,WRREQ,Ne~c ,C~e_add~ess , Reschedule , Found , Family_Data, 

Ackno~, Conxt_s~itch, PC,L_Ease,D_Ease,Slot-pip, 
P~e~etch,Slot_cache,nxt,RDUR, RDH-p~e!etch ,TCE_Add~s,~~ite-pc 

) ; 

Inst~uction_Memo~y : Instruction_Cache 

qene~1c map ( w ,S1ice_1d, tdelay 
) 

POJ:t m.ap ( 
t clk , Rst, RDUR, TCE Add~s , Family data, 
I~st_data,Inst_Add~,RD_CaChe,RDM-pretetch,ACknow,pJ:etetch 

) ; 

Hic~oth~eaded_Pipeline: CPU 
qene~l.c lIlap ( 

port map 

u , Pcocessoc_id ,N ->N 

t_clk,r~t,nxt,PC,write-pc, add_st,Cre_addre~s , Found, 
Conxt_switch,Inst_data,Inst_Add~,RD_Cache 

) ; 

Figure 7.12: VHDL test bench source code for local scheduler, microthreaded pipeline 
and I-cache. 

Note that a Swch instruction will always update the value of the PC in the thread's 

state, and this update occurs after the register-read stage. This is in the case of 

a branch but not so obvious following a data dependency, where the state of the 

register will determine whether the instruction will be re-executed or not. If a register 

reads fails, the instruction reading the register must be re-issued, when the data is 

available. On the other hand, if the register read succeeds, the next instruction must 

be executed, which may be the next executable instruction or the one at the branch 

target location, thus the action at the register read stage determines the value of the 

thread's PC for all programmed context switches. The pre-layout simulation of the 

local scheduler and the first two stages of the microthreaded pipeline using VHDL is 

presented in the next section. 



Cont~o~~~~: Cont~o~ 

qe:ner:: 1c map ( 

por::t: map 
e_clk,R3T,Rel~s_Base,Requir.ed_Sl~e,Doallocate,Dor::elease, 

Allocate Bas,Available size,Er.r.or. signal, 
space_roUnd,~aml1Y_TO~d ,WR_cr.eate, RD_~emor.y, Cr.eate:_Addr.ess, TCB_Addx, 
TCB_Daea,PC_Cr.eated,L_Base , D_Base , T,pr.oducer.,WR_ Queue , Nexc_Tamily ,don 

); 

Allocation: Al l o c ate 
qener.l.C map ( 

por::t map 
) 
( 

v ,M, S , S li ce_id, tdelay 

t clk,RST,Reles Base,Requir::ed Size,Doallocace,Dor.elease , 
AlloCate_Bas,AV;ilable_Size ,~cr.or._SiQnal , space_round 

) ; 

Continuation Oueue: CO 

7.6 

o eneCl.. c- map ( 

pore map 

); 

CLK,RST,PC_Cr.eoee d ,PC_Reschedule,L_ Base,D_ Base, 
F ,pr.oducer.,VR_Oueue,Contxt_ sw1tch, PC-pipeline, 
L_Base-pip,D_Base-pip,SloC_NUaber.-pip, 
Pr.etetc.h_ PC ,Slot_ N\l.lIlhe:z:_cache, RD_ .e.oz:y....,Pz:e:t:e:tch, 
tlR_PC, A.clr: , don 

Figure 7.13: VHDL code for local scheduler components. 

Simulation Results Using VHDL 
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We have modeled the behaviour of the processor pipeline and the local cheduler 

in VHDL. The processor has the I-cache and the first two stages of the pipeline, 

which represent the top-level nature of the CQ and scheduling syst m. A napshot 

from the VHDL test bench code for the processor pipeline and th local scheduler is 

shown in figures 7.12 to 7.14. The VHDL code has been run using various compile 

scenarios, and with different thread allocation size implementations. In effect, we 

have used loop kernels at this stage as we currently have no compiler to compile 

complete benchmarks. However, as the model only gains speedup via loops, we chosen 

different types of loops from scientific and other applications. Analysis of complet 

programs and other standard benchmarks will be undertaken wh n a compiler, which 

is currently being developed, is able to generate micro threaded code. 



pc_c~a: ~eai~te~_32 
port map (c1k 2 , R~t, PC_next, PC); 

PC_inc~: add32 
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port map (PC, ~ou~_32,eiqht_32, ze~o1, zeco2, PC_ next,PC_ next_ B, nc1~,nc1Z); 
in~t mem: in~t~uction_memo~y 

p~rt map (PC, inet); 
ID IR ~eq: Inetcuction ceOister_32 
-po~t m~p (c1k, Ret, ~net1 , inst2, ID_IR1,XD_IR2, 

Create,Context_Switch,Ki11_thread,baee); 
NewPC mux : mux 32 

po~t ma.p ( inO 
1.n~ 

~tJch 

:z:esul.t 
) ; 

ID reqs:reqisters 
POl:t map ( 

) ; 

z:eeLCS._:z:::eq_l. 
cee.d_ ceQ'_ 2 
w:z:::iee_ J:eg 
w:Z:ite_data 
WJ::1.ee enabl.e 
z:ead_data_ 1 
t:ead_ date._ 2 

ID mux rd: mux S 
poct- m.ap ( inO 

1.n~ 

- > New_Pc, 
- > PC next, 
- > context_~witCh, 
- > 1JB_ cesu1t 

- > rD rR~(25 downeo 2~), 

- > ID- IRl.(20 down eo 16), 
- > 1JB:1:d .. 
-> lJB z::esu.l.t, 
-> WS=write_enb, 
-> ID_ cead_dat8_ 1, 
-> ID_read_ dat6_2 

-> ID IRl.(20 down to ~6), 
-> rD=rR~(~5 downeo ~~), 

ct~ -> ReqD:!5t ... 
ce:!5u1e -> ID_cd 
) ; 

ID :!5ign ext(15 downto 0) <- ID add~; 
ID=~ign=ext(31 dovnto 16) <- ( othe~~ - > '0 ' ); 

Figure 7.14: VHDL code for microthreaded pipeline components. 

Figures 7.15 to 7.18 shows samples of results showing the behaviour of the pre-

viously described state machines and processor support components. Once a family 

fetches , the allocation process starts allocating one thread in every machine cycle. 

The allocated thread parameters are stored in the CQ and wait their until it is served 

by the processor pipeline. The IF stage of the pipeline keeps fetching instructions 

from the instruction memory, until it encounters a create, swch or kill instruction 

and a process based on the behaviour of each. VHDL source code for the processor 

pipeline and the local scheduler, and more simulation waveforms samples are available 

in appendix D. 
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llI ~ klcal_scl"edJe-:cCl1tro ler : Ii:bJjata mm1l ;~j~~~~~~~~~~~~~~~~~~~~ 
Ill ' klcal_scl"edJe- :cCl1trolB':alklc_slZ8 II 

~ klcaLscl"edJB':cCl1troler:alklcale '0' 
III ~ klcal_scI"edJEr :cCl1troler:bW)ase 00 
Ill ' klcal_scl"edJe-:CCl1trolB':bW_slZ8 40 
' klcal_scl"edJB' :cCl1troler :~stale kile 
' klcaLscl"edJB':cCl1troler:nxstale kile 
~ klcal_scl"edJe- : cCl1troler :~sts fami -~ IF==========~~~=====::::;:O~=== 

f vaiuq 
.F=========~====== 

Allocate Three regl lers per thread 

Figure 7.15: Waveforms sample result for threads creation and allocation process. 

7.7 Summary 

In this chapter, we have investigated the overhead of th support structures for a 

microthreaded microprocessor implementation, these are the CQ and RAU, as well 

as a larger than normal register file. All three structures are related to th local 

concurrency support, and hence the latency tolerance of, the processor. 

We have described in detail a register allocation scheme, which dynamically allo-

cates registers to micro contexts. It is shown that, for a given ISA, th scheme has an 

area proportional to the register file size. Moreover, the area requir d is tunable by 
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Figure 7.16: Waveforms sample result for the continuation queue. 
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choosing the unit of allocation, at the cost of some loss of efficiency in the use of the 

register file. 

Our results show that the area of both the allocation scheme and the scheduler 

queue are less than that of the register file , given reasonable assumptions about the 

size of each. In effect, the size of the CQ is similar in complexity to the register file 

and the results in this chapter show that even considering all concurrent accesses to 

the CQ, the size of a 256-entry thread-state memory is smaller than the register file. 

The chapter also estimates the microgrid area for different configurations of memory 

and cache using an O.07j.Lm technology. 

This shows the feasibility of 128-way CMPs using this emerging technology and 

with a generous latency tolerance capability, i.e. tolerating many hundreds of cycles 

of latency on memory or external I/O. We also concluded that each micro threaded 
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Figure 7.17: Waveforms sample result for microthreaded pipeline. 
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pipeline could support more than 512 synchronising registers in an area less than a 

64-bit FPU, which would support in the order of hundreds of local concurrent threads. 

Also, in this chapter we discussed the pre-layout simulation using VHDL of a local 

scheduler and the first two stages of the microthreaded in-order pipeline. The results 

show correct operation for theses components, and we have verified various execution 

scenarios and with different thread allocation size implementations. 
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Figure 7.18: Waveforms sample result for microthreaded pipeline showing the execu­
tion for branch and jump instructions. 



Chapter 8 

Conclusions And Future Work 

This thesis describes the design, implementation and evaluation of microthreaded 

CMP support structures. These structures are fully scalable, providing the possibility 

of a scalable implementation of a microthreaded eMP. In this chapter, we draw our 

conclusion for the work presented in this thesis and we discuss some aspects for future 

work. 

8.1 Conclusions 

Chip multiprocessors (CMPs) are becoming increasingly attractive for obtaining high 

performance and low power consumption, and we expect that many new microproces­

sor designs will be based on this approach. However, problems such as the complexity 

of the issue window in wide-issue processors, increasing on-chip memory in existing 

processors, serious clock skew, multi-ported register file scalability, centralised global 

communication requirements and speculative execution are obstacles and challenges 

facing present and future CMP designs. The microthreaded model avoids all of the 

above issues, and provides a suitable basis for developing systems with multiple pro­

cessors on-chip. The model is based on decomposing a sequential program into small 
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fragments of code called microthreads, which are scheduled dynamically and which 

can communicate and synchronise with each other very efficiently. This process al­

lows sequential code to be compiled for execution on scalable chip multiprocessors. 

Moreover, as the code is a schedule invariant, the same code will execute on any 

number of processors limited only by problem size. 

The model exploits ILP within basic blocks and across loop bodies. In addition, 

this approach supports a pre-fetching mechanism that avoids any I-cache misses in 

the pipeline. The fully distributed register file configuration used in this approach 

has the additional advantage of full scalability, with the decoupling of all forms of 

communication from the pipeline's operation. This includes memory accesses and 

communication between microcontexts. Microthreading is therefore a good candidate 

for scalable chip multiprocessors and holds great promise for achieving scalability in 

future systems. However, the microthreaded model and related CMPs still have a 

number of problems and unresolved issues, some of which have been addressed by 

this thesis. 

Microthreaded register file design avoids a centralised register file organisation, 

but its requirements in terms of the number of required read/write ports were not 

clear. This problem was investigated and an analysis of the register-file ports in terms 

of the frequency of accesses to each logical port is described in chapter 4. The results 

shows that the register file can be distributed between the processors and that each 

register file requires only 5 fixed ports, making it compact and scalable. This work 

has been published in the British Computer Journal [26]. 

The distributed implementation of a microthreaded CMP includes two forms of 

asynchronous communication. The first is the broadcast bus, used for creating threads 
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and distributing invariants. The second is the shared-register ring network used to 

perform communication between the register files in producer and consumer threads. 

Therefore, to avoid contention during bus access, and to provide fairness in commu­

nication between processors, we need some form of arbiter. Also, it is not clear how 

the bus interface between processors can be implemented. In this thesis we have in­

vestigated this problem and have proposed a novel ring-structured arbiter optimised 

for this application. The arbiter utilises the concurrency control instruction Brk, 

provided by the microthreaded microprocessor model, to set a priority policy that 

hides the token circulation time by decoupling the microthreaded pipeline from the 

ring's timing. It also provides multiple features such as modularity, and partitionable 

organisation (see Chapter 6). This work has been published in [27, 28]. 

The microthread model requires dynamic register allocation and a hardware sched­

uler, which must support a considerable number of microthreads per processor. Al­

locating registers dynamically requires an efficient hardware scheme to model and 

allocate register usage. The design of a novel allocator and scheduler, together with 

detailed evaluation and simulation results are presented in chapter 4 and chapter 5. 

The allocator can allocate registers in fixed a block, which simplifies the logic and re­

duces the area significantly. In addition, the scheduler must support thread creation, 

context switching and thread rescheduling on every machine cycle to fully support 

this model, which is a significant challenge. To demonstrate the feasibility and scala­

bility of the microthreaded support structures in term of silicon implementation, we 

performed a detailed implementation and area estimate of a microgrid core and its 

support structures using 0.07 micron technology (see chapter 7) . We show also that 

the support structures are of a manageable size and moreover are scalable in issue 
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width. This work also has been published in the Parallel Programming Journal [29]. 

We have concluded from this study that each pipeline could support 512 synchronis­

ing registers in an area less than a 64-bit FPU, which would support of the order of 

hundreds of local concurrent threads. 

Also, we have shown in this thesis that the area of the support structures for a mi­

crothreaded microgrid are scalable in instruction-issue width, as they are distributed 

to the processors, but we have also shown that the structures are scalable in the 

virtual concurrency supported on a local processor, which determines the amount of 

latency tolerance. Because of this, performance, power and latency tolerance can all 

be managed, the latter in the microgrid processor design and the former two in the 

dynamic management of concurrency in a microgrid. 

Finally we present results of the pre-layout simulation using VHDL of a local 

scheduler and the first two stages of the microthreaded in-order pipeline (see Chapter 

7). The simulations show correct operation and we have verified various execution 

scenarios for theses components. This work also has been submitted to [30]. In our 

opinion, a microthreaded CMP based on a fully distributed and scalable register file 

organisation and asynchronous global communication buses is a good candidate to 

future eMP. 

8.2 Future Directions 

There are several available avenues for future work on the microgrid CMP. We have 

divided them into four categories; the memory system, multicluster architecture, mi­

crothreaded compiler, and micro threaded CMP fault tolerance. These categories are 

detailed in the following subsections. 
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Cluster 0 Cluster 1 

COMA node COMA node 
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t Word transfers 

Figure 8.1: Memory architecture using COMA nodes and clusters of processors. 

8.2.1 COMA versus Multibanking 

The Microgrid CMP is capable of supporting a large number of processors on-chip, 

but such a design requires a similar number of memory banks to satisfy parallel 

access. The ratio of memory banks to processors is dependent on th cache hit 

rate and the access pattern to these banks. Two possible memory organisations 

are being considered. The first uses a processor with one L1 D-cache per processor 

supported by a cache-only memory architecture (COMA). In such a memory data 

is automatically migrated or replicated to where it is being used by the processors. 

The second possible memory architecture eliminates the L1 D-cache completely and 

makes use of latency tolerance in the processors to access a fiat multi-banked memory 

structure. Simulations [26] have shown that such an organisation is entirely feasible. 

The advantage of the COMA structure is that it requires fewer memory banks, 
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as each bank can have multiple, independent cache-line buffers for each processor 

in a cluster (see figure 8.1) all sharing a single banked COMA node. Access to the 

COMA node is by a D-cache line and access by the processor is by word. This 

allows a number of processors, equal to the number of words in a cache line, to share 

a port into the COMA node without conflict, so long as there is full cache locality. 

Note that the deterministic distribution of threads to processors in the microthreaded 

model and the choice of scheduling allows data accesses to be organised in such a 

way as to maximise the cache hit rate and minimise accesses to the COMA nodes. 

Such a structure was simulated in [26] where the regular schedule produced an 80% 

cache hit rate with only 2-3% of memory loads causing requests to the COMA node. 

However, not all algorithms can be regularly mapped and some require global- rather 

than local-communication patterns. For example, matrix multiplication accesses data 

using both row and column strides through memory structures, such an algorithm 

would generate cache misses and bank conflicts on at least one of the strides, unless 

the algorithm was coded in a block structure, where the blocks matched the cache 

line size. 

An alternate memory architecture uses a word-wide memory bank per processor 

with no L1 D-cache in the pipeline. All memory accesses incur a delay, dependent 

on location of data on chip. However, the microthreaded processors can be designed 

to tolerate any latency by scaling register file size and support structures to give 

the required local concurrency. This memory structure would still suffer from the 

bank conflicts in the example given above, unless some form of randomisation was 

employed in mapping the address space to the memory structures (see figure 8.2). 

The advantage of this scheme is that the complexity of the processor is reduced, by 
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On- chip net"VVork 
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Figure 8.2: Memory architecture using a flat structure of multiple banks with address 
randomisation. Such an organisation would not use an Ll D-cache. 

omitting the Ll D-cache. It also supports arbitrary access patterns to data, although 

this comes at a cost, as there is more load on the on-chip network and more energy 

is dissipated in moving data around the chip, as locality is ignored in randomising 

memory accesses. These issues have yet to be explored in depth, using our simulators, 

in order to find an optimal solutions. 

8.2.2 Mult icluster Architecture 

Groups of processors in the microgrid CMP can be configured in a point-to-point ring 

network to form a cluster as shown in figure 8.3. The cluster has its own local COMA 

module, and all COMA modules are arranged in a ring organisation. To provide 

bandwidth and workload balancing between processors in the same cluster during 

remote memory access, there is word-wide access to the cache from ach processor 



198 

Ring- Ring- Ring- Ring-
connect connect connect connect 

ed ed ed ed 
Process Process Process Process 

or or or or 

Cache-access controller ..... 
=---------''Wi 

vo 
Proc Node of Data-difFusion J\t1ernory 

(COJ:vf.A) 

Figure 8.3: One cluster of Microgrid CMP 

and cache-line wide access to memory and the COMA node. Communication between 

clusters is handled by a reconfigurable interconnection network on-chip (NOG) . 

The COMA modules are connected in a point-to-point ring structure. The COMA 

modules use a broadcast protocol on cache misses, and a point-to-point request mi-

gration via the ring network. This aspect needs further research to determin a 

suitable number of processors in each cluster and to identify a mechanism that al-

lows a group of clusters to communicate with each others with low overhead and in a 

scalable manner. Also, scheduling instructions in the microthreaded model is similar 

in complexity to that of a conventional, single-issue, in-order processor. Multiple­

issue, in-order pipelines and clusters are also possible in microgrid CMPs and these 

aspects need further consideration, which may provide more advantages in terms of 

performance, reducing eycl time and providing power r duction. 

< 
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8.2.3 Compiler Support 

Current compilers have multiple limitations and challenges, which restrict system 

performance and increases system complexity. Several projects have addressed these 

challenges and show the requirements of an efficient compiler [55, 63, 151]. In fact, 

most of the existing compilers benefit only a single processor and its execution model 

has no global knowledge of concurrency (e.g. 000 execution). Efficient compiler 

design should identify parallelism automatically and must consider the advantages 

of chip multiprocessor architectures and create a sufficient large number of concur­

rent threads so that there is enough parallelism to run on multiple cores. Thus, 

the problem is not building multicore hardware, but programming it in a way that 

maximises the benefits from the continued exponential growth in CPU performance, 

where the architectural changes in multicore processors benefit only concurrent ap­

plications [152]. 

Generally, the demand for utilising ILP with multiple cores require optimisation in 

issues like instruction and loop scheduling, register allocation, locality optimisation, 

etc. [63]. Also, existing source code provides significant concurrency at the loop level 

and this must be exploited in any model targeting on-chip concurrency [49]. For 

example; explicit approaches only manage loops containing data dependencies and 

loop-carried dependencies are expressed as concurrently executed threads that share 

memory, which in fact incurs high latencies in the dependency chain. 

A microthreaded microgrid compiler must consider the above issues and be re­

sponsible for code analysis (Le. recognising dependencies between threads) and code 

transformations, to enable concurrency to be extracted from sequential code. It must 

also be responsible for thread family creation and thread grouping. Microthreaded 
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microgrid compiler is an active area of research, and we point here to some aspects 

that need further consideration. The first is that a microthreaded compiler gains 

speedup via loops and it is worthy to investigate the model for different applications. 

Also, data locality optimisation is an important issue, so it is possible to reorder 

groups of related threads or families of threads to increase processor locality, which 

can help increase parallelism and reduce memory accesses. Thus, grouping a number 

of independent threads together and runing these threads on one processor instead 

of distributing them on multiple processors may provide better performance through 

greater cache locality and hence fewer higher-level memory accesses. It is evident 

that in chip muliprocessors memory bandwidth is likely to be a limiting factor. 

Moreover, it was shown that the communication between producer threads and 

consumer threads on remote processors required remote read actions. It could be 

possible for the producer thread to write data directly to the consumer thread as soon 

as the required data becomes available instead of using read operations. However, 

the problem is that the consumer thread may not yet be allocated and there is no 

feedback information on when this action will be happen. One possible solution to 

this problem is to allocate threads in contiguous registers on each processor. So, 

knowing both the number of threads assigned to one processor (modulo scheduling), 

the dependency distance between the threads, and by allocating these threads in a 

sequence order, we can predict the allocation address of the consumer register on the 

next processor. The predicted address can be stored in the shared register and as 

soon as a new value is written to that register by a producer thread, the processor first 

extracts the destination address from the register, and then writes the data directly 

to that destination. 
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Another issue is that creating families of microthreads can be implemented re­

cursively. This model has not been implemented here, as we were concerned with 

the basic support structures. A recursive model is an incremental improvement that 

would require a family table in the scheduler to hold information on concurrent fam­

ilies, such as global base address, rather than using a fixed creating environment (the 

first 32 registers). Work is being undertaken at Amsterdam University on recursive 

thread models and the first paper reporting this development can be found in [51]. 

Such a model has the potential to provide maximal concurrency in this paradigm and 

should be easier to compile to. 

8.2.4 Toward Microgrid CMP Fault-Tolerant Communica­

tion 

With the rapidly increasing complexity of parallel architectures, the probability of 

system failures increases as well. CMP systems have many more potential sources of 

failure than a single processor system. Thus a failure in one processor on chip may 

cause the entire system to fail. There are several groups targeting fault tolerance in 

both software and hardware of the CMP, but this issue is outside of the scope of this 

thesis. However, the microthreaded microgrid CMP provides many opportunities 

and advantages for developing fault tolerant system and the ring configuration of 

processors means that it is possible to eliminate one processor in the case of a failure. 

This requires a support mechanism to monitor the scheduling and execution on each 

processor. Another possible fault-tolerance mechanism can be applied in the arbiter 

described in this thesis (see chapter 6), where the arbiter can be provided with extra 

signals to avoid any failure in the token movement or inter-modules communication. 
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Glossary 

ALU : Arithmetic logic Unit 

AM : Attractive Memory 

BMT : Blocked Multi-threading 

Brk : Break Instruction 

Bsync: Barrier Synchronisation 

CACTI: Cache Access and Cycle Time Model 

CMP: Chip Multiprocessors 

COMA: Cache Only Memory 

CQ : Continuation Queue 

Cre : Create Instruction 

O-cache : Data Cache 

OOM : Data Diffusion Machine 

EDGE: Explicit Data Graph Execution 

EPIC: Explicitly Parallel Instruction Computing 

FPU : Floating Point Unit 

GALS: Globally Asynchronous Locally Synchronous 

GCQ : Global Continuation Queue 

REP : Heterogeneous Element Processor 
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HT : Hyper-threading 

IA-64: Intel Architecture Processor 64-hit 

IBM: International Business Machines 

I-cache: Instruction Cache 

ILP : Instruction Level Parallelism 

IMT : Interleaved Multi-threading 

IPC : Instruction Per Cycle 

ISA : Instruction Set Architecture 

Kill : Kill Instruction 

KSR-l: Kendall Square Research 

LLP : Loop Level Parallelism 

Ll/L2: Levell/Level2 Cache 

MAJC : Microprocessor Architecture for Java Computing 

MIMD : Multiple Instruction Multiple Data 

j.tt-CMP: Microthreaded Chip Multiprocessors 

NUMA: Non-Uniform Memory Architecture 

000 : Out-of-Order (superscalar processor) 

PC : Program Counter 

PPC : Power PC 

RAU: Register Allocation Unit 

RAW: Reconfigurable Architecture Workstation 

RISC : Reduce Instruction Set Architecture 

Rmc : Registers required per micro context 

SMT : Simultaneous Multithread/Multi-threading 
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SIA : Semiconductor Industry Association 

SISn : Single instruction Single Data 

SPMD : Single Program Multiple Data 

Swch : Switch Instruction 

SPARC: Scalable Processor Architecture 

Tme : Thread per Microcontext 

TCB : Thread Control Block 

TLB :Transition Lookaside Buffer 

TLP : Thread Level Parallelism 

TRIPS: The Tera-op, Reliable, Intelligently adaptive Processing System 

UMA: Uniform Memory Access 

VHDL : VHSIC Hardware Description Language 

VHSIC: Very-High-Speed Integrated Circuit 

VLIW: Very-long Instruction Word 
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Appendix A 

Code generation examples 

This appendix provides an analysis and code generation for livermore loop kernels. 

Note that in all the code that follows, GO is assumed to contain the value 0 and that 

addressing is assumed to be to word boundaries, whatever a word is. The loops con­

sidered included a number of livermore kernels, some that are independent and some 

that contain loop-carried dependencies. It also includes both affine and non-affine 

loops, vector and matrix problems, and a recursive doubling algorithm. 
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Array of partial Products 

DO I i=2,m 
I XCi) = XCi) * X(i-I) 

Register allocation 

Main 
XCI) $SO 

Loop 
I $LO 
XCi) $LI 
XCi)' $SO 

Code 

dol: .word2 
.wordm 
.word I 
.word 1 
.word 2 
.word 1 
.word body 
.wordO 

Main: Lw $SO X($OO) 
Cre loop 
Bsync 

body: Lw $Ll X($LO) 
Mul $SO $DO $Ll 
Swch 
Sw $SO X($LO) 
Kill 

Analysis 
Allocation o/registers and instructions executed 

Ne Locals Globals shared 
Main 1 3 1 
Bodym-lIl 3 21 1 
Total 3m 21 0 1+1 
$00 not counted 

A t . t ccesses 0 regis ers 
I $L $0 1 $S $D 

r reads I writes reads I writes I readsT writes reads I writes 
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Main 1 1 1 
Body (m-I) 3 1 1 1 1 
Total 3m-3 m-l 1 0 m-l m m-l 0 

2-D SOR 

DO 1 i=2,m-1 
1 XCi) = X(i-I)-2*X(i) +X(i+I) 

Register allocation 

Main 
XCI) $SO 

Loop 
1 $LO 
XCi) $LI 
Xci), $SO 
X(i+l) $L2 

Code 

loop: .word2 
.wordm-l 
.word 1 
.word 1 
.word 3 
.word 1 
.word body 
.wordO 

Main: Lw $SO X($GO) 
ere loop 
Bsync 
Finish 

body: Lw $L2 X+I($LO) 
Lw $Ll X($LO) 
Add $L2 $L2+$DO 
Swch 
Sub $SO $L2 $LI 
Swch 
Sw $SO X($LO) 
Kill 



Analysis 
Allocation ofre~isters and instructions executed 

Ne Locals 
Main I 3 
Bodym-2/1 5 31 
Total 5m-2 31 
$00 not counted 

A ccesses to regIsters 
$L $0 

reads writes reads writes 
Main I I 
Body (m-2) 7 3 
Total 7m-14 3m-3 1 0 

Livermore kernel 1 - Hydro fragment 
cdir$ ivdep 
DO 1 k= I,m 

Olobals 

0 

$S 
reads writes 

I 
I I 
m-2 m-I 

1 X(k)= Q + Y(k) * (R * ZX(k+lO) + T * ZX(k+l1)) 

Register allocation 

Main 
Q $01 
R $G2 
T $G3 

Loop 
TempI $Ll 
Y(k) $L2 
ZX(k+ 10) $L3 
ZX(k+ 11) $L4 
Temp2 $L5 
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Shared 
I 
1 
1+1 

$D 
reads writes 

I 
m-2 
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.data 
dol: .word 1 

.wordm 

.word 1 

.word 0 

.word 6 

.word 0 

.word body 

.word 0 
main: Lw$Gl Q 

Lw$G2R 
Lw$G3 T 
ere dol 
Bsync 
Finish 

Body: Lw $L4 ZX + 11 ($LO) 
Lw $L3 ZX+lO($LO) 
Lw $L2 Y($LO) 
Mul $L 1 $L4 $G3 
Swch 
Mul $L5 $L3 $G2 
Swch 
Add $Ll $Ll $L5 
Mul $Ll $Ll $L2 
Swch 
Add $Ll $Ll $01 
Sw $L 1 X($LO) 
Kill 

Analysis 
Allocation of registers and instrnctions executed 

Ne Locals Globals Shared 

Main 1 5 3 

Body mil 9 6 
Total 9m+5 61 3 0 
$00 not counted 

Accesses to registers 
$L $G $S $D 

reads writes reads writes reads writes reads writes 
Main 1 3 
Body_m 12 8 3 0 0 0 
Total 12m 8m 3m 3 0 0 0 



Livermore kernel 2 -ICCG (incomplete Cholesky decomposition) 

1002 11= ml2 
IPNTP=O 

222 IPNT= IPNTP 
IPNTP= IPNTP+II 
11= 11/2 
i= IPNTP+l 

cdir$ ivdep 
c:ibm_dir:ignore recrdeps (x) 
DO 2 k= IPNT +2,IPNTP,2 

i= i+l 
2 X(i)= X(k) - V(k) * X(k-l) - V(k+l) * X(k+l) 

IF( II.GT.1) GO TO 222 

Register allocation 
Main 
ml2 $Gl 
1 $G2 
II $Ll 
IPNTP $L2 
IPNT $L3 
IPNT+2 $L4 
1 $L5 

Do2 
X(kIi) $Ll 
X(k-l) $L2 
X(k+l) $L3 
V(k) $L4 
V(k+l) $L5 
i-local $L6 
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do2: 

main: 

loop: 

.data 

.wordO 

. word 0 

.word2 

.wordO 

.word5 

.wordO 

.word body 

. word 0 
Mv$Ll $01 
Mv$L2$OO 
Mv $L5l 
Mv$L3 $L2 
Add$L4 $L3 2 
Add $L2 $L2 $Ll 
Div $Ll $Ll 2 
SW $L4 do2($OO) 
SW $L2 dol+l(GO) 
Bsync 
Add $02 $L21 
ere do2 
Bgt $L 1 $L5 Loop 
Finish 

body: Lw $Ll X($LO) 
Lw $L2 X-I ($LO) 
Lw $L3 X+l($LO) 
Lw $L4 V($LO) 
Lw $L5 V+ l($LO) 
Add $L6 $02 $LO 
Mul $L2 $L2 $L4 
Swch 
Mul $L3 $L3 $L5 
Swch 
Sub $Ll $Ll $L2 
Swch 
Sub $Ll $Ll $L3 
Sw $Ll X($L6) 
Kill 

#gets written by main thread 
#gets written by main thread 
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#writes control block for loop start 
#writes control block for loop limit 



Analysis 

Iteration multipliers (analysis in spreadsheet) 
Sum inner loops m-Iogm-l 
outer loop logm-l 
Setup 1 

Allocation of registers and instructions executed 
Ne Locals 

Main 1 3 5 
Outer logm-lI- 13 
inner m-Iogm-1I1 11 7 
Total Ilm+2Iogm-21 71+5 
$00 not counted 

Accesses to registers 
$L 

reads writes 
Main 1 3 
Outer 10 4 
logm-l 
Inner 16 10 
m-Iogm-l 
Total 16m- 1 Om-

6logm 6logm 
-26 -II 

Loop 3 - Inner product 
Q=O 
DO 3 k= I,m 

2 Q= Q + Z(k) * X(k) 

Register allocation 
Main 
Q $SO 

Loop 
Q $SO 
Z $Ll 
X $L2 

$0 
reads writes 

2 
2 1 

1 0 

M+log logm-
m-l 1 
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Globals Shared 
2 

2 0 

$S $D 
reads writes reads writes 

0 0 0 

0 0 0 

0 0 0 
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.data 
do3: .word 1 

.wordm 

.word 1 

.word 1 

.word2 

.word 1 
,word 0 
.word body 
.word last 

Main: Mv$SO$GO 
ere do3 
Bsync 
Finish 

body: Lw $LI Z($LO) 
Lw $L2 X($LO) 
Mul $LI $LI $L2 
Swch 
Add $SO $DO $Ll 
Kill 

last: Lw $LI Z($LO) 
Lw $L2 X($LO) 
Mul $LI $Ll $L2 
Swch 
Add $SO $DO $L 1 
Swch 
Sw $SO Q($GO) 
Kill 

Analysis 
Allocation of registers and instructions executed 

Ne Locals Globals Shared 
Main+last 1 8 1 
Bodym-lIl 4 3 1 
Total 4m+4 31 1+1 
$GO not counted 

A . t ccesses to regIs ers 
$L $0 $S $D 

reads writes reads writes reads writes reads writes 
Main+last 5 3 2 0 1 2 1 
1 
Bodym-l 5 3 0 0 0 1 1 
Total 5m 3m 2 0 1 m+l m 



Livermoore loop 4 - Banded Linear equation solver 

nt= (1001-7)/2 
c 
1004 DO 404 k= 7,1001,nt 

lw= k-6 
temp= XZ(k-1) 

cdir$ ivdep 
DO 4 j= 5,m,5 

temp = temp - XZ(lw) * Y(j) 
4 lw= Iw+1 

XZ(k-1)= Y(5) * temp 
404 CONTINUE 

Register allocation 
Main 
nt 
k 
temp 
lw 
Y(S) 
1001 

Do4 

$L1 
$L2 
$SO/$Gl 
$Sl 
$L3 
$L4 

XZ(1w) $Ll 
Y(j) $L2 
temp $SO 
lw $Sl 
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. data 
do4: .word S 

.wordm 

.wordS 

.word 1 

.word2 

.word 2 

.word body 

.word last 
body: my $LII001 

Sub $Ll $Ll 7 
Diy $Ll $L12 
My$L27 

loop: Sub $SI $L26 
Lw $SO XZ-l($L2) 
Credo4 
Lw $L3 Y+5($GO) 
BSync 
Mul $Gl $Gl $L3 
Swch 
Sw $Gl XZ-l($L2) 
Add $L2 $L2 $L 1 
Bgt $L2 $L4 loop 
Finish 

body: Lw $Ll XZ($Dl) 
Lw $L2 Y($LO) 
Mul $Ll $Ll $L2 
Swch 
Add $SI $Dl 1 
Swch 
Sub $SO $DO $Ll 
Kill 

last: Lw $Ll XZ($Dl) 
Lw $L2 Y($LO) 
Mul $Ll $Ll $L2 
Swch 
Add $SI $Dl1 
Swch 
Sub $Gl $DO $Ll 
Kill 
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Analysis 
Iteration multipliers (analysis in spreadsheet) 
Sum inner loop .6(m+ 1) 
Branch loop 3 
Setup 1 

Allocation o/registers and instructions executed 
Ne Locals Olobals Shared 

Main 1 4 4 1 2 
Outer 3/- 9 
inner .6(m+ 1 )/1 5 3 2 
Total 3m+34 31+4 1 21+2 
$00 not counted 

A . t ccesses to regIs ers 
$L $0 $S $0 

reads writes reads writes reads writes reads writes 
Main 1 2 4 
Outer 3 8 2 3 1 2 
Inner 4 3 2 3 
.6(m+l) 
Total 2.4m+ 1.8m+ 9 4 0 l.2m+ 1.8m+ 

28.4 11.8 6.2 1.8 

Correction for last iteration is I write to $S becomes write to $0 accounted for above 

Loop5 - Tri-diagonal elimination 

1005 DO 5 i = 2,m 
5 X(i)= Z(i) * (Y(i) - X(i-I)) 

Register allocation 
Main 
XCI) $SO 

D05 
$LO i 
$LI Z(i) 
$L2 Y(i) 
$SO XCi) 



.data 
do5: .word2 

.wordm 

.word 1 

.word 1 

.word2 

.word 1 

.word body 

.wordO 
main: Lw $SO X+ 1 ($00) 

ere do5 
Bsync 
Finish 

body: Lw $L2 Y($LO) 
Lw $Ll Z($LO) 
Sub $L2 $L2 $DO 
Swch 

Analysis 

Mul $SO $L2 $Ll 
Swch 
Sw $SO X($LO) 
Kill 

Allocation ofre~isters and instructions executed 
Ne Locals 

Main 1 8 
Body m-lIl 4 3 
Total 5m+3 31 
$00 not counted 

A ccesses to regis ers 
$L $0 

reads writes reads writes 
Main 1 0 0 1 0 
Bodym-l 6 3 0 0 
Total 6m 3m 1 0 
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Olobals Shared 
1 
1 

0 1+1 

$S $D 
reads writes reads writes 

0 1 0 
1 1 1 
m-l m m-l 



Loop 6 - general linear recurrence 

1006 DO 6 i= 2,m 
W(i)= 0.01 DOdO 

DO 6 k= l,i-l 
W(i)= WCi) + 8(i,k) * W(i-k) 

6 CONTINUE 

Register assignment 
Main 
m $011L1 
1 $02 
m*i $03 
Wei) $SO 
i-I $L2 

Do6 
Wei) $SO 
8Ci,k) $Ll 
W(i-k) $L2 
i,k $L3 
i-k $L4 
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.data 
do6: .word 1 

.word 0 #written in main 

.word 1 

.word 1 

.word 5 

.word 1 

.word body 

.wordO 
main: Mv $Ll $Gl #move forced by 1 bus rule only 1 instruction in O(m"2) 

Mv$G22 
loop: Mul $G3 $G2 $Ll 

Sub $L2 $G2 1 
Sw $L2 do6+1($GO) #set loop limit to i-I 
Mv$SOO 
ere Do6 
Bsync 
Add $G2 $G2 I 
Ble $G2 $L I loop 
Finish 

body: Add $L3 $LO $G2 
Lw $LI B($L3) 
Sub $L4 $LO $G2 #$G2 determined 
Lw $L2 W($L4) 
Mul $LI $Ll $L2 
Add $SO $DO $Ll 
Swch 
Sw $SO W($L4) 
Kill 



Pointer chasing - locate object at position, from Europar paper 
struct box { 

int next; 
int xl; 
intx2; 
int yI; 
int y2; 
} 

struct box start; 
struct box Iocate( int x; int y; start) 
{ while (start.next != 0) 

{if (x >= start.xI) 
if (y >= start.yl) 

if (x <= start.x2) 
if (y<= start.y2) 

start := start.next 
} 

return -1; 
} 

Register allocation 
locate 
$SO 
$01 
$02 
$G3 
$04 
$G7 

while 

Start 
x ( as parameter) 
y (as parameter) 
start (as parameter) 
locate (return) 
return address 

$Ll x/y test coordinates 

return start; l*match*1 

$L2 local copy of start restriction on 2 global reads 
$L3 local copy of next restriction on 2 global reads 
$SO next 

while: 
.data 
.word 1 
.word n 
.word 1 
.word 1 
.word4 
.word 1 
.word body 
.word last 

#start 
#limit = number of processors 
#step 
#dependency distance 
#locals 
#globals 
#Code 
#Optional last iteration 

243 



244 

locate: Mv$SO$G3 
cre while #Create a thread to start the while loop 
bsync 
Mv$G4-1 
Jr $7 

body: mv$L2$DO #get address of this element in list 
swch 
Lw $L3 next($L2) #get address of next element in list 
beq $L3 $GO kill #Kill if end of list 
Mv$SO$L3 #Otherwise pass on next address and search 
lw $Ll XI($L2) #get lower X bound of object 
bge $G I $LI fail 
swch 
lw $Ll YI($L2) #get lower Y bound of object 
bge $G2 $Ll fail 
swch 
lw $Ll X2($L2) #get upper X bound of object 
ble $Gl $LI fail 
swch 
lw $L 1 Y2($L2) #get lower Y bound of object 
ble $G2 $LI fail 
swch 
Mv$G4$L2 
Jr$G7 

fail: Kill 
kill: Mv$SOO #propagate zero to kill remaining threads 

Kill 
last: mv$L2$DO #get address of this element in list 

swch 
Lw $L3 next($L2) #get address of next element in list 
beq $L3 $GO fail #Kill if end of list 
Mv$SO$L3 #Otherwise pass on next address and search 
ere while #and as this is last thread create new threads 
lw $Ll Xl($L2) #get lower X bound of object 
bge $G 1 $L 1 fail 
swch 
lw $Ll Yl($L2) #get lower Y bound of object 
bge $G2 $L 1 fail 
swch 
lw $L 1 X2($L2) #get upper X bound of object 
ble $Gl $Ll fail 
swch 
lw $Ll Y2($L2) #get lower Y bound of object 
ble $G2 $Ll fail 
swch 
Mv$G4$L2 
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Jr$07 
fail: Kill 

Analysis 
Allocation of ref!isters and instructions executed 

Ne Locals Globals Shared 

Main 1 5 5 1 
Body mil 14 3 1 
Total 14m+5 31 5 1+1 

$00 not counted 

Accesses to registers assumes succeeds after m elements and fails after 2 searches on 

Analysis 
Iteration multipliers (analysis in spreadsheet) 
Sum inner loop rn!2_m l1212 
Branch loop m 112_1 

Setup 1 
Allocation of re~isters and instructions executed 

Ne Locals Globals Shared 
Main 1 2 2 3 1 
Outer m lI:l_lI_ 8 
inner rn!2-m l/:l 12/1 7 5 1 

Total 2.5m+6.5m l/:l _ 51+2 3 1+1 
5 

$GO not counted 

Accesses to ref!lsters 
$L $0 $S $D 

reads writes reads writes reads writes reads writes 
Main 1 1 1 1 
Outer 3 1 5 2 1 
m ll2_l 

Inner 8 5 2 1 1 1 
rn!2-m 1 1212 
Total 4m- 2.5m- m+4m m1l2_1 .5m- .5m- .5m-

m Il2_l 1.5mll 112_4 .5ml12 .5mll2. .5ml12 

2 
1 



Loop 7 equation of state fragment 
cdir$ ivdep 
1007 DO 7 k= I,m 

X(k)= U(k) + R*( Z(k ) + R*Y(k » + 
1 T*( U(k+3) + R*( U(k+2) + R*U(k+1» + 
2 T*( U(k+6) + Q*( U(k+5) + Q*U(k+4»» 
7 CONTINUE 

register Allocation 
Main 
R $01 
T $02 
Q $03 

Do7 
k $LO 
U(k) $L1 
U(k+1) $L2 
U(k+2) $L3 
U(k+3) $L4 
U(k+4) $L5 
U(k+5) $L6 
U(k+6) $L7 
Y(k) $L8 
Z(k) $L9 
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. data 
do7: .word 1 

.wordm 

.word 1 

.word 0 

.word 7 

.word 0 

.word body 

.word 0 
Main: Lw $01 R($OO) 

Lw $02 T($OO) 
Lw $03 Q($OO) 
ere do7 
Bsync 
Finish 

Body: Lw $Ll U($LO) 
Lw $L2 U+l($LO) 
Lw $L3 U+2($LO) 
Lw $L4 U+ 3($LO) 
Lw $L5 U+4($LO) 
Lw $L6 U+5($LO) 
Lw $L7 U+6($LO) 
Lw $L8 Y($LO) 
Lw $L9 Z($LO) 
Mul $L5 $L5 $03 
Swch 
Add $L5 $L6 $L4 
Swch 
Mul $L5 $L5 $03 
Add $L5 $L5 $L 7 
Swch 
Mul $L5 $L5 $02 
Mul $L2 $L2 $01 
Swch 
Add $L2 $L2 $L3 
Swch 
Mul $L2 $L2 $01 
Add $L2 $L2 $L4 
Swch 
Mul $L2 $L2 $02 
Add $L2 $L2 $L5 
Mul $L8 $L8 $01 
Swch 
Add $L8 $L8 $L9 
Swch 
Mul $L8 $L8 $02 
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Analysis 

Add $L2 $L2 $L8 
Add $L2 $L2 $L 1 
Sw $L2 X($LO) 
Kill 

Allocation o/registers and instructions executed 
Ne Locals 

Main 1 5 
Body mil 26 10 
Total 26m+5 101 
$00 not counted 

A . t ccesses to regIs ers 
$L $0 

reads writes reads writes 
Main 1 3 3 
Bodym 35 25 8 0 
Total 35m 25m 8m+3 3 
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Olobals 
3 

3 

$S $D 
reads writes reads writes 

0 0 0 



Appendix B 

Allocation Scheme Source Code 

and Simulation Results 

This appendix provides a VHDL source code and sample of simulation results for the 

allocation scheme described in chapter 4. In particular we describe the allocation 

scheme behaviour and the arbiter test bench. A sample of simulation results for 

different allocation scenarios is presented. Full source code for the allocation scheme 

is available on the DVD included with this thesis. 

B.l Allocation Scheme Architecture Behaviour 

The following code describes the architecture behaviour of the allocation scheme. 

The allocation scheme includes three main components, which comprises slice logic, 

registers and flags and these components are available on the DVD attached with this 

thesis. 
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B.1.l Allocation Slice logic Architecture Behaviour 

Library IEEE: use IEEE. std_logic_1164. all: Use 

IEEE.std_logic_unsigned.all: Use STD.TEXTIO.all: use 

IEEE.std_logic_textio.all; Use IEEE.std_logic_arith.all; Entity 

Slice is generic( 

'W 

M 

S 

Slice_id 

Tdelay 

) : 

port ( 

BAin 

SSBin 

CSBin 

CSSin 

SASin 

SSSin 

SASI 

SA in 

Errorin 

Flagin 

Flagprev 

Do_allocate 

Do_release 

clear 

integer :=31; 

integer :=63; 

integer :=7; 

integer; 

time := 4 ns 

:in std_logic_vector(S downto 0); 

:in std_logic_vector(S do'Wnto 0): 

:in std_logic_vector(S do'Wnto 0); 

:in std_logic_vector(S downto 0). 

:in std_logic_vector(S downto 0); 

:in std_loglc_vector(S downto 0). 

:in std_logic_vector(S downto 0); 

:in std_logic; 

:in std_logic; 

:In std_logic; 

:in std_logic. 

:in std_logic; 

:in std_logic; 

:in std_logic; 
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BAout : out std_Iogic_vector(S downto 0) ; 

SSBout : out std_Iogic_vector(S downto 0) : 

CSBout : out std_Iogic_vector(S downto 0) ; 

CSSout : out std_Iogic_vector(S downto 0); 

SASout : out std_Iogic_vector(S downto 0) ; 

SSSout : out std_Iogic_vector(S downto 0) ; 

SAout : out std_Iogic; 

Errorout : out std_Iogic; 

Flagout : out std_Iogic 

) : 

End Slice; 

Architecture Combination_Alloc of Slice is 

constant ZeroWord 

signal Word 

:std_Iogic_vector(S downto 0) := (others=>'O'); 

: std_Iogic_vector(S downto 0) := XIOl"; 
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type Register_Boundary is array (0 to 4) of std_Iogic_vector(7 downto 0); 

signal Allocate_Boundary : Register_Boundary; 

Begin Main process (Do_allocate , Do_release,BAin, SSBin, 

CSBin,CSSin, SASin, SSSin, SASI, SAin, 

Errorin,Flagin,Flagprev 

) 

variable i,SSS,CSB,SAS. flag : natural := Slice_id; 

variable initial: boolean 

variable currentbase,SSB 

variable ess 

:= False; 

:natural ; 

: natural :=0; 



variable Temp natural : =1 : 

natural :=0: variable Temp_reg.Temp_reg2 

variable t :std_logic_vector(S downto 0); 

Begin 

if (Flagin ='0' and Flagprev= '0' and Do_allocate='O' 

and Do_release='O' and slice_id=O ) then 

CSSout <= SSSin 

SSSout <= SSSin 

SSBout <= SSBin: 

CSBout <= CSBin; 

SAout <= , 1 ' ; 

else if ( Flagin ='0' and Flagprev= , 0' and 

Do_allocate ='O'and Do_release='O' ) then 

CSSout <= SSSin : 

SSSout <= unsigned(SSSin) + unsigned(word); 

SSBout <= SSBin: 

CSBout <= CSBin: 

SAout <= , 1 ' ; 

else if ( Flagin ='0' and flagprev='l' and 

Do_allocate ='0' and Do_release='O') then 

CSSout <= word: 

CSBout <= conv_std_logic_vector(Slice_id.8): 

SSSout <= SSSin : 

SSBout <= SSBin: 

SAout <= , l' ; 
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else if ( Do_allocate ='0' and Do_release='O' and 

flagin='l' and flagprev='l') then 

CSSout <= X"OO"; 

CSBout <= X"OO"; 

SSSout <= SSSin; 

SSBout <= conv_std_logic_vector( sl1ce_id.8); 

SAout <= SAini 

else if ( Do_allocate ='0' and Do_release='O' and 

flagin='l'and flagprev='O' ) then 

CSSout 

CSBout 

SSSout 

SSBout 

SAout 

<= X"OO"; 

<= X"OO"; 

<= unsigned(SSSin) + unsigned(word); 

<= conv_std_logic_vector(slice_id.8); 

<= SAini 

end if; end if; end if; end if; 

flagout <= flagin; 

BAout <= conv_std_logic_vector(Slice_id+l,8); 

SASout <= X"OO"; 

end if; if (( Do_allocate ='1') and (SAS! >ZeroWord ) 

and Do_release='O' ) then 

t := SAS!; 

SASout <= t; 

flagout (= '1'; 

else if (( Do_allocate ='1') and(flagin ·'0') and 

(Do_release='O') and (SAS! = ZeroWord ) 

and (SASin > ZeroWord) ) then 
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t := unsigned(SASin) - unsigned(word); 

SASout <= t; 

flagout <= '1'; 

else if « Do_allocate ='1') and(Do_release='O') 

and SASin= ZeroWord ) then 

SASout <= X"OO"; 

flagout <= flagin; 

end if; end if; 

CSSout <= X"OO"; 

end if: 

if « Do_allocate ='O')and (Do_release='l') 

and (SAS! > ZeroWord ) and (SASin= ZeroWord ) ) then 

t := SAS!; 

SASout <= t; 

flagout <= '0'; 

else if « Do_allocate z'O') and(Do_release2 '1') 

and (flagin ='1') and (SAS! > ZeroWord ) 

and (SASin= ZeroWord ) ) then 

t := SASin; 

SASout <= t; 

flagout <= '0': 

else if « Do_allocate ='0') and (flagin ='1') and (Do_release:'l') 

and (SAS! = ZeroWord ) and (SASin > ZeroWord ) ) then 

t := unsigned(SASin) - unsigned(word): 

SASout <= t; 
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flagout <= '0'; 

else if (( Do_allocate ='O')and(Do_release='O')and(flagin='O'»then 

SASout <= "00000000"; 

flagout <= flagin; 

end if; end if; end if; CSSout <= "00000000"; end if; if ( 

Errorin = '1') then 

Errorout <= '1'; 

else if (Flagin ='1' and SASin > ZeroWord) then 

Errorout <= '1'; 

else 

Errorout <= '0'; 

end if; end if; end process main; end Combination_Alloc; 

B.1.2 Register Architecture Behaviour 

Library IEEE; Use IEEE. std_logic_1164. all; Use 

IEEE.std_Iogic_unsigned.all; Use STD.TEXTIO.all; use 

IEEE.std_Iogic_textio.all; Use IEEE.std_Iogic_arith.all; Entity 

Register_Size is generic ( 

w integer :=31; 

M integer :=63; 

S integer :"7; 

Sl1ce_id integer; 

Tdelay time := 4 ns 

) ; 

port ( 
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clk in std_logic; 

rst in std_logic; 

initalize in std_logic; 

Req_Size in std_logic_vector(S downto 0); 

Alloc in std_logic; 

Releas in std_logic: 

Selected_Base in std_logic_vector(S downto 0); 

Released_Base in std_logic_vector(S downto 0); 

SA in std_logic; 

Slice_ASI out std_logic_vector(S downto 0) 

) ; 

end Register_Size; Architecture Registers of Register_size is 

type Reg_typ is array(M downto 0) of std_logic_vector(S downto 0); 

signal reg: std_logic_vector(S downto O):=X"OO": 

Begin 

RRR:process( clk.rst. Req_Size. Selected_Base. Releas. 

Alloc.initalize.Released_Base 

) 

variable j natural := Slice_id; Begin if ( Alloc - '1' ) then 

If ( conv_integer(Selected_Base(7 downto O»zj) then 

Reg <= Req_Size: 

Slice_ASI <~ Reg: 

else 

Slice_ASI <= "00000000": 

end if; else if ( Releas = '1' and Alloc ='0') then 
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if (conv_integer(Released_Base(7 downto 0»> j) then 

Slice_ASI <= Reg; 

else 

end if; 

else 

Slice_ASI <= "00000000"; 

Slice_ASI <= "00000000"; 

end if; end if; end process; end Registers; 

B.1.3 Flag Architecture Behaviour 

LIBRARY ieee; USE ieee.std_logic_1164.ALL; LIBRARY std; USE 

std.textio.ALL; Use IEEE.std_logic_arith.all: Entity Flag is generic 

( 

M 

S 

Slice_id 

Tdelay 

) ; 

Port ( 

eLK 

RST 

Flgin 

Dallocate 

Drelease 

Flgout 

integer :=31: 

integer :=63; 

integer :=7: 

integer: 

time :- 4 ns 

:in std_logic; 

:1n std_log1c; 

:1n std_log1c; 

:1n std_log1c; 

:1n std_log1c; 

:out std_log1c; 

-- Max slice size 
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Flgprev 

) ; 

:out std_logic 

End Flag; Architecture flags of flag is type ram_typ is array(l 

downto 0) of std_logic; signal fg: std_logic:='O'; Begin fff: 

process(clk,rst, Flgin, Dallocate) variable j : natural := 

Slice_id; variable k : natural := Slice_id; Begin if 

'1') then 

fg <= '0'; 

else if ( j = 0 and Dallocate ='0' ) then 

Flgout 

Flgprev 

<= '0' ; 

<= '0'; 

else if ( Dallocate ='0' and j >0) then 

Flgout <= fg; 

Flgprev <= fg; 

end if; end if; end if; if ( Dallocate ·'1') then 

fg <= flgin; 

else if ( Drelease ='1') then 

fg <= flgin; 

end if; end if; end process; end flags; 

B.2 Allocation Scheme Test Bench 

The following code describes the allocation scheme test bench. 

Library IEEE; use IEEE.std_logic_1164.all; use 

IEEE. std_logic_unsigned. all; use STD.TEXTIO.all; use 

IEEE.std_logic_textio.all; use IEEE. std_logic_arith. all; 

( rst I: 
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Architecture Allocation-Behav of Allocate is 

type Slice_Base_array is array (0 to M ) of std_logic_vector(S downto 0): 

type Slice_Value_array is array (0 to M ) of std_logic_vector(S downto 0); 

constant ZeroWord 

signal BAi 

signal SSBi 

signal CSBi 

signal CSSi 

signal SASi 

signal SSSi 

signal SASIi 

signal SAi 

signal Errori 

signal Fgi 

signal Fgo 

signal Fprev 

signal init 

signal t_clk 

signal sel 

Component Flag is 

generic ( 

w 

M 

S 

Slice_id 

std_logic_vector(S downto 0) := (others =>'0'); 

Slice_Base_array : 

Slice_Value_array; 

Slice_Value_array; 

Slice_Value_array; 

Slice_Value_array:-(others => 1"00 11 ); 

Slice_Value_array; 

Slice_Value_array: = (others => 1"00"); 

std_logic_vector(M downto 0); 

std_logic_vector(M downto 0); 

std_logic_vector(M downto 0); 

std_logic_vector(M downto 0); 

std_logic_vector(M downto 0); 

std_logic_vector(M downto 0); 

std_logic :='0'; 

:Slice_Base_array ; 

integer :=31; 

integer :=63; 

integer :=7: 

natural; 



tdelay 

) ; 

Port ( 

eLK 

RST 

Flgin 

Dallocate 

Drelease 

Flgout 

Flgprev 

) ; 

End component; 

time := 4 ns 

:in std_logic; 

:in std_logic; 

:in std_logic; 

:in std_logic; 

:in std_logic; 

:out std_logic; 

:out std_logic 

component Register_Size is generic ( 

w 

M 

S 

Sl1ce_id 

tdelay 

) j 

port ( 

elk 

rst 

inital1ze 

Req_Size 

Alloe 

Releas 

integer : ~31 j 

integer :=63; 

integer :=7: 

natural; 

time := 4 ns 

in std_logie; 

in std_logic; 

in std_logie; 

in std_logic_vector(S 

in std_logie; 

in std_logic; 
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downto 0): 



Selected_Base 

Released_Base 

SA 

Slice_ASI 

) ; 

end component: 

Component 

generic ( 

) : 

port ( 

Slice is 

w 

M 

S 

Slice_id 

tdelay 

BAin 

SSBin 

CSBin 

CSSin 

SASin 

SSSin 

SASI 

SAin 

Errorin 

Flagin 

Flagprev 

in 

in 

in 

std_logic_vector(S downto 0): 

std_logic_vector(S downto 0); 

std_logic; 

out std_logic_vector(S downto 0) 

integer :=31; 

integer :=63; 

integer :-7; 

integer:=63; 

time := 4 ns 

:in std_logic_vector(S downto 

:in std_logic_vector(S downto 

:in std_logic_vector(S downto 

:in std_logic_vector(S downto 

0); 

0) ; 

0) ; 

0) ; 

:in std_logic_vector(S downto 0); 

:in std_logic_vector(S downto 0); 

:in std_logic_vector(S downto 0); 

:in std_logic; 

:in std_logic; 

:in std_logic; 

:in std_logic; 
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Do_allocate :1n std_Iog1c; 

Do_release :1n std_logic; 

clear :in std_Iogic; 

BAout : out std_Iogic_vector(S dowto 0); 

SSBout : out std_log1c_vector(S dowto 0); 

CSBout : out std_Iog1c_vector(S dowto 0); 

CSSout : out std_Iog1c_vector(S dowto 0); 

SASout : out std_Iogic_vector(S dowto 0); 

SSSout 

SAout 

Errorout 

Flagout 

) ; 

End Component; 

for all: flag 

: out std_log1c_vector(S downto 

:out std_log1c; 

: out std_Iogic; 

: out std_logic 

use entity work.flag(flags); 

for all: Register_Size 

use ent1ty work.Register_Size(Registers); 

for all :Slice 

use entity work.Slice(Combinat1on_Alloc); 

Begin 

BAi(O) <=X"OO"; 

88B1(0) <=X"OO"; 

CSBi(O) <=X"OO"; 

C8Si(0) <=X"OO"; 

SSSi(O) <= X"Ol"; 

0) ; 
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SAi(O) <= '0'; 

U1: for i in 0 to (M) generate 

flagO: if i =0 generate 

FO : flag 

generic map ( 

M .S .Slice_id =>i. tdelay => tdelay 

) 

Port map ( 

clk .rst. Fgi(i) ,Doallocate, Dorelease, 

Fgo(i) • Fprev(1) 

) ; 

end generate flagO; 

flagm: if i >0 generate 

Fm : flag 

generic map ( 

M ,S .Slice_id =>i, tdelay => tdelay 

) 

Port map ( 

clk ,rst,Fgi(i),Doallocate,Dorelease, Fgo(i),Fprev(i) 

) : 

end generate flagmj 

end generate U1: 

U2: for i in 0 to M generate 

RegO: if i =0 generate 

RO : Register_Size 

generic map ( 
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M .S .Slice_id =>i. tdelay => tdelay 

) 

Port map ( 

clk. rst. init(i). Required_Alloc_Size. Doallocate. 

Dorelease.Allocate_Base. Release_Base • SAi(i) .SASIi(i) 

) ; 

end generate RegO; 

Regn: if i >0 generate 

Rn : Register_Size 

generic map ( 

) 

Port map ( 

M .S .Slice_id =>i, tdelay -> tdelay 

elk. rst. init(i). Required_Alloc_Size. Doallocate, 

Dorelease.Allocate_Base. Release_Base • SAi(1) .SASI1(1) 

) ; 

end generate Regn; 

end generate U2; 

U3: for i in 0 to (M) generate 

sliceO: if i =0 generate 

SIO : Slice 

generic map ( 

M.S ,Slice_1d ->1, tdelay ~> tdelay 

) 

port map ( 

BA1(1). SSBi(i) .eSBi(i). eSSi(i). SASi(1). 
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SSSi(i), SASIi(i), SAi(i), Errori(i),Fgo(i), 

Fprev(i), Doallocate, Dorelease,init(i), 

BAi(i+1),SSBi(i+1),eSBi(i+1) ,eSSi(i+1),SASi(i+1), 

SSSi(i+1), SA1(1+1), Errorl(1+1), Fgl(l) 

) ; 

end generate sllceO; 

slicen: if «1 > 0) and (i < M » generate 

SIn : Slice 

generic map ( 

) 

port map ( 

M.S .Sllce_ld =>1, tdelay => tdelay 

BA1(1), SSBi(i) ,eSBi(i), eSS1(1), SASi(i), 

SSSl(l), SASI1(i), SAi(i),Errori(i), Fgo(i), 

Fgo(i-1),Doallocate , Dorelease,init(i), 

BAi(i+1),SSBi(i+1),eSBi(i+1) ,eSSi(i+l),SASi(i+1), 

888i(i+1), SAi(i+1), Errori(i+1), Fgi(i) 

) ; 

end generate slicen; 

sllceflnal: If(l =M) generate 

8lfin : Slice 

generic map ( 

M.S ,8Iice_id ->i. tdelay => tdelay 

) 

port map ( 

BA1(i), SSBi(l) ,eSBi(i), eSSi(i). SASi(i), 
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iii Signals * Vak!es - ~-- ------- ------- ---

1lI ~ b:aIJ&edJEr :a lb:atD1 :re~_base n 11. 
1lI ~ b:aIJ&edJEr :alb:atD1 :reqJre(alb:_size I==========~========= 

LJLJLSlSl_JLI1_I"LJLSl.J' ~ 

Figure B.l : Simulation waveforms for allocation four registers per thread (Register 
file size is 64-registers). 

SSSi(i), SASIi(i), SAi(i), Errori(i),Fgo(i), 

Fgo(i-l), Doallocate , Dorelease,init(i), 

BAi(i),Allocate_Base,CSBi(i) ,CSSi(i),SASi(i), 

Slice_Size, Space_Available, Input_Error, Fgi(i) 

) ; 

end generate slicefinal; end generate U3; end Allocation_Behav; 

B.3 Simulation Results 

In this section, a different simulation result for the allocation scheme with different allocation 

scenarios are presented (see figures B.l to B.5). 
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. . 5ignak * values 
Izz I!I ~ bcal_scteiJler :albcatbl :reqJrecta1oc_slze 04 

" rul_scteiJler :alocatbl :doalocale IW LJ L..J LJ LJ LJ LJ L..J LJ L..J L..J 1 
~ bcal_scteiJler:albcatbl:doreiease 

I!I ~ ruLscteiJler :albcatbl:albcale_base 00 04 00 1 14 19 Ie 2( 24 2e -X 
I!I " rul_scteiJler:alocatbl:slte_slZ8 qU ~ ~ 3'\ 3: 28 2~ 2{ 18 
8 ~ bcaLscteiJler:alocatbl :ssbl (00,00,00,( , 111l,O .. H{J , I[ lIlIl. .. 1m 1100, 1100" 'fin' .. 'frr In.. 11m .. 1 

IB " (0) 
1B " (I) (l) 

IB ~ (2) 
1B " (3) 
IB " (4) 
1B ~ (5) 

1B " (6) 
1B " (7) 
1!I " (8) 
1B " (9) 
1B ,, (lD) 
1B " (1l) 
1B " (I2) 
1B " (13) 
IB " (14) 
1B ' (IS) 
1!I ,, (16) 

I I!I " (17) 
1B , (18) 
1ll " (19) 
Ill " (20) 
1B ' (21) 
1B ' (22) 
1ll ' (23) 1 
1B " (24) '-I *ciiS 

Figure B.2: Simulation waveforms showing slice parameters values, four registers per 
thread (waveforms sample one). 
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1B ~ (36) 00 04 (Ij (): 10 I~ 18 I lC I L'O I 23 
8 ~ (37) III H 1 Ie ?O ,~ 

Iil ~ (ll) (Ij I 4 I Ie 20 iii 
1B ~ (39) lC 2( 

1ll ~ (40) 4 I Ie 2( 

1B ~ (41) 4 e 
1B ~ (42) 4 1 e 
1ll ~ (43) 4 e 
1B ~ (44) I Ie 
1ll ~ (45) 11 lC 

1il ~ (46) 14 e 
1B ~ (47) 14 1 Ie 28 

1B ~ (48) I e 

1il ~ (49) I e 

IB ~ (SO) 4 e 
IB ~ (SI) I 4 1 e 

IB ~ (52) Ie 

1B ~ (S3) e 

1B ~ (S4) 1 1 Ie 

1B ~ (S5) 4 1 e 
IB ~ (S6) e 

1ll ~ ('57) 4 1 e 

1B ~ (58) e 
IB ~ (59) I e 4 
1B ~ (60) I 14 18 Ie 
1B ~ (61) ~ Ie 

1il ~ (62) 14 Ie 
1B ~ (63) I 14 I 

IB ~ kral schedJla- :alkratb:l:csbl ~"~i_ J.D IOO . 
Iil ~ kral=schedJla- :albcatb:l:cssl (00,00,00,( '[M 

III ~ kral_schedJla- :alkratb:l:sasl (00,00,00,( lllI . m 
IB ~ kraUichedJler :alkratUl :sssl (tll,OI,[ .. 1 0. . 1 .. 1 . 1 I,D. 1 1.0 l (tw. ~ l.O 

Figure B.3: Simulation waveforms showing slice parameters valu s, four registers per 
thread (waveforms sample two) . 



• Signals 

llI ' rees_base 
llI ' req.Ji'atsize 

' OOilIb:ate 
' O:reease 

llI ' alb:ate_bas 
III , avaiklle_size 

' spa:eJu.rd '1 

• Signals t vUs 
llI ' rekls_base OC 

llI ' req.Jretsize zz 
' OOilIb:ate '0 
' O:release '0 

llI ' alb:ate)as OC 
llI , avaiklle_size 2( 

, spa:e}u.rd '1 
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Wavefonns sample one 

Wavefonns sample two 

Figure B.4: Simulation waveforms for allocation and de-allocating different slice sizes 
per thread (Register file size is 32-registers). 
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• SIgnals * YaIuoj I 
III ~ alkxatb'urchi1ectre :release_base II 09 II 

III ~ alkJeatiJUlLhi1ecl.re :req.Jrectalb::_ 03 as 07 n:r zz nn 
~ alb:aoon_irchltBctre :cbalkxate IL-f Lt-J L-.l L-..,~ 
~ alb:aoon irchltBctre :cireieasa I I 

Ill ' alb:atD1=irchitecu-e :alb:ate_base 4 lb 1e 
III ~ allocatD1_irchitecu-e :available_s iza 14 1.. 1 Oc ffi n, m- l'i\ 
8 ~ alb:aoon_irel1ltBctre :ssbl " m 00.0102 (n: . 
8 ~ (0) 00 
1B ' (1) II 

IB ' (2) 
8 ~ (3) 
1B ' (4) 

I 8 " (5) 
1B ' (6) -. (Xi 00 - 07 ri'f 

IB " (9) CS [if 

IB " (10) 09 [if 

11I ~ (11) Oa 
1B ' (12) !IJ 

1B ' (13) Dc 
1B " (14) ad 

8 ' (15) 00 

1ll ~ (16) -or 
1B ' (17) 1C 
111 " (18) Dc 11 
1B ' (19) 1l 
IB ' (20) 13 

IB ' (21) 14 

111 " «2) ~ B 
IB ' (23) ~ 6 
al a n dl ,. 

Figure B.5: Simulation waveforms showing slice parameters values, different register 
sizes per thread. 



Appendix C 

Asynchronous Arbiter Source 

Code and its Simulation Results 

This appendix provides a description for the arbiter design methodology. It also presents 

a VHDL architecture behaviour and test bench for the arbiter and provides a sample of 

simulation results with different scenarios. The full VHDL source code for our arbiter's on 

the DVD included with this thesis. 

C.l Arbiter Design Methodology 

This section continues section 6.4.4 from chapter 6. It describes the arbiter permeative 

flow table, reduced table with merging rows and a function minimisation. There are eight 

states, however an asynchronous version of this machine can be minimized. Two states reset 

and grant priority (SI and S2 in the tables below) can be merged, where the elimination 

of redundant stable states allows us to draw a simplified and minimized state machine. 

Tables C.1 to C.4 show the arbiter permeative table. It also shows the state reduction and 

the state minimisation. The minimisation functions can be described as follows: 
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RHO = Rho RIo Wout i B D RIi Rhi Gin + 

Rho RIo Gout Wout i 13 D Rhi Gin + 

Rho Rio Gout Wout f 13 D Rhi Gin + 

Rho RIo Gout Wout i B D Rli Gin Ain + 

Rho RIo Gout Wout f B D Rli Rhi Gin + 

Rho RIo Gout Wout f B D Rli Rhi Gin + 

Rho RIo Gout Wout f B D Rli Rhi Gin + 

Rho RIo Gout Wout i 13 D Rli Rhi Gin Ain + 

Rho RIo Gout Wout i B D Rli Rhi Gin Ain. 

RLO = Rho RIo Wout i 13 D Rli Rhi Gin + 
Rho RIo Gout Wout f B D Rli Rhi Gin + 

Rho RIo Gout Wout f 13 D RIi Rhi Gin + 

Rho RIo Gout Wout f B D Rli Rhi Gin + 

Rho IDo Gout \Vout f B D Rli Rhi Gin. 

Gout = Rho RIo Gout Wout f Rli Rhi Gin Ain + 

RIo Gout Wout f D Rli Rhi Gin Ain + 

Rho RIo Gout Wout f D Rhi Gin Ain + 

Rho Gout Wout i D Rli Rhi Gin + 
RIo Gout Wout f D Rli Rhi Gin + 
Rho RIo Wout i 13 D RIi Rhi Gin Ain + 

Rho RIo Gout Wout i B D Rli Gin Ain + 
Rho RIo Gout Wout f 13 D Rli Gin + 
Rho RIo Gout Wout f D Rli Rhi Ain + 

Rho RIo Gout Wout f 13 D Rhi Gin Ain + 

Rho Gout Wout f 13 D Rli Rhi Gin Ain + 

RIo Gout Wout f 13 D Rli Rhi Gin + 
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Rho RIo Gout Wout i :6 Rli Rhi Gin + 

Rho Rio Gout Wout i :6 Rli Rhi Gin + 

Rho RIo Gout Wout i :6 RIi Rhi Gin Ain + 

RIo Gout Wout i B D Rli Rhi Gin Ain + 

Rho RIo Gout Wout f B D Rli Rhi Gin + 
Rho RIo Gout Wout f 13 D Rli Rhi Gin + 

RhoRlo Gout Wout f 13 :6 Rli Rhi Gin Ain + 

RhoRIo Gout Wout f 13 D Rli Rhi Gin Ain + 

Rho RIo Gout Wout i 13 D Rli Rhi Gin Ain + 

Rho RIo Gout Wout i 13 D Rli Rhi Gin Ain. 

Wout = Rho RIo Gout Wout f B D Rli Rhi Gin Ain + 

Rho RIo Gout Wout i B :6 Rhi Gin Ain + 
Rho RIo Gout Wout i 13 D Rhi Gin Ain + 

Rho RIo Gout Wout i B :6 Rli Rhi Gin Ain. 

C.2 Arbiter Architecture Behaviour 
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The following code describes the architecture behaviour of the arbiter. The arbiter includes 

other components such as the processor and clock generator and these component available 

on the DVD attached to this thesis. 

Use std.textio.all; Library IEEE; Use IEEE.std_Iogic_1164.all; Use 

IEEE. std_logic_unsigned. all; Use IEEE. std_loglc_arith. all; Use 

ieee.vital_primitives.all; Entity nand_Block is generic( Delay 

Time 

) ; 

port ( 



Rh.Rl.G,I,D,B,Ack,nRh,nRl,nGin,nI,nO,nB,nAck:in std_logic; 

TWout,TRH,TRL,TGout : inout std_logic:='O' 

) ; 

end nand_Block; Architecture behv of nand_Block is signal 

SOl,602,603,604,611,612,613,s14,s15,816,817,s18,s19, 

621,622,623,624,s25,831,832.833,834,835,836,637,838, 

839,8310,8311,8312,8313,8314,6315,8316,8317,s318, 

6319,s320,8321,6322 8td_logic:='O'; 

6ignal PWout,PRH,PRL,PGout std_logic:='O'; 

8ignal nPWout,nPRH,nPRL,nPGout 

Begin 

601 <= note 

nPRH and nPRL and nPGout and PWout and nRh and nRl and 

nI and B and no and G 

) ; 

802 <= note 

PRH and nPRL and nPGout and nPWout and nRh and nI and B 

and no and G and nAck 

) ; 

803 <= note 

nPRH and PRL and nPGout and nPWout and nRh and nI and 

nB and G and D 

) ; 

604 (= note 

PRH and nPRL and nPGout and nPWout and Rh and nRl and 
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nD and nI and G and B 

) ; 

TIlout <=not( 

sOl and s02 and s03 and s04 

) ; 

s11 <= note 

nPRH and nPRL and nPWout and nRh and nRl and nGin and 

nI and nD and B 

) ; 

s12 <= note 

nPRH and nPRL and nPGout and nPWout and Rh and G and 

nI and nO and nB 

) ; 

s13 <= note 

nPRH and PRL and nPGout and nPWout and Rh and nGin and 

nI and D and nB 

) ; 

s14 <= note 

nPRH and nPRL and nPGout and nPWout and nRl and nGin and 

nI and nO and B and nAck 

) ; 

s15 <= note 

nPRH and PRL and nPGout and nPWout and nRh and Rl and 

nGin and nI and nD and B 

) ; 

s16 <= note 
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PRH and PRL and nPGout and nPWout and Rh and Rl and 

nGin and nI and nD and B 

) ; 

517 <= note 

nPRH and nPRL and PGout and nPWout and nRh and 

nRl and G and nI and nD and B 

) ; 

518 <= note 

PRH and nPRL and nPGout and nPWout and Rh and 

nRl and G and nI and D and nB and nAck 

) ; 

519 <= note 

PRH and nPRL and nPGout and nPWout and Rh and 

nRl and nGin and nI and nD and B and Ack 

) ; 

TRH <= note 

511 and s12 and 513 and 514 and s15 and s16 and s17 

and 518 and s19 

) ; 

521 <:s note 

nPRH and nPRL and nPWout and nRh and nRl and 

nGin and nI and D and nB 

) ; 

622 <= note 

nPRH and nPRL and PGout and nPWout and nRh and 
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nRl and G and nI and D and nB 

) ; 

523 <= note 

PRH and PRL and nPGout and nPWout and Rh and 

Rl and nGin and nI and D and nB 

) ; 

524 <= note 

nPRH and PRL and nPGout and nPWout and nRh and 

Rl and nGin and nI and D and nB 

) ; 

825 <= note 

TRL <= not ( 

PRH and nPRL and nPGout and nPWout and Rh and 

nRl and nGin and nI and D and nB); 

821 and 522 and 823 and 824 and 525 

) ; 

831 <= note 

nPRH and nPRL and nPGout and nPWout and 

Rh and nRl and nGin and nI and nD and nB 

) : 

532 <- note 

nPRL and nPGout and nPWout and nRh and Rl 

and nGin and nI and nD and Ack 

) ; 

533 <= not ( nPRH and nPRL and nPGout and nPWout and 

Rh and Rl and nGin and nI and nD and Ack 

281 



) ; 

534 <= not ( nPRH and nPGout and nPWout and nRh and Rl 

and G and nI and nD and Ack 

) ; 

535 <= note 

nPRL and nPGout and nPWout and Rh and nRl 

and G and nI and nD and nAck 

) ; 

536 <= note 

nPRH and nPRL and nPWout and nRh and Rl 

and nGin and nI and nD and nB and nAck 

) ; 

s37 <= note 

nPRH and nPRL and nPGout and nPWout and 

Rl and nGin and nI and nD and B and nAck 

) ; 

s38 <= note 

nPRH and nPRL and nPGout and nPWout and 

Rh and Rl and nGin and nI and D and nB 

) ; 

s39 <= note 

PRH and nPRL and nPGout and nPWout and nRh 

and nRl and G and nI and nD and Ack 

) ; 

s310 <= note 

PRH and nPRL and nPGout and nPWout and nRh 
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and nGin and nI and D and nB and Ack 

) ; 

8311 <= note 

nPRH and nPGout and nPWout and nRh and 

Rl and G and nI and D and nB and nAck 

) ; 

8312 <= note 

nPRL and nPGout and nPWout and Rh and 

nRl and G and nI and D and nB 

) ; 

8313 <= note 

nPRH and nPRL and nPGout and nPWout and 

Rh and Rl and G and nI and nO 

) ; 

8314 <= note 

PRH and PRL and nPGout and nPWout and 

Rh and Rl and G and nI and nO 

) ; 

8315 <= note 

PRH and nPRL and nPGout and nPWout and 

nRh and Rl and G and nI and nO and Ack 

) ; 

8316 <= note 

PRL and nPGout and nPWout and nRh and 

Rl and G and nI and D and Ack 

) ; 
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8317 <= note 

PRH and PRL and nPGout and nPWout and 

Rh and Rl and G and nI and D and nB 

) j 

8318 <= note 

nPRH and nPRL and nPGout and nPWout and 

Rh and Rl and G and nI and D and nB 

) ; 

8319 <= note 

nPRH and nPRL and nPGout and nPWout and Rh 

and Rl and nGin and nI and nO and nB and nAck 

) j 

8320 <= note 

nPRH and nPRL and nPGout and nPWout and Rh and 

nRl and nGin and nI and D and nB and Ack 

) j 

8321 <= note 

PRH and nPRL and nPGout and nPWout and nRh and 

nRl and G and nI and D and nB and Ack 

) ; 

8322 <= note 

nPRH and PRL and nPGout and nPWout and nRh and 

Rl and G and nI and D and nB and Ack 

) ; 

TGout <= note 

831 and 832 and 833 and 634 and 635 and 636 
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and s37 and s38 and s39 and s310 and s311 and 

s312 and s313 and s314 and s315 and s316 and 

s317 and 5318 and 5319 and s320 and 

s321 and s322 

) ; 

Present_State: process ( TWout.TRH.TRL.TGout) Begin 

PWout <= TWout: 

PRH <= TRH; 

PRL <= TRL: 

PGout <= TGout: 

nPWout <= not (TWout): 

nPRH <= not (TRH); 

nPRL <= not (TRL); 

nPGout <= not (TGout); 

end process; end behv; 

C.3 The Asynchronous Arbiter Test Bench 

The following code describes the arbiter test bench. 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

LIBRARY work; 

USE work.std_components.ALL: 

Enti ty test is 

end test; 

Architecture a of test is 
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constant N :integer:=15; 

constant M :integer:=15; 

type period_vector is array ( natural range <» OF time; 

constant pr: period_vector(O to N) :=( 4 ns,2 ns,6 ns,3 ns,S ns,7 ns, 

1 ns, 4 ns,5 ns,6 ns,l ns, 

9 ns,2 ns,7 ns,9 ns,3 ns 

) ; 

constant cpw period_vector(O to N) :=( 2 ns, 1 nS,3 ns, 5 ns,4 ns, 

3 ns,5 ns, 6 ns,S ns, 9 ns, 

signal t_clk 

signal Wout 

signal reql 

signal reqh 

signal grant 

signal Acq 

signal addr 

constant cps 

constant processor_id 

constant transfer_size 

constant w 

constant Tdelay 

constant ZeroWord 

signal WRREQ 

signal Ack 

2 ns, 6 ns,2 ns,5 ns,6 ns,7 ns 

) ; 

std_logic :='0'; 

std_logic_vector(N downto 0); 

std_logic_vector(N downto 0); 

std_logic_vector(N downto 0); 

std_logic_vector(N downto 0); 

std_loglc_vector(N downto 0); 

std_loglc_vector (15 downto 0); 

time := 30 ns; 

natural:-15; 

lnteger:=2; 

integer:=15; 

time:=4 ns; 

std_loglc_vector(N downto 0); 

std_logic : -' 0' ; 

std_loglc; 
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signal rst 

signal phi1,reset 

signal d 

signal Brk 

signal init 

signal cmp 

signal add_st 

signal Acklocal 

signal chip_select 

signal RDWR 

signal Mem_Add 

signal Mem_DAT 

signal Mem_clk 

Begin 

add_st 

reql 

reqh 

grant 

Acq 

rst 

Ack 

addr 

Mem_DAT 

std_logic; 

std_logic_vector(N downto 0): 

std_logic_vector(N downto 0); 

std_logic_vector(N downto 0); 

std_logic_vector(N downto 0); 

std_logic_vector(N downto 0); 

std_logic_vector(N downto 0) : 

std_logic_vector(N downto 0); 

:std_log1c; 

:std_logic: 

:std_logic_vector (15 downto 0): 

:std_logic_vector (15 downto 0): 

:std_logic; 

<= (others -> ' Z') ; 

<= (others -> ' Z') 

<= (others -> 'Z') 

<= (others => 'Z') ; 

<= (others -> ' Z') ; 

<='0' : 

<=' Z' ; 

<= (others ->'Z'); 

<= "ZZZZZZZZZZZZZZZZ"; 

microproc: for i in 0 to N generate 

procO: if i =0 generate cpuO :CPU 

generic map( 
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w,Transfer_size,Processor_id=>i ,N=>N,Tdelay=>Tdelay 

) 

port map ( 

phil(i),rst,d(i),Brk(i),init(i),wout(i),add_st(i), 

addr,Acklocal(i), Acq(N),WRREQ 

) ; 

end generate procO; 

procn: if (i>O) generate cpul CPU 

generic map( 

) 

port map ( 

w,Transfer_size,Processor_id=>i ,N=>N,Tdelay->Tdelay 

phil(i) ,rst,d(i) ,Brk(i) ,init(i) ,wout(i) ,add_st(i) , 

addr,Acklocal(i),Acq(i-l), WRREQ 

) ; 

end generate procn; 

end generate microproc; 

cg: for i in 0 to N generate 

CO: if i = 0 generate clkO: clock_gen 

generic map( 

period =>pr(i), Tpw =>cpw(i) , Tps ->cps 

) 

port map ( 

phil(i), reset(i) 

) ; 

end generate CO; en: if (I >0 ) generate 
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clkn: clock_gen 

generic map( 

period => pr(i), Tpw => cpw(i), 

Tps => cps 

) 

port map (phil(i), reset(i) 

) j 

end generate Cn; 

end generate cgj 

Al:for i in 0 to N generate 

PO: if i = 0 generate processorO:Arbiter 

generic map( 

) 

port map ( 

w, transfer_size =>8, processor_id =>i, 

N=>N, Tdelay => Tdelay 

d(i),Brk(i),init(i),reqh(i),reql(i), 

grant(N), Wout(i),reqh(N),reql(N), 

grant(i).Acq(N).Acq(l).WRREQ,Acklocal(l) 

) ; 

end generate PO 

Pn: if (I > 0 ) generate 

processorn: Arbiter 

generic map( 

w. transfer_size => B.processor_id ->i. 

N=>N,Tdelay=>Tdelay 
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) 

port map ( 

d(i).Brk(i).init(i).reqh(i).reql(i). 

grant(i-l).Wout(i).reqh(i-l).reql(i-l). 

grant(i).Acq(i-l).Acq(i).WRREQ.Acklocal(i) 

) ; 

end generate Pn; 

end generate Al; 

process (Add_st) 

Begin 

if (Add_st = ZeroWord) then 

WRREQ <= '0' 

else 

WRREQ <= '1' after tdelay 

end if; 

end process; 

end a; 

C.4 Simulation Results 
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In this section, simulation results for different sizes of arbiter and different demands 

and brks scenarios are given. Figures C.1 to C.3 show a sample of results from 

simulating 8 arbiter modules. In this sample the following conditions apply: module 

o has initially reserved the token, module 4 receives a high input on the Brk signal 

line and modules 1, 2, 5, 6, 7 all have high input demand request lines. As illustrated, 

the request signal RLl reaches the token before RH4 , which means that broadcast 
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bus access is given first to processor 1 (Wout is asserted). When processor 1 releases 

the token, the grant signals are propagated back to give processor 4 permission to 

use the broadcast bus before other low priority processors. The rest of the demand 

requests are granted in sequence order based on position in the ring configuration. 

Figures C.4 to C.7 show a sample of results from simulating 16 arbiter modules. 

In this example the following conditions apply: module 0 has initially reserved the 

token, module 15 receives a high input on the Brk signal line and the other modules 

have high input demand request lines. As illustrated, the request signal RLI and 

RL2 reaches the token before RH15, which means that broadcast bus access is given 

first to processor 1 then to processor 2 (Wout is asserted). When processor 2 releases 

the token, the grant signals are propagated back to give processor 15 permission to 

use the broadcast bus before other low priority processors. The rest of the demand 

requests are granted in sequence order based on position in the ring configuration. 
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Figure C.6: Simulation waveforms showing arbiter signals, 16 arbiter modules (wave­
forms sample three) . 
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Appendix D 

Local Scheduler and 
Microthreaded Pipeline Source 
Code and its Simulation Results 

This appendix provides source code and a sample of simulation results with different 

scenarios for the microthreaded local scheduler and its in-order pipeline that were 

described in chapter 7. 

D.l Local Scheduler Architecture Behaviour 

The following code describes the architecture behaviour of the scheduler. The sched­

uler includes three main components: allocation scheme (allocate), thread-create and 

control block (controller), and the CQ. The architecture behaviour of these compo­

nents are available on the DVD attached to this thesis. 

Architecture Behaviour of 
signal t_clk 
signal Reles_Base 
signal Required_Size 
signal Doallocate 
signal Dorelease 
signal Allocate_Bas 

Scheduler is 
:std_logic :='0'; 
:std_logic_vector(S downto 0); 
:std_logic_vector(S downto 0); 
:std_logic; 
:std_logic: 
:std_logic_vector(S downto 0): 
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signal Available_size 
signal Error_signal 
signal Space_Found 
signal Pointer 
signal L_Base 
signal D_Base 
signal PC_Created 
signal PC_Reschedule 
signal F 
signal producer 
signal WR._Queue 
Component Control is 
generic ( 

port 

w 
M 
S 
Slice_id 
tdelay 

) ; 
( 

CLK 
RSr 
ReI_Base 
Alloc_Size 
allocate 
release 
Block_Base 
Block_Size 
Error_in 
Available_Space 
wrreq 
Read_Mem 
Create_Address 
rCB_Address 
rCB_data 
PC_Creat 
Loc_Base 
Dp_Base 
fIg 
prod 

:std_logic_vector(S downto 0); 
:std_logic; 
:std_logic; 
:std_logic_vector(7 downto 0); 
:std_logic_vector(7 downto 0); 
:std_logic_vector(7 downto 0); 
:std_logic_vector(31 downto 0); 
:std_logic_vector(31 downto 0); 
:std_Iogic; 
:std_Iogic_vector(7 downto 0); 
:std_Iogic; 

integer : =31; 
integer :=63; 
integer :=7; 
integer; 
time := 4 ns 

:in std_Iogic; 
:in std_logic; 
: out std_logic_vector(S 
:inout std_logic_vectorCS 
:inout std_logic: = J 0 J ; 

: out std_logic; 
:in std_logic_vectorCS 
:in std_logic_vectorCS 
:in std_logic; 
:in std_logic; 
:in std_logic; 
: out std_logic; 

downto 
downto 

downto 
downto 

0) ; 
0); 

0); 
0); 

:in std_logic_vectorC31 downto 0); 
: out std_logic_vectorC31 downto 0); 
:in std_logic_vectorC127 downto 0); 
: out std_logic_vectorC31 downto 0): 
: out std_logic_vectorC7 downto 0); 
: out std_Iogic_vectorC7 downto 0); 
: out std_Iogic; 
: out std_Iogic_vector(7 downto 0) ; 
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Write_CQ 
Next_famil 
store_done 

) ; 
End component; 
Component Allocate 
generic C 

w 
M 
S 
Slice_id 
tdelay 

) ; 
port C 

CLK 
RST 

is 

:inout std_logic; 
: out std_logic; 
:in std_logic 

: integer : =31; 
:integer :=63; 
:integer :=7; 
: integer; 
:time := 4 ns 

:in 
:in 

std_logic; 
std_logic; 

Release_Base :in std_logic_vectorCS downto 0); 
std_logic_vectorCS downto 0); 
std_logic; 

Required_Alloc_Size:in 
Doallocate :in 
Dorelease 
Allocate_Base 
Slice_Size 
Input_Error 
Space_Available 

) ; 
End component; 
Component CQ is 
generic C 

port 

w 
M 
S 
Slice_id 
tdelay 

) ; 
( 

CLK 
RST 
PC_Created 
PC_Reschedule 
Dep_Base 

:in 
:inout 
: out 
: out 
: out 

std_logic; 
std_logic_vectorCS downto 0); 
std_logic_vectorCS downto 0); 
std_logic; 
std_logic 

integer : =31; 
integer :=63; 
integer :=7; 
integer; 
time := 4 ns 

:in std_logic; 
:in std_logic; 
:in std_logic_vectorC31 downto 0); 
:in std_logic_vector(31 downto 0); 
:in std_logic_vector(7 downto 0); 

301 



Flag 
produc 
WR_CQ 

:in 
:in 
:in 

Context_switch :in 
PC_pipeline : out 
Local_Base_pipeline :out 
Dep_Base_pipeline : out 
Slot_Number_pipeline:out 
Prefetch_PC : out 
Pointer :in 
Slot_Number_cache : out 
Read_cache :out 
Write_Pc : out 
Acknow : in 
done : out 

) ; 
End Component; 
for Controller: Control 
use entity work.Control( Behav); 
for Allocation: Allocate 

std_logic; 
std_logic_vector(7 downto 0); 
std_logic; 
std_logic; 
std_logic_vector(31 downto 0); 
std_logic_vector(7 downto 0); 
std_logic_vector(7 downto 0); 
std_logic_vector(7 downto 0); 
std_logic_vector(31 downto 0); 
std_logic_vector(7 downto 0); 
std_logic_vector(7 downto 0); 
std_logic; 
std_logic; 
std_logic; 
std_logic 

use entity work.Allocate(Allocation_Behav); 
for Continuation_Queue: CQ 

use entity work.CQ(CQBehav); 
Begin 
Reles_Base <= (others 
Allocate_Bas <= 
Available_size <= 
Prefetch_PC <= 
Slot_Number_pip <= 
Slot_Number_cache <= 
PC_pipeline <= 
L_Base_pip <= 
D_Base_pip <= 
producer <= 

(others 
(others 
(others 
(others 
(others 
(others 
(others 
(others 
(others 

F <='Z' ; 
Controller: Control 
generic map ( 

=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 
=> 

=> 'Z'); 
, Z') ; 
, Z') ; 
, Z') ; 
, Z') ; 
J Z') ; 
, Z') ; 
, Z') ; 
, Z') ; 
J Z') ; 

w,M,S ,Slice_id. tdelay 
) 

port map ( 
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t_clk,RST,Reles_Base ,Required_Size ,Doallocate,Doreleas e, 
Allocate_Bas ,Available_size ,Error_signal ,Space_Found, 
WR_create, RD_Memory, Create_Address, TCB_Addr,TCB_Data, 
PC_Created,L_Base, D_Base,F,producer,WR_Queue,Next_Family 

) ; 
Allocation: Allocate 

generic map ( 

) 

port map ( 

) ; 

w,M,S ,Slice_id, tdelay 

t_clk,RST,Reles_Base ,Required_Size ,Doallocate,Doreleas e, 
Allocate_Bas ,Available_size ,Error_signal ,Space_Found 

Continuation_Queue: CQ 
generic map ( 

) 

port map ( 

w,M,S, Slice_id,tdelay 

CLK,RST,PC_Created ,PC_Reschedule,L_Base,D_Base, 
F,producer,WR_Queue,Contxt_switch, PC_pipeline, 
L_Base_pip,D_Base_pip,Slot_Number_pip, 
Prefetch_PC ,Slot_Number_cache, RD_memory_prefetch, 
WR_PC, Ack 

) ; 
end Behaviour; 

D.2 Microthreaded Pipeline Architecture Behaviour 

The following code describes the architecture behaviour of the microthreaded pipeline. 

The architecture includes other components such as the multiplexer, predecode, in­

struction register, adder, decoding, and register file. The architecture behaviour of 

these components are available on the DVD attached to this thesis. 

Architecture Processor of CPU is 
constant ZeroWord : std_logic_vector(31 downto 0); 
type state is ( Reset, Local, Wait_Bus,Bus_in_Use); 
type state_pip is (Rset, Schedule, Fetch, Decode); 



type ram_typ is array(O to 7) of STD_LOGIC_VECTOR(31 downto 0); 
subtype word_64 is std_logic_vector(63 downto 0); 
subtype word_32 is std_logic_vector(31 downto 0); 
subtype word_5 is std_logic_vector(4 downto 0); 
signal prstate, nxstate state_pip :=Rset 
signal pstate, nstate state :=Reset 
signal addr ram_typ; 
signal clk_count integer := 0; 
signal reset_count bit:= '0'; 
signal t_clk std_logic :='0'; 
signal zero_32 word_32 := (others=>'O'); 
signal zerol std_logic := '0'; 
signal zero2 std_logic := '0'; 
signal four_32 word_32 := x"00000004"; 
signal eight_32 word_32 := x"00000008"; 
signal Rst std_logic := '1'; 
signal clk2 std_logic := '1'; 
signal clk_bar std_logic := '0'; 
signal counter integer := 0; 
signal ncl1,nc12 std_logic; 
signal Create std_logic; 
signal Context_Switch std_logic; 
signal Kill_thread std_logic: 
signal PC_next word_32: 
signal PC_next_8 word_32: 
signal New_Pc word_32: 
signal PC word_32; 
signal instruction_code word_64: 
alias instl :std_logic_vector(31 downto 0) 

alias inst2 

signal ID_IRl 
signal ID_IR2 
signal ID_read_data_l 
signal ID_read_data_2 
signal ID_sign_ext 
signal RegDst 
signal ID_rd 
alias 'ID_addr 

is instruction_code (31 downto 0); 
:std_logic_vector(63 downto 32) 
is instruction_code (63 downto 32): 
word_32; 
word_32; 
word_32: 
word_32; 
word_32: 
std_logic := '0'; 
word_5: 
std_logic_vector(15 downto 0) 
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signal WB_IR 
signal WB_read 
signal WB_pass 
signal WB_rd 
signal MemtoReg 
signal WB_result 
signal WB_write_enb 
component register_32 is 
port ( 

end 

clk 
Rst 
input 
output 

) ; 
component register_32; 

component add32 is 
port ( 

a 
b 
c 
cin1 
cin2 
sum1 
sum2 
cout1 
cout2 

) ; 
end component add32; 

is ID_IR1(15 downto 0); 
word_32; 
word_32; 
word_32; 
word_5; 
std_logic := '1': 
word_32; 
std_logic := '1'; 

in std_logic; 
in std_logic; 
in std_logic_vector(31 
out std_logic_vector(31 

downto 0); 
downto 0) 

in 
in 

std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 

in 
in 
in 
out 
out 
out 
out 

std_logic_vector(31 downto 0); 
std_logic; 
std_logic; 
std_logic_vector(31 downto 0); 
std_logic_vector(31 downto 0); 
std_logic; 
std_logic 

component instruction_memory is 
porte 

addr in std_logic_vector (31 downto 0); 
inst out std_logic_vector (31 downto 0»; 

end component instruction_memory; 
component Instruction_register_32 is 
porte 

clk 
Rst 
instruction1 
instruction2 

in std_logic; 
in std_logic: 
in std_logic_vector 
in std_logic_vector 

(31 
(31 

downto 0) ; 
downto 0) ; 
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output 1 
output 2 
Create 
Switch 
Killed 
Base_Address 

) ; 

out 
out 
out 
out 
out 
out 

std_logic_vector 
std_logic_vector 
std_logic; 
std_logic; 
std_logic; 
std_logic_vector 

(31 downto 0); 
(31 downto 0); 

(7 downto 0) 

end component Instruction_register_32; 
component mux_32 is 
port ( 

inO 
in1 
swch 
result 

end component mux_32; 
component registers is 
port ( 

read_reg_1 
read_reg_2 
write_reg 
write_data 
write_enable 
write_clk 
read_data_1 
read_data_2 

end component registers; 
component mux_5 is 
porte 

inO 
in1 
ctl 
result 

end component mux_5; 
for PC_reg: register_32 

in std_logic_vector 
in std_logic_vector 
in std_logic; 
out std_logic_vector 

(31 downto 0); 
(31 downto 0); 

(31 downto 0»; 

in std_logic_vector (4 downto 0); 
in std_logic_vector (4 downto 0); 
in std_logic_vector (4 downto 0); 
in std_logic_vector (31 downto 0); 
in std_logic; 
in std_logic; 
out std_logic_vector (31 downto 0); 
out std_logic_vector (31 downto 0»; 

in std_logic_vector (4 downto 0); 
in std_logic_vector (4 downto 0); 
in std_logic; 
out std_logic_vector (4 downto 0»; 

use entity work.register_32(behavior); 
for PC_incr: add32 
use entity work.add32(behavior); 
for inst_mem: instruction_memory 
use entity work.instruction_memory(behavior); 
for PC_reg: Instruction_register_32 
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use entity work.lnstruction_register_32(behavior)j 
for NewPC_mux : mux_32 
use entity work.mux_32(behavior); 
for ID_IR_reg: register_32 
use entity work.register_32(behavior); 
for ID_regs:registers 
use entity work.registers(behavior); 
for ID_mux_rd:mux_5 
use entity work.mux_5(behavior)j 
Begin 
New_Pc <=Program_Counter 
PC_reg: register_32 
port map( 

clk2, Rst, PC_next, PC 
) ; 

PC_incr: add32 
port map( 

PC, four_32,eight_32, zerol, zero2, 
PC_next.PC_next_B. ncll,nc12 

) ; 
inst_mem: instruction_memory 
port map( 

PC, instruction_code 
) ; 

ID_IR_reg: Instruction_register_32 
port map( 

clk, Rst, instl.inst2, ID_IR1.ID_IR2, 
Create,Context_Switch.Kill_thread.base 

) ; 
NewPC_mux : mux_32 
port map( 

inO 
in1 
swch 
result 

) ; 
ID_regs:registers 
port map( 

read_reg_l 
read_reg_2 

:::) New_Pc, 
:::) PC_next, 
:::) Context_Switch, 
:::) WE_result 

:::) ID_IR1(25 downto 21), 
:::> ID_IR1(20 downto 16). 
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write_reg 
write_data 
write_enable 
write_clk 
read_data_1 
read_data_2 

=> WB_rd, 
=> WB_result, 
=> WB_write_enb, 
=> clk_bar, 
=> ID_read_data_1, 
=> ID_read_data_2 

) ; 
ID_mux_rd:mux_5 
port map( 

inO => ID_IR1(20 downto 16), 
in1 => ID_IR1(15 downto 11), 
ctl => RegDst, 
result => ID_rd 

) ; 
ID_sign_ext(15 downto 0) <= ID_addr; 
ID_sign_ext(31 downto 16) <= (others => '0'); 
process (Create ,Context_Switch) 
Begin 
if ( Create = '0') then 

else 

Create_Address <=(others => 'Z'); 
WR_TCB <= '0'; 
Con_switch <= Context_Switch; 
Kill <= Kill_thread; 

Create_Address <= ID_sign_ext; 
WR_TCB <= , l' ; 
Con_switch <= Context_Switch; 
Kill <= Kill_thread; 

end if; if( Context_Switch ='1') then 
Con_switch <= Context_Switch; 
Kill <= Kill_thread; 

else 
Con_switch <='0'; 
Kill <= Kill_thread; 

end if; end process; 
end processor; 
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D.3 Local Scheduler And Microthreaded Pipeline 
Test Bench 

The following code describes the test bench of the local scheduler and microthreaded 

pipeline. 

architecture 
constant cps 
constant N 
constant S 
constant M 

Dynamic_Allocation of testbench is 
: time := 30 ns; 

constant processor_id 
constant Slice_id 
constant tdelay 
signal t_clk 
signal Rst 
constant w 

signal RDWR 
signal WRREQ 
signal add_st 
signal nxt 
signal init 
signal release 
signal nextpc 
signal ere_address 
signal Tag_cache 
signal Acknow 
signal Newpc 
signal PC 
signal L_Base 
signal D_Base 
signal Slot_pip 
signal Slot_cache 
signal flg 
signal Prefetch 
signal Family_Data 
signal Reschedule 
signal TCB_Addrs 

:integer:=7; 
:integer:=7; 
:integer:=63; 
:natural:=7; 
: integer: =63; 
:time :=4 ns; 
:std_logic :='0'; 
:std_logic:='O'; 
:integer:=31; 

:std_logic; 
:std_logic:='O'; 
:std_logic; 
:std_logic; 
:std_logic_vector(7 downto 0); 
:std_logic; 
:std_logic_vector(31 downto 0); 
:std_logic_vector(31 downto 0): 
:std_logic_vector(31 downto 0); 
:std_logic; 
:std_logic_vector(31 downto 0); 
:std_logic_vector(31 downto 0); 
:std_logic_vector(7 downto 0); 
:std_logic_vector(7 downto 0); 
:std_logic_vector(7 downto 0); 
:std_logic_vector(7 downto O)j 
:Boolean: 
:std_logic_vector(31 downto O)j 
:std_logic_vector(127 downto 0): 
:std_logic_vector(31 downto 0); 
:std_logic_vector(31 downto O)j 



signal allocated_Successfuly 
signal Conxt_switch 
signal Kill_thread 
signal Kill_slot 
signal write_pc 
signal Inst_data 
signal Inst_Addr 
signal RD_Cache 
signal RDM_prefetch 
signal Successes 
signal Reschedule_PC 
signal WR_New_PC 

RST <= '0'; 
Local_Scheduler: Scheduler 
generic map ( 

:std_logic; 
:std_logic; 
:std_logic; 
:std_logic_vector(7 downto 0); 
:std_logic; 
:std_logic_vector(127 downtoO); 
:std_logic_vector(31 downto 0); 
:std_logic; 
:std_logic; 

:std_logic; 
:std_logic_vector(31 downto 0); 
:std_logic; Begin 

w,M,S ,Slice_id, tdelay 

port map 
) 

( 

) ; 

t_clk,Rst,WRREQ,Newpc ,Cre_address,Reschedule_PC, 
Family_Data, Acknow, Conxt_switch, Kill_thread, 
kill_slot ,successes,PC,L_Base,D_Base ,Slot_pip, 
WR_New_PC,Prefetch,Slot_cache,nxt,RDWR, 
RDM_prefetch ,TCB_Addrs 

Instruction_Memory : Instruction_Cache 

generic map ( w ,Slice_id, tdelay 
) 

port map ( 
t_clk,Rst, RDWR, TCB_Addrs,Family_data, 
Inst_data,Inst_Addr,RD_Cache,RDM_prefetch, 
Acknow,Prefetch 

) ; 

Microthreaded_Pipeline: CPU 
generic map ( 

w,Processor_id ,N =>N 
) 
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port map ( 
t_clk,rst ,nxt ,PC,L_Base ,D_Base ,Slot_pip, 
WR_New_PC,init,Cre_address ,WRREQ, 
Conxt_switch,Kill_thread,kill_slot, 
Inst_data, Inst_Addr,RD_Cache ,Successes , 
Reschedule_PC 

) ; 
end Dynamic_Allocation; 
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D.4 Simulation Results 

This sectioll provides VHDL sinmiatioll resnlts of the local schednler and tlw first 

1 wo st ages of the rnicrothrcacled in-order pipeline. Different eXeC1ltioll scpnarios arc 

pn'scntccl (sec figures D.1 to D. 5) . 
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Figure D.1: Simulation waveforms showing family creation and threads allocation. 



I~ 
f!I ~ b:aIJclBiJler :CootilJatUt~ :p::_create:l 
f!I ~ b:aU;&e:iJler :((JltilJati:tlJ~..aJEdx:al)ase 

f!I ~ b:aIJcte:iJler :((Jltroati:tlJlBR:(~tbase 
f!I ~ b:al_ scte:iJ1er :cootilJatDt q.ae :q.ae _data 
f!I ~ b:aLscte:iJIa" :((JltilJatDt~ :cq..row 
f!I ~ b:aIJcte:iJler :cootilJati:tl JJBR:actiIe J'S~ 
f!I ~ b:al_scte:iJIer :((JltilJati:tl_~:actileJaii 

Iil ~ b:aLscte:iJIe' :cootilJatDtQ.S.E :err¢j_~ 
Iil ~ b:al_scte:iJklr:((JltilJati:tl_q.ae :e~~_ta il 
f!I ~ b:al_scte:iJ1e' :((JltilJati:tl_q.ae :rrefutrhjX: 

11 5MJla1s 
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m' b::aLfrleiJg:cootilJatiJ1_~:b::(base 
m' b::aL frleiJg :cootilJatiJ1_ ~ :00p _base 
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m' b::aLfrleiJg :cooth.atiJt~:~Jail 
m' b::aL frleiJg :cootilJatiJ1_ ~:e~~_tea:l 
m ~ b::aLfrleiJg :cooth.atiJt~:e~~_tail 
m ~ b::aL frleiJg :cootilJatiJ1_ ~:p'efub:h..oc 
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waveforms sample one 

waveforms sample two 

F igure D.2: Simulation waveforms showing thread state in the continuation queue. 



-- -- ,. - - .. 
I Signals 

I!l ~ lxaIJdeiJkr:c(JltruatiJlJ~rul :lJefetr:tlJX: 
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I!l ~ lxaL sdaiJkr :C(JltruatiJl_~ :o~tbase .pllllre 
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lll ~ lxaLsdaiJler:c(JltruatiJl_~:sbtl1Jrrhr.pPllre I'!~~~~~l~~~::~~~~:::: Ill ~ miJolITeal:d.,pPllre:nsbu:til1Jo:il (J) I~ • l!l ~ miJolITealld..p~lre : muottreatOO:cdJ:nsbu:tirQ I~~~~~(,;:§~~~~===~~=== 

115~ 
III ~ lxal_sdaiJler:c!l1truatiJl_~:l1efetch.,p:: 
Ill ' lxaLmler :c!l1truatiJl_~:sbtl1Jrrhr Jm 
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Waveforms sample one 

1B ' lxaLmB':c!l1truatDt~:sbtl1Jrrhr.,ppelre t1~~~~$1~~t~~~~g!=i lll ' miJollTeaBJ.,ppelre:nsbu:til1JOOe (0 1k'; 

Waveforms sample two 

Figure D.3: Simulation waveforms showing instruction fetch state and microthreaded 
pipeline with a context switching. 



llI ' mUotlr~"p~lre :~am_CMtIr 
llI ~ mUotlr~"p~Ire :kxal_base"p!J 
llI ' mUotlr~"p~lre:(~tbase"p!J 
Ill ' mi:rotlr~"p~lre :skitrlJ • ..P1l 
~ mUotlr~"p~lre:((JtswitJ:h 
, mUotlre.rlrl..pi:e1re :kill 

Ill ' muotlr~"p~Ire:P::J"Ext 
llI ~ mUotlr~"p~lre:P::J"ExtJ 
Ill ' mi:rotlr~"p~lre:P::J"Ext_B 

5ignals 

Ill ' m(JotIrea:BJ"p~lre :~am_cCllltIr 
1lI ~ mi:rotIrea:BJ"p~lre : kxal_base"p!J 
13 ' mi:rotlTea:Bl"p~lre :03p_basa..piJ 
13 ' mi:rottrecJBj"p~lre :sbtrIJnter..P1l 

, mi:rotlTea:Bl"p~lre :CO'tswitJ:h 
, mi:rottrecJBj"p~lre :ki\l 

Ill ' mi:rotIrea:BJ"p~lre :P::J"Ext 
Ill ' mi:rotlrea:BJ"p~lre :P::J"ExtJ 
13 ' muotlTea:Bl"p~lre :P::JlIxtJ 

Ill ' mi:rotIrea:BJ"p~lre :~am_cCllltIr 
Ill ' mUotlr~"p~lre :kxaLbase"p!J 
Ill ' mi:rotlr~"p~lre :03p_base"p!J 

111 ' mi:rottreml"p~lre :sbtrunm ..P!J 
, mi:rotlr~"p~lre : ((JtswitJ:h 
, mi:rottreml"p~lre :kiH 

111 ' mi:rotlr~'p~lre :P::JlIxt 
Ill ' mi:rottreml'p~lre :P::J"ExtJ 
iii ' mi:ro~"p~lre:P::J"ExtJ 
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Figure D.4: Simulation waveforms showing microthreaded pipeline with context 
switch and kill instructions. 
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Figure D.5: Simulation waveforms showing microthreaded pipeline with branch and 
jump instructions. 


