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Glossary of terms 

At-line A manual sample is taken from the process that is then analysed close 
to the process or within the manufacturing plant. 

ANN Artificial neural network 

ANOVA Analysis of variance 

Auto Autoscaling 

Correlation Product moment correlation coefficient 

CPAC Center for Process Analytical Chemistry (US) 

CPACT Centre for Process Analytics and Control Technology 

CV Cross validation 

Dx6 Design Expert v6.0 

GC Gas Chromatography 

GMS Guided microwave spectrometer 

HPLC High pressure liquid chromatography 

In-line The sample to analyser interface is located directly on the process 
stream, removing the need to re-circulation loops. 

LV Latent variable 

LR Linear regression 

MLR Multiple linear regression 

MCEC Measurement & Control Engineering Center (US) 

ML Matlab 

MNCN Mean centring 

MSC Multiplicative scatter correction 

MWS Microwaves 

NIR Near infrared spectroscopy 

NIST National Institute of Standards and Technology (US) 



Off-line A sample is taken manually then transported to the central laboratory 
for analysis by skilled technicians. 

On-line An automated system takes the sample from the process stream the 
transports the sample to the process analyser. 

OSC Orthogonal signal correction 

PAC Process analytical chemistry 

PC Principal component 

PCA Principal component analysis 

PLS Partial least squares 

Poly-PLS Polynomial partial least squares 

PLST PLS Toolbox 

PRESS Predicted error sum of squares 

RI Refractive index 

RR Ridge regression 

RMSPE Root mean square value of prediction error 

SG/Savgol Savitsky Golay filtering 

Spl-PLS Spline inner relationships partial least squares 

SNV Standard normal variate 

UV Nis Ultraviolet/visible spectroscopy 

Vis Visible spectroscopy 

VS-MLR Variable-selection multiple linear regression 

WRR Weighted ridge regression 

XRF X-ray fluorescence 

XRD X-ray diffraction 



Abstract 

The research has included collaboration with number of different companies and 

consortiums involving spectroscopic measurements with the application of 

chemometric techniques. 

For the 'European Framework 5', Standards Measurements and Testing (SMT) 

chemometrics network consortium a certified reference dataset based on visible 

metals complex spectra was developed. An inter-laboratory study was carried out 

which demonstrated the between subject significant difference for chemometric 

data analysis. 

An industrial collaboration with BNFL, Springfield's, this work consisted of 

producing a PLS regression model which could be used to predict levels of uranyl 

and nitrate in uranyl nitrate liquors samples, which were analysed by Raman 

spectroscopy which was insensitive to temperature. 

A substantial amount of work has been in the development of GMS with 

multivariate calibration for process analysis. The GMS is designed for the analysis 

of flowing mixtures, slurries and moisture content. The method is currently 

hindered by the existing calibration method; here peA, PLS and weighted ridge 

regression (WRR) have been applied to the broadband, complex spectra to 

successfully allow measurement of a range of samples including; aqueous, 

organic, fermentation and non-homogeneous samples. 
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Chapter 1: Introduction 

1 Background 

The use of process analytical chemistry (PAC) to monitor and control industrial 

chemical processes is becoming more wide spread. The main centres involved in 

research in this area are the American MCEC1 and CPAC2 and their British 

counterpart CP ACT3
• 

The motivation to research into process analysis is to develop new techniques and 

applications to allow real-time monitoring of industrial processes. Traditionally a 

sample would be taken from the process then transported to the central site 

laboratory for analysis; the results would be reported back to the plant control 

personnel. The procedure could take anything from an hour to days to achieve the 

analysis, during which time the process is continuing blind to the potential 

knowledge of a process upset, which could lead to lost batches, lead times or 

unnecessary over processing of a completed stage of the process. All of these 

scenarios would lead to direct financial loss for the company. The logical step was 

to move the analysis near to or directly within the process, producing on- or in­

line measurement systems. 

In recent years a substantial proportion of analytical methods of measurement 

have been successfully introduced as on/in/at line systems during a chemical 

manufacturing process. The types of process analysis inc1ude4
; Off-line, At-line, 

in-line and on-line. 
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Chapter 1: Introduction 

The analysers required for process analytical chemistry need to be simple to 

operate and maintain, substantially more robust to stand up to the harsh 

environments (extreme temperatures, flammable atmospheres, etc.), that can be 

encountered on a process plant (i.e., they must be intrinsically safe). Ideally 

process analysers should be easily operated and require minimal maintenance. 

In theory, all analytical methods should be able to be modified for process 

analysis. Where possible, simple measurements are favoured; for example 

determination of analyte physical properties such as pH or RI where one response 

is given for the measurement. Where these are not sufficient to give the required 

information, spectroscopic or chromatographic methods are often utilised. 

Some fixed wavelength spectroscopic methods are relatively simple. Where 

multiple wavelength spectroscopies are employed, interpretation of the 

measurement responses is not always straight forward. These often require the use 

of chemometric techniques to extract the desired information from a given signal. 

The research undertaken in this thesis covers several areas grouped together with 

the common theme of developing measurements for process analytical' chemistry, 

in particular, spectroscopic methods of analysis. 

3 



Chapter 1: Introduction 

2 Process analysis 

When choosing a system for process analysis, there are several factors that require 

consideration: knowledge of what chemical and physical properties are required 

for the process, (e.g. temperature, pressure of the process stream); how fast the 

process is progressing; time available for analysis (immediate or would every few 

minutes suffice?); and the accuracy and precision of measurement required. 

The measurements for process analytical chemistry fall into three main categories, 

'Wet Chemistry' measurements are typically based on physical parameters (e.g. 

pH, RI, density, calorimetry), but also include titrations and flow injection 

analysis. 

The remaining two categories are spectroscopy and chromatography. GC is often 

used on-line for analysis in the petroleum industry for the measurement of octane 

numbers. The application of HPLC for on-line process analysis has been 

discussed6
, it can offer significant advantages over spectroscopic or flow injection 

methods as it can analyse complex mixtures of a number of components over a 

wide concentration range using a fairly simple calibration. Both types of 

chromatographic method are fairly laborious to install as an on-line system. A 

major problem with chromatographic methods is that they require regular 

maintenance and for this the instrument is often required to be taken off line 

meaning that the plant either has to be shut down or operate without analysis. 

Also of concern are the flammable gases required for GC and the cost and 

hazardous nature of many of the solvents required as mobile phases for HPLC. 

4 



Chapter 1: Introduction 

Whilst these methods are suitable for complex samples, on-line spectroscopy has 

been taken up more readily due to its simpler instrumentation in comparison. 

Applications of spectroscopy in process analysis include; UV Nis, fluorescence, 

chemiluminescence, NIR, MIR, Raman, atomic and NMR techniques7
• On-line 

MS has been shown to be suitable for monitoring bioprocesses8
• Raman 

spectroscopy is a relatively new method for process analysis. The main advantage 

of this method is that it is virtually transparent to water, and therefore it is an ideal 

solution for processes with a large amount of background water. The esterification 

of ethanol by acetic acid has been successfully analysed by Raman spectroscopy9. 

The disadvantage of this method is the reduced sensitivity in comparison to NIR 

and MIR. 

Many of the problems with process analysers are due to sampling; correct 

sampling procedures to give true representation of the process are essential for 

any type of process analysis. The necessary consideration include, is the sample 

reaching the analyser, what is the sample homogeneity, is it separating or different 

from the process stream, i.e., is the sample representative. 

An industry-wide problem has been identified when implementing the chosen 

process analyser system; these are conflicts in fixtures and fittings, operating 

software, etc. A group under the CP AC umbrella has been commissioned to 

investigate further into this area, 'NeSSI' (New Sampling/Sensor Initiative)lO, part 

of the focus of this group is to simplify and streamline the sampling process. 

5 
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3 Experimental design 

Any measurements and subsequent calibration model is only as good as the 

samples it is based on, therefore the design and planning of experiments is 

essential. Introduction to the principles and practices of experimental design can 

be found in the books 'Design and Analysis of Experiments' By Montgomeryll 

and 'Response Surface Methodology' by Myers and Montgomery 12. Software is 

available to calculate optimal experimental designs (essential for more complex 

designs) and include 'Design Expert™' by Stat-Ease Inc 13 and 'MODDETM,l4 by 

Umetrics. The computer-based designs are useful, reducing the number of 

experiments required for complex designs. These designs are appropriate for 

unusual design shapes that can occur when there are constraints on the levels of 

the components. 

The term 'Experimental Design' is described by Miller and Millerl5 to define the 

stages that; (i) identify factors which will influence the result of the experiment, 

(ii) design the experiment so that the effects of uncontrolled factors are 

minimised, (iii) use of statistical analysis to separate and evaluate the effects of 

the various factors involved. 

Experimental design is used in this work to plan the number and concentrations of 

samples for experiments, especially where there are a several components. A 

number of different design types have been used, for example, full / partial 

factorial, mixture and optimal designs. 

6 
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3.1 Factorial design 

A tradition approach to planning an experiment is to vary one of the factors at a 

time, e.g. pH, concentration, time, temperature. When many factors are involved, 

this can be a lengthy process. The major disadvantage of this method is that it can 

not account for any potential interactions between the factors. 

To overcome this issue, the principle of factorial experimental design, where 

factors are varied together, is established. For most designs the factors are varied 

at different levels; these are known as factorial design and have the notation of N" 

where N is the number of levels and k is the number of factors. For a two level, 

two factor design, the number of experiments required is 22 = 4, this increases to 

23 
= 8 and 24 = 16 as the number of factors in the two level experiment increases. 

3.2 Optimal experimental design 

Where several factors are varied, as opposed to two or three in factorial designs, a 

response surface, more sophisticated than that of a cube of the factorial designs is 

produced. Optimal designs are complex computer generated designs of which 

there are several types; D, G, and F. D-optimal design is used in the scope of this 

work as it will produce a maximum variance in the samples with a minimum 

number of samples. It will work by producing maximum variation in the response 

surface. 

7 
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4 Statistical analysis 

4.1 Determination of outliers 

An outlier is a value in a set of results which appears to be very different from the 

remaining values in the dataset. There are two main tests, Dixon's16 and Grubbs17
, 

to evaluate whether the suspected value is' statistically an outlier. Dixon's test 

works by comparing the suspected value to the nearest value in the dataset to it. 

Grubbs test is often used in preference to Dixon's and is recommended for use by 

ISO. These methods are only relevant for samples from a normal distribution. 

4.1.1 Grubbs test 

The test for outliers followed by Grubbs compares the deviation between the 

suspected values and the mean and standard deviation of the samples in the 

dataset. The null hypothesis (Ho) is all the values come from the same population. 

If G < Gcrit, then the null hypothesis is true and the sample is not an outlier; if G 

> Gcrit, the null hypothesis is untrue and the sample is an outlier. The critical 

values for G (Gcrit) can be found in statistical tables. 

Ivalue-~I 
G = -'--------!. 

s.d 

Where: 
G = statistic G 
value = suspected outlier value 
x = mean 
s.d = standard deviation 

Equation 1 Grubbs test for outliers 

8 
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4.2 Analysis of variance 

Analysis of variance (ANOV A) is a statistical technique that can be used to 

identify variations in data and compare whether data is statistically the same. 

Miller and Miller describe the technique we1l18
• 

For this work, the most relevant use of ANOVA is the comparison of several 

means within samples and between samples. For comparing between sample 

variations, a one-tailed significance F -test is used because there is only one source 

of independent variation. For the ANOV A test, the null hypothesis is that there is 

not a significant variation between the samples. Similar to Grubbs test, if this is 

true, then the F value calculated will be less than Fcrit and if there is a 

significance difference in the Fcrit> Fcalc. 

The parameters used to calculate the F critical values in the F tables are based on 

degrees of freedom. These are the number of independent pieces of information 

that go into the estimate of a parameterl9
• 

For a one-way ANOVA test, comparing the difference between two datasets there 

is between sample variation with degrees of freedom = h - 1, where h = number 

of samples. The within sample variation has degrees of freedom = h(n-l), where n 

is the number of members. The total degrees of freedom is N - 1 where N = nh = 

total number of measurements. 

9 
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5 Chemometrics 

Generally, chemometrics concerns the application of statistical analysis to 

chemical data to gain knowledge of the process/system under scrutiny. 

The progress of the field of chemometrics has been well documented in a range of 

tutorial and review articles (see Barry Lavine in 'Analytical Chemistry' every 2 

d· . h d d' d I 20 21 22 23) years Iscussmg t e currents tren s an major new eve opments , , , . 

There are two mam areas of chemometrics; supervised and unsupervised. 

Unsupervised methods, such as PCA and cluster analysis, are used to distinguish 

trends in the data without the benefit of reference information. The second area is 

known as supervised modelling, where the reference information is known and 

can be used for calibration. Such methods include PLS, PCR, MLR etc. 

Examples of general introduction to multivariate calibration, including MLR, 

PCR and PLS regressions can be found in the book24 and tutorial tex~5. A 

development in PLS has discussed by Wold et at26
, with proposal of applying 

OSC to the data to remove effects which have no correlation to the· reference 

information before PLS calibration. 

Generally, standard methods of MLR and PLS with the modified RR method of 

WRR are used for calibration in this work as the type of measurements calibrated 

are often complex, requiring calibrations which will not raise as many questions 

as the measurement. 

10 
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One of the issues of using chemometrics in industry has been the lack consistency 

between software from different companies that is used manipulate the data. An 

initiative, 'Chemometrics for On-line Process Analysis' (COPA)27, has been 

formed as a partnership between the analyzer vendors, chemometrics software 

vendors, and users to streamline the application of chemometric techniques to 

process analytical methods. Part of the aim is to gain consistency between various 

companies' software packages to produce spectral data in a standard format, 

which could then easily be transferred to any chemometric software for data 

processmg. 

5.1 Unsupervised modelling 

In this research unsupervised modelling m the form of principal component 

analysis (PCA)28 has been used to track trends in spectral data. Alternative 

methods of unsupervised modelling, such as multivariate curve resolution (MCR), 

can also be used. An application of MCR to on-line spectroscopy can be found in 

the paper by Miller29. 

5.1.1 peA 

PCA is a technique for reducing the amount of data when there is correlation 

present within the data. The decomposition of PCA is detailed in frame 5.1.1_1 30
• 

The data matrix is reduced to a scores matrix and a loadings matrix. The scores 

give the information regarding any trends between samples and the loadings the 

variation and importance of the variables. The principal components are ordered 

11 
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such that the first accounts for the majority of the variation within the data leading 

to the last which has least variation within the data. The maximum number of 

principal components that can be extracted is the same as the number of samples. 

However, this is often capped so that the total variation captured within the 

principal components reaches a certain level, e.g. 95 % of the total variation in the 

data or the level of the noise in the data, ifit was known. 

Frame 5.1.1-1 PCA Decomposition 

For a matrix (X) with m rows and n columns the covariance matrix of X is; 

XTX 
Cov(X)=-­

m-l 

Equation 2 

The data matrix (X) is decomposed as a sum of the outer product vectors ti and Pi 

and a residual matrix, E: 

Equation 3 

The ti vectors are the scores; these describe how the samples relate to each other; 

the Pi vectors are the loadings which describe how the variables relate to each 

other. These are related to eigenvectors in the covariance matrix: 

Equation 4 

Where Ai is the eigenvalue associated to the eigenvector Pi (loadings). The original 

data matrix is related to pairs of scores (ti) and loadings in the following equation; 

Equation 5 

12 
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The original data matrix multiplied by the loadings (Pi) will result in the scores 

matrix. The eigenvalue shows the amount of variance between the ti and Pi pairs. 

The loadings plots from PCA can be used to identify noise in the data. If the data 

hasn't been mean centred then the first loading plot will be the average spectrum 

of the data. 

S.2 Supervised modelling 

Multivariate calibration enables prediction of analyte concentration in the 

presence of varying amounts of spectrally active interferences (their contribution 

is modelled). In applications of multivariate calibration the aim is to predict a 

property of interest from a multivariate measurement by using a modet3 1 
• 

The objective of multivariate calibration is to build a model that describes the 

relationship between the dependent variables (concentrations) and independent 

variables (spectra). Validation of the calibration model is essential to ensure that it 

is able to predict independent samples. 

The method of MLR searches for a single factor of correlation between the 

predictor variables (e.g. spectra) and the predicted variables (e.g. concentrations). 

It is the simplest method which is most often successful in fairly simple situations. 

Variable selection procedures, when used in conjunction with MLR (VS-MLR), 

have been shown to improve prediction32
• This method is seriously affected by 

collinearity within the X-block (spectral) data producing unreliable model 

coefficients which cannot successfully be employed to predict test samples. 

13 
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If MLR is unsuccessful for calibration then PCR can be tried, this is a factor 

analysis method that maximises the variance in the data to improve prediction. 

This method is an extension to PCA. As for PCA the data is separated into a 

number of factors (L V s) the calibration model regression is then performed based 

on these factors. If PCR is not chosen, then PLS can be employed, this finds 

factors as for PCR but seeks to achieve maximum variance and correlation in the 

data, maximising the covariance in the data. As PLS will find the correlation and 

variance in the spectra it is often considered to be superior to PCR and subsequent 

models regularly require fewer latent variables to capture the information in the 

data. 

The main drawback of the factor analysis methods of PCR and PLS is the number 

of factors to be included has to be decided. By using too few LV s, features in the 

original data maybe excluded. If too many LV s are used, information maybe 

included that does not relate to the reference data, this can cause interference and 

instability in the calibration model. 

Another regression technique is ridge regression33
• This is calculated in a similar 

way to MLR but the inversion matrix is stabilised by adding a constant to the 

diagonal. The benefit of this method is that the data is not reduced into factors 

which then have to be decided for inclusion. 

For the methods described in this section it is assumed that the error is only within 

the dependent variables, but this is can limit the ability to produce a realistic 

14 
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calibration model in practice. Faber and Kowalski34 suggest an alternative 

expression which also takes into account the measurement error propagation of 

the independent variables. For this it is assumed that there is an exact linear 

relationship between the dependent and independent variables, the resulting 

expressions produced are validation for classical errors in variables models. 

5.2.1 Partial least squares 

A tutorial describing PLS regression was written by Gelades. The PLS algorithm 

can take the form of either SIMPLS or NIPALS. Also, it can follow PLS 1 or 2 

procedures. For PLS 1 the calculation is for only 1 component at a time, whereas 

application of PLS2 will allow calculation of multiple components. 

The number of latent variables chosen to model the data is often decided based on 

how many are required to give the lowest error of prediction with a sensible 

number of variables in the samples considered, i.e., if there are 4 components in 

the samples, the use of 10 LV s is likely to over fit the data. The number of LV s 

used is generally where the error in prediction of the calibration and test dataset 

change very little (often when there is less than 2 % improvement) ~ith the 

addition of more latent variables. The RMSPE is the error in prediction of 

samples, and the equation can be seen in section 5.2.3 where procedures for 

validating models are discussed. 

In addition to the RMSPE, the correlation coefficient of the line of best fit of 

predictions and prediction residuals should also be taken into account. 

15 
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Often it can be better to choose too few LV s than too many because this can lead 

to over fitting of the data. This may lead to a situation where the model works 

perfectly for the calibration data but when used for validation or unknown data 

results in very poor errors of prediction. 

5.2.1.1 PLS SIMPLS 

This is a later development of PLS to that of the traditional NIP ALS algorithm. 

SIMPLS is often much quicker to compute, but this is becoming less of a factor as 

computers processing capability increases. A difference between SIMPLS and 

NIPALS is that the x-variance (spectral) information is contained within the loads 

and instead of the scores. For univariate calculations the results are the same for 

both types of PLS algorithm, but for multivariate applications there can be 

differences in results. 

5.2.1.2 PLS NIPALS 

For the standard form of the PLS algorithm, non-iterative Partial Least Squares 

(NIP ALS)36 has been used. This method is useful when there is more than one 

predictor variable. The NIP ALS algorithm (described in frame 5.2.1.2-1) 

calculates the scores (t), loadings (P), weights (w). It can work for more than one 

predictor variable, and the (y) scores (u) and loadings (q) are predicted for the Y­

block. Also calculated are the 'Inner-relationship' vector coefficients (b) which 

relates to the X-and Y -block scores. 

16 



Chapter 1: Introduction 

Frame 5.2.1.2-1 PLS decomposition 

The column ofY, Yj with most variance is the starting estimate ofujo 
In the X data block: 

Plold 
Plnew = -II -II Plold 

t lnew = t lold Ilpioid II 

W lnew = W lold lip lold II 

El = X-tltJ 

Fl =Y-blulqJ 

5.2.1.3 Polynomial PLS 

In the Y data block: 

The X data block loadings are calculated and 
scores and weights re-scaled accordingly; 

The regression coefficients b is determined for the 
inner relationships 

Once the scores and loadings for the first latent 
variable are calculated the residuals are 
determined; 

The method is repeated but this time for the next 
latent variable. Where X and Y are seen they are 
replaced by residuals EI and Fl. 

PLS forms the following inverse matrix; 

The simplest approach for fitting of data proving to be non-linear is that of 

polynomial PLS. For this the inner relationships are fitted to a polynomial 

function of desired order37
• 

17 



Chapter 1: Introduction 

5.2.1.4 Spline PLS 

Nonlinear partial least squares with spline inner relationships are described by 

Wold38 and in a tutorial by Frank39
• Spline PLS (SPL-PLS), is an extension of 

PLS for non-linear inner relationships. 

Splines are function estimates that are obtained by fitting piecewise polynomials. 

The x-range is split into intervals; these intervals are separated by the knot 

locations. A spline function is defined by the number of knots, their position and 

location and the coefficients of the polynomial fitted at each location. The degree 

of the spline ranges from zero upwards, but 1 st or 2nd order is most commonly 

used to prevent overfitting. 

5.2.1.5 Orthogonal signal correction 

The method of orthogonal signal correction (OSC) was introduced by Wold4o• 

This is an alternative pre-processing method that aims to remove systematic noise 

whilst leaving as much information relating to the concentrations of sample 

spectra. Pre-processing methods used to remove baseline drift and systematic 

noise, such as derivatisation, can also remove information relating to the Y matrix 

(concentrations) of the spectra. In this method the concentrations are included In 

the calculation and the aim is to remove factors which are orthogonal to Y, i.e. 

totally unrelated to the concentrations. 

Since this first publication several modifications have been made to the approach; 

two examples of theses are by Fearn41 and Brown42
• The Fearn method applies the 
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same approach but usmg a modified algorithm with the aIm of improving 

prediction of subsequent calibration models (e.g. PLS). Brown's method is 

'Piecewise OSC' (POSC) based on Fearn's algorithm but local features are selected 

in the spectra and OSC performed over regions instead of the entire spectra at 

once. Brown has compared the method to the original and Fearn's and found that 

PLS models based on POSC data required fewer latent variables and with better 

predictive power for the given (NIR) data. 

5.2.2 Ridge regression 

Ridge Regression (RR) is method that is based on correlations within the data. It 

works by adding a value (8) to the ridge (or diagonal) of the correlation matrix43
• 

Where; bF 

e 
F 

F'F 

Y 

I 

Equation 6 

regression coefficients 

Ridge constant (positive value between 0-1) 

mean centred X matrix 

correlation matrix 

predicted variable (e.g. concentration) 

identity matrix, size r x r 

(r = number of data points/wavelengths) 

This has the effect of maximizing the variation and orthogonality of the data. A 

benefit is that the procedure can improve the signal to noise ratio of the spectra. 

RR is ideal for ill-conditioned/collinear data where X'X (inverse matrix) is near 
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to or actually singular. Under these conditions problems are incurred when 

calculating PLS models. Another advantage of the RR over PLS is that it does not 

decompose the data into latent variables and hence removes the issue of which 

latent variables to include when modeling data. 

5.2.2.1 Weighted Ridge Regression 

An adapted version of this method is Weighted Ridge Regression (WRR). For this 

method it is not necessary to calculate the values of B allowing the regression 

coefficients to be computed more quickly. 

bF = (F'F+Bxdiag(F'F)r1F'Y Equation 7 

In this work, calibration models have been calculated using this method instead of 

the standard RR. 

5.2.3 Validation of calibration models 

Once a calibration model has been produced it can be used to predict the levels of 

unknown reference information in samples. 

To produce a calibration model the samples are separated into training sets which 

are used to build the model, and validation sets which are used for validation of 

the model. The test set can either be randomly selected from the samples available 

or from additional samples from an experimental design. A common method is to 

20 



Chapter 1: Introduction 

randomly separate the samples and 2/3's make the training dataset and 113 the 

validation dataset. 

The cross validation method of 'leave-one-out' has been used where the number 

of samples is small or as an initial investigation for calibration. The leave one out 

method (CV) is where a sample is removed from the original dataset and used as 

the validation set and the remaining samples are the test set, the model is built and 

validated and this repeated until all the samples have been removed. 

The leave-one-out method can be applied to the training samples to identify the 

model conditions with lowest error of prediction and then the test samples 

predicted based on this model. From the predicted values the prediction error sum 

of squares (PRESS) and root mean square value of prediction error (RMSPEt4 

are determined. 

RMSPE = (PRESSln/12 

Where; nl 

Equation 8 

Equation 9 

Number of samples in test/validation set 

Actual value 

Predicted value 

When evaluating a model it is also necessary to plot the residual prediction error 

for each sample as this can identify rogue samples with unusually high error in 

comparison to the remainder of the dataset. 

residual = (Yi - Y 1) Equation 10 
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5.2.3.1 Determination of correlation 

The correlation coefficient is a value between -1 and 1 that is used to give an 

indication of the closeness of the relationship between dependent (measurement) 

and independent (reference information) values. The product moment correlation 

coefficient (r) is calculated as in equation 11. For strongly correlated data the 

value of r is close to +/- 145
• Values closer to 0, indicate no correlation in the data. 

L{(X -x)(y - y)} 
r= .' , 

{[L(X -X)'UL(Y - y)']}i 

Equation 11 Product moment correlation 

coefficient 
,I ,i 

Where; 

Xi = actual value 

Yi = predicted value 

x = mean of actual values 

y = mean of predicted values 

The correlation coefficient is often calculate from the line of best fit of a straight 

line graph (equation 12) of actual vs predicted information. 

y=bx+a Equation 12 Equation of a straight line 

Where b is the slope and a is the intercept on the y-axis. 

This is used for two situations in this work (i) to give the goodness of fit between 

actual and predicted values from calibration models; (ii) the correlation coefficient 

is calculated between reference information and each variable in the spectra to 

determine the correlation before calibration. 
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5.2.4 Improvement of calibration models 

It can be beneficial to apply scaling, derivatisation, smoothing or combinations of 

these to the data. These procedures can maximise the variation in the data, reduce 

spectral noise, improve the correlation between the dependent and independent 

variables and reduce baseline variation and drift. 

5.2.4.1 Scaling methods 

When applying any scaling method to data used for calibration models great care 

should be taken to ensure that the average mean of any training data is consistent 

with that of the validation and prediction data. If these are different the re-scaling 

of prediction information can be affected by propagation of errors due to 

inaccurate factors in the scaling. 

Background subtraction 

Background subtraction removes the spectra of zero time or zero component from 

the remaining spectra. This allows the variance within the spectra to be 

maximised by removing the magnitude of the initial spectra. 

Mean centering 

A common scaling technique is that of mean centering, where the means of the 

response variables, (spectra), and the dependent variables (concentrations) are 

subtracted, removing the magnitude from the data. For the majority of 

chemometric algorithms, e.g. PCA and PLS it is assumed that the data is mean 

centred prior to analysis. In a short communication by Seasholtz and Kowalski46
, 

23 



Chapter 1: Introduction 

it was identified that in certain situations it is better not to mean centre the data Le. 

where the response data (i) vary linearly with concentration, (ii) have no baseline 

(when there is a component with a zero response that does not change in 

concentration) or (iii) have no closure in the concentrations (for each sample the 

concentration of all the components add to a constant, e.g. 100 %). 

Autoscaling 

To autoscale, the mean is subtracted from each variable and then divided by the 

standard deviation. The data is weighted due to variance and not magnitude; this 

can be useful when the components are different e.g. concentration, temperature. 

Range scaling 

This method is also known as normalisation; it converts the measurement between 

its maximum and minimum value such that the scaled value lies between 0 and 1. 

The drawback of this method is that it can be supersensitive to outliers47. 

Standard normal variate 

Standard normal variate (SNV) can be used to correct for a drifting baseline. It 

works by auto scaling along the samples. 

5.2.4.2 Derivatisation and smoothing 

Smoothing is a filtering method that can be used to remove noise from a data set, 

two example methods are; 'Moving Average' and 'Savitsky Golay,48. For moving 

average the spectra is split evenly into groups, the average of each group is 

determined then the spectrum is reformed using only the average points. The 
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Savitsky Golay filtering method is similar; however, this time each point in the 

group has a weighting with the points furthest away from the central point being 

weighted the least and the central point being weighted the most. This method is 

more selective than the simple moving average. The window size for the 

smoothing filters is often taken to be approximately the square root of the number 

of data points in spectroscopic data. A drawback of the use of spectral smoothing 

is that the spectral resolution can be reduced. Derivatisation is used to remove 

offset or curvature from the data, second derivative is often taken in UV Nis and 

NIR49 to sharpen and resolve overlapping peaks in spectra. This can result in 

spurious satellite peaks emerging in the spectra. With the Savitsky Golay 

algorithm, it is possible to apply smoothing and derivatisation simultaneously to 

reduce this problem. 

5.3 Application of chemometrics to spectroscopic data 

The commercial benefits of process analysis have been discussed in section 2, 

including the particular benefits of spectroscopy for measurement. The drawback 

of spectroscopic methods is that a single response at one wavelength is often not 

sufficient for the determination of analyte, and an entire spectrum at multiple 

wavelengths is required. It is then necessary to use chemometric methods to' 

extract the required information from the spectral measurements. 

Chemometrics can also be applied to remove artefacts from spectra which were a 

result of transferring the measurement to an on-line process environment, e.g. 

University 
Library 
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temperature variation, effect of cables used to transfer the measurement signal 

from the spectrometer to the place of process measurement. 

A paper by Smola5o discusses the qualitative and quantitative analysis of 

oxytetracycline by NIR. The aim of the work was to replace time consuming 

analysis of raw materials, which required sample preparation, with analysis by 

NIR spectrometry. Reference analysis was by the Karl Fisher method (water 

content) and a colorimetric assay. The results found that with the aid of 

derivatisation (2nd order) to remove baseline shifts and handling scattering effects, 

PCA was used to develop a cluster model that could then be used for sample 

identification. Derivatisation was also used to pre-treat the samples prior to PLS 

regression to remove between sample variations. The PLS models could predict 

the water content with test samples with a standard error of +/- 0.0708. PCR was 

also applied, but gave higher errors of prediction. The work showed that NIR 

spectroscopy was suitable for the desired application and once implemented will 

result in cost reductions being achieved. 

Another application of chemometrics to NIR spectroscopy has been the analysis 

of a pharmaceutical process, including a study of different preprocessing 

techniques51
• The aim of this work was to investigate the feasibility of replacing 

an off-line HPLC analysis of a pharmaceutical process with on-line NIR. The 

analyte solution is chemically complex and greater knowledge was desired. A 

range of pre-processing techniques have been investigated to maximise the 

response to the analytes of interest and reduce unwanted variability due to 
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physical parameters such as temperature and scattering effects. The preprocessing 

methods included standard techniques, normalization, derivatisation and some 

recent advances in preprocessing methods such as multiplicative scatter correction 

(MSC), OSC and optimised scaling. PLS calibration models were used to predict 

the analytes of interest, except for where optimised scaling was applied, which 

used PCR. The best model was PCR based on preprocessing by first order 

differentiation and optimised scaling. Optimised scaling has not had a wide uptake 

since its introduction in 1992. Briefly the method introduces a scaling vector for 

each sample, for least squares the intensity of one sample is zero and another 1. A 

search should be performed to optimise according to the reference sample chosen 

for an optimal model. This sample dependence is a significant drawback of the 

method. 

The use of Savitsky Golay derivatisation and smoothing to enhance chemical 

signals is discussed in reference 48. This involved the investigation of Raman 

spectra which included some that had a higher response due to fluorescence, 

which varied between samples, than Raman peaks of interest. The spectral 

correlation coefficient and PCA analysis demonstrated the superiority of 2nd order 

Savitsky Golay smoothing and derivatisation to suppress background noise and 

background signals of high intensity and variability. 

The application of chemometric techniques to spectroscopic data is liberal, and as 

shown in the previous examples, often more than one method is applied to the 

data to gain the most appropriate technique, usually that with lowest error of 
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prediction. This approach where dependency on a certain chemometric method is 

potentially problematic, two scenarios are that the data is over-processed to 

produce unstable calibration or that a measurement method is deemed unsuitable 

when really insufficient time or expertise has been allocated to the data. 

The drawback of apply different techniques to data is that it could become unclear 

if a measurement method is/is not suitable depending time period allocated by the 

user has for the chemometric data processing. It could be felt that if enough pre­

processing methods and calibration methods are applied to data then eventually 

there will be correlation between the dependant and independent measurements. 

During this work the correlation between the raw measurements and the reference 

information is investigated to establish if there is real correlation in the data in 

first instance without the need for extensive data processing, and where this has 

been applied to keep a realistic view on whether the measurements really are of 

any use. 

A collaborative study has found that the between user variation for the type of 

data processing/pre-treatment methods applied and the evaluation of outliers 

within the data varies considerably between those performing the data analysis 

(this area is considered further in chapter 2). These results highlight a drawback of 

chemometrics in that it is individual-dependent, which could lead to false 

negatives and positives depending on who performed the analysis. 
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The methods of PLS, PCR and NN used for calibration in much of the examples 

discussed in this section all have a number of variables which need to be chosen 

for the calibration model. Part of this work will involve the investigation of WRR 

for calibration which has substantially fewer input variables, this should result in a 

more stable model and if applied, less between-user variation. 

The application of WRR to data is the only non-widely recognised method used in 

this work. This was to give maximum confidence in the new measurement 

techniques developed and not have the type of data processing being 

controversial. 

5.4 Chemometric software and calculations 

All Chemometric techniques have been performed using Matlab ™ and the 

PLS Toolbox™ v2.1 (Eigenvector research, Inc., Manson, WA 1998) running 

under MatlabRll or 12 (The MathWorks Ltd, Matrix House, Cowley Park, 

Cambridge, CB4 OHH). The PCs used for the data analyses were either a PIlI 650 

MHz with 258 RAM under win2000 or a PIV 1500 MHz with 512 RAM 

operating with WindowsxP. 

Matlab is a programming language and data visualization tool. The programme 

works in a desk top environment similar to Windows. The following desktop 

windows were used in this work; 
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Command window: Issues commands for Matlab processing, normally one line 

functions at a time. 

Command history: A running history of previous commands typed into the 

command window 

Workspace window: This is a GUI that is used to view, load or save files which 

are currently in use. 

Matlab script files are used when performing a number of repetitive commands or 

calculations. Examples of these for calculation of correlation coefficient at a range 

of wavelengths and performing WRR are appendixed. 

5.4.1 Procedures for peA analysis 

The PCA results are given as plots of the sample loadings for each spectral 

variable for each principal component, the sample scores for a range of principal 

component are plotted against each other. The percentage variance in the spectral 

data captured by each principal component is reported and the total percentage 

variance for a number of principal components is given. 

5.4.2 Procedures for PLS analysis 

PLS is carried out by two methods. Both can be used for PLS 1 type or PLS2 type. 

The first employs the 'MODLGUI' function of the PLS_Toolbox, a graphic user 

interface useful for initial calculations. For the second method script files are 

written to perform the calculations giving greater freedom and control over the 

types of calibration models produced with an expanded variation in the sample 

selection, pre-treatment and filtering methods. 
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5.4.2.1 Method 1: Employing a graphical user interface 

The graphical user interface is launched by typing 'MODLGUI' at the Matlab 

command line. The spectra and reference information can be loaded then the 

function used to perform limited pre-treatment methods and set cross validation 

methods. The main output of use is a plot of the RMSEC and RMSECV for each 

set of reference information data at a number of latent variables. The screen for 

the MODLGUI can be seen in figure 5.4.2.1-1. 

Figure 5.4.2.1-1 Screen for the PLS 'MODLGUI' function 

","OS 

.... 

5.4.2.2 Method 2: With Matlab command line 

PLS_Toolbox files are called from the Matlab command line and are used to 

perform NIP ALS PLS, polynomial PLS and Spline PLS. The sample spectra and 

reference data are loaded and any scaling or filtering to the data applied, and the 
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model calculated. The calibration model is then used this to predict the reference 

information of unknown spectra at a range of latent variables. The command line 

I/O (input/output) function for the various types of PLS used in this work is 

described in section 6.1. 
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6 Appendix 

6.1 PLS_Toolbox Matlab functions 

6.1.1 PLS NIPALS 

Frame 6.1.1-1 Calculation ofPLS NIPALS 

1/0 function: [b,ssq,p,q,w,t,u,bin] = pls(x,y,maxlv); 

Input information; 
x = training spectra 
y = reference information 

maxlv = max no. ofLVs 

Output information; 
b = regression vectors 
ssq = the fraction of variance used in 
the x and y matrices 
p = spectra loadings 
q = reference information loadings 
w = spectral weights 
t = spectral scores 
u = reference information scores 
bin = inner relation coefficients 

Frame 6.1.1-2 Prediction based on PLS NIPALS 

110 function: [yprdn,resn,scoresn] = modlpred(newx,bin,p,q,w,lv,plots) 

Output information; 
yprdn = predicted reference information 
resn = residuals 
scoresn = scores 

6.1.2 Polynomial PLS 

Frame 6.1.2-3 Calculation of poly-PLS 

1/0 function: [p,q,w,t,u,b,ssqdifj = polypls(x,y,lv,n); 

Input information; 
x = training spectra 
y = reference information 
Iv = no. ofLVs 
n = no. inner relationships 

Output information; 
p = spectra loadings 
q = y-block loadings 
w = x-block weights 
t = x-block scores 
u = y-block scores 
b = spectra inner- relation coefficients 
ssqdif = variance in the data explained 
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Frame 6.1.2-4 Prediction of poly-PLS 

1/0 function: ypred = polypred(x,b,p,q,w,lv) 

Output information; 
ypred = predicted reference infonnation 

6.1.3 Spline PLS 

Frame 6.1.3-5 Calculation of Spline-PLS 

1/0 function: ; [P,W,T,U,C,cfs,ks,ssq] = spl-IlIs(x,y,knots,deg,lv,plots); 

Input information; 
x = training spectra 
y = reference infonnation 
Iv = no. ofLVs 
knots = no. knots in the spline 
deg = degree of spline 

Frame 6.1.3-6 Prediction of Spline-PLS 

Output information; 
P = spectra loadings 
W = x-block weights 
T = x-block scores 
U = y-block scores 
C = inner coefficients 
cfs = spline coefficients 
Is = knot locations 
ssq = variance captured by model 

1/0 function: ypred = splspred(newx,P,W,C,cfs,ks,lvs,plots) 

Output information; 
ypred = predicted reference infonnation 

6.1.4 OSC 

Frame 6.1.4-7 Calculation of OSC spectra 

110 function: ; [nx,nw,np,nt] = osccalc(x,y,nocomp); 

Input information; 
x = training spectra 
y = reference infonnation 
nocomp = no. OSC components 

Output information; 
nx = OSC spectra 
nw=weights 
np = loadings 
nt = scores 

PLS Nipals is the carried out on the OSC spectra. 

Frame 6.1.4-8 Calculation of OSC to unknown spectra 

110 function: [newx] = oscapp(x,nw,np,nofact); 

Output information; 
newx = OSC corrected new spectra 
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6.2 PLS_ Toolbox scaling functions 

Frame 6.2-1 Scaling methods 

Pre-treatment Function name Input 
Median med(x) x = spectra 
Mean centre rnncn(x) x = spectra 
Autoscaling auto(x) x = spectra 
SNV auto(x') x = spectra 

6.3 PLS_ Toolbox Savitsky Golay filter 

Frame 6.3-1 Savitsky Golay smoothing and derivatisation 

1/0 Function: [y_ hat,cml = sav~ ol(y,width,order,deriv); 
Inputs Outputs 

Output 

x = spectra [y _hat] = smoothed and differentiated matrix 
width = no. of points in filter cm = matrix coefficients 
order = polynomial order 
deriv = derivative order 

6.4 Matlab script files 

Frame 6.4-1 Calculation of correlation coefficient throughout spectra 

% Calculation of correlation coefficient where no. variables = 2046 

clear all 
load spectra.asc 
load conc.asc 
for i = 1 :2046; 

result = corrcoef(spectra(:,i),concA; 
finalresult(i) = result(2,1); 

end 
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Chapter 2: Development of a Reference Dataset Based On Visible Metals Spectra 

1 Introduction 

This work was for the European Framework 5, 'The Standards Measurements and 

Testing' programme of the European Network Consortium. The aim was to 

produce a spectroscopic reference dataset with an absolute minimum of 

experimental and hence spectral errors. The dataset will then be used for a 'round 

robin study' to act as an inter-laboratory comparison, but for chemometric data 

analysis instead of chemical analysis. The bench mark dataset will then be 

universally available for downloading from a website. This could then be used in 

the development of new applications and algorithm design. In addition to this, an 

investigation into the effect of measurement based on two different types of 

spectrometer will be undertaken. Samples will be measured using a standard 

analytical spectrometer and industrial spectrometer designed for use on industrial 

process plants. 

The use of inter-laboratory studies for chemical analysis, to ensure that there is no 

bias in results between different laboratories, is now commonplace. Standard 

reference materials, with known composition and confidence intervals, are 

available from most chemical suppliers. The aim is to extend this principle to 

results obtained by different users for multivariate calibration of the same data. 

Reference datasets have already been produced by NIST, with the objective that: 

'The purpose of this project is to improve the accuracy of statistical software by 

providing reference datasets with certified computational results that enable the 

objective evaluation of statistical software' I. 
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There are several datasets which can be downloaded from the NIST website2
, each 

of these have certified mean and standard deviation estimates for the results of 

linear regression and non-linear regression. The datasets are not spectroscopic and 

the certification is based on a pre-determined mathematical method of analysis. 

The European framework has carried out a similar study to that pursued here; they 

have published a discussion paper of the preliminary results3
• This study was 

based on NIR spectra of natural forage samples collected over 3 years, which 

were used to predict the levels of moisture and crude protein content. The study 

found that for the six participants the RMSEPs were acceptable but the actual 

predictions varied considerably between them. During the development of a 

reference dataset based on visible metals spectra a larger number of subjects will 

participate. The dataset produced will follow an experimental design strategy and 

will be measured in one day to minimise variation in the spectra from 

instrumental drift or environment conditions. 

For the study, a set of accurate, reproducible spectra was required. Metals 

complexes following a design of experiments strategy were chosen to be analysed 

by visible spectroscopy. Solutions of cobalt, nickel and copper salts are 

traditionally used as standard solutions for UVNis spectroscopy4. The French 

Standards organisation 'Laboratoire National d'Essais' (LNE) use nitrates of these 

metals. The four transition metals ions chosen were cobalt (C02+), chromium 

(Cr3+), copper (Cu2+) and nickel (Ni2+). Each has a different absorption spectrum 

in the visible region of the electromagnetic spectrum with maximum absorption at 
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different wavelengths5
• The metal ion solutions were in nitric acid to prevent 

oxidation. 

The solutions were prepared in nitric acid to due good stability and minimum 

interference in the spectra samples spectra in the visible region. 

Three main datasets were produced. The first was the pre-study that consisted of 

spectra simulated from those of the pure metals spectra; the second was recorded 

on a low-resolution spectrometer that was designed for industrial process 

monitoring. The third was recorded using a standard analytical spectrometer. For 

both of the second and third datasets duplicate samples sets were produced where 

the entire procedure was carried out on two consecutive days. 

Initial investigations (PCA and PLS) were performed on all the datasets. The 

dataset which did not highlight any spurious samples after PCA, and with minimal 

errors of prediction after PLS regression, was chosen for use in the study. The 

subjects were provided with two predefined datasets. The first was to be used for 

training of the regression model, using this model, the subjects were to predict the 

volume of metal ions in a second dataset of test samples. The trial consisted of 20 

participants with a range of experience in multivariate calibration. The instruction 

given to the participants was to produce the best calibration model in their opinion 

from the training samples and then to use this to predict the test samples. The 

user's selection of software, algorithm and sample pre-treatment methods were 
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unrestricted. The predicted values were reported along with the model details and 

comments of outlier samples. 

1.1 Beers law 

For UVNis spectroscopy the absorbance spectrum is related to sample 

concentration using Beers law6
, equation 13. When considering a mixture of 

multiple absorbing analytes the absorbance at a given wavelength is the sum of 

the absorbance of each analyte (equation 14). Based on this, the absorbance 

spectrum of a mixture can be estimated using the absorbance spectrum of each 

analyte at known concentration and pathlength. 

A = cbc Equation 13 Beers law 

A=8bc+8bc+8bc+8bc+..... Equation 14 Application of Beers law 
11223344 

Where; 

A = absorbance 

E = molar absorptivity (cm-1morll) 

b = pathlength of radiation (cm) 

to mixtures 

c = concentration of absorbing analyte (mol/I) 
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2 Experimental 

2.1 Initial measurements of 1000 IJg/ml metal ions 

The UV Nis spectra of nitric acid, 5 % (v/v), and solutions of cobalt, chromium, 

copper and nickel (1000 J.lg/ml) in nitric acid 4 % (v/v) were recorded. At the 

maximum absorbance for each metal ion, the wavelength and amount of 

absorbance was noted. 

2.2 Experimental design 

The maximum absorbance of the 1000 J.lg/ml metals ions was less than 0.3 for 

each of the components. 10,000 J.lg/ml solutions are used for the actual samples 

for higher absorbances. The samples were constrained so that the sum of the 

absorbance was less than 1 absorbance. A full factorial two level design was used 

to calculate the concentrations of a set of training samples in table 2.1-1. The test 

sample concentrations (table 2.1-2) were randomly generated within the 

constrained concentration limits of the experimental design. In addition to this, for 

samples 23 - 26 at least one of the metals was excluded from the sample, the 

remaining concentrations were randomly generated within the limits of the 

designs concentration range. 
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Table 2.1-1 Table of training samples for analysis by visible spectroscopy, 

metal ion composition: Volume (ml) of metal ion standard, 10,000 Ilg/l, made 

up to 10 ml with nitric acid,S % (v/v) 

Sample number Co.:-r CrJ-r Cu.:-r Ni.:-r 
1 3.2 1 1.2 2.4 
2 4 1 1.2 2.4 
3 3.2 1.4 1.8 2.4 
4 4 1.4 1.8 2.4 
5 3.2 1 1.2 2.4 
6 4 1 1.2 2.4 
7 3.2 1.4 1.8 2.4 
8 4 1.4 1.8 2.4 
9 3.2 1 1.2 2.8 
10 4 1 1.2 2.8 
11 3.2 1.4 1.2 2.8 
12 4 1.4 1.2 2.8 
13 3.2 1 1.8 2.8 
14 4 1 1.8 2.8 
15 3.2 1.4 1.8 2.8 
16 4 1.4 1.8 2.8 

Table 2.1-2 Table of test samples for analysis by visible spectroscopy, metal 

ion composition: Volume (ml) of metal ion standard, 10,000 Ilg/l, made up to 

10 ml with nitric acid, 5 % (v/v) 

Sample number Co.:-r CrJ-r Cu':- Ni.:-r 
17 3.2 1 1.7 2.6 
18 3.4 1.4 1.6 2.8 
19 3.7 1.1 1.7 2.7 
20 3.2 1 1.3 2.7 
21 3.7 1.2 1.8 2.5 
22 3.8 1.3 1.4 2.4 
23 0 1.1 1.3 0 
24 3.8 0 1.6 2.6 
25 3.8 1.3 0 2.7 
26 0 1.4 1.5 0 
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2.3 Preparation of solutions 

The solutions were prepared in 'A' grade 10 m1 volumetric flasks, these were 

washed and rinsed with 5 % (v/v) nitric acid prior to preparation. 

2.3.1 Initial measurements of 1000 1J9/ml metal ions 

The spectra of 1000 f.lg/ml of Co2+, Cu2+, Cr3+ and Ne+ single element standards 

from QMx laboratories ltd, Thaxted, CM6 2PY, UK were recorded. 

2.3.2 Sample measurement based on 10,000 1J9/ml metal ions 

The metal solutions were added to the flasks in a random order. For the 26 

samples and 4 different metal types there were 104 additions to the flasks. These 

additions, for each sample, were numbered 1-26 for cobalt, 27 - 52 for chromium, 

53 - 78 copper and 79 - 104 for nickel. The numbers 1-104 were randomised and 

the resulting order used for the sample preparation. 

Reagents 

For the two experiments measured on different spectrometers, two sets of reagents 

were purchased from the same batches from QMx. 

Table 2.3.2-1 Table of reagents used for visible metals spectra 

Reagent 
Nitric acid reagent blank (500 ml), HN03, 5 % (v/v) 
Single element cobalt std (250 ml), Co.l+ in 4 % HN03, 10,000 ± 30 f.lg/ml 
Single element chromium std(250 ml), ce-t" in 4 % HN03, 10,000 ± 30 f.lg/ml 
Single element cOj2£er std (250 ml), Cu.l+ in 4 % HN03, 10,000 ± 30 f.lg/ml 
Single element nickel std (250 ml), Ne+ in 4 % HN03, 10,000 ± 30 f.lg/ml 
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2.4 Sample analysis 

The samples were analysed in a random order. The duplicate sets for each 

spectrometer were prepared and measured on consecutive days. 

2.4.1 Analysis by an analytical spectrometer 

Spectrometer: 

Control PC: 

Operating software: 

Scan Range: 

Scan Speed: 

Resolution: 

Smoothing: 

Number of data points: 

Perkin Elmer UVNis lambda Bio 10· 

Pentium (I) 166 MHz processor, 16 MB RAM 

UV WinLab v2.80.03 

1000 - 350 run (900 - 350run for pre-study) 

960 nmImin 

0.5 run 

None 

1300 (1100 for pre-study) 

* Chalfont Road, Seer Green, Beaconsfield, Bucks, HP9 2FX, UK. 

2.4.2 Analysis by a process type spectrometer 

Spectrometer: 

System: 

Control PC: 

Operating software: 

Cycle mode: 

Scan Range: 

Resolution: 

Carl Zeiss double beam UV Nis spectrometer· 

MCS 500 

Pentium (II) 300 MHz processor, 64 MB RAM 

Aspect plus 

Single 

738.3614 - 349.8884 nm 

2.1167 nm 
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Integration time: 

:Number of flashes: 

Accumulation: 

:Number of data points: 

350.0 ms 

7 

50 

184 

'" Clairet Scientific, 17 Scirocco Close, Moulton Park Industrial Estate, 

:Northampton, NN3 6AP, UK. 
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3 Results 

3.1 Pre-study 

The spectra of the pure metal ions of C02+, C~+, Cu2+ and Ni2+ in nitric acid are 

plotted in figure 3.1-1. The absorbance spectra of each of the metals are distinctly 

different. When overlaid in figure 3.l-2, regions where the maximum absorbance 

has the potential to be masked by other components are apparent. 

Figure 3.1-1 Visible spectra of pure metal ions (1000 JlgIl) 
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Figure 3.1-2 Visible spectra of 1000 ",gil metal ions 
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From the pure spectra an experimental design was produced so that the maximum 

sum of all the metals absorbance was not greater than 0.8 to ensure that the actual 

sample used in the trials were within the linear range for visible spectra. An 

additional test set of 10 samples was included for validation and testing of future 

models. The test samples were made up of random concentrations within the 

limits of the design, in some cases, deliberately containing only 2 or 3 of the 

metals components, to investigate if some users or software in the study would 

consider these outliers. 
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The visible spectra of the metal ions solutions have been plotted in two groups, 

figure 3.1-3, those including and those excluding samples at zero concentration. 

Visually there is a clear difference between the two sets. 

Figure 3.1-3 Visible spectra of metal ion solutions; samples with all metal 

ions present 
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Figure 3.1-3 Visible spectra of metal ion solutions; samples with zero 

concentration for some metal ions 
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The spectra were mean centred and PCA was applied to investigate if the zero 

concentration samples are identified as outliers by the student T2 and Q residual 

tests. 

The samples scores plots, in figure 3.1-4, show that those containing all four 

components are within the 95 % limit of the model. The samples with one or more 

missing components, numbers 22 - 26, are often outside the 95 % limit. These 

could be mistaken for outliers and removed from the dataset when in fact they are 

part of the experimental design. 
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Figure 3.1-4 PCA samples scores plots, residual Q values and T2 value results 

for the simulated metal ion solutions spectra based on a 4 PC model 
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3.1.1 Measurement of four test metal ion solutions spectra 

Four samples including those of lowest and highest concentration of each metal 

ion were prepared and analysed using an analytical spectrometer. The spectra can 

be seen in figure 3.1.1-1. 

Figure 3.1.1-1. Visible spectra of test metal ion solutions 
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The test samples were prepared with 1000 flg/l metal ion standards, consequently 

the absorbances are 1/10th lower than the actual samples which use 10,000 flg/l 

metal ion standard. 

The correlation between the actual test samples measured and the simulated 

spectra in dataset 1 was calculated to be above 0.998 for all four samples 
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measured. This was a good indication that the measured spectra will be similar to 

those simulated from Beers law. The lowest and highest sample absorbances were 

in the range of 0.18 and 0.06 absorbance which when multiplied by 10 to correct 

for the low concentration is 0.18 - 0.6 which is within the desired range to ensure 

linearity in the samples absorbance. On the basis of these results, sample 

preparation and analysis continued without amendment to the experimental 

design. 

3.2 Measurement of metal ion solutions spectra set 2 

The metal ion solutions spectra of set 2 were recorded on two consecutive days on 

a low-resolution process spectrometer at A vecia Ltd. Grangemouth works. As 

process instruments are often situated away from the process, fibre optic cables 

are used to allow analysis of samples several metres from the spectrometer body. 

This was the type of instrument set-up for this equipment. The cuvette was placed 

in a remote sample holder, the light from the spectrometer was transmitted 

through fibre optic cables to the holder for measurement. The sample holder was 

placed on a bench in the laboratory, a background spectrum of the light was 

measured at the start of each day, and this was automatically subtracted from the 

absorbance spectrum of each sample. 
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Figure 3.2-2 Metal ion solutions of dataset 2.2, visible spectra measured with an industrial process spectrometer 
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The industrial spectrometer only measured spectra to 738 nm, and not to 1000 nm. 

This significantly affects the samples' spectra. The maximum absorbance for Cu2
+ is 

at 813 nm. In addition to this, Ni 2+ absorbs in this region. 

Figure 3.2-3 Plot of pure metal ions spectra between 350 -1000 nm, highlighting 

the region of 738 - 1000 nm, which is not included in the measurements 

recorded by the industrial process spectrometer 
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PCA was applied to datasets 2.1 and 2.2. Prior to analysis the spectra were mean 

centred. Four PCs were used to model the data. The results plotted in figure 3.2-4 

and figure 3.2-5, show that there is poor reproducibility in the samples scores plots 

between the two datasets. This is most evident in PC 4 where the trend in the scores 

are very different indicating that there maybe a problem with the samples spectra. 
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Figure 3.2-4 Dataset 2.1 peA results; samples scores plots, residual Q values 

and T2 value results based on a 4 PC model 
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The T2 test highlights samples 23 - 26, i.e., those missing at least one metal ion, to 

be of high leverage and possible outliers. This is also seen in dataset 2.2. 
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Figure 3.2-5 Dataset 2.2 PCA results; samples scores plots, residual Q values 

and T2 value results based on a 4 PC model 
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For set 2.2, the T2 shows sample 15 to be an outlier in addition samples 23 - 26. The 

samples scores plots are not the same between the two datasets. The spectra of each 

sample 1 - 8 for each dataset are plotted in figure 3.2-5. 
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Figure 3.2-6 Plots of samples 1 - 8 datasets 2.1 and 2.2 metal ions spectra 
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Sam Ie 7 
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It can be seen that for some samples, e.g. 3 and 4, the spectra are similar. However 

for many samples the spectra are very different and in the case of samples 5 - 8 there : 

is a large baseline shift of 0.1 - 0.2 absorbance. From this, it is unknown which set, if 

either, has the correct spectra. 

Further investigations are required to attempt to establish the source of variation, i.e. 

are the samples labelled or prepared incorrectly, or is there a fault with the 

spectrometer causing variation between the two days. If the error is sample set 

dependent, i.e. one set can be modelled sufficiently by PLS and the remaining can't; : 

then the conclusion is that a gross error occurred with dataset that was poorly 

modelled. If neither set can be modelled, then the assumption will be that, the error 

lies within the spectrometer. 

The spectra and reference concentration information is mean centred for the PLS2 

CV calibration models. The percentage variance in the spectra and concentrations are 

tabulated in table 3.2-1 for dataset 2.1 and table 3.2-2 for dataset 2.2. For dataset 2.1, 

99.89 % of the spectral and only 58.04 % of the variance in the samples metal ion 
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content was captured with 4 LV s. In contrast, for dataset 2.2 the % variance 

captured, in the samples spectra and concentrations, was 99.9 % and 91.57 % with 4 

LV s. This shows that the reference sample concentrations do not relate well to the 

spectra for dataset 2.1, perhaps the result of sample preparation error. 
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Table 3.2-1 Dataset 2.1: Percent variance captured by PLS2 model 

Spectra Concentration 

LV This LV (%) Total (%) This LV (%) Total (%) 

1 77.38 77.38 24.36 24.36 

2 15.46 92.84 21.62 45.98 

3 6.53 99.37 8.74 54.72 

4 0.52 99.89 3.32 58.04 

Table 3.2-2 Dataset 2.2: Percent variance captured by PLS2 model 

Spectra Concentration 

LV This LV (%) Total (%) This LV (%) Total (%) 

1 71.02 71.02 48.01 48.01 

2 16.57 87.59 32.65 80.66 

3 9.91 97.50 9.24 89.89 

4 2.42 99.93 1.68 91.57 

The actual metal concentration is plotted against predicted concentration for both 

datasets in figures 3.2-7-10 and figures 3.2-11-14. Generally the goodness of fit is 

better for the spectra in dataset 2.2 than for 2.1. The predictions for Cr3
+ and Cu2

+ 

have the most scatter about the line of best fit for the samples with all the 

components present. Conversely C02
+ and Ni2

+ had very poor prediction for sample 

16 and samples 23 - 26 where at least one component was excluded from the dataset. 

PCA did not indicate sample 16 to be an outlier whereas 23 - 26 were. 

The poor predictions for dataset 2.1 are in agreement with the poor capture of the 

concentration information. Even when the number of LVs is extended to 10 (not 

tabulated) less than 70 % of the concentration variation is captured. It is concluded 
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that there is a gross error with dataset 2.1 and it will be excluded from further work. 

Because of this, a dataset of industrial based measurement was not available for the 

intercomparison study and the development of a standard dataset. 

Figure 3.2-7 Dataset 2.1: PLS2 C02
+ actual Vs predicted results based on 4 LVs 
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Figure 3.2-8 Dataset 2.1: PLS2 Cr3
+ actual Vs predicted results based on 4 LVs 
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Figure 3.2-9 Dataset 2.1: PLS2 Cu2
+ actual Vs predicted results based on 4 LVs 
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Figure 3.2-10 Dataset 2.1: PLS2 Ni2+ actual Vs predicted results based on 4 LVs 
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Figure 3.2-11 Dataset 2.2: C02+PLS2 actual Vs predicted results based on 4 LVs 
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Figure 3.2-12 Dataset 2.2: Cr3+PLS2 actual Vs predicted results based on 4 LVs 
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Figure 3.2-13 Dataset 2.2: Cu2+PLS2 actual Vs predicted results based on 4 LVs. 
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Figure 3.2-14 Dataset 2.2: Ne+PLS2 actual Vs predicted results based on 4 LVs 
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3.3 Measurement of metals mixtures spectra set 3 

The spectra for set 3 were recorded using a standard analytical spectrometer (Perkin 

Elmer, UV Nis, Lamba Bio 10). This has a measurement range of 350 - 1000 run 

and the spectra were recorded with a resolution of 0.5 run. The spectra were 

measured on two consecutive days, with dataset 3.1 first. The samples spectra of 

dataset 3.1 are plotted in figure 3.3-1. Dataset 3.2 is plotted in figure 3.3-2. There is 

little visual difference between the two datasets. 

As for the previous datasets, PCA is first applied, and from this the variation and 

trends in the samples were observed in the PCA scores, scores loadings and residual 

Q and Hotellings T2 plots as shown in figure 3.3-3 and 3. 

"1 r .• 

Comparison of the PCA results between datasets 3.1 and 3.2 finds that the scores 

plots for PC's 1, 2 and 4 are almost identical, for PC 3 the scores patterns are the 

same, but for the zero component samples the scores distances have reversed signs. 

The residual Q values indicate that sample 10 of 3.1 and sample 20 of 3.2 have high 

leverage. Neither of these is indicated as outliers by the T2 statistic. 

The Q value is a representation of the sample distance outside of the model. The high 

Q values for these samples are consist with the positioning of the sample away from 

the line of best fit in the actual vs predicted plots. In figures 3.3-5 and 8, C02+ and 

Ne+ predictions for dataset 3.1, sample 10 is the furthest sample from the line. This 

is again seen for sample 20 of dataset 3.2 but this time for each metal ions prediction, 

in figures 3.3-9 to 13. 
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Figure 3.3-2 Dataset 3.2 metal ions spectra recorded using an analytical spectrometer 
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Figure 3.3-1 Metals spectra recorded using an analytical spectrometer 
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Figure 3.3-3 Dataset 3.1: peA samples scores plots, residual Q values and T2 

value results based on a 4 PC model 
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Figure 3.3-4 Dataset 3.2: PCA samples scores plots, residual Q values and T2 

value results based on a 4 PC model 
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For both datasets PLS CV models are calculated; mean centering scaled the data. 

The percentage variance captured by the models is good with both sets requiring 4 

LV s to capture nearly 99 % of the spectral and concentration variance. 

Table 3.3-1 Dataset 3.1: Percent variance captured by PLS2 model 

Spectra Concentration 

LV This LV (%) Total (%) This LV (%) Total (%) 

1 52.67 52.67 48.20 48.20 

2 32.49 85.16 20.84 69.04 

3 14.14 99.30 26.42 95.46 

4 0.66 99.96 4.07 99.53 

Table 3.3-2 Dataset 3.2: Percent variance captured by PLS2 model 

Spectra Concentration 

LV This LV (%) Total (%) This LV (%) Total (%) 

1 51.33 51.33 47.26 47.26 

2 33.69 85.02 20.82 68.08 

3 14.26 99.27 26.94 95.02 

4 0.66 99.93 3.97 98.99 

The actual verses predicted concentrations are plotted in figure 3.3-5 to 8 for 

dataset 3.1 and figures 3.3-9 to 12 for dataset 3.2. The metal ions in both datasets 

have good prediction with little scatter about the line of best fit. From the PLS 

results, dataset 3.1 was chosen for distribution to external sources for data 

processing. This dataset had a slightly lower average RMSECV of 0.6405 than set 

3.2 at 0.6492 and slightly more of the variation in the concentration data is 

captured within 4 latent variables. 
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Figure 3.3-5 Dataset 3.1: Co2
+ PLS2 actual Vs predicted plots 
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Figure 3.3-6 Dataset 3.1: Cr3
+ PLS2 actual Vs predicted plots 
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Figure 3.3-7 Dataset 3.1: Cu2+ PLS2 actual Vs predicted plots 
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Figure 3.3-8 Dataset 3.1: Ne+ PLS2 actual V s predicted plots 
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Figure 3.3-9 Dataset 3.2: Co2
+ PLS2 actual Vs predicted plots 
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Figure 3.3-10 Dataset 3.2: Cr3
+ PLS2 actual Vs predicted plots 
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Figure 3.3-11 Dataset 3.2: Cu2
+ PLS2 actual Vs predicted plots 
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Figure 3.3-12 Dataset 3.2: Ni2
+ PLS2 actual Vs predicted plots 
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3.4 Effect of pre-treatment method on PLS prediction 

PLS2 calibration models were calculated for a range of pre-treatment methods 

based on dataset 3.1. The models are trained with the samples in table 2.1-1 and 

validated with the samples in table 2.1-2. These were predicted using 2 - 6 latent 

variables. The RMSPE results are plotted in figure 3.4-1 for each metal ion. 

Figure 3.4-1 PLS2 model RMSPE results for various pre-treatment methods 

and a range of latent variables (2 - 6) used to model data 3.1 
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The plots show that models based on 2 or 3 LV s have high RMSPE values, and 

are insufficient to model the data well. Where 4 or more LV s are used, there is a 

reduction in the RMSPE value, especially for prediction of Co2
+ and Ni2

+. The 

application of SNV to the spectra is an exception to this, and the RMSPE values 

for each metal ion are similar when the number of LV s used to model the data 

increases. 

Standardisation techniques such as SNV and auto scaling work to standardise the 

spectra such that the variance is equal throughout the spectra. For absorbance 

spectra the magnitude of the spectra is directly proportional to the amount of . 

absorbing species present in the sample. This should be taken into consideration 

when apply such methods to absorbance spectra as they may not be the most 

appropriate method. Standardisation techniques also increase the signal to noise 

ratio as the signal is reduced and the level or random variation such as noise is 

increased. 

For the remaining models, the RMSPE values are low, with the lowest values 

achieved when the spectra have been derivatised, using a first order Savitsky 

Golay function. The corresponding RMSPEs are 0.033 for Co2+, 0.018 for Cr3+, 

0.028 for Cu2+, and 0.033 for Ni 2+. Derivatisation increases the number of peaks 

in the spectra. This maximises the between variable variation, and can resolve 

overlapping and co-absorbing species. 
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The SNV and derivatised spectra of the training and test samples are plotted in 

figures 3.4-2 to 5. These show that SNV has altered some of the variation in the 

spectra to be consistent across the absorbance range. Conversely, and as expected, 

derivatisation has increased the number of peaks in the spectra. 

Generally the PLS models of this data are not dependent on a specific pre-

treatment method with only small variations between methods. 

Figure 3.4-2 Plot of SNV standardised training samples spectra of dataset 3.1 
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Figure 3.4-3 Plot of SNV standardised test samples spectra of dataset 3.1 
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Figure 3.4-4 Plot of 1st order SG derivatisation training samples spectra of 
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Figure 3.4-5 Plot of 1st order SG derivatisation test samples spectra of 

dataset 3.1 
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3.5 Comparison of prediction between datasets 

In section 3.4, the effect of pre-treatment method on the prediction of the test 

samples was investigated, and it was found that SO derivatisation gave models 

with lowest RMSPE values for dataset 3.1. The difference between the datasets, 

spectrometers and wavelength range has been investigated. Different models 

based on derivatised spectra for datasetsl, 2.2 and 3.1 were calculated using PLSI 

and PLS2. For dataset 2.2, models were calculated with and without sample 15, as 

this was suspected as an outlier from the PCA results in figure 3.2-4. 
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Figure 3.5-1 Summary of PLS models for the metal ion solutions spectral 

datasets 
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Dataset 1 has significantly higher errors of prediction than those of datasets 2.2 

and 3.1. This is the simulated dataset, and the spectra were based on the 

measurement of pure metal ions of concentration 1000 J..lg/l. These had a very low 

absorbance of less than 0.1 which could result in lower signal to noise ratio. 

The increase in prediction error for C02
+ when PLS 1 is used to model the data 

indicates there is dependence on the C02
+ ion for prediction of the remaining 

metal ions in the sample, and this situation is known as serial correlation. This is 

not seen in dataset 3.1 as the RMSPE values from The PLSI and PLS2 are 

similar. 
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The difference in quality of the spectra is also seen when dataset 3.1 is reduced to 

the same wavelength range and number of data points as those of spectra in 

dataset 2.2. With the reduced number of datapoints and spectral region there is 

little difference in the RMSPE values when compared to those calculated with the 

full spectra. 

Removing sample 15 from dataset 2.2 reduced the RMSPE values for C02
+ and 

Ne+. The prediction residuals for the model including sample 15, figure 3.5-2, 

confinns the high leverage of this sample and justifies its removal from the 

dataset. 

Figure 3.5-2 Dataset 2.2: PLS2 prediction residuals for a 4 LV model 
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3.6 Collaborative trial results 

In the trial 20 people took part. They were given dataset 3.1 with details of how to 

produce a model, based on the calibration samples, to predict the metal ion 

content of the test samples. The choice of software, calibration type and sample 

pre-treatment method was allowed to the participants' discretion. Each subject 

was asked to supply details of the software and any toolboxes used for 

calculations, regression method, sample pre-treatment method, applicable the 

number of latent variables, the number of possible outliers and the RMSPE for 

each metal ion. 

The model details and RMSPE values are tabulated in table 3.6-1 for each 

participant of the trial. From the table it can be seen that participants 15 and 19 

produced identical models and RMSPE values. 

Comparing the trial participants predictions to those calculated using a range of 

pre-treatment methods and latent variables (figure 3.4-1), the participant number 

11, who used NIRCAL for calculations, had substantial improvement in 

prediction with SNV data; RMSPE values were less than 0.06, whereas the 

analyte with lowest value was 0.4 in figure 3.4-4. 

Participant numbers 4, 10 and 18 mean centred the data. Participants 4 and 18 had 

similar RMSPE values; number lOused GRAMMS software that produced a 

model that gave much lower RMSPE values of less than 0.036, for the same 

number of LV s. 

87 



Chapter 2: Development of a Reference Dataset Based On Visible Metals Spectra 

Derivatisation gave the most consistent results between participants, for numbers 

1, 8, 12, 13 and 20 the RMSPE values are similar to those in figure 304-1. The 

participants 2 and 3 autoscaled the data and reported much lower RMSPE values. 

As both used PLS 1 instead of PLS2 used the lower errors in prediction are 

anticipated. There is a difference in results for the participant numbers 7 and 9 

who also autoscaled, these participants used PLS2 but had much higher error 

prediction for some metal ions nickel e.g., an RMSPE of 004 instead of less than 

0.05 as expected. 

The largest variations are where the data has not been scaled. For participants 5 

and 17 the RMSPE values are much higher than calculated, however true 

comparison is not possible as number 5 used MLR, indicating PLS to be a more 

superior method and the individual number 17 did not report the number of LV s 

used to model the data. Participant 14 also used MLR and had RMSPE values 

similar to where 2 LV s modelled the untreated data in figure 3 A-I. 

The trial participants RMSPE values are for metal ion concentration predictions 

are plotted in figure 3.6-1. From the graph it can be seen that the RMSPE values 

reported by some individuals are very high, the reason for which is not obvious. 

These are suspected to be outliers and not representative of the population. 

Grubbs test was used to identify if these participants predictions are outliers. 
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Table 3.6-1 Results reported by each individual, including the type of calibration model, pre-treatment method, number of latent 

variables used, number of possible outliers and the RMSPE for each metal ion in the samples 

Subject Software Method Pre-treatment No. of No. of RMSPE 
Number LVs outliers Co"" CrJT CU"T Ni"T 

1 ML,PLST PLSI 1 st Savisky Golay 4 0 0.0328 0.0176 0.0276 0.0330 
2 ML,PLST PLSI Autoscale 4 0 0.1610 0.0180 0.0282 0.0323 
3 ML,PLST PLSI Autoscale 5 0 0.0552 0.0241 0.0220 0.0391 
4 ML PLS2 Mean centre 4 0 0.2958 0.1478 0.2354 0.0233 
5 ML MLR none - 0 0.6922 0.3567 0.4289 0.4539 
6 SIMCA-P PLSI OSC 4 6 1.5714 0.3599 0.4501 1.1577 
7 # PLS2 Autoscale 4 2 0.2151 0.0183 0.0393 0.4453 
8 ML,PLST PLSI 1 st order derivatisation 4 0 0.0296 0.0211 0.0300 0.0358 
9 ML PLS2 Autoscale 6 4 0.0457 0.0311 0.0583 0.4012 i 
10 GRAMM PLS2 Mean centre 4 0 0.0312 0.0343 0.0359 0.0298 
11 NIRCAL PLSI SNV 6 2 0.0410 0.0459 0.0595 0.0483 I 

12 ML,PLST PLS2 1st order derivatisation 4 0 0.0311 0.0174 0.0270 0.0349 
13 ML PLSI 1st derv. 4 0 0.0310 0.0225 0.0383 0.0329 
14 ML MLR none - # 0.0925 0.0219 0.0307 0.1123 
15 ML PLS none 5 # 0.0469 0.0121 0.0314 0.0355 
16 ML PLS none 6 # 0.0392 0.0165 0.0319 0.0327 
17 ML PLS none # # 0.4022 0.5373 0.8550 0.6673 
18 ML PLS Mean centre 7 # 0.0273 0.0221 0.0317 0.0318 
19 ML PLS none 5 # 0.0469 0.0121 0.0314 0.0355 
20 MLPLST MLR 1 st order derivatisation - 0 0.0526 0.0265 0.0183 0.0332 
--- - --~ . 

\0 ML = Matlab, PLST = PLS _Toolbox, # = not provIded 
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Figure 3.6-1 Calibration model RMSPE values for each analyte prediction as reported by different individuals 

W 
Il. 

1.6 

1.4 

1.2 

~ 0.8 
0:: 

0.6 

0.4 

0.2 

o ~ ~ ITII 

1 2 3 

-

.. ~ ~I-f ""11lI~.-flIIJIlnIa.r. ...rw I...r-. ...n. 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Subject Number 

- Cobalt 

o Chromium 

o Copper 

- Nickel 



Chapter 2: Development of a Reference Dataset Based On Visible Metals Spectra 

3.6.1 Investigation of subjects predictions in the collaborative trial 

For each component each subject's prediction was arranged in numerical order 

from high to low, the highest prediction was suspected as an outlier and Grubbs' 

test applied. This was repeated until the suspected subjects prediction was found 

not be an outlier; table 3.6.1-1 shows the outlier subject number for each metal 

Ion. 

Table 3.6.1-1 Grubbs test results for collaborative trial subjects 

Component Cobalt Chromium Copper Nickel 

Outlier subject 6,5,17,4,2,14 17,6,5,4,11 17,6,5,4 6 and 17 

Subjects 6 and 17 lie outside of the population of the predictions in the 

collaborative trial, this is for each of the metal ions in the samples. These subjects 

chose their best model as having validation samples with between a 30 - 45 % 

error of the average component concentration in the training samples. 

The subjects found to be outliers are consistent with those of high RMSPE values 

seen in figure 3.6-1. Of interest are subjects 7 and 9 who reported results that have 

very large errors for Ni2
+ (and C02

+ for subject 7) yet they are not identified as 

outliers. 

The Grubbs test for outliers is not ideal for the detection of many suspected 

values; also it only investigates the variance in the subjects for each component 

individually. ANOVA was used to test the effect of removing a subject taking into 
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account the RMSPE value of all of the metal ions present in the samples. This will 

determine if the subjects with all components are considered to come from the 

same population based on prediction of all the components. 

3.6.2 Analysis of variance 

An ANOVA, based on a two tailed F-test at the 95 % confidence level, was 

calculated based on each subjects' RMSPE value for each metal ion. This was to 

test if the predictions are statistically from the same population. The subjects are 

removed from the dataset based on the frequency of outlier predictions for the 

metal ions in table 3.6.1-1. 

First the F-test was calculated based on the all of the individuals who participated 

in the trial reported RMSPE values (test 1). This found that the individuals' 

predictions are representative of one population. Table 3.6.2-1 reports the 

ANOVA results where participants' RMSPE values have been removed from the 

population. 

Table 3.6.2-1 Collaborative trial ANOV A results 

Test Subjects Degrees of freedom Fcalc Fcrit Significant 

No. removed Between Within Total difference in 

groups groups population? 

1 None 19 60 79 9.0893 1.9636 Yes 

2 6 18 57 75 13.4997 1.9973 Yes 

3 6 and 17 17 54 71 7.9386 2.0343 Yes 

4 6,17 and 5 16 51 67 1.9801 2.0753 No 
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The results of the F -test found that after removing the RMSPE values for subjects 

6, 17 and 5 the remaining subjects are statistically from the same population at the 

95 % confidence level. The new dataset with outlying subject prediction removed 

is plotted in figure 3.6.2-1. 

The removal of these subjects predictions are in accordance to those found to be 

outliers in section 3.6.1 from Grubbs test. Subjects 6 and 17 were outliers for all 

of the metal ions and subject 5 for three of the four of the metal ions. This was 

also the case for the results of subject 4, but this subject reported a slightly lower 

average RMSPE. 

The effect of removing subject 4's RMSPE values was not investigated by 

ANOVA, as there was not a significant difference in the population after subject 5 

was removed. The new trial dataset and corresponding individuals RMSPE results 

based on the new population can be seen in figure 3.6.2-1. 
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Figure 3.6.2-1 Reported RMSPE values for the new trial dataset after outlier subjects predictions have been removed. 
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3.6.3 Discussion of variation in prediction ability between subjects 

Direct comparison of the RMSPE values reported by the individuals who 

participated in the trial is difficult for several of reasons. The regression method, 

where data reduction methods such as PLS have been employed, the amount of 

information chosen to model the data, and the model parameters will effect 

prediction of the test samples. 

In sections 3.6.1 and 3.6.2 it has been shown that the RMSPE values reported by 

some individuals were so high that they were proven to be outliers. 

The results of the collaborative trial cause the confidence given to a set of results 

calculated from chemometric techniques to be questioned. The wide variation in 

RMSPE values between participants which have reportedly based their 

calculations on the same model type and parameters is to be of great concern. It 

raises questions on all publications involving chemometric techniques - are the 

results true to the data or the person who produced the results? 

The person who used SIMCA software to generate the calibration models reported 

the highest errors of prediction, and was found to be an outlier. This partipant also 

detected the most possible sample outliers, six in total. The subject was also the 

only one to use OSC so it is uncertain if the software or the type of pre-treatment 

has caused the high prediction errors and suspect number of outlier samples. 
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The second subject found to be outlying used PLS without scaling to model the 

data, much of the requested information such as type of PLS and number of latent 

variables was not provided. The high errors are reasoned to be a result of too few 

LVs or as software or human error, as a number of other subjects used various 

PLS methods with successful prediction. 

In the trial results the between-subject variation is apparent in a number of cases. 

There are some inconsistencies in the results between users who have seemingly 

used the same conditions and software and yet achieve significantly different 

results. An example of this is the final subject with outlying RMSPEs, number 5. 

This subject used the same procedure as subject 14, (MLR, no pre-treatment, no 

outliers identified) yet resulted in substantially higher RMSPE values. 

The reported results based on PLS regression method also included irregularities 

in the differences in prediction for the same model. The subjects who autoscaled 

the data and calibrated by PLS2, found outlier samples in the data, indicating that 

this pre-treatment may effect the data in some way. However those that used 

PLS 1 and auto scaled did not report any outlier samples. As expected, for models 

with the same type of regression and pre-treatment method, as the number of LV s 

increased the RMSPE decreased. 

The effect of the use of different software may be seen in the results of subjects 4 

and 10, who have both used PLS2 with mean centred data. Subject 4 with 

calculations performed using Matlab has predictions several times higher than 
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those of subject 10 who used GRAMMS. This was for prediction of Co2+, ct+ 

and Cu2
+, and there was little difference in the prediction of Ni2

+ ion 

concentration. 

As for the results obtained from optimising the type of pre-treatment (section 3.4), 

derivatisation improved the condition of the data and provided the lowest errors of 

prediction of the test samples. This is seen for the results of subjects 1, 8, 12, 13 

and 20, which all have the lowest RMSPE values based on MLR or PLS 

regression. Some subjects' results have similarly low RMSPEs to those obtained 

through use of derivatisation, but these models are compensated by requiring a 

higher number of LVs, for example subject 18 with 7 LVs of mean centred data. 

This collaboration has found that there is a greater variance between users than 

there is between regression and pre-treatment methods when producing 

calibration models. This is true for this data, which are very simple absorbance 

spectra obtained through experimental design and with very low levels of noise. 

One of the aims of this trial was to produce certified results for the prediction of 

the validation samples. There is a problem in that the RMSPE alone is insufficient 

for this. The subjects were re-contacted and asked to provide the actual numeric 

predictions of each metal concentration for each sample which certification could 

be based on, a limited number obliged and these were used. 
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3.6.4 Estimations of test sample prediction 

To produce a reference dataset, the predicted values of the test samples from 6 

people were used. There were two new subjects and four from the original trial 

(subjects 1, 16, 19 and 20 are reported in table 3.6.4-1). All subjects had several 

years experience of chemometric techniques. They were asked to provide only the 

raw predictions of the test samples and model parameters; subjects 1 and 5 used 

the same type of regression model and reported identical predictions. 

Table 3.6.4-1 Regression model parameters and RMSPE values for results of 

subjects participating in the trial to produce a reference dataset 

Subject Regression Pre- No. RMSPE 

treatment LVs Cobalt Chromium Copper Nickel 

1 PLS 5 0.0469 0.0121 0.0314 0.0354 

2 VS-MLR· lS none nla 0.0499 0.0105 0.0303 0.0426 

3 PLS2 1 st savgol 4 0.0478 0.0161 0.0431 0.0354 

4 MLR 1 st savgol nla 0.0265 0.0183 0.0332 0.0251 

5 PLS none 5 0.0469 0.0121 0.0314 0.0355 

6 PLS none 6 0.0393 0.0165 0.0319 0.0326 

* Conditions: selected data points: 632, 371, 887,276,322, squash 1 = 0.8, squash 

2 = 1.35, number of iterations = 10 

For all subjects, estimates are plotted against the actual concentration in figure 

3.6.4-1. There is good prediction and the R2 values are all above 0.99. 
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Figure 3.6.4-1 Actual Vs mean estimates of Co2
+ prediction 
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Figure 3.6.4-3 Actual Vs mean estimates of Cu2
+ prediction 
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Based on the predictions the certified mean estimate and standard deviation of 

each component of each sample is calculated, these can be seen in table 3.6.4-2. 
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Table 3.6.4-2 Volume estimation (ml) and standard deviation of test sample 

predictions for Co2+, Cr3+, Cu2+ and Ni2+ 

Sample CoL+ CrJ+ CuL+ Ne+ 

No. Est std Est std Est std Est std 

17 3.2092 0.0156 1.0029 0.0042 1.7650 0.0081 2.6342 0.0066 

18 3.4034 0.0059 1.3957 0.0017 1.5969 0.0037 2.8119 0.0031 

19 3.6791 0.0152 1.0930 0.0045 1.6984 0.0085 2.6926 0.0340 

20 3.2128 0.0144 1.0029 0.0030 1.2893 0.0059 2.6959 0.0132 

21 3.6605 0.0150 1.1748 0.0041 1.8167 0.0083 2.4798 0.0216 

22 3.8022 0.0093 1.3046 0.0091 1.3880 0.0162 2.3636 0.0187 

23 -0.0122 0.0191 1.1070 0.0139 1.2695 0.0138 0.0048 0.0167 

24 3.7549 0.0186 0.0141 0.0157 1.5695 0.0291 2.6414 0.0254 

25 3.9015 0.0344 1.3009 0.0046 0.0316 0.0080 2.6394 0.0077 

26 -0.0275 0.0245 1.3785 0.0077 1.4580 0.0206 0.0079 0.0188 
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4 Conclusions 

The simulated spectra of the mixtures of metal ions in aqueous solution, where the 

absorbances were calculated according to Beer's law from the spectra of the 

individual metal ions, were found to be comparable to spectra of the samples 

measured. This confirmed that all the samples would have absorbances within the 

linear range of response for visible spectroscopy, prior to preparation and 

measurement of the samples. The spectra of the example and theoretical samples 

were measured up to 900 nm; for the actual samples, this range was extended to 

1000 nm. 

The industrial spectrometer did not cover the entire visible range; the samples 

were recorded between 350 - 738 nm, cutting off the region between 738 and 

1000 nm where the maximum absorbance for copper and some absorbance for 

nickel occur. A gross error was identified in set 2 recorded with the industrial 

spectrometer. When the same samples from datasets 2.1 and 2.2 were plotted they 

were found to be different. This is thought to be a result of preparation or 

mislabelling error. Initial PLS models gave accurate prediction of dataset 2.2. For 

dataset 2.1, the percentage variance captured by the model and prediction were 

very poor. Based on this information, dataset 2.1 was discarded and dataset 2.2 

used for the remaining work involving the spectra recorded with the industrial 

spectrometer. 

The datasets recorded using the industrial process spectrometer gave higher errors 

of prediction than those from 'like-for-like' calibration models based on the 
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analytical spectrometers' datasets. Unlike for a standard laboratory spectrometer, 

the samples recorded with the process spectrometer were not isolated from 

background variation of light by placing the cuvette within the spectrometer for 

analysis. Instead the samples are analysed in cuvettes on the bench, with a 

background spectrum recorded on commencement of analysis. The assumption 

that the influence of background light does not vary during this time could be 

incorrect and may attribute to the higher errors of prediction for these samples, 

given that the resolution was found not to be a significant factor when set 3 was 

reduced to the same resolution without causing a substantial increase in prediction 

error. 

The collaborative trial results have shown that prediction between users varies 

significantly, consistent with the results of the forage data triat3. The increased 

number of participants for the metal ions data, 20 compared to 6, for the forages 

did not reduce the spread in the results. Both of the studies have confirmed the 

need for uniformity between users for confidence in any calibration models. 

For the trial, all of the participants used multivariate analysis for calibration as 

opposed to univariate calibration. As the samples contain 4 analytes at least 4 

wavelengths would be required for univariate analysis, the choice of which 

wavelengths to select is not obvious as there is co-absorbance between the species 

through the spectra. It is preferable to apply multivariate methods as these will 

select the most appropriate spectral regions for significant contribution for the . 

model. 
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A second trial was also carried out, this produced estimates and standard 

deviations for prediction of the validation samples. This trial consisted of 6 

subjects whose predictions of the metal ions were consistent. 
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5 Further Work 

The objective of producing a dataset with minimal experimental errors has been 

achieved with the samples measured with the analytical spectrometer. A dataset 

based on measurement from an industrial spectrometer has not been achieved. For 

this to be possible the reason why poor measurements were recorded using the 

industrial spectrometer needs to be established. Initially it was thought that the 

resolution of the spectrometer was the fault. This was proven untrue when the 

dataset measured on the analytical spectrometer did not have such high errors 

when the resolution was simulated. General repeatability and reproducibility 

measurements should be performed on the industrial spectrometer to ensure its 

correct operation for measurement. 

The collaborative study should be repeated using the same dataset, but with more 

consideration of the subjects chosen with the following points: 

• Subjects should be chosen from preference of software, this will confirm 

if certain software produces different predictions. 

• Gaining exact information of the software used: in the study, subjects 

stated Matlab as the calculation tool, but this does not automatically 

perform PLS regression; for some subjects it is unknown if bespoke 

algorithms or a toolbox was used for the calculations. 
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Chapter 3: Analysis of Uranyl Nitrate Liquors by UV and Raman Spectroscopies 

1 Introduction 

Uranium ore concentrate is converted to uranium hexafluoride in the nuclear 

industry by the process shown in figure 1-1, the uranium ore concentrate 

conversion method I. 

Figure 1-1 Uranium ore concentrate conversion 

Uranium Ore 
Concentrate Nitric Acid 

Uranyl 
Nitrate Solvent Extraction + Heat 

Hydrogen 

Uranium 
Dioxide Hydrogen Fluoride 

Uranium 
Tetrafluoride Fluorine 

Uranium 
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During the first step of the process, uranyl nitrate liquor (U02(N03)2) is produced 

by dissolving uranium ore concentrate (U30g) in nitric acid. In uranyl nitrate the 

oxidation state of uranium is U6
+ and the uranium ore concentrate a mixture of 
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The temperature of this process is uncontrolled and can vary between ambient and 

90°C. The uranium ore concentrate is impure and the exact level of uranium 

content unknown. Currently the uranyl nitrate liquors are analysed by X-ray 

fluorescence spectrometry (XRFi. 

The aim of this work is to investigate alternative methods of analysis that could be 

implemented for on-line monitoring of this process for nitrate (NOn and uranyl 

ion (uol+) concentration3
• In addition to the benefits of improved process 

control, there is a clear safety advantage of performing this analysis on-line as the 

process stream is radioactive. 

UV Nis and Raman spectroscopies have been identified by BNFL as suitable 

analysis methods. Both have been utilised for on-line monitoring commercially 

and have been employed for similar analysis. UV Nis spectroscopy is the more 

desirable method as the instrumentation and implementation for an on-line 

analysis system is considerably cheaper and less troublesome than for Raman 

spectroscopy. 

The UV Nis absorption spectrum of uranyl nitrate solution was documented in 

19644. The absorption spectrum was plotted in the wavelength region of 340 -

500 nm, the maximum molar extinction coefficient around 430 nm. 

Second derivative spectrophotometry has been used for the determination of 

uranium in the presence of iron in 1M nitric acid and also in yellow cake, 
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magnesium diuranate in this cases. 'Yellow cake' is a term used loosely in the 

nuclear industry to describe impure uranium ores ranging from ammonium, 

magnesium, potassium and calcium diuranates through to nearly pure uranium 

concentrate of U30g6
, The spectra were recorded between 360 - 480 run, and as 

the pre-study samples contained iron, a wavelength region where iron did not 

absorb but uranium did was sought. This was found to occur at 408.2 run on the 

second derivative spectra, by visually comparing the spectra of samples with and 

without iron. This gave a relative error of 1 %. Yellow cakes samples in the range 

of 7 - 25 mg/g were analysed and at 408.2 run gave an error of 6 - 8 %, which 

was reduced to 1.6 % when the yellow cake was purified prior to 

spectrophotometric analysis. 

Micro-Raman spectroscopy was used to characterize uranium oxides in-situ7
• 

Micro-Raman spectroscopy uses an optical microscope interfaced to a Raman 

spectrometer; the powder samples were placed on a sample slide under the 

microscope that focused on a spot size of 3 Ilm. 

The spectrum of uranyl nitrate was recorded between 600 - 3500 cm'! and the 

spectrum described to contain peaks that are characteristic of the uranyl ion and 

the nitrate ion. The uranyl ion was shown to dominate at 880 cm'! and the paper 

considers the effect of temperature of the uranyl nitrate spectra and discusses 

changes in the peak intensity between 25 - 100°C. The elevated temperature was 

achieved by flowing hot air over the sample. This work is a good reference to 

demonstrate the feasibility of Raman spectroscopy for analysis of uranyl nitrate, 
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but precise methods such as this requiring the use of a microscope cannot easily 

be transferred to the on-line analysis of solutions. 

The purpose of this work is to build multivariate calibration models from the 

UV Nis and Raman spectra of uranyl nitrate liquor in order to predict uranyl and 

nitrate concentration, which are insensitive to temperature. The samples' spectra 

were recorded in the temperature range of 25 - 90°C, in 5 °c increments. To do 

this calibration models were first produced at one fixed temperature, 50°C (the 

typical operating temperature), and then additional models including temperature 

as a prediction variable was investigated. 

The experiments were designed and performed by personnel from the BNFL, 

Springfields site, and only the author undertook the data analysis. 
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2 Experimental 

Due to the hazardous nature of the samples, BNFL personnel carried out all of the 

experimental work at the BNFL Springfields site. Once the measurements were 

recorded, the UV Nis and Raman spectral files, and sample compositions were 

forwarded for data processing. A summary of the sample spectra and composition 

can be seen in table 1-1. 

The immersion probe for each spectrometer was placed within a reactor vessel (3 

1). The samples were prepared by adding nitric acid to uranium oxide powders 

until all the powder had dissolved to make uranyl nitrate liquor. The liquor was 

heated to 95°C. Once the liquor had cooled to 90 °c, 10 repeat spectra were 

recorded, and this procedure was continued at 5 °c intervals until the temperature 

of the mixture reached 25°C. After spectroscopic analysis, the % uranyl and 

nitrate concentration of each sample was determined by XRF spectrometry. 

2.1 Sample analYSis 

2.1.1 Analysis by UVNis spectroscopy 

UV Spectrometer: 

Probe: 

Operating software: 

Scan range: 

Spectral files: 

Number of data points: 

Ocean Optics S2000, dual halogen source. 

Hellma ATR probe with a 3 bounce crystal. 

not provided 

not provided 

*.txt 

2047 
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2.1.2 Analysis by Raman spectroscopy 

Raman Spectrometer: Kaiser Raman instrument. 

Probe: 

Operating software: 

Kaiser immersion probe (type; IMO-0.I-I0.5) 

Hologram 

Scan range: 50 - 3000 cm-! 

Spectral files: *.spc 

Number of data points: 9834 

2.2 Preparation of spectra files for data processing 

The uranyl nitrate samples spectra provided in * .txt and * .spc formats were 

opened and converted to * .mat files using SIMCA-P 9.0 (Umetrics Ltd, Woodside 

Road, Winkfield, Windsor, Berkshire, SL4 2DX). The * .mat files can then be 

used in Matlab for data processing. 

The UV spectra were supplied as raw incident radiation (air background). This 

was transferred to absorbance spectra using equation 15. Where Po and P are the 

intensity of the incident and transmitted radiation, respectively. In this case Po 

was the incident measurement through air. 

Equation 15 Calculation of absorbance spectra 8 
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Table 2.2-1 Description of uranyl nitrate samples and % uranyl and nitrate 

determined by XRF spectrometry 

Sample UVNis Raman Nitrate Uranyl 
Spectra ID SQectra ID (%w/w) (%w/w) 

1 SCD98 01 NCOD 01 10.75 16.59 
2 SCD98 02 NCOD02 20.35 17.65 
3 SCD98 03 NCOD03 0.35 17.20 
4 SCD98 04 NCOD04 8.55 21.54 
5 SCD98 05 NCOD05 11.21 20.03 
6 SCD98 06 NCOD06 0.28 20.89 
7 SCD98 07 NCOD07 14.92 20.54 
8 SCD98 08 NCOD08 15.12 22.96 
9 SCD98 09 NCOD09 8.05 18.86 
10 SCD98 10 NCODI0 2.44 23.73 
11 SCD98 11 NCOD 11 5.25 25.72 
12 SCD98 12 NCOD12 1.71 26.62 
13 SCD98 13 NCOD 13 5.31 28.35 
14 SCD98 14 NCOD14 1.25 28.90 
15 SCD98 15 NCOD 15 5.19 29.57 
16 SCD98 16 NCOD16 0.38 31.58 
17 SCD98 17 NCOD17 14.57 11.26 
18 SCD98 18 NCOD18 9.40 11.24 
19 SCD98 19 NCOD19 4.71 13.79 
20 SCD98 20 NCOD20 9.74 16.99 
21 SCD98 21 NCOD21 0.46 12.48 
22 SCD98 22 NCOD22 22.83 12.86 
23 SCD98 23 NCOD23 14.58 15.26 
24 SCD98 24 NCOD24 19.18 14.38 
25 SCD98 25 NCOD25 20.89 20.78 
26 SCD98 26 NCOD26 20.35 23.15 
27 SCD98 27 NCOD27 22.20 26.66 
28 SCD98 28 NCOD28 24.34 21.64 
29 SCD98 29 NCOD29 unknown unknown 
30 SCD98 30 NCOD30 16.08 26.46 
31 SCD98 31 NCOD31 18.20 25.89 
32 SCD98 32 NCOD32 0.07 31.89 
33 SCD98 33 NCOD33 17.06 27.85 
34 SCD98 34 NCOD34 12.22 23.75 
35 SCD98 35 NCOD 35 4.94 24.12 

36 SCD98 36 NCOD36 11.12 27.09 

37 SCD98 37 NCOD37 16.49 18.82 

38 SCD98 38 NCOD38 2.98 19.37 

39 SCD98 39 NCOD39 11.06 24.85 

40 SCD98 40 NCOD40 5.25 17.71 

41 SCD98 41 NCOD41 5.04 21.86 
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3 Results 

3.1 Investigation of Samples 

Of the original 41 samples only 31 were found to contain all of the correct number 

of spectra and reference information, these are summarised in first row of tables 

3.1-1 and 2. The second row identifies the samples that were incomplete; these 

were discarded from the dataset. The 31 samples were different for the UV Nis 

and Raman datasets. 

Table 3.1-1 Summary of samples measured by UVNis spectroscopy used for 

data processing 

Sample included 1,2,4,5,6, 7, 8, to, 11, 12, 13, 14, 15, 16, 18, 19,20,21, 

for data processing 22,23,24,26,27,28,30,34,35,36,37,38,40 

Sample removed 3,9,17,25,29,31,32,33,39,41 

Table 3.1-2 Summary of samples measured by Raman spectroscopy used for 

data processing 

Sample included 1,2,3,4,5,6,8,9, 10, 11, 12, 13, 14, 15, 16, 18, 19,20, 

for data processing 21,22,24,26,30,33,35,36,37,38,39,40,41 

Sample removed 7,17,23,25,27,28,29,31,32,34 
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3.2 Analysis by UV /Vis Spectroscopy 

The sample spectra recorded by UV Nis spectroscopy are investigated first. The 

spectra recorded when the sample temperature was 50°C are plotted in figure 3.2-

1. The exact wavelength region of the UV Nis spectrum recorded is unavailable 

therefore the spectra are plotted in terms of variables instead of wavelength. 

There are high levels of noise at both ends with of the spectra with little 

absorbance that looks to vary with component concentration. 
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Figure 3.2-1 UV Nis spectra of uranyl nitrate liquor samples measured at 50°C 
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The typical correlation level between the sample concentrations and the absorption 

spectra is +/- 0.2 for both components (see figure 3.2-2). The shape of the correlation 

coefficient graph for the uranyl and nitrate levels in the samples reflects each other. 

This indicates that the components are serially correlated and predictions may not be 

independent of the remaining components' concentration. 

Figure 3.2-2 Correlation between the UV /vis absorption spectra of the uranyl 

nitrate liquor samples and the % uranyl and nitrate in the sample 
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To reduce the noise and maximise variation in the spectra, a Savitsky Golay filter 

with smoothing and 1 st order derivatisation was applied to the spectra, the new 

samples spectra can be seen in figure 3.2-3. Derivatisation of the spectra has 

magnified the noise at the lower region of the spectra and introduced some small 

peaks towards the centre of the spectra. The scale of variation between the spectra 

has reduced to +/- 0.025. 
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Figure 3.2-3 Derivatised UV Nis spectra of uranyl nitrate liquor samples measured at 50 DC 
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Based on the derivatised spectra in figure 3.2-3, the mW{lmum correlation 

between the spectra and concentration of uranyl and nitrate in the samples, 

increases to +/- 0.5. This correlation is only for certain variables, but generally the 

correlation for both of the components resembles random noise. Correlation in the 

region of very high noise in the smoothed and derivatised spectra, (variables 0 -

250), is consistent with the remainder. This indicates that the absorption over the 

entire wavelength range of the spectra is not a response of the amount of uranyl 

and nitrate in the samples. 

Figure 3.2-1 Correlation of derivatised absorption spectra 
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PLS calibration models, which will maximise the covariance between the samples 

and spectra, were produced with the filtered spectra recorded at the sample 

temperature of 50°C. The results are plotted in figure 3.2-5. 
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Figure 3.2-5 PLS results based on lst derivative spectra, of uranyl liquor 

samples by UVNis spectroscopy at 50 °C; scores and variable loadings plots 
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The PLS model was calculated with the derivatised spectra. The sample number 

in the scores plots is in order from low to high % concentration of uranyl. As the 

sample scores are not in numerical order for any of the first 3 LV s the CV model 

is not able to identify the level of uranyl in the samples from the spectra. The 

example scores plot of LVI vs 2 and LV2 vs 3 show that there are not any 

abnormal trends in the data and the samples are distributed evenly. The loadings 

plots for the PLS model have little variation for LVs 2 - 4; for LV 1 there is a 

large amount of baseline variation. The RMSEC and RMSECV for the CV model 

are plotted in figure 3.2-4. Using 4 LVs the RMSEC = 5.21 and the RMSECV = 

7.56. 

Figure 3.2-2 PLS CV models for the uranyl liquor samples by UV!Vis 

spectroscopy at 50 °C; Plot of latent variables vs RMSEC and RMSECV 
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The actual against predicted % concentration for uranyl and nitrate in the samples 

are plotted in figure 3.2-3. These show significant spread in the predictions with 

only a few concentrations for each component being accurately predicted. The 

predictions for nitrate levels seem to have an'S' shaped structure indicating that 

there is some sort of serial correlation in the predictions. The actual V s predicted 

plot show a general trend in the ability to predict an unknown sample. 

Figure 3.2-3 PLS model (4 LVs) results for the uranyl liquor samples by 

UVNis spectroscopy at 50°C; plots of actual Vs predicted % uranyl 
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Figure 3.2-8 PLS model (4 LVs) results for the uranyl liquor samples by 

UVNis spectroscopy at 50°C; plots of actual Vs predicted % nitrate 
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This model is working under the least stringent conditions, where the training set 

consists of 30 samples and the validation set of only 1 sample. This was selected 

sequentially from the samples included in the dataset in table 3.1-1. Given this it 

would be expected that there is better correlation between the actual and predicted 

plots. The very low correlation between the samples spectra and the levels of 

uranyl and nitrate was not improved with application of a range of pre-treatment 

methods that are not included in this document. 

Mechanical failure of the spectrometer could have lead to the poor measurements 

of the samples. The literature has shown measurement between 360 - 480 nm 

allowed for the determination of uranyl in samples5
• It is difficult to compare the 
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spectra recorded to those seen in literature because the wavelength range and 

resolution was not documented at the time of analysis. It is possible that, the 

spectra were measured anywhere between the entire UV Nis region, and just a 

small section, e.g. UV range where it is not known if absorption of the species 

under scrutiny occur. 
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3.3 Analysis by Raman Spectroscopy 

The uranyl nitrate liquor samples were also monitored by Raman spectroscopy. 

The spectra are good quality, and are plotted in figure 3.3-1. 

Previous work at BNFL has shown the region below 500cm-1 to be attributed to 

sample fluorescence. The remaining two peaks are due to each component, the 

first peak has highest correlation to uranyl concentration, as expected from 

literature, and the second peak has highest correlation to nitrate concentration. The 

correlation between the samples Raman spectra and the uranyl and nitrate 

concentration is plotted in figure 3.3-2. From this plot it can be seen that there is 

strong correlation, R = 0.8 - 0.9, between the sample concentration and the 

Raman intensity between 750 - 1250cm-1
• 
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Figure 3.3-1 Uranyl nitrate liquor samples Raman spectra measured at 50°C 
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Figure 3.3-2 Correlation coefficients between the Raman spectra at 50°C of 

uranyl nitrate liquor samples and sample uranyl and nitrate concentration 
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The Raman spectra peaks were plotted individually m figures 3.3-3, peak 1, 

between 850 - 900 cm-1 and peak 2, 1025 - 1065 cm-1 in figure 3.3-4. Linear 

regression was calculated for the concentration of uranyl based on peak 1 and the 

concentration of nitrate based on peak 2. For both figures, the wavenumber of 

maximum intensity varies between samples. 

On the left hand side of peak 2 there is variation in the peak shape where the 

spectrum is broader for some samples than others. It is appears that another 

species in the samples is giving a Raman measurement. A non-quantified co-

absorbing species may effect the predictions based on the measurement in this 

region of the spectra. 
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Figure 3.3-3 Raman spectra of uranyl nitrate liquors, 'Peak 1', 850 - 900 cm -I measured at 50°C 
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Figure 3.3-4 Raman spectra of uranyl nitrate liquors, 'Peak 2', 850 - 900 cm-I measured at 50°C 
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Figure 3.3-5 Linear regression at 873 cm-1 of % uranyl in uranyl nitrate 

liquor samples measured by Raman spectroscopy at 50°C 
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Figure 3.3-6 Linear regression at 1048 cm-1 of % nitrate in uranyl nitrate 

liquor samples measured by Raman spectroscopy at 50°C 
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Univariate linear regression was applied to the spectra of fixed temperature at 50 

°C. The actual vs predicted concentrations are plotted in figures 3.3-5 and 3.3-6 

for uranyl and nitrate respectively. The method gave reasonable agreement for 

uranyl with an R2 of 0.7537, but poor agreement with the nitrate concentration 

with R2 of 0.2017. 

The univariate regression where a single set of Raman intensities are used to 

model the data has shown to be unsuitable for nitrate prediction and has a higher 

than desirable correlation for the % uranyl in the samples. Magnification of the 

peak's, highlighted that the maximum peak intensity was varying with 

wavenumber between samples. Broadening on the first portion of the second peak 

was also noted which could be a result of impurities giving a Raman response. 

Multivariate calibration is used to overcome and minimise the effects of these 

problems. 

The Raman spectra were reduced to include only the region of analyte response, 

which reduced the number of variables and also the computation time. To 

maximise variation in the samples spectra and remove baseline variations, the 

spectra were derivatised using the Savitsky Golay filter. The derivatised spectra 

are plotted in figure 3.3-3. The correlation based on the derivatised spectra in the 

region of sample response, 350 -1250 cm-! is plotted in figure 3.3-4. 
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Figure 3.3-7 1st Derivative spectra of uranyl nitrate liquor samples by Raman spectroscopy 
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Figure 3.3-8 Correlation coefficients between the 1 st derivative Raman 

spectra of uranyl nitrate liquor samples in the region of 650 - 1250 cm- I and 

sample uranyl and nitrate concentration 
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Derivatisation of the spectra has had the effect of sharpening the spectral peaks 

and flattening the baseline. Throughout the spectra there is a low level of noise. 

The correlation coefficients are close to +/-1 showing that there is a high level of 

correlation between the derivatised spectra and the sample concentrations. Using 

the derivatised spectra in this region a PLS2 CV model of the samples recorded at 

50°C was produced. PLS2 was used as it allows for prediction of both 

components from the same model. The samples scores and loadings can be seen in 

figure 3.3-9 and the RMSEC and RMSECV in figure 3.3-10. 
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Figure 3.3-9 PLS2 CV Results of uranyl nitrate liquors by Raman 

spectroscopy; Samples scores plots and variable loadings plots 
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The PCA samples scores plots do not show trending in the spectra and the 

loadings plots have responses in the regions where peaks are seen in the original 

spectra. 

A PLS2 CV calibration model, where one sample is left out of the training set at a 

time and predicted, was produced based on the Raman spectra of the uranyl nitrate 

samples. Figure 3.3-10 shows that the errors in cross validation are not 

significantly higher than the errors in calibration. 

Figure 3.3-10 PLS2 CV results for analysis of uranyl nitrate liquor samples 

by Raman spectroscopy measured at 50°C; RMSEC and RMSECV 
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Using 4 LVs the RMSECV is 2.62 and the RMSEC is 1.98. In figures 3.3-11 and 

12 the actual vs predicted levels of uranyl and nitrate are plotted. There is good 

agreement between the actual and predicted % concentrations for both 

components, confirming that the standard PLS2 model can predict the levels of 

both components very well at 50 DC. Sample 12 (circled) is the most poorly 

predicted sample for both components indicating that this sample is a possible 

outlier; this was removed from the dataset. 

Figure 3.3-11 PLS2 CV actual vs predicted plots for uranyl prediction of the 

uranyl nitrate liquor samples measured by Raman spectroscopy at 50°C 
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Figure 3.3-12 PLS2 CV actual vs predicted plots for nitrate prediction of the 

uranyl nitrate liquor samples measured by Raman spectroscopy at 50°C 
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As the concentrations of uranyl and nitrate in the samples can be predicted at 

fixed temperature, the work was extended to models that included temperature as 

a prediction variable. For the new model, the 30 samples at 14 different 

temperatures were separated randomly into a training set consisting of 284 

spectra, and an independent prediction set of 136 spectra. 

The concentration of uranyl and nitrate were predicted, as well as temperature, 

based on a 6 L V model. The actual vs predicted results and residual prediction are 

plotted for uranyl and nitrate concentrations and temperature in figures 3.3 - 13 to 

18. 
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Figure 3.3-13 PLS2 actual vs predicted plot for uranyl concentration in the 

uranyl nitrate liquors measured by Raman spectroscopy between 25 - 90°C 
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Figure 3.3-14 PLS2 actual vs predicted plot for nitrate concentration in the 

uranyl nitrate liquors measured by Raman spectroscopy between 25 - 90°C 
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Figure 3.3-15 PLS2 actual vs predicted plot for Temperature of the uranyl 

nitrate liquors measured by Raman spectroscopy between 25 - 90 °c 
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Figure 3.3-16 PLS2 Residuals plots for uranyl prediction concentration in the 

uranyl nitrate liquors measured by Raman spectroscopy between 25 - 90 °c 
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Figure 3.3-17 PLS2 Residuals plots for nitrate prediction concentration in the 

uranyl nitrate liquors measured by Raman spectroscopy between 25 - 90°C 
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Figure 3.3-18 PLS2 Residuals plots for temperature prediction of the uranyl 

nitrate liquor samples measured by Raman spectroscopy between 25 - 90°C 
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For all components there is some spread in the predictions. The residuals plot for 

uranyl prediction (figure 3.3-16) identifies the high uranyl concentration sample 

to be poorly predicted. When the samples had a high concentration of uranyl, it 

was found to be difficult to prepare as the uranyl solid would not easily dissolve, 

if these samples were fully dissolved it could lead to the high error in prediction 

seen in the residuals plot. If the uranyl solid were not fully dissolved it would be 

expected that the predictions would be lower than that reported by the reference 

method, as the results were higher it is the model that is poor. 

There is a fairly even distribution of the predictions residuals for nitrate estimation 

(figure 3.3-17), a group of sample predictions are shown to be of high leverage 

(circled). These are the same concentration sample, 4.94 % nitrate and 24.12 % 

uranyl, sample 25 in table 6-3. This sample does not have high leverage for the 

prediction of uranyl concentration. Figure 3.3-18, the sample residuals for sample 

temperature prediction shows that the prediction residual is highest at either 

extreme of the temperature range. 

Taking the sample closest to the average in the data set, a 'typical sample' of 

11.21 % of 'nitrate' and 20.03 % of uranyl at 60°C, using 6 LVs, the model 

would predict the samples with % errors as tabulated in table 3.3-1 (prediction 

errors for a 'typical' sample). These errors are likely to be reduced if the 

concentration and temperature range of samples in the dataset was altered to 

remove samples of high uranyl concentration, low nitrate concentration and 

extreme temperatures. 
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Table 3.3-1 Prediction errors for a 'typical' sample 
,. , 

Nitrate (%) Uranyl (%) Temperature (OC) 

RMSPE 1.69 1.24 4.32 

% Error 15.1 % 6.2% 7.2% 

The errors in the table may not meet BNFL's requirements for accuracy as this 

likely to be 10 - 5 % or lower. 
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,4 Conclusions 

fhe spectra recorded by UV Nis were very poor quality as they were noisy and 

featureless. The correlation between the sample spectra and the reference 

information was calculated across the spectra and found to be +/- 0.2, for highly 

correlated data this figure should be close to +/- 1. A range of calibration models 

was calculated. The results show that at a fixed temperature, levels of uranyl and 

nitrate could only be predicted with greater than 25 % error. The work was not 

extended to include varied temperatures as it was deemed that the correlation 

between the spectra and the reference information was too low at +/- 0.2, at this 

level there is not considered to be any correlation between the samples spectra and 

reference concentrations. 

The difference in the quality of the spectra between that recorded by UV Nis and 

Raman spectroscopy is apparent on visually comparing the two corresponding 

datasets. When the correlation between the UV Nis and the sample concentrations 

(figure 3.2-2), is compared to that seen with the Raman spectra (figure 3.3-2), it 

can be seen that the correlation throughout the UV Nis spectra is similar to that 

seen in the regions of the Raman spectra which correspond to the spectrum's 

baseline, above 1500 cm-!, and not sample analyte response. This can be taken as 

evidence that the UV Nis spectra are not a result of variations in the sample 

analyte concentrations. Either the samples are not absorbing in the region 

analysed or there is a problem with the instrumentation used for measurement. 
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In contrast to this, the results obtained using the Raman spectra were successful. 

A first order Savitsky Golay derivatisation was applied which flattened the 

baseline and magnify the Raman intensity peaks. A PLS2 calibration model was 

produced based on the derivatised spectra, which could predict the levels of 

uranyl with 15.1 % error, nitrate with 6.2 % error and the sample temperature with 

7.2 % error. 

The residuals plots show that there were two groups of samples that were poorly 

predicted. These were samples with greater than 25 % uranyl or less than 5 % 

nitrate. From the information given by BNFL, it is known that samples with high 

uranyl content effects the solubility in nitric acid, and low nitrate levels will also 

effect the solubility of the uranyl. 

The aim of this work was to not produce a calibration model within a certain 

criteria, but to give an indication of the expected error in prediction for uranyl, 

nitrate and temperature in uranyl nitrate liquors over the broadest range likely to 

be seen in the process environment. BNFL did not have any specific requirements 

for the accuracy or precision of the methods under scrutiny, generally a method of 

process analysis is considered feasible if the errors are less than 10 %. Using this 

approach the UV Nis measurements documented here are not suitable for the 

analysis of uranyl nitrate samples but Raman spectroscopy would be suitable. This 

is in contrast to the results reported in the peer-reviewed literature that clearly 

document the use of UV Nis spectrometry for measurement of uranyl nitrate. 
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A case study of multivariate calibration with Raman spectroscopic data has been 

reported by Estienne9 et al. The aim was to investigate the replacement of 

classical calibration with inverse calibration of xylene mixtures measured by 

Raman spectra. The most efficient calibration method was to be established befo~e 

transferring the measurement to an on-line process analytical environment. The 

calibration methods included MLR (stepwise and GA-MLR), PCR with variable 

selection and PLS. Presenting the results as a % of the classical calibration 

method i.e. an RMSECV of less than 100 % implied that the new method has 

lower errors in prediction compares the methods. The conclusion of Estienne et 

af study found, as in this chapter, that multivariate calibration gave improved 

prediction over univariate or classical calibration. Estienne et al suggested this 

was because the multivariate methods could overcome the effect of impurities. 

The results found that for one component the relative RMSECV was 70 % for 

stepwise variable selection based on Fourier domain denoised spectra, the highest 

values were seen with the use of PCR. Such involved methods were not applied to 

uranyl nitrate spectra as the purpose was to prove the principle that Raman 

spectroscopy was a suitable method of analysis and not to search extensively for 

an optimal calibration method. 

McGill lO et al carried out a comparative study, for this study an esterification 

reaction was monitored in-line by NIR, Raman and UV -visible spectrometries and 

also at-line by NMR. For the esterification reaction 4 runs were performed and it 

was found that, out of the in-line methods, Raman spectrometry had the highest 

between-run precision and the UV -visible spectrometry the poorest. As for the 
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uranyl and nitrate prediction in this work the esterification product, 2-butyl 

crotonate, was predicted based on the derivatised spectra to remove any slight 

baseline variations. Univariate calibration was found to be sufficient for 

predictions based on the Raman and UV -visible spectra, this is in contrast for the 

results of the uranyl nitrate study which found multivariate analysis necessary for 

prediction. For prediction the in-line NIR and at-line NMR spectrometries were to 

the superior to Raman and UV -visible spectrometries. 
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5 Further Work 

In order to determine the feasibility of using UV Nis spectroscopy for the analysis 

of uranyl nitrate liquors the exact region of the spectra where the measurements 

were recorded should be established. Once the wavelength region is known, 

calibration should be performed in the region of 400 - 450 run. If these fail to 

produce accurate results, which is expected given the lack of correlation between 

the samples spectra and the concentrations of uranyl and nitrate, the experiments 

should be repeated once the instrumentation has been checked for faults. 

The Raman measurements were successful for measurement of uranyl, nitrate and 

prediction of the temperature of the samples. The next stage of this work would be 

to install an on-line analysis system to control the process. This would lead to 

financial cost benefits from elimination of over-engineering. 
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6 Appendix 

Table 3.3-1 UVNis samples used for data processing 

Solution ID Sample Nitrate %w/w Uranyl %w/w 
NCODOI 1 10.75 16.59 
NCOD02 2 20.35 17.65 
NCOD04 3 8.55 21.54 
NCOD05 4 11.21 20.03 
NCOD06 5 0.28 20.89 
NCOD07 6 14.92 20.54 
NCOD08 7 15.12 22.96 
NCODIO 8 2.44 23.73 
NCOD 11 9 5.25 25.72 
NCOD12 10 1.71 26.62 
NCOD 13 11 5.31 28.35 
NCOD14 12 1.25 28.90 
NCOD 15 13 5.19 29.57 
NCOD16 14 0.38 31.58 
NCOD18 15 9.40 11.24 
NCOD19 16 4.71 13.79 
NCOD20 17 9.74 17.00 
NCOD 21 18 0.46 12.48 
NCOD22 19 22.83 12.86 
NCOD23 20 14.58 15.26 
NCOD24 21 19.18 14.38 
NCOD26 22 20.35 23.15 
NCOD27 23 22.20 26.66 
NCOD28 24 24.34 21.64 
NCOD30 25 16.08 26.46 
NCOD34 26 12.22 23.75 
NCOD35 27 4.94 24.12 
NCOD36 28 11.12 27.09 
NCOD37 29 16.49 18.82 
NCOD 38 30 2.98 19.37 
NCOD40 31 5.25 17.71 
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Table 3.3-2 Raman samples used for data processing 

Solution ID Sample Nitrate % w/w Uranyl %w/w 
NCODOI 1 10.75 16.56 
NCOD02 2 20.35 17.65 
NCOD03 3 0.35 17.20 
NCOD04 4 8.55 21.54 
NCOD05 5 11.21 20.03 
NCOD06 6 0.28 20.89 
NCOD08 7 15.12 22.96 
NCOD09 8 8.05 18.86 
NCODI0 9 2.44 23.73 
NCOD 11 10 5.25 25.72 
NCOD12 11 1.71 26.62 
NCOD 13 12 5.31 28.35 
NCOD14 13 1.25 28.90 
NCOD 15 14 5.19 29.57 
NCOD16 15 0.38 31.56 
NCOD 18 16 9.40 11.24 
NCOD19 17 4.71 13.79 
NCOD20 18 9.74 16.99 
NCOD21 19 0.46 12.48 
NCOD22 20 22.83 12.86 
NCOD24 21 19.18 14.38 
NCOD26 22 20.35 23.15 
NCOD30 23 16.08 26.46 
NCOD33 24 17.06 27.85 
NCOD 35 25 4.94 24.12 
NCOD36 26 11.12 27.09 
NCOD37 27 16.49 18.82 
NCOD 38 28 2.98 19.37 
NCOD39 29 11.06 24.85 
NCOD40 30 5.25 17.71 
NCOD41 31 5.04 21.86 
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Chapter 4 Application of OMS for Chemical Measurement 

1 Introduction 

The benefits of microwave spectroscopy for process analysis are detailed for some 

microwave analysersl. The signal magnitude changes in microwaves spectra due 

to variation in sample composition. Large signal variations are especially seen 

with highly polar molecules such as water and alcohols. . The microwave 

spectrometer generator and detector are solid state circuitry reducing many of the 

problems associated with spectrometers such as NIR spectrometers which may 

suffer from wear, vibration, stray light and can be more sensitive to ambient 

temperature variation and condensation. Microwaves will penetrate most 

materials except for metals, meaning that the whole sample is analysed2
• 

Many on-line analysis methods are invasive, as they require a measurement 

probes to be placed in the reactor or connecting piping. One goal is to develop 

new methods that are non-invasive, and microwave spectroscopy is ideal for this 

because it is capable of analysis with pathlengths of many cm compared with 

many on-line spectroscopy techniques that use mm pathlengths. The advantage of 

long pathlengths is that the measurement cavity can potentially form part of a 

feeding pipe, benefiting from very simple engineering for sample analysis and 

reduced issues of representative sampling during analysis. 

A commercially available guided microwave spectrometer3 designed for on-line 

analysis and used for applications of food analysis such as moisture content of 

grain and fat in meat processing is investigated here for use as a process analyser 

for chemical analysis. 
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1.1 Theory of microwave spectroscopy 

The microwave region lies between the infrared and radio frequencies of the 

electromagnetic spectrum at frequencies between 30 GHz to 300 MHz relating to 

a wavelength range of 1 cm to 1 m. 

Traditionally microwave spectroscopy has been used for the analysis of gases as 

these yield sharp response bands that can be used to fingerprint samples. From 

gaseous samples, microwave spectroscopy has also led to the accurate 

determination of bond lengths, and with the aid of isotopic dilution, preCIse 

relative atomic masses, bond lengths and angles have been obtained. 

Microwave spectra are due to the ability of the analyte to rotate within the 

microwave field, as the sample phase varies from gases to liquids to solids the 

rotation ability is reduced resulting in a change of spectra from well resolved 

sharp peaks to broadband often collinear spectra. This spectroscopy is suited to 

polar molecules that can easily produce an alternating polarization and rotate in 

the microwave field. The bands are due to the quanti sed rotational energy of the 

analyte; defined in equation 16. 

E.i = J (J + 1) h2
/ 8tri Equation 16 Rotation energy in a microwave field 
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Where; 

Ej = Rotational energy 

J = Rotational number (integer values 0, 1 .... etc.) 

I = Moment of inertia 

h = Planck's constant 

Microwaves interact with matter by coupling energy from the electromagnetic 

field by electric and magnetic dipole interactions4
• For microwave absorption to 

occur the materials must have a low dielectric constant otherwise they will be 

reflected. Thus they are reflected by metallic surfaces but can be absorbed through 

plastics and glass5
• 

The two main physical factors that produce a response to the microwave energy is 

the dielectric constant and dielectric loss. The dielectric constant is similar to the 

refractive index of a sample. 

As an electromagnetic wave passes through a mixture it induces alternating 

polarization within the mixture. As this process stores some of the wave's energy, 

in effect it slows the velocity of the wave as it travels through the sample. The 

ability of a mixture to store energy and slow a wave's travel is the refractive 

index. 

1.1.1 Dielectric Constant 

The dielectric constant (E') is used to describe the velocity loss factor of the wave 

as it passes through a sample. At the microwave frequency, the dielectric constant, 
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is determined according to equation 17. The dielectric constant is a dimensionless 

relative measurement. 

Equation 17 Calculation of dielectric constant 

Where; 

Vvac = Velocity through vacuum 

Vmix = velocity through analyte mixture 

1.1.2 Dielectric Loss 

The second important factor is the dielectric loss (E"). This relates to the amplitude 

loss factor of the wave as it passes through a sample. As the molecule is polarized 

and de-polarised by the electromagnetic wave passing through the sample some 

energy is converted to heat through friction. This 'heat' energy is not returned to 

the wave and as a result the amplitude of the wave reduces as it passes through the 

mixture. Thus E" is the ability to attenuate the wave. 

The frequency of the wave affects the ability to store energy, at lower frequencies 

the wave has most time to the rotate the molecules (windup to store and unwind to 

release the energy). As the frequency increases the speed at which the wave 

attempts to rotate the molecules increases, for some molecules, especially larger 

ones or those with high moments of inertia and spring rates, this is too fast and 

rotation is difficult. As a result the energy storage and loss effects are reduced 

with increasing frequency. 
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1.2 Applications of GMS 

The GMS spectrometer utilises the decimetre waves between 0.25 - 3.2 GHz, 

(250 - 3200 MHz). The background and principles of the GMS analyser was first 

published in 19926
• The paper describes how the system can be used for on-line 

determination of a broad range of analysis methods including; 0 - 100 % moisture 

content, total and dissolved solids, percentage additives, methanol in fuel and 

conductivity in the range of 10-14 
- 103 Ils/cm. 

Using an at-line setup this spectrometer has been successfully used to determine 

the moisture content in tobacco samples7
• Five different types of tobacco were 

analysed with moisture levels between 10 - 50 %. Several multivariate calibration 

models were produced to determine which method gave best prediction. It was 

found that, accurate prediction was achieved when the weight of the sample was 

included in the regression. Using PLS the moisture levels were predicted with 2 % 

error. This was an order of magnitude higher than the existing error for the NIR 

method of 0.2 %, however, the NIR models did have substantially more samples, 

approx 1500, compared to approx 50 for the GMS method. 

Samples are analysed in a sample chamber that is also a waveguide. The effect of 

this is a cut-off frequency in the sample spectra (equation 18). 

!, = Vvacuum / r. 
c /2avs' 

Equation 18 GMS Cut-off frequency 
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This frequency (fc) is a function of the dielectric constant (8') and the waveguide's 

geometry (a = distance between the two plates). 

The OMS instrument reports the signal response in terms of normalised chamber 

signals. This is to cancel out any variations that could result from the microwave 

power output, receiver sensitivity and coaxial cable loss3. The normalised 

response is equal to the measurement through the chamber, minus an internal 

calibration plus and external calibration. 

The amplitude of the response is in the logarithmic units ofhexibels (hb's)8. This 

is a non-conventional unit that is utilised to allow the additions and subtractions to 

be equivalent to multiplications and divisions in normal units, to give a 

normalised response. The hexibel is related to the decibel in that 1 db = 340.16 hb. 

A decibel is a unit which can describe the difference in power levels, voltage or 

current. 

1.3 Application of GMS for Chemical Measurements 

The work cited for applications of the OMS spectrometer mainly involves the 

measurement of moisture in solids (grains, tobacco). The aim of this work is to 

investigate the OMS system for chemical measurement. Chemometric techniques 

will be used to resolve the measurements. Initially the measurements will be 

based on simple liquid solutions, this is then extended to more complex systems 

of beer fermentation in Chapter 5 and measurement of complex industrial process 

samples in Chapter 6. 
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In keeping with the measurement of molecules which have high dielectric 

constants and are hydrogen bonded, a series of alcohol solutions will be analysed. 

The first will be simply ethanol in water samples; in addition to creating 

calibration models, these samples will be used to establish the repeatability of the 

system for measurement. GMS will then be used for the analysis of alcohol 

mixtures containing 2, 3 and 4 alcohols. Analysis of homologous alcohols is 

spectroscopically challenging, as it requires the resolution of spectral features of 

molecules with similar function groups. 

NIR spectroscopy has been shown to be suitable for the identification of a mixture 

of 24 straight and branched chain alcohols9
• PCA was applied to the NIR spectra 

of the mixture which was recorded between 1000 - 2500 run. The PCA scores 

plots for PC 1 vs PC2 showed the samples to be separated according to branched 

and straight chain, and positions in order of carbon chain length. 

Another study determined the concentrations of methanol and ethanol in carbon 

tetrachloride solutions by NIRIO. Three sets of 11 samples were analysed with 

carbon tetrachloride as the solvent. These were in the range of (i) 0 -1 % alcohol, 

(ii) 0 - 10 % alcohol and (iii) 0 - 100 % alcohol. The spectra were recorded at 28.5 . 

°c in a thermostated sample holder. The authors reported non-linearity in 

absorbance measurement when plotted against the sample's concentration at 

several example wavelengths. The paper attributes this to nonlinear temperature 

effects of hydrogen bonding within the samples. An example spectrum of pure 

methanol is plotted when measured between 23 - 28.5 °c and the absorbance 
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variation is non-linear. To model the data, variable selection of up to 5 

wavelengths was used for calibration of each set with MLR, PCR, PLS and ANN. 

All performed well with less than 0.02 % relative standard error. Generally, the 

predictions were comparable between methods. The paper concluded that non­

linearity in the samples was caused by effects of concentration and temperature. 

Given that the samples were recorded at fixed temperature, the between-sample 

variation of this should have been minimal and the non-linearity should have been 

due to the fluctuation of hydrogen bonding with concentration. 
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2 Experimental 

2.1 Procedure for GMS Analysis 

The setup of the GMS spectrometer can be seen in figure 2.1.1-1. The samples 

were measured in a remote sample chamber made of stainless steel, which has 

internal dimensions of 10.0 x 4.7 x 11.5 cm, with a total internal volume of 540 

cm3
• Samples were generally 500 ml in volume. The sample chamber was 

connected to the GMS via two coaxial cables (450 cm in length) which 

transmitted the microwaves to and from the spectrometer to the sample chamber. 

A PC connected to the instrument recorded the spectra using LinefitTM vl.43, 

Epsilon Industrial Inc *. For each sample, 10 scans were recorded consecutively 

and the data transferred to Matlab. The median of the 10 spectra were used for 

data analysis. 

2.1.1 Instrumentation 

Instrument: 

Control PC: 

Power: 

Dielectric range 

Frequency range: 

Resolution: 

Number of data points: 

Guided microwave spectrometer* 

Pentium (I) 166 MHz processor, 64 MB RAM 

5mW 

1 - 85 

200 - 3200 MHz 

8 MHz 

375 

Operating software: LineFit vl.43 

* Epsilon Ind. Inc, 2215 Grand Avenue Parkway, Austin, Texas, 78728, USA. 
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Figure 2.1.1-1 Epsilon industrial guided microwave spectrometer 
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2.2 General procedure for GMS analysis 

GMS 
Spectrometer 

The spectrometer was switched on for a minimum of 2 hours prior to analysis. 

Throughout this work the spectrometer's sample chamber was used in an at-line 

setup. The spectrum of 500 ml of distilled water was analysed prior to those of the 

samples. Generally where standard samples are analysed these are prepared in 500 

ml 'A' grade volumetric flasks. The samples were poured into the top of the 

sample chamber, left for a minute to settle then the spectra recorded 10 times. 

Collection of the 10 spectra took approximately 1 minute. Between samples, the 

chamber was rinsed with 500 ml of distilled water. 
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2.2.1 Preparation of spectral files for data processing 

The sample spectra were recorded as * .rff files. These have four columns of 

information; the fourth column contains the sample spectra. The median spectra of 

the 10 replicate spectra recorded for each sample was calculated, and used to 

represent the sample's spectra. A Matlab script file performed these calculations. 

2.3 Determination of repeatability 

Samples of ethanol (99 %, Fisher Scientific UK, Bishop Meadow Road, 

Loughborough, Leicestershire, UK) in water over the concentration range of 0.5 -

3.0 %, in 0.5 % increments, were analysed six times over a course of four days. 

Fresh standards were made for each set of analysis. The temperature of the sample 

immediately after the spectra were recorded was noted. 

2.4 Analysis of alcohol solutions 

Guided microwave spectroscopy should respond well to aqueous and alcohol' 

solutions. The aim of this work is to measure a series of homologous alcohol 

solutions with 1 - 4 alcohols present then to apply linear and, where necessary, 

nonlinear multivariate calibration methods to allow for prediction of each alcohol. 

2.4.1 Ethanol in water solutions 

Samples of ethanol, in water (distilled) in the following range; 1, 3, 5, 8, 10, 12, 

15,20,23,25,28 and 30 % v/v were prepared in duplicate in 500 ml volumetric 

flasks and analysed by GMS. 
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2.4.2 Binary mixtures of alcohols 

Three sets of binary mixtures of alcohols were analysed. The samples were 

constrained to have a total sample volume of 500 ml, so the minimum and 

maximum volume of alcohol was 150 and 350 ml. There was one replicate of the 

middle concentration sample. The sets are described in table 2.4-1 and samples in 

table 2.4-2. 

Table 2.4-1 Description of binary mixtures of alcohol sample sets 

Dataset Alcohol 'A' Alcohol 'B' 
1 Methanol Ethanol 
2 Methanol Propanol 
3 Ethanol Propanol 

Table 2.4-2 Sample volumes of binary mixtures of alcohol samples 

Sample Alcohol A (ml) Alcohol B (ml) 
1 150 350 
2 175 325 
3 200 300 
4 225 275 
5 250 250 
6 275 225 
7 300 200 
8 325 175 
9 350 150 
10 250 250 

The alcohols were dispensed into the flasks using a bottle top dispenser (Fortuna® 

Optifix® bottle top dispenser for solvents, Fisher Scientific). The methanol, 

ethanol and butanol were Absolute, 99 % strength, Fisher Scientific. The propanol 

was Rectapur™, ALR grade (Prolabo, Fisher Scientific). For the odd numbered 

165 



Chapter 4 Application of GMS for Chemical Measurement 

samples alcohol A was placed in the flasks first and for the even number samples 

alcohol B was dispensed into the flasks first. 

2.4.3 Tertiary mixtures of alcohol samples 

The samples were calculated by a D-optimal experimental design, with 2 

replicates constrained within the volume range of 100 - 200 ml with a total 

volume of 500 ml. The samples were rounded to the nearest 5 ml, which resulted 

in several replicate samples (see table 2.4.3-1). 

Table 2.4.3-1 Description of methanol, ethanol and propanol alcohol samples 

Sample Methanol (ml) Ethanol (ml) Propanol (ml) 
1 150 150 200 
2 200 100 200 
3 200 200 100 
4 200 150 150 
5 100 200 200 
6 100 200 200 
7 165 165 170 
8 150 200 150 
9 200 100 200 
10 180 180 140 
11 200 150 150 
12 140 180 180 
13 180 140 180 
14 200 200 100 
15 165 165 170 
16 160 180 160 

2.4.4 Quaternary mixtures of alcohol samples 

The samples consisted of methanol, ethanol, propanol and butanol. The 

concentrations were determined by a partial two level D-optimal experimental 

design, linear with centre point replicates. The minimum and maximum volumes 
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were 50 ml and 250 ml, and the sum of all four volumes was equal to 500 ml as 

calculated using Design Expert (samples 1 -14). The volumes of samples (15 -

24) were randomly generated within the constraints of the design. 

Table 2.4.4-1 Description of quaternary mixtures of alcohol samples 

Sample Methanol (ml) Ethanol (ml) Propan-l-ol (ml) Butan-l-01 (ml) 
1 250 150 50 50 
2 250 150 50 50 
3 50 150 50 250 
4 50 50 250 150 
5 50 250 150 50 
6 150 50 250 50 
7 125 125 125 125 
8 50 250 150 50 
9 50 150 50 250 
10 50 50 250 150 
11 50 50 150 250 
12 50 250 150 50 
13 250 50 150 50 
14 250 50 50 150 
15 120 245 80 55 
16 170 130 100 100 
17 210 210 80 0 
18 150 65 50 235 
19 95 95 100 210 
20 135 60 60 245 
21 90 70 180 160 
22 60 240 110 90 
23 210 70 150 70 
24 110 60 220 110 
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3 Results 

3.1 Initial measurements: GMS background spectra 

Prior to all analysis by GMS the background spectra of the empty sample chamber 

was recorded. Each analyte spectrum was recorded 10 times. From these 10 

replicates the median spectra were calculated and used for data processing. The 

aim of this section is to demonstrate that there is no systematic variation in the 

'replicate' spectra. For this, the replicate spectra of background measurements are 

used (see figure 3.1-1) 

Figure 3.1-1 Replicate GMS background spectrum of air 

x 10' 1.5;.:....:.:.-.-----.-----.--- -.---------.--- ----,,--, 

-1 L--,SOO,-L:----:-1000==----,1SOO==----::-:2000:':-::----=:2SOO=---=3OOQ'::-...J 

Frequency [MHz[ 

The sample scores in figure 3.1-2 to 5 for PCs 1 - 4, show random variation 

between the scores for each PC. The procedure of taking the median spectrum to 

be representative of each measurement should result in unbiased sample spectra. 
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Figure 3.1-2 PCA PC 1 samples scores for replicate background spectra 
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Figure 3.1-3 PCA PC 2 samples scores for replicate background spectra 
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Figure 3.1-4 PCA PC 3 samples scores for replicate background spectra 
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Figure 3.1-5 PCA PC 4 samples scores for replicate background spectra 

Sample Scores with 95% Limits 
WO r----,-----r-----r~--.-----r----.----~=_---r----, 

.W01L----J2-----L3-----4L---~5-----L6----~7L---~8L----79----~10· 

Sample Number 

170 



Chapter 4 Application of GMS for Chemical Measurement 

3.2 Determination of GMS repeatability 

Six sets of 0.5 - 3.0 % ethanol samples were analysed over 4 days to investigate 

the reproducibility in the GMS spectrometer. Fresh samples were prepared for 

each set of sample spectra, it is assumed that the sample preparation error is 

negligible and any spectral variations are due to the spectrometer or ambient 

conditions. 

Table 3.2-1 Table describing the analysis time and temperature for the GMS 

repeatability experiments 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 
Day 1 2 2 3 3 4 
Av. temp (OC) 20 20 21 20 21 16 
Time 16:00 11:20 14:20 10:30 15:50 09:30 

The temperature for sample sets 1 - 5 was between 20 or 21°C; only for set 6 was 

there a variation in temperature at 16 °c. The median spectra for each sample sets 

of ethanol samples from 0.5 - 3.0 % are plotted in figure 3.2-1 to 6. The only 

variation in the sample sets appears to be the intermittent inclusion of a sharp peak 

around 500 MHz. 
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Figure 3.2-1 Plots of GMS repeatability experiments spectra set 1 
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Figure 3.2-2 Plots of GMS repeatability experiments spectra set 2 
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Figure 3.2-3 Plots of GMS repeatability experiments spectra set 3 
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Figure 3.2-4 Plots of GMS repeatability experiments spectra set 4 
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Figure 3.2-5 Plots of GMS repeatability experiments spectra set 5 
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Figure 3.2-6 Plots of GMS repeatability experiments spectra set 6 
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The sample sets were grouped together; the six datasets contain 6 samples each of 

0.5 - 3.0 % ethanol. The samples are numbered from 1 - 6 for dataset 1, then 7 -

12 for dataset 3 etc. PCA is applied (see figures 2.4.4-2 to 5) and clustering in the 

sample scores investigated. 

Figure 2.4.4-2 peA results for GMS repeatability experiinents, plot of all 

spectra 
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Figure 2.4.4-3 PCA results for GMS repeatability experiments, plot of all 

PCA sample scores of PCI vs PC2 

N 

15 
Q. 

r::: 
0 

'" e:? 
8 

(f) 

x 10' 
2 

1.5 

0.5 

0 

-0.5 

-1 

-1 .5 
2.45 

+36 
+35 

Scores for PC# 1 versus PC# 2 

+4-~~3 
+31 

+6~11 
+~2.a 

~~ , 
+25 

2.5 2.55 
Scores on PC# 1 

2.6 2.65 

x 10' 

Figure 2.4.4-4 PCA results for GMS repeatability experiments, plot of all 

PCA sample scores of PC I vs PC3 
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Figure 2.4.4-5 PCA results for GMS repeatability experiments, plot of all 

PCA sample scores ofPC2 vs PC3 
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The PCA scores plots is figures 2.4.4-4 and 5 show sets 3, 4 and 5 to be closely 

clustered and sets 6, 1 and 2 to be further separated, in that order, from the 

clustered group. The scores for PC 1 for each set were taken and ANOV A applied 

to various combinations to determine if there is significant variation between the 

sets. A two tailed F -test was used to evaluate significance. 

Table 3.2-2 ANOV A test results for GMS repeatability measurements 

Sample Set Degrees of freedom F- F- Significant 
Between Within Total value crit difference 
groups groups between sets? 

All 5 30 35 25.85 3.03 Yes 
1, 2 and 4 (20 °C) 2 15 17 4.80 4.77 Yes 
1-5 4 25 29 6.83 3.35 Yes 
3, 4 and 5 2 15 17 0.99 4.77 No 
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The ANOV A results are consistent with the PCA scores plots showing that 

sample sets 3, 4 and 5 are closely related and 1,2 and 6 are significantly different. 

Set 6 can be explained as it had a much lower ambient temperature (16 °C) in 

comparison to 20 121°C of the other samples. For sets 1 and 2, the temperature 

only varied by 1 °c in comparison to sets 3, 4 and 5. An explanation is that these 

were the first sample sets recorded and perhaps the spectrometer's electrical 

components take 24 hrs to warm to 40°C to give stable recordings. The 

spectrometer was switched on for 2 hours prior to analysis of set 1. Set 2 has more 

visual variation between the samples that the remaining sets. 

From these results the way in which the process spectrometer is used as a lab 

based instrument is important. The tendency is to switch on/off the instrument 

daily as for other laboratory based equipment, which could affect the 

spectrometers performance if a lengthy stabilisation time is required. In contrast, a 

process instrument would be in continuous use and rarely switched off. 

The sample temperature is also shown to be important. For experiments over 

several days the sample and sample chamber temperatures should be constant, for 

a series of samples analysed in a short time, where the ambient temperature is 

constant to a couple of degrees, control of temperature would be ideal but not 

essential. 
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3.3 Alcohol mixtures analysis 

In this section various alcohol mixtures are analysed by GMS, mixtures 

compromising of 2 - 4 alcohols were analysed. The analysis of a homologous set 

of alcohols (or similar analytes), will give an indication of the limitations of GMS 

measurements. 

The pure spectra of methanol, ethanol, propanol and butanol are plotted in figure 

3.3-1. These pure spectra of each alcohol demonstrate the effect of dielectric 

constant and losses on spectral shape. From equation 18 it is known that the 

higher the dielectric constant of the material the lower the cut-off frequency will 

occur. Comparing the spectrum cut-offs in the measurements of methanol and 

butanol can see this. The general shapes of the spectra of the two compounds are 

also quite different. The cut-off frequency is sharp and the spectra well attenuated 

in the case of methanol. As the carbon chain length and size of the molecules 

increase the magnitude of the spectra is reduced. This is because as the number of 

carbons in the molecule increases it becomes more difficult for the wave to rotate 

the molecule. In effect the dielectric loss factors are such that the waves 

attenuation is reduced. 
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Figure 3.3-1 GMS spectra of pure methanol, ethanol, propanol and butanol 
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3.3.1 Analysis of ethanol in water 

Samples of ethanol in water in the concentration range of 1 - 30 % ethanol were 

analysed by GMS with the aim to calibrate for ethanol concentration. The spectra 

and background subtracted spectra can be seen in figure 3.3 .1-1. 
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Figure 3.3.1-1 GMS Ethanol in water samples spectra 
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Figure 3.3.1-2 GMS Ethanol in water samples background subtracted 

spectra 
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Calibration models for ethanol prediction have been calculated by two methods 

for this data. The first is standard PLS 1, which gave the lowest errors of 

prediction when the spectra of pure water was removed from the samples spectra. 

The second method of calibration used was WRR; this used the raw, 

unconditioned spectra. The two methods were applied to determine if there are 

differences between the prediction ability of the models produced. The advantage 

of WRR is that it simply maps the ridge of the data and does not decompose t~ 

data into latent variables. This removes the issue of choosing the correct number 

of LV s to model the data as for PLS. 

Both methods gave good errors of prediction; for PLS 1 (2 LV s) the RMSPE is 

0.266 and for WRR the RMSPE is 0.284. The small difference between the 

RMSPE for each method show them to be comparable. The PLS method produced 

a model with slightly lower errors of prediction. PLS is a well documented 

method which will continue to be used as the standard method for calibration for 

the GMS samples. The method also allows investigation of spectral pre-treatments 

and conditioning to improve errors of prediction. WRR does not benefit from such 

applications and therefore models cannot be improved through utilisation of such 

methods. 
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Figure 3.3.1-2 PLSI calibration model, plot of actual % ethanol vs predicte\J. 
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3.3.2 Analysis of binary mixtures of alcohols 

Alcohol mixtures; set 1: methanol and ethanol, set 2: methanol and propanol, and 

set 3: ethanol and propanol were analysed by OMS. The samples' spectra are , 

plotted for each mixture set in figures 3.3.2-1, 3 and 5. The PLS CV results are 

also plotted in figures 3.3.2-2,4 and 6. 

All the spectral sets have good variation in response as the sample concentrations 

vary. As expected from the pure spectra, samples containing methanol had the 

highest spectral response. Dataset 2 was modelled with the lowest errors. The 

spectra of this dataset had the most variation in magnitude response between the 

samples throughout the entire spectral region. Set 2 consisted of methanol and 

propanol, these have the least similar pure spectrum out of those in the binary 

alcohol sample mixtures. For datasets 1 and 3 there is only good variation for 

approximately half of the frequency range. 

To model the data, the spectra were first mean centred and then PLS2 applied. 

Table 3.3.2-1 Binary mixtures of alcohols PLS2 RMSEC and RMSECV 

Set Average RMSEC Average RMSECV 
1 0.62 1.04 
2 0.18 0.33 
3 0.48 1.06 

The sample concentrations are in the range of 30 - 70 % alcohol so CV errors of 

approximately 1 % are acceptable for prediction for a 2 LV model, demonstrating 

that OMS is suitable for this analysis of simple 2 component alcohol mixtures. 
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Figure 3.3.2-1 Binary mixtures of alcohols set 1, OMS spectra 
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Figure 3.3.2-3 Binary mixtures of alcohols set 2, GMS spectra 
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Figure 3.3.2-5 Binary mixtures of alcohol set 3, GMS spectra 
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3.3.3 Analysis of tertiary mixtures of alcohols 

Since GMS has shown in the previous experiments to be suitable for analysis of 

binary alcohol mixtures the analysis was extended to include samples of tertiary 

mixtures of alcohols. A set consisting of methanol, ethanol and propanol was 

analysed. The samples concentration varied between 20 - 40 % of each alcohol, 

the spectra can be seen in figure 3.3.3-1. The PLS2 RMSEC and RMSECV CV 

results are plotted in figure 3.3.3-2. 

Figure 3.3.3-1 GMS tertiary mixtures of alcohols spectra 
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Figure 3.3.3-2 PLS2 CV model results of GMS tertiary mixtures of alcohols 
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The methanol and propanol alcohols modelled with the lowest errors of cross 

validation as these have the most different e' values and hence GMS spectra. PLS2 

and polynomial (poly) PLS2 where n = 2 and 3 were calculated. The second and 

third order polynomial models were used to account for any non-linearity present 

in the alcohol spectra. The RMSPE' s of the independent validation samples based 

on a 4 LV model plotted for each dataset in figure 3.3.3-.3. 
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Figure 3.3.3-3 PLS2 and Poly PLS2 RMSPE results for tertiary mixtures of 

alcohols 
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For all three methods ethanol had the highest errors of prediction. In the GMS 

samples spectra the first peak is due to methanol and ethanol. The ethanol peak is 

half the magnitude of the response of methanol. The methanol could be masking 

ethanol and propanol peaks, increasing the errors of prediction for these 

components. The second order polynomial PLS2 model had the lowest errors of 

prediction. For this model the % error in prediction for each alcohol is 2.9 % for 

methanol, 7.5 % for ethanol and 4.9 % for propanol. The PLS2 and second order 

polynomial PLS2 results of actual vs predicted % alcohol for each component are 

plotted in figures 3.3.3-4 to 9. 

For all alcohols the lInes at best fi t have a very high intercept showing a large off-

set in the line and hence a skew (also seen in the deviation from the y = x line) in 

the calibration predictions. The magnitude of the prediction offset is consistent 

with the RMSPE values. 
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Figure 3.3.3-4 PLS2 results for set 4 alcohol sample mixtures; plots of actual 

vs predicted % methanol (ml) 
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Figure 3.3.3-5 Poly PLS2 results for set 4 alcohol sample mixtures; plots of 

actual vs predicted % methanol (ml) 
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figure 3.3.3-6 PLS2 results for set 4 alcohol sample mixtures; plots of actual 

vs predicted % ethanol (ml) 
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Figure 3.3.3-7 Poly PLS2 results for set 4 alcohol sample mixtures; plots of 

actual vs predicted % ethanol (ml) 
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Figure 3.3.3-8 PLS2 results for set 4 alcohol sample mixtures; plots of actual 

vs predicted % propanol (ml) 
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Figure 3.3.3-9 Poly PLS2 results for set 4 alcohol sample mixtures; plots of 

actual vs predicted % propanol (ml) 
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3.3.4 Analysis of quaternary mixtures of alcohols 

The previous two experiments have shown GMS spectra of binary and tertiary 

alcohol mixtures to be suitable for the determination of alcohol content. The 

prediction error was found to increase to the 5 % level from 1 % level by 

increasing the number of components in the mixture to 3 alcohols. In this next 

experiment mixtures containing four homologous alcohols were analysed by 

GMS. Good variability can be seen in the quaternary alcohol sample spectra 

which are plotted in figure 3.3 .4-1 GMS spectra of quaternary alcohol mixtures. 

The samples in table 2.4.4-1 were separated randomly into training (sample 

numbers; 1, 5, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20, 22, 24) and validation 

datasets (sample numbers; 2, 3, 4, 6, 8,16,19,21,23). A range of models were 

produced and the predictions of the validation samples based on models using 1 -

6 LVs plotted in figure 3.3.4-2 for the PLS models. 

For the spline PLS regression initial models using different combinations of the 

number of knots and the degree used to model the samples. From these models it 

was found that when the degree was 2 and the number of knots was 2 or 3 lowest 

errors of prediction were obtained. 

The same procedure was applied when choosing the number components and the 

tolerance factor to use for the OSC models. 
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Chapter 4: Application of OMS for Chemical Measurement 

Figure 3.3.4-1 GMS spectra of quaternary alcohol mixtures 
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Chapter 4 Application of GMS for Chemical Measurement 

Figure 3.3.4-2 Quaternary alcohol mixtures, various PLS model RMSPE 

predictions for models calibrated with 1- 6 LVs 
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In addition to PLS, a WRR calibration model was calculated. For each type of 

PLS model the number of LV s which gave the lowest average RMSPE is plotted 

196 



Chapter 4 Application of GMS for Chemical Measurement 

in figure 3.3.4-3 with the WRR results. WRR has the highest errors of prediction; 

there is little obvious difference between the different PLS models. 

Figure 3.3.4-3 Quaternary alcohol samples RMSPE for various models 
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The actual V s predicted % alcohol for each of the alcohols in the quaternary 

samples modelled by WRR is plotted in figures 3.3.4-4 to 8. 
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Figure 3.3.4-4 WRR predictions methanol in the quaternary alcohol mixtures 
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Figure 3.3.4-5 WRR predictions ethanol in the quaternary alcohol mixtures 
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Figure 3.3.4-6 WRR predictions propanol in the quaternary alcohol mixtures 
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Figure 3.3.4-7 WRR predictions butanol in the quaternary alcohol mixtures 
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Chapter 4 Application of GMS for Chemical Measurement 

The prediction residuals are calculated for each sample to identify if there are 

outlier samples causing the high errors. These are plotted in figure 3.3.4 - 8 and 

are randomly distributed between samples, indicating no outlier present. 

Figure 3.3.4-8 Prediction residuals of WRR model for quaternary alcohols 
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The residual errors are higher for ethanol and propanol. The trends in the samples 

spectra were plotted in the PCA scores plots of PC 1 Vs PC 2, figure 3.3.4-9. The 

sample scores are generally ordered from low to high methanol concentration. 
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Figure 3.3.4-9 Quaternary alcohol mixtures PCA scores plot of PC 1 V PC 2 
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An ANOV A test was applied to the predictions of each alcohol based on the 

above predictions. Using a two tailed ANOVA, with between-group degrees of 

freedom (d of f) = 8, within group d of f = 72, and total d of f = 80, the F -values 

were; methanol = 0.039, ethanol = 0.229, propanol = 0.539 and for butanol = 

0.347. As the F-crit level value was 2.374, the test found there to be no significant 

difference between the each model's ability to predict each alcohol in the samples. 

The RMSPE values are too high to suggest GMS is suitable for this measurement. 

To determine the level of correlation between the spectra and each alcohol in the 

samples, the correlation coefficient was calculated and plotted in figures 3.3.4 -

10 to 13. The results show that there is very good correlation between methanol 
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(R > +1-0.99) and butanol (R > +1-0.75) but considerably less correlation for 

ethanol (R < +1-0.5) and propanol (R < +1-0.5). 

The low correlation for ethanol, propanol and butanol explains why predictions 

for these components are difficult. The GMS response to methanol is so strong it 

masks the remaining components. The other components may also be 

disassociating and forming interactions which will change the GMS response to 

the concentration of each component. 

Figure 3.3.4-10 Plot of correlation coefficients between the quaternary 

alcohols mixtures samples spectra and methanol sample concentration 
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Figure 3.3.4-11 Plot of correlation coefficients between the quaternary 

alcohols mixtures samples spectra and ethanol sample concentration 
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Figure 3.3.4-12 Plot of correlation coefficients between the quaternary 

alcohols mixtures samples spectra and propanol sample concentration 
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Figure 3.3.4-13 Plot of correlation coefficients between the quaternary 

alcohols mixtures samples spectra and butanol sample concentratioIl 
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4 Conclusions 

This section of work based on the analysis of alcohols by GMS has shown that for 

simple two components mixtures the GMS system demonstrates itself as a 

feasible method of analysis and can accurately predict the levels of each alcohol 

with less than 1 % error. The method is also successful for analysing tertiary 

mixtures of homologous alcohols consisting of methanol, ethanol and propanol. 

An increase in error was seen to a maximum of7.5 % for ethanol prediction in the 

tertiary mixtures. 

For samples consisting of 4 alcohols; methanol, ethanol, propanol and butanol, the 

spectra were strongly correlated to the amount of methanol in the samples but had 

little correlation to the amount of ethanol and propanol. There was some 

correlation for butanol. The samples scores plots for PCs 1 and 2 confirmed that 

the major variation in the samples spectra was due to methanol concentration. 

The GMS spectra of quaternary homologous alcohol samples could not be 

resolved to give prediction for ethanol or propanol in the samples and have higher 

errors of prediction for methanol (20.0 %) than in the previous datasets. The 

individual alcohols can not be resolved by this method because of the similarities 

in the pure spectra and similar dielectric constants. 

Limitations begin to be seen when the number of components in the samples are 

raised. Once this happens it becomes much harder to resolve the spectra of 

samples which are composed of properties with similar dielectric constants and 

spectra. 
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The conclusion is drawn that GMS is an optimal method with smaller numbers of 

components in samples and components with the large differences in dielectric 

constant and pure spectra. 
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5 Further Work 

The aim of this section of work was to demonstrate the feasibility of GMS for the 

measurement of chemical species. It has solely looked at measurement of alcohol 

solutions. The further work to be carried out in this area of chemical measurement 

is almost endless. Some suggestions of where this should begin are listed below. 

• Measure other molecules with different functional groups that would 

rotate in the microwave field, i.e. carboxylic acids, nitriles, amines. 

• Look at aromatic compounds. 

• Investigate the effect of stereochemistry on the GMS response. 

• Measure inorganic molecules which are easily polarised e.g. sodium 

chloride. 

• Measure more multiple component samples to establish if the limitation 

is the number of components in a sample or interaction within the 

sample. 

• Gain more information about microwave spectra and look at developing 

algorithms that can predict the shape of multicomponent spectra. 
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Chapter 5 Monitoring Of The Beer Fermentation Process By GMS 

1 Introduction 

Previous work has shown that GMS can be accurately used to predict levels of 

ethanol in water mixtures (see chapter 4). To further develop this type of 

application, GMS will be used to monitor the rate of formation of ethanol in beer 

fermentation processes. The fermentation wort is a complex mixture of many 

components. The main major constituent will be water along with sugar which 

will be converted to ethanol during the fermentation 1. The polarity of water and 

ethanol will ensure these will cause the greatest response in the microwave field. 

For beer fermentation, this is a slow reaction which will allow investigation of the 

system over several days and generate a large number of spectra over this period.' 

There are many properties of beer than can be measured. Official methods 

developed by the association of official analytical chemists are summarised in 

Table 1-1 Official methods of beer analysis 

Analyte Method 
Alcohol in beer (by weight) Refractometer 
Colour of beer Spectrophotometric and photometric 
Ethanol in beer Specific gravity 
Ethanol in beer Gas chromatography 
Glycerol in beer Dichromate oxidation 
Haze of beer after chilling Visual and nephelometric 
pH of beer Potentiometric 
Total acidity of beer Indicator and potentiometric titration 
Viscosity of beer Viscometer 
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There are several methods for the analysis of alcoholic beverages or beer. The 

first standard method was to determine the alcohol content of beverages by 

specific gravity. 

GC is the normal method for alcohol analysis as it is the most accurate method of 

alcohol determination in beer, it is also recommended by the Association of 

Official Analytical Chemists as the method for alcohol content of beer. Typically 

this method can give results to the nearest 0.1 % v/v. 

A classic method for determining the end of the fermentation period of beer is 

specific gravity. The specific gravity of brew is expected to reduce from 1.036 to 

1.005 units from the start to end of fermentation. The fermentation period is 

complete when the S.G has been 1.005 for two days. The end measurement is 

called the final gravity; the lower this number the more alcohol is present in the 

beer. The specific gravity of pure water is 1.000 and pure ethanol is 0.791 3
• The 

specific gravity is not a very accurate method of analysis as it is subject to 

fluctuations according to temperature. However the main benefits of this method 

are the speed of analysis and that it does not require any expensive equipment or 

maintenance. 

Due to the complexity of the sample, dark colour, and the presence of particulates 

and dissolved gases, beer fermentation has previously been difficult to analyse on­

line. In 1994 a group of authors published two spectroscopic methods for the 

determination of ethanol in beer. The first was the use of derivative Fourier-
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transform infrared spectrometry4 and this was followed by a stopped flow near­

infrared method5 which had improved sensitivity and a higher throughput rate of 

samples. Both methods allowed direct prediction of ethanol content without the 

use of multivariate calibration. The drawback is the sample preparation 

requirement of de-gassing of the beer prior to analysis combined with a lengthy 

calibration procedure that requires the use of ethanol and maltose standards and 

two cells with different pathlengths. 

A commercial analyser, the SCABATM 5611 beer analyser is produced by Foss. 

This instrument can perform at-line analysis for alcohol in the range of 0 - 7 % 

within 3 minutes with accuracy of 0.02 %. Alcohol is measured with a ceramic 

sensor by oxidation of evaporated vapours from the samples6
• This method 

requires 60 ml of degassed beer sample for analysis. Another Foss beer analyser is 

the Rapidtec™ 5665, a NIR spectrophometer. This does not require full filtration, 

but bubbles have to be removed by shaking or stirring the sample. It is reported to 

analyse samples at-line within 1 minute; however in addition to this, the sampling 

time is to be considered. 

The major advantage of using microwave spectroscopy as an alternative method 

of analysis is that it will analyse the whole sample including any dissolved gases 

and therefore the sample does not need to be degassed prior to analysis, removing 

this bottleneck for analysis. The methods can also be in-line allowing rapid 

analysis. 
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Another advantage is that the measurement cavity for a microwave spectrometer 

can be located completely in-line and thus is non-intrusive. Typically, insertion 

probes are required for NIR. These can be problematic because the pathlengths for 

NIR are very small which can be blocked with the biomass produced during the 

fermentation. 

The aim of the study was to perform the fermentation in two different scenarios; 

1) As a large scale batch process, 30 I and 2) a small scale, 0.5 I fermentation. 

In the first part of the study, 30 I of beer was fermented in a 70 I glass batch 

reactor. To prevent fouling of the microwave cavity a flow cell was employed for 

analysis of the large scale batch fermentation. The flow cell was made of Teflon, 

which gives minimum absorption in the microwave region. It was fixed in place 

for the fermentation period as movement could result in small variations in the 

spectra recorded. The cell was cylindrical in shape with a sample volume of 100 

ml. A re-circulation loop continuously fed the fermentation broth through a Teflon 

cylinder in the GMS sample chamber for analysis. Fermentation samples were 

taken from the loop to be analysed by GC for ethanol content. 

The second scenario is much simpler. Instead of brewing on a large scale and re­

circulating the fermentation broth, the beer was brewed directly inside the GMS 

sample chamber. This reduced the overall brew volume to 0.5 1, but has the 

advantage of simplicity. The sample chamber was adapted to allow temperature 

control throughout the fermentation. 
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Preliminary studies were carried out to verify the suitability of the Teflon cylinder 

as a flowcell for the sample chamber in the large scale batch fermentation. Two 

experiments were performed where ethanol in water samples and beer spiked with 

additional ethanol were analysed in the Teflon cylinder within the GMS sample 

chamber. The cell was made of Teflon as this material has the lowest response to 

microwave radiation for common materials used to construct flowcells7
, see table 

1-2. 

Table 1-2 Dielectric constants of some common materials 

Material Dielectric constant 
Teflon 2.0 
Glass 3.7 -10.0 

Glass silica 3.8 
Quartz 4.2 
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2 Experimental 

2.1 Feasibility of GMS monitoring using a Teflon cylinder 

As a pre-study to the analysis of beer, ethanol in water samples were analysed to 

show that small variations in alcohol can be monitored by GMS. The samples 

were analysed in a Teflon cylinder which in the future could be modified to be 

used as a flow cell for analysis of continuously flowing systems for the large scale 

fermentation. The cylinder is approximately 2.8 cm wide and 10 cm tall with an 

internal volume of 100 ml. For analysis it was placed in the centre of the GMS 

sample chamber and held loosely in place by some metal plates fixed on top of the 

sample chamber. 

2.1.1 Analysis of water spiked with ethanol 

97 ml of water was placed in the flowcell and the spectrum was recorded. Then 

0.3 ml of pure ethanol was pipetted directly into the water, stirred and the 

spectrum recorded. This was repeated until 10 additions of ethanol in 0.3 ml 

aliquots had been made. 

2.1.2 Analysis of spiked beer samples 

97 ml of beer sample was spiked with 10 aliquots of 0.3 ml ethanol (Fisher 

Scientific) and the GMS spectrum recorded after each addition. 
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2.2 GC analysis for ethanol in beer samples 

The alcohol content of the beer fermentation samples was accurately determined 

by gas chromatography (GC). An internal standard (propanol, Fisher Scientific) 

was used in the calibration for ethanol content. 

2.2.1 Preparation of solutions 

Internal standard stock solution 

25 % propan-l-01 in water (100 ml) 

Calibration standards 

2 % ethanol: 0.5 ml ethanol to 10 ml stock solution, diluted to 25 ml. 

4 % ethanol: 1.0 ml ethanol to 10 ml stock solution, diluted to 25 ml. 

6 % ethanol: 1.5 ml ethanol to 10 ml stock solution, diluted to 25 ml. 

8 % ethanol: 2.0 ml ethanol to 10 ml stock solution, diluted to 25 ml. 

Beer Sample 

15 ml of filter beer sample was added to 10 ml of stock solution. 

Each solution was analysed in duplicate with an injection volume of 1 Jll. 

216 



Chapter 5 Monitoring Of The Beer Fermentation Process By GMS 

2.2.2 GC instrumental method 

Gas Chromatograph: 

Column: 

Detector type: 

Detector temperature: 

Injector temperature: 

Oven temperature: 

Head Pressure: 

Carrier Gas: 

Run time: 

Perkin Elmer Autosystem XL 

PorOpak Q (Packed, 2m) 

Flame Ionisation (FID) 

250°C 

250 °c 

190°C 

30 Psi 

Nitrogen 

5 minutes 

From the duplicate analysis the average peak area ratio for the ethanol and 

propanol peaks was calculated. The % ethanol of each standard was plotted 

against the peak area ratio. The % ethanol of the unknown beer sample was 

determined by interpolation from the graph. 

2.3 On-line analysis of 30 I batch fermentation 

301 of beer was fermented in a 70 I batch reactor for 3 weeks. The laboratory set­

up of the batch reactor can be seen in figure 2.3-1, the sample chamber during 

analysis in figure 2.3-2 and the Teflon cylinder used in figure 2.3-3. 

Using two homebrew beer kits, Geordies Bitter™ (Viking Brews, A division of 

Wander Ltd, Kings Langley, Herts, WD4 8LJ), 30 I of beer wort was added with 

yeast and sugar to the reactor. 
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Figure 2.3-1 Laboratory set up of the batch reactor and recirculation system 

used to monitor the fermentation of beer (30 I) by GMS 

Figure 2.3-2 GMS sample chamber during 

fermentation 

Beer out 

.-------------------------------------, 
Re-circulation pipe leading 
fermentation wort back to 
the reactor 

Coaxial cables leading to 
spectrometer 

Figure 2.3-3 Teflon 

cylinder as flow cell 

12cm 
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The oil jacket surrounding the reactor was set to 24°C. The temperature of the 

beer was measured by a thermocouple inside the reactor. It was not possible to 

control the temperature of the microwave cavity so it was kept at room 

temperature. On top of the reactor there are 5 inlet/outlet ports, the main centre 

one contains the stirrer paddle with motor above. The remaining four are used for 

the thermocouple, re-circulation inlet, re-circulation outlet and a vent to the 

dresche1 bottles. 

For the experiments, a re-circulation loop fed the fermentation brew through the 

microwave sample chamber for on-line analysis. A glass tube was made (80 cm 

long and 1 cm diameter) to attach to the fittings of a reactor inlet port. The tube 

was measured so that its opening was just above the stirrer paddle. A peristaltic 

pump was used to pull beer through from the reactor into the flowcell and then 

pump it back into the reactor via an inlet port at the front. Peristaltic pump tubing 

was used to connect the glass tubing to form the re-circulation loop. The reactor 

was vented through 2 Dreschel bottles (11). 

Between 9 am and 5 pm the beer solution was continuously stirred by a motorised 

stirrer. The beer was slowly pumped (approx. 0.5 l/min) from the reactor through 

to the Teflon cylinder inside the sample chamber. Sample spectra were taken 

periodically throughout the day. Three times a day, a 50 ml beer sample was taken 

from the tap in the re-circulation loop. The % alcohol of the sample was 

determined by OC. Prior to taking the sample the spectrum of the re-circulating 

beer was recorded. 

219 



Chapter 5 Monitoring Of The Beer Fermentation Process By GMS 

2.4 In-line analysis of 0.5 I batch fermentation 

A simpler way to monitor the fermentation of beer is on a small scale by 

containing the fermentation wort within the microwave sample chamber. The 

experimental setup can be seen in figure 2.4-1. During this experiment the 

temperature of the sample chamber was controlled. 

A different homebrew kit to the first experiment was used (,Extra strong bitter', 

Unican Foods Ltd, P.O. Box 171, Reepham, Norwich, NR10 4BJ). The 

fermentation wort was 110g/1 instead of the recommended 83 gil, this was to 

produce a high alcohol content to maximise variation in the spectra (the sugar and 

yeast concentrations were scaled accordingly). 

The base of the sample chamber was sealed. Using the homebrew beer kit a beer 

wort solution was made up with 60.3 g of wort syrup and 33.1 g of sugar. 550 ml 

of wort solution was placed in the sample chamber. 0.2 g of yeast was sprinkled 

onto the solution. A ventilation pipe was added to the lid of the sample chamber 

leading to two 250 ml Dresche1 bottles in series. A radiator was wrapped around 

the sample chamber; see figure 2.4-2, through this water was continuously 

pumped whilst controlled at 22°C using a water bath, Grant 3G LTD (Fisher 

Scientific) waterbath and recirculator, precision of +1- 0.1 °c. 

The beer wort was fermented for two weeks, the microwave spectra were recorded 

during this period every 30 minutes between the hours of 9 am and 5 pm. At the 

end of this period the final strength of the beer was determined by GC. 
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Figure 2.4-1 Laboratory set up for the in-line fermentation of beer 
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Figure 2.4-2 GMS sample chamber with radiator attachment 
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3 Results 

3.1 Feasibility for GMS monitoring using Teflon cylinder 

Preliminary studies are carried out to verify the suitability for the Teflon cylinder 

to be used as a flowcell in the sample chamber for the large scale batch 

fennentation. Two experiments were perfonned where ethanol in water samples 

and beer spiked with additional ethanol are analysed in the Teflon cylinder within 

the GMS sample chamber. 

In order to detennine the response due to the Teflon cylinder the background 

GMS spectrum of air in the empty sample chamber (figure3.1-1) and the spectrum 

of the Teflon cylinder in the sample chamber (figure 3.1-2) was compared. The 

spectrum response in figure 3.1-1 and 2 are very similar, indicating that the Teflon 

cylinder does not cause interference in the background spectra. To evaluate the 

real difference in the background spectra with and without the Teflon cylinder 

within the GMS cavity, the residuals between the two spectrums were plotted. 
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Figure 3.1-1 GMS background spectrum of air 
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Figure 3.1-2 GMS spectrum of the Teflon cylinder in air 
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The residual differences between the two spectra, figure 3.1-3, show the regions 

where the inclusion of the Teflon cylinder is causing a small change in the 

microwave response. 

Figure 3.1-3 Residual difference between GMS background spectra and with 

the Teflon cylinder spectra 
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Generally across the spectrum there is no change in the response with and without 

the Teflon cylinder. The peaks seen are likely to be due to internal reflections of 

the microwaves in the sample cavity as they interact with the Teflon cylinder. It is 

assumed that this will be constant for all measurements. To verify this 

assumption, samples of ethanol in water and ethanol in beer were analysed. If the 

variation in ethanol could be identified in both sets, then the Teflon cylinder 

would be used for measurements of the beer fennentation in the batch reactor. 
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3.1.1 Analysis of spiked water in the Teflon cylinder by GMS 

Water held in the Teflon cylinder was spiked with ethanol. The 10 spectra 

measured after each addition of a 0.3 ml aliquot of ethanol are shown in figure 

3.1.1-1 The shape of the ethanol in water spectra is different to those measured 

without the cylinder during the work in chapter 4. For comparison the spectra are 

plotted again in figure 3.1.1-2. The difference in the spectra in figures 3.1.1-1 

indicate the Teflon cylinder was effecting the OMS measurements. 

Figure 3.1.1-1 Plot of 10 GMS spectra of water spiked with 10 aliquots of 0.3 

ml of ethanol in the Teflon cylinder by GMS 
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Figure 3.1.1-2 Plot of 6 ethanol in water (0.5 - 3.0 %) samples measured by 

GMS 
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There is very little visual variation in the spectra measured during the addition of 

ethanol to water, figure 3.1.1-1. PCA was applied to the spectra to investigate the 

variation in the samples spectra. The spectra were first mean centred, the PC 1 

sample scores plot (figure 3.1.1-3) show that the variation in the samples scores 

was proportional to the increase in ethanol concentration. 
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Figure 3.1.1-3 PCA sample scores for PC1 of ethanol additions to water in 

the Teflon cylinder by GMS 
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The samples spectra are very different to those seen in Chapter 4, where low 

concentration ethanol samples were analysed in the sample chamber without the 

use of the Teflon cylinder (see figure 3.1.1-2). The Teflon cylinder reduces the 

severity of the cut-off in the GMS spectrum and, artefacts are also apparent in the 

region of 750 - 1250 MHz. These artefacts do not mask the variation in sample 

analyte concentration in the water and ethanol samples. The feasibility study was 

extended to the analysis of the more complex samples of beer and ethanol. 

227 



Chapter 5 Monitoring Of The Beer Fennentation Process By GMS 

3.1.2 Analysis of spiked beer in Teflon cylinder by GMS 

The previous experiment was repeated but involved the analysis of beer with the 

addition of ethanol aliquots. This was to ensure that there are not components in 

the beer's matrix that prevent identification of the amount of ethanol in a beer 

sample by GMS. The spectra measured of the ethanol additions to beer are plotted 

in figure 3.1.2-1. 

Figure 3.1.2-1 GMS spectra of beer spiked with 10 additions of 0.3 ml 

aliquots of ethanol 
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The spectra of ethanol additions to beer (figure 3.1.2-1) are a similar shape to 

those of water (figure 3.1.1-1), but have more noise. The magnitude of the 

response in the region of 750 - 1250 MHz has reduced. The GMS response to 
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beer would be expected to be lower than water, as it will contain components 

which have a lower dielectric constant (e.g. carbohydrates, sugar, and yeast) and 

resulting in a reduced spectral response. 

The ethanol spiked beer spectra have more visual variation than the ethanol spiked 

water spectra. The same procedure of mean centering the samples spectra prior to 

PCA analysis was applied to the beer spiked spectra. The scores plot for PC 1 is 

shown (figure 3.1.1-2) and displays a linear trend between the samples. The trend 

line is not as straight as seen with the ethanol in water-spiked samples. 

Figure 3.1.1-2 PCA samples scores for PC 1 of the ethanol spiked beer 

sample by GMS 
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These two experiments have shown that changing the sample analysis set-up to 

use a Teflon cylinder as a flowcell produces artefacts in the samples spectra. By 

analysing samples in this cylinder the microwaves are being passed from the 

source through air to Teflon, to sample, to Teflon and back through air to the 

detector. Reflections will occur at each of these interfaces. These reflections will 

ultimately change the amount of microwave energy received by the detector and 

hence the response from the GMS instrument for a given sample. 

However, taking this into consideration and that the desired trend in ethanol 

concentration could be clearly seen in the PCA samples scores plots, the Teflon 

cylinder is considered suitable for use as a flowcell for monitoring of the beer 

fermentation process. 
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3.2 Analysis of beer fermentation by GMS: 30 I batch 

In this experiment 30 1 of beer was brewed inside a batch reactor. The 

fermentation wort was circulated throughout and the OMS spectra recorded. 

Samples of the wort were collected and the % ethanol determined by OC. The 

fermentation spectra are plotted in figure 3.2-1. These are fairly noisey but are a 

good likeness to those of the spiked beer samples as recorded during the pre-study 

investigations to this experiment. 

231 



N w 
N 

Chapter 5: Monitoring Of The Beer Fennentation Process By GMS 

Figure 3.2-1 GMS Beer fermentation spectra recorded over 10 days 
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The rate of formation of ethanol, as determined by GC, is plotted in figure 3.2-2. 

This shows ethanol to be formed linearly during the first 5 days of fermentation 

(figure 3.2-3). This then plateaus and the ethanol content varies with quite a large 

error between samples. This could be a result of oxidisation of the ethanol or and 

error in the GC analysis. The GC instrument used for these experiments belonged 

to the undergraduate teaching laboratory. Between samples other people would 

use the GC for different types of samples, and it was not always feasible raise the 

oven temperature to ensure analytes from other users did not remain on the 

column. 

Figure 3.2-2 Plot of ethanol concentration (% v/v) in the beer during 

fermentation as determined by GC 
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Figure 3.2-3 Plot of ethanol concentration (% v/v) in the beer during the first 

5 days of fermentation as determined by GC 
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The spectra were recorded in a dynamic environment as the sample was pumped 

through the Teflon cylinder, increasing the level of noise in comparison to those 

of the static standards. Savitsky Golay smoothing was applied to reduce noise in 

the spectra. The smoothed spectra recorded during the beer fermentation are 

plotted in figUre 3.2-4. 

Once smoothed, there is visible variation between the fermentation spectra. 

However, a frequency region where the spectra are ordered in terms of 

fermentation period is not apparent. To identify the regions of high correlation 

between the ethanol concentration of the samples and the fermentation spectra, the 

correlation coefficient is calculated. This is plotted in figure 3.2-5. 
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Figure 3.2-4 First 5 days beer fermentation spectra Savitsky Golay smoothed 
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Figure 3.2-5 First 5 days beer fermentation spectra (smoothed) correlation to 

% ethanol in the 30 I batch beer samples 
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The correlation coefficient between the smoothed beer fermentation spectra 

recorded during days 1 -5 of the fermentation period and the ethanol concentration 

shows some region at 400 MHz with correlation greater that -0.8. This level of 

correlation is also seen between 2000 - 2400 MHz. 

PCA is applied to the smoothed fermentation spectra measured up to day 5 of the 

fermentation is applied to investigate the trends to the spectra according to rate of 

formation of ethanol. 

The PCA samples scores are plotted for PC's 1 - 4 in figures 3.2-5 to 8. A clear 

trend following the concentration of ethanol in the samples as plotted in figure 

3.2-3 is not seen. This may not be visible because the OMS spectra could be 

masked by other components within the fermentation wort, such as ethanoic acid 

and dissolved carbon dioxide both of which will also give a response to 

microwaves. 

During the fermentation monitoring build up of carbon dioxide gas just prior to 

venting made the microwave spectrum measurement unattainable. Microwave 

responses due to gases are much higher than from liquids, as a result when gas 

was present the measurement was off-scale. 

The Q residual and T2 values, figures 3.2-9 and 10, for each sample do not 

indicate any of the samples spectra to be an outlier. 
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Figure 3.2-5 PCA scores for PC 1 of smoothed spectra samples for the first 

five days of beer fermentation 
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Figure 3.2-6 PCA scores for PC 2 of smoothed spectra samples for the first 

five days of beer fermentation 
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Figure 3.2-7 PCA scores for PC 3 of smoothed spectra samples for the first 

five days of beer fermentation 
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Figure 3.2-8 PCA scores for PC 4 of smoothed spectra samples for the first 

five days of beer fermentation 
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Figure 3.2-9 PCA Q residual for a 4 PC model of smoothed spectra samples 

for the first five days of beer fermentation 
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Figure 3.2-6 PCA T2 residual for a 4 PC model of smoothed spectra samples 

for the first five days of beer fermentation 
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To model the ethanol concentration in the fermentation spectra a series of PLS 

models were calculated, these used PLS-NIPALS, poly-PLS and OSC followed 

by PLS. The models were calculated with smoothed spectra and with/without 

mean centering. 

A summary of the models RMSPE values, for models based on 3 LV s, can be 

seen in figure 3.2-11. The models with lowest RMSPE values were calculated 

based on the smoothed spectra and used the NIPALS and poly-PLS methods. For 

these two models the actual vs predicted % ethanol in the beer is plotted in figures 

3.2-12 and 13. NIPALS model (figure 3.2-12) could not predict the ethanol 

concentration accurately, this is demonstrated from the R2 value of 0.024 for the 

line of best fit between the actual and predicted % ethanol. If the values were 

predicted accurately R2 would be close to 1. 

The poly-PLS model can predict the concentration of ethanol, the R2 value is 

0.7979 confirms the improvement. The RMSPE is 0.4, for an average sample of 

1.7 % predictions would be in the range of 1.3 - 2.1 % ethanol. This range is too 

large. The expected time taken for the fermentation of ethanol to a certain 

concentration could be predicted if the procedure was repeated. It is likely that 

prediction of ethanol concentration from fermentation time would more accurate 

than those based on the GMS measurements recorded during this experiment. 

The poor results produced from the GMS measurements of the beer fermentation 

could be attributed to a range of factors. The beer wort temperature was constant 
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when inside the reactor, but the recirculation loop and GMS sample chamber were 

not thermostated and the sample would have fluctuated in temperature as the 

ambient room temperature varied as it passed through the re-circulation system. 

The GMS system analyses everything within the sample chamber and is sensitive 

to volume variations. During the fermentation carbon dioxide gas is given off 

would bubble through the recirculation loop and into the flowcell during analysis, 

this could result in variations in the spectra due to changes in the liquid volume 

effecting the GMS spectra. The level of the analyte, ethanol, within the 

fermentation wort varied by less than 4 %, so the external factors could influence 

the GMS spectra to a greater extent interfering with the small spectral change due 

to ethanol. 

To establish if this system can be used for the measurement of ethanol production 

in beer the experimental set-up should be modified to thermostat the entire 

system, control the analyte volume and minimise the effects of dissolved gases. 

Consideration should also be given to establish if the moving sample affects the 

total volume of analyte measured in a given time and consequently affects the 

GMS spectra. 
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Figure 3.2-11 Bar chart of RMSPE values for various PLS models based on the 30 I beer fermentation spectra recorded during days 1 -

5 of the fermentation 
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Figure 3.2-12 PLS model using 3 LVs, plot of actual vs predicted % ethanol 

from the smoothed spectra recorded during the first 5 days of fermentation 
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Figure 3.2-13 Second order Poly-PLS model (3 LVs), plot of actual vs 

predicted % ethanol from the smoothed spectra recorded during the first 5 

days of fermentation 
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3.3 The monitoring of beer fermentation by GMS: 0.5 I 

The previous experiment involved the large scale fermentation process where 

temperature control was difficult. This is a much simpler experiment where o.s I 

of beer was fermented directly inside the sample chamber. The outside of the 

sample chamber was surrounded with a radiator through which water at 22°C was 

pumped maintaining the temperature inside the sample chamber. The chamber 

was sealed throughout the fermentation and samples are not taken (keeping a 

fixed volume), such that the % alcohol was only determined at the end of the 

fermentation. After 11 days of fermentation the amount of ethanol in the beer 

sample was 4 % v/v (determined by OC). 

Table 3.3-1 describes when each of the spectra was recorded. For those collected 

between 9 am and S pm the measurements were taken every 30 minutes. 

Table 3.3-1 Time of spectra collection during the 0.5 I fermentation of beer 

Day Time recorded Spectra numbers 
1 11 am-S pm 1 - 9 
2 9am-Spm 10 - 26 
3 9am-S pm 27 - 43 
4 9am-Spm 44 - 60 
S 9am-S pm 61 -77 
6 9am-Spm 78 - 94 
7 9am-S pm 9S - 111 
8 9 am and Spm 112-113 
9 9amand Spm 114-11S 
10 9 am and Spm 116-117 
11 9am 118 
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In figure 3.3-1 the spectra measured at 4pm of each day is plotted. During the 

fermentation there are very little visible variations in the spectra, and the spectra 

resemble those of the ethanol in water standards (see figure 3.1.1-2). 

To maximise the variation in the spectra the spectra are background subtracted, 

where the first spectrum recorded during the fermentation was subtracted from the 

each of the spectra recorded at 4pm. The background subtracted spectra are 

plotted in figure 3.3-2. Savitsky Golay smoothing was applied to reduce the noise 

in the background spectra, the smoothed spectra are plotted in figure 3.3-3. 
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Figure 3.3 1 GMS 0.5 I beer fermentation spectra recorded over 11 days 
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Figure 3.3-2 Smaller scale fermentation spectra recorded daily at 4pm 

background subtracted 
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Figure 3.3-3 Smaller scale fermentation spectra recorded daily at 4pm 

background subtracted and Savitsky Golay smoothed 
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PCA was applied to all of the spectra recorded throughout during the fennentation 

(as described in table 3.3-1). The samples scores are plotted for PC 1 in figure 3.3-

4. 

Figure 3.3-4 Beer fermentation PCA samples scores plot for PC 1 
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The steps in the scores plot relates to different days of the fennentation. The 

scores appear to be drifting during the day then a large jwnp in magnitude is seen 

overnight. This could be due to a physical parameter causing variation in the 

spectra, or be a result of too little variation in the spectra during the day causing 

high correlation. To remove these effects of too similar spectra, PCA was repeated 

using only the spectra recorded daily at 4 pm (figure 3.3-5). 
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Figure 3.3-5 Beer fermentation spectra at 4 pm daily; PCA scores for PC 1 
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The sample scores using only one spectrum for each day shows a much more 

consistent trend in the spectra during the fermentation. The trend is almost linear 

for the first week of the fermentation (as for the 30 I batches in the previous 

experiment). After this time the deviation from the trend is apparent from samples 

recorded on days 8 and 9. 

From this experiment the trend in the spectra during the fermentation process was 

more apparent in the PCA samples scores plots than from those of the large scale 

batch fermentation. 

249 



Chapter 5 Monitoring Of The Beer Fennentation Process By GMS 

4 Conclusions 

This work has shown that for standard samples the effect of the increase in 

ethanol concentration can easily be seen in the samples scores plots. The 

investigations into the use of the Teflon cylinder for sample containment showed 

this to be a suitable material for microwave analysis; it does cause artefacts in the 

sample spectra but this was not considered to be problematic as the trends in the 

spectra could still be visualised. 

The microwaves will only be scattered by particles/discontinuities in the 

microwave cavity that have a diameter that is greater than 10 % of the microwave 

wavelength. Therefore yeast cells are unlikely to cause scattering. However, the 

Teflon flowcell in the cavity will cause wave scattering. The use of the Teflon 

cylinder also changes the amount of analyte present, which affects the number of 

encounters between the wave and polar molecules. This highlights a flaw in the 

design of the experiment for the large scale (30 1) beer fennentation for which the 

Teflon cylinder was used as a flowcell for measurement. The aim of the work was 

to look at changes that occur in the brew during fennentation, from the microwave 

spectra collected. As the spectra were taken under the same conditions, scattering 

caused by the Teflon cylinder should not effect the between-spectra variation. 

The spectra from the large scale fennentation process recorded on-line could not 

be used to predict accurately the amount of ethanol produced throughout the 

process. Samples recorded during the first 5 days of the fennentation were most 

suitable for calibration models as they contained the most variation due to the 
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rapid production of ethanol which slowed after this period. The lowest RMSPE 

value was 0.4, achieved when the spectra were smoothed and modelled by 

polynomial PLS. This is an error of approximately 25 % of an average sample 

concentration, indicating that the method requires improvement for analysis. 

The fermentation process was then repeated in a much simpler experiment. 500ml 

of beer was fermented directly inside the GMS sample chamber, the temperature 

of the brew was maintained with a re-circulator bath reducing the effect of 

temperature variations on the spectra. The fermentation wort was not sampled or 

disturbed during the process. The aim for this experiment was to use trend 

analysis methods, such as peA to visualise the formation of ethanol via the peA 

scores plots. 

The results were consistent with the previous experiment and the greatest amount 

of variation in the spectra occurred in the first 5 days. From visual interrogation of 

the samples it was difficult to see the change to due to formation of ethanol. The 

peA scores plots show the rise in ethanol content. There is a drifting of the 

samples scores over the course of each day, although it was anticipated that the 

sample temperature control was sufficient to maintain accurately the sample 

temperature. 

These experiments show that guided microwave spectroscopy can be used to 

monitor the rate of formation of ethanol in beer but development in the 
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experimental set-up is required to ensure the samples are not affected by 

variations in ambient temperature. 
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5 Further Work 

The fennentation should be repeated under controlled temperature conditions. 

This should be arranged for the large scale batch reaction from which sampling is 

possible without significantly affecting the volume of the fennentation wort. 

The reference analysis for the detennination of ethanol in the beer requires 

improvement. It is not known if the GC signal was drifting causing the variation 

in the beer % ethanol towards the end of the batch or whether the fennentation 

wort was oxidising. A way to improve the situation would be use a dedicate beer 

analyser such as the Scaba™ mentioned in the introduction which has proven 

reliability for reference analysis. 

The Teflon cylinder should not be used for further experiments, and should either 

be replaced with an alternative that fits the dimensionality of the sample chamber 

or the sample chamber should be adapted to function as a flowcell itself. 

Most importantly, the GMS system requires modification to allow the sample 

spectra to be recorded automatically. This would prevent the daily jumps in the 

samples spectra and scores plots especially visible in the results of the small scale 

fennentation experiment. After consultation with the manufacturers this should be 

possible with addition of new circuitry to the spectrometer8
• 
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1 Introduction 

The aim of this work was to investigate the feasibility of using microwave 

spectroscopy for monitoring of an industrial process. Under investigation is 

Avecia's BIT process l
. This has multiple stages during the manufacturing process. 

One of the mid-stages requires the oxidation of an intermediate product to reach 

100 % to gain maximum yield of the final product. An oxidation level of less than 

98 % will affect the end product morphology which results in plant system 

blockages and loss of product. 

This oxidation stage has become a bottleneck in the manufacture, as the 

intermediate stage is processed for several hours more than strictly necessary to 

ensure sufficient oxidation. The time taken to manufacture the product could be 

reduced with the implementation of an on-line monitoring system to determine the 

oxidation level of the intermediate product. 

The oxidation stage product is a darkly coloured mixture of organic, immiscible 

aqueous phases and solid particulates (see figure 2.1-1). The exact details of the 

process were not released by A vecia for confidentiality reasons. Only the 

following information was provided about the samples under scrutiny, the 

aqueous phase contained bisamide and thiosalicylamide, the solid phase contained 

the oxidation product which was dithiodibenzamide. The oxidation level of the 

dithiodibenzamide is inferred by HPLC analysis of the aqueous layer components 

of bisamide and thiosalicylamide. This is a time consuming method which 
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requires the sample to be separated into the different layers prior to the HPLC 

analysis which would then take between 40 - 60 minutes. 

There are few references of measurement systems for multiphase samples; to date 

it has been much simpler to produce an engineering answer for such samples so 

that they are separated into forms that can be analysed separately. A feasibility 

study performed by A vecia personnel has already ruled out the use of NIR 

spectroscopy to monitor this process. 

The GMS method of analysis should be suitable for the analysis of this process. 

The microwave response will be a measurement of the composition of the entire 

sample, including all phases. The oxidation process samples contain polar 

molecules which are suitable for microwave measurement. The particulates 

should not interfere with the GMS measurement, as the particulates are 200 - 300 

J.lm in diameter, for interference the particulates diameter must be greater than 

1I1Oth of the GMS sample cavity pathlength. 

To investigate the effect of partially soluble solutions, a short preliminary study 

was carried out. For this, a series of acetonitrile (ACN) in water samples (5 - 30 

%) were analysed and the amount ACN was predicted by PLS and WRR with 

approximately 1 % error2. 
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Figure 2.1-1 Avecia BIT process sample 
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2 Experimental 

2.1 Analysis of acetonitrile in water 

Acetonitrile (HPLC Grade, 99 %, Fisher Scientific) samples, of concentrations 5, 

8, 10, 12, 15, 20, 23, 25, and 30 % v/v in water, were prepared in 500 ml 

volumetric flasks and analysed by GMS. 

2.2 Analysis of industrial process samples 

10 samples were taken from the process steam, and an additional sample was 

prepared in the laboratory to give a more even distribution of oxidation levels. 

2.2.1 Reference analysis for % oxidation by HPLC 

The samples were separated in the laboratory and the aqueous layer analysed by 

A vecia personnel using HPLC for indirect determination of the oxidation level of 

the solid within the slurry. 

2.2.2 Analysis by GMS 

The analysis was carried out at Avecia's Huddersfield works, and the laboratory 

set-up can be seen in figure 2.2.2-1. The samples are highly dermatitic3 so were 

only handled by trained A vecia personnel. Analysis was in a random order, each 

sample was shaken then charged into the sample chamber, this was sealed and the 

solution agitated with a motorized stirrer to ensure homogeneity and to represent 

the process stream. After the first minute of stirring, the spectrum of each sample 

was recorded 10 times. The samples were pumped out of the sample chamber 

which was then rinsed with distilled water. 
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Figure 2.2.2-1 Laboratory set-up for analysis of industrial process samples 

spectra by GMS 

2.2.2.1 Effect of phase variation in industrial process sample 

The aim was to determine if the level of mixing or phase variation effected the 

microwave spectrum of a sample. Sample 6, of 92.0 % conversion (see table 

3.2.1-1) was placed into the sample chamber, the solution was agitated with a 

motorised stirrer for 2 minutes, the stirrer was then switched off and the spectrum 

recorded continuously for a further 3 minutes. 
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3 Results 

3.1 Analysis of acetonitrile in water by GMS 

A preliminary study on the analysis of partially soluble solutions by OMS was 

carried out. Acetonitrile is only partially soluble in water and does not form 

hydrogen bonds. Samples were analysed between the concentration range of 5 -

30 % acetonitrile, and the OMS spectra can be seen in figure 3.1-1. 

Figure 3.1-1 GMS spectra of 9 acetonitrile in water samples (5 - 30 %) 
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The samples spectra look very similar to that of pure water and there is very little 

variation as the level of acetonitrile increases to 30 %. To increase the variation in 

the spectra and minimise the response to water, the acetonitrile samples are 

background subtracted by subtracting the spectrum of water, see figure 3.1-1. The 
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GMS spectrum of water is very reproducible provided that the same volwne of 

water (and analyte samples where background subtracted) is measured. 

Figure 3.1-2 GMS background spectra of acetonitrile in water samples 
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After removing the spectrum of water, variation can be seen in the samples 

spectra according to concentration at the cut-off region, below 500 MHz, and 

again around 1500 and 2500 MHz. Around 1500 MHz, the maximwn response of 

the sample spectra peak are shifting frequency with concentration. 

This is a common feature of the guided microwave system previously seen in 

chapter 5 with the alcohols mixtures. Using the background subtracted spectra, 

PLS (2 LVs) and WRR CV calibration models were calculated. In figure 3.1-3 the 

actual vs predicted % acetonitrile is plotted for the PLS and WRR models. 
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Figure 3.1-3 Actual Vs predicted plots of PLS model prediction of acetonitrile 

in water samples by GMS, RMSPE = 1.24 

· ~ 
c 
o · " 

~ r---------------------------------------------~ 

25i------------------------------r:r-----j 

y=x 
20 j-----------------~r__------_I 

y = 0.9267x + 0.9549 
R2 = 0.9798 

.-: 15 +----------------------~~--------------------_j .. · " .. · ... 
10~--------------~~---------------------------_j 

10 15 20 25 

Actual % acetonlbil. 

Figure 3.1-4 Actual vs predicted plot ofWRR model prediction of acetonitrile 

in water samples by GMS, RMSPE = 1.13 
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Both methods have good agreement when the actual % acetonitrile is plotted 

against the predicted % acetonitrile. The methods were found to be comparable 

with the RMSPE value for both methods being just over 1 %. 

3.2 Analysis of industrial oxidation samples 

Multiphase samples consisting or solid, organic and inorganic phases are analysed 

by GMS. On mixing, the samples formed a pale brown slurry. There were two 

investigations; the first was the feasibility of GMS to predict the % oxidation level. 

of the sample as determined by HPLC; the second was an investigation of the 

effect of separation of samples. 

The samples measured for these experiments are detailed in table 3.2-1. The 

sample reference details sample origin, i.e. it was taken from the process or 

prepared in the laboratory. The % conversion is the oxidation % from HPLC 

analysis. 

Table 3.2-1 Industrial oxidation process samples details 

Sample Ref: Sample No. Date % Conversion 
Process 1 02/08/01 12.5 
Process 2 02/08/01 45.9 
Process 3 06/08/01 50.0 
Process 4 02/08/01 52.4 

Lab mixed sample 5 08/08/01 84.3 
Process 6 06/08/01 92.0 
Process 7 02/08/01 93.0 
Process 8 02/08/01 98.4 
Process 9 02/08/01 99.8 
Process 10 06/08/01 99.9 
Process 11 02/08/01 100 
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3.2.1 Analysis of oxidation process samples by GMS 

The GMS spectra of the oxidation process samples are plotted in figure 3.2.1-1. 

The spectrum of sample 5 was easily identified as an outlier. This sample was the 

laboratory mixed sample, where a low oxidation sample (12 %), was oxidised up 

to 84.6 % in the laboratory4. The sample was consequently excluded from the 

dataset for further analysis. 

Figure 3.2.1-1 Avecia oxidation samples GMS spectra 
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The spectra of samples from the process stream are in figure 3.2.1-2. 
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Figure 3.2.1-2 Avecia oxidation samples GMS spectra excluding sample 5 
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Given the large concentration range of the samples, 12.5 - 100 % conversion 

there is little visual variation in the spectra. The spectra are noisey and contain a 

number of cut-offs. 

The correlation between the sample % oxidation and GMS spectra was calculated 

and plotted in figure 3.2.1-3. The maximum correlation was less than 0.6, 

indicating that the spectra measured are not highly related to the samples 

oxidation. 
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Figure 3.2.1-3 Avecia oxidation samples correlation to % oxidation and 

spectra 

0.6 

0.5 

0.4 

-0.1 

-0.2 

-0.3 

~.4~ __ L-______ L-______ ~ ______ ~ ______ -L ______ -L~ 

500 1000 1500 2000 2500 3000 
Frequency [MHz) 

As there are not any obvious trends in the spectra, the next step in the 

investigation was to apply PCA and scrutinize the PCA scores plots to see if they 

are consistent with the % oxidation of the samples. 

The PCA samples scores are plotted in figures 3.2.2-3 to 7 and variable loadings 

in figure 3.2.2-8 to 11 . The scores plots do not show a trend with the % oxidation 

of the samples. The loadings PC plots are noisy and the shapes reflect each other, 

suggesting each may be cancelling the previous information out. The Q residual 

(figure 3.2.2-12) highlights samples 2 and 10 to be of high leverage. Hotellings T2 

test (figure 3.2.2-13) does not identify any sample to be an outlier. 
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Figure 3.2.1-4 PCA results of Avecia BIT process samples spectra by GMS; 

PC 1 scores 
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Figure 3.2.1-5 PCA results of Avecia BIT process samples spectra by GMS; 

PC 2 scores 
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Figure 3.2.1-6 PCA results of Avecia BIT process samples spectra by GMS; 

PC 3 scores 
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Figure 3.2.1-7 PCA results of Avecia BIT process samples spectra by GMS; 

PC 4 scores 
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Figure 3.2.1-8 peA results of Avecia BIT process samples spectra by GMS; 

PC 1 loadings 
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Figure 3.2.1-9 PCA results of Avecia BIT process samples spectra by GMS; 

PC 2 loadings 

Variable Number vs. Loadings for PC# 2 
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Figure 3.2.1-10 PCA results of Avecia BIT process samples spectra by GMS; 

PC 3 loadings 

Variable Number vs. Loadings for PC# 3 
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Figure 3.2.1-11 PCA results of Avecia BIT process samples spectra by GMS; 

PC 4 loadings 
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Figure 3.2.1-12 peA results of Avecia BIT process samples spectra by GMS; 

Q residuals 
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Figure 3.2.1-13 peA results of Avecia BIT process samples spectra by GMS; 

T2 values 
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Given the lack of correlation between the sample oxidation and the GMS spectra 

PLS was used to maximize the covariance in the data to produce calibration 

models. The actual verses predicted graphs are plotted, after CV using 3, 5, 7 and 

9 LV s to model the data, in figures 3.2.2-14 to 17. 

The CV results show that unless 9 LV s are used to model the data, the predicted 

% conversion in the samples has a very high error of prediction. This is especially 

true for the sample with the lowest % conversion of 12.5 %. Using 9 LVs to 

model 10 samples would be considered to be a poor model which is suspected of 

overfitting the data. 

Figure 3.2.1-14 Plot ofPLS CV actual vs predicted oxidation in samples using 

3 LVs to model the data. 
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Figure 3.2.1-15 Plot ofPLS CV actual vs predicted oxidation in samples using 

5 LVs to model the data. 
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Figure 3.2.1-16 Plot ofPLS CV actual vs predicted oxidation in samples using 

7 LVs to model the data. 
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Figure 3.2.1-17 Plot of PLS CV actual vs predicted oxidation in samples using 

9 LV s to model the data. 
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To improve the calibration model the method orthogonal signal correction (OSC) 

was applied to the sample spectra. The OSC GMS spectra and the correlation 

between the OSC spectra and % conversion (figure 3.2.1-18) shows clear 

variation in the spectra with the oxidation of the sample. As the spectral response 

decreases, the % level of the process conversion increases. 

The improved correlation can also be seen in figure 3.2.2-6, where the correlation 

based on the OSC is close to 1 for the majority of the spectral region. 
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Figure 3.2.1-18 OSC oxidation samples spectra 
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Figure 3.2.1-19 Correlation between OSC spectra and oxidation % in 

samples 
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The application of OSC has increased the correlation between the sample 

oxidation and spectra. PCA was applied to the OSC spectra and the scores for PC 

1 plotted, figure 3.2.1-20. A trend consistent with the sample % conversion is seen 

in the scores plot for PC 1. 

Figure 3.2.1-20 Plot of BIT process sample number vs % oxidation 

100 

90 

80 

70 

:5 60 "i!! 
Q) 
> c: 
8 C '" ::> 50 ..-
?F-

40 

30 

20 

2 3 4 5 6 7 8 9 10 
Sample Number 

277 



Chapter 6 The Analysis of Industrial Process Samples By OMS 

Figure 3.2.1-21 Plots of peA scores plot for PC1 of OSC oxidation samples 
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PLS CV models based on the OSC spectra were calculated and the actual % 

oxidation vs predicted % oxidation is plotted in figure 3.2.1-22 for a 2 LV modeL 

The poor correlation between the actual and predicted % oxidation, seen in figure 

3.2.2-7 shows that the method could not be used to predict the oxidation levels of 

unknown samples. The trends in the OSC spectra and OSC PCA scores plots are 

over fitting the data by using OSC and consequently PLS models based on this 

data can not be used to predict the oxidation levels of unknown samples. 
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Figure 3.2.1-22 Actual Vs predicted % oxidation orose industrial samples 
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3.2.1.1 Effect of phase on the GMS spectra of the industrial samples 

The ground state of the BIT oxidation process samples is such that the samples 

consist of 3 phases, solid precipitate, organic and aqueous phases. When mixed 

this forms a pale brown slurry. An investigation of the effect of the sample phase 

on the OMS spectra was carried out. The sample was thoroughly mixed then left 

to separate back into its various phases for 3 minutes whilst the OMS spectra were 

recorded. The spectra and PC 1 scores are plotted in figure 3.2.1.1-1. 

As the sample separates back into its original phases the spectra change from an 

almost flat line to increase in response with a peak maxima of 3500 units The 

scores on PC 1 show the sample is separating linearly with time, demonstrating 

that the effect of dielectric constant and sample phase is important and that OMS 

can be used to determine sample homogeneity. 
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Figure 3.2.1.1-1 Effect of sample homogeneity on oxidation samples by GMS 
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4 Conclusions 

The initial experiment showed that partially soluble acetonitrile in water could be 

modelled by PLS and WRR and gave acceptable errors of prediction of 

approximately 1 % suggesting that OMS is a feasible method for quantitative 

analysis of these samples. 

The analysis of the industrial samples was not successful but there are several 

issues that should be considered and the overall conclusion from this section 

would be that more work is required before the method of GMS is ruled out for 

analysis of multi phase slurries. 

When the industrial samples were measured the GMS response was very low and 

the variation between samples difficult to visualise in the spectra and PCA scores 

plots. Orthogonal signal correction was applied to the spectra to maximise the 

variation in the spectra to the % oxidation in the samples and remove spectral 

features that did not contribute to the % oxidation. The resultant spectra were very 

promising with clear variation in the spectra and PCA samples scores with the % 

oxidation. When PLS was applied to the OSC spectra the errors in cross validation 

were exceptionally high and the % oxidation could not be predicted. It is 

anticipated that the OSC was overfitting the data to such an extent that 

independent samples from CV produced gross errors. 

During this experiment only 10 samples were analysed which is insufficient to 

model such complex samples. There are a number of reasons that would have 
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affected the quality of the measurements recorded during this experiment which 

could lead to greater variability between the spectra than the % oxidation of the 

samples. 

The sample volume analysed was not accurately controlled, the samples were 

stored in jars prior to analysis, these were approximately the same volume but 

previous workS had shown that the weight of samples is an important factor for 

GMS measurements. Another factor which could contribute to uncontrolled 

spectral variation between the samples is the ratio of solid to organic to aqueous' 

phases. As these ratios vary the sample's dielectric constant will also vary. 

For the measurements it could be that the variation in the GMS spectra due to 

these factors is greater than that for the % oxidation leading to the inability to 

model this data. 

The method did show that there was potential for this type of spectra to be used' 

for the analysis of oxidation level but further experiments with controlled, 

designed samples would be required to confirm suitability for on-line application. 

The results were recorded as the sample phase varied from slurry to the original 

separate phases highlighted the GMS system's sensitivity to changes in the 

sample homogeneity. When analysing multiphase systems it is essential that the 

sample is thoroughly mixed for comparative analysis. 
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5 Further Work 

The following experiments are proposed to establish if the industrial process 

samples from GMS may measure Avecia's BIT oxidation process and also to gain 

more infonnation where the boundaries are for measurements of complex 

samples. 

• To repeat the experiments of chapter 5 but use nitrile mixtures of multiple 

components to see if mixtures of 4 nitriles are possible where 4 alcohols 

were not 

• Repeat the previous experiments but with much greater control from 

preparation and planning. Samples should be taken regularly from one 

batch during the process to gain a large number of samples and an even 

spread of % oxidation of the samples. Fixed volume portions should be 

transferred to cylinders and the % of each phase noted as accurately as 

possible. The fixed volume samples should then be weighed prior to GMS 

measurement as this is likely to vary with different ratios of solid, liquid 

and aqueous layers. 

• If the data cannot be modelled in the above experiment a series of simple 

multi phase samples, following an experimental design approach should be 

analysed by GMS. 
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Chapter 7: Conclusions 

The application of chemometrics to spectroscopic process analytical data has been 

investigated. There have been several interesting discoveries that will impact on 

the manufacturing environment for new and alternative methods of analysis and in 

the field of chemometrics were the urgent need for attention of application was 

identified. 

The chemical manufacturing industry has a great interest in process analysis and 

when applied effectively can bring great financial and environmental benefits. The 

ideals of process analysis are to have a very simple measurement system for what 

is often a very complex mixture. The accuracy and precision of laboratory based 

measurements systems can rarely be reproduced in the process environment of 

simple systems. The uptake of process analysis universally has been restricted 

because analytical measurements are not always easy to transfer to a 

manufacturing environment. Equipment has to be able to stand up to the harsh 

manufacturing environment yet still make sensible measurements. 

When applied effectively the benefits of process analysis can lead to increased 

knowledge of the process in real-time can lead to substantial cost benefits. The 

measurements taken are often complex with many interferrants, multivariate 

analysis methods are used to overcome these issues. 

The first example of this was the multivariate calibration of spectra of uranyl 

nitrate liquors. The aim was to establish if either UVNis or Raman spectroscopies 

were suitable for the analysis of uranium ore conversion process. The company do 
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not have large funds for the project and anyon-line analysis technique would have 

to be at minimal expense. This made the application of a Raman instrument highly 

unlikely in reality. The feasibility work was still undertaken as an instrument was 

easily borrowed from the manufacturer and if successful would imply that other 

similar processes which have more resources maybe analysed by this method. 

The first stage of the uranium ore concentrate conversion process was simulated 

in the laboratory at BNFL. The Raman and UV /Vis spectra were used to monitor 

the process. The implementation of an on-line analytical solution would result in 

improved process control and downstream yield improvements. The aim of the 

work undertaken was to establish if either technique could be used to predict the 

amount of uranyl and nitrate in the samples and the temperature of the samples. 

The objective of using a single calibration model for simultaneous prediction of 

all components was achieved. A PLS2 calibration model based on first order 

derivatised spectra, predicted the levels of nitrate and uranyl with a 7 % error and 

the sample temperature with 5 % error. The work found that the inexpensive 

UV Nis measurements were not sufficient for the process data even though 

literature had shown measurement to be possible in simple solutions. The Raman 

technique was suitable for measurement but, is too costly to install and maintain. 

Ideally a method between these in terms of sensitivity and cost would be 

beneficial. 

The application of spectroscopic measurement to industrial process analysis is the 

main feature for the remaining work. Existing methods of process analysis cover a 
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wide range of applications satisfactorily. There is one area where there is little 

representation for potential methods of analysis. This is the analysis of samples 

which contain a high proportion of solid particulates. The problem of analysing 

this type of sample is currently solved by over engineering of the process or the 

samples to allow analysis of the solution without particulates present. An example 

of this is the NIR instruments developed by Foss for fermentation monitoring, 

these are effective instruments for measurement, but require sample pre-treatment. 

Here the method of guided microwave spectroscopy has been used to analysis 

particulate containing samples in entirety, without separation. 

The of advantage microwaves over spectroscopies such as NIR is that they have 

long pathlengths of many cm. The result is large sample chambers of several 

hundred ml. There are several advantages of this technique that are a result of the 

increased sample volume, as it improves the representation of the sample from the 

process stream and are less likely to suffer fouling. 

Guided microwave spectroscopy is a relatively new and under utilised method for 

process analysis. Its application has been limited due to the very complex, 

broadband spectra that are produced from measurement of non-gaseous samples. 

The complex spectra are the disadvantage of the method. To understand the signal 

chemometric techniques are essential. The spectra are also difficult to predict. 

This could limit the range of applications to on-line environments, especially in 

the field of pharmaceutical analysis. The pharmaceutical industry is heavily 
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regulated; a technique where the composition of the spectral response is difficult 

to prove is unlikely to be well received. 

The microwave response from water is very strong, as the technique is sensitive to 

variations in hydrogen bonding as the dielectric constant of a material will alter 

with hydrogen bonding. The issue of non-linearity of hydrogen bonding is been 

demonstrated in the development stage of this method for chemical analysis. For 

the analysis of samples with 1 or 2 alcohols standard regression methods were 

sufficient for calibration, when this was extended to 3 polynomial methods were 

required to account for the non-linearities. These could not be overcome for 

accurate prediction when there were 4 alcohols in the mixtures. This is a low 

number of components for a measurement system and may indicate why the 

method has not been widely received in an industrial environment. 

The GMS has been shown as suitable for the monitoring of the beer fermentation 

process. The advantages of the GMS system of were evident in that 1 pint of beer 

was fermented directly inside the GMS sample cavity, the entire fermentation 

wort was measured included dissolved gases and particulates and the fermentation 

could still be monitored. 

The way this experiment was undertaken could be applied to an industrial 

environment. If the need for a guided wave cavity could be eliminated, and 

sufficient microwaves could be received for detection, then in principle, 

microwave spectroscopy could be used for analysis across process reactors, 
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eliminating the need for sampling or re-circulation loops. Methods of process 

analysis are extending to measurements through packaging. Examples include the 

analysis of pharmaceuticals raw materials through the packaging in which the 

material is transported by NIR. The packaging has been standardised by suppliers 

to make measurements possible. Until the microwave system can be used without 

the guided cavity the method will not be suitable to such applications. 

Another example of where GMS has demonstrated feasibility for measurement 

was for the monitoring of Avecia's BIT oxidation process. The samples were non­

homogeneous examples of the industrial process consisting of three separate 

phases; organic, aqueous and solid which formed slurry on mixing. This mixture 

could not be measured by NIR, the GMS spectral measurements were low in 

response and required an intensive form or pre-treatment for prediction. This work 

was inconclusive as to whether GMS was suitable for measurement. The samples 

contained a large number of components which could limit the GMS system 

response to the analyte of interest. It is in these circumstances the use of 

chemometrics is essential. 

The measurements for the BIT process was of the entire sample, part of the 

problem for calibration of such samples is that the reference measurements were 

based only on one phase of the sample. It is expected that correlation should be 

straight forward between a single phase measurement and a multiphase 

measurement, but not surprising in reality when weaknesses occur. 
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To overcome some of the problems when relating the measurement of a single 

component to the spectra of a solution which has several factors or components 

varying new chemometric techniques have been developed. The relatively new 

technique of orthogonal signal correction can be used to clean-up spectral signals 

so that only information that directly relates to the analyte of interest is used in the 

calibration. This can be an excellent technique for data which has a poorly 

correlated signal. However the technique has received much criticism. There can 

be a tendency for too much information being removed from the signal and as a 

result calibration models are over-fitted and are not relevant for independent 

datasets. 

Orthogonal signal correction has been used for poorly correlated data with 

exceptionally large improvements in the calibration data. This method should be 

used with caution as it has been shown in this thesis to overfit the calibration data 

to an extent that prediction is not possible after CV. 

Much of the work has been involved the investigation of new methods of 

measurement with the view to be applied in an industrial environment for on-line 

process monitoring and analysis. A range chemometric techniques and pre­

treatment methods have been applied to gain information, visualise trends or 

predict analyte properties within corresponding spectroscopic data. These have 

been restricted to the mainstream methods of mainly PCA and PLS to minimise 

queries over the chemometric technique and focus on development of the new 

measurement technique and application. 
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The calibration method of WRR has also been applied for model generation in 

some datasets during this work. The method has shown to be comparable to PLS 

models. This method has the advantage that it does not decompose the data into 

factors which then have to be recombined using a fewer number of factors. 

The procedure of using a standard reference material for chemical analysis to 

ensure a measurement method is correct is widely used by analytical chemists, 

and is considered an integral part of 'Good Laboratory Practice'. Yet this 

approach has not been standardised for the application of chemometrics. For 

industrial analysis, there is little point of time and cost consuming instrumental 

calibration procedures, if this approach is not then undertaken for the 

computations applied to the measurements. This gap in analytical procedures was 

noticed by NIST, which lead to the development of a range of reference datasets, 

available for analysts to ensure their skills and software are in order. 

A spectroscopic dataset of multiple wavelengths was not included in the work at 

NIST. For this thesis, a spectroscopic dataset was produced to which could 

provide the need for this type of dataset for reference analysis. The measurements 

were to be simple, easy to measure with low experimental and instrumental errors. 

To facilitate this, metal ion solutions of composition from an experimental design 

methodology were measured by visible spectroscopy. In order to gain typical 

errors of prediction of the samples a collaborative trial was undertaken. From this 

the mean and standard deviation of the samples predictions were estimated from 
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the results of a number of individuals. The spectra of the metal ions and the 

sample estimates of concentration will be available to those that wish to use it. 

The procedure of chemometric data analysis is one that is heavily influenced by 

individuals' choice. There are not any rules which demonstrate that a certain 

technique should be used for a specific circumstance or type of spectroscopic data. 

This issue was highlighted in the large range of calibration methods and pre­

processing techniques that was applied to the visible spectra of the metal ion 

complexes by participants of the collaborative trial. The trial found that even 

where the participants had reported using the same procedure the results were not 

the same. This between-user variation was also seen in a similar trial based on 

NIR forage data. The results of these two studies have found that further 

investigations are necessary to establish the cause and minimise the between-user 

variation. Based on the results of the collaborative study of the metal ions, an 

individual could conclude that the measurements were incorrect, when in reality 

the data processing was incorrect. This is a serious issue for the past and future 

application of chemometrics, as it is difficult for the subject to be embraced if 

there is doubt over the quality of the applications. Currently there is a large 

amount of resources given to the development of new chemometric techniques. 

For transfer of chemometrics to the industrial environment the focus should be re­

direct from new techniques, sometimes with only marginal benefits, to ensuring 

the existing techniques are applied correctly. 
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Chapter 7: Conclusions 

Overall this work has successfully shown some new applications of standard 

measurement systems to produce a standard dataset and monitor uranyl nitrate 

samples. The initial developments have been undertaken for a new instrumental 

measurement method for process analysis which has promising results and in the 

future will have a large impact on measurement of industrial processes such as 

moisture measurement, drying of pharmaceutical products and analysis of 

heterogeneous samples. 
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Justification 

The current growing interest in process analysis is quickly moving away from traditional 
methods of analysis. As a result there is considerable interest in alternative methods, such 
as Microwave. Traditionally the problem with Microwaves has been in the data analyses. 
This paper investigates the application of chemometric modeling and demonstrates that it 
is feasible to use microwaves for calibration. 



Abstract 

The feasibility of using guided microwave spectroscopy (GMS) utilizing the frequency 
range 0.25 - 3.20 GHz, combined with multivariate calibration for the determination of 
acetonitrile or ethanol concentration in water. A wide range of different concentrations 
was used (up to 30 % v/v). Partial Least squares (PLS) and Weighted Ridge Regression 
(WRR) was applied to generate a model for prediction, based upon the microwave 
spectra. 

A high level of collinearity was observed in both of the sample data sets and this was 
reduced by background subtraction. The prediction ability for the two types of regression 
models were found to be comparable with the percentage error of prediction (PEP) being 
approximately 2.5 % for the acetonitrile samples and 1.1 % for ethanol samples. 



Introduction 

The aim of this work is to test the feasibility of Guided Microwave Spectroscopy (GMS) 
using 0.25 - 3.20 GHz frequency range for the analysis of solvents in water [1 • The two 
solvents under investigation are acetonitrile and ethanol. These have significantly 
different dielectric constants (table 1) [2]. 

Classically solvent concentrations can be determined by gas chromatography [3]. This can 
be lengthy procedure requiring frequent instrument calibration. So far its application for 
in-line analysis has been problematic and unreliable. 

The overall aim is to apply GMS for in-line analysis during production. Microwave 
spectroscopy has often been ignored as a suitable in-line analysis method because the 
spectra are often broadband without clear peaks. This can make understanding and using 
the spectra for the prediction of concentration difficult [4]. Here chemometric techniques 
have been applied to enable prediction of concentration from the solvent spectra. 

Microwave spectroscopy will respond well to solutions with a large dipole moment and 
that are hydrogen bonded i.e. ideal for water. The form of the water to be analysed will 
affect the microwave absorption characteristics [41. 

The GMS instrument will give a spectral response to the change of E' and E" as 
microwave radiation passes through a sample. Changes in the dielectric constant, E' are 
caused by a reduction of wave velocity across the chamber during analysis. 

Where: 
E' = Dielectric Constant. 
c = Velocity of light in a vacuum. 
v = Velocity through sample. 

[1] 

Variations in E" are a result of energy loss to heat due to friction as molecules orientate 
in the microwave field [51. 

Data Analysis 

The data analysis was carried out using Matlab™ version 5.3.1 [61 and the PLS_ Toolbox 
version 2.0 [7]. 

The Condition Number is a measure of the quality of the data. A condition number 
above 30 is indicative of collinearity within the data [8

1• Collinearity is a feature of the 



data matrix and will significantly affect the least squares efficiency in a detrimental 
manner. It is determined by ratio of the maximum and minimum values after singular 
value decomposition. 

C d
" liT b MaxSingularValue on ltwnlVum er = -----'''-----

MinSingularValue 

Multivariate Calibration 

[2] 

Multivariate calibration can be described as the modeling of data that has multiple 
measurements for a number of samples. Here the commonly applied PLS-NIPALS 
algorithm and the less frequently referenced Weighted Ridge Regression methods are 
used to model the multivariate spectral data. The aim of the modeling is to produce the 
best predictive model. 

Partial Least Squares (PLS) 

The PLS algorithm works by decomposing the spectral data and relating concentrations 
into latent variables [9]. The number of latent variables is chosen which result in the 
lowest Percentage Error of Prediction of the validation data (equation 5). 

Weighted Ridge Regression 

Ridge Regression (RR) is another modeling technique. The method is based on 
correlations within the data. It works by adding a value (0) to the ridge (or diagonal) of 
the correlation matrix [10]. 

Where: 
bF are the regression coefficients, 
0= Ridge Constant (positive value between 0-1), 
F = mean centred X matrix, 
F' F is the correlation matrix, 
I is the identity matrix, size r x r (r = number of data points/wavelengths). 

[3] 

This has the effect of maximizing the variation and orthogonality of the data. A benefit is 
that the procedure can improve the signal to noise ratio of the spectra. Ridge Regression 
is ideal for ill-conditioned/collinear data where X' X (inverse matrix) is near to or 
actually singular. Under these conditions, problems are incurred when calculating models 
by PLS. Another advantage of the Ridge Regression over PLS is that it does not 



decompose the data into latent variables and hence removes the issue of which latent 
variables to keep when modeling data. 

In this paper calculations were made using the improved method of Weighted Ridje 
Regression (WRR), (equation 4) instead of the standard RR described above [1 1. 

bF = (F' F + () x diag (F' F»-l F' Y [4] 

In WRR it is not necessary to calculate the values of () allowing the regression 
coefficients to be computed more quickly. 

Data Pre-treatment 

For each sample the spectra is scanned and recorded 10 times whilst situated in the 
microwave cavity. Of these 10 spectra the median is taken and used to represent the 
microwave spectra of that sample. 

For PLS the solvent spectra are background subtracted. To do this the spectra of pure 
water without any solvent added is subtracted from those with solvent. This maximizes 
the variation in the spectra according to solvent concentration. The spectra were not 
background subtracted before WRR. 

Cross Validation 

The calibration models are validated using the Leave-One-Out cross validation method. 
For this a sample is sequentially removed from the calibration data set, the model is 
generated using the reduced sized data set. Then the validation data spectra 
concentrations are predicted using the new model. This procedure is rcpeated until all of 
the calibration samples have been removed once. 

In order to test the goodness of fit of the prediction model outputs the average Percentage 
Errors of Prediction (PEP) are calculated (equation 5). 

(Yactual - Y predicted )2 / Y actual ~ X 1 00 

n ~ 
[5] 



Experimental 

Instrumentation 

The instrument used throughout this project was an Epsilon Industrial Guided Microwave 
Spectrometer (GMS), Epsilon Industrial Inc, 2215 Grand Avenue Parkway, Austin, 
Texas, 78728. The GMS has a Bandwidth of 0.25 - 3.20 GHz and dielectric range of 1 -
85. 

The GMS has a remote cavity where the sample spectra are recorded. The cavity is of 
stainless steel construction and has internal dimensions of to.Ox4.7xl1.5cm, with a 
total internal volume of 540 cm3

• This is connected to the GMS via two coaxial cables, 
which were 450 cm. The microwaves are transmitted along a cable to the cavity and pass 
through the sample to the detector. Here the response is passed along the remaining cable 
back to the spectrometer. A PC connected to the instrument records the spectra using 
Linefit Software (Version 1.43), Epsilon Industrial Inc., and then the data is transferred to 
Matlab™. 

Reagents 

For each solvent 500 ml standards were made up volumetrically in duplicate. The 
acetonitrile (acetonitrile, HPLC Grade, 99 %, Fisher Chemicals, Loughborough, UK) 
standards were of the following concentrations; 5, 8, to, 12, 15,20,23,25, and 30 % v/v. 
The ethanol (ethanol, Absolute, 99 %, Fisher Chemicals, Loughborough, UK) samples 
were of a wider range of concentrations, these were; 1, 3, 5, 8, to, 12, 15, 20, 23, 25, 28 
and 30 % v/v. 

Procedure 

Background spectra of water were recorded prior to analysis. The microwave cavity was 
rinsed with water (500 ml) and then filled with the 500 ml sample standard. This was left 
for 1 minute to stand before 10 spectra were recorded consecutively. After which the 
cavity was emptied of standard. The cavity was then rinsed with water and the procedure 
repeated. 



Results and Discussion 

The microwave spectra of acetonitrile samples can be seen in figure 1a and ethanol 
samples, figure 2a. Changes in the ethanol spectra with concentration can be clearly seen, 
the variation in spectral response for acetonitrile samples is slight and only 
distinguishable after background subtraction, figure 1 b. The differences in responses are 
due to the form of water after it is mixed with the different solvents. 

The condition number of the acetonitrile and ethanol samples is 2400 and 2000 
respectively. Pre-treatment techniques were applied to the spectra and the effect on 
condition number noted. It was found that background subtraction significantly reduces 
the condition numbers to below 1000 whilst other methods such as mean centering, 
autoscaling and smoothing had a detrimental effect and increased the condition number 
by several orders of magnitude. Thus prior to PLS the spectra are background subtracted. 

From PLS the samples scores plots of PC1 against PC2 (figures 3a and 3b) show that for 
both sets of solvent standards the sample scores are ordered in terms of concentration and 
lie on a curve. When the training and validation spectra are combined the scores positions 
for each concentration are clustered together demonstrating reproducibility of the system. 

The PEP from Leave-One-Out cross validation of the sample spectra using PLS and 
WRR modeling gave comparable predictions for each sample set (table 2). The ethanol 
samples had a lower PEP than the acetonitrile samples and a correlation coefficient (r2) 
closer to 1. 

As previously mentioned the OMS spectral variation for ethanol is significantly more 
than that of acetonitrile. The increased response would result in the ethanol samples 
having a reduced level of noise, improving condition and therefore having lower errors of 
prediction. The difference in signal to noise ratios for PLS modeling are distinguishable 
in the regression vectors plots. These show the spectral regions that contribute to the 
model. When compared the acetonitrile samples (figure 4a) model has fewer peaks in 
comparison to those of ethanol samples (figure 4b). 

This work has shown that OMS over the 0.25 - 3.20 OHz region is a suitable for the 
analysis of acetonitrile and ethanol in water up to 30 % v/v of analyte when PLS and 
WRR are employed for modeling of the data to enable prediction of concentration. The 
procedure worked with errors of less than 2.5 % error of prediction. Typically a sample 
of 15 % v/v acetonitrile would be predicted as in the region of 14.6 - 15.4 % (taking 2.5 
% PEP) and an ethanol sample between 14.8 - 15.2 % (1.1 % PEP). 

This paper only describes the initial results for basic system of solutions of one analyte in 
water. It has been applied to solvents of very different structures. Due to its strong 
polarity water has the strongest response to microwaves. It is expected that the ethanol 
solutions gave a greater response to the microwave field because of the ability to 
hydrogen bond and therefore increased mobility in water allowing the molecules to easily 
rotate in the microwave field. The acetonitrile standards had a poor response over much 



of the frequency range. This could be a result of the overall polarity of the solution 
decreasing as the acetonitrile levels increase. 

A natural extension will be to apply GMS with multivariate calibration to solutions of 
different analytes or multiple components. Further work should be carried out to 
determine the limits of detection of analyte by this method. 
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Table 1 Dielectric Constants 

Substance Dielectric Constant 
Acetonitrile 37.5 (20°C) 

Ethanol 24.3 (25°C) 
Water 80.2 (20°C) 

Table 2 Modeling Results After Leave-One-Out Cross Validation. 

Acetonitrile Ethanol 
PEP rL PEP rL 

PLS-NIPALS 2.51 % 0.9798 1.02 % 0.9991 
WRR 2.41% 0.9861 1.09 % 0.9993 
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Figure 3a 
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