
THE UNIVERSITY OF HULL

CHIP MULTI-PROCESSORS USING
A MICRO-THREADED MODEL

Being a Thesis submitted for the Degree of PhD
in the University of Hull

By

Eng. Nabil M. Hasasneh, BSc. (Hons), MSc. (Hons)

October 2006

Abstract

Most microprocessor chips today use an out-of-order (000) instruction execution

mechanism. This mechanism allows superscalar processors to extract reasonably high

levels of instruction level parallelism (lLP). The most significant problem with this

approach is a large instruction window and the logic to support instruction issue from

it. This includes generating wake-up signals to waiting instructions and a selection

mechanism for issuing them. Wide-issue width also requires a large multi-ported

register file, so that each instruction can read and write its operands simultaneously.

Neither structure scales well with issue width leading to poor performance relative to

the gates used. Furthermore, to obtain this ILP, the execution of instructions must

proceed speculatively.

An alternative, which avoids this complexity in instruction issue and eliminates

speculative execution, is the microthreaded model. This model fragments sequential

code at compile time and executes the fragments 000 while maintaining in-order

execution within the fragments. The fragments of code are called microthreads and

they capture ILP and loop concurrency. Fragments can be interleaved on a single

processor to give tolerance to latency in operands or distributed to many processors

to achieve speedup. The major advantage of this model is that it provides sufficient

information to implement a penalty free distributed register file organisation.

However, the scalability of the microthreaded register file in terms of the number

of required logical read and write ports is not clear yet. In this thesis, we looked at

the distribution and frequency of access to the asynchronous (non-pipeline) ports in

the synchronising memory and provide a detail analysis and evaluation of this issue.

ii

It concluded, using an analysis of a range of different code kernel, that a distributed

shared synchronising memory could be implemented with 5-ports per processor, where

three ports provided single instruction issue per cycle and the other two asynchronous

ports were able to manage all other demands on the local register file.

Also, in the microthreaded CMP a broadcast bus is used for thread creation and

to replicate the compiler-defined global state to each processor's local register file.

This is done instead of accessing a centralised register file for global variables. The

key problem is that, accessing this bus by multiple processors simultaneously caused

contention and unfair communication between processors. Therefore, to avoid proces­

sor contention and to take the advantages of asynchronous communication, this thesis

presents a scalable and partitionable asynchronous bus arbiter for use with chip mul­

tiprocessors (eMP) and its corresponding pre-layout simulation results using VHDL.

It is shown in this thesis that this arbiter can be extended easily to support large

numbers of processors and can be used for chip multiprocessor arbitration purposes.

Furthermore, the microthreaded model requires dynamic register allocation and a

hardware scheduler, which can support hundreds of microthreads per processor and

their associated microcontexts. The scheduler must support thread creation, context

switching and thread rescheduling on every machine cycle to fully support this model,

which is a significant challenge. In this thesis, scalable implementations and evalua­

tion of these support structures are presented and the feasibility of large-scale CMPs

is investigated by giving detailed area estimate of these structures using O.07-micron

technology.

Acknowledgements

First of all, I would like to thank my supervisors, Profes.."lOr Chris Jesshope and Mr.
Ian Dell, for their many suggestions and COI1.c;tant support during thLc; research. This

dLc;sertation would not exist without their guidance, support and continual encour­
agement. Many of the results in thLc; thesis have come out of long conversations and
meetings with Prof. Chris Jes..c;hope and Mr. Ian Dell. I thank you both very much.
I would also like to thank Dr. Anthony Wilkinson for the comments and feedback he
has given me throughout my PhD.

I am very grateful to the examiners Dr. Colin Egan and Eur Ing Drian Tompsett
for their patience in reading my thesis and for their comments that made thLc; thesis
more accurate, and more complete.

Support must al"lO come from outside work, and in thL<~ respect, I would like to
thank my parents, my brothers (especially AIaa) and my sLc;ters for their concern and
support throughout the years of studies 8..'1 well 8..'1 for iI1.c;tilling the value of education
in me. Al"lO, I want to thank my wife and two lovely soI1.c;, Qossai and Seleen, for
their patience, understanding during three years of my study.

I would also like to thank both the Hebron University and MinLc;try of Education
and Higher Education for granting me a scholarship for my PhD study at the Univer­
sity of Hull. Also, I would like to thank Dr. Nabil AI-Jabari, Chairman of the Doard
of Trustees of Hebron University for his continual encouragement. Many thanks to
the Engineering Department and the Department of Computer Science for their help
and support.
Last, but not least, special thanks to God, who has iI1.c;pired me to accomplish this
research succes..'ifully.

THE UNIVERSITY OF HULL
October, 2006

iii

NADIL M. HASASNEH

To my Parents, my Brothers, my Sisters, my Wife and my

lovely Sons.

iv

Table of Contents

Table of Contents

List of Tables

List of Figures

Abstract

Acknowledgements

1

2

Introduction
1.1 Motivation ·
1.2 Research Objectives. .
1.3 Thesis Contributions ·
1.4 Thesis Organisation. . ·
1.5 Publications

1.5.1 Journal Papers ·
1.5.2 Conference and Workshop Papers

Background and Related Work
2.1 Current Approaches

2.1.1 Out-of-Order (000) Execution .. .
2.1.2 Very-long Instruction Word (VLIW)
2.1.3 Explicitly Parallel Instruction Computing (EPIC)
2.1.4 Multithreading

2.2 Alternate Approaches.
2.2.1 Microthreading
2.2.2 Multiscalar ..
2.2.3 Intrathreads..

v

v

x

xii

i

iii

1
6
9

10
11
13
14
14

16
16
16
18
20
22
23
24
27
29

2.2.4 Raw Machine (RAW)
2.2.5 Explicit Data Graph Execution (EDGE) and TRIPS
2.2.6 Wavescalar

2.3 Recent CMPs .
2.4 Microarchitecture and Architecture Challenges . .

2.4.1 Scalability and Performance Improvement
2.4.2 Concurrency and Programmability .
2.4.3 Scaling Processor Support Structures . . .
2.4.4 Power Dissipation.

2.5 Distributed Memory Multiprocessor Architecture
2.5.1 Cache Only Memory Architecture (COMA)
2.5.2 Multibanking

2.6 Techniques and Evaluation Methodology
2.6.1 Chip Estimate Area Model.
2.6.2 Simulation Environment

2.7 Summary

3 Microthreaded Microprocessor Model
3.1 Chapter Overview.
3.2 The Microthreaded Model
3.3 The Microthreaded In-order Pipeline
3.4 Concurrency Controls. . .

3.4.1 Thread Creation
3.4.2 Context-Switching .. .
3.4.3 Thread Synchronisation
3.4.4 Thread Termination

3.5 Scalable Instruction Issue
3.6 Thread State
3.7 Register File Partitioning and Distribution
3.8 Registers Allocation Unit
3.9 Cache Prefetching and Data Locality
3.10 Summary

4 Microthreaded Distributed Register File
4.1 Chapter Overview.
4.2 Modern Register Files
4.3 Analysis and Evaluation of Microthreaded Register File Ports
4.4 Registers Allocation .

4.4.1 Background......

vi

30
31
32
34
35
35
37
40
43
45
48
50
52
52
53
54

56
56
57
59
63
63
64
65
68
68 .
71
72
79
80
83

85
85
86
89
98
98

4.4.2 Comparing Registers Allocation Design Alternative . . . 100
4.5 Dynamic Register Allocation Scheme For Microthreaded CMPs 103

4.5.1 Description of the Allocation Scheme 103
4.5.2 Implementation and Simulation Results for the Allocation Scheme108

4.6 Summary 111

5 Microgrid Chip Multiprocessor Architecture Model
5.1 Chapter Overview.
5.2 Microgrid CMP Top-level Architecture Model
5.3 Microgrid CMP Communication Buses

5.3.1 Broadcast Bus.

115
115
116
118
118

5.3.2 Point-to-Point Ring Interconnection Network. 120
5.4 Globally Asynchronous Locally Synchronous (GALS) Design Approach 122
5.5 Thread Scheduling and Distribution to Support Microgrid CMP 124

5.5.1 The scheduler. . . . 124
5.5.2 Thread Distribution 126

5.6 I/O Service Routines 130
5.7 Microgrid CMP Scalability . 130
5.8 Summary 131

6 Scalable and Partitionable Asynchronous Arbiter for Microgrid Chip
Multiprocessor 133
6.1 Chapter Overview. 133
6.2 Asynchronous Design Methodology . . . 134

6.2.1 Asynchronous Design Procedures 134
6.2.2 Delay-insensitive Circuits. 136

6.3 Modern Arbitration Systems 136
6.4 Asynchronous Arbiter for Microgrid Chip

Multiprocessor 141
6.4.1 Arbiter Organisation and Bus Interface. 141
6.4.2 The Proposed Arbitration Mechanism. 144
6.4.3 Priority Policy 147
6.4.4 Arbiter Design Methodology . . . 149
6.4.5 Arbiter Partitioning 154
6.4.6 Arbiter with N-Ievels of Priority . 155

6.5 Implementation and Simulation Results. 157
6.6 Summary 161

vii

7 Implementation and Area estimates for Microthreaded Core and its
Support Structures 164
7.1 Chapter Overview. 164
7.2 The Microthreaded Support Structures 165
7.3 Area Estimates for Microthreaded Support Structures . 166

7.3.1 Register File. 166
7.3.2 Register Allocation Unit 168
7.3.3 The Scheduler. 171

7.4 Estimated Core Area 175
7.5 Implementation for a Local Scheduler and a Microthreaded Pipeline 178
7.6 Simulation Results Using VHDL . 185
7.7 Summary 187

8 Conclusions And Future Work 191
8.1 Conclusions 191
8.2 Future Directions 194

8.2.1 COMA versus Multibanking 195
8.2.2 Multicluster Architecture. . 197
8.2.3 Compiler Support 199
8.2.4 Toward Microgrid CMP Fault-Tolerant Communication . 201

Bibliography 202

Glossary 224

Appendices 227

A Code generation examples 228

B Allocation Scheme Source Code and Simulation Results 249
B.1 Allocation Scheme Architecture Behaviour 249

B.1.1 Allocation Slice logic Architecture Behaviour . 250
B.1.2 Register Architecture Behaviour . 255
B.1.3 Flag Architecture Behaviour . 257

B.2 Allocation Scheme Test Bench 258
B.3 Simulation Results 266

C Asynchronous Arbiter Source Code and its Simulation Results 271
C.1 Arbiter Design Methodology . . 271
C.2 Arbiter Architecture Behaviour 277

Vlll

C.3 The Asynchronous Arbiter Test Bench
C.4 Simulation Results

D Local Scheduler and Microthreaded Pipeline Source Code and its

285
290

Simulation Results 299
D.1 Local Scheduler Architecture Behaviour. 299
D.2 Microthreaded Pipeline Architecture Behaviour
D.3 Local Scheduler And Microthreaded Pipeline Test Bench
D.4 Simulation Results .

ix

303
309
312

List of Tables

2.1 Current and upcoming Microprocessors. 51

3.1 Concurrency-control instructions. 62

3.2 Thread control block containing parameters that describe a family of

micro threads. .. 64

4.1 Average number of accesses to each class of register file port over a

range of loop kernels, m= problem size. 91

4.2 Average number of accesses to all additional write ports for different

number of processors, m/n=8. .. 97

4.3 N umber of required registers per allocation over a range of loop kernels. 104

4.4 Allocation logic parameters. .. 107

5.1 Relative frequency of create instruction over a range of loop kernels. 119

7.1 Thread entry format in the continuation queue for 256-entry CQ and

512 entry register file. 171

7.2 Microgrid-Core estimate area using 0.07 J.lm technology. 175

7.3 Microgrid-Core estimate area without L1 D-cache using 0.07JLm tech-

nology. 176

C.1 Arbiter permeative table and state minimisation (snapshot one). 272

C.2 Arbiter permeative table and state minimisation (snapshot two). . 273

C.3 Arbiter permeative table and state minimisation (snapshot three). 274

x

CA Arbiter permeative table and state minimisation (snapshot four). .. 275

xi

List of Figures

2.1 UMA architecture model. 46

2.2 NUMA models system architectures. 47

2.3 The COMA architecture model. . . . 48

3.1 Microthreaded microprocessor pipeline. 59

3.2 Microthreaded register-file ports. ... 78

4.1 Average accesses per cycle on additional ports, n=4 processors. . 92

4.2 Average accesses per cycle on additional ports, n=16 processors. 94

4.3 Average accesses per cycle on additional ports, n=64 processors. 95

4.4 Average accesses per cycle on additional ports, n=256 processors. 96

4.5 Average number of accesses to all additional write ports for different

number of processors, m/n=8. 98

4.6 An alternative algorithm for allocation scheme. 102

4.7 Block diagram of the RAU and its interaction with the thread-create

process. 105

4.8 Register allocation unit's combinational logic slice. . 106

4.9 General action of the allocation scheme. 108

4.10 Allocation scheme entity description source code. 109

4.11 Allocation scheme architecture behaviour source code. . 110

4.12 Allocation scheme test bench source code. 110

4.13 Simulation waveforms for allocation three registers per thread (Register

file size is 64-registers) 111

xii

4.14 Simulation waveforms for allocation and de-allocating different slice

sizes per thread (Register file size is 32-registers). 112

4.15 Simulation waveforms showing slice parameters values (three registers

per thread). .. 113

5.1 Microthreaded CMP architecture, showing communication structures

and clocking domains. 116

5.2 Frequency of executing create instruction over a range of loop kernels,

m= problem size. .. 120

5.3 Point-to-point communication between microthreaded processors. .. 121

5.4 Detail of the local scheduler showing its main components and the data

paths between it and other stages of the pipeline. 124

5.5 'Transformation of the for loop to microthreaded assembly code. ... 127

5.6 Modulo schedule of one iteration per processor for the example code

in the text. This illustrates the mapping of a dependency chain to the

ring network connecting processors in the Microgrid. 129

6.1 (a) Synchronous circuit. (b) Asynchronous circuit. . . 135

6.2 Organisation and signaling conventions for the arbiter (proposed in [139]) .138

6.3 Asynchronous arbiter block diagram. 140

6.4 Asynchronous arbiters with different partitioning. a) Grid organisa-

tion. b) Independent group organisation. 142

6.5 Asynchronous arbiter with require input and output signals. 143

6.6 Released control circuit. 144

6.7 Arbiter modules with required signals connected as a ring configuration. 145

6.8 Arbiter state transition diagram. 148

6.9 Asynchronous version from the arbiter state transition diagram show-

ing sling on each stable state. 149

6.10 Arbiter level gate design (request high output (RHO)). 150

6.11 Arbiter level gate design (request low output (RLO)). . 151

xiii

6.12 Arbiter level gate design (grant output signal (Gout)). 152

6.13 Arbiter level gate design (output signal (Wout)).. 153

6.14 Asynchronous arbiter with programmable routing for partitionable pro-

cessor arrays. 155

6.15 A block diagram for a scalable asynchronous arbiter design. 156

6.16 Arbiter test bench source code. 157

6.17 Asynchronous arbiter simulation model. 158

6.18 Processor state machine. 159

6.19 Request-to-grant delay with rate of requests (per processor per cycle). 160

6.20 Arbiter simulation waveforms snapshot 1 (8 arbiter modules). 161

6.21 Arbiter simulation waveforms snapshot 2 (8 arbiter modules). 162

7.1 Block diagram for microthreaded support structures. 165

7.2 Estimated area of one processor's partition of a distributed register

file comprising 5 ports per processor. The area estimate is for 0.07j.lm

technology.. .. 167

7.3 Area comparison between different sizes of a microthreaded register file

partition and the alpha 21264's register file. The area estimate is for

0.07j.Lm technology. .. 168

7.4 Register allocation unit's combinational logic slice design. 169

7.5 Area comparison between the register allocation unit and the register

file for 2- and 4-register per allocation unit and for various sizes of

register file. .. 170

7.6 Block diagram of the interactions within the CQ, which use its link field

to build: a) a queue for empty slots, b) a queue containing active slots

and c) Any continuation queues for threads suspended in the register

file. .. 172

7.7 Area of the CQ compared with the register file for 1, 2 and 4-registers

per slot in the CQ. .. 174

xiv

7.8 Detail of the local scheduler showing its main components and the data

paths between it and other stages of the pipeline. . 178

7.9 Fetch thread control block state transition diagram. 181

7.10 Allocate thread state transition diagram. 182

7.11 The first two stages of microthreaded in-order pipeline. 183

7.12 VHDL test bench source code for local scheduler, microthreaded pipeline

and I-cache. 184

7.13 VHDL code for local scheduler components. 185

7.14 VHDL code for microthreaded pipeline components. . 186

7.15 Waveforms sample result for threads creation and allocation process. 187

7.16 Waveforms sample result for the continuation queue. 188

7.17 Waveforms sample result for microthreaded pipeline. 189

7.18 Waveforms sample result for microthreaded pipeline showing the exe-

cution for branch and jump instructions. 190

8.1 Memory architecture using COMA nodes and clusters of processors. 195

8.2 Memory architecture using a fiat structure of multiple banks with ad-

dress randomisation. Such an organisation would not use an L1 D-cache.197

8.3 One cluster of Microgrid CMP .. 198

B.1 Simulation waveforms for allocation four registers per thread (Register

file size is 64-registers). .. 266

B.2 Simulation waveforms showing slice parameters values, four registers

per thread (waveforms sample one). 267

B.3 Simulation waveforms showing slice parameters values, four registers

per thread (waveforms sample two). 268

BA Simulation waveforms for allocation and de-allocating different slice

sizes per thread (Register file size is 32-registers). 269

B.5 Simulation waveforms showing slice parameters values, different regis-

ter sizes per thread. .. 270

xv

C.1 Simulation waveforms showing arbiter signals, 8 arbiter modules (wave­

forms sample one). .. 292

C.2 Simulation waveforms showing arbiter signals, 8 arbiter modules (wave­

forms sample two). .. 293

C.3 Simulation waveforms showing arbiter signals, 8 arbiter modules (wave-

forms sample three). 294

C.4 Simulation waveforms showing arbiter signals, 16 arbiter modules (wave­

forms sample one). .. 295

C.5 Simulation waveforms showing arbiter signals, 16 arbiter modules (wave­

forms sample two). .. 296

C.6 Simulation waveforms showing arbiter signals, 16 arbiter modules (wave-

forms sample three). 297

C.7 Simulation waveforms showing arbiter signals, 16 arbiter modules (wave­

forms sample four). .. 298

D.1 Simulation waveforms showing family creation and threads allocation. 313

D.2 Simulation waveforms showing thread state in the continuation queue. 314

D.3 Simulation waveforms showing instruction fetch state and microthreaded

pipeline with a context switching. 315

D.4 Simulation waveforms showing microthreaded pipeline with context

switch and kill instructions. 316

D.5 Simulation waveforms showing microthreaded pipeline with branch and

jump instructions.. .. 317

XVl

Chapter 1

Introduction

There is an ever increasing demand for high performance microprocessors in a variety

of application areas including PCs, servers and mobile devices. Most current proces­

sor architectures are reaching fundamental limits in terms of scalability, speed, die

area and power consumption. It is generally agreed that the way forward for high

performance processors is to increases the number of cores, and a variety of multi­

processor architectures have been proposed. This thesis concerns chip multiprocessor

(CMP) based on the microthreaded model. We investigate the feasibility of imple­

menting these processors, with particular emphasis on scalability, by developing and

analysing high level architecture models.

Microthreading is a hardware threading technique, where each thread is a very

small fragment of code. Using a considerable number of parallel threads allows the

multiprocessor system to exploit more parallelism, which in turn improves the overall

system performance. Before introducing the microthreaded model and the CMP in

detail, it is useful to explain how microthreads differ from operating system threads.

In operating system such as UNIX and Windows thread are viewed as simultane­

ously running multiple tasks and are popular method to improve application software

1

2

through parallelism. The exact implementation of threads differ from one operating

system to another, but in general multiple programs can be run at once, such as a

word processor alongside an audio playback program and each program can be split

into multiple threads. Each thread has an execution state (running, ready, etc.)

and has an execution stack and some per-thread static storage for local variables.

The notion of a thread in the context of multithreaded processors differs from

the notion of software threads in multithreaded operating systems [1]. In the case

of multithreaded processors a thread is always seen as a hardware-supported thread.

User-defined or compiler generated threads in microthreading do not require interac­

tion with the operating system and each thread is represented by a program counter,

registers and a small control block. Hardware multithreading is a general technique

for hide long memory latencies by automatically switching to a new thread when one

thread blocked. Thread switching is performed by the processor using a hardware­

based thread-switching policy. More details about the multithreading processors are

available in [1]. In this work, unless otherwise stated, the term thread is used to

describe very small code fragments with minimal context.

As previously indicated many researchers are interested in the idea of achieving

major increases in the computational power of computers by the use of CMP. Ex­

amples of CMP are the Compaq Piranha [2], Stanford Hydra [3] and Hammond et.

al. [4]. Several architectures have been proposed and some manufacturers have pro­

duced commercial designs, such as the IBM Power PC [5] Sun Niagara [6] and Intel's

Montecito [7].

Ideally, the performance of such systems should be directly proportional to the

number of processors used, i.e. they should be scalable. CMPs scale well, with the

3

limit to scalability defined by Moore's law. We calculate that current technology could

support hundreds of in-order processors and achieve significant speedup over current

architectures that use implicit concurrency and achieve minimal speedup through

concurrent instruction issue [8]. One of the major barriers to the use of CMPs is the

problem of programming them without using explicit concurrency in the user code.

Ideally they should be programmable using legacy sequential code.

In theory, there is no limit to the number of processors that can be used in a CMP

provided that the concurrency derived from the sequential code scales with the prob­

lem size. The problem is how to split the code into a number of independent threads,

schedule these on many processors and to do this with a low and scalable overhead

in terms of the control logic and processor efficiency. In fact on general-purpose code

it will be impossible to eliminate all dependencies between threads and hence syn­

chronisation is also required. The goal of this work therefore is to define a feasible

architecture for a scalable CMP that is easy to program, that maximises throughput

for a given technology and that minimises the communication and synchronisation

overheads between different threads.

Today Intel's Itanium-2 (Madison) microprocessor features over 410 million tran­

sistor in a 0.13J1,ffi semiconductor process technology operating at a speed of 1.5GHz.

This is a dual-processor version of the previous Itanium processor (Mckinley), which

has an issue width of six. Moore's law would indicate that the billion-transistor chip

will become feasible in 65nm technology within the next three or four years [9]. Intel's

Montecito is the first Itanium processor to feature duplicate, dual-thread cores on a

single chip with 1.72 Billion transistors. The questions we must ask are where do

we go from here and what is the best way to utilise this wealth of transistors, while

4

maximising performance and minimising power dissipation?

Another problem area in future technology is the scaling of wire delays compared

with gate delays. As transistor dimensions scale down, the number of gates which are

reachable within the scaled clock is at best constant, which means that distributed

rather than monolithic architectures need to be exploited [10]. Superscalar proces­

sors today issue up to eight instructions per clock cycle but instruction issue is not

scalable [11] and a linear increase in parallelism requires at least a quadratic increase

in area [12]. The logic required occupies about 30% of the total chip area in a 6-way

superscalar processor [13].

In addition, more and more area is being used for on-chip memory. Typically

the second level on-chip cache occupies 25-30% of the die area on a modern micro­

processors, and between 50-75% on the recently announced Itanium-2. Moreover, a

significant delay and power consumption are seen in high-issue-width processors due

to tag matching, wake-up signals to waiting instructions, and selection mechanisms

for issuing instructions. These delays increase quadratically for most building blocks

with the instruction window size [14]. Finally, even with the implementation of a

large instruction window, it is difficult for processors to find sufficient fine-grain par­

allelism, which has made most chip manufacturers like Compaq, Intel and Sun look at

simultaneous multithreading (SMT) [15] to expose more ILP through a combination

of coarse- and fine-grain parallelism.

Multithreading can expose higher levels of concurrency and can also hide latency

by switching to a new thread when one thread stalls. SMT appears to be the most

popular form of multithreading. The main draw back to SMT is that it complicates

the instruction issue stage, which is central for the multiple threads [1]. Scalability

5

in instruction issue is no easier to achieve because of this and the other scalabil­

ity problems remain unchanged. Thus SMT suffers from the same implementation

problems [16] as superscalar processors.

An alternative approach to multithreading that eliminates speculation and does

provide scalable instruction issue is the micro threaded model. The threads in this

model are small code fragments with an associated program counter. Little other

state information is required to manage them. The model is able to expose and

support much higher levels of concurrency using explicit but dynamic controls. In

pipelines that execute this model, instructions are issued in-order from any of the

threads allocated to it but the schedule of instructions executed is non-deterministic,

being determined by data availability. Threads can be deterministically distributed

to multiple pipelines based on a simple scheduling algorithm. The allocation of these

threads is dynamic, being determined by resource availability, as the concurrency

exposed is parametric and not limited by the hardware resources. The instruction

issue schedule is also dynamic and requires linear hardware complexity to support

it. Instructions can be issued from any microthread already allocated and active. If

such an approach could also give linear performance increase with number of pipelines

used, then it can provide a solution to both CMP and ILP scalability [17]. However,

in this model and its CMP architecture, there are still problems which need to be

resolved. In this thesis we highlight these problems and provide an implementation

solution with required analysis and evaluation.

Finally, it is necessary to define the terms used in this thesis heading:

Microthread: (not hyphenated to distinguish it from other uses of the same combi­

nation of terms), refers specifically to code fragments managed by the model described

6

in this thesis and the previous, related papers.

Microcontext : refers to the private state associated with a microthread. This

includes a microthread's program counter and an offset into the register file, which

locates its private register variables.

Microgrid : refers to a CMP where all processors have a microthreaded scheduler

and a synchronising, distributed shared register file.

1.1 Motivation

Chip multi-processors (CMPs) are a very promising solution for future high-performa­

nce computing and we anticipate that many new microprocessor designs will be based

on such an approach. As described previously, several projects have already investi­

gated CMPs, and manufacturers are beginning to produce commercial designs.

The appeal of CMP architectures comes from factors that limit the scalability

of multiple instruction issue in conventional processors [18], such as the superscalar

paradigm, which continue to use more silicon and power for very little improvement

in ILP. Evidence of this is provided by Intel's cancellation of its 4GHz Pentium4 [19],

which has effectively reached a limit in both performance and scalability. Scaling

up concurrency in these processors gives very large circuit structures and this is

exacerbated by lengthy global communication arising from the increasing problems

of wire delay in technology scaling. These require excessive chip area and increased

power consumption respectively. For example, the logic required for 000 issue does

not scale with issue width [20] and will eventually dominate the chip area and power

consumption.

The Semiconductor Industry Association (SIA) roadmap indicates that by 2018

7

the number of transistors on a single chip will reach 4 billion to 25 billion depending

on the circuit type [21]. How to gain performance from this level of integration within

acceptable power budgets is a major problem. Performance can not be achieved by

simply increasing the speed of conventional processors or by squandering a large num­

ber of transistors on unscalable support structures, as used in 000 issue. Instead,

we have to embrace explicit parallelism, but systematic solutions to parallel program­

ming and parallel architectures have yet to emerge, even with small-scale concurrency.

In the near future, we will be able to integrate thousands of arithmetic units on a

single chip [22]. Note that a 32-bit integer ALU occupies less than 0.05mm2 in an

180nm CMOS process technology and typical chip sizes are between 100 to 400mm2.

However, before such chips can be utilised, we need programming paradigms for gen­

erating this level of concurrency and support structures for scheduling and managing

this concurrency, which are fully scalable.

Today's small-scale CMPs are based on the same complex processor designs that

preceded them and use high-level or software-based concurrency (e.g. threads). These

threads may be scheduled in software or hardware and even used to extend the pool

of instructions to support 000 issue. The latter, in particular, suffers from major

problems, which limits performance and prevents overall-system scalability. These

problems are summarised in [23] and systems based on this approach scale badly and

are unable to exploit Moore's law to the full.

In general, there are only a few requirements for the design of efficient and pow­

erful general-purpose CMPs, these are: scalability of performance, area and power

with issue width, and programmability from legacy sequential code. Issue width is

defined here as the number of instructions issued on chip simultaneously, whether in

8

a single processor or in multiple processors and no distinction is made here. To meet

these requirements a number of problems must be solved, including the extraction of

ILP from legacy code, managing locality, minimising global communication, latency

tolerance, power-efficient instruction execution strategies (Le. avoiding speculation),

effective power management, workload balancing, and finally, the decoupling of re­

mote and local activity to allow for an asynchronous composition of synchronous

processors. Most CMPs address only some of these issues as they attempt to reuse

elements of existing processor designs, ignoring the fact that these are suitable only

for chips with relatively few cores.

In this thesis a CMP is evaluated, that is based on microthreading, which addresses

either directly or indirectly, all of the above issues and, theoretically, provides the

ability to scale systems to very large number of processors [24]. It will be shown in

this thesis that such CMPs use hardware scheduling and synchronisation and have

structures to support this that are distributed, fully scalable and have locality in

communication wherever possible. This is achieved with distributed schedulers that

jointly manage large parametric families of threads and a distributed register file

that provides synchronisation and sharing of data between them. These structures

provide support for a shared-register, instruction-level model of concurrency in which

synchronisation occurs between instructions and in the registers. The model requires

instructions in the ISA to specify and manage this concurrency, but this is achieved

by adding just a few additional instructions to a conventional ISA. The result, is that

concurrency can be captured in an abstract and parameterised way in the binary code,

rather than by calls to an operating system. This is a large advantage in exploiting

efficient execution of concurrency in CMPs. This concurrency provides both speedup

9

and latency tolerance in a single processor.

1.2 Research Objectives

Microthreading is a model of concurrency limited to a single context, which shares

the registers allocated to that context. The major advantage of this model is that

it provides sufficient information to implement a penalty free distributed register file

organisation. Such a proposal is given in [8] where each processor in a CMP has its

own register file. However, it is not clear what are the requirements on the register

file in term of the number of required read/write ports. This thesis therefore derived

and analysed the detailed requirements of the microthreaded distributed register-file

ports, in terms of the frequency of accesses to each logical port.

Another advantage of the microthreaded model is allocating and de-allocating

registers dynamically [25] prior to thread scheduling to supports concurrent threads

when executing code for multiple iterations of a loop concurrently. However, allocat­

ing registers dynamically requires an efficient hardware scheme to model and allocate

register usage and this scheme is examined thoroughly in this thesis.

Another problem in the microthreaded CMP is that the distributed implemen­

tation of a micro threaded CMP includes two forms of asynchronous communication.

The first is the broadcast bus, used for creating threads and distributing invariants.

The second is the shared-register ring network which is used to perform communica­

tion between the register files in the producer and consumer threads. Therefore, to

avoid contention during bus access, and to provide fairness in communication between

processors, we need some form of arbiter. Also, it is not clear how the bus interface

between processors can be implemented. In this thesis we discuss these issues and we

10

introduce a novel asynchronous arbiter optimised for this application.

The major advantage of the microgrid CMP is its scalability in terms of per­

formance, power and area with instruction-issue width. The first two issues are

demonstrated in [24, 26]. The third issue is demonstrated in this thesis, which shows

scalable implementations in instruction-issue width of the chip support structures and

the feasibility of large-scale CMPs.

1.3 Thesis Contributions

The high-level contribution of this thesis is to investigate the architectural implemen­

tation of the microgrid CMPs based on a distributed register file organisation and to

contribute the scalable implementation of the chip support structures. In particular,

the contributions of this thesis are detailed in the following points:

• We provide a comprehensive summary and survey of current and alternate mi­

croarchitecture approaches and their challenges.

• A detailed evaluation and analysis of the requirements of the microthreaded dis­

tributed register file. The results shows that the register file can be distributed

between the processors and that each register file requires only 5 fixed ports,

making it compact and scalable. This work has been published in the British

Computer Journal [26].

• A detailed design and implementation of a scalable and partitionable asyn­

chronous arbiter together with required bus interface for the microgrid chip

multiprocessor. The arbiter was designed to the gate level, and pre-layout sim­

ulation results using VHDL are presented in this thesis. This contribution also

11

has been published in [27, 28] .

• A detailed design and implementation of a hardware scheme for dynamically

allocating and de-allocating registers for the microthreaded chip multiprocessor.

Detailed evaluation and simulation results of this scheme are presented in this

thesis. Also, to demonstrate the feasibility and scalability of the multiprocessor

in term of silicon implementation, we perform a detailed area estimate of a

microgrid core and its support structures using 0.07 micron technology. Scalable

implementations of such support structures are given in this thesis and the

feasibility of large-scale CMPs is investigated. We show also that the support

structures are of a manageable size and moreover are scalable in issue width.

This work also has been published in the Parallel Programming Journal [29] .

• A detailed design and implementation of a microthreaded scheduler and the

first two stages of the microthreaded pipeline. This contribution also has been

submitted to [30].

1.4 Thesis Organisation

The remaining chapters in this thesis are organised as follows.

In Chapter 2, we present background information about the existing micro­

architecture approaches, alternative approaches, and recent chip multiprocessor ar­

chitectures. Then we outline some challenges facing these approaches. The chapter

also presents an overview of distributed memory multiprocessor architectures and

their design parameters. Finally, techniques for system evaluation that are employed

in this thesis are presented,.

12

In Chapter 3, we consider a microthreaded microprocessor concurrency model

highlighting features that support the implementation of a scalable and powerful

CMP and show the problems that need to be resolved. In particular, we first present

a microthreaded ISA, and a microthreaded in-order execution pipeline. The chapter

then presents the concurrency controls used in this model in full detail. Scalability of

the instruction issue and thread state in microthreaded model are also discused in this

chapter. The chapter also shows how the microthreaded model provides register file

partitioning and support a mechanism for dynamically allocating registers. Finally,

the chapter explains how the model support prefetching mechanism that avoids any

instruction cache misses.

In Chapter 4, we first examine modern register files. The chapter then, describes

the method of sharing registers in microthreaded model. An analysis and evaluation

of the requirements of the microthreaded register file ports is also given. A compari­

son between centralised and distributed allocation organisation is also presented. In

addition, we show an alternative allocation scheme that we have already discussed

during our research. Finally, we present a hardware scheme for dynamically allocating

and de-allocating registers to families of microthreads with its implementation and

simulation results using VHDL.

In Chapter 5, we describes the microgrid chip multiprocessor architecture model,

its features and also highlight problems that need to be resolve. In particular, we

first introduce the top-level architecture for the microgrid CMP, and then describe

the microgrid CMP communication buses. The chapter also discusses the Globally­

Asynchronous Locally-Synchronous (GALS) design approach and its features. A

method of thread distribution and scheduling in microgrid CMP is also presented.

13

Finally, we discuss microgrid scalability.

In Chapter 6, we present a scalable and partitionable asynchronous arbiter for

microgrid chip multiprocessors. The chapter first introduces an asynchronous design

methodology and its communication protocols. Techniques for deriving throughput,

latency and wavelength for the ring self-time scheme are described. The chapter also

provides a full detail design, analysis and implementation for the arbiter including a

pre-layout simulation results using VHDL.

In Chapter 7, we provide an overview of the chip architecture, and gives an area

estimate for the microthreaded support structures. We also, provide an estimated area

for the microthreaded core and show the feasibility of large CMP using an emerging

technology. Finally, the chapter presents full simulation results for the top-level model

of the continuation queue and the scheduling system in VHDL in order to verify their

correct behaviour.

In Chapter 8, we present our conclusions and suggestions for future research.

A number of directions for future development of microgrid chip multiprocessors are

given and areas of research are then outlined. Specification details are presented in

the appendices.

1.5 Publications

The following papers based on the work presented in this thesis, have been published:

14

1.5.1 Journal Papers

• Bell, LM., Hasasneh, N.M. and Jesshope C.R. (2006) Microgrids and Micro­

contexts: Support Structures for Microthread Scheduling and Synchronisation,

International Journal of Parallel Programming, Volume. 34, No.4, August

2006 ,pp. 1-39.

• Hasasneh N.M., Bell LM., and Jesshope C.R. (2006) Asynchronous arbiter for

microthreaded Chip multiprocessors, to be published, Journal of Systems Ar­

chitecture (JSA).

• Bousias, K., Hasasneh N.M. and Jesshope C.R. (2005) Instruction-level paral­

lelism through Microthreading - a scalable Approach to chip multiprocessors,

BCS, Comput. J. Vol. 49(2), (2006), pp. 211-233.

1.5.2 Conference and Workshop Papers

• Hasasneh, N.M. Bell, I.M.,and Jesshope C.R. (2005) High Level Modelling and

Design For a Microthreaded Scheduler to Support Microgrids, Submitted to

2007 ACS/IEEE International Conference on Computer Systems and Applica­

tions, AICCSA 2007 May 13-16, 2007, Amman, Jordan, 2007.

• Hasasneh N.M., Bell, I.M. and Jesshope C.R. (2006) Scalable and Partitionable

Asynchronous Arbiter for Microthreaded Chip Multiprocessors, Proc. Archi­

tecture of Computing Systems - ARCS 2006, Vol. 3894, ISBN: 3-540-32765-7,

Germany, March 13-16, Lecture Notes in Computer Science (LNCS), Volume

3894, ARCS 2006 (Frankfurt/Main, Germany), pp. 252-267.

15

• Hasasneh N.M., Bell I.M., and Jesshope C.R. (2006) Modular Asynchronous

Arbiter for Microthreaded Chip Multiprocessors, The Institution of Engineering

and Technology Postgraduate Workshop on Embedded Systems 11 October

2006, NEC, Birmingham, UK Embedded Systems at ESS 2006.

• Hasasneh, N.M., Bell, I.M. and Jesshope, C.R. (2005), Asynchronous Arbiter for

Microthreaded Chip Multiprocessors, UK Design Forum (UKDF), Manchester

University, April 13-15, 2005.

• Jesshope, C.R., Bell, I.M., Hasasneh, N.M. (2004), Chip Multiprocessors Us­

ing a Microthreaded Model, Proceeding of the 1st Computer Science Graduate

Research Conference, The University of Hull, July 2004.

Chapter 2

Background and Related Work

2.1 Current Approaches

It was shown in the previous chapter that approaches such as 000 execution, VLIW,

and multithreading suffer from hardware and software problems. In this section, we

explain these approaches and their challenges in more detail.

2.1.1 Out-of-Order (000) Execution

To achieve a higher performance, modern microprocessors use an 000 execution

mechanism to keep multiple execution units as busy as possible. This is achieved

by allowing instructions to be issued and completed out of the original program

sequence as a means of exposing concurrency in a sequential instruction stream. More

than one instruction can be issued in each cycle, but only independent instructions

can be executed in parallel, other instructions must be kept waiting or, under some

circumstances, can proceed speculatively.

Speculation refers to executing an instruction before it is known whether the re­

sults of the instruction will be used or not, this means that a guess is made as to

16

17

the outcome of a control or data hazard as a means to continue executing instruc­

tions, rather than stalling the pipeline. Register renaming is also used to eliminate

the artificial data-dependencies introduced by issuing instructions 000. This also

enables the extension of the architectural register set of the original ISA, which is

necessary to support concurrency in instruction execution. Any concurrent execution

of a sequential program will require some similar mechanism to extend the synchro­

nisation memory available to instructions. Speculative execution and 000 issue are

used in superscalar processors to expose concurrency from sequential binary code. A

reorder buffer or future file of check points and repairs is also required to re-order the

completion of instructions before committing their results to the registers specified in

the ISA in order to achieve a sequentially consistent state on exceptions.

Control speculation predicts branch targets based on the prior history for the same

instruction. Execution continues along this path as if the prediction was correct, so

that when the actual target is resolved, a comparison with the predicted target will

either match giving a correctly predicted branch, or not, in which case there was

a missprediction. A missprediction can require many pipeline cycles to clean up

and, in a wide-issue pipeline, this can lead to hundreds of instruction slots being

unused, or to be more precise, if we focus on power, to be used unnecessarily. It can

therefore be described as a wasteful of chip resources and moreover has unpredictable

performance characteristics [25]. We will show that it is possible to obtain high

performance without speculation and, moreover, to save power in doing so.

As already noted in the previous chapter, as the issue width increases in an 000,

superscalar architecture, the size of the instruction window and associated logic in­

crease quadratically, which results in a large percentage of the chip being devoted

18

to instruction issue. The 000 execution mechanism therefore prevents concurrency

from scaling with technology and will ultimately restrict the performance over time.

The only reason for using this approach is that it provides an implicit mechanism to

achieve concurrent execution from sequential binary code.

2.1.2 Very-long Instruction Word (VLIW)

An alternative and explicit approach to concurrency in instruction issue is VLIW,

where multiple functional units are used concurrently as specified by a single in­

struction word. This usually contains a fixed number of operations that are fetched,

decoded, issued and executed concurrently. To avoid control or data hazards, VLIW

compilers must hoist later independent instructions into the VLIW or if this is not

possible, must explicitly add no-op instructions instead of relying on hardware to

stall the instruction issue until the operands are ready. This can cause two problems,

firstly, a stall in one instruction will stall the entire width of the instruction, secondly,

adding no-op instructions, increases the program size. In terms of performance, if the

program size is large compared to the I-cache or Translation Lookaside Buffer (TLB)

size, it may result in higher miss rates, which in turn degrades the performance of

the processor [31].

It is not possible to identify all possible sources of pipeline stalls and their duration

at compile time. For example, suppose a memory access causes a cache miss, this leads

to a longer than expected stall. Therefore, memory reference instructions (loads and

stores) have a non-deterministic delay within the memory subsystem. The number

of no-op instructions required is not known and most VLIW compilers will schedule

load instructions using the cache-hit latency rather than the maximum latency. This

19

means that the processor will stall on every cache miss. The alternative of scheduling

all loads with the cache miss latency is not feasible for most programs because the

maximum latency may not be known due to bus contention, or memory port delays,

and it also requires considerable ILP. This problem with non-determinism in cache

access limits VLlW architectures to become cacheless unless speculative solutions are

embraced. This is a significant problem with modern technology, where processor

speeds are significantly higher than memory speeds [17]. Also pure VLIW architec­

tures are not good for general purpose applications, due to their lack of compatibility

in binary code [32]. The most significant use of VLIW architectures, therefore is in

embedded systems, where these constraints are both solved (i.e. single applications

using small fast memories). A number of projects described below have attempted

to apply speculation to VLlW in order to solve the scheduling problems and one,

the Transmeta Crusoe [33], has applied dynamic binary code translation to solve the

backward compatibility problem.

The Sun MAJC 5200 [34] is a chip multiprocessor based on four-way issue, VLIW

pipelines. This architecture provides a set of predicated instructions to support con­

trol speculation. The MAJC architecture attempts to use speculative, thread-level

parallelism to support the multiple processors. This aggressively executes code in

parallel that can not be fully parallelised by the compiler [35, 36]. It requires new

hardware mechanisms to eliminate most squashes (threads are speculatively executed

in parallel and if a cross-thread dependence is violated at run time, a corrective ac­

tion is triggered to repair the state) due to data dependencies [35]. This method of

execution is again speculative and can degrade the processor's performance when the

20

speculation fails. MAJC replicates its shared registers in all pipelines to avoid shar­

ing resources. From the implementation point of view, replicating the registers costs

significant power and area [37] and also restricts the scalability. Furthermore, the

MAJC compiler must know the instruction's latencies before it can create a schedule.

As described previously, it is not simple to detect all instructions' latencies due to

the variety of the hardware communication overheads.

2.1.3 Explicitly Parallel Instruction Computing (EPIC)

Intel's explicitly parallel instruction computing (EPIC) architecture is another spec­

ulative evolution of VLIW, which also solves the forward (although not backward)

code compatibility problem. It does this through the run-time binding of instruction

words to execution units. The IA-64 [38] architecture supports binary code compati­

bility across a range of processor widths by utilising instructions packets that are not

determined by issue width. This means a scheduler is required to select instructions

for execution on the available hardware from the current instruction packet. This

gives more flexibility as well as supporting binary code compatibility across future

generations of implementation. The IA-64 also provides architectural support for

control and data speculation through predicated instruction execution and binding

pre-fetches of data into cache. In this architecture each operation is guarded by one

of the predicate registers, each of which stores one bit that determines whether the

results of the instruction are required or not. Predication is a form of delayed branch

control and this bit is set based on a comparison operation. In effect, instructions are

executed speculatively but state update is determined by the predicate bit so an op­

eration is completed only if the value of its guard bit is true, otherwise the processor

21

invalidates the operation. This is a form of speculation that executes both arms of

some branches concurrently but this action restricts the effective ILP, depending on

the density and nesting of branches.

Prefetching is achieved in a number of ways. For example, by an instruction

identical to a load word instruction that does not perform a load but touches the cache

and continues, setting in motion any required transactions and cache misses up the

hierarchy. These instructions are hoisted by the compiler up the instructions stream,

not just within the same basic block. They can therefore tolerate high latencies in

memory, providing the correct loads can be predicted. There are many more explicit

controls on caching in the instruction set to attempt to manage the non-deterministic

nature of large cache hierarchies. Problems again arise from the speculative nature

of the solution. If for some reason the prefetch fails, either because of a conflict

or insufficient delay between the prefetch and genuine load word instruction, then a

software interrupt is triggered incurring a large delay and overhead.

EPIC compilers face a major problem in constructing a plan of execution, they

can not predict all conditional branches and know which execution path is taken [39].

To some extent this uncertainty is mitigated by predicated execution but as already

indicated, this is wasteful of resources and power and like all speculative approaches

can cause unpredictability in performance. Although object code compatibility has

been solved to some extent, the forward compatibility is only as good as the compiler's

ability to generate good schedules in the absence of dynamic information. Also the

code size problem is still a challenge facing the EPIC architecture [39].

22

2.1.4 Multithreading

In order to improve processor performance, modern microprocessors try to exploit

thread-level parallelism (TLP) through a multithreading approach even at the same

time as they exploit ILP. Multi-threading is a technique that tolerates delays asso­

ciated with synchronising, including synchronising with remote memory accesses, by

switching to a new thread, when one thread stalls. Many forms of explicit multi­

threading techniques have been described, such as interleaved multithreading (IMT),

blocked multithreading (BMT) and simultaneous multithreading (SMT). A good sur­

vey of multithreading is given in [1].

A number of supercomputers designed by Burton Smith have successfully ex­

ploited IMT, these include the Delencor HEP, the Horizon and culminated in the

Tera architecture [40]. This approach is perhaps the closest to that of microthreading

described in this thesis, although the processor was designed as a component of a large

multi-computer and not as general purpose chip. The interleaved approach requires

a large concurrency in order to maintain efficient pipeline utilisation, as it must be

filled with instructions from independent threads. Unlike the earlier approaches, Tera

avoids this requirement using something called explicit-dependence lookahead, which

uses an instruction tag of 3 bits that specifies how many instructions can be issued

from the same stream before encountering a dependency on it. This minimises the

number of threads required to keep the pipeline running efficiently, which is about 70

in the case of memory accesses. It will be seen that microthreading uses a different

approach that maintains full backward compatibility in the ISA, as well as in the

pipeline structure.

Unlike IMT, which usually draws concurrency from ILP and loops, BMT usually

23

exploits regular software threads. There have been many BMT proposals, see [1] and

even some commercial designs such as the Sun's Niagra processor [6]. However the

concurrency exposed in BMT architectures is limited, as resources, such as register

files must be duplicated to avoid excessive context switching times. This limits the

applicability of BMT to certain classes of applications, such as servers.

SMT, is probably the most popular and commercial form of multithreading in

use today. In this approach, multiple instructions from multiple threads provide

ILP for multiple execution units in an 000 pipeline. Several recent architectures

have either used or proposed SMT, such as the Hyper-Thread Technology in the

Intel Xeon processor [41] and the Alpha 21464 [42]. As already described, the main

problem with an SMT processor is that it suffers from the same scalability issues as

a superscalar processor, i.e. layout blocks and circuit delays grow faster than linearly

with issue width. In addition to this, multiple threads share the same level-l I-cache,

which can cause high cache miss rates, all of which provides limits to its ultimate

performance [16].

2.2 Alternate Approaches

The complexity and the effectiveness of the instruction issue, long wire delay, and the

centralised components of those are difficult to scale in existing approaches, requires

researchers either to extend the concepts of a superscalar processors or to build new

architectures as an alternative to the superscalar processor. The Multiscalar [43]

architecture from the university of Wisconsin is an example for extending the con­

cept of superscalar processors. Also, a number of recent projects have attempted to

build new architectures as an alternative to a superscalar processor; including the

24

Reconfigurable Architecture Workstation (RAW) at MIT [44, 45], the Tera-op, Re­

liable, Intelligently adaptive Processing System (TRIPS) [46, 47] at UT-Austin, and

Wavescalar [48] at Washington. These projects attempt to minimise communication

costs and try to exploit locality and improve system scalability.

However, these architectures change the baseline processor design drastically, and

use a non-conventional architecture design. In contrast, the microthreaded micro­

processor model is a general purpose architecture and can be applied to any RISC

or VLIW instruction set. This allows backward compatibility of binary-code with no

speed-up, and full speed-up from recompiled code that uses additions to base Instruc­

tion Set Architecture (ISA) to support the explicit concurrency controls [49]. The

following sections explain in more detail some existing and alternative approaches for

processor architecture.

2.2.1 Microthreading

The microthreaded model was first described in [50], and was then extended in [8,

17, 49, 51] to support systems with multiple processors on-chip. Like the Tera, this

model combines the advantages of BMT and IMT but does so by explicitly interleav­

ing microthreads on a cycle-by-cycle basis in a conventional pipeline. This is achieved

using an explicit, context-switch instruction, which is acted upon in the first stage of

the pipeline. Context switching is performed when the compiler can not guarantee

that data will be available to the current instruction and is used in conjunction with

a synchronisation mechanism on the register file that suspends the thread until the

data becomes available. The context switch control is not strictly necessary, as this

can be signaled from the synchronisation failure on the register read. However, it

25

significantly increases the efficiency of the pipeline, especially when a large number

of thread suspensions occur together, when the model resembles that of an IMT ar­

chitecture. Only when the compiler can define a static schedule are instructions from

the same thread scheduled in BMT mode. Exceptions to this are cache misses, itera­

tive operations and inter-thread communications. There is one other situation where

the compiler will flag a context switch and that is following any branch instruction.

This allows execution to proceed non-speculatively, eliminates the branch prediction

and cleanup logic and fills any control hazard bubbles with instructions from other

threads, if any are active.

The model is defined incrementally and can be applied to any RISe or VLIW

instruction set. The incremental nature of the model allows a minimal backward

compatibility, where existing binary code can execute unchanged on the conventional

pipeline, although without any of the benefits of the model being realised.

Microthreading defines ILP in two ways. Sets of threads can be specified where

those threads generate MIMD concurrency within a basic block. Each thread is

defined by a pointer to its first instruction and is terminated by one or more Kill

instructions depending on whether it branches or not. Sets of threads provide con­

currency on one pipeline and share registers. They provide latency tolerance through

explicit context switching for data and control hazards. Iterators, on the other hand,

define SPMD concurrency by exploiting a variety of loop structures, including for and

while loops. Iterators give parametric concurrency by executing iterations in parallel

subject to dataflow constraints. Independent loops have no loop-carried dependen­

cies and can execute with minimal overhead on multiple processors. Dependent loops

can also execute on multiple processors, exploiting instruction level concurrency but

l

26

during the execution of dependency chains, activity will move from one processor to

another and speedup will not be linear. Ideally dependency chains should execute

with minimal latency and parameters for the concurrency instruction provided by the

model, which allow dependencies to be bypassed on interactions executed on a single

processor giving the minimal latency possible, i.e. 1 pipeline cycle per link in the

chain.

Iterators share code between iterations and use a set of threads to define the

loop body. This means that some form of context must be provided to differentiate

multiple iterations executing concurrently. This is achieved by allocating registers to

iterations dynamically. A family of threads then, is defined by an iterator comprising

a start, and limit of the loop over a set of threads. Information is also required that

defines the microcontext associated with an iteration and, as each iteration is created,

registers for its microcontext are allocated dynamically. To create a family of threads

a single instruction is executed on one processor, which points to a thread control

block (TeB) containing the above parameters. Iterations can then be scheduled on

one or more processors as required to achieve the desired performance.

Virtual concurrency on a single pipeline defines the latency that can be tolerated

and is limited by the size of the local register file or continuation queue (CQ) in the

scheduler. The latter holds the minimal state associated with each thread. Both are

related by the two characteristics of the code; the number of registers per microcontext

and the cardinality of the set of threads defining the loop body. In this model, all

threads are drawn from the same context and the only state manipulated in the

architecture is a thread's execution state, its PC and some information about the

location of its microcontext in the local register file. This mechanism removes any

27

need to swap register values on a context switch.

Theoretically, physical concurrency is limited only by the silicon available to im­

plement a CMP, as all structures supporting this model are scalable and are related to

the amount of the virtual concurrency required for latency tolerance, i.e. register file,

CQ and register allocation logic. Practically, physical concurrency will be limited by

the extent of the loops that the compiler can generate, whether they are independent

or contain loop-carried dependencies and ultimately, the overheads in distribution

and synchronisation that frame the SPMD execution. Note that thread creation pro­

ceeds in a two stages. A conceptual schedule is determined algorithmically on each

processor following the creation of a family of microthreads but the actual thread

creation, i.e. the creation of entries in the CQ, occurs over a period of time at the

rate of one thread per cycle, keeping up with the maximum context-switch rate. This

continues while resources are available.

The next chapter provides more details about the microthreaded microprocessor

model and its concurrency controls. The model has multiple features which make it

a good candidate to future scalable and powerful CMPs.

2.2.2 Multiscalar

Another paradigm to extract even more ILP from sequential code is the multiscalar

architecture. This architecture extends the concepts of superscalar processors by

splitting one wide processor into multiple superscalar processors. In a superscaler

architecture, the program code has no explicit information regarding ILP; only the

hardware can be employed to discover the ILP from the program. In multiscalar, the

program code is divided into a set of tasks or code fragments, which can be identified

28

statically by a combination of the hardware and software. These tasks are blocks in

the control flow graph of the program and are identified by the compiler. The purpose

of this approach is to expose a greater concurrency explicitly by the compiler.

The global control unit used in this architecture distributes the tasks among mul­

tiple parallel execution units. Each execution unit can fetch and execute only the

instructions belonging to its assigned task. So, when a task missprediction is de­

tected, all execution units between the incorrect speculation point and the later task

are squashed [52]. Like superscalar, this can result in many wasted cycles, however

as the depth of speculation is much greater, the unpredictability in performance is

correspondingly wider.

The benefit of this architecture over a superscaler architecture is that it provides

more scalability. The large instruction window is divided into smaller instruction win­

dows, one per processing unit, and each processing unit searches a smaller instruction

window for independent instructions. This mitigates the problems of scaling instruc­

tion issue with issue width. The multiple tasks are derived from loops and function

calls, allowing the effective size of the instruction window to be extremely large. Note

that not all instructions within this wide range are simultaneously being considered for

execution [43]. This optimisation of the instruction window is offset by a potentially

large amount of communication, which may effect the overall system performance.

Communication arises because of dependencies between tasks; examples are loop­

carried dependencies and function arguments and results. Results stored to register,

which are required by another task, are routed from one processor to another at run

time via a unidirectional ring network. Recovery from misspeculation is achieved by

29

additional hardware that maintains two copies of the registers along with a set of reg­

ister masks, in each processing unit [53]. In summary then, although the multiscalar

approach mitigates against instruction window scaling allowing wider issue width, in

practice it requires many of the same complex mechanisms as superscalar and being

speculative is unlikely to be able to perform as consistently as a scalable CMP.

2.2.3 Intrathreads

The intrathreads [54] or inthreads represent a context of computation (independent

threads of control) executing simultaneously on the processor. Thus, the processor

holds a context and this context contains information necessary for its execution. A

set of condition registers are used for synchronisation between intrathreads and to

suspend the inthread's context until a specific condition has been resolved. The ar­

chitecture defines a set of instructions for creation, synchronisation, and termination.

Generally the intrathread architecture is similar to SMT, where it tries to operate

on a low level of ILP by using a shared registers for data communication rather than

shared memory as in SMT.

Intrathreads adopt the same principle as microthreads but with a different ap­

proach to implementation. The architecture supports a fixed number of intrathreads.

In fact, the intrathread architecture has many limitations and ends up requiring many

of the same complex mechanisms as SMT such as: complex issue window, register

renaming, speculative execution, and recovery mechanisms to handle misspeculation

of branches which affect instructions in several threads.

As described in [24], there are many differences between intreathreds and mi­

crothreads. First, intrathreads use bounded concurrency and statically-partitioned

30

resources, while microthreads describe parametric concurrency and the resources are

managed dynamically through the concept of microcontexts. Secondly, intrathreads

separate synchronisation and data storage, while a microthreaded processor imple­

ments registers as i-structures to synchronise between code fragments. In addition,

Inthreads have a limited number of threads, and the implementation targets a wide

issue pipeline rather than a chip multiprocessor.

The microthread model requires dynamic register allocation and a hardware sched­

uler, which can support hundreds of microthreads per processor and their associated

micro contexts. The allocation of these micro threads is dynamic; being determined

by resource availability, as the concurrency exposed is parametric and not limited by

the hardware resources. The instruction issue schedule in the microthreaded model

is also dynamic and requires linear hardware complexity to support it.

2.2.4 Raw Machine (RAW)

The RAW processor is a single chip consisting of 16 identical single issue processor

tiles connected by a mesh interconnection network. Each tile in the mesh contains a

data and instruction memory, register file and an 8-stage in-order pipeline.

The RAW architecture and its compiler tries to exploit ILP within basic blocks

of code. The architecture supports data and ILP by explicitly distributing computa­

tion to different tiles and running them as different threads (independent instruction

streams). In order to route a value between two tiles a static router is used to set

up an appropriate path between the source tile and the destination tile on the static

network. In fact, this architecture exploits TLP rather than ILP by using indepen­

dent instruction streams. Also, the RAW compiler puts all statically predictable

31

communications on the static on-chip network and the ordering never changes [56],

the problem is how to adapt this method for dynamic code to evaluate ILP with

considerable data dependencies.

The RAW architecture not only statically orders communication between the 16

tiles, but also statically partitions code onto the tiles. One draw back of this ar­

chitecture is the inter-node communication latency, which is extremely sensitive and

high. The RAW architecture suffers a three cycle penalty in the case of misspre­

diction or inter-tile ALU-to-ALU operand delivery and up to 54 cycles for Ll cache

miss latency [56]. In contrast, microthreading provides a mechanism to avoid any de­

lays in instruction cache misses and is also fully decoupled from any remote accesses,

including memory access.

2.2.5 Explicit Data Graph Execution (EDGE) and TRIPS

The Explicit Dataflow Graph Execution (EDGE) instruction set architecture is an­

other approach targeting a scalable issue width, which tries to turn thread and data

level parallelism to ILP, and attempts to minimise global communication delays. The

TRIPS architecture is an evolution of the EDGE ISA, which uses a dataflow order

execution and its architecture contains two 000, 16-wide issue processor cores.

The program graph in TRIPS EDGE architecture is broken explicitly by the

compiler into a sequence of blocks called hyperblocks [57]. Each block is fetched from

the memory at run time and is scheduled independently. The compiler is responsible

for statically placing this block of instructions into the issue window and mapping

each block into the array of execution nodes. The renaming logic at the register

file bank is used to forward register values that one block produces directly to be

32

consumed in another block.

Within a block, the TRIPS ISA supports large graphs of computation mapped to

hardware components, with instructions in each graph communicating directly with

other instructions, rather than going through a shared name space. The hyperblocks

are scheduled sequentially with conventional control-flow semantics, then allocated

to processors in a cluster statically. Because of this partioning between data flow

and sequential semantics, the approach does not scale seamlessly [55]. Subsequent

hyperblocks are selected speculatively, and executed concurrently. Scaling the hard­

ware will require scaling the hyperblocks that provides the data flow concurrency,

which is a compile-time optimisation and would require frequent recompilation [55].

The architecture is similar to wavescalar in that both use of direct communication

between instructions of the same hyperblock.

A TRIPS compiler unrolls loops statically to extract higher levels of concurrency

up to its execution width. It is also focused on statically mapped parallelism, which

is automatically extracted by the compiler. Conversely, in the microthreaded model,

parametric concurrency based on loops can be expressed through the ISA, using a

control block associated with the ere instruction. Therefore, the concurrency is not

limited by hardware constraints.

2.2.6 Wavescalar

Wavescalar [48] is a tagged-token dataflow architecture. Instructions execute in se­

quence and according to the dataflow firing rule. Wavescalar instructions execute

in-place in the memory system and explicitly send their results to their dependents.

33

Thus, wavescalar instructions are cached in the processing elements. The main moti­

vation of wavescalar architecture was to build a distributed superscalar processor core

in order to provide a scalable issue window and to avoid a long wire delays problem.

It also attempts to solve the problems of source language and concurrency expan­

sion. It does this by introducing a wave number across multiple instances of a given

context such as a loop or function call. This sequentialises execution and provides a

mechanism for resolving multiple writes to the same variable, something not allowed

in single assignment languages [55].

This architecture relies on the compiler to minimise the communication delays by

minimising the physical distance between the dependent operands and hence min­

imising the execution time. Execution of instructions occurs in a desired order within

each wave. Wave number tags are used in identifying each individual instance of

data used when executing the program. Thus, the Wavescalar architecture uses a

wave-ordering memory mechanism to order memory operations by statically assigned

unique sequence numbers for the predecessor and successor operations. Wavescalar

dynamically groups multiple instructions as a block and assigns this block to a fixed

number of processing cache elements. The Wavescalar approach however, still suffers

from inefficiencies in managing control flow and will typically execute more instruc­

tions for a given computation than are executed in a RISe processor [55]. Also, there

is no flexibility in the execution and this follows from the adaptive ordering which

reduces the parallelism.

34

2.3 Recent CMPs

From the above discussion we see that most current techniques for exploiting con­

currency suffer from software and/or hardware difficulties, and the focus of research

and development activity now seems to be on chip multiprocessors (eMP). These

designs give a more flexible and scalable approach to instruction issue, freeing them

to exploit Moore's law though system level concurrency. Some applications can ex­

ploit such concurrency through the use of multithreaded applications. Web and other

servers are good examples; however, the big problem is how to program CMPs for

general purpose computation and whether performance can ever be achieved from

legacy sequential code, either in binary or even source form.

Several recent projects have investigated CMP designs [2,3,4,58]. Typically, the

efficiency of a CMP depends on the degree and characteristics of the parallelism. Ex­

ecuting multiple processes or threads in parallel is the most common way to extract a

high level of parallelism, but this requires concurrency in the source code of an appli­

cation. Previous research has demonstrated that a CMP with four 2-issue processors

will reach a higher utilisation than an 8-issue superscalar processor [1]. Also, work

described in [4] shows that a CMP with an eight 2-issue superscalar processor would

occupy the same area as a conventional 12-issue superscalar. The use CMPs is a

very powerful technique to obtain more performance in a power efficient manner [59].

However, using superscalar processors as a basis for CMPs; with their complex issue

window, large on chip memory, large multi-ported register file and speculative execu­

tion is not such a good strategy because of the scaling problems already outlined. It

would be more efficient to use simpler in-order processors and exploit more concur­

rency at the CMP level, provided that this can be utilised by a sufficiently wide range

35

of applications. This is an active area of research in the compiler community and

until this problem is solved, CMPs based on user-level threads will only be used in

applications which match this requirement, such as large server applications, where

multiple service requests are managed by threads.

2.4 Microarchitecture and Architecture Challenges

As described above, CMPs architectures must overcome multiple challenges if they

are to deliver their full potential. In this section, we provide more detail on these

challenges, and outline some of the existing approaches to solving them.

2.4.1 Scalability and Performance Improvement

To keep multiple execution units as busy as possible in the presence of significant

latency in obtaining operands, modern processors use an aggressive 000 instruction­

execution. This allows instructions to be issued and completed out of the original

program sequence, thereby exposing concurrency in the legacy, sequential instruction

stream. 000 execution increases the performance of a superscalar processor by

reducing the number of stall cycles in the pipeline. Synchronisation is managed by

the instruction-issue logic, which keeps track of resources required by an instruction

and any dependencies on the results of other instructions, which may not yet have

been scheduled or completed. The instruction window maintains the set of decoded

instructions on the currently predicted execution path that have not yet been issued.

Its logic triggers those instructions for execution but requires an area that is quadratic

in issue width, i.e. the number of instructions that can be issued simultansously [12].

36

Other support for renaming registers and retiring instructions adds to this cost. The

key problem is that the mechanism for synchronisation is centralised.

Monolithic processors (Le. wide-issue from a single instruction stream) have other

structures that do not scale, these are the register file [60] and bypass logic [14],

which are also centralised. Finally, the concurrency exposed in 000 instruction

execution is limited due to the inefficient use of the instruction window. In practice

its size is limited by scalability constraints but its use is required for all instructions,

independent of whether those instructions can be statically scheduled or not.

SMT is an attempt to make more efficient use of 000 scheduling by fetching

instructions into the instruction window from a number of independent threads, thus

guaranteeing fewer dependencies between the instructions found there and hence al­

lowing more efficient use of the wide instruction issue. However, it does not address

any of the issues outlined above and suffers from the same scalability problems as

conventional 000 processor, Le. layout blocks and circuit delays grow faster than

linearly with issue width, and synchronising memory is used inefficiently. Indeed it in­

troduces other problems, such as multiple threads that share the same level-1 I-cache,

which can cause high cache miss rates, all of which limit the ultimate performance [16].

The latency across a memory hierarchy may require hundred of cycles, which can

significantly impact performance. The only way to avoid an impact on a processor's

performance is to provide instruction-level concurrency, in addition to wide instruc­

tion issue, to provide tolerance to this latency. That, by definition, requires hundreds

of independent instructions per processor. With CMPs comprising thousands of pro­

cessors, this means providing synchronising memories capable of supporting hundreds

of thousands of synchronisation will be required in future CMPs and they must be

37

designed with this in mind.

An alternative approach to on-chip concurrency is to exploit user-level threads

rather than dynamically extracting concurrency from legacy binary code. Sun has

proposed a commercial, 32-way threaded version of the SPARe architecture in its

Niagara device. The chip has eight cores, each able to handle the contexts of four

threads. Each core has it own L1 cache and all cores share a 3MB L2 cache. Key

problems with the Niagara approach are the significant resource consumption for the

aggressive speculative techniques used, and the significant time wasted waiting for off­

chip misses to complete, see [61]. Also, the basic implementation of this SPARC chip

is a superscalar processor and, as already described, the superscalar approach provides

diminishing returns in performance for increasing issue width. The performance of

a 6-issue 000 processor will achieve only 1.2 to 2.3 IPC, compared with 0.6 to 1.4

IPC in a 2-issue processor [13].

It should be noted that Niagara is better suited to server rather than general­

purpose workloads, as a profusion of high-level threads are available in server appli­

cations, e.g. where a server's users are each managed by a concurrent thread. How­

ever, for general purpose workloads, typical programs are not so heavily threaded and

unless an automatic means of generating them can be found, this will severely limit

the software-thread approach.

2.4.2 Concurrency and Programmability

Exposure and management of concurrency are the key issues in supporting CMP de­

sign and implementation. This is the case for distributed systems as well chip-level

38

systems, but in the latter situation, the constraints and opportunities dictate a dif­

ferent approach that is able to minimise the overheads of managing that concurrency.

Concurrency has the ability to increase overall system performance as well as provide

power savings in obtaining a given performance, by scaling frequency and voltage.

The use of 000 instruction execution to expose and manage concurrency is ideal

in one respect and one respect only. That is the ability to obtain concurrency from

legacy code, without the programmer having to be aware of it. This has great com­

mercial appeal. However, the model has no tacit knowledge of concurrency and

synchronisation and this must be extracted dynamically in hardware, using complex

support structures, not all of which scale with issue width. This is wasteful of chip

resources, does not have predictable performance and is not able to conserve power

in the execution of instructions. If concurrency were explicitly described in the in­

struction stream, some of these unsealable structures could be avoided.

User-level concurrency based on threaded applications is one alternative solution

exemplified by the Niagara described above, but not all codes contain thread-level

concurrency and therefore tools are required to extract threads from sequential pro­

grams. One example of such tools is the use of speculative, pre-execution threads

to provide latency tolerance in memory access. This can be performed statically

by a compiler, dynamically in the hardware, or indeed by a hybrid of the two [62].

However, as its name suggests, the model is speculative, which can again result in

unpredictable performance and, like all speculative methods, is not conservative in

its use of energy, e.g. when the speculation fails.

An alternative approach to extracting threads from user-level sequential code is

described in [63], which compiles legacy applications for a multithreaded architecture.

39

The most important goal of this work is to create a sufficiently large number of threads

so that there is sufficient parallelism to hide communication latency. A second goal

is to create threads of a sufficient granularity so that the context switching cost is

relatively small compared with the cost of the actual computation. These goals are

contradictory but can be achieved by distributing remote data dependencies between

different threads and using these dependencies to schedule the thread when data de­

pendencies are resolved, i.e. by using non-blocking threads. The approach described

here, microthreading, has extremely efficient context switching and consequently does

not require threads to be non-blocking.

Most approaches to extracting concurrency use the well-known fact that most

computation is performed in loops and that loop iterations can often be performed

concurrently, LLP. Compilation can extract software concurrency, as [63], or provide

instruction-level concurrency as in the case of microthreading, which has an ISA ex­

tension for the compiler to target; this instruction dynamically creates a whole family

of threads. Alternatively, in conjunction with control speculation, loops facilitate the

concurrency exposed in 000 instruction execution by using branch prediction.

However, not all loops are independent and concurrency is often limited by data

dependencies, which may arise between different loop iterations when executed con­

currently. The vector computers of the 1970s and 1980s were unable to deal with LLP

that involved dependencies. 000 instruction execution, on the other hand, manages

these dependencies, which are often regular, just like any other irregular dependency.

It has no contextual data to optimise and structure such management. There are

other explicit approaches to manage loops containing data dependencies [3, 15] but

in these, loop-carried dependencies are expressed as concurrently executing threads

40

that share memory. This is bad as it induces high latencies in the dependency chains.

In contrast, microthreads, synchronise in registers rather than in memory but this

requires large register files as well as large support structures. This can only be

achieved using distributed structures and in microthreading, unlike monolithic wide­

issue approaches, synchronisation and scheduling are managed by distributed register

files and schedulers even though the concurrency is specified and managed at the

instruction level.

The requirements on these support structures are severe; they must support a

context switch on every cycle, as the compiler identifies context switch points in

the code and can flag any instruction to context switch. They must also support

thread creation on every cycle, as thread creation occurs concurrently with instruction

execution and must keep pace with the rate at which context switches can occur.

Finally, they must support thread rescheduling at one thread per cycle, as when all

threads are created, rescheduling must also keep up with context switch rates.

2.4.3 Scaling Processor Support Structures

In superscalar processors, the logic necessary to handle 000 instruction issue typ­

ically occupies 20-30% of the chip area [13] and the issue logic in processors that

support speculation can be responsible for 46% of the total power [64]. On-chip

caches are another critical challenge in modern processors, occupying large die areas,

consuming significant power, and in some cases restricting system performance and

scalability. Large cache bandwidth requirements and slow global wires will sharply

diminish the effective performance of processors sharing a large monolithic cache as

advances in fabrication processes effectively decrease global propagations times.

41

The alternative is to build thousands of processing elements on a die and surround

each with a small amount of fast storage. Compare this to Intel's Montecito processor

where cache memory occupies some 70% of the total die area or the equivalent to

32,000 32-bit integer ALUs (0.18J.Lm technology). Huh et. al. [65] address this issue by

comparing the architectural trade-offs between in-order and 000 issue processors for

serial applications. Their study demonstrated that if no L-2 cache area were required,

then it is possible to integrate 556 2-way in-order processors on a single chip, or 201

4-way 000 processors with a maximum area of 400mm2 in 35nm technology.

Clearly, the use of ever larger hierarchical memory systems does not serve scala­

bility and does not guarantee better performance. Instead, as argued above, there is

a requirement for large, fast and distributed synchronisation memory to support very

wide instruction issue as well as latency tolerance. Ideally a deterministic distribution

of instruction execution and data mapping is required in order to explicitly manage

locality and to eliminate, as far as is possible, slow and power-hungry global commu­

nication. This goal is not served by using a large and monolithic processors connected

to a large and monolithic on-chip memory. In short, some form of distribution be­

comes essential and without a deterministic distribution of data and computation on

chip, very wide-issue CMPs are just not feasible.

Rixner et. al. [22] analysed register file area, delay and power dissipation for

streaming applications. The analysis showed that for a central register file, area and

power dissipation grows as N3 and delay grows as N3/2. Examples of the effects of

this scaling can be found in the proposed Alpha 8-way issue 21464, which used a

512 location register file requiring 24 ports to serve the wide-issue processor. Even

with a clustering, the 4Kbytes of register file occupied an area some 5 times larger

42

than that used by the L1 D-cache [66] (64KB plus tags). That is a per-bit, density

ratio of 100: 1 and graphically illustrates Rbmer's results. Power is also an issue in

such large structures and in Motorola's M.CORE architecture, the register file energy

consumption is 16% ofthe total processor power and 42% ofthe data path power [67].

These examples, which support only modestly-wide instruction issue, confirm that

multi-ported register files in modern microprocessors are not the way to proceed in

future CMPs.

ILP processors communicate and synchronise using a namespace interpreted at

the instruction level, i.e. the register specifiers. This is typically limited to 5 or 6

bits and the question that must be asked is how can a large and distributed syn­

chronisation memory be addressed with such small addresses? 000 processors use

register renaming for subsequent uses of the same register specifier and thus expand

the namespace dynamically. (This also removes the artificial dependencies introduced

by executing instructions out of program sequence). Of course, additional hardware

is now required to perform this mapping and to re-establish the mapping back to the

original binary code to give the illusion of sequentially executed instructions.

Microthreading on the other hand executes loops as concurrent code fragments

and in order to share code for a loop body, each iteration must have its own registers,

which are unique. In contrast to renaming, this is achieved by addressing a register

file relative to some unique offset, so that the same instruction will access a different

location in the register file for different iterations. Those offsets are a part of the

microthread's state. This mechanism extends the ISA's namespace so that it is limited

only by the parametric concurrency expressed in the creation of the microthreads that

execute the loop.

43

2.4.4 Power Dissipation

Two challenges in modern processors is power consumption and heat dissipation,

which are already a serious problems and will only become worse in future [68]. For

example, Intel's Madison consumes up to 130W, the alpha 21364 EV-7 consumes

155W and the International Technology Roadmap for Semiconductors expects that

power consumption in processors will reach close to 300W by 2015 [21]. This 300W

does not follow the past exponential growth in power dissipated and recognises this

as a major constraint on processor design. This problem is exacerbated as in future

process technologies, the leakage power will also become a significant percentage of

the overall power dissipated [69].

Several researchers have considered power reduction in CMPs [68, 69] but these

techniques can not hope to find significant principle solutions as branch prediction

and 000 issue do not provide a significant performance improvement relative to the

area and power consumed and do not execute instructions conservatively with respect

to power dissipation. Indeed, the only solution is to remove these features to save

power [70]. Another current trend that highlights this problem is the current practice

of increasing the number of pipeline stages in order to reduce the clock period and

hence increase performance. This also can not continue, as it is simply not feasible to

continue to extract exponentially growing amounts energy from a chip as heat, as the

result of power dissipated. Indeed, there is a case for the trend to higher and higher

clock frequencies to be stopped or even reversed and instead to use concurrency as a

means of providing performance improvements without excessive power consumption.

Concurrency can also provide power reduction for a given performance. With a

scalable processor, two processors acting concurrently should give the same overall

44

performance as one at double the speed. The scalability required is performance

with issue width, logic or area with issue width and power dissipated with instruc­

tions issued per cycle (IPC). Although the above comparison breaks even in power

dissipated, power can be saved by scaling supply voltage with frequency. As power

dissipated is proportional to Vvv , this gives a quadratic reduction in power for a

given performance, over the linear portion of frequency-voltage scaling.

The use of IPC rather than issue width as a base for power scaling assumes that

when a processor is inactive it can be powered down. As a result, speculation or eager

execution must be avoided, as by definition an eager processor can never determine

when there is nothing to do!

Microthreading uses simple in-order instruction issue without branch prediction

and has explicit control of instruction scheduling, it can therefore provide all the

hooks required to support conservative instruction issue and hence take advantage of

this power scaling [24]. Processors with no active threads are aware that instructions

can not be scheduled and can therefore go into standby mode dissipating minimal

power. This power usage can be scaled with IPe rather than issue width.

This conservative scheduling also provides an insight into asynchronous partition­

ing of a CMP. By definition, if a processor has all of its threads inactive, then any

event triggering further computation must either be external to the processor (asyn­

chronous) or the processor must be deadlocked. A microthreaded CMP can therefore

use a local clocking with asynchronous communication between processors, further

reducing power requirements. This fact, together with the processor's inherent la­

tency tolerance provides all the hooks required to implement a globally-asynchronous,

locally-synchronous (GALS) implementation. Additional power savings come from

45

not requiring such powerful drivers in distributing the clocks to the entire chip.

2.5 Distributed Memory Multiprocessor Architec­

ture

It is very well known that most current multiprocessor systems organise their proces­

sors and memory using one of the two architecture methods [71], Uniform-Memory

Access (UMA) and Non-Uniform Memory Access (NUMA). In an UMA architec­

ture, as shown in figure 2.1, mUltiple processors links up to a global memory storage

through a common system bus. The access times to this memory from each processor

are the same, hence the name UMA. This memory architecture has the advantage

of being easy to program as there is no explicit communication between processors

and all communications are handled through a global memory system. However, this

architecture does not scale well and has a communication bottleneck when multiple

processors attempt to access the centralised resource (system bus or global memory)

at the same time.

The second alternative memory organisation is NUMA, and it also known as a

Distributed Shared Memory (DSM) architecture. The general structure of NUMA

architectures is shown in figure 2.2, which avoids the drawbacks of the UMA architec­

ture and allows the construction of large scalable machines [72, 73]. This architecture

can be constructed as a clustered or shared local memories as shown in figures 2.2a

and 2.2b respectively. In a clustered configuration, each cluster is itself an UMA or

a NUMA multiprocessor, where all processors belong to the same cluster and have a

uniform access to the memory attached to it within the cluster. The interconnection

46

/

V I Global Memory

J ~

~

, ,
System Bus ¢>

~j

/ / / ;1 / ;1 L /

Processing Processing Processing Processing
Element V Element ~ Element V Element II

Figure 2.1: UMA architecture model.

network is used by each cluster to connect other remote clusters. In shared local

memories, each processor accesses its local memory which is attached dir ctly to it

and accesses the high performance interconnection network for the remote data. The

access time in this memory architecture varies, hence the name on-Uniform Memory

Access (NUMA). Access to the local memory can occur much faster than the remote

memory (due to the different physical distances) , and the latter is effected by the way

the processors are connected.

As described in [74], the distributed-memory multiprocessor architecture is es-

sential in developing massively parallel machine, however one of the most important

design issues in such a distributed memory multiprocessor architecture is a latency

problem, which is caused by remote memory access. This problem forces the pro­

cesses to suspended their execution until the response to remote memory is received.

Such a design strategy places a greater challenge on the memory system, where on

average memory operations account for about third of all instructions [75]. The long

latency across the memory hierarchy in modern processors requires hundred of cycles

47

a) Cluster Model

•••

Scalable Interconnection Network
b) Shared local memories

Figure 2.2: NUMA models system architectures.

to traversed data, which significantly impacts performance. For example, in l-GHz

microprocessors accessing main memory can take about 100 cycles and such access

may stall a pipelined processor for many cycles [23]. Therefore, the memory system

is an important design issue, which must be considered carefully in designing any

scalable system on-chip.

The latency tolerance provided by micro threaded microprocessor model makes the

design of the memory system somewhat flexible. For example, a large, banked, multi­

ported memory would give a solution that would provide all the buffering required

for the large number of concurrent requests generated by this model. It is important

to note that using in-order processors and a block-based memory consistency model,

memory ordering does not pose the same problem as it does in an 000 processor. The

following subsections cover some design choices for distributed memory architectures

48

I DirectoryJ I Directory I I Directory J

I

I Cache I I Cache I ••• I Cache J
I

I Proc J I Proc I I Proc I
I

1

/

~ Scalable Interconnection Network

Figure 2.3: The COMA architecture model.

and chapter 8 introduces two possible memory organisations for further research for

distributed memory architectures for microthreaded CMP.

2.5.1 Cache Only Memory Architecture (COMA)

One possible organisation of memory modules is to use a cache only memory (COMA)

architecture [76, 77, 78, 79,80, 81J. The COMA model is a distributed shared memory

and it is a special case of NUMA architecture. COMA attempts to improve memory

bandwidth by organising the local memory as a large cache, called an attraction

memory (AM), without traditional main memory. COMA provides the ability to

automatically copy or migrate data and replicate it to where it is being used by

the processors [79, 80J. In fact, COMA has multiple advantages [82J for scalable

distributed shared-memory and the first commercial COMA architecture was the

KSR-l [83, 84]' which used a hierarchical ring interconnection network.

Figure 2.3 shows the COMA architecture model, where each processor has a local

cache and a virtual part of the shared memory and all the caches form a global address

49

space. Distributed cache directories are needed to store the coherence information and

there are two types of directory organisation: hierarchical and flat [85, 86]. In the

Hierarchical-COMA configuration, each directory must keep coherence information

about the rest of the subhierarchy nodes. Thus, a long latency occurs when a request

traverses up and down through the hierarchy to search for a desired memory block,

or when replacements are required.

The Flat-COMA configuration is an alternative directory organisation, which uses

a non-hierarchical interconnection network to search for a desired memory block. In

this configuration, the memory block can migrate or replicate to any memory node,

but the directory entries must remain fixed in their home nodes. Thus, instead

of traversing a hierarchical interconnection network to find the memory block at a

miss condition in an AM, an enquiry request goes to the home directory. If the

home directory does not have a copy from the required memory block, the request is

forwarded to the next directory home.

EI Naga et. al. [87] proposed the multithreaded COMA (MCOMA) architecture

with Flat-COMA, which uses a scalable non-hierarchical interconnection network to

connect all processing nodes. In this architecture, all the group directories are con­

nected through a dedicated search interconnection network for fast data search, while

the processors and memory modules communicate through a separate interconnection

network. In this architecture, each group of processors are connected to its local di­

rectory node, where the directory contains information about the data item physically

allocated in the node of its cluster group of processors.

50

2.5.2 Multibanking

Attempts have been made to improve memory performance by using different cache

implementation techniques [75, 88, 89, 90]. For example cache replication, in which

multiple copies will allow multiple load instruction to be satisfied simultaneously

as in Alpha 21164 Microprocessor [91]. However, this technique only improves the

load instruction, while the store instruction is still a bottleneck. Also, from the

hardware point-view, replicating multiple copies means more die area and more power

consumption. Therefore, this technique is costly, and does not scale well.

Another technique is multi banking, where a cache is divided into multiple cache

banks, so that multiple banks can be accessed simultaneously. The MIPS 10000 [92]

is an example of a 2-bank (interleaved) data cache, where a pair of memory ref­

erences can address different banks at the same time. However, one well known

problem with multibanking is bank conflicts when multiple memory requests goes

to the same memory bank. An alternative solution to bank conflicts is to use bank

prediction techniques. Several researchers have proposed bank predictors based on

branch prediction such as [93, 94]. However, these techniques still suffer from the

problem of erroneous bank prediction, where a missprediction requires a recovery

mechanism to steer the missprediction load or store to the proper queue [94, 95].

Other proposals [89, 96] described a combined mechanism to avoid bank conflicts,

where extra hardware is required to detect and combined multiple memory accesses

to same cache bank. Typically, multibanked memory uses a crossbar switch intercon­

nection network to distribute memory references across cache banks. The crossbar

switch is cost-effective because its die area increases super-linearly with increasing

number of cache banks [75].

51

Table 2.1: Current and upcoming Microprocessors.
Proc ••• or L1-Cache L2-Cache L3-Cache Proo ••• Tr.ne .• tor Area Size

Proc ••• or Speed Biz. 81z. 81ze Tect;,r;:IODll Count rn
GHa Million

AMD 154KB' 1015.8 183 Athlon154 2.2 1MB None 130
FX 154KEI

Intel 1.0 32KB'32KE! 21515KEI 3MB 180 221 421
McKinleY'

Intel 1.15 1I5KB'1I5KE! 1512KB
Madlaon

8MIS 130 1500 374

Intel 154KB'154KE!
1720

1.87 2MB 24MB 80 (1.2 bit In 1580
Montecito oeah.)

Inte'
Pentlurn4 2.0 8KBI'8KB 812KB None 130 158 148

(NorthWood >

Int ••
Pentlurn4 3.2 8KBI'8KIS 812KB 2MIS 130 180 237

(NorthWood >

Alpha
213154 1.15 154KB'84KE! 1.'78MIS None 130 100 300
1: '78

HP .8'78 2.28MIS Non_ Non_ 180 18. 304 PA-8700

IBM 2.8 32KB'32KE! 1.8MIS 3.MIS 130 2'715 388 PowerS (On-Chip)

Alpha 1.2-2 154KB'154KE! 1.'71S-3MB None 1'78 280 420 21_4

Rivers et. al. [75] proposed a multibanking scheme as a cost-effective alternative

to multi-porting caches. In this scheme, n independent single ported cache banks

are employed to get an n ported data-cache memory. The cache-line addresses are

interleaved through the banks and the banks are accessed in parallel. Also, the

authors proposed a combined technique, to avoid bank conflict when simultaneous

accesses are going to the same cache line.

52

2.6 Techniques and Evaluation Methodology

In this section, we will discuss some techniques such as chip area estimation and the

simulation environment that is employed in our work to evaluate the microthreaded

CMP support structures.

2.6.1 Chip Estimate Area Model

Current technology continues to follow Moore's law and provides a doubling of the

number of transistors integrated on a single chip every two years. To fulfill Moore's

law's predictions, silicon chip designers continue to shrink the feature size of the

silicon chip to increase number of transistors. However, as described earlier, existing

microarchitecture designs are reaching a limit in performance and it is now very hard

for these designs to scale properly.

Generally, the die size of the processor refers to its area size on the wafer, which

measured in square millimeters (mm2). Table 2.1 shows a summary of selected die

size of some existing and upcoming microprocessor chips. The table also shows the

memory hierarchy storage sizes and the transistors count in each processor chip.

Unfortunately, an efficient analysis of area requires an accurate analytical model

to predict the costs of the various architecture parameters. Work published by [97]

described a chip area model for register files and caches. Also, Gupta et. al. [98]

derived a set of technology-independent area models, by measuring die photographs

of commercial microprocessors and normalising the results. In addition, Standard Cell

Datasheets [99] provide an estimate of area for digital combinational logic circuits.

Moreover, the Cache Access and Cycle Time model (CACTI) [100] includes an

area model for different cache configurations along with their process technology. The

53

analysis includes the area of decoders, bit cells, input and output circuits and routing

tracks. Also, a technology-independent area model in [98] identifies and summarised

the areas and sizes for various instruction and data caches. Our work therefore, uses

these techniques to provided area estimates of the microthreaded support structures

and the processor core.

2.6.2 Simulation Environment

The validation of the hardware design requires functional simulation, in order to

assess the overall system performance and to check the correctness of its behaviour.

One popular approach to simulation for hardware components is to use the hardware

description language VHDL. This language has become widely accepted, is commonly

used in industry and can be used to target FPGA-like logic devices. It provides several

advantages such as good verification for the behaviour of the system components, easy

code construction, and modification and accurate pre-layout simulation results for the

system hardware components.

The base MIPS processor is already modelled using VHDL as a hardware descrip­

tion language and synthesis tool [101]. Thus, our implementation results in this the­

sis are described in VHDL. In particular, we used Symphony EDA VHDL compiler

and simulator [102] to model and implement the microthreaded eMP components

described throughout this thesis. This simulator is a leader in HDL simulation tech­

nology and produces verification solutions for the hardware system components. It

is important to note that our design strategy in writing the VHDL code is that it is

important first to define the logic design of the mechanism that must be employed,

and then the corresponding high-level language coding methodology can be described.

54

2.7 Summary

The chapter reviewed several existent processor architectures, and highlights the com­

plexity and challenges that limits existing approaches from being scalable. We also

discussed distributed memory architecture organisation. Also, techniques such as the

chip estimate area model and simulation environment that are employed in our work

are presented.

The characteristics of advanced integrated circuits (ICs) will in future require pow­

erful and scalable CMP architectures. However, current techniques like wide-issue,

superscalar processors suffer from complexity in instruction issue and in the large

multi-ported register file required. The complexity of these components grows at

least quadratically with increasing issue width; also, execution of instructions using

these techniques must proceed speculatively, which does not always result in effi­

cient power consumption. In addition, more on-chip memory is required in order to

ameliorate the effects of the so called "memory wall" [103]. These obstacles limit

the processor's performance, by constraining parallelism or through having large and

slow structures. In short this approach does not provide scalability in a processor's

performance, on-chip area and power dissipation.

An alternative solution, which eliminates this complexity in instruction issue and

the global register file, and also avoids speculation, is presented in this thesis. This

model supports concurrent threads all drawn from a single context and exploits in­

struction level parallelism across loop bodies using a variety of loop structures, includ­

ing static, for loops and dynamic while loops. The model is based on decomposing

a sequential program into small fragments of code called microthreads, which are

scheduled dynamically and which can communicate and synchronise with each other

55

very efficiently.

The concurrency controls used in this approach provide latency hiding in a micro­

threaded processor pipeline and also support a pre-fetching mechanism that avoids

any instruction cache misses. An important feature of the model is its support for

a fully distributed register file where the latency tolerance decouples register access

from pipeline operation. Microthreaded chip multiprocessors add a means of exploit­

ing legacy code in such systems. Using this model, compilers generate parametric

concurrency from sequential source code, which can be used to optimise a range of

operational parameters such as power and performance over many orders of mag­

nitude, given a scalable implementation. The next chapter reviews this model and

describes its concurrency controls in more detail. It also highlights the problems that

the work in this thesis resolves.

Chapter 3

Microthreaded Microprocessor
Model

3.1 Chapter Overview

In the previous chapter, it was shown that most existing approaches have multiple

limitations and systems based on these approaches do not scale well. An alternative

approach that supports a scalable eMP design is the microthreaded microprocessor

model. In this chapter we consider the microthreaded concurrency model, describe

its features that support the implementation of a scalable CMP, and highlight the

problems that will be resolved in chapter 4.

The chapter is organised as follows. In the next section, an overview of the mi­

crothreaded model is presented. The microthreaded ISA and microthreaded in-order

execution pipeline are described in sections 3.3 and 3.4 respectively. A detailed de­

scription of the concurrency controls provided by this model is presented in section 3.5.

Scalability of the instruction issue and thread state are described in section 3.6 and 3.7

respectively. In section 3.8, microthreaded register file partitioning and distribution

is documented. The register allocation unit (RAU) and the method of dynamically

56

57

allocating registers are presented in section 3.9. A prefetching and replacement mech­

anism that avoids any instruction cache misses provided by microthreaded model is

described in section 3.10. The summary of the chapter is presented in section 3.11.

3.2 The Microthreaded Model

Microthreads are small sequences of code (as short as a single, executable instruction)

that are created dynamically and execute concurrently. Creation is by an instruction

added to the ISA for that purpose. A family of microthreads can be distributed to

more than one processor and both the number of processors used and the number of

microthreads created is parametric and not bound by the resources available on those

processors. The create instruction specifies a family of related microthreads, which

are created as resources become available and at the same time as previously created

microthreads are being executed. All microthreads follow an execution path which

ends in the execution of an instruction which terminates that thread, at which point

its state is lost and its resources are released.

Microthreads describe parametric concurrency where resources are managed dy­

namically through the concept of microcontext. Microcontext refers to the private

state associated with a microthread. This includes a microthread's program counter

and an offset into the register file, which locates its private register variables. The

contents and synchronisation state of the registers are also a part of its microcon­

text. The microcontext is stored in two structures, the local register file and the

local scheduler ofthe processor on which the microthread is executing. Using a 5-bit

register specifier, this state is bounded above by 32 register variables and one slot in

the scheduler's tables. The microthread and its microcontext are identified uniquely

58

by its address in the scheduler's tables and this is called its slot number. It should

be noted that a family of microthreads will share all memory variables in the scope

of a given higher-level context and may also share a number of register variables.

Microthreaded code is not backward compatible. It must be recompiled from

the original source code, although this can be legacy, sequential source code. The

parallelisation of the source is primarily, but not exclusively, obtained by translating

loops into families of microthreads that execute concurrently. Techniques have been

used to parallelise both for and while loops, as well as loops with and without loop­

carried dependencies. The type of dependency supported is a function of the detailed

implementation of the processor and network.

Microthreads created on a processor are queued in its scheduler for execution and

a micro thread is removed from this queue and passed to the instruction fetch stage

of the pipeline on a context switch. The active microthread will continue to execute

until either it completes or is itself context switched, because of a blocking read

to a register. This may occur on instructions dependent on memory loads or data

produced by other microthreads. These are recognised by the compiler and flagged as

context-switch points. These instructions mayor may not suspend on reading their

operands and the explicit context switch merely enables the scheduler to eliminate

bubbles in the pipeline in the event that the instruction does block. In this case, the

slot number of the suspended thread is stored in the empty register until the data

arrives, at which point that thread is rescheduled and added to the scheduler's active

queue again. Swapping execution between threads when data is unavailable keeps the

processor's utilisation high and hides communication or memory-access latency.

During execution, any data exchange between concurrent microthreads is achieved

59

: roa cast us : · .
· T . · arb iter ;To nearest · · rin

: 1e ighbo urs

· · · Shared · · memory
rem ote · · · register register · allocation read

model · · rc ,iSlc r w rlle · r-- · 1- ""ccou)Ied Iw · ~cbedulel broadcast
Cache : 1 bypass: .

conl cx : I
sw itch l~ ~ crc~t ' y register

ALU :

write
thread 0- I-Filel t-~ back
control cache . , Decode
and IF

I
reschedule thread ·

IF ID/RR EXE MEM WB

Figure 3.1: Microthreaded microprocessor pipeline.

using register variables. Concurrent micro threads may not communicate using shared

memory, as no guarantee can be made about their order of execution. Memory

consistency is achieved therefore using bulk synchronisation, either using knowledge

of the termination of a dependency chain in a dependent family of micro threads or

by the use of a barrier synchronisation in an independent family of microthreads.

3.3 The Microthreaded In-order Pipeline

The microthread model is a generic one, as it can be applied to any ISA, so long

as its instructions are executed in-order. In addition, the model can be designed to

maintain full backward compatibility, allowing existing binary code to run without

speedup [8] on a microthreaded pipeline. Binary compatibility with speedup can also

60

be obtained using binary-to-binary translation to identify loops and dependencies

and adding instructions to support the concurrent execution of those loops and/or

the concurrency within the basic blocks.

Figure 3.1 shows a microthreaded, in-order pipeline with its five stages and the

communication interfaces required to implement this model in a distributed manner.

The pipeline stages are: thread control/instruction fetch, instruction decode/register

read/reschedule, execute, memory (if implemented) and write back. Notice that

instructions normally complete in order but that in circumstances where the execution

time is non-deterministic, such as a cache miss, data is written asynchronously to

the register file on a port dedicated to this purpose. In this situation, instruction

issue stops in a thread as soon as an instruction attempts to read a register that

is empty. Note that all registers have synchronisation bits associated with them

defining their state: full, empty, waiting local, waiting remote. No additional pipeline

stages are required for instruction issue, retiring instructions, or for routing data

between different processors' register files. Short pipelines provide low latency for

global operations but a short pipeline can be super-pipelined if required, to increase

clock frequency.

Context switching is determined explicitly by the Swch instruction, which can

follow /precede any executable instruction and causes control to be transferred to an­

other microthread on the fetching of that instruction. Whether it follows or precedes

the instruction it flags is an implementation detail. In this thesis we assume it follows

at no loss of generality. In this case a Swch instruction is fetched concurrently with

an executing instruction and causes a context switch in the same cycle.

As well as managing data dependencies, context switching is also used to manage

61

control dependencies in the pipeline, as all transfers of control are also flagged to

context switch and only rescheduled when the execution path has been determined.

A context switch is also used as a pre-fetching mechanism in the instruction cache.

A context switch is forced when the PC increments over a cache-line boundary. This

makes a potential cache miss become part of the scheduling process rather than the

instruction-execution process. Indeed, it provides a unified mechanism for cache pre­

fetching as any thread will not be scheduled for execution unless its current PC is

guaranteed to be in the I-cache.

Contexts switches or Kills must be planted by the compiler on all branches of

control and on instructions that might stall on reading data. The latter occurs when

communicating with other threads, or following a load or long operation. Note that a

Swch instruction will always update the value of the PC in the thread's state, and this

update occurs after the register-read stage. This is obvious in the case of a branch

but not so obvious following a data dependency, where the state of the register will

determine whether the instruction will be re-executed or not. If a register reads fails,

the instruction reading the register must be re-issued, when the data is available. On

the other hand, if the register read succeeds, the next instruction must be executed,

which may be the next executable instruction or the one at the branch target location,

thus the action at the register read stage determines the value of the thread's PC for

all programmed context switches.

Each register in a microthreaded CMP therefore acts as a synchroniser, which can

control the issue of instructions from the thread or threads that access it. A reference

to the thread's slot number is stored in the register on a synchronisation failure and

that thread is rescheduled only when data is written to the register. This mechanism

62

T bl 31 C a e t I' t t' oncurrency-con ro IllS rue Ions.
Instruction Instruction Behaviour
Cre Creates a new family of threads
Swch Causes a context switch to occur
Kill Terminates the thread being executed
Bsync Waits for all other threads to terminate
Brk Terminates all other threads

is distributed and scalable, requiring only two additional bits per register together

with state machines on each of the registers file's ports. This is in stark contrast to

an 000 processor's instruction window.

The mechanism of thread suspension and activation provides latency hiding dur­

ing long or non-deterministic delays when obtaining data. The maximum latency

tolerated is related to the size of the scheduler queue (called the continuation queue

- CQ, throughout the thesis) or the size of the register file, which can both restrict

the number of local threads active at any time. Of course, the latency is also related

to the average number of statically scheduled instructions between context switches.

Only if a processor has no active threads, will the pipeline stall on attempting to read

an empty register.

This means of scheduling instructions is similar in complexity to that of a conven­

tional, single-issue, in-order processor. The only additional overhead is the larger than

normal register file, the maintenance of the CQ and the RAU, which are investigated

in detail in this thesis. However, as they are both scalable with local concurrency

they can both be tuned in size at design time in order to provide a given amount of

latency tolerance.

63

3.4 Concurrency Controls

Table 3.1 shows the five instructions required to support this model on an existing

ISA. The model provides concurrency-control instructions to create families of threads

(ere), to explicitly context switch between threads (Swch) and to kill a thread (Kill).

Two global synchronisation instructions are also provided, one is a barrier synchroni­

sation (Bsync), the other is a form of a break instruction (Brk), which forces a break

from a loop executed concurrently. Note that all of these instructions can be com­

pleted in the first stage of a pipeline as they only control the action of the scheduler.

Because of this, these additional instructions do not require a pipeline cycle so long as

they are fetched concurrently with executable instructions. This allows concurrency

controls in the model to be very efficiently implemented. Each instruction will now

be described in more detail.

3.4.1 Thread Creation

The microthreaded model defines explicit and parametric concurrency using the ere

instruction. This instruction broadcasts a pointer to the TCB to all processors as­

signed to the current context; see [24] for details of dynamic processor allocation.

The TeB contains parameters that define a family of threads, e.g. thread pointer

and the start and limit of the loop. It also defines the dynamic resources required

by each thread (its microcontext) in terms of local, global and shared registers. For

loops which carry a dependency, the dependency distance between loop iterations is

assumed to be constant i.e. = 1. A family of threads can be created without requiring

a pipeline slot, as the create instruction is executed concurrently with a regular in­

struction in the Instruction fetch (IF) stage of the pipeline. The TCB for our current

64

Table 3.2: Thread control block containing parameters that describe a family of
microthreads
Name Description Behaviour Size

(Byte)
Main Pointer One pointer per thread for main loop-body code 4
Start Start of loop index value 4
Limit Limit of loop index value 4
Locals Number of local registers dynamically allocated/thread 1
Globals Number of global registers dynamically allocated/thread 1
Shareds Number of shared registers dynamically allocated/thread 1

work on implementation overheads is defined in table 3.2.

The concurrency described by this instruction is therefore parametric and may

exceed the resources available in terms of registers and thread slots in the CQ. The

RAU in each local scheduler maintains the allocation state of all registers in each

register file and this controls the creation of threads at a rate of one per pipeline cycle.

Once allocated to a processor a thread runs to completion, i.e. until it encounters

a Kill instruction and then terminates. A terminated thread releases it resources so

long as any dependent thread has also terminated. To do so before this may destroy

data that has not yet been read by the dependent thread. Note that microthreads

are usually (but not exclusively) very short sequences of instructions without internal

loops.

3.4.2 Context-Switching

The microthreaded context switching mechanism is achieved using the Swch instruc­

tion, which is acted upon in the IF stage of the pipeline, giving cycle-by-cycle inter­

leaving if necessary. When a Swch instruction is executed, the IF stage reads the

next instruction from another ready thread, whose state is passed to the IF stage as a

65

result of the context switch. As this action only requires the IF stage of the pipeline,

it can be performed concurrently with an instruction from the base ISA, so long as

the Swch instruction is prefetched with it.

The context switching mechanism is used to manage both control and data depen­

dencies. It is used to eliminate control dependencies by context switching following

every transfer of control, in order to keep the pipeline full without any branch pre­

diction. This has the advantage that no instruction is executed speculatively and

consequently, power is neither dissipated in making a prediction nor in executing in­

structions on the wrong dynamic path. Context switching also eliminates bubbles in

the pipeline on data dependencies that have non-deterministic timing, such as loads

from memory or thread-to-thread communication. Context switching provides an

arbitrary large tolerance to latency, determined by the size of the local register file.

3.4.3 Thread Synchronisation

The only synchronising memory in the microthreaded model is provided by the regis­

ters and this gives an efficient and scalable mechanism for synchronising data depen­

dencies. The synchronisation is performed using two synchronisation bits associate

with every register, which differentiate between the following states: full, empty,

waiting-local and waiting-remote.

Registers are allocated to microcontexts in the empty state and a read to an

empty register will fail, resulting in a reference to the microthread that issued the

instruction being stored in that register. This reference passes down the pipeline with

each instruction executed. Using the CQ in the scheduler, lists of continuations may

be suspended on a register, which is required when multiple threads are dependent on

66

the value to be stored there. All registers therefore implement i-structures [105] in a

microthreaded microprocessor. In the full state, registers operate normally, providing

data upon a register read and, if no synchronisation is required, a register can be

repeatedly written to without changing its synchronisation state to provide backward

compatibility. The compiler can easily recognise the potential for a synchronisation

failure if a schedule for the dependency is not known at compile time. If so, it

inserts a context switch on the dependent instruction. Examples include instructions

dependent on a prior load word, produced in another thread, or produced in iterative

CPU operations.

The register is set to one of the waiting states when it holds a continuation.

Two kinds of continuation are distinguished waiting-local, when the register holds the

head of a list of continuations to local microthreads and waiting-remote, when the

register holds a remote request for data from another processor. The latter enables

the microcontext for one iteration to be stored for read-only access on a remote

processor when managing loop-carried dependencies. This implements a scalable and

distributed shared-register model between processors without using a single, multi­

ported register file, which is known to be unscalable.

The use of dataflow synchronisation between threads enables a policy of conserva­

tive instruction execution to be applied. When no microthreads are active because all

are waiting external events, such as load word requests, the pipeline will stall and, if

the pipeline is flushed completely, the scheduler will stop clocks and power down the

processor going into a standby mode, in which it consumes minimal power. This is a

major advantage of data-driven models. Conservative instruction execution policies

conserve power in contrast to the eager policies used in 000 issue pipelines, which

67

have no mechanisms to recognise such a conjunction of schedules. This will have a

major impact on power conservation and efficiency.

Context switching and successful synchronisation have no overhead in terms of

additional pipeline cycles. The context switch interleaves threads in the first stage

of the pipeline, if necessary on a cycle- by-cycle basis. Synchronisation occurs at

register-read stage and only if it fails will any exceptional action be triggered. On

a synchronisation failure, control for the instruction is mutated to store a reference

to the microthread in the register being read. This means that the only overhead in

supporting these explicit concurrency controls in is the additional cycle required to

reissue the failed instruction when the suspended thread is reactivated by the arrival

of the data. Of course there are overheads in hardware but this is true for any model.

The model also provides a barrier synchronisation (Bsync) instruction, which sus­

pends the issuing thread until all other threads have completed and a Brk instruction,

which explicitly kills all other threads leaving only the main thread. These instruc­

tions are required to provide bulk synchronisation for memory consistency. There

is no synchronisation on main memory, only the registers are synchronising. This

means that two different microthreads in the same family may not read after write

to the same location in memory because the ordering of those operations can not be

guaranteed. It also means that any loop-carried dependencies must be compiled to

use register variables. A partitioning of the microcontext supports this mechanism

efficiently.

68

3.4.4 Thread Termination

Thread termination in the microthreaded model is achieved through a Kill instruc­

tion, which of course causes a context switch as well as updating the microthread's

state to killed. The resources of the killed threads are released at this stage, unless

there is another thread dependent upon it, in which case its resources will not be

released until the dependent thread has also been killed. (Note that this is the most

conservative policy and more efficient policies may be implemented that detect when

all loop-carried dependencies have been satisfied).

3.5 Scalable Instruction Issue

Current microprocessors attempt to extract high levels of ILP by issuing indepen­

dent instructions out of sequence. They do this most successfully by predicting loop

branches and unrolling multiple iterations of a loop within the instruction window.

The problem with this approach has already been described; a large instruction win­

dow is required in order to find sufficient independent instructions and the logic

associated with it grows at least with the square of the issue width.

If we compare this with what is happening in the micro threaded model, we see

that almost exactly the same mechanism is being used to extract ILP, with one

major difference, a microthreaded microprocessor execute fragments of the sequential

programs 000. These fragments (the microthreads) are identified at compile time

from loop bodies and conventional ILP and may execute in any order subject only to

dataflow constraints. Instructions within fragments however, issue and complete in­

order. We have already seen that a context switch suspends a fragment at instructions

69

whose operands have non-deterministic timing. The dependent instruction is issued

and stores a pointer to its fragment if a register operand is found to be empty. Any

suspended fragments are rescheduled when data is written to the waiting register.

Thus only instructions up to the first dependency in each fragment (loop body) are

issued and only that instruction will be waiting for the dependency to be resolved,

all subsequent instructions in that pipeline will come from other fragments. In an

000 issue model the instruction window is filled with all instructions from each loop

unrolled by branch prediction because it knows nothing prior about the instruction

schedules.

Consider a computation that only ever contains one independent instruction per

loop of 1 instructions, then to get n-way issue n loops must be unrolled and the

instruction window will contain n *l instructions for each n instructions issued. In

comparison, the microthreaded model would issue the first n independent instructions

from n threads (iterations), then it would issue the first dependent instructions from

the same n threads before context switching. The next n instructions would then

come from the next n iterations (threads). Synchronisation, instead of taking place

in a global structure with O(n2) complexity, is distributed to n registers and has linear

complexity. Each thread waits for the dependency to be resolved before being able

to issue any new instructions. In effect the instruction window in a microthreaded

model is distributed to the whole of the architectural register set and only one link

in the dependency graph for each fragment of code is ever exposed simultaneously.

Moreover, no speculation is ever required and consequently, if the schedules are such

that all processors would become inactive, then this state can be recognised and used

to power-down the processors to conserve energy.

70

Compare this to the execution in an 000 processor, where instructions are ex­

ecuted speculatively regardless of whether they are on the correct execution path.

Although predictions are generally accurate in determining the execution path in

loops, if the code within a loop contains unpredictable, data-dependent branches,

this can result in a lot of energy being consumed for no useful work. Researchers now

talk about "breaking the dependency barrier" [104] using data in addition to control

speculation, but what does this mean? Indices can be predicted readily but these

are not true dependencies and do not constrain the microthreaded model. Addresses,

based on those indices can also be predicted with a reasonable amount of accuracy

but again these do not constrain the microthreaded model. This leaves true com­

putational data dependencies, which can only be predicted under very extraordinary

circumstances. It seems therefore that there is no justification for consuming power

in attempting data speculation.

000 issue has no global knowledge of concurrency or synchronisation. Mi­

crothreading, on the other hand, is able to execute conservatively as it does have that

global knowledge. Real dependencies are flagged by context switching, concurrency

is exposed by dynamically executing parametric ere instructions and the name-space

for synchronisation spans an entire loop as registers are allocated dynamically. At

any instant the physical namespace is determined by the registers that have been

allocated to threads.

71

3.6 Thread State

When a thread is assigned resources by the scheduler, it is initially set to the waiting

state in the local scheduler queue, as it must wait for its code to be loaded into the 1-

cache before it can be considered active. A thread will go into a suspended state when

it has been context switched until either the register synchronisation has completed

or the branch target has been defined, when it again goes into the waiting state. The

scheduler generates a request to the I-cache to pre-fetch the required code for any

thread that enters the waiting state. If the required code is available, then the I-cache

acknowledges the scheduler immediately, otherwise not until the required code in the

cache. The thread's state becomes ready at this stage. A killed state is also required

to indicate those threads that have completed but whose data may still be in use.

At any time there is just one thread per processor, which is in the running state, on

start up this will be the main thread.

On a context switch or kill, the instruction fetch stage is provided with the state of

a new thread if any are active, otherwise the pipeline stalls for a few cycles to resolve

the synchronisation and if it fails, the pipeline simply stops. This action is simple,

requires no additional flush or clean-up logic and most importantly, is conservative

in its use of power. Note that by definition, when no local threads are active, the

synchronisation event has to be asynchronous and hence does not require any local

clocks.

The state of a thread also includes its program counter (PC), the base address

of its microcontext and the base address and location of any microcontexts that it is

dependent upon. The state also includes an implicit slot number, which is the address

of the entry in the CQ and which uniquely identifies the thread on a given processor.

72

The last field required is a link field, which holds a slot number for building linked

lists of threads to identify empty slots, ready queues and an arbitrary number of CQs

that support multiple continuations on different registers. The slot reference is used

as a tag to the I-cache and is also passed through the pipeline and stored in the

relevant operand register if a register read fails, where it forms the head of that CQ.

Chapters 5 and 7 discuss the implementation of the CQ with its required connections

in more detail.

3.7 Register File Partitioning and Distribution

We have already seen that Rumer et. al. [22] have shown that a distributed register file

architecture achieved a better performance compared with a global solution and it also

provides superior scaling properties. Their work was based on streaming applications,

where register sources and destinations are compiled statically. We will show that

such a distributed organisation can also be based on extensions to a general-purpose

ISA with dynamic scheduling. The concept of a dynamic microcontext associated

with parallelising different iterations has already been introduced and is required

in order to manage communications between microcontexts in a scalable manner.

It is necessary for the compiler to partition the microcontext into different windows

representing different types of communication and for the hardware to recognise these

windows to emulate a shared register multiprocessor using distributed register files

and a communication network.

A microthreaded compiler must recognise and identify four different types of com­

munication patterns. There are a number of ways in which this partitioning can be

encoded and here, we describe a simple and efficient scheme that supports a fully

73

distributed register file based on a conventional RISe ISA, assuming a 5-bit register

specifier and hence a 32-register address space per microcontext (although, not the

same 32 registers for each thread).

The first register window is the global window (represented by $Gi). These regis­

ters are used to store loop invariants or any other data that is shared by all threads.

In other models of concurrency these would represent broadcast data, which is written

by one and read by many processes. Their access patterns have the characteristics

that they are written to infrequently but read from frequently. The address space

in a conventional RISe ISA is partitioned so that the lower 16 registers form this

global window. These are statically allocated for a given context and every thread

can read and/or write to them. Note that the main thread has 32 statically allocated

registers, 16 of which are visible to all microthreads as globals and 16 of which are

visible only to the main thread. Each thread sees 32 registers. The lower 16 of these

are the globals and these are shared by all threads and the upper half are local to a

given thread.

The upper 16 registers are used to address the microcontext of each iteration in a

family of threads. As each iteration shares common code, the address of each micro­

context in the register file must be unique to that iteration. As we have seen, the base

address of a thread's micro-context forms a part of its state. This immediately gives

a means of implementing a distributed, shared-register model. We need to know the

processor on which a thread is running and the base address of its microcontext in

order to share its data. However, we can further partition the microcontext into a

local and shared part to avoid too much additional complexity in implementing the

pipeline.

74

Three register windows are mapped to the upper or dynamic half of the address

space for each microcontext. These are the local window ($Li), the shared window

($Si) and the dependent window ($Di). Thus the sum of the size of these three

windows must be less than or equal to 16. The local window stores values that are

local to a given thread. For example they store values from indexed arrays used

only in a single iteration. Reads and writes to the local window are all local to the

processor that a thread is running on and no distribution of the L window is therefore

required. The Sand D register windows provide the means of sharing a part of a

microcontext between threads. The S-window is written by one thread and is read

by another thread using its D-window.

It should be noted that many different models can be supported by this basic

mechanism. In this thesis, a simple model is described but different models of com­

munication with different constraints and solutions to resource deadlock can be im­

plemented. The mechanism would even support a hierarchy of microcontexts by

allowing an iteration in one family of threads to create a subordinate family where

the dynamic part of the address space in the creating family became the static part in

the subordinate family. This would support nested multi-dimensional loops as well as

breadth first recursion. There are difficulties however, in resolving resource deadlock

problems in all but the simplest models and this requires further research to resolve.

In this thesis we describe a simple model that supports a single level of loop with

communication between iterations being allowed only between iterations that differ

by a create-time constant. An example of this type of communication can be found

in loop-carried dependencies, where one iteration produces a value, which is used by

another iteration. For example, A[i] := ... A[i-k] ... where k is an invariant of the loop.

75

Such dependencies normally act as a deterrent to loop vectorisation or parallelisation

but this is not so in this model, as the independent instructions in each loop can

execute concurrently. This is the same ILP as is extracted from an 000 model.

Consider now the implementation of this basic model. It is straightforward to

distribute the global register window and its charactistics suggest a broadcast bus

as being an appropriate implementation. This requires that all processors executing

a family of microthreads be defined prior to any loop invariants being written (or

re-written) to the global window. The hardware then traps any writes to the global

window and replicates the values using the broadcast bus to the corresponding lo­

cation in all processors' global windows. As multiple threads may read the values

written to the global register window, registers must support arbitrarily large CQs,

bounded above only by the number of threads that can be active at any time on one

processor.

The write to the global window can be from any processor and thus can be used to

return a value from an interaction to the global state of a context. The write is also

asynchronous and independent of pipeline operation, provided there is local buffering

for the data in the event of a conflict on the bus. Contention for this bus should

not occur regularly, as writes to globals are generally much less frequent than reads

(by a factor proportional to the concurrency of the code). This issue is analysed and

evaluated in the next chapter.

The distribution of Sand D-windows is a little more complex than the global

window. Normally, a producer thread writes to its S-window and the consumer reads

from its D-window, which maps in some sense onto the S-window of the producer;

we will return to this. However, there is no restriction on a thread reading a register

76

from its S-window so long as data has already been written to it (it would deadlock

otherwise). There is also no physical restriction on multiple writes to the S-window,

although this may introduce non-determinism if a synchronisation is pending on it.

As far as the hardware is concerned therefore, the S-window is identical to the L­

window, as all reads and writes to it are local and are mapped to the dynamic half

of the register-address space. On the other hand, a thread will never write to its

D-window, which is strictly read-only. The hardware need only recognise reads to

the D-window in order to implement sharing between two different threads. In order

to perform a read from a D-window, a processor needs the location (processor id)

and base address of the S-window of the producer thread. There are two cases to

consider in supporting the distribution of register files in the base-level model we have

described.

The first and easiest case is when the consumer iteration is scheduled to the same

processor as the producer. In this case a read to the D-window can be implemented

as a normal pipeline read by mapping the D-window of the consumer microcontext

onto the S-window of the producer microcontext. The thread's state must therefore

contain the base address of its own microcontext for local reads and also the base

address of any microcontext it is dependent upon. In the base-level model we present,

only one other microcontext is accessed, at a constant offset in the index space.

In the second case, the producer and consumer iterations are scheduled to different

processors. Now, the consumer's read to the D-window will generate a remote request

to the processor on which the producer iteration is running. Whereas in the first case

a microcontext's D-window is not physically allocated, in this second case it must be.

lt is used to cache a local copy of the remote microcontext's S-window. It is also used

77

to store the thread continuation locally. The communication is again asynchronous

and independent of the pipeline operation. The consumer thread is suspended on

its read to the D-window location until the data arrives from the remote processor.

For this constant strided communication, iteration schedules exist that require only

nearest neighbour communication in a ring network to implement the distributed

shared-register scheme. Note that a request from the consumer thread may find an

empty register, in which case the request gets suspended in the producer's S-window

until the required data has been produced. Thus a shared-register transaction may

involve two continuations, a thread suspended in the D-window of the consumer

(waiting-local) and a remote request suspended in the S-window of the producer

(waiting-remote). As these states are mutually exclusive, the compiler must ensure

that the producer thread does not suspend on one of its own S-window locations. This

can happen if a load from memory to an S location is also used in the local thread.

However, as dependencies are passed via register variables, this can only happen in

the initialisation of a dependency chain. This case can be avoided by loading to a

location in the L-window when the value is required locally and then copying it to

the S-window with a deterministic schedule.

The additional complexity required in this distributed register file implementa­

tion is two bits in each register to encode the four synchronisation states: full, empty,

waiting-local, waiting-remote; a small amount of additional logic to address the dy­

namically allocated registers using base-displacement addressing; and a simple state

machine on each register port to implement the required action based on the syn­

chronisation state.

78

Global Write Bus

Shared-De.ll!'ndent POrtl
~ ,.

~

.!

.t!
~ ,.. ~

"8 .~ ~
"", ~,

"', "',
.! .!

Initlailiadon Port ..
OataJocaL LCQ

O.ta.....O_Write

Cuhe MI •• Port
Write-.J:BCh~i.1

..
O.ta.JocaL Rca,1I .. DataJocaLWrite OataJocaL Rcad2 .

Figure 3.2: Microthreaded register-file ports.

A method now has been described to distribute all classes of communication re-

quired in the base-level model. However, we must ensure that this distribution does

not require us to implement register files locally that are not scalable. This requires

the number of local ports in the register file to be constant. Accesses to L, S and local

D-windows requires at most two read and one write port for a single-issue pipeline.

The G-window requires an additional write port independent of the pipeline ports.

Finally reads to a remote D-window require one read port and one write port per pro­

cessor. Contention for this port will depend on the pattern of dependencies, which for

the model described is regular and hence evenly distributed with appropriate schedul­

ing. Each iteration is allocated a separate microcontext in the dynamic half of the

79

register-address space and the first local register ($LO) is initialised by the scheduler

to the loop index for that iteration, so this also requires a write port. Finally, a write

port is required to support decoupled access to the memory on a cache miss in order

to avoid a bubble in the pipeline, when data becomes available. The next chapter

provides a full detail analysis to these ports in term of frequency accesses to each

port.

Figure 3.2 shows a block diagram of the microthreaded register file illustrating

its required ports. As shown, it has a maximum of 8 local ports per processor.

The register file could be implemented with just three ports by stalling the pipeline

whenever one of the asynchronous reads or writes occurs but this would degrade

its performance significantly. In fact, the requirements of the register file in terms of

exact number logical ports is still not clear. Therefore, an analysis to the requirements

of the microthreaded register file in terms of number of read/write ports is required.

The next chapter provides a detail analysis and evaluation to this problem.

3.8 Registers Allocation Unit

To create a narnespace that includes all iterations of the loop and to create a bind­

ing between variables in two iterations in the case of loop-carried dependencies,

Jesshope [25] proposed a dynamic allocation of registers to thread before thread

scheduling.

As stated previously, the TCB defines information about a family of threads with

the loop's parameters. It also defines the dynamic resources required by each thread

in terms of local, global and shared registers. Local registers are allocated from the

processor's local register file, while global registers can be accessed by all threads.

80

Shared registers can be accessed by two threads, one thread to produce data and

another to consume it.

The RAU in each local scheduler maintains the allocation state of all registers in

each register file. When a thread is killed a release signal is returned to the RAU to

free that thread's resources. Indeed, dynamically allocating registers prior to thread

scheduling and releasing them when the thread terminates provides an efficient and

effective utilisation of registers. Also, it is important to note that, the process of

dynamically allocating registers to microthreads is fully decoupled from the pipeline

execution, allowing the pipeline to work at full utilisation without any extra pipeline

stages for allocating registers.

However, the mechanism of dynamically allocating registers still requires an ef­

ficient hardware scheme to implement this process. The next chapter provides the

solution and discusses the design and implementation of an efficient scheme for doing

this.

3.9 Cache Prefetching and Data Locality

As the gap speed between processors and the memories becomes very large, where

processor speeds are increasing 60% a year compared with memory speeds at only 7%

a year [106], techniques such as cache locality optimisations and cache line prefetch­

ing are become increasingly important. For example, instruction cache misses stall

pipelined processors for many cycles and are a major source of performance degra­

dation in modern processors. To overcome this limitation, instruction prefetching

schemes can be used to minimise instruction cache miss latency. Also, cache locality

optimisations use compiler or run-time transformations to change the computation

81

order and/or data layout of a program to increase the probability of accessing data

already in the cache [107].

Several papers have already investigated instruction cache prefetching either by

compiler driven or hardware schemes [108, 109, 110, 111]. Compiler driven schemes

have been used in some recent commercial machines such as [108, 109], where the

compiler's analysis of the program code and provides a hint to the hardware through

a prefetching instructions. Thus, when the explicit prefetch instructions are executed,

the data is loaded from memory to cache.

Generally, hardware prefetching schemes can be classified into two main categories;

sequential and non-sequential instruction cache prefetching schemes. In sequential

prefetching schemes like [110], a simple mechanism is used, by prefetching the next

cache line when a cache line fetched (next-line always). Other previous work [111] has

also described sequential prefetching, which uses a next N-line prefetching scheme to

prefetch the next N sequential lines following the line currently being fetched by the

processor. However, increasing the value of N, results in increasing the prefetching

distance, which causes increased pollution of the cache with useless prefetch [112, 113].

The pollution occurs from the useless speculative memory references by moving out

the correct memory block, while this block may be used by correct-path execution.

Two main styles have been used in a non-sequential hardware prefetching schemes,

history-based and execution-based. An example of history-based is found in [110],

where the authors proposed a target-line prefetching scheme, which uses a history

prediction table to maintain information about the address of the cache lines most

recently fetched by the processor. Thus, if the target line address is in the table,

then that line is candidate for prefetching. While, if there is a miss in the prefetch

82

table, there is no prefetch request. Execution-based [114, 115] schemes uses a branch

predictor to prefetch the cache lines. For example work done by [115], proposed a

fetch directed prefetching scheme. This architecture uses a branch predictor and an

instruction cache, so the branch predictor can run ahead of the instruction cache

fetch.

Recently, Spracklen et. al. [113] analysed and summarised the problems in existing

sequential and non-sequential instruction prefetcher hardware schemes. They also

showed how the aggressive instruction prefetching in CMPs can cause pollution in the

shared L2 cache and increase the L2 cache miss rate. Generally, existing instruction

cache prefetching schemes attempt to reduce cache miss rate rather than eliminate

this limitation. Also, these schemes still employ heuristic prediction, which may result

in extra penalties and insufficient use of the prefetching. Generally, the aggressive

speculation and prefetching techniques used in modern processors cause speculative

memory references, which result in loading the data into the caches that are not

needed by correct-path execution [116].

The microthreaded microprocessor model supports a pre-fetching and replacement

mechanism that avoids any instruction cache misses [17]. The mechanism is deter­

ministic and very simple, where each line in the I-cache requires a counter of the

number of active threads that are using that cache line. As soon as the thread's

resources are allocated after being created, the scheduler generates a request through

the thread pointer associated with its slot number to the I-cache to pre-fetch the

required code for that thread. If the code is available, then the I-cache acknowledges

the local scheduler immediately, the requested cache line counter is incremented and

the thread's state becomes active.

83

While, if the thread pointer misses the required code in the I-cache, then the

required memory block fetches into any line with a count of zero. Until this happens,

the thread remains in a suspended state. It is important to note that the thread is not

made active until the I-cache block along the new path of execution has been fetched.

Also, when a thread is rescheduled after being suspended, the same process is followed.

Finally, when a thread is killed, its resources are released and the I-cache line counter

is decremented. Therefore, there is no need to insert special instructions to perform

prefetching, only the flexible and efficient thread scheduling mechanism provided

by the microthreaded model detects and predicts what thread will be submitted

to the execution in the future. This is hidden from the compiler/programmer. It

is important to note that this mechanism is also fully decoupled from the pipeline

execution.

3.10 Summary

This chapter reviewed the microthreaded microprocessor approach and discussed its

features that make it a very promising solution for scalable CMP with large num­

bers of processors. The approach allows concurrency to be extracted from sequential

code, exploiting different types of parallelism. ILP and LLP are both detected by

the recompilation of legacy, sequential source code or indeed, could be obtained from

the translation of existing legacy binary code. The approach also supports TLP by

assigning application threads to groups of processors in the CMP. The concurrency

controls provided by this approach not only provides a considerable level of concur­

rency, but also optimises the scheduling process and supports scalability. Also, the

84

approach supports a pre-fetching and replacement mechanism that avoids any instruc­

tion cache misses. This mechanism is fully decoupled from the processor pipeline and

avoids any stalls during instruction misses.

The distributed configuration of instruction issue and a fully scalable register

file, which implements a distributed, shared-register model of communication and

synchronisation between multiple processors on a single chip, are two distinct features

in this model. However, it is not yet clear what the requirements of the microthreaded

register file are in terms of number of read and write ports to keep it compact and

scalable. The next chapter provides an evaluation and analysis for this issue in more

detail.

The disadvantage of the microthreaded approach is that registers must be allo­

cated dynamically and state, in addition to its PC, must be maintained for each

microthread. To allocate registers dynamically requires additional logic and with

many concurrent threads, any additional thread state can lead to significant storage

in the scheduler. In the next chapter, we proposed a novel design and implementa­

tion of a hardware support for dynamically allocating and de-allocating registers for

microthreaded CMP.

Chapter 4

Microthreaded Distributed

Register File

4.1 Chapter Overview

In the previous chapter, it was shown that the requirement in terms of the number

of logical read and write ports for a microthreaded register file is not clear. Also,

because the model supports dynamic register allocation, an efficient hardware scheme

is required to handle registers allocation. This chapter provides a solution to both

problems with analysis, implementation and evaluation.

The outline of this chapter is as follows. The next section summarises selected

work on modern register files. In section 4.3, a method of sharing registers in the

microthreaded model is presented. An analysis and evaluation of the requirements

of the microthreaded register file in terms of the frequency of accesses to each logical

port is given in section 4.4. Section 4.5 discusses the centralised and distribution

organisation for the RAU. The section also compares an alternative implementation

85

86

for register allocation. The design and implementation of a scalable allocation scheme

for dynamically allocating and de-allocating registers for the microthreaded CMP is

presented in section 4.6. A summary of the chapter is provided in section 4.7.

4.2 Modern Register Files

All systems that implement concurrency require some form of synchronisation mem­

ory. In dataflow architecture, this is the matching store, in an 000 issue processor it

is the register file, supported by the instruction window, reservation stations and re­

order buffer. To implement more concurrency and higher levels of latency tolerance,

this synchronising memory must be increased in size. This would not be a problem

except that in centralised architectures, as issue width increases, the number of ports

to this synchronising memory must also increase. The problem is that the register

cell size grows quadratically with the number of ports or issue width. As mentioned

previously, if N instructions can be issued in one cycle, then a central register file

requires 2N read ports and N write ports to handle the worst case scenario. This

means that the register cell size grows quadratically with N. Moreover, as the number

of registers also increases with the issue width, a typical scaling of register file area

is as the cube of N.

Several projects have investigated the register file problem, in terms of reducing the

number of registers, or minimising the number of read or write ports [60, 22, 117, 118].

As described in chapter 2, the register file in the proposed Alpha 8-way issue 21464

occupied an area of some 5 times the size of the L1 D-cache of 64KB. Also, in the

Motorola's M. CORE architecture, the register file energy consumption can be 16% of

the total processor's power and 42% of the data path power [67]. It is clear therefore

87

that multi-ported register files in modern microprocessors consume significant power

and die area.

Work done in [117] describes a bypass scheme to reduce the number of register

file read ports by avoiding unnecessary register file reads for the cases where values

are bypassed. In this scheme an extra bypass hint bit is added to each operand

of instructions waiting in the issue window and a wake-up mechanism is issued to

reduce register file read ports. As described in [119], this technique has two main

problems. First, the scheme is only a prediction, which can be incorrect, requiring

several additional repair cycles for recovery on miss-prediction. Secondly, because the

bypass hint is not reset on every cycle, the hint is optimistic and can be incorrect if the

source instruction has written back to register file before the dependent instruction

is issued. Furthermore, an extra pipeline stage is required to determine whether to

read data operands from the bypass network or from the register file.

Other approaches include a delayed write back scheme [118], where a memory

structure is used to delay the write-back results for a few cycles to reduce register

file ports. The disadvantage of this scheme is that it is necessary to write the results

both to the register file and the write-back queue concurrently to avoid consistency

problems during register renaming. The authors propose an extension to this scheme

to reduce the number of register write ports. However, this extension suffers from an

IPC penalty and it degrades the pipeline performance. Furthermore, in this model,

any branch miss-predictions cause a pipeline stall and insufficient use of the delay

write back queue. In fact most previous schemes for minimising the multi-ported

register file have required changes in the pipeline design and do not enable full scal­

ability. At best they provide a constant remission in the scalability of the register

88

file.

Rixner et. al. [22] suggested several partitioning schemes for the register file

from the perspective of streaming applications, including designs spanning a central

register file through to a distributed register file organisation. Their results, not sur­

prisingly, show that a centralised register file is costly and scales as O(N3), while in

the distributed scheme, each AL U has its own port to connect to the local register

files and another port to access other register files via a fast crossbar switch network.

This partioning proved to use less area, power and delay compared with the purely

global scheme and was also shown to provide a scalable solution. The distributed

configuration also has a smaller access time compared with the centralised organi­

sation. Bunchua et. al. [120] also compared the register file access time for central

and local register files configuration. In this work, a 128 32-bit register file with 16

read ports and 8 write ports is used as a central register file and is compared to a

local register file with 32 32-bit registers, 2 read ports, 1 write port, and 1 read/write

port. The result from their cache access and cycle time model (CACTI) showed a

47.8% reduction in access time for the distributed register file organisation across all

technologies.

It is not clear from this work, whether the programming model for the distributed

register file model is sufficiently general for most computations. With a distributed

register file and explicitly routed network, operations must be scheduled by the com­

piler and routing information must also be generated with code for each processor

in order to route results from one processor's register file to another. Although it

may be possible to program streaming applications using such a model, in general,

concurrency and scheduling can not be defined statically.

89

Other previous work has described a distributed register file configuration [120]

where a fully distributed register file organisation is used in a superscalar proces­

sor. The architecture exploits a local register mapping table and a dedicated register

transfer network to implement this configuration. This architecture requires an ex­

tra hardware recopy unit to handle the register file dispatch operations. Also, this

architecture suffers from a delay penalty as the execution unit of an instruction that

requires a value from a remote register file must stall until it is available. The authors

have proposed an eager transfer mechanism to reduce this penalty but this still suffers

from an IPC penalty and requires both central issue logic and global renaming.

In our research, it seems that only the microthreaded model provides sufficient

information to implement a penalty free distributed register file organisation. Such a

proposal is given in [8] where each processor in a CMP has its own register file in a

shared register model. Accesses to remote data is described in the binary code and

does not require speculative execution or routing. The decoupling is provided by a

synchronisation mechanism on registers and the routing is decoupled from the oper­

ation of the microthreaded pipeline operation, exploiting the same latency tolerance

mechanisms as used for main memory access.

4.3 Analysis and Evaluation of Microthreaded Reg­

ister File Ports

It is shown in the previous chapter that microthreaded register file uses a 32-register

address space per microcontext. Half of these addresses are shared by all threads by

replicating writes to all processors using the broadcast bus. This can be considered the

90

top-level context. The remaining 16 addresses refer to unique locations in the register

file for each value of the loop index and represent the different microcontexts. In

some ways this is similar to register windowing in the scalable processor architecture

(SPARe) architecture [121]. However, in a microthreaded processor multiple base

addresses are maintained in the CQ for each active thread.

In this section, an analysis of microthreaded register file ports (see figure 3.2 for

register-file ports analysed) is made in terms of the average number of accesses to each

port of the register file in every pipeline cycle. This analysis is based on hand com­

pilation of a variety of loop kernels (see appendix A for loop kernels analysed). The

loops considered included a number of livermore kernels, some that are independent

and some that contain loop-carried dependencies. It also includes both affine and

non-affine loops, vector and matrix problems, and a recursive doubling algorithm.

We have used loop kernels at this stage as we currently have no compiler to com­

pile complete benchmarks. However, as the model only gains speedup via loops, we

have chosen a broad set of representative loops from scientific and other applications.

Analysis of complete programs and other standard benchmarks will be undertaken

when a compiler we are developing is able to generate microthreaded code.

The results are based on a static analysis of the accesses to various register windows

and investigate the average traffic on the microthreaded register file ports. The five

types of register file ports are shown in figure 3.2 and include, pipeline ports (read­

Rand write-W), the initialisation port (I), the shared-dependent ports (Sd), the

broadcast port (Rr) and the write port that is required in the case of a cache miss

(Wm). The goal of this analysis is to guide the implementation parameters of such a

system. We aim to show that all accesses other than the synchronous pipeline ports

91

Table 4. 1: Average number of accesses to each class of register file port over a range
of loop kernels, m= problem size.

Loop Nc R W I Dr Sd

4m - 3 2m - 1 0.3333
0 m - I

iA: Partial Producu 3m
Ne Ne M'Ne

Sm-IS 4m-4 0
m-2

B :2 -D SOR 5m-2 0 .2
Ne Ne M*Ne

Sm+3 4m + l 0 .25 0
m

L3 : lnner Produc t 41n + 4
Ne Ne M*Ne

2.4m+ 37 .4 3m +22 0 .2 4n I. Sm+ I .S
IA :Jlanded Linear 3m + 34 ---

Equatio n Ne Ne Ne M·Ne

LS :Tri - Diagon al 7m 4m 0 .25 0
m-I

Sm +)
Elimination Ne Ne M*Ne

1...6 :General Linear .5m+ 6 .5m --5 5 .5m+ 2 .5m ' ''- 5 3m +nV~ 2 0 . 1429 (rW- l) n O.Sm -O .Sml'"
Recurrence Ne Ne Ne M*Ne

C :Po inter Chuing 14m + 5 9m + 3 6m + 2 0 .0714 n m --
Ne Ne Ne M*Ne

L l :1I)'dro (lrng lllc ill 9m + S 15m Sm + 3 0 . 1111 3n
0 --

Ne Ne Ne

L2 , ICCG 11m +2logm -2 1 17m -5 logm -27 10m -5logm - 12 0.0909 (logm - I) n 0
Ne Nc: Nc:

L 7 :E quDti oD of 26m +S
43m + 3 25m + 3 0 .0385 3n 0 Slate Fragment - -
Ne Ne Ne

can be implemented by a pair of read and write ports, with arbitration between the

different sources. In this case a register file with five fixed ports would be sufficient

for each of the processors in our CMP design.

The microthreaded pipeline uses three synchronous ports. These ports are used

to access three classes of register windows i.e. the $L, $8 and $G register windows.

If we assume that the average number of reads to the pipeline ports in each cycle

is R and the average number of writes to the pipeline port in each cycle is W , then

these values are defined by the following equations, where Ne is the total number of

instructions executed.

R = Linst. (Read($L) + Read($S) + Read($G))
Ne

(4.3.1)

0 .5

0.45

0.4

~
&. 0 .35

~
~ 0 .3

!
.9! 0 .25

~
8. 0 .2

Xl
~ 0 .15
u
u ...
8. 0 .1
e
~ 0 .0 5

92

- - .1
- -B
- SID f-------------� 0 .9

- All writes

1------------==========------------1 0 .8

1----------------------------1 0 .7

I
1-----------------------------1 0 .6 ~

:§.
0 .5 .9!

~
-: ... ::------------------------------1 0 .4 8.
1-=,,3-~-- ~- ~~~~- -~-~- ~- -:::-::::- -:::-::::- -~- 0 .3 ~
y_ :.i
'\ 0 .2 f

. ~·-=:___------------------------I 0 .1 ---- -----o ~----__ --__ ----------__ ----______ ----__ ----__ ----__ --~O
o 5 10 15 20 25 30 35 40 45 50

NormaUsed problem size (min)

Figure 4. 1: Average accesses per cycle on additional ports, n=4 processors.

w = 2:inst. (Write($L) + Write($S) + Write($G))

Ne
(4.3.2)

The initialisation port on other hand is used in register allocation to initialise the

$LO to the loop index. This port is accessed once when each iteration is allocated

to a processor and so the average number of accesses to this port is constant and

equal to the inverse of the number of instructions executed by the thread before it is

killed, no. Therefore if I is the average number of accesses to the initialisation port

per cycle, we can say that:

1
1 =­

no
(4.3.3)

A dependent read to a remote processor uses a read port on th remote processor

and a write port on the local processor, as well as a read to the synchronous pipeline

93

port on the local processor. The average number of accesses to these ports per cycle

is dependent on the type of scheduling algorithm used. If we use modulo scheduling,

where M consecutive iterations are scheduled to one processor, then interprocessor

communication is minimised. An equation for dependent reads and writes is given

based on modulo scheduling although we consider only at the worst case scenario.

The average number of accesses per cycle to the dependent window is given below

by Sd using the following equation, where M is the number of consecutive threads

scheduling to one processor and Ne is the total number of instructions executed. It

is clear that the worst case is where M = 1, i.e. iterations are distributed one per

processor in a modulo manner.

S - Linst. Read($D)
d-

M*Ne
(4.3.4)

The global write port is used to store data from the broadcast bus to the global

window in every processor's local register file. If we assume that the average number

of accesses per cycle to this port is Br, then Br can be obtained from the following

equation, where Ne is the total number of instructions executed and n is the number

of processors in the system. The result is proportional to the number of processors,

as one write instruction will cause a write to every processor in the system.

Br = Einst. Write($G) * n
Ne

(4.3.5)

Finally, the frequency of accesses to the port that is required for the deferred

register write in the case of a cache miss can also be obtained. It is parameterised by

cache miss rate in this static analysis and again we look at the worst case (100% miss

rate). The average number of writes per cycle to the cache-miss port is given by Wm,

94

Traffic on additional ports - n=16 processors

0 .5 - -- .,
0.45 I--------j - - B 0.9

--SID

€ 0.4
Q
c..

0.35 .. = .., .s:
0.3 :a

'" \ =
~ 0 .25
17 ,'---~ 0 .2
~

- \

rl 0 .15 --~
" ~ .. 0 .1 --lil ..

....: 0 .05

All writes 0 .8

0 .7 i
- 0 .6 ~ ..

u
- 0 .5 17 ..

~
- 0.4 !l

~
- 0 .3 ..

l!!..
~

0 .2
..:

0 .1 -- -------------
0 - 0

0 10 20 30 40 50

Normalised problem size (mIn)

Figure 4.2: Average accesses per cycle on additional ports, n= 16 processors.

which is given by the formula below where Lw is the number of load instructions in

each thread body, no is the number of instructions executed per thread body, and em

is the cache miss rate. Again the average access to this port is constant for a given

miss rate.

(4.3.6)

Table 4.1 shows the average number of accesses to each class of register file port

over a range of loop kernels using the above formula. The first seven kernels are de-

pendent loops, where the dependencies are carried between iterations using registers.

The last three are independent loops, where all iterations of the loop are independent

of each other.

As described previously, each of the distributed register files has four sources for

95

0 .5 r__------------------------.....,
0.45 1-----------;::========;-----------1 0 .9

0.4 I ---'-----t' -----il:..: ~~ r----1 0
.
8

iO.35==~Writes 0.7 Xl
~ ~
-t~------------------------.0.8R

i''' ~~__ 0.' t
8. 0 .2 -=~,~==~~~~===========~===:::::~ 0 .4 51 ~ ,- -~_i . - - -- - _. - - - - - - - - - - - - • - - - • - §
:10.151---'-----------------------1 0 .3 ..

!;i ,_ ~
8, 01 0 .2 ~

~> ' ~-- ~ ----C(0 .05 I---------------____ -_....:-~~ ____ 0 .1

O~ ________________________ ~O

o 5 10 15 20 25 30 35 40 45 50

Normalised problem size (min)

Figure 4.3: Average accesses per cycle on additional ports, n=64 processors.

write accesses in addition to the pipeline ports. These are for $G write, the initiali­

sation write, the $D return data and the write to the port that supports decoupled

access to memory on a cache miss. Our analysis shows that the average accesses from

these sources is much less than one access per cycle over all analysed loop kernels.

This is shown in figures 4.1 to 4.4 where accesses to initialisation (I), broadcast (Br)

and the network ports (Sd, shown as SID) are given. The four figures illustrate the

scalability of the results (from n=4 to n=256 processors). Results are plotted against

normalised problem size, where m is the size of the problem in terms of the number

of iterations, although not all iterations are executed concurrently in all codes (for

example the recursive doubling algorithm has a sequence of concurrent loops varying

by powers of 2 from 2 to m/2). Normalised problem size is therefore a measure of the

number of iterations executed per processor.

0 .5

0.45

;c
::J

0.4 "'0
':;:
~
c: 0 .35,
C1.>

~ 0 .3
u,..,..
.... '"
~ ~ 0 .25 o
:GQ.

'" '" 0 .2
§
ro
C1.> 0.15
CI
ro
~ 0 .1
<

0 .05

o
o

\1 - - -I - - B
- SID

~, - All w rites

\{
~

\\..~
\.

'" ---- - - - - - ~.~- .. ------- - - - . -
~- --- -- -

10 20 3 0 40

Normalised problem size (mIn)

96

1

0 .9 ,..,..
'" C1.>

0.8
'1:
~

0 .7 ;c
'-'

C1.>

0.6 "U
~

0 .5 C1.>
Q.

'" C1.>

0.4 '" '" C1.> -- - - - tl
0 .3

ro
C1.>
CI
ro - 0 .2 C1.I
:>
<

0.1

o
5 0

Figure 4.4: Average accesses per cycle on additional ports, n= 256 processors,

It can be seen that only accesses from the broadcast bus increase with the number

of processors and even this is only significant where few iterations are mapped to

each processor. Even in the case of 256 processors, providing we schedule more than

a few iterations to each processor, the overall number of writes is less than 50%. Note

that a register file of 512 registers supports at least 32 microcontexts per processor.

To put this in perspective , this means that on average a single port sharing all I,

Br and Sd writes would be busy only 50% of the time. There may be peaks in the

distribution of writes per cycle, however all of these accesses are asynchronous and

they can be queued without stalling the operation of any of the pipelines. This still

leaves capacity to include writes from the decoupled-memory accesses.

The analysis of the decoupled-memory port also shows that the average number

of accesses per cycle is small. If we assume a cache miss rate of 50%, then the average

97

Table 4.2: Average number of accesses to all additional write ports for different
number of processors, m/n=8.

Miss Rate A verage Accesses A vcrage Accesses Average Accesses Average Accesses Average Accesses

(R %) to write miss pon (All Write Ports) (All Write Ports) (All Write Pon s) (A II Write Pon s)

(Wm) n - 4 n - 16 n - 64 n - 256

10% 0.038 0.405 0.453 0.5 17 0.634

20% 0.076 0.443 0.49 1 0.555 0.672

30%
0. 113 0.480 0.528 0.592 0.709

40%
0.15 1 0.518 0.566 0.630 0.747

50%
o. t89 0.556 0.604 0.668 0.785

60% 0.227 0.594 0.642
0.706 0.823

70%
0.265 0.632 0.680 0.744 0.86 1

80%
0.302 0.669 0.717 0.781 0.898

90%
0.340 0.707 0.755 0.81 9 0.936

100% 0.378
0.744 0.785 0.857 0.974

number of accesses is less than 20% over all loop kernels. Thus, a singl write port

would not be fully ut ilised at this miss rate. For completeness, table 4.2 and shows

the average number of accesses per cycle to all write ports including th W m port

with a variable cache miss rate. This table is compiled for a normalis d problem size

where the m/n=8, which corresponds to fu lly utilising a small register fil (se also

figure 4.5).

en
2:!
.~

:§.
CI)

<:)
>-
(,)
CI)
a.
VI
CI)
VI
VI
CI)
(,)
(.)

to
CI)

OJ
to
CI)

>
<C

1

l
0 .8

0.6

0.4

0 .2

0

0 20

__ 256-processor

54- processor

-fr- 15-proce ssor

40 60

Miss rate p e rcen tage (0/0 R)

98

80 100

Figure 4.5: Average number of accesses to all additional write ports for different
number of processors, m/n= 8.

4.4 Registers Allocation

4.4.1 Background

Register allocation and instruction scheduling are two important issues for processors

aiming to extract a high level of ILP. Separate instruction scheduling and register allo­

cation leads to poor register utilisation and degrades the amount of parallelism [122].

The complex hardware and mechanisms used in superscalar processors such as regis-

ter renaming to remove artificial data dependencies between d pendent instructions,

speculative execution to handle control dependencies and recovery from misspredic­

t ion, limit the amount of parallelism that can be readily achieved. These approaches

also have limited knowledge of when a physical register can be reallocated. In con­

trast, microthreading provides a dynamic scheduling with dynamic register allocation,

99

and there is a full transparent interaction between the thread scheduling and threads

allocation.

Several previous projects have investigated register allocation such as [123, 124]

attempting to exploit more ILP or to allocate more physical registers at runtime.

In [123] a mechanism for managing multiple register sets in a register file is proposed.

The mechanism includes both compiler and hardware support to reallocate registers.

The compiler tries to identify the required number of registers for each thread, and

generate code using that number. At execution time, a special instruction is executed

(with hardware support) which tries to dynamically group the register sets from all

active threads into the register file. This mechanism requires one or more cycles in

the execution pipeline, affecting the instruction decode stage. Also it constrains the

context sizes, which must be a power-of-two.

Other proposals such as [124] use a hardware mechanism together with an en­

hanced compiler to allocate more physical registers (not addressable through the IS A)

at runtime in order to reduce the spill code problem. The spilling problem is very well

known, and most existing processors have a mechanism to handle the situation when

the number of physical registers exceeds the register file size. This allocation scheme

complicates the hardware design and is not precise in the way registers are allocated

- allocation information is conveyed to the hardware through offsets of spills [125].
I

In the microthreaded model, the distribution of threads to pipelines is determinis-

tic and is based on a simple scheduling algorithm. It is dynamic as it is determined by

resource allocation and release (the concurrency exposed is parametric and not lim­

ited by the hardware resources). Register allocation in the microthreaded model is

performed prior to thread creation, where the RAU in each local scheduler maintains

100

the allocation state of the local and shared registers required by each thread created.

The registers must be allocated in a contiguous block, and the block is defined for

a given family of threads. The allocation is based on a base-offset addressing mech­

anism for each thread, where the base address is the first address of the contiguous

registers. The offset is obtained from the register address in the binary code. Indeed,

the process of allocating registers before thread creation and releasing these registers

when the thread completes provides an efficient and flexible solution to this problem.

It also provides an accurate utilisation of the registers in the register file.

4.4.2 Comparing Registers Allocation Design Alternative

In this section, we will discuss in brief one possible implementation choice for allocat­

ing registers in microthreaded CMP, that we have already investigated throughout our

research. The implementation is based on a set of components, which are required

to perform the allocation and de-allocation processes. The components comprise

Free-block table, Allocated-block table, and Slice table. The free block table contains

information about a contiguous block of registers. Initially, there is one free block

and it contains all registers in the register file above register 31, note that 0-31 are the

"architectural registers" , which are addressed by the main thread and which provide

compatibility with any given instruction set architecture. Also, two registers fstart,

which is a pointer to the first free block in the free block table and a register ffree,

which is a pointer to a list of free entries in the table. Note that the philosophy of

this algorithm is to deal with slices of registers, which is a function of a given family

of threads, and not individual registers. In particular, the block may contains a set of

slices, and each slice is equal (in size) to number of local (L) and shared (8) registers

101

per thread i.e. £+28.

The allocated-block table contains information about the register blocks that have

been allocated. Initially, there are no allocated blocks. Again these represent contigu­

ous blocks of registers allocated to one family of microthreads. Also, in this table two

pointers are required. The first is astart, which is a pointer to the first allocated block

in the allocated-block table. The second pointer is afree, which is a pointer to a list of

free entries in the table. Finally, there is the slice table, which contains information

about slices that have been allocated; its main use is to monitor slice reuse. It uses

a slice counter (breleased) to count the number of released slices (sreleaesed). Thus,

when the slice counter becomes equal to the size of the allocated block (fs), then the

allocated block is released and becomes free again. Note that, the slice table index is

equivalent to the CQ slot number.

The allocation and release processes work concurrently, and a brief pseudo-code

algorithm description of each of these processes is shown in figure 4.6. In effect, we

investigated this implementation and we found that it has multiple limitations such

as:

• Three memory structures (tables) with pointers and extra logic are required to

perform the allocation process. This is costly, and does not scale well.

• The strategy of allocating blocks and then deallocating these blocks when they

are released results in fragmentation the register files, and inefficient used for

the allocation scheme.

• A merging technique is required to merge two contiguous blocks when this

becomes possible, but the problem is that the merging process requires extra

Allocate: Process AlIocation(Thread parameters);
begIn
For each thread family:
Get thread farnily pararneters ;
Loop: While family not complete do:

Get next free block parameters;
Find a free allocated block;
While block not full:

Allocate slice;
Update tree-block pararneters;
Update allocated -block parameters;
Update slice parameters;

End loop;
end process Allocate;

Release: Process (Rlease Pararneters);
bgin
sreleased - sreleased - nurnber(releases for slice);
When any slice's sreleased reached zero;

breleased - slice + breleased;
When any allocated -block brealeased counter - fs;

Create neVII free block;
Merge free blocks if possible;
Return allocated block to free list;
Merge free allocated blocks is possible;

end process Release;

Figure 4.6: An alternative algorithm for allocation scheme.

cycles, which in terms increase the allocation overhead.

102

• To perform the allocation process, more than one cycle is required, which is

necessary to update the required pointers, and parameters.

Finally, this implementation choice is complex, costly, and has multiple limitations.

Therefore, in the next section we will discuss an alternative implementation, which

has multiple advantages. The design is largely in combinational logic and it can

perform the allocation and de-allocation processes very quickly. It provides a simple

and scalable solution for dynamically allocating and de-allocating registers.

103

4.5 Dynamic Register Allocation Scheme For Mi­

crothreaded CMPs

4.5.1 Description of the Allocation Scheme

In this section, we describe the hardware mechanism for dynamically allocating and

de-allocating registers to families of microthreads. The hardware uses information

provided by the compiler through the TCB to define the allocation requirements, and

a set of I-bit flags to model the allocation state of the registers. The free registers are

split into a block of the appropriate size and the remaining registers (if any) continue

to be flagged as free. Initially there is one free block and it contains all registers in

the register file above register 31.

It is important to perform the allocation process in a minimum number of cycles.

Our scheme allocates one microcontext per cycle, which is the fastest rate and corre­

sponds to a single thread per microcontext; the allocation may be amortised over a

number of threads if there is ILP defined in the TCB. Design tradeoffs can be made

that allocate in units of a few registers, rather than single registers. The scheme

has an area proportional to the product of number of allocation units in the register

file and the number of bits in the register specifier. For a given ISA, or number of

bits in the register specifier, the allocation has a constant (worse-case) time delay.

An analysis of 10 Livermore loop kernels, including both independent and dependent

loops, gave an average number of registers required per microcontext of 6 as shown

in table 4.3, and a minimum number of 3 (one for the loop index). The area can be

saved by allocating in units of greater than one, as allocating a unit of n-registers

reduces the complexity of the allocation scheme by a factor of n.

104

T bl 43 N b f a e .. urn er 0 . d reqUIre 11 registers per a ocatlOn over a range 0 fl oop k erne s.
Loop Name Number of $L Number of $8 Total $
A: Partial Product 2 1 3
B: 2-D SOR 3 1 4
L3: inner Product 3 1 4
L4: Banded Linear Equation 7 2 9
L5: Tri-Diagonal Elimination 3 1 4
L6: General Linear Recurrence 7 1 8
C:Pointer Chasing 3 1 4
L1: Hydro Fragment 6 0 6
L2: rcca 12 0 12
L7: Equation of State Fragment 10 0 10
Average Registers per thread 6

Figure 4.7 shows the Top-level design of the RAU and its interaction with the

thread-create process and hence, the rest of the scheduler. It shows that the RAU

comprises an iterative array of allocation slices, one slice per n-register block. Infor­

mation on the action required (no op., allocate or release), the required block size

(for allocation), and the base address (for release) is supplied to each slice from the

scheduler. Each slice maintains a flag, which indicates whether the corresponding

section of the register file is free or not. Note that in cycles when no action (allocate

or release) is being performed, the RAU still calculates the next base address ready

for allocation, so that it is available before an allocation is actually required.

In figure 4.7 data ripples through the allocation slices from bottom to top, corre­

sponding to increasing register-file addresses. The output from the final slice identifies

the base address in the register file of the first free contiguous block that meets the

current block size requirement for allocation (if one exists). The scheduler uses this

to determine whether the current allocation round can proceed and to set the base

address in the CQ of any threads associated with this microcontext.

105

..... Block base ~

~ .. I Regi~ter.allocatio~ 'I Fl a I
Block s ize combmatlOnal logIc g ... t Thread-create

~ ..
S ta tus

process {available. en'or }

Control Register
{allocate. re lease. no op. 1 Allocation .. ~ Wri te PC and thread s tate Unit

~ Ir Read link fie ld

t I Register allocation -I Fl , I
combinationallollic ug

CQ t
One fl ag per n registe rs In r Register allocation I Fl 1

loca l reg is te r fil e - ~ombinationalloKi~lg

Figure 4. 7: Block diagram of the RAU and its interaction with th thread-creat
process.

The ripple inputs to the first slice are not hardwired, but h ld in a r gister to

facilitate test and adaptability. The base address input of the first slice i held at

the address of the first register that can be allocated in the register file , whi h in th

scheme described above would be address 32. This r gister would r main onstant

using the simple models adopted in our work to dat but ould support recursiv

micro contexts, where a micro context in one family could b com th global cont xt

for a subordinate family. This would support concurr nt n st d loop for exampl

Information propagated from slice to slice includes whether a free block has b en

found, the base address of the largest free block, the size of th largest free block,

the base address and size of the current free block. An error flag is also propagated

which indicates if inappropriate inputs have been applied to the RAU . Th data ma­

nipulated and propagated between slices is listed in full in tabl 4.4 and is illustrated

106

)

SASI

I

lag I 1

Slice of allocation logic "'
-.,

.....-
r-))

Figure 4.8: Register allocation unit 's combinational logic slice.

in figure 4.8. As already explained, the number of registers per microcontext is at

least one and less than or equal to 16, so it is possible to limit the size fields to 4 bits,

which can significantly reduce the propagation time within a slice and hence the time

to perform the allocation update process. Note that each slice performs an increment

on this field. The state of the allocator is held entirely in a set of flags, one per slice,

which indicates if the associated n-register block is available for allocation or not.

H the RAU is ready, the scheduler can initiate an allocation immediately, which

completes in a single cycle, after which the state of the allocator updates. The

update process, may take longer than one cycle, depending on the size of the register

file and allocation unit size (n), which defines the RAU's ripple-through time. The

rate of performing allocations will, on average, be less than one per cycle, as each

micro context may have many threads associated with it. Also the recovery time is

107

T bl 44 All I' a e .. ocatlOn OglC parameters.
Abbreviation name Description
BA Base Address
SSB Selected Slice Base
eSB Current Slice Base
ess Current Slice Size
SSS Selected Slice Base
SAS Set Allocate Size
SA Slice Available
Error Error Signal
Flagprev Previous Flag State
Flagout New Flag state
Flagin Current Flag State
SASI Set Allocate Size In
Reg Register

less important than the latency of allocation from request to allocation completion.

When a thread or group of threads associated with a microcontext are killed, then

the scheduler also causes the allocation model in the RAU to be updated to reflect

this, by providing the base address of the microcontext being released and its size.

This information propagates through the slices to determine which flags to reset. The

algorithm implemented by the RAU is described qualitatively below:

• Find the start address (base address) and the size of the first and largest free

chunk in the register file (or determine that no space is available).

• If space is available and the size of the available block is greater than or equal to

the required size, identify the portion of the free block required for the allocation

starting at its base address.

• Flip the corresponding flags of that chunk in the register-use model.

• When a release occurs, the base address provides a pointer to the beginning

For each thread family:
If (event= allocate and block_size> required_size and space_available) then

Allocate_thread()
Else if (event= release) then

Release_thread()

Figure 4.9: General action of the allocation scheme.

108

of the corresponding chunk to flip the corresponding flags in the register use

model.

The corresponding general action of the allocation scheme is shown in figure 4.9.

The allocation scheme is straightforward and allocating registers in units n pro­

vides both area and propagation-delay reduction in the scheme. If we assume that

the size of the register file is R, and the number of registers allocated in a unit of

allocation is n, then the complexity of the allocation scheme is proportional to O(~).

4.5.2 Implementation and Simulation Results for the AHo-

cation Scheme

This section provides the implementation methodology and simulation results for the

allocation scheme described in the previous section. As described earlier, VHDL simu­

lation is used for initial system component verification. VHDL allows each component

in the model to be described independently with its required internal behaviour by

defining how its outputs behaves when certain conditions are applied to its inputs.

L.l.bt:ar:y IEEE ;
IEEE . 8Cd ~oq1C ~164 . a~~ ;

U~~ rEEE . 8td=lOgic:una iqn~ d . 11 ;
U!li~ STD . "TYX'TIO . e.ll ;
U~e IEEE . ~td_1001c_textio . al1 ;
u~e I~E:E _ 8td_logic_a~iCh . all ;

l:nt:l.CY S l. i c e 105
Genet:,l..C (

) ;

poct: (

M
3

SAi n
3381n
e SB1n
C S3 in
S ASin
SSS 1.n
S A S I
S A.in
!:r;:r: o r l.n
P' l.aql.n
F.la(1p c ev
Do_e.11ocece
Do_ t:el.eaae
BA.oue
SSB o uc.
CSBou c.
C SS out
S ASou t
SS S o u t
!SAo u e
!:r;r; or;ou c
F.laqou t

) ;

!:nd S l.i c e;

.1.0CeQe.L : - 3 1;
l.nteqeJ: : - 7;
.1.ntec;,eJ::. ;

~td_logl.C vecto~ (S

: 1.1~ 3td 100'1C vee COl:. (3

: 1.0 StC:10Ql.c:veceoc (s
: 1.n ~td_loOl.c_vecto~ (S

: l.n at:.d_loO'1.c_veccoc (3
: 1n std 10g1c vectoc (S
: 1.n std:10Q1c:veceoJ: (S
: .l.n .c<1 10g1.C ;
: 1.n scd 1001.c ;
: 1.0 S1:.d-100l.C ;
: :l.n .td_10Q1c ;
: 1.u 81:.<1_10q1.c ;
: 1.0 :ted 1001.c ;
: ouc sCd=10Q1C_veC O~ (S
l oue s1:.d_1oq1.c_veceo~ (s

: oue sCd_1oQ1.c veceo~ (S

: oue .ed_1oo1.c_veceoL (S
: ou sed 10Q1.c_ vec O~ (S

: ou 8td_l001.c_v~C OL (S
: oue sc.d 1001.c ;
: oue scd-l0Q1C '

a d 100'1.

Ar:ch1cec ur;~ Combi n a tion _ A l l ce ot S l i c e

dot.,rnt..u 0)
down eo 0)
downt.o 0)
dot.rnt.o 0)
<1ownco 0)
downt.cJ 0)
dot.rn eo 0)

dotJ'l"lt.o 0) ;
down eo 0) ,
do,,", 0 0) ;
d.ownt.o 0) ,
d01JT"l.co 0) ,
do1JT"l.Co 0) ;

1'1t1K ~l,ll.
N\Ulll''''J .r
1111:'" NHWI''''1

11""~ ..,,1.1 , '" l"

1.11..... .1 L,,.. H.-,.!'If'" 1.1.

"ll I " '\1. I t" H ... ~~

::.,..1"', '''' .1 111.· 12"t

'f'" r "11,,, " ... ,.. , 1 r ...
1lJ.. '" l~v"J.ll'lbl ...

"I I' " .. , UI." I

"1<')'.1 11I1JlIt
).it ..-Vll'\I ",.,111'"

,II, lluLDl.-r

It,..,.. ... '·'II ld.,.. ~ 101.1 '

Ill'''' • t r ... (1",:,,(", ollT"

r U I '~I.t ~i 1.1.1,.. Ii ., . .." "Ill

LltLLel1t .5.l.1~_"," .')1.z.0 tllll

~,.. , "I I I.H"l"Ir... ' 1 :::'"
,,..,"'. , II'''' i l

"\l 1 ,'. AV .tIa.bIt'"
~ I I PI ., I V"" I

f' 1 "'.1 "" ", ...

constant Ze :r:o~o:r:4 : .cd 10a1c vectoc (S downtu 0) 1 - (oUh.c. - > '0'))

Figure 4.10: Allocation schem enti ty des ription our od .

109

To verify and test the behaviour of th aHo ation sch m 1 a high r-I v I m d 1 has

been written for the allocation sch me.

We have modeled the behaviour of th allocation ch m III VHDL language,

exploi ting the generate statement provid d by thi language to r a t th allo a tion

uni t. In particular, the model include th allocation ntity, its ar hit ctur behaviour

and the test bench as shown in figur s 4. 10 to 4. 12 r sp ctiv ly.

A set of public and generic definitions ar used as a defaul t value to pas structural

information to system components that ar d by thi definition . This is

important to maintaining th modularity of the allocation sch m , wh re th a tual

parameters can be changed without changing any component of th model. Note that

in this implementation, we consider that all signals and variabl s hav a orresponding

value assigned in any branch of the IF statement .

110

B~01n
Main : pcoc~~~ (Do_allocat e i Do_~eleaseiBA1n, ~SB1n, CSBin, CSSin, SAS in, SSSin , SASI, SA~n,

vac1able 1 : natural :- Sliee_id;
va~~able inieial : boolean :- Tal~e;

vac1able c uccenebase, SSB , SSS ,C SB , SAS , tico : naeucal
vac1able ess : natu~al :_0;
variable Teap : naeural :-1;
va~1able Teap reQ,Temp reo2 : natural :-0;
vac1able t ; ~td_loQ1C_~ectoc (S down to 0);

BeQ1n
1t (Flaqin - ' 0 ' and Flaqpcev- ' d · and Do_~locate - ' O ' and Do_cele&8e- ' O ' and slice_id-O) then

CSSout <- SSSin ;
SSSout <- SSS1n ;
SSBout <- SSBin:
CS80ut <- CSBin;
S Aout <_ ' I' ;

else 1t (Tlaq1n . '0 ' and Tlaqprev- ' 0 ' and Do_ allocate . ' O ' and Do_release- ' O ') dlen

CSSout < - SSSin ;
SSSout < _ uns1qned (SSS1n) + uns1qned (vord);
SSBout < - SSBin;
CSBoue <- CSB1n;
SA-out <- l' ;

~13~ 1! (rlaqin - '0' and ~1agp~~v- ' 1 ' and Do_allocat~ - '0' and Do_~~lea8~- 'O') dh~n

CSSOUt <- wo~d;

CSBout < _ conv_~td_loalc_vec to~(311ce_ld, e);
SSSoue <- SSS1n ;
SSBout <_ SSBln; -- conv_ !l t- d_lv\ll...:;_v~cr::/j C (s.Ll. \ ""' _J.tJ, 1 l;

SAoue <- '1' ;
else 1t (Do alJ. oc a ee - 0 ~d Do_ceJ.eaa~- ' 0' and ~lag1n. · J. and ~lagpcev_ 1) then

csso~e <- X "OO" ;
CSBout <- X~'OO" ;

SS30ut <- 3331n;
SSBout <_ conv_atd_log1c_vectoc(a11ce_1d, e) ;
SAout <- SAin;

eJ.!le 1~ (Do aJ.J.ocate - ' 0 ' and Do_ celease- O· and tlag1n- ' l ' and rlaqpcev- 'O') Chen
CS30ue <- X"OO" ;
CSBout < - X " OO " ;
SS30ut < - uo!l1qned (SSSin) + un!l1qned (wocd);
SSBoue <_ cony ae~ louic veceocl alice ld. e ,;

Figure 4.11: Allocation scheme architecture behaviour source code.

Gen4![lC aap (II ,s ,Sl1ee_ld - >1 , r.d.el.y -> tde1ay)
'Ott. .ap (elk, nt., 1nit.(1), ReqUiud Alloe She;, t>o-.11ocat.e ,t>ouhue;

AlloeaU_lIue, Rde .. e_lIue;- , S,u(i) ,SASli ll)
),

end qenecate Reqn:
end qenu:at.c U2 :

U3: tOI:: 1 l.n 0 1:.0 111) qenuate:
.lieeO: If i - 0 oenel:ate
510 : Sl1ce

)

pOlt .ap (

) ,

BU(t), 5SB1(1) ,eSSi(1) , e991(1), !U.!1(t). 9591(1) , SJ.SU(1), ! 11 (11. Euoc1(1l.rqo(1),F'puv(11. Doallocate. Douh ..
B11 (1+1) ,5SSi (1+1) ,e!!l1 (1+1) ,e!5i (1+1), SUi (1+1), SS!1 (1+1), SAi (1+l.), Euod (1-+1), r01 (1)

end QenetaU aliceO:

al1ce.n : It ((1 > 0) and (i < I ») t;Jeneute
Sln : Slice

oenenc .81' (

PO[t .ep

11.5 ,Sl1CI!;_1d _)1. t delay -> t4l!ley
)
(BA111), SSB1(1) .eSB1(1), eSS1(1)' SASi(1). SSst(l), SJ.SU(1), SA1(1)'[UC[1(1). '0'0(1), 'OoI1-1l,DoaUocata .Doui

BA.1 (1+1),SSlU(:l+1).eSBi(i+1) ,CSS1(1+i). S'\si(i+l).!5SS1(i+1) , SAill+l). tuOd(1+1). '01(11
) ,

wc1 qenl!:l::at.e al1cen;

.11cdina1: if (1 -II) qennat.e
!sHln : U1ce
Qenenc .811 (

poct .ap
)

(IIAl(l), 'SIIi(1) .eSl1(1). e!Sl(1) . SAHIt). SSSi(l). SASU(l). 541(1). Ettor1 (1),'qO(1) .'Uo(1- 1),Doal1ocau , Dou1u .. ,
1I.u (1) ,A.110ceu_Bue. .eSBl (1) .C!5!5i(1). u.sl (1) • .t.vallabh_S1tt • SPlc._Avallab1e.Imtut_Euot. '01 (1)

),

end qel'\eut.e sl1cet:1.nl!l;
~,.. ,.,.n,. t,. m ,

Figure 4.12: Allocation scheme test bench source code.

• Signals * Yalue;
ffi ~ b:aU;daiJ~ :alb:ati:mel1ase_base Z2

ffi ~ b:aU;daiJ~ :alb:ati:rl:r~i'e(aIb:J Z2

' b:al_sdeiJ~ :a lb:ati:rl :OOaI b:ate \J'
' b:a l_sdeiJ~ :a lb:atrJ1:(hel1ase \J'

ffi ~ b:al_sdeiJ~ :alb:ati:rl :alb:ate_base 00
ffi ~ b:al_sdeiJ~ :alb:atil1:avaiIclJIeJize 40

111

Figure 4. 13: Simulation waveforms for allocation three registers per thread (Register
file size is 64-registers).

The VHDL model was simulated using various compile scenarios and with different

thread allocation size implementations. In effect , a variety of test cases were simulated

and the output results compared with the required behaviour of the allocation scheme.

For example; figures 4.13 and 4. 14 shows a snapshot of simulation waveforms for the

allocation scheme. In figure 4.13 we assume that the given family of microthreads

required a slice with three registers in each allocation cycle. While figure 4.14 shows

allocation and de-allocation for a different slice sizes. Also figure 4.15 shows waveforms

for the allocation logic parameters values. We will also show the behaviour of our

allocation simulation together with the microthreaded in-order pipeline in chapter 7.

Note that the allocation scheme VHDL source code and more waveforms simulation

results are described in appendix B.

4.6 Summary

This chapter presented two contributions. The first includes an analysis of t he require-

ments of the micro threaded register file in term of frequency of access to asynchronous

(non-pipeline) ports in the synchronising memory. The result of analysing a range

112

II Signals * VI "~!II1!1I1!1!1!1I1!1!1!1!1!1!1!1I1"II~III1"1
llI , albcati:Jl_architEctLre :release_base zz zz 04 r ~
llI ~ aI Ocati:Jl_arch itEctl.re : req,JrE~taIOc_size 04 04 07 03 1 04

, albcati:Jl_architEctl.re :ihaIOcate '0' W- L---.f ~ ~~~~~-===-==,--d
~alruti:Jl_archltEctl.re :ltreklase '0' ,------. ~ LJ

1lI ~ aIOcati:Jl_archltEctl.re :allocate_base 00 04 Of 13 la ld

llI ~ a I Ocati:Jl_arch ltEctl.re :ava l i<tJe size 20 2(Ie 15 11 07

a) Wavrorl1l~ Sa mple one

II S9>aIs *1
liI ~ a lrutuu~chitEctl.re :reklase_base zz ZZ -y 04 Y 1Il Os Y ZZ

iii ~ alruti:Jl_archlls:tLre :r!qJfe:taIOc_SIZ8 07 07 03 1 04 07 03 ZZ 09
' alruti:Jl_architEctl.re :OOaIOcate '1' ~L---..J~~ ~ .---,

-;::::=
,

~ alruti:Jl_archlls:tl.re :ltreklase '0' ~ ,----, ,----,
'-'

Ill ' aIOcati:Jl_archlls:tLre :aIOcaw_base 04 104 De Of 13 la Id
Ill ' alrutoo_archlls:tLre :avali<tJe_slZ8 1C Ie 1 1 11 (l:l [ll 03 07 De 11

b) '""u"fornu Samph.~ Iwo

Figure 4, 14: Simulation waveforms for allocation and de-allocating different slice sizes
per thread (Register file size is 32-registers),

of different code kernels shows that a distributed shared register file could be imple-

mented with only 5-ports per processor , where three ports provide single instruction

issue per cycle and the other two asynchronous ports were able to manage all other

demands on the local register file, In fact , the decoupled approach to register-file

design avoids a centralised register file organisation and , as we have shown, requires a

small, fixed number of ports to each processor's register file, regardless of the number

of processors in the system,

The analysis involved different types of dependent and independent loop kernels ,

The analysis illustrates a number of interesting issues, which can be summarised as

follows:

• A single write port with arbitration between different sources is sufficient to

support all non-pipeline writes, This port has an averag access rate of less

than 100% over normal operating conditions, This is t rue even in the case of a

113

" ',,,noIo * .oIu
IE " allocation_¥chitectl.re :bal (00.01
B " allOcatJOn_archltBCtLre :ssbl (00.00

"' .. (0) 00
"' '' (1) 00
"' '' (2) 00
"' '' (3) 00
m,, <") 00
", .. ~) 00

.~.Wt 00

~
"' .. (8) 00
''' '' (1)) 00
"' .. (10) 00
"' .. (11) 00
lB " (12) 00
"' '' (13) 00
"' '' (14) 00
"' '' (15) 00
"' .. (16) 00
"' .. (17) 00
"' .. (18) 00
"' .. (19) 00
"' .. (20) 00 ~
"' .. (21) 00
"' '' (22) 00
"' .. (23) 00
"' .. (24) 00
"' .. (25) 00

ifJ ' (27) 00
ifJ ' (28) 00
ifJ ' (29) 00
ei ' (lJ) 00
E!i ' (31) 00

8 , al locatxrunhitBCtlre:csbl (00,00
8 , allocatla1_;o'chltoctl.r8 :Cssi (00,00
8 ' allocatm_;o'chitBC1lre :sasl (00,00 . \]: JJ.
8 , allocatla1_;o'chitoc1lre :sssl (01,01.

ia 8 ' allocatm_;o'chitoc1lre :sasii (00,00.
I!I ' allocatm_;o'chltBCtlre :fg l IWXX Xl
8 ' aliocatm_;o'chitoctlre:fgo IWXX III ,Ie lJ11 ,!,!!!

8 , allocatm_iI'chitoctl.re:fire IWXX l!! ~ Am ,!,!!!

Figure 4.15: Simulation waveforms showing slice parameters values (three registers
per thread).

100% cache-miss rate.

• A second port is required to handle reads to the $D-window. The analysis

shows that the average access to this port is less than 10% over all analysed

loop kernels.

• As a consequence, the distributed register files require only five ports per pro­

cessor and these ports are fixed regardless of the number of processors in the

system. This provides a scalable and efficient solution for large numbers of

processors on-chip.

• Finally, the average accesses to all write ports does not exceed 100% even in the

114

case of n= 256-processor. However, to deal with a large number of processors,

the performance would degrade gracefully due to the inherent latency tolerance

of the model. Eventually all threads would be suspended waiting for data and

in this case the stalled pipeline(s) would free up contention to the non-pipeline

write port.

In the second contribution an implementation of a simple allocation scheme to

dynamically allocate and de-allocate registers for microthreaded CMP has been de­

scribed. The scheme behaviour was verified and tested using VHDL language. The

scheme employs very simple hardware combinational logic design and the allocation

process is fully decoupled from the pipeline execution. The allocator can allocate

registers in fixed blocks, which simplifies the logic and reduces the area significantly.

Chapter 7 addresses the area scalability of this issue, where an area estimate to the

allocation scheme compared with the actual register file area is given.

Chapter 5

Microgrid Chip Multiprocessor
Architecture Model

5.1 Chapter Overview

The term microgrid refers to a CMP where all processors have a microthreaded sched­

uler and a synchronising, distributed register file. This chapter introduces the micro­

grid CMP architectural model, discusses its components, and highlights the problems

that will be resolved in chapter 6 and chapter 7.

The chapter is organised as follows. The next section discuses a top-level architec­

ture model of the microgrid CMP. The chip communication buses and its main uses

are presented in section 5.3. Microgrid CMP supports Globally Asynchronous Locally

Synchronous (GALS) communication and this issue and its features are presented in

section 5.4. Microthread scheduling and thread distribution to support microgrid

operation is presented in section 5.5. In section 5.6, an overview about microgrid

input/output routines is presented. Microgrid CMP Scalability is discusses in section

5.7. Finally, we present the summary of the chapter in section 5.S.

115

116

Processor 1 Processor N

Create Create

~ ~

Scheduler 1-
Scheduler

1-
cache cache

! . . .
Pipeline

D- r Pipeline
0- -cache cache

Crcarc/write SG 1 Broadcast Bus Create/write G 1
~ Writc$G Write SG

ln itialis{'
Decouplcd

InitiaJisl'
Dcc SLO SLO

Local - L" Local - Lw
oupled

Register file Register file

~~
Ring interconnect for 1 ~"
registers and bus arbitration

Independently synchronous domains

Figure 5.1: Microthreaded CMP architecture, showing communication structures and
clocking domains.

5.2 Microgrid eMP Top-level Architecture Model

Microgrid refers to a CMP where all processors have a microthreaded scheduler and a

synchronising, distributed shared register file. A microgrid will have an interprocessor

network to support the sharing of microcontexts between micro threads in a family

of microthreads, mapped to different processors. The network also supports the

broadcast of shared-register variables and the parameters defining the creation of a

family of micro threads. A microgrid may also have a systems environment processor

that manages the allocation of processors to families of threads dynamically and

configures the network accordingly. A long-term vision is considered in the design and

117

component organisation of the microgrid CMP architecture model. This vision comes

from the fact that most existing CMP designs suffer from hardware and software

implementation problems. Thus microgrid CMP avoids global clocking by supporting

a GALS design approach, where each micro threaded processor has its own local clock

domain and accesses global resources asynchronous. Microgrids are described further

in [24].

Figure 5.1 gives an overview of such a microgrid, showing the networks required

and the datapaths between the major components within a processor. These are an

in-order pipeline, a scheduler, a large register file and a local I-cache. The processor

may also have a local D-cache but latency tolerant access to data means this is

not a necessity. In a profile of processors, a subset of the microgrid, any processor

can create a family of microthreads for execution on that subset. This requires the

distribution to each processor of the address of a data block in memory. This is the

previously described TCB, which contains all of the parameters that define the family

of microthreads. This is the only global communication required in the execution of

a family of microthreads, apart from those defined by memory accesses in the code.

Each processor receiving the address of the TCB will execute a deterministic subset

of that family, based on the parameters in the TeB, the number of processors in the

profile and its position in the profile.

A microgrid has two main buses, the Broadcast Bus and the Shared-register Ring

Network. The broadcast bus allows the register file to be fully distributed between

multiple processors. The shared-register ring network is used by the processors to

communicate results along a dependency chain. For the model described, this requires

118

only local connectivity between independently clocked processors. All global commu­

nication systems are decoupled from the operation of the microthreaded pipeline and

thread scheduling provides latency hiding during remote access. This technique gives

a microgrid CMP a serious advantage as a long-term solution to silicon scaling. The

next section describes microgrid buses in more detail.

5.3 Microgrid eMP Communication Buses

5.3.1 Broadcast Bus

The Broadcast bus enables one processor to create a family of identical threads. This

bus arbitrates between multiple processors and in each cycle one processor can access

this bus to create a descriptor of a new family of microthreads. The descriptor identi­

fied in the create process is distributed to each scheduler, which uses that information

to determine the subset of the family of threads it will execute. It will probably also

be used by the same processor to distribute any loop invariants and finally, if there is

a scalar result, one processor may write values back to global locations. This situation

occurs when searching an iteration space, it is the only situation where contention

might be required, as a number of processors might find a solution simultaneously

and attempt to write to the bus. In this case a break instruction acquires the bus

and terminates all other threads allowing the winner to write its result back to the

global state of the main context.

The rate of accessing the broadcast bus depends on the behaviour of the create

instruction. It is inversely proportional to the number of threads and cycles required

by each thread. If we assume that Nt is the number of threads scheduled to one

119

Tabl 5 1 R 1 t' f e .. e a lve requency 0 f t . t t' crea e IllS ruc Ion over a range 0 f I oop k rnels. e
Loop Name Create instruction rate

compared to other instructions
A: Partial Product 0.3333
B: 2-D SOR 0.2
L3: inner Product 0.25
L4: Banded Linear Equation 0.2
L5: Tri-Diagonal Elimination 0.25
L6: General Linear Recurrence 0.1429
C:Pointer Chasing 0.0714
Ll: Hydro Fragment 0.1111
L2: ICCG 0.0909
L 7: Equation of State Fragment 0.0385

processor and the number of cycles required by each thread is Ct, then the average

number of accesses to the create port (Crefreq) per cycle can be given by the following

formula:

1
Cre freq = C N,

t * t

(5.3.1)

The frequency of executing this instruction over a range of loop kernels as shown

in table 5.1 is very low. The loops considered included a number of livemore kernels,

some that are independent and some that contain loop carried-dependencies. Fig­

ure 5.2 also shows the frequency of executing create instruction over a range of loop

kernels against the normalised problem size, where m is the size of the problem in

terms of the number of iterations, and n is the number of processors. As shown, the

frequency of executing this instruction is very low, and the percentage of executing

this instruction is less than 17% over all loop kernels considered in this analysis. It is

important to note that microthreaded processors are tolerant to latency when they

120

0.2

0 .18

1
0.16

II)
0.14

;:;
>-..,

0.12
II)
a.
II) 0.1
iii
~
U 0.08
Q)
Cl
to 0.06
II)

> «
0.04

0 .02

\
\
\
~ --

10 20 30 40 50

Norm alised problem size (mIn)

Figure 5.2: Frequency of executing create instruction over a range of loop kernels,
m= problem size .

have created threads.

Even if the access to the broadcast bus is at a low frequency, a form of arbitration

mechanism is required to avoid contention and to provide fairness in communication

between processors. Also, it is necessary to investigate the implementation of the mi-

crogrid CMP bus interface with its required signals. The next chapter discusses these

issues and introduces a novel asynchronous arbiter optimised for this application.

5 .3 .2 Point -t o-Point Ring Interconnection N etwork

One of the most important issues in designing a CMP which effects and limits the

scalability is the interconnection network. The network allows the processors to share

\.It·Processor
(GALS)

\.It·Processor
(GALS)

\.It ·Processor
(GALS)

\.It·Processor
(GALS)

\.It ·Processor
(GALS)

\.It·Processor
(GALS)

121

\.It·Processor
(GALS)

\.It ·Processor
(GALS)

Figure 5.3: Point-to-point communication between microthreaded processors.

data. In fact, low latency, enough bandwidth and scalability are all important re-

quirements in choosing the interconnection network topology. For this reason we use

a ring interconnection network in the microgrid CMP that it is scalable and , given

sufficient resources , can adopt a schedule which ensures that any constant-strided,

loop-carried dependency be mapped to a neighbouring processor. The ring does not

suffer from bus bottlenecks and provides a point-to-point connection between nearest-

neighbour processors. Moreover , wire complexity in a ring network is low compared

with other network topologies. Concerning throughput, latency, and area require-

ment , the ring occupies a position somewhere in between the shared bus and the

switch solution [126] .

Use of a shared-register ring network in a microgrid CMP allows communications

between pairs of threads, one of which produces data and the other which consumes

it. This communication, as shown in figure 5.3, is between the shared and dependent

122

threads and will be performed by the ring network if the threads are allocated to

different processors. Note that schedules can be defined to minimise inter-processor

communication, more importantly; this communication is totally decoupled from the

pipeline's operation through the use of explicit context switching.

5.4 Globally Asynchronous Locally Synchronous

(GALS) Design Approach

Modern synchronous CMP architectures are based on single clock domain with global

synchronisation and control signals. The control signal distribution must be very

carefully designed in order to meet the operation rate on each component used and

the larger the chip, the more is the power that is required to distribute these signals.

In fact, clock skew, and the large power consumption required to eliminate it, is one

of the most significant problems in modern synchronous processor design.

Full asynchronous design is difficult but one promising technique is to use a

Globally-Asynchronous, Locally- Synchronous (GALS) clocking scheme [127]. This

approach promises to eliminate the global clocking problem and provides a significant

power reduction over globally synchronous designs. It divides the system into multi­

ple independent domains, which are independently clocked but which communicate

in an asynchronous manner. A GALS system not only mitigates against the clock

distribution problem, the problem of clock skew and the resulting power consump­

tion, it can also simplify the reuse of modules as they have asynchronous interfaces

that do not require redesign for timing issues when composed [128].

In CMP design, global communication is one of the most significant problems in

123

both current and future systems [8], yet not every system can be decomposed into

asynchronously communicating synchronous blocks easily, there must be a clear de­

coupling of local and remote activity. To achieve this, the local activity should not be

overly dependent on a remote communication. The model we have described has just

this property; each processor is independent and when it does need to communicate

with other processors, that communication occurs independently without limiting

the local activity. In short, the local processor is tolerant of any latency involved

in global communication, as in most circumstances it will have many other indepen­

dent instructions it can process and, if this is not the case, it will simply switch off

its clocks, reduce its voltage levels and wait until it has work to accomplish while

dissipating minimal power.

The size of the synchronous block in a microthreaded CMP can be from a single

processor upwards. The size of this block is a low-level design decision. The issue is

that as technology continues to scale this block size will scale down with the prob­

lems of signal propagation. Thus the model provides solutions to the end of scaling

in silicon CMOS. Compare this with the current approach, which seeks to gain per­

formance by clock speed in a single large wide-issue processor where all strategies are

working against the technology.

C t-eate addres s

r ...HH ••••••••••• H •••••••••

I A ll ocate/
dea l locate

P r cfetc h P
R ead TCB

·~·:·~·:·~·····-·····················-I
Sche dul e r

C o ntex t
s "\Nitc h

R esc h ed ul e
thread

124

I.n -ord er pipe line

I niti a l i se
100 index

L o cal
R egi t eI"

fi le

A s y n c h t-o n o u s inte t- race

Figure 5.4: Detail of the local scheduler showing its main components and the data
paths between it and other stages of the pipeline.

5.5 Thread Scheduling and Distribution to SUp-

port Microgrid CMP

5.5.1 The scheduler

A global scheduling algorithm determines the order in which a group of related threads

is distributed to the processor array. This algorithm is built into the local schedulers

and is controlled by the parameters from the TeB and the number of processors

used to execute the family, which may both be dynamic. Within each processor, the

local scheduler manages the execution of all microthreads currently allocated to that

processor. The schedulers in different processors are independent and each manages

a local model of its resource utilisation for the subset of the family of threads that it

125

must execute. This is based on the global scheduling algorithm and requires minimal

communication between the processors (each processor must know the number of

processors used and its location within that set).

As already described, microthreading exploits LLP by executing the same loop

body for multiple instances of an index variable. It is also able to capture ILP

within basic blocks. LLP is specified parametrically using loop bounds, with multiple

iterations sharing the same code but using different microcontexts; this is SPMD

concurrency. MIMD concurrency can also be specified using pointers to multiple

code blocks but is static in extent, as the compiler must make the partition of the

basic block and generate code fragments accordingly. Both are captured through

the control instruction ere, which initiates the creation of threads on all processors

defined in a given profile. Each scheduler will continue to create threads, until its

distribution of iterations has been exhausted. It may then continue to create threads

from other families, whose ere instructions may have been queued in the scheduler.

The process of thread creation requires the following actions (see figure 5.4):

• A slot number is obtained to address the scheduler's tables (CQ, in figure 5.4)

from the scheduler's empty queue and the empty queue is updated.

• The RAU reserves the required number of registers for the microthread's context

and returns a base address in the register file.

• The code pointer, the base address of the microcontext, and the base address

and slot number of the microcontext it is dependent upon are all stored in the

CQ slot.

• Finally, the index value associated with the microthread is written into the first

126

local register variable of its microcontext and all other variables are initialised

to empty.

• The slot number is then passed to the I-cache to prefetch the first instruction,

only after it has been prefetched, will the slot number be added to the active

queue of the scheduler, where it is available for execution.

Figure 5.4 shows more detail of a local scheduler and its connections with the 1-

cache and the processor pipeline. The RAU within each scheduler models the alloca­

tion of micro-contexts to the local register file and determines when new microthreads

may be allocated. If registers are available it will allocate a microcontext and then

create entries in the CQ for each thread associated with that microcontext. When

all the threads associated with a microcontext have been killed, its registers will be

relinquished and the RAU will update its allocation model. In this way a scheduler

can manage concurrency that is parametric and which exceeds the statically available

resources.

5.5.2 Thread Distribution

One algorithm that can be used to distribute an iteration space to the array of

processors is to use a block-cyclic distribution, which can be defined by the following

equation, where iteration i, is mapped to processor q, using a profile of P processors

and a block of b consecutive iterations allocated to each processor:

q = I~I modP (5.5.1)

In this schedule, b can be chosen to minimise inter-processor communication and

~I ranslonnullon
B y .Olllfli Ie ..

Threud Control Block
.da ta

loo p : . ",ord I
.wordl
.word l
. ",ordn
. ",ord I
.wo rd2
.wordl
.,o rd b o d y

tt thread p e r itera ti o n
II d e pende n c y di s ta n ce
tt loo p s ta rt
Ioop limit TCB
Ioo p s te p
numbe r o f lo c a l reg is ters
nllll1be r o f s hare d reg is te r s
p o inte r to c o d e fragm e nt

m a in: c re loop # create fa,nil y of thre ad s

127

m v $ GO $SO # in i ti a li se d e p e nd e n cy c h a in Ma in
s'" $ 00 Q # s to re result

Codc Frugmcnts }

...... --... ~----- - - - --- --------------- - ------- -- - ------ --- - ------ - - - --- - --- ---- -------------
Codc For loop hody

bod y : I", $ L I .A($ LO) # Ioad A Li I from m e m o r y
I", $ L 2.S($ L O) tII o a d Sri] fro m m e m o r y
mul $ LI .$ LI .$ L 2 # Afil · S!"i] Body
s ",c h
a dd $SO.$ O O. L I
kill

c ontex t s,itc h
ttQ' := Q + A[i) · SLi)
te nnin a tc thread

Figure 5,5: Transformation of the for loop to microthreaded assembly code,

ensure that regular inter-micro context communication can be mapped to a point-to­

point network, more specifically a ring network.

The process of thread creation and code generation will be illustrated using the

following dependent loop:

for Ci=O;i<n;i++)

The loop has a dependency in the add operation between Q in the current iteration

and Q' from the previous iteration. The compiler generates code to carry this depen-

dency between iterations using a register shared between two microthreads. This is

specified by a dependency distance of 1 in the TeB, which is used to link dependent

threads in the scheduler. The registers in a micro context are divided into a local

128

part $Li, a shared part, $8i, and a dependent part, $Di, where the shared part of one

microcontext maps to the dependent part of the iteration that is dependent upon it.

Thus the assembly code shown in figure 5.5 uses $SO/$DO to carry this dependency

between iterations, where $80 is written by the producer thread and $DO is read by

the consumer thread. The dependency chain is initialised and terminated in the main

thread. In the assembly code, three parts can be identified. The first is the TeB, the

second is the code for the main thread, which creates and synchronises this family,

and the third part is the code for the loop body. Note that n iterations of this body

execute concurrently between the mv and sw instructions in the main thread.

Looking at the concurrency in this code, it can be seen that all loads and mul­

tiplications can proceed concurrently but that the accumulation of Q in $80/$DO is

constrained to execute in sequence and may be mapped to different processors. Dur­

ing the execution of this dependency chain, only one processor will be active while the

result is accumulated. This constraint will limit speedup, but during the execution

of the dependency chain, only the processor currently executing will be active and

consuming power as all other processors will recognise an empty active queue.

This situation is easily detected and can be used for power management. When

executing multiple iterations on one processor, the chain can be executed at one

addition operation per cycle using the bypass network as a mechanism has been

developed to reschedule threads in dependency chains predictively, i.e. where we

know one thread must reschedule the next, e.g. on the add instruction for all threads.

Information to detect this situation is given by the compiler in parameters to the

switch and kill instructions. Those parameters signal the number of non-deterministic

operands and whether to predictively reschedule the next interation in a dependency

129

/'

I I Or. . I)UII K IlcrullnnK - I 11&:, ,"ul")l 1I1 · 1

!

Figure 5.6: Modulo schedule of one iteration per processor for the example code in
the text. This illustrates the mapping of a dependency chain to the ring network
connecting processors in the Microgrid.

chain.

Figure 5.6 shows how the body of the loop is mapped to multiple processors

connected with a ring network. It also shows the dependency chain between mi­

crocontexts mapped to different processors. Note that for simplicity, this particular

schedule maps only one iteration per processor before moving to the next . Mapping

multiple iterations per processor would minimise communication and maximise cache

line locality.

130

5.6 I/O Service Routines

Input or output (I/O) routines on a microgrid CMP are managed by microthreads

from a microcontext [24] running on dedicated processors. A collection of micro­

contexts that has low frequency tasks can be scheduled on a single processor, which

provides a good utilisation of system resources and responds efficiently to external

I/O events. All I/O routines in a microgrid CMP are directed to the registers, and

wait there to be served by a microthreaded service routine. A very responsive fast

and user-programmable on-chip network is also possible using this approach.

5.7 Microgrid CMP Scalability

The major advantage of the microgrid CMP is its scalability in terms of performance

and power dissipation [24, 26]. Indeed, the method of decomposing a sequential

program into microthreads, scheduling and allocating these microthreads dynamically

and the efficient communication and synchronisation mechanisms are all factors in

achieving scalability. The reduction in power comes from the hardware partitioning

of the chip cores and from the distribution of the workload across a large portion

of the chip. Processors with no active threads are aware that instructions can not

be scheduled and can therefore go into standby mode dissipating minimal power.

This power usage can be scaled with IPC rather than issue width. This conservative

scheduling also provides an insight into asynchronous partitioning of a CMP. This

modelled reduction in power dissipation is realistic and is further evidence of the

scalability of the microgrid CMP.

However, scalability in terms of silicon area for microthreaded support structures

131

has not been considered before. In addition, it is necessary to model the top-level

nature of the CQ and scheduling system, in order to verify and test the correctness

of its behaviour. These issues, are demonstrated in chapter 7 in full detail, which

shows a scalable implementation of microthreaded support structures, the feasibility

of large-scale CMPs using emerging technology, and full simulation results for the

top-level model of the CQ and scheduling system in VHDL.

5.8 Summary

The chapter presented the microgrid CMP architecture model and its buses. The dis­

tributed implementation of a microthreaded CMP includes two forms of asynchronous

communication. The first is the broadcast bus, used for creating threads and dis­

tributing invariants. The second is the shared-register ring network used to perform

communication between the register files in the producer and consumer threads. It

is important to note that this action is totally decoupled from the pipeline operation

through the use of explicit context switching. However, to avoid processor contention

during bus access time, and to provide fairness in communication between processors,

we need some form of arbiter. Also, the implementation of the bus interface between

processors still not clear. In the next chapter, we discuss the implementation of these

issues and we introduce a novel asynchronous arbiter optimised for this application.

It is shown that microthreaded CMPs use hardware scheduling and synchronisa­

tion and have structures to support this that are distributed, and have locality in

communication wherever possible. This is achieved with distributed schedulers that

jointly manage large parametric families of threads and a distributed register file

that provides synchronisation and sharing of data between them. These structures

132

provide support for a shared-register, instruction-level model of concurrency in which

synchronisation occurs between instructions and in the registers. However, the sched­

uler's structure is a most significant challenge, and the scalability of this structure is

not yet clear and the area-performance has not been considered prior to this work.

Therefore, chapter 7 provides an implementation and evaluation of microthreaded

support structures and the feasibility of large-scale CMPs is investigated by giving a

detailed area estimate of these structures. Moreover, the chapter provides full sim­

ulation results in VHDL of the CQ and scheduling system in order to verify their

correct behaviour.

Chapter 6

Scalable and Partitionable
Asynchronous Arbiter for
Microgrid Chip Multiprocessor

6.1 Chapter Overview

In the previous chapter, it was shown that, when more than one processor requires

access to the broadcast bus, an arbiter mechanism is required to determine either the

order of request arrival or a request priority. In this chapter we discuss the design and

implementation of a novel asynchronous arbiter optimised for this application. The

arbiter has the advantage of asynchronous communication and uses a point-to-point

connection between arbiter modules. A delay-insensitive methodology is used for our

arbiter, allowing unbounded delays to both wires and logic gates.

The outline of this chapter is as follows. In the next section, an overview of the

asynchronous design methodology is given. Section 6.3 presents modern arbitration

systems. The organisation, operations and design of the arbiter are presented in

section 6.4. Implementation and simulation results for the proposed arbiter are given

in section 6.5. Finally, a summary of the chapter is provided in section 6.6.

133

134

6.2 Asynchronous Design Methodology

6.2.1 Asynchronous Design Procedures

Generally, circuit design styles can be classified either as synchronous, where the whole

system is globally synchronous, or asynchronous with whole system being globally

asynchronous. Figure 6.1 shows synchronous and asynchronous pipeline implementa­

tions, where the clock in figure 6.1a, is replaced by handshaking signals in figure 6.1b.

Synchronous circuits may be simply defined under the control of a central clock.

However, the centralised clock is one of the most significant challenges in modern

synchronous systems. It restricts the system scalability and consumes a lot of power.

An asynchronous approach eliminates the use of clock, has the advantage of bet­

ter design modularity and opens the door wide for system scalability and functional

partitioning, both of which are the requirements for future powerful and scalable de­

signs. The Semiconductor Industry Association (Sf A) Roadmap recognises that by

2007 asynchronous techniques will be used in many designs [129]. However, in simple

asynchronous circuits the absence of a clock may result in hazards, for which one

popular solution is the Muller C-element [130].

The design procedures for asynchronous design can be similar to that employed for

synchronous machines. However, state diagrams for asynchronous circuits differ from

those for synchronous circuits in that each stable state of the circuit must be include

by a sling [131]. This means that the transition path originates and terminates at the

same stable state. When a new input arrives, it changes the current state to the next

state. The next state now becomes the current state, and a new input can arrive.

Asynchronous circuit to be synthesised must expressed as a flow table [132], a form

135

I D.ta~~MOdUle I
L-- __ -----'

p Module3

__ ---'I ~ _
I
I

Clock

a) Synchronous Connection

Re

~
~at~1 Module 1 Module 2 Module 3 Module 4

b) Asynchronous Connection

Figure 6.1: (a) Synchronous circuit . (b) Asynchronous circuit.

similar to a truth-table in synchronous design.

A general design procedure for asynchronous state machines can be summarised

as follows:

• Create a state transition diagram or state table for the state machine that

describes the required functional behaviour.

• Derive a primitive flow table from the state transition diagram. Note that only

one stable state occurs in each row.

• Minimise the flow table reduction by merging rows (Remove any redundant

states) .

• Simplify the excitation table and obtain the output expressions using Karnaugh

maps or other logic minimisation.

136

• Construct and simulate a circuit that implements these expressions.

Our asynchronous arbiter was synthesised using these design procedures and the

details are explained later in this chapter.

6.2.2 Delay-insensitive Circuits

Delay modelling is one of the most significant elements of validating asynchronous

design. One popular well-known approach that gives unbounded delays to both wire

and gate elements is the delay-insensitive design approach. This design style avoids

the need for the timing analysis, giving designs that operate correctly whatever the

delay in the interconnecting wires [133]. It also has some benefits over bounded-delay

methodologies in that the former delay model forces the designs to use conventions

such as completion signals and transition signaling which are both important for good

asynchronous circuit structures [134]. Furthermore, the delay-insensitive model allow

the possibility of exploiting the average case delay rather than the worst case, which

provides a significant saving with long interconnections [133]. There have been some

processors that used a delay-insensitive technique such as described in [135, 136].

6.3 Modern Arbitration Systems

It is very well-known that accessing a shared resource with two or more processors

requires an arbitration mechanism to prevent contentions and to insure that only one

processor can access the shared resource at a time. Many arbitration schemes have

been proposed [137, 138, 139, 140, 141] with different characteristics. Arbiters can be

137

centralised, decentralised, daisy chained, tree, round robin with fixed or dynamic pri­

ority, ring structure, etc. In fact, the degree of comparison between these mechanisms

depends on a set of factors, such as: reusability, modularity, fairness in accessing the

shared resource, avoiding starvation and minimising both power consumption and

logic area. That is, most of the arbitration mechanisms are only suitable for some

cases and none of them is optimal for all cases.

One popular arbitration priority scheme for distributed arbitration is the daisy

chain mechanism [142]. In this mechanism all processors share the same bus request

and bus busy lines, but a grant signal's propagated through all the processors (daisy

chained). The priority in this mechanism is fixed and depends on the physical position

of the processors within the chain [143]. Macii and Poncino [143] described a design

of a scalable bus arbiter for a multiprocessor system using a ring architecture. This

arbiter is synchronous in design and the priority level of each processor is reduced by

one at every arbitration cycle to satisfy a rotating priority between the processors.

Also, two signals (Bus..Busy and Token_Out) must be propagated through the ring

network to circulate the token. Our arbiter also uses a ring structure but is a fully

asynchronous design. It exploits the concurrency control instruction (Brk) provided

by the microthreaded microprocessor model to hide the token circulation time and

to set a priority processor based on the processor that has succeed in executing this

instruction. Also one grant signal (Gout) rather than two is propagated to circulate

the grant token around the ring.

Valencia et. al. [139] presents a modular asynchronous design for an n-user linear

array arbiter; see figure 6.2. In this design a centralised control signal (Co) is used to

drive all the modules (M) in the array. When this control signal is 0, the arbitration

138

co
Control

Arbiter

Figure 6.2: Organisation and signaling conventions for the arbiter (proposed in [139]).

process takes place in such a way that this signal is not 1 until the requests (r) have

been granted (g) in the same order of the module in the array. Also, the priority policy

in this arbiter is dependent on the relative position of the component modul s. This

arbitration mechanism is not fair and leads to a starvation situation if a large number

of modules are used. Our arbiter has the advantage of being partit ion d , where each

arbiter can decide locally to access the global create bus or to wait. So, there is no

need to propagate the control through all modules. Also, the priority policy described

in our arbiter provides fair communication and avoids processor starvation. It also,

hides the token circulation time by moving the token to the most likely processor

to issue the create instruction, which enable one processor to create a new family of

microthreads.

Moore et. al. [144] proposed an asynchronous-synchronous interface design for

139

point-to-point channel communication with independent clock domains. The authors

suggested a new scheme by adding an asynchronous FIFO between the producer

and consumer modules to hide the waiting time during the request and acknowledge

synchronisation. From a hardware point of view, adding extra components means

increased complexity. This mechanism requires a complex control scheme, and in

some cases, if the FIFO is deeper, the performance will be significantly degraded.

Work done in [141] describes the design of asynchronous arbiters for on-chip com­

munication systems. The authors proposed both fixed and dynamic priority arbiter

configurations. In the fixed priority design, three blocks are used to handle the arbi­

tration mechanism. These blocks are the loop control block to reactivate the arbiter

after serving requests, the synchroniser block to sample the input requests and the

fixed-priority block to determine the priority value based on a hardware coded prior­

ity mechanism. The dynamic priority design also has the same complexity of blocks,

where n request-analyser blocks and n priority-comparator blocks are required to

handle n requests. This arbiter has a complex arbitration design with a centralised

structure which prevents partitioning. Also, many comparisons may be required to

determine the priority values if the previous comparison failed in determining the

priority value.

In contrast, our arbiter has less complexity and provides a simple arbitration

mechanism for a large number of processors. It also provides a simple mechanism

to pre-detect the priority through a concurrency control instruction provided by the

microthreaded microprocessor model to move the token to the most likely processor

to issue the create instruction. Also, the arbiter we describe has the advantage of a

partitioned design and this issue will be explained later in this chapter.

140

Broadcast Bus
.!l ~!l

" "
Micro-threaded Micro-threaded Micro-threaded
Processor Processor Processor

(GALS) (GALS) (GALS)

• j~

r r

~ Al A2 An ~ ...

Figure 6.3: Asynchronous arbiter block diagram.

Villiger et.al. [126] proposed a mechanism for transferring data between GALS

modules using a self-timed ring topology. This configuration provides a point-to-

point communication between two adjacent GALS modules and provides a modular

connectivity, which has full scalability in both bandwidth and area with an increasing

number of GALS modules. The design we described in this chapter has the advan­

tage of a ring organisation that connects GALS microthreaded processors with the

broadcast bus in a circular fashion.

6.4 Asynchronous Arbiter for Microgrid Chip

Multiprocessor

6.4.1 Arbiter Organisation and Bus Interface

141

As described in the previous chapter, microgrid CMP has two subsystems requiring

global communication i.e. the broadcast bus, and the arbiter ring network, and both

use asynchronous signals, creating independent clocking domains for each processor.

The arbiter exploits the advantage of a concurrency control instruction (Brk) provided

by the microthreaded microprocessor model to set the priority processor and move the

circulated arbitration token to the most likely processor to issue the create instruction.

This mechanism provides a latency hiding of the token circulation time by decoupling

the microthreaded processor from the ring's timing.

Figure 6.3 shows the novel arbiter organisation. Each processor has its own local

control and a separate arbiter module in order to allow processor partitioning. Each

arbiter module is linked to the next one in a ring arrangement and the processors

are arranged in a grid layout as shown in figure 6Aa. Thus each arbiter can be

linked to two physically adjacent ones to reduce propagation delays. Our arbiter

has the optional capability of being usable in a dynamically partitionable processor

array, assuming a suitable routing architecture is available. For example, a possible

reconfiguration of the processors in figure 6.4a onto two independent groups is also

shown in figure 6Ab.

Figure 6.5 shows the arbiter input and output signals. As shown, the arbiters are

linked by four lines comprising the request high (RBi), which is the highest priority

request, request low (RLi)' which is the lowest priority request, an acknowledgement

--T oke n

Conflgurable
.----r~=;-'L-..JArblter Signa'

Router

(b) Grid connectlun for two rin g arrange Tl1 Cnt

142

T oken ~

Figure 6.4: Asynchronous arbiters with different partitioning. a) Grid organisation.
b) Independent group organisation.

signal (Acki) to release the bus, and the grant line (Gi) to grant requests and move the

grant token towards the requesting module. The request and grant signals propagate

in opposite directions around the ring. Also , one output wire (Wouti) is required

from each arbiter module to give processor Pi permission to access the broadcast bus.

There are three signals from each processor to its arbiter. The first is to inform the

arbiter that the current processor has succeeded in executing the Brki instruction,

the next signal (Di) is used to assert a demand request. The third is the local

acknowledgement (Ackli) signal to inform the arbiter that a receiving processor has

finished reading the data from the bus. ote that within the arbiter the Brki signal

143

Control Control

Weul Ackio Ackl o Brk Weul Ackin Ackl o Brk

I

r

Weu! Ackin Ackl 0 Brk Weu! Ackin Ackl 0 Brk

+- RHout RHin L..t

""" RHout RHin +-

+- RLDul At RLin RLout A2 RLin ~ --. Ackin Ackout ... Ackin Ackout ~

---. Gin \nit Gout .. Gin Init Gout ~ ...

Figure 6.5: Asynchronous arbiter with require input and output signals .

wire is assigned to the RHi signal line with highest priority and the Di signal assigned

to RLi line with low priority. Note that an initial (init) signal is also required to

determine the initial location of the token. One arbiter is initialised with the token ,

the others without.

In order to release the bus a processor must receive an acknowledgement signal.

To get that, every processor has to signal it has read the data, therefore we can return

the acknowledgement signal back to the grantee by using the same ring connectivity to

propagate the acknowledgement back until it reaches the processor that has currently

reserved the broadcast bus. The required acknowledgment control circuit is shown

in figure 6.6, where each processor asserts a high signal through its local acknowl-

edgment (ACKl i) line when that processor has read the data from the bus. A write

(WR) signal is also required to control the propagation of the acknowledgment signal

144

\ CKoul

~

(\\'N:

A ~ A A A
Rout Rio Rout Rin .. Roul Rio Rln Roul ..

~
~i\C~out t0D0UI cldo Ackoul ACkl~ut ..

Ack
~

Ack ~ Ack
---. Gin GOUI .. Gin GOUI Gin out Gin oul ~

.. , A ,
RSTI CLKI RSn CLK2 RSTJ CLK3 RST4 CLK4

Figure 6.6: Released control circuit.

through the arbiter chain. Thus, the acknowledgement signal is propagated from one

module to another until it reaches the processor that has reserved the broadcast bus.

When that processor receives an input acknowledgment (Ackini_l) signal from the

previous arbiter module the processor releases the token and the arbiter responds by

deasserting Wout.

6.4.2 The Proposed Arbitration Mechanism

The arbiter provides a very simple arbitration mechanism, where each module has

a few wires connecting to the next one and the last is linked to the first module in

a circular fashion; see figure 6.7. Thus, as soon as the Wout i signal arrives at the

corresponding processor, the processor sends its data through the broadcast bus and

waits for the acknowledgement signal. This signal informs that the data is arrived at

145

Control Control Control Control
Wout Ackin Acll D Brt WOUl Ac~in Ad! D Brt lI'om Atkin Ad! D Brt WOOl Ackin Acll D Brt

WOUl Ackin Ack! D Brt Woul Ackin Adl D Brk Woul Ackin Ackl D Brk WOUI Ackin Ac\;! D Brt

RHout RHin RHout RHin RHOUl RHin RHout RHin

RLoUI At RLin RLoUI A2 RLin RLou! A3 RLin RLoUI A4 RLin

Atkout Ackout

Gout Gout

Figure 6.7: Arbiter modules with required signals connected as a ring configuration.

the required destination successfully.

The arbiters operations can be described as follows, where we have N arbiter

modules and only one processor can succeed in executing the Brk instruction at a

given time.

• The arbiter is labelled using modulo arithmetic so for M arbiters Ai +1 is Ao for

i = M - 1 and Ai - 1 is Arn- 1 for M=l.

• ote that ini t1 = 1 and init2 to initrn = O. This means that processor 1 would

have a request acknowledged immediately after system initialisation (reset) but

other processors must wait for the grant to propagate (A 1toA2 toArn) .

• If Brki =1 , Ai outputs a high request to the next arbiter via RH outi. The rest

of the modules can also generate a demand request via RLoutk where k can be

146

any number from l..N except i (k =1= i). If all Brk=O any module can assert

RLout.

• If Brki=O and Di=O, Ai propagates RHini to RHouti, RLini to RLauti and

Gini to Gouti' This propagates RHj, and RLj, from Ai to A i - 1 and Gi from Ai

to Ai+!'

• If Brki=l and Ginj,=l, and Ackini=O then ~ asserts lVouti (read), which gives

the processor permission to access the broadcast bus.

• When a receiving processor has completed the bus transaction it asserts a local

acknowledge signal Ackli =l, which is also propagated through the ring until it

reaches the module that has currently reserved the bus. Thus, when Ackini=1

and Wauti=1, the token is released and the arbiter responds by deasserting

Wout.

• If Brkj,=O, and the input line RHini=l , then forward the grant to the next

module irrespective of D. If Di=1 assert RLauti=l, else propagate RLini to

RLouti.

• If Brki=O, and input line RHini=O, and demand request Di=l and Ackini=O,

then activate the Wouti, which gives the processor permission to access the

broadcast bus.

• If Brki=O, and Gini=1 and RHini=O, and demand request Di=O, and RLini=1,

then forward the grant to the next module.

• When there is no request from any processor, then the RHi , RLi , Gi, Acki! and

Wautj, will all be 0.

147

6.4.3 Priority Policy

As described above, the arbiter exploits the concurrency control instruction provided

by the microthreaded microprocessor model to set a priority policy based on the pro­

cessor that it has succeeded in executing the Brk instruction, instead of just assigning

the priority based on the position of the processor in the chain as described in [139].

Note that the microthreaded pipeline executes the Brk instruction before executing

the Cre instruction, which provides latency hiding during grant token circulation

time.

It is important to know the average number of arbiter modules in one ring, that

will keep the latency of the token movement hidden. To do this, it is useful first to

know the worst and best case for the number of arbiter modules. If we assume that

the request time between two adjacent arbiter modules is given by tm , and the time

interval between executing Brk and Cre instructions is given by tbrk, then the best

case for the number of arbiter modules in one ring that keeps the latency hidden

(constant time) during token movement is 2 and the worst case (Nw) is given by the

following equation.

N _ tbrk
w - 2tm (6.4.1)

If we take the average for the best case and the worst case, then the average

number of arbiter modules (Nav) in one ring can be given by the following equation.

(6.4.2)

inlt - I .- -

RLI I

RH I - 0

Ack l n - 0

Grant
(88)

RHD-O
RLO - 0
Gou t- 1
W o ut

RH I - RL I - 0

G~()rRL I

Gin- l & Brk 0& Ri ll - I

Ork - D - O &
RH I - RLI - O

G i n - I & RHI - O
&0- 1& Ack in - (}

148

U in - I & Ol-k - I & RH I - Ack lll - 0

Figure 6.8: Arbiter state transition diagram.

The cycle time of our arbiter configuration, Te , is the time required to move the

token around the ring. This time is linear if tbrk time is greater than or equal to the

time require to move the token around the ring. Otherwise, the time start increases.

This issue can be expressed as follows.

if tbrk ~ 2Navtm, }

if tbrk < 2Navt m·

Two levels of priority have been introduced in this design, high and low priority.

The high priority is given to the processor that has succeeded in executing the Brk

instruction, while the low priority is assigned to a processor that has activated a

demand request. Note that with the current microthreaded CMP model; only one

processor can succeed in executing the Brk instruction at a given time, which means

there is no need for many levels of priority. However, the mechanism we described

A .;kin - I

(S7)

0000

HLI - 1

RHlur ~ LI - I

(S8)

00 10

inil - ()

G i n - I & RHlorRLI - I

G II1-- I &

Brk - O - O &
R HI - RLI - ()

('iin- ()& (O
o r D r k - I)

ark - 1&

0 11"1 - 1 & R HI - O
& D - I & A c kin - O

or

149

O ,-k - I & R HI - A c kin - O

Figure 6.9: Asynchronous version from the arbiter state transition diagram showing
sling on each stable state.

can be easily extended for many levels of priority and can be used to support any

CMP arbitration model.

Thus, as described above the high priority is given first to the module that has

succeeded in executing the Brk instruction, then the rest of the modules that have

requested the bus are served based on their position in the ring and in sequence order.

This mechanism provides fairness and is starvation free. As soon as the processor

releases the bus the next module will be served directly.

6.4.4 Arbiter Design Methodology

The state machine diagram for the arbiter module is shown in figure 6.S. There are

eight states; however an asynchronous version of this machine can be minimised. Two

' Rio
'W"", Rhn i~~iD "
II
'0
' Rh
'Rlu '(i, ,, ..

' RhO ~~~iD
' Ri o
'(iout
'W"",
' I
' 0
'0
l'.h'

(;In B1ii"!!D ' Wilul

' I
' II

£1;;

Rho D "~~~II
' \V"ul
' I
()

'0
' R II

Rio
'Gout

' W'~' I
' I
II
'0
RJ,

' Rh l
'Gin

Rh o
RI o

'G out
'Wa Ul ----.I

')

B
'D
Rli
Rhi

··..:qin

o
-0

RHO

Figure 6.10: Arbiter level gate design (request high output (RHO)).

150

states, reset and grant priority, can be eliminated by merging states; see appendix C1

for details. It is important to note that each stable state of the state transition dia­

gram must be represented by a sling i.e. a transition path originating and terminating

at the same stable state; see figure 6.9.

The idle state receives the input requests from RH iniOT RLini and if there is no

input grant Gini = 0, it propagates the input requests to the next arbiter module

via output request lines RH outiOT RLouk The request must be propagated until it

'Rho
'Rio
'\ VtJut _____ ~

'I
' 1\

' ~iI ----.

'R ill
'G in

'R ho
'R io
GOUI

'Wout ------1
'I
'8
D
'Rl i
'Rh ,
Gin

Rho
Rio

'GOUI -----1.
' Wtlut _____ ~

' I
'll
D
Rli
Rhi
'G in

~~o ------.r--__...
'Gout _____ ~

' WOU! -----~
' I
'I]

D
Rli
'Rhi
'Gin

Rho
'R io
'GoUl ------1.\
'Wout ------I~
' I
' I]

o
'RII
Rhi
'G ill

)Of---~ RLO

Figure 6.11: Arbiter level gate design (request low output (RLO)) .

151

reaches the module that currently holds the token. The token is stored in the busy

passive state, from which a high input request from RHi or RLi cause a change to

the grant state. In the grant state the machine waits for removal of the incoming

request before returning to the idle state.

From the idle state an incoming bus demand from the processor (D= l or Brk= l)

causes a change to the request state. In the request state, if the input grant Gini = 1,

and Brki= 1, and (Ackini_ l = 0), then the state changes to busy active, which gives

the processor permission to access the broadcast bus by activating the W outi line.

Gout

'Rio
'GoUl _~
'WOUl - -.I
'I
'B
D
Rli
'Rhi
Gin

··· . .Ajn - -

Figure 6.12: Arbiter level gate design (grant output signal (Gout)) .

152

(}-

153

'Rho
'Rio
'GOUL
\Voul

'I
B

' f)

'Rio

'Rhl
Gin
'Am

Rho
'Rio
'GoUl
'Woul

'I
B

'0
'Rhl
Gin
'AlIl

'Rho
Rio

'GOlit
'WOUI W out
'I I '8
0
'Rhl
Gin
'Am

Rho
'Rio
'Gout
'Woul
'I
8
'0
'Rio
Rhi

Gin
'Ai n

Figure 6,13: Arbiter level gate design (output signal (Wout)) .

When the input acknowledge Ackini_ l = 1 is received, this means that all processors

have completed accessing the bus and the state changes to busy passive, If the input

grant Gini = 1 while Brki = 0 and input request Rhi =1, then the pass priority state

is used to pass the request, ignoring the lower priority demand from this processor.

The permeative flow table can be now derived from the state transition diagram

described above. The total number of inputs in this state machine is 7, and the

present state requires four bits , Thus, the number of inputs is large, and of course

this requires both a large flow table and a large K-map. The permeative flow table,

the flow table reduction by merging rows and the simplified functions for each of the

154

output expressions are described in full in the appendix C1. Note that the circled

states in each row represent stable states, while dashed lines represent don't care

state.

Figures 6.10 to 6.13 shows a gate level design of our arbiter. There are four outputs

RHO, RLO, Gout, and Wout. As shown, a simple logic gate is required to implement

the behaviour of the arbiter and the arbiter depends on both the input signals and

the current state. Thus, an output only fires when its appropriate inputs become

available. Otherwise its state change occurs. Note that the inputs are triggered

directly and the signals between adjacent arbiter modules work as a handshaking

signals.

6.4.5 Arbiter Partitioning

A partitionable design methodology will become one of the design requirements that

ensures low power and high performance in future processors [69, 145, 146]. It is one

of the most important design issues, which is effective in block design and system

verification [147]. This feature makes the design more flexible and provides a point­

to-point communication between adjacent modules. Point-to-point communication in

the GALS design approach provides low power and high performance [144]. It also

offers a promising approach to fault tolerance problems and provides an independent

communication between different system blocks.

As previously described, each arbiter connects to two other arbiters associated

with adjacent processors to form an arbitration ring as shown in fig 6.4a. This ar­

rangement could be hardwired, however by providing a routing architecture as shown

in figure 6.14 reconfiguration of processors and their buses can be achieved. So, for

on 19urB e

arbitrabon

si mdrouthl

R RAck G R 14-+---l

Asynch . ~ .!:Ii
Ack Arbiter Ackt-+--I~ il,.I:l e t---+-~

G RAck G

n Igura c
Brbit'nltion
sigJml routing

G ~ 'Ii 1 f--+-~

155

Router Control

Figure 6.14: Asynchronous arbiter with programmable routing for partitionable pro­
cessor arrays.

each arbiter and their associated global resources the processors can be partitioned

into groups, where each group has a separate token.

6.4.6 A rbiter wit h N-Ievels of Priority

Figure 6.15 shows a block diagram for a scalable asynchronous arbiter design with n­

levels of priority. As illustrated, three blocks are required to handle n requests, which

comprise the processor bus access controller block, a request logic block and the state

machine block. The function of the first block is to control and manipulate different

levels of priority, where the priority levels can be determined by the compiler.

The second block determines whether the demand input signal has a high or low

priority compared with the incoming requests. Thus if the demand line D has low

156

Processor Bus Access ControUer
Bus

0 1 0 2 On W o u l .,,'

Ac::k LURie

Ackln Acknu •
.. RI I

RO I I-+-
R02 [-+--.. RL2 R e ques t Log ic

--
.. Rln ROn I

pp 0 PHP ZR

I
PP D PHP ZR

WOUl . Gin S tate Machine

RST
G o ut

T

Figure 6.15: A block diagram for a scalable asynchronous arbiter design.

priority, t hen a high signal is asserted to the state machine through PP wire line.

Otherwise, if the demand has high priority, then PP= O is asserted .

The st ate machine uses the input signals from the request logic block to decide

whether to pass the grant line to the next module via Gout if t he current module has

a lowest priority; or to activate the Wout line, which allows the processor to access

the bus. So, if the current module has the high priority, then the pass-high-priority

(PHP) signal is activated by the state machine to inform the request logic block that

the bus access is given to the current module. Otherwise PHP= O is asserted. The

zero request line (ZR) can be used to control all output request RO lines, which block

the propagation of output requests ROi if ZR= O, or to pass the request to the next

module if ZR= l.

c puO : CPU
Qenet:l.c m.ap

pot:C m.ap
phl1 (i) , t:s c , d(i) , Bt:k (i) ,iniC(i),wout (1) , add_s t(1) , add~ # Ack 1oca1(1), ACQ(N) #URREQ
);

end Qenerace inputO ;

l npu cn: it (1) 0) Qenet:8te
cpu1 : CPU

qenecl. C map

port map
phi1 (i),~st ,d(1) , B~k (1),l.n1 t(i),wout (i) ,add_st(i), add~ ,Acklocal (i) ,Acq(i- l), ~O

);

end qenet:ate inputn;
end Qenerate .ic~op~oc;

Al : tot: i ~n a to N oenerate
po: ~r 1 _ 0 qenerecr
p ~ o c e ssot: O : At:b ite~

oenerl.C map (w, t ranster_size _> 8, p I: ocessoI:_id - > 1, N-> N, T de l ay _> Tdelay)
port map (

end Qenerate PO ;
Pn: 1t (I > 0) qenet:ate
procese orn: Ar b iter

);

d(:I.) , B ~k (:I.) , :l.n:l.e(:I.) ,~.qh (:I.) , ~ . ql(1), q~ ane ()I) ,Wou e(1) , [.CIll(~I),

reql (N) ,Qr8nc (l), Acq(N),Acq(l) , VRRE Q,Ac k local(l)

oenet:~c ~ap w , t r aD3 r e r_size -> e, p c oc e ssoI:_id - > i ,N_>N. T4elay ->Tdel ay)
P01:C 1D.ap

157

d(i) , S ck (l), ini t(i) , reqh(l) ,1: eQl (i) , oranc (i - l) , WOuc (i), r e qn(i- l)
,reql(1 - 1),oranC(1), Ac q(1 - 1), Acq(i),VRRE Q, Ac k l o c al(i)

end genecate Pn;
end Qenec:ate Al. ;

);

Figure 6.16: Arbiter test bench source code.

6.5 Implementation and Simulation Results

We simulated the arbiter using VHDL, exploiting the generate statement to create

networks of N processors/arbiters in the test bench. A snapshot from the arbiter

test bench is shown in figure 6.16 and a full VHDL source code for the arbiter com-

ponents are presented in appendix C2 and C3 respectively. The simulations used

processors with different clock phases and frequencies in order to model their globally

asynchronous nature. The arbiter modules were linked using arbit rary delay elements

as shown in figure 6.17 to model interconnect delays .

The delay insensitive model uses unbounded delays on wires and gate elements

and is a suitable method for analysation of transition-based signaling. Therefore, no

mat ter how long the arbiter module waits for input changes when the arbiter sees

Pl CLKI
Phasel

At RHI·
~-----IRHOOul tn ~-----1

'----"-----'
delay

I
I , I

RiOOut RUin ~-----t

Ackout I--------i

Gout 1--------1

i
I•....

~

dela

dela

dela

CLK2 Phase2
P2

A2
RHOOUI RHlin

RLOoul RUin

Ackin Ackin

Gin Gout

Figure 6.17: Asynchronous arbiter simulation model.

158

.... ~

......

activation of the input signals , the transition is passed to the next module which will

eventually know that new input values have arrived. Simulations using this approach

verified correct operation of the arbiter with up to 64 processors. The processors were

modelled using a high level description of the CQ and scheduling system, which will

be reported in chapter 7. In effect, the sequencing of bus requests in these simulations

were manually controlled by the test bench set up.

We investigated the performance of our arbiter with respect to the request-to-grant

delay by replacing the processor model with a simple state machine and generated

requests at delays determined by a sequence of random numbers. The state machine

is shown in figure 6.18.

The state machine first generates a request (local state) through a demand line

(D) then changes to the wait bus state. When a grant is received the state changes

159

DONE

Figure 6.18: Processor state machine.

to bus in use. When the bus access is complete (C) the state changes to acknowledge

informing the rest of the processors in the ring that bus is free again. The simulations

used different numbers of processors i.e. 4, 8, 16, and 32. Figure 6.19 shows a linear

result for the Request-to-grant delay with rate of requests (per processor per cycle).

As discussed in the previous chapter, the rate of requests to the arbiter within

the context of the microthreaded CMP depends on the behaviour of the create in­

struction. The frequency of executing this instruction over a range of loop kernels

is very low (17%) over all loop kernels considered in this analysis. Thus the bus is

used infrequently, there is very little or no contention, so the delay in arbitration

will primarily depend on the ring delay. Furthermore, microthreaded processors are

tolerant to latency when they have created threads, so it does not matter how long

it takes to create the next family of microthreads.

160

140

G) 120 ()
>-u
~ 100 u
0
()

80 .5
>-
1\1

60 Qj
'g

CII
CI 40 I!
G)
>
4: 20

0

0 4 8 12 16 20 24 28 32

Requests Rate (Requests per cycle)

Figure 6.19: Request-to-grant delay with rate of requests (per processor per cycle).

Figures 6.20 and 6.21 shows a sample of results from simulating 8 arbiter modules.

In this sample the following conditions apply: module 0 has initially reserved the

token, module 7 receives a high input on the Brk signal line and modules 1, 2, 3, 4,

5, and 6 have high input demand request lines. As illustrated, the request signal RLI

reaches the token before RH7 , which means that broadcast bus access is given first

to processor 1 (Wout is asserted). When processor 1 releases the token, the grant

signals are propagated back to give processor 7 permission to use the broadcast bus

before other lower priority processors. The rest of the demand requests are granted in

sequence order and based on their position in the ring configuration. More simulation

results with different sizes of arbiters and different demands and brks scenarios are

provided in appendix C4.

' ''''''' ' (7)
' (6)

' IS)
' (4)
' (3)
' (2)
' (1)
' (0)

" reQi
' recil

' (7)
' (6)
' IS)

' I')

' (2)
, (I)

' (0)

' 9'''-<
' (7)
' (6)

' IS)
' (')
' (3)
' (2)
, (I)

' (0)

' ''Q
' oNl

' (7)
' (6)
, (5)

' (')

00
'0'
'0'
'0'
'0'
'0'
'0'
'0'
'0'
00
00

'0'
'0'
'0'
'0'

'0'
'0'
'0'
00

'0'
'0'
'0'
'0'
'0'
'0'
'0'
'0'
00
00
'0'
'0'
'0'
'0'

161

00 eo oa 10 00 · 20 00 • 00

I~-------------------------------------->=~---~ I~ ________________________________ o=== ___ r--__ --------_

l~------------------------~~~~L--------------------
~L __ --

. 3e 13< 00
00 • V e 78 X7C 60 oc

i !

. ZO 00 00 roo Il!f W Il!f J1O'

I~ ________ ~==~"L ____________________________ -= ______ __

I~ ____ ~I ~! ____________________ ~~nL-------------------

~
00 00 00 00

Figure 6.20: Arbiter simulation waveforms snapshot 1 (8 arbiter modules) .

6.6 Summary

In this chapter we have discussed the design and the pre-layout simulation using

VHDL of our asynchronous arbiter. The arbiter provides a very simple system archi­

tecture, where each module has just a few wires connecting to the next one and the

last is connected to the first module in a circular fashion. Delay-insensitive method­

ologies with unbounded wire and gate delays were considered in the arbiter simulation

procedures. The arbiter also has the advantages of GALS communication design and

has the following features:

• The ring configuration to arbiter modules and the point-to-point communication

between two adjacent arbiter modules provide a modular connectivity, which

has full scalability in both bandwidth and area with increasing numbers of

162

5igno1s *'
" (6) '\'

~ J.~Mfl } ~'l 1~ V ~ ~~ ~rl M{ ~~ g 4 (5) ~' j 1: 1: I\[\' .. (~) '0' ill~ hl ini 1m " (3) '1'

" (2) ~' lfi fUl UU lUI fl fUllfi fl
.. (I) '0'
.. (0) '0' JUUUUU1IUU ~nl Innl m JUlJ\llIl JUUUUUUU IIJUllU' IIJ1 IUUUUUuuUUUUI

.. d 7. . c
.. (7) '0'
" (6) '1'

" (5) '1' .. (~) '1'
" (3) '\' \

,, (2) '1'
4 (1) '\' -
" (0) '0'

" tok xx
.. (7) u
" (6) u
4 (5) U .. (~) u
4 (3) u
" (2) u
,, (1) u
.. (0) U

" ill 01 _0'
,, (7) '0'
,, (6) '0'
,, (5) '0' .. (~) '0'
' (3) '0' .. ~ , (I)
. ,n' '"

Figure 6.21: Arbiter simulation waveforms snapshot 2 (8 arbiter modules).

microthreaded processors GALS modules.

• Each arbiter module has its own control signals and implements a self-timed

model. Therefore, there is no need to propagate the control signals throughout

all the arbiter modules.

• There are four wires connecting every arbiter module in the chain to the next

one and the last to the first in a circular fashion. The latency of the wire delay

is very small. Thus the decision is made locally by each arbiter module instead

of using large wire delay, which gives it a partitioning properties.

• Each arbiter has a priority policy dependent on a processor successfully execut-

ing the concurrency control instruction Brk. This mechanism provides latency

hiding by decoupling the microthreaded processor from the token circulation

163

time. It also offers fairness in communication between processors and elimi­

nates processor starvation.

The broadcast bus, ring network and arbiters are structured to facilitate both

scalability and partitionability of the processor array.

Chapter 7

Implementation and Area
estimates for Microthreaded Core
and its Support Structures

7.1 Chapter Overview

In chapter 5, it was stated that the scalability of the microthreaded support structures

in terms of silicon area needs to be evaluated. The chapter also showed that it is

necessary to model the top-level nature of the CQ and scheduling system in order to

verify their correct operation. This chapter discusses these issues and gives detailed

implementations for the microthreaded microgrid support structures using VHDL.

The outline of this chapter is as follows. In the next section an overview of

the microthreaded support structures is presented. Area estimates for the support

structures are given in section 7.3. Implementation and simulation results for local

scheduler and microthreaded pipeline are discussed in section 7.5 and 7.6 respectively.

A summary of the chapter is provided in section 7.7.

164

165

Local Scheduler

1-
CQ RAU Cache

Ins tru c tion Conte xt S \Nltch In'tal,se
& Create Asyn c hro nous

Local Interface
Register

File

1
In-order pipeline

Figure 7.1: Block diagram for micro threaded support structures.

7.2 The Microthreaded Support Structures

A top level block diagram of the microthreaded support structures is shown in fig­

ure 7.1. The support structures comprise a local scheduler (CQ and RA UJ, and a

local register fil e. The support structures and the micro threaded in-order pip line fa­

cilitate scalability in support ing high levels of ILP (e.g. thousands of processors and

thousands of threads per processor). The parallelism of the code into micro threads is

determined by the compiler and managed during execution by each processor's local

scheduler. The local scheduler monitors local resourc availabili ty and determines

when new microthreads may be started. Resource management involves allocating a

set of registers for each thread created, which is performed by the RAU . The resource

information also includes a free slot number in the CQ to hold the thread state. The

166

local scheduler determines the subset of related microthreads (thread family) that are

going to execute and manages a local model of resource utilisation. During execution,

microthreads may need to exchange data with other microthreads; this is done via a

bank of shared registers in each processor's local register file. The local register file

is fully scalable, with the implementation of its windows requiring only 5 fixed ports

per processor as shown in chapter 4.

As mentioned earlier, the complexity and scaling of the processor support struc­

tures are the main significant challenges in modern processor designs. A simpler

and more scalable processor requires efficient and scalable support structures with

low area, and minimal communication overhead. The microthreaded microprocessor

model meets these requirements. The next section provides an area estimates for

microthreaded support structures.

7.3 Area Estimates for Microthreaded Support Struc­

tures

In order to demonstrate the scalability of the microthreaded support structures in

terms of silicon area, this section provides area estimates and comparisons for these

structures.

7.3.1 Register File

It has already been shown that a partitioned register file distributed across multiple

processors is scalable, uses less area and power and has smaller delay and access

times compared with global or centralised schemes [22]. Also, chapter 4 shows that a

0.6

-5. 0.5
r--
o 0.4
o ..-
~ 0.3
c:
1'0 0.2
CI)
~

4: 0.1

167

0 3R,2W

128 256 512 1024

Number of registers in the register file (32-bit each)

Figure 7.2: Estimated area of one processor's partition of a distributed register file
comprising 5 ports per processor. The area estimate is for 0.07 J.Lm technology.

microthreaded register file is scalable and only five ports per processor are required

in an implementation. Here we will demonstrate the silicon area scalability of the

microthreaded register file . Using the procedure from [98, 148] we have calculated the

area of our register file and compared this with the Alpha 21264. Figure 7.2 shows

the estimated area for a partition of a microthreaded register file for various numbers

of local registers (note that the size determines latency tolerance) . It can be seen

that the area of 1024 32-bit registers is less than 0.6mm2 in 0.07 micron technology.

The Alpha 21264 splits its integer file into two clusters that contain duplicates of

the 80-entry register file . The two pipelines then access a single register file to form

a cluster, and the two clusters are combined to support 4-way integer instruction

execution. The architecture also has two floating-point execution pipelines organised

in a single cluster with a single 72-entry register file . Figure 7.3 compares the area

_ 1.2
[1.05
r--
~ 0.9
1 0.75
.= 0.6
~ 0.45
<{

0.3

o Microthreaded RF 0 Alpha 21264 RF

0.15
O ~~==~~==~~~~~==~

128 256 512 1024
Number of registers in the register file (64-bit each)

168

Figure 7.3: Area comparison between different sizes of a micro threaded register file
partition and the alpha 21264's register file. The area estimate is for O.07J.Lm tech­
nology.

of a microthreaded CMP register file and the Alpha register file. The area of our

register file is less than the area of alpha 21264 for all sizes up to 512 64-bit registers.

7.3.2 Register Allocation Unit

This section provides the area of the allocation scheme and compares it with the area

of the register file. We have already seen that the allocation scheme is straightforward

and that allocating more registers per block provides both area and propagation-delay

reduction in the allocation scheme. Figure 7.4 shows a slice of RAU combinational

169

CS~oul lJA oul S.\On ul C~80Uf

SAil! SSBln SUln

Figure 7.4: Register allocation unit 's combinational logic slice design.

logic. Each slice includes a set of components: multiplexors, incrementers, compara­

tors and logic gates. We use Standard Cell Datasheets [99] to estimate th are of

these components. Figure 7.5 shows an area comparison between th r gister alloca­

tion scheme and the register file for 2- and 4-register allocation units. The allocation

scheme uses less area than the register file in both cases. In addition, an important

feature that must be considered that the allocation scheme is inversely proportional to

the granularity of the allocation block, thus allocating blocks with n-registers means

area and power is reduced by a factor of n. This is important b cause more concur­

rency means a greater reduction in the area and power dissipation.

A reduction in the complexity of the allocator by the use of allocation units of

greater than one must be considered against any possible inefficiency in register use

E 0.6

:::l.
~ 0.5

o
c-r' 0.4

E
E 0.3
c:
(!;J 0.2

~
< 0.1

170

• RAU (4 registers/block) 0 RAU (2 registers/block) 0 Register File

128 256 512 1024

Number of registers in the register file (32-blt each)

Figure 7.5: Area comparison between the register allocation unit and the register file
for 2- and 4-register per allocation unit and for various sizes of register file .

caused by the blocked nature of the allocation, which may result in unused regis-

ters. Remember, using a large number of registers is important in maximising local

concurrency and hence in tolerating latency. Given a known hardware scheme, any

waste through non-use of allocated registers can be minimised by the compiler and

this allocation scheme enables the overhead associated with dynamic allocation to

be fully managed. In the limiting case, the compiler could assume microcontexts of

a fixed size (16 registers), with the compiler maximising use of the micro context by

loop unrolling if necessary. The allocator then allocates registers in fixed blocks of 16,

simplifying the logic and reducing the area shown in figure 7.5 by at least a further

factor of 4 compared to the case of 4-register units.

171

Table 7.1: Thread entry format in the continuation queue for 256-entry CQ and 512
entry register file.

Field name Number of bits
Program counter 32
Local base 9
Dependent base 10
Producer 8
Pointer 8

7.3.3 The Scheduler

Within the local scheduler, the CQ manages the state of all currently allocated

threads; the components of this state are shown in table 7.1. This includes the

program counter (PC), the base address of its microcontext (I-base) and the base ad­

dress of a dependent microcontext if used (d-base), which includes a flag (F) to specify

whether this is local or on an adjacent processor. Two additional fields are used to

hold pointers to other slots in the table. The first of these is used to build queues,

for example, the empty slot queue and the active-thread queue. The other is used to

identify a thread's producer in the dependency chain. This is required when releasing

a thread's resources, as in a dependent loop. Physical registers are shared between

two different microcontexts and the producer's registers can not be released until the

consumer has read them. This is implemented conservatively by releasing registers

only when the consumer has been terminated. Thus the Kill instruction must back­

track one place down the dependency chain to release that threads resources. The

table is initialised into a state where all slots are in the empty queue except for the

main thread, if it exists on a processor, which occupies slot o. For a 32-bit PC, a

512-location register file and a 256-entry CQ, each entry in the CQ requires 67 bits.

The structure of the CQ can be decomposed into three parts, each of which has a

172

Queues u ed

Create Active - A

Head e:=Head e- next Empty - E

H cad ,. , PC "'n #+ r, T R egister continua tion - R i

I I
Add to continuation

Cache Link Taillll· next:- Tail RI
TailA • next: = H eade Reschedule from - H ead .,

Tail. : = Head E
memory Continuation

& T a il . , from Ri

H eadRI:=HeadRl' n e.xt

1 I
Context .wltch or kiU

nning thread ~
H eadA:-H eadA·next Il ead A PC / bases LO IF Tail .. _ne.xt:-Slot S IOL # of ru

Tail .:=Slot

Figure 7.6: Block diagram of the interactions within the CQ, which use its link field
to build: a) a queue for empty slots, b) a queue containing active slots and c) Any
continuation queues for threads suspended in the register file.

different number of read and write ports :

• The first part holds the PC (32 bits) and is written on two ports , one when a

thread is created and the other when a thread is rescheduled. Both may occur

at a high frequency, so two ports are required to reschedule and create in the

same cycle. There are also two read ports, one to access the head of the active

queue to provide a PC on a context switch, and a second to obtain the PC of

a suspended thread when it is rescheduled after suspension in a register. This

must be sent to the I-cache to pre-fetch its code before the thread can be placed

in the active queue. Again both can occur frequently and two ports are required

to perform both in the same cycle;

• The second part (27 bits) holds the micro context state (base addresses etc.)

173

and requires only two ports, one of which is written to when the thread is

created and the other is used to access the head of the active queue to provide

the base addresses on a context switch;

• The last part is used to organise the thread slots into various queues and is the

link field (8 bits). This is accessed in each cycle to maintain various mutually

exclusive queues, which are linked using this field. They are discussed in more

detail below.

All queues are maintained using the link field to indicate the next slot number in the

structure and two registers are used to maintain pointers to the head and tail of the

corresponding queue. This is illustrated in figure 7.6. The head, tail and link fields

are used to address all of the memories defined above.

Figure 7.6 also shows the various processes involved in managing the thread state,

Le. thread creation, pre-fetching the code into the I-cache, building CQs on registers

and context switching. When a thread is created, a read port is used to update the

head of the empty queue. The slot number from the old head of this queue is the

one allocated to the new thread created and this is passed to the I-cache along with

the thread's PC to initiate a prefetch. When the PC address is known to be in the

I-cache, the new thread is added to the tail of the active queue, which supplies new

threads to the pipeline on a context switch. When a context switch or kill occurs

at the IF stage of the pipeline, a read is required to update the head of the active

queue. Also, but only on a kill, a write is required to update the tail of the empty

queue. This requires two ports, as the read and write are to different addresses in

the CQ. Finally, a process is required to manage the CQs of threads suspended on

a given register (Ri in figure 7.6). This will either write to the link field to update

174

1.2 / I 0 CQ (1,2 and 4 registers/slot) Register File I ~
102~ ~'

1 / l ~.

- V E 0.8
~

"'" ~
V ~r / 'CQ 0 m ~ 0.6 CQ ~ E 512

E 512 I;, 1024
RF I---

c:
0.4 V f~ co

~ ,.c= ~~ .c:::::::. G.I
~ CQ CQ CQ -oCt

O.2 /~2"
512

J~
256 RF 256

CQ 256
/ Q64 128 RF . I 128 7 0

Figure 7.7: Area of the CQ compared with the register file for 1, 2 and 4-registers
per slot in the CQ.

the tail of the Hi queue, when a new thread is added or read the link field to update

the head of the Ri queue, when rescheduling a thread from it. This requires a single

read/write port. In total therefore, this part of the CQ requires 5 ports.

The size of the CQ is related to the size of the register file through two param­

eters. The first is the number of registers required per micro context (Rmc) and the

second is the number of threads per micro context (Tmc). The more registers per

micro context the smaller the CQ in comparison to the register file. The more threads

per microcontext, the larger the CQ in comparison to the register file. We have al­

ready shown that over a sample of the Livermore loop kernels, the average number

of registers per micro context was 6. The optimal number of threads per context is

more difficult to ascertain, without significant analysis of simulation results. For this

reason, figure 7.7 shows an area comparison between the CQ and the register file for

175

Ta e .. lCrogn -bl 72 M' 'd C t' t ore es Ima e area usmg 007 t h 1 '/.Lm ec no ogy.
Functional Block Size Area in mm:.l %Core

(0.07/.Lm)
L1 I-cache 8KB, Direct map 0.178 7%
L1 D-cache 64KB,2-Way 1.15 47%
Register file 512 (32-bit each) 0.279 12%
RAU Allocate block of 2 0.167 7%
CQ 256-entry (67-bit each) 0.299 12%
FPU 64-bit 0.356 15%
Total Core Area (mm:.l) 2.43 100%

1, 2, and 4 registers per slot in the CQ (Le. Rmc/Tmc = 1, 2 or 4).

7.4 Estimated Core Area

In this section an estimate is given of the number of microthreaded processors that

can be integrated onto a single chip using emerging technology (0.07 micron CMOS).

We assume that each core in the microgrid CMP is a 32-bit RISC processor with a

dedicated, 64-bit, floating-point unit (FPU). We consider two possible architectures,

which correspond to the memory organisations briefly described below, i.e. with and

without D-caches. To estimate the microgrid-core area, we have used CACTI to

estimate the area of the L1 caches and we use [98, 149) to estimate the area of the

other core components. Note that both I-cache and D-cache are single port memory

structures.

In the future work we introduce two possible memory organisations for microgrid

CMPs. The first uses a processor with a single L1 D-cache per processor supported

by a cache-only memory architecture (COMA). The second possible memory archi­

tecture eliminates the L1 D-cache completely and makes use of latency tolerance in

176

able 7.3: Icrogn - ore estimate area WIt out -cac e usmg . 'JLm ec no og 'dC . h L1 D h 007 t h I y.
Functional Block Size Area in mm'J. %Core

(0.07JLm)
L1 I-cache 4KB, Direct map 0.08927 8%
Register file 512 (32-bit each) 0.279 23%
RAU Allocate block of 2 0.167 14%
CQ 256-entry (67-bit each) 0.299 25%
FPU 64-bit 0.356 30%
Total Core Area (mm'J.) 1.19 100%

the processors to access a flat multi-banked memory structure. The choice of memory

structure for the CMP is a complex one and is likely to be application specific. For

this reason, in this section, we simply assume that half of the chip area is given over

to processors and the remaining half to memory structures such as memory banks

and the network to access them.

Table 7.2 gives the estimated area of a microthreaded processor core including

an L1 D-cache. In this table, we assume that the processor has a direct-mapped L1

I-cache of 8KB and a two-way set-associative L1 D-cache of 64KB. It can be seen that

the L1 D-cache consumes about 47% of the core area and that the register file of 512

registers consumes 12%. Based on the work presented in this thesis, we assume that

the RAU allocates registers in units of 2 and that the size of the CQ is 256-entries.

This gives support structures for the microthreaded model that consume 7% and 12%

of the core area respectively, giving a total area for the processor core including the

FPU of 2.43mm2 •

Results for the alternative configuration without the L1 D-cache use similar pa­

rameters, with the only difference being that the L1 I-cache is reduced to 4KB. The

results are shown in table 7.3. In this configuration, the support structures begin to

dominate the core area, with 23% going on the register file, 25% on the CQ and 14%

177

on the RAU. However, the new estimated core area is now only 1. 19mm2, which is

less than half the area of the previous configuration. It should be noted that with 512

registers and 256 microthread slots, we have chosen to characterise a generous con­

figuration that would tolerate hundreds of cycles of latency from a memory system.

To put these estimates in perspective, using the model without the L1 D-cache, if we

assume that half of the die area is given to memory structures, a 128-processor chip

with 64 thousand registers would require 305mm2, which is significantly less than the

area of Intel's Montecito chip.

Recently, Kumar et.al. [150] estimated the die area of chip multiprocessor with

eight cores sharing a 4MB L2 cache. In their work each core is a 4-issue in-order

processor (Alpha 21164) and has 64KB L1 caches (I/O). The total chip area was

127.76mm2. Our estimation methodology is similar to their work and we have used

the same feature size. Using the same die size and the same amount of shared mem­

ory, we could support about 50 microthreaded processors each with an FPU with a

combined register file size of 25 thousand registers and able to support over 10 thou­

sand active threads. Sharing an FPU, as proposed in that paper, is quite feasible

in a microthreaded processor design and this would further increase the number of

processors in the same area. A co-joined dual processor single FPU processor design

would require approximately 2mm2, allowing 64 processors with 32 thousand registers

to be integrated in the same die area.

178

Local Scheduler One flag per n reg isters in toca l regi~ter file

Block base ~~
b~~~~t.r allocatl~~ Flag I

Block size Inatlonalloal

SIRIIJ.<
T

Thread create And Control
{available, error} Register Allocation

Gonlml Unit (RAU)
{allocate , release, no op.} t

Prefetch PC Thread Context Create R"ch""ul.l~rite PC and thread state L~:~~::~ all~~!'I~ Fl. I tlonal g
Read TCB State switch Address Thr.ad Read link field

T

I I CQ b~eg'ster allocatl~~ Flag I
omblnatlonal loal

I 1-
Cache IF I RR I In-Order Pipeline

t
Initalise 1000 index Local ,I I Register file

1 Asynchronous interface

Figure 7.8: Detail of the local scheduler showing its main components and the data
paths between it and other stages of the pipeline.

7.5 Implementation for a Local Scheduler and a

Microthreaded Pipeline

We have already described a detailed design and implementation of the local scheduler

and its components (RA U and CQ). We also, explained that the area of both the

allocation scheme and the scheduler queue are less than that of the register file ,

given reasonable assumptions about the size of each. In this section, we combine the

implementation of the scheduling system together with the first two stages of the

microthreaded in-order pipeline to verify their correct operation. A block diagram of

a local scheduler and its connections with the I-cache and the processor pipeline is

shown in figure 7.8. As shown, the local scheduler has three main components, which

comprises: the RA U, CQ and thread-create and control block.

179

The RAU within each scheduler models the allocation and deallocation of mi­

crocontexts to the local register file and determines when new microthreads may be

allocated (see chapter 4 for the register allocation and deallocation mechanism). If

registers are available it will allocate a microcontext and pass the allocation param­

eters to thread-create and control block. The thread-create and control block then

creates entries in the CQ for each thread associated with that microcontext. The

entries, as described previously, include the program counter, the base address of its

microcontext and the base address of a dependent microcontext, flag and thread's

producer (see section 7.3.3 for more detail about CQ).

Thread entries are managed by two pointers, empty head and active head. The

empty head pointer provides the available empty slot in the queue table. Thus, as soon

as a thread's parameters become available, then the current empty slot is associated

with that thread's parameters and removed from the empty head register. The next

available empty slot now becomes the new slot in the empty head register for the

coming thread (empty head.next = new empty head). Also, as soon as a thread's

parameters and its slot number becomes available, the thread PC and its slot number

are used to request the I-cache to prefetch the code before considering that thread

for execution. If the thread code is available, then the I-cache acknowledges (ACK)

the thread-create and control block, which results in updating of the tail of the active

thread pointer.

Also, when a context switch occurs, the current head of the active queue is removed

(it is now the thread executed in the next cycle) and the next thread becomes the new

active thread. This requires updating the head pointer to the new active thread. Also,

if in that cycle, the instruction is kill (lets assume that the threads are independent),

180

then two actions are required. The first is obtaining the next thread from the CQ

(active head.next = new active thread), and updating the head of the active queue.

The second action is to add the killed thread (immediately as it is independent) to

the tail of the empty queue, by writing the slot number of the killed thread to both

the next field of the current tail, and to the tail pointer (and releasing its registers).

Thus the active threads are removed on the context switch and then can be added if

they are rescheduled.

The thread-create and control block work as intermediaries between the RAU

and CQ from one side and the I-cache, and processor pipeline on the other side. As

shown in figure 7.8, this block receives a pointer to the TCB (create Address) from

the processor pipeline when a create instruction executed. It also receives a pointer

from the pipeline register read stage (RR) when a thread is rescheduled. A kill state

(kill thread) is also required to indicate those threads that have been completed. This

block, as mentioned above, also generates a request to the I-cache to prefetch the code

for any thread that enters the waiting state.

If the code is available, then the I-cache acknowledges the scheduler immediately,

which changes the thread's state to Active. Active threads must wait their turn in the

CQ before being selected for execution. The thread and control block also supplies

the the processor pipeline with the thread state (PC,I-base,d-base and slot number).

Finally, an initialisation pointer from the scheduler to local register file is used to

initialise the $LO to the loop index.

The thread-create and control block has two main processes: fetch TCB and

allocate thread, both of which work concurrently. The state machine diagram for the

first process is shown in figure 7.9. As shown, the idle state changes to the fetch

181

=0

COInplete

Figure 7.9: Fetch thread control block state transition diagram.

TeB state when it receives a high signal through the done line, which informs it

that the previous family has been fetched. When the TCB has been fetched, the

state changes to the calculate parameters state, in order to determine the allocation

parameters. Finally, the state changes to the data available state, which informs the

allocation process through the data available (DA) signal that the parameters have

become available.

The second process is used to allocate a thread in each machine cycle if the

required space is available. As shown in figure 7.10, the state machine changes from

the family waiting state to the allocate thread state when the required parameters

become available i.e. DA=1. When a thread is allocated, its parameters are stored

in the CQ. Thus, from the store parameters state the machine returns to the allocate

another thread if the given family is not completed, otherwise it changes to the family

182

Thread Allocated-I

Space Available-o

Figure 7.10: Allocate thread state transition diagram.

allocated state. In the family allocated state, a high signal is asserted on the fetch

thread control block which indicates that the current family has been allocated.

Figure 7.11 shows the first two stages of the microthread microprocessor in-order

pipeline. The instruction fetch (IF) stage fetches two instructions from the instruction

memory simultaneously. The justification for fetching two instructions is to avoid a

pipeline stall. The first instruction is fed to the pipeline for execution, while the second

instruction is tested to see whether it is a normal instruction or a microthreaded

instruction (predecode of the second instruction). The logic for predecode the second

instruction (a simple hardwired decode) is entirely in the IF stage of the pipeline and

there is no overhead in terms of additional pipeline cycles to perform the context

switch. This is achieved by prefetching all concurrency-control instructions with

the preceeding executable instruction. Thus, as mentioned earlier, a context switch

Local Scheduler I

I"t=~ ~f! 81ot Numoe,
k'MM;I thrMld

(loca l bA •• , dependent baae, alotll-)

Initlsl18A loop IndeM

broftdclun

IF ID/RR

Figure 7.11: The first two stages of micro threaded in~order pipeline.

183

~XE

follows an executable instruction if the compiler identifies that instruction as a non~

deterministic event. Another situation where the compiler will flag a context switch

is following any branch or jump instructions. In this case the thread is reactivated

upon the computation of the branch or jump target address, in th second stage of

the pipeline after register read.

Register addressing uses a simple base + offset mechanism, where the base address

is a part of a microthread's state and the offset is defined by the register specifier

in the instruction execution. Notice that instructions normally complete in order

but that in circumstances where the execution time is non-deterministic, such as a

D~cache miss, data is written asynchronously to the register file on a port dedicated

to this purpose. In this situation, instruction issue stops in a thread as soon as an

instruction attempts to read a register that is empty.

Local Schedule~ : Schedule~

- qen"~1c lIlap (

po~t lIlap

184

t_clk,Rst ,WRREQ,Ne~c ,C~e_add~ess , Reschedule , Found , Family_Data,

Ackno~, Conxt_s~itch, PC,L_Ease,D_Ease,Slot-pip,
P~e~etch,Slot_cache,nxt,RDUR, RDH-p~e!etch ,TCE_Add~s,~~ite-pc

) ;

Inst~uction_Memo~y : Instruction_Cache

qene~1c map (w ,S1ice_1d, tdelay
)

POJ:t m.ap (
t clk , Rst, RDUR, TCE Add~s , Family data,
I~st_data,Inst_Add~,RD_CaChe,RDM-pretetch,ACknow,pJ:etetch

) ;

Hic~oth~eaded_Pipeline: CPU
qene~l.c lIlap (

port map

u , Pcocessoc_id ,N ->N

t_clk,r~t,nxt,PC,write-pc, add_st,Cre_addre~s , Found,
Conxt_switch,Inst_data,Inst_Add~,RD_Cache

) ;

Figure 7.12: VHDL test bench source code for local scheduler, microthreaded pipeline
and I-cache.

Note that a Swch instruction will always update the value of the PC in the thread's

state, and this update occurs after the register-read stage. This is in the case of

a branch but not so obvious following a data dependency, where the state of the

register will determine whether the instruction will be re-executed or not. If a register

reads fails, the instruction reading the register must be re-issued, when the data is

available. On the other hand, if the register read succeeds, the next instruction must

be executed, which may be the next executable instruction or the one at the branch

target location, thus the action at the register read stage determines the value of the

thread's PC for all programmed context switches. The pre-layout simulation of the

local scheduler and the first two stages of the microthreaded pipeline using VHDL is

presented in the next section.

Cont~o~~~~: Cont~o~

qe:ner:: 1c map (

por::t: map
e_clk,R3T,Rel~s_Base,Requir.ed_Sl~e,Doallocate,Dor::elease,

Allocate Bas,Available size,Er.r.or. signal,
space_roUnd,~aml1Y_TO~d ,WR_cr.eate, RD_~emor.y, Cr.eate:_Addr.ess, TCB_Addx,
TCB_Daea,PC_Cr.eated,L_Base , D_Base , T,pr.oducer.,WR_ Queue , Nexc_Tamily ,don

);

Allocation: Al l o c ate
qener.l.C map (

por::t map
)
(

v ,M, S , S li ce_id, tdelay

t clk,RST,Reles Base,Requir::ed Size,Doallocace,Dor.elease ,
AlloCate_Bas,AV;ilable_Size ,~cr.or._SiQnal , space_round

) ;

Continuation Oueue: CO

7.6

o eneCl.. c- map (

pore map

);

CLK,RST,PC_Cr.eoee d ,PC_Reschedule,L_ Base,D_ Base,
F ,pr.oducer.,VR_Oueue,Contxt_ sw1tch, PC-pipeline,
L_Base-pip,D_Base-pip,SloC_NUaber.-pip,
Pr.etetc.h_ PC ,Slot_ N\l.lIlhe:z:_cache, RD_ .e.oz:y....,Pz:e:t:e:tch,
tlR_PC, A.clr: , don

Figure 7.13: VHDL code for local scheduler components.

Simulation Results Using VHDL

185

We have modeled the behaviour of the processor pipeline and the local cheduler

in VHDL. The processor has the I-cache and the first two stages of the pipeline,

which represent the top-level nature of the CQ and scheduling syst m. A napshot

from the VHDL test bench code for the processor pipeline and th local scheduler is

shown in figures 7.12 to 7.14. The VHDL code has been run using various compile

scenarios, and with different thread allocation size implementations. In effect, we

have used loop kernels at this stage as we currently have no compiler to compile

complete benchmarks. However, as the model only gains speedup via loops, we chosen

different types of loops from scientific and other applications. Analysis of complet

programs and other standard benchmarks will be undertaken wh n a compiler, which

is currently being developed, is able to generate micro threaded code.

pc_c~a: ~eai~te~_32
port map (c1k 2 , R~t, PC_next, PC);

PC_inc~: add32

186

port map (PC, ~ou~_32,eiqht_32, ze~o1, zeco2, PC_ next,PC_ next_ B, nc1~,nc1Z);
in~t mem: in~t~uction_memo~y

p~rt map (PC, inet);
ID IR ~eq: Inetcuction ceOister_32
-po~t m~p (c1k, Ret, ~net1 , inst2, ID_IR1,XD_IR2,

Create,Context_Switch,Ki11_thread,baee);
NewPC mux : mux 32

po~t ma.p (inO
1.n~

~tJch

:z:esul.t
) ;

ID reqs:reqisters
POl:t map (

) ;

z:eeLCS._:z:::eq_l.
cee.d_ ceQ'_ 2
w:z:::iee_ J:eg
w:Z:ite_data
WJ::1.ee enabl.e
z:ead_data_ 1
t:ead_ date._ 2

ID mux rd: mux S
poct- m.ap (inO

1.n~

- > New_Pc,
- > PC next,
- > context_~witCh,
- > 1JB_ cesu1t

- > rD rR~(25 downeo 2~),

- > ID- IRl.(20 down eo 16),
- > 1JB:1:d ..
-> lJB z::esu.l.t,
-> WS=write_enb,
-> ID_ cead_dat8_ 1,
-> ID_read_ dat6_2

-> ID IRl.(20 down to ~6),
-> rD=rR~(~5 downeo ~~),

ct~ -> ReqD:!5t ...
ce:!5u1e -> ID_cd
) ;

ID :!5ign ext(15 downto 0) <- ID add~;
ID=~ign=ext(31 dovnto 16) <- (othe~~ - > '0 ');

Figure 7.14: VHDL code for microthreaded pipeline components.

Figures 7.15 to 7.18 shows samples of results showing the behaviour of the pre-

viously described state machines and processor support components. Once a family

fetches , the allocation process starts allocating one thread in every machine cycle.

The allocated thread parameters are stored in the CQ and wait their until it is served

by the processor pipeline. The IF stage of the pipeline keeps fetching instructions

from the instruction memory, until it encounters a create, swch or kill instruction

and a process based on the behaviour of each. VHDL source code for the processor

pipeline and the local scheduler, and more simulation waveforms samples are available

in appendix D.

187

TCB Data Create Address

\3 ~ klcaLscl"edJe-:cCl1trole-:t!:IUdress mm1l

llI ~ klcal_scl"edJe-:cCl1tro ler : Ii:bJjata mm1l ;~j~~~~~~~~~~~~~~~~~~~~
Ill ' klcal_scl"edJe- :cCl1trolB':alklc_slZ8 II

~ klcaLscl"edJB':cCl1troler:alklcale '0'
III ~ klcal_scI"edJEr :cCl1troler:bW)ase 00
Ill ' klcal_scl"edJe-:CCl1trolB':bW_slZ8 40
' klcal_scl"edJB' :cCl1troler :~stale kile
' klcaLscl"edJB':cCl1troler:nxstale kile
~ klcal_scl"edJe- : cCl1troler :~sts fami -~ IF==========~~~=====::::;:O~===

f vaiuq
.F=========~======

Allocate Three regl lers per thread

Figure 7.15: Waveforms sample result for threads creation and allocation process.

7.7 Summary

In this chapter, we have investigated the overhead of th support structures for a

microthreaded microprocessor implementation, these are the CQ and RAU, as well

as a larger than normal register file. All three structures are related to th local

concurrency support, and hence the latency tolerance of, the processor.

We have described in detail a register allocation scheme, which dynamically allo-

cates registers to micro contexts. It is shown that, for a given ISA, th scheme has an

area proportional to the register file size. Moreover, the area requir d is tunable by

• SiIJIaIs t v

I!I \ rul_sd1eciJ1er :C01thJati:rU~.a.e :octivej-ead
I!I \ rul_sd1eciJIer :C01thJatil1J~.aR :octiveJail

Figure 7.16: Waveforms sample result for the continuation queue.

188

choosing the unit of allocation, at the cost of some loss of efficiency in the use of the

register file.

Our results show that the area of both the allocation scheme and the scheduler

queue are less than that of the register file , given reasonable assumptions about the

size of each. In effect, the size of the CQ is similar in complexity to the register file

and the results in this chapter show that even considering all concurrent accesses to

the CQ, the size of a 256-entry thread-state memory is smaller than the register file.

The chapter also estimates the microgrid area for different configurations of memory

and cache using an O.07j.Lm technology.

This shows the feasibility of 128-way CMPs using this emerging technology and

with a generous latency tolerance capability, i.e. tolerating many hundreds of cycles

of latency on memory or external I/O. We also concluded that each micro threaded

II Signois
[!l ~ muoltTeaOOdJlpelre:create_Dtess
[!l ~ microltTeaOOdJlpelre :rc
[!l ~ muoltTeaOOdJlpelre:rc_nexl
1lI ~ microltTeaOOdJlpelre :rcJ-exU
Ill ' microltTeaOOdJlpelre :rew JlC
III ~ microltTeaOOdJlpelre :nstn.ctbuode
[!l , microltTeaOOdJlpelre :oJ' ' B"'1SUl£lUlli

1lI ~ microltTeaOOdJlpelre :
~ microltTeadedJlpelre :o_i' Jeg:swill:h
, microltTeaOOdJlpelre :0_' Jeg:create

C reate ddress

Figure 7.17: Waveforms sample result for microthreaded pipeline.

189

pipeline could support more than 512 synchronising registers in an area less than a

64-bit FPU, which would support in the order of hundreds of local concurrent threads.

Also, in this chapter we discussed the pre-layout simulation using VHDL of a local

scheduler and the first two stages of the microthreaded in-order pipeline. The results

show correct operation for theses components, and we have verified various execution

scenarios and with different thread allocation size implementations.

l1l ~ntr~~:ntr(ijye~:tOOcOOe :i'6tru:!Xr12

11l ~ni:rlKlrd~:~IX1~_(rutfl

l!I (ntr(ijyd~:Ix(base.w

l1l ~ ntr(ijyd~:~_base.w

1!I ~ ni:rlKlrd~:srtJIJrt:Er.w
tni:rlKlrd»re:coo}lttdl

l!I (ntrotlrd~:lrcJdt~get

t ntrotlrd»re:lJcJdug,a

190

l!I ~ ntrotlrd~: JrllJa'get lZ222Z7l I---==----.J'---==.:...-.I'------= =------

Figure 7.18: Waveforms sample result for microthreaded pipeline showing the execu­
tion for branch and jump instructions.

Chapter 8

Conclusions And Future Work

This thesis describes the design, implementation and evaluation of microthreaded

CMP support structures. These structures are fully scalable, providing the possibility

of a scalable implementation of a microthreaded eMP. In this chapter, we draw our

conclusion for the work presented in this thesis and we discuss some aspects for future

work.

8.1 Conclusions

Chip multiprocessors (CMPs) are becoming increasingly attractive for obtaining high

performance and low power consumption, and we expect that many new microproces­

sor designs will be based on this approach. However, problems such as the complexity

of the issue window in wide-issue processors, increasing on-chip memory in existing

processors, serious clock skew, multi-ported register file scalability, centralised global

communication requirements and speculative execution are obstacles and challenges

facing present and future CMP designs. The microthreaded model avoids all of the

above issues, and provides a suitable basis for developing systems with multiple pro­

cessors on-chip. The model is based on decomposing a sequential program into small

191

192

fragments of code called microthreads, which are scheduled dynamically and which

can communicate and synchronise with each other very efficiently. This process al­

lows sequential code to be compiled for execution on scalable chip multiprocessors.

Moreover, as the code is a schedule invariant, the same code will execute on any

number of processors limited only by problem size.

The model exploits ILP within basic blocks and across loop bodies. In addition,

this approach supports a pre-fetching mechanism that avoids any I-cache misses in

the pipeline. The fully distributed register file configuration used in this approach

has the additional advantage of full scalability, with the decoupling of all forms of

communication from the pipeline's operation. This includes memory accesses and

communication between microcontexts. Microthreading is therefore a good candidate

for scalable chip multiprocessors and holds great promise for achieving scalability in

future systems. However, the microthreaded model and related CMPs still have a

number of problems and unresolved issues, some of which have been addressed by

this thesis.

Microthreaded register file design avoids a centralised register file organisation,

but its requirements in terms of the number of required read/write ports were not

clear. This problem was investigated and an analysis of the register-file ports in terms

of the frequency of accesses to each logical port is described in chapter 4. The results

shows that the register file can be distributed between the processors and that each

register file requires only 5 fixed ports, making it compact and scalable. This work

has been published in the British Computer Journal [26].

The distributed implementation of a microthreaded CMP includes two forms of

asynchronous communication. The first is the broadcast bus, used for creating threads

193

and distributing invariants. The second is the shared-register ring network used to

perform communication between the register files in producer and consumer threads.

Therefore, to avoid contention during bus access, and to provide fairness in commu­

nication between processors, we need some form of arbiter. Also, it is not clear how

the bus interface between processors can be implemented. In this thesis we have in­

vestigated this problem and have proposed a novel ring-structured arbiter optimised

for this application. The arbiter utilises the concurrency control instruction Brk,

provided by the microthreaded microprocessor model, to set a priority policy that

hides the token circulation time by decoupling the microthreaded pipeline from the

ring's timing. It also provides multiple features such as modularity, and partitionable

organisation (see Chapter 6). This work has been published in [27, 28].

The microthread model requires dynamic register allocation and a hardware sched­

uler, which must support a considerable number of microthreads per processor. Al­

locating registers dynamically requires an efficient hardware scheme to model and

allocate register usage. The design of a novel allocator and scheduler, together with

detailed evaluation and simulation results are presented in chapter 4 and chapter 5.

The allocator can allocate registers in fixed a block, which simplifies the logic and re­

duces the area significantly. In addition, the scheduler must support thread creation,

context switching and thread rescheduling on every machine cycle to fully support

this model, which is a significant challenge. To demonstrate the feasibility and scala­

bility of the microthreaded support structures in term of silicon implementation, we

performed a detailed implementation and area estimate of a microgrid core and its

support structures using 0.07 micron technology (see chapter 7) . We show also that

the support structures are of a manageable size and moreover are scalable in issue

194

width. This work also has been published in the Parallel Programming Journal [29].

We have concluded from this study that each pipeline could support 512 synchronis­

ing registers in an area less than a 64-bit FPU, which would support of the order of

hundreds of local concurrent threads.

Also, we have shown in this thesis that the area of the support structures for a mi­

crothreaded microgrid are scalable in instruction-issue width, as they are distributed

to the processors, but we have also shown that the structures are scalable in the

virtual concurrency supported on a local processor, which determines the amount of

latency tolerance. Because of this, performance, power and latency tolerance can all

be managed, the latter in the microgrid processor design and the former two in the

dynamic management of concurrency in a microgrid.

Finally we present results of the pre-layout simulation using VHDL of a local

scheduler and the first two stages of the microthreaded in-order pipeline (see Chapter

7). The simulations show correct operation and we have verified various execution

scenarios for theses components. This work also has been submitted to [30]. In our

opinion, a microthreaded CMP based on a fully distributed and scalable register file

organisation and asynchronous global communication buses is a good candidate to

future eMP.

8.2 Future Directions

There are several available avenues for future work on the microgrid CMP. We have

divided them into four categories; the memory system, multicluster architecture, mi­

crothreaded compiler, and micro threaded CMP fault tolerance. These categories are

detailed in the following subsections.

195

Cluster 0 Cluster 1

COMA node COMA node

• • •

t Word transfers

Figure 8.1: Memory architecture using COMA nodes and clusters of processors.

8.2.1 COMA versus Multibanking

The Microgrid CMP is capable of supporting a large number of processors on-chip,

but such a design requires a similar number of memory banks to satisfy parallel

access. The ratio of memory banks to processors is dependent on th cache hit

rate and the access pattern to these banks. Two possible memory organisations

are being considered. The first uses a processor with one L1 D-cache per processor

supported by a cache-only memory architecture (COMA). In such a memory data

is automatically migrated or replicated to where it is being used by the processors.

The second possible memory architecture eliminates the L1 D-cache completely and

makes use of latency tolerance in the processors to access a fiat multi-banked memory

structure. Simulations [26] have shown that such an organisation is entirely feasible.

The advantage of the COMA structure is that it requires fewer memory banks,

196

as each bank can have multiple, independent cache-line buffers for each processor

in a cluster (see figure 8.1) all sharing a single banked COMA node. Access to the

COMA node is by a D-cache line and access by the processor is by word. This

allows a number of processors, equal to the number of words in a cache line, to share

a port into the COMA node without conflict, so long as there is full cache locality.

Note that the deterministic distribution of threads to processors in the microthreaded

model and the choice of scheduling allows data accesses to be organised in such a

way as to maximise the cache hit rate and minimise accesses to the COMA nodes.

Such a structure was simulated in [26] where the regular schedule produced an 80%

cache hit rate with only 2-3% of memory loads causing requests to the COMA node.

However, not all algorithms can be regularly mapped and some require global- rather

than local-communication patterns. For example, matrix multiplication accesses data

using both row and column strides through memory structures, such an algorithm

would generate cache misses and bank conflicts on at least one of the strides, unless

the algorithm was coded in a block structure, where the blocks matched the cache

line size.

An alternate memory architecture uses a word-wide memory bank per processor

with no L1 D-cache in the pipeline. All memory accesses incur a delay, dependent

on location of data on chip. However, the microthreaded processors can be designed

to tolerate any latency by scaling register file size and support structures to give

the required local concurrency. This memory structure would still suffer from the

bank conflicts in the example given above, unless some form of randomisation was

employed in mapping the address space to the memory structures (see figure 8.2).

The advantage of this scheme is that the complexity of the processor is reduced, by

197

On- chip net"VVork

t VVord transfers

Figure 8.2: Memory architecture using a flat structure of multiple banks with address
randomisation. Such an organisation would not use an Ll D-cache.

omitting the Ll D-cache. It also supports arbitrary access patterns to data, although

this comes at a cost, as there is more load on the on-chip network and more energy

is dissipated in moving data around the chip, as locality is ignored in randomising

memory accesses. These issues have yet to be explored in depth, using our simulators,

in order to find an optimal solutions.

8.2.2 Mult icluster Architecture

Groups of processors in the microgrid CMP can be configured in a point-to-point ring

network to form a cluster as shown in figure 8.3. The cluster has its own local COMA

module, and all COMA modules are arranged in a ring organisation. To provide

bandwidth and workload balancing between processors in the same cluster during

remote memory access, there is word-wide access to the cache from ach processor

198

Ring- Ring- Ring- Ring-
connect connect connect connect

ed ed ed ed
Process Process Process Process

or or or or

Cache-access controller
=---------''Wi

vo
Proc Node of Data-difFusion J\t1ernory

(COJ:vf.A)

Figure 8.3: One cluster of Microgrid CMP

and cache-line wide access to memory and the COMA node. Communication between

clusters is handled by a reconfigurable interconnection network on-chip (NOG) .

The COMA modules are connected in a point-to-point ring structure. The COMA

modules use a broadcast protocol on cache misses, and a point-to-point request mi-

gration via the ring network. This aspect needs further research to determin a

suitable number of processors in each cluster and to identify a mechanism that al-

lows a group of clusters to communicate with each others with low overhead and in a

scalable manner. Also, scheduling instructions in the microthreaded model is similar

in complexity to that of a conventional, single-issue, in-order processor. Multiple­

issue, in-order pipelines and clusters are also possible in microgrid CMPs and these

aspects need further consideration, which may provide more advantages in terms of

performance, reducing eycl time and providing power r duction.

<

199

8.2.3 Compiler Support

Current compilers have multiple limitations and challenges, which restrict system

performance and increases system complexity. Several projects have addressed these

challenges and show the requirements of an efficient compiler [55, 63, 151]. In fact,

most of the existing compilers benefit only a single processor and its execution model

has no global knowledge of concurrency (e.g. 000 execution). Efficient compiler

design should identify parallelism automatically and must consider the advantages

of chip multiprocessor architectures and create a sufficient large number of concur­

rent threads so that there is enough parallelism to run on multiple cores. Thus,

the problem is not building multicore hardware, but programming it in a way that

maximises the benefits from the continued exponential growth in CPU performance,

where the architectural changes in multicore processors benefit only concurrent ap­

plications [152].

Generally, the demand for utilising ILP with multiple cores require optimisation in

issues like instruction and loop scheduling, register allocation, locality optimisation,

etc. [63]. Also, existing source code provides significant concurrency at the loop level

and this must be exploited in any model targeting on-chip concurrency [49]. For

example; explicit approaches only manage loops containing data dependencies and

loop-carried dependencies are expressed as concurrently executed threads that share

memory, which in fact incurs high latencies in the dependency chain.

A microthreaded microgrid compiler must consider the above issues and be re­

sponsible for code analysis (Le. recognising dependencies between threads) and code

transformations, to enable concurrency to be extracted from sequential code. It must

also be responsible for thread family creation and thread grouping. Microthreaded

200

microgrid compiler is an active area of research, and we point here to some aspects

that need further consideration. The first is that a microthreaded compiler gains

speedup via loops and it is worthy to investigate the model for different applications.

Also, data locality optimisation is an important issue, so it is possible to reorder

groups of related threads or families of threads to increase processor locality, which

can help increase parallelism and reduce memory accesses. Thus, grouping a number

of independent threads together and runing these threads on one processor instead

of distributing them on multiple processors may provide better performance through

greater cache locality and hence fewer higher-level memory accesses. It is evident

that in chip muliprocessors memory bandwidth is likely to be a limiting factor.

Moreover, it was shown that the communication between producer threads and

consumer threads on remote processors required remote read actions. It could be

possible for the producer thread to write data directly to the consumer thread as soon

as the required data becomes available instead of using read operations. However,

the problem is that the consumer thread may not yet be allocated and there is no

feedback information on when this action will be happen. One possible solution to

this problem is to allocate threads in contiguous registers on each processor. So,

knowing both the number of threads assigned to one processor (modulo scheduling),

the dependency distance between the threads, and by allocating these threads in a

sequence order, we can predict the allocation address of the consumer register on the

next processor. The predicted address can be stored in the shared register and as

soon as a new value is written to that register by a producer thread, the processor first

extracts the destination address from the register, and then writes the data directly

to that destination.

201

Another issue is that creating families of microthreads can be implemented re­

cursively. This model has not been implemented here, as we were concerned with

the basic support structures. A recursive model is an incremental improvement that

would require a family table in the scheduler to hold information on concurrent fam­

ilies, such as global base address, rather than using a fixed creating environment (the

first 32 registers). Work is being undertaken at Amsterdam University on recursive

thread models and the first paper reporting this development can be found in [51].

Such a model has the potential to provide maximal concurrency in this paradigm and

should be easier to compile to.

8.2.4 Toward Microgrid CMP Fault-Tolerant Communica­

tion

With the rapidly increasing complexity of parallel architectures, the probability of

system failures increases as well. CMP systems have many more potential sources of

failure than a single processor system. Thus a failure in one processor on chip may

cause the entire system to fail. There are several groups targeting fault tolerance in

both software and hardware of the CMP, but this issue is outside of the scope of this

thesis. However, the microthreaded microgrid CMP provides many opportunities

and advantages for developing fault tolerant system and the ring configuration of

processors means that it is possible to eliminate one processor in the case of a failure.

This requires a support mechanism to monitor the scheduling and execution on each

processor. Another possible fault-tolerance mechanism can be applied in the arbiter

described in this thesis (see chapter 6), where the arbiter can be provided with extra

signals to avoid any failure in the token movement or inter-modules communication.

Bibliography

[1] Ungerer, T., Robec, B. and Silc, J. (2003) A Survey of Processors with Explicit

Multithreading. ACM Computing Surveys, vol. 35, pp. 29-63.

[2] Barroso, L. A. et al. (2000) Piranha: A Scalable Architecture Based on Single­

Chip Multiprocessing. Proc. of 27th Annual International Symposium on Com­

puter Architecture, Vancouver, British Columbia, Canada, pp. 282-293.

[3] Hammond, L., Hubbert, B. A., Siu, M., Prabhu, M. K., Chen, M. and Olukolun,

K. (2000) The Stanford Hydra CMP. IEEE Micro, vol. 20, March-April, pp.

71-84.

[4] Hammond, L., Nayfah, B. A. and Olukotun, K. (1997) A Single-Chip Multipro­

cessor, IEEE Computer Society. vol. 30, no. 9, September, pp. 79-85.

[5] Tendler, J. M., Dodson, J. S., Fields, J. S., Le, H. and Sinharoy, B. (2002) Power4

System Micro-architecture. IBM Journal of Research and Development, vol. 46,

no. 1, pp. 5-25.

[6] Kongetira, P., Aingaran, K. and Olukotun, K. (2005) Niagara: 32-way Multi­

threaded Sparc Processor. IEEE Computer Society, vol. 25, no.2, March-April,

pp.21-29.

202

203

[7] McNairy, C. and Bhatia, R. (2005) Montecito: A Dual-Core, Dual-Thread Ita­

nium Processor. IEEE Computer Society, vol. 25, no. 2, March-April, pp. 10-20.

[8] Jesshope, C. R. (2004) Scalable Instruction-level Parallelism. In Computer Sys­

tems: Architectures, Modeling and Simulation. 3rd and 4th International Work­

shops, SAM OS 2004, Samos, Greece, 19-21 July, pp. 383-392. LNCS 3133,

Springer.

[9] Bhandarkar, D. (2003) Billion Transistor Chips in Mainstream Enterprise Plat­

forms of the Future. Proc. of the 9th International Symposium on High­

Performance Computer Architecture, Anaheim, California, 08-12 February, pp.

3. IEEE Computer Society, Washington, DC, USA.

[10] Agarwal, V., Hrishikesh, M. S., Keckler, S. W. and Burger, D. (2000) Clock

Rate Versus IPC: The End of the Road for Conventional Microarchitectures.

Proc. of the 27th Annual International Symposium on Computer Architecture,

Vancouver, British, Columbia, Canada, June, pp. 248-259. ACM Press New York,

NY, USA.

[11] Onder, S. and Gupta, R. (2001) Instruction Wake-up in Wide Issue Superscalars.

Proc. of the 7th International Euro-Par Conference Manchester on Parallel Pro­

cessing, Manchester, UK, 28-31 August, pp. 418-427. Springer-Verlag, London,

UK.

[12] Onder, S. and Gupta., R. (1998) Superscalar Execution with Dynamic Data

Forwarding. Proc. of the International Conference on Parallel Architectures and

compilation techniques, Paris, France, 12-18 October, pp. 130-135. IEEE Com­

puter Society, Washington, DC, USA.

204

[13] Olukotun, K, Nayfeh, B. A., Hammond, L., Wilson, K. and Chang, K. (1996)

The Case for a Single-Chip Multiprocessor. In Proc. of the Seventh International

Symposium, Cambridge, MA, September, pp. 2-11. ACM Press, New York, NY,

USA.

[14] Palacharla, S., Jouppi, N. P. and Smith, J. (1997) Complexity-effective Super­

scalar Processors. In Proc. of the 24th International Symposium on Computer

Architecture, Denver, Colorado, United States, 01-04 June, pp. 206-218,. ACM

Press, New York, NY, USA.

[15] Thllsen, D. M., Eggers, S. and Levy, H. M. (1995) Simultaneous Multithreading:

Maximising on Chip Parallelism. Proc. of the 22nd Annual International Sym­

posium on Computer Architecture, Santa Margherita Ligure, Italy, 22-24 June,

pp. 392-403. ACM Press New York, NY, USA.

[16] Burns, J. and Gaudiot, J. L. (2001), Area and System Clock Effects on

SMT ICMP Processors. Proc. of the 2001 International Conference on Parallel

Architectures and compilation techniques, Barcelona, Spain, 08-12 September,

pp. 211-218. IEEE Computer Society, Washington, DC, USA.

[17] Jesshope, C. R. (2003) Multithreaded Microprocessors Evolution or Revolu­

tion. Proc. of the 8th Asia-Pacific Conference ACSAC'2003, Aizu, Japan, 23-26

September, pp. 21-45. LNCS 2823, Springer, Berlin, Germany.

[18] Agarwal, V., Hrishikesh, M. S., Keckler, S. W. and Burger, D. (2000) Clock

Rate versus IPC: The End of the Road for Conventional Microarchitectures.

Proc. of the 27th Annual International Symposium on Computer Architecture,

Vancouver, British, Columbia, Canada, June, pp. 248-259.

205

[19] Shilov, A. (2004) Intel to Cancel Net Burst Pentum 4 Xeon Evolution.

http: /www.xbitlabs.com/news/ cpu/ display /20040507000306.html, (Accessed

7/1/2005).

[20] Lipasti, M. H. and Shen, J. P. (1997) Superspeculative Microarchitecture for

Beyond AD 2000. IEEE Computer Society, vol. 30, no. 9, September, pp. 59-66.

[21] International Technology Roadmap for Semiconductors (2003)

http://public.itrs.net, Accessed 20/4/2005.

[22] Rixner, S. et al. (2000) Register Organisation for Media Processing. International

Symposium on High Performance Computer Architecture, Toulouse, France, Jan­

uary, pp. 375-386.

[23] Ronen, R. et al. (2001) Coming Challenges in Microarchitecture and Architec­

ture. Proc. IEEE, vol. 89, no. 3, March, pp. 325-340.

[24] Bousias, K. and Jesshope, C. R. (2005) The Challenges of Massive On-chip Con­

currency. Proc. ACSAC 2005, Springer, Singapore, (http://staff.science.uva.nl/

jesshope/Papers/ ACSAC05.pdf).

[25] Jesshope, C. R. (2001) Implementing an Efficient Vector Instruction Set in a

Chip Multi-processor Using Microthreaded Pipelines. Proc. ACSAC 2001, Gold

Coast, Queensland, Australia, 29-30 January, pp. 80-88. IEEE Computer Society,

Los Alimitos, CA, USA.

[26] Bousias, K., Hasasneh, N. M., and Jesshope, C. R. (2006) Instruction-Level Par­

allelism through Microthreading -A Scalable Approach to Chip Multiprocessors.

British Computer Journal (BCS), vol. 49, no. 2, Mar 01, pp. 211-233.

206

[27] Hasasneh N. M., Bell, I. M. and Jesshope C. R. (2006), Scalable and Partitionable

Asynchronous Arbiter for Microthreaded Chip Multiprocessors. LNCS as Proc

Architecture of Computing Systems, vol. 3894, ARCS 2006 (Frankfurt/Main,

Germany), March, pp. 252-267.

[28] Hasasneh N. M., BellI. M., and Jesshope C. R. (2006) Asynchronous Arbiter

for Micro-threaded Chip Multiprocessors, to be published, Journal of Systems

Architecture (JSA).

[29] Bell, I. M., Hasasneh, N. M. and Jesshope C. R. (2006) Microgrids and Micro­

contexts: Support Structures for Microthread Scheduling and Synchronisation.

IntI. Journal Parallel Processing, Jan, pp. 1-9, DOl 1O.1007/s10766-006-0017-y.

[30] Hasasneh, N. M., Bell, I. M. and Jesshope C. R. (2006) High Level Modelling and

Design for a Microthreaded Scheduler to Support Microgrids, Submitted to 2007

ACS/IEEE International Conference on Computer Systems and Applications,

AICCSA '2007 May 13-16, 2007, Amman, Jordan.

[31] Zhou, H. and Conte, T. M. (2002) Code Size Efficiency in Global Scheduling

for VLIW /EPIC Style Embedded Processors. Technical Report. Department of

Electrical and Computer Engineering, North Carolina State University, Raleigh,

NC.

[32] Hwang, K. (1993) Advanced Computer Architecture. MIT and McGraw-Hill,

New York St. Louis San Francisco.

[33] Klaiber, A. (2000) Transmeta Corporation The Technology Behind Crusoe Pro­

cessors, http://www.transmeta.com.

207

[34] Sudharsanan, S., Sriram, P., Frederickson, H. and Gulati, A. (2000) Image And

Video Processing Using MAJC 5200. In Proc. of the 2000 IEEE International

Conference on Image Processing Vancouver, BC, Canada, 10-13 September, pp.

122-125. IEEE Computer Society, Washington, DC, USA.

[35] Cintra, M. and Torrellas, J. (2002), Eliminating Squashes Through Learning

Cross-Thread Violations in Speculative Parallelisation for Multiprocessors, Proc.

of the 8th International Symposium on High-Performance Computer Architec­

ture, Boston, MA, USA, February 02-06, pp. 43-54. IEEE Computer Society,

Washington, DC, USA.

[36] Cintra, M. Martinez, J. S. and Torrellas, J. (2000) Architecture Support for

Scalable Speculative Parallelisation in Shared-Memory Multiprocessors. Inter­

national Symposium on Computer Architecture, Vancouver, Canada, June, pp.

13-24. ACM Press, New York, NY, USA.

[37] Terechko, A., Thenaff, E. L., Gary, M., Eijndhoven, J. V. and Corporaal, H.

(2003) Inter-Cluster Communication Models for Clustered VLIW Processors.

Proc. of the 9th International Symposium on High-Performance Computer Ar­

chitecture, Anaheim, California, 08-12 February, pp. 354-364. IEEE Computer

Society, Washington, DC, USA.

[38] Halfhill, T. (1998) Inside IA-64. Byte Magazine, vol. 23, pp. 81-88.

[39] Schlansker, M. S. and Rau, B. R. (2000) EPIC: An Architecture for Instruction­

Level Parallel Processors. Compiler and Architecture Research, HPL-1999-111.

HP Laboratories Palo Alto.

208

[40] Alverson, R. et al. (1990) The Tera Computer System. Proc. of the 4th Interna­

tional Conference on Supercomputing Amsterdam, The Netherlands, 11-15 June,

pp. 1-6. ACM Press, New York, NY, USA.

[41] Marr, D. T. et al. (2002) Hyper-Threading Technology Architecture and Mi­

croarchitecture. Intel Technology Journal, vol. 6, pp. 4-15.

[42] Emer, J. (1999) Simultaneous Multithreading: Multiple Alpha's Performance. In

Presentation at the Microprocessor Forum'99, MicroDesign Resources, San Jose,

California.

[43] Sohi, G. S., Breach, S. E. and Vijaykumar, T. N. (1995) Multiscalar Processors.

Proc. of the 22nd Annual International Symposium on Computer Architecture,

S. Margherita Ligure, Italy, 22-24 June, pp. 414-425. ACM Press, New York,

NY, USA.

[44] Taylor, M., et al. (1997) The Raw Microprocessor: A Computational Fabric for

Software Circuits and General Purpose Programs. IEEE MICRO, Marl Apr 2002.

[45] Waingold, E., et al. (1997) Baring it all to Software: Raw Machines. vol. 30,

issue 9, IEEE Computer, pp. 86-93.

[46] Sankaralingam, K. et al. (2003) Exploiting ILP, TLP and DLP with the Polymor­

phous TRIPS Architecture. Proc. of the 30th Annual International Symposium

on Computer Architecture (ISCA-30).

[47] Berger, D., et. al. (2004) Scaling to the end of silicon with EDGE architectures.

IEEE Computer, vol. 37, no. 7, pp. 44-55.

209

[48] Swanson, S., Michelson, K., Schwerin, A. and Oskin, M. (2003) WaveScalar.

Proc. of the 36th International Symposium on Microarchitecture (MICRO-36

2003), pp. 291.

[49] Jesshope, C. R. (2005) Microgrids - the exploitation of massive on-chip concur­

rency. (Invited paper, HPC 2004Cetraro, June 2004), In Grid Computing: A

New Frontier of High Performance Computing, pp. 203-223, ed. L. Grandinetti,

Elsevier, Amsterdam.

[50] Bolychevsky, A., Jesshope, C. R. and Muchnick, V. (1996) Dynamic Scheduling

in RISC Architectures. lEE Proc. Computer Digital Techniques, vol. 143, pp.

309-317.

[51] Jesshope C. R. (2006) Microthreading a model for distributed instruction-level

concurrency, Parallel processing Letters, vol. 16(2), pp. 209-228.

[52] Sundararaman, K. and Franklin, M. (1997) Multiscalar Execution along a Sin­

gle Flow of Control. Proc. of the IEEE, International Conference on Parallel

Processing, Bloomington, IL, USA, 11-15 August, pp. 106-113. IEEE Computer

Society, Washington, DC, USA.

[53] Breach, S. E., Vijaykumar, T. N. and Sohi, G. S. (1994) The Anatomy of the

Register File in a Multiscalar Processor. Proc. of the 27th Int'l Symp. Microar­

chitecture, San Jose, California, United State, 30 November - 02 December, pp.

181-190. ACM Press New York, NY, USA.

[54] Gontmakher, A. and Schuster, A. (2002) Intrathreads: Techniques for Parallelis­

ing Sequential Code. 6th Workshop on Multithreaded Execution, Architecture,

210

and Compilation (MTEAC-6), November, Istanbul (in conjunction with Micro-

35).

[55] Bernard, T. Bousias, K., Geus, B. Lankamp, M., Zhang, L. Pimentel, A. Knij­

nenburg, P.M.W., and Jesshope, C.R. (2006) A Microthreaded Architecture and

its Compiler. Proc. 12th International Workshop on Compilers for Parallel Com­

puters (CPC), M. Arenez, R. Doallo, B. Fraguela, and J. Tourino (eds.), pp.

326-340.

[56] Taylor, M. Lee, W., Amarasinghe, S. and Agarwal, A. (2003) Scalar operand

networks: On-chip interconnect for ILP in partitioned architectures. In Proe. of

the International Symposium on High Performance Computer Architecture.

[57] Mahlke, S., Lin, D., Chen, W., Hank, R. and Bringmann, R. (1992) Effective

compiler support for predicted execution using the hyperblock. In proceedings

of the 25th Annual International Symposium on Microarchitecture, pp. 45-54.

[58] Codrescu, L., Wills, D. S. and Meindl, J. D. (2001) Architecture of the Atlas

Chip Multiprocessor: Dynamically Parallelising Irregular Applications. IEEE

Computer Society, vol. 50, pp. 67-82.

[59] Diefendorff, K. (1999) Power4 Focuses on Memory Bandwidth: IBM Confronts

IA-64, Says ISA not important. Microprocessor Report, vol. 13, pp. 11-17.

[60] Balasubramonian, R., Dwarkadas, S. and Albonesi, D. (2001) Reducing the Com­

plexity of the Register File in Dynamic Superscalar Processors. In Proc. of the

34th International Symposium on Micro-architecture, Austin, Texas, December,

pp. 237-248.

211

[61) Spracklen, L. and Abraham, S.G. (2005) Chip Multithreading: Opportunities

and Challenges. Proc. of the 11th Intel's Symposium on High performance Com­

puter Architecture (HPCA-11 2005), San Francisco, CA, USA, February, pp.

248-252.

[62) Ro, W., and Gaudiot, J-L. (2004) SPEAR: A Hybrid Model for Speculative

Pre-Execution. Proc. of 18th International Parallel and Distributed Processing

Symposium (IPDPS 2004), Eldorado Hotel, Santa Fe, New Mexico, April, pp.

26-30.

[63) Zoppetti, G. M., Agrawal, G., Pollock, L., Amaral, J. N., Tang, X., and Gao,

G. R. (2000) Automatic Compiler Techniques for Thread Coarsening for Mul­

tithreaded Architectures. Proc. of the 14th International Conference on Super­

computing, Santa Fe, New Maxico,USA, May, pp. 306-315.

[64) Wilcox, K., and Manne, S. (1999) Alpha Processor: A history of Power issues and

a look to the Future. In Cool-chips Thtorial, Held in conjunction with MICRO-

32.

[65] Huh, J., Burger D., and Keckler, S.W. (2001) Exploring the Design Space of

Future CMPs, In Proc. of International Conference on Parallel Architectures

and Compilation Techniques, Barcelona, Spain, September, pp. 199-210.

[66) Preston, R. P. et al. (2002) Design of an 8-wide Superscalar RISC microprocessor

with Simultaneous Multithreading. 2002 IEEE International Solid-State Circuits

Conference, San Francisco, CA, February, pp. 334-335.

, j

" i

212

[67] Scott, J. (1998) Designing the Low-Power M-CORE Architecture. Proc. IEEE

Power Driven Micro Architecture Workshop at ISCA98, Barcelona, Spain, June,

pp. 145-150.

[68] Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P., and '!Ullsen, D. M.

(2003) Single-IS A Heterogeneous Multi-Core Architectures: The Potential for

Processor Power Reduction. Proc. of the 36th annual IEEE/ ACM International

Symposium on Microarchitecture, San Diego, CA, USA, December, pp. 81.

[69] Yingmin, L., Brooks, D., Zhigang, H. and Skadron, K. (2005) Performance, En­

ergy, and Thermal Considerations for SMT and CMP Architectures. Proc. of the

11th IEEE International Symposium on high performance computer architecture

(HPCA), San Francisco, CA, USA, February, pp. 71-82.

[70] Kiemb, M. and Choi, K. (2004) Memory and Architecture Exploration with

Thread Shifting for Multithreaded Processors in Embedded Systems. Proc. of

the 2004 international conference on Compilers, architecture, and synthesis for

embedded systems, Washington DC, USA, September, pp. 230-237.

[71] Hwang, K. (1993) Advanced Computer Architecture. MIT and McGraw-Hill,

New York St. Louis San Francisco.

[72] Deniel, et. al. (1990) The Directory Based Cache Coherence Protocol for the

DASH Multiprocessor. Proc. of the 17th Annual International Symposium on

Computer Architecture, pp. 14-159.

[73] Nitzberg, B. and Lo, v. {1991} Distributed Shared Memory: A survey of Issues

and Algorithms. Computer, Aug., pp. 52-60.

213

[74] Amamiya, M., and Kawano, T. (1994) Design Principle of Massively Parallel

Distributed-Memory Multiprocessor Architecture. Advanced Topics in Dataflow

Computing and Multithreading IEEE Press, pp. 1-17.

[75] Rivers, J. A., Tyson, G. S., Davidson, E. S., and Austin, T. M. (1997) On High­

Bandwidth Data Cache Design for Multi-Issue Processors. Proc. of the 30th

Annual Int'l Symp. on Microarchitecture, December, pp. 46-56.

[76] Hagersten, E., Landin, A. and Haridi, S. (1991) DDM - A Cache-Only Memory

Architecture. SICS Research Report R91:19.

[77] Joe, T. (1995) COMA-F: A non-hierarchical Cache Only Memory Architecture.

PhD. Thesis, Department of Computer Science, (Stanford University).

[78] Landin, A. and Dahlgren, F. (1996) Bus-based COMA- Reducing Traffic in

Shared Bus Multiprocessors. In Proc. 2nd International Symposium on high­

performance computer architecture, IEEE computer society, pp. 95-105.

[79] Saulsbury, A., Wilkinson, T., Carter, J. and Landin, A. (1995) An Argument for

Simple COMA. Proc. of the 1st IEEE Symposium on high-performance Com­

puter Architecture (HPCA '95), pp. 276-285.

[80] Dahlgren, F. and Torrellas, J. (1999) Cache-Only Memory Architectures, IEEE

computer Society, vol. 32, pp. 72-79.

[81] Warren, D. and Haridi, S. (1988) Data Diffusion Machine-a scalable shared vir­

tual memory multiprocessor. In International conference on Fifth Generation

Computer Systems, ICOT.

214

[82] Robinson, J. G., Baxter, D. C. and Gray, J. (1995) Advantages of COMA.

Kendall Square Research.

[83] Burkhardt, H. et. al. (1992) Overview of the KSR 1 Computer System. Technical

Report KSR-TR-9202001, Kendall Square Research.

[84] Kendall Square Research (1992) KSRl, Technical Summary.

[85] Hagersten, E., Haridi, S. and Landin, A. (1992) DDM-A Cache-Only Memory

Architecture. Computer, September, pp. 44-54.

[86] Stenstrom, P. Joe, T. and Gupta, A., Comparative Performance Evaluation of

Cache-Coherent NUMA and COMA Architectures, Proc. of the 19th Interna­

tional Symposium on Computer Architecture, 1992, pp. 80-91.

[87] Naga, H.-EI (1999) MCOMA: A Multithreaded COMA architecture. Ph.D. The­

sis, EE Dept., University of Southern California.

[88] Sohi, G. S. and Franklin, M. (1991) High-Bandwidth Data Memory Systems for

Superscalar Processors. Proc. of the Fourth Int'l Conf. on Architectural Support

for Programming Languages and Operating Systems, April, pp. 53-62.

[89] Wilson, K. M., Olukotun, K. and Rosenblum, M. (1996) Increasing Cache Port

Efficiency for Dynamic Superscalar Microprocessors. Proc. of the 23th Int'l Symp.

on Computer Architecture, May, pp. 147-157.

[90] Wilson, K. M. and Olukotun, K. (1997) Designing High Bandwidth On- Chip

Caches. Proc. of the 24th Int'l Symp. on Computer Architecture, June, pp. 121-

132.

215

[91] Edmondson, J., et al. (1995) Intel Organisation of the Alpha 21164 a 300-MHz

64-bit Quad-issue CMOS RISC Microprocessor. Digital Technical Journal Special

10th Anniversary Issue, vol. 7, no. 1, pp. 119-135.

[92] Yeager, K., et al. (1995) RIOOOO Superscalar Microprocessor. Hot Chips VII.

[93] Yoaz, A., Erez, M., Ronen, R., and Jourdan, S. (1999) Speculation techniques

for improving load related instruction scheduling. Proe. Int. Symp. on Computer

Architecture.

[94] Neefs, H., Vandierendonck, H., and DeBosschere, K. (2000): A technique for

high-bandwidth and deterministic low-latency load/store access to multiple cache

banks. Proc. Int. Symp. on High Performance Computer Architecture.

[95] Bhooshan S Thakar and Gyungho Lee (2001) Access Region Cache: A Multi­

porting Solution for Future Wide-Issue Processors. Proc. of the International

Conference on Computer Design: VLSI in Computers and Processors (ICCD'Ol).

[96] Austin, T., and Sohi, G. (1996) High-Bandwidth Address Translation for

Multiple-Issue Processors. Proc. of the 23rd Annual International Symposium

on Computer Architecture, May, pp. 147-157.

[97] Mulder, J. M., Quach, N. T., and Flynn, M. J. (1991) An Area Model For On­

chip Memories and its Application. IEEE Journal of Solid-State Circuits, vol.

26, no. 2, Feb., pp. 98-106.

216

[98] Gupta, S., Keckler, S.W. and Burger, D.C. (2000) Technology Independent Area

and Delay Estimates for Microprocessor Building Blocks, Tech. Report TR2000-

05, Department of Computer Sciences, The university of Texas at Austin, May,

pp.1-27.

[99] ASIC austriamicrosystems Support Information Center,

http://asic.austriamicrosystems.com/databooks/, Accessed 01/05/2005.

[100] Shivakumar, P. and Jouppi, N.P. (2001) CACTI 3.0: An Integrated Cache Tim­

ing, Power, and Area Model. Research Report 2001/2(Weston Research Labora­

tory), Palo Alto, California, USA, Aug. pp. 1-40.

[101] Maurer, D. (1995) Synthesis of a MIPS-I Processor Kernal Using VHDL, Master

Thesis, Technische University Wien (Vienna, Austria).

[102] Symphony EDA VHDL Compiler and Simulator,

http://www.symphonyeda.com/. Accessed 5/12/2003.

[103] Wulf, W. (1995) Hitting the memory wall: Implications of the obvious, ACM

Computer Architecture News, March 1995.

[104] Olukotun, K., Hammond, L. and Willey, M. (1999) Improving the Performance

of Speculatively Parallel Applications on the Hydra CMP, The 1999 ACM Inter­

national Conference on Supercomputing, pp. 21-30.

[105] Arvind, Thomas R.E. (1980) I-structures: An Efficient Data Type for Func­

tional Languages. Technical Report MIT/LCS/TM-21O, Laboratory for Com­

puter Science, MIT, Cambridge, MA.

217

[106] Hennessy, J. and Patterson, D. (2004) Computer Architecture A Quantitative

Approach. Morgan Kaufmann,ISBN: 1558606041 Palo Alto, CA, Third Edition.

[107] Badaway, A-H, Aggarwal, A., Yeung, D. and Tseng, C-W (2004) The Efficacy

of Software Prefetching and Locality Optimisations on Future Memory Systems.

Journal of Instruction-level Parallelism, vol. 6.

[108] Lauterbach, G. and Horel, T. (1999) UltraSPARC-III: designing third genera­

tion 64-bit performance. IEEE Micro, vol. 19(3), pp. 56-66.

[109] PowerPC 740/PowerPC 750 RISC Microprocessor User's Manual (1999). IBM

Corporation.

[110] Smith, J. E. Hsu, W.-C. (1992) Prefetching in supercomputer instruction caches.

Proc. of the 1992 ACM/IEEE conference on Supercomputing, Minneapolis, Min­

nesota, United States, IEEE Computer Society Press, Los Alamitos, CA, USA,

pp. 588-597.

[111] A. Smith (1978) Sequential Program Prefetching in Memory Hierarchies. IEEE

Computer, Vol. 11, pp. 7-21.

[112] Luk, C-K, and Mowry, T. C. (1998) Cooperative Prefetching: Compiler and

Hardware Support for Effective Instruction Prefetching in Modern Processors.

31st Annual ACM/IEEE International Symposium on Microarchitecture, IEEE

micro, pp. 182.

[113] Spracklen, L., Chou, Y. and Abraham, S. G. (2005) Effective Instruction

Prefetching in Chip Multiprocessors for Modern Commercial Applications. Proc.

218

of the 11th International Symposium on High-Performance Computer Architec­

ture (HPCA-11 2005), IEEE Computer Society, pp.225 - 236.

[114] Lee, C., Chen, K. and Mudge, T. (1997) Instruction Prefetching using Branch

Prediction Information. In Proc. IntI. Conf. on Computer Design: VLSI in Com­

puters and Processors, pp. 593-601.

[115] Reinman, G., B. Calder, R, and Austin, T. (1999) Fetch Directed Instruction

Pre fetching. Proc. of the 32nd annual ACM/IEEE international symposium on

Microarchitecture, pp. 16-27.

[116] Mutlu, 0., Kim, H., Armstrong, D. N., and Patt, Y. N. (2004) Cache Filtering

Techniques to Reduce the Negative Impact of Useless Speculative Memory Refer­

ences on Processor Performance. In 16th Symposium on Computer Architecture

and High Performance Computing, Oct., pp. 2-9.

[117] Park, I., Powell, M. D. and Vijaykumar, T. N. (2002) Reducing Register Ports

for Higher Speed and Lower Energy. Proc. of the 35th annual ACM/IEEE in­

ternational symposium on Microarchitecture, Istanbul, Thrkey, November 18-22,

pp. 171-182. IEEE Computer Society, Los Alamitos, CA, USA.

[118] Kim, N. S. and Mudge, T. (2003) Reducing Register Ports using Delayed Write­

back Queues and Operand Pre-fetch. Proc. of the 17th annual international con­

ference on Supercomputing, San Francisco, CA, USA, 23-26 June, pp. 172-182.

ACM Press, New York, NY, USA.

[119] Tseng, J. H. and Asanovic, K. (2003) Banked Multiported Register Files for

High-Frequency Superscalar Microprocessors. In 30th International Symposium

219

on Computer Architecture, San Diego, California, 09-11 June, pp. 62-71. ACM

Press, New York, NY, USA.

[120] Bunchua, S., Wills, D. S. and Wills, L. M. (2003) Reducing Operand Transport

Complexity of Superscalar Processors using Distributed Register Files. Proc. of

the 21st International Conference of Computer Design, San Jose, California, 13-

15 October, pp. 532-535. IEEE Computer Society, Los Alamitos, CA, USA.

[121] SPARC International, Inc. (1994) The SPARC Architecture Manual Version 9,

PTR Prentice Hall, Englewood Cliffs, N.J.

[122] Valluri, M. G., and Govindarajan, R. (1999) Evaluating Register Allocation

and Instruction Scheduling Techniques in Out-of-Order Issue Processors. Proc.

of the 1999 International conference on parallel architectures and compilation

techniques (California, USA), pp. 78-83.

[123] Waldspurger, C. A., and Weihl, W. E. (1993) Register Relocation: Flexible

Contexts for Multithreading. In 20th Annual International Symposium on Com­

puter Architecture, May, pp. 120-129.

[124] Zhuang, X., Zhang, T. and Panda, S. (2004) Hardware-managed Register Allo­

cation for Embedded Processors. Proc. of the 2004 ACM conference on languages,

compilers and tools for embedded systems, pp. 192-201.

[125] Zhuang, X., and Panda, S. (2005) Differential Register Allocation. Proc. of the

2005 ACM SIGPLAN conference on programming languages and design, vol. 40,

pp. 168-179.

220

[126] Villiger, T., Kaslin, H., Gurkaynak, F. K., Oetiker, S. and Fichtner, W. (2003)

Self-timed Ring for Globally-Asynchronous Locally-Synchronous Systems. Proc.

of the Ninth International Symposium on Asynchronous Circuits and Systems

(ASYNC'03), Vancouver, BC, Canada.

[127] Shapiro, D. (1984) Globally Asynchronous Locally Synchronous Circuits. PhD

Thesis, Report No. STAN-CS-84-1026, Stanford University.

[128] Zhuang, S., Carlsson, W. L., Palmkvist, K. and Wanhammar, L. (2002) An

Asynchronous Wrapper with Novel Handshake Circuits for GALS Systems. In

Proc. of the IEEE 2002 International Conference on Communications, Circuits

and Systems, Cheungdu, China, August, pp. 1521-1525.

[129] International Technology Roadmap for Semiconductors: ITRS (2003). Available

at http://public.itrs.net.

[130] Muller, D. E., and Bartky, W. S. (1959) A theory of asynchronous circuits.

In Proc. of an International Symposium on the Theory of Switching, Harvard

University Press, April, pp. 204-243.

[131] Lewin, D., and Protheroe, D. (1992) Design of Logic Systems. Second Edition,

CHARMAN and HALL, ISBN 0 412 42890 3, 0 442 31587 2(USA), Chapter 8.

[132] Unger, S. H. (1969) Asynchronous Sequential Switching Circuits. New York

NY: Wiley-Interscience, John Wiley and Sons, Inc., New York.

[133] Bainbridge, W. J. and Furber, S. B. (2001) Delay Insensitive System-on-Chip

Interconnect Using 1-of-4 Data Encoding. Proc. of the Seventh International

Symposium on Asynchronous Circuits and Systems, pp. 118.

221

[134] Hauck, S. (1995) Asynchronous Design Methodologies: An Overview. Prec. of

the IEEE, vol. 83, January, pp. 69-93.

[135] Takamura, A., Kuwako, M., Imai, M., Fujii, T., Ozawa, M., Fukasaku, I., Ueno,

Y. and Nanya, T. (1997) TITAC-2: An Asynchronous 32-bit Microprocessor

based on Scalable-Delay-Insensitive Model. Proc. of the 1997 International Con­

ference on Computer Design (ICCD'97), Austin, TX, USA, pp. 288-294.

[136] Martin, A. J., Lines, A., Manohar, R., Nystreem, M., Penzes, P., Southworth,

R., and Cummings, U. (1997) The Design of an Asynchronous MIPS R3000

Microprocessor. In Advanced Research in VLSI pp. 164-181.

[137] Guibaly, F. (1989) Design and Analysis of Arbitration Protocols. IEEE Trans.

Computers vol. 38, pp. 161-171.

[138] Wilkinson, B. (1992) Comments on Design and Analysis of Arbitration Proto­

cols. IEEE Trans. Computers, vol. 41, pp. 348-351.

[139] Valencia, M., Bellido, M., Huertas, J., Acosta, A. J. and Solano, S. (1995)

Modular Asynchronous Arbiter Insensitive to Metastability. IEEE Transaction

on Computers, vol. 44, pp. 1456-1461.

[140] Josephs, M. and Yantchev, J. (1996) CMOS Design of the Tree Arbiter Element.

Proc. of the IEEE Trans. on VLSI Systems, vol. 4, pp. 472-476.

[141] Rigaud, J-B., Quartana, J., Fesquet, L. and Renaudin, M. (2002) High-Level

Modeling and Design of Asynchronous Arbiters for On-Chip Communication Sys­

tems. Proc. of the IEEE 2002 Design, Automation and test in Europe Conference

and Exhibition, pp. 1090.

222

[142] Liu, Y. C., and Gibson, G. A. (1984) Microcomputer Systems: The 8086/8088

Family, Prentice-Hall, Englewood Cliffs, NJ.

[143] Macii, E. and Poncino, M. (1995) The Design of Easily Scalable Bus Arbiters

with Different Dynamic Priority Schemes. Proc. of 29th Asilomar Conference on

Signals, Systems and Computers, vol. 1, Pacific Grove, CA, USA, pp. 211-213.

[144] Moore, S., Taylor, G., Mullins, R. and Robinson, P. (2002) Point to Point GALS

Interconnect. Proc. of the Eighth International Symposium on Asynchronous

Circuits and Systems (ASYNC'02), pp. 69-75.

[145] EI-Moursy, A., Garg, R., Albonesi, D. and Dwarkadas, S. (2005) Partitioning

Multithreaded Processor with a Large Number of Threads. International Sym­

posium on Performance Analysis of Systems and Software.

[146] Wang, L., and Selvaraj, H. (2003) A Scheduling and Partitioning Scheme for

Low Power Circuit Operating at Multiple Voltage. Proc. of the Euromicro Sym­

posium on Digital System Design (DSD'03), Belek-Antalya, Turkey, pp. 144-147.

[147] Paterson, C. et al. (2002) System-on-Chip for High Speed Communication Sys­

tems. Intel Corporation and Synopsys Inc. Report, pp. 1-25

[148] Silberman, J. et al. (1998) A 1.0 GHz single issue 64b PowerPC integer pro­

cessor. ISSCC, Department of Computer Sciences, IBM Austin Research Lab.,

Austin, Tx, pp. 230.

[149] Lopez, D., Llosa, J., Valero, M. and Ayguade, E. (1998) Resource Widening

Versus Replication: Limits and Performance-Cost Trade-Off. 12th International

Conference on Supercomputing (IC8-12), Melbourne, Australia, pp. 441-448.

223

[150] Kumar, R., Jouppi, N.P., and Tullsen, D.M. (2004) Conjoined-Core Chip Mul­

tiprocessing. Proc. of the 37th annual International Symposium on Microarchi­

tecture (MICRO-37 2004), Portland, Oregon, December, pp. 195-206.

[151] Gao, G. R., Theobald, K. B., Govindarajan, R., Leung, C., Hu, Z., Wu, H.,

Lu, J., Cuvillo J. d. , Jacquet, A., Janot, V. and Sterling, T. L. (2003) Program­

ming Models and System Software for Future High-End Computing Systems:

International Parallel and Distributed Processing Symposium (IPDPS'03), pp.

206.

[152] Sutter, H. and Larus, J. (2005) Software and the Concurrency Revolution. ACM

Queue vol. 3, no. 2, September 2005.

Glossary

ALU : Arithmetic logic Unit

AM : Attractive Memory

BMT : Blocked Multi-threading

Brk : Break Instruction

Bsync: Barrier Synchronisation

CACTI: Cache Access and Cycle Time Model

CMP: Chip Multiprocessors

COMA: Cache Only Memory

CQ : Continuation Queue

Cre : Create Instruction

O-cache : Data Cache

OOM : Data Diffusion Machine

EDGE: Explicit Data Graph Execution

EPIC: Explicitly Parallel Instruction Computing

FPU : Floating Point Unit

GALS: Globally Asynchronous Locally Synchronous

GCQ : Global Continuation Queue

REP : Heterogeneous Element Processor

224

HT : Hyper-threading

IA-64: Intel Architecture Processor 64-hit

IBM: International Business Machines

I-cache: Instruction Cache

ILP : Instruction Level Parallelism

IMT : Interleaved Multi-threading

IPC : Instruction Per Cycle

ISA : Instruction Set Architecture

Kill : Kill Instruction

KSR-l: Kendall Square Research

LLP : Loop Level Parallelism

Ll/L2: Levell/Level2 Cache

MAJC : Microprocessor Architecture for Java Computing

MIMD : Multiple Instruction Multiple Data

j.tt-CMP: Microthreaded Chip Multiprocessors

NUMA: Non-Uniform Memory Architecture

000 : Out-of-Order (superscalar processor)

PC : Program Counter

PPC : Power PC

RAU: Register Allocation Unit

RAW: Reconfigurable Architecture Workstation

RISC : Reduce Instruction Set Architecture

Rmc : Registers required per micro context

SMT : Simultaneous Multithread/Multi-threading

225

SIA : Semiconductor Industry Association

SISn : Single instruction Single Data

SPMD : Single Program Multiple Data

Swch : Switch Instruction

SPARC: Scalable Processor Architecture

Tme : Thread per Microcontext

TCB : Thread Control Block

TLB :Transition Lookaside Buffer

TLP : Thread Level Parallelism

TRIPS: The Tera-op, Reliable, Intelligently adaptive Processing System

UMA: Uniform Memory Access

VHDL : VHSIC Hardware Description Language

VHSIC: Very-High-Speed Integrated Circuit

VLIW: Very-long Instruction Word

226

Appendices

227

Appendix A

Code generation examples

This appendix provides an analysis and code generation for livermore loop kernels.

Note that in all the code that follows, GO is assumed to contain the value 0 and that

addressing is assumed to be to word boundaries, whatever a word is. The loops con­

sidered included a number of livermore kernels, some that are independent and some

that contain loop-carried dependencies. It also includes both affine and non-affine

loops, vector and matrix problems, and a recursive doubling algorithm.

228

229

Array of partial Products

DO I i=2,m
I XCi) = XCi) * X(i-I)

Register allocation

Main
XCI) $SO

Loop
I $LO
XCi) $LI
XCi)' $SO

Code

dol: .word2
.wordm
.word I
.word 1
.word 2
.word 1
.word body
.wordO

Main: Lw $SO X($OO)
Cre loop
Bsync

body: Lw $Ll X($LO)
Mul $SO $DO $Ll
Swch
Sw $SO X($LO)
Kill

Analysis
Allocation o/registers and instructions executed

Ne Locals Globals shared
Main 1 3 1
Bodym-lIl 3 21 1
Total 3m 21 0 1+1
$00 not counted

A t . t ccesses 0 regis ers
I $L $0 1 $S $D

r reads I writes reads I writes I readsT writes reads I writes

230

Main 1 1 1
Body (m-I) 3 1 1 1 1
Total 3m-3 m-l 1 0 m-l m m-l 0

2-D SOR

DO 1 i=2,m-1
1 XCi) = X(i-I)-2*X(i) +X(i+I)

Register allocation

Main
XCI) $SO

Loop
1 $LO
XCi) $LI
Xci), $SO
X(i+l) $L2

Code

loop: .word2
.wordm-l
.word 1
.word 1
.word 3
.word 1
.word body
.wordO

Main: Lw $SO X($GO)
ere loop
Bsync
Finish

body: Lw $L2 X+I($LO)
Lw $Ll X($LO)
Add $L2 $L2+$DO
Swch
Sub $SO $L2 $LI
Swch
Sw $SO X($LO)
Kill

Analysis
Allocation ofre~isters and instructions executed

Ne Locals
Main I 3
Bodym-2/1 5 31
Total 5m-2 31
$00 not counted

A ccesses to regIsters
$L $0

reads writes reads writes
Main I I
Body (m-2) 7 3
Total 7m-14 3m-3 1 0

Livermore kernel 1 - Hydro fragment
cdir$ ivdep
DO 1 k= I,m

Olobals

0

$S
reads writes

I
I I
m-2 m-I

1 X(k)= Q + Y(k) * (R * ZX(k+lO) + T * ZX(k+l1))

Register allocation

Main
Q $01
R $G2
T $G3

Loop
TempI $Ll
Y(k) $L2
ZX(k+ 10) $L3
ZX(k+ 11) $L4
Temp2 $L5

231

Shared
I
1
1+1

$D
reads writes

I
m-2

232

.data
dol: .word 1

.wordm

.word 1

.word 0

.word 6

.word 0

.word body

.word 0
main: Lw$Gl Q

Lw$G2R
Lw$G3 T
ere dol
Bsync
Finish

Body: Lw $L4 ZX + 11 ($LO)
Lw $L3 ZX+lO($LO)
Lw $L2 Y($LO)
Mul $L 1 $L4 $G3
Swch
Mul $L5 $L3 $G2
Swch
Add $Ll $Ll $L5
Mul $Ll $Ll $L2
Swch
Add $Ll $Ll $01
Sw $L 1 X($LO)
Kill

Analysis
Allocation of registers and instrnctions executed

Ne Locals Globals Shared

Main 1 5 3

Body mil 9 6
Total 9m+5 61 3 0
$00 not counted

Accesses to registers
$L $G $S $D

reads writes reads writes reads writes reads writes
Main 1 3
Body_m 12 8 3 0 0 0
Total 12m 8m 3m 3 0 0 0

Livermore kernel 2 -ICCG (incomplete Cholesky decomposition)

1002 11= ml2
IPNTP=O

222 IPNT= IPNTP
IPNTP= IPNTP+II
11= 11/2
i= IPNTP+l

cdir$ ivdep
c:ibm_dir:ignore recrdeps (x)
DO 2 k= IPNT +2,IPNTP,2

i= i+l
2 X(i)= X(k) - V(k) * X(k-l) - V(k+l) * X(k+l)

IF(II.GT.1) GO TO 222

Register allocation
Main
ml2 $Gl
1 $G2
II $Ll
IPNTP $L2
IPNT $L3
IPNT+2 $L4
1 $L5

Do2
X(kIi) $Ll
X(k-l) $L2
X(k+l) $L3
V(k) $L4
V(k+l) $L5
i-local $L6

233

do2:

main:

loop:

.data

.wordO

. word 0

.word2

.wordO

.word5

.wordO

.word body

. word 0
Mv$Ll $01
Mv$L2$OO
Mv $L5l
Mv$L3 $L2
Add$L4 $L3 2
Add $L2 $L2 $Ll
Div $Ll $Ll 2
SW $L4 do2($OO)
SW $L2 dol+l(GO)
Bsync
Add $02 $L21
ere do2
Bgt $L 1 $L5 Loop
Finish

body: Lw $Ll X($LO)
Lw $L2 X-I ($LO)
Lw $L3 X+l($LO)
Lw $L4 V($LO)
Lw $L5 V+ l($LO)
Add $L6 $02 $LO
Mul $L2 $L2 $L4
Swch
Mul $L3 $L3 $L5
Swch
Sub $Ll $Ll $L2
Swch
Sub $Ll $Ll $L3
Sw $Ll X($L6)
Kill

#gets written by main thread
#gets written by main thread

234

#writes control block for loop start
#writes control block for loop limit

Analysis

Iteration multipliers (analysis in spreadsheet)
Sum inner loops m-Iogm-l
outer loop logm-l
Setup 1

Allocation of registers and instructions executed
Ne Locals

Main 1 3 5
Outer logm-lI- 13
inner m-Iogm-1I1 11 7
Total Ilm+2Iogm-21 71+5
$00 not counted

Accesses to registers
$L

reads writes
Main 1 3
Outer 10 4
logm-l
Inner 16 10
m-Iogm-l
Total 16m- 1 Om-

6logm 6logm
-26 -II

Loop 3 - Inner product
Q=O
DO 3 k= I,m

2 Q= Q + Z(k) * X(k)

Register allocation
Main
Q $SO

Loop
Q $SO
Z $Ll
X $L2

$0
reads writes

2
2 1

1 0

M+log logm-
m-l 1

235

Globals Shared
2

2 0

$S $D
reads writes reads writes

0 0 0

0 0 0

0 0 0

236

.data
do3: .word 1

.wordm

.word 1

.word 1

.word2

.word 1
,word 0
.word body
.word last

Main: MvSOGO
ere do3
Bsync
Finish

body: Lw $LI Z($LO)
Lw $L2 X($LO)
Mul $LI $LI $L2
Swch
Add $SO $DO $Ll
Kill

last: Lw $LI Z($LO)
Lw $L2 X($LO)
Mul $LI $Ll $L2
Swch
Add $SO $DO $L 1
Swch
Sw $SO Q($GO)
Kill

Analysis
Allocation of registers and instructions executed

Ne Locals Globals Shared
Main+last 1 8 1
Bodym-lIl 4 3 1
Total 4m+4 31 1+1
$GO not counted

A . t ccesses to regIs ers
$L $0 $S $D

reads writes reads writes reads writes reads writes
Main+last 5 3 2 0 1 2 1
1
Bodym-l 5 3 0 0 0 1 1
Total 5m 3m 2 0 1 m+l m

Livermoore loop 4 - Banded Linear equation solver

nt= (1001-7)/2
c
1004 DO 404 k= 7,1001,nt

lw= k-6
temp= XZ(k-1)

cdir$ ivdep
DO 4 j= 5,m,5

temp = temp - XZ(lw) * Y(j)
4 lw= Iw+1

XZ(k-1)= Y(5) * temp
404 CONTINUE

Register allocation
Main
nt
k
temp
lw
Y(S)
1001

Do4

$L1
$L2
$SO/$Gl
$Sl
$L3
$L4

XZ(1w) $Ll
Y(j) $L2
temp $SO
lw $Sl

237

238

. data
do4: .word S

.wordm

.wordS

.word 1

.word2

.word 2

.word body

.word last
body: my $LII001

Sub $Ll $Ll 7
Diy $Ll $L12
My$L27

loop: Sub $SI $L26
Lw $SO XZ-l($L2)
Credo4
Lw $L3 Y+5($GO)
BSync
Mul $Gl $Gl $L3
Swch
Sw $Gl XZ-l($L2)
Add $L2 $L2 $L 1
Bgt $L2 $L4 loop
Finish

body: Lw $Ll XZ($Dl)
Lw $L2 Y($LO)
Mul $Ll $Ll $L2
Swch
Add $SI $Dl 1
Swch
Sub $SO $DO $Ll
Kill

last: Lw $Ll XZ($Dl)
Lw $L2 Y($LO)
Mul $Ll $Ll $L2
Swch
Add $SI $Dl1
Swch
Sub $Gl $DO $Ll
Kill

239

Analysis
Iteration multipliers (analysis in spreadsheet)
Sum inner loop .6(m+ 1)
Branch loop 3
Setup 1

Allocation o/registers and instructions executed
Ne Locals Olobals Shared

Main 1 4 4 1 2
Outer 3/- 9
inner .6(m+ 1)/1 5 3 2
Total 3m+34 31+4 1 21+2
$00 not counted

A . t ccesses to regIs ers
$L $0 $S $0

reads writes reads writes reads writes reads writes
Main 1 2 4
Outer 3 8 2 3 1 2
Inner 4 3 2 3
.6(m+l)
Total 2.4m+ 1.8m+ 9 4 0 l.2m+ 1.8m+

28.4 11.8 6.2 1.8

Correction for last iteration is I write to $S becomes write to $0 accounted for above

Loop5 - Tri-diagonal elimination

1005 DO 5 i = 2,m
5 X(i)= Z(i) * (Y(i) - X(i-I))

Register allocation
Main
XCI) $SO

D05
$LO i
$LI Z(i)
$L2 Y(i)
$SO XCi)

.data
do5: .word2

.wordm

.word 1

.word 1

.word2

.word 1

.word body

.wordO
main: Lw $SO X+ 1 ($00)

ere do5
Bsync
Finish

body: Lw $L2 Y($LO)
Lw $Ll Z($LO)
Sub $L2 $L2 $DO
Swch

Analysis

Mul $SO $L2 $Ll
Swch
Sw $SO X($LO)
Kill

Allocation ofre~isters and instructions executed
Ne Locals

Main 1 8
Body m-lIl 4 3
Total 5m+3 31
$00 not counted

A ccesses to regis ers
$L $0

reads writes reads writes
Main 1 0 0 1 0
Bodym-l 6 3 0 0
Total 6m 3m 1 0

240

Olobals Shared
1
1

0 1+1

$S $D
reads writes reads writes

0 1 0
1 1 1
m-l m m-l

Loop 6 - general linear recurrence

1006 DO 6 i= 2,m
W(i)= 0.01 DOdO

DO 6 k= l,i-l
W(i)= WCi) + 8(i,k) * W(i-k)

6 CONTINUE

Register assignment
Main
m $011L1
1 $02
m*i $03
Wei) $SO
i-I $L2

Do6
Wei) $SO
8Ci,k) $Ll
W(i-k) $L2
i,k $L3
i-k $L4

241

242

.data
do6: .word 1

.word 0 #written in main

.word 1

.word 1

.word 5

.word 1

.word body

.wordO
main: Mv $Ll $Gl #move forced by 1 bus rule only 1 instruction in O(m"2)

Mv$G22
loop: Mul $G3 $G2 $Ll

Sub $L2 $G2 1
Sw $L2 do6+1($GO) #set loop limit to i-I
Mv$SOO
ere Do6
Bsync
Add $G2 $G2 I
Ble $G2 $L I loop
Finish

body: Add $L3 $LO $G2
Lw $LI B($L3)
Sub $L4 $LO $G2 #$G2 determined
Lw $L2 W($L4)
Mul $LI $Ll $L2
Add $SO $DO $Ll
Swch
Sw $SO W($L4)
Kill

Pointer chasing - locate object at position, from Europar paper
struct box {

int next;
int xl;
intx2;
int yI;
int y2;
}

struct box start;
struct box Iocate(int x; int y; start)
{ while (start.next != 0)

{if (x >= start.xI)
if (y >= start.yl)

if (x <= start.x2)
if (y<= start.y2)

start := start.next
}

return -1;
}

Register allocation
locate
$SO
$01
$02
$G3
$04
$G7

while

Start
x (as parameter)
y (as parameter)
start (as parameter)
locate (return)
return address

$Ll x/y test coordinates

return start; l*match*1

$L2 local copy of start restriction on 2 global reads
$L3 local copy of next restriction on 2 global reads
$SO next

while:
.data
.word 1
.word n
.word 1
.word 1
.word4
.word 1
.word body
.word last

#start
#limit = number of processors
#step
#dependency distance
#locals
#globals
#Code
#Optional last iteration

243

244

locate: MvSOG3
cre while #Create a thread to start the while loop
bsync
Mv$G4-1
Jr $7

body: mv$L2$DO #get address of this element in list
swch
Lw $L3 next($L2) #get address of next element in list
beq $L3 $GO kill #Kill if end of list
MvSOL3 #Otherwise pass on next address and search
lw $Ll XI($L2) #get lower X bound of object
bge $G I $LI fail
swch
lw $Ll YI($L2) #get lower Y bound of object
bge $G2 $Ll fail
swch
lw $Ll X2($L2) #get upper X bound of object
ble $Gl $LI fail
swch
lw $L 1 Y2($L2) #get lower Y bound of object
ble $G2 $LI fail
swch
Mv$G4$L2
Jr$G7

fail: Kill
kill: Mv$SOO #propagate zero to kill remaining threads

Kill
last: mv$L2$DO #get address of this element in list

swch
Lw $L3 next($L2) #get address of next element in list
beq $L3 $GO fail #Kill if end of list
MvSOL3 #Otherwise pass on next address and search
ere while #and as this is last thread create new threads
lw $Ll Xl($L2) #get lower X bound of object
bge $G 1 $L 1 fail
swch
lw $Ll Yl($L2) #get lower Y bound of object
bge $G2 $L 1 fail
swch
lw $L 1 X2($L2) #get upper X bound of object
ble $Gl $Ll fail
swch
lw $Ll Y2($L2) #get lower Y bound of object
ble $G2 $Ll fail
swch
Mv$G4$L2

245

Jr$07
fail: Kill

Analysis
Allocation of ref!isters and instructions executed

Ne Locals Globals Shared

Main 1 5 5 1
Body mil 14 3 1
Total 14m+5 31 5 1+1

$00 not counted

Accesses to registers assumes succeeds after m elements and fails after 2 searches on

Analysis
Iteration multipliers (analysis in spreadsheet)
Sum inner loop rn!2_m l1212
Branch loop m 112_1

Setup 1
Allocation of re~isters and instructions executed

Ne Locals Globals Shared
Main 1 2 2 3 1
Outer m lI:l_lI_ 8
inner rn!2-m l/:l 12/1 7 5 1

Total 2.5m+6.5m l/:l _ 51+2 3 1+1
5

$GO not counted

Accesses to ref!lsters
$L $0 $S $D

reads writes reads writes reads writes reads writes
Main 1 1 1 1
Outer 3 1 5 2 1
m ll2_l

Inner 8 5 2 1 1 1
rn!2-m 1 1212
Total 4m- 2.5m- m+4m m1l2_1 .5m- .5m- .5m-

m Il2_l 1.5mll 112_4 .5ml12 .5mll2. .5ml12

2
1

Loop 7 equation of state fragment
cdir$ ivdep
1007 DO 7 k= I,m

X(k)= U(k) + R*(Z(k) + R*Y(k » +
1 T*(U(k+3) + R*(U(k+2) + R*U(k+1» +
2 T*(U(k+6) + Q*(U(k+5) + Q*U(k+4»»
7 CONTINUE

register Allocation
Main
R $01
T $02
Q $03

Do7
k $LO
U(k) $L1
U(k+1) $L2
U(k+2) $L3
U(k+3) $L4
U(k+4) $L5
U(k+5) $L6
U(k+6) $L7
Y(k) $L8
Z(k) $L9

246

. data
do7: .word 1

.wordm

.word 1

.word 0

.word 7

.word 0

.word body

.word 0
Main: Lw $01 R($OO)

Lw $02 T($OO)
Lw $03 Q($OO)
ere do7
Bsync
Finish

Body: Lw $Ll U($LO)
Lw $L2 U+l($LO)
Lw $L3 U+2($LO)
Lw $L4 U+ 3($LO)
Lw $L5 U+4($LO)
Lw $L6 U+5($LO)
Lw $L7 U+6($LO)
Lw $L8 Y($LO)
Lw $L9 Z($LO)
Mul $L5 $L5 $03
Swch
Add $L5 $L6 $L4
Swch
Mul $L5 $L5 $03
Add $L5 $L5 $L 7
Swch
Mul $L5 $L5 $02
Mul $L2 $L2 $01
Swch
Add $L2 $L2 $L3
Swch
Mul $L2 $L2 $01
Add $L2 $L2 $L4
Swch
Mul $L2 $L2 $02
Add $L2 $L2 $L5
Mul $L8 $L8 $01
Swch
Add $L8 $L8 $L9
Swch
Mul $L8 $L8 $02

247

Analysis

Add $L2 $L2 $L8
Add $L2 $L2 $L 1
Sw $L2 X($LO)
Kill

Allocation o/registers and instructions executed
Ne Locals

Main 1 5
Body mil 26 10
Total 26m+5 101
$00 not counted

A . t ccesses to regIs ers
$L $0

reads writes reads writes
Main 1 3 3
Bodym 35 25 8 0
Total 35m 25m 8m+3 3

248

Olobals
3

3

$S $D
reads writes reads writes

0 0 0

Appendix B

Allocation Scheme Source Code

and Simulation Results

This appendix provides a VHDL source code and sample of simulation results for the

allocation scheme described in chapter 4. In particular we describe the allocation

scheme behaviour and the arbiter test bench. A sample of simulation results for

different allocation scenarios is presented. Full source code for the allocation scheme

is available on the DVD included with this thesis.

B.l Allocation Scheme Architecture Behaviour

The following code describes the architecture behaviour of the allocation scheme.

The allocation scheme includes three main components, which comprises slice logic,

registers and flags and these components are available on the DVD attached with this

thesis.

249

B.1.l Allocation Slice logic Architecture Behaviour

Library IEEE: use IEEE. std_logic_1164. all: Use

IEEE.std_logic_unsigned.all: Use STD.TEXTIO.all: use

IEEE.std_logic_textio.all; Use IEEE.std_logic_arith.all; Entity

Slice is generic(

'W

M

S

Slice_id

Tdelay

) :

port (

BAin

SSBin

CSBin

CSSin

SASin

SSSin

SASI

SA in

Errorin

Flagin

Flagprev

Do_allocate

Do_release

clear

integer :=31;

integer :=63;

integer :=7;

integer;

time := 4 ns

:in std_logic_vector(S downto 0);

:in std_logic_vector(S do'Wnto 0):

:in std_logic_vector(S do'Wnto 0);

:in std_logic_vector(S downto 0).

:in std_logic_vector(S downto 0);

:in std_loglc_vector(S downto 0).

:in std_logic_vector(S downto 0);

:in std_logic;

:in std_logic;

:In std_logic;

:in std_logic.

:in std_logic;

:in std_logic;

:in std_logic;

250

BAout : out std_Iogic_vector(S downto 0) ;

SSBout : out std_Iogic_vector(S downto 0) :

CSBout : out std_Iogic_vector(S downto 0) ;

CSSout : out std_Iogic_vector(S downto 0);

SASout : out std_Iogic_vector(S downto 0) ;

SSSout : out std_Iogic_vector(S downto 0) ;

SAout : out std_Iogic;

Errorout : out std_Iogic;

Flagout : out std_Iogic

) :

End Slice;

Architecture Combination_Alloc of Slice is

constant ZeroWord

signal Word

:std_Iogic_vector(S downto 0) := (others=>'O');

: std_Iogic_vector(S downto 0) := XIOl";

251

type Register_Boundary is array (0 to 4) of std_Iogic_vector(7 downto 0);

signal Allocate_Boundary : Register_Boundary;

Begin Main process (Do_allocate , Do_release,BAin, SSBin,

CSBin,CSSin, SASin, SSSin, SASI, SAin,

Errorin,Flagin,Flagprev

)

variable i,SSS,CSB,SAS. flag : natural := Slice_id;

variable initial: boolean

variable currentbase,SSB

variable ess

:= False;

:natural ;

: natural :=0;

variable Temp natural : =1 :

natural :=0: variable Temp_reg.Temp_reg2

variable t :std_logic_vector(S downto 0);

Begin

if (Flagin ='0' and Flagprev= '0' and Do_allocate='O'

and Do_release='O' and slice_id=O) then

CSSout <= SSSin

SSSout <= SSSin

SSBout <= SSBin:

CSBout <= CSBin;

SAout <= , 1 ' ;

else if (Flagin ='0' and Flagprev= , 0' and

Do_allocate ='O'and Do_release='O') then

CSSout <= SSSin :

SSSout <= unsigned(SSSin) + unsigned(word);

SSBout <= SSBin:

CSBout <= CSBin:

SAout <= , 1 ' ;

else if (Flagin ='0' and flagprev='l' and

Do_allocate ='0' and Do_release='O') then

CSSout <= word:

CSBout <= conv_std_logic_vector(Slice_id.8):

SSSout <= SSSin :

SSBout <= SSBin:

SAout <= , l' ;

252

else if (Do_allocate ='0' and Do_release='O' and

flagin='l' and flagprev='l') then

CSSout <= X"OO";

CSBout <= X"OO";

SSSout <= SSSin;

SSBout <= conv_std_logic_vector(sl1ce_id.8);

SAout <= SAini

else if (Do_allocate ='0' and Do_release='O' and

flagin='l'and flagprev='O') then

CSSout

CSBout

SSSout

SSBout

SAout

<= X"OO";

<= X"OO";

<= unsigned(SSSin) + unsigned(word);

<= conv_std_logic_vector(slice_id.8);

<= SAini

end if; end if; end if; end if;

flagout <= flagin;

BAout <= conv_std_logic_vector(Slice_id+l,8);

SASout <= X"OO";

end if; if ((Do_allocate ='1') and (SAS! >ZeroWord)

and Do_release='O') then

t := SAS!;

SASout <= t;

flagout (= '1';

else if ((Do_allocate ='1') and(flagin ·'0') and

(Do_release='O') and (SAS! = ZeroWord)

and (SASin > ZeroWord)) then

253

t := unsigned(SASin) - unsigned(word);

SASout <= t;

flagout <= '1';

else if « Do_allocate ='1') and(Do_release='O')

and SASin= ZeroWord) then

SASout <= X"OO";

flagout <= flagin;

end if; end if;

CSSout <= X"OO";

end if:

if « Do_allocate ='O')and (Do_release='l')

and (SAS! > ZeroWord) and (SASin= ZeroWord)) then

t := SAS!;

SASout <= t;

flagout <= '0';

else if « Do_allocate z'O') and(Do_release2 '1')

and (flagin ='1') and (SAS! > ZeroWord)

and (SASin= ZeroWord)) then

t := SASin;

SASout <= t;

flagout <= '0':

else if « Do_allocate ='0') and (flagin ='1') and (Do_release:'l')

and (SAS! = ZeroWord) and (SASin > ZeroWord)) then

t := unsigned(SASin) - unsigned(word):

SASout <= t;

254

flagout <= '0';

else if ((Do_allocate ='O')and(Do_release='O')and(flagin='O'»then

SASout <= "00000000";

flagout <= flagin;

end if; end if; end if; CSSout <= "00000000"; end if; if (

Errorin = '1') then

Errorout <= '1';

else if (Flagin ='1' and SASin > ZeroWord) then

Errorout <= '1';

else

Errorout <= '0';

end if; end if; end process main; end Combination_Alloc;

B.1.2 Register Architecture Behaviour

Library IEEE; Use IEEE. std_logic_1164. all; Use

IEEE.std_Iogic_unsigned.all; Use STD.TEXTIO.all; use

IEEE.std_Iogic_textio.all; Use IEEE.std_Iogic_arith.all; Entity

Register_Size is generic (

w integer :=31;

M integer :=63;

S integer :"7;

Sl1ce_id integer;

Tdelay time := 4 ns

) ;

port (

255

clk in std_logic;

rst in std_logic;

initalize in std_logic;

Req_Size in std_logic_vector(S downto 0);

Alloc in std_logic;

Releas in std_logic:

Selected_Base in std_logic_vector(S downto 0);

Released_Base in std_logic_vector(S downto 0);

SA in std_logic;

Slice_ASI out std_logic_vector(S downto 0)

) ;

end Register_Size; Architecture Registers of Register_size is

type Reg_typ is array(M downto 0) of std_logic_vector(S downto 0);

signal reg: std_logic_vector(S downto O):=X"OO":

Begin

RRR:process(clk.rst. Req_Size. Selected_Base. Releas.

Alloc.initalize.Released_Base

)

variable j natural := Slice_id; Begin if (Alloc - '1') then

If (conv_integer(Selected_Base(7 downto O»zj) then

Reg <= Req_Size:

Slice_ASI <~ Reg:

else

Slice_ASI <= "00000000":

end if; else if (Releas = '1' and Alloc ='0') then

256

if (conv_integer(Released_Base(7 downto 0»> j) then

Slice_ASI <= Reg;

else

end if;

else

Slice_ASI <= "00000000";

Slice_ASI <= "00000000";

end if; end if; end process; end Registers;

B.1.3 Flag Architecture Behaviour

LIBRARY ieee; USE ieee.std_logic_1164.ALL; LIBRARY std; USE

std.textio.ALL; Use IEEE.std_logic_arith.all: Entity Flag is generic

(

M

S

Slice_id

Tdelay

) ;

Port (

eLK

RST

Flgin

Dallocate

Drelease

Flgout

integer :=31:

integer :=63;

integer :=7:

integer:

time :- 4 ns

:in std_logic;

:1n std_log1c;

:1n std_log1c;

:1n std_log1c;

:1n std_log1c;

:out std_log1c;

-- Max slice size

257

Flgprev

) ;

:out std_logic

End Flag; Architecture flags of flag is type ram_typ is array(l

downto 0) of std_logic; signal fg: std_logic:='O'; Begin fff:

process(clk,rst, Flgin, Dallocate) variable j : natural :=

Slice_id; variable k : natural := Slice_id; Begin if

'1') then

fg <= '0';

else if (j = 0 and Dallocate ='0') then

Flgout

Flgprev

<= '0' ;

<= '0';

else if (Dallocate ='0' and j >0) then

Flgout <= fg;

Flgprev <= fg;

end if; end if; end if; if (Dallocate ·'1') then

fg <= flgin;

else if (Drelease ='1') then

fg <= flgin;

end if; end if; end process; end flags;

B.2 Allocation Scheme Test Bench

The following code describes the allocation scheme test bench.

Library IEEE; use IEEE.std_logic_1164.all; use

IEEE. std_logic_unsigned. all; use STD.TEXTIO.all; use

IEEE.std_logic_textio.all; use IEEE. std_logic_arith. all;

(rst I:

258

259

Architecture Allocation-Behav of Allocate is

type Slice_Base_array is array (0 to M) of std_logic_vector(S downto 0):

type Slice_Value_array is array (0 to M) of std_logic_vector(S downto 0);

constant ZeroWord

signal BAi

signal SSBi

signal CSBi

signal CSSi

signal SASi

signal SSSi

signal SASIi

signal SAi

signal Errori

signal Fgi

signal Fgo

signal Fprev

signal init

signal t_clk

signal sel

Component Flag is

generic (

w

M

S

Slice_id

std_logic_vector(S downto 0) := (others =>'0');

Slice_Base_array :

Slice_Value_array;

Slice_Value_array;

Slice_Value_array;

Slice_Value_array:-(others => 1"00 11);

Slice_Value_array;

Slice_Value_array: = (others => 1"00");

std_logic_vector(M downto 0);

std_logic_vector(M downto 0);

std_logic_vector(M downto 0);

std_logic_vector(M downto 0);

std_logic_vector(M downto 0);

std_logic_vector(M downto 0);

std_logic :='0';

:Slice_Base_array ;

integer :=31;

integer :=63;

integer :=7:

natural;

tdelay

) ;

Port (

eLK

RST

Flgin

Dallocate

Drelease

Flgout

Flgprev

) ;

End component;

time := 4 ns

:in std_logic;

:in std_logic;

:in std_logic;

:in std_logic;

:in std_logic;

:out std_logic;

:out std_logic

component Register_Size is generic (

w

M

S

Sl1ce_id

tdelay

) j

port (

elk

rst

inital1ze

Req_Size

Alloe

Releas

integer : ~31 j

integer :=63;

integer :=7:

natural;

time := 4 ns

in std_logie;

in std_logic;

in std_logie;

in std_logic_vector(S

in std_logie;

in std_logic;

260

downto 0):

Selected_Base

Released_Base

SA

Slice_ASI

) ;

end component:

Component

generic (

) :

port (

Slice is

w

M

S

Slice_id

tdelay

BAin

SSBin

CSBin

CSSin

SASin

SSSin

SASI

SAin

Errorin

Flagin

Flagprev

in

in

in

std_logic_vector(S downto 0):

std_logic_vector(S downto 0);

std_logic;

out std_logic_vector(S downto 0)

integer :=31;

integer :=63;

integer :-7;

integer:=63;

time := 4 ns

:in std_logic_vector(S downto

:in std_logic_vector(S downto

:in std_logic_vector(S downto

:in std_logic_vector(S downto

0);

0) ;

0) ;

0) ;

:in std_logic_vector(S downto 0);

:in std_logic_vector(S downto 0);

:in std_logic_vector(S downto 0);

:in std_logic;

:in std_logic;

:in std_logic;

:in std_logic;

261

Do_allocate :1n std_Iog1c;

Do_release :1n std_logic;

clear :in std_Iogic;

BAout : out std_Iogic_vector(S dowto 0);

SSBout : out std_log1c_vector(S dowto 0);

CSBout : out std_Iog1c_vector(S dowto 0);

CSSout : out std_Iog1c_vector(S dowto 0);

SASout : out std_Iogic_vector(S dowto 0);

SSSout

SAout

Errorout

Flagout

) ;

End Component;

for all: flag

: out std_log1c_vector(S downto

:out std_log1c;

: out std_Iogic;

: out std_logic

use entity work.flag(flags);

for all: Register_Size

use ent1ty work.Register_Size(Registers);

for all :Slice

use entity work.Slice(Combinat1on_Alloc);

Begin

BAi(O) <=X"OO";

88B1(0) <=X"OO";

CSBi(O) <=X"OO";

C8Si(0) <=X"OO";

SSSi(O) <= X"Ol";

0) ;

262

SAi(O) <= '0';

U1: for i in 0 to (M) generate

flagO: if i =0 generate

FO : flag

generic map (

M .S .Slice_id =>i. tdelay => tdelay

)

Port map (

clk .rst. Fgi(i) ,Doallocate, Dorelease,

Fgo(i) • Fprev(1)

) ;

end generate flagO;

flagm: if i >0 generate

Fm : flag

generic map (

M ,S .Slice_id =>i, tdelay => tdelay

)

Port map (

clk ,rst,Fgi(i),Doallocate,Dorelease, Fgo(i),Fprev(i)

) :

end generate flagmj

end generate U1:

U2: for i in 0 to M generate

RegO: if i =0 generate

RO : Register_Size

generic map (

263

M .S .Slice_id =>i. tdelay => tdelay

)

Port map (

clk. rst. init(i). Required_Alloc_Size. Doallocate.

Dorelease.Allocate_Base. Release_Base • SAi(i) .SASIi(i)

) ;

end generate RegO;

Regn: if i >0 generate

Rn : Register_Size

generic map (

)

Port map (

M .S .Slice_id =>i, tdelay -> tdelay

elk. rst. init(i). Required_Alloc_Size. Doallocate,

Dorelease.Allocate_Base. Release_Base • SAi(1) .SASI1(1)

) ;

end generate Regn;

end generate U2;

U3: for i in 0 to (M) generate

sliceO: if i =0 generate

SIO : Slice

generic map (

M.S ,Slice_1d ->1, tdelay ~> tdelay

)

port map (

BA1(1). SSBi(i) .eSBi(i). eSSi(i). SASi(1).

264

SSSi(i), SASIi(i), SAi(i), Errori(i),Fgo(i),

Fprev(i), Doallocate, Dorelease,init(i),

BAi(i+1),SSBi(i+1),eSBi(i+1) ,eSSi(i+1),SASi(i+1),

SSSi(i+1), SA1(1+1), Errorl(1+1), Fgl(l)

) ;

end generate sllceO;

slicen: if «1 > 0) and (i < M » generate

SIn : Slice

generic map (

)

port map (

M.S .Sllce_ld =>1, tdelay => tdelay

BA1(1), SSBi(i) ,eSBi(i), eSS1(1), SASi(i),

SSSl(l), SASI1(i), SAi(i),Errori(i), Fgo(i),

Fgo(i-1),Doallocate , Dorelease,init(i),

BAi(i+1),SSBi(i+1),eSBi(i+1) ,eSSi(i+l),SASi(i+1),

888i(i+1), SAi(i+1), Errori(i+1), Fgi(i)

) ;

end generate slicen;

sllceflnal: If(l =M) generate

8lfin : Slice

generic map (

M.S ,8Iice_id ->i. tdelay => tdelay

)

port map (

BA1(i), SSBi(l) ,eSBi(i), eSSi(i). SASi(i),

265

266

iii Signals * Vak!es - ~-- ------- ------- ---

1lI ~ b:aIJ&edJEr :a lb:atD1 :re~_base n 11.
1lI ~ b:aIJ&edJEr :alb:atD1 :reqJre(alb:_size I==========~=========

LJLJLSlSl_JLI1_I"LJLSl.J' ~

Figure B.l : Simulation waveforms for allocation four registers per thread (Register
file size is 64-registers).

SSSi(i), SASIi(i), SAi(i), Errori(i),Fgo(i),

Fgo(i-l), Doallocate , Dorelease,init(i),

BAi(i),Allocate_Base,CSBi(i) ,CSSi(i),SASi(i),

Slice_Size, Space_Available, Input_Error, Fgi(i)

) ;

end generate slicefinal; end generate U3; end Allocation_Behav;

B.3 Simulation Results

In this section, a different simulation result for the allocation scheme with different allocation

scenarios are presented (see figures B.l to B.5).

267

. . 5ignak * values
Izz I!I ~ bcal_scteiJler :albcatbl :reqJrecta1oc_slze 04

" rul_scteiJler :alocatbl :doalocale IW LJ L..J LJ LJ LJ LJ L..J LJ L..J L..J 1
~ bcal_scteiJler:albcatbl:doreiease

I!I ~ ruLscteiJler :albcatbl:albcale_base 00 04 00 1 14 19 Ie 2(24 2e -X
I!I " rul_scteiJler:alocatbl:slte_slZ8 qU ~ ~ 3'\ 3: 28 2~ 2{ 18
8 ~ bcaLscteiJler:alocatbl :ssbl (00,00,00,(, 111l,O .. H{J , I[lIlIl. .. 1m 1100, 1100" 'fin' .. 'frr In.. 11m .. 1

IB " (0)
1B " (I) (l)

IB ~ (2)
1B " (3)
IB " (4)
1B ~ (5)

1B " (6)
1B " (7)
1!I " (8)
1B " (9)
1B ,, (lD)
1B " (1l)
1B " (I2)
1B " (13)
IB " (14)
1B ' (IS)
1!I ,, (16)

I I!I " (17)
1B , (18)
1ll " (19)
Ill " (20)
1B ' (21)
1B ' (22)
1ll ' (23) 1
1B " (24) '-I *ciiS

Figure B.2: Simulation waveforms showing slice parameters values, four registers per
thread (waveforms sample one).

268

1B ~ (36) 00 04 (Ij (): 10 I~ 18 I lC I L'O I 23
8 ~ (37) III H 1 Ie ?O ,~

Iil ~ (ll) (Ij I 4 I Ie 20 iii
1B ~ (39) lC 2(

1ll ~ (40) 4 I Ie 2(

1B ~ (41) 4 e
1B ~ (42) 4 1 e
1ll ~ (43) 4 e
1B ~ (44) I Ie
1ll ~ (45) 11 lC

1il ~ (46) 14 e
1B ~ (47) 14 1 Ie 28

1B ~ (48) I e

1il ~ (49) I e

IB ~ (SO) 4 e
IB ~ (SI) I 4 1 e

IB ~ (52) Ie

1B ~ (S3) e

1B ~ (S4) 1 1 Ie

1B ~ (S5) 4 1 e
IB ~ (S6) e

1ll ~ ('57) 4 1 e

1B ~ (58) e
IB ~ (59) I e 4
1B ~ (60) I 14 18 Ie
1B ~ (61) ~ Ie

1il ~ (62) 14 Ie
1B ~ (63) I 14 I

IB ~ kral schedJla- :alkratb:l:csbl ~"~i_ J.D IOO .
Iil ~ kral=schedJla- :albcatb:l:cssl (00,00,00,('[M

III ~ kral_schedJla- :alkratb:l:sasl (00,00,00,(lllI . m
IB ~ kraUichedJler :alkratUl :sssl (tll,OI,[.. 1 0. . 1 .. 1 . 1 I,D. 1 1.0 l (tw. ~ l.O

Figure B.3: Simulation waveforms showing slice parameters valu s, four registers per
thread (waveforms sample two) .

• Signals

llI ' rees_base
llI ' req.Ji'atsize

' OOilIb:ate
' O:reease

llI ' alb:ate_bas
III , avaiklle_size

' spa:eJu.rd '1

• Signals t vUs
llI ' rekls_base OC

llI ' req.Jretsize zz
' OOilIb:ate '0
' O:release '0

llI ' alb:ate)as OC
llI , avaiklle_size 2(

, spa:e}u.rd '1

269

Wavefonns sample one

Wavefonns sample two

Figure B.4: Simulation waveforms for allocation and de-allocating different slice sizes
per thread (Register file size is 32-registers).

270

• SIgnals * YaIuoj I
III ~ alkxatb'urchi1ectre :release_base II 09 II

III ~ alkJeatiJUlLhi1ecl.re :req.Jrectalb::_ 03 as 07 n:r zz nn
~ alb:aoon_irchltBctre :cbalkxate IL-f Lt-J L-.l L-..,~
~ alb:aoon irchltBctre :cireieasa I I

Ill ' alb:atD1=irchitecu-e :alb:ate_base 4 lb 1e
III ~ allocatD1_irchitecu-e :available_s iza 14 1.. 1 Oc ffi n, m- l'i\
8 ~ alb:aoon_irel1ltBctre :ssbl " m 00.0102 (n: .
8 ~ (0) 00
1B ' (1) II

IB ' (2)
8 ~ (3)
1B ' (4)

I 8 " (5)
1B ' (6) -. (Xi 00 - 07 ri'f

IB " (9) CS [if

IB " (10) 09 [if

11I ~ (11) Oa
1B ' (12) !IJ

1B ' (13) Dc
1B " (14) ad

8 ' (15) 00

1ll ~ (16) -or
1B ' (17) 1C
111 " (18) Dc 11
1B ' (19) 1l
IB ' (20) 13

IB ' (21) 14

111 " «2) ~ B
IB ' (23) ~ 6
al a n dl ,.

Figure B.5: Simulation waveforms showing slice parameters values, different register
sizes per thread.

Appendix C

Asynchronous Arbiter Source

Code and its Simulation Results

This appendix provides a description for the arbiter design methodology. It also presents

a VHDL architecture behaviour and test bench for the arbiter and provides a sample of

simulation results with different scenarios. The full VHDL source code for our arbiter's on

the DVD included with this thesis.

C.l Arbiter Design Methodology

This section continues section 6.4.4 from chapter 6. It describes the arbiter permeative

flow table, reduced table with merging rows and a function minimisation. There are eight

states, however an asynchronous version of this machine can be minimized. Two states reset

and grant priority (SI and S2 in the tables below) can be merged, where the elimination

of redundant stable states allows us to draw a simplified and minimized state machine.

Tables C.1 to C.4 show the arbiter permeative table. It also shows the state reduction and

the state minimisation. The minimisation functions can be described as follows:

271

~
t-
~

........
Q.)

§
"'0 .:::

~
ffi -§

1
Q.)

~
~
"0

~
Q.)

A
~
+"

~
~
5
P. ...
Q.)

~
.....
0

Q.)

A
~

PreHnI Slale

81
82
S3
54
85
sa
87
88

Outpgl
0ut!U2
0utpuI3
0UIpuI4
OutputS
0utput8
0utpul7
Output8

PrMW1I State

81
82
S3
S4
SS
sa
87
S8

Outpull
0uIpu\2
0utput3
0utput4
0utpuI5
OUtputS
0utpuI7
0utput8

o 1 2 , .. 5 • 7 • II 10 11 12 13 14 15
OOOOOOQ 0000001 0000010 0000011 0000100 0000101 0000110 0000111 0001000 0001001 0001010 0001011 0001100 0001101 0001110 0001111
~ 87 ___________ _"___ ______________ _
~ ___ ~ _S3 ___________ 83 _S3 ______ _

--- ----~ --- ---- ---- --- ---- ---- ---- ---- ---- ---- ---- ---- ----
----------~--------83 ___ 83 _83 _______ ~. ______________ _

---(£:) --- --- --- - - - sa-- --- sa- ---sa---- --- ---
==--============~ ==-==--====== 0000 0000 _______________________________ _
0000 ___ 1000 _ 0100 _____________ 1000 0100 _______ _
_________ 1000 __________________________________ _

iiiiiil==1iiiI==~======00;0-============== == 00i) == == == == == == 00;0-== 00;0- ---~ == == == ________________________ 0010

18 17 18 111 20 21 22 23 24 25 28 27 28 211 30 31
0010000 0010001 0010010 0010011 0010100 0010101 0010110 0010111 0011000 0011001 0011010 0011011 0011100 0011101 0011110 0011111

~----------------------~ _ 83 ___ 83 _______________ S3 _ S3 ________ _

sa-== sa-== sa-== sa-== sa- --- sa-== sa-== == ==
==== 1iiiI.==~ ========== 1iiiI== ~ ======
00;0-- == ~ == ~ == ~ ---~ === oow- --- 00ii) == == == -------------------------------

Inputs are a function of Aln Gin Rhl RII 0 8 I
outputs are a funcUon of Rho RID Gout Wout

C":I
to-
~

,-...

] Pr...tSlale .. S1

i S2
S3
84

5i SS
'-" sa

§ S7
sa .-

:1
0utpIa1
()utpIa2
0uIpI0

's 0utput4
0utpuI5

Q) OutputS

~ 0uIput7

~
0utput8

"'Cl

~
Q) ~StaIe

:Q
~ S1 .. 82
~ 83
l 84

85

~
88
S7

0.. S8
....
Q) 0utput1
;t;

~
0utput2
0utpuI3
Output4

e'1
0utput5
Outputs

cj 0uIpuI7

.$ OutputS

~
~

~ ~ M ~ ~ ~ ~ ~ ~ ~ Q ~ ~ ~ ~ q
0100000 0100001 0100010 0100011 0100100 0100101 0100110 0100111 0101000 0101001 0101010 0101011 0101100 0101101 0101110 0101111

================sa-==:s:a--==se--======= ____ sa sa _______________ sa ___ sa ______ _

~==~==~====================== ------~ ------ --- - --- ------ --- --------- ---- ----______________________ sa ___ sa sa ____ _
82 82 _ 82 ______________________ ---

================Oiiio-==ii01iJ===iii1O====== ______ 0001 0001 _____________ ooot ___ 0001 ______ _

~===~===~======================= ______ 0001 ________________________________ ---
_________________________ 0010 ___ 0010 ___ 0010 _________ _
0000 ___ 0000 _ 0000 ____________________________ - __

~ ~ ~ ~ ~ S3 M ~ ~ ~ ~ ~ ~ M ~ ~
0110000 0110001 0110010 0110011 0110100 01'0101 0110110 0110111 0111000 0111001 0111010 0111011 0111100 0111101 0111110 0111111

sa-== sa---sa-== == == sa-== sa- - sa-== == == 54 ___ S6 ___ 54 _____ s.4 _ sa s.4 ________ _
- _______ GU _____________________ _

sa-== sa-- ---sa-== == == sa-- == se- ---aa- ------ ---

00;0- ---~ ~"iiii'1o-== == == ~ == "iiii'1o- --- "iiii'1o-== === == 1000 ___ 0001 ___ 1000 _________ 1000 ___ 0001 1000 ________ _
____________ 1000

0010- ---~ === ooro- == == === ~ === ~ == ~ == === == ------- ------ -------------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- -------
Inputs are the function of Aln Gin Rhl RII 0 B I
Output. are a function of Rho Rio Gout Wout

~
to-
N

,-..

i
"0
,.s::;

~
!il
= 0 .-
:1
's

CD

~
"til
"'0
~
CD

::cs ce
~

i
5
Po

t
~
M
d

CD
::cs
~

~5tat.

51
52
S3
S4
85
sa
57
SO

OuIJdl
0utput2
0UIput3

0uIJd4
0uIpuI5
0utput8
0uIJd7
OutputS

f'ra«II Stat.

51
52
53
S4
&5
88
87
88

Outputl
0utput2
0utput3
()uIpW4
OutputS
0uIpI46
0utput7
OutputS

~ ~ MUM 5 ~ n n n ~ ~ n n n N
1000000 1000001 1000010 1000011 1000100 1000101 1000110 1000111 1001000 1001001 1001010 1001011 1001100 1001101 1001110 1001111 ------- ------- ------ ------- -------------- ------- ------- ------- ------- ------- ------- ------------- ------- -------__________ S3 ___ &3 _______________ S3 ___ S3 ________ _

ss- --- ss- --- ss--- === == === ss- --- ss--- --- ss---== == == 53 S3 &3 ______________________________ _
87 87 ___ S7 __________ &7 87 S7 ________ _
________________________ &8 &8 sa ________ _
82 82 ___ 82 __________________________________ _

------- ------- ------ ------- ------- ------- -------------- ------ ------- ------- ------- ------- ------- ------- -------__________ 1000 ___ 0100 ________________ 1000 ___ 0100 __________ _

~==~==~=======~==~==~======= 0000 ___ 1000 ___ 0100 ______________________________ " __ _
0000 ___ 0000 ___ 0000 _______ 0000 ___ 0000 _ 0000 _________ _
-----'- ___________________ 0010 ___ " 0010 ___ 0010 ________ _
0000 0000 _ 0000 ______________________________ _

M ~ U ~ U "~ M U • ~ W ~ ~ ~ ~ ~

1010000 1010001 1010010 1010011 1010100 1010101 1010110 1010111 1011000 1011001 1011010 1011011 1011100 1011101 1011110 1011111

====s;-===~===========~==~=======
sr- === ~ --, -sr-=== === === ~ ---~ === ~ == == == sa ___ &8 sa _________ S8 sa ___ sa ________ _

=====~==~============~==~=======

~==-~---~======~==~---~====== 0010 ___ 0010 ___ 0010 _________ 0010 ___ 0010 ___ 0010 ________ _

------- ------- ------- - ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- ------- -------
Inputs ara the function of Aln Gin Rhl Rli 0 B I
outputs Bra B function of Rho Rio Gout Wout

It:l
t--c-;a -!3

oS
]
~
~

"-'

= 0

1
's

Q)

1ii
~
"'C:l

~
Q)

:cl
~
~

~
i
~
~

'"' .s

~
~
0

Q)

;:Q

~

Pr...tsw.

81
82
83
s.-
85
S6
87
sa

OuIJdl
0utpuI2
~
0uIJd4
0uIpuI5
0uIptd
~7
Outpull!

Pr...tSbite

SI
82
83
84
85
86
S7
S8

OuIJdl
0utpuI2
0utpul3
0uIpuI4
OutputS
0uIput8
0utpuI7
Outpull!

118 87 118 l1li 100 101 102 103 104 105 108 107 108 108 110 11 I
1100000 1100001 1100010 1100011 1100100 1100101 1100110 1100111 1101000 1101001 1101010 1101011 1101100 1101101 1101110 1101111

------- ------- -------- ------- -------------- ------- ------- ------- ------- ------- ------- ------- ------- -------_____________________________ ~------- _______ sa _______ sa _______ sa ____________________ _

ss--==ss-==~======ss-==ss---==~======= S3 S3 83
87 == 87 --- 87 ------ - ~ --- s,-- ---~ ------ ---_________ == ___ == == == sa == sa == sa == == == 82 ___ 82 ___ 82 _________________________________ _

================ooro-==Oiiii)==~======
iii1ii""""""==ooro-==~=======ooro-==Oiiii)==~======= 0000 ___ 1000 ___ 0100 __________________________________ _
0000 _ 0000 ___ 0000 _______ 0000 ___ 0000 ___ 0000 ____ _
______________________ 0010 ___ 0010 ___ 0010 _____________ _
0000 ___ 0000 ___ 0000 _____________________________ _

112 113 114 115 118 117 1111 119 120 121 122 123 124 125 1211 127
1110000 1110001 1110010 1110011 1110100 1110101 1110110 1110111 1111000 1111001 1111010 1111011 1111100 1111101 1111110 1111111

sa-==sa---==sa-======sa-==sa-==sa-====== 54 _______ 84 _______ 84 _______ 54 ___________ _

------- ------ - ------- -------- ------- - ------- ------- ------- ------- --- ------- -------- -------
~==~==~~=====~==~==~====== sa ___ sa ___ 811 _______ sa ___ sa ___ sa ________ _

------- ------- - - - - ------- - ------ ---- ----- ------- ------- ------- -------- ------
~==~==~======oo;o--==oo;o--==oo;o--====== 1000 _______ 1000 _______ 1000 _________ 1000 _____________ _

~ == ~ --- iiiiiiI == == == ~ ---~ == wx;- == == == 0010 ___ 0010 ___ 0010 ______________ 0010 ___ 0010 ___ 0010 ________ _

Inputs are the functIon of Ain Gin Rhl Rli 0 B I
Outputs are a functIon of Rho Rio Gout Wout

RHO = Rho RIo Wout i B D RIi Rhi Gin +

Rho RIo Gout Wout i 13 D Rhi Gin +

Rho Rio Gout Wout f 13 D Rhi Gin +

Rho RIo Gout Wout i B D Rli Gin Ain +

Rho RIo Gout Wout f B D Rli Rhi Gin +

Rho RIo Gout Wout f B D Rli Rhi Gin +

Rho RIo Gout Wout f B D Rli Rhi Gin +

Rho RIo Gout Wout i 13 D Rli Rhi Gin Ain +

Rho RIo Gout Wout i B D Rli Rhi Gin Ain.

RLO = Rho RIo Wout i 13 D Rli Rhi Gin +
Rho RIo Gout Wout f B D Rli Rhi Gin +

Rho RIo Gout Wout f 13 D RIi Rhi Gin +

Rho RIo Gout Wout f B D Rli Rhi Gin +

Rho IDo Gout \Vout f B D Rli Rhi Gin.

Gout = Rho RIo Gout Wout f Rli Rhi Gin Ain +

RIo Gout Wout f D Rli Rhi Gin Ain +

Rho RIo Gout Wout f D Rhi Gin Ain +

Rho Gout Wout i D Rli Rhi Gin +
RIo Gout Wout f D Rli Rhi Gin +
Rho RIo Wout i 13 D RIi Rhi Gin Ain +

Rho RIo Gout Wout i B D Rli Gin Ain +
Rho RIo Gout Wout f 13 D Rli Gin +
Rho RIo Gout Wout f D Rli Rhi Ain +

Rho RIo Gout Wout f 13 D Rhi Gin Ain +

Rho Gout Wout f 13 D Rli Rhi Gin Ain +

RIo Gout Wout f 13 D Rli Rhi Gin +

276

Rho RIo Gout Wout i :6 Rli Rhi Gin +

Rho Rio Gout Wout i :6 Rli Rhi Gin +

Rho RIo Gout Wout i :6 RIi Rhi Gin Ain +

RIo Gout Wout i B D Rli Rhi Gin Ain +

Rho RIo Gout Wout f B D Rli Rhi Gin +
Rho RIo Gout Wout f 13 D Rli Rhi Gin +

RhoRlo Gout Wout f 13 :6 Rli Rhi Gin Ain +

RhoRIo Gout Wout f 13 D Rli Rhi Gin Ain +

Rho RIo Gout Wout i 13 D Rli Rhi Gin Ain +

Rho RIo Gout Wout i 13 D Rli Rhi Gin Ain.

Wout = Rho RIo Gout Wout f B D Rli Rhi Gin Ain +

Rho RIo Gout Wout i B :6 Rhi Gin Ain +
Rho RIo Gout Wout i 13 D Rhi Gin Ain +

Rho RIo Gout Wout i B :6 Rli Rhi Gin Ain.

C.2 Arbiter Architecture Behaviour

277

The following code describes the architecture behaviour of the arbiter. The arbiter includes

other components such as the processor and clock generator and these component available

on the DVD attached to this thesis.

Use std.textio.all; Library IEEE; Use IEEE.std_Iogic_1164.all; Use

IEEE. std_logic_unsigned. all; Use IEEE. std_loglc_arith. all; Use

ieee.vital_primitives.all; Entity nand_Block is generic(Delay

Time

) ;

port (

Rh.Rl.G,I,D,B,Ack,nRh,nRl,nGin,nI,nO,nB,nAck:in std_logic;

TWout,TRH,TRL,TGout : inout std_logic:='O'

) ;

end nand_Block; Architecture behv of nand_Block is signal

SOl,602,603,604,611,612,613,s14,s15,816,817,s18,s19,

621,622,623,624,s25,831,832.833,834,835,836,637,838,

839,8310,8311,8312,8313,8314,6315,8316,8317,s318,

6319,s320,8321,6322 8td_logic:='O';

6ignal PWout,PRH,PRL,PGout std_logic:='O';

8ignal nPWout,nPRH,nPRL,nPGout

Begin

601 <= note

nPRH and nPRL and nPGout and PWout and nRh and nRl and

nI and B and no and G

) ;

802 <= note

PRH and nPRL and nPGout and nPWout and nRh and nI and B

and no and G and nAck

) ;

803 <= note

nPRH and PRL and nPGout and nPWout and nRh and nI and

nB and G and D

) ;

604 (= note

PRH and nPRL and nPGout and nPWout and Rh and nRl and

278

nD and nI and G and B

) ;

TIlout <=not(

sOl and s02 and s03 and s04

) ;

s11 <= note

nPRH and nPRL and nPWout and nRh and nRl and nGin and

nI and nD and B

) ;

s12 <= note

nPRH and nPRL and nPGout and nPWout and Rh and G and

nI and nO and nB

) ;

s13 <= note

nPRH and PRL and nPGout and nPWout and Rh and nGin and

nI and D and nB

) ;

s14 <= note

nPRH and nPRL and nPGout and nPWout and nRl and nGin and

nI and nO and B and nAck

) ;

s15 <= note

nPRH and PRL and nPGout and nPWout and nRh and Rl and

nGin and nI and nD and B

) ;

s16 <= note

279

PRH and PRL and nPGout and nPWout and Rh and Rl and

nGin and nI and nD and B

) ;

517 <= note

nPRH and nPRL and PGout and nPWout and nRh and

nRl and G and nI and nD and B

) ;

518 <= note

PRH and nPRL and nPGout and nPWout and Rh and

nRl and G and nI and D and nB and nAck

) ;

519 <= note

PRH and nPRL and nPGout and nPWout and Rh and

nRl and nGin and nI and nD and B and Ack

) ;

TRH <= note

511 and s12 and 513 and 514 and s15 and s16 and s17

and 518 and s19

) ;

521 <:s note

nPRH and nPRL and nPWout and nRh and nRl and

nGin and nI and D and nB

) ;

622 <= note

nPRH and nPRL and PGout and nPWout and nRh and

280

nRl and G and nI and D and nB

) ;

523 <= note

PRH and PRL and nPGout and nPWout and Rh and

Rl and nGin and nI and D and nB

) ;

524 <= note

nPRH and PRL and nPGout and nPWout and nRh and

Rl and nGin and nI and D and nB

) ;

825 <= note

TRL <= not (

PRH and nPRL and nPGout and nPWout and Rh and

nRl and nGin and nI and D and nB);

821 and 522 and 823 and 824 and 525

) ;

831 <= note

nPRH and nPRL and nPGout and nPWout and

Rh and nRl and nGin and nI and nD and nB

) :

532 <- note

nPRL and nPGout and nPWout and nRh and Rl

and nGin and nI and nD and Ack

) ;

533 <= not (nPRH and nPRL and nPGout and nPWout and

Rh and Rl and nGin and nI and nD and Ack

281

) ;

534 <= not (nPRH and nPGout and nPWout and nRh and Rl

and G and nI and nD and Ack

) ;

535 <= note

nPRL and nPGout and nPWout and Rh and nRl

and G and nI and nD and nAck

) ;

536 <= note

nPRH and nPRL and nPWout and nRh and Rl

and nGin and nI and nD and nB and nAck

) ;

s37 <= note

nPRH and nPRL and nPGout and nPWout and

Rl and nGin and nI and nD and B and nAck

) ;

s38 <= note

nPRH and nPRL and nPGout and nPWout and

Rh and Rl and nGin and nI and D and nB

) ;

s39 <= note

PRH and nPRL and nPGout and nPWout and nRh

and nRl and G and nI and nD and Ack

) ;

s310 <= note

PRH and nPRL and nPGout and nPWout and nRh

282

and nGin and nI and D and nB and Ack

) ;

8311 <= note

nPRH and nPGout and nPWout and nRh and

Rl and G and nI and D and nB and nAck

) ;

8312 <= note

nPRL and nPGout and nPWout and Rh and

nRl and G and nI and D and nB

) ;

8313 <= note

nPRH and nPRL and nPGout and nPWout and

Rh and Rl and G and nI and nO

) ;

8314 <= note

PRH and PRL and nPGout and nPWout and

Rh and Rl and G and nI and nO

) ;

8315 <= note

PRH and nPRL and nPGout and nPWout and

nRh and Rl and G and nI and nO and Ack

) ;

8316 <= note

PRL and nPGout and nPWout and nRh and

Rl and G and nI and D and Ack

) ;

283

8317 <= note

PRH and PRL and nPGout and nPWout and

Rh and Rl and G and nI and D and nB

) j

8318 <= note

nPRH and nPRL and nPGout and nPWout and

Rh and Rl and G and nI and D and nB

) ;

8319 <= note

nPRH and nPRL and nPGout and nPWout and Rh

and Rl and nGin and nI and nO and nB and nAck

) j

8320 <= note

nPRH and nPRL and nPGout and nPWout and Rh and

nRl and nGin and nI and D and nB and Ack

) j

8321 <= note

PRH and nPRL and nPGout and nPWout and nRh and

nRl and G and nI and D and nB and Ack

) ;

8322 <= note

nPRH and PRL and nPGout and nPWout and nRh and

Rl and G and nI and D and nB and Ack

) ;

TGout <= note

831 and 832 and 833 and 634 and 635 and 636

284

and s37 and s38 and s39 and s310 and s311 and

s312 and s313 and s314 and s315 and s316 and

s317 and 5318 and 5319 and s320 and

s321 and s322

) ;

Present_State: process (TWout.TRH.TRL.TGout) Begin

PWout <= TWout:

PRH <= TRH;

PRL <= TRL:

PGout <= TGout:

nPWout <= not (TWout):

nPRH <= not (TRH);

nPRL <= not (TRL);

nPGout <= not (TGout);

end process; end behv;

C.3 The Asynchronous Arbiter Test Bench

The following code describes the arbiter test bench.

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

LIBRARY work;

USE work.std_components.ALL:

Enti ty test is

end test;

Architecture a of test is

285

constant N :integer:=15;

constant M :integer:=15;

type period_vector is array (natural range <» OF time;

constant pr: period_vector(O to N) :=(4 ns,2 ns,6 ns,3 ns,S ns,7 ns,

1 ns, 4 ns,5 ns,6 ns,l ns,

9 ns,2 ns,7 ns,9 ns,3 ns

) ;

constant cpw period_vector(O to N) :=(2 ns, 1 nS,3 ns, 5 ns,4 ns,

3 ns,5 ns, 6 ns,S ns, 9 ns,

signal t_clk

signal Wout

signal reql

signal reqh

signal grant

signal Acq

signal addr

constant cps

constant processor_id

constant transfer_size

constant w

constant Tdelay

constant ZeroWord

signal WRREQ

signal Ack

2 ns, 6 ns,2 ns,5 ns,6 ns,7 ns

) ;

std_logic :='0';

std_logic_vector(N downto 0);

std_logic_vector(N downto 0);

std_logic_vector(N downto 0);

std_logic_vector(N downto 0);

std_loglc_vector(N downto 0);

std_loglc_vector (15 downto 0);

time := 30 ns;

natural:-15;

lnteger:=2;

integer:=15;

time:=4 ns;

std_loglc_vector(N downto 0);

std_logic : -' 0' ;

std_loglc;

286

signal rst

signal phi1,reset

signal d

signal Brk

signal init

signal cmp

signal add_st

signal Acklocal

signal chip_select

signal RDWR

signal Mem_Add

signal Mem_DAT

signal Mem_clk

Begin

add_st

reql

reqh

grant

Acq

rst

Ack

addr

Mem_DAT

std_logic;

std_logic_vector(N downto 0):

std_logic_vector(N downto 0);

std_logic_vector(N downto 0);

std_logic_vector(N downto 0);

std_logic_vector(N downto 0);

std_logic_vector(N downto 0) :

std_logic_vector(N downto 0);

:std_log1c;

:std_logic:

:std_logic_vector (15 downto 0):

:std_logic_vector (15 downto 0):

:std_logic;

<= (others -> ' Z') ;

<= (others -> ' Z')

<= (others -> 'Z')

<= (others => 'Z') ;

<= (others -> ' Z') ;

<='0' :

<=' Z' ;

<= (others ->'Z');

<= "ZZZZZZZZZZZZZZZZ";

microproc: for i in 0 to N generate

procO: if i =0 generate cpuO :CPU

generic map(

287

w,Transfer_size,Processor_id=>i ,N=>N,Tdelay=>Tdelay

)

port map (

phil(i),rst,d(i),Brk(i),init(i),wout(i),add_st(i),

addr,Acklocal(i), Acq(N),WRREQ

) ;

end generate procO;

procn: if (i>O) generate cpul CPU

generic map(

)

port map (

w,Transfer_size,Processor_id=>i ,N=>N,Tdelay->Tdelay

phil(i) ,rst,d(i) ,Brk(i) ,init(i) ,wout(i) ,add_st(i) ,

addr,Acklocal(i),Acq(i-l), WRREQ

) ;

end generate procn;

end generate microproc;

cg: for i in 0 to N generate

CO: if i = 0 generate clkO: clock_gen

generic map(

period =>pr(i), Tpw =>cpw(i) , Tps ->cps

)

port map (

phil(i), reset(i)

) ;

end generate CO; en: if (I >0) generate

288

clkn: clock_gen

generic map(

period => pr(i), Tpw => cpw(i),

Tps => cps

)

port map (phil(i), reset(i)

) j

end generate Cn;

end generate cgj

Al:for i in 0 to N generate

PO: if i = 0 generate processorO:Arbiter

generic map(

)

port map (

w, transfer_size =>8, processor_id =>i,

N=>N, Tdelay => Tdelay

d(i),Brk(i),init(i),reqh(i),reql(i),

grant(N), Wout(i),reqh(N),reql(N),

grant(i).Acq(N).Acq(l).WRREQ,Acklocal(l)

) ;

end generate PO

Pn: if (I > 0) generate

processorn: Arbiter

generic map(

w. transfer_size => B.processor_id ->i.

N=>N,Tdelay=>Tdelay

289

)

port map (

d(i).Brk(i).init(i).reqh(i).reql(i).

grant(i-l).Wout(i).reqh(i-l).reql(i-l).

grant(i).Acq(i-l).Acq(i).WRREQ.Acklocal(i)

) ;

end generate Pn;

end generate Al;

process (Add_st)

Begin

if (Add_st = ZeroWord) then

WRREQ <= '0'

else

WRREQ <= '1' after tdelay

end if;

end process;

end a;

C.4 Simulation Results

290

In this section, simulation results for different sizes of arbiter and different demands

and brks scenarios are given. Figures C.1 to C.3 show a sample of results from

simulating 8 arbiter modules. In this sample the following conditions apply: module

o has initially reserved the token, module 4 receives a high input on the Brk signal

line and modules 1, 2, 5, 6, 7 all have high input demand request lines. As illustrated,

the request signal RLl reaches the token before RH4 , which means that broadcast

291

bus access is given first to processor 1 (Wout is asserted). When processor 1 releases

the token, the grant signals are propagated back to give processor 4 permission to

use the broadcast bus before other low priority processors. The rest of the demand

requests are granted in sequence order based on position in the ring configuration.

Figures C.4 to C.7 show a sample of results from simulating 16 arbiter modules.

In this example the following conditions apply: module 0 has initially reserved the

token, module 15 receives a high input on the Brk signal line and the other modules

have high input demand request lines. As illustrated, the request signal RLI and

RL2 reaches the token before RH15, which means that broadcast bus access is given

first to processor 1 then to processor 2 (Wout is asserted). When processor 2 releases

the token, the grant signals are propagated back to give processor 15 permission to

use the broadcast bus before other low priority processors. The rest of the demand

requests are granted in sequence order based on position in the ring configuration.

292

8 ~wat 00

~ (7) ~

~ (6) ~

~ (S) '0'
~ (4) ~

4(3) ~

~ (2) ~

, (1) ~

~ (O) ~

[!I ~ r~ 00

8 ~ re4l 00

~ (7) ~

~ (6) '~

~ (5) ~

~ (1) ~

, (3) ~

, (2) ~

4(1)

•
8~ l1ri 00

~(7) ~

~ (6) ~

4(5) ~

, (4) ~

, (3) '0'
~ (2) ~
, (1) ~

, (0) ~

[!Ihq 00
[!I , lfjl 00
[!I , d xx
[!I , 1r\: xx

[!IUl 01
r;u ..,M...,.J ~

Figure C.l: Simulation waveforms showing arbiter signals, 8 arbiter modules (wave­
forms sample one).

293

~ (O) '0'
!!l ~ r~ III

B~ r~ III
~ (7) '0'
t (6) '0'

~ (S) 'Ir
~ (4) '0'
~ (3) '0'
' (2) '0'
t (l) '0'

' (0) '0'
B' q-n III

, (7) '0'
' (6) '0'
~ (5) '0'
' (4) '0'
4(3) '0'
4(2) '0'
4(1) '0'
4(0) '0'

!!l t~ III

.:,aM
~ (7) '1'
, (6) '0'
4(5) '1'
, (4) '1'
' (3) '0'
, (2) 'I'
' (1) '0'
, (0) '1'

ffi , d III

ffi , trk III
fil 4it 01

Figure C.2: Simulation waveforms showing arbiter signals, 8 arbiter modules (wave­
forms sample two) .

294

~ (5) '1'
~ (4) '1'

~ (3) '0'
~ (2) '1'
~ (1) '0'
~ (O) '1'

B~ d 00
~ (7) '0'
~ (6) '0'
~ (5) '0'
~ (1) '0'
~ (3) '0'
~ (2) '0'
~ (1) '0'
, (0) '0'

B~ trk 00
~ (7) '0'
, (6) '0'
, (5) 'rJ
~ (1) 'rJ
~ (3) '0'
, (2) '0'
~ (1) 'rJ
~ (O) '0'

B' it 01
~ (7) '0'
~ (6) '0'
4(5) 'rJ
, (4) 'rJ
4(3) 'rJ
~ (2) 'r1
4(1) '0'
4(0) '1'

1iI ' .rt.W~ n.

Figure C.3: Simulation waveforms showing arbiter signals, 8 arbiter modules (wave­
forms sample three).

I S"~
84wrut

4 (1~
4(14)
4(13)
4(12)
4(11)
4(10)
4 (9)
4 (8)
4U)
4(6)
~ ~)
4(4)

- (3)
4(2)
4(1)
~ ~)

1ll 4 r~1
84req,

4 (15)
4(14)
4(13)
4 (12)
~ (11)
4(10)
4(9)
~ (8)

40)
4(6)
~ ~)
~ (4)
~ (3)
4 h\

295

* Values
OOOC J~ __ -=~ __ ~~~~~~~~~~~~~~~~
n 11-----------'

n l~------------------------------------~--nt--________________________________ ~~
n l~----------------------------_=~
n ~------------------------~~ ~ ______ _ nr-______________________ ~~ ~ _____ _
nt--__________________ ~=_ ~ ______ _

n ,~ ________________ ~~
n"- ~-----------------

n t-- ______ ~
n ~----------------------

n l~------------~~--------------------------

Figure C.4: Simulation waveforms showing arbiter signals, 16 arbiter modules (wave­
forms sample one) .

296

_ -'2" '-
' \~I u

~ ~) ~

~ Q) ~

~ (6) ~
~ ~) ~

~ (4) ~

~ ~) ~

~ ~) 0
~ (1) ~
~ ~) ~

8~1}'cJl! (ll{

~ (1~ ~

~ (14)

~ I ~ (13)
~ (12) ~

I

~ (1l) ~

~ (1O) 0
~ ~) ~

~ ~) 0
~ Q) ~

~ (6) ~

~ ~) ~

~ (4) ~

~ ~) ~

~ ~) ~

~ (1) ti
~ ~) ~

l!l ~~ (ll{

lll ~ rnil (ll{

lll ~ d XXX)

8~hl XXX)

Figure C.5: Simulation waveforms showing arbit r signals, 16 arbiter modules (wave­
forms sample two).

8 ~ lJ'ant

' (15)
' (14)
~ (13)

~ (12)

' (11)
' (10)
~ (9)
, (B)
' (7)
~ (6)

' (5)
, (4)
' (3)
~ (2)
, (1)
, (0)

Iil ' CUl
8 ~~i1

, (15)
' (14)
, (13)
~ (12)
, (11)
' (10)
, (9)
, (B)
' (7)
' (6)
, (5)
, (4)
~ (3)
H)\

297

Figure C.6: Simulation waveforms showing arbiter signals, 16 arbiter modules (wave­
forms sample three) .

298

,-
B ~ d xm . X 7tf8 X X.. rJ. X7. X7m X 7aIl X 7cm X 7!ID X 7!Ill X (ffi) X

~ (15) \Jf-,

~ (14) \J f-J

~ (13) \J f-J

~ (12) \J I-' ~
~ (11) \J

~ (1O) \J I-' L

~ ~) \J

~ ~) \J
~ (7) \J l
~ (6) \J ,
~ (J) \J i I
~ (4) \J i

~ ~) \J I

4 ~) \J h
4(1) \I n
~ ~) \J

B ~trk xm . OCQJ l UlJ.J

4(15) \J r-'

~ (14) \Jh
4(13) \Jh

~ (12) \Jh

4(11) \Jh

4(10) \Jh
~ ~) \Jh

4(8) \J h
4(7) \J ~
4(6) \J

~ (S) \J
4(4) \J

4 ~) \J
4 ~) \J
&11\ I"

Figure 0.7: Simulation waveforms showing arbiter signals, 16 arbiter modul s (wav
forms sample four).

Appendix D

Local Scheduler and
Microthreaded Pipeline Source
Code and its Simulation Results

This appendix provides source code and a sample of simulation results with different

scenarios for the microthreaded local scheduler and its in-order pipeline that were

described in chapter 7.

D.l Local Scheduler Architecture Behaviour

The following code describes the architecture behaviour of the scheduler. The sched­

uler includes three main components: allocation scheme (allocate), thread-create and

control block (controller), and the CQ. The architecture behaviour of these compo­

nents are available on the DVD attached to this thesis.

Architecture Behaviour of
signal t_clk
signal Reles_Base
signal Required_Size
signal Doallocate
signal Dorelease
signal Allocate_Bas

Scheduler is
:std_logic :='0';
:std_logic_vector(S downto 0);
:std_logic_vector(S downto 0);
:std_logic;
:std_logic:
:std_logic_vector(S downto 0):

299

signal Available_size
signal Error_signal
signal Space_Found
signal Pointer
signal L_Base
signal D_Base
signal PC_Created
signal PC_Reschedule
signal F
signal producer
signal WR._Queue
Component Control is
generic (

port

w
M
S
Slice_id
tdelay

) ;
(

CLK
RSr
ReI_Base
Alloc_Size
allocate
release
Block_Base
Block_Size
Error_in
Available_Space
wrreq
Read_Mem
Create_Address
rCB_Address
rCB_data
PC_Creat
Loc_Base
Dp_Base
fIg
prod

:std_logic_vector(S downto 0);
:std_logic;
:std_logic;
:std_logic_vector(7 downto 0);
:std_logic_vector(7 downto 0);
:std_logic_vector(7 downto 0);
:std_logic_vector(31 downto 0);
:std_logic_vector(31 downto 0);
:std_Iogic;
:std_Iogic_vector(7 downto 0);
:std_Iogic;

integer : =31;
integer :=63;
integer :=7;
integer;
time := 4 ns

:in std_Iogic;
:in std_logic;
: out std_logic_vector(S
:inout std_logic_vectorCS
:inout std_logic: = J 0 J ;

: out std_logic;
:in std_logic_vectorCS
:in std_logic_vectorCS
:in std_logic;
:in std_logic;
:in std_logic;
: out std_logic;

downto
downto

downto
downto

0) ;
0);

0);
0);

:in std_logic_vectorC31 downto 0);
: out std_logic_vectorC31 downto 0);
:in std_logic_vectorC127 downto 0);
: out std_logic_vectorC31 downto 0):
: out std_logic_vectorC7 downto 0);
: out std_Iogic_vectorC7 downto 0);
: out std_Iogic;
: out std_Iogic_vector(7 downto 0) ;

300

Write_CQ
Next_famil
store_done

) ;
End component;
Component Allocate
generic C

w
M
S
Slice_id
tdelay

) ;
port C

CLK
RST

is

:inout std_logic;
: out std_logic;
:in std_logic

: integer : =31;
:integer :=63;
:integer :=7;
: integer;
:time := 4 ns

:in
:in

std_logic;
std_logic;

Release_Base :in std_logic_vectorCS downto 0);
std_logic_vectorCS downto 0);
std_logic;

Required_Alloc_Size:in
Doallocate :in
Dorelease
Allocate_Base
Slice_Size
Input_Error
Space_Available

) ;
End component;
Component CQ is
generic C

port

w
M
S
Slice_id
tdelay

) ;
(

CLK
RST
PC_Created
PC_Reschedule
Dep_Base

:in
:inout
: out
: out
: out

std_logic;
std_logic_vectorCS downto 0);
std_logic_vectorCS downto 0);
std_logic;
std_logic

integer : =31;
integer :=63;
integer :=7;
integer;
time := 4 ns

:in std_logic;
:in std_logic;
:in std_logic_vectorC31 downto 0);
:in std_logic_vector(31 downto 0);
:in std_logic_vector(7 downto 0);

301

Flag
produc
WR_CQ

:in
:in
:in

Context_switch :in
PC_pipeline : out
Local_Base_pipeline :out
Dep_Base_pipeline : out
Slot_Number_pipeline:out
Prefetch_PC : out
Pointer :in
Slot_Number_cache : out
Read_cache :out
Write_Pc : out
Acknow : in
done : out

) ;
End Component;
for Controller: Control
use entity work.Control(Behav);
for Allocation: Allocate

std_logic;
std_logic_vector(7 downto 0);
std_logic;
std_logic;
std_logic_vector(31 downto 0);
std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);
std_logic_vector(31 downto 0);
std_logic_vector(7 downto 0);
std_logic_vector(7 downto 0);
std_logic;
std_logic;
std_logic;
std_logic

use entity work.Allocate(Allocation_Behav);
for Continuation_Queue: CQ

use entity work.CQ(CQBehav);
Begin
Reles_Base <= (others
Allocate_Bas <=
Available_size <=
Prefetch_PC <=
Slot_Number_pip <=
Slot_Number_cache <=
PC_pipeline <=
L_Base_pip <=
D_Base_pip <=
producer <=

(others
(others
(others
(others
(others
(others
(others
(others
(others

F <='Z' ;
Controller: Control
generic map (

=>
=>
=>
=>
=>
=>
=>
=>
=>

=> 'Z');
, Z') ;
, Z') ;
, Z') ;
, Z') ;
J Z') ;
, Z') ;
, Z') ;
, Z') ;
J Z') ;

w,M,S ,Slice_id. tdelay
)

port map (

302

303

t_clk,RST,Reles_Base ,Required_Size ,Doallocate,Doreleas e,
Allocate_Bas ,Available_size ,Error_signal ,Space_Found,
WR_create, RD_Memory, Create_Address, TCB_Addr,TCB_Data,
PC_Created,L_Base, D_Base,F,producer,WR_Queue,Next_Family

) ;
Allocation: Allocate

generic map (

)

port map (

) ;

w,M,S ,Slice_id, tdelay

t_clk,RST,Reles_Base ,Required_Size ,Doallocate,Doreleas e,
Allocate_Bas ,Available_size ,Error_signal ,Space_Found

Continuation_Queue: CQ
generic map (

)

port map (

w,M,S, Slice_id,tdelay

CLK,RST,PC_Created ,PC_Reschedule,L_Base,D_Base,
F,producer,WR_Queue,Contxt_switch, PC_pipeline,
L_Base_pip,D_Base_pip,Slot_Number_pip,
Prefetch_PC ,Slot_Number_cache, RD_memory_prefetch,
WR_PC, Ack

) ;
end Behaviour;

D.2 Microthreaded Pipeline Architecture Behaviour

The following code describes the architecture behaviour of the microthreaded pipeline.

The architecture includes other components such as the multiplexer, predecode, in­

struction register, adder, decoding, and register file. The architecture behaviour of

these components are available on the DVD attached to this thesis.

Architecture Processor of CPU is
constant ZeroWord : std_logic_vector(31 downto 0);
type state is (Reset, Local, Wait_Bus,Bus_in_Use);
type state_pip is (Rset, Schedule, Fetch, Decode);

type ram_typ is array(O to 7) of STD_LOGIC_VECTOR(31 downto 0);
subtype word_64 is std_logic_vector(63 downto 0);
subtype word_32 is std_logic_vector(31 downto 0);
subtype word_5 is std_logic_vector(4 downto 0);
signal prstate, nxstate state_pip :=Rset
signal pstate, nstate state :=Reset
signal addr ram_typ;
signal clk_count integer := 0;
signal reset_count bit:= '0';
signal t_clk std_logic :='0';
signal zero_32 word_32 := (others=>'O');
signal zerol std_logic := '0';
signal zero2 std_logic := '0';
signal four_32 word_32 := x"00000004";
signal eight_32 word_32 := x"00000008";
signal Rst std_logic := '1';
signal clk2 std_logic := '1';
signal clk_bar std_logic := '0';
signal counter integer := 0;
signal ncl1,nc12 std_logic;
signal Create std_logic;
signal Context_Switch std_logic;
signal Kill_thread std_logic:
signal PC_next word_32:
signal PC_next_8 word_32:
signal New_Pc word_32:
signal PC word_32;
signal instruction_code word_64:
alias instl :std_logic_vector(31 downto 0)

alias inst2

signal ID_IRl
signal ID_IR2
signal ID_read_data_l
signal ID_read_data_2
signal ID_sign_ext
signal RegDst
signal ID_rd
alias 'ID_addr

is instruction_code (31 downto 0);
:std_logic_vector(63 downto 32)
is instruction_code (63 downto 32):
word_32;
word_32;
word_32:
word_32;
word_32:
std_logic := '0';
word_5:
std_logic_vector(15 downto 0)

304

signal WB_IR
signal WB_read
signal WB_pass
signal WB_rd
signal MemtoReg
signal WB_result
signal WB_write_enb
component register_32 is
port (

end

clk
Rst
input
output

) ;
component register_32;

component add32 is
port (

a
b
c
cin1
cin2
sum1
sum2
cout1
cout2

) ;
end component add32;

is ID_IR1(15 downto 0);
word_32;
word_32;
word_32;
word_5;
std_logic := '1':
word_32;
std_logic := '1';

in std_logic;
in std_logic;
in std_logic_vector(31
out std_logic_vector(31

downto 0);
downto 0)

in
in

std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0);

in
in
in
out
out
out
out

std_logic_vector(31 downto 0);
std_logic;
std_logic;
std_logic_vector(31 downto 0);
std_logic_vector(31 downto 0);
std_logic;
std_logic

component instruction_memory is
porte

addr in std_logic_vector (31 downto 0);
inst out std_logic_vector (31 downto 0»;

end component instruction_memory;
component Instruction_register_32 is
porte

clk
Rst
instruction1
instruction2

in std_logic;
in std_logic:
in std_logic_vector
in std_logic_vector

(31
(31

downto 0) ;
downto 0) ;

305

output 1
output 2
Create
Switch
Killed
Base_Address

) ;

out
out
out
out
out
out

std_logic_vector
std_logic_vector
std_logic;
std_logic;
std_logic;
std_logic_vector

(31 downto 0);
(31 downto 0);

(7 downto 0)

end component Instruction_register_32;
component mux_32 is
port (

inO
in1
swch
result

end component mux_32;
component registers is
port (

read_reg_1
read_reg_2
write_reg
write_data
write_enable
write_clk
read_data_1
read_data_2

end component registers;
component mux_5 is
porte

inO
in1
ctl
result

end component mux_5;
for PC_reg: register_32

in std_logic_vector
in std_logic_vector
in std_logic;
out std_logic_vector

(31 downto 0);
(31 downto 0);

(31 downto 0»;

in std_logic_vector (4 downto 0);
in std_logic_vector (4 downto 0);
in std_logic_vector (4 downto 0);
in std_logic_vector (31 downto 0);
in std_logic;
in std_logic;
out std_logic_vector (31 downto 0);
out std_logic_vector (31 downto 0»;

in std_logic_vector (4 downto 0);
in std_logic_vector (4 downto 0);
in std_logic;
out std_logic_vector (4 downto 0»;

use entity work.register_32(behavior);
for PC_incr: add32
use entity work.add32(behavior);
for inst_mem: instruction_memory
use entity work.instruction_memory(behavior);
for PC_reg: Instruction_register_32

306

use entity work.lnstruction_register_32(behavior)j
for NewPC_mux : mux_32
use entity work.mux_32(behavior);
for ID_IR_reg: register_32
use entity work.register_32(behavior);
for ID_regs:registers
use entity work.registers(behavior);
for ID_mux_rd:mux_5
use entity work.mux_5(behavior)j
Begin
New_Pc <=Program_Counter
PC_reg: register_32
port map(

clk2, Rst, PC_next, PC
) ;

PC_incr: add32
port map(

PC, four_32,eight_32, zerol, zero2,
PC_next.PC_next_B. ncll,nc12

) ;
inst_mem: instruction_memory
port map(

PC, instruction_code
) ;

ID_IR_reg: Instruction_register_32
port map(

clk, Rst, instl.inst2, ID_IR1.ID_IR2,
Create,Context_Switch.Kill_thread.base

) ;
NewPC_mux : mux_32
port map(

inO
in1
swch
result

) ;
ID_regs:registers
port map(

read_reg_l
read_reg_2

:::) New_Pc,
:::) PC_next,
:::) Context_Switch,
:::) WE_result

:::) ID_IR1(25 downto 21),
:::> ID_IR1(20 downto 16).

307

write_reg
write_data
write_enable
write_clk
read_data_1
read_data_2

=> WB_rd,
=> WB_result,
=> WB_write_enb,
=> clk_bar,
=> ID_read_data_1,
=> ID_read_data_2

) ;
ID_mux_rd:mux_5
port map(

inO => ID_IR1(20 downto 16),
in1 => ID_IR1(15 downto 11),
ctl => RegDst,
result => ID_rd

) ;
ID_sign_ext(15 downto 0) <= ID_addr;
ID_sign_ext(31 downto 16) <= (others => '0');
process (Create ,Context_Switch)
Begin
if (Create = '0') then

else

Create_Address <=(others => 'Z');
WR_TCB <= '0';
Con_switch <= Context_Switch;
Kill <= Kill_thread;

Create_Address <= ID_sign_ext;
WR_TCB <= , l' ;
Con_switch <= Context_Switch;
Kill <= Kill_thread;

end if; if(Context_Switch ='1') then
Con_switch <= Context_Switch;
Kill <= Kill_thread;

else
Con_switch <='0';
Kill <= Kill_thread;

end if; end process;
end processor;

308

309

D.3 Local Scheduler And Microthreaded Pipeline
Test Bench

The following code describes the test bench of the local scheduler and microthreaded

pipeline.

architecture
constant cps
constant N
constant S
constant M

Dynamic_Allocation of testbench is
: time := 30 ns;

constant processor_id
constant Slice_id
constant tdelay
signal t_clk
signal Rst
constant w

signal RDWR
signal WRREQ
signal add_st
signal nxt
signal init
signal release
signal nextpc
signal ere_address
signal Tag_cache
signal Acknow
signal Newpc
signal PC
signal L_Base
signal D_Base
signal Slot_pip
signal Slot_cache
signal flg
signal Prefetch
signal Family_Data
signal Reschedule
signal TCB_Addrs

:integer:=7;
:integer:=7;
:integer:=63;
:natural:=7;
: integer: =63;
:time :=4 ns;
:std_logic :='0';
:std_logic:='O';
:integer:=31;

:std_logic;
:std_logic:='O';
:std_logic;
:std_logic;
:std_logic_vector(7 downto 0);
:std_logic;
:std_logic_vector(31 downto 0);
:std_logic_vector(31 downto 0):
:std_logic_vector(31 downto 0);
:std_logic;
:std_logic_vector(31 downto 0);
:std_logic_vector(31 downto 0);
:std_logic_vector(7 downto 0);
:std_logic_vector(7 downto 0);
:std_logic_vector(7 downto 0);
:std_logic_vector(7 downto O)j
:Boolean:
:std_logic_vector(31 downto O)j
:std_logic_vector(127 downto 0):
:std_logic_vector(31 downto 0);
:std_logic_vector(31 downto O)j

signal allocated_Successfuly
signal Conxt_switch
signal Kill_thread
signal Kill_slot
signal write_pc
signal Inst_data
signal Inst_Addr
signal RD_Cache
signal RDM_prefetch
signal Successes
signal Reschedule_PC
signal WR_New_PC

RST <= '0';
Local_Scheduler: Scheduler
generic map (

:std_logic;
:std_logic;
:std_logic;
:std_logic_vector(7 downto 0);
:std_logic;
:std_logic_vector(127 downtoO);
:std_logic_vector(31 downto 0);
:std_logic;
:std_logic;

:std_logic;
:std_logic_vector(31 downto 0);
:std_logic; Begin

w,M,S ,Slice_id, tdelay

port map
)

(

) ;

t_clk,Rst,WRREQ,Newpc ,Cre_address,Reschedule_PC,
Family_Data, Acknow, Conxt_switch, Kill_thread,
kill_slot ,successes,PC,L_Base,D_Base ,Slot_pip,
WR_New_PC,Prefetch,Slot_cache,nxt,RDWR,
RDM_prefetch ,TCB_Addrs

Instruction_Memory : Instruction_Cache

generic map (w ,Slice_id, tdelay
)

port map (
t_clk,Rst, RDWR, TCB_Addrs,Family_data,
Inst_data,Inst_Addr,RD_Cache,RDM_prefetch,
Acknow,Prefetch

) ;

Microthreaded_Pipeline: CPU
generic map (

w,Processor_id ,N =>N
)

310

port map (
t_clk,rst ,nxt ,PC,L_Base ,D_Base ,Slot_pip,
WR_New_PC,init,Cre_address ,WRREQ,
Conxt_switch,Kill_thread,kill_slot,
Inst_data, Inst_Addr,RD_Cache ,Successes ,
Reschedule_PC

) ;
end Dynamic_Allocation;

311

312

D.4 Simulation Results

This sectioll provides VHDL sinmiatioll resnlts of the local schednler and tlw first

1 wo st ages of the rnicrothrcacled in-order pipeline. Different eXeC1ltioll scpnarios arc

pn'scntccl (sec figures D.1 to D. 5) .

313

TeB

1'1 Signals h alof; I ----------------------
84 muoltremJ;\lllre:aea1e_alless llIZlZZZ

III ~ w IJcllrlJe-:1!D _ m ZZZZZZZl

8~lxaLMlr:trbJjata mzm; ,~~~~~:;~~~~~!I~~~~~~~
4 b::a IJcllrlJlr :cmtrollr :~state Frese=t::::::==x===::::;;;:==r::i'i"i:ir==*~~~=<F¥§::5:i¥=-:::!j:¥=
4 b::aUrle:MJ :cmtroler :nxstalE

4b::(sd"alJe-:cmtrole-4Tsts t:===rese::!::::::!:::======:::z:::::::i:====::==============
4 b::a1_sd"alJe-:cmtrole-:nxsts

1lI ~ b:al_sd"alJe- :cootrole-:b::J)ase
III ~ b::al_sd"alJe-:cmtrole-:qtbase

J--" . ,. - I

Ii S9lals
m~ mb'oltrea:hl Jl~lre :create_ mess
m~ rul}Je:iJH :lI±tm
m ~ ruL sctmJH:b:b Jlata
~ ((aLsda:lJH :crntro IH:~state

~ ruL sda:lJH:crn\roIH :nxstate
4 ((aLsda:lJH :crn\roIH :~sts
~ ((aLsda:lJH:crn\roIH:nx5ts

m ~ ((aLsda:lJH :cm\roiH :((_base

m ~ ruL sda:lJH :crn\rOiH :~ _base

zz

Waveform sample one

Waveforms ample two

Figure D.1: Simulation waveforms showing family creation and threads allocation.

I~
f!I ~ b:aIJclBiJler :CootilJatUt~ :p::_create:l
f!I ~ b:aU;&e:iJler :((JltilJati:tlJ~..aJEdx:al)ase

f!I ~ b:aIJcte:iJler :((Jltroati:tlJlBR:(~tbase
f!I ~ b:al_ scte:iJ1er :cootilJatDt q.ae :q.ae _data
f!I ~ b:aLscte:iJIa" :((JltilJatDt~ :cq..row
f!I ~ b:aIJcte:iJler :cootilJati:tl JJBR:actiIe J'S~
f!I ~ b:al_scte:iJIer :((JltilJati:tl_~:actileJaii

Iil ~ b:aLscte:iJIe' :cootilJatDtQ.S.E :err¢j_~
Iil ~ b:al_scte:iJklr:((JltilJati:tl_q.ae :e~~_ta il
f!I ~ b:al_scte:iJ1e' :((JltilJati:tl_q.ae :rrefutrhjX:

11 5MJla1s
m ~ b::aLfrleiJg :cootilJatiJ1J~ . .8.E:p::JreaeJ
m' b::aLfrleiJg:cootilJatiJ1_~:b::(base
m' b::aL frleiJg :cootilJatiJ1_ ~ :00p _base
m ~ b::(frleiJg :cootilJatiJ1_ ~:q.s.e jlata
m~ b::aL frleiJg :cootilJatiJ1_~:cvow
m ~ b::aLfrleiJg :cootilJatiJ1_~:~_tea:l

m' b::aLfrleiJg :cooth.atiJt~:~Jail
m' b::aL frleiJg :cootilJatiJ1_ ~:e~~_tea:l
m ~ b::aLfrleiJg :cooth.atiJt~:e~~_tail
m ~ b::aL frleiJg :cootilJatiJ1_ ~:p'efub:h..oc

314

waveforms sample one

waveforms sample two

F igure D.2: Simulation waveforms showing thread state in the continuation queue.

-- -- ,. - - ..
I Signals

I!l ~ lxaIJdeiJkr:c(JltruatiJlJ~rul :lJefetr:tlJX:
I!l ~ lxaUrla:IJIer:C(JltruatiJlJ~rul : sbtl1Jrrhr _cache
~ miJolITeal:d.,p~lre : ((JlJwitI:t1

Ill ~ lxaLsdaiJkr:c(JltruatiJlJ~rul :~'p~lre
I!l ~ lxaLsdaiJkr:c(Jltruati::n_~ : lxal_base'p~lre
I!l ~ lxaL sdaiJkr :C(JltruatiJl_~ :o~tbase .pllllre

315

lll ~ lxaLsdaiJler:c(JltruatiJl_~:sbtl1Jrrhr.pPllre I'!~~~~~l~~~::~~~~:::: Ill ~ miJolITeal:d.,pPllre:nsbu:til1Jo:il (J) I~ • l!l ~ miJolITealld..p~lre : muottreatOO:cdJ:nsbu:tirQ I~~~~~(,;:§~~~~===~~===

115~
III ~ lxal_sdaiJler:c!l1truatiJl_~:l1efetch.,p::
Ill ' lxaLmler :c!l1truatiJl_~:sbtl1Jrrhr Jm
~ muollTeaBJ .,ppelre:c!l1JIVitI:t1

Ill ' lxaLme-:c!l1truatil1_~:~.,p~lre
Ill ' lxaL me- :C(Jltruatil1_~ :Ix(base .,ppelre
Ill ' lxaLme-:cll1IiuatiJl JJrul:~ _base .,p~lre

Waveforms sample one

1B ' lxaLmB':c!l1truatDt~:sbtl1Jrrhr.,ppelre t1~~~~$1~~t~~~~g!=i lll ' miJollTeaBJ.,ppelre:nsbu:til1JOOe (0 1k';

Waveforms sample two

Figure D.3: Simulation waveforms showing instruction fetch state and microthreaded
pipeline with a context switching.

llI ' mUotlr~"p~lre :~am_CMtIr
llI ~ mUotlr~"p~Ire :kxal_base"p!J
llI ' mUotlr~"p~lre:(~tbase"p!J
Ill ' mi:rotlr~"p~lre :skitrlJ • ..P1l
~ mUotlr~"p~lre:((JtswitJ:h
, mUotlre.rlrl..pi:e1re :kill

Ill ' muotlr~"p~Ire:P::J"Ext
llI ~ mUotlr~"p~lre:P::J"ExtJ
Ill ' mi:rotlr~"p~lre:P::J"Ext_B

5ignals

Ill ' m(JotIrea:BJ"p~lre :~am_cCllltIr
1lI ~ mi:rotIrea:BJ"p~lre : kxal_base"p!J
13 ' mi:rotlTea:Bl"p~lre :03p_basa..piJ
13 ' mi:rottrecJBj"p~lre :sbtrIJnter..P1l

, mi:rotlTea:Bl"p~lre :CO'tswitJ:h
, mi:rottrecJBj"p~lre :ki\l

Ill ' mi:rotIrea:BJ"p~lre :P::J"Ext
Ill ' mi:rotlrea:BJ"p~lre :P::J"ExtJ
13 ' muotlTea:Bl"p~lre :P::JlIxtJ

Ill ' mi:rotIrea:BJ"p~lre :~am_cCllltIr
Ill ' mUotlr~"p~lre :kxaLbase"p!J
Ill ' mi:rotlr~"p~lre :03p_base"p!J

111 ' mi:rottreml"p~lre :sbtrunm ..P!J
, mi:rotlr~"p~lre : ((JtswitJ:h
, mi:rottreml"p~lre :kiH

111 ' mi:rotlr~'p~lre :P::JlIxt
Ill ' mi:rottreml'p~lre :P::J"ExtJ
iii ' mi:ro~"p~lre:P::J"ExtJ

316

Figure D.4: Simulation waveforms showing microthreaded pipeline with context
switch and kill instructions.

317

l1 5ijnak tv
HI ~ mrroltre.mJ..p\:Elre:P'!J!am JOllie'

HI ~ mrroltremJ..plElre:b:al)ase"p~ z; 1=~===<Fn~~~:F=====#=====
8~ mrroltremJ"p\:Elre:~)ase"pp z;
8~ mrroilT~"p~lre:SDtrtJrm.pp Z; I=~=~~~~=============
HI~ mrroltr~'p~lre:trroJiJg3t 7llI11li. 1----==-----":"::::,'---------:;= '----
~ mrroltremJ..PlElre:trroJipll ~

HI ~ mrroltremJ"p\:Elre:Jfl'\JJag3t 7llI11li. 1===:==::::===:v=:;;=:::--=====:===========

~ mrroltremJ"p\:Elre :~fl'\JJIJlaI n I--------::=-.J_ L-==----------
~ m[J'oltr~..P~lre:Cll1Jwi!rll ~ 1--__ ---'

wavefonns sample one

-- -- ,. --
I~

8' mi:rotrmrlJl~lre:rrcgam-(!lI\1£r z I F=:;~=:;::===::::::::=~;;::;;::==::::±:=====:;:~*=::::::::::==
ffi ' miJotrmrl Jl~lre: OCaU~lSe Jl~
ffi ' miJotrmrlJl~lre:(~tbaseJl~
ffi ' mi:rotrmrl'p~lre:s\)trtJnta.p~
l!l ' mi:rotrmrlJl~lre:trroJ.J~t Z f----------====---------
, mi:rotrmrl Jl~lre :trro JiJial

l!l ' miJotremJl~lre:)n·!Ulg3t l l--____ --.;= ::....-_____ """'=::::---==-_
' miJotrmrlJl~rre:~fl1lJIJlaI
, mi:rotrmrlJl~lre:(Cftswitdl

waveforms sampletwo

Figure D.5: Simulation waveforms showing microthreaded pipeline with branch and
jump instructions.

