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ABSTRACT 

We examine in det ail the microscopic theories of Beliaev and 

Hugenholtz and Pines as applied to an interacting system of bosons in its 

ground state and demonstrate that these theories are strictly applicable 

to a zero density gas only. After providing a re-normalization of the 

time dependent perturbation theory of a many fermion system in its ground 

state, we reformulate the corresponding boson theory without ab initio 

approximations concerning the ~:: 0 mode. 

The resulting boson perturbation theory has a diagrammatic structure 

which is topologically identical with the corresponding fermion theory 

and provided the implicit assumptions concerning convergence are valid, 

we conclude that a finite fraction of the particles in an arbitrary 

interacting :Bose g'as at T ~OK will not condense into the K ~O 

mode. 
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INTRODUCTION 

The remarkable success of time dependent perturbation theory in 

the many fermion problem is in marked contrast with its almost singular 

lack of success in the treatment of the corresponding boson problem. 

The reason for this situation can be traced to the fact that unlike the 

theory of fermions, the time dependent perturbation theory of bosons has 

not been formulated in a rigorous manner which can be treated exactly by 

graphical methods. The present work seeks to remove this deficiency and 

to provide the basis for a mathematically exact theory which is 

applicable to the many boson problem. 

To this end, and in order to gain familiarity with some ne~ 

techniques developed specifically for this purpose, we begin with a 

discussion of conventional Feynman-Dyson perturbation theory as applied 

to a system of interacting fermions at T:: 0 K , and proceed to 

reformulate the theory in terms of an effective interaction, r 
The result is a highly summed and manifestly self-consistent version of 

conventional perturbation theory and all known applications of the theory 

may be obtained from zeroth or first order approximations in r • 

The techniques employed, although merely convenient in the fermion 

problem, turn out to be essential for the application of diagrammatic 

perturbation theory to the many boson problem. 

In order to emphasize this, our initial discussion of the boson 

problem focusses attention on an expansion of the single particle 

condensate Green's function, obtained by employing a counting technique 

originally proposed by Brandow [I ] • It is demonstrated that the 

apparently reasonable approximation employed by Brandow [1) and others 

[2] of ignoring diagrams of relative order Vv where V is the 

volume of the system, is strictly only applicable to a zero-density 
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bose gas. 

In view of this, we examine Beliaev's [3] formulation of the 

problem and in this way are led to the discovery of an error in his 

evaluation of the condensate Green's function. The arguments of 

Hugenhol tz and Pines (' 4] ,which lead to the same result as Beliaev 

for the single particle Green's function are then briefly discussed. 

This brings us to the central part of the thesis, in which the new 

techniques mentioned above, are employed in order to obtain an equation 

for the single particle condensate Green's function of a many boson 

system in its ground state. This equation allows us to demonstrate that 

the formalism of Beliaev and Hugenholtz and Pines although self­

consistent, applies strictly to a zero gas only. We then describe an 

infinite hierarchy of self-consistent solutions, which do not suffer 

from this restriction. 

Finally, we obtain a connected diagram expansion for the single 

particle Green's function of a system of interacting bosons in their 

ground state and demonstrate that it is topologically identical with 

the corresponding fermion expansion. 'I'he results suggest that an 

arbitrary interacting bose gas at T.: OJ( does not possess a condensate. 
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CHAPrER 1 

FERMION PERTURBATION THEORY 

1.1. Introduction 
r(/} 

The single particle Green's function ~ of a . system of 

interacting particles is a convenient. quantity to calculate for 
r (.) 

several reasons. One of these is that onoe ur is known, the 

observables of greatest interest may be obtained, [5,6]. Another 

is that the Feynman rules for obtaining the n th order oontribution 
r(II 

to ~ from perturbation theory are partioularly simple and for 
~ (/) 

this reason" \.7 will be the foous of our attention throughout 

this thesis. 

When conventional perturbation theory [7,8] is employed to 

oaloulate for a system of interaoting fermions in their 

ground state, the result is an infinite series of oonneoted diagrams, 

whose sum is given by the well-known DYson's equation for the fourier 
(I) ., 

transform of the single partiole Green's funotion G (~J w) 
. .l 

(I ) = G- (K) = 

where 

,'! . 

and ~ is known as the proper. or irreduoible self energy. In 
r (I) 

any praotioal oaloulation, U" • is· evaluated by summing an ·· 

infinite sub-set of the diagrams whioh oontribute to 1.. ,. 

seleoted on the basis of physioal arguments. Howe.ver, · outside of 

any explioit evaluation of l , it is well-known [ 9] that to 

every diagram in the expansion of ~ there oorresponds an infinite 

sub-set of diagrams whose sum is self-oonsistently obtained by 
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replacing the 'bare::' propagator lines in the diagram by 'clothed' 

G
CI ) 

propagator lines. These clothed lines are simply and 

the approximation of retaining only first order diagrams in the 

resulting series for ~ is the well-known Hartree-Fock 

approximation. 

With all the propagator lines clothed, equation (1.1) becomes a 
/"-(,) 

self-consistent equation for ~ • The advantage of the 'clothed' 

form of i- over the 'bare' form is demonstrated when one recognizes 

that first order diagrams of the former yield agreement with 

experiment in a wide range of applications, while first order diagrams 

of the latter do not. However, even when ~ is 'clothed', it is 

often necessary to sum an infinite sub-set of diagrams in order to 

obtain agreement with experiment. An example of this is the case. of 

a hard sphere gas [10]. In situations of this type, it is usually 

the bare interaction lines which need to be 'clothed', and we ask 

ourselves if it is possible to perform further self-consistent 

summations of the perturbation series, without introducing appro x-

imations which are particular to a given calculation, in such a way 

that all practical calculations are reduced to the evaluation of a 

finite number of terms in the resulting perturbation series. 

We shall demonstrate that this is indeed possible. In order 

to perform the actual calculation, it is convenient to introduce a 

technique which we developed originally in connection with the theory 

of bosons. 

However, prior to this, it is convenient to give a brief account 

of conventional fermion perturbation theory. 
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1.2 Conventional Perturbation Theory 

We shall consider a uniform system of N interacting fermions 

of mass, m in their ground state I ~ ) and suppose. that N and 

n: N Iv remains finite. V become infinite, while the density 

The Hamiltonian is assumed to take the form 

H ::: 1-10 ... H , (1.2) 

where. 

and 

u..(~-l£) is an instantaneous, spin independent, two body interaction 

and the field operators are giv.en by 

The subscripts ~ in equation (1.5) refer s~rictly to both spin and 

momentum, but since the effects of .the former are easily acoounted 

for by the Feynman rules which apply to the perturbation expansion 

we are about to obtain, we shall not consider spin exp1icity in 

what follows. The statistics of the problem are oontained in the 

anti-commutation rules 

. [o..~ J o.t,]+ :: d~ ct~.. ~ a.t~\ a.~ . = ~~.) ~\ 
and 

, . 
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where a~ (a..t) annihilates (creates) a particle with momentum iii!5 • 
(I) 

The single particle Green's function G- l. x ~ !::)) is defined by 

where ,~) is assumed normalized. The field operators 

appearing in equation (1.7) are in the Heisenberg picture and are 

defined by 

(1.8) • 

(. ) 
The time dependent perturbation expansion of &- is usually 

obtained by assuming that I YN} may be generated adiabatically 

from a non-degenerate, non-interacting, N particle ground state. 

I £~) , in accordance with the procedure of Gell-Mann and 

Low [11 J. This allows us to write 

{~ I r [ ""-~q 'P t ·:n S] , i",) 
s'" 

where r[ f: I _flU 1] " 5 = ;:0+ e.:.<p t._~ e "',(~J (1.10) 

and 

.<i"N' " , £TN> , s", S (1.11) • 

Equation (1.7) is in the Heisenberg picture whereas equation .(l; . 9) 

.Il-·'t ." 

. . 

is in the interaction picture. .'rpe interaction part of . the -Hamiltonian 

in the interaction picture. is , ; 

. , 
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::: 

(1.12 ) 

(1.13) 
~=o 

In the case of fermions, all the single particle levels of the 

, ~rJ > wi th energies less than or equal to the Fermi energy 
to 

are occupied, while those with energies greater than € ~ are 

unoccupied. The commutation rules in equations (1.6) allow us to 

write 

K , I<.~ 

t 
which leads us to regard (J.. ~ (K ~ K,::") as an annihilation operator 

for the state I i~>. Hence, the field operators may be written (8 ] 

(1.14) 

and 

where o 

The separation of the field operators expressed in equation (2.6) 

represents a canonical transformation to particles (K) k,:j and 

holes ( K ~ I(~) and leads to great simplifications when Wick's 

theorem~2Jis applied to equation (1.9), because averages of 

normal ordered products of uncontracted operators vanish. It is 
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this property which leads to the cancellation of disconnected 

diagrams in fermion perturbation theory. 

The diagrammat.ic perturbation series obtained from equation 

(2.2) is well-known (5,6] and the end result can be expressed in 

terms of Dyson's equation in the form 

K K 

::. + 

In equation (1.15), a thin solid line propagating 4-momentum 

is simply the fourier. transform of the single 

particle non-interacting Green's function, given by [5,6] 

~(I() _ K = + 
&(~~-~) 

w- w~ -;2 

Written algebraically, eq~tion . (1.15) assumes the form 

+ <a c.. I() ~ ( 1<) G (. K j 

which is Simply equation (1.1). 

The first order contributio~ 'to;[ is 

~+ 

(1.16) 

.. 

(1.17 ) 

where a wavy line ca.rrying a momentum K represents a factor 11 (K) 
J 
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which is simply the fourier transform of the two-body potential 

• Hence, to first order)equation (1.15) yields 

6- <. K) :: t + (1.18) 

I~ is now easy to see how the 'bare' thin solid lines in equation 

(1.17) may be replaced by 'clothe~' thick solid, lines. To this end, 

consider the following diagrams which also contribute to L 

Obviously these ,and the corresponding higher order- diagrams may be 

omitted from tlie expansion of 2 , provided equation (1.17) is 

written 

(1.19) 

This renormalization of thin solid lines occurs to all orders [ 9 ] 

and we end this discussion of convent.ional perturbation theory by 

noting that equations (1.15)' ana (1.19) together -form the well-known 

Hartree-Fock approximation. ' 
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1.3 An expansion of the single particle Green's function in terms 

of an effective interaction 

We are seeking a highly summed version of conventional 

perturbation theory and our starting point is equation (1.9). 

Conventionally, Wick's theorem is applied to this equation in a 

rather uncontrolled manner and the result is a proliferation of terms, 

which contribute to both the numerator and denominator. However, 

it is well-known (8J that the denominator of eq.,.uation (1.9) serves 

to cancel exactly the disconnected diagrams which appear in the 

expansion of the numerator, a feature which is not present in the 

corresponding boson theory. The technique which we now propose, 

consists of applying Wick's theorem in a far more controlled manner 

and avoids completely the introduction of disconnected diagrams into 

the theory. We shall see that the resulting theory provides a link 

between time dependent perturbation theory and the equation of 

motion method [13] • 

We define an operator £: such that when it acts on a string of 

operators, the result is a sum over all possible contractions, 

including uncontracted terms. For example, 

+ t/{:) 
LU t. 
T L!dJ (1.20) 

where dots denote contractions. Representing the normal ordering 

'" operator by N allows us to write Wick's theorem' in the symbolic 

form 

'" N C 
;- , . 

We now apply equation (1.21) to the numerator of equation (1.9) 
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and focus our attention on all possible contractions involving the 

operator 'fJ ex .. J • This is conveniently achieved by writing 

when applying equation (1.21) to equation (1.9). This yields 

<iN I ~[c Ie ~~ G 'i'tjl1-1 tfc..>t> "i[Oj) S J] I ~ > 
Sf\) 

(1.22) 

(1.23) 

where L" of T contracts 'f,X) with 'f r ~J acc.ording to the 

prescription (1.20). Similarly, c..,S contracts; I/Ic..x.) with the 

" I field operators in S , whilst c.. performs the sum over all 

remaining contractions. Noting that C tjlf+ , C.ys. and C I 

commute and allowing C VI., t to act yields 

Writing equation (1.10) in the form [5,6] 
, ;' 

(1.25) 

we see that the last term on the right hand side (r.h.s.) of 

equation (1.24) may be written , f (i;),)~ fJk .. __ :J.oj}" <~/N[(~CfS.(H,c.ft.> ... -U'U:IIJJ'I'U'j 'f,:J)] Ii,) " .-
)):0 _! _. SN 

DO DO rP 

- IN)~~dJl· ----JJty '. . .. (~.26) 
l'::o -~ -qt, . ,I ~[ II # ' Ill· U I, lilt \1 z > 

' )< <CftollN , If.l,(t.)T()(.jn,('",,)·,,",(t-'')T(Ij))lJF~ 

, ,S'"" 
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where, from equation (1.12), 

Hence, equation (1.26) becomes 
aD 0() 

fi\:)3x~ UL~-~~)~ (~)::.,)J Jl; •... J JJ-" 
-tID -(1) 

Writing equation (1.21) in the Heisenberg picture, we see that 

equation (1.24) takes the form 
(I) 

; G- ex.,~) i <3 ex .. Cd) 

40 

(1.21) • 

+(-;) !J.C.[J.1x, lx,' til)/., -,,:) i 9l~.,>l.Je-fl ~:' 
--

(1.28) , 
:>-

where we have written the single particle non-interacting Green' a : 
lY. t--

function i .9L.>' ... ~) = rt,><-J 'fc. ~J 
In order to write equation (1.28) in terms of diagrams we shall 

employ the following notation. An m particle Green's function, given 

by 

will be denoted by m heavy solid lines entering the points X.··· .. )(.. .... 
, t 

and m heavy solid lines leaving the points X, ••••• X... • These linea 

will have free ends. A speCial case of this rule is that of the 
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(I) 

single particle Green's function : r;, LX.)~) • which will be 

denoted by a thick solid line running continuously from y to x. 

Two examples are given in figure (1). A factor i3c..xJ '1) will be 

denoted by a thin solid line running from y to x. The remaining rules 

for interpreting diagrams constructed in this way are well-known and 

may be found in the literature [ 5.6 ] . 

Equation (1.18) may now be written 

x... 

-- + 

(1.29) 

where ~,~~; represents a factor (~;) U.l.~f -~.\J 
Equation (1.29) is an equation for the one particle Green'a 

function in terms' of the' two particle Green's 'function. Although ' 

equations (1.28) and (1.29) are not new. the above derivation and. 

presentation of them is to our knowledge unique. As demonstrated 

below, it is this different approach which provides a new insight 

into the perturbation theory of bose systems. 

The same arguments leading to equation (1.29) may be used to 

. 
" 

~(4) . 
obtain an equation for \.:T (and all higher,. order Green's functions ,). 

For example 
,x..., X ;Jl. X x 'X i, -?t- X , 

(l) ff f 
(;)1. G-(.x.,)< i ~I y> e x + )( + 

t 1 ~ l 
~ y t1 Y y, ~ ,~ , y 

" 

" 
,{ ..... ~ (1.30) 
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l~) (3) 
which expresses G in terms of G . Equations (1.29), 

(1.30) and higher order equations are the quantum analogue of the 

B.B.G.K.Y. hierarchy of equations for the classical distribution 

functions, [14] , and may be obtained using the equation of motion 

method [13,15 ]. It has been noted [15,16] that further progress 

can only be made in general, by invoking some approximations on the 
tt) 

two particle Green's function ~ appearing in equation (1.29). 

An equivalent statement, more pertinent to the conventional pertur-

bation theory summarized in equation (1.15), is that in any practical 

calculation it is only possible to perform the summation of a sub-

set of the contributions to 2 (!5 ... \A». We shall now demonstrate 

that equation (1.29) may be expressed in terms of a symmetrized ' 

'effective interaction'" ,which may be determined self-consistently. 

The self-consistent expression for the effective interaction is in the 

form of an infinite perturbation series (involving r ) and the problem 

is reduced to that of choosing some suitable approximation for r • 

However, unlike conventional perturbation theory, it turns out this 

choice does not involve the summation of an infinite sub-set of contri­

butions involving r . Rather we shall demonstrate that the zeroth 

and first order approximations to r are sufficient for most 

practical calculations. 
. ~) 

In order to proceed we note that by definition of ~ 
12 

we have 

_ ++ = <i; IT[ ~1I) '/',,") ":;") 'f_~>')lli; > 
~~ 
I' " . ' 

'\ . 

j • ~ t 

As mentioned earlier application of Wick's theorem to equation (1.31) 

leads,within conventional perturbation theory,to an' infinite series 

; , 
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of connected diagrams. These diagrams fall into one of three 

categories:-
I 

(i) Those diagrams connecting the point 1 to the point 1 , but 

I 
not to the points 2. or 2. • Each of these diagrams is multiplied 

I 
by a diagram connecting the point 2 to the point Z , but not to the 

I 
points 1 or 1 • The sum of all diagrams in this category is 

obviously 2. 

x 

" 2' 
(ii) The second category is similar to the first apart from the 

I 2.'. interchange of the labels 1 and Clearly the sum of diagrams 

in this category is 2 

x 

2.' " (iii) The third category contains all diagrams 
I I 

connected to all four points 1) 1" 2. ) 2. 

diagrams of this type may be represented by 
I 2-

X 
I' 2' 

With this notation equation (1.31) may be written 

l. 2. '1 I ~ 

t f t +X + lC 

~f ,I 2.' .' 2' 2' ,I ,. I' 
I .,. ~ 

• 

which are 

The sum of 

! . 

' , 
(1.32 ). 

Note that we have ignored any minus one factors which arise from the 

anti-commutation rules, since these are automatically taken into 

account by the Feynman rules which apply to equation (1.29). We now 
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define an effective interaction r , denoted iri the diagrams by 

~Q99Qq~ , in terms of which we write the last term on the 

r.h.s. of equation (1.32) in the symmetrized form, 

l. 2-

X + 

" 
2' .' 2' il . ' (1.33.) 

Equation (1.33) defines r and with this notation equation (1.29) 

may be written 
x... x.. ,X. . 

+ + + 

(1.34) 

Although ~he decomposition expressed in eq~tion (1.32) may be 

found in the literature [9,13,21] where it is often used t~ define 
I 

the reducible vertex part, the expression for the ' last term on the 

r.h.s. of equation (1.32) in the form of equation (1~33) has ra~lY if 

ever been discussed. Our introduction of equation (1.33) provides 

in equation (1.34) a completely new and original way of representing 

the infinite order perturbation series. 

Since equation (1.34) follows' st~aightforwardly from equation 

(1.33) it might appear that it is of litt.le utility until we have 

obtained an expression for the effective interaction r • 

Although such an expression can be readily derive.d ,.(~ spown 
~ 

, " 

explicitly belOW) we wish first (as an interesting' aside) to 
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demonstrate that equation (1.34) is itself an extremely useful 

equation. To this end we note that a self-consistent solution of 

of the latter takes the form 

x.. 

+ + 

where - + 
(1 • .,6) . 

If we were to now make the approximation of replacipg r by the .. ' 
first term on the r.h.s. of equation (1.36) we would obtain the 

Hartree-Fock approximation. Similarly if we iterat~d equation (1.36), 

substituted the result into equation (1.35) and then replaced thiok 

solid lines by thin solid lines on the r.h.s. of this equation, we 

would obtain the ladder approximation.. Finally in order to obtain 

what is essentially the ring approximation we must return to 

equation (1.34) and ignore ~he seoond and fifth terms on the r.h.s. 

If this is done, a self-consistent solution of the resulting equation 

is 
x.. 

+ 

! " 

where 

fUl.JI.D 0 q 0 CL 
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Iteration of equation (1.38) followed by the replacement of thick 

solid lines by thin ones then yields the desired result. This 

analysis shows that all the well-known methods of fermion perturbation 

theory can be regarded as approximations to self-consistent solutions. 

1.4 An expression for the effective interaction r. 
In order to obtain an expression for the effective interaction 

we return first to the ' expression for the single particle Gree~ts 
(I) 

function G given in equation (1.29). 
(~J 

for the two particle Green function (T 

Employing the represent ion 

given in equation'~ (1.32) 
(I) 

we see that we can write G- in the form 

+ 

'. 

(1.39) . 

The next step in the argument requires us to employ equation (1.30) 

and expand the last term on the r.h.s., which involves the three 

1': .. .0) , • particle Green function ~ Employing an exactly ana1agous 
U.) 

procedure to that which led to the expression for (T given by 

equation (1.32) shows that the only (topologically) distinct diagrams 
r(J) 

entering ~ are those given in Figure 2. Substituting the 

symmetrized form of these diagrams into equation (1.30), and employing 
(I) 

the result expressed in equation (1.39) for Gr leads to a 

partial cancellation of diagrams on both sides of the ensuing equation. 

The end result is the diagrammatic equation given in Figure 3, where 

the last term on the r.h.s. involves term (c) of Figure 2, which does' 

not depend explicitly on the bare interaction and is at least 
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proportional to (p)3. Although this term could be expanded further 

using the techniques described above we shall ignore it in what 
I . 

follows and restrict ourselves to second order in r • 

With this approximation we now invoke the decomposition expressed . 

in equation (1.33) and apply it to both sides of the equation appearing 

in Figure 3. Comparison of equivalent terms on both sides of the 

resultant equation shows that the expression for the effective 

interaction r can be represented by the form shown in Figure 4. 

This completes our reformulation of conventional perturbation theory 

and we note that these results apply equally well at finite temperatures, 

provided the finite temperature Green's functions are substituted 

for their T = 0 counter parts appearing above. 

:Before leaving this section however, we note some interesting 

conclusions that can be drawn from consultation of Figure 4, which 

must be solved self-consistently with equation (1.34). For example 

the zeroth order solution to these simultaneous equations is obtained 

by ignoring all terms involving" on the right hand sides of these 

equations, thus giving 

x.. 

+ + 

Equation (1.40) is the well-known Hartree-Fock approxi~tion. If we 

retain terms up to first order in r then we are left with equation 

(1.34) and the terms (a) to (f) Ion the r.h.s .• of the equation 

appearing in Figure 4. In order .to ob~a~n the ladder approximation 

we insert the terms (a) and (f) only into the r.h.s. oi:equation- (1.34). 
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Similarly to obtain what is essentially the ring approximation we 

substitute terms (a) and (d) of Figure 4 into the fourth term on the 

r.h.s. of equation (1.34). 

Finally, we remark that the well-known Bethe-Salpeter equation 

[13] is contained in the equation in Figure 4. To see this 

explicitly to second order in r I 

, define the quantity r (denoted 

) to be the sum of diagrams a to e in Figure 4. 

Clearly then, the following diagrams are also to be found in Figure 4: 

Generalizing p' to include higher order diagrams will obviously 

yield 

which is the Bethe-Salpeter equation. It is clear from Figure 4 
rtf 

however that ,. is not irreducible, being itself expressed in 

terms of r • 

1.5 Discussion of the renormalized theory of normal fermi systems 

In the equation of motion method of calculating the single 

·particle Green's function, one must eventually tackle the problem 
,..(t) • 

of evaluating the two particle Green's function ~ This has 

been dealt with in the literature by invoking various ad hoc 

factorization procedures [15,16,11 ] • In conventional perturbation 
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theory, the equivalent problem is resolved by summing an infinite 

sub-set of the contributions to the self energy ~ • 

provided is a systematic technique for the treatment of 

What we have 
L(tl 
V"" (and 

higher order Green's functions) and the power of this formalism is 

demonstrated by the fact that the simplest of approximations yield 

many of the well-known results of fermion perturbation theory. It is 

to be emphasized that equations (1.29) and (1.34) are exact, while 

the equation in Figure 4 is correct only to second order in r • 

In the unlikely event that more diagrams are required, they may be 

readily obtained by employing the techniques described above. Thus, 

the application of the well-known Feynman rule, 'Draw all topologically 

distinct connected diagrams' may now be applied in a systematic 

manner and its application is no longer a chance affair in which 

diagrams may be missed. 

A typical situation in which the perturbation theory discussed 

above may not be applied, occurs when the system enters a phase 

which exhibits long range order [9,18 ) • Two well-known examples 

are the superconducting phase and the ferromagnetic phase. In 

situations of this type, the order is characterized by the appearance, 

in the expansion of the single particle Green's function, of 

'anomalous' propagators, [9,18,19,20] which disappear above the 

transition temperature. To complete our reformulation of fermion 

perturbation theory, we should now turn our attention to the 

perturbation theory of fermi systems exhibiting long range order 

characterized by the existence of anomalous propagators. However, 

since the primary objective of the present section has been to gain 

familiarity with the techniques involved, we defer a discussion of 

this problem to appendix A. 
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Finally, it should be noted that nowhere among the above 

diagrammatic manipulations have we considered the difficult question 

of convergence. In fact throughout the present thesis, this question 

will in the main be tacitly ignored~ However, it is anticipated that 

such problems may be alleviated to some extent by the self-consistent 

nature of the manipulations involved, thus giving increased 

confidence in the validity of the results obtained. 
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CHAPTER 2 

BOSON PERTURBATION THEORY (i): THE PARTICLE DENSITY IN THE CONDENSATE 

2.1 Introduction 

It is widely assumed that the density of particles no , in the 

K~o mode of an interacting bose gas at T::: OK. , is a finite 

fraction of the total particle density n • In fact, as used in the 

literature, the term condensate has become synonymous with exactly this 

concept. To be more precise, if we imagine that we know the distribution 

function n~ of an interacting bose gas, then a 'condensate' is 

said to exist if it is found that the K =-0 mode is associated with 

a a - function singularity in t1 ~ The reason for dwelling at 

such great length on exactly what is meant by a condensate is that 

recent high energy neutron scattering experiments on superfluid ~He 
. ~ 

have yielded results which are consistent with the absenoe of such 

a Singularity - i.e. are consistent with the. absence of a condensate. 

Furthermore theoretical arguments due to Evan's [23] indicate that 

Bose-Einstein condensation in an interacting bose g~ described by 

the grand-canonical ensemble cannot occur beyond the Hartree-Fock 

approximation. 

In view of these recent criticisms of the validity of the existenoe 

of a condensate, ' it is relevan~ to review ~he argumen~s whioh ~ed ~9 

the concept in the fir~t plaoe. For a system of non-inter~oting bosops, . . 

energy oonsiderations alone show that when ;::: 0 K , all the partioles 

will occupy the I( =0 mode. Similarly, by treating If-/le . .as a 

nearly perfect gas, London [3~ argued .. that below . a oertain 

temperature Tj , partioles ~ill oondense in~o the ~:O . mode. The 

close agreement between his calculated value of T, . and .the 

critical temperature T~ .of 4.He.. , ?onsiderably strengthened belief 

in the correctness of this view. Since that time the /existenoe of 8,i, 
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condensate in an interacting bose gas at T =0 K has been reasserted 

many times [4,6,24,25,26]. 

Starting from this assertion, Bogoliubov [26 ] argued that in the 

description of a low density bose gas at T =0 K , the operators do 

and a.~t for particles in the 
" :'0 

mode may be replaced by the ' 

C - number n t)'1-a. • 

5 =- 0 Green's function 

( , ) 

Within this approximation, the single particle 
t') 

G-o <. f; - (:') assumes the form 

. r I 
, lrD (t:: -t) ;: 

- ;,Il4 (t- - c I ) 

rio e 
(2.1) 

where ~ is the chemical potential. The resulting theory predicts a 

linear energy spectrum in the region ~ ~ 0 , in agreement with the 

original proposals of Landau (211 and also with the neutron scattering 

data [28]. 

Assuming the presence of a condensate, Hugenholtz. and Pines L4] 

employed this same replacement' of ~ =0 operators by (., - numbers to 

extend the ideas of Bogoliubov to finite densities. Within this 

formalism, Gavoret and Nozieres [291 demonstrated that an arbitrary 

interacting bose gas at r =OK , will have an energy spectrum which 

will vary linearly with ~ for small K and will pass through the 

origin. This is in agreement with the observed excitation spectrum 

of 4 He. (281 and hence, we see that the existence of a condensate 

is a sufficient condition for the occurenc'e of superfluidity. However, 

it should be noted that the evidence described above in support of a 

condensate in an interacting bose gas (i.e~T. -&- T ~ and a linear 

spectrum for small ~ ) is purely circumstantial. 

A fundamentally different approach to the problem was developed'l 

by Beliaev [3] , who purported to prove from first principle's that 

equation (2.1) was a mathematIcally correct result (valid to o'rder l/V 

where V is the volume of the system) for an arbitrary interacting bose 
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gas in its ground state. This proof, if it is correct, provides 

direct evidence that an arbitrary interacting bose gas in its ground 

state possesses a condensate. 

Within the formalism of Beliaev and Hugenholtz and Pines. (BHP),,,o 

is only ever calculated self-consistently. However, we shall now 

demonstrate that the Beliaev formalism may be extended to provide an 

explicit evaluation of the particle density in the ~ =0 mode, 

The result is quite startling and demonstrates that the common practice 

of ignoring diagrams of relative order , can lead to 

inconsistencies in the boson problem. 

2.2 The condensate Green's function 

We consider a system of N interacting spin-less bosons of mass. m, 

enclosed in a volume V and suppose N and V to become infinite while 

remains finite. 

The Hamiltonian of the system is 

H = Ho ~ H, 

where describes a system of non-interacting bosons in their 

ground state , where 

The single particle condensate Green's function is defined by 

. (') 
& r \ 
I lro (1:-1;) 

(2.2) 

where l~> is the normalized ground state of the interacting 

system. Following Beliaev [3] , we assume that I ~ > is generated 

from I JI",., > by the adiabatic switching procedure of Gell-Mann 

and Low. This allows us to write 
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t '" <£ IT [ 0( (t-) ~ (e) S ] I ~ > 
S~ 

where 

and we have inserted a 'hat' above the ~ in equation (2.3) to 

indicate that it is an operator. Equation (2.2) is in the Heisenberg 

picture, while equation (2.3) is in the interaction picture and we 

have 

and 

eX H (t) 

<X (/: j a...o 
Iv 

The S matrix and the interaction part of the Hamiltonian in the 

interaction picture, are given by equations (1.10) and (1.12), while 

the interaction picture field operators are given by equation (1.13). 

It is convenient to make the separation 

- 0( (~J 

~I , ~ 

and to define S to be that quantity obtained; from S by making 
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A 

the separation (2.4) in the expansion (1.25) for S 
" , 

with respect to the vacuum of the operators Y' 
and averaging 

.., t' 
and If 

We may now follow Beliaev [ 3] and use Wick's theorem to write 

equation (2.3) in the form 

<L, N [e 4
( tX(~) o(~~') S I)] ,~> 

b. 

where e 

S.v 
,. 

is a special case of the operator ~ defined in 

chapter 1 and .,. ~ , which merely replaces a pair of operators 

(lo a 0 by their contraction, is given by 

'. 

(2.6) .. 

" ' 

If ~ is the sum of contributions from all connected vacuum 

loops, then [31 ,,' s may be written 

VV­
e 

where V is a volume independent functi'bnal of 
, A. ,,, 'A v t:r " ; 

Defining the quanti ties cr and.s = e e -

Beliaev proves to order Yv that 

A[ t ~/] t A" e o«(~) ~ (~\) S = ~((:) ~ (t' J S 

Unive rsity 
Library 

Hull 

~ and 
v rr' 

~ 

• 

• 
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where 

(2.8) 

the quantity {>(,If:) being given by 

eX. ('-) = I 'pI e t:.~ -~') :;-cr-' 

~ o("'(t') 

To second order, 0(,0:-) is given by 

l:- t- t- t- ~ 

L tl k ~ C o(l(~J = + t t +; + 
t -:- : '" , , 

"'- If' l' ' . . 
~ ~ 

;.. '" ! . 

(2.10) 

where a wavy line represents a factor (~) Uc.~ -'j) , a dotted line 
\ 

entering (leaving) the point represents, an operator 

and to order ~v , a solid line running from 

y to x represents a factor where 

\ . 

< o/r [ 
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Equation (2.5) may now be written 

<iN' ~ [ fit,,),8 ~t:') 5"] IPN) 

s'" 

-' -- (2.12) 

where the time associated with the N operators ao (tl/) 

(less) than the times associated with the operators ,ft.J ~ + 

is greater 

I\. " and .s . 
'" Since the N operator ensures that contractions between operators 0< 

and 

theorem to 

rX ~+ 

'factor 

in the curly brackets vanish, applications of Wick's 

equation (2.12) merely replaces the m pairs of operators 
+ A .. 

in a given contribution to the product ;B~ S . by a 

N' . 

(we call this factor a condensate weight). Hence. equation (2.12) 

becomes 

= 

- -t " 
Ih~),8 U:') S 

S,." 

- t , t 5" + ~, (t'}Jt tX,u:) tX,Ct;') 

(2.13) 

where for example, 0(, (t'-) is topologically ideh t:i,cal with 0(, (.4c-) 

except that dotted lines nolollger ,represent operators 01.. and; d, ~ 

The final result takes the form 

t- t;;- e-' C" 

.~ 
· 

4~ 
,,--", '" • '", 

· ~ 

(,\ \' ~ 

i. .. · I · I 
.~ \ - +- A,- +. l':'-
t 0 (~-i:) ,... + 

S.., 
, • I 

!~ 
A 

, 'r. r,.. 
, 
I · A, 
I 

(2.14) 
~' t' 

, 
t' to 
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which defines the self energy • A diagram or product 

of diagrams containing a total of m pairs of dotted lines has associated 

V - m N ! " 
wi th ita condensate weight ( N _ m) ! ' hence although S 

is topologically identical with SN , the two do not cancel. For 

example a contribution to the second term on the right of equation 

(2.14) is 

E:- c c 

Lx L W-x , . 
I I I"'- )-.. 

1 t ~ = + ~ 
-f 'l' I!... t III.. I,\. "... "'-.... ..... I ! I , 

i I . . . 
I 

~ t (2.15) ~ 

where the condensate wei'ght as'sociated with the second term on the 

right of equation (2.15) is V-It- I\I(I\I-,)(I\I-"l.)(.v-l) • However, . , 
the zero and first order contributions to 

. A 
arel+~ 

~ ~ 

where the condensate weight associated with the first order contribution 

is v-2. rtJ(IV-I} • To overcome this problem of 

non-cancellation of disconnected diagrams, we resort to the counting 

procedure introduced by Brandow [ I] • 

2.3 Cancellation of disconnected diagrams 

Brandow has shown that the condensate weights of 'disconnected 

diagrams may be evaluated by connecting dotted lines to each other in 

all possible ways to form continuous condensate lines and then imposing 

( )
Li-C. ~ ' V-c::.. 

the rule 'associate a condensate weight -1 N with every 
, 

diagram containing I loops and c condensate lines'. For example, 

" ' ..... 
- I ,~- - - - - - I, ..Y 
- Y :vvvvvvvv T 

\ - '" .. -
l =2 

,'" ,-)- "', 
, I 

~I , 
" L .­... ~ ., 

L =1 

(2.16) 
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where the rule yields a condensate weight of 

N - • -

To apply this counting procedure to the connected diagrams in equation 

(2.14), we first re-write this equation in the form 

I 

~ 

~ t A-tx 5'\,.5" + t' ,,$" + 
, A , ' 

A . ;,.. 
I 

. 
I 

A. 

I 

".... 
I 

(2.17) 

where we associate a time t with any line entering the horizontal bar 

and a time t with any line leaving it. The topology of connected 

diagrams is now identical with the topology of disconnected diagrams 

and hence we may use the counting procedure. For example, 

, , 
~ 

(;:' 

, 
I 

U 
• J.. 
~ . 

.... -, '-, 
I~' :\ 

, I ~ 

.v . :.:r 
" .' , ,.' , <I' ...... 

, ~-, . " 

+W I 

/- .. 
(2.18) 
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.... ", ... 

, , 
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~ I i I 

T .{\ A {--

1Wwv: )( ~ 
,!.. A- if' A. 
: t t • 

+ 

..' . ~ 

+ + .:, ~,- .. 
I " , , 

.,. '." 
~ 
\ 

'~>- I 

... -~ ... .- , 
~ 

+ + 
I \ 

~ 
\ I , .; ... --t-

'/ 

+ 
('~' A I , 

, I I \ 
V' I A ..., 

'~' , I ' - , 

~ I , , , 

+ .~ ;), ~ " 
! ,", ~ 

~' 
,. 

. )-, ] " , , 
I~ 
\ , 
~ < I ~ -

. i 

~ 

, . 
I 

I 
" 

. , 
(~.19) , , 

Sinoe the condensate weight associated with disconnected diagrams is 

dependent on its internal structure only, cancellation of disconnected 

'. 

I' 
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diagrams by ~~ in equation (2.17) now occurs. However, equation (2.19) 

demonstrates that this is at the cost of greatly increasing the number 

of connected diagrams. After changing dotted lines into condensate lines, 

and allowing cancellation of disconnected diagrams, equation (2.17) takes 

the form 

n 
I t 
, I 

,~> -

(2.20) 

which defines the self energies and • 
The first and second order contributions to ~ 8 are given in 

Figure 5. We note that although diagram (xxviii) does not vanish, it 

does not contribute to the retarded part of the condensate Green's 

function. To second order, :i.e is given by Figure 5, but we note that 
~~ B 

in total, L... contains very many more diagrams than 2.. • 

'2.4 Relative magnitudes of diagrams 

Since this counting technique does not affect the spatial integrations, 

diagrams like (iii) in Figure 5 have an extra volume dependence because 

they really contain a disconnected part. We define a disconnected part 

of a self energy insertion to be a part that becomes disconnected from 

the rest of the diagram when all the condensate lines are removed. The 

only diagrams containing disconnected parts in Figure 5 are diagrams (iii) 

to (x), which each contain a single disconnected part. We shall ignore 

the volume dependence of disconnected parts and multiply any diagram 

containing d disconnected parts by a factor ~ • The leading terms in 

Figure 5 are therefore the bubble diagrams i, iii, iv, xiii, xiv, xv and 
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J/v xxvii and all other terms are of relative order r~ • Indeed, 

bubble diagrams are the only diagrams ever considered by many workers 

[ 1,2] and therefore we shall consider here the summation of this 

sub-set of the right hand side of equation (2.20). Replacing the bare 

interactions in Figure 5, by the sum of ladders defined by 

\AMMN+O+ +-----

~8 
the leading contributions to ~ 

Figure 6 where, in Figure 6, 

ladders tAl.. 

2.5 Renormalization of condensate lines 

are to second order, as shown in 

represents the sum of 

Consider the quantity jl , defined by 

v 

g 
o 

~ o o 

+ 

I 
I , 

t} + 
'!'-

I 

(2.21) 

The sum of the first two terms of equation (2.20) is simply nj5 ,which 

0 0 0 o 0 

~~ 'boo 
we denote by • Now, jB is obtained from the first term of 

equation (2.11) by allowing the dotted lines connected to the horizontal 

bar to pair with dotted lines in ~" • Since we carry out the same 

procedure with all of the dotted lines in the connected -diagrams on the 

right hand side (r.h.s.) of equation (2.11), there will be assooiated with 

each pair of dotted lines in a connected diagram a term just equal to the 
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r.h.s. of equation (2.21). We may therefore omit all contributions 
c 

to 2 that contain disconnected parts and reinterpret a condensate 

line as -~ v 
rather than simply-...!.. 

v • This is only correct within 

the approximation of summing bubble diagrams and it is clear from 

equation (2.14) that Equation (2.20) now takes the 

form 

(2.22) 

It is clear that for the present sub-set of diagrams, a diagram 

containing m renormalized condensate lines also contains m loops. We 

may therefore change the rule for obtaining condensate weights to 

'associate a factor 0 '!;) '" (If n ) '" with any diagram containing 

m pairs of dotted lines' and simultaneously re-write equation (2.22) 

in the form 

'= ~ l:: 
c ,t 

~ 
0 

~ 
. Q) g 

# (; , := + + + r 0 (I: -t ) c t <3) 

0 

~ 1 0 
4) 0 

1:' b' e b' 

(2.23).. 
I 
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which to second order is simply 
t 

l 

0 

~ 
0 

I:' t' 

t I:: 

t i 

+ + 

~~ t: 
1;-' 

H 
+ 

r .. ' 
l' ) 

Denoting °G \ by . , 0 (t -Eo ) 

(I) 

j &0 (& ~t') 

t 

+ 

. ~ i 
1;.' 1:,' 

l:- t 

'" 
+ 

t' 1:;'-

(2.24 ) 

I: 

~ 
,~ (2.25) 
, 1:;' 
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we see that to second order at least, equation (2.24) may be written 

t {; 

~ 
(j) 

It'-
0 
0 be, , + +-j (C;- -f; ) 

0 
6 
0 
0 

t 0 

.8- ! ~ 1:.' 1:::' ~' 

(: c 

f ~ 

1 
+ + 

t,' 
, 
~ 

I: 

+ k 
t4 • (2.26) 

(I' 1;' 

Indeed, since . r; , 
topologically distinct I 0 (~ - E: J is a swn over all 

connected diagrams, this structure persists to all . orde~s.T/u" lall pairs 

o~ dotted lines in equation (2.23) except those shown explicity, 

renormalize in terms of the single particle condensate Green's function. 

<e;: c:. <*c 
Th~ self energy ~ may be written in terms of a proper self energy~ 

denoted by 
J 

as follows 

+ + + - - -- - - --

(2.21) 
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hence with the usual definition of a Fourier transform [5] we obtain 

L. ~L K) 

(2.28) 

where the l"ourier transform of equation (2.11) is 

( )-, w - W.!S -I- ~ Z (2.29) 

Hence, equation (2.23) becomes 

(I) . . ~ \ 
, lr 0 (~-e) .= J t1 +2 ~ 

. ;'C ) Z. (0) 

+ -I ., 
~ (0) - 2. (0) 

{> n 

[ 
,,<Y2 .. 

I - <J (0) ~ lO)J 

(2.30) 

An inspection of the r.h.s. of equation (2.30) shows that it is time 
(I) 

independent, whereas it follows from the definition of ~o that it is 
I 

a function of (t - t). These two statements are only mathematically 

compatible if both sides of the equation vanish. A fact which is 

consistent with the divergence of <j (0) • Now 

Cd 
Lt-

\ I: -) (; 
; (;0 (l--t'J 

hence we conclude that 110 = 0 in the present approximation. 
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2.6 Discussion 

" 

In the above, we have demonstrated that the self-consistent 

summation of 'ladder' and 'bubble' diagrams leads to an expression for 

the condensate Green's function, from which we deduce that ~Q = 0 • 

Hence, we conclude that ladders and bubbles are not sufficient to 

describe a finite density bose gas and it is not permissible to neglect 

'/V terms of relative order /' in the expansion of the condensate 

Green's function. In view of this, we turn our attention in the next 

chapter to a critical review of the formalisms of Beliaev and Hugenholtz 

and Pines. In this way, we are led to a new interpretation of equation 

(2.1) together with two self-consistency conditions which impose 

restrictions on any formalism in which this equation is employed. 

Before ending this discussion we must emphasize that the results 

of this chapter merely represent a .warning to be heeded in later work. 

The result ~c ~ 0 should not be taken seriously, because of a 

possible lack of convergence in the perturbation series (see appendix D). 

. '. 
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GHAnER 3 

BOSON PERTURBATION THEORY (ii). THE BliP li'ORMALISM 

3.1 Introduction 

, 

It has been shown by Beliaev [3] how perturbation theory might 

be employed to calculate the single particle non-condensate Green's 
I 

function G of a many boson system, by considering the condensate as a . 

kind of external field. The diagrammatio representation of the 

perturbation series contains inoomplete vertioes whioh may be oompleted 

by inserting pairs of dotted lines. Only connected diagrams need be 
I 

considered in the expansion of G ,provided m pairs of dotted linea . are 

interpreted as an m particle condensate Green's funotion of the N-partiole 

system. This result is exact. 

In order to proceed, Beliaev purports to prove that for an arbitrary 

interaoting bose gas at T:. "K , the m particle oondensate Green's 
(MJ 

function ~o may be written as a product of m single particle 

condensate Green's functions and that equation (2.1) is valid. In view 

of the calculation in chapter 2, we shall, in the present ohapter, 

prOvide an examination of Beliaev's work, in an effort to determine its 

true range of validity. 

" It should be noted however that equation (2.1) and the faotorization 

of G;tt'1 ) can be obtained without recourse to perturbation 
t 

theo~, either by replacing the operators 'a. ~ and a.. 0 which 

act on the ~ :: 0 mode, by the [ 4 ] , 

or by introducing the concept of a restricted average [25 1 . In both 
, '.' ; 

of these cases, it is assumed ab initio that a condensate exists in an 
.. 

interacting bose gas at • In fact, as we shall demonstrate 
, . 

below these same arguments leads us to the conclusion that an 

interacting bose 'gas at T ~ OK 
. 

does not possess a condensate. 
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Expansion of the single particle K t 0 
I 

Green's function, G. 

In order to clarify the role played by the condensate Green's 

function in the expansion of the single particle non-condensate 

Green's function (;' , we shall briefly describe Beliaev's formulation 

of the problem of a finite density bose gas at T;: 0 I( in terms of 

Feynman graphs. 

Employing the algebraic notation of chapter 2 in what follows, 

the single particle non-condensate (i.e. ) Green's 

function {;-' , is given in the interaction picture by 

(3.1 ) 

In order to apply field theoretic techniques to equation (3.1), we note 

'f' wit that I ~ ~ > is the vacuum of the operators and r 

Thus, we apply the separation expressed in equation (2.4) to the field 

'" operators appearing in the expansion for S and substitute the 

result into equation (3.1). The averages of the time ordered products 

of the LlJ' II/'T), field operators (T and ~ 

which now appear in the numerator of equation (3.1) can now be performed 

with respect to their vacuum • ~his averaging is most easily 

achieved by applying Wick's theorem to the products of K ~ 0 

operators and noting that averages of normal ordered products of 

uncontracted operators vanish. 

The diagrams which contribute to the resulting perturbation 

expansion contain incomplete vertices, which may be completed by 

inserting dotted lines with free ends. In general, a diagram will 

contain m incoming and m outgoing dotted lines. Beliaev proves that the 

• 
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contribution from these dotted lines to a diagram containing m dotted 

lines entering (leaving) the points t. -. _ .. t", (t: -"'- t~ ) is 

"" (.)'" ,. " , l.T6 (t, ... I: .... ~, - .• tto1) 
t .... J\] = (iN I r[tX ('.J -" eX c.t",,) 0( {,,: ) -.- 0( 0:-,:.)5 I~) 

.I 

StJ 

which is simply an m particle ~ ::: 0 Green's function of the 

N-particle system. In the Heisenberg picture, equation (3.2) takes 

the form 

~, t t 
G) ~ Go (t.···t .... . 1:: ... t:") :: <~ IT~.,{~,}- .. tXlI(~..JO<H(~:r· - 0(,. ("~)] I ~> ., 

(3.3 ) 

where we have assumed that is normalized. In order to 

draw the diagrams which contribute to the r.h.s. of equation (3.1), 

we represent the potential by a wavy line 

joining the points ~ and y. A contraction of 

two operators is represented by a continuous line directed from y to x. 

Noting that only connected diagrams contribute, we see that to first 

order) is given by figure 1. 

It is to be emphasised that the above results are exact and the 

problem of calculating the Green's function has been 

reduced to that of obtaining a general expression for the m-pariicle 

_it r- ol '" , ~ ~ 0 Green's functions ~ of -the interacting system. 

This is the point at which approximations are introduced into the • 

theory [3], and the mathematical points raised are described in 

appendix (B). However, so that we may stress other, equally, important 
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mathematical features we proceed with the general argument. In order 

to make it possible for Feynman-Dyson perturbation theory to be applied 
, 

to the present problem, we ~ find a way of decoupling the proper 
I 

self-energies appearing in the expansion for ~ • It is to be noted 
• (,-..t) 

that one possible way of achieving this is to assume that (10 takes 

the form 

since then the value associated with any of the dotted lines appearing 

in a given proper self-energy is independent of the presence of dotted 

lines in the other self-energies appearing in the same diagram. Since 

r~) the decomposition for ~v of 

is a special case of equation (3.4), and because equation (3.5) follows 

( ) [ -.r:] C (I) from equations 2.1, ~ , we see that the assumption that ~o 

has the form of equation (2.1) can be viewed as a sufficient condition 

for the applicability of Feynman-D,yson perturbation theory to the 

problem. As is well-known, when equation (i.5) is applied to the 
, 

expansion of G the resulting series can be expressed in terms of 

three distinct proper self-energies (denoted by ~/') z.,z. 2:. 1. , ) 

and may be summed to yield the well-known result (3,4] for the Fourier 
I 

transform of G-

G1 
(;.' S-~-K +-/A/f..) - Z,t (-I<. +I't/t..') 

£. !:$)w+~): 'K"f't~) = I 

[~f(l<+~) -.t,("(.+P/ .. )1[9~1<+l'/tJ "lll(~k.IY~-2'l(K·!Y~)Ll' ('HI'tt.) • 

(~.6 ) 
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Since in appendix B, we show that the proof of Beliaev regarding 

the decomposition given in equation (2.1) (together with its general­

ization in equation (3.5)) is not generally valid, we shall consider 

Foll) next the derivation of an exact expression for Lr from which 

we can obtain a self-consistent evaluation of this term. The validity 

6-0
(1) 

of one such self-consistent solution for , namely equation 

(2.1), introduces a restriction which is not evident in the Beliaev 

approach. 

Calculation of the single particle ~ ~ 0 Green's function 

From the definition of , it follows that in the 

interaction picture we have 

= 
't .., 

<.l~1 T[ tXc.('> 0< c:e) 5] ,~...,> 
SI\1 

which can be written in the form 

(1\ 
• / f 
IV-I) (&-t) 

where 

As before, the quantity 

e 

< 1",11 [P<u; \ tX it') e v 1r] liN} 
SN 

v(J 

e is given by 

I "" <ofT [5]10) (3.8) 

where r' time orders the field operators 
'fI( 

<>(t 

tl 
and ,, 1/1 ' only, 

while treating the operators and as C - numbers. 

Hence, the quantity is a functional of 0< and 



I 

but not of f 
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tV t I 
and 1 

In order to apply the techniques of chapter 1 to the present 

problem, we again define an operator C such that when it acts on a 

string of operators, the result is a sum over all possible contractions, 

including uncontracted terms. For example, 

t 
=- o(U) 0< tt;') 

• t· 
+ C<c..&) 0( Lt.') 

where dots denote contractions. Representing the normal ordering 

" operator by N allows us again to write Wick's theorem in the symbolic 

form 

" r N c • (3.10) < 

When equation (3.11) is substituted into equation (3.7) the operator C 

may be written in the form 

c 

where contracts ()( with according to the 

prescription appearing in equation (3.9), . C o<tr: ' contrac,ts 0'-
I 

with the operators appearing in ~ and C. performs the sum over 

all remaining contractions. Hence, equation (3.7) may be written 

(.) . /' , 
Il.rQ (t:-t) 

• .,.. ~~",J N [~o( o-C'(O<Lt) 0( tt- I) e..vQ-)] liO'J> 
:::. 0< u:) pi. (.t: ') -I-

- ; ~o LC -e') . + <i"~/N[ (/(~~t) o-~V D< te') ~~'~)J liN) 

+ 

s,., 
.: {. . .. ~ 

< i ... , N [ G I ( ~ ~".I) e..'" 0- )] rX (. e) II N > 
SN 

(3.11) 
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where 

Writing 

-rP 

@ [&-(/) 

V 
• 

(3.12 ) 

(3.13 ) 

and noting that C acts on all operators appearing in equation (3.11) 

yields 

rP 

• Q I 
I "0 (f:- - t. ) + jJl, e(~'6d Q.-£I~·'<~/r[c:ru .. )()(~t")e~I£> 

-~ SN 

where 

In the Heisenberg picture, the second term on the r.h.s. of equation 

(3.14) becomes simply 

JJt. 
(3.15 ) 

where all operators appearing in are in the Heisenberg 

picture. When converting the last term on the r.h.s. of equation (3.14) 

to the Heisenberg picture, .we must take great care to isolate any 

time divergences appearing in the numerator and denominator. It is 

shown in appendix (C) that this term takes the form (to within a 

phase factor) 
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(3.16 ) 

and hence, in the Heisenberg picture. equation (3.14) becomes 

0() 

+ JJ.t. e(l:-~.)e£·t"<i:IT[ 0; ('.J 0(:«')] It) 

where 
• H b' -'-

...sk.. e Ii 

IV • (3.18) 

Diagrammatically, equation (3.17) takes the form of Figure 8. where we 

have drawn the 'extra' ingo~ng dotted line appearing in 0; explicitly. 

(The choice of the 'extra' dotted line is arbitrary and cannot affect 

the arguments). This defines a. proper self-energy ~. which contains 

an equal number of incoming and outgoing dotted lines. Note that the 

I 
last term in Figure 8 is a function of f: - t while the second term 

is a function of t' only. We shall now take advantage of this 

property to obtain some self-consistency conditions. I' • 

In general. a given contribution to rr" contains m incoming and 

m outgoing dotted lines. The corresponding contribution to the last 

term of Figure 8 contains(m + l)such pairs of dotted lines. This 

. (,. )1t1+ I. G:I'tt+ t) corresponds to a factor _ ,which contributes to the 

diagram as a whole. The self energy 0-* is only a mathematical 
~ ) 



- 46 -

entity in its own right when it is independent of the two external lines 

drawn explicitly in Figure 8. When equation (3.5) applies this 

condition is satisfied because it permits us to write 

for all m. Within this approximation, we have 

and the last term on the r.h.s. of equation (3.17) becomes 

where Z is an infinitesimal positive constant and 

defined by 

; ~.(~, -~t) _~ ""'Le. -tl,) 
e. Q U~~)u,)J 

Applying the approximation of equation (3.5) to the second term on the 

r.h.s. of equation (3.17) gives 

-J.LI;' 
I r.::-e 1; 

I 
Hence, for t "> b equation (3.17) may be written 

• (3.20) 

• 
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However, employing equation (3.5) on the I.h.s. of this equation and 

comparing terms yields the result that, for ~ ~o 
J 

'll 
P-/11 V (oJ ;4 ltd (3.22) 

and 

1/ , 

(~r 
o /:!:. t 1/ '-(flf)o) t. e Ii <:) 

Application of the well-known arguments of Hugenholtz and Pines [4 1 
and others [6 J to the self-energy V.;. readily demonstrates that 

(see also appendix E) 

and hence, equation (3.22) is simply the celebrated Hugenholtz and Pines 

relation. As the latter follows simply ,from the self-consistency 

condition given in equation (3.22), we see that the linearity in the 

energy spectrum for small ~ ,(which follows ' {rom the Hugenholtz and 

Pines relation) is to be regarded, from the present viewpoint, as a 

measure of the self-consistency of the theory, rather than as evidence 

in support of any ab initio approximations concerning the ~ ::: (;) 

Green's function. 

The second self-consistency condition is more interesting, since it 

is not evident in the original formalism of Beliaev. Furthermore, 
1" 

since the Hugenholtz and Pines replacement of the operators 0.. 0 and a. 0 

by c-numbers implies the validity of equation (2.1), equation (3.23) 
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In the case of a applies equally well to their formalism [4] .. 
.$",-. /5 ...... non-interacting gas, the ratio /. " equals unity, while in 

the presence of an interaction H, we may write [4,30,31] within the 

Hugenholtz and Pines formalism, 

where is the sum of all 

vacuum loopsJ given by [4,30,31] 

"1.. t; 'It. '= 

<1.,1 Uw Il;;>..,,~ == L (iJ ~ fdt .. ---- f.LL-~ 
~ - ~~ -~t 

In the limit b -"> &10 we find [4,30 J 

and therefore 

. 
5",-1 ~ - '1ft f'N t;-

1::-) 00 e . , . 

5N ~ -1~ EN T 
T-> 00 e. 

(3.25) 

Hence the ratio S",-,/S N if it exista, cannot vanish. 
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This result, together with equation (3.23) shows that 

(3.26 ) 

Since neither of these possibilities is consistent with a finite 

density gas, we conclude that the condition ;fA ':t 0 is invalid. 

This means that equation (2.1) strictly applies to a non-interacting 

gas of bosons only. 

3.4 Discussion 

We have demonstrated that the self-consistency of the Beliaev and 

Hugenholtz and Pines formalisms implies the existence of the two self­

consistency conditions given in equations (3.22) and (3.23). The first 

of these conditions is the well-known Hugenholtz and Pines relation, 

and leads directly to a linear spectrum in the long wavelength limit. 

This demonstrates that a prediction of linearity in the energy spectrum 

in this limit is a measure of the self-consistency of the theory. 

However, the applicability of the theory to a given problem depends on 

~ equations (3.22) and (3.23) being satisfied. We have shown that 

the latter condition cannot be satisfied by an interacting bose gas 

within the formalism of BHP, and therefore an arbitrary condensed bose 

system described by the BHP formalism is non-interacting. Hence, if 

the widely held view that the BHP formalism provides a valid description 

of an arbitrary interacting condensed bose gas, is correct, we conclude 

that an arbitrary interacting bose system is B2i condensed i.e. ~o 

is not a finite fraction of n. Such a conclusion is in agreement with 
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the finite temperature results of Evan's [23] and the neutron 

scattering data of Mook [22 J • 

An alternative interpretation of the above results is obtained 

when one notes that, within the Hugenholtz and Pines formalism and 

assuming that the limit of the ratio equals the ratio of the limits in 

equat ion (3.25), 

5"'-1 
SN 

e 
/;, -') 00 

Hence this formalism can be made to apply to an interacting condensed 

bose gas (i.e. finite in equation (3.l7»by introducing a small 

positive imaginary part to the chemical potential. The full implications 

that such an ad hoc procedure would hold for the theory are not clear 

however and this possibility will not be discussed further. 
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BOSON PERTURBATI ON THEORY (iii ): AN I1~~INITE HIERARCHY OF SELF-CONSI STENT 

SOLUTIONS 

4.1 Introduction 

In chapters 2 and 3, we have demonstrated that it is not permissible 

in boson perturbation theory to neglect infinite series of diagrams of 

relative order Vv and that t he self-consistent solution of BHP 

strictly applies to a zero density gas only. The problem of keeping 

track of all connected diagrams, irrespective of their volume dependence, 

is enormous. As a result, it could be argued that until more powerful 

counting techniques are developed, we should content ourselves with self­

consistent theories. Indeed, it is well known that such theories have 

been remarkably successful in many branches of physics as evidenced, 

for example, by the Hartree-Fock theory. In chapter 5, we shall 

reformulate the perturbation theory of bosons using techniques described 

in chapter 1. However, it is useful in the present chapter to consider 

an infinite hierarchy of self-consistent solutions to the problem which 

do not suffer from the restrictions of the BHP formalism. 

The simplest of these solutions is investigated in some detail and 

the result is a model of a bose gas which can be viewed as compriSing 

two interacting fluids which do not interact with each other. This 

leads to the 'prediction' of a new superfluid branch in the energy 

spectrum and it is shown that the existence of the latter offers an 

explanation of several well-known features of liquid ·H~ which 

are difficult, if not impossible, to account for in terms of the normal 

well established excitation spectrum. 



- 52 -

4.2 Choice of a restricted ensemble 

It has been emphasized [9,25] that in situations where there 

exists long range order, the use of an unrestricted (e.g. canonical) 

ensemble leads to divergences, and a suitable restricted ensemble must 

be employed. 

In the theory of bosons, many authors [3,4,25] restrict the 

ensemble by fixing the particle density no in the !S = 0 mode. 

The assumption here is that is macroscopic and a common 

feature of these approximations is that they imply the validity of 

equation (3.5), which allows Feynman-Dyson perturbation theory to be 

applied to the problem. However, we have demonstrated that equation 

(3.5) applies strictly to a zero denSity gas only. 

In view of the self-consistency conditions obtained in chapter 3 

and their relation to the linearity of the energy spectrum in the long 

wavelength limit, it is desirable to develop a formalism which utilizes 

these conditions and yet still applies to an interacting bose gas. As 

emphasized in section (3.2), Feynman-Dyson perturbation theory can only 

be applied to Beliaev's expansion for the non-condensate Green's function 

~I 
~ , in situations where the form of the m particle condensate 

( .. ~) 
Green's function ~D allows for the decoupling of the self energies 

I 
in the expansion for G Bearing this in mind, we propose the 

following method for restricting the ensemble. 

r_
o
l "") 

(i) Write. \..T. in the form 

+ 

(!Nd 
/~ ~I where IT""o , when substituted into the expansion for u-

decouples the self energies. 
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~) 
(ii) Ignore ~o when interpreting the value to be associated 

/ 
with m pairs of dotted lines in Beliaev's expansion for ~ • 

(~) 
Furthermore, we suggest the following functional forms for GD 

(each form corresponding to a different choice of r ) :-

where 

and A· J and e j are constants. Note that the possibility ,..:: 0 

corr.esponds to the BHP formalism and has been excluded from equation (4.2). 

The self-consistency conditions 

In order to obtain the self-consistency conditions which apply to 

equation (4.2), we focus attention on Figure 8. Substitution of 

equation (4.2) into the last term on the r.h.s. of the equation in 

L' > L Figure 8 yields, for ~ ~ 

. 
.,) 

cr (0.l-J/t; ) 

.:'1. 

where we have used the fact that the first term on the r.h.s. of the 

equation in Figure 8 vanishes for ~')~ • Inserting a compl~te 
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Cd 
set of eigenstates of H into the definition of ~D 

( ) J')L equation 2.2 yields, for c ~ 

~ . 

given by 

2- < ~ I f)( /0:') I f;!, > <..p;., I 0( ~ (to) , ~) 
~.::o 

00 

L 
.> :0 

where 

and 

so that 

In equation (4.4), some of t he may be equal. Say, 

for example 

~ ~ :: A I~ = - - - - - - 6.9-

In this case, it is convenient to write 

c· ...l 
so that equation (4.4) may be written in the form 

~ :0 

where the summation in equation (4.5) runs over all distinct values 

of 6· 
~. 
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According to equation (4.1), equation (4.5) may be written 

. G(J} 
, c + 

where, within a given restricted ensemble (corresponding to a given r 

in equation (4.2), we have from equation (4.2), 

• (I) 
f C" ((;;-i:') 

• 

Selecting the r.h.s. of equation (4.7) from the sum on the r.h.s. 

of equation (4.5) and re-labelling the dummy indices in the remainder, 

allows equation (4.5) to be written 

+ 

where 

-: ~ (t- -t ') 
e k 

i R~ e-~ u -t') 
:':0 

for all K and 
. 
,J 
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The self-consistency conditions may now be obtained by substituting 

equation (4.8) into equation (4.3). This yields 

o 

and 

~ 
Note that has the same topology as 0- of Figure 8, the 

difference being that in , m pairs of dotted lines are to be 

interpreted as a factor 

The arguments which led to equation (3.24) are readily generalized to 

yield 

. 
J . ~ 

2.. .. (OJ 6¥t;.) - 2..11. (oJ 04-1...) 

so that equation (4.11) may be regarded as a generalized Hugenholtz 

and Pines relation. 
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/'- (,) 
In order to illustrate the perturbation series for ~o consider 

the ensemble chara cterized by r = I in equation (4.2). Taking into 

account equation (4.10), we see that the equation in Figure 8 becomes, 

itV to order 11 

--
, 

"... 
I 

+ 

I 
I 

r,... , 
6( 

In the r U. ensemble there will be ,.. +-1 terms of the type shown 

,.(" on the r.h.s. of equation (4.13) which contribute to ~ and in 

/"_ I 
fact, as we shall see below, the expansion for ~ has a similar 

I 
structure. Before considering explicitly the structure of ~ ,it is 

convenient at this point to examine t he two remaining self-consistency 

conditions, namely equations (4.9) and (4.10), in more detail. 

Equation (4.9) is of no obvious significance and will not be 

considered further. Equation (4.10) on the other hand is more important, 

because it indicates the presence of an energy gap in the excitation 

spectrum of a bose gas described by one of our restricted ensembles. 

That this is so will become clear later, but for the moment, we shall 

content ourselves with proving that equation (4.10) implies 

• 
J 

, 
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Since is assumed finite, equation (4.10) and the assumption 

=1= 0 (see chapter 5) implies that 

t 
rI tl(~/) J ~~, > o 

I 

i.e. ;~t 

<f:J 
+ I i!:-,) e.*' 0<- 0 

• 

This implies 

<r~1 0<.+1 ~-,> - 0 

which demonstrates that 

o 
J 

a result which is shown in chapter 5 to be of general validity. 

From this it follows that the term involving Ao (=~) in 

equation (4.4) vanishes and hence in equation (4.8), we must have that 

• 
IJ 

4.4 The 'two fluid' approximation 

In order to consider a definite example of equation (4.2), we shall 

employ the next ·simplest generalizat i on of the BHP approximation, 

namely r::: I. 

Writing 

fit) - fJ fl, = g e, = p 
yields for ,.. = I,) 

-;~[ U, -. ~-) - (b' -- c':')] 
- Rttl e.. 
+ 8 ~ i : % f.. 0; I •• ~ .. ,d - (f: ,f _. l=':')] 
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and 

~ 

-2., ~ (0.) 6l/t.J 

¢ 
= 2,1 (. OJ ¢It.) • 

The non-condensate Green's function separates into a sum of two 

distinct contributions when equation (4.15) is employed in Beliaev's 
I 

expansion for ~ ,and we may write 

I Q ¢ 
t; (K) Gr (. K) + G (.Id 

• (4.11) 
& (; 

~ ") Note that £ .. and 2..'1 l f., A.t1.J 2.c. have the same 

topology as the self energies £" and ~.z. which appear 

in the Beliaev formalism, except that m pairs of dotted lines are 

interpreted as the first (second) term on the r.h.s. of equation (4.15). 

A trivial extension of the arguments [3,4] which led to 

equation (3.6) yields 

with a similar equation for 

FOr an isotropic gas of bosons interacting through a hard sphere 

repulsive potential, Beliaev [32] has shown that within the approximation 

of summing ladder diagrams, the self energies 2 .. and 
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appearing in equation (3.6) are to a first approximation independent of 

I< and given by [5] 

L" 2 2,1.. -

where is the 5 - wa.ve scattering length of the medium. 

It is clear from equation (4.17) that the present approximation 

may be viewed as describing two interacting fluids, which do not interact 

(at least explicitly) with each other. With this in mind and in view of 

Beliaev's work , we shall, as a first approximation, regard the 
tP 

and Z; :; as constant s, given by self energies 

(3 G 
4.11 1Ia. 9 t...'-2.'" ::: 2 2,1. 

rY1 

,p ¢ B Cl¢i't 2", = 2 2,~ 4-11 
rn 

where a.s and a.~ are the S - wave scattering lengths of 

the two fluids and we have assumed for convenience that m is the same 

for both fluids. Equation (4.18) then becomes 

--

where 

+ 

and we have employed the self-consistency relation (4.16). 
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Similarly 

where 

--

As expected, the self consistency of the present approximation 

(i.e. r-:::, ) leads to a phonon like excitation spectrum for small ~ 

However, in the present approximation, we find that there are two branches 
iii < ¢ 

of the spectrum with slopes proportional to 2.,z, and ~.t in the 

linear region; i.e. proportional to A and B respectively within the 

approximation of summing ladders [32] • 

Instead of becoming involved in detailed calculations within the 

present tentative model, we shall proceed to the next section where the 

qualitative features of the above results are discussed in relation to' 

superfluid 1+ lie • 

4.5 Comparison with experiment 

Equation (4.14) tells us that 

e ~~J ¢ ~ /-
which means that both branches of the energy spectrum may possess energy 

gaps. The magnitudes of these gaps are 

• 
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We shall assume in the present discussion that Et ~ ~ and 

hence that IE & represents the usual phonon spectrum of BHP, 

involving no energy gap. This still leaves the second branch of the 

spectrum described by equation (4.22). 

It is clear that there exists an energy gap ~ of(¢-/) at 

the origin (~ ::. 0) between this branch and the usual phonon branch. 

Furthermore if g ~ 19 in equation (4.15) the slopes (i.e. velocities) 

of the two branches will differ. Hence although it is tempting to try to 

identify this second 'branch' of the spectrum with the 'branch' observed 

several years ago by the Chalk River group in their neutron scattering 

experiments on 4 /I e.. [28 J ' we would like to point out a more 

attractive alternative exists. Thus we suggest that the difference(¢-~) 

is small '" 1 f( and that the slopes of the two branches are such that they 

rapidly coalesce on the energy-momentum curve. As the energy difference 

between the two branches is so small it will not be 'resolved' in the single 

broad peaks observed in the neutron scattering data and associated with 

single phonon events. Thus its presence is consistent with such data 

and may also be responsible for the tentative conclusion reached by 

Phillips et al [33 J that for very small k the spectrum appears , to be 

concave upwards. What is more, one of the most puzzling features of the 

neutron scattering data, particularly evident at large momentum transfers, 

is the appearance of scattering intensity at energies below the one-phonon 

peak [ 28 ] • This is puzzling since in terms of the accepted 

excitation spectrum, there is no obvious way in which a phonon can decay 

so as to give scattering at lower energies. However, in terms of the 

present model, this can occur as a result of a neutron 'absorbing' a 

phonon from the normal branch and simultaneously emitting one or more 
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phonons of the second branch with momenta centred around 

A related problem concerns the motion of a slowly moving massive 

particle at low temperatures ( < 0<) In terms of the usual 

excitation spectrum it is not easy to visualise how such a particle can 

lose energy and thus slow down since it cannot simultaneously satisfy 

the law of conservation of energy and momentum. This can readily be 

achieved in terms of the present model as a result of the particle 

scattering off a normal phonon and again simultaneously emitting several 

phonons of the second branch with momenta centred around ~ =0 

Yet another interesting possibility concerns the observed attenuation 

of ultrasonic waves where two maxima are observed at O-S K and the 

x - point. It could be argued that the former peak arises from an 

exceptionally strong coupling between the ultrasonic wave and the thermally 

excited phonons of the second branch. At extremely low temperatures there 

are few such phonons but their number will increase rapidly as exp(-~~) 

and will be appreciable when K r '"\..- 6. i. . (l.. T -- I K • If the coupling 

between these phonons is large and increases rapidly with temperature, 

then at higher temperatures their lifetime becomes so short that their 

effect on the ultrasonic wave decreases with a concomitant decrease in 

the attenuation. In this connection it is to be noted that specific 

heat measurements at very low temperatures may reveal the existence of 

the second branch via a contribution which varies as exp (~~~) • 

However this assumes that the contribution. from this branch is large 

T l 
enough to be separated from the usual part arising from the normal 

phonon gas [34 ] • 
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4.6 Discussion 

The aim of the present chapter has been to dernonstrate that the 

restrictions of the BHP formalism may be a.voided by generalizing their 

choice of a restricted ensemble. We have deliberately chosen the 

restricted ensemble in such a way that the self-consistency conditions 

obtained in chapter 3 may be utilized. In this way, a phonon like energy 

spectrum in the long wavelength limit is guaranteed from the outset. 

We have considered the next simplest alternative to that of BHP, 

which results in the prediction of a second branch of the excitation 

spectrum for small ~ values. 

We have shown that the existence of this second branch in no way 

conflicts with the neutron scattering data. Indeed it could account for 

certain of the observed properties of the latter which are not readily 

interpreted in terms of the normal branch. We have also shown that the 

presence of the second branch permits a slowly moving massive body to 

lose energy and that this same branch may also contribute significantly 

to the observed peak in the ultrasonic attenuation at a temperature~ /K 

Finally, we have noted that careful measurements of the specific heat 

at very low temperatures may enable the existence of the second branch 

to be experimentally established. 

From the view point of the present work, additional branches of 

the energy spectrum result readily from different choices of the 

restricted ensemble and the self-consistency condition (4.12) indicates 

that each of these branches will be linear for small 5 (although 

their slopes will vary). It is not clear at this point which if any, 

of the self-consistent solutions given by equation (4.2) is relevant to 
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, which is why we have allowed the principle of simplicity 

to dictate our choice of ensemble. 

In order that this uncertainty might eventually be removed, we 

shall now proceed from the rather qualitative work of the present 

chapter to a more rigorous formulation of the boson problem given in 

chapter 5. 
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CHAPI'ER S 

BOSON PERT URBA'I'ION 'I'HEORY (iv): A N1"W l"ORMALISM 

5.1 Introduction 

In view of the fact that diagrams of relative order Yv cannot 

be ignored, the counting technique of Brandow, which provides for the 

cancellation of disconnected diagrams in boson perturbation theory, 

is of little use and an alternative formulation of the problem is 

required. An examination of the techniques described in chapter 1, 

which consist of applying Wick's theorem in a more controlled manner, 

reveals that the introduction of disconnected diagrams into the theory 

may actually be avoided. 

We shall now demonstrate that these techniques may be employed to 

provide a connected diagram expansion for the single particle Green's 

function which is topologically identical with the corresponding fermion 

expansion. Thus, the problem of the depletion effect, which has proved 

to be one of the main stumbling blocks in the theory of bosons ia 

overcome without the introduction of ab initio approximations. 

5.2 The irrelevance of normal ordered products 

In common with chapters 2 and 3, we shall assume that I ~ > is 

generated by the Gell-Mann and Low adiabatic switching procedure from 

the non-interacting ground state Ij?N> , given by 

'f~> 
• 

(5.1) 
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The problem which is immediately encountered when equation (5.1) is 

employed, is that I~N) is not the vacuum of the operators 

+ 
Cl o Q o and • 'l'hus, 

¥ 0 • 

The single particle Green's function is given by, 

t ..... <i:vl r[ IX L~ J r;( u/) 5 J , ff.v '> 
S~ 

and hence when Wick's theorem is applied to the r.h.s. of this equation, 

averages of normal ordered products of t!. := 0 operators do not 

vanish. However, we shall now demonstrate that the sum of all terms 

containing normal ordered products in the expansion for the single 
/"_ (IJ 

particle Green's function U"'" of a many boson system at T:: 0 K 

must vanish. 

In order to demonstrate this, we write Wick's theorem in the now 

familiar form 

"" T NC 

and substitute equation (5.3) into equation (5.2) 

Writing 

c 
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and allowing to act yields (c.f. equation (3.11)), 

( i ) 
; &-0 (<;--(;'):;: r 5 o (L--6'j + <i.-JIN[C.'C.o1(S(O<UdcX't",)s)]IL) 

• 
SN 

I 
Noting that C. does not act on yields, on allowing C o(S 

to act, 

(J) 

; &- Q (lr - f/ J -;:1 0 (~- ~ I ) ~ F < i .,1 '''{ L ' ( p( tl:l) ~ ) J I ~> 
SN 

-rIJ 

where the last term on the r.h.s. of equation (5.3) has been converted 

to the Heisenberg picture, in accordance with the techniques of 

chapter 1. 
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The second term on the r.h.s. of equat ion (5.3) has been 

converted to the Heisenberg picture in Appendix C, which leads us to 

write this equation in the form (to within a phase factor). 

(I) 
· r . aD I c - t ') , lro (f;-t'J = J \... 

()C) 

+ N ) I Jt. £ f1b'[ J1x. d.~ ><: ; 

A trivial combination of the diagrammatic notation of equation 

(1.29) and Figure 8, enables equation (5.4) to be written as 

c ~ 

• 

~ 
t 

~ 
(, ) I ,;;i/f: j Go (I: - e) + til - I ... • 

I 5N I 
I ~ , 

If'. I 
I I -1' I , 

I 

/:' t::' &' t;' 

(5.5) 
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We shall now demonstrate that the second term on the r.h.s. of equation 

(5.4) must in general vanish. 

For t' > t , the first term on the r.h.s. of equation (5.4) 

vanishes, hence writing 

E~O 

and 

f} . 
.... 

with 

'= ')1-we see that for ~ , equation (5.4) becomes 

(5.6 ) 

where we have inserted a complete set of eigenstates of N into 

the last texm on the r.h.s. of equation (5.4) and written 

• a ( 
, Jo (~-~) 

• 
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Assuming that it is permissible to interchange the summation and 

integration in equation (5.6) yields 

(5.6) 

where 

g. 
-> 
-III ,3 I II I - ~ x, (}.; x, l.A (.~. - ~) 

V 
The infinitesimal positive constant in equation (5.6) ensures 

that the contribution to the definite integral from the lower limit 

+ 
vanishes. Performing the integration, then taking the limit £ -> 0 

yields 

(I) 
.. / I 
J trQ (f:- -~ J 

(I) 
, the definition of ~~ 

(I) . r , 
, lTD U~ -(: J 

Hence, equation (5.7) becomes 

- ~fiA~ (~-t') 

e 

• yields 

(5.8) 
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and we conclude that both sides of this equation must vanish. 

In general therefore 

o 
• 

(5.10) 

Since n is assumed finite, this means that in general we must 

have 

- o 
• (5.11) 

This result tells us that the second term on the r.h.s. of 

equations (5.3) and (5.4) must vanish. Hence, had we employed the 

mnemonic 'Ignore normal ordered products in time dependent boson 

perturbation theory', we would have obtained the correct result for 
(I) 

~D • In order to demonstrate the general validity of this mnemonic, 

consider for example the two particle J<..: 0 Green's function 

given by 

<i'.., I T( ~ Col-) 0( ('t) ~t ~() IX'~T') S ] I ~N> 
SN 

• 
(5.12) 

Applying to equation (5.12), the same arguments which led to equation 

(5.5) yields 



I I 
I 1 , 

/;'h. 
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A 
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A-
I 

t::'y't;'r'r'e' 

and we are led to the conclusion 

T 
I 
I 

'.' 
I 

I I 
, I 

It\. l"-
I I 

I 

y' 

I 
I 

I , 

T 

/to.. 
I 

+ 

, 
y 

o 

t 

I 
I 

/e'-

c' 

T , , 
I.' 

I , 
).\ 

I 
I 

r' 

In other words, the correct result is again obtained if the mnemonic 

on the previous page is employed. Clearly, this result is of general 

validity, because whenever Wick's theorem is applied in the controlled 

manner described above to any Green's function appearing in boson 

perturbation theory, the resulting normal ordered terms lose their 

dependence on at least one time variable and must therefore vanish. 

Since the controlled application of Wick's theorem merely represents a 

convenient method of summing the diagrams obtained in the more conventional 

theory of chapter 2 and section 3.2, we have demonstrated that the sum 

of normal ordered terms in time dependent boson perturbation theory must 

in general vanish. 

Before proceeding to formulate a new diagrammatic perturbation 

theory which is applicable to the boson problem, it is convenient at 
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this point to consider the existence or otherwise of a condensate in an 

interacting bose gas at r = 01< • 

5.3 The question of a condensate 

By definition, the k '¥ 0 single particle Green's function 

is given by 

I 

; G c..JC. > '1) 

In the interaction picture this becomes 

( 

. (y c.x J ':j ) 

(5.16 ) 

Since is the vacuum of the operators '/I' and 

the arguments which led to equation (1.29) of chapter 1 are valid and 

hence denoting by 
x.. 

t ~ to 

f ~ "I() 

~ 

yields 

x... 

t4 • 

f ~ ;Co 

Cj (5.11) 
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In view of equation (5.17), equation (5.5) becomes 

t: & t , 

H 0) A 
I 

; &-"0 (t: - (/ ) ::= +-0 

~ I 

~ . 
1::.' 6' f;' (5.18) 

A comparison of equations (5.17) and (5.18) reveals that 

( 

G- <.. K ~ -1:' J - ) 

Since the particle density in the state is simply 

, equation (5.19) yields 

1'1" 
(5.20) 

Hence, assuming that n K is a continuous function of Ie:. for 

small 1<' , there will be no 6 - function singularity in the 

particle distribution function of an interacting bose gas in the state 

t i.e. there will be no condensate. This is 

consistent with the neutron scattering data of Mook [22] and the 

theoretical arguments of Evans L 23] . It should be noted however that 

equation (5.20) does not exclude the possibility of a generalized or 

smeared condensate of the type discussed in the literature [35] . 
A comparison of equations (5.17) and (5.18) shows that we may 

G(I)-- /0("+ /' write the whole single particle Green's function ~ ~ 

in the form of equation (1.29) 
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x.. 

= 

In terms of mathematics, equation (5.21) is simply 

011 

(5.21) 

; 'LX, '1> - • ~ <x, ,,> t ('i-)I J.t, ~£"''fJ~, .I ~,' {L (~, _~/) 
-00 

-+ -t \lI 11J .:re-
X ;9(!.I~I) <i:/ r[ ~ (.>(,') '/11+('1) TH()(~J fHeJ(,)] lIN> 

(5.22) 

which is identical with equation (1.28) of the fermion problem. 

In view of the similarity between equations (5.21) and (1.29) it is 

perhaps not too surprising that (as demonstrated below) the perturbation 

expansion for 
G(I) 

in the boson problem turns out to be topologically 

identical with the corresponding expansion in the fermion problem. The 

derivation of the boson perturbation expansion is non-trivial however 

and in fact we shall find that a canonical transformation is required 

in order to obtain it. In order to illustrate the new techniques which 

we shall employ to generate the boson perturbation expansion, we shall 

consider in the following section, the problem of obtaining the infinite 

order fermion perturbation series directly from equation (1.29). 
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5.4 Generation of the conventional fermion perturbation series 

In fermion perturbation theory, the canonical transformation to 

particles and holes in equation (1.14) ensures that averages of norma l 

ordered products of uncontracted operators vanish. An additional 

feature of this transformation is that it allows i '3c.)C.J~) to propagate 

both forwards (particles) and backwards (holes) in time, a property 

which as we shall see in section (5.5) is vital for the generation of 

the perturbation series. 

In order to obtain a perturbation series f rom equation (1.29), we 

focus attention on the matrix element appearing in the corresponding 

equation (1.28). In the interaction picture, this matrix element is 

I.. iN I T [ 'f t~..' J~,J f ;'j) fc~,t) 1:,) f,~,} (:,) S ] l.l,u) 

SN 

We shall generate the perturbation expansion in stages. The first 

stage consists of selecting one of the operators appearing in the above 

matrix element and considering all the possible contractions which may 

involve the chosen operator. This is similar to the process which led 

to equation (1.29), where, by selecting the operator we 

re-wrote equation (1.9) in the form of equation (1.23). 

In equation (5.23), we shall for convenience select the operator 
t­

f (!:.i:,) , which may contract with Y'(~:, J:.I) , and 

• Employing the techniques which led to equation (1.29) readily 

demonstrates that equation (1.29) becomes 
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+ + + 

+ + 
• + 

The next state in this iterative procedure consists of arbitrarily 

selecting one of the six oper ators in the last term on the r.h.s. of 

equation (5.24) and considering all the possible contractions which may 

involve it. FOr example, the last term on the r.h.s. of equation (5.24) 

may be written 

.......... ........ • 

f 
The middle two terms on the r.h.s. of equation (5.24) have the topology 

of the last term on the r.h.s. of equation (1.15) and the ultimate goal 
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of our iterative procedure is to write t he l ast term on the r.h.s. of 

equation (5.24) in this same form. 'Ihe first three terms on the r.h.s. 

of equation (5.25) wi l l assume the correct form after a pair of thick 

solid lines with free ends have been eliminated from these diagrams. 

Iterating these terms one stage further yields Figure 9, which demonstrates 

that, to second order in the bare interaction, equation (5.24) t akes the 

form of }'igure 10. 

1he latter figure demonstrates explicitly how the clothing of bare 

propagator lines occurs in the theory and it is easy to see that repeating 

this iterative procedure to infinity yields the conventional perturbation 

series found i n t he liter ature [7,8] . The assumption of convergence 

is self-evident in the present derivation, because terms which do not 

have the topology of the last term on the r.h.s. of equation (5.26) have 

been ignored at infinity. 

5.5 Problems with the formation of a boson perturbation series 

As a first attempt at generating the boson perturbation series, we 

shall take equation (5.21) as our starting point and employ the 

techniques described in the previous section. Noting that normal ordered 

terms may be ignored, we see that equation (5.24) readily follows from 

equation (5.21). For bosons however, a thin solid line may only 

propagate forwards in time and all diagrams containing thin solid lines 

at equal times or running backwards in time must be omitted. Hence, for 

bosons, equation (5.24) becomes 

+ 



+ 

FIGURE 11 
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A golance at equation (5.25) revea l s that this equation may be further 

iterated to yield 

+ 

(5.28) 

Clearly the topology of equation (5.26) of Figure 10 is not forthcoming . 

Indeed, an arbitrarily large number of iterations of the type which led 

to equation (5.28) yields Figure 11, which indicates a l ack of convergence 

in the present iterative procedure. 

Of course, it is possible to iterate equation (5.21) in a 

different manner. For example, after one iteration, equation (5.21) 

may be written in the form 

x 

k 
+ + 

}t 
• 

+ 

~ (5.30) 

Iteration of equation (5.30) demonstrates that may be written 

(after " iterations say) 

+ + 
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where ~(~) represents terms with the topology of the last term on the 

r.h.s. of equation (5.30), consisting of two parts separately connected 

to the points x and y. In view of equation (5.29) however, it is not 

clear that 3- (. t1) may be ignored in the limit VI -> oC> and furthermore, 

even if ~ c.. "\) could be ignored in this limit, not all contributions 

to the second term on the r.h.s. of equation (5.31) have the topology of 

the diagrams in Figure 10. A typical contribution to equation (5.31) of 

this type is 

which involves a two particle Green's function 
G-(l) 

Since the 

purpose of the present iterative procedure is to remove 
G (Z) 

from the 

theory (c.f· equation (5.2l~ the topology of equation (5.31) is clearly 

unsatisfactory. For this reason, we must resort to the canonical 

transformation described in the following section. 

The essence of the transformation is that it allows thin solid lines 

to propagate both forwards and backwards in time, while still preserving 

the irrelevance of normal ordered products in the perturbation series. 

'rhus the problems of the present section are removed and the techniques 

of section (5.4) may be applied to yield a perturbation series which is 

identical with that of the fermion problem. 

5.6 A canonical transformation 

The probable lack of convergence in the perturbation series obtained 

in section (5.4) is demonstrated explicitly in Figure 11. In the fermion 

series of section (5.3) such a demonstration of non-convergence was not 
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possible, because thin solid lines were not constrained to run 

forwards in time only. Of course, this does not mean that the fermion 

perturbation series converges, it simply means that we cannot prove 

that it does not converge. In the present section, we shall reformulate 

the perturbation theory of bosons in such a way that the non-convergence 

of the perturbation series obtained cannot be demonstrated . The theory 

obtained is thus on the same footing as the corresponding fermion theory. 

1'0 this end, consider the simple canonica.l transformation 

Equations (5.32) may be considered to be a transformation from pa.rticles, 

to holes in the condensate, although the analogy with holes in the fermi 

sea should be treated with caution. 

In order to proceed, we shall first prove that normal ordered 

products may still be ignored when the transformation (5.32) is 

employed. Our starting point is again equation (5.2) and we shall 

follow closely the analysis of section (5.2). 

The normal ordered product of two operators ;8 
given by 

• 

Thus, writing 

j3 ~ e') I ttt) - T [ ,8 c.e) f ~t-) J 
yields 

· t-f (t'>1 (E-) 
• t1 , 
I x..o (t--~ ) 

t 
and;8 is 

(5.33) 
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Applying the transformation (5.32) to equation (5.2) yields 

Cd 
; 6-

0 
(f:-t') 

+ '" 
<~I r ( e O:J eu;') S ] IPI\I) 

SN 

1he rulalysis of section (5.2) which led to equation (5.3) now yields 

(I) . / , 
, (T"o ((;- - t J • IJ I 

,~o (e--~ ) 
'\ 

i- J;\ <ff;.J1-,1 r[ j3 ct') 5] I j",.,) , 
~~ 

00 

-ttnJ.u-. iEI~.IJi".J~.( !J,'!..-"!:> i i. t~-~.J 
-rjI> 

(5.36 ) 

Notice the diff erence between the second terms on the r.h.s. of equations 

(5.3) and (5.36). This is due to the re-definition of a normal ordered 

product given in equation (5.33). An analysis similar to that given in 

Appendix C readily shows that the second term on the r.h.s. of equation 

(5.36) may be written 

(~ SSN~ I ) lIT- < .:;r"., -il'r' ) 
II... ~ ...... I I ! H (l:') I ~ '" 

and hence, equation (5.36) becomes 
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The analysis which led from equation (5.3) to equation (5.11), when 

applied to equation (5.37) yields 

.::0 

Since we are working in the limit N ~ ~ equations (5.38 ) holds equally 

well for an N - , particle system i.e., 

( 

'/7.. t) o 
(5.39) 

Again we find t hat normal ordered terms may be i gnored, and comparison 

of equations (5.11) and (5.39) yields 

Re> 0 

(5.40 ) 

These equations are also consistent with the result obtained within the 

Hugenholtz and Pines formalism in section (3.3), that 

Note that equation (5.40), which is simply 

o 

supports the result of section (5.3) that there will be no condensate in 

an interacting bose gas. This follows from the work of Beliaev (3] 

where it is argued that when the number of particles in the ~ =0 mode 
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is a finite fraction of ~ , we shoul d find that 

Since this is certainly not the case according to equat i on (5.41), we 

conclude that there is no ' condensate. 

In order to generate the perturbation series, we introduce the 

transformation (5.32) and employ the techniques of section (5.4). A 

thin solid line running from y to x is now to be interpreted as 

where '1/' lI)l+ 
and T 

I 

: ~ c.>t..I~) + ; '--0 (&.x.-&~) 

are K:f: 0 field oper ators. 

The fourier transform of equation (5.42) is 

<j ( IC.) + 

and we now see that a thin solid line may run both forwards and backwards 

in time. Since normal ordered terms are to be ignored, the graphica l 

anal ysis of section (5.4) applies equally well to the present section. 

In particular, Figure 10 remains correct f or bosons whilst Figure 11 no 

longer applies. 

Evidently, the convergence in the boson series is extremely slow, 

because each individual contribution to ~ i s of order 'Iv , while 

the sum (equation 5.26) must be of order unity. The former observation 

follows t because a thin solid line running backwards in time, or at 
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equal times, is of order Yv and every contribution to ~ contains 

at least one such line. However, the topolOb~ of the bare perturbation 

series is identical with that of the corresponding fermion series, as a 
, , 

result each thin solid line may be clothed in the manner described in 

chapter 1. In this way we obtain a renormalized version of the self-

energy L:. in which each term is of order unity, because now, only 

thick solid lines appear in a given contribution to ~ 

The final result is the well-known Dyson equation 

[ w - "V 1<' 

and the analysis of chapter 1 and Appendix A may be invoked to express 

the self-energy appearing in equation (5.44) in terms of self-consistently 

determined effective interactions. 

Before leaving the present section and going on to consider the 

application of perturbation theory to a bose system which exhibits long 

range order, it should be noted that the present theory applies to a 

~ interacting system of bosons only. ~hat this is so follows from the 

implicit assumption that f'<- ~ 0 ,which was employed to eliminate 

normal ordered terms from the theory. For this reason, equation (5.44) 

will not yield the Green's function of a finite density non-interacting 

system of bosons in the limit Z ~ 0 • 

5.1 Application to liquid It- HQ. 

We shall consider in the present section the perturbation theory of 

an interacting system of bosons at T= OK ,exhibiting long range order 

characterized by the existence of anomalous propagators. These propagators 

are asswned to play the role of an order parameter and therefore vanish 
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above the transition temperature. We will not consider the question of 

what physically constitutes the order parameter (although in the absence 

of a condensate, the pairing of bosons seems to be a likely candidate), 

but merely assume that the anomalous propagators may be represented 

topologically by the notation of equation A3. 

The diagrammatic manipulations found in Appendix A and elsewhere 

[9] now apply automatically to the boson problem. In particular, 

equations (AIO) and (All) yield 

_I < 
'(\ c.-K) - '-II (-K) 

• 

(5.45) 

Instead of entering into detailed numerical calculations, we 

shall demonstrate that the simplest of approximations on equation (5.45) 

yields some a.greement with experiment. For convenience, we shall switch 

to the Heisenberg picture of the Hamiltonian 

1\ "-
K -jAN • 

This is readily achieved by writing 

_I 

<j (~) "-') 

in equation (5.45) and allows us to measure energies relative to J'L 
Assuming as in chapter 5 that (for small ~ and W at least) the 

self energies are frequency independent, equation (5.45) yields 

G- (..,1<.) --
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where 

Now, the particle density in the state K is 

-..1- ~ r ~wt 
111/. 2jjj t->OT J Jw e Gc !!o.J '""-'J 

Coupling this with equation (5.46) followed by an elementary integration 

yields 

n~ 
W~ "fL - £" 

I - • z £<..~) (5.48) 

In the case of superfluid liquid ~1Ie- , t he excitation spectrum 

is known to be linear in the long wavelength limit [ 28] which implies 

via equation (5.47) that for small ~ 

- 'z,z 

In the present context, the relation (5.49) is se;ni-empirical, unlike the 

Hugenholtz and Pines relation of chapter 3 which is exact with their 

(zero density) formalism. Equations (5.48) and (5.49) show that n~ 

is proportional to YI( in the limit ~ ->0 and hence we expect a 

plot of K~n~ ~ k for *"lIe to pass through the origin. 

This is in agreement with the neutron scattering data [22,23,35] • 

Further progress cannot be made without an explicit evaluation of 

the self-energies. However, since the aim of the present thesis has been 

to provide a rigorous, general framework in terms of which the problem 

may be clearly formulated, we shall terminate the discussion at this 

point and leave the question of the detailed structure of the self-

energies to form the subject of a future investigation. 
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CONCLUSION 

The aim of perturbation theory is to express a real but insoluble 

problem in terms of a hypothetical but soluble one. In conventional 

perturbation theory this is emphasized by the fact that only bare 

interaction (Le. u..<.lL) '1) ) and propagator (i.e. .9c:.x
j

'1) ) lines, 

corresponding to the hypothetical system, appear in the diagrammatic 

perturbation series, and any practical calculation consists of summing 

an infinite subset of these diagrams. 

It is we]l-known that the theory may be improved by replacing bare 
(. ) 

propagator lines by the exact propagator ( ~txJ~) ) of the interacting 

system. In this way, the original expansion of the self-energy in powers 

of ~ and fL ,is replaced by an expansion in powers of G- and ().. , 

and the retention of only first order (i.e. Hartree-Fock) diagrams, yields 

agreement with experiment in a wide range of situations. The renormal-

ization is incomplete however, and in some situations it is still 

necessa~y to perform the summation of an infinite subset of the above 

diagrams. 

We have shown in the present thesis how the renormalization may be 

completed, by expanding the self-energy in powers of ~ and an 

effective interaction f1 • The result is not a perturbation theory 

in the true sense, because the real problem is now expressed in terms of 

itself rather than a hypothetical problem. However, a given practical 

calculation is now reduced to that of solving a self-consistent set of 

equations containing a finite number of terms and evidently the summation 

of an infinite subset of diagrams is no longer required. This is a highly 

desirable feature as far as numerical calculations are concerned, since 

the former problem lends itself to solution by computer, while the latter 

does not. Furthermore the formalism itself is directly amenable to the 

construction of effective interactions between particles, a topic of 
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great interest in nuclear physics and theories based on the concept of 

a pseudopotential - such theories have not been considered here since 

they would take us too far afield from our main theme. 

In order to obtain the above result we developed an entirely new 

approach to fermion perturbation theory in which the power of diagrammatic 

analysis is emphasized by the fact that without the use of diagrams, the 

self consistent manipulations involved in the formalism would not have 

been possible. The power of the present approach rests on the concept of 

employing Wick's theorem in a controlled manner, and then reverting to 

the Heisenberg picture. This new technique allows us to avoid from the 

outse.t the introduction of disconnected diagrams into the theory 

(c-f. section (5.4)). :F'urthermore it eliminates normal ordered products 

from the theory of bosons. The latter feature is extremely important, 

since it is the presence of normal ordered products, together with the 

associated depletion effect, which prevents an exact formulation of the 

boson problem. 

Until now, there has been no microscopic theory of a many boson 

system in its ground state, which has not invoked ab initio approximations 

in order to overcome the problem of the depletion effect. Two of these 

II V approximations, namely those of ignoring diagrams of relative order 1\ 

and replacing the ~::: 0 operators by C. - numbers, have been shown to 

be strictly only applicable to a zero density gas.. An infinite hierarchy 

of self consistent solutions to the problem of an interacting bose gas 

have been proposed; the simplest of these 'predicting' a new branch in 

the excitation spectrum which is linear for small K • Clearly, any 

number of such branches is possible within the proposed hierarchy of 

solutions, which emphasizes that linearity in the energy spectrum is to 

be regarded more as a measure of the self consistency of the theory than 
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as a measure of the validity of assumptions concerning the is.:. 0 mode. 

Indeed, even the possibility of a band structure in the excitation spectrum 

for small K is indicated by the above solutions. The range of 

applicability of tilese results is not known however and in chapter 5, we 

turned our attention to a more rigorous solution of the problem. 

The theory which is provided in chapter 5 is an exact analytic 

solution of the problem of an interacting bose gas at r = 0 K. • It 

makes no approximations or assumptions, apart from the unavoidable one 

concerning the convergence of the perturbation expansion. In relation to 

this point, we note that in the absence of a canonical trans formation, 

section (5.5) indicates a lack of convergence of the perturbation series. 

The effect of the introduction of the transformation (5.32) is to provide 

a 'bare' perturbation series in which each term is individually of 

order Obviously, terms of order 'Iv cannot be ignored 

in such a series1whose sum is of order unity. However, the summation 

techniques of chapter 1 and Appendix A may be employed and the final 

result is identical with that of fermion perturbation theory. Hence we 

may reasonably assume that the resulting series does indeed converge. 

At first sight it may seem strange that a canonical transformation 

can introduce convergence to a previously non-convergent perturbation 

series. However, such a transformation merely provides an alternative 
/ ' (I' 

expansion of the Green's function ~ (Jl.)~) In relation to this 

point we note that an analogous situation is to be found in the following 

two series, both of which sum self-consistently to yield • 

'-2 +4- -g + ---- .. 
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An important feat ure of t he present work is its relevance to the 

question of the exis tence of a condensate in an interacting bose gas 

at T= 0 K. We have shown on quite general grounds that 

(6.1) 

which indicates that the addition of a particle to the ~.::. 0 mode 

of the interacting system in its ground statelproduces an excited state 

of the system. Since it has been argued [3] that the addition of a 

particle to the ~ = 0 mode of a condensed system will not excite the 

system, equation (6.1) indicates that an interacting system of bosons 

at r:: 0 K does not possess a condensate. 

In section (5.7), we consider ed the perturbation theory of a system 

of bosons exhibiting long range order characterized by the existence of 

anomalous propagators. The assumption that the self-energies were 

continuous functions of ~ for small IC. ,again led to the conclusion 

that an interacting bose gas will E.2.i possess a condensate. This 

immediately poses the question of what physically constitutes the order 

parameter in liquid 4-HQ.... Unfortunately, perturbation theory does not 

provide the answer to this question, but it is interesting to note that 

(as shown in section (5.7» the very assumption that an order parameter 

exists in the absence of Bose-Einstein condensation provides a 

correlation between the linearity of the energy spectrum and the 

curve of superfluid 'tl/Q.... ,for small • 

The excitation spectrum cannot be calculated without an explicit 

evaluation of the self-energies and until such a calculation is 

performed, it is not possible to determine which, if any of the self-
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consistent solutions proposed in chapter 4 are applicable to 

superfluid ~hI~ Although we have not concerned ourselves with 

such numerical calculations in the present work, we note in conclusion 

that the general results of Appendix A should prove to be a useful 

point fronl which a self-consistent evaluation of the self-energies 

may proceed. 
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APPENDIX A 

PERTURBATION THEORY IN THE PRESENCE OF ANOMALOUS PROPAGATORS 

A.I Introduction 

The adiabatic switching on of the interaction is most conveniently 

achieved by writing the Hamiltonian in the form 

(AI) 

where 
-£/1:/ 

e (A2) 

The basic hypothesis of the perturbation theory discussed in 

Chapter I is the continuity of all physica l quantities as functions of 

the coupling constant j in the interval ,... / Q / , 
""~ .... ~ 

An equiva lent hypothesis [13] consists of assuming the continuity 

of all quantities as functions of the density n , (if n is small, 

it is physica lly evident that is small). Such a hypothesis 

obviously eliminates any possibility of a phase change. The most 

convenient way of avoiding this problem and generating the ground state 

of an interacting system which is known a priori to have undergone a 

transition, is to introduce a small symmetry breaking term 0< into the 

free part of the Hamiltonian, H 0 and to take the limit 0<.. ~ 0 

after the adiabatic switching on procedure has been carried out [9] . 

The perturbation series thus generated contains an infinite number 

of terms of order 0( , which must be summed self-consistently before 

the limit 0( -) 0 is taken. In this limit, equations (1.29) and 

(1.30) are still valid, but the appearance of 'anomalous' propagators 
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in the perturbation series means that our treatment of the two and three 

particle Green's functions appearing in these equations requires some 

modification. 

The anomalous propagators, which we shall call C-,t and &-1., 
and denote by 

(A3) 

have various definitions, depending on the particular system under 

consideration [9] However, since almost all of our manipulations 

are of a diagrammatic nature, the final results apply to any system whose 

anomalous propagators can be written in the diagrammatic form of equation 

(A3), whatever their definition. An example, which is useful to bear 

in mind throughout this appendix is 

'&.1.. 
(A4) 

--
Equations (A4) are useful, because they describe a. superconducting 

system of spin-less fermions [19] or alternatively a superfluid system 

of spin-less bosone within the BHP formalism. The arguments leading to 

equations (1.29) and (1.30) yield, in the limit 0( ~o , 

(A4) 
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and 

k (A5) . 

and we now proceed to solve equations (1.29 ), (A4) and (A5) self-

consistently to first order in the effective interaction. 

A.2 The two particle Green's functions 

In the presence of anomalous propagators, an examination of the 

perturbation series [3,4,9] reveals that equation (1.32) must be 

generalized as follows: 

i) In addition to the first two terms on the r.h.B. of equation (1.32), 

we must include the term 
I 

I 

1 I 
"l. z' 

ii) The only restriction on the interference term (i.e. the last term 

· on t he r.h.s. of equation (1.32) is that lines must enter (leave) the 

points 1 and 2 ( l' and 2' ). Hence, propagators of the type 

and 1 (f and 

( l ' the points 1 and 2 and 2.' 

I ) may be attached to 

) and the genera lization of the last 

term on the r.h.s. of equation (1.32) is the following sum of sixteen 

diagrams. 
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\ 

+ + 

" ~' " ~, " ~' I' l' " I ' 'l ( 

+ + 

Itt.' I ' 
~ I 

(A6) 

The sum of terms (A6) may conveniently be represented by the single 

diagram below, 

, ' 'l 

propagator G;; ~ 
• Fortunately 

provided we always bear in mind that the generalized 

represents either or 

this presents no ambiguity in the present work, becaus e we shall find 

that at least one end of G- is a lways attached to either an 

external point (e . g . t > Z) 
I 

I ) 2.
1 

of (A6») or a bare interaction 

line (represented by \NVtNV ) and the following rule determines which 

of the above two possibilities are to be chosen. f A line cr entering 

(leaving)either an external point or a vertex of the bare interaction is 

to be interpreted as • 

With this notation, the g~neralization of equation (1.32) takes the 

form 
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+ + + 
" 't I 

I f 
I Z. z. Z' , ( l.' (A7) 

( ,) 
In order to obtain Dyson's equation for cr , we require an expression 

for the averages of four Heisenberg operators appearing on the r.h.s. 

of equations (A4) and (A5). The a.rguments which led to equation (A7) 

readily yield 
3 3 't. I 1- 1- ~ 

f f f +f + +~ t f (AS) 
j 

" 
, { J " 

1 

" 
, ,I 

and 
( 

t' .' , f , 
f t 

f +f + 
1 '" (A9) 
2' 1 I 

" 
3' ~' J{ jf 2' If 1 ( J I 

A.3 uyson's equation and the self-energies 

Before proceeding to introduce effective interactions into the theory, 

it is convenient at this point to obtain Dyson's equation for the single 
(I) 

particle Green's function ~ • Substituting equations (A7), (AS) 

and (A9) into equations (1.29), (A4) and (A5) respectively, yields in 

the limit 0( -') 0 

(AIO) 

I (All) 
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+ 
(A12) 

which agrees with Mattuck and Johansson, (9] The self-energies ar e 

given by 
l' 1-

L" - ~~~+D+~ 
l' 1" 

'1' 1-
(A13) 

l' D+ ~ L,~ - e -
~ 

~ .J.. 
(A14) 

\ , .J, 4-
.J,- ' D+ ~ 2tl - e 
t (A15) 

l' l' 
and it should be noted t hat t he last term on the right hand sides of 

these equations are ~ identical, as will become clear later, when we 

introduce the effective inter act i ons. 

Equations (AIO) to (A15) ar e exact. However, although equations 

(AIO) to (Al2) are to be found in the literature [3 J 4- I q J , equations 

(A13) to (Al5) from an entirely new and compact expression for the self-

energies and we shall proceed by evaluating these terms in a self -cons istent 

manner. 

A.4 A self-consistent expression for the interference term 

In order to reduce the number of diagrams, it is convenient to 

proceed as far as possible without introducing any eff ective interactions. 

In this section therefore we shall self-consistently obtain an expressi on 
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for the interference term and defer the introduction of 

the effective interaction to the next section. 

Following the method detailed in chapter 1, we begin by writing down 

an expression for the three particle Green's function appearing in 

equation (1.30). In chapter 1 we found that terms first order in the 

effective inter action were sufficient to cover most situations of interest 

and as a result in this appendix, we shal l restrict our evaluation of the 

self-energies to this approximation. 

Within this approximation, the three particle Green's function takes 

the form of Figure (AI ). Substitution of Figure (AI) into equation 

(1.30) yields equation (A16) of Figure (A2). 

From equations (AID) to (A15), it follows that the first three terms 

on the r.h.s. of equations (A16) are s imply the first three terms on the 

r.h.s. or(A1). Similarly, the sum of diagrams (a), (b) and (c) of 

Figure A2 is given by 

'Z.( , ( 

-z' 

to first order in the effective interaction. Hence, a comparison of 

Figure A2 and equation (A1) yields equation (A17) of Figure (A3). We are 

now in a position to introduce the effective interaction, a task which 

is accomplished in the next section. 
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A.5 The effective interactions and their self-consistent evaluation 

Before attempting to write in terms of a two body 

effective interaction, it is useful to consider the reasons which enabled 

us to write ~ in terms of a single interaction r in 

the situation where anomalous propagators did not exist. This term may 

be written 

x 
" 2,' 

where t) contains n bare interaction lines and 2. (.11- ,) 

IJ' 8' 
propagator lines 

( A' and 8' 

[f] • 

) the 

We shall give the external points A and B 

name exit (entrance) points. 

" 8 A given contribution to o I may be arranged to have two 

parallel solid lines 

entrance 

ution to 

points to one 

" 8 

APe' 

II' 8 
running vertically from one of the 

of the exit points. In general, to every contrib-

",' L II with solid lines running from n ~ and 

, 
8 to 8 , there is an identical contribution with solids lines 

running from 
II 6 

~q, 
and p/ 1:0 11 Hence 

may be written 

If g 

[EJ 
fi' {5' 

where only one of the two identical contributions to now 

contributes to r Thus , it is permissible to 

l.. 1.. 2-

- + 
I I z' 2' 

(A15) 
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2 

where in ~ for example, there i a a thick aolid line 

I' 2.' , 
running vertically from 2 to 2 and a corresponding line running from , 
1 to 1. Since the r.h.s. and l.h.s. of s uch a term conta ins one exit 

and one entrance point only, we may write 
2.. I Z 

W H 
" 

Zl /1 Z( 

because the points a t which the externa l l ines are to be connected are 

uniquely given by the rule 'Connect to the exit point which i s 

connected by a vertica l solid line in r to t he entry point of the 

line 

'" 
The onl y s i tuation which this rule does not cover is that 

7.' 

where an exit and entrance point occur at the s ame vertex, as in the 

following diagram. 
l' 

l' 
I 

In this case, 2 and 2 simply connect to the s ame vertex. 

We now return to the situation in which anomal ous propagators. exist 

and temporarily adopt the notation 

f t I - tIt 
With this notation, ~ may be written in the f orm of Figure (A4), 

which defines the 'interactions' • This may be 

written in the more suggestive form of Figure (A5) where the poss ibility 

of vertica l parallel lines connecting the external points is self 

evident. 
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II B 

@ 
/I' B' 

Consider the particular interaction which has two 

entrance and two exit points. To every contribution in which a vertical 
/ / 

string of solid lines connects A to A ruld another string connects B to B, 

there corresponds another diagram in which A' is connected to B andB/ to A. 

For example, to diagram (a) below, there corresponds diagram (b). 

fl 6 fl E 

0, 
tt' Co.) g 

o 
B' 0.) 1/ 

In the present case however, unlike the situation where anomalous 

propagators are absent} this does not exhaust every type of diagram~ All 

such remaining diagrams are identif ied by the fact that they contain a 
, , 

string of solid lines joining A to B and A to B. Two exrunples of this 

type of diagram are 
I Z 

" 
2 I I' 

+ 
(A19) 

I ( 't' I ( 
l ' 

Hence @ is given by 

I "Z.. 1- z.. I z. 

~ ~t+ ~ + M (A20) 
" t' " 

z( 2' , ( If Z' 
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Note that we have chosen not to permute the labels 1 and 2 in the last 

term on the r.h.s. of equation (A20), since as will become evident later, 

this allows the interactions to be written in a more compact form. One 

aspect of such a procedure is to give rise to a double counting of certain 

diagrams in This turns out to be of no consequence however, 

since it is taken account of in a self-consistent manner in the course of 

the calculation. t t 

The entrance and exit points are uniquely defined in ~ 
l' t 

a result of this)just as in the case where anomalous propagators do not 

exist, we can write this t erm in the more 'compressed' notation. 

This situation does not 
'"l. 

M 
we may write 

occur for 
, l.. 

W 
in the form 

I~J ~f 
1" 't ;r "-

Hence, equation (A20) becomes 

't 1.. 

, . but since 

1- " 

~ ~o{ + }1~i + t~ 
" 

Z' I ( or' 1..' I' 2.' l. 

The arguments which led to equation (A21) are readily 
~ IS " B (f) each of the terms 0 0 
II' Sf 

If' " IIi d' 

(A21) 

applied to 

' and 

and since anyone of the external points (e.g. A) may 

As 
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'connect' to anyone of the other three external points (i.e. B A' B), 

we obta in three contributions to each of t he above entities when they 

are written in terms of effective two body interactions. 'rhe final result 

is 

A ~ 

~~ 8~ ,1'~~~ 0 ~/'t t!, + n'-r ' -t-&' + :,~ .1r g 
fl' g' 

(A22) 

II I> 

r1 ~ ~15 R l' ~ -Ir", I? 'I r~ -lr, 0 II' ~r + DO c~o " + I CC><? OC>o~ ,,' 
fl' &' 

1" 1l'T' t S't l' 
(A23) 

(f ~ 

~~8 1l~~8 1l4~ 1'8' 0 Il' 8' + 6' ,,' + 6 cD If' 
~. &1 .} '" -1-- ,!; .J- "" 

(A24) 

~ g 

#I ~ -ir& 11+ ~ ,L, B 11+ ~~ J.-g' (0 1 QOo;+ I «P c:)C)O ,,' + <POt:> ePoe , 

11' ,.' 
fol' 'fB 8't' l' B~ 1" 

. (A25) 

Equations (A21) to (A25) define six effective two body interactions 

, denoted by 

, respectively 

and we see that there are fourty eight contributions to X from 

these interactions. 

In order to decrease the number of diagrruns, it is convenient to 

denote the set of interactions by the 

symbol r:: QQ.Q,AOQ<Ul.Sl- We may then write symbolically, 
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(A26 ) 

With this notation, equation (Al1) takes the form of equation (A21) of 

Figure (A6). Identifying terms on the r.h.s. then yields equations (A28) 

and (A29) of Figure (A1). 

In order to proceed, the l.h.s. of equations (A28) and (A29) must be 

written in terms of the interactions 0( 0(, ~ etc. and the external 

legs (~) 
t 

I) jr 
must be written in terms of the propagators ~)][ 

and For convenience, we shall revert to the notation, 

and simply bear in mind that the line entering the point 1 really is a 

", q thin solid line representing a factor ~ 

l.h.s. of equation (A28) becomes 

• With this notation, the 

, 1. L'z... L 'l.. ~ ~ I 

~1+ M+ M+H+ H + ~t + ~t+M" 
t. , ' t. f I' Z. ( I r l ( I' t ( II 'l r I ( ~ , I ( (A30 ) 

while the r.h.s. is given in Figure (A8). Comparison of (A30) with 

Figure (A8) yields the following s elf-consistent equations for the effective 

interactions. 
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~otice for example the discrepancy between equation(J\32) and 

equations (A33) and (A34). This dis crepancy occurs. because we are 

working to a finite (i.e. first) order in the effective interaction. 

'fo see this more clearly, consider the simplest contribution to 

, given by 

which is third order in the bare interaction. Such a term would have to 

be second order in the effective i nteraction in order to contribute to 

equation (A33) and would have the form 
f 

:-<0 
-L.-

Thus, equations (A32), (A33) and (A34) are equally valid representations 

of • However, since equation (A32) contains more 

information, it presents itself as the most natural choice of the three. 

The calculation of the interactions is completed by expressing the 

propagator and the generalized interaction ~Q.Q~ 

appearing in equations (A31) to (A3S) in terms of the propagators 

~J I J t and the interactions fit) o('l,j1,J If'J c)) £. The 

result is given in Figure A9 and we remark that the same result follows 

from equation (A29). Substitution of the equations in Figure A9 into 

equations (AI3) and (Al4) yields the equations in Figure (Ala) for the 

self energies L" and L.. t4. Obviously, Z Z I is obtained 

from < .tC.. ,~ by reversing the arrows. This completes our self-

consistent renormalization of the perturbation series in the presence 

of anomalous propagators. 
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A.6 Comments on the self-consistent renormalization procedure 

The diagrammatic tour de force presented in this appendix 

demonstrates the enormous power of diagrammatic perturbation theory. 

Within this formalism, it has been possible to define certain classes 

of diagrams according to their topological structure and to identify these 

terms in any given equation. Such a procedure would be impossible without 

the use of diagrams. 

The method described of self-consistently defining and then identifying 

the various terms appearing in the perturbation expansion has enabled the 

self. energies to be summed to first order in the effective interactions; 

the latter themselves being determined to first order. A given practical 

calculation is thus reduced to that of self-consistently evaluating a 

subset of the diagrams contained in equations (A39) to (A45), selected on 

the basis of physical arguments. 
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APPENDIX B 

In this appendix, we wish to briefly raise some points with regard 

to the question of the general validity of the arguments of Beliaev [3] 

based on the neglect of teEns of relative order y~ 
I vrr-

To this end 

we focus attention on the quantity e , defined by Beliaev to 

be 

V g-' 

e 
(Bl) 

v;;r 
where e and C are given by equations (3.8) and (3.9) respectively. 

I 
As noted by Beliaev, 0- is independent of the volume, V and it is 

also known [ 30,31] that the phase of rr diverges like LI: ~ 
'/-)0 

Introducing a quantity L, defined by 

N [ ~vu-'J VL 
e..-

we see that L is independent of the volume, but has a divergent phase. 

The relevance of this is that in the work of Beliaev [3 ] we come 

across terms of the form 

(B2) 

in which we wish to transfer the operator to the left of the 

operator €... VI.. 
• In order to carry out this procedure, Beliaev 

states that the following commutation relation holds for any function 

y( l' ), 

where 

I/V The fact that this relation is only correct to order f· 

(133) 

is not 

eVident in the work of Beliaev and we shall now demonstrate that the 

use of this relation is not justified in his proof. 
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Starting from the relation 

it readily follows that 

Since L is a function of » we have 

V L (~) u 

e (o()" 

A Taylor expansion of the term L ( ." -~ ) yields 

I 

L (. 0») + l 

Th I I is serves to define ~ which is seen to consist of an infinite 

number of terms of progressively increasing powers of '/, 
V , the 

( IJV)'Z. leading term going as JI • Hence we can re-write equation (B~) as 

VL 
e. 

Employing equation (B3) leads Beliaev to write 

VI.. K e (0<) 

(B5) 

(136 ) 

The arguments of Beliaev rest on the validity of this equation. However, 

the correct form of equation (136) is equation (B5) which may be written 

+ J 
-,(,~ Vl. e 7>") e ::: VL.. )K e (rI.. 

(B7) 

It is tempting to replace the term in the parentheses on the l.h.s. 

of equation (B7) by unity, because the largest contribution to 

is of order Yv However, as pointed out by Hugenholtz and Pines [4 J 
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and indeed, by Beliaev himself, it is not permissible to neglect a 

string of terms which are each of order when their sum is 

multiplied by a term which is exponentially large in powers of v 
Thus, equation (B6) cannot be rigorously justified. Yet another point 

which should be noted is that itself diverges like L~ ~t 
2.-'0 

, 
L 

and this casts further doubt on the general validity of equation (B6). 

One final point regarding the validity of ignoring terms of 

relative order , concerns the fact that in the first step of 

Beliaev's proof of a 'disentangling theorem' he, in effect, ignores a 

series of terms corresponding to 

I 
where G- (.~, -.J) is given in equation (3.6) of the text. The self-

consistency condition expressed in equation (3.22) when coupled with the 

result of equation (3.24) shows that diverges like 

• Hence, although the individual terms in this series 

are all of order their sum cannot be ignored. 

It is because of reasons of this nature that we do not regard the 

disentangling theorem of Beliaev 

result correct to order 'Iv • 

L 3] to be a mathematically exact 

The importance of the theorem lies 

in the fact that it is used to prove that 

• 

This result, coupled with the fact that we know on general grounds that 
(I) 

: (;.. (1:- fr.') is a function of (/:;- - t ') , leads to the conclusion that 
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We emphasise that we do not regard this as a mathematically exact 

'I. , equation, correct to order Iv ,however, as described in the body 

of the text, it is a self-consistent solution to the problem. 



The equation [11] 

I~> 

where 

allows us to write 

+ 
<~ I 0( H (t')/ ~_,) 

<rNI iN) <lo, I j:.,) 

and 

(f:.,Ji:) 

- Cl -

APPENDIX C 

U f. (. oJ ± oC) I.EN > 
<EN I U! (oJ:ttIJ) I EN) 

+ ... 
<iNI T (p( <.l:-() S J I i'.v-, '> 

(Cl) 

<fN/l,lllP.,O) 'i~)~H.,ltl(Q)-~)'L . .) (C2) 

It is important to remember that the numerators and denominators on 

the l.h.s. of equation (C2) and (C3) separately exist, while thoBe on 

the r.h.s. do not. Similarly as defined in equation (Cl) the entity 

I ~ > need not be normalized. From equations (C2) and (C3) we 

readily obtain 

+ "" <IN) T[ ()( tt:') S ] I.l, -I) 
~ r"\..,/" 

fl <~ I p( ~ tt') I "f:-.) 

(C4) 
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where 

--
( t... "YN I rw» I/z. 

and 

B x 1) 

However, it follows from equation (C,) and the related equation for 

that 

where, e.g. 

Writing 

then 

Hence 

B'* = ( complex conjugate of B) = <~}TN> 
<~-, J 1:.., > 

g = IS" 

b - I I) I -

g'i' - ,g I 

D* :::: 0 

- IS c. /) 

;e 
e 

;0{ 
e 

_ ~ e 
Q.. 

-'t:o( 

e-

- B 
_~2..e 

e-

j(&+C<) 
e 
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This means that we can rewrite equation (C4) in the form 

In this equation we have replaced the expression , for 

example, by I ~.I) since in the body of the text it is implicitly 

assumed that I ~-.) is normalized. The expression in equation (06) 

is employed in the body of the script apart from the phase factor 

which does not influence the arguments. 
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APPENDIX D 

In order to demonstrate the poss ible lack of convergence of the 

perturbation series appearing in chapter 2, we focus attention on 

Figure 8 and equation (3.11). An examination of the possible contractions 

involving 0< +(e l ) readily shows that Figure 8 may be written . 

(;;' 
( 

~ 

I ~ 0) ( s_.,)'" ~ 
; (;0 (~-f::') y1 5,..-, 0 + A--

+ t- Y1 - + I 

SAl I 
s~ 

t 
I 

~ 
A-

I 
I 

,/ ~ e- (Dl) 

p\ <...~) 
Note that m pairs of dotted lines represents a factor (j) G-_ in 

equation (Dl) and to order 1/\/ , we may omit the first term on 

the r.h.s. of this equation. 

Focussing attention on the possible contractions involving the dotted 

lines shown explicitly in equation (TIl) readily shows that this equation 

be written ~ '-may 

. 6 ~ (Il $",,-, 1 0 ; &-0 U:_c ' ) n t + '( -5N 
I 
t' 6' 

(: 

C 5~·'r 
I i A 

6 It--t- n _ 
+ + 

I 

5", 

6 ~ + , 
{'" ~ 
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Repeating this iterative procedure to infinity yields 

where 

and 
I 

If'.. 
I , 

o 

t:-:- l::-

t 1 

+ + + (D3 ) 

(D5) 
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The assumed converg~nce in chapter 2 led us to neglect the terms 

and 3. However, we shall now demonstrate that this step may 

not be justified. Consider the second term on the r.h.s. of equation 

(D3). This term contains two self energies(~) , but these self energies 

are not mathematical entities in their own right, because we have not 

yet employed a suitable decoupling approximation. F'or convenience, we 

shall assume the validity of equation (3.5) and apply it to equations 

(D2) to (D5). 

Since the self energies are now decoupled, we may sum the r.h.s. of 

equation (D3) to yield 

I - 0-;.) ~o:.) 

Hence, the term in the square parentheses of equation (D2) takes the form 

which vanishes. 

the term 

2 
• 

+ ~ (.tJ;> v-c.O) 

j.. 

I - VtO) 5(.0) 

This is the result obtained in chapter 2. Note that 
~ 

~ 
9 
~' 

which appears in equation (D2) is, outside of any decoupling approximation, 

a function of 
( 

l=-t , while the assumed validity of equation (3.5) 

renders this term independent of time. Turning our attention to the 

terms and and bearing in mind the self consistency 
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condition equation (3.22) reveals C 5e.- ~ 1: 0) ..) 

and 

which demonstrates a lack of convergence within the approximation of 

equation (3.5) 

We have not demonstrated a general lack of convergence in the 

above perturbation series since the above result relies upon the use 

of equation (3.5), the validity of which is suspect. However, this 

appendix together with chapter 2 provide a note of caution which must 

be borne in mind when dealing with 'bare' perturbation series of the 

Brandow type [1 J · 
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APPE1"'DIX E 

E.l The Hugenholtz and Pines relation 

We shall now demonstrate that the relation (3.24) follows straight 

forwardly from the manner in which and are 

constructed. 

Within the approximation of equation (3.5), we may write 

where is the sum of all connected vacuum loops and is a 

functional of and Let 0- have the same 

topology as c;- , the difference being m pairs of dotted lines 

in cr "" l WI ) 

represent a factor (]) 6-0 (given by equation (3.5~. 

Let cr-tv' be the sum of all contribution to C7' containing m pairs of 

dotted lines. Then 

'* The self energy cr (0.; PI'" ) is obtained by first removing a single 

arbi trarily chosen ingoing dot ted line from ~ and then removing 

in all possible ways an qutgoing dotted line. Hence, 

(El) 

..2 'I (0.) r / 't ) is obtained by removing an ingoing and outgoing 

dotted line in all possible ways, so that 

.2 I, (l).>//t.) 
(E2) 
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Finally, 2, l... (. <'.J fll k) is obtained by removing a pair of ingoing 

dotted lines in all possible ways, to yield 

(E3 ) 

Equations (EI), (E2) and (E3) combine to yield equation (3.24) of the 

text and hence the Hugenholtz and Pines relation 

(F4) 

Note that this derivation has been performed entirely within the 

formalism of Beliaev, and is therefore unique 
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