
THE UNIVERSITY OF HULL

Scalable Allocation of Safety Integrity Levels in Automotive Systems

being a Thesis submitted for the Degree of

Doctor of Philosophy

in the University of Hull

by

Luís Pedro da Silva Azevedo BSc., MSc.

December 2015

2

For Sofia and my parents…

3

Abstract

The allocation of safety integrity requirements is an important problem in modern

safety engineering. It is necessary to find an allocation that meets system level safety

integrity targets and that is simultaneously cost-effective. As safety-critical systems

grow in size and complexity, the problem becomes too difficult to be solved in the

context of a manual process. Although this thesis addresses the generic problem of

safety integrity requirements allocation, the automotive industry is taken as an

application example.

Recently, the problem has been partially addressed with the use of model-based

safety analysis techniques and exact optimisation methods. However, usually, allocation

cost impacts are either not directly taken into account or simple, linear cost models are

considered; furthermore, given the combinatorial nature of the problem, applicability

of the exact techniques to large problems is not a given. This thesis argues that it is

possible to effectively and relatively efficiently solve the allocation problem using a

mixture of model-based safety analysis and metaheuristic optimisation techniques.

Since suitable model-based safety analysis techniques were already known at the start

of this project (e.g. HiP-HOPS), the research focuses on the optimisation task.

The thesis reviews the process of safety integrity requirements allocation and

presents relevant related work. Then, the state-of-the-art of metaheuristic optimisation

is analysed and a series of techniques, based on Genetic Algorithms, the Particle Swarm

Optimiser and Tabu Search are developed. These techniques are applied to a set of

problems based on complex engineering systems considering the use of different cost

functions. The most promising method is selected for investigation of performance

4

improvements and usability enhancements. Overall, the results show the feasibility of

the approach and suggest good scalability whilst also pointing towards areas for

improvement.

5

Acknowledgements

Completing this thesis was a personally enriching and stretching experience.

However, as I write these lines, I know I could not have done it on my own.

First and foremost, I would like to acknowledge my supervisor, Dr David Parker.

The road was long but I could count on his support and patience all along. His experience

and analytical thinking provided me with invaluable guidance to conclude this PhD.

Learning from him I developed as a researcher and a professional and I will never be

able to thank him enough.

Back in 2012, I travelled to Hull for my Master’s final project. Unfortunately, on

my arrival, my supervisor had to undergo surgery. With no obligation to do so, and at

the cost of increasing his workload, Professor Yiannis Papadopoulos offered to supervise

me and proposed me a new project. Looking back, this was a life changing moment. I

had my first contact with Safety Engineering and, four years later, here I am writing a

PhD thesis on this discipline. I will always be grateful to Yiannis for the restless help and

advice and for believing in my capabilities in the first place.

I would like to express my gratitude to Dr Rui Esteves Araújo. After supervising me

in my studies in Portugal, he encouraged me to pursue this PhD and has been an

exceptional source of guidance and help ever since.

I am thankful to my colleagues and friends at the Computer Science department.

From our discussions, I was able to improve my work. They were also an escape from

the world where ASILs rule: Dr Sohag Kabir, Ioannis Sorokos, Dr Ernest Edifor, Dr Zhibao

6

Mian, Sahar Arshi, Ali Sa, Youcef Gheraibia, Francisco Inácio, Dr Joxe Unanue, Dr Lamis

Al-Qora’n, John Dixon, John Stamford and Qian Wang.

I am deeply grateful to Dr Kreshnik Hoxha and Dr Flore-Anne Poujade, who have

been a true family to me during my time in Hull. Our PhDs overlapped and we have gone

through countless experiences together. I will always think about them when looking

back at this period.

Thank you to my friends in Portugal, who have supported me from a distance and

who have given me the most amazing times whenever I went back home: Vânia Barbosa,

João Mario, Ricardo André Moreira, Carlos Correia, Ricardo Silva, Tiago Sá, Ana Moreira,

Nuno Leitão and Pedro Amaro.

I am extremely thankful to my brother Martinho and his wife Sónia for always

being there for me and for bringing to the world my god-daughter, Ana. Even though

she does not understand it yet, Ana and her random emoticon messages were of

amazing help in my least favourite days of writing. When she grows up, I will thank her

properly. For now, I hope that spending time with her and a new airplane toy will do.

I will always be indebted to my parents, Basilio and Georgina, for their incredible

support and encouragement all throughout my academic path. Thank you for teaching

me the importance of education and hard work.

Finally, I thank my girlfriend Sofia for all the love, support and patience. She has

been by my side throughout the entire journey and has been the most amazing and

sweetest source of inspiration and motivation.

7

Contents

Abstract ... 3

Acknowledgements ... 5

Contents .. 7

Figures ... 13

Tables .. 21

Glossary ... 25

1. Introduction .. 28

1.1 Motivation ... 28

1.1.1 Developing safe systems ... 28

1.1.2 Safety as part of a standardised process .. 29

1.1.3 The problem of allocating safety integrity requirements 30

1.1.4 Automation can help ... 34

1.1.5 Exploring automatic optimisation algorithms 35

1.1.6 Focusing on the automotive industry ... 36

1.2 Research hypothesis ... 37

1.3 Research goal and objectives .. 37

1.4 Thesis structure ... 40

1.5 Summary of contributions .. 42

1.6 Publications ... 42

8

2. Background ... 44

2.1 Functional Safety and Safety Integrity Levels ... 44

2.2 Distributing safety integrity requirements in automotive systems 47

2.2.1 Overviewing ISO 26262 ... 47

2.2.2 ASILs: From Hazard Analysis to allocation and decomposition 51

2.2.3 ASIL decomposition example .. 57

2.3 Decomposing SILs in the aerospace industry ... 59

2.4 SIL allocation - costs matter .. 61

2.5 Supporting ASIL allocation .. 63

2.5.1 Safety analysis to the rescue! ... 63

2.5.2 Model-based Safety Analysis .. 67

2.5.3 Fault Tree Analysis with HiP-HOPS .. 69

2.5.4 ASIL allocation with HiP-HOPS .. 72

2.5.5 Other support .. 74

2.5.6 Discussion and optimisation approach definition 75

2.6 Summary ... 77

3. Discovering cost efficient ASIL allocation strategies .. 79

3.1 The ASIL allocation optimisation problem .. 79

3.2 Discussion on optimisation research areas .. 81

3.3 Metaheuristics – An overview .. 82

9

3.4 Metaheuristics for ASIL allocation optimisation ... 85

3.4.1 Solution representation .. 85

3.4.2 Genetic Algorithm ... 86

3.4.3 Particle Swarm Optimiser ... 89

3.4.4 GA and PSO - Dealing with infeasibility... 95

3.4.5 Tabu Search ... 98

3.4.6 Other (less) successful approaches ... 106

3.5 Summary ... 108

4. Case studies and evaluation metrics .. 110

4.1 The hybrid braking system .. 110

4.2 Case studies: The facts .. 120

4.3 Exploring the impacts of different cost heuristics in ASIL allocations 125

4.4 Methodology for optimisation techniques comparison 127

4.5 Summary ... 129

5. Experimentation and evaluation .. 131

5.1 The ASIL allocation lottery .. 131

5.2 Metaheuristics - The survival of the fittest ... 134

5.2.1 Parameterisation of the species ... 134

5.2.2 And the fittest species is… .. 140

5.3 ASIL allocation - Optimisation by divide and conquer 152

10

5.3.1 A guide to divide and conquer .. 153

5.3.2 Dividing the ASIL allocation benchmark ... 160

5.3.3 TS or TS Divide and Conquer? ... 168

5.3.4 Tuning TSDC for efficient conquering ... 173

5.3.5 Is conquering even more efficient if tuned differently for each

problem? ... 187

5.3.6 Initial evaluation of parallel conquering ... 198

5.4 A more refined cost optimisation? ... 220

5.5 Results summary ... 227

6. Conclusions ... 233

6.1 Contributions .. 233

6.2 Impact on external research ... 242

6.3 A note on the relationship with the ISO 26262 standard 244

7. Limitations and suggestions for future work ... 246

Bibliography .. 250

Appendix I – HBSM1 failure logic and cut sets ... 266

HBSM1 failure expressions ... 266

HBSM1 cut sets ... 267

Appendix II – Random ASIL cost functions for HBSM1 ... 268

Appendix III – Case studies’ fault trees ... 269

HBSM1 fault trees .. 269

11

No braking ... 269

Braking with wrong value ... 271

HBSM2 fault trees .. 273

No braking in 1 wheel ... 273

Braking with wrong value in 1 wheel .. 276

HBSM3 fault trees .. 279

No braking in 4 wheels .. 279

No braking in 3 wheels .. 282

No braking diagonal .. 286

No braking front .. 289

No braking rear ... 291

Braking with wrong value in 4 wheels .. 293

BSS fault trees ... 296

Hazard1 ... 296

Hazard2 ... 297

Hazard3 ... 298

Hazard4 ... 299

Hazard5 ... 300

Hazard6 ... 302

Hazard7 ... 304

12

Hazard8 ... 306

Hazard9 ... 307

Hazard10 ... 311

13

Figures

Figure 1 - Simplified safety lifecycle of ISO 26262. ... 49

Figure 2 – ISO 26262’s V-model development process for system, hardware and software.

The numbers showing in an “m-n” format point to the nth clause of the mth standard part

(Int’l Organization for Standardization, 2011). ... 50

Figure 3 - Structure of safety requirements. The numbers showing in an “m-n” format

point to the nth clause of the mth standard part (Int’l Organization for Standardization,

2011:Part 3). .. 54

Figure 4 - Safety Requirements (SR) hierarchical inheritance of ASILs and allocation of

SRs and respective ASILs to the elements of the system architecture. Only one SR and

one architectural element are shown at each refinement step, but multiple may exist.

 ... 55

Figure 5 - ASIL decomposition schemes (Int’l Organization for Standardization, 2011:Part

9). .. 56

Figure 6 - Preliminary architecture of illustrative item for ASIL decomposition (Int’l

Organization for Standardization, 2011:Part 10). ... 58

Figure 7 - Second design iteration of illustrative item for ASIL decomposition (Int’l

Organization for Standardization, 2011:Part 10). ... 58

Figure 8 - DAL decomposition schemes for three components. 61

Figure 9 - Illustrative fault tree to investigate causes of SG1 violation in S1. 65

Figure 10 - HiP-HOPS - Synthesizing system hazard fault trees from components fault

trees. ... 71

Figure 11 - ASIL allocation solution representation (FM = Failure Mode). 85

Figure 12 - Crossover operator with uniform crossover probability set to 40%. 88

14

Figure 13 - Mutation example with mutation rate set to 20%. 89

Figure 14 - Spatial representation of PSO’s position update. ... 92

Figure 15 - Example of PSO position update. .. 92

Figure 16 - Example of PSO LS. .. 93

Figure 17 - Example of PSO LS (continued). .. 94

Figure 18 - Illustrative TS solution at iteration t. .. 99

Figure 19 - Illustrative TS solution at iteration t+1. .. 100

Figure 20 - Illustrative TS solution at iteration t+2. .. 100

Figure 21 - Travelling from local to global minimum through feasible search space. .. 104

Figure 22 - Travelling from the most expensive solution (light grey) to the optimum (dark

grey). ... 104

Figure 23 - Flowchart describing the Tabu Search algorithm. “mod” is the modulus

operator, which gives the remainder of a division between two numbers. 105

Figure 24 - Hybrid braking system architecture. ... 112

Figure 25 - HBSM1. .. 113

Figure 26 - Solution 1, a non-dominated solution for Problem 1. 122

Figure 27 - A solution (solution 3) that is dominated by one non-dominated solution

(solution 2), but that is not dominated by another non-dominated solution (solution 3).

 ... 123

Figure 28 - Two non-dominated allocations (solutions 5 and 6) dominating a common

allocation (Solution 7). .. 124

Figure 29 - Average processing times of GA, PSO and TS to complete HBSM1 problems.

Smaller is better. ... 144

15

Figure 30 - Average processing times of GA, PSO and TS to complete HBSM2 problems.

Smaller is better. ... 144

Figure 31 - Average processing times of GA, PSO and TS to complete HBSM3 problems.

Smaller is better. ... 145

Figure 32 - Average processing times of GA, PSO and TS to complete BSS problems.

Smaller is better. ... 145

Figure 33 - AACs for Problem 1. ASILFM1 is shared by AAC1 and AAC2. 150

Figure 34 - ASIL allocation optimisation process for the problem of an illustrative System

1 (S1). The entire problem is solved in one step by the optimisation algorithm. 153

Figure 35 - AACs of S1. .. 154

Figure 36 - AACs of S1. Decision variables that are shared by AACs have their limits drawn

with dashes (ASILFM4 and ASILFM5). .. 155

Figure 37 - Example of a path of variables across different AACs connecting two generic

variables - ASILFMX and ASILFMY. ... 156

Figure 38 - Sub-problems devised for S1. ... 157

Figure 39 - Overview of the ASIL allocation divide and conquer optimisation approach.

 ... 158

Figure 40 – HBSM1 interconnected instance of size eight. .. 162

Figure 41 - Illustrative ASIL allocation problem (problem A), which can be decomposed

in to three sub-problems. ... 167

Figure 42 - Combinations of limitp and limitq included in the 424 best parameterisations

of TSDC. ... 174

Figure 43 - Parameterisations of limitp and limitq for which TSDC, using (updatePeriodp;

updatePeriodq) set to (3; 4), overcame TS’s best performance. 175

16

Figure 44 - Parameterisations of limitp and limitq for which TSDC, using (updatePeriodp;

updatePeriodq) set to (10; 11), overcame TS’s best performance................................ 176

Figure 45 - Parameterisations of limitp and limitq for which TSDC, using (updatePeriodp;

updatePeriodq) set to (30; 31), overcame TS’s best performance................................ 176

Figure 46 - Parameterisations of limitp and limitq for which TSDC, using (updatePeriodp;

updatePeriodq) set to (100; 101), overcame TS’s best performance. 177

Figure 47 - Distribution of TSDC’s best 424 parameterisations as a function of

(updatePeriodp; updatePeriodq). ... 177

Figure 48 - Number of successful parameterisations as a function of (updatePeriodp;

updatePeriodq) after a given processing time. The maximum time shown corresponds to

the moment where TS’s best run finished. ... 178

Figure 49 - Combinations of limitp and limitq included in the 68 best parameterisations

of TSDC (data is based on average times from 50 runs). .. 181

Figure 50 - Parameterisations of limitp and limitq as a function of (updatePeriodp;

updatePeriodq), for which TSDC is at least two times faster than the best TS (data is based

on average times from 50 runs). Blue: (updatePeriodp; updatePeriodq) = (3; 4); green:

(updatePeriodp; updatePeriodq) = (10; 11); yellow: (updatePeriodp; updatePeriodq) = (30;

31). .. 182

Figure 51 - Distribution of TSDC’s parameterisations, which give performances more

than two faster than the best TS, as a function of (updatePeriodp; updatePeriodq) (data

is based on average times from 50 runs). ... 183

Figure 52 - Number of successful parameterisations as a function of (updatePeriodp;

updatePeriodq) after a given processing time (data is based on average times from 50

17

runs). The maximum time shown corresponds to half the time taken by the best TS to

finish the benchmark. ... 184

Figure 53 - Relative performance comparison between parameterisations (data is based

on average times from 50 runs). Left: (updatePeriodp; updatePeriodq) = (3; 4); centre:

(updatePeriodp; updatePeriodq) = (10; 11); right: (updatePeriodp; updatePeriodq) = (30;

31). The maximum time considered for a parameterisation corresponds to half the time

taken by the best TS. ... 186

Figure 54 - Distribution, as a function of limitp and limitq, of the parameterisations that

allowed TSDC to complete HBSM3-SP4 faster than when using the best parameterisation

across the benchmark (data is based on average times from 50 runs). 195

Figure 55 - Distribution, as a function of limitp and limitq, of the parameterisations that

allowed TSDC to complete HBSM2-SP3 faster than when using the best parameterisation

across the benchmark (data is based on average times from 50 runs). 196

Figure 56 - Parallel divide and conquer approach overview for an illustrative problem

with three sub-instances. .. 199

Figure 57 - Possible allocation of four sub-problems with different execution durations

to four threads. The total execution time is given by the duration of the longest sub-

problem. .. 201

Figure 58 - Allocation of seven sub-problems with different execution durations to four

threads. Sub-problems are allocated to avaialable threads in a decreasing order of

execution duration. The total execution time is given by the time taken to solve the

longest problem. ... 201

Figure 59 - Allocation of seven sub-problems with different execution durations to four

threads. Sub-problems are allocated to available threads in a random order. The total

18

execution time is given by the duration of the longest problem, sub-problem 1,

combined with the duration of sub-problem 7. ... 202

Figure 60 - Threads and the sub-problems they execute over time. Inferences about the

relative durations of sub-problems hold true and longer sub-problems are executed first.

 ... 204

Figure 61 - Threads and the sub-problems they execute over time, using dynamic sub-

problem to thread scheduling. Inferences about the relative durations of sub-problems

5 and 6 do not hold true. Dashed line represents the total time consumed when a fixed

sub-problem to thread scheduling is used. .. 205

Figure 62 - Threads and the sub-problems they execute over time, using dynamic sub-

problem to thread scheduling. Inferences about what problems take longer hold true,

but their exact durations are unkown. The dashed line shows a possible total time for a

fixed sub-problem to thread scheduling. .. 206

Figure 63 - Parallel TSDC performance in solving the ASIL allocation benchmark, as a

function of the maximum number of threads available and sub-problem sorting mode

(data is based on average times from 50 runs). ... 210

Figure 64 - Parallel TSDC performance in solving the ultimate ASIL allocation benchmark,

as a function of the maximum number of threads available and sub-problem sorting

mode (data is based on average times from 50 runs). ... 215

Figure 65 - Comparison of Parallel TSDC’s performance using the Complex First sorting

mode against the ideal parallelisation times relating to the use of 2, 3 and 4 threads

(data is based on average times from 50 runs). ... 217

Figure 66 – HBSM1 fault trees: “No braking” hazard – part 1 of 2. 269

Figure 67 - HBSM1 fault trees: “No braking” hazard – part 2 of 2. 270

19

Figure 68 - HBSM1 fault trees: “Braking with wrong value” hazard – part 1 of 2. 271

Figure 69 - HBSM1 fault trees: “Braking with wrong value” hazard – part 2 of 2. 272

Figure 70 – HBSM2 fault trees: “No braking in one wheel” hazard – part 1 of 3. 273

Figure 71 - HBSM2 fault trees: “No braking in one wheel” hazard – part 2 of 3. 274

Figure 72 - HBSM2 fault trees: “No braking in one wheel” hazard – part 3 of 3. 275

Figure 73 – HBSM2 fault trees: “Braking with wrong value in 1 wheel” hazard – part 1 of

3. .. 276

Figure 74 - HBSM2 fault trees: “Braking with wrong value in 1 wheel” hazard – part 2 of

3. .. 277

Figure 75 - HBSM2 fault trees: “Braking with wrong value in 1 wheel” hazard – part 3 of

3. .. 278

Figure 76 – HBSM3 fault trees: “No braking in 4 wheels” hazard – part 1 of 3. 279

Figure 77 - HBSM3 fault trees: “No braking in 4 wheels” hazard – part 2 of 3 280

Figure 78 - HBSM3 fault trees: “No braking in 4 wheels” hazard – part 3 of 3. 281

Figure 79 - HBSM3 fault trees: “No braking in 3 wheels” hazard – part 1 of 4. 282

Figure 80 – HBSM3 fault trees: “No braking in 3 wheels” hazard – part 2 of 4. 283

Figure 81 – HBSM3 fault trees: “No braking in 3 wheels” hazard – part 3 of 4. 284

Figure 82 – HBSM3 fault trees: “No braking in 3 wheels” hazard – part 4 of 4. 285

Figure 83 - HBSM3 fault trees: “No braking diagonal” hazard – part 1 of 3. 286

Figure 84 – HBSM3 fault trees: “No braking diagonal” hazard – part 2 of 3. 287

Figure 85 – HBSM3 fault trees: “No braking diagonal” hazard – part 3 of 3. 288

Figure 86 - HBSM3 fault trees: “No braking front” hazard – part 1 of 2. 289

Figure 87 - HBSM3 fault trees: “No braking front” hazard – part 2 of 2. 290

Figure 88 - HBSM3 fault trees: “No braking rear” hazard – part 1 of 2. 291

20

Figure 89 - HBSM3 fault trees: “No braking rear” hazard – part 2 of 2. 292

Figure 90 - HBSM3 fault trees: “Braking with wrong value in 4 wheels” hazard – part 1 of

3. .. 293

Figure 91 – HBSM3 fault trees: “Braking with wrong value in 4 wheels” hazard – part 2

of 3. ... 294

Figure 92 – HBSM3 fault trees: “Braking with wrong value in 4 wheels” hazard – part 3

of 3. ... 295

Figure 93 - BSS fault trees: “Hazard1” hazard – part 1 of 1. ... 296

Figure 94 - BSS fault trees: “Hazard2” hazard – part 1 of 1. ... 297

Figure 95 - BSS fault trees: “Hazard3” hazard – part 1 of 1. ... 298

Figure 96 - BSS fault trees: “Hazard4” hazard – part 1 of 1. ... 299

Figure 97 - BSS fault trees: “Hazard5” hazard – part 1 of 2. ... 300

Figure 98 - BSS fault trees: “Hazard5” hazard – part 2 of 2. ... 301

Figure 99 - BSS fault trees: “Hazard6” hazard – part 1 of 2. ... 302

Figure 100 - BSS fault trees: “Hazard6” hazard – part 2 of 2. 303

Figure 101 - BSS fault trees: “Hazard7” hazard – part 1 of 2. 304

Figure 102 - BSS fault trees: “Hazard7” hazard – part 2 of 2. 305

Figure 103 - BSS fault trees: “Hazard8” hazard – part 1 of 1. 306

Figure 104 - BSS fault trees: “Hazard9” hazard – part 1 of 4. 307

Figure 105 - BSS fault trees: “Hazard9” hazard – part 2 of 4. 308

Figure 106 - BSS fault trees: “Hazard9” hazard – part 3 of 4. 309

Figure 107 - BSS fault trees: “Hazard9” hazard – part 4 of 4. 310

Figure 108 - BSS fault trees: “Hazard10” hazard – part 1 of 1. 311

21

Tables

Table 1 - Three allocations compliant with an aerospace SIL reduction rule. 32

Table 2 - Severity of potential harm levels (Int’l Organization for Standardization,

2011:Part 3). .. 51

Table 3 - Probability of exposure levels (Int’l Organization for Standardization, 2011:Part

3). .. 52

Table 4 - Controllability levels (Int’l Organization for Standardization, 2011:Part 3). 52

Table 5 - ASIL to hazardous event mapping as a function of severity, exposure and

controllability (Int’l Organization for Standardization, 2011:Part 3). 52

Table 6 - Possible ASIL allocations for SR2 and SR4 (and respective components). 59

Table 7 - ARP4754-A: Failure condition classes and DALs. ... 60

Table 8 - ASIL allocation example for Cut Set 3 - CS3. .. 73

Table 9 - Experiential-I cost function. ... 117

Table 10 - HBSM1 optimal ASIL allocation for Experiential-I cost function. 118

Table 11 - Characteristics of the optimisation problems posed by each case study. ... 120

Table 12 - Number of AACs associated with each case study, organised by size. 121

Table 13 - Experiential-II ASIL cost function. .. 125

Table 14 - HBSM1 optimal ASIL allocations for Experiential-I and Experiential-II functions.

 ... 126

Table 15 - ASIL cost heuristics. .. 127

Table 16 - Optimal solution costs for the different problems in the ASIL allocation

benchmark. ... 128

Table 17 - Probabilities of single random bets finding optimal solutions for ASIL allocation

problems. .. 132

22

Table 18 - Results of using automation to produce random ASIL allocations for the

problems of Table 17. The quality of infeasible solutions is not compared; for cases

where feasible solutions were not found, dashes are used for the columns referring to

cost, iterations and time of best solution found. ... 133

Table 19 - Penalty approach parameterisation for GA. .. 136

Table 20 - Penalty approach parameterisation for PSO. .. 136

Table 21 - GA parameterisation. ... 137

Table 22 - PSO parameterisation. ... 138

Table 23 - TS parameterisation. .. 139

Table 24 - Results for HBSM1 problems. .. 141

Table 25 - Results for HBSM2 problems. .. 142

Table 26 - Results for HBSM3 problems. .. 142

Table 27 - Results for BSS problems.. 143

Table 28 - Number of sub-problems obtained per case study. 161

Table 29 - Sub-problems for each case study in the ASIL allocation benchmark organised

by dimensionality. ... 161

Table 30 - Search space size of the original problems posed by each of case studies in

the ASIL allocation benchmark and the total search space size across their sub-problems.

 ... 164

Table 31 - Dimensionality and number of AACs of each sub-problem in the ASIL allocation

benchmark (SP – Sub-Problem). ... 165

Table 32 - Number of AACs for each sub-problem defined across the ASIL allocation

benchmark, organised by size. .. 166

23

Table 33 - Optimal costs for the sub-problems of the ASIL allocation benchmark as a

function of the different ASIL cost heuristics.. 167

Table 34 - Time and parameters for best runs of TS and TSDC 171

Table 35 - Number of tests solved by TSDC under the best time obtained by TS (left) and

half the best time obtained by TS (right). ... 173

Table 36 - Times to solve each of the sub-problems using the best parameterisation

across the benchmark (left) and using the best parameterisation per sub-problem

(center); the rightmost column shows the improvements of using the best

parameterisation per sub-problem over utilising the best parameterisation across the

benchmark (data is based on average times from 50 runs). .. 188

Table 37 - Sub-problems in the ASIL allocation benchmark, their dimensionality and

TSDC’s parameterisations giving the fastest performance for each sub-problem. Sub-

problems are sorted in an ascending order of dimensionality. 190

Table 38 - Times to solve each of the sub-problems using the best parameterisation

across the benchmark (left), using the best parameterisation per sub-problem (center),

and using parameterisations where limitp varies as per Equation 13 (right) (data is based

on average times from 50 runs). ... 192

Table 39 - Dimensionality and number of AACs of each sub-problem in the benchmark,

and the times taken by TSDC to solve each one of them across all cost functions. Times

on the left hand side refer to using the best parameterisation across the benchmark; the

times on the right hand side refer to the using the best parameterisations per case study

(data is based on average times from 50 runs). ... 203

Table 40 - Best parameterisation across the ASIL allocation benchmark obtained in

section 5.3.4. ... 209

24

Table 41 - Components of HBSM1 divided in three categories. 221

Table 42 - HBSM1 optimal ASIL allocations for Experiential-I cost function with and

without the cost weights defined for the categories of components. 223

Table 43 - Parameterisation adopted for Parallel TSDC ... 224

Table 44 - Execution times of Parallel TSDC to complete HBSM1, when allocations were

evaluated using the Experiential-I cost heuristic with and without categories of

components (data is based on average times from 50 runs). 224

Table 45 - HBSM1 Optimal ASIL allocations for Experiential-I cost function with random

cost heuristics generated for each FM.. 225

Table 46 - Execution times of Parallel TSDC to complete HBSM1, when allocations were

evaluated according to random ASIL cost heuristics; for each FM, cost heuristics are

different (data is based on average times from 50 runs). .. 226

Table 47 – HBSM1 failure expressions .. 266

Table 48 – HSBM1 cut sets .. 267

Table 49 – Random ASIL cost functions for the different FMs of HBSM1. 268

25

Glossary

AAC ASIL Allocation Constraint

ACO Ant Colony Optimisation

ADL Architecture Description Language

ARP Aerospace Recommended Practice

ASIL Automotive Safety Integrity Level

CENELEC European Committee for Electrotechnical Standardization

CFT Component Fault Trees

DAL Development Assurance Level

ECSS European Cooperation for Space Standardization

E/E Electrical/Electronic

EMB Electromechanical Brake

FMEA Failure Mode & Effects Analysis

FPTN Failure Propagation and Transformation Notation

FSAP-NuSMV Formal Safety Analysis Platform - New Symbolic Model Verifier

FSR Functional Safety Requirements

FTA Fault Tree Analysis

GA Genetic Algorithm

HBS Hybrid Braking System

26

HBSM Hybrid Braking System Model

HiP-HOPS Hierarchically Performed Hazard Origin and Propagation Studies

HS Harmony Search

HSR Hardware Safety Requirements

IBM International Business Machines

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IIE Institute of Industrial Engineers

IFAC International Federation for Automatic Control

ILP Integer Linear Programming

IWM In-Wheel Motor

ISO International Organization for Standardization

LS Local Search

MAENAD Model-based Analysis & Engineering of Novel Architectures for

Dependable Electric Vehicles

MBSA Model-Based Safety Analysis

MCS Minimal Cut Set

NFT Near Feasibility Threshold

OpenMP Open Multi-Processing

27

PANDORA Time of Priority AND gates

PSO Particle Swarm Optimisation

QM Quality Management

SA Simulated Annealing

SAMD Steepest Ascent Mildest Descent

SAE Society of Automotive Engineers

SDMA Steepest Descent Mildest Ascent

SG Safety Goal

SIL Safety Integrity Level

SMT Satisfiability Modulus Theory

SSR Software Safety Requirements

TDI Total Degree of Infeasibility

TS Tabu Search

TSDC Tabu Search Divide and Conquer

TSR Technical Safety Requirements

UAAP Ultimate ASIL Allocation Problem

WNC Wheel Node Controller

28

1. Introduction

1.1 Motivation

1.1.1 Developing safe systems

Our world is one that is quickly changing and rapidly adopts new technologies.

There is, however, one inescapable question every corporate entity needs to ask itself

before releasing a new product: “is it safe?”. The answer to this question is key to

certification and market adoption of the product and is to be answered within the

bounds of Safety Engineering.

Despite its vital importance, Safety Engineering has only matured as a discipline

over the last 50 years (Bozzano & Villafiorita, 2010). It was initially used as an external

body responsible for analysing causes of system failure after an accident, but has

evolved immensely and it is now integrated with system development itself. New safety

practices and safety analysis techniques have emerged, and have, throughout the years,

become widespread across different industry sectors.

Granted the significant evolution, modern Safety Engineering faces important

challenges. Safety-critical systems have been moving from well understood, mostly

mechanical-based designs, towards complex computer-reliant architectures. The latter

can perform more sophisticated control functions; their applications are immense and

wide-ranging and they are a critical part of our daily lives. The vehicles we drive, for

example, contain multiple programmable components which take part in safety-critical

tasks such as engine control and battery management. Furthermore, computer-based

systems propel advanced safety features in the vehicle. Electronic stability control

29

systems, for instance, detect loss of steering control and automatically brake individual

wheels to correct the vehicle’s trajectory.

While the merits of computer-based systems are undeniable, their inherent

complexity is an obstacle for Safety Engineering. Complex systems are more difficult to

design, and therefore, more likely to contain errors (Storey, 1996). Hardware

architectures are composed of numerous small parts that can fail in multiple ways, giving

rise to a huge number of failure scenarios to be considered. In software, the number of

execution paths can easily grow into a number that is infeasible to test exhaustively.

Currently, there is a steady trend towards increasing system complexity (Bozzano

& Villafiorita, 2010). The amount of time and effort that needs to be put into safety

aspects opposes the companies’ competitive needs of reducing costs and of

continuously introducing innovative solutions into the market. On the other hand,

releasing an unsafe product can lead to accidents that endanger people’s lives, the

adoption of the product and the prosperity of the company behind it.

1.1.2 Safety as part of a standardised process

International safety standards embody the state-of-the-art of Safety Engineering

practices, collecting knowledge both from academia and industry. They represent

common frameworks to guide practitioners when developing safety-critical systems.

Compliance with safety standards serves as means to achieve designs with a low

associated risk, and implicitly works to avoid liability issues. In meeting the specific

characteristics of different industry sectors, different guiding documents have been

released over the years. For example, ISO 26262 (Int’l Organization for Standardization,

30

2011) and ARP4754-A (Society of Automotive Engineers, 2010), apply to the automotive

and the aerospace industry, respectively.

Currently, there is a common agreement that safety should be managed from the

early stages of system design. In fact, if left to deal with at the end of development, the

risk exists that safety targets will not be achieved. Also, opportunities for improvement

would then entail major changes with deep impacts in development efforts and costs.

The necessity of managing safety from the start of development is recognised by

modern safety standards whose guidelines accompany system design right from the

initial system concept specification.

Safety standards provide an important guiding framework, but practitioners

struggle to fully implement them. The root causes for such difficulties are again, in great

part, linked with the complexity of contemporary safety-critical systems. Given a limited

availability of time and resources, effective implementation of the processes prescribed

by the standards is often infeasible. One key process for which this has become more

evident is the one of efficiently allocating safety integrity requirements across a system

architecture.

1.1.3 The problem of allocating safety integrity requirements

IEC 61508 (Int’l Electrotechnical Commission, 1998) is a generic safety standard

that served as basis for ISO 26262 and other industry-specific documents. It defines

safety integrity as the probability of a safety-critical system satisfactorily performing the

required safety functions under all the stated conditions within a stated period of time.

In contemporary safety standards, the process of elicitation and allocation of safety

integrity requirements is accomplished through a concept known as Safety Integrity

31

Level, or SIL. Multiple SILs are considered, each implying requirements of different

stringencies. Early into the development stages, investigation takes place to identify

system function failures (or hazards). The risk posed by these hazards is quantified

through consideration of different levels of severity. Other factors are sometimes taken

into account, such as probability of occurrence. Then, each hazard is mapped with a SIL;

this is to derive appropriate integrity requirements to reduce risk to an acceptable level.

If a hazard is very severe, for example, it will be allocated with a SIL posing very stringent

requirements. In turn, these requirements will have to be met by the system’s

architecture. Safety integrity requirements allocation to architectural elements is

achieved on the basis of the dependability characteristics of the system. If the failure of

an architectural element causes a given hazard, that element will inherit the SIL of the

hazard. However, when redundancy is available, architectural elements can usually be

developed according to lower SILs. SIL reduction (or decomposition) rules, vary from

standard to standard. In the aerospace industry, for example, it is possible to allocate

one component with the SIL of the hazard and the others with a SIL two times lower -

see ARP4754-A (Society of Automotive Engineers, 2010). Once a SIL is allocated to a

component, it will impose a series of safety activities for its development and validation.

Consider the scenario where three architectural elements (components A, B and

C) must fail together to cause a system hazard. In this illustrative example three SILs are

defined, relating to low integrity, medium integrity and high integrity. It is assumed that

the system hazard can lead to a severe consequence and as a result it is associated with

the high integrity SIL. This is a rather simple scenario, and in total there are only 27

possible allocations (three SILs for each of the three components). The allocations that

32

follow the rule introduced in the previous paragraph for the aerospace industry are

shown in Table 1.

Table 1 - Three allocations compliant with an aerospace SIL reduction rule.

Options Component A Component B Component C

#1 High Integrity Low Integrity Low Integrity

#2 Low Integrity High Integrity Low Integrity

#3 Low Integrity Low Integrity High Integrity

Note that a valid solution would have still been found, if any of the components

assigned with low integrity were allocated with SILs representing more stringent

requirements.

SIL decomposition is not mandatory in safety standards. In principle, system

developers are free to allocate all the elements of an entire architecture with the highest

integrity requirements. This approach ensures that system level targets are met (or even

exceeded). However, companies’ budgets to deal with safety activities are not unlimited.

The application of SIL decomposition is desirable, as components can be developed to

less stringent requirements, leading to lower development times and efforts and in the

end lower costs. The drive to minimise development costs has further implications

during the allocation process. When employing the SIL decomposition rules, multiple

options may be available, and here cost is usually the criterion used to select an

allocation. Standards naturally focus on safety, and describe the problem of safety

integrity requirements allocation as one where the goal is to find a solution which meets

system level targets. However, from the practitioner point of view, meeting system

integrity targets is a design constraint and the minimisation of development cost

becomes a compelling objective.

33

Though the application of SIL allocation in small, simple architectures may be easy,

modern safety-critical systems are often composed of large, networked, multi-function

delivering architectures. The complexity of these systems is an obstacle. Firstly, it can be

hard to understand how components’ failures lead to system hazards and, as a result,

how system level SILs can be allocated and decomposed across the architecture. It may

not be clear, for example, that two components which are not situated within the same

area of the system design, and which do not obviously interact to provide a system

function, actually need to fail together to cause a system hazard. Decomposition

opportunities will be missed if these relationships are not identified. Also, complex

designs can hide failures that undermine redundancy assumptions, leading designers to

use decomposition where it is not valid. Safety analysis techniques can be of help here,

as they offer a systematic way to study the failure behaviour of a system. However,

system size and complexity makes their manual application a long, difficult and error

prone process.

Another concern is raised by the vast number of allocation possibilities that is

usually available. In a relatively small system with only 10 components, if the three

different SILs from the previous example are considered, there are 59,049 possible

allocation solutions (310, three possible SIL allocations per component). Conceivably, the

system designer would not enumerate all of them. However, the fast growth of solutions

decreases the likelihood of finding a feasible, cost-optimal allocation. The system

designer’s tasks include deriving and evaluating allocations and confirming that they

meet the system level requirements. Given the networked nature of modern system

architectures, it is often the case that the same component is involved in assuring

multiple functions and contributes to different hazards. All of these contributions need

34

to be taken into account when validating an allocation. Performing all the tasks

associated with SIL allocation quickly grows out of the realms of what is feasible to be

accomplished in the context of a manual process.

The difficulty of applying SIL allocation manually is exacerbated by the iterative

nature of this process. It can take multiple iterations to meet both the designer’s and

the suppliers’ interests, for example. Also, design changes are often frequent and

require SIL allocation to be re-executed. All of this raises the question: how can these

processes be supported effectively and within a framework that allows for their iterative

nature?

1.1.4 Automation can help

SIL allocation support needs have been presented in the previous section and can

be summarised into the two following areas: 1) the study of how low-level component

failures lead to system hazards – this allows rationalising how to allocate and

decompose system SILs across an architecture; 2) the exploration of the huge number

of allocation possibilities, to find a solution that meets system level SILs while minimising

development costs.

Safety analysis techniques, namely Fault Tree Analysis (FTA), can provide an insight

on how component-level failures propagate across an architecture and combine to

create system hazards. They are natural candidates to support 1), especially in the

context of an automated process. Tools and methods such as HiP-HOPS and FSAP-

NuSMV can perform automated safety analysis. Using architectural and failure

information obtained from system models, they can produce results in a matter of hours,

minutes or even less.

35

In dealing with 2), automated allocation algorithms can help explore the vast

number of solutions available. HiP-HOPS includes a smart algorithm that provides means

to exhaustively explore the solution space. However, due to the rapid growth of the

number of solutions available (a phenomenon known as combinatorial explosion) the

technique does not scale well. Other automated allocation approaches have been

presented in the literature, but they either do not directly consider the matter of costs

in the allocation process, or contemplate simple models where development costs grow

linearly with an increase to the SIL level to follow. A method is required which is capable

of being applied to large, complex systems and that can accommodate user-defined

functions to describe ASIL-imposed costs.

1.1.5 Exploring automatic optimisation algorithms

In dealing with large combinatorial problems, exhaustive allocation algorithms

often require prohibitive processing effort. Automatic optimisation algorithms are

employed instead. Many optimisation algorithms are available and they can be divided

into two groups: exact methods and metaheuristics. Exact methods include techniques

such as Integer Programming and discrete Lagrangian methods. Their main advantage is

that where solutions are found, they are optimal. However, for large-scale systems the

computation burden can be excessive; moreover, these techniques are often associated

with mathematical properties of the problem.

Metaheuristics, on the other hand, cannot guarantee finding optimal solutions.

Nonetheless, they are known to be efficient methods for retrieving good solutions in

complex, high-dimensional problems. Furthermore, they present robustness to be

applied to problems of different characteristics, which can be useful in dealing with

36

different ASIL-dependent cost functions defined by the user. Metaheuristics are often

inspired by natural phenomena, and include techniques such as Genetic Algorithms,

which mimic the processes of natural evolution, and the Particle Swarm Optimiser that

intends to reproduce the movement of flocks of birds in their search for food.

This thesis argues that SIL allocation can be supported effectively and efficiently in

complex system architectures using a mixture of model-based safety analysis and

metaheuristics optimisation algorithms.

1.1.6 Focusing on the automotive industry

Road safety is a major concern of modern society and some important targets

have been defined internationally in regards to mortality and disability due to car

crashes. In Europe, for example, the European Commission has targeted a reduction of

50% by the year of 2020 (versus 2010) (European Commission, 2015). Automotive

companies help compliance with the targets by continuously integrating new safety

functionalities in their vehicles and what many of these new features have in common

is the integration of electronics and software.

Increasing system complexity is a trend across industry sectors and especially on

the automotive domain. Six years ago, Charette (2009) published an article with a catchy

name: “This Car Runs on Code”. Illustrating the issue of relative complexity, the article

reveals that a premium car back then would have probably included an astonishing

number of 100 million lines of code (versus, for example, the 6.5 million lines of code in

Boeing’s 787 that was being delivered to customers in 2010). The same article also

mentions a study that predicted that cars would include 200 to 300 million lines of code

in the near future!

37

Whilst this thesis addresses the generic problem of “safety integrity requirements

allocation”, the automotive industry will be taken as an application example. In

particular, the SIL decomposition algebra defined by ISO 26262 will be followed and

automotive case studies will be analysed. In this industry sector, SILs take the name of

Automotive SILs (or ASILs).

1.2 Research hypothesis

The allocation of Automotive Safety Integrity Levels in large and/or complex

architectures can be efficiently supported through automated model-based safety

analysis and the optimisation of development costs with metaheuristics.

1.3 Research goal and objectives

ASIL allocation impacts deeply on the development of safety-critical systems. It is

important to find allocations that meet safety integrity requirements and that

simultaneously minimise development costs. Given the complexity of modern safety-

critical systems, finding these allocations clearly demands automated and efficient

support. In the state-of-the-art of model-based safety analysis, methods and tools have

been identified which can be applied to large architectures in very acceptable times.

They provide the system failure information that allows rationalising which ASIL

allocations are valid. Since suitable techniques are already available at the start of this

project, research will not focus on the development or enhancement of model-based

safety analysis. The goal of the thesis is the development of an efficient metaheuristic

optimisation method that can find valid, cost-effective ASIL allocations. The technique,

merged with state-of-the-art model-based safety analysis tools, shall provide an overall

38

automated approach capable of supporting ASIL allocation in the context of complex

systems.

Attaining the thesis goal requires meeting several objectives:

1. Investigate, amongst the state-of-the-art in metaheuristic optimisation, a set

of techniques that can be applied to solve the novel problem of scalable

allocation of ASILs.

ASIL allocation poses a complex combinatorial problem capable of generating

solution spaces that are well beyond the realms of exhaustive evaluation.

Metaheuristics have been successfully applied to countless combinatorial problems, and

are known to be able to provide (near) optimal solutions within efficient time spans.

There is, however, a wide range of metaheuristic optimisation techniques available, and

there is no one technique that outperforms all others for every problem. Furthermore,

metaheuristics are generic optimisation strategies, which need to be adapted to the

problem at hand. Popular metaheuristics, and the state-of-the-art of their application,

will be investigated to derive effective techniques to tackle the ASIL allocation problem.

Although multiple techniques will be created, it would be important to point system

designers to the most promising one. Consequently, the second objective is:

2. Establish a set of tests and metrics that allow comparison of the performance

of the metaheuristic techniques being investigated.

The problem of finding cost-efficient ASIL allocations is a new one. It is important

to define tests and metrics that allow evaluation and comparison of techniques

developed to tackle it. Fulfilling this objective will enable choosing, amongst the multiple

techniques investigated in the context of objective 1, the most promising to carry the

39

optimisation task. Once a technique is chosen, it would be desirable to study it in more

detail to try and enhance further its performance and usability. The third objective of

this thesis is therefore to:

3. Select the best performing metaheuristic and examine the possibility of

improving it further and enhance its usability.

Any improvement that can be made to the optimisation technique will be

important, both as means to achieve better cost-effective solutions, and/or to improve

scalability to larger and more complex problems. Examining opportunities for faster

performance is also very relevant in the light of the iterative nature of ASIL allocation.

A set of guidelines for the usage of the algorithm are needed. These would

minimise the effort spent by the system designer when using the optimisation technique,

and as a result he would be able to spend more time analysing the allocation results.

4. Apply the developed approach to case studies in order to validate its

applicability and usefulness to the development of complex engineering

systems.

In comparing the different optimisation techniques, it is important to evaluate

their performance in the context of problems from complex engineering systems. A

benchmark of problems generated from automotive safety-critical systems will be

created in the context of objective 2. The optimisation algorithms developed will be

applied to this benchmark. Furthermore, the case study of a hybrid braking system for

electrical vehicles will be used to illustrate the usefulness of the approach.

40

5. Explore the impacts of different cost heuristics in the allocation of ASILs.

Safety integrity requirements allocation has been analysed in the literature as a

problem where the sum of SILs allocated across a system architecture are to be

minimised. These approaches are implicitly assuming that development costs grow

linearly with the SIL allocated to a component. However, in industry, a variety of SIL-

dependent cost functions have been advanced. The impacts of using different cost

functions in defining what solutions are seen as optimal will be analysed.

1.4 Thesis structure

An outlook on the remaining chapters that compose the thesis is provided now.

2. Background

Chapter 2 frames the research by presenting foundation concepts and processes,

as well as a review of relevant literature. The chapter initially provides an overview of

how safety integrity requirements allocation is generically guided across industries, then

providing further detail on the process prescribed by the ISO 26262 standard for the

passenger car sector. A review of methods and tools providing support for the allocation

of safety integrity requirements is presented towards the end of the chapter.

3. Discovering cost efficient ASIL allocation strategies

Chapter 3 starts by formulating the problem of finding valid ASIL allocation

solutions that minimise system development costs. A discussion on optimisation

research areas is subsequently introduced and the chapter then converges to describing

a series of sophisticated metaheuristic techniques to carry out ASIL allocation (objective

41

1). The techniques are based on the popular metaheuristics: Genetic Algorithms, the

Particle Swarm Optimiser and Tabu Search.

4. Case studies and evaluation metrics

Chapter 4 presents a set of optimisation problems and evaluation metrics to

enable comparison of different optimisation techniques to conduct ASIL allocation

(objective 2). A case study of a hybrid braking system is used to evaluate the applicability

and usefulness of the automated approach for ASIL allocation (objective 4). The same

case study is then utilised to explore the impacts of different cost heuristics in defining

the optimal solution for a problem (objective 5).

5. Experimentation and evaluation

Chapter 5 addresses objective 3 of the thesis. Initially, the metaheuristic

optimisation techniques developed in Chapter 3 are compared. The best performing is

then taken, and a series of strategies to improve its performance further are evaluated.

Investigation towards deriving guidelines for the parameterisation of the algorithm is

also shown. Finally, the impacts of considering different cost functions for ASIL allocation

are further explored (objective 5).

6. Conclusions

Chapter 6 is the conclusion chapter of the thesis. It enumerates the contributions

made in the context of the objectives defined and it describes the impact on external

research.

42

7. Limitations and suggestions for future work

Chapter 7 is the final chapter and it discusses limitations, areas for improvements

and relevant paths for future work that are left to pursue at the end of this thesis.

1.5 Summary of contributions

This was the first work to investigate the impacts of user-defined cost functions

when deciding on an ASIL allocation for a system architecture. The use of different cost

functions have determined different optimal solutions for an automotive hybrid braking

system. This investigation points for the need of work in industry to derive most accurate

cost information, so that decision support techniques can provide the system designer

with solutions which are closer to the “true” optimum. To enable support for ASIL

allocation in complex architectures and across user defined cost functions, the research

successfully combined, for the first time, an automated safety analysis technique with

metaheuristic optimisation methods. Furthermore, in order to allow the evaluation and

comparison of different optimisation methods, an ASIL allocation benchmark was

created. Three metaheuristic-based techniques were developed, which can successfully

solve the entire benchmark to optimality. Tabu Search was the fastest technique across

the benchmark and its performance was subsequently improved further, namely

through parallelisation. The technique’s usability was also enhanced.

1.6 Publications

Part of the work presented in this thesis has been published in the context of

multiple conferences and in one edition of the IEEE Software magazine. Azevedo et al.

(2014b) describes an approach for the automatic allocation of Automotive Safety

Integrity Levels based on HiP-HOPS automated Fault Tree Analysis capabilities and it

43

shows its application to a hybrid braking system for electric vehicle integration. Azevedo

et al. (2014a) explores the impacts of using different cost heuristics in defining the

optimal allocation solutions in the hybrid braking system; the same article formulates

ASIL allocation as a constrained cost optimisation problem. Parker et al. (2013) and

Azevedo et al. (2013) show two metaheuristic-based techniques to find ASIL allocations

that minimise system development costs. The first presents a Genetic Algorithm

approach and the second a Tabu Search method.

44

2. Background

This chapter introduces the reader to the context of the research project. The

concepts of functional safety and safety integrity levels are introduced and the

standardised automotive process for top-down safety integrity requirements allocation

is analysed. The current support for SIL allocation is examined, setting the scene for the

work developed in this thesis.

2.1 Functional Safety and Safety Integrity Levels

When there is no unreasonable risk caused by a malfunctioning behaviour of

Electrical/Electronic (E/E) systems, it is said that functional safety has been achieved

(Int’l Organization for Standardization, 2011). Functional safety standards provide

guidance for the development of safety-critical systems that include E/E components.

IEC 61508, entitled “Functional Safety of Electrical/Electronic/Programmable Electronic

Safety-related Systems”, was born within the process control industry and has set the

grounds for modern functional safety standards. There have been two editions of IEC

61508 (Int’l Electrotechnical Commission, 1998; Int’l Electrotechnical Comission, 2010).

Baufreton et al. (2010) provide an overview of safety standards history; the authors

state that IEC 61508 was created with the intent of becoming a generic safety standard

from which industry-targeted documents would be derived. The reality is, however, that

the standard is applied as a general guiding document across different industries.

Nevertheless, sector-targeted documents have also been introduced to cover needs for

more specific guidance. A few examples of functional safety standards and the industry

sector to which they apply are provided next.

45

 IEC 61511: Applies to the process industry

(Int’l Electrotechnical Commission, 2003)

 IEC 61513: Applies to nuclear power plants

(Int’l Electrotechnical Commission, 2011)

 EN 50126, EN 50126 and EN 50129: Apply to the railway industry

(European Committee for Eletrotechnical Standardization, 1997, 2001, 2003)

 ARP4754-A: Applies to the aerospace industry

(Society of Automotive Engineers, 2010)

 ISO 26262: Applies to the automotive industry

(Int’l Organization for Standardization, 2011)

As introduced in Chapter 1, safety integrity refers to the probability of a safety-

critical system satisfactorily performing the required safety functions. When dealing

with random hardware failures, which are due to physical factors such as corrosion and

wear out, safety standards prescribe safety integrity requirements in the form of targets

for the maximum probability of failure. Baufreton et al. (2010) have studied safety

standards from six industry sectors; they report that in dealing with systematic failures

(i.e., failures introduced by errors in specification, design or implementation) none of

the documents “gives credit to probabilistic assessment”. Instead, safety standards use

a process based on prescribing a range of activities to be undertaken during the

development and validation of architectural elements. The process is enabled through

a concept generally known as the Safety Integrity Level or SIL.

In the early stages of development, hazards, i.e. potential sources of physical injury

caused by system malfunctions, are identified and their associated risk is estimated on

46

the basis of some parameters (e.g. hazard’s severity of potential harm). Risk is

characterised with a SIL. Usually there are five SILs (e.g. SIL 0 to SIL 4, in IEC 61508); the

different levels serve to impose sufficient requirements to minimise the risk of a given

hazard, reducing it to an acceptable, residual level. In a risk assessment procedure where

severity is the only parameter to take into account, a life threatening hazard will be

assigned with a high SIL and, as a consequence, strict requirements will apply. The SIL of

the hazard is allocated top-down to architectural elements that can cause that system

hazard. A high SIL imposes stringent development and validation requirements for the

components it is allocated to.

The SIL was first introduced by the UK Health & Safety Executive Guidelines, and

subsequently adopted by functional safety standards (Papadopoulos et al., 2010). SILs

take different names depending on the sector of application:

 IEC 61508 and EN 5012x: Safety Integrity Levels (SILs)

 ARP4754-A: Development Assurance Levels (DALs)

 ISO 26262: Automotive Safety Integrity Levels (ASILs)

The research project focuses on the automotive industry, which is governed by the

processes from ISO 26262 “Road Vehicles – Functional Safety”. In the next section, an

overview of this standard will initially be provided; then, the approach it prescribes for

integrity requirements distribution will be presented.

47

2.2 Distributing safety integrity requirements in automotive systems

2.2.1 Overviewing ISO 26262

The development of ISO 26262’s first edition was a 4 year-long project, which

started in July of 2007 and was concluded in November of 2011. Before ISO 26262, the

application of IEC 61508 was sometimes found, but practitioners often experienced

difficulties in applying a standard that was not tailored to the automotive sector

(Baufreton et al., 2010). ISO 26262 specifically applies to E/E systems of series

production cars with a maximum gross weight of 3500 kg. The standard includes 10 parts:

1. Vocabulary

Defines all the terms used throughout the standard.

2. Management of functional safety

Specifies project-independent safety management requirements for

organisations, including requirements for safety culture implementation and

competence management. It also defines project-specific requirements for

the management of safety activities to be undertaken during each stage of

the safety lifecycle.

3. Concept phase

Specifies the requirements for item definition, initiation of the safety lifecycle,

hazard analysis and risk assessment, and the functional safety concept.

4. Product development at the system level

Specifies requirements for development at the system level, including safety

requirements specification, design, verification, integration, testing and

release for production.

48

5. Product development at the hardware level

Specifies requirements for development at the hardware level, including

safety requirements specification, design, verification, integration and testing.

6. Product development at the software level

Specifies requirements for development at the software level including

specification and verification of safety requirements, testing and integration.

7. Production and operation

Specifies requirements for production, operation, service and

decommissioning of the item.

8. Supporting processes

Specifies requirements for supporting processes such as interfaces with

distributed developments, change management and documentation.

9. ASIL-oriented and safety-oriented analysis

Specifies requirements for the application of ASIL decomposition and for the

execution of safety analysis.

10. Guideline on ISO 26262

Provides an overview of the standard and examples of key processes for

better understanding.

ISO 26262 establishes a complete automotive safety lifecycle, covering all stages

of the vehicle’s lifetime: from item definition, to development and all the way to

decommissioning. In the context of ISO 26262, item stands for a system or array of

systems to which the standard’s process is going to be applied. An overview of ISO

26262’s safety lifecycle is presented in Figure 1. It can be divided in to three main stages.

49

Figure 1 - Simplified safety lifecycle of ISO 26262.

At the concept phase, the item is to be defined and for the initiation of the safety

lifecycle it should be clarified if the item is a new development or a modification to a

pre-existing system. The risk associated with the item’s hazards is to be calculated and

ASILs are to be determined to impose appropriate integrity requirements. A functional

safety concept shall be specified which includes a set of safety requirements and a

preliminary system architecture to address the identified hazards.

The various parts of the product development phase (system, software and

hardware development) follow a V-model as a reference process model (see Figure 2).

Requirements specification, design and implementation activities refer to the left-hand

50

branches, whereas integration, testing, verification and validation activities belong to

the right hand side branches.

Figure 2 – ISO 26262’s V-model development process for system, hardware and software.
The numbers showing in an “m-n” format point to the nth clause of the mth standard part

(Int’l Organization for Standardization, 2011).

The last stage of the product development phase is the release for production step,

which confirms that the item complies with the requirements for functional safety at

the vehicle level and that it is ready for series-production and operation.

After release for production, the standard addresses production planning and

control. These activities shall consider, for example, safety-related special

characteristics of the item that have been determined during the development phases.

A temperature range might have to be respected during the production process, for

instance. Finally, requirements are specified for the development and management of

51

the user manual as well as instructions for maintenance and repair, and lastly

disassembly.

2.2.2 ASILs: From Hazard Analysis to allocation and decomposition

The standard uses a risk-based approach, specific to the automotive domain, to

assign ASILs to hazardous events and through those ASILs it specifies requirements for

avoiding unreasonable risk. This process will be reviewed next.

At the concept phase, hazards are identified and they are linked with the

operational situations in which they may occur (e.g. weather and road layout). The

combination of a hazard and an operational situation gives a hazardous event. A risk

assessment process then takes place through the estimation of the severity, exposure

and controllability of each hazardous event.

Severity of potential harm (S) refers to the degree of physical damage caused to

each endangered individual, including the driver, the passengers and other traffic

participants. Table 2 shows the classes of severity described in the standard.

Table 2 - Severity of potential harm levels (Int’l Organization for Standardization, 2011:Part
3).

S0 S1 S2 S3

No injuries
Light and
moderate

injuries

Severe and life-
threatening injuries
(survival probable)

Life-Threatening
(survival uncertain),

fatal injuries.

Probability of exposure (E) refers to how frequently and for how long individuals

are exposed to the hazardous event. Table 3 shows the different classes of probability

of exposure.

52

Table 3 - Probability of exposure levels (Int’l Organization for Standardization, 2011:Part 3).

E0 E1 E2 E3 E4

Incredible
Very low

probability
Low probability

Medium
probability

High
Probability

Controllability (C) refers to the ability of the driver or other traffic participants to

gain control of the hazardous situation in order to avoid the harm. There are four classes

of controllability, as seen in Table 4.

Table 4 - Controllability levels (Int’l Organization for Standardization, 2011:Part 3).

C0 C1 C2 C3

Controllable in
general

Simply controllable
Normally

controllable
Difficult to control
or uncontrollable

The combination of the three factors maps an ASIL to each hazardous event (see

Table 5). Each ASIL implies integrity requirements of different stringencies. The standard

defines five ASILs. They range from A (least stringent requirements) to D (most stringent

requirements). Furthermore, when no special safety-related requirements are to be

applied, the level QM is assigned; QM redirects development to Quality Management.

Table 5 - ASIL to hazardous event mapping as a function of severity, exposure and
controllability (Int’l Organization for Standardization, 2011:Part 3).

Severity class
Probability

class

Controllability class

C1 C2 C3

S1

E1 QM QM QM

E2 QM QM QM

E3 QM QM A

E4 QM A B

S2

E1 QM QM QM

E2 QM QM A

E3 QM A B

E4 A B C

S3

E1 QM QM A

E2 QM A B

E3 A B C

E4 B C D

53

A life threatening hazardous event, which is highly likely to occur and that is

difficult to control is assigned with the most stringent level (ASIL D).

After characterising a hazardous event with an ASIL, the next step is to define

Safety Goals (SGs). They are very high level safety requirements related to the

prevention or mitigation of hazardous events. The standard uses the example of an

airbag system to illustrate the notion of SG. In the example it provides, the concept of a

hazardous event is bypassed, and only a hazard associated with the system is presented.

Possibly, this has been done to simplify the example. One potential hazard associated

with the airbag system is then: “unintended deployment”. The following SG can be

formulated: “ensure that the airbag does not deploy, unless a crash occurs that requires

deployment” (Int’l Organization for Standardization, 2011:Part 10). SGs inherit the ASILs

of the hazardous events they are meant to avert.

The safety integrity requirements for random hardware failures are defined at the

SG level. The standard defines two metrics to evaluate the robustness of the hardware

architecture involved in achieving an SG to 1) single-point1 and residual2 faults, and 2)

to latent faults3. Furthermore, two alternative methods are established to assess if the

residual risk of SG violation due to random hardware failures is sufficiently low. One is

based on a global probabilistic evaluation of the hardware involved in assuring the SG

and the other independently examines the impact of each fault identified as a possible

cause of SG violation. For all four evaluation methods that have been enumerated,

1 This type of fault directly violates a safety goal; no mechanism is implemented to control faults in

the respective hardware element.
2 This type of fault directly violates a safety goal; at least one mechanism is implemented to control

faults in the respective hardware element.
3 This type of fault violates a safety goal only in conjunction with another independent fault; this

fault is not detected any mechanism or perceived by the driver.

54

targets are defined as a function of the SG’s ASIL – generally, the higher the ASIL, the

more stringent targets that must be met.

ISO 26262 defines a top-down process for safety requirements specification,

which starts from the SG concept (see Figure 3).

Figure 3 - Structure of safety requirements. The numbers showing in an “m-n” format point
to the nth clause of the mth standard part (Int’l Organization for Standardization, 2011:Part 3).

Functional Safety Requirements (FSR) are to be defined from SGs. FSRs should

specify implementation-independent safety behaviour to achieve an SG. Revisiting the

airbag example introduced earlier, at this stage it can be specified that there must be a

redundant function to detect if a collision has occurred. Next, Technical Safety

Requirements (TSRs) are formulated from FSRs. TSRs detail the implementation of the

FSRs at the system level. Finally, Hardware Safety Requirements (HSRs) and Software

Safety Requirements (SSRs) are to be derived from the TSRs.

55

As safety requirements are being formulated top-down, they inherit the ASIL of

the upper level safety requirement they are derived from. Safety requirements and their

respective ASILs are allocated to architectural elements of the current design iteration -

the process follows the hierarchical definition of the system, from preliminary

architecture, down to software and hardware. The process is illustrated in Figure 4.

Figure 4 - Safety Requirements (SR) hierarchical inheritance of ASILs and allocation of SRs
and respective ASILs to the elements of the system architecture. Only one SR and one

architectural element are shown at each refinement step, but multiple may exist.

An architectural element that when failing leads to the violation of an ASIL B SG,

will itself be allocated with ASIL B, as a result of the hierarchical safety requirement ASIL

inheritance. The ASIL allocated to an architectural element defines the safety integrity

requirements to deal with systematic failures that need to be fulfilled by that element.

These include specific development and verification activities to be undertaken. Higher

ASILs impose more stringent activities.

When architectural decisions lead to the existence of sufficiently independent

architectural elements, safety requirements can be implemented redundantly by the

independent elements. In these scenarios, the standard allows the allocation of lower

56

ASILs to the decomposed safety requirements. In turn, this means that the redundant

architectural elements can be developed according to lower ASILs than the one of the

SG they are addressing. This process is coined in the standard as ASIL decomposition.

The decomposition schemes allowed can be observed in Figure 5. ASIL decomposition

can be applied to the functional, technical, hardware or software requirements.

Figure 5 - ASIL decomposition schemes (Int’l Organization for Standardization, 2011:Part 9).

ASIL decomposition can be performed more than once to the same safety

requirement according to the patterns of Figure 5. The standard says that, “in general,

ASIL decomposition allows the apportioning of the ASIL of a safety requirement between

several elements (…)” (Int’l Organization for Standardization, 2011:Part 9). The process

can be formalised according to an ASIL algebra (Papadopoulos et al., 2010; Mader et al.,

2012), which is based on assigning the different ASILs with integer numbers: ASIL QM -

57

0; ASIL A - 1; ASIL B - 2; ASIL C - 3; ASIL D - 4. If only the failure of 𝑖 elements jointly violate

an SG, Equation 1 applies.

∑𝐴𝑆𝐼𝐿𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑗

𝑖

𝑗= 1

 ≥ 𝐴𝑆𝐼𝐿𝑆𝐺 Equation 1

ASIL decomposition is desirable for developers of systems as it allows the meeting

of a potentially high ASIL of an SG, without having to develop all components of the

system architecture according to that high ASIL.

ASIL decomposition concerns systematic failures only, and therefore requirements

imposed to random hardware failures are not affected by the technique.

2.2.3 ASIL decomposition example

To better demonstrate ASIL decomposition, ISO 26262 includes an illustrative

example (Int’l Organization for Standardization, 2011:Part 10). That example is visited in

this section.

A system has an actuator that is triggered by the driver’s action on a dashboard

switch. The actuator provides a comfort function, which is assumed to be dangerous if

activated above 15 km/h. A Hazardous Event 1 (HE1) is then established as: “the

activation of the actuator while driving at a speed above 15 km/h, with or without a

driver request”. Through risk assessment HE1 is assigned with ASIL C. A Safety Goal 1

(SG1) is then defined: “the actuator shall not be activated while the vehicle speed is

above 15 km/h”. SG1 inherits the ASIL of HE1 (ASIL C). A preliminary architecture of the

system is created (see Figure 6).

58

Figure 6 - Preliminary architecture of illustrative item for ASIL decomposition (Int’l
Organization for Standardization, 2011:Part 10).

The driver’s request as well as the vehicle speed are inputted to the Actuator ECU

(AC ECU); the latter can activate or deactivate the actuator. The Vehicle Speed (VS)

measurement is made in the VS ECU. Three safety requirements are defined for the

system and inherit the ASIL of SG1.

 SR1: The VS ECU shall send the accurate vehicle speed information to the AC ECU

 SR2: The AC ECU shall power the actuator only if the vehicle speed is below 15 km/h

 SR3: The actuator shall only be activated when r by the AC ECU

The developers chose to introduce a redundant element to deal with powering the

actuator. The evolved architecture can be observed in Figure 7.

Figure 7 - Second design iteration of illustrative item for ASIL decomposition (Int’l
Organization for Standardization, 2011:Part 10).

59

A safety switch has been introduced, so that in case of AC ECU failure the actuator

can be disabled at speeds above 15 km/h. SR2 and a new SR4 address the powering of

the actuator:

 SR4: The switch shall be in an open state if the vehicle speed is above 15 km/h.

SR2 and SR4 redundantly implement SG1. Only the failures of both the AC ECU and

the safety switch would cause the violation of the SG and therefore ASIL decomposition

can be applied. The decomposition possibilities are presented in Table 6.

Table 6 - Possible ASIL allocations for SR2 and SR4 (and respective components).

Allocation
Possibilities

Requirement SR2
(AC ECU)

Requirement SR4
(Safety Switch)

SG1

#1 C (3) QM (0)

ASIL C (3)
#2 B (2) A (1)

#3 A (1) B (2)

#4 QM (0) C (3)

Failure to meet either SR1 or SR3 directly results in the violation of the safety goal.

These two requirements (and their respective architectural elements) receive the ASIL

of SG1.

2.3 Decomposing SILs in the aerospace industry

Several functional safety standards share similar concepts of SILs, but the majority

does not provide guidance for SIL reduction when in the presence of functional or

architectural redundancy (Blanquart et al., 2012). However, some of the latest guiding

documents have introduced specific rules to allow such downgrading. This is the case of

ISO 26262 (released in 2011), as shown already in this thesis, and of ARP4754-A for the

aerospace domain (released in 2010).

60

Development Assurance Levels (DALs) are the SILs for the aerospace industry. As

with the automotive case, five levels are identified: DALs range from A to E, but run

opposite to ASILs with A implying the most stringent requirements. In regards to how

DALs are distributed across a system architecture, the process starts with DALs being

assigned to system failures. This assignment is based on the risk associated with the

system failure. In the ARP4754-A, system failures are termed failure conditions and risk

is estimated solely on the basis of severity (see Table 7).

Table 7 - ARP4754-A: Failure condition classes and DALs.

Failure Condition Severity DAL

Catastrophic A

Hazardous B

Major C

Minor D

No Safety Effect E

The process then continues with DALs being allocated to functions and afterwards

inherited by the subsystems and components that implement them. In regards to DALs

decomposition, ARP4754-A gives two options:

 Option 1: Allocate one element with the original DAL and downgrade the

remaining elements two levels at the most

 Option 2: Downgrade by one level the DAL of a pair of elements and reduce the

remaining elements by two levels at the most

Figure 8 gives the DAL decomposition schemes for three components which must

fail together to cause a failure condition. The alternatives shown take maximum

permissiveness of the DAL reduction options, i.e. “the remaining elements” are

61

allocated with two lower levels. The latter only does not hold true for DAL D

decompositions, since there is only one lower level (DAL E).

Figure 8 - DAL decomposition schemes for three components.

2.4 SIL allocation - costs matter

SIL allocation is presented in ISO 26262, and other in other safety standards, as a

problem where the goal is to fulfil a set of constraints, ensuring that system level

requirements are being met. Naturally, standards are focused on safety, and cost

considerations are not really taken into account. As argued in Azevedo et al. (2014a),

there are unexplored opportunities if the problem is approached in this way. Complying

with a given ASIL means that a set of activities needs to be performed during

development and validation. They are reflected in the end as costs, and vary with the

specific ASIL prescribed to a component. Many allocation possibilities may potentially

62

exist, and in order to choose the most advantageous solutions, one needs to

contemplate their different cost implications.

SIL decomposition is in the first instance a technique that allows decreasing

development costs, as where it is applied, components do not individually need to

entirely fulfil the SIL of the SG they are assuring. However, the cost differences between

the different SILs can reveal decomposition strategies that are more promising than

others. At time of design, exact development costs can be hard to obtain. However,

deliberations can still be made on the basis of some heuristic, which indicates the cost

jumps between complying with the various ASILs. For example, if considering a

logarithmic cost increase between integrity levels (ASIL QM = 0; ASIL A = 10; ASIL B = 100;

ASIL C = 1000; ASIL D = 10000), when decomposing an ASIL B amongst two components,

C1 and C2, one single optimal solution is revealed (see in bold).

 C1 (ASIL QM) + C2 (ASIL B): 0 + 100 = 100 cost units

 C1 (ASIL A) + C2 (ASIL A): 10 + 10 = 20 cost units

 C1 (ASIL B) + C2 (ASIL QM): 100 + 0 = 100 cost units

The example above should not mislead the reader into trusting that this is a trivial

problem where each decomposition opportunity can be examined independently.

Components are often participating in assuring multiple safety goals and numerous

chains of conflicting constraints must be examined. This is clearly a complex

combinatorial problem where the paradigm is constrained optimisation of costs, rather

than satisfaction of safety integrity constraints.

63

2.5 Supporting ASIL allocation

When performing ASIL allocation, the complexity associated with modern safety-

critical architectures is a concern. Systems are often composed of a large number of

components. Furthermore, they deliver multiple functions, which can be

interdependent and share elements. As identified in chapter 1, there are two main

challenges in allocating ASILs in these types of architectures: 1) studying the complex

failure behaviour of the system to rationalise what allocations are valid and 2) efficiently

explore the huge number of ASIL allocation options available and determine a cost-

effective solution that meets allocation constraints. This section provides an overview

of current work towards meeting these challenges and establishes the basis for the

approach developed in the thesis.

2.5.1 Safety analysis to the rescue!

Safety analyses are systematic techniques that can help with understanding the

failure behaviour of a system, and how an architecture can be improved given the

identified safety flaws, or shortcomings. Failure Mode and Effects Analysis (FMEA) and

Fault Tree Analysis (FTA) are two of the most popular safety analysis techniques. They

have been widely used across industries (e.g. nuclear, automotive, aerospace)

contributing significantly to making modern systems safer.

FMEA was first introduced in the 1940s (U.S. Department of Defense, 1949). When

performing an FMEA, ways in which a component can fail, i.e. failure modes, are

identified and their impacts on the rest of the architecture are evaluated up to the

system level. FMEA works bottom up, falling into the category of inductive safety

analysis. Risks associated with the effects of each of the failure modes are calculated on

64

the basis of a quantification of their severity, occurrence and detection. Risk estimation

allows the prioritisation of the failure modes that need correction (McDermott et al.,

1996). The results are presented in tables, often of large sizes.

FTA dates back to the 1960s (Watson, 1961) and is a deductive safety analysis:

starting from system hazards (top events), analysis is performed in a top-down fashion

in order to find the causes of system failure in the form of component failure modes –

the basic events. At the end of the process, basic and top events are connected through

a series of logical gates (OR, AND…) in a tree shaped graphical representation.

Qualitative and quantitative analysis can be performed on the constructed fault tree. In

qualitative analysis, logical operations and simplifications are applied in order to obtain

the Minimal Cut Sets (MCSs). MCSs are the smallest conjunctions of basic events that

can cause a top event. This gives a better perception of the causes of a system failure

than the results of classical FMEA application, where the interactions between

components’ failures are neglected. MCSs can be characterised by the number of basic

events they include – the MCS order. If a MCS is composed of two component failure

modes, it is said to be a MCS of order 2, for example. As for quantitative analysis, the

probability of a top event happening is calculated on the basis of the failure probabilities

of the basic events.

Qualitative FTA is particularly useful for supporting (A)SIL allocation and is the

general basis for related work in this area (see Papadopoulos et al. (2010), Bieber et al.

(2011), Mader et al. (2012) and Dhouibi et al. (2014)). The resulting products of its

application – the MCSs – can be used to formulate the constraints that must be met

when allocating SILs across the architectural elements of a system design. Consider an

65

illustrative System 1 (S1), which provides a safety-critical function. The system integrates

four components and the safety-critical function is delivered at the output of a

component C4. One SG (SG1) is formulated in dealing with the failure of the safety-

critical function and is assigned with ASIL C. The fault tree in Figure 9 has been created

to understand the failure behavior of S1, namely what causes the violation of SG1.

Figure 9 - Illustrative fault tree to investigate causes of SG1 violation in S1.

The fault tree of Figure 9 is a simple one, and the MCSs can be easily determined.

Starting with the component failure closest to the top of the fault tree, “C4 failure” is

66

connected to an OR gate which links to SG1 violation. This means that the failure of C4

directly causes SG1, and therefore a first cut set has been found for the fault tree:

MCS1: Violation SG1 = C4 Failure

“C4 failure” is in an OR gate with “No output at C3”; the latter can be caused in

two ways. One is “C3 failure”. “C3 failure” is linked with the violation of SG1 through

two OR gates, which means that it directly causes this top event. MCS2 can be

formulated:

MCS2: Violation SG1 = C3 Failure

Finally, the conjoint failure of C1 and C2 also cause the “No output at C3” event,

and in turn the violation of SG1. Note that it is necessary that the two components fail

to cause the top event. An MCS3 is composed by the failure of the two components.

MCS3: Violation SG1 = C1 Failure AND C2 Failure

Three constraints can then be easily formulated from the three identified MCSs:

Constraint 1: From MCS1: ASILC4 ≥ ASILSG1 (ASIL C)

Constraint 2: From MCS2: ASILC3 ≥ ASILSG1 (ASIL C)

Constraint 3: From MCS3: ASILC1 + ASILC2 ≥ ASILSG1 (ASIL C)

Understanding the failure behavior of a system is crucial for the application of ASIL

allocation. FTA is an effective, systematic way of studying how a system can fail. It allows

a user to determine the causes of system hazards in the form of minimum combinations

of components’ failures. This information can in turn be used to identify where

decomposition can be applied. The illustrative fault tree presented in this section

67

represents a very simple scenario. In real-world designs, systems can be composed of a

vast number of components, resulting in very large fault trees. Moreover, numerous

AND gates often appear, and complex failure dependencies need to be analysed. When

dealing with this type of system, fault tree synthesis and analysis clearly demands

automated support.

2.5.2 Model-based Safety Analysis

Classical application of safety analysis relies on the skills and experience of the

safety engineer. Although this approach may work for small, simple systems, as the

architectures under analysis become larger and more complex, the probability of human

introduced error increases dramatically. Furthermore, such manual application means

that an important amount of time needs to be expended. This contributes to safety

analysis being performed only a few times during system design, which is unfortunate

as they are especially useful as part of an iterative design method where there is a

continuing process for identifying flaws and highlighting possible chances for

improvement.

Over the years, automated support has risen in the form of Model-based Safety

Analysis techniques. They usually fall into two main categories. One centres on

compositional safety analysis approaches, where formal or semi-formal languages are

developed to specify system failure behaviour and allow their analysis. Compositional

Safety Analysis approaches include techniques such as the pioneering Failure

Propagation and Transformation Notation (FPTN) (Fenelon & McDermid, 1993), or

Component Fault Trees (CFT) (Kaiser et al., 2003; Grunske & Kaiser, 2005) and

Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS)

68

(Papadopoulos & McDermid, 1999). The second category is based on more rigorous

modelling to allow model-checking and simulation techniques to identify the effects of

component failures on system safety goals – for example, Altarica (Bieber et al., 2004)

and FSAP-NuSMV (Bozzano & Villafiorita, 2003).

Compositional safety analyses have the main drawback of not being a fully

automated methodology, as the failure data needs to be inputted into the model

manually. However, they usually work in a deductive manner to quickly generate Fault

Trees. For Simulation-based techniques, on the other hand, component information can

be extracted from domain libraries with failure data. Fault trees can be built and

analysed using these techniques, but their usual inductive nature makes the process

more vulnerable to combinatorial explosion; as a result, it can be difficult to obtain cut

sets of high orders (Papadopoulos et al., 2011).

This thesis seeks to investigate an approach that allows the support of ASIL

allocation in complex engineering systems. HiP-HOPS was the model-based safety

analysis tool chosen to produce the MCSs required to formulate ASIL allocation

constraints. It is a deductive technique, with fast and well tested fault tree synthesis and

analysis algorithms. HiP-HOPS has further advantages from a practical point of view. It

uses the architectural model to capture failure information about components, instead

of requiring a separate failure model as the basis for its safety analysis. Also, it does not

rely on any external tools for analysis; fault tree synthesis and analysis is completely

performed within the tool.

69

HiP-HOPS contributions to the field of dependability go beyond automated FTA

and FMEA:

 analysis of time dependent failure behaviour through PANDORA

(Walker & Papadopoulos, 2008)

 consideration of preventive maintenance for dependability evaluation

(Nggada et al., 2010)

 multi-objective optimisation of safety-critical architectures

(Adachi et al., 2011)

 representation and reuse of component failure patterns

(Wolforth et al., 2010)

In addition to the above, HiP-HOPS already includes an algorithm for ASIL

allocation. The algorithm has been applied successfully to a small case study, but

subsequent tests have shown scalability issues. More details about the algorithm will be

provided in section 2.5.4.

2.5.3 Fault Tree Analysis with HiP-HOPS

This section provides some insight into the HiP-HOPS process for fault tree analysis.

HiP-HOPS line of action is divided into three main phases:

1. Modelling phase

2. Synthesis phase

3. Analysis phase

Modelling phase

The modelling phase is the only non-automated stage of the three. At this point, i)

an architectural model must be provided and ii) components must be annotated with

expressions that explain their failure behaviour.

70

Currently, HiP-HOPS interfaces with popular modelling tools, such as Matlab

Simulink (Mathworks, Inc, 2015) and Simulation X (ITI Gmbh, 2015). It must be pointed

out that these modelling frameworks allow for other analyses to take place upon the

same model (e.g. nominal performance analysis). The architectures can be designed

hierarchically to deal with complexity. This is also important in meeting current safety

standards philosophy of top-down design and analysis, from system level functional

architecture down to detailed software and hardware.

In HiP-HOPS, the failure behaviour of a component is to be expressed in the form

of logical expressions that relate how a failure at a given output can be originated from

failures on its inputs and/or internal failure modes. Input/Output (I/O) failures can be of

various classes, and are user defined. The most common are:

 omission - the absence of an I/O when there should be one

 commission - an I/O exists when it should not

 value - an I/O exists with a value different that the one expected (e.g. higher or

lower)

Consider the example of a component with one input and one output. The

omission of the component’s output can be because of an omission of its input, or an

internal failure mode. This behaviour can be annotated in HiP-HOPS with the following

expression:

Omission-Output1 = Omission-In1 OR FailureMode1

At this point, system level hazards are to be identified as well. They can be defined

as logical combinations of component output failures. An example is provided now with

71

an illustrative Hazard 1 (H1) associated with an automatic car lighting system. H1 is

defined as: “Loss of front lighting”. It can be linked with the light omission of the vehicle’s

front lamps as follows:

H1 = Omission-LampLeft.light AND Omission-LampRight.light

Synthesis phase

The components’ logical failure annotations are, in their essence, small fault trees

that explain the failure behaviour of a component. At the synthesis stage, HiP-HOPS links

input failures of components to matching classes of output failures from other

components. This is enabled via the connections in the architectural model. The tool

travels backwards from system hazards to errors in the system inputs. The result is a

fault tree per system hazard, with each fault tree being composed of multiple

component fault trees glued together (see Figure 10).

Figure 10 - HiP-HOPS - Synthesizing system hazard fault trees from components fault trees.

HiP-HOPS can output the fault trees in the input format of the popular fault tree

analysis software Fault Tree+ (Isograph Ltd, 2015) to improve their visualization.

72

Analysis phase

In the last stage of its safety analysis ecosystem, HiP-HOPS simplifies the failure

logic captured in the synthesised fault trees. Intermediate paths are eliminated and the

results consist solely of the relationships between top and basic events. HiP-HOPS works

bottom up through the fault tree, applying a modified MICSUP (Minimal Cut Sets

Upwards) algorithm (Pande et al., 1975) to obtain the Minimal Cut Sets (MCSs). The

MCSs can then be quantitatively analysed to give the probability of top events.

2.5.4 ASIL allocation with HiP-HOPS

The HiP-HOPS algorithm for ASIL allocation provides a framework to find all non-

dominated solutions. A non-dominated solution includes at least one element with a

lower ASIL than in any other solution. Consider an example of a problem where an ASIL

D (4) is to be decomposed amongst two redundant elements. A possible non-dominated

solution, Solution 1, corresponds to allocating both elements with ASIL B (2). Solution 1

dominates, for example, a Solution 2 where one element is allocated with ASIL B (2) and

the other with ASIL C (3). Solution 1 includes one element with a lower ASIL than in

Solution 2, but no element with a higher integrity level. In fact, no valid solution exists

where one element is allocated with a lower ASIL than in Solution 1, without having the

remaining element with a higher ASIL.

HiP-HOPS allocation algorithm is of an exhaustive nature, but it does not

enumerate all solutions from the search space. It goes through each cut set and

calculates the ASIL algebra compliant solutions. During the process, if an ASIL is assigned

to a component, the solutions considered for the following cut sets that include that

73

same element take the previous allocation into account. This limits the search space to

be covered as it is illustrated in the following simple example:

 Cut Set 3 (CS3) is constituted by elements Y and Z that jointly violate a safety

goal of ASIL D (i.e., ASILY + ASILZ ≥ 4)

 Assume that in cut sets CS1 and CS2, analysed previously, HiP-HOPS assigned Y

and Z with ASIL B and A, respectively

 In this way, from the initial 15 feasible solutions that could be considered for

CS3, only 11 are left to analyse (those marked “Yes" in the rightmost column of

Table 8)

Table 8 - ASIL allocation example for Cut Set 3 - CS3.

 Y Z Dominance Total ASIL
Compliant w/ previous

allocation

#1 0 4 Non-dominated 4 No

#2 1 3 Non-dominated 4 No

#3 1 4 Dominated 5 No

#4 2 2 Non-dominated 4 Yes

#5 2 3 Dominated 5 Yes

#6 2 4 Dominated 6 Yes

#7 3 1 Non-dominated 4 Yes

#8 3 2 Dominated 5 Yes

#9 3 3 Dominated 6 Yes

#10 3 4 Dominated 7 Yes

#11 4 0 Non-dominated 4 No

#12 4 1 Dominated 5 Yes

#13 4 2 Dominated 6 Yes

#14 4 3 Dominated 7 Yes

#15 4 4 Dominated 8 Yes

HiP-HOPS does not record every valid solution, but only the non-dominated ones.

This means that from the 11 feasible solutions marked with “Yes” in Table 8, only

allocations #4 and #7 would be presented to the system designer.

74

Finally, one interesting feature of the tool is that it does not assign ASILs to

components, but rather directly to their failure modes. This is to allow a better

refinement of requirements when a component can fail in multiple ways. Sub-

components that can only contribute to the failure that causes the most severe outcome

at the system outputs can be assigned with the stricter requirements, whereas the

remaining sub-components can receive lower ASILs. Nevertheless, if the designer

requires, HiP-HOPS can revert to a component allocation mode, where the ASIL

constraints associated with the different component failures must all be respected by

the component allocation.

As mentioned before, HiP-HOPS allocation algorithm suffers from scalability issues.

It was applied to a large case study and after two days of processing time (and of

generating more than 80 million dominated solutions) it had not finished the problem.

2.5.5 Other support

Two other techniques for automated SIL allocation have been identified: one was

developed for the automotive domain and introduced by Mader et al. (2012), as a plugin

to Papyrus (The Eclipse Foundation, 2015) and the other is called DALculator (Bieber et

al., 2011) and targets the aerospace industry.

As with HiP-HOPS, the Mader et al. technique is based on annotating a system

model with component failure expressions and from them building fault trees that when

analysed yield the relationships between component-level failures and SGs. This

technique builds an integer linear programming problem where the total number of

ASILs is minimised subject to two sets of constraints: ASIL allocation rules and the

designer’s preferences - he can decide beforehand a specific ASIL for a component based

75

on previous experience with an architectural element. The optimisation task is

performed with a constraint solver embedded in the plug-in; Mader et al. claim to

present the designer with only one solution, the optimal allocation. Scalability is not

addressed.

In regards to the DALculator, the approach is described from the point where

minimal cut sets are already available. The tool uses pseudo-Boolean logic to formulate

the DAL downgrading optimisation problem. The goal is to minimise the sum of DALs

across the system while satisfying the reduction rules. Tests were carried out with two

solvers, Sat4j (Artois Univeristy & CNRS, 2015) and WBO (Bieber et al., 2011), and results

were very satisfactory, even for real-world systems.

Over the course of this thesis project, another work towards automation of SIL

allocation has been proposed by Dhouibi et al. (2014) for the automotive industry. The

automation process proposed is based on the results of FTA, however, no automated

FTA engine is mentioned. Furthermore, similarly to the work of Mader et al., the safety

engineer can input his preferences. The authors argue that to their knowledge there is

no efficient cost model to describe the impact of ASILs on development costs, and

therefore the system designer should be provided with all non-dominated solutions.

They propose an allocation method based on interpreting the problem as a system of

linear equations, and deem their approach feasible for small and medium sized

architectures.

2.5.6 Discussion and optimisation approach definition

For an architectural element to comply with a higher SIL, development costs

necessarily grow. By searching for the solution that reduces the sum of the SILs allocated

76

across the system, the techniques from Mader et al. (2012) and Bieber et al. (2011)

implicitly act to minimise SIL-dependent expenses. Conceptually, they are using a cost

function which grows linearly with the SIL increase (e.g. ASIL QM = cost 0; ASIL A = cost

10; ASIL B = cost 20; ASIL C = cost 30; ASIL D = cost 40). This represents a fairly simplistic

cost model and instead, multiple heuristics can be formulated to evaluate SIL cost.

The approach from Dhouibi et al. (2014) does not seek to find solutions which

evaluate as optimal against some SIL cost function, and instead returns all non-

dominated solutions. However, a vast space of non-dominated allocations can be

available. While currently a definitive ASIL cost heuristic is not available, valid

assumptions can still be made that improve the support for the decision making process

from the system designer.

The work from this thesis targets the development of an optimisation method

which minimises ASIL-imposed development costs and that scales up to complex

engineering systems. The optimisation problem is necessarily different from the one

tackled by Bieber et al. (2011), since ASIL decomposition rules are distinct (more

permissive) than the ones from DAL downgrading. Furthermore, dissimilarities are

stretched because a user-defined ASIL cost function is allowed in this work. This last

difference is also valid in comparison to the work of Mader et al. (2012).

As already mentioned, HiP-HOPS will be the tool used to generate the MCSs that

allow formulating constraints for ASIL allocation. The HiP-HOPS FTA engine can

simultaneously study multiple fault trees from the same system model. This feature

enables capturing the causes of violation of the multiple SGs defined for a system. If an

element contributes to the violation of more than one SG, it will be possible to formulate

77

constraints which ensure that the element receives an allocation that meets the ASILs

of each SG.

Finally, the strategy used by the HiP-HOPS SIL allocation algorithm, where integrity

requirements are allocated to failure modes instead of components, is to be adopted in

the optimisation approach developed here. This allows for a more recursive

methodology to be applied during the hierarchical definition of the system: a subsystem

which is refined into complex networks of components can be seen as a "system" that

has multiple SGs and SIL requirements.

2.6 Summary

Functional safety standards address the development of safety-critical systems

based on E/E technologies. Over the years different standards have been developed to

target specific industry sectors (e.g. ARP4754-A and ISO 26262, for the aerospace and

automotive domain). They prescribe a top-down approach to allocate integrity

requirements across a system architecture, which is based on the concept of SILs. Once

allocated to an architectural element, a SIL encapsulates a series of development and

validation activities that need to be undertaken. When architectural redundancy is

present, modern standards allow for the burden of achieving an original SIL to be divided

between the redundant elements, a technique commonly known as SIL decomposition.

In the automotive industry, SILs are called Automotive SILs (or ASILs) and guidelines

define that the sum of the decomposed ASILs must meet the original level before

decomposition.

Whilst the application of ASIL allocation can be effectively achieved in the context

of small, simple systems, as system complexity increases their application is difficult.

78

First, it requires the clear understanding of the complex system architecture failure

behaviour to identify which are the valid allocations. Here, safety analysis methods such

as FMEA and particularly FTA can help, especially when automation is available. HiP-

HOPS and FSAP-NuSMV are two techniques allowing for model-based safety analysis. A

second difficulty is related to exploring the large number of allocation possibilities

available and finding a valid, cost-efficient allocation. While some support has been

proposed in the literature, current approaches either do not directly consider SIL-

imposed development costs in determining the allocations to present to the system

designer, or consider a single, linear cost model.

This thesis investigates an optimisation approach capable of finding cost-effective

ASIL allocations in large, complex automotive architectures, which works across user-

defined cost functions. The approach will explore HiP-HOPS’s ability to analyse multiple

fault trees simultaneously to find efficient allocations that comply with the ASIL

requirements defined for all the SGs of a system. Furthermore, it makes use of an

allocation method where different ASILs can be assigned to the different failures of a

subsystem, as to allow for a better refinement of requirements during the subsystem’s

hierarchical design.

79

3. Discovering cost efficient ASIL allocation strategies

When performing ASIL allocation, solutions need to be found which a) comply with

the ASIL algebra requirements and b) minimise development costs. Contemporary

systems have the potential to generate very large solutions spaces. Efficient

optimisation techniques need to be investigated which can provide solutions meeting

the two criteria above within time spans allowing for the iterative nature of modern

safety systems design.

This chapter addresses objective 1 of the thesis. Initially, the problem of finding

ASIL allocations that minimise development costs is mathematically formulated and this

is followed by a discussion on possible optimisation research areas. The chapter then

converges to presenting the optimisation techniques developed to conduct ASIL

allocation.

3.1 The ASIL allocation optimisation problem

Optimisation is generally defined as the process of finding a solution that

maximises or minimises a given function and that can be subject to a set of constraints.

In ASIL allocation optimisation, the goal is to minimise the sum of the costs associated

with the ASILs allocated to the n Failure Modes (FMs) of the system. Cost is represented

by a function C. See Equation 2.

objective: min∑𝐶(𝐴𝑆𝐼𝐿𝑖)

𝑛

𝑖=1

𝐴𝑆𝐼𝐿𝑖 ∈ [0, 1, … 4], 𝑛 ∈ ℕ, 𝐶: ℤ → ℝ0
+

Equation 2

80

The solution that minimises ASIL-imposed costs must respect a set of ASIL

Allocation Constraints (AACs). AACs define that the sum of the ASILs allocated to the

FMs of a Minimal Cut Set (MCS) must be at least the ASIL of the safety goal the MCS

violates. Let: l be the number of MCSs of a system; mk the size of the kth MCS; and kASIL

the minimum ASIL requirement for the kth MCS. AACs are formalised in Equation 3.

AACs: (∑𝐴𝑆𝐼𝐿𝑗

𝑚𝑘

𝑗=1

) ≥ 𝑘𝐴𝑆𝐼𝐿 , 1 ≤ 𝑘 ≤ 𝑙

Equation 3

 𝐴𝑆𝐼𝐿𝑗 , 𝑘𝐴𝑆𝐼𝐿 ∈ [0, 1, … 4], 𝑚𝑘, 𝑙 ∈ ℕ

ASIL allocation is a combinatorial problem. These are characterised by having only

discrete decision variables and a finite search space. There is no restriction in regards to

the form of the objective function and constraints (for example they can be nonlinear,

nonanalytic, black-box) (Papadimitriou & Steiglitz, 1982; Talbi, 2009).

The variables in ASIL allocation are clearly discrete: one of five ASILs is to be

allocated to each FM in a system. The solution space is finite and its size can be easily

calculated. It reflects the number of combinations of the five ASILs across the n failure

modes of a system (see Equation 4).

Search space size = 5𝑛 Equation 4

AACs are linear inequalities: the sum of the ASILs allocated to a set of FMs needs

to be greater or equal than the ASIL requirement of an AAC. In regards to the objective

function, the system designer can input any ASIL-dependent cost heuristic and it does

not have to follow any analytical expression. It is only assumed that such function is

81

strictly increasing, i.e., there is always a positive cost jump in implementing an element

from a lower ASIL to a higher one.

It is worth noting that depending on the ASIL allocation problem instance, multiple

optimal solutions may be available. The optimisation goal pursued here is to find one of

them.

3.2 Discussion on optimisation research areas

ASIL allocation optimisation is a complex combinatorial problem with the potential

of generating large solution spaces with multiple local optima. When tackling problems

with such characteristics the need to investigate global optimisers arises. Many global

optimisers exist and they can be divided in two major groups: exact and metaheuristics

methods. Exact methods include algorithms such as Branch & Bound, the Cutting Plane

method, Lagrangian relaxation-based methods and dynamic programming (Wolsey &

Nemhauser, 1988; Puchinger & Raidl, 2005). In turn, examples of metaheuristics are

Simulated Annealing (Kirkpatrick et al., 1983), the Particle Swarm Optimiser (Kennedy &

Eberhart, 1995) and Genetic Algorithms (Holland, 1975). Metaheuristic tactics to explore

the search space of a problem are often inspired by natural phenomena, such as the

movements of birds in their search for food.

The advantage of exact methods is that when they can complete a problem, they

are able to provide its global optimal solution. Exact methods can solve relatively small

size problems efficiently; however, in dealing with large scale instances the associated

computational burden often becomes excessive (Woon, 2009; Affenzeller et al., 2009;

Lin et al., 2012). Furthermore, exact methods often rely on rigorous mathematical

characteristics of a problem (e.g. properties of the objective function and/or constraints);

82

finding a model for a problem that can be solved by these techniques can require great

effort. Metaheuristics, on the other hand, cannot guarantee finding optimal solutions,

but are means to find good results in high dimensional problems within reasonable time

spans. Furthermore, they do not heavily depend on mathematical properties of the

problem and are more robust when tackling problems with different characteristics.

Given that this research targets the development of a scalable technique, and

taking into account that adaptability across different, user-defined cost functions is also

a requirement, metaheuristics are chosen for further investigation. Although the finding

of the global optimal solution is not guaranteed, this research will try to discover

methods that can provide good results within satisfactory time spans, thus contributing

to a more effective design of dependable systems. The flexibility of metaheuristics can

also be advantageous not just in dealing with different cost functions, but also, in

handling extra constraints that may arise from user preferences, for example.

3.3 Metaheuristics – An overview

The term metaheuristic was first introduced by Glover in 1986 (Glover, 1986). The

word has Greek origins: heuristic comes from the verb heuriskein (euriskein) which

means “to find”, and meta translates to “beyond, in an upper level”. Metaheuristics are

high level strategies meant to guide a search process that can be applied to a wide range

of optimisation problems. When using metaheuristics, solution manipulation operators

need to be tailored to the problem at hand; however, the optimisation strategy itself is

problem-independent (Affenzeller et al., 2009).

Metaheuristics are usually non-deterministic and often include a means to avoid

getting trapped in local optima. By employing sophisticated methods to explore only a

83

small fraction of the entire search space, they give a reasonable trade-off between

solution quality and processing time (Blum & Roli, 2003). There is a common agreement

that one of the most defining aspects for the successful application of a metaheuristic is

the balance between exploration (or diversification) and exploitation (or intensification)

(Blum & Roli, 2003; Gendreau & Potvin, 2005a; Yang, 2010; Boussaïd et al., 2013).

Exploration relates to the identification of areas with good solutions, whereas

exploitation refers to the process of intensifying the search in the promising areas. It is

important to quickly identify areas of good solutions, and not waste time in search areas

that have no good solutions or that have been searched previously (Blum & Roli, 2003).

Metaheuristics have been applied successfully to numerous combinatorial

problems, namely in routing, scheduling and production planning. It is extremely

difficult to keep track of all the work with metaheuristics in combinatorial optimisation;

the last attempt found in the literature for an exhaustive account dates to the mid-1990s,

by Osman and Laporte (1996).

A wide range of different metaheuristics is available. There are multiple ways of

classifying them, such as distinguishing if they use search history to guide the

optimisation process (e.g. Tabu Search (Glover, 1989, 1990)), or for instance, if the

algorithms are nature inspired (e.g. Particle Swarm Optimiser and Ant Colony

Optimisation (Dorigo, 1992)). Classifying metaheuristics into single-point and

population-based methods is, however, one of the most fundamental distinctions in the

literature (Boussaïd et al., 2013). Single-point techniques, also known as trajectory

methods, include algorithms such as Tabu Search and Simulated Annealing: they start

from a single solution that through neighbouring changes describes a trajectory in the

84

search space. Population-based methods, on the other hand, deal with a group of

solutions in every iteration. In the process, characteristics of the population as a whole,

are often used to guide their search. Genetic Algorithms, the Ant Colony Optimiser and

Harmony Search (Geem et al., 2001), for example, are all population-based

metaheuristics.

To the knowledge of the author there has not been any previous work with

metaheuristics in optimising ASIL allocation. The reason for the availability of so many

metaheuristics in the literature is that they present varying performances depending on

the problem they are applied to. In fact, as the No Free Lunch Theorem by Wolpert and

Macready (1997) postulates, no technique is versatile enough to overcome all others for

every problem. This thesis will investigate suitable optimisation approaches for ASIL

allocation based on three of the most popular metaheuristics: Genetic Algorithms,

Particle Swarm and Tabu Search. They represent disparate areas of metaheuristics

search algorithms. For example, GA and PSO are population-based, whereas TS is a

trajectory-based metaheuristic. They are also different in terms of the doctrine

underpinning their search process. For instance, PSO stems from an artificial intelligence

disciple called Swarm Intelligence, which is inspired by the social behaviours of insects

and animals (for example ant colonies and schools of fish) (Blum & Li, 2008). The

differences between the approaches will be discussed in more detail across the next

sections.

85

3.4 Metaheuristics for ASIL allocation optimisation

GA, PSO and TS have been selected to tackle the ASIL allocation problem due to

their popularity and because they represent disparate fields of metaheuristic

optimisation algorithms. Where metaheuristics are to be employed, they must be

adapted to the specifics of the problem at hand. In reality, their performance in much

depends on the suitability of this adaptation. To arrive at ASIL allocation versions of the

selected metaheuristics, algorithm designs created for other reliability engineering

problems were important sources of inspiration - similarly to ASIL allocation, most of

them are discrete and constrained (Levitin et al., 2007). The investigation culminated in

three particularly promising algorithms and this section presents them in detail.

In their search procedures, the techniques created share a common

representation for ASIL allocation solutions. This representation will be presented

before entering the description of each optimisation algorithm.

3.4.1 Solution representation

For the implementation of the algorithms presented in this thesis, a fixed-length,

integer-number encoding is used which stores the ASIL value for each Failure Mode (FM)

in the system. The number in each slot of the solution vector varies from 0 to 4 and

relates to the numbers assigned to ASILs by the ASIL algebra (ASIL QM = 0, ASIL A = 1,

ASIL B = 2, ASIL C = 3 and ASIL D = 4). An example is provided in Figure 11.

FM1 FM2 FM3 FM4 FM5

1 3 4 2 0

ASIL A ASIL C ASIL D ASIL B ASIL QM

Figure 11 - ASIL allocation solution representation (FM = Failure Mode).

86

The total cost of a solution visited by an algorithm is given by the sum of the costs

associated with the ASILs allocated across the different FMs. For the illustrative solution

in Figure 11, and assuming a logarithmic cost heuristic (ASIL QM – cost 0; ASIL A – cost

10; ASIL B – cost 100; ASIL C – cost 1000, ASIL D – cost 10000), the solution cost amounts

to 11110 units (10 + 1000 + 10000 + 100 + 0).

3.4.2 Genetic Algorithm

Genetic Algorithms, or GAs, are metaheuristics that mimic processes of natural

evolution, such as selection, crossover and mutation. GAs are one of the oldest and most

well established metaheuristics, and are particularly effective for solving large, complex

combinatorial problems (Coit & Smith, 1996b; Kuo, 2001). A typical GA approach starts

with a random population of solutions, known as candidates or individuals, who are

likely to be infeasible or present a poor fitness. In ASIL allocation, a candidate with a

poor fitness is a solution imposing high development costs. The idea then is to evolve

the initial population, through the use of a set of genetic operators and for a given

number of generations, into feasible, high fitness candidates. The next pages detail the

GA approach designed to tackle ASIL allocation.

Selection

Candidates are selected from the population to breed the next generation. Following

the survival of the fittest principle, the selection mechanism has a bias towards the fitter

members of the population. In a first step, candidates are ranked by fitness. Candidates

with a better fitness rank higher. Then, a random number, rand, is chosen from [1 to

√NI], where NI is the number of individuals in the population in each iteration. The

candidate which ranks closest to rand2 is selected for breeding. It might not be

87

immediate how this method biases the selection process but the effectiveness of the

procedure is illustrated now with an example where NI = 100 and consequently √NI = 10.

Choosing a random number between 1 and 10 from a uniform distribution, there is a 70%

chance that the selected number is between 1 and 7; therefore there is a 70% probability

that the candidate selected ranks between 1 and 49 (12 and 72, respectively). The 51

lowest ranked candidates (more than half of the entire population) are only left with a

selection likelihood of 30%.

The fitness bias of the selection operator can be altered by varying the power of

the root (Tate & Smith, 1995).

Crossover

The crossover operator relates to biological sexual reproduction and it constructs

new candidates (the children) using parts of pre-existent solutions (the parents). As the

selection operator is biased towards the fittest individuals, crossover combines parts of

already good solutions in the hope that better ones can be found. Thus, crossover

contributes to the algorithm’s convergence, focusing the search in areas where good

solutions have been found.

In the GA approach presented here, uniform crossover is utilised. Syswerda (1989)

has shown that for combinatorial problems, uniform crossover is superior to traditional

one and two-point crossover. In uniform crossover, the algorithm iterates through the

different allocation variables; for each, it selects the ASIL of one of two parents according

to a fixed uniform crossover probability and assigns it to the child solution. In the

scenario where this parameter is fixed to 40%, a child solution will have approximately

88

40% of the genes from one parent and 60% from the other. The result of a reproduction

example with a uniform crossover probability set to 40% is illustrated in Figure 12.

 FM1 FM2 FM3 FM4 FM5

Parent 1 1 3 4 2 0

Parent 2 2 2 2 1 4

Child 2 3 2 1 0

Figure 12 - Crossover operator with uniform crossover probability set to 40%.

If one-point crossover were to be used, one FM would be selected as the crossover

point. The ASILs allocated to that FM and all FMs after it would be copied from one

parent to the child. In turn, the ASILs allocated to the FMs that exist before the crossover

point would be copied from the second parent. In two-point crossover, two FMs would

be selected as crossover points. The ASILs allocated to these FMs and all the ASILs

allocated to the FMs between the crossover points would be copied from one parent to

the child. The ASILs allocated to the remaining FMs would be copied from the second

parent.

Mutation

The mutation operator randomly changes ASILs of children solutions, introducing

diversity in the search process and also contributing to the search not becoming stuck

in local optima. In the operator adopted, the algorithm goes through the various

allocations of a given children solution and selects the ones to change according to a

fixed mutation rate. The ASIL of selected FMs are changed to a random number between

0 (ASIL QM) and 4 (ASIL D). Figure 13 shows an example where the mutation rate is set

to 20% (see next page).

89

 FM1 FM2 FM3 FM4 FM5

Child 1 3 4 2 0

Mutated Child 4 3 4 2 0

Figure 13 - Mutation example with mutation rate set to 20%.

Only part of the children bred, following a fixed mutation probability, are selected

for mutation.

GA algorithm overview

1. Randomly initialise a population of individuals;

2. Select parents to breed;

3. Generate children via crossover;

4. Mutate children;

5. Add next generation individuals to population;

6. Rank population by fitness;

7. Remove worst individuals until population limit is reached;

8. Return to step 2 if stopping criterion not reached.

3.4.3 Particle Swarm Optimiser

The Particle Swarm Optimiser (PSO) aims to mimic the swarming behaviours from

flocks of birds or schools of fish. In PSO, a group of solutions, or a swarm of particles

travel throughout the search space, conceptually looking for food. Each particle learns

from its own past experience and other members’ knowledge. PSO is often quicker than

GA on benchmark functions by at least one order of magnitude (Kennedy et al., 2001;

Wang & Li, 2012). The technique was initially presented in 1995 (Kennedy & Erberhart

(1995)); in 2008, Poli highlighted “the amazing rate of growth of PSO applications” (Poli,

2008); Poli’s report was based on the IEEE Xplore digital library (IEEE, 2015), which

90

showed that between 1995 and 2006 the number of publications on PSO applications

grew almost exponentially. PSO continues to be fairly popular since then; over the last

10 years, the number of publications on IEEE Xplore about PSO is greater than for many

older metaheuristics, namely, Ant Colony Optimisation, Simulated Annealing and Tabu

Search. PSO’s popularity is often linked to its simplicity and easy adaption to different

problems.

In PSO, each particle in a swarm has information about its position and velocity;

the position of a particle represents a solution and the velocity vector determines to

what position a particle will travel to in the next iteration. The way the velocity vectors

are generated depends on the PSO model implemented - there are two main

representations of the PSO: the gbest and lbest models. For both, the velocity vector is

influenced by the particle’s personal best known position, pbest; however the models

differ on their cooperative behaviour - in the gbest model (global best) - the particles

make use of the best known position of the entire swarm, while in the lbest model (local

best) they take into account the best known position from a set of neighbouring particles.

It is recognised that the first has a faster convergence speed, but is more susceptible to

be attracted to local optima (Kennedy et al., 2001; Poli et al., 2007; Li et al., 2008). The

gbest model, also known as the conventional PSO, is used in this work; a variety of

techniques have been proposed to make this widespread version less vulnerable to

becoming stuck in local optima while keeping its fast convergence properties.

It is important to note that PSO was originally developed to deal with problems

defined in continuous domains. However, it can be an effective tool in dealing with

discrete optimisation problems if properly adapted (Levitin et al., 2007).

91

The different stages of the PSO algorithm developed are presented now.

Position update

Following the gbest model, in the search for the optimal solution, the particles

move according to the velocity and position update expressions depicted in Equation 5

and Equation 6, respectively.

𝑣𝑧𝑖
𝑡+1 = 𝑤𝑣𝑧𝑖

𝑡 + 𝑐1𝑟1
𝑡(𝑝𝑏𝑒𝑠𝑡𝑧𝑖

𝑡 − 𝑥𝑧𝑖
𝑡) + 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑧𝑖

𝑡) Equation 5

𝑥𝑧𝑖
𝑡+1 = 𝑥𝑧𝑖

𝑡 + 𝑣𝑧𝑖
𝑡+1 Equation 6

1t

zix and
1t

ziv are the position and velocity of the ith FM to be allocated with an

ASIL, in the zth particle of the swarm and at the (t+1)th algorithm iteration; r1 and r2 are

random numbers between 0 and 1 from a uniform distribution; w is the inertia of the

particle which is responsible for determining how the current velocity impacts the one

in the next iteration; c1 and c2 are weights that determine how much a particle is

influenced by its own best position (pbest), or the swarm’s best (gbest), respectively,

and are known as individuality and sociability factors. The velocity expression can be

divided into three parts, relating to the influence of current velocity, and personal and

global best known positions. Nakano et al. (2007) gives a spatial representation on how

a particle’s position update is influenced by these three factors (see Figure 14).

92

Figure 14 - Spatial representation of PSO’s position update.

An example of how an ASIL allocation solution is generated from a particle’s

position and velocity vectors is provided in Figure 15.

 FM1 FM2 FM3 FM4 FM5

xt 0 3 1 1 2

vt+1 1 0 1 1 0

xt+1 1 3 2 2 2

Figure 15 - Example of PSO position update.

Discretisation

The ASIL allocation decision variables are of an integer type; PSO cannot be directly

applied since the particle’s movement equations use real numbers. In the algorithm

presented here, the values of the velocity vector are rounded to the closest integer.

Velocity is limited to a maximum absolute value of two units to avoid abrupt jumps in

the search space.

In order to compensate for errors from discretisation, a Local Search (LS) approach

is implemented to explore the area around a particle’s position. Wang and Li (2012) have

also implemented a LS approach when applying PSO to a redundancy allocation problem.

93

In order to not increase the computation effort too much, LS is only performed with a

fixed LS period.

The implemented LS procedure is based on checking the unrounded velocity that

dictates the update to the particle’s position. For each component of the unrounded

velocity vector, the algorithm stores a move that contradicts the rounding performed.

For example, if a component of the unrounded velocity is 1.6, its corresponding rounded

value is 2; the rounding has resulted in an increment to the particle’s position and the

algorithm stores a decrement to the corresponding solution component in a list. The

elements of that list are then randomly selected. If the change implied by them means

an improvement to the current solution, the change is maintained; if no improvement

is found, the change is discarded. This process is followed until the entire list has been

completely analysed. In situations where the absolute value of the unrounded velocity

is greater than two, no change is added to the list. The rounding of this velocity would

give two or three units. Changes to the position of a particle are always capped at two

units to avoid abrupt jumps in the search space, and therefore the alternative of moving

three units is discarded.

The example in Figures 16 and 17 illustrates the LS procedure. A logarithmic cost

function is considered (ASIL QM – cost 0; ASIL A – cost 10; ASIL B – cost 100; ASIL C –

cost 1000, ASIL D – cost 10000). For the purpose of demonstration, no constraints are

formulated and therefore any solution in the two figures is considered to be feasible.

 FM1 FM2 FM3 FM4 FM5 Cost

xt 0 2 2 1 2 310

vt+1 (unrounded) 3.1 -0.6 -2.4 1.8 -2.3

vt+1 (rounded) 2 -1 -2 2 -2

LS list - +1 - -1 -

Figure 16 - Example of PSO LS.

94

FMs 2 and 4 match the criterion for LS, as their unrounded velocities are smaller

than 2 units. Moves that contradict the velocity rounding adopted for these FMs are

stored in a LS list. In this example, the ASIL of FM4 is randomly chosen to be changed

first (see Figure 17). The change is kept as it represents an improvement to the cost of

the solution. The ASIL of FM2 is modified in a second step; the alteration is discarded as

it makes the solution worse.

 FM1 FM2 FM3 FM4 FM5 Cost

xt+1 (rounded) 2 1 0 3 0 1010

xt+1 (LS – FM4) 2 1 0 2 0 210

xt+1 (LS – FM2) 2 2 0 2 0 300

xt+1 (final) 2 1 0 2 0 210

Figure 17 - Example of PSO LS (continued).

Mutation

As noted before, the gbest model of PSO is susceptible to getting stuck in local

optima. Because of this, a variety of work has considered the integration of the mutation

operator from GA into PSO with good results (see for example the works of Li et al. (2008)

and Stacey et al. (2003)). The PSO algorithm shown here also considers mutation. The

mutation approach used is the same as the one adopted by the GA algorithm described

in section 3.4.2.

Other approaches were experimented with in order to overcome the fast

convergence to local optima of PSO’s gbest model. The methodologies of Nakano et al.

(2007, 2010) seek to transport memory mechanisms from Tabu Search (metaheuristic

presented in section 3.4.5) into PSO. The approach in Nakano et al. (2010), for example,

makes a particle forget its best known position for a given number of iterations. In the

meantime, it considers other good solutions previously visited in an effort to explore

95

other regions. Early trials with these approaches did not reveal improvements over the

mutation operator, and entailed a much harder tuning experience.

PSO algorithm overview

1. Initialise particles with random positions and velocities;

2. Update pbest for every particle;

3. Update gbest;

4. Update particles’ velocities and positions using Equation 5 and Equation 6;

5. Perform LS with every LS period iterations;

6. Mutate particles;

7. Return to step 2 if stopping criterion not reached.

3.4.4 GA and PSO - Dealing with infeasibility

GA and PSO “evolution” operators are likely to produce infeasible allocations

throughout the search process. In dealing with infeasibility, perhaps the easiest

approach is to use the so called death penalty, i.e., solutions that do not meet the

constraints are simply rejected. The death penalty is appealing for its simplicity, but also

for being an efficient approach. As soon as a solution is verified to violate a first

constraint, it can immediately be discarded. There are, however, important

disadvantages to the use of the death penalty. Firstly, it can lead to search “stagnation”

(Coello Coello, 2002): if at a given iteration all solutions are infeasible, the search will

not progress. Another drawback is that the approach does not take advantage of

infeasibility information to guide the search. Coit and Smith (1996a) have shown that for

a redundancy allocation problem, which similarly to ASIL allocation is heavily

constrained, GA with death penalty is outperformed by other GA approaches where

96

infeasibility exploration is allowed and infeasibility information is used to direct the

search process.

Based on this understanding, the GA and PSO algorithms presented here allow for

infeasible solutions to be part of the optimisation procedure. These solutions receive a

penalty that adds to their cost, which is based on the concept of degree of infeasibility:

if an AAC has an ASIL D requirement, but at a given iteration only ASIL B is achieved, that

gives a degree of infeasibility of 2 units (4 (ASIL D) – 2 (ASIL B) = 2); a solution’s

penalisation depends on the Total Degree of Infeasibility (TDI) across all the AACs

formulated for a system architecture. The magnitude of the penalty to apply is

determined by a hybrid approach combining concepts from the works of Coit and Smith

(1996a) and of Wang and Li (2012); they have successfully applied Genetic Algorithms

and Particle Swarm, respectively, to reliability optimisation. The penalty approach is

composed of two stages, referred to as Pen-I and Pen-II henceforth. Pen-I is a dynamic

method that starts by mildly penalising infeasible solutions; the penalty becomes

harsher with the algorithm’s iteration count. The idea behind the strategy is that by

allowing the exploration of infeasible space in the early iterations, efficient routes to

(near) optimal solutions can be found (Coit & Smith, 1996a). The dynamic behaviour is

realised through the use of a Near Feasibility Threshold (NFT) that decreases with the

iteration count. The NFT is updated according to Equation 7.

𝑁𝐹𝑇 =

𝑁𝐹𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑒𝛼 × 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 Equation 7

97

Parameter α defines how quick NFT decreases, which in turn, determines at what

rate the optimisation process is pressured into feasible search space; the penalty to

apply to an infeasible solution is calculated from the expression in Equation 8.

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = (
𝑇𝐷𝐼

𝑁𝐹𝑇
)
𝛽

 Equation 8

The exponent 𝛽 is a pre-set severity parameter.

The work of Wang and Li (2012) suggests benefits in allowing for a continuous

exploration of the border between feasible and infeasible search space. To take

advantage of this, when the search is finally pressed into feasibility by Pen-I, Pen-II is

enabled. The feasibility of the best allocation present within the set of solutions in each

iteration is continuously examined; from that, the proportion of infeasible solutions over

the past δ iterations, γ(t+δ), is calculated (see Equation 9).

𝛾(𝑡 + 𝛿) =
𝑖𝑛𝑓𝑏𝑒𝑠𝑡(𝑡 + 𝛿)

𝛿
 Equation 9

infbest(t+δ) represents the number of infeasible best solutions in the last δ

iterations. γ(t+δ) is used for a new way of updating the NFT (see Equation 10). The

penalty to apply to a solution is still obtained from Equation 8.

𝑁𝐹𝑇(𝑡 + 𝛿) =

{

 𝑁𝐹𝑇(𝑡) ×

1

𝜀
 × (1.5 − 𝛾(𝑡 + 𝛿)), 𝛾(𝑡 + 𝛿) > 0.5

𝑁𝐹𝑇(𝑡),× 𝜀 × (1.5 − 𝛾(𝑡 + 𝛿)), 𝛾(𝑡 + 𝛿) = 0.5

𝑁𝐹𝑇(𝑡) × 𝜀 × (1.5 − 𝛾(𝑡 + 𝛿)), 𝛾(𝑡 + 𝛿) < 0.5

 Equation 10

ε is to be set to a value equal or greater to 1.

If γ(t+δ) > 0.5, there are more best infeasible solutions than feasible and therefore

the penalty is increased, through the NFT, to direct the search towards feasibility

98

(smaller values for NFT give a greater penalisation – see Equation 8); on the other hand,

if γ(t+δ) < 0.5, it means that in the last δ iterations there were more feasible bests and

the penalty is decreased to encourage exploration of infeasible search space. Changing

ε manipulates the magnitude of NFT change in directing the search towards feasible or

infeasible search space. The NFT update, as given by Equation 10, takes into account the

last δ algorithm iterations and it occurs with a period of δ iterations.

3.4.5 Tabu Search

Kulturel-Konak et al. (2003) claim that the computational effort posed by

population-based methods, where multiple solutions are evaluated over the course of

many iterations, can be significant for some complex problems. The Tabu Search (TS)

metaheuristic is a simpler algorithm based on a single solution being changed iteratively

through neighbouring moves. TS implementations usually combine a local search

strategy with a set of memory mechanisms designed to avoid the trap of local optimality.

TS has proven to behave competitively in various complex problems, outperforming, for

instance GA, both in processing time and quality of solutions within some applications -

e.g. timetable scheduling (Chu & Fang, 1999) and redundancy allocation (Kulturel-Konak

et al., 2003).

The Steepest Ascent Mildest Descent (SAMD) method (Hansen & Jaumard, 1990)

is a member of the TS family; the approach presented in this section is based on the

work of Hansen and Li (1996) who applied SAMD to system reliability. ASIL allocation

optimisation is a minimisation problem and SAMD was originally conceived for

maximisation; therefore the method was appropriately modified to a Steepest Descent

Mildest Ascent (SDMA) variant. SDMA follows the steepest descent direction until a local

99

minimum is reached, and then makes use of the mildest ascent route to escape from it.

The method is described in detail over the following pages.

Neighbourhood exploration

The algorithm always starts from a feasible solution. Every new allocation visited

results from evaluating a set of possible changes to the current solution and making a

decision. Changes that produce an infeasible allocation are immediately removed from

the decision process.

The optimisation begins with the pursuit of the steepest descent direction. As

defined in the beginning of the current chapter, every ASIL cost heuristic is considered

to be strictly increasing, meaning that reducing the ASIL of a FM will always result in a

decrease to the system’s total ASIL-dependent cost. The steepest descent direction is

followed by decrementing the ASIL of the FM for which this results in the highest system

cost reduction. Consider the illustrative Tabu Search solution, for a given iteration t,

presented in Figure 18.

 FM1 FM2 FM3 FM4 FM5

Solutiont 2 4 3 2 1

 Figure 18 - Illustrative TS solution at iteration t.

Assuming a logarithmic ASIL cost function (ASIL QM – cost 0; ASIL A – cost 10; ASIL

B – cost 100; ASIL C – cost 1000, ASIL D – cost 10000), decrementing the ASIL of FM2

represents taking the steepest descent direction:

 FM1 and FM4 (ASIL B to ASIL A) – cost reduction: 100 – 10 = 90

 FM2 (ASIL D to ASIL C) – cost reduction: 10000 – 1000 = 9000

 FM5 (ASIL A to ASIL QM) – cost reduction: 10 – 0 = 10

100

The solution that would be obtained for iteration t+1 is presented in Figure 19.

 FM1 FM2 FM3 FM4 FM5

Solutiont+1 2 3 3 2 1

Figure 19 - Illustrative TS solution at iteration t+1.

When analysing descent moves, some can present the same cost variations and it

is possible that there are multiple which evaluate as the steepest descent. When this is

the case, all the steepest descent moves are taken and the algorithm randomly chooses

one to be followed in the next iteration.

Consider now that the solution at iteration t+1 is a (local) minimum, i.e. any further

descent moves would result in the violation of one AAC or more. In escaping from the

potential local optimum, the algorithm takes the mildest ascent route, that is, it

increments the ASIL of the FM representing the lowest cost growth. For the solution of

iteration t+1, incrementing the ASIL of FM5 is the mildest ascent move.

 FM1 and FM4 (ASIL B to ASIL C) – cost increase: 1000 – 100 = 900

 FM2 and FM3 (ASIL C to ASIL D) – cost increase: 10000 – 1000 = 9000

 FM5 (ASIL A to ASIL B) – cost increase: 100 – 10 = 90

The result of taking the mildest ascent move in iteration t+2 is shown in Figure 20.

 FM1 FM2 FM3 FM4 FM5

Solutiont+2 2 3 3 2 2

Figure 20 - Illustrative TS solution at iteration t+2.

In scenarios where multiple moves imply the same minimum cost growth, one of

them is randomly chosen to be followed in the next iteration.

101

The memory mechanism

While escaping from local optima through the pursuit of the mildest ascent route,

reverse moves are forbidden for p iterations. Assuming that p is greater than zero, this

gives that in iteration t+3 the ASIL of FM5 cannot be reduced. The number of iterations

to forbid decrementing the ASIL of a given FM i is stored in a variable fi. To promote

diversity further, the algorithm also forbids incrementing a FM’s ASIL during q iterations

after a descent move. For a FM i, ascent move restrictions are stored in f’i.

The values of p and q are dynamically changed in order to reduce the algorithm’s

sensitivity to their selection; they are incremented with periods updatePeriodp and

updatePeriodq, respectively. limitp and limitq are the maximum values for p and q; when

p and q reach theirs limits, they are reset to zero.

The Hansen and Lih (1996) approach has been extended to allow the overruling

of a tabu move restriction if this means 1) obtaining a better solution than those found

previously or 2) reaching a solution with the current best cost but that has not been

visited before. Conditions allowing for tabu constructs to be disregarded are known as

aspiration criteria (Gendreau & Potvin, 2005b).

Initial solution generation

The Tabu Search technique does not allow for infeasible search space exploration;

consequently, it requires a method to generate an initial feasible solution. An approach

has been devised where each FM starts by being assigned with a random ASIL from 0 to

4. The resulting solution is, at this point, likely infeasible. Next, a FM that has not been

assigned with ASIL 4, and which integrates at least one AAC not being satisfied, is

102

randomly selected and gets its ASIL incremented. This step is repeated until the solution

becomes feasible.

Is the optimum solution always within reach?

ASIL allocation is a constrained optimisation problem and, as such, it produces

search spaces with both feasible and infeasible solutions. One possible concern

regarding the Tabu Search technique is how feasible ASIL allocations get distributed

across the solution space, namely if multiple isolated regions of feasible solutions are

generated. If that scenario were to be confirmed, TS would not be able to solve a

problem to optimality if it is initialised in a feasible region different from the one where

the optimal allocation is located. In fact, the neighbourhood exploration strategy

integrated in the TS technique, where only a single increment or decrement to one of

the allocation variables is permitted, does not allow for jumps in the solution space.

Furthermore, the TS technique does not accept infeasible solutions in its search process;

in this way, travelling through infeasibility to the region where the optimal solution is

located would not be possible.

The scenario where multiple feasible regions are sparsely distributed in the solution

space is not, however, an issue for the ASIL allocation problem. In fact, between any two

feasible allocations, there is always a feasible path through iterative increments and

decrements to the ASILs assigned across a problem’s FMs. Consider a simple illustrative

ASIL allocation problem for which there are only two variables (FM1 and FM2); a

logarithmic cost function is assumed again to evaluate solutions for this problem. Only

one AAC is defined:

AAC1: ASILFM1 + ASILFM2 ≥ ASIL C (ASIL 3)

103

For this simple example, a global optimal solution can be easily identified. With

the logarithmic cost function (ASIL QM – cost 0; ASIL A – cost 10; ASIL B – cost 100; ASIL

C – cost 1000, ASIL D – cost 10000), the cheapest way to decompose an ASIL C through

two FMs is ASIL A + ASIL B (cost: 100 + 10 = 110). One can arrive at a solution like this

from anywhere within the feasible search space without violating AAC1 in the process.

Consider the scenario in Figure 21 where a local optimal solution is found in iteration 1;

making that solution worse by incrementing one of the variables (but still remaining

within feasible space) makes it possible to travel to the global optimum.

 Iteration 1: AAC1 is strictly fulfilled, i.e., a decrement to the ASIL of FM1 or FM2

would result in an infeasible solution.

 Iteration 2: The ASIL of FM1 is incremented, resulting in a cost increase. The

requirement of AAC1 is now surpassed by one unit, which means that the ASIL

of one of the FMs can be decremented.

 Iteration 3: The ASIL of FM2 is decremented, resulting in a cost decrease and a

new best cost is identified. AAC1 is strictly fulfilled.

104

Figure 21 - Travelling from local to global minimum through feasible search space.

To travel between any two feasible solutions, in a worst case scenario, all ASILs

could be incremented until reaching ASIL D, and from such solution, any feasible

allocation can be reached through successive decrements to the ASILs allocated to the

different FMs (See Figure 22).

Figure 22 - Travelling from the most expensive solution (light grey) to the optimum (dark
grey).

0

1

2

3

4

FM1 FM2 FM3 FM4 FM5 FM6 FM7 FM8 FM9 FM10

A
SI

L

Optimal Solution Most Expensive Solution

105

TS’s means to explore the solution space considers, precisely, successive

increments and decrements to the different allocation variables. Conceptually, the

technique can reach the optimum solution for any ASIL allocation instance,

independently of where its search process starts in the solution space.

TS overview

For better understanding of the TS approach, the flowchart of Figure 23 was created.

Figure 23 - Flowchart describing the Tabu Search algorithm. “mod” is the modulus operator,
which gives the remainder of a division between two numbers.

106

3.4.6 Other (less) successful approaches

Arriving at the three optimisation techniques presented up to this point in the

chapter was an evolutionary process. ASIL allocation is a new problem, and multiple

approaches were tried to solve it. This section provides a brief overview of two

optimisation methods that gave satisfactory results, but that fall short of the ones given

by the three techniques already identified in this chapter.

Kulturel-Konak (2003) proposed a Tabu Search technique to solve a redundancy

allocation problem where the exploration of infeasible search space is permitted and a

dynamic penalty approach is implemented. The use of TS with dynamic penalty to solve

ASIL allocation resulted in a large computational effort increase per iteration. When

infeasibility exploration is used, evaluating the outcome of a move requires analysing

every AAC in which the ASIL to be changed is included; the prospective cost variation

depends on the TDI obtained after the move is taken. In the feasibility-only version of

TS, when a move is under analysis, the cost variation it implies can be easily calculated;

it is simply the difference between the cost associated with the current allocated ASIL

and the cost of the one resulting from the move being analysed. There is still the need

for AACs evaluation; however, as soon as the approach finds a first AAC that is not

fulfilled, it is known that the move under analysis leads to an infeasible solution, and

therefore it can be immediately discarded.

The increase in processing effort per iteration was not accompanied with an

improvement to the quality of the solutions found; in fact, in some cases, the solutions

were worse than the ones found by the feasibility-only version of TS. As shown in the

previous section, TS does not necessarily need to visit infeasible search space to access

107

any of the solutions of the feasible region. The dynamic penalisation approach helps the

population-based algorithms to move throughout the solution space; their search

operators can easily generate infeasible solutions and if these are not allowed in the

search process, the search can stagnate. In the case of TS, a set of candidate neighbour

solutions are evaluated and the best, according to the search criteria at that point, is

selected. Since this a priori evaluation process exists, infeasible solutions are not visited

unless the algorithm implementation decides to do so. For the ASIL allocation problem,

ensuring that TS visits feasible search space only seemed to provide for a better solution

space exploration strategy. The number of parameters for the TS technique also grows

if the dynamic penalisation approach is considered; this necessarily makes the tuning

experience harder and could have impacted the performance of the TS version that

permits infeasible search space exploration.

PSO-TS hybrid

In recent years, a vast number of optimisation approaches have been proposed that

combine concepts from different optimisation techniques. These hybrid methods are

expected to benefit from complementary characteristics of the different techniques

they integrate (Blum et al., 2011). A hybrid approach combining the PSO and TS

algorithms presented in the previous sections of this chapter was created. PSO was used

for global exploration, and thus responsible for identifying areas of prospective good

solutions, and TS acted as a powerful local search method. A similar approach has been

considered by Li et al. (2007) to solve an energy transmission optimisation problem.

The non-penalty based TS was used; the technique is initialised every time a particle

from PSO finds a new feasible pbest. The main issue with the PSO-TS hybrid seemed to

108

be related with fact that once the Tabu Search stage is activated for the first time, the

powerful local search technique reveals solutions that are substantially better than the

ones found to that point; as a result, the entire swarm gets attracted to that particular

area. To counter this behaviour, PSO’s c1 and c2 parameters were manipulated to favour

further global exploration, but no substantial improvements were found.

Parameterisation is another of the issues with this approach. In PSO-TS, the number of

parameters to tune is the sum of the ones from the two original independent algorithms

- PSO and TS.

3.5 Summary

The chapter has provided a formulation for the optimisation problem of finding

requirements-compliant and cost-effective ASIL allocations. Exact and metaheuristic

techniques were considered to solve this combinatorial problem. Exact methods can

find optimal solutions for small size problems, but for large scale instances they often

require excessive computational effort. Metaheuristics were chosen for investigation;

they cannot guarantee finding optimal solutions, but they are known for finding good

solutions efficiently in large search spaces and to be robust when tackling problems of

different characteristics.

Many metaheuristics have been proposed in the literature over the years. The

rationale for the co-existence of this variety of approaches is that their performance

varies from application to application and there is not one that overcomes all others in

every problem. Three of the most popular metaheuristics were selected - GA, PSO and

TS - and from them, problem specific algorithms have been developed.

109

The three most promising techniques described in this chapter are a result of an

in-depth literature examination, as well as of a study of many nuances of the algorithms

operators and strategies for feasible and infeasible search space exploration.

Experimentation was also conducted with hybrid approaches. The three most promising

algorithms will be compared in chapter 5.

110

4. Case studies and evaluation metrics

ASIL allocation is a new optimisation problem and no benchmark has been defined

in the literature to evaluate the performance of the optimisation techniques when

tackling it. Part of this chapter is to meet objective 2 defined for the thesis: a group of

problems and a set of evaluation metrics are established in order to compare the ASIL

allocation optimisation methods developed in chapter 3.

Four different case studies were created. Three are variants of a Hybrid Braking

System (HBS) and the fourth is a system of systems comprising braking and steering

functionalities (it will be referred to as Brake and Steering System, or BSS, from now

onwards). The BSS has been provided by an industrial partner of HiP-HOPS and for

confidentiality reasons it cannot be described in the same depth as the HBS. In this way,

the HBS will serve to illustrate how ASIL allocation can be supported in a complex

scenario by HiP-HOPS, together with an automated allocation algorithm (objective 4).

The HBS will also be used to address objective 5 of the thesis: the impacts of using

different cost heuristics will be analysed over the optimal ASIL allocations for this case

study.

4.1 The hybrid braking system

In chapter 1 attention was brought to the increasing reliance of safety-critical

systems on software and hardware. Brake-by-wire represents the pinnacle of this

evolution for braking technologies. In brake-by-wire architectures, there is no

mechanical or hydraulic link between the braking pedal and the actuators. Instead,

sensors measure the movements of the pedal and computer-controlled braking

actuators are activated. Brake-by-wire systems are attractive because they provide a

111

faster and more accurate braking control; they also integrate more easily with assistance

systems (such as antilock systems) and are lighter and less bulky than technologies

reliant on hydraulic and mechanical parts (Xiang et al., 2008). Since in “true” brake-by-

wire systems there is no mechanical backup in case of failure, safety is a major concern.

Consequently, brake-by-wire architectures usually include fault-tolerant mechanisms.

The HBS is a brake-by-wire technology designed for electrical vehicles. Specifically,

the HBS was conceived for propulsion architectures that integrate one electric motor in

each of the vehicle’s wheels (de Castro et al., 2011). The system is hybrid because it

combines the actions of two types of devices: the electrical In-Wheel Motors (IWMs)

from the propulsion system and frictional Electromechanical Brakes (EMBs). When

braking, IWMs work as generators and transform the vehicle’s kinetic energy into

electrical energy that is provided to the Powertrain Battery. This is an important feature,

since it works to increase the vehicle’s range. IWMs have, however, braking torque

limitations at high wheel speed regimes or when the battery has a high state of charge,

for example. The EMBs provide the braking torque required to meet the demands when

the IWMs do not suffice. Another interesting feature of the system is that it ensures

independent braking control for each wheel; this improves braking performance.

The HBS architecture is displayed in Figure 24. As it can be observed, there is no

hydraulic link connecting the Braking Pedal and the braking actuators. Instead, a

redundant electronic bus system is responsible for communication between an

Electronic Pedal and Wheel Node Controllers (WNCs).

112

Figure 24 - Hybrid braking system architecture.

The Electronic Pedal measures the brake demands from the driver and determines

the braking to be produced in each wheel. The WNCs receive the braking needs for the

wheel they are associated with and subsequently control a pair of braking actuators. The

system includes two batteries. The Auxiliary Battery is responsible for feeding the

vehicle’s low voltage loads, including the EMBs; the Powertrain Battery, on the other

hand, is used in the high-voltage energy transmissions with the IWMs.

An overview of the HBS was given. The system will now be used to demonstrate

how HiP-HOPS, together with an automated optimisation technique, can provide

effective and efficient support for ASIL allocation.

The Fault Tree Analysis (FTA) capabilities of HiP-HOPS determine how system

hazards are caused by combinations of component level failures; in turn, this

113

information enables rationalising how system level ASILs can be allocated and

decomposed across the components of a system architecture. As described in chapter

2, the first stage in HiP-HOPS approach for FTA is called modelling; essentially, a model

of the system needs to be provided and its architecture annotated with a series of

expressions that describe its failure behaviour. This is the only non-automated step for

the entire ASIL allocation approach proposed in this thesis.

Three different variants of the HBS were designed to evaluate the performance of

the optimisation techniques. The simplest variant, HBS Model 1 (or HBSM1) is described

for illustration. HBSM1 only considers the braking of one wheel (see Figure 25).

Figure 25 - HBSM1.

Figure 25 shows assumptions about the internal structures to be adopted for the

Electronic Pedal and the WNC. These have been taken into account when describing the

failure behaviour for the system. In the Electronic Pedal there are two independent

channels that sense and process the braking demands from the driver. If the output of

the Leading Channel gets omitted, the information provided by the Secondary Channel

is used. For the WNC architecture, it is defined that EMB and IWM braking are controlled

114

from independent processing units. If the unit responsible for EMB braking fails, the

IWM output can still be controlled correctly. Finally, failures in the IWM Power

Converter and in the Powertrain Battery can have effects on the IWM braking output.

So that failures in these two components can be propagated in the model to the IWM,

a virtual connection has been created between the Powertrain Battery and the IWM.

The functional behaviour for the HBSM1 is as follows: as the driver presses the

braking pedal, his actions are sensed and processed in an Electronic Pedal unit; the

braking force for the wheel is calculated and sent through the redundant

communication bus to the WNC. There, braking torque demands are determined for

each actuator; commands are then directed to the power converters that control the

IWM and the EMB. When braking action is taking place, energy flows from the auxiliary

battery to the EMB; as stated previously, regarding the IWM, energy flows towards the

Powertrain Battery while braking.

Two hazards are considered for the HBSM1:

 No braking after command – Hazard 1 (H1)

 Braking with wrong value – Hazard 2 (H2)

ASIL D and A are assigned to H1 and H2, respectively. Conducting ISO 26262’s risk

assessment procedure to determine the ASIL of each hazard falls outside of the scope

of the thesis. For simplicity, ASILs are assigned solely on the basis of the hazards’

assumed severities.

So that HiP-HOPS can look for causes of the two hazards identified, the hazards

need to be linked to problems at the outputs of components in the system model. It was

115

considered that H1 occurs if both braking actuators omit their outputs; H2, on the other

hand, is the result of an incorrect value output of at least one of the actuators. This is

represented by the following expressions:

 H1 = Omission-EMB.out1 AND Omission-IWM.out1

 H2 = IncorrectValue-EMB.out1 OR IncorrectValue-IWM.out1

The next step is to annotate each component in the system architecture with

failure expressions that explain how the components can produce deviated outputs in

response to internal failures or problems at their inputs. Consider the example of Bus 1,

which provides a communication link between Electronic Pedal and the WNC. Bus 1 will

have its output omitted if there is a problem at both of its inputs, or if it has an internal

problem (an Omission Failure, or OFailure). This failure behaviour can be formalised

through the expression below:

 Omission-Out1 = OFailure OR Omission-ElectronicPedal.Out1 AND Omission-

ElectronicPedal.Out2

The full list of failure annotations for the HBSM1 is included in Appendix I. More

details about the failure behaviour of the system can be found in Azevedo (2012).

As discussed in chapter 2, the approach from this thesis follows HiP-HOPS

previously introduced method of allocating ASILs to FMs instead of components. In this

way, where components can fail in multiple ways, requirements can be better refined.

When applying the approach hierarchically, sub-components that only contribute to the

component FM which originates the most severe system hazard can be assigned with

116

the stricter requirements, whereas the remaining sub-components can be allocated

with less stringent ASILs.

By the end of the annotation process, 24 component FMs were identified for the

HBSM1. This gives a total search space size of 524 (5 ASILs and 24 FMs), which amounts

to approximately 5.96 × 1016 solutions. This number is clearly out of reach of manual

exhaustive evaluation. Conceivably, the system designer would not enumerate all the

solutions to choose an allocation. But in the face of this large solution space, finding a

feasible allocation that minimises development costs is a laborious, difficult task.

After the modelling stage, HiP-HOPS fault tree synthesis and analysis phases are

automatically carried out. Results reveal 31 minimal cut sets for the HBSM1:

 19 minimal cut sets for H1

o 1 single point of failure1 and 18 dual points of failure2;

 11 minimal cut sets for H2

o 10 single points of failure and 2 dual points of failure.

Appendix I of the thesis shows the cut sets for HBSM1.

HiP-HOPS automatically converts the cut sets information into AACs. Consider the

example of the cut set constituted by the internal Omission Failures (OFailures) of the

EMB and the IWM, which together originate H1:

 Cut set: EMB.OFailure AND IWM.OFailure = H1

 AAC: ASILEMB.OFailure + ASILIWM.OFailure ≥ ASILH1

1 Single points of failure are cut sets composed of one component failure mode.
2 Dual points of failure are cut sets composed of two component failure modes.

117

With this information, and with a cost function that expresses how development

costs change with the different ASILs, the optimisation problem is completely

formulated and can be directly tackled with any of the optimisation techniques

presented in chapter 3. One possible cost function to evaluate ASIL allocations is

presented in Table 9. It is based on a discussion from the LinkedIn forum on ISO 26262

(Allen, 2012) which indicated that there is a greater cost jump between ASILs B and C,

than between any other two ASILs.

Table 9 - Experiential-I cost function.

Cost Function ASIL QM ASIL A ASIL B ASIL C ASIL D

Experiential-I 0 10 20 40 50

The HiP-HOPS exhaustive algorithm for ASIL allocation does not scale well, but it

is capable of finishing the one-wheel model of the HBS. The technique returns all non-

dominated solutions for a problem. An allocation is said to be dominated if it presents

one or more Failure Modes (FMs) with higher ASILs than other solutions, but no FM with

lower ASILs. The optimal solution for a given ASIL allocation instance is logically non-

dominated. For the HBSM1, the HiP-HOPS exhaustive technique found a total of 125

non-dominated solutions; evaluating each one of them with the Experiential-I cost

heuristic singled out the optimal solution presented in Table 10 (see next page). In Table

10, and throughout the remainder of the thesis, FMs names are given in the following

format: “Name of component”.”X”Failure”Y”. “X” is to be replaced by an “O” for an

internal omission failure or a “V” for an internal failure causing a value deviated output;

within a same component, and for a same type of internal failure, “Y” is replaced by an

FM ID starting with number 1. For the Electronic Pedal component, XFailure1 refers to

118

failure modes of the Leading Channel, whereas XFailure2 to FMs of the Secondary

Channel. In the case of the WNC, XFailure1 relates to FMs of the processing unit

controlling EMB braking; XFailure2 concerns the FMs of the processing unit responsible

for controlling IWM braking.

Table 10 - HBSM1 optimal ASIL allocation for Experiential-I cost function.

Exp-I
Cost: 390

Components FMs #1

Braking Pedal.OFailure1 4

Braking Pedal.VFailure1 1

Electronic Pedal.OFailure1 2

Electronic Pedal.OFailure2 2

Electronic Pedal.VFailure1 1

Electronic Pedal.VFailure2 0

Bus1.OFailure1 2

Bus2.OFailure1 2

WNC.OFailure1 2

WNC.OFailure2 2

WNC.VFailure1 1

WNC.VFailure2 1

Auxiliary Battery.OFailure1 2

Auxiliary Battery.VFailure1 1

Powertrain Battery.OFailure1 2

Powertrain Battery.VFailure1 1

EMB Power Converter.OFailure1 2

EMB Power Converter.VFailure1 1

IWM Power Converter.OFailure1 2

IWM Power Converter.VFailure1 1

EMB.OFailure1 2

EMB.VFailure1 1

IWM.OFailure1 2

IWM.VFailure1 1

The solution Table 10 is found using any of the three optimisation techniques

presented in chapter 3. From the end of the modelling stage in HiP-HOPS up until the

119

optimal solution is retrieved by any of the optimisation techniques developed, no more

than a few seconds pass.

The solution given in Table 10 is not necessarily final. The decision on which

allocation to follow can be impacted by suppliers, for example. Two FMs were

considered for the EMB: one that resulted in the omission of its output and another that

produced an incorrect value. They were allocated with ASILs B and A in the best solution.

However, the supplier can indicate that it has a component immediately available that

meets ASIL B for both types of failures. Making use of this component would speed up

development and it would be likely cheaper than requiring the development of a new

component that meets the allocation from Table 10. Accepting the use of the supplier’s

component would mean revisiting the ASIL allocation process, namely to evaluate if the

increase to the allocation of EMB’s incorrect value FM allows decreasing the ASIL of

some other FM in the system. The entire process can take several iterations until

reaching a definitive allocation. In this scenario, the use of an automated and efficient

approach, such as the one presented here, makes the process much simpler and faster.

Besides HBSM1, two other case studies were created from the HBS. HBSM2 and

HBSM3 both consider braking in four wheels. The HBSM2 is meant to be just a direct

conversion of HBSM1 to a four wheel version. In this way, it was possible to directly infer

the optimal solutions for this model. HBSM2 considers the same hazards of HBSM1:

1. No braking in 1 wheel – ASIL D

2. Braking with wrong value in 1 wheel – ASIL A

120

For the HBSM3, a total of six hazards were defined:

1. No braking in 4 wheels – ASIL D

2. No braking in 3 wheels – ASIL D

3. No braking front – ASIL D

4. No braking rear – ASIL C

5. No braking diagonal – ASILC C

6. Braking with wrong value in 4 wheels – ASIL D

4.2 Case studies: The facts

The HiP-HOPS fault tree synthesis and analysis technique was applied to the

system models of the four case studies considered in the thesis. For the sake of results

reproducibility, the fault trees obtained for each case study have been included in

Appendix III.

This section presents details about the optimisation problems that the case studies

generate. Table 11 shows information about dimensionality, number of AACs and total

solution space.

Table 11 - Characteristics of the optimisation problems posed by each case study.

Case Study Dimensionality #AACs Total Search Space Size

HBSM1 24 31 5.96 × 1016

HBSM2 60 94 8.67 × 1041

HBSM3 60 11573 8.67 × 1041

BSS 185 8218 2.04 × 10219

HBSM1 provides problems of smaller dimensionality, and so it generates the

smaller search spaces. HBSM2 and HBSM3 are based on the same architectural model;

consequently they produce problems of the same dimensionality and with the same

121

search space size. Optimisation problems based on HBSM3 include, however, ≈123

times more AACs than the problems from HBSM2. Finally, BSS creates the problems of

higher dimensionality and generates by far the largest search spaces. Problems based

on BSS include the second highest number of constraints, after problems based on

HBSM3. Optimisation problems created from HBSM3 do not just integrate the highest

number of AACs. They also include the most complex to evaluate. Table 12 shows the

size of the AACs associated with each case study.

Table 12 - Number of AACs associated with each case study, organised by size.

 Size of AACs

Case Study 1 2 3 4 5 6 8

HBSM1 11 20 - - - - -

HBSM2 29 65 - - - - -

HBSM3 9 17 72 1836 162 2916 6561

BSS 154 720 5040 2304 - - -

The maximum AAC size found is eight. HBSM3 is the only case study that generates

optimisation problems with AACs of size five or greater. Furthermore, problems based

on the HBSM3 integrate more AACs of the maximum size than of all other sizes

combined. HBSM1 and HBSM2 generate the problems with the simplest AACs; in both

cases there are only size one and size two AACs.

Higher dimensionalities define large search spaces. Furthermore, feasibility

evaluation has an impact on the processing effort spent per iteration. The BSS is the case

study of highest dimensionality and it creates problems with the second highest number

of AACs. On the other hand, HBSM3 ranks second in regards to dimensionality, and the

problems based on this case study include the highest number of AACs; these AACs are

122

also the most complex. The characteristics of BSS and HBSM3 hint that they can be the

two case studies imposing higher processing efforts.

The feasible search of a problem can be divided into two groups: 1) non-dominated

solutions and 2) the solutions that are dominated by the first group. For HBSM1, HiP-

HOPS exhaustive ASIL allocation technique has shown that there are 125 non-dominated

solutions; the number of dominated solutions is, however, left to determine.

Consider Solution 1 in Figure 26, which is a non-dominated allocation for a

hypothetical optimisation problem (Problem 1). The only AAC defined for Problem 1

requires that the total ASIL allocated to FM1, FM2 and FM3 needs to be at least ASIL 4.

Solution 1, being non-dominated, is just outside of infeasible search space.

Figure 26 - Solution 1, a non-dominated solution for Problem 1.

Any solution with one or more FMs allocated with smaller ASILs than in Solution 1

is infeasible. On the other hand, all solutions that present one or more FMs allocated

with higher ASILs than in Solution 1 are feasible; these are the solutions dominated by

Solution 1. The number of allocations Solution 1 dominates can be easily calculated. It

0

1

2

3

4

FM1 FM2 FM3

A
SI

L

123

is given by the product of the ASIL allocation possibilities per FM, which are greater or

equal to the ones of Solution 1; to the result of this calculation, one solution needs to

be removed as it refers to Solution 1 itself: 4 × 4 × 3 - 1 = 47.

In determining the number of dominated solutions for a given problem, a couple of

additional considerations need be introduced. Firstly, a dominated solution is not

necessarily dominated by all non-dominated solutions. Observe the three solutions in

Figure 27, which again relates to Problem 1. Solutions 2 and 3 are non-dominated -

decrementing any of the ASILs allocated to their FMs would make them infeasible.

Figure 27 - A solution (solution 3) that is dominated by one non-dominated solution (solution
2), but that is not dominated by another non-dominated solution (solution 3).

Solution 4 is a dominated solution; however, it is dominated by Solution 2, but not

by Solution 3. For FM2 and FM3, solutions 2 and 4 have the same allocations. FM1 is,

however, allocated with a smaller ASIL in Solution 2 than in Solution 4. Solution 3, on

the other hand, has two FMs allocated with lower ASILs than in Solution 4 (FM2 and

FM3), but it has also one FM with a higher ASIL (FM1).

The previous example shows that it is not always the case, but different non-

dominated solutions can dominate common allocations. Take the example of the three

0

1

2

3

4

FM1 FM2 FM3

A
SI

L

Solution 2: Non-
dominated

Solution 3: Non-
dominated

Solution 4:
Dominated

124

solutions for Problem 1 in Figure 28. Solutions 5 and 6 are non-dominated. It is easy to

conclude that both of them dominate Solution 7 - they have lower ASILs across all FMs.

Figure 28 - Two non-dominated allocations (solutions 5 and 6) dominating a common
allocation (Solution 7).

Finding the number of different solutions that are dominated by the group of non-

dominated allocations of a problem is difficult. However, the sum of all the allocations

that are dominated by each of the non-dominated solutions can be taken as a maximum

bound. On the other hand, the maximum number of solutions dominated by one of the

non-dominated allocations can be taken as the minimum bound. These bounds on the

number of dominated solutions can be converted into bounds for the feasible region

size of a problem - one only needs to add to them the number of non-dominated

solutions.

For optimisation problems based on the HBSM1, the minimum bound for the

feasible region is 2.78 × 1012, whereas the maximum bound amounts to 9.98 × 1013. Even

if the maximum bound is considered, the search space is by far majorly infeasible; the

feasible region represents less than 1% of the total search space (0.1675%). The HBSM1

generates optimisation problems with the smallest ratio of AACs count per failure mode

0

1

2

3

4

FM1 FM2 FM3

A
SI

L
Solution 5: Non-
dominated
Solution 6: Non-
dominated
Solution 7:
Dominated

125

and it is possible that the fraction of feasible space is even smaller for the remaining

case studies.

4.3 Exploring the impacts of different cost heuristics in ASIL allocations

It is clear that the processes of developing one component according to any two

different ASILs are distinct. There are different implications for implementation and

validation, which impact, for example, number of lines of code or of safety analysis

execution. Consequently, these have repercussions in development times and team

sizes, which ultimately are translated into different development costs. One is

necessarily looking for a requirements-compliant allocation which minimises these costs

across a system architecture. This section explores the impacts of using different cost

heuristics over the allocations seen as optimal for the HBSM1. Part of this work has been

published in Azevedo et al. (2014a).

Two cost functions are utilised in this study. One is the Experiential-I heuristic

presented in section 4.1; the second cost function, named Experiential-II, is presented

in Table 13.

Table 13 - Experiential-II ASIL cost function.

Cost Function ASIL QM ASIL A ASIL B ASIL C ASIL D

Experiential-II 0 5 30 35 50

All the non-dominated solutions for the HBSM1 are known and from them the

optimal solution according to any cost function can be determined. Table 14 (see next

page) shows the optimal solutions for the HBSM1 in the scenarios where the

Experiential-I and Experiential-II functions are used to evaluate the allocations.

126

Table 14 - HBSM1 optimal ASIL allocations for Experiential-I and Experiential-II functions.

 Exp-I
Cost: 390

Exp-II
Cost: 340

Components FMs #1 #1 #2 #3 #4 #5 #6 #7 #8

Braking Pedal.OFailure1 4 4 4 4 4 4 4 4 4

Braking Pedal.VFailure1 1 1 1 1 1 1 1 1 1

Electronic Pedal.OFailure1 2 1 3 1 3 1 3 1 3

Electronic Pedal.OFailure2 2 3 1 3 1 3 1 3 1

Electronic Pedal.VFailure1 1 1 1 1 1 1 1 1 1

Electronic Pedal.VFailure2 0 0 0 0 0 0 0 0 0

Bus1.OFailure1 2 1 1 3 3 1 1 3 3

Bus2.OFailure1 2 3 3 1 1 3 3 1 1

WNC.OFailure1 2 1 1 1 1 3 3 3 3

WNC.OFailure2 2 3 3 3 3 1 1 1 1

WNC.VFailure1 1 1 1 1 1 1 1 1 1

WNC.VFailure2 1 1 1 1 1 1 1 1 1

Auxiliary Battery.OFailure1 2 1 1 1 1 3 3 3 3

Auxiliary Battery.VFailure1 1 1 1 1 1 1 1 1 1

Powertrain Battery.OFailure1 2 3 3 3 3 1 1 1 1

Powertrain Battery.VFailure1 1 1 1 1 1 1 1 1 1

EMB Power Converter.OFailure1 2 1 1 1 1 3 3 3 3

EMB Power Converter.VFailure1 1 1 1 1 1 1 1 1 1

IWM Power Converter.OFailure1 2 3 3 3 3 1 1 1 1

IWM Power Converter.VFailure1 1 1 1 1 1 1 1 1 1

EMB.OFailure1 2 1 1 1 1 3 3 3 3

EMB.VFailure1 1 1 1 1 1 1 1 1 1

IWM.OFailure1 2 3 3 3 3 1 1 1 1

IWM.VFailure1 1 1 1 1 1 1 1 1 1

The most obvious difference is that Experiential-I and Experiential-II reveal a

different number of solutions with the same best cost: one and eight, respectively. A

more detailed analysis reveals that none of the optimal solutions from Experiential-II

includes the one from Experiential-I.

It could be the case that two ASIL cost heuristics can be defined that present the

same best solution for the HBSM1 (or for some other case study, for that matter).

However, with the example given in this section, it has been shown that this is not the

127

general case. Work needs to be undertaken within the industry to define a plausible and

widely accepted cost heuristic that unveils meaningful optimal ASIL allocations.

While an agreement is not achieved for a unified ASIL cost function, it is important

that optimisation algorithms for the ASIL allocation problem are capable of dealing with

any that the system designers finds more suitable. Moreover, ISO 26262 is still young

(introduced in late 2011), and development is continuingly shifting from development

from scratch according to a given ASIL, to use of Off-the-Shelf ASIL compliant parts; the

most suitable cost function is therefore likely to change, and this further strengthens

the need for a flexible optimisation technique. In an effort to test the capacity of the

optimisation techniques developed to deal with different cost functions, the four case

studies developed in the context of this thesis are combined with four different ASIL cost

heuristics. The ASIL allocation benchmark is in this way composed of 16 problems in total.

The cost heuristics considered are shown in Table 15.

Table 15 - ASIL cost heuristics.

 ASIL QM ASIL A ASIL B ASIL C ASIL D

Linear 0 10 20 30 40

Experiential-I 0 10 20 40 50

Experiential-II 0 5 30 35 50

Logarithmic 0 10 100 1000 10000

4.4 Methodology for optimisation techniques comparison

In comparing the metaheuristics it is important to define a stopping criterion,

which allows for a similar processing effort to be spent across the different optimisation

techniques. It is common to find approaches where the stopping criterion is based on

iteration count. However, for the different algorithms presented in this thesis, the

processing effort per iteration varies throughout the search process. For example, in

128

Tabu Search, depending on tabu moves restrictions, there is a varying number of

variables being considered for ASIL change. Also, in PSO and GA, whenever a new

solution is generated, only the AACs associated with the solution elements that have

been changed are evaluated. Given these observations, it is not possible to know the

processing effort per iteration for each of the algorithms and, in turn, it is not feasible

to set an iteration limit for each technique that ensures a common processing effort. In

this way, and taking into account the practical nature of the problem being addressed,

execution time has been chosen as the stopping criterion. Algorithms are stopped after

5 minutes of execution time.

Due to the stochastic nature of the optimisation techniques, their performance is

likely to vary between different trials. Thus, comparison is made on the basis of 50

algorithm runs. From the work of Murashkin et al. (2015) with exact solvers, the optimal

solutions for the problems in the benchmark defined in this section are available. The

optimal costs for each problem are presented in Table 16.

Table 16 - Optimal solution costs for the different problems in the ASIL allocation
benchmark.

 ASIL Cost Heuristic

Case study Linear Experiential-I Experiential-II Logarithmic

HBSM1 380 390 340 11300

HBSM2 920 930 790 13280

HBSM3 770 830 620 51150

BSS 4340 5370 5075 397040

Having access to the optimal allocations, instead of comparing the quality of the

solutions obtained by the different techniques against each other’s, all of them can be

directly evaluated against the optimum. To compare the different algorithms, the

percentage of runs returning an optimal solution will be examined. Another metric that

129

will be used in the comparison is the average relative cost increase given by the best

solutions found against the optimal allocations.

4.5 Summary

The chapter has presented a first benchmark for ASIL allocation optimisation. The

benchmark is based on four case studies, which give problems with a variety of

dimensionalities and of AACs characteristics. Different ASIL cost heuristics have impacts

on the nature of the optimisation problem, and therefore four cost heuristics were

considered together with each of the four cases studies; this gives a benchmark with a

total of 16 problems.

The chapter has also demonstrated how the use of HiP-HOPS FTA capabilities

together with an automated optimisation algorithm can be used to find cost efficient

ASIL allocations on a complex scenario. The automated and efficient characteristics of

the approach can support the iterative nature of ASIL allocation, namely in interactions

with suppliers or in cases where system design changes are required.

In addition, with HBSM1 it has been possible to show that the use of different ASIL

cost heuristics changes the considerations about what is the optimal ASIL allocation

across the system. This conclusion could inspire work in the industry to arrive at a widely

accepted cost heuristic. Such work would allow decision support approaches, such as

the one presented in this thesis, to provide solutions which are closer to the “true”

optimum solution.

Finally, the chapter has introduced a methodology for the comparison of the

optimisation techniques presented in chapter 3. Since the algorithms include

randomness in their search process, they are run 50 times for each problem.

130

Furthermore, given that the effort per iteration is not constant in any of the optimisation

algorithms, the stopping criterion for an algorithm run is based on processing effort: 5

minutes have been arbitrarily defined as a maximum execution time. Two metrics will

be used to compare the optimisation techniques: 1) the number of runs returning the

optimal solution, and 2) the average relative cost increase against the optimum cost

across the different problems.

131

5. Experimentation and evaluation

This chapter presents a series of experiments and their evaluation. The work

targets, in its greatest part, objective 3 defined for the thesis: select the best

metaheuristic optimisation technique from the ones developed in chapter 3, and

evaluate the possibility of improving further its performance and enhance its usability.

The chapter also provides further insights about the impacts of different cost functions

over the most efficient ASIL allocations for a system architecture (objective 5).

5.1 The ASIL allocation lottery

ASIL allocation is a complex combinatorial optimisation problem, capable of

generating very large solution spaces that cannot be explored in the context of

exhaustive search. This section evaluates the possibility of finding good ASIL allocations

by randomly generating solutions. Initially, the “ASIL allocation lottery” is compared to

EuroMillions, a popular lottery game played across Europe.

In EuroMillions, players must choose five numbers from a range of 50 and two

extra “lucky stars” from a set of 11. The number of different bets can be determined

using the formula to calculate the number of available combinations when s elements

are to be withdrawn from a set of size n (see Equation 11).

𝑛𝐶𝑠 =

𝑛!

𝑠! (𝑛 − 𝑠)!
 Equation 11

n! and s! stand for the factorial of n and s, respectively.

When choosing the five numbers, n is 50 and s is 5. From Equation 11, there are

2,118,760 combinations for the five numbers. On the other hand, when selecting two

132

stars, n is 11 and s is 2; this gives 55 possible combinations of stars. The total number of

betting possibilities is given by the product of the combinations for the numbers and the

combinations for the stars. In total, 116,531,800 different betting possibilities are

available. A player submitting a single bet would face chances of 1 in 116,531,800, or a

probability of ≈8.58 × 10-9 to win the EuroMillions. It would be interesting to compare

these odds to the ones of winning the ASIL allocation lottery. For each of the case studies

in the ASIL allocation benchmark, and using the linear cost heuristic, Table 17 shows the

chances of hitting the optimal solution if one were to try to and “bet” randomly in a

single allocation. They are calculated on the basis of the ratio between the number of

optimal solutions for a case study and its total number of solutions.

Table 17 - Probabilities of single random bets finding optimal solutions for ASIL allocation
problems.

ASIL
Allocation
Case Study

Number of
optima

Total
number of
solutions

Probability

Probability Ratio
EuroMillions /
ASIL Allocation

Case Study

HBSM1-Linear 100 5.96 × 1016 1.68 × 10-15 5.11 × 106

HBSM2-Linear 100 8.67 × 1041 1.15 × 10-40 7.44 × 1031

HBSM3-Linear 9800 8.67 × 1041 1.13 × 10-38 7.60 × 1029

BSS-Linear 3 2.04 × 10129 1.47 × 10-129 5.83 × 10120

The last column in Table 17 shows the ratio between the probability of winning

the EuroMillions and the probability of randomly finding an optimal ASIL allocation

solution. One would have to be much luckier to win the ASIL allocation lottery than to

become a millionaire with EuroMillions. The probability ratios regarding the HBSM2,

HBSM3 and BSS case studies are even greater (much greater!) than the number of

available solutions for EuroMillions.

133

Of course, for ASIL allocation there is no direct cost per bet; one is concerned with

time consumption to generate a valid, low cost solution. Automation can speed up the

process of generating and evaluating allocations, but exactly how good are the results if

generated randomly? To investigate this, an algorithm has been created that produces

a random ASIL for each FM in the system under analysis; by the time the entire solution

is generated it is evaluated and its cost compared to the one of the optimal allocation(s).

The algorithm was applied to each of the case studies shown in Table 17. For each one

of them, the method was left to run for an entire day. Results are presented in Table 18.

Table 18 - Results of using automation to produce random ASIL allocations for the problems
of Table 17. The quality of infeasible solutions is not compared; for cases where feasible

solutions were not found, dashes are used for the columns referring to cost, iterations and
time of best solution found.

Case Study
Optimal

Cost
Feasible
Found?

Cost
Best

Iteration
Best

Time Best
(seconds)

Total
Iteration

HBSM1-Linear 380 Yes 470 2.93 × 106 1.17 2.19 × 1011

HBSM2-Linear 920 No - - - 8.95 × 1010

HBSM3-Linear 770 Yes 1370 2.25 × 108 355.06 5.87 × 1010

BSS-Linear 4340 No - - - 2.96 × 1010

A vast number of solutions were produced for each of the experimental setups.

However, the optimal solutions of the cases studies were not found. Furthermore, for

HBSM2 and BSS case studies no feasible solution could be generated. For HBSM1, the

simplest case study, a feasible solution was found, but there is still a cost increase of 90

cost units in comparison to the optimal solution (corresponding roughly to 24% of cost

increase). For HBSM3, the best feasible solution found is far more expensive than the

optimal (approximately 78%).

These results clearly demonstrate that ASIL allocation is not a trivial problem that

can be solved purely resorting to luck; not even when luck gets help from a few gigahertz

134

of automated processing power. Furthermore, the fact that in some cases the random

solution generation approach did not even find feasible solutions is symptomatic of the

severely constrained nature of ASIL allocation optimisation. This further supports the

evidence presented in chapter 4 when it was determined that the feasible region size of

problems based on HBSM1 amounted to less than 1% of the total search space.

5.2 Metaheuristics - The survival of the fittest

In chapter 3, a set of metaheuristic-based optimisation techniques have been

developed to tackle ASIL allocation problems. The current section presents a comparison

of their performance across the ASIL allocation benchmark defined in chapter 4.

5.2.1 Parameterisation of the species

Each of the optimisation algorithms includes different parameters that need to be

set and that affect the performance of the algorithms. Experiments with values common

in the literature were tried, but parameterisations were often changed to impose

specific behaviours to the algorithms and also on the basis of trial and error. This section

shows the best parameterisations found after a large number of experiments for each

technique.

Genetic Algorithm and Particle Swarm

GA and PSO share a common approach for the dynamic penalisation of infeasible

solutions. The penalisation approach consists of two sequential parts, Pen-I and Pen-II.

In Pen-I, the penalty to infeasible solutions starts relatively small and it is increased with

iteration count. During Pen-II, penalty to infeasible solutions is increased or reduced,

depending on whether recent best solutions in the population are mostly infeasible or

feasible. Control of how severely infeasible solutions are penalised is achieved through

135

the Near Feasibility Threshold (NFT) parameter. If the NFT increases, the penalty to an

infeasible solution is reduced; on the other hand if the NFT decreases, the penalty grows.

For Pen-I a value needs to be set for the initial NFT. In the approach followed here, the

initial NFT is calculated so that in the first iteration, the most infeasible solution

(corresponding to all allocation variables being assigned with ASIL 0) gets penalised with

a value equivalent to a percentage, τ, of the most expensive feasible solution cost

(scenario where every variable is allocated with ASIL 4). This allows for the values of the

penalty to hold meaning in the context of the cost heuristic being used and the size of

the problem – together, these two factors determine the cost of the most expensive

feasible allocation. Furthermore, this approach also enables a greater initial infeasibility

exploration allowance in problems where solutions can present a higher Total Degree of

Infeasibility (TDI). Consider two illustrative problems, Problem 1 and Problem 2, which

are of the same dimensionality. If the same cost function is used to evaluate the

allocations, the cost of the most expensive solution is the same in both problems.

Following the approach described for initial NFT calculation, the two most infeasible

solutions will be initially penalised with a value corresponding to a percentage, τ, of the

most expensive feasible solution cost. Since the costs of the most expensive feasible

solution is the same for both problems, the two most infeasible solutions present the

same total cost as well (assuming a fixed τ). However, consider that the most infeasible

solution for Problem 1 presents a higher TDI than the most infeasible solution for

Problem 2; this means that the initial NFT for Problem 1 is higher than the one obtained

for Problem 2. This reasoning can be better understood by recovering the expression for

penalty calculation (see Equation 12).

136

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = (
𝑇𝐷𝐼

𝑁𝐹𝑇
)
𝛽

 Equation 12

If the penalty to apply to the most infeasible solutions of Problem 1 and Problem

2 is the same, and the TDI of the most infeasible solution is higher for Problem 1, then

the NFT for Problem 1 must be higher as well. Finally, if the initial NFT is higher for

Problem 1, this means that for the first algorithm iteration, a solution with a given TDI

for Problem 1 will be less penalised than a solution with the same TDI for Problem 2.

The parameterisations of the penalty approach for GA and PSO can be observed

in Table 19 and Table 20, respectively. Except for τ, which has only been defined in the

current section, the different penalisation parameters have been introduced in detail in

section 3.4.4. In order to provide for a better understanding of the tables, they are

briefly described now: 𝛽 is a pre-defined severity parameter used both during Pen-I and

Pen-II - the penalty to apply is the result of the division between a solution’s TDI and the

current NFT, raised to the power of 𝛽; α determines how fast the NFT decreases during

Pen-I; δ is the period for NFT update during Pen-II; finally, ε is used during Pen-II to scale

the NFT’s decrease or increase needs depicted by the proportion of infeasible solutions

over the last δ iterations.

Table 19 - Penalty approach parameterisation for GA.

𝜷
(Pen-I & Pen-II)

α
(Pen-I)

τ
(Pen-I)

δ
(Pen-II)

ε
(Pen-II)

1.5 0.005 1% 400 100

Table 20 - Penalty approach parameterisation for PSO.

𝜷
(Pen-I & Pen-II)

α
(Pen-I)

τ
(Pen-I)

δ
(Pen-II)

ε
(Pen-II)

1.5 0.01 5% 100 100

137

The penalty settings of PSO define a more volatile change in what areas are

favoured in the solution space (higher NFT decrease rate during Pen-I (α) and smaller

period for Pen-II (δ)). PSO’s Local Search (LS) tactic is likely to play an important role here.

Whilst initially integrated in PSO with the purpose of dealing with discretisation errors,

LS concurrently allows, to some extent, for an improvement driven exploration of the

area around a particle. This can be important to make a particle travel more easily into

the areas favoured by the penalty function and also for the algorithm to be more focused

and converge faster. The GA technique, on the other hand, only makes use of stochastic

operators - crossover and mutation - possibly making it harder to travel between

penalty-favoured regions and weighting for a slower convergence. Another interesting

aspect is that the penalty to apply to infeasible solutions is initially smaller in GA (the τ

value is smaller). This need for a higher infeasibility exploration allowance can again be

linked to the random nature of the operators in GA; in finding the most promising

solution of a given area, GA’s stochastic process of exploration may require going

through a set of solutions that are more infeasible that in the case of PSO. Finally, setting

ε=100 seemed to work well for both algorithms. The need for a higher infeasibility

allowance in GA might be shadowed here by the adaptive nature of Pen-II.

Having introduced the best parameterisations for the penalty method, it is now

time to present the parameterisations for the algorithms themselves. The GA

parameterisation is shown in Table 21.

Table 21 - GA parameterisation.

 Population Children
Uniform crossover

probability
Mutation

probability
Mutation

rate

All HBSM 3 5
30% 60% 1%

BSS 15 50

138

A bigger population and a higher number of children were required for the large

BSS. For this case study, the use of populations as high as 50, and as low as 5 obtained

solutions of the same quality, with minor execution time variations (keeping the

offspring to 50). It must be said that manipulation of the penalty parameterisation, by

choosing smaller NFT decrease rates during Pen-I and higher NFT update periods for

Pen-II, allowed for smaller offspring sizes to be set for BSS. In these circumstances,

intensification over a penalty favoured region lasted more generations, but with less

solution evaluations per generation. However, experiments with such

parameterisations did not reveal improvements over the results shown here. In regards

to the different HBS variants, running GA with both parameter settings from Table 21

resulted in finding equally good solutions. Nonetheless, selecting the smaller sizes for

the population and offspring obtained the solutions substantially faster, although, in

general, after a higher number of generations.

In regards to PSO, the parameterisation adopted is depicted in Table 22.

Table 22 - PSO parameterisation.

Swarm
size

c1 c2 w
LS

probability
LS period

Mutation
probability

Mutation
rate

10 1.2 0.6 0.729 50% 5 iterations 50% 1%

Throughout experiments, mutation showed to be valuable in efficiently and

effectively introducing diversity in the search. It plays an essential role in the current

parameterisation as well; if set to zero, the number of algorithm runs retrieving

optimum solutions is dramatically reduced.

Research on how to select values for c1, c2 and w has been conducted in the past

by a variety of authors (Eberhart & Kennedy, 1995; Clerc, 1999; Clerc & Kennedy, 2002;

139

Trelea, 2003). Clerc (1999), for example, recommends: c1=1.494, c2=1.494 and w=0.729.

The PSO algorithm presented here, however, extends the original technique with

different operators, namely LS. The former seems to have a special influence in the

selection of c1 and c2. LS around a particle’s position can provide an extra contribution

for the exploration of the area surrounding the particle’s pbest and of the swarm’s gbest,

perhaps with different weights depending on parameterisation. Determining a

relationship between LS and the selection of c1 and c2 still requires further investigation.

A good performance across the benchmark has been found experimentally by setting c1

and c2 to 1.2 and 0.6, respectively, while performing LS to 50% of the swarm (5 particles)

with every 5 iterations.

Tabu Search

The parameterisation utilised with TS is presented in Table 23.

Table 23 - TS parameterisation.

updatePeriodp updatePeriodq limitp limitq

10 11 2n 2n

Imposing long tabu restrictions to certain solution elements naturally means that

more changes can take place elsewhere. Conceptually, forbidding descent moves for a

relatively long period, thus locking parts of the solution to higher ASILs for that duration,

can be important in providing a greater degree of freedom for the remaining parts to

change; as a result, the solution can travel to a different area in the search space. On the

other hand, locking solution components to lower values for long, might allow for good

parts of the solution to be conserved, even if not recognised as such in the current

search state. In both cases, however, it is important for these moves restrictions not to

140

be present for unnecessarily long periods, as they might prevent convergence whilst in

areas of good solutions. The most promising results were obtained across the

benchmark when descent and ascent moves were forbidden up to two times the

problem dimensionality. Furthermore, although in the best parameterisation found,

updatePeriodp and updatePeriodq are set to 10 and 11, respectively, some efficient

performances were also obtained, for example, with the parameterisation suggested by

Hansen and Lih (1996): (updatePeriodp; updatePeriodq) = (3; 4). Across experiments, this

approach of setting updatePeriodq to a value one unit greater than updatePeriodp

provided good results. Also, it seemed important not to choose values for these

parameters that are either too big or too small. High values mean that the same memory

state gets applied consecutively to a big number of solution components and too many

solution parts could get locked for too long, for example. Low values could also lead to

undesired effects, such as not locking enough parts of the solution for a period that

allows for the rest to converge into a good solution in the area.

5.2.2 And the fittest species is…

This section presents a comparison of the three most promising metaheuristic

optimisation techniques presented in chapter 3. In section 4.4, a comparison

methodology had been defined, which was based on the quality of the solutions each

technique finds. However, the final versions of the three algorithms discover the optimal

solution for each problem in the benchmark, in 50 out of 50 runs. These results are

obtained under the previously defined limit of 5 minutes. Model-based development

facilitates a highly dynamic design process, where changes to a system architecture can

be easily performed and immediately evaluated in terms of cost, safety, weight, etc. This

type of development meets modern system development needs, namely evaluating

141

multiple design solutions for a same system architecture or dealing with changes in

requirements. Although the three optimisation techniques can complete the problems

in the benchmark in reasonable times, it would be important to identify the most

efficient. Using the fastest technique would favour further a dynamic design process -

ASIL allocation information would be more readily available for the user to make a

decision on the architecture it has conceived at a given design iteration. Highlighting the

most efficient technique is also important in the light of dealing with future, more

complex problems. In this way, this section compares the GA, PSO and TS optimisation

techniques on the basis of the average time they take to complete the problems in the

benchmark, over 50 runs. Experiments were conducted on a machine equipped with an

Intel i5-3570K processor clocked at 3.40GHz and with 8GB of RAM.

The results from the experiments carried out are presented in Tables 24, 25, 26

and 27. Each table relates to one case study of the ASIL allocation benchmark.

Table 24 - Results for HBSM1 problems.

Algorithm
Cost

Function
Min

Time (s)
Avg

Time (s)
Max

Time (s)
Std Dev
Time (s)

GA

Lin 0.006389 0.0124880 0.030777 0.0063719

Exp-I 0.006965 0.0558921 0.219299 0.0492780

Exp-II 0.006442 0.0227274 0.084308 0.0197152

Log 0.003465 0.0137471 0.149952 0.0228430

PSO

Lin 0.005056 0.0057361 0.006407 0.000325

Exp-I 0.005034 0.0059819 0.006675 0.0003897

Exp-II 0.005066 0.0058188 0.006787 0.0003109

Log 0.001433 0.0030475 0.005409 0.0010558

TS

Lin 0.000025 0.0000289 0.000038 0.0000024

Exp-I 0.000028 0.0001227 0.000513 0.0001033

Exp-II 0.000025 0.0000361 0.000061 0.0000104

Log 0.000025 0.0000579 0.000201 0.0000323

142

Table 25 - Results for HBSM2 problems.

Algorithm
Cost

Function
Min

Time (s)
Avg

Time (s)
Max

Time (s)
Std Dev
Time (s)

GA

Lin 0.036079 0.7235642 3.020296 0.7235532

Exp-I 0.020858 0.2526737 1.358449 0.2863532

Exp-II 0.015580 0.6781136 2.734967 0.6140482

Log 0.010254 0.0290923 0.145465 0.0285950

PSO

Lin 0.012894 0.0437167 0.142182 0.0367445

Exp-I 0.012247 0.0142772 0.016915 0.0009266

Exp-II 0.012960 0.1510058 0.928491 0.1552747

Log 0.004181 0.0097878 0.014618 0.0020801

TS

Lin 0.000083 0.0042940 0.025781 0.0051581

Exp-I 0.000087 0.0011129 0.005599 0.0013986

Exp-II 0.000083 0.0019743 0.009872 0.0025251

Log 0.000074 0.0001870 0.001087 0.0001448

Table 26 - Results for HBSM3 problems.

Algorithm
Cost

Function
Min

Time (s)
Avg

Time (s)
Max

Time (s)
Std Dev
Time (s)

GA

Lin 0.071032 0.4492811 1.578897 0.3992775

Exp-I 0.073513 2.1811851 9.148364 2.2033160

Exp-II 0.070480 0.5963541 3.985500 0.7792485

Log 0.073740 0.8116967 27.011508 3.7773049

PSO

Lin 0.351748 0.6739416 1.480792 0.2762455

Exp-I 0.397512 1.0775289 2.820434 0.7179697

Exp-II 0.335210 0.5084100 1.967718 0.3163233

Log 0.313197 0.3584900 0.466582 0.0253947

TS

Lin 0.001816 0.0166488 0.082580 0.0174064

Exp-I 0.001927 0.0860322 0.357000 0.0875105

Exp-II 0.001953 0.0258641 0.156816 0.0278785

Log 0.001970 0.0058873 0.058060 0.0088219

143

Table 27 - Results for BSS problems.

Algorithm
Cost

Function
Min

Time (s)
Avg

Time (s)
Max

Time (s)
Std Dev
Time (s)

GA

Lin 0.726641 0.7764428 0.873860 0.0370999

Exp-I 0.752787 0.7941502 0.874269 0.0276522

Exp-II 0.764339 0.8122183 0.896643 0.0342757

Log 0.795020 0.8408713 0.953727 0.0326558

PSO

Lin 0.250719 0.4454349 8.490209 1.1494235

Exp-I 0.255177 3.3664704 60.044311 11.3723530

Exp-II 0.240792 0.2680211 0.297390 0.0120433

Log 0.202960 0.2194469 0.235205 0.0086264

TS

Lin 0.008472 0.0490931 0.131184 0.0237989

Exp-I 0.014696 0.0870871 0.194864 0.0541084

Exp-II 0.001047 0.0229366 0.115203 0.0230289

Log 0.001015 0.0317221 0.343760 0.0712825

Firstly, it is important to highlight how all of the optimisation techniques give very

acceptable performances. Results show that, across the different algorithms, the

maximum time taken to complete a problem amounts to roughly 60.04 seconds (PSO

for BSS-Exp-I). Furthermore, the maximum average execution time is 3.37 seconds

(again, obtained by PSO for BSS-Exp-I).

To facilitate comparison, charts have been created which plot the techniques’

average processing times for the different problems in the benchmark. There are four

charts and each relates to tests with a particular case study (see Figures 29, 30, 31 and

32). Attention must be brought to the fact that charts use a logarithmic scale. In fact, in

some problems, the different techniques present very different processing times; if a

logarithmic scale is not used, the order of magnitude of some results is not recognisable.

144

Figure 29 - Average processing times of GA, PSO and TS to complete HBSM1 problems.
Smaller is better.

Figure 30 - Average processing times of GA, PSO and TS to complete HBSM2 problems.
Smaller is better.

0.00001

0.0001

0.001

0.01

0.1

1

10

Lin Exp-I Exp-II Log

A
ve

ra
ge

 t
im

e
(s

)

Cost Heuristic

GA PSO TS

0.00001

0.0001

0.001

0.01

0.1

1

10

Lin Exp-I Exp-II Log

A
ve

ra
ge

 t
im

e
(s

)

Cost Heuristic

GA PSO TS

145

Figure 31 - Average processing times of GA, PSO and TS to complete HBSM3 problems.
Smaller is better.

Figure 32 - Average processing times of GA, PSO and TS to complete BSS problems. Smaller is
better.

0.00001

0.0001

0.001

0.01

0.1

1

10

Lin Exp-I Exp-II Log

A
ve

ra
ge

 t
im

e
(s

)

Cost Heuristic

GA PSO TS

0.00001

0.0001

0.001

0.01

0.1

1

10

Lin Exp-I Exp-II Log

A
ve

ra
ge

 t
im

e
(s

)

Cost Heuristic

GA PSO TS

146

The TS technique presents the fastest average processing times across all 16

problems defined. TS is at least one order of magnitude faster than GA in all problems

but one (BSS-exp-I, for which it still is nine times more efficient). In turn, TS is faster than

PSO by at least one order of magnitude in all problems but two: BSS-lin and BSS-log.

However, for these two problems, TS remains significantly quicker; it is nine times faster

than PSO for the first and it finishes the second seven times quicker. Comparing PSO to

GA, the former is faster in 14 problems; GA only overcomes PSO for HBSM3-lin and BSS-

exp-I. The differences between GA and PSO are generally less significant than when the

two are compared to TS; HBSM2-lin and HBSM2-exp-I are the only problems for which

one of the techniques is more than 10 times faster than the other (PSO being the fastest

in these two cases).

Analysis of the tables of results gives more evidence of the overwhelming

superiority of TS over GA and PSO, when applied to these problems. The average times

of TS are smaller than the minimum times of PSO in every problem; in turn, only for one

problem, TS’s average time is greater than GA’s minimum. Furthermore, even if TS’s

maximum times are taken, they are smaller than PSO and GA’s minimum times in 14 and

13 problems, respectively. This means that even in the scenario where TS is guided by

“the worst case randomness”, and PSO and GA are steered by “the best case

randomness”, TS is still better for the majority of tests. Another interesting fact is that

TS’s maximum times are smaller than PSO’s average times in every problem but one; in

regards to GA’s average times, in every problem TS’s maximum times are smaller.

Analysing the total average time across the benchmark, it is no surprise that TS is

the fastest technique. It presents an approximate total time of ≈0.33 seconds; PSO is the

147

second fastest technique with ≈7.16 seconds, and GA comes last with ≈9.05 seconds.

Across the benchmark, TS is ≈27 times faster than GA and ≈21 times faster than PSO.

TS’s performance superiority in this study is clear. It is worth, however, underlying

yet another important advantage of the technique: it provided a much easier tuning

experience. Whereas TS integrates only four parameters to select, GA and PSO (counting

penalty settings) include 10 and 13 parameters, respectively. It is important to point out

that although GA includes a lower number of parameters than PSO, it seemed more

susceptible to the effects of parameter selection and more effort was needed to make

GA achieve its best results.

TS combines the best performances across every problem in the benchmark with

the easiest tuning experience. It emerges as the far most promising technique from this

study. The second most promising technique is PSO, which presents more efficient

processing times than GA for 14 out 16 problems in the benchmark. Furthermore, it

finishes the entire benchmark faster than GA. Finally, although PSO includes the largest

number of parameters to select, it provided a better tuning experience than GA.

Having established TS as the most promising technique, a few possible

explanations for PSO and GA’s less promising performances are now advanced.

One first possible contributing factor is related to the processing effort associated

with GA and PSO’s population-based approaches and the size of the problems tackled.

The results from the benchmark reveal that all the cases where GA and PSO are slower

than TS by less than one order of magnitude are linked to the BSS case study. Additional

analysis tells that on average, for both algorithms, this is the case study for which the

relative differences to TS are smaller: PSO is on average ≈17 times slower than TS across

148

the BSS problems, whereas GA is ≈22 times slower. The case study where the relative

differences are greatest is HBSM1, for which TS is on average ≈115 times faster than PSO

and ≈438 times faster than GA. The relative differences between TS and the two

remaining techniques are then maximum for the smallest case study, HBSM1, and

minimum for the one posing the biggest search space, BSS. This could be an indication

that the processing effort from GA and PSO’s population-based approaches is especially

excessive for the smaller problem in the benchmark, but it starts paying off with the

increase of search space size. TS is an trajectory-based metaheuristic; if the initial

solution generation step determines that the optimisation process starts far from the

optimal solution, search will have to evolve between solution regions, to some extent

blindly, until the one from the optimum is reached. In the case of population-based

algorithms, multiple search space regions can be examined initially and optimisation can

progress towards the most promising one, which hopefully contains the optimum.

Whereas in exploring larger solution spaces the population-based approach can present

benefits, for smaller problems having multiple solutions scanning the search space will

more likely represent unnecessary processing effort. That being said, although the

relative differences between TS and the population-based approaches have their

minimum for the largest case study, BSS, they are still substantial; in the future, it could

be interesting to study larger case studies to evaluate if the relative differences between

TS and the two population-based approaches can become more comparable.

One other possible cause for the less efficient performances of PSO and GA is

related to how infeasible solutions are penalised. Consider an illustrative Problem 1 with

two variables, ASILFM1 and ASILFM2. Problem 1 integrates the three AACs given next.

149

 AAC1: ASILFM1 ≥ ASIL 3

 AAC2: ASILFM1 ≥ ASIL 3

 AAC3: ASILFM2 ≥ ASIL 3

Now consider two infeasible solutions for the same problem:

 Solution 1: ASILFM1 = ASIL 1; ASILFM2 = ASIL 3

 Solution 2: ASILFM1 = ASIL 3; ASILFM2 = ASIL 0

A solution’s degree of infeasibility concerning a given AAC is calculated from the

difference between the AAC’s ASIL requirement and the ASIL achieved by the solution

for that AAC. In turn, the TDI of a solution is given by the sum of the degrees of

infeasibility across all the AACs of the problem. Solution 1 fulfils AAC3, but it violates

AACs 1 and 2. AACs 1 and 2 have ASIL 3 as requirement, and for both, Solution 1 achieves

ASIL 1 through ASILFM1. Hence, for each of these AACs, Solution 1 presents a degree of

infeasibility of two units. In turn, the TDI of Solution 1 is the sum of the degrees of

infeasibility for AACs 1 and 2, which amounts to four. Solution 2 fulfils AACs 1 and 2, and

it violates AAC3. Since only AAC3 is not satisfied, the degree of infeasibility presented

for this AAC gives the TDI of Solution 2. The ASIL requirement for AAC3 is ASIL 3 and the

ASIL obtained for that AAC is ASIL 0 (through ASILFM2); the TDI for Solution 2 amounts to

three units. Solution 1 presents a TDI of four, whereas Solution 2 has a TDI of three units.

The penalty applied to a solution grows with the TDI it presents; as a result, Solution 2

will be favoured by the penalty function and the optimisation algorithm will possibly

consider it as representing a more promising area in the search space. However, a closer

look at the two solutions tells that Solution 1 is actually closer to feasibility than Solution

150

2. Observe Figure 33, which depicts the relationships between the AACs and the

allocation variables of Problem 1.

Figure 33 - AACs for Problem 1. ASILFM1 is shared by AAC1 and AAC2.

ASILFM1 belongs both to AAC1 and AAC2; as a consequence, it simultaneously

contributes to satisfying the requirements of the two AACs. In Solution 1, a variable

(ASILFM1) only needs to be incremented two units so that the solution becomes feasible;

in Solution 2, on the other hand, ASILFM2 needs to be incremented by three units.

Arguably, Solution 1 should be less penalised and the area around itself favoured for

exploration.

Despite situations like the one of solutions 1 and 2, the penalty approach adopted

in this thesis allows for optimal solutions to be found and within very acceptable times.

In fact, there are scenarios for which the approach makes valid inferences. Consider a

third solution for Problem 1:

 Solution 3: ASILFM1 = ASIL 3; ASILFM2 = ASIL 2

Solution 3 only violates AAC3, and it does so by one unit; in turn, this leads to a

TDI of the same value. Solution 3 is less penalised than Solution 2, which has a TDI of

three units. The higher penalisation for Solution 2 makes sense in terms of distance to

feasibility; in Solution 3, incrementing ASILFM2 by one unit will be enough to reach

feasibility, whereas in Solution 2, ASILFM2 needs to be incremented by three units. In this

151

way, the penalty approach used in this thesis, although not perfect, remains as one that

allows for some valid considerations and for good results to be achieved. It is possible,

however, that a method that penalises a solution by determining how far it rests from

feasibility can guide the algorithm better in exploring infeasible search space, and

enables reaching optimal solutions in less iterations. Developing such a method

promises to be a non-trivial task, nevertheless. As illustrated with Solution 1, in

calculating the distance of a solution to feasibility, one needs to take into account the

impacts of a given allocation variable in satisfying all the AACs it integrates. Determining

a solution’s distance to feasibility emerges as an optimisation problem itself, which

consists of finding the minimum total increase to allocation variables that allows

meeting all the AACs requirements. Solving this problem will likely require additional

significant processing effort. Therefore, even if the optimisation algorithms can be

better guided through infeasibility it is doubtful that the resulting approaches will be

more efficient than the GA and PSO techniques presented in this thesis.

A last possible contributing factor for the less efficient performances presented by

PSO and GA is related to the parameterisation experience they offer. A much greater

amount of effort was dedicated to tuning these two approaches in comparison to TS.

Given the number of parameters that need selection in PSO and GA, it is more likely that

their performances are further away from the best that can be obtained, than in the

case of TS.

Finally, a brief consideration about the superiority of PSO over GA. PSO’s more

promising results can possibly be linked to its improve-driven local search approach. This

152

mechanism seems to give a quicker, but still effective, exploration of different regions

in the search space.

5.3 ASIL allocation - Optimisation by divide and conquer

In tackling complex problems, it is common to find approaches that follow a divide

and conquer methodology, i.e., they work by decomposing the original problem into

multiple, simpler sub-instances and solving those independently. The solutions of the

sub-instances are then combined to provide a solution for the original problem. In the

literature, the definition of divide and conquer approaches is often more focused. For

example, it is common to find it linked to recursion: problems are to be iteratively

decomposed into sub-instances and then solved recursively (Dasgupta et al., 2008). In

this thesis, however, the definition adopted for divide and conquer merely refers to a

procedure where a problem is divided and the resulting sub-instances solved to provide

a solution for the original problem.

A divide and conquer approach has been devised for tackling ASIL allocation

problems. The rationale for further improvements to the optimisation performance is

that it will enhance the scalability of the allocation approach proposed in this thesis. This

section starts by explaining how ASIL allocation problems can be divided into

independently solvable sub-instances, which are themselves of the same type of the

original one; subsequently, the applicability of the division method to the problems of

the ASIL allocation benchmark is demonstrated; finally the performance of the overall

divide and conquer optimisation process, making use of Tabu Search to conquer the sub-

problems, is evaluated.

153

5.3.1 A guide to divide and conquer

Up to this point, optimisation algorithms have been inputted simultaneously with

all the decision variables and all the ASIL Allocation Constraints (AACs) defined for a

given allocation instance. In each of their runs, they would be searching for a promising

solution that applies to the entire problem. Figure 34 provides an overview of the

optimisation process used until now when applied to the problem posed by an

illustrative System 1 (S1). The problem contains six variables and five AACs. ASIL cost

information is neglected at this point for simplicity.

Figure 34 - ASIL allocation optimisation process for the problem of an illustrative System 1
(S1). The entire problem is solved in one step by the optimisation algorithm.

Although it is possible to solve the problem in the fashion presented in Figure 34,

an analysis of the AACs defined for a system can identify subsets of decision variables

whose allocations are independent from each other’s, and that in fact pose optimisation

154

problems that can be solved separately. This is the premise for the divide and conquer

approach to ASIL allocation. Consider the AACs information for S1, which is presented in

Figure 35.

Figure 35 - AACs of S1.

ASILFM1 has the responsibility of meeting on its own the ASIL requirement of AAC1

(ASIL C). This decision variable is not involved in any other AAC and therefore it can

immediately be allocated with ASIL C. Note that the allocation to ASILFM1 does not impact

the rest of the problem. Assigning it with ASIL C will not contribute to fulfil any of the

constraints ASILFM4 is part of, for example. Proceeding to ASILFM2, this variable is only

involved in one AAC as well (AAC2). However, ASILFM3 also integrates AAC2 and therefore

a decision on the allocation to ASILFM2 will have an impact on the allocation to ASILFM3

and vice-versa. If ASILFM2 is allocated with ASIL B, for example, ASILFM3 only needs to be

assigned with ASIL A to meet the requirement of AAC2 (ASIL C). Hereinafter, variables

presenting this type of dependencies are said to be interconnected. As with ASILFM2,

ASILFM3 is not involved in AACs with other variables and therefore an optimal solution

can be determined for both without considering any other allocations. Finally, ASILFM4,

155

ASILFM5 and ASILFM6 are interconnected. As it is highlighted in Figure 36, ASILFM4 is shared

by AACs 3 and 4 and ASILFM5 integrates AACs 4 and 5.

Figure 36 - AACs of S1. Decision variables that are shared by AACs have their limits drawn
with dashes (ASILFM4 and ASILFM5).

AAC3 requires ASILFM4 to be at least ASIL B. If this allocation is adopted, to meet

ASIL C in AAC4, the minimal allocation for ASILFM5 is immediate: ASIL A (ASIL B [ASILFM4]

+ ASIL A [ASILFM5] = ASIL C); finally, assuming the two previous decisions are taken,

ASILFM6 would only need to be allocated with ASIL C to meet the requirement of AAC5

(ASIL A [ASILFM5] + ASIL C [ASILFM6] = ASIL D).

This last scenario shows that two variables, namely ASILFM4 and ASILFM6, do not

need to be in the same AAC to be interconnected. It is important to also note that if

ASILFM6 was involved in an AAC with a hypothetical ASILFM7, ASILFM7 would have an

impact on the allocation to ASILFM6 and consequently on ASILFM4 and ASILFM5. Two generic

variables, ASILFMX and ASILFMY, are interconnected if they exist in the same AAC or if

between them there is a path of variables joined by AACs. Figure 37 shows an example

of such a path.

156

Figure 37 - Example of a path of variables across different AACs connecting two generic
variables - ASILFMX and ASILFMY.

Through AAC7, ASILFMX impacts ASILFM8, which in turn has an influence on ASILFM9

through AAC8; ASILFM9 influences ASILFM11 via AAC9 and the latter finally impacts ASILFMY

in AAC10. It is clear that not only variables at the ends of the path are related; all the

variables in the path are themselves part of the same interconnected set – in fact, a path

of the same type can be drawn between any two of these variables. Furthermore, note

that ASILFM10 is not necessary to form a path between ASILFMX and ASILFMY; however, it

impacts ASILFM9 and ASILFM11 through AAC9 and therefore it is interconnected with all

the previous variables. Finally, a path can be delineated between ASILFM12 and any

variable in this example through its interaction with ASILFM10 in AAC11. At the end of the

analysis, all the variables in Figure 37 form a single interconnected set.

While dividing an ASIL allocation problem, every variable needs to be associated

with one interconnected set. For simplicity, variables which are the only element in all

157

of their AACs are here considered to be part of an interconnected set, although it is one

constituted of a single element.

Returning to system S1, the original problem it poses can then be divided into

three instances of smaller dimensionality that are completely independent. As is it

shown in Figure 38, the different sub-problems do not share variables, nor AACs (if

variables integrate the same AAC, they are interconnected by definition). Also, note that

no AACs are added or removed when creating each sub-problem - the conjunction of

the AACs for each sub-instance results in the set of AACs defined for the original problem.

Figure 38 - Sub-problems devised for S1.

After the problem division step is performed, optimisation can be applied to each

of the sub-problems separately. For interconnected sets composed of a single variable,

such as the one of ASILFM1, no optimisation algorithm is utilised. Instead, a Direct

Allocation Algorithm analyses the AACs associated with the variable, determines the

highest ASIL requirement the variable needs to comply with and immediately allocates

it with that value. At the end, the solutions yielded for each of the instances can be

directly combined to provide an overall allocation for the original problem. The full

approach is represented in Figure 39, using the example of problem S1.

158

Figure 39 - Overview of the ASIL allocation divide and conquer optimisation approach.

159

Costs have been omitted from the description of the approach to facilitate

understanding. Nevertheless, ASIL-dependent costs are calculated separately for each

variable on the basis of the allocation they receive; as the final solution is just a

conjunction of the different sub-solutions, the final cost is then given by the sum of the

sub-solutions costs.

It is important to point out that the divide and conquer approach is not tied to a

particular optimisation algorithm. Different users may utilise the optimisation technique

of their choice.

One of the biggest challenges with ASIL allocation is bound to its combinatorial

nature; the search space to explore grows exponentially with the number of variables in

the problem. The reduced dimensionality of sub-instances produced by the divide and

conquer process can be key in improving the optimisation performance. The problem

posed by S1 includes six variables, meaning that there are 15625 solutions (56) to be

explored if the problem is not divided. Alternatively, for each of the sub-problems the

associated search space sizes are:

 Sub-problem 1: 5 solutions (51)

 Sub-problem 2: 25 solutions (52)

 Sub-problem 3: 125 solutions (53)

Algorithms tackling the sub-problems independently, will be exploring search

spaces that are clearly smaller. There are a total of 155 solutions across the three sub-

instances, a value which is more than 100 times smaller than the original search space

size. The difference is potentially even more dramatic when larger problems are

considered. For example, a problem with 60 variables has an associated search space of

160

approximately 8.67 × 1041 solutions. If divided into three problems of dimensionality 20,

the search space of each one of them is approximately 9.54 × 1013; a combined search

space of approximately 2.86 × 1014 solutions is obtained. The latter is 27 orders of

magnitude smaller than the original search space size!

Another promising aspect to the divide and conquer approach is the possibility of

applying parallelisation to speed up the optimisation process. Solving ASIL allocation

sub-instances concurrently is an embarrassingly parallel problem. The sub-instances are

completely independent and little effort is required to parallelise their execution; it

would be embarrassing not to take advantage of the opportunity to enhance

performance.

There are some important promising features to the divide and conquer approach,

but it is also necessary to point out latent downsides. Firstly, determining the sets of

interconnected variables consumes processing time. Furthermore, defining multiple

sub-problems also brings the extra overhead of building data structures for AACs

evaluation for each sub-instance. Finally, the approach necessarily adds to the size and

complexity of the implementation.

5.3.2 Dividing the ASIL allocation benchmark

The previous section described how an original ASIL allocation problem can be

divided into independently solvable sub-problems. However, no division can occur if all

variables in the problem are interconnected. The question remains if generally systems

present characteristics that allow dividing the original allocation problem they pose.

This was investigated by revisiting the ASIL allocation benchmark introduced in chapter

4. Table 28 provides a first insight at the results.

161

Table 28 - Number of sub-problems obtained per case study.

Case study
Number of

sub-problems

HBSM1 13

HBSM2 31

HBSM3 8

BSS 102

The original problems from each of the case studies can be divided into several

independent sub-instances. This indicates that the divide and conquer optimisation

approach presented in this thesis has more general applicability.

It is interesting that for three case studies - HBSM1, HBSM2 and BSS - the number

of generated sub-problems is more than half the number of variables in the original

problem. This tells that the dimensionality of the largest sub-instance in each of these

case studies is necessarily smaller than half the one of the original problem. Table 29

details on the dimensionality of all the sub-problems devised across the benchmark.

Table 29 - Sub-problems for each case study in the ASIL allocation benchmark organised by
dimensionality.

 Dimensionality of sub-problems

Case study 1 2 4 8 24 26 84

HBSM1 10 1 1 1 - - -

HBSM2 28 1 1 - - 1 -

HBSM3 4 1 1 - 1 1 -

BSS 101 - - - - - 1

As with the remaining case studies, HBSM3’s largest sub-problem also contains less

than half the number of variables of the original instance. In the case of HBSM1, Table

29 reveals that its largest sub-problem is even of dimensionality three times smaller than

the one of the original problem. For BSS, more than half of its variables (101 out 185)

can be directly allocated with the maximum ASIL requirement of the AACs they integrate.

162

There is only one sub-instance posing an optimisation problem in this case study and it

includes 84 variables. This sub-instance is the one of highest dimensionality in the

subdivided benchmark.

A closer look is now taken upon HBSM1 to illustrate how FMs of a system

architecture interact to generate interconnected instances. In HBSM1 there are

interconnected instances with only one variable, relating to FMs that do not share cut

sets with any other FM. This is the case, for example, of IWM.VFailure1 which is only

included in one cut set and is a single-point of failure for the hazard “braking with wrong

value”. On the other extreme, there is the most complex interconnected instance of

HBSM1, which includes eight variables (see Figure 40). A line between two FMs

represents a cut set comprised of the two FMs.

Figure 40 – HBSM1 interconnected instance of size eight.

Two FMs that share a cut set are interconnected by definition. If WNC.OFailure1

is taken as the initial point in the analysis, it is immediate that it is interconnected with

all the FMs from the bottom row. As a consequence, all five variables are interconnected.

163

In turn, each of the FMs in the bottom row is in a cut set with each FM in the top row.

This means that all variables in Figure 40 are interconnected.

It is worth drawing a connection between the interconnected instance and the

system architecture. The eight FMs in Figure 40 belong to the components of the power

architecture of the HBSM1, including the WNC. FMs on the top row refer to FMs of

components involved in EMB braking, whereas the ones in the bottom row refer to IWM

braking. Each FM in a row is in a cut set with each FM in the other row. This is a

consequence of the redundant braking architecture intended for the HBSM1, where the

hazard “No braking” is only originated when there is braking omission in both the EMB

and IWMs braking channels. For the “No braking” hazard to happen, an omission failure

must occur in a component in each of the channels.

The interconnected instance identified in Figure 40 is a special case: setting an

allocation for one of the variables does not just influence the allocation of the remaining

variables - it immediately defines their minimum allocations. All cut sets represented in

Figure 40 have to meet an ASIL D requirement, since they create the “No braking” hazard.

Allocating, for example, WNC.OFailure1 with ASIL A means that each variable of the

IWM channel needs to be at least ASIL C (WNC.OFailure1 is in a cut set with each FM of

the IWM channel); in turn the FMs that are left to be allocated in the EMB channel need

to be allocated with at least ASIL A (each FM in the IWM channel is in a cut set with a

FM in the EMB channel). The constraints from the cut sets associated with this

interconnected instance mean that to achieve a minimum solution, the FMs of a given

braking channel are to be allocated with the same ASIL, and the total ASIL of the two

channels needs to add up to ASIL D.

164

Analysis turns now to compare the original search space of each case study and

the total search space of the sub-problems obtained after applying the divide and

conquer procedure. Differences are immense (see Table 30).

Table 30 - Search space size of the original problems posed by each of case studies in the
ASIL allocation benchmark and the total search space size across their sub-problems.

Case study Original search space Sum of sub-problems’ search space

HBSM1 5.96046 × 1016 391325

HBSM2 8.67362 × 1041 1.49012 × 1018

HBSM3 8.67362 × 1041 1.54972 × 1018

BSS 2.03916 × 10129 5.16988 × 1058

Of the different case studies, BSS receives the most dramatic change, with a

resulting search space that is 71 orders of magnitude smaller than the initial. For HBSM1,

the new search space is actually under one million solutions. HBSM2 and HBSM3 both

receive reductions of 23 orders of magnitude.

AACs create relationships between variables; however, a higher number of AACs

does not necessarily imply a larger set of interconnected variables. Multiple AACs can

be composed of the same variables, for instance. Also, one AAC would be enough to link

all variables in a problem. Table 31 (see next page) shows the dimensionality and

number of AACs associated with each sub-instance in the subdivided ASIL allocation

benchmark. The column furthest to the right shows what percentage of the number of

AACs in an original problem belongs to one of its sub-instances (only sub-problems with

sizes greater than 1 are shown).

165

Table 31 - Dimensionality and number of AACs of each sub-problem in the ASIL allocation
benchmark (SP – Sub-Problem).

Sub-Problem Dimensionality Number of AACs
% of AACs of original

problem

HBSM1-SP1 2 1 ≈3.23

HBSM1-SP2 4 4 ≈12.90

HBSM1-SP3 8 16 ≈51.62

HBSM2-SP1 2 1 ≈1.06

HBSM2-SP2 4 4 ≈4.26

HBSM2-SP3 26 61 ≈64.89

HBSM3-SP1 2 5 ≈0.04

HBSM3-SP2 4 12 ≈0.10

HBSM3-SP3 24 1296 ≈11.20

HBSM3-SP4 26 10256 ≈88.62

BSS-SP1 84 8096 ≈98.52

In meeting the reflection that the size of a given interconnected instances does

not necessarily grow with the number of AACs associated with it, consider HBSM2-SP3

and HBSM3-SP4; both have the same dimensionality, but the first includes a much

smaller number of AACs (61 versus 10256). That being noted, within each of the case

studies, sub-problems with a greater number of AACs are of higher dimensionality.

It is interesting that although BSS-SP1 is less than half the size of the problem it

originates from, it keeps more than 98.52% of the original AACs. Also, in the case of

HBSM3, there are two bigger sub-problems of similar dimensionalities, but HBSM3-SP4

concentrates 88.62% of the AACs in the original problem. The latter integrates the

highest number of AACs across the entire subdivided benchmark. Also, most of its AACs

are of sizes six and eight (see Table 32); for all other sub-problems, AACs contain less

than five variables.

166

Table 32 - Number of AACs for each sub-problem defined across the ASIL allocation
benchmark, organised by size.

 Size of AACs

Sub-problems 1 2 3 4 5 6 8

HBSM1-SP1 - 1 - - - - -

HBSM1-SP2 1 3 - - - - -

HBSM1-SP3 - 16 - - - - -

HBSM2-SP1 - 1 - - - - -

HBSM2-SP2 1 3 - - - - -

HBSM2-SP3 - 61 - - - - -

HBSM3-SP1 - 5 - - - - -

HBSM3-SP2 5 7 - - - - -

HBSM3-SP3 - - - 1296 - -

HBSM3-SP4 - 5 72 540 162 2916 6561

BSS-SP1 32 720 5040 2304 - -

BSS-SP1 is by far, the sub-problem with the highest number of variables; it also

includes the second highest number of AACs. HBSM3-SP4 integrates the biggest number

of AACs, which are, for most part, larger than in any other sub-problem; it is also the

sub-problem with the second highest dimensionality. Dimensionality defines the size of

the search space to explore; feasibility evaluation, on the other hand, impacts the

processing effort per iteration. The characteristics of these two sub-problems suggest

that they could be the two requiring more processing effort to solve.

The cost of the optimal solutions for the different case studies, as a function of the

ASIL cost heuristics defined in chapter 4, have been previously introduced (see section

4.4). The optimal cost of a given original problem can help in determining the costs of

the optimal allocations for its respective sub-problems. Take the example of an

illustrative ASIL allocation problem A that can be divided into three sub-problems (see

Figure 41).

167

Figure 41 - Illustrative ASIL allocation problem (problem A), which can be decomposed in to
three sub-problems.

As previously established, the cost of a solution to an original problem can be

calculated from the sum of the costs of the solutions from its sub-problems. The optimal

cost for problem A is known to be 900 units. If solutions can be found for sub-problems

1, 2 and 3, whose total cost amounts to 900, they are known to be optimal themselves.

Tabu Search was run across the subdivided benchmark and the costs of the best

solutions it found are given in Table 33. These costs are known to be optimal: the total

cost of the sub-problems of each case study, together with the costs of the allocations

to interconnected sets of size 1, amount to the optimal cost of their original problem.

Table 33 - Optimal costs for the sub-problems of the ASIL allocation benchmark as a function
of the different ASIL cost heuristics.

 ASIL Cost Heuristic

Sub-Problem Linear Experiential-I Experiential-II Logarithmic

HBSM1-SP1 40 40 40 200

HBSM1-SP2 80 90 90 10200

HBSM1-SP3 160 160 160 800

HBSM2-SP1 40 40 40 200

HBSM2-SP2 80 90 90 10200

HBSM2-SP3 520 520 520 2600

HBSM3-SP1 40 40 40 200

HBSM3-SP2 80 100 95 10300

HBSM3-SP3 240 240 120 240

HBSM3-SP4 250 250 165 410

BSS-SP1 1560 1920 1695 138720

168

5.3.3 TS or TS Divide and Conquer?

After demonstrating the general applicability of the divide and conquer technique

to ASIL allocation problems, it is now time to evaluate if it brings additional benefits to

the optimisation performance. In section 5.2, a comparison has been conducted

between three optimisation techniques in solving the ASIL allocation benchmark from

chapter 4. They were metaheuristic optimisation methods based on concepts of Genetic

Algorithms, Particle Swarm and Tabu Search. The Tabu Search technique has shown the

most promising results, overcoming the two other approaches in every problem – in

most cases being at least one order of magnitude faster. Furthermore, it offered the

least complex tuning experience. Having shown such an important superiority, Tabu

Search was integrated with the divide and conquer approach and research has been

conducted to evaluate if the method brings further optimisation performance benefits.

Hereinafter, the optimisation process combining the divide and conquer approach

with the Tabu Search algorithm will be referred to as Tabu Search Divide and Conquer,

or TSDC. On the other hand, the optimisation methodology where an initial problem is

solved altogether using Tabu Search is simply named after the optimisation algorithm

itself – Tabu Search, or TS.

To compare the TS and TSDC methods, an initial experiment has been designed in

which the two techniques are run using the same, large set of parameterisations. In the

process of exhaustively trying each of these parameterisations, information of the best

performance obtained by the two algorithms is kept. In the end, these best

performances are compared to evaluate if there are significant differences. As in the

study between GA, PSO and TS, for each parameterisation the two techniques are run

169

50 times for the problems in the ASIL allocation benchmark. From now onwards in this

document, every time a reference is made to an algorithm being run across the

benchmark, it should always be assumed that each problem is solved 50 times. In some

runs, it can take a very small amount of time for the techniques to solve a problem. In

order to minimise measurement errors introduced by timers, instead of measuring the

time an algorithm takes to solve a given problem in each of the 50 runs, the total time

to execute the 50 runs is recorded. Finally, algorithms were run on the same machine

utilised in the experiments of the previous section, which is equipped with an Intel i5-

3570K processor clocked at 3.40GHz and with 8GB of RAM.

Before introducing the set of parameterisations utilised in this experiment,

perhaps it is worth briefly revisiting the functions of the parameters to tune in the Tabu

Search algorithm. In its optimisation process, Tabu Search forbids certain variables from

being decremented or incremented. Because a decrement to a variable’s allocated ASIL

means reducing the cost of a solution, it is called a descent move. Increments to

allocations are, on the other hand, associated with an increase to the solution’s cost and

are termed ascent moves. Selected descent moves are forbidden by the algorithm for a

duration of p iterations; ascent moves are forbidden for q iterations. p and q are dynamic

and their values are incremented throughout the search process with every

updatePeriodp and updatePeriodq iterations, respectively. In the beginning of the search

both p and q are set to zero and are incremented until reaching their limits - limitp and

limitq; when the limits are reached, they are reset to zero. To summarise, updatePeriodp,

updatePeriodq, limitp and limitq are the user defined parameters of the algorithm.

170

Starting with updatePeriodp and updatePeriodq, one of the parameterisations

considered in this experiment is the one provided by Hansen and Lih (1996):

 (updatePeriodp ; updatePeriodq) = (3; 4)

In the current study, similarly to the values proposed by Hansen and Lih,

updatePeriodp is always set to a value one unit smaller than updatePeriodq. As discussed

when tuning TS for comparison with GA and PSO, experimentation has shown good

results with such an approach.

The values found to perform well in section 5.2.1 are also used in this experiment:

 (updatePeriodp ; updatePeriodq) = (10 ; 11)

Another parameterisation utilised relates to the minimum update period:

 (updatePeriodp ; updatePeriodq) = (1 ; 2)

In the three parameterisations presented to this point, the values for

updatePeriodp follow an approximate multiplier of three (1; 3; 10). Two more

parameterisations have been defined for larger update periods in which updatePeriodp

continues to grow in the same fashion:

 (updatePeriodp ; updatePeriodq) = (30 ; 31)

 (updatePeriodp ; updatePeriodq) = (100 ; 101)

In regards to limitp and limitq, Hansen and Lih (1996) propose setting them to 0.4n;

n stands for the number of variables in a problem. In section 5.2.1, setting both limits to

2n provided good results. However, other trials have also shown promising

performances when the two limits were not set to the same value. In this way, in the

171

current experiment, the two parameters are allowed to be set differently. Furthermore,

they are both permitted to vary from 0n to 10n (with intervals of 0.5n). The upper bound

for the two parameters is five times greater than the values used in section 5.2.1.

The total number of parameterisations is given by the number of different pairs of

values for limitp and limitq (441) multiplied by the number of parameterisations for

updatePeriodp and updatePeriodq (5). In total, TS and TSDC are run with 2205 different

parameterisations.

The best run of each of the optimisation approaches is the one where they solve

all the problems in the smallest amount of time. No fixed time limit is defined to apply

across the different algorithm runs. Instead, as the best time is improved, it becomes

the new stopping criterion. This experiment was designed to evaluate if there are

significant differences between the best performances of TS and TSDC; runs which do

not finish before the best processing time previously found are stopped and no

information about them is recorded. The first run of each of the optimisation

approaches made use of a parameterisation that was known to give reasonable

performances; this contributed to minimise the total time consumed by the experiment.

The parameterisations and processing times of the best runs obtained by TS and

TSDC are presented in Table 34. The times shown refer to the cumulative total of solving

every problem in the benchmark 50 times.

Table 34 - Time and parameters for best runs of TS and TSDC

Optimisation
approach

Best Parameterisation Total Time of
Best Run
(seconds) limitp limitq updatePeriodp updatePeriodq

TS 2.5n 1.5n 10 11 14.860153

TSDC 3.5n 1n 10 11 5.054777

172

 TSDC shows a significant improvement over TS, presenting a best run which is

nearly 3 times faster. The time shown in Table 34 for TSDC can be divided in two.

3.453074 seconds are spent by the optimisation algorithm to solve all the sub-problems

containing more than one variable. The remaining 1.601703 seconds are consumed by

deterministic tasks: generating the different optimisation sub-problems and associated

data structures, applying the direct allocation algorithm to the interconnected instances

of size 1 and reconstructing solutions to original problems from solutions of their sub-

instances. If only the optimisation time is considered, TSDC is actually more than 4 times

faster than TS. Also, it must be said that the time consumed to solve instances of size

one and in solution reconstruction is marginal (less than 3 milliseconds). The largest

overhead of the TSDC approach concerns problem division.

On the basis of the best runs of the two approaches, results show that TSDC is

substantially faster. However, this experiment only demonstrates that TSDC is faster

than the best TS for a single parameterisation. How does TSDC perform when tuned

differently?

A second experiment was designed to evaluate the sensitivity of TSDC’s

performance to parameterisation selection. TSDC is again applied to the ASIL allocation

benchmark, using the same set of parameterisations defined for the previous

experiment. However, now, the stopping criterion for a run is not updated throughout

the process of exploration of the different parameterisations. Instead, the time obtained

by the best run of TS (14.860153 seconds) is defined as a fixed stopping criterion. Using

this time limit, the parameterisations with which TSDC overcomes the best TS can be

determined.

173

Table 35 shows the number of parameterisations enabling TSDC to finish the

benchmark under the time limit and also under half that same time limit.

Table 35 - Number of tests solved by TSDC under the best time obtained by TS (left) and half
the best time obtained by TS (right).

Tests solved under 14.860153 seconds Tests solved under 7.4300765 seconds

424 73

TSDC does not just perform better than the best TS for an isolated

parameterisation; the technique was able to solve all problems under the time of TS’s

best run using a total of 424 parameterisations. 424 parameterisations correspond to

approximately one fifth of all the parameterisations defined. Furthermore, for 73

parameterisations, TSDC is actually more than two times faster than the best TS. In

meeting the considerations that led to this experiment, TSDC performs well, and is

consistently better than the best TS across a vast range of parameterisations.

5.3.4 Tuning TSDC for efficient conquering

TSDC wins in the comparison with TS. This section investigates which

parameterisations enable TSDC’s most efficient performances, in order to inform

parameter selection for future uses of the approach. Initially, the parameterisations with

which TSDC obtained improvements over the best TS are identified. Figure 42 plots how

these parameterisations are distributed as a function of limitp and limitq. Across this

chapter, multiple charts will be presented concerning limitp and limitq parameterisations.

The values shown in the charts for the two limits are given as a function of problem

dimensionality, acting as multipliers. For example, one of the parameterisations shown

174

in Figure 42 has limitp and limitq set to 2.5; this refers to tests where TSDC was run with

limitp and limitq set to 2.5 times the dimensionality of each problem it solved.

Figure 42 - Combinations of limitp and limitq included in the 424 best parameterisations of
TSDC.

Figure 42 shows that the parameterisations are distributed along a single,

predominantly contiguous region. It seems important not setting limitp to values smaller

than 2n; curiously, the value suggested by Hansen and Lih (1996) is 0.4n. These authors

tackle a redundancy allocation problem, which is inherently different than ASIL

allocation; possibly, this is a contributing factor for the difference found between the

value they suggest and the ones obtained in this experiment. Continuing the analysis of

Figure 42, parameterisations where limitq is set to very high values do not seem to yield

promising results. 3n is the value for limitp showing across more limitq parameterisations;

as for limitq, 2n and 2.5n are the parameterisations appearing for more values of limitq.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

lim
it

q

limitp

175

There are 424 parameterisations for which TSDC finished the benchmark before

the best time of TS. However, Figure 42 only shows 173 different pairs of values for limitp

and limitq. In fact, as it can be observed in Figures 43, 44, 45 and 46, the same values for

these two parameters are often found across different parameterisations for

updatePeriodp and updatePeriodq. Five different pairs of values were defined for

(updatePeriodp; updatePeriodq), but there are only four figures showing the

combinations of limitp and limitq for a particular parameterisation of (updatePeriodp;

updatePeriodq). This is because TSDC was not able to complete the benchmark under

TS’s best time with any parameterisation that has (updatePeriodp; updatePeriodq) set to

(1; 2).

Figure 43 - Parameterisations of limitp and limitq for which TSDC, using (updatePeriodp;
updatePeriodq) set to (3; 4), overcame TS’s best performance.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

lim
it

q

limitp

176

Figure 44 - Parameterisations of limitp and limitq for which TSDC, using (updatePeriodp;
updatePeriodq) set to (10; 11), overcame TS’s best performance.

Figure 45 - Parameterisations of limitp and limitq for which TSDC, using (updatePeriodp;
updatePeriodq) set to (30; 31), overcame TS’s best performance.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

lim
it

q

limitp

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

lim
it

q

limitp

177

Figure 46 - Parameterisations of limitp and limitq for which TSDC, using (updatePeriodp;
updatePeriodq) set to (100; 101), overcame TS’s best performance.

In the 424 best parameterisations of TSDC, the values most often found for

(updatePeriodp; updatePeriodq) are (30; 31), followed by (10; 11). After the pair (1; 2),

which does not appear amongst the best parameterisations, (3; 4) is the least

represented. The exact distribution of parameterisations, as a function of

(updatePeriodp; updatePeriodq), is shown in Figure 47.

Figure 47 - Distribution of TSDC’s best 424 parameterisations as a function of (updatePeriodp;
updatePeriodq).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

lim
it

q

limitp

8.73%

33.02%

37.03%

21.23%

3;4

10;11

30;31

100;101

(updatePeriodp; updatePeriodq)

178

The previous analysis identifies the most represented pairs of values for

(updatePeriodp; updatePeriodq) amongst the 424 best parameterisations; however, it

does not tell if those give the most promising performances. Figure 48 can help

understanding this; for each pair of values defined for (updatePeriodp; updatePeriodq),

it shows the number of associated parameterisations that have solved the benchmark

after a given processing time.

Figure 48 - Number of successful parameterisations as a function of (updatePeriodp;
updatePeriodq) after a given processing time. The maximum time shown corresponds to the

moment where TS’s best run finished.

The fastest parameterisation has (updatePeriodp; updatePeriodq) set to (10; 11).

As previously identified, (30; 31) is the most represented pair of values for

(updatePeriodp; updatePeriodq); however, when its fastest parameterisation finished,

0

20

40

60

80

100

120

140

160

180

5.05 6.05 7.05 8.05 9.05 10.05 11.05 12.05 13.05 14.05

N
u

m
b

er
 o

f
su

cc
es

sf
u

l p
ar

am
et

er
is

at
io

n
s

Time (seconds)

3;4 10;11 30;31 100;101(updatePeriodp; updatePeriodq)

179

(10; 11) already had 18 successful parameterisations and (3; 4) had five. It is interesting

to observe that (3; 4) presents some of the fastest results, but its number of successful

parameterisations grows slowly. Also, (30; 31) and (100; 101) initially spend

approximately 1.1 and 3.8 seconds, respectively, without solving any test; after these

intervals their number of successful parameterisations grows steadily. It seems like

these larger update periods for p and q introduce a delay in the search process. This

could be the case, for example, when the search is in a state where it finished

investigating a given solution area and it needs to switch to a global exploration mode;

if p and q are set to relatively small values, given the higher update periods, it will take

more iterations to reach the high values for p and q that would force the search to evolve

somewhere else.

Thus far, the set of 424 best parameterisations has been studied. The pairs of

values for limitp and limitq found amongst these best parameterisations has been

identified in Figure 42; it corresponds to approximately 40% of all the pairs of values

defined for limitp and limitq. Furthermore, (30; 31) and (10; 11) are the most robust pairs

of values for (updatePeriodp; updatePeriodq). Figure 45 and Figure 44 show for (30; 31)

and (10; 11), respectively, the areas of correspondent promising combinations of limitp

and limitq; each of them covers approximately one third of the entire set of pairs of

values defined for the limits. It has been shown in Figure 48 that the two highest pairs

of update periods, (30; 31) and (100; 101), present a delay in starting to produce

successful runs and that update periods (10; 11) and (3; 4) are linked to the 23 fastest

parameterisations. It can also be seen in Figure 48, that there are parameterisations

with processing times not very far from the one of the best TS. The optimisation

algorithm makes use of randomness in its search process and it is possible that, if re-run,

180

some of the least promising parameterisations could yield worse performances than TS’s

best. Hence, it seems reasonable to focus on parameterisations that present significant

improvements over the best TS. Furthermore, the parameterisations giving significant

improvements are arguably the ones justifying the use of TSDC in the first place. In this

way, an arbitrary limit is defined, and the parameterisations with which TSDC is at least

two times faster than the best TS will be analysed (half of TS’s best time corresponds to

7.4300765 seconds). In the experiment of section 5.3.3, there were 73

parameterisations enabling TSDC to finish the benchmark under this time limit. A new

experiment was conducted, and TSDC was re-run across the entire benchmark 50 times

using all the parameterisations previously defined to compare the two algorithms. This

is to analyse the impacts of randomness over the parameterisations considered to be

most promising; simultaneously, it allows identifying with more confidence the

parameterisations giving faster performances.

From the new experiment, it was possible to observe that out of the initial 73

parameterisations with which TSDC completed the benchmark under 7.4300765

seconds, 66 presented average times (over the 50 runs) under the same time limit.

Furthermore, two extra parameterisations have been identified. Figure 49 shows the

combinations of limitp and limitq included in this group of 68 parameterisations. The

pairs of values found for the limits are very similar to the ones obtained before re-

running the experiments 50 times - there are 41 common pairs of values out of an initial

group of 45. The four combinations of limitp and limitq that have been removed are:

(limitp; limitq) = [(3.5; 3), (4; 3), (5.5; 2.5), (6; 1)].

181

Figure 49 - Combinations of limitp and limitq included in the 68 best parameterisations of
TSDC (data is based on average times from 50 runs).

The 41 pairs of values for limitp and limitq shown in Figure 49 are a subset of the

ones found amongst the 424 overall best parameterisations of TSDC (compare with

Figure 42). It is interesting that these values for limitp and limitq are still concentrated

along a single region. There was a significant reduction in the maximum bounds of limitp

and limitq: the first decreased from 10n to 6n; the second was previously 8n and it is

now 3.5n. The minimum value of limitp went from 2n to 2.5n. Furthermore, there are

still parameterisations for which forbidding moves only in the descent direction provides

enough diversity to the search process – six parameterisations exist with limitq set to

zero.

Figure 50 shows limitp and limitq parameterisations as a function of the update

periods for p and q.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

lim
it

q

limitp

182

Figure 50 - Parameterisations of limitp and limitq as a function of (updatePeriodp;
updatePeriodq), for which TSDC is at least two times faster than the best TS (data is based on

average times from 50 runs). Blue: (updatePeriodp; updatePeriodq) = (3; 4); green:
(updatePeriodp; updatePeriodq) = (10; 11); yellow: (updatePeriodp; updatePeriodq) = (30; 31).

It seems important not choosing update periods that are very small or very high:

the smallest pair of update periods, (1; 2), was not part of the 424 best

parameterisations, and it is not part of any of the 68 best; furthermore, the highest

update periods, (100; 101), were present in approximately 21% of the best 424

parameterisations but are not amongst any of the best 68. Parameterisations with

(updatePeriodp; updatePeriodq) set to (10; 11) have the highest number of combinations

of limitp and limitq. Out of the set of 41 combinations of limitp and limitq shown in Figure

49 only three of them do not give performances two times faster than the best TS when

(updatePeriodp; updatePeriodq) is set to (10; 11).

The combinations of limitp and limitq presented in Figure 50 are based on average

results after running TSDC 50 times; again, the results shown are very similar to the ones

obtained when the technique was only run once. In both scenarios, there are no

parameterisations with (updatePeriodp; updatePeriodq) set to (1; 2) and (100; 101). For

update periods (3; 4), the results based on 50 runs present one parameterisation more,

with limitp and limitq set to 3n and 1.5n. Regarding update periods (10; 11), there are

four less combinations: (limitp; limitq) = [(3.5; 3), (4; 3), (5; 0), (6; 1)]. Finally, concerning

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
limitp

lim
it

q

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
limitp

lim
it

q

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

lim
it

q

limitp

183

update periods (30; 31), there are three less parameterisations: (limitp; limitq) = [(4.5; 1),

(5.5; 2.5), (6; 1.5)]; one extra has been obtained as well: (limitp; limitq) = (3.5; 2.5). It is

interesting that the parameterisations removed and added all belong to outlying

positions of the promising areas in Figure 50.

The exact distribution of the 68 best parameterisations, as a function of update

periods for p and q, can be seen in Figure 51.

Figure 51 - Distribution of TSDC’s parameterisations, which give performances more than
two faster than the best TS, as a function of (updatePeriodp; updatePeriodq) (data is based on

average times from 50 runs).

(30; 31) had been identified as the most represented pair of values for

(updatePeriodp; updatePeriodq) amongst the best 424 parameterisations; now, the pair

(10; 11) doubles the number of parameterisations that include (30; 31). The quota for

update periods (3; 4) grew from 8.73% to 16.18%.

There are no significant differences when the data from Figure 51 is compared to

the results obtained when TSDC was run only once with each parameterisation. The

biggest change concerns update periods (3; 4) and even in this case, the variation

corresponds to less than 3%: the percentage of parameterisations associated with (3; 4)

was 13.70% when the algorithm was run once and it went to 16.18% when TSDC is run

50 times. In turn, the parameterisations quota associated with (10; 11) was reduced

16.18%

55.88%

27.94%
3;4

10;11

30;31

(updatePeriodp; updatePeriodq)

184

from 57.53% to 55.88%. Finally, the percentage of parameterisations associated with

(30; 31) went from 28.77% to 27.94%.

Figure 52 shows the number of successful parameterisations associated with the

three pairs of values for (updatePeriodp; updatePeriodq) as a function of execution time.

If one were to focus the analysis to smaller and smaller time limits, there would always

be more successful parameterisations associated with (10; 11) than with any other pair

of update periods.

Figure 52 - Number of successful parameterisations as a function of (updatePeriodp;
updatePeriodq) after a given processing time (data is based on average times from 50 runs).

The maximum time shown corresponds to half the time taken by the best TS to finish the
benchmark.

When analysing the 424 best parameterisations, a delay had been identified for

parameterisations with (updatePeriodp; updatePeriodq) set to (30; 31) to start solving the

benchmark. However, for times that are half the ones of TS’s best, the number of

successful parameterisations with (30; 31) still overcomes the one from (3; 4). In this

0

5

10

15

20

25

30

35

40

5.10 5.60 6.10 6.60 7.10

N
u

m
b

er
 o

f
su

cc
es

sf
u

l p
ar

am
et

er
is

at
io

n
s

Average time (seconds)

3;4 10;11 30;31

185

way, when choosing to set (updatePeriodp; updatePeriodq) to (3; 4) one would have the

possibility of finding a better parameterisation than when selecting (30; 31); on the

other hand, adopting the latter gives a higher number of parameterisations that improve

TS by a factor of two. Previously, in Figure 48, a same type of analysis to the one of Figure

52 had been introduced. The data shown in Figure 48, however, had TS’s best time as a

maximum time limit. Furthermore, the data had been obtained from running TSDC only

once across the benchmark. If Figure 48 is only analysed up to a time limit corresponding

to half TS’s best time, the resulting information is very similar to the one of Figure 52.

Once again, this indicates that the results produced when running TSDC once or 50 times

are not very different.

The 68 best parameterisations have now been examined. The combinations of

limitp and limitq included in these parameterisations have been identified in Figure 49;

setting (updatePeriodp; updatePeriodq) to (10; 11) gives good results with their vast

majority (see Figure 50). In fact, (10; 11) is the pair of update periods associated with

the highest number of parameterisations amongst the ones improving the best TS by a

factor of two; (30; 31) is associated with the second highest number of

parameterisations (see Figure 51). Finally as the maximum time considered is shortened,

(10; 11) always provides more successful parameterisations than any other pair of

update periods for p and q (see Figure 52). These results were obtained on the basis of

average times after running TSDC across the benchmark 50 times. Given the

randomness present in the optimisation algorithm, this allowed to single out with more

confidence the most promising parameterisations. However, across the different

analysis conducted over the best parameterisations, it has become apparent that there

are no major variations between the set of best parameterisations identified when TSDC

186

was run only once and when it was run 50 times. Even given the random elements of

the algorithm, it is able to navigate the search space successfully and with reasonably

consistent performance for a given parameterisation.

Finally, it is interesting to analyse the relative differences between the average

performances of the 68 best parameterisations. In Figure 53, darker circles mark the

fastest parameterisations. 100% transparency means that a given parameterisation

finished in a time equals to half the one of the best TS; 0% transparency is assigned to

the best parameterisation overall.

Figure 53 - Relative performance comparison between parameterisations (data is based on
average times from 50 runs). Left: (updatePeriodp; updatePeriodq) = (3; 4); centre:

(updatePeriodp; updatePeriodq) = (10; 11); right: (updatePeriodp; updatePeriodq) = (30; 31).
The maximum time considered for a parameterisation corresponds to half the time taken by

the best TS.

Figure 53 confirms that the fastest parameterisations are linked to the update

periods (10; 11) and (3; 4). There are three especially good performances linked to

update periods (3; 4), all of them considering 0 for limitq: (limitp; limitq) = [(4.5; 0), (5; 0),

(5.5; 0)]. The fastest parameterisation is, however, obtained with the update periods (10;

11), whilst setting limitp and limitq to 3.5n and 0.5n, respectively. Moreover, there seems

to be a rectangular region of particularly good parameterisations linked to update

periods (10; 11) in which limitp varies from 3n to 4n and limitq between 0 and 2.5n.

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
limitp

lim
it

q

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
limitp

lim
it

q

0

0.5

1

1.5

2

2.5

3

3.5

4

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

lim
it

q

limitp

187

The considerations about TSDC’s performances across the benchmark with the

parameterisations of Figure 53 do not allow drawing a direct generalisation about how

TSDC would perform with such parameterisations for all future problems. However, they

enabled efficient performances of TSDC across a variety of 44 problems and as such are

certainly worth considering for initial parameterisations to explore when tackling new

problems. In particular, the ones identified as most promising in the previous paragraph,

which are linked to update periods (10; 11) and (3; 4). It is valuable noting here as well,

the robustness of the TSDC technique to parameter selection; using 424

parameterisations, approximately a fifth of all parameterisations defined, TSDC was able

to finish the benchmark before the best time of TS. For the worst parameterisation of

these 424, the cumulative time of solving each problem in the benchmark 50 times takes

less than 15 seconds, which in turn, relates to solving all the problems once under 0.3

seconds (on average). This gives an indication that even if the user ends up not selecting

one of the most promising, TSDC can still perform very acceptably across a wide range

of parameterisations.

5.3.5 Is conquering even more efficient if tuned differently for each problem?

A set of promising parameterisations have been identified for future use with the

TSDC approach, based on the efficient performances they give across the entire ASIL

allocation benchmark. However, could it be that tailoring parameter selection on a per-

problem basis results in even better performances? To investigate this, an experiment

has been carried out where the parameterisations defined in section 5.3.3 are revisited;

the best times and corresponding best parameterisations are recorder for each sub-

problem. In an effort to capture a clearer picture of the differences between using a

same parameterisation across the benchmark and tailoring parameterisations per sub-

188

problems, each experiment was repeated 50 times. Table 36 depicts a performance

comparison of the two parameterisation approaches, using the average times obtained

across the 50 runs contemplated in the experiments. The times shown refer only to

optimisation tasks.

Table 36 - Times to solve each of the sub-problems using the best parameterisation across
the benchmark (left) and using the best parameterisation per sub-problem (center); the
rightmost column shows the improvements of using the best parameterisation per sub-

problem over utilising the best parameterisation across the benchmark (data is based on
average times from 50 runs).

Sub-problem

Time best
parameterisation
across benchmark

(seconds)

Time best
parameterisation
per sub-problem

(seconds)

Improvement over
single parameterisation

across benchmark
(seconds)

HBSM1-SP1 0.0013414 0.0013362 0.0000053

HBSM1-SP2 0.0019217 0.0018739 0.0000479

HBSM1-SP3 0.0044754 0.0034945 0.0009809

HBSM2-SP1 0.0013380 0.0013335 0.0000044

HBSM2-SP2 0.0019152 0.0018678 0.0000474

HBSM2-SP3 0.0979994 0.0699031 0.0280963

HBSM3-SP1 0.0014897 0.0014800 0.0000097

HBSM3-SP2 0.0023632 0.0022269 0.0001363

HBSM3-SP3 0.0815619 0.0557909 0.0257710

HBSM3-SP4 0.9582194 0.6006271 0.3575924

BSS-SP1 2.3626952 1.8429444 0.5197508

Total 3.5153205 2.5828783 0.9324424

For each sub-problem, there are parameterisations that obtain better

performances than the ones achieved with the best parameterisation across the

benchmark. When the improvements attained for the different sub-problems are added

up, total gains amount to ≈0.93 seconds. These improvements correspond to saving

roughly a quarter (27%) of the time that is consumed when a same parameterisation is

used to tackle each sub-problem in the benchmark. In absolute terms, the sub-instance

for which the impacts of tailoring parameterisations on a sub-problem basis are felt

more, is BSS-SP1 – an improvement of ≈0.52 seconds is registered. In relative terms,

189

HBSM3-SP4 benefits the most - its execution time is decreased by nearly 37%. For sub-

problems of dimensionality four and two, very small improvements were obtained, both

in relative and absolute terms. These problems present very small search spaces and a

large number of parameterisations were able to find their optimal solutions in times

very close to the best results presented in Table 36.

Tuning the parameters of TSDC on a per sub-problem basis gives faster

performances. Whereas the improvements exist, they are less than one second across

the benchmark; if the problem division step is considered, this means gains of a little

more than 18%. These improvements are much less substantial than the ones obtained

when there was an evolution from TS to TSDC; in that transition, execution times were

cut down by roughly 10 seconds, meaning that TSDC was up to three times faster than

TS.

So that these further enhancements can be obtained in practice, investigation

needs to be conducted to evaluate the possibility of automatically setting TSDC’s

parameters as a function of problem characteristics. It should be pointed out, that this

research would not just be important to improve TSDC’s performance even further. In

fact, if a stable, efficient relationship between problem characteristics and TSDC’s

parameterisations can be identified, the need from the user to experiment with

different algorithm tunings would be eliminated. Based on the results obtained across

the benchmark, a first effort was undertaken towards deriving a method for the

automatic parameterisation of TSDC. Whereas this data did not allow establishing a

definitive method, it enabled advancing some hypothesis and laying useful foundations

for future investigation.

190

In researching a method to automatically setting TSDC parameters, one of the

most obvious characteristics to investigate is problem dimensionality. Table 37 shows

the dimensionality of each sub-problem in the benchmark, and the parameterisation

with which TSDC was able to finish them faster. Sub-problems are sorted by an

ascending order of dimensionality.

Table 37 - Sub-problems in the ASIL allocation benchmark, their dimensionality and TSDC’s
parameterisations giving the fastest performance for each sub-problem. Sub-problems are

sorted in an ascending order of dimensionality.

Sub-problem Dimensionality limitp limitq updatePeriodp updatePeriodq

HBSM1-SP1 2 7n 2n 1 2

HBSM2-SP1 2 6.5n 8.5n 1 2

HBSM3-SP1 2 10n 9.5n 1 2

HBSM1-SP2 4 0n 7n 1 2

HBSM2-SP2 4 0n 4.5n 1 2

HBSM3-SP2 4 8.5n 7n 1 2

HBSM1-SP3 8 2n 0n 1 2

HBSM3-SP3 24 3n 0n 1 2

HBSM2-SP3 26 2n 1.5n 3 4

HBSM3-SP4 26 1.5n 1n 3 4

BSS-SP1 84 6.5n 0n 3 4

The parameterisations in Table 37 only consider two update periods for p and q:

(1; 2) and (3; 4). Larger sub-problems, of dimensionality 26 or greater, use the highest

of the two pairs: (3; 4); in turn, smaller sub-problems make use of (1; 2). In regards to

limitp and limitq, analysis of Table 37 does not yield such a clear picture. The biggest

observable trend relates solely to three sub-problems - HBSM1-SP3, HBSM3-SP3 and

BSS-SP1 – which all have limitq set to 0n. Between these three cases, higher

dimensionality problems have higher limitp values; however, this growth seems to occur

in a non-linear way. The coefficients multiplying by dimensionality to give the limitp

values are not constant; they increase with the sub-problems’ dimensionalities, possibly

indicating that the rate of growth of limitp needs to increase with sub-problem

191

dimensionality. One way to describe this type of relationship is through a quadratic

model; using polynomial interpolation a function was found that passes through the

points given by the dimensionalities and limitp values shown in Table 37 for HBSM1-SP3,

HBSM3-SP3 and BSS-SP1 (see Equation 13). For dimensionalities ≥ 1, this function is

always positive, continuously increasing, and it has a growing change rate.

𝑙𝑖𝑚𝑖𝑡𝑝 = 0.057895𝑛2 + 1.647368𝑛 − 0.884211 Equation 13

It is important to emphasise that the relationship depicted in Equation 13 was

merely obtained on the basis of three points mapping problem dimensionalities to limitp

values. Furthermore, these three points were found from experiments with a set of

parameterisations which do not necessarily present the required granularity for the

optimal parameterisations to be identified. If an efficient relationship between limitp

and dimensionality is confirmed, where limitp grows with dimensionality following an

increasing rate of change, it is possible that other functions obtained from analysis of

more data could provide a better model. That improved expression could be another

quadratic function, or even another type of function (e.g. exponential).

An experiment has been carried out to evaluate if good performances could be

obtained by TSDC when using parameterisations for limitp provided by the initial model

in Equation 13 (whilst keeping limitq to 0). The parameterisations for (updatePeriodp;

updatePeriodq) of Table 37 are maintained for each of the sub-problems. The rightmost

column of Table 38 shows the results of the experiment. Values in bold represent cases

for which improvements have been obtained over the results from using the best

parameterisation across the benchmark. The results from the best parameterisation

192

across the benchmark and from the best parameterisations per sub-problem are also

given in the table for reference.

Table 38 - Times to solve each of the sub-problems using the best parameterisation across
the benchmark (left), using the best parameterisation per sub-problem (center), and using
parameterisations where limitp varies as per Equation 13 (right) (data is based on average

times from 50 runs).

Sub-problem

Time best
parameterisation
across benchmark

(seconds)

Time best
parameterisation
per sub-problem

(seconds)

Time
parameterisations with

limitp growing as per
Equation 13

HBSM1-SP1 0.0013414 0.0013362 0.0013438

HBSM1-SP2 0.0019217 0.0018739 0.0019060

HBSM1-SP3 0.0044754 0.0034945 0.0034945

HBSM2-SP1 0.0013380 0.0013335 0.0013429

HBSM2-SP2 0.0019152 0.0018678 0.0019012

HBSM2-SP3 0.0979994 0.0699031 0.0963215

HBSM3-SP1 0.0014897 0.0014800 0.0014945

HBSM3-SP2 0.0023632 0.0022269 Not finished after 1 sec

HBSM3-SP3 0.0815619 0.0557909 0.0557909

HBSM3-SP4 0.9582194 0.6006271 0.8889190

BSS-SP1 2.3626952 1.8429444 1.8429444

For seven out of the 11 sub-problems, better performances are achieved in

comparison to the best parameterisation across the benchmark. Furthermore, for three

other sub-problems, very acceptable times were also obtained; again, in comparison to

the best parameterisation across the benchmark, the maximum increase in time

happens for HBSM2-SP1 with roughly 4.9 microseconds (corresponding to 0.4%). Just

for one sub-problem, HBSM3-SP2, the approach did not work well; the sub-instance

could not be solved after one second (the time using the best parameterisation across

the benchmark amounts to less than 3 milliseconds). However, according to Equation

13, limitp is to be set to seven moves in the case of HBSM3-SP2. It is interesting that if

just one more move is considered, and limitp is set to eight for this sub-problem, TSDC’s

performance is considerably improved; in fact, better times are obtained than when the

193

best parameterisation across the benchmark is utilised. In the same conditions, the two

other sub-problems of dimensionality four are still executed in very efficient times; they

take more time to be concluded than when TSDC is run with the parameterisation from

the expression of Equation 13, but they are still finished faster than when TSDC is run

with the best parameterisation across the benchmark. Eight moves may just be the

minimum bound to be used across sub-problems of dimensionality four. From the

experiments previously presented to find the best parameterisation per case study,

setting limitp to 10 moves, for example, gives similar performances for sub-problems of

dimensionality four as the ones obtained with limitp set to eight. As stated earlier, the

model from Equation 13 was obtained with very limited data and it is likely than it needs

improving. One with similar characteristics can be defined which enables good

performances for TSDC in HBSM3-SP2 as well. For example, a function that adds one

unit to the result provided by Equation 13 gives parameterisations that work well across

every problem in the benchmark. Nevertheless, more problems need to be investigated

in order to acquire an accurate model. It is important to study additional problems of

the dimensionalities in Table 37 to evaluate if the limitp values identified for those

dimensionalities can consistently provide good performances; furthermore, there is a

big gap between dimensionalities 26 and 84 without representative problems that

needs to be examined.

The hypothesis of setting parameterisations as a function of sub-problem

dimensionality has been advanced. For (updatePeriodp; updatePeriodq), there seem to

be benefits in growing their values with dimensionality. The sub-problems in the

benchmark indicate that in tackling sub-problems with dimensionality under 26, (1; 2)

should be used; in turn, sub-problems with dimensionality higher than 24 should be

194

solved with (3; 4). Possibly, larger sub-problems could require greater update periods,

but research with sub-instances with such characteristics needs to take place. For limitp

and limitq, it has been theorised that efficient performances could be found when limitp

was set according to a non-linear function of dimensionality, keeping limitq to 0n. An

initial function was proposed (see Equation 13) which yielded good performances for all

problems in the benchmark except one. A single increment to the value of limitp defined

by Equation 13 for that sub-problem allowed to obtain very efficient results; possibly

the model from Equation 13 needs to be improved from more data. This study suggests

that it may be possible to define efficient parameterisations for TSDC as a function of

sub-problem dimensionality. However, more research needs to be undertaken with

additional sub-problems in an effort to validate further this hypothesis; furthermore, if

the hypothesis is supported, a study of more sub-instances will also be important to

acquire an accurate relationship between sub-problem dimensionality and TSDC

parameterisations.

Setting the parameterisations on the basis of dimensionality obtained some

efficient performances from TSDC, but in finding the most promising parameterisations,

other sub-problem characteristics may need to be considered. This is hinted by the best

parameterisations per sub-problem presented in Table 37, which, in great part, do not

reveal any clear relationship with dimensionality (at least in regards to limitp and limitq).

Another fact that points to the need of studying other characteristics is that a same

parameterisation can yield very different performances for sub-problems of the same

dimensionality. For example, sub-problems HBSM3-SP4 and HBSM3-SP3 are both of

dimensionality 26. The best parameterisation of HBSM3-SP4 ranks 419th in the case of

HBSM2-SP3! TSDC is almost three times slower than when using the best

195

parameterisation for HBSM2-SP3. Dissimilarities between these two sub-problems are

also found in the sets of parameterisations that enabled better performances of TSDC

across each one of them when compared to using the best parameterisation across the

benchmark. A first remark is that these sets integrate a different number of

parameterisations: 100 parameterisations for HBSM3-SP4, and only 33 for HBSM2-SP3.

Figures 54 and 55 show for HBSM3-SP4 and HBSM2-SP3, respectively, how these

parameterisations are distributed as a function of limitp and limitq.

Figure 54 - Distribution, as a function of limitp and limitq, of the parameterisations that
allowed TSDC to complete HBSM3-SP4 faster than when using the best parameterisation

across the benchmark (data is based on average times from 50 runs).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

lim
it

q

limitp

196

Figure 55 - Distribution, as a function of limitp and limitq, of the parameterisations that
allowed TSDC to complete HBSM2-SP3 faster than when using the best parameterisation

across the benchmark (data is based on average times from 50 runs).

The minimum value for limitp is smaller in the case of HBSM3-SP4 than for HBSM2-

SP3 (1n versus 1.5n). The maximum value of limitp for HBSM3-SP4 is less than half the

one of HBSM2-SP3 (3.5n versus 7.5n). In regards to limitq, its minimum value is the same

for both sub-problems (0n); as for its maximum value, the one of HBSM3-SP4 is larger

than the one of HBSM2-SP3 (5.5n versus 3.5n). In terms of (updatePeriodp;

updatePeriodq), HBSM3-SP4 is the only sub-problem of the two presenting

parameterisations with (30; 31). These observations support the theory that TSDC can

perform differently with a same parameterisation for sub-problems of the same

dimensionality and that, in turn, the best parameterisations are possibly only achievable

if other sub-problems characteristics are considered. It is worth noting, however, that

there is a set of parameterisations which for both problems improve TSDC’s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

lim
it

q

limitp

197

performance in comparison to when the best parameterisation across the benchmark is

used. There are 15 common pairs of values for limitp and limitq and three common

parameterisations for (updatePeriodp; updatePeriodq): (1; 2), (3; 4); (10; 11). In total, the

two sub-problems share 26 overall parameterisations. This suggests that a set of

parameterisations could be available which enables efficient performances across

different sub-problems of the same dimensionality, giving further strength to the

possibility of automatically setting TSDC with parameterisations as a function of problem

dimensionality. Notwithstanding, it is not guaranteed that the set of parameterisations

allowing for efficient performances across the multiple sub-problems of the same

dimensionality includes the optimal parameterisation for any of the sub-instances; in

the particular case of HBSM3-SP4 and HBSM2-SP3, as introduced earlier, the best

parameterisation found for HBSM3-SP4 performs very poorly for HBSM2-SP3. The

results for the remaining sub-problems in the benchmark that present the same

dimensionality, were also analysed to evaluate if common efficient parameterisations

existed. Whereas this was always the case, it is important to say that these sub-problems

are of dimensionalities four and two and for them, in general, a vast number of

parameterisations performed very well.

Finding a method to automatically parameterise TSDC as a function of the problem

to solve is important as it provides improved optimisation performance. Furthermore, if

the method can be applied generically to any problem, it eliminates the need for

parameterisation experimentation from the user side. On the basis of the benchmark

defined in this thesis, this section presented an important effort towards such an

approach. An initial method has been proposed based on sub-problem dimensionality,

which works across well across all the sub-problems in the benchmark, except one.

198

However, small modifications to the approach extend the good results to that remaining

problem. Furthermore, based on the analysis of the data produced across the different

sub-problems, there have been indications that other characteristics may need to be

investigated in order to obtain the most efficient performances. These characteristics

are not clear from the results obtained; two constraints-related characteristics that may

be worth investigating are AACs size and AACs ASIL requirement. The automatic

parameterisation of TSDC is not a trivial problem and it requires a substantial additional

amount of work, namely with the study of a variety of new case studies. This

investigation can be pursued as future work.

5.3.6 Initial evaluation of parallel conquering

Currently, multi-core processors are widespread across desktops, laptops and

mobile phones; this is also the case with servers in corporate environments. Intel, one

of the biggest processor manufacturers, currently sells a range of 1054 different

processors, of which only 169 are single-core (Intel Corporation, 2015). Intel’s desktop

and mobile processors include up to eight cores; in the case of server processors, this

number grows up to 61 in Intel’s Xeon Phi family!

Multi-core processors can execute multiple independent tasks in parallel; this

potentially saves time when compared to the scenario where all tasks are executed

sequentially. Sub-problems generated in the Divide and Conquer approach are

completely independent and are natural candidates to be solved concurrently. Given

the current widespread use of multi-core processors, it is interesting to investigate if

TSDC’s performance can be improved further through parallelisation. In this section, an

initial approach for parallel conquering is described. TSDC is then applied to the ASIL

199

allocation benchmark, making use of the parallelisation approach, and the results are

compared to the scenario where sub-problems are solved sequentially.

The general concept of parallel conquering is quite intuitive: when a series of sub-

instances are generated from an original problem, they are assigned to a team (or pool)

of threads, which are executed concurrently. This can be illustrated with the example

introduced in section 5.3.1 of a problem from which three independent sub-instances

are obtained (see Figure 56).

Figure 56 - Parallel divide and conquer approach overview for an illustrative problem with
three sub-instances.

Three threads are created to deal with sub-problems 1, 2 and 3. The Direct

Allocation Algorithm, and two instances of an optimisation technique (e.g. TS), are run

in parallel to solve the three sub-problems. If the sub-problems take the same time to

200

be completed, the total execution time can ideally be reduced by a factor of three.

However, as it could be observed with the experiments of previous sections, sub-

problems can take very different times to be executed. Also, there is always an overhead

of thread creation and sub-problem to thread scheduling that reduces this factor.

Sub-problems take different times to be solved, and these times are not available

before execution. Furthermore, since the optimisation algorithm includes randomness

in its search process, even for a same sub-problem, execution times can vary. In this way,

it is not feasible to build an exact sub-problem to thread schedule that minimises

execution time. In the approach proposed here, each of the available threads is initially

allocated with one sub-problem, and as soon as they finish their initial sub-instance, they

are immediately assigned with another from the set that has been kept pending. This

process is followed until no more sub-instances are left to solve. The strategy basically

works for a load balance between the different threads; it avoids having threads that at

some point have no sub-problem to execute, whereas others might still have multiple

sub-instances in their work queue. This is a common tactic in parallelisation when the

effort of the different tasks to be solved pose varying efforts.

Disregarding for now the overhead of thread creation and sub-problem to thread

scheduling, in the scenario where the number of threads is equal to or higher than the

number of sub-instances, the total execution time is given by the duration of the longest

sub-problem (see Figure 57).

201

Figure 57 - Possible allocation of four sub-problems with different execution durations to
four threads. The total execution time is given by the duration of the longest sub-problem.

If there are more sub-problems than threads, it is a given that the execution time

will at least be as high as the duration of the longest sub-problem. Acknowledging this,

an initial sub-problem solving order is proposed in which the most complex sub-

instances have a higher priority to be executed. If the most complex sub-problems are

scheduled to be solved first, then simpler sub-instances wait until they can be allocated

to a thread and, possibly, the minimum execution time can still be met (See Figure 58).

Figure 58 - Allocation of seven sub-problems with different execution durations to four
threads. Sub-problems are allocated to avaialable threads in a decreasing order of execution
duration. The total execution time is given by the time taken to solve the longest problem.

202

In this example, the execution time is given by the duration of sub-problem 1. Also,

note that if thread 1 and sub-problem 1 are disregarded, the others have also achieved

an efficient distribution. Now take the example of Figure 59, where the same sub-

problems are randomly scheduled to be solved.

Figure 59 - Allocation of seven sub-problems with different execution durations to four
threads. Sub-problems are allocated to available threads in a random order. The total

execution time is given by the duration of the longest problem, sub-problem 1, combined
with the duration of sub-problem 7.

Since the longest sub-problem is not solved initially, the minimum execution time

cannot be obtained anymore. Also, note that the sub-problems in the remaining threads

are not distributed efficiently.

It is important to emphasise here that this approach is not based on knowledge

about exact execution times, but rather on the relative differences in the times taken to

solve the different sub-problems. To obtain these relative differences, the experiments

carried out in the previous sections have given indications that useful inferences can be

made if sub-problem dimensionality and number of AACs are analysed. The

performances of the best parameterisation across the entire benchmark and of the best

203

parameterisations per case study have been introduced in section 5.3.5; Table 39

recovers that information and adds data on sub-problem dimensionality and number of

AACs.

Table 39 - Dimensionality and number of AACs of each sub-problem in the benchmark, and
the times taken by TSDC to solve each one of them across all cost functions. Times on the left

hand side refer to using the best parameterisation across the benchmark; the times on the
right hand side refer to the using the best parameterisations per case study (data is based on

average times from 50 runs).

Sub-
problem

Dimensionality
Number
of AACs

Time best
parameterisation
across benchmark

(seconds)

Time best
parameterisations

per case study
(seconds)

HBSM1-SP1 2 1 0.0013414 0.0013362

HBSM1-SP2 4 4 0.0019217 0.0018739

HBSM1-SP3 8 16 0.0044754 0.0034945

HBSM2-SP1 2 1 0.0013380 0.0013335

HBSM2-SP2 4 4 0.0019152 0.0018678

HBSM2-SP3 26 61 0.0979994 0.0699031

HBSM3-SP1 2 5 0.0014897 0.0014800

HBSM3-SP2 4 12 0.0023632 0.0022269

HBSM3-SP3 24 1296 0.0815619 0.0557909

HBSM3-SP4 26 10256 0.9582194 0.6006271

BSS-SP1 84 8096 2.3626952 1.8429444

The longest sub-problems are consistently the ones with higher dimensionality.

Furthermore, between sub-problems with the same number of variables, but which

integrate a different number of AACs, the ones with the higher number of constraints

are the ones taking longer to be solved. This conclusion also holds true for size one sub-

problems. The Direct Allocation Algorithm works by verifying each of the ASIL

requirements that the single variable of a given size one sub-instance needs to comply

with; size one sub-instances with more AACs take a longer time to be completed. If all

sub-instances execution times are analysed together as a function of a specific cost

heuristic, there are only a few cases where inferences on relative differences between

204

execution times do not hold true. It is important to say here that in situations where

execution time inferences are not verified, the dynamic sub-problem to thread

scheduling method adopted can be important in minimising total execution time.

Consider the example in Figure 60, which shows a situation where four threads are

available and seven sub-problems exist. Inferences are made about the processing time

to execute them and longer sub-problems are scheduled to be solved first.

Figure 60 - Threads and the sub-problems they execute over time. Inferences about the
relative durations of sub-problems hold true and longer sub-problems are executed first.

The scheduling adopted allows reaching the minimum total execution time for this

set of sub-problems. Now, contemplate the situation where the inferences made about

sub-problems 5 and 6 are not correct. In reality, it is the case that sub-problem 5 takes

less time to be completed than sub-problem 6, to a point where the total time to execute

sub-problems 3 and 6 is greater than the one of executing sub-problems 4 and 5 (see

Figure 61). Sub-problem 2 now takes more time than executing sub-problems 4 and 5

sequentially.

205

Figure 61 - Threads and the sub-problems they execute over time, using dynamic sub-
problem to thread scheduling. Inferences about the relative durations of sub-problems 5 and

6 do not hold true. Dashed line represents the total time consumed when a fixed sub-
problem to thread scheduling is used.

In this situation, the dynamic thread load balancing scheme assigns sub-problem

7 to thread 4, after sub-problem 5 is finished. If a fixed sub-problem to thread scheduling

had been defined before the sub-instances started being solved, sub-problem 7 would

have been executed after sub-problem 2 and the total execution time would be greater

than the minimum possible. This example illustrates how dynamic scheduling can be

important when there are incorrect inferences about the sorting of the sub-problems.

Changing the same example slightly can also serve to illustrate how even if all inferences

hold true, dynamic scheduling can be key in dealing with the uncertainty about exact

execution time of the sub-problems. Consider that sub-problem 5 takes longer to solve

than sub-problem 6, as it was initially expected. The total execution time of sub-

problems 5 and 4 can still be smaller than the total time of sub-problems 3 and 6, and

also than the one of sub-problem 2 (see Figure 62).

206

Figure 62 - Threads and the sub-problems they execute over time, using dynamic sub-
problem to thread scheduling. Inferences about what problems take longer hold true, but
their exact durations are unkown. The dashed line shows a possible total time for a fixed

sub-problem to thread scheduling.

In this case, using dynamic scheduling, sub-problem 7 would be solved after sub-

problem 5, and time would still be saved when compared to a situation where a fixed

schedule would initially establish that sub-problem 7 is to be executed after sub-

problem 2 in thread 2.

Having presented an approach for the parallelisation of ASIL allocation sub-

problem conquering, it is now time to evaluate if it can bring further improvements to

the TSDC optimisation method. The ASIL allocation benchmark will be used again for the

evaluation. TSDC with parallel conquering is referred to as Parallel TSDC from now

onwards. Experiments have been carried out on a machine using an Intel i5-3570K

processor, which includes four cores and can handle up to four threads concurrently.

With this processor, it was possible to experiment with scenarios where a maximum of

1, 2, 3 or 4 threads could be created. Tests with a higher numbers of threads were not

considered; this would likely originate extra overhead, namely with threads being

207

interrupted for others to run. Furthermore, in an initial effort to evaluate the possible

benefits of using the sub-problem execution order proposed in this section, where the

most complex sub-problems are executed first, results are compared to when sub-

problems are solved in a random order. The two modes will be referred to as Complex

First and Random Sorting henceforth.

The Tabu Search algorithm includes randomness in its search process, which

means that if a same sub-instance is run multiple times there will be variations in

execution time. Since sub-instances are dynamically allocated to threads, these

execution time variations can impact the overall sub-problem to thread scheduling

scheme. Acknowledging this, to promote a fair comparison between experimental

setups, the optimisation algorithm has been forced to behave exactly in the same

manner when tackling a given sub-problem. Randomness in the implementation of the

Tabu Search method is provided by a pseudo-random number generator. The generator

accepts a seed, which determines the sequence of pseudo-random numbers it outputs.

When fed with different seeds, it produces different sequences of pseudo-random

numbers; if fed with the same seed, the exact same sequence is obtained. In the

experiments carried out, for an experimental setup with a given number of threads and

sub-problem sorting mode, the seeds used to initialise the pseudo-random number

generator are stored and then re-used for the remaining experimental setups.

Furthermore, in an effort to stretch further the differences between the different

experimental setups, the benchmark is re-run 50 times for each one of them.

As with all algorithms presented thus far, Parallel TSDC was implemented using

C++ in Microsoft Visual Studio 2012 (Microsoft, 2015). In this initial attempt at

208

parallelising TSDC, OpenMP 2.0 (OpenMP ARB, 2015) was utilised. OpenMP is a simple,

directive-based API for multi-platform shared-memory parallel programming and it is

supported by the Microsoft Visual Studio C++ compiler, Visual C++. In the

implementation of Parallel TSDC, the different sub-instances are initially stored in a

vector, which is then sorted according to the sub-problem sorting mode of the current

experiment; a for loop can then be used to iterate through the multiple sub-problems

using the indexes of the vector. OpenMP allows to parallelise a for loop simply by

preceding it with the following compiler directive:

#pragma omp parallel for

//for loop declaration

Additional options can be set in the directive. The num_threads clause is used to

define the size of the pool of threads to be created. If one wishes to create four threads

to run the iterations of a for loop, the directive presented next can be used:

#pragma omp parallel for num_threads(4)

//for loop declaration

Furthermore, as mentioned in the description of the approach for parallel

conquering, threads are to be allocated with a new sub-problem as soon as they are

done with another. This relates with threads being assigned with an iteration of the for

loop as soon as they complete the current one. In OpenMP this behaviour can be defined

by setting the schedule clause to “dynamic”, as shown now:

#pragma omp parallel for num_threads(4) schedule(dynamic)

//for loop declaration

209

One issue encountered here, is that while using dynamic scheduling, there is no

guarantee that the iterations of the for loop will be visited in order, i.e., implementations

of OpenMP can decide that the iteration 4 of a for loop is assigned to be executed by a

thread before iteration 3. In this way, the effect of sub-problem sorting would be lost.

Experimentation has however revealed that across the benchmark, in the vast majority

of situations, the desired execution order is maintained. This allows to compare with

some confidence the two sorting modes that were utilised.

Experiments have been carried out using the best parameterisation found across

the benchmark, as identified in section 5.3.4. The parameterisations are recovered in

Table 40.

Table 40 - Best parameterisation across the ASIL allocation benchmark obtained in section
5.3.4.

limitp limitq updatePeriodp updatePeriodq

3.5n 0.5n 10 11

The average results after running each experimental setup 50 times can be

observed in Figure 63. Times only refer to sub-problem solving tasks; problem division

and sub-instance sorting overheads are not included. The yellow line represents the

total time taken to solve solely the most complex sub-instance of each problem. It is

included in the chart as a constant value; it is neither linked with a sorting mode or

maximum number of threads.

210

Figure 63 - Parallel TSDC performance in solving the ASIL allocation benchmark, as a function
of the maximum number of threads available and sub-problem sorting mode (data is based

on average times from 50 runs).

Figure 63 shows that independently of the sorting mode adopted, the use of

parallelisation always improves the time to finish the benchmark. The Complex First

sorting mode gives the biggest improvements, regardless of the number of threads used.

When Random Sorting is utilised, a small improvement is noticeable with an increase

from two to three threads. However, in the case of Complex First, the times change very

little across two, three and four threads. This can be possibly explained by the

characteristics of the benchmark. Analysis of Table 39 indicates that in general, for the

different problems in the benchmark there is one sub-instance that takes much longer

to solve than the remaining. Likely, when using two threads alone, whilst the most

complex instance is solved by one thread, nearly all of the work regarding the least

complex sub-problems can be finished by a second thread. When going from two to

three threads, and from three to four threads, it is possible that small improvements

that can be achieved by Complex First are masked by overhead of extra thread creation,

3.35

3.37

3.39

3.41

3.43

3.45

3.47

3.49

3.51

1 Thread 2 Threads 3 Threads 4 Threads

ti
m

e
(s

ec
o

n
d

s)

Maximum number of threads allowed

Complex First Random Sorting Most complex sub-problems only

211

for example. Furthermore, from three to four threads the difference between Complex

First and Random Sorting is not reduced. It is hypothesised that this is caused by a more

noticeable interference from the operating system. The processor where experiments

were carried out on integrates four cores; when four threads are used by the Parallel

TSDC, the operating system will necessarily have to interfere with the execution of at

least one of them if it has other tasks to compute. Arguably, it is more likely that a thread

executing many small tasks would have a gap in execution at the point that the operating

system needs to execute another task. When Complex First is used, the longest problem

is executed in one thread, and the remaining three threads will be in charge of solving

all the simpler sub-problems. If the operating system needs to execute other tasks, it

will then likely execute them in between the sub-problems allocated to these three

threads. Given that for each problem in the benchmark the most complex sub-instance

is much lengthier than the remaining, the simpler sub-instances and other operating

system tasks can possibly be executed in parallel without affecting the time to solve the

entire problem. When Random Sorting is used, however, simpler sub-problems can

initially be scheduled to all four threads; if the operating system needs to execute other

tasks and it slots them between sub-problems across the different threads, then, the

execution time before the most complex sub-instance increases, and so does the total

execution time of the problem being tackled. It is possible that this effect can also have

some impact when a smaller number of threads is used. Whereas the justification

provided is just a hypothesis, it would be certainly interesting to conduct investigation

on this matter as further work.

The difference between the times obtained by the most efficient sorting mode,

Complex First, and the time taken to solve only the most complex sub-problems could

212

be explained by the overhead of multiple thread creation and scheduling. Another

possible contributing factor is the fact that the OpenMP implementation sometimes

does not respect the sorting order defined. Finally, the need of the operating system to

execute other tasks can also play a role here. When only the most complex sub-instance

of each problem is solved, only one thread is created; the operating system can schedule

it to a single core and run the other tasks, in parallel, in the remaining cores. When

multiple threads are created, more cores are likely used, and arguably there is a higher

probability that other tasks that the operating system needs to run will interfere. It has

been hypothesised that these tasks would be more likely scheduled to execution gaps

of threads solving multiple small sub-problems, but it is also possible that the operating

system interferes with the execution of the thread of the longest sub-problem.

Using the Complex First sorting mode, it has been possible to recover

approximately 92% of the time that separates running all tests without parallelisation

and only solving the most complex sub-problems. Here, “most complex sub-problems”

stands for the ones deemed as such from the analysis of dimensionality and number of

AACs. However, since TS includes randomness in its search process, it is possible that

variations in times to finish the sub-problems can be present, which in turn could impact

the considerations about the longest sub-instances and the correctness of the sub-

problem sorting adopted. There are 16 problems in the benchmark, and each of them is

run 50 times; this amounts to a total of 800 problems. Furthermore, as stated previously,

the trials with these 800 are repeated 50 times, resulting in a final count of 40,000

problems. A study about the execution times of the sub-instances in each of these

40,000 problems was carried out and it revealed that only in 198 occasions the

complexity sorting order given by the method proposed in this section was not right.

213

These results further validate the rationale proposed to sort problems by complexity.

Moreover, from the same study it was possible to observe that only in 28 occasions the

longest sub-instance is not the one deemed as such by the same method. These 28

occasions represent a rather small increase (under 60 microseconds) to the average time

considered for running the most complex sub-problems presented in Figure 63. This

gives further strength to the conclusion that 92% of the maximum time that could be

gained through parallelisation was saved. In a final effort to confirm this value, the

execution times of the 40,000 problems were analysed for an ideal parallelisation

scenario (i.e. without considering overhead of thread creation and scheduling, for

example) where four threads could be run concurrently; it was verified that if the longest

sub-problem is scheduled to be solved initially, all other sub-problems can be solved in

parallel in a smaller time. This means that in an ideal parallelisation scenario with four

threads, the execution time of the longest sub-instance would give the total execution

time for a problem.

The comparison between Complex First and Random Sorting has to this point been

made solely on the basis of the time taken to execute the different sub-problems.

Random Sorting is meant to simulate the scenario where there is not a concern about

the order for sub-problems execution and therefore the order in which the problem

division algorithm produces them can directly be taken. This is to say that in a real usage

situation, there is no sorting overhead related to following a random execution order.

However, in making use of Complex First, the overhead exists as there is no guarantee

that the problem division algorithm will produce the sub-instances in the desired order.

In the experiments carried out, the sorting overhead associated with Complex First

amounts to roughly 0.056 seconds, which overcomes the improvements this sorting

214

approach achieves over Random Sorting. This conclusion is true for any number of

threads - the maximum time gained by Complex First over Random Sorting happens for

two threads and it amounts to ≈0.011 seconds. In this way, Random Sorting is deemed

the most promising approach. When three and four threads are used, it allows to

recover approximately 84% of the maximum time that could have been saved through

parallelisation.

The approach proposed in this thesis for Parallel TSDC improves the time

consumed to finish the benchmark. Enhancements can be felt as soon as two threads

are used. However, whilst the improvements do exist, they are small. Approximately

0.085 seconds are recovered through parallelisation. This represents reducing the time

spent in optimisation tasks only by ≈2.44%. If the time spent in problem division is also

taken into account, the time saved across the benchmark through parallelisation

amounts solely to ≈1.67%. This can be explained by the characteristics of the benchmark,

where for the different problems there is a sub-instance that is more complex and then

others which are in general much faster to solve. Whilst the characteristics of the

problems in the benchmark inherently limit the improvements that can be achieved by

parallelisation, it would certainly be interesting to study different instances - namely

problems where the relationship of a single dominant sub-instance is not present.

Furthermore, it would also be important to study the impacts of parallelisation when

tackling even larger, more complex problems. In a first effort in that direction, a larger

model has been simulated; basically, for each case study - HBSM1, HBSM2, HBSM3 and

BSS - their respective sub-problems are taken and each replicated 50 times to form the

Ultimate ASIL Allocation Problem (UAAP). The UAAP is formed by a total of 550 sub-

instances of size greater than one and 7150 of size one. The Experiential-I cost heuristic

215

is used to evaluate the allocations across this new problem. To evaluate Parallel TSDC’s

performance across the UAAP, the setups of the experiments previously carried out in

this section are reused. Results are shown in Figure 64; time consumed with problem

division and sub-problem sorting steps is not included.

Figure 64 - Parallel TSDC performance in solving the ultimate ASIL allocation benchmark, as a
function of the maximum number of threads available and sub-problem sorting mode (data

is based on average times from 50 runs).

For both sub-problem sorting modes, with the increase of the maximum number

of threads always comes an important decrease in execution time. Complex First is

faster than Random Sorting when two or more threads are used. However, the

differences are very small in comparison with the overall running time. The biggest

difference between the two sorting modes is approximately 0.021 seconds (for four

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

1 2 3 4

ti
m

e
(s

ec
o

n
d

s)

Maximum number of threads

Complex First Random Sorting

216

threads). As mentioned in the description of the parallel conquering approach, a thread

gets assigned with a new sub-problem as soon as it finishes another, and therefore there

is always a constant effort towards thread load balancing. The worst case scenario for

the execution time of a given problem relates to threads reaching a perfect load balance

just before the last sub-instance is scheduled to be solved, and then that last sub-

instance being the most complex. The maximum difference between the worst and the

ideal sub-problem sorting modes would actually be even smaller than the time taken to

solve the complex sub-problem. It would be obtained by subtracting the execution time

of the complex sub-problem by the same execution time divided by the number of

threads. This corresponds to the situation where the work associated with solving the

complex sub-instance is equally divided by the number of available threads.

In the results of Figure 64, the differences between the two sorting modes grow

with the number of threads, which could link again to situations in Random Sorting

where one complex sub-problem appears towards the end of the sub-instance

execution queue. One thread would be assigned to deal with the complex sub-problem,

whereas the other threads would be in charge of solving the remaining work (which here

is assumed to be less than the one of executing the complex sub-problem). More threads

dealing with the smaller amount of work can ideally finish it faster; this means more

resources not being in use until the complex sub-problem is finally finished and

therefore that a worse thread load balance has been accomplished.

Complex First has always achieved better results than Random Sorting. Further

analysis of the quality of results by Complex First can be made on the basis of the data

presented in Figure 65. The performance curve of Parallel TSDC with Complex First is

217

shown together with three lines representing the time of solving all the sub-problems

sequentially, divided by 2, 3 and 4.

Figure 65 - Comparison of Parallel TSDC’s performance using the Complex First sorting mode
against the ideal parallelisation times relating to the use of 2, 3 and 4 threads (data is based

on average times from 50 runs).

The use of Parallel TSDC with Complex First gave the biggest improvements, to the

point where the execution times are very close to ideal divisions of the time to solve the

sub-problems sequentially by the number of threads used. In every scenario, the

differences are between 2 and 3 milliseconds; this indicates a very good thread load

balancing, independently of the number of threads. The UAAP contains a very high

number of sub-problems, and many of them are very fast to execute; in the Complex

First sorting method, the smaller sub-instances are left to be solved towards the end.

0.3

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

1 2 3 4

ti
m

e
(s

ec
o

n
d

s)

Maximum number of threads

Complex First 1/2 Sequential 1/3 Sequential 1/4 Sequential

218

This allows for thread load balancing to be executed with high precision. Also, the small

differences to the ideal times hint to a minimal overhead with thread creation and

scheduling. In fact, a smaller overhead was to be expected here, in comparison with the

previous experiments concerning the ASIL allocation benchmark. In the UAAP, thread

creation only occurs once, whereas in the experiments with the benchmark, every time

a different problem was to be tackled, threads would be created. Given that there are

16 problems in the benchmark (four case studies, each being associated with four cost

heuristics), and that they would get executed 50 times, threads would be created in 800

occasions. Furthermore, the overhead with thread scheduling is expected to be smaller

in the UAAP. The number of sub-problems present in the UAAP is only a quarter of all

the sub-problems in the ASIL allocation benchmark: the sub-problems in the benchmark

are obtained from four case studies associated with four cost functions, whereas in the

UAAP the sub-problems relate to the same four case studies, but they are only

associated with the Experiential-I cost function. Since there are less sub-problems to

solve in the UAAP, thread scheduling happens less often.

Although Complex First achieved the best performance for sub-problem

conquering, again there is the need to consider the overhead of sub-problem sorting

which only exists while using the Complex First approach. For the UAAP, this overhead

amounts to ≈0.015 seconds. It overcomes the improvement of Complex First over

Random Sorting when two threads are used; Random Sorting becomes faster by roughly

6 milliseconds. When three and four threads are utilised, Complex First remains faster,

but its improvements over Random Sorting are reduced to less than 1 and 6 milliseconds,

respectively. In this way, depending on the number of threads available, the best sorting

approach varies. A common evidence across the different number of threads is that the

219

sorting overhead brings the performances of the two approaches even closer; for any

given number of threads, the difference between the two sorting methods amounts to

less than 1% of the ideal improvement that parallelisation could bring over executing

sub-problems sequentially. When analysing the benchmark, however, Complex First is

worse than Random Sorting independently of the number of threads utilised.

Furthermore, in its best performance, the former only recovers approximately 64% of

the maximum improvement that could be achieved through parallelisation, versus

roughly 84% from Random Sorting. On the basis of these experiments, it seems more

advantageous that Parallel TSDC executes the different sub-problems in the order they

are provided by the problem division algorithm. The use of Random Sorting also

contributes to reduce complexity in the code. Nonetheless, Complex First was always

more promising when only the time to execute the different sub-instances was

considered and would be worth revisiting if the time to sort the different sub-problems

by complexity can be somehow minimised.

In the UAAP, increasing the number of threads always resulted in an improved

performance. In experiments with the benchmark, whereas increasing the number of

threads did not always yield improvements, it also did not make results worse. In this

way, in future uses of the approach Parallel TSDC, it is recommended that the maximum

number of threads that can be executed concurrently is utilised.

This section presented a parallelisation approach which successfully improved the

performance of TSDC across the ASIL allocation benchmark. Improvements were not

very significant, but this was mainly because generally, for different the problems in the

benchmark there was one sub-instance that took much longer to solve than the

220

remaining. However, Parallel TSDC has shown to be significantly faster than TSDC across

a new, larger allocation problem, which integrated thousands of sub-instances – the

UAAP. Some paths for future investigation have been laid out across the section. One

consists of investigating ways of minimising the overhead of sorting sub-problems.

Another considers conducting research on the impacts of the operating system task

scheduling mechanism in the sub-problem sorting approach to adopt. In addition to

these, it would be interesting to try parallelisation frameworks other than OpenMP,

namely ones that can guarantee sub-problem order of execution; it would be interesting

to compare the results with the ones presented in this section. Finally, it would also be

stimulating to evaluate the performance of Parallel TSDC with processors with more

cores and/or that make use of Hyper-threading. Hyper-threading is an Intel technology

(Intel Corporation, 2003), where a single physical processor core is presented as two

logical processors to the operating system. As a result, the operating system can

schedule two threads to the single physical core. Some components of the processor are

actually duplicated, but the execution resources are shared between the two logical

processors. The two together can make a more efficient use of those shared resources;

when one logical processor is stalled, the other can make use of the execution resources,

which would otherwise be idle if only one thread was being executed. Intel claims Hyper-

threading can reach performance gains up to 30%.

5.4 A more refined cost optimisation?

Up to this point in the thesis, a cost model has been used which assumed that ASIL

imposed costs vary equally across all the components of a system architecture. As

practitioners develop more projects according to ISO 26262, more information on

project costs will be available, and when performing ASIL allocation they may want to

221

use a finer granularity in cost estimation. For example, they may want to define

categories of components (e.g. sensors), and assign them with a cost weight which is

different from the one allocated to another category (e.g. actuators). This section aims

at exploring the impacts of a finer granularity in cost definition over the ASIL allocations

obtained across a system architecture. It also provides a first test to the performance of

Parallel TSDC in dealing with optimisation problems where ASIL imposed costs do not

vary equally for each of the allocation variables. Part the work presented in this section

has been published in Azevedo et al. (2014a).

The one wheel version of the hybrid braking system, HBSM1, was selected for the

study performed in this section. All of its 125 non-dominated solutions are known; it is

clear that the optimal solution is non-dominated, and therefore, given any cost function,

by evaluating the 125 non-dominated solutions the optimal allocation can be identified.

In a first instant, three categories of components have been devised for the

architecture of HBSM1. The categories were formulated for illustration, and it is possible

that others that are more meaningful can be identified. Furthermore, it has also been

considered that within a component, the costs of dealing with omission and value

failures are the same. The three categories of components identified can be observed in

Table 41.

Table 41 - Components of HBSM1 divided in three categories.

Programmable
Electronics

Electronic Low
Voltage

Electronic High
Voltage

Electronic Pedal Auxiliary Battery IWM

WNC EMB Power Converter IWM Power Converter

Communications Buses EMB Powertrain Battery

- Braking Pedal -

222

Programmable Electronics was assumed to be the least expensive category, and

was taken as basis for relative cost definition. The components of the Electronic Low

Voltage category were estimated to be three times more expensive than the ones in

Programmable Electronics. Growing complexity is usually tied to an increase of the risk

of defect and consequently the investment in safety measures escalates. A much larger

complexity is usually present in the hardware and software components of the high

voltage hardware architecture and therefore Electronic High Voltage has been allocated

with the highest cost jump; its components are assumed to incur in safety activities

which are five times more expensive than the ones of Programmable Electronics. It is

worth noting that Electronic High Voltage includes the main components of the traction

drive system, integrating multiple control units with embedded software.

The non-dominated solutions for the HBSM1 have been evaluated using the

Experiential-I cost function, together with the different cost weights defined for the

three categories of components. A single optimal solution was identified and it is

presented in Table 42, on the left (see next page). The right hand side of the table shows

the optimal solution for the HBSM1 when the Experiential-I cost function is used without

the cost weights.

Analysis of Table 42 tells that the use of categories of components gives an optimal

solution which is different than the one obtained when the categories were not

considered. In fact, if all the cost functions presented in this thesis are analysed, this

solution only evaluates as optimal for the linear cost heuristic. It is interesting to observe

that the high cost weight applied to Electronic High Voltage clearly biases the optimal

solution towards low ASILs for the failure modes of its components.

223

Table 42 - HBSM1 optimal ASIL allocations for Experiential-I cost function with and without
the cost weights defined for the categories of components.

 Exp-I with
categories
Cost: 1030

Exp-I

Cost: 390

Braking Pedal.OFailure1 4 4

Braking Pedal.VFailure1 1 1

Electronic Pedal.OFailure1 2 2

Electronic Pedal.OFailure2 2 2

Electronic Pedal.VFailure1 1 1

Electronic Pedal.VFailure2 0 0

Bus1.OFailure1 2 2

Bus2.OFailure1 2 2

WNC.OFailure1 4 2

WNC.OFailure2 0 2

WNC.VFailure1 1 1

WNC.VFailure2 1 1

Auxiliary Battery.OFailure1 4 2

Auxiliary Battery.VFailure1 1 1

Powertrain Battery.OFailure1 0 2

Powertrain Battery.VFailure1 1 1

EMB Power Converter.OFailure1 4 2

EMB Power Converter.VFailure1 1 1

IWM Power Converter.OFailure1 0 2

IWM Power Converter.VFailure1 1 1

EMB.OFailure1 4 2

EMB.VFailure1 1 1

IWM.OFailure1 0 2

IWM.VFailure1 1 1

Having identified the optimal solution for the problem, it is now time to evaluate

if Parallel TSDC can find it. Taking from the conclusions of section 5.3.6, the experiments

were carried out with Parallel TSDC utilising the maximum number of threads that can

be executed concurrently. The CPU utilised in the experiments of this section is the same

used throughout the thesis; it integrates four cores and allows for a maximum of four

concurrent threads. Furthermore, no specific order is enforced for the execution of the

problem’s sub-instances; they are simply solved in the order the problem division

224

algorithm provides them. The optimisation algorithm is tuned with the parameterisation

found to perform better across the ASIL allocation benchmark (see Table 43).

Table 43 - Parameterisation adopted for Parallel TSDC

limitp limitq updatePeriodp updatePeriodq

3.5n 0.5n 10 11

In the experiments carried out, Parallel TSDC always found the optimum solution.

As with previous experiments, the cumulative time taken for the algorithm to solve the

problem 50 times was measured. This was repeated 50 times and the average execution

time is presented in Table 44 (centre column). The rightmost column of the table shows

the execution time of Parallel TSDC in tackling HBSM1-Exp-I without categories of

components.

Table 44 - Execution times of Parallel TSDC to complete HBSM1, when allocations were
evaluated using the Experiential-I cost heuristic with and without categories of components

(data is based on average times from 50 runs).

Cost Function Exp-I with categories Exp-I

Time (seconds) 0.00229932 0.00184298

Parallel TSDC was able to complete the HBSM1 with categories of components in

every of its runs and within very acceptable times.

As a further experiment, a limit situation for the granularity of costs definition was

considered, where the system designer defines different ASIL cost functions for each of

the failure modes of an architecture. This scenario was simulated by producing random

ASIL cost functions for each failure mode in HBSM1. As it does not impose safety-related

activities, ASIL QM was always assigned with cost zero across the different FMs. Four

different random costs, from 1 to 250 units, were generated for each failure mode.

225

These values were associated with the different ASILs - higher costs were linked to the

higher ASILs. The generated random cost functions can be consulted in Appendix II of

the thesis.

According to the random costs produced, a single optimal solution was identified

from the evaluation of the 125 non-dominated solutions of HBSM1 (see Table 45).

Table 45 - HBSM1 Optimal ASIL allocations for Experiential-I cost function with random cost
heuristics generated for each FM.

 Random Costs
Cost: 1650

Braking Pedal.OFailure1 4

Braking Pedal.VFailure1 1

Electronic Pedal.OFailure1 2

Electronic Pedal.OFailure2 2

Electronic Pedal.VFailure1 1

Electronic Pedal.VFailure2 0

Bus1.OFailure1 4

Bus2.OFailure1 0

WNC.OFailure1 2

WNC.OFailure2 2

WNC.VFailure1 1

WNC.VFailure2 1

Auxiliary Battery.OFailure1 2

Auxiliary Battery.VFailure1 1

Powertrain Battery.OFailure1 2

Powertrain Battery.VFailure1 1

EMB Power Converter.OFailure1 2

EMB Power Converter.VFailure1 1

IWM Power Converter.OFailure1 2

IWM Power Converter.VFailure1 1

EMB.OFailure1 2

EMB.VFailure1 1

IWM.OFailure1 2

IWM.VFailure1 1

The optimal solution obtained is different from the ones found in the previous

experiment of this section. As with the best allocation obtained when categories of

226

components are defined, if the cost of the current solution is calculated using the

original cost model, it only evaluates as optimal for the linear cost function. With a

known optimal solution, experiments can now be carried out to evaluate the

performance of Parallel TSDC. The same experimental setup used in the trials with

categories of components was followed. Results are presented in Table 46.

Table 46 - Execution times of Parallel TSDC to complete HBSM1, when allocations were
evaluated according to random ASIL cost heuristics; for each FM, cost heuristics are different

(data is based on average times from 50 runs).

Cost Function Random

Time (seconds) 0.001971800

For the scenario where cost definition is taken to its finer granularity, Parallel TSDC

was again able to always find the optimal solution and in very acceptable times.

The current section has shown that making use of a more granular cost definition

results in obtaining optimal solutions for the HBSM1, which are, for most situations,

different from the ones obtained in the experiments with the original cost model. This

meets the conclusions previously introduced in section 4.3 about the need from

practitioners to work towards obtaining more precise cost information. If more precise

data is used to inform optimisation approaches, such as the one introduced in this

section, more accurate cost-efficient solutions can be identified. Parallel TSDC has

shown some robustness in dealing with more refined costs models; it always found the

optimal solution for HBSM1, both in the scenario where categories of components were

utilised, and also when ASIL cost functions were defined for each FM.

227

5.5 Results summary

The chapter started by demonstrating that an approach purely based on

generating random allocations yields poor results. Four problems were tackled with such

an approach, and for two of them, after a day of processing time, no feasible solutions

were produced. As for the remaining two problems, the best allocations found were 24%

and 78% more expensive than the optimal ones. In finding promising solutions for

complex systems more advanced optimisation approaches need to be considered.

The investigation conducted in chapter 3 resulted in three effective metaheuristic

optimisation techniques for the ASIL allocation problem. They are based on GA, PSO and

TS concepts. The three techniques successfully solve to optimality every problem

defined in the ASIL allocation benchmark, and within very satisfactory times too. The

longest an algorithm took to solve one problem was ≈60.04 seconds. The algorithms

include randomness in their search processes, and their performances vary between

runs. The maximum time of 60.04 seconds was obtained in the poorest trial. Across the

three techniques, the maximum average time spent in solving one of the allocation

instances actually amounts to ≈3.37 seconds (over 50 runs).

TS has been established as the most efficient of the three techniques. The method

presented smaller average processing times for every problem in the benchmark. In fact,

across the majority of the tests, TS’s average execution times are at least one order of

magnitude smaller than the ones of GA and PSO. Furthermore, TS took on average ≈0.33

seconds to complete the entire benchmark; this time is ≈21 and ≈27 times faster than

the ones presented by PSO and GA, respectively.

228

Comparing PSO and GA, the first takes the lead. Not only is PSO faster to complete

the benchmark, but it also presented smaller average processing times than GA for 14

out of the 16 problems defined.

A divide and conquer methodology to tackle ASIL allocation problems was

proposed as means to possibly obtain further improvements to the efficiency of the

optimisation process. The methodology consists of dividing a problem into multiple sub-

problems of smaller dimensionality, and then solving those independently to provide a

solution to the original problem. The problem division tactic proposed was shown to

have applicability to the case studies investigated in this thesis.

An algorithm was created combining the divide and conquer concept with the

most efficient optimisation technique, TS. The algorithm, coined Tabu Search Divide and

Conquer (or TSDC), was tested against the TS version that did not consider problem

division. The two approaches were run with the same large number of

parameterisations. In its best run, TSDC completed the benchmark in ≈0.10 seconds; the

best time obtained by TS is approximately three times slower.

TSDC did not just overcome TS’s best performance with the use of a single

parameterisation. The technique obtained better results than the best TS using a variety

of 424 parameterisations. These represent approximately one fifth of the entire set of

parameterisations defined. Furthermore, across 73 parameterisations, TSDC was able to

complete the benchmark more than two times faster than the best TS.

In the light of its superiority over TS, TSDC was selected for further analysis. To

inform parameter selection in future uses of the approach, research was conducted to

identify the parameterisations enabling TSDC’s most promising performances across the

229

benchmark. TSDC’s best results were found when (updatePeriodp; updatePeriodq) were

set to (3; 4) and (10; 11). In achieving these most promising performances, (10; 11)

allowed for more pairs of values to be selected for limitp and limitq. A particular set of

promising parameterisations associated with (10; 11) had limitp varying from 3n to 4n

and limitq between 0 and 2.5n. Finally, the best parameterisation found for TSDC is given

next.

 (updatePeriodp; updatePeriodq) = (10; 11)

 limitp = 3.5n;

 limitq = 0.5n

A subsequent experiment demonstrated that if TSDC’s parameters were tailored

on a sub-problem basis, the technique’s performance could be improved even further.

Each sub-problem was executed faster; across the benchmark, TSDC’s total execution

time was improved by ≈18%.

The hypothesis of programmatically and automatically setting TSDC’s

parameterisations as a function of problem characteristics was advanced. Obtaining

such an approach would not just enable finding faster performances with the use of

TSDC; if the method can be generically applied to any problem, it would eliminate any

need for parameterisation experimentation from the user. Analysis of the data obtained

from applying TSDC to the ASIL allocation benchmark did not allow drawing definitive

conclusions on this hypothesis. Nevertheless, some trends were observed, and it has

been theorised that a method based on analysis of problem dimensionality could

produce parameterisations giving efficient TSDC performances. The method defined

that (updatePeriodp; updatePeriodq) should grow with dimensionality; in tackling sub-

230

problems with dimensionality smaller than 26, (updatePeriodp; updatePeriodq) should

be set to (1; 2); sub-problems presenting dimensionalities between 26 and 84 should

use (3; 4). No data with problems of dimensionality higher than 84 was available, but it

is possible that for those problems higher update periods are required. In the approach

proposed, limitq is to be set to 0. In regards to limitp, it should grow with problem

dimensionality following an increasing change rate. The approach yielded good results

across the benchmark, but more work is needed to validate its general applicability.

Furthermore, it is likely that it can be improved from analysis of more sub-problems.

Analysis of the data produced across the benchmark also suggested that in achieving the

best possible parameterisations for each sub-instance, additional problem

characteristics need to be investigated. Two constraints-related characteristics that may

be worth investigating are AACs size and AACs ASIL requirement.

In a final effort to improve further the performance of the optimisation process,

an initial method has been proposed for the parallelisation of sub-problems conquering.

The method was integrated with TSDC and Parallel TSDC was born. Parallel TSDC gave

additional performance benefits across the benchmark; it improved the execution time

of the non-parallelised version of the algorithm by ≈1.67%. Parallelisation only allows to

reduce time spent in optimisation tasks, i.e., it does not have an impact on the time

spent in the problem division step. If only optimisation tasks are considered, the

improvements obtained through parallelisation represent a reduction in time of 2.44%.

It should be noted that due to the characteristics of the benchmark, these

improvements were limited from the start to a maximum of ≈2.89%. When a new, larger

problem, with thousands of sub-instances was tackled, the improvements to the time

spent in optimisation tasks were far more substantial; times obtained with the

231

parallelisation approach were close to dividing the sequential execution time by the

number of threads utilised.

Experiments with the Parallel TSDC approach have given indications that the

technique should make use of the maximum number of threads that can be executed

concurrently. In regards to the sub-problem sorting mode, if only optimisation tasks are

taken in to account, Complex First gives the most efficient results. However, the

overhead of sub-problem sorting associated with Complex First makes it a less promising

approach than just solving the sub-instances in the order they are provided by the

problem division step.

Parallel TSDC allows solving every problem defined in the thesis to optimality;

furthermore, it is the technique providing the most efficient performances. In this way,

it should be regarded as the ultimate product from this thesis towards the cost efficient

allocation of ASILs in complex systems.

The final experimental work from the thesis is presented in Section 5.4. Up to that

point, a cost model had been assumed where ASIL dependent costs vary in the same

way across the different variables in a problem. In Section 5.4, the HBSM1 case study

was taken and two scenarios were considered for a more granular cost definition: in the

first, different cost weights were assigned to different categories of components; in a

second case, different ASIL cost functions were formulated for each allocation variable.

In these two scenarios, the solutions regarded as optimal are different. Furthermore,

they are also different from when the original cost model was used with the experiential-

I, experiential-II and logarithmic heuristics. Parallel TSDC was applied to the HBSM1 in

232

the presence of the two new cost definition scenarios; in both cases the technique was

able to find the optimal solutions very efficiently.

233

6. Conclusions

6.1 Contributions

The following hypothesis was stated in the introduction chapter:

The allocation of Automotive Safety Integrity Levels in large and/or complex

architectures can be efficiently supported through automated model-based safety

analysis and the optimisation of development costs with metaheuristics.

Efficient model-based safety analysis techniques were already available at the

start of this project (e.g. HiP-HOPS). Therefore, research focused on the development of

suitable metaheuristic optimisation techniques. A series of objectives were defined,

which if met would support the stated hypothesis. They are revisited now, together with

a discussion on how they have been met.

1. Investigate, amongst the state-of-the-art in metaheuristic optimisation, a set

of techniques that can be applied to solve the novel problem of scalable

allocation of ASILs.

Over the years, various authors have created a multitude of metaheuristics, which

have been applied with varying success to different problems. Three of the most popular

metaheuristics were investigated in the context of this objective: Genetic Algorithms

(GA), Particle Swarm Optimiser (PSO) and Tabu Search (TS).

Metaheuristics are generic search guiding strategies and need to be adapted to

the specifics of the problem at hand. In reality, their performance greatly depends on

the suitability of this adaptation. Successful applications of the three selected

metaheuristics were analysed. The study focused on problems with similar

234

characteristics to ASIL allocation, namely within the reliability engineering domain.

Together with this literature review examination, problem specific search operators and

infeasible search space exploration strategies were proposed. Also, hybrid tactics to

combine two metaheuristics were investigated.

Several optimisation techniques were developed from this work. However, three

of them have shown particularly strong performances. These three techniques are all

based on different metaheuristics, i.e., there is one method based on GA, another on

PSO and finally one on TS. On the basis of their performances, these techniques were

compared in the context of objective 3.

2. Establish a set of tests and metrics that allow comparison of the performance

of the metaheuristic techniques being investigated.

Four different system case studies were created in this thesis. Their models and

dependability properties allowed the generation of ASIL allocation problems with a

diversity of characteristics. For example, the problem with the smallest dimensionality

counted 24 variables, whereas the largest counted 185. The latter (named BSS),

generates an extraordinary total search space of ≈2.04 × 10219 solutions! AACs

characteristics also varied across the different problems. For instance, HBSM1 counted

31 AACs, whereas HBSM3 counted 11,573. The maximum size of AACs in HBSM1 was 2,

whereas in HBSM3 there were AACs of sizes up to 8. The four case studies were

combined with four different ASIL cost functions, formulating a benchmark counting 16

problems in total.

The optimisation techniques developed include randomness in their search

process. If they are run two times, they might find solutions of different qualities or take

235

a different number of iterations to find a given allocation. In this way, it was decided

that performance would be compared on the basis of running an algorithm 50 times.

Initially, two evaluation metrics were defined: 1) the number of runs returning the

optimal solution for a problem; 2) the relative cost increase against the optimal cost for

a problem. However, it was verified that the three techniques developed in the context

of objective 1 were able to solve each of the 16 allocation problems in every run, and

within satisfactory time. At this point, the goal of the comparison became the

identification of the most efficient technique. Since the concept of iteration is different

across the algorithms, and that within the same algorithm iterations can pose varying

efforts, a comparison based on iteration count was set aside. It was decided, instead,

that the algorithm performance would be evaluated in terms of execution time to find

the optimal solution.

3. Select the best performing metaheuristic and examine the possibility of

improving it further and enhance its usability.

The comparison study between the three techniques created to tackle ASIL

allocation yielded TS as the most promising. For every problem in the benchmark, TS

was always the fastest technique to find an optimal solution. The technique took, on

average, ≈0.33 seconds to solve the entire benchmark, being ≈21 times faster than PSO,

and ≈27 times faster than GA. Together with performance benefits, TS brings the

advantage of a better tuning experience. There are only four parameters to select,

whereas PSO includes 13 and GA integrates 10.

For the problems in the benchmark, TS was already capable of providing high

quality solutions within time spans that clearly supported the iterative nature of ASIL

236

allocation. However, targeting scalability to larger and more complex problems, the

technique was examined for further performance improvements. The enhancements

considered were based on a methodology which contemplated the division of an original

problem into multiple sub-instances of smaller dimensionalities. In turn, these sub-

problems could be solved (or conquered) independently to provide a solution for the

original problem. The TS technique was combined with the divide and conquer approach,

creating a method called Tabu Search Divide and Conquer (TSDC). TSDC was compared

with TS across a vast number of parameterisations and the best performance obtained

by TSDC was almost three times faster than TS’s best. Further analysis revealed that

TSDC was faster than the best TS using many parameterisations (424 parameterisations,

i.e. approximately one fifth of all parameterisations used). The total time needed by

TSDC to complete the benchmark amounted, on average, to ≈0.10 seconds. Given that

the sub-problems obtained in the division step of TSDC are completely independent, an

initial approach for parallelisation was evaluated. Parallel TSDC improved the

benchmark’s completion time further by 1.67% (less than 2 milliseconds). Parallelisation

is only used during the conquering step of the approach, i.e., it does not impact on the

time taken for problem division. If only optimisation tasks are considered, the use of

Parallel TSDC represents reducing execution times by 2.44%. The relatively small

improvement can be explained by the characteristics of the benchmark. Generally, for

each problem in the benchmark, there was one sub-instance that took much longer to

solve than the remaining. When parallelisation was used, the time to solve each problem

had a minimum bound given by the execution time of the longer sub-instances. Analysis

of the execution times of the different sub-problems revealed that possible

enhancements via parallelisation were limited to 2.89% from the start.

237

An Ultimate ASIL Allocation Problem (UAAP) was created to evaluate the possible

benefits of using Parallel TSDC when tackling other, larger problems. The UAAP

integrates every problem of the benchmark 50 times. In total, it counts 550 sub-

instances of size greater than one and 7150 of size one. When Parallel TSDC was applied

to the UAAP, it obtained performances that are very close to dividing the execution time

of TSDC by the number of threads utilised. For reference, Parallel TSDC completed this

huge problem in ≈0.4 seconds (using four threads in a processor that could handle up to

four threads concurrently). Parallel TSDC performed better when:

1) Sub-problems were solved in a random order (i.e. accepting the order in which

the problem division step produces them)

2) The maximum number of threads that could be solved concurrently was used

To enhance the usability of the optimisation method, two studies were conducted.

One evaluated the possibility of utilising a same parameterisation for every problem

tackled. A large number of parameterisations were evaluated, and the one obtaining

best results across the benchmark was:

 (updatePeriodp; updatePeriodq) = (10; 11)

 limitp = 3.5n;

 limitq = 0.5n

n stands for problem dimensionality.

In a second step, the possibility of programmatically and automatically setting the

parameterisations as a function of characteristics of the problem to be solved was also

considered. If such a method was available, this would completely eliminate the need

238

for any parameterisation experimentation from the user. Furthermore, performance

benefits have been found when parameterisations were optimised on a per sub-

problem basis. Whilst this study did not derive any definitive conclusion, a method was

theorised on the basis of some observable trends as a function of dimensionality. The

method defined that (updatePeriodp; updatePeriodq) should grow with dimensionality:

 Sub-problems of dimensionalities lower than 26

o (updatePeriodp; updatePeriodq) = (1; 2)

 Sub-problems of dimensionalities between 26 and 84

o (updatePeriodp; updatePeriodq) = (3; 4)

In regards to limitp, it should grow with problem dimensionality following an

increasing change rate. As for limitq it should be set to 0. There is room for more

investigation in this topic, and this will be discussed in chapter 7.

4. Apply the developed approach to case studies in order to validate its

applicability and usefulness to the development of complex engineering

systems.

The optimisation methods developed were applied to a series of problems, which

were built on top of four case studies. Three of these case studies were variants in

complexity of a hybrid braking system for electrical vehicles. This system has been

defined in the context of my Master’s (Azevedo, 2012). The hybrid braking strategy is

based on the work of de Castro et al (2011), and the system’s structure is inspired by,

for example, the works of Isermann et al. (2002) and Isermann (2002). The fourth case

study, BSS, is a very large system of systems, combining braking and steering-by-wire

features, and was provided by an industrial partner of HiP-HOPS. The final product of

239

this thesis, Parallel TSDC, was able to find optimal solutions for all problems defined

from the case studies, within very acceptable time spans. The technique was also

successfully applied to an even larger problem, the UAAP. Although this problem does

not necessarily represent a realistic case study, it further indicates promise to the

approach.

The hybrid braking system was used in chapter 4 to demonstrate the usefulness

of the automated ASIL allocation approach proposed in the thesis. The example

illustrated the use of HiP-HOPS model-based approach to capture the system failure

behaviour and obtain the all the information necessary to formulate ASIL allocation

constraints. Then, in the face of a number of solutions that is clearly outside of realms

of manual evaluation (≈5 × 1016), the optimisation algorithms were able to quickly

retrieve ASIL algebra compliant and cost-optimal solutions. The example has also shown

how the automated and efficient nature of the approach can facilitate negotiations with

suppliers.

This thesis argued that ASIL allocation could be efficiently and effectively

supported with a mixture of model-based safety analysis and metaheuristic optimisation

algorithms. Whereas research focused on the optimisation techniques, it is also

important to comment on the HiP-HOPS FTA performance. In his PhD thesis, Parker

(2010) describes a series of enhancements to HiP-HOPS fault tree analysis and synthesis

algorithms; the enhancements allowed for very promising performance when tackling

large problems. HiP-HOPS has since then been equipped with these strongly performing

algorithms. For every case study developed in this thesis, the tool returns FTA results

within sub-second time frames. Parallel TSDC adds less than 0.1 seconds to the

240

execution time of solving any of the problems coming from these case studies. It seems

reasonable to assume that allocating a few hours to perform ASIL allocation does not

put at risk the need to carry it out in the context of an iterative design process. The

margin between sub-second time frames and hours leaves encouraging prospects for

the use of HiP-HOPS and Parallel TSDC across even larger and more complex systems.

While HiP-HOPS has been used in the thesis to provide the FTA information

required to formulate allocation constraints, it is important to highlight that Parallel

TSDC can easily link with any other model-based FTA tools. In fact, it can work on top of

any method that provides both:

a) The minimal cut sets for a system

b) The total ASILs that the failure modes of each minimal cut set must meet

5. Explore the impacts of different cost heuristics in the allocation of ASILs.

This objective was addressed using the pre-existing HiP-HOPS ASIL allocation

algorithm. The allocation algorithm is of an exhaustive nature, meaning that when it is

capable of finishing a problem, it will find its optimal solutions. Although the algorithm

does not scale well, it is capable of completing the smallest case study defined in the

thesis - HBSM1.

In chapter 4, the optimal solutions for the HBSM1 according to two illustrative ASIL

cost heuristics were compared. The first observation was that each cost heuristic had a

different number of optimal solutions associated with them – there was only one

optimal solution according to one cost heuristic, whereas the other revealed four

optimal solutions. The second observation is that the single optimal solution for the first

cost heuristic was different from all four optimal solutions from the second.

241

Towards the end of chapter 5, a study with more refined cost models was

conducted. Different cost weights were defined for categories of components and in a

final step different, random, cost functions were defined for each component. The

solutions obtained in these two steps were different between themselves, and different

as well from the solutions obtained in the experiment of chapter 4.

The takeaway message here is that the use of different ASIL cost information can

lead to very different allocations to be seen as optimal. This gives strength to the

necessity for work to be undertaken in industry in order to obtain more accurate ASIL

cost information. Approaches to inform decision making, such as the one proposed in

this thesis, need this more precise data in order to find solutions which are closer to the

real optimal allocations.

Whilst the above remains a topic to be addressed in the industrial context, the

final product of this thesis has shown flexibility to effectively and efficiently find optimal

solutions in the presence of multiple cost heuristics and cost models. Different system

designers can in this way use the approach according to the best information that is

available to them.

Range of applicability of the approach

The approach developed in this thesis is not constrained to any sub-domain of

automotive safety-related electronic systems – it can be generically used to solve

problems where the ASIL decomposition algebra applies.

Whereas the approach’s implementation has been optimised to deal with ASILs,

the concept is transferrable to other industry sectors where problems can be modelled

using equivalent decomposition algebras. For the aerospace industry, the concept has

242

already achieved some validation through the work from Sorokos et al. (2015a, 2015b).

Influenced by the investigation from this thesis, the authors have developed a technique

combining model-based safety analysis and Tabu Search. The implementation of the

Tabu Search technique has been defined to deal with the allocation algebra from the

aerospace industry. Case studies have been analysed with promising results.

6.2 Impact on external research

The thesis project is now drawing to an end, but it has already impacted external

research. The Tabu Search technique used in the comparison with GA and PSO has been

included in MAENAD (Model-based Analysis & Engineering of Novel Architectures for

Dependable Electric Vehicles). MAENAD was an European FP7 Project (MAENAD, 2015)

that finished in the beginning of 2015. The project aimed at extending EAST-ADL (EAST-

ADL Association, 2015), an automotive Architecture Description Language, and

improving its tool support in order to address the new challenges of electrical vehicle

development.

The same optimisation technique used in MAENAD has also been integrated in the

research of André Oliveira, from the University of York, to address the ASIL allocation

problem in the context of product line engineering. In product lines, multiple products

are created following a strategy to maximise the number of components reused.

Components are shared across different products, but different products originate

different hazards with different risks and ASILs. It becomes important to find an

allocation that simultaneously fulfils the ASIL requirements defined for each product -

ideally one that imposes minimum costs. The results of this work have been published

in de Oliveira et al. (2015).

243

As mentioned in the previous section, the research from this thesis has influenced

work for the use of model-based techniques and metaheuristics in the allocation of SILs

within the aerospace domain. This work is being carried out as part of Ioannis Sorokos

PhD, here at the University of Hull. Research has already been outputted in Sorokos et

al. (2015a, 2015b).

Towards the end of this project, a collaboration has been established with the

Generative Software Development Lab from the University of Waterloo in Canada. The

work consisted of investigating the feasibility of using off-the-shelf exact solvers to find

all cost-optimal solutions for a series of ASIL allocation instances. Different approaches

to formulate the ASIL allocation problem have been proposed and experiments were

carried out with three versions of the hybrid braking system and four different cost

heuristics - providing a total of 12 problem instances. For most cases, an Integer Linear

Programming (ILP) and a Satisfiability Modulo Theories (SMT) solver, Z3 SMT (Microsoft

Research, 2015) and CPLEX ILP (IBM, 2015) respectively, presented very efficient

processing times; however, there were cases where several hours or even multiple days

were needed to complete the optimisation process. The results of this work have been

published in Murashkin et al. (2015).

Finally, Youcef Gheraibia, a PhD candidate from the University of Mohammed

Cherif Messaadiahas (Algeria), has traveled to Hull to apply a metaheuristic of his

authorship to the ASIL allocation optimisation problem: Penguins Search Optimisation

Algorithm (Gheraibia & Moussaoui, 2013). This new nature-inspired metaheuristic is

based on the collaborative hunting strategies of penguins. A paper based on the

244

research has been accepted for publication on the IEEE Seventh International

Conference on Intelligent Computing and Information Systems (Gheraibia et al., 2015).

6.3 A note on the relationship with the ISO 26262 standard

As stated in the introduction chapter, this thesis addresses the generic problem of

“safety integrity requirements allocation”. Whereas the automotive industry was taken

as an application example, specifically its ASIL decomposition algebra, the product of

this thesis is not an attempt to fully implement ISO 262626 guidelines for ASIL allocation.

For example, in the standard, ASILs are first allocated to safety requirements; then, the

safety requirement and respective ASIL are allocated to components. This represents a

different way of reasoning than in most safety standards. However, Blanquart et al.

(2012) point out that there is no evidence that this approach leads to different

allocations since the process still relies on failure propagation and end effects. In the

method adopted in the thesis, the process of ASIL allocation starts from the point where

a system architecture and respective safety-related functionality is already defined.

ASILs are allocated and decomposed as a function of the dependability characteristics

of the system. Another difference is that the standard does not allow for decomposition

when redundant components are susceptible to cascading failures, i.e., in scenarios

where errors of components elsewhere in the system cause the redundant elements to

fail. Through FTA, the approach proposed here pinpoints what are the root causes of

system failures, and assigns adequate integrity requirements to those root causes. If by

failing, a component originates a system hazard posing the highest level of risk, it will be

assigned with the highest integrity requirements. The architectural elements that

receive inputs from this component will be assigned with integrity requirements that

reflect solely their own impact in originating a system hazard.

245

The first edition of ISO 26262 was released in late 2011. As a result of different

understanding and different needs, practitioners have been implementing it in different

ways. A revised draft of the standard is being prepared. Possibly, the method proposed

in this thesis can influence the evolution of the standard concerning ASIL allocation

guidelines.

246

7. Limitations and suggestions for future work

This thesis has investigated automatic metaheuristic optimisation techniques,

which combined with model-based safety analysis, provide effective and efficient

support to ASIL allocation. There is room for further research to extend this work, and

this chapter identifies limitations, areas for improvements and relevant paths for future

work.

1) Identifying decomposition preferences and patterns

The optimisation approach developed in this thesis explores all decomposition

options allowed by the SIL algebra. However, from a practical point of view, it can make

sense to constrain the solution space further. The ISO 26262 standard says that when

decomposition is to be applied to a component which is monitored by a safety

mechanism, the safety mechanism should be allocated with a higher ASIL than the

component it supervises (Int’l Organization for Standardization, 2011:Part 9). The

rationale given is that safety mechanisms are usually less complex and are easier to

develop to higher ASILs. Future work could consider the modelling of this, and possibly

other, architectural patterns, and add extra constraints to the optimisation process.

2) Allocating ASILs to components

In the method proposed in the thesis, ASILs are allocated to components’ FMs and

the cost of a solution is evaluated on the basis of the ASILs allocated to each FM of a

system. The approach provides means for a more refined allocation, which can be more

cost-efficient over the course of a hierarchical allocation process. However, it might not

go in meeting current industrial practice: ISO 26262 prescribes a process where ASILs

247

are allocated to safety requirements and subsequently to components; also, it might be

difficult to tailor costs as a function of the different FMs of a component. This is a

limitation of the work presented in this thesis. A solution has been identified and it can

be implemented as future work:

a) Variables are defined as the ASILs to allocate to each component of a system.

As a result, ASIL dependent costs must be defined on a per component basis

b) From the MCSs of a system, the constraints associated with the FMs of a

component must all be associated with the component itself

This approach would potentially result in a decrease of the search space to explore.

The dimensionality of the problems to solve would often decrease (multiple variables

would be merged into a single one – i.e. instead of allocating multiple ASILs to the

different FMs of a component, it is only necessary to allocate an ASIL to the component),

and there would be an increase to the number of constraints for each variable (the

constraints associated with each FM of a component are all associated with the

component). The algorithms formulated from this thesis would still be able to accept

these problems as inputs, since variables and constraints remain of the same type.

3) Validating and enhancing the automatic parameterisation of Parallel TSDC

Discovering a method to automatically parameterise Parallel TSDC is important, as

it can potentially lead to further performance benefits. Also, it eliminates the need for

any parameterisation experimentation from the user. A method based on problem

dimensionality has been presented in section 5.3.5. Whilst the approach obtained good

results across the benchmark, further work needs to be conducted to validate it and

possibly improve it. Furthermore, investigation hinted that other problem

248

characteristics might need to be investigated in order to obtain the best performance.

Two possible characteristics worth investigating are AACs size and AACs ASIL

requirements. The automatic parameterisation of Parallel TSDC is not a trivial problem

and will likely require the study of a wide number of problems.

4) Investigating ways of improving the parallelisation of TSDC

An initial effort has been presented in section 5.3.6 towards the parallelisation of

TSDC. Promising performance benefits have been obtained, however there is room for

further research. One path consists of investigating ways of minimising the sub-problem

sorting overhead. It would also be interesting to understand the impacts of the

operating system task scheduling mechanisms over which sub-problem sorting

approach to adopt. OpenMP has been used as the framework to implement the

parallelisation of TSDC. It could be beneficial to evaluate other frameworks that can

guarantee the sub-problem order of execution. Finally, it could be useful to evaluate the

performance of Parallel TSDC with processors with more cores and/or that make use of

Hyper-threading technology.

5) Efficiency and near optimality

The optimisation techniques developed in this project are based on metaheuristics.

The final product of the thesis, Parallel TSDC, was able to quickly find optimal solutions

for problems with close to 200 variables and thousands of constraints, suggesting good

scalability. There is, however, a limitation inherent to the use of metaheuristics

optimisation techniques. When applying them to a new problem, there is no guarantee

that optimal solutions will be retrieved. This is a limitation that can only be overcome

with the use of exact techniques. Whereas for large instances it can be infeasible to

249

apply exact techniques, a methodology could be developed to arrive at a solution that

is, at least, guaranteed to be partially optimal. This methodology could be integrated

with the divide and conquer approach from this thesis. Smaller interconnected instances

could be solved with exact techniques, whereas very complex instances would be

tackled with the efficient metaheuristic optimisation techniques proposed here. A first

step towards such a methodology was already incorporated in the work from this thesis

- interconnected instances of size 1 are solved to optimality with the Direct Allocation

Algorithm.

250

Bibliography

Adachi, M., Papadopoulos, Y., Sharvia, S., Parker, D. & Tohdo, T. (2011) An approach to

optimization of fault tolerant architectures using HiP-HOPS. Software: Practice and

Experience, 41(11), 1 October, 1303–1327.

Affenzeller, M., Beham, A., Kofler, M., Kronberger, G., Wagner, S.A. & Winkler, S. (2009)

Metaheuristic optimization. In Buchberger, B., Affenzeller, M., Ferscha, A., Haller, M.,

Jebelean, T., Klement, E.P., Paule, P., Pomberger, G., Schreiner, W., Stubenrauch, R.,

Wagner, R., Weiß, G. & Windsteiger, W. (eds) Hagenberg Research. Berlin: Springer,

103–155.

Allen, M. (2012) Cost versus ASIL. Available online:

https://www.linkedin.com/grp/post/2308567-92692199 [Accessed 11/1/2013].

Artois Univeristy & CNRS (2015) Sat4j - the boolean satisfaction and optimization library

in Java. Available online: http://www.sat4j.org/ [Accessed 17/2/2013].

Azevedo, L.S. (2012) Hybrid braking system for electrical vehicles: functional safety. MSc

thesis. Faculdade de Engenharia da Universidade do Porto.

Azevedo, L.S., Parker, D., Papadopoulos, Y., Walker, M., Sorokos, I. & Araújo, R.E. (2014a)

Exploring the impact of different cost heuristics in the allocation of safety integrity levels.

In Ortmeier, F. & Rauzy, A. (eds) Model-Based Safety and Assessment. Lecture Notes in

Computer Science 8822. Cham: Springer International Publishing, 70–81.

Azevedo, L.S., Parker, D., Walker, M., Papadopoulos, Y. & Araùjo, R.E. (2013) Automatic

decomposition of safety integrity levels: optimization by tabu search. The 2nd Workshop

251

on Critical Automotive Applications: Robustness & Safety (CARS 2013) of the 32nd

International Conference on Computer Safety, Reliability and Security (SAFECOMP 2013).

Toulouse, September 2013.

Azevedo, L.S., Parker, D., Walker, M., Papadopoulos, Y. & Esteves Araujo, R. (2014b)

Assisted assignment of automotive safety requirements. IEEE Software, 31(1), January,

62–68.

Baufreton, P., Blanquart, J.P., Boulanger, J.L., Delseny, H., Derrien, J.C., Gassino, J., Ladier,

G., Ledinot, E., Leeman, M., Quéré, P. & Richque, B. (2010) Multi-domain comparison of

safety standards. The 5th International Conference on Embedded Real Time Software

and Systems (ERTS2 2010). Toulouse, May 2010.

Bieber, P., Bougnol, C., Castel, C., Kehren, J.-P.H.C., Metge, S. & Seguin, C. (2004) Safety

assessment with Altarica. In Jacquart, R. (ed) Building the Information Society.

International Federation for Information Processing 156. New York: Springer US, 505–

510.

Bieber, P., Delmas, R. & Seguin, C. (2011) DALculus – theory and tool for development

assurance level allocation. In Flammini, F., Bologna, S. & Vittorini, V. (eds) Computer

Safety, Reliability, and Security. Lecture Notes in Computer Science 6894. Berlin:

Springer, 43–56.

Blanquart, J.-P., Astruc, J.-M., Baufreton, P., Boulanger, J.-L., Delseny, H., Gassino, J.,

Ladier, G., Ledinot, E., Leeman, M., Machrouh, J., Quéré, P. & Ricque, B. (2012) Criticality

categories across safety standards in different domains. Embedded Real Time Software

and Systems (ERTS 2012). Toulouse, February 2012, 1–3.

252

Blum, C. & Li, X. (2008) Swarm intelligence in optimization. In Blum, C. & Merkle, D. (eds)

Swarm Intelligence. Natural Computing Series. Berlin: Springer, 43–85.

Blum, C., Puchinger, J., Raidl, G.R. & Roli, A. (2011) Hybrid metaheuristics in

combinatorial optimization: a survey. Applied Soft Computing, 11(6), September, 4135–

4151.

Blum, C. & Roli, A. (2003) Metaheuristics in combinatorial optimization: overview and

conceptual comparison. ACM Computing Surveys, 35(3), September, 268–308.

Boussaïd, I., Lepagnot, J. & Siarry, P. (2013) A survey on optimization metaheuristics.

Information Sciences, 237, 10 July, 82–117.

Bozzano, M. & Villafiorita, A. (2003) Improving system reliability via model checking: the

FSAP/NuSMV-SA safety analysis platform. In Anderson, S., Felici, M. & Littlewood, B. (eds)

Computer Safety, Reliability, and Security. Lecture Notes in Computer Science 2788.

Berlin: Springer, 49–62.

Bozzano, M. & Villafiorita, A. (2010) Introduction. In Design and safety assessment of

critical systems. Boston: Auerbach Publications.

de Castro, R., Araújo, R.E. & Freitas, D. (2011) Hybrid ABS with electric motor and friction

brakes. The 22nd International Symposium on Dynamics of Vehicles on Roads and Tracks

(IAVSD 2011). Manchester, August 2011, 1–7.

Charette, R.N. (2009) This car runs on code. IEEE Spectrum, 46(3). Available online:

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code [Accessed

18/8/2013].

253

Chu, S.C. & Fang, H.L. (1999) Genetic algorithms vs. tabu search in timetable scheduling.

The Third International Conference on Knowledge-Based Intelligent Information

Engineering Systems (KES 1999). Adelaide, December 1999. IEEE, 492–495.

Clerc, M. (1999) The swarm and the queen: towards a deterministic and adaptive

particle swarm optimization. The 1999 Congress on Evolutionary Computation (CEC 99).

Washington DC, July 1999. IEEE, 1951–1957.

Clerc, M. & Kennedy, J. (2002) The particle swarm - explosion, stability, and convergence

in a multidimensional complex space. IEEE Transactions on Evolutionary Computation,

6(1), February, 58–73.

Coello Coello, C.A. (2002) Theoretical and numerical constraint-handling techniques

used with evolutionary algorithms: a survey of the state of the art. Computer Methods

in Applied Mechanics and Engineering, 191(11–12), 4 January, 1245–1287.

Coit, D.W. & Smith, A.E. (1996a) Penalty guided genetic search for reliability design

optimization. Computers & Industrial Engineering, 30(4), September, 895–904.

Coit, D.W. & Smith, A.E. (1996b) Reliability optimization of series-parallel systems using

a genetic algorithm. IEEE Transactions on Reliability, 45(2), June, 254–260.

Dasgupta, S., Papadimitriou, C.H. & Vazirani, U. (2008) Divide and conquer algorithms.

In Algorithms. New York: McGraw-Hill, Inc.

Dhouibi, M.S., Perquis, J.-M., Saintis, L. & Barreau, M. (2014) Automatic decomposition

and allocation of safety integrity level using system of linear equations. The Fourth

254

International Conference on Performance, Safety and Robustness in Complex Systems

and Applications (PESARO 2014). Nice, February 2014, 1–5.

Dorigo, M. (1992) Optimization, learning and natural algorithms. PhD thesis. Politecnico

di Milano. Available online: http://ci.nii.ac.jp/naid/10016599043/ [Accessed 18/8/2015].

EAST-ADL Association (2015) EAST-ADL. Available online: http://www.east-adl.info/

[Accessed 14/10/2015].

Eberhart, R. & Kennedy, J. (1995) A new optimizer using particle swarm theory. The Sixth

International Symposium on Human Science (MHS ’95). Nagoya, October 1995. IEEE, 39–

43.

European Commission (2015) Statistics - accidents data. Available online:

http://ec.europa.eu/transport/road_safety/specialist/statistics/index_en.htm

[Accessed 12/1/2014].

European Committee for Eletrotechnical Standardization (1997) EN 50126: Railway

applications - the specification and demonstration of Reliability, Availability,

Maintainability and Safety (RAMS). Brussels: CENELEC.

European Committee for Eletrotechnical Standardization (2001) EN 50128: Railway

application - communications, signaling and processing systems - software for railway

control and protection systems. Brussels: CENELEC.

European Committee for Eletrotechnical Standardization (2003) EN 50129: Railway

applications - communications, signaling and processing systems - safety related

electronic systems for signaling. Brussels: CENELEC.

255

Fenelon, P. & McDermid, J.A. (1993) An integrated tool set for software safety analysis.

Journal of Systems and Software, 21(3), 279–290.

Geem, Z.W., Kim, J.H. & Loganathan, G.V. (2001) A new heuristic optimization algorithm:

harmony search. Simulation, 76(2), 60–68.

Gendreau, M. & Potvin, J.-Y. (2005a) Metaheuristics in combinatorial optimization.

Annals of Operations Research, 140(1), November, 189–213.

Gendreau, M. & Potvin, J.-Y. (2005b) Tabu Search. In Burke, E.K. & Kendall, G. (eds)

Search methodologies: introductory tutorials in optimization and decision support

techniques. New York: Springer US, 165–186.

Gheraibia, Y. & Moussaoui, A. (2013) Penguins Search Optimization Algorithm (PeSOA).

In Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M. & Treur, J. (eds)

Recent Trends in Applied Artificial Intelligence. Lecture Notes in Computer Science 7906.

Berlin: Springer, 222–231.

Gheraibia, Y., Moussaoui, A., Azevedo, L.S., Parker, D., Papadopoulos, Y. & Walker, M.

(2015) Can aquatic flightless birds allocate automotive safety requirements? The

Seventh International Conference on Intelligent Computing and Information Systems

(ICICIS 2015). Cairo, December 2015. IEEE [accepted].

Glover, F. (1986) Future paths for integer programming and links to artificial intelligence.

Computers & Operations Research, 13(5), 533–549.

Glover, F. (1989) Tabu search - part I. ORSA Journal on Computing, 1(3), 1 August, 190–

206.

256

Glover, F. (1990) Tabu search - part II. ORSA Journal on Computing, 2(1), 1 February, 4–

32.

Grunske, L. & Kaiser, B. (2005) An automated dependability analysis method for COTS-

based systems. In Franch, X. & Port, D. (eds) COTS-Based Software Systems. Lecture

Notes in Computer Science 3412. Berlin: Springer, 178–190.

Hansen, P. & Jaumard, B. (1990) Algorithms for the maximum satisfiability problem.

Computing, 44(4), 279–303.

Hansen, P. & Lih, K.-W. (1996) Heuristic reliability optimization by tabu search. Annals

of Operations Research, 63(2), April, 321–336.

Holland, J.H. (1975) Adaption in natural and artificial systems. Ann Arbor: The University

of Michigan Press.

IBM (2015) CPLEX optimizer. Available online: http://www-

01.ibm.com/software/commerce/optimization/cplex-optimizer [Accessed 11/9/2014].

IEEE (2015) IEEE Xplore digital library. Available online:

http://ieeexplore.ieee.org/Xplore/home.jsp [Accessed 3/9/2015].

Intel Corporation (2015) Intel® ARK (product specifications). Available online:

http://ark.intel.com [Accessed 26/6/2015].

Intel Corporation (2003) Intel®hyper-threading technology - technical user’s guide. Santa

Clara: Intel.

257

Int’l Electrotechnical Comission (2010) IEC 61508: Functional safety of

electrical/electronic/programmable electronic safety related systems, 2nd edition.

Geneva: IEC.

Int’l Electrotechnical Commission (1998) IEC 61508: Functional safety of

electrical/electronic/programmable electronic safety related systems. Geneva: IEC.

Int’l Electrotechnical Commission (2003) IEC 61511: Functional safety - Safety

instrumented systems for the process industry sector. Geneva: IEC.

Int’l Electrotechnical Commission (2011) IEC 61513: Nuclear power plants -

instrumentation and control important to safety - general requirements for systems.

Geneva: IEC.

Int’l Organization for Standardization (2011) ISO 26262: Road vehicles - functional safety.

Geneva: ISO.

Isermann, R., Schwarz, R. & Stolzl, S. (2002) Fault-tolerant drive-by-wire systems. IEEE

Control Systems, 22(5), October, 64–81.

Isograph Ltd (2015) FaultTree+. Available online:

http://www.isograph.com/software/reliability-workbench/fault-tree-analysis/

[Accessed 10/7/2015].

ITI Gmbh (2015) SimulationX. Available online: http://www.simulationx.com/ [Accessed

8/6/2015].

258

Kaiser, B., Liggesmeyer, P. & Mäckel, O. (2003) A new component concept for fault trees.

The 8th Australian Workshop on Safety Critical Systems and Software (SCS 2003).

Canberra, October 2003. Australian Computer Society, Inc., 37–46.

Kennedy, J. & Eberhart, R. (1995) Particle swarm optimization. The 1995 International

Conference on Neural Networks. Perth, November 1995. IEEE, 1942–1948.

Kennedy, J., Kennedy, J.F., Eberhart, R.C. & Shi, Y. (2001) Swarm intelligence. San

Francisco: Morgan Kaufmann.

Kirkpatrick, S., Gelatt, C.D. & Vecchi, M.P. (1983) Optimization by simulated annealing.

Science, 220(4598), 671–680.

Kulturel-Konak, S., Smith, A.E. & Coit, D.W. (2003) Efficiently solving the redundancy

allocation problem using tabu search. IIE Transactions, 35(6), 1 June, 515–526.

Kuo, W. (2001) Metaheuristic algorithms for optimization in reliability systems. In

Optimal Reliability Design: Fundamentals and Applications. Cambridge: Cambridge

University Press.

Levitin, G., Hu, X. & Dai, Y.-S. (2007) Particle swarm optimization in reliability engineering.

In Levitin, D.G. (ed) Computational Intelligence in Reliability Engineering. Studies in

Computational Intelligence 40. Berlin: Springer, 83–112.

Li, C., Yang, S. & Korejo, I. (2008) An adaptive mutation operator for particle swarm

optimization. The 2008 UK Workshop on Computational Intelligence (UKCI ’08). Leicester,

September 2008. MIC 2008, 165–170.

259

Lin, M.-H., Tsai, J.-F. & Yu, C.-S. (2012) A review of deterministic optimization methods

in engineering and management. Mathematical Problems in Engineering, 2012, 20 June.

Available online: http://www.hindawi.com/journals/mpe/2012/756023/abs/ [Accessed

6/2/2013].

Li, X., Cui, J., Qi, J. & Yang, S. (2007) Energy transmission modes based on Tabu search

and particle swarm hybrid optimization algorithm. Journal of Central South University of

Technology, 14(1), January, 144–148.

Mader, R., Armengaud, E., Leitner, A. & Steger, C. (2012) Automatic and optimal

allocation of safety integrity levels. The 2012 Reliability and Maintainability Symposium

(RAMS 2012). Reno, January 2012. IEEE, 1–6.

MAENAD (2015) MAENAD. Available online: http://www.maenad.eu/ [Accessed

15/2/2014].

Mathworks, Inc (2015) Simulink - simulation and model-based design. Available online:

http://uk.mathworks.com/products/simulink/ [Accessed 8/5/2015].

McDermott, R., Mikulak, R.J. & Beauregard, M. (1996) The basics of FMEA, 2nd edition.

New York: CRC Press.

Microsoft (2015) Visual Studio. Available online: https://www.visualstudio.com/

[Accessed 17/7/2015].

Microsoft Research (2015) Z3 solver. Available online: http://z3.codeplex.com [Accessed

16/9/2014].

260

Murashkin, A., Azevedo, L.S., Guo, J., Zulkoski, E., Liang, J.H., Czarnecki, K. & Parker, D.

(2015) Automated decomposition and allocation of automotive safety integrity levels

using exact solvers. SAE International Journal of Passenger Cars - Electronic and Electrical

Systems, 8(1), 14 April. Available online: http://papers.sae.org/2015-01-0156/

[Accessed 30/4/2015].

Nakano, S., Ishigame, A. & Yasuda, K. (2010) Consideration of particle swarm

optimization combined with tabu search. Electrical Engineering in Japan, 172(4), 1

September, 31–37.

Nakano, S., Ishigame, A. & Yasuda, K. (2007) Particle swarm optimization based on the

concept of tabu search. The 2007 Congress on Evolutionary Computation (CEC 2007).

Singapore, September 2007. IEEE, 3258–3263.

Nggada, S.H., Parker, D.J. & Papadopoulos, Y.I. (2010) Dynamic effect of perfect

preventive maintenance on system reliability and cost using HiP-HOPS. The 5th

Conference on Management and Control of Production and Logistics (IFAC-MCPL 2010).

Coimbra, September 2010. IFAC, 204–209.

de Oliveira, A.L., Papadopoulos, Y., Azevedo, L.S., Parker, D., Braga, R.T.V., Masiero, P.C.,

Habli, I. & Kelly, T. (2015) Automatic allocation of safety requirements to components

of a software product line. IFAC-PapersOnLine, 48(21). Available online:

http://www.sciencedirect.com/science/article/pii/S2405896315018352 [Accessed

15/11/2015].

OpenMP ARB (2015) The OpenMP® API specification for parallel programming. Available

online: http://openmp.org/wp/ [Accessed 17/5/2015].

261

Osman, I.H. & Laporte, G. (1996) Metaheuristics: a bibliography. Annals of operations

research, 63(5), 511–623.

Pande, P.K., Spector, M.E. & Chatterjee, P. (1975) Computerized fault tree analysis:

TREEL and MICSUP. Berkeley: University Of California Operations Research Centre.

Papadimitriou, C.H. & Steiglitz, K. (1982) Combinatorial optimization: algorithms and

complexity. Upper Saddle River: Prentice-Hall, Inc.

Papadopoulos, Y. & McDermid, J.A. (1999) Hierarchically performed hazard origin and

propagation studies. In Felici, M. & Kanoun, K. (eds) Computer Safety, Reliability and

Security. Lecture Notes in Computer Science 1698. Berlin: Springer, 139–152.

Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann, R., Uhlig, A., Grätz, U. &

Lien, R. (2011) Engineering failure analysis and design optimisation with HiP-HOPS.

Engineering Failure Analysis, 18(2), March, 590–608.

Papadopoulos, Y., Walker, M., Reiser, M.-O., Weber, M., Chen, D., Törngren, M., Servat,

D., Abele, A., Stappert, F., Lonn, H. & others (2010) Automatic allocation of safety

integrity levels. The 1st Workshop on Critical Automotive Applications: Robustness &

Safety (CARS 2010). Valencia, April 2010. ACM, 7–10.

Parker, D.J. (2010) Multi-objective optimisation of safety-critical hierarchical systems.

PhD thesis. The University of Hull. Available online:

http://hydra.hull.ac.uk/resources/hull:3465 [Accessed 5/1/2013].

Parker, D., Walker, M., Azevedo, L.S., Papadopoulos, Y. & Araújo, R.E. (2013) Automatic

decomposition and allocation of safety integrity levels using a penalty-based genetic

262

algorithm. In Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M. & Treur, J.

(eds) Recent Trends in Applied Artificial Intelligence. Lecture Notes in Computer Science

7906. Berlin: Springer, 449–459.

Poli, R. (2008) Analysis of the publications on the applications of particle swarm

optimisation. Journal of Artificial Evolution and Applications, 2008, 1–10.

Poli, R., Kennedy, J. & Blackwell, T. (2007) Particle swarm optimization - an overview.

Swarm Intelligence, 1(1), 1 August, 33–57.

Puchinger, J. & Raidl, G.R. (2005) Combining metaheuristics and exact algorithms in

combinatorial optimization: a survey and classification. In Mira, J. & Álvarez, J.R. (eds)

Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach.

Lecture Notes in Computer Science 3562. Berlin: Springer, 41–53.

Society of Automotive Engineers (2010) ARP4754-A: Guidelines for development of civil

aircraft and systems. Warrendale: SAE International.

Sorokos, I., Papadopoulos, Y., Azevedo, L., Parker, D. & Walker, M. (2015a) Automating

allocation of development assurance levels: an extension to HiP-HOPS. IFAC-

PapersOnLine, 48(7). Available online:

http://www.sciencedirect.com/science/article/pii/S2405896315007053 [Accessed

15/11/2015].

Sorokos, I., Papadopoulos, Y., Walker, M., Azevedo, L.S. & Parker, D. (2015b) Driving

design refinement: how to optimise allocation of software development assurance or

integrity requirements. In Mistrik, I., Soley, R.M., Ali, N., Grundy, J. & Tekinerdogan, B.

263

(eds) Software Quality Assurance: In Large Scale and Complex Software-intensive

Systems. Burlington: Morgan Kaufmann, 237–250.

Stacey, A., Jancic, M. & Grundy, I. (2003) Particle swarm optimization with mutation. The

2003 Congress on Evolutionary Computation (CEC ’03). Camberra, December 2003. IEEE,

1425–1430 Vol.2.

Storey, N.R. (1996) Safety critical computer systems. Boston: Addison-Wesley Longman

Publishing Co., Inc.

Syswerda, G. (1989) Uniform crossover in genetic algorithms. The 3rd International

Conference on Genetic Algorithms. Fairfax, June 1989. Morgan Kaufmann, 2–9.

Talbi, E.-G. (2009) Metaheuristics: from design to implementation. Hoboken: John Wiley

& Sons.

Tate, D.M. & Smith, A.E. (1995) A genetic approach to the quadratic assignment problem.

Computers & Operations Research, 22(1), 73–83.

The Eclipse Foundation (2015) Papyrus. Available online:

http://www.eclipse.org/papyrus/ [Accessed 7/5/2015].

Trelea, I.C. (2003) The particle swarm optimization algorithm: convergence analysis and

parameter selection. Information Processing Letters, 85(6), 31 March, 317–325.

U.S. Department of Defense (1949) MIL–P–1629: Procedures for performing a failure

mode, effects and criticality analysis. Washington DC: U.S. Department of Defense.

264

Walker, M. & Papadopoulos, Y. (2008) Synthesis and analysis of temporal fault trees with

PANDORA1: the time of Priority AND gates. Nonlinear Analysis: Hybrid Systems, 2(2),

June, 368–382.

Wang, Y. & Li, L. (2012) Heterogeneous redundancy allocation for series-parallel multi-

state systems using hybrid particle swarm optimization and local search. IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 42(2),

March, 464–474.

Watson, H.A. (1961) Method of inadvertent launch control analysis. In Launch control

safety study. Murray Hill: Bell Labs.

Wolforth, I., Walker, M., Papadopoulos, Y. & Grunske, L. (2010) Capture and reuse of

composable failure patterns. International Journal of Critical Computer-Based Systems,

1(1-3), 128–147.

Wolpert, D.H. & Macready, W.G. (1997) No free lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1), April, 67–82.

Wolsey, L.A. & Nemhauser, G.L. (1988) Integer and combinatorial optimization. New

York: John Wiley & Sons.

Woon, S.F. (2009) Global algorithms for nonlinear discrete optimization and discrete-

valued optimal control problems. PhD thesis. Curtin University of Technology. Available

online:

http://espace.library.curtin.edu.au/webclient/StreamGate?folder_id=0&dvs=1439856

178067~249&usePid1=true&usePid2=true [Accessed 18/8/2013].

265

Xiang, W., Richardson, P.C., Zhao, C. & Mohammad, S. (2008) Automobile brake-by-wire

control system design and analysis. IEEE Transactions on Vehicular Technology, 57(1),

January, 138–145.

Yang, X.-S. (2010) Introduction. In Nature-inspired metaheuristic algorithms, 2nd edition.

Frome: Luniver Press.

266

Appendix I – HBSM1 failure logic and cut sets

HBSM1 failure expressions

Table 47 – HBSM1 failure expressions

Component Failure expressions

Braking Pedal
O-Out1 = OFailure1

V-Out1 = OFailure1

Electronic Pedal

O-Out1 = OFailure1 OR O-In1

O-Out2 = OFailure2 OR O-In1

V-Out1 = VFailure1 OR V-In1

V-Out2 = VFailure2 OR V-In1

Bus1 O-Out1 = O-In1 AND O-In2 OR OFailure1

Bus2 O-Out1 = O-In1 AND O-In2 OR OFailure1

WNC

O-Out1 = O-In1 AND O-In2 OR OFailure1

O-Out2 = O-In1 AND O-In2 OR OFailure2

V-Out1 = O-In1 AND V-In2 OR VFailure1

V-Out2 = O-In1 AND V-In2 OR VFailure2

Auxiliary Battery
O-Out1 = OFailure1

V-Out1 = OFailure1

Powertrain Battery
O-Out1 = OFailure1 OR O-In1

V-Out1 = VFailure1 OR V-In1

EMB Power Converter
O-Out1 = OFailure1 OR O-In1

V-Out1 = VFailure1 OR V-In1

IWM Power Converter
O-Out1 = OFailure1 OR O-In1

V-Out1 = VFailure1 OR V-In1

EMB
O-Out1 = OFailure1 OR O-In1

V-Out1 = VFailure1 OR V-In1

IWM
O-Out1 = OFailure1 OR O-In1

V-Out1 = VFailure1 OR V-In1

267

HBSM1 cut sets

Table 48 – HSBM1 cut sets

No braking after command Wrong value braking

Braking Pedal.OFailure1 Braking Pedal.VFailure1

Electronic Pedal.OFailure1
Electronic Pedal.OFailure2

Braking Pedal.OFailure1
Electronic Pedal.VFailure2

Bus 1.OFailure1
Bus 2.OFailure1

Electronic Pedal.VFailure1

WNC.OFailure1
WNC OFailure2

Electronic Pedal.OFailure1
Electronic Pedal.VFailure2

WNC.OFailure1
IWM Power Converter.OFailure1

WNC.VFailure1

WNC.OFailure1
IWM.OFailure1

WNC.VFailure2

WNC.OFailure1
Powertrain Battery.OFailure1

EMB Power Converter.VFailure1

EMB Power Converter.OFailure1
WNC.OFailure2

IWM Power Converter.VFailure1

EMB Power Converter.OFailure1
IWM Power Converter.OFailure1

EMB.VFailure1

EMB Power Converter.OFailure1
IWM.OFailure1

IWM.VFailure1

EMB Power Converter.OFailure1
Powertrain Battery.OFailure1

Powertrain Battery.VFailure1

EMB.OFailure1
WNC.OFailure2

Auxiliary Battery.VFailure1

EMB.OFailure1
IWM Power Converter.OFailure1

EMB.OFailure1
IWM.OFailure1

EMB.OFailure1
Powertrain Battery.OFailure1

Auxiliary Battery.OFailure1
WNC.OFailure2

Auxiliary Battery.OFailure1
IWM Power Converter.OFailure1

Auxiliary Battery.OFailure1
IWM.OFailure1

Auxiliary Battery.OFailure1
Powertrain Battery.OFailure1

268

Appendix II – Random ASIL cost functions for HBSM1

Table 49 – Random ASIL cost functions for the different FMs of HBSM1.

FM ASIL QM ASIL A ASIL B ASIL C ASIL D

Braking Pedal.OFailure1 0 38 154 178 189

Braking Pedal.VFailure1 0 22 140 161 239

Electronic Pedal.OFailure1 0 2 48 164 238

Electronic Pedal.OFailure2 0 37 99 231 249

Electronic Pedal.VFailure1 0 41 161 165 174

Electronic Pedal.VFailure2 0 28 122 130 156

Bus1.OFailure1 0 67 114 157 166

Bus2.OFailure1 0 66 101 111 222

WNC.OFailure1 0 13 17 90 153

WNC.OFailure2 0 14 53 69 134

WNC.VFailure1 0 11 43 72 170

WNC.VFailure2 0 44 58 202 207

Auxiliary Battery.OFailure1 0 70 82 157 159

Auxiliary Battery.VFailure1 0 30 41 103 202

Powertrain Battery.OFailure1 0 80 138 239 241

Powertrain Battery.VFailure1 0 26 72 148 188

EMB Power Converter.OFailure1 0 87 88 150 187

EMB Power Converter.VFailure1 0 76 121 241 246

IWM Power Converter.OFailure1 0 122 143 181 236

IWM Power Converter.VFailure1 0 6 16 107 183

EMB.OFailure1 0 16 68 187 232

EMB.VFailure1 0 66 71 80 98

IWM.OFailure1 0 30 108 160 206

IWM.VFailure1 0 129 137 200 237

269

Appendix III – Case studies’ fault trees

HBSM1 fault trees

No braking

Figure 66 – HBSM1 fault trees: “No braking” hazard – part 1 of 2.

270

Figure 67 - HBSM1 fault trees: “No braking” hazard – part 2 of 2.

271

Braking with wrong value

Figure 68 - HBSM1 fault trees: “Braking with wrong value” hazard – part 1 of 2.

272

Figure 69 - HBSM1 fault trees: “Braking with wrong value” hazard – part 2 of 2.

273

HBSM2 fault trees

No braking in 1 wheel

Figure 70 – HBSM2 fault trees: “No braking in one wheel” hazard – part 1 of 3.

274

Figure 71 - HBSM2 fault trees: “No braking in one wheel” hazard – part 2 of 3.

275

Figure 72 - HBSM2 fault trees: “No braking in one wheel” hazard – part 3 of 3.

276

Braking with wrong value in 1 wheel

Figure 73 – HBSM2 fault trees: “Braking with wrong value in 1 wheel” hazard – part 1 of 3.

277

Figure 74 - HBSM2 fault trees: “Braking with wrong value in 1 wheel” hazard – part 2 of 3.

278

Figure 75 - HBSM2 fault trees: “Braking with wrong value in 1 wheel” hazard – part 3 of 3.

279

HBSM3 fault trees

No braking in 4 wheels

Figure 76 – HBSM3 fault trees: “No braking in 4 wheels” hazard – part 1 of 3.

280

Figure 77 - HBSM3 fault trees: “No braking in 4 wheels” hazard – part 2 of 3

281

Figure 78 - HBSM3 fault trees: “No braking in 4 wheels” hazard – part 3 of 3.

282

No braking in 3 wheels

Figure 79 - HBSM3 fault trees: “No braking in 3 wheels” hazard – part 1 of 4.

283

Figure 80 – HBSM3 fault trees: “No braking in 3 wheels” hazard – part 2 of 4.

284

Figure 81 – HBSM3 fault trees: “No braking in 3 wheels” hazard – part 3 of 4.

285

Figure 82 – HBSM3 fault trees: “No braking in 3 wheels” hazard – part 4 of 4.

286

No braking diagonal

Figure 83 - HBSM3 fault trees: “No braking diagonal” hazard – part 1 of 3.

287

Figure 84 – HBSM3 fault trees: “No braking diagonal” hazard – part 2 of 3.

288

Figure 85 – HBSM3 fault trees: “No braking diagonal” hazard – part 3 of 3.

289

No braking front

Figure 86 - HBSM3 fault trees: “No braking front” hazard – part 1 of 2.

290

Figure 87 - HBSM3 fault trees: “No braking front” hazard – part 2 of 2.

291

No braking rear

Figure 88 - HBSM3 fault trees: “No braking rear” hazard – part 1 of 2.

292

Figure 89 - HBSM3 fault trees: “No braking rear” hazard – part 2 of 2.

293

Braking with wrong value in 4 wheels

Figure 90 - HBSM3 fault trees: “Braking with wrong value in 4 wheels” hazard – part 1 of 3.

294

Figure 91 – HBSM3 fault trees: “Braking with wrong value in 4 wheels” hazard – part 2 of 3.

295

Figure 92 – HBSM3 fault trees: “Braking with wrong value in 4 wheels” hazard – part 3 of 3.

296

BSS fault trees

The BSS model was provided by an industrial partner and for confidentiality

reasons the real names of its hazards, components and failure modes will not be shown.

Generic names are used instead as follows: HazardX, ComponentY and FailureZ. “X”

varies from 1 and the number of hazards identified for the BSS (10); “Y” varies from 1

and the number of components in the system (185); finally, “Z” ranges between 1 and

the number of failure modes identified for a given component.

There are a total of 190 failure modes in the BSS. Only 185 are part of the ASIL

allocation optimisation process because five failure modes are safe, i.e., they do not

contribute to originating a system hazard.

Hazard1

Figure 93 - BSS fault trees: “Hazard1” hazard – part 1 of 1.

297

Hazard2

Figure 94 - BSS fault trees: “Hazard2” hazard – part 1 of 1.

298

Hazard3

Figure 95 - BSS fault trees: “Hazard3” hazard – part 1 of 1.

299

Hazard4

Figure 96 - BSS fault trees: “Hazard4” hazard – part 1 of 1.

300

Hazard5

Figure 97 - BSS fault trees: “Hazard5” hazard – part 1 of 2.

301

Figure 98 - BSS fault trees: “Hazard5” hazard – part 2 of 2.

302

Hazard6

Figure 99 - BSS fault trees: “Hazard6” hazard – part 1 of 2.

303

Figure 100 - BSS fault trees: “Hazard6” hazard – part 2 of 2.

304

Hazard7

Figure 101 - BSS fault trees: “Hazard7” hazard – part 1 of 2.

305

Figure 102 - BSS fault trees: “Hazard7” hazard – part 2 of 2.

306

Hazard8

Figure 103 - BSS fault trees: “Hazard8” hazard – part 1 of 1.

307

Hazard9

Figure 104 - BSS fault trees: “Hazard9” hazard – part 1 of 4.

308

Figure 105 - BSS fault trees: “Hazard9” hazard – part 2 of 4.

309

Figure 106 - BSS fault trees: “Hazard9” hazard – part 3 of 4.

310

Figure 107 - BSS fault trees: “Hazard9” hazard – part 4 of 4.

311

Hazard10

Figure 108 - BSS fault trees: “Hazard10” hazard – part 1 of 1.

	Abstract
	Acknowledgements
	Contents
	Figures
	Tables
	Glossary
	1. Introduction
	1.1 Motivation
	1.1.1 Developing safe systems
	1.1.2 Safety as part of a standardised process
	1.1.3 The problem of allocating safety integrity requirements
	1.1.4 Automation can help
	1.1.5 Exploring automatic optimisation algorithms
	1.1.6 Focusing on the automotive industry

	1.2 Research hypothesis
	1.3 Research goal and objectives
	1.4 Thesis structure
	1.5 Summary of contributions
	1.6 Publications

	2. Background
	2.1 Functional Safety and Safety Integrity Levels
	2.2 Distributing safety integrity requirements in automotive systems
	2.2.1 Overviewing ISO 26262
	2.2.2 ASILs: From Hazard Analysis to allocation and decomposition
	2.2.3 ASIL decomposition example

	2.3 Decomposing SILs in the aerospace industry
	2.4 SIL allocation - costs matter
	2.5 Supporting ASIL allocation
	2.5.1 Safety analysis to the rescue!
	2.5.2 Model-based Safety Analysis
	2.5.3 Fault Tree Analysis with HiP-HOPS
	2.5.4 ASIL allocation with HiP-HOPS
	2.5.5 Other support
	2.5.6 Discussion and optimisation approach definition

	2.6 Summary

	3. Discovering cost efficient ASIL allocation strategies
	3.1 The ASIL allocation optimisation problem
	3.2 Discussion on optimisation research areas
	3.3 Metaheuristics – An overview
	3.4 Metaheuristics for ASIL allocation optimisation
	3.4.1 Solution representation
	3.4.2 Genetic Algorithm
	3.4.3 Particle Swarm Optimiser
	3.4.4 GA and PSO - Dealing with infeasibility
	3.4.5 Tabu Search
	3.4.6 Other (less) successful approaches

	3.5 Summary

	4. Case studies and evaluation metrics
	4.1 The hybrid braking system
	4.2 Case studies: The facts
	4.3 Exploring the impacts of different cost heuristics in ASIL allocations
	4.4 Methodology for optimisation techniques comparison
	4.5 Summary

	5. Experimentation and evaluation
	5.1 The ASIL allocation lottery
	5.2 Metaheuristics - The survival of the fittest
	5.2.1 Parameterisation of the species
	5.2.2 And the fittest species is…

	5.3 ASIL allocation - Optimisation by divide and conquer
	5.3.1 A guide to divide and conquer
	5.3.2 Dividing the ASIL allocation benchmark
	5.3.3 TS or TS Divide and Conquer?
	5.3.4 Tuning TSDC for efficient conquering
	5.3.5 Is conquering even more efficient if tuned differently for each problem?
	5.3.6 Initial evaluation of parallel conquering

	5.4 A more refined cost optimisation?
	5.5 Results summary

	6. Conclusions
	6.1 Contributions
	6.2 Impact on external research
	6.3 A note on the relationship with the ISO 26262 standard

	7. Limitations and suggestions for future work
	Bibliography
	Appendix I – HBSM1 failure logic and cut sets
	HBSM1 failure expressions
	HBSM1 cut sets

	Appendix II – Random ASIL cost functions for HBSM1
	Appendix III – Case studies’ fault trees
	HBSM1 fault trees
	No braking
	Braking with wrong value

	HBSM2 fault trees
	No braking in 1 wheel
	Braking with wrong value in 1 wheel

	HBSM3 fault trees
	No braking in 4 wheels
	No braking in 3 wheels
	No braking diagonal
	No braking front
	No braking rear
	Braking with wrong value in 4 wheels

	BSS fault trees
	Hazard1
	Hazard2
	Hazard3
	Hazard4
	Hazard5
	Hazard6
	Hazard7
	Hazard8
	Hazard9
	Hazard10

