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Glossary of terms

At-line A manual sample is taken from the process that is then analysed close
to the process or within the manufacturing plant.

ANN Artificial neural network
ANOVA Analysis of variance
Auto Autoscaling

Correlation  Product moment correlation coefficient

CPAC Center for Process Analytical Chemistry (US)

CPACT Centre for Process Analytics and Control Technology

cv Cross validation

Dx6 Design Expert v6.0

GC Gas Chromatography

GMS Guided microwave spectrometer

HPLC High pressure liquid chromatography

In-line The sample to analyser interface is located directly on the process

stream, removing the need to re-circulation loops.

LV Latent variable

LR Linear regression

MLR Multiple linear regression

MCEC Measurement & Control Engineering Center (US)
ML Matlab

MNCN Mean centring

MSC Muiltiplicative scatter correction

MWS Microwaves

NIR Near infrared spectroscopy

NIST National Institute of Standards and Technology (US)



Off-line A sample is taken manually then transported to the central laboratory
for analysis by skilled technicians.

On-line An automated system takes the sample from the process stream the
transports the sample to the process analyser.

OSC Orthogonal signal correction
PAC Process analytical chemistry

PC Principal component

PCA Principal component analysis
PLS Partial least squares

Poly-PLS Polynomial partial least squares

PLST PLS_Toolbox

PRESS Predicted error sum of squares

RI Refractive index

RR Ridge regression

RMSPE Root mean square value of prediction error

SG/Savgol  Savitsky Golay filtering

Spl-PLS Spline inner relationships partial least squares
SNV Standard normal variate

UV/Vis Ultraviolet/visible spectroscopy

Vis Visible spectroscopy

VS-MLR Variable-selection multiple linear regression
WRR Weighted ridge regression

XRF X-ray fluorescence

XRD X-ray diffraction



Abstract

The research has included collaboration with number of different companies and
consortiums involving spectroscopic measurements with the application of

chemometric techniques.

For the ‘European Framework 5°, Standards Measurements and Testing (SMT)
chemometrics network consortium a certified reference dataset based on visible
metals complex spectra was developed. An inter-laboratory study was carried out
which demonstrated the between subject significant difference for chemometric

data analysis.

An industrial collaboration with BNFL, Springfield’s, this work consisted of
producing a PLS regression model which could be used to predict levels of uranyl
and nitrate in uranyl nitrate liquors samples, which were analysed by Raman

spectroscopy which was insensitive to temperature.

A substantial amount of work has been in the development of GMS with
multivariate calibration for process analysis. The GMS is designed for the analysis
of flowing mixtures, slurries and moisture content. The method is currently
hindered by the existing calibration method; here PCA, PLS and weighted ridge
regression (WRR) have been applied to the broadband, complex spectra to
successfully allow measurement of a range of samples including; aqueous,

organic, fermentation and non-homogeneous samples.
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1 Backg‘round

The use of process analytical chemistry (PAC) to monitor and control industrial
chemical processes is becoming more wide spread. The main centres involved in
research in this area are the American MCEC! and CPAC? and their British

counterpart CPACT".

The motivation to research into process analysis is to develop new techniques and
applications to allow real-time monitoring of industrial processes. Traditionally a
sample would be taken from the process then transported to the central site
laboratory for analysis; the results would be reported back to the plant control
personnel. The procedure could take anything from an hour to days to achieve the
analysis, during which time the process is continuing blind to the potential
knowledge of a process upset, which could lead to lost batches, lead times or
unnecessary over processing of a completed stage of the process. All of these
scenarios would lead to direct financial loss for the company. The logical step was
to move the analysis near to or directly within the process, producing on- or in-

line measurement systems.

In recent years a substantial proportion of analytical methods of measurement
have been successfully introduced as on/in/at line systems during a chemical
manufacturing process. The types of process analysis include®; Off-line, At-line,

in-line and on-line.
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The analysers required for process analytical chemistry need to be simple to
operate and maintain, substantially more robust to stand up to the harsh
environments (extreme temperatures, flammable atmospheres, etc.), that can be
encountered on a process plant (i.e., they must be intrinsically safe). Ideally

process analysers should be easily operated and require minimal maintenance.

In theory, all analytical methods should be able to be modified for process
analysis. Where possible, simple measurements are favoured; for example
determination of analyte physical properties such as pH or RI where one response
is given for the measurement. Where these are not sufficient to give the required

information, spectroscopic or chromatographic methods are often utilised.

Some fixed wavelength spectroscopic methods are relatively simple. Where
multiple wavelength spectroscopies are employed, interpretation of the
measurement responses is not always straight forward. These often require the use

of chemometric techniques to extract the desired information from a given signal.

The research undertaken in this thesis covers several areas grouped together with
the common theme of developing measurements for process analytical chemistry,

in particular, spectroscopic methods of analysis.
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2 Process analysis

When choosing a system for process analysis, there are several factors that require
consideration: knowledge of what chemical and physical properties are required
for the process, (e.g. temperature, pressure of the process stream); how fast the
process is progressing; time available for analysis (immediate or would every few

minutes suffice?); and the accuracy and precision of measurement required.

The measurements for process analytical chemistry fall into three main categories,
‘Wet Chemistry’ measurements are typically based on physical parameters (e.g.

pH, RI, density, calorimetry), but also include titrations and flow injection

analysis.

The remaining two categories are spectroscopy and chromatography. GC is often
used on-line for analysis in the petroleum industry for the measurement of octane
number’. The application of HPLC for on-line process analysis has been
discussed®, it can offer significant advantages over spectroscopic or flow injection
methods as it can analyse complex mixtures of a number of components over a
wide concentration range using a fairly simple calibration. Both types of
chromatographic method are fairly laborious to install as an on-line system. A
major problem with chromatographic methods is that they require regular
maintenance and for this the instrument is often required to be taken off line
meaning that the plant either has to be shut down or operate without analysis.
Also of concern are the flammable gases required for GC and the cost and

hazardous nature of many of the solvents required as mobile phases for HPLC.
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Whilst these methods are suitable for complex samples, on-line spectroscopy has

been taken up more readily due to its simpler instrumentation in comparison.

Applications of spectroscopy in process analysis include; UV/Vis, fluorescence,
chemiluminescence, NIR, MIR, Raman, atomic and NMR techniques7. On-line
MS has been shown to be suitable for monitoring bioprocesses®. Raman
spectroscopy is a relatively new method for process analysis. The main advantage
of this method is that it is virtually transparent to water, and therefore it is an ideal
solution for processes with a large amount of background water. The esterification
of ethanol by acetic acid has been successfully analysed by Raman spectroscopyg.

The disadvantage of this method is the reduced sensitivity in comparison to NIR

and MIR.

Many of the problems with process analysers are due to sampling; correct
sampling procedures to give true representation of the process are essential for
any type of process analysis. The necessary consideration include, is the sample
reaching the analyser, what is the sample homogeneity, is it separating or different

from the process stream, i.e., is the sample representative.

An industry-wide problem has been identified when implementing the chosen
process analyser system; these are conflicts in fixtures and fittings, operating
software, etc. A group under the CPAC umbrella has been commissioned to
investigate further into this area, ‘NeSSI’ (New Sampling/Sensor Initiative)'?, part

of the focus of this group is to simplify and streamline the sampling process.
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3 Experimental design

Any measurements and subsequent calibration model is only as good as the
samples it is based on, therefore the design and planning of experiments is
essential. Introduction to the principles and practices of experimental design can
be found in the books 'Design and Analysis of Experiments' By Montgomery'!
and 'Response Surface Methodology' by Myers and Montgomery'?. Software is
available to calculate optimal experimental designs (essential for more complex
designs) and include 'Design Expert™' by Stat-Ease Inc > and 'MODDE™'"* by
Umetrics. The computer-based designs are useful, reducing the number of
experiments required for complex designs. These designs are appropriate for

unusual design shapes that can occur when there are constraints on the levels of

the components.

The term 'Experimental Design' is described by Miller and Miller'® to define the
stages that; (i) identify factors which will influence the result of the experiment,
(ii) design the experiment so that the effects of uncontrolled factors are

minimised, (iii) use of statistical analysis to separate and evaluate the effects of

the various factors involved.

Experimental design is used in this work to plan the number and concentrations of
samples for experiments, especially where there are a several components. A
number of different design types have been used, for example, full / partial

factorial, mixture and optimal designs.
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3.1 Factorial design

A tradition approach to planning an experiment is to vary one of the factors at a
time, e.g. pH, concentration, time, temperature. When many factors are involved,
this can be a lengthy process. The major disadvantage of this method is that it can

not account for any potential interactions between the factors.

To overcome this issue, the principle of factorial experimental design, where
factors are varied together, is established. For most designs the factors are varied
at different levels; these are known as factorial design and have the notation of N*
where N is the number of levels and k is the number of factors. For a two level,
two factor design, the number of experiments required is 2 = 4, this increases to

2% = 8 and 2* = 16 as the number of factors in the two level experiment increases.

3.2 Optimal experimental design

Where several factors are varied, as opposed to two or three in factorial designs, a
response surface, more sophisticated than that of a cube of the factorial designs is
produced. Optimal designs are complex computer generated designs of which
there are several types; D, G, and F. D-optimal design is used in the scope of this
work as it will produce a maximum variance in the samples with a minimum
number of samples. It will work by producing maximum variation in the response

surface.
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4 Statisti.cal analysis

4.1 Determination of outliers

An outlier is a value in a set of results which appears to be very different from the
remaining values in the dataset. There are two main tests, Dixon’s'® and Grubbs'’,
to evaluate whether the suspected value is’ statistically an outlier. Dixon’s test
works by comparing the suspected value to the nearest value in the dataset to it.
Grubbs test is often used in preference to Dixon’s and is recommended for use by

ISO. These methods are only relevant for samples from a normal distribution.

4.1.1 Grubbs test

The test for outliers followed by Grubbs compares the deviation between the
suspected values and the mean and standard deviation of the samples in the
dataset. The null hypothesis (H,) is all the values come from the same population.
If G < Gerit, then the null hypothesis is true and the sample is not an outlier; if G
> Gerit, the null hypothesis is untrue and the sample is an outlier. The critical

values for G (Gerit) can be found in statistical tables.

|val ue —x Equation 1 Grubbs test for outliers
Y
Where:
G = statistic G
value = suspected outlier value
x = mean
s.d = standard deviation
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4.2 Analysis of variance

Analysis of variance (ANOVA) is a statistical technique that can be used to

identify variations in data and compare whether data is statistically the same.

Miller and Miller describe the technique well'®,

For this work, the most relevant use of ANOVA is the comparison of several
means within samples and between samples. For comparing between sample
variations, a one-tailed significance F-test is used because there is only one source
of independent variation. For the ANOVA test, the null hypothesis is that there is
not a significant variation between the samples. Similar to Grubbs test, if this is
true, then the F value calculated will be less than Fcrit and if there is a

significance difference in the Ferit > Fcalc.

The parameters used to calculate the F critical values in the F tables are based on
degrees of freedom. These are the number of independent pieces of information

that go into the estimate of a parameter'®.

For a one-way ANOVA test, comparing the difference between two datasets there
is between sample variation with degrees of freedom = h — 1, where hl= number
of samples. The within sample variation has degrees of freedom = h(n-1), where n
is the number of members. The total degrees of freedom is N - 1 where N = nh =

total number of measurements.
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5 Chemdmetrics

Generally, chemometrics concerns the application of statistical analysis to

chemical data to gain knowledge of the process/system under scrutiny.

The progress of the field of chemometrics has been well documented in a range of
tutorial and review articles (see Barry Lavine in 'Analytical Chemistry' every 2

. . . 2021222
years discussing the currents trends and major new developments 0212223

There are two main areas of chemometrics; supervised and unsupervised.
Unsupervised methods, such as PCA and cluster analysis, are used to distinguish
trends in the data without the benefit of reference information. The second area is
known as supervised modelling, where the reference information is known and

can be used for calibration. Such methods include PLS, PCR, MLR etc.

Examples of general introduction to multivariate calibration, including MLR,
PCR and PLS regressions can be found in the book?* and tutorial text®. A

1%, with proposal of applying

development in PLS has discussed by Wold et a
OSC to the data to remove effects which have no correlation to the -reference

information before PLS calibration.

Generally, standard methods of MLR and PLS with the modified RR method of
WRR are used for calibration in this work as the type of measurements calibrated
are often complex, requiring calibrations which will not raise as many questions

as the measurement.

10
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One of the issues of using chemometrics in industry has been the lack consistency
between software from different companies that is used manipulate the data. An
initiative, 'Chemometrics for On-line Process Analysis' (COPA)27, has been
formed as a partnership between the analyzer vendors, chemometrics software
vendors, and users to streamline the application of chemometric techniques to
process analytical methods. Part of the aim is to gain consistency between various
companies’ software packages to produce spectral data in a standard format,
which could then easily be transferred to any chemometric software for data

processing.

5.1 Unsupervised modelling

In this research unsupervised modelling in the form of principal component
analysis (PCA)*® has been used to track trends in spectral data. Alternative
methods of unsupervised modelling, such as multivariate curve resolution (MCR),
can also be used. An application of MCR to on-line spectroscopy can be found in

the paper by Miller®.

5.1.1 PCA

PCA is a technique for reducing the amount of data when there is correlation
present within the data. The decomposition of PCA is detailed in frame 5.1.1-1%.
The data matrix is reduced to a scores matrix and a loadings matrix. The scores
give the information regarding any trends between samples and the loadings the

variation and importance of the variables. The principal components are ordered

11
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such that the first accounts for the majority of the variation within the data leading
to the last which has least variation within the data. The maximum number of
principal components that can be extracted is the same as the number of samples.
However, this is often capped so that the total variation captured within the
principal components reaches a certain level, e.g. 95 % of the total variation in the

data or the level of the noise in the data, if it was known.

Frame 5.1.1-1 PCA Decomposition

For a matrix (X) with m rows and n columns the covariance matrix of X is;

X'X Equation 2

Cov(X) =
m-1

The data matrix (X) is decomposed as a sum of the outer product vectors t; and p;

and a residual matrix, E:

X=tp] +t,p; +...+t,p. +E Equation 3

The t; vectors are the scores; these describe how the samples relate to each other;
the p;i vectors are the loadings which describe how the variables relate to each
other. These are related to eigenvectors in the covariance matrix:

Cov(X)p, =4p; Equation 4

Where A; is the eigenvalue associated to the eigenvector p; (loadings). The original
data matrix is related to pairs of scores (t;) and loadings in the following equation;

Xp, =t, Equation 5

! i

12




Chapter 1: Introduction

The original data matrix multiplied by the loadings (p;) will result in the scores
matrix. The eigenvalue shows the amount of variance between the t; and p; pairs.

The loadings plots from PCA can be used to identify noise in the data. If the data
hasn’t been mean centred then the first loading plot will be the average spectrum

of the data.

5.2 Supervised modelling

Multivariate calibration enables prediction of analyte concentration in the
presence of varying amounts of spectrally active interferences (their contribution
is modelled). In applications of multivariate calibration the aim is to predict a
property of interest from a multivariate measurement by‘ using a model’!.

The objective of multivariate calibration is to build a model that describes the
relationship between the dependent variables (concentrations) and independent
variables (spectra). Validation of the calibration model is essential to ensure that it

is able to predict independent samples.

The method of MLR searches for a single factor of correlation between the
predictor variables (e.g. spectra) and the predicted variables (e.g. concentrations).
It is the simplest method which is most often successful in fairly simple situations.
Variable selection procedures, when used in conjunction with MLR (VS-MLR),
have been shown to improve prediction®’. This method is seriously affected by
collinearity within the X-block (spectral) data producing unreliable model

coefficients which cannot successfully be employed to predict test samples.

13



Chapter 1: Introduction

If MLR is unsuccessful for calibration then PCR can be tried, this is a factor
analysis method that maximises the variance in the data to improve prediction.
This method is an extension to PCA. As for PCA the data is separated into a
number of factors (LVs) the calibration model regression is then performed based
on these factors. If PCR is not chosen, then PLS can be employed, this finds
factors as for PCR but seeks to achieve maximum variance and correlation in the
data, maximising the covariance in the data. As PLS will find the correlation and
variance in the spectra it is often considered to be superior to PCR and subsequent
models regularly require fewer latent variables to capture the information in the

data.

The main drawback of the factor analysis methods of PCR and PLS is the number
of factors to be included has to be decided. By using too few LVs, features in the
original data maybe excluded. If too many LVs are used, information maybe
included that does not relate to the reference data, this can cause interference and

instability in the calibration model.

Another regression technique is ridge regression>. This is calculated in a similar
way to MLR but the inversion matrix is stabilised by adding a constant to the
diagonal. The benefit of this method is that the data is not reduced into factors

which then have to be decided for inclusion.

For the methods described in this section it is assumed that the error is only within

the dependent variables, but this is can limit the ability to produce a realistic

14
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calibration model in practice. Faber and Kowalski** suggest an alternative
expression which also takes into account the measurement error propagation of
the independent variables. For this it is assumed that there is an exact linear
relationship between the dependent and independent variables, the resulting

expressions produced are validation for classical errors in variables models.

5.2.1 Partial least squares

A tutorial describing PLS regression was written by Geladi®. The PLS algorithm
can take the form of either SIMPLS or NIPALS. Also, it can follow PLS1 or 2
procedures. For PLS1 the calculation is for only 1 component at a time, whereas

application of PLS2 will allow calculation of multiple components.

The number of latent variables chosen to model the data is often decided based on
how many are required to give the lowest error of prediction with a sensible
number of variables in the samples considered, i.e., if there are 4 components in
the samples, the use of 10 LVs is likely to over fit the data. The number of LVs
used is generally where the error in prediction of the calibration and test dataset
change very little (often when there is less than 2 % improvement) with the
addition of more latent variables. The RMSPE is the error in prediction of
samples, and the equation can be seen in section 5.2.3 where procedures for

validating models are discussed.

In addition to the RMSPE, the correlation coefficient of the line of best fit of

predictions and prediction residuals should also be taken into account.

15
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Often it can be better to choose too few LVs than too many because this can lead
to over fitting of the data. This may lead to a situation where the model works
perfectly for the calibration data but when used for validation or unknown data

results in very poor errors of prediction.

5.2.1.1 PLS SIMPLS

This is a later development of PLS to that of the traditional NIPALS algorithm.
SIMPLS is often much quicker to compute, but this is becoming less of a factor as
computers processing capability increases. A difference between SIMPLS and
NIPALS is that the x-variance (spectral) information is contained within the loads
and instead of the scores. For univariate calculations the results are the same for
both types of PLS algorithm, but for multivariate applications there can be

differences in results.

5.2.1.2 PLS NIPALS

For the standard form of the PLS algorithm, non-iterative Partial Least Squares
(NIPALS)* has been used. This method is useful when there is more than one
predictor variable. The NIPALS algorithm (described in frame 5:2.1.2-1)
calculates the scores (t), loadings (p), weights (w). It can work for more than one
predictor variable, and the (y) scores (u) and loadings (q) are predicted for the Y-
block. Also calculated are the ‘Inner-relationship’ vector coefficients (b) which

relates to the X- and Y-block scores.

16
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Frame 5.2.1.2-1 PLS decomposition

The column of Y, y; with most variance is the starting estimate of u;.

In the X data block:
w = X"y,
b
1
t, = Xw, In the Y data block:
_ujt
U o] 4
u, =Yq, The X data block loadings are calculated and
scores and weights re-scaled accordingly;
o Xt
=t
Jeit.]
P _ Piog
Inew —
"plold
tinew = tiow lplold "
Wi =Wy P 1o The regression coefficients b is determined for the
inner relationships
uTt Once the scores and loadings for the first latent
b —_1 1 . .
S variable are calculated the residuals are
1°1 .
determined;
E, =X-tt]
F,=Y-buq/ The method is repeated but this time for the next

latent variable. Where X and Y are seen they are
replaced by residuals E; and F;.

PLS forms the following inverse matrix;

5.2.1.3 Polynomial PLS

The simplest approach for fitting of data proving to be non-linear is that of
polynomial PLS. For this the inner relationships are fitted to a polynomial

function of desired order®’.

17
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5.2.1.4 Spline PLS

Nonlinear partial least squares with spline inner relationships are described by
Wold®® and in a tutorial by Frank®. Spline PLS (SPL-PLS), is an extension of

PLS for non-linear inner relationships.

Splines are function estimates that are obtained by fitting piecewise polynomials.
The x-range is split into intervals; these intervals are separated by the knot
locations. A spline function is defined by the number of knots, their position and
location and the coefficients of the polynomial fitted at each location. The degree
of the spline ranges from zero upwards, but 1% or 2™ order is most commonly

used to prevent overfitting.

5.2.1.5 Orthogonal signal correction

The method of orthogonal signal correction (OSC) was introduced by Wold*,
This is an alternative pre-processing method that aims to remove systematic noise
whilst leaving as much information relating to the concentrations of sample
spectra. Pre-processing methods used to remove baseline drift and systematic
noise, such as derivatisation, can also remove information relating to the Y matrix
(concentrations) of the spectra. In this method the concentrations are included in
the calculation and the aim is to remove factors which are orthogonal to Y, i.e.

totally unrelated to the concentrations.

Since this first publication several modifications have been made to the approach;

two examples of theses are by Fearn*' and Brown*’. The Fearn method applies the

18



Chapter 1: Introduction

same approach but using a modified algorithm with the aim of improving
prediction of subsequent calibration models (e.g. PLS). Brown's method is
'Piecewise OSC' (POSC) based on Fearn's algorithm but local features are selected
in the spectra and OSC performed over regions instead of the entire spectra at
once. Brown has compared the method to the original and Fearn's and found that
PLS models based on POSC data required fewer latent variables and with better

predictive power for the given (NIR) data.

5.2.2 Ridge regression

Ridge Regression (RR) is method that is based on correlations within the data. It

works by adding a value (6) to the ridge (or diagonal) of the correlation matrix*®,

br(@) = (F'F + 6L)'Fy Equation 6

Where; bg regression coefficients
0 Ridge constant (positive value between 0-1)
F mean centred X matrix

F'F correlation matrix
Y predicted variable (e.g. concentration)
I identity matrix, size r x r

(r = number of data points/wavelengths)

This has the effect of maximizing the variation and orthogonality of the data. A
benefit is that the procedure can improve the signal to noise ratio of the spectra.

RR is ideal for ill-conditioned/collinear data where X'X (inverse matrix) is near
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to or actually singular. Under these conditions problems are incurred when
calculating PLS models. Another advantage of the RR over PLS is that it does not
decompose the data into latent variables and hence removes the issue of which

latent variables to include when modeling data.

5.2.2.1 Weighted Ridge Regression

An adapted version of this method is Weighted Ridge Regression (WRR). For this
method it is not necessary to calculate the values of & allowing the regression

coefficients to be computed more quickly.

b, =(F'F +0xdiag(F'F))"'F'Y Equation 7

In this work, calibration models have been calculated using this method instead of

the standard RR.

5.2.3 Validation of calibration models

Once a calibration model has been produced it can be used to predict the levels of

unknown reference information in samples.

To produce a calibration model the samples are separated into training sets which
are used to build the model, and validation sets which are used for validation of
the model. The test set can either be randomly selected from the samples available

or from additional samples from an experimental design. A common method is to
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randomly separate the samples and 2/3’s make the training dataset and 1/3 the

validation dataset.

The cross validation method of ‘leave-one-out’ has been used where the number
of samples is small or as an initial investigation for calibration. The leave one out
method (CV) is where a sample is removed from the original dataset and used as
the validation set and the remaining samples are the test set, the model is built and

validated and this repeated until all the samples have been removed.

The leave-one-out method can be applied to the training samples to identify the
model conditions with lowest error of prediction and then the test samples
predicted based on this model. From the predicted values the prediction error sum
of squares (PRESS) and root mean square value of prediction error (RMSPE)44

are determined.

PRESS =Y (yi— 1) Equation 8
RMSPE = (PRESS/n)"”? Equation 9
Where; n, Number of samples in test/validation set
Y Actual value
Vi Predicted value

When evaluating a model it is also necessary to plot the residual prediction error

for each sample as this can identify rogue samples with unusually high error in

comparison to the remainder of the dataset.

residual = (y;— ;) Equation 10
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5.2.3.1 Determination of correlation

The correlation coefficient is a value between -1 and 1 that is used to give an
indication of the closeness of the relationship between dependent (measurement)
and independent (reference information) values. The product moment correlation
coefficient (r) is calculated as in equation 11. For strongly correlated data the

value of r is close to +/- 1%, Values closer to 0, indicate no correlation in the data.

>{ (x — )_C)( y - ;)} Equation 11 Product moment correlation

r= {[Z (xl —J_C)z][Z (y' —;)2]}% coefficient

Where;

X; = actual value

yi = predicted value
% =mean of actual values

y =mean of predicted values

The correlation coefficient is often calculate from the line of best fit of a straight

line graph (equation 12) of actual vs predicted information.

y=bx+a Equation 12 Equation of a straight line

Where b is the slope and a is the intercept on the y-axis.

This is used for two situations in this work (i) to give the goodness of fit between
actual and predicted values from calibration models; (ii) the correlation coefficient

is calculated between reference information and each variable in the spectra to

determine the correlation before calibration.
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5.2.4 Improvement of calibration models
It can be beneficial to apply scaling, derivatisation, smoothing or combinations of
these to the data. These procedures can maximise the variation in the data, reduce

spectral noise, improve the correlation between the dependent and independent

variables and reduce baseline variation and drift.

5.2.4.1 Scaling methods

When applying any scaling method to data used for calibration models great care
should be taken to ensure that the average mean of any training data is consistent
with that of the validation and prediction data. If these are different the re-scaling
of prediction information can be affected by propagation of errors due to

inaccurate factors in the scaling.

Backeround subtraction

Background subtraction removes the spectra of zero time or zero component from
the remaining spectra. This allows the variance within the spectra to be

maximised by removing the magnitude of the initial spectra.

Mean centering

A common scaling technique is that of mean centering, where the means of thel
response variables, (spectra), and the dependent variables (concentrations) are
subtracted, removing the magnitude from the data. For the majority of
chemometric algorithms, e.g. PCA and PLS it is assumed that the data is mean

centred prior to analysis. In a short communication by Seasholtz and Kowalski*,
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it was identified that in certain situations it is better not to mean centre the data i.e.
where the response data (i) vary linearly with concentration, (ii) have no baseline

(when there is a component with a zero response that does not change in
concentration) or (iii) have no closure in the concentrations (for each sample the

concentration of all the components add to a constant, e.g. 100 %).

Autoscaling
To autoscale, the mean is subtracted from each variable and then divided by the
standard deviation. The data is weighted due to variance and not magnitude; this

can be useful when the components are different e.g. concentration, temperature.

Range scaling

This method is also known as normalisation; it converts the measurement between
its maximum and minimum value such that the scaled value lies between 0 and 1.

The drawback of this method is that it can be supersensitive to outliers*’.

Standard normal variate

Standard normal variate (SNV) can be used to correct for a drifting baseline. It

works by autoscaling along the samples.

5.2.4.2 Derivatisation and smoothing

Smoothing is a filtering method that can be used to remove noise from a data set,
two example methods are; 'Moving Average' and 'Savitsky Golay'®. For moving
average the spectra is split evenly into groups, the average of each group is

determined then the spectrum is reformed using only the average points. The
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Savitsky Golay filtering method is similar; however, this time each point in the
group has a weighting with the points furthest away from the central point being
weighted the least and the central point being weighted the most. This method is
more selective than the simple moving average. The window size for the
smoothing filters is often taken to be approximately the square root of the number
of data points in spectroscopic data. A drawback of the use of spectral smoothing
is that the spectral resolution can be reduced. Derivatisation is used to remove
offset or curvature from the data, second derivative is often taken in UV/Vis and
NIR* to sharpen and resolve overlapping peaks in spectra. This can result in
spurious satellite peaks emerging in the spectra. With the Savitsky Golay
algorithm, it is possible to apply smoothing and derivatisation simultaneously to

reduce this problem.

5.3 Application of chemometrics to spectroscopic data

The commercial benefits of process analysis have been discussed in section 2,
including the particular benefits of spectroscopy for measurement. The drawback
of spectroscopic methods is that a single response at one wavelength is often not
sufficient for the determination of analyte, and an entire spectrum at multiple
wavelengths is required. It is then necessary to use chemometric methods to’

extract the required information from the spectral measurements.

Chemometrics can also be applied to remove artefacts from spectra which were a

result of transferring the measurement to an on-line process environment, e.g.
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temperature variation, effect of cables used to transfer the measurement signal

from the spectrometer to the place of process measurement.

A paper by Smola®® discusses the qualitative and quantitative analysis of
oxytetracycline by NIR. The aim of the work was to replace time consuming
analysis of raw materials, which required sample preparation, with analysis by
NIR spectrometry. Reference analysis was by the Karl Fisher method (water
content) and a colorimetric assay. The results found that with the aid of
derivatisation (2" order) to remove baseline shifts and handling scattering effects,
PCA was used to develop a cluster model that could then be used for sample
identification. Derivatisation was also used to pre-treat the samples prior to PLS
regression to remove between sample variations. The PLS models could predict
the water content with test samples with a standard error of +/- 0.0708. PCR was
also applied, but gave higher errors of prediction. The work showed that NIR
spectroscopy was suitable for the desired application and once implemented will

result in cost reductions being achieved.

Another application of chemometrics to NIR spectroscopy has been the analysis
of a pharmaceutical process, including a study of different preprocessing
techniques®'. The aim of this work was to investigate the feasibility of replacing
an off-line HPLC analysis of a pharmaceutical process with on-line NIR. The
analyte solution is chemically complex and greater knowledge was desired. A
range of pre-processing techniques have been investigated to maximise the

response to the analytes of interest and reduce unwanted variability due to
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physical parameters such as temperature and scattering effects. The preprocessing
methods included standard techniques, normalization, derivatisation and some
recent advances in preprocessing methods such as multiplicative scatter correction
(MSC), OSC and optimised scaling. PLS calibration models were used to predict
the analytes of interest, except for where optimised scaling was applied, which
used PCR. The best model was PCR based on preprocessing by first order
differentiation and optimised scaling. Optimised scaling has not had a wide uptake
since its introduction in 1992. Briefly the method introduces a scaling vector for
each sample, for least squares the intensity of one sample is zero and another 1. A
search should be performed to optimise according to the reference sample chosen
for an optimal model. This sample dependence is a significant drawback of the

method.

The use of Savitsky Golay derivatisation and smoothing to enhance chemical
signals is discussed in reference 48. This involved the investigation of Raman
spectra which included some that had a higher response due to fluorescence,
which varied between samples, than Raman peaks of interest. The spectral
correlation coefficient and PCA analysis demonstrated the superiority of 2" order
Savitsky Golay smoothing and derivatisation to suppress background noise and

background signals of high intensity and variability.
The application of chemometric techniques to spectroscopic data is liberal, and as

shown in the previous examples, often more than one method is applied to the

data to gain the most appropriate technique, usually that with lowest error of
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prediction. This approach where dependency on a certain chemometric method is
potentially problematic, two scenarios are that the data is over-processed to
produce unstable calibration or that a measurement method is deemed unsuitable

when really insufficient time or expertise has been allocated to the data.

The drawback of apply different techniques to data is that it could become unclear
if a measurement method is/is not suitable depending time period allocated by the
user has for the chemometric data processing. It could be felt that if enough pre-
processing methods and calibration methods are applied to data then eventually
there will be correlation between the dependant and independent measurements.
During this work the correlation between the raw measurements and the reference
information is investigated to establish if there is real correlation in the data in
first instance without the need for extensive data processing, and where this has
been applied to keep a realistic view on whether the measurements really are of

any use.

A collaborative study has found that the between user variation for the type of
data processing/pre-treatment methods applied and the evaluation of outliers
within the data varies considerably between those performing the data analysis
(this area is considered further in chapter 2). These results highlight a drawback of
chemometrics in that it is individual-dependent, which could lead to false

negatives and positives depending on who performed the analysis.
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The methods of PLS, PCR and NN used for calibration in much of the examples
discussed in this section all have a number of variables which need to be chosen
for the calibration model. Part of this work will involve the investigation of WRR
for calibration which has substantially fewer input variables, this should result in a

more stable model and if applied, less between-user variation.

The application of WRR to data is the only non-widely recognised method used in
this work. This was to give maximum confidence in the new measurement
techniques developed and not have the type of data processing being

controversial.

5.4 Chemometric software and calculations

All Chemometric techniques have been performed using Matlab™ and the
PLS_Toolbox™ v2.1 (Eigenvector research, Inc., Manson, WA 1998) running
under MatlabR11 or 12 (The MathWorks Ltd, Matrix House, Cowley Park,
Cambridge, CB4 OHH). The PCs used for the data analyses were either a PIII 650
MHz with 258 RAM under win2000 or a PIV 1500 MHz with 512 RAM

operating with Windows*".
Matlab is a programming language and data visualization tool. The programme

works in a desk top environment similar to Windows. The following desktop

windows were used in this work;
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Command window:  Issues commands for Matlab processing, normally one line
functions at a time.

Command history: A running history of previous commands typed into the
command window

Workspace window: This is a GUI that is used to view, load or save files which

are currently in use.

Matlab script files are used when performing a number of repetitive commands or
calculations. Examples of these for calculation of correlation coefficient at a range

of wavelengths and performing WRR are appendixed.

5.4.1 Procedures for PCA analysis

The PCA results are given as plots of the sample loadings for each spectral
variable for each principal component, the sample scores for a range of principal
component are plotted against each other. The percentage variance in the spectral
data captured by each principal component is reported and the total percentage

variance for a number of principal components is given.

5.4.2 Procedures for PLS analysis

PLS is carried out by two methods. Both can be used for PLS1 type or PLS2 type. °

The first employs the 'MODLGUTI' function of the PLS_Toolbox, a graphic user
interface useful for initial calculations. For the second method script files are
written to perform the calculations giving greater freedom and control over the
types of calibration models produced with an expanded variation in the sample

selection, pre-treatment and filtering methods.
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5.4.2.1 Method 1: Employing a graphical user interface

The graphical user interface is launched by typing ‘MODLGUTI’ at the Matlab
command line. The spectra and reference information can be loaded then the
function used to perform limited pre-treatment methods and set cross validation
methods. The main output of use is a plot of the RMSEC and RMSECYV for each
set of reference information data at a number of latent variables. The screen for

the MODLGUI can be seen in figure 5.4.2.1-1.

Figure 5.4.2.1-1 Screen for the PLS 'MODLGUTI' function
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5.4.2.2 Method 2: With Matlab command line

PLS_Toolbox files are called from the Matlab command line and are used to
perform NIPALS PLS, polynomial PLS and Spline PLS. The sample spectra and

reference data are loaded and any scaling or filtering to the data applied, and the
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model calculated. The calibration model is then used this to predict the reference
information of unknown spectra at a range of latent variables. The command line
I/O (input/output) function for the various types of PLS used in this work is

described in section 6.1.
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6 Appendix

6.1 PLS_Toolbox Matlab functions

6.1.1 PLS NIPALS

Frame 6.1.1-1 Calculation of PLS NIPALS

1/0 function: [b,ssq,p,q,w,t,u,bin] = pls(x,y,maxlv);

Input information;
X = training spectra
y = reference information

maxlv = max no. of LVs

Output information;

b = regression vectors

ssq = the fraction of variance used in
the x and y matrices

p = spectra loadings

q = reference information loadings
w = spectral weights

t = spectral scores

u = reference information scores

bin = inner relation coefficients

Frame 6.1.1-2 Prediction based on PLS NIPALS

I/0 function: [yprdn,resn,scoresn] = modlpred(newx,bin,p,q,w,lv,plots)

Output information;

yprdn = predicted reference information
resn = residuals

scoresn = Scores

6.1.2 Polynomial PLS

Frame 6.1.2-3 Calculation of poly-PLS

I/0 function: [p,q,w,t,u,b,ssqdif] = polypls(x,y,lv,n);

Input information;

X = training spectra

y = reference information
lv=no. of LVs

n = no. inner relationships

Output information;

p = spectra loadings

q = y-block loadings

w = x-block weights

t = x-block scores

u = y-block scores

b = spectra inner- relation coefficients
ssqdif = variance in the data explained
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Frame 6.1.2-4 Prediction of poly-PLS

I/0 function: ypred = polypred(x,b,p,q,w,lv)

Output information;
ypred = predicted reference information

6.1.3 Spline PLS
Frame 6.1.3-5 Calculation of Spline-PLS

I/0 function: ; [P,W,T,U,C,cfs,ks,ssq] = spl_pls(x,y,knots,deg,lv,plots);

Input information; Output information;
X = training spectra P = spectra loadings

y = reference information W = x-block weights
Iv=no. of LVs T = x-block scores
knots = no. knots in the spline U = y-block scores
deg = degree of spline C = inner coefficients

cfs = spline coefficients
Is = knot locations
ssq = variance captured by model

Frame 6.1.3-6 Prediction of Spline-PLS

I/0 function: ypred = splspred(newx,P,W,C,cfs,ks,lvs,plots)

Output information;
ypred = predicted reference information

6.1.4 OSC
Frame 6.1.4-7 Calculation of OSC spectra

I/0 function: ; [nx,nw,np,nt] = osccalc(x,y,nocomp);

Input information; Output information;
X = training spectra nx = OSC spectra
y = reference information nw = weights
nocomp = no. OSC components np = loadings

nt = scores

PLS Nipals is the carried out on the OSC spectra.

Frame 6.1.4-8 Calculation of OSC to unknown spectra

I/0 function: [newx] = oscapp(x,nw,np,nofact);

Output information;
newx = OSC corrected new spectra
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6.2 PLS_Toolbox scaling functions
Frame 6.2-1 Scaling methods

Pre-treatment | Function name Input Output
Median med(x) X = spectra
Mean centre mncn(x) X = spectra
Autoscaling auto(x) X = spectra
SNV auto(x") X = spectra

6.3 PLS_Toolbox Savitsky Golay filter

Frame 6.3-1 Savitsky Golay smoothing and derivatisation

I/O Function: [y hat,cm] = sav

ol(y,width,order,deriv);

Inputs

Outputs

X = spectra

width = no. of points in filter
order = polynomial order
deriv = derivative order

[y_hat] = smoothed and differentiated matrix
c¢m = matrix coefficients

6.4 Matlab script files

Frame 6.4-1 Calculation of correlation coefficient throughout spectra

% Calculation of correlation coefficient where no. variables = 2046

clear all

load spectra.asc

load conc.asc

fori=1:2046;

result = corrcoef(spectra(:,i),concA;
finalresult(i) = result(2,1);

end
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Chapter 2: Development of a Reference Dataset Based On Visible Metals Spectra

1 Introduction

This work was for the European Framework 5, 'The Standards Measurements and
Testing' programme of the European Network Consortium. The aim was to
produce a spectroscopic reference dataset with an absolute minimum of
experimental and hence spectral errors. The dataset will then be used for a ‘round
robin study’ to act as an inter-laboratory comparison, but for chemometric data
analysis instead of chemical analysis. The bench mark dataset will then be
universally available for downloading from a website. This could then be used in
the development of new applications and algorithm design. In addition to this, an
investigation into the effect of measurement based on two different types of |
spectrometer will be undertaken. Samples will be measured using a standard
analytical spectrometer and industrial spectrometer designed for use on industrial

process plants.

The use of inter-laboratory studies for chemical analysis, to ensure that there is no
bias in results between different laboratories, is now commonplace. Standard
reference materials, with known composition and confidence intervals, are
available from most chemical suppliers. The aim is to extend this principle to

results obtained by different users for multivariate calibration of the same data.

Reference datasets have already been produced by NIST, with the objective that:
“The purpose of this project is to improve the accuracy of statistical software by
providing reference datasets with certified computational results that enable the

objective evaluation of statistical software’!.
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There are several datasets which can be downloaded from the NIST websitez, each
of these have certified mean and standard deviation estimates for the results of
linear regression and non-linear regression. The datasets are not spectroscopic and

the certification is based on a pre-determined mathematical method of analysis.

The European framework has carried out a similar study to that pursued here; they
have published a discussion paper of the preliminary results®. This study was
based on NIR spectra of natural forage samples collected over 3 years, which
were used to predict the levels of moisture and crude protein content. The study
found that for the six participants the RMSEPs were acceptable but the actual
predictions varied considerably between them. During the development of a
reference dataset based on visible metals spectra a larger number of subjects will
participate. The dataset produced will follow an experimental design strategy and
will be measured in one day to minimise variation in the spectra from

instrumental drift or environment conditions.

For the study, a set of accurate, reproducible spectra was required. Metals
complexes following a design of experiments strategy were chosen to be analysed
by visible spectroscopy. Solutions of cobalt, nickel and copper salts are
traditionally used as standard solutions for UV/Vis spectroscopy4. The French
Standards organisation ‘Laboratoire National d’Essais’ (LNE) use nitrates of these
metals. The four transition metals jons chosen were cobalt (Co**), chromium
(Cr*), copper (Cu*) and nickel (Ni**). Each has a different absorption spectrum

in the visible region of the electromagnetic spectrum with maximum absorption at
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different wavelengths’. The metal ion solutions were in nitric acid to prevent

oxidation.

The solutions were prepared in nitric acid to due good stability and minimum

interference in the spectra samples spectra in the visible region.

Three main datasets were produced. The first was the pre;study that consisted of
spectra simulated from those of the pure metals spectra; the second was recorded
on a low-resolution spectrometer that was designed for industrial process
monitoring. The third was recorded using a standard analytical spectrometer. For
both of the second and third datasets duplicate samples sets were produced where

the entire procedure was carried out on two consecutive days.

Initial investigations (PCA and PLS) were performed on all the datasets. The
dataset which did not highlight any spurious samples after PCA, and with minimal
errors of prediction after PLS regression, was chosen for use in the study. The
subjects were provided with two predefined datasets. The first was to be used for
training of the regression model, using this model, the subjects were to predict the
volume of metal ions in a second dataset of test samples. The trial consisted of 20
participants with a range of experience in multivariate calibration. The instruction
given to the participants was to produce the best calibration model in their opinion
from the training samples and then to use this to predict the test samples. The

user’s selection of software, algorithm and sample pre-treatment methods were
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unrestricted. The predicted values were reported along with the model details and

comments of outlier samples.

1.1 Beers law

For UV/Vis spectroscopy the absorbance spectrum is related to sample
concentration using Beers law®, equation 13. When considering a mixture of
multiple absorbing analytes the absorbance at a given wavelength is the sum of
the absorbance of each analyte (equation 14). Based on this, the absorbance
spectrum of a mixture can be estimated using the absorbance spectrum of each

analyte at known concentration and pathlength.

A= ¢&bc Equation 13 Beers law

A=¢&bc +£;b62' +gbc +ebc+..... Equation 14 Application of Beers law
to mixtures

Where;

A = absorbance
£ = molar absorptivity (cm™mol™1)
b = pathlength of radiation (cm)

¢ = concentration of absorbing analyte (mol/l)
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2 Experimental

2.1 Initial measurements of 1000 pg/ml metal ions

The UV/Vis spectra of nitric acid, 5 % (v/v), and solutions of cobalt, chromium,
copper and nickel (1000 pg/ml) in nitric acid 4 % (v/v) were recorded. At the
maximum absorbance for each metal ion, the wavelength and amount of

absorbance was noted.

2.2 Experimental design

The maximum absorbance of the 1000 pg/ml metals ions was less than 0.3 for
each of the components. 10,000 pg/ml solutions are used for the actual samples
for higher absorbances. The samples were constrained so that the sum of the
absorbance was less than 1 absorbance. A full factorial two level design was used
to calculate the concentrations of a set of training samples in table 2.1-1. The test
sample concentrations (table 2.1-2) were randomly generated within the
constrained concentration limits of the experimental design. In addition to this, for
samples 23 — 26 at least one of the metals was excluded from the sample, the
remaining concentrations were randomly generated within the limits of the

designs concentration range.
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Table 2.1-1 Table of training samples for analysis by visible spectroscopy,
metal ion composition: Volume (ml) of metal ion standard, 10,000 pg/l, made

up to 10 ml with nitric acid, 5 % (v/v)

Sample number Co™ Cr’ Cu” Ni~*
1 3.2 1 1.2 2.4
2 4 1 1.2 2.4
3 3.2 1.4 1.8 2.4
4 4 1.4 1.8 2.4
5 3.2 1 1.2 2.4
6 4 1 1.2 2.4
7 3.2 1.4 1.8 2.4
8 4 1.4 1.8 2.4
9 3.2 1 1.2 2.8
10 4 1 1.2 2.8
11 3.2 1.4 1.2 2.8
12 4 1.4 1.2 2.8
13 3.2 1 1.8 2.8
14 4 1 1.8 2.8
15 3.2 1.4 1.8 2.8
16 4 1.4 1.8 2.8

Table 2.1-2 Table of test samples for analysis by visible spectroscopy, metal
ion composition: Volume (ml) of metal ion standard, 10,000 pg/l, made up to

10 ml with nitric acid, 5§ % (v/v)

Sample number Co®" Cr’ Cu’ Ni*"
17 3.2 1 1.7 2.6
18 34 1.4 1.6 2.8
19 3.7 1.1 1.7 2.7
20 3.2 1 1.3 2.7
21 3.7 1.2 1.8 2.5
22 3.8 1.3 1.4 2.4
23 0 1.1 1.3 0
24 3.8 0 1.6 2.6
25 3.8 1.3 0 2.7
26 0 1.4 1.5 0
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2.3 Preparation of solutions

The solutions were prepared in ‘A’ grade 10 ml volumetric flasks, these were

washed and rinsed with 5 % (v/v) nitric acid prior to preparation.

2.3.1 Initial measurements of 1000 pg/ml metal ions
The spectra of 1000 pg/ml of Co®*, Cu®*, Cr** and Ni?* single element standards

from QMx laboratories ltd, Thaxted, CM6 2PY, UK were recorded.

2.3.2 Sample measurement based on 10,000 pg/ml metal ions

The metal solutions were added to the flasks in a random order. For the 26
samples and 4 different metal types there were 104 additions to the flasks. These
additions, for each sample, were numbered 1-26 for cobalt, 27 — 52 for chromium,
53 - 78 copper and 79 — 104 for nickel. The numbers 1-104 were randomised and

the resulting order used for the sample preparation.

Reagents

For the two experiments measured on different spectrometers, two sets of reagents

were purchased from the same batches from QMx.

Table 2.3.2-1 Table of reagents used for visible metals spectra

Reagent

Nitric acid reagent blank (500 ml), HNO3, 5 % (v/v)

Single element cobalt std (250 ml), Co*" in 4 % HNO3, 10,000 + 30 pg/ml

Single element chromium std (250 ml), Cr’* in 4 % HNO3, 10,000 + 30 pg/mi

Single element copper std (250 ml), Cu”” in 4 % HNO3, 10,000 + 30 pg/ml

Single element nickel std (250 ml), Ni*" in 4 % HNO;, 10,000 + 30 pug/ml
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2.4 Sample analysis

The samples were analysed in a random order. The duplicate sets for each

spectrometer were prepared and measured on consecutive days.

2.4.1 Analysis by an analytical spectrometer

Spectrometer: Perkin Elmer UV/Vis lambda Bio 10°

Control PC: Pentium (I) 166 MHz proceséor, 16 MB RAM
Operating software: UV WinLab v2.80.03

Scan Range: 1000 — 350 nm (900 — 350nm for pre-study)
Scan Speed: 960 nm/min

Resolution: 0.5 nm

Smoothing: None

Number of data points: 1300 (1100 for pre-study)

* Chalfont Road, Seer Green, Beaconsfield, Bucks, HP9 2FX, UK.

2.4.2 Analysis by a process type spectrometer

Spectrometer: Carl Zeiss double beam UV/Vis spectrometer”
System: MCS 500

Control PC: Pentjum (II) 300 MHz processor, 64 MB RAM
Operating software: Aspect plus

Cycle mode: Single

Scan Range: 738.3614 — 349.8884 nm

Resolution: 2.1167 nm

48



Integration time: 350.0 ms

Number of flashes: 7
Accumulation: 50
Number of data points: 184

* Clairet Scientific, 17 Scirocco Close, Moulton Park Industrial Estate,

Northampton, NN3 6AP, UK.
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3 Results

3.1 Pre-study

The spectra of the pure metal ions of Co®", Cr**, Cu®* and Ni®* in nitric acid are
plotted in figure 3.1-1. The absorbance spectra of each of the metals are distinctly
different. When overlaid in figure 3.1-2, regions where the maximum absorbance

has the potential to be masked by other components are apparent.

Figure 3.1-1 Visible spectra of pure metal ions (1000 pg/l)
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Figure 3.1-2 Visible spectra of 1000 ug/l metal ions
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From the pure spectra an experimental design was produced so that the maximum
sum of all the metals absorbance was not greater than 0.8 to ensure that the actual
sample used in the trials were within the linear range for visible spectra. An
additional test set of 10 samples was included for validation and testing of future
models. The test samples were made up of random concentrations within the
limits of the design, in some cases, deliberately containing only 2 or 3 of the
metals components, to investigate if some users or software in the study would

consider these outliers.
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The visible spectra of the metal ions solutions have been plotted in two groups,
figure 3.1-3, those including and those excluding samples at zero concentration.

Visually there is a clear difference between the two sets.

Figure 3.1-3 Visible spectra of metal ion solutions; samples with all metal

ions present
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Figure 3.1-3 Visible spectra of metal ion solutions; samples with zero

concentration for some metal ions
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The spectra were mean centred and PCA was applied to investigate if the zero
concentration samples are identified as outliers by the student T? and Q residual

tests.

The samples scores plots, in figure 3.1-4, show that those containing all four
components are within the 95 % limit of the model. The samples with one or more
missing components, numbers 22 — 26, are often outside the 95 % limit. These
could be mistaken for outliers and removed from the dataset when in fact they are

part of the experimental design.
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Figure 3.1-4 PCA samples scores plots, residual Q values and T? value results

for the simulated metal ion solutions spectra based on a 4 PC model
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3.1.1 Measurement of four test metal ion solutions spectra

Four samples including those of lowest and highest concentration of each metal

ion were prepared and analysed using an analytical spectrometer. The spectra can

be seen in figure 3.1.1-1.

Figure 3.1.1-1. Visible spectra of test metal ion solutions
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The test samples were prepared with 1000 pg/l metal ion standards, consequently

the absorbances are 1/10™ lower than the actual samples which use 10,000 pg/l

metal ion standard.

The correlation between the actual test samples measured and the simulated

spectra in dataset 1 was calculated to be above 0.998 for all four samples
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measured. This was a good indication that the measured spectra will be similar to
those simulated from Beers law. The lowest and highest sample absorbances were
in the range of 0.18 and 0.06 absorbance which when multiplied by 10 to correct
for the low concentration is 0.18 — 0.6 which is within the desired range to ensure
linearity in the samples absorbance. On the basis of these results, sample
preparation and analysis continued without amendment to the experimental

design.

3.2 Measurement of metal ion solutions spectra set 2

The metal ion solutions spectra of set 2 were recorded on two consecutive days on
a low-resolution process spectrometer at Avecia Ltd. Grangemouth works. As
process instruments are often situated away from the process, fibre optic cables
are used to allow analysis of samples several metres from the spectrometer body.
This was the type of instrument set-up for this equipment. The cuvette was placed
in a remote sample holder, the light from the spectrometer was transmitted

through fibre optic cables to the holder for measurement. The sample holder was

placed on a bench in the laboratory, a background spectrum of the light was
measured at the start of each day, and this was automatically subtracted from the

absorbance spectrum of each sample.
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LS

Figure 3.2-2 Metal ion solutions of dataset 2.2, visible spectra measured with an industrial process spectrometer
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Figure 3.2-2 Metal ion solutions of dataset 2.2, visible spectra measured with an industrial process spectrometer
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The industrial spectrometer only measured spectra to 738 nm, and not to 1000 nm.

This significantly affects the samples’ spectra. The maximum absorbance for Cu®" is

at 813 nm. In addition to this, Ni ** absorbs in this region.

Figure 3.2-3 Plot of pure metal ions spectra between 350 — 1000 nm, highlighting

the region of 738 — 1000 nm, which is not included in the measurements

recorded by the industrial process spectrometer
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PCA was applied to datasets 2.1 and 2.2. Prior to analysis the spectra were mean
centred. Four PCs were used to model the data. The results plotted in figure 3.2-4
and figure 3.2-5, show that there is poor reproducibility in the samples scores plots
between the two datasets. This is most evident in PC 4 where the trend in the scores

are very different indicating that there maybe a problem with the samples spectra.
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Figure 3.2-4 Dataset 2.1 PCA results; samples scores plots, residual Q values

and T? value results based on a 4 PC model
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The T? test highlights samples 23 — 26, i.e., those missing at least one metal ion, to

be of high leverage and possible outliers. This is also seen in dataset 2.2.
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Figure 3.2-5 Dataset 2.2 PCA results; samples scores plots, residual Q values

and T? value results based on a 4 PC model

Sample scores for PC 1 Sample scores for PC 2
8 Sample Scores with 95% Limits : Sample Scores with 95% Limits
1l ] e s e - 08} .
1 06
05F g 04}
§ ot § 02}
§ §
205 g e of
7] @
A | 02F
-A5F 04}
2" o 06} 4
25 T 5 2 % 20 085 5 10 15 ) > 0
Sample Number Sample Number
Sample scores for PC 3 Sample scores for PC 4
it Sample Scores with 95% Limits T Sample Scores with 95% Limits
04+ 02
02f 0.1
ot
™ Of -
b 3 01
502 §
2 202 1
@ 04 @
03 1
06 04
08 05 y
o 5 10 5 » % 20 05 5 10 15 2 » 0
Sample Number Sample Number
" y)
Residual Q values for a 4 PC model Sample value of T” for a 4 PC model
> x 10°Process Residual Q with 95 Percent Limit Based on 4 PC Model e Value of T2 with 95 Percent Limit Based on 4 PC Model
16} 1
14+ g
el A v TR 1
TE 10 1
— — — 6 I 1
4t
/\ /\/\/-N - il
1‘5 = 20 25 30 00 5 1‘0 1‘5 Z‘! 2‘5 30
Sample Number Sample Number

For set 2.2, the T? shows sample 15 to be an outlier in addition samples 23 — 26. The
samples scores plots are not the same between the two datasets. The spectra of each

sample 1 — 8 for each dataset are plotted in figure 3.2-5.
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Figure 3.2-6 Plots of samples 1 — 8 datasets 2.1 and 2.2 metal ions spectra
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It can be seen that for some samples, e.g. 3 and 4, the spectra are similar. However
for many samples the spectra are very different and in the case of samples 5 — 8 there
is a large baseline shift of 0.1 - 0.2 absorbance. From this, it is unknown which set, if

either, has the correct spectra.

Further investigations are required to attempt to establish the source of variation, i.e.
are the samples labelled or prepared incorrectly, or is there a fault with the
spectrometer causing variation between the two days. If the error is sample set
dependent, i.e. one set can be modelled sufficiently by PLS and the remaining can’t,
then the conclusion is that a gross error occurred with dataset that was poorly
modelled. If neither set can be modelled, then the assumption will be that, the error

lies within the spectrometer.

The spectra and reference concentration information is mean centred for the PLS2
CV calibration models. The percentage variance in the spectra and concentrations are
tabulated in table 3.2-1 for dataset 2.1 and table 3.2-2 for dataset 2.2. For dataset 2.1,

99.89 % of the spectral and only 58.04 % of the variance in the samples metal ion
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content was captured with 4 LVs. In contrast, for dataset 2.2 the % variance
captured, in the samples spectra and concentrations, was 99.9 % and 91.57 % with 4
LVs. This shows that the reference sample concentrations do not relate well to the

spectra for dataset 2.1, perhaps the result of sample preparation error.
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Table 3.2-1 Dataset 2.1: Percent variance captured by PLS2 model

Spectra Concentration
LV This LV (%) Total (%) This LV (%) Total (%)
1 77.38 77.38 24.36 24.36
2 15.46 92.84 21.62 45.98
3 6.53 99.37 8.74 54.72
4 0.52 99.89 3.32 58.04

Table 3.2-2 Dataset 2.2: Percent variance captured by PLS2 model

Spectra Concentration
LV This LV (%) Total (%) This LV (%) Total (%)
1 71.02 71.02 48.01 48.01
2 16.57 87.59 32.65 80.66
3 9.91 97.50 9.24 89.89
4 242 99.93 1.68 91.57

The actual metal concentration is plotted against predicted concentration for both
datasets in figures 3.2-7-10 and figures 3.2-11-14. Generally the goodness of fit is
better for the spectra in dataset 2.2 than for 2.1. The predictions for Cr** and Cuzf
have the most scatter about the line of best fit for the samples with all the
components present. Conversely Co*" and Ni** had very poor prediction for sample
16 and safnples 23 — 26 where at least one component was excluded from the dataset.

PCA did not indicate sample 16 to be an outlier whereas 23 — 26 were.

The poor predictions for dataset 2.1 are in agreement with the poor capture of the
concentration information. Even when the number of LVs is extended to 10 (not

tabulated) less than 70 % of the concentration variation is captured. It is concluded
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that there is a gross error with dataset 2.1 and it will be excluded from further work.
Because of this, a dataset of industrial based measurement was not available for the

intercomparison study and the development of a standard dataset.

Figure 3.2-7 Dataset 2.1: PLS2 Co*" actual Vs predicted results based on 4 LVs
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Figure 3.2-8 Dataset 2.1: PLS2 Cr*" actual Vs predicted results based on 4 LVs
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Figure 3.2-9 Dataset 2.1: PLS2 Cu®* actual Vs predicted results based on 4 LVs
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Figure 3.2-10 Dataset 2.1: PLS2 Ni** actual Vs predicted results based on 4 LVs
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Figure 3.2-11 Dataset 2.2: Co*'PLS2 actual Vs predicted results based on 4 LVs
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Figure 3.2-12 Dataset 2.2: Cr**PLS2 actual Vs predicted results based on 4 LVs
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Figure 3.2-13 Dataset 2.2: Cu’'PLS2 actual Vs predicted results based on 4 LVs
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Figure 3.2-14 Dataset 2.2: Ni2*PLS2 actual Vs predicted results based on 4 LVs
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3.3 Measurement of metals mixtures spectra set 3

The spectra for set 3 were recorded using a standard analytical spectrometer (Perkin
Elmer, UV/Vis, Lamba Bio 10). This has a measurement range of 350 — 1000 nm
and the spectra were recorded with a resolution of 0.5 nm. The spectra were
measured on two consecutive days, with dataset 3.1 first. The samples spectra of
dataset 3.1 are plotted in figure 3.3-1. Dataset 3.2 is plotted in figure 3.3-2. There is

little visual difference between the two datasets.

As for the previous datasets, PCA is first applied, and from this the variation and
trends in the samples were observed in the PCA scores, scores loadings and residual

Q and Hotellings T? plots as shown in figure 3.3-3 and 3.

Comparison of the PCA results between datasets 3.1 and 3.2 finds that the scores
plots for PC’s 1, 2 and 4 are almost identical, for PC 3 the scores patterns are the
same, but for the zero component samples the scores distances have reversed signs.
The residual Q values indicate that sample 10 of 3.1 and sample 20 of 3.2 have high

leverage. Neither of these is indicated as outliers by the T? statistic.

The Q value is a representation of the sample distance outside of the model. The higﬁﬁl\'
Q values for these samples are consist with the positioning of the sample away frorﬂ
the line of best fit in the actual vs predicted plots. In figures 3.3-5 and 8, Co** and
Ni** predictions for dataset 3.1, sample 10 is the furthest sample from the line. This
is again seen for sample 20 of dataset 3.2 but this time for each metal ions prediction,

in figures 3.3-9 to 13.
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Figure 3.3-2 Dataset 3.2 metal ions spectra recorded using an analytical spectrometer
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Figure 3.3-1 Metals spectra recorded using an analytical spectrometer
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Figure 3.3-3 Dataset 3.1: PCA samples scores plots, residual Q values and T>

value results based on a 4 PC model
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Figure 3.3-4 Dataset 3.2: PCA samples scores plots, residual Q values and T?

value results based on a 4 PC model
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For both datasets PLS CV models are calculated; mean centering scaled the data.
The percentage variance captured by the models is good with both sets requiring 4

LVs to capture nearly 99 % of the spectral and concentration variance.

Table 3.3-1 Dataset 3.1: Percent variance captured by PLS2 model

Spectra Concentration
LV This LV (%) Total (%) This LV (%) Total (%)
1 52.67 52.67 48.20 48.20
2 32.49 85.16 20.84 69.04
3 14.14 99.30 26.42 95.46
4 0.66 99.96 4.07 99.53

Table 3.3-2 Dataset 3.2: Percent variance captured by PLS2 model

Spectra Concentration
LV This LV (%) Total (%) This LV (%) Total (%)
1 51.33 51.33 47.26 47.26
2 33.69 85.02 20.82 68.08
3 14.26 99.27 26.94 95.02
4 0.66 99.93 3.97 98.99

The actual verses predicted concentrations are plotted in figure 3.3-5 to 8 for
dataset 3.1 and figures 3.3-9 to 12 for dataset 3.2. The metal ions in both datasets
have good prediction with little scatter about the line of best fit. From the PLS
results, dataset 3.1 was chosen for distribution to external sources for data
processing. This dataset had a slightly lower average RMSECV of 0.6405 than set
3.2 at 0.6492 and slightly more of the variation in the concentration data is

captured within 4 latent variables.
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